bfd/
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static char *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 char *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 char *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return 0;
263
264 shstrtab = (char *) i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 (*_bfd_error_handler)
295 (_("%s: invalid string offset %u >= %lu for section `%s'"),
296 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
297 ((shindex == elf_elfheader(abfd)->e_shstrndx
298 && strindex == hdr->sh_name)
299 ? ".shstrtab"
300 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
409 {
410 unsigned int iname = isym->st_name;
411 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
412 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 }
420
421 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
423 pointers. */
424
425 typedef union elf_internal_group {
426 Elf_Internal_Shdr *shdr;
427 unsigned int flags;
428 } Elf_Internal_Group;
429
430 /* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
432
433 static const char *
434 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
435 {
436 Elf_Internal_Shdr *hdr;
437 unsigned char esym[sizeof (Elf64_External_Sym)];
438 Elf_External_Sym_Shndx eshndx;
439 Elf_Internal_Sym isym;
440
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
443 return NULL;
444
445 /* Go read the symbol. */
446 hdr = &elf_tdata (abfd)->symtab_hdr;
447 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
448 &isym, esym, &eshndx) == NULL)
449 return NULL;
450
451 return bfd_elf_local_sym_name (abfd, &isym);
452 }
453
454 /* Set next_in_group list pointer, and group name for NEWSECT. */
455
456 static bfd_boolean
457 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
458 {
459 unsigned int num_group = elf_tdata (abfd)->num_group;
460
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
463 if (num_group == 0)
464 {
465 unsigned int i, shnum;
466
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum = elf_numsections (abfd);
470 num_group = 0;
471 for (i = 0; i < shnum; i++)
472 {
473 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
474 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
475 num_group += 1;
476 }
477
478 if (num_group == 0)
479 num_group = (unsigned) -1;
480 elf_tdata (abfd)->num_group = num_group;
481
482 if (num_group > 0)
483 {
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
487 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
488 if (elf_tdata (abfd)->group_sect_ptr == NULL)
489 return FALSE;
490
491 num_group = 0;
492 for (i = 0; i < shnum; i++)
493 {
494 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
495 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
496 {
497 unsigned char *src;
498 Elf_Internal_Group *dest;
499
500 /* Add to list of sections. */
501 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
502 num_group += 1;
503
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest) >= 4);
506 amt = shdr->sh_size * sizeof (*dest) / 4;
507 shdr->contents = bfd_alloc (abfd, amt);
508 if (shdr->contents == NULL
509 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
510 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
511 != shdr->sh_size))
512 return FALSE;
513
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
517 pointers. */
518 src = shdr->contents + shdr->sh_size;
519 dest = (Elf_Internal_Group *) (shdr->contents + amt);
520 while (1)
521 {
522 unsigned int idx;
523
524 src -= 4;
525 --dest;
526 idx = H_GET_32 (abfd, src);
527 if (src == shdr->contents)
528 {
529 dest->flags = idx;
530 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
531 shdr->bfd_section->flags
532 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
533 break;
534 }
535 if (idx >= shnum)
536 {
537 ((*_bfd_error_handler)
538 (_("%s: invalid SHT_GROUP entry"),
539 bfd_archive_filename (abfd)));
540 idx = 0;
541 }
542 dest->shdr = elf_elfsections (abfd)[idx];
543 }
544 }
545 }
546 }
547 }
548
549 if (num_group != (unsigned) -1)
550 {
551 unsigned int i;
552
553 for (i = 0; i < num_group; i++)
554 {
555 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
556 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
557 unsigned int n_elt = shdr->sh_size / 4;
558
559 /* Look through this group's sections to see if current
560 section is a member. */
561 while (--n_elt != 0)
562 if ((++idx)->shdr == hdr)
563 {
564 asection *s = NULL;
565
566 /* We are a member of this group. Go looking through
567 other members to see if any others are linked via
568 next_in_group. */
569 idx = (Elf_Internal_Group *) shdr->contents;
570 n_elt = shdr->sh_size / 4;
571 while (--n_elt != 0)
572 if ((s = (++idx)->shdr->bfd_section) != NULL
573 && elf_next_in_group (s) != NULL)
574 break;
575 if (n_elt != 0)
576 {
577 /* Snarf the group name from other member, and
578 insert current section in circular list. */
579 elf_group_name (newsect) = elf_group_name (s);
580 elf_next_in_group (newsect) = elf_next_in_group (s);
581 elf_next_in_group (s) = newsect;
582 }
583 else
584 {
585 const char *gname;
586
587 gname = group_signature (abfd, shdr);
588 if (gname == NULL)
589 return FALSE;
590 elf_group_name (newsect) = gname;
591
592 /* Start a circular list with one element. */
593 elf_next_in_group (newsect) = newsect;
594 }
595
596 /* If the group section has been created, point to the
597 new member. */
598 if (shdr->bfd_section != NULL)
599 elf_next_in_group (shdr->bfd_section) = newsect;
600
601 i = num_group - 1;
602 break;
603 }
604 }
605 }
606
607 if (elf_group_name (newsect) == NULL)
608 {
609 (*_bfd_error_handler) (_("%s: no group info for section %s"),
610 bfd_archive_filename (abfd), newsect->name);
611 }
612 return TRUE;
613 }
614
615 bfd_boolean
616 bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED, asection *group)
617 {
618 asection *first = elf_next_in_group (group);
619 asection *s = first;
620
621 while (s != NULL)
622 {
623 s->output_section = bfd_abs_section_ptr;
624 s = elf_next_in_group (s);
625 /* These lists are circular. */
626 if (s == first)
627 break;
628 }
629 return TRUE;
630 }
631
632 /* Make a BFD section from an ELF section. We store a pointer to the
633 BFD section in the bfd_section field of the header. */
634
635 bfd_boolean
636 _bfd_elf_make_section_from_shdr (bfd *abfd,
637 Elf_Internal_Shdr *hdr,
638 const char *name)
639 {
640 asection *newsect;
641 flagword flags;
642 const struct elf_backend_data *bed;
643
644 if (hdr->bfd_section != NULL)
645 {
646 BFD_ASSERT (strcmp (name,
647 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
648 return TRUE;
649 }
650
651 newsect = bfd_make_section_anyway (abfd, name);
652 if (newsect == NULL)
653 return FALSE;
654
655 /* Always use the real type/flags. */
656 elf_section_type (newsect) = hdr->sh_type;
657 elf_section_flags (newsect) = hdr->sh_flags;
658
659 newsect->filepos = hdr->sh_offset;
660
661 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
662 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
663 || ! bfd_set_section_alignment (abfd, newsect,
664 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
665 return FALSE;
666
667 flags = SEC_NO_FLAGS;
668 if (hdr->sh_type != SHT_NOBITS)
669 flags |= SEC_HAS_CONTENTS;
670 if (hdr->sh_type == SHT_GROUP)
671 flags |= SEC_GROUP | SEC_EXCLUDE;
672 if ((hdr->sh_flags & SHF_ALLOC) != 0)
673 {
674 flags |= SEC_ALLOC;
675 if (hdr->sh_type != SHT_NOBITS)
676 flags |= SEC_LOAD;
677 }
678 if ((hdr->sh_flags & SHF_WRITE) == 0)
679 flags |= SEC_READONLY;
680 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
681 flags |= SEC_CODE;
682 else if ((flags & SEC_LOAD) != 0)
683 flags |= SEC_DATA;
684 if ((hdr->sh_flags & SHF_MERGE) != 0)
685 {
686 flags |= SEC_MERGE;
687 newsect->entsize = hdr->sh_entsize;
688 if ((hdr->sh_flags & SHF_STRINGS) != 0)
689 flags |= SEC_STRINGS;
690 }
691 if (hdr->sh_flags & SHF_GROUP)
692 if (!setup_group (abfd, hdr, newsect))
693 return FALSE;
694 if ((hdr->sh_flags & SHF_TLS) != 0)
695 flags |= SEC_THREAD_LOCAL;
696
697 /* The debugging sections appear to be recognized only by name, not
698 any sort of flag. */
699 {
700 static const char *debug_sec_names [] =
701 {
702 ".debug",
703 ".gnu.linkonce.wi.",
704 ".line",
705 ".stab"
706 };
707 int i;
708
709 for (i = ARRAY_SIZE (debug_sec_names); i--;)
710 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
711 break;
712
713 if (i >= 0)
714 flags |= SEC_DEBUGGING;
715 }
716
717 /* As a GNU extension, if the name begins with .gnu.linkonce, we
718 only link a single copy of the section. This is used to support
719 g++. g++ will emit each template expansion in its own section.
720 The symbols will be defined as weak, so that multiple definitions
721 are permitted. The GNU linker extension is to actually discard
722 all but one of the sections. */
723 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
724 && elf_next_in_group (newsect) == NULL)
725 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
726
727 bed = get_elf_backend_data (abfd);
728 if (bed->elf_backend_section_flags)
729 if (! bed->elf_backend_section_flags (&flags, hdr))
730 return FALSE;
731
732 if (! bfd_set_section_flags (abfd, newsect, flags))
733 return FALSE;
734
735 if ((flags & SEC_ALLOC) != 0)
736 {
737 Elf_Internal_Phdr *phdr;
738 unsigned int i;
739
740 /* Look through the phdrs to see if we need to adjust the lma.
741 If all the p_paddr fields are zero, we ignore them, since
742 some ELF linkers produce such output. */
743 phdr = elf_tdata (abfd)->phdr;
744 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
745 {
746 if (phdr->p_paddr != 0)
747 break;
748 }
749 if (i < elf_elfheader (abfd)->e_phnum)
750 {
751 phdr = elf_tdata (abfd)->phdr;
752 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
753 {
754 /* This section is part of this segment if its file
755 offset plus size lies within the segment's memory
756 span and, if the section is loaded, the extent of the
757 loaded data lies within the extent of the segment.
758
759 Note - we used to check the p_paddr field as well, and
760 refuse to set the LMA if it was 0. This is wrong
761 though, as a perfectly valid initialised segment can
762 have a p_paddr of zero. Some architectures, eg ARM,
763 place special significance on the address 0 and
764 executables need to be able to have a segment which
765 covers this address. */
766 if (phdr->p_type == PT_LOAD
767 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
768 && (hdr->sh_offset + hdr->sh_size
769 <= phdr->p_offset + phdr->p_memsz)
770 && ((flags & SEC_LOAD) == 0
771 || (hdr->sh_offset + hdr->sh_size
772 <= phdr->p_offset + phdr->p_filesz)))
773 {
774 if ((flags & SEC_LOAD) == 0)
775 newsect->lma = (phdr->p_paddr
776 + hdr->sh_addr - phdr->p_vaddr);
777 else
778 /* We used to use the same adjustment for SEC_LOAD
779 sections, but that doesn't work if the segment
780 is packed with code from multiple VMAs.
781 Instead we calculate the section LMA based on
782 the segment LMA. It is assumed that the
783 segment will contain sections with contiguous
784 LMAs, even if the VMAs are not. */
785 newsect->lma = (phdr->p_paddr
786 + hdr->sh_offset - phdr->p_offset);
787
788 /* With contiguous segments, we can't tell from file
789 offsets whether a section with zero size should
790 be placed at the end of one segment or the
791 beginning of the next. Decide based on vaddr. */
792 if (hdr->sh_addr >= phdr->p_vaddr
793 && (hdr->sh_addr + hdr->sh_size
794 <= phdr->p_vaddr + phdr->p_memsz))
795 break;
796 }
797 }
798 }
799 }
800
801 hdr->bfd_section = newsect;
802 elf_section_data (newsect)->this_hdr = *hdr;
803
804 return TRUE;
805 }
806
807 /*
808 INTERNAL_FUNCTION
809 bfd_elf_find_section
810
811 SYNOPSIS
812 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
813
814 DESCRIPTION
815 Helper functions for GDB to locate the string tables.
816 Since BFD hides string tables from callers, GDB needs to use an
817 internal hook to find them. Sun's .stabstr, in particular,
818 isn't even pointed to by the .stab section, so ordinary
819 mechanisms wouldn't work to find it, even if we had some.
