daily update
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
5 2013
6 Free Software Foundation, Inc.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 MA 02110-1301, USA. */
24
25
26 /*
27 SECTION
28 ELF backends
29
30 BFD support for ELF formats is being worked on.
31 Currently, the best supported back ends are for sparc and i386
32 (running svr4 or Solaris 2).
33
34 Documentation of the internals of the support code still needs
35 to be written. The code is changing quickly enough that we
36 haven't bothered yet. */
37
38 /* For sparc64-cross-sparc32. */
39 #define _SYSCALL32
40 #include "sysdep.h"
41 #include "bfd.h"
42 #include "bfdlink.h"
43 #include "libbfd.h"
44 #define ARCH_SIZE 0
45 #include "elf-bfd.h"
46 #include "libiberty.h"
47 #include "safe-ctype.h"
48 #include "elf-linux-psinfo.h"
49
50 #ifdef CORE_HEADER
51 #include CORE_HEADER
52 #endif
53
54 static int elf_sort_sections (const void *, const void *);
55 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
56 static bfd_boolean prep_headers (bfd *);
57 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
58 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
59 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
60 file_ptr offset);
61
62 /* Swap version information in and out. The version information is
63 currently size independent. If that ever changes, this code will
64 need to move into elfcode.h. */
65
66 /* Swap in a Verdef structure. */
67
68 void
69 _bfd_elf_swap_verdef_in (bfd *abfd,
70 const Elf_External_Verdef *src,
71 Elf_Internal_Verdef *dst)
72 {
73 dst->vd_version = H_GET_16 (abfd, src->vd_version);
74 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
75 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
76 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
77 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
78 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
79 dst->vd_next = H_GET_32 (abfd, src->vd_next);
80 }
81
82 /* Swap out a Verdef structure. */
83
84 void
85 _bfd_elf_swap_verdef_out (bfd *abfd,
86 const Elf_Internal_Verdef *src,
87 Elf_External_Verdef *dst)
88 {
89 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
90 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
91 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
92 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
93 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
94 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
95 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
96 }
97
98 /* Swap in a Verdaux structure. */
99
100 void
101 _bfd_elf_swap_verdaux_in (bfd *abfd,
102 const Elf_External_Verdaux *src,
103 Elf_Internal_Verdaux *dst)
104 {
105 dst->vda_name = H_GET_32 (abfd, src->vda_name);
106 dst->vda_next = H_GET_32 (abfd, src->vda_next);
107 }
108
109 /* Swap out a Verdaux structure. */
110
111 void
112 _bfd_elf_swap_verdaux_out (bfd *abfd,
113 const Elf_Internal_Verdaux *src,
114 Elf_External_Verdaux *dst)
115 {
116 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
117 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
118 }
119
120 /* Swap in a Verneed structure. */
121
122 void
123 _bfd_elf_swap_verneed_in (bfd *abfd,
124 const Elf_External_Verneed *src,
125 Elf_Internal_Verneed *dst)
126 {
127 dst->vn_version = H_GET_16 (abfd, src->vn_version);
128 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
129 dst->vn_file = H_GET_32 (abfd, src->vn_file);
130 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
131 dst->vn_next = H_GET_32 (abfd, src->vn_next);
132 }
133
134 /* Swap out a Verneed structure. */
135
136 void
137 _bfd_elf_swap_verneed_out (bfd *abfd,
138 const Elf_Internal_Verneed *src,
139 Elf_External_Verneed *dst)
140 {
141 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
142 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
143 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
144 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
145 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
146 }
147
148 /* Swap in a Vernaux structure. */
149
150 void
151 _bfd_elf_swap_vernaux_in (bfd *abfd,
152 const Elf_External_Vernaux *src,
153 Elf_Internal_Vernaux *dst)
154 {
155 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
156 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
157 dst->vna_other = H_GET_16 (abfd, src->vna_other);
158 dst->vna_name = H_GET_32 (abfd, src->vna_name);
159 dst->vna_next = H_GET_32 (abfd, src->vna_next);
160 }
161
162 /* Swap out a Vernaux structure. */
163
164 void
165 _bfd_elf_swap_vernaux_out (bfd *abfd,
166 const Elf_Internal_Vernaux *src,
167 Elf_External_Vernaux *dst)
168 {
169 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
170 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
171 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
172 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
173 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
174 }
175
176 /* Swap in a Versym structure. */
177
178 void
179 _bfd_elf_swap_versym_in (bfd *abfd,
180 const Elf_External_Versym *src,
181 Elf_Internal_Versym *dst)
182 {
183 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
184 }
185
186 /* Swap out a Versym structure. */
187
188 void
189 _bfd_elf_swap_versym_out (bfd *abfd,
190 const Elf_Internal_Versym *src,
191 Elf_External_Versym *dst)
192 {
193 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
194 }
195
196 /* Standard ELF hash function. Do not change this function; you will
197 cause invalid hash tables to be generated. */
198
199 unsigned long
200 bfd_elf_hash (const char *namearg)
201 {
202 const unsigned char *name = (const unsigned char *) namearg;
203 unsigned long h = 0;
204 unsigned long g;
205 int ch;
206
207 while ((ch = *name++) != '\0')
208 {
209 h = (h << 4) + ch;
210 if ((g = (h & 0xf0000000)) != 0)
211 {
212 h ^= g >> 24;
213 /* The ELF ABI says `h &= ~g', but this is equivalent in
214 this case and on some machines one insn instead of two. */
215 h ^= g;
216 }
217 }
218 return h & 0xffffffff;
219 }
220
221 /* DT_GNU_HASH hash function. Do not change this function; you will
222 cause invalid hash tables to be generated. */
223
224 unsigned long
225 bfd_elf_gnu_hash (const char *namearg)
226 {
227 const unsigned char *name = (const unsigned char *) namearg;
228 unsigned long h = 5381;
229 unsigned char ch;
230
231 while ((ch = *name++) != '\0')
232 h = (h << 5) + h + ch;
233 return h & 0xffffffff;
234 }
235
236 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
237 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
238 bfd_boolean
239 bfd_elf_allocate_object (bfd *abfd,
240 size_t object_size,
241 enum elf_target_id object_id)
242 {
243 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
244 abfd->tdata.any = bfd_zalloc (abfd, object_size);
245 if (abfd->tdata.any == NULL)
246 return FALSE;
247
248 elf_object_id (abfd) = object_id;
249 elf_program_header_size (abfd) = (bfd_size_type) -1;
250 return TRUE;
251 }
252
253
254 bfd_boolean
255 bfd_elf_make_object (bfd *abfd)
256 {
257 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
258 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
259 bed->target_id);
260 }
261
262 bfd_boolean
263 bfd_elf_mkcorefile (bfd *abfd)
264 {
265 /* I think this can be done just like an object file. */
266 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
267 }
268
269 static char *
270 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
271 {
272 Elf_Internal_Shdr **i_shdrp;
273 bfd_byte *shstrtab = NULL;
274 file_ptr offset;
275 bfd_size_type shstrtabsize;
276
277 i_shdrp = elf_elfsections (abfd);
278 if (i_shdrp == 0
279 || shindex >= elf_numsections (abfd)
280 || i_shdrp[shindex] == 0)
281 return NULL;
282
283 shstrtab = i_shdrp[shindex]->contents;
284 if (shstrtab == NULL)
285 {
286 /* No cached one, attempt to read, and cache what we read. */
287 offset = i_shdrp[shindex]->sh_offset;
288 shstrtabsize = i_shdrp[shindex]->sh_size;
289
290 /* Allocate and clear an extra byte at the end, to prevent crashes
291 in case the string table is not terminated. */
292 if (shstrtabsize + 1 <= 1
293 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
294 || bfd_seek (abfd, offset, SEEK_SET) != 0)
295 shstrtab = NULL;
296 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
297 {
298 if (bfd_get_error () != bfd_error_system_call)
299 bfd_set_error (bfd_error_file_truncated);
300 shstrtab = NULL;
301 /* Once we've failed to read it, make sure we don't keep
302 trying. Otherwise, we'll keep allocating space for
303 the string table over and over. */
304 i_shdrp[shindex]->sh_size = 0;
305 }
306 else
307 shstrtab[shstrtabsize] = '\0';
308 i_shdrp[shindex]->contents = shstrtab;
309 }
310 return (char *) shstrtab;
311 }
312
313 char *
314 bfd_elf_string_from_elf_section (bfd *abfd,
315 unsigned int shindex,
316 unsigned int strindex)
317 {
318 Elf_Internal_Shdr *hdr;
319
320 if (strindex == 0)
321 return "";
322
323 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
324 return NULL;
325
326 hdr = elf_elfsections (abfd)[shindex];
327
328 if (hdr->contents == NULL
329 && bfd_elf_get_str_section (abfd, shindex) == NULL)
330 return NULL;
331
332 if (strindex >= hdr->sh_size)
333 {
334 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
335 (*_bfd_error_handler)
336 (_("%B: invalid string offset %u >= %lu for section `%s'"),
337 abfd, strindex, (unsigned long) hdr->sh_size,
338 (shindex == shstrndx && strindex == hdr->sh_name
339 ? ".shstrtab"
340 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
341 return NULL;
342 }
343
344 return ((char *) hdr->contents) + strindex;
345 }
346
347 /* Read and convert symbols to internal format.
348 SYMCOUNT specifies the number of symbols to read, starting from
349 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
350 are non-NULL, they are used to store the internal symbols, external
351 symbols, and symbol section index extensions, respectively.
352 Returns a pointer to the internal symbol buffer (malloced if necessary)
353 or NULL if there were no symbols or some kind of problem. */
354
355 Elf_Internal_Sym *
356 bfd_elf_get_elf_syms (bfd *ibfd,
357 Elf_Internal_Shdr *symtab_hdr,
358 size_t symcount,
359 size_t symoffset,
360 Elf_Internal_Sym *intsym_buf,
361 void *extsym_buf,
362 Elf_External_Sym_Shndx *extshndx_buf)
363 {
364 Elf_Internal_Shdr *shndx_hdr;
365 void *alloc_ext;
366 const bfd_byte *esym;
367 Elf_External_Sym_Shndx *alloc_extshndx;
368 Elf_External_Sym_Shndx *shndx;
369 Elf_Internal_Sym *alloc_intsym;
370 Elf_Internal_Sym *isym;
371 Elf_Internal_Sym *isymend;
372 const struct elf_backend_data *bed;
373 size_t extsym_size;
374 bfd_size_type amt;
375 file_ptr pos;
376
377 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
378 abort ();
379
380 if (symcount == 0)
381 return intsym_buf;
382
383 /* Normal syms might have section extension entries. */
384 shndx_hdr = NULL;
385 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
386 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
387
388 /* Read the symbols. */
389 alloc_ext = NULL;
390 alloc_extshndx = NULL;
391 alloc_intsym = NULL;
392 bed = get_elf_backend_data (ibfd);
393 extsym_size = bed->s->sizeof_sym;
394 amt = symcount * extsym_size;
395 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
396 if (extsym_buf == NULL)
397 {
398 alloc_ext = bfd_malloc2 (symcount, extsym_size);
399 extsym_buf = alloc_ext;
400 }
401 if (extsym_buf == NULL
402 || bfd_seek (ibfd, pos, SEEK_SET) != 0
403 || bfd_bread (extsym_buf, amt, ibfd) != amt)
404 {
405 intsym_buf = NULL;
406 goto out;
407 }
408
409 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
410 extshndx_buf = NULL;
411 else
412 {
413 amt = symcount * sizeof (Elf_External_Sym_Shndx);
414 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
415 if (extshndx_buf == NULL)
416 {
417 alloc_extshndx = (Elf_External_Sym_Shndx *)
418 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
419 extshndx_buf = alloc_extshndx;
420 }
421 if (extshndx_buf == NULL
422 || bfd_seek (ibfd, pos, SEEK_SET) != 0
423 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
424 {
425 intsym_buf = NULL;
426 goto out;
427 }
428 }
429
430 if (intsym_buf == NULL)
431 {
432 alloc_intsym = (Elf_Internal_Sym *)
433 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
434 intsym_buf = alloc_intsym;
435 if (intsym_buf == NULL)
436 goto out;
437 }
438
439 /* Convert the symbols to internal form. */
440 isymend = intsym_buf + symcount;
441 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
442 shndx = extshndx_buf;
443 isym < isymend;
444 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
445 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
446 {
447 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
448 (*_bfd_error_handler) (_("%B symbol number %lu references "
449 "nonexistent SHT_SYMTAB_SHNDX section"),
450 ibfd, (unsigned long) symoffset);
451 if (alloc_intsym != NULL)
452 free (alloc_intsym);
453 intsym_buf = NULL;
454 goto out;
455 }
456
457 out:
458 if (alloc_ext != NULL)
459 free (alloc_ext);
460 if (alloc_extshndx != NULL)
461 free (alloc_extshndx);
462
463 return intsym_buf;
464 }
465
466 /* Look up a symbol name. */
467 const char *
468 bfd_elf_sym_name (bfd *abfd,
469 Elf_Internal_Shdr *symtab_hdr,
470 Elf_Internal_Sym *isym,
471 asection *sym_sec)
472 {
473 const char *name;
474 unsigned int iname = isym->st_name;
475 unsigned int shindex = symtab_hdr->sh_link;
476
477 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
478 /* Check for a bogus st_shndx to avoid crashing. */
479 && isym->st_shndx < elf_numsections (abfd))
480 {
481 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
482 shindex = elf_elfheader (abfd)->e_shstrndx;
483 }
484
485 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
486 if (name == NULL)
487 name = "(null)";
488 else if (sym_sec && *name == '\0')
489 name = bfd_section_name (abfd, sym_sec);
490
491 return name;
492 }
493
494 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
495 sections. The first element is the flags, the rest are section
496 pointers. */
497
498 typedef union elf_internal_group {
499 Elf_Internal_Shdr *shdr;
500 unsigned int flags;
501 } Elf_Internal_Group;
502
503 /* Return the name of the group signature symbol. Why isn't the
504 signature just a string? */
505
506 static const char *
507 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
508 {
509 Elf_Internal_Shdr *hdr;
510 unsigned char esym[sizeof (Elf64_External_Sym)];
511 Elf_External_Sym_Shndx eshndx;
512 Elf_Internal_Sym isym;
513
514 /* First we need to ensure the symbol table is available. Make sure
515 that it is a symbol table section. */
516 if (ghdr->sh_link >= elf_numsections (abfd))
517 return NULL;
518 hdr = elf_elfsections (abfd) [ghdr->sh_link];
519 if (hdr->sh_type != SHT_SYMTAB
520 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
521 return NULL;
522
523 /* Go read the symbol. */
524 hdr = &elf_tdata (abfd)->symtab_hdr;
525 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
526 &isym, esym, &eshndx) == NULL)
527 return NULL;
528
529 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
530 }
531
532 /* Set next_in_group list pointer, and group name for NEWSECT. */
533
534 static bfd_boolean
535 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
536 {
537 unsigned int num_group = elf_tdata (abfd)->num_group;
538
539 /* If num_group is zero, read in all SHT_GROUP sections. The count
540 is set to -1 if there are no SHT_GROUP sections. */
541 if (num_group == 0)
542 {
543 unsigned int i, shnum;
544
545 /* First count the number of groups. If we have a SHT_GROUP
546 section with just a flag word (ie. sh_size is 4), ignore it. */
547 shnum = elf_numsections (abfd);
548 num_group = 0;
549
550 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
551 ( (shdr)->sh_type == SHT_GROUP \
552 && (shdr)->sh_size >= minsize \
553 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
554 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
555
556 for (i = 0; i < shnum; i++)
557 {
558 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
559
560 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
561 num_group += 1;
562 }
563
564 if (num_group == 0)
565 {
566 num_group = (unsigned) -1;
567 elf_tdata (abfd)->num_group = num_group;
568 }
569 else
570 {
571 /* We keep a list of elf section headers for group sections,
572 so we can find them quickly. */
573 bfd_size_type amt;
574
575 elf_tdata (abfd)->num_group = num_group;
576 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
577 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
578 if (elf_tdata (abfd)->group_sect_ptr == NULL)
579 return FALSE;
580
581 num_group = 0;
582 for (i = 0; i < shnum; i++)
583 {
584 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
585
586 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
587 {
588 unsigned char *src;
589 Elf_Internal_Group *dest;
590
591 /* Add to list of sections. */
592 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
593 num_group += 1;
594
595 /* Read the raw contents. */
596 BFD_ASSERT (sizeof (*dest) >= 4);
597 amt = shdr->sh_size * sizeof (*dest) / 4;
598 shdr->contents = (unsigned char *)
599 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
600 /* PR binutils/4110: Handle corrupt group headers. */
601 if (shdr->contents == NULL)
602 {
603 _bfd_error_handler
604 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
605 bfd_set_error (bfd_error_bad_value);
606 return FALSE;
607 }
608
609 memset (shdr->contents, 0, amt);
610
611 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
612 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
613 != shdr->sh_size))
614 return FALSE;
615
616 /* Translate raw contents, a flag word followed by an
617 array of elf section indices all in target byte order,
618 to the flag word followed by an array of elf section
619 pointers. */
620 src = shdr->contents + shdr->sh_size;
621 dest = (Elf_Internal_Group *) (shdr->contents + amt);
622 while (1)
623 {
624 unsigned int idx;
625
626 src -= 4;
627 --dest;
628 idx = H_GET_32 (abfd, src);
629 if (src == shdr->contents)
630 {
631 dest->flags = idx;
632 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
633 shdr->bfd_section->flags
634 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
635 break;
636 }
637 if (idx >= shnum)
638 {
639 ((*_bfd_error_handler)
640 (_("%B: invalid SHT_GROUP entry"), abfd));
641 idx = 0;
642 }
643 dest->shdr = elf_elfsections (abfd)[idx];
644 }
645 }
646 }
647 }
648 }
649
650 if (num_group != (unsigned) -1)
651 {
652 unsigned int i;
653
654 for (i = 0; i < num_group; i++)
655 {
656 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
657 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
658 unsigned int n_elt = shdr->sh_size / 4;
659
660 /* Look through this group's sections to see if current
661 section is a member. */
662 while (--n_elt != 0)
663 if ((++idx)->shdr == hdr)
664 {
665 asection *s = NULL;
666
667 /* We are a member of this group. Go looking through
668 other members to see if any others are linked via
669 next_in_group. */
670 idx = (Elf_Internal_Group *) shdr->contents;
671 n_elt = shdr->sh_size / 4;
672 while (--n_elt != 0)
673 if ((s = (++idx)->shdr->bfd_section) != NULL
674 && elf_next_in_group (s) != NULL)
675 break;
676 if (n_elt != 0)
677 {
678 /* Snarf the group name from other member, and
679 insert current section in circular list. */
680 elf_group_name (newsect) = elf_group_name (s);
681 elf_next_in_group (newsect) = elf_next_in_group (s);
682 elf_next_in_group (s) = newsect;
683 }
684 else
685 {
686 const char *gname;
687
688 gname = group_signature (abfd, shdr);
689 if (gname == NULL)
690 return FALSE;
691 elf_group_name (newsect) = gname;
692
693 /* Start a circular list with one element. */
694 elf_next_in_group (newsect) = newsect;
695 }
696
697 /* If the group section has been created, point to the
698 new member. */
699 if (shdr->bfd_section != NULL)
700 elf_next_in_group (shdr->bfd_section) = newsect;
701
702 i = num_group - 1;
703 break;
704 }
705 }
706 }
707
708 if (elf_group_name (newsect) == NULL)
709 {
710 (*_bfd_error_handler) (_("%B: no group info for section %A"),
711 abfd, newsect);
712 }
713 return TRUE;
714 }
715
716 bfd_boolean
717 _bfd_elf_setup_sections (bfd *abfd)
718 {
719 unsigned int i;
720 unsigned int num_group = elf_tdata (abfd)->num_group;
721 bfd_boolean result = TRUE;
722 asection *s;
723
724 /* Process SHF_LINK_ORDER. */
725 for (s = abfd->sections; s != NULL; s = s->next)
726 {
727 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
728 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
729 {
730 unsigned int elfsec = this_hdr->sh_link;
731 /* FIXME: The old Intel compiler and old strip/objcopy may
732 not set the sh_link or sh_info fields. Hence we could
733 get the situation where elfsec is 0. */
734 if (elfsec == 0)
735 {
736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
737 if (bed->link_order_error_handler)
738 bed->link_order_error_handler
739 (_("%B: warning: sh_link not set for section `%A'"),
740 abfd, s);
741 }
742 else
743 {
744 asection *linksec = NULL;
745
746 if (elfsec < elf_numsections (abfd))
747 {
748 this_hdr = elf_elfsections (abfd)[elfsec];
749 linksec = this_hdr->bfd_section;
750 }
751
752 /* PR 1991, 2008:
753 Some strip/objcopy may leave an incorrect value in
754 sh_link. We don't want to proceed. */
755 if (linksec == NULL)
756 {
757 (*_bfd_error_handler)
758 (_("%B: sh_link [%d] in section `%A' is incorrect"),
759 s->owner, s, elfsec);
760 result = FALSE;
761 }
762
763 elf_linked_to_section (s) = linksec;
764 }
765 }
766 }
767
768 /* Process section groups. */
769 if (num_group == (unsigned) -1)
770 return result;
771
772 for (i = 0; i < num_group; i++)
773 {
774 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
775 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
776 unsigned int n_elt = shdr->sh_size / 4;
777
778 while (--n_elt != 0)
779 if ((++idx)->shdr->bfd_section)
780 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
781 else if (idx->shdr->sh_type == SHT_RELA
782 || idx->shdr->sh_type == SHT_REL)
783 /* We won't include relocation sections in section groups in
784 output object files. We adjust the group section size here
785 so that relocatable link will work correctly when
786 relocation sections are in section group in input object
787 files. */
788 shdr->bfd_section->size -= 4;
789 else
790 {
791 /* There are some unknown sections in the group. */
792 (*_bfd_error_handler)
793 (_("%B: unknown [%d] section `%s' in group [%s]"),
794 abfd,
795 (unsigned int) idx->shdr->sh_type,
796 bfd_elf_string_from_elf_section (abfd,
797 (elf_elfheader (abfd)
798 ->e_shstrndx),
799 idx->shdr->sh_name),
800 shdr->bfd_section->name);
801 result = FALSE;
802 }
803 }
804 return result;
805 }
806
807 bfd_boolean
808 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
809 {
810 return elf_next_in_group (sec) != NULL;
811 }
812
813 /* Make a BFD section from an ELF section. We store a pointer to the
814 BFD section in the bfd_section field of the header. */
815
816 bfd_boolean
817 _bfd_elf_make_section_from_shdr (bfd *abfd,
818 Elf_Internal_Shdr *hdr,
819 const char *name,
820 int shindex)
821 {
822 asection *newsect;
823 flagword flags;
824 const struct elf_backend_data *bed;
825
826 if (hdr->bfd_section != NULL)
827 return TRUE;
828
829 newsect = bfd_make_section_anyway (abfd, name);
830 if (newsect == NULL)
831 return FALSE;
832
833 hdr->bfd_section = newsect;
834 elf_section_data (newsect)->this_hdr = *hdr;
835 elf_section_data (newsect)->this_idx = shindex;
836
837 /* Always use the real type/flags. */
838 elf_section_type (newsect) = hdr->sh_type;
839 elf_section_flags (newsect) = hdr->sh_flags;
840
841 newsect->filepos = hdr->sh_offset;
842
843 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
844 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
845 || ! bfd_set_section_alignment (abfd, newsect,
846 bfd_log2 (hdr->sh_addralign)))
847 return FALSE;
848
849 flags = SEC_NO_FLAGS;
850 if (hdr->sh_type != SHT_NOBITS)
851 flags |= SEC_HAS_CONTENTS;
852 if (hdr->sh_type == SHT_GROUP)
853 flags |= SEC_GROUP | SEC_EXCLUDE;
854 if ((hdr->sh_flags & SHF_ALLOC) != 0)
855 {
856 flags |= SEC_ALLOC;
857 if (hdr->sh_type != SHT_NOBITS)
858 flags |= SEC_LOAD;
859 }
860 if ((hdr->sh_flags & SHF_WRITE) == 0)
861 flags |= SEC_READONLY;
862 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
863 flags |= SEC_CODE;
864 else if ((flags & SEC_LOAD) != 0)
865 flags |= SEC_DATA;
866 if ((hdr->sh_flags & SHF_MERGE) != 0)
867 {
868 flags |= SEC_MERGE;
869 newsect->entsize = hdr->sh_entsize;
870 if ((hdr->sh_flags & SHF_STRINGS) != 0)
871 flags |= SEC_STRINGS;
872 }
873 if (hdr->sh_flags & SHF_GROUP)
874 if (!setup_group (abfd, hdr, newsect))
875 return FALSE;
876 if ((hdr->sh_flags & SHF_TLS) != 0)
877 flags |= SEC_THREAD_LOCAL;
878 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
879 flags |= SEC_EXCLUDE;
880
881 if ((flags & SEC_ALLOC) == 0)
882 {
883 /* The debugging sections appear to be recognized only by name,
884 not any sort of flag. Their SEC_ALLOC bits are cleared. */
885 if (name [0] == '.')
886 {
887 const char *p;
888 int n;
889 if (name[1] == 'd')
890 p = ".debug", n = 6;
891 else if (name[1] == 'g' && name[2] == 'n')
892 p = ".gnu.linkonce.wi.", n = 17;
893 else if (name[1] == 'g' && name[2] == 'd')
894 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
895 else if (name[1] == 'l')
896 p = ".line", n = 5;
897 else if (name[1] == 's')
898 p = ".stab", n = 5;
899 else if (name[1] == 'z')
900 p = ".zdebug", n = 7;
901 else
902 p = NULL, n = 0;
903 if (p != NULL && strncmp (name, p, n) == 0)
904 flags |= SEC_DEBUGGING;
905 }
906 }
907
908 /* As a GNU extension, if the name begins with .gnu.linkonce, we
909 only link a single copy of the section. This is used to support
910 g++. g++ will emit each template expansion in its own section.
911 The symbols will be defined as weak, so that multiple definitions
912 are permitted. The GNU linker extension is to actually discard
913 all but one of the sections. */
914 if (CONST_STRNEQ (name, ".gnu.linkonce")
915 && elf_next_in_group (newsect) == NULL)
916 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
917
918 bed = get_elf_backend_data (abfd);
919 if (bed->elf_backend_section_flags)
920 if (! bed->elf_backend_section_flags (&flags, hdr))
921 return FALSE;
922
923 if (! bfd_set_section_flags (abfd, newsect, flags))
924 return FALSE;
925
926 /* We do not parse the PT_NOTE segments as we are interested even in the
927 separate debug info files which may have the segments offsets corrupted.
928 PT_NOTEs from the core files are currently not parsed using BFD. */
929 if (hdr->sh_type == SHT_NOTE)
930 {
931 bfd_byte *contents;
932
933 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
934 return FALSE;
935
936 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
937 free (contents);
938 }
939
940 if ((flags & SEC_ALLOC) != 0)
941 {
942 Elf_Internal_Phdr *phdr;
943 unsigned int i, nload;
944
945 /* Some ELF linkers produce binaries with all the program header
946 p_paddr fields zero. If we have such a binary with more than
947 one PT_LOAD header, then leave the section lma equal to vma
948 so that we don't create sections with overlapping lma. */
949 phdr = elf_tdata (abfd)->phdr;
950 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
951 if (phdr->p_paddr != 0)
952 break;
953 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
954 ++nload;
955 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
956 return TRUE;
957
958 phdr = elf_tdata (abfd)->phdr;
959 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
960 {
961 if (((phdr->p_type == PT_LOAD
962 && (hdr->sh_flags & SHF_TLS) == 0)
963 || phdr->p_type == PT_TLS)
964 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
965 {
966 if ((flags & SEC_LOAD) == 0)
967 newsect->lma = (phdr->p_paddr
968 + hdr->sh_addr - phdr->p_vaddr);
969 else
970 /* We used to use the same adjustment for SEC_LOAD
971 sections, but that doesn't work if the segment
972 is packed with code from multiple VMAs.
973 Instead we calculate the section LMA based on
974 the segment LMA. It is assumed that the
975 segment will contain sections with contiguous
976 LMAs, even if the VMAs are not. */
977 newsect->lma = (phdr->p_paddr
978 + hdr->sh_offset - phdr->p_offset);
979
980 /* With contiguous segments, we can't tell from file
981 offsets whether a section with zero size should
982 be placed at the end of one segment or the
983 beginning of the next. Decide based on vaddr. */
984 if (hdr->sh_addr >= phdr->p_vaddr
985 && (hdr->sh_addr + hdr->sh_size
986 <= phdr->p_vaddr + phdr->p_memsz))
987 break;
988 }
989 }
990 }
991
992 /* Compress/decompress DWARF debug sections with names: .debug_* and
993 .zdebug_*, after the section flags is set. */
994 if ((flags & SEC_DEBUGGING)
995 && ((name[1] == 'd' && name[6] == '_')
996 || (name[1] == 'z' && name[7] == '_')))
997 {
998 enum { nothing, compress, decompress } action = nothing;
999 char *new_name;
1000
1001 if (bfd_is_section_compressed (abfd, newsect))
1002 {
1003 /* Compressed section. Check if we should decompress. */
1004 if ((abfd->flags & BFD_DECOMPRESS))
1005 action = decompress;
1006 }
1007 else
1008 {
1009 /* Normal section. Check if we should compress. */
1010 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1011 action = compress;
1012 }
1013
1014 new_name = NULL;
1015 switch (action)
1016 {
1017 case nothing:
1018 break;
1019 case compress:
1020 if (!bfd_init_section_compress_status (abfd, newsect))
1021 {
1022 (*_bfd_error_handler)
1023 (_("%B: unable to initialize compress status for section %s"),
1024 abfd, name);
1025 return FALSE;
1026 }
1027 if (name[1] != 'z')
1028 {
1029 unsigned int len = strlen (name);
1030
1031 new_name = bfd_alloc (abfd, len + 2);
1032 if (new_name == NULL)
1033 return FALSE;
1034 new_name[0] = '.';
1035 new_name[1] = 'z';
1036 memcpy (new_name + 2, name + 1, len);
1037 }
1038 break;
1039 case decompress:
1040 if (!bfd_init_section_decompress_status (abfd, newsect))
1041 {
1042 (*_bfd_error_handler)
1043 (_("%B: unable to initialize decompress status for section %s"),
1044 abfd, name);
1045 return FALSE;
1046 }
1047 if (name[1] == 'z')
1048 {
1049 unsigned int len = strlen (name);
1050
1051 new_name = bfd_alloc (abfd, len);
1052 if (new_name == NULL)
1053 return FALSE;
1054 new_name[0] = '.';
1055 memcpy (new_name + 1, name + 2, len - 1);
1056 }
1057 break;
1058 }
1059 if (new_name != NULL)
1060 bfd_rename_section (abfd, newsect, new_name);
1061 }
1062
1063 return TRUE;
1064 }
1065
1066 const char *const bfd_elf_section_type_names[] = {
1067 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1068 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1069 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1070 };
1071
1072 /* ELF relocs are against symbols. If we are producing relocatable
1073 output, and the reloc is against an external symbol, and nothing
1074 has given us any additional addend, the resulting reloc will also
1075 be against the same symbol. In such a case, we don't want to
1076 change anything about the way the reloc is handled, since it will
1077 all be done at final link time. Rather than put special case code
1078 into bfd_perform_relocation, all the reloc types use this howto
1079 function. It just short circuits the reloc if producing
1080 relocatable output against an external symbol. */
1081
1082 bfd_reloc_status_type
1083 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1084 arelent *reloc_entry,
1085 asymbol *symbol,
1086 void *data ATTRIBUTE_UNUSED,
1087 asection *input_section,
1088 bfd *output_bfd,
1089 char **error_message ATTRIBUTE_UNUSED)
1090 {
1091 if (output_bfd != NULL
1092 && (symbol->flags & BSF_SECTION_SYM) == 0
1093 && (! reloc_entry->howto->partial_inplace
1094 || reloc_entry->addend == 0))
1095 {
1096 reloc_entry->address += input_section->output_offset;
1097 return bfd_reloc_ok;
1098 }
1099
1100 return bfd_reloc_continue;
1101 }
1102 \f
1103 /* Copy the program header and other data from one object module to
1104 another. */
1105
1106 bfd_boolean
1107 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1108 {
1109 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1110 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1111 return TRUE;
1112
1113 BFD_ASSERT (!elf_flags_init (obfd)
1114 || (elf_elfheader (obfd)->e_flags
1115 == elf_elfheader (ibfd)->e_flags));
1116
1117 elf_gp (obfd) = elf_gp (ibfd);
1118 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1119 elf_flags_init (obfd) = TRUE;
1120
1121 /* Copy object attributes. */
1122 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1123 return TRUE;
1124 }
1125
1126 static const char *
1127 get_segment_type (unsigned int p_type)
1128 {
1129 const char *pt;
1130 switch (p_type)
1131 {
1132 case PT_NULL: pt = "NULL"; break;
1133 case PT_LOAD: pt = "LOAD"; break;
1134 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1135 case PT_INTERP: pt = "INTERP"; break;
1136 case PT_NOTE: pt = "NOTE"; break;
1137 case PT_SHLIB: pt = "SHLIB"; break;
1138 case PT_PHDR: pt = "PHDR"; break;
1139 case PT_TLS: pt = "TLS"; break;
1140 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1141 case PT_GNU_STACK: pt = "STACK"; break;
1142 case PT_GNU_RELRO: pt = "RELRO"; break;
1143 default: pt = NULL; break;
1144 }
1145 return pt;
1146 }
1147
1148 /* Print out the program headers. */
1149
1150 bfd_boolean
1151 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1152 {
1153 FILE *f = (FILE *) farg;
1154 Elf_Internal_Phdr *p;
1155 asection *s;
1156 bfd_byte *dynbuf = NULL;
1157
1158 p = elf_tdata (abfd)->phdr;
1159 if (p != NULL)
1160 {
1161 unsigned int i, c;
1162
1163 fprintf (f, _("\nProgram Header:\n"));
1164 c = elf_elfheader (abfd)->e_phnum;
1165 for (i = 0; i < c; i++, p++)
1166 {
1167 const char *pt = get_segment_type (p->p_type);
1168 char buf[20];
1169
1170 if (pt == NULL)
1171 {
1172 sprintf (buf, "0x%lx", p->p_type);
1173 pt = buf;
1174 }
1175 fprintf (f, "%8s off 0x", pt);
1176 bfd_fprintf_vma (abfd, f, p->p_offset);
1177 fprintf (f, " vaddr 0x");
1178 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1179 fprintf (f, " paddr 0x");
1180 bfd_fprintf_vma (abfd, f, p->p_paddr);
1181 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1182 fprintf (f, " filesz 0x");
1183 bfd_fprintf_vma (abfd, f, p->p_filesz);
1184 fprintf (f, " memsz 0x");
1185 bfd_fprintf_vma (abfd, f, p->p_memsz);
1186 fprintf (f, " flags %c%c%c",
1187 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1188 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1189 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1190 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1191 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1192 fprintf (f, "\n");
1193 }
1194 }
1195
1196 s = bfd_get_section_by_name (abfd, ".dynamic");
1197 if (s != NULL)
1198 {
1199 unsigned int elfsec;
1200 unsigned long shlink;
1201 bfd_byte *extdyn, *extdynend;
1202 size_t extdynsize;
1203 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1204
1205 fprintf (f, _("\nDynamic Section:\n"));
1206
1207 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1208 goto error_return;
1209
1210 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1211 if (elfsec == SHN_BAD)
1212 goto error_return;
1213 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1214
1215 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1216 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1217
1218 extdyn = dynbuf;
1219 extdynend = extdyn + s->size;
1220 for (; extdyn < extdynend; extdyn += extdynsize)
1221 {
1222 Elf_Internal_Dyn dyn;
1223 const char *name = "";
1224 char ab[20];
1225 bfd_boolean stringp;
1226 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1227
1228 (*swap_dyn_in) (abfd, extdyn, &dyn);
1229
1230 if (dyn.d_tag == DT_NULL)
1231 break;
1232
1233 stringp = FALSE;
1234 switch (dyn.d_tag)
1235 {
1236 default:
1237 if (bed->elf_backend_get_target_dtag)
1238 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1239
1240 if (!strcmp (name, ""))
1241 {
1242 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1243 name = ab;
1244 }
1245 break;
1246
1247 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1248 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1249 case DT_PLTGOT: name = "PLTGOT"; break;
1250 case DT_HASH: name = "HASH"; break;
1251 case DT_STRTAB: name = "STRTAB"; break;
1252 case DT_SYMTAB: name = "SYMTAB"; break;
1253 case DT_RELA: name = "RELA"; break;
1254 case DT_RELASZ: name = "RELASZ"; break;
1255 case DT_RELAENT: name = "RELAENT"; break;
1256 case DT_STRSZ: name = "STRSZ"; break;
1257 case DT_SYMENT: name = "SYMENT"; break;
1258 case DT_INIT: name = "INIT"; break;
1259 case DT_FINI: name = "FINI"; break;
1260 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1261 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1262 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1263 case DT_REL: name = "REL"; break;
1264 case DT_RELSZ: name = "RELSZ"; break;
1265 case DT_RELENT: name = "RELENT"; break;
1266 case DT_PLTREL: name = "PLTREL"; break;
1267 case DT_DEBUG: name = "DEBUG"; break;
1268 case DT_TEXTREL: name = "TEXTREL"; break;
1269 case DT_JMPREL: name = "JMPREL"; break;
1270 case DT_BIND_NOW: name = "BIND_NOW"; break;
1271 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1272 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1273 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1274 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1275 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1276 case DT_FLAGS: name = "FLAGS"; break;
1277 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1278 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1279 case DT_CHECKSUM: name = "CHECKSUM"; break;
1280 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1281 case DT_MOVEENT: name = "MOVEENT"; break;
1282 case DT_MOVESZ: name = "MOVESZ"; break;
1283 case DT_FEATURE: name = "FEATURE"; break;
1284 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1285 case DT_SYMINSZ: name = "SYMINSZ"; break;
1286 case DT_SYMINENT: name = "SYMINENT"; break;
1287 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1288 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1289 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1290 case DT_PLTPAD: name = "PLTPAD"; break;
1291 case DT_MOVETAB: name = "MOVETAB"; break;
1292 case DT_SYMINFO: name = "SYMINFO"; break;
1293 case DT_RELACOUNT: name = "RELACOUNT"; break;
1294 case DT_RELCOUNT: name = "RELCOUNT"; break;
1295 case DT_FLAGS_1: name = "FLAGS_1"; break;
1296 case DT_VERSYM: name = "VERSYM"; break;
1297 case DT_VERDEF: name = "VERDEF"; break;
1298 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1299 case DT_VERNEED: name = "VERNEED"; break;
1300 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1301 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1302 case DT_USED: name = "USED"; break;
1303 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1304 case DT_GNU_HASH: name = "GNU_HASH"; break;
1305 }
1306
1307 fprintf (f, " %-20s ", name);
1308 if (! stringp)
1309 {
1310 fprintf (f, "0x");
1311 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1312 }
1313 else
1314 {
1315 const char *string;
1316 unsigned int tagv = dyn.d_un.d_val;
1317
1318 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1319 if (string == NULL)
1320 goto error_return;
1321 fprintf (f, "%s", string);
1322 }
1323 fprintf (f, "\n");
1324 }
1325
1326 free (dynbuf);
1327 dynbuf = NULL;
1328 }
1329
1330 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1331 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1332 {
1333 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1334 return FALSE;
1335 }
1336
1337 if (elf_dynverdef (abfd) != 0)
1338 {
1339 Elf_Internal_Verdef *t;
1340
1341 fprintf (f, _("\nVersion definitions:\n"));
1342 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1343 {
1344 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1345 t->vd_flags, t->vd_hash,
1346 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1347 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1348 {
1349 Elf_Internal_Verdaux *a;
1350
1351 fprintf (f, "\t");
1352 for (a = t->vd_auxptr->vda_nextptr;
1353 a != NULL;
1354 a = a->vda_nextptr)
1355 fprintf (f, "%s ",
1356 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1357 fprintf (f, "\n");
1358 }
1359 }
1360 }
1361
1362 if (elf_dynverref (abfd) != 0)
1363 {
1364 Elf_Internal_Verneed *t;
1365
1366 fprintf (f, _("\nVersion References:\n"));
1367 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1368 {
1369 Elf_Internal_Vernaux *a;
1370
1371 fprintf (f, _(" required from %s:\n"),
1372 t->vn_filename ? t->vn_filename : "<corrupt>");
1373 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1374 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1375 a->vna_flags, a->vna_other,
1376 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1377 }
1378 }
1379
1380 return TRUE;
1381
1382 error_return:
1383 if (dynbuf != NULL)
1384 free (dynbuf);
1385 return FALSE;
1386 }
1387
1388 /* Display ELF-specific fields of a symbol. */
1389
1390 void
1391 bfd_elf_print_symbol (bfd *abfd,
1392 void *filep,
1393 asymbol *symbol,
1394 bfd_print_symbol_type how)
1395 {
1396 FILE *file = (FILE *) filep;
1397 switch (how)
1398 {
1399 case bfd_print_symbol_name:
1400 fprintf (file, "%s", symbol->name);
1401 break;
1402 case bfd_print_symbol_more:
1403 fprintf (file, "elf ");
1404 bfd_fprintf_vma (abfd, file, symbol->value);
1405 fprintf (file, " %lx", (unsigned long) symbol->flags);
1406 break;
1407 case bfd_print_symbol_all:
1408 {
1409 const char *section_name;
1410 const char *name = NULL;
1411 const struct elf_backend_data *bed;
1412 unsigned char st_other;
1413 bfd_vma val;
1414
1415 section_name = symbol->section ? symbol->section->name : "(*none*)";
1416
1417 bed = get_elf_backend_data (abfd);
1418 if (bed->elf_backend_print_symbol_all)
1419 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1420
1421 if (name == NULL)
1422 {
1423 name = symbol->name;
1424 bfd_print_symbol_vandf (abfd, file, symbol);
1425 }
1426
1427 fprintf (file, " %s\t", section_name);
1428 /* Print the "other" value for a symbol. For common symbols,
1429 we've already printed the size; now print the alignment.
