*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /*
25 SECTION
26 ELF backends
27
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
31
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
35
36 /* For sparc64-cross-sparc32. */
37 #define _SYSCALL32
38 #include "sysdep.h"
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
49 static bfd_boolean prep_headers (bfd *);
50 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
51 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
52 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
53 file_ptr offset);
54
55 /* Swap version information in and out. The version information is
56 currently size independent. If that ever changes, this code will
57 need to move into elfcode.h. */
58
59 /* Swap in a Verdef structure. */
60
61 void
62 _bfd_elf_swap_verdef_in (bfd *abfd,
63 const Elf_External_Verdef *src,
64 Elf_Internal_Verdef *dst)
65 {
66 dst->vd_version = H_GET_16 (abfd, src->vd_version);
67 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
68 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
69 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
70 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
71 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
72 dst->vd_next = H_GET_32 (abfd, src->vd_next);
73 }
74
75 /* Swap out a Verdef structure. */
76
77 void
78 _bfd_elf_swap_verdef_out (bfd *abfd,
79 const Elf_Internal_Verdef *src,
80 Elf_External_Verdef *dst)
81 {
82 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
83 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
84 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
85 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
86 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
87 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
88 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
89 }
90
91 /* Swap in a Verdaux structure. */
92
93 void
94 _bfd_elf_swap_verdaux_in (bfd *abfd,
95 const Elf_External_Verdaux *src,
96 Elf_Internal_Verdaux *dst)
97 {
98 dst->vda_name = H_GET_32 (abfd, src->vda_name);
99 dst->vda_next = H_GET_32 (abfd, src->vda_next);
100 }
101
102 /* Swap out a Verdaux structure. */
103
104 void
105 _bfd_elf_swap_verdaux_out (bfd *abfd,
106 const Elf_Internal_Verdaux *src,
107 Elf_External_Verdaux *dst)
108 {
109 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
110 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
111 }
112
113 /* Swap in a Verneed structure. */
114
115 void
116 _bfd_elf_swap_verneed_in (bfd *abfd,
117 const Elf_External_Verneed *src,
118 Elf_Internal_Verneed *dst)
119 {
120 dst->vn_version = H_GET_16 (abfd, src->vn_version);
121 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
122 dst->vn_file = H_GET_32 (abfd, src->vn_file);
123 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
124 dst->vn_next = H_GET_32 (abfd, src->vn_next);
125 }
126
127 /* Swap out a Verneed structure. */
128
129 void
130 _bfd_elf_swap_verneed_out (bfd *abfd,
131 const Elf_Internal_Verneed *src,
132 Elf_External_Verneed *dst)
133 {
134 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
135 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
136 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
137 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
138 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
139 }
140
141 /* Swap in a Vernaux structure. */
142
143 void
144 _bfd_elf_swap_vernaux_in (bfd *abfd,
145 const Elf_External_Vernaux *src,
146 Elf_Internal_Vernaux *dst)
147 {
148 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
149 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
150 dst->vna_other = H_GET_16 (abfd, src->vna_other);
151 dst->vna_name = H_GET_32 (abfd, src->vna_name);
152 dst->vna_next = H_GET_32 (abfd, src->vna_next);
153 }
154
155 /* Swap out a Vernaux structure. */
156
157 void
158 _bfd_elf_swap_vernaux_out (bfd *abfd,
159 const Elf_Internal_Vernaux *src,
160 Elf_External_Vernaux *dst)
161 {
162 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
163 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
164 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
165 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
166 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
167 }
168
169 /* Swap in a Versym structure. */
170
171 void
172 _bfd_elf_swap_versym_in (bfd *abfd,
173 const Elf_External_Versym *src,
174 Elf_Internal_Versym *dst)
175 {
176 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
177 }
178
179 /* Swap out a Versym structure. */
180
181 void
182 _bfd_elf_swap_versym_out (bfd *abfd,
183 const Elf_Internal_Versym *src,
184 Elf_External_Versym *dst)
185 {
186 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
187 }
188
189 /* Standard ELF hash function. Do not change this function; you will
190 cause invalid hash tables to be generated. */
191
192 unsigned long
193 bfd_elf_hash (const char *namearg)
194 {
195 const unsigned char *name = (const unsigned char *) namearg;
196 unsigned long h = 0;
197 unsigned long g;
198 int ch;
199
200 while ((ch = *name++) != '\0')
201 {
202 h = (h << 4) + ch;
203 if ((g = (h & 0xf0000000)) != 0)
204 {
205 h ^= g >> 24;
206 /* The ELF ABI says `h &= ~g', but this is equivalent in
207 this case and on some machines one insn instead of two. */
208 h ^= g;
209 }
210 }
211 return h & 0xffffffff;
212 }
213
214 /* DT_GNU_HASH hash function. Do not change this function; you will
215 cause invalid hash tables to be generated. */
216
217 unsigned long
218 bfd_elf_gnu_hash (const char *namearg)
219 {
220 const unsigned char *name = (const unsigned char *) namearg;
221 unsigned long h = 5381;
222 unsigned char ch;
223
224 while ((ch = *name++) != '\0')
225 h = (h << 5) + h + ch;
226 return h & 0xffffffff;
227 }
228
229 bfd_boolean
230 bfd_elf_mkobject (bfd *abfd)
231 {
232 if (abfd->tdata.any == NULL)
233 {
234 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
235 if (abfd->tdata.any == NULL)
236 return FALSE;
237 }
238
239 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
240
241 return TRUE;
242 }
243
244 bfd_boolean
245 bfd_elf_mkcorefile (bfd *abfd)
246 {
247 /* I think this can be done just like an object file. */
248 return bfd_elf_mkobject (abfd);
249 }
250
251 char *
252 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
253 {
254 Elf_Internal_Shdr **i_shdrp;
255 bfd_byte *shstrtab = NULL;
256 file_ptr offset;
257 bfd_size_type shstrtabsize;
258
259 i_shdrp = elf_elfsections (abfd);
260 if (i_shdrp == 0
261 || shindex >= elf_numsections (abfd)
262 || i_shdrp[shindex] == 0)
263 return NULL;
264
265 shstrtab = i_shdrp[shindex]->contents;
266 if (shstrtab == NULL)
267 {
268 /* No cached one, attempt to read, and cache what we read. */
269 offset = i_shdrp[shindex]->sh_offset;
270 shstrtabsize = i_shdrp[shindex]->sh_size;
271
272 /* Allocate and clear an extra byte at the end, to prevent crashes
273 in case the string table is not terminated. */
274 if (shstrtabsize + 1 == 0
275 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
276 || bfd_seek (abfd, offset, SEEK_SET) != 0)
277 shstrtab = NULL;
278 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
279 {
280 if (bfd_get_error () != bfd_error_system_call)
281 bfd_set_error (bfd_error_file_truncated);
282 shstrtab = NULL;
283 }
284 else
285 shstrtab[shstrtabsize] = '\0';
286 i_shdrp[shindex]->contents = shstrtab;
287 }
288 return (char *) shstrtab;
289 }
290
291 char *
292 bfd_elf_string_from_elf_section (bfd *abfd,
293 unsigned int shindex,
294 unsigned int strindex)
295 {
296 Elf_Internal_Shdr *hdr;
297
298 if (strindex == 0)
299 return "";
300
301 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
302 return NULL;
303
304 hdr = elf_elfsections (abfd)[shindex];
305
306 if (hdr->contents == NULL
307 && bfd_elf_get_str_section (abfd, shindex) == NULL)
308 return NULL;
309
310 if (strindex >= hdr->sh_size)
311 {
312 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
313 (*_bfd_error_handler)
314 (_("%B: invalid string offset %u >= %lu for section `%s'"),
315 abfd, strindex, (unsigned long) hdr->sh_size,
316 (shindex == shstrndx && strindex == hdr->sh_name
317 ? ".shstrtab"
318 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
319 return "";
320 }
321
322 return ((char *) hdr->contents) + strindex;
323 }
324
325 /* Read and convert symbols to internal format.
326 SYMCOUNT specifies the number of symbols to read, starting from
327 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
328 are non-NULL, they are used to store the internal symbols, external
329 symbols, and symbol section index extensions, respectively. */
330
331 Elf_Internal_Sym *
332 bfd_elf_get_elf_syms (bfd *ibfd,
333 Elf_Internal_Shdr *symtab_hdr,
334 size_t symcount,
335 size_t symoffset,
336 Elf_Internal_Sym *intsym_buf,
337 void *extsym_buf,
338 Elf_External_Sym_Shndx *extshndx_buf)
339 {
340 Elf_Internal_Shdr *shndx_hdr;
341 void *alloc_ext;
342 const bfd_byte *esym;
343 Elf_External_Sym_Shndx *alloc_extshndx;
344 Elf_External_Sym_Shndx *shndx;
345 Elf_Internal_Sym *isym;
346 Elf_Internal_Sym *isymend;
347 const struct elf_backend_data *bed;
348 size_t extsym_size;
349 bfd_size_type amt;
350 file_ptr pos;
351
352 if (symcount == 0)
353 return intsym_buf;
354
355 /* Normal syms might have section extension entries. */
356 shndx_hdr = NULL;
357 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
358 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
359
360 /* Read the symbols. */
361 alloc_ext = NULL;
362 alloc_extshndx = NULL;
363 bed = get_elf_backend_data (ibfd);
364 extsym_size = bed->s->sizeof_sym;
365 amt = symcount * extsym_size;
366 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
367 if (extsym_buf == NULL)
368 {
369 alloc_ext = bfd_malloc2 (symcount, extsym_size);
370 extsym_buf = alloc_ext;
371 }
372 if (extsym_buf == NULL
373 || bfd_seek (ibfd, pos, SEEK_SET) != 0
374 || bfd_bread (extsym_buf, amt, ibfd) != amt)
375 {
376 intsym_buf = NULL;
377 goto out;
378 }
379
380 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
381 extshndx_buf = NULL;
382 else
383 {
384 amt = symcount * sizeof (Elf_External_Sym_Shndx);
385 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
386 if (extshndx_buf == NULL)
387 {
388 alloc_extshndx = bfd_malloc2 (symcount,
389 sizeof (Elf_External_Sym_Shndx));
390 extshndx_buf = alloc_extshndx;
391 }
392 if (extshndx_buf == NULL
393 || bfd_seek (ibfd, pos, SEEK_SET) != 0
394 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
395 {
396 intsym_buf = NULL;
397 goto out;
398 }
399 }
400
401 if (intsym_buf == NULL)
402 {
403 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
404 if (intsym_buf == NULL)
405 goto out;
406 }
407
408 /* Convert the symbols to internal form. */
409 isymend = intsym_buf + symcount;
410 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
411 isym < isymend;
412 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
413 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
414 {
415 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
416 (*_bfd_error_handler) (_("%B symbol number %lu references "
417 "nonexistent SHT_SYMTAB_SHNDX section"),
418 ibfd, (unsigned long) symoffset);
419 intsym_buf = NULL;
420 goto out;
421 }
422
423 out:
424 if (alloc_ext != NULL)
425 free (alloc_ext);
426 if (alloc_extshndx != NULL)
427 free (alloc_extshndx);
428
429 return intsym_buf;
430 }
431
432 /* Look up a symbol name. */
433 const char *
434 bfd_elf_sym_name (bfd *abfd,
435 Elf_Internal_Shdr *symtab_hdr,
436 Elf_Internal_Sym *isym,
437 asection *sym_sec)
438 {
439 const char *name;
440 unsigned int iname = isym->st_name;
441 unsigned int shindex = symtab_hdr->sh_link;
442
443 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
444 /* Check for a bogus st_shndx to avoid crashing. */
445 && isym->st_shndx < elf_numsections (abfd)
446 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
447 {
448 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
449 shindex = elf_elfheader (abfd)->e_shstrndx;
450 }
451
452 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
453 if (name == NULL)
454 name = "(null)";
455 else if (sym_sec && *name == '\0')
456 name = bfd_section_name (abfd, sym_sec);
457
458 return name;
459 }
460
461 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
462 sections. The first element is the flags, the rest are section
463 pointers. */
464
465 typedef union elf_internal_group {
466 Elf_Internal_Shdr *shdr;
467 unsigned int flags;
468 } Elf_Internal_Group;
469
470 /* Return the name of the group signature symbol. Why isn't the
471 signature just a string? */
472
473 static const char *
474 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
475 {
476 Elf_Internal_Shdr *hdr;
477 unsigned char esym[sizeof (Elf64_External_Sym)];
478 Elf_External_Sym_Shndx eshndx;
479 Elf_Internal_Sym isym;
480
481 /* First we need to ensure the symbol table is available. Make sure
482 that it is a symbol table section. */
483 hdr = elf_elfsections (abfd) [ghdr->sh_link];
484 if (hdr->sh_type != SHT_SYMTAB
485 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
486 return NULL;
487
488 /* Go read the symbol. */
489 hdr = &elf_tdata (abfd)->symtab_hdr;
490 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
491 &isym, esym, &eshndx) == NULL)
492 return NULL;
493
494 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
495 }
496
497 /* Set next_in_group list pointer, and group name for NEWSECT. */
498
499 static bfd_boolean
500 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
501 {
502 unsigned int num_group = elf_tdata (abfd)->num_group;
503
504 /* If num_group is zero, read in all SHT_GROUP sections. The count
505 is set to -1 if there are no SHT_GROUP sections. */
506 if (num_group == 0)
507 {
508 unsigned int i, shnum;
509
510 /* First count the number of groups. If we have a SHT_GROUP
511 section with just a flag word (ie. sh_size is 4), ignore it. */
512 shnum = elf_numsections (abfd);
513 num_group = 0;
514
515 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
516 ( (shdr)->sh_type == SHT_GROUP \
517 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
518 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
519 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
520
521 for (i = 0; i < shnum; i++)
522 {
523 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
524
525 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
526 num_group += 1;
527 }
528
529 if (num_group == 0)
530 {
531 num_group = (unsigned) -1;
532 elf_tdata (abfd)->num_group = num_group;
533 }
534 else
535 {
536 /* We keep a list of elf section headers for group sections,
537 so we can find them quickly. */
538 bfd_size_type amt;
539
540 elf_tdata (abfd)->num_group = num_group;
541 elf_tdata (abfd)->group_sect_ptr
542 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
543 if (elf_tdata (abfd)->group_sect_ptr == NULL)
544 return FALSE;
545
546 num_group = 0;
547 for (i = 0; i < shnum; i++)
548 {
549 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
550
551 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
552 {
553 unsigned char *src;
554 Elf_Internal_Group *dest;
555
556 /* Add to list of sections. */
557 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
558 num_group += 1;
559
560 /* Read the raw contents. */
561 BFD_ASSERT (sizeof (*dest) >= 4);
562 amt = shdr->sh_size * sizeof (*dest) / 4;
563 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
564 sizeof (*dest) / 4);
565 /* PR binutils/4110: Handle corrupt group headers. */
566 if (shdr->contents == NULL)
567 {
568 _bfd_error_handler
569 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
570 bfd_set_error (bfd_error_bad_value);
571 return FALSE;
572 }
573
574 memset (shdr->contents, 0, amt);
575
576 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
577 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
578 != shdr->sh_size))
579 return FALSE;
580
581 /* Translate raw contents, a flag word followed by an
582 array of elf section indices all in target byte order,
583 to the flag word followed by an array of elf section
584 pointers. */
585 src = shdr->contents + shdr->sh_size;
586 dest = (Elf_Internal_Group *) (shdr->contents + amt);
587 while (1)
588 {
589 unsigned int idx;
590
591 src -= 4;
592 --dest;
593 idx = H_GET_32 (abfd, src);
594 if (src == shdr->contents)
595 {
596 dest->flags = idx;
597 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
598 shdr->bfd_section->flags
599 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
600 break;
601 }
602 if (idx >= shnum)
603 {
604 ((*_bfd_error_handler)
605 (_("%B: invalid SHT_GROUP entry"), abfd));
606 idx = 0;
607 }
608 dest->shdr = elf_elfsections (abfd)[idx];
609 }
610 }
611 }
612 }
613 }
614
615 if (num_group != (unsigned) -1)
616 {
617 unsigned int i;
618
619 for (i = 0; i < num_group; i++)
620 {
621 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
622 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
623 unsigned int n_elt = shdr->sh_size / 4;
624
625 /* Look through this group's sections to see if current
626 section is a member. */
627 while (--n_elt != 0)
628 if ((++idx)->shdr == hdr)
629 {
630 asection *s = NULL;
631
632 /* We are a member of this group. Go looking through
633 other members to see if any others are linked via
634 next_in_group. */
635 idx = (Elf_Internal_Group *) shdr->contents;
636 n_elt = shdr->sh_size / 4;
637 while (--n_elt != 0)
638 if ((s = (++idx)->shdr->bfd_section) != NULL
639 && elf_next_in_group (s) != NULL)
640 break;
641 if (n_elt != 0)
642 {
643 /* Snarf the group name from other member, and
644 insert current section in circular list. */
645 elf_group_name (newsect) = elf_group_name (s);
646 elf_next_in_group (newsect) = elf_next_in_group (s);
647 elf_next_in_group (s) = newsect;
648 }
649 else
650 {
651 const char *gname;
652
653 gname = group_signature (abfd, shdr);
654 if (gname == NULL)
655 return FALSE;
656 elf_group_name (newsect) = gname;
657
658 /* Start a circular list with one element. */
659 elf_next_in_group (newsect) = newsect;
660 }
661
662 /* If the group section has been created, point to the
663 new member. */
664 if (shdr->bfd_section != NULL)
665 elf_next_in_group (shdr->bfd_section) = newsect;
666
667 i = num_group - 1;
668 break;
669 }
670 }
671 }
672
673 if (elf_group_name (newsect) == NULL)
674 {
675 (*_bfd_error_handler) (_("%B: no group info for section %A"),
676 abfd, newsect);
677 }
678 return TRUE;
679 }
680
681 bfd_boolean
682 _bfd_elf_setup_sections (bfd *abfd)
683 {
684 unsigned int i;
685 unsigned int num_group = elf_tdata (abfd)->num_group;
686 bfd_boolean result = TRUE;
687 asection *s;
688
689 /* Process SHF_LINK_ORDER. */
690 for (s = abfd->sections; s != NULL; s = s->next)
691 {
692 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
693 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
694 {
695 unsigned int elfsec = this_hdr->sh_link;
696 /* FIXME: The old Intel compiler and old strip/objcopy may
697 not set the sh_link or sh_info fields. Hence we could
698 get the situation where elfsec is 0. */
699 if (elfsec == 0)
700 {
701 const struct elf_backend_data *bed
702 = get_elf_backend_data (abfd);
703 if (bed->link_order_error_handler)
704 bed->link_order_error_handler
705 (_("%B: warning: sh_link not set for section `%A'"),
706 abfd, s);
707 }
708 else
709 {
710 asection *link;
711
712 this_hdr = elf_elfsections (abfd)[elfsec];
713
714 /* PR 1991, 2008:
715 Some strip/objcopy may leave an incorrect value in
716 sh_link. We don't want to proceed. */
717 link = this_hdr->bfd_section;
718 if (link == NULL)
719 {
720 (*_bfd_error_handler)
721 (_("%B: sh_link [%d] in section `%A' is incorrect"),
722 s->owner, s, elfsec);
723 result = FALSE;
724 }
725
726 elf_linked_to_section (s) = link;
727 }
728 }
729 }
730
731 /* Process section groups. */
732 if (num_group == (unsigned) -1)
733 return result;
734
735 for (i = 0; i < num_group; i++)
736 {
737 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
738 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
739 unsigned int n_elt = shdr->sh_size / 4;
740
741 while (--n_elt != 0)
742 if ((++idx)->shdr->bfd_section)
743 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
744 else if (idx->shdr->sh_type == SHT_RELA
745 || idx->shdr->sh_type == SHT_REL)
746 /* We won't include relocation sections in section groups in
747 output object files. We adjust the group section size here
748 so that relocatable link will work correctly when
749 relocation sections are in section group in input object
750 files. */
751 shdr->bfd_section->size -= 4;
752 else
753 {
754 /* There are some unknown sections in the group. */
755 (*_bfd_error_handler)
756 (_("%B: unknown [%d] section `%s' in group [%s]"),
757 abfd,
758 (unsigned int) idx->shdr->sh_type,
759 bfd_elf_string_from_elf_section (abfd,
760 (elf_elfheader (abfd)
761 ->e_shstrndx),
762 idx->shdr->sh_name),
763 shdr->bfd_section->name);
764 result = FALSE;
765 }
766 }
767 return result;
768 }
769
770 bfd_boolean
771 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
772 {
773 return elf_next_in_group (sec) != NULL;
774 }
775
776 /* Make a BFD section from an ELF section. We store a pointer to the
777 BFD section in the bfd_section field of the header. */
778
779 bfd_boolean
780 _bfd_elf_make_section_from_shdr (bfd *abfd,
781 Elf_Internal_Shdr *hdr,
782 const char *name,
783 int shindex)
784 {
785 asection *newsect;
786 flagword flags;
787 const struct elf_backend_data *bed;
788
789 if (hdr->bfd_section != NULL)
790 {
791 BFD_ASSERT (strcmp (name,
792 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
793 return TRUE;
794 }
795
796 newsect = bfd_make_section_anyway (abfd, name);
797 if (newsect == NULL)
798 return FALSE;
799
800 hdr->bfd_section = newsect;
801 elf_section_data (newsect)->this_hdr = *hdr;
802 elf_section_data (newsect)->this_idx = shindex;
803
804 /* Always use the real type/flags. */
805 elf_section_type (newsect) = hdr->sh_type;
806 elf_section_flags (newsect) = hdr->sh_flags;
807
808 newsect->filepos = hdr->sh_offset;
809
810 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
811 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
812 || ! bfd_set_section_alignment (abfd, newsect,
813 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
814 return FALSE;
815
816 flags = SEC_NO_FLAGS;
817 if (hdr->sh_type != SHT_NOBITS)
818 flags |= SEC_HAS_CONTENTS;
819 if (hdr->sh_type == SHT_GROUP)
820 flags |= SEC_GROUP | SEC_EXCLUDE;
821 if ((hdr->sh_flags & SHF_ALLOC) != 0)
822 {
823 flags |= SEC_ALLOC;
824 if (hdr->sh_type != SHT_NOBITS)
825 flags |= SEC_LOAD;
826 }
827 if ((hdr->sh_flags & SHF_WRITE) == 0)
828 flags |= SEC_READONLY;
829 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
830 flags |= SEC_CODE;
831 else if ((flags & SEC_LOAD) != 0)
832 flags |= SEC_DATA;
833 if ((hdr->sh_flags & SHF_MERGE) != 0)
834 {
835 flags |= SEC_MERGE;
836 newsect->entsize = hdr->sh_entsize;
837 if ((hdr->sh_flags & SHF_STRINGS) != 0)
838 flags |= SEC_STRINGS;
839 }
840 if (hdr->sh_flags & SHF_GROUP)
841 if (!setup_group (abfd, hdr, newsect))
842 return FALSE;
843 if ((hdr->sh_flags & SHF_TLS) != 0)
844 flags |= SEC_THREAD_LOCAL;
845
846 if ((flags & SEC_ALLOC) == 0)
847 {
848 /* The debugging sections appear to be recognized only by name,
849 not any sort of flag. Their SEC_ALLOC bits are cleared. */
850 static const struct
851 {
852 const char *name;
853 int len;
854 } debug_sections [] =
855 {
856 { STRING_COMMA_LEN ("debug") }, /* 'd' */
857 { NULL, 0 }, /* 'e' */
858 { NULL, 0 }, /* 'f' */
859 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
860 { NULL, 0 }, /* 'h' */
861 { NULL, 0 }, /* 'i' */
862 { NULL, 0 }, /* 'j' */
863 { NULL, 0 }, /* 'k' */
864 { STRING_COMMA_LEN ("line") }, /* 'l' */
865 { NULL, 0 }, /* 'm' */
866 { NULL, 0 }, /* 'n' */
867 { NULL, 0 }, /* 'o' */
868 { NULL, 0 }, /* 'p' */
869 { NULL, 0 }, /* 'q' */
870 { NULL, 0 }, /* 'r' */
871 { STRING_COMMA_LEN ("stab") } /* 's' */
872 };
873
874 if (name [0] == '.')
875 {
876 int i = name [1] - 'd';
877 if (i >= 0
878 && i < (int) ARRAY_SIZE (debug_sections)
879 && debug_sections [i].name != NULL
880 && strncmp (&name [1], debug_sections [i].name,
881 debug_sections [i].len) == 0)
882 flags |= SEC_DEBUGGING;
883 }
884 }
885
886 /* As a GNU extension, if the name begins with .gnu.linkonce, we
887 only link a single copy of the section. This is used to support
888 g++. g++ will emit each template expansion in its own section.
889 The symbols will be defined as weak, so that multiple definitions
890 are permitted. The GNU linker extension is to actually discard
891 all but one of the sections. */
892 if (CONST_STRNEQ (name, ".gnu.linkonce")
893 && elf_next_in_group (newsect) == NULL)
894 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
895
896 bed = get_elf_backend_data (abfd);
897 if (bed->elf_backend_section_flags)
898 if (! bed->elf_backend_section_flags (&flags, hdr))
899 return FALSE;
900
901 if (! bfd_set_section_flags (abfd, newsect, flags))
902 return FALSE;
903
904 /* We do not parse the PT_NOTE segments as we are interested even in the
905 separate debug info files which may have the segments offsets corrupted.
906 PT_NOTEs from the core files are currently not parsed using BFD. */
907 if (hdr->sh_type == SHT_NOTE)
908 {
909 char *contents;
910
911 contents = bfd_malloc (hdr->sh_size);
912 if (!contents)
913 return FALSE;
914
915 if (!bfd_get_section_contents (abfd, hdr->bfd_section, contents, 0,
916 hdr->sh_size)
917 || !elf_parse_notes (abfd, contents, hdr->sh_size, -1))
918 {
919 free (contents);
920 return FALSE;
921 }
922
923 free (contents);
924 }
925
926 if ((flags & SEC_ALLOC) != 0)
927 {
928 Elf_Internal_Phdr *phdr;
929 unsigned int i;
930
931 /* Look through the phdrs to see if we need to adjust the lma.
932 If all the p_paddr fields are zero, we ignore them, since
933 some ELF linkers produce such output. */
934 phdr = elf_tdata (abfd)->phdr;
935 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
936 {
937 if (phdr->p_paddr != 0)
938 break;
939 }
940 if (i < elf_elfheader (abfd)->e_phnum)
941 {
942 phdr = elf_tdata (abfd)->phdr;
943 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
944 {
945 /* This section is part of this segment if its file
946 offset plus size lies within the segment's memory
947 span and, if the section is loaded, the extent of the
948 loaded data lies within the extent of the segment.
949
950 Note - we used to check the p_paddr field as well, and
951 refuse to set the LMA if it was 0. This is wrong
952 though, as a perfectly valid initialised segment can
953 have a p_paddr of zero. Some architectures, eg ARM,
954 place special significance on the address 0 and
955 executables need to be able to have a segment which
956 covers this address. */
957 if (phdr->p_type == PT_LOAD
958 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
959 && (hdr->sh_offset + hdr->sh_size
960 <= phdr->p_offset + phdr->p_memsz)
961 && ((flags & SEC_LOAD) == 0
962 || (hdr->sh_offset + hdr->sh_size
963 <= phdr->p_offset + phdr->p_filesz)))
964 {
965 if ((flags & SEC_LOAD) == 0)
966 newsect->lma = (phdr->p_paddr
967 + hdr->sh_addr - phdr->p_vaddr);
968 else
969 /* We used to use the same adjustment for SEC_LOAD
970 sections, but that doesn't work if the segment
971 is packed with code from multiple VMAs.
972 Instead we calculate the section LMA based on
973 the segment LMA. It is assumed that the
974 segment will contain sections with contiguous
975 LMAs, even if the VMAs are not. */
976 newsect->lma = (phdr->p_paddr
977 + hdr->sh_offset - phdr->p_offset);
978
979 /* With contiguous segments, we can't tell from file
980 offsets whether a section with zero size should
981 be placed at the end of one segment or the
982 beginning of the next. Decide based on vaddr. */
983 if (hdr->sh_addr >= phdr->p_vaddr
984 && (hdr->sh_addr + hdr->sh_size
985 <= phdr->p_vaddr + phdr->p_memsz))
986 break;
987 }
988 }
989 }
990 }
991
992 return TRUE;
993 }
994
995 /*
996 INTERNAL_FUNCTION
997 bfd_elf_find_section
998
999 SYNOPSIS
1000 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
1001
1002 DESCRIPTION
1003 Helper functions for GDB to locate the string tables.
1004 Since BFD hides string tables from callers, GDB needs to use an
1005 internal hook to find them. Sun's .stabstr, in particular,
1006 isn't even pointed to by the .stab section, so ordinary
1007 mechanisms wouldn't work to find it, even if we had some.
