Fixed overflow from a LO16 reloc into a HI16_S reloc.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2 Copyright 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /*
21
22 SECTION
23 ELF backends
24
25 BFD support for ELF formats is being worked on.
26 Currently, the best supported back ends are for sparc and i386
27 (running svr4 or Solaris 2).
28
29 Documentation of the internals of the support code still needs
30 to be written. The code is changing quickly enough that we
31 haven't bothered yet.
32 */
33
34 #include "bfd.h"
35 #include "sysdep.h"
36 #include "bfdlink.h"
37 #include "libbfd.h"
38 #define ARCH_SIZE 0
39 #include "elf-bfd.h"
40
41 static INLINE struct elf_segment_map *make_mapping
42 PARAMS ((bfd *, asection **, unsigned int, unsigned int, boolean));
43 static boolean map_sections_to_segments PARAMS ((bfd *));
44 static int elf_sort_sections PARAMS ((const PTR, const PTR));
45 static boolean assign_file_positions_for_segments PARAMS ((bfd *));
46 static boolean assign_file_positions_except_relocs PARAMS ((bfd *));
47 static boolean prep_headers PARAMS ((bfd *));
48 static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **));
49 static boolean copy_private_bfd_data PARAMS ((bfd *, bfd *));
50 static char *elf_read PARAMS ((bfd *, long, unsigned int));
51 static void elf_fake_sections PARAMS ((bfd *, asection *, PTR));
52 static boolean assign_section_numbers PARAMS ((bfd *));
53 static INLINE int sym_is_global PARAMS ((bfd *, asymbol *));
54 static boolean elf_map_symbols PARAMS ((bfd *));
55 static bfd_size_type get_program_header_size PARAMS ((bfd *));
56
57 /* Swap version information in and out. The version information is
58 currently size independent. If that ever changes, this code will
59 need to move into elfcode.h. */
60
61 /* Swap in a Verdef structure. */
62
63 void
64 _bfd_elf_swap_verdef_in (abfd, src, dst)
65 bfd *abfd;
66 const Elf_External_Verdef *src;
67 Elf_Internal_Verdef *dst;
68 {
69 dst->vd_version = bfd_h_get_16 (abfd, src->vd_version);
70 dst->vd_flags = bfd_h_get_16 (abfd, src->vd_flags);
71 dst->vd_ndx = bfd_h_get_16 (abfd, src->vd_ndx);
72 dst->vd_cnt = bfd_h_get_16 (abfd, src->vd_cnt);
73 dst->vd_hash = bfd_h_get_32 (abfd, src->vd_hash);
74 dst->vd_aux = bfd_h_get_32 (abfd, src->vd_aux);
75 dst->vd_next = bfd_h_get_32 (abfd, src->vd_next);
76 }
77
78 /* Swap out a Verdef structure. */
79
80 void
81 _bfd_elf_swap_verdef_out (abfd, src, dst)
82 bfd *abfd;
83 const Elf_Internal_Verdef *src;
84 Elf_External_Verdef *dst;
85 {
86 bfd_h_put_16 (abfd, src->vd_version, dst->vd_version);
87 bfd_h_put_16 (abfd, src->vd_flags, dst->vd_flags);
88 bfd_h_put_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 bfd_h_put_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 bfd_h_put_32 (abfd, src->vd_hash, dst->vd_hash);
91 bfd_h_put_32 (abfd, src->vd_aux, dst->vd_aux);
92 bfd_h_put_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (abfd, src, dst)
99 bfd *abfd;
100 const Elf_External_Verdaux *src;
101 Elf_Internal_Verdaux *dst;
102 {
103 dst->vda_name = bfd_h_get_32 (abfd, src->vda_name);
104 dst->vda_next = bfd_h_get_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (abfd, src, dst)
111 bfd *abfd;
112 const Elf_Internal_Verdaux *src;
113 Elf_External_Verdaux *dst;
114 {
115 bfd_h_put_32 (abfd, src->vda_name, dst->vda_name);
116 bfd_h_put_32 (abfd, src->vda_next, dst->vda_next);
117 }
118
119 /* Swap in a Verneed structure. */
120
121 void
122 _bfd_elf_swap_verneed_in (abfd, src, dst)
123 bfd *abfd;
124 const Elf_External_Verneed *src;
125 Elf_Internal_Verneed *dst;
126 {
127 dst->vn_version = bfd_h_get_16 (abfd, src->vn_version);
128 dst->vn_cnt = bfd_h_get_16 (abfd, src->vn_cnt);
129 dst->vn_file = bfd_h_get_32 (abfd, src->vn_file);
130 dst->vn_aux = bfd_h_get_32 (abfd, src->vn_aux);
131 dst->vn_next = bfd_h_get_32 (abfd, src->vn_next);
132 }
133
134 /* Swap out a Verneed structure. */
135
136 void
137 _bfd_elf_swap_verneed_out (abfd, src, dst)
138 bfd *abfd;
139 const Elf_Internal_Verneed *src;
140 Elf_External_Verneed *dst;
141 {
142 bfd_h_put_16 (abfd, src->vn_version, dst->vn_version);
143 bfd_h_put_16 (abfd, src->vn_cnt, dst->vn_cnt);
144 bfd_h_put_32 (abfd, src->vn_file, dst->vn_file);
145 bfd_h_put_32 (abfd, src->vn_aux, dst->vn_aux);
146 bfd_h_put_32 (abfd, src->vn_next, dst->vn_next);
147 }
148
149 /* Swap in a Vernaux structure. */
150
151 void
152 _bfd_elf_swap_vernaux_in (abfd, src, dst)
153 bfd *abfd;
154 const Elf_External_Vernaux *src;
155 Elf_Internal_Vernaux *dst;
156 {
157 dst->vna_hash = bfd_h_get_32 (abfd, src->vna_hash);
158 dst->vna_flags = bfd_h_get_16 (abfd, src->vna_flags);
159 dst->vna_other = bfd_h_get_16 (abfd, src->vna_other);
160 dst->vna_name = bfd_h_get_32 (abfd, src->vna_name);
161 dst->vna_next = bfd_h_get_32 (abfd, src->vna_next);
162 }
163
164 /* Swap out a Vernaux structure. */
165
166 void
167 _bfd_elf_swap_vernaux_out (abfd, src, dst)
168 bfd *abfd;
169 const Elf_Internal_Vernaux *src;
170 Elf_External_Vernaux *dst;
171 {
172 bfd_h_put_32 (abfd, src->vna_hash, dst->vna_hash);
173 bfd_h_put_16 (abfd, src->vna_flags, dst->vna_flags);
174 bfd_h_put_16 (abfd, src->vna_other, dst->vna_other);
175 bfd_h_put_32 (abfd, src->vna_name, dst->vna_name);
176 bfd_h_put_32 (abfd, src->vna_next, dst->vna_next);
177 }
178
179 /* Swap in a Versym structure. */
180
181 void
182 _bfd_elf_swap_versym_in (abfd, src, dst)
183 bfd *abfd;
184 const Elf_External_Versym *src;
185 Elf_Internal_Versym *dst;
186 {
187 dst->vs_vers = bfd_h_get_16 (abfd, src->vs_vers);
188 }
189
190 /* Swap out a Versym structure. */
191
192 void
193 _bfd_elf_swap_versym_out (abfd, src, dst)
194 bfd *abfd;
195 const Elf_Internal_Versym *src;
196 Elf_External_Versym *dst;
197 {
198 bfd_h_put_16 (abfd, src->vs_vers, dst->vs_vers);
199 }
200
201 /* Standard ELF hash function. Do not change this function; you will
202 cause invalid hash tables to be generated. (Well, you would if this
203 were being used yet.) */
204 unsigned long
205 bfd_elf_hash (name)
206 CONST unsigned char *name;
207 {
208 unsigned long h = 0;
209 unsigned long g;
210 int ch;
211
212 while ((ch = *name++) != '\0')
213 {
214 h = (h << 4) + ch;
215 if ((g = (h & 0xf0000000)) != 0)
216 {
217 h ^= g >> 24;
218 h &= ~g;
219 }
220 }
221 return h;
222 }
223
224 /* Read a specified number of bytes at a specified offset in an ELF
225 file, into a newly allocated buffer, and return a pointer to the
226 buffer. */
227
228 static char *
229 elf_read (abfd, offset, size)
230 bfd * abfd;
231 long offset;
232 unsigned int size;
233 {
234 char *buf;
235
236 if ((buf = bfd_alloc (abfd, size)) == NULL)
237 return NULL;
238 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
239 return NULL;
240 if (bfd_read ((PTR) buf, size, 1, abfd) != size)
241 {
242 if (bfd_get_error () != bfd_error_system_call)
243 bfd_set_error (bfd_error_file_truncated);
244 return NULL;
245 }
246 return buf;
247 }
248
249 boolean
250 bfd_elf_mkobject (abfd)
251 bfd * abfd;
252 {
253 /* this just does initialization */
254 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
255 elf_tdata (abfd) = (struct elf_obj_tdata *)
256 bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
257 if (elf_tdata (abfd) == 0)
258 return false;
259 /* since everything is done at close time, do we need any
260 initialization? */
261
262 return true;
263 }
264
265 char *
266 bfd_elf_get_str_section (abfd, shindex)
267 bfd * abfd;
268 unsigned int shindex;
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 char *shstrtab = NULL;
272 unsigned int offset;
273 unsigned int shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
277 return 0;
278
279 shstrtab = (char *) i_shdrp[shindex]->contents;
280 if (shstrtab == NULL)
281 {
282 /* No cached one, attempt to read, and cache what we read. */
283 offset = i_shdrp[shindex]->sh_offset;
284 shstrtabsize = i_shdrp[shindex]->sh_size;
285 shstrtab = elf_read (abfd, offset, shstrtabsize);
286 i_shdrp[shindex]->contents = (PTR) shstrtab;
287 }
288 return shstrtab;
289 }
290
291 char *
292 bfd_elf_string_from_elf_section (abfd, shindex, strindex)
293 bfd * abfd;
294 unsigned int shindex;
295 unsigned int strindex;
296 {
297 Elf_Internal_Shdr *hdr;
298
299 if (strindex == 0)
300 return "";
301
302 hdr = elf_elfsections (abfd)[shindex];
303
304 if (hdr->contents == NULL
305 && bfd_elf_get_str_section (abfd, shindex) == NULL)
306 return NULL;
307
308 if (strindex >= hdr->sh_size)
309 {
310 (*_bfd_error_handler)
311 ("%s: invalid string offset %u >= %lu for section `%s'",
312 bfd_get_filename (abfd), strindex, (unsigned long) hdr->sh_size,
313 ((shindex == elf_elfheader(abfd)->e_shstrndx
314 && strindex == hdr->sh_name)
315 ? ".shstrtab"
316 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
317 return "";
318 }
319
320 return ((char *) hdr->contents) + strindex;
321 }
322
323 /* Make a BFD section from an ELF section. We store a pointer to the
324 BFD section in the bfd_section field of the header. */
325
326 boolean
327 _bfd_elf_make_section_from_shdr (abfd, hdr, name)
328 bfd *abfd;
329 Elf_Internal_Shdr *hdr;
330 const char *name;
331 {
332 asection *newsect;
333 flagword flags;
334
335 if (hdr->bfd_section != NULL)
336 {
337 BFD_ASSERT (strcmp (name,
338 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
339 return true;
340 }
341
342 newsect = bfd_make_section_anyway (abfd, name);
343 if (newsect == NULL)
344 return false;
345
346 newsect->filepos = hdr->sh_offset;
347
348 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
349 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
350 || ! bfd_set_section_alignment (abfd, newsect,
351 bfd_log2 (hdr->sh_addralign)))
352 return false;
353
354 flags = SEC_NO_FLAGS;
355 if (hdr->sh_type != SHT_NOBITS)
356 flags |= SEC_HAS_CONTENTS;
357 if ((hdr->sh_flags & SHF_ALLOC) != 0)
358 {
359 flags |= SEC_ALLOC;
360 if (hdr->sh_type != SHT_NOBITS)
361 flags |= SEC_LOAD;
362 }
363 if ((hdr->sh_flags & SHF_WRITE) == 0)
364 flags |= SEC_READONLY;
365 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
366 flags |= SEC_CODE;
367 else if ((flags & SEC_LOAD) != 0)
368 flags |= SEC_DATA;
369
370 /* The debugging sections appear to be recognized only by name, not
371 any sort of flag. */
372 if (strncmp (name, ".debug", sizeof ".debug" - 1) == 0
373 || strncmp (name, ".line", sizeof ".line" - 1) == 0
374 || strncmp (name, ".stab", sizeof ".stab" - 1) == 0)
375 flags |= SEC_DEBUGGING;
376
377 /* As a GNU extension, if the name begins with .gnu.linkonce, we
378 only link a single copy of the section. This is used to support
379 g++. g++ will emit each template expansion in its own section.
380 The symbols will be defined as weak, so that multiple definitions
381 are permitted. The GNU linker extension is to actually discard
382 all but one of the sections. */
383 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0)
384 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
385
386 if (! bfd_set_section_flags (abfd, newsect, flags))
387 return false;
388
389 if ((flags & SEC_ALLOC) != 0)
390 {
391 Elf_Internal_Phdr *phdr;
392 unsigned int i;
393
394 /* Look through the phdrs to see if we need to adjust the lma. */
395 phdr = elf_tdata (abfd)->phdr;
396 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
397 {
398 if (phdr->p_type == PT_LOAD
399 && phdr->p_paddr != 0
400 && phdr->p_vaddr != phdr->p_paddr
401 && phdr->p_vaddr <= hdr->sh_addr
402 && phdr->p_vaddr + phdr->p_memsz >= hdr->sh_addr + hdr->sh_size
403 && ((flags & SEC_LOAD) == 0
404 || (phdr->p_offset <= hdr->sh_offset
405 && (phdr->p_offset + phdr->p_filesz
406 >= hdr->sh_offset + hdr->sh_size))))
407 {
408 newsect->lma += phdr->p_paddr - phdr->p_vaddr;
409 break;
410 }
411 }
412 }
413
414 hdr->bfd_section = newsect;
415 elf_section_data (newsect)->this_hdr = *hdr;
416
417 return true;
418 }
419
420 /*
421 INTERNAL_FUNCTION
422 bfd_elf_find_section
423
424 SYNOPSIS
425 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
426
427 DESCRIPTION
428 Helper functions for GDB to locate the string tables.
429 Since BFD hides string tables from callers, GDB needs to use an
430 internal hook to find them. Sun's .stabstr, in particular,
431 isn't even pointed to by the .stab section, so ordinary
432 mechanisms wouldn't work to find it, even if we had some.
