* coff-h8300.c: Fix formatting.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* SECTION
22
23 ELF backends
24
25 BFD support for ELF formats is being worked on.
26 Currently, the best supported back ends are for sparc and i386
27 (running svr4 or Solaris 2).
28
29 Documentation of the internals of the support code still needs
30 to be written. The code is changing quickly enough that we
31 haven't bothered yet. */
32
33 /* For sparc64-cross-sparc32. */
34 #define _SYSCALL32
35 #include "bfd.h"
36 #include "sysdep.h"
37 #include "bfdlink.h"
38 #include "libbfd.h"
39 #define ARCH_SIZE 0
40 #include "elf-bfd.h"
41 #include "libiberty.h"
42
43 static INLINE struct elf_segment_map *make_mapping
44 PARAMS ((bfd *, asection **, unsigned int, unsigned int, boolean));
45 static boolean map_sections_to_segments PARAMS ((bfd *));
46 static int elf_sort_sections PARAMS ((const PTR, const PTR));
47 static boolean assign_file_positions_for_segments PARAMS ((bfd *));
48 static boolean assign_file_positions_except_relocs PARAMS ((bfd *));
49 static boolean prep_headers PARAMS ((bfd *));
50 static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **, int));
51 static boolean copy_private_bfd_data PARAMS ((bfd *, bfd *));
52 static char *elf_read PARAMS ((bfd *, file_ptr, bfd_size_type));
53 static const char *group_signature PARAMS ((bfd *, Elf_Internal_Shdr *));
54 static boolean setup_group PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
55 static void merge_sections_remove_hook PARAMS ((bfd *, asection *));
56 static void elf_fake_sections PARAMS ((bfd *, asection *, PTR));
57 static boolean assign_section_numbers PARAMS ((bfd *));
58 static INLINE int sym_is_global PARAMS ((bfd *, asymbol *));
59 static boolean elf_map_symbols PARAMS ((bfd *));
60 static bfd_size_type get_program_header_size PARAMS ((bfd *));
61 static boolean elfcore_read_notes PARAMS ((bfd *, file_ptr, bfd_size_type));
62 static boolean elf_find_function PARAMS ((bfd *, asection *, asymbol **,
63 bfd_vma, const char **,
64 const char **));
65 static int elfcore_make_pid PARAMS ((bfd *));
66 static boolean elfcore_maybe_make_sect PARAMS ((bfd *, char *, asection *));
67 static boolean elfcore_make_note_pseudosection PARAMS ((bfd *, char *,
68 Elf_Internal_Note *));
69 static boolean elfcore_grok_prfpreg PARAMS ((bfd *, Elf_Internal_Note *));
70 static boolean elfcore_grok_prxfpreg PARAMS ((bfd *, Elf_Internal_Note *));
71 static boolean elfcore_grok_note PARAMS ((bfd *, Elf_Internal_Note *));
72
73 static boolean elfcore_netbsd_get_lwpid PARAMS ((Elf_Internal_Note *, int *));
74 static boolean elfcore_grok_netbsd_procinfo PARAMS ((bfd *,
75 Elf_Internal_Note *));
76 static boolean elfcore_grok_netbsd_note PARAMS ((bfd *, Elf_Internal_Note *));
77
78 /* Swap version information in and out. The version information is
79 currently size independent. If that ever changes, this code will
80 need to move into elfcode.h. */
81
82 /* Swap in a Verdef structure. */
83
84 void
85 _bfd_elf_swap_verdef_in (abfd, src, dst)
86 bfd *abfd;
87 const Elf_External_Verdef *src;
88 Elf_Internal_Verdef *dst;
89 {
90 dst->vd_version = H_GET_16 (abfd, src->vd_version);
91 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
92 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
93 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
94 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
95 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
96 dst->vd_next = H_GET_32 (abfd, src->vd_next);
97 }
98
99 /* Swap out a Verdef structure. */
100
101 void
102 _bfd_elf_swap_verdef_out (abfd, src, dst)
103 bfd *abfd;
104 const Elf_Internal_Verdef *src;
105 Elf_External_Verdef *dst;
106 {
107 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
108 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
109 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
110 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
111 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
112 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
113 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
114 }
115
116 /* Swap in a Verdaux structure. */
117
118 void
119 _bfd_elf_swap_verdaux_in (abfd, src, dst)
120 bfd *abfd;
121 const Elf_External_Verdaux *src;
122 Elf_Internal_Verdaux *dst;
123 {
124 dst->vda_name = H_GET_32 (abfd, src->vda_name);
125 dst->vda_next = H_GET_32 (abfd, src->vda_next);
126 }
127
128 /* Swap out a Verdaux structure. */
129
130 void
131 _bfd_elf_swap_verdaux_out (abfd, src, dst)
132 bfd *abfd;
133 const Elf_Internal_Verdaux *src;
134 Elf_External_Verdaux *dst;
135 {
136 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
137 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
138 }
139
140 /* Swap in a Verneed structure. */
141
142 void
143 _bfd_elf_swap_verneed_in (abfd, src, dst)
144 bfd *abfd;
145 const Elf_External_Verneed *src;
146 Elf_Internal_Verneed *dst;
147 {
148 dst->vn_version = H_GET_16 (abfd, src->vn_version);
149 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
150 dst->vn_file = H_GET_32 (abfd, src->vn_file);
151 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
152 dst->vn_next = H_GET_32 (abfd, src->vn_next);
153 }
154
155 /* Swap out a Verneed structure. */
156
157 void
158 _bfd_elf_swap_verneed_out (abfd, src, dst)
159 bfd *abfd;
160 const Elf_Internal_Verneed *src;
161 Elf_External_Verneed *dst;
162 {
163 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
164 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
165 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
166 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
167 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
168 }
169
170 /* Swap in a Vernaux structure. */
171
172 void
173 _bfd_elf_swap_vernaux_in (abfd, src, dst)
174 bfd *abfd;
175 const Elf_External_Vernaux *src;
176 Elf_Internal_Vernaux *dst;
177 {
178 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
179 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
180 dst->vna_other = H_GET_16 (abfd, src->vna_other);
181 dst->vna_name = H_GET_32 (abfd, src->vna_name);
182 dst->vna_next = H_GET_32 (abfd, src->vna_next);
183 }
184
185 /* Swap out a Vernaux structure. */
186
187 void
188 _bfd_elf_swap_vernaux_out (abfd, src, dst)
189 bfd *abfd;
190 const Elf_Internal_Vernaux *src;
191 Elf_External_Vernaux *dst;
192 {
193 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
194 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
195 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
196 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
197 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
198 }
199
200 /* Swap in a Versym structure. */
201
202 void
203 _bfd_elf_swap_versym_in (abfd, src, dst)
204 bfd *abfd;
205 const Elf_External_Versym *src;
206 Elf_Internal_Versym *dst;
207 {
208 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
209 }
210
211 /* Swap out a Versym structure. */
212
213 void
214 _bfd_elf_swap_versym_out (abfd, src, dst)
215 bfd *abfd;
216 const Elf_Internal_Versym *src;
217 Elf_External_Versym *dst;
218 {
219 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
220 }
221
222 /* Standard ELF hash function. Do not change this function; you will
223 cause invalid hash tables to be generated. */
224
225 unsigned long
226 bfd_elf_hash (namearg)
227 const char *namearg;
228 {
229 const unsigned char *name = (const unsigned char *) namearg;
230 unsigned long h = 0;
231 unsigned long g;
232 int ch;
233
234 while ((ch = *name++) != '\0')
235 {
236 h = (h << 4) + ch;
237 if ((g = (h & 0xf0000000)) != 0)
238 {
239 h ^= g >> 24;
240 /* The ELF ABI says `h &= ~g', but this is equivalent in
241 this case and on some machines one insn instead of two. */
242 h ^= g;
243 }
244 }
245 return h;
246 }
247
248 /* Read a specified number of bytes at a specified offset in an ELF
249 file, into a newly allocated buffer, and return a pointer to the
250 buffer. */
251
252 static char *
253 elf_read (abfd, offset, size)
254 bfd *abfd;
255 file_ptr offset;
256 bfd_size_type size;
257 {
258 char *buf;
259
260 if ((buf = bfd_alloc (abfd, size)) == NULL)
261 return NULL;
262 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
263 return NULL;
264 if (bfd_bread ((PTR) buf, size, abfd) != size)
265 {
266 if (bfd_get_error () != bfd_error_system_call)
267 bfd_set_error (bfd_error_file_truncated);
268 return NULL;
269 }
270 return buf;
271 }
272
273 boolean
274 bfd_elf_mkobject (abfd)
275 bfd *abfd;
276 {
277 /* This just does initialization. */
278 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
279 bfd_size_type amt = sizeof (struct elf_obj_tdata);
280 elf_tdata (abfd) = (struct elf_obj_tdata *) bfd_zalloc (abfd, amt);
281 if (elf_tdata (abfd) == 0)
282 return false;
283 /* Since everything is done at close time, do we need any
284 initialization? */
285
286 return true;
287 }
288
289 boolean
290 bfd_elf_mkcorefile (abfd)
291 bfd *abfd;
292 {
293 /* I think this can be done just like an object file. */
294 return bfd_elf_mkobject (abfd);
295 }
296
297 char *
298 bfd_elf_get_str_section (abfd, shindex)
299 bfd *abfd;
300 unsigned int shindex;
301 {
302 Elf_Internal_Shdr **i_shdrp;
303 char *shstrtab = NULL;
304 file_ptr offset;
305 bfd_size_type shstrtabsize;
306
307 i_shdrp = elf_elfsections (abfd);
308 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
309 return 0;
310
311 shstrtab = (char *) i_shdrp[shindex]->contents;
312 if (shstrtab == NULL)
313 {
314 /* No cached one, attempt to read, and cache what we read. */
315 offset = i_shdrp[shindex]->sh_offset;
316 shstrtabsize = i_shdrp[shindex]->sh_size;
317 shstrtab = elf_read (abfd, offset, shstrtabsize);
318 i_shdrp[shindex]->contents = (PTR) shstrtab;
319 }
320 return shstrtab;
321 }
322
323 char *
324 bfd_elf_string_from_elf_section (abfd, shindex, strindex)
325 bfd *abfd;
326 unsigned int shindex;
327 unsigned int strindex;
328 {
329 Elf_Internal_Shdr *hdr;
330
331 if (strindex == 0)
332 return "";
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL
337 && bfd_elf_get_str_section (abfd, shindex) == NULL)
338 return NULL;
339
340 if (strindex >= hdr->sh_size)
341 {
342 (*_bfd_error_handler)
343 (_("%s: invalid string offset %u >= %lu for section `%s'"),
344 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
345 ((shindex == elf_elfheader(abfd)->e_shstrndx
346 && strindex == hdr->sh_name)
347 ? ".shstrtab"
348 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
349 return "";
350 }
351
352 return ((char *) hdr->contents) + strindex;
353 }
354
355 /* Read and convert symbols to internal format.
356 SYMCOUNT specifies the number of symbols to read, starting from
357 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
358 are non-NULL, they are used to store the internal symbols, external
359 symbols, and symbol section index extensions, respectively. */
360
361 Elf_Internal_Sym *
362 bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, symoffset,
363 intsym_buf, extsym_buf, extshndx_buf)
364 bfd *ibfd;
365 Elf_Internal_Shdr *symtab_hdr;
366 size_t symcount;
367 size_t symoffset;
368 Elf_Internal_Sym *intsym_buf;
369 PTR extsym_buf;
370 Elf_External_Sym_Shndx *extshndx_buf;
371 {
372 Elf_Internal_Shdr *shndx_hdr;
373 PTR alloc_ext;
374 const bfd_byte *esym;
375 Elf_External_Sym_Shndx *alloc_extshndx;
376 Elf_External_Sym_Shndx *shndx;
377 Elf_Internal_Sym *isym;
378 Elf_Internal_Sym *isymend;
379 struct elf_backend_data *bed;
380 size_t extsym_size;
381 bfd_size_type amt;
382 file_ptr pos;
383
384 if (symcount == 0)
385 return intsym_buf;
386
387 /* Normal syms might have section extension entries. */
388 shndx_hdr = NULL;
389 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
390 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
391
392 /* Read the symbols. */
393 alloc_ext = NULL;
394 alloc_extshndx = NULL;
395 bed = get_elf_backend_data (ibfd);
396 extsym_size = bed->s->sizeof_sym;
397 amt = symcount * extsym_size;
398 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
399 if (extsym_buf == NULL)
400 {
401 alloc_ext = bfd_malloc (amt);
402 extsym_buf = alloc_ext;
403 }
404 if (extsym_buf == NULL
405 || bfd_seek (ibfd, pos, SEEK_SET) != 0
406 || bfd_bread (extsym_buf, amt, ibfd) != amt)
407 {
408 intsym_buf = NULL;
409 goto out;
410 }
411
412 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
413 extshndx_buf = NULL;
414 else
415 {
416 amt = symcount * sizeof (Elf_External_Sym_Shndx);
417 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
418 if (extshndx_buf == NULL)
419 {
420 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
421 extshndx_buf = alloc_extshndx;
422 }
423 if (extshndx_buf == NULL
424 || bfd_seek (ibfd, pos, SEEK_SET) != 0
425 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
426 {
427 intsym_buf = NULL;
428 goto out;
429 }
430 }
431
432 if (intsym_buf == NULL)
433 {
434 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
435 intsym_buf = (Elf_Internal_Sym *) bfd_malloc (amt);
436 if (intsym_buf == NULL)
437 goto out;
438 }
439
440 /* Convert the symbols to internal form. */
441 isymend = intsym_buf + symcount;
442 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
443 isym < isymend;
444 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
445 (*bed->s->swap_symbol_in) (ibfd, esym, (const PTR) shndx, isym);
446
447 out:
448 if (alloc_ext != NULL)
449 free (alloc_ext);
450 if (alloc_extshndx != NULL)
451 free (alloc_extshndx);
452
453 return intsym_buf;
454 }
455
456 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
457 sections. The first element is the flags, the rest are section
458 pointers. */
459
460 typedef union elf_internal_group {
461 Elf_Internal_Shdr *shdr;
462 unsigned int flags;
463 } Elf_Internal_Group;
464
465 /* Return the name of the group signature symbol. Why isn't the
466 signature just a string? */
467
468 static const char *
469 group_signature (abfd, ghdr)
470 bfd *abfd;
471 Elf_Internal_Shdr *ghdr;
472 {
473 Elf_Internal_Shdr *hdr;
474 unsigned char esym[sizeof (Elf64_External_Sym)];
475 Elf_External_Sym_Shndx eshndx;
476 Elf_Internal_Sym isym;
477 unsigned int iname;
478 unsigned int shindex;
479
480 /* First we need to ensure the symbol table is available. */
481 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
482 return NULL;
483
484 /* Go read the symbol. */
485 hdr = &elf_tdata (abfd)->symtab_hdr;
486 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
487 &isym, esym, &eshndx) == NULL)
488 return NULL;
489
490 /* Look up the symbol name. */
491 iname = isym.st_name;
492 shindex = hdr->sh_link;
493 if (iname == 0 && ELF_ST_TYPE (isym.st_info) == STT_SECTION)
494 {
495 iname = elf_elfsections (abfd)[isym.st_shndx]->sh_name;
496 shindex = elf_elfheader (abfd)->e_shstrndx;
497 }
498
499 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
500 }
501
502 /* Set next_in_group list pointer, and group name for NEWSECT. */
503
504 static boolean
505 setup_group (abfd, hdr, newsect)
506 bfd *abfd;
507 Elf_Internal_Shdr *hdr;
508 asection *newsect;
509 {
510 unsigned int num_group = elf_tdata (abfd)->num_group;
511
512 /* If num_group is zero, read in all SHT_GROUP sections. The count
513 is set to -1 if there are no SHT_GROUP sections. */
514 if (num_group == 0)
515 {
516 unsigned int i, shnum;
517
518 /* First count the number of groups. If we have a SHT_GROUP
519 section with just a flag word (ie. sh_size is 4), ignore it. */
520 shnum = elf_numsections (abfd);
521 num_group = 0;
522 for (i = 0; i < shnum; i++)
523 {
524 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
525 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
526 num_group += 1;
527 }
528
529 if (num_group == 0)
530 num_group = (unsigned) -1;
531 elf_tdata (abfd)->num_group = num_group;
532
533 if (num_group > 0)
534 {
535 /* We keep a list of elf section headers for group sections,
536 so we can find them quickly. */
537 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
538 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
539 if (elf_tdata (abfd)->group_sect_ptr == NULL)
540 return false;
541
542 num_group = 0;
543 for (i = 0; i < shnum; i++)
544 {
545 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
546 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
547 {
548 unsigned char *src;
549 Elf_Internal_Group *dest;
550
551 /* Add to list of sections. */
552 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
553 num_group += 1;
554
555 /* Read the raw contents. */
556 BFD_ASSERT (sizeof (*dest) >= 4);
557 amt = shdr->sh_size * sizeof (*dest) / 4;
558 shdr->contents = bfd_alloc (abfd, amt);
559 if (shdr->contents == NULL
560 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
561 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
562 != shdr->sh_size))
563 return false;
564
565 /* Translate raw contents, a flag word followed by an
566 array of elf section indices all in target byte order,
567 to the flag word followed by an array of elf section
568 pointers. */
569 src = shdr->contents + shdr->sh_size;
570 dest = (Elf_Internal_Group *) (shdr->contents + amt);
571 while (1)
572 {
573 unsigned int idx;
574
575 src -= 4;
576 --dest;
577 idx = H_GET_32 (abfd, src);
578 if (src == shdr->contents)
579 {
580 dest->flags = idx;
581 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
582 shdr->bfd_section->flags
583 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
584 break;
585 }
586 if (idx >= shnum)
587 {
588 ((*_bfd_error_handler)
589 (_("%s: invalid SHT_GROUP entry"),
590 bfd_archive_filename (abfd)));
591 idx = 0;
592 }
593 dest->shdr = elf_elfsections (abfd)[idx];
594 }
595 }
596 }
597 }
598 }
599
600 if (num_group != (unsigned) -1)
601 {
602 unsigned int i;
603
604 for (i = 0; i < num_group; i++)
605 {
606 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
607 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
608 unsigned int n_elt = shdr->sh_size / 4;
609
610 /* Look through this group's sections to see if current
611 section is a member. */
612 while (--n_elt != 0)
613 if ((++idx)->shdr == hdr)
614 {
615 asection *s = NULL;
616
617 /* We are a member of this group. Go looking through
618 other members to see if any others are linked via
619 next_in_group. */
620 idx = (Elf_Internal_Group *) shdr->contents;
621 n_elt = shdr->sh_size / 4;
622 while (--n_elt != 0)
623 if ((s = (++idx)->shdr->bfd_section) != NULL
624 && elf_next_in_group (s) != NULL)
625 break;
626 if (n_elt != 0)
627 {
628 /* Snarf the group name from other member, and
629 insert current section in circular list. */
630 elf_group_name (newsect) = elf_group_name (s);
631 elf_next_in_group (newsect) = elf_next_in_group (s);
632 elf_next_in_group (s) = newsect;
633 }
634 else
635 {
636 const char *gname;
637
638 gname = group_signature (abfd, shdr);
639 if (gname == NULL)
640 return false;
641 elf_group_name (newsect) = gname;
642
643 /* Start a circular list with one element. */
644 elf_next_in_group (newsect) = newsect;
645 }
646
647 /* If the group section has been created, point to the
648 new member. */
649 if (shdr->bfd_section != NULL)
650 elf_next_in_group (shdr->bfd_section) = newsect;
651
652 i = num_group - 1;
653 break;
654 }
655 }
656 }
657
658 if (elf_group_name (newsect) == NULL)
659 {
660 (*_bfd_error_handler) (_("%s: no group info for section %s"),
661 bfd_archive_filename (abfd), newsect->name);
662 }
663 return true;
664 }
665
666 boolean
667 bfd_elf_discard_group (abfd, group)
668 bfd *abfd ATTRIBUTE_UNUSED;
669 asection *group;
670 {
671 asection *first = elf_next_in_group (group);
672 asection *s = first;
673
674 while (s != NULL)
675 {
676 s->output_section = bfd_abs_section_ptr;
677 s = elf_next_in_group (s);
678 /* These lists are circular. */
679 if (s == first)
680 break;
681 }
682 return true;
683 }
684
685 /* Make a BFD section from an ELF section. We store a pointer to the
686 BFD section in the bfd_section field of the header. */
687
688 boolean
689 _bfd_elf_make_section_from_shdr (abfd, hdr, name)
690 bfd *abfd;
691 Elf_Internal_Shdr *hdr;
692 const char *name;
693 {
694 asection *newsect;
695 flagword flags;
696 struct elf_backend_data *bed;
697
698 if (hdr->bfd_section != NULL)
699 {
700 BFD_ASSERT (strcmp (name,
701 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
702 return true;
703 }
704
705 newsect = bfd_make_section_anyway (abfd, name);
706 if (newsect == NULL)
707 return false;
708
709 newsect->filepos = hdr->sh_offset;
710
711 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
712 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
713 || ! bfd_set_section_alignment (abfd, newsect,
714 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
715 return false;
716
717 flags = SEC_NO_FLAGS;
718 if (hdr->sh_type != SHT_NOBITS)
719 flags |= SEC_HAS_CONTENTS;
720 if (hdr->sh_type == SHT_GROUP)
721 flags |= SEC_GROUP | SEC_EXCLUDE;
722 if ((hdr->sh_flags & SHF_ALLOC) != 0)
723 {
724 flags |= SEC_ALLOC;
725 if (hdr->sh_type != SHT_NOBITS)
726 flags |= SEC_LOAD;
727 }
728 if ((hdr->sh_flags & SHF_WRITE) == 0)
729 flags |= SEC_READONLY;
730 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
731 flags |= SEC_CODE;
732 else if ((flags & SEC_LOAD) != 0)
733 flags |= SEC_DATA;
734 if ((hdr->sh_flags & SHF_MERGE) != 0)
735 {
736 flags |= SEC_MERGE;
737 newsect->entsize = hdr->sh_entsize;
738 if ((hdr->sh_flags & SHF_STRINGS) != 0)
739 flags |= SEC_STRINGS;
740 }
741 if (hdr->sh_flags & SHF_GROUP)
742 if (!setup_group (abfd, hdr, newsect))
743 return false;
744 if ((hdr->sh_flags & SHF_TLS) != 0)
745 flags |= SEC_THREAD_LOCAL;
746
747 /* The debugging sections appear to be recognized only by name, not
748 any sort of flag. */
749 {
750 static const char *debug_sec_names [] =
751 {
752 ".debug",
753 ".gnu.linkonce.wi.",
754 ".line",
755 ".stab"
756 };
757 int i;
758
759 for (i = ARRAY_SIZE (debug_sec_names); i--;)
760 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
761 break;
762
763 if (i >= 0)
764 flags |= SEC_DEBUGGING;
765 }
766
767 /* As a GNU extension, if the name begins with .gnu.linkonce, we
768 only link a single copy of the section. This is used to support
769 g++. g++ will emit each template expansion in its own section.
770 The symbols will be defined as weak, so that multiple definitions
771 are permitted. The GNU linker extension is to actually discard
772 all but one of the sections. */
773 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
774 && elf_next_in_group (newsect) == NULL)
775 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
776
777 bed = get_elf_backend_data (abfd);
778 if (bed->elf_backend_section_flags)
779 if (! bed->elf_backend_section_flags (&flags, hdr))
780 return false;
781
782 if (! bfd_set_section_flags (abfd, newsect, flags))
783 return false;
784
785 if ((flags & SEC_ALLOC) != 0)
786 {
787 Elf_Internal_Phdr *phdr;
788 unsigned int i;
789
790 /* Look through the phdrs to see if we need to adjust the lma.
791 If all the p_paddr fields are zero, we ignore them, since
792 some ELF linkers produce such output. */
793 phdr = elf_tdata (abfd)->phdr;
794 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
795 {
796 if (phdr->p_paddr != 0)
797 break;
798 }
799 if (i < elf_elfheader (abfd)->e_phnum)
800 {
801 phdr = elf_tdata (abfd)->phdr;
802 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
803 {
804 /* This section is part of this segment if its file
805 offset plus size lies within the segment's memory
806 span and, if the section is loaded, the extent of the
807 loaded data lies within the extent of the segment.
808
809 Note - we used to check the p_paddr field as well, and
810 refuse to set the LMA if it was 0. This is wrong
811 though, as a perfectly valid initialised segment can
812 have a p_paddr of zero. Some architectures, eg ARM,
813 place special significance on the address 0 and
814 executables need to be able to have a segment which
815 covers this address. */
816 if (phdr->p_type == PT_LOAD
817 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
818 && (hdr->sh_offset + hdr->sh_size
819 <= phdr->p_offset + phdr->p_memsz)
820 && ((flags & SEC_LOAD) == 0
821 || (hdr->sh_offset + hdr->sh_size
822 <= phdr->p_offset + phdr->p_filesz)))
823 {
824 if ((flags & SEC_LOAD) == 0)
825 newsect->lma = (phdr->p_paddr
826 + hdr->sh_addr - phdr->p_vaddr);
827 else
828 /* We used to use the same adjustment for SEC_LOAD
829 sections, but that doesn't work if the segment
830 is packed with code from multiple VMAs.
831 Instead we calculate the section LMA based on
832 the segment LMA. It is assumed that the
833 segment will contain sections with contiguous
834 LMAs, even if the VMAs are not. */
835 newsect->lma = (phdr->p_paddr
836 + hdr->sh_offset - phdr->p_offset);
837
838 /* With contiguous segments, we can't tell from file
839 offsets whether a section with zero size should
840 be placed at the end of one segment or the
841 beginning of the next. Decide based on vaddr. */
842 if (hdr->sh_addr >= phdr->p_vaddr
843 && (hdr->sh_addr + hdr->sh_size
844 <= phdr->p_vaddr + phdr->p_memsz))
845 break;
846 }
847 }
848 }
849 }
850
851 hdr->bfd_section = newsect;
852 elf_section_data (newsect)->this_hdr = *hdr;
853
854 return true;
855 }
856
857 /*
858 INTERNAL_FUNCTION
859 bfd_elf_find_section
860
861 SYNOPSIS
862 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
863
864 DESCRIPTION
865 Helper functions for GDB to locate the string tables.
866 Since BFD hides string tables from callers, GDB needs to use an
867 internal hook to find them. Sun's .stabstr, in particular,
868 isn't even pointed to by the .stab section, so ordinary
869 mechanisms wouldn't work to find it, even if we had some.