820 */
821
822 struct elf_internal_shdr *
823 bfd_elf_find_section (bfd *abfd, char *name)
824 {
825 Elf_Internal_Shdr **i_shdrp;
826 char *shstrtab;
827 unsigned int max;
828 unsigned int i;
829
830 i_shdrp = elf_elfsections (abfd);
831 if (i_shdrp != NULL)
832 {
833 shstrtab = bfd_elf_get_str_section (abfd,
834 elf_elfheader (abfd)->e_shstrndx);
835 if (shstrtab != NULL)
836 {
837 max = elf_numsections (abfd);
838 for (i = 1; i < max; i++)
839 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
840 return i_shdrp[i];
841 }
842 }
843 return 0;
844 }
845
846 const char *const bfd_elf_section_type_names[] = {
847 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
848 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
849 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
850 };
851
852 /* ELF relocs are against symbols. If we are producing relocatable
853 output, and the reloc is against an external symbol, and nothing
854 has given us any additional addend, the resulting reloc will also
855 be against the same symbol. In such a case, we don't want to
856 change anything about the way the reloc is handled, since it will
857 all be done at final link time. Rather than put special case code
858 into bfd_perform_relocation, all the reloc types use this howto
859 function. It just short circuits the reloc if producing
860 relocatable output against an external symbol. */
861
862 bfd_reloc_status_type
863 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
864 arelent *reloc_entry,
865 asymbol *symbol,
866 void *data ATTRIBUTE_UNUSED,
867 asection *input_section,
868 bfd *output_bfd,
869 char **error_message ATTRIBUTE_UNUSED)
870 {
871 if (output_bfd != NULL
872 && (symbol->flags & BSF_SECTION_SYM) == 0
873 && (! reloc_entry->howto->partial_inplace
874 || reloc_entry->addend == 0))
875 {
876 reloc_entry->address += input_section->output_offset;
877 return bfd_reloc_ok;
878 }
879
880 return bfd_reloc_continue;
881 }
882 \f
883 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
884
885 static void
886 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
887 asection *sec)
888 {
889 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
890 sec->sec_info_type = ELF_INFO_TYPE_NONE;
891 }
892
893 /* Finish SHF_MERGE section merging. */
894
895 bfd_boolean
896 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
897 {
898 if (!is_elf_hash_table (info->hash))
899 return FALSE;
900 if (elf_hash_table (info)->merge_info)
901 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
902 merge_sections_remove_hook);
903 return TRUE;
904 }
905
906 void
907 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
908 {
909 sec->output_section = bfd_abs_section_ptr;
910 sec->output_offset = sec->vma;
911 if (!is_elf_hash_table (info->hash))
912 return;
913
914 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
915 }
916 \f
917 /* Copy the program header and other data from one object module to
918 another. */
919
920 bfd_boolean
921 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
922 {
923 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
924 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
925 return TRUE;
926
927 BFD_ASSERT (!elf_flags_init (obfd)
928 || (elf_elfheader (obfd)->e_flags
929 == elf_elfheader (ibfd)->e_flags));
930
931 elf_gp (obfd) = elf_gp (ibfd);
932 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
933 elf_flags_init (obfd) = TRUE;
934 return TRUE;
935 }
936
937 /* Print out the program headers. */
938
939 bfd_boolean
940 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
941 {
942 FILE *f = farg;
943 Elf_Internal_Phdr *p;
944 asection *s;
945 bfd_byte *dynbuf = NULL;
946
947 p = elf_tdata (abfd)->phdr;
948 if (p != NULL)
949 {
950 unsigned int i, c;
951
952 fprintf (f, _("\nProgram Header:\n"));
953 c = elf_elfheader (abfd)->e_phnum;
954 for (i = 0; i < c; i++, p++)
955 {
956 const char *pt;
957 char buf[20];
958
959 switch (p->p_type)
960 {
961 case PT_NULL: pt = "NULL"; break;
962 case PT_LOAD: pt = "LOAD"; break;
963 case PT_DYNAMIC: pt = "DYNAMIC"; break;
964 case PT_INTERP: pt = "INTERP"; break;
965 case PT_NOTE: pt = "NOTE"; break;
966 case PT_SHLIB: pt = "SHLIB"; break;
967 case PT_PHDR: pt = "PHDR"; break;
968 case PT_TLS: pt = "TLS"; break;
969 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
970 case PT_GNU_STACK: pt = "STACK"; break;
971 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
972 }
973 fprintf (f, "%8s off 0x", pt);
974 bfd_fprintf_vma (abfd, f, p->p_offset);
975 fprintf (f, " vaddr 0x");
976 bfd_fprintf_vma (abfd, f, p->p_vaddr);
977 fprintf (f, " paddr 0x");
978 bfd_fprintf_vma (abfd, f, p->p_paddr);
979 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
980 fprintf (f, " filesz 0x");
981 bfd_fprintf_vma (abfd, f, p->p_filesz);
982 fprintf (f, " memsz 0x");
983 bfd_fprintf_vma (abfd, f, p->p_memsz);
984 fprintf (f, " flags %c%c%c",
985 (p->p_flags & PF_R) != 0 ? 'r' : '-',
986 (p->p_flags & PF_W) != 0 ? 'w' : '-',
987 (p->p_flags & PF_X) != 0 ? 'x' : '-');
988 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
989 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
990 fprintf (f, "\n");
991 }
992 }
993
994 s = bfd_get_section_by_name (abfd, ".dynamic");
995 if (s != NULL)
996 {
997 int elfsec;
998 unsigned long shlink;
999 bfd_byte *extdyn, *extdynend;
1000 size_t extdynsize;
1001 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1002
1003 fprintf (f, _("\nDynamic Section:\n"));
1004
1005 dynbuf = bfd_malloc (s->_raw_size);
1006 if (dynbuf == NULL)
1007 goto error_return;
1008 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1009 goto error_return;
1010
1011 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1012 if (elfsec == -1)
1013 goto error_return;
1014 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1015
1016 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1017 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1018
1019 extdyn = dynbuf;
1020 extdynend = extdyn + s->_raw_size;
1021 for (; extdyn < extdynend; extdyn += extdynsize)
1022 {
1023 Elf_Internal_Dyn dyn;
1024 const char *name;
1025 char ab[20];
1026 bfd_boolean stringp;
1027
1028 (*swap_dyn_in) (abfd, extdyn, &dyn);
1029
1030 if (dyn.d_tag == DT_NULL)
1031 break;
1032
1033 stringp = FALSE;
1034 switch (dyn.d_tag)
1035 {
1036 default:
1037 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1038 name = ab;
1039 break;
1040
1041 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1042 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1043 case DT_PLTGOT: name = "PLTGOT"; break;
1044 case DT_HASH: name = "HASH"; break;
1045 case DT_STRTAB: name = "STRTAB"; break;
1046 case DT_SYMTAB: name = "SYMTAB"; break;
1047 case DT_RELA: name = "RELA"; break;
1048 case DT_RELASZ: name = "RELASZ"; break;
1049 case DT_RELAENT: name = "RELAENT"; break;
1050 case DT_STRSZ: name = "STRSZ"; break;
1051 case DT_SYMENT: name = "SYMENT"; break;
1052 case DT_INIT: name = "INIT"; break;
1053 case DT_FINI: name = "FINI"; break;
1054 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1055 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1056 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1057 case DT_REL: name = "REL"; break;
1058 case DT_RELSZ: name = "RELSZ"; break;
1059 case DT_RELENT: name = "RELENT"; break;
1060 case DT_PLTREL: name = "PLTREL"; break;
1061 case DT_DEBUG: name = "DEBUG"; break;
1062 case DT_TEXTREL: name = "TEXTREL"; break;
1063 case DT_JMPREL: name = "JMPREL"; break;
1064 case DT_BIND_NOW: name = "BIND_NOW"; break;
1065 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1066 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1067 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1068 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1069 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1070 case DT_FLAGS: name = "FLAGS"; break;
1071 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1072 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1073 case DT_CHECKSUM: name = "CHECKSUM"; break;
1074 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1075 case DT_MOVEENT: name = "MOVEENT"; break;
1076 case DT_MOVESZ: name = "MOVESZ"; break;
1077 case DT_FEATURE: name = "FEATURE"; break;
1078 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1079 case DT_SYMINSZ: name = "SYMINSZ"; break;
1080 case DT_SYMINENT: name = "SYMINENT"; break;
1081 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1082 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1083 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1084 case DT_PLTPAD: name = "PLTPAD"; break;
1085 case DT_MOVETAB: name = "MOVETAB"; break;
1086 case DT_SYMINFO: name = "SYMINFO"; break;
1087 case DT_RELACOUNT: name = "RELACOUNT"; break;
1088 case DT_RELCOUNT: name = "RELCOUNT"; break;
1089 case DT_FLAGS_1: name = "FLAGS_1"; break;
1090 case DT_VERSYM: name = "VERSYM"; break;
1091 case DT_VERDEF: name = "VERDEF"; break;
1092 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1093 case DT_VERNEED: name = "VERNEED"; break;
1094 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1095 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1096 case DT_USED: name = "USED"; break;
1097 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1098 }
1099
1100 fprintf (f, " %-11s ", name);
1101 if (! stringp)
1102 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1103 else
1104 {
1105 const char *string;
1106 unsigned int tagv = dyn.d_un.d_val;
1107
1108 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1109 if (string == NULL)
1110 goto error_return;
1111 fprintf (f, "%s", string);
1112 }
1113 fprintf (f, "\n");
1114 }
1115
1116 free (dynbuf);
1117 dynbuf = NULL;
1118 }
1119
1120 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1121 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1122 {
1123 if (! _bfd_elf_slurp_version_tables (abfd))
1124 return FALSE;
1125 }
1126
1127 if (elf_dynverdef (abfd) != 0)
1128 {
1129 Elf_Internal_Verdef *t;
1130
1131 fprintf (f, _("\nVersion definitions:\n"));
1132 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1133 {
1134 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1135 t->vd_flags, t->vd_hash, t->vd_nodename);
1136 if (t->vd_auxptr->vda_nextptr != NULL)
1137 {
1138 Elf_Internal_Verdaux *a;
1139
1140 fprintf (f, "\t");
1141 for (a = t->vd_auxptr->vda_nextptr;
1142 a != NULL;
1143 a = a->vda_nextptr)
1144 fprintf (f, "%s ", a->vda_nodename);
1145 fprintf (f, "\n");
1146 }
1147 }
1148 }
1149
1150 if (elf_dynverref (abfd) != 0)
1151 {
1152 Elf_Internal_Verneed *t;
1153
1154 fprintf (f, _("\nVersion References:\n"));
1155 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1156 {
1157 Elf_Internal_Vernaux *a;
1158
1159 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1160 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1161 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1162 a->vna_flags, a->vna_other, a->vna_nodename);
1163 }
1164 }
1165
1166 return TRUE;
1167
1168 error_return:
1169 if (dynbuf != NULL)
1170 free (dynbuf);
1171 return FALSE;
1172 }
1173
1174 /* Display ELF-specific fields of a symbol. */
1175
1176 void
1177 bfd_elf_print_symbol (bfd *abfd,
1178 void *filep,
1179 asymbol *symbol,
1180 bfd_print_symbol_type how)
1181 {
1182 FILE *file = filep;
1183 switch (how)
1184 {
1185 case bfd_print_symbol_name:
1186 fprintf (file, "%s", symbol->name);
1187 break;
1188 case bfd_print_symbol_more:
1189 fprintf (file, "elf ");
1190 bfd_fprintf_vma (abfd, file, symbol->value);
1191 fprintf (file, " %lx", (long) symbol->flags);
1192 break;
1193 case bfd_print_symbol_all:
1194 {
1195 const char *section_name;
1196 const char *name = NULL;
1197 const struct elf_backend_data *bed;
1198 unsigned char st_other;
1199 bfd_vma val;
1200
1201 section_name = symbol->section ? symbol->section->name : "(*none*)";
1202
1203 bed = get_elf_backend_data (abfd);
1204 if (bed->elf_backend_print_symbol_all)
1205 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1206
1207 if (name == NULL)
1208 {
1209 name = symbol->name;
1210 bfd_print_symbol_vandf (abfd, file, symbol);
1211 }
1212
1213 fprintf (file, " %s\t", section_name);
1214 /* Print the "other" value for a symbol. For common symbols,
1215 we've already printed the size; now print the alignment.