433 */
434
435 struct elf_internal_shdr *
436 bfd_elf_find_section (abfd, name)
437 bfd * abfd;
438 char *name;
439 {
440 Elf_Internal_Shdr **i_shdrp;
441 char *shstrtab;
442 unsigned int max;
443 unsigned int i;
444
445 i_shdrp = elf_elfsections (abfd);
446 if (i_shdrp != NULL)
447 {
448 shstrtab = bfd_elf_get_str_section (abfd, elf_elfheader (abfd)->e_shstrndx);
449 if (shstrtab != NULL)
450 {
451 max = elf_elfheader (abfd)->e_shnum;
452 for (i = 1; i < max; i++)
453 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
454 return i_shdrp[i];
455 }
456 }
457 return 0;
458 }
459
460 const char *const bfd_elf_section_type_names[] = {
461 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
462 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
463 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
464 };
465
466 /* ELF relocs are against symbols. If we are producing relocateable
467 output, and the reloc is against an external symbol, and nothing
468 has given us any additional addend, the resulting reloc will also
469 be against the same symbol. In such a case, we don't want to
470 change anything about the way the reloc is handled, since it will
471 all be done at final link time. Rather than put special case code
472 into bfd_perform_relocation, all the reloc types use this howto
473 function. It just short circuits the reloc if producing
474 relocateable output against an external symbol. */
475
476 /*ARGSUSED*/
477 bfd_reloc_status_type
478 bfd_elf_generic_reloc (abfd,
479 reloc_entry,
480 symbol,
481 data,
482 input_section,
483 output_bfd,
484 error_message)
485 bfd *abfd;
486 arelent *reloc_entry;
487 asymbol *symbol;
488 PTR data;
489 asection *input_section;
490 bfd *output_bfd;
491 char **error_message;
492 {
493 if (output_bfd != (bfd *) NULL
494 && (symbol->flags & BSF_SECTION_SYM) == 0
495 && (! reloc_entry->howto->partial_inplace
496 || reloc_entry->addend == 0))
497 {
498 reloc_entry->address += input_section->output_offset;
499 return bfd_reloc_ok;
500 }
501
502 return bfd_reloc_continue;
503 }
504 \f
505 /* Print out the program headers. */
506
507 boolean
508 _bfd_elf_print_private_bfd_data (abfd, farg)
509 bfd *abfd;
510 PTR farg;
511 {
512 FILE *f = (FILE *) farg;
513 Elf_Internal_Phdr *p;
514 asection *s;
515 bfd_byte *dynbuf = NULL;
516
517 p = elf_tdata (abfd)->phdr;
518 if (p != NULL)
519 {
520 unsigned int i, c;
521
522 fprintf (f, "\nProgram Header:\n");
523 c = elf_elfheader (abfd)->e_phnum;
524 for (i = 0; i < c; i++, p++)
525 {
526 const char *s;
527 char buf[20];
528
529 switch (p->p_type)
530 {
531 case PT_NULL: s = "NULL"; break;
532 case PT_LOAD: s = "LOAD"; break;
533 case PT_DYNAMIC: s = "DYNAMIC"; break;
534 case PT_INTERP: s = "INTERP"; break;
535 case PT_NOTE: s = "NOTE"; break;
536 case PT_SHLIB: s = "SHLIB"; break;
537 case PT_PHDR: s = "PHDR"; break;
538 default: sprintf (buf, "0x%lx", p->p_type); s = buf; break;
539 }
540 fprintf (f, "%8s off 0x", s);
541 fprintf_vma (f, p->p_offset);
542 fprintf (f, " vaddr 0x");
543 fprintf_vma (f, p->p_vaddr);
544 fprintf (f, " paddr 0x");
545 fprintf_vma (f, p->p_paddr);
546 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
547 fprintf (f, " filesz 0x");
548 fprintf_vma (f, p->p_filesz);
549 fprintf (f, " memsz 0x");
550 fprintf_vma (f, p->p_memsz);
551 fprintf (f, " flags %c%c%c",
552 (p->p_flags & PF_R) != 0 ? 'r' : '-',
553 (p->p_flags & PF_W) != 0 ? 'w' : '-',
554 (p->p_flags & PF_X) != 0 ? 'x' : '-');
555 if ((p->p_flags &~ (PF_R | PF_W | PF_X)) != 0)
556 fprintf (f, " %lx", p->p_flags &~ (PF_R | PF_W | PF_X));
557 fprintf (f, "\n");
558 }
559 }
560
561 s = bfd_get_section_by_name (abfd, ".dynamic");
562 if (s != NULL)
563 {
564 int elfsec;
565 unsigned long link;
566 bfd_byte *extdyn, *extdynend;
567 size_t extdynsize;
568 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
569
570 fprintf (f, "\nDynamic Section:\n");
571
572 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
573 if (dynbuf == NULL)
574 goto error_return;
575 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
576 s->_raw_size))
577 goto error_return;
578
579 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
580 if (elfsec == -1)
581 goto error_return;
582 link = elf_elfsections (abfd)[elfsec]->sh_link;
583
584 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
585 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
586
587 extdyn = dynbuf;
588 extdynend = extdyn + s->_raw_size;
589 for (; extdyn < extdynend; extdyn += extdynsize)
590 {
591 Elf_Internal_Dyn dyn;
592 const char *name;
593 char ab[20];
594 boolean stringp;
595
596 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
597
598 if (dyn.d_tag == DT_NULL)
599 break;
600
601 stringp = false;
602 switch (dyn.d_tag)
603 {
604 default:
605 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
606 name = ab;
607 break;
608
609 case DT_NEEDED: name = "NEEDED"; stringp = true; break;
610 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
611 case DT_PLTGOT: name = "PLTGOT"; break;
612 case DT_HASH: name = "HASH"; break;
613 case DT_STRTAB: name = "STRTAB"; break;
614 case DT_SYMTAB: name = "SYMTAB"; break;
615 case DT_RELA: name = "RELA"; break;
616 case DT_RELASZ: name = "RELASZ"; break;
617 case DT_RELAENT: name = "RELAENT"; break;
618 case DT_STRSZ: name = "STRSZ"; break;
619 case DT_SYMENT: name = "SYMENT"; break;
620 case DT_INIT: name = "INIT"; break;
621 case DT_FINI: name = "FINI"; break;
622 case DT_SONAME: name = "SONAME"; stringp = true; break;
623 case DT_RPATH: name = "RPATH"; stringp = true; break;
624 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
625 case DT_REL: name = "REL"; break;
626 case DT_RELSZ: name = "RELSZ"; break;
627 case DT_RELENT: name = "RELENT"; break;
628 case DT_PLTREL: name = "PLTREL"; break;
629 case DT_DEBUG: name = "DEBUG"; break;
630 case DT_TEXTREL: name = "TEXTREL"; break;
631 case DT_JMPREL: name = "JMPREL"; break;
632 case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break;
633 case DT_FILTER: name = "FILTER"; stringp = true; break;
634 case DT_VERSYM: name = "VERSYM"; break;
635 case DT_VERDEF: name = "VERDEF"; break;
636 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
637 case DT_VERNEED: name = "VERNEED"; break;
638 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
639 }
640
641 fprintf (f, " %-11s ", name);
642 if (! stringp)
643 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
644 else
645 {
646 const char *string;
647
648 string = bfd_elf_string_from_elf_section (abfd, link,
649 dyn.d_un.d_val);
650 if (string == NULL)
651 goto error_return;
652 fprintf (f, "%s", string);
653 }
654 fprintf (f, "\n");
655 }
656
657 free (dynbuf);
658 dynbuf = NULL;
659 }
660
661 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
662 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
663 {
664 if (! _bfd_elf_slurp_version_tables (abfd))
665 return false;
666 }
667
668 if (elf_dynverdef (abfd) != 0)
669 {
670 Elf_Internal_Verdef *t;
671
672 fprintf (f, "\nVersion definitions:\n");
673 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
674 {
675 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
676 t->vd_flags, t->vd_hash, t->vd_nodename);
677 if (t->vd_auxptr->vda_nextptr != NULL)
678 {
679 Elf_Internal_Verdaux *a;
680
681 fprintf (f, "\t");
682 for (a = t->vd_auxptr->vda_nextptr;
683 a != NULL;
684 a = a->vda_nextptr)
685 fprintf (f, "%s ", a->vda_nodename);
686 fprintf (f, "\n");
687 }
688 }
689 }
690
691 if (elf_dynverref (abfd) != 0)
692 {
693 Elf_Internal_Verneed *t;
694
695 fprintf (f, "\nVersion References:\n");
696 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
697 {
698 Elf_Internal_Vernaux *a;
699
700 fprintf (f, " required from %s:\n", t->vn_filename);
701 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
702 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
703 a->vna_flags, a->vna_other, a->vna_nodename);
704 }
705 }
706
707 return true;
708
709 error_return:
710 if (dynbuf != NULL)
711 free (dynbuf);
712 return false;
713 }
714
715 /* Display ELF-specific fields of a symbol. */
716
717 void
718 bfd_elf_print_symbol (abfd, filep, symbol, how)
719 bfd *abfd;
720 PTR filep;
721 asymbol *symbol;
722 bfd_print_symbol_type how;
723 {
724 FILE *file = (FILE *) filep;
725 switch (how)
726 {
727 case bfd_print_symbol_name:
728 fprintf (file, "%s", symbol->name);
729 break;
730 case bfd_print_symbol_more:
731 fprintf (file, "elf ");
732 fprintf_vma (file, symbol->value);
733 fprintf (file, " %lx", (long) symbol->flags);
734 break;
735 case bfd_print_symbol_all:
736 {
737 CONST char *section_name;
738 section_name = symbol->section ? symbol->section->name : "(*none*)";
739 bfd_print_symbol_vandf ((PTR) file, symbol);
740 fprintf (file, " %s\t", section_name);
741 /* Print the "other" value for a symbol. For common symbols,
742 we've already printed the size; now print the alignment.
743 For other symbols, we have no specified alignment, and
744 we've printed the address; now print the size. */
745 fprintf_vma (file,
746 (bfd_is_com_section (symbol->section)
747 ? ((elf_symbol_type *) symbol)->internal_elf_sym.st_value
748 : ((elf_symbol_type *) symbol)->internal_elf_sym.st_size));
749
750 /* If we have version information, print it. */
751 if (elf_tdata (abfd)->dynversym_section != 0
752 && (elf_tdata (abfd)->dynverdef_section != 0
753 || elf_tdata (abfd)->dynverref_section != 0))
754 {
755 unsigned int vernum;
756 const char *version_string;
757
758 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
759
760 if (vernum == 0)
761 version_string = "";
762 else if (vernum == 1)
763 version_string = "Base";
764 else if (vernum <= elf_tdata (abfd)->cverdefs)
765 version_string =
766 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
767 else
768 {
769 Elf_Internal_Verneed *t;
770
771 version_string = "";
772 for (t = elf_tdata (abfd)->verref;
773 t != NULL;
774 t = t->vn_nextref)
775 {
776 Elf_Internal_Vernaux *a;
777
778 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
779 {
780 if (a->vna_other == vernum)
781 {
782 version_string = a->vna_nodename;
783 break;
784 }
785 }
786 }
787 }
788
789 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
790 fprintf (file, " %-11s", version_string);
791 else
792 {
793 int i;
794
795 fprintf (file, " (%s)", version_string);
796 for (i = 10 - strlen (version_string); i > 0; --i)
797 putc (' ', file);
798 }
799 }
800
801 /* If the st_other field is not zero, print it. */
802 if (((elf_symbol_type *) symbol)->internal_elf_sym.st_other != 0)
803 fprintf (file, " 0x%02x",
804 ((unsigned int)
805 ((elf_symbol_type *) symbol)->internal_elf_sym.st_other));
806
807 fprintf (file, " %s", symbol->name);
808 }
809 break;
810 }
811 }
812 \f
813 /* Create an entry in an ELF linker hash table. */
814
815 struct bfd_hash_entry *
816 _bfd_elf_link_hash_newfunc (entry, table, string)
817 struct bfd_hash_entry *entry;
818 struct bfd_hash_table *table;
819 const char *string;
820 {
821 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
822
823 /* Allocate the structure if it has not already been allocated by a
824 subclass. */
825 if (ret == (struct elf_link_hash_entry *) NULL)
826 ret = ((struct elf_link_hash_entry *)
827 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)));
828 if (ret == (struct elf_link_hash_entry *) NULL)
829 return (struct bfd_hash_entry *) ret;
830
831 /* Call the allocation method of the superclass. */
832 ret = ((struct elf_link_hash_entry *)
833 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
834 table, string));
835 if (ret != (struct elf_link_hash_entry *) NULL)
836 {
837 /* Set local fields. */
838 ret->indx = -1;
839 ret->size = 0;
840 ret->dynindx = -1;
841 ret->dynstr_index = 0;
842 ret->weakdef = NULL;
843 ret->got_offset = (bfd_vma) -1;
844 ret->plt_offset = (bfd_vma) -1;
845 ret->linker_section_pointer = (elf_linker_section_pointers_t *)0;
846 ret->verinfo.verdef = NULL;
847 ret->type = STT_NOTYPE;
848 ret->other = 0;
849 /* Assume that we have been called by a non-ELF symbol reader.
850 This flag is then reset by the code which reads an ELF input
851 file. This ensures that a symbol created by a non-ELF symbol
852 reader will have the flag set correctly. */
853 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
854 }
855
856 return (struct bfd_hash_entry *) ret;
857 }
858
859 /* Initialize an ELF linker hash table. */
860
861 boolean
862 _bfd_elf_link_hash_table_init (table, abfd, newfunc)
863 struct elf_link_hash_table *table;
864 bfd *abfd;
865 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
866 struct bfd_hash_table *,
867 const char *));
868 {
869 table->dynamic_sections_created = false;
870 table->dynobj = NULL;
871 /* The first dynamic symbol is a dummy. */
872 table->dynsymcount = 1;
873 table->dynstr = NULL;
874 table->bucketcount = 0;
875 table->needed = NULL;
876 table->hgot = NULL;
877 table->stab_info = NULL;
878 return _bfd_link_hash_table_init (&table->root, abfd, newfunc);
879 }
880
881 /* Create an ELF linker hash table. */
882
883 struct bfd_link_hash_table *
884 _bfd_elf_link_hash_table_create (abfd)
885 bfd *abfd;
886 {
887 struct elf_link_hash_table *ret;
888
889 ret = ((struct elf_link_hash_table *)
890 bfd_alloc (abfd, sizeof (struct elf_link_hash_table)));
891 if (ret == (struct elf_link_hash_table *) NULL)
892 return NULL;
893
894 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
895 {
896 bfd_release (abfd, ret);
897 return NULL;
898 }
899
900 return &ret->root;
901 }
902
903 /* This is a hook for the ELF emulation code in the generic linker to
904 tell the backend linker what file name to use for the DT_NEEDED
905 entry for a dynamic object. The generic linker passes name as an
906 empty string to indicate that no DT_NEEDED entry should be made. */
907
908 void
909 bfd_elf_set_dt_needed_name (abfd, name)
910 bfd *abfd;
911 const char *name;
912 {
913 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
914 && bfd_get_format (abfd) == bfd_object)
915 elf_dt_name (abfd) = name;
916 }
917
918 /* Get the list of DT_NEEDED entries for a link. This is a hook for
919 the ELF emulation code. */
920
921 struct bfd_link_needed_list *
922 bfd_elf_get_needed_list (abfd, info)
923 bfd *abfd;
924 struct bfd_link_info *info;
925 {
926 if (info->hash->creator->flavour != bfd_target_elf_flavour)
927 return NULL;
928 return elf_hash_table (info)->needed;
929 }
930
931 /* Get the name actually used for a dynamic object for a link. This
932 is the SONAME entry if there is one. Otherwise, it is the string
933 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
934
935 const char *
936 bfd_elf_get_dt_soname (abfd)
937 bfd *abfd;
938 {
939 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
940 && bfd_get_format (abfd) == bfd_object)
941 return elf_dt_name (abfd);
942 return NULL;
943 }
944 \f
945 /* Allocate an ELF string table--force the first byte to be zero. */
946
947 struct bfd_strtab_hash *
948 _bfd_elf_stringtab_init ()
949 {
950 struct bfd_strtab_hash *ret;
951
952 ret = _bfd_stringtab_init ();
953 if (ret != NULL)
954 {
955 bfd_size_type loc;
956
957 loc = _bfd_stringtab_add (ret, "", true, false);
958 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
959 if (loc == (bfd_size_type) -1)
960 {
961 _bfd_stringtab_free (ret);
962 ret = NULL;
963 }
964 }
965 return ret;
966 }
967 \f
968 /* ELF .o/exec file reading */
969
970 /* Create a new bfd section from an ELF section header. */
971
972 boolean
973 bfd_section_from_shdr (abfd, shindex)
974 bfd *abfd;
975 unsigned int shindex;
976 {
977 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
978 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
979 struct elf_backend_data *bed = get_elf_backend_data (abfd);
980 char *name;
981
982 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
983
984 switch (hdr->sh_type)
985 {
986 case SHT_NULL:
987 /* Inactive section. Throw it away. */
988 return true;
989
990 case SHT_PROGBITS: /* Normal section with contents. */
991 case SHT_DYNAMIC: /* Dynamic linking information. */
992 case SHT_NOBITS: /* .bss section. */
993 case SHT_HASH: /* .hash section. */
994 case SHT_NOTE: /* .note section. */
995 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
996
997 case SHT_SYMTAB: /* A symbol table */
998 if (elf_onesymtab (abfd) == shindex)
999 return true;
1000
1001 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1002 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1003 elf_onesymtab (abfd) = shindex;
1004 elf_tdata (abfd)->symtab_hdr = *hdr;
1005 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1006 abfd->flags |= HAS_SYMS;
1007
1008 /* Sometimes a shared object will map in the symbol table. If
1009 SHF_ALLOC is set, and this is a shared object, then we also
1010 treat this section as a BFD section. We can not base the
1011 decision purely on SHF_ALLOC, because that flag is sometimes
1012 set in a relocateable object file, which would confuse the
1013 linker. */
1014 if ((hdr->sh_flags & SHF_ALLOC) != 0
1015 && (abfd->flags & DYNAMIC) != 0
1016 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1017 return false;
1018
1019 return true;
1020
1021 case SHT_DYNSYM: /* A dynamic symbol table */
1022 if (elf_dynsymtab (abfd) == shindex)
1023 return true;
1024
1025 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1026 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1027 elf_dynsymtab (abfd) = shindex;
1028 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1029 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1030 abfd->flags |= HAS_SYMS;
