a960e85fb73efb1b5d38f8bc1a9a2a53cf535b51
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /*
25 SECTION
26 ELF backends
27
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
31
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
35
36 /* For sparc64-cross-sparc32. */
37 #define _SYSCALL32
38 #include "sysdep.h"
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
49 static bfd_boolean prep_headers (bfd *);
50 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
51 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
52 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
53 file_ptr offset);
54
55 /* Swap version information in and out. The version information is
56 currently size independent. If that ever changes, this code will
57 need to move into elfcode.h. */
58
59 /* Swap in a Verdef structure. */
60
61 void
62 _bfd_elf_swap_verdef_in (bfd *abfd,
63 const Elf_External_Verdef *src,
64 Elf_Internal_Verdef *dst)
65 {
66 dst->vd_version = H_GET_16 (abfd, src->vd_version);
67 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
68 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
69 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
70 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
71 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
72 dst->vd_next = H_GET_32 (abfd, src->vd_next);
73 }
74
75 /* Swap out a Verdef structure. */
76
77 void
78 _bfd_elf_swap_verdef_out (bfd *abfd,
79 const Elf_Internal_Verdef *src,
80 Elf_External_Verdef *dst)
81 {
82 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
83 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
84 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
85 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
86 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
87 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
88 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
89 }
90
91 /* Swap in a Verdaux structure. */
92
93 void
94 _bfd_elf_swap_verdaux_in (bfd *abfd,
95 const Elf_External_Verdaux *src,
96 Elf_Internal_Verdaux *dst)
97 {
98 dst->vda_name = H_GET_32 (abfd, src->vda_name);
99 dst->vda_next = H_GET_32 (abfd, src->vda_next);
100 }
101
102 /* Swap out a Verdaux structure. */
103
104 void
105 _bfd_elf_swap_verdaux_out (bfd *abfd,
106 const Elf_Internal_Verdaux *src,
107 Elf_External_Verdaux *dst)
108 {
109 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
110 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
111 }
112
113 /* Swap in a Verneed structure. */
114
115 void
116 _bfd_elf_swap_verneed_in (bfd *abfd,
117 const Elf_External_Verneed *src,
118 Elf_Internal_Verneed *dst)
119 {
120 dst->vn_version = H_GET_16 (abfd, src->vn_version);
121 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
122 dst->vn_file = H_GET_32 (abfd, src->vn_file);
123 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
124 dst->vn_next = H_GET_32 (abfd, src->vn_next);
125 }
126
127 /* Swap out a Verneed structure. */
128
129 void
130 _bfd_elf_swap_verneed_out (bfd *abfd,
131 const Elf_Internal_Verneed *src,
132 Elf_External_Verneed *dst)
133 {
134 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
135 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
136 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
137 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
138 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
139 }
140
141 /* Swap in a Vernaux structure. */
142
143 void
144 _bfd_elf_swap_vernaux_in (bfd *abfd,
145 const Elf_External_Vernaux *src,
146 Elf_Internal_Vernaux *dst)
147 {
148 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
149 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
150 dst->vna_other = H_GET_16 (abfd, src->vna_other);
151 dst->vna_name = H_GET_32 (abfd, src->vna_name);
152 dst->vna_next = H_GET_32 (abfd, src->vna_next);
153 }
154
155 /* Swap out a Vernaux structure. */
156
157 void
158 _bfd_elf_swap_vernaux_out (bfd *abfd,
159 const Elf_Internal_Vernaux *src,
160 Elf_External_Vernaux *dst)
161 {
162 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
163 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
164 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
165 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
166 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
167 }
168
169 /* Swap in a Versym structure. */
170
171 void
172 _bfd_elf_swap_versym_in (bfd *abfd,
173 const Elf_External_Versym *src,
174 Elf_Internal_Versym *dst)
175 {
176 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
177 }
178
179 /* Swap out a Versym structure. */
180
181 void
182 _bfd_elf_swap_versym_out (bfd *abfd,
183 const Elf_Internal_Versym *src,
184 Elf_External_Versym *dst)
185 {
186 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
187 }
188
189 /* Standard ELF hash function. Do not change this function; you will
190 cause invalid hash tables to be generated. */
191
192 unsigned long
193 bfd_elf_hash (const char *namearg)
194 {
195 const unsigned char *name = (const unsigned char *) namearg;
196 unsigned long h = 0;
197 unsigned long g;
198 int ch;
199
200 while ((ch = *name++) != '\0')
201 {
202 h = (h << 4) + ch;
203 if ((g = (h & 0xf0000000)) != 0)
204 {
205 h ^= g >> 24;
206 /* The ELF ABI says `h &= ~g', but this is equivalent in
207 this case and on some machines one insn instead of two. */
208 h ^= g;
209 }
210 }
211 return h & 0xffffffff;
212 }
213
214 /* DT_GNU_HASH hash function. Do not change this function; you will
215 cause invalid hash tables to be generated. */
216
217 unsigned long
218 bfd_elf_gnu_hash (const char *namearg)
219 {
220 const unsigned char *name = (const unsigned char *) namearg;
221 unsigned long h = 5381;
222 unsigned char ch;
223
224 while ((ch = *name++) != '\0')
225 h = (h << 5) + h + ch;
226 return h & 0xffffffff;
227 }
228
229 bfd_boolean
230 bfd_elf_mkobject (bfd *abfd)
231 {
232 if (abfd->tdata.any == NULL)
233 {
234 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
235 if (abfd->tdata.any == NULL)
236 return FALSE;
237 }
238
239 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
240
241 return TRUE;
242 }
243
244 bfd_boolean
245 bfd_elf_mkcorefile (bfd *abfd)
246 {
247 /* I think this can be done just like an object file. */
248 return bfd_elf_mkobject (abfd);
249 }
250
251 char *
252 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
253 {
254 Elf_Internal_Shdr **i_shdrp;
255 bfd_byte *shstrtab = NULL;
256 file_ptr offset;
257 bfd_size_type shstrtabsize;
258
259 i_shdrp = elf_elfsections (abfd);
260 if (i_shdrp == 0
261 || shindex >= elf_numsections (abfd)
262 || i_shdrp[shindex] == 0)
263 return NULL;
264
265 shstrtab = i_shdrp[shindex]->contents;
266 if (shstrtab == NULL)
267 {
268 /* No cached one, attempt to read, and cache what we read. */
269 offset = i_shdrp[shindex]->sh_offset;
270 shstrtabsize = i_shdrp[shindex]->sh_size;
271
272 /* Allocate and clear an extra byte at the end, to prevent crashes
273 in case the string table is not terminated. */
274 if (shstrtabsize + 1 == 0
275 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
276 || bfd_seek (abfd, offset, SEEK_SET) != 0)
277 shstrtab = NULL;
278 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
279 {
280 if (bfd_get_error () != bfd_error_system_call)
281 bfd_set_error (bfd_error_file_truncated);
282 shstrtab = NULL;
283 }
284 else
285 shstrtab[shstrtabsize] = '\0';
286 i_shdrp[shindex]->contents = shstrtab;
287 }
288 return (char *) shstrtab;
289 }
290
291 char *
292 bfd_elf_string_from_elf_section (bfd *abfd,
293 unsigned int shindex,
294 unsigned int strindex)
295 {
296 Elf_Internal_Shdr *hdr;
297
298 if (strindex == 0)
299 return "";
300
301 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
302 return NULL;
303
304 hdr = elf_elfsections (abfd)[shindex];
305
306 if (hdr->contents == NULL
307 && bfd_elf_get_str_section (abfd, shindex) == NULL)
308 return NULL;
309
310 if (strindex >= hdr->sh_size)
311 {
312 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
313 (*_bfd_error_handler)
314 (_("%B: invalid string offset %u >= %lu for section `%s'"),
315 abfd, strindex, (unsigned long) hdr->sh_size,
316 (shindex == shstrndx && strindex == hdr->sh_name
317 ? ".shstrtab"
318 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
319 return "";
320 }
321
322 return ((char *) hdr->contents) + strindex;
323 }
324
325 /* Read and convert symbols to internal format.
326 SYMCOUNT specifies the number of symbols to read, starting from
327 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
328 are non-NULL, they are used to store the internal symbols, external
329 symbols, and symbol section index extensions, respectively. */
330
331 Elf_Internal_Sym *
332 bfd_elf_get_elf_syms (bfd *ibfd,
333 Elf_Internal_Shdr *symtab_hdr,
334 size_t symcount,
335 size_t symoffset,
336 Elf_Internal_Sym *intsym_buf,
337 void *extsym_buf,
338 Elf_External_Sym_Shndx *extshndx_buf)
339 {
340 Elf_Internal_Shdr *shndx_hdr;
341 void *alloc_ext;
342 const bfd_byte *esym;
343 Elf_External_Sym_Shndx *alloc_extshndx;
344 Elf_External_Sym_Shndx *shndx;
345 Elf_Internal_Sym *isym;
346 Elf_Internal_Sym *isymend;
347 const struct elf_backend_data *bed;
348 size_t extsym_size;
349 bfd_size_type amt;
350 file_ptr pos;
351
352 if (symcount == 0)
353 return intsym_buf;
354
355 /* Normal syms might have section extension entries. */
356 shndx_hdr = NULL;
357 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
358 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
359
360 /* Read the symbols. */
361 alloc_ext = NULL;
362 alloc_extshndx = NULL;
363 bed = get_elf_backend_data (ibfd);
364 extsym_size = bed->s->sizeof_sym;
365 amt = symcount * extsym_size;
366 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
367 if (extsym_buf == NULL)
368 {
369 alloc_ext = bfd_malloc2 (symcount, extsym_size);
370 extsym_buf = alloc_ext;
371 }
372 if (extsym_buf == NULL
373 || bfd_seek (ibfd, pos, SEEK_SET) != 0
374 || bfd_bread (extsym_buf, amt, ibfd) != amt)
375 {
376 intsym_buf = NULL;
377 goto out;
378 }
379
380 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
381 extshndx_buf = NULL;
382 else
383 {
384 amt = symcount * sizeof (Elf_External_Sym_Shndx);
385 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
386 if (extshndx_buf == NULL)
387 {
388 alloc_extshndx = bfd_malloc2 (symcount,
389 sizeof (Elf_External_Sym_Shndx));
390 extshndx_buf = alloc_extshndx;
391 }
392 if (extshndx_buf == NULL
393 || bfd_seek (ibfd, pos, SEEK_SET) != 0
394 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
395 {
396 intsym_buf = NULL;
397 goto out;
398 }
399 }
400
401 if (intsym_buf == NULL)
402 {
403 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
404 if (intsym_buf == NULL)
405 goto out;
406 }
407
408 /* Convert the symbols to internal form. */
409 isymend = intsym_buf + symcount;
410 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
411 isym < isymend;
412 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
413 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
414 {
415 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
416 (*_bfd_error_handler) (_("%B symbol number %lu references "
417 "nonexistent SHT_SYMTAB_SHNDX section"),
418 ibfd, (unsigned long) symoffset);
419 intsym_buf = NULL;
420 goto out;
421 }
422
423 out:
424 if (alloc_ext != NULL)
425 free (alloc_ext);
426 if (alloc_extshndx != NULL)
427 free (alloc_extshndx);
428
429 return intsym_buf;
430 }
431
432 /* Look up a symbol name. */
433 const char *
434 bfd_elf_sym_name (bfd *abfd,
435 Elf_Internal_Shdr *symtab_hdr,
436 Elf_Internal_Sym *isym,
437 asection *sym_sec)
438 {
439 const char *name;
440 unsigned int iname = isym->st_name;
441 unsigned int shindex = symtab_hdr->sh_link;
442
443 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
444 /* Check for a bogus st_shndx to avoid crashing. */
445 && isym->st_shndx < elf_numsections (abfd)
446 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
447 {
448 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
449 shindex = elf_elfheader (abfd)->e_shstrndx;
450 }
451
452 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
453 if (name == NULL)
454 name = "(null)";
455 else if (sym_sec && *name == '\0')
456 name = bfd_section_name (abfd, sym_sec);
457
458 return name;
459 }
460
461 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
462 sections. The first element is the flags, the rest are section
463 pointers. */
464
465 typedef union elf_internal_group {
466 Elf_Internal_Shdr *shdr;
467 unsigned int flags;
468 } Elf_Internal_Group;
469
470 /* Return the name of the group signature symbol. Why isn't the
471 signature just a string? */
472
473 static const char *
474 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
475 {
476 Elf_Internal_Shdr *hdr;
477 unsigned char esym[sizeof (Elf64_External_Sym)];
478 Elf_External_Sym_Shndx eshndx;
479 Elf_Internal_Sym isym;
480
481 /* First we need to ensure the symbol table is available. Make sure
482 that it is a symbol table section. */
483 hdr = elf_elfsections (abfd) [ghdr->sh_link];
484 if (hdr->sh_type != SHT_SYMTAB
485 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
486 return NULL;
487
488 /* Go read the symbol. */
489 hdr = &elf_tdata (abfd)->symtab_hdr;
490 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
491 &isym, esym, &eshndx) == NULL)
492 return NULL;
493
494 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
495 }
496
497 /* Set next_in_group list pointer, and group name for NEWSECT. */
498
499 static bfd_boolean
500 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
501 {
502 unsigned int num_group = elf_tdata (abfd)->num_group;
503
504 /* If num_group is zero, read in all SHT_GROUP sections. The count
505 is set to -1 if there are no SHT_GROUP sections. */
506 if (num_group == 0)
507 {
508 unsigned int i, shnum;
509
510 /* First count the number of groups. If we have a SHT_GROUP
511 section with just a flag word (ie. sh_size is 4), ignore it. */
512 shnum = elf_numsections (abfd);
513 num_group = 0;
514
515 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
516 ( (shdr)->sh_type == SHT_GROUP \
517 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
518 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
519 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
520
521 for (i = 0; i < shnum; i++)
522 {
523 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
524
525 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
526 num_group += 1;
527 }
528
529 if (num_group == 0)
530 {
531 num_group = (unsigned) -1;
532 elf_tdata (abfd)->num_group = num_group;
533 }
534 else
535 {
536 /* We keep a list of elf section headers for group sections,
537 so we can find them quickly. */
538 bfd_size_type amt;
539
540 elf_tdata (abfd)->num_group = num_group;
541 elf_tdata (abfd)->group_sect_ptr
542 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
543 if (elf_tdata (abfd)->group_sect_ptr == NULL)
544 return FALSE;
545
546 num_group = 0;
547 for (i = 0; i < shnum; i++)
548 {
549 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
550
551 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
552 {
553 unsigned char *src;
554 Elf_Internal_Group *dest;
555
556 /* Add to list of sections. */
557 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
558 num_group += 1;
559
560 /* Read the raw contents. */
561 BFD_ASSERT (sizeof (*dest) >= 4);
562 amt = shdr->sh_size * sizeof (*dest) / 4;
563 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
564 sizeof (*dest) / 4);
565 /* PR binutils/4110: Handle corrupt group headers. */
566 if (shdr->contents == NULL)
567 {
568 _bfd_error_handler
569 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
570 bfd_set_error (bfd_error_bad_value);
571 return FALSE;
572 }
573
574 memset (shdr->contents, 0, amt);
575
576 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
577 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
578 != shdr->sh_size))
579 return FALSE;
580
581 /* Translate raw contents, a flag word followed by an
582 array of elf section indices all in target byte order,
583 to the flag word followed by an array of elf section
584 pointers. */
585 src = shdr->contents + shdr->sh_size;
586 dest = (Elf_Internal_Group *) (shdr->contents + amt);
587 while (1)
588 {
589 unsigned int idx;
590
591 src -= 4;
592 --dest;
593 idx = H_GET_32 (abfd, src);
594 if (src == shdr->contents)
595 {
596 dest->flags = idx;
597 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
598 shdr->bfd_section->flags
599 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
600 break;
601 }
602 if (idx >= shnum)
603 {
604 ((*_bfd_error_handler)
605 (_("%B: invalid SHT_GROUP entry"), abfd));
606 idx = 0;
607 }
608 dest->shdr = elf_elfsections (abfd)[idx];
609 }
610 }
611 }
612 }
613 }
614
615 if (num_group != (unsigned) -1)
616 {
617 unsigned int i;
618
619 for (i = 0; i < num_group; i++)
620 {
621 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
622 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
623 unsigned int n_elt = shdr->sh_size / 4;
624
625 /* Look through this group's sections to see if current
626 section is a member. */
627 while (--n_elt != 0)
628 if ((++idx)->shdr == hdr)
629 {
630 asection *s = NULL;
631
632 /* We are a member of this group. Go looking through
633 other members to see if any others are linked via
634 next_in_group. */
635 idx = (Elf_Internal_Group *) shdr->contents;
636 n_elt = shdr->sh_size / 4;
637 while (--n_elt != 0)
638 if ((s = (++idx)->shdr->bfd_section) != NULL
639 && elf_next_in_group (s) != NULL)
640 break;
641 if (n_elt != 0)
642 {
643 /* Snarf the group name from other member, and
644 insert current section in circular list. */
645 elf_group_name (newsect) = elf_group_name (s);
646 elf_next_in_group (newsect) = elf_next_in_group (s);
647 elf_next_in_group (s) = newsect;
648 }
649 else
650 {
651 const char *gname;
652
653 gname = group_signature (abfd, shdr);
654 if (gname == NULL)
655 return FALSE;
656 elf_group_name (newsect) = gname;
657
658 /* Start a circular list with one element. */
659 elf_next_in_group (newsect) = newsect;
660 }
661
662 /* If the group section has been created, point to the
663 new member. */
664 if (shdr->bfd_section != NULL)
665 elf_next_in_group (shdr->bfd_section) = newsect;
666
667 i = num_group - 1;
668 break;
669 }
670 }
671 }
672
673 if (elf_group_name (newsect) == NULL)
674 {
675 (*_bfd_error_handler) (_("%B: no group info for section %A"),
676 abfd, newsect);
677 }
678 return TRUE;
679 }
680
681 bfd_boolean
682 _bfd_elf_setup_sections (bfd *abfd)
683 {
684 unsigned int i;
685 unsigned int num_group = elf_tdata (abfd)->num_group;
686 bfd_boolean result = TRUE;
687 asection *s;
688
689 /* Process SHF_LINK_ORDER. */
690 for (s = abfd->sections; s != NULL; s = s->next)
691 {
692 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
693 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
694 {
695 unsigned int elfsec = this_hdr->sh_link;
696 /* FIXME: The old Intel compiler and old strip/objcopy may
697 not set the sh_link or sh_info fields. Hence we could
698 get the situation where elfsec is 0. */
699 if (elfsec == 0)
700 {
701 const struct elf_backend_data *bed
702 = get_elf_backend_data (abfd);
703 if (bed->link_order_error_handler)
704 bed->link_order_error_handler
705 (_("%B: warning: sh_link not set for section `%A'"),
706 abfd, s);
707 }
708 else
709 {
710 asection *link;
711
712 this_hdr = elf_elfsections (abfd)[elfsec];
713
714 /* PR 1991, 2008:
715 Some strip/objcopy may leave an incorrect value in
716 sh_link. We don't want to proceed. */
717 link = this_hdr->bfd_section;
718 if (link == NULL)
719 {
720 (*_bfd_error_handler)
721 (_("%B: sh_link [%d] in section `%A' is incorrect"),
722 s->owner, s, elfsec);
723 result = FALSE;
724 }
725
726 elf_linked_to_section (s) = link;
727 }
728 }
729 }
730
731 /* Process section groups. */
732 if (num_group == (unsigned) -1)
733 return result;
734
735 for (i = 0; i < num_group; i++)
736 {
737 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
738 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
739 unsigned int n_elt = shdr->sh_size / 4;
740
741 while (--n_elt != 0)
742 if ((++idx)->shdr->bfd_section)
743 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
744 else if (idx->shdr->sh_type == SHT_RELA
745 || idx->shdr->sh_type == SHT_REL)
746 /* We won't include relocation sections in section groups in
747 output object files. We adjust the group section size here
748 so that relocatable link will work correctly when
749 relocation sections are in section group in input object
750 files. */
751 shdr->bfd_section->size -= 4;
752 else
753 {
754 /* There are some unknown sections in the group. */
755 (*_bfd_error_handler)
756 (_("%B: unknown [%d] section `%s' in group [%s]"),
757 abfd,
758 (unsigned int) idx->shdr->sh_type,
759 bfd_elf_string_from_elf_section (abfd,
760 (elf_elfheader (abfd)
761 ->e_shstrndx),
762 idx->shdr->sh_name),
763 shdr->bfd_section->name);
764 result = FALSE;
765 }
766 }
767 return result;
768 }
769
770 bfd_boolean
771 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
772 {
773 return elf_next_in_group (sec) != NULL;
774 }
775
776 /* Make a BFD section from an ELF section. We store a pointer to the
777 BFD section in the bfd_section field of the header. */
778
779 bfd_boolean
780 _bfd_elf_make_section_from_shdr (bfd *abfd,
781 Elf_Internal_Shdr *hdr,
782 const char *name,
783 int shindex)
784 {
785 asection *newsect;
786 flagword flags;
787 const struct elf_backend_data *bed;
788
789 if (hdr->bfd_section != NULL)
790 {
791 BFD_ASSERT (strcmp (name,
792 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
793 return TRUE;
794 }
795
796 newsect = bfd_make_section_anyway (abfd, name);
797 if (newsect == NULL)
798 return FALSE;
799
800 hdr->bfd_section = newsect;
801 elf_section_data (newsect)->this_hdr = *hdr;
802 elf_section_data (newsect)->this_idx = shindex;
803
804 /* Always use the real type/flags. */
805 elf_section_type (newsect) = hdr->sh_type;
806 elf_section_flags (newsect) = hdr->sh_flags;
807
808 newsect->filepos = hdr->sh_offset;
809
810 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
811 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
812 || ! bfd_set_section_alignment (abfd, newsect,
813 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
814 return FALSE;
815
816 flags = SEC_NO_FLAGS;
817 if (hdr->sh_type != SHT_NOBITS)
818 flags |= SEC_HAS_CONTENTS;
819 if (hdr->sh_type == SHT_GROUP)
820 flags |= SEC_GROUP | SEC_EXCLUDE;
821 if ((hdr->sh_flags & SHF_ALLOC) != 0)
822 {
823 flags |= SEC_ALLOC;
824 if (hdr->sh_type != SHT_NOBITS)
825 flags |= SEC_LOAD;
826 }
827 if ((hdr->sh_flags & SHF_WRITE) == 0)
828 flags |= SEC_READONLY;
829 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
830 flags |= SEC_CODE;
831 else if ((flags & SEC_LOAD) != 0)
832 flags |= SEC_DATA;
833 if ((hdr->sh_flags & SHF_MERGE) != 0)
834 {
835 flags |= SEC_MERGE;
836 newsect->entsize = hdr->sh_entsize;
837 if ((hdr->sh_flags & SHF_STRINGS) != 0)
838 flags |= SEC_STRINGS;
839 }
840 if (hdr->sh_flags & SHF_GROUP)
841 if (!setup_group (abfd, hdr, newsect))
842 return FALSE;
843 if ((hdr->sh_flags & SHF_TLS) != 0)
844 flags |= SEC_THREAD_LOCAL;
845
846 if ((flags & SEC_ALLOC) == 0)
847 {
848 /* The debugging sections appear to be recognized only by name,
849 not any sort of flag. Their SEC_ALLOC bits are cleared. */
850 static const struct
851 {
852 const char *name;
853 int len;
854 } debug_sections [] =
855 {
856 { STRING_COMMA_LEN ("debug") }, /* 'd' */
857 { NULL, 0 }, /* 'e' */
858 { NULL, 0 }, /* 'f' */
859 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
860 { NULL, 0 }, /* 'h' */
861 { NULL, 0 }, /* 'i' */
862 { NULL, 0 }, /* 'j' */
863 { NULL, 0 }, /* 'k' */
864 { STRING_COMMA_LEN ("line") }, /* 'l' */
865 { NULL, 0 }, /* 'm' */
866 { NULL, 0 }, /* 'n' */
867 { NULL, 0 }, /* 'o' */
868 { NULL, 0 }, /* 'p' */
869 { NULL, 0 }, /* 'q' */
870 { NULL, 0 }, /* 'r' */
871 { STRING_COMMA_LEN ("stab") } /* 's' */
872 };
873
874 if (name [0] == '.')
875 {
876 int i = name [1] - 'd';
877 if (i >= 0
878 && i < (int) ARRAY_SIZE (debug_sections)
879 && debug_sections [i].name != NULL
880 && strncmp (&name [1], debug_sections [i].name,
881 debug_sections [i].len) == 0)
882 flags |= SEC_DEBUGGING;
883 }
884 }
885
886 /* As a GNU extension, if the name begins with .gnu.linkonce, we
887 only link a single copy of the section. This is used to support
888 g++. g++ will emit each template expansion in its own section.
889 The symbols will be defined as weak, so that multiple definitions
890 are permitted. The GNU linker extension is to actually discard
891 all but one of the sections. */
892 if (CONST_STRNEQ (name, ".gnu.linkonce")
893 && elf_next_in_group (newsect) == NULL)
894 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
895
896 bed = get_elf_backend_data (abfd);
897 if (bed->elf_backend_section_flags)
898 if (! bed->elf_backend_section_flags (&flags, hdr))
899 return FALSE;
900
901 if (! bfd_set_section_flags (abfd, newsect, flags))
902 return FALSE;
903
904 /* We do not parse the PT_NOTE segments as we are interested even in the
905 separate debug info files which may have the segments offsets corrupted.
906 PT_NOTEs from the core files are currently not parsed using BFD. */
907 if (hdr->sh_type == SHT_NOTE)
908 {
909 char *contents;
910
911 contents = bfd_malloc (hdr->sh_size);
912 if (!contents)
913 return FALSE;
914
915 if (!bfd_get_section_contents (abfd, hdr->bfd_section, contents, 0,
916 hdr->sh_size)
917 || !elf_parse_notes (abfd, contents, hdr->sh_size, -1))
918 {
919 free (contents);
920 return FALSE;
921 }
922
923 free (contents);
924 }
925
926 if ((flags & SEC_ALLOC) != 0)
927 {
928 Elf_Internal_Phdr *phdr;
929 unsigned int i;
930
931 /* Look through the phdrs to see if we need to adjust the lma.
932 If all the p_paddr fields are zero, we ignore them, since
933 some ELF linkers produce such output. */
934 phdr = elf_tdata (abfd)->phdr;
935 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
936 {
937 if (phdr->p_paddr != 0)
938 break;
939 }
940 if (i < elf_elfheader (abfd)->e_phnum)
941 {
942 phdr = elf_tdata (abfd)->phdr;
943 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
944 {
945 /* This section is part of this segment if its file
946 offset plus size lies within the segment's memory
947 span and, if the section is loaded, the extent of the
948 loaded data lies within the extent of the segment.
949
950 Note - we used to check the p_paddr field as well, and
951 refuse to set the LMA if it was 0. This is wrong
952 though, as a perfectly valid initialised segment can
953 have a p_paddr of zero. Some architectures, eg ARM,
954 place special significance on the address 0 and
955 executables need to be able to have a segment which
956 covers this address. */
957 if (phdr->p_type == PT_LOAD
958 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
959 && (hdr->sh_offset + hdr->sh_size
960 <= phdr->p_offset + phdr->p_memsz)
961 && ((flags & SEC_LOAD) == 0
962 || (hdr->sh_offset + hdr->sh_size
963 <= phdr->p_offset + phdr->p_filesz)))
964 {
965 if ((flags & SEC_LOAD) == 0)
966 newsect->lma = (phdr->p_paddr
967 + hdr->sh_addr - phdr->p_vaddr);
968 else
969 /* We used to use the same adjustment for SEC_LOAD
970 sections, but that doesn't work if the segment
971 is packed with code from multiple VMAs.
972 Instead we calculate the section LMA based on
973 the segment LMA. It is assumed that the
974 segment will contain sections with contiguous
975 LMAs, even if the VMAs are not. */
976 newsect->lma = (phdr->p_paddr
977 + hdr->sh_offset - phdr->p_offset);
978
979 /* With contiguous segments, we can't tell from file
980 offsets whether a section with zero size should
981 be placed at the end of one segment or the
982 beginning of the next. Decide based on vaddr. */
983 if (hdr->sh_addr >= phdr->p_vaddr
984 && (hdr->sh_addr + hdr->sh_size
985 <= phdr->p_vaddr + phdr->p_memsz))
986 break;
987 }
988 }
989 }
990 }
991
992 return TRUE;
993 }
994
995 /*
996 INTERNAL_FUNCTION
997 bfd_elf_find_section
998
999 SYNOPSIS
1000 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
1001
1002 DESCRIPTION
1003 Helper functions for GDB to locate the string tables.
1004 Since BFD hides string tables from callers, GDB needs to use an
1005 internal hook to find them. Sun's .stabstr, in particular,
1006 isn't even pointed to by the .stab section, so ordinary
1007 mechanisms wouldn't work to find it, even if we had some.