1430 For other symbols, we have no specified alignment, and
1431 we've printed the address; now print the size. */
1432 if (symbol->section && bfd_is_com_section (symbol->section))
1433 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1434 else
1435 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1436 bfd_fprintf_vma (abfd, file, val);
1437
1438 /* If we have version information, print it. */
1439 if (elf_tdata (abfd)->dynversym_section != 0
1440 && (elf_tdata (abfd)->dynverdef_section != 0
1441 || elf_tdata (abfd)->dynverref_section != 0))
1442 {
1443 unsigned int vernum;
1444 const char *version_string;
1445
1446 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1447
1448 if (vernum == 0)
1449 version_string = "";
1450 else if (vernum == 1)
1451 version_string = "Base";
1452 else if (vernum <= elf_tdata (abfd)->cverdefs)
1453 version_string =
1454 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1455 else
1456 {
1457 Elf_Internal_Verneed *t;
1458
1459 version_string = "";
1460 for (t = elf_tdata (abfd)->verref;
1461 t != NULL;
1462 t = t->vn_nextref)
1463 {
1464 Elf_Internal_Vernaux *a;
1465
1466 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1467 {
1468 if (a->vna_other == vernum)
1469 {
1470 version_string = a->vna_nodename;
1471 break;
1472 }
1473 }
1474 }
1475 }
1476
1477 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1478 fprintf (file, " %-11s", version_string);
1479 else
1480 {
1481 int i;
1482
1483 fprintf (file, " (%s)", version_string);
1484 for (i = 10 - strlen (version_string); i > 0; --i)
1485 putc (' ', file);
1486 }
1487 }
1488
1489 /* If the st_other field is not zero, print it. */
1490 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1491
1492 switch (st_other)
1493 {
1494 case 0: break;
1495 case STV_INTERNAL: fprintf (file, " .internal"); break;
1496 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1497 case STV_PROTECTED: fprintf (file, " .protected"); break;
1498 default:
1499 /* Some other non-defined flags are also present, so print
1500 everything hex. */
1501 fprintf (file, " 0x%02x", (unsigned int) st_other);
1502 }
1503
1504 fprintf (file, " %s", name);
1505 }
1506 break;
1507 }
1508 }
1509
1510 /* Allocate an ELF string table--force the first byte to be zero. */
1511
1512 struct bfd_strtab_hash *
1513 _bfd_elf_stringtab_init (void)
1514 {
1515 struct bfd_strtab_hash *ret;
1516
1517 ret = _bfd_stringtab_init ();
1518 if (ret != NULL)
1519 {
1520 bfd_size_type loc;
1521
1522 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1523 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1524 if (loc == (bfd_size_type) -1)
1525 {
1526 _bfd_stringtab_free (ret);
1527 ret = NULL;
1528 }
1529 }
1530 return ret;
1531 }
1532 \f
1533 /* ELF .o/exec file reading */
1534
1535 /* Create a new bfd section from an ELF section header. */
1536
1537 bfd_boolean
1538 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1539 {
1540 Elf_Internal_Shdr *hdr;
1541 Elf_Internal_Ehdr *ehdr;
1542 const struct elf_backend_data *bed;
1543 const char *name;
1544
1545 if (shindex >= elf_numsections (abfd))
1546 return FALSE;
1547
1548 hdr = elf_elfsections (abfd)[shindex];
1549 ehdr = elf_elfheader (abfd);
1550 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1551 hdr->sh_name);
1552 if (name == NULL)
1553 return FALSE;
1554
1555 bed = get_elf_backend_data (abfd);
1556 switch (hdr->sh_type)
1557 {
1558 case SHT_NULL:
1559 /* Inactive section. Throw it away. */
1560 return TRUE;
1561
1562 case SHT_PROGBITS: /* Normal section with contents. */
1563 case SHT_NOBITS: /* .bss section. */
1564 case SHT_HASH: /* .hash section. */
1565 case SHT_NOTE: /* .note section. */
1566 case SHT_INIT_ARRAY: /* .init_array section. */
1567 case SHT_FINI_ARRAY: /* .fini_array section. */
1568 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1569 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1570 case SHT_GNU_HASH: /* .gnu.hash section. */
1571 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1572
1573 case SHT_DYNAMIC: /* Dynamic linking information. */
1574 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1575 return FALSE;
1576 if (hdr->sh_link > elf_numsections (abfd))
1577 {
1578 /* PR 10478: Accept Solaris binaries with a sh_link
1579 field set to SHN_BEFORE or SHN_AFTER. */
1580 switch (bfd_get_arch (abfd))
1581 {
1582 case bfd_arch_i386:
1583 case bfd_arch_sparc:
1584 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1585 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1586 break;
1587 /* Otherwise fall through. */
1588 default:
1589 return FALSE;
1590 }
1591 }
1592 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1593 return FALSE;
1594 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1595 {
1596 Elf_Internal_Shdr *dynsymhdr;
1597
1598 /* The shared libraries distributed with hpux11 have a bogus
1599 sh_link field for the ".dynamic" section. Find the
1600 string table for the ".dynsym" section instead. */
1601 if (elf_dynsymtab (abfd) != 0)
1602 {
1603 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1604 hdr->sh_link = dynsymhdr->sh_link;
1605 }
1606 else
1607 {
1608 unsigned int i, num_sec;
1609
1610 num_sec = elf_numsections (abfd);
1611 for (i = 1; i < num_sec; i++)
1612 {
1613 dynsymhdr = elf_elfsections (abfd)[i];
1614 if (dynsymhdr->sh_type == SHT_DYNSYM)
1615 {
1616 hdr->sh_link = dynsymhdr->sh_link;
1617 break;
1618 }
1619 }
1620 }
1621 }
1622 break;
1623
1624 case SHT_SYMTAB: /* A symbol table */
1625 if (elf_onesymtab (abfd) == shindex)
1626 return TRUE;
1627
1628 if (hdr->sh_entsize != bed->s->sizeof_sym)
1629 return FALSE;
1630 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1631 {
1632 if (hdr->sh_size != 0)
1633 return FALSE;
1634 /* Some assemblers erroneously set sh_info to one with a
1635 zero sh_size. ld sees this as a global symbol count
1636 of (unsigned) -1. Fix it here. */
1637 hdr->sh_info = 0;
1638 return TRUE;
1639 }
1640 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1641 elf_onesymtab (abfd) = shindex;
1642 elf_tdata (abfd)->symtab_hdr = *hdr;
1643 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1644 abfd->flags |= HAS_SYMS;
1645
1646 /* Sometimes a shared object will map in the symbol table. If
1647 SHF_ALLOC is set, and this is a shared object, then we also
1648 treat this section as a BFD section. We can not base the
1649 decision purely on SHF_ALLOC, because that flag is sometimes
1650 set in a relocatable object file, which would confuse the
1651 linker. */
1652 if ((hdr->sh_flags & SHF_ALLOC) != 0
1653 && (abfd->flags & DYNAMIC) != 0
1654 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1655 shindex))
1656 return FALSE;
1657
1658 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1659 can't read symbols without that section loaded as well. It
1660 is most likely specified by the next section header. */
1661 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1662 {
1663 unsigned int i, num_sec;
1664
1665 num_sec = elf_numsections (abfd);
1666 for (i = shindex + 1; i < num_sec; i++)
1667 {
1668 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1669 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1670 && hdr2->sh_link == shindex)
1671 break;
1672 }
1673 if (i == num_sec)
1674 for (i = 1; i < shindex; i++)
1675 {
1676 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1677 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1678 && hdr2->sh_link == shindex)
1679 break;
1680 }
1681 if (i != shindex)
1682 return bfd_section_from_shdr (abfd, i);
1683 }
1684 return TRUE;
1685
1686 case SHT_DYNSYM: /* A dynamic symbol table */
1687 if (elf_dynsymtab (abfd) == shindex)
1688 return TRUE;
1689
1690 if (hdr->sh_entsize != bed->s->sizeof_sym)
1691 return FALSE;
1692 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1693 {
1694 if (hdr->sh_size != 0)
1695 return FALSE;
1696 /* Some linkers erroneously set sh_info to one with a
1697 zero sh_size. ld sees this as a global symbol count
1698 of (unsigned) -1. Fix it here. */
1699 hdr->sh_info = 0;
1700 return TRUE;
1701 }
1702 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1703 elf_dynsymtab (abfd) = shindex;
1704 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1705 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1706 abfd->flags |= HAS_SYMS;
1707
1708 /* Besides being a symbol table, we also treat this as a regular
1709 section, so that objcopy can handle it. */
1710 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1711
1712 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1713 if (elf_symtab_shndx (abfd) == shindex)
1714 return TRUE;
1715
1716 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1717 elf_symtab_shndx (abfd) = shindex;
1718 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1719 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1720 return TRUE;
1721
1722 case SHT_STRTAB: /* A string table */
1723 if (hdr->bfd_section != NULL)
1724 return TRUE;
1725 if (ehdr->e_shstrndx == shindex)
1726 {
1727 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1728 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1729 return TRUE;
1730 }
1731 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1732 {
1733 symtab_strtab:
1734 elf_tdata (abfd)->strtab_hdr = *hdr;
1735 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1736 return TRUE;
1737 }
1738 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1739 {
1740 dynsymtab_strtab:
1741 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1742 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1743 elf_elfsections (abfd)[shindex] = hdr;
1744 /* We also treat this as a regular section, so that objcopy
1745 can handle it. */
1746 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1747 shindex);
1748 }
1749
1750 /* If the string table isn't one of the above, then treat it as a
1751 regular section. We need to scan all the headers to be sure,
1752 just in case this strtab section appeared before the above. */
1753 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1754 {
1755 unsigned int i, num_sec;
1756
1757 num_sec = elf_numsections (abfd);
1758 for (i = 1; i < num_sec; i++)
1759 {
1760 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1761 if (hdr2->sh_link == shindex)
1762 {
1763 /* Prevent endless recursion on broken objects. */
1764 if (i == shindex)
1765 return FALSE;
1766 if (! bfd_section_from_shdr (abfd, i))
1767 return FALSE;
1768 if (elf_onesymtab (abfd) == i)
1769 goto symtab_strtab;
1770 if (elf_dynsymtab (abfd) == i)
1771 goto dynsymtab_strtab;
1772 }
1773 }
1774 }
1775 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1776
1777 case SHT_REL:
1778 case SHT_RELA:
1779 /* *These* do a lot of work -- but build no sections! */
1780 {
1781 asection *target_sect;
1782 Elf_Internal_Shdr *hdr2, **p_hdr;
1783 unsigned int num_sec = elf_numsections (abfd);
1784 struct bfd_elf_section_data *esdt;
1785 bfd_size_type amt;
1786
1787 if (hdr->sh_entsize
1788 != (bfd_size_type) (hdr->sh_type == SHT_REL
1789 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1790 return FALSE;
1791
1792 /* Check for a bogus link to avoid crashing. */
1793 if (hdr->sh_link >= num_sec)
1794 {
1795 ((*_bfd_error_handler)
1796 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1797 abfd, hdr->sh_link, name, shindex));
1798 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1799 shindex);
1800 }
1801
1802 /* For some incomprehensible reason Oracle distributes
1803 libraries for Solaris in which some of the objects have
1804 bogus sh_link fields. It would be nice if we could just
1805 reject them, but, unfortunately, some people need to use
1806 them. We scan through the section headers; if we find only
1807 one suitable symbol table, we clobber the sh_link to point
1808 to it. I hope this doesn't break anything.
1809
1810 Don't do it on executable nor shared library. */
1811 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1812 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1813 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1814 {
1815 unsigned int scan;
1816 int found;
1817
1818 found = 0;
1819 for (scan = 1; scan < num_sec; scan++)
1820 {
1821 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1822 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1823 {
1824 if (found != 0)
1825 {
1826 found = 0;
1827 break;
1828 }
1829 found = scan;
1830 }
1831 }
1832 if (found != 0)
1833 hdr->sh_link = found;
1834 }
1835
1836 /* Get the symbol table. */
1837 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1838 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1839 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1840 return FALSE;
1841
1842 /* If this reloc section does not use the main symbol table we
1843 don't treat it as a reloc section. BFD can't adequately
1844 represent such a section, so at least for now, we don't
1845 try. We just present it as a normal section. We also
1846 can't use it as a reloc section if it points to the null
1847 section, an invalid section, another reloc section, or its
1848 sh_link points to the null section. */
1849 if (hdr->sh_link != elf_onesymtab (abfd)
1850 || hdr->sh_link == SHN_UNDEF
1851 || hdr->sh_info == SHN_UNDEF
1852 || hdr->sh_info >= num_sec
1853 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1854 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1855 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1856 shindex);
1857
1858 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1859 return FALSE;
1860 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1861 if (target_sect == NULL)
1862 return FALSE;
1863
1864 esdt = elf_section_data (target_sect);
1865 if (hdr->sh_type == SHT_RELA)
1866 p_hdr = &esdt->rela.hdr;
1867 else
1868 p_hdr = &esdt->rel.hdr;
1869
1870 BFD_ASSERT (*p_hdr == NULL);
1871 amt = sizeof (*hdr2);
1872 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1873 if (hdr2 == NULL)
1874 return FALSE;
1875 *hdr2 = *hdr;
1876 *p_hdr = hdr2;
1877 elf_elfsections (abfd)[shindex] = hdr2;
1878 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1879 target_sect->flags |= SEC_RELOC;
1880 target_sect->relocation = NULL;
1881 target_sect->rel_filepos = hdr->sh_offset;
1882 /* In the section to which the relocations apply, mark whether
1883 its relocations are of the REL or RELA variety. */
1884 if (hdr->sh_size != 0)
1885 {
1886 if (hdr->sh_type == SHT_RELA)
1887 target_sect->use_rela_p = 1;
1888 }
1889 abfd->flags |= HAS_RELOC;
1890 return TRUE;
1891 }
1892
1893 case SHT_GNU_verdef:
1894 elf_dynverdef (abfd) = shindex;
1895 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1896 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1897
1898 case SHT_GNU_versym:
1899 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1900 return FALSE;
1901 elf_dynversym (abfd) = shindex;
1902 elf_tdata (abfd)->dynversym_hdr = *hdr;
1903 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1904
1905 case SHT_GNU_verneed:
1906 elf_dynverref (abfd) = shindex;
1907 elf_tdata (abfd)->dynverref_hdr = *hdr;
1908 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1909
1910 case SHT_SHLIB:
1911 return TRUE;
1912
1913 case SHT_GROUP:
1914 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1915 return FALSE;
1916 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1917 return FALSE;
1918 if (hdr->contents != NULL)
1919 {
1920 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1921 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1922 asection *s;
1923
1924 if (idx->flags & GRP_COMDAT)
1925 hdr->bfd_section->flags
1926 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1927
1928 /* We try to keep the same section order as it comes in. */
1929 idx += n_elt;
1930 while (--n_elt != 0)
1931 {
1932 --idx;
1933
1934 if (idx->shdr != NULL
1935 && (s = idx->shdr->bfd_section) != NULL
1936 && elf_next_in_group (s) != NULL)
1937 {
1938 elf_next_in_group (hdr->bfd_section) = s;
1939 break;
1940 }
1941 }
1942 }
1943 break;
1944
1945 default:
1946 /* Possibly an attributes section. */
1947 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1948 || hdr->sh_type == bed->obj_attrs_section_type)
1949 {
1950 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1951 return FALSE;
1952 _bfd_elf_parse_attributes (abfd, hdr);
1953 return TRUE;
1954 }
1955
1956 /* Check for any processor-specific section types. */
1957 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1958 return TRUE;
1959
1960 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1961 {
1962 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1963 /* FIXME: How to properly handle allocated section reserved
1964 for applications? */
1965 (*_bfd_error_handler)
1966 (_("%B: don't know how to handle allocated, application "
1967 "specific section `%s' [0x%8x]"),
1968 abfd, name, hdr->sh_type);
1969 else
1970 /* Allow sections reserved for applications. */
1971 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1972 shindex);
1973 }
1974 else if (hdr->sh_type >= SHT_LOPROC
1975 && hdr->sh_type <= SHT_HIPROC)
1976 /* FIXME: We should handle this section. */
1977 (*_bfd_error_handler)
1978 (_("%B: don't know how to handle processor specific section "
1979 "`%s' [0x%8x]"),
1980 abfd, name, hdr->sh_type);
1981 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1982 {
1983 /* Unrecognised OS-specific sections. */
1984 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1985 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1986 required to correctly process the section and the file should
1987 be rejected with an error message. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle OS specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else
1993 /* Otherwise it should be processed. */
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995 }
1996 else
1997 /* FIXME: We should handle this section. */
1998 (*_bfd_error_handler)
1999 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2000 abfd, name, hdr->sh_type);
2001
2002 return FALSE;
2003 }
2004
2005 return TRUE;
2006 }
2007
2008 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2009
2010 Elf_Internal_Sym *
2011 bfd_sym_from_r_symndx (struct sym_cache *cache,
2012 bfd *abfd,
2013 unsigned long r_symndx)
2014 {
2015 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2016
2017 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2018 {
2019 Elf_Internal_Shdr *symtab_hdr;
2020 unsigned char esym[sizeof (Elf64_External_Sym)];
2021 Elf_External_Sym_Shndx eshndx;
2022
2023 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2024 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2025 &cache->sym[ent], esym, &eshndx) == NULL)
2026 return NULL;
2027
2028 if (cache->abfd != abfd)
2029 {
2030 memset (cache->indx, -1, sizeof (cache->indx));
2031 cache->abfd = abfd;
2032 }
2033 cache->indx[ent] = r_symndx;
2034 }
2035
2036 return &cache->sym[ent];
2037 }
2038
2039 /* Given an ELF section number, retrieve the corresponding BFD
2040 section. */
2041
2042 asection *
2043 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2044 {
2045 if (sec_index >= elf_numsections (abfd))
2046 return NULL;
2047 return elf_elfsections (abfd)[sec_index]->bfd_section;
2048 }
2049
2050 static const struct bfd_elf_special_section special_sections_b[] =
2051 {
2052 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2053 { NULL, 0, 0, 0, 0 }
2054 };
2055
2056 static const struct bfd_elf_special_section special_sections_c[] =
2057 {
2058 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2059 { NULL, 0, 0, 0, 0 }
2060 };
2061
2062 static const struct bfd_elf_special_section special_sections_d[] =
2063 {
2064 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2065 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2066 /* There are more DWARF sections than these, but they needn't be added here
2067 unless you have to cope with broken compilers that don't emit section
2068 attributes or you want to help the user writing assembler. */
2069 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2070 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2071 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2072 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2073 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2074 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2075 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2076 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2077 { NULL, 0, 0, 0, 0 }
2078 };
2079
2080 static const struct bfd_elf_special_section special_sections_f[] =
2081 {
2082 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2083 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2084 { NULL, 0, 0, 0, 0 }
2085 };
2086
2087 static const struct bfd_elf_special_section special_sections_g[] =
2088 {
2089 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2090 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2091 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2092 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2093 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2094 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2095 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2096 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2097 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2098 { NULL, 0, 0, 0, 0 }
2099 };
2100
2101 static const struct bfd_elf_special_section special_sections_h[] =
2102 {
2103 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2104 { NULL, 0, 0, 0, 0 }
2105 };
2106
2107 static const struct bfd_elf_special_section special_sections_i[] =
2108 {
2109 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2110 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2111 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2112 { NULL, 0, 0, 0, 0 }
2113 };
2114
2115 static const struct bfd_elf_special_section special_sections_l[] =
2116 {
2117 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2118 { NULL, 0, 0, 0, 0 }
2119 };
2120
2121 static const struct bfd_elf_special_section special_sections_n[] =
2122 {
2123 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2124 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2125 { NULL, 0, 0, 0, 0 }
2126 };
2127
2128 static const struct bfd_elf_special_section special_sections_p[] =
2129 {
2130 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2131 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2132 { NULL, 0, 0, 0, 0 }
2133 };
2134
2135 static const struct bfd_elf_special_section special_sections_r[] =
2136 {
2137 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2138 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2139 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2140 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2141 { NULL, 0, 0, 0, 0 }
2142 };
2143
2144 static const struct bfd_elf_special_section special_sections_s[] =
2145 {
2146 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2147 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2148 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2149 /* See struct bfd_elf_special_section declaration for the semantics of
2150 this special case where .prefix_length != strlen (.prefix). */
2151 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2152 { NULL, 0, 0, 0, 0 }
2153 };
2154
2155 static const struct bfd_elf_special_section special_sections_t[] =
2156 {
2157 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2158 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2159 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2160 { NULL, 0, 0, 0, 0 }
2161 };
2162
2163 static const struct bfd_elf_special_section special_sections_z[] =
2164 {
2165 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2166 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2167 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2168 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2169 { NULL, 0, 0, 0, 0 }
2170 };
2171
2172 static const struct bfd_elf_special_section * const special_sections[] =
2173 {
2174 special_sections_b, /* 'b' */
2175 special_sections_c, /* 'c' */
2176 special_sections_d, /* 'd' */
2177 NULL, /* 'e' */
2178 special_sections_f, /* 'f' */
2179 special_sections_g, /* 'g' */
2180 special_sections_h, /* 'h' */
2181 special_sections_i, /* 'i' */
2182 NULL, /* 'j' */
2183 NULL, /* 'k' */
2184 special_sections_l, /* 'l' */
2185 NULL, /* 'm' */
2186 special_sections_n, /* 'n' */
2187 NULL, /* 'o' */
2188 special_sections_p, /* 'p' */
2189 NULL, /* 'q' */
2190 special_sections_r, /* 'r' */
2191 special_sections_s, /* 's' */
2192 special_sections_t, /* 't' */
2193 NULL, /* 'u' */
2194 NULL, /* 'v' */
2195 NULL, /* 'w' */
2196 NULL, /* 'x' */
2197 NULL, /* 'y' */
2198 special_sections_z /* 'z' */
2199 };
2200
2201 const struct bfd_elf_special_section *
2202 _bfd_elf_get_special_section (const char *name,
2203 const struct bfd_elf_special_section *spec,
2204 unsigned int rela)
2205 {
2206 int i;
2207 int len;
2208
2209 len = strlen (name);
2210
2211 for (i = 0; spec[i].prefix != NULL; i++)
2212 {
2213 int suffix_len;
2214 int prefix_len = spec[i].prefix_length;
2215
2216 if (len < prefix_len)
2217 continue;
2218 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2219 continue;
2220
2221 suffix_len = spec[i].suffix_length;
2222 if (suffix_len <= 0)
2223 {
2224 if (name[prefix_len] != 0)
2225 {
2226 if (suffix_len == 0)
2227 continue;
2228 if (name[prefix_len] != '.'
2229 && (suffix_len == -2
2230 || (rela && spec[i].type == SHT_REL)))
2231 continue;
2232 }
2233 }
2234 else
2235 {
2236 if (len < prefix_len + suffix_len)
2237 continue;
2238 if (memcmp (name + len - suffix_len,
2239 spec[i].prefix + prefix_len,
2240 suffix_len) != 0)
2241 continue;
2242 }
2243 return &spec[i];
2244 }
2245
2246 return NULL;
2247 }
2248
2249 const struct bfd_elf_special_section *
2250 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2251 {
2252 int i;
2253 const struct bfd_elf_special_section *spec;
2254 const struct elf_backend_data *bed;
2255
2256 /* See if this is one of the special sections. */
2257 if (sec->name == NULL)
2258 return NULL;
2259
2260 bed = get_elf_backend_data (abfd);
2261 spec = bed->special_sections;
2262 if (spec)
2263 {
2264 spec = _bfd_elf_get_special_section (sec->name,
2265 bed->special_sections,
2266 sec->use_rela_p);
2267 if (spec != NULL)
2268 return spec;
2269 }
2270
2271 if (sec->name[0] != '.')
2272 return NULL;
2273
2274 i = sec->name[1] - 'b';
2275 if (i < 0 || i > 'z' - 'b')
2276 return NULL;
2277
2278 spec = special_sections[i];
2279
2280 if (spec == NULL)
2281 return NULL;
2282
2283 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2284 }
2285
2286 bfd_boolean
2287 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2288 {
2289 struct bfd_elf_section_data *sdata;
2290 const struct elf_backend_data *bed;
2291 const struct bfd_elf_special_section *ssect;
2292
2293 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2294 if (sdata == NULL)
2295 {
2296 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2297 sizeof (*sdata));
2298 if (sdata == NULL)
2299 return FALSE;
2300 sec->used_by_bfd = sdata;
2301 }
2302
2303 /* Indicate whether or not this section should use RELA relocations. */
2304 bed = get_elf_backend_data (abfd);
2305 sec->use_rela_p = bed->default_use_rela_p;
2306
2307 /* When we read a file, we don't need to set ELF section type and
2308 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2309 anyway. We will set ELF section type and flags for all linker
2310 created sections. If user specifies BFD section flags, we will
2311 set ELF section type and flags based on BFD section flags in
2312 elf_fake_sections. Special handling for .init_array/.fini_array
2313 output sections since they may contain .ctors/.dtors input
2314 sections. We don't want _bfd_elf_init_private_section_data to
2315 copy ELF section type from .ctors/.dtors input sections. */
2316 if (abfd->direction != read_direction
2317 || (sec->flags & SEC_LINKER_CREATED) != 0)
2318 {
2319 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2320 if (ssect != NULL
2321 && (!sec->flags
2322 || (sec->flags & SEC_LINKER_CREATED) != 0
2323 || ssect->type == SHT_INIT_ARRAY
2324 || ssect->type == SHT_FINI_ARRAY))
2325 {
2326 elf_section_type (sec) = ssect->type;
2327 elf_section_flags (sec) = ssect->attr;
2328 }
2329 }
2330
2331 return _bfd_generic_new_section_hook (abfd, sec);
2332 }
2333
2334 /* Create a new bfd section from an ELF program header.
2335
2336 Since program segments have no names, we generate a synthetic name
2337 of the form segment<NUM>, where NUM is generally the index in the
2338 program header table. For segments that are split (see below) we
2339 generate the names segment<NUM>a and segment<NUM>b.
2340
2341 Note that some program segments may have a file size that is different than
2342 (less than) the memory size. All this means is that at execution the
2343 system must allocate the amount of memory specified by the memory size,
2344 but only initialize it with the first "file size" bytes read from the
2345 file. This would occur for example, with program segments consisting
2346 of combined data+bss.
2347
2348 To handle the above situation, this routine generates TWO bfd sections
2349 for the single program segment. The first has the length specified by
2350 the file size of the segment, and the second has the length specified
2351 by the difference between the two sizes. In effect, the segment is split
2352 into its initialized and uninitialized parts.