1008 */
1009
1010 struct elf_internal_shdr *
1011 bfd_elf_find_section (bfd *abfd, char *name)
1012 {
1013 Elf_Internal_Shdr **i_shdrp;
1014 char *shstrtab;
1015 unsigned int max;
1016 unsigned int i;
1017
1018 i_shdrp = elf_elfsections (abfd);
1019 if (i_shdrp != NULL)
1020 {
1021 shstrtab = bfd_elf_get_str_section (abfd,
1022 elf_elfheader (abfd)->e_shstrndx);
1023 if (shstrtab != NULL)
1024 {
1025 max = elf_numsections (abfd);
1026 for (i = 1; i < max; i++)
1027 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
1028 return i_shdrp[i];
1029 }
1030 }
1031 return 0;
1032 }
1033
1034 const char *const bfd_elf_section_type_names[] = {
1035 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1036 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1037 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1038 };
1039
1040 /* ELF relocs are against symbols. If we are producing relocatable
1041 output, and the reloc is against an external symbol, and nothing
1042 has given us any additional addend, the resulting reloc will also
1043 be against the same symbol. In such a case, we don't want to
1044 change anything about the way the reloc is handled, since it will
1045 all be done at final link time. Rather than put special case code
1046 into bfd_perform_relocation, all the reloc types use this howto
1047 function. It just short circuits the reloc if producing
1048 relocatable output against an external symbol. */
1049
1050 bfd_reloc_status_type
1051 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1052 arelent *reloc_entry,
1053 asymbol *symbol,
1054 void *data ATTRIBUTE_UNUSED,
1055 asection *input_section,
1056 bfd *output_bfd,
1057 char **error_message ATTRIBUTE_UNUSED)
1058 {
1059 if (output_bfd != NULL
1060 && (symbol->flags & BSF_SECTION_SYM) == 0
1061 && (! reloc_entry->howto->partial_inplace
1062 || reloc_entry->addend == 0))
1063 {
1064 reloc_entry->address += input_section->output_offset;
1065 return bfd_reloc_ok;
1066 }
1067
1068 return bfd_reloc_continue;
1069 }
1070 \f
1071 /* Copy the program header and other data from one object module to
1072 another. */
1073
1074 bfd_boolean
1075 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1076 {
1077 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1078 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1079 return TRUE;
1080
1081 BFD_ASSERT (!elf_flags_init (obfd)
1082 || (elf_elfheader (obfd)->e_flags
1083 == elf_elfheader (ibfd)->e_flags));
1084
1085 elf_gp (obfd) = elf_gp (ibfd);
1086 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1087 elf_flags_init (obfd) = TRUE;
1088
1089 /* Copy object attributes. */
1090 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1091
1092 return TRUE;
1093 }
1094
1095 static const char *
1096 get_segment_type (unsigned int p_type)
1097 {
1098 const char *pt;
1099 switch (p_type)
1100 {
1101 case PT_NULL: pt = "NULL"; break;
1102 case PT_LOAD: pt = "LOAD"; break;
1103 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1104 case PT_INTERP: pt = "INTERP"; break;
1105 case PT_NOTE: pt = "NOTE"; break;
1106 case PT_SHLIB: pt = "SHLIB"; break;
1107 case PT_PHDR: pt = "PHDR"; break;
1108 case PT_TLS: pt = "TLS"; break;
1109 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1110 case PT_GNU_STACK: pt = "STACK"; break;
1111 case PT_GNU_RELRO: pt = "RELRO"; break;
1112 default: pt = NULL; break;
1113 }
1114 return pt;
1115 }
1116
1117 /* Print out the program headers. */
1118
1119 bfd_boolean
1120 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1121 {
1122 FILE *f = farg;
1123 Elf_Internal_Phdr *p;
1124 asection *s;
1125 bfd_byte *dynbuf = NULL;
1126
1127 p = elf_tdata (abfd)->phdr;
1128 if (p != NULL)
1129 {
1130 unsigned int i, c;
1131
1132 fprintf (f, _("\nProgram Header:\n"));
1133 c = elf_elfheader (abfd)->e_phnum;
1134 for (i = 0; i < c; i++, p++)
1135 {
1136 const char *pt = get_segment_type (p->p_type);
1137 char buf[20];
1138
1139 if (pt == NULL)
1140 {
1141 sprintf (buf, "0x%lx", p->p_type);
1142 pt = buf;
1143 }
1144 fprintf (f, "%8s off 0x", pt);
1145 bfd_fprintf_vma (abfd, f, p->p_offset);
1146 fprintf (f, " vaddr 0x");
1147 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1148 fprintf (f, " paddr 0x");
1149 bfd_fprintf_vma (abfd, f, p->p_paddr);
1150 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1151 fprintf (f, " filesz 0x");
1152 bfd_fprintf_vma (abfd, f, p->p_filesz);
1153 fprintf (f, " memsz 0x");
1154 bfd_fprintf_vma (abfd, f, p->p_memsz);
1155 fprintf (f, " flags %c%c%c",
1156 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1157 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1158 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1159 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1160 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1161 fprintf (f, "\n");
1162 }
1163 }
1164
1165 s = bfd_get_section_by_name (abfd, ".dynamic");
1166 if (s != NULL)
1167 {
1168 int elfsec;
1169 unsigned long shlink;
1170 bfd_byte *extdyn, *extdynend;
1171 size_t extdynsize;
1172 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1173
1174 fprintf (f, _("\nDynamic Section:\n"));
1175
1176 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1177 goto error_return;
1178
1179 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1180 if (elfsec == -1)
1181 goto error_return;
1182 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1183
1184 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1185 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1186
1187 extdyn = dynbuf;
1188 extdynend = extdyn + s->size;
1189 for (; extdyn < extdynend; extdyn += extdynsize)
1190 {
1191 Elf_Internal_Dyn dyn;
1192 const char *name;
1193 char ab[20];
1194 bfd_boolean stringp;
1195
1196 (*swap_dyn_in) (abfd, extdyn, &dyn);
1197
1198 if (dyn.d_tag == DT_NULL)
1199 break;
1200
1201 stringp = FALSE;
1202 switch (dyn.d_tag)
1203 {
1204 default:
1205 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1206 name = ab;
1207 break;
1208
1209 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1210 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1211 case DT_PLTGOT: name = "PLTGOT"; break;
1212 case DT_HASH: name = "HASH"; break;
1213 case DT_STRTAB: name = "STRTAB"; break;
1214 case DT_SYMTAB: name = "SYMTAB"; break;
1215 case DT_RELA: name = "RELA"; break;
1216 case DT_RELASZ: name = "RELASZ"; break;
1217 case DT_RELAENT: name = "RELAENT"; break;
1218 case DT_STRSZ: name = "STRSZ"; break;
1219 case DT_SYMENT: name = "SYMENT"; break;
1220 case DT_INIT: name = "INIT"; break;
1221 case DT_FINI: name = "FINI"; break;
1222 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1223 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1224 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1225 case DT_REL: name = "REL"; break;
1226 case DT_RELSZ: name = "RELSZ"; break;
1227 case DT_RELENT: name = "RELENT"; break;
1228 case DT_PLTREL: name = "PLTREL"; break;
1229 case DT_DEBUG: name = "DEBUG"; break;
1230 case DT_TEXTREL: name = "TEXTREL"; break;
1231 case DT_JMPREL: name = "JMPREL"; break;
1232 case DT_BIND_NOW: name = "BIND_NOW"; break;
1233 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1238 case DT_FLAGS: name = "FLAGS"; break;
1239 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM: name = "CHECKSUM"; break;
1242 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1243 case DT_MOVEENT: name = "MOVEENT"; break;
1244 case DT_MOVESZ: name = "MOVESZ"; break;
1245 case DT_FEATURE: name = "FEATURE"; break;
1246 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1247 case DT_SYMINSZ: name = "SYMINSZ"; break;
1248 case DT_SYMINENT: name = "SYMINENT"; break;
1249 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1250 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1251 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1252 case DT_PLTPAD: name = "PLTPAD"; break;
1253 case DT_MOVETAB: name = "MOVETAB"; break;
1254 case DT_SYMINFO: name = "SYMINFO"; break;
1255 case DT_RELACOUNT: name = "RELACOUNT"; break;
1256 case DT_RELCOUNT: name = "RELCOUNT"; break;
1257 case DT_FLAGS_1: name = "FLAGS_1"; break;
1258 case DT_VERSYM: name = "VERSYM"; break;
1259 case DT_VERDEF: name = "VERDEF"; break;
1260 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1261 case DT_VERNEED: name = "VERNEED"; break;
1262 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1263 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1264 case DT_USED: name = "USED"; break;
1265 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1266 case DT_GNU_HASH: name = "GNU_HASH"; break;
1267 }
1268
1269 fprintf (f, " %-11s ", name);
1270 if (! stringp)
1271 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1272 else
1273 {
1274 const char *string;
1275 unsigned int tagv = dyn.d_un.d_val;
1276
1277 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1278 if (string == NULL)
1279 goto error_return;
1280 fprintf (f, "%s", string);
1281 }
1282 fprintf (f, "\n");
1283 }
1284
1285 free (dynbuf);
1286 dynbuf = NULL;
1287 }
1288
1289 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1290 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1291 {
1292 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1293 return FALSE;
1294 }
1295
1296 if (elf_dynverdef (abfd) != 0)
1297 {
1298 Elf_Internal_Verdef *t;
1299
1300 fprintf (f, _("\nVersion definitions:\n"));
1301 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1302 {
1303 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1304 t->vd_flags, t->vd_hash,
1305 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1306 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1307 {
1308 Elf_Internal_Verdaux *a;
1309
1310 fprintf (f, "\t");
1311 for (a = t->vd_auxptr->vda_nextptr;
1312 a != NULL;
1313 a = a->vda_nextptr)
1314 fprintf (f, "%s ",
1315 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1316 fprintf (f, "\n");
1317 }
1318 }
1319 }
1320
1321 if (elf_dynverref (abfd) != 0)
1322 {
1323 Elf_Internal_Verneed *t;
1324
1325 fprintf (f, _("\nVersion References:\n"));
1326 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1327 {
1328 Elf_Internal_Vernaux *a;
1329
1330 fprintf (f, _(" required from %s:\n"),
1331 t->vn_filename ? t->vn_filename : "<corrupt>");
1332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1333 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1334 a->vna_flags, a->vna_other,
1335 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1336 }
1337 }
1338
1339 return TRUE;
1340
1341 error_return:
1342 if (dynbuf != NULL)
1343 free (dynbuf);
1344 return FALSE;
1345 }
1346
1347 /* Display ELF-specific fields of a symbol. */
1348
1349 void
1350 bfd_elf_print_symbol (bfd *abfd,
1351 void *filep,
1352 asymbol *symbol,
1353 bfd_print_symbol_type how)
1354 {
1355 FILE *file = filep;
1356 switch (how)
1357 {
1358 case bfd_print_symbol_name:
1359 fprintf (file, "%s", symbol->name);
1360 break;
1361 case bfd_print_symbol_more:
1362 fprintf (file, "elf ");
1363 bfd_fprintf_vma (abfd, file, symbol->value);
1364 fprintf (file, " %lx", (long) symbol->flags);
1365 break;
1366 case bfd_print_symbol_all:
1367 {
1368 const char *section_name;
1369 const char *name = NULL;
1370 const struct elf_backend_data *bed;
1371 unsigned char st_other;
1372 bfd_vma val;
1373
1374 section_name = symbol->section ? symbol->section->name : "(*none*)";
1375
1376 bed = get_elf_backend_data (abfd);
1377 if (bed->elf_backend_print_symbol_all)
1378 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1379
1380 if (name == NULL)
1381 {
1382 name = symbol->name;
1383 bfd_print_symbol_vandf (abfd, file, symbol);
1384 }
1385
1386 fprintf (file, " %s\t", section_name);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (symbol->section && bfd_is_com_section (symbol->section))
1392 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1393 else
1394 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1395 bfd_fprintf_vma (abfd, file, val);
1396
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd)->dynversym_section != 0
1399 && (elf_tdata (abfd)->dynverdef_section != 0
1400 || elf_tdata (abfd)->dynverref_section != 0))
1401 {
1402 unsigned int vernum;
1403 const char *version_string;
1404
1405 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1406
1407 if (vernum == 0)
1408 version_string = "";
1409 else if (vernum == 1)
1410 version_string = "Base";
1411 else if (vernum <= elf_tdata (abfd)->cverdefs)
1412 version_string =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1415 {
1416 Elf_Internal_Verneed *t;
1417
1418 version_string = "";
1419 for (t = elf_tdata (abfd)->verref;
1420 t != NULL;
1421 t = t->vn_nextref)
1422 {
1423 Elf_Internal_Vernaux *a;
1424
1425 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1426 {
1427 if (a->vna_other == vernum)
1428 {
1429 version_string = a->vna_nodename;
1430 break;
1431 }
1432 }
1433 }
1434 }
1435
1436 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1437 fprintf (file, " %-11s", version_string);
1438 else
1439 {
1440 int i;
1441
1442 fprintf (file, " (%s)", version_string);
1443 for (i = 10 - strlen (version_string); i > 0; --i)
1444 putc (' ', file);
1445 }
1446 }
1447
1448 /* If the st_other field is not zero, print it. */
1449 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1450
1451 switch (st_other)
1452 {
1453 case 0: break;
1454 case STV_INTERNAL: fprintf (file, " .internal"); break;
1455 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1456 case STV_PROTECTED: fprintf (file, " .protected"); break;
1457 default:
1458 /* Some other non-defined flags are also present, so print
1459 everything hex. */
1460 fprintf (file, " 0x%02x", (unsigned int) st_other);
1461 }
1462
1463 fprintf (file, " %s", name);
1464 }
1465 break;
1466 }
1467 }
1468
1469 /* Allocate an ELF string table--force the first byte to be zero. */
1470
1471 struct bfd_strtab_hash *
1472 _bfd_elf_stringtab_init (void)
1473 {
1474 struct bfd_strtab_hash *ret;
1475
1476 ret = _bfd_stringtab_init ();
1477 if (ret != NULL)
1478 {
1479 bfd_size_type loc;
1480
1481 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1482 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1483 if (loc == (bfd_size_type) -1)
1484 {
1485 _bfd_stringtab_free (ret);
1486 ret = NULL;
1487 }
1488 }
1489 return ret;
1490 }
1491 \f
1492 /* ELF .o/exec file reading */
1493
1494 /* Create a new bfd section from an ELF section header. */
1495
1496 bfd_boolean
1497 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1498 {
1499 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1500 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1501 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1502 const char *name;
1503
1504 name = bfd_elf_string_from_elf_section (abfd,
1505 elf_elfheader (abfd)->e_shstrndx,
1506 hdr->sh_name);
1507 if (name == NULL)
1508 return FALSE;
1509
1510 switch (hdr->sh_type)
1511 {
1512 case SHT_NULL:
1513 /* Inactive section. Throw it away. */
1514 return TRUE;
1515
1516 case SHT_PROGBITS: /* Normal section with contents. */
1517 case SHT_NOBITS: /* .bss section. */
1518 case SHT_HASH: /* .hash section. */
1519 case SHT_NOTE: /* .note section. */
1520 case SHT_INIT_ARRAY: /* .init_array section. */
1521 case SHT_FINI_ARRAY: /* .fini_array section. */
1522 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1523 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1524 case SHT_GNU_HASH: /* .gnu.hash section. */
1525 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1526
1527 case SHT_DYNAMIC: /* Dynamic linking information. */
1528 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1529 return FALSE;
1530 if (hdr->sh_link > elf_numsections (abfd)
1531 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1532 return FALSE;
1533 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1534 {
1535 Elf_Internal_Shdr *dynsymhdr;
1536
1537 /* The shared libraries distributed with hpux11 have a bogus
1538 sh_link field for the ".dynamic" section. Find the
1539 string table for the ".dynsym" section instead. */
1540 if (elf_dynsymtab (abfd) != 0)
1541 {
1542 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1543 hdr->sh_link = dynsymhdr->sh_link;
1544 }
1545 else
1546 {
1547 unsigned int i, num_sec;
1548
1549 num_sec = elf_numsections (abfd);
1550 for (i = 1; i < num_sec; i++)
1551 {
1552 dynsymhdr = elf_elfsections (abfd)[i];
1553 if (dynsymhdr->sh_type == SHT_DYNSYM)
1554 {
1555 hdr->sh_link = dynsymhdr->sh_link;
1556 break;
1557 }
1558 }
1559 }
1560 }
1561 break;
1562
1563 case SHT_SYMTAB: /* A symbol table */
1564 if (elf_onesymtab (abfd) == shindex)
1565 return TRUE;
1566
1567 if (hdr->sh_entsize != bed->s->sizeof_sym)
1568 return FALSE;
1569 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1570 elf_onesymtab (abfd) = shindex;
1571 elf_tdata (abfd)->symtab_hdr = *hdr;
1572 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1573 abfd->flags |= HAS_SYMS;
1574
1575 /* Sometimes a shared object will map in the symbol table. If
1576 SHF_ALLOC is set, and this is a shared object, then we also
1577 treat this section as a BFD section. We can not base the
1578 decision purely on SHF_ALLOC, because that flag is sometimes
1579 set in a relocatable object file, which would confuse the
1580 linker. */
1581 if ((hdr->sh_flags & SHF_ALLOC) != 0
1582 && (abfd->flags & DYNAMIC) != 0
1583 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1584 shindex))
1585 return FALSE;
1586
1587 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1588 can't read symbols without that section loaded as well. It
1589 is most likely specified by the next section header. */
1590 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1591 {
1592 unsigned int i, num_sec;
1593
1594 num_sec = elf_numsections (abfd);
1595 for (i = shindex + 1; i < num_sec; i++)
1596 {
1597 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1598 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1599 && hdr2->sh_link == shindex)
1600 break;
1601 }
1602 if (i == num_sec)
1603 for (i = 1; i < shindex; i++)
1604 {
1605 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1606 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1607 && hdr2->sh_link == shindex)
1608 break;
1609 }
1610 if (i != shindex)
1611 return bfd_section_from_shdr (abfd, i);
1612 }
1613 return TRUE;
1614
1615 case SHT_DYNSYM: /* A dynamic symbol table */
1616 if (elf_dynsymtab (abfd) == shindex)
1617 return TRUE;
1618
1619 if (hdr->sh_entsize != bed->s->sizeof_sym)
1620 return FALSE;
1621 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1622 elf_dynsymtab (abfd) = shindex;
1623 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1624 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1625 abfd->flags |= HAS_SYMS;
1626
1627 /* Besides being a symbol table, we also treat this as a regular
1628 section, so that objcopy can handle it. */
1629 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1630
1631 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1632 if (elf_symtab_shndx (abfd) == shindex)
1633 return TRUE;
1634
1635 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1636 elf_symtab_shndx (abfd) = shindex;
1637 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1638 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1639 return TRUE;
1640
1641 case SHT_STRTAB: /* A string table */
1642 if (hdr->bfd_section != NULL)
1643 return TRUE;
1644 if (ehdr->e_shstrndx == shindex)
1645 {
1646 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1647 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1648 return TRUE;
1649 }
1650 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1651 {
1652 symtab_strtab:
1653 elf_tdata (abfd)->strtab_hdr = *hdr;
1654 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1655 return TRUE;
1656 }
1657 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1658 {
1659 dynsymtab_strtab:
1660 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1661 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1662 elf_elfsections (abfd)[shindex] = hdr;
1663 /* We also treat this as a regular section, so that objcopy
1664 can handle it. */
1665 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1666 shindex);
1667 }
1668
1669 /* If the string table isn't one of the above, then treat it as a
1670 regular section. We need to scan all the headers to be sure,
1671 just in case this strtab section appeared before the above. */
1672 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1673 {
1674 unsigned int i, num_sec;
1675
1676 num_sec = elf_numsections (abfd);
1677 for (i = 1; i < num_sec; i++)
1678 {
1679 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1680 if (hdr2->sh_link == shindex)
1681 {
1682 /* Prevent endless recursion on broken objects. */
1683 if (i == shindex)
1684 return FALSE;
1685 if (! bfd_section_from_shdr (abfd, i))
1686 return FALSE;
1687 if (elf_onesymtab (abfd) == i)
1688 goto symtab_strtab;
1689 if (elf_dynsymtab (abfd) == i)
1690 goto dynsymtab_strtab;
1691 }
1692 }
1693 }
1694 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1695
1696 case SHT_REL:
1697 case SHT_RELA:
1698 /* *These* do a lot of work -- but build no sections! */
1699 {
1700 asection *target_sect;
1701 Elf_Internal_Shdr *hdr2;
1702 unsigned int num_sec = elf_numsections (abfd);
1703
1704 if (hdr->sh_entsize
1705 != (bfd_size_type) (hdr->sh_type == SHT_REL
1706 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1707 return FALSE;
1708
1709 /* Check for a bogus link to avoid crashing. */
1710 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1711 || hdr->sh_link >= num_sec)
1712 {
1713 ((*_bfd_error_handler)
1714 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1715 abfd, hdr->sh_link, name, shindex));
1716 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1717 shindex);
1718 }
1719
1720 /* For some incomprehensible reason Oracle distributes
1721 libraries for Solaris in which some of the objects have
1722 bogus sh_link fields. It would be nice if we could just
1723 reject them, but, unfortunately, some people need to use
1724 them. We scan through the section headers; if we find only
1725 one suitable symbol table, we clobber the sh_link to point
1726 to it. I hope this doesn't break anything. */
1727 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1728 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1729 {
1730 unsigned int scan;
1731 int found;
1732
1733 found = 0;
1734 for (scan = 1; scan < num_sec; scan++)
1735 {
1736 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1737 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1738 {
1739 if (found != 0)
1740 {
1741 found = 0;
1742 break;
1743 }
1744 found = scan;
1745 }
1746 }
1747 if (found != 0)
1748 hdr->sh_link = found;
1749 }
1750
1751 /* Get the symbol table. */
1752 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1753 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1754 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1755 return FALSE;
1756
1757 /* If this reloc section does not use the main symbol table we
1758 don't treat it as a reloc section. BFD can't adequately
1759 represent such a section, so at least for now, we don't
1760 try. We just present it as a normal section. We also
1761 can't use it as a reloc section if it points to the null
1762 section, an invalid section, or another reloc section. */
1763 if (hdr->sh_link != elf_onesymtab (abfd)
1764 || hdr->sh_info == SHN_UNDEF
1765 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
1766 || hdr->sh_info >= num_sec
1767 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1768 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1769 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1770 shindex);
1771
1772 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1773 return FALSE;
1774 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1775 if (target_sect == NULL)
1776 return FALSE;
1777
1778 if ((target_sect->flags & SEC_RELOC) == 0
1779 || target_sect->reloc_count == 0)
1780 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1781 else
1782 {
1783 bfd_size_type amt;
1784 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1785 amt = sizeof (*hdr2);
1786 hdr2 = bfd_alloc (abfd, amt);
1787 if (hdr2 == NULL)
1788 return FALSE;
1789 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1790 }
1791 *hdr2 = *hdr;
1792 elf_elfsections (abfd)[shindex] = hdr2;
1793 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1794 target_sect->flags |= SEC_RELOC;
1795 target_sect->relocation = NULL;
1796 target_sect->rel_filepos = hdr->sh_offset;
1797 /* In the section to which the relocations apply, mark whether
1798 its relocations are of the REL or RELA variety. */
1799 if (hdr->sh_size != 0)
1800 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1801 abfd->flags |= HAS_RELOC;
1802 return TRUE;
1803 }
1804
1805 case SHT_GNU_verdef:
1806 elf_dynverdef (abfd) = shindex;
1807 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1808 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1809
1810 case SHT_GNU_versym:
1811 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1812 return FALSE;
1813 elf_dynversym (abfd) = shindex;
1814 elf_tdata (abfd)->dynversym_hdr = *hdr;
1815 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1816
1817 case SHT_GNU_verneed:
1818 elf_dynverref (abfd) = shindex;
1819 elf_tdata (abfd)->dynverref_hdr = *hdr;
1820 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1821
1822 case SHT_SHLIB:
1823 return TRUE;
1824
1825 case SHT_GROUP:
1826 /* We need a BFD section for objcopy and relocatable linking,
1827 and it's handy to have the signature available as the section
1828 name. */
1829 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1830 return FALSE;
1831 name = group_signature (abfd, hdr);
1832 if (name == NULL)
1833 return FALSE;
1834 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1835 return FALSE;
1836 if (hdr->contents != NULL)
1837 {
1838 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1839 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1840 asection *s;
1841
1842 if (idx->flags & GRP_COMDAT)
1843 hdr->bfd_section->flags
1844 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1845
1846 /* We try to keep the same section order as it comes in. */
1847 idx += n_elt;
1848 while (--n_elt != 0)
1849 {
1850 --idx;
1851
1852 if (idx->shdr != NULL
1853 && (s = idx->shdr->bfd_section) != NULL
1854 && elf_next_in_group (s) != NULL)
1855 {
1856 elf_next_in_group (hdr->bfd_section) = s;
1857 break;
1858 }
1859 }
1860 }
1861 break;
1862
1863 default:
1864 /* Possibly an attributes section. */
1865 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1866 || hdr->sh_type == bed->obj_attrs_section_type)
1867 {
1868 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1869 return FALSE;
1870 _bfd_elf_parse_attributes (abfd, hdr);
1871 return TRUE;
1872 }
1873
1874 /* Check for any processor-specific section types. */
1875 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1876 return TRUE;
1877
1878 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1879 {
1880 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1881 /* FIXME: How to properly handle allocated section reserved
1882 for applications? */
1883 (*_bfd_error_handler)
1884 (_("%B: don't know how to handle allocated, application "
1885 "specific section `%s' [0x%8x]"),
1886 abfd, name, hdr->sh_type);
1887 else
1888 /* Allow sections reserved for applications. */
1889 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1890 shindex);
1891 }
1892 else if (hdr->sh_type >= SHT_LOPROC
1893 && hdr->sh_type <= SHT_HIPROC)
1894 /* FIXME: We should handle this section. */
1895 (*_bfd_error_handler)
1896 (_("%B: don't know how to handle processor specific section "
1897 "`%s' [0x%8x]"),
1898 abfd, name, hdr->sh_type);
1899 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1900 {
1901 /* Unrecognised OS-specific sections. */
1902 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1903 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1904 required to correctly process the section and the file should
1905 be rejected with an error message. */
1906 (*_bfd_error_handler)
1907 (_("%B: don't know how to handle OS specific section "
1908 "`%s' [0x%8x]"),
1909 abfd, name, hdr->sh_type);
1910 else
1911 /* Otherwise it should be processed. */
1912 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1913 }
1914 else
1915 /* FIXME: We should handle this section. */
1916 (*_bfd_error_handler)
1917 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1918 abfd, name, hdr->sh_type);
1919
1920 return FALSE;
1921 }
1922
1923 return TRUE;
1924 }
1925
1926 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1927 Return SEC for sections that have no elf section, and NULL on error. */
1928
1929 asection *
1930 bfd_section_from_r_symndx (bfd *abfd,
1931 struct sym_sec_cache *cache,
1932 asection *sec,
1933 unsigned long r_symndx)
1934 {
1935 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1936 asection *s;
1937
1938 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1939 {
1940 Elf_Internal_Shdr *symtab_hdr;
1941 unsigned char esym[sizeof (Elf64_External_Sym)];
1942 Elf_External_Sym_Shndx eshndx;
1943 Elf_Internal_Sym isym;
1944
1945 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1946 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1947 &isym, esym, &eshndx) == NULL)
1948 return NULL;
1949
1950 if (cache->abfd != abfd)
1951 {
1952 memset (cache->indx, -1, sizeof (cache->indx));
1953 cache->abfd = abfd;
1954 }
1955 cache->indx[ent] = r_symndx;
1956 cache->shndx[ent] = isym.st_shndx;
1957 }
1958
1959 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1960 if (s != NULL)
1961 return s;
1962
1963 return sec;
1964 }
1965
1966 /* Given an ELF section number, retrieve the corresponding BFD
1967 section. */
1968
1969 asection *
1970 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
1971 {
1972 if (index >= elf_numsections (abfd))
1973 return NULL;
1974 return elf_elfsections (abfd)[index]->bfd_section;
1975 }
1976
1977 static const struct bfd_elf_special_section special_sections_b[] =
1978 {
1979 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1980 { NULL, 0, 0, 0, 0 }
1981 };
1982
1983 static const struct bfd_elf_special_section special_sections_c[] =
1984 {
1985 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
1986 { NULL, 0, 0, 0, 0 }
1987 };
1988
1989 static const struct bfd_elf_special_section special_sections_d[] =
1990 {
1991 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1992 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1993 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
1994 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
1995 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
1996 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
1997 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
1998 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
1999 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2000 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2001 { NULL, 0, 0, 0, 0 }
2002 };
2003
2004 static const struct bfd_elf_special_section special_sections_f[] =
2005 {
2006 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2007 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2008 { NULL, 0, 0, 0, 0 }
2009 };
2010
2011 static const struct bfd_elf_special_section special_sections_g[] =
2012 {
2013 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2014 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2015 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2016 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2017 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2018 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2019 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2020 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2021 { NULL, 0, 0, 0, 0 }
2022 };
2023
2024 static const struct bfd_elf_special_section special_sections_h[] =
2025 {
2026 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2027 { NULL, 0, 0, 0, 0 }
2028 };
2029
2030 static const struct bfd_elf_special_section special_sections_i[] =
2031 {
2032 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2033 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2034 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2035 { NULL, 0, 0, 0, 0 }
2036 };
2037
2038 static const struct bfd_elf_special_section special_sections_l[] =
2039 {
2040 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2041 { NULL, 0, 0, 0, 0 }
2042 };
2043
2044 static const struct bfd_elf_special_section special_sections_n[] =
2045 {
2046 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2047 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2048 { NULL, 0, 0, 0, 0 }
2049 };
2050
2051 static const struct bfd_elf_special_section special_sections_p[] =
2052 {
2053 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2054 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2055 { NULL, 0, 0, 0, 0 }
2056 };
2057
2058 static const struct bfd_elf_special_section special_sections_r[] =
2059 {
2060 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2061 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2062 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2063 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2064 { NULL, 0, 0, 0, 0 }
2065 };
2066
2067 static const struct bfd_elf_special_section special_sections_s[] =
2068 {
2069 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2070 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2071 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2072 /* See struct bfd_elf_special_section declaration for the semantics of
2073 this special case where .prefix_length != strlen (.prefix). */
2074 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2075 { NULL, 0, 0, 0, 0 }
2076 };
2077
2078 static const struct bfd_elf_special_section special_sections_t[] =
2079 {
2080 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2081 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2082 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2083 { NULL, 0, 0, 0, 0 }
2084 };
2085
2086 static const struct bfd_elf_special_section *special_sections[] =
2087 {
2088 special_sections_b, /* 'b' */
2089 special_sections_c, /* 'c' */
2090 special_sections_d, /* 'd' */
2091 NULL, /* 'e' */
2092 special_sections_f, /* 'f' */
2093 special_sections_g, /* 'g' */
2094 special_sections_h, /* 'h' */
2095 special_sections_i, /* 'i' */
2096 NULL, /* 'j' */
2097 NULL, /* 'k' */
2098 special_sections_l, /* 'l' */
2099 NULL, /* 'm' */
2100 special_sections_n, /* 'n' */
2101 NULL, /* 'o' */
2102 special_sections_p, /* 'p' */
2103 NULL, /* 'q' */
2104 special_sections_r, /* 'r' */
2105 special_sections_s, /* 's' */
2106 special_sections_t, /* 't' */
2107 };
2108
2109 const struct bfd_elf_special_section *
2110 _bfd_elf_get_special_section (const char *name,
2111 const struct bfd_elf_special_section *spec,
2112 unsigned int rela)
2113 {
2114 int i;
2115 int len;
2116
2117 len = strlen (name);
2118
2119 for (i = 0; spec[i].prefix != NULL; i++)
2120 {
2121 int suffix_len;
2122 int prefix_len = spec[i].prefix_length;
2123
2124 if (len < prefix_len)
2125 continue;
2126 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2127 continue;
2128
2129 suffix_len = spec[i].suffix_length;
2130 if (suffix_len <= 0)
2131 {
2132 if (name[prefix_len] != 0)
2133 {
2134 if (suffix_len == 0)
2135 continue;
2136 if (name[prefix_len] != '.'
2137 && (suffix_len == -2
2138 || (rela && spec[i].type == SHT_REL)))
2139 continue;
2140 }
2141 }
2142 else
2143 {
2144 if (len < prefix_len + suffix_len)
2145 continue;
2146 if (memcmp (name + len - suffix_len,
2147 spec[i].prefix + prefix_len,
2148 suffix_len) != 0)
2149 continue;
2150 }
2151 return &spec[i];
2152 }
2153
2154 return NULL;
2155 }
2156
2157 const struct bfd_elf_special_section *
2158 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2159 {
2160 int i;
2161 const struct bfd_elf_special_section *spec;
2162 const struct elf_backend_data *bed;
2163
2164 /* See if this is one of the special sections. */
2165 if (sec->name == NULL)
2166 return NULL;
2167
2168 bed = get_elf_backend_data (abfd);
2169 spec = bed->special_sections;
2170 if (spec)
2171 {
2172 spec = _bfd_elf_get_special_section (sec->name,
2173 bed->special_sections,
2174 sec->use_rela_p);
2175 if (spec != NULL)
2176 return spec;
2177 }
2178
2179 if (sec->name[0] != '.')
2180 return NULL;
2181
2182 i = sec->name[1] - 'b';
2183 if (i < 0 || i > 't' - 'b')
2184 return NULL;
2185
2186 spec = special_sections[i];
2187
2188 if (spec == NULL)
2189 return NULL;
2190
2191 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2192 }
2193
2194 bfd_boolean
2195 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2196 {
2197 struct bfd_elf_section_data *sdata;
2198 const struct elf_backend_data *bed;
2199 const struct bfd_elf_special_section *ssect;
2200
2201 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2202 if (sdata == NULL)
2203 {
2204 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2205 if (sdata == NULL)
2206 return FALSE;
2207 sec->used_by_bfd = sdata;
2208 }
2209
2210 /* Indicate whether or not this section should use RELA relocations. */
2211 bed = get_elf_backend_data (abfd);
2212 sec->use_rela_p = bed->default_use_rela_p;
2213
2214 /* When we read a file, we don't need to set ELF section type and
2215 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2216 anyway. We will set ELF section type and flags for all linker
2217 created sections. If user specifies BFD section flags, we will
2218 set ELF section type and flags based on BFD section flags in
2219 elf_fake_sections. */
2220 if ((!sec->flags && abfd->direction != read_direction)
2221 || (sec->flags & SEC_LINKER_CREATED) != 0)
2222 {
2223 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2224 if (ssect != NULL)
2225 {
2226 elf_section_type (sec) = ssect->type;
2227 elf_section_flags (sec) = ssect->attr;
2228 }
2229 }
2230
2231 return _bfd_generic_new_section_hook (abfd, sec);
2232 }
2233
2234 /* Create a new bfd section from an ELF program header.
2235
2236 Since program segments have no names, we generate a synthetic name
2237 of the form segment<NUM>, where NUM is generally the index in the
2238 program header table. For segments that are split (see below) we
2239 generate the names segment<NUM>a and segment<NUM>b.