1031
1032 /* Besides being a symbol table, we also treat this as a regular
1033 section, so that objcopy can handle it. */
1034 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1035
1036 case SHT_STRTAB: /* A string table */
1037 if (hdr->bfd_section != NULL)
1038 return true;
1039 if (ehdr->e_shstrndx == shindex)
1040 {
1041 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1042 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1043 return true;
1044 }
1045 {
1046 unsigned int i;
1047
1048 for (i = 1; i < ehdr->e_shnum; i++)
1049 {
1050 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1051 if (hdr2->sh_link == shindex)
1052 {
1053 if (! bfd_section_from_shdr (abfd, i))
1054 return false;
1055 if (elf_onesymtab (abfd) == i)
1056 {
1057 elf_tdata (abfd)->strtab_hdr = *hdr;
1058 elf_elfsections (abfd)[shindex] =
1059 &elf_tdata (abfd)->strtab_hdr;
1060 return true;
1061 }
1062 if (elf_dynsymtab (abfd) == i)
1063 {
1064 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1065 elf_elfsections (abfd)[shindex] = hdr =
1066 &elf_tdata (abfd)->dynstrtab_hdr;
1067 /* We also treat this as a regular section, so
1068 that objcopy can handle it. */
1069 break;
1070 }
1071 #if 0 /* Not handling other string tables specially right now. */
1072 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1073 /* We have a strtab for some random other section. */
1074 newsect = (asection *) hdr2->bfd_section;
1075 if (!newsect)
1076 break;
1077 hdr->bfd_section = newsect;
1078 hdr2 = &elf_section_data (newsect)->str_hdr;
1079 *hdr2 = *hdr;
1080 elf_elfsections (abfd)[shindex] = hdr2;
1081 #endif
1082 }
1083 }
1084 }
1085
1086 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1087
1088 case SHT_REL:
1089 case SHT_RELA:
1090 /* *These* do a lot of work -- but build no sections! */
1091 {
1092 asection *target_sect;
1093 Elf_Internal_Shdr *hdr2;
1094
1095 /* For some incomprehensible reason Oracle distributes
1096 libraries for Solaris in which some of the objects have
1097 bogus sh_link fields. It would be nice if we could just
1098 reject them, but, unfortunately, some people need to use
1099 them. We scan through the section headers; if we find only
1100 one suitable symbol table, we clobber the sh_link to point
1101 to it. I hope this doesn't break anything. */
1102 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1103 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1104 {
1105 int scan;
1106 int found;
1107
1108 found = 0;
1109 for (scan = 1; scan < ehdr->e_shnum; scan++)
1110 {
1111 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1112 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1113 {
1114 if (found != 0)
1115 {
1116 found = 0;
1117 break;
1118 }
1119 found = scan;
1120 }
1121 }
1122 if (found != 0)
1123 hdr->sh_link = found;
1124 }
1125
1126 /* Get the symbol table. */
1127 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1128 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1129 return false;
1130
1131 /* If this reloc section does not use the main symbol table we
1132 don't treat it as a reloc section. BFD can't adequately
1133 represent such a section, so at least for now, we don't
1134 try. We just present it as a normal section. */
1135 if (hdr->sh_link != elf_onesymtab (abfd))
1136 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1137
1138 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1139 return false;
1140 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1141 if (target_sect == NULL)
1142 return false;
1143
1144 if ((target_sect->flags & SEC_RELOC) == 0
1145 || target_sect->reloc_count == 0)
1146 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1147 else
1148 {
1149 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1150 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
1151 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1152 }
1153 *hdr2 = *hdr;
1154 elf_elfsections (abfd)[shindex] = hdr2;
1155 target_sect->reloc_count += hdr->sh_size / hdr->sh_entsize;
1156 target_sect->flags |= SEC_RELOC;
1157 target_sect->relocation = NULL;
1158 target_sect->rel_filepos = hdr->sh_offset;
1159 abfd->flags |= HAS_RELOC;
1160 return true;
1161 }
1162 break;
1163
1164 case SHT_GNU_verdef:
1165 elf_dynverdef (abfd) = shindex;
1166 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1167 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1168 break;
1169
1170 case SHT_GNU_versym:
1171 elf_dynversym (abfd) = shindex;
1172 elf_tdata (abfd)->dynversym_hdr = *hdr;
1173 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1174 break;
1175
1176 case SHT_GNU_verneed:
1177 elf_dynverref (abfd) = shindex;
1178 elf_tdata (abfd)->dynverref_hdr = *hdr;
1179 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1180 break;
1181
1182 case SHT_SHLIB:
1183 return true;
1184
1185 default:
1186 /* Check for any processor-specific section types. */
1187 {
1188 if (bed->elf_backend_section_from_shdr)
1189 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1190 }
1191 break;
1192 }
1193
1194 return true;
1195 }
1196
1197 /* Given an ELF section number, retrieve the corresponding BFD
1198 section. */
1199
1200 asection *
1201 bfd_section_from_elf_index (abfd, index)
1202 bfd *abfd;
1203 unsigned int index;
1204 {
1205 BFD_ASSERT (index > 0 && index < SHN_LORESERVE);
1206 if (index >= elf_elfheader (abfd)->e_shnum)
1207 return NULL;
1208 return elf_elfsections (abfd)[index]->bfd_section;
1209 }
1210
1211 boolean
1212 _bfd_elf_new_section_hook (abfd, sec)
1213 bfd *abfd;
1214 asection *sec;
1215 {
1216 struct bfd_elf_section_data *sdata;
1217
1218 sdata = (struct bfd_elf_section_data *) bfd_alloc (abfd, sizeof (*sdata));
1219 if (!sdata)
1220 return false;
1221 sec->used_by_bfd = (PTR) sdata;
1222 memset (sdata, 0, sizeof (*sdata));
1223 return true;
1224 }
1225
1226 /* Create a new bfd section from an ELF program header.
1227
1228 Since program segments have no names, we generate a synthetic name
1229 of the form segment<NUM>, where NUM is generally the index in the
1230 program header table. For segments that are split (see below) we
1231 generate the names segment<NUM>a and segment<NUM>b.
1232
1233 Note that some program segments may have a file size that is different than
1234 (less than) the memory size. All this means is that at execution the
1235 system must allocate the amount of memory specified by the memory size,
1236 but only initialize it with the first "file size" bytes read from the
1237 file. This would occur for example, with program segments consisting
1238 of combined data+bss.
1239
1240 To handle the above situation, this routine generates TWO bfd sections
1241 for the single program segment. The first has the length specified by
1242 the file size of the segment, and the second has the length specified
1243 by the difference between the two sizes. In effect, the segment is split
1244 into it's initialized and uninitialized parts.
1245
1246 */
1247
1248 boolean
1249 bfd_section_from_phdr (abfd, hdr, index)
1250 bfd *abfd;
1251 Elf_Internal_Phdr *hdr;
1252 int index;
1253 {
1254 asection *newsect;
1255 char *name;
1256 char namebuf[64];
1257 int split;
1258
1259 split = ((hdr->p_memsz > 0) &&
1260 (hdr->p_filesz > 0) &&
1261 (hdr->p_memsz > hdr->p_filesz));
1262 sprintf (namebuf, split ? "segment%da" : "segment%d", index);
1263 name = bfd_alloc (abfd, strlen (namebuf) + 1);
1264 if (!name)
1265 return false;
1266 strcpy (name, namebuf);
1267 newsect = bfd_make_section (abfd, name);
1268 if (newsect == NULL)
1269 return false;
1270 newsect->vma = hdr->p_vaddr;
1271 newsect->lma = hdr->p_paddr;
1272 newsect->_raw_size = hdr->p_filesz;
1273 newsect->filepos = hdr->p_offset;
1274 newsect->flags |= SEC_HAS_CONTENTS;
1275 if (hdr->p_type == PT_LOAD)
1276 {
1277 newsect->flags |= SEC_ALLOC;
1278 newsect->flags |= SEC_LOAD;
1279 if (hdr->p_flags & PF_X)
1280 {
1281 /* FIXME: all we known is that it has execute PERMISSION,
1282 may be data. */
1283 newsect->flags |= SEC_CODE;
1284 }
1285 }
1286 if (!(hdr->p_flags & PF_W))
1287 {
1288 newsect->flags |= SEC_READONLY;
1289 }
1290
1291 if (split)
1292 {
1293 sprintf (namebuf, "segment%db", index);
1294 name = bfd_alloc (abfd, strlen (namebuf) + 1);
1295 if (!name)
1296 return false;
1297 strcpy (name, namebuf);
1298 newsect = bfd_make_section (abfd, name);
1299 if (newsect == NULL)
1300 return false;
1301 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
1302 newsect->lma = hdr->p_paddr + hdr->p_filesz;
1303 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
1304 if (hdr->p_type == PT_LOAD)
1305 {
1306 newsect->flags |= SEC_ALLOC;
1307 if (hdr->p_flags & PF_X)
1308 newsect->flags |= SEC_CODE;
1309 }
1310 if (!(hdr->p_flags & PF_W))
1311 newsect->flags |= SEC_READONLY;
1312 }
1313
1314 return true;
1315 }
1316
1317 /* Set up an ELF internal section header for a section. */
1318
1319 /*ARGSUSED*/
1320 static void
1321 elf_fake_sections (abfd, asect, failedptrarg)
1322 bfd *abfd;
1323 asection *asect;
1324 PTR failedptrarg;
1325 {
1326 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1327 boolean *failedptr = (boolean *) failedptrarg;
1328 Elf_Internal_Shdr *this_hdr;
1329
1330 if (*failedptr)
1331 {
1332 /* We already failed; just get out of the bfd_map_over_sections
1333 loop. */
1334 return;
1335 }
1336
1337 this_hdr = &elf_section_data (asect)->this_hdr;
1338
1339 this_hdr->sh_name = (unsigned long) _bfd_stringtab_add (elf_shstrtab (abfd),
1340 asect->name,
1341 true, false);
1342 if (this_hdr->sh_name == (unsigned long) -1)
1343 {
1344 *failedptr = true;
1345 return;
1346 }
1347
1348 this_hdr->sh_flags = 0;
1349
1350 if ((asect->flags & SEC_ALLOC) != 0
1351 || asect->user_set_vma)
1352 this_hdr->sh_addr = asect->vma;
1353 else
1354 this_hdr->sh_addr = 0;
1355
1356 this_hdr->sh_offset = 0;
1357 this_hdr->sh_size = asect->_raw_size;
1358 this_hdr->sh_link = 0;
1359 this_hdr->sh_addralign = 1 << asect->alignment_power;
1360 /* The sh_entsize and sh_info fields may have been set already by
1361 copy_private_section_data. */
1362
1363 this_hdr->bfd_section = asect;
1364 this_hdr->contents = NULL;
1365
1366 /* FIXME: This should not be based on section names. */
1367 if (strcmp (asect->name, ".dynstr") == 0)
1368 this_hdr->sh_type = SHT_STRTAB;
1369 else if (strcmp (asect->name, ".hash") == 0)
1370 {
1371 this_hdr->sh_type = SHT_HASH;
1372 this_hdr->sh_entsize = bed->s->arch_size / 8;
1373 }
1374 else if (strcmp (asect->name, ".dynsym") == 0)
1375 {
1376 this_hdr->sh_type = SHT_DYNSYM;
1377 this_hdr->sh_entsize = bed->s->sizeof_sym;
1378 }
1379 else if (strcmp (asect->name, ".dynamic") == 0)
1380 {
1381 this_hdr->sh_type = SHT_DYNAMIC;
1382 this_hdr->sh_entsize = bed->s->sizeof_dyn;
1383 }
1384 else if (strncmp (asect->name, ".rela", 5) == 0
1385 && get_elf_backend_data (abfd)->use_rela_p)
1386 {
1387 this_hdr->sh_type = SHT_RELA;
1388 this_hdr->sh_entsize = bed->s->sizeof_rela;
1389 }
1390 else if (strncmp (asect->name, ".rel", 4) == 0
1391 && ! get_elf_backend_data (abfd)->use_rela_p)
1392 {
1393 this_hdr->sh_type = SHT_REL;
1394 this_hdr->sh_entsize = bed->s->sizeof_rel;
1395 }
1396 else if (strncmp (asect->name, ".note", 5) == 0)
1397 this_hdr->sh_type = SHT_NOTE;
1398 else if (strncmp (asect->name, ".stab", 5) == 0
1399 && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0)
1400 this_hdr->sh_type = SHT_STRTAB;
1401 else if (strcmp (asect->name, ".gnu.version") == 0)
1402 {
1403 this_hdr->sh_type = SHT_GNU_versym;
1404 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
1405 }
1406 else if (strcmp (asect->name, ".gnu.version_d") == 0)
1407 {
1408 this_hdr->sh_type = SHT_GNU_verdef;
1409 this_hdr->sh_entsize = 0;
1410 /* objcopy or strip will copy over sh_info, but may not set
1411 cverdefs. The linker will set cverdefs, but sh_info will be
1412 zero. */
1413 if (this_hdr->sh_info == 0)
1414 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
1415 else
1416 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
1417 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
1418 }
1419 else if (strcmp (asect->name, ".gnu.version_r") == 0)
1420 {
1421 this_hdr->sh_type = SHT_GNU_verneed;
1422 this_hdr->sh_entsize = 0;
1423 /* objcopy or strip will copy over sh_info, but may not set
1424 cverrefs. The linker will set cverrefs, but sh_info will be
1425 zero. */
1426 if (this_hdr->sh_info == 0)
1427 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
1428 else
1429 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
1430 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
1431 }
1432 else if ((asect->flags & SEC_ALLOC) != 0
1433 && (asect->flags & SEC_LOAD) != 0)
1434 this_hdr->sh_type = SHT_PROGBITS;
1435 else if ((asect->flags & SEC_ALLOC) != 0
1436 && ((asect->flags & SEC_LOAD) == 0))
1437 this_hdr->sh_type = SHT_NOBITS;
1438 else
1439 {
1440 /* Who knows? */
1441 this_hdr->sh_type = SHT_PROGBITS;
1442 }
1443
1444 if ((asect->flags & SEC_ALLOC) != 0)
1445 this_hdr->sh_flags |= SHF_ALLOC;
1446 if ((asect->flags & SEC_READONLY) == 0)
1447 this_hdr->sh_flags |= SHF_WRITE;
1448 if ((asect->flags & SEC_CODE) != 0)
1449 this_hdr->sh_flags |= SHF_EXECINSTR;
1450
1451 /* Check for processor-specific section types. */
1452 {
1453 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1454
1455 if (bed->elf_backend_fake_sections)
1456 (*bed->elf_backend_fake_sections) (abfd, this_hdr, asect);
1457 }
1458
1459 /* If the section has relocs, set up a section header for the
1460 SHT_REL[A] section. */
1461 if ((asect->flags & SEC_RELOC) != 0)
1462 {
1463 Elf_Internal_Shdr *rela_hdr;
1464 int use_rela_p = get_elf_backend_data (abfd)->use_rela_p;
1465 char *name;
1466
1467 rela_hdr = &elf_section_data (asect)->rel_hdr;
1468 name = bfd_alloc (abfd, sizeof ".rela" + strlen (asect->name));
1469 if (name == NULL)
1470 {
1471 *failedptr = true;
1472 return;
1473 }
1474 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
1475 rela_hdr->sh_name =
1476 (unsigned int) _bfd_stringtab_add (elf_shstrtab (abfd), name,
1477 true, false);
1478 if (rela_hdr->sh_name == (unsigned int) -1)
1479 {
1480 *failedptr = true;
1481 return;
1482 }
1483 rela_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
1484 rela_hdr->sh_entsize = (use_rela_p
1485 ? bed->s->sizeof_rela
1486 : bed->s->sizeof_rel);
1487 rela_hdr->sh_addralign = bed->s->file_align;
1488 rela_hdr->sh_flags = 0;
1489 rela_hdr->sh_addr = 0;
1490 rela_hdr->sh_size = 0;
1491 rela_hdr->sh_offset = 0;
1492 }
1493 }
1494
1495 /* Assign all ELF section numbers. The dummy first section is handled here
1496 too. The link/info pointers for the standard section types are filled
1497 in here too, while we're at it. */
1498
1499 static boolean
1500 assign_section_numbers (abfd)
1501 bfd *abfd;
1502 {
1503 struct elf_obj_tdata *t = elf_tdata (abfd);
1504 asection *sec;
1505 unsigned int section_number;
1506 Elf_Internal_Shdr **i_shdrp;
1507 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1508
1509 section_number = 1;
1510
1511 for (sec = abfd->sections; sec; sec = sec->next)
1512 {
1513 struct bfd_elf_section_data *d = elf_section_data (sec);
1514
1515 d->this_idx = section_number++;
1516 if ((sec->flags & SEC_RELOC) == 0)
1517 d->rel_idx = 0;
1518 else
1519 d->rel_idx = section_number++;
1520 }
1521
1522 t->shstrtab_section = section_number++;
1523 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
1524 t->shstrtab_hdr.sh_size = _bfd_stringtab_size (elf_shstrtab (abfd));
1525
1526 if (abfd->symcount > 0)
1527 {
1528 t->symtab_section = section_number++;
1529 t->strtab_section = section_number++;
1530 }
1531
1532 elf_elfheader (abfd)->e_shnum = section_number;
1533
1534 /* Set up the list of section header pointers, in agreement with the
1535 indices. */
1536 i_shdrp = ((Elf_Internal_Shdr **)
1537 bfd_alloc (abfd, section_number * sizeof (Elf_Internal_Shdr *)));
1538 if (i_shdrp == NULL)
1539 return false;
1540
1541 i_shdrp[0] = ((Elf_Internal_Shdr *)
1542 bfd_alloc (abfd, sizeof (Elf_Internal_Shdr)));
1543 if (i_shdrp[0] == NULL)
1544 {
1545 bfd_release (abfd, i_shdrp);
1546 return false;
1547 }
1548 memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr));
1549
1550 elf_elfsections (abfd) = i_shdrp;
1551
1552 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
1553 if (abfd->symcount > 0)
1554 {
1555 i_shdrp[t->symtab_section] = &t->symtab_hdr;
1556 i_shdrp[t->strtab_section] = &t->strtab_hdr;
1557 t->symtab_hdr.sh_link = t->strtab_section;
1558 }
1559 for (sec = abfd->sections; sec; sec = sec->next)
1560 {
1561 struct bfd_elf_section_data *d = elf_section_data (sec);
1562 asection *s;
1563 const char *name;
1564
1565 i_shdrp[d->this_idx] = &d->this_hdr;
1566 if (d->rel_idx != 0)
1567 i_shdrp[d->rel_idx] = &d->rel_hdr;
1568
1569 /* Fill in the sh_link and sh_info fields while we're at it. */
1570
1571 /* sh_link of a reloc section is the section index of the symbol
1572 table. sh_info is the section index of the section to which
1573 the relocation entries apply. */
1574 if (d->rel_idx != 0)
1575 {
1576 d->rel_hdr.sh_link = t->symtab_section;
1577 d->rel_hdr.sh_info = d->this_idx;
1578 }
1579
1580 switch (d->this_hdr.sh_type)
1581 {
1582 case SHT_REL:
1583 case SHT_RELA:
1584 /* A reloc section which we are treating as a normal BFD
1585 section. sh_link is the section index of the symbol
1586 table. sh_info is the section index of the section to
1587 which the relocation entries apply. We assume that an
1588 allocated reloc section uses the dynamic symbol table.