2353
2354 */
2355
2356 bfd_boolean
2357 _bfd_elf_make_section_from_phdr (bfd *abfd,
2358 Elf_Internal_Phdr *hdr,
2359 int hdr_index,
2360 const char *type_name)
2361 {
2362 asection *newsect;
2363 char *name;
2364 char namebuf[64];
2365 size_t len;
2366 int split;
2367
2368 split = ((hdr->p_memsz > 0)
2369 && (hdr->p_filesz > 0)
2370 && (hdr->p_memsz > hdr->p_filesz));
2371
2372 if (hdr->p_filesz > 0)
2373 {
2374 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2375 len = strlen (namebuf) + 1;
2376 name = (char *) bfd_alloc (abfd, len);
2377 if (!name)
2378 return FALSE;
2379 memcpy (name, namebuf, len);
2380 newsect = bfd_make_section (abfd, name);
2381 if (newsect == NULL)
2382 return FALSE;
2383 newsect->vma = hdr->p_vaddr;
2384 newsect->lma = hdr->p_paddr;
2385 newsect->size = hdr->p_filesz;
2386 newsect->filepos = hdr->p_offset;
2387 newsect->flags |= SEC_HAS_CONTENTS;
2388 newsect->alignment_power = bfd_log2 (hdr->p_align);
2389 if (hdr->p_type == PT_LOAD)
2390 {
2391 newsect->flags |= SEC_ALLOC;
2392 newsect->flags |= SEC_LOAD;
2393 if (hdr->p_flags & PF_X)
2394 {
2395 /* FIXME: all we known is that it has execute PERMISSION,
2396 may be data. */
2397 newsect->flags |= SEC_CODE;
2398 }
2399 }
2400 if (!(hdr->p_flags & PF_W))
2401 {
2402 newsect->flags |= SEC_READONLY;
2403 }
2404 }
2405
2406 if (hdr->p_memsz > hdr->p_filesz)
2407 {
2408 bfd_vma align;
2409
2410 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2411 len = strlen (namebuf) + 1;
2412 name = (char *) bfd_alloc (abfd, len);
2413 if (!name)
2414 return FALSE;
2415 memcpy (name, namebuf, len);
2416 newsect = bfd_make_section (abfd, name);
2417 if (newsect == NULL)
2418 return FALSE;
2419 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2420 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2421 newsect->size = hdr->p_memsz - hdr->p_filesz;
2422 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2423 align = newsect->vma & -newsect->vma;
2424 if (align == 0 || align > hdr->p_align)
2425 align = hdr->p_align;
2426 newsect->alignment_power = bfd_log2 (align);
2427 if (hdr->p_type == PT_LOAD)
2428 {
2429 /* Hack for gdb. Segments that have not been modified do
2430 not have their contents written to a core file, on the
2431 assumption that a debugger can find the contents in the
2432 executable. We flag this case by setting the fake
2433 section size to zero. Note that "real" bss sections will
2434 always have their contents dumped to the core file. */
2435 if (bfd_get_format (abfd) == bfd_core)
2436 newsect->size = 0;
2437 newsect->flags |= SEC_ALLOC;
2438 if (hdr->p_flags & PF_X)
2439 newsect->flags |= SEC_CODE;
2440 }
2441 if (!(hdr->p_flags & PF_W))
2442 newsect->flags |= SEC_READONLY;
2443 }
2444
2445 return TRUE;
2446 }
2447
2448 bfd_boolean
2449 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2450 {
2451 const struct elf_backend_data *bed;
2452
2453 switch (hdr->p_type)
2454 {
2455 case PT_NULL:
2456 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2457
2458 case PT_LOAD:
2459 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2460
2461 case PT_DYNAMIC:
2462 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2463
2464 case PT_INTERP:
2465 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2466
2467 case PT_NOTE:
2468 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2469 return FALSE;
2470 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2471 return FALSE;
2472 return TRUE;
2473
2474 case PT_SHLIB:
2475 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2476
2477 case PT_PHDR:
2478 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2479
2480 case PT_GNU_EH_FRAME:
2481 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2482 "eh_frame_hdr");
2483
2484 case PT_GNU_STACK:
2485 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2486
2487 case PT_GNU_RELRO:
2488 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2489
2490 default:
2491 /* Check for any processor-specific program segment types. */
2492 bed = get_elf_backend_data (abfd);
2493 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2494 }
2495 }
2496
2497 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2498 REL or RELA. */
2499
2500 Elf_Internal_Shdr *
2501 _bfd_elf_single_rel_hdr (asection *sec)
2502 {
2503 if (elf_section_data (sec)->rel.hdr)
2504 {
2505 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2506 return elf_section_data (sec)->rel.hdr;
2507 }
2508 else
2509 return elf_section_data (sec)->rela.hdr;
2510 }
2511
2512 /* Allocate and initialize a section-header for a new reloc section,
2513 containing relocations against ASECT. It is stored in RELDATA. If
2514 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2515 relocations. */
2516
2517 bfd_boolean
2518 _bfd_elf_init_reloc_shdr (bfd *abfd,
2519 struct bfd_elf_section_reloc_data *reldata,
2520 asection *asect,
2521 bfd_boolean use_rela_p)
2522 {
2523 Elf_Internal_Shdr *rel_hdr;
2524 char *name;
2525 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2526 bfd_size_type amt;
2527
2528 amt = sizeof (Elf_Internal_Shdr);
2529 BFD_ASSERT (reldata->hdr == NULL);
2530 rel_hdr = bfd_zalloc (abfd, amt);
2531 reldata->hdr = rel_hdr;
2532
2533 amt = sizeof ".rela" + strlen (asect->name);
2534 name = (char *) bfd_alloc (abfd, amt);
2535 if (name == NULL)
2536 return FALSE;
2537 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2538 rel_hdr->sh_name =
2539 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2540 FALSE);
2541 if (rel_hdr->sh_name == (unsigned int) -1)
2542 return FALSE;
2543 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2544 rel_hdr->sh_entsize = (use_rela_p
2545 ? bed->s->sizeof_rela
2546 : bed->s->sizeof_rel);
2547 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2548 rel_hdr->sh_flags = 0;
2549 rel_hdr->sh_addr = 0;
2550 rel_hdr->sh_size = 0;
2551 rel_hdr->sh_offset = 0;
2552
2553 return TRUE;
2554 }
2555
2556 /* Return the default section type based on the passed in section flags. */
2557
2558 int
2559 bfd_elf_get_default_section_type (flagword flags)
2560 {
2561 if ((flags & SEC_ALLOC) != 0
2562 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2563 return SHT_NOBITS;
2564 return SHT_PROGBITS;
2565 }
2566
2567 struct fake_section_arg
2568 {
2569 struct bfd_link_info *link_info;
2570 bfd_boolean failed;
2571 };
2572
2573 /* Set up an ELF internal section header for a section. */
2574
2575 static void
2576 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2577 {
2578 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2579 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2580 struct bfd_elf_section_data *esd = elf_section_data (asect);
2581 Elf_Internal_Shdr *this_hdr;
2582 unsigned int sh_type;
2583
2584 if (arg->failed)
2585 {
2586 /* We already failed; just get out of the bfd_map_over_sections
2587 loop. */
2588 return;
2589 }
2590
2591 this_hdr = &esd->this_hdr;
2592
2593 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2594 asect->name, FALSE);
2595 if (this_hdr->sh_name == (unsigned int) -1)
2596 {
2597 arg->failed = TRUE;
2598 return;
2599 }
2600
2601 /* Don't clear sh_flags. Assembler may set additional bits. */
2602
2603 if ((asect->flags & SEC_ALLOC) != 0
2604 || asect->user_set_vma)
2605 this_hdr->sh_addr = asect->vma;
2606 else
2607 this_hdr->sh_addr = 0;
2608
2609 this_hdr->sh_offset = 0;
2610 this_hdr->sh_size = asect->size;
2611 this_hdr->sh_link = 0;
2612 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2613 /* The sh_entsize and sh_info fields may have been set already by
2614 copy_private_section_data. */
2615
2616 this_hdr->bfd_section = asect;
2617 this_hdr->contents = NULL;
2618
2619 /* If the section type is unspecified, we set it based on
2620 asect->flags. */
2621 if ((asect->flags & SEC_GROUP) != 0)
2622 sh_type = SHT_GROUP;
2623 else
2624 sh_type = bfd_elf_get_default_section_type (asect->flags);
2625
2626 if (this_hdr->sh_type == SHT_NULL)
2627 this_hdr->sh_type = sh_type;
2628 else if (this_hdr->sh_type == SHT_NOBITS
2629 && sh_type == SHT_PROGBITS
2630 && (asect->flags & SEC_ALLOC) != 0)
2631 {
2632 /* Warn if we are changing a NOBITS section to PROGBITS, but
2633 allow the link to proceed. This can happen when users link
2634 non-bss input sections to bss output sections, or emit data
2635 to a bss output section via a linker script. */
2636 (*_bfd_error_handler)
2637 (_("warning: section `%A' type changed to PROGBITS"), asect);
2638 this_hdr->sh_type = sh_type;
2639 }
2640
2641 switch (this_hdr->sh_type)
2642 {
2643 default:
2644 break;
2645
2646 case SHT_STRTAB:
2647 case SHT_INIT_ARRAY:
2648 case SHT_FINI_ARRAY:
2649 case SHT_PREINIT_ARRAY:
2650 case SHT_NOTE:
2651 case SHT_NOBITS:
2652 case SHT_PROGBITS:
2653 break;
2654
2655 case SHT_HASH:
2656 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2657 break;
2658
2659 case SHT_DYNSYM:
2660 this_hdr->sh_entsize = bed->s->sizeof_sym;
2661 break;
2662
2663 case SHT_DYNAMIC:
2664 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2665 break;
2666
2667 case SHT_RELA:
2668 if (get_elf_backend_data (abfd)->may_use_rela_p)
2669 this_hdr->sh_entsize = bed->s->sizeof_rela;
2670 break;
2671
2672 case SHT_REL:
2673 if (get_elf_backend_data (abfd)->may_use_rel_p)
2674 this_hdr->sh_entsize = bed->s->sizeof_rel;
2675 break;
2676
2677 case SHT_GNU_versym:
2678 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2679 break;
2680
2681 case SHT_GNU_verdef:
2682 this_hdr->sh_entsize = 0;
2683 /* objcopy or strip will copy over sh_info, but may not set
2684 cverdefs. The linker will set cverdefs, but sh_info will be
2685 zero. */
2686 if (this_hdr->sh_info == 0)
2687 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2688 else
2689 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2690 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2691 break;
2692
2693 case SHT_GNU_verneed:
2694 this_hdr->sh_entsize = 0;
2695 /* objcopy or strip will copy over sh_info, but may not set
2696 cverrefs. The linker will set cverrefs, but sh_info will be
2697 zero. */
2698 if (this_hdr->sh_info == 0)
2699 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2700 else
2701 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2702 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2703 break;
2704
2705 case SHT_GROUP:
2706 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2707 break;
2708
2709 case SHT_GNU_HASH:
2710 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2711 break;
2712 }
2713
2714 if ((asect->flags & SEC_ALLOC) != 0)
2715 this_hdr->sh_flags |= SHF_ALLOC;
2716 if ((asect->flags & SEC_READONLY) == 0)
2717 this_hdr->sh_flags |= SHF_WRITE;
2718 if ((asect->flags & SEC_CODE) != 0)
2719 this_hdr->sh_flags |= SHF_EXECINSTR;
2720 if ((asect->flags & SEC_MERGE) != 0)
2721 {
2722 this_hdr->sh_flags |= SHF_MERGE;
2723 this_hdr->sh_entsize = asect->entsize;
2724 if ((asect->flags & SEC_STRINGS) != 0)
2725 this_hdr->sh_flags |= SHF_STRINGS;
2726 }
2727 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2728 this_hdr->sh_flags |= SHF_GROUP;
2729 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2730 {
2731 this_hdr->sh_flags |= SHF_TLS;
2732 if (asect->size == 0
2733 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2734 {
2735 struct bfd_link_order *o = asect->map_tail.link_order;
2736
2737 this_hdr->sh_size = 0;
2738 if (o != NULL)
2739 {
2740 this_hdr->sh_size = o->offset + o->size;
2741 if (this_hdr->sh_size != 0)
2742 this_hdr->sh_type = SHT_NOBITS;
2743 }
2744 }
2745 }
2746 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2747 this_hdr->sh_flags |= SHF_EXCLUDE;
2748
2749 /* If the section has relocs, set up a section header for the
2750 SHT_REL[A] section. If two relocation sections are required for
2751 this section, it is up to the processor-specific back-end to
2752 create the other. */
2753 if ((asect->flags & SEC_RELOC) != 0)
2754 {
2755 /* When doing a relocatable link, create both REL and RELA sections if
2756 needed. */
2757 if (arg->link_info
2758 /* Do the normal setup if we wouldn't create any sections here. */
2759 && esd->rel.count + esd->rela.count > 0
2760 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2761 {
2762 if (esd->rel.count && esd->rel.hdr == NULL
2763 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2764 {
2765 arg->failed = TRUE;
2766 return;
2767 }
2768 if (esd->rela.count && esd->rela.hdr == NULL
2769 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2770 {
2771 arg->failed = TRUE;
2772 return;
2773 }
2774 }
2775 else if (!_bfd_elf_init_reloc_shdr (abfd,
2776 (asect->use_rela_p
2777 ? &esd->rela : &esd->rel),
2778 asect,
2779 asect->use_rela_p))
2780 arg->failed = TRUE;
2781 }
2782
2783 /* Check for processor-specific section types. */
2784 sh_type = this_hdr->sh_type;
2785 if (bed->elf_backend_fake_sections
2786 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2787 arg->failed = TRUE;
2788
2789 if (sh_type == SHT_NOBITS && asect->size != 0)
2790 {
2791 /* Don't change the header type from NOBITS if we are being
2792 called for objcopy --only-keep-debug. */
2793 this_hdr->sh_type = sh_type;
2794 }
2795 }
2796
2797 /* Fill in the contents of a SHT_GROUP section. Called from
2798 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2799 when ELF targets use the generic linker, ld. Called for ld -r
2800 from bfd_elf_final_link. */
2801
2802 void
2803 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2804 {
2805 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2806 asection *elt, *first;
2807 unsigned char *loc;
2808 bfd_boolean gas;
2809
2810 /* Ignore linker created group section. See elfNN_ia64_object_p in
2811 elfxx-ia64.c. */
2812 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2813 || *failedptr)
2814 return;
2815
2816 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2817 {
2818 unsigned long symindx = 0;
2819
2820 /* elf_group_id will have been set up by objcopy and the
2821 generic linker. */
2822 if (elf_group_id (sec) != NULL)
2823 symindx = elf_group_id (sec)->udata.i;
2824
2825 if (symindx == 0)
2826 {
2827 /* If called from the assembler, swap_out_syms will have set up
2828 elf_section_syms. */
2829 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2830 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2831 }
2832 elf_section_data (sec)->this_hdr.sh_info = symindx;
2833 }
2834 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2835 {
2836 /* The ELF backend linker sets sh_info to -2 when the group
2837 signature symbol is global, and thus the index can't be
2838 set until all local symbols are output. */
2839 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2840 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2841 unsigned long symndx = sec_data->this_hdr.sh_info;
2842 unsigned long extsymoff = 0;
2843 struct elf_link_hash_entry *h;
2844
2845 if (!elf_bad_symtab (igroup->owner))
2846 {
2847 Elf_Internal_Shdr *symtab_hdr;
2848
2849 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2850 extsymoff = symtab_hdr->sh_info;
2851 }
2852 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2853 while (h->root.type == bfd_link_hash_indirect
2854 || h->root.type == bfd_link_hash_warning)
2855 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2856
2857 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2858 }
2859
2860 /* The contents won't be allocated for "ld -r" or objcopy. */
2861 gas = TRUE;
2862 if (sec->contents == NULL)
2863 {
2864 gas = FALSE;
2865 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2866
2867 /* Arrange for the section to be written out. */
2868 elf_section_data (sec)->this_hdr.contents = sec->contents;
2869 if (sec->contents == NULL)
2870 {
2871 *failedptr = TRUE;
2872 return;
2873 }
2874 }
2875
2876 loc = sec->contents + sec->size;
2877
2878 /* Get the pointer to the first section in the group that gas
2879 squirreled away here. objcopy arranges for this to be set to the
2880 start of the input section group. */
2881 first = elt = elf_next_in_group (sec);
2882
2883 /* First element is a flag word. Rest of section is elf section
2884 indices for all the sections of the group. Write them backwards
2885 just to keep the group in the same order as given in .section
2886 directives, not that it matters. */
2887 while (elt != NULL)
2888 {
2889 asection *s;
2890
2891 s = elt;
2892 if (!gas)
2893 s = s->output_section;
2894 if (s != NULL
2895 && !bfd_is_abs_section (s))
2896 {
2897 unsigned int idx = elf_section_data (s)->this_idx;
2898
2899 loc -= 4;
2900 H_PUT_32 (abfd, idx, loc);
2901 }
2902 elt = elf_next_in_group (elt);
2903 if (elt == first)
2904 break;
2905 }
2906
2907 if ((loc -= 4) != sec->contents)
2908 abort ();
2909
2910 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2911 }
2912
2913 /* Assign all ELF section numbers. The dummy first section is handled here
2914 too. The link/info pointers for the standard section types are filled
2915 in here too, while we're at it. */
2916
2917 static bfd_boolean
2918 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2919 {
2920 struct elf_obj_tdata *t = elf_tdata (abfd);
2921 asection *sec;
2922 unsigned int section_number, secn;
2923 Elf_Internal_Shdr **i_shdrp;
2924 struct bfd_elf_section_data *d;
2925 bfd_boolean need_symtab;
2926
2927 section_number = 1;
2928
2929 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2930
2931 /* SHT_GROUP sections are in relocatable files only. */
2932 if (link_info == NULL || link_info->relocatable)
2933 {
2934 /* Put SHT_GROUP sections first. */
2935 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2936 {
2937 d = elf_section_data (sec);
2938
2939 if (d->this_hdr.sh_type == SHT_GROUP)
2940 {
2941 if (sec->flags & SEC_LINKER_CREATED)
2942 {
2943 /* Remove the linker created SHT_GROUP sections. */
2944 bfd_section_list_remove (abfd, sec);
2945 abfd->section_count--;
2946 }
2947 else
2948 d->this_idx = section_number++;
2949 }
2950 }
2951 }
2952
2953 for (sec = abfd->sections; sec; sec = sec->next)
2954 {
2955 d = elf_section_data (sec);
2956
2957 if (d->this_hdr.sh_type != SHT_GROUP)
2958 d->this_idx = section_number++;
2959 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2960 if (d->rel.hdr)
2961 {
2962 d->rel.idx = section_number++;
2963 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2964 }
2965 else
2966 d->rel.idx = 0;
2967
2968 if (d->rela.hdr)
2969 {
2970 d->rela.idx = section_number++;
2971 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2972 }
2973 else
2974 d->rela.idx = 0;
2975 }
2976
2977 t->shstrtab_section = section_number++;
2978 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2979 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2980
2981 need_symtab = (bfd_get_symcount (abfd) > 0
2982 || (link_info == NULL
2983 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2984 == HAS_RELOC)));
2985 if (need_symtab)
2986 {
2987 t->symtab_section = section_number++;
2988 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2989 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2990 {
2991 t->symtab_shndx_section = section_number++;
2992 t->symtab_shndx_hdr.sh_name
2993 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2994 ".symtab_shndx", FALSE);
2995 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2996 return FALSE;
2997 }
2998 t->strtab_section = section_number++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3000 }
3001
3002 if (section_number >= SHN_LORESERVE)
3003 {
3004 _bfd_error_handler (_("%B: too many sections: %u"),
3005 abfd, section_number);
3006 return FALSE;
3007 }
3008
3009 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3010 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3011
3012 elf_numsections (abfd) = section_number;
3013 elf_elfheader (abfd)->e_shnum = section_number;
3014
3015 /* Set up the list of section header pointers, in agreement with the
3016 indices. */
3017 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3018 sizeof (Elf_Internal_Shdr *));
3019 if (i_shdrp == NULL)
3020 return FALSE;
3021
3022 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3023 sizeof (Elf_Internal_Shdr));
3024 if (i_shdrp[0] == NULL)
3025 {
3026 bfd_release (abfd, i_shdrp);
3027 return FALSE;
3028 }
3029
3030 elf_elfsections (abfd) = i_shdrp;
3031
3032 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3033 if (need_symtab)
3034 {
3035 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3036 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3037 {
3038 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3039 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3040 }
3041 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3042 t->symtab_hdr.sh_link = t->strtab_section;
3043 }
3044
3045 for (sec = abfd->sections; sec; sec = sec->next)
3046 {
3047 asection *s;
3048 const char *name;
3049
3050 d = elf_section_data (sec);
3051
3052 i_shdrp[d->this_idx] = &d->this_hdr;
3053 if (d->rel.idx != 0)
3054 i_shdrp[d->rel.idx] = d->rel.hdr;
3055 if (d->rela.idx != 0)
3056 i_shdrp[d->rela.idx] = d->rela.hdr;
3057
3058 /* Fill in the sh_link and sh_info fields while we're at it. */
3059
3060 /* sh_link of a reloc section is the section index of the symbol
3061 table. sh_info is the section index of the section to which
3062 the relocation entries apply. */
3063 if (d->rel.idx != 0)
3064 {
3065 d->rel.hdr->sh_link = t->symtab_section;
3066 d->rel.hdr->sh_info = d->this_idx;
3067 }
3068 if (d->rela.idx != 0)
3069 {
3070 d->rela.hdr->sh_link = t->symtab_section;
3071 d->rela.hdr->sh_info = d->this_idx;
3072 }
3073
3074 /* We need to set up sh_link for SHF_LINK_ORDER. */
3075 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3076 {
3077 s = elf_linked_to_section (sec);
3078 if (s)
3079 {
3080 /* elf_linked_to_section points to the input section. */
3081 if (link_info != NULL)
3082 {
3083 /* Check discarded linkonce section. */
3084 if (discarded_section (s))
3085 {
3086 asection *kept;
3087 (*_bfd_error_handler)
3088 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3089 abfd, d->this_hdr.bfd_section,
3090 s, s->owner);
3091 /* Point to the kept section if it has the same
3092 size as the discarded one. */
3093 kept = _bfd_elf_check_kept_section (s, link_info);
3094 if (kept == NULL)
3095 {
3096 bfd_set_error (bfd_error_bad_value);
3097 return FALSE;
3098 }
3099 s = kept;
3100 }
3101
3102 s = s->output_section;
3103 BFD_ASSERT (s != NULL);
3104 }
3105 else
3106 {
3107 /* Handle objcopy. */
3108 if (s->output_section == NULL)
3109 {
3110 (*_bfd_error_handler)
3111 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3112 abfd, d->this_hdr.bfd_section, s, s->owner);
3113 bfd_set_error (bfd_error_bad_value);
3114 return FALSE;
3115 }
3116 s = s->output_section;
3117 }
3118 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3119 }
3120 else
3121 {
3122 /* PR 290:
3123 The Intel C compiler generates SHT_IA_64_UNWIND with
3124 SHF_LINK_ORDER. But it doesn't set the sh_link or
3125 sh_info fields. Hence we could get the situation
3126 where s is NULL. */
3127 const struct elf_backend_data *bed
3128 = get_elf_backend_data (abfd);
3129 if (bed->link_order_error_handler)
3130 bed->link_order_error_handler
3131 (_("%B: warning: sh_link not set for section `%A'"),
3132 abfd, sec);
3133 }
3134 }
3135
3136 switch (d->this_hdr.sh_type)
3137 {
3138 case SHT_REL:
3139 case SHT_RELA:
3140 /* A reloc section which we are treating as a normal BFD
3141 section. sh_link is the section index of the symbol
3142 table. sh_info is the section index of the section to
3143 which the relocation entries apply. We assume that an
3144 allocated reloc section uses the dynamic symbol table.
3145 FIXME: How can we be sure? */
3146 s = bfd_get_section_by_name (abfd, ".dynsym");
3147 if (s != NULL)
3148 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3149
3150 /* We look up the section the relocs apply to by name. */
3151 name = sec->name;
3152 if (d->this_hdr.sh_type == SHT_REL)
3153 name += 4;
3154 else
3155 name += 5;
3156 s = bfd_get_section_by_name (abfd, name);
3157 if (s != NULL)
3158 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3159 break;
3160
3161 case SHT_STRTAB:
3162 /* We assume that a section named .stab*str is a stabs
3163 string section. We look for a section with the same name
3164 but without the trailing ``str'', and set its sh_link
3165 field to point to this section. */
3166 if (CONST_STRNEQ (sec->name, ".stab")
3167 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3168 {
3169 size_t len;
3170 char *alc;
3171
3172 len = strlen (sec->name);
3173 alc = (char *) bfd_malloc (len - 2);
3174 if (alc == NULL)
3175 return FALSE;
3176 memcpy (alc, sec->name, len - 3);
3177 alc[len - 3] = '\0';
3178 s = bfd_get_section_by_name (abfd, alc);
3179 free (alc);
3180 if (s != NULL)
3181 {
3182 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3183
3184 /* This is a .stab section. */
3185 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3186 elf_section_data (s)->this_hdr.sh_entsize
3187 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3188 }
3189 }
3190 break;
3191
3192 case SHT_DYNAMIC:
3193 case SHT_DYNSYM:
3194 case SHT_GNU_verneed:
3195 case SHT_GNU_verdef:
3196 /* sh_link is the section header index of the string table
3197 used for the dynamic entries, or the symbol table, or the
3198 version strings. */
3199 s = bfd_get_section_by_name (abfd, ".dynstr");
3200 if (s != NULL)
3201 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3202 break;
3203
3204 case SHT_GNU_LIBLIST:
3205 /* sh_link is the section header index of the prelink library
3206 list used for the dynamic entries, or the symbol table, or
3207 the version strings. */
3208 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3209 ? ".dynstr" : ".gnu.libstr");
3210 if (s != NULL)
3211 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3212 break;
3213
3214 case SHT_HASH:
3215 case SHT_GNU_HASH:
3216 case SHT_GNU_versym:
3217 /* sh_link is the section header index of the symbol table
3218 this hash table or version table is for. */
3219 s = bfd_get_section_by_name (abfd, ".dynsym");
3220 if (s != NULL)
3221 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3222 break;
3223
3224 case SHT_GROUP:
3225 d->this_hdr.sh_link = t->symtab_section;
3226 }
3227 }
3228
3229 for (secn = 1; secn < section_number; ++secn)
3230 if (i_shdrp[secn] == NULL)
3231 i_shdrp[secn] = i_shdrp[0];
3232 else
3233 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3234 i_shdrp[secn]->sh_name);
3235 return TRUE;
3236 }
3237
3238 static bfd_boolean
3239 sym_is_global (bfd *abfd, asymbol *sym)
3240 {
3241 /* If the backend has a special mapping, use it. */
3242 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3243 if (bed->elf_backend_sym_is_global)
3244 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3245
3246 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3247 || bfd_is_und_section (bfd_get_section (sym))
3248 || bfd_is_com_section (bfd_get_section (sym)));
3249 }
3250
3251 /* Don't output section symbols for sections that are not going to be
3252 output, that are duplicates or there is no BFD section. */
3253
3254 static bfd_boolean
3255 ignore_section_sym (bfd *abfd, asymbol *sym)
3256 {
3257 elf_symbol_type *type_ptr;
3258
3259 if ((sym->flags & BSF_SECTION_SYM) == 0)
3260 return FALSE;
3261
3262 type_ptr = elf_symbol_from (abfd, sym);
3263 return ((type_ptr != NULL
3264 && type_ptr->internal_elf_sym.st_shndx != 0
3265 && bfd_is_abs_section (sym->section))
3266 || !(sym->section->owner == abfd
3267 || (sym->section->output_section->owner == abfd
3268 && sym->section->output_offset == 0)
3269 || bfd_is_abs_section (sym->section)));
3270 }
3271
3272 /* Map symbol from it's internal number to the external number, moving
3273 all local symbols to be at the head of the list. */
3274
3275 static bfd_boolean
3276 elf_map_symbols (bfd *abfd)
3277 {
3278 unsigned int symcount = bfd_get_symcount (abfd);
3279 asymbol **syms = bfd_get_outsymbols (abfd);
3280 asymbol **sect_syms;
3281 unsigned int num_locals = 0;
3282 unsigned int num_globals = 0;
3283 unsigned int num_locals2 = 0;
3284 unsigned int num_globals2 = 0;
3285 int max_index = 0;
3286 unsigned int idx;
3287 asection *asect;
3288 asymbol **new_syms;
3289
3290 #ifdef DEBUG
3291 fprintf (stderr, "elf_map_symbols\n");
3292 fflush (stderr);
3293 #endif
3294
3295 for (asect = abfd->sections; asect; asect = asect->next)
3296 {
3297 if (max_index < asect->index)
3298 max_index = asect->index;
3299 }
3300
3301 max_index++;
3302 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3303 if (sect_syms == NULL)
3304 return FALSE;
3305 elf_section_syms (abfd) = sect_syms;
3306 elf_num_section_syms (abfd) = max_index;
3307
3308 /* Init sect_syms entries for any section symbols we have already
3309 decided to output. */
3310 for (idx = 0; idx < symcount; idx++)
3311 {
3312 asymbol *sym = syms[idx];
3313
3314 if ((sym->flags & BSF_SECTION_SYM) != 0
3315 && sym->value == 0
3316 && !ignore_section_sym (abfd, sym)
3317 && !bfd_is_abs_section (sym->section))
3318 {
3319 asection *sec = sym->section;
3320
3321 if (sec->owner != abfd)
3322 sec = sec->output_section;
3323
3324 sect_syms[sec->index] = syms[idx];
3325 }
3326 }
3327
3328 /* Classify all of the symbols. */
3329 for (idx = 0; idx < symcount; idx++)
3330 {
3331 if (sym_is_global (abfd, syms[idx]))
3332 num_globals++;
3333 else if (!ignore_section_sym (abfd, syms[idx]))
3334 num_locals++;
3335 }
3336
3337 /* We will be adding a section symbol for each normal BFD section. Most
3338 sections will already have a section symbol in outsymbols, but
3339 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3340 at least in that case. */
3341 for (asect = abfd->sections; asect; asect = asect->next)
3342 {
3343 if (sect_syms[asect->index] == NULL)
3344 {
3345 if (!sym_is_global (abfd, asect->symbol))
3346 num_locals++;
3347 else
3348 num_globals++;
3349 }
3350 }
3351
3352 /* Now sort the symbols so the local symbols are first. */
3353 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3354 sizeof (asymbol *));
3355
3356 if (new_syms == NULL)
3357 return FALSE;
3358
3359 for (idx = 0; idx < symcount; idx++)
3360 {
3361 asymbol *sym = syms[idx];
3362 unsigned int i;
3363
3364 if (sym_is_global (abfd, sym))
3365 i = num_locals + num_globals2++;
3366 else if (!ignore_section_sym (abfd, sym))
3367 i = num_locals2++;
3368 else
3369 continue;
3370 new_syms[i] = sym;
3371 sym->udata.i = i + 1;
3372 }
3373 for (asect = abfd->sections; asect; asect = asect->next)
3374 {
3375 if (sect_syms[asect->index] == NULL)
3376 {
3377 asymbol *sym = asect->symbol;
3378 unsigned int i;
3379
3380 sect_syms[asect->index] = sym;
3381 if (!sym_is_global (abfd, sym))
3382 i = num_locals2++;
3383 else
3384 i = num_locals + num_globals2++;
3385 new_syms[i] = sym;
3386 sym->udata.i = i + 1;
3387 }
3388 }
3389
3390 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3391
3392 elf_num_locals (abfd) = num_locals;
3393 elf_num_globals (abfd) = num_globals;
3394 return TRUE;
3395 }
3396
3397 /* Align to the maximum file alignment that could be required for any
3398 ELF data structure. */
3399
3400 static inline file_ptr
3401 align_file_position (file_ptr off, int align)
3402 {
3403 return (off + align - 1) & ~(align - 1);
3404 }
3405
3406 /* Assign a file position to a section, optionally aligning to the
3407 required section alignment. */
3408
3409 file_ptr
3410 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3411 file_ptr offset,
3412 bfd_boolean align)
3413 {
3414 if (align && i_shdrp->sh_addralign > 1)
3415 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3416 i_shdrp->sh_offset = offset;
3417 if (i_shdrp->bfd_section != NULL)
3418 i_shdrp->bfd_section->filepos = offset;
3419 if (i_shdrp->sh_type != SHT_NOBITS)
3420 offset += i_shdrp->sh_size;
3421 return offset;
3422 }
3423
3424 /* Compute the file positions we are going to put the sections at, and
3425 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3426 is not NULL, this is being called by the ELF backend linker. */
3427
3428 bfd_boolean
3429 _bfd_elf_compute_section_file_positions (bfd *abfd,
3430 struct bfd_link_info *link_info)
3431 {
3432 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3433 struct fake_section_arg fsargs;
3434 bfd_boolean failed;
3435 struct bfd_strtab_hash *strtab = NULL;
3436 Elf_Internal_Shdr *shstrtab_hdr;
3437 bfd_boolean need_symtab;
3438
3439 if (abfd->output_has_begun)
3440 return TRUE;
3441
3442 /* Do any elf backend specific processing first. */
3443 if (bed->elf_backend_begin_write_processing)
3444 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3445
3446 if (! prep_headers (abfd))
3447 return FALSE;
3448
3449 /* Post process the headers if necessary. */
3450 if (bed->elf_backend_post_process_headers)
3451 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3452
3453 fsargs.failed = FALSE;
3454 fsargs.link_info = link_info;
3455 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3456 if (fsargs.failed)
3457 return FALSE;
3458
3459 if (!assign_section_numbers (abfd, link_info))
3460 return FALSE;
3461
3462 /* The backend linker builds symbol table information itself. */
3463 need_symtab = (link_info == NULL
3464 && (bfd_get_symcount (abfd) > 0
3465 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3466 == HAS_RELOC)));
3467 if (need_symtab)
3468 {
3469 /* Non-zero if doing a relocatable link. */
3470 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3471
3472 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3473 return FALSE;
3474 }
3475
3476 failed = FALSE;
3477 if (link_info == NULL)
3478 {
3479 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3480 if (failed)
3481 return FALSE;
3482 }
3483
3484 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3485 /* sh_name was set in prep_headers. */
3486 shstrtab_hdr->sh_type = SHT_STRTAB;
3487 shstrtab_hdr->sh_flags = 0;
3488 shstrtab_hdr->sh_addr = 0;
3489 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3490 shstrtab_hdr->sh_entsize = 0;
3491 shstrtab_hdr->sh_link = 0;
3492 shstrtab_hdr->sh_info = 0;
3493 /* sh_offset is set in assign_file_positions_except_relocs. */
3494 shstrtab_hdr->sh_addralign = 1;
3495
3496 if (!assign_file_positions_except_relocs (abfd, link_info))
3497 return FALSE;
3498
3499 if (need_symtab)
3500 {
3501 file_ptr off;
3502 Elf_Internal_Shdr *hdr;
3503
3504 off = elf_tdata (abfd)->next_file_pos;
3505
3506 hdr = &elf_tdata (abfd)->symtab_hdr;
3507 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3508
3509 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3510 if (hdr->sh_size != 0)
3511 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3512
3513 hdr = &elf_tdata (abfd)->strtab_hdr;
3514 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3515
3516 elf_tdata (abfd)->next_file_pos = off;
3517
3518 /* Now that we know where the .strtab section goes, write it
3519 out. */
3520 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3521 || ! _bfd_stringtab_emit (abfd, strtab))
3522 return FALSE;
3523 _bfd_stringtab_free (strtab);
3524 }
3525
3526 abfd->output_has_begun = TRUE;
3527
3528 return TRUE;
3529 }
3530
3531 /* Make an initial estimate of the size of the program header. If we
3532 get the number wrong here, we'll redo section placement. */
3533
3534 static bfd_size_type
3535 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3536 {
3537 size_t segs;
3538 asection *s;
3539 const struct elf_backend_data *bed;
3540
3541 /* Assume we will need exactly two PT_LOAD segments: one for text
3542 and one for data. */
3543 segs = 2;
3544
3545 s = bfd_get_section_by_name (abfd, ".interp");
3546 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3547 {
3548 /* If we have a loadable interpreter section, we need a
3549 PT_INTERP segment. In this case, assume we also need a
3550 PT_PHDR segment, although that may not be true for all
3551 targets. */
3552 segs += 2;
3553 }
3554
3555 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3556 {
3557 /* We need a PT_DYNAMIC segment. */
3558 ++segs;
3559 }
3560
3561 if (info != NULL && info->relro)
3562 {
3563 /* We need a PT_GNU_RELRO segment. */
3564 ++segs;
3565 }
3566
3567 if (elf_tdata (abfd)->eh_frame_hdr)
3568 {
3569 /* We need a PT_GNU_EH_FRAME segment. */
3570 ++segs;
3571 }
3572
3573 if (elf_tdata (abfd)->stack_flags)
3574 {
3575 /* We need a PT_GNU_STACK segment. */
3576 ++segs;
3577 }
3578
3579 for (s = abfd->sections; s != NULL; s = s->next)
3580 {
3581 if ((s->flags & SEC_LOAD) != 0
3582 && CONST_STRNEQ (s->name, ".note"))
3583 {
3584 /* We need a PT_NOTE segment. */
3585 ++segs;
3586 /* Try to create just one PT_NOTE segment
3587 for all adjacent loadable .note* sections.