2240
2241 Note that some program segments may have a file size that is different than
2242 (less than) the memory size. All this means is that at execution the
2243 system must allocate the amount of memory specified by the memory size,
2244 but only initialize it with the first "file size" bytes read from the
2245 file. This would occur for example, with program segments consisting
2246 of combined data+bss.
2247
2248 To handle the above situation, this routine generates TWO bfd sections
2249 for the single program segment. The first has the length specified by
2250 the file size of the segment, and the second has the length specified
2251 by the difference between the two sizes. In effect, the segment is split
2252 into its initialized and uninitialized parts.
2253
2254 */
2255
2256 bfd_boolean
2257 _bfd_elf_make_section_from_phdr (bfd *abfd,
2258 Elf_Internal_Phdr *hdr,
2259 int index,
2260 const char *typename)
2261 {
2262 asection *newsect;
2263 char *name;
2264 char namebuf[64];
2265 size_t len;
2266 int split;
2267
2268 split = ((hdr->p_memsz > 0)
2269 && (hdr->p_filesz > 0)
2270 && (hdr->p_memsz > hdr->p_filesz));
2271
2272 if (hdr->p_filesz > 0)
2273 {
2274 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2275 len = strlen (namebuf) + 1;
2276 name = bfd_alloc (abfd, len);
2277 if (!name)
2278 return FALSE;
2279 memcpy (name, namebuf, len);
2280 newsect = bfd_make_section (abfd, name);
2281 if (newsect == NULL)
2282 return FALSE;
2283 newsect->vma = hdr->p_vaddr;
2284 newsect->lma = hdr->p_paddr;
2285 newsect->size = hdr->p_filesz;
2286 newsect->filepos = hdr->p_offset;
2287 newsect->flags |= SEC_HAS_CONTENTS;
2288 newsect->alignment_power = bfd_log2 (hdr->p_align);
2289 if (hdr->p_type == PT_LOAD)
2290 {
2291 newsect->flags |= SEC_ALLOC;
2292 newsect->flags |= SEC_LOAD;
2293 if (hdr->p_flags & PF_X)
2294 {
2295 /* FIXME: all we known is that it has execute PERMISSION,
2296 may be data. */
2297 newsect->flags |= SEC_CODE;
2298 }
2299 }
2300 if (!(hdr->p_flags & PF_W))
2301 {
2302 newsect->flags |= SEC_READONLY;
2303 }
2304 }
2305
2306 if (hdr->p_memsz > hdr->p_filesz)
2307 {
2308 bfd_vma align;
2309
2310 sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
2311 len = strlen (namebuf) + 1;
2312 name = bfd_alloc (abfd, len);
2313 if (!name)
2314 return FALSE;
2315 memcpy (name, namebuf, len);
2316 newsect = bfd_make_section (abfd, name);
2317 if (newsect == NULL)
2318 return FALSE;
2319 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2320 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2321 newsect->size = hdr->p_memsz - hdr->p_filesz;
2322 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2323 align = newsect->vma & -newsect->vma;
2324 if (align == 0 || align > hdr->p_align)
2325 align = hdr->p_align;
2326 newsect->alignment_power = bfd_log2 (align);
2327 if (hdr->p_type == PT_LOAD)
2328 {
2329 /* Hack for gdb. Segments that have not been modified do
2330 not have their contents written to a core file, on the
2331 assumption that a debugger can find the contents in the
2332 executable. We flag this case by setting the fake
2333 section size to zero. Note that "real" bss sections will
2334 always have their contents dumped to the core file. */
2335 if (bfd_get_format (abfd) == bfd_core)
2336 newsect->size = 0;
2337 newsect->flags |= SEC_ALLOC;
2338 if (hdr->p_flags & PF_X)
2339 newsect->flags |= SEC_CODE;
2340 }
2341 if (!(hdr->p_flags & PF_W))
2342 newsect->flags |= SEC_READONLY;
2343 }
2344
2345 return TRUE;
2346 }
2347
2348 bfd_boolean
2349 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2350 {
2351 const struct elf_backend_data *bed;
2352
2353 switch (hdr->p_type)
2354 {
2355 case PT_NULL:
2356 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2357
2358 case PT_LOAD:
2359 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2360
2361 case PT_DYNAMIC:
2362 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2363
2364 case PT_INTERP:
2365 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2366
2367 case PT_NOTE:
2368 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2369 return FALSE;
2370 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2371 return FALSE;
2372 return TRUE;
2373
2374 case PT_SHLIB:
2375 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2376
2377 case PT_PHDR:
2378 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2379
2380 case PT_GNU_EH_FRAME:
2381 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2382 "eh_frame_hdr");
2383
2384 case PT_GNU_STACK:
2385 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2386
2387 case PT_GNU_RELRO:
2388 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2389
2390 default:
2391 /* Check for any processor-specific program segment types. */
2392 bed = get_elf_backend_data (abfd);
2393 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2394 }
2395 }
2396
2397 /* Initialize REL_HDR, the section-header for new section, containing
2398 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2399 relocations; otherwise, we use REL relocations. */
2400
2401 bfd_boolean
2402 _bfd_elf_init_reloc_shdr (bfd *abfd,
2403 Elf_Internal_Shdr *rel_hdr,
2404 asection *asect,
2405 bfd_boolean use_rela_p)
2406 {
2407 char *name;
2408 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2409 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2410
2411 name = bfd_alloc (abfd, amt);
2412 if (name == NULL)
2413 return FALSE;
2414 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2415 rel_hdr->sh_name =
2416 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2417 FALSE);
2418 if (rel_hdr->sh_name == (unsigned int) -1)
2419 return FALSE;
2420 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2421 rel_hdr->sh_entsize = (use_rela_p
2422 ? bed->s->sizeof_rela
2423 : bed->s->sizeof_rel);
2424 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2425 rel_hdr->sh_flags = 0;
2426 rel_hdr->sh_addr = 0;
2427 rel_hdr->sh_size = 0;
2428 rel_hdr->sh_offset = 0;
2429
2430 return TRUE;
2431 }
2432
2433 /* Set up an ELF internal section header for a section. */
2434
2435 static void
2436 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2437 {
2438 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2439 bfd_boolean *failedptr = failedptrarg;
2440 Elf_Internal_Shdr *this_hdr;
2441 unsigned int sh_type;
2442
2443 if (*failedptr)
2444 {
2445 /* We already failed; just get out of the bfd_map_over_sections
2446 loop. */
2447 return;
2448 }
2449
2450 this_hdr = &elf_section_data (asect)->this_hdr;
2451
2452 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2453 asect->name, FALSE);
2454 if (this_hdr->sh_name == (unsigned int) -1)
2455 {
2456 *failedptr = TRUE;
2457 return;
2458 }
2459
2460 /* Don't clear sh_flags. Assembler may set additional bits. */
2461
2462 if ((asect->flags & SEC_ALLOC) != 0
2463 || asect->user_set_vma)
2464 this_hdr->sh_addr = asect->vma;
2465 else
2466 this_hdr->sh_addr = 0;
2467
2468 this_hdr->sh_offset = 0;
2469 this_hdr->sh_size = asect->size;
2470 this_hdr->sh_link = 0;
2471 this_hdr->sh_addralign = 1 << asect->alignment_power;
2472 /* The sh_entsize and sh_info fields may have been set already by
2473 copy_private_section_data. */
2474
2475 this_hdr->bfd_section = asect;
2476 this_hdr->contents = NULL;
2477
2478 /* If the section type is unspecified, we set it based on
2479 asect->flags. */
2480 if ((asect->flags & SEC_GROUP) != 0)
2481 sh_type = SHT_GROUP;
2482 else if ((asect->flags & SEC_ALLOC) != 0
2483 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2484 || (asect->flags & SEC_NEVER_LOAD) != 0))
2485 sh_type = SHT_NOBITS;
2486 else
2487 sh_type = SHT_PROGBITS;
2488
2489 if (this_hdr->sh_type == SHT_NULL)
2490 this_hdr->sh_type = sh_type;
2491 else if (this_hdr->sh_type == SHT_NOBITS
2492 && sh_type == SHT_PROGBITS
2493 && (asect->flags & SEC_ALLOC) != 0)
2494 {
2495 /* Warn if we are changing a NOBITS section to PROGBITS, but
2496 allow the link to proceed. This can happen when users link
2497 non-bss input sections to bss output sections, or emit data
2498 to a bss output section via a linker script. */
2499 (*_bfd_error_handler)
2500 (_("section `%A' type changed to PROGBITS"), asect);
2501 this_hdr->sh_type = sh_type;
2502 }
2503
2504 switch (this_hdr->sh_type)
2505 {
2506 default:
2507 break;
2508
2509 case SHT_STRTAB:
2510 case SHT_INIT_ARRAY:
2511 case SHT_FINI_ARRAY:
2512 case SHT_PREINIT_ARRAY:
2513 case SHT_NOTE:
2514 case SHT_NOBITS:
2515 case SHT_PROGBITS:
2516 break;
2517
2518 case SHT_HASH:
2519 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2520 break;
2521
2522 case SHT_DYNSYM:
2523 this_hdr->sh_entsize = bed->s->sizeof_sym;
2524 break;
2525
2526 case SHT_DYNAMIC:
2527 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2528 break;
2529
2530 case SHT_RELA:
2531 if (get_elf_backend_data (abfd)->may_use_rela_p)
2532 this_hdr->sh_entsize = bed->s->sizeof_rela;
2533 break;
2534
2535 case SHT_REL:
2536 if (get_elf_backend_data (abfd)->may_use_rel_p)
2537 this_hdr->sh_entsize = bed->s->sizeof_rel;
2538 break;
2539
2540 case SHT_GNU_versym:
2541 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2542 break;
2543
2544 case SHT_GNU_verdef:
2545 this_hdr->sh_entsize = 0;
2546 /* objcopy or strip will copy over sh_info, but may not set
2547 cverdefs. The linker will set cverdefs, but sh_info will be
2548 zero. */
2549 if (this_hdr->sh_info == 0)
2550 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2551 else
2552 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2553 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2554 break;
2555
2556 case SHT_GNU_verneed:
2557 this_hdr->sh_entsize = 0;
2558 /* objcopy or strip will copy over sh_info, but may not set
2559 cverrefs. The linker will set cverrefs, but sh_info will be
2560 zero. */
2561 if (this_hdr->sh_info == 0)
2562 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2563 else
2564 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2565 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2566 break;
2567
2568 case SHT_GROUP:
2569 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2570 break;
2571
2572 case SHT_GNU_HASH:
2573 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2574 break;
2575 }
2576
2577 if ((asect->flags & SEC_ALLOC) != 0)
2578 this_hdr->sh_flags |= SHF_ALLOC;
2579 if ((asect->flags & SEC_READONLY) == 0)
2580 this_hdr->sh_flags |= SHF_WRITE;
2581 if ((asect->flags & SEC_CODE) != 0)
2582 this_hdr->sh_flags |= SHF_EXECINSTR;
2583 if ((asect->flags & SEC_MERGE) != 0)
2584 {
2585 this_hdr->sh_flags |= SHF_MERGE;
2586 this_hdr->sh_entsize = asect->entsize;
2587 if ((asect->flags & SEC_STRINGS) != 0)
2588 this_hdr->sh_flags |= SHF_STRINGS;
2589 }
2590 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2591 this_hdr->sh_flags |= SHF_GROUP;
2592 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2593 {
2594 this_hdr->sh_flags |= SHF_TLS;
2595 if (asect->size == 0
2596 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2597 {
2598 struct bfd_link_order *o = asect->map_tail.link_order;
2599
2600 this_hdr->sh_size = 0;
2601 if (o != NULL)
2602 {
2603 this_hdr->sh_size = o->offset + o->size;
2604 if (this_hdr->sh_size != 0)
2605 this_hdr->sh_type = SHT_NOBITS;
2606 }
2607 }
2608 }
2609
2610 /* Check for processor-specific section types. */
2611 sh_type = this_hdr->sh_type;
2612 if (bed->elf_backend_fake_sections
2613 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2614 *failedptr = TRUE;
2615
2616 if (sh_type == SHT_NOBITS && asect->size != 0)
2617 {
2618 /* Don't change the header type from NOBITS if we are being
2619 called for objcopy --only-keep-debug. */
2620 this_hdr->sh_type = sh_type;
2621 }
2622
2623 /* If the section has relocs, set up a section header for the
2624 SHT_REL[A] section. If two relocation sections are required for
2625 this section, it is up to the processor-specific back-end to
2626 create the other. */
2627 if ((asect->flags & SEC_RELOC) != 0
2628 && !_bfd_elf_init_reloc_shdr (abfd,
2629 &elf_section_data (asect)->rel_hdr,
2630 asect,
2631 asect->use_rela_p))
2632 *failedptr = TRUE;
2633 }
2634
2635 /* Fill in the contents of a SHT_GROUP section. */
2636
2637 void
2638 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2639 {
2640 bfd_boolean *failedptr = failedptrarg;
2641 unsigned long symindx;
2642 asection *elt, *first;
2643 unsigned char *loc;
2644 bfd_boolean gas;
2645
2646 /* Ignore linker created group section. See elfNN_ia64_object_p in
2647 elfxx-ia64.c. */
2648 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2649 || *failedptr)
2650 return;
2651
2652 symindx = 0;
2653 if (elf_group_id (sec) != NULL)
2654 symindx = elf_group_id (sec)->udata.i;
2655
2656 if (symindx == 0)
2657 {
2658 /* If called from the assembler, swap_out_syms will have set up
2659 elf_section_syms; If called for "ld -r", use target_index. */
2660 if (elf_section_syms (abfd) != NULL)
2661 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2662 else
2663 symindx = sec->target_index;
2664 }
2665 elf_section_data (sec)->this_hdr.sh_info = symindx;
2666
2667 /* The contents won't be allocated for "ld -r" or objcopy. */
2668 gas = TRUE;
2669 if (sec->contents == NULL)
2670 {
2671 gas = FALSE;
2672 sec->contents = bfd_alloc (abfd, sec->size);
2673
2674 /* Arrange for the section to be written out. */
2675 elf_section_data (sec)->this_hdr.contents = sec->contents;
2676 if (sec->contents == NULL)
2677 {
2678 *failedptr = TRUE;
2679 return;
2680 }
2681 }
2682
2683 loc = sec->contents + sec->size;
2684
2685 /* Get the pointer to the first section in the group that gas
2686 squirreled away here. objcopy arranges for this to be set to the
2687 start of the input section group. */
2688 first = elt = elf_next_in_group (sec);
2689
2690 /* First element is a flag word. Rest of section is elf section
2691 indices for all the sections of the group. Write them backwards
2692 just to keep the group in the same order as given in .section
2693 directives, not that it matters. */
2694 while (elt != NULL)
2695 {
2696 asection *s;
2697 unsigned int idx;
2698
2699 loc -= 4;
2700 s = elt;
2701 if (!gas)
2702 s = s->output_section;
2703 idx = 0;
2704 if (s != NULL)
2705 idx = elf_section_data (s)->this_idx;
2706 H_PUT_32 (abfd, idx, loc);
2707 elt = elf_next_in_group (elt);
2708 if (elt == first)
2709 break;
2710 }
2711
2712 if ((loc -= 4) != sec->contents)
2713 abort ();
2714
2715 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2716 }
2717
2718 /* Assign all ELF section numbers. The dummy first section is handled here
2719 too. The link/info pointers for the standard section types are filled
2720 in here too, while we're at it. */
2721
2722 static bfd_boolean
2723 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2724 {
2725 struct elf_obj_tdata *t = elf_tdata (abfd);
2726 asection *sec;
2727 unsigned int section_number, secn;
2728 Elf_Internal_Shdr **i_shdrp;
2729 struct bfd_elf_section_data *d;
2730
2731 section_number = 1;
2732
2733 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2734
2735 /* SHT_GROUP sections are in relocatable files only. */
2736 if (link_info == NULL || link_info->relocatable)
2737 {
2738 /* Put SHT_GROUP sections first. */
2739 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2740 {
2741 d = elf_section_data (sec);
2742
2743 if (d->this_hdr.sh_type == SHT_GROUP)
2744 {
2745 if (sec->flags & SEC_LINKER_CREATED)
2746 {
2747 /* Remove the linker created SHT_GROUP sections. */
2748 bfd_section_list_remove (abfd, sec);
2749 abfd->section_count--;
2750 }
2751 else
2752 {
2753 if (section_number == SHN_LORESERVE)
2754 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2755 d->this_idx = section_number++;
2756 }
2757 }
2758 }
2759 }
2760
2761 for (sec = abfd->sections; sec; sec = sec->next)
2762 {
2763 d = elf_section_data (sec);
2764
2765 if (d->this_hdr.sh_type != SHT_GROUP)
2766 {
2767 if (section_number == SHN_LORESERVE)
2768 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2769 d->this_idx = section_number++;
2770 }
2771 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2772 if ((sec->flags & SEC_RELOC) == 0)
2773 d->rel_idx = 0;
2774 else
2775 {
2776 if (section_number == SHN_LORESERVE)
2777 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2778 d->rel_idx = section_number++;
2779 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2780 }
2781
2782 if (d->rel_hdr2)
2783 {
2784 if (section_number == SHN_LORESERVE)
2785 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2786 d->rel_idx2 = section_number++;
2787 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2788 }
2789 else
2790 d->rel_idx2 = 0;
2791 }
2792
2793 if (section_number == SHN_LORESERVE)
2794 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2795 t->shstrtab_section = section_number++;
2796 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2797 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2798
2799 if (bfd_get_symcount (abfd) > 0)
2800 {
2801 if (section_number == SHN_LORESERVE)
2802 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2803 t->symtab_section = section_number++;
2804 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2805 if (section_number > SHN_LORESERVE - 2)
2806 {
2807 if (section_number == SHN_LORESERVE)
2808 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2809 t->symtab_shndx_section = section_number++;
2810 t->symtab_shndx_hdr.sh_name
2811 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2812 ".symtab_shndx", FALSE);
2813 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2814 return FALSE;
2815 }
2816 if (section_number == SHN_LORESERVE)
2817 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2818 t->strtab_section = section_number++;
2819 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2820 }
2821
2822 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2823 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2824
2825 elf_numsections (abfd) = section_number;
2826 elf_elfheader (abfd)->e_shnum = section_number;
2827 if (section_number > SHN_LORESERVE)
2828 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2829
2830 /* Set up the list of section header pointers, in agreement with the
2831 indices. */
2832 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2833 if (i_shdrp == NULL)
2834 return FALSE;
2835
2836 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2837 if (i_shdrp[0] == NULL)
2838 {
2839 bfd_release (abfd, i_shdrp);
2840 return FALSE;
2841 }
2842
2843 elf_elfsections (abfd) = i_shdrp;
2844
2845 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2846 if (bfd_get_symcount (abfd) > 0)
2847 {
2848 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2849 if (elf_numsections (abfd) > SHN_LORESERVE)
2850 {
2851 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2852 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2853 }
2854 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2855 t->symtab_hdr.sh_link = t->strtab_section;
2856 }
2857
2858 for (sec = abfd->sections; sec; sec = sec->next)
2859 {
2860 struct bfd_elf_section_data *d = elf_section_data (sec);
2861 asection *s;
2862 const char *name;
2863
2864 i_shdrp[d->this_idx] = &d->this_hdr;
2865 if (d->rel_idx != 0)
2866 i_shdrp[d->rel_idx] = &d->rel_hdr;
2867 if (d->rel_idx2 != 0)
2868 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2869
2870 /* Fill in the sh_link and sh_info fields while we're at it. */
2871
2872 /* sh_link of a reloc section is the section index of the symbol
2873 table. sh_info is the section index of the section to which
2874 the relocation entries apply. */
2875 if (d->rel_idx != 0)
2876 {
2877 d->rel_hdr.sh_link = t->symtab_section;
2878 d->rel_hdr.sh_info = d->this_idx;
2879 }
2880 if (d->rel_idx2 != 0)
2881 {
2882 d->rel_hdr2->sh_link = t->symtab_section;
2883 d->rel_hdr2->sh_info = d->this_idx;
2884 }
2885
2886 /* We need to set up sh_link for SHF_LINK_ORDER. */
2887 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2888 {
2889 s = elf_linked_to_section (sec);
2890 if (s)
2891 {
2892 /* elf_linked_to_section points to the input section. */
2893 if (link_info != NULL)
2894 {
2895 /* Check discarded linkonce section. */
2896 if (elf_discarded_section (s))
2897 {
2898 asection *kept;
2899 (*_bfd_error_handler)
2900 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2901 abfd, d->this_hdr.bfd_section,
2902 s, s->owner);
2903 /* Point to the kept section if it has the same
2904 size as the discarded one. */
2905 kept = _bfd_elf_check_kept_section (s, link_info);
2906 if (kept == NULL)
2907 {
2908 bfd_set_error (bfd_error_bad_value);
2909 return FALSE;
2910 }
2911 s = kept;
2912 }
2913
2914 s = s->output_section;
2915 BFD_ASSERT (s != NULL);
2916 }
2917 else
2918 {
2919 /* Handle objcopy. */
2920 if (s->output_section == NULL)
2921 {
2922 (*_bfd_error_handler)
2923 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2924 abfd, d->this_hdr.bfd_section, s, s->owner);
2925 bfd_set_error (bfd_error_bad_value);
2926 return FALSE;
2927 }
2928 s = s->output_section;
2929 }
2930 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2931 }
2932 else
2933 {
2934 /* PR 290:
2935 The Intel C compiler generates SHT_IA_64_UNWIND with
2936 SHF_LINK_ORDER. But it doesn't set the sh_link or
2937 sh_info fields. Hence we could get the situation
2938 where s is NULL. */
2939 const struct elf_backend_data *bed
2940 = get_elf_backend_data (abfd);
2941 if (bed->link_order_error_handler)
2942 bed->link_order_error_handler
2943 (_("%B: warning: sh_link not set for section `%A'"),
2944 abfd, sec);
2945 }
2946 }
2947
2948 switch (d->this_hdr.sh_type)
2949 {
2950 case SHT_REL:
2951 case SHT_RELA:
2952 /* A reloc section which we are treating as a normal BFD
2953 section. sh_link is the section index of the symbol
2954 table. sh_info is the section index of the section to
2955 which the relocation entries apply. We assume that an
2956 allocated reloc section uses the dynamic symbol table.
2957 FIXME: How can we be sure? */
2958 s = bfd_get_section_by_name (abfd, ".dynsym");
2959 if (s != NULL)
2960 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2961
2962 /* We look up the section the relocs apply to by name. */
2963 name = sec->name;
2964 if (d->this_hdr.sh_type == SHT_REL)
2965 name += 4;
2966 else
2967 name += 5;
2968 s = bfd_get_section_by_name (abfd, name);
2969 if (s != NULL)
2970 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2971 break;
2972
2973 case SHT_STRTAB:
2974 /* We assume that a section named .stab*str is a stabs
2975 string section. We look for a section with the same name
2976 but without the trailing ``str'', and set its sh_link
2977 field to point to this section. */
2978 if (CONST_STRNEQ (sec->name, ".stab")
2979 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2980 {
2981 size_t len;
2982 char *alc;
2983
2984 len = strlen (sec->name);
2985 alc = bfd_malloc (len - 2);
2986 if (alc == NULL)
2987 return FALSE;
2988 memcpy (alc, sec->name, len - 3);
2989 alc[len - 3] = '\0';
2990 s = bfd_get_section_by_name (abfd, alc);
2991 free (alc);
2992 if (s != NULL)
2993 {
2994 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2995
2996 /* This is a .stab section. */
2997 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2998 elf_section_data (s)->this_hdr.sh_entsize
2999 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3000 }
3001 }
3002 break;
3003
3004 case SHT_DYNAMIC:
3005 case SHT_DYNSYM:
3006 case SHT_GNU_verneed:
3007 case SHT_GNU_verdef:
3008 /* sh_link is the section header index of the string table
3009 used for the dynamic entries, or the symbol table, or the
3010 version strings. */
3011 s = bfd_get_section_by_name (abfd, ".dynstr");
3012 if (s != NULL)
3013 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3014 break;
3015
3016 case SHT_GNU_LIBLIST:
3017 /* sh_link is the section header index of the prelink library
3018 list used for the dynamic entries, or the symbol table, or
3019 the version strings. */
3020 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3021 ? ".dynstr" : ".gnu.libstr");
3022 if (s != NULL)
3023 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3024 break;
3025
3026 case SHT_HASH:
3027 case SHT_GNU_HASH:
3028 case SHT_GNU_versym:
3029 /* sh_link is the section header index of the symbol table
3030 this hash table or version table is for. */
3031 s = bfd_get_section_by_name (abfd, ".dynsym");
3032 if (s != NULL)
3033 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3034 break;
3035
3036 case SHT_GROUP:
3037 d->this_hdr.sh_link = t->symtab_section;
3038 }
3039 }
3040
3041 for (secn = 1; secn < section_number; ++secn)
3042 if (i_shdrp[secn] == NULL)
3043 i_shdrp[secn] = i_shdrp[0];
3044 else
3045 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3046 i_shdrp[secn]->sh_name);
3047 return TRUE;
3048 }
3049
3050 /* Map symbol from it's internal number to the external number, moving
3051 all local symbols to be at the head of the list. */
3052
3053 static bfd_boolean
3054 sym_is_global (bfd *abfd, asymbol *sym)
3055 {
3056 /* If the backend has a special mapping, use it. */
3057 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3058 if (bed->elf_backend_sym_is_global)
3059 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3060
3061 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3062 || bfd_is_und_section (bfd_get_section (sym))
3063 || bfd_is_com_section (bfd_get_section (sym)));
3064 }
3065
3066 /* Don't output section symbols for sections that are not going to be
3067 output. Also, don't output section symbols for reloc and other
3068 special sections. */
3069
3070 static bfd_boolean
3071 ignore_section_sym (bfd *abfd, asymbol *sym)
3072 {
3073 return ((sym->flags & BSF_SECTION_SYM) != 0
3074 && (sym->value != 0
3075 || (sym->section->owner != abfd
3076 && (sym->section->output_section->owner != abfd
3077 || sym->section->output_offset != 0))));
3078 }
3079
3080 static bfd_boolean
3081 elf_map_symbols (bfd *abfd)
3082 {
3083 unsigned int symcount = bfd_get_symcount (abfd);
3084 asymbol **syms = bfd_get_outsymbols (abfd);
3085 asymbol **sect_syms;
3086 unsigned int num_locals = 0;
3087 unsigned int num_globals = 0;
3088 unsigned int num_locals2 = 0;
3089 unsigned int num_globals2 = 0;
3090 int max_index = 0;
3091 unsigned int idx;
3092 asection *asect;
3093 asymbol **new_syms;
3094
3095 #ifdef DEBUG
3096 fprintf (stderr, "elf_map_symbols\n");
3097 fflush (stderr);
3098 #endif
3099
3100 for (asect = abfd->sections; asect; asect = asect->next)
3101 {
3102 if (max_index < asect->index)
3103 max_index = asect->index;
3104 }
3105
3106 max_index++;
3107 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3108 if (sect_syms == NULL)
3109 return FALSE;
3110 elf_section_syms (abfd) = sect_syms;
3111 elf_num_section_syms (abfd) = max_index;
3112
3113 /* Init sect_syms entries for any section symbols we have already
3114 decided to output. */
3115 for (idx = 0; idx < symcount; idx++)
3116 {
3117 asymbol *sym = syms[idx];
3118
3119 if ((sym->flags & BSF_SECTION_SYM) != 0
3120 && !ignore_section_sym (abfd, sym))
3121 {
3122 asection *sec = sym->section;
3123
3124 if (sec->owner != abfd)
3125 sec = sec->output_section;
3126
3127 sect_syms[sec->index] = syms[idx];
3128 }
3129 }
3130
3131 /* Classify all of the symbols. */
3132 for (idx = 0; idx < symcount; idx++)
3133 {
3134 if (ignore_section_sym (abfd, syms[idx]))
3135 continue;
3136 if (!sym_is_global (abfd, syms[idx]))
3137 num_locals++;
3138 else
3139 num_globals++;
3140 }
3141
3142 /* We will be adding a section symbol for each normal BFD section. Most
3143 sections will already have a section symbol in outsymbols, but
3144 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3145 at least in that case. */
3146 for (asect = abfd->sections; asect; asect = asect->next)
3147 {
3148 if (sect_syms[asect->index] == NULL)
3149 {
3150 if (!sym_is_global (abfd, asect->symbol))
3151 num_locals++;
3152 else
3153 num_globals++;
3154 }
3155 }
3156
3157 /* Now sort the symbols so the local symbols are first. */
3158 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3159
3160 if (new_syms == NULL)
3161 return FALSE;
3162
3163 for (idx = 0; idx < symcount; idx++)
3164 {
3165 asymbol *sym = syms[idx];
3166 unsigned int i;
3167
3168 if (ignore_section_sym (abfd, sym))
3169 continue;
3170 if (!sym_is_global (abfd, sym))
3171 i = num_locals2++;
3172 else
3173 i = num_locals + num_globals2++;
3174 new_syms[i] = sym;
3175 sym->udata.i = i + 1;
3176 }
3177 for (asect = abfd->sections; asect; asect = asect->next)
3178 {
3179 if (sect_syms[asect->index] == NULL)
3180 {
3181 asymbol *sym = asect->symbol;
3182 unsigned int i;
3183
3184 sect_syms[asect->index] = sym;
3185 if (!sym_is_global (abfd, sym))
3186 i = num_locals2++;
3187 else
3188 i = num_locals + num_globals2++;
3189 new_syms[i] = sym;
3190 sym->udata.i = i + 1;
3191 }
3192 }
3193
3194 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3195
3196 elf_num_locals (abfd) = num_locals;
3197 elf_num_globals (abfd) = num_globals;
3198 return TRUE;
3199 }
3200
3201 /* Align to the maximum file alignment that could be required for any
3202 ELF data structure. */
3203
3204 static inline file_ptr
3205 align_file_position (file_ptr off, int align)
3206 {
3207 return (off + align - 1) & ~(align - 1);
3208 }
3209
3210 /* Assign a file position to a section, optionally aligning to the
3211 required section alignment. */
3212
3213 file_ptr
3214 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3215 file_ptr offset,
3216 bfd_boolean align)
3217 {
3218 if (align)
3219 {
3220 unsigned int al;
3221
3222 al = i_shdrp->sh_addralign;
3223 if (al > 1)
3224 offset = BFD_ALIGN (offset, al);
3225 }
3226 i_shdrp->sh_offset = offset;
3227 if (i_shdrp->bfd_section != NULL)
3228 i_shdrp->bfd_section->filepos = offset;
3229 if (i_shdrp->sh_type != SHT_NOBITS)
3230 offset += i_shdrp->sh_size;
3231 return offset;
3232 }
3233
3234 /* Compute the file positions we are going to put the sections at, and
3235 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3236 is not NULL, this is being called by the ELF backend linker. */
3237
3238 bfd_boolean
3239 _bfd_elf_compute_section_file_positions (bfd *abfd,
3240 struct bfd_link_info *link_info)
3241 {
3242 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3243 bfd_boolean failed;
3244 struct bfd_strtab_hash *strtab = NULL;
3245 Elf_Internal_Shdr *shstrtab_hdr;
3246
3247 if (abfd->output_has_begun)
3248 return TRUE;
3249
3250 /* Do any elf backend specific processing first. */
3251 if (bed->elf_backend_begin_write_processing)
3252 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3253
3254 if (! prep_headers (abfd))
3255 return FALSE;
3256
3257 /* Post process the headers if necessary. */
3258 if (bed->elf_backend_post_process_headers)
3259 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3260
3261 failed = FALSE;
3262 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3263 if (failed)
3264 return FALSE;
3265
3266 if (!assign_section_numbers (abfd, link_info))
3267 return FALSE;
3268
3269 /* The backend linker builds symbol table information itself. */
3270 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3271 {
3272 /* Non-zero if doing a relocatable link. */
3273 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3274
3275 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3276 return FALSE;
3277 }
3278
3279 if (link_info == NULL)
3280 {
3281 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3282 if (failed)
3283 return FALSE;
3284 }
3285
3286 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3287 /* sh_name was set in prep_headers. */
3288 shstrtab_hdr->sh_type = SHT_STRTAB;
3289 shstrtab_hdr->sh_flags = 0;
3290 shstrtab_hdr->sh_addr = 0;
3291 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3292 shstrtab_hdr->sh_entsize = 0;
3293 shstrtab_hdr->sh_link = 0;
3294 shstrtab_hdr->sh_info = 0;
3295 /* sh_offset is set in assign_file_positions_except_relocs. */
3296 shstrtab_hdr->sh_addralign = 1;
3297
3298 if (!assign_file_positions_except_relocs (abfd, link_info))
3299 return FALSE;
3300
3301 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3302 {
3303 file_ptr off;
3304 Elf_Internal_Shdr *hdr;
3305
3306 off = elf_tdata (abfd)->next_file_pos;
3307
3308 hdr = &elf_tdata (abfd)->symtab_hdr;
3309 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3310
3311 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3312 if (hdr->sh_size != 0)
3313 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3314
3315 hdr = &elf_tdata (abfd)->strtab_hdr;
3316 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3317
3318 elf_tdata (abfd)->next_file_pos = off;
3319
3320 /* Now that we know where the .strtab section goes, write it
3321 out. */
3322 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3323 || ! _bfd_stringtab_emit (abfd, strtab))
3324 return FALSE;
3325 _bfd_stringtab_free (strtab);
3326 }
3327
3328 abfd->output_has_begun = TRUE;
3329
3330 return TRUE;
3331 }
3332
3333 /* Make an initial estimate of the size of the program header. If we
3334 get the number wrong here, we'll redo section placement. */
3335
3336 static bfd_size_type
3337 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3338 {
3339 size_t segs;
3340 asection *s;
3341 const struct elf_backend_data *bed;
3342
3343 /* Assume we will need exactly two PT_LOAD segments: one for text
3344 and one for data. */
3345 segs = 2;
3346
3347 s = bfd_get_section_by_name (abfd, ".interp");
3348 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3349 {
3350 /* If we have a loadable interpreter section, we need a
3351 PT_INTERP segment. In this case, assume we also need a
3352 PT_PHDR segment, although that may not be true for all
3353 targets. */
3354 segs += 2;
3355 }
3356
3357 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3358 {
3359 /* We need a PT_DYNAMIC segment. */
3360 ++segs;
3361 }
3362
3363 if (info->relro)
3364 {
3365 /* We need a PT_GNU_RELRO segment. */
3366 ++segs;
3367 }
3368
3369 if (elf_tdata (abfd)->eh_frame_hdr)
3370 {
3371 /* We need a PT_GNU_EH_FRAME segment. */
3372 ++segs;
3373 }
3374
3375 if (elf_tdata (abfd)->stack_flags)
3376 {
3377 /* We need a PT_GNU_STACK segment. */
3378 ++segs;
3379 }
3380
3381 for (s = abfd->sections; s != NULL; s = s->next)
3382 {
3383 if ((s->flags & SEC_LOAD) != 0
3384 && CONST_STRNEQ (s->name, ".note"))
3385 {
3386 /* We need a PT_NOTE segment. */
3387 ++segs;
3388 /* Try to create just one PT_NOTE segment
3389 for all adjacent loadable .note* sections.