1589 FIXME: How can we be sure? */
1590 s = bfd_get_section_by_name (abfd, ".dynsym");
1591 if (s != NULL)
1592 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
1593
1594 /* We look up the section the relocs apply to by name. */
1595 name = sec->name;
1596 if (d->this_hdr.sh_type == SHT_REL)
1597 name += 4;
1598 else
1599 name += 5;
1600 s = bfd_get_section_by_name (abfd, name);
1601 if (s != NULL)
1602 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
1603 break;
1604
1605 case SHT_STRTAB:
1606 /* We assume that a section named .stab*str is a stabs
1607 string section. We look for a section with the same name
1608 but without the trailing ``str'', and set its sh_link
1609 field to point to this section. */
1610 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
1611 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
1612 {
1613 size_t len;
1614 char *alc;
1615
1616 len = strlen (sec->name);
1617 alc = (char *) bfd_malloc (len - 2);
1618 if (alc == NULL)
1619 return false;
1620 strncpy (alc, sec->name, len - 3);
1621 alc[len - 3] = '\0';
1622 s = bfd_get_section_by_name (abfd, alc);
1623 free (alc);
1624 if (s != NULL)
1625 {
1626 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
1627
1628 /* This is a .stab section. */
1629 elf_section_data (s)->this_hdr.sh_entsize =
1630 4 + 2 * (bed->s->arch_size / 8);
1631 }
1632 }
1633 break;
1634
1635 case SHT_DYNAMIC:
1636 case SHT_DYNSYM:
1637 case SHT_GNU_verneed:
1638 case SHT_GNU_verdef:
1639 /* sh_link is the section header index of the string table
1640 used for the dynamic entries, or the symbol table, or the
1641 version strings. */
1642 s = bfd_get_section_by_name (abfd, ".dynstr");
1643 if (s != NULL)
1644 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
1645 break;
1646
1647 case SHT_HASH:
1648 case SHT_GNU_versym:
1649 /* sh_link is the section header index of the symbol table
1650 this hash table or version table is for. */
1651 s = bfd_get_section_by_name (abfd, ".dynsym");
1652 if (s != NULL)
1653 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
1654 break;
1655 }
1656 }
1657
1658 return true;
1659 }
1660
1661 /* Map symbol from it's internal number to the external number, moving
1662 all local symbols to be at the head of the list. */
1663
1664 static INLINE int
1665 sym_is_global (abfd, sym)
1666 bfd *abfd;
1667 asymbol *sym;
1668 {
1669 /* If the backend has a special mapping, use it. */
1670 if (get_elf_backend_data (abfd)->elf_backend_sym_is_global)
1671 return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global)
1672 (abfd, sym));
1673
1674 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1675 || bfd_is_und_section (bfd_get_section (sym))
1676 || bfd_is_com_section (bfd_get_section (sym)));
1677 }
1678
1679 static boolean
1680 elf_map_symbols (abfd)
1681 bfd *abfd;
1682 {
1683 int symcount = bfd_get_symcount (abfd);
1684 asymbol **syms = bfd_get_outsymbols (abfd);
1685 asymbol **sect_syms;
1686 int num_locals = 0;
1687 int num_globals = 0;
1688 int num_locals2 = 0;
1689 int num_globals2 = 0;
1690 int max_index = 0;
1691 int num_sections = 0;
1692 int idx;
1693 asection *asect;
1694 asymbol **new_syms;
1695
1696 #ifdef DEBUG
1697 fprintf (stderr, "elf_map_symbols\n");
1698 fflush (stderr);
1699 #endif
1700
1701 /* Add a section symbol for each BFD section. FIXME: Is this really
1702 necessary? */
1703 for (asect = abfd->sections; asect; asect = asect->next)
1704 {
1705 if (max_index < asect->index)
1706 max_index = asect->index;
1707 }
1708
1709 max_index++;
1710 sect_syms = (asymbol **) bfd_zalloc (abfd, max_index * sizeof (asymbol *));
1711 if (sect_syms == NULL)
1712 return false;
1713 elf_section_syms (abfd) = sect_syms;
1714
1715 for (idx = 0; idx < symcount; idx++)
1716 {
1717 if ((syms[idx]->flags & BSF_SECTION_SYM) != 0
1718 && (syms[idx]->value + syms[idx]->section->vma) == 0)
1719 {
1720 asection *sec;
1721
1722 sec = syms[idx]->section;
1723 if (sec->owner != NULL)
1724 {
1725 if (sec->owner != abfd)
1726 {
1727 if (sec->output_offset != 0)
1728 continue;
1729 sec = sec->output_section;
1730 BFD_ASSERT (sec->owner == abfd);
1731 }
1732 sect_syms[sec->index] = syms[idx];
1733 }
1734 }
1735 }
1736
1737 for (asect = abfd->sections; asect; asect = asect->next)
1738 {
1739 asymbol *sym;
1740
1741 if (sect_syms[asect->index] != NULL)
1742 continue;
1743
1744 sym = bfd_make_empty_symbol (abfd);
1745 if (sym == NULL)
1746 return false;
1747 sym->the_bfd = abfd;
1748 sym->name = asect->name;
1749 sym->value = 0;
1750 /* Set the flags to 0 to indicate that this one was newly added. */
1751 sym->flags = 0;
1752 sym->section = asect;
1753 sect_syms[asect->index] = sym;
1754 num_sections++;
1755 #ifdef DEBUG
1756 fprintf (stderr,
1757 "creating section symbol, name = %s, value = 0x%.8lx, index = %d, section = 0x%.8lx\n",
1758 asect->name, (long) asect->vma, asect->index, (long) asect);
1759 #endif
1760 }
1761
1762 /* Classify all of the symbols. */
1763 for (idx = 0; idx < symcount; idx++)
1764 {
1765 if (!sym_is_global (abfd, syms[idx]))
1766 num_locals++;
1767 else
1768 num_globals++;
1769 }
1770 for (asect = abfd->sections; asect; asect = asect->next)
1771 {
1772 if (sect_syms[asect->index] != NULL
1773 && sect_syms[asect->index]->flags == 0)
1774 {
1775 sect_syms[asect->index]->flags = BSF_SECTION_SYM;
1776 if (!sym_is_global (abfd, sect_syms[asect->index]))
1777 num_locals++;
1778 else
1779 num_globals++;
1780 sect_syms[asect->index]->flags = 0;
1781 }
1782 }
1783
1784 /* Now sort the symbols so the local symbols are first. */
1785 new_syms = ((asymbol **)
1786 bfd_alloc (abfd,
1787 (num_locals + num_globals) * sizeof (asymbol *)));
1788 if (new_syms == NULL)
1789 return false;
1790
1791 for (idx = 0; idx < symcount; idx++)
1792 {
1793 asymbol *sym = syms[idx];
1794 int i;
1795
1796 if (!sym_is_global (abfd, sym))
1797 i = num_locals2++;
1798 else
1799 i = num_locals + num_globals2++;
1800 new_syms[i] = sym;
1801 sym->udata.i = i + 1;
1802 }
1803 for (asect = abfd->sections; asect; asect = asect->next)
1804 {
1805 if (sect_syms[asect->index] != NULL
1806 && sect_syms[asect->index]->flags == 0)
1807 {
1808 asymbol *sym = sect_syms[asect->index];
1809 int i;
1810
1811 sym->flags = BSF_SECTION_SYM;
1812 if (!sym_is_global (abfd, sym))
1813 i = num_locals2++;
1814 else
1815 i = num_locals + num_globals2++;
1816 new_syms[i] = sym;
1817 sym->udata.i = i + 1;
1818 }
1819 }
1820
1821 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
1822
1823 elf_num_locals (abfd) = num_locals;
1824 elf_num_globals (abfd) = num_globals;
1825 return true;
1826 }
1827
1828 /* Align to the maximum file alignment that could be required for any
1829 ELF data structure. */
1830
1831 static INLINE file_ptr align_file_position PARAMS ((file_ptr, int));
1832 static INLINE file_ptr
1833 align_file_position (off, align)
1834 file_ptr off;
1835 int align;
1836 {
1837 return (off + align - 1) & ~(align - 1);
1838 }
1839
1840 /* Assign a file position to a section, optionally aligning to the
1841 required section alignment. */
1842
1843 INLINE file_ptr
1844 _bfd_elf_assign_file_position_for_section (i_shdrp, offset, align)
1845 Elf_Internal_Shdr *i_shdrp;
1846 file_ptr offset;
1847 boolean align;
1848 {
1849 if (align)
1850 {
1851 unsigned int al;
1852
1853 al = i_shdrp->sh_addralign;
1854 if (al > 1)
1855 offset = BFD_ALIGN (offset, al);
1856 }
1857 i_shdrp->sh_offset = offset;
1858 if (i_shdrp->bfd_section != NULL)
1859 i_shdrp->bfd_section->filepos = offset;
1860 if (i_shdrp->sh_type != SHT_NOBITS)
1861 offset += i_shdrp->sh_size;
1862 return offset;
1863 }
1864
1865 /* Compute the file positions we are going to put the sections at, and
1866 otherwise prepare to begin writing out the ELF file. If LINK_INFO
1867 is not NULL, this is being called by the ELF backend linker. */
1868
1869 boolean
1870 _bfd_elf_compute_section_file_positions (abfd, link_info)
1871 bfd *abfd;
1872 struct bfd_link_info *link_info;
1873 {
1874 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1875 boolean failed;
1876 struct bfd_strtab_hash *strtab;
1877 Elf_Internal_Shdr *shstrtab_hdr;
1878
1879 if (abfd->output_has_begun)
1880 return true;
1881
1882 /* Do any elf backend specific processing first. */
1883 if (bed->elf_backend_begin_write_processing)
1884 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
1885
1886 if (! prep_headers (abfd))
1887 return false;
1888
1889 failed = false;
1890 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
1891 if (failed)
1892 return false;
1893
1894 if (!assign_section_numbers (abfd))
1895 return false;
1896
1897 /* The backend linker builds symbol table information itself. */
1898 if (link_info == NULL && abfd->symcount > 0)
1899 {
1900 if (! swap_out_syms (abfd, &strtab))
1901 return false;
1902 }
1903
1904 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
1905 /* sh_name was set in prep_headers. */
1906 shstrtab_hdr->sh_type = SHT_STRTAB;
1907 shstrtab_hdr->sh_flags = 0;
1908 shstrtab_hdr->sh_addr = 0;
1909 shstrtab_hdr->sh_size = _bfd_stringtab_size (elf_shstrtab (abfd));
1910 shstrtab_hdr->sh_entsize = 0;
1911 shstrtab_hdr->sh_link = 0;
1912 shstrtab_hdr->sh_info = 0;
1913 /* sh_offset is set in assign_file_positions_except_relocs. */
1914 shstrtab_hdr->sh_addralign = 1;
1915
1916 if (!assign_file_positions_except_relocs (abfd))
1917 return false;
1918
1919 if (link_info == NULL && abfd->symcount > 0)
1920 {
1921 file_ptr off;
1922 Elf_Internal_Shdr *hdr;
1923
1924 off = elf_tdata (abfd)->next_file_pos;
1925
1926 hdr = &elf_tdata (abfd)->symtab_hdr;
1927 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
1928
1929 hdr = &elf_tdata (abfd)->strtab_hdr;
1930 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
1931
1932 elf_tdata (abfd)->next_file_pos = off;
1933
1934 /* Now that we know where the .strtab section goes, write it
1935 out. */
1936 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
1937 || ! _bfd_stringtab_emit (abfd, strtab))
1938 return false;
1939 _bfd_stringtab_free (strtab);
1940 }
1941
1942 abfd->output_has_begun = true;
1943
1944 return true;
1945 }
1946
1947 /* Create a mapping from a set of sections to a program segment. */
1948
1949 static INLINE struct elf_segment_map *
1950 make_mapping (abfd, sections, from, to, phdr)
1951 bfd *abfd;
1952 asection **sections;
1953 unsigned int from;
1954 unsigned int to;
1955 boolean phdr;
1956 {
1957 struct elf_segment_map *m;
1958 unsigned int i;
1959 asection **hdrpp;
1960
1961 m = ((struct elf_segment_map *)
1962 bfd_zalloc (abfd,
1963 (sizeof (struct elf_segment_map)
1964 + (to - from - 1) * sizeof (asection *))));
1965 if (m == NULL)
1966 return NULL;
1967 m->next = NULL;
1968 m->p_type = PT_LOAD;
1969 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
1970 m->sections[i - from] = *hdrpp;
1971 m->count = to - from;
1972
1973 if (from == 0 && phdr)
1974 {
1975 /* Include the headers in the first PT_LOAD segment. */
1976 m->includes_filehdr = 1;
1977 m->includes_phdrs = 1;
1978 }
1979
1980 return m;
1981 }
1982
1983 /* Set up a mapping from BFD sections to program segments. */
1984
1985 static boolean
1986 map_sections_to_segments (abfd)
1987 bfd *abfd;
1988 {
1989 asection **sections = NULL;
1990 asection *s;
1991 unsigned int i;
1992 unsigned int count;
1993 struct elf_segment_map *mfirst;
1994 struct elf_segment_map **pm;
1995 struct elf_segment_map *m;
1996 asection *last_hdr;
1997 unsigned int phdr_index;
1998 bfd_vma maxpagesize;
1999 asection **hdrpp;
2000 boolean phdr_in_section = true;
2001 boolean writable;
2002 asection *dynsec;
2003
2004 if (elf_tdata (abfd)->segment_map != NULL)
2005 return true;
2006
2007 if (bfd_count_sections (abfd) == 0)
2008 return true;
2009
2010 /* Select the allocated sections, and sort them. */
2011
2012 sections = (asection **) bfd_malloc (bfd_count_sections (abfd)
2013 * sizeof (asection *));
2014 if (sections == NULL)
2015 goto error_return;
2016
2017 i = 0;
2018 for (s = abfd->sections; s != NULL; s = s->next)
2019 {
2020 if ((s->flags & SEC_ALLOC) != 0)
2021 {
2022 sections[i] = s;
2023 ++i;
2024 }
2025 }
2026 BFD_ASSERT (i <= bfd_count_sections (abfd));
2027 count = i;
2028
2029 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
2030
2031 /* Build the mapping. */
2032
2033 mfirst = NULL;
2034 pm = &mfirst;
2035
2036 /* If we have a .interp section, then create a PT_PHDR segment for
2037 the program headers and a PT_INTERP segment for the .interp
2038 section. */
2039 s = bfd_get_section_by_name (abfd, ".interp");
2040 if (s != NULL && (s->flags & SEC_LOAD) != 0)
2041 {
2042 m = ((struct elf_segment_map *)
2043 bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
2044 if (m == NULL)
2045 goto error_return;
2046 m->next = NULL;
2047 m->p_type = PT_PHDR;
2048 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
2049 m->p_flags = PF_R | PF_X;
2050 m->p_flags_valid = 1;
2051 m->includes_phdrs = 1;
2052
2053 *pm = m;
2054 pm = &m->next;
2055
2056 m = ((struct elf_segment_map *)
2057 bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
2058 if (m == NULL)
2059 goto error_return;
2060 m->next = NULL;
2061 m->p_type = PT_INTERP;
2062 m->count = 1;
2063 m->sections[0] = s;
2064
2065 *pm = m;
2066 pm = &m->next;
2067 }
2068
2069 /* Look through the sections. We put sections in the same program
2070 segment when the start of the second section can be placed within
2071 a few bytes of the end of the first section. */
2072 last_hdr = NULL;
2073 phdr_index = 0;
2074 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
2075 writable = false;
2076 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
2077 if (dynsec != NULL
2078 && (dynsec->flags & SEC_LOAD) == 0)
2079 dynsec = NULL;
2080
2081 /* Deal with -Ttext or something similar such that the first section
2082 is not adjacent to the program headers. This is an
2083 approximation, since at this point we don't know exactly how many