870 */
871
872 struct elf_internal_shdr *
873 bfd_elf_find_section (abfd, name)
874 bfd *abfd;
875 char *name;
876 {
877 Elf_Internal_Shdr **i_shdrp;
878 char *shstrtab;
879 unsigned int max;
880 unsigned int i;
881
882 i_shdrp = elf_elfsections (abfd);
883 if (i_shdrp != NULL)
884 {
885 shstrtab = bfd_elf_get_str_section (abfd,
886 elf_elfheader (abfd)->e_shstrndx);
887 if (shstrtab != NULL)
888 {
889 max = elf_numsections (abfd);
890 for (i = 1; i < max; i++)
891 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
892 return i_shdrp[i];
893 }
894 }
895 return 0;
896 }
897
898 const char *const bfd_elf_section_type_names[] = {
899 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
900 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
901 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
902 };
903
904 /* ELF relocs are against symbols. If we are producing relocateable
905 output, and the reloc is against an external symbol, and nothing
906 has given us any additional addend, the resulting reloc will also
907 be against the same symbol. In such a case, we don't want to
908 change anything about the way the reloc is handled, since it will
909 all be done at final link time. Rather than put special case code
910 into bfd_perform_relocation, all the reloc types use this howto
911 function. It just short circuits the reloc if producing
912 relocateable output against an external symbol. */
913
914 bfd_reloc_status_type
915 bfd_elf_generic_reloc (abfd,
916 reloc_entry,
917 symbol,
918 data,
919 input_section,
920 output_bfd,
921 error_message)
922 bfd *abfd ATTRIBUTE_UNUSED;
923 arelent *reloc_entry;
924 asymbol *symbol;
925 PTR data ATTRIBUTE_UNUSED;
926 asection *input_section;
927 bfd *output_bfd;
928 char **error_message ATTRIBUTE_UNUSED;
929 {
930 if (output_bfd != (bfd *) NULL
931 && (symbol->flags & BSF_SECTION_SYM) == 0
932 && (! reloc_entry->howto->partial_inplace
933 || reloc_entry->addend == 0))
934 {
935 reloc_entry->address += input_section->output_offset;
936 return bfd_reloc_ok;
937 }
938
939 return bfd_reloc_continue;
940 }
941 \f
942 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
943
944 static void
945 merge_sections_remove_hook (abfd, sec)
946 bfd *abfd ATTRIBUTE_UNUSED;
947 asection *sec;
948 {
949 struct bfd_elf_section_data *sec_data;
950
951 sec_data = elf_section_data (sec);
952 BFD_ASSERT (sec_data->sec_info_type == ELF_INFO_TYPE_MERGE);
953 sec_data->sec_info_type = ELF_INFO_TYPE_NONE;
954 }
955
956 /* Finish SHF_MERGE section merging. */
957
958 boolean
959 _bfd_elf_merge_sections (abfd, info)
960 bfd *abfd;
961 struct bfd_link_info *info;
962 {
963 if (!is_elf_hash_table (info))
964 return false;
965 if (elf_hash_table (info)->merge_info)
966 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
967 merge_sections_remove_hook);
968 return true;
969 }
970
971 void
972 _bfd_elf_link_just_syms (sec, info)
973 asection *sec;
974 struct bfd_link_info *info;
975 {
976 sec->output_section = bfd_abs_section_ptr;
977 sec->output_offset = sec->vma;
978 if (!is_elf_hash_table (info))
979 return;
980
981 elf_section_data (sec)->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
982 }
983 \f
984 /* Copy the program header and other data from one object module to
985 another. */
986
987 boolean
988 _bfd_elf_copy_private_bfd_data (ibfd, obfd)
989 bfd *ibfd;
990 bfd *obfd;
991 {
992 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
993 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
994 return true;
995
996 BFD_ASSERT (!elf_flags_init (obfd)
997 || (elf_elfheader (obfd)->e_flags
998 == elf_elfheader (ibfd)->e_flags));
999
1000 elf_gp (obfd) = elf_gp (ibfd);
1001 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1002 elf_flags_init (obfd) = true;
1003 return true;
1004 }
1005
1006 /* Print out the program headers. */
1007
1008 boolean
1009 _bfd_elf_print_private_bfd_data (abfd, farg)
1010 bfd *abfd;
1011 PTR farg;
1012 {
1013 FILE *f = (FILE *) farg;
1014 Elf_Internal_Phdr *p;
1015 asection *s;
1016 bfd_byte *dynbuf = NULL;
1017
1018 p = elf_tdata (abfd)->phdr;
1019 if (p != NULL)
1020 {
1021 unsigned int i, c;
1022
1023 fprintf (f, _("\nProgram Header:\n"));
1024 c = elf_elfheader (abfd)->e_phnum;
1025 for (i = 0; i < c; i++, p++)
1026 {
1027 const char *pt;
1028 char buf[20];
1029
1030 switch (p->p_type)
1031 {
1032 case PT_NULL: pt = "NULL"; break;
1033 case PT_LOAD: pt = "LOAD"; break;
1034 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1035 case PT_INTERP: pt = "INTERP"; break;
1036 case PT_NOTE: pt = "NOTE"; break;
1037 case PT_SHLIB: pt = "SHLIB"; break;
1038 case PT_PHDR: pt = "PHDR"; break;
1039 case PT_TLS: pt = "TLS"; break;
1040 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1041 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1042 }
1043 fprintf (f, "%8s off 0x", pt);
1044 bfd_fprintf_vma (abfd, f, p->p_offset);
1045 fprintf (f, " vaddr 0x");
1046 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1047 fprintf (f, " paddr 0x");
1048 bfd_fprintf_vma (abfd, f, p->p_paddr);
1049 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1050 fprintf (f, " filesz 0x");
1051 bfd_fprintf_vma (abfd, f, p->p_filesz);
1052 fprintf (f, " memsz 0x");
1053 bfd_fprintf_vma (abfd, f, p->p_memsz);
1054 fprintf (f, " flags %c%c%c",
1055 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1056 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1057 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1058 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1059 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1060 fprintf (f, "\n");
1061 }
1062 }
1063
1064 s = bfd_get_section_by_name (abfd, ".dynamic");
1065 if (s != NULL)
1066 {
1067 int elfsec;
1068 unsigned long shlink;
1069 bfd_byte *extdyn, *extdynend;
1070 size_t extdynsize;
1071 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
1072
1073 fprintf (f, _("\nDynamic Section:\n"));
1074
1075 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
1076 if (dynbuf == NULL)
1077 goto error_return;
1078 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
1079 s->_raw_size))
1080 goto error_return;
1081
1082 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1083 if (elfsec == -1)
1084 goto error_return;
1085 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1086
1087 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1088 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1089
1090 extdyn = dynbuf;
1091 extdynend = extdyn + s->_raw_size;
1092 for (; extdyn < extdynend; extdyn += extdynsize)
1093 {
1094 Elf_Internal_Dyn dyn;
1095 const char *name;
1096 char ab[20];
1097 boolean stringp;
1098
1099 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
1100
1101 if (dyn.d_tag == DT_NULL)
1102 break;
1103
1104 stringp = false;
1105 switch (dyn.d_tag)
1106 {
1107 default:
1108 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1109 name = ab;
1110 break;
1111
1112 case DT_NEEDED: name = "NEEDED"; stringp = true; break;
1113 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1114 case DT_PLTGOT: name = "PLTGOT"; break;
1115 case DT_HASH: name = "HASH"; break;
1116 case DT_STRTAB: name = "STRTAB"; break;
1117 case DT_SYMTAB: name = "SYMTAB"; break;
1118 case DT_RELA: name = "RELA"; break;
1119 case DT_RELASZ: name = "RELASZ"; break;
1120 case DT_RELAENT: name = "RELAENT"; break;
1121 case DT_STRSZ: name = "STRSZ"; break;
1122 case DT_SYMENT: name = "SYMENT"; break;
1123 case DT_INIT: name = "INIT"; break;
1124 case DT_FINI: name = "FINI"; break;
1125 case DT_SONAME: name = "SONAME"; stringp = true; break;
1126 case DT_RPATH: name = "RPATH"; stringp = true; break;
1127 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1128 case DT_REL: name = "REL"; break;
1129 case DT_RELSZ: name = "RELSZ"; break;
1130 case DT_RELENT: name = "RELENT"; break;
1131 case DT_PLTREL: name = "PLTREL"; break;
1132 case DT_DEBUG: name = "DEBUG"; break;
1133 case DT_TEXTREL: name = "TEXTREL"; break;
1134 case DT_JMPREL: name = "JMPREL"; break;
1135 case DT_BIND_NOW: name = "BIND_NOW"; break;
1136 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1137 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1138 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1139 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1140 case DT_RUNPATH: name = "RUNPATH"; stringp = true; break;
1141 case DT_FLAGS: name = "FLAGS"; break;
1142 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1143 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1144 case DT_CHECKSUM: name = "CHECKSUM"; break;
1145 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1146 case DT_MOVEENT: name = "MOVEENT"; break;
1147 case DT_MOVESZ: name = "MOVESZ"; break;
1148 case DT_FEATURE: name = "FEATURE"; break;
1149 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1150 case DT_SYMINSZ: name = "SYMINSZ"; break;
1151 case DT_SYMINENT: name = "SYMINENT"; break;
1152 case DT_CONFIG: name = "CONFIG"; stringp = true; break;
1153 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break;
1154 case DT_AUDIT: name = "AUDIT"; stringp = true; break;
1155 case DT_PLTPAD: name = "PLTPAD"; break;
1156 case DT_MOVETAB: name = "MOVETAB"; break;
1157 case DT_SYMINFO: name = "SYMINFO"; break;
1158 case DT_RELACOUNT: name = "RELACOUNT"; break;
1159 case DT_RELCOUNT: name = "RELCOUNT"; break;
1160 case DT_FLAGS_1: name = "FLAGS_1"; break;
1161 case DT_VERSYM: name = "VERSYM"; break;
1162 case DT_VERDEF: name = "VERDEF"; break;
1163 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1164 case DT_VERNEED: name = "VERNEED"; break;
1165 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1166 case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break;
1167 case DT_USED: name = "USED"; break;
1168 case DT_FILTER: name = "FILTER"; stringp = true; break;
1169 }
1170
1171 fprintf (f, " %-11s ", name);
1172 if (! stringp)
1173 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1174 else
1175 {
1176 const char *string;
1177 unsigned int tagv = dyn.d_un.d_val;
1178
1179 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1180 if (string == NULL)
1181 goto error_return;
1182 fprintf (f, "%s", string);
1183 }
1184 fprintf (f, "\n");
1185 }
1186
1187 free (dynbuf);
1188 dynbuf = NULL;
1189 }
1190
1191 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1192 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1193 {
1194 if (! _bfd_elf_slurp_version_tables (abfd))
1195 return false;
1196 }
1197
1198 if (elf_dynverdef (abfd) != 0)
1199 {
1200 Elf_Internal_Verdef *t;
1201
1202 fprintf (f, _("\nVersion definitions:\n"));
1203 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1204 {
1205 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1206 t->vd_flags, t->vd_hash, t->vd_nodename);
1207 if (t->vd_auxptr->vda_nextptr != NULL)
1208 {
1209 Elf_Internal_Verdaux *a;
1210
1211 fprintf (f, "\t");
1212 for (a = t->vd_auxptr->vda_nextptr;
1213 a != NULL;
1214 a = a->vda_nextptr)
1215 fprintf (f, "%s ", a->vda_nodename);
1216 fprintf (f, "\n");
1217 }
1218 }
1219 }
1220
1221 if (elf_dynverref (abfd) != 0)
1222 {
1223 Elf_Internal_Verneed *t;
1224
1225 fprintf (f, _("\nVersion References:\n"));
1226 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1227 {
1228 Elf_Internal_Vernaux *a;
1229
1230 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1231 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1232 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1233 a->vna_flags, a->vna_other, a->vna_nodename);
1234 }
1235 }
1236
1237 return true;
1238
1239 error_return:
1240 if (dynbuf != NULL)
1241 free (dynbuf);
1242 return false;
1243 }
1244
1245 /* Display ELF-specific fields of a symbol. */
1246
1247 void
1248 bfd_elf_print_symbol (abfd, filep, symbol, how)
1249 bfd *abfd;
1250 PTR filep;
1251 asymbol *symbol;
1252 bfd_print_symbol_type how;
1253 {
1254 FILE *file = (FILE *) filep;
1255 switch (how)
1256 {
1257 case bfd_print_symbol_name:
1258 fprintf (file, "%s", symbol->name);
1259 break;
1260 case bfd_print_symbol_more:
1261 fprintf (file, "elf ");
1262 bfd_fprintf_vma (abfd, file, symbol->value);
1263 fprintf (file, " %lx", (long) symbol->flags);
1264 break;
1265 case bfd_print_symbol_all:
1266 {
1267 const char *section_name;
1268 const char *name = NULL;
1269 struct elf_backend_data *bed;
1270 unsigned char st_other;
1271 bfd_vma val;
1272
1273 section_name = symbol->section ? symbol->section->name : "(*none*)";
1274
1275 bed = get_elf_backend_data (abfd);
1276 if (bed->elf_backend_print_symbol_all)
1277 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1278
1279 if (name == NULL)
1280 {
1281 name = symbol->name;
1282 bfd_print_symbol_vandf (abfd, (PTR) file, symbol);
1283 }
1284
1285 fprintf (file, " %s\t", section_name);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol->section))
1291 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1292 else
1293 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1294 bfd_fprintf_vma (abfd, file, val);
1295
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd)->dynversym_section != 0
1298 && (elf_tdata (abfd)->dynverdef_section != 0
1299 || elf_tdata (abfd)->dynverref_section != 0))
1300 {
1301 unsigned int vernum;
1302 const char *version_string;
1303
1304 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1305
1306 if (vernum == 0)
1307 version_string = "";
1308 else if (vernum == 1)
1309 version_string = "Base";
1310 else if (vernum <= elf_tdata (abfd)->cverdefs)
1311 version_string =
1312 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1313 else
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 version_string = "";
1318 for (t = elf_tdata (abfd)->verref;
1319 t != NULL;
1320 t = t->vn_nextref)
1321 {
1322 Elf_Internal_Vernaux *a;
1323
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 {
1326 if (a->vna_other == vernum)
1327 {
1328 version_string = a->vna_nodename;
1329 break;
1330 }
1331 }
1332 }
1333 }
1334
1335 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1336 fprintf (file, " %-11s", version_string);
1337 else
1338 {
1339 int i;
1340
1341 fprintf (file, " (%s)", version_string);
1342 for (i = 10 - strlen (version_string); i > 0; --i)
1343 putc (' ', file);
1344 }
1345 }
1346
1347 /* If the st_other field is not zero, print it. */
1348 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1349
1350 switch (st_other)
1351 {
1352 case 0: break;
1353 case STV_INTERNAL: fprintf (file, " .internal"); break;
1354 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1355 case STV_PROTECTED: fprintf (file, " .protected"); break;
1356 default:
1357 /* Some other non-defined flags are also present, so print
1358 everything hex. */
1359 fprintf (file, " 0x%02x", (unsigned int) st_other);
1360 }
1361
1362 fprintf (file, " %s", name);
1363 }
1364 break;
1365 }
1366 }
1367 \f
1368 /* Create an entry in an ELF linker hash table. */
1369
1370 struct bfd_hash_entry *
1371 _bfd_elf_link_hash_newfunc (entry, table, string)
1372 struct bfd_hash_entry *entry;
1373 struct bfd_hash_table *table;
1374 const char *string;
1375 {
1376 /* Allocate the structure if it has not already been allocated by a
1377 subclass. */
1378 if (entry == NULL)
1379 {
1380 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1381 if (entry == NULL)
1382 return entry;
1383 }
1384
1385 /* Call the allocation method of the superclass. */
1386 entry = _bfd_link_hash_newfunc (entry, table, string);
1387 if (entry != NULL)
1388 {
1389 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1390 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1391
1392 /* Set local fields. */
1393 ret->indx = -1;
1394 ret->size = 0;
1395 ret->dynindx = -1;
1396 ret->dynstr_index = 0;
1397 ret->weakdef = NULL;
1398 ret->got.refcount = htab->init_refcount;
1399 ret->plt.refcount = htab->init_refcount;
1400 ret->linker_section_pointer = NULL;
1401 ret->verinfo.verdef = NULL;
1402 ret->vtable_entries_used = NULL;
1403 ret->vtable_entries_size = 0;
1404 ret->vtable_parent = NULL;
1405 ret->type = STT_NOTYPE;
1406 ret->other = 0;
1407 /* Assume that we have been called by a non-ELF symbol reader.
1408 This flag is then reset by the code which reads an ELF input
1409 file. This ensures that a symbol created by a non-ELF symbol
1410 reader will have the flag set correctly. */
1411 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1412 }
1413
1414 return entry;
1415 }
1416
1417 /* Copy data from an indirect symbol to its direct symbol, hiding the
1418 old indirect symbol. Also used for copying flags to a weakdef. */
1419
1420 void
1421 _bfd_elf_link_hash_copy_indirect (bed, dir, ind)
1422 struct elf_backend_data *bed;
1423 struct elf_link_hash_entry *dir, *ind;
1424 {
1425 bfd_signed_vma tmp;
1426 bfd_signed_vma lowest_valid = bed->can_refcount;
1427
1428 /* Copy down any references that we may have already seen to the
1429 symbol which just became indirect. */
1430
1431 dir->elf_link_hash_flags |=
1432 (ind->elf_link_hash_flags
1433 & (ELF_LINK_HASH_REF_DYNAMIC
1434 | ELF_LINK_HASH_REF_REGULAR
1435 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1436 | ELF_LINK_NON_GOT_REF));
1437
1438 if (ind->root.type != bfd_link_hash_indirect)
1439 return;
1440
1441 /* Copy over the global and procedure linkage table refcount entries.
1442 These may have been already set up by a check_relocs routine. */
1443 tmp = dir->got.refcount;
1444 if (tmp < lowest_valid)
1445 {
1446 dir->got.refcount = ind->got.refcount;
1447 ind->got.refcount = tmp;
1448 }
1449 else
1450 BFD_ASSERT (ind->got.refcount < lowest_valid);
1451
1452 tmp = dir->plt.refcount;
1453 if (tmp < lowest_valid)
1454 {
1455 dir->plt.refcount = ind->plt.refcount;
1456 ind->plt.refcount = tmp;
1457 }
1458 else
1459 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1460
1461 if (dir->dynindx == -1)
1462 {
1463 dir->dynindx = ind->dynindx;
1464 dir->dynstr_index = ind->dynstr_index;
1465 ind->dynindx = -1;
1466 ind->dynstr_index = 0;
1467 }
1468 else
1469 BFD_ASSERT (ind->dynindx == -1);
1470 }
1471
1472 void
1473 _bfd_elf_link_hash_hide_symbol (info, h, force_local)
1474 struct bfd_link_info *info;
1475 struct elf_link_hash_entry *h;
1476 boolean force_local;
1477 {
1478 h->plt.offset = (bfd_vma) -1;
1479 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1480 if (force_local)
1481 {
1482 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1483 if (h->dynindx != -1)
1484 {
1485 h->dynindx = -1;
1486 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1487 h->dynstr_index);
1488 }
1489 }
1490 }
1491
1492 /* Initialize an ELF linker hash table. */
1493
1494 boolean
1495 _bfd_elf_link_hash_table_init (table, abfd, newfunc)
1496 struct elf_link_hash_table *table;
1497 bfd *abfd;
1498 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
1499 struct bfd_hash_table *,
1500 const char *));
1501 {
1502 boolean ret;
1503
1504 table->dynamic_sections_created = false;
1505 table->dynobj = NULL;
1506 table->init_refcount = get_elf_backend_data (abfd)->can_refcount - 1;
1507 /* The first dynamic symbol is a dummy. */
1508 table->dynsymcount = 1;
1509 table->dynstr = NULL;
1510 table->bucketcount = 0;
1511 table->needed = NULL;
1512 table->runpath = NULL;
1513 table->loaded = NULL;
1514 table->hgot = NULL;
1515 table->stab_info = NULL;
1516 table->merge_info = NULL;
1517 table->dynlocal = NULL;
1518 ret = _bfd_link_hash_table_init (& table->root, abfd, newfunc);
1519 table->root.type = bfd_link_elf_hash_table;
1520
1521 return ret;
1522 }
1523
1524 /* Create an ELF linker hash table. */
1525
1526 struct bfd_link_hash_table *
1527 _bfd_elf_link_hash_table_create (abfd)
1528 bfd *abfd;
1529 {
1530 struct elf_link_hash_table *ret;
1531 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1532
1533 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
1534 if (ret == (struct elf_link_hash_table *) NULL)
1535 return NULL;
1536
1537 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1538 {
1539 free (ret);
1540 return NULL;
1541 }
1542
1543 return &ret->root;
1544 }
1545
1546 /* This is a hook for the ELF emulation code in the generic linker to
1547 tell the backend linker what file name to use for the DT_NEEDED
1548 entry for a dynamic object. The generic linker passes name as an
1549 empty string to indicate that no DT_NEEDED entry should be made. */
1550
1551 void
1552 bfd_elf_set_dt_needed_name (abfd, name)
1553 bfd *abfd;
1554 const char *name;
1555 {
1556 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1557 && bfd_get_format (abfd) == bfd_object)
1558 elf_dt_name (abfd) = name;
1559 }
1560
1561 void
1562 bfd_elf_set_dt_needed_soname (abfd, name)
1563 bfd *abfd;
1564 const char *name;
1565 {
1566 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1567 && bfd_get_format (abfd) == bfd_object)
1568 elf_dt_soname (abfd) = name;
1569 }
1570
1571 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1572 the linker ELF emulation code. */
1573
1574 struct bfd_link_needed_list *
1575 bfd_elf_get_needed_list (abfd, info)
1576 bfd *abfd ATTRIBUTE_UNUSED;
1577 struct bfd_link_info *info;
1578 {
1579 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1580 return NULL;
1581 return elf_hash_table (info)->needed;
1582 }
1583
1584 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1585 hook for the linker ELF emulation code. */
1586
1587 struct bfd_link_needed_list *
1588 bfd_elf_get_runpath_list (abfd, info)
1589 bfd *abfd ATTRIBUTE_UNUSED;
1590 struct bfd_link_info *info;
1591 {
1592 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1593 return NULL;
1594 return elf_hash_table (info)->runpath;
1595 }
1596
1597 /* Get the name actually used for a dynamic object for a link. This
1598 is the SONAME entry if there is one. Otherwise, it is the string
1599 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1600
1601 const char *
1602 bfd_elf_get_dt_soname (abfd)
1603 bfd *abfd;
1604 {
1605 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1606 && bfd_get_format (abfd) == bfd_object)
1607 return elf_dt_name (abfd);
1608 return NULL;
1609 }
1610
1611 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1612 the ELF linker emulation code. */
1613
1614 boolean
1615 bfd_elf_get_bfd_needed_list (abfd, pneeded)
1616 bfd *abfd;
1617 struct bfd_link_needed_list **pneeded;
1618 {
1619 asection *s;
1620 bfd_byte *dynbuf = NULL;
1621 int elfsec;
1622 unsigned long shlink;
1623 bfd_byte *extdyn, *extdynend;
1624 size_t extdynsize;
1625 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
1626
1627 *pneeded = NULL;
1628
1629 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1630 || bfd_get_format (abfd) != bfd_object)
1631 return true;
1632
1633 s = bfd_get_section_by_name (abfd, ".dynamic");
1634 if (s == NULL || s->_raw_size == 0)
1635 return true;
1636
1637 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
1638 if (dynbuf == NULL)
1639 goto error_return;
1640
1641 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
1642 s->_raw_size))
1643 goto error_return;
1644
1645 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1646 if (elfsec == -1)
1647 goto error_return;
1648
1649 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1650
1651 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1652 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1653
1654 extdyn = dynbuf;
1655 extdynend = extdyn + s->_raw_size;
1656 for (; extdyn < extdynend; extdyn += extdynsize)
1657 {
1658 Elf_Internal_Dyn dyn;
1659
1660 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
1661
1662 if (dyn.d_tag == DT_NULL)
1663 break;
1664
1665 if (dyn.d_tag == DT_NEEDED)
1666 {
1667 const char *string;
1668 struct bfd_link_needed_list *l;
1669 unsigned int tagv = dyn.d_un.d_val;
1670 bfd_size_type amt;
1671
1672 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1673 if (string == NULL)
1674 goto error_return;
1675
1676 amt = sizeof *l;
1677 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1678 if (l == NULL)
1679 goto error_return;
1680
1681 l->by = abfd;
1682 l->name = string;
1683 l->next = *pneeded;
1684 *pneeded = l;
1685 }
1686 }
1687
1688 free (dynbuf);
1689
1690 return true;
1691
1692 error_return:
1693 if (dynbuf != NULL)
1694 free (dynbuf);
1695 return false;
1696 }
1697 \f
1698 /* Allocate an ELF string table--force the first byte to be zero. */
1699
1700 struct bfd_strtab_hash *
1701 _bfd_elf_stringtab_init ()
1702 {
1703 struct bfd_strtab_hash *ret;
1704
1705 ret = _bfd_stringtab_init ();
1706 if (ret != NULL)
1707 {
1708 bfd_size_type loc;
1709
1710 loc = _bfd_stringtab_add (ret, "", true, false);
1711 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1712 if (loc == (bfd_size_type) -1)
1713 {
1714 _bfd_stringtab_free (ret);
1715 ret = NULL;
1716 }
1717 }
1718 return ret;
1719 }
1720 \f
1721 /* ELF .o/exec file reading */
1722
1723 /* Create a new bfd section from an ELF section header. */
1724
1725 boolean
1726 bfd_section_from_shdr (abfd, shindex)
1727 bfd *abfd;
1728 unsigned int shindex;
1729 {
1730 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1731 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1732 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1733 const char *name;
1734
1735 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1736
1737 switch (hdr->sh_type)
1738 {
1739 case SHT_NULL:
1740 /* Inactive section. Throw it away. */
1741 return true;
1742
1743 case SHT_PROGBITS: /* Normal section with contents. */
1744 case SHT_NOBITS: /* .bss section. */
1745 case SHT_HASH: /* .hash section. */
1746 case SHT_NOTE: /* .note section. */
1747 case SHT_INIT_ARRAY: /* .init_array section. */
1748 case SHT_FINI_ARRAY: /* .fini_array section. */
1749 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1750 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1751
1752 case SHT_DYNAMIC: /* Dynamic linking information. */
1753 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1754 return false;
1755 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1756 {
1757 Elf_Internal_Shdr *dynsymhdr;
1758
1759 /* The shared libraries distributed with hpux11 have a bogus
1760 sh_link field for the ".dynamic" section. Find the
1761 string table for the ".dynsym" section instead. */
1762 if (elf_dynsymtab (abfd) != 0)
1763 {
1764 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1765 hdr->sh_link = dynsymhdr->sh_link;
1766 }
1767 else
1768 {
1769 unsigned int i, num_sec;
1770
1771 num_sec = elf_numsections (abfd);
1772 for (i = 1; i < num_sec; i++)
1773 {
1774 dynsymhdr = elf_elfsections (abfd)[i];
1775 if (dynsymhdr->sh_type == SHT_DYNSYM)
1776 {
1777 hdr->sh_link = dynsymhdr->sh_link;
1778 break;
1779 }
1780 }
1781 }
1782 }
1783 break;
1784
1785 case SHT_SYMTAB: /* A symbol table */
1786 if (elf_onesymtab (abfd) == shindex)
1787 return true;
1788
1789 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1790 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1791 elf_onesymtab (abfd) = shindex;
1792 elf_tdata (abfd)->symtab_hdr = *hdr;
1793 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1794 abfd->flags |= HAS_SYMS;
1795
1796 /* Sometimes a shared object will map in the symbol table. If
1797 SHF_ALLOC is set, and this is a shared object, then we also
1798 treat this section as a BFD section. We can not base the
1799 decision purely on SHF_ALLOC, because that flag is sometimes
1800 set in a relocateable object file, which would confuse the
1801 linker. */
1802 if ((hdr->sh_flags & SHF_ALLOC) != 0
1803 && (abfd->flags & DYNAMIC) != 0
1804 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1805 return false;
1806
1807 return true;
1808
1809 case SHT_DYNSYM: /* A dynamic symbol table */
1810 if (elf_dynsymtab (abfd) == shindex)
1811 return true;
1812
1813 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1814 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1815 elf_dynsymtab (abfd) = shindex;
1816 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1817 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1818 abfd->flags |= HAS_SYMS;
1819
1820 /* Besides being a symbol table, we also treat this as a regular
1821 section, so that objcopy can handle it. */
1822 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1823
1824 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1825 if (elf_symtab_shndx (abfd) == shindex)
1826 return true;
1827
1828 /* Get the associated symbol table. */
1829 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1830 || hdr->sh_link != elf_onesymtab (abfd))
1831 return false;
1832
1833 elf_symtab_shndx (abfd) = shindex;
1834 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1835 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1836 return true;
1837
1838 case SHT_STRTAB: /* A string table */
1839 if (hdr->bfd_section != NULL)
1840 return true;
1841 if (ehdr->e_shstrndx == shindex)
1842 {
1843 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1844 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1845 return true;
1846 }
1847 {
1848 unsigned int i, num_sec;
1849
1850 num_sec = elf_numsections (abfd);
1851 for (i = 1; i < num_sec; i++)
1852 {
1853 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1854 if (hdr2->sh_link == shindex)
1855 {
1856 if (! bfd_section_from_shdr (abfd, i))
1857 return false;
1858 if (elf_onesymtab (abfd) == i)
1859 {
1860 elf_tdata (abfd)->strtab_hdr = *hdr;
1861 elf_elfsections (abfd)[shindex] =
1862 &elf_tdata (abfd)->strtab_hdr;
1863 return true;
1864 }
1865 if (elf_dynsymtab (abfd) == i)
1866 {
1867 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1868 elf_elfsections (abfd)[shindex] = hdr =
1869 &elf_tdata (abfd)->dynstrtab_hdr;
1870 /* We also treat this as a regular section, so
1871 that objcopy can handle it. */
1872 break;
1873 }
1874 #if 0 /* Not handling other string tables specially right now. */
1875 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1876 /* We have a strtab for some random other section. */
1877 newsect = (asection *) hdr2->bfd_section;
1878 if (!newsect)
1879 break;
1880 hdr->bfd_section = newsect;
1881 hdr2 = &elf_section_data (newsect)->str_hdr;
1882 *hdr2 = *hdr;
1883 elf_elfsections (abfd)[shindex] = hdr2;
1884 #endif
1885 }
1886 }
1887 }
1888
1889 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1890
1891 case SHT_REL:
1892 case SHT_RELA:
1893 /* *These* do a lot of work -- but build no sections! */
1894 {
1895 asection *target_sect;
1896 Elf_Internal_Shdr *hdr2;
1897 unsigned int num_sec = elf_numsections (abfd);
1898
1899 /* Check for a bogus link to avoid crashing. */
1900 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1901 || hdr->sh_link >= num_sec)
1902 {
1903 ((*_bfd_error_handler)
1904 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1905 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1906 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1907 }
1908
1909 /* For some incomprehensible reason Oracle distributes
1910 libraries for Solaris in which some of the objects have
1911 bogus sh_link fields. It would be nice if we could just
1912 reject them, but, unfortunately, some people need to use
1913 them. We scan through the section headers; if we find only
1914 one suitable symbol table, we clobber the sh_link to point
1915 to it. I hope this doesn't break anything. */
1916 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1917 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1918 {
1919 unsigned int scan;
1920 int found;
1921
1922 found = 0;
1923 for (scan = 1; scan < num_sec; scan++)
1924 {
1925 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1926 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1927 {
1928 if (found != 0)
1929 {
1930 found = 0;
1931 break;
1932 }
1933 found = scan;
1934 }
1935 }
1936 if (found != 0)
1937 hdr->sh_link = found;
1938 }
1939
1940 /* Get the symbol table. */
1941 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1942 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1943 return false;
1944
1945 /* If this reloc section does not use the main symbol table we
1946 don't treat it as a reloc section. BFD can't adequately
1947 represent such a section, so at least for now, we don't
1948 try. We just present it as a normal section. We also
1949 can't use it as a reloc section if it points to the null
1950 section. */
1951 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1952 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1953
1954 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1955 return false;
1956 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1957 if (target_sect == NULL)
1958 return false;
1959
1960 if ((target_sect->flags & SEC_RELOC) == 0
1961 || target_sect->reloc_count == 0)
1962 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1963 else
1964 {
1965 bfd_size_type amt;
1966 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1967 amt = sizeof (*hdr2);
1968 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1969 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1970 }
1971 *hdr2 = *hdr;
1972 elf_elfsections (abfd)[shindex] = hdr2;
1973 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1974 target_sect->flags |= SEC_RELOC;
1975 target_sect->relocation = NULL;
1976 target_sect->rel_filepos = hdr->sh_offset;
1977 /* In the section to which the relocations apply, mark whether
1978 its relocations are of the REL or RELA variety. */
1979 if (hdr->sh_size != 0)
1980 elf_section_data (target_sect)->use_rela_p
1981 = (hdr->sh_type == SHT_RELA);
1982 abfd->flags |= HAS_RELOC;
1983 return true;
1984 }
1985 break;
1986
1987 case SHT_GNU_verdef:
1988 elf_dynverdef (abfd) = shindex;
1989 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1990 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1991 break;
1992
1993 case SHT_GNU_versym:
1994 elf_dynversym (abfd) = shindex;
1995 elf_tdata (abfd)->dynversym_hdr = *hdr;
1996 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1997 break;
1998
1999 case SHT_GNU_verneed:
2000 elf_dynverref (abfd) = shindex;
2001 elf_tdata (abfd)->dynverref_hdr = *hdr;
2002 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
2003 break;
2004
2005 case SHT_SHLIB:
2006 return true;
2007
2008 case SHT_GROUP:
2009 /* We need a BFD section for objcopy and relocatable linking,
2010 and it's handy to have the signature available as the section
2011 name. */
2012 name = group_signature (abfd, hdr);
2013 if (name == NULL)
2014 return false;
2015 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
2016 return false;
2017 if (hdr->contents != NULL)
2018 {
2019 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2020 unsigned int n_elt = hdr->sh_size / 4;
2021 asection *s;
2022
2023 if (idx->flags & GRP_COMDAT)
2024 hdr->bfd_section->flags
2025 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2026
2027 while (--n_elt != 0)
2028 if ((s = (++idx)->shdr->bfd_section) != NULL
2029 && elf_next_in_group (s) != NULL)
2030 {
2031 elf_next_in_group (hdr->bfd_section) = s;
2032 break;
2033 }
2034 }
2035 break;
2036
2037 default:
2038 /* Check for any processor-specific section types. */
2039 {
2040 if (bed->elf_backend_section_from_shdr)
2041 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
2042 }
2043 break;
2044 }
2045
2046 return true;
2047 }
2048
2049 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2050 Return SEC for sections that have no elf section, and NULL on error. */
2051
2052 asection *
2053 bfd_section_from_r_symndx (abfd, cache, sec, r_symndx)
2054 bfd *abfd;
2055 struct sym_sec_cache *cache;
2056 asection *sec;
2057 unsigned long r_symndx;
2058 {
2059 Elf_Internal_Shdr *symtab_hdr;
2060 unsigned char esym[sizeof (Elf64_External_Sym)];
2061 Elf_External_Sym_Shndx eshndx;
2062 Elf_Internal_Sym isym;
2063 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2064
2065 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2066 return cache->sec[ent];
2067
2068 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2069 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2070 &isym, esym, &eshndx) == NULL)
2071 return NULL;
2072
2073 if (cache->abfd != abfd)
2074 {
2075 memset (cache->indx, -1, sizeof (cache->indx));
2076 cache->abfd = abfd;
2077 }
2078 cache->indx[ent] = r_symndx;
2079 cache->sec[ent] = sec;
2080 if (isym.st_shndx < SHN_LORESERVE || isym.st_shndx > SHN_HIRESERVE)
2081 {
2082 asection *s;
2083 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2084 if (s != NULL)
2085 cache->sec[ent] = s;
2086 }
2087 return cache->sec[ent];
2088 }
2089
2090 /* Given an ELF section number, retrieve the corresponding BFD
2091 section. */
2092
2093 asection *
2094 bfd_section_from_elf_index (abfd, index)
2095 bfd *abfd;
2096 unsigned int index;
2097 {
2098 if (index >= elf_numsections (abfd))
2099 return NULL;
2100 return elf_elfsections (abfd)[index]->bfd_section;
2101 }
2102
2103 boolean
2104 _bfd_elf_new_section_hook (abfd, sec)
2105 bfd *abfd;
2106 asection *sec;
2107 {
2108 struct bfd_elf_section_data *sdata;
2109 bfd_size_type amt = sizeof (*sdata);
2110
2111 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, amt);
2112 if (!sdata)
2113 return false;
2114 sec->used_by_bfd = (PTR) sdata;
2115
2116 /* Indicate whether or not this section should use RELA relocations. */
2117 sdata->use_rela_p
2118 = get_elf_backend_data (abfd)->default_use_rela_p;
2119
2120 return true;
2121 }
2122
2123 /* Create a new bfd section from an ELF program header.