3390 gABI requires that within a PT_NOTE segment
3391 (and also inside of each SHT_NOTE section)
3392 each note is padded to a multiple of 4 size,
3393 so we check whether the sections are correctly
3394 aligned. */
3395 if (s->alignment_power == 2)
3396 while (s->next != NULL
3397 && s->next->alignment_power == 2
3398 && (s->next->flags & SEC_LOAD) != 0
3399 && CONST_STRNEQ (s->next->name, ".note"))
3400 s = s->next;
3401 }
3402 }
3403
3404 for (s = abfd->sections; s != NULL; s = s->next)
3405 {
3406 if (s->flags & SEC_THREAD_LOCAL)
3407 {
3408 /* We need a PT_TLS segment. */
3409 ++segs;
3410 break;
3411 }
3412 }
3413
3414 /* Let the backend count up any program headers it might need. */
3415 bed = get_elf_backend_data (abfd);
3416 if (bed->elf_backend_additional_program_headers)
3417 {
3418 int a;
3419
3420 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3421 if (a == -1)
3422 abort ();
3423 segs += a;
3424 }
3425
3426 return segs * bed->s->sizeof_phdr;
3427 }
3428
3429 /* Create a mapping from a set of sections to a program segment. */
3430
3431 static struct elf_segment_map *
3432 make_mapping (bfd *abfd,
3433 asection **sections,
3434 unsigned int from,
3435 unsigned int to,
3436 bfd_boolean phdr)
3437 {
3438 struct elf_segment_map *m;
3439 unsigned int i;
3440 asection **hdrpp;
3441 bfd_size_type amt;
3442
3443 amt = sizeof (struct elf_segment_map);
3444 amt += (to - from - 1) * sizeof (asection *);
3445 m = bfd_zalloc (abfd, amt);
3446 if (m == NULL)
3447 return NULL;
3448 m->next = NULL;
3449 m->p_type = PT_LOAD;
3450 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3451 m->sections[i - from] = *hdrpp;
3452 m->count = to - from;
3453
3454 if (from == 0 && phdr)
3455 {
3456 /* Include the headers in the first PT_LOAD segment. */
3457 m->includes_filehdr = 1;
3458 m->includes_phdrs = 1;
3459 }
3460
3461 return m;
3462 }
3463
3464 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3465 on failure. */
3466
3467 struct elf_segment_map *
3468 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3469 {
3470 struct elf_segment_map *m;
3471
3472 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3473 if (m == NULL)
3474 return NULL;
3475 m->next = NULL;
3476 m->p_type = PT_DYNAMIC;
3477 m->count = 1;
3478 m->sections[0] = dynsec;
3479
3480 return m;
3481 }
3482
3483 /* Possibly add or remove segments from the segment map. */
3484
3485 static bfd_boolean
3486 elf_modify_segment_map (bfd *abfd,
3487 struct bfd_link_info *info,
3488 bfd_boolean remove_empty_load)
3489 {
3490 struct elf_segment_map **m;
3491 const struct elf_backend_data *bed;
3492
3493 /* The placement algorithm assumes that non allocated sections are
3494 not in PT_LOAD segments. We ensure this here by removing such
3495 sections from the segment map. We also remove excluded
3496 sections. Finally, any PT_LOAD segment without sections is
3497 removed. */
3498 m = &elf_tdata (abfd)->segment_map;
3499 while (*m)
3500 {
3501 unsigned int i, new_count;
3502
3503 for (new_count = 0, i = 0; i < (*m)->count; i++)
3504 {
3505 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3506 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3507 || (*m)->p_type != PT_LOAD))
3508 {
3509 (*m)->sections[new_count] = (*m)->sections[i];
3510 new_count++;
3511 }
3512 }
3513 (*m)->count = new_count;
3514
3515 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3516 *m = (*m)->next;
3517 else
3518 m = &(*m)->next;
3519 }
3520
3521 bed = get_elf_backend_data (abfd);
3522 if (bed->elf_backend_modify_segment_map != NULL)
3523 {
3524 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3525 return FALSE;
3526 }
3527
3528 return TRUE;
3529 }
3530
3531 /* Set up a mapping from BFD sections to program segments. */
3532
3533 bfd_boolean
3534 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3535 {
3536 unsigned int count;
3537 struct elf_segment_map *m;
3538 asection **sections = NULL;
3539 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3540 bfd_boolean no_user_phdrs;
3541
3542 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3543 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3544 {
3545 asection *s;
3546 unsigned int i;
3547 struct elf_segment_map *mfirst;
3548 struct elf_segment_map **pm;
3549 asection *last_hdr;
3550 bfd_vma last_size;
3551 unsigned int phdr_index;
3552 bfd_vma maxpagesize;
3553 asection **hdrpp;
3554 bfd_boolean phdr_in_segment = TRUE;
3555 bfd_boolean writable;
3556 int tls_count = 0;
3557 asection *first_tls = NULL;
3558 asection *dynsec, *eh_frame_hdr;
3559 bfd_size_type amt;
3560
3561 /* Select the allocated sections, and sort them. */
3562
3563 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3564 if (sections == NULL)
3565 goto error_return;
3566
3567 i = 0;
3568 for (s = abfd->sections; s != NULL; s = s->next)
3569 {
3570 if ((s->flags & SEC_ALLOC) != 0)
3571 {
3572 sections[i] = s;
3573 ++i;
3574 }
3575 }
3576 BFD_ASSERT (i <= bfd_count_sections (abfd));
3577 count = i;
3578
3579 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3580
3581 /* Build the mapping. */
3582
3583 mfirst = NULL;
3584 pm = &mfirst;
3585
3586 /* If we have a .interp section, then create a PT_PHDR segment for
3587 the program headers and a PT_INTERP segment for the .interp
3588 section. */
3589 s = bfd_get_section_by_name (abfd, ".interp");
3590 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3591 {
3592 amt = sizeof (struct elf_segment_map);
3593 m = bfd_zalloc (abfd, amt);
3594 if (m == NULL)
3595 goto error_return;
3596 m->next = NULL;
3597 m->p_type = PT_PHDR;
3598 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3599 m->p_flags = PF_R | PF_X;
3600 m->p_flags_valid = 1;
3601 m->includes_phdrs = 1;
3602
3603 *pm = m;
3604 pm = &m->next;
3605
3606 amt = sizeof (struct elf_segment_map);
3607 m = bfd_zalloc (abfd, amt);
3608 if (m == NULL)
3609 goto error_return;
3610 m->next = NULL;
3611 m->p_type = PT_INTERP;
3612 m->count = 1;
3613 m->sections[0] = s;
3614
3615 *pm = m;
3616 pm = &m->next;
3617 }
3618
3619 /* Look through the sections. We put sections in the same program
3620 segment when the start of the second section can be placed within
3621 a few bytes of the end of the first section. */
3622 last_hdr = NULL;
3623 last_size = 0;
3624 phdr_index = 0;
3625 maxpagesize = bed->maxpagesize;
3626 writable = FALSE;
3627 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3628 if (dynsec != NULL
3629 && (dynsec->flags & SEC_LOAD) == 0)
3630 dynsec = NULL;
3631
3632 /* Deal with -Ttext or something similar such that the first section
3633 is not adjacent to the program headers. This is an
3634 approximation, since at this point we don't know exactly how many
3635 program headers we will need. */
3636 if (count > 0)
3637 {
3638 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3639
3640 if (phdr_size == (bfd_size_type) -1)
3641 phdr_size = get_program_header_size (abfd, info);
3642 if ((abfd->flags & D_PAGED) == 0
3643 || sections[0]->lma < phdr_size
3644 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3645 phdr_in_segment = FALSE;
3646 }
3647
3648 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3649 {
3650 asection *hdr;
3651 bfd_boolean new_segment;
3652
3653 hdr = *hdrpp;
3654
3655 /* See if this section and the last one will fit in the same
3656 segment. */
3657
3658 if (last_hdr == NULL)
3659 {
3660 /* If we don't have a segment yet, then we don't need a new
3661 one (we build the last one after this loop). */
3662 new_segment = FALSE;
3663 }
3664 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3665 {
3666 /* If this section has a different relation between the
3667 virtual address and the load address, then we need a new
3668 segment. */
3669 new_segment = TRUE;
3670 }
3671 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3672 < BFD_ALIGN (hdr->lma, maxpagesize))
3673 {
3674 /* If putting this section in this segment would force us to
3675 skip a page in the segment, then we need a new segment. */
3676 new_segment = TRUE;
3677 }
3678 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3679 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3680 {
3681 /* We don't want to put a loadable section after a
3682 nonloadable section in the same segment.
3683 Consider .tbss sections as loadable for this purpose. */
3684 new_segment = TRUE;
3685 }
3686 else if ((abfd->flags & D_PAGED) == 0)
3687 {
3688 /* If the file is not demand paged, which means that we
3689 don't require the sections to be correctly aligned in the
3690 file, then there is no other reason for a new segment. */
3691 new_segment = FALSE;
3692 }
3693 else if (! writable
3694 && (hdr->flags & SEC_READONLY) == 0
3695 && (((last_hdr->lma + last_size - 1)
3696 & ~(maxpagesize - 1))
3697 != (hdr->lma & ~(maxpagesize - 1))))
3698 {
3699 /* We don't want to put a writable section in a read only
3700 segment, unless they are on the same page in memory
3701 anyhow. We already know that the last section does not
3702 bring us past the current section on the page, so the
3703 only case in which the new section is not on the same
3704 page as the previous section is when the previous section
3705 ends precisely on a page boundary. */
3706 new_segment = TRUE;
3707 }
3708 else
3709 {
3710 /* Otherwise, we can use the same segment. */
3711 new_segment = FALSE;
3712 }
3713
3714 /* Allow interested parties a chance to override our decision. */
3715 if (last_hdr && info->callbacks->override_segment_assignment)
3716 new_segment = info->callbacks->override_segment_assignment (info, abfd, hdr, last_hdr, new_segment);
3717
3718 if (! new_segment)
3719 {
3720 if ((hdr->flags & SEC_READONLY) == 0)
3721 writable = TRUE;
3722 last_hdr = hdr;
3723 /* .tbss sections effectively have zero size. */
3724 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3725 != SEC_THREAD_LOCAL)
3726 last_size = hdr->size;
3727 else
3728 last_size = 0;
3729 continue;
3730 }
3731
3732 /* We need a new program segment. We must create a new program
3733 header holding all the sections from phdr_index until hdr. */
3734
3735 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3736 if (m == NULL)
3737 goto error_return;
3738
3739 *pm = m;
3740 pm = &m->next;
3741
3742 if ((hdr->flags & SEC_READONLY) == 0)
3743 writable = TRUE;
3744 else
3745 writable = FALSE;
3746
3747 last_hdr = hdr;
3748 /* .tbss sections effectively have zero size. */
3749 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3750 last_size = hdr->size;
3751 else
3752 last_size = 0;
3753 phdr_index = i;
3754 phdr_in_segment = FALSE;
3755 }
3756
3757 /* Create a final PT_LOAD program segment. */
3758 if (last_hdr != NULL)
3759 {
3760 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3761 if (m == NULL)
3762 goto error_return;
3763
3764 *pm = m;
3765 pm = &m->next;
3766 }
3767
3768 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3769 if (dynsec != NULL)
3770 {
3771 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3772 if (m == NULL)
3773 goto error_return;
3774 *pm = m;
3775 pm = &m->next;
3776 }
3777
3778 /* For each batch of consecutive loadable .note sections,
3779 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3780 because if we link together nonloadable .note sections and
3781 loadable .note sections, we will generate two .note sections
3782 in the output file. FIXME: Using names for section types is
3783 bogus anyhow. */
3784 for (s = abfd->sections; s != NULL; s = s->next)
3785 {
3786 if ((s->flags & SEC_LOAD) != 0
3787 && CONST_STRNEQ (s->name, ".note"))
3788 {
3789 asection *s2;
3790 unsigned count = 1;
3791 amt = sizeof (struct elf_segment_map);
3792 if (s->alignment_power == 2)
3793 for (s2 = s; s2->next != NULL; s2 = s2->next)
3794 {
3795 if (s2->next->alignment_power == 2
3796 && (s2->next->flags & SEC_LOAD) != 0
3797 && CONST_STRNEQ (s2->next->name, ".note")
3798 && align_power (s2->vma + s2->size, 2)
3799 == s2->next->vma)
3800 count++;
3801 else
3802 break;
3803 }
3804 amt += (count - 1) * sizeof (asection *);
3805 m = bfd_zalloc (abfd, amt);
3806 if (m == NULL)
3807 goto error_return;
3808 m->next = NULL;
3809 m->p_type = PT_NOTE;
3810 m->count = count;
3811 while (count > 1)
3812 {
3813 m->sections[m->count - count--] = s;
3814 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3815 s = s->next;
3816 }
3817 m->sections[m->count - 1] = s;
3818 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3819 *pm = m;
3820 pm = &m->next;
3821 }
3822 if (s->flags & SEC_THREAD_LOCAL)
3823 {
3824 if (! tls_count)
3825 first_tls = s;
3826 tls_count++;
3827 }
3828 }
3829
3830 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3831 if (tls_count > 0)
3832 {
3833 int i;
3834
3835 amt = sizeof (struct elf_segment_map);
3836 amt += (tls_count - 1) * sizeof (asection *);
3837 m = bfd_zalloc (abfd, amt);
3838 if (m == NULL)
3839 goto error_return;
3840 m->next = NULL;
3841 m->p_type = PT_TLS;
3842 m->count = tls_count;
3843 /* Mandated PF_R. */
3844 m->p_flags = PF_R;
3845 m->p_flags_valid = 1;
3846 for (i = 0; i < tls_count; ++i)
3847 {
3848 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3849 m->sections[i] = first_tls;
3850 first_tls = first_tls->next;
3851 }
3852
3853 *pm = m;
3854 pm = &m->next;
3855 }
3856
3857 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3858 segment. */
3859 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3860 if (eh_frame_hdr != NULL
3861 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3862 {
3863 amt = sizeof (struct elf_segment_map);
3864 m = bfd_zalloc (abfd, amt);
3865 if (m == NULL)
3866 goto error_return;
3867 m->next = NULL;
3868 m->p_type = PT_GNU_EH_FRAME;
3869 m->count = 1;
3870 m->sections[0] = eh_frame_hdr->output_section;
3871
3872 *pm = m;
3873 pm = &m->next;
3874 }
3875
3876 if (elf_tdata (abfd)->stack_flags)
3877 {
3878 amt = sizeof (struct elf_segment_map);
3879 m = bfd_zalloc (abfd, amt);
3880 if (m == NULL)
3881 goto error_return;
3882 m->next = NULL;
3883 m->p_type = PT_GNU_STACK;
3884 m->p_flags = elf_tdata (abfd)->stack_flags;
3885 m->p_flags_valid = 1;
3886
3887 *pm = m;
3888 pm = &m->next;
3889 }
3890
3891 if (info->relro)
3892 {
3893 for (m = mfirst; m != NULL; m = m->next)
3894 {
3895 if (m->p_type == PT_LOAD)
3896 {
3897 asection *last = m->sections[m->count - 1];
3898 bfd_vma vaddr = m->sections[0]->vma;
3899 bfd_vma filesz = last->vma - vaddr + last->size;
3900
3901 if (vaddr < info->relro_end
3902 && vaddr >= info->relro_start
3903 && (vaddr + filesz) >= info->relro_end)
3904 break;
3905 }
3906 }
3907
3908 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3909 if (m != NULL)
3910 {
3911 amt = sizeof (struct elf_segment_map);
3912 m = bfd_zalloc (abfd, amt);
3913 if (m == NULL)
3914 goto error_return;
3915 m->next = NULL;
3916 m->p_type = PT_GNU_RELRO;
3917 m->p_flags = PF_R;
3918 m->p_flags_valid = 1;
3919
3920 *pm = m;
3921 pm = &m->next;
3922 }
3923 }
3924
3925 free (sections);
3926 elf_tdata (abfd)->segment_map = mfirst;
3927 }
3928
3929 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
3930 return FALSE;
3931
3932 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3933 ++count;
3934 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
3935
3936 return TRUE;
3937
3938 error_return:
3939 if (sections != NULL)
3940 free (sections);
3941 return FALSE;
3942 }
3943
3944 /* Sort sections by address. */
3945
3946 static int
3947 elf_sort_sections (const void *arg1, const void *arg2)
3948 {
3949 const asection *sec1 = *(const asection **) arg1;
3950 const asection *sec2 = *(const asection **) arg2;
3951 bfd_size_type size1, size2;
3952
3953 /* Sort by LMA first, since this is the address used to
3954 place the section into a segment. */
3955 if (sec1->lma < sec2->lma)
3956 return -1;
3957 else if (sec1->lma > sec2->lma)
3958 return 1;
3959
3960 /* Then sort by VMA. Normally the LMA and the VMA will be
3961 the same, and this will do nothing. */
3962 if (sec1->vma < sec2->vma)
3963 return -1;
3964 else if (sec1->vma > sec2->vma)
3965 return 1;
3966
3967 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3968
3969 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3970
3971 if (TOEND (sec1))
3972 {
3973 if (TOEND (sec2))
3974 {
3975 /* If the indicies are the same, do not return 0
3976 here, but continue to try the next comparison. */
3977 if (sec1->target_index - sec2->target_index != 0)
3978 return sec1->target_index - sec2->target_index;
3979 }
3980 else
3981 return 1;
3982 }
3983 else if (TOEND (sec2))
3984 return -1;
3985
3986 #undef TOEND
3987
3988 /* Sort by size, to put zero sized sections
3989 before others at the same address. */
3990
3991 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3992 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3993
3994 if (size1 < size2)
3995 return -1;
3996 if (size1 > size2)
3997 return 1;
3998
3999 return sec1->target_index - sec2->target_index;
4000 }
4001
4002 /* Ian Lance Taylor writes:
4003
4004 We shouldn't be using % with a negative signed number. That's just
4005 not good. We have to make sure either that the number is not
4006 negative, or that the number has an unsigned type. When the types
4007 are all the same size they wind up as unsigned. When file_ptr is a
4008 larger signed type, the arithmetic winds up as signed long long,
4009 which is wrong.
4010
4011 What we're trying to say here is something like ``increase OFF by
4012 the least amount that will cause it to be equal to the VMA modulo
4013 the page size.'' */
4014 /* In other words, something like:
4015
4016 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4017 off_offset = off % bed->maxpagesize;
4018 if (vma_offset < off_offset)
4019 adjustment = vma_offset + bed->maxpagesize - off_offset;
4020 else
4021 adjustment = vma_offset - off_offset;
4022
4023 which can can be collapsed into the expression below. */
4024
4025 static file_ptr
4026 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4027 {
4028 return ((vma - off) % maxpagesize);
4029 }
4030
4031 static void
4032 print_segment_map (const struct elf_segment_map *m)
4033 {
4034 unsigned int j;
4035 const char *pt = get_segment_type (m->p_type);
4036 char buf[32];
4037
4038 if (pt == NULL)
4039 {
4040 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4041 sprintf (buf, "LOPROC+%7.7x",
4042 (unsigned int) (m->p_type - PT_LOPROC));
4043 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4044 sprintf (buf, "LOOS+%7.7x",
4045 (unsigned int) (m->p_type - PT_LOOS));
4046 else
4047 snprintf (buf, sizeof (buf), "%8.8x",
4048 (unsigned int) m->p_type);
4049 pt = buf;
4050 }
4051 fprintf (stderr, "%s:", pt);
4052 for (j = 0; j < m->count; j++)
4053 fprintf (stderr, " %s", m->sections [j]->name);
4054 putc ('\n',stderr);
4055 }
4056
4057 /* Assign file positions to the sections based on the mapping from
4058 sections to segments. This function also sets up some fields in
4059 the file header. */
4060
4061 static bfd_boolean
4062 assign_file_positions_for_load_sections (bfd *abfd,
4063 struct bfd_link_info *link_info)
4064 {
4065 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4066 struct elf_segment_map *m;
4067 Elf_Internal_Phdr *phdrs;
4068 Elf_Internal_Phdr *p;
4069 file_ptr off;
4070 bfd_size_type maxpagesize;
4071 unsigned int alloc;
4072 unsigned int i, j;
4073
4074 if (link_info == NULL
4075 && !elf_modify_segment_map (abfd, link_info, FALSE))
4076 return FALSE;
4077
4078 alloc = 0;
4079 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4080 ++alloc;
4081
4082 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4083 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4084 elf_elfheader (abfd)->e_phnum = alloc;
4085
4086 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4087 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4088 else
4089 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4090 >= alloc * bed->s->sizeof_phdr);
4091
4092 if (alloc == 0)
4093 {
4094 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4095 return TRUE;
4096 }
4097
4098 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4099 elf_tdata (abfd)->phdr = phdrs;
4100 if (phdrs == NULL)
4101 return FALSE;
4102
4103 maxpagesize = 1;
4104 if ((abfd->flags & D_PAGED) != 0)
4105 maxpagesize = bed->maxpagesize;
4106
4107 off = bed->s->sizeof_ehdr;
4108 off += alloc * bed->s->sizeof_phdr;
4109
4110 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4111 m != NULL;
4112 m = m->next, p++, j++)
4113 {
4114 asection **secpp;
4115 bfd_vma off_adjust;
4116 bfd_boolean no_contents;
4117
4118 /* If elf_segment_map is not from map_sections_to_segments, the
4119 sections may not be correctly ordered. NOTE: sorting should
4120 not be done to the PT_NOTE section of a corefile, which may
4121 contain several pseudo-sections artificially created by bfd.
4122 Sorting these pseudo-sections breaks things badly. */
4123 if (m->count > 1
4124 && !(elf_elfheader (abfd)->e_type == ET_CORE
4125 && m->p_type == PT_NOTE))
4126 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4127 elf_sort_sections);
4128
4129 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4130 number of sections with contents contributing to both p_filesz
4131 and p_memsz, followed by a number of sections with no contents
4132 that just contribute to p_memsz. In this loop, OFF tracks next
4133 available file offset for PT_LOAD and PT_NOTE segments. */
4134 p->p_type = m->p_type;
4135 p->p_flags = m->p_flags;
4136
4137 if (m->count == 0)
4138 p->p_vaddr = 0;
4139 else
4140 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4141
4142 if (m->p_paddr_valid)
4143 p->p_paddr = m->p_paddr;
4144 else if (m->count == 0)
4145 p->p_paddr = 0;
4146 else
4147 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4148
4149 if (p->p_type == PT_LOAD
4150 && (abfd->flags & D_PAGED) != 0)
4151 {
4152 /* p_align in demand paged PT_LOAD segments effectively stores
4153 the maximum page size. When copying an executable with
4154 objcopy, we set m->p_align from the input file. Use this
4155 value for maxpagesize rather than bed->maxpagesize, which
4156 may be different. Note that we use maxpagesize for PT_TLS
4157 segment alignment later in this function, so we are relying
4158 on at least one PT_LOAD segment appearing before a PT_TLS
4159 segment. */
4160 if (m->p_align_valid)
4161 maxpagesize = m->p_align;
4162
4163 p->p_align = maxpagesize;
4164 }
4165 else if (m->p_align_valid)
4166 p->p_align = m->p_align;
4167 else if (m->count == 0)
4168 p->p_align = 1 << bed->s->log_file_align;
4169 else
4170 p->p_align = 0;
4171
4172 no_contents = FALSE;
4173 off_adjust = 0;
4174 if (p->p_type == PT_LOAD
4175 && m->count > 0)
4176 {
4177 bfd_size_type align;
4178 unsigned int align_power = 0;
4179
4180 if (m->p_align_valid)
4181 align = p->p_align;
4182 else
4183 {
4184 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4185 {
4186 unsigned int secalign;
4187
4188 secalign = bfd_get_section_alignment (abfd, *secpp);
4189 if (secalign > align_power)
4190 align_power = secalign;
4191 }
4192 align = (bfd_size_type) 1 << align_power;
4193 if (align < maxpagesize)
4194 align = maxpagesize;
4195 }
4196
4197 for (i = 0; i < m->count; i++)
4198 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4199 /* If we aren't making room for this section, then
4200 it must be SHT_NOBITS regardless of what we've
4201 set via struct bfd_elf_special_section. */
4202 elf_section_type (m->sections[i]) = SHT_NOBITS;
4203
4204 /* Find out whether this segment contains any loadable
4205 sections. If the first section isn't loadable, the same
4206 holds for any other sections. */
4207 i = 0;
4208 while (elf_section_type (m->sections[i]) == SHT_NOBITS)
4209 {
4210 /* If a segment starts with .tbss, we need to look
4211 at the next section to decide whether the segment
4212 has any loadable sections. */
4213 if ((elf_section_flags (m->sections[i]) & SHF_TLS) == 0
4214 || ++i >= m->count)
4215 {
4216 no_contents = TRUE;
4217 break;
4218 }
4219 }
4220
4221 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4222 off += off_adjust;
4223 if (no_contents)
4224 {
4225 /* We shouldn't need to align the segment on disk since
4226 the segment doesn't need file space, but the gABI
4227 arguably requires the alignment and glibc ld.so
4228 checks it. So to comply with the alignment
4229 requirement but not waste file space, we adjust
4230 p_offset for just this segment. (OFF_ADJUST is
4231 subtracted from OFF later.) This may put p_offset
4232 past the end of file, but that shouldn't matter. */
4233 }
4234 else
4235 off_adjust = 0;
4236 }
4237 /* Make sure the .dynamic section is the first section in the
4238 PT_DYNAMIC segment. */
4239 else if (p->p_type == PT_DYNAMIC
4240 && m->count > 1
4241 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4242 {
4243 _bfd_error_handler
4244 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4245 abfd);
4246 bfd_set_error (bfd_error_bad_value);
4247 return FALSE;
4248 }
4249
4250 p->p_offset = 0;
4251 p->p_filesz = 0;
4252 p->p_memsz = 0;
4253
4254 if (m->includes_filehdr)
4255 {
4256 if (!m->p_flags_valid)
4257 p->p_flags |= PF_R;
4258 p->p_filesz = bed->s->sizeof_ehdr;
4259 p->p_memsz = bed->s->sizeof_ehdr;
4260 if (m->count > 0)
4261 {
4262 BFD_ASSERT (p->p_type == PT_LOAD);
4263
4264 if (p->p_vaddr < (bfd_vma) off)
4265 {
4266 (*_bfd_error_handler)
4267 (_("%B: Not enough room for program headers, try linking with -N"),
4268 abfd);
4269 bfd_set_error (bfd_error_bad_value);
4270 return FALSE;
4271 }
4272
4273 p->p_vaddr -= off;
4274 if (!m->p_paddr_valid)
4275 p->p_paddr -= off;
4276 }
4277 }
4278
4279 if (m->includes_phdrs)
4280 {
4281 if (!m->p_flags_valid)
4282 p->p_flags |= PF_R;
4283
4284 if (!m->includes_filehdr)
4285 {
4286 p->p_offset = bed->s->sizeof_ehdr;
4287
4288 if (m->count > 0)
4289 {
4290 BFD_ASSERT (p->p_type == PT_LOAD);
4291 p->p_vaddr -= off - p->p_offset;
4292 if (!m->p_paddr_valid)
4293 p->p_paddr -= off - p->p_offset;
4294 }
4295 }
4296
4297 p->p_filesz += alloc * bed->s->sizeof_phdr;
4298 p->p_memsz += alloc * bed->s->sizeof_phdr;
4299 }
4300
4301 if (p->p_type == PT_LOAD
4302 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4303 {
4304 if (!m->includes_filehdr && !m->includes_phdrs)
4305 p->p_offset = off;
4306 else
4307 {
4308 file_ptr adjust;
4309
4310 adjust = off - (p->p_offset + p->p_filesz);
4311 if (!no_contents)
4312 p->p_filesz += adjust;
4313 p->p_memsz += adjust;
4314 }
4315 }
4316
4317 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4318 maps. Set filepos for sections in PT_LOAD segments, and in
4319 core files, for sections in PT_NOTE segments.