1216 For other symbols, we have no specified alignment, and
1217 we've printed the address; now print the size. */
1218 if (bfd_is_com_section (symbol->section))
1219 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1220 else
1221 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1222 bfd_fprintf_vma (abfd, file, val);
1223
1224 /* If we have version information, print it. */
1225 if (elf_tdata (abfd)->dynversym_section != 0
1226 && (elf_tdata (abfd)->dynverdef_section != 0
1227 || elf_tdata (abfd)->dynverref_section != 0))
1228 {
1229 unsigned int vernum;
1230 const char *version_string;
1231
1232 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1233
1234 if (vernum == 0)
1235 version_string = "";
1236 else if (vernum == 1)
1237 version_string = "Base";
1238 else if (vernum <= elf_tdata (abfd)->cverdefs)
1239 version_string =
1240 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1241 else
1242 {
1243 Elf_Internal_Verneed *t;
1244
1245 version_string = "";
1246 for (t = elf_tdata (abfd)->verref;
1247 t != NULL;
1248 t = t->vn_nextref)
1249 {
1250 Elf_Internal_Vernaux *a;
1251
1252 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1253 {
1254 if (a->vna_other == vernum)
1255 {
1256 version_string = a->vna_nodename;
1257 break;
1258 }
1259 }
1260 }
1261 }
1262
1263 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1264 fprintf (file, " %-11s", version_string);
1265 else
1266 {
1267 int i;
1268
1269 fprintf (file, " (%s)", version_string);
1270 for (i = 10 - strlen (version_string); i > 0; --i)
1271 putc (' ', file);
1272 }
1273 }
1274
1275 /* If the st_other field is not zero, print it. */
1276 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1277
1278 switch (st_other)
1279 {
1280 case 0: break;
1281 case STV_INTERNAL: fprintf (file, " .internal"); break;
1282 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1283 case STV_PROTECTED: fprintf (file, " .protected"); break;
1284 default:
1285 /* Some other non-defined flags are also present, so print
1286 everything hex. */
1287 fprintf (file, " 0x%02x", (unsigned int) st_other);
1288 }
1289
1290 fprintf (file, " %s", name);
1291 }
1292 break;
1293 }
1294 }
1295 \f
1296 /* Create an entry in an ELF linker hash table. */
1297
1298 struct bfd_hash_entry *
1299 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1300 struct bfd_hash_table *table,
1301 const char *string)
1302 {
1303 /* Allocate the structure if it has not already been allocated by a
1304 subclass. */
1305 if (entry == NULL)
1306 {
1307 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1308 if (entry == NULL)
1309 return entry;
1310 }
1311
1312 /* Call the allocation method of the superclass. */
1313 entry = _bfd_link_hash_newfunc (entry, table, string);
1314 if (entry != NULL)
1315 {
1316 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1317 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1318
1319 /* Set local fields. */
1320 ret->indx = -1;
1321 ret->dynindx = -1;
1322 ret->dynstr_index = 0;
1323 ret->elf_hash_value = 0;
1324 ret->weakdef = NULL;
1325 ret->verinfo.verdef = NULL;
1326 ret->vtable_entries_size = 0;
1327 ret->vtable_entries_used = NULL;
1328 ret->vtable_parent = NULL;
1329 ret->got = htab->init_refcount;
1330 ret->plt = htab->init_refcount;
1331 ret->size = 0;
1332 ret->type = STT_NOTYPE;
1333 ret->other = 0;
1334 /* Assume that we have been called by a non-ELF symbol reader.
1335 This flag is then reset by the code which reads an ELF input
1336 file. This ensures that a symbol created by a non-ELF symbol
1337 reader will have the flag set correctly. */
1338 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1339 }
1340
1341 return entry;
1342 }
1343
1344 /* Copy data from an indirect symbol to its direct symbol, hiding the
1345 old indirect symbol. Also used for copying flags to a weakdef. */
1346
1347 void
1348 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1349 struct elf_link_hash_entry *dir,
1350 struct elf_link_hash_entry *ind)
1351 {
1352 bfd_signed_vma tmp;
1353 bfd_signed_vma lowest_valid = bed->can_refcount;
1354
1355 /* Copy down any references that we may have already seen to the
1356 symbol which just became indirect. */
1357
1358 dir->elf_link_hash_flags
1359 |= ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1360 | ELF_LINK_HASH_REF_REGULAR
1361 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1362 | ELF_LINK_NON_GOT_REF
1363 | ELF_LINK_HASH_NEEDS_PLT
1364 | ELF_LINK_POINTER_EQUALITY_NEEDED);
1365
1366 if (ind->root.type != bfd_link_hash_indirect)
1367 return;
1368
1369 /* Copy over the global and procedure linkage table refcount entries.
1370 These may have been already set up by a check_relocs routine. */
1371 tmp = dir->got.refcount;
1372 if (tmp < lowest_valid)
1373 {
1374 dir->got.refcount = ind->got.refcount;
1375 ind->got.refcount = tmp;
1376 }
1377 else
1378 BFD_ASSERT (ind->got.refcount < lowest_valid);
1379
1380 tmp = dir->plt.refcount;
1381 if (tmp < lowest_valid)
1382 {
1383 dir->plt.refcount = ind->plt.refcount;
1384 ind->plt.refcount = tmp;
1385 }
1386 else
1387 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1388
1389 if (dir->dynindx == -1)
1390 {
1391 dir->dynindx = ind->dynindx;
1392 dir->dynstr_index = ind->dynstr_index;
1393 ind->dynindx = -1;
1394 ind->dynstr_index = 0;
1395 }
1396 else
1397 BFD_ASSERT (ind->dynindx == -1);
1398 }
1399
1400 void
1401 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1402 struct elf_link_hash_entry *h,
1403 bfd_boolean force_local)
1404 {
1405 h->plt = elf_hash_table (info)->init_offset;
1406 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1407 if (force_local)
1408 {
1409 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1410 if (h->dynindx != -1)
1411 {
1412 h->dynindx = -1;
1413 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1414 h->dynstr_index);
1415 }
1416 }
1417 }
1418
1419 /* Initialize an ELF linker hash table. */
1420
1421 bfd_boolean
1422 _bfd_elf_link_hash_table_init
1423 (struct elf_link_hash_table *table,
1424 bfd *abfd,
1425 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1426 struct bfd_hash_table *,
1427 const char *))
1428 {
1429 bfd_boolean ret;
1430
1431 table->dynamic_sections_created = FALSE;
1432 table->dynobj = NULL;
1433 /* Make sure can_refcount is extended to the width and signedness of
1434 init_refcount before we subtract one from it. */
1435 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1436 table->init_refcount.refcount -= 1;
1437 table->init_offset.offset = -(bfd_vma) 1;
1438 /* The first dynamic symbol is a dummy. */
1439 table->dynsymcount = 1;
1440 table->dynstr = NULL;
1441 table->bucketcount = 0;
1442 table->needed = NULL;
1443 table->hgot = NULL;
1444 table->stab_info = NULL;
1445 table->merge_info = NULL;
1446 memset (&table->eh_info, 0, sizeof (table->eh_info));
1447 table->dynlocal = NULL;
1448 table->runpath = NULL;
1449 table->tls_sec = NULL;
1450 table->tls_size = 0;
1451 table->loaded = NULL;
1452
1453 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1454 table->root.type = bfd_link_elf_hash_table;
1455
1456 return ret;
1457 }
1458
1459 /* Create an ELF linker hash table. */
1460
1461 struct bfd_link_hash_table *
1462 _bfd_elf_link_hash_table_create (bfd *abfd)
1463 {
1464 struct elf_link_hash_table *ret;
1465 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1466
1467 ret = bfd_malloc (amt);
1468 if (ret == NULL)
1469 return NULL;
1470
1471 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1472 {
1473 free (ret);
1474 return NULL;
1475 }
1476
1477 return &ret->root;
1478 }
1479
1480 /* This is a hook for the ELF emulation code in the generic linker to
1481 tell the backend linker what file name to use for the DT_NEEDED
1482 entry for a dynamic object. */
1483
1484 void
1485 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1486 {
1487 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1488 && bfd_get_format (abfd) == bfd_object)
1489 elf_dt_name (abfd) = name;
1490 }
1491
1492 void
1493 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1494 {
1495 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1496 && bfd_get_format (abfd) == bfd_object)
1497 elf_dyn_lib_class (abfd) = lib_class;
1498 }
1499
1500 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1501 the linker ELF emulation code. */
1502
1503 struct bfd_link_needed_list *
1504 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1505 struct bfd_link_info *info)
1506 {
1507 if (! is_elf_hash_table (info->hash))
1508 return NULL;
1509 return elf_hash_table (info)->needed;
1510 }
1511
1512 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1513 hook for the linker ELF emulation code. */
1514
1515 struct bfd_link_needed_list *
1516 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1517 struct bfd_link_info *info)
1518 {
1519 if (! is_elf_hash_table (info->hash))
1520 return NULL;
1521 return elf_hash_table (info)->runpath;
1522 }
1523
1524 /* Get the name actually used for a dynamic object for a link. This
1525 is the SONAME entry if there is one. Otherwise, it is the string
1526 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1527
1528 const char *
1529 bfd_elf_get_dt_soname (bfd *abfd)
1530 {
1531 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1532 && bfd_get_format (abfd) == bfd_object)
1533 return elf_dt_name (abfd);
1534 return NULL;
1535 }
1536
1537 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1538 the ELF linker emulation code. */
1539
1540 bfd_boolean
1541 bfd_elf_get_bfd_needed_list (bfd *abfd,
1542 struct bfd_link_needed_list **pneeded)
1543 {
1544 asection *s;
1545 bfd_byte *dynbuf = NULL;
1546 int elfsec;
1547 unsigned long shlink;
1548 bfd_byte *extdyn, *extdynend;
1549 size_t extdynsize;
1550 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1551
1552 *pneeded = NULL;
1553
1554 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1555 || bfd_get_format (abfd) != bfd_object)
1556 return TRUE;
1557
1558 s = bfd_get_section_by_name (abfd, ".dynamic");
1559 if (s == NULL || s->_raw_size == 0)
1560 return TRUE;
1561
1562 dynbuf = bfd_malloc (s->_raw_size);
1563 if (dynbuf == NULL)
1564 goto error_return;
1565
1566 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1567 goto error_return;
1568
1569 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1570 if (elfsec == -1)
1571 goto error_return;
1572
1573 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1574
1575 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1576 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1577
1578 extdyn = dynbuf;
1579 extdynend = extdyn + s->_raw_size;
1580 for (; extdyn < extdynend; extdyn += extdynsize)
1581 {
1582 Elf_Internal_Dyn dyn;
1583
1584 (*swap_dyn_in) (abfd, extdyn, &dyn);
1585
1586 if (dyn.d_tag == DT_NULL)
1587 break;
1588
1589 if (dyn.d_tag == DT_NEEDED)
1590 {
1591 const char *string;
1592 struct bfd_link_needed_list *l;
1593 unsigned int tagv = dyn.d_un.d_val;
1594 bfd_size_type amt;
1595
1596 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1597 if (string == NULL)
1598 goto error_return;
1599
1600 amt = sizeof *l;
1601 l = bfd_alloc (abfd, amt);
1602 if (l == NULL)
1603 goto error_return;
1604
1605 l->by = abfd;
1606 l->name = string;
1607 l->next = *pneeded;
1608 *pneeded = l;
1609 }
1610 }
1611
1612 free (dynbuf);
1613
1614 return TRUE;
1615
1616 error_return:
1617 if (dynbuf != NULL)
1618 free (dynbuf);
1619 return FALSE;
1620 }
1621 \f
1622 /* Allocate an ELF string table--force the first byte to be zero. */
1623
1624 struct bfd_strtab_hash *
1625 _bfd_elf_stringtab_init (void)
1626 {
1627 struct bfd_strtab_hash *ret;
1628
1629 ret = _bfd_stringtab_init ();
1630 if (ret != NULL)
1631 {
1632 bfd_size_type loc;
1633
1634 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1635 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1636 if (loc == (bfd_size_type) -1)
1637 {
1638 _bfd_stringtab_free (ret);
1639 ret = NULL;
1640 }
1641 }
1642 return ret;
1643 }
1644 \f
1645 /* ELF .o/exec file reading */
1646
1647 /* Create a new bfd section from an ELF section header. */
1648
1649 bfd_boolean
1650 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1651 {
1652 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1653 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1654 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1655 const char *name;
1656
1657 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1658
1659 switch (hdr->sh_type)
1660 {
1661 case SHT_NULL:
1662 /* Inactive section. Throw it away. */
1663 return TRUE;
1664
1665 case SHT_PROGBITS: /* Normal section with contents. */
1666 case SHT_NOBITS: /* .bss section. */
1667 case SHT_HASH: /* .hash section. */
1668 case SHT_NOTE: /* .note section. */
1669 case SHT_INIT_ARRAY: /* .init_array section. */
1670 case SHT_FINI_ARRAY: /* .fini_array section. */
1671 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1672 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1673
1674 case SHT_DYNAMIC: /* Dynamic linking information. */
1675 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1676 return FALSE;
1677 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1678 {
1679 Elf_Internal_Shdr *dynsymhdr;
1680
1681 /* The shared libraries distributed with hpux11 have a bogus
1682 sh_link field for the ".dynamic" section. Find the
1683 string table for the ".dynsym" section instead. */