2124
2125 Since program segments have no names, we generate a synthetic name
2126 of the form segment<NUM>, where NUM is generally the index in the
2127 program header table. For segments that are split (see below) we
2128 generate the names segment<NUM>a and segment<NUM>b.
2129
2130 Note that some program segments may have a file size that is different than
2131 (less than) the memory size. All this means is that at execution the
2132 system must allocate the amount of memory specified by the memory size,
2133 but only initialize it with the first "file size" bytes read from the
2134 file. This would occur for example, with program segments consisting
2135 of combined data+bss.
2136
2137 To handle the above situation, this routine generates TWO bfd sections
2138 for the single program segment. The first has the length specified by
2139 the file size of the segment, and the second has the length specified
2140 by the difference between the two sizes. In effect, the segment is split
2141 into it's initialized and uninitialized parts.
2142
2143 */
2144
2145 boolean
2146 _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)
2147 bfd *abfd;
2148 Elf_Internal_Phdr *hdr;
2149 int index;
2150 const char *typename;
2151 {
2152 asection *newsect;
2153 char *name;
2154 char namebuf[64];
2155 size_t len;
2156 int split;
2157
2158 split = ((hdr->p_memsz > 0)
2159 && (hdr->p_filesz > 0)
2160 && (hdr->p_memsz > hdr->p_filesz));
2161 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2162 len = strlen (namebuf) + 1;
2163 name = bfd_alloc (abfd, (bfd_size_type) len);
2164 if (!name)
2165 return false;
2166 memcpy (name, namebuf, len);
2167 newsect = bfd_make_section (abfd, name);
2168 if (newsect == NULL)
2169 return false;
2170 newsect->vma = hdr->p_vaddr;
2171 newsect->lma = hdr->p_paddr;
2172 newsect->_raw_size = hdr->p_filesz;
2173 newsect->filepos = hdr->p_offset;
2174 newsect->flags |= SEC_HAS_CONTENTS;
2175 if (hdr->p_type == PT_LOAD)
2176 {
2177 newsect->flags |= SEC_ALLOC;
2178 newsect->flags |= SEC_LOAD;
2179 if (hdr->p_flags & PF_X)
2180 {
2181 /* FIXME: all we known is that it has execute PERMISSION,
2182 may be data. */
2183 newsect->flags |= SEC_CODE;
2184 }
2185 }
2186 if (!(hdr->p_flags & PF_W))
2187 {
2188 newsect->flags |= SEC_READONLY;
2189 }
2190
2191 if (split)
2192 {
2193 sprintf (namebuf, "%s%db", typename, index);
2194 len = strlen (namebuf) + 1;
2195 name = bfd_alloc (abfd, (bfd_size_type) len);
2196 if (!name)
2197 return false;
2198 memcpy (name, namebuf, len);
2199 newsect = bfd_make_section (abfd, name);
2200 if (newsect == NULL)
2201 return false;
2202 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2203 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2204 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2205 if (hdr->p_type == PT_LOAD)
2206 {
2207 newsect->flags |= SEC_ALLOC;
2208 if (hdr->p_flags & PF_X)
2209 newsect->flags |= SEC_CODE;
2210 }
2211 if (!(hdr->p_flags & PF_W))
2212 newsect->flags |= SEC_READONLY;
2213 }
2214
2215 return true;
2216 }
2217
2218 boolean
2219 bfd_section_from_phdr (abfd, hdr, index)
2220 bfd *abfd;
2221 Elf_Internal_Phdr *hdr;
2222 int index;
2223 {
2224 struct elf_backend_data *bed;
2225
2226 switch (hdr->p_type)
2227 {
2228 case PT_NULL:
2229 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2230
2231 case PT_LOAD:
2232 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2233
2234 case PT_DYNAMIC:
2235 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2236
2237 case PT_INTERP:
2238 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2239
2240 case PT_NOTE:
2241 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2242 return false;
2243 if (! elfcore_read_notes (abfd, (file_ptr) hdr->p_offset, hdr->p_filesz))
2244 return false;
2245 return true;
2246
2247 case PT_SHLIB:
2248 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2249
2250 case PT_PHDR:
2251 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2252
2253 default:
2254 /* Check for any processor-specific program segment types.
2255 If no handler for them, default to making "segment" sections. */
2256 bed = get_elf_backend_data (abfd);
2257 if (bed->elf_backend_section_from_phdr)
2258 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2259 else
2260 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2261 }
2262 }
2263
2264 /* Initialize REL_HDR, the section-header for new section, containing
2265 relocations against ASECT. If USE_RELA_P is true, we use RELA
2266 relocations; otherwise, we use REL relocations. */
2267
2268 boolean
2269 _bfd_elf_init_reloc_shdr (abfd, rel_hdr, asect, use_rela_p)
2270 bfd *abfd;
2271 Elf_Internal_Shdr *rel_hdr;
2272 asection *asect;
2273 boolean use_rela_p;
2274 {
2275 char *name;
2276 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2277 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2278
2279 name = bfd_alloc (abfd, amt);
2280 if (name == NULL)
2281 return false;
2282 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2283 rel_hdr->sh_name =
2284 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2285 false);
2286 if (rel_hdr->sh_name == (unsigned int) -1)
2287 return false;
2288 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2289 rel_hdr->sh_entsize = (use_rela_p
2290 ? bed->s->sizeof_rela
2291 : bed->s->sizeof_rel);
2292 rel_hdr->sh_addralign = bed->s->file_align;
2293 rel_hdr->sh_flags = 0;
2294 rel_hdr->sh_addr = 0;
2295 rel_hdr->sh_size = 0;
2296 rel_hdr->sh_offset = 0;
2297
2298 return true;
2299 }
2300
2301 /* Set up an ELF internal section header for a section. */
2302
2303 static void
2304 elf_fake_sections (abfd, asect, failedptrarg)
2305 bfd *abfd;
2306 asection *asect;
2307 PTR failedptrarg;
2308 {
2309 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2310 boolean *failedptr = (boolean *) failedptrarg;
2311 Elf_Internal_Shdr *this_hdr;
2312
2313 if (*failedptr)
2314 {
2315 /* We already failed; just get out of the bfd_map_over_sections
2316 loop. */
2317 return;
2318 }
2319
2320 this_hdr = &elf_section_data (asect)->this_hdr;
2321
2322 this_hdr->sh_name = (unsigned long) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2323 asect->name, false);
2324 if (this_hdr->sh_name == (unsigned long) -1)
2325 {
2326 *failedptr = true;
2327 return;
2328 }
2329
2330 this_hdr->sh_flags = 0;
2331
2332 if ((asect->flags & SEC_ALLOC) != 0
2333 || asect->user_set_vma)
2334 this_hdr->sh_addr = asect->vma;
2335 else
2336 this_hdr->sh_addr = 0;
2337
2338 this_hdr->sh_offset = 0;
2339 this_hdr->sh_size = asect->_raw_size;
2340 this_hdr->sh_link = 0;
2341 this_hdr->sh_addralign = 1 << asect->alignment_power;
2342 /* The sh_entsize and sh_info fields may have been set already by
2343 copy_private_section_data. */
2344
2345 this_hdr->bfd_section = asect;
2346 this_hdr->contents = NULL;
2347
2348 /* FIXME: This should not be based on section names. */
2349 if (strcmp (asect->name, ".dynstr") == 0)
2350 this_hdr->sh_type = SHT_STRTAB;
2351 else if (strcmp (asect->name, ".hash") == 0)
2352 {
2353 this_hdr->sh_type = SHT_HASH;
2354 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2355 }
2356 else if (strcmp (asect->name, ".dynsym") == 0)
2357 {
2358 this_hdr->sh_type = SHT_DYNSYM;
2359 this_hdr->sh_entsize = bed->s->sizeof_sym;
2360 }
2361 else if (strcmp (asect->name, ".dynamic") == 0)
2362 {
2363 this_hdr->sh_type = SHT_DYNAMIC;
2364 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2365 }
2366 else if (strncmp (asect->name, ".rela", 5) == 0
2367 && get_elf_backend_data (abfd)->may_use_rela_p)
2368 {
2369 this_hdr->sh_type = SHT_RELA;
2370 this_hdr->sh_entsize = bed->s->sizeof_rela;
2371 }
2372 else if (strncmp (asect->name, ".rel", 4) == 0
2373 && get_elf_backend_data (abfd)->may_use_rel_p)
2374 {
2375 this_hdr->sh_type = SHT_REL;
2376 this_hdr->sh_entsize = bed->s->sizeof_rel;
2377 }
2378 else if (strcmp (asect->name, ".init_array") == 0)
2379 this_hdr->sh_type = SHT_INIT_ARRAY;
2380 else if (strcmp (asect->name, ".fini_array") == 0)
2381 this_hdr->sh_type = SHT_FINI_ARRAY;
2382 else if (strcmp (asect->name, ".preinit_array") == 0)
2383 this_hdr->sh_type = SHT_PREINIT_ARRAY;
2384 else if (strncmp (asect->name, ".note", 5) == 0)
2385 this_hdr->sh_type = SHT_NOTE;
2386 else if (strncmp (asect->name, ".stab", 5) == 0
2387 && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0)
2388 this_hdr->sh_type = SHT_STRTAB;
2389 else if (strcmp (asect->name, ".gnu.version") == 0)
2390 {
2391 this_hdr->sh_type = SHT_GNU_versym;
2392 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2393 }
2394 else if (strcmp (asect->name, ".gnu.version_d") == 0)
2395 {
2396 this_hdr->sh_type = SHT_GNU_verdef;
2397 this_hdr->sh_entsize = 0;
2398 /* objcopy or strip will copy over sh_info, but may not set
2399 cverdefs. The linker will set cverdefs, but sh_info will be
2400 zero. */
2401 if (this_hdr->sh_info == 0)
2402 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2403 else
2404 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2405 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2406 }
2407 else if (strcmp (asect->name, ".gnu.version_r") == 0)
2408 {
2409 this_hdr->sh_type = SHT_GNU_verneed;
2410 this_hdr->sh_entsize = 0;
2411 /* objcopy or strip will copy over sh_info, but may not set
2412 cverrefs. The linker will set cverrefs, but sh_info will be
2413 zero. */
2414 if (this_hdr->sh_info == 0)
2415 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2416 else
2417 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2418 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2419 }
2420 else if ((asect->flags & SEC_GROUP) != 0)
2421 {
2422 this_hdr->sh_type = SHT_GROUP;
2423 this_hdr->sh_entsize = 4;
2424 }
2425 else if ((asect->flags & SEC_ALLOC) != 0
2426 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2427 || (asect->flags & SEC_NEVER_LOAD) != 0))
2428 this_hdr->sh_type = SHT_NOBITS;
2429 else
2430 this_hdr->sh_type = SHT_PROGBITS;
2431
2432 if ((asect->flags & SEC_ALLOC) != 0)
2433 this_hdr->sh_flags |= SHF_ALLOC;
2434 if ((asect->flags & SEC_READONLY) == 0)
2435 this_hdr->sh_flags |= SHF_WRITE;
2436 if ((asect->flags & SEC_CODE) != 0)
2437 this_hdr->sh_flags |= SHF_EXECINSTR;
2438 if ((asect->flags & SEC_MERGE) != 0)
2439 {
2440 this_hdr->sh_flags |= SHF_MERGE;
2441 this_hdr->sh_entsize = asect->entsize;
2442 if ((asect->flags & SEC_STRINGS) != 0)
2443 this_hdr->sh_flags |= SHF_STRINGS;
2444 }
2445 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2446 this_hdr->sh_flags |= SHF_GROUP;
2447 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2448 {
2449 this_hdr->sh_flags |= SHF_TLS;
2450 if (asect->_raw_size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2451 {
2452 struct bfd_link_order *o;
2453
2454 this_hdr->sh_size = 0;
2455 for (o = asect->link_order_head; o != NULL; o = o->next)
2456 if (this_hdr->sh_size < o->offset + o->size)
2457 this_hdr->sh_size = o->offset + o->size;
2458 if (this_hdr->sh_size)
2459 this_hdr->sh_type = SHT_NOBITS;
2460 }
2461 }
2462
2463 /* Check for processor-specific section types. */
2464 if (bed->elf_backend_fake_sections
2465 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2466 *failedptr = true;
2467
2468 /* If the section has relocs, set up a section header for the
2469 SHT_REL[A] section. If two relocation sections are required for
2470 this section, it is up to the processor-specific back-end to
2471 create the other. */
2472 if ((asect->flags & SEC_RELOC) != 0
2473 && !_bfd_elf_init_reloc_shdr (abfd,
2474 &elf_section_data (asect)->rel_hdr,
2475 asect,
2476 elf_section_data (asect)->use_rela_p))
2477 *failedptr = true;
2478 }
2479
2480 /* Fill in the contents of a SHT_GROUP section. */
2481
2482 void
2483 bfd_elf_set_group_contents (abfd, sec, failedptrarg)
2484 bfd *abfd;
2485 asection *sec;
2486 PTR failedptrarg;
2487 {
2488 boolean *failedptr = (boolean *) failedptrarg;
2489 unsigned long symindx;
2490 asection *elt, *first;
2491 unsigned char *loc;
2492 struct bfd_link_order *l;
2493 boolean gas;
2494
2495 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2496 || *failedptr)
2497 return;
2498
2499 symindx = 0;
2500 if (elf_group_id (sec) != NULL)
2501 symindx = elf_group_id (sec)->udata.i;
2502
2503 if (symindx == 0)
2504 {
2505 /* If called from the assembler, swap_out_syms will have set up
2506 elf_section_syms; If called for "ld -r", use target_index. */
2507 if (elf_section_syms (abfd) != NULL)
2508 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2509 else
2510 symindx = sec->target_index;
2511 }
2512 elf_section_data (sec)->this_hdr.sh_info = symindx;
2513
2514 /* The contents won't be allocated for "ld -r" or objcopy. */
2515 gas = true;
2516 if (sec->contents == NULL)
2517 {
2518 gas = false;
2519 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2520
2521 /* Arrange for the section to be written out. */
2522 elf_section_data (sec)->this_hdr.contents = sec->contents;
2523 if (sec->contents == NULL)
2524 {
2525 *failedptr = true;
2526 return;
2527 }
2528 }
2529
2530 loc = sec->contents + sec->_raw_size;
2531
2532 /* Get the pointer to the first section in the group that gas
2533 squirreled away here. objcopy arranges for this to be set to the
2534 start of the input section group. */
2535 first = elt = elf_next_in_group (sec);
2536
2537 /* First element is a flag word. Rest of section is elf section
2538 indices for all the sections of the group. Write them backwards
2539 just to keep the group in the same order as given in .section
2540 directives, not that it matters. */
2541 while (elt != NULL)
2542 {
2543 asection *s;
2544 unsigned int idx;
2545
2546 loc -= 4;
2547 s = elt;
2548 if (!gas)
2549 s = s->output_section;
2550 idx = 0;
2551 if (s != NULL)
2552 idx = elf_section_data (s)->this_idx;
2553 H_PUT_32 (abfd, idx, loc);
2554 elt = elf_next_in_group (elt);
2555 if (elt == first)
2556 break;
2557 }
2558
2559 /* If this is a relocatable link, then the above did nothing because
2560 SEC is the output section. Look through the input sections
2561 instead. */
2562 for (l = sec->link_order_head; l != NULL; l = l->next)
2563 if (l->type == bfd_indirect_link_order
2564 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2565 do
2566 {
2567 loc -= 4;
2568 H_PUT_32 (abfd,
2569 elf_section_data (elt->output_section)->this_idx, loc);
2570 elt = elf_next_in_group (elt);
2571 /* During a relocatable link, the lists are circular. */
2572 }
2573 while (elt != elf_next_in_group (l->u.indirect.section));
2574
2575 /* With ld -r, merging SHT_GROUP sections results in wasted space
2576 due to allowing for the flag word on each input. We may well
2577 duplicate entries too. */
2578 while ((loc -= 4) > sec->contents)
2579 H_PUT_32 (abfd, 0, loc);
2580
2581 if (loc != sec->contents)
2582 abort ();
2583
2584 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2585 }
2586
2587 /* Assign all ELF section numbers. The dummy first section is handled here
2588 too. The link/info pointers for the standard section types are filled
2589 in here too, while we're at it. */
2590
2591 static boolean
2592 assign_section_numbers (abfd)
2593 bfd *abfd;
2594 {
2595 struct elf_obj_tdata *t = elf_tdata (abfd);
2596 asection *sec;
2597 unsigned int section_number, secn;
2598 Elf_Internal_Shdr **i_shdrp;
2599 bfd_size_type amt;
2600
2601 section_number = 1;
2602
2603 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2604
2605 for (sec = abfd->sections; sec; sec = sec->next)
2606 {
2607 struct bfd_elf_section_data *d = elf_section_data (sec);
2608
2609 if (section_number == SHN_LORESERVE)
2610 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2611 d->this_idx = section_number++;
2612 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2613 if ((sec->flags & SEC_RELOC) == 0)
2614 d->rel_idx = 0;
2615 else
2616 {
2617 if (section_number == SHN_LORESERVE)
2618 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2619 d->rel_idx = section_number++;
2620 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2621 }
2622
2623 if (d->rel_hdr2)
2624 {
2625 if (section_number == SHN_LORESERVE)
2626 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2627 d->rel_idx2 = section_number++;
2628 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2629 }
2630 else
2631 d->rel_idx2 = 0;
2632 }
2633
2634 if (section_number == SHN_LORESERVE)
2635 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2636 t->shstrtab_section = section_number++;
2637 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2638 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2639
2640 if (bfd_get_symcount (abfd) > 0)
2641 {
2642 if (section_number == SHN_LORESERVE)
2643 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2644 t->symtab_section = section_number++;
2645 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2646 if (section_number > SHN_LORESERVE - 2)
2647 {
2648 if (section_number == SHN_LORESERVE)
2649 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2650 t->symtab_shndx_section = section_number++;
2651 t->symtab_shndx_hdr.sh_name
2652 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2653 ".symtab_shndx", false);
2654 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2655 return false;
2656 }
2657 if (section_number == SHN_LORESERVE)
2658 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2659 t->strtab_section = section_number++;
2660 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2661 }
2662
2663 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2664 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2665
2666 elf_numsections (abfd) = section_number;
2667 elf_elfheader (abfd)->e_shnum = section_number;
2668 if (section_number > SHN_LORESERVE)
2669 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2670
2671 /* Set up the list of section header pointers, in agreement with the
2672 indices. */
2673 amt = section_number * sizeof (Elf_Internal_Shdr *);
2674 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
2675 if (i_shdrp == NULL)
2676 return false;
2677
2678 amt = sizeof (Elf_Internal_Shdr);
2679 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
2680 if (i_shdrp[0] == NULL)
2681 {
2682 bfd_release (abfd, i_shdrp);
2683 return false;
2684 }
2685
2686 elf_elfsections (abfd) = i_shdrp;
2687
2688 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2689 if (bfd_get_symcount (abfd) > 0)
2690 {
2691 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2692 if (elf_numsections (abfd) > SHN_LORESERVE)
2693 {
2694 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2695 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2696 }
2697 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2698 t->symtab_hdr.sh_link = t->strtab_section;
2699 }
2700 for (sec = abfd->sections; sec; sec = sec->next)
2701 {
2702 struct bfd_elf_section_data *d = elf_section_data (sec);
2703 asection *s;
2704 const char *name;
2705
2706 i_shdrp[d->this_idx] = &d->this_hdr;
2707 if (d->rel_idx != 0)
2708 i_shdrp[d->rel_idx] = &d->rel_hdr;
2709 if (d->rel_idx2 != 0)
2710 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2711
2712 /* Fill in the sh_link and sh_info fields while we're at it. */
2713
2714 /* sh_link of a reloc section is the section index of the symbol
2715 table. sh_info is the section index of the section to which
2716 the relocation entries apply. */
2717 if (d->rel_idx != 0)
2718 {
2719 d->rel_hdr.sh_link = t->symtab_section;
2720 d->rel_hdr.sh_info = d->this_idx;
2721 }
2722 if (d->rel_idx2 != 0)
2723 {
2724 d->rel_hdr2->sh_link = t->symtab_section;
2725 d->rel_hdr2->sh_info = d->this_idx;
2726 }
2727
2728 switch (d->this_hdr.sh_type)
2729 {
2730 case SHT_REL:
2731 case SHT_RELA:
2732 /* A reloc section which we are treating as a normal BFD
2733 section. sh_link is the section index of the symbol
2734 table. sh_info is the section index of the section to
2735 which the relocation entries apply. We assume that an
2736 allocated reloc section uses the dynamic symbol table.