2084 program headers we will need. */
2085 if (count > 0)
2086 {
2087 bfd_size_type phdr_size;
2088
2089 phdr_size = elf_tdata (abfd)->program_header_size;
2090 if (phdr_size == 0)
2091 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
2092 if ((abfd->flags & D_PAGED) == 0
2093 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
2094 phdr_in_section = false;
2095 }
2096
2097 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
2098 {
2099 asection *hdr;
2100 boolean new_segment;
2101
2102 hdr = *hdrpp;
2103
2104 /* See if this section and the last one will fit in the same
2105 segment. */
2106
2107 if (last_hdr == NULL)
2108 {
2109 /* If we don't have a segment yet, then we don't need a new
2110 one (we build the last one after this loop). */
2111 new_segment = false;
2112 }
2113 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
2114 {
2115 /* If this section has a different relation between the
2116 virtual address and the load address, then we need a new
2117 segment. */
2118 new_segment = true;
2119 }
2120 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
2121 < BFD_ALIGN (hdr->lma, maxpagesize))
2122 {
2123 /* If putting this section in this segment would force us to
2124 skip a page in the segment, then we need a new segment. */
2125 new_segment = true;
2126 }
2127 else if ((abfd->flags & D_PAGED) == 0)
2128 {
2129 /* If the file is not demand paged, which means that we
2130 don't require the sections to be correctly aligned in the
2131 file, then there is no other reason for a new segment. */
2132 new_segment = false;
2133 }
2134 else if ((last_hdr->flags & SEC_LOAD) == 0
2135 && (hdr->flags & SEC_LOAD) != 0)
2136 {
2137 /* We don't want to put a loadable section after a
2138 nonloadable section in the same segment. */
2139 new_segment = true;
2140 }
2141 else if (! writable
2142 && (hdr->flags & SEC_READONLY) == 0
2143 && (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
2144 == hdr->lma))
2145 {
2146 /* We don't want to put a writable section in a read only
2147 segment, unless they are on the same page in memory
2148 anyhow. We already know that the last section does not
2149 bring us past the current section on the page, so the
2150 only case in which the new section is not on the same
2151 page as the previous section is when the previous section
2152 ends precisely on a page boundary. */
2153 new_segment = true;
2154 }
2155 else
2156 {
2157 /* Otherwise, we can use the same segment. */
2158 new_segment = false;
2159 }
2160
2161 if (! new_segment)
2162 {
2163 if ((hdr->flags & SEC_READONLY) == 0)
2164 writable = true;
2165 last_hdr = hdr;
2166 continue;
2167 }
2168
2169 /* We need a new program segment. We must create a new program
2170 header holding all the sections from phdr_index until hdr. */
2171
2172 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_section);
2173 if (m == NULL)
2174 goto error_return;
2175
2176 *pm = m;
2177 pm = &m->next;
2178
2179 if ((hdr->flags & SEC_READONLY) == 0)
2180 writable = true;
2181 else
2182 writable = false;
2183
2184 last_hdr = hdr;
2185 phdr_index = i;
2186 phdr_in_section = false;
2187 }
2188
2189 /* Create a final PT_LOAD program segment. */
2190 if (last_hdr != NULL)
2191 {
2192 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_section);
2193 if (m == NULL)
2194 goto error_return;
2195
2196 *pm = m;
2197 pm = &m->next;
2198 }
2199
2200 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
2201 if (dynsec != NULL)
2202 {
2203 m = ((struct elf_segment_map *)
2204 bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
2205 if (m == NULL)
2206 goto error_return;
2207 m->next = NULL;
2208 m->p_type = PT_DYNAMIC;
2209 m->count = 1;
2210 m->sections[0] = dynsec;
2211
2212 *pm = m;
2213 pm = &m->next;
2214 }
2215
2216 /* For each loadable .note section, add a PT_NOTE segment. We don't
2217 use bfd_get_section_by_name, because if we link together
2218 nonloadable .note sections and loadable .note sections, we will
2219 generate two .note sections in the output file. FIXME: Using
2220 names for section types is bogus anyhow. */
2221 for (s = abfd->sections; s != NULL; s = s->next)
2222 {
2223 if ((s->flags & SEC_LOAD) != 0
2224 && strncmp (s->name, ".note", 5) == 0)
2225 {
2226 m = ((struct elf_segment_map *)
2227 bfd_zalloc (abfd, sizeof (struct elf_segment_map)));
2228 if (m == NULL)
2229 goto error_return;
2230 m->next = NULL;
2231 m->p_type = PT_NOTE;
2232 m->count = 1;
2233 m->sections[0] = s;
2234
2235 *pm = m;
2236 pm = &m->next;
2237 }
2238 }
2239
2240 free (sections);
2241 sections = NULL;
2242
2243 elf_tdata (abfd)->segment_map = mfirst;
2244 return true;
2245
2246 error_return:
2247 if (sections != NULL)
2248 free (sections);
2249 return false;
2250 }
2251
2252 /* Sort sections by VMA. */
2253
2254 static int
2255 elf_sort_sections (arg1, arg2)
2256 const PTR arg1;
2257 const PTR arg2;
2258 {
2259 const asection *sec1 = *(const asection **) arg1;
2260 const asection *sec2 = *(const asection **) arg2;
2261
2262 if (sec1->vma < sec2->vma)
2263 return -1;
2264 else if (sec1->vma > sec2->vma)
2265 return 1;
2266
2267 /* Sort by LMA. Normally the LMA and the VMA will be the same, and
2268 this will do nothing. */
2269 if (sec1->lma < sec2->lma)
2270 return -1;
2271 else if (sec1->lma > sec2->lma)
2272 return 1;
2273
2274 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
2275
2276 #define TOEND(x) (((x)->flags & SEC_LOAD) == 0)
2277
2278 if (TOEND (sec1))
2279 if (TOEND (sec2))
2280 return sec1->target_index - sec2->target_index;
2281 else
2282 return 1;
2283
2284 if (TOEND (sec2))
2285 return -1;
2286
2287 #undef TOEND
2288
2289 /* Sort by size, to put zero sized sections before others at the
2290 same address. */
2291
2292 if (sec1->_raw_size < sec2->_raw_size)
2293 return -1;
2294 if (sec1->_raw_size > sec2->_raw_size)
2295 return 1;
2296
2297 return sec1->target_index - sec2->target_index;
2298 }
2299
2300 /* Assign file positions to the sections based on the mapping from
2301 sections to segments. This function also sets up some fields in
2302 the file header, and writes out the program headers. */
2303
2304 static boolean
2305 assign_file_positions_for_segments (abfd)
2306 bfd *abfd;
2307 {
2308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2309 unsigned int count;
2310 struct elf_segment_map *m;
2311 unsigned int alloc;
2312 Elf_Internal_Phdr *phdrs;
2313 file_ptr off, voff;
2314 bfd_vma filehdr_vaddr, filehdr_paddr;
2315 bfd_vma phdrs_vaddr, phdrs_paddr;
2316 Elf_Internal_Phdr *p;
2317
2318 if (elf_tdata (abfd)->segment_map == NULL)
2319 {
2320 if (! map_sections_to_segments (abfd))
2321 return false;
2322 }
2323
2324 if (bed->elf_backend_modify_segment_map)
2325 {
2326 if (! (*bed->elf_backend_modify_segment_map) (abfd))
2327 return false;
2328 }
2329
2330 count = 0;
2331 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2332 ++count;
2333
2334 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
2335 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
2336 elf_elfheader (abfd)->e_phnum = count;
2337
2338 if (count == 0)
2339 return true;
2340
2341 /* If we already counted the number of program segments, make sure
2342 that we allocated enough space. This happens when SIZEOF_HEADERS
2343 is used in a linker script. */
2344 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
2345 if (alloc != 0 && count > alloc)
2346 {
2347 ((*_bfd_error_handler)
2348 ("%s: Not enough room for program headers (allocated %u, need %u)",
2349 bfd_get_filename (abfd), alloc, count));
2350 bfd_set_error (bfd_error_bad_value);
2351 return false;
2352 }
2353
2354 if (alloc == 0)
2355 alloc = count;
2356
2357 phdrs = ((Elf_Internal_Phdr *)
2358 bfd_alloc (abfd, alloc * sizeof (Elf_Internal_Phdr)));
2359 if (phdrs == NULL)
2360 return false;
2361
2362 off = bed->s->sizeof_ehdr;
2363 off += alloc * bed->s->sizeof_phdr;
2364
2365 filehdr_vaddr = 0;
2366 filehdr_paddr = 0;
2367 phdrs_vaddr = 0;
2368 phdrs_paddr = 0;
2369 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
2370 m != NULL;
2371 m = m->next, p++)
2372 {
2373 unsigned int i;
2374 asection **secpp;
2375
2376 /* If elf_segment_map is not from map_sections_to_segments, the
2377 sections may not be correctly ordered. */
2378 if (m->count > 0)
2379 qsort (m->sections, (size_t) m->count, sizeof (asection *),
2380 elf_sort_sections);
2381
2382 p->p_type = m->p_type;
2383
2384 if (m->p_flags_valid)
2385 p->p_flags = m->p_flags;
2386 else
2387 p->p_flags = 0;
2388
2389 if (p->p_type == PT_LOAD
2390 && m->count > 0
2391 && (m->sections[0]->flags & SEC_ALLOC) != 0)
2392 {
2393 if ((abfd->flags & D_PAGED) != 0)
2394 off += (m->sections[0]->vma - off) % bed->maxpagesize;
2395 else
2396 off += ((m->sections[0]->vma - off)
2397 % (1 << bfd_get_section_alignment (abfd, m->sections[0])));
2398 }
2399
2400 if (m->count == 0)
2401 p->p_vaddr = 0;
2402 else
2403 p->p_vaddr = m->sections[0]->vma;
2404
2405 if (m->p_paddr_valid)
2406 p->p_paddr = m->p_paddr;
2407 else if (m->count == 0)
2408 p->p_paddr = 0;
2409 else
2410 p->p_paddr = m->sections[0]->lma;
2411
2412 if (p->p_type == PT_LOAD
2413 && (abfd->flags & D_PAGED) != 0)
2414 p->p_align = bed->maxpagesize;
2415 else if (m->count == 0)
2416 p->p_align = bed->s->file_align;
2417 else
2418 p->p_align = 0;
2419
2420 p->p_offset = 0;
2421 p->p_filesz = 0;
2422 p->p_memsz = 0;
2423
2424 if (m->includes_filehdr)
2425 {
2426 if (! m->p_flags_valid)
2427 p->p_flags |= PF_R;
2428 p->p_offset = 0;
2429 p->p_filesz = bed->s->sizeof_ehdr;
2430 p->p_memsz = bed->s->sizeof_ehdr;
2431 if (m->count > 0)
2432 {
2433 BFD_ASSERT (p->p_type == PT_LOAD);
2434 p->p_vaddr -= off;
2435 if (! m->p_paddr_valid)
2436 p->p_paddr -= off;
2437 }
2438 if (p->p_type == PT_LOAD)
2439 {
2440 filehdr_vaddr = p->p_vaddr;
2441 filehdr_paddr = p->p_paddr;
2442 }
2443 }
2444
2445 if (m->includes_phdrs)
2446 {
2447 if (! m->p_flags_valid)
2448 p->p_flags |= PF_R;
2449 if (m->includes_filehdr)
2450 {
2451 if (p->p_type == PT_LOAD)
2452 {
2453 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
2454 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
2455 }
2456 }
2457 else
2458 {
2459 p->p_offset = bed->s->sizeof_ehdr;
2460 if (m->count > 0)
2461 {
2462 BFD_ASSERT (p->p_type == PT_LOAD);
2463 p->p_vaddr -= off - p->p_offset;
2464 if (! m->p_paddr_valid)
2465 p->p_paddr -= off - p->p_offset;
2466 }
2467 if (p->p_type == PT_LOAD)
2468 {
2469 phdrs_vaddr = p->p_vaddr;
2470 phdrs_paddr = p->p_paddr;
2471 }
2472 }
2473 p->p_filesz += alloc * bed->s->sizeof_phdr;
2474 p->p_memsz += alloc * bed->s->sizeof_phdr;
2475 }
2476
2477 if (p->p_type == PT_LOAD)
2478 {
2479 if (! m->includes_filehdr && ! m->includes_phdrs)
2480 p->p_offset = off;
2481 else
2482 {
2483 file_ptr adjust;
2484
2485 adjust = off - (p->p_offset + p->p_filesz);
2486 p->p_filesz += adjust;
2487 p->p_memsz += adjust;
2488 }
2489 }
2490
2491 voff = off;
2492 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
2493 {
2494 asection *sec;
2495 flagword flags;
2496 bfd_size_type align;
2497
2498 sec = *secpp;
2499 flags = sec->flags;
2500 align = 1 << bfd_get_section_alignment (abfd, sec);
2501
2502 if (p->p_type == PT_LOAD)
2503 {
2504 bfd_vma adjust;
2505
2506 /* The section VMA must equal the file position modulo
2507 the page size. */
2508 if ((flags & SEC_ALLOC) != 0)
2509 {
2510 if ((abfd->flags & D_PAGED) != 0)
2511 adjust = (sec->vma - voff) % bed->maxpagesize;
2512 else
2513 adjust = (sec->vma - voff) % align;
2514 if (adjust != 0)
2515 {
2516 if (i == 0)
2517 abort ();
2518 p->p_memsz += adjust;
2519 off += adjust;
2520 voff += adjust;
2521 if ((flags & SEC_LOAD) != 0)
2522 p->p_filesz += adjust;
2523 }
2524 }
2525
2526 sec->filepos = off;
2527
2528 if ((flags & SEC_LOAD) != 0)
2529 off += sec->_raw_size;
2530 if ((flags & SEC_ALLOC) != 0)
2531 voff += sec->_raw_size;
2532 }
2533
2534 p->p_memsz += sec->_raw_size;
2535
2536 if ((flags & SEC_LOAD) != 0)
2537 p->p_filesz += sec->_raw_size;
2538
2539 if (align > p->p_align)
2540 p->p_align = align;
2541
2542 if (! m->p_flags_valid)
2543 {
2544 p->p_flags |= PF_R;
2545 if ((flags & SEC_CODE) != 0)
2546 p->p_flags |= PF_X;
2547 if ((flags & SEC_READONLY) == 0)
2548 p->p_flags |= PF_W;
2549 }
2550 }
2551 }
2552
2553 /* Now that we have set the section file positions, we can set up
2554 the file positions for the non PT_LOAD segments. */
2555 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
2556 m != NULL;
2557 m = m->next, p++)
2558 {
2559 if (p->p_type != PT_LOAD && m->count > 0)
2560 {
2561 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
2562 p->p_offset = m->sections[0]->filepos;
2563 }
2564 if (m->count == 0)
2565 {
2566 if (m->includes_filehdr)
2567 {
2568 p->p_vaddr = filehdr_vaddr;
2569 if (! m->p_paddr_valid)
2570 p->p_paddr = filehdr_paddr;
2571 }
2572 else if (m->includes_phdrs)
2573 {
2574 p->p_vaddr = phdrs_vaddr;
2575 if (! m->p_paddr_valid)
2576 p->p_paddr = phdrs_paddr;
2577 }
2578 }
2579 }
2580
2581 /* Clear out any program headers we allocated but did not use. */
2582 for (; count < alloc; count++, p++)
2583 {
2584 memset (p, 0, sizeof *p);
2585 p->p_type = PT_NULL;
2586 }
2587
2588 elf_tdata (abfd)->phdr = phdrs;
2589
2590 elf_tdata (abfd)->next_file_pos = off;
2591
2592 /* Write out the program headers. */
2593 if (bfd_seek (abfd, bed->s->sizeof_ehdr, SEEK_SET) != 0
2594 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
2595 return false;
2596
2597 return true;
2598 }
2599
2600 /* Get the size of the program header.
2601
2602 If this is called by the linker before any of the section VMA's are set, it
2603 can't calculate the correct value for a strange memory layout. This only
2604 happens when SIZEOF_HEADERS is used in a linker script. In this case,
2605 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
2606 data segment (exclusive of .interp and .dynamic).