1684 if (elf_dynsymtab (abfd) != 0)
1685 {
1686 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1687 hdr->sh_link = dynsymhdr->sh_link;
1688 }
1689 else
1690 {
1691 unsigned int i, num_sec;
1692
1693 num_sec = elf_numsections (abfd);
1694 for (i = 1; i < num_sec; i++)
1695 {
1696 dynsymhdr = elf_elfsections (abfd)[i];
1697 if (dynsymhdr->sh_type == SHT_DYNSYM)
1698 {
1699 hdr->sh_link = dynsymhdr->sh_link;
1700 break;
1701 }
1702 }
1703 }
1704 }
1705 break;
1706
1707 case SHT_SYMTAB: /* A symbol table */
1708 if (elf_onesymtab (abfd) == shindex)
1709 return TRUE;
1710
1711 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1712 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1713 elf_onesymtab (abfd) = shindex;
1714 elf_tdata (abfd)->symtab_hdr = *hdr;
1715 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1716 abfd->flags |= HAS_SYMS;
1717
1718 /* Sometimes a shared object will map in the symbol table. If
1719 SHF_ALLOC is set, and this is a shared object, then we also
1720 treat this section as a BFD section. We can not base the
1721 decision purely on SHF_ALLOC, because that flag is sometimes
1722 set in a relocatable object file, which would confuse the
1723 linker. */
1724 if ((hdr->sh_flags & SHF_ALLOC) != 0
1725 && (abfd->flags & DYNAMIC) != 0
1726 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1727 return FALSE;
1728
1729 return TRUE;
1730
1731 case SHT_DYNSYM: /* A dynamic symbol table */
1732 if (elf_dynsymtab (abfd) == shindex)
1733 return TRUE;
1734
1735 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1736 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1737 elf_dynsymtab (abfd) = shindex;
1738 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1739 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1740 abfd->flags |= HAS_SYMS;
1741
1742 /* Besides being a symbol table, we also treat this as a regular
1743 section, so that objcopy can handle it. */
1744 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1745
1746 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1747 if (elf_symtab_shndx (abfd) == shindex)
1748 return TRUE;
1749
1750 /* Get the associated symbol table. */
1751 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1752 || hdr->sh_link != elf_onesymtab (abfd))
1753 return FALSE;
1754
1755 elf_symtab_shndx (abfd) = shindex;
1756 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1757 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1758 return TRUE;
1759
1760 case SHT_STRTAB: /* A string table */
1761 if (hdr->bfd_section != NULL)
1762 return TRUE;
1763 if (ehdr->e_shstrndx == shindex)
1764 {
1765 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1766 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1767 return TRUE;
1768 }
1769 {
1770 unsigned int i, num_sec;
1771
1772 num_sec = elf_numsections (abfd);
1773 for (i = 1; i < num_sec; i++)
1774 {
1775 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1776 if (hdr2->sh_link == shindex)
1777 {
1778 if (! bfd_section_from_shdr (abfd, i))
1779 return FALSE;
1780 if (elf_onesymtab (abfd) == i)
1781 {
1782 elf_tdata (abfd)->strtab_hdr = *hdr;
1783 elf_elfsections (abfd)[shindex] =
1784 &elf_tdata (abfd)->strtab_hdr;
1785 return TRUE;
1786 }
1787 if (elf_dynsymtab (abfd) == i)
1788 {
1789 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1790 elf_elfsections (abfd)[shindex] = hdr =
1791 &elf_tdata (abfd)->dynstrtab_hdr;
1792 /* We also treat this as a regular section, so
1793 that objcopy can handle it. */
1794 break;
1795 }
1796 #if 0 /* Not handling other string tables specially right now. */
1797 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1798 /* We have a strtab for some random other section. */
1799 newsect = (asection *) hdr2->bfd_section;
1800 if (!newsect)
1801 break;
1802 hdr->bfd_section = newsect;
1803 hdr2 = &elf_section_data (newsect)->str_hdr;
1804 *hdr2 = *hdr;
1805 elf_elfsections (abfd)[shindex] = hdr2;
1806 #endif
1807 }
1808 }
1809 }
1810
1811 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1812
1813 case SHT_REL:
1814 case SHT_RELA:
1815 /* *These* do a lot of work -- but build no sections! */
1816 {
1817 asection *target_sect;
1818 Elf_Internal_Shdr *hdr2;
1819 unsigned int num_sec = elf_numsections (abfd);
1820
1821 /* Check for a bogus link to avoid crashing. */
1822 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1823 || hdr->sh_link >= num_sec)
1824 {
1825 ((*_bfd_error_handler)
1826 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1827 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1828 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1829 }
1830
1831 /* For some incomprehensible reason Oracle distributes
1832 libraries for Solaris in which some of the objects have
1833 bogus sh_link fields. It would be nice if we could just
1834 reject them, but, unfortunately, some people need to use
1835 them. We scan through the section headers; if we find only
1836 one suitable symbol table, we clobber the sh_link to point
1837 to it. I hope this doesn't break anything. */
1838 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1839 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1840 {
1841 unsigned int scan;
1842 int found;
1843
1844 found = 0;
1845 for (scan = 1; scan < num_sec; scan++)
1846 {
1847 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1848 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1849 {
1850 if (found != 0)
1851 {
1852 found = 0;
1853 break;
1854 }
1855 found = scan;
1856 }
1857 }
1858 if (found != 0)
1859 hdr->sh_link = found;
1860 }
1861
1862 /* Get the symbol table. */
1863 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1864 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1865 return FALSE;
1866
1867 /* If this reloc section does not use the main symbol table we
1868 don't treat it as a reloc section. BFD can't adequately
1869 represent such a section, so at least for now, we don't
1870 try. We just present it as a normal section. We also
1871 can't use it as a reloc section if it points to the null
1872 section. */
1873 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1874 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1875
1876 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1877 return FALSE;
1878 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1879 if (target_sect == NULL)
1880 return FALSE;
1881
1882 if ((target_sect->flags & SEC_RELOC) == 0
1883 || target_sect->reloc_count == 0)
1884 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1885 else
1886 {
1887 bfd_size_type amt;
1888 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1889 amt = sizeof (*hdr2);
1890 hdr2 = bfd_alloc (abfd, amt);
1891 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1892 }
1893 *hdr2 = *hdr;
1894 elf_elfsections (abfd)[shindex] = hdr2;
1895 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1896 target_sect->flags |= SEC_RELOC;
1897 target_sect->relocation = NULL;
1898 target_sect->rel_filepos = hdr->sh_offset;
1899 /* In the section to which the relocations apply, mark whether
1900 its relocations are of the REL or RELA variety. */
1901 if (hdr->sh_size != 0)
1902 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1903 abfd->flags |= HAS_RELOC;
1904 return TRUE;
1905 }
1906 break;
1907
1908 case SHT_GNU_verdef:
1909 elf_dynverdef (abfd) = shindex;
1910 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1911 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1912 break;
1913
1914 case SHT_GNU_versym:
1915 elf_dynversym (abfd) = shindex;
1916 elf_tdata (abfd)->dynversym_hdr = *hdr;
1917 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1918 break;
1919
1920 case SHT_GNU_verneed:
1921 elf_dynverref (abfd) = shindex;
1922 elf_tdata (abfd)->dynverref_hdr = *hdr;
1923 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1924 break;
1925
1926 case SHT_SHLIB:
1927 return TRUE;
1928
1929 case SHT_GROUP:
1930 /* We need a BFD section for objcopy and relocatable linking,
1931 and it's handy to have the signature available as the section
1932 name. */
1933 name = group_signature (abfd, hdr);
1934 if (name == NULL)
1935 return FALSE;
1936 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
1937 return FALSE;
1938 if (hdr->contents != NULL)
1939 {
1940 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1941 unsigned int n_elt = hdr->sh_size / 4;
1942 asection *s;
1943
1944 if (idx->flags & GRP_COMDAT)
1945 hdr->bfd_section->flags
1946 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1947
1948 while (--n_elt != 0)
1949 if ((s = (++idx)->shdr->bfd_section) != NULL
1950 && elf_next_in_group (s) != NULL)
1951 {
1952 elf_next_in_group (hdr->bfd_section) = s;
1953 break;
1954 }
1955 }
1956 break;
1957
1958 default:
1959 /* Check for any processor-specific section types. */
1960 {
1961 if (bed->elf_backend_section_from_shdr)
1962 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1963 }
1964 break;
1965 }
1966
1967 return TRUE;
1968 }
1969
1970 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1971 Return SEC for sections that have no elf section, and NULL on error. */
1972
1973 asection *
1974 bfd_section_from_r_symndx (bfd *abfd,
1975 struct sym_sec_cache *cache,
1976 asection *sec,
1977 unsigned long r_symndx)
1978 {
1979 Elf_Internal_Shdr *symtab_hdr;
1980 unsigned char esym[sizeof (Elf64_External_Sym)];
1981 Elf_External_Sym_Shndx eshndx;
1982 Elf_Internal_Sym isym;
1983 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1984
1985 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
1986 return cache->sec[ent];
1987
1988 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1989 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1990 &isym, esym, &eshndx) == NULL)
1991 return NULL;
1992
1993 if (cache->abfd != abfd)
1994 {
1995 memset (cache->indx, -1, sizeof (cache->indx));
1996 cache->abfd = abfd;
1997 }
1998 cache->indx[ent] = r_symndx;
1999 cache->sec[ent] = sec;
2000 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2001 || isym.st_shndx > SHN_HIRESERVE)
2002 {
2003 asection *s;
2004 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2005 if (s != NULL)
2006 cache->sec[ent] = s;
2007 }
2008 return cache->sec[ent];
2009 }
2010
2011 /* Given an ELF section number, retrieve the corresponding BFD
2012 section. */
2013
2014 asection *
2015 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2016 {
2017 if (index >= elf_numsections (abfd))
2018 return NULL;
2019 return elf_elfsections (abfd)[index]->bfd_section;
2020 }
2021
2022 static struct bfd_elf_special_section const special_sections[] =
2023 {
2024 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2025 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2026 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2027 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2028 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2029 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2030 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2031 { ".line", 5, 0, SHT_PROGBITS, 0 },
2032 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2033 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2034 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2035 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2036 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2037 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2038 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2039 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2040 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2041 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2042 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2043 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2044 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2045 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2046 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2047 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2048 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2049 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2050 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2051 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2052 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2053 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2054 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2055 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2056 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2057 { ".note", 5, -1, SHT_NOTE, 0 },
2058 { ".rela", 5, -1, SHT_RELA, 0 },
2059 { ".rel", 4, -1, SHT_REL, 0 },
2060 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2061 { NULL, 0, 0, 0, 0 }
2062 };
2063
2064 static const struct bfd_elf_special_section *
2065 get_special_section (const char *name,
2066 const struct bfd_elf_special_section *special_sections,
2067 unsigned int rela)
2068 {
2069 int i;
2070 int len = strlen (name);
2071
2072 for (i = 0; special_sections[i].prefix != NULL; i++)
2073 {
2074 int suffix_len;
2075 int prefix_len = special_sections[i].prefix_length;
2076
2077 if (len < prefix_len)
2078 continue;
2079 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2080 continue;
2081
2082 suffix_len = special_sections[i].suffix_length;
2083 if (suffix_len <= 0)
2084 {
2085 if (name[prefix_len] != 0)
2086 {
2087 if (suffix_len == 0)
2088 continue;
2089 if (name[prefix_len] != '.'