2737 FIXME: How can we be sure? */
2738 s = bfd_get_section_by_name (abfd, ".dynsym");
2739 if (s != NULL)
2740 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2741
2742 /* We look up the section the relocs apply to by name. */
2743 name = sec->name;
2744 if (d->this_hdr.sh_type == SHT_REL)
2745 name += 4;
2746 else
2747 name += 5;
2748 s = bfd_get_section_by_name (abfd, name);
2749 if (s != NULL)
2750 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2751 break;
2752
2753 case SHT_STRTAB:
2754 /* We assume that a section named .stab*str is a stabs
2755 string section. We look for a section with the same name
2756 but without the trailing ``str'', and set its sh_link
2757 field to point to this section. */
2758 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2759 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2760 {
2761 size_t len;
2762 char *alc;
2763
2764 len = strlen (sec->name);
2765 alc = (char *) bfd_malloc ((bfd_size_type) (len - 2));
2766 if (alc == NULL)
2767 return false;
2768 memcpy (alc, sec->name, len - 3);
2769 alc[len - 3] = '\0';
2770 s = bfd_get_section_by_name (abfd, alc);
2771 free (alc);
2772 if (s != NULL)
2773 {
2774 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2775
2776 /* This is a .stab section. */
2777 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2778 elf_section_data (s)->this_hdr.sh_entsize
2779 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2780 }
2781 }
2782 break;
2783
2784 case SHT_DYNAMIC:
2785 case SHT_DYNSYM:
2786 case SHT_GNU_verneed:
2787 case SHT_GNU_verdef:
2788 /* sh_link is the section header index of the string table
2789 used for the dynamic entries, or the symbol table, or the
2790 version strings. */
2791 s = bfd_get_section_by_name (abfd, ".dynstr");
2792 if (s != NULL)
2793 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2794 break;
2795
2796 case SHT_HASH:
2797 case SHT_GNU_versym:
2798 /* sh_link is the section header index of the symbol table
2799 this hash table or version table is for. */
2800 s = bfd_get_section_by_name (abfd, ".dynsym");
2801 if (s != NULL)
2802 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2803 break;
2804
2805 case SHT_GROUP:
2806 d->this_hdr.sh_link = t->symtab_section;
2807 }
2808 }
2809
2810 for (secn = 1; secn < section_number; ++secn)
2811 if (i_shdrp[secn] == NULL)
2812 i_shdrp[secn] = i_shdrp[0];
2813 else
2814 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2815 i_shdrp[secn]->sh_name);
2816 return true;
2817 }
2818
2819 /* Map symbol from it's internal number to the external number, moving
2820 all local symbols to be at the head of the list. */
2821
2822 static INLINE int
2823 sym_is_global (abfd, sym)
2824 bfd *abfd;
2825 asymbol *sym;
2826 {
2827 /* If the backend has a special mapping, use it. */
2828 if (get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2829 return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2830 (abfd, sym));
2831
2832 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2833 || bfd_is_und_section (bfd_get_section (sym))
2834 || bfd_is_com_section (bfd_get_section (sym)));
2835 }
2836
2837 static boolean
2838 elf_map_symbols (abfd)
2839 bfd *abfd;
2840 {
2841 unsigned int symcount = bfd_get_symcount (abfd);
2842 asymbol **syms = bfd_get_outsymbols (abfd);
2843 asymbol **sect_syms;
2844 unsigned int num_locals = 0;
2845 unsigned int num_globals = 0;
2846 unsigned int num_locals2 = 0;
2847 unsigned int num_globals2 = 0;
2848 int max_index = 0;
2849 unsigned int idx;
2850 asection *asect;
2851 asymbol **new_syms;
2852 bfd_size_type amt;
2853
2854 #ifdef DEBUG
2855 fprintf (stderr, "elf_map_symbols\n");
2856 fflush (stderr);
2857 #endif
2858
2859 for (asect = abfd->sections; asect; asect = asect->next)
2860 {
2861 if (max_index < asect->index)
2862 max_index = asect->index;
2863 }
2864
2865 max_index++;
2866 amt = max_index * sizeof (asymbol *);
2867 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
2868 if (sect_syms == NULL)
2869 return false;
2870 elf_section_syms (abfd) = sect_syms;
2871 elf_num_section_syms (abfd) = max_index;
2872
2873 /* Init sect_syms entries for any section symbols we have already
2874 decided to output. */
2875 for (idx = 0; idx < symcount; idx++)
2876 {
2877 asymbol *sym = syms[idx];
2878
2879 if ((sym->flags & BSF_SECTION_SYM) != 0
2880 && sym->value == 0)
2881 {
2882 asection *sec;
2883
2884 sec = sym->section;
2885
2886 if (sec->owner != NULL)
2887 {
2888 if (sec->owner != abfd)
2889 {
2890 if (sec->output_offset != 0)
2891 continue;
2892
2893 sec = sec->output_section;
2894
2895 /* Empty sections in the input files may have had a
2896 section symbol created for them. (See the comment
2897 near the end of _bfd_generic_link_output_symbols in
2898 linker.c). If the linker script discards such
2899 sections then we will reach this point. Since we know
2900 that we cannot avoid this case, we detect it and skip
2901 the abort and the assignment to the sect_syms array.
2902 To reproduce this particular case try running the
2903 linker testsuite test ld-scripts/weak.exp for an ELF
2904 port that uses the generic linker. */
2905 if (sec->owner == NULL)
2906 continue;
2907
2908 BFD_ASSERT (sec->owner == abfd);
2909 }
2910 sect_syms[sec->index] = syms[idx];
2911 }
2912 }
2913 }
2914
2915 /* Classify all of the symbols. */
2916 for (idx = 0; idx < symcount; idx++)
2917 {
2918 if (!sym_is_global (abfd, syms[idx]))
2919 num_locals++;
2920 else
2921 num_globals++;
2922 }
2923
2924 /* We will be adding a section symbol for each BFD section. Most normal
2925 sections will already have a section symbol in outsymbols, but
2926 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2927 at least in that case. */
2928 for (asect = abfd->sections; asect; asect = asect->next)
2929 {
2930 if (sect_syms[asect->index] == NULL)
2931 {
2932 if (!sym_is_global (abfd, asect->symbol))
2933 num_locals++;
2934 else
2935 num_globals++;
2936 }
2937 }
2938
2939 /* Now sort the symbols so the local symbols are first. */
2940 amt = (num_locals + num_globals) * sizeof (asymbol *);
2941 new_syms = (asymbol **) bfd_alloc (abfd, amt);
2942
2943 if (new_syms == NULL)
2944 return false;
2945
2946 for (idx = 0; idx < symcount; idx++)
2947 {
2948 asymbol *sym = syms[idx];
2949 unsigned int i;
2950
2951 if (!sym_is_global (abfd, sym))
2952 i = num_locals2++;
2953 else
2954 i = num_locals + num_globals2++;
2955 new_syms[i] = sym;
2956 sym->udata.i = i + 1;
2957 }
2958 for (asect = abfd->sections; asect; asect = asect->next)
2959 {
2960 if (sect_syms[asect->index] == NULL)
2961 {
2962 asymbol *sym = asect->symbol;
2963 unsigned int i;
2964
2965 sect_syms[asect->index] = sym;
2966 if (!sym_is_global (abfd, sym))
2967 i = num_locals2++;
2968 else
2969 i = num_locals + num_globals2++;
2970 new_syms[i] = sym;
2971 sym->udata.i = i + 1;
2972 }
2973 }
2974
2975 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
2976
2977 elf_num_locals (abfd) = num_locals;
2978 elf_num_globals (abfd) = num_globals;
2979 return true;
2980 }
2981
2982 /* Align to the maximum file alignment that could be required for any
2983 ELF data structure. */
2984
2985 static INLINE file_ptr align_file_position PARAMS ((file_ptr, int));
2986 static INLINE file_ptr
2987 align_file_position (off, align)
2988 file_ptr off;
2989 int align;
2990 {
2991 return (off + align - 1) & ~(align - 1);
2992 }
2993
2994 /* Assign a file position to a section, optionally aligning to the
2995 required section alignment. */
2996
2997 INLINE file_ptr
2998 _bfd_elf_assign_file_position_for_section (i_shdrp, offset, align)
2999 Elf_Internal_Shdr *i_shdrp;
3000 file_ptr offset;
3001 boolean align;
3002 {
3003 if (align)
3004 {
3005 unsigned int al;
3006
3007 al = i_shdrp->sh_addralign;
3008 if (al > 1)
3009 offset = BFD_ALIGN (offset, al);
3010 }
3011 i_shdrp->sh_offset = offset;
3012 if (i_shdrp->bfd_section != NULL)
3013 i_shdrp->bfd_section->filepos = offset;
3014 if (i_shdrp->sh_type != SHT_NOBITS)
3015 offset += i_shdrp->sh_size;
3016 return offset;
3017 }
3018
3019 /* Compute the file positions we are going to put the sections at, and
3020 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3021 is not NULL, this is being called by the ELF backend linker. */
3022
3023 boolean
3024 _bfd_elf_compute_section_file_positions (abfd, link_info)
3025 bfd *abfd;
3026 struct bfd_link_info *link_info;
3027 {
3028 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3029 boolean failed;
3030 struct bfd_strtab_hash *strtab;
3031 Elf_Internal_Shdr *shstrtab_hdr;
3032
3033 if (abfd->output_has_begun)
3034 return true;
3035
3036 /* Do any elf backend specific processing first. */
3037 if (bed->elf_backend_begin_write_processing)
3038 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3039
3040 if (! prep_headers (abfd))
3041 return false;
3042
3043 /* Post process the headers if necessary. */
3044 if (bed->elf_backend_post_process_headers)
3045 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3046
3047 failed = false;
3048 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3049 if (failed)
3050 return false;
3051
3052 if (!assign_section_numbers (abfd))
3053 return false;
3054
3055 /* The backend linker builds symbol table information itself. */
3056 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3057 {
3058 /* Non-zero if doing a relocatable link. */
3059 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3060
3061 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3062 return false;
3063 }
3064
3065 if (link_info == NULL)
3066 {
3067 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3068 if (failed)
3069 return false;
3070 }
3071
3072 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3073 /* sh_name was set in prep_headers. */
3074 shstrtab_hdr->sh_type = SHT_STRTAB;
3075 shstrtab_hdr->sh_flags = 0;
3076 shstrtab_hdr->sh_addr = 0;
3077 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3078 shstrtab_hdr->sh_entsize = 0;
3079 shstrtab_hdr->sh_link = 0;
3080 shstrtab_hdr->sh_info = 0;
3081 /* sh_offset is set in assign_file_positions_except_relocs. */
3082 shstrtab_hdr->sh_addralign = 1;
3083
3084 if (!assign_file_positions_except_relocs (abfd))
3085 return false;
3086
3087 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3088 {
3089 file_ptr off;
3090 Elf_Internal_Shdr *hdr;
3091
3092 off = elf_tdata (abfd)->next_file_pos;
3093
3094 hdr = &elf_tdata (abfd)->symtab_hdr;
3095 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3096
3097 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3098 if (hdr->sh_size != 0)
3099 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3100
3101 hdr = &elf_tdata (abfd)->strtab_hdr;
3102 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3103
3104 elf_tdata (abfd)->next_file_pos = off;
3105
3106 /* Now that we know where the .strtab section goes, write it
3107 out. */
3108 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3109 || ! _bfd_stringtab_emit (abfd, strtab))
3110 return false;
3111 _bfd_stringtab_free (strtab);
3112 }
3113
3114 abfd->output_has_begun = true;
3115
3116 return true;
3117 }
3118
3119 /* Create a mapping from a set of sections to a program segment. */
3120
3121 static INLINE struct elf_segment_map *
3122 make_mapping (abfd, sections, from, to, phdr)
3123 bfd *abfd;
3124 asection **sections;
3125 unsigned int from;
3126 unsigned int to;
3127 boolean phdr;
3128 {
3129 struct elf_segment_map *m;
3130 unsigned int i;
3131 asection **hdrpp;
3132 bfd_size_type amt;
3133
3134 amt = sizeof (struct elf_segment_map);
3135 amt += (to - from - 1) * sizeof (asection *);
3136 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3137 if (m == NULL)
3138 return NULL;
3139 m->next = NULL;
3140 m->p_type = PT_LOAD;
3141 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3142 m->sections[i - from] = *hdrpp;
3143 m->count = to - from;
3144
3145 if (from == 0 && phdr)
3146 {
3147 /* Include the headers in the first PT_LOAD segment. */
3148 m->includes_filehdr = 1;
3149 m->includes_phdrs = 1;
3150 }
3151
3152 return m;
3153 }
3154
3155 /* Set up a mapping from BFD sections to program segments. */
3156
3157 static boolean
3158 map_sections_to_segments (abfd)
3159 bfd *abfd;
3160 {
3161 asection **sections = NULL;
3162 asection *s;
3163 unsigned int i;
3164 unsigned int count;
3165 struct elf_segment_map *mfirst;
3166 struct elf_segment_map **pm;
3167 struct elf_segment_map *m;
3168 asection *last_hdr;
3169 unsigned int phdr_index;
3170 bfd_vma maxpagesize;
3171 asection **hdrpp;
3172 boolean phdr_in_segment = true;
3173 boolean writable;
3174 int tls_count = 0;
3175 asection *first_tls = NULL;
3176 asection *dynsec, *eh_frame_hdr;
3177 bfd_size_type amt;
3178
3179 if (elf_tdata (abfd)->segment_map != NULL)
3180 return true;
3181
3182 if (bfd_count_sections (abfd) == 0)
3183 return true;
3184
3185 /* Select the allocated sections, and sort them. */
3186
3187 amt = bfd_count_sections (abfd) * sizeof (asection *);
3188 sections = (asection **) bfd_malloc (amt);
3189 if (sections == NULL)
3190 goto error_return;
3191
3192 i = 0;
3193 for (s = abfd->sections; s != NULL; s = s->next)
3194 {
3195 if ((s->flags & SEC_ALLOC) != 0)
3196 {
3197 sections[i] = s;
3198 ++i;
3199 }
3200 }
3201 BFD_ASSERT (i <= bfd_count_sections (abfd));
3202 count = i;
3203
3204 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3205
3206 /* Build the mapping. */
3207
3208 mfirst = NULL;
3209 pm = &mfirst;
3210
3211 /* If we have a .interp section, then create a PT_PHDR segment for
3212 the program headers and a PT_INTERP segment for the .interp
3213 section. */
3214 s = bfd_get_section_by_name (abfd, ".interp");
3215 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3216 {
3217 amt = sizeof (struct elf_segment_map);
3218 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3219 if (m == NULL)
3220 goto error_return;
3221 m->next = NULL;
3222 m->p_type = PT_PHDR;
3223 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3224 m->p_flags = PF_R | PF_X;
3225 m->p_flags_valid = 1;
3226 m->includes_phdrs = 1;
3227
3228 *pm = m;
3229 pm = &m->next;
3230
3231 amt = sizeof (struct elf_segment_map);
3232 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3233 if (m == NULL)
3234 goto error_return;
3235 m->next = NULL;
3236 m->p_type = PT_INTERP;
3237 m->count = 1;
3238 m->sections[0] = s;
3239
3240 *pm = m;
3241 pm = &m->next;
3242 }
3243
3244 /* Look through the sections. We put sections in the same program
3245 segment when the start of the second section can be placed within
3246 a few bytes of the end of the first section. */
3247 last_hdr = NULL;
3248 phdr_index = 0;
3249 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3250 writable = false;
3251 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3252 if (dynsec != NULL
3253 && (dynsec->flags & SEC_LOAD) == 0)
3254 dynsec = NULL;
3255
3256 /* Deal with -Ttext or something similar such that the first section
3257 is not adjacent to the program headers. This is an
3258 approximation, since at this point we don't know exactly how many
3259 program headers we will need. */
3260 if (count > 0)
3261 {
3262 bfd_size_type phdr_size;
3263
3264 phdr_size = elf_tdata (abfd)->program_header_size;
3265 if (phdr_size == 0)
3266 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3267 if ((abfd->flags & D_PAGED) == 0
3268 || sections[0]->lma < phdr_size
3269 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3270 phdr_in_segment = false;
3271 }
3272
3273 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3274 {
3275 asection *hdr;
3276 boolean new_segment;
3277
3278 hdr = *hdrpp;
3279
3280 /* See if this section and the last one will fit in the same
3281 segment. */
3282
3283 if (last_hdr == NULL)
3284 {
3285 /* If we don't have a segment yet, then we don't need a new
3286 one (we build the last one after this loop). */
3287 new_segment = false;
3288 }
3289 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3290 {
3291 /* If this section has a different relation between the
3292 virtual address and the load address, then we need a new
3293 segment. */
3294 new_segment = true;
3295 }
3296 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3297 < BFD_ALIGN (hdr->lma, maxpagesize))
3298 {
3299 /* If putting this section in this segment would force us to
3300 skip a page in the segment, then we need a new segment. */
3301 new_segment = true;
3302 }
3303 else if ((last_hdr->flags & SEC_LOAD) == 0
3304 && (hdr->flags & SEC_LOAD) != 0)
3305 {
3306 /* We don't want to put a loadable section after a
3307 nonloadable section in the same segment. */
3308 new_segment = true;
3309 }
3310 else if ((abfd->flags & D_PAGED) == 0)
3311 {
3312 /* If the file is not demand paged, which means that we
3313 don't require the sections to be correctly aligned in the
3314 file, then there is no other reason for a new segment. */
3315 new_segment = false;
3316 }
3317 else if (! writable
3318 && (hdr->flags & SEC_READONLY) == 0
3319 && (((last_hdr->lma + last_hdr->_raw_size - 1)
3320 & ~(maxpagesize - 1))
3321 != (hdr->lma & ~(maxpagesize - 1))))
3322 {
3323 /* We don't want to put a writable section in a read only
3324 segment, unless they are on the same page in memory
3325 anyhow. We already know that the last section does not
3326 bring us past the current section on the page, so the
3327 only case in which the new section is not on the same
3328 page as the previous section is when the previous section
3329 ends precisely on a page boundary. */
3330 new_segment = true;
3331 }
3332 else
3333 {
3334 /* Otherwise, we can use the same segment. */
3335 new_segment = false;
3336 }
3337
3338 if (! new_segment)
3339 {
3340 if ((hdr->flags & SEC_READONLY) == 0)
3341 writable = true;
3342 last_hdr = hdr;
3343 continue;
3344 }
3345
3346 /* We need a new program segment. We must create a new program
3347 header holding all the sections from phdr_index until hdr. */
3348
3349 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3350 if (m == NULL)
3351 goto error_return;
3352
3353 *pm = m;
3354 pm = &m->next;
3355
3356 if ((hdr->flags & SEC_READONLY) == 0)
3357 writable = true;
3358 else
3359 writable = false;
3360
3361 last_hdr = hdr;
3362 phdr_index = i;
3363 phdr_in_segment = false;
3364 }
3365
3366 /* Create a final PT_LOAD program segment. */
3367 if (last_hdr != NULL)
3368 {
3369 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3370 if (m == NULL)
3371 goto error_return;
3372
3373 *pm = m;
3374 pm = &m->next;
3375 }
3376
3377 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3378 if (dynsec != NULL)
3379 {
3380 amt = sizeof (struct elf_segment_map);
3381 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3382 if (m == NULL)
3383 goto error_return;
3384 m->next = NULL;
3385 m->p_type = PT_DYNAMIC;
3386 m->count = 1;
3387 m->sections[0] = dynsec;
3388
3389 *pm = m;
3390 pm = &m->next;
3391 }
3392
3393 /* For each loadable .note section, add a PT_NOTE segment. We don't
3394 use bfd_get_section_by_name, because if we link together
3395 nonloadable .note sections and loadable .note sections, we will
3396 generate two .note sections in the output file. FIXME: Using
3397 names for section types is bogus anyhow. */
3398 for (s = abfd->sections; s != NULL; s = s->next)
3399 {
3400 if ((s->flags & SEC_LOAD) != 0
3401 && strncmp (s->name, ".note", 5) == 0)
3402 {
3403 amt = sizeof (struct elf_segment_map);
3404 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3405 if (m == NULL)
3406 goto error_return;
3407 m->next = NULL;
3408 m->p_type = PT_NOTE;
3409 m->count = 1;
3410 m->sections[0] = s;
3411
3412 *pm = m;
3413 pm = &m->next;
3414 }
3415 if (s->flags & SEC_THREAD_LOCAL)
3416 {
3417 if (! tls_count)
3418 first_tls = s;
3419 tls_count++;
3420 }
3421 }
3422
3423 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3424 if (tls_count > 0)
3425 {
3426 int i;
3427
3428 amt = sizeof (struct elf_segment_map);
3429 amt += (tls_count - 1) * sizeof (asection *);
3430 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3431 if (m == NULL)
3432 goto error_return;
3433 m->next = NULL;
3434 m->p_type = PT_TLS;
3435 m->count = tls_count;
3436 /* Mandated PF_R. */
3437 m->p_flags = PF_R;
3438 m->p_flags_valid = 1;
3439 for (i = 0; i < tls_count; ++i)
3440 {
3441 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3442 m->sections[i] = first_tls;
3443 first_tls = first_tls->next;
3444 }
3445
3446 *pm = m;
3447 pm = &m->next;
3448 }
3449
3450 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3451 segment. */
3452 eh_frame_hdr = NULL;
3453 if (elf_tdata (abfd)->eh_frame_hdr)
3454 eh_frame_hdr = bfd_get_section_by_name (abfd, ".eh_frame_hdr");
3455 if (eh_frame_hdr != NULL && (eh_frame_hdr->flags & SEC_LOAD))
3456 {
3457 amt = sizeof (struct elf_segment_map);
3458 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3459 if (m == NULL)
3460 goto error_return;
3461 m->next = NULL;
3462 m->p_type = PT_GNU_EH_FRAME;
3463 m->count = 1;
3464 m->sections[0] = eh_frame_hdr;
3465
3466 *pm = m;
3467 pm = &m->next;
3468 }
3469
3470 free (sections);
3471 sections = NULL;
3472
3473 elf_tdata (abfd)->segment_map = mfirst;
3474 return true;
3475
3476 error_return:
3477 if (sections != NULL)
3478 free (sections);
3479 return false;
3480 }
3481
3482 /* Sort sections by address. */
3483
3484 static int
3485 elf_sort_sections (arg1, arg2)
3486 const PTR arg1;
3487 const PTR arg2;
3488 {
3489 const asection *sec1 = *(const asection **) arg1;
3490 const asection *sec2 = *(const asection **) arg2;
3491
3492 /* Sort by LMA first, since this is the address used to
3493 place the section into a segment. */
3494 if (sec1->lma < sec2->lma)
3495 return -1;
3496 else if (sec1->lma > sec2->lma)
3497 return 1;
3498
3499 /* Then sort by VMA. Normally the LMA and the VMA will be
3500 the same, and this will do nothing. */
3501 if (sec1->vma < sec2->vma)
3502 return -1;
3503 else if (sec1->vma > sec2->vma)
3504 return 1;
3505
3506 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3507
3508 #define TOEND(x) (((x)->flags & SEC_LOAD) == 0)
3509
3510 if (TOEND (sec1))
3511 {
3512 if (TOEND (sec2))
3513 {
3514 /* If the indicies are the same, do not return 0
3515 here, but continue to try the next comparison. */
3516 if (sec1->target_index - sec2->target_index != 0)
3517 return sec1->target_index - sec2->target_index;
3518 }
3519 else
3520 return 1;
3521 }
3522 else if (TOEND (sec2))
3523 return -1;
3524
3525 #undef TOEND
3526
3527 /* Sort by size, to put zero sized sections
3528 before others at the same address. */
3529
3530 if (sec1->_raw_size < sec2->_raw_size)
3531 return -1;
3532 if (sec1->_raw_size > sec2->_raw_size)
3533 return 1;
3534
3535 return sec1->target_index - sec2->target_index;
3536 }
3537
3538 /* Assign file positions to the sections based on the mapping from
3539 sections to segments. This function also sets up some fields in
3540 the file header, and writes out the program headers. */
3541
3542 static boolean
3543 assign_file_positions_for_segments (abfd)
3544 bfd *abfd;
3545 {
3546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3547 unsigned int count;
3548 struct elf_segment_map *m;
3549 unsigned int alloc;
3550 Elf_Internal_Phdr *phdrs;
3551 file_ptr off, voff;
3552 bfd_vma filehdr_vaddr, filehdr_paddr;
3553 bfd_vma phdrs_vaddr, phdrs_paddr;
3554 Elf_Internal_Phdr *p;
3555 bfd_size_type amt;
3556
3557 if (elf_tdata (abfd)->segment_map == NULL)
3558 {
3559 if (! map_sections_to_segments (abfd))
3560 return false;
3561 }
3562 else
3563 {
3564 /* The placement algorithm assumes that non allocated sections are
3565 not in PT_LOAD segments. We ensure this here by removing such
3566 sections from the segment map. */
3567 for (m = elf_tdata (abfd)->segment_map;
3568 m != NULL;
3569 m = m->next)
3570 {
3571 unsigned int new_count;
3572 unsigned int i;
3573
3574 if (m->p_type != PT_LOAD)
3575 continue;
3576
3577 new_count = 0;
3578 for (i = 0; i < m->count; i ++)
3579 {
3580 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3581 {
3582 if (i != new_count)
3583 m->sections[new_count] = m->sections[i];
3584
3585 new_count ++;
3586 }
3587 }
3588
3589 if (new_count != m->count)
3590 m->count = new_count;
3591 }
3592 }
3593
3594 if (bed->elf_backend_modify_segment_map)
3595 {
3596 if (! (*bed->elf_backend_modify_segment_map) (abfd))
3597 return false;
3598 }
3599
3600 count = 0;
3601 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3602 ++count;
3603
3604 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3605 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3606 elf_elfheader (abfd)->e_phnum = count;
3607
3608 if (count == 0)
3609 return true;
3610
3611 /* If we already counted the number of program segments, make sure
3612 that we allocated enough space. This happens when SIZEOF_HEADERS
3613 is used in a linker script. */
3614 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3615 if (alloc != 0 && count > alloc)
3616 {
3617 ((*_bfd_error_handler)
3618 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3619 bfd_get_filename (abfd), alloc, count));
3620 bfd_set_error (bfd_error_bad_value);
3621 return false;
3622 }
3623
3624 if (alloc == 0)
3625 alloc = count;
3626
3627 amt = alloc * sizeof (Elf_Internal_Phdr);
3628 phdrs = (Elf_Internal_Phdr *) bfd_alloc (abfd, amt);
3629 if (phdrs == NULL)
3630 return false;
3631
3632 off = bed->s->sizeof_ehdr;
3633 off += alloc * bed->s->sizeof_phdr;
3634
3635 filehdr_vaddr = 0;
3636 filehdr_paddr = 0;
3637 phdrs_vaddr = 0;
3638 phdrs_paddr = 0;
3639
3640 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3641 m != NULL;
3642 m = m->next, p++)
3643 {
3644 unsigned int i;
3645 asection **secpp;
3646
3647 /* If elf_segment_map is not from map_sections_to_segments, the
3648 sections may not be correctly ordered. NOTE: sorting should
3649 not be done to the PT_NOTE section of a corefile, which may
3650 contain several pseudo-sections artificially created by bfd.