2607
2608 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
2609 will be two segments. */
2610
2611 static bfd_size_type
2612 get_program_header_size (abfd)
2613 bfd *abfd;
2614 {
2615 size_t segs;
2616 asection *s;
2617 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2618
2619 /* We can't return a different result each time we're called. */
2620 if (elf_tdata (abfd)->program_header_size != 0)
2621 return elf_tdata (abfd)->program_header_size;
2622
2623 if (elf_tdata (abfd)->segment_map != NULL)
2624 {
2625 struct elf_segment_map *m;
2626
2627 segs = 0;
2628 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2629 ++segs;
2630 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
2631 return elf_tdata (abfd)->program_header_size;
2632 }
2633
2634 /* Assume we will need exactly two PT_LOAD segments: one for text
2635 and one for data. */
2636 segs = 2;
2637
2638 s = bfd_get_section_by_name (abfd, ".interp");
2639 if (s != NULL && (s->flags & SEC_LOAD) != 0)
2640 {
2641 /* If we have a loadable interpreter section, we need a
2642 PT_INTERP segment. In this case, assume we also need a
2643 PT_PHDR segment, although that may not be true for all
2644 targets. */
2645 segs += 2;
2646 }
2647
2648 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
2649 {
2650 /* We need a PT_DYNAMIC segment. */
2651 ++segs;
2652 }
2653
2654 for (s = abfd->sections; s != NULL; s = s->next)
2655 {
2656 if ((s->flags & SEC_LOAD) != 0
2657 && strncmp (s->name, ".note", 5) == 0)
2658 {
2659 /* We need a PT_NOTE segment. */
2660 ++segs;
2661 }
2662 }
2663
2664 /* Let the backend count up any program headers it might need. */
2665 if (bed->elf_backend_additional_program_headers)
2666 {
2667 int a;
2668
2669 a = (*bed->elf_backend_additional_program_headers) (abfd);
2670 if (a == -1)
2671 abort ();
2672 segs += a;
2673 }
2674
2675 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
2676 return elf_tdata (abfd)->program_header_size;
2677 }
2678
2679 /* Work out the file positions of all the sections. This is called by
2680 _bfd_elf_compute_section_file_positions. All the section sizes and
2681 VMAs must be known before this is called.
2682
2683 We do not consider reloc sections at this point, unless they form
2684 part of the loadable image. Reloc sections are assigned file
2685 positions in assign_file_positions_for_relocs, which is called by
2686 write_object_contents and final_link.
2687
2688 We also don't set the positions of the .symtab and .strtab here. */
2689
2690 static boolean
2691 assign_file_positions_except_relocs (abfd)
2692 bfd *abfd;
2693 {
2694 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
2695 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
2696 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
2697 file_ptr off;
2698 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2699
2700 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
2701 {
2702 Elf_Internal_Shdr **hdrpp;
2703 unsigned int i;
2704
2705 /* Start after the ELF header. */
2706 off = i_ehdrp->e_ehsize;
2707
2708 /* We are not creating an executable, which means that we are
2709 not creating a program header, and that the actual order of
2710 the sections in the file is unimportant. */
2711 for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++)
2712 {
2713 Elf_Internal_Shdr *hdr;
2714
2715 hdr = *hdrpp;
2716 if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
2717 {
2718 hdr->sh_offset = -1;
2719 continue;
2720 }
2721 if (i == tdata->symtab_section
2722 || i == tdata->strtab_section)
2723 {
2724 hdr->sh_offset = -1;
2725 continue;
2726 }
2727
2728 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
2729 }
2730 }
2731 else
2732 {
2733 unsigned int i;
2734 Elf_Internal_Shdr **hdrpp;
2735
2736 /* Assign file positions for the loaded sections based on the
2737 assignment of sections to segments. */
2738 if (! assign_file_positions_for_segments (abfd))
2739 return false;
2740
2741 /* Assign file positions for the other sections. */
2742
2743 off = elf_tdata (abfd)->next_file_pos;
2744 for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++)
2745 {
2746 Elf_Internal_Shdr *hdr;
2747
2748 hdr = *hdrpp;
2749 if (hdr->bfd_section != NULL
2750 && hdr->bfd_section->filepos != 0)
2751 hdr->sh_offset = hdr->bfd_section->filepos;
2752 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
2753 {
2754 ((*_bfd_error_handler)
2755 ("%s: warning: allocated section `%s' not in segment",
2756 bfd_get_filename (abfd),
2757 (hdr->bfd_section == NULL
2758 ? "*unknown*"
2759 : hdr->bfd_section->name)));
2760 if ((abfd->flags & D_PAGED) != 0)
2761 off += (hdr->sh_addr - off) % bed->maxpagesize;
2762 else
2763 off += (hdr->sh_addr - off) % hdr->sh_addralign;
2764 off = _bfd_elf_assign_file_position_for_section (hdr, off,
2765 false);
2766 }
2767 else if (hdr->sh_type == SHT_REL
2768 || hdr->sh_type == SHT_RELA
2769 || hdr == i_shdrpp[tdata->symtab_section]
2770 || hdr == i_shdrpp[tdata->strtab_section])
2771 hdr->sh_offset = -1;
2772 else
2773 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
2774 }
2775 }
2776
2777 /* Place the section headers. */
2778 off = align_file_position (off, bed->s->file_align);
2779 i_ehdrp->e_shoff = off;
2780 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
2781
2782 elf_tdata (abfd)->next_file_pos = off;
2783
2784 return true;
2785 }
2786
2787 static boolean
2788 prep_headers (abfd)
2789 bfd *abfd;
2790 {
2791 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
2792 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
2793 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
2794 int count;
2795 struct bfd_strtab_hash *shstrtab;
2796 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2797
2798 i_ehdrp = elf_elfheader (abfd);
2799 i_shdrp = elf_elfsections (abfd);
2800
2801 shstrtab = _bfd_elf_stringtab_init ();
2802 if (shstrtab == NULL)
2803 return false;
2804
2805 elf_shstrtab (abfd) = shstrtab;
2806
2807 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
2808 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
2809 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
2810 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
2811
2812 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
2813 i_ehdrp->e_ident[EI_DATA] =
2814 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
2815 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
2816
2817 for (count = EI_PAD; count < EI_NIDENT; count++)
2818 i_ehdrp->e_ident[count] = 0;
2819
2820 if ((abfd->flags & DYNAMIC) != 0)
2821 i_ehdrp->e_type = ET_DYN;
2822 else if ((abfd->flags & EXEC_P) != 0)
2823 i_ehdrp->e_type = ET_EXEC;
2824 else
2825 i_ehdrp->e_type = ET_REL;
2826
2827 switch (bfd_get_arch (abfd))
2828 {
2829 case bfd_arch_unknown:
2830 i_ehdrp->e_machine = EM_NONE;
2831 break;
2832 case bfd_arch_sparc:
2833 if (bed->s->arch_size == 64)
2834 i_ehdrp->e_machine = EM_SPARC64;
2835 else
2836 i_ehdrp->e_machine = EM_SPARC;
2837 break;
2838 case bfd_arch_i386:
2839 i_ehdrp->e_machine = EM_386;
2840 break;
2841 case bfd_arch_m68k:
2842 i_ehdrp->e_machine = EM_68K;
2843 break;
2844 case bfd_arch_m88k:
2845 i_ehdrp->e_machine = EM_88K;
2846 break;
2847 case bfd_arch_i860:
2848 i_ehdrp->e_machine = EM_860;
2849 break;
2850 case bfd_arch_mips: /* MIPS Rxxxx */
2851 i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */
2852 break;
2853 case bfd_arch_hppa:
2854 i_ehdrp->e_machine = EM_PARISC;
2855 break;
2856 case bfd_arch_powerpc:
2857 i_ehdrp->e_machine = EM_PPC;
2858 break;
2859 case bfd_arch_alpha:
2860 i_ehdrp->e_machine = EM_ALPHA;
2861 break;
2862 case bfd_arch_sh:
2863 i_ehdrp->e_machine = EM_SH;
2864 break;
2865 case bfd_arch_d10v:
2866 i_ehdrp->e_machine = EM_CYGNUS_D10V;
2867 break;
2868 /* start-sanitize-d30v */
2869 case bfd_arch_d30v:
2870 i_ehdrp->e_machine = EM_CYGNUS_D30V;
2871 break;
2872 /* end-sanitize-d30v */
2873 /* start-sanitize-v850 */
2874 case bfd_arch_v850:
2875 switch (bfd_get_mach (abfd))
2876 {
2877 default:
2878 case 0: i_ehdrp->e_machine = EM_CYGNUS_V850; break;
2879 }
2880 break;
2881 /* end-sanitize-v850 */
2882 case bfd_arch_arc:
2883 i_ehdrp->e_machine = EM_CYGNUS_ARC;
2884 break;
2885 case bfd_arch_m32r:
2886 i_ehdrp->e_machine = EM_CYGNUS_M32R;
2887 break;
2888 case bfd_arch_mn10200:
2889 i_ehdrp->e_machine = EM_CYGNUS_MN10200;
2890 break;
2891 case bfd_arch_mn10300:
2892 i_ehdrp->e_machine = EM_CYGNUS_MN10300;
2893 break;
2894 /* also note that EM_M32, AT&T WE32100 is unknown to bfd */
2895 default:
2896 i_ehdrp->e_machine = EM_NONE;
2897 }
2898 i_ehdrp->e_version = bed->s->ev_current;
2899 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
2900
2901 /* no program header, for now. */
2902 i_ehdrp->e_phoff = 0;
2903 i_ehdrp->e_phentsize = 0;
2904 i_ehdrp->e_phnum = 0;
2905
2906 /* each bfd section is section header entry */
2907 i_ehdrp->e_entry = bfd_get_start_address (abfd);
2908 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
2909
2910 /* if we're building an executable, we'll need a program header table */
2911 if (abfd->flags & EXEC_P)
2912 {
2913 /* it all happens later */
2914 #if 0
2915 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
2916
2917 /* elf_build_phdrs() returns a (NULL-terminated) array of
2918 Elf_Internal_Phdrs */
2919 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
2920 i_ehdrp->e_phoff = outbase;
2921 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
2922 #endif
2923 }
2924 else
2925 {
2926 i_ehdrp->e_phentsize = 0;
2927 i_phdrp = 0;
2928 i_ehdrp->e_phoff = 0;
2929 }
2930
2931 elf_tdata (abfd)->symtab_hdr.sh_name =
2932 (unsigned int) _bfd_stringtab_add (shstrtab, ".symtab", true, false);
2933 elf_tdata (abfd)->strtab_hdr.sh_name =
2934 (unsigned int) _bfd_stringtab_add (shstrtab, ".strtab", true, false);
2935 elf_tdata (abfd)->shstrtab_hdr.sh_name =
2936 (unsigned int) _bfd_stringtab_add (shstrtab, ".shstrtab", true, false);
2937 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
2938 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
2939 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
2940 return false;
2941
2942 return true;
2943 }
2944
2945 /* Assign file positions for all the reloc sections which are not part
2946 of the loadable file image. */
2947
2948 void
2949 _bfd_elf_assign_file_positions_for_relocs (abfd)
2950 bfd *abfd;
2951 {
2952 file_ptr off;
2953 unsigned int i;
2954 Elf_Internal_Shdr **shdrpp;
2955
2956 off = elf_tdata (abfd)->next_file_pos;
2957
2958 for (i = 1, shdrpp = elf_elfsections (abfd) + 1;
2959 i < elf_elfheader (abfd)->e_shnum;
2960 i++, shdrpp++)
2961 {
2962 Elf_Internal_Shdr *shdrp;
2963
2964 shdrp = *shdrpp;
2965 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
2966 && shdrp->sh_offset == -1)
2967 off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
2968 }
2969
2970 elf_tdata (abfd)->next_file_pos = off;
2971 }
2972
2973 boolean
2974 _bfd_elf_write_object_contents (abfd)
2975 bfd *abfd;
2976 {
2977 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2978 Elf_Internal_Ehdr *i_ehdrp;
2979 Elf_Internal_Shdr **i_shdrp;
2980 boolean failed;
2981 unsigned int count;
2982
2983 if (! abfd->output_has_begun
2984 && ! _bfd_elf_compute_section_file_positions (abfd,
2985 (struct bfd_link_info *) NULL))
2986 return false;
2987
2988 i_shdrp = elf_elfsections (abfd);
2989 i_ehdrp = elf_elfheader (abfd);
2990
2991 failed = false;
2992 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
2993 if (failed)
2994 return false;
2995 _bfd_elf_assign_file_positions_for_relocs (abfd);
2996
2997 /* After writing the headers, we need to write the sections too... */
2998 for (count = 1; count < i_ehdrp->e_shnum; count++)
2999 {
3000 if (bed->elf_backend_section_processing)
3001 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
3002 if (i_shdrp[count]->contents)
3003 {
3004 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
3005 || (bfd_write (i_shdrp[count]->contents, i_shdrp[count]->sh_size,
3006 1, abfd)
3007 != i_shdrp[count]->sh_size))
3008 return false;
3009 }
3010 }
3011
3012 /* Write out the section header names. */
3013 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
3014 || ! _bfd_stringtab_emit (abfd, elf_shstrtab (abfd)))
3015 return false;
3016
3017 if (bed->elf_backend_final_write_processing)
3018 (*bed->elf_backend_final_write_processing) (abfd,
3019 elf_tdata (abfd)->linker);
3020
3021 return bed->s->write_shdrs_and_ehdr (abfd);
3022 }
3023
3024 /* given a section, search the header to find them... */
3025 int
3026 _bfd_elf_section_from_bfd_section (abfd, asect)
3027 bfd *abfd;
3028 struct sec *asect;
3029 {
3030 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3031 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
3032 int index;
3033 Elf_Internal_Shdr *hdr;
3034 int maxindex = elf_elfheader (abfd)->e_shnum;
3035
3036 for (index = 0; index < maxindex; index++)
3037 {
3038 hdr = i_shdrp[index];
3039 if (hdr->bfd_section == asect)
3040 return index;
3041 }
3042
3043 if (bed->elf_backend_section_from_bfd_section)
3044 {
3045 for (index = 0; index < maxindex; index++)
3046 {
3047 int retval;
3048
3049 hdr = i_shdrp[index];
3050 retval = index;
3051 if ((*bed->elf_backend_section_from_bfd_section)
3052 (abfd, hdr, asect, &retval))
3053 return retval;
3054 }
3055 }
3056
3057 if (bfd_is_abs_section (asect))
3058 return SHN_ABS;
3059 if (bfd_is_com_section (asect))
3060 return SHN_COMMON;
3061 if (bfd_is_und_section (asect))
3062 return SHN_UNDEF;
3063
3064 return -1;
3065 }
3066
3067 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
3068 on error. */
3069
3070 int
3071 _bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr)
3072 bfd *abfd;
3073 asymbol **asym_ptr_ptr;
3074 {
3075 asymbol *asym_ptr = *asym_ptr_ptr;
3076 int idx;
3077 flagword flags = asym_ptr->flags;
3078
3079 /* When gas creates relocations against local labels, it creates its
3080 own symbol for the section, but does put the symbol into the
3081 symbol chain, so udata is 0. When the linker is generating
3082 relocatable output, this section symbol may be for one of the
3083 input sections rather than the output section. */
3084 if (asym_ptr->udata.i == 0
3085 && (flags & BSF_SECTION_SYM)
3086 && asym_ptr->section)
3087 {
3088 int indx;
3089
3090 if (asym_ptr->section->output_section != NULL)
3091 indx = asym_ptr->section->output_section->index;
3092 else
3093 indx = asym_ptr->section->index;
3094 if (elf_section_syms (abfd)[indx])
3095 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
3096 }
3097
3098 idx = asym_ptr->udata.i;
3099
3100 if (idx == 0)
3101 {
3102 /* This case can occur when using --strip-symbol on a symbol
3103 which is used in a relocation entry. */
3104 (*_bfd_error_handler)
3105 ("%s: symbol `%s' required but not present",
3106 bfd_get_filename (abfd), bfd_asymbol_name (asym_ptr));
3107 bfd_set_error (bfd_error_no_symbols);
3108 return -1;
3109 }
3110
3111 #if DEBUG & 4
3112 {
3113 fprintf (stderr,
3114 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
3115 (long) asym_ptr, asym_ptr->name, idx, flags,
3116 elf_symbol_flags (flags));
3117 fflush (stderr);
3118 }
3119 #endif
3120
3121 return idx;
3122 }
3123
3124 /* Copy private BFD data. This copies any program header information. */
3125
3126 static boolean
3127 copy_private_bfd_data (ibfd, obfd)
3128 bfd *ibfd;
3129 bfd *obfd;
3130 {
3131 Elf_Internal_Ehdr *iehdr;
3132 struct elf_segment_map *mfirst;
3133 struct elf_segment_map **pm;
3134 Elf_Internal_Phdr *p;
3135 unsigned int i, c;
3136
3137 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3138 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3139 return true;
3140
3141 if (elf_tdata (ibfd)->phdr == NULL)
3142 return true;
3143
3144 iehdr = elf_elfheader (ibfd);
3145
3146 mfirst = NULL;
3147 pm = &mfirst;
3148
3149 c = elf_elfheader (ibfd)->e_phnum;
3150 for (i = 0, p = elf_tdata (ibfd)->phdr; i < c; i++, p++)
3151 {
3152 unsigned int csecs;
3153 asection *s;
3154 struct elf_segment_map *m;
3155 unsigned int isec;
3156
3157 csecs = 0;
3158
3159 /* The complicated case when p_vaddr is 0 is to handle the
3160 Solaris linker, which generates a PT_INTERP section with
3161 p_vaddr and p_memsz set to 0. */
3162 for (s = ibfd->sections; s != NULL; s = s->next)
3163 if (((s->vma >= p->p_vaddr
3164 && (s->vma + s->_raw_size <= p->p_vaddr + p->p_memsz
3165 || s->vma + s->_raw_size <= p->p_vaddr + p->p_filesz))
3166 || (p->p_vaddr == 0
3167 && p->p_filesz > 0
3168 && (s->flags & SEC_HAS_CONTENTS) != 0
3169 && (bfd_vma) s->filepos >= p->p_offset
3170 && ((bfd_vma) s->filepos + s->_raw_size
3171 <= p->p_offset + p->p_filesz)))
3172 && (s->flags & SEC_ALLOC) != 0
3173 && s->output_section != NULL)
3174 ++csecs;
3175
3176 m = ((struct elf_segment_map *)
3177 bfd_alloc (obfd,
3178 (sizeof (struct elf_segment_map)
3179 + ((size_t) csecs - 1) * sizeof (asection *))));
3180 if (m == NULL)
3181 return false;
3182
3183 m->next = NULL;
3184 m->p_type = p->p_type;
3185 m->p_flags = p->p_flags;
3186 m->p_flags_valid = 1;
3187 m->p_paddr = p->p_paddr;
3188 m->p_paddr_valid = 1;
3189
3190 m->includes_filehdr = (p->p_offset == 0
3191 && p->p_filesz >= iehdr->e_ehsize);
3192
3193 m->includes_phdrs = (p->p_offset <= (bfd_vma) iehdr->e_phoff
3194 && (p->p_offset + p->p_filesz
3195 >= ((bfd_vma) iehdr->e_phoff
3196 + iehdr->e_phnum * iehdr->e_phentsize)));
3197
3198 isec = 0;
3199 for (s = ibfd->sections; s != NULL; s = s->next)
3200 {
3201 if (((s->vma >= p->p_vaddr
3202 && (s->vma + s->_raw_size <= p->p_vaddr + p->p_memsz
3203 || s->vma + s->_raw_size <= p->p_vaddr + p->p_filesz))
3204 || (p->p_vaddr == 0
3205 && p->p_filesz > 0
3206 && (s->flags & SEC_HAS_CONTENTS) != 0
3207 && (bfd_vma) s->filepos >= p->p_offset
3208 && ((bfd_vma) s->filepos + s->_raw_size
3209 <= p->p_offset + p->p_filesz)))
3210 && (s->flags & SEC_ALLOC) != 0
3211 && s->output_section != NULL)
3212 {
3213 m->sections[isec] = s->output_section;
3214 ++isec;
3215 }
3216 }
3217 BFD_ASSERT (isec == csecs);
3218 m->count = csecs;
3219
3220 *pm = m;
3221 pm = &m->next;
3222 }
3223
3224 elf_tdata (obfd)->segment_map = mfirst;
3225
3226 return true;
3227 }
3228
3229 /* Copy private section information. This copies over the entsize
3230 field, and sometimes the info field. */
3231
3232 boolean
3233 _bfd_elf_copy_private_section_data (ibfd, isec, obfd, osec)
3234 bfd *ibfd;
3235 asection *isec;
3236 bfd *obfd;
3237 asection *osec;
3238 {
3239 Elf_Internal_Shdr *ihdr, *ohdr;
3240
3241 if (ibfd->xvec->flavour != bfd_target_elf_flavour
3242 || obfd->xvec->flavour != bfd_target_elf_flavour)
3243 return true;
3244
3245 /* Copy over private BFD data if it has not already been copied.