3588 gABI requires that within a PT_NOTE segment
3589 (and also inside of each SHT_NOTE section)
3590 each note is padded to a multiple of 4 size,
3591 so we check whether the sections are correctly
3592 aligned. */
3593 if (s->alignment_power == 2)
3594 while (s->next != NULL
3595 && s->next->alignment_power == 2
3596 && (s->next->flags & SEC_LOAD) != 0
3597 && CONST_STRNEQ (s->next->name, ".note"))
3598 s = s->next;
3599 }
3600 }
3601
3602 for (s = abfd->sections; s != NULL; s = s->next)
3603 {
3604 if (s->flags & SEC_THREAD_LOCAL)
3605 {
3606 /* We need a PT_TLS segment. */
3607 ++segs;
3608 break;
3609 }
3610 }
3611
3612 /* Let the backend count up any program headers it might need. */
3613 bed = get_elf_backend_data (abfd);
3614 if (bed->elf_backend_additional_program_headers)
3615 {
3616 int a;
3617
3618 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3619 if (a == -1)
3620 abort ();
3621 segs += a;
3622 }
3623
3624 return segs * bed->s->sizeof_phdr;
3625 }
3626
3627 /* Find the segment that contains the output_section of section. */
3628
3629 Elf_Internal_Phdr *
3630 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3631 {
3632 struct elf_segment_map *m;
3633 Elf_Internal_Phdr *p;
3634
3635 for (m = elf_tdata (abfd)->segment_map,
3636 p = elf_tdata (abfd)->phdr;
3637 m != NULL;
3638 m = m->next, p++)
3639 {
3640 int i;
3641
3642 for (i = m->count - 1; i >= 0; i--)
3643 if (m->sections[i] == section)
3644 return p;
3645 }
3646
3647 return NULL;
3648 }
3649
3650 /* Create a mapping from a set of sections to a program segment. */
3651
3652 static struct elf_segment_map *
3653 make_mapping (bfd *abfd,
3654 asection **sections,
3655 unsigned int from,
3656 unsigned int to,
3657 bfd_boolean phdr)
3658 {
3659 struct elf_segment_map *m;
3660 unsigned int i;
3661 asection **hdrpp;
3662 bfd_size_type amt;
3663
3664 amt = sizeof (struct elf_segment_map);
3665 amt += (to - from - 1) * sizeof (asection *);
3666 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3667 if (m == NULL)
3668 return NULL;
3669 m->next = NULL;
3670 m->p_type = PT_LOAD;
3671 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3672 m->sections[i - from] = *hdrpp;
3673 m->count = to - from;
3674
3675 if (from == 0 && phdr)
3676 {
3677 /* Include the headers in the first PT_LOAD segment. */
3678 m->includes_filehdr = 1;
3679 m->includes_phdrs = 1;
3680 }
3681
3682 return m;
3683 }
3684
3685 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3686 on failure. */
3687
3688 struct elf_segment_map *
3689 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3690 {
3691 struct elf_segment_map *m;
3692
3693 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3694 sizeof (struct elf_segment_map));
3695 if (m == NULL)
3696 return NULL;
3697 m->next = NULL;
3698 m->p_type = PT_DYNAMIC;
3699 m->count = 1;
3700 m->sections[0] = dynsec;
3701
3702 return m;
3703 }
3704
3705 /* Possibly add or remove segments from the segment map. */
3706
3707 static bfd_boolean
3708 elf_modify_segment_map (bfd *abfd,
3709 struct bfd_link_info *info,
3710 bfd_boolean remove_empty_load)
3711 {
3712 struct elf_segment_map **m;
3713 const struct elf_backend_data *bed;
3714
3715 /* The placement algorithm assumes that non allocated sections are
3716 not in PT_LOAD segments. We ensure this here by removing such
3717 sections from the segment map. We also remove excluded
3718 sections. Finally, any PT_LOAD segment without sections is
3719 removed. */
3720 m = &elf_tdata (abfd)->segment_map;
3721 while (*m)
3722 {
3723 unsigned int i, new_count;
3724
3725 for (new_count = 0, i = 0; i < (*m)->count; i++)
3726 {
3727 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3728 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3729 || (*m)->p_type != PT_LOAD))
3730 {
3731 (*m)->sections[new_count] = (*m)->sections[i];
3732 new_count++;
3733 }
3734 }
3735 (*m)->count = new_count;
3736
3737 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3738 *m = (*m)->next;
3739 else
3740 m = &(*m)->next;
3741 }
3742
3743 bed = get_elf_backend_data (abfd);
3744 if (bed->elf_backend_modify_segment_map != NULL)
3745 {
3746 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3747 return FALSE;
3748 }
3749
3750 return TRUE;
3751 }
3752
3753 /* Set up a mapping from BFD sections to program segments. */
3754
3755 bfd_boolean
3756 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3757 {
3758 unsigned int count;
3759 struct elf_segment_map *m;
3760 asection **sections = NULL;
3761 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3762 bfd_boolean no_user_phdrs;
3763
3764 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3765
3766 if (info != NULL)
3767 info->user_phdrs = !no_user_phdrs;
3768
3769 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3770 {
3771 asection *s;
3772 unsigned int i;
3773 struct elf_segment_map *mfirst;
3774 struct elf_segment_map **pm;
3775 asection *last_hdr;
3776 bfd_vma last_size;
3777 unsigned int phdr_index;
3778 bfd_vma maxpagesize;
3779 asection **hdrpp;
3780 bfd_boolean phdr_in_segment = TRUE;
3781 bfd_boolean writable;
3782 int tls_count = 0;
3783 asection *first_tls = NULL;
3784 asection *dynsec, *eh_frame_hdr;
3785 bfd_size_type amt;
3786 bfd_vma addr_mask, wrap_to = 0;
3787
3788 /* Select the allocated sections, and sort them. */
3789
3790 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3791 sizeof (asection *));
3792 if (sections == NULL)
3793 goto error_return;
3794
3795 /* Calculate top address, avoiding undefined behaviour of shift
3796 left operator when shift count is equal to size of type
3797 being shifted. */
3798 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3799 addr_mask = (addr_mask << 1) + 1;
3800
3801 i = 0;
3802 for (s = abfd->sections; s != NULL; s = s->next)
3803 {
3804 if ((s->flags & SEC_ALLOC) != 0)
3805 {
3806 sections[i] = s;
3807 ++i;
3808 /* A wrapping section potentially clashes with header. */
3809 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3810 wrap_to = (s->lma + s->size) & addr_mask;
3811 }
3812 }
3813 BFD_ASSERT (i <= bfd_count_sections (abfd));
3814 count = i;
3815
3816 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3817
3818 /* Build the mapping. */
3819
3820 mfirst = NULL;
3821 pm = &mfirst;
3822
3823 /* If we have a .interp section, then create a PT_PHDR segment for
3824 the program headers and a PT_INTERP segment for the .interp
3825 section. */
3826 s = bfd_get_section_by_name (abfd, ".interp");
3827 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3828 {
3829 amt = sizeof (struct elf_segment_map);
3830 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3831 if (m == NULL)
3832 goto error_return;
3833 m->next = NULL;
3834 m->p_type = PT_PHDR;
3835 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3836 m->p_flags = PF_R | PF_X;
3837 m->p_flags_valid = 1;
3838 m->includes_phdrs = 1;
3839
3840 *pm = m;
3841 pm = &m->next;
3842
3843 amt = sizeof (struct elf_segment_map);
3844 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3845 if (m == NULL)
3846 goto error_return;
3847 m->next = NULL;
3848 m->p_type = PT_INTERP;
3849 m->count = 1;
3850 m->sections[0] = s;
3851
3852 *pm = m;
3853 pm = &m->next;
3854 }
3855
3856 /* Look through the sections. We put sections in the same program
3857 segment when the start of the second section can be placed within
3858 a few bytes of the end of the first section. */
3859 last_hdr = NULL;
3860 last_size = 0;
3861 phdr_index = 0;
3862 maxpagesize = bed->maxpagesize;
3863 writable = FALSE;
3864 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3865 if (dynsec != NULL
3866 && (dynsec->flags & SEC_LOAD) == 0)
3867 dynsec = NULL;
3868
3869 /* Deal with -Ttext or something similar such that the first section
3870 is not adjacent to the program headers. This is an
3871 approximation, since at this point we don't know exactly how many
3872 program headers we will need. */
3873 if (count > 0)
3874 {
3875 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3876
3877 if (phdr_size == (bfd_size_type) -1)
3878 phdr_size = get_program_header_size (abfd, info);
3879 phdr_size += bed->s->sizeof_ehdr;
3880 if ((abfd->flags & D_PAGED) == 0
3881 || (sections[0]->lma & addr_mask) < phdr_size
3882 || ((sections[0]->lma & addr_mask) % maxpagesize
3883 < phdr_size % maxpagesize)
3884 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3885 phdr_in_segment = FALSE;
3886 }
3887
3888 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3889 {
3890 asection *hdr;
3891 bfd_boolean new_segment;
3892
3893 hdr = *hdrpp;
3894
3895 /* See if this section and the last one will fit in the same
3896 segment. */
3897
3898 if (last_hdr == NULL)
3899 {
3900 /* If we don't have a segment yet, then we don't need a new
3901 one (we build the last one after this loop). */
3902 new_segment = FALSE;
3903 }
3904 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3905 {
3906 /* If this section has a different relation between the
3907 virtual address and the load address, then we need a new
3908 segment. */
3909 new_segment = TRUE;
3910 }
3911 else if (hdr->lma < last_hdr->lma + last_size
3912 || last_hdr->lma + last_size < last_hdr->lma)
3913 {
3914 /* If this section has a load address that makes it overlap
3915 the previous section, then we need a new segment. */
3916 new_segment = TRUE;
3917 }
3918 /* In the next test we have to be careful when last_hdr->lma is close
3919 to the end of the address space. If the aligned address wraps
3920 around to the start of the address space, then there are no more
3921 pages left in memory and it is OK to assume that the current
3922 section can be included in the current segment. */
3923 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3924 > last_hdr->lma)
3925 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3926 <= hdr->lma))
3927 {
3928 /* If putting this section in this segment would force us to
3929 skip a page in the segment, then we need a new segment. */
3930 new_segment = TRUE;
3931 }
3932 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3933 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3934 {
3935 /* We don't want to put a loadable section after a
3936 nonloadable section in the same segment.
3937 Consider .tbss sections as loadable for this purpose. */
3938 new_segment = TRUE;
3939 }
3940 else if ((abfd->flags & D_PAGED) == 0)
3941 {
3942 /* If the file is not demand paged, which means that we
3943 don't require the sections to be correctly aligned in the
3944 file, then there is no other reason for a new segment. */
3945 new_segment = FALSE;
3946 }
3947 else if (! writable
3948 && (hdr->flags & SEC_READONLY) == 0
3949 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3950 != (hdr->lma & -maxpagesize)))
3951 {
3952 /* We don't want to put a writable section in a read only
3953 segment, unless they are on the same page in memory
3954 anyhow. We already know that the last section does not
3955 bring us past the current section on the page, so the
3956 only case in which the new section is not on the same
3957 page as the previous section is when the previous section
3958 ends precisely on a page boundary. */
3959 new_segment = TRUE;
3960 }
3961 else
3962 {
3963 /* Otherwise, we can use the same segment. */
3964 new_segment = FALSE;
3965 }
3966
3967 /* Allow interested parties a chance to override our decision. */
3968 if (last_hdr != NULL
3969 && info != NULL
3970 && info->callbacks->override_segment_assignment != NULL)
3971 new_segment
3972 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3973 last_hdr,
3974 new_segment);
3975
3976 if (! new_segment)
3977 {
3978 if ((hdr->flags & SEC_READONLY) == 0)
3979 writable = TRUE;
3980 last_hdr = hdr;
3981 /* .tbss sections effectively have zero size. */
3982 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3983 != SEC_THREAD_LOCAL)
3984 last_size = hdr->size;
3985 else
3986 last_size = 0;
3987 continue;
3988 }
3989
3990 /* We need a new program segment. We must create a new program
3991 header holding all the sections from phdr_index until hdr. */
3992
3993 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3994 if (m == NULL)
3995 goto error_return;
3996
3997 *pm = m;
3998 pm = &m->next;
3999
4000 if ((hdr->flags & SEC_READONLY) == 0)
4001 writable = TRUE;
4002 else
4003 writable = FALSE;
4004
4005 last_hdr = hdr;
4006 /* .tbss sections effectively have zero size. */
4007 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4008 last_size = hdr->size;
4009 else
4010 last_size = 0;
4011 phdr_index = i;
4012 phdr_in_segment = FALSE;
4013 }
4014
4015 /* Create a final PT_LOAD program segment, but not if it's just
4016 for .tbss. */
4017 if (last_hdr != NULL
4018 && (i - phdr_index != 1
4019 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4020 != SEC_THREAD_LOCAL)))
4021 {
4022 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4023 if (m == NULL)
4024 goto error_return;
4025
4026 *pm = m;
4027 pm = &m->next;
4028 }
4029
4030 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4031 if (dynsec != NULL)
4032 {
4033 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4034 if (m == NULL)
4035 goto error_return;
4036 *pm = m;
4037 pm = &m->next;
4038 }
4039
4040 /* For each batch of consecutive loadable .note sections,
4041 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4042 because if we link together nonloadable .note sections and
4043 loadable .note sections, we will generate two .note sections
4044 in the output file. FIXME: Using names for section types is
4045 bogus anyhow. */
4046 for (s = abfd->sections; s != NULL; s = s->next)
4047 {
4048 if ((s->flags & SEC_LOAD) != 0
4049 && CONST_STRNEQ (s->name, ".note"))
4050 {
4051 asection *s2;
4052
4053 count = 1;
4054 amt = sizeof (struct elf_segment_map);
4055 if (s->alignment_power == 2)
4056 for (s2 = s; s2->next != NULL; s2 = s2->next)
4057 {
4058 if (s2->next->alignment_power == 2
4059 && (s2->next->flags & SEC_LOAD) != 0
4060 && CONST_STRNEQ (s2->next->name, ".note")
4061 && align_power (s2->lma + s2->size, 2)
4062 == s2->next->lma)
4063 count++;
4064 else
4065 break;
4066 }
4067 amt += (count - 1) * sizeof (asection *);
4068 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4069 if (m == NULL)
4070 goto error_return;
4071 m->next = NULL;
4072 m->p_type = PT_NOTE;
4073 m->count = count;
4074 while (count > 1)
4075 {
4076 m->sections[m->count - count--] = s;
4077 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4078 s = s->next;
4079 }
4080 m->sections[m->count - 1] = s;
4081 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4082 *pm = m;
4083 pm = &m->next;
4084 }
4085 if (s->flags & SEC_THREAD_LOCAL)
4086 {
4087 if (! tls_count)
4088 first_tls = s;
4089 tls_count++;
4090 }
4091 }
4092
4093 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4094 if (tls_count > 0)
4095 {
4096 amt = sizeof (struct elf_segment_map);
4097 amt += (tls_count - 1) * sizeof (asection *);
4098 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4099 if (m == NULL)
4100 goto error_return;
4101 m->next = NULL;
4102 m->p_type = PT_TLS;
4103 m->count = tls_count;
4104 /* Mandated PF_R. */
4105 m->p_flags = PF_R;
4106 m->p_flags_valid = 1;
4107 for (i = 0; i < (unsigned int) tls_count; ++i)
4108 {
4109 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4110 m->sections[i] = first_tls;
4111 first_tls = first_tls->next;
4112 }
4113
4114 *pm = m;
4115 pm = &m->next;
4116 }
4117
4118 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4119 segment. */
4120 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4121 if (eh_frame_hdr != NULL
4122 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4123 {
4124 amt = sizeof (struct elf_segment_map);
4125 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4126 if (m == NULL)
4127 goto error_return;
4128 m->next = NULL;
4129 m->p_type = PT_GNU_EH_FRAME;
4130 m->count = 1;
4131 m->sections[0] = eh_frame_hdr->output_section;
4132
4133 *pm = m;
4134 pm = &m->next;
4135 }
4136
4137 if (elf_tdata (abfd)->stack_flags)
4138 {
4139 amt = sizeof (struct elf_segment_map);
4140 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4141 if (m == NULL)
4142 goto error_return;
4143 m->next = NULL;
4144 m->p_type = PT_GNU_STACK;
4145 m->p_flags = elf_tdata (abfd)->stack_flags;
4146 m->p_align = bed->stack_align;
4147 m->p_flags_valid = 1;
4148 m->p_align_valid = m->p_align != 0;
4149 if (info->stacksize > 0)
4150 {
4151 m->p_size = info->stacksize;
4152 m->p_size_valid = 1;
4153 }
4154
4155 *pm = m;
4156 pm = &m->next;
4157 }
4158
4159 if (info != NULL && info->relro)
4160 {
4161 for (m = mfirst; m != NULL; m = m->next)
4162 {
4163 if (m->p_type == PT_LOAD
4164 && m->count != 0
4165 && m->sections[0]->vma >= info->relro_start
4166 && m->sections[0]->vma < info->relro_end)
4167 {
4168 i = m->count;
4169 while (--i != (unsigned) -1)
4170 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4171 == (SEC_LOAD | SEC_HAS_CONTENTS))
4172 break;
4173
4174 if (i == (unsigned) -1)
4175 continue;
4176
4177 if (m->sections[i]->vma + m->sections[i]->size
4178 >= info->relro_end)
4179 break;
4180 }
4181 }
4182
4183 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4184 if (m != NULL)
4185 {
4186 amt = sizeof (struct elf_segment_map);
4187 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4188 if (m == NULL)
4189 goto error_return;
4190 m->next = NULL;
4191 m->p_type = PT_GNU_RELRO;
4192 m->p_flags = PF_R;
4193 m->p_flags_valid = 1;
4194
4195 *pm = m;
4196 pm = &m->next;
4197 }
4198 }
4199
4200 free (sections);
4201 elf_tdata (abfd)->segment_map = mfirst;
4202 }
4203
4204 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4205 return FALSE;
4206
4207 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4208 ++count;
4209 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4210
4211 return TRUE;
4212
4213 error_return:
4214 if (sections != NULL)
4215 free (sections);
4216 return FALSE;
4217 }
4218
4219 /* Sort sections by address. */
4220
4221 static int
4222 elf_sort_sections (const void *arg1, const void *arg2)
4223 {
4224 const asection *sec1 = *(const asection **) arg1;
4225 const asection *sec2 = *(const asection **) arg2;
4226 bfd_size_type size1, size2;
4227
4228 /* Sort by LMA first, since this is the address used to
4229 place the section into a segment. */
4230 if (sec1->lma < sec2->lma)
4231 return -1;
4232 else if (sec1->lma > sec2->lma)
4233 return 1;
4234
4235 /* Then sort by VMA. Normally the LMA and the VMA will be
4236 the same, and this will do nothing. */
4237 if (sec1->vma < sec2->vma)
4238 return -1;
4239 else if (sec1->vma > sec2->vma)
4240 return 1;
4241
4242 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4243
4244 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4245
4246 if (TOEND (sec1))
4247 {
4248 if (TOEND (sec2))
4249 {
4250 /* If the indicies are the same, do not return 0
4251 here, but continue to try the next comparison. */
4252 if (sec1->target_index - sec2->target_index != 0)
4253 return sec1->target_index - sec2->target_index;
4254 }
4255 else
4256 return 1;
4257 }
4258 else if (TOEND (sec2))
4259 return -1;
4260
4261 #undef TOEND
4262
4263 /* Sort by size, to put zero sized sections
4264 before others at the same address. */
4265
4266 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4267 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4268
4269 if (size1 < size2)
4270 return -1;
4271 if (size1 > size2)
4272 return 1;
4273
4274 return sec1->target_index - sec2->target_index;
4275 }
4276
4277 /* Ian Lance Taylor writes:
4278
4279 We shouldn't be using % with a negative signed number. That's just
4280 not good. We have to make sure either that the number is not
4281 negative, or that the number has an unsigned type. When the types
4282 are all the same size they wind up as unsigned. When file_ptr is a
4283 larger signed type, the arithmetic winds up as signed long long,
4284 which is wrong.
4285
4286 What we're trying to say here is something like ``increase OFF by
4287 the least amount that will cause it to be equal to the VMA modulo
4288 the page size.'' */
4289 /* In other words, something like:
4290
4291 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4292 off_offset = off % bed->maxpagesize;
4293 if (vma_offset < off_offset)
4294 adjustment = vma_offset + bed->maxpagesize - off_offset;
4295 else
4296 adjustment = vma_offset - off_offset;
4297
4298 which can can be collapsed into the expression below. */
4299
4300 static file_ptr
4301 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4302 {
4303 return ((vma - off) % maxpagesize);
4304 }
4305
4306 static void
4307 print_segment_map (const struct elf_segment_map *m)
4308 {
4309 unsigned int j;
4310 const char *pt = get_segment_type (m->p_type);
4311 char buf[32];
4312
4313 if (pt == NULL)
4314 {
4315 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4316 sprintf (buf, "LOPROC+%7.7x",
4317 (unsigned int) (m->p_type - PT_LOPROC));
4318 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4319 sprintf (buf, "LOOS+%7.7x",
4320 (unsigned int) (m->p_type - PT_LOOS));
4321 else
4322 snprintf (buf, sizeof (buf), "%8.8x",
4323 (unsigned int) m->p_type);
4324 pt = buf;
4325 }
4326 fflush (stdout);
4327 fprintf (stderr, "%s:", pt);
4328 for (j = 0; j < m->count; j++)
4329 fprintf (stderr, " %s", m->sections [j]->name);
4330 putc ('\n',stderr);
4331 fflush (stderr);
4332 }
4333
4334 static bfd_boolean
4335 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4336 {
4337 void *buf;
4338 bfd_boolean ret;
4339
4340 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4341 return FALSE;
4342 buf = bfd_zmalloc (len);
4343 if (buf == NULL)
4344 return FALSE;
4345 ret = bfd_bwrite (buf, len, abfd) == len;
4346 free (buf);
4347 return ret;
4348 }
4349
4350 /* Assign file positions to the sections based on the mapping from
4351 sections to segments. This function also sets up some fields in
4352 the file header. */
4353
4354 static bfd_boolean
4355 assign_file_positions_for_load_sections (bfd *abfd,
4356 struct bfd_link_info *link_info)
4357 {
4358 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4359 struct elf_segment_map *m;
4360 Elf_Internal_Phdr *phdrs;
4361 Elf_Internal_Phdr *p;
4362 file_ptr off;
4363 bfd_size_type maxpagesize;
4364 unsigned int alloc;
4365 unsigned int i, j;
4366 bfd_vma header_pad = 0;
4367
4368 if (link_info == NULL
4369 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4370 return FALSE;
4371
4372 alloc = 0;
4373 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4374 {
4375 ++alloc;
4376 if (m->header_size)
4377 header_pad = m->header_size;
4378 }
4379
4380 if (alloc)
4381 {
4382 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4383 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4384 }
4385 else
4386 {
4387 /* PR binutils/12467. */
4388 elf_elfheader (abfd)->e_phoff = 0;
4389 elf_elfheader (abfd)->e_phentsize = 0;
4390 }
4391
4392 elf_elfheader (abfd)->e_phnum = alloc;
4393
4394 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4395 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4396 else
4397 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4398 >= alloc * bed->s->sizeof_phdr);
4399
4400 if (alloc == 0)
4401 {
4402 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4403 return TRUE;
4404 }
4405
4406 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4407 see assign_file_positions_except_relocs, so make sure we have
4408 that amount allocated, with trailing space cleared.
4409 The variable alloc contains the computed need, while elf_tdata
4410 (abfd)->program_header_size contains the size used for the
4411 layout.
4412 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4413 where the layout is forced to according to a larger size in the
4414 last iterations for the testcase ld-elf/header. */
4415 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4416 == 0);
4417 phdrs = (Elf_Internal_Phdr *)
4418 bfd_zalloc2 (abfd,
4419 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4420 sizeof (Elf_Internal_Phdr));
4421 elf_tdata (abfd)->phdr = phdrs;
4422 if (phdrs == NULL)
4423 return FALSE;
4424
4425 maxpagesize = 1;
4426 if ((abfd->flags & D_PAGED) != 0)
4427 maxpagesize = bed->maxpagesize;
4428
4429 off = bed->s->sizeof_ehdr;
4430 off += alloc * bed->s->sizeof_phdr;
4431 if (header_pad < (bfd_vma) off)
4432 header_pad = 0;
4433 else
4434 header_pad -= off;
4435 off += header_pad;
4436
4437 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4438 m != NULL;
4439 m = m->next, p++, j++)
4440 {
4441 asection **secpp;
4442 bfd_vma off_adjust;
4443 bfd_boolean no_contents;
4444
4445 /* If elf_segment_map is not from map_sections_to_segments, the
4446 sections may not be correctly ordered. NOTE: sorting should
4447 not be done to the PT_NOTE section of a corefile, which may
4448 contain several pseudo-sections artificially created by bfd.
4449 Sorting these pseudo-sections breaks things badly. */
4450 if (m->count > 1
4451 && !(elf_elfheader (abfd)->e_type == ET_CORE
4452 && m->p_type == PT_NOTE))
4453 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4454 elf_sort_sections);
4455
4456 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4457 number of sections with contents contributing to both p_filesz
4458 and p_memsz, followed by a number of sections with no contents
4459 that just contribute to p_memsz. In this loop, OFF tracks next
4460 available file offset for PT_LOAD and PT_NOTE segments. */
4461 p->p_type = m->p_type;
4462 p->p_flags = m->p_flags;
4463
4464 if (m->count == 0)
4465 p->p_vaddr = 0;
4466 else
4467 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4468
4469 if (m->p_paddr_valid)
4470 p->p_paddr = m->p_paddr;
4471 else if (m->count == 0)
4472 p->p_paddr = 0;
4473 else
4474 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4475
4476 if (p->p_type == PT_LOAD
4477 && (abfd->flags & D_PAGED) != 0)
4478 {
4479 /* p_align in demand paged PT_LOAD segments effectively stores
4480 the maximum page size. When copying an executable with
4481 objcopy, we set m->p_align from the input file. Use this
4482 value for maxpagesize rather than bed->maxpagesize, which
4483 may be different. Note that we use maxpagesize for PT_TLS
4484 segment alignment later in this function, so we are relying
4485 on at least one PT_LOAD segment appearing before a PT_TLS
4486 segment. */
4487 if (m->p_align_valid)
4488 maxpagesize = m->p_align;
4489
4490 p->p_align = maxpagesize;
4491 }
4492 else if (m->p_align_valid)
4493 p->p_align = m->p_align;
4494 else if (m->count == 0)
4495 p->p_align = 1 << bed->s->log_file_align;
4496 else
4497 p->p_align = 0;
4498
4499 no_contents = FALSE;
4500 off_adjust = 0;
4501 if (p->p_type == PT_LOAD
4502 && m->count > 0)
4503 {
4504 bfd_size_type align;
4505 unsigned int align_power = 0;
4506
4507 if (m->p_align_valid)
4508 align = p->p_align;
4509 else
4510 {
4511 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4512 {
4513 unsigned int secalign;
4514
4515 secalign = bfd_get_section_alignment (abfd, *secpp);
4516 if (secalign > align_power)
4517 align_power = secalign;
4518 }
4519 align = (bfd_size_type) 1 << align_power;
4520 if (align < maxpagesize)
4521 align = maxpagesize;
4522 }
4523
4524 for (i = 0; i < m->count; i++)
4525 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4526 /* If we aren't making room for this section, then
4527 it must be SHT_NOBITS regardless of what we've
4528 set via struct bfd_elf_special_section. */
4529 elf_section_type (m->sections[i]) = SHT_NOBITS;
4530
4531 /* Find out whether this segment contains any loadable
4532 sections. */
4533 no_contents = TRUE;
4534 for (i = 0; i < m->count; i++)
4535 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4536 {
4537 no_contents = FALSE;
4538 break;
4539 }
4540
4541 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4542 off += off_adjust;
4543 if (no_contents)
4544 {
4545 /* We shouldn't need to align the segment on disk since
4546 the segment doesn't need file space, but the gABI
4547 arguably requires the alignment and glibc ld.so
4548 checks it. So to comply with the alignment
4549 requirement but not waste file space, we adjust
4550 p_offset for just this segment. (OFF_ADJUST is
4551 subtracted from OFF later.) This may put p_offset
4552 past the end of file, but that shouldn't matter. */
4553 }
4554 else
4555 off_adjust = 0;
4556 }
4557 /* Make sure the .dynamic section is the first section in the
4558 PT_DYNAMIC segment. */
4559 else if (p->p_type == PT_DYNAMIC
4560 && m->count > 1
4561 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4562 {
4563 _bfd_error_handler
4564 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4565 abfd);
4566 bfd_set_error (bfd_error_bad_value);
4567 return FALSE;
4568 }
4569 /* Set the note section type to SHT_NOTE. */
4570 else if (p->p_type == PT_NOTE)
4571 for (i = 0; i < m->count; i++)
4572 elf_section_type (m->sections[i]) = SHT_NOTE;
4573
4574 p->p_offset = 0;
4575 p->p_filesz = 0;
4576 p->p_memsz = 0;
4577
4578 if (m->includes_filehdr)
4579 {
4580 if (!m->p_flags_valid)
4581 p->p_flags |= PF_R;
4582 p->p_filesz = bed->s->sizeof_ehdr;
4583 p->p_memsz = bed->s->sizeof_ehdr;
4584 if (m->count > 0)
4585 {
4586 if (p->p_vaddr < (bfd_vma) off)
4587 {
4588 (*_bfd_error_handler)
4589 (_("%B: Not enough room for program headers, try linking with -N"),
4590 abfd);
4591 bfd_set_error (bfd_error_bad_value);
4592 return FALSE;
4593 }
4594
4595 p->p_vaddr -= off;
4596 if (!m->p_paddr_valid)
4597 p->p_paddr -= off;
4598 }
4599 }
4600
4601 if (m->includes_phdrs)
4602 {
4603 if (!m->p_flags_valid)
4604 p->p_flags |= PF_R;
4605
4606 if (!m->includes_filehdr)
4607 {
4608 p->p_offset = bed->s->sizeof_ehdr;
4609
4610 if (m->count > 0)
4611 {
4612 p->p_vaddr -= off - p->p_offset;
4613 if (!m->p_paddr_valid)
4614 p->p_paddr -= off - p->p_offset;
4615 }
4616 }
4617
4618 p->p_filesz += alloc * bed->s->sizeof_phdr;
4619 p->p_memsz += alloc * bed->s->sizeof_phdr;
4620 if (m->count)
4621 {
4622 p->p_filesz += header_pad;
4623 p->p_memsz += header_pad;
4624 }
4625 }
4626
4627 if (p->p_type == PT_LOAD
4628 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4629 {
4630 if (!m->includes_filehdr && !m->includes_phdrs)
4631 p->p_offset = off;
4632 else
4633 {
4634 file_ptr adjust;
4635
4636 adjust = off - (p->p_offset + p->p_filesz);
4637 if (!no_contents)
4638 p->p_filesz += adjust;
4639 p->p_memsz += adjust;
4640 }
4641 }
4642
4643 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4644 maps. Set filepos for sections in PT_LOAD segments, and in
4645 core files, for sections in PT_NOTE segments.
4646 assign_file_positions_for_non_load_sections will set filepos
4647 for other sections and update p_filesz for other segments. */
4648 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4649 {
4650 asection *sec;
4651 bfd_size_type align;
4652 Elf_Internal_Shdr *this_hdr;
4653
4654 sec = *secpp;
4655 this_hdr = &elf_section_data (sec)->this_hdr;
4656 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4657
4658 if ((p->p_type == PT_LOAD
4659 || p->p_type == PT_TLS)
4660 && (this_hdr->sh_type != SHT_NOBITS
4661 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4662 && ((this_hdr->sh_flags & SHF_TLS) == 0
4663 || p->p_type == PT_TLS))))
4664 {
4665 bfd_vma p_start = p->p_paddr;
4666 bfd_vma p_end = p_start + p->p_memsz;
4667 bfd_vma s_start = sec->lma;
4668 bfd_vma adjust = s_start - p_end;
4669
4670 if (adjust != 0
4671 && (s_start < p_end
4672 || p_end < p_start))
4673 {
4674 (*_bfd_error_handler)
4675 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4676 (unsigned long) s_start, (unsigned long) p_end);
4677 adjust = 0;
4678 sec->lma = p_end;
4679 }
4680 p->p_memsz += adjust;
4681
4682 if (this_hdr->sh_type != SHT_NOBITS)
4683 {
4684 if (p->p_filesz + adjust < p->p_memsz)
4685 {
4686 /* We have a PROGBITS section following NOBITS ones.
4687 Allocate file space for the NOBITS section(s) and
4688 zero it. */
4689 adjust = p->p_memsz - p->p_filesz;
4690 if (!write_zeros (abfd, off, adjust))
4691 return FALSE;
4692 }
4693 off += adjust;
4694 p->p_filesz += adjust;
4695 }
4696 }
4697
4698 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4699 {
4700 /* The section at i == 0 is the one that actually contains
4701 everything. */
4702 if (i == 0)
4703 {
4704 this_hdr->sh_offset = sec->filepos = off;
4705 off += this_hdr->sh_size;
4706 p->p_filesz = this_hdr->sh_size;
4707 p->p_memsz = 0;
4708 p->p_align = 1;
4709 }
4710 else
4711 {
4712 /* The rest are fake sections that shouldn't be written. */
4713 sec->filepos = 0;
4714 sec->size = 0;
4715 sec->flags = 0;
4716 continue;
4717 }
4718 }
4719 else
4720 {
4721 if (p->p_type == PT_LOAD)
4722 {
4723 this_hdr->sh_offset = sec->filepos = off;
4724 if (this_hdr->sh_type != SHT_NOBITS)
4725 off += this_hdr->sh_size;
4726 }
4727 else if (this_hdr->sh_type == SHT_NOBITS
4728 && (this_hdr->sh_flags & SHF_TLS) != 0
4729 && this_hdr->sh_offset == 0)
4730 {
4731 /* This is a .tbss section that didn't get a PT_LOAD.
4732 (See _bfd_elf_map_sections_to_segments "Create a
4733 final PT_LOAD".) Set sh_offset to the value it
4734 would have if we had created a zero p_filesz and
4735 p_memsz PT_LOAD header for the section. This
4736 also makes the PT_TLS header have the same
4737 p_offset value. */
4738 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4739 off, align);
4740 this_hdr->sh_offset = sec->filepos = off + adjust;
4741 }
4742
4743 if (this_hdr->sh_type != SHT_NOBITS)
4744 {
4745 p->p_filesz += this_hdr->sh_size;
4746 /* A load section without SHF_ALLOC is something like
4747 a note section in a PT_NOTE segment. These take
4748 file space but are not loaded into memory. */
4749 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4750 p->p_memsz += this_hdr->sh_size;
4751 }
4752 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4753 {
4754 if (p->p_type == PT_TLS)
4755 p->p_memsz += this_hdr->sh_size;
4756
4757 /* .tbss is special. It doesn't contribute to p_memsz of
4758 normal segments. */
4759 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4760 p->p_memsz += this_hdr->sh_size;
4761 }
4762
4763 if (align > p->p_align
4764 && !m->p_align_valid
4765 && (p->p_type != PT_LOAD
4766 || (abfd->flags & D_PAGED) == 0))
4767 p->p_align = align;
4768 }
4769
4770 if (!m->p_flags_valid)
4771 {
4772 p->p_flags |= PF_R;
4773 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4774 p->p_flags |= PF_X;
4775 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4776 p->p_flags |= PF_W;
4777 }
4778 }
4779 off -= off_adjust;
4780
4781 /* Check that all sections are in a PT_LOAD segment.
4782 Don't check funky gdb generated core files. */
4783 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4784 {
4785 bfd_boolean check_vma = TRUE;
4786
4787 for (i = 1; i < m->count; i++)
4788 if (m->sections[i]->vma == m->sections[i - 1]->vma
4789 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4790 ->this_hdr), p) != 0
4791 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4792 ->this_hdr), p) != 0)
4793 {
4794 /* Looks like we have overlays packed into the segment. */
4795 check_vma = FALSE;
4796 break;
4797 }
4798
4799 for (i = 0; i < m->count; i++)
4800 {
4801 Elf_Internal_Shdr *this_hdr;
4802 asection *sec;
4803
4804 sec = m->sections[i];
4805 this_hdr = &(elf_section_data(sec)->this_hdr);
4806 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4807 && !ELF_TBSS_SPECIAL (this_hdr, p))
4808 {
4809 (*_bfd_error_handler)
4810 (_("%B: section `%A' can't be allocated in segment %d"),
4811 abfd, sec, j);
4812 print_segment_map (m);
4813 }
4814 }
4815 }
4816 }
4817
4818 elf_tdata (abfd)->next_file_pos = off;
4819 return TRUE;
4820 }
4821
4822 /* Assign file positions for the other sections. */
4823
4824 static bfd_boolean
4825 assign_file_positions_for_non_load_sections (bfd *abfd,
4826 struct bfd_link_info *link_info)
4827 {
4828 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4829 Elf_Internal_Shdr **i_shdrpp;
4830 Elf_Internal_Shdr **hdrpp;
4831 Elf_Internal_Phdr *phdrs;
4832 Elf_Internal_Phdr *p;
4833 struct elf_segment_map *m;
4834 struct elf_segment_map *hdrs_segment;
4835 bfd_vma filehdr_vaddr, filehdr_paddr;
4836 bfd_vma phdrs_vaddr, phdrs_paddr;
4837 file_ptr off;
4838 unsigned int num_sec;
4839 unsigned int i;
4840 unsigned int count;
4841
4842 i_shdrpp = elf_elfsections (abfd);
4843 num_sec = elf_numsections (abfd);
4844 off = elf_tdata (abfd)->next_file_pos;
4845 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4846 {
4847 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4848 Elf_Internal_Shdr *hdr;
4849
4850 hdr = *hdrpp;
4851 if (hdr->bfd_section != NULL
4852 && (hdr->bfd_section->filepos != 0
4853 || (hdr->sh_type == SHT_NOBITS
4854 && hdr->contents == NULL)))
4855 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4856 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4857 {
4858 if (hdr->sh_size != 0)
4859 (*_bfd_error_handler)
4860 (_("%B: warning: allocated section `%s' not in segment"),
4861 abfd,
4862 (hdr->bfd_section == NULL
4863 ? "*unknown*"
4864 : hdr->bfd_section->name));
4865 /* We don't need to page align empty sections. */
4866 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4867 off += vma_page_aligned_bias (hdr->sh_addr, off,
4868 bed->maxpagesize);
4869 else
4870 off += vma_page_aligned_bias (hdr->sh_addr, off,
4871 hdr->sh_addralign);
4872 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4873 FALSE);
4874 }
4875 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4876 && hdr->bfd_section == NULL)
4877 || hdr == i_shdrpp[tdata->symtab_section]
4878 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4879 || hdr == i_shdrpp[tdata->strtab_section])
4880 hdr->sh_offset = -1;
4881 else
4882 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4883 }
4884
4885 /* Now that we have set the section file positions, we can set up
4886 the file positions for the non PT_LOAD segments. */
4887 count = 0;
4888 filehdr_vaddr = 0;
4889 filehdr_paddr = 0;
4890 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4891 phdrs_paddr = 0;
4892 hdrs_segment = NULL;
4893 phdrs = elf_tdata (abfd)->phdr;
4894 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4895 m != NULL;
4896 m = m->next, p++)
4897 {
4898 ++count;
4899 if (p->p_type != PT_LOAD)
4900 continue;
4901
4902 if (m->includes_filehdr)
4903 {
4904 filehdr_vaddr = p->p_vaddr;
4905 filehdr_paddr = p->p_paddr;
4906 }
4907 if (m->includes_phdrs)
4908 {
4909 phdrs_vaddr = p->p_vaddr;
4910 phdrs_paddr = p->p_paddr;
4911 if (m->includes_filehdr)
4912 {
4913 hdrs_segment = m;
4914 phdrs_vaddr += bed->s->sizeof_ehdr;
4915 phdrs_paddr += bed->s->sizeof_ehdr;
4916 }
4917 }
4918 }
4919
4920 if (hdrs_segment != NULL && link_info != NULL)
4921 {
4922 /* There is a segment that contains both the file headers and the
4923 program headers, so provide a symbol __ehdr_start pointing there.