3651 Sorting these pseudo-sections breaks things badly. */
3652 if (m->count > 1
3653 && !(elf_elfheader (abfd)->e_type == ET_CORE
3654 && m->p_type == PT_NOTE))
3655 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3656 elf_sort_sections);
3657
3658 p->p_type = m->p_type;
3659 p->p_flags = m->p_flags;
3660
3661 if (p->p_type == PT_LOAD
3662 && m->count > 0
3663 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3664 {
3665 if ((abfd->flags & D_PAGED) != 0)
3666 off += (m->sections[0]->vma - off) % bed->maxpagesize;
3667 else
3668 {
3669 bfd_size_type align;
3670
3671 align = 0;
3672 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3673 {
3674 bfd_size_type secalign;
3675
3676 secalign = bfd_get_section_alignment (abfd, *secpp);
3677 if (secalign > align)
3678 align = secalign;
3679 }
3680
3681 off += (m->sections[0]->vma - off) % (1 << align);
3682 }
3683 }
3684
3685 if (m->count == 0)
3686 p->p_vaddr = 0;
3687 else
3688 p->p_vaddr = m->sections[0]->vma;
3689
3690 if (m->p_paddr_valid)
3691 p->p_paddr = m->p_paddr;
3692 else if (m->count == 0)
3693 p->p_paddr = 0;
3694 else
3695 p->p_paddr = m->sections[0]->lma;
3696
3697 if (p->p_type == PT_LOAD
3698 && (abfd->flags & D_PAGED) != 0)
3699 p->p_align = bed->maxpagesize;
3700 else if (m->count == 0)
3701 p->p_align = bed->s->file_align;
3702 else
3703 p->p_align = 0;
3704
3705 p->p_offset = 0;
3706 p->p_filesz = 0;
3707 p->p_memsz = 0;
3708
3709 if (m->includes_filehdr)
3710 {
3711 if (! m->p_flags_valid)
3712 p->p_flags |= PF_R;
3713 p->p_offset = 0;
3714 p->p_filesz = bed->s->sizeof_ehdr;
3715 p->p_memsz = bed->s->sizeof_ehdr;
3716 if (m->count > 0)
3717 {
3718 BFD_ASSERT (p->p_type == PT_LOAD);
3719
3720 if (p->p_vaddr < (bfd_vma) off)
3721 {
3722 (*_bfd_error_handler)
3723 (_("%s: Not enough room for program headers, try linking with -N"),
3724 bfd_get_filename (abfd));
3725 bfd_set_error (bfd_error_bad_value);
3726 return false;
3727 }
3728
3729 p->p_vaddr -= off;
3730 if (! m->p_paddr_valid)
3731 p->p_paddr -= off;
3732 }
3733 if (p->p_type == PT_LOAD)
3734 {
3735 filehdr_vaddr = p->p_vaddr;
3736 filehdr_paddr = p->p_paddr;
3737 }
3738 }
3739
3740 if (m->includes_phdrs)
3741 {
3742 if (! m->p_flags_valid)
3743 p->p_flags |= PF_R;
3744
3745 if (m->includes_filehdr)
3746 {
3747 if (p->p_type == PT_LOAD)
3748 {
3749 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3750 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3751 }
3752 }
3753 else
3754 {
3755 p->p_offset = bed->s->sizeof_ehdr;
3756
3757 if (m->count > 0)
3758 {
3759 BFD_ASSERT (p->p_type == PT_LOAD);
3760 p->p_vaddr -= off - p->p_offset;
3761 if (! m->p_paddr_valid)
3762 p->p_paddr -= off - p->p_offset;
3763 }
3764
3765 if (p->p_type == PT_LOAD)
3766 {
3767 phdrs_vaddr = p->p_vaddr;
3768 phdrs_paddr = p->p_paddr;
3769 }
3770 else
3771 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3772 }
3773
3774 p->p_filesz += alloc * bed->s->sizeof_phdr;
3775 p->p_memsz += alloc * bed->s->sizeof_phdr;
3776 }
3777
3778 if (p->p_type == PT_LOAD
3779 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3780 {
3781 if (! m->includes_filehdr && ! m->includes_phdrs)
3782 p->p_offset = off;
3783 else
3784 {
3785 file_ptr adjust;
3786
3787 adjust = off - (p->p_offset + p->p_filesz);
3788 p->p_filesz += adjust;
3789 p->p_memsz += adjust;
3790 }
3791 }
3792
3793 voff = off;
3794
3795 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3796 {
3797 asection *sec;
3798 flagword flags;
3799 bfd_size_type align;
3800
3801 sec = *secpp;
3802 flags = sec->flags;
3803 align = 1 << bfd_get_section_alignment (abfd, sec);
3804
3805 /* The section may have artificial alignment forced by a
3806 link script. Notice this case by the gap between the
3807 cumulative phdr lma and the section's lma. */
3808 if (p->p_paddr + p->p_memsz < sec->lma)
3809 {
3810 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3811
3812 p->p_memsz += adjust;
3813 off += adjust;
3814 voff += adjust;
3815 if ((flags & SEC_LOAD) != 0)
3816 p->p_filesz += adjust;
3817 }
3818
3819 if (p->p_type == PT_LOAD)
3820 {
3821 bfd_signed_vma adjust;
3822
3823 if ((flags & SEC_LOAD) != 0)
3824 {
3825 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3826 if (adjust < 0)
3827 adjust = 0;
3828 }
3829 else if ((flags & SEC_ALLOC) != 0)
3830 {
3831 /* The section VMA must equal the file position
3832 modulo the page size. FIXME: I'm not sure if
3833 this adjustment is really necessary. We used to
3834 not have the SEC_LOAD case just above, and then
3835 this was necessary, but now I'm not sure. */
3836 if ((abfd->flags & D_PAGED) != 0)
3837 adjust = (sec->vma - voff) % bed->maxpagesize;
3838 else
3839 adjust = (sec->vma - voff) % align;
3840 }
3841 else
3842 adjust = 0;
3843
3844 if (adjust != 0)
3845 {
3846 if (i == 0)
3847 {
3848 (* _bfd_error_handler) (_("\
3849 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3850 bfd_section_name (abfd, sec),
3851 sec->lma,
3852 p->p_paddr);
3853 return false;
3854 }
3855 p->p_memsz += adjust;
3856 off += adjust;
3857 voff += adjust;
3858 if ((flags & SEC_LOAD) != 0)
3859 p->p_filesz += adjust;
3860 }
3861
3862 sec->filepos = off;
3863
3864 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3865 used in a linker script we may have a section with
3866 SEC_LOAD clear but which is supposed to have
3867 contents. */
3868 if ((flags & SEC_LOAD) != 0
3869 || (flags & SEC_HAS_CONTENTS) != 0)
3870 off += sec->_raw_size;
3871
3872 if ((flags & SEC_ALLOC) != 0)
3873 voff += sec->_raw_size;
3874 }
3875
3876 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3877 {
3878 /* The actual "note" segment has i == 0.
3879 This is the one that actually contains everything. */
3880 if (i == 0)
3881 {
3882 sec->filepos = off;
3883 p->p_filesz = sec->_raw_size;
3884 off += sec->_raw_size;
3885 voff = off;
3886 }
3887 else
3888 {
3889 /* Fake sections -- don't need to be written. */
3890 sec->filepos = 0;
3891 sec->_raw_size = 0;
3892 flags = sec->flags = 0;
3893 }
3894 p->p_memsz = 0;
3895 p->p_align = 1;
3896 }
3897 else
3898 {
3899 p->p_memsz += sec->_raw_size;
3900
3901 if ((flags & SEC_LOAD) != 0)
3902 p->p_filesz += sec->_raw_size;
3903
3904 if (p->p_type == PT_TLS
3905 && sec->_raw_size == 0
3906 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3907 {
3908 struct bfd_link_order *o;
3909 bfd_vma tbss_size = 0;
3910
3911 for (o = sec->link_order_head; o != NULL; o = o->next)
3912 if (tbss_size < o->offset + o->size)
3913 tbss_size = o->offset + o->size;
3914
3915 p->p_memsz += tbss_size;
3916 }
3917
3918 if (align > p->p_align
3919 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
3920 p->p_align = align;
3921 }
3922
3923 if (! m->p_flags_valid)
3924 {
3925 p->p_flags |= PF_R;
3926 if ((flags & SEC_CODE) != 0)
3927 p->p_flags |= PF_X;
3928 if ((flags & SEC_READONLY) == 0)
3929 p->p_flags |= PF_W;
3930 }
3931 }
3932 }
3933
3934 /* Now that we have set the section file positions, we can set up
3935 the file positions for the non PT_LOAD segments. */
3936 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3937 m != NULL;
3938 m = m->next, p++)
3939 {
3940 if (p->p_type != PT_LOAD && m->count > 0)
3941 {
3942 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
3943 p->p_offset = m->sections[0]->filepos;
3944 }
3945 if (m->count == 0)
3946 {
3947 if (m->includes_filehdr)
3948 {
3949 p->p_vaddr = filehdr_vaddr;
3950 if (! m->p_paddr_valid)
3951 p->p_paddr = filehdr_paddr;
3952 }
3953 else if (m->includes_phdrs)
3954 {
3955 p->p_vaddr = phdrs_vaddr;
3956 if (! m->p_paddr_valid)
3957 p->p_paddr = phdrs_paddr;
3958 }
3959 }
3960 }
3961
3962 /* Clear out any program headers we allocated but did not use. */
3963 for (; count < alloc; count++, p++)
3964 {
3965 memset (p, 0, sizeof *p);
3966 p->p_type = PT_NULL;
3967 }
3968
3969 elf_tdata (abfd)->phdr = phdrs;
3970
3971 elf_tdata (abfd)->next_file_pos = off;
3972
3973 /* Write out the program headers. */
3974 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
3975 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
3976 return false;
3977
3978 return true;
3979 }
3980
3981 /* Get the size of the program header.
3982
3983 If this is called by the linker before any of the section VMA's are set, it
3984 can't calculate the correct value for a strange memory layout. This only
3985 happens when SIZEOF_HEADERS is used in a linker script. In this case,
3986 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
3987 data segment (exclusive of .interp and .dynamic).
3988
3989 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
3990 will be two segments. */
3991
3992 static bfd_size_type
3993 get_program_header_size (abfd)
3994 bfd *abfd;
3995 {
3996 size_t segs;
3997 asection *s;
3998 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3999
4000 /* We can't return a different result each time we're called. */
4001 if (elf_tdata (abfd)->program_header_size != 0)
4002 return elf_tdata (abfd)->program_header_size;
4003
4004 if (elf_tdata (abfd)->segment_map != NULL)
4005 {
4006 struct elf_segment_map *m;
4007
4008 segs = 0;
4009 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4010 ++segs;
4011 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4012 return elf_tdata (abfd)->program_header_size;
4013 }
4014
4015 /* Assume we will need exactly two PT_LOAD segments: one for text
4016 and one for data. */
4017 segs = 2;
4018
4019 s = bfd_get_section_by_name (abfd, ".interp");
4020 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4021 {
4022 /* If we have a loadable interpreter section, we need a
4023 PT_INTERP segment. In this case, assume we also need a
4024 PT_PHDR segment, although that may not be true for all
4025 targets. */
4026 segs += 2;
4027 }
4028
4029 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4030 {
4031 /* We need a PT_DYNAMIC segment. */
4032 ++segs;
4033 }
4034
4035 if (elf_tdata (abfd)->eh_frame_hdr
4036 && bfd_get_section_by_name (abfd, ".eh_frame_hdr") != NULL)
4037 {
4038 /* We need a PT_GNU_EH_FRAME segment. */
4039 ++segs;
4040 }
4041
4042 for (s = abfd->sections; s != NULL; s = s->next)
4043 {
4044 if ((s->flags & SEC_LOAD) != 0
4045 && strncmp (s->name, ".note", 5) == 0)
4046 {
4047 /* We need a PT_NOTE segment. */
4048 ++segs;
4049 }
4050 }
4051
4052 for (s = abfd->sections; s != NULL; s = s->next)
4053 {
4054 if (s->flags & SEC_THREAD_LOCAL)
4055 {
4056 /* We need a PT_TLS segment. */
4057 ++segs;
4058 break;
4059 }
4060 }
4061
4062 /* Let the backend count up any program headers it might need. */
4063 if (bed->elf_backend_additional_program_headers)
4064 {
4065 int a;
4066
4067 a = (*bed->elf_backend_additional_program_headers) (abfd);
4068 if (a == -1)
4069 abort ();
4070 segs += a;
4071 }
4072
4073 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4074 return elf_tdata (abfd)->program_header_size;
4075 }
4076
4077 /* Work out the file positions of all the sections. This is called by
4078 _bfd_elf_compute_section_file_positions. All the section sizes and
4079 VMAs must be known before this is called.
4080
4081 We do not consider reloc sections at this point, unless they form
4082 part of the loadable image. Reloc sections are assigned file
4083 positions in assign_file_positions_for_relocs, which is called by
4084 write_object_contents and final_link.
4085
4086 We also don't set the positions of the .symtab and .strtab here. */
4087
4088 static boolean
4089 assign_file_positions_except_relocs (abfd)
4090 bfd *abfd;
4091 {
4092 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4093 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4094 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4095 unsigned int num_sec = elf_numsections (abfd);
4096 file_ptr off;
4097 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4098
4099 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4100 && bfd_get_format (abfd) != bfd_core)
4101 {
4102 Elf_Internal_Shdr **hdrpp;
4103 unsigned int i;
4104
4105 /* Start after the ELF header. */
4106 off = i_ehdrp->e_ehsize;
4107
4108 /* We are not creating an executable, which means that we are
4109 not creating a program header, and that the actual order of
4110 the sections in the file is unimportant. */
4111 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4112 {
4113 Elf_Internal_Shdr *hdr;
4114
4115 hdr = *hdrpp;
4116 if (hdr->sh_type == SHT_REL
4117 || hdr->sh_type == SHT_RELA
4118 || i == tdata->symtab_section
4119 || i == tdata->symtab_shndx_section
4120 || i == tdata->strtab_section)
4121 {
4122 hdr->sh_offset = -1;
4123 }
4124 else
4125 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4126
4127 if (i == SHN_LORESERVE - 1)
4128 {
4129 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4130 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4131 }
4132 }
4133 }
4134 else
4135 {
4136 unsigned int i;
4137 Elf_Internal_Shdr **hdrpp;
4138
4139 /* Assign file positions for the loaded sections based on the
4140 assignment of sections to segments. */
4141 if (! assign_file_positions_for_segments (abfd))
4142 return false;
4143
4144 /* Assign file positions for the other sections. */
4145
4146 off = elf_tdata (abfd)->next_file_pos;
4147 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4148 {
4149 Elf_Internal_Shdr *hdr;
4150
4151 hdr = *hdrpp;
4152 if (hdr->bfd_section != NULL
4153 && hdr->bfd_section->filepos != 0)
4154 hdr->sh_offset = hdr->bfd_section->filepos;
4155 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4156 {
4157 ((*_bfd_error_handler)
4158 (_("%s: warning: allocated section `%s' not in segment"),
4159 bfd_get_filename (abfd),
4160 (hdr->bfd_section == NULL
4161 ? "*unknown*"
4162 : hdr->bfd_section->name)));
4163 if ((abfd->flags & D_PAGED) != 0)
4164 off += (hdr->sh_addr - off) % bed->maxpagesize;
4165 else
4166 off += (hdr->sh_addr - off) % hdr->sh_addralign;
4167 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4168 false);
4169 }
4170 else if (hdr->sh_type == SHT_REL
4171 || hdr->sh_type == SHT_RELA
4172 || hdr == i_shdrpp[tdata->symtab_section]
4173 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4174 || hdr == i_shdrpp[tdata->strtab_section])
4175 hdr->sh_offset = -1;
4176 else
4177 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4178
4179 if (i == SHN_LORESERVE - 1)
4180 {
4181 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4182 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4183 }
4184 }
4185 }
4186
4187 /* Place the section headers. */
4188 off = align_file_position (off, bed->s->file_align);
4189 i_ehdrp->e_shoff = off;
4190 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4191
4192 elf_tdata (abfd)->next_file_pos = off;
4193
4194 return true;
4195 }
4196
4197 static boolean
4198 prep_headers (abfd)
4199 bfd *abfd;
4200 {
4201 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4202 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4203 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4204 struct elf_strtab_hash *shstrtab;
4205 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4206
4207 i_ehdrp = elf_elfheader (abfd);
4208 i_shdrp = elf_elfsections (abfd);
4209
4210 shstrtab = _bfd_elf_strtab_init ();
4211 if (shstrtab == NULL)
4212 return false;
4213
4214 elf_shstrtab (abfd) = shstrtab;
4215
4216 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4217 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4218 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4219 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4220
4221 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4222 i_ehdrp->e_ident[EI_DATA] =
4223 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4224 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4225
4226 if ((abfd->flags & DYNAMIC) != 0)
4227 i_ehdrp->e_type = ET_DYN;
4228 else if ((abfd->flags & EXEC_P) != 0)
4229 i_ehdrp->e_type = ET_EXEC;
4230 else if (bfd_get_format (abfd) == bfd_core)
4231 i_ehdrp->e_type = ET_CORE;
4232 else
4233 i_ehdrp->e_type = ET_REL;
4234
4235 switch (bfd_get_arch (abfd))
4236 {
4237 case bfd_arch_unknown:
4238 i_ehdrp->e_machine = EM_NONE;
4239 break;
4240
4241 /* There used to be a long list of cases here, each one setting
4242 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4243 in the corresponding bfd definition. To avoid duplication,
4244 the switch was removed. Machines that need special handling
4245 can generally do it in elf_backend_final_write_processing(),
4246 unless they need the information earlier than the final write.
4247 Such need can generally be supplied by replacing the tests for
4248 e_machine with the conditions used to determine it. */
4249 default:
4250 if (get_elf_backend_data (abfd) != NULL)
4251 i_ehdrp->e_machine = get_elf_backend_data (abfd)->elf_machine_code;
4252 else
4253 i_ehdrp->e_machine = EM_NONE;
4254 }
4255
4256 i_ehdrp->e_version = bed->s->ev_current;
4257 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4258
4259 /* No program header, for now. */
4260 i_ehdrp->e_phoff = 0;
4261 i_ehdrp->e_phentsize = 0;
4262 i_ehdrp->e_phnum = 0;
4263
4264 /* Each bfd section is section header entry. */
4265 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4266 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4267
4268 /* If we're building an executable, we'll need a program header table. */
4269 if (abfd->flags & EXEC_P)
4270 {
4271 /* It all happens later. */
4272 #if 0
4273 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4274
4275 /* elf_build_phdrs() returns a (NULL-terminated) array of
4276 Elf_Internal_Phdrs. */
4277 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4278 i_ehdrp->e_phoff = outbase;
4279 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4280 #endif
4281 }
4282 else
4283 {
4284 i_ehdrp->e_phentsize = 0;
4285 i_phdrp = 0;
4286 i_ehdrp->e_phoff = 0;
4287 }
4288
4289 elf_tdata (abfd)->symtab_hdr.sh_name =
4290 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", false);
4291 elf_tdata (abfd)->strtab_hdr.sh_name =
4292 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", false);
4293 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4294 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", false);
4295 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4296 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4297 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4298 return false;
4299
4300 return true;
4301 }
4302
4303 /* Assign file positions for all the reloc sections which are not part
4304 of the loadable file image. */
4305
4306 void
4307 _bfd_elf_assign_file_positions_for_relocs (abfd)
4308 bfd *abfd;
4309 {
4310 file_ptr off;
4311 unsigned int i, num_sec;
4312 Elf_Internal_Shdr **shdrpp;
4313
4314 off = elf_tdata (abfd)->next_file_pos;
4315
4316 num_sec = elf_numsections (abfd);
4317 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4318 {
4319 Elf_Internal_Shdr *shdrp;
4320
4321 shdrp = *shdrpp;
4322 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4323 && shdrp->sh_offset == -1)
4324 off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
4325 }
4326
4327 elf_tdata (abfd)->next_file_pos = off;
4328 }
4329
4330 boolean
4331 _bfd_elf_write_object_contents (abfd)
4332 bfd *abfd;
4333 {
4334 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4335 Elf_Internal_Ehdr *i_ehdrp;
4336 Elf_Internal_Shdr **i_shdrp;
4337 boolean failed;
4338 unsigned int count, num_sec;
4339
4340 if (! abfd->output_has_begun
4341 && ! _bfd_elf_compute_section_file_positions
4342 (abfd, (struct bfd_link_info *) NULL))
4343 return false;
4344
4345 i_shdrp = elf_elfsections (abfd);
4346 i_ehdrp = elf_elfheader (abfd);
4347
4348 failed = false;
4349 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4350 if (failed)
4351 return false;
4352
4353 _bfd_elf_assign_file_positions_for_relocs (abfd);
4354
4355 /* After writing the headers, we need to write the sections too... */
4356 num_sec = elf_numsections (abfd);
4357 for (count = 1; count < num_sec; count++)
4358 {
4359 if (bed->elf_backend_section_processing)
4360 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4361 if (i_shdrp[count]->contents)
4362 {
4363 bfd_size_type amt = i_shdrp[count]->sh_size;
4364
4365 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4366 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4367 return false;
4368 }
4369 if (count == SHN_LORESERVE - 1)
4370 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4371 }
4372
4373 /* Write out the section header names. */
4374 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4375 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4376 return false;
4377
4378 if (bed->elf_backend_final_write_processing)
4379 (*bed->elf_backend_final_write_processing) (abfd,
4380 elf_tdata (abfd)->linker);
4381
4382 return bed->s->write_shdrs_and_ehdr (abfd);
4383 }
4384
4385 boolean
4386 _bfd_elf_write_corefile_contents (abfd)
4387 bfd *abfd;
4388 {
4389 /* Hopefully this can be done just like an object file. */
4390 return _bfd_elf_write_object_contents (abfd);
4391 }
4392
4393 /* Given a section, search the header to find them. */
4394
4395 int
4396 _bfd_elf_section_from_bfd_section (abfd, asect)
4397 bfd *abfd;
4398 struct sec *asect;
4399 {
4400 struct elf_backend_data *bed;
4401 int index;
4402
4403 if (elf_section_data (asect) != NULL
4404 && elf_section_data (asect)->this_idx != 0)
4405 return elf_section_data (asect)->this_idx;
4406
4407 if (bfd_is_abs_section (asect))
4408 index = SHN_ABS;
4409 else if (bfd_is_com_section (asect))
4410 index = SHN_COMMON;
4411 else if (bfd_is_und_section (asect))
4412 index = SHN_UNDEF;
4413 else
4414 {
4415 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4416 int maxindex = elf_numsections (abfd);
4417
4418 for (index = 1; index < maxindex; index++)
4419 {
4420 Elf_Internal_Shdr *hdr = i_shdrp[index];
4421
4422 if (hdr != NULL && hdr->bfd_section == asect)
4423 return index;
4424 }
4425 index = -1;
4426 }
4427
4428 bed = get_elf_backend_data (abfd);
4429 if (bed->elf_backend_section_from_bfd_section)
4430 {
4431 int retval = index;
4432
4433 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4434 return retval;
4435 }
4436
4437 if (index == -1)
4438 bfd_set_error (bfd_error_nonrepresentable_section);
4439
4440 return index;
4441 }
4442
4443 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4444 on error. */
4445
4446 int
4447 _bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr)
4448 bfd *abfd;
4449 asymbol **asym_ptr_ptr;
4450 {
4451 asymbol *asym_ptr = *asym_ptr_ptr;
4452 int idx;
4453 flagword flags = asym_ptr->flags;
4454
4455 /* When gas creates relocations against local labels, it creates its
4456 own symbol for the section, but does put the symbol into the
4457 symbol chain, so udata is 0. When the linker is generating
4458 relocatable output, this section symbol may be for one of the
4459 input sections rather than the output section. */
4460 if (asym_ptr->udata.i == 0
4461 && (flags & BSF_SECTION_SYM)
4462 && asym_ptr->section)
4463 {
4464 int indx;
4465
4466 if (asym_ptr->section->output_section != NULL)
4467 indx = asym_ptr->section->output_section->index;
4468 else
4469 indx = asym_ptr->section->index;
4470 if (indx < elf_num_section_syms (abfd)
4471 && elf_section_syms (abfd)[indx] != NULL)
4472 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4473 }
4474
4475 idx = asym_ptr->udata.i;
4476
4477 if (idx == 0)
4478 {
4479 /* This case can occur when using --strip-symbol on a symbol
4480 which is used in a relocation entry. */
4481 (*_bfd_error_handler)
4482 (_("%s: symbol `%s' required but not present"),
4483 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4484 bfd_set_error (bfd_error_no_symbols);
4485 return -1;
4486 }
4487
4488 #if DEBUG & 4
4489 {
4490 fprintf (stderr,
4491 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4492 (long) asym_ptr, asym_ptr->name, idx, flags,
4493 elf_symbol_flags (flags));
4494 fflush (stderr);
4495 }
4496 #endif
4497
4498 return idx;
4499 }
4500
4501 /* Copy private BFD data. This copies any program header information. */
4502
4503 static boolean
4504 copy_private_bfd_data (ibfd, obfd)
4505 bfd *ibfd;
4506 bfd *obfd;
4507 {
4508 Elf_Internal_Ehdr * iehdr;
4509 struct elf_segment_map * map;
4510 struct elf_segment_map * map_first;
4511 struct elf_segment_map ** pointer_to_map;
4512 Elf_Internal_Phdr * segment;
4513 asection * section;
4514 unsigned int i;
4515 unsigned int num_segments;
4516 boolean phdr_included = false;
4517 bfd_vma maxpagesize;
4518 struct elf_segment_map * phdr_adjust_seg = NULL;
4519 unsigned int phdr_adjust_num = 0;
4520 struct elf_backend_data * bed;
4521
4522 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4523 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4524 return true;
4525
4526 if (elf_tdata (ibfd)->phdr == NULL)
4527 return true;
4528
4529 bed = get_elf_backend_data (ibfd);
4530 iehdr = elf_elfheader (ibfd);
4531
4532 map_first = NULL;
4533 pointer_to_map = &map_first;
4534
4535 num_segments = elf_elfheader (ibfd)->e_phnum;
4536 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4537
4538 /* Returns the end address of the segment + 1. */
4539 #define SEGMENT_END(segment, start) \
4540 (start + (segment->p_memsz > segment->p_filesz \
4541 ? segment->p_memsz : segment->p_filesz))
4542
4543 /* Returns true if the given section is contained within
4544 the given segment. VMA addresses are compared. */
4545 #define IS_CONTAINED_BY_VMA(section, segment) \
4546 (section->vma >= segment->p_vaddr \
4547 && (section->vma + section->_raw_size \
4548 <= (SEGMENT_END (segment, segment->p_vaddr))))
4549
4550 /* Returns true if the given section is contained within
4551 the given segment. LMA addresses are compared. */
4552 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4553 (section->lma >= base \
4554 && (section->lma + section->_raw_size \
4555 <= SEGMENT_END (segment, base)))
4556
4557 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4558 #define IS_COREFILE_NOTE(p, s) \
4559 (p->p_type == PT_NOTE \
4560 && bfd_get_format (ibfd) == bfd_core \
4561 && s->vma == 0 && s->lma == 0 \
4562 && (bfd_vma) s->filepos >= p->p_offset \
4563 && ((bfd_vma) s->filepos + s->_raw_size \
4564 <= p->p_offset + p->p_filesz))
4565
4566 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4567 linker, which generates a PT_INTERP section with p_vaddr and
4568 p_memsz set to 0. */
4569 #define IS_SOLARIS_PT_INTERP(p, s) \
4570 (p->p_vaddr == 0 \
4571 && p->p_paddr == 0 \
4572 && p->p_memsz == 0 \
4573 && p->p_filesz > 0 \
4574 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4575 && s->_raw_size > 0 \
4576 && (bfd_vma) s->filepos >= p->p_offset \
4577 && ((bfd_vma) s->filepos + s->_raw_size \
4578 <= p->p_offset + p->p_filesz))
4579
4580 /* Decide if the given section should be included in the given segment.