1008 */
1009
1010 struct elf_internal_shdr *
1011 bfd_elf_find_section (bfd *abfd, char *name)
1012 {
1013 Elf_Internal_Shdr **i_shdrp;
1014 char *shstrtab;
1015 unsigned int max;
1016 unsigned int i;
1017
1018 i_shdrp = elf_elfsections (abfd);
1019 if (i_shdrp != NULL)
1020 {
1021 shstrtab = bfd_elf_get_str_section (abfd,
1022 elf_elfheader (abfd)->e_shstrndx);
1023 if (shstrtab != NULL)
1024 {
1025 max = elf_numsections (abfd);
1026 for (i = 1; i < max; i++)
1027 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
1028 return i_shdrp[i];
1029 }
1030 }
1031 return 0;
1032 }
1033
1034 const char *const bfd_elf_section_type_names[] = {
1035 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1036 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1037 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1038 };
1039
1040 /* ELF relocs are against symbols. If we are producing relocatable
1041 output, and the reloc is against an external symbol, and nothing
1042 has given us any additional addend, the resulting reloc will also
1043 be against the same symbol. In such a case, we don't want to
1044 change anything about the way the reloc is handled, since it will
1045 all be done at final link time. Rather than put special case code
1046 into bfd_perform_relocation, all the reloc types use this howto
1047 function. It just short circuits the reloc if producing
1048 relocatable output against an external symbol. */
1049
1050 bfd_reloc_status_type
1051 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1052 arelent *reloc_entry,
1053 asymbol *symbol,
1054 void *data ATTRIBUTE_UNUSED,
1055 asection *input_section,
1056 bfd *output_bfd,
1057 char **error_message ATTRIBUTE_UNUSED)
1058 {
1059 if (output_bfd != NULL
1060 && (symbol->flags & BSF_SECTION_SYM) == 0
1061 && (! reloc_entry->howto->partial_inplace
1062 || reloc_entry->addend == 0))
1063 {
1064 reloc_entry->address += input_section->output_offset;
1065 return bfd_reloc_ok;
1066 }
1067
1068 return bfd_reloc_continue;
1069 }
1070 \f
1071 /* Copy the program header and other data from one object module to
1072 another. */
1073
1074 bfd_boolean
1075 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1076 {
1077 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1078 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1079 return TRUE;
1080
1081 BFD_ASSERT (!elf_flags_init (obfd)
1082 || (elf_elfheader (obfd)->e_flags
1083 == elf_elfheader (ibfd)->e_flags));
1084
1085 elf_gp (obfd) = elf_gp (ibfd);
1086 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1087 elf_flags_init (obfd) = TRUE;
1088
1089 /* Copy object attributes. */
1090 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1091
1092 return TRUE;
1093 }
1094
1095 static const char *
1096 get_segment_type (unsigned int p_type)
1097 {
1098 const char *pt;
1099 switch (p_type)
1100 {
1101 case PT_NULL: pt = "NULL"; break;
1102 case PT_LOAD: pt = "LOAD"; break;
1103 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1104 case PT_INTERP: pt = "INTERP"; break;
1105 case PT_NOTE: pt = "NOTE"; break;
1106 case PT_SHLIB: pt = "SHLIB"; break;
1107 case PT_PHDR: pt = "PHDR"; break;
1108 case PT_TLS: pt = "TLS"; break;
1109 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1110 case PT_GNU_STACK: pt = "STACK"; break;
1111 case PT_GNU_RELRO: pt = "RELRO"; break;
1112 default: pt = NULL; break;
1113 }
1114 return pt;
1115 }
1116
1117 /* Print out the program headers. */
1118
1119 bfd_boolean
1120 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1121 {
1122 FILE *f = farg;
1123 Elf_Internal_Phdr *p;
1124 asection *s;
1125 bfd_byte *dynbuf = NULL;
1126
1127 p = elf_tdata (abfd)->phdr;
1128 if (p != NULL)
1129 {
1130 unsigned int i, c;
1131
1132 fprintf (f, _("\nProgram Header:\n"));
1133 c = elf_elfheader (abfd)->e_phnum;
1134 for (i = 0; i < c; i++, p++)
1135 {
1136 const char *pt = get_segment_type (p->p_type);
1137 char buf[20];
1138
1139 if (pt == NULL)
1140 {
1141 sprintf (buf, "0x%lx", p->p_type);
1142 pt = buf;
1143 }
1144 fprintf (f, "%8s off 0x", pt);
1145 bfd_fprintf_vma (abfd, f, p->p_offset);
1146 fprintf (f, " vaddr 0x");
1147 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1148 fprintf (f, " paddr 0x");
1149 bfd_fprintf_vma (abfd, f, p->p_paddr);
1150 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1151 fprintf (f, " filesz 0x");
1152 bfd_fprintf_vma (abfd, f, p->p_filesz);
1153 fprintf (f, " memsz 0x");
1154 bfd_fprintf_vma (abfd, f, p->p_memsz);
1155 fprintf (f, " flags %c%c%c",
1156 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1157 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1158 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1159 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1160 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1161 fprintf (f, "\n");
1162 }
1163 }
1164
1165 s = bfd_get_section_by_name (abfd, ".dynamic");
1166 if (s != NULL)
1167 {
1168 int elfsec;
1169 unsigned long shlink;
1170 bfd_byte *extdyn, *extdynend;
1171 size_t extdynsize;
1172 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1173
1174 fprintf (f, _("\nDynamic Section:\n"));
1175
1176 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1177 goto error_return;
1178
1179 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1180 if (elfsec == -1)
1181 goto error_return;
1182 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1183
1184 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1185 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1186
1187 extdyn = dynbuf;
1188 extdynend = extdyn + s->size;
1189 for (; extdyn < extdynend; extdyn += extdynsize)
1190 {
1191 Elf_Internal_Dyn dyn;
1192 const char *name;
1193 char ab[20];
1194 bfd_boolean stringp;
1195
1196 (*swap_dyn_in) (abfd, extdyn, &dyn);
1197
1198 if (dyn.d_tag == DT_NULL)
1199 break;
1200
1201 stringp = FALSE;
1202 switch (dyn.d_tag)
1203 {
1204 default:
1205 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1206 name = ab;
1207 break;
1208
1209 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1210 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1211 case DT_PLTGOT: name = "PLTGOT"; break;
1212 case DT_HASH: name = "HASH"; break;
1213 case DT_STRTAB: name = "STRTAB"; break;
1214 case DT_SYMTAB: name = "SYMTAB"; break;
1215 case DT_RELA: name = "RELA"; break;
1216 case DT_RELASZ: name = "RELASZ"; break;
1217 case DT_RELAENT: name = "RELAENT"; break;
1218 case DT_STRSZ: name = "STRSZ"; break;
1219 case DT_SYMENT: name = "SYMENT"; break;
1220 case DT_INIT: name = "INIT"; break;
1221 case DT_FINI: name = "FINI"; break;
1222 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1223 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1224 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1225 case DT_REL: name = "REL"; break;
1226 case DT_RELSZ: name = "RELSZ"; break;
1227 case DT_RELENT: name = "RELENT"; break;
1228 case DT_PLTREL: name = "PLTREL"; break;
1229 case DT_DEBUG: name = "DEBUG"; break;
1230 case DT_TEXTREL: name = "TEXTREL"; break;
1231 case DT_JMPREL: name = "JMPREL"; break;
1232 case DT_BIND_NOW: name = "BIND_NOW"; break;
1233 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1238 case DT_FLAGS: name = "FLAGS"; break;
1239 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM: name = "CHECKSUM"; break;
1242 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1243 case DT_MOVEENT: name = "MOVEENT"; break;
1244 case DT_MOVESZ: name = "MOVESZ"; break;
1245 case DT_FEATURE: name = "FEATURE"; break;
1246 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1247 case DT_SYMINSZ: name = "SYMINSZ"; break;
1248 case DT_SYMINENT: name = "SYMINENT"; break;
1249 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1250 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1251 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1252 case DT_PLTPAD: name = "PLTPAD"; break;
1253 case DT_MOVETAB: name = "MOVETAB"; break;
1254 case DT_SYMINFO: name = "SYMINFO"; break;
1255 case DT_RELACOUNT: name = "RELACOUNT"; break;
1256 case DT_RELCOUNT: name = "RELCOUNT"; break;
1257 case DT_FLAGS_1: name = "FLAGS_1"; break;
1258 case DT_VERSYM: name = "VERSYM"; break;
1259 case DT_VERDEF: name = "VERDEF"; break;
1260 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1261 case DT_VERNEED: name = "VERNEED"; break;
1262 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1263 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1264 case DT_USED: name = "USED"; break;
1265 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1266 case DT_GNU_HASH: name = "GNU_HASH"; break;
1267 }
1268
1269 fprintf (f, " %-11s ", name);
1270 if (! stringp)
1271 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1272 else
1273 {
1274 const char *string;
1275 unsigned int tagv = dyn.d_un.d_val;
1276
1277 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1278 if (string == NULL)
1279 goto error_return;
1280 fprintf (f, "%s", string);
1281 }
1282 fprintf (f, "\n");
1283 }
1284
1285 free (dynbuf);
1286 dynbuf = NULL;
1287 }
1288
1289 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1290 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1291 {
1292 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1293 return FALSE;
1294 }
1295
1296 if (elf_dynverdef (abfd) != 0)
1297 {
1298 Elf_Internal_Verdef *t;
1299
1300 fprintf (f, _("\nVersion definitions:\n"));
1301 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1302 {
1303 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1304 t->vd_flags, t->vd_hash,
1305 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1306 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1307 {
1308 Elf_Internal_Verdaux *a;
1309
1310 fprintf (f, "\t");
1311 for (a = t->vd_auxptr->vda_nextptr;
1312 a != NULL;
1313 a = a->vda_nextptr)
1314 fprintf (f, "%s ",
1315 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1316 fprintf (f, "\n");
1317 }
1318 }
1319 }
1320
1321 if (elf_dynverref (abfd) != 0)
1322 {
1323 Elf_Internal_Verneed *t;
1324
1325 fprintf (f, _("\nVersion References:\n"));
1326 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1327 {
1328 Elf_Internal_Vernaux *a;
1329
1330 fprintf (f, _(" required from %s:\n"),
1331 t->vn_filename ? t->vn_filename : "<corrupt>");
1332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1333 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1334 a->vna_flags, a->vna_other,
1335 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1336 }
1337 }
1338
1339 return TRUE;
1340
1341 error_return:
1342 if (dynbuf != NULL)
1343 free (dynbuf);
1344 return FALSE;
1345 }
1346
1347 /* Display ELF-specific fields of a symbol. */
1348
1349 void
1350 bfd_elf_print_symbol (bfd *abfd,
1351 void *filep,
1352 asymbol *symbol,
1353 bfd_print_symbol_type how)
1354 {
1355 FILE *file = filep;
1356 switch (how)
1357 {
1358 case bfd_print_symbol_name:
1359 fprintf (file, "%s", symbol->name);
1360 break;
1361 case bfd_print_symbol_more:
1362 fprintf (file, "elf ");
1363 bfd_fprintf_vma (abfd, file, symbol->value);
1364 fprintf (file, " %lx", (long) symbol->flags);
1365 break;
1366 case bfd_print_symbol_all:
1367 {
1368 const char *section_name;
1369 const char *name = NULL;
1370 const struct elf_backend_data *bed;
1371 unsigned char st_other;
1372 bfd_vma val;
1373
1374 section_name = symbol->section ? symbol->section->name : "(*none*)";
1375
1376 bed = get_elf_backend_data (abfd);
1377 if (bed->elf_backend_print_symbol_all)
1378 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1379
1380 if (name == NULL)
1381 {
1382 name = symbol->name;
1383 bfd_print_symbol_vandf (abfd, file, symbol);
1384 }
1385
1386 fprintf (file, " %s\t", section_name);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (symbol->section && bfd_is_com_section (symbol->section))
1392 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1393 else
1394 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1395 bfd_fprintf_vma (abfd, file, val);
1396
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd)->dynversym_section != 0
1399 && (elf_tdata (abfd)->dynverdef_section != 0
1400 || elf_tdata (abfd)->dynverref_section != 0))
1401 {
1402 unsigned int vernum;
1403 const char *version_string;
1404
1405 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1406
1407 if (vernum == 0)
1408 version_string = "";
1409 else if (vernum == 1)
1410 version_string = "Base";
1411 else if (vernum <= elf_tdata (abfd)->cverdefs)
1412 version_string =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1415 {
1416 Elf_Internal_Verneed *t;
1417
1418 version_string = "";
1419 for (t = elf_tdata (abfd)->verref;
1420 t != NULL;
1421 t = t->vn_nextref)
1422 {
1423 Elf_Internal_Vernaux *a;
1424
1425 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1426 {
1427 if (a->vna_other == vernum)
1428 {
1429 version_string = a->vna_nodename;
1430 break;
1431 }
1432 }
1433 }
1434 }
1435
1436 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1437 fprintf (file, " %-11s", version_string);
1438 else
1439 {
1440 int i;
1441
1442 fprintf (file, " (%s)", version_string);
1443 for (i = 10 - strlen (version_string); i > 0; --i)
1444 putc (' ', file);
1445 }
1446 }
1447
1448 /* If the st_other field is not zero, print it. */
1449 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1450
1451 switch (st_other)
1452 {
1453 case 0: break;
1454 case STV_INTERNAL: fprintf (file, " .internal"); break;
1455 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1456 case STV_PROTECTED: fprintf (file, " .protected"); break;
1457 default:
1458 /* Some other non-defined flags are also present, so print
1459 everything hex. */
1460 fprintf (file, " 0x%02x", (unsigned int) st_other);
1461 }
1462
1463 fprintf (file, " %s", name);
1464 }
1465 break;
1466 }
1467 }
1468
1469 /* Allocate an ELF string table--force the first byte to be zero. */
1470
1471 struct bfd_strtab_hash *
1472 _bfd_elf_stringtab_init (void)
1473 {
1474 struct bfd_strtab_hash *ret;
1475
1476 ret = _bfd_stringtab_init ();
1477 if (ret != NULL)
1478 {
1479 bfd_size_type loc;
1480
1481 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1482 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1483 if (loc == (bfd_size_type) -1)
1484 {
1485 _bfd_stringtab_free (ret);
1486 ret = NULL;
1487 }
1488 }
1489 return ret;
1490 }
1491 \f
1492 /* ELF .o/exec file reading */
1493
1494 /* Create a new bfd section from an ELF section header. */
1495
1496 bfd_boolean
1497 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1498 {
1499 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1500 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1501 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1502 const char *name;
1503
1504 name = bfd_elf_string_from_elf_section (abfd,
1505 elf_elfheader (abfd)->e_shstrndx,
1506 hdr->sh_name);
1507 if (name == NULL)
1508 return FALSE;
1509
1510 switch (hdr->sh_type)
1511 {
1512 case SHT_NULL:
1513 /* Inactive section. Throw it away. */
1514 return TRUE;
1515
1516 case SHT_PROGBITS: /* Normal section with contents. */
1517 case SHT_NOBITS: /* .bss section. */
1518 case SHT_HASH: /* .hash section. */
1519 case SHT_NOTE: /* .note section. */
1520 case SHT_INIT_ARRAY: /* .init_array section. */
1521 case SHT_FINI_ARRAY: /* .fini_array section. */
1522 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1523 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1524 case SHT_GNU_HASH: /* .gnu.hash section. */
1525 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1526
1527 case SHT_DYNAMIC: /* Dynamic linking information. */
1528 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1529 return FALSE;
1530 if (hdr->sh_link > elf_numsections (abfd)
1531 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1532 return FALSE;
1533 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1534 {
1535 Elf_Internal_Shdr *dynsymhdr;
1536
1537 /* The shared libraries distributed with hpux11 have a bogus
1538 sh_link field for the ".dynamic" section. Find the
1539 string table for the ".dynsym" section instead. */
1540 if (elf_dynsymtab (abfd) != 0)
1541 {
1542 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1543 hdr->sh_link = dynsymhdr->sh_link;
1544 }
1545 else
1546 {
1547 unsigned int i, num_sec;
1548
1549 num_sec = elf_numsections (abfd);
1550 for (i = 1; i < num_sec; i++)
1551 {
1552 dynsymhdr = elf_elfsections (abfd)[i];
1553 if (dynsymhdr->sh_type == SHT_DYNSYM)
1554 {
1555 hdr->sh_link = dynsymhdr->sh_link;
1556 break;
1557 }
1558 }
1559 }
1560 }
1561 break;
1562
1563 case SHT_SYMTAB: /* A symbol table */
1564 if (elf_onesymtab (abfd) == shindex)
1565 return TRUE;
1566
1567 if (hdr->sh_entsize != bed->s->sizeof_sym)
1568 return FALSE;
1569 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1570 elf_onesymtab (abfd) = shindex;
1571 elf_tdata (abfd)->symtab_hdr = *hdr;
1572 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1573 abfd->flags |= HAS_SYMS;
1574
1575 /* Sometimes a shared object will map in the symbol table. If
1576 SHF_ALLOC is set, and this is a shared object, then we also
1577 treat this section as a BFD section. We can not base the
1578 decision purely on SHF_ALLOC, because that flag is sometimes
1579 set in a relocatable object file, which would confuse the
1580 linker. */
1581 if ((hdr->sh_flags & SHF_ALLOC) != 0
1582 && (abfd->flags & DYNAMIC) != 0
1583 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1584 shindex))
1585 return FALSE;
1586
1587 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1588 can't read symbols without that section loaded as well. It
1589 is most likely specified by the next section header. */
1590 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1591 {
1592 unsigned int i, num_sec;
1593
1594 num_sec = elf_numsections (abfd);
1595 for (i = shindex + 1; i < num_sec; i++)
1596 {
1597 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1598 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1599 && hdr2->sh_link == shindex)
1600 break;
1601 }
1602 if (i == num_sec)
1603 for (i = 1; i < shindex; i++)
1604 {
1605 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1606 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1607 && hdr2->sh_link == shindex)
1608 break;
1609 }
1610 if (i != shindex)
1611 return bfd_section_from_shdr (abfd, i);
1612 }
1613 return TRUE;
1614
1615 case SHT_DYNSYM: /* A dynamic symbol table */
1616 if (elf_dynsymtab (abfd) == shindex)
1617 return TRUE;
1618
1619 if (hdr->sh_entsize != bed->s->sizeof_sym)
1620 return FALSE;
1621 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1622 elf_dynsymtab (abfd) = shindex;
1623 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1624 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1625 abfd->flags |= HAS_SYMS;
1626
1627 /* Besides being a symbol table, we also treat this as a regular
1628 section, so that objcopy can handle it. */
1629 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1630
1631 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1632 if (elf_symtab_shndx (abfd) == shindex)
1633 return TRUE;
1634
1635 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1636 elf_symtab_shndx (abfd) = shindex;
1637 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1638 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1639 return TRUE;
1640
1641 case SHT_STRTAB: /* A string table */
1642 if (hdr->bfd_section != NULL)
1643 return TRUE;
1644 if (ehdr->e_shstrndx == shindex)
1645 {
1646 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1647 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1648 return TRUE;
1649 }
1650 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1651 {
1652 symtab_strtab:
1653 elf_tdata (abfd)->strtab_hdr = *hdr;
1654 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1655 return TRUE;
1656 }
1657 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1658 {
1659 dynsymtab_strtab:
1660 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1661 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1662 elf_elfsections (abfd)[shindex] = hdr;
1663 /* We also treat this as a regular section, so that objcopy
1664 can handle it. */
1665 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1666 shindex);
1667 }
1668
1669 /* If the string table isn't one of the above, then treat it as a
1670 regular section. We need to scan all the headers to be sure,
1671 just in case this strtab section appeared before the above. */
1672 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1673 {
1674 unsigned int i, num_sec;
1675
1676 num_sec = elf_numsections (abfd);
1677 for (i = 1; i < num_sec; i++)
1678 {
1679 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1680 if (hdr2->sh_link == shindex)
1681 {
1682 /* Prevent endless recursion on broken objects. */
1683 if (i == shindex)
1684 return FALSE;
1685 if (! bfd_section_from_shdr (abfd, i))
1686 return FALSE;
1687 if (elf_onesymtab (abfd) == i)
1688 goto symtab_strtab;
1689 if (elf_dynsymtab (abfd) == i)
1690 goto dynsymtab_strtab;
1691 }
1692 }
1693 }
1694 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1695
1696 case SHT_REL:
1697 case SHT_RELA:
1698 /* *These* do a lot of work -- but build no sections! */
1699 {
1700 asection *target_sect;
1701 Elf_Internal_Shdr *hdr2;
1702 unsigned int num_sec = elf_numsections (abfd);
1703
1704 if (hdr->sh_entsize
1705 != (bfd_size_type) (hdr->sh_type == SHT_REL
1706 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1707 return FALSE;
1708
1709 /* Check for a bogus link to avoid crashing. */
1710 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1711 || hdr->sh_link >= num_sec)
1712 {
1713 ((*_bfd_error_handler)
1714 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1715 abfd, hdr->sh_link, name, shindex));
1716 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1717 shindex);
1718 }
1719
1720 /* For some incomprehensible reason Oracle distributes
1721 libraries for Solaris in which some of the objects have
1722 bogus sh_link fields. It would be nice if we could just
1723 reject them, but, unfortunately, some people need to use
1724 them. We scan through the section headers; if we find only
1725 one suitable symbol table, we clobber the sh_link to point
1726 to it. I hope this doesn't break anything. */
1727 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1728 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1729 {
1730 unsigned int scan;
1731 int found;
1732
1733 found = 0;
1734 for (scan = 1; scan < num_sec; scan++)
1735 {
1736 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1737 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1738 {
1739 if (found != 0)
1740 {
1741 found = 0;
1742 break;
1743 }
1744 found = scan;
1745 }
1746 }
1747 if (found != 0)
1748 hdr->sh_link = found;
1749 }
1750
1751 /* Get the symbol table. */
1752 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1753 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1754 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1755 return FALSE;
1756
1757 /* If this reloc section does not use the main symbol table we
1758 don't treat it as a reloc section. BFD can't adequately
1759 represent such a section, so at least for now, we don't
1760 try. We just present it as a normal section. We also
1761 can't use it as a reloc section if it points to the null
1762 section, an invalid section, or another reloc section. */
1763 if (hdr->sh_link != elf_onesymtab (abfd)
1764 || hdr->sh_info == SHN_UNDEF
1765 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
1766 || hdr->sh_info >= num_sec
1767 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1768 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1769 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1770 shindex);
1771
1772 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1773 return FALSE;
1774 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1775 if (target_sect == NULL)
1776 return FALSE;
1777
1778 if ((target_sect->flags & SEC_RELOC) == 0
1779 || target_sect->reloc_count == 0)
1780 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1781 else
1782 {
1783 bfd_size_type amt;
1784 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1785 amt = sizeof (*hdr2);
1786 hdr2 = bfd_alloc (abfd, amt);
1787 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1788 }
1789 *hdr2 = *hdr;
1790 elf_elfsections (abfd)[shindex] = hdr2;
1791 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1792 target_sect->flags |= SEC_RELOC;
1793 target_sect->relocation = NULL;
1794 target_sect->rel_filepos = hdr->sh_offset;
1795 /* In the section to which the relocations apply, mark whether
1796 its relocations are of the REL or RELA variety. */
1797 if (hdr->sh_size != 0)
1798 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1799 abfd->flags |= HAS_RELOC;
1800 return TRUE;
1801 }
1802
1803 case SHT_GNU_verdef:
1804 elf_dynverdef (abfd) = shindex;
1805 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1806 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1807
1808 case SHT_GNU_versym:
1809 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1810 return FALSE;
1811 elf_dynversym (abfd) = shindex;
1812 elf_tdata (abfd)->dynversym_hdr = *hdr;
1813 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1814
1815 case SHT_GNU_verneed:
1816 elf_dynverref (abfd) = shindex;
1817 elf_tdata (abfd)->dynverref_hdr = *hdr;
1818 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1819
1820 case SHT_SHLIB:
1821 return TRUE;
1822
1823 case SHT_GROUP:
1824 /* We need a BFD section for objcopy and relocatable linking,
1825 and it's handy to have the signature available as the section
1826 name. */
1827 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1828 return FALSE;
1829 name = group_signature (abfd, hdr);
1830 if (name == NULL)
1831 return FALSE;
1832 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1833 return FALSE;
1834 if (hdr->contents != NULL)
1835 {
1836 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1837 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1838 asection *s;
1839
1840 if (idx->flags & GRP_COMDAT)
1841 hdr->bfd_section->flags
1842 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1843
1844 /* We try to keep the same section order as it comes in. */
1845 idx += n_elt;
1846 while (--n_elt != 0)
1847 {
1848 --idx;
1849
1850 if (idx->shdr != NULL
1851 && (s = idx->shdr->bfd_section) != NULL
1852 && elf_next_in_group (s) != NULL)
1853 {
1854 elf_next_in_group (hdr->bfd_section) = s;
1855 break;
1856 }
1857 }
1858 }
1859 break;
1860
1861 default:
1862 /* Possibly an attributes section. */
1863 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1864 || hdr->sh_type == bed->obj_attrs_section_type)
1865 {
1866 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1867 return FALSE;
1868 _bfd_elf_parse_attributes (abfd, hdr);
1869 return TRUE;
1870 }
1871
1872 /* Check for any processor-specific section types. */
1873 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1874 return TRUE;
1875
1876 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1877 {
1878 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1879 /* FIXME: How to properly handle allocated section reserved
1880 for applications? */
1881 (*_bfd_error_handler)
1882 (_("%B: don't know how to handle allocated, application "
1883 "specific section `%s' [0x%8x]"),
1884 abfd, name, hdr->sh_type);
1885 else
1886 /* Allow sections reserved for applications. */
1887 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1888 shindex);
1889 }
1890 else if (hdr->sh_type >= SHT_LOPROC
1891 && hdr->sh_type <= SHT_HIPROC)
1892 /* FIXME: We should handle this section. */
1893 (*_bfd_error_handler)
1894 (_("%B: don't know how to handle processor specific section "
1895 "`%s' [0x%8x]"),
1896 abfd, name, hdr->sh_type);
1897 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1898 {
1899 /* Unrecognised OS-specific sections. */
1900 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1901 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1902 required to correctly process the section and the file should
1903 be rejected with an error message. */
1904 (*_bfd_error_handler)
1905 (_("%B: don't know how to handle OS specific section "
1906 "`%s' [0x%8x]"),
1907 abfd, name, hdr->sh_type);
1908 else
1909 /* Otherwise it should be processed. */
1910 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1911 }
1912 else
1913 /* FIXME: We should handle this section. */
1914 (*_bfd_error_handler)
1915 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1916 abfd, name, hdr->sh_type);
1917
1918 return FALSE;
1919 }
1920
1921 return TRUE;
1922 }
1923
1924 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1925 Return SEC for sections that have no elf section, and NULL on error. */
1926
1927 asection *
1928 bfd_section_from_r_symndx (bfd *abfd,
1929 struct sym_sec_cache *cache,
1930 asection *sec,
1931 unsigned long r_symndx)
1932 {
1933 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1934 asection *s;
1935
1936 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1937 {
1938 Elf_Internal_Shdr *symtab_hdr;
1939 unsigned char esym[sizeof (Elf64_External_Sym)];
1940 Elf_External_Sym_Shndx eshndx;
1941 Elf_Internal_Sym isym;
1942
1943 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1944 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1945 &isym, esym, &eshndx) == NULL)
1946 return NULL;
1947
1948 if (cache->abfd != abfd)
1949 {
1950 memset (cache->indx, -1, sizeof (cache->indx));
1951 cache->abfd = abfd;
1952 }
1953 cache->indx[ent] = r_symndx;
1954 cache->shndx[ent] = isym.st_shndx;
1955 }
1956
1957 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1958 if (s != NULL)
1959 return s;
1960
1961 return sec;
1962 }
1963
1964 /* Given an ELF section number, retrieve the corresponding BFD
1965 section. */
1966
1967 asection *
1968 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
1969 {
1970 if (index >= elf_numsections (abfd))
1971 return NULL;
1972 return elf_elfsections (abfd)[index]->bfd_section;
1973 }
1974
1975 static const struct bfd_elf_special_section special_sections_b[] =
1976 {
1977 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1978 { NULL, 0, 0, 0, 0 }
1979 };
1980
1981 static const struct bfd_elf_special_section special_sections_c[] =
1982 {
1983 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
1984 { NULL, 0, 0, 0, 0 }
1985 };
1986
1987 static const struct bfd_elf_special_section special_sections_d[] =
1988 {
1989 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1990 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1991 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
1992 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
1993 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
1994 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
1995 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
1996 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
1997 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
1998 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
1999 { NULL, 0, 0, 0, 0 }
2000 };
2001
2002 static const struct bfd_elf_special_section special_sections_f[] =
2003 {
2004 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2005 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2006 { NULL, 0, 0, 0, 0 }
2007 };
2008
2009 static const struct bfd_elf_special_section special_sections_g[] =
2010 {
2011 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2012 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2013 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2014 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2015 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2016 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2017 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2018 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2019 { NULL, 0, 0, 0, 0 }
2020 };
2021
2022 static const struct bfd_elf_special_section special_sections_h[] =
2023 {
2024 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2025 { NULL, 0, 0, 0, 0 }
2026 };
2027
2028 static const struct bfd_elf_special_section special_sections_i[] =
2029 {
2030 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2031 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2032 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2033 { NULL, 0, 0, 0, 0 }
2034 };
2035
2036 static const struct bfd_elf_special_section special_sections_l[] =
2037 {
2038 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2039 { NULL, 0, 0, 0, 0 }
2040 };
2041
2042 static const struct bfd_elf_special_section special_sections_n[] =
2043 {
2044 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2045 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2046 { NULL, 0, 0, 0, 0 }
2047 };
2048
2049 static const struct bfd_elf_special_section special_sections_p[] =
2050 {
2051 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2052 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2053 { NULL, 0, 0, 0, 0 }
2054 };
2055
2056 static const struct bfd_elf_special_section special_sections_r[] =
2057 {
2058 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2059 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2060 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2061 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2062 { NULL, 0, 0, 0, 0 }
2063 };
2064
2065 static const struct bfd_elf_special_section special_sections_s[] =
2066 {
2067 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2068 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2069 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2070 /* See struct bfd_elf_special_section declaration for the semantics of
2071 this special case where .prefix_length != strlen (.prefix). */
2072 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2073 { NULL, 0, 0, 0, 0 }
2074 };
2075
2076 static const struct bfd_elf_special_section special_sections_t[] =
2077 {
2078 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2079 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2080 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2081 { NULL, 0, 0, 0, 0 }
2082 };
2083
2084 static const struct bfd_elf_special_section *special_sections[] =
2085 {
2086 special_sections_b, /* 'b' */
2087 special_sections_c, /* 'c' */
2088 special_sections_d, /* 'd' */
2089 NULL, /* 'e' */
2090 special_sections_f, /* 'f' */
2091 special_sections_g, /* 'g' */
2092 special_sections_h, /* 'h' */
2093 special_sections_i, /* 'i' */
2094 NULL, /* 'j' */
2095 NULL, /* 'k' */
2096 special_sections_l, /* 'l' */
2097 NULL, /* 'm' */
2098 special_sections_n, /* 'n' */
2099 NULL, /* 'o' */
2100 special_sections_p, /* 'p' */
2101 NULL, /* 'q' */
2102 special_sections_r, /* 'r' */
2103 special_sections_s, /* 's' */
2104 special_sections_t, /* 't' */
2105 };
2106
2107 const struct bfd_elf_special_section *
2108 _bfd_elf_get_special_section (const char *name,
2109 const struct bfd_elf_special_section *spec,
2110 unsigned int rela)
2111 {
2112 int i;
2113 int len;
2114
2115 len = strlen (name);
2116
2117 for (i = 0; spec[i].prefix != NULL; i++)
2118 {
2119 int suffix_len;
2120 int prefix_len = spec[i].prefix_length;
2121
2122 if (len < prefix_len)
2123 continue;
2124 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2125 continue;
2126
2127 suffix_len = spec[i].suffix_length;
2128 if (suffix_len <= 0)
2129 {
2130 if (name[prefix_len] != 0)
2131 {
2132 if (suffix_len == 0)
2133 continue;
2134 if (name[prefix_len] != '.'
2135 && (suffix_len == -2
2136 || (rela && spec[i].type == SHT_REL)))
2137 continue;
2138 }
2139 }
2140 else
2141 {
2142 if (len < prefix_len + suffix_len)
2143 continue;
2144 if (memcmp (name + len - suffix_len,
2145 spec[i].prefix + prefix_len,
2146 suffix_len) != 0)
2147 continue;
2148 }
2149 return &spec[i];
2150 }
2151
2152 return NULL;
2153 }
2154
2155 const struct bfd_elf_special_section *
2156 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2157 {
2158 int i;
2159 const struct bfd_elf_special_section *spec;
2160 const struct elf_backend_data *bed;
2161
2162 /* See if this is one of the special sections. */
2163 if (sec->name == NULL)
2164 return NULL;
2165
2166 bed = get_elf_backend_data (abfd);
2167 spec = bed->special_sections;
2168 if (spec)
2169 {
2170 spec = _bfd_elf_get_special_section (sec->name,
2171 bed->special_sections,
2172 sec->use_rela_p);
2173 if (spec != NULL)
2174 return spec;
2175 }
2176
2177 if (sec->name[0] != '.')
2178 return NULL;
2179
2180 i = sec->name[1] - 'b';
2181 if (i < 0 || i > 't' - 'b')
2182 return NULL;
2183
2184 spec = special_sections[i];
2185
2186 if (spec == NULL)
2187 return NULL;
2188
2189 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2190 }
2191
2192 bfd_boolean
2193 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2194 {
2195 struct bfd_elf_section_data *sdata;
2196 const struct elf_backend_data *bed;
2197 const struct bfd_elf_special_section *ssect;
2198
2199 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2200 if (sdata == NULL)
2201 {
2202 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2203 if (sdata == NULL)
2204 return FALSE;
2205 sec->used_by_bfd = sdata;
2206 }
2207
2208 /* Indicate whether or not this section should use RELA relocations. */
2209 bed = get_elf_backend_data (abfd);
2210 sec->use_rela_p = bed->default_use_rela_p;
2211
2212 /* When we read a file, we don't need to set ELF section type and
2213 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2214 anyway. We will set ELF section type and flags for all linker
2215 created sections. If user specifies BFD section flags, we will
2216 set ELF section type and flags based on BFD section flags in
2217 elf_fake_sections. */
2218 if ((!sec->flags && abfd->direction != read_direction)
2219 || (sec->flags & SEC_LINKER_CREATED) != 0)
2220 {
2221 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2222 if (ssect != NULL)
2223 {
2224 elf_section_type (sec) = ssect->type;
2225 elf_section_flags (sec) = ssect->attr;
2226 }
2227 }
2228
2229 return _bfd_generic_new_section_hook (abfd, sec);
2230 }
2231
2232 /* Create a new bfd section from an ELF program header.