4924 A program can use this to examine itself robustly. */
4925
4926 struct elf_link_hash_entry *hash
4927 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4928 FALSE, FALSE, TRUE);
4929 /* If the symbol was referenced and not defined, define it. */
4930 if (hash != NULL
4931 && (hash->root.type == bfd_link_hash_new
4932 || hash->root.type == bfd_link_hash_undefined
4933 || hash->root.type == bfd_link_hash_undefweak
4934 || hash->root.type == bfd_link_hash_common))
4935 {
4936 asection *s = NULL;
4937 if (hdrs_segment->count != 0)
4938 /* The segment contains sections, so use the first one. */
4939 s = hdrs_segment->sections[0];
4940 else
4941 /* Use the first (i.e. lowest-addressed) section in any segment. */
4942 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4943 if (m->count != 0)
4944 {
4945 s = m->sections[0];
4946 break;
4947 }
4948
4949 if (s != NULL)
4950 {
4951 hash->root.u.def.value = filehdr_vaddr - s->vma;
4952 hash->root.u.def.section = s;
4953 }
4954 else
4955 {
4956 hash->root.u.def.value = filehdr_vaddr;
4957 hash->root.u.def.section = bfd_abs_section_ptr;
4958 }
4959
4960 hash->root.type = bfd_link_hash_defined;
4961 hash->def_regular = 1;
4962 hash->non_elf = 0;
4963 }
4964 }
4965
4966 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4967 m != NULL;
4968 m = m->next, p++)
4969 {
4970 if (p->p_type == PT_GNU_RELRO)
4971 {
4972 const Elf_Internal_Phdr *lp;
4973 struct elf_segment_map *lm;
4974
4975 if (link_info != NULL)
4976 {
4977 /* During linking the range of the RELRO segment is passed
4978 in link_info. */
4979 for (lm = elf_tdata (abfd)->segment_map, lp = phdrs;
4980 lm != NULL;
4981 lm = lm->next, lp++)
4982 {
4983 if (lp->p_type == PT_LOAD
4984 && lp->p_vaddr < link_info->relro_end
4985 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end
4986 && lm->count != 0
4987 && lm->sections[0]->vma >= link_info->relro_start)
4988 break;
4989 }
4990
4991 /* PR ld/14207. If the RELRO segment doesn't fit in the
4992 LOAD segment, it should be removed. */
4993 BFD_ASSERT (lm != NULL);
4994 }
4995 else
4996 {
4997 /* Otherwise we are copying an executable or shared
4998 library, but we need to use the same linker logic. */
4999 for (lp = phdrs; lp < phdrs + count; ++lp)
5000 {
5001 if (lp->p_type == PT_LOAD
5002 && lp->p_paddr == p->p_paddr)
5003 break;
5004 }
5005 }
5006
5007 if (lp < phdrs + count)
5008 {
5009 p->p_vaddr = lp->p_vaddr;
5010 p->p_paddr = lp->p_paddr;
5011 p->p_offset = lp->p_offset;
5012 if (link_info != NULL)
5013 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5014 else if (m->p_size_valid)
5015 p->p_filesz = m->p_size;
5016 else
5017 abort ();
5018 p->p_memsz = p->p_filesz;
5019 /* Preserve the alignment and flags if they are valid. The
5020 gold linker generates RW/4 for the PT_GNU_RELRO section.
5021 It is better for objcopy/strip to honor these attributes
5022 otherwise gdb will choke when using separate debug files.
5023 */
5024 if (!m->p_align_valid)
5025 p->p_align = 1;
5026 if (!m->p_flags_valid)
5027 p->p_flags = (lp->p_flags & ~PF_W);
5028 }
5029 else
5030 {
5031 memset (p, 0, sizeof *p);
5032 p->p_type = PT_NULL;
5033 }
5034 }
5035 else if (p->p_type == PT_GNU_STACK)
5036 {
5037 if (m->p_size_valid)
5038 p->p_memsz = m->p_size;
5039 }
5040 else if (m->count != 0)
5041 {
5042 if (p->p_type != PT_LOAD
5043 && (p->p_type != PT_NOTE
5044 || bfd_get_format (abfd) != bfd_core))
5045 {
5046 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5047
5048 p->p_filesz = 0;
5049 p->p_offset = m->sections[0]->filepos;
5050 for (i = m->count; i-- != 0;)
5051 {
5052 asection *sect = m->sections[i];
5053 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5054 if (hdr->sh_type != SHT_NOBITS)
5055 {
5056 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5057 + hdr->sh_size);
5058 break;
5059 }
5060 }
5061 }
5062 }
5063 else if (m->includes_filehdr)
5064 {
5065 p->p_vaddr = filehdr_vaddr;
5066 if (! m->p_paddr_valid)
5067 p->p_paddr = filehdr_paddr;
5068 }
5069 else if (m->includes_phdrs)
5070 {
5071 p->p_vaddr = phdrs_vaddr;
5072 if (! m->p_paddr_valid)
5073 p->p_paddr = phdrs_paddr;
5074 }
5075 }
5076
5077 elf_tdata (abfd)->next_file_pos = off;
5078
5079 return TRUE;
5080 }
5081
5082 /* Work out the file positions of all the sections. This is called by
5083 _bfd_elf_compute_section_file_positions. All the section sizes and
5084 VMAs must be known before this is called.
5085
5086 Reloc sections come in two flavours: Those processed specially as
5087 "side-channel" data attached to a section to which they apply, and
5088 those that bfd doesn't process as relocations. The latter sort are
5089 stored in a normal bfd section by bfd_section_from_shdr. We don't
5090 consider the former sort here, unless they form part of the loadable
5091 image. Reloc sections not assigned here will be handled later by
5092 assign_file_positions_for_relocs.
5093
5094 We also don't set the positions of the .symtab and .strtab here. */
5095
5096 static bfd_boolean
5097 assign_file_positions_except_relocs (bfd *abfd,
5098 struct bfd_link_info *link_info)
5099 {
5100 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5101 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5102 file_ptr off;
5103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5104
5105 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5106 && bfd_get_format (abfd) != bfd_core)
5107 {
5108 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5109 unsigned int num_sec = elf_numsections (abfd);
5110 Elf_Internal_Shdr **hdrpp;
5111 unsigned int i;
5112
5113 /* Start after the ELF header. */
5114 off = i_ehdrp->e_ehsize;
5115
5116 /* We are not creating an executable, which means that we are
5117 not creating a program header, and that the actual order of
5118 the sections in the file is unimportant. */
5119 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5120 {
5121 Elf_Internal_Shdr *hdr;
5122
5123 hdr = *hdrpp;
5124 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5125 && hdr->bfd_section == NULL)
5126 || i == tdata->symtab_section
5127 || i == tdata->symtab_shndx_section
5128 || i == tdata->strtab_section)
5129 {
5130 hdr->sh_offset = -1;
5131 }
5132 else
5133 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5134 }
5135 }
5136 else
5137 {
5138 unsigned int alloc;
5139
5140 /* Assign file positions for the loaded sections based on the
5141 assignment of sections to segments. */
5142 if (!assign_file_positions_for_load_sections (abfd, link_info))
5143 return FALSE;
5144
5145 /* And for non-load sections. */
5146 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5147 return FALSE;
5148
5149 if (bed->elf_backend_modify_program_headers != NULL)
5150 {
5151 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5152 return FALSE;
5153 }
5154
5155 /* Write out the program headers. */
5156 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5157 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5158 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5159 return FALSE;
5160
5161 off = tdata->next_file_pos;
5162 }
5163
5164 /* Place the section headers. */
5165 off = align_file_position (off, 1 << bed->s->log_file_align);
5166 i_ehdrp->e_shoff = off;
5167 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5168
5169 tdata->next_file_pos = off;
5170
5171 return TRUE;
5172 }
5173
5174 static bfd_boolean
5175 prep_headers (bfd *abfd)
5176 {
5177 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5178 struct elf_strtab_hash *shstrtab;
5179 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5180
5181 i_ehdrp = elf_elfheader (abfd);
5182
5183 shstrtab = _bfd_elf_strtab_init ();
5184 if (shstrtab == NULL)
5185 return FALSE;
5186
5187 elf_shstrtab (abfd) = shstrtab;
5188
5189 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5190 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5191 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5192 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5193
5194 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5195 i_ehdrp->e_ident[EI_DATA] =
5196 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5197 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5198
5199 if ((abfd->flags & DYNAMIC) != 0)
5200 i_ehdrp->e_type = ET_DYN;
5201 else if ((abfd->flags & EXEC_P) != 0)
5202 i_ehdrp->e_type = ET_EXEC;
5203 else if (bfd_get_format (abfd) == bfd_core)
5204 i_ehdrp->e_type = ET_CORE;
5205 else
5206 i_ehdrp->e_type = ET_REL;
5207
5208 switch (bfd_get_arch (abfd))
5209 {
5210 case bfd_arch_unknown:
5211 i_ehdrp->e_machine = EM_NONE;
5212 break;
5213
5214 /* There used to be a long list of cases here, each one setting
5215 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5216 in the corresponding bfd definition. To avoid duplication,
5217 the switch was removed. Machines that need special handling
5218 can generally do it in elf_backend_final_write_processing(),
5219 unless they need the information earlier than the final write.
5220 Such need can generally be supplied by replacing the tests for
5221 e_machine with the conditions used to determine it. */
5222 default:
5223 i_ehdrp->e_machine = bed->elf_machine_code;
5224 }
5225
5226 i_ehdrp->e_version = bed->s->ev_current;
5227 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5228
5229 /* No program header, for now. */
5230 i_ehdrp->e_phoff = 0;
5231 i_ehdrp->e_phentsize = 0;
5232 i_ehdrp->e_phnum = 0;
5233
5234 /* Each bfd section is section header entry. */
5235 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5236 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5237
5238 /* If we're building an executable, we'll need a program header table. */
5239 if (abfd->flags & EXEC_P)
5240 /* It all happens later. */
5241 ;
5242 else
5243 {
5244 i_ehdrp->e_phentsize = 0;
5245 i_ehdrp->e_phoff = 0;
5246 }
5247
5248 elf_tdata (abfd)->symtab_hdr.sh_name =
5249 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5250 elf_tdata (abfd)->strtab_hdr.sh_name =
5251 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5252 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5253 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5254 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5255 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5256 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5257 return FALSE;
5258
5259 return TRUE;
5260 }
5261
5262 /* Assign file positions for all the reloc sections which are not part
5263 of the loadable file image. */
5264
5265 void
5266 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5267 {
5268 file_ptr off;
5269 unsigned int i, num_sec;
5270 Elf_Internal_Shdr **shdrpp;
5271
5272 off = elf_tdata (abfd)->next_file_pos;
5273
5274 num_sec = elf_numsections (abfd);
5275 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5276 {
5277 Elf_Internal_Shdr *shdrp;
5278
5279 shdrp = *shdrpp;
5280 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5281 && shdrp->sh_offset == -1)
5282 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5283 }
5284
5285 elf_tdata (abfd)->next_file_pos = off;
5286 }
5287
5288 bfd_boolean
5289 _bfd_elf_write_object_contents (bfd *abfd)
5290 {
5291 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5292 Elf_Internal_Shdr **i_shdrp;
5293 bfd_boolean failed;
5294 unsigned int count, num_sec;
5295 struct elf_obj_tdata *t;
5296
5297 if (! abfd->output_has_begun
5298 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5299 return FALSE;
5300
5301 i_shdrp = elf_elfsections (abfd);
5302
5303 failed = FALSE;
5304 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5305 if (failed)
5306 return FALSE;
5307
5308 _bfd_elf_assign_file_positions_for_relocs (abfd);
5309
5310 /* After writing the headers, we need to write the sections too... */
5311 num_sec = elf_numsections (abfd);
5312 for (count = 1; count < num_sec; count++)
5313 {
5314 if (bed->elf_backend_section_processing)
5315 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5316 if (i_shdrp[count]->contents)
5317 {
5318 bfd_size_type amt = i_shdrp[count]->sh_size;
5319
5320 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5321 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5322 return FALSE;
5323 }
5324 }
5325
5326 /* Write out the section header names. */
5327 t = elf_tdata (abfd);
5328 if (elf_shstrtab (abfd) != NULL
5329 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5330 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5331 return FALSE;
5332
5333 if (bed->elf_backend_final_write_processing)
5334 (*bed->elf_backend_final_write_processing) (abfd, t->linker);
5335
5336 if (!bed->s->write_shdrs_and_ehdr (abfd))
5337 return FALSE;
5338
5339 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5340 if (t->build_id != NULL
5341 && t->build_id->u.o.zero == 0)
5342 return (*t->build_id->u.o.after_write_object_contents) (abfd);
5343
5344 return TRUE;
5345 }
5346
5347 bfd_boolean
5348 _bfd_elf_write_corefile_contents (bfd *abfd)
5349 {
5350 /* Hopefully this can be done just like an object file. */
5351 return _bfd_elf_write_object_contents (abfd);
5352 }
5353
5354 /* Given a section, search the header to find them. */
5355
5356 unsigned int
5357 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5358 {
5359 const struct elf_backend_data *bed;
5360 unsigned int sec_index;
5361
5362 if (elf_section_data (asect) != NULL
5363 && elf_section_data (asect)->this_idx != 0)
5364 return elf_section_data (asect)->this_idx;
5365
5366 if (bfd_is_abs_section (asect))
5367 sec_index = SHN_ABS;
5368 else if (bfd_is_com_section (asect))
5369 sec_index = SHN_COMMON;
5370 else if (bfd_is_und_section (asect))
5371 sec_index = SHN_UNDEF;
5372 else
5373 sec_index = SHN_BAD;
5374
5375 bed = get_elf_backend_data (abfd);
5376 if (bed->elf_backend_section_from_bfd_section)
5377 {
5378 int retval = sec_index;
5379
5380 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5381 return retval;
5382 }
5383
5384 if (sec_index == SHN_BAD)
5385 bfd_set_error (bfd_error_nonrepresentable_section);
5386
5387 return sec_index;
5388 }
5389
5390 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5391 on error. */
5392
5393 int
5394 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5395 {
5396 asymbol *asym_ptr = *asym_ptr_ptr;
5397 int idx;
5398 flagword flags = asym_ptr->flags;
5399
5400 /* When gas creates relocations against local labels, it creates its
5401 own symbol for the section, but does put the symbol into the
5402 symbol chain, so udata is 0. When the linker is generating
5403 relocatable output, this section symbol may be for one of the
5404 input sections rather than the output section. */
5405 if (asym_ptr->udata.i == 0
5406 && (flags & BSF_SECTION_SYM)
5407 && asym_ptr->section)
5408 {
5409 asection *sec;
5410 int indx;
5411
5412 sec = asym_ptr->section;
5413 if (sec->owner != abfd && sec->output_section != NULL)
5414 sec = sec->output_section;
5415 if (sec->owner == abfd
5416 && (indx = sec->index) < elf_num_section_syms (abfd)
5417 && elf_section_syms (abfd)[indx] != NULL)
5418 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5419 }
5420
5421 idx = asym_ptr->udata.i;
5422
5423 if (idx == 0)
5424 {
5425 /* This case can occur when using --strip-symbol on a symbol
5426 which is used in a relocation entry. */
5427 (*_bfd_error_handler)
5428 (_("%B: symbol `%s' required but not present"),
5429 abfd, bfd_asymbol_name (asym_ptr));
5430 bfd_set_error (bfd_error_no_symbols);
5431 return -1;
5432 }
5433
5434 #if DEBUG & 4
5435 {
5436 fprintf (stderr,
5437 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5438 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5439 fflush (stderr);
5440 }
5441 #endif
5442
5443 return idx;
5444 }
5445
5446 /* Rewrite program header information. */
5447
5448 static bfd_boolean
5449 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5450 {
5451 Elf_Internal_Ehdr *iehdr;
5452 struct elf_segment_map *map;
5453 struct elf_segment_map *map_first;
5454 struct elf_segment_map **pointer_to_map;
5455 Elf_Internal_Phdr *segment;
5456 asection *section;
5457 unsigned int i;
5458 unsigned int num_segments;
5459 bfd_boolean phdr_included = FALSE;
5460 bfd_boolean p_paddr_valid;
5461 bfd_vma maxpagesize;
5462 struct elf_segment_map *phdr_adjust_seg = NULL;
5463 unsigned int phdr_adjust_num = 0;
5464 const struct elf_backend_data *bed;
5465
5466 bed = get_elf_backend_data (ibfd);
5467 iehdr = elf_elfheader (ibfd);
5468
5469 map_first = NULL;
5470 pointer_to_map = &map_first;
5471
5472 num_segments = elf_elfheader (ibfd)->e_phnum;
5473 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5474
5475 /* Returns the end address of the segment + 1. */
5476 #define SEGMENT_END(segment, start) \
5477 (start + (segment->p_memsz > segment->p_filesz \
5478 ? segment->p_memsz : segment->p_filesz))
5479
5480 #define SECTION_SIZE(section, segment) \
5481 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5482 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5483 ? section->size : 0)
5484
5485 /* Returns TRUE if the given section is contained within
5486 the given segment. VMA addresses are compared. */
5487 #define IS_CONTAINED_BY_VMA(section, segment) \
5488 (section->vma >= segment->p_vaddr \
5489 && (section->vma + SECTION_SIZE (section, segment) \
5490 <= (SEGMENT_END (segment, segment->p_vaddr))))
5491
5492 /* Returns TRUE if the given section is contained within
5493 the given segment. LMA addresses are compared. */
5494 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5495 (section->lma >= base \
5496 && (section->lma + SECTION_SIZE (section, segment) \
5497 <= SEGMENT_END (segment, base)))
5498
5499 /* Handle PT_NOTE segment. */
5500 #define IS_NOTE(p, s) \
5501 (p->p_type == PT_NOTE \
5502 && elf_section_type (s) == SHT_NOTE \
5503 && (bfd_vma) s->filepos >= p->p_offset \
5504 && ((bfd_vma) s->filepos + s->size \
5505 <= p->p_offset + p->p_filesz))
5506
5507 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5508 etc. */
5509 #define IS_COREFILE_NOTE(p, s) \
5510 (IS_NOTE (p, s) \
5511 && bfd_get_format (ibfd) == bfd_core \
5512 && s->vma == 0 \
5513 && s->lma == 0)
5514
5515 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5516 linker, which generates a PT_INTERP section with p_vaddr and
5517 p_memsz set to 0. */
5518 #define IS_SOLARIS_PT_INTERP(p, s) \
5519 (p->p_vaddr == 0 \
5520 && p->p_paddr == 0 \
5521 && p->p_memsz == 0 \
5522 && p->p_filesz > 0 \
5523 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5524 && s->size > 0 \
5525 && (bfd_vma) s->filepos >= p->p_offset \
5526 && ((bfd_vma) s->filepos + s->size \
5527 <= p->p_offset + p->p_filesz))
5528
5529 /* Decide if the given section should be included in the given segment.
5530 A section will be included if:
5531 1. It is within the address space of the segment -- we use the LMA
5532 if that is set for the segment and the VMA otherwise,
5533 2. It is an allocated section or a NOTE section in a PT_NOTE
5534 segment.
5535 3. There is an output section associated with it,
5536 4. The section has not already been allocated to a previous segment.
5537 5. PT_GNU_STACK segments do not include any sections.
5538 6. PT_TLS segment includes only SHF_TLS sections.
5539 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5540 8. PT_DYNAMIC should not contain empty sections at the beginning
5541 (with the possible exception of .dynamic). */
5542 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5543 ((((segment->p_paddr \
5544 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5545 : IS_CONTAINED_BY_VMA (section, segment)) \
5546 && (section->flags & SEC_ALLOC) != 0) \
5547 || IS_NOTE (segment, section)) \
5548 && segment->p_type != PT_GNU_STACK \
5549 && (segment->p_type != PT_TLS \
5550 || (section->flags & SEC_THREAD_LOCAL)) \
5551 && (segment->p_type == PT_LOAD \
5552 || segment->p_type == PT_TLS \
5553 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5554 && (segment->p_type != PT_DYNAMIC \
5555 || SECTION_SIZE (section, segment) > 0 \
5556 || (segment->p_paddr \
5557 ? segment->p_paddr != section->lma \
5558 : segment->p_vaddr != section->vma) \
5559 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5560 == 0)) \
5561 && !section->segment_mark)
5562
5563 /* If the output section of a section in the input segment is NULL,
5564 it is removed from the corresponding output segment. */
5565 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5566 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5567 && section->output_section != NULL)
5568
5569 /* Returns TRUE iff seg1 starts after the end of seg2. */
5570 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5571 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5572
5573 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5574 their VMA address ranges and their LMA address ranges overlap.
5575 It is possible to have overlapping VMA ranges without overlapping LMA
5576 ranges. RedBoot images for example can have both .data and .bss mapped
5577 to the same VMA range, but with the .data section mapped to a different
5578 LMA. */
5579 #define SEGMENT_OVERLAPS(seg1, seg2) \
5580 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5581 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5582 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5583 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5584
5585 /* Initialise the segment mark field. */
5586 for (section = ibfd->sections; section != NULL; section = section->next)
5587 section->segment_mark = FALSE;
5588
5589 /* The Solaris linker creates program headers in which all the
5590 p_paddr fields are zero. When we try to objcopy or strip such a
5591 file, we get confused. Check for this case, and if we find it
5592 don't set the p_paddr_valid fields. */
5593 p_paddr_valid = FALSE;
5594 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5595 i < num_segments;
5596 i++, segment++)
5597 if (segment->p_paddr != 0)
5598 {
5599 p_paddr_valid = TRUE;
5600 break;
5601 }
5602
5603 /* Scan through the segments specified in the program header
5604 of the input BFD. For this first scan we look for overlaps
5605 in the loadable segments. These can be created by weird
5606 parameters to objcopy. Also, fix some solaris weirdness. */
5607 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5608 i < num_segments;
5609 i++, segment++)
5610 {
5611 unsigned int j;
5612 Elf_Internal_Phdr *segment2;
5613
5614 if (segment->p_type == PT_INTERP)
5615 for (section = ibfd->sections; section; section = section->next)
5616 if (IS_SOLARIS_PT_INTERP (segment, section))
5617 {
5618 /* Mininal change so that the normal section to segment
5619 assignment code will work. */
5620 segment->p_vaddr = section->vma;
5621 break;
5622 }
5623
5624 if (segment->p_type != PT_LOAD)
5625 {
5626 /* Remove PT_GNU_RELRO segment. */
5627 if (segment->p_type == PT_GNU_RELRO)
5628 segment->p_type = PT_NULL;
5629 continue;
5630 }
5631
5632 /* Determine if this segment overlaps any previous segments. */
5633 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5634 {
5635 bfd_signed_vma extra_length;
5636
5637 if (segment2->p_type != PT_LOAD
5638 || !SEGMENT_OVERLAPS (segment, segment2))
5639 continue;
5640
5641 /* Merge the two segments together. */
5642 if (segment2->p_vaddr < segment->p_vaddr)
5643 {
5644 /* Extend SEGMENT2 to include SEGMENT and then delete
5645 SEGMENT. */
5646 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5647 - SEGMENT_END (segment2, segment2->p_vaddr));
5648
5649 if (extra_length > 0)
5650 {
5651 segment2->p_memsz += extra_length;
5652 segment2->p_filesz += extra_length;
5653 }
5654
5655 segment->p_type = PT_NULL;
5656
5657 /* Since we have deleted P we must restart the outer loop. */
5658 i = 0;
5659 segment = elf_tdata (ibfd)->phdr;
5660 break;
5661 }
5662 else
5663 {
5664 /* Extend SEGMENT to include SEGMENT2 and then delete
5665 SEGMENT2. */
5666 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5667 - SEGMENT_END (segment, segment->p_vaddr));
5668
5669 if (extra_length > 0)
5670 {
5671 segment->p_memsz += extra_length;
5672 segment->p_filesz += extra_length;
5673 }
5674
5675 segment2->p_type = PT_NULL;
5676 }
5677 }
5678 }
5679
5680 /* The second scan attempts to assign sections to segments. */
5681 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5682 i < num_segments;
5683 i++, segment++)
5684 {
5685 unsigned int section_count;
5686 asection **sections;
5687 asection *output_section;
5688 unsigned int isec;
5689 bfd_vma matching_lma;
5690 bfd_vma suggested_lma;
5691 unsigned int j;
5692 bfd_size_type amt;
5693 asection *first_section;
5694 bfd_boolean first_matching_lma;
5695 bfd_boolean first_suggested_lma;
5696
5697 if (segment->p_type == PT_NULL)
5698 continue;
5699
5700 first_section = NULL;
5701 /* Compute how many sections might be placed into this segment. */
5702 for (section = ibfd->sections, section_count = 0;
5703 section != NULL;
5704 section = section->next)
5705 {
5706 /* Find the first section in the input segment, which may be
5707 removed from the corresponding output segment. */
5708 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5709 {
5710 if (first_section == NULL)
5711 first_section = section;
5712 if (section->output_section != NULL)
5713 ++section_count;
5714 }
5715 }
5716
5717 /* Allocate a segment map big enough to contain
5718 all of the sections we have selected. */
5719 amt = sizeof (struct elf_segment_map);
5720 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5721 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5722 if (map == NULL)
5723 return FALSE;
5724
5725 /* Initialise the fields of the segment map. Default to
5726 using the physical address of the segment in the input BFD. */
5727 map->next = NULL;
5728 map->p_type = segment->p_type;
5729 map->p_flags = segment->p_flags;
5730 map->p_flags_valid = 1;
5731
5732 /* If the first section in the input segment is removed, there is
5733 no need to preserve segment physical address in the corresponding
5734 output segment. */
5735 if (!first_section || first_section->output_section != NULL)
5736 {
5737 map->p_paddr = segment->p_paddr;
5738 map->p_paddr_valid = p_paddr_valid;
5739 }
5740
5741 /* Determine if this segment contains the ELF file header
5742 and if it contains the program headers themselves. */
5743 map->includes_filehdr = (segment->p_offset == 0
5744 && segment->p_filesz >= iehdr->e_ehsize);
5745 map->includes_phdrs = 0;
5746
5747 if (!phdr_included || segment->p_type != PT_LOAD)
5748 {
5749 map->includes_phdrs =
5750 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5751 && (segment->p_offset + segment->p_filesz
5752 >= ((bfd_vma) iehdr->e_phoff
5753 + iehdr->e_phnum * iehdr->e_phentsize)));
5754
5755 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5756 phdr_included = TRUE;
5757 }
5758
5759 if (section_count == 0)
5760 {
5761 /* Special segments, such as the PT_PHDR segment, may contain
5762 no sections, but ordinary, loadable segments should contain
5763 something. They are allowed by the ELF spec however, so only
5764 a warning is produced. */
5765 if (segment->p_type == PT_LOAD)
5766 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5767 " detected, is this intentional ?\n"),
5768 ibfd);
5769
5770 map->count = 0;
5771 *pointer_to_map = map;
5772 pointer_to_map = &map->next;
5773
5774 continue;
5775 }
5776
5777 /* Now scan the sections in the input BFD again and attempt
5778 to add their corresponding output sections to the segment map.
5779 The problem here is how to handle an output section which has
5780 been moved (ie had its LMA changed). There are four possibilities:
5781
5782 1. None of the sections have been moved.
5783 In this case we can continue to use the segment LMA from the
5784 input BFD.
5785
5786 2. All of the sections have been moved by the same amount.
5787 In this case we can change the segment's LMA to match the LMA
5788 of the first section.
5789
5790 3. Some of the sections have been moved, others have not.
5791 In this case those sections which have not been moved can be
5792 placed in the current segment which will have to have its size,
5793 and possibly its LMA changed, and a new segment or segments will
5794 have to be created to contain the other sections.
5795
5796 4. The sections have been moved, but not by the same amount.
5797 In this case we can change the segment's LMA to match the LMA
5798 of the first section and we will have to create a new segment
5799 or segments to contain the other sections.
5800
5801 In order to save time, we allocate an array to hold the section
5802 pointers that we are interested in. As these sections get assigned
5803 to a segment, they are removed from this array. */
5804
5805 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5806 if (sections == NULL)
5807 return FALSE;
5808
5809 /* Step One: Scan for segment vs section LMA conflicts.
5810 Also add the sections to the section array allocated above.
5811 Also add the sections to the current segment. In the common
5812 case, where the sections have not been moved, this means that
5813 we have completely filled the segment, and there is nothing
5814 more to do. */
5815 isec = 0;
5816 matching_lma = 0;
5817 suggested_lma = 0;
5818 first_matching_lma = TRUE;
5819 first_suggested_lma = TRUE;
5820
5821 for (section = ibfd->sections;
5822 section != NULL;
5823 section = section->next)
5824 if (section == first_section)
5825 break;
5826
5827 for (j = 0; section != NULL; section = section->next)
5828 {
5829 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5830 {
5831 output_section = section->output_section;
5832
5833 sections[j++] = section;
5834
5835 /* The Solaris native linker always sets p_paddr to 0.
5836 We try to catch that case here, and set it to the
5837 correct value. Note - some backends require that
5838 p_paddr be left as zero. */
5839 if (!p_paddr_valid
5840 && segment->p_vaddr != 0
5841 && !bed->want_p_paddr_set_to_zero
5842 && isec == 0
5843 && output_section->lma != 0
5844 && output_section->vma == (segment->p_vaddr
5845 + (map->includes_filehdr
5846 ? iehdr->e_ehsize
5847 : 0)
5848 + (map->includes_phdrs
5849 ? (iehdr->e_phnum
5850 * iehdr->e_phentsize)
5851 : 0)))
5852 map->p_paddr = segment->p_vaddr;
5853
5854 /* Match up the physical address of the segment with the
5855 LMA address of the output section. */
5856 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5857 || IS_COREFILE_NOTE (segment, section)
5858 || (bed->want_p_paddr_set_to_zero
5859 && IS_CONTAINED_BY_VMA (output_section, segment)))
5860 {
5861 if (first_matching_lma || output_section->lma < matching_lma)
5862 {
5863 matching_lma = output_section->lma;
5864 first_matching_lma = FALSE;
5865 }
5866
5867 /* We assume that if the section fits within the segment
5868 then it does not overlap any other section within that
5869 segment. */
5870 map->sections[isec++] = output_section;
5871 }
5872 else if (first_suggested_lma)
5873 {
5874 suggested_lma = output_section->lma;
5875 first_suggested_lma = FALSE;
5876 }
5877
5878 if (j == section_count)
5879 break;
5880 }
5881 }
5882
5883 BFD_ASSERT (j == section_count);
5884
5885 /* Step Two: Adjust the physical address of the current segment,
5886 if necessary. */
5887 if (isec == section_count)
5888 {
5889 /* All of the sections fitted within the segment as currently
5890 specified. This is the default case. Add the segment to
5891 the list of built segments and carry on to process the next
5892 program header in the input BFD. */
5893 map->count = section_count;
5894 *pointer_to_map = map;
5895 pointer_to_map = &map->next;
5896
5897 if (p_paddr_valid
5898 && !bed->want_p_paddr_set_to_zero
5899 && matching_lma != map->p_paddr
5900 && !map->includes_filehdr
5901 && !map->includes_phdrs)
5902 /* There is some padding before the first section in the
5903 segment. So, we must account for that in the output
5904 segment's vma. */
5905 map->p_vaddr_offset = matching_lma - map->p_paddr;
5906
5907 free (sections);
5908 continue;
5909 }
5910 else
5911 {
5912 if (!first_matching_lma)
5913 {
5914 /* At least one section fits inside the current segment.
5915 Keep it, but modify its physical address to match the
5916 LMA of the first section that fitted. */
5917 map->p_paddr = matching_lma;
5918 }
5919 else
5920 {
5921 /* None of the sections fitted inside the current segment.
5922 Change the current segment's physical address to match
5923 the LMA of the first section. */
5924 map->p_paddr = suggested_lma;
5925 }
5926
5927 /* Offset the segment physical address from the lma
5928 to allow for space taken up by elf headers. */
5929 if (map->includes_filehdr)
5930 {
5931 if (map->p_paddr >= iehdr->e_ehsize)
5932 map->p_paddr -= iehdr->e_ehsize;
5933 else
5934 {
5935 map->includes_filehdr = FALSE;
5936 map->includes_phdrs = FALSE;
5937 }
5938 }
5939
5940 if (map->includes_phdrs)
5941 {
5942 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5943 {
5944 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5945
5946 /* iehdr->e_phnum is just an estimate of the number
5947 of program headers that we will need. Make a note
5948 here of the number we used and the segment we chose
5949 to hold these headers, so that we can adjust the
5950 offset when we know the correct value. */
5951 phdr_adjust_num = iehdr->e_phnum;
5952 phdr_adjust_seg = map;
5953 }
5954 else
5955 map->includes_phdrs = FALSE;
5956 }
5957 }
5958
5959 /* Step Three: Loop over the sections again, this time assigning
5960 those that fit to the current segment and removing them from the
5961 sections array; but making sure not to leave large gaps. Once all
5962 possible sections have been assigned to the current segment it is
5963 added to the list of built segments and if sections still remain
5964 to be assigned, a new segment is constructed before repeating
5965 the loop. */
5966 isec = 0;
5967 do
5968 {
5969 map->count = 0;
5970 suggested_lma = 0;
5971 first_suggested_lma = TRUE;
5972
5973 /* Fill the current segment with sections that fit. */
5974 for (j = 0; j < section_count; j++)
5975 {
5976 section = sections[j];
5977
5978 if (section == NULL)
5979 continue;
5980
5981 output_section = section->output_section;
5982
5983 BFD_ASSERT (output_section != NULL);
5984
5985 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5986 || IS_COREFILE_NOTE (segment, section))
5987 {
5988 if (map->count == 0)
5989 {
5990 /* If the first section in a segment does not start at
5991 the beginning of the segment, then something is
5992 wrong. */
5993 if (output_section->lma
5994 != (map->p_paddr
5995 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5996 + (map->includes_phdrs
5997 ? iehdr->e_phnum * iehdr->e_phentsize
5998 : 0)))
5999 abort ();
6000 }
6001 else
6002 {
6003 asection *prev_sec;
6004
6005 prev_sec = map->sections[map->count - 1];
6006
6007 /* If the gap between the end of the previous section
6008 and the start of this section is more than
6009 maxpagesize then we need to start a new segment. */
6010 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6011 maxpagesize)
6012 < BFD_ALIGN (output_section->lma, maxpagesize))
6013 || (prev_sec->lma + prev_sec->size
6014 > output_section->lma))
6015 {
6016 if (first_suggested_lma)
6017 {
6018 suggested_lma = output_section->lma;
6019 first_suggested_lma = FALSE;
6020 }
6021
6022 continue;
6023 }
6024 }
6025
6026 map->sections[map->count++] = output_section;
6027 ++isec;
6028 sections[j] = NULL;
6029 section->segment_mark = TRUE;
6030 }
6031 else if (first_suggested_lma)
6032 {
6033 suggested_lma = output_section->lma;
6034 first_suggested_lma = FALSE;
6035 }
6036 }
6037
6038 BFD_ASSERT (map->count > 0);
6039
6040 /* Add the current segment to the list of built segments. */
6041 *pointer_to_map = map;
6042 pointer_to_map = &map->next;
6043
6044 if (isec < section_count)
6045 {
6046 /* We still have not allocated all of the sections to
6047 segments. Create a new segment here, initialise it
6048 and carry on looping. */
6049 amt = sizeof (struct elf_segment_map);
6050 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6051 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6052 if (map == NULL)
6053 {
6054 free (sections);
6055 return FALSE;
6056 }
6057
6058 /* Initialise the fields of the segment map. Set the physical
6059 physical address to the LMA of the first section that has
6060 not yet been assigned. */
6061 map->next = NULL;
6062 map->p_type = segment->p_type;
6063 map->p_flags = segment->p_flags;
6064 map->p_flags_valid = 1;
6065 map->p_paddr = suggested_lma;
6066 map->p_paddr_valid = p_paddr_valid;
6067 map->includes_filehdr = 0;
6068 map->includes_phdrs = 0;
6069 }
6070 }
6071 while (isec < section_count);
6072
6073 free (sections);
6074 }
6075
6076 elf_tdata (obfd)->segment_map = map_first;
6077
6078 /* If we had to estimate the number of program headers that were
6079 going to be needed, then check our estimate now and adjust
6080 the offset if necessary. */
6081 if (phdr_adjust_seg != NULL)
6082 {
6083 unsigned int count;
6084
6085 for (count = 0, map = map_first; map != NULL; map = map->next)
6086 count++;
6087
6088 if (count > phdr_adjust_num)
6089 phdr_adjust_seg->p_paddr
6090 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6091 }
6092
6093 #undef SEGMENT_END
6094 #undef SECTION_SIZE
6095 #undef IS_CONTAINED_BY_VMA
6096 #undef IS_CONTAINED_BY_LMA
6097 #undef IS_NOTE
6098 #undef IS_COREFILE_NOTE
6099 #undef IS_SOLARIS_PT_INTERP
6100 #undef IS_SECTION_IN_INPUT_SEGMENT
6101 #undef INCLUDE_SECTION_IN_SEGMENT
6102 #undef SEGMENT_AFTER_SEGMENT
6103 #undef SEGMENT_OVERLAPS
6104 return TRUE;
6105 }
6106
6107 /* Copy ELF program header information. */
6108
6109 static bfd_boolean
6110 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6111 {
6112 Elf_Internal_Ehdr *iehdr;
6113 struct elf_segment_map *map;
6114 struct elf_segment_map *map_first;
6115 struct elf_segment_map **pointer_to_map;
6116 Elf_Internal_Phdr *segment;
6117 unsigned int i;
6118 unsigned int num_segments;
6119 bfd_boolean phdr_included = FALSE;
6120 bfd_boolean p_paddr_valid;
6121
6122 iehdr = elf_elfheader (ibfd);
6123
6124 map_first = NULL;
6125 pointer_to_map = &map_first;
6126
6127 /* If all the segment p_paddr fields are zero, don't set
6128 map->p_paddr_valid. */
6129 p_paddr_valid = FALSE;
6130 num_segments = elf_elfheader (ibfd)->e_phnum;
6131 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6132 i < num_segments;
6133 i++, segment++)
6134 if (segment->p_paddr != 0)
6135 {
6136 p_paddr_valid = TRUE;
6137 break;
6138 }
6139
6140 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6141 i < num_segments;
6142 i++, segment++)
6143 {
6144 asection *section;
6145 unsigned int section_count;
6146 bfd_size_type amt;
6147 Elf_Internal_Shdr *this_hdr;
6148 asection *first_section = NULL;
6149 asection *lowest_section;
6150
6151 /* Compute how many sections are in this segment. */
6152 for (section = ibfd->sections, section_count = 0;
6153 section != NULL;
6154 section = section->next)
6155 {
6156 this_hdr = &(elf_section_data(section)->this_hdr);
6157 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6158 {
6159 if (first_section == NULL)
6160 first_section = section;
6161 section_count++;
6162 }
6163 }
6164
6165 /* Allocate a segment map big enough to contain
6166 all of the sections we have selected. */
6167 amt = sizeof (struct elf_segment_map);
6168 if (section_count != 0)
6169 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6170 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6171 if (map == NULL)
6172 return FALSE;
6173
6174 /* Initialize the fields of the output segment map with the
6175 input segment. */
6176 map->next = NULL;
6177 map->p_type = segment->p_type;
6178 map->p_flags = segment->p_flags;
6179 map->p_flags_valid = 1;
6180 map->p_paddr = segment->p_paddr;
6181 map->p_paddr_valid = p_paddr_valid;
6182 map->p_align = segment->p_align;
6183 map->p_align_valid = 1;
6184 map->p_vaddr_offset = 0;
6185
6186 if (map->p_type == PT_GNU_RELRO
6187 || map->p_type == PT_GNU_STACK)
6188 {
6189 /* The PT_GNU_RELRO segment may contain the first a few
6190 bytes in the .got.plt section even if the whole .got.plt
6191 section isn't in the PT_GNU_RELRO segment. We won't
6192 change the size of the PT_GNU_RELRO segment.