3246 This must be done here, rather than in the copy_private_bfd_data
3247 entry point, because the latter is called after the section
3248 contents have been set, which means that the program headers have
3249 already been worked out. */
3250 if (elf_tdata (obfd)->segment_map == NULL
3251 && elf_tdata (ibfd)->phdr != NULL)
3252 {
3253 asection *s;
3254
3255 /* Only set up the segments when all the sections have been set
3256 up. */
3257 for (s = ibfd->sections; s != NULL; s = s->next)
3258 if (s->output_section == NULL)
3259 break;
3260 if (s == NULL)
3261 {
3262 if (! copy_private_bfd_data (ibfd, obfd))
3263 return false;
3264 }
3265 }
3266
3267 ihdr = &elf_section_data (isec)->this_hdr;
3268 ohdr = &elf_section_data (osec)->this_hdr;
3269
3270 ohdr->sh_entsize = ihdr->sh_entsize;
3271
3272 if (ihdr->sh_type == SHT_SYMTAB
3273 || ihdr->sh_type == SHT_DYNSYM
3274 || ihdr->sh_type == SHT_GNU_verneed
3275 || ihdr->sh_type == SHT_GNU_verdef)
3276 ohdr->sh_info = ihdr->sh_info;
3277
3278 return true;
3279 }
3280
3281 /* Copy private symbol information. If this symbol is in a section
3282 which we did not map into a BFD section, try to map the section
3283 index correctly. We use special macro definitions for the mapped
3284 section indices; these definitions are interpreted by the
3285 swap_out_syms function. */
3286
3287 #define MAP_ONESYMTAB (SHN_LORESERVE - 1)
3288 #define MAP_DYNSYMTAB (SHN_LORESERVE - 2)
3289 #define MAP_STRTAB (SHN_LORESERVE - 3)
3290 #define MAP_SHSTRTAB (SHN_LORESERVE - 4)
3291
3292 boolean
3293 _bfd_elf_copy_private_symbol_data (ibfd, isymarg, obfd, osymarg)
3294 bfd *ibfd;
3295 asymbol *isymarg;
3296 bfd *obfd;
3297 asymbol *osymarg;
3298 {
3299 elf_symbol_type *isym, *osym;
3300
3301 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3302 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3303 return true;
3304
3305 isym = elf_symbol_from (ibfd, isymarg);
3306 osym = elf_symbol_from (obfd, osymarg);
3307
3308 if (isym != NULL
3309 && osym != NULL
3310 && bfd_is_abs_section (isym->symbol.section))
3311 {
3312 unsigned int shndx;
3313
3314 shndx = isym->internal_elf_sym.st_shndx;
3315 if (shndx == elf_onesymtab (ibfd))
3316 shndx = MAP_ONESYMTAB;
3317 else if (shndx == elf_dynsymtab (ibfd))
3318 shndx = MAP_DYNSYMTAB;
3319 else if (shndx == elf_tdata (ibfd)->strtab_section)
3320 shndx = MAP_STRTAB;
3321 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
3322 shndx = MAP_SHSTRTAB;
3323 osym->internal_elf_sym.st_shndx = shndx;
3324 }
3325
3326 return true;
3327 }
3328
3329 /* Swap out the symbols. */
3330
3331 static boolean
3332 swap_out_syms (abfd, sttp)
3333 bfd *abfd;
3334 struct bfd_strtab_hash **sttp;
3335 {
3336 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3337
3338 if (!elf_map_symbols (abfd))
3339 return false;
3340
3341 /* Dump out the symtabs. */
3342 {
3343 int symcount = bfd_get_symcount (abfd);
3344 asymbol **syms = bfd_get_outsymbols (abfd);
3345 struct bfd_strtab_hash *stt;
3346 Elf_Internal_Shdr *symtab_hdr;
3347 Elf_Internal_Shdr *symstrtab_hdr;
3348 char *outbound_syms;
3349 int idx;
3350
3351 stt = _bfd_elf_stringtab_init ();
3352 if (stt == NULL)
3353 return false;
3354
3355 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3356 symtab_hdr->sh_type = SHT_SYMTAB;
3357 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
3358 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
3359 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
3360 symtab_hdr->sh_addralign = bed->s->file_align;
3361
3362 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
3363 symstrtab_hdr->sh_type = SHT_STRTAB;
3364
3365 outbound_syms = bfd_alloc (abfd,
3366 (1 + symcount) * bed->s->sizeof_sym);
3367 if (outbound_syms == NULL)
3368 return false;
3369 symtab_hdr->contents = (PTR) outbound_syms;
3370
3371 /* now generate the data (for "contents") */
3372 {
3373 /* Fill in zeroth symbol and swap it out. */
3374 Elf_Internal_Sym sym;
3375 sym.st_name = 0;
3376 sym.st_value = 0;
3377 sym.st_size = 0;
3378 sym.st_info = 0;
3379 sym.st_other = 0;
3380 sym.st_shndx = SHN_UNDEF;
3381 bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms);
3382 outbound_syms += bed->s->sizeof_sym;
3383 }
3384 for (idx = 0; idx < symcount; idx++)
3385 {
3386 Elf_Internal_Sym sym;
3387 bfd_vma value = syms[idx]->value;
3388 elf_symbol_type *type_ptr;
3389 flagword flags = syms[idx]->flags;
3390 int type;
3391
3392 if (flags & BSF_SECTION_SYM)
3393 /* Section symbols have no names. */
3394 sym.st_name = 0;
3395 else
3396 {
3397 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
3398 syms[idx]->name,
3399 true, false);
3400 if (sym.st_name == (unsigned long) -1)
3401 return false;
3402 }
3403
3404 type_ptr = elf_symbol_from (abfd, syms[idx]);
3405
3406 if (bfd_is_com_section (syms[idx]->section))
3407 {
3408 /* ELF common symbols put the alignment into the `value' field,
3409 and the size into the `size' field. This is backwards from
3410 how BFD handles it, so reverse it here. */
3411 sym.st_size = value;
3412 if (type_ptr == NULL
3413 || type_ptr->internal_elf_sym.st_value == 0)
3414 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
3415 else
3416 sym.st_value = type_ptr->internal_elf_sym.st_value;
3417 sym.st_shndx = _bfd_elf_section_from_bfd_section (abfd,
3418 syms[idx]->section);
3419 }
3420 else
3421 {
3422 asection *sec = syms[idx]->section;
3423 int shndx;
3424
3425 if (sec->output_section)
3426 {
3427 value += sec->output_offset;
3428 sec = sec->output_section;
3429 }
3430 value += sec->vma;
3431 sym.st_value = value;
3432 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
3433
3434 if (bfd_is_abs_section (sec)
3435 && type_ptr != NULL
3436 && type_ptr->internal_elf_sym.st_shndx != 0)
3437 {
3438 /* This symbol is in a real ELF section which we did
3439 not create as a BFD section. Undo the mapping done
3440 by copy_private_symbol_data. */
3441 shndx = type_ptr->internal_elf_sym.st_shndx;
3442 switch (shndx)
3443 {
3444 case MAP_ONESYMTAB:
3445 shndx = elf_onesymtab (abfd);
3446 break;
3447 case MAP_DYNSYMTAB:
3448 shndx = elf_dynsymtab (abfd);
3449 break;
3450 case MAP_STRTAB:
3451 shndx = elf_tdata (abfd)->strtab_section;
3452 break;
3453 case MAP_SHSTRTAB:
3454 shndx = elf_tdata (abfd)->shstrtab_section;
3455 break;
3456 default:
3457 break;
3458 }
3459 }
3460 else
3461 {
3462 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
3463
3464 if (shndx == -1)
3465 {
3466 asection *sec2;
3467
3468 /* Writing this would be a hell of a lot easier if
3469 we had some decent documentation on bfd, and
3470 knew what to expect of the library, and what to
3471 demand of applications. For example, it
3472 appears that `objcopy' might not set the
3473 section of a symbol to be a section that is
3474 actually in the output file. */
3475 sec2 = bfd_get_section_by_name (abfd, sec->name);
3476 BFD_ASSERT (sec2 != 0);
3477 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
3478 BFD_ASSERT (shndx != -1);
3479 }
3480 }
3481
3482 sym.st_shndx = shndx;
3483 }
3484
3485 if ((flags & BSF_FUNCTION) != 0)
3486 type = STT_FUNC;
3487 else if ((flags & BSF_OBJECT) != 0)
3488 type = STT_OBJECT;
3489 else
3490 type = STT_NOTYPE;
3491
3492 if (bfd_is_com_section (syms[idx]->section))
3493 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
3494 else if (bfd_is_und_section (syms[idx]->section))
3495 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
3496 ? STB_WEAK
3497 : STB_GLOBAL),
3498 type);
3499 else if (flags & BSF_SECTION_SYM)
3500 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
3501 else if (flags & BSF_FILE)
3502 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
3503 else
3504 {
3505 int bind = STB_LOCAL;
3506
3507 if (flags & BSF_LOCAL)
3508 bind = STB_LOCAL;
3509 else if (flags & BSF_WEAK)
3510 bind = STB_WEAK;
3511 else if (flags & BSF_GLOBAL)
3512 bind = STB_GLOBAL;
3513
3514 sym.st_info = ELF_ST_INFO (bind, type);
3515 }
3516
3517 if (type_ptr != NULL)
3518 sym.st_other = type_ptr->internal_elf_sym.st_other;
3519 else
3520 sym.st_other = 0;
3521
3522 bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms);
3523 outbound_syms += bed->s->sizeof_sym;
3524 }
3525
3526 *sttp = stt;
3527 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
3528 symstrtab_hdr->sh_type = SHT_STRTAB;
3529
3530 symstrtab_hdr->sh_flags = 0;
3531 symstrtab_hdr->sh_addr = 0;
3532 symstrtab_hdr->sh_entsize = 0;
3533 symstrtab_hdr->sh_link = 0;
3534 symstrtab_hdr->sh_info = 0;
3535 symstrtab_hdr->sh_addralign = 1;
3536 }
3537
3538 return true;
3539 }
3540
3541 /* Return the number of bytes required to hold the symtab vector.