2233
2234 Since program segments have no names, we generate a synthetic name
2235 of the form segment<NUM>, where NUM is generally the index in the
2236 program header table. For segments that are split (see below) we
2237 generate the names segment<NUM>a and segment<NUM>b.
2238
2239 Note that some program segments may have a file size that is different than
2240 (less than) the memory size. All this means is that at execution the
2241 system must allocate the amount of memory specified by the memory size,
2242 but only initialize it with the first "file size" bytes read from the
2243 file. This would occur for example, with program segments consisting
2244 of combined data+bss.
2245
2246 To handle the above situation, this routine generates TWO bfd sections
2247 for the single program segment. The first has the length specified by
2248 the file size of the segment, and the second has the length specified
2249 by the difference between the two sizes. In effect, the segment is split
2250 into its initialized and uninitialized parts.
2251
2252 */
2253
2254 bfd_boolean
2255 _bfd_elf_make_section_from_phdr (bfd *abfd,
2256 Elf_Internal_Phdr *hdr,
2257 int index,
2258 const char *typename)
2259 {
2260 asection *newsect;
2261 char *name;
2262 char namebuf[64];
2263 size_t len;
2264 int split;
2265
2266 split = ((hdr->p_memsz > 0)
2267 && (hdr->p_filesz > 0)
2268 && (hdr->p_memsz > hdr->p_filesz));
2269
2270 if (hdr->p_filesz > 0)
2271 {
2272 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2273 len = strlen (namebuf) + 1;
2274 name = bfd_alloc (abfd, len);
2275 if (!name)
2276 return FALSE;
2277 memcpy (name, namebuf, len);
2278 newsect = bfd_make_section (abfd, name);
2279 if (newsect == NULL)
2280 return FALSE;
2281 newsect->vma = hdr->p_vaddr;
2282 newsect->lma = hdr->p_paddr;
2283 newsect->size = hdr->p_filesz;
2284 newsect->filepos = hdr->p_offset;
2285 newsect->flags |= SEC_HAS_CONTENTS;
2286 newsect->alignment_power = bfd_log2 (hdr->p_align);
2287 if (hdr->p_type == PT_LOAD)
2288 {
2289 newsect->flags |= SEC_ALLOC;
2290 newsect->flags |= SEC_LOAD;
2291 if (hdr->p_flags & PF_X)
2292 {
2293 /* FIXME: all we known is that it has execute PERMISSION,
2294 may be data. */
2295 newsect->flags |= SEC_CODE;
2296 }
2297 }
2298 if (!(hdr->p_flags & PF_W))
2299 {
2300 newsect->flags |= SEC_READONLY;
2301 }
2302 }
2303
2304 if (hdr->p_memsz > hdr->p_filesz)
2305 {
2306 bfd_vma align;
2307
2308 sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
2309 len = strlen (namebuf) + 1;
2310 name = bfd_alloc (abfd, len);
2311 if (!name)
2312 return FALSE;
2313 memcpy (name, namebuf, len);
2314 newsect = bfd_make_section (abfd, name);
2315 if (newsect == NULL)
2316 return FALSE;
2317 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2318 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2319 newsect->size = hdr->p_memsz - hdr->p_filesz;
2320 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2321 align = newsect->vma & -newsect->vma;
2322 if (align == 0 || align > hdr->p_align)
2323 align = hdr->p_align;
2324 newsect->alignment_power = bfd_log2 (align);
2325 if (hdr->p_type == PT_LOAD)
2326 {
2327 /* Hack for gdb. Segments that have not been modified do
2328 not have their contents written to a core file, on the
2329 assumption that a debugger can find the contents in the
2330 executable. We flag this case by setting the fake
2331 section size to zero. Note that "real" bss sections will
2332 always have their contents dumped to the core file. */
2333 if (bfd_get_format (abfd) == bfd_core)
2334 newsect->size = 0;
2335 newsect->flags |= SEC_ALLOC;
2336 if (hdr->p_flags & PF_X)
2337 newsect->flags |= SEC_CODE;
2338 }
2339 if (!(hdr->p_flags & PF_W))
2340 newsect->flags |= SEC_READONLY;
2341 }
2342
2343 return TRUE;
2344 }
2345
2346 bfd_boolean
2347 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2348 {
2349 const struct elf_backend_data *bed;
2350
2351 switch (hdr->p_type)
2352 {
2353 case PT_NULL:
2354 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2355
2356 case PT_LOAD:
2357 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2358
2359 case PT_DYNAMIC:
2360 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2361
2362 case PT_INTERP:
2363 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2364
2365 case PT_NOTE:
2366 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2367 return FALSE;
2368 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2369 return FALSE;
2370 return TRUE;
2371
2372 case PT_SHLIB:
2373 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2374
2375 case PT_PHDR:
2376 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2377
2378 case PT_GNU_EH_FRAME:
2379 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2380 "eh_frame_hdr");
2381
2382 case PT_GNU_STACK:
2383 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2384
2385 case PT_GNU_RELRO:
2386 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2387
2388 default:
2389 /* Check for any processor-specific program segment types. */
2390 bed = get_elf_backend_data (abfd);
2391 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2392 }
2393 }
2394
2395 /* Initialize REL_HDR, the section-header for new section, containing
2396 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2397 relocations; otherwise, we use REL relocations. */
2398
2399 bfd_boolean
2400 _bfd_elf_init_reloc_shdr (bfd *abfd,
2401 Elf_Internal_Shdr *rel_hdr,
2402 asection *asect,
2403 bfd_boolean use_rela_p)
2404 {
2405 char *name;
2406 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2407 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2408
2409 name = bfd_alloc (abfd, amt);
2410 if (name == NULL)
2411 return FALSE;
2412 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2413 rel_hdr->sh_name =
2414 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2415 FALSE);
2416 if (rel_hdr->sh_name == (unsigned int) -1)
2417 return FALSE;
2418 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2419 rel_hdr->sh_entsize = (use_rela_p
2420 ? bed->s->sizeof_rela
2421 : bed->s->sizeof_rel);
2422 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2423 rel_hdr->sh_flags = 0;
2424 rel_hdr->sh_addr = 0;
2425 rel_hdr->sh_size = 0;
2426 rel_hdr->sh_offset = 0;
2427
2428 return TRUE;
2429 }
2430
2431 /* Set up an ELF internal section header for a section. */
2432
2433 static void
2434 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2435 {
2436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2437 bfd_boolean *failedptr = failedptrarg;
2438 Elf_Internal_Shdr *this_hdr;
2439 unsigned int sh_type;
2440
2441 if (*failedptr)
2442 {
2443 /* We already failed; just get out of the bfd_map_over_sections
2444 loop. */
2445 return;
2446 }
2447
2448 this_hdr = &elf_section_data (asect)->this_hdr;
2449
2450 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2451 asect->name, FALSE);
2452 if (this_hdr->sh_name == (unsigned int) -1)
2453 {
2454 *failedptr = TRUE;
2455 return;
2456 }
2457
2458 /* Don't clear sh_flags. Assembler may set additional bits. */
2459
2460 if ((asect->flags & SEC_ALLOC) != 0
2461 || asect->user_set_vma)
2462 this_hdr->sh_addr = asect->vma;
2463 else
2464 this_hdr->sh_addr = 0;
2465
2466 this_hdr->sh_offset = 0;
2467 this_hdr->sh_size = asect->size;
2468 this_hdr->sh_link = 0;
2469 this_hdr->sh_addralign = 1 << asect->alignment_power;
2470 /* The sh_entsize and sh_info fields may have been set already by
2471 copy_private_section_data. */
2472
2473 this_hdr->bfd_section = asect;
2474 this_hdr->contents = NULL;
2475
2476 /* If the section type is unspecified, we set it based on
2477 asect->flags. */
2478 if ((asect->flags & SEC_GROUP) != 0)
2479 sh_type = SHT_GROUP;
2480 else if ((asect->flags & SEC_ALLOC) != 0
2481 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2482 || (asect->flags & SEC_NEVER_LOAD) != 0))
2483 sh_type = SHT_NOBITS;
2484 else
2485 sh_type = SHT_PROGBITS;
2486
2487 if (this_hdr->sh_type == SHT_NULL)
2488 this_hdr->sh_type = sh_type;
2489 else if (this_hdr->sh_type == SHT_NOBITS
2490 && sh_type == SHT_PROGBITS
2491 && (asect->flags & SEC_ALLOC) != 0)
2492 {
2493 /* Warn if we are changing a NOBITS section to PROGBITS, but
2494 allow the link to proceed. This can happen when users link
2495 non-bss input sections to bss output sections, or emit data
2496 to a bss output section via a linker script. */
2497 (*_bfd_error_handler)
2498 (_("section `%A' type changed to PROGBITS"), asect);
2499 this_hdr->sh_type = sh_type;
2500 }
2501
2502 switch (this_hdr->sh_type)
2503 {
2504 default:
2505 break;
2506
2507 case SHT_STRTAB:
2508 case SHT_INIT_ARRAY:
2509 case SHT_FINI_ARRAY:
2510 case SHT_PREINIT_ARRAY:
2511 case SHT_NOTE:
2512 case SHT_NOBITS:
2513 case SHT_PROGBITS:
2514 break;
2515
2516 case SHT_HASH:
2517 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2518 break;
2519
2520 case SHT_DYNSYM:
2521 this_hdr->sh_entsize = bed->s->sizeof_sym;
2522 break;
2523
2524 case SHT_DYNAMIC:
2525 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2526 break;
2527
2528 case SHT_RELA:
2529 if (get_elf_backend_data (abfd)->may_use_rela_p)
2530 this_hdr->sh_entsize = bed->s->sizeof_rela;
2531 break;
2532
2533 case SHT_REL:
2534 if (get_elf_backend_data (abfd)->may_use_rel_p)
2535 this_hdr->sh_entsize = bed->s->sizeof_rel;
2536 break;
2537
2538 case SHT_GNU_versym:
2539 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2540 break;
2541
2542 case SHT_GNU_verdef:
2543 this_hdr->sh_entsize = 0;
2544 /* objcopy or strip will copy over sh_info, but may not set
2545 cverdefs. The linker will set cverdefs, but sh_info will be
2546 zero. */
2547 if (this_hdr->sh_info == 0)
2548 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2549 else
2550 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2551 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2552 break;
2553
2554 case SHT_GNU_verneed:
2555 this_hdr->sh_entsize = 0;
2556 /* objcopy or strip will copy over sh_info, but may not set
2557 cverrefs. The linker will set cverrefs, but sh_info will be
2558 zero. */
2559 if (this_hdr->sh_info == 0)
2560 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2561 else
2562 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2563 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2564 break;
2565
2566 case SHT_GROUP:
2567 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2568 break;
2569
2570 case SHT_GNU_HASH:
2571 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2572 break;
2573 }
2574
2575 if ((asect->flags & SEC_ALLOC) != 0)
2576 this_hdr->sh_flags |= SHF_ALLOC;
2577 if ((asect->flags & SEC_READONLY) == 0)
2578 this_hdr->sh_flags |= SHF_WRITE;
2579 if ((asect->flags & SEC_CODE) != 0)
2580 this_hdr->sh_flags |= SHF_EXECINSTR;
2581 if ((asect->flags & SEC_MERGE) != 0)
2582 {
2583 this_hdr->sh_flags |= SHF_MERGE;
2584 this_hdr->sh_entsize = asect->entsize;
2585 if ((asect->flags & SEC_STRINGS) != 0)
2586 this_hdr->sh_flags |= SHF_STRINGS;
2587 }
2588 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2589 this_hdr->sh_flags |= SHF_GROUP;
2590 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2591 {
2592 this_hdr->sh_flags |= SHF_TLS;
2593 if (asect->size == 0
2594 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2595 {
2596 struct bfd_link_order *o = asect->map_tail.link_order;
2597
2598 this_hdr->sh_size = 0;
2599 if (o != NULL)
2600 {
2601 this_hdr->sh_size = o->offset + o->size;
2602 if (this_hdr->sh_size != 0)
2603 this_hdr->sh_type = SHT_NOBITS;
2604 }
2605 }
2606 }
2607
2608 /* Check for processor-specific section types. */
2609 sh_type = this_hdr->sh_type;
2610 if (bed->elf_backend_fake_sections
2611 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2612 *failedptr = TRUE;
2613
2614 if (sh_type == SHT_NOBITS && asect->size != 0)
2615 {
2616 /* Don't change the header type from NOBITS if we are being
2617 called for objcopy --only-keep-debug. */
2618 this_hdr->sh_type = sh_type;
2619 }
2620
2621 /* If the section has relocs, set up a section header for the
2622 SHT_REL[A] section. If two relocation sections are required for
2623 this section, it is up to the processor-specific back-end to
2624 create the other. */
2625 if ((asect->flags & SEC_RELOC) != 0
2626 && !_bfd_elf_init_reloc_shdr (abfd,
2627 &elf_section_data (asect)->rel_hdr,
2628 asect,
2629 asect->use_rela_p))
2630 *failedptr = TRUE;
2631 }
2632
2633 /* Fill in the contents of a SHT_GROUP section. */
2634
2635 void
2636 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2637 {
2638 bfd_boolean *failedptr = failedptrarg;
2639 unsigned long symindx;
2640 asection *elt, *first;
2641 unsigned char *loc;
2642 bfd_boolean gas;
2643
2644 /* Ignore linker created group section. See elfNN_ia64_object_p in
2645 elfxx-ia64.c. */
2646 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2647 || *failedptr)
2648 return;
2649
2650 symindx = 0;
2651 if (elf_group_id (sec) != NULL)
2652 symindx = elf_group_id (sec)->udata.i;
2653
2654 if (symindx == 0)
2655 {
2656 /* If called from the assembler, swap_out_syms will have set up
2657 elf_section_syms; If called for "ld -r", use target_index. */
2658 if (elf_section_syms (abfd) != NULL)
2659 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2660 else
2661 symindx = sec->target_index;
2662 }
2663 elf_section_data (sec)->this_hdr.sh_info = symindx;
2664
2665 /* The contents won't be allocated for "ld -r" or objcopy. */
2666 gas = TRUE;
2667 if (sec->contents == NULL)
2668 {
2669 gas = FALSE;
2670 sec->contents = bfd_alloc (abfd, sec->size);
2671
2672 /* Arrange for the section to be written out. */
2673 elf_section_data (sec)->this_hdr.contents = sec->contents;
2674 if (sec->contents == NULL)
2675 {
2676 *failedptr = TRUE;
2677 return;
2678 }
2679 }
2680
2681 loc = sec->contents + sec->size;
2682
2683 /* Get the pointer to the first section in the group that gas
2684 squirreled away here. objcopy arranges for this to be set to the
2685 start of the input section group. */
2686 first = elt = elf_next_in_group (sec);
2687
2688 /* First element is a flag word. Rest of section is elf section
2689 indices for all the sections of the group. Write them backwards
2690 just to keep the group in the same order as given in .section
2691 directives, not that it matters. */
2692 while (elt != NULL)
2693 {
2694 asection *s;
2695 unsigned int idx;
2696
2697 loc -= 4;
2698 s = elt;
2699 if (!gas)
2700 s = s->output_section;
2701 idx = 0;
2702 if (s != NULL)
2703 idx = elf_section_data (s)->this_idx;
2704 H_PUT_32 (abfd, idx, loc);
2705 elt = elf_next_in_group (elt);
2706 if (elt == first)
2707 break;
2708 }
2709
2710 if ((loc -= 4) != sec->contents)
2711 abort ();
2712
2713 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2714 }
2715
2716 /* Assign all ELF section numbers. The dummy first section is handled here
2717 too. The link/info pointers for the standard section types are filled
2718 in here too, while we're at it. */
2719
2720 static bfd_boolean
2721 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2722 {
2723 struct elf_obj_tdata *t = elf_tdata (abfd);
2724 asection *sec;
2725 unsigned int section_number, secn;
2726 Elf_Internal_Shdr **i_shdrp;
2727 struct bfd_elf_section_data *d;
2728
2729 section_number = 1;
2730
2731 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2732
2733 /* SHT_GROUP sections are in relocatable files only. */
2734 if (link_info == NULL || link_info->relocatable)
2735 {
2736 /* Put SHT_GROUP sections first. */
2737 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2738 {
2739 d = elf_section_data (sec);
2740
2741 if (d->this_hdr.sh_type == SHT_GROUP)
2742 {
2743 if (sec->flags & SEC_LINKER_CREATED)
2744 {
2745 /* Remove the linker created SHT_GROUP sections. */
2746 bfd_section_list_remove (abfd, sec);
2747 abfd->section_count--;
2748 }
2749 else
2750 {
2751 if (section_number == SHN_LORESERVE)
2752 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2753 d->this_idx = section_number++;
2754 }
2755 }
2756 }
2757 }
2758
2759 for (sec = abfd->sections; sec; sec = sec->next)
2760 {
2761 d = elf_section_data (sec);
2762
2763 if (d->this_hdr.sh_type != SHT_GROUP)
2764 {
2765 if (section_number == SHN_LORESERVE)
2766 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2767 d->this_idx = section_number++;
2768 }
2769 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2770 if ((sec->flags & SEC_RELOC) == 0)
2771 d->rel_idx = 0;
2772 else
2773 {
2774 if (section_number == SHN_LORESERVE)
2775 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2776 d->rel_idx = section_number++;
2777 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2778 }
2779
2780 if (d->rel_hdr2)
2781 {
2782 if (section_number == SHN_LORESERVE)
2783 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2784 d->rel_idx2 = section_number++;
2785 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2786 }
2787 else
2788 d->rel_idx2 = 0;
2789 }
2790
2791 if (section_number == SHN_LORESERVE)
2792 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2793 t->shstrtab_section = section_number++;
2794 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2795 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2796
2797 if (bfd_get_symcount (abfd) > 0)
2798 {
2799 if (section_number == SHN_LORESERVE)
2800 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2801 t->symtab_section = section_number++;
2802 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2803 if (section_number > SHN_LORESERVE - 2)
2804 {
2805 if (section_number == SHN_LORESERVE)
2806 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2807 t->symtab_shndx_section = section_number++;
2808 t->symtab_shndx_hdr.sh_name
2809 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2810 ".symtab_shndx", FALSE);
2811 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2812 return FALSE;
2813 }
2814 if (section_number == SHN_LORESERVE)
2815 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2816 t->strtab_section = section_number++;
2817 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2818 }
2819
2820 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2821 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2822
2823 elf_numsections (abfd) = section_number;
2824 elf_elfheader (abfd)->e_shnum = section_number;
2825 if (section_number > SHN_LORESERVE)
2826 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2827
2828 /* Set up the list of section header pointers, in agreement with the
2829 indices. */
2830 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2831 if (i_shdrp == NULL)
2832 return FALSE;
2833
2834 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2835 if (i_shdrp[0] == NULL)
2836 {
2837 bfd_release (abfd, i_shdrp);
2838 return FALSE;
2839 }
2840
2841 elf_elfsections (abfd) = i_shdrp;
2842
2843 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2844 if (bfd_get_symcount (abfd) > 0)
2845 {
2846 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2847 if (elf_numsections (abfd) > SHN_LORESERVE)
2848 {
2849 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2850 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2851 }
2852 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2853 t->symtab_hdr.sh_link = t->strtab_section;
2854 }
2855
2856 for (sec = abfd->sections; sec; sec = sec->next)
2857 {
2858 struct bfd_elf_section_data *d = elf_section_data (sec);
2859 asection *s;
2860 const char *name;
2861
2862 i_shdrp[d->this_idx] = &d->this_hdr;
2863 if (d->rel_idx != 0)
2864 i_shdrp[d->rel_idx] = &d->rel_hdr;
2865 if (d->rel_idx2 != 0)
2866 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2867
2868 /* Fill in the sh_link and sh_info fields while we're at it. */
2869
2870 /* sh_link of a reloc section is the section index of the symbol
2871 table. sh_info is the section index of the section to which
2872 the relocation entries apply. */
2873 if (d->rel_idx != 0)
2874 {
2875 d->rel_hdr.sh_link = t->symtab_section;
2876 d->rel_hdr.sh_info = d->this_idx;
2877 }
2878 if (d->rel_idx2 != 0)
2879 {
2880 d->rel_hdr2->sh_link = t->symtab_section;
2881 d->rel_hdr2->sh_info = d->this_idx;
2882 }
2883
2884 /* We need to set up sh_link for SHF_LINK_ORDER. */
2885 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2886 {
2887 s = elf_linked_to_section (sec);
2888 if (s)
2889 {
2890 /* elf_linked_to_section points to the input section. */
2891 if (link_info != NULL)
2892 {
2893 /* Check discarded linkonce section. */
2894 if (elf_discarded_section (s))
2895 {
2896 asection *kept;
2897 (*_bfd_error_handler)
2898 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2899 abfd, d->this_hdr.bfd_section,
2900 s, s->owner);
2901 /* Point to the kept section if it has the same
2902 size as the discarded one. */
2903 kept = _bfd_elf_check_kept_section (s, link_info);
2904 if (kept == NULL)
2905 {
2906 bfd_set_error (bfd_error_bad_value);
2907 return FALSE;
2908 }
2909 s = kept;
2910 }
2911
2912 s = s->output_section;
2913 BFD_ASSERT (s != NULL);
2914 }
2915 else
2916 {
2917 /* Handle objcopy. */
2918 if (s->output_section == NULL)
2919 {
2920 (*_bfd_error_handler)
2921 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2922 abfd, d->this_hdr.bfd_section, s, s->owner);
2923 bfd_set_error (bfd_error_bad_value);
2924 return FALSE;
2925 }
2926 s = s->output_section;
2927 }
2928 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2929 }
2930 else
2931 {
2932 /* PR 290:
2933 The Intel C compiler generates SHT_IA_64_UNWIND with
2934 SHF_LINK_ORDER. But it doesn't set the sh_link or
2935 sh_info fields. Hence we could get the situation
2936 where s is NULL. */
2937 const struct elf_backend_data *bed
2938 = get_elf_backend_data (abfd);
2939 if (bed->link_order_error_handler)
2940 bed->link_order_error_handler
2941 (_("%B: warning: sh_link not set for section `%A'"),
2942 abfd, sec);
2943 }
2944 }
2945
2946 switch (d->this_hdr.sh_type)
2947 {
2948 case SHT_REL:
2949 case SHT_RELA:
2950 /* A reloc section which we are treating as a normal BFD
2951 section. sh_link is the section index of the symbol
2952 table. sh_info is the section index of the section to
2953 which the relocation entries apply. We assume that an
2954 allocated reloc section uses the dynamic symbol table.
2955 FIXME: How can we be sure? */
2956 s = bfd_get_section_by_name (abfd, ".dynsym");
2957 if (s != NULL)
2958 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2959
2960 /* We look up the section the relocs apply to by name. */
2961 name = sec->name;
2962 if (d->this_hdr.sh_type == SHT_REL)
2963 name += 4;
2964 else
2965 name += 5;
2966 s = bfd_get_section_by_name (abfd, name);
2967 if (s != NULL)
2968 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2969 break;
2970
2971 case SHT_STRTAB:
2972 /* We assume that a section named .stab*str is a stabs
2973 string section. We look for a section with the same name
2974 but without the trailing ``str'', and set its sh_link
2975 field to point to this section. */
2976 if (CONST_STRNEQ (sec->name, ".stab")
2977 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2978 {
2979 size_t len;
2980 char *alc;
2981
2982 len = strlen (sec->name);
2983 alc = bfd_malloc (len - 2);
2984 if (alc == NULL)
2985 return FALSE;
2986 memcpy (alc, sec->name, len - 3);
2987 alc[len - 3] = '\0';
2988 s = bfd_get_section_by_name (abfd, alc);
2989 free (alc);
2990 if (s != NULL)
2991 {
2992 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2993
2994 /* This is a .stab section. */
2995 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2996 elf_section_data (s)->this_hdr.sh_entsize
2997 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2998 }
2999 }
3000 break;
3001
3002 case SHT_DYNAMIC:
3003 case SHT_DYNSYM:
3004 case SHT_GNU_verneed:
3005 case SHT_GNU_verdef:
3006 /* sh_link is the section header index of the string table
3007 used for the dynamic entries, or the symbol table, or the
3008 version strings. */
3009 s = bfd_get_section_by_name (abfd, ".dynstr");
3010 if (s != NULL)
3011 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3012 break;
3013
3014 case SHT_GNU_LIBLIST:
3015 /* sh_link is the section header index of the prelink library
3016 list used for the dynamic entries, or the symbol table, or
3017 the version strings. */
3018 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3019 ? ".dynstr" : ".gnu.libstr");
3020 if (s != NULL)
3021 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3022 break;
3023
3024 case SHT_HASH:
3025 case SHT_GNU_HASH:
3026 case SHT_GNU_versym:
3027 /* sh_link is the section header index of the symbol table
3028 this hash table or version table is for. */
3029 s = bfd_get_section_by_name (abfd, ".dynsym");
3030 if (s != NULL)
3031 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3032 break;
3033
3034 case SHT_GROUP:
3035 d->this_hdr.sh_link = t->symtab_section;
3036 }
3037 }
3038
3039 for (secn = 1; secn < section_number; ++secn)
3040 if (i_shdrp[secn] == NULL)
3041 i_shdrp[secn] = i_shdrp[0];
3042 else
3043 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3044 i_shdrp[secn]->sh_name);
3045 return TRUE;
3046 }
3047
3048 /* Map symbol from it's internal number to the external number, moving
3049 all local symbols to be at the head of the list. */
3050
3051 static bfd_boolean
3052 sym_is_global (bfd *abfd, asymbol *sym)
3053 {
3054 /* If the backend has a special mapping, use it. */
3055 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3056 if (bed->elf_backend_sym_is_global)
3057 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3058
3059 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3060 || bfd_is_und_section (bfd_get_section (sym))
3061 || bfd_is_com_section (bfd_get_section (sym)));
3062 }
3063
3064 /* Don't output section symbols for sections that are not going to be
3065 output. Also, don't output section symbols for reloc and other
3066 special sections. */
3067
3068 static bfd_boolean
3069 ignore_section_sym (bfd *abfd, asymbol *sym)
3070 {
3071 return ((sym->flags & BSF_SECTION_SYM) != 0
3072 && (sym->value != 0
3073 || (sym->section->owner != abfd
3074 && (sym->section->output_section->owner != abfd
3075 || sym->section->output_offset != 0))));
3076 }
3077
3078 static bfd_boolean
3079 elf_map_symbols (bfd *abfd)
3080 {
3081 unsigned int symcount = bfd_get_symcount (abfd);
3082 asymbol **syms = bfd_get_outsymbols (abfd);
3083 asymbol **sect_syms;
3084 unsigned int num_locals = 0;
3085 unsigned int num_globals = 0;
3086 unsigned int num_locals2 = 0;
3087 unsigned int num_globals2 = 0;
3088 int max_index = 0;
3089 unsigned int idx;
3090 asection *asect;
3091 asymbol **new_syms;
3092
3093 #ifdef DEBUG
3094 fprintf (stderr, "elf_map_symbols\n");
3095 fflush (stderr);
3096 #endif
3097
3098 for (asect = abfd->sections; asect; asect = asect->next)
3099 {
3100 if (max_index < asect->index)
3101 max_index = asect->index;
3102 }
3103
3104 max_index++;
3105 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3106 if (sect_syms == NULL)
3107 return FALSE;
3108 elf_section_syms (abfd) = sect_syms;
3109 elf_num_section_syms (abfd) = max_index;
3110
3111 /* Init sect_syms entries for any section symbols we have already
3112 decided to output. */
3113 for (idx = 0; idx < symcount; idx++)
3114 {
3115 asymbol *sym = syms[idx];
3116
3117 if ((sym->flags & BSF_SECTION_SYM) != 0
3118 && !ignore_section_sym (abfd, sym))
3119 {
3120 asection *sec = sym->section;
3121
3122 if (sec->owner != abfd)
3123 sec = sec->output_section;
3124
3125 sect_syms[sec->index] = syms[idx];
3126 }
3127 }
3128
3129 /* Classify all of the symbols. */
3130 for (idx = 0; idx < symcount; idx++)
3131 {
3132 if (ignore_section_sym (abfd, syms[idx]))
3133 continue;
3134 if (!sym_is_global (abfd, syms[idx]))
3135 num_locals++;
3136 else
3137 num_globals++;
3138 }
3139
3140 /* We will be adding a section symbol for each normal BFD section. Most
3141 sections will already have a section symbol in outsymbols, but
3142 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3143 at least in that case. */
3144 for (asect = abfd->sections; asect; asect = asect->next)
3145 {
3146 if (sect_syms[asect->index] == NULL)
3147 {
3148 if (!sym_is_global (abfd, asect->symbol))
3149 num_locals++;
3150 else
3151 num_globals++;
3152 }
3153 }
3154
3155 /* Now sort the symbols so the local symbols are first. */
3156 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3157
3158 if (new_syms == NULL)
3159 return FALSE;
3160
3161 for (idx = 0; idx < symcount; idx++)
3162 {
3163 asymbol *sym = syms[idx];
3164 unsigned int i;
3165
3166 if (ignore_section_sym (abfd, sym))
3167 continue;
3168 if (!sym_is_global (abfd, sym))
3169 i = num_locals2++;
3170 else
3171 i = num_locals + num_globals2++;
3172 new_syms[i] = sym;
3173 sym->udata.i = i + 1;
3174 }
3175 for (asect = abfd->sections; asect; asect = asect->next)
3176 {
3177 if (sect_syms[asect->index] == NULL)
3178 {
3179 asymbol *sym = asect->symbol;
3180 unsigned int i;
3181
3182 sect_syms[asect->index] = sym;
3183 if (!sym_is_global (abfd, sym))
3184 i = num_locals2++;
3185 else
3186 i = num_locals + num_globals2++;
3187 new_syms[i] = sym;
3188 sym->udata.i = i + 1;
3189 }
3190 }
3191
3192 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3193
3194 elf_num_locals (abfd) = num_locals;
3195 elf_num_globals (abfd) = num_globals;
3196 return TRUE;
3197 }
3198
3199 /* Align to the maximum file alignment that could be required for any
3200 ELF data structure. */
3201
3202 static inline file_ptr
3203 align_file_position (file_ptr off, int align)
3204 {
3205 return (off + align - 1) & ~(align - 1);
3206 }
3207
3208 /* Assign a file position to a section, optionally aligning to the
3209 required section alignment. */
3210
3211 file_ptr
3212 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3213 file_ptr offset,
3214 bfd_boolean align)
3215 {
3216 if (align)
3217 {
3218 unsigned int al;
3219
3220 al = i_shdrp->sh_addralign;
3221 if (al > 1)
3222 offset = BFD_ALIGN (offset, al);
3223 }
3224 i_shdrp->sh_offset = offset;
3225 if (i_shdrp->bfd_section != NULL)
3226 i_shdrp->bfd_section->filepos = offset;
3227 if (i_shdrp->sh_type != SHT_NOBITS)
3228 offset += i_shdrp->sh_size;
3229 return offset;
3230 }
3231
3232 /* Compute the file positions we are going to put the sections at, and
3233 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3234 is not NULL, this is being called by the ELF backend linker. */
3235
3236 bfd_boolean
3237 _bfd_elf_compute_section_file_positions (bfd *abfd,
3238 struct bfd_link_info *link_info)
3239 {
3240 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3241 bfd_boolean failed;
3242 struct bfd_strtab_hash *strtab = NULL;
3243 Elf_Internal_Shdr *shstrtab_hdr;
3244
3245 if (abfd->output_has_begun)
3246 return TRUE;
3247
3248 /* Do any elf backend specific processing first. */
3249 if (bed->elf_backend_begin_write_processing)
3250 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3251
3252 if (! prep_headers (abfd))
3253 return FALSE;
3254
3255 /* Post process the headers if necessary. */
3256 if (bed->elf_backend_post_process_headers)
3257 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3258
3259 failed = FALSE;
3260 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3261 if (failed)
3262 return FALSE;
3263
3264 if (!assign_section_numbers (abfd, link_info))
3265 return FALSE;
3266
3267 /* The backend linker builds symbol table information itself. */
3268 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3269 {
3270 /* Non-zero if doing a relocatable link. */
3271 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3272
3273 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3274 return FALSE;
3275 }
3276
3277 if (link_info == NULL)
3278 {
3279 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3280 if (failed)
3281 return FALSE;
3282 }
3283
3284 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3285 /* sh_name was set in prep_headers. */
3286 shstrtab_hdr->sh_type = SHT_STRTAB;
3287 shstrtab_hdr->sh_flags = 0;
3288 shstrtab_hdr->sh_addr = 0;
3289 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3290 shstrtab_hdr->sh_entsize = 0;
3291 shstrtab_hdr->sh_link = 0;
3292 shstrtab_hdr->sh_info = 0;
3293 /* sh_offset is set in assign_file_positions_except_relocs. */
3294 shstrtab_hdr->sh_addralign = 1;
3295
3296 if (!assign_file_positions_except_relocs (abfd, link_info))
3297 return FALSE;
3298
3299 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3300 {
3301 file_ptr off;
3302 Elf_Internal_Shdr *hdr;
3303
3304 off = elf_tdata (abfd)->next_file_pos;
3305
3306 hdr = &elf_tdata (abfd)->symtab_hdr;
3307 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3308
3309 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3310 if (hdr->sh_size != 0)
3311 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3312
3313 hdr = &elf_tdata (abfd)->strtab_hdr;
3314 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3315
3316 elf_tdata (abfd)->next_file_pos = off;
3317
3318 /* Now that we know where the .strtab section goes, write it
3319 out. */
3320 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3321 || ! _bfd_stringtab_emit (abfd, strtab))
3322 return FALSE;
3323 _bfd_stringtab_free (strtab);
3324 }
3325
3326 abfd->output_has_begun = TRUE;
3327
3328 return TRUE;
3329 }
3330
3331 /* Make an initial estimate of the size of the program header. If we
3332 get the number wrong here, we'll redo section placement. */
3333
3334 static bfd_size_type
3335 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3336 {
3337 size_t segs;
3338 asection *s;
3339 const struct elf_backend_data *bed;
3340
3341 /* Assume we will need exactly two PT_LOAD segments: one for text
3342 and one for data. */
3343 segs = 2;
3344
3345 s = bfd_get_section_by_name (abfd, ".interp");
3346 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3347 {
3348 /* If we have a loadable interpreter section, we need a
3349 PT_INTERP segment. In this case, assume we also need a
3350 PT_PHDR segment, although that may not be true for all
3351 targets. */
3352 segs += 2;
3353 }
3354
3355 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3356 {
3357 /* We need a PT_DYNAMIC segment. */
3358 ++segs;
3359
3360 if (elf_tdata (abfd)->relro)
3361 {
3362 /* We need a PT_GNU_RELRO segment only when there is a
3363 PT_DYNAMIC segment. */
3364 ++segs;
3365 }
3366 }
3367
3368 if (elf_tdata (abfd)->eh_frame_hdr)
3369 {
3370 /* We need a PT_GNU_EH_FRAME segment. */
3371 ++segs;
3372 }
3373
3374 if (elf_tdata (abfd)->stack_flags)
3375 {
3376 /* We need a PT_GNU_STACK segment. */
3377 ++segs;
3378 }
3379
3380 for (s = abfd->sections; s != NULL; s = s->next)
3381 {
3382 if ((s->flags & SEC_LOAD) != 0
3383 && CONST_STRNEQ (s->name, ".note"))
3384 {
3385 /* We need a PT_NOTE segment. */
3386 ++segs;
3387 /* Try to create just one PT_NOTE segment
3388 for all adjacent loadable .note* sections.