4581 A section will be included if:
4582 1. It is within the address space of the segment -- we use the LMA
4583 if that is set for the segment and the VMA otherwise,
4584 2. It is an allocated segment,
4585 3. There is an output section associated with it,
4586 4. The section has not already been allocated to a previous segment. */
4587 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4588 ((((segment->p_paddr \
4589 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4590 : IS_CONTAINED_BY_VMA (section, segment)) \
4591 && (section->flags & SEC_ALLOC) != 0) \
4592 || IS_COREFILE_NOTE (segment, section)) \
4593 && section->output_section != NULL \
4594 && ! section->segment_mark)
4595
4596 /* Returns true iff seg1 starts after the end of seg2. */
4597 #define SEGMENT_AFTER_SEGMENT(seg1, seg2) \
4598 (seg1->p_vaddr >= SEGMENT_END (seg2, seg2->p_vaddr))
4599
4600 /* Returns true iff seg1 and seg2 overlap. */
4601 #define SEGMENT_OVERLAPS(seg1, seg2) \
4602 (!(SEGMENT_AFTER_SEGMENT (seg1, seg2) \
4603 || SEGMENT_AFTER_SEGMENT (seg2, seg1)))
4604
4605 /* Initialise the segment mark field. */
4606 for (section = ibfd->sections; section != NULL; section = section->next)
4607 section->segment_mark = false;
4608
4609 /* Scan through the segments specified in the program header
4610 of the input BFD. For this first scan we look for overlaps
4611 in the loadable segments. These can be created by weird
4612 parameters to objcopy. Also, fix some solaris weirdness. */
4613 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4614 i < num_segments;
4615 i++, segment++)
4616 {
4617 unsigned int j;
4618 Elf_Internal_Phdr *segment2;
4619
4620 if (segment->p_type == PT_INTERP)
4621 for (section = ibfd->sections; section; section = section->next)
4622 if (IS_SOLARIS_PT_INTERP (segment, section))
4623 {
4624 /* Mininal change so that the normal section to segment
4625 assigment code will work. */
4626 segment->p_vaddr = section->vma;
4627 break;
4628 }
4629
4630 if (segment->p_type != PT_LOAD)
4631 continue;
4632
4633 /* Determine if this segment overlaps any previous segments. */
4634 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4635 {
4636 bfd_signed_vma extra_length;
4637
4638 if (segment2->p_type != PT_LOAD
4639 || ! SEGMENT_OVERLAPS (segment, segment2))
4640 continue;
4641
4642 /* Merge the two segments together. */
4643 if (segment2->p_vaddr < segment->p_vaddr)
4644 {
4645 /* Extend SEGMENT2 to include SEGMENT and then delete
4646 SEGMENT. */
4647 extra_length =
4648 SEGMENT_END (segment, segment->p_vaddr)
4649 - SEGMENT_END (segment2, segment2->p_vaddr);
4650
4651 if (extra_length > 0)
4652 {
4653 segment2->p_memsz += extra_length;
4654 segment2->p_filesz += extra_length;
4655 }
4656
4657 segment->p_type = PT_NULL;
4658
4659 /* Since we have deleted P we must restart the outer loop. */
4660 i = 0;
4661 segment = elf_tdata (ibfd)->phdr;
4662 break;
4663 }
4664 else
4665 {
4666 /* Extend SEGMENT to include SEGMENT2 and then delete
4667 SEGMENT2. */
4668 extra_length =
4669 SEGMENT_END (segment2, segment2->p_vaddr)
4670 - SEGMENT_END (segment, segment->p_vaddr);
4671
4672 if (extra_length > 0)
4673 {
4674 segment->p_memsz += extra_length;
4675 segment->p_filesz += extra_length;
4676 }
4677
4678 segment2->p_type = PT_NULL;
4679 }
4680 }
4681 }
4682
4683 /* The second scan attempts to assign sections to segments. */
4684 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4685 i < num_segments;
4686 i ++, segment ++)
4687 {
4688 unsigned int section_count;
4689 asection ** sections;
4690 asection * output_section;
4691 unsigned int isec;
4692 bfd_vma matching_lma;
4693 bfd_vma suggested_lma;
4694 unsigned int j;
4695 bfd_size_type amt;
4696
4697 if (segment->p_type == PT_NULL)
4698 continue;
4699
4700 /* Compute how many sections might be placed into this segment. */
4701 section_count = 0;
4702 for (section = ibfd->sections; section != NULL; section = section->next)
4703 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4704 ++section_count;
4705
4706 /* Allocate a segment map big enough to contain all of the
4707 sections we have selected. */
4708 amt = sizeof (struct elf_segment_map);
4709 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4710 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
4711 if (map == NULL)
4712 return false;
4713
4714 /* Initialise the fields of the segment map. Default to
4715 using the physical address of the segment in the input BFD. */
4716 map->next = NULL;
4717 map->p_type = segment->p_type;
4718 map->p_flags = segment->p_flags;
4719 map->p_flags_valid = 1;
4720 map->p_paddr = segment->p_paddr;
4721 map->p_paddr_valid = 1;
4722
4723 /* Determine if this segment contains the ELF file header
4724 and if it contains the program headers themselves. */
4725 map->includes_filehdr = (segment->p_offset == 0
4726 && segment->p_filesz >= iehdr->e_ehsize);
4727
4728 map->includes_phdrs = 0;
4729
4730 if (! phdr_included || segment->p_type != PT_LOAD)
4731 {
4732 map->includes_phdrs =
4733 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4734 && (segment->p_offset + segment->p_filesz
4735 >= ((bfd_vma) iehdr->e_phoff
4736 + iehdr->e_phnum * iehdr->e_phentsize)));
4737
4738 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4739 phdr_included = true;
4740 }
4741
4742 if (section_count == 0)
4743 {
4744 /* Special segments, such as the PT_PHDR segment, may contain
4745 no sections, but ordinary, loadable segments should contain
4746 something. They are allowed by the ELF spec however, so only
4747 a warning is produced. */
4748 if (segment->p_type == PT_LOAD)
4749 (*_bfd_error_handler)
4750 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4751 bfd_archive_filename (ibfd));
4752
4753 map->count = 0;
4754 *pointer_to_map = map;
4755 pointer_to_map = &map->next;
4756
4757 continue;
4758 }
4759
4760 /* Now scan the sections in the input BFD again and attempt
4761 to add their corresponding output sections to the segment map.
4762 The problem here is how to handle an output section which has
4763 been moved (ie had its LMA changed). There are four possibilities:
4764
4765 1. None of the sections have been moved.
4766 In this case we can continue to use the segment LMA from the
4767 input BFD.
4768
4769 2. All of the sections have been moved by the same amount.
4770 In this case we can change the segment's LMA to match the LMA
4771 of the first section.
4772
4773 3. Some of the sections have been moved, others have not.
4774 In this case those sections which have not been moved can be
4775 placed in the current segment which will have to have its size,
4776 and possibly its LMA changed, and a new segment or segments will
4777 have to be created to contain the other sections.
4778
4779 4. The sections have been moved, but not be the same amount.
4780 In this case we can change the segment's LMA to match the LMA
4781 of the first section and we will have to create a new segment
4782 or segments to contain the other sections.
4783
4784 In order to save time, we allocate an array to hold the section
4785 pointers that we are interested in. As these sections get assigned
4786 to a segment, they are removed from this array. */
4787
4788 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4789 to work around this long long bug. */
4790 amt = section_count * sizeof (asection *);
4791 sections = (asection **) bfd_malloc (amt);
4792 if (sections == NULL)
4793 return false;
4794
4795 /* Step One: Scan for segment vs section LMA conflicts.
4796 Also add the sections to the section array allocated above.
4797 Also add the sections to the current segment. In the common
4798 case, where the sections have not been moved, this means that
4799 we have completely filled the segment, and there is nothing
4800 more to do. */
4801 isec = 0;
4802 matching_lma = 0;
4803 suggested_lma = 0;
4804
4805 for (j = 0, section = ibfd->sections;
4806 section != NULL;
4807 section = section->next)
4808 {
4809 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4810 {
4811 output_section = section->output_section;
4812
4813 sections[j ++] = section;
4814
4815 /* The Solaris native linker always sets p_paddr to 0.
4816 We try to catch that case here, and set it to the
4817 correct value. Note - some backends require that
4818 p_paddr be left as zero. */
4819 if (segment->p_paddr == 0
4820 && segment->p_vaddr != 0
4821 && (! bed->want_p_paddr_set_to_zero)
4822 && isec == 0
4823 && output_section->lma != 0
4824 && (output_section->vma == (segment->p_vaddr
4825 + (map->includes_filehdr
4826 ? iehdr->e_ehsize
4827 : 0)
4828 + (map->includes_phdrs
4829 ? (iehdr->e_phnum
4830 * iehdr->e_phentsize)
4831 : 0))))
4832 map->p_paddr = segment->p_vaddr;
4833
4834 /* Match up the physical address of the segment with the
4835 LMA address of the output section. */
4836 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4837 || IS_COREFILE_NOTE (segment, section)
4838 || (bed->want_p_paddr_set_to_zero &&
4839 IS_CONTAINED_BY_VMA (output_section, segment))
4840 )
4841 {
4842 if (matching_lma == 0)
4843 matching_lma = output_section->lma;
4844
4845 /* We assume that if the section fits within the segment
4846 then it does not overlap any other section within that
4847 segment. */
4848 map->sections[isec ++] = output_section;
4849 }
4850 else if (suggested_lma == 0)
4851 suggested_lma = output_section->lma;
4852 }
4853 }
4854
4855 BFD_ASSERT (j == section_count);
4856
4857 /* Step Two: Adjust the physical address of the current segment,
4858 if necessary. */
4859 if (isec == section_count)
4860 {
4861 /* All of the sections fitted within the segment as currently
4862 specified. This is the default case. Add the segment to
4863 the list of built segments and carry on to process the next
4864 program header in the input BFD. */
4865 map->count = section_count;
4866 *pointer_to_map = map;
4867 pointer_to_map = &map->next;
4868
4869 free (sections);
4870 continue;
4871 }
4872 else
4873 {
4874 if (matching_lma != 0)
4875 {
4876 /* At least one section fits inside the current segment.
4877 Keep it, but modify its physical address to match the
4878 LMA of the first section that fitted. */
4879 map->p_paddr = matching_lma;
4880 }
4881 else
4882 {
4883 /* None of the sections fitted inside the current segment.
4884 Change the current segment's physical address to match
4885 the LMA of the first section. */
4886 map->p_paddr = suggested_lma;
4887 }
4888
4889 /* Offset the segment physical address from the lma
4890 to allow for space taken up by elf headers. */
4891 if (map->includes_filehdr)
4892 map->p_paddr -= iehdr->e_ehsize;
4893
4894 if (map->includes_phdrs)
4895 {
4896 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4897
4898 /* iehdr->e_phnum is just an estimate of the number
4899 of program headers that we will need. Make a note
4900 here of the number we used and the segment we chose
4901 to hold these headers, so that we can adjust the
4902 offset when we know the correct value. */
4903 phdr_adjust_num = iehdr->e_phnum;
4904 phdr_adjust_seg = map;
4905 }
4906 }
4907
4908 /* Step Three: Loop over the sections again, this time assigning
4909 those that fit to the current segment and removing them from the
4910 sections array; but making sure not to leave large gaps. Once all
4911 possible sections have been assigned to the current segment it is
4912 added to the list of built segments and if sections still remain
4913 to be assigned, a new segment is constructed before repeating
4914 the loop. */
4915 isec = 0;
4916 do
4917 {
4918 map->count = 0;
4919 suggested_lma = 0;
4920
4921 /* Fill the current segment with sections that fit. */
4922 for (j = 0; j < section_count; j++)
4923 {
4924 section = sections[j];
4925
4926 if (section == NULL)
4927 continue;
4928
4929 output_section = section->output_section;
4930
4931 BFD_ASSERT (output_section != NULL);
4932
4933 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4934 || IS_COREFILE_NOTE (segment, section))
4935 {
4936 if (map->count == 0)
4937 {
4938 /* If the first section in a segment does not start at
4939 the beginning of the segment, then something is
4940 wrong. */
4941 if (output_section->lma !=
4942 (map->p_paddr
4943 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
4944 + (map->includes_phdrs
4945 ? iehdr->e_phnum * iehdr->e_phentsize
4946 : 0)))
4947 abort ();
4948 }
4949 else
4950 {
4951 asection * prev_sec;
4952
4953 prev_sec = map->sections[map->count - 1];
4954
4955 /* If the gap between the end of the previous section
4956 and the start of this section is more than
4957 maxpagesize then we need to start a new segment. */
4958 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
4959 maxpagesize)
4960 < BFD_ALIGN (output_section->lma, maxpagesize))
4961 || ((prev_sec->lma + prev_sec->_raw_size)
4962 > output_section->lma))
4963 {
4964 if (suggested_lma == 0)
4965 suggested_lma = output_section->lma;
4966
4967 continue;
4968 }
4969 }
4970
4971 map->sections[map->count++] = output_section;
4972 ++isec;
4973 sections[j] = NULL;
4974 section->segment_mark = true;
4975 }
4976 else if (suggested_lma == 0)
4977 suggested_lma = output_section->lma;
4978 }
4979
4980 BFD_ASSERT (map->count > 0);
4981
4982 /* Add the current segment to the list of built segments. */
4983 *pointer_to_map = map;
4984 pointer_to_map = &map->next;
4985
4986 if (isec < section_count)
4987 {
4988 /* We still have not allocated all of the sections to
4989 segments. Create a new segment here, initialise it
4990 and carry on looping. */
4991 amt = sizeof (struct elf_segment_map);
4992 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4993 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
4994 if (map == NULL)
4995 return false;
4996
4997 /* Initialise the fields of the segment map. Set the physical
4998 physical address to the LMA of the first section that has
4999 not yet been assigned. */
5000 map->next = NULL;
5001 map->p_type = segment->p_type;
5002 map->p_flags = segment->p_flags;
5003 map->p_flags_valid = 1;
5004 map->p_paddr = suggested_lma;
5005 map->p_paddr_valid = 1;
5006 map->includes_filehdr = 0;
5007 map->includes_phdrs = 0;
5008 }
5009 }
5010 while (isec < section_count);
5011
5012 free (sections);
5013 }
5014
5015 /* The Solaris linker creates program headers in which all the
5016 p_paddr fields are zero. When we try to objcopy or strip such a
5017 file, we get confused. Check for this case, and if we find it
5018 reset the p_paddr_valid fields. */
5019 for (map = map_first; map != NULL; map = map->next)
5020 if (map->p_paddr != 0)
5021 break;
5022 if (map == NULL)
5023 {
5024 for (map = map_first; map != NULL; map = map->next)
5025 map->p_paddr_valid = 0;
5026 }
5027
5028 elf_tdata (obfd)->segment_map = map_first;
5029
5030 /* If we had to estimate the number of program headers that were
5031 going to be needed, then check our estimate now and adjust
5032 the offset if necessary. */
5033 if (phdr_adjust_seg != NULL)
5034 {
5035 unsigned int count;
5036
5037 for (count = 0, map = map_first; map != NULL; map = map->next)
5038 count++;
5039
5040 if (count > phdr_adjust_num)
5041 phdr_adjust_seg->p_paddr
5042 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5043 }
5044
5045 #if 0
5046 /* Final Step: Sort the segments into ascending order of physical
5047 address. */
5048 if (map_first != NULL)
5049 {
5050 struct elf_segment_map *prev;
5051
5052 prev = map_first;
5053 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5054 {
5055 /* Yes I know - its a bubble sort.... */
5056 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5057 {
5058 /* Swap map and map->next. */
5059 prev->next = map->next;
5060 map->next = map->next->next;
5061 prev->next->next = map;
5062
5063 /* Restart loop. */
5064 map = map_first;
5065 }
5066 }
5067 }
5068 #endif
5069
5070 #undef SEGMENT_END
5071 #undef IS_CONTAINED_BY_VMA
5072 #undef IS_CONTAINED_BY_LMA
5073 #undef IS_COREFILE_NOTE
5074 #undef IS_SOLARIS_PT_INTERP
5075 #undef INCLUDE_SECTION_IN_SEGMENT
5076 #undef SEGMENT_AFTER_SEGMENT
5077 #undef SEGMENT_OVERLAPS
5078 return true;
5079 }
5080
5081 /* Copy private section information. This copies over the entsize
5082 field, and sometimes the info field. */
5083
5084 boolean
5085 _bfd_elf_copy_private_section_data (ibfd, isec, obfd, osec)
5086 bfd *ibfd;
5087 asection *isec;
5088 bfd *obfd;
5089 asection *osec;
5090 {
5091 Elf_Internal_Shdr *ihdr, *ohdr;
5092
5093 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5094 || obfd->xvec->flavour != bfd_target_elf_flavour)
5095 return true;
5096
5097 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5098 {
5099 asection *s;
5100
5101 /* Only set up the segments if there are no more SEC_ALLOC
5102 sections. FIXME: This won't do the right thing if objcopy is
5103 used to remove the last SEC_ALLOC section, since objcopy
5104 won't call this routine in that case. */
5105 for (s = isec->next; s != NULL; s = s->next)
5106 if ((s->flags & SEC_ALLOC) != 0)
5107 break;
5108 if (s == NULL)
5109 {
5110 if (! copy_private_bfd_data (ibfd, obfd))
5111 return false;
5112 }
5113 }
5114
5115 ihdr = &elf_section_data (isec)->this_hdr;
5116 ohdr = &elf_section_data (osec)->this_hdr;
5117
5118 ohdr->sh_entsize = ihdr->sh_entsize;
5119
5120 if (ihdr->sh_type == SHT_SYMTAB
5121 || ihdr->sh_type == SHT_DYNSYM
5122 || ihdr->sh_type == SHT_GNU_verneed
5123 || ihdr->sh_type == SHT_GNU_verdef)
5124 ohdr->sh_info = ihdr->sh_info;
5125
5126 /* Set things up for objcopy. The output SHT_GROUP section will
5127 have its elf_next_in_group pointing back to the input group
5128 members. */
5129 elf_next_in_group (osec) = elf_next_in_group (isec);
5130 elf_group_name (osec) = elf_group_name (isec);
5131
5132 elf_section_data (osec)->use_rela_p
5133 = elf_section_data (isec)->use_rela_p;
5134
5135 return true;
5136 }
5137
5138 /* Copy private symbol information. If this symbol is in a section
5139 which we did not map into a BFD section, try to map the section
5140 index correctly. We use special macro definitions for the mapped
5141 section indices; these definitions are interpreted by the
5142 swap_out_syms function. */
5143
5144 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5145 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5146 #define MAP_STRTAB (SHN_HIOS + 3)
5147 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5148 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5149
5150 boolean
5151 _bfd_elf_copy_private_symbol_data (ibfd, isymarg, obfd, osymarg)
5152 bfd *ibfd;
5153 asymbol *isymarg;
5154 bfd *obfd;
5155 asymbol *osymarg;
5156 {
5157 elf_symbol_type *isym, *osym;
5158
5159 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5160 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5161 return true;
5162
5163 isym = elf_symbol_from (ibfd, isymarg);
5164 osym = elf_symbol_from (obfd, osymarg);
5165
5166 if (isym != NULL
5167 && osym != NULL
5168 && bfd_is_abs_section (isym->symbol.section))
5169 {
5170 unsigned int shndx;
5171
5172 shndx = isym->internal_elf_sym.st_shndx;
5173 if (shndx == elf_onesymtab (ibfd))
5174 shndx = MAP_ONESYMTAB;
5175 else if (shndx == elf_dynsymtab (ibfd))
5176 shndx = MAP_DYNSYMTAB;
5177 else if (shndx == elf_tdata (ibfd)->strtab_section)
5178 shndx = MAP_STRTAB;
5179 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5180 shndx = MAP_SHSTRTAB;
5181 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5182 shndx = MAP_SYM_SHNDX;
5183 osym->internal_elf_sym.st_shndx = shndx;
5184 }
5185
5186 return true;
5187 }
5188
5189 /* Swap out the symbols. */
5190
5191 static boolean
5192 swap_out_syms (abfd, sttp, relocatable_p)
5193 bfd *abfd;
5194 struct bfd_strtab_hash **sttp;
5195 int relocatable_p;
5196 {
5197 struct elf_backend_data *bed;
5198 int symcount;
5199 asymbol **syms;
5200 struct bfd_strtab_hash *stt;
5201 Elf_Internal_Shdr *symtab_hdr;
5202 Elf_Internal_Shdr *symtab_shndx_hdr;
5203 Elf_Internal_Shdr *symstrtab_hdr;
5204 char *outbound_syms;
5205 char *outbound_shndx;
5206 int idx;
5207 bfd_size_type amt;
5208
5209 if (!elf_map_symbols (abfd))
5210 return false;
5211
5212 /* Dump out the symtabs. */
5213 stt = _bfd_elf_stringtab_init ();
5214 if (stt == NULL)
5215 return false;
5216
5217 bed = get_elf_backend_data (abfd);
5218 symcount = bfd_get_symcount (abfd);
5219 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5220 symtab_hdr->sh_type = SHT_SYMTAB;
5221 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5222 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5223 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5224 symtab_hdr->sh_addralign = bed->s->file_align;
5225
5226 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5227 symstrtab_hdr->sh_type = SHT_STRTAB;
5228
5229 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5230 outbound_syms = bfd_alloc (abfd, amt);
5231 if (outbound_syms == NULL)
5232 return false;
5233 symtab_hdr->contents = (PTR) outbound_syms;
5234
5235 outbound_shndx = NULL;
5236 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5237 if (symtab_shndx_hdr->sh_name != 0)
5238 {
5239 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5240 outbound_shndx = bfd_zalloc (abfd, amt);
5241 if (outbound_shndx == NULL)
5242 return false;
5243 symtab_shndx_hdr->contents = outbound_shndx;
5244 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5245 symtab_shndx_hdr->sh_size = amt;
5246 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5247 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5248 }
5249
5250 /* now generate the data (for "contents") */
5251 {
5252 /* Fill in zeroth symbol and swap it out. */
5253 Elf_Internal_Sym sym;
5254 sym.st_name = 0;
5255 sym.st_value = 0;
5256 sym.st_size = 0;
5257 sym.st_info = 0;
5258 sym.st_other = 0;
5259 sym.st_shndx = SHN_UNDEF;
5260 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5261 outbound_syms += bed->s->sizeof_sym;
5262 if (outbound_shndx != NULL)
5263 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5264 }
5265
5266 syms = bfd_get_outsymbols (abfd);
5267 for (idx = 0; idx < symcount; idx++)
5268 {
5269 Elf_Internal_Sym sym;
5270 bfd_vma value = syms[idx]->value;
5271 elf_symbol_type *type_ptr;
5272 flagword flags = syms[idx]->flags;
5273 int type;
5274
5275 if ((flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5276 {
5277 /* Local section symbols have no name. */
5278 sym.st_name = 0;
5279 }
5280 else
5281 {
5282 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5283 syms[idx]->name,
5284 true, false);
5285 if (sym.st_name == (unsigned long) -1)
5286 return false;
5287 }
5288
5289 type_ptr = elf_symbol_from (abfd, syms[idx]);
5290
5291 if ((flags & BSF_SECTION_SYM) == 0
5292 && bfd_is_com_section (syms[idx]->section))
5293 {
5294 /* ELF common symbols put the alignment into the `value' field,
5295 and the size into the `size' field. This is backwards from
5296 how BFD handles it, so reverse it here. */
5297 sym.st_size = value;
5298 if (type_ptr == NULL
5299 || type_ptr->internal_elf_sym.st_value == 0)
5300 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5301 else
5302 sym.st_value = type_ptr->internal_elf_sym.st_value;
5303 sym.st_shndx = _bfd_elf_section_from_bfd_section
5304 (abfd, syms[idx]->section);
5305 }
5306 else
5307 {
5308 asection *sec = syms[idx]->section;
5309 int shndx;
5310
5311 if (sec->output_section)
5312 {
5313 value += sec->output_offset;
5314 sec = sec->output_section;
5315 }
5316 /* Don't add in the section vma for relocatable output. */
5317 if (! relocatable_p)
5318 value += sec->vma;
5319 sym.st_value = value;
5320 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5321
5322 if (bfd_is_abs_section (sec)
5323 && type_ptr != NULL
5324 && type_ptr->internal_elf_sym.st_shndx != 0)
5325 {
5326 /* This symbol is in a real ELF section which we did
5327 not create as a BFD section. Undo the mapping done
5328 by copy_private_symbol_data. */
5329 shndx = type_ptr->internal_elf_sym.st_shndx;
5330 switch (shndx)
5331 {
5332 case MAP_ONESYMTAB:
5333 shndx = elf_onesymtab (abfd);
5334 break;
5335 case MAP_DYNSYMTAB:
5336 shndx = elf_dynsymtab (abfd);
5337 break;
5338 case MAP_STRTAB:
5339 shndx = elf_tdata (abfd)->strtab_section;
5340 break;
5341 case MAP_SHSTRTAB:
5342 shndx = elf_tdata (abfd)->shstrtab_section;
5343 break;
5344 case MAP_SYM_SHNDX:
5345 shndx = elf_tdata (abfd)->symtab_shndx_section;
5346 break;
5347 default:
5348 break;
5349 }
5350 }
5351 else
5352 {
5353 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5354
5355 if (shndx == -1)
5356 {
5357 asection *sec2;
5358
5359 /* Writing this would be a hell of a lot easier if
5360 we had some decent documentation on bfd, and
5361 knew what to expect of the library, and what to
5362 demand of applications. For example, it
5363 appears that `objcopy' might not set the
5364 section of a symbol to be a section that is
5365 actually in the output file. */
5366 sec2 = bfd_get_section_by_name (abfd, sec->name);
5367 BFD_ASSERT (sec2 != 0);
5368 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5369 BFD_ASSERT (shndx != -1);
5370 }
5371 }
5372
5373 sym.st_shndx = shndx;
5374 }
5375
5376 if ((flags & BSF_THREAD_LOCAL) != 0)
5377 type = STT_TLS;
5378 else if ((flags & BSF_FUNCTION) != 0)
5379 type = STT_FUNC;
5380 else if ((flags & BSF_OBJECT) != 0)
5381 type = STT_OBJECT;
5382 else
5383 type = STT_NOTYPE;
5384
5385 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5386 type = STT_TLS;
5387
5388 /* Processor-specific types */
5389 if (type_ptr != NULL
5390 && bed->elf_backend_get_symbol_type)
5391 type = ((*bed->elf_backend_get_symbol_type)
5392 (&type_ptr->internal_elf_sym, type));
5393
5394 if (flags & BSF_SECTION_SYM)
5395 {
5396 if (flags & BSF_GLOBAL)
5397 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5398 else
5399 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5400 }
5401 else if (bfd_is_com_section (syms[idx]->section))
5402 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5403 else if (bfd_is_und_section (syms[idx]->section))
5404 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5405 ? STB_WEAK
5406 : STB_GLOBAL),
5407 type);
5408 else if (flags & BSF_FILE)
5409 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5410 else
5411 {
5412 int bind = STB_LOCAL;
5413
5414 if (flags & BSF_LOCAL)
5415 bind = STB_LOCAL;
5416 else if (flags & BSF_WEAK)
5417 bind = STB_WEAK;
5418 else if (flags & BSF_GLOBAL)
5419 bind = STB_GLOBAL;
5420
5421 sym.st_info = ELF_ST_INFO (bind, type);
5422 }
5423
5424 if (type_ptr != NULL)
5425 sym.st_other = type_ptr->internal_elf_sym.st_other;
5426 else
5427 sym.st_other = 0;
5428
5429 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5430 outbound_syms += bed->s->sizeof_sym;
5431 if (outbound_shndx != NULL)
5432 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5433 }
5434
5435 *sttp = stt;
5436 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5437 symstrtab_hdr->sh_type = SHT_STRTAB;
5438
5439 symstrtab_hdr->sh_flags = 0;
5440 symstrtab_hdr->sh_addr = 0;
5441 symstrtab_hdr->sh_entsize = 0;
5442 symstrtab_hdr->sh_link = 0;
5443 symstrtab_hdr->sh_info = 0;
5444 symstrtab_hdr->sh_addralign = 1;
5445
5446 return true;
5447 }
5448
5449 /* Return the number of bytes required to hold the symtab vector.