2090 && (suffix_len == -2
2091 || (rela && special_sections[i].type == SHT_REL)))
2092 continue;
2093 }
2094 }
2095 else
2096 {
2097 if (len < prefix_len + suffix_len)
2098 continue;
2099 if (memcmp (name + len - suffix_len,
2100 special_sections[i].prefix + prefix_len,
2101 suffix_len) != 0)
2102 continue;
2103 }
2104 return &special_sections[i];
2105 }
2106
2107 return NULL;
2108 }
2109
2110 const struct bfd_elf_special_section *
2111 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2112 {
2113 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2114 const struct bfd_elf_special_section *ssect = NULL;
2115
2116 /* See if this is one of the special sections. */
2117 if (name)
2118 {
2119 unsigned int rela = bed->default_use_rela_p;
2120
2121 if (bed->special_sections)
2122 ssect = get_special_section (name, bed->special_sections, rela);
2123
2124 if (! ssect)
2125 ssect = get_special_section (name, special_sections, rela);
2126 }
2127
2128 return ssect;
2129 }
2130
2131 bfd_boolean
2132 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2133 {
2134 struct bfd_elf_section_data *sdata;
2135 const struct bfd_elf_special_section *ssect;
2136
2137 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2138 if (sdata == NULL)
2139 {
2140 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2141 if (sdata == NULL)
2142 return FALSE;
2143 sec->used_by_bfd = sdata;
2144 }
2145
2146 elf_section_type (sec) = SHT_NULL;
2147 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2148 if (ssect != NULL)
2149 {
2150 elf_section_type (sec) = ssect->type;
2151 elf_section_flags (sec) = ssect->attr;
2152 }
2153
2154 /* Indicate whether or not this section should use RELA relocations. */
2155 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2156
2157 return TRUE;
2158 }
2159
2160 /* Create a new bfd section from an ELF program header.
2161
2162 Since program segments have no names, we generate a synthetic name
2163 of the form segment<NUM>, where NUM is generally the index in the
2164 program header table. For segments that are split (see below) we
2165 generate the names segment<NUM>a and segment<NUM>b.
2166
2167 Note that some program segments may have a file size that is different than
2168 (less than) the memory size. All this means is that at execution the
2169 system must allocate the amount of memory specified by the memory size,
2170 but only initialize it with the first "file size" bytes read from the
2171 file. This would occur for example, with program segments consisting
2172 of combined data+bss.
2173
2174 To handle the above situation, this routine generates TWO bfd sections
2175 for the single program segment. The first has the length specified by
2176 the file size of the segment, and the second has the length specified
2177 by the difference between the two sizes. In effect, the segment is split
2178 into it's initialized and uninitialized parts.
2179
2180 */
2181
2182 bfd_boolean
2183 _bfd_elf_make_section_from_phdr (bfd *abfd,
2184 Elf_Internal_Phdr *hdr,
2185 int index,
2186 const char *typename)
2187 {
2188 asection *newsect;
2189 char *name;
2190 char namebuf[64];
2191 size_t len;
2192 int split;
2193
2194 split = ((hdr->p_memsz > 0)
2195 && (hdr->p_filesz > 0)
2196 && (hdr->p_memsz > hdr->p_filesz));
2197 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2198 len = strlen (namebuf) + 1;
2199 name = bfd_alloc (abfd, len);
2200 if (!name)
2201 return FALSE;
2202 memcpy (name, namebuf, len);
2203 newsect = bfd_make_section (abfd, name);
2204 if (newsect == NULL)
2205 return FALSE;
2206 newsect->vma = hdr->p_vaddr;
2207 newsect->lma = hdr->p_paddr;
2208 newsect->_raw_size = hdr->p_filesz;
2209 newsect->filepos = hdr->p_offset;
2210 newsect->flags |= SEC_HAS_CONTENTS;
2211 newsect->alignment_power = bfd_log2 (hdr->p_align);
2212 if (hdr->p_type == PT_LOAD)
2213 {
2214 newsect->flags |= SEC_ALLOC;
2215 newsect->flags |= SEC_LOAD;
2216 if (hdr->p_flags & PF_X)
2217 {
2218 /* FIXME: all we known is that it has execute PERMISSION,
2219 may be data. */
2220 newsect->flags |= SEC_CODE;
2221 }
2222 }
2223 if (!(hdr->p_flags & PF_W))
2224 {
2225 newsect->flags |= SEC_READONLY;
2226 }
2227
2228 if (split)
2229 {
2230 sprintf (namebuf, "%s%db", typename, index);
2231 len = strlen (namebuf) + 1;
2232 name = bfd_alloc (abfd, len);
2233 if (!name)
2234 return FALSE;
2235 memcpy (name, namebuf, len);
2236 newsect = bfd_make_section (abfd, name);
2237 if (newsect == NULL)
2238 return FALSE;
2239 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2240 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2241 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2242 if (hdr->p_type == PT_LOAD)
2243 {
2244 newsect->flags |= SEC_ALLOC;
2245 if (hdr->p_flags & PF_X)
2246 newsect->flags |= SEC_CODE;
2247 }
2248 if (!(hdr->p_flags & PF_W))
2249 newsect->flags |= SEC_READONLY;
2250 }
2251
2252 return TRUE;
2253 }
2254
2255 bfd_boolean
2256 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2257 {
2258 const struct elf_backend_data *bed;
2259
2260 switch (hdr->p_type)
2261 {
2262 case PT_NULL:
2263 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2264
2265 case PT_LOAD:
2266 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2267
2268 case PT_DYNAMIC:
2269 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2270
2271 case PT_INTERP:
2272 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2273
2274 case PT_NOTE:
2275 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2276 return FALSE;
2277 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2278 return FALSE;
2279 return TRUE;
2280
2281 case PT_SHLIB:
2282 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2283
2284 case PT_PHDR:
2285 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2286
2287 case PT_GNU_EH_FRAME:
2288 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2289 "eh_frame_hdr");
2290
2291 case PT_GNU_STACK:
2292 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2293
2294 default:
2295 /* Check for any processor-specific program segment types.
2296 If no handler for them, default to making "segment" sections. */
2297 bed = get_elf_backend_data (abfd);
2298 if (bed->elf_backend_section_from_phdr)
2299 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2300 else
2301 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2302 }
2303 }
2304
2305 /* Initialize REL_HDR, the section-header for new section, containing
2306 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2307 relocations; otherwise, we use REL relocations. */
2308
2309 bfd_boolean
2310 _bfd_elf_init_reloc_shdr (bfd *abfd,
2311 Elf_Internal_Shdr *rel_hdr,
2312 asection *asect,
2313 bfd_boolean use_rela_p)
2314 {
2315 char *name;
2316 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2317 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2318
2319 name = bfd_alloc (abfd, amt);
2320 if (name == NULL)
2321 return FALSE;
2322 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2323 rel_hdr->sh_name =
2324 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2325 FALSE);
2326 if (rel_hdr->sh_name == (unsigned int) -1)
2327 return FALSE;
2328 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2329 rel_hdr->sh_entsize = (use_rela_p
2330 ? bed->s->sizeof_rela
2331 : bed->s->sizeof_rel);
2332 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2333 rel_hdr->sh_flags = 0;
2334 rel_hdr->sh_addr = 0;
2335 rel_hdr->sh_size = 0;
2336 rel_hdr->sh_offset = 0;
2337
2338 return TRUE;
2339 }
2340
2341 /* Set up an ELF internal section header for a section. */
2342
2343 static void
2344 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2345 {
2346 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2347 bfd_boolean *failedptr = failedptrarg;
2348 Elf_Internal_Shdr *this_hdr;
2349
2350 if (*failedptr)
2351 {
2352 /* We already failed; just get out of the bfd_map_over_sections
2353 loop. */
2354 return;
2355 }
2356
2357 this_hdr = &elf_section_data (asect)->this_hdr;
2358
2359 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2360 asect->name, FALSE);
2361 if (this_hdr->sh_name == (unsigned int) -1)
2362 {
2363 *failedptr = TRUE;
2364 return;
2365 }
2366
2367 this_hdr->sh_flags = 0;
2368
2369 if ((asect->flags & SEC_ALLOC) != 0
2370 || asect->user_set_vma)
2371 this_hdr->sh_addr = asect->vma;
2372 else
2373 this_hdr->sh_addr = 0;
2374
2375 this_hdr->sh_offset = 0;
2376 this_hdr->sh_size = asect->_raw_size;
2377 this_hdr->sh_link = 0;
2378 this_hdr->sh_addralign = 1 << asect->alignment_power;
2379 /* The sh_entsize and sh_info fields may have been set already by
2380 copy_private_section_data. */
2381
2382 this_hdr->bfd_section = asect;
2383 this_hdr->contents = NULL;
2384
2385 /* If the section type is unspecified, we set it based on
2386 asect->flags. */
2387 if (this_hdr->sh_type == SHT_NULL)
2388 {
2389 if ((asect->flags & SEC_ALLOC) != 0
2390 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2391 || (asect->flags & SEC_NEVER_LOAD) != 0))
2392 this_hdr->sh_type = SHT_NOBITS;
2393 else
2394 this_hdr->sh_type = SHT_PROGBITS;
2395 }
2396
2397 switch (this_hdr->sh_type)
2398 {
2399 default:
2400 break;
2401
2402 case SHT_STRTAB:
2403 case SHT_INIT_ARRAY:
2404 case SHT_FINI_ARRAY:
2405 case SHT_PREINIT_ARRAY:
2406 case SHT_NOTE:
2407 case SHT_NOBITS:
2408 case SHT_PROGBITS:
2409 break;
2410
2411 case SHT_HASH:
2412 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2413 break;
2414
2415 case SHT_DYNSYM:
2416 this_hdr->sh_entsize = bed->s->sizeof_sym;
2417 break;
2418
2419 case SHT_DYNAMIC:
2420 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2421 break;
2422
2423 case SHT_RELA:
2424 if (get_elf_backend_data (abfd)->may_use_rela_p)
2425 this_hdr->sh_entsize = bed->s->sizeof_rela;
2426 break;
2427
2428 case SHT_REL:
2429 if (get_elf_backend_data (abfd)->may_use_rel_p)
2430 this_hdr->sh_entsize = bed->s->sizeof_rel;
2431 break;
2432
2433 case SHT_GNU_versym:
2434 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2435 break;
2436
2437 case SHT_GNU_verdef:
2438 this_hdr->sh_entsize = 0;
2439 /* objcopy or strip will copy over sh_info, but may not set
2440 cverdefs. The linker will set cverdefs, but sh_info will be
2441 zero. */
2442 if (this_hdr->sh_info == 0)
2443 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2444 else
2445 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2446 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2447 break;
2448
2449 case SHT_GNU_verneed:
2450 this_hdr->sh_entsize = 0;
2451 /* objcopy or strip will copy over sh_info, but may not set
2452 cverrefs. The linker will set cverrefs, but sh_info will be
2453 zero. */
2454 if (this_hdr->sh_info == 0)
2455 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2456 else
2457 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2458 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2459 break;
2460
2461 case SHT_GROUP:
2462 this_hdr->sh_entsize = 4;
2463 break;
2464 }
2465
2466 if ((asect->flags & SEC_ALLOC) != 0)
2467 this_hdr->sh_flags |= SHF_ALLOC;
2468 if ((asect->flags & SEC_READONLY) == 0)
2469 this_hdr->sh_flags |= SHF_WRITE;
2470 if ((asect->flags & SEC_CODE) != 0)
2471 this_hdr->sh_flags |= SHF_EXECINSTR;
2472 if ((asect->flags & SEC_MERGE) != 0)
2473 {
2474 this_hdr->sh_flags |= SHF_MERGE;
2475 this_hdr->sh_entsize = asect->entsize;
2476 if ((asect->flags & SEC_STRINGS) != 0)
2477 this_hdr->sh_flags |= SHF_STRINGS;
2478 }
2479 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2480 this_hdr->sh_flags |= SHF_GROUP;
2481 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2482 {
2483 this_hdr->sh_flags |= SHF_TLS;
2484 if (asect->_raw_size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2485 {
2486 struct bfd_link_order *o;
2487
2488 this_hdr->sh_size = 0;
2489 for (o = asect->link_order_head; o != NULL; o = o->next)
2490 if (this_hdr->sh_size < o->offset + o->size)
2491 this_hdr->sh_size = o->offset + o->size;
2492 if (this_hdr->sh_size)
2493 this_hdr->sh_type = SHT_NOBITS;
2494 }
2495 }
2496
2497 /* Check for processor-specific section types. */
2498 if (bed->elf_backend_fake_sections
2499 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2500 *failedptr = TRUE;
2501
2502 /* If the section has relocs, set up a section header for the
2503 SHT_REL[A] section. If two relocation sections are required for
2504 this section, it is up to the processor-specific back-end to
2505 create the other. */
2506 if ((asect->flags & SEC_RELOC) != 0
2507 && !_bfd_elf_init_reloc_shdr (abfd,
2508 &elf_section_data (asect)->rel_hdr,
2509 asect,
2510 asect->use_rela_p))
2511 *failedptr = TRUE;
2512 }
2513
2514 /* Fill in the contents of a SHT_GROUP section. */
2515
2516 void
2517 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2518 {
2519 bfd_boolean *failedptr = failedptrarg;
2520 unsigned long symindx;
2521 asection *elt, *first;
2522 unsigned char *loc;