3389 gABI requires that within a PT_NOTE segment
3390 (and also inside of each SHT_NOTE section)
3391 each note is padded to a multiple of 4 size,
3392 so we check whether the sections are correctly
3393 aligned. */
3394 if (s->alignment_power == 2)
3395 while (s->next != NULL
3396 && s->next->alignment_power == 2
3397 && (s->next->flags & SEC_LOAD) != 0
3398 && CONST_STRNEQ (s->next->name, ".note"))
3399 s = s->next;
3400 }
3401 }
3402
3403 for (s = abfd->sections; s != NULL; s = s->next)
3404 {
3405 if (s->flags & SEC_THREAD_LOCAL)
3406 {
3407 /* We need a PT_TLS segment. */
3408 ++segs;
3409 break;
3410 }
3411 }
3412
3413 /* Let the backend count up any program headers it might need. */
3414 bed = get_elf_backend_data (abfd);
3415 if (bed->elf_backend_additional_program_headers)
3416 {
3417 int a;
3418
3419 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3420 if (a == -1)
3421 abort ();
3422 segs += a;
3423 }
3424
3425 return segs * bed->s->sizeof_phdr;
3426 }
3427
3428 /* Create a mapping from a set of sections to a program segment. */
3429
3430 static struct elf_segment_map *
3431 make_mapping (bfd *abfd,
3432 asection **sections,
3433 unsigned int from,
3434 unsigned int to,
3435 bfd_boolean phdr)
3436 {
3437 struct elf_segment_map *m;
3438 unsigned int i;
3439 asection **hdrpp;
3440 bfd_size_type amt;
3441
3442 amt = sizeof (struct elf_segment_map);
3443 amt += (to - from - 1) * sizeof (asection *);
3444 m = bfd_zalloc (abfd, amt);
3445 if (m == NULL)
3446 return NULL;
3447 m->next = NULL;
3448 m->p_type = PT_LOAD;
3449 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3450 m->sections[i - from] = *hdrpp;
3451 m->count = to - from;
3452
3453 if (from == 0 && phdr)
3454 {
3455 /* Include the headers in the first PT_LOAD segment. */
3456 m->includes_filehdr = 1;
3457 m->includes_phdrs = 1;
3458 }
3459
3460 return m;
3461 }
3462
3463 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3464 on failure. */
3465
3466 struct elf_segment_map *
3467 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3468 {
3469 struct elf_segment_map *m;
3470
3471 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3472 if (m == NULL)
3473 return NULL;
3474 m->next = NULL;
3475 m->p_type = PT_DYNAMIC;
3476 m->count = 1;
3477 m->sections[0] = dynsec;
3478
3479 return m;
3480 }
3481
3482 /* Possibly add or remove segments from the segment map. */
3483
3484 static bfd_boolean
3485 elf_modify_segment_map (bfd *abfd,
3486 struct bfd_link_info *info,
3487 bfd_boolean remove_empty_load)
3488 {
3489 struct elf_segment_map **m;
3490 const struct elf_backend_data *bed;
3491
3492 /* The placement algorithm assumes that non allocated sections are
3493 not in PT_LOAD segments. We ensure this here by removing such
3494 sections from the segment map. We also remove excluded
3495 sections. Finally, any PT_LOAD segment without sections is
3496 removed. */
3497 m = &elf_tdata (abfd)->segment_map;
3498 while (*m)
3499 {
3500 unsigned int i, new_count;
3501
3502 for (new_count = 0, i = 0; i < (*m)->count; i++)
3503 {
3504 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3505 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3506 || (*m)->p_type != PT_LOAD))
3507 {
3508 (*m)->sections[new_count] = (*m)->sections[i];
3509 new_count++;
3510 }
3511 }
3512 (*m)->count = new_count;
3513
3514 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3515 *m = (*m)->next;
3516 else
3517 m = &(*m)->next;
3518 }
3519
3520 bed = get_elf_backend_data (abfd);
3521 if (bed->elf_backend_modify_segment_map != NULL)
3522 {
3523 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3524 return FALSE;
3525 }
3526
3527 return TRUE;
3528 }
3529
3530 /* Set up a mapping from BFD sections to program segments. */
3531
3532 bfd_boolean
3533 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3534 {
3535 unsigned int count;
3536 struct elf_segment_map *m;
3537 asection **sections = NULL;
3538 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3539 bfd_boolean no_user_phdrs;
3540
3541 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3542 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3543 {
3544 asection *s;
3545 unsigned int i;
3546 struct elf_segment_map *mfirst;
3547 struct elf_segment_map **pm;
3548 asection *last_hdr;
3549 bfd_vma last_size;
3550 unsigned int phdr_index;
3551 bfd_vma maxpagesize;
3552 asection **hdrpp;
3553 bfd_boolean phdr_in_segment = TRUE;
3554 bfd_boolean writable;
3555 int tls_count = 0;
3556 asection *first_tls = NULL;
3557 asection *dynsec, *eh_frame_hdr;
3558 bfd_size_type amt;
3559
3560 /* Select the allocated sections, and sort them. */
3561
3562 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3563 if (sections == NULL)
3564 goto error_return;
3565
3566 i = 0;
3567 for (s = abfd->sections; s != NULL; s = s->next)
3568 {
3569 if ((s->flags & SEC_ALLOC) != 0)
3570 {
3571 sections[i] = s;
3572 ++i;
3573 }
3574 }
3575 BFD_ASSERT (i <= bfd_count_sections (abfd));
3576 count = i;
3577
3578 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3579
3580 /* Build the mapping. */
3581
3582 mfirst = NULL;
3583 pm = &mfirst;
3584
3585 /* If we have a .interp section, then create a PT_PHDR segment for
3586 the program headers and a PT_INTERP segment for the .interp
3587 section. */
3588 s = bfd_get_section_by_name (abfd, ".interp");
3589 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3590 {
3591 amt = sizeof (struct elf_segment_map);
3592 m = bfd_zalloc (abfd, amt);
3593 if (m == NULL)
3594 goto error_return;
3595 m->next = NULL;
3596 m->p_type = PT_PHDR;
3597 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3598 m->p_flags = PF_R | PF_X;
3599 m->p_flags_valid = 1;
3600 m->includes_phdrs = 1;
3601
3602 *pm = m;
3603 pm = &m->next;
3604
3605 amt = sizeof (struct elf_segment_map);
3606 m = bfd_zalloc (abfd, amt);
3607 if (m == NULL)
3608 goto error_return;
3609 m->next = NULL;
3610 m->p_type = PT_INTERP;
3611 m->count = 1;
3612 m->sections[0] = s;
3613
3614 *pm = m;
3615 pm = &m->next;
3616 }
3617
3618 /* Look through the sections. We put sections in the same program
3619 segment when the start of the second section can be placed within
3620 a few bytes of the end of the first section. */
3621 last_hdr = NULL;
3622 last_size = 0;
3623 phdr_index = 0;
3624 maxpagesize = bed->maxpagesize;
3625 writable = FALSE;
3626 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3627 if (dynsec != NULL
3628 && (dynsec->flags & SEC_LOAD) == 0)
3629 dynsec = NULL;
3630
3631 /* Deal with -Ttext or something similar such that the first section
3632 is not adjacent to the program headers. This is an
3633 approximation, since at this point we don't know exactly how many
3634 program headers we will need. */
3635 if (count > 0)
3636 {
3637 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3638
3639 if (phdr_size == (bfd_size_type) -1)
3640 phdr_size = get_program_header_size (abfd, info);
3641 if ((abfd->flags & D_PAGED) == 0
3642 || sections[0]->lma < phdr_size
3643 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3644 phdr_in_segment = FALSE;
3645 }
3646
3647 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3648 {
3649 asection *hdr;
3650 bfd_boolean new_segment;
3651
3652 hdr = *hdrpp;
3653
3654 /* See if this section and the last one will fit in the same
3655 segment. */
3656
3657 if (last_hdr == NULL)
3658 {
3659 /* If we don't have a segment yet, then we don't need a new
3660 one (we build the last one after this loop). */
3661 new_segment = FALSE;
3662 }
3663 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3664 {
3665 /* If this section has a different relation between the
3666 virtual address and the load address, then we need a new
3667 segment. */
3668 new_segment = TRUE;
3669 }
3670 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3671 < BFD_ALIGN (hdr->lma, maxpagesize))
3672 {
3673 /* If putting this section in this segment would force us to
3674 skip a page in the segment, then we need a new segment. */
3675 new_segment = TRUE;
3676 }
3677 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3678 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3679 {
3680 /* We don't want to put a loadable section after a
3681 nonloadable section in the same segment.
3682 Consider .tbss sections as loadable for this purpose. */
3683 new_segment = TRUE;
3684 }
3685 else if ((abfd->flags & D_PAGED) == 0)
3686 {
3687 /* If the file is not demand paged, which means that we
3688 don't require the sections to be correctly aligned in the
3689 file, then there is no other reason for a new segment. */
3690 new_segment = FALSE;
3691 }
3692 else if (! writable
3693 && (hdr->flags & SEC_READONLY) == 0
3694 && (((last_hdr->lma + last_size - 1)
3695 & ~(maxpagesize - 1))
3696 != (hdr->lma & ~(maxpagesize - 1))))
3697 {
3698 /* We don't want to put a writable section in a read only
3699 segment, unless they are on the same page in memory
3700 anyhow. We already know that the last section does not
3701 bring us past the current section on the page, so the
3702 only case in which the new section is not on the same
3703 page as the previous section is when the previous section
3704 ends precisely on a page boundary. */
3705 new_segment = TRUE;
3706 }
3707 else
3708 {
3709 /* Otherwise, we can use the same segment. */
3710 new_segment = FALSE;
3711 }
3712
3713 /* Allow interested parties a chance to override our decision. */
3714 if (last_hdr && info->callbacks->override_segment_assignment)
3715 new_segment = info->callbacks->override_segment_assignment (info, abfd, hdr, last_hdr, new_segment);
3716
3717 if (! new_segment)
3718 {
3719 if ((hdr->flags & SEC_READONLY) == 0)
3720 writable = TRUE;
3721 last_hdr = hdr;
3722 /* .tbss sections effectively have zero size. */
3723 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3724 != SEC_THREAD_LOCAL)
3725 last_size = hdr->size;
3726 else
3727 last_size = 0;
3728 continue;
3729 }
3730
3731 /* We need a new program segment. We must create a new program
3732 header holding all the sections from phdr_index until hdr. */
3733
3734 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3735 if (m == NULL)
3736 goto error_return;
3737
3738 *pm = m;
3739 pm = &m->next;
3740
3741 if ((hdr->flags & SEC_READONLY) == 0)
3742 writable = TRUE;
3743 else
3744 writable = FALSE;
3745
3746 last_hdr = hdr;
3747 /* .tbss sections effectively have zero size. */
3748 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3749 last_size = hdr->size;
3750 else
3751 last_size = 0;
3752 phdr_index = i;
3753 phdr_in_segment = FALSE;
3754 }
3755
3756 /* Create a final PT_LOAD program segment. */
3757 if (last_hdr != NULL)
3758 {
3759 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3760 if (m == NULL)
3761 goto error_return;
3762
3763 *pm = m;
3764 pm = &m->next;
3765 }
3766
3767 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3768 if (dynsec != NULL)
3769 {
3770 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3771 if (m == NULL)
3772 goto error_return;
3773 *pm = m;
3774 pm = &m->next;
3775 }
3776
3777 /* For each batch of consecutive loadable .note sections,
3778 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3779 because if we link together nonloadable .note sections and
3780 loadable .note sections, we will generate two .note sections
3781 in the output file. FIXME: Using names for section types is
3782 bogus anyhow. */
3783 for (s = abfd->sections; s != NULL; s = s->next)
3784 {
3785 if ((s->flags & SEC_LOAD) != 0
3786 && CONST_STRNEQ (s->name, ".note"))
3787 {
3788 asection *s2;
3789 unsigned count = 1;
3790 amt = sizeof (struct elf_segment_map);
3791 if (s->alignment_power == 2)
3792 for (s2 = s; s2->next != NULL; s2 = s2->next)
3793 {
3794 if (s2->next->alignment_power == 2
3795 && (s2->next->flags & SEC_LOAD) != 0
3796 && CONST_STRNEQ (s2->next->name, ".note")
3797 && align_power (s2->vma + s2->size, 2)
3798 == s2->next->vma)
3799 count++;
3800 else
3801 break;
3802 }
3803 amt += (count - 1) * sizeof (asection *);
3804 m = bfd_zalloc (abfd, amt);
3805 if (m == NULL)
3806 goto error_return;
3807 m->next = NULL;
3808 m->p_type = PT_NOTE;
3809 m->count = count;
3810 while (count > 1)
3811 {
3812 m->sections[m->count - count--] = s;
3813 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3814 s = s->next;
3815 }
3816 m->sections[m->count - 1] = s;
3817 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3818 *pm = m;
3819 pm = &m->next;
3820 }
3821 if (s->flags & SEC_THREAD_LOCAL)
3822 {
3823 if (! tls_count)
3824 first_tls = s;
3825 tls_count++;
3826 }
3827 }
3828
3829 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3830 if (tls_count > 0)
3831 {
3832 int i;
3833
3834 amt = sizeof (struct elf_segment_map);
3835 amt += (tls_count - 1) * sizeof (asection *);
3836 m = bfd_zalloc (abfd, amt);
3837 if (m == NULL)
3838 goto error_return;
3839 m->next = NULL;
3840 m->p_type = PT_TLS;
3841 m->count = tls_count;
3842 /* Mandated PF_R. */
3843 m->p_flags = PF_R;
3844 m->p_flags_valid = 1;
3845 for (i = 0; i < tls_count; ++i)
3846 {
3847 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3848 m->sections[i] = first_tls;
3849 first_tls = first_tls->next;
3850 }
3851
3852 *pm = m;
3853 pm = &m->next;
3854 }
3855
3856 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3857 segment. */
3858 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3859 if (eh_frame_hdr != NULL
3860 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3861 {
3862 amt = sizeof (struct elf_segment_map);
3863 m = bfd_zalloc (abfd, amt);
3864 if (m == NULL)
3865 goto error_return;
3866 m->next = NULL;
3867 m->p_type = PT_GNU_EH_FRAME;
3868 m->count = 1;
3869 m->sections[0] = eh_frame_hdr->output_section;
3870
3871 *pm = m;
3872 pm = &m->next;
3873 }
3874
3875 if (elf_tdata (abfd)->stack_flags)
3876 {
3877 amt = sizeof (struct elf_segment_map);
3878 m = bfd_zalloc (abfd, amt);
3879 if (m == NULL)
3880 goto error_return;
3881 m->next = NULL;
3882 m->p_type = PT_GNU_STACK;
3883 m->p_flags = elf_tdata (abfd)->stack_flags;
3884 m->p_flags_valid = 1;
3885
3886 *pm = m;
3887 pm = &m->next;
3888 }
3889
3890 if (dynsec != NULL && elf_tdata (abfd)->relro)
3891 {
3892 /* We make a PT_GNU_RELRO segment only when there is a
3893 PT_DYNAMIC segment. */
3894 amt = sizeof (struct elf_segment_map);
3895 m = bfd_zalloc (abfd, amt);
3896 if (m == NULL)
3897 goto error_return;
3898 m->next = NULL;
3899 m->p_type = PT_GNU_RELRO;
3900 m->p_flags = PF_R;
3901 m->p_flags_valid = 1;
3902
3903 *pm = m;
3904 pm = &m->next;
3905 }
3906
3907 free (sections);
3908 elf_tdata (abfd)->segment_map = mfirst;
3909 }
3910
3911 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
3912 return FALSE;
3913
3914 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3915 ++count;
3916 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
3917
3918 return TRUE;
3919
3920 error_return:
3921 if (sections != NULL)
3922 free (sections);
3923 return FALSE;
3924 }
3925
3926 /* Sort sections by address. */
3927
3928 static int
3929 elf_sort_sections (const void *arg1, const void *arg2)
3930 {
3931 const asection *sec1 = *(const asection **) arg1;
3932 const asection *sec2 = *(const asection **) arg2;
3933 bfd_size_type size1, size2;
3934
3935 /* Sort by LMA first, since this is the address used to
3936 place the section into a segment. */
3937 if (sec1->lma < sec2->lma)
3938 return -1;
3939 else if (sec1->lma > sec2->lma)
3940 return 1;
3941
3942 /* Then sort by VMA. Normally the LMA and the VMA will be
3943 the same, and this will do nothing. */
3944 if (sec1->vma < sec2->vma)
3945 return -1;
3946 else if (sec1->vma > sec2->vma)
3947 return 1;
3948
3949 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3950
3951 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3952
3953 if (TOEND (sec1))
3954 {
3955 if (TOEND (sec2))
3956 {
3957 /* If the indicies are the same, do not return 0
3958 here, but continue to try the next comparison. */
3959 if (sec1->target_index - sec2->target_index != 0)
3960 return sec1->target_index - sec2->target_index;
3961 }
3962 else
3963 return 1;
3964 }
3965 else if (TOEND (sec2))
3966 return -1;
3967
3968 #undef TOEND
3969
3970 /* Sort by size, to put zero sized sections
3971 before others at the same address. */
3972
3973 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3974 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3975
3976 if (size1 < size2)
3977 return -1;
3978 if (size1 > size2)
3979 return 1;
3980
3981 return sec1->target_index - sec2->target_index;
3982 }
3983
3984 /* Ian Lance Taylor writes:
3985
3986 We shouldn't be using % with a negative signed number. That's just
3987 not good. We have to make sure either that the number is not
3988 negative, or that the number has an unsigned type. When the types
3989 are all the same size they wind up as unsigned. When file_ptr is a
3990 larger signed type, the arithmetic winds up as signed long long,
3991 which is wrong.
3992
3993 What we're trying to say here is something like ``increase OFF by
3994 the least amount that will cause it to be equal to the VMA modulo
3995 the page size.'' */
3996 /* In other words, something like:
3997
3998 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3999 off_offset = off % bed->maxpagesize;
4000 if (vma_offset < off_offset)
4001 adjustment = vma_offset + bed->maxpagesize - off_offset;
4002 else
4003 adjustment = vma_offset - off_offset;
4004
4005 which can can be collapsed into the expression below. */
4006
4007 static file_ptr
4008 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4009 {
4010 return ((vma - off) % maxpagesize);
4011 }
4012
4013 static void
4014 print_segment_map (const struct elf_segment_map *m)
4015 {
4016 unsigned int j;
4017 const char *pt = get_segment_type (m->p_type);
4018 char buf[32];
4019
4020 if (pt == NULL)
4021 {
4022 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4023 sprintf (buf, "LOPROC+%7.7x",
4024 (unsigned int) (m->p_type - PT_LOPROC));
4025 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4026 sprintf (buf, "LOOS+%7.7x",
4027 (unsigned int) (m->p_type - PT_LOOS));
4028 else
4029 snprintf (buf, sizeof (buf), "%8.8x",
4030 (unsigned int) m->p_type);
4031 pt = buf;
4032 }
4033 fprintf (stderr, "%s:", pt);
4034 for (j = 0; j < m->count; j++)
4035 fprintf (stderr, " %s", m->sections [j]->name);
4036 putc ('\n',stderr);
4037 }
4038
4039 /* Assign file positions to the sections based on the mapping from
4040 sections to segments. This function also sets up some fields in
4041 the file header. */
4042
4043 static bfd_boolean
4044 assign_file_positions_for_load_sections (bfd *abfd,
4045 struct bfd_link_info *link_info)
4046 {
4047 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4048 struct elf_segment_map *m;
4049 Elf_Internal_Phdr *phdrs;
4050 Elf_Internal_Phdr *p;
4051 file_ptr off;
4052 bfd_size_type maxpagesize;
4053 unsigned int alloc;
4054 unsigned int i, j;
4055
4056 if (link_info == NULL
4057 && !elf_modify_segment_map (abfd, link_info, FALSE))
4058 return FALSE;
4059
4060 alloc = 0;
4061 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4062 ++alloc;
4063
4064 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4065 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4066 elf_elfheader (abfd)->e_phnum = alloc;
4067
4068 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4069 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4070 else
4071 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4072 >= alloc * bed->s->sizeof_phdr);
4073
4074 if (alloc == 0)
4075 {
4076 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4077 return TRUE;
4078 }
4079
4080 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4081 elf_tdata (abfd)->phdr = phdrs;
4082 if (phdrs == NULL)
4083 return FALSE;
4084
4085 maxpagesize = 1;
4086 if ((abfd->flags & D_PAGED) != 0)
4087 maxpagesize = bed->maxpagesize;
4088
4089 off = bed->s->sizeof_ehdr;
4090 off += alloc * bed->s->sizeof_phdr;
4091
4092 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4093 m != NULL;
4094 m = m->next, p++, j++)
4095 {
4096 asection **secpp;
4097 bfd_vma off_adjust;
4098 bfd_boolean no_contents;
4099
4100 /* If elf_segment_map is not from map_sections_to_segments, the
4101 sections may not be correctly ordered. NOTE: sorting should
4102 not be done to the PT_NOTE section of a corefile, which may
4103 contain several pseudo-sections artificially created by bfd.
4104 Sorting these pseudo-sections breaks things badly. */
4105 if (m->count > 1
4106 && !(elf_elfheader (abfd)->e_type == ET_CORE
4107 && m->p_type == PT_NOTE))
4108 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4109 elf_sort_sections);
4110
4111 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4112 number of sections with contents contributing to both p_filesz
4113 and p_memsz, followed by a number of sections with no contents
4114 that just contribute to p_memsz. In this loop, OFF tracks next
4115 available file offset for PT_LOAD and PT_NOTE segments. */
4116 p->p_type = m->p_type;
4117 p->p_flags = m->p_flags;
4118
4119 if (m->count == 0)
4120 p->p_vaddr = 0;
4121 else
4122 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4123
4124 if (m->p_paddr_valid)
4125 p->p_paddr = m->p_paddr;
4126 else if (m->count == 0)
4127 p->p_paddr = 0;
4128 else
4129 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4130
4131 if (p->p_type == PT_LOAD
4132 && (abfd->flags & D_PAGED) != 0)
4133 {
4134 /* p_align in demand paged PT_LOAD segments effectively stores
4135 the maximum page size. When copying an executable with
4136 objcopy, we set m->p_align from the input file. Use this
4137 value for maxpagesize rather than bed->maxpagesize, which
4138 may be different. Note that we use maxpagesize for PT_TLS
4139 segment alignment later in this function, so we are relying
4140 on at least one PT_LOAD segment appearing before a PT_TLS
4141 segment. */
4142 if (m->p_align_valid)
4143 maxpagesize = m->p_align;
4144
4145 p->p_align = maxpagesize;
4146 }
4147 else if (m->count == 0)
4148 p->p_align = 1 << bed->s->log_file_align;
4149 else if (m->p_align_valid)
4150 p->p_align = m->p_align;
4151 else
4152 p->p_align = 0;
4153
4154 no_contents = FALSE;
4155 off_adjust = 0;
4156 if (p->p_type == PT_LOAD
4157 && m->count > 0)
4158 {
4159 bfd_size_type align;
4160 unsigned int align_power = 0;
4161
4162 if (m->p_align_valid)
4163 align = p->p_align;
4164 else
4165 {
4166 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4167 {
4168 unsigned int secalign;
4169
4170 secalign = bfd_get_section_alignment (abfd, *secpp);
4171 if (secalign > align_power)
4172 align_power = secalign;
4173 }
4174 align = (bfd_size_type) 1 << align_power;
4175 if (align < maxpagesize)
4176 align = maxpagesize;
4177 }
4178
4179 for (i = 0; i < m->count; i++)
4180 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4181 /* If we aren't making room for this section, then
4182 it must be SHT_NOBITS regardless of what we've
4183 set via struct bfd_elf_special_section. */
4184 elf_section_type (m->sections[i]) = SHT_NOBITS;
4185
4186 /* Find out whether this segment contains any loadable
4187 sections. If the first section isn't loadable, the same
4188 holds for any other sections. */
4189 i = 0;
4190 while (elf_section_type (m->sections[i]) == SHT_NOBITS)
4191 {
4192 /* If a segment starts with .tbss, we need to look
4193 at the next section to decide whether the segment
4194 has any loadable sections. */
4195 if ((elf_section_flags (m->sections[i]) & SHF_TLS) == 0
4196 || ++i >= m->count)
4197 {
4198 no_contents = TRUE;
4199 break;
4200 }
4201 }
4202
4203 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4204 off += off_adjust;
4205 if (no_contents)
4206 {
4207 /* We shouldn't need to align the segment on disk since
4208 the segment doesn't need file space, but the gABI
4209 arguably requires the alignment and glibc ld.so
4210 checks it. So to comply with the alignment
4211 requirement but not waste file space, we adjust
4212 p_offset for just this segment. (OFF_ADJUST is
4213 subtracted from OFF later.) This may put p_offset
4214 past the end of file, but that shouldn't matter. */
4215 }
4216 else
4217 off_adjust = 0;
4218 }
4219 /* Make sure the .dynamic section is the first section in the
4220 PT_DYNAMIC segment. */
4221 else if (p->p_type == PT_DYNAMIC
4222 && m->count > 1
4223 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4224 {
4225 _bfd_error_handler
4226 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4227 abfd);
4228 bfd_set_error (bfd_error_bad_value);
4229 return FALSE;
4230 }
4231
4232 p->p_offset = 0;
4233 p->p_filesz = 0;
4234 p->p_memsz = 0;
4235
4236 if (m->includes_filehdr)
4237 {
4238 if (!m->p_flags_valid)
4239 p->p_flags |= PF_R;
4240 p->p_filesz = bed->s->sizeof_ehdr;
4241 p->p_memsz = bed->s->sizeof_ehdr;
4242 if (m->count > 0)
4243 {
4244 BFD_ASSERT (p->p_type == PT_LOAD);
4245
4246 if (p->p_vaddr < (bfd_vma) off)
4247 {
4248 (*_bfd_error_handler)
4249 (_("%B: Not enough room for program headers, try linking with -N"),
4250 abfd);
4251 bfd_set_error (bfd_error_bad_value);
4252 return FALSE;
4253 }
4254
4255 p->p_vaddr -= off;
4256 if (!m->p_paddr_valid)
4257 p->p_paddr -= off;
4258 }
4259 }
4260
4261 if (m->includes_phdrs)
4262 {
4263 if (!m->p_flags_valid)
4264 p->p_flags |= PF_R;
4265
4266 if (!m->includes_filehdr)
4267 {
4268 p->p_offset = bed->s->sizeof_ehdr;
4269
4270 if (m->count > 0)
4271 {
4272 BFD_ASSERT (p->p_type == PT_LOAD);
4273 p->p_vaddr -= off - p->p_offset;
4274 if (!m->p_paddr_valid)
4275 p->p_paddr -= off - p->p_offset;
4276 }
4277 }
4278
4279 p->p_filesz += alloc * bed->s->sizeof_phdr;
4280 p->p_memsz += alloc * bed->s->sizeof_phdr;
4281 }
4282
4283 if (p->p_type == PT_LOAD
4284 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4285 {
4286 if (!m->includes_filehdr && !m->includes_phdrs)
4287 p->p_offset = off;
4288 else
4289 {
4290 file_ptr adjust;
4291
4292 adjust = off - (p->p_offset + p->p_filesz);
4293 if (!no_contents)
4294 p->p_filesz += adjust;
4295 p->p_memsz += adjust;
4296 }
4297 }
4298
4299 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4300 maps. Set filepos for sections in PT_LOAD segments, and in
4301 core files, for sections in PT_NOTE segments.