4320 assign_file_positions_for_non_load_sections will set filepos
4321 for other sections and update p_filesz for other segments. */
4322 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4323 {
4324 asection *sec;
4325 bfd_size_type align;
4326 Elf_Internal_Shdr *this_hdr;
4327
4328 sec = *secpp;
4329 this_hdr = &elf_section_data (sec)->this_hdr;
4330 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4331
4332 if (p->p_type == PT_LOAD
4333 || p->p_type == PT_TLS)
4334 {
4335 bfd_signed_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
4336
4337 if (this_hdr->sh_type != SHT_NOBITS
4338 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4339 && ((this_hdr->sh_flags & SHF_TLS) == 0
4340 || p->p_type == PT_TLS)))
4341 {
4342 if (adjust < 0)
4343 {
4344 (*_bfd_error_handler)
4345 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4346 abfd, sec, (unsigned long) sec->lma);
4347 adjust = 0;
4348 }
4349 p->p_memsz += adjust;
4350
4351 if (this_hdr->sh_type != SHT_NOBITS)
4352 {
4353 off += adjust;
4354 p->p_filesz += adjust;
4355 }
4356 }
4357 }
4358
4359 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4360 {
4361 /* The section at i == 0 is the one that actually contains
4362 everything. */
4363 if (i == 0)
4364 {
4365 this_hdr->sh_offset = sec->filepos = off;
4366 off += this_hdr->sh_size;
4367 p->p_filesz = this_hdr->sh_size;
4368 p->p_memsz = 0;
4369 p->p_align = 1;
4370 }
4371 else
4372 {
4373 /* The rest are fake sections that shouldn't be written. */
4374 sec->filepos = 0;
4375 sec->size = 0;
4376 sec->flags = 0;
4377 continue;
4378 }
4379 }
4380 else
4381 {
4382 if (p->p_type == PT_LOAD)
4383 {
4384 this_hdr->sh_offset = sec->filepos = off;
4385 if (this_hdr->sh_type != SHT_NOBITS)
4386 off += this_hdr->sh_size;
4387 }
4388
4389 if (this_hdr->sh_type != SHT_NOBITS)
4390 {
4391 p->p_filesz += this_hdr->sh_size;
4392 /* A load section without SHF_ALLOC is something like
4393 a note section in a PT_NOTE segment. These take
4394 file space but are not loaded into memory. */
4395 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4396 p->p_memsz += this_hdr->sh_size;
4397 }
4398 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4399 {
4400 if (p->p_type == PT_TLS)
4401 p->p_memsz += this_hdr->sh_size;
4402
4403 /* .tbss is special. It doesn't contribute to p_memsz of
4404 normal segments. */
4405 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4406 p->p_memsz += this_hdr->sh_size;
4407 }
4408
4409 if (align > p->p_align
4410 && !m->p_align_valid
4411 && (p->p_type != PT_LOAD
4412 || (abfd->flags & D_PAGED) == 0))
4413 p->p_align = align;
4414 }
4415
4416 if (!m->p_flags_valid)
4417 {
4418 p->p_flags |= PF_R;
4419 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4420 p->p_flags |= PF_X;
4421 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4422 p->p_flags |= PF_W;
4423 }
4424 }
4425 off -= off_adjust;
4426
4427 /* Check that all sections are in a PT_LOAD segment.
4428 Don't check funky gdb generated core files. */
4429 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4430 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4431 {
4432 Elf_Internal_Shdr *this_hdr;
4433 asection *sec;
4434
4435 sec = *secpp;
4436 this_hdr = &(elf_section_data(sec)->this_hdr);
4437 if (this_hdr->sh_size != 0
4438 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4439 {
4440 (*_bfd_error_handler)
4441 (_("%B: section `%A' can't be allocated in segment %d"),
4442 abfd, sec, j);
4443 print_segment_map (m);
4444 bfd_set_error (bfd_error_bad_value);
4445 return FALSE;
4446 }
4447 }
4448 }
4449
4450 elf_tdata (abfd)->next_file_pos = off;
4451 return TRUE;
4452 }
4453
4454 /* Assign file positions for the other sections. */
4455
4456 static bfd_boolean
4457 assign_file_positions_for_non_load_sections (bfd *abfd,
4458 struct bfd_link_info *link_info)
4459 {
4460 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4461 Elf_Internal_Shdr **i_shdrpp;
4462 Elf_Internal_Shdr **hdrpp;
4463 Elf_Internal_Phdr *phdrs;
4464 Elf_Internal_Phdr *p;
4465 struct elf_segment_map *m;
4466 bfd_vma filehdr_vaddr, filehdr_paddr;
4467 bfd_vma phdrs_vaddr, phdrs_paddr;
4468 file_ptr off;
4469 unsigned int num_sec;
4470 unsigned int i;
4471 unsigned int count;
4472
4473 i_shdrpp = elf_elfsections (abfd);
4474 num_sec = elf_numsections (abfd);
4475 off = elf_tdata (abfd)->next_file_pos;
4476 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4477 {
4478 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4479 Elf_Internal_Shdr *hdr;
4480
4481 hdr = *hdrpp;
4482 if (hdr->bfd_section != NULL
4483 && (hdr->bfd_section->filepos != 0
4484 || (hdr->sh_type == SHT_NOBITS
4485 && hdr->contents == NULL)))
4486 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4487 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4488 {
4489 if (hdr->sh_size != 0)
4490 ((*_bfd_error_handler)
4491 (_("%B: warning: allocated section `%s' not in segment"),
4492 abfd,
4493 (hdr->bfd_section == NULL
4494 ? "*unknown*"
4495 : hdr->bfd_section->name)));
4496 /* We don't need to page align empty sections. */
4497 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4498 off += vma_page_aligned_bias (hdr->sh_addr, off,
4499 bed->maxpagesize);
4500 else
4501 off += vma_page_aligned_bias (hdr->sh_addr, off,
4502 hdr->sh_addralign);
4503 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4504 FALSE);
4505 }
4506 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4507 && hdr->bfd_section == NULL)
4508 || hdr == i_shdrpp[tdata->symtab_section]
4509 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4510 || hdr == i_shdrpp[tdata->strtab_section])
4511 hdr->sh_offset = -1;
4512 else
4513 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4514
4515 if (i == SHN_LORESERVE - 1)
4516 {
4517 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4518 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4519 }
4520 }
4521
4522 /* Now that we have set the section file positions, we can set up
4523 the file positions for the non PT_LOAD segments. */
4524 count = 0;
4525 filehdr_vaddr = 0;
4526 filehdr_paddr = 0;
4527 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4528 phdrs_paddr = 0;
4529 phdrs = elf_tdata (abfd)->phdr;
4530 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4531 m != NULL;
4532 m = m->next, p++)
4533 {
4534 ++count;
4535 if (p->p_type != PT_LOAD)
4536 continue;
4537
4538 if (m->includes_filehdr)
4539 {
4540 filehdr_vaddr = p->p_vaddr;
4541 filehdr_paddr = p->p_paddr;
4542 }
4543 if (m->includes_phdrs)
4544 {
4545 phdrs_vaddr = p->p_vaddr;
4546 phdrs_paddr = p->p_paddr;
4547 if (m->includes_filehdr)
4548 {
4549 phdrs_vaddr += bed->s->sizeof_ehdr;
4550 phdrs_paddr += bed->s->sizeof_ehdr;
4551 }
4552 }
4553 }
4554
4555 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4556 m != NULL;
4557 m = m->next, p++)
4558 {
4559 if (m->count != 0)
4560 {
4561 if (p->p_type != PT_LOAD
4562 && (p->p_type != PT_NOTE
4563 || bfd_get_format (abfd) != bfd_core))
4564 {
4565 Elf_Internal_Shdr *hdr;
4566 asection *sect;
4567
4568 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4569
4570 sect = m->sections[m->count - 1];
4571 hdr = &elf_section_data (sect)->this_hdr;
4572 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4573 if (hdr->sh_type != SHT_NOBITS)
4574 p->p_filesz += hdr->sh_size;
4575
4576 if (p->p_type == PT_GNU_RELRO)
4577 {
4578 /* When we get here, we are copying executable
4579 or shared library. But we need to use the same
4580 linker logic. */
4581 Elf_Internal_Phdr *lp;
4582
4583 for (lp = phdrs; lp < phdrs + count; ++lp)
4584 {
4585 if (lp->p_type == PT_LOAD
4586 && lp->p_paddr == p->p_paddr)
4587 break;
4588 }
4589
4590 if (lp < phdrs + count)
4591 {
4592 /* We should use p_size if it is valid since it
4593 may contain the first few bytes of the next
4594 SEC_ALLOC section. */
4595 if (m->p_size_valid)
4596 p->p_filesz = m->p_size;
4597 else
4598 abort ();
4599 p->p_vaddr = lp->p_vaddr;
4600 p->p_offset = lp->p_offset;
4601 p->p_memsz = p->p_filesz;
4602 p->p_align = 1;
4603 }
4604 else
4605 abort ();
4606 }
4607 else
4608 p->p_offset = m->sections[0]->filepos;
4609 }
4610 }
4611 else
4612 {
4613 if (m->includes_filehdr)
4614 {
4615 p->p_vaddr = filehdr_vaddr;
4616 if (! m->p_paddr_valid)
4617 p->p_paddr = filehdr_paddr;
4618 }
4619 else if (m->includes_phdrs)
4620 {
4621 p->p_vaddr = phdrs_vaddr;
4622 if (! m->p_paddr_valid)
4623 p->p_paddr = phdrs_paddr;
4624 }
4625 else if (p->p_type == PT_GNU_RELRO)
4626 {
4627 Elf_Internal_Phdr *lp;
4628
4629 for (lp = phdrs; lp < phdrs + count; ++lp)
4630 {
4631 if (lp->p_type == PT_LOAD
4632 && lp->p_vaddr <= link_info->relro_end
4633 && lp->p_vaddr >= link_info->relro_start
4634 && (lp->p_vaddr + lp->p_filesz
4635 >= link_info->relro_end))
4636 break;
4637 }
4638
4639 if (lp < phdrs + count
4640 && link_info->relro_end > lp->p_vaddr)
4641 {
4642 p->p_vaddr = lp->p_vaddr;
4643 p->p_paddr = lp->p_paddr;
4644 p->p_offset = lp->p_offset;
4645 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4646 p->p_memsz = p->p_filesz;
4647 p->p_align = 1;
4648 p->p_flags = (lp->p_flags & ~PF_W);
4649 }
4650 else
4651 {
4652 memset (p, 0, sizeof *p);
4653 p->p_type = PT_NULL;
4654 }
4655 }
4656 }
4657 }
4658
4659 elf_tdata (abfd)->next_file_pos = off;
4660
4661 return TRUE;
4662 }
4663
4664 /* Work out the file positions of all the sections. This is called by
4665 _bfd_elf_compute_section_file_positions. All the section sizes and
4666 VMAs must be known before this is called.
4667
4668 Reloc sections come in two flavours: Those processed specially as
4669 "side-channel" data attached to a section to which they apply, and
4670 those that bfd doesn't process as relocations. The latter sort are
4671 stored in a normal bfd section by bfd_section_from_shdr. We don't
4672 consider the former sort here, unless they form part of the loadable
4673 image. Reloc sections not assigned here will be handled later by
4674 assign_file_positions_for_relocs.
4675
4676 We also don't set the positions of the .symtab and .strtab here. */
4677
4678 static bfd_boolean
4679 assign_file_positions_except_relocs (bfd *abfd,
4680 struct bfd_link_info *link_info)
4681 {
4682 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4683 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4684 file_ptr off;
4685 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4686
4687 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4688 && bfd_get_format (abfd) != bfd_core)
4689 {
4690 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4691 unsigned int num_sec = elf_numsections (abfd);
4692 Elf_Internal_Shdr **hdrpp;
4693 unsigned int i;
4694
4695 /* Start after the ELF header. */
4696 off = i_ehdrp->e_ehsize;
4697
4698 /* We are not creating an executable, which means that we are
4699 not creating a program header, and that the actual order of
4700 the sections in the file is unimportant. */
4701 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4702 {
4703 Elf_Internal_Shdr *hdr;
4704
4705 hdr = *hdrpp;
4706 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4707 && hdr->bfd_section == NULL)
4708 || i == tdata->symtab_section
4709 || i == tdata->symtab_shndx_section
4710 || i == tdata->strtab_section)
4711 {
4712 hdr->sh_offset = -1;
4713 }
4714 else
4715 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4716
4717 if (i == SHN_LORESERVE - 1)
4718 {
4719 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4720 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4721 }
4722 }
4723 }
4724 else
4725 {
4726 unsigned int alloc;
4727
4728 /* Assign file positions for the loaded sections based on the
4729 assignment of sections to segments. */
4730 if (!assign_file_positions_for_load_sections (abfd, link_info))
4731 return FALSE;
4732
4733 /* And for non-load sections. */
4734 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4735 return FALSE;
4736
4737 if (bed->elf_backend_modify_program_headers != NULL)
4738 {
4739 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4740 return FALSE;
4741 }
4742
4743 /* Write out the program headers. */
4744 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4745 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4746 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4747 return FALSE;
4748
4749 off = tdata->next_file_pos;
4750 }
4751
4752 /* Place the section headers. */
4753 off = align_file_position (off, 1 << bed->s->log_file_align);
4754 i_ehdrp->e_shoff = off;
4755 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4756
4757 tdata->next_file_pos = off;
4758
4759 return TRUE;
4760 }
4761
4762 static bfd_boolean
4763 prep_headers (bfd *abfd)
4764 {
4765 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4766 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4767 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4768 struct elf_strtab_hash *shstrtab;
4769 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4770
4771 i_ehdrp = elf_elfheader (abfd);
4772 i_shdrp = elf_elfsections (abfd);
4773
4774 shstrtab = _bfd_elf_strtab_init ();
4775 if (shstrtab == NULL)
4776 return FALSE;
4777
4778 elf_shstrtab (abfd) = shstrtab;
4779
4780 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4781 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4782 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4783 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4784
4785 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4786 i_ehdrp->e_ident[EI_DATA] =
4787 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4788 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4789
4790 if ((abfd->flags & DYNAMIC) != 0)
4791 i_ehdrp->e_type = ET_DYN;
4792 else if ((abfd->flags & EXEC_P) != 0)
4793 i_ehdrp->e_type = ET_EXEC;
4794 else if (bfd_get_format (abfd) == bfd_core)
4795 i_ehdrp->e_type = ET_CORE;
4796 else
4797 i_ehdrp->e_type = ET_REL;
4798
4799 switch (bfd_get_arch (abfd))
4800 {
4801 case bfd_arch_unknown:
4802 i_ehdrp->e_machine = EM_NONE;
4803 break;
4804
4805 /* There used to be a long list of cases here, each one setting
4806 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4807 in the corresponding bfd definition. To avoid duplication,
4808 the switch was removed. Machines that need special handling
4809 can generally do it in elf_backend_final_write_processing(),
4810 unless they need the information earlier than the final write.
4811 Such need can generally be supplied by replacing the tests for
4812 e_machine with the conditions used to determine it. */
4813 default:
4814 i_ehdrp->e_machine = bed->elf_machine_code;
4815 }
4816
4817 i_ehdrp->e_version = bed->s->ev_current;
4818 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4819
4820 /* No program header, for now. */
4821 i_ehdrp->e_phoff = 0;
4822 i_ehdrp->e_phentsize = 0;
4823 i_ehdrp->e_phnum = 0;
4824
4825 /* Each bfd section is section header entry. */
4826 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4827 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4828
4829 /* If we're building an executable, we'll need a program header table. */
4830 if (abfd->flags & EXEC_P)
4831 /* It all happens later. */
4832 ;
4833 else
4834 {
4835 i_ehdrp->e_phentsize = 0;
4836 i_phdrp = 0;
4837 i_ehdrp->e_phoff = 0;
4838 }
4839
4840 elf_tdata (abfd)->symtab_hdr.sh_name =
4841 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4842 elf_tdata (abfd)->strtab_hdr.sh_name =
4843 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4844 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4845 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4846 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4847 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4848 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4849 return FALSE;
4850
4851 return TRUE;
4852 }
4853
4854 /* Assign file positions for all the reloc sections which are not part
4855 of the loadable file image. */
4856
4857 void
4858 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4859 {
4860 file_ptr off;
4861 unsigned int i, num_sec;
4862 Elf_Internal_Shdr **shdrpp;
4863
4864 off = elf_tdata (abfd)->next_file_pos;
4865
4866 num_sec = elf_numsections (abfd);
4867 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4868 {
4869 Elf_Internal_Shdr *shdrp;
4870
4871 shdrp = *shdrpp;
4872 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4873 && shdrp->sh_offset == -1)
4874 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4875 }
4876
4877 elf_tdata (abfd)->next_file_pos = off;
4878 }
4879
4880 bfd_boolean
4881 _bfd_elf_write_object_contents (bfd *abfd)
4882 {
4883 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4884 Elf_Internal_Ehdr *i_ehdrp;
4885 Elf_Internal_Shdr **i_shdrp;
4886 bfd_boolean failed;
4887 unsigned int count, num_sec;
4888
4889 if (! abfd->output_has_begun
4890 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4891 return FALSE;
4892
4893 i_shdrp = elf_elfsections (abfd);
4894 i_ehdrp = elf_elfheader (abfd);
4895
4896 failed = FALSE;
4897 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4898 if (failed)
4899 return FALSE;
4900
4901 _bfd_elf_assign_file_positions_for_relocs (abfd);
4902
4903 /* After writing the headers, we need to write the sections too... */
4904 num_sec = elf_numsections (abfd);
4905 for (count = 1; count < num_sec; count++)
4906 {
4907 if (bed->elf_backend_section_processing)
4908 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4909 if (i_shdrp[count]->contents)
4910 {
4911 bfd_size_type amt = i_shdrp[count]->sh_size;
4912
4913 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4914 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4915 return FALSE;
4916 }
4917 if (count == SHN_LORESERVE - 1)
4918 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4919 }
4920
4921 /* Write out the section header names. */
4922 if (elf_shstrtab (abfd) != NULL
4923 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4924 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4925 return FALSE;
4926
4927 if (bed->elf_backend_final_write_processing)
4928 (*bed->elf_backend_final_write_processing) (abfd,
4929 elf_tdata (abfd)->linker);
4930
4931 if (!bed->s->write_shdrs_and_ehdr (abfd))
4932 return FALSE;
4933
4934 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4935 if (elf_tdata (abfd)->after_write_object_contents)
4936 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
4937
4938 return TRUE;
4939 }
4940
4941 bfd_boolean
4942 _bfd_elf_write_corefile_contents (bfd *abfd)
4943 {
4944 /* Hopefully this can be done just like an object file. */
4945 return _bfd_elf_write_object_contents (abfd);
4946 }
4947
4948 /* Given a section, search the header to find them. */
4949
4950 int
4951 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4952 {
4953 const struct elf_backend_data *bed;
4954 int index;
4955
4956 if (elf_section_data (asect) != NULL
4957 && elf_section_data (asect)->this_idx != 0)
4958 return elf_section_data (asect)->this_idx;
4959
4960 if (bfd_is_abs_section (asect))
4961 index = SHN_ABS;
4962 else if (bfd_is_com_section (asect))
4963 index = SHN_COMMON;
4964 else if (bfd_is_und_section (asect))
4965 index = SHN_UNDEF;
4966 else
4967 index = -1;
4968
4969 bed = get_elf_backend_data (abfd);
4970 if (bed->elf_backend_section_from_bfd_section)
4971 {
4972 int retval = index;
4973
4974 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4975 return retval;
4976 }
4977
4978 if (index == -1)
4979 bfd_set_error (bfd_error_nonrepresentable_section);
4980
4981 return index;
4982 }
4983
4984 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4985 on error. */
4986
4987 int
4988 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4989 {
4990 asymbol *asym_ptr = *asym_ptr_ptr;
4991 int idx;
4992 flagword flags = asym_ptr->flags;
4993
4994 /* When gas creates relocations against local labels, it creates its
4995 own symbol for the section, but does put the symbol into the
4996 symbol chain, so udata is 0. When the linker is generating
4997 relocatable output, this section symbol may be for one of the
4998 input sections rather than the output section. */
4999 if (asym_ptr->udata.i == 0
5000 && (flags & BSF_SECTION_SYM)
5001 && asym_ptr->section)
5002 {
5003 asection *sec;
5004 int indx;
5005
5006 sec = asym_ptr->section;
5007 if (sec->owner != abfd && sec->output_section != NULL)
5008 sec = sec->output_section;
5009 if (sec->owner == abfd
5010 && (indx = sec->index) < elf_num_section_syms (abfd)
5011 && elf_section_syms (abfd)[indx] != NULL)
5012 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5013 }
5014
5015 idx = asym_ptr->udata.i;
5016
5017 if (idx == 0)
5018 {
5019 /* This case can occur when using --strip-symbol on a symbol
5020 which is used in a relocation entry. */
5021 (*_bfd_error_handler)
5022 (_("%B: symbol `%s' required but not present"),
5023 abfd, bfd_asymbol_name (asym_ptr));
5024 bfd_set_error (bfd_error_no_symbols);
5025 return -1;
5026 }
5027
5028 #if DEBUG & 4
5029 {
5030 fprintf (stderr,
5031 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5032 (long) asym_ptr, asym_ptr->name, idx, flags,
5033 elf_symbol_flags (flags));
5034 fflush (stderr);
5035 }
5036 #endif
5037
5038 return idx;
5039 }
5040
5041 /* Rewrite program header information. */
5042
5043 static bfd_boolean
5044 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5045 {
5046 Elf_Internal_Ehdr *iehdr;
5047 struct elf_segment_map *map;
5048 struct elf_segment_map *map_first;
5049 struct elf_segment_map **pointer_to_map;
5050 Elf_Internal_Phdr *segment;
5051 asection *section;
5052 unsigned int i;
5053 unsigned int num_segments;
5054 bfd_boolean phdr_included = FALSE;
5055 bfd_vma maxpagesize;
5056 struct elf_segment_map *phdr_adjust_seg = NULL;
5057 unsigned int phdr_adjust_num = 0;
5058 const struct elf_backend_data *bed;
5059
5060 bed = get_elf_backend_data (ibfd);
5061 iehdr = elf_elfheader (ibfd);
5062
5063 map_first = NULL;
5064 pointer_to_map = &map_first;
5065
5066 num_segments = elf_elfheader (ibfd)->e_phnum;
5067 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5068
5069 /* Returns the end address of the segment + 1. */
5070 #define SEGMENT_END(segment, start) \
5071 (start + (segment->p_memsz > segment->p_filesz \
5072 ? segment->p_memsz : segment->p_filesz))
5073
5074 #define SECTION_SIZE(section, segment) \
5075 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5076 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5077 ? section->size : 0)
5078
5079 /* Returns TRUE if the given section is contained within
5080 the given segment. VMA addresses are compared. */
5081 #define IS_CONTAINED_BY_VMA(section, segment) \
5082 (section->vma >= segment->p_vaddr \
5083 && (section->vma + SECTION_SIZE (section, segment) \
5084 <= (SEGMENT_END (segment, segment->p_vaddr))))
5085
5086 /* Returns TRUE if the given section is contained within
5087 the given segment. LMA addresses are compared. */
5088 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5089 (section->lma >= base \
5090 && (section->lma + SECTION_SIZE (section, segment) \
5091 <= SEGMENT_END (segment, base)))
5092
5093 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5094 #define IS_COREFILE_NOTE(p, s) \
5095 (p->p_type == PT_NOTE \
5096 && bfd_get_format (ibfd) == bfd_core \
5097 && s->vma == 0 && s->lma == 0 \
5098 && (bfd_vma) s->filepos >= p->p_offset \
5099 && ((bfd_vma) s->filepos + s->size \
5100 <= p->p_offset + p->p_filesz))
5101
5102 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5103 linker, which generates a PT_INTERP section with p_vaddr and
5104 p_memsz set to 0. */
5105 #define IS_SOLARIS_PT_INTERP(p, s) \
5106 (p->p_vaddr == 0 \
5107 && p->p_paddr == 0 \
5108 && p->p_memsz == 0 \
5109 && p->p_filesz > 0 \
5110 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5111 && s->size > 0 \
5112 && (bfd_vma) s->filepos >= p->p_offset \
5113 && ((bfd_vma) s->filepos + s->size \
5114 <= p->p_offset + p->p_filesz))
5115
5116 /* Decide if the given section should be included in the given segment.
5117 A section will be included if:
5118 1. It is within the address space of the segment -- we use the LMA
5119 if that is set for the segment and the VMA otherwise,
5120 2. It is an allocated segment,
5121 3. There is an output section associated with it,
5122 4. The section has not already been allocated to a previous segment.
5123 5. PT_GNU_STACK segments do not include any sections.
5124 6. PT_TLS segment includes only SHF_TLS sections.
5125 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5126 8. PT_DYNAMIC should not contain empty sections at the beginning
5127 (with the possible exception of .dynamic). */
5128 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5129 ((((segment->p_paddr \
5130 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5131 : IS_CONTAINED_BY_VMA (section, segment)) \
5132 && (section->flags & SEC_ALLOC) != 0) \
5133 || IS_COREFILE_NOTE (segment, section)) \
5134 && segment->p_type != PT_GNU_STACK \
5135 && (segment->p_type != PT_TLS \
5136 || (section->flags & SEC_THREAD_LOCAL)) \
5137 && (segment->p_type == PT_LOAD \
5138 || segment->p_type == PT_TLS \
5139 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5140 && (segment->p_type != PT_DYNAMIC \
5141 || SECTION_SIZE (section, segment) > 0 \
5142 || (segment->p_paddr \
5143 ? segment->p_paddr != section->lma \
5144 : segment->p_vaddr != section->vma) \
5145 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5146 == 0)) \
5147 && ! section->segment_mark)
5148
5149 /* If the output section of a section in the input segment is NULL,
5150 it is removed from the corresponding output segment. */
5151 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5152 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5153 && section->output_section != NULL)
5154
5155 /* Returns TRUE iff seg1 starts after the end of seg2. */
5156 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5157 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5158
5159 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5160 their VMA address ranges and their LMA address ranges overlap.
5161 It is possible to have overlapping VMA ranges without overlapping LMA
5162 ranges. RedBoot images for example can have both .data and .bss mapped
5163 to the same VMA range, but with the .data section mapped to a different
5164 LMA. */
5165 #define SEGMENT_OVERLAPS(seg1, seg2) \
5166 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5167 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5168 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5169 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5170
5171 /* Initialise the segment mark field. */
5172 for (section = ibfd->sections; section != NULL; section = section->next)
5173 section->segment_mark = FALSE;
5174
5175 /* Scan through the segments specified in the program header
5176 of the input BFD. For this first scan we look for overlaps
5177 in the loadable segments. These can be created by weird
5178 parameters to objcopy. Also, fix some solaris weirdness. */
5179 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5180 i < num_segments;
5181 i++, segment++)
5182 {
5183 unsigned int j;
5184 Elf_Internal_Phdr *segment2;
5185
5186 if (segment->p_type == PT_INTERP)
5187 for (section = ibfd->sections; section; section = section->next)
5188 if (IS_SOLARIS_PT_INTERP (segment, section))
5189 {
5190 /* Mininal change so that the normal section to segment
5191 assignment code will work. */
5192 segment->p_vaddr = section->vma;
5193 break;
5194 }
5195
5196 if (segment->p_type != PT_LOAD)
5197 {
5198 /* Remove PT_GNU_RELRO segment. */
5199 if (segment->p_type == PT_GNU_RELRO)
5200 segment->p_type = PT_NULL;
5201 continue;
5202 }
5203
5204 /* Determine if this segment overlaps any previous segments. */
5205 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5206 {
5207 bfd_signed_vma extra_length;
5208
5209 if (segment2->p_type != PT_LOAD
5210 || ! SEGMENT_OVERLAPS (segment, segment2))
5211 continue;
5212
5213 /* Merge the two segments together. */
5214 if (segment2->p_vaddr < segment->p_vaddr)
5215 {
5216 /* Extend SEGMENT2 to include SEGMENT and then delete
5217 SEGMENT. */
5218 extra_length =
5219 SEGMENT_END (segment, segment->p_vaddr)
5220 - SEGMENT_END (segment2, segment2->p_vaddr);
5221
5222 if (extra_length > 0)
5223 {
5224 segment2->p_memsz += extra_length;
5225 segment2->p_filesz += extra_length;
5226 }
5227
5228 segment->p_type = PT_NULL;
5229
5230 /* Since we have deleted P we must restart the outer loop. */
5231 i = 0;
5232 segment = elf_tdata (ibfd)->phdr;
5233 break;
5234 }
5235 else
5236 {
5237 /* Extend SEGMENT to include SEGMENT2 and then delete
5238 SEGMENT2. */
5239 extra_length =
5240 SEGMENT_END (segment2, segment2->p_vaddr)
5241 - SEGMENT_END (segment, segment->p_vaddr);
5242
5243 if (extra_length > 0)
5244 {
5245 segment->p_memsz += extra_length;
5246 segment->p_filesz += extra_length;
5247 }
5248
5249 segment2->p_type = PT_NULL;
5250 }
5251 }
5252 }
5253
5254 /* The second scan attempts to assign sections to segments. */
5255 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5256 i < num_segments;
5257 i ++, segment ++)
5258 {
5259 unsigned int section_count;
5260 asection ** sections;
5261 asection * output_section;
5262 unsigned int isec;
5263 bfd_vma matching_lma;
5264 bfd_vma suggested_lma;
5265 unsigned int j;
5266 bfd_size_type amt;
5267 asection * first_section;
5268
5269 if (segment->p_type == PT_NULL)
5270 continue;
5271
5272 first_section = NULL;
5273 /* Compute how many sections might be placed into this segment. */
5274 for (section = ibfd->sections, section_count = 0;
5275 section != NULL;
5276 section = section->next)
5277 {
5278 /* Find the first section in the input segment, which may be
5279 removed from the corresponding output segment. */
5280 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5281 {
5282 if (first_section == NULL)
5283 first_section = section;
5284 if (section->output_section != NULL)
5285 ++section_count;
5286 }
5287 }
5288
5289 /* Allocate a segment map big enough to contain
5290 all of the sections we have selected. */
5291 amt = sizeof (struct elf_segment_map);
5292 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5293 map = bfd_zalloc (obfd, amt);
5294 if (map == NULL)
5295 return FALSE;
5296
5297 /* Initialise the fields of the segment map. Default to
5298 using the physical address of the segment in the input BFD. */
5299 map->next = NULL;
5300 map->p_type = segment->p_type;
5301 map->p_flags = segment->p_flags;
5302 map->p_flags_valid = 1;
5303
5304 /* If the first section in the input segment is removed, there is
5305 no need to preserve segment physical address in the corresponding
5306 output segment. */
5307 if (!first_section || first_section->output_section != NULL)
5308 {
5309 map->p_paddr = segment->p_paddr;
5310 map->p_paddr_valid = 1;
5311 }
5312
5313 /* Determine if this segment contains the ELF file header
5314 and if it contains the program headers themselves. */
5315 map->includes_filehdr = (segment->p_offset == 0
5316 && segment->p_filesz >= iehdr->e_ehsize);
5317
5318 map->includes_phdrs = 0;
5319
5320 if (! phdr_included || segment->p_type != PT_LOAD)
5321 {
5322 map->includes_phdrs =
5323 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5324 && (segment->p_offset + segment->p_filesz
5325 >= ((bfd_vma) iehdr->e_phoff
5326 + iehdr->e_phnum * iehdr->e_phentsize)));
5327
5328 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5329 phdr_included = TRUE;
5330 }
5331
5332 if (section_count == 0)
5333 {
5334 /* Special segments, such as the PT_PHDR segment, may contain
5335 no sections, but ordinary, loadable segments should contain
5336 something. They are allowed by the ELF spec however, so only
5337 a warning is produced. */
5338 if (segment->p_type == PT_LOAD)
5339 (*_bfd_error_handler)
5340 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5341 ibfd);
5342
5343 map->count = 0;
5344 *pointer_to_map = map;
5345 pointer_to_map = &map->next;
5346
5347 continue;
5348 }
5349
5350 /* Now scan the sections in the input BFD again and attempt
5351 to add their corresponding output sections to the segment map.
5352 The problem here is how to handle an output section which has
5353 been moved (ie had its LMA changed). There are four possibilities:
5354
5355 1. None of the sections have been moved.
5356 In this case we can continue to use the segment LMA from the
5357 input BFD.
5358
5359 2. All of the sections have been moved by the same amount.
5360 In this case we can change the segment's LMA to match the LMA
5361 of the first section.
5362
5363 3. Some of the sections have been moved, others have not.
5364 In this case those sections which have not been moved can be
5365 placed in the current segment which will have to have its size,
5366 and possibly its LMA changed, and a new segment or segments will
5367 have to be created to contain the other sections.
5368
5369 4. The sections have been moved, but not by the same amount.