6193 Similarly, PT_GNU_STACK size is significant on uclinux
6194 systems. */
6195 map->p_size = segment->p_memsz;
6196 map->p_size_valid = 1;
6197 }
6198
6199 /* Determine if this segment contains the ELF file header
6200 and if it contains the program headers themselves. */
6201 map->includes_filehdr = (segment->p_offset == 0
6202 && segment->p_filesz >= iehdr->e_ehsize);
6203
6204 map->includes_phdrs = 0;
6205 if (! phdr_included || segment->p_type != PT_LOAD)
6206 {
6207 map->includes_phdrs =
6208 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6209 && (segment->p_offset + segment->p_filesz
6210 >= ((bfd_vma) iehdr->e_phoff
6211 + iehdr->e_phnum * iehdr->e_phentsize)));
6212
6213 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6214 phdr_included = TRUE;
6215 }
6216
6217 lowest_section = first_section;
6218 if (section_count != 0)
6219 {
6220 unsigned int isec = 0;
6221
6222 for (section = first_section;
6223 section != NULL;
6224 section = section->next)
6225 {
6226 this_hdr = &(elf_section_data(section)->this_hdr);
6227 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6228 {
6229 map->sections[isec++] = section->output_section;
6230 if (section->lma < lowest_section->lma)
6231 lowest_section = section;
6232 if ((section->flags & SEC_ALLOC) != 0)
6233 {
6234 bfd_vma seg_off;
6235
6236 /* Section lmas are set up from PT_LOAD header
6237 p_paddr in _bfd_elf_make_section_from_shdr.
6238 If this header has a p_paddr that disagrees
6239 with the section lma, flag the p_paddr as
6240 invalid. */
6241 if ((section->flags & SEC_LOAD) != 0)
6242 seg_off = this_hdr->sh_offset - segment->p_offset;
6243 else
6244 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6245 if (section->lma - segment->p_paddr != seg_off)
6246 map->p_paddr_valid = FALSE;
6247 }
6248 if (isec == section_count)
6249 break;
6250 }
6251 }
6252 }
6253
6254 if (map->includes_filehdr && lowest_section != NULL)
6255 /* We need to keep the space used by the headers fixed. */
6256 map->header_size = lowest_section->vma - segment->p_vaddr;
6257
6258 if (!map->includes_phdrs
6259 && !map->includes_filehdr
6260 && map->p_paddr_valid)
6261 /* There is some other padding before the first section. */
6262 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6263 - segment->p_paddr);
6264
6265 map->count = section_count;
6266 *pointer_to_map = map;
6267 pointer_to_map = &map->next;
6268 }
6269
6270 elf_tdata (obfd)->segment_map = map_first;
6271 return TRUE;
6272 }
6273
6274 /* Copy private BFD data. This copies or rewrites ELF program header
6275 information. */
6276
6277 static bfd_boolean
6278 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6279 {
6280 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6281 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6282 return TRUE;
6283
6284 if (elf_tdata (ibfd)->phdr == NULL)
6285 return TRUE;
6286
6287 if (ibfd->xvec == obfd->xvec)
6288 {
6289 /* Check to see if any sections in the input BFD
6290 covered by ELF program header have changed. */
6291 Elf_Internal_Phdr *segment;
6292 asection *section, *osec;
6293 unsigned int i, num_segments;
6294 Elf_Internal_Shdr *this_hdr;
6295 const struct elf_backend_data *bed;
6296
6297 bed = get_elf_backend_data (ibfd);
6298
6299 /* Regenerate the segment map if p_paddr is set to 0. */
6300 if (bed->want_p_paddr_set_to_zero)
6301 goto rewrite;
6302
6303 /* Initialize the segment mark field. */
6304 for (section = obfd->sections; section != NULL;
6305 section = section->next)
6306 section->segment_mark = FALSE;
6307
6308 num_segments = elf_elfheader (ibfd)->e_phnum;
6309 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6310 i < num_segments;
6311 i++, segment++)
6312 {
6313 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6314 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6315 which severly confuses things, so always regenerate the segment
6316 map in this case. */
6317 if (segment->p_paddr == 0
6318 && segment->p_memsz == 0
6319 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6320 goto rewrite;
6321
6322 for (section = ibfd->sections;
6323 section != NULL; section = section->next)
6324 {
6325 /* We mark the output section so that we know it comes
6326 from the input BFD. */
6327 osec = section->output_section;
6328 if (osec)
6329 osec->segment_mark = TRUE;
6330
6331 /* Check if this section is covered by the segment. */
6332 this_hdr = &(elf_section_data(section)->this_hdr);
6333 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6334 {
6335 /* FIXME: Check if its output section is changed or
6336 removed. What else do we need to check? */
6337 if (osec == NULL
6338 || section->flags != osec->flags
6339 || section->lma != osec->lma
6340 || section->vma != osec->vma
6341 || section->size != osec->size
6342 || section->rawsize != osec->rawsize
6343 || section->alignment_power != osec->alignment_power)
6344 goto rewrite;
6345 }
6346 }
6347 }
6348
6349 /* Check to see if any output section do not come from the
6350 input BFD. */
6351 for (section = obfd->sections; section != NULL;
6352 section = section->next)
6353 {
6354 if (section->segment_mark == FALSE)
6355 goto rewrite;
6356 else
6357 section->segment_mark = FALSE;
6358 }
6359
6360 return copy_elf_program_header (ibfd, obfd);
6361 }
6362
6363 rewrite:
6364 if (ibfd->xvec == obfd->xvec)
6365 {
6366 /* When rewriting program header, set the output maxpagesize to
6367 the maximum alignment of input PT_LOAD segments. */
6368 Elf_Internal_Phdr *segment;
6369 unsigned int i;
6370 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6371 bfd_vma maxpagesize = 0;
6372
6373 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6374 i < num_segments;
6375 i++, segment++)
6376 if (segment->p_type == PT_LOAD
6377 && maxpagesize < segment->p_align)
6378 maxpagesize = segment->p_align;
6379
6380 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6381 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6382 }
6383
6384 return rewrite_elf_program_header (ibfd, obfd);
6385 }
6386
6387 /* Initialize private output section information from input section. */
6388
6389 bfd_boolean
6390 _bfd_elf_init_private_section_data (bfd *ibfd,
6391 asection *isec,
6392 bfd *obfd,
6393 asection *osec,
6394 struct bfd_link_info *link_info)
6395
6396 {
6397 Elf_Internal_Shdr *ihdr, *ohdr;
6398 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6399
6400 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6401 || obfd->xvec->flavour != bfd_target_elf_flavour)
6402 return TRUE;
6403
6404 BFD_ASSERT (elf_section_data (osec) != NULL);
6405
6406 /* For objcopy and relocatable link, don't copy the output ELF
6407 section type from input if the output BFD section flags have been
6408 set to something different. For a final link allow some flags
6409 that the linker clears to differ. */
6410 if (elf_section_type (osec) == SHT_NULL
6411 && (osec->flags == isec->flags
6412 || (final_link
6413 && ((osec->flags ^ isec->flags)
6414 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6415 elf_section_type (osec) = elf_section_type (isec);
6416
6417 /* FIXME: Is this correct for all OS/PROC specific flags? */
6418 elf_section_flags (osec) |= (elf_section_flags (isec)
6419 & (SHF_MASKOS | SHF_MASKPROC));
6420
6421 /* Set things up for objcopy and relocatable link. The output
6422 SHT_GROUP section will have its elf_next_in_group pointing back
6423 to the input group members. Ignore linker created group section.
6424 See elfNN_ia64_object_p in elfxx-ia64.c. */
6425 if (!final_link)
6426 {
6427 if (elf_sec_group (isec) == NULL
6428 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6429 {
6430 if (elf_section_flags (isec) & SHF_GROUP)
6431 elf_section_flags (osec) |= SHF_GROUP;
6432 elf_next_in_group (osec) = elf_next_in_group (isec);
6433 elf_section_data (osec)->group = elf_section_data (isec)->group;
6434 }
6435 }
6436
6437 ihdr = &elf_section_data (isec)->this_hdr;
6438
6439 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6440 don't use the output section of the linked-to section since it
6441 may be NULL at this point. */
6442 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6443 {
6444 ohdr = &elf_section_data (osec)->this_hdr;
6445 ohdr->sh_flags |= SHF_LINK_ORDER;
6446 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6447 }
6448
6449 osec->use_rela_p = isec->use_rela_p;
6450
6451 return TRUE;
6452 }
6453
6454 /* Copy private section information. This copies over the entsize
6455 field, and sometimes the info field. */
6456
6457 bfd_boolean
6458 _bfd_elf_copy_private_section_data (bfd *ibfd,
6459 asection *isec,
6460 bfd *obfd,
6461 asection *osec)
6462 {
6463 Elf_Internal_Shdr *ihdr, *ohdr;
6464
6465 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6466 || obfd->xvec->flavour != bfd_target_elf_flavour)
6467 return TRUE;
6468
6469 ihdr = &elf_section_data (isec)->this_hdr;
6470 ohdr = &elf_section_data (osec)->this_hdr;
6471
6472 ohdr->sh_entsize = ihdr->sh_entsize;
6473
6474 if (ihdr->sh_type == SHT_SYMTAB
6475 || ihdr->sh_type == SHT_DYNSYM
6476 || ihdr->sh_type == SHT_GNU_verneed
6477 || ihdr->sh_type == SHT_GNU_verdef)
6478 ohdr->sh_info = ihdr->sh_info;
6479
6480 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6481 NULL);
6482 }
6483
6484 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6485 necessary if we are removing either the SHT_GROUP section or any of
6486 the group member sections. DISCARDED is the value that a section's
6487 output_section has if the section will be discarded, NULL when this
6488 function is called from objcopy, bfd_abs_section_ptr when called
6489 from the linker. */
6490
6491 bfd_boolean
6492 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6493 {
6494 asection *isec;
6495
6496 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6497 if (elf_section_type (isec) == SHT_GROUP)
6498 {
6499 asection *first = elf_next_in_group (isec);
6500 asection *s = first;
6501 bfd_size_type removed = 0;
6502
6503 while (s != NULL)
6504 {
6505 /* If this member section is being output but the
6506 SHT_GROUP section is not, then clear the group info
6507 set up by _bfd_elf_copy_private_section_data. */
6508 if (s->output_section != discarded
6509 && isec->output_section == discarded)
6510 {
6511 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6512 elf_group_name (s->output_section) = NULL;
6513 }
6514 /* Conversely, if the member section is not being output
6515 but the SHT_GROUP section is, then adjust its size. */
6516 else if (s->output_section == discarded
6517 && isec->output_section != discarded)
6518 removed += 4;
6519 s = elf_next_in_group (s);
6520 if (s == first)
6521 break;
6522 }
6523 if (removed != 0)
6524 {
6525 if (discarded != NULL)
6526 {
6527 /* If we've been called for ld -r, then we need to
6528 adjust the input section size. This function may
6529 be called multiple times, so save the original
6530 size. */
6531 if (isec->rawsize == 0)
6532 isec->rawsize = isec->size;
6533 isec->size = isec->rawsize - removed;
6534 }
6535 else
6536 {
6537 /* Adjust the output section size when called from
6538 objcopy. */
6539 isec->output_section->size -= removed;
6540 }
6541 }
6542 }
6543
6544 return TRUE;
6545 }
6546
6547 /* Copy private header information. */
6548
6549 bfd_boolean
6550 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6551 {
6552 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6553 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6554 return TRUE;
6555
6556 /* Copy over private BFD data if it has not already been copied.
6557 This must be done here, rather than in the copy_private_bfd_data
6558 entry point, because the latter is called after the section
6559 contents have been set, which means that the program headers have
6560 already been worked out. */
6561 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6562 {
6563 if (! copy_private_bfd_data (ibfd, obfd))
6564 return FALSE;
6565 }
6566
6567 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6568 }
6569
6570 /* Copy private symbol information. If this symbol is in a section
6571 which we did not map into a BFD section, try to map the section
6572 index correctly. We use special macro definitions for the mapped
6573 section indices; these definitions are interpreted by the
6574 swap_out_syms function. */
6575
6576 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6577 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6578 #define MAP_STRTAB (SHN_HIOS + 3)
6579 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6580 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6581
6582 bfd_boolean
6583 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6584 asymbol *isymarg,
6585 bfd *obfd,
6586 asymbol *osymarg)
6587 {
6588 elf_symbol_type *isym, *osym;
6589
6590 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6591 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6592 return TRUE;
6593
6594 isym = elf_symbol_from (ibfd, isymarg);
6595 osym = elf_symbol_from (obfd, osymarg);
6596
6597 if (isym != NULL
6598 && isym->internal_elf_sym.st_shndx != 0
6599 && osym != NULL
6600 && bfd_is_abs_section (isym->symbol.section))
6601 {
6602 unsigned int shndx;
6603
6604 shndx = isym->internal_elf_sym.st_shndx;
6605 if (shndx == elf_onesymtab (ibfd))
6606 shndx = MAP_ONESYMTAB;
6607 else if (shndx == elf_dynsymtab (ibfd))
6608 shndx = MAP_DYNSYMTAB;
6609 else if (shndx == elf_tdata (ibfd)->strtab_section)
6610 shndx = MAP_STRTAB;
6611 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6612 shndx = MAP_SHSTRTAB;
6613 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6614 shndx = MAP_SYM_SHNDX;
6615 osym->internal_elf_sym.st_shndx = shndx;
6616 }
6617
6618 return TRUE;
6619 }
6620
6621 /* Swap out the symbols. */
6622
6623 static bfd_boolean
6624 swap_out_syms (bfd *abfd,
6625 struct bfd_strtab_hash **sttp,
6626 int relocatable_p)
6627 {
6628 const struct elf_backend_data *bed;
6629 int symcount;
6630 asymbol **syms;
6631 struct bfd_strtab_hash *stt;
6632 Elf_Internal_Shdr *symtab_hdr;
6633 Elf_Internal_Shdr *symtab_shndx_hdr;
6634 Elf_Internal_Shdr *symstrtab_hdr;
6635 bfd_byte *outbound_syms;
6636 bfd_byte *outbound_shndx;
6637 int idx;
6638 bfd_size_type amt;
6639 bfd_boolean name_local_sections;
6640
6641 if (!elf_map_symbols (abfd))
6642 return FALSE;
6643
6644 /* Dump out the symtabs. */
6645 stt = _bfd_elf_stringtab_init ();
6646 if (stt == NULL)
6647 return FALSE;
6648
6649 bed = get_elf_backend_data (abfd);
6650 symcount = bfd_get_symcount (abfd);
6651 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6652 symtab_hdr->sh_type = SHT_SYMTAB;
6653 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6654 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6655 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6656 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6657
6658 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6659 symstrtab_hdr->sh_type = SHT_STRTAB;
6660
6661 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6662 bed->s->sizeof_sym);
6663 if (outbound_syms == NULL)
6664 {
6665 _bfd_stringtab_free (stt);
6666 return FALSE;
6667 }
6668 symtab_hdr->contents = outbound_syms;
6669
6670 outbound_shndx = NULL;
6671 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6672 if (symtab_shndx_hdr->sh_name != 0)
6673 {
6674 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6675 outbound_shndx = (bfd_byte *)
6676 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6677 if (outbound_shndx == NULL)
6678 {
6679 _bfd_stringtab_free (stt);
6680 return FALSE;
6681 }
6682
6683 symtab_shndx_hdr->contents = outbound_shndx;
6684 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6685 symtab_shndx_hdr->sh_size = amt;
6686 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6687 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6688 }
6689
6690 /* Now generate the data (for "contents"). */
6691 {
6692 /* Fill in zeroth symbol and swap it out. */
6693 Elf_Internal_Sym sym;
6694 sym.st_name = 0;
6695 sym.st_value = 0;
6696 sym.st_size = 0;
6697 sym.st_info = 0;
6698 sym.st_other = 0;
6699 sym.st_shndx = SHN_UNDEF;
6700 sym.st_target_internal = 0;
6701 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6702 outbound_syms += bed->s->sizeof_sym;
6703 if (outbound_shndx != NULL)
6704 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6705 }
6706
6707 name_local_sections
6708 = (bed->elf_backend_name_local_section_symbols
6709 && bed->elf_backend_name_local_section_symbols (abfd));
6710
6711 syms = bfd_get_outsymbols (abfd);
6712 for (idx = 0; idx < symcount; idx++)
6713 {
6714 Elf_Internal_Sym sym;
6715 bfd_vma value = syms[idx]->value;
6716 elf_symbol_type *type_ptr;
6717 flagword flags = syms[idx]->flags;
6718 int type;
6719
6720 if (!name_local_sections
6721 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6722 {
6723 /* Local section symbols have no name. */
6724 sym.st_name = 0;
6725 }
6726 else
6727 {
6728 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6729 syms[idx]->name,
6730 TRUE, FALSE);
6731 if (sym.st_name == (unsigned long) -1)
6732 {
6733 _bfd_stringtab_free (stt);
6734 return FALSE;
6735 }
6736 }
6737
6738 type_ptr = elf_symbol_from (abfd, syms[idx]);
6739
6740 if ((flags & BSF_SECTION_SYM) == 0
6741 && bfd_is_com_section (syms[idx]->section))
6742 {
6743 /* ELF common symbols put the alignment into the `value' field,
6744 and the size into the `size' field. This is backwards from
6745 how BFD handles it, so reverse it here. */
6746 sym.st_size = value;
6747 if (type_ptr == NULL
6748 || type_ptr->internal_elf_sym.st_value == 0)
6749 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6750 else
6751 sym.st_value = type_ptr->internal_elf_sym.st_value;
6752 sym.st_shndx = _bfd_elf_section_from_bfd_section
6753 (abfd, syms[idx]->section);
6754 }
6755 else
6756 {
6757 asection *sec = syms[idx]->section;
6758 unsigned int shndx;
6759
6760 if (sec->output_section)
6761 {
6762 value += sec->output_offset;
6763 sec = sec->output_section;
6764 }
6765
6766 /* Don't add in the section vma for relocatable output. */
6767 if (! relocatable_p)
6768 value += sec->vma;
6769 sym.st_value = value;
6770 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6771
6772 if (bfd_is_abs_section (sec)
6773 && type_ptr != NULL
6774 && type_ptr->internal_elf_sym.st_shndx != 0)
6775 {
6776 /* This symbol is in a real ELF section which we did
6777 not create as a BFD section. Undo the mapping done
6778 by copy_private_symbol_data. */
6779 shndx = type_ptr->internal_elf_sym.st_shndx;
6780 switch (shndx)
6781 {
6782 case MAP_ONESYMTAB:
6783 shndx = elf_onesymtab (abfd);
6784 break;
6785 case MAP_DYNSYMTAB:
6786 shndx = elf_dynsymtab (abfd);
6787 break;
6788 case MAP_STRTAB:
6789 shndx = elf_tdata (abfd)->strtab_section;
6790 break;
6791 case MAP_SHSTRTAB:
6792 shndx = elf_tdata (abfd)->shstrtab_section;
6793 break;
6794 case MAP_SYM_SHNDX:
6795 shndx = elf_tdata (abfd)->symtab_shndx_section;
6796 break;
6797 default:
6798 shndx = SHN_ABS;
6799 break;
6800 }
6801 }
6802 else
6803 {
6804 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6805
6806 if (shndx == SHN_BAD)
6807 {
6808 asection *sec2;
6809
6810 /* Writing this would be a hell of a lot easier if
6811 we had some decent documentation on bfd, and
6812 knew what to expect of the library, and what to
6813 demand of applications. For example, it
6814 appears that `objcopy' might not set the
6815 section of a symbol to be a section that is
6816 actually in the output file. */
6817 sec2 = bfd_get_section_by_name (abfd, sec->name);
6818 if (sec2 == NULL)
6819 {
6820 _bfd_error_handler (_("\
6821 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6822 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6823 sec->name);
6824 bfd_set_error (bfd_error_invalid_operation);
6825 _bfd_stringtab_free (stt);
6826 return FALSE;
6827 }
6828
6829 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6830 BFD_ASSERT (shndx != SHN_BAD);
6831 }
6832 }
6833
6834 sym.st_shndx = shndx;
6835 }
6836
6837 if ((flags & BSF_THREAD_LOCAL) != 0)
6838 type = STT_TLS;
6839 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6840 type = STT_GNU_IFUNC;
6841 else if ((flags & BSF_FUNCTION) != 0)
6842 type = STT_FUNC;
6843 else if ((flags & BSF_OBJECT) != 0)
6844 type = STT_OBJECT;
6845 else if ((flags & BSF_RELC) != 0)
6846 type = STT_RELC;
6847 else if ((flags & BSF_SRELC) != 0)
6848 type = STT_SRELC;
6849 else
6850 type = STT_NOTYPE;
6851
6852 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6853 type = STT_TLS;
6854
6855 /* Processor-specific types. */
6856 if (type_ptr != NULL
6857 && bed->elf_backend_get_symbol_type)
6858 type = ((*bed->elf_backend_get_symbol_type)
6859 (&type_ptr->internal_elf_sym, type));
6860
6861 if (flags & BSF_SECTION_SYM)
6862 {
6863 if (flags & BSF_GLOBAL)
6864 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6865 else
6866 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6867 }
6868 else if (bfd_is_com_section (syms[idx]->section))
6869 {
6870 #ifdef USE_STT_COMMON
6871 if (type == STT_OBJECT)
6872 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6873 else
6874 #endif
6875 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6876 }
6877 else if (bfd_is_und_section (syms[idx]->section))
6878 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6879 ? STB_WEAK
6880 : STB_GLOBAL),
6881 type);
6882 else if (flags & BSF_FILE)
6883 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6884 else
6885 {
6886 int bind = STB_LOCAL;
6887
6888 if (flags & BSF_LOCAL)
6889 bind = STB_LOCAL;
6890 else if (flags & BSF_GNU_UNIQUE)
6891 bind = STB_GNU_UNIQUE;
6892 else if (flags & BSF_WEAK)
6893 bind = STB_WEAK;
6894 else if (flags & BSF_GLOBAL)
6895 bind = STB_GLOBAL;
6896
6897 sym.st_info = ELF_ST_INFO (bind, type);
6898 }
6899
6900 if (type_ptr != NULL)
6901 {
6902 sym.st_other = type_ptr->internal_elf_sym.st_other;
6903 sym.st_target_internal
6904 = type_ptr->internal_elf_sym.st_target_internal;
6905 }
6906 else
6907 {
6908 sym.st_other = 0;
6909 sym.st_target_internal = 0;
6910 }
6911
6912 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6913 outbound_syms += bed->s->sizeof_sym;
6914 if (outbound_shndx != NULL)
6915 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6916 }
6917
6918 *sttp = stt;
6919 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6920 symstrtab_hdr->sh_type = SHT_STRTAB;
6921
6922 symstrtab_hdr->sh_flags = 0;
6923 symstrtab_hdr->sh_addr = 0;
6924 symstrtab_hdr->sh_entsize = 0;
6925 symstrtab_hdr->sh_link = 0;
6926 symstrtab_hdr->sh_info = 0;
6927 symstrtab_hdr->sh_addralign = 1;
6928
6929 return TRUE;
6930 }
6931
6932 /* Return the number of bytes required to hold the symtab vector.
6933
6934 Note that we base it on the count plus 1, since we will null terminate
6935 the vector allocated based on this size. However, the ELF symbol table
6936 always has a dummy entry as symbol #0, so it ends up even. */
6937
6938 long
6939 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6940 {
6941 long symcount;
6942 long symtab_size;
6943 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6944
6945 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6946 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6947 if (symcount > 0)
6948 symtab_size -= sizeof (asymbol *);
6949
6950 return symtab_size;
6951 }
6952
6953 long
6954 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6955 {
6956 long symcount;
6957 long symtab_size;
6958 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6959
6960 if (elf_dynsymtab (abfd) == 0)
6961 {
6962 bfd_set_error (bfd_error_invalid_operation);
6963 return -1;
6964 }
6965
6966 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6967 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6968 if (symcount > 0)
6969 symtab_size -= sizeof (asymbol *);
6970
6971 return symtab_size;
6972 }
6973
6974 long
6975 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6976 sec_ptr asect)
6977 {
6978 return (asect->reloc_count + 1) * sizeof (arelent *);
6979 }
6980
6981 /* Canonicalize the relocs. */
6982
6983 long
6984 _bfd_elf_canonicalize_reloc (bfd *abfd,
6985 sec_ptr section,
6986 arelent **relptr,
6987 asymbol **symbols)
6988 {
6989 arelent *tblptr;
6990 unsigned int i;
6991 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6992
6993 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6994 return -1;
6995
6996 tblptr = section->relocation;
6997 for (i = 0; i < section->reloc_count; i++)
6998 *relptr++ = tblptr++;
6999
7000 *relptr = NULL;
7001
7002 return section->reloc_count;
7003 }
7004
7005 long
7006 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7007 {
7008 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7009 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7010
7011 if (symcount >= 0)
7012 bfd_get_symcount (abfd) = symcount;
7013 return symcount;
7014 }
7015
7016 long
7017 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7018 asymbol **allocation)
7019 {
7020 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7021 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7022
7023 if (symcount >= 0)
7024 bfd_get_dynamic_symcount (abfd) = symcount;
7025 return symcount;
7026 }
7027
7028 /* Return the size required for the dynamic reloc entries. Any loadable
7029 section that was actually installed in the BFD, and has type SHT_REL
7030 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7031 dynamic reloc section. */
7032
7033 long
7034 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7035 {
7036 long ret;
7037 asection *s;
7038
7039 if (elf_dynsymtab (abfd) == 0)
7040 {
7041 bfd_set_error (bfd_error_invalid_operation);
7042 return -1;
7043 }
7044
7045 ret = sizeof (arelent *);
7046 for (s = abfd->sections; s != NULL; s = s->next)
7047 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7048 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7049 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7050 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7051 * sizeof (arelent *));
7052
7053 return ret;
7054 }
7055
7056 /* Canonicalize the dynamic relocation entries. Note that we return the
7057 dynamic relocations as a single block, although they are actually
7058 associated with particular sections; the interface, which was
7059 designed for SunOS style shared libraries, expects that there is only
7060 one set of dynamic relocs. Any loadable section that was actually
7061 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7062 dynamic symbol table, is considered to be a dynamic reloc section. */
7063
7064 long
7065 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7066 arelent **storage,
7067 asymbol **syms)
7068 {
7069 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7070 asection *s;
7071 long ret;
7072
7073 if (elf_dynsymtab (abfd) == 0)
7074 {
7075 bfd_set_error (bfd_error_invalid_operation);
7076 return -1;
7077 }
7078
7079 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7080 ret = 0;
7081 for (s = abfd->sections; s != NULL; s = s->next)
7082 {
7083 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7084 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7085 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7086 {
7087 arelent *p;
7088 long count, i;
7089
7090 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7091 return -1;
7092 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7093 p = s->relocation;
7094 for (i = 0; i < count; i++)
7095 *storage++ = p++;
7096 ret += count;
7097 }
7098 }
7099
7100 *storage = NULL;
7101
7102 return ret;
7103 }
7104 \f
7105 /* Read in the version information. */
7106
7107 bfd_boolean
7108 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7109 {
7110 bfd_byte *contents = NULL;
7111 unsigned int freeidx = 0;
7112
7113 if (elf_dynverref (abfd) != 0)
7114 {
7115 Elf_Internal_Shdr *hdr;
7116 Elf_External_Verneed *everneed;
7117 Elf_Internal_Verneed *iverneed;
7118 unsigned int i;
7119 bfd_byte *contents_end;
7120
7121 hdr = &elf_tdata (abfd)->dynverref_hdr;
7122
7123 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7124 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7125 if (elf_tdata (abfd)->verref == NULL)
7126 goto error_return;
7127
7128 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7129
7130 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7131 if (contents == NULL)
7132 {
7133 error_return_verref:
7134 elf_tdata (abfd)->verref = NULL;
7135 elf_tdata (abfd)->cverrefs = 0;
7136 goto error_return;
7137 }
7138 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7139 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7140 goto error_return_verref;
7141
7142 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7143 goto error_return_verref;
7144
7145 BFD_ASSERT (sizeof (Elf_External_Verneed)
7146 == sizeof (Elf_External_Vernaux));
7147 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7148 everneed = (Elf_External_Verneed *) contents;
7149 iverneed = elf_tdata (abfd)->verref;
7150 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7151 {
7152 Elf_External_Vernaux *evernaux;
7153 Elf_Internal_Vernaux *ivernaux;
7154 unsigned int j;
7155
7156 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7157
7158 iverneed->vn_bfd = abfd;
7159
7160 iverneed->vn_filename =
7161 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7162 iverneed->vn_file);
7163 if (iverneed->vn_filename == NULL)
7164 goto error_return_verref;
7165
7166 if (iverneed->vn_cnt == 0)
7167 iverneed->vn_auxptr = NULL;
7168 else
7169 {
7170 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7171 bfd_alloc2 (abfd, iverneed->vn_cnt,
7172 sizeof (Elf_Internal_Vernaux));
7173 if (iverneed->vn_auxptr == NULL)
7174 goto error_return_verref;
7175 }
7176
7177 if (iverneed->vn_aux
7178 > (size_t) (contents_end - (bfd_byte *) everneed))
7179 goto error_return_verref;
7180
7181 evernaux = ((Elf_External_Vernaux *)
7182 ((bfd_byte *) everneed + iverneed->vn_aux));
7183 ivernaux = iverneed->vn_auxptr;
7184 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7185 {
7186 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7187
7188 ivernaux->vna_nodename =
7189 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7190 ivernaux->vna_name);
7191 if (ivernaux->vna_nodename == NULL)
7192 goto error_return_verref;
7193
7194 if (j + 1 < iverneed->vn_cnt)
7195 ivernaux->vna_nextptr = ivernaux + 1;
7196 else
7197 ivernaux->vna_nextptr = NULL;
7198
7199 if (ivernaux->vna_next
7200 > (size_t) (contents_end - (bfd_byte *) evernaux))
7201 goto error_return_verref;
7202
7203 evernaux = ((Elf_External_Vernaux *)
7204 ((bfd_byte *) evernaux + ivernaux->vna_next));
7205
7206 if (ivernaux->vna_other > freeidx)
7207 freeidx = ivernaux->vna_other;
7208 }
7209
7210 if (i + 1 < hdr->sh_info)
7211 iverneed->vn_nextref = iverneed + 1;
7212 else
7213 iverneed->vn_nextref = NULL;
7214
7215 if (iverneed->vn_next
7216 > (size_t) (contents_end - (bfd_byte *) everneed))
7217 goto error_return_verref;
7218
7219 everneed = ((Elf_External_Verneed *)
7220 ((bfd_byte *) everneed + iverneed->vn_next));
7221 }
7222
7223 free (contents);
7224 contents = NULL;
7225 }
7226
7227 if (elf_dynverdef (abfd) != 0)
7228 {
7229 Elf_Internal_Shdr *hdr;
7230 Elf_External_Verdef *everdef;
7231 Elf_Internal_Verdef *iverdef;
7232 Elf_Internal_Verdef *iverdefarr;
7233 Elf_Internal_Verdef iverdefmem;
7234 unsigned int i;
7235 unsigned int maxidx;
7236 bfd_byte *contents_end_def, *contents_end_aux;
7237
7238 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7239
7240 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7241 if (contents == NULL)
7242 goto error_return;
7243 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7244 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7245 goto error_return;
7246
7247 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7248 goto error_return;
7249
7250 BFD_ASSERT (sizeof (Elf_External_Verdef)
7251 >= sizeof (Elf_External_Verdaux));
7252 contents_end_def = contents + hdr->sh_size
7253 - sizeof (Elf_External_Verdef);
7254 contents_end_aux = contents + hdr->sh_size
7255 - sizeof (Elf_External_Verdaux);
7256
7257 /* We know the number of entries in the section but not the maximum
7258 index. Therefore we have to run through all entries and find
7259 the maximum. */
7260 everdef = (Elf_External_Verdef *) contents;
7261 maxidx = 0;
7262 for (i = 0; i < hdr->sh_info; ++i)
7263 {
7264 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7265
7266 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7267 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7268
7269 if (iverdefmem.vd_next
7270 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7271 goto error_return;
7272
7273 everdef = ((Elf_External_Verdef *)
7274 ((bfd_byte *) everdef + iverdefmem.vd_next));
7275 }
7276
7277 if (default_imported_symver)
7278 {
7279 if (freeidx > maxidx)
7280 maxidx = ++freeidx;
7281 else
7282 freeidx = ++maxidx;
7283 }
7284 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7285 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7286 if (elf_tdata (abfd)->verdef == NULL)
7287 goto error_return;
7288
7289 elf_tdata (abfd)->cverdefs = maxidx;
7290
7291 everdef = (Elf_External_Verdef *) contents;
7292 iverdefarr = elf_tdata (abfd)->verdef;
7293 for (i = 0; i < hdr->sh_info; i++)
7294 {
7295 Elf_External_Verdaux *everdaux;
7296 Elf_Internal_Verdaux *iverdaux;
7297 unsigned int j;
7298
7299 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7300
7301 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7302 {
7303 error_return_verdef:
7304 elf_tdata (abfd)->verdef = NULL;
7305 elf_tdata (abfd)->cverdefs = 0;
7306 goto error_return;
7307 }
7308
7309 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7310 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7311
7312 iverdef->vd_bfd = abfd;
7313
7314 if (iverdef->vd_cnt == 0)
7315 iverdef->vd_auxptr = NULL;
7316 else
7317 {
7318 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7319 bfd_alloc2 (abfd, iverdef->vd_cnt,
7320 sizeof (Elf_Internal_Verdaux));
7321 if (iverdef->vd_auxptr == NULL)
7322 goto error_return_verdef;
7323 }
7324
7325 if (iverdef->vd_aux
7326 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7327 goto error_return_verdef;
7328
7329 everdaux = ((Elf_External_Verdaux *)
7330 ((bfd_byte *) everdef + iverdef->vd_aux));
7331 iverdaux = iverdef->vd_auxptr;
7332 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7333 {
7334 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7335
7336 iverdaux->vda_nodename =
7337 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7338 iverdaux->vda_name);
7339 if (iverdaux->vda_nodename == NULL)
7340 goto error_return_verdef;
7341
7342 if (j + 1 < iverdef->vd_cnt)
7343 iverdaux->vda_nextptr = iverdaux + 1;
7344 else
7345 iverdaux->vda_nextptr = NULL;
7346
7347 if (iverdaux->vda_next
7348 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7349 goto error_return_verdef;
7350
7351 everdaux = ((Elf_External_Verdaux *)
7352 ((bfd_byte *) everdaux + iverdaux->vda_next));
7353 }
7354
7355 if (iverdef->vd_cnt)
7356 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7357
7358 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7359 iverdef->vd_nextdef = iverdef + 1;
7360 else
7361 iverdef->vd_nextdef = NULL;
7362
7363 everdef = ((Elf_External_Verdef *)
7364 ((bfd_byte *) everdef + iverdef->vd_next));
7365 }
7366
7367 free (contents);
7368 contents = NULL;
7369 }
7370 else if (default_imported_symver)
7371 {
7372 if (freeidx < 3)
7373 freeidx = 3;
7374 else
7375 freeidx++;
7376
7377 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7378 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7379 if (elf_tdata (abfd)->verdef == NULL)
7380 goto error_return;
7381
7382 elf_tdata (abfd)->cverdefs = freeidx;
7383 }
7384
7385 /* Create a default version based on the soname. */
7386 if (default_imported_symver)
7387 {
7388 Elf_Internal_Verdef *iverdef;
7389 Elf_Internal_Verdaux *iverdaux;
7390
7391 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7392
7393 iverdef->vd_version = VER_DEF_CURRENT;
7394 iverdef->vd_flags = 0;
7395 iverdef->vd_ndx = freeidx;
7396 iverdef->vd_cnt = 1;
7397
7398 iverdef->vd_bfd = abfd;
7399
7400 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7401 if (iverdef->vd_nodename == NULL)
7402 goto error_return_verdef;
7403 iverdef->vd_nextdef = NULL;
7404 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7405 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7406 if (iverdef->vd_auxptr == NULL)
7407 goto error_return_verdef;
7408
7409 iverdaux = iverdef->vd_auxptr;
7410 iverdaux->vda_nodename = iverdef->vd_nodename;
7411 iverdaux->vda_nextptr = NULL;
7412 }
7413
7414 return TRUE;
7415
7416 error_return:
7417 if (contents != NULL)
7418 free (contents);
7419 return FALSE;
7420 }
7421 \f
7422 asymbol *
7423 _bfd_elf_make_empty_symbol (bfd *abfd)
7424 {
7425 elf_symbol_type *newsym;
7426 bfd_size_type amt = sizeof (elf_symbol_type);
7427
7428 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7429 if (!newsym)
7430 return NULL;
7431 else
7432 {
7433 newsym->symbol.the_bfd = abfd;
7434 return &newsym->symbol;
7435 }
7436 }
7437
7438 void
7439 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7440 asymbol *symbol,
7441 symbol_info *ret)
7442 {
7443 bfd_symbol_info (symbol, ret);
7444 }
7445
7446 /* Return whether a symbol name implies a local symbol. Most targets
7447 use this function for the is_local_label_name entry point, but some
7448 override it. */
7449
7450 bfd_boolean
7451 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7452 const char *name)
7453 {
7454 /* Normal local symbols start with ``.L''. */
7455 if (name[0] == '.' && name[1] == 'L')
7456 return TRUE;
7457
7458 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7459 DWARF debugging symbols starting with ``..''. */
7460 if (name[0] == '.' && name[1] == '.')