5450
5451 Note that we base it on the count plus 1, since we will null terminate
5452 the vector allocated based on this size. However, the ELF symbol table
5453 always has a dummy entry as symbol #0, so it ends up even. */
5454
5455 long
5456 _bfd_elf_get_symtab_upper_bound (abfd)
5457 bfd *abfd;
5458 {
5459 long symcount;
5460 long symtab_size;
5461 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5462
5463 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5464 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5465 if (symcount > 0)
5466 symtab_size -= sizeof (asymbol *);
5467
5468 return symtab_size;
5469 }
5470
5471 long
5472 _bfd_elf_get_dynamic_symtab_upper_bound (abfd)
5473 bfd *abfd;
5474 {
5475 long symcount;
5476 long symtab_size;
5477 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5478
5479 if (elf_dynsymtab (abfd) == 0)
5480 {
5481 bfd_set_error (bfd_error_invalid_operation);
5482 return -1;
5483 }
5484
5485 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5486 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5487 if (symcount > 0)
5488 symtab_size -= sizeof (asymbol *);
5489
5490 return symtab_size;
5491 }
5492
5493 long
5494 _bfd_elf_get_reloc_upper_bound (abfd, asect)
5495 bfd *abfd ATTRIBUTE_UNUSED;
5496 sec_ptr asect;
5497 {
5498 return (asect->reloc_count + 1) * sizeof (arelent *);
5499 }
5500
5501 /* Canonicalize the relocs. */
5502
5503 long
5504 _bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols)
5505 bfd *abfd;
5506 sec_ptr section;
5507 arelent **relptr;
5508 asymbol **symbols;
5509 {
5510 arelent *tblptr;
5511 unsigned int i;
5512 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5513
5514 if (! bed->s->slurp_reloc_table (abfd, section, symbols, false))
5515 return -1;
5516
5517 tblptr = section->relocation;
5518 for (i = 0; i < section->reloc_count; i++)
5519 *relptr++ = tblptr++;
5520
5521 *relptr = NULL;
5522
5523 return section->reloc_count;
5524 }
5525
5526 long
5527 _bfd_elf_get_symtab (abfd, alocation)
5528 bfd *abfd;
5529 asymbol **alocation;
5530 {
5531 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5532 long symcount = bed->s->slurp_symbol_table (abfd, alocation, false);
5533
5534 if (symcount >= 0)
5535 bfd_get_symcount (abfd) = symcount;
5536 return symcount;
5537 }
5538
5539 long
5540 _bfd_elf_canonicalize_dynamic_symtab (abfd, alocation)
5541 bfd *abfd;
5542 asymbol **alocation;
5543 {
5544 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5545 long symcount = bed->s->slurp_symbol_table (abfd, alocation, true);
5546
5547 if (symcount >= 0)
5548 bfd_get_dynamic_symcount (abfd) = symcount;
5549 return symcount;
5550 }
5551
5552 /* Return the size required for the dynamic reloc entries. Any
5553 section that was actually installed in the BFD, and has type
5554 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5555 considered to be a dynamic reloc section. */
5556
5557 long
5558 _bfd_elf_get_dynamic_reloc_upper_bound (abfd)
5559 bfd *abfd;
5560 {
5561 long ret;
5562 asection *s;
5563
5564 if (elf_dynsymtab (abfd) == 0)
5565 {
5566 bfd_set_error (bfd_error_invalid_operation);
5567 return -1;
5568 }
5569
5570 ret = sizeof (arelent *);
5571 for (s = abfd->sections; s != NULL; s = s->next)
5572 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5573 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5574 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5575 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5576 * sizeof (arelent *));
5577
5578 return ret;
5579 }
5580
5581 /* Canonicalize the dynamic relocation entries. Note that we return
5582 the dynamic relocations as a single block, although they are
5583 actually associated with particular sections; the interface, which
5584 was designed for SunOS style shared libraries, expects that there
5585 is only one set of dynamic relocs. Any section that was actually
5586 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5587 the dynamic symbol table, is considered to be a dynamic reloc
5588 section. */
5589
5590 long
5591 _bfd_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
5592 bfd *abfd;
5593 arelent **storage;
5594 asymbol **syms;
5595 {
5596 boolean (*slurp_relocs) PARAMS ((bfd *, asection *, asymbol **, boolean));
5597 asection *s;
5598 long ret;
5599
5600 if (elf_dynsymtab (abfd) == 0)
5601 {
5602 bfd_set_error (bfd_error_invalid_operation);
5603 return -1;
5604 }
5605
5606 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5607 ret = 0;
5608 for (s = abfd->sections; s != NULL; s = s->next)
5609 {
5610 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5611 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5612 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5613 {
5614 arelent *p;
5615 long count, i;
5616
5617 if (! (*slurp_relocs) (abfd, s, syms, true))
5618 return -1;
5619 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5620 p = s->relocation;
5621 for (i = 0; i < count; i++)
5622 *storage++ = p++;
5623 ret += count;
5624 }
5625 }
5626
5627 *storage = NULL;
5628
5629 return ret;
5630 }
5631 \f
5632 /* Read in the version information. */
5633
5634 boolean
5635 _bfd_elf_slurp_version_tables (abfd)
5636 bfd *abfd;
5637 {
5638 bfd_byte *contents = NULL;
5639 bfd_size_type amt;
5640
5641 if (elf_dynverdef (abfd) != 0)
5642 {
5643 Elf_Internal_Shdr *hdr;
5644 Elf_External_Verdef *everdef;
5645 Elf_Internal_Verdef *iverdef;
5646 Elf_Internal_Verdef *iverdefarr;
5647 Elf_Internal_Verdef iverdefmem;
5648 unsigned int i;
5649 unsigned int maxidx;
5650
5651 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5652
5653 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
5654 if (contents == NULL)
5655 goto error_return;
5656 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5657 || bfd_bread ((PTR) contents, hdr->sh_size, abfd) != hdr->sh_size)
5658 goto error_return;
5659
5660 /* We know the number of entries in the section but not the maximum
5661 index. Therefore we have to run through all entries and find
5662 the maximum. */
5663 everdef = (Elf_External_Verdef *) contents;
5664 maxidx = 0;
5665 for (i = 0; i < hdr->sh_info; ++i)
5666 {
5667 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5668
5669 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5670 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5671
5672 everdef = ((Elf_External_Verdef *)
5673 ((bfd_byte *) everdef + iverdefmem.vd_next));
5674 }
5675
5676 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5677 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
5678 if (elf_tdata (abfd)->verdef == NULL)
5679 goto error_return;
5680
5681 elf_tdata (abfd)->cverdefs = maxidx;
5682
5683 everdef = (Elf_External_Verdef *) contents;
5684 iverdefarr = elf_tdata (abfd)->verdef;
5685 for (i = 0; i < hdr->sh_info; i++)
5686 {
5687 Elf_External_Verdaux *everdaux;
5688 Elf_Internal_Verdaux *iverdaux;
5689 unsigned int j;
5690
5691 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5692
5693 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5694 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5695
5696 iverdef->vd_bfd = abfd;
5697
5698 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5699 iverdef->vd_auxptr = (Elf_Internal_Verdaux *) bfd_alloc (abfd, amt);
5700 if (iverdef->vd_auxptr == NULL)
5701 goto error_return;
5702
5703 everdaux = ((Elf_External_Verdaux *)
5704 ((bfd_byte *) everdef + iverdef->vd_aux));
5705 iverdaux = iverdef->vd_auxptr;
5706 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5707 {
5708 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5709
5710 iverdaux->vda_nodename =
5711 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5712 iverdaux->vda_name);
5713 if (iverdaux->vda_nodename == NULL)
5714 goto error_return;
5715
5716 if (j + 1 < iverdef->vd_cnt)
5717 iverdaux->vda_nextptr = iverdaux + 1;
5718 else
5719 iverdaux->vda_nextptr = NULL;
5720
5721 everdaux = ((Elf_External_Verdaux *)
5722 ((bfd_byte *) everdaux + iverdaux->vda_next));
5723 }
5724
5725 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5726
5727 if (i + 1 < hdr->sh_info)
5728 iverdef->vd_nextdef = iverdef + 1;
5729 else
5730 iverdef->vd_nextdef = NULL;
5731
5732 everdef = ((Elf_External_Verdef *)
5733 ((bfd_byte *) everdef + iverdef->vd_next));
5734 }
5735
5736 free (contents);
5737 contents = NULL;
5738 }
5739
5740 if (elf_dynverref (abfd) != 0)
5741 {
5742 Elf_Internal_Shdr *hdr;
5743 Elf_External_Verneed *everneed;
5744 Elf_Internal_Verneed *iverneed;
5745 unsigned int i;
5746
5747 hdr = &elf_tdata (abfd)->dynverref_hdr;
5748
5749 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5750 elf_tdata (abfd)->verref =
5751 (Elf_Internal_Verneed *) bfd_zalloc (abfd, amt);
5752 if (elf_tdata (abfd)->verref == NULL)
5753 goto error_return;
5754
5755 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5756
5757 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
5758 if (contents == NULL)
5759 goto error_return;
5760 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5761 || bfd_bread ((PTR) contents, hdr->sh_size, abfd) != hdr->sh_size)
5762 goto error_return;
5763
5764 everneed = (Elf_External_Verneed *) contents;
5765 iverneed = elf_tdata (abfd)->verref;
5766 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5767 {
5768 Elf_External_Vernaux *evernaux;
5769 Elf_Internal_Vernaux *ivernaux;
5770 unsigned int j;
5771
5772 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5773
5774 iverneed->vn_bfd = abfd;
5775
5776 iverneed->vn_filename =
5777 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5778 iverneed->vn_file);
5779 if (iverneed->vn_filename == NULL)
5780 goto error_return;
5781
5782 amt = iverneed->vn_cnt;
5783 amt *= sizeof (Elf_Internal_Vernaux);
5784 iverneed->vn_auxptr = (Elf_Internal_Vernaux *) bfd_alloc (abfd, amt);
5785
5786 evernaux = ((Elf_External_Vernaux *)
5787 ((bfd_byte *) everneed + iverneed->vn_aux));
5788 ivernaux = iverneed->vn_auxptr;
5789 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5790 {
5791 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5792
5793 ivernaux->vna_nodename =
5794 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5795 ivernaux->vna_name);
5796 if (ivernaux->vna_nodename == NULL)
5797 goto error_return;
5798
5799 if (j + 1 < iverneed->vn_cnt)
5800 ivernaux->vna_nextptr = ivernaux + 1;
5801 else
5802 ivernaux->vna_nextptr = NULL;
5803
5804 evernaux = ((Elf_External_Vernaux *)
5805 ((bfd_byte *) evernaux + ivernaux->vna_next));
5806 }
5807
5808 if (i + 1 < hdr->sh_info)
5809 iverneed->vn_nextref = iverneed + 1;
5810 else
5811 iverneed->vn_nextref = NULL;
5812
5813 everneed = ((Elf_External_Verneed *)
5814 ((bfd_byte *) everneed + iverneed->vn_next));
5815 }
5816
5817 free (contents);
5818 contents = NULL;
5819 }
5820
5821 return true;
5822
5823 error_return:
5824 if (contents == NULL)
5825 free (contents);
5826 return false;
5827 }
5828 \f
5829 asymbol *
5830 _bfd_elf_make_empty_symbol (abfd)
5831 bfd *abfd;
5832 {
5833 elf_symbol_type *newsym;
5834 bfd_size_type amt = sizeof (elf_symbol_type);
5835
5836 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
5837 if (!newsym)
5838 return NULL;
5839 else
5840 {
5841 newsym->symbol.the_bfd = abfd;
5842 return &newsym->symbol;
5843 }
5844 }
5845
5846 void
5847 _bfd_elf_get_symbol_info (ignore_abfd, symbol, ret)
5848 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5849 asymbol *symbol;
5850 symbol_info *ret;
5851 {
5852 bfd_symbol_info (symbol, ret);
5853 }
5854
5855 /* Return whether a symbol name implies a local symbol. Most targets
5856 use this function for the is_local_label_name entry point, but some
5857 override it. */
5858
5859 boolean
5860 _bfd_elf_is_local_label_name (abfd, name)
5861 bfd *abfd ATTRIBUTE_UNUSED;
5862 const char *name;
5863 {
5864 /* Normal local symbols start with ``.L''. */
5865 if (name[0] == '.' && name[1] == 'L')
5866 return true;
5867
5868 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5869 DWARF debugging symbols starting with ``..''. */
5870 if (name[0] == '.' && name[1] == '.')
5871 return true;
5872
5873 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5874 emitting DWARF debugging output. I suspect this is actually a
5875 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5876 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5877 underscore to be emitted on some ELF targets). For ease of use,
5878 we treat such symbols as local. */
5879 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5880 return true;
5881
5882 return false;
5883 }
5884
5885 alent *
5886 _bfd_elf_get_lineno (ignore_abfd, symbol)
5887 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5888 asymbol *symbol ATTRIBUTE_UNUSED;
5889 {
5890 abort ();
5891 return NULL;
5892 }
5893
5894 boolean
5895 _bfd_elf_set_arch_mach (abfd, arch, machine)
5896 bfd *abfd;
5897 enum bfd_architecture arch;
5898 unsigned long machine;
5899 {
5900 /* If this isn't the right architecture for this backend, and this
5901 isn't the generic backend, fail. */
5902 if (arch != get_elf_backend_data (abfd)->arch
5903 && arch != bfd_arch_unknown
5904 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
5905 return false;
5906
5907 return bfd_default_set_arch_mach (abfd, arch, machine);
5908 }
5909
5910 /* Find the function to a particular section and offset,
5911 for error reporting. */
5912
5913 static boolean
5914 elf_find_function (abfd, section, symbols, offset,
5915 filename_ptr, functionname_ptr)
5916 bfd *abfd ATTRIBUTE_UNUSED;
5917 asection *section;
5918 asymbol **symbols;
5919 bfd_vma offset;
5920 const char **filename_ptr;
5921 const char **functionname_ptr;
5922 {
5923 const char *filename;
5924 asymbol *func;
5925 bfd_vma low_func;
5926 asymbol **p;
5927
5928 filename = NULL;
5929 func = NULL;
5930 low_func = 0;
5931
5932 for (p = symbols; *p != NULL; p++)
5933 {
5934 elf_symbol_type *q;
5935
5936 q = (elf_symbol_type *) *p;
5937
5938 if (bfd_get_section (&q->symbol) != section)
5939 continue;
5940
5941 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5942 {
5943 default:
5944 break;
5945 case STT_FILE:
5946 filename = bfd_asymbol_name (&q->symbol);
5947 break;
5948 case STT_NOTYPE:
5949 case STT_FUNC:
5950 if (q->symbol.section == section
5951 && q->symbol.value >= low_func
5952 && q->symbol.value <= offset)
5953 {
5954 func = (asymbol *) q;
5955 low_func = q->symbol.value;
5956 }
5957 break;
5958 }
5959 }
5960
5961 if (func == NULL)
5962 return false;
5963
5964 if (filename_ptr)
5965 *filename_ptr = filename;
5966 if (functionname_ptr)
5967 *functionname_ptr = bfd_asymbol_name (func);
5968
5969 return true;
5970 }
5971
5972 /* Find the nearest line to a particular section and offset,
5973 for error reporting. */
5974
5975 boolean
5976 _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
5977 filename_ptr, functionname_ptr, line_ptr)
5978 bfd *abfd;
5979 asection *section;
5980 asymbol **symbols;
5981 bfd_vma offset;
5982 const char **filename_ptr;
5983 const char **functionname_ptr;
5984 unsigned int *line_ptr;
5985 {
5986 boolean found;
5987
5988 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
5989 filename_ptr, functionname_ptr,
5990 line_ptr))
5991 {
5992 if (!*functionname_ptr)
5993 elf_find_function (abfd, section, symbols, offset,
5994 *filename_ptr ? NULL : filename_ptr,
5995 functionname_ptr);
5996
5997 return true;
5998 }
5999
6000 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6001 filename_ptr, functionname_ptr,
6002 line_ptr, 0,
6003 &elf_tdata (abfd)->dwarf2_find_line_info))
6004 {
6005 if (!*functionname_ptr)
6006 elf_find_function (abfd, section, symbols, offset,
6007 *filename_ptr ? NULL : filename_ptr,
6008 functionname_ptr);
6009
6010 return true;
6011 }
6012
6013 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6014 &found, filename_ptr,
6015 functionname_ptr, line_ptr,
6016 &elf_tdata (abfd)->line_info))
6017 return false;
6018 if (found && (*functionname_ptr || *line_ptr))
6019 return true;
6020
6021 if (symbols == NULL)
6022 return false;
6023
6024 if (! elf_find_function (abfd, section, symbols, offset,
6025 filename_ptr, functionname_ptr))
6026 return false;
6027
6028 *line_ptr = 0;
6029 return true;
6030 }
6031
6032 int
6033 _bfd_elf_sizeof_headers (abfd, reloc)
6034 bfd *abfd;
6035 boolean reloc;
6036 {
6037 int ret;
6038
6039 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6040 if (! reloc)
6041 ret += get_program_header_size (abfd);
6042 return ret;
6043 }
6044
6045 boolean
6046 _bfd_elf_set_section_contents (abfd, section, location, offset, count)
6047 bfd *abfd;
6048 sec_ptr section;
6049 PTR location;
6050 file_ptr offset;
6051 bfd_size_type count;
6052 {
6053 Elf_Internal_Shdr *hdr;
6054 bfd_signed_vma pos;
6055
6056 if (! abfd->output_has_begun
6057 && ! (_bfd_elf_compute_section_file_positions
6058 (abfd, (struct bfd_link_info *) NULL)))
6059 return false;
6060
6061 hdr = &elf_section_data (section)->this_hdr;
6062 pos = hdr->sh_offset + offset;
6063 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6064 || bfd_bwrite (location, count, abfd) != count)
6065 return false;
6066
6067 return true;
6068 }
6069
6070 void
6071 _bfd_elf_no_info_to_howto (abfd, cache_ptr, dst)
6072 bfd *abfd ATTRIBUTE_UNUSED;
6073 arelent *cache_ptr ATTRIBUTE_UNUSED;
6074 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED;
6075 {
6076 abort ();
6077 }
6078
6079 #if 0
6080 void
6081 _bfd_elf_no_info_to_howto_rel (abfd, cache_ptr, dst)
6082 bfd *abfd;
6083 arelent *cache_ptr;
6084 Elf_Internal_Rel *dst;
6085 {
6086 abort ();
6087 }
6088 #endif
6089
6090 /* Try to convert a non-ELF reloc into an ELF one. */
6091
6092 boolean
6093 _bfd_elf_validate_reloc (abfd, areloc)
6094 bfd *abfd;
6095 arelent *areloc;
6096 {
6097 /* Check whether we really have an ELF howto. */
6098
6099 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6100 {
6101 bfd_reloc_code_real_type code;
6102 reloc_howto_type *howto;
6103
6104 /* Alien reloc: Try to determine its type to replace it with an
6105 equivalent ELF reloc. */
6106
6107 if (areloc->howto->pc_relative)
6108 {
6109 switch (areloc->howto->bitsize)
6110 {
6111 case 8:
6112 code = BFD_RELOC_8_PCREL;
6113 break;
6114 case 12:
6115 code = BFD_RELOC_12_PCREL;
6116 break;
6117 case 16:
6118 code = BFD_RELOC_16_PCREL;
6119 break;
6120 case 24:
6121 code = BFD_RELOC_24_PCREL;
6122 break;
6123 case 32:
6124 code = BFD_RELOC_32_PCREL;
6125 break;
6126 case 64:
6127 code = BFD_RELOC_64_PCREL;
6128 break;
6129 default:
6130 goto fail;
6131 }
6132
6133 howto = bfd_reloc_type_lookup (abfd, code);
6134
6135 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6136 {
6137 if (howto->pcrel_offset)
6138 areloc->addend += areloc->address;
6139 else
6140 areloc->addend -= areloc->address; /* addend is unsigned!! */
6141 }
6142 }
6143 else
6144 {
6145 switch (areloc->howto->bitsize)
6146 {
6147 case 8:
6148 code = BFD_RELOC_8;
6149 break;
6150 case 14:
6151 code = BFD_RELOC_14;
6152 break;
6153 case 16:
6154 code = BFD_RELOC_16;
6155 break;
6156 case 26:
6157 code = BFD_RELOC_26;
6158 break;
6159 case 32:
6160 code = BFD_RELOC_32;
6161 break;
6162 case 64:
6163 code = BFD_RELOC_64;
6164 break;
6165 default:
6166 goto fail;
6167 }
6168
6169 howto = bfd_reloc_type_lookup (abfd, code);
6170 }
6171
6172 if (howto)
6173 areloc->howto = howto;
6174 else
6175 goto fail;
6176 }
6177
6178 return true;
6179
6180 fail:
6181 (*_bfd_error_handler)
6182 (_("%s: unsupported relocation type %s"),
6183 bfd_archive_filename (abfd), areloc->howto->name);
6184 bfd_set_error (bfd_error_bad_value);
6185 return false;
6186 }
6187
6188 boolean
6189 _bfd_elf_close_and_cleanup (abfd)
6190 bfd *abfd;
6191 {
6192 if (bfd_get_format (abfd) == bfd_object)
6193 {
6194 if (elf_shstrtab (abfd) != NULL)
6195 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6196 }
6197
6198 return _bfd_generic_close_and_cleanup (abfd);
6199 }
6200
6201 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6202 in the relocation's offset. Thus we cannot allow any sort of sanity
6203 range-checking to interfere. There is nothing else to do in processing
6204 this reloc. */
6205
6206 bfd_reloc_status_type
6207 _bfd_elf_rel_vtable_reloc_fn (abfd, re, symbol, data, is, obfd, errmsg)
6208 bfd *abfd ATTRIBUTE_UNUSED;
6209 arelent *re ATTRIBUTE_UNUSED;
6210 struct symbol_cache_entry *symbol ATTRIBUTE_UNUSED;
6211 PTR data ATTRIBUTE_UNUSED;
6212 asection *is ATTRIBUTE_UNUSED;
6213 bfd *obfd ATTRIBUTE_UNUSED;
6214 char **errmsg ATTRIBUTE_UNUSED;
6215 {
6216 return bfd_reloc_ok;
6217 }
6218 \f
6219 /* Elf core file support. Much of this only works on native
6220 toolchains, since we rely on knowing the
6221 machine-dependent procfs structure in order to pick
6222 out details about the corefile. */
6223
6224 #ifdef HAVE_SYS_PROCFS_H
6225 # include <sys/procfs.h>
6226 #endif
6227
6228 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6229
6230 static int
6231 elfcore_make_pid (abfd)
6232 bfd *abfd;
6233 {
6234 return ((elf_tdata (abfd)->core_lwpid << 16)
6235 + (elf_tdata (abfd)->core_pid));
6236 }
6237
6238 /* If there isn't a section called NAME, make one, using
6239 data from SECT. Note, this function will generate a
6240 reference to NAME, so you shouldn't deallocate or
6241 overwrite it. */
6242
6243 static boolean
6244 elfcore_maybe_make_sect (abfd, name, sect)
6245 bfd *abfd;
6246 char *name;
6247 asection *sect;
6248 {
6249 asection *sect2;
6250
6251 if (bfd_get_section_by_name (abfd, name) != NULL)
6252 return true;
6253
6254 sect2 = bfd_make_section (abfd, name);
6255 if (sect2 == NULL)
6256 return false;
6257
6258 sect2->_raw_size = sect->_raw_size;
6259 sect2->filepos = sect->filepos;
6260 sect2->flags = sect->flags;
6261 sect2->alignment_power = sect->alignment_power;
6262 return true;
6263 }
6264
6265 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6266 actually creates up to two pseudosections:
6267 - For the single-threaded case, a section named NAME, unless
6268 such a section already exists.
6269 - For the multi-threaded case, a section named "NAME/PID", where
6270 PID is elfcore_make_pid (abfd).
6271 Both pseudosections have identical contents. */
6272 boolean
6273 _bfd_elfcore_make_pseudosection (abfd, name, size, filepos)
6274 bfd *abfd;
6275 char *name;
6276 size_t size;
6277 ufile_ptr filepos;
6278 {
6279 char buf[100];
6280 char *threaded_name;
6281 size_t len;
6282 asection *sect;
6283
6284 /* Build the section name. */
6285
6286 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6287 len = strlen (buf) + 1;
6288 threaded_name = bfd_alloc (abfd, (bfd_size_type) len);
6289 if (threaded_name == NULL)
6290 return false;
6291 memcpy (threaded_name, buf, len);
6292
6293 sect = bfd_make_section (abfd, threaded_name);
6294 if (sect == NULL)
6295 return false;
6296 sect->_raw_size = size;
6297 sect->filepos = filepos;
6298 sect->flags = SEC_HAS_CONTENTS;
6299 sect->alignment_power = 2;
6300
6301 return elfcore_maybe_make_sect (abfd, name, sect);
6302 }
6303
6304 /* prstatus_t exists on:
6305 solaris 2.5+
6306 linux 2.[01] + glibc
6307 unixware 4.2
6308 */
6309
6310 #if defined (HAVE_PRSTATUS_T)
6311 static boolean elfcore_grok_prstatus PARAMS ((bfd *, Elf_Internal_Note *));
6312
6313 static boolean
6314 elfcore_grok_prstatus (abfd, note)
6315 bfd *abfd;
6316 Elf_Internal_Note *note;
6317 {
6318 size_t raw_size;
6319 int offset;
6320
6321 if (note->descsz == sizeof (prstatus_t))
6322 {
6323 prstatus_t prstat;
6324
6325 raw_size = sizeof (prstat.pr_reg);
6326 offset = offsetof (prstatus_t, pr_reg);
6327 memcpy (&prstat, note->descdata, sizeof (prstat));
6328
6329 /* Do not overwrite the core signal if it
6330 has already been set by another thread. */
6331 if (elf_tdata (abfd)->core_signal == 0)
6332 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6333 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6334
6335 /* pr_who exists on:
6336 solaris 2.5+
6337 unixware 4.2
6338 pr_who doesn't exist on:
6339 linux 2.[01]
6340 */
6341 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6342 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6343 #endif
6344 }
6345 #if defined (HAVE_PRSTATUS32_T)
6346 else if (note->descsz == sizeof (prstatus32_t))
6347 {
6348 /* 64-bit host, 32-bit corefile */
6349 prstatus32_t prstat;
6350
6351 raw_size = sizeof (prstat.pr_reg);
6352 offset = offsetof (prstatus32_t, pr_reg);
6353 memcpy (&prstat, note->descdata, sizeof (prstat));
6354
6355 /* Do not overwrite the core signal if it
6356 has already been set by another thread. */
6357 if (elf_tdata (abfd)->core_signal == 0)
6358 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6359 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6360
6361 /* pr_who exists on:
6362 solaris 2.5+
6363 unixware 4.2
6364 pr_who doesn't exist on:
6365 linux 2.[01]
6366 */
6367 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6368 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6369 #endif
6370 }
6371 #endif /* HAVE_PRSTATUS32_T */
6372 else
6373 {
6374 /* Fail - we don't know how to handle any other
6375 note size (ie. data object type). */
6376 return true;
6377 }
6378
6379 /* Make a ".reg/999" section and a ".reg" section. */
6380 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6381 raw_size, note->descpos + offset);
6382 }
6383 #endif /* defined (HAVE_PRSTATUS_T) */
6384
6385 /* Create a pseudosection containing the exact contents of NOTE. */
6386 static boolean
6387 elfcore_make_note_pseudosection (abfd, name, note)
6388 bfd *abfd;
6389 char *name;
6390 Elf_Internal_Note *note;
6391 {
6392 return _bfd_elfcore_make_pseudosection (abfd, name,
6393 note->descsz, note->descpos);
6394 }
6395
6396 /* There isn't a consistent prfpregset_t across platforms,
6397 but it doesn't matter, because we don't have to pick this
6398 data structure apart. */
6399
6400 static boolean
6401 elfcore_grok_prfpreg (abfd, note)
6402 bfd *abfd;
6403 Elf_Internal_Note *note;
6404 {
6405 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6406 }
6407
6408 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6409 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6410 literally. */
6411
6412 static boolean
6413 elfcore_grok_prxfpreg (abfd, note)
6414 bfd *abfd;
6415 Elf_Internal_Note *note;
6416 {
6417 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6418 }
6419
6420 #if defined (HAVE_PRPSINFO_T)
6421 typedef prpsinfo_t elfcore_psinfo_t;
6422 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6423 typedef prpsinfo32_t elfcore_psinfo32_t;
6424 #endif
6425 #endif
6426
6427 #if defined (HAVE_PSINFO_T)
6428 typedef psinfo_t elfcore_psinfo_t;
6429 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6430 typedef psinfo32_t elfcore_psinfo32_t;
6431 #endif
6432 #endif
6433
6434 /* return a malloc'ed copy of a string at START which is at
6435 most MAX bytes long, possibly without a terminating '\0'.