3542
3543 Note that we base it on the count plus 1, since we will null terminate
3544 the vector allocated based on this size. However, the ELF symbol table
3545 always has a dummy entry as symbol #0, so it ends up even. */
3546
3547 long
3548 _bfd_elf_get_symtab_upper_bound (abfd)
3549 bfd *abfd;
3550 {
3551 long symcount;
3552 long symtab_size;
3553 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
3554
3555 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3556 symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *));
3557
3558 return symtab_size;
3559 }
3560
3561 long
3562 _bfd_elf_get_dynamic_symtab_upper_bound (abfd)
3563 bfd *abfd;
3564 {
3565 long symcount;
3566 long symtab_size;
3567 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3568
3569 if (elf_dynsymtab (abfd) == 0)
3570 {
3571 bfd_set_error (bfd_error_invalid_operation);
3572 return -1;
3573 }
3574
3575 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3576 symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *));
3577
3578 return symtab_size;
3579 }
3580
3581 long
3582 _bfd_elf_get_reloc_upper_bound (abfd, asect)
3583 bfd *abfd;
3584 sec_ptr asect;
3585 {
3586 return (asect->reloc_count + 1) * sizeof (arelent *);
3587 }
3588
3589 /* Canonicalize the relocs. */
3590
3591 long
3592 _bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols)
3593 bfd *abfd;
3594 sec_ptr section;
3595 arelent **relptr;
3596 asymbol **symbols;
3597 {
3598 arelent *tblptr;
3599 unsigned int i;
3600
3601 if (! get_elf_backend_data (abfd)->s->slurp_reloc_table (abfd,
3602 section,
3603 symbols,
3604 false))
3605 return -1;
3606
3607 tblptr = section->relocation;
3608 for (i = 0; i < section->reloc_count; i++)
3609 *relptr++ = tblptr++;
3610
3611 *relptr = NULL;
3612
3613 return section->reloc_count;
3614 }
3615
3616 long
3617 _bfd_elf_get_symtab (abfd, alocation)
3618 bfd *abfd;
3619 asymbol **alocation;
3620 {
3621 long symcount = get_elf_backend_data (abfd)->s->slurp_symbol_table (abfd, alocation, false);
3622
3623 if (symcount >= 0)
3624 bfd_get_symcount (abfd) = symcount;
3625 return symcount;
3626 }
3627
3628 long
3629 _bfd_elf_canonicalize_dynamic_symtab (abfd, alocation)
3630 bfd *abfd;
3631 asymbol **alocation;
3632 {
3633 return get_elf_backend_data (abfd)->s->slurp_symbol_table (abfd, alocation, true);
3634 }
3635
3636 /* Return the size required for the dynamic reloc entries. Any
3637 section that was actually installed in the BFD, and has type
3638 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
3639 considered to be a dynamic reloc section. */
3640
3641 long
3642 _bfd_elf_get_dynamic_reloc_upper_bound (abfd)
3643 bfd *abfd;
3644 {
3645 long ret;
3646 asection *s;
3647
3648 if (elf_dynsymtab (abfd) == 0)
3649 {
3650 bfd_set_error (bfd_error_invalid_operation);
3651 return -1;
3652 }
3653
3654 ret = sizeof (arelent *);
3655 for (s = abfd->sections; s != NULL; s = s->next)
3656 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
3657 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
3658 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
3659 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
3660 * sizeof (arelent *));
3661
3662 return ret;
3663 }
3664
3665 /* Canonicalize the dynamic relocation entries. Note that we return
3666 the dynamic relocations as a single block, although they are
3667 actually associated with particular sections; the interface, which
3668 was designed for SunOS style shared libraries, expects that there
3669 is only one set of dynamic relocs. Any section that was actually
3670 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
3671 the dynamic symbol table, is considered to be a dynamic reloc
3672 section. */
3673
3674 long
3675 _bfd_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
3676 bfd *abfd;
3677 arelent **storage;
3678 asymbol **syms;
3679 {
3680 boolean (*slurp_relocs) PARAMS ((bfd *, asection *, asymbol **, boolean));
3681 asection *s;
3682 long ret;
3683
3684 if (elf_dynsymtab (abfd) == 0)
3685 {
3686 bfd_set_error (bfd_error_invalid_operation);
3687 return -1;
3688 }
3689
3690 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3691 ret = 0;
3692 for (s = abfd->sections; s != NULL; s = s->next)
3693 {
3694 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
3695 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
3696 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
3697 {
3698 arelent *p;
3699 long count, i;
3700
3701 if (! (*slurp_relocs) (abfd, s, syms, true))
3702 return -1;
3703 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
3704 p = s->relocation;
3705 for (i = 0; i < count; i++)
3706 *storage++ = p++;
3707 ret += count;
3708 }
3709 }
3710
3711 *storage = NULL;
3712
3713 return ret;
3714 }
3715 \f
3716 /* Read in the version information. */
3717
3718 boolean
3719 _bfd_elf_slurp_version_tables (abfd)
3720 bfd *abfd;
3721 {
3722 bfd_byte *contents = NULL;
3723
3724 if (elf_dynverdef (abfd) != 0)
3725 {
3726 Elf_Internal_Shdr *hdr;
3727 Elf_External_Verdef *everdef;
3728 Elf_Internal_Verdef *iverdef;
3729 unsigned int i;
3730
3731 hdr = &elf_tdata (abfd)->dynverdef_hdr;
3732
3733 elf_tdata (abfd)->verdef =
3734 ((Elf_Internal_Verdef *)
3735 bfd_zalloc (abfd, hdr->sh_info * sizeof (Elf_Internal_Verdef)));
3736 if (elf_tdata (abfd)->verdef == NULL)
3737 goto error_return;
3738
3739 elf_tdata (abfd)->cverdefs = hdr->sh_info;
3740
3741 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
3742 if (contents == NULL)
3743 goto error_return;
3744 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3745 || bfd_read ((PTR) contents, 1, hdr->sh_size, abfd) != hdr->sh_size)
3746 goto error_return;
3747
3748 everdef = (Elf_External_Verdef *) contents;
3749 iverdef = elf_tdata (abfd)->verdef;
3750 for (i = 0; i < hdr->sh_info; i++, iverdef++)
3751 {
3752 Elf_External_Verdaux *everdaux;
3753 Elf_Internal_Verdaux *iverdaux;
3754 unsigned int j;
3755
3756 _bfd_elf_swap_verdef_in (abfd, everdef, iverdef);
3757
3758 iverdef->vd_bfd = abfd;
3759
3760 iverdef->vd_auxptr = ((Elf_Internal_Verdaux *)
3761 bfd_alloc (abfd,
3762 (iverdef->vd_cnt
3763 * sizeof (Elf_Internal_Verdaux))));
3764 if (iverdef->vd_auxptr == NULL)
3765 goto error_return;
3766
3767 everdaux = ((Elf_External_Verdaux *)
3768 ((bfd_byte *) everdef + iverdef->vd_aux));
3769 iverdaux = iverdef->vd_auxptr;
3770 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
3771 {
3772 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
3773
3774 iverdaux->vda_nodename =
3775 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3776 iverdaux->vda_name);
3777 if (iverdaux->vda_nodename == NULL)
3778 goto error_return;
3779
3780 if (j + 1 < iverdef->vd_cnt)
3781 iverdaux->vda_nextptr = iverdaux + 1;
3782 else
3783 iverdaux->vda_nextptr = NULL;
3784
3785 everdaux = ((Elf_External_Verdaux *)
3786 ((bfd_byte *) everdaux + iverdaux->vda_next));
3787 }
3788
3789 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
3790
3791 if (i + 1 < hdr->sh_info)
3792 iverdef->vd_nextdef = iverdef + 1;
3793 else
3794 iverdef->vd_nextdef = NULL;
3795
3796 everdef = ((Elf_External_Verdef *)
3797 ((bfd_byte *) everdef + iverdef->vd_next));
3798 }
3799
3800 free (contents);
3801 contents = NULL;
3802 }
3803
3804 if (elf_dynverref (abfd) != 0)
3805 {
3806 Elf_Internal_Shdr *hdr;
3807 Elf_External_Verneed *everneed;
3808 Elf_Internal_Verneed *iverneed;
3809 unsigned int i;
3810
3811 hdr = &elf_tdata (abfd)->dynverref_hdr;
3812
3813 elf_tdata (abfd)->verref =
3814 ((Elf_Internal_Verneed *)
3815 bfd_zalloc (abfd, hdr->sh_info * sizeof (Elf_Internal_Verneed)));
3816 if (elf_tdata (abfd)->verref == NULL)
3817 goto error_return;
3818
3819 elf_tdata (abfd)->cverrefs = hdr->sh_info;
3820
3821 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
3822 if (contents == NULL)
3823 goto error_return;
3824 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3825 || bfd_read ((PTR) contents, 1, hdr->sh_size, abfd) != hdr->sh_size)
3826 goto error_return;
3827
3828 everneed = (Elf_External_Verneed *) contents;
3829 iverneed = elf_tdata (abfd)->verref;
3830 for (i = 0; i < hdr->sh_info; i++, iverneed++)
3831 {
3832 Elf_External_Vernaux *evernaux;
3833 Elf_Internal_Vernaux *ivernaux;
3834 unsigned int j;
3835
3836 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
3837
3838 iverneed->vn_bfd = abfd;
3839
3840 iverneed->vn_filename =
3841 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3842 iverneed->vn_file);
3843 if (iverneed->vn_filename == NULL)
3844 goto error_return;
3845
3846 iverneed->vn_auxptr =
3847 ((Elf_Internal_Vernaux *)
3848 bfd_alloc (abfd,
3849 iverneed->vn_cnt * sizeof (Elf_Internal_Vernaux)));
3850
3851 evernaux = ((Elf_External_Vernaux *)
3852 ((bfd_byte *) everneed + iverneed->vn_aux));
3853 ivernaux = iverneed->vn_auxptr;
3854 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
3855 {
3856 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
3857
3858 ivernaux->vna_nodename =
3859 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3860 ivernaux->vna_name);
3861 if (ivernaux->vna_nodename == NULL)
3862 goto error_return;
3863
3864 if (j + 1 < iverneed->vn_cnt)
3865 ivernaux->vna_nextptr = ivernaux + 1;
3866 else
3867 ivernaux->vna_nextptr = NULL;
3868
3869 evernaux = ((Elf_External_Vernaux *)
3870 ((bfd_byte *) evernaux + ivernaux->vna_next));
3871 }
3872
3873 if (i + 1 < hdr->sh_info)
3874 iverneed->vn_nextref = iverneed + 1;
3875 else
3876 iverneed->vn_nextref = NULL;
3877
3878 everneed = ((Elf_External_Verneed *)
3879 ((bfd_byte *) everneed + iverneed->vn_next));
3880 }
3881
3882 free (contents);
3883 contents = NULL;
3884 }
3885
3886 return true;
3887
3888 error_return:
3889 if (contents == NULL)
3890 free (contents);
3891 return false;
3892 }
3893 \f
3894 asymbol *
3895 _bfd_elf_make_empty_symbol (abfd)
3896 bfd *abfd;
3897 {
3898 elf_symbol_type *newsym;
3899
3900 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type));
3901 if (!newsym)
3902 return NULL;
3903 else
3904 {
3905 newsym->symbol.the_bfd = abfd;
3906 return &newsym->symbol;
3907 }
3908 }
3909
3910 void
3911 _bfd_elf_get_symbol_info (ignore_abfd, symbol, ret)
3912 bfd *ignore_abfd;
3913 asymbol *symbol;
3914 symbol_info *ret;
3915 {
3916 bfd_symbol_info (symbol, ret);
3917 }
3918
3919 /* Return whether a symbol name implies a local symbol. Most targets
3920 use this function for the is_local_label_name entry point, but some
3921 override it. */
3922
3923 boolean
3924 _bfd_elf_is_local_label_name (abfd, name)
3925 bfd *abfd;
3926 const char *name;
3927 {
3928 /* Normal local symbols start with ``.L''. */
3929 if (name[0] == '.' && name[1] == 'L')
3930 return true;
3931
3932 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
3933 DWARF debugging symbols starting with ``..''. */
3934 if (name[0] == '.' && name[1] == '.')
3935 return true;
3936
3937 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
3938 emitting DWARF debugging output. I suspect this is actually a
3939 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
3940 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
3941 underscore to be emitted on some ELF targets). For ease of use,
3942 we treat such symbols as local. */
3943 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
3944 return true;
3945
3946 return false;
3947 }
3948
3949 alent *
3950 _bfd_elf_get_lineno (ignore_abfd, symbol)
3951 bfd *ignore_abfd;
3952 asymbol *symbol;
3953 {
3954 abort ();
3955 return NULL;
3956 }
3957
3958 boolean
3959 _bfd_elf_set_arch_mach (abfd, arch, machine)
3960 bfd *abfd;
3961 enum bfd_architecture arch;
3962 unsigned long machine;
3963 {
3964 /* If this isn't the right architecture for this backend, and this
3965 isn't the generic backend, fail. */
3966 if (arch != get_elf_backend_data (abfd)->arch
3967 && arch != bfd_arch_unknown
3968 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
3969 return false;
3970
3971 return bfd_default_set_arch_mach (abfd, arch, machine);
3972 }
3973
3974 /* Find the nearest line to a particular section and offset, for error
3975 reporting. */
3976
3977 boolean
3978 _bfd_elf_find_nearest_line (abfd,
3979 section,
3980 symbols,
3981 offset,
3982 filename_ptr,
3983 functionname_ptr,
3984 line_ptr)
3985 bfd *abfd;
3986 asection *section;
3987 asymbol **symbols;
3988 bfd_vma offset;
3989 CONST char **filename_ptr;
3990 CONST char **functionname_ptr;
3991 unsigned int *line_ptr;
3992 {
3993 boolean found;
3994 const char *filename;
3995 asymbol *func;
3996 bfd_vma low_func;
3997 asymbol **p;
3998
3999 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
4000 &found, filename_ptr,
4001 functionname_ptr, line_ptr,
4002 &elf_tdata (abfd)->line_info))
4003 return false;
4004 if (found)
4005 return true;
4006
4007 if (symbols == NULL)
4008 return false;
4009
4010 filename = NULL;
4011 func = NULL;
4012 low_func = 0;
4013
4014 for (p = symbols; *p != NULL; p++)
4015 {
4016 elf_symbol_type *q;
4017
4018 q = (elf_symbol_type *) *p;
4019
4020 if (bfd_get_section (&q->symbol) != section)
4021 continue;
4022
4023 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
4024 {
4025 default:
4026 break;
4027 case STT_FILE:
4028 filename = bfd_asymbol_name (&q->symbol);
4029 break;
4030 case STT_FUNC:
4031 if (q->symbol.section == section
4032 && q->symbol.value >= low_func
4033 && q->symbol.value <= offset)
4034 {
4035 func = (asymbol *) q;
4036 low_func = q->symbol.value;
4037 }
4038 break;
4039 }
4040 }
4041
4042 if (func == NULL)
4043 return false;
4044
4045 *filename_ptr = filename;
4046 *functionname_ptr = bfd_asymbol_name (func);
4047 *line_ptr = 0;
4048 return true;
4049 }
4050
4051 int
4052 _bfd_elf_sizeof_headers (abfd, reloc)
4053 bfd *abfd;
4054 boolean reloc;
4055 {
4056 int ret;
4057
4058 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
4059 if (! reloc)
4060 ret += get_program_header_size (abfd);
4061 return ret;
4062 }
4063
4064 boolean
4065 _bfd_elf_set_section_contents (abfd, section, location, offset, count)
4066 bfd *abfd;
4067 sec_ptr section;
4068 PTR location;
4069 file_ptr offset;
4070 bfd_size_type count;
4071 {
4072 Elf_Internal_Shdr *hdr;
4073
4074 if (! abfd->output_has_begun
4075 && ! _bfd_elf_compute_section_file_positions (abfd,
4076 (struct bfd_link_info *) NULL))
4077 return false;
4078
4079 hdr = &elf_section_data (section)->this_hdr;
4080
4081 if (bfd_seek (abfd, hdr->sh_offset + offset, SEEK_SET) == -1)
4082 return false;
4083 if (bfd_write (location, 1, count, abfd) != count)
4084 return false;
4085
4086 return true;
4087 }
4088
4089 void
4090 _bfd_elf_no_info_to_howto (abfd, cache_ptr, dst)
4091 bfd *abfd;
4092 arelent *cache_ptr;
4093 Elf_Internal_Rela *dst;
4094 {
4095 abort ();
4096 }
4097
4098 #if 0
4099 void
4100 _bfd_elf_no_info_to_howto_rel (abfd, cache_ptr, dst)
4101 bfd *abfd;
4102 arelent *cache_ptr;
4103 Elf_Internal_Rel *dst;
4104 {
4105 abort ();
4106 }
4107 #endif
4108
4109 /* Try to convert a non-ELF reloc into an ELF one. */
4110
4111 boolean
4112 _bfd_elf_validate_reloc (abfd, areloc)
4113 bfd *abfd;
4114 arelent *areloc;
4115 {
4116 /* Check whether we really have an ELF howto. */
4117
4118 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
4119 {
4120 bfd_reloc_code_real_type code;
4121 reloc_howto_type *howto;
4122
4123 /* Alien reloc: Try to determine its type to replace it with an
4124 equivalent ELF reloc. */
4125
4126 if (areloc->howto->pc_relative)
4127 {
4128 switch (areloc->howto->bitsize)
4129 {
4130 case 8:
4131 code = BFD_RELOC_8_PCREL;
4132 break;
4133 case 12:
4134 code = BFD_RELOC_12_PCREL;
4135 break;
4136 case 16:
4137 code = BFD_RELOC_16_PCREL;
4138 break;
4139 case 24:
4140 code = BFD_RELOC_24_PCREL;
4141 break;
4142 case 32:
4143 code = BFD_RELOC_32_PCREL;
4144 break;
4145 case 64:
4146 code = BFD_RELOC_64_PCREL;
4147 break;
4148 default:
4149 goto fail;
4150 }
4151
4152 howto = bfd_reloc_type_lookup (abfd, code);
4153
4154 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
4155 {
4156 if (howto->pcrel_offset)
4157 areloc->addend += areloc->address;
4158 else
4159 areloc->addend -= areloc->address; /* addend is unsigned!! */
4160 }
4161 }
4162 else
4163 {
4164 switch (areloc->howto->bitsize)
4165 {
4166 case 8:
4167 code = BFD_RELOC_8;
4168 break;
4169 case 14:
4170 code = BFD_RELOC_14;
4171 break;
4172 case 16:
4173 code = BFD_RELOC_16;
4174 break;
4175 case 26:
4176 code = BFD_RELOC_26;
4177 break;
4178 case 32:
4179 code = BFD_RELOC_32;
4180 break;
4181 case 64:
4182 code = BFD_RELOC_64;
4183 break;
4184 default:
4185 goto fail;
4186 }
4187
4188 howto = bfd_reloc_type_lookup (abfd, code);
4189 }
4190
4191 if (howto)
4192 areloc->howto = howto;
4193 else
4194 goto fail;
4195 }
4196
4197 return true;
4198
4199 fail:
4200 (*_bfd_error_handler)
4201 ("%s: unsupported relocation type %s",
4202 bfd_get_filename (abfd), areloc->howto->name);
4203 bfd_set_error (bfd_error_bad_value);
4204 return false;
4205 }
This page took 0.119605 seconds and 4 git commands to generate.