4302 assign_file_positions_for_non_load_sections will set filepos
4303 for other sections and update p_filesz for other segments. */
4304 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4305 {
4306 asection *sec;
4307 bfd_size_type align;
4308 Elf_Internal_Shdr *this_hdr;
4309
4310 sec = *secpp;
4311 this_hdr = &elf_section_data (sec)->this_hdr;
4312 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4313
4314 if (p->p_type == PT_LOAD
4315 || p->p_type == PT_TLS)
4316 {
4317 bfd_signed_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
4318
4319 if (this_hdr->sh_type != SHT_NOBITS
4320 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4321 && ((this_hdr->sh_flags & SHF_TLS) == 0
4322 || p->p_type == PT_TLS)))
4323 {
4324 if (adjust < 0)
4325 {
4326 (*_bfd_error_handler)
4327 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4328 abfd, sec, (unsigned long) sec->lma);
4329 adjust = 0;
4330 }
4331 p->p_memsz += adjust;
4332
4333 if (this_hdr->sh_type != SHT_NOBITS)
4334 {
4335 off += adjust;
4336 p->p_filesz += adjust;
4337 }
4338 }
4339 }
4340
4341 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4342 {
4343 /* The section at i == 0 is the one that actually contains
4344 everything. */
4345 if (i == 0)
4346 {
4347 this_hdr->sh_offset = sec->filepos = off;
4348 off += this_hdr->sh_size;
4349 p->p_filesz = this_hdr->sh_size;
4350 p->p_memsz = 0;
4351 p->p_align = 1;
4352 }
4353 else
4354 {
4355 /* The rest are fake sections that shouldn't be written. */
4356 sec->filepos = 0;
4357 sec->size = 0;
4358 sec->flags = 0;
4359 continue;
4360 }
4361 }
4362 else
4363 {
4364 if (p->p_type == PT_LOAD)
4365 {
4366 this_hdr->sh_offset = sec->filepos = off;
4367 if (this_hdr->sh_type != SHT_NOBITS)
4368 off += this_hdr->sh_size;
4369 }
4370
4371 if (this_hdr->sh_type != SHT_NOBITS)
4372 {
4373 p->p_filesz += this_hdr->sh_size;
4374 /* A load section without SHF_ALLOC is something like
4375 a note section in a PT_NOTE segment. These take
4376 file space but are not loaded into memory. */
4377 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4378 p->p_memsz += this_hdr->sh_size;
4379 }
4380 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4381 {
4382 if (p->p_type == PT_TLS)
4383 p->p_memsz += this_hdr->sh_size;
4384
4385 /* .tbss is special. It doesn't contribute to p_memsz of
4386 normal segments. */
4387 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4388 p->p_memsz += this_hdr->sh_size;
4389 }
4390
4391 if (p->p_type == PT_GNU_RELRO)
4392 p->p_align = 1;
4393 else if (align > p->p_align
4394 && !m->p_align_valid
4395 && (p->p_type != PT_LOAD
4396 || (abfd->flags & D_PAGED) == 0))
4397 p->p_align = align;
4398 }
4399
4400 if (!m->p_flags_valid)
4401 {
4402 p->p_flags |= PF_R;
4403 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4404 p->p_flags |= PF_X;
4405 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4406 p->p_flags |= PF_W;
4407 }
4408 }
4409 off -= off_adjust;
4410
4411 /* Check that all sections are in a PT_LOAD segment.
4412 Don't check funky gdb generated core files. */
4413 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4414 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4415 {
4416 Elf_Internal_Shdr *this_hdr;
4417 asection *sec;
4418
4419 sec = *secpp;
4420 this_hdr = &(elf_section_data(sec)->this_hdr);
4421 if (this_hdr->sh_size != 0
4422 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4423 {
4424 (*_bfd_error_handler)
4425 (_("%B: section `%A' can't be allocated in segment %d"),
4426 abfd, sec, j);
4427 print_segment_map (m);
4428 bfd_set_error (bfd_error_bad_value);
4429 return FALSE;
4430 }
4431 }
4432 }
4433
4434 elf_tdata (abfd)->next_file_pos = off;
4435 return TRUE;
4436 }
4437
4438 /* Assign file positions for the other sections. */
4439
4440 static bfd_boolean
4441 assign_file_positions_for_non_load_sections (bfd *abfd,
4442 struct bfd_link_info *link_info)
4443 {
4444 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4445 Elf_Internal_Shdr **i_shdrpp;
4446 Elf_Internal_Shdr **hdrpp;
4447 Elf_Internal_Phdr *phdrs;
4448 Elf_Internal_Phdr *p;
4449 struct elf_segment_map *m;
4450 bfd_vma filehdr_vaddr, filehdr_paddr;
4451 bfd_vma phdrs_vaddr, phdrs_paddr;
4452 file_ptr off;
4453 unsigned int num_sec;
4454 unsigned int i;
4455 unsigned int count;
4456
4457 i_shdrpp = elf_elfsections (abfd);
4458 num_sec = elf_numsections (abfd);
4459 off = elf_tdata (abfd)->next_file_pos;
4460 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4461 {
4462 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4463 Elf_Internal_Shdr *hdr;
4464
4465 hdr = *hdrpp;
4466 if (hdr->bfd_section != NULL
4467 && (hdr->bfd_section->filepos != 0
4468 || (hdr->sh_type == SHT_NOBITS
4469 && hdr->contents == NULL)))
4470 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4471 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4472 {
4473 if (hdr->sh_size != 0)
4474 ((*_bfd_error_handler)
4475 (_("%B: warning: allocated section `%s' not in segment"),
4476 abfd,
4477 (hdr->bfd_section == NULL
4478 ? "*unknown*"
4479 : hdr->bfd_section->name)));
4480 /* We don't need to page align empty sections. */
4481 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4482 off += vma_page_aligned_bias (hdr->sh_addr, off,
4483 bed->maxpagesize);
4484 else
4485 off += vma_page_aligned_bias (hdr->sh_addr, off,
4486 hdr->sh_addralign);
4487 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4488 FALSE);
4489 }
4490 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4491 && hdr->bfd_section == NULL)
4492 || hdr == i_shdrpp[tdata->symtab_section]
4493 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4494 || hdr == i_shdrpp[tdata->strtab_section])
4495 hdr->sh_offset = -1;
4496 else
4497 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4498
4499 if (i == SHN_LORESERVE - 1)
4500 {
4501 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4502 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4503 }
4504 }
4505
4506 /* Now that we have set the section file positions, we can set up
4507 the file positions for the non PT_LOAD segments. */
4508 count = 0;
4509 filehdr_vaddr = 0;
4510 filehdr_paddr = 0;
4511 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4512 phdrs_paddr = 0;
4513 phdrs = elf_tdata (abfd)->phdr;
4514 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4515 m != NULL;
4516 m = m->next, p++)
4517 {
4518 ++count;
4519 if (p->p_type != PT_LOAD)
4520 continue;
4521
4522 if (m->includes_filehdr)
4523 {
4524 filehdr_vaddr = p->p_vaddr;
4525 filehdr_paddr = p->p_paddr;
4526 }
4527 if (m->includes_phdrs)
4528 {
4529 phdrs_vaddr = p->p_vaddr;
4530 phdrs_paddr = p->p_paddr;
4531 if (m->includes_filehdr)
4532 {
4533 phdrs_vaddr += bed->s->sizeof_ehdr;
4534 phdrs_paddr += bed->s->sizeof_ehdr;
4535 }
4536 }
4537 }
4538
4539 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4540 m != NULL;
4541 m = m->next, p++)
4542 {
4543 if (m->count != 0)
4544 {
4545 if (p->p_type != PT_LOAD
4546 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4547 {
4548 Elf_Internal_Shdr *hdr;
4549 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4550
4551 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4552 p->p_filesz = (m->sections[m->count - 1]->filepos
4553 - m->sections[0]->filepos);
4554 if (hdr->sh_type != SHT_NOBITS)
4555 p->p_filesz += hdr->sh_size;
4556
4557 p->p_offset = m->sections[0]->filepos;
4558 }
4559 }
4560 else
4561 {
4562 if (m->includes_filehdr)
4563 {
4564 p->p_vaddr = filehdr_vaddr;
4565 if (! m->p_paddr_valid)
4566 p->p_paddr = filehdr_paddr;
4567 }
4568 else if (m->includes_phdrs)
4569 {
4570 p->p_vaddr = phdrs_vaddr;
4571 if (! m->p_paddr_valid)
4572 p->p_paddr = phdrs_paddr;
4573 }
4574 else if (p->p_type == PT_GNU_RELRO)
4575 {
4576 Elf_Internal_Phdr *lp;
4577
4578 for (lp = phdrs; lp < phdrs + count; ++lp)
4579 {
4580 if (lp->p_type == PT_LOAD
4581 && lp->p_vaddr <= link_info->relro_end
4582 && lp->p_vaddr >= link_info->relro_start
4583 && (lp->p_vaddr + lp->p_filesz
4584 >= link_info->relro_end))
4585 break;
4586 }
4587
4588 if (lp < phdrs + count
4589 && link_info->relro_end > lp->p_vaddr)
4590 {
4591 p->p_vaddr = lp->p_vaddr;
4592 p->p_paddr = lp->p_paddr;
4593 p->p_offset = lp->p_offset;
4594 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4595 p->p_memsz = p->p_filesz;
4596 p->p_align = 1;
4597 p->p_flags = (lp->p_flags & ~PF_W);
4598 }
4599 else
4600 {
4601 memset (p, 0, sizeof *p);
4602 p->p_type = PT_NULL;
4603 }
4604 }
4605 }
4606 }
4607
4608 elf_tdata (abfd)->next_file_pos = off;
4609
4610 return TRUE;
4611 }
4612
4613 /* Work out the file positions of all the sections. This is called by
4614 _bfd_elf_compute_section_file_positions. All the section sizes and
4615 VMAs must be known before this is called.
4616
4617 Reloc sections come in two flavours: Those processed specially as
4618 "side-channel" data attached to a section to which they apply, and
4619 those that bfd doesn't process as relocations. The latter sort are
4620 stored in a normal bfd section by bfd_section_from_shdr. We don't
4621 consider the former sort here, unless they form part of the loadable
4622 image. Reloc sections not assigned here will be handled later by
4623 assign_file_positions_for_relocs.
4624
4625 We also don't set the positions of the .symtab and .strtab here. */
4626
4627 static bfd_boolean
4628 assign_file_positions_except_relocs (bfd *abfd,
4629 struct bfd_link_info *link_info)
4630 {
4631 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4632 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4633 file_ptr off;
4634 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4635
4636 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4637 && bfd_get_format (abfd) != bfd_core)
4638 {
4639 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4640 unsigned int num_sec = elf_numsections (abfd);
4641 Elf_Internal_Shdr **hdrpp;
4642 unsigned int i;
4643
4644 /* Start after the ELF header. */
4645 off = i_ehdrp->e_ehsize;
4646
4647 /* We are not creating an executable, which means that we are
4648 not creating a program header, and that the actual order of
4649 the sections in the file is unimportant. */
4650 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4651 {
4652 Elf_Internal_Shdr *hdr;
4653
4654 hdr = *hdrpp;
4655 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4656 && hdr->bfd_section == NULL)
4657 || i == tdata->symtab_section
4658 || i == tdata->symtab_shndx_section
4659 || i == tdata->strtab_section)
4660 {
4661 hdr->sh_offset = -1;
4662 }
4663 else
4664 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4665
4666 if (i == SHN_LORESERVE - 1)
4667 {
4668 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4669 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4670 }
4671 }
4672 }
4673 else
4674 {
4675 unsigned int alloc;
4676
4677 /* Assign file positions for the loaded sections based on the
4678 assignment of sections to segments. */
4679 if (!assign_file_positions_for_load_sections (abfd, link_info))
4680 return FALSE;
4681
4682 /* And for non-load sections. */
4683 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4684 return FALSE;
4685
4686 if (bed->elf_backend_modify_program_headers != NULL)
4687 {
4688 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4689 return FALSE;
4690 }
4691
4692 /* Write out the program headers. */
4693 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4694 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4695 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4696 return FALSE;
4697
4698 off = tdata->next_file_pos;
4699 }
4700
4701 /* Place the section headers. */
4702 off = align_file_position (off, 1 << bed->s->log_file_align);
4703 i_ehdrp->e_shoff = off;
4704 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4705
4706 tdata->next_file_pos = off;
4707
4708 return TRUE;
4709 }
4710
4711 static bfd_boolean
4712 prep_headers (bfd *abfd)
4713 {
4714 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4715 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4716 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4717 struct elf_strtab_hash *shstrtab;
4718 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4719
4720 i_ehdrp = elf_elfheader (abfd);
4721 i_shdrp = elf_elfsections (abfd);
4722
4723 shstrtab = _bfd_elf_strtab_init ();
4724 if (shstrtab == NULL)
4725 return FALSE;
4726
4727 elf_shstrtab (abfd) = shstrtab;
4728
4729 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4730 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4731 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4732 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4733
4734 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4735 i_ehdrp->e_ident[EI_DATA] =
4736 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4737 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4738
4739 if ((abfd->flags & DYNAMIC) != 0)
4740 i_ehdrp->e_type = ET_DYN;
4741 else if ((abfd->flags & EXEC_P) != 0)
4742 i_ehdrp->e_type = ET_EXEC;
4743 else if (bfd_get_format (abfd) == bfd_core)
4744 i_ehdrp->e_type = ET_CORE;
4745 else
4746 i_ehdrp->e_type = ET_REL;
4747
4748 switch (bfd_get_arch (abfd))
4749 {
4750 case bfd_arch_unknown:
4751 i_ehdrp->e_machine = EM_NONE;
4752 break;
4753
4754 /* There used to be a long list of cases here, each one setting
4755 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4756 in the corresponding bfd definition. To avoid duplication,
4757 the switch was removed. Machines that need special handling
4758 can generally do it in elf_backend_final_write_processing(),
4759 unless they need the information earlier than the final write.
4760 Such need can generally be supplied by replacing the tests for
4761 e_machine with the conditions used to determine it. */
4762 default:
4763 i_ehdrp->e_machine = bed->elf_machine_code;
4764 }
4765
4766 i_ehdrp->e_version = bed->s->ev_current;
4767 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4768
4769 /* No program header, for now. */
4770 i_ehdrp->e_phoff = 0;
4771 i_ehdrp->e_phentsize = 0;
4772 i_ehdrp->e_phnum = 0;
4773
4774 /* Each bfd section is section header entry. */
4775 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4776 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4777
4778 /* If we're building an executable, we'll need a program header table. */
4779 if (abfd->flags & EXEC_P)
4780 /* It all happens later. */
4781 ;
4782 else
4783 {
4784 i_ehdrp->e_phentsize = 0;
4785 i_phdrp = 0;
4786 i_ehdrp->e_phoff = 0;
4787 }
4788
4789 elf_tdata (abfd)->symtab_hdr.sh_name =
4790 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4791 elf_tdata (abfd)->strtab_hdr.sh_name =
4792 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4793 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4794 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4795 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4796 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4797 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4798 return FALSE;
4799
4800 return TRUE;
4801 }
4802
4803 /* Assign file positions for all the reloc sections which are not part
4804 of the loadable file image. */
4805
4806 void
4807 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4808 {
4809 file_ptr off;
4810 unsigned int i, num_sec;
4811 Elf_Internal_Shdr **shdrpp;
4812
4813 off = elf_tdata (abfd)->next_file_pos;
4814
4815 num_sec = elf_numsections (abfd);
4816 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4817 {
4818 Elf_Internal_Shdr *shdrp;
4819
4820 shdrp = *shdrpp;
4821 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4822 && shdrp->sh_offset == -1)
4823 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4824 }
4825
4826 elf_tdata (abfd)->next_file_pos = off;
4827 }
4828
4829 bfd_boolean
4830 _bfd_elf_write_object_contents (bfd *abfd)
4831 {
4832 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4833 Elf_Internal_Ehdr *i_ehdrp;
4834 Elf_Internal_Shdr **i_shdrp;
4835 bfd_boolean failed;
4836 unsigned int count, num_sec;
4837
4838 if (! abfd->output_has_begun
4839 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4840 return FALSE;
4841
4842 i_shdrp = elf_elfsections (abfd);
4843 i_ehdrp = elf_elfheader (abfd);
4844
4845 failed = FALSE;
4846 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4847 if (failed)
4848 return FALSE;
4849
4850 _bfd_elf_assign_file_positions_for_relocs (abfd);
4851
4852 /* After writing the headers, we need to write the sections too... */
4853 num_sec = elf_numsections (abfd);
4854 for (count = 1; count < num_sec; count++)
4855 {
4856 if (bed->elf_backend_section_processing)
4857 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4858 if (i_shdrp[count]->contents)
4859 {
4860 bfd_size_type amt = i_shdrp[count]->sh_size;
4861
4862 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4863 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4864 return FALSE;
4865 }
4866 if (count == SHN_LORESERVE - 1)
4867 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4868 }
4869
4870 /* Write out the section header names. */
4871 if (elf_shstrtab (abfd) != NULL
4872 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4873 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4874 return FALSE;
4875
4876 if (bed->elf_backend_final_write_processing)
4877 (*bed->elf_backend_final_write_processing) (abfd,
4878 elf_tdata (abfd)->linker);
4879
4880 if (!bed->s->write_shdrs_and_ehdr (abfd))
4881 return FALSE;
4882
4883 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4884 if (elf_tdata (abfd)->after_write_object_contents)
4885 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
4886
4887 return TRUE;
4888 }
4889
4890 bfd_boolean
4891 _bfd_elf_write_corefile_contents (bfd *abfd)
4892 {
4893 /* Hopefully this can be done just like an object file. */
4894 return _bfd_elf_write_object_contents (abfd);
4895 }
4896
4897 /* Given a section, search the header to find them. */
4898
4899 int
4900 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4901 {
4902 const struct elf_backend_data *bed;
4903 int index;
4904
4905 if (elf_section_data (asect) != NULL
4906 && elf_section_data (asect)->this_idx != 0)
4907 return elf_section_data (asect)->this_idx;
4908
4909 if (bfd_is_abs_section (asect))
4910 index = SHN_ABS;
4911 else if (bfd_is_com_section (asect))
4912 index = SHN_COMMON;
4913 else if (bfd_is_und_section (asect))
4914 index = SHN_UNDEF;
4915 else
4916 index = -1;
4917
4918 bed = get_elf_backend_data (abfd);
4919 if (bed->elf_backend_section_from_bfd_section)
4920 {
4921 int retval = index;
4922
4923 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4924 return retval;
4925 }
4926
4927 if (index == -1)
4928 bfd_set_error (bfd_error_nonrepresentable_section);
4929
4930 return index;
4931 }
4932
4933 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4934 on error. */
4935
4936 int
4937 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4938 {
4939 asymbol *asym_ptr = *asym_ptr_ptr;
4940 int idx;
4941 flagword flags = asym_ptr->flags;
4942
4943 /* When gas creates relocations against local labels, it creates its
4944 own symbol for the section, but does put the symbol into the
4945 symbol chain, so udata is 0. When the linker is generating
4946 relocatable output, this section symbol may be for one of the
4947 input sections rather than the output section. */
4948 if (asym_ptr->udata.i == 0
4949 && (flags & BSF_SECTION_SYM)
4950 && asym_ptr->section)
4951 {
4952 asection *sec;
4953 int indx;
4954
4955 sec = asym_ptr->section;
4956 if (sec->owner != abfd && sec->output_section != NULL)
4957 sec = sec->output_section;
4958 if (sec->owner == abfd
4959 && (indx = sec->index) < elf_num_section_syms (abfd)
4960 && elf_section_syms (abfd)[indx] != NULL)
4961 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4962 }
4963
4964 idx = asym_ptr->udata.i;
4965
4966 if (idx == 0)
4967 {
4968 /* This case can occur when using --strip-symbol on a symbol
4969 which is used in a relocation entry. */
4970 (*_bfd_error_handler)
4971 (_("%B: symbol `%s' required but not present"),
4972 abfd, bfd_asymbol_name (asym_ptr));
4973 bfd_set_error (bfd_error_no_symbols);
4974 return -1;
4975 }
4976
4977 #if DEBUG & 4
4978 {
4979 fprintf (stderr,
4980 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4981 (long) asym_ptr, asym_ptr->name, idx, flags,
4982 elf_symbol_flags (flags));
4983 fflush (stderr);
4984 }
4985 #endif
4986
4987 return idx;
4988 }
4989
4990 /* Rewrite program header information. */
4991
4992 static bfd_boolean
4993 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
4994 {
4995 Elf_Internal_Ehdr *iehdr;
4996 struct elf_segment_map *map;
4997 struct elf_segment_map *map_first;
4998 struct elf_segment_map **pointer_to_map;
4999 Elf_Internal_Phdr *segment;
5000 asection *section;
5001 unsigned int i;
5002 unsigned int num_segments;
5003 bfd_boolean phdr_included = FALSE;
5004 bfd_vma maxpagesize;
5005 struct elf_segment_map *phdr_adjust_seg = NULL;
5006 unsigned int phdr_adjust_num = 0;
5007 const struct elf_backend_data *bed;
5008
5009 bed = get_elf_backend_data (ibfd);
5010 iehdr = elf_elfheader (ibfd);
5011
5012 map_first = NULL;
5013 pointer_to_map = &map_first;
5014
5015 num_segments = elf_elfheader (ibfd)->e_phnum;
5016 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5017
5018 /* Returns the end address of the segment + 1. */
5019 #define SEGMENT_END(segment, start) \
5020 (start + (segment->p_memsz > segment->p_filesz \
5021 ? segment->p_memsz : segment->p_filesz))
5022
5023 #define SECTION_SIZE(section, segment) \
5024 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5025 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5026 ? section->size : 0)
5027
5028 /* Returns TRUE if the given section is contained within
5029 the given segment. VMA addresses are compared. */
5030 #define IS_CONTAINED_BY_VMA(section, segment) \
5031 (section->vma >= segment->p_vaddr \
5032 && (section->vma + SECTION_SIZE (section, segment) \
5033 <= (SEGMENT_END (segment, segment->p_vaddr))))
5034
5035 /* Returns TRUE if the given section is contained within
5036 the given segment. LMA addresses are compared. */
5037 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5038 (section->lma >= base \
5039 && (section->lma + SECTION_SIZE (section, segment) \
5040 <= SEGMENT_END (segment, base)))
5041
5042 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5043 #define IS_COREFILE_NOTE(p, s) \
5044 (p->p_type == PT_NOTE \
5045 && bfd_get_format (ibfd) == bfd_core \
5046 && s->vma == 0 && s->lma == 0 \
5047 && (bfd_vma) s->filepos >= p->p_offset \
5048 && ((bfd_vma) s->filepos + s->size \
5049 <= p->p_offset + p->p_filesz))
5050
5051 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5052 linker, which generates a PT_INTERP section with p_vaddr and
5053 p_memsz set to 0. */
5054 #define IS_SOLARIS_PT_INTERP(p, s) \
5055 (p->p_vaddr == 0 \
5056 && p->p_paddr == 0 \
5057 && p->p_memsz == 0 \
5058 && p->p_filesz > 0 \
5059 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5060 && s->size > 0 \
5061 && (bfd_vma) s->filepos >= p->p_offset \
5062 && ((bfd_vma) s->filepos + s->size \
5063 <= p->p_offset + p->p_filesz))
5064
5065 /* Decide if the given section should be included in the given segment.
5066 A section will be included if:
5067 1. It is within the address space of the segment -- we use the LMA
5068 if that is set for the segment and the VMA otherwise,
5069 2. It is an allocated segment,
5070 3. There is an output section associated with it,
5071 4. The section has not already been allocated to a previous segment.
5072 5. PT_GNU_STACK segments do not include any sections.
5073 6. PT_TLS segment includes only SHF_TLS sections.
5074 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5075 8. PT_DYNAMIC should not contain empty sections at the beginning
5076 (with the possible exception of .dynamic). */
5077 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5078 ((((segment->p_paddr \
5079 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5080 : IS_CONTAINED_BY_VMA (section, segment)) \
5081 && (section->flags & SEC_ALLOC) != 0) \
5082 || IS_COREFILE_NOTE (segment, section)) \
5083 && segment->p_type != PT_GNU_STACK \
5084 && (segment->p_type != PT_TLS \
5085 || (section->flags & SEC_THREAD_LOCAL)) \
5086 && (segment->p_type == PT_LOAD \
5087 || segment->p_type == PT_TLS \
5088 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5089 && (segment->p_type != PT_DYNAMIC \
5090 || SECTION_SIZE (section, segment) > 0 \
5091 || (segment->p_paddr \
5092 ? segment->p_paddr != section->lma \
5093 : segment->p_vaddr != section->vma) \
5094 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5095 == 0)) \
5096 && ! section->segment_mark)
5097
5098 /* If the output section of a section in the input segment is NULL,
5099 it is removed from the corresponding output segment. */
5100 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5101 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5102 && section->output_section != NULL)
5103
5104 /* Returns TRUE iff seg1 starts after the end of seg2. */
5105 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5106 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5107
5108 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5109 their VMA address ranges and their LMA address ranges overlap.
5110 It is possible to have overlapping VMA ranges without overlapping LMA
5111 ranges. RedBoot images for example can have both .data and .bss mapped
5112 to the same VMA range, but with the .data section mapped to a different
5113 LMA. */
5114 #define SEGMENT_OVERLAPS(seg1, seg2) \
5115 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5116 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5117 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5118 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5119
5120 /* Initialise the segment mark field. */
5121 for (section = ibfd->sections; section != NULL; section = section->next)
5122 section->segment_mark = FALSE;
5123
5124 /* Scan through the segments specified in the program header
5125 of the input BFD. For this first scan we look for overlaps
5126 in the loadable segments. These can be created by weird
5127 parameters to objcopy. Also, fix some solaris weirdness. */
5128 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5129 i < num_segments;
5130 i++, segment++)
5131 {
5132 unsigned int j;
5133 Elf_Internal_Phdr *segment2;
5134
5135 if (segment->p_type == PT_INTERP)
5136 for (section = ibfd->sections; section; section = section->next)
5137 if (IS_SOLARIS_PT_INTERP (segment, section))
5138 {
5139 /* Mininal change so that the normal section to segment
5140 assignment code will work. */
5141 segment->p_vaddr = section->vma;
5142 break;
5143 }
5144
5145 if (segment->p_type != PT_LOAD)
5146 continue;
5147
5148 /* Determine if this segment overlaps any previous segments. */
5149 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5150 {
5151 bfd_signed_vma extra_length;
5152
5153 if (segment2->p_type != PT_LOAD
5154 || ! SEGMENT_OVERLAPS (segment, segment2))
5155 continue;
5156
5157 /* Merge the two segments together. */
5158 if (segment2->p_vaddr < segment->p_vaddr)
5159 {
5160 /* Extend SEGMENT2 to include SEGMENT and then delete
5161 SEGMENT. */
5162 extra_length =
5163 SEGMENT_END (segment, segment->p_vaddr)
5164 - SEGMENT_END (segment2, segment2->p_vaddr);
5165
5166 if (extra_length > 0)
5167 {
5168 segment2->p_memsz += extra_length;
5169 segment2->p_filesz += extra_length;
5170 }
5171
5172 segment->p_type = PT_NULL;
5173
5174 /* Since we have deleted P we must restart the outer loop. */
5175 i = 0;
5176 segment = elf_tdata (ibfd)->phdr;
5177 break;
5178 }
5179 else
5180 {
5181 /* Extend SEGMENT to include SEGMENT2 and then delete
5182 SEGMENT2. */
5183 extra_length =
5184 SEGMENT_END (segment2, segment2->p_vaddr)
5185 - SEGMENT_END (segment, segment->p_vaddr);
5186
5187 if (extra_length > 0)
5188 {
5189 segment->p_memsz += extra_length;
5190 segment->p_filesz += extra_length;
5191 }
5192
5193 segment2->p_type = PT_NULL;
5194 }
5195 }
5196 }
5197
5198 /* The second scan attempts to assign sections to segments. */
5199 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5200 i < num_segments;
5201 i ++, segment ++)
5202 {
5203 unsigned int section_count;
5204 asection ** sections;
5205 asection * output_section;
5206 unsigned int isec;
5207 bfd_vma matching_lma;
5208 bfd_vma suggested_lma;
5209 unsigned int j;
5210 bfd_size_type amt;
5211 asection * first_section;
5212
5213 if (segment->p_type == PT_NULL)
5214 continue;
5215
5216 first_section = NULL;
5217 /* Compute how many sections might be placed into this segment. */
5218 for (section = ibfd->sections, section_count = 0;
5219 section != NULL;
5220 section = section->next)
5221 {
5222 /* Find the first section in the input segment, which may be
5223 removed from the corresponding output segment. */
5224 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5225 {
5226 if (first_section == NULL)
5227 first_section = section;
5228 if (section->output_section != NULL)
5229 ++section_count;
5230 }
5231 }
5232
5233 /* Allocate a segment map big enough to contain
5234 all of the sections we have selected. */
5235 amt = sizeof (struct elf_segment_map);
5236 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5237 map = bfd_zalloc (obfd, amt);
5238 if (map == NULL)
5239 return FALSE;
5240
5241 /* Initialise the fields of the segment map. Default to
5242 using the physical address of the segment in the input BFD. */
5243 map->next = NULL;
5244 map->p_type = segment->p_type;
5245 map->p_flags = segment->p_flags;
5246 map->p_flags_valid = 1;
5247
5248 /* If the first section in the input segment is removed, there is
5249 no need to preserve segment physical address in the corresponding
5250 output segment. */
5251 if (!first_section || first_section->output_section != NULL)
5252 {
5253 map->p_paddr = segment->p_paddr;
5254 map->p_paddr_valid = 1;
5255 }
5256
5257 /* Determine if this segment contains the ELF file header
5258 and if it contains the program headers themselves. */
5259 map->includes_filehdr = (segment->p_offset == 0
5260 && segment->p_filesz >= iehdr->e_ehsize);
5261
5262 map->includes_phdrs = 0;
5263
5264 if (! phdr_included || segment->p_type != PT_LOAD)
5265 {
5266 map->includes_phdrs =
5267 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5268 && (segment->p_offset + segment->p_filesz
5269 >= ((bfd_vma) iehdr->e_phoff
5270 + iehdr->e_phnum * iehdr->e_phentsize)));
5271
5272 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5273 phdr_included = TRUE;
5274 }
5275
5276 if (section_count == 0)
5277 {
5278 /* Special segments, such as the PT_PHDR segment, may contain
5279 no sections, but ordinary, loadable segments should contain
5280 something. They are allowed by the ELF spec however, so only
5281 a warning is produced. */
5282 if (segment->p_type == PT_LOAD)
5283 (*_bfd_error_handler)
5284 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5285 ibfd);
5286
5287 map->count = 0;
5288 *pointer_to_map = map;
5289 pointer_to_map = &map->next;
5290
5291 continue;
5292 }
5293
5294 /* Now scan the sections in the input BFD again and attempt
5295 to add their corresponding output sections to the segment map.
5296 The problem here is how to handle an output section which has
5297 been moved (ie had its LMA changed). There are four possibilities:
5298
5299 1. None of the sections have been moved.
5300 In this case we can continue to use the segment LMA from the
5301 input BFD.
5302
5303 2. All of the sections have been moved by the same amount.
5304 In this case we can change the segment's LMA to match the LMA
5305 of the first section.
5306
5307 3. Some of the sections have been moved, others have not.
5308 In this case those sections which have not been moved can be
5309 placed in the current segment which will have to have its size,
5310 and possibly its LMA changed, and a new segment or segments will
5311 have to be created to contain the other sections.
5312
5313 4. The sections have been moved, but not by the same amount.
5314 In this case we can change the segment's LMA to match the LMA
5315 of the first section and we will have to create a new segment
5316 or segments to contain the other sections.