7461 return TRUE;
7462
7463 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7464 emitting DWARF debugging output. I suspect this is actually a
7465 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7466 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7467 underscore to be emitted on some ELF targets). For ease of use,
7468 we treat such symbols as local. */
7469 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7470 return TRUE;
7471
7472 return FALSE;
7473 }
7474
7475 alent *
7476 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7477 asymbol *symbol ATTRIBUTE_UNUSED)
7478 {
7479 abort ();
7480 return NULL;
7481 }
7482
7483 bfd_boolean
7484 _bfd_elf_set_arch_mach (bfd *abfd,
7485 enum bfd_architecture arch,
7486 unsigned long machine)
7487 {
7488 /* If this isn't the right architecture for this backend, and this
7489 isn't the generic backend, fail. */
7490 if (arch != get_elf_backend_data (abfd)->arch
7491 && arch != bfd_arch_unknown
7492 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7493 return FALSE;
7494
7495 return bfd_default_set_arch_mach (abfd, arch, machine);
7496 }
7497
7498 /* Find the function to a particular section and offset,
7499 for error reporting. */
7500
7501 static bfd_boolean
7502 elf_find_function (bfd *abfd,
7503 asection *section,
7504 asymbol **symbols,
7505 bfd_vma offset,
7506 const char **filename_ptr,
7507 const char **functionname_ptr)
7508 {
7509 struct elf_find_function_cache
7510 {
7511 asection *last_section;
7512 asymbol *func;
7513 const char *filename;
7514 bfd_size_type func_size;
7515 } *cache;
7516
7517 if (symbols == NULL)
7518 return FALSE;
7519
7520 cache = elf_tdata (abfd)->elf_find_function_cache;
7521 if (cache == NULL)
7522 {
7523 cache = bfd_zalloc (abfd, sizeof (*cache));
7524 elf_tdata (abfd)->elf_find_function_cache = cache;
7525 if (cache == NULL)
7526 return FALSE;
7527 }
7528 if (cache->last_section != section
7529 || cache->func == NULL
7530 || offset < cache->func->value
7531 || offset >= cache->func->value + cache->func_size)
7532 {
7533 asymbol *file;
7534 bfd_vma low_func;
7535 asymbol **p;
7536 /* ??? Given multiple file symbols, it is impossible to reliably
7537 choose the right file name for global symbols. File symbols are
7538 local symbols, and thus all file symbols must sort before any
7539 global symbols. The ELF spec may be interpreted to say that a
7540 file symbol must sort before other local symbols, but currently
7541 ld -r doesn't do this. So, for ld -r output, it is possible to
7542 make a better choice of file name for local symbols by ignoring
7543 file symbols appearing after a given local symbol. */
7544 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7545 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7546
7547 file = NULL;
7548 low_func = 0;
7549 state = nothing_seen;
7550 cache->filename = NULL;
7551 cache->func = NULL;
7552 cache->func_size = 0;
7553 cache->last_section = section;
7554
7555 for (p = symbols; *p != NULL; p++)
7556 {
7557 asymbol *sym = *p;
7558 bfd_vma code_off;
7559 bfd_size_type size;
7560
7561 if ((sym->flags & BSF_FILE) != 0)
7562 {
7563 file = sym;
7564 if (state == symbol_seen)
7565 state = file_after_symbol_seen;
7566 continue;
7567 }
7568
7569 size = bed->maybe_function_sym (sym, section, &code_off);
7570 if (size != 0
7571 && code_off <= offset
7572 && (code_off > low_func
7573 || (code_off == low_func
7574 && size > cache->func_size)))
7575 {
7576 cache->func = sym;
7577 cache->func_size = size;
7578 cache->filename = NULL;
7579 low_func = code_off;
7580 if (file != NULL
7581 && ((sym->flags & BSF_LOCAL) != 0
7582 || state != file_after_symbol_seen))
7583 cache->filename = bfd_asymbol_name (file);
7584 }
7585 if (state == nothing_seen)
7586 state = symbol_seen;
7587 }
7588 }
7589
7590 if (cache->func == NULL)
7591 return FALSE;
7592
7593 if (filename_ptr)
7594 *filename_ptr = cache->filename;
7595 if (functionname_ptr)
7596 *functionname_ptr = bfd_asymbol_name (cache->func);
7597
7598 return TRUE;
7599 }
7600
7601 /* Find the nearest line to a particular section and offset,
7602 for error reporting. */
7603
7604 bfd_boolean
7605 _bfd_elf_find_nearest_line (bfd *abfd,
7606 asection *section,
7607 asymbol **symbols,
7608 bfd_vma offset,
7609 const char **filename_ptr,
7610 const char **functionname_ptr,
7611 unsigned int *line_ptr)
7612 {
7613 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7614 offset, filename_ptr,
7615 functionname_ptr,
7616 line_ptr,
7617 NULL);
7618 }
7619
7620 bfd_boolean
7621 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7622 asection *section,
7623 asymbol **symbols,
7624 bfd_vma offset,
7625 const char **filename_ptr,
7626 const char **functionname_ptr,
7627 unsigned int *line_ptr,
7628 unsigned int *discriminator_ptr)
7629 {
7630 bfd_boolean found;
7631
7632 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7633 filename_ptr, functionname_ptr,
7634 line_ptr))
7635 {
7636 if (!*functionname_ptr)
7637 elf_find_function (abfd, section, symbols, offset,
7638 *filename_ptr ? NULL : filename_ptr,
7639 functionname_ptr);
7640
7641 return TRUE;
7642 }
7643
7644 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7645 section, symbols, offset,
7646 filename_ptr, functionname_ptr,
7647 line_ptr, discriminator_ptr, 0,
7648 &elf_tdata (abfd)->dwarf2_find_line_info))
7649 {
7650 if (!*functionname_ptr)
7651 elf_find_function (abfd, section, symbols, offset,
7652 *filename_ptr ? NULL : filename_ptr,
7653 functionname_ptr);
7654
7655 return TRUE;
7656 }
7657
7658 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7659 &found, filename_ptr,
7660 functionname_ptr, line_ptr,
7661 &elf_tdata (abfd)->line_info))
7662 return FALSE;
7663 if (found && (*functionname_ptr || *line_ptr))
7664 return TRUE;
7665
7666 if (symbols == NULL)
7667 return FALSE;
7668
7669 if (! elf_find_function (abfd, section, symbols, offset,
7670 filename_ptr, functionname_ptr))
7671 return FALSE;
7672
7673 *line_ptr = 0;
7674 return TRUE;
7675 }
7676
7677 /* Find the line for a symbol. */
7678
7679 bfd_boolean
7680 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7681 const char **filename_ptr, unsigned int *line_ptr)
7682 {
7683 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7684 filename_ptr, line_ptr,
7685 NULL);
7686 }
7687
7688 bfd_boolean
7689 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7690 const char **filename_ptr,
7691 unsigned int *line_ptr,
7692 unsigned int *discriminator_ptr)
7693 {
7694 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7695 filename_ptr, line_ptr, discriminator_ptr, 0,
7696 &elf_tdata (abfd)->dwarf2_find_line_info);
7697 }
7698
7699 /* After a call to bfd_find_nearest_line, successive calls to
7700 bfd_find_inliner_info can be used to get source information about
7701 each level of function inlining that terminated at the address
7702 passed to bfd_find_nearest_line. Currently this is only supported
7703 for DWARF2 with appropriate DWARF3 extensions. */
7704
7705 bfd_boolean
7706 _bfd_elf_find_inliner_info (bfd *abfd,
7707 const char **filename_ptr,
7708 const char **functionname_ptr,
7709 unsigned int *line_ptr)
7710 {
7711 bfd_boolean found;
7712 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7713 functionname_ptr, line_ptr,
7714 & elf_tdata (abfd)->dwarf2_find_line_info);
7715 return found;
7716 }
7717
7718 int
7719 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7720 {
7721 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7722 int ret = bed->s->sizeof_ehdr;
7723
7724 if (!info->relocatable)
7725 {
7726 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7727
7728 if (phdr_size == (bfd_size_type) -1)
7729 {
7730 struct elf_segment_map *m;
7731
7732 phdr_size = 0;
7733 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7734 phdr_size += bed->s->sizeof_phdr;
7735
7736 if (phdr_size == 0)
7737 phdr_size = get_program_header_size (abfd, info);
7738 }
7739
7740 elf_tdata (abfd)->program_header_size = phdr_size;
7741 ret += phdr_size;
7742 }
7743
7744 return ret;
7745 }
7746
7747 bfd_boolean
7748 _bfd_elf_set_section_contents (bfd *abfd,
7749 sec_ptr section,
7750 const void *location,
7751 file_ptr offset,
7752 bfd_size_type count)
7753 {
7754 Elf_Internal_Shdr *hdr;
7755 bfd_signed_vma pos;
7756
7757 if (! abfd->output_has_begun
7758 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7759 return FALSE;
7760
7761 hdr = &elf_section_data (section)->this_hdr;
7762 pos = hdr->sh_offset + offset;
7763 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7764 || bfd_bwrite (location, count, abfd) != count)
7765 return FALSE;
7766
7767 return TRUE;
7768 }
7769
7770 void
7771 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7772 arelent *cache_ptr ATTRIBUTE_UNUSED,
7773 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7774 {
7775 abort ();
7776 }
7777
7778 /* Try to convert a non-ELF reloc into an ELF one. */
7779
7780 bfd_boolean
7781 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7782 {
7783 /* Check whether we really have an ELF howto. */
7784
7785 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7786 {
7787 bfd_reloc_code_real_type code;
7788 reloc_howto_type *howto;
7789
7790 /* Alien reloc: Try to determine its type to replace it with an
7791 equivalent ELF reloc. */
7792
7793 if (areloc->howto->pc_relative)
7794 {
7795 switch (areloc->howto->bitsize)
7796 {
7797 case 8:
7798 code = BFD_RELOC_8_PCREL;
7799 break;
7800 case 12:
7801 code = BFD_RELOC_12_PCREL;
7802 break;
7803 case 16:
7804 code = BFD_RELOC_16_PCREL;
7805 break;
7806 case 24:
7807 code = BFD_RELOC_24_PCREL;
7808 break;
7809 case 32:
7810 code = BFD_RELOC_32_PCREL;
7811 break;
7812 case 64:
7813 code = BFD_RELOC_64_PCREL;
7814 break;
7815 default:
7816 goto fail;
7817 }
7818
7819 howto = bfd_reloc_type_lookup (abfd, code);
7820
7821 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7822 {
7823 if (howto->pcrel_offset)
7824 areloc->addend += areloc->address;
7825 else
7826 areloc->addend -= areloc->address; /* addend is unsigned!! */
7827 }
7828 }
7829 else
7830 {
7831 switch (areloc->howto->bitsize)
7832 {
7833 case 8:
7834 code = BFD_RELOC_8;
7835 break;
7836 case 14:
7837 code = BFD_RELOC_14;
7838 break;
7839 case 16:
7840 code = BFD_RELOC_16;
7841 break;
7842 case 26:
7843 code = BFD_RELOC_26;
7844 break;
7845 case 32:
7846 code = BFD_RELOC_32;
7847 break;
7848 case 64:
7849 code = BFD_RELOC_64;
7850 break;
7851 default:
7852 goto fail;
7853 }
7854
7855 howto = bfd_reloc_type_lookup (abfd, code);
7856 }
7857
7858 if (howto)
7859 areloc->howto = howto;
7860 else
7861 goto fail;
7862 }
7863
7864 return TRUE;
7865
7866 fail:
7867 (*_bfd_error_handler)
7868 (_("%B: unsupported relocation type %s"),
7869 abfd, areloc->howto->name);
7870 bfd_set_error (bfd_error_bad_value);
7871 return FALSE;
7872 }
7873
7874 bfd_boolean
7875 _bfd_elf_close_and_cleanup (bfd *abfd)
7876 {
7877 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7878 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7879 {
7880 if (elf_shstrtab (abfd) != NULL)
7881 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7882 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7883 }
7884
7885 return _bfd_generic_close_and_cleanup (abfd);
7886 }
7887
7888 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7889 in the relocation's offset. Thus we cannot allow any sort of sanity
7890 range-checking to interfere. There is nothing else to do in processing
7891 this reloc. */
7892
7893 bfd_reloc_status_type
7894 _bfd_elf_rel_vtable_reloc_fn
7895 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7896 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7897 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7898 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7899 {
7900 return bfd_reloc_ok;
7901 }
7902 \f
7903 /* Elf core file support. Much of this only works on native
7904 toolchains, since we rely on knowing the
7905 machine-dependent procfs structure in order to pick
7906 out details about the corefile. */
7907
7908 #ifdef HAVE_SYS_PROCFS_H
7909 /* Needed for new procfs interface on sparc-solaris. */
7910 # define _STRUCTURED_PROC 1
7911 # include <sys/procfs.h>
7912 #endif
7913
7914 /* Return a PID that identifies a "thread" for threaded cores, or the
7915 PID of the main process for non-threaded cores. */
7916
7917 static int
7918 elfcore_make_pid (bfd *abfd)
7919 {
7920 int pid;
7921
7922 pid = elf_tdata (abfd)->core_lwpid;
7923 if (pid == 0)
7924 pid = elf_tdata (abfd)->core_pid;
7925
7926 return pid;
7927 }
7928
7929 /* If there isn't a section called NAME, make one, using
7930 data from SECT. Note, this function will generate a
7931 reference to NAME, so you shouldn't deallocate or
7932 overwrite it. */
7933
7934 static bfd_boolean
7935 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7936 {
7937 asection *sect2;
7938
7939 if (bfd_get_section_by_name (abfd, name) != NULL)
7940 return TRUE;
7941
7942 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7943 if (sect2 == NULL)
7944 return FALSE;
7945
7946 sect2->size = sect->size;
7947 sect2->filepos = sect->filepos;
7948 sect2->alignment_power = sect->alignment_power;
7949 return TRUE;
7950 }
7951
7952 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7953 actually creates up to two pseudosections:
7954 - For the single-threaded case, a section named NAME, unless
7955 such a section already exists.
7956 - For the multi-threaded case, a section named "NAME/PID", where
7957 PID is elfcore_make_pid (abfd).
7958 Both pseudosections have identical contents. */
7959 bfd_boolean
7960 _bfd_elfcore_make_pseudosection (bfd *abfd,
7961 char *name,
7962 size_t size,
7963 ufile_ptr filepos)
7964 {
7965 char buf[100];
7966 char *threaded_name;
7967 size_t len;
7968 asection *sect;
7969
7970 /* Build the section name. */
7971
7972 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7973 len = strlen (buf) + 1;
7974 threaded_name = (char *) bfd_alloc (abfd, len);
7975 if (threaded_name == NULL)
7976 return FALSE;
7977 memcpy (threaded_name, buf, len);
7978
7979 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7980 SEC_HAS_CONTENTS);
7981 if (sect == NULL)
7982 return FALSE;
7983 sect->size = size;
7984 sect->filepos = filepos;
7985 sect->alignment_power = 2;
7986
7987 return elfcore_maybe_make_sect (abfd, name, sect);
7988 }
7989
7990 /* prstatus_t exists on:
7991 solaris 2.5+
7992 linux 2.[01] + glibc
7993 unixware 4.2
7994 */
7995
7996 #if defined (HAVE_PRSTATUS_T)
7997
7998 static bfd_boolean
7999 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8000 {
8001 size_t size;
8002 int offset;
8003
8004 if (note->descsz == sizeof (prstatus_t))
8005 {
8006 prstatus_t prstat;
8007
8008 size = sizeof (prstat.pr_reg);
8009 offset = offsetof (prstatus_t, pr_reg);
8010 memcpy (&prstat, note->descdata, sizeof (prstat));
8011
8012 /* Do not overwrite the core signal if it
8013 has already been set by another thread. */
8014 if (elf_tdata (abfd)->core_signal == 0)
8015 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
8016 if (elf_tdata (abfd)->core_pid == 0)
8017 elf_tdata (abfd)->core_pid = prstat.pr_pid;
8018
8019 /* pr_who exists on:
8020 solaris 2.5+
8021 unixware 4.2
8022 pr_who doesn't exist on:
8023 linux 2.[01]
8024 */
8025 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8026 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
8027 #else
8028 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
8029 #endif
8030 }
8031 #if defined (HAVE_PRSTATUS32_T)
8032 else if (note->descsz == sizeof (prstatus32_t))
8033 {
8034 /* 64-bit host, 32-bit corefile */
8035 prstatus32_t prstat;
8036
8037 size = sizeof (prstat.pr_reg);
8038 offset = offsetof (prstatus32_t, pr_reg);
8039 memcpy (&prstat, note->descdata, sizeof (prstat));
8040
8041 /* Do not overwrite the core signal if it
8042 has already been set by another thread. */
8043 if (elf_tdata (abfd)->core_signal == 0)
8044 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
8045 if (elf_tdata (abfd)->core_pid == 0)
8046 elf_tdata (abfd)->core_pid = prstat.pr_pid;
8047
8048 /* pr_who exists on:
8049 solaris 2.5+
8050 unixware 4.2
8051 pr_who doesn't exist on:
8052 linux 2.[01]
8053 */
8054 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8055 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
8056 #else
8057 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
8058 #endif
8059 }
8060 #endif /* HAVE_PRSTATUS32_T */
8061 else
8062 {
8063 /* Fail - we don't know how to handle any other
8064 note size (ie. data object type). */
8065 return TRUE;
8066 }
8067
8068 /* Make a ".reg/999" section and a ".reg" section. */
8069 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8070 size, note->descpos + offset);
8071 }
8072 #endif /* defined (HAVE_PRSTATUS_T) */
8073
8074 /* Create a pseudosection containing the exact contents of NOTE. */
8075 static bfd_boolean
8076 elfcore_make_note_pseudosection (bfd *abfd,
8077 char *name,
8078 Elf_Internal_Note *note)
8079 {
8080 return _bfd_elfcore_make_pseudosection (abfd, name,
8081 note->descsz, note->descpos);
8082 }
8083
8084 /* There isn't a consistent prfpregset_t across platforms,
8085 but it doesn't matter, because we don't have to pick this
8086 data structure apart. */
8087
8088 static bfd_boolean
8089 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8090 {
8091 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8092 }
8093
8094 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8095 type of NT_PRXFPREG. Just include the whole note's contents
8096 literally. */
8097
8098 static bfd_boolean
8099 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8100 {
8101 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8102 }
8103
8104 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8105 with a note type of NT_X86_XSTATE. Just include the whole note's
8106 contents literally. */
8107
8108 static bfd_boolean
8109 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8110 {
8111 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8112 }
8113
8114 static bfd_boolean
8115 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8116 {
8117 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8118 }
8119
8120 static bfd_boolean
8121 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8122 {
8123 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8124 }
8125
8126 static bfd_boolean
8127 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8128 {
8129 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8130 }
8131
8132 static bfd_boolean
8133 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8134 {
8135 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8136 }
8137
8138 static bfd_boolean
8139 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8140 {
8141 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8142 }
8143
8144 static bfd_boolean
8145 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8146 {
8147 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8148 }
8149
8150 static bfd_boolean
8151 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8152 {
8153 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8154 }
8155
8156 static bfd_boolean
8157 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8158 {
8159 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8160 }
8161
8162 static bfd_boolean
8163 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8164 {
8165 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8166 }
8167
8168 static bfd_boolean
8169 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8170 {
8171 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8172 }
8173
8174 static bfd_boolean
8175 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8176 {
8177 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8178 }
8179
8180 static bfd_boolean
8181 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8182 {
8183 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8184 }
8185
8186 static bfd_boolean
8187 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8188 {
8189 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8190 }
8191
8192 static bfd_boolean
8193 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8194 {
8195 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8196 }
8197
8198 #if defined (HAVE_PRPSINFO_T)
8199 typedef prpsinfo_t elfcore_psinfo_t;
8200 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8201 typedef prpsinfo32_t elfcore_psinfo32_t;
8202 #endif
8203 #endif
8204
8205 #if defined (HAVE_PSINFO_T)
8206 typedef psinfo_t elfcore_psinfo_t;
8207 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8208 typedef psinfo32_t elfcore_psinfo32_t;
8209 #endif
8210 #endif
8211
8212 /* return a malloc'ed copy of a string at START which is at
8213 most MAX bytes long, possibly without a terminating '\0'.
8214 the copy will always have a terminating '\0'. */
8215
8216 char *
8217 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8218 {
8219 char *dups;
8220 char *end = (char *) memchr (start, '\0', max);
8221 size_t len;
8222
8223 if (end == NULL)
8224 len = max;
8225 else
8226 len = end - start;
8227
8228 dups = (char *) bfd_alloc (abfd, len + 1);
8229 if (dups == NULL)
8230 return NULL;
8231
8232 memcpy (dups, start, len);
8233 dups[len] = '\0';
8234
8235 return dups;
8236 }
8237
8238 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8239 static bfd_boolean
8240 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8241 {
8242 if (note->descsz == sizeof (elfcore_psinfo_t))
8243 {
8244 elfcore_psinfo_t psinfo;
8245
8246 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8247
8248 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8249 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8250 #endif
8251 elf_tdata (abfd)->core_program
8252 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8253 sizeof (psinfo.pr_fname));
8254
8255 elf_tdata (abfd)->core_command
8256 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8257 sizeof (psinfo.pr_psargs));
8258 }
8259 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8260 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8261 {
8262 /* 64-bit host, 32-bit corefile */
8263 elfcore_psinfo32_t psinfo;
8264
8265 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8266
8267 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8268 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8269 #endif
8270 elf_tdata (abfd)->core_program
8271 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8272 sizeof (psinfo.pr_fname));
8273
8274 elf_tdata (abfd)->core_command
8275 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8276 sizeof (psinfo.pr_psargs));
8277 }
8278 #endif
8279
8280 else
8281 {
8282 /* Fail - we don't know how to handle any other
8283 note size (ie. data object type). */
8284 return TRUE;
8285 }
8286
8287 /* Note that for some reason, a spurious space is tacked
8288 onto the end of the args in some (at least one anyway)
8289 implementations, so strip it off if it exists. */
8290
8291 {
8292 char *command = elf_tdata (abfd)->core_command;
8293 int n = strlen (command);
8294
8295 if (0 < n && command[n - 1] == ' ')
8296 command[n - 1] = '\0';
8297 }
8298
8299 return TRUE;
8300 }
8301 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8302
8303 #if defined (HAVE_PSTATUS_T)
8304 static bfd_boolean
8305 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8306 {
8307 if (note->descsz == sizeof (pstatus_t)
8308 #if defined (HAVE_PXSTATUS_T)
8309 || note->descsz == sizeof (pxstatus_t)
8310 #endif
8311 )
8312 {
8313 pstatus_t pstat;
8314
8315 memcpy (&pstat, note->descdata, sizeof (pstat));
8316
8317 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8318 }
8319 #if defined (HAVE_PSTATUS32_T)
8320 else if (note->descsz == sizeof (pstatus32_t))
8321 {
8322 /* 64-bit host, 32-bit corefile */
8323 pstatus32_t pstat;
8324
8325 memcpy (&pstat, note->descdata, sizeof (pstat));
8326
8327 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8328 }
8329 #endif
8330 /* Could grab some more details from the "representative"
8331 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8332 NT_LWPSTATUS note, presumably. */
8333
8334 return TRUE;
8335 }
8336 #endif /* defined (HAVE_PSTATUS_T) */
8337
8338 #if defined (HAVE_LWPSTATUS_T)
8339 static bfd_boolean
8340 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8341 {
8342 lwpstatus_t lwpstat;
8343 char buf[100];
8344 char *name;
8345 size_t len;
8346 asection *sect;
8347
8348 if (note->descsz != sizeof (lwpstat)
8349 #if defined (HAVE_LWPXSTATUS_T)
8350 && note->descsz != sizeof (lwpxstatus_t)
8351 #endif
8352 )
8353 return TRUE;
8354
8355 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8356
8357 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8358 /* Do not overwrite the core signal if it has already been set by
8359 another thread. */
8360 if (elf_tdata (abfd)->core_signal == 0)
8361 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8362
8363 /* Make a ".reg/999" section. */
8364
8365 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8366 len = strlen (buf) + 1;
8367 name = bfd_alloc (abfd, len);
8368 if (name == NULL)
8369 return FALSE;
8370 memcpy (name, buf, len);
8371
8372 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8373 if (sect == NULL)
8374 return FALSE;
8375
8376 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8377 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8378 sect->filepos = note->descpos
8379 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8380 #endif
8381
8382 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8383 sect->size = sizeof (lwpstat.pr_reg);
8384 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8385 #endif
8386
8387 sect->alignment_power = 2;
8388
8389 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8390 return FALSE;
8391
8392 /* Make a ".reg2/999" section */
8393
8394 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8395 len = strlen (buf) + 1;
8396 name = bfd_alloc (abfd, len);
8397 if (name == NULL)
8398 return FALSE;
8399 memcpy (name, buf, len);
8400
8401 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8402 if (sect == NULL)
8403 return FALSE;
8404
8405 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8406 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8407 sect->filepos = note->descpos
8408 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8409 #endif
8410
8411 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8412 sect->size = sizeof (lwpstat.pr_fpreg);
8413 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8414 #endif
8415
8416 sect->alignment_power = 2;
8417
8418 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8419 }
8420 #endif /* defined (HAVE_LWPSTATUS_T) */
8421
8422 static bfd_boolean
8423 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8424 {
8425 char buf[30];
8426 char *name;
8427 size_t len;
8428 asection *sect;
8429 int type;
8430 int is_active_thread;
8431 bfd_vma base_addr;
8432
8433 if (note->descsz < 728)
8434 return TRUE;
8435
8436 if (! CONST_STRNEQ (note->namedata, "win32"))
8437 return TRUE;
8438
8439 type = bfd_get_32 (abfd, note->descdata);
8440
8441 switch (type)
8442 {
8443 case 1 /* NOTE_INFO_PROCESS */:
8444 /* FIXME: need to add ->core_command. */
8445 /* process_info.pid */
8446 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8447 /* process_info.signal */
8448 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8449 break;
8450
8451 case 2 /* NOTE_INFO_THREAD */:
8452 /* Make a ".reg/999" section. */
8453 /* thread_info.tid */
8454 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8455
8456 len = strlen (buf) + 1;
8457 name = (char *) bfd_alloc (abfd, len);
8458 if (name == NULL)
8459 return FALSE;
8460
8461 memcpy (name, buf, len);
8462
8463 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8464 if (sect == NULL)
8465 return FALSE;
8466
8467 /* sizeof (thread_info.thread_context) */
8468 sect->size = 716;
8469 /* offsetof (thread_info.thread_context) */
8470 sect->filepos = note->descpos + 12;
8471 sect->alignment_power = 2;
8472
8473 /* thread_info.is_active_thread */
8474 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8475
8476 if (is_active_thread)
8477 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8478 return FALSE;
8479 break;
8480
8481 case 3 /* NOTE_INFO_MODULE */:
8482 /* Make a ".module/xxxxxxxx" section. */
8483 /* module_info.base_address */
8484 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8485 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8486
8487 len = strlen (buf) + 1;
8488 name = (char *) bfd_alloc (abfd, len);
8489 if (name == NULL)
8490 return FALSE;
8491
8492 memcpy (name, buf, len);
8493
8494 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8495
8496 if (sect == NULL)
8497 return FALSE;
8498
8499 sect->size = note->descsz;
8500 sect->filepos = note->descpos;
8501 sect->alignment_power = 2;
8502 break;
8503
8504 default:
8505 return TRUE;
8506 }
8507
8508 return TRUE;
8509 }
8510
8511 static bfd_boolean
8512 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8513 {
8514 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8515
8516 switch (note->type)
8517 {
8518 default:
8519 return TRUE;
8520
8521 case NT_PRSTATUS:
8522 if (bed->elf_backend_grok_prstatus)
8523 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8524 return TRUE;
8525 #if defined (HAVE_PRSTATUS_T)
8526 return elfcore_grok_prstatus (abfd, note);
8527 #else
8528 return TRUE;
8529 #endif
8530
8531 #if defined (HAVE_PSTATUS_T)
8532 case NT_PSTATUS:
8533 return elfcore_grok_pstatus (abfd, note);
8534 #endif
8535
8536 #if defined (HAVE_LWPSTATUS_T)
8537 case NT_LWPSTATUS:
8538 return elfcore_grok_lwpstatus (abfd, note);
8539 #endif
8540
8541 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8542 return elfcore_grok_prfpreg (abfd, note);
8543
8544 case NT_WIN32PSTATUS:
8545 return elfcore_grok_win32pstatus (abfd, note);
8546
8547 case NT_PRXFPREG: /* Linux SSE extension */
8548 if (note->namesz == 6
8549 && strcmp (note->namedata, "LINUX") == 0)
8550 return elfcore_grok_prxfpreg (abfd, note);
8551 else
8552 return TRUE;
8553
8554 case NT_X86_XSTATE: /* Linux XSAVE extension */
8555 if (note->namesz == 6
8556 && strcmp (note->namedata, "LINUX") == 0)
8557 return elfcore_grok_xstatereg (abfd, note);
8558 else
8559 return TRUE;
8560
8561 case NT_PPC_VMX:
8562 if (note->namesz == 6
8563 && strcmp (note->namedata, "LINUX") == 0)
8564 return elfcore_grok_ppc_vmx (abfd, note);
8565 else
8566 return TRUE;
8567
8568 case NT_PPC_VSX:
8569 if (note->namesz == 6
8570 && strcmp (note->namedata, "LINUX") == 0)
8571 return elfcore_grok_ppc_vsx (abfd, note);
8572 else
8573 return TRUE;
8574
8575 case NT_S390_HIGH_GPRS:
8576 if (note->namesz == 6
8577 && strcmp (note->namedata, "LINUX") == 0)
8578 return elfcore_grok_s390_high_gprs (abfd, note);
8579 else
8580 return TRUE;
8581
8582 case NT_S390_TIMER:
8583 if (note->namesz == 6
8584 && strcmp (note->namedata, "LINUX") == 0)
8585 return elfcore_grok_s390_timer (abfd, note);
8586 else
8587 return TRUE;
8588
8589 case NT_S390_TODCMP:
8590 if (note->namesz == 6
8591 && strcmp (note->namedata, "LINUX") == 0)
8592 return elfcore_grok_s390_todcmp (abfd, note);
8593 else
8594 return TRUE;
8595
8596 case NT_S390_TODPREG:
8597 if (note->namesz == 6
8598 && strcmp (note->namedata, "LINUX") == 0)
8599 return elfcore_grok_s390_todpreg (abfd, note);
8600 else
8601 return TRUE;
8602
8603 case NT_S390_CTRS:
8604 if (note->namesz == 6
8605 && strcmp (note->namedata, "LINUX") == 0)
8606 return elfcore_grok_s390_ctrs (abfd, note);
8607 else
8608 return TRUE;
8609
8610 case NT_S390_PREFIX:
8611 if (note->namesz == 6
8612 && strcmp (note->namedata, "LINUX") == 0)
8613 return elfcore_grok_s390_prefix (abfd, note);
8614 else
8615 return TRUE;
8616
8617 case NT_S390_LAST_BREAK:
8618 if (note->namesz == 6
8619 && strcmp (note->namedata, "LINUX") == 0)
8620 return elfcore_grok_s390_last_break (abfd, note);
8621 else
8622 return TRUE;
8623
8624 case NT_S390_SYSTEM_CALL:
8625 if (note->namesz == 6
8626 && strcmp (note->namedata, "LINUX") == 0)
8627 return elfcore_grok_s390_system_call (abfd, note);
8628 else
8629 return TRUE;
8630
8631 case NT_ARM_VFP:
8632 if (note->namesz == 6
8633 && strcmp (note->namedata, "LINUX") == 0)
8634 return elfcore_grok_arm_vfp (abfd, note);
8635 else
8636 return TRUE;
8637
8638 case NT_ARM_TLS:
8639 if (note->namesz == 6
8640 && strcmp (note->namedata, "LINUX") == 0)
8641 return elfcore_grok_aarch_tls (abfd, note);
8642 else
8643 return TRUE;
8644
8645 case NT_ARM_HW_BREAK:
8646 if (note->namesz == 6
8647 && strcmp (note->namedata, "LINUX") == 0)
8648 return elfcore_grok_aarch_hw_break (abfd, note);
8649 else
8650 return TRUE;
8651
8652 case NT_ARM_HW_WATCH:
8653 if (note->namesz == 6
8654 && strcmp (note->namedata, "LINUX") == 0)
8655 return elfcore_grok_aarch_hw_watch (abfd, note);
8656 else
8657 return TRUE;
8658
8659 case NT_PRPSINFO:
8660 case NT_PSINFO:
8661 if (bed->elf_backend_grok_psinfo)
8662 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8663 return TRUE;
8664 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8665 return elfcore_grok_psinfo (abfd, note);
8666 #else
8667 return TRUE;
8668 #endif
8669
8670 case NT_AUXV:
8671 {
8672 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8673 SEC_HAS_CONTENTS);
8674
8675 if (sect == NULL)
8676 return FALSE;
8677 sect->size = note->descsz;
8678 sect->filepos = note->descpos;
8679 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8680
8681 return TRUE;
8682 }
8683
8684 case NT_FILE:
8685 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8686 note);
8687
8688 case NT_SIGINFO:
8689 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8690 note);
8691 }
8692 }
8693
8694 static bfd_boolean
8695 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8696 {
8697 struct elf_obj_tdata *t;
8698
8699 if (note->descsz == 0)
8700 return FALSE;
8701
8702 t = elf_tdata (abfd);
8703 t->build_id = bfd_alloc (abfd, sizeof (t->build_id->u.i) - 1 + note->descsz);
8704 if (t->build_id == NULL)
8705 return FALSE;
8706
8707 t->build_id->u.i.size = note->descsz;
8708 memcpy (t->build_id->u.i.data, note->descdata, note->descsz);
8709
8710 return TRUE;
8711 }
8712
8713 static bfd_boolean
8714 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8715 {
8716 switch (note->type)
8717 {
8718 default:
8719 return TRUE;
8720
8721 case NT_GNU_BUILD_ID:
8722 return elfobj_grok_gnu_build_id (abfd, note);
8723 }
8724 }
8725
8726 static bfd_boolean
8727 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8728 {
8729 struct sdt_note *cur =
8730 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8731 + note->descsz);
8732
8733 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8734 cur->size = (bfd_size_type) note->descsz;
8735 memcpy (cur->data, note->descdata, note->descsz);
8736
8737 elf_tdata (abfd)->sdt_note_head = cur;
8738
8739 return TRUE;
8740 }
8741
8742 static bfd_boolean
8743 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8744 {