5370 In this case we can change the segment's LMA to match the LMA
5371 of the first section and we will have to create a new segment
5372 or segments to contain the other sections.
5373
5374 In order to save time, we allocate an array to hold the section
5375 pointers that we are interested in. As these sections get assigned
5376 to a segment, they are removed from this array. */
5377
5378 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5379 to work around this long long bug. */
5380 sections = bfd_malloc2 (section_count, sizeof (asection *));
5381 if (sections == NULL)
5382 return FALSE;
5383
5384 /* Step One: Scan for segment vs section LMA conflicts.
5385 Also add the sections to the section array allocated above.
5386 Also add the sections to the current segment. In the common
5387 case, where the sections have not been moved, this means that
5388 we have completely filled the segment, and there is nothing
5389 more to do. */
5390 isec = 0;
5391 matching_lma = 0;
5392 suggested_lma = 0;
5393
5394 for (j = 0, section = ibfd->sections;
5395 section != NULL;
5396 section = section->next)
5397 {
5398 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5399 {
5400 output_section = section->output_section;
5401
5402 sections[j ++] = section;
5403
5404 /* The Solaris native linker always sets p_paddr to 0.
5405 We try to catch that case here, and set it to the
5406 correct value. Note - some backends require that
5407 p_paddr be left as zero. */
5408 if (segment->p_paddr == 0
5409 && segment->p_vaddr != 0
5410 && (! bed->want_p_paddr_set_to_zero)
5411 && isec == 0
5412 && output_section->lma != 0
5413 && (output_section->vma == (segment->p_vaddr
5414 + (map->includes_filehdr
5415 ? iehdr->e_ehsize
5416 : 0)
5417 + (map->includes_phdrs
5418 ? (iehdr->e_phnum
5419 * iehdr->e_phentsize)
5420 : 0))))
5421 map->p_paddr = segment->p_vaddr;
5422
5423 /* Match up the physical address of the segment with the
5424 LMA address of the output section. */
5425 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5426 || IS_COREFILE_NOTE (segment, section)
5427 || (bed->want_p_paddr_set_to_zero &&
5428 IS_CONTAINED_BY_VMA (output_section, segment)))
5429 {
5430 if (matching_lma == 0 || output_section->lma < matching_lma)
5431 matching_lma = output_section->lma;
5432
5433 /* We assume that if the section fits within the segment
5434 then it does not overlap any other section within that
5435 segment. */
5436 map->sections[isec ++] = output_section;
5437 }
5438 else if (suggested_lma == 0)
5439 suggested_lma = output_section->lma;
5440 }
5441 }
5442
5443 BFD_ASSERT (j == section_count);
5444
5445 /* Step Two: Adjust the physical address of the current segment,
5446 if necessary. */
5447 if (isec == section_count)
5448 {
5449 /* All of the sections fitted within the segment as currently
5450 specified. This is the default case. Add the segment to
5451 the list of built segments and carry on to process the next
5452 program header in the input BFD. */
5453 map->count = section_count;
5454 *pointer_to_map = map;
5455 pointer_to_map = &map->next;
5456
5457 if (matching_lma != map->p_paddr
5458 && !map->includes_filehdr && !map->includes_phdrs)
5459 /* There is some padding before the first section in the
5460 segment. So, we must account for that in the output
5461 segment's vma. */
5462 map->p_vaddr_offset = matching_lma - map->p_paddr;
5463
5464 free (sections);
5465 continue;
5466 }
5467 else
5468 {
5469 if (matching_lma != 0)
5470 {
5471 /* At least one section fits inside the current segment.
5472 Keep it, but modify its physical address to match the
5473 LMA of the first section that fitted. */
5474 map->p_paddr = matching_lma;
5475 }
5476 else
5477 {
5478 /* None of the sections fitted inside the current segment.
5479 Change the current segment's physical address to match
5480 the LMA of the first section. */
5481 map->p_paddr = suggested_lma;
5482 }
5483
5484 /* Offset the segment physical address from the lma
5485 to allow for space taken up by elf headers. */
5486 if (map->includes_filehdr)
5487 map->p_paddr -= iehdr->e_ehsize;
5488
5489 if (map->includes_phdrs)
5490 {
5491 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5492
5493 /* iehdr->e_phnum is just an estimate of the number
5494 of program headers that we will need. Make a note
5495 here of the number we used and the segment we chose
5496 to hold these headers, so that we can adjust the
5497 offset when we know the correct value. */
5498 phdr_adjust_num = iehdr->e_phnum;
5499 phdr_adjust_seg = map;
5500 }
5501 }
5502
5503 /* Step Three: Loop over the sections again, this time assigning
5504 those that fit to the current segment and removing them from the
5505 sections array; but making sure not to leave large gaps. Once all
5506 possible sections have been assigned to the current segment it is
5507 added to the list of built segments and if sections still remain
5508 to be assigned, a new segment is constructed before repeating
5509 the loop. */
5510 isec = 0;
5511 do
5512 {
5513 map->count = 0;
5514 suggested_lma = 0;
5515
5516 /* Fill the current segment with sections that fit. */
5517 for (j = 0; j < section_count; j++)
5518 {
5519 section = sections[j];
5520
5521 if (section == NULL)
5522 continue;
5523
5524 output_section = section->output_section;
5525
5526 BFD_ASSERT (output_section != NULL);
5527
5528 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5529 || IS_COREFILE_NOTE (segment, section))
5530 {
5531 if (map->count == 0)
5532 {
5533 /* If the first section in a segment does not start at
5534 the beginning of the segment, then something is
5535 wrong. */
5536 if (output_section->lma !=
5537 (map->p_paddr
5538 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5539 + (map->includes_phdrs
5540 ? iehdr->e_phnum * iehdr->e_phentsize
5541 : 0)))
5542 abort ();
5543 }
5544 else
5545 {
5546 asection * prev_sec;
5547
5548 prev_sec = map->sections[map->count - 1];
5549
5550 /* If the gap between the end of the previous section
5551 and the start of this section is more than
5552 maxpagesize then we need to start a new segment. */
5553 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5554 maxpagesize)
5555 < BFD_ALIGN (output_section->lma, maxpagesize))
5556 || ((prev_sec->lma + prev_sec->size)
5557 > output_section->lma))
5558 {
5559 if (suggested_lma == 0)
5560 suggested_lma = output_section->lma;
5561
5562 continue;
5563 }
5564 }
5565
5566 map->sections[map->count++] = output_section;
5567 ++isec;
5568 sections[j] = NULL;
5569 section->segment_mark = TRUE;
5570 }
5571 else if (suggested_lma == 0)
5572 suggested_lma = output_section->lma;
5573 }
5574
5575 BFD_ASSERT (map->count > 0);
5576
5577 /* Add the current segment to the list of built segments. */
5578 *pointer_to_map = map;
5579 pointer_to_map = &map->next;
5580
5581 if (isec < section_count)
5582 {
5583 /* We still have not allocated all of the sections to
5584 segments. Create a new segment here, initialise it
5585 and carry on looping. */
5586 amt = sizeof (struct elf_segment_map);
5587 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5588 map = bfd_alloc (obfd, amt);
5589 if (map == NULL)
5590 {
5591 free (sections);
5592 return FALSE;
5593 }
5594
5595 /* Initialise the fields of the segment map. Set the physical
5596 physical address to the LMA of the first section that has
5597 not yet been assigned. */
5598 map->next = NULL;
5599 map->p_type = segment->p_type;
5600 map->p_flags = segment->p_flags;
5601 map->p_flags_valid = 1;
5602 map->p_paddr = suggested_lma;
5603 map->p_paddr_valid = 1;
5604 map->includes_filehdr = 0;
5605 map->includes_phdrs = 0;
5606 }
5607 }
5608 while (isec < section_count);
5609
5610 free (sections);
5611 }
5612
5613 /* The Solaris linker creates program headers in which all the
5614 p_paddr fields are zero. When we try to objcopy or strip such a
5615 file, we get confused. Check for this case, and if we find it
5616 reset the p_paddr_valid fields. */
5617 for (map = map_first; map != NULL; map = map->next)
5618 if (map->p_paddr != 0)
5619 break;
5620 if (map == NULL)
5621 for (map = map_first; map != NULL; map = map->next)
5622 map->p_paddr_valid = 0;
5623
5624 elf_tdata (obfd)->segment_map = map_first;
5625
5626 /* If we had to estimate the number of program headers that were
5627 going to be needed, then check our estimate now and adjust
5628 the offset if necessary. */
5629 if (phdr_adjust_seg != NULL)
5630 {
5631 unsigned int count;
5632
5633 for (count = 0, map = map_first; map != NULL; map = map->next)
5634 count++;
5635
5636 if (count > phdr_adjust_num)
5637 phdr_adjust_seg->p_paddr
5638 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5639 }
5640
5641 #undef SEGMENT_END
5642 #undef SECTION_SIZE
5643 #undef IS_CONTAINED_BY_VMA
5644 #undef IS_CONTAINED_BY_LMA
5645 #undef IS_COREFILE_NOTE
5646 #undef IS_SOLARIS_PT_INTERP
5647 #undef IS_SECTION_IN_INPUT_SEGMENT
5648 #undef INCLUDE_SECTION_IN_SEGMENT
5649 #undef SEGMENT_AFTER_SEGMENT
5650 #undef SEGMENT_OVERLAPS
5651 return TRUE;
5652 }
5653
5654 /* Copy ELF program header information. */
5655
5656 static bfd_boolean
5657 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5658 {
5659 Elf_Internal_Ehdr *iehdr;
5660 struct elf_segment_map *map;
5661 struct elf_segment_map *map_first;
5662 struct elf_segment_map **pointer_to_map;
5663 Elf_Internal_Phdr *segment;
5664 unsigned int i;
5665 unsigned int num_segments;
5666 bfd_boolean phdr_included = FALSE;
5667
5668 iehdr = elf_elfheader (ibfd);
5669
5670 map_first = NULL;
5671 pointer_to_map = &map_first;
5672
5673 num_segments = elf_elfheader (ibfd)->e_phnum;
5674 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5675 i < num_segments;
5676 i++, segment++)
5677 {
5678 asection *section;
5679 unsigned int section_count;
5680 bfd_size_type amt;
5681 Elf_Internal_Shdr *this_hdr;
5682 asection *first_section = NULL;
5683 asection *lowest_section = NULL;
5684
5685 /* Compute how many sections are in this segment. */
5686 for (section = ibfd->sections, section_count = 0;
5687 section != NULL;
5688 section = section->next)
5689 {
5690 this_hdr = &(elf_section_data(section)->this_hdr);
5691 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5692 {
5693 if (!first_section)
5694 first_section = lowest_section = section;
5695 if (section->lma < lowest_section->lma)
5696 lowest_section = section;
5697 section_count++;
5698 }
5699 }
5700
5701 /* Allocate a segment map big enough to contain
5702 all of the sections we have selected. */
5703 amt = sizeof (struct elf_segment_map);
5704 if (section_count != 0)
5705 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5706 map = bfd_zalloc (obfd, amt);
5707 if (map == NULL)
5708 return FALSE;
5709
5710 /* Initialize the fields of the output segment map with the
5711 input segment. */
5712 map->next = NULL;
5713 map->p_type = segment->p_type;
5714 map->p_flags = segment->p_flags;
5715 map->p_flags_valid = 1;
5716 map->p_paddr = segment->p_paddr;
5717 map->p_paddr_valid = 1;
5718 map->p_align = segment->p_align;
5719 map->p_align_valid = 1;
5720 map->p_vaddr_offset = 0;
5721
5722 if (map->p_type == PT_GNU_RELRO
5723 && segment->p_filesz == segment->p_memsz)
5724 {
5725 /* The PT_GNU_RELRO segment may contain the first a few
5726 bytes in the .got.plt section even if the whole .got.plt
5727 section isn't in the PT_GNU_RELRO segment. We won't
5728 change the size of the PT_GNU_RELRO segment. */
5729 map->p_size = segment->p_filesz;
5730 map->p_size_valid = 1;
5731 }
5732
5733 /* Determine if this segment contains the ELF file header
5734 and if it contains the program headers themselves. */
5735 map->includes_filehdr = (segment->p_offset == 0
5736 && segment->p_filesz >= iehdr->e_ehsize);
5737
5738 map->includes_phdrs = 0;
5739 if (! phdr_included || segment->p_type != PT_LOAD)
5740 {
5741 map->includes_phdrs =
5742 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5743 && (segment->p_offset + segment->p_filesz
5744 >= ((bfd_vma) iehdr->e_phoff
5745 + iehdr->e_phnum * iehdr->e_phentsize)));
5746
5747 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5748 phdr_included = TRUE;
5749 }
5750
5751 if (!map->includes_phdrs && !map->includes_filehdr)
5752 /* There is some other padding before the first section. */
5753 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5754 - segment->p_paddr);
5755
5756 if (section_count != 0)
5757 {
5758 unsigned int isec = 0;
5759
5760 for (section = first_section;
5761 section != NULL;
5762 section = section->next)
5763 {
5764 this_hdr = &(elf_section_data(section)->this_hdr);
5765 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5766 {
5767 map->sections[isec++] = section->output_section;
5768 if (isec == section_count)
5769 break;
5770 }
5771 }
5772 }
5773
5774 map->count = section_count;
5775 *pointer_to_map = map;
5776 pointer_to_map = &map->next;
5777 }
5778
5779 elf_tdata (obfd)->segment_map = map_first;
5780 return TRUE;
5781 }
5782
5783 /* Copy private BFD data. This copies or rewrites ELF program header
5784 information. */
5785
5786 static bfd_boolean
5787 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5788 {
5789 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5790 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5791 return TRUE;
5792
5793 if (elf_tdata (ibfd)->phdr == NULL)
5794 return TRUE;
5795
5796 if (ibfd->xvec == obfd->xvec)
5797 {
5798 /* Check to see if any sections in the input BFD
5799 covered by ELF program header have changed. */
5800 Elf_Internal_Phdr *segment;
5801 asection *section, *osec;
5802 unsigned int i, num_segments;
5803 Elf_Internal_Shdr *this_hdr;
5804
5805 /* Initialize the segment mark field. */
5806 for (section = obfd->sections; section != NULL;
5807 section = section->next)
5808 section->segment_mark = FALSE;
5809
5810 num_segments = elf_elfheader (ibfd)->e_phnum;
5811 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5812 i < num_segments;
5813 i++, segment++)
5814 {
5815 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5816 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5817 which severly confuses things, so always regenerate the segment
5818 map in this case. */
5819 if (segment->p_paddr == 0
5820 && segment->p_memsz == 0
5821 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5822 goto rewrite;
5823
5824 for (section = ibfd->sections;
5825 section != NULL; section = section->next)
5826 {
5827 /* We mark the output section so that we know it comes
5828 from the input BFD. */
5829 osec = section->output_section;
5830 if (osec)
5831 osec->segment_mark = TRUE;
5832
5833 /* Check if this section is covered by the segment. */
5834 this_hdr = &(elf_section_data(section)->this_hdr);
5835 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5836 {
5837 /* FIXME: Check if its output section is changed or
5838 removed. What else do we need to check? */
5839 if (osec == NULL
5840 || section->flags != osec->flags
5841 || section->lma != osec->lma
5842 || section->vma != osec->vma
5843 || section->size != osec->size
5844 || section->rawsize != osec->rawsize
5845 || section->alignment_power != osec->alignment_power)
5846 goto rewrite;
5847 }
5848 }
5849 }
5850
5851 /* Check to see if any output section do not come from the
5852 input BFD. */
5853 for (section = obfd->sections; section != NULL;
5854 section = section->next)
5855 {
5856 if (section->segment_mark == FALSE)
5857 goto rewrite;
5858 else
5859 section->segment_mark = FALSE;
5860 }
5861
5862 return copy_elf_program_header (ibfd, obfd);
5863 }
5864
5865 rewrite:
5866 return rewrite_elf_program_header (ibfd, obfd);
5867 }
5868
5869 /* Initialize private output section information from input section. */
5870
5871 bfd_boolean
5872 _bfd_elf_init_private_section_data (bfd *ibfd,
5873 asection *isec,
5874 bfd *obfd,
5875 asection *osec,
5876 struct bfd_link_info *link_info)
5877
5878 {
5879 Elf_Internal_Shdr *ihdr, *ohdr;
5880 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5881
5882 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5883 || obfd->xvec->flavour != bfd_target_elf_flavour)
5884 return TRUE;
5885
5886 /* Don't copy the output ELF section type from input if the
5887 output BFD section flags have been set to something different.
5888 elf_fake_sections will set ELF section type based on BFD
5889 section flags. */
5890 if (elf_section_type (osec) == SHT_NULL
5891 && (osec->flags == isec->flags || !osec->flags))
5892 elf_section_type (osec) = elf_section_type (isec);
5893
5894 /* FIXME: Is this correct for all OS/PROC specific flags? */
5895 elf_section_flags (osec) |= (elf_section_flags (isec)
5896 & (SHF_MASKOS | SHF_MASKPROC));
5897
5898 /* Set things up for objcopy and relocatable link. The output
5899 SHT_GROUP section will have its elf_next_in_group pointing back
5900 to the input group members. Ignore linker created group section.
5901 See elfNN_ia64_object_p in elfxx-ia64.c. */
5902 if (need_group)
5903 {
5904 if (elf_sec_group (isec) == NULL
5905 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5906 {
5907 if (elf_section_flags (isec) & SHF_GROUP)
5908 elf_section_flags (osec) |= SHF_GROUP;
5909 elf_next_in_group (osec) = elf_next_in_group (isec);
5910 elf_group_name (osec) = elf_group_name (isec);
5911 }
5912 }
5913
5914 ihdr = &elf_section_data (isec)->this_hdr;
5915
5916 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5917 don't use the output section of the linked-to section since it
5918 may be NULL at this point. */
5919 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5920 {
5921 ohdr = &elf_section_data (osec)->this_hdr;
5922 ohdr->sh_flags |= SHF_LINK_ORDER;
5923 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5924 }
5925
5926 osec->use_rela_p = isec->use_rela_p;
5927
5928 return TRUE;
5929 }
5930
5931 /* Copy private section information. This copies over the entsize
5932 field, and sometimes the info field. */
5933
5934 bfd_boolean
5935 _bfd_elf_copy_private_section_data (bfd *ibfd,
5936 asection *isec,
5937 bfd *obfd,
5938 asection *osec)
5939 {
5940 Elf_Internal_Shdr *ihdr, *ohdr;
5941
5942 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5943 || obfd->xvec->flavour != bfd_target_elf_flavour)
5944 return TRUE;
5945
5946 ihdr = &elf_section_data (isec)->this_hdr;
5947 ohdr = &elf_section_data (osec)->this_hdr;
5948
5949 ohdr->sh_entsize = ihdr->sh_entsize;
5950
5951 if (ihdr->sh_type == SHT_SYMTAB
5952 || ihdr->sh_type == SHT_DYNSYM
5953 || ihdr->sh_type == SHT_GNU_verneed
5954 || ihdr->sh_type == SHT_GNU_verdef)
5955 ohdr->sh_info = ihdr->sh_info;
5956
5957 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5958 NULL);
5959 }
5960
5961 /* Copy private header information. */
5962
5963 bfd_boolean
5964 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5965 {
5966 asection *isec;
5967
5968 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5969 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5970 return TRUE;
5971
5972 /* Copy over private BFD data if it has not already been copied.
5973 This must be done here, rather than in the copy_private_bfd_data
5974 entry point, because the latter is called after the section
5975 contents have been set, which means that the program headers have
5976 already been worked out. */
5977 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5978 {
5979 if (! copy_private_bfd_data (ibfd, obfd))
5980 return FALSE;
5981 }
5982
5983 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
5984 but this might be wrong if we deleted the group section. */
5985 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
5986 if (elf_section_type (isec) == SHT_GROUP
5987 && isec->output_section == NULL)
5988 {
5989 asection *first = elf_next_in_group (isec);
5990 asection *s = first;
5991 while (s != NULL)
5992 {
5993 if (s->output_section != NULL)
5994 {
5995 elf_section_flags (s->output_section) &= ~SHF_GROUP;
5996 elf_group_name (s->output_section) = NULL;
5997 }
5998 s = elf_next_in_group (s);
5999 if (s == first)
6000 break;
6001 }
6002 }
6003
6004 return TRUE;
6005 }
6006
6007 /* Copy private symbol information. If this symbol is in a section
6008 which we did not map into a BFD section, try to map the section
6009 index correctly. We use special macro definitions for the mapped
6010 section indices; these definitions are interpreted by the
6011 swap_out_syms function. */
6012
6013 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6014 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6015 #define MAP_STRTAB (SHN_HIOS + 3)
6016 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6017 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6018
6019 bfd_boolean
6020 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6021 asymbol *isymarg,
6022 bfd *obfd,
6023 asymbol *osymarg)
6024 {
6025 elf_symbol_type *isym, *osym;
6026
6027 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6028 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6029 return TRUE;
6030
6031 isym = elf_symbol_from (ibfd, isymarg);
6032 osym = elf_symbol_from (obfd, osymarg);
6033
6034 if (isym != NULL
6035 && osym != NULL
6036 && bfd_is_abs_section (isym->symbol.section))
6037 {
6038 unsigned int shndx;
6039
6040 shndx = isym->internal_elf_sym.st_shndx;
6041 if (shndx == elf_onesymtab (ibfd))
6042 shndx = MAP_ONESYMTAB;
6043 else if (shndx == elf_dynsymtab (ibfd))
6044 shndx = MAP_DYNSYMTAB;
6045 else if (shndx == elf_tdata (ibfd)->strtab_section)
6046 shndx = MAP_STRTAB;
6047 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6048 shndx = MAP_SHSTRTAB;
6049 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6050 shndx = MAP_SYM_SHNDX;
6051 osym->internal_elf_sym.st_shndx = shndx;
6052 }
6053
6054 return TRUE;
6055 }
6056
6057 /* Swap out the symbols. */
6058
6059 static bfd_boolean
6060 swap_out_syms (bfd *abfd,
6061 struct bfd_strtab_hash **sttp,
6062 int relocatable_p)
6063 {
6064 const struct elf_backend_data *bed;
6065 int symcount;
6066 asymbol **syms;
6067 struct bfd_strtab_hash *stt;
6068 Elf_Internal_Shdr *symtab_hdr;
6069 Elf_Internal_Shdr *symtab_shndx_hdr;
6070 Elf_Internal_Shdr *symstrtab_hdr;
6071 bfd_byte *outbound_syms;
6072 bfd_byte *outbound_shndx;
6073 int idx;
6074 bfd_size_type amt;
6075 bfd_boolean name_local_sections;
6076
6077 if (!elf_map_symbols (abfd))
6078 return FALSE;
6079
6080 /* Dump out the symtabs. */
6081 stt = _bfd_elf_stringtab_init ();
6082 if (stt == NULL)
6083 return FALSE;
6084
6085 bed = get_elf_backend_data (abfd);
6086 symcount = bfd_get_symcount (abfd);
6087 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6088 symtab_hdr->sh_type = SHT_SYMTAB;
6089 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6090 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6091 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6092 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6093
6094 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6095 symstrtab_hdr->sh_type = SHT_STRTAB;
6096
6097 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6098 if (outbound_syms == NULL)
6099 {
6100 _bfd_stringtab_free (stt);
6101 return FALSE;
6102 }
6103 symtab_hdr->contents = outbound_syms;
6104
6105 outbound_shndx = NULL;
6106 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6107 if (symtab_shndx_hdr->sh_name != 0)
6108 {
6109 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6110 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6111 sizeof (Elf_External_Sym_Shndx));
6112 if (outbound_shndx == NULL)
6113 {
6114 _bfd_stringtab_free (stt);
6115 return FALSE;
6116 }
6117
6118 symtab_shndx_hdr->contents = outbound_shndx;
6119 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6120 symtab_shndx_hdr->sh_size = amt;
6121 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6122 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6123 }
6124
6125 /* Now generate the data (for "contents"). */
6126 {
6127 /* Fill in zeroth symbol and swap it out. */
6128 Elf_Internal_Sym sym;
6129 sym.st_name = 0;
6130 sym.st_value = 0;
6131 sym.st_size = 0;
6132 sym.st_info = 0;
6133 sym.st_other = 0;
6134 sym.st_shndx = SHN_UNDEF;
6135 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6136 outbound_syms += bed->s->sizeof_sym;
6137 if (outbound_shndx != NULL)
6138 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6139 }
6140
6141 name_local_sections
6142 = (bed->elf_backend_name_local_section_symbols
6143 && bed->elf_backend_name_local_section_symbols (abfd));
6144
6145 syms = bfd_get_outsymbols (abfd);
6146 for (idx = 0; idx < symcount; idx++)
6147 {
6148 Elf_Internal_Sym sym;
6149 bfd_vma value = syms[idx]->value;
6150 elf_symbol_type *type_ptr;
6151 flagword flags = syms[idx]->flags;
6152 int type;
6153
6154 if (!name_local_sections
6155 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6156 {
6157 /* Local section symbols have no name. */
6158 sym.st_name = 0;
6159 }
6160 else
6161 {
6162 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6163 syms[idx]->name,
6164 TRUE, FALSE);
6165 if (sym.st_name == (unsigned long) -1)
6166 {
6167 _bfd_stringtab_free (stt);
6168 return FALSE;
6169 }
6170 }
6171
6172 type_ptr = elf_symbol_from (abfd, syms[idx]);
6173
6174 if ((flags & BSF_SECTION_SYM) == 0
6175 && bfd_is_com_section (syms[idx]->section))
6176 {
6177 /* ELF common symbols put the alignment into the `value' field,
6178 and the size into the `size' field. This is backwards from
6179 how BFD handles it, so reverse it here. */
6180 sym.st_size = value;
6181 if (type_ptr == NULL
6182 || type_ptr->internal_elf_sym.st_value == 0)
6183 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6184 else
6185 sym.st_value = type_ptr->internal_elf_sym.st_value;
6186 sym.st_shndx = _bfd_elf_section_from_bfd_section
6187 (abfd, syms[idx]->section);
6188 }
6189 else
6190 {
6191 asection *sec = syms[idx]->section;
6192 int shndx;
6193
6194 if (sec->output_section)
6195 {
6196 value += sec->output_offset;
6197 sec = sec->output_section;
6198 }
6199
6200 /* Don't add in the section vma for relocatable output. */
6201 if (! relocatable_p)
6202 value += sec->vma;
6203 sym.st_value = value;
6204 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6205
6206 if (bfd_is_abs_section (sec)
6207 && type_ptr != NULL
6208 && type_ptr->internal_elf_sym.st_shndx != 0)
6209 {
6210 /* This symbol is in a real ELF section which we did
6211 not create as a BFD section. Undo the mapping done
6212 by copy_private_symbol_data. */
6213 shndx = type_ptr->internal_elf_sym.st_shndx;
6214 switch (shndx)
6215 {
6216 case MAP_ONESYMTAB:
6217 shndx = elf_onesymtab (abfd);
6218 break;
6219 case MAP_DYNSYMTAB:
6220 shndx = elf_dynsymtab (abfd);
6221 break;
6222 case MAP_STRTAB:
6223 shndx = elf_tdata (abfd)->strtab_section;
6224 break;
6225 case MAP_SHSTRTAB:
6226 shndx = elf_tdata (abfd)->shstrtab_section;
6227 break;
6228 case MAP_SYM_SHNDX:
6229 shndx = elf_tdata (abfd)->symtab_shndx_section;
6230 break;
6231 default:
6232 break;
6233 }
6234 }
6235 else
6236 {
6237 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6238
6239 if (shndx == -1)
6240 {
6241 asection *sec2;
6242
6243 /* Writing this would be a hell of a lot easier if
6244 we had some decent documentation on bfd, and
6245 knew what to expect of the library, and what to
6246 demand of applications. For example, it
6247 appears that `objcopy' might not set the
6248 section of a symbol to be a section that is
6249 actually in the output file. */
6250 sec2 = bfd_get_section_by_name (abfd, sec->name);
6251 if (sec2 == NULL)
6252 {
6253 _bfd_error_handler (_("\
6254 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6255 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6256 sec->name);
6257 bfd_set_error (bfd_error_invalid_operation);
6258 _bfd_stringtab_free (stt);
6259 return FALSE;
6260 }
6261
6262 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6263 BFD_ASSERT (shndx != -1);
6264 }
6265 }
6266
6267 sym.st_shndx = shndx;
6268 }
6269
6270 if ((flags & BSF_THREAD_LOCAL) != 0)
6271 type = STT_TLS;
6272 else if ((flags & BSF_FUNCTION) != 0)
6273 type = STT_FUNC;
6274 else if ((flags & BSF_OBJECT) != 0)
6275 type = STT_OBJECT;
6276 else if ((flags & BSF_RELC) != 0)
6277 type = STT_RELC;
6278 else if ((flags & BSF_SRELC) != 0)
6279 type = STT_SRELC;
6280 else
6281 type = STT_NOTYPE;
6282
6283 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6284 type = STT_TLS;
6285
6286 /* Processor-specific types. */
6287 if (type_ptr != NULL
6288 && bed->elf_backend_get_symbol_type)
6289 type = ((*bed->elf_backend_get_symbol_type)
6290 (&type_ptr->internal_elf_sym, type));
6291
6292 if (flags & BSF_SECTION_SYM)
6293 {
6294 if (flags & BSF_GLOBAL)
6295 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6296 else
6297 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6298 }
6299 else if (bfd_is_com_section (syms[idx]->section))
6300 sym.st_info = ELF_ST_INFO (STB_GLOBAL,
6301 #ifdef USE_STT_COMMON
6302 type == STT_OBJECT ? STT_COMMON :
6303 #endif
6304 type);
6305 else if (bfd_is_und_section (syms[idx]->section))
6306 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6307 ? STB_WEAK
6308 : STB_GLOBAL),
6309 type);
6310 else if (flags & BSF_FILE)
6311 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6312 else
6313 {
6314 int bind = STB_LOCAL;
6315
6316 if (flags & BSF_LOCAL)
6317 bind = STB_LOCAL;
6318 else if (flags & BSF_WEAK)
6319 bind = STB_WEAK;
6320 else if (flags & BSF_GLOBAL)
6321 bind = STB_GLOBAL;
6322
6323 sym.st_info = ELF_ST_INFO (bind, type);
6324 }
6325
6326 if (type_ptr != NULL)
6327 sym.st_other = type_ptr->internal_elf_sym.st_other;
6328 else
6329 sym.st_other = 0;
6330
6331 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6332 outbound_syms += bed->s->sizeof_sym;
6333 if (outbound_shndx != NULL)
6334 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6335 }
6336
6337 *sttp = stt;
6338 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6339 symstrtab_hdr->sh_type = SHT_STRTAB;
6340
6341 symstrtab_hdr->sh_flags = 0;
6342 symstrtab_hdr->sh_addr = 0;
6343 symstrtab_hdr->sh_entsize = 0;
6344 symstrtab_hdr->sh_link = 0;
6345 symstrtab_hdr->sh_info = 0;
6346 symstrtab_hdr->sh_addralign = 1;
6347
6348 return TRUE;
6349 }
6350
6351 /* Return the number of bytes required to hold the symtab vector.