5317
5318 In order to save time, we allocate an array to hold the section
5319 pointers that we are interested in. As these sections get assigned
5320 to a segment, they are removed from this array. */
5321
5322 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5323 to work around this long long bug. */
5324 sections = bfd_malloc2 (section_count, sizeof (asection *));
5325 if (sections == NULL)
5326 return FALSE;
5327
5328 /* Step One: Scan for segment vs section LMA conflicts.
5329 Also add the sections to the section array allocated above.
5330 Also add the sections to the current segment. In the common
5331 case, where the sections have not been moved, this means that
5332 we have completely filled the segment, and there is nothing
5333 more to do. */
5334 isec = 0;
5335 matching_lma = 0;
5336 suggested_lma = 0;
5337
5338 for (j = 0, section = ibfd->sections;
5339 section != NULL;
5340 section = section->next)
5341 {
5342 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5343 {
5344 output_section = section->output_section;
5345
5346 sections[j ++] = section;
5347
5348 /* The Solaris native linker always sets p_paddr to 0.
5349 We try to catch that case here, and set it to the
5350 correct value. Note - some backends require that
5351 p_paddr be left as zero. */
5352 if (segment->p_paddr == 0
5353 && segment->p_vaddr != 0
5354 && (! bed->want_p_paddr_set_to_zero)
5355 && isec == 0
5356 && output_section->lma != 0
5357 && (output_section->vma == (segment->p_vaddr
5358 + (map->includes_filehdr
5359 ? iehdr->e_ehsize
5360 : 0)
5361 + (map->includes_phdrs
5362 ? (iehdr->e_phnum
5363 * iehdr->e_phentsize)
5364 : 0))))
5365 map->p_paddr = segment->p_vaddr;
5366
5367 /* Match up the physical address of the segment with the
5368 LMA address of the output section. */
5369 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5370 || IS_COREFILE_NOTE (segment, section)
5371 || (bed->want_p_paddr_set_to_zero &&
5372 IS_CONTAINED_BY_VMA (output_section, segment)))
5373 {
5374 if (matching_lma == 0 || output_section->lma < matching_lma)
5375 matching_lma = output_section->lma;
5376
5377 /* We assume that if the section fits within the segment
5378 then it does not overlap any other section within that
5379 segment. */
5380 map->sections[isec ++] = output_section;
5381 }
5382 else if (suggested_lma == 0)
5383 suggested_lma = output_section->lma;
5384 }
5385 }
5386
5387 BFD_ASSERT (j == section_count);
5388
5389 /* Step Two: Adjust the physical address of the current segment,
5390 if necessary. */
5391 if (isec == section_count)
5392 {
5393 /* All of the sections fitted within the segment as currently
5394 specified. This is the default case. Add the segment to
5395 the list of built segments and carry on to process the next
5396 program header in the input BFD. */
5397 map->count = section_count;
5398 *pointer_to_map = map;
5399 pointer_to_map = &map->next;
5400
5401 if (matching_lma != map->p_paddr
5402 && !map->includes_filehdr && !map->includes_phdrs)
5403 /* There is some padding before the first section in the
5404 segment. So, we must account for that in the output
5405 segment's vma. */
5406 map->p_vaddr_offset = matching_lma - map->p_paddr;
5407
5408 free (sections);
5409 continue;
5410 }
5411 else
5412 {
5413 if (matching_lma != 0)
5414 {
5415 /* At least one section fits inside the current segment.
5416 Keep it, but modify its physical address to match the
5417 LMA of the first section that fitted. */
5418 map->p_paddr = matching_lma;
5419 }
5420 else
5421 {
5422 /* None of the sections fitted inside the current segment.
5423 Change the current segment's physical address to match
5424 the LMA of the first section. */
5425 map->p_paddr = suggested_lma;
5426 }
5427
5428 /* Offset the segment physical address from the lma
5429 to allow for space taken up by elf headers. */
5430 if (map->includes_filehdr)
5431 map->p_paddr -= iehdr->e_ehsize;
5432
5433 if (map->includes_phdrs)
5434 {
5435 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5436
5437 /* iehdr->e_phnum is just an estimate of the number
5438 of program headers that we will need. Make a note
5439 here of the number we used and the segment we chose
5440 to hold these headers, so that we can adjust the
5441 offset when we know the correct value. */
5442 phdr_adjust_num = iehdr->e_phnum;
5443 phdr_adjust_seg = map;
5444 }
5445 }
5446
5447 /* Step Three: Loop over the sections again, this time assigning
5448 those that fit to the current segment and removing them from the
5449 sections array; but making sure not to leave large gaps. Once all
5450 possible sections have been assigned to the current segment it is
5451 added to the list of built segments and if sections still remain
5452 to be assigned, a new segment is constructed before repeating
5453 the loop. */
5454 isec = 0;
5455 do
5456 {
5457 map->count = 0;
5458 suggested_lma = 0;
5459
5460 /* Fill the current segment with sections that fit. */
5461 for (j = 0; j < section_count; j++)
5462 {
5463 section = sections[j];
5464
5465 if (section == NULL)
5466 continue;
5467
5468 output_section = section->output_section;
5469
5470 BFD_ASSERT (output_section != NULL);
5471
5472 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5473 || IS_COREFILE_NOTE (segment, section))
5474 {
5475 if (map->count == 0)
5476 {
5477 /* If the first section in a segment does not start at
5478 the beginning of the segment, then something is
5479 wrong. */
5480 if (output_section->lma !=
5481 (map->p_paddr
5482 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5483 + (map->includes_phdrs
5484 ? iehdr->e_phnum * iehdr->e_phentsize
5485 : 0)))
5486 abort ();
5487 }
5488 else
5489 {
5490 asection * prev_sec;
5491
5492 prev_sec = map->sections[map->count - 1];
5493
5494 /* If the gap between the end of the previous section
5495 and the start of this section is more than
5496 maxpagesize then we need to start a new segment. */
5497 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5498 maxpagesize)
5499 < BFD_ALIGN (output_section->lma, maxpagesize))
5500 || ((prev_sec->lma + prev_sec->size)
5501 > output_section->lma))
5502 {
5503 if (suggested_lma == 0)
5504 suggested_lma = output_section->lma;
5505
5506 continue;
5507 }
5508 }
5509
5510 map->sections[map->count++] = output_section;
5511 ++isec;
5512 sections[j] = NULL;
5513 section->segment_mark = TRUE;
5514 }
5515 else if (suggested_lma == 0)
5516 suggested_lma = output_section->lma;
5517 }
5518
5519 BFD_ASSERT (map->count > 0);
5520
5521 /* Add the current segment to the list of built segments. */
5522 *pointer_to_map = map;
5523 pointer_to_map = &map->next;
5524
5525 if (isec < section_count)
5526 {
5527 /* We still have not allocated all of the sections to
5528 segments. Create a new segment here, initialise it
5529 and carry on looping. */
5530 amt = sizeof (struct elf_segment_map);
5531 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5532 map = bfd_alloc (obfd, amt);
5533 if (map == NULL)
5534 {
5535 free (sections);
5536 return FALSE;
5537 }
5538
5539 /* Initialise the fields of the segment map. Set the physical
5540 physical address to the LMA of the first section that has
5541 not yet been assigned. */
5542 map->next = NULL;
5543 map->p_type = segment->p_type;
5544 map->p_flags = segment->p_flags;
5545 map->p_flags_valid = 1;
5546 map->p_paddr = suggested_lma;
5547 map->p_paddr_valid = 1;
5548 map->includes_filehdr = 0;
5549 map->includes_phdrs = 0;
5550 }
5551 }
5552 while (isec < section_count);
5553
5554 free (sections);
5555 }
5556
5557 /* The Solaris linker creates program headers in which all the
5558 p_paddr fields are zero. When we try to objcopy or strip such a
5559 file, we get confused. Check for this case, and if we find it
5560 reset the p_paddr_valid fields. */
5561 for (map = map_first; map != NULL; map = map->next)
5562 if (map->p_paddr != 0)
5563 break;
5564 if (map == NULL)
5565 for (map = map_first; map != NULL; map = map->next)
5566 map->p_paddr_valid = 0;
5567
5568 elf_tdata (obfd)->segment_map = map_first;
5569
5570 /* If we had to estimate the number of program headers that were
5571 going to be needed, then check our estimate now and adjust
5572 the offset if necessary. */
5573 if (phdr_adjust_seg != NULL)
5574 {
5575 unsigned int count;
5576
5577 for (count = 0, map = map_first; map != NULL; map = map->next)
5578 count++;
5579
5580 if (count > phdr_adjust_num)
5581 phdr_adjust_seg->p_paddr
5582 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5583 }
5584
5585 #undef SEGMENT_END
5586 #undef SECTION_SIZE
5587 #undef IS_CONTAINED_BY_VMA
5588 #undef IS_CONTAINED_BY_LMA
5589 #undef IS_COREFILE_NOTE
5590 #undef IS_SOLARIS_PT_INTERP
5591 #undef IS_SECTION_IN_INPUT_SEGMENT
5592 #undef INCLUDE_SECTION_IN_SEGMENT
5593 #undef SEGMENT_AFTER_SEGMENT
5594 #undef SEGMENT_OVERLAPS
5595 return TRUE;
5596 }
5597
5598 /* Copy ELF program header information. */
5599
5600 static bfd_boolean
5601 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5602 {
5603 Elf_Internal_Ehdr *iehdr;
5604 struct elf_segment_map *map;
5605 struct elf_segment_map *map_first;
5606 struct elf_segment_map **pointer_to_map;
5607 Elf_Internal_Phdr *segment;
5608 unsigned int i;
5609 unsigned int num_segments;
5610 bfd_boolean phdr_included = FALSE;
5611
5612 iehdr = elf_elfheader (ibfd);
5613
5614 map_first = NULL;
5615 pointer_to_map = &map_first;
5616
5617 num_segments = elf_elfheader (ibfd)->e_phnum;
5618 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5619 i < num_segments;
5620 i++, segment++)
5621 {
5622 asection *section;
5623 unsigned int section_count;
5624 bfd_size_type amt;
5625 Elf_Internal_Shdr *this_hdr;
5626 asection *first_section = NULL;
5627 asection *lowest_section = NULL;
5628
5629 /* FIXME: Do we need to copy PT_NULL segment? */
5630 if (segment->p_type == PT_NULL)
5631 continue;
5632
5633 /* Compute how many sections are in this segment. */
5634 for (section = ibfd->sections, section_count = 0;
5635 section != NULL;
5636 section = section->next)
5637 {
5638 this_hdr = &(elf_section_data(section)->this_hdr);
5639 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5640 {
5641 if (!first_section)
5642 first_section = lowest_section = section;
5643 if (section->lma < lowest_section->lma)
5644 lowest_section = section;
5645 section_count++;
5646 }
5647 }
5648
5649 /* Allocate a segment map big enough to contain
5650 all of the sections we have selected. */
5651 amt = sizeof (struct elf_segment_map);
5652 if (section_count != 0)
5653 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5654 map = bfd_zalloc (obfd, amt);
5655 if (map == NULL)
5656 return FALSE;
5657
5658 /* Initialize the fields of the output segment map with the
5659 input segment. */
5660 map->next = NULL;
5661 map->p_type = segment->p_type;
5662 map->p_flags = segment->p_flags;
5663 map->p_flags_valid = 1;
5664 map->p_paddr = segment->p_paddr;
5665 map->p_paddr_valid = 1;
5666 map->p_align = segment->p_align;
5667 map->p_align_valid = 1;
5668 map->p_vaddr_offset = 0;
5669
5670 /* Determine if this segment contains the ELF file header
5671 and if it contains the program headers themselves. */
5672 map->includes_filehdr = (segment->p_offset == 0
5673 && segment->p_filesz >= iehdr->e_ehsize);
5674
5675 map->includes_phdrs = 0;
5676 if (! phdr_included || segment->p_type != PT_LOAD)
5677 {
5678 map->includes_phdrs =
5679 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5680 && (segment->p_offset + segment->p_filesz
5681 >= ((bfd_vma) iehdr->e_phoff
5682 + iehdr->e_phnum * iehdr->e_phentsize)));
5683
5684 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5685 phdr_included = TRUE;
5686 }
5687
5688 if (!map->includes_phdrs && !map->includes_filehdr)
5689 /* There is some other padding before the first section. */
5690 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5691 - segment->p_paddr);
5692
5693 if (section_count != 0)
5694 {
5695 unsigned int isec = 0;
5696
5697 for (section = first_section;
5698 section != NULL;
5699 section = section->next)
5700 {
5701 this_hdr = &(elf_section_data(section)->this_hdr);
5702 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5703 {
5704 map->sections[isec++] = section->output_section;
5705 if (isec == section_count)
5706 break;
5707 }
5708 }
5709 }
5710
5711 map->count = section_count;
5712 *pointer_to_map = map;
5713 pointer_to_map = &map->next;
5714 }
5715
5716 elf_tdata (obfd)->segment_map = map_first;
5717 return TRUE;
5718 }
5719
5720 /* Copy private BFD data. This copies or rewrites ELF program header
5721 information. */
5722
5723 static bfd_boolean
5724 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5725 {
5726 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5727 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5728 return TRUE;
5729
5730 if (elf_tdata (ibfd)->phdr == NULL)
5731 return TRUE;
5732
5733 if (ibfd->xvec == obfd->xvec)
5734 {
5735 /* Check to see if any sections in the input BFD
5736 covered by ELF program header have changed. */
5737 Elf_Internal_Phdr *segment;
5738 asection *section, *osec;
5739 unsigned int i, num_segments;
5740 Elf_Internal_Shdr *this_hdr;
5741
5742 /* Initialize the segment mark field. */
5743 for (section = obfd->sections; section != NULL;
5744 section = section->next)
5745 section->segment_mark = FALSE;
5746
5747 num_segments = elf_elfheader (ibfd)->e_phnum;
5748 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5749 i < num_segments;
5750 i++, segment++)
5751 {
5752 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5753 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5754 which severly confuses things, so always regenerate the segment
5755 map in this case. */
5756 if (segment->p_paddr == 0
5757 && segment->p_memsz == 0
5758 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5759 goto rewrite;
5760
5761 for (section = ibfd->sections;
5762 section != NULL; section = section->next)
5763 {
5764 /* We mark the output section so that we know it comes
5765 from the input BFD. */
5766 osec = section->output_section;
5767 if (osec)
5768 osec->segment_mark = TRUE;
5769
5770 /* Check if this section is covered by the segment. */
5771 this_hdr = &(elf_section_data(section)->this_hdr);
5772 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5773 {
5774 /* FIXME: Check if its output section is changed or
5775 removed. What else do we need to check? */
5776 if (osec == NULL
5777 || section->flags != osec->flags
5778 || section->lma != osec->lma
5779 || section->vma != osec->vma
5780 || section->size != osec->size
5781 || section->rawsize != osec->rawsize
5782 || section->alignment_power != osec->alignment_power)
5783 goto rewrite;
5784 }
5785 }
5786 }
5787
5788 /* Check to see if any output section do not come from the
5789 input BFD. */
5790 for (section = obfd->sections; section != NULL;
5791 section = section->next)
5792 {
5793 if (section->segment_mark == FALSE)
5794 goto rewrite;
5795 else
5796 section->segment_mark = FALSE;
5797 }
5798
5799 return copy_elf_program_header (ibfd, obfd);
5800 }
5801
5802 rewrite:
5803 return rewrite_elf_program_header (ibfd, obfd);
5804 }
5805
5806 /* Initialize private output section information from input section. */
5807
5808 bfd_boolean
5809 _bfd_elf_init_private_section_data (bfd *ibfd,
5810 asection *isec,
5811 bfd *obfd,
5812 asection *osec,
5813 struct bfd_link_info *link_info)
5814
5815 {
5816 Elf_Internal_Shdr *ihdr, *ohdr;
5817 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5818
5819 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5820 || obfd->xvec->flavour != bfd_target_elf_flavour)
5821 return TRUE;
5822
5823 /* Don't copy the output ELF section type from input if the
5824 output BFD section flags have been set to something different.
5825 elf_fake_sections will set ELF section type based on BFD
5826 section flags. */
5827 if (elf_section_type (osec) == SHT_NULL
5828 && (osec->flags == isec->flags || !osec->flags))
5829 elf_section_type (osec) = elf_section_type (isec);
5830
5831 /* FIXME: Is this correct for all OS/PROC specific flags? */
5832 elf_section_flags (osec) |= (elf_section_flags (isec)
5833 & (SHF_MASKOS | SHF_MASKPROC));
5834
5835 /* Set things up for objcopy and relocatable link. The output
5836 SHT_GROUP section will have its elf_next_in_group pointing back
5837 to the input group members. Ignore linker created group section.
5838 See elfNN_ia64_object_p in elfxx-ia64.c. */
5839 if (need_group)
5840 {
5841 if (elf_sec_group (isec) == NULL
5842 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5843 {
5844 if (elf_section_flags (isec) & SHF_GROUP)
5845 elf_section_flags (osec) |= SHF_GROUP;
5846 elf_next_in_group (osec) = elf_next_in_group (isec);
5847 elf_group_name (osec) = elf_group_name (isec);
5848 }
5849 }
5850
5851 ihdr = &elf_section_data (isec)->this_hdr;
5852
5853 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5854 don't use the output section of the linked-to section since it
5855 may be NULL at this point. */
5856 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5857 {
5858 ohdr = &elf_section_data (osec)->this_hdr;
5859 ohdr->sh_flags |= SHF_LINK_ORDER;
5860 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5861 }
5862
5863 osec->use_rela_p = isec->use_rela_p;
5864
5865 return TRUE;
5866 }
5867
5868 /* Copy private section information. This copies over the entsize
5869 field, and sometimes the info field. */
5870
5871 bfd_boolean
5872 _bfd_elf_copy_private_section_data (bfd *ibfd,
5873 asection *isec,
5874 bfd *obfd,
5875 asection *osec)
5876 {
5877 Elf_Internal_Shdr *ihdr, *ohdr;
5878
5879 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5880 || obfd->xvec->flavour != bfd_target_elf_flavour)
5881 return TRUE;
5882
5883 ihdr = &elf_section_data (isec)->this_hdr;
5884 ohdr = &elf_section_data (osec)->this_hdr;
5885
5886 ohdr->sh_entsize = ihdr->sh_entsize;
5887
5888 if (ihdr->sh_type == SHT_SYMTAB
5889 || ihdr->sh_type == SHT_DYNSYM
5890 || ihdr->sh_type == SHT_GNU_verneed
5891 || ihdr->sh_type == SHT_GNU_verdef)
5892 ohdr->sh_info = ihdr->sh_info;
5893
5894 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5895 NULL);
5896 }
5897
5898 /* Copy private header information. */
5899
5900 bfd_boolean
5901 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5902 {
5903 asection *isec;
5904
5905 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5906 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5907 return TRUE;
5908
5909 /* Copy over private BFD data if it has not already been copied.
5910 This must be done here, rather than in the copy_private_bfd_data
5911 entry point, because the latter is called after the section
5912 contents have been set, which means that the program headers have
5913 already been worked out. */
5914 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5915 {
5916 if (! copy_private_bfd_data (ibfd, obfd))
5917 return FALSE;
5918 }
5919
5920 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
5921 but this might be wrong if we deleted the group section. */
5922 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
5923 if (elf_section_type (isec) == SHT_GROUP
5924 && isec->output_section == NULL)
5925 {
5926 asection *first = elf_next_in_group (isec);
5927 asection *s = first;
5928 while (s != NULL)
5929 {
5930 if (s->output_section != NULL)
5931 {
5932 elf_section_flags (s->output_section) &= ~SHF_GROUP;
5933 elf_group_name (s->output_section) = NULL;
5934 }
5935 s = elf_next_in_group (s);
5936 if (s == first)
5937 break;
5938 }
5939 }
5940
5941 return TRUE;
5942 }
5943
5944 /* Copy private symbol information. If this symbol is in a section
5945 which we did not map into a BFD section, try to map the section
5946 index correctly. We use special macro definitions for the mapped
5947 section indices; these definitions are interpreted by the
5948 swap_out_syms function. */
5949
5950 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5951 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5952 #define MAP_STRTAB (SHN_HIOS + 3)
5953 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5954 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5955
5956 bfd_boolean
5957 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5958 asymbol *isymarg,
5959 bfd *obfd,
5960 asymbol *osymarg)
5961 {
5962 elf_symbol_type *isym, *osym;
5963
5964 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5965 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5966 return TRUE;
5967
5968 isym = elf_symbol_from (ibfd, isymarg);
5969 osym = elf_symbol_from (obfd, osymarg);
5970
5971 if (isym != NULL
5972 && osym != NULL
5973 && bfd_is_abs_section (isym->symbol.section))
5974 {
5975 unsigned int shndx;
5976
5977 shndx = isym->internal_elf_sym.st_shndx;
5978 if (shndx == elf_onesymtab (ibfd))
5979 shndx = MAP_ONESYMTAB;
5980 else if (shndx == elf_dynsymtab (ibfd))
5981 shndx = MAP_DYNSYMTAB;
5982 else if (shndx == elf_tdata (ibfd)->strtab_section)
5983 shndx = MAP_STRTAB;
5984 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5985 shndx = MAP_SHSTRTAB;
5986 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5987 shndx = MAP_SYM_SHNDX;
5988 osym->internal_elf_sym.st_shndx = shndx;
5989 }
5990
5991 return TRUE;
5992 }
5993
5994 /* Swap out the symbols. */
5995
5996 static bfd_boolean
5997 swap_out_syms (bfd *abfd,
5998 struct bfd_strtab_hash **sttp,
5999 int relocatable_p)
6000 {
6001 const struct elf_backend_data *bed;
6002 int symcount;
6003 asymbol **syms;
6004 struct bfd_strtab_hash *stt;
6005 Elf_Internal_Shdr *symtab_hdr;
6006 Elf_Internal_Shdr *symtab_shndx_hdr;
6007 Elf_Internal_Shdr *symstrtab_hdr;
6008 bfd_byte *outbound_syms;
6009 bfd_byte *outbound_shndx;
6010 int idx;
6011 bfd_size_type amt;
6012 bfd_boolean name_local_sections;
6013
6014 if (!elf_map_symbols (abfd))
6015 return FALSE;
6016
6017 /* Dump out the symtabs. */
6018 stt = _bfd_elf_stringtab_init ();
6019 if (stt == NULL)
6020 return FALSE;
6021
6022 bed = get_elf_backend_data (abfd);
6023 symcount = bfd_get_symcount (abfd);
6024 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6025 symtab_hdr->sh_type = SHT_SYMTAB;
6026 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6027 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6028 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6029 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6030
6031 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6032 symstrtab_hdr->sh_type = SHT_STRTAB;
6033
6034 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6035 if (outbound_syms == NULL)
6036 {
6037 _bfd_stringtab_free (stt);
6038 return FALSE;
6039 }
6040 symtab_hdr->contents = outbound_syms;
6041
6042 outbound_shndx = NULL;
6043 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6044 if (symtab_shndx_hdr->sh_name != 0)
6045 {
6046 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6047 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6048 sizeof (Elf_External_Sym_Shndx));
6049 if (outbound_shndx == NULL)
6050 {
6051 _bfd_stringtab_free (stt);
6052 return FALSE;
6053 }
6054
6055 symtab_shndx_hdr->contents = outbound_shndx;
6056 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6057 symtab_shndx_hdr->sh_size = amt;
6058 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6059 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6060 }
6061
6062 /* Now generate the data (for "contents"). */
6063 {
6064 /* Fill in zeroth symbol and swap it out. */
6065 Elf_Internal_Sym sym;
6066 sym.st_name = 0;
6067 sym.st_value = 0;
6068 sym.st_size = 0;
6069 sym.st_info = 0;
6070 sym.st_other = 0;
6071 sym.st_shndx = SHN_UNDEF;
6072 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6073 outbound_syms += bed->s->sizeof_sym;
6074 if (outbound_shndx != NULL)
6075 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6076 }
6077
6078 name_local_sections
6079 = (bed->elf_backend_name_local_section_symbols
6080 && bed->elf_backend_name_local_section_symbols (abfd));
6081
6082 syms = bfd_get_outsymbols (abfd);
6083 for (idx = 0; idx < symcount; idx++)
6084 {
6085 Elf_Internal_Sym sym;
6086 bfd_vma value = syms[idx]->value;
6087 elf_symbol_type *type_ptr;
6088 flagword flags = syms[idx]->flags;
6089 int type;
6090
6091 if (!name_local_sections
6092 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6093 {
6094 /* Local section symbols have no name. */
6095 sym.st_name = 0;
6096 }
6097 else
6098 {
6099 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6100 syms[idx]->name,
6101 TRUE, FALSE);
6102 if (sym.st_name == (unsigned long) -1)
6103 {
6104 _bfd_stringtab_free (stt);
6105 return FALSE;
6106 }
6107 }
6108
6109 type_ptr = elf_symbol_from (abfd, syms[idx]);
6110
6111 if ((flags & BSF_SECTION_SYM) == 0
6112 && bfd_is_com_section (syms[idx]->section))
6113 {
6114 /* ELF common symbols put the alignment into the `value' field,
6115 and the size into the `size' field. This is backwards from
6116 how BFD handles it, so reverse it here. */
6117 sym.st_size = value;
6118 if (type_ptr == NULL
6119 || type_ptr->internal_elf_sym.st_value == 0)
6120 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6121 else
6122 sym.st_value = type_ptr->internal_elf_sym.st_value;
6123 sym.st_shndx = _bfd_elf_section_from_bfd_section
6124 (abfd, syms[idx]->section);
6125 }
6126 else
6127 {
6128 asection *sec = syms[idx]->section;
6129 int shndx;
6130
6131 if (sec->output_section)
6132 {
6133 value += sec->output_offset;
6134 sec = sec->output_section;
6135 }
6136
6137 /* Don't add in the section vma for relocatable output. */
6138 if (! relocatable_p)
6139 value += sec->vma;
6140 sym.st_value = value;
6141 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6142
6143 if (bfd_is_abs_section (sec)
6144 && type_ptr != NULL
6145 && type_ptr->internal_elf_sym.st_shndx != 0)
6146 {
6147 /* This symbol is in a real ELF section which we did
6148 not create as a BFD section. Undo the mapping done
6149 by copy_private_symbol_data. */
6150 shndx = type_ptr->internal_elf_sym.st_shndx;
6151 switch (shndx)
6152 {
6153 case MAP_ONESYMTAB:
6154 shndx = elf_onesymtab (abfd);
6155 break;
6156 case MAP_DYNSYMTAB:
6157 shndx = elf_dynsymtab (abfd);
6158 break;
6159 case MAP_STRTAB:
6160 shndx = elf_tdata (abfd)->strtab_section;
6161 break;
6162 case MAP_SHSTRTAB:
6163 shndx = elf_tdata (abfd)->shstrtab_section;
6164 break;
6165 case MAP_SYM_SHNDX:
6166 shndx = elf_tdata (abfd)->symtab_shndx_section;
6167 break;
6168 default:
6169 break;
6170 }
6171 }
6172 else
6173 {
6174 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6175
6176 if (shndx == -1)
6177 {
6178 asection *sec2;
6179
6180 /* Writing this would be a hell of a lot easier if
6181 we had some decent documentation on bfd, and
6182 knew what to expect of the library, and what to
6183 demand of applications. For example, it
6184 appears that `objcopy' might not set the
6185 section of a symbol to be a section that is
6186 actually in the output file. */
6187 sec2 = bfd_get_section_by_name (abfd, sec->name);
6188 if (sec2 == NULL)
6189 {
6190 _bfd_error_handler (_("\
6191 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6192 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6193 sec->name);
6194 bfd_set_error (bfd_error_invalid_operation);
6195 _bfd_stringtab_free (stt);
6196 return FALSE;
6197 }
6198
6199 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6200 BFD_ASSERT (shndx != -1);
6201 }
6202 }
6203
6204 sym.st_shndx = shndx;
6205 }
6206
6207 if ((flags & BSF_THREAD_LOCAL) != 0)
6208 type = STT_TLS;
6209 else if ((flags & BSF_FUNCTION) != 0)
6210 type = STT_FUNC;
6211 else if ((flags & BSF_OBJECT) != 0)
6212 type = STT_OBJECT;
6213 else if ((flags & BSF_RELC) != 0)
6214 type = STT_RELC;
6215 else if ((flags & BSF_SRELC) != 0)
6216 type = STT_SRELC;
6217 else
6218 type = STT_NOTYPE;
6219
6220 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6221 type = STT_TLS;
6222
6223 /* Processor-specific types. */
6224 if (type_ptr != NULL
6225 && bed->elf_backend_get_symbol_type)
6226 type = ((*bed->elf_backend_get_symbol_type)
6227 (&type_ptr->internal_elf_sym, type));
6228
6229 if (flags & BSF_SECTION_SYM)
6230 {
6231 if (flags & BSF_GLOBAL)
6232 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6233 else
6234 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6235 }
6236 else if (bfd_is_com_section (syms[idx]->section))
6237 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6238 else if (bfd_is_und_section (syms[idx]->section))
6239 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6240 ? STB_WEAK
6241 : STB_GLOBAL),
6242 type);
6243 else if (flags & BSF_FILE)
6244 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6245 else
6246 {
6247 int bind = STB_LOCAL;
6248
6249 if (flags & BSF_LOCAL)
6250 bind = STB_LOCAL;
6251 else if (flags & BSF_WEAK)
6252 bind = STB_WEAK;
6253 else if (flags & BSF_GLOBAL)
6254 bind = STB_GLOBAL;
6255
6256 sym.st_info = ELF_ST_INFO (bind, type);
6257 }
6258
6259 if (type_ptr != NULL)
6260 sym.st_other = type_ptr->internal_elf_sym.st_other;
6261 else
6262 sym.st_other = 0;
6263
6264 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6265 outbound_syms += bed->s->sizeof_sym;
6266 if (outbound_shndx != NULL)
6267 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6268 }
6269
6270 *sttp = stt;
6271 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6272 symstrtab_hdr->sh_type = SHT_STRTAB;
6273
6274 symstrtab_hdr->sh_flags = 0;
6275 symstrtab_hdr->sh_addr = 0;
6276 symstrtab_hdr->sh_entsize = 0;
6277 symstrtab_hdr->sh_link = 0;
6278 symstrtab_hdr->sh_info = 0;
6279 symstrtab_hdr->sh_addralign = 1;
6280
6281 return TRUE;
6282 }
6283
6284 /* Return the number of bytes required to hold the symtab vector.