2523 struct bfd_link_order *l;
2524 bfd_boolean gas;
2525
2526 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2527 || *failedptr)
2528 return;
2529
2530 symindx = 0;
2531 if (elf_group_id (sec) != NULL)
2532 symindx = elf_group_id (sec)->udata.i;
2533
2534 if (symindx == 0)
2535 {
2536 /* If called from the assembler, swap_out_syms will have set up
2537 elf_section_syms; If called for "ld -r", use target_index. */
2538 if (elf_section_syms (abfd) != NULL)
2539 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2540 else
2541 symindx = sec->target_index;
2542 }
2543 elf_section_data (sec)->this_hdr.sh_info = symindx;
2544
2545 /* The contents won't be allocated for "ld -r" or objcopy. */
2546 gas = TRUE;
2547 if (sec->contents == NULL)
2548 {
2549 gas = FALSE;
2550 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2551
2552 /* Arrange for the section to be written out. */
2553 elf_section_data (sec)->this_hdr.contents = sec->contents;
2554 if (sec->contents == NULL)
2555 {
2556 *failedptr = TRUE;
2557 return;
2558 }
2559 }
2560
2561 loc = sec->contents + sec->_raw_size;
2562
2563 /* Get the pointer to the first section in the group that gas
2564 squirreled away here. objcopy arranges for this to be set to the
2565 start of the input section group. */
2566 first = elt = elf_next_in_group (sec);
2567
2568 /* First element is a flag word. Rest of section is elf section
2569 indices for all the sections of the group. Write them backwards
2570 just to keep the group in the same order as given in .section
2571 directives, not that it matters. */
2572 while (elt != NULL)
2573 {
2574 asection *s;
2575 unsigned int idx;
2576
2577 loc -= 4;
2578 s = elt;
2579 if (!gas)
2580 s = s->output_section;
2581 idx = 0;
2582 if (s != NULL)
2583 idx = elf_section_data (s)->this_idx;
2584 H_PUT_32 (abfd, idx, loc);
2585 elt = elf_next_in_group (elt);
2586 if (elt == first)
2587 break;
2588 }
2589
2590 /* If this is a relocatable link, then the above did nothing because
2591 SEC is the output section. Look through the input sections
2592 instead. */
2593 for (l = sec->link_order_head; l != NULL; l = l->next)
2594 if (l->type == bfd_indirect_link_order
2595 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2596 do
2597 {
2598 loc -= 4;
2599 H_PUT_32 (abfd,
2600 elf_section_data (elt->output_section)->this_idx, loc);
2601 elt = elf_next_in_group (elt);
2602 /* During a relocatable link, the lists are circular. */
2603 }
2604 while (elt != elf_next_in_group (l->u.indirect.section));
2605
2606 /* With ld -r, merging SHT_GROUP sections results in wasted space
2607 due to allowing for the flag word on each input. We may well
2608 duplicate entries too. */
2609 while ((loc -= 4) > sec->contents)
2610 H_PUT_32 (abfd, 0, loc);
2611
2612 if (loc != sec->contents)
2613 abort ();
2614
2615 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2616 }
2617
2618 /* Assign all ELF section numbers. The dummy first section is handled here
2619 too. The link/info pointers for the standard section types are filled
2620 in here too, while we're at it. */
2621
2622 static bfd_boolean
2623 assign_section_numbers (bfd *abfd)
2624 {
2625 struct elf_obj_tdata *t = elf_tdata (abfd);
2626 asection *sec;
2627 unsigned int section_number, secn;
2628 Elf_Internal_Shdr **i_shdrp;
2629 bfd_size_type amt;
2630
2631 section_number = 1;
2632
2633 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2634
2635 for (sec = abfd->sections; sec; sec = sec->next)
2636 {
2637 struct bfd_elf_section_data *d = elf_section_data (sec);
2638
2639 if (section_number == SHN_LORESERVE)
2640 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2641 d->this_idx = section_number++;
2642 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2643 if ((sec->flags & SEC_RELOC) == 0)
2644 d->rel_idx = 0;
2645 else
2646 {
2647 if (section_number == SHN_LORESERVE)
2648 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2649 d->rel_idx = section_number++;
2650 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2651 }
2652
2653 if (d->rel_hdr2)
2654 {
2655 if (section_number == SHN_LORESERVE)
2656 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2657 d->rel_idx2 = section_number++;
2658 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2659 }
2660 else
2661 d->rel_idx2 = 0;
2662 }
2663
2664 if (section_number == SHN_LORESERVE)
2665 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2666 t->shstrtab_section = section_number++;
2667 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2668 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2669
2670 if (bfd_get_symcount (abfd) > 0)
2671 {
2672 if (section_number == SHN_LORESERVE)
2673 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2674 t->symtab_section = section_number++;
2675 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2676 if (section_number > SHN_LORESERVE - 2)
2677 {
2678 if (section_number == SHN_LORESERVE)
2679 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2680 t->symtab_shndx_section = section_number++;
2681 t->symtab_shndx_hdr.sh_name
2682 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2683 ".symtab_shndx", FALSE);
2684 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2685 return FALSE;
2686 }
2687 if (section_number == SHN_LORESERVE)
2688 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2689 t->strtab_section = section_number++;
2690 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2691 }
2692
2693 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2694 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2695
2696 elf_numsections (abfd) = section_number;
2697 elf_elfheader (abfd)->e_shnum = section_number;
2698 if (section_number > SHN_LORESERVE)
2699 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2700
2701 /* Set up the list of section header pointers, in agreement with the
2702 indices. */
2703 amt = section_number * sizeof (Elf_Internal_Shdr *);
2704 i_shdrp = bfd_zalloc (abfd, amt);
2705 if (i_shdrp == NULL)
2706 return FALSE;
2707
2708 amt = sizeof (Elf_Internal_Shdr);
2709 i_shdrp[0] = bfd_zalloc (abfd, amt);
2710 if (i_shdrp[0] == NULL)
2711 {
2712 bfd_release (abfd, i_shdrp);
2713 return FALSE;
2714 }
2715
2716 elf_elfsections (abfd) = i_shdrp;
2717
2718 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2719 if (bfd_get_symcount (abfd) > 0)
2720 {
2721 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2722 if (elf_numsections (abfd) > SHN_LORESERVE)
2723 {
2724 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2725 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2726 }
2727 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2728 t->symtab_hdr.sh_link = t->strtab_section;
2729 }
2730 for (sec = abfd->sections; sec; sec = sec->next)
2731 {
2732 struct bfd_elf_section_data *d = elf_section_data (sec);
2733 asection *s;
2734 const char *name;
2735
2736 i_shdrp[d->this_idx] = &d->this_hdr;
2737 if (d->rel_idx != 0)
2738 i_shdrp[d->rel_idx] = &d->rel_hdr;
2739 if (d->rel_idx2 != 0)
2740 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2741
2742 /* Fill in the sh_link and sh_info fields while we're at it. */
2743
2744 /* sh_link of a reloc section is the section index of the symbol
2745 table. sh_info is the section index of the section to which
2746 the relocation entries apply. */
2747 if (d->rel_idx != 0)
2748 {
2749 d->rel_hdr.sh_link = t->symtab_section;
2750 d->rel_hdr.sh_info = d->this_idx;
2751 }
2752 if (d->rel_idx2 != 0)
2753 {
2754 d->rel_hdr2->sh_link = t->symtab_section;
2755 d->rel_hdr2->sh_info = d->this_idx;
2756 }
2757
2758 switch (d->this_hdr.sh_type)
2759 {
2760 case SHT_REL:
2761 case SHT_RELA:
2762 /* A reloc section which we are treating as a normal BFD
2763 section. sh_link is the section index of the symbol
2764 table. sh_info is the section index of the section to
2765 which the relocation entries apply. We assume that an
2766 allocated reloc section uses the dynamic symbol table.
2767 FIXME: How can we be sure? */
2768 s = bfd_get_section_by_name (abfd, ".dynsym");
2769 if (s != NULL)
2770 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2771
2772 /* We look up the section the relocs apply to by name. */
2773 name = sec->name;
2774 if (d->this_hdr.sh_type == SHT_REL)
2775 name += 4;
2776 else
2777 name += 5;
2778 s = bfd_get_section_by_name (abfd, name);
2779 if (s != NULL)
2780 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2781 break;
2782
2783 case SHT_STRTAB:
2784 /* We assume that a section named .stab*str is a stabs
2785 string section. We look for a section with the same name
2786 but without the trailing ``str'', and set its sh_link
2787 field to point to this section. */
2788 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2789 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2790 {
2791 size_t len;
2792 char *alc;
2793
2794 len = strlen (sec->name);
2795 alc = bfd_malloc (len - 2);
2796 if (alc == NULL)
2797 return FALSE;
2798 memcpy (alc, sec->name, len - 3);
2799 alc[len - 3] = '\0';
2800 s = bfd_get_section_by_name (abfd, alc);
2801 free (alc);
2802 if (s != NULL)
2803 {
2804 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2805
2806 /* This is a .stab section. */
2807 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2808 elf_section_data (s)->this_hdr.sh_entsize
2809 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2810 }
2811 }
2812 break;
2813
2814 case SHT_DYNAMIC:
2815 case SHT_DYNSYM:
2816 case SHT_GNU_verneed:
2817 case SHT_GNU_verdef:
2818 /* sh_link is the section header index of the string table
2819 used for the dynamic entries, or the symbol table, or the
2820 version strings. */
2821 s = bfd_get_section_by_name (abfd, ".dynstr");
2822 if (s != NULL)
2823 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2824 break;
2825
2826 case SHT_HASH:
2827 case SHT_GNU_versym:
2828 /* sh_link is the section header index of the symbol table
2829 this hash table or version table is for. */
2830 s = bfd_get_section_by_name (abfd, ".dynsym");
2831 if (s != NULL)
2832 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2833 break;
2834
2835 case SHT_GROUP:
2836 d->this_hdr.sh_link = t->symtab_section;
2837 }
2838 }
2839
2840 for (secn = 1; secn < section_number; ++secn)
2841 if (i_shdrp[secn] == NULL)
2842 i_shdrp[secn] = i_shdrp[0];
2843 else
2844 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2845 i_shdrp[secn]->sh_name);
2846 return TRUE;
2847 }
2848
2849 /* Map symbol from it's internal number to the external number, moving
2850 all local symbols to be at the head of the list. */
2851
2852 static int
2853 sym_is_global (bfd *abfd, asymbol *sym)
2854 {
2855 /* If the backend has a special mapping, use it. */
2856 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2857 if (bed->elf_backend_sym_is_global)
2858 return (*bed->elf_backend_sym_is_global) (abfd, sym);
2859
2860 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2861 || bfd_is_und_section (bfd_get_section (sym))
2862 || bfd_is_com_section (bfd_get_section (sym)));
2863 }
2864
2865 static bfd_boolean
2866 elf_map_symbols (bfd *abfd)
2867 {
2868 unsigned int symcount = bfd_get_symcount (abfd);
2869 asymbol **syms = bfd_get_outsymbols (abfd);
2870 asymbol **sect_syms;
2871 unsigned int num_locals = 0;
2872 unsigned int num_globals = 0;
2873 unsigned int num_locals2 = 0;
2874 unsigned int num_globals2 = 0;
2875 int max_index = 0;
2876 unsigned int idx;
2877 asection *asect;
2878 asymbol **new_syms;
2879 bfd_size_type amt;
2880
2881 #ifdef DEBUG
2882 fprintf (stderr, "elf_map_symbols\n");
2883 fflush (stderr);
2884 #endif
2885
2886 for (asect = abfd->sections; asect; asect = asect->next)
2887 {
2888 if (max_index < asect->index)
2889 max_index = asect->index;
2890 }
2891
2892 max_index++;
2893 amt = max_index * sizeof (asymbol *);
2894 sect_syms = bfd_zalloc (abfd, amt);
2895 if (sect_syms == NULL)
2896 return FALSE;
2897 elf_section_syms (abfd) = sect_syms;
2898 elf_num_section_syms (abfd) = max_index;
2899
2900 /* Init sect_syms entries for any section symbols we have already
2901 decided to output. */
2902 for (idx = 0; idx < symcount; idx++)
2903 {
2904 asymbol *sym = syms[idx];
2905
2906 if ((sym->flags & BSF_SECTION_SYM) != 0
2907 && sym->value == 0)
2908 {
2909 asection *sec;
2910
2911 sec = sym->section;
2912
2913 if (sec->owner != NULL)
2914 {
2915 if (sec->owner != abfd)
2916 {
2917 if (sec->output_offset != 0)
2918 continue;
2919
2920 sec = sec->output_section;
2921
2922 /* Empty sections in the input files may have had a
2923 section symbol created for them. (See the comment
2924 near the end of _bfd_generic_link_output_symbols in
2925 linker.c). If the linker script discards such
2926 sections then we will reach this point. Since we know
2927 that we cannot avoid this case, we detect it and skip
2928 the abort and the assignment to the sect_syms array.