6352
6353 Note that we base it on the count plus 1, since we will null terminate
6354 the vector allocated based on this size. However, the ELF symbol table
6355 always has a dummy entry as symbol #0, so it ends up even. */
6356
6357 long
6358 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6359 {
6360 long symcount;
6361 long symtab_size;
6362 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6363
6364 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6365 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6366 if (symcount > 0)
6367 symtab_size -= sizeof (asymbol *);
6368
6369 return symtab_size;
6370 }
6371
6372 long
6373 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6374 {
6375 long symcount;
6376 long symtab_size;
6377 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6378
6379 if (elf_dynsymtab (abfd) == 0)
6380 {
6381 bfd_set_error (bfd_error_invalid_operation);
6382 return -1;
6383 }
6384
6385 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6386 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6387 if (symcount > 0)
6388 symtab_size -= sizeof (asymbol *);
6389
6390 return symtab_size;
6391 }
6392
6393 long
6394 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6395 sec_ptr asect)
6396 {
6397 return (asect->reloc_count + 1) * sizeof (arelent *);
6398 }
6399
6400 /* Canonicalize the relocs. */
6401
6402 long
6403 _bfd_elf_canonicalize_reloc (bfd *abfd,
6404 sec_ptr section,
6405 arelent **relptr,
6406 asymbol **symbols)
6407 {
6408 arelent *tblptr;
6409 unsigned int i;
6410 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6411
6412 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6413 return -1;
6414
6415 tblptr = section->relocation;
6416 for (i = 0; i < section->reloc_count; i++)
6417 *relptr++ = tblptr++;
6418
6419 *relptr = NULL;
6420
6421 return section->reloc_count;
6422 }
6423
6424 long
6425 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6426 {
6427 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6428 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6429
6430 if (symcount >= 0)
6431 bfd_get_symcount (abfd) = symcount;
6432 return symcount;
6433 }
6434
6435 long
6436 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6437 asymbol **allocation)
6438 {
6439 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6440 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6441
6442 if (symcount >= 0)
6443 bfd_get_dynamic_symcount (abfd) = symcount;
6444 return symcount;
6445 }
6446
6447 /* Return the size required for the dynamic reloc entries. Any loadable
6448 section that was actually installed in the BFD, and has type SHT_REL
6449 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6450 dynamic reloc section. */
6451
6452 long
6453 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6454 {
6455 long ret;
6456 asection *s;
6457
6458 if (elf_dynsymtab (abfd) == 0)
6459 {
6460 bfd_set_error (bfd_error_invalid_operation);
6461 return -1;
6462 }
6463
6464 ret = sizeof (arelent *);
6465 for (s = abfd->sections; s != NULL; s = s->next)
6466 if ((s->flags & SEC_LOAD) != 0
6467 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6468 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6469 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6470 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6471 * sizeof (arelent *));
6472
6473 return ret;
6474 }
6475
6476 /* Canonicalize the dynamic relocation entries. Note that we return the
6477 dynamic relocations as a single block, although they are actually
6478 associated with particular sections; the interface, which was
6479 designed for SunOS style shared libraries, expects that there is only
6480 one set of dynamic relocs. Any loadable section that was actually
6481 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6482 dynamic symbol table, is considered to be a dynamic reloc section. */
6483
6484 long
6485 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6486 arelent **storage,
6487 asymbol **syms)
6488 {
6489 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6490 asection *s;
6491 long ret;
6492
6493 if (elf_dynsymtab (abfd) == 0)
6494 {
6495 bfd_set_error (bfd_error_invalid_operation);
6496 return -1;
6497 }
6498
6499 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6500 ret = 0;
6501 for (s = abfd->sections; s != NULL; s = s->next)
6502 {
6503 if ((s->flags & SEC_LOAD) != 0
6504 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6505 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6506 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6507 {
6508 arelent *p;
6509 long count, i;
6510
6511 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6512 return -1;
6513 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6514 p = s->relocation;
6515 for (i = 0; i < count; i++)
6516 *storage++ = p++;
6517 ret += count;
6518 }
6519 }
6520
6521 *storage = NULL;
6522
6523 return ret;
6524 }
6525 \f
6526 /* Read in the version information. */
6527
6528 bfd_boolean
6529 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6530 {
6531 bfd_byte *contents = NULL;
6532 unsigned int freeidx = 0;
6533
6534 if (elf_dynverref (abfd) != 0)
6535 {
6536 Elf_Internal_Shdr *hdr;
6537 Elf_External_Verneed *everneed;
6538 Elf_Internal_Verneed *iverneed;
6539 unsigned int i;
6540 bfd_byte *contents_end;
6541
6542 hdr = &elf_tdata (abfd)->dynverref_hdr;
6543
6544 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6545 sizeof (Elf_Internal_Verneed));
6546 if (elf_tdata (abfd)->verref == NULL)
6547 goto error_return;
6548
6549 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6550
6551 contents = bfd_malloc (hdr->sh_size);
6552 if (contents == NULL)
6553 {
6554 error_return_verref:
6555 elf_tdata (abfd)->verref = NULL;
6556 elf_tdata (abfd)->cverrefs = 0;
6557 goto error_return;
6558 }
6559 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6560 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6561 goto error_return_verref;
6562
6563 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6564 goto error_return_verref;
6565
6566 BFD_ASSERT (sizeof (Elf_External_Verneed)
6567 == sizeof (Elf_External_Vernaux));
6568 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6569 everneed = (Elf_External_Verneed *) contents;
6570 iverneed = elf_tdata (abfd)->verref;
6571 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6572 {
6573 Elf_External_Vernaux *evernaux;
6574 Elf_Internal_Vernaux *ivernaux;
6575 unsigned int j;
6576
6577 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6578
6579 iverneed->vn_bfd = abfd;
6580
6581 iverneed->vn_filename =
6582 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6583 iverneed->vn_file);
6584 if (iverneed->vn_filename == NULL)
6585 goto error_return_verref;
6586
6587 if (iverneed->vn_cnt == 0)
6588 iverneed->vn_auxptr = NULL;
6589 else
6590 {
6591 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6592 sizeof (Elf_Internal_Vernaux));
6593 if (iverneed->vn_auxptr == NULL)
6594 goto error_return_verref;
6595 }
6596
6597 if (iverneed->vn_aux
6598 > (size_t) (contents_end - (bfd_byte *) everneed))
6599 goto error_return_verref;
6600
6601 evernaux = ((Elf_External_Vernaux *)
6602 ((bfd_byte *) everneed + iverneed->vn_aux));
6603 ivernaux = iverneed->vn_auxptr;
6604 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6605 {
6606 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6607
6608 ivernaux->vna_nodename =
6609 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6610 ivernaux->vna_name);
6611 if (ivernaux->vna_nodename == NULL)
6612 goto error_return_verref;
6613
6614 if (j + 1 < iverneed->vn_cnt)
6615 ivernaux->vna_nextptr = ivernaux + 1;
6616 else
6617 ivernaux->vna_nextptr = NULL;
6618
6619 if (ivernaux->vna_next
6620 > (size_t) (contents_end - (bfd_byte *) evernaux))
6621 goto error_return_verref;
6622
6623 evernaux = ((Elf_External_Vernaux *)
6624 ((bfd_byte *) evernaux + ivernaux->vna_next));
6625
6626 if (ivernaux->vna_other > freeidx)
6627 freeidx = ivernaux->vna_other;
6628 }
6629
6630 if (i + 1 < hdr->sh_info)
6631 iverneed->vn_nextref = iverneed + 1;
6632 else
6633 iverneed->vn_nextref = NULL;
6634
6635 if (iverneed->vn_next
6636 > (size_t) (contents_end - (bfd_byte *) everneed))
6637 goto error_return_verref;
6638
6639 everneed = ((Elf_External_Verneed *)
6640 ((bfd_byte *) everneed + iverneed->vn_next));
6641 }
6642
6643 free (contents);
6644 contents = NULL;
6645 }
6646
6647 if (elf_dynverdef (abfd) != 0)
6648 {
6649 Elf_Internal_Shdr *hdr;
6650 Elf_External_Verdef *everdef;
6651 Elf_Internal_Verdef *iverdef;
6652 Elf_Internal_Verdef *iverdefarr;
6653 Elf_Internal_Verdef iverdefmem;
6654 unsigned int i;
6655 unsigned int maxidx;
6656 bfd_byte *contents_end_def, *contents_end_aux;
6657
6658 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6659
6660 contents = bfd_malloc (hdr->sh_size);
6661 if (contents == NULL)
6662 goto error_return;
6663 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6664 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6665 goto error_return;
6666
6667 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6668 goto error_return;
6669
6670 BFD_ASSERT (sizeof (Elf_External_Verdef)
6671 >= sizeof (Elf_External_Verdaux));
6672 contents_end_def = contents + hdr->sh_size
6673 - sizeof (Elf_External_Verdef);
6674 contents_end_aux = contents + hdr->sh_size
6675 - sizeof (Elf_External_Verdaux);
6676
6677 /* We know the number of entries in the section but not the maximum
6678 index. Therefore we have to run through all entries and find
6679 the maximum. */
6680 everdef = (Elf_External_Verdef *) contents;
6681 maxidx = 0;
6682 for (i = 0; i < hdr->sh_info; ++i)
6683 {
6684 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6685
6686 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6687 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6688
6689 if (iverdefmem.vd_next
6690 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6691 goto error_return;
6692
6693 everdef = ((Elf_External_Verdef *)
6694 ((bfd_byte *) everdef + iverdefmem.vd_next));
6695 }
6696
6697 if (default_imported_symver)
6698 {
6699 if (freeidx > maxidx)
6700 maxidx = ++freeidx;
6701 else
6702 freeidx = ++maxidx;
6703 }
6704 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6705 sizeof (Elf_Internal_Verdef));
6706 if (elf_tdata (abfd)->verdef == NULL)
6707 goto error_return;
6708
6709 elf_tdata (abfd)->cverdefs = maxidx;
6710
6711 everdef = (Elf_External_Verdef *) contents;
6712 iverdefarr = elf_tdata (abfd)->verdef;
6713 for (i = 0; i < hdr->sh_info; i++)
6714 {
6715 Elf_External_Verdaux *everdaux;
6716 Elf_Internal_Verdaux *iverdaux;
6717 unsigned int j;
6718
6719 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6720
6721 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6722 {
6723 error_return_verdef:
6724 elf_tdata (abfd)->verdef = NULL;
6725 elf_tdata (abfd)->cverdefs = 0;
6726 goto error_return;
6727 }
6728
6729 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6730 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6731
6732 iverdef->vd_bfd = abfd;
6733
6734 if (iverdef->vd_cnt == 0)
6735 iverdef->vd_auxptr = NULL;
6736 else
6737 {
6738 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6739 sizeof (Elf_Internal_Verdaux));
6740 if (iverdef->vd_auxptr == NULL)
6741 goto error_return_verdef;
6742 }
6743
6744 if (iverdef->vd_aux
6745 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6746 goto error_return_verdef;
6747
6748 everdaux = ((Elf_External_Verdaux *)
6749 ((bfd_byte *) everdef + iverdef->vd_aux));
6750 iverdaux = iverdef->vd_auxptr;
6751 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6752 {
6753 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6754
6755 iverdaux->vda_nodename =
6756 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6757 iverdaux->vda_name);
6758 if (iverdaux->vda_nodename == NULL)
6759 goto error_return_verdef;
6760
6761 if (j + 1 < iverdef->vd_cnt)
6762 iverdaux->vda_nextptr = iverdaux + 1;
6763 else
6764 iverdaux->vda_nextptr = NULL;
6765
6766 if (iverdaux->vda_next
6767 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6768 goto error_return_verdef;
6769
6770 everdaux = ((Elf_External_Verdaux *)
6771 ((bfd_byte *) everdaux + iverdaux->vda_next));
6772 }
6773
6774 if (iverdef->vd_cnt)
6775 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6776
6777 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6778 iverdef->vd_nextdef = iverdef + 1;
6779 else
6780 iverdef->vd_nextdef = NULL;
6781
6782 everdef = ((Elf_External_Verdef *)
6783 ((bfd_byte *) everdef + iverdef->vd_next));
6784 }
6785
6786 free (contents);
6787 contents = NULL;
6788 }
6789 else if (default_imported_symver)
6790 {
6791 if (freeidx < 3)
6792 freeidx = 3;
6793 else
6794 freeidx++;
6795
6796 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6797 sizeof (Elf_Internal_Verdef));
6798 if (elf_tdata (abfd)->verdef == NULL)
6799 goto error_return;
6800
6801 elf_tdata (abfd)->cverdefs = freeidx;
6802 }
6803
6804 /* Create a default version based on the soname. */
6805 if (default_imported_symver)
6806 {
6807 Elf_Internal_Verdef *iverdef;
6808 Elf_Internal_Verdaux *iverdaux;
6809
6810 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6811
6812 iverdef->vd_version = VER_DEF_CURRENT;
6813 iverdef->vd_flags = 0;
6814 iverdef->vd_ndx = freeidx;
6815 iverdef->vd_cnt = 1;
6816
6817 iverdef->vd_bfd = abfd;
6818
6819 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6820 if (iverdef->vd_nodename == NULL)
6821 goto error_return_verdef;
6822 iverdef->vd_nextdef = NULL;
6823 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6824 if (iverdef->vd_auxptr == NULL)
6825 goto error_return_verdef;
6826
6827 iverdaux = iverdef->vd_auxptr;
6828 iverdaux->vda_nodename = iverdef->vd_nodename;
6829 iverdaux->vda_nextptr = NULL;
6830 }
6831
6832 return TRUE;
6833
6834 error_return:
6835 if (contents != NULL)
6836 free (contents);
6837 return FALSE;
6838 }
6839 \f
6840 asymbol *
6841 _bfd_elf_make_empty_symbol (bfd *abfd)
6842 {
6843 elf_symbol_type *newsym;
6844 bfd_size_type amt = sizeof (elf_symbol_type);
6845
6846 newsym = bfd_zalloc (abfd, amt);
6847 if (!newsym)
6848 return NULL;
6849 else
6850 {
6851 newsym->symbol.the_bfd = abfd;
6852 return &newsym->symbol;
6853 }
6854 }
6855
6856 void
6857 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6858 asymbol *symbol,
6859 symbol_info *ret)
6860 {
6861 bfd_symbol_info (symbol, ret);
6862 }
6863
6864 /* Return whether a symbol name implies a local symbol. Most targets
6865 use this function for the is_local_label_name entry point, but some
6866 override it. */
6867
6868 bfd_boolean
6869 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6870 const char *name)
6871 {
6872 /* Normal local symbols start with ``.L''. */
6873 if (name[0] == '.' && name[1] == 'L')
6874 return TRUE;
6875
6876 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6877 DWARF debugging symbols starting with ``..''. */
6878 if (name[0] == '.' && name[1] == '.')
6879 return TRUE;
6880
6881 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6882 emitting DWARF debugging output. I suspect this is actually a
6883 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6884 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6885 underscore to be emitted on some ELF targets). For ease of use,
6886 we treat such symbols as local. */
6887 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6888 return TRUE;
6889
6890 return FALSE;
6891 }
6892
6893 alent *
6894 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6895 asymbol *symbol ATTRIBUTE_UNUSED)
6896 {
6897 abort ();
6898 return NULL;
6899 }
6900
6901 bfd_boolean
6902 _bfd_elf_set_arch_mach (bfd *abfd,
6903 enum bfd_architecture arch,
6904 unsigned long machine)
6905 {
6906 /* If this isn't the right architecture for this backend, and this
6907 isn't the generic backend, fail. */
6908 if (arch != get_elf_backend_data (abfd)->arch
6909 && arch != bfd_arch_unknown
6910 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6911 return FALSE;
6912
6913 return bfd_default_set_arch_mach (abfd, arch, machine);
6914 }
6915
6916 /* Find the function to a particular section and offset,
6917 for error reporting. */
6918
6919 static bfd_boolean
6920 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6921 asection *section,
6922 asymbol **symbols,
6923 bfd_vma offset,
6924 const char **filename_ptr,
6925 const char **functionname_ptr)
6926 {
6927 const char *filename;
6928 asymbol *func, *file;
6929 bfd_vma low_func;
6930 asymbol **p;
6931 /* ??? Given multiple file symbols, it is impossible to reliably
6932 choose the right file name for global symbols. File symbols are
6933 local symbols, and thus all file symbols must sort before any
6934 global symbols. The ELF spec may be interpreted to say that a
6935 file symbol must sort before other local symbols, but currently
6936 ld -r doesn't do this. So, for ld -r output, it is possible to
6937 make a better choice of file name for local symbols by ignoring
6938 file symbols appearing after a given local symbol. */
6939 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6940
6941 filename = NULL;
6942 func = NULL;
6943 file = NULL;
6944 low_func = 0;
6945 state = nothing_seen;
6946
6947 for (p = symbols; *p != NULL; p++)
6948 {
6949 elf_symbol_type *q;
6950
6951 q = (elf_symbol_type *) *p;
6952
6953 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6954 {
6955 default:
6956 break;
6957 case STT_FILE:
6958 file = &q->symbol;
6959 if (state == symbol_seen)
6960 state = file_after_symbol_seen;
6961 continue;
6962 case STT_NOTYPE:
6963 case STT_FUNC:
6964 if (bfd_get_section (&q->symbol) == section
6965 && q->symbol.value >= low_func
6966 && q->symbol.value <= offset)
6967 {
6968 func = (asymbol *) q;
6969 low_func = q->symbol.value;
6970 filename = NULL;
6971 if (file != NULL
6972 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6973 || state != file_after_symbol_seen))
6974 filename = bfd_asymbol_name (file);
6975 }
6976 break;
6977 }
6978 if (state == nothing_seen)
6979 state = symbol_seen;
6980 }
6981
6982 if (func == NULL)
6983 return FALSE;
6984
6985 if (filename_ptr)
6986 *filename_ptr = filename;
6987 if (functionname_ptr)
6988 *functionname_ptr = bfd_asymbol_name (func);
6989
6990 return TRUE;
6991 }
6992
6993 /* Find the nearest line to a particular section and offset,
6994 for error reporting. */
6995
6996 bfd_boolean
6997 _bfd_elf_find_nearest_line (bfd *abfd,
6998 asection *section,
6999 asymbol **symbols,
7000 bfd_vma offset,
7001 const char **filename_ptr,
7002 const char **functionname_ptr,
7003 unsigned int *line_ptr)
7004 {
7005 bfd_boolean found;
7006
7007 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7008 filename_ptr, functionname_ptr,
7009 line_ptr))
7010 {
7011 if (!*functionname_ptr)
7012 elf_find_function (abfd, section, symbols, offset,
7013 *filename_ptr ? NULL : filename_ptr,
7014 functionname_ptr);
7015
7016 return TRUE;
7017 }
7018
7019 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7020 filename_ptr, functionname_ptr,
7021 line_ptr, 0,
7022 &elf_tdata (abfd)->dwarf2_find_line_info))
7023 {
7024 if (!*functionname_ptr)
7025 elf_find_function (abfd, section, symbols, offset,
7026 *filename_ptr ? NULL : filename_ptr,
7027 functionname_ptr);
7028
7029 return TRUE;
7030 }
7031
7032 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7033 &found, filename_ptr,
7034 functionname_ptr, line_ptr,
7035 &elf_tdata (abfd)->line_info))
7036 return FALSE;
7037 if (found && (*functionname_ptr || *line_ptr))
7038 return TRUE;
7039
7040 if (symbols == NULL)
7041 return FALSE;
7042
7043 if (! elf_find_function (abfd, section, symbols, offset,
7044 filename_ptr, functionname_ptr))
7045 return FALSE;
7046
7047 *line_ptr = 0;
7048 return TRUE;
7049 }
7050
7051 /* Find the line for a symbol. */
7052
7053 bfd_boolean
7054 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7055 const char **filename_ptr, unsigned int *line_ptr)
7056 {
7057 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7058 filename_ptr, line_ptr, 0,
7059 &elf_tdata (abfd)->dwarf2_find_line_info);
7060 }
7061
7062 /* After a call to bfd_find_nearest_line, successive calls to
7063 bfd_find_inliner_info can be used to get source information about
7064 each level of function inlining that terminated at the address
7065 passed to bfd_find_nearest_line. Currently this is only supported
7066 for DWARF2 with appropriate DWARF3 extensions. */
7067
7068 bfd_boolean
7069 _bfd_elf_find_inliner_info (bfd *abfd,
7070 const char **filename_ptr,
7071 const char **functionname_ptr,
7072 unsigned int *line_ptr)
7073 {
7074 bfd_boolean found;
7075 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7076 functionname_ptr, line_ptr,
7077 & elf_tdata (abfd)->dwarf2_find_line_info);
7078 return found;
7079 }
7080
7081 int
7082 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7083 {
7084 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7085 int ret = bed->s->sizeof_ehdr;
7086
7087 if (!info->relocatable)
7088 {
7089 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7090
7091 if (phdr_size == (bfd_size_type) -1)
7092 {
7093 struct elf_segment_map *m;
7094
7095 phdr_size = 0;
7096 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7097 phdr_size += bed->s->sizeof_phdr;
7098
7099 if (phdr_size == 0)
7100 phdr_size = get_program_header_size (abfd, info);
7101 }
7102
7103 elf_tdata (abfd)->program_header_size = phdr_size;
7104 ret += phdr_size;
7105 }
7106
7107 return ret;
7108 }
7109
7110 bfd_boolean
7111 _bfd_elf_set_section_contents (bfd *abfd,
7112 sec_ptr section,
7113 const void *location,
7114 file_ptr offset,
7115 bfd_size_type count)
7116 {
7117 Elf_Internal_Shdr *hdr;
7118 bfd_signed_vma pos;
7119
7120 if (! abfd->output_has_begun
7121 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7122 return FALSE;
7123
7124 hdr = &elf_section_data (section)->this_hdr;
7125 pos = hdr->sh_offset + offset;
7126 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7127 || bfd_bwrite (location, count, abfd) != count)
7128 return FALSE;
7129
7130 return TRUE;
7131 }
7132
7133 void
7134 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7135 arelent *cache_ptr ATTRIBUTE_UNUSED,
7136 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7137 {
7138 abort ();
7139 }
7140
7141 /* Try to convert a non-ELF reloc into an ELF one. */
7142
7143 bfd_boolean
7144 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7145 {
7146 /* Check whether we really have an ELF howto. */
7147
7148 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7149 {
7150 bfd_reloc_code_real_type code;
7151 reloc_howto_type *howto;
7152
7153 /* Alien reloc: Try to determine its type to replace it with an
7154 equivalent ELF reloc. */
7155
7156 if (areloc->howto->pc_relative)
7157 {
7158 switch (areloc->howto->bitsize)
7159 {
7160 case 8:
7161 code = BFD_RELOC_8_PCREL;
7162 break;
7163 case 12:
7164 code = BFD_RELOC_12_PCREL;
7165 break;
7166 case 16:
7167 code = BFD_RELOC_16_PCREL;
7168 break;
7169 case 24:
7170 code = BFD_RELOC_24_PCREL;
7171 break;
7172 case 32:
7173 code = BFD_RELOC_32_PCREL;
7174 break;
7175 case 64:
7176 code = BFD_RELOC_64_PCREL;
7177 break;
7178 default:
7179 goto fail;
7180 }
7181
7182 howto = bfd_reloc_type_lookup (abfd, code);
7183
7184 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7185 {
7186 if (howto->pcrel_offset)
7187 areloc->addend += areloc->address;
7188 else
7189 areloc->addend -= areloc->address; /* addend is unsigned!! */
7190 }
7191 }
7192 else
7193 {
7194 switch (areloc->howto->bitsize)
7195 {
7196 case 8:
7197 code = BFD_RELOC_8;
7198 break;
7199 case 14:
7200 code = BFD_RELOC_14;
7201 break;
7202 case 16:
7203 code = BFD_RELOC_16;
7204 break;
7205 case 26:
7206 code = BFD_RELOC_26;
7207 break;
7208 case 32:
7209 code = BFD_RELOC_32;
7210 break;
7211 case 64:
7212 code = BFD_RELOC_64;
7213 break;
7214 default:
7215 goto fail;
7216 }
7217
7218 howto = bfd_reloc_type_lookup (abfd, code);
7219 }
7220
7221 if (howto)
7222 areloc->howto = howto;
7223 else
7224 goto fail;
7225 }
7226
7227 return TRUE;
7228
7229 fail:
7230 (*_bfd_error_handler)
7231 (_("%B: unsupported relocation type %s"),
7232 abfd, areloc->howto->name);
7233 bfd_set_error (bfd_error_bad_value);
7234 return FALSE;
7235 }
7236
7237 bfd_boolean
7238 _bfd_elf_close_and_cleanup (bfd *abfd)
7239 {
7240 if (bfd_get_format (abfd) == bfd_object)
7241 {
7242 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7243 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7244 _bfd_dwarf2_cleanup_debug_info (abfd);
7245 }
7246
7247 return _bfd_generic_close_and_cleanup (abfd);
7248 }
7249
7250 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7251 in the relocation's offset. Thus we cannot allow any sort of sanity
7252 range-checking to interfere. There is nothing else to do in processing
7253 this reloc. */
7254
7255 bfd_reloc_status_type
7256 _bfd_elf_rel_vtable_reloc_fn
7257 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7258 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7259 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7260 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7261 {
7262 return bfd_reloc_ok;
7263 }
7264 \f
7265 /* Elf core file support. Much of this only works on native
7266 toolchains, since we rely on knowing the
7267 machine-dependent procfs structure in order to pick
7268 out details about the corefile. */
7269
7270 #ifdef HAVE_SYS_PROCFS_H
7271 # include <sys/procfs.h>
7272 #endif
7273
7274 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7275
7276 static int
7277 elfcore_make_pid (bfd *abfd)
7278 {
7279 return ((elf_tdata (abfd)->core_lwpid << 16)
7280 + (elf_tdata (abfd)->core_pid));
7281 }
7282
7283 /* If there isn't a section called NAME, make one, using
7284 data from SECT. Note, this function will generate a
7285 reference to NAME, so you shouldn't deallocate or
7286 overwrite it. */
7287
7288 static bfd_boolean
7289 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7290 {
7291 asection *sect2;
7292
7293 if (bfd_get_section_by_name (abfd, name) != NULL)
7294 return TRUE;
7295
7296 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7297 if (sect2 == NULL)
7298 return FALSE;
7299
7300 sect2->size = sect->size;
7301 sect2->filepos = sect->filepos;
7302 sect2->alignment_power = sect->alignment_power;
7303 return TRUE;
7304 }
7305
7306 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7307 actually creates up to two pseudosections:
7308 - For the single-threaded case, a section named NAME, unless
7309 such a section already exists.
7310 - For the multi-threaded case, a section named "NAME/PID", where
7311 PID is elfcore_make_pid (abfd).
7312 Both pseudosections have identical contents. */
7313 bfd_boolean
7314 _bfd_elfcore_make_pseudosection (bfd *abfd,
7315 char *name,
7316 size_t size,
7317 ufile_ptr filepos)
7318 {
7319 char buf[100];
7320 char *threaded_name;
7321 size_t len;
7322 asection *sect;
7323
7324 /* Build the section name. */
7325
7326 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7327 len = strlen (buf) + 1;
7328 threaded_name = bfd_alloc (abfd, len);
7329 if (threaded_name == NULL)
7330 return FALSE;
7331 memcpy (threaded_name, buf, len);
7332
7333 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7334 SEC_HAS_CONTENTS);
7335 if (sect == NULL)
7336 return FALSE;
7337 sect->size = size;
7338 sect->filepos = filepos;
7339 sect->alignment_power = 2;
7340
7341 return elfcore_maybe_make_sect (abfd, name, sect);
7342 }
7343
7344 /* prstatus_t exists on:
7345 solaris 2.5+
7346 linux 2.[01] + glibc
7347 unixware 4.2
7348 */
7349
7350 #if defined (HAVE_PRSTATUS_T)
7351
7352 static bfd_boolean
7353 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7354 {
7355 size_t size;
7356 int offset;
7357
7358 if (note->descsz == sizeof (prstatus_t))
7359 {
7360 prstatus_t prstat;
7361
7362 size = sizeof (prstat.pr_reg);
7363 offset = offsetof (prstatus_t, pr_reg);
7364 memcpy (&prstat, note->descdata, sizeof (prstat));
7365
7366 /* Do not overwrite the core signal if it
7367 has already been set by another thread. */
7368 if (elf_tdata (abfd)->core_signal == 0)
7369 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7370 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7371
7372 /* pr_who exists on:
7373 solaris 2.5+
7374 unixware 4.2
7375 pr_who doesn't exist on:
7376 linux 2.[01]
7377 */
7378 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7379 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7380 #endif
7381 }
7382 #if defined (HAVE_PRSTATUS32_T)
7383 else if (note->descsz == sizeof (prstatus32_t))
7384 {
7385 /* 64-bit host, 32-bit corefile */
7386 prstatus32_t prstat;
7387
7388 size = sizeof (prstat.pr_reg);
7389 offset = offsetof (prstatus32_t, pr_reg);
7390 memcpy (&prstat, note->descdata, sizeof (prstat));
7391
7392 /* Do not overwrite the core signal if it
7393 has already been set by another thread. */
7394 if (elf_tdata (abfd)->core_signal == 0)
7395 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7396 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7397
7398 /* pr_who exists on:
7399 solaris 2.5+
7400 unixware 4.2
7401 pr_who doesn't exist on:
7402 linux 2.[01]
7403 */
7404 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7405 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7406 #endif
7407 }
7408 #endif /* HAVE_PRSTATUS32_T */
7409 else
7410 {
7411 /* Fail - we don't know how to handle any other
7412 note size (ie. data object type). */
7413 return TRUE;
7414 }
7415
7416 /* Make a ".reg/999" section and a ".reg" section. */
7417 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7418 size, note->descpos + offset);
7419 }
7420 #endif /* defined (HAVE_PRSTATUS_T) */
7421
7422 /* Create a pseudosection containing the exact contents of NOTE. */
7423 static bfd_boolean
7424 elfcore_make_note_pseudosection (bfd *abfd,
7425 char *name,
7426 Elf_Internal_Note *note)
7427 {
7428 return _bfd_elfcore_make_pseudosection (abfd, name,
7429 note->descsz, note->descpos);
7430 }
7431
7432 /* There isn't a consistent prfpregset_t across platforms,
7433 but it doesn't matter, because we don't have to pick this
7434 data structure apart. */
7435
7436 static bfd_boolean
7437 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7438 {
7439 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7440 }
7441
7442 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7443 type of NT_PRXFPREG. Just include the whole note's contents
7444 literally. */
7445
7446 static bfd_boolean
7447 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7448 {
7449 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7450 }
7451
7452 #if defined (HAVE_PRPSINFO_T)
7453 typedef prpsinfo_t elfcore_psinfo_t;
7454 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7455 typedef prpsinfo32_t elfcore_psinfo32_t;
7456 #endif
7457 #endif
7458
7459 #if defined (HAVE_PSINFO_T)
7460 typedef psinfo_t elfcore_psinfo_t;
7461 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7462 typedef psinfo32_t elfcore_psinfo32_t;
7463 #endif
7464 #endif
7465
7466 /* return a malloc'ed copy of a string at START which is at
7467 most MAX bytes long, possibly without a terminating '\0'.