6436 the copy will always have a terminating '\0'. */
6437
6438 char *
6439 _bfd_elfcore_strndup (abfd, start, max)
6440 bfd *abfd;
6441 char *start;
6442 size_t max;
6443 {
6444 char *dups;
6445 char *end = memchr (start, '\0', max);
6446 size_t len;
6447
6448 if (end == NULL)
6449 len = max;
6450 else
6451 len = end - start;
6452
6453 dups = bfd_alloc (abfd, (bfd_size_type) len + 1);
6454 if (dups == NULL)
6455 return NULL;
6456
6457 memcpy (dups, start, len);
6458 dups[len] = '\0';
6459
6460 return dups;
6461 }
6462
6463 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6464 static boolean elfcore_grok_psinfo PARAMS ((bfd *, Elf_Internal_Note *));
6465
6466 static boolean
6467 elfcore_grok_psinfo (abfd, note)
6468 bfd *abfd;
6469 Elf_Internal_Note *note;
6470 {
6471 if (note->descsz == sizeof (elfcore_psinfo_t))
6472 {
6473 elfcore_psinfo_t psinfo;
6474
6475 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6476
6477 elf_tdata (abfd)->core_program
6478 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6479 sizeof (psinfo.pr_fname));
6480
6481 elf_tdata (abfd)->core_command
6482 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6483 sizeof (psinfo.pr_psargs));
6484 }
6485 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6486 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6487 {
6488 /* 64-bit host, 32-bit corefile */
6489 elfcore_psinfo32_t psinfo;
6490
6491 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6492
6493 elf_tdata (abfd)->core_program
6494 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6495 sizeof (psinfo.pr_fname));
6496
6497 elf_tdata (abfd)->core_command
6498 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6499 sizeof (psinfo.pr_psargs));
6500 }
6501 #endif
6502
6503 else
6504 {
6505 /* Fail - we don't know how to handle any other
6506 note size (ie. data object type). */
6507 return true;
6508 }
6509
6510 /* Note that for some reason, a spurious space is tacked
6511 onto the end of the args in some (at least one anyway)
6512 implementations, so strip it off if it exists. */
6513
6514 {
6515 char *command = elf_tdata (abfd)->core_command;
6516 int n = strlen (command);
6517
6518 if (0 < n && command[n - 1] == ' ')
6519 command[n - 1] = '\0';
6520 }
6521
6522 return true;
6523 }
6524 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6525
6526 #if defined (HAVE_PSTATUS_T)
6527 static boolean elfcore_grok_pstatus PARAMS ((bfd *, Elf_Internal_Note *));
6528
6529 static boolean
6530 elfcore_grok_pstatus (abfd, note)
6531 bfd *abfd;
6532 Elf_Internal_Note *note;
6533 {
6534 if (note->descsz == sizeof (pstatus_t)
6535 #if defined (HAVE_PXSTATUS_T)
6536 || note->descsz == sizeof (pxstatus_t)
6537 #endif
6538 )
6539 {
6540 pstatus_t pstat;
6541
6542 memcpy (&pstat, note->descdata, sizeof (pstat));
6543
6544 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6545 }
6546 #if defined (HAVE_PSTATUS32_T)
6547 else if (note->descsz == sizeof (pstatus32_t))
6548 {
6549 /* 64-bit host, 32-bit corefile */
6550 pstatus32_t pstat;
6551
6552 memcpy (&pstat, note->descdata, sizeof (pstat));
6553
6554 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6555 }
6556 #endif
6557 /* Could grab some more details from the "representative"
6558 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6559 NT_LWPSTATUS note, presumably. */
6560
6561 return true;
6562 }
6563 #endif /* defined (HAVE_PSTATUS_T) */
6564
6565 #if defined (HAVE_LWPSTATUS_T)
6566 static boolean elfcore_grok_lwpstatus PARAMS ((bfd *, Elf_Internal_Note *));
6567
6568 static boolean
6569 elfcore_grok_lwpstatus (abfd, note)
6570 bfd *abfd;
6571 Elf_Internal_Note *note;
6572 {
6573 lwpstatus_t lwpstat;
6574 char buf[100];
6575 char *name;
6576 size_t len;
6577 asection *sect;
6578
6579 if (note->descsz != sizeof (lwpstat)
6580 #if defined (HAVE_LWPXSTATUS_T)
6581 && note->descsz != sizeof (lwpxstatus_t)
6582 #endif
6583 )
6584 return true;
6585
6586 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6587
6588 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6589 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6590
6591 /* Make a ".reg/999" section. */
6592
6593 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6594 len = strlen (buf) + 1;
6595 name = bfd_alloc (abfd, (bfd_size_type) len);
6596 if (name == NULL)
6597 return false;
6598 memcpy (name, buf, len);
6599
6600 sect = bfd_make_section (abfd, name);
6601 if (sect == NULL)
6602 return false;
6603
6604 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6605 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6606 sect->filepos = note->descpos
6607 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6608 #endif
6609
6610 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6611 sect->_raw_size = sizeof (lwpstat.pr_reg);
6612 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6613 #endif
6614
6615 sect->flags = SEC_HAS_CONTENTS;
6616 sect->alignment_power = 2;
6617
6618 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6619 return false;
6620
6621 /* Make a ".reg2/999" section */
6622
6623 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6624 len = strlen (buf) + 1;
6625 name = bfd_alloc (abfd, (bfd_size_type) len);
6626 if (name == NULL)
6627 return false;
6628 memcpy (name, buf, len);
6629
6630 sect = bfd_make_section (abfd, name);
6631 if (sect == NULL)
6632 return false;
6633
6634 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6635 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6636 sect->filepos = note->descpos
6637 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6638 #endif
6639
6640 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6641 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6642 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6643 #endif
6644
6645 sect->flags = SEC_HAS_CONTENTS;
6646 sect->alignment_power = 2;
6647
6648 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6649 }
6650 #endif /* defined (HAVE_LWPSTATUS_T) */
6651
6652 #if defined (HAVE_WIN32_PSTATUS_T)
6653 static boolean
6654 elfcore_grok_win32pstatus (abfd, note)
6655 bfd *abfd;
6656 Elf_Internal_Note *note;
6657 {
6658 char buf[30];
6659 char *name;
6660 size_t len;
6661 asection *sect;
6662 win32_pstatus_t pstatus;
6663
6664 if (note->descsz < sizeof (pstatus))
6665 return true;
6666
6667 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6668
6669 switch (pstatus.data_type)
6670 {
6671 case NOTE_INFO_PROCESS:
6672 /* FIXME: need to add ->core_command. */
6673 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6674 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6675 break;
6676
6677 case NOTE_INFO_THREAD:
6678 /* Make a ".reg/999" section. */
6679 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6680
6681 len = strlen (buf) + 1;
6682 name = bfd_alloc (abfd, (bfd_size_type) len);
6683 if (name == NULL)
6684 return false;
6685
6686 memcpy (name, buf, len);
6687
6688 sect = bfd_make_section (abfd, name);
6689 if (sect == NULL)
6690 return false;
6691
6692 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6693 sect->filepos = (note->descpos
6694 + offsetof (struct win32_pstatus,
6695 data.thread_info.thread_context));
6696 sect->flags = SEC_HAS_CONTENTS;
6697 sect->alignment_power = 2;
6698
6699 if (pstatus.data.thread_info.is_active_thread)
6700 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6701 return false;
6702 break;
6703
6704 case NOTE_INFO_MODULE:
6705 /* Make a ".module/xxxxxxxx" section. */
6706 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6707
6708 len = strlen (buf) + 1;
6709 name = bfd_alloc (abfd, (bfd_size_type) len);
6710 if (name == NULL)
6711 return false;
6712
6713 memcpy (name, buf, len);
6714
6715 sect = bfd_make_section (abfd, name);
6716
6717 if (sect == NULL)
6718 return false;
6719
6720 sect->_raw_size = note->descsz;
6721 sect->filepos = note->descpos;
6722 sect->flags = SEC_HAS_CONTENTS;
6723 sect->alignment_power = 2;
6724 break;
6725
6726 default:
6727 return true;
6728 }
6729
6730 return true;
6731 }
6732 #endif /* HAVE_WIN32_PSTATUS_T */
6733
6734 static boolean
6735 elfcore_grok_note (abfd, note)
6736 bfd *abfd;
6737 Elf_Internal_Note *note;
6738 {
6739 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6740
6741 switch (note->type)
6742 {
6743 default:
6744 return true;
6745
6746 case NT_PRSTATUS:
6747 if (bed->elf_backend_grok_prstatus)
6748 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6749 return true;
6750 #if defined (HAVE_PRSTATUS_T)
6751 return elfcore_grok_prstatus (abfd, note);
6752 #else
6753 return true;
6754 #endif
6755
6756 #if defined (HAVE_PSTATUS_T)
6757 case NT_PSTATUS:
6758 return elfcore_grok_pstatus (abfd, note);
6759 #endif
6760
6761 #if defined (HAVE_LWPSTATUS_T)
6762 case NT_LWPSTATUS:
6763 return elfcore_grok_lwpstatus (abfd, note);
6764 #endif
6765
6766 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6767 return elfcore_grok_prfpreg (abfd, note);
6768
6769 #if defined (HAVE_WIN32_PSTATUS_T)
6770 case NT_WIN32PSTATUS:
6771 return elfcore_grok_win32pstatus (abfd, note);
6772 #endif
6773
6774 case NT_PRXFPREG: /* Linux SSE extension */
6775 if (note->namesz == 6
6776 && strcmp (note->namedata, "LINUX") == 0)
6777 return elfcore_grok_prxfpreg (abfd, note);
6778 else
6779 return true;
6780
6781 case NT_PRPSINFO:
6782 case NT_PSINFO:
6783 if (bed->elf_backend_grok_psinfo)
6784 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6785 return true;
6786 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6787 return elfcore_grok_psinfo (abfd, note);
6788 #else
6789 return true;
6790 #endif
6791 }
6792 }
6793
6794 static boolean
6795 elfcore_netbsd_get_lwpid (note, lwpidp)
6796 Elf_Internal_Note *note;
6797 int *lwpidp;
6798 {
6799 char *cp;
6800
6801 cp = strchr (note->namedata, '@');
6802 if (cp != NULL)
6803 {
6804 *lwpidp = atoi(cp + 1);
6805 return true;
6806 }
6807 return false;
6808 }
6809
6810 static boolean
6811 elfcore_grok_netbsd_procinfo (abfd, note)
6812 bfd *abfd;
6813 Elf_Internal_Note *note;
6814 {
6815
6816 /* Signal number at offset 0x08. */
6817 elf_tdata (abfd)->core_signal
6818 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6819
6820 /* Process ID at offset 0x50. */
6821 elf_tdata (abfd)->core_pid
6822 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6823
6824 /* Command name at 0x7c (max 32 bytes, including nul). */
6825 elf_tdata (abfd)->core_command
6826 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6827
6828 return true;
6829 }
6830
6831 static boolean
6832 elfcore_grok_netbsd_note (abfd, note)
6833 bfd *abfd;
6834 Elf_Internal_Note *note;
6835 {
6836 int lwp;
6837
6838 if (elfcore_netbsd_get_lwpid (note, &lwp))
6839 elf_tdata (abfd)->core_lwpid = lwp;
6840
6841 if (note->type == NT_NETBSDCORE_PROCINFO)
6842 {
6843 /* NetBSD-specific core "procinfo". Note that we expect to
6844 find this note before any of the others, which is fine,
6845 since the kernel writes this note out first when it
6846 creates a core file. */
6847
6848 return elfcore_grok_netbsd_procinfo (abfd, note);
6849 }
6850
6851 /* As of Jan 2002 there are no other machine-independent notes
6852 defined for NetBSD core files. If the note type is less
6853 than the start of the machine-dependent note types, we don't
6854 understand it. */
6855
6856 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6857 return true;
6858
6859
6860 switch (bfd_get_arch (abfd))
6861 {
6862 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6863 PT_GETFPREGS == mach+2. */
6864
6865 case bfd_arch_alpha:
6866 case bfd_arch_sparc:
6867 switch (note->type)
6868 {
6869 case NT_NETBSDCORE_FIRSTMACH+0:
6870 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6871
6872 case NT_NETBSDCORE_FIRSTMACH+2:
6873 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6874
6875 default:
6876 return true;
6877 }
6878
6879 /* On all other arch's, PT_GETREGS == mach+1 and
6880 PT_GETFPREGS == mach+3. */
6881
6882 default:
6883 switch (note->type)
6884 {
6885 case NT_NETBSDCORE_FIRSTMACH+1:
6886 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6887
6888 case NT_NETBSDCORE_FIRSTMACH+3:
6889 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6890
6891 default:
6892 return true;
6893 }
6894 }
6895 /* NOTREACHED */
6896 }
6897
6898 /* Function: elfcore_write_note
6899
6900 Inputs:
6901 buffer to hold note
6902 name of note
6903 type of note
6904 data for note
6905 size of data for note
6906
6907 Return:
6908 End of buffer containing note. */
6909
6910 char *
6911 elfcore_write_note (abfd, buf, bufsiz, name, type, input, size)
6912 bfd *abfd;
6913 char *buf;
6914 int *bufsiz;
6915 const char *name;
6916 int type;
6917 const PTR input;
6918 int size;
6919 {
6920 Elf_External_Note *xnp;
6921 size_t namesz;
6922 size_t pad;
6923 size_t newspace;
6924 char *p, *dest;
6925
6926 namesz = 0;
6927 pad = 0;
6928 if (name != NULL)
6929 {
6930 struct elf_backend_data *bed;
6931
6932 namesz = strlen (name) + 1;
6933 bed = get_elf_backend_data (abfd);
6934 pad = -namesz & (bed->s->file_align - 1);
6935 }
6936
6937 newspace = sizeof (Elf_External_Note) - 1 + namesz + pad + size;
6938
6939 p = realloc (buf, *bufsiz + newspace);
6940 dest = p + *bufsiz;
6941 *bufsiz += newspace;
6942 xnp = (Elf_External_Note *) dest;
6943 H_PUT_32 (abfd, namesz, xnp->namesz);
6944 H_PUT_32 (abfd, size, xnp->descsz);
6945 H_PUT_32 (abfd, type, xnp->type);
6946 dest = xnp->name;
6947 if (name != NULL)
6948 {
6949 memcpy (dest, name, namesz);
6950 dest += namesz;
6951 while (pad != 0)
6952 {
6953 *dest++ = '\0';
6954 --pad;
6955 }
6956 }
6957 memcpy (dest, input, size);
6958 return p;
6959 }
6960
6961 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6962 char *
6963 elfcore_write_prpsinfo (abfd, buf, bufsiz, fname, psargs)
6964 bfd *abfd;
6965 char *buf;
6966 int *bufsiz;
6967 const char *fname;
6968 const char *psargs;
6969 {
6970 int note_type;
6971 char *note_name = "CORE";
6972
6973 #if defined (HAVE_PSINFO_T)
6974 psinfo_t data;
6975 note_type = NT_PSINFO;
6976 #else
6977 prpsinfo_t data;
6978 note_type = NT_PRPSINFO;
6979 #endif
6980
6981 memset (&data, 0, sizeof (data));
6982 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
6983 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
6984 return elfcore_write_note (abfd, buf, bufsiz,
6985 note_name, note_type, &data, sizeof (data));
6986 }
6987 #endif /* PSINFO_T or PRPSINFO_T */
6988
6989 #if defined (HAVE_PRSTATUS_T)
6990 char *
6991 elfcore_write_prstatus (abfd, buf, bufsiz, pid, cursig, gregs)
6992 bfd *abfd;
6993 char *buf;
6994 int *bufsiz;
6995 long pid;
6996 int cursig;
6997 const PTR gregs;
6998 {
6999 prstatus_t prstat;
7000 char *note_name = "CORE";
7001
7002 memset (&prstat, 0, sizeof (prstat));
7003 prstat.pr_pid = pid;
7004 prstat.pr_cursig = cursig;
7005 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7006 return elfcore_write_note (abfd, buf, bufsiz,
7007 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7008 }
7009 #endif /* HAVE_PRSTATUS_T */
7010
7011 #if defined (HAVE_LWPSTATUS_T)
7012 char *
7013 elfcore_write_lwpstatus (abfd, buf, bufsiz, pid, cursig, gregs)
7014 bfd *abfd;
7015 char *buf;
7016 int *bufsiz;
7017 long pid;
7018 int cursig;
7019 const PTR gregs;
7020 {
7021 lwpstatus_t lwpstat;
7022 char *note_name = "CORE";
7023
7024 memset (&lwpstat, 0, sizeof (lwpstat));
7025 lwpstat.pr_lwpid = pid >> 16;
7026 lwpstat.pr_cursig = cursig;
7027 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7028 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7029 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7030 #if !defined(gregs)
7031 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7032 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7033 #else
7034 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7035 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7036 #endif
7037 #endif
7038 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7039 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7040 }
7041 #endif /* HAVE_LWPSTATUS_T */
7042
7043 #if defined (HAVE_PSTATUS_T)
7044 char *
7045 elfcore_write_pstatus (abfd, buf, bufsiz, pid, cursig, gregs)
7046 bfd *abfd;
7047 char *buf;
7048 int *bufsiz;
7049 long pid;
7050 int cursig;
7051 const PTR gregs;
7052 {
7053 pstatus_t pstat;
7054 char *note_name = "CORE";
7055
7056 memset (&pstat, 0, sizeof (pstat));
7057 pstat.pr_pid = pid & 0xffff;
7058 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7059 NT_PSTATUS, &pstat, sizeof (pstat));
7060 return buf;
7061 }
7062 #endif /* HAVE_PSTATUS_T */
7063
7064 char *
7065 elfcore_write_prfpreg (abfd, buf, bufsiz, fpregs, size)
7066 bfd *abfd;
7067 char *buf;
7068 int *bufsiz;
7069 const PTR fpregs;
7070 int size;
7071 {
7072 char *note_name = "CORE";
7073 return elfcore_write_note (abfd, buf, bufsiz,
7074 note_name, NT_FPREGSET, fpregs, size);
7075 }
7076
7077 char *
7078 elfcore_write_prxfpreg (abfd, buf, bufsiz, xfpregs, size)
7079 bfd *abfd;
7080 char *buf;
7081 int *bufsiz;
7082 const PTR xfpregs;
7083 int size;
7084 {
7085 char *note_name = "LINUX";
7086 return elfcore_write_note (abfd, buf, bufsiz,
7087 note_name, NT_PRXFPREG, xfpregs, size);
7088 }
7089
7090 static boolean
7091 elfcore_read_notes (abfd, offset, size)
7092 bfd *abfd;
7093 file_ptr offset;
7094 bfd_size_type size;
7095 {
7096 char *buf;
7097 char *p;
7098
7099 if (size <= 0)
7100 return true;
7101
7102 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7103 return false;
7104
7105 buf = bfd_malloc (size);
7106 if (buf == NULL)
7107 return false;
7108
7109 if (bfd_bread (buf, size, abfd) != size)
7110 {
7111 error:
7112 free (buf);
7113 return false;
7114 }
7115
7116 p = buf;
7117 while (p < buf + size)
7118 {
7119 /* FIXME: bad alignment assumption. */
7120 Elf_External_Note *xnp = (Elf_External_Note *) p;
7121 Elf_Internal_Note in;
7122
7123 in.type = H_GET_32 (abfd, xnp->type);
7124
7125 in.namesz = H_GET_32 (abfd, xnp->namesz);
7126 in.namedata = xnp->name;
7127
7128 in.descsz = H_GET_32 (abfd, xnp->descsz);
7129 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7130 in.descpos = offset + (in.descdata - buf);
7131
7132 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7133 {
7134 if (! elfcore_grok_netbsd_note (abfd, &in))
7135 goto error;
7136 }
7137 else
7138 {
7139 if (! elfcore_grok_note (abfd, &in))
7140 goto error;
7141 }
7142
7143 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7144 }
7145
7146 free (buf);
7147 return true;
7148 }
7149 \f
7150 /* Providing external access to the ELF program header table. */
7151
7152 /* Return an upper bound on the number of bytes required to store a
7153 copy of ABFD's program header table entries. Return -1 if an error
7154 occurs; bfd_get_error will return an appropriate code. */
7155
7156 long
7157 bfd_get_elf_phdr_upper_bound (abfd)
7158 bfd *abfd;
7159 {
7160 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7161 {
7162 bfd_set_error (bfd_error_wrong_format);
7163 return -1;
7164 }
7165
7166 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7167 }
7168
7169 /* Copy ABFD's program header table entries to *PHDRS. The entries
7170 will be stored as an array of Elf_Internal_Phdr structures, as
7171 defined in include/elf/internal.h. To find out how large the
7172 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7173
7174 Return the number of program header table entries read, or -1 if an
7175 error occurs; bfd_get_error will return an appropriate code. */
7176
7177 int
7178 bfd_get_elf_phdrs (abfd, phdrs)
7179 bfd *abfd;
7180 void *phdrs;
7181 {
7182 int num_phdrs;
7183
7184 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7185 {
7186 bfd_set_error (bfd_error_wrong_format);
7187 return -1;
7188 }
7189
7190 num_phdrs = elf_elfheader (abfd)->e_phnum;
7191 memcpy (phdrs, elf_tdata (abfd)->phdr,
7192 num_phdrs * sizeof (Elf_Internal_Phdr));
7193
7194 return num_phdrs;
7195 }
7196
7197 void
7198 _bfd_elf_sprintf_vma (abfd, buf, value)
7199 bfd *abfd ATTRIBUTE_UNUSED;
7200 char *buf;
7201 bfd_vma value;
7202 {
7203 #ifdef BFD64
7204 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7205
7206 i_ehdrp = elf_elfheader (abfd);
7207 if (i_ehdrp == NULL)
7208 sprintf_vma (buf, value);
7209 else
7210 {
7211 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7212 {
7213 #if BFD_HOST_64BIT_LONG
7214 sprintf (buf, "%016lx", value);
7215 #else
7216 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7217 _bfd_int64_low (value));
7218 #endif
7219 }
7220 else
7221 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7222 }
7223 #else
7224 sprintf_vma (buf, value);
7225 #endif
7226 }
7227
7228 void
7229 _bfd_elf_fprintf_vma (abfd, stream, value)
7230 bfd *abfd ATTRIBUTE_UNUSED;
7231 PTR stream;
7232 bfd_vma value;
7233 {
7234 #ifdef BFD64
7235 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7236
7237 i_ehdrp = elf_elfheader (abfd);
7238 if (i_ehdrp == NULL)
7239 fprintf_vma ((FILE *) stream, value);
7240 else
7241 {
7242 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7243 {
7244 #if BFD_HOST_64BIT_LONG
7245 fprintf ((FILE *) stream, "%016lx", value);
7246 #else
7247 fprintf ((FILE *) stream, "%08lx%08lx",
7248 _bfd_int64_high (value), _bfd_int64_low (value));
7249 #endif
7250 }
7251 else
7252 fprintf ((FILE *) stream, "%08lx",
7253 (unsigned long) (value & 0xffffffff));
7254 }
7255 #else
7256 fprintf_vma ((FILE *) stream, value);
7257 #endif
7258 }
7259
7260 enum elf_reloc_type_class
7261 _bfd_elf_reloc_type_class (rela)
7262 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED;
7263 {
7264 return reloc_class_normal;
7265 }
7266
7267 /* For RELA architectures, return the relocation value for a
7268 relocation against a local symbol. */
7269
7270 bfd_vma
7271 _bfd_elf_rela_local_sym (abfd, sym, sec, rel)
7272 bfd *abfd;
7273 Elf_Internal_Sym *sym;
7274 asection *sec;
7275 Elf_Internal_Rela *rel;
7276 {
7277 bfd_vma relocation;
7278
7279 relocation = (sec->output_section->vma
7280 + sec->output_offset
7281 + sym->st_value);
7282 if ((sec->flags & SEC_MERGE)
7283 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7284 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
7285 {
7286 asection *msec;
7287
7288 msec = sec;
7289 rel->r_addend =
7290 _bfd_merged_section_offset (abfd, &msec,
7291 elf_section_data (sec)->sec_info,
7292 sym->st_value + rel->r_addend,
7293 (bfd_vma) 0)
7294 - relocation;
7295 rel->r_addend += msec->output_section->vma + msec->output_offset;
7296 }
7297 return relocation;
7298 }
7299
7300 bfd_vma
7301 _bfd_elf_rel_local_sym (abfd, sym, psec, addend)
7302 bfd *abfd;
7303 Elf_Internal_Sym *sym;
7304 asection **psec;
7305 bfd_vma addend;
7306 {
7307 asection *sec = *psec;
7308
7309 if (elf_section_data (sec)->sec_info_type != ELF_INFO_TYPE_MERGE)
7310 return sym->st_value + addend;
7311
7312 return _bfd_merged_section_offset (abfd, psec,
7313 elf_section_data (sec)->sec_info,
7314 sym->st_value + addend, (bfd_vma) 0);
7315 }
7316
7317 bfd_vma
7318 _bfd_elf_section_offset (abfd, info, sec, offset)
7319 bfd *abfd;
7320 struct bfd_link_info *info;
7321 asection *sec;
7322 bfd_vma offset;
7323 {
7324 struct bfd_elf_section_data *sec_data;
7325
7326 sec_data = elf_section_data (sec);
7327 switch (sec_data->sec_info_type)
7328 {
7329 case ELF_INFO_TYPE_STABS:
7330 return _bfd_stab_section_offset
7331 (abfd, &elf_hash_table (info)->merge_info, sec, &sec_data->sec_info,
7332 offset);
7333 case ELF_INFO_TYPE_EH_FRAME:
7334 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7335 default:
7336 return offset;
7337 }
7338 }
This page took 0.188495 seconds and 4 git commands to generate.