2929 To reproduce this particular case try running the
2930 linker testsuite test ld-scripts/weak.exp for an ELF
2931 port that uses the generic linker. */
2932 if (sec->owner == NULL)
2933 continue;
2934
2935 BFD_ASSERT (sec->owner == abfd);
2936 }
2937 sect_syms[sec->index] = syms[idx];
2938 }
2939 }
2940 }
2941
2942 /* Classify all of the symbols. */
2943 for (idx = 0; idx < symcount; idx++)
2944 {
2945 if (!sym_is_global (abfd, syms[idx]))
2946 num_locals++;
2947 else
2948 num_globals++;
2949 }
2950
2951 /* We will be adding a section symbol for each BFD section. Most normal
2952 sections will already have a section symbol in outsymbols, but
2953 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2954 at least in that case. */
2955 for (asect = abfd->sections; asect; asect = asect->next)
2956 {
2957 if (sect_syms[asect->index] == NULL)
2958 {
2959 if (!sym_is_global (abfd, asect->symbol))
2960 num_locals++;
2961 else
2962 num_globals++;
2963 }
2964 }
2965
2966 /* Now sort the symbols so the local symbols are first. */
2967 amt = (num_locals + num_globals) * sizeof (asymbol *);
2968 new_syms = bfd_alloc (abfd, amt);
2969
2970 if (new_syms == NULL)
2971 return FALSE;
2972
2973 for (idx = 0; idx < symcount; idx++)
2974 {
2975 asymbol *sym = syms[idx];
2976 unsigned int i;
2977
2978 if (!sym_is_global (abfd, sym))
2979 i = num_locals2++;
2980 else
2981 i = num_locals + num_globals2++;
2982 new_syms[i] = sym;
2983 sym->udata.i = i + 1;
2984 }
2985 for (asect = abfd->sections; asect; asect = asect->next)
2986 {
2987 if (sect_syms[asect->index] == NULL)
2988 {
2989 asymbol *sym = asect->symbol;
2990 unsigned int i;
2991
2992 sect_syms[asect->index] = sym;
2993 if (!sym_is_global (abfd, sym))
2994 i = num_locals2++;
2995 else
2996 i = num_locals + num_globals2++;
2997 new_syms[i] = sym;
2998 sym->udata.i = i + 1;
2999 }
3000 }
3001
3002 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3003
3004 elf_num_locals (abfd) = num_locals;
3005 elf_num_globals (abfd) = num_globals;
3006 return TRUE;
3007 }
3008
3009 /* Align to the maximum file alignment that could be required for any
3010 ELF data structure. */
3011
3012 static inline file_ptr
3013 align_file_position (file_ptr off, int align)
3014 {
3015 return (off + align - 1) & ~(align - 1);
3016 }
3017
3018 /* Assign a file position to a section, optionally aligning to the
3019 required section alignment. */
3020
3021 file_ptr
3022 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3023 file_ptr offset,
3024 bfd_boolean align)
3025 {
3026 if (align)
3027 {
3028 unsigned int al;
3029
3030 al = i_shdrp->sh_addralign;
3031 if (al > 1)
3032 offset = BFD_ALIGN (offset, al);
3033 }
3034 i_shdrp->sh_offset = offset;
3035 if (i_shdrp->bfd_section != NULL)
3036 i_shdrp->bfd_section->filepos = offset;
3037 if (i_shdrp->sh_type != SHT_NOBITS)
3038 offset += i_shdrp->sh_size;
3039 return offset;
3040 }
3041
3042 /* Compute the file positions we are going to put the sections at, and
3043 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3044 is not NULL, this is being called by the ELF backend linker. */
3045
3046 bfd_boolean
3047 _bfd_elf_compute_section_file_positions (bfd *abfd,
3048 struct bfd_link_info *link_info)
3049 {
3050 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3051 bfd_boolean failed;
3052 struct bfd_strtab_hash *strtab;
3053 Elf_Internal_Shdr *shstrtab_hdr;
3054
3055 if (abfd->output_has_begun)
3056 return TRUE;
3057
3058 /* Do any elf backend specific processing first. */
3059 if (bed->elf_backend_begin_write_processing)
3060 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3061
3062 if (! prep_headers (abfd))
3063 return FALSE;
3064
3065 /* Post process the headers if necessary. */
3066 if (bed->elf_backend_post_process_headers)
3067 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3068
3069 failed = FALSE;
3070 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3071 if (failed)
3072 return FALSE;
3073
3074 if (!assign_section_numbers (abfd))
3075 return FALSE;
3076
3077 /* The backend linker builds symbol table information itself. */
3078 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3079 {
3080 /* Non-zero if doing a relocatable link. */
3081 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3082
3083 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3084 return FALSE;
3085 }
3086
3087 if (link_info == NULL)
3088 {
3089 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3090 if (failed)
3091 return FALSE;
3092 }
3093
3094 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3095 /* sh_name was set in prep_headers. */
3096 shstrtab_hdr->sh_type = SHT_STRTAB;
3097 shstrtab_hdr->sh_flags = 0;
3098 shstrtab_hdr->sh_addr = 0;
3099 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3100 shstrtab_hdr->sh_entsize = 0;
3101 shstrtab_hdr->sh_link = 0;
3102 shstrtab_hdr->sh_info = 0;
3103 /* sh_offset is set in assign_file_positions_except_relocs. */
3104 shstrtab_hdr->sh_addralign = 1;
3105
3106 if (!assign_file_positions_except_relocs (abfd, link_info))
3107 return FALSE;
3108
3109 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3110 {
3111 file_ptr off;
3112 Elf_Internal_Shdr *hdr;
3113
3114 off = elf_tdata (abfd)->next_file_pos;
3115
3116 hdr = &elf_tdata (abfd)->symtab_hdr;
3117 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3118
3119 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3120 if (hdr->sh_size != 0)
3121 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3122
3123 hdr = &elf_tdata (abfd)->strtab_hdr;
3124 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3125
3126 elf_tdata (abfd)->next_file_pos = off;
3127
3128 /* Now that we know where the .strtab section goes, write it
3129 out. */
3130 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3131 || ! _bfd_stringtab_emit (abfd, strtab))
3132 return FALSE;
3133 _bfd_stringtab_free (strtab);
3134 }
3135
3136 abfd->output_has_begun = TRUE;
3137
3138 return TRUE;
3139 }
3140
3141 /* Create a mapping from a set of sections to a program segment. */
3142
3143 static struct elf_segment_map *
3144 make_mapping (bfd *abfd,
3145 asection **sections,
3146 unsigned int from,
3147 unsigned int to,
3148 bfd_boolean phdr)
3149 {
3150 struct elf_segment_map *m;
3151 unsigned int i;
3152 asection **hdrpp;
3153 bfd_size_type amt;
3154
3155 amt = sizeof (struct elf_segment_map);
3156 amt += (to - from - 1) * sizeof (asection *);
3157 m = bfd_zalloc (abfd, amt);
3158 if (m == NULL)
3159 return NULL;
3160 m->next = NULL;
3161 m->p_type = PT_LOAD;
3162 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3163 m->sections[i - from] = *hdrpp;
3164 m->count = to - from;
3165
3166 if (from == 0 && phdr)
3167 {
3168 /* Include the headers in the first PT_LOAD segment. */
3169 m->includes_filehdr = 1;
3170 m->includes_phdrs = 1;
3171 }
3172
3173 return m;
3174 }
3175
3176 /* Set up a mapping from BFD sections to program segments. */
3177
3178 static bfd_boolean
3179 map_sections_to_segments (bfd *abfd)
3180 {
3181 asection **sections = NULL;
3182 asection *s;
3183 unsigned int i;
3184 unsigned int count;
3185 struct elf_segment_map *mfirst;
3186 struct elf_segment_map **pm;
3187 struct elf_segment_map *m;
3188 asection *last_hdr;
3189 unsigned int phdr_index;
3190 bfd_vma maxpagesize;
3191 asection **hdrpp;
3192 bfd_boolean phdr_in_segment = TRUE;
3193 bfd_boolean writable;
3194 int tls_count = 0;
3195 asection *first_tls = NULL;
3196 asection *dynsec, *eh_frame_hdr;
3197 bfd_size_type amt;
3198
3199 if (elf_tdata (abfd)->segment_map != NULL)
3200 return TRUE;
3201
3202 if (bfd_count_sections (abfd) == 0)
3203 return TRUE;
3204
3205 /* Select the allocated sections, and sort them. */
3206
3207 amt = bfd_count_sections (abfd) * sizeof (asection *);
3208 sections = bfd_malloc (amt);
3209 if (sections == NULL)
3210 goto error_return;
3211
3212 i = 0;
3213 for (s = abfd->sections; s != NULL; s = s->next)
3214 {
3215 if ((s->flags & SEC_ALLOC) != 0)
3216 {
3217 sections[i] = s;
3218 ++i;
3219 }
3220 }
3221 BFD_ASSERT (i <= bfd_count_sections (abfd));
3222 count = i;
3223
3224 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3225
3226 /* Build the mapping. */
3227
3228 mfirst = NULL;
3229 pm = &mfirst;
3230
3231 /* If we have a .interp section, then create a PT_PHDR segment for
3232 the program headers and a PT_INTERP segment for the .interp
3233 section. */
3234 s = bfd_get_section_by_name (abfd, ".interp");
3235 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3236 {
3237 amt = sizeof (struct elf_segment_map);
3238 m = bfd_zalloc (abfd, amt);
3239 if (m == NULL)
3240 goto error_return;
3241 m->next = NULL;
3242 m->p_type = PT_PHDR;
3243 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3244 m->p_flags = PF_R | PF_X;
3245 m->p_flags_valid = 1;
3246 m->includes_phdrs = 1;
3247
3248 *pm = m;
3249 pm = &m->next;
3250
3251 amt = sizeof (struct elf_segment_map);
3252 m = bfd_zalloc (abfd, amt);
3253 if (m == NULL)
3254 goto error_return;
3255 m->next = NULL;
3256 m->p_type = PT_INTERP;
3257 m->count = 1;
3258 m->sections[0] = s;
3259
3260 *pm = m;
3261 pm = &m->next;
3262 }
3263
3264 /* Look through the sections. We put sections in the same program
3265 segment when the start of the second section can be placed within
3266 a few bytes of the end of the first section. */
3267 last_hdr = NULL;
3268 phdr_index = 0;
3269 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3270 writable = FALSE;
3271 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3272 if (dynsec != NULL
3273 && (dynsec->flags & SEC_LOAD) == 0)
3274 dynsec = NULL;
3275
3276 /* Deal with -Ttext or something similar such that the first section
3277 is not adjacent to the program headers. This is an
3278 approximation, since at this point we don't know exactly how many
3279 program headers we will need. */
3280 if (count > 0)
3281 {
3282 bfd_size_type phdr_size;
3283
3284 phdr_size = elf_tdata (abfd)->program_header_size;
3285 if (phdr_size == 0)