7468 the copy will always have a terminating '\0'. */
7469
7470 char *
7471 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7472 {
7473 char *dups;
7474 char *end = memchr (start, '\0', max);
7475 size_t len;
7476
7477 if (end == NULL)
7478 len = max;
7479 else
7480 len = end - start;
7481
7482 dups = bfd_alloc (abfd, len + 1);
7483 if (dups == NULL)
7484 return NULL;
7485
7486 memcpy (dups, start, len);
7487 dups[len] = '\0';
7488
7489 return dups;
7490 }
7491
7492 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7493 static bfd_boolean
7494 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7495 {
7496 if (note->descsz == sizeof (elfcore_psinfo_t))
7497 {
7498 elfcore_psinfo_t psinfo;
7499
7500 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7501
7502 elf_tdata (abfd)->core_program
7503 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7504 sizeof (psinfo.pr_fname));
7505
7506 elf_tdata (abfd)->core_command
7507 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7508 sizeof (psinfo.pr_psargs));
7509 }
7510 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7511 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7512 {
7513 /* 64-bit host, 32-bit corefile */
7514 elfcore_psinfo32_t psinfo;
7515
7516 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7517
7518 elf_tdata (abfd)->core_program
7519 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7520 sizeof (psinfo.pr_fname));
7521
7522 elf_tdata (abfd)->core_command
7523 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7524 sizeof (psinfo.pr_psargs));
7525 }
7526 #endif
7527
7528 else
7529 {
7530 /* Fail - we don't know how to handle any other
7531 note size (ie. data object type). */
7532 return TRUE;
7533 }
7534
7535 /* Note that for some reason, a spurious space is tacked
7536 onto the end of the args in some (at least one anyway)
7537 implementations, so strip it off if it exists. */
7538
7539 {
7540 char *command = elf_tdata (abfd)->core_command;
7541 int n = strlen (command);
7542
7543 if (0 < n && command[n - 1] == ' ')
7544 command[n - 1] = '\0';
7545 }
7546
7547 return TRUE;
7548 }
7549 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7550
7551 #if defined (HAVE_PSTATUS_T)
7552 static bfd_boolean
7553 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7554 {
7555 if (note->descsz == sizeof (pstatus_t)
7556 #if defined (HAVE_PXSTATUS_T)
7557 || note->descsz == sizeof (pxstatus_t)
7558 #endif
7559 )
7560 {
7561 pstatus_t pstat;
7562
7563 memcpy (&pstat, note->descdata, sizeof (pstat));
7564
7565 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7566 }
7567 #if defined (HAVE_PSTATUS32_T)
7568 else if (note->descsz == sizeof (pstatus32_t))
7569 {
7570 /* 64-bit host, 32-bit corefile */
7571 pstatus32_t pstat;
7572
7573 memcpy (&pstat, note->descdata, sizeof (pstat));
7574
7575 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7576 }
7577 #endif
7578 /* Could grab some more details from the "representative"
7579 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7580 NT_LWPSTATUS note, presumably. */
7581
7582 return TRUE;
7583 }
7584 #endif /* defined (HAVE_PSTATUS_T) */
7585
7586 #if defined (HAVE_LWPSTATUS_T)
7587 static bfd_boolean
7588 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7589 {
7590 lwpstatus_t lwpstat;
7591 char buf[100];
7592 char *name;
7593 size_t len;
7594 asection *sect;
7595
7596 if (note->descsz != sizeof (lwpstat)
7597 #if defined (HAVE_LWPXSTATUS_T)
7598 && note->descsz != sizeof (lwpxstatus_t)
7599 #endif
7600 )
7601 return TRUE;
7602
7603 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7604
7605 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7606 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7607
7608 /* Make a ".reg/999" section. */
7609
7610 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7611 len = strlen (buf) + 1;
7612 name = bfd_alloc (abfd, len);
7613 if (name == NULL)
7614 return FALSE;
7615 memcpy (name, buf, len);
7616
7617 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7618 if (sect == NULL)
7619 return FALSE;
7620
7621 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7622 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7623 sect->filepos = note->descpos
7624 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7625 #endif
7626
7627 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7628 sect->size = sizeof (lwpstat.pr_reg);
7629 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7630 #endif
7631
7632 sect->alignment_power = 2;
7633
7634 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7635 return FALSE;
7636
7637 /* Make a ".reg2/999" section */
7638
7639 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7640 len = strlen (buf) + 1;
7641 name = bfd_alloc (abfd, len);
7642 if (name == NULL)
7643 return FALSE;
7644 memcpy (name, buf, len);
7645
7646 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7647 if (sect == NULL)
7648 return FALSE;
7649
7650 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7651 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7652 sect->filepos = note->descpos
7653 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7654 #endif
7655
7656 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7657 sect->size = sizeof (lwpstat.pr_fpreg);
7658 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7659 #endif
7660
7661 sect->alignment_power = 2;
7662
7663 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7664 }
7665 #endif /* defined (HAVE_LWPSTATUS_T) */
7666
7667 static bfd_boolean
7668 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7669 {
7670 char buf[30];
7671 char *name;
7672 size_t len;
7673 asection *sect;
7674 int type;
7675 int is_active_thread;
7676 bfd_vma base_addr;
7677
7678 if (note->descsz < 728)
7679 return TRUE;
7680
7681 if (! CONST_STRNEQ (note->namedata, "win32"))
7682 return TRUE;
7683
7684 type = bfd_get_32 (abfd, note->descdata);
7685
7686 switch (type)
7687 {
7688 case 1 /* NOTE_INFO_PROCESS */:
7689 /* FIXME: need to add ->core_command. */
7690 /* process_info.pid */
7691 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7692 /* process_info.signal */
7693 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7694 break;
7695
7696 case 2 /* NOTE_INFO_THREAD */:
7697 /* Make a ".reg/999" section. */
7698 /* thread_info.tid */
7699 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7700
7701 len = strlen (buf) + 1;
7702 name = bfd_alloc (abfd, len);
7703 if (name == NULL)
7704 return FALSE;
7705
7706 memcpy (name, buf, len);
7707
7708 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7709 if (sect == NULL)
7710 return FALSE;
7711
7712 /* sizeof (thread_info.thread_context) */
7713 sect->size = 716;
7714 /* offsetof (thread_info.thread_context) */
7715 sect->filepos = note->descpos + 12;
7716 sect->alignment_power = 2;
7717
7718 /* thread_info.is_active_thread */
7719 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7720
7721 if (is_active_thread)
7722 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7723 return FALSE;
7724 break;
7725
7726 case 3 /* NOTE_INFO_MODULE */:
7727 /* Make a ".module/xxxxxxxx" section. */
7728 /* module_info.base_address */
7729 base_addr = bfd_get_32 (abfd, note->descdata + 4);
7730 sprintf (buf, ".module/%08lx", (long) base_addr);
7731
7732 len = strlen (buf) + 1;
7733 name = bfd_alloc (abfd, len);
7734 if (name == NULL)
7735 return FALSE;
7736
7737 memcpy (name, buf, len);
7738
7739 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7740
7741 if (sect == NULL)
7742 return FALSE;
7743
7744 sect->size = note->descsz;
7745 sect->filepos = note->descpos;
7746 sect->alignment_power = 2;
7747 break;
7748
7749 default:
7750 return TRUE;
7751 }
7752
7753 return TRUE;
7754 }
7755
7756 static bfd_boolean
7757 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7758 {
7759 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7760
7761 switch (note->type)
7762 {
7763 default:
7764 return TRUE;
7765
7766 case NT_PRSTATUS:
7767 if (bed->elf_backend_grok_prstatus)
7768 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7769 return TRUE;
7770 #if defined (HAVE_PRSTATUS_T)
7771 return elfcore_grok_prstatus (abfd, note);
7772 #else
7773 return TRUE;
7774 #endif
7775
7776 #if defined (HAVE_PSTATUS_T)
7777 case NT_PSTATUS:
7778 return elfcore_grok_pstatus (abfd, note);
7779 #endif
7780
7781 #if defined (HAVE_LWPSTATUS_T)
7782 case NT_LWPSTATUS:
7783 return elfcore_grok_lwpstatus (abfd, note);
7784 #endif
7785
7786 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7787 return elfcore_grok_prfpreg (abfd, note);
7788
7789 case NT_WIN32PSTATUS:
7790 return elfcore_grok_win32pstatus (abfd, note);
7791
7792 case NT_PRXFPREG: /* Linux SSE extension */
7793 if (note->namesz == 6
7794 && strcmp (note->namedata, "LINUX") == 0)
7795 return elfcore_grok_prxfpreg (abfd, note);
7796 else
7797 return TRUE;
7798
7799 case NT_PRPSINFO:
7800 case NT_PSINFO:
7801 if (bed->elf_backend_grok_psinfo)
7802 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7803 return TRUE;
7804 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7805 return elfcore_grok_psinfo (abfd, note);
7806 #else
7807 return TRUE;
7808 #endif
7809
7810 case NT_AUXV:
7811 {
7812 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7813 SEC_HAS_CONTENTS);
7814
7815 if (sect == NULL)
7816 return FALSE;
7817 sect->size = note->descsz;
7818 sect->filepos = note->descpos;
7819 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7820
7821 return TRUE;
7822 }
7823 }
7824 }
7825
7826 static bfd_boolean
7827 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
7828 {
7829 elf_tdata (abfd)->build_id_size = note->descsz;
7830 elf_tdata (abfd)->build_id = bfd_alloc (abfd, note->descsz);
7831 if (elf_tdata (abfd)->build_id == NULL)
7832 return FALSE;
7833
7834 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
7835
7836 return TRUE;
7837 }
7838
7839 static bfd_boolean
7840 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
7841 {
7842 switch (note->type)
7843 {
7844 default:
7845 return TRUE;
7846
7847 case NT_GNU_BUILD_ID:
7848 return elfobj_grok_gnu_build_id (abfd, note);
7849 }
7850 }
7851
7852 static bfd_boolean
7853 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7854 {
7855 char *cp;
7856
7857 cp = strchr (note->namedata, '@');
7858 if (cp != NULL)
7859 {
7860 *lwpidp = atoi(cp + 1);
7861 return TRUE;
7862 }
7863 return FALSE;
7864 }
7865
7866 static bfd_boolean
7867 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7868 {
7869 /* Signal number at offset 0x08. */
7870 elf_tdata (abfd)->core_signal
7871 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7872
7873 /* Process ID at offset 0x50. */
7874 elf_tdata (abfd)->core_pid
7875 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7876
7877 /* Command name at 0x7c (max 32 bytes, including nul). */
7878 elf_tdata (abfd)->core_command
7879 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7880
7881 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7882 note);
7883 }
7884
7885 static bfd_boolean
7886 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7887 {
7888 int lwp;
7889
7890 if (elfcore_netbsd_get_lwpid (note, &lwp))
7891 elf_tdata (abfd)->core_lwpid = lwp;
7892
7893 if (note->type == NT_NETBSDCORE_PROCINFO)
7894 {
7895 /* NetBSD-specific core "procinfo". Note that we expect to
7896 find this note before any of the others, which is fine,
7897 since the kernel writes this note out first when it
7898 creates a core file. */
7899
7900 return elfcore_grok_netbsd_procinfo (abfd, note);
7901 }
7902
7903 /* As of Jan 2002 there are no other machine-independent notes
7904 defined for NetBSD core files. If the note type is less
7905 than the start of the machine-dependent note types, we don't
7906 understand it. */
7907
7908 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7909 return TRUE;
7910
7911
7912 switch (bfd_get_arch (abfd))
7913 {
7914 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7915 PT_GETFPREGS == mach+2. */
7916
7917 case bfd_arch_alpha:
7918 case bfd_arch_sparc:
7919 switch (note->type)
7920 {
7921 case NT_NETBSDCORE_FIRSTMACH+0:
7922 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7923
7924 case NT_NETBSDCORE_FIRSTMACH+2:
7925 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7926
7927 default:
7928 return TRUE;
7929 }
7930
7931 /* On all other arch's, PT_GETREGS == mach+1 and
7932 PT_GETFPREGS == mach+3. */
7933
7934 default:
7935 switch (note->type)
7936 {
7937 case NT_NETBSDCORE_FIRSTMACH+1:
7938 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7939
7940 case NT_NETBSDCORE_FIRSTMACH+3:
7941 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7942
7943 default:
7944 return TRUE;
7945 }
7946 }
7947 /* NOTREACHED */
7948 }
7949
7950 static bfd_boolean
7951 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
7952 {
7953 void *ddata = note->descdata;
7954 char buf[100];
7955 char *name;
7956 asection *sect;
7957 short sig;
7958 unsigned flags;
7959
7960 /* nto_procfs_status 'pid' field is at offset 0. */
7961 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7962
7963 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7964 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7965
7966 /* nto_procfs_status 'flags' field is at offset 8. */
7967 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7968
7969 /* nto_procfs_status 'what' field is at offset 14. */
7970 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7971 {
7972 elf_tdata (abfd)->core_signal = sig;
7973 elf_tdata (abfd)->core_lwpid = *tid;
7974 }
7975
7976 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7977 do not come from signals so we make sure we set the current
7978 thread just in case. */
7979 if (flags & 0x00000080)
7980 elf_tdata (abfd)->core_lwpid = *tid;
7981
7982 /* Make a ".qnx_core_status/%d" section. */
7983 sprintf (buf, ".qnx_core_status/%ld", *tid);
7984
7985 name = bfd_alloc (abfd, strlen (buf) + 1);
7986 if (name == NULL)
7987 return FALSE;
7988 strcpy (name, buf);
7989
7990 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7991 if (sect == NULL)
7992 return FALSE;
7993
7994 sect->size = note->descsz;
7995 sect->filepos = note->descpos;
7996 sect->alignment_power = 2;
7997
7998 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7999 }
8000
8001 static bfd_boolean
8002 elfcore_grok_nto_regs (bfd *abfd,
8003 Elf_Internal_Note *note,
8004 long tid,
8005 char *base)
8006 {
8007 char buf[100];
8008 char *name;
8009 asection *sect;
8010
8011 /* Make a "(base)/%d" section. */
8012 sprintf (buf, "%s/%ld", base, tid);
8013
8014 name = bfd_alloc (abfd, strlen (buf) + 1);
8015 if (name == NULL)
8016 return FALSE;
8017 strcpy (name, buf);
8018
8019 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8020 if (sect == NULL)
8021 return FALSE;
8022
8023 sect->size = note->descsz;
8024 sect->filepos = note->descpos;
8025 sect->alignment_power = 2;
8026
8027 /* This is the current thread. */
8028 if (elf_tdata (abfd)->core_lwpid == tid)
8029 return elfcore_maybe_make_sect (abfd, base, sect);
8030
8031 return TRUE;
8032 }
8033
8034 #define BFD_QNT_CORE_INFO 7
8035 #define BFD_QNT_CORE_STATUS 8
8036 #define BFD_QNT_CORE_GREG 9
8037 #define BFD_QNT_CORE_FPREG 10
8038
8039 static bfd_boolean
8040 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8041 {
8042 /* Every GREG section has a STATUS section before it. Store the
8043 tid from the previous call to pass down to the next gregs
8044 function. */
8045 static long tid = 1;
8046
8047 switch (note->type)
8048 {
8049 case BFD_QNT_CORE_INFO:
8050 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8051 case BFD_QNT_CORE_STATUS:
8052 return elfcore_grok_nto_status (abfd, note, &tid);
8053 case BFD_QNT_CORE_GREG:
8054 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8055 case BFD_QNT_CORE_FPREG:
8056 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8057 default:
8058 return TRUE;
8059 }
8060 }
8061
8062 static bfd_boolean
8063 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8064 {
8065 char *name;
8066 asection *sect;
8067 size_t len;
8068
8069 /* Use note name as section name. */
8070 len = note->namesz;
8071 name = bfd_alloc (abfd, len);
8072 if (name == NULL)
8073 return FALSE;
8074 memcpy (name, note->namedata, len);
8075 name[len - 1] = '\0';
8076
8077 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8078 if (sect == NULL)
8079 return FALSE;
8080
8081 sect->size = note->descsz;
8082 sect->filepos = note->descpos;
8083 sect->alignment_power = 1;
8084
8085 return TRUE;
8086 }
8087
8088 /* Function: elfcore_write_note
8089
8090 Inputs:
8091 buffer to hold note, and current size of buffer
8092 name of note
8093 type of note
8094 data for note
8095 size of data for note
8096
8097 Writes note to end of buffer. ELF64 notes are written exactly as
8098 for ELF32, despite the current (as of 2006) ELF gabi specifying
8099 that they ought to have 8-byte namesz and descsz field, and have
8100 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8101
8102 Return:
8103 Pointer to realloc'd buffer, *BUFSIZ updated. */
8104
8105 char *
8106 elfcore_write_note (bfd *abfd,
8107 char *buf,
8108 int *bufsiz,
8109 const char *name,
8110 int type,
8111 const void *input,
8112 int size)
8113 {
8114 Elf_External_Note *xnp;
8115 size_t namesz;
8116 size_t newspace;
8117 char *dest;
8118
8119 namesz = 0;
8120 if (name != NULL)
8121 namesz = strlen (name) + 1;
8122
8123 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8124
8125 buf = realloc (buf, *bufsiz + newspace);
8126 if (buf == NULL)
8127 return buf;
8128 dest = buf + *bufsiz;
8129 *bufsiz += newspace;
8130 xnp = (Elf_External_Note *) dest;
8131 H_PUT_32 (abfd, namesz, xnp->namesz);
8132 H_PUT_32 (abfd, size, xnp->descsz);
8133 H_PUT_32 (abfd, type, xnp->type);
8134 dest = xnp->name;
8135 if (name != NULL)
8136 {
8137 memcpy (dest, name, namesz);
8138 dest += namesz;
8139 while (namesz & 3)
8140 {
8141 *dest++ = '\0';
8142 ++namesz;
8143 }
8144 }
8145 memcpy (dest, input, size);
8146 dest += size;
8147 while (size & 3)
8148 {
8149 *dest++ = '\0';
8150 ++size;
8151 }
8152 return buf;
8153 }
8154
8155 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8156 char *
8157 elfcore_write_prpsinfo (bfd *abfd,
8158 char *buf,
8159 int *bufsiz,
8160 const char *fname,
8161 const char *psargs)
8162 {
8163 const char *note_name = "CORE";
8164 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8165
8166 if (bed->elf_backend_write_core_note != NULL)
8167 {
8168 char *ret;
8169 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8170 NT_PRPSINFO, fname, psargs);
8171 if (ret != NULL)
8172 return ret;
8173 }
8174
8175 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8176 if (bed->s->elfclass == ELFCLASS32)
8177 {
8178 #if defined (HAVE_PSINFO32_T)
8179 psinfo32_t data;
8180 int note_type = NT_PSINFO;
8181 #else
8182 prpsinfo32_t data;
8183 int note_type = NT_PRPSINFO;
8184 #endif
8185
8186 memset (&data, 0, sizeof (data));
8187 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8188 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8189 return elfcore_write_note (abfd, buf, bufsiz,
8190 note_name, note_type, &data, sizeof (data));
8191 }
8192 else
8193 #endif
8194 {
8195 #if defined (HAVE_PSINFO_T)
8196 psinfo_t data;
8197 int note_type = NT_PSINFO;
8198 #else
8199 prpsinfo_t data;
8200 int note_type = NT_PRPSINFO;
8201 #endif
8202
8203 memset (&data, 0, sizeof (data));
8204 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8205 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8206 return elfcore_write_note (abfd, buf, bufsiz,
8207 note_name, note_type, &data, sizeof (data));
8208 }
8209 }
8210 #endif /* PSINFO_T or PRPSINFO_T */
8211
8212 #if defined (HAVE_PRSTATUS_T)
8213 char *
8214 elfcore_write_prstatus (bfd *abfd,
8215 char *buf,
8216 int *bufsiz,
8217 long pid,
8218 int cursig,
8219 const void *gregs)
8220 {
8221 const char *note_name = "CORE";
8222 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8223
8224 if (bed->elf_backend_write_core_note != NULL)
8225 {
8226 char *ret;
8227 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8228 NT_PRSTATUS,
8229 pid, cursig, gregs);
8230 if (ret != NULL)
8231 return ret;
8232 }
8233
8234 #if defined (HAVE_PRSTATUS32_T)
8235 if (bed->s->elfclass == ELFCLASS32)
8236 {
8237 prstatus32_t prstat;
8238
8239 memset (&prstat, 0, sizeof (prstat));
8240 prstat.pr_pid = pid;
8241 prstat.pr_cursig = cursig;
8242 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8243 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8244 NT_PRSTATUS, &prstat, sizeof (prstat));
8245 }
8246 else
8247 #endif
8248 {
8249 prstatus_t prstat;
8250
8251 memset (&prstat, 0, sizeof (prstat));
8252 prstat.pr_pid = pid;
8253 prstat.pr_cursig = cursig;
8254 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8255 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8256 NT_PRSTATUS, &prstat, sizeof (prstat));
8257 }
8258 }
8259 #endif /* HAVE_PRSTATUS_T */
8260
8261 #if defined (HAVE_LWPSTATUS_T)
8262 char *
8263 elfcore_write_lwpstatus (bfd *abfd,
8264 char *buf,
8265 int *bufsiz,
8266 long pid,
8267 int cursig,
8268 const void *gregs)
8269 {
8270 lwpstatus_t lwpstat;
8271 const char *note_name = "CORE";
8272
8273 memset (&lwpstat, 0, sizeof (lwpstat));
8274 lwpstat.pr_lwpid = pid >> 16;
8275 lwpstat.pr_cursig = cursig;
8276 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8277 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8278 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8279 #if !defined(gregs)
8280 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8281 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8282 #else
8283 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8284 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8285 #endif
8286 #endif
8287 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8288 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8289 }
8290 #endif /* HAVE_LWPSTATUS_T */
8291
8292 #if defined (HAVE_PSTATUS_T)
8293 char *
8294 elfcore_write_pstatus (bfd *abfd,
8295 char *buf,
8296 int *bufsiz,
8297 long pid,
8298 int cursig ATTRIBUTE_UNUSED,
8299 const void *gregs ATTRIBUTE_UNUSED)
8300 {
8301 const char *note_name = "CORE";
8302 #if defined (HAVE_PSTATUS32_T)
8303 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8304
8305 if (bed->s->elfclass == ELFCLASS32)
8306 {
8307 pstatus32_t pstat;
8308
8309 memset (&pstat, 0, sizeof (pstat));
8310 pstat.pr_pid = pid & 0xffff;
8311 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8312 NT_PSTATUS, &pstat, sizeof (pstat));
8313 return buf;
8314 }
8315 else
8316 #endif
8317 {
8318 pstatus_t pstat;
8319
8320 memset (&pstat, 0, sizeof (pstat));
8321 pstat.pr_pid = pid & 0xffff;
8322 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8323 NT_PSTATUS, &pstat, sizeof (pstat));
8324 return buf;
8325 }
8326 }
8327 #endif /* HAVE_PSTATUS_T */
8328
8329 char *
8330 elfcore_write_prfpreg (bfd *abfd,
8331 char *buf,
8332 int *bufsiz,
8333 const void *fpregs,
8334 int size)
8335 {
8336 const char *note_name = "CORE";
8337 return elfcore_write_note (abfd, buf, bufsiz,
8338 note_name, NT_FPREGSET, fpregs, size);
8339 }
8340
8341 char *
8342 elfcore_write_prxfpreg (bfd *abfd,
8343 char *buf,
8344 int *bufsiz,
8345 const void *xfpregs,
8346 int size)
8347 {
8348 char *note_name = "LINUX";
8349 return elfcore_write_note (abfd, buf, bufsiz,
8350 note_name, NT_PRXFPREG, xfpregs, size);
8351 }
8352
8353 static bfd_boolean
8354 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8355 {
8356 char *p;
8357
8358 p = buf;
8359 while (p < buf + size)
8360 {
8361 /* FIXME: bad alignment assumption. */
8362 Elf_External_Note *xnp = (Elf_External_Note *) p;
8363 Elf_Internal_Note in;
8364
8365 in.type = H_GET_32 (abfd, xnp->type);
8366
8367 in.namesz = H_GET_32 (abfd, xnp->namesz);
8368 in.namedata = xnp->name;
8369
8370 in.descsz = H_GET_32 (abfd, xnp->descsz);
8371 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8372 in.descpos = offset + (in.descdata - buf);
8373
8374 switch (bfd_get_format (abfd))
8375 {
8376 default:
8377 return TRUE;
8378
8379 case bfd_core:
8380 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8381 {
8382 if (! elfcore_grok_netbsd_note (abfd, &in))
8383 return FALSE;
8384 }
8385 else if (CONST_STRNEQ (in.namedata, "QNX"))
8386 {
8387 if (! elfcore_grok_nto_note (abfd, &in))
8388 return FALSE;
8389 }
8390 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8391 {
8392 if (! elfcore_grok_spu_note (abfd, &in))
8393 return FALSE;
8394 }
8395 else
8396 {
8397 if (! elfcore_grok_note (abfd, &in))
8398 return FALSE;
8399 }
8400 break;
8401
8402 case bfd_object:
8403 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8404 {
8405 if (! elfobj_grok_gnu_note (abfd, &in))
8406 return FALSE;
8407 }
8408 break;
8409 }
8410
8411 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8412 }
8413
8414 return TRUE;
8415 }
8416
8417 static bfd_boolean
8418 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8419 {
8420 char *buf;
8421
8422 if (size <= 0)
8423 return TRUE;
8424
8425 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8426 return FALSE;
8427
8428 buf = bfd_malloc (size);
8429 if (buf == NULL)
8430 return FALSE;
8431
8432 if (bfd_bread (buf, size, abfd) != size
8433 || !elf_parse_notes (abfd, buf, size, offset))
8434 {
8435 free (buf);
8436 return FALSE;
8437 }
8438
8439 free (buf);
8440 return TRUE;
8441 }
8442 \f
8443 /* Providing external access to the ELF program header table. */
8444
8445 /* Return an upper bound on the number of bytes required to store a
8446 copy of ABFD's program header table entries. Return -1 if an error
8447 occurs; bfd_get_error will return an appropriate code. */
8448
8449 long
8450 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8451 {
8452 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8453 {
8454 bfd_set_error (bfd_error_wrong_format);
8455 return -1;
8456 }
8457
8458 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8459 }
8460
8461 /* Copy ABFD's program header table entries to *PHDRS. The entries
8462 will be stored as an array of Elf_Internal_Phdr structures, as
8463 defined in include/elf/internal.h. To find out how large the
8464 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8465
8466 Return the number of program header table entries read, or -1 if an
8467 error occurs; bfd_get_error will return an appropriate code. */
8468
8469 int
8470 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8471 {
8472 int num_phdrs;
8473
8474 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8475 {
8476 bfd_set_error (bfd_error_wrong_format);
8477 return -1;
8478 }
8479
8480 num_phdrs = elf_elfheader (abfd)->e_phnum;
8481 memcpy (phdrs, elf_tdata (abfd)->phdr,
8482 num_phdrs * sizeof (Elf_Internal_Phdr));
8483
8484 return num_phdrs;
8485 }
8486
8487 enum elf_reloc_type_class
8488 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8489 {
8490 return reloc_class_normal;
8491 }
8492
8493 /* For RELA architectures, return the relocation value for a
8494 relocation against a local symbol. */
8495
8496 bfd_vma
8497 _bfd_elf_rela_local_sym (bfd *abfd,
8498 Elf_Internal_Sym *sym,
8499 asection **psec,
8500 Elf_Internal_Rela *rel)
8501 {
8502 asection *sec = *psec;
8503 bfd_vma relocation;
8504
8505 relocation = (sec->output_section->vma
8506 + sec->output_offset
8507 + sym->st_value);
8508 if ((sec->flags & SEC_MERGE)
8509 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8510 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8511 {
8512 rel->r_addend =
8513 _bfd_merged_section_offset (abfd, psec,
8514 elf_section_data (sec)->sec_info,
8515 sym->st_value + rel->r_addend);
8516 if (sec != *psec)
8517 {
8518 /* If we have changed the section, and our original section is
8519 marked with SEC_EXCLUDE, it means that the original
8520 SEC_MERGE section has been completely subsumed in some
8521 other SEC_MERGE section. In this case, we need to leave
8522 some info around for --emit-relocs. */
8523 if ((sec->flags & SEC_EXCLUDE) != 0)
8524 sec->kept_section = *psec;
8525 sec = *psec;
8526 }
8527 rel->r_addend -= relocation;
8528 rel->r_addend += sec->output_section->vma + sec->output_offset;
8529 }
8530 return relocation;
8531 }
8532
8533 bfd_vma
8534 _bfd_elf_rel_local_sym (bfd *abfd,
8535 Elf_Internal_Sym *sym,
8536 asection **psec,
8537 bfd_vma addend)
8538 {
8539 asection *sec = *psec;
8540
8541 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8542 return sym->st_value + addend;
8543
8544 return _bfd_merged_section_offset (abfd, psec,
8545 elf_section_data (sec)->sec_info,
8546 sym->st_value + addend);
8547 }
8548
8549 bfd_vma
8550 _bfd_elf_section_offset (bfd *abfd,
8551 struct bfd_link_info *info,
8552 asection *sec,
8553 bfd_vma offset)
8554 {
8555 switch (sec->sec_info_type)
8556 {
8557 case ELF_INFO_TYPE_STABS:
8558 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8559 offset);
8560 case ELF_INFO_TYPE_EH_FRAME:
8561 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8562 default:
8563 return offset;
8564 }
8565 }
8566 \f
8567 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8568 reconstruct an ELF file by reading the segments out of remote memory
8569 based on the ELF file header at EHDR_VMA and the ELF program headers it
8570 points to. If not null, *LOADBASEP is filled in with the difference
8571 between the VMAs from which the segments were read, and the VMAs the
8572 file headers (and hence BFD's idea of each section's VMA) put them at.
8573
8574 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8575 remote memory at target address VMA into the local buffer at MYADDR; it
8576 should return zero on success or an `errno' code on failure. TEMPL must
8577 be a BFD for an ELF target with the word size and byte order found in
8578 the remote memory. */
8579
8580 bfd *
8581 bfd_elf_bfd_from_remote_memory
8582 (bfd *templ,
8583 bfd_vma ehdr_vma,
8584 bfd_vma *loadbasep,
8585 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8586 {
8587 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8588 (templ, ehdr_vma, loadbasep, target_read_memory);
8589 }
8590 \f
8591 long
8592 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8593 long symcount ATTRIBUTE_UNUSED,
8594 asymbol **syms ATTRIBUTE_UNUSED,
8595 long dynsymcount,
8596 asymbol **dynsyms,
8597 asymbol **ret)
8598 {
8599 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8600 asection *relplt;
8601 asymbol *s;
8602 const char *relplt_name;
8603 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8604 arelent *p;
8605 long count, i, n;
8606 size_t size;
8607 Elf_Internal_Shdr *hdr;
8608 char *names;
8609 asection *plt;
8610
8611 *ret = NULL;
8612
8613 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8614 return 0;
8615
8616 if (dynsymcount <= 0)
8617 return 0;
8618
8619 if (!bed->plt_sym_val)
8620 return 0;
8621
8622 relplt_name = bed->relplt_name;
8623 if (relplt_name == NULL)
8624 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8625 relplt = bfd_get_section_by_name (abfd, relplt_name);
8626 if (relplt == NULL)
8627 return 0;
8628
8629 hdr = &elf_section_data (relplt)->this_hdr;
8630 if (hdr->sh_link != elf_dynsymtab (abfd)
8631 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8632 return 0;
8633
8634 plt = bfd_get_section_by_name (abfd, ".plt");
8635 if (plt == NULL)
8636 return 0;
8637
8638 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8639 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8640 return -1;
8641
8642 count = relplt->size / hdr->sh_entsize;
8643 size = count * sizeof (asymbol);
8644 p = relplt->relocation;
8645 for (i = 0; i < count; i++, p++)
8646 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8647
8648 s = *ret = bfd_malloc (size);
8649 if (s == NULL)
8650 return -1;
8651
8652 names = (char *) (s + count);
8653 p = relplt->relocation;
8654 n = 0;
8655 for (i = 0; i < count; i++, s++, p++)
8656 {
8657 size_t len;
8658 bfd_vma addr;
8659
8660 addr = bed->plt_sym_val (i, plt, p);
8661 if (addr == (bfd_vma) -1)
8662 continue;
8663
8664 *s = **p->sym_ptr_ptr;
8665 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8666 we are defining a symbol, ensure one of them is set. */
8667 if ((s->flags & BSF_LOCAL) == 0)
8668 s->flags |= BSF_GLOBAL;
8669 s->section = plt;
8670 s->value = addr - plt->vma;
8671 s->name = names;
8672 len = strlen ((*p->sym_ptr_ptr)->name);
8673 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8674 names += len;
8675 memcpy (names, "@plt", sizeof ("@plt"));
8676 names += sizeof ("@plt");
8677 ++n;
8678 }
8679
8680 return n;
8681 }
8682
8683 /* It is only used by x86-64 so far. */
8684 asection _bfd_elf_large_com_section
8685 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8686 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8687
8688 void
8689 _bfd_elf_set_osabi (bfd * abfd,
8690 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8691 {
8692 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8693
8694 i_ehdrp = elf_elfheader (abfd);
8695
8696 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8697 }
8698
8699
8700 /* Return TRUE for ELF symbol types that represent functions.
8701 This is the default version of this function, which is sufficient for
8702 most targets. It returns true if TYPE is STT_FUNC. */
8703
8704 bfd_boolean
8705 _bfd_elf_is_function_type (unsigned int type)
8706 {
8707 return (type == STT_FUNC);
8708 }
This page took 0.224405 seconds and 4 git commands to generate.