6285
6286 Note that we base it on the count plus 1, since we will null terminate
6287 the vector allocated based on this size. However, the ELF symbol table
6288 always has a dummy entry as symbol #0, so it ends up even. */
6289
6290 long
6291 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6292 {
6293 long symcount;
6294 long symtab_size;
6295 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6296
6297 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6298 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6299 if (symcount > 0)
6300 symtab_size -= sizeof (asymbol *);
6301
6302 return symtab_size;
6303 }
6304
6305 long
6306 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6307 {
6308 long symcount;
6309 long symtab_size;
6310 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6311
6312 if (elf_dynsymtab (abfd) == 0)
6313 {
6314 bfd_set_error (bfd_error_invalid_operation);
6315 return -1;
6316 }
6317
6318 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6319 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6320 if (symcount > 0)
6321 symtab_size -= sizeof (asymbol *);
6322
6323 return symtab_size;
6324 }
6325
6326 long
6327 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6328 sec_ptr asect)
6329 {
6330 return (asect->reloc_count + 1) * sizeof (arelent *);
6331 }
6332
6333 /* Canonicalize the relocs. */
6334
6335 long
6336 _bfd_elf_canonicalize_reloc (bfd *abfd,
6337 sec_ptr section,
6338 arelent **relptr,
6339 asymbol **symbols)
6340 {
6341 arelent *tblptr;
6342 unsigned int i;
6343 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6344
6345 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6346 return -1;
6347
6348 tblptr = section->relocation;
6349 for (i = 0; i < section->reloc_count; i++)
6350 *relptr++ = tblptr++;
6351
6352 *relptr = NULL;
6353
6354 return section->reloc_count;
6355 }
6356
6357 long
6358 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6359 {
6360 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6361 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6362
6363 if (symcount >= 0)
6364 bfd_get_symcount (abfd) = symcount;
6365 return symcount;
6366 }
6367
6368 long
6369 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6370 asymbol **allocation)
6371 {
6372 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6373 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6374
6375 if (symcount >= 0)
6376 bfd_get_dynamic_symcount (abfd) = symcount;
6377 return symcount;
6378 }
6379
6380 /* Return the size required for the dynamic reloc entries. Any loadable
6381 section that was actually installed in the BFD, and has type SHT_REL
6382 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6383 dynamic reloc section. */
6384
6385 long
6386 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6387 {
6388 long ret;
6389 asection *s;
6390
6391 if (elf_dynsymtab (abfd) == 0)
6392 {
6393 bfd_set_error (bfd_error_invalid_operation);
6394 return -1;
6395 }
6396
6397 ret = sizeof (arelent *);
6398 for (s = abfd->sections; s != NULL; s = s->next)
6399 if ((s->flags & SEC_LOAD) != 0
6400 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6401 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6402 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6403 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6404 * sizeof (arelent *));
6405
6406 return ret;
6407 }
6408
6409 /* Canonicalize the dynamic relocation entries. Note that we return the
6410 dynamic relocations as a single block, although they are actually
6411 associated with particular sections; the interface, which was
6412 designed for SunOS style shared libraries, expects that there is only
6413 one set of dynamic relocs. Any loadable section that was actually
6414 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6415 dynamic symbol table, is considered to be a dynamic reloc section. */
6416
6417 long
6418 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6419 arelent **storage,
6420 asymbol **syms)
6421 {
6422 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6423 asection *s;
6424 long ret;
6425
6426 if (elf_dynsymtab (abfd) == 0)
6427 {
6428 bfd_set_error (bfd_error_invalid_operation);
6429 return -1;
6430 }
6431
6432 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6433 ret = 0;
6434 for (s = abfd->sections; s != NULL; s = s->next)
6435 {
6436 if ((s->flags & SEC_LOAD) != 0
6437 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6438 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6439 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6440 {
6441 arelent *p;
6442 long count, i;
6443
6444 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6445 return -1;
6446 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6447 p = s->relocation;
6448 for (i = 0; i < count; i++)
6449 *storage++ = p++;
6450 ret += count;
6451 }
6452 }
6453
6454 *storage = NULL;
6455
6456 return ret;
6457 }
6458 \f
6459 /* Read in the version information. */
6460
6461 bfd_boolean
6462 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6463 {
6464 bfd_byte *contents = NULL;
6465 unsigned int freeidx = 0;
6466
6467 if (elf_dynverref (abfd) != 0)
6468 {
6469 Elf_Internal_Shdr *hdr;
6470 Elf_External_Verneed *everneed;
6471 Elf_Internal_Verneed *iverneed;
6472 unsigned int i;
6473 bfd_byte *contents_end;
6474
6475 hdr = &elf_tdata (abfd)->dynverref_hdr;
6476
6477 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6478 sizeof (Elf_Internal_Verneed));
6479 if (elf_tdata (abfd)->verref == NULL)
6480 goto error_return;
6481
6482 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6483
6484 contents = bfd_malloc (hdr->sh_size);
6485 if (contents == NULL)
6486 {
6487 error_return_verref:
6488 elf_tdata (abfd)->verref = NULL;
6489 elf_tdata (abfd)->cverrefs = 0;
6490 goto error_return;
6491 }
6492 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6493 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6494 goto error_return_verref;
6495
6496 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6497 goto error_return_verref;
6498
6499 BFD_ASSERT (sizeof (Elf_External_Verneed)
6500 == sizeof (Elf_External_Vernaux));
6501 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6502 everneed = (Elf_External_Verneed *) contents;
6503 iverneed = elf_tdata (abfd)->verref;
6504 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6505 {
6506 Elf_External_Vernaux *evernaux;
6507 Elf_Internal_Vernaux *ivernaux;
6508 unsigned int j;
6509
6510 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6511
6512 iverneed->vn_bfd = abfd;
6513
6514 iverneed->vn_filename =
6515 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6516 iverneed->vn_file);
6517 if (iverneed->vn_filename == NULL)
6518 goto error_return_verref;
6519
6520 if (iverneed->vn_cnt == 0)
6521 iverneed->vn_auxptr = NULL;
6522 else
6523 {
6524 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6525 sizeof (Elf_Internal_Vernaux));
6526 if (iverneed->vn_auxptr == NULL)
6527 goto error_return_verref;
6528 }
6529
6530 if (iverneed->vn_aux
6531 > (size_t) (contents_end - (bfd_byte *) everneed))
6532 goto error_return_verref;
6533
6534 evernaux = ((Elf_External_Vernaux *)
6535 ((bfd_byte *) everneed + iverneed->vn_aux));
6536 ivernaux = iverneed->vn_auxptr;
6537 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6538 {
6539 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6540
6541 ivernaux->vna_nodename =
6542 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6543 ivernaux->vna_name);
6544 if (ivernaux->vna_nodename == NULL)
6545 goto error_return_verref;
6546
6547 if (j + 1 < iverneed->vn_cnt)
6548 ivernaux->vna_nextptr = ivernaux + 1;
6549 else
6550 ivernaux->vna_nextptr = NULL;
6551
6552 if (ivernaux->vna_next
6553 > (size_t) (contents_end - (bfd_byte *) evernaux))
6554 goto error_return_verref;
6555
6556 evernaux = ((Elf_External_Vernaux *)
6557 ((bfd_byte *) evernaux + ivernaux->vna_next));
6558
6559 if (ivernaux->vna_other > freeidx)
6560 freeidx = ivernaux->vna_other;
6561 }
6562
6563 if (i + 1 < hdr->sh_info)
6564 iverneed->vn_nextref = iverneed + 1;
6565 else
6566 iverneed->vn_nextref = NULL;
6567
6568 if (iverneed->vn_next
6569 > (size_t) (contents_end - (bfd_byte *) everneed))
6570 goto error_return_verref;
6571
6572 everneed = ((Elf_External_Verneed *)
6573 ((bfd_byte *) everneed + iverneed->vn_next));
6574 }
6575
6576 free (contents);
6577 contents = NULL;
6578 }
6579
6580 if (elf_dynverdef (abfd) != 0)
6581 {
6582 Elf_Internal_Shdr *hdr;
6583 Elf_External_Verdef *everdef;
6584 Elf_Internal_Verdef *iverdef;
6585 Elf_Internal_Verdef *iverdefarr;
6586 Elf_Internal_Verdef iverdefmem;
6587 unsigned int i;
6588 unsigned int maxidx;
6589 bfd_byte *contents_end_def, *contents_end_aux;
6590
6591 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6592
6593 contents = bfd_malloc (hdr->sh_size);
6594 if (contents == NULL)
6595 goto error_return;
6596 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6597 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6598 goto error_return;
6599
6600 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6601 goto error_return;
6602
6603 BFD_ASSERT (sizeof (Elf_External_Verdef)
6604 >= sizeof (Elf_External_Verdaux));
6605 contents_end_def = contents + hdr->sh_size
6606 - sizeof (Elf_External_Verdef);
6607 contents_end_aux = contents + hdr->sh_size
6608 - sizeof (Elf_External_Verdaux);
6609
6610 /* We know the number of entries in the section but not the maximum
6611 index. Therefore we have to run through all entries and find
6612 the maximum. */
6613 everdef = (Elf_External_Verdef *) contents;
6614 maxidx = 0;
6615 for (i = 0; i < hdr->sh_info; ++i)
6616 {
6617 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6618
6619 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6620 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6621
6622 if (iverdefmem.vd_next
6623 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6624 goto error_return;
6625
6626 everdef = ((Elf_External_Verdef *)
6627 ((bfd_byte *) everdef + iverdefmem.vd_next));
6628 }
6629
6630 if (default_imported_symver)
6631 {
6632 if (freeidx > maxidx)
6633 maxidx = ++freeidx;
6634 else
6635 freeidx = ++maxidx;
6636 }
6637 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6638 sizeof (Elf_Internal_Verdef));
6639 if (elf_tdata (abfd)->verdef == NULL)
6640 goto error_return;
6641
6642 elf_tdata (abfd)->cverdefs = maxidx;
6643
6644 everdef = (Elf_External_Verdef *) contents;
6645 iverdefarr = elf_tdata (abfd)->verdef;
6646 for (i = 0; i < hdr->sh_info; i++)
6647 {
6648 Elf_External_Verdaux *everdaux;
6649 Elf_Internal_Verdaux *iverdaux;
6650 unsigned int j;
6651
6652 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6653
6654 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6655 {
6656 error_return_verdef:
6657 elf_tdata (abfd)->verdef = NULL;
6658 elf_tdata (abfd)->cverdefs = 0;
6659 goto error_return;
6660 }
6661
6662 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6663 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6664
6665 iverdef->vd_bfd = abfd;
6666
6667 if (iverdef->vd_cnt == 0)
6668 iverdef->vd_auxptr = NULL;
6669 else
6670 {
6671 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6672 sizeof (Elf_Internal_Verdaux));
6673 if (iverdef->vd_auxptr == NULL)
6674 goto error_return_verdef;
6675 }
6676
6677 if (iverdef->vd_aux
6678 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6679 goto error_return_verdef;
6680
6681 everdaux = ((Elf_External_Verdaux *)
6682 ((bfd_byte *) everdef + iverdef->vd_aux));
6683 iverdaux = iverdef->vd_auxptr;
6684 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6685 {
6686 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6687
6688 iverdaux->vda_nodename =
6689 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6690 iverdaux->vda_name);
6691 if (iverdaux->vda_nodename == NULL)
6692 goto error_return_verdef;
6693
6694 if (j + 1 < iverdef->vd_cnt)
6695 iverdaux->vda_nextptr = iverdaux + 1;
6696 else
6697 iverdaux->vda_nextptr = NULL;
6698
6699 if (iverdaux->vda_next
6700 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6701 goto error_return_verdef;
6702
6703 everdaux = ((Elf_External_Verdaux *)
6704 ((bfd_byte *) everdaux + iverdaux->vda_next));
6705 }
6706
6707 if (iverdef->vd_cnt)
6708 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6709
6710 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6711 iverdef->vd_nextdef = iverdef + 1;
6712 else
6713 iverdef->vd_nextdef = NULL;
6714
6715 everdef = ((Elf_External_Verdef *)
6716 ((bfd_byte *) everdef + iverdef->vd_next));
6717 }
6718
6719 free (contents);
6720 contents = NULL;
6721 }
6722 else if (default_imported_symver)
6723 {
6724 if (freeidx < 3)
6725 freeidx = 3;
6726 else
6727 freeidx++;
6728
6729 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6730 sizeof (Elf_Internal_Verdef));
6731 if (elf_tdata (abfd)->verdef == NULL)
6732 goto error_return;
6733
6734 elf_tdata (abfd)->cverdefs = freeidx;
6735 }
6736
6737 /* Create a default version based on the soname. */
6738 if (default_imported_symver)
6739 {
6740 Elf_Internal_Verdef *iverdef;
6741 Elf_Internal_Verdaux *iverdaux;
6742
6743 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6744
6745 iverdef->vd_version = VER_DEF_CURRENT;
6746 iverdef->vd_flags = 0;
6747 iverdef->vd_ndx = freeidx;
6748 iverdef->vd_cnt = 1;
6749
6750 iverdef->vd_bfd = abfd;
6751
6752 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6753 if (iverdef->vd_nodename == NULL)
6754 goto error_return_verdef;
6755 iverdef->vd_nextdef = NULL;
6756 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6757 if (iverdef->vd_auxptr == NULL)
6758 goto error_return_verdef;
6759
6760 iverdaux = iverdef->vd_auxptr;
6761 iverdaux->vda_nodename = iverdef->vd_nodename;
6762 iverdaux->vda_nextptr = NULL;
6763 }
6764
6765 return TRUE;
6766
6767 error_return:
6768 if (contents != NULL)
6769 free (contents);
6770 return FALSE;
6771 }
6772 \f
6773 asymbol *
6774 _bfd_elf_make_empty_symbol (bfd *abfd)
6775 {
6776 elf_symbol_type *newsym;
6777 bfd_size_type amt = sizeof (elf_symbol_type);
6778
6779 newsym = bfd_zalloc (abfd, amt);
6780 if (!newsym)
6781 return NULL;
6782 else
6783 {
6784 newsym->symbol.the_bfd = abfd;
6785 return &newsym->symbol;
6786 }
6787 }
6788
6789 void
6790 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6791 asymbol *symbol,
6792 symbol_info *ret)
6793 {
6794 bfd_symbol_info (symbol, ret);
6795 }
6796
6797 /* Return whether a symbol name implies a local symbol. Most targets
6798 use this function for the is_local_label_name entry point, but some
6799 override it. */
6800
6801 bfd_boolean
6802 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6803 const char *name)
6804 {
6805 /* Normal local symbols start with ``.L''. */
6806 if (name[0] == '.' && name[1] == 'L')
6807 return TRUE;
6808
6809 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6810 DWARF debugging symbols starting with ``..''. */
6811 if (name[0] == '.' && name[1] == '.')
6812 return TRUE;
6813
6814 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6815 emitting DWARF debugging output. I suspect this is actually a
6816 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6817 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6818 underscore to be emitted on some ELF targets). For ease of use,
6819 we treat such symbols as local. */
6820 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6821 return TRUE;
6822
6823 return FALSE;
6824 }
6825
6826 alent *
6827 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6828 asymbol *symbol ATTRIBUTE_UNUSED)
6829 {
6830 abort ();
6831 return NULL;
6832 }
6833
6834 bfd_boolean
6835 _bfd_elf_set_arch_mach (bfd *abfd,
6836 enum bfd_architecture arch,
6837 unsigned long machine)
6838 {
6839 /* If this isn't the right architecture for this backend, and this
6840 isn't the generic backend, fail. */
6841 if (arch != get_elf_backend_data (abfd)->arch
6842 && arch != bfd_arch_unknown
6843 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6844 return FALSE;
6845
6846 return bfd_default_set_arch_mach (abfd, arch, machine);
6847 }
6848
6849 /* Find the function to a particular section and offset,
6850 for error reporting. */
6851
6852 static bfd_boolean
6853 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6854 asection *section,
6855 asymbol **symbols,
6856 bfd_vma offset,
6857 const char **filename_ptr,
6858 const char **functionname_ptr)
6859 {
6860 const char *filename;
6861 asymbol *func, *file;
6862 bfd_vma low_func;
6863 asymbol **p;
6864 /* ??? Given multiple file symbols, it is impossible to reliably
6865 choose the right file name for global symbols. File symbols are
6866 local symbols, and thus all file symbols must sort before any
6867 global symbols. The ELF spec may be interpreted to say that a
6868 file symbol must sort before other local symbols, but currently
6869 ld -r doesn't do this. So, for ld -r output, it is possible to
6870 make a better choice of file name for local symbols by ignoring
6871 file symbols appearing after a given local symbol. */
6872 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6873
6874 filename = NULL;
6875 func = NULL;
6876 file = NULL;
6877 low_func = 0;
6878 state = nothing_seen;
6879
6880 for (p = symbols; *p != NULL; p++)
6881 {
6882 elf_symbol_type *q;
6883
6884 q = (elf_symbol_type *) *p;
6885
6886 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6887 {
6888 default:
6889 break;
6890 case STT_FILE:
6891 file = &q->symbol;
6892 if (state == symbol_seen)
6893 state = file_after_symbol_seen;
6894 continue;
6895 case STT_NOTYPE:
6896 case STT_FUNC:
6897 if (bfd_get_section (&q->symbol) == section
6898 && q->symbol.value >= low_func
6899 && q->symbol.value <= offset)
6900 {
6901 func = (asymbol *) q;
6902 low_func = q->symbol.value;
6903 filename = NULL;
6904 if (file != NULL
6905 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6906 || state != file_after_symbol_seen))
6907 filename = bfd_asymbol_name (file);
6908 }
6909 break;
6910 }
6911 if (state == nothing_seen)
6912 state = symbol_seen;
6913 }
6914
6915 if (func == NULL)
6916 return FALSE;
6917
6918 if (filename_ptr)
6919 *filename_ptr = filename;
6920 if (functionname_ptr)
6921 *functionname_ptr = bfd_asymbol_name (func);
6922
6923 return TRUE;
6924 }
6925
6926 /* Find the nearest line to a particular section and offset,
6927 for error reporting. */
6928
6929 bfd_boolean
6930 _bfd_elf_find_nearest_line (bfd *abfd,
6931 asection *section,
6932 asymbol **symbols,
6933 bfd_vma offset,
6934 const char **filename_ptr,
6935 const char **functionname_ptr,
6936 unsigned int *line_ptr)
6937 {
6938 bfd_boolean found;
6939
6940 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6941 filename_ptr, functionname_ptr,
6942 line_ptr))
6943 {
6944 if (!*functionname_ptr)
6945 elf_find_function (abfd, section, symbols, offset,
6946 *filename_ptr ? NULL : filename_ptr,
6947 functionname_ptr);
6948
6949 return TRUE;
6950 }
6951
6952 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6953 filename_ptr, functionname_ptr,
6954 line_ptr, 0,
6955 &elf_tdata (abfd)->dwarf2_find_line_info))
6956 {
6957 if (!*functionname_ptr)
6958 elf_find_function (abfd, section, symbols, offset,
6959 *filename_ptr ? NULL : filename_ptr,
6960 functionname_ptr);
6961
6962 return TRUE;
6963 }
6964
6965 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6966 &found, filename_ptr,
6967 functionname_ptr, line_ptr,
6968 &elf_tdata (abfd)->line_info))
6969 return FALSE;
6970 if (found && (*functionname_ptr || *line_ptr))
6971 return TRUE;
6972
6973 if (symbols == NULL)
6974 return FALSE;
6975
6976 if (! elf_find_function (abfd, section, symbols, offset,
6977 filename_ptr, functionname_ptr))
6978 return FALSE;
6979
6980 *line_ptr = 0;
6981 return TRUE;
6982 }
6983
6984 /* Find the line for a symbol. */
6985
6986 bfd_boolean
6987 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
6988 const char **filename_ptr, unsigned int *line_ptr)
6989 {
6990 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
6991 filename_ptr, line_ptr, 0,
6992 &elf_tdata (abfd)->dwarf2_find_line_info);
6993 }
6994
6995 /* After a call to bfd_find_nearest_line, successive calls to
6996 bfd_find_inliner_info can be used to get source information about
6997 each level of function inlining that terminated at the address
6998 passed to bfd_find_nearest_line. Currently this is only supported
6999 for DWARF2 with appropriate DWARF3 extensions. */
7000
7001 bfd_boolean
7002 _bfd_elf_find_inliner_info (bfd *abfd,
7003 const char **filename_ptr,
7004 const char **functionname_ptr,
7005 unsigned int *line_ptr)
7006 {
7007 bfd_boolean found;
7008 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7009 functionname_ptr, line_ptr,
7010 & elf_tdata (abfd)->dwarf2_find_line_info);
7011 return found;
7012 }
7013
7014 int
7015 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7016 {
7017 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7018 int ret = bed->s->sizeof_ehdr;
7019
7020 if (!info->relocatable)
7021 {
7022 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7023
7024 if (phdr_size == (bfd_size_type) -1)
7025 {
7026 struct elf_segment_map *m;
7027
7028 phdr_size = 0;
7029 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7030 phdr_size += bed->s->sizeof_phdr;
7031
7032 if (phdr_size == 0)
7033 phdr_size = get_program_header_size (abfd, info);
7034 }
7035
7036 elf_tdata (abfd)->program_header_size = phdr_size;
7037 ret += phdr_size;
7038 }
7039
7040 return ret;
7041 }
7042
7043 bfd_boolean
7044 _bfd_elf_set_section_contents (bfd *abfd,
7045 sec_ptr section,
7046 const void *location,
7047 file_ptr offset,
7048 bfd_size_type count)
7049 {
7050 Elf_Internal_Shdr *hdr;
7051 bfd_signed_vma pos;
7052
7053 if (! abfd->output_has_begun
7054 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7055 return FALSE;
7056
7057 hdr = &elf_section_data (section)->this_hdr;
7058 pos = hdr->sh_offset + offset;
7059 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7060 || bfd_bwrite (location, count, abfd) != count)
7061 return FALSE;
7062
7063 return TRUE;
7064 }
7065
7066 void
7067 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7068 arelent *cache_ptr ATTRIBUTE_UNUSED,
7069 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7070 {
7071 abort ();
7072 }
7073
7074 /* Try to convert a non-ELF reloc into an ELF one. */
7075
7076 bfd_boolean
7077 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7078 {
7079 /* Check whether we really have an ELF howto. */
7080
7081 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7082 {
7083 bfd_reloc_code_real_type code;
7084 reloc_howto_type *howto;
7085
7086 /* Alien reloc: Try to determine its type to replace it with an
7087 equivalent ELF reloc. */
7088
7089 if (areloc->howto->pc_relative)
7090 {
7091 switch (areloc->howto->bitsize)
7092 {
7093 case 8:
7094 code = BFD_RELOC_8_PCREL;
7095 break;
7096 case 12:
7097 code = BFD_RELOC_12_PCREL;
7098 break;
7099 case 16:
7100 code = BFD_RELOC_16_PCREL;
7101 break;
7102 case 24:
7103 code = BFD_RELOC_24_PCREL;
7104 break;
7105 case 32:
7106 code = BFD_RELOC_32_PCREL;
7107 break;
7108 case 64:
7109 code = BFD_RELOC_64_PCREL;
7110 break;
7111 default:
7112 goto fail;
7113 }
7114
7115 howto = bfd_reloc_type_lookup (abfd, code);
7116
7117 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7118 {
7119 if (howto->pcrel_offset)
7120 areloc->addend += areloc->address;
7121 else
7122 areloc->addend -= areloc->address; /* addend is unsigned!! */
7123 }
7124 }
7125 else
7126 {
7127 switch (areloc->howto->bitsize)
7128 {
7129 case 8:
7130 code = BFD_RELOC_8;
7131 break;
7132 case 14:
7133 code = BFD_RELOC_14;
7134 break;
7135 case 16:
7136 code = BFD_RELOC_16;
7137 break;
7138 case 26:
7139 code = BFD_RELOC_26;
7140 break;
7141 case 32:
7142 code = BFD_RELOC_32;
7143 break;
7144 case 64:
7145 code = BFD_RELOC_64;
7146 break;
7147 default:
7148 goto fail;
7149 }
7150
7151 howto = bfd_reloc_type_lookup (abfd, code);
7152 }
7153
7154 if (howto)
7155 areloc->howto = howto;
7156 else
7157 goto fail;
7158 }
7159
7160 return TRUE;
7161
7162 fail:
7163 (*_bfd_error_handler)
7164 (_("%B: unsupported relocation type %s"),
7165 abfd, areloc->howto->name);
7166 bfd_set_error (bfd_error_bad_value);
7167 return FALSE;
7168 }
7169
7170 bfd_boolean
7171 _bfd_elf_close_and_cleanup (bfd *abfd)
7172 {
7173 if (bfd_get_format (abfd) == bfd_object)
7174 {
7175 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7176 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7177 _bfd_dwarf2_cleanup_debug_info (abfd);
7178 }
7179
7180 return _bfd_generic_close_and_cleanup (abfd);
7181 }
7182
7183 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7184 in the relocation's offset. Thus we cannot allow any sort of sanity
7185 range-checking to interfere. There is nothing else to do in processing
7186 this reloc. */
7187
7188 bfd_reloc_status_type
7189 _bfd_elf_rel_vtable_reloc_fn
7190 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7191 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7192 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7193 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7194 {
7195 return bfd_reloc_ok;
7196 }
7197 \f
7198 /* Elf core file support. Much of this only works on native
7199 toolchains, since we rely on knowing the
7200 machine-dependent procfs structure in order to pick
7201 out details about the corefile. */
7202
7203 #ifdef HAVE_SYS_PROCFS_H
7204 # include <sys/procfs.h>
7205 #endif
7206
7207 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7208
7209 static int
7210 elfcore_make_pid (bfd *abfd)
7211 {
7212 return ((elf_tdata (abfd)->core_lwpid << 16)
7213 + (elf_tdata (abfd)->core_pid));
7214 }
7215
7216 /* If there isn't a section called NAME, make one, using
7217 data from SECT. Note, this function will generate a
7218 reference to NAME, so you shouldn't deallocate or
7219 overwrite it. */
7220
7221 static bfd_boolean
7222 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7223 {
7224 asection *sect2;
7225
7226 if (bfd_get_section_by_name (abfd, name) != NULL)
7227 return TRUE;
7228
7229 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7230 if (sect2 == NULL)
7231 return FALSE;
7232
7233 sect2->size = sect->size;
7234 sect2->filepos = sect->filepos;
7235 sect2->alignment_power = sect->alignment_power;
7236 return TRUE;
7237 }
7238
7239 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7240 actually creates up to two pseudosections:
7241 - For the single-threaded case, a section named NAME, unless
7242 such a section already exists.
7243 - For the multi-threaded case, a section named "NAME/PID", where
7244 PID is elfcore_make_pid (abfd).
7245 Both pseudosections have identical contents. */
7246 bfd_boolean
7247 _bfd_elfcore_make_pseudosection (bfd *abfd,
7248 char *name,
7249 size_t size,
7250 ufile_ptr filepos)
7251 {
7252 char buf[100];
7253 char *threaded_name;
7254 size_t len;
7255 asection *sect;
7256
7257 /* Build the section name. */
7258
7259 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7260 len = strlen (buf) + 1;
7261 threaded_name = bfd_alloc (abfd, len);
7262 if (threaded_name == NULL)
7263 return FALSE;
7264 memcpy (threaded_name, buf, len);
7265
7266 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7267 SEC_HAS_CONTENTS);
7268 if (sect == NULL)
7269 return FALSE;
7270 sect->size = size;
7271 sect->filepos = filepos;
7272 sect->alignment_power = 2;
7273
7274 return elfcore_maybe_make_sect (abfd, name, sect);
7275 }
7276
7277 /* prstatus_t exists on:
7278 solaris 2.5+
7279 linux 2.[01] + glibc
7280 unixware 4.2
7281 */
7282
7283 #if defined (HAVE_PRSTATUS_T)
7284
7285 static bfd_boolean
7286 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7287 {
7288 size_t size;
7289 int offset;
7290
7291 if (note->descsz == sizeof (prstatus_t))
7292 {
7293 prstatus_t prstat;
7294
7295 size = sizeof (prstat.pr_reg);
7296 offset = offsetof (prstatus_t, pr_reg);
7297 memcpy (&prstat, note->descdata, sizeof (prstat));
7298
7299 /* Do not overwrite the core signal if it
7300 has already been set by another thread. */
7301 if (elf_tdata (abfd)->core_signal == 0)
7302 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7303 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7304
7305 /* pr_who exists on:
7306 solaris 2.5+
7307 unixware 4.2
7308 pr_who doesn't exist on:
7309 linux 2.[01]
7310 */
7311 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7312 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7313 #endif
7314 }
7315 #if defined (HAVE_PRSTATUS32_T)
7316 else if (note->descsz == sizeof (prstatus32_t))
7317 {
7318 /* 64-bit host, 32-bit corefile */
7319 prstatus32_t prstat;
7320
7321 size = sizeof (prstat.pr_reg);
7322 offset = offsetof (prstatus32_t, pr_reg);
7323 memcpy (&prstat, note->descdata, sizeof (prstat));
7324
7325 /* Do not overwrite the core signal if it
7326 has already been set by another thread. */
7327 if (elf_tdata (abfd)->core_signal == 0)
7328 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7329 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7330
7331 /* pr_who exists on:
7332 solaris 2.5+
7333 unixware 4.2
7334 pr_who doesn't exist on:
7335 linux 2.[01]
7336 */
7337 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7338 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7339 #endif
7340 }
7341 #endif /* HAVE_PRSTATUS32_T */
7342 else
7343 {
7344 /* Fail - we don't know how to handle any other
7345 note size (ie. data object type). */
7346 return TRUE;
7347 }
7348
7349 /* Make a ".reg/999" section and a ".reg" section. */
7350 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7351 size, note->descpos + offset);
7352 }
7353 #endif /* defined (HAVE_PRSTATUS_T) */
7354
7355 /* Create a pseudosection containing the exact contents of NOTE. */
7356 static bfd_boolean
7357 elfcore_make_note_pseudosection (bfd *abfd,
7358 char *name,
7359 Elf_Internal_Note *note)
7360 {
7361 return _bfd_elfcore_make_pseudosection (abfd, name,
7362 note->descsz, note->descpos);
7363 }
7364
7365 /* There isn't a consistent prfpregset_t across platforms,
7366 but it doesn't matter, because we don't have to pick this
7367 data structure apart. */
7368
7369 static bfd_boolean
7370 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7371 {
7372 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7373 }
7374
7375 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7376 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7377 literally. */
7378
7379 static bfd_boolean
7380 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7381 {
7382 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7383 }
7384
7385 #if defined (HAVE_PRPSINFO_T)
7386 typedef prpsinfo_t elfcore_psinfo_t;
7387 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7388 typedef prpsinfo32_t elfcore_psinfo32_t;
7389 #endif
7390 #endif
7391
7392 #if defined (HAVE_PSINFO_T)
7393 typedef psinfo_t elfcore_psinfo_t;
7394 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7395 typedef psinfo32_t elfcore_psinfo32_t;
7396 #endif
7397 #endif
7398
7399 /* return a malloc'ed copy of a string at START which is at
7400 most MAX bytes long, possibly without a terminating '\0'.