8745 switch (note->type)
8746 {
8747 case NT_STAPSDT:
8748 return elfobj_grok_stapsdt_note_1 (abfd, note);
8749
8750 default:
8751 return TRUE;
8752 }
8753 }
8754
8755 static bfd_boolean
8756 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8757 {
8758 char *cp;
8759
8760 cp = strchr (note->namedata, '@');
8761 if (cp != NULL)
8762 {
8763 *lwpidp = atoi(cp + 1);
8764 return TRUE;
8765 }
8766 return FALSE;
8767 }
8768
8769 static bfd_boolean
8770 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8771 {
8772 /* Signal number at offset 0x08. */
8773 elf_tdata (abfd)->core_signal
8774 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8775
8776 /* Process ID at offset 0x50. */
8777 elf_tdata (abfd)->core_pid
8778 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8779
8780 /* Command name at 0x7c (max 32 bytes, including nul). */
8781 elf_tdata (abfd)->core_command
8782 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8783
8784 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8785 note);
8786 }
8787
8788 static bfd_boolean
8789 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8790 {
8791 int lwp;
8792
8793 if (elfcore_netbsd_get_lwpid (note, &lwp))
8794 elf_tdata (abfd)->core_lwpid = lwp;
8795
8796 if (note->type == NT_NETBSDCORE_PROCINFO)
8797 {
8798 /* NetBSD-specific core "procinfo". Note that we expect to
8799 find this note before any of the others, which is fine,
8800 since the kernel writes this note out first when it
8801 creates a core file. */
8802
8803 return elfcore_grok_netbsd_procinfo (abfd, note);
8804 }
8805
8806 /* As of Jan 2002 there are no other machine-independent notes
8807 defined for NetBSD core files. If the note type is less
8808 than the start of the machine-dependent note types, we don't
8809 understand it. */
8810
8811 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8812 return TRUE;
8813
8814
8815 switch (bfd_get_arch (abfd))
8816 {
8817 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8818 PT_GETFPREGS == mach+2. */
8819
8820 case bfd_arch_alpha:
8821 case bfd_arch_sparc:
8822 switch (note->type)
8823 {
8824 case NT_NETBSDCORE_FIRSTMACH+0:
8825 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8826
8827 case NT_NETBSDCORE_FIRSTMACH+2:
8828 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8829
8830 default:
8831 return TRUE;
8832 }
8833
8834 /* On all other arch's, PT_GETREGS == mach+1 and
8835 PT_GETFPREGS == mach+3. */
8836
8837 default:
8838 switch (note->type)
8839 {
8840 case NT_NETBSDCORE_FIRSTMACH+1:
8841 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8842
8843 case NT_NETBSDCORE_FIRSTMACH+3:
8844 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8845
8846 default:
8847 return TRUE;
8848 }
8849 }
8850 /* NOTREACHED */
8851 }
8852
8853 static bfd_boolean
8854 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8855 {
8856 /* Signal number at offset 0x08. */
8857 elf_tdata (abfd)->core_signal
8858 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8859
8860 /* Process ID at offset 0x20. */
8861 elf_tdata (abfd)->core_pid
8862 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8863
8864 /* Command name at 0x48 (max 32 bytes, including nul). */
8865 elf_tdata (abfd)->core_command
8866 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8867
8868 return TRUE;
8869 }
8870
8871 static bfd_boolean
8872 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8873 {
8874 if (note->type == NT_OPENBSD_PROCINFO)
8875 return elfcore_grok_openbsd_procinfo (abfd, note);
8876
8877 if (note->type == NT_OPENBSD_REGS)
8878 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8879
8880 if (note->type == NT_OPENBSD_FPREGS)
8881 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8882
8883 if (note->type == NT_OPENBSD_XFPREGS)
8884 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8885
8886 if (note->type == NT_OPENBSD_AUXV)
8887 {
8888 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8889 SEC_HAS_CONTENTS);
8890
8891 if (sect == NULL)
8892 return FALSE;
8893 sect->size = note->descsz;
8894 sect->filepos = note->descpos;
8895 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8896
8897 return TRUE;
8898 }
8899
8900 if (note->type == NT_OPENBSD_WCOOKIE)
8901 {
8902 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8903 SEC_HAS_CONTENTS);
8904
8905 if (sect == NULL)
8906 return FALSE;
8907 sect->size = note->descsz;
8908 sect->filepos = note->descpos;
8909 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8910
8911 return TRUE;
8912 }
8913
8914 return TRUE;
8915 }
8916
8917 static bfd_boolean
8918 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8919 {
8920 void *ddata = note->descdata;
8921 char buf[100];
8922 char *name;
8923 asection *sect;
8924 short sig;
8925 unsigned flags;
8926
8927 /* nto_procfs_status 'pid' field is at offset 0. */
8928 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8929
8930 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8931 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8932
8933 /* nto_procfs_status 'flags' field is at offset 8. */
8934 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8935
8936 /* nto_procfs_status 'what' field is at offset 14. */
8937 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8938 {
8939 elf_tdata (abfd)->core_signal = sig;
8940 elf_tdata (abfd)->core_lwpid = *tid;
8941 }
8942
8943 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8944 do not come from signals so we make sure we set the current
8945 thread just in case. */
8946 if (flags & 0x00000080)
8947 elf_tdata (abfd)->core_lwpid = *tid;
8948
8949 /* Make a ".qnx_core_status/%d" section. */
8950 sprintf (buf, ".qnx_core_status/%ld", *tid);
8951
8952 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8953 if (name == NULL)
8954 return FALSE;
8955 strcpy (name, buf);
8956
8957 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8958 if (sect == NULL)
8959 return FALSE;
8960
8961 sect->size = note->descsz;
8962 sect->filepos = note->descpos;
8963 sect->alignment_power = 2;
8964
8965 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8966 }
8967
8968 static bfd_boolean
8969 elfcore_grok_nto_regs (bfd *abfd,
8970 Elf_Internal_Note *note,
8971 long tid,
8972 char *base)
8973 {
8974 char buf[100];
8975 char *name;
8976 asection *sect;
8977
8978 /* Make a "(base)/%d" section. */
8979 sprintf (buf, "%s/%ld", base, tid);
8980
8981 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8982 if (name == NULL)
8983 return FALSE;
8984 strcpy (name, buf);
8985
8986 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8987 if (sect == NULL)
8988 return FALSE;
8989
8990 sect->size = note->descsz;
8991 sect->filepos = note->descpos;
8992 sect->alignment_power = 2;
8993
8994 /* This is the current thread. */
8995 if (elf_tdata (abfd)->core_lwpid == tid)
8996 return elfcore_maybe_make_sect (abfd, base, sect);
8997
8998 return TRUE;
8999 }
9000
9001 #define BFD_QNT_CORE_INFO 7
9002 #define BFD_QNT_CORE_STATUS 8
9003 #define BFD_QNT_CORE_GREG 9
9004 #define BFD_QNT_CORE_FPREG 10
9005
9006 static bfd_boolean
9007 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9008 {
9009 /* Every GREG section has a STATUS section before it. Store the
9010 tid from the previous call to pass down to the next gregs
9011 function. */
9012 static long tid = 1;
9013
9014 switch (note->type)
9015 {
9016 case BFD_QNT_CORE_INFO:
9017 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9018 case BFD_QNT_CORE_STATUS:
9019 return elfcore_grok_nto_status (abfd, note, &tid);
9020 case BFD_QNT_CORE_GREG:
9021 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9022 case BFD_QNT_CORE_FPREG:
9023 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9024 default:
9025 return TRUE;
9026 }
9027 }
9028
9029 static bfd_boolean
9030 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9031 {
9032 char *name;
9033 asection *sect;
9034 size_t len;
9035
9036 /* Use note name as section name. */
9037 len = note->namesz;
9038 name = (char *) bfd_alloc (abfd, len);
9039 if (name == NULL)
9040 return FALSE;
9041 memcpy (name, note->namedata, len);
9042 name[len - 1] = '\0';
9043
9044 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9045 if (sect == NULL)
9046 return FALSE;
9047
9048 sect->size = note->descsz;
9049 sect->filepos = note->descpos;
9050 sect->alignment_power = 1;
9051
9052 return TRUE;
9053 }
9054
9055 /* Function: elfcore_write_note
9056
9057 Inputs:
9058 buffer to hold note, and current size of buffer
9059 name of note
9060 type of note
9061 data for note
9062 size of data for note
9063
9064 Writes note to end of buffer. ELF64 notes are written exactly as
9065 for ELF32, despite the current (as of 2006) ELF gabi specifying
9066 that they ought to have 8-byte namesz and descsz field, and have
9067 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9068
9069 Return:
9070 Pointer to realloc'd buffer, *BUFSIZ updated. */
9071
9072 char *
9073 elfcore_write_note (bfd *abfd,
9074 char *buf,
9075 int *bufsiz,
9076 const char *name,
9077 int type,
9078 const void *input,
9079 int size)
9080 {
9081 Elf_External_Note *xnp;
9082 size_t namesz;
9083 size_t newspace;
9084 char *dest;
9085
9086 namesz = 0;
9087 if (name != NULL)
9088 namesz = strlen (name) + 1;
9089
9090 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9091
9092 buf = (char *) realloc (buf, *bufsiz + newspace);
9093 if (buf == NULL)
9094 return buf;
9095 dest = buf + *bufsiz;
9096 *bufsiz += newspace;
9097 xnp = (Elf_External_Note *) dest;
9098 H_PUT_32 (abfd, namesz, xnp->namesz);
9099 H_PUT_32 (abfd, size, xnp->descsz);
9100 H_PUT_32 (abfd, type, xnp->type);
9101 dest = xnp->name;
9102 if (name != NULL)
9103 {
9104 memcpy (dest, name, namesz);
9105 dest += namesz;
9106 while (namesz & 3)
9107 {
9108 *dest++ = '\0';
9109 ++namesz;
9110 }
9111 }
9112 memcpy (dest, input, size);
9113 dest += size;
9114 while (size & 3)
9115 {
9116 *dest++ = '\0';
9117 ++size;
9118 }
9119 return buf;
9120 }
9121
9122 char *
9123 elfcore_write_prpsinfo (bfd *abfd,
9124 char *buf,
9125 int *bufsiz,
9126 const char *fname,
9127 const char *psargs)
9128 {
9129 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9130
9131 if (bed->elf_backend_write_core_note != NULL)
9132 {
9133 char *ret;
9134 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9135 NT_PRPSINFO, fname, psargs);
9136 if (ret != NULL)
9137 return ret;
9138 }
9139
9140 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9141 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9142 if (bed->s->elfclass == ELFCLASS32)
9143 {
9144 #if defined (HAVE_PSINFO32_T)
9145 psinfo32_t data;
9146 int note_type = NT_PSINFO;
9147 #else
9148 prpsinfo32_t data;
9149 int note_type = NT_PRPSINFO;
9150 #endif
9151
9152 memset (&data, 0, sizeof (data));
9153 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9154 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9155 return elfcore_write_note (abfd, buf, bufsiz,
9156 "CORE", note_type, &data, sizeof (data));
9157 }
9158 else
9159 #endif
9160 {
9161 #if defined (HAVE_PSINFO_T)
9162 psinfo_t data;
9163 int note_type = NT_PSINFO;
9164 #else
9165 prpsinfo_t data;
9166 int note_type = NT_PRPSINFO;
9167 #endif
9168
9169 memset (&data, 0, sizeof (data));
9170 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9171 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9172 return elfcore_write_note (abfd, buf, bufsiz,
9173 "CORE", note_type, &data, sizeof (data));
9174 }
9175 #endif /* PSINFO_T or PRPSINFO_T */
9176
9177 free (buf);
9178 return NULL;
9179 }
9180
9181 char *
9182 elfcore_write_linux_prpsinfo32
9183 (bfd *abfd, char *buf, int *bufsiz,
9184 const struct elf_internal_linux_prpsinfo *prpsinfo)
9185 {
9186 struct elf_external_linux_prpsinfo32 data;
9187
9188 memset (&data, 0, sizeof (data));
9189 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9190
9191 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9192 &data, sizeof (data));
9193 }
9194
9195 char *
9196 elfcore_write_linux_prpsinfo64
9197 (bfd *abfd, char *buf, int *bufsiz,
9198 const struct elf_internal_linux_prpsinfo *prpsinfo)
9199 {
9200 struct elf_external_linux_prpsinfo64 data;
9201
9202 memset (&data, 0, sizeof (data));
9203 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9204
9205 return elfcore_write_note (abfd, buf, bufsiz,
9206 "CORE", NT_PRPSINFO, &data, sizeof (data));
9207 }
9208
9209 char *
9210 elfcore_write_prstatus (bfd *abfd,
9211 char *buf,
9212 int *bufsiz,
9213 long pid,
9214 int cursig,
9215 const void *gregs)
9216 {
9217 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9218
9219 if (bed->elf_backend_write_core_note != NULL)
9220 {
9221 char *ret;
9222 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9223 NT_PRSTATUS,
9224 pid, cursig, gregs);
9225 if (ret != NULL)
9226 return ret;
9227 }
9228
9229 #if defined (HAVE_PRSTATUS_T)
9230 #if defined (HAVE_PRSTATUS32_T)
9231 if (bed->s->elfclass == ELFCLASS32)
9232 {
9233 prstatus32_t prstat;
9234
9235 memset (&prstat, 0, sizeof (prstat));
9236 prstat.pr_pid = pid;
9237 prstat.pr_cursig = cursig;
9238 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9239 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9240 NT_PRSTATUS, &prstat, sizeof (prstat));
9241 }
9242 else
9243 #endif
9244 {
9245 prstatus_t prstat;
9246
9247 memset (&prstat, 0, sizeof (prstat));
9248 prstat.pr_pid = pid;
9249 prstat.pr_cursig = cursig;
9250 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9251 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9252 NT_PRSTATUS, &prstat, sizeof (prstat));
9253 }
9254 #endif /* HAVE_PRSTATUS_T */
9255
9256 free (buf);
9257 return NULL;
9258 }
9259
9260 #if defined (HAVE_LWPSTATUS_T)
9261 char *
9262 elfcore_write_lwpstatus (bfd *abfd,
9263 char *buf,
9264 int *bufsiz,
9265 long pid,
9266 int cursig,
9267 const void *gregs)
9268 {
9269 lwpstatus_t lwpstat;
9270 const char *note_name = "CORE";
9271
9272 memset (&lwpstat, 0, sizeof (lwpstat));
9273 lwpstat.pr_lwpid = pid >> 16;
9274 lwpstat.pr_cursig = cursig;
9275 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9276 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9277 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9278 #if !defined(gregs)
9279 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9280 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9281 #else
9282 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9283 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9284 #endif
9285 #endif
9286 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9287 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9288 }
9289 #endif /* HAVE_LWPSTATUS_T */
9290
9291 #if defined (HAVE_PSTATUS_T)
9292 char *
9293 elfcore_write_pstatus (bfd *abfd,
9294 char *buf,
9295 int *bufsiz,
9296 long pid,
9297 int cursig ATTRIBUTE_UNUSED,
9298 const void *gregs ATTRIBUTE_UNUSED)
9299 {
9300 const char *note_name = "CORE";
9301 #if defined (HAVE_PSTATUS32_T)
9302 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9303
9304 if (bed->s->elfclass == ELFCLASS32)
9305 {
9306 pstatus32_t pstat;
9307
9308 memset (&pstat, 0, sizeof (pstat));
9309 pstat.pr_pid = pid & 0xffff;
9310 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9311 NT_PSTATUS, &pstat, sizeof (pstat));
9312 return buf;
9313 }
9314 else
9315 #endif
9316 {
9317 pstatus_t pstat;
9318
9319 memset (&pstat, 0, sizeof (pstat));
9320 pstat.pr_pid = pid & 0xffff;
9321 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9322 NT_PSTATUS, &pstat, sizeof (pstat));
9323 return buf;
9324 }
9325 }
9326 #endif /* HAVE_PSTATUS_T */
9327
9328 char *
9329 elfcore_write_prfpreg (bfd *abfd,
9330 char *buf,
9331 int *bufsiz,
9332 const void *fpregs,
9333 int size)
9334 {
9335 const char *note_name = "CORE";
9336 return elfcore_write_note (abfd, buf, bufsiz,
9337 note_name, NT_FPREGSET, fpregs, size);
9338 }
9339
9340 char *
9341 elfcore_write_prxfpreg (bfd *abfd,
9342 char *buf,
9343 int *bufsiz,
9344 const void *xfpregs,
9345 int size)
9346 {
9347 char *note_name = "LINUX";
9348 return elfcore_write_note (abfd, buf, bufsiz,
9349 note_name, NT_PRXFPREG, xfpregs, size);
9350 }
9351
9352 char *
9353 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9354 const void *xfpregs, int size)
9355 {
9356 char *note_name = "LINUX";
9357 return elfcore_write_note (abfd, buf, bufsiz,
9358 note_name, NT_X86_XSTATE, xfpregs, size);
9359 }
9360
9361 char *
9362 elfcore_write_ppc_vmx (bfd *abfd,
9363 char *buf,
9364 int *bufsiz,
9365 const void *ppc_vmx,
9366 int size)
9367 {
9368 char *note_name = "LINUX";
9369 return elfcore_write_note (abfd, buf, bufsiz,
9370 note_name, NT_PPC_VMX, ppc_vmx, size);
9371 }
9372
9373 char *
9374 elfcore_write_ppc_vsx (bfd *abfd,
9375 char *buf,
9376 int *bufsiz,
9377 const void *ppc_vsx,
9378 int size)
9379 {
9380 char *note_name = "LINUX";
9381 return elfcore_write_note (abfd, buf, bufsiz,
9382 note_name, NT_PPC_VSX, ppc_vsx, size);
9383 }
9384
9385 static char *
9386 elfcore_write_s390_high_gprs (bfd *abfd,
9387 char *buf,
9388 int *bufsiz,
9389 const void *s390_high_gprs,
9390 int size)
9391 {
9392 char *note_name = "LINUX";
9393 return elfcore_write_note (abfd, buf, bufsiz,
9394 note_name, NT_S390_HIGH_GPRS,
9395 s390_high_gprs, size);
9396 }
9397
9398 char *
9399 elfcore_write_s390_timer (bfd *abfd,
9400 char *buf,
9401 int *bufsiz,
9402 const void *s390_timer,
9403 int size)
9404 {
9405 char *note_name = "LINUX";
9406 return elfcore_write_note (abfd, buf, bufsiz,
9407 note_name, NT_S390_TIMER, s390_timer, size);
9408 }
9409
9410 char *
9411 elfcore_write_s390_todcmp (bfd *abfd,
9412 char *buf,
9413 int *bufsiz,
9414 const void *s390_todcmp,
9415 int size)
9416 {
9417 char *note_name = "LINUX";
9418 return elfcore_write_note (abfd, buf, bufsiz,
9419 note_name, NT_S390_TODCMP, s390_todcmp, size);
9420 }
9421
9422 char *
9423 elfcore_write_s390_todpreg (bfd *abfd,
9424 char *buf,
9425 int *bufsiz,
9426 const void *s390_todpreg,
9427 int size)
9428 {
9429 char *note_name = "LINUX";
9430 return elfcore_write_note (abfd, buf, bufsiz,
9431 note_name, NT_S390_TODPREG, s390_todpreg, size);
9432 }
9433
9434 char *
9435 elfcore_write_s390_ctrs (bfd *abfd,
9436 char *buf,
9437 int *bufsiz,
9438 const void *s390_ctrs,
9439 int size)
9440 {
9441 char *note_name = "LINUX";
9442 return elfcore_write_note (abfd, buf, bufsiz,
9443 note_name, NT_S390_CTRS, s390_ctrs, size);
9444 }
9445
9446 char *
9447 elfcore_write_s390_prefix (bfd *abfd,
9448 char *buf,
9449 int *bufsiz,
9450 const void *s390_prefix,
9451 int size)
9452 {
9453 char *note_name = "LINUX";
9454 return elfcore_write_note (abfd, buf, bufsiz,
9455 note_name, NT_S390_PREFIX, s390_prefix, size);
9456 }
9457
9458 char *
9459 elfcore_write_s390_last_break (bfd *abfd,
9460 char *buf,
9461 int *bufsiz,
9462 const void *s390_last_break,
9463 int size)
9464 {
9465 char *note_name = "LINUX";
9466 return elfcore_write_note (abfd, buf, bufsiz,
9467 note_name, NT_S390_LAST_BREAK,
9468 s390_last_break, size);
9469 }
9470
9471 char *
9472 elfcore_write_s390_system_call (bfd *abfd,
9473 char *buf,
9474 int *bufsiz,
9475 const void *s390_system_call,
9476 int size)
9477 {
9478 char *note_name = "LINUX";
9479 return elfcore_write_note (abfd, buf, bufsiz,
9480 note_name, NT_S390_SYSTEM_CALL,
9481 s390_system_call, size);
9482 }
9483
9484 char *
9485 elfcore_write_arm_vfp (bfd *abfd,
9486 char *buf,
9487 int *bufsiz,
9488 const void *arm_vfp,
9489 int size)
9490 {
9491 char *note_name = "LINUX";
9492 return elfcore_write_note (abfd, buf, bufsiz,
9493 note_name, NT_ARM_VFP, arm_vfp, size);
9494 }
9495
9496 char *
9497 elfcore_write_aarch_tls (bfd *abfd,
9498 char *buf,
9499 int *bufsiz,
9500 const void *aarch_tls,
9501 int size)
9502 {
9503 char *note_name = "LINUX";
9504 return elfcore_write_note (abfd, buf, bufsiz,
9505 note_name, NT_ARM_TLS, aarch_tls, size);
9506 }
9507
9508 char *
9509 elfcore_write_aarch_hw_break (bfd *abfd,
9510 char *buf,
9511 int *bufsiz,
9512 const void *aarch_hw_break,
9513 int size)
9514 {
9515 char *note_name = "LINUX";
9516 return elfcore_write_note (abfd, buf, bufsiz,
9517 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9518 }
9519
9520 char *
9521 elfcore_write_aarch_hw_watch (bfd *abfd,
9522 char *buf,
9523 int *bufsiz,
9524 const void *aarch_hw_watch,
9525 int size)
9526 {
9527 char *note_name = "LINUX";
9528 return elfcore_write_note (abfd, buf, bufsiz,
9529 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9530 }
9531
9532 char *
9533 elfcore_write_register_note (bfd *abfd,
9534 char *buf,
9535 int *bufsiz,
9536 const char *section,
9537 const void *data,
9538 int size)
9539 {
9540 if (strcmp (section, ".reg2") == 0)
9541 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9542 if (strcmp (section, ".reg-xfp") == 0)
9543 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9544 if (strcmp (section, ".reg-xstate") == 0)
9545 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9546 if (strcmp (section, ".reg-ppc-vmx") == 0)
9547 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9548 if (strcmp (section, ".reg-ppc-vsx") == 0)
9549 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9550 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9551 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9552 if (strcmp (section, ".reg-s390-timer") == 0)
9553 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9554 if (strcmp (section, ".reg-s390-todcmp") == 0)
9555 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9556 if (strcmp (section, ".reg-s390-todpreg") == 0)
9557 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9558 if (strcmp (section, ".reg-s390-ctrs") == 0)
9559 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9560 if (strcmp (section, ".reg-s390-prefix") == 0)
9561 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9562 if (strcmp (section, ".reg-s390-last-break") == 0)
9563 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9564 if (strcmp (section, ".reg-s390-system-call") == 0)
9565 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9566 if (strcmp (section, ".reg-arm-vfp") == 0)
9567 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9568 if (strcmp (section, ".reg-aarch-tls") == 0)
9569 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9570 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9571 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9572 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9573 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9574 return NULL;
9575 }
9576
9577 static bfd_boolean
9578 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9579 {
9580 char *p;
9581
9582 p = buf;
9583 while (p < buf + size)
9584 {
9585 /* FIXME: bad alignment assumption. */
9586 Elf_External_Note *xnp = (Elf_External_Note *) p;
9587 Elf_Internal_Note in;
9588
9589 if (offsetof (Elf_External_Note, name) > buf - p + size)
9590 return FALSE;
9591
9592 in.type = H_GET_32 (abfd, xnp->type);
9593
9594 in.namesz = H_GET_32 (abfd, xnp->namesz);
9595 in.namedata = xnp->name;
9596 if (in.namesz > buf - in.namedata + size)
9597 return FALSE;
9598
9599 in.descsz = H_GET_32 (abfd, xnp->descsz);
9600 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9601 in.descpos = offset + (in.descdata - buf);
9602 if (in.descsz != 0
9603 && (in.descdata >= buf + size
9604 || in.descsz > buf - in.descdata + size))
9605 return FALSE;
9606
9607 switch (bfd_get_format (abfd))
9608 {
9609 default:
9610 return TRUE;
9611
9612 case bfd_core:
9613 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9614 {
9615 if (! elfcore_grok_netbsd_note (abfd, &in))
9616 return FALSE;
9617 }
9618 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9619 {
9620 if (! elfcore_grok_openbsd_note (abfd, &in))
9621 return FALSE;
9622 }
9623 else if (CONST_STRNEQ (in.namedata, "QNX"))
9624 {
9625 if (! elfcore_grok_nto_note (abfd, &in))
9626 return FALSE;
9627 }
9628 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9629 {
9630 if (! elfcore_grok_spu_note (abfd, &in))
9631 return FALSE;
9632 }
9633 else
9634 {
9635 if (! elfcore_grok_note (abfd, &in))
9636 return FALSE;
9637 }
9638 break;
9639
9640 case bfd_object:
9641 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9642 {
9643 if (! elfobj_grok_gnu_note (abfd, &in))
9644 return FALSE;
9645 }
9646 else if (in.namesz == sizeof "stapsdt"
9647 && strcmp (in.namedata, "stapsdt") == 0)
9648 {
9649 if (! elfobj_grok_stapsdt_note (abfd, &in))
9650 return FALSE;
9651 }
9652 break;
9653 }
9654
9655 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9656 }
9657
9658 return TRUE;
9659 }
9660
9661 static bfd_boolean
9662 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9663 {
9664 char *buf;
9665
9666 if (size <= 0)
9667 return TRUE;
9668
9669 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9670 return FALSE;
9671
9672 buf = (char *) bfd_malloc (size);
9673 if (buf == NULL)
9674 return FALSE;
9675
9676 if (bfd_bread (buf, size, abfd) != size
9677 || !elf_parse_notes (abfd, buf, size, offset))
9678 {
9679 free (buf);
9680 return FALSE;
9681 }
9682
9683 free (buf);
9684 return TRUE;
9685 }
9686 \f
9687 /* Providing external access to the ELF program header table. */
9688
9689 /* Return an upper bound on the number of bytes required to store a
9690 copy of ABFD's program header table entries. Return -1 if an error
9691 occurs; bfd_get_error will return an appropriate code. */
9692
9693 long
9694 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9695 {
9696 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9697 {
9698 bfd_set_error (bfd_error_wrong_format);
9699 return -1;
9700 }
9701
9702 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9703 }
9704
9705 /* Copy ABFD's program header table entries to *PHDRS. The entries
9706 will be stored as an array of Elf_Internal_Phdr structures, as
9707 defined in include/elf/internal.h. To find out how large the
9708 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9709
9710 Return the number of program header table entries read, or -1 if an
9711 error occurs; bfd_get_error will return an appropriate code. */
9712
9713 int
9714 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9715 {
9716 int num_phdrs;
9717
9718 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9719 {
9720 bfd_set_error (bfd_error_wrong_format);
9721 return -1;
9722 }
9723
9724 num_phdrs = elf_elfheader (abfd)->e_phnum;
9725 memcpy (phdrs, elf_tdata (abfd)->phdr,
9726 num_phdrs * sizeof (Elf_Internal_Phdr));
9727
9728 return num_phdrs;
9729 }
9730
9731 enum elf_reloc_type_class
9732 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9733 {
9734 return reloc_class_normal;
9735 }
9736
9737 /* For RELA architectures, return the relocation value for a
9738 relocation against a local symbol. */
9739
9740 bfd_vma
9741 _bfd_elf_rela_local_sym (bfd *abfd,
9742 Elf_Internal_Sym *sym,
9743 asection **psec,
9744 Elf_Internal_Rela *rel)
9745 {
9746 asection *sec = *psec;
9747 bfd_vma relocation;
9748
9749 relocation = (sec->output_section->vma
9750 + sec->output_offset
9751 + sym->st_value);
9752 if ((sec->flags & SEC_MERGE)
9753 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9754 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9755 {
9756 rel->r_addend =
9757 _bfd_merged_section_offset (abfd, psec,
9758 elf_section_data (sec)->sec_info,
9759 sym->st_value + rel->r_addend);
9760 if (sec != *psec)
9761 {
9762 /* If we have changed the section, and our original section is
9763 marked with SEC_EXCLUDE, it means that the original
9764 SEC_MERGE section has been completely subsumed in some
9765 other SEC_MERGE section. In this case, we need to leave
9766 some info around for --emit-relocs. */
9767 if ((sec->flags & SEC_EXCLUDE) != 0)
9768 sec->kept_section = *psec;
9769 sec = *psec;
9770 }
9771 rel->r_addend -= relocation;
9772 rel->r_addend += sec->output_section->vma + sec->output_offset;
9773 }
9774 return relocation;
9775 }
9776
9777 bfd_vma
9778 _bfd_elf_rel_local_sym (bfd *abfd,
9779 Elf_Internal_Sym *sym,
9780 asection **psec,
9781 bfd_vma addend)
9782 {
9783 asection *sec = *psec;
9784
9785 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9786 return sym->st_value + addend;
9787
9788 return _bfd_merged_section_offset (abfd, psec,
9789 elf_section_data (sec)->sec_info,
9790 sym->st_value + addend);
9791 }
9792
9793 bfd_vma
9794 _bfd_elf_section_offset (bfd *abfd,
9795 struct bfd_link_info *info,
9796 asection *sec,
9797 bfd_vma offset)
9798 {
9799 switch (sec->sec_info_type)
9800 {
9801 case SEC_INFO_TYPE_STABS:
9802 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9803 offset);
9804 case SEC_INFO_TYPE_EH_FRAME:
9805 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9806 default:
9807 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9808 {
9809 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9810 bfd_size_type address_size = bed->s->arch_size / 8;
9811 offset = sec->size - offset - address_size;
9812 }
9813 return offset;
9814 }
9815 }
9816 \f
9817 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9818 reconstruct an ELF file by reading the segments out of remote memory
9819 based on the ELF file header at EHDR_VMA and the ELF program headers it
9820 points to. If not null, *LOADBASEP is filled in with the difference
9821 between the VMAs from which the segments were read, and the VMAs the
9822 file headers (and hence BFD's idea of each section's VMA) put them at.
9823
9824 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9825 remote memory at target address VMA into the local buffer at MYADDR; it
9826 should return zero on success or an `errno' code on failure. TEMPL must
9827 be a BFD for an ELF target with the word size and byte order found in
9828 the remote memory. */
9829
9830 bfd *
9831 bfd_elf_bfd_from_remote_memory
9832 (bfd *templ,
9833 bfd_vma ehdr_vma,
9834 bfd_vma *loadbasep,
9835 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9836 {
9837 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9838 (templ, ehdr_vma, loadbasep, target_read_memory);
9839 }
9840 \f
9841 long
9842 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9843 long symcount ATTRIBUTE_UNUSED,
9844 asymbol **syms ATTRIBUTE_UNUSED,
9845 long dynsymcount,
9846 asymbol **dynsyms,
9847 asymbol **ret)
9848 {
9849 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9850 asection *relplt;
9851 asymbol *s;
9852 const char *relplt_name;
9853 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9854 arelent *p;
9855 long count, i, n;
9856 size_t size;
9857 Elf_Internal_Shdr *hdr;
9858 char *names;
9859 asection *plt;
9860
9861 *ret = NULL;
9862
9863 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9864 return 0;
9865
9866 if (dynsymcount <= 0)
9867 return 0;
9868
9869 if (!bed->plt_sym_val)
9870 return 0;
9871
9872 relplt_name = bed->relplt_name;
9873 if (relplt_name == NULL)
9874 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9875 relplt = bfd_get_section_by_name (abfd, relplt_name);
9876 if (relplt == NULL)
9877 return 0;
9878
9879 hdr = &elf_section_data (relplt)->this_hdr;
9880 if (hdr->sh_link != elf_dynsymtab (abfd)
9881 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9882 return 0;
9883
9884 plt = bfd_get_section_by_name (abfd, ".plt");
9885 if (plt == NULL)
9886 return 0;
9887
9888 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9889 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9890 return -1;
9891
9892 count = relplt->size / hdr->sh_entsize;
9893 size = count * sizeof (asymbol);
9894 p = relplt->relocation;
9895 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9896 {
9897 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9898 if (p->addend != 0)
9899 {
9900 #ifdef BFD64
9901 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9902 #else
9903 size += sizeof ("+0x") - 1 + 8;
9904 #endif
9905 }
9906 }
9907
9908 s = *ret = (asymbol *) bfd_malloc (size);
9909 if (s == NULL)
9910 return -1;
9911
9912 names = (char *) (s + count);
9913 p = relplt->relocation;
9914 n = 0;
9915 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9916 {
9917 size_t len;
9918 bfd_vma addr;
9919
9920 addr = bed->plt_sym_val (i, plt, p);
9921 if (addr == (bfd_vma) -1)
9922 continue;
9923
9924 *s = **p->sym_ptr_ptr;
9925 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9926 we are defining a symbol, ensure one of them is set. */
9927 if ((s->flags & BSF_LOCAL) == 0)
9928 s->flags |= BSF_GLOBAL;
9929 s->flags |= BSF_SYNTHETIC;
9930 s->section = plt;
9931 s->value = addr - plt->vma;
9932 s->name = names;
9933 s->udata.p = NULL;
9934 len = strlen ((*p->sym_ptr_ptr)->name);
9935 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9936 names += len;
9937 if (p->addend != 0)
9938 {
9939 char buf[30], *a;
9940
9941 memcpy (names, "+0x", sizeof ("+0x") - 1);
9942 names += sizeof ("+0x") - 1;
9943 bfd_sprintf_vma (abfd, buf, p->addend);
9944 for (a = buf; *a == '0'; ++a)
9945 ;
9946 len = strlen (a);
9947 memcpy (names, a, len);
9948 names += len;
9949 }
9950 memcpy (names, "@plt", sizeof ("@plt"));
9951 names += sizeof ("@plt");
9952 ++s, ++n;
9953 }
9954
9955 return n;
9956 }
9957
9958 /* It is only used by x86-64 so far. */
9959 asection _bfd_elf_large_com_section
9960 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9961 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9962
9963 void
9964 _bfd_elf_set_osabi (bfd * abfd,
9965 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9966 {
9967 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9968
9969 i_ehdrp = elf_elfheader (abfd);
9970
9971 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9972
9973 /* To make things simpler for the loader on Linux systems we set the
9974 osabi field to ELFOSABI_GNU if the binary contains symbols of
9975 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9976 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9977 && elf_tdata (abfd)->has_gnu_symbols)
9978 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9979 }
9980
9981
9982 /* Return TRUE for ELF symbol types that represent functions.
9983 This is the default version of this function, which is sufficient for
9984 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9985
9986 bfd_boolean
9987 _bfd_elf_is_function_type (unsigned int type)
9988 {
9989 return (type == STT_FUNC
9990 || type == STT_GNU_IFUNC);
9991 }
9992
9993 /* If the ELF symbol SYM might be a function in SEC, return the
9994 function size and set *CODE_OFF to the function's entry point,
9995 otherwise return zero. */
9996
9997 bfd_size_type
9998 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
9999 bfd_vma *code_off)
10000 {
10001 bfd_size_type size;
10002
10003 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10004 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10005 || sym->section != sec)
10006 return 0;
10007
10008 *code_off = sym->value;
10009 size = 0;
10010 if (!(sym->flags & BSF_SYNTHETIC))
10011 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10012 if (size == 0)
10013 size = 1;
10014 return size;
10015 }
This page took 0.249873 seconds and 4 git commands to generate.