7401 the copy will always have a terminating '\0'. */
7402
7403 char *
7404 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7405 {
7406 char *dups;
7407 char *end = memchr (start, '\0', max);
7408 size_t len;
7409
7410 if (end == NULL)
7411 len = max;
7412 else
7413 len = end - start;
7414
7415 dups = bfd_alloc (abfd, len + 1);
7416 if (dups == NULL)
7417 return NULL;
7418
7419 memcpy (dups, start, len);
7420 dups[len] = '\0';
7421
7422 return dups;
7423 }
7424
7425 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7426 static bfd_boolean
7427 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7428 {
7429 if (note->descsz == sizeof (elfcore_psinfo_t))
7430 {
7431 elfcore_psinfo_t psinfo;
7432
7433 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7434
7435 elf_tdata (abfd)->core_program
7436 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7437 sizeof (psinfo.pr_fname));
7438
7439 elf_tdata (abfd)->core_command
7440 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7441 sizeof (psinfo.pr_psargs));
7442 }
7443 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7444 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7445 {
7446 /* 64-bit host, 32-bit corefile */
7447 elfcore_psinfo32_t psinfo;
7448
7449 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7450
7451 elf_tdata (abfd)->core_program
7452 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7453 sizeof (psinfo.pr_fname));
7454
7455 elf_tdata (abfd)->core_command
7456 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7457 sizeof (psinfo.pr_psargs));
7458 }
7459 #endif
7460
7461 else
7462 {
7463 /* Fail - we don't know how to handle any other
7464 note size (ie. data object type). */
7465 return TRUE;
7466 }
7467
7468 /* Note that for some reason, a spurious space is tacked
7469 onto the end of the args in some (at least one anyway)
7470 implementations, so strip it off if it exists. */
7471
7472 {
7473 char *command = elf_tdata (abfd)->core_command;
7474 int n = strlen (command);
7475
7476 if (0 < n && command[n - 1] == ' ')
7477 command[n - 1] = '\0';
7478 }
7479
7480 return TRUE;
7481 }
7482 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7483
7484 #if defined (HAVE_PSTATUS_T)
7485 static bfd_boolean
7486 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7487 {
7488 if (note->descsz == sizeof (pstatus_t)
7489 #if defined (HAVE_PXSTATUS_T)
7490 || note->descsz == sizeof (pxstatus_t)
7491 #endif
7492 )
7493 {
7494 pstatus_t pstat;
7495
7496 memcpy (&pstat, note->descdata, sizeof (pstat));
7497
7498 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7499 }
7500 #if defined (HAVE_PSTATUS32_T)
7501 else if (note->descsz == sizeof (pstatus32_t))
7502 {
7503 /* 64-bit host, 32-bit corefile */
7504 pstatus32_t pstat;
7505
7506 memcpy (&pstat, note->descdata, sizeof (pstat));
7507
7508 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7509 }
7510 #endif
7511 /* Could grab some more details from the "representative"
7512 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7513 NT_LWPSTATUS note, presumably. */
7514
7515 return TRUE;
7516 }
7517 #endif /* defined (HAVE_PSTATUS_T) */
7518
7519 #if defined (HAVE_LWPSTATUS_T)
7520 static bfd_boolean
7521 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7522 {
7523 lwpstatus_t lwpstat;
7524 char buf[100];
7525 char *name;
7526 size_t len;
7527 asection *sect;
7528
7529 if (note->descsz != sizeof (lwpstat)
7530 #if defined (HAVE_LWPXSTATUS_T)
7531 && note->descsz != sizeof (lwpxstatus_t)
7532 #endif
7533 )
7534 return TRUE;
7535
7536 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7537
7538 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7539 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7540
7541 /* Make a ".reg/999" section. */
7542
7543 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7544 len = strlen (buf) + 1;
7545 name = bfd_alloc (abfd, len);
7546 if (name == NULL)
7547 return FALSE;
7548 memcpy (name, buf, len);
7549
7550 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7551 if (sect == NULL)
7552 return FALSE;
7553
7554 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7555 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7556 sect->filepos = note->descpos
7557 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7558 #endif
7559
7560 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7561 sect->size = sizeof (lwpstat.pr_reg);
7562 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7563 #endif
7564
7565 sect->alignment_power = 2;
7566
7567 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7568 return FALSE;
7569
7570 /* Make a ".reg2/999" section */
7571
7572 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7573 len = strlen (buf) + 1;
7574 name = bfd_alloc (abfd, len);
7575 if (name == NULL)
7576 return FALSE;
7577 memcpy (name, buf, len);
7578
7579 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7580 if (sect == NULL)
7581 return FALSE;
7582
7583 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7584 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7585 sect->filepos = note->descpos
7586 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7587 #endif
7588
7589 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7590 sect->size = sizeof (lwpstat.pr_fpreg);
7591 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7592 #endif
7593
7594 sect->alignment_power = 2;
7595
7596 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7597 }
7598 #endif /* defined (HAVE_LWPSTATUS_T) */
7599
7600 static bfd_boolean
7601 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7602 {
7603 char buf[30];
7604 char *name;
7605 size_t len;
7606 asection *sect;
7607 int type;
7608 int is_active_thread;
7609 bfd_vma base_addr;
7610
7611 if (note->descsz < 728)
7612 return TRUE;
7613
7614 if (! CONST_STRNEQ (note->namedata, "win32"))
7615 return TRUE;
7616
7617 type = bfd_get_32 (abfd, note->descdata);
7618
7619 switch (type)
7620 {
7621 case 1 /* NOTE_INFO_PROCESS */:
7622 /* FIXME: need to add ->core_command. */
7623 /* process_info.pid */
7624 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7625 /* process_info.signal */
7626 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7627 break;
7628
7629 case 2 /* NOTE_INFO_THREAD */:
7630 /* Make a ".reg/999" section. */
7631 /* thread_info.tid */
7632 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7633
7634 len = strlen (buf) + 1;
7635 name = bfd_alloc (abfd, len);
7636 if (name == NULL)
7637 return FALSE;
7638
7639 memcpy (name, buf, len);
7640
7641 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7642 if (sect == NULL)
7643 return FALSE;
7644
7645 /* sizeof (thread_info.thread_context) */
7646 sect->size = 716;
7647 /* offsetof (thread_info.thread_context) */
7648 sect->filepos = note->descpos + 12;
7649 sect->alignment_power = 2;
7650
7651 /* thread_info.is_active_thread */
7652 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7653
7654 if (is_active_thread)
7655 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7656 return FALSE;
7657 break;
7658
7659 case 3 /* NOTE_INFO_MODULE */:
7660 /* Make a ".module/xxxxxxxx" section. */
7661 /* module_info.base_address */
7662 base_addr = bfd_get_32 (abfd, note->descdata + 4);
7663 sprintf (buf, ".module/%08lx", (long) base_addr);
7664
7665 len = strlen (buf) + 1;
7666 name = bfd_alloc (abfd, len);
7667 if (name == NULL)
7668 return FALSE;
7669
7670 memcpy (name, buf, len);
7671
7672 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7673
7674 if (sect == NULL)
7675 return FALSE;
7676
7677 sect->size = note->descsz;
7678 sect->filepos = note->descpos;
7679 sect->alignment_power = 2;
7680 break;
7681
7682 default:
7683 return TRUE;
7684 }
7685
7686 return TRUE;
7687 }
7688
7689 static bfd_boolean
7690 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7691 {
7692 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7693
7694 switch (note->type)
7695 {
7696 default:
7697 return TRUE;
7698
7699 case NT_PRSTATUS:
7700 if (bed->elf_backend_grok_prstatus)
7701 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7702 return TRUE;
7703 #if defined (HAVE_PRSTATUS_T)
7704 return elfcore_grok_prstatus (abfd, note);
7705 #else
7706 return TRUE;
7707 #endif
7708
7709 #if defined (HAVE_PSTATUS_T)
7710 case NT_PSTATUS:
7711 return elfcore_grok_pstatus (abfd, note);
7712 #endif
7713
7714 #if defined (HAVE_LWPSTATUS_T)
7715 case NT_LWPSTATUS:
7716 return elfcore_grok_lwpstatus (abfd, note);
7717 #endif
7718
7719 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7720 return elfcore_grok_prfpreg (abfd, note);
7721
7722 case NT_WIN32PSTATUS:
7723 return elfcore_grok_win32pstatus (abfd, note);
7724
7725 case NT_PRXFPREG: /* Linux SSE extension */
7726 if (note->namesz == 6
7727 && strcmp (note->namedata, "LINUX") == 0)
7728 return elfcore_grok_prxfpreg (abfd, note);
7729 else
7730 return TRUE;
7731
7732 case NT_PRPSINFO:
7733 case NT_PSINFO:
7734 if (bed->elf_backend_grok_psinfo)
7735 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7736 return TRUE;
7737 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7738 return elfcore_grok_psinfo (abfd, note);
7739 #else
7740 return TRUE;
7741 #endif
7742
7743 case NT_AUXV:
7744 {
7745 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7746 SEC_HAS_CONTENTS);
7747
7748 if (sect == NULL)
7749 return FALSE;
7750 sect->size = note->descsz;
7751 sect->filepos = note->descpos;
7752 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7753
7754 return TRUE;
7755 }
7756 }
7757 }
7758
7759 static bfd_boolean
7760 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
7761 {
7762 elf_tdata (abfd)->build_id_size = note->descsz;
7763 elf_tdata (abfd)->build_id = bfd_alloc (abfd, note->descsz);
7764 if (elf_tdata (abfd)->build_id == NULL)
7765 return FALSE;
7766
7767 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
7768
7769 return TRUE;
7770 }
7771
7772 static bfd_boolean
7773 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
7774 {
7775 switch (note->type)
7776 {
7777 default:
7778 return TRUE;
7779
7780 case NT_GNU_BUILD_ID:
7781 return elfobj_grok_gnu_build_id (abfd, note);
7782 }
7783 }
7784
7785 static bfd_boolean
7786 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7787 {
7788 char *cp;
7789
7790 cp = strchr (note->namedata, '@');
7791 if (cp != NULL)
7792 {
7793 *lwpidp = atoi(cp + 1);
7794 return TRUE;
7795 }
7796 return FALSE;
7797 }
7798
7799 static bfd_boolean
7800 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7801 {
7802 /* Signal number at offset 0x08. */
7803 elf_tdata (abfd)->core_signal
7804 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7805
7806 /* Process ID at offset 0x50. */
7807 elf_tdata (abfd)->core_pid
7808 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7809
7810 /* Command name at 0x7c (max 32 bytes, including nul). */
7811 elf_tdata (abfd)->core_command
7812 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7813
7814 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7815 note);
7816 }
7817
7818 static bfd_boolean
7819 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7820 {
7821 int lwp;
7822
7823 if (elfcore_netbsd_get_lwpid (note, &lwp))
7824 elf_tdata (abfd)->core_lwpid = lwp;
7825
7826 if (note->type == NT_NETBSDCORE_PROCINFO)
7827 {
7828 /* NetBSD-specific core "procinfo". Note that we expect to
7829 find this note before any of the others, which is fine,
7830 since the kernel writes this note out first when it
7831 creates a core file. */
7832
7833 return elfcore_grok_netbsd_procinfo (abfd, note);
7834 }
7835
7836 /* As of Jan 2002 there are no other machine-independent notes
7837 defined for NetBSD core files. If the note type is less
7838 than the start of the machine-dependent note types, we don't
7839 understand it. */
7840
7841 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7842 return TRUE;
7843
7844
7845 switch (bfd_get_arch (abfd))
7846 {
7847 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7848 PT_GETFPREGS == mach+2. */
7849
7850 case bfd_arch_alpha:
7851 case bfd_arch_sparc:
7852 switch (note->type)
7853 {
7854 case NT_NETBSDCORE_FIRSTMACH+0:
7855 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7856
7857 case NT_NETBSDCORE_FIRSTMACH+2:
7858 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7859
7860 default:
7861 return TRUE;
7862 }
7863
7864 /* On all other arch's, PT_GETREGS == mach+1 and
7865 PT_GETFPREGS == mach+3. */
7866
7867 default:
7868 switch (note->type)
7869 {
7870 case NT_NETBSDCORE_FIRSTMACH+1:
7871 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7872
7873 case NT_NETBSDCORE_FIRSTMACH+3:
7874 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7875
7876 default:
7877 return TRUE;
7878 }
7879 }
7880 /* NOTREACHED */
7881 }
7882
7883 static bfd_boolean
7884 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
7885 {
7886 void *ddata = note->descdata;
7887 char buf[100];
7888 char *name;
7889 asection *sect;
7890 short sig;
7891 unsigned flags;
7892
7893 /* nto_procfs_status 'pid' field is at offset 0. */
7894 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7895
7896 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7897 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7898
7899 /* nto_procfs_status 'flags' field is at offset 8. */
7900 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7901
7902 /* nto_procfs_status 'what' field is at offset 14. */
7903 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7904 {
7905 elf_tdata (abfd)->core_signal = sig;
7906 elf_tdata (abfd)->core_lwpid = *tid;
7907 }
7908
7909 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7910 do not come from signals so we make sure we set the current
7911 thread just in case. */
7912 if (flags & 0x00000080)
7913 elf_tdata (abfd)->core_lwpid = *tid;
7914
7915 /* Make a ".qnx_core_status/%d" section. */
7916 sprintf (buf, ".qnx_core_status/%ld", *tid);
7917
7918 name = bfd_alloc (abfd, strlen (buf) + 1);
7919 if (name == NULL)
7920 return FALSE;
7921 strcpy (name, buf);
7922
7923 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7924 if (sect == NULL)
7925 return FALSE;
7926
7927 sect->size = note->descsz;
7928 sect->filepos = note->descpos;
7929 sect->alignment_power = 2;
7930
7931 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7932 }
7933
7934 static bfd_boolean
7935 elfcore_grok_nto_regs (bfd *abfd,
7936 Elf_Internal_Note *note,
7937 long tid,
7938 char *base)
7939 {
7940 char buf[100];
7941 char *name;
7942 asection *sect;
7943
7944 /* Make a "(base)/%d" section. */
7945 sprintf (buf, "%s/%ld", base, tid);
7946
7947 name = bfd_alloc (abfd, strlen (buf) + 1);
7948 if (name == NULL)
7949 return FALSE;
7950 strcpy (name, buf);
7951
7952 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7953 if (sect == NULL)
7954 return FALSE;
7955
7956 sect->size = note->descsz;
7957 sect->filepos = note->descpos;
7958 sect->alignment_power = 2;
7959
7960 /* This is the current thread. */
7961 if (elf_tdata (abfd)->core_lwpid == tid)
7962 return elfcore_maybe_make_sect (abfd, base, sect);
7963
7964 return TRUE;
7965 }
7966
7967 #define BFD_QNT_CORE_INFO 7
7968 #define BFD_QNT_CORE_STATUS 8
7969 #define BFD_QNT_CORE_GREG 9
7970 #define BFD_QNT_CORE_FPREG 10
7971
7972 static bfd_boolean
7973 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7974 {
7975 /* Every GREG section has a STATUS section before it. Store the
7976 tid from the previous call to pass down to the next gregs
7977 function. */
7978 static long tid = 1;
7979
7980 switch (note->type)
7981 {
7982 case BFD_QNT_CORE_INFO:
7983 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7984 case BFD_QNT_CORE_STATUS:
7985 return elfcore_grok_nto_status (abfd, note, &tid);
7986 case BFD_QNT_CORE_GREG:
7987 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7988 case BFD_QNT_CORE_FPREG:
7989 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7990 default:
7991 return TRUE;
7992 }
7993 }
7994
7995 static bfd_boolean
7996 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
7997 {
7998 char *name;
7999 asection *sect;
8000 size_t len;
8001
8002 /* Use note name as section name. */
8003 len = note->namesz;
8004 name = bfd_alloc (abfd, len);
8005 if (name == NULL)
8006 return FALSE;
8007 memcpy (name, note->namedata, len);
8008 name[len - 1] = '\0';
8009
8010 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8011 if (sect == NULL)
8012 return FALSE;
8013
8014 sect->size = note->descsz;
8015 sect->filepos = note->descpos;
8016 sect->alignment_power = 1;
8017
8018 return TRUE;
8019 }
8020
8021 /* Function: elfcore_write_note
8022
8023 Inputs:
8024 buffer to hold note, and current size of buffer
8025 name of note
8026 type of note
8027 data for note
8028 size of data for note
8029
8030 Writes note to end of buffer. ELF64 notes are written exactly as
8031 for ELF32, despite the current (as of 2006) ELF gabi specifying
8032 that they ought to have 8-byte namesz and descsz field, and have
8033 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8034
8035 Return:
8036 Pointer to realloc'd buffer, *BUFSIZ updated. */
8037
8038 char *
8039 elfcore_write_note (bfd *abfd,
8040 char *buf,
8041 int *bufsiz,
8042 const char *name,
8043 int type,
8044 const void *input,
8045 int size)
8046 {
8047 Elf_External_Note *xnp;
8048 size_t namesz;
8049 size_t newspace;
8050 char *dest;
8051
8052 namesz = 0;
8053 if (name != NULL)
8054 namesz = strlen (name) + 1;
8055
8056 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8057
8058 buf = realloc (buf, *bufsiz + newspace);
8059 dest = buf + *bufsiz;
8060 *bufsiz += newspace;
8061 xnp = (Elf_External_Note *) dest;
8062 H_PUT_32 (abfd, namesz, xnp->namesz);
8063 H_PUT_32 (abfd, size, xnp->descsz);
8064 H_PUT_32 (abfd, type, xnp->type);
8065 dest = xnp->name;
8066 if (name != NULL)
8067 {
8068 memcpy (dest, name, namesz);
8069 dest += namesz;
8070 while (namesz & 3)
8071 {
8072 *dest++ = '\0';
8073 ++namesz;
8074 }
8075 }
8076 memcpy (dest, input, size);
8077 dest += size;
8078 while (size & 3)
8079 {
8080 *dest++ = '\0';
8081 ++size;
8082 }
8083 return buf;
8084 }
8085
8086 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8087 char *
8088 elfcore_write_prpsinfo (bfd *abfd,
8089 char *buf,
8090 int *bufsiz,
8091 const char *fname,
8092 const char *psargs)
8093 {
8094 const char *note_name = "CORE";
8095 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8096
8097 if (bed->elf_backend_write_core_note != NULL)
8098 {
8099 char *ret;
8100 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8101 NT_PRPSINFO, fname, psargs);
8102 if (ret != NULL)
8103 return ret;
8104 }
8105
8106 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8107 if (bed->s->elfclass == ELFCLASS32)
8108 {
8109 #if defined (HAVE_PSINFO32_T)
8110 psinfo32_t data;
8111 int note_type = NT_PSINFO;
8112 #else
8113 prpsinfo32_t data;
8114 int note_type = NT_PRPSINFO;
8115 #endif
8116
8117 memset (&data, 0, sizeof (data));
8118 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8119 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8120 return elfcore_write_note (abfd, buf, bufsiz,
8121 note_name, note_type, &data, sizeof (data));
8122 }
8123 else
8124 #endif
8125 {
8126 #if defined (HAVE_PSINFO_T)
8127 psinfo_t data;
8128 int note_type = NT_PSINFO;
8129 #else
8130 prpsinfo_t data;
8131 int note_type = NT_PRPSINFO;
8132 #endif
8133
8134 memset (&data, 0, sizeof (data));
8135 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8136 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8137 return elfcore_write_note (abfd, buf, bufsiz,
8138 note_name, note_type, &data, sizeof (data));
8139 }
8140 }
8141 #endif /* PSINFO_T or PRPSINFO_T */
8142
8143 #if defined (HAVE_PRSTATUS_T)
8144 char *
8145 elfcore_write_prstatus (bfd *abfd,
8146 char *buf,
8147 int *bufsiz,
8148 long pid,
8149 int cursig,
8150 const void *gregs)
8151 {
8152 const char *note_name = "CORE";
8153 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8154
8155 if (bed->elf_backend_write_core_note != NULL)
8156 {
8157 char *ret;
8158 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8159 NT_PRSTATUS,
8160 pid, cursig, gregs);
8161 if (ret != NULL)
8162 return ret;
8163 }
8164
8165 #if defined (HAVE_PRSTATUS32_T)
8166 if (bed->s->elfclass == ELFCLASS32)
8167 {
8168 prstatus32_t prstat;
8169
8170 memset (&prstat, 0, sizeof (prstat));
8171 prstat.pr_pid = pid;
8172 prstat.pr_cursig = cursig;
8173 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8174 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8175 NT_PRSTATUS, &prstat, sizeof (prstat));
8176 }
8177 else
8178 #endif
8179 {
8180 prstatus_t prstat;
8181
8182 memset (&prstat, 0, sizeof (prstat));
8183 prstat.pr_pid = pid;
8184 prstat.pr_cursig = cursig;
8185 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8186 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8187 NT_PRSTATUS, &prstat, sizeof (prstat));
8188 }
8189 }
8190 #endif /* HAVE_PRSTATUS_T */
8191
8192 #if defined (HAVE_LWPSTATUS_T)
8193 char *
8194 elfcore_write_lwpstatus (bfd *abfd,
8195 char *buf,
8196 int *bufsiz,
8197 long pid,
8198 int cursig,
8199 const void *gregs)
8200 {
8201 lwpstatus_t lwpstat;
8202 const char *note_name = "CORE";
8203
8204 memset (&lwpstat, 0, sizeof (lwpstat));
8205 lwpstat.pr_lwpid = pid >> 16;
8206 lwpstat.pr_cursig = cursig;
8207 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8208 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8209 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8210 #if !defined(gregs)
8211 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8212 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8213 #else
8214 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8215 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8216 #endif
8217 #endif
8218 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8219 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8220 }
8221 #endif /* HAVE_LWPSTATUS_T */
8222
8223 #if defined (HAVE_PSTATUS_T)
8224 char *
8225 elfcore_write_pstatus (bfd *abfd,
8226 char *buf,
8227 int *bufsiz,
8228 long pid,
8229 int cursig ATTRIBUTE_UNUSED,
8230 const void *gregs ATTRIBUTE_UNUSED)
8231 {
8232 const char *note_name = "CORE";
8233 #if defined (HAVE_PSTATUS32_T)
8234 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8235
8236 if (bed->s->elfclass == ELFCLASS32)
8237 {
8238 pstatus32_t pstat;
8239
8240 memset (&pstat, 0, sizeof (pstat));
8241 pstat.pr_pid = pid & 0xffff;
8242 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8243 NT_PSTATUS, &pstat, sizeof (pstat));
8244 return buf;
8245 }
8246 else
8247 #endif
8248 {
8249 pstatus_t pstat;
8250
8251 memset (&pstat, 0, sizeof (pstat));
8252 pstat.pr_pid = pid & 0xffff;
8253 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8254 NT_PSTATUS, &pstat, sizeof (pstat));
8255 return buf;
8256 }
8257 }
8258 #endif /* HAVE_PSTATUS_T */
8259
8260 char *
8261 elfcore_write_prfpreg (bfd *abfd,
8262 char *buf,
8263 int *bufsiz,
8264 const void *fpregs,
8265 int size)
8266 {
8267 const char *note_name = "CORE";
8268 return elfcore_write_note (abfd, buf, bufsiz,
8269 note_name, NT_FPREGSET, fpregs, size);
8270 }
8271
8272 char *
8273 elfcore_write_prxfpreg (bfd *abfd,
8274 char *buf,
8275 int *bufsiz,
8276 const void *xfpregs,
8277 int size)
8278 {
8279 char *note_name = "LINUX";
8280 return elfcore_write_note (abfd, buf, bufsiz,
8281 note_name, NT_PRXFPREG, xfpregs, size);
8282 }
8283
8284 static bfd_boolean
8285 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8286 {
8287 char *p;
8288
8289 p = buf;
8290 while (p < buf + size)
8291 {
8292 /* FIXME: bad alignment assumption. */
8293 Elf_External_Note *xnp = (Elf_External_Note *) p;
8294 Elf_Internal_Note in;
8295
8296 in.type = H_GET_32 (abfd, xnp->type);
8297
8298 in.namesz = H_GET_32 (abfd, xnp->namesz);
8299 in.namedata = xnp->name;
8300
8301 in.descsz = H_GET_32 (abfd, xnp->descsz);
8302 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8303 in.descpos = offset + (in.descdata - buf);
8304
8305 switch (bfd_get_format (abfd))
8306 {
8307 default:
8308 return TRUE;
8309
8310 case bfd_core:
8311 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8312 {
8313 if (! elfcore_grok_netbsd_note (abfd, &in))
8314 return FALSE;
8315 }
8316 else if (CONST_STRNEQ (in.namedata, "QNX"))
8317 {
8318 if (! elfcore_grok_nto_note (abfd, &in))
8319 return FALSE;
8320 }
8321 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8322 {
8323 if (! elfcore_grok_spu_note (abfd, &in))
8324 return FALSE;
8325 }
8326 else
8327 {
8328 if (! elfcore_grok_note (abfd, &in))
8329 return FALSE;
8330 }
8331 break;
8332
8333 case bfd_object:
8334 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8335 {
8336 if (! elfobj_grok_gnu_note (abfd, &in))
8337 return FALSE;
8338 }
8339 break;
8340 }
8341
8342 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8343 }
8344
8345 return TRUE;
8346 }
8347
8348 static bfd_boolean
8349 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8350 {
8351 char *buf;
8352
8353 if (size <= 0)
8354 return TRUE;
8355
8356 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8357 return FALSE;
8358
8359 buf = bfd_malloc (size);
8360 if (buf == NULL)
8361 return FALSE;
8362
8363 if (bfd_bread (buf, size, abfd) != size
8364 || !elf_parse_notes (abfd, buf, size, offset))
8365 {
8366 free (buf);
8367 return FALSE;
8368 }
8369
8370 free (buf);
8371 return TRUE;
8372 }
8373 \f
8374 /* Providing external access to the ELF program header table. */
8375
8376 /* Return an upper bound on the number of bytes required to store a
8377 copy of ABFD's program header table entries. Return -1 if an error
8378 occurs; bfd_get_error will return an appropriate code. */
8379
8380 long
8381 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8382 {
8383 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8384 {
8385 bfd_set_error (bfd_error_wrong_format);
8386 return -1;
8387 }
8388
8389 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8390 }
8391
8392 /* Copy ABFD's program header table entries to *PHDRS. The entries
8393 will be stored as an array of Elf_Internal_Phdr structures, as
8394 defined in include/elf/internal.h. To find out how large the
8395 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8396
8397 Return the number of program header table entries read, or -1 if an
8398 error occurs; bfd_get_error will return an appropriate code. */
8399
8400 int
8401 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8402 {
8403 int num_phdrs;
8404
8405 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8406 {
8407 bfd_set_error (bfd_error_wrong_format);
8408 return -1;
8409 }
8410
8411 num_phdrs = elf_elfheader (abfd)->e_phnum;
8412 memcpy (phdrs, elf_tdata (abfd)->phdr,
8413 num_phdrs * sizeof (Elf_Internal_Phdr));
8414
8415 return num_phdrs;
8416 }
8417
8418 enum elf_reloc_type_class
8419 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8420 {
8421 return reloc_class_normal;
8422 }
8423
8424 /* For RELA architectures, return the relocation value for a
8425 relocation against a local symbol. */
8426
8427 bfd_vma
8428 _bfd_elf_rela_local_sym (bfd *abfd,
8429 Elf_Internal_Sym *sym,
8430 asection **psec,
8431 Elf_Internal_Rela *rel)
8432 {
8433 asection *sec = *psec;
8434 bfd_vma relocation;
8435
8436 relocation = (sec->output_section->vma
8437 + sec->output_offset
8438 + sym->st_value);
8439 if ((sec->flags & SEC_MERGE)
8440 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8441 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8442 {
8443 rel->r_addend =
8444 _bfd_merged_section_offset (abfd, psec,
8445 elf_section_data (sec)->sec_info,
8446 sym->st_value + rel->r_addend);
8447 if (sec != *psec)
8448 {
8449 /* If we have changed the section, and our original section is
8450 marked with SEC_EXCLUDE, it means that the original
8451 SEC_MERGE section has been completely subsumed in some
8452 other SEC_MERGE section. In this case, we need to leave
8453 some info around for --emit-relocs. */
8454 if ((sec->flags & SEC_EXCLUDE) != 0)
8455 sec->kept_section = *psec;
8456 sec = *psec;
8457 }
8458 rel->r_addend -= relocation;
8459 rel->r_addend += sec->output_section->vma + sec->output_offset;
8460 }
8461 return relocation;
8462 }
8463
8464 bfd_vma
8465 _bfd_elf_rel_local_sym (bfd *abfd,
8466 Elf_Internal_Sym *sym,
8467 asection **psec,
8468 bfd_vma addend)
8469 {
8470 asection *sec = *psec;
8471
8472 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8473 return sym->st_value + addend;
8474
8475 return _bfd_merged_section_offset (abfd, psec,
8476 elf_section_data (sec)->sec_info,
8477 sym->st_value + addend);
8478 }
8479
8480 bfd_vma
8481 _bfd_elf_section_offset (bfd *abfd,
8482 struct bfd_link_info *info,
8483 asection *sec,
8484 bfd_vma offset)
8485 {
8486 switch (sec->sec_info_type)
8487 {
8488 case ELF_INFO_TYPE_STABS:
8489 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8490 offset);
8491 case ELF_INFO_TYPE_EH_FRAME:
8492 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8493 default:
8494 return offset;
8495 }
8496 }
8497 \f
8498 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8499 reconstruct an ELF file by reading the segments out of remote memory
8500 based on the ELF file header at EHDR_VMA and the ELF program headers it
8501 points to. If not null, *LOADBASEP is filled in with the difference
8502 between the VMAs from which the segments were read, and the VMAs the
8503 file headers (and hence BFD's idea of each section's VMA) put them at.
8504
8505 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8506 remote memory at target address VMA into the local buffer at MYADDR; it
8507 should return zero on success or an `errno' code on failure. TEMPL must
8508 be a BFD for an ELF target with the word size and byte order found in
8509 the remote memory. */
8510
8511 bfd *
8512 bfd_elf_bfd_from_remote_memory
8513 (bfd *templ,
8514 bfd_vma ehdr_vma,
8515 bfd_vma *loadbasep,
8516 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8517 {
8518 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8519 (templ, ehdr_vma, loadbasep, target_read_memory);
8520 }
8521 \f
8522 long
8523 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8524 long symcount ATTRIBUTE_UNUSED,
8525 asymbol **syms ATTRIBUTE_UNUSED,
8526 long dynsymcount,
8527 asymbol **dynsyms,
8528 asymbol **ret)
8529 {
8530 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8531 asection *relplt;
8532 asymbol *s;
8533 const char *relplt_name;
8534 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8535 arelent *p;
8536 long count, i, n;
8537 size_t size;
8538 Elf_Internal_Shdr *hdr;
8539 char *names;
8540 asection *plt;
8541
8542 *ret = NULL;
8543
8544 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8545 return 0;
8546
8547 if (dynsymcount <= 0)
8548 return 0;
8549
8550 if (!bed->plt_sym_val)
8551 return 0;
8552
8553 relplt_name = bed->relplt_name;
8554 if (relplt_name == NULL)
8555 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8556 relplt = bfd_get_section_by_name (abfd, relplt_name);
8557 if (relplt == NULL)
8558 return 0;
8559
8560 hdr = &elf_section_data (relplt)->this_hdr;
8561 if (hdr->sh_link != elf_dynsymtab (abfd)
8562 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8563 return 0;
8564
8565 plt = bfd_get_section_by_name (abfd, ".plt");
8566 if (plt == NULL)
8567 return 0;
8568
8569 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8570 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8571 return -1;
8572
8573 count = relplt->size / hdr->sh_entsize;
8574 size = count * sizeof (asymbol);
8575 p = relplt->relocation;
8576 for (i = 0; i < count; i++, p++)
8577 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8578
8579 s = *ret = bfd_malloc (size);
8580 if (s == NULL)
8581 return -1;
8582
8583 names = (char *) (s + count);
8584 p = relplt->relocation;
8585 n = 0;
8586 for (i = 0; i < count; i++, s++, p++)
8587 {
8588 size_t len;
8589 bfd_vma addr;
8590
8591 addr = bed->plt_sym_val (i, plt, p);
8592 if (addr == (bfd_vma) -1)
8593 continue;
8594
8595 *s = **p->sym_ptr_ptr;
8596 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8597 we are defining a symbol, ensure one of them is set. */
8598 if ((s->flags & BSF_LOCAL) == 0)
8599 s->flags |= BSF_GLOBAL;
8600 s->section = plt;
8601 s->value = addr - plt->vma;
8602 s->name = names;
8603 len = strlen ((*p->sym_ptr_ptr)->name);
8604 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8605 names += len;
8606 memcpy (names, "@plt", sizeof ("@plt"));
8607 names += sizeof ("@plt");
8608 ++n;
8609 }
8610
8611 return n;
8612 }
8613
8614 /* It is only used by x86-64 so far. */
8615 asection _bfd_elf_large_com_section
8616 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8617 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8618
8619 void
8620 _bfd_elf_set_osabi (bfd * abfd,
8621 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8622 {
8623 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8624
8625 i_ehdrp = elf_elfheader (abfd);
8626
8627 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8628 }
8629
8630
8631 /* Return TRUE for ELF symbol types that represent functions.
8632 This is the default version of this function, which is sufficient for
8633 most targets. It returns true if TYPE is STT_FUNC. */
8634
8635 bfd_boolean
8636 _bfd_elf_is_function_type (unsigned int type)
8637 {
8638 return (type == STT_FUNC);
8639 }
This page took 0.268108 seconds and 4 git commands to generate.