3286 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3287 if ((abfd->flags & D_PAGED) == 0
3288 || sections[0]->lma < phdr_size
3289 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3290 phdr_in_segment = FALSE;
3291 }
3292
3293 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3294 {
3295 asection *hdr;
3296 bfd_boolean new_segment;
3297
3298 hdr = *hdrpp;
3299
3300 /* See if this section and the last one will fit in the same
3301 segment. */
3302
3303 if (last_hdr == NULL)
3304 {
3305 /* If we don't have a segment yet, then we don't need a new
3306 one (we build the last one after this loop). */
3307 new_segment = FALSE;
3308 }
3309 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3310 {
3311 /* If this section has a different relation between the
3312 virtual address and the load address, then we need a new
3313 segment. */
3314 new_segment = TRUE;
3315 }
3316 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3317 < BFD_ALIGN (hdr->lma, maxpagesize))
3318 {
3319 /* If putting this section in this segment would force us to
3320 skip a page in the segment, then we need a new segment. */
3321 new_segment = TRUE;
3322 }
3323 else if ((last_hdr->flags & SEC_LOAD) == 0
3324 && (hdr->flags & SEC_LOAD) != 0)
3325 {
3326 /* We don't want to put a loadable section after a
3327 nonloadable section in the same segment. */
3328 new_segment = TRUE;
3329 }
3330 else if ((abfd->flags & D_PAGED) == 0)
3331 {
3332 /* If the file is not demand paged, which means that we
3333 don't require the sections to be correctly aligned in the
3334 file, then there is no other reason for a new segment. */
3335 new_segment = FALSE;
3336 }
3337 else if (! writable
3338 && (hdr->flags & SEC_READONLY) == 0
3339 && (((last_hdr->lma + last_hdr->_raw_size - 1)
3340 & ~(maxpagesize - 1))
3341 != (hdr->lma & ~(maxpagesize - 1))))
3342 {
3343 /* We don't want to put a writable section in a read only
3344 segment, unless they are on the same page in memory
3345 anyhow. We already know that the last section does not
3346 bring us past the current section on the page, so the
3347 only case in which the new section is not on the same
3348 page as the previous section is when the previous section
3349 ends precisely on a page boundary. */
3350 new_segment = TRUE;
3351 }
3352 else
3353 {
3354 /* Otherwise, we can use the same segment. */
3355 new_segment = FALSE;
3356 }
3357
3358 if (! new_segment)
3359 {
3360 if ((hdr->flags & SEC_READONLY) == 0)
3361 writable = TRUE;
3362 /* Ignore .tbss section for segment layout purposes. */
3363 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3364 last_hdr = hdr;
3365 continue;
3366 }
3367
3368 /* We need a new program segment. We must create a new program
3369 header holding all the sections from phdr_index until hdr. */
3370
3371 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3372 if (m == NULL)
3373 goto error_return;
3374
3375 *pm = m;
3376 pm = &m->next;
3377
3378 if ((hdr->flags & SEC_READONLY) == 0)
3379 writable = TRUE;
3380 else
3381 writable = FALSE;
3382
3383 last_hdr = hdr;
3384 phdr_index = i;
3385 phdr_in_segment = FALSE;
3386 }
3387
3388 /* Create a final PT_LOAD program segment. */
3389 if (last_hdr != NULL)
3390 {
3391 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3392 if (m == NULL)
3393 goto error_return;
3394
3395 *pm = m;
3396 pm = &m->next;
3397 }
3398
3399 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3400 if (dynsec != NULL)
3401 {
3402 amt = sizeof (struct elf_segment_map);
3403 m = bfd_zalloc (abfd, amt);
3404 if (m == NULL)
3405 goto error_return;
3406 m->next = NULL;
3407 m->p_type = PT_DYNAMIC;
3408 m->count = 1;
3409 m->sections[0] = dynsec;
3410
3411 *pm = m;
3412 pm = &m->next;
3413 }
3414
3415 /* For each loadable .note section, add a PT_NOTE segment. We don't
3416 use bfd_get_section_by_name, because if we link together
3417 nonloadable .note sections and loadable .note sections, we will
3418 generate two .note sections in the output file. FIXME: Using
3419 names for section types is bogus anyhow. */
3420 for (s = abfd->sections; s != NULL; s = s->next)
3421 {
3422 if ((s->flags & SEC_LOAD) != 0
3423 && strncmp (s->name, ".note", 5) == 0)
3424 {
3425 amt = sizeof (struct elf_segment_map);
3426 m = bfd_zalloc (abfd, amt);
3427 if (m == NULL)
3428 goto error_return;
3429 m->next = NULL;
3430 m->p_type = PT_NOTE;
3431 m->count = 1;
3432 m->sections[0] = s;
3433
3434 *pm = m;
3435 pm = &m->next;
3436 }
3437 if (s->flags & SEC_THREAD_LOCAL)
3438 {
3439 if (! tls_count)
3440 first_tls = s;
3441 tls_count++;
3442 }
3443 }
3444
3445 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3446 if (tls_count > 0)
3447 {
3448 int i;
3449
3450 amt = sizeof (struct elf_segment_map);
3451 amt += (tls_count - 1) * sizeof (asection *);
3452 m = bfd_zalloc (abfd, amt);
3453 if (m == NULL)
3454 goto error_return;
3455 m->next = NULL;
3456 m->p_type = PT_TLS;
3457 m->count = tls_count;
3458 /* Mandated PF_R. */
3459 m->p_flags = PF_R;
3460 m->p_flags_valid = 1;
3461 for (i = 0; i < tls_count; ++i)
3462 {
3463 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3464 m->sections[i] = first_tls;
3465 first_tls = first_tls->next;
3466 }
3467
3468 *pm = m;
3469 pm = &m->next;
3470 }
3471
3472 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3473 segment. */
3474 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3475 if (eh_frame_hdr != NULL
3476 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3477 {
3478 amt = sizeof (struct elf_segment_map);
3479 m = bfd_zalloc (abfd, amt);
3480 if (m == NULL)
3481 goto error_return;
3482 m->next = NULL;
3483 m->p_type = PT_GNU_EH_FRAME;
3484 m->count = 1;
3485 m->sections[0] = eh_frame_hdr->output_section;
3486
3487 *pm = m;
3488 pm = &m->next;
3489 }
3490
3491 if (elf_tdata (abfd)->stack_flags)
3492 {
3493 amt = sizeof (struct elf_segment_map);
3494 m = bfd_zalloc (abfd, amt);
3495 if (m == NULL)
3496 goto error_return;
3497 m->next = NULL;
3498 m->p_type = PT_GNU_STACK;
3499 m->p_flags = elf_tdata (abfd)->stack_flags;
3500 m->p_flags_valid = 1;
3501
3502 *pm = m;
3503 pm = &m->next;
3504 }
3505
3506 free (sections);
3507 sections = NULL;
3508
3509 elf_tdata (abfd)->segment_map = mfirst;
3510 return TRUE;
3511
3512 error_return:
3513 if (sections != NULL)
3514 free (sections);
3515 return FALSE;
3516 }
3517
3518 /* Sort sections by address. */
3519
3520 static int
3521 elf_sort_sections (const void *arg1, const void *arg2)
3522 {
3523 const asection *sec1 = *(const asection **) arg1;
3524 const asection *sec2 = *(const asection **) arg2;
3525 bfd_size_type size1, size2;
3526
3527 /* Sort by LMA first, since this is the address used to
3528 place the section into a segment. */
3529 if (sec1->lma < sec2->lma)
3530 return -1;
3531 else if (sec1->lma > sec2->lma)
3532 return 1;
3533
3534 /* Then sort by VMA. Normally the LMA and the VMA will be
3535 the same, and this will do nothing. */
3536 if (sec1->vma < sec2->vma)
3537 return -1;
3538 else if (sec1->vma > sec2->vma)
3539 return 1;
3540
3541 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3542
3543 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3544
3545 if (TOEND (sec1))
3546 {
3547 if (TOEND (sec2))
3548 {
3549 /* If the indicies are the same, do not return 0
3550 here, but continue to try the next comparison. */
3551 if (sec1->target_index - sec2->target_index != 0)
3552 return sec1->target_index - sec2->target_index;
3553 }
3554 else
3555 return 1;
3556 }
3557 else if (TOEND (sec2))
3558 return -1;
3559
3560 #undef TOEND
3561
3562 /* Sort by size, to put zero sized sections
3563 before others at the same address. */
3564
3565 size1 = (sec1->flags & SEC_LOAD) ? sec1->_raw_size : 0;
3566 size2 = (sec2->flags & SEC_LOAD) ? sec2->_raw_size : 0;
3567
3568 if (size1 < size2)
3569 return -1;
3570 if (size1 > size2)
3571 return 1;
3572
3573 return sec1->target_index - sec2->target_index;
3574 }
3575
3576 /* Ian Lance Taylor writes:
3577
3578 We shouldn't be using % with a negative signed number. That's just
3579 not good. We have to make sure either that the number is not
3580 negative, or that the number has an unsigned type. When the types
3581 are all the same size they wind up as unsigned. When file_ptr is a
3582 larger signed type, the arithmetic winds up as signed long long,
3583 which is wrong.
3584
3585 What we're trying to say here is something like ``increase OFF by
3586 the least amount that will cause it to be equal to the VMA modulo
3587 the page size.'' */
3588 /* In other words, something like:
3589
3590 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3591 off_offset = off % bed->maxpagesize;
3592 if (vma_offset < off_offset)
3593 adjustment = vma_offset + bed->maxpagesize - off_offset;
3594 else
3595 adjustment = vma_offset - off_offset;
3596
3597 which can can be collapsed into the expression below. */
3598
3599 static file_ptr
3600 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3601 {
3602 return ((vma - off) % maxpagesize);
3603 }
3604
3605 /* Assign file positions to the sections based on the mapping from
3606 sections to segments. This function also sets up some fields in
3607 the file header, and writes out the program headers. */
3608
3609 static bfd_boolean
3610 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3611 {
3612 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3613 unsigned int count;
3614 struct elf_segment_map *m;
3615 unsigned int alloc;
3616 Elf_Internal_Phdr *phdrs;
3617 file_ptr off, voff;
3618 bfd_vma filehdr_vaddr, filehdr_paddr;
3619 bfd_vma phdrs_vaddr, phdrs_paddr;
3620 Elf_Internal_Phdr *p;
3621 bfd_size_type amt;
3622
3623 if (elf_tdata (abfd)->segment_map == NULL)
3624 {
3625 if (! map_sections_to_segments (abfd))
3626 return FALSE;
3627 }
3628 else
3629 {
3630 /* The placement algorithm assumes that non allocated sections are
3631 not in PT_LOAD segments. We ensure this here by removing such
3632 sections from the segment map. */
3633 for (m = elf_tdata (abfd)->segment_map;
3634 m != NULL;
3635 m = m->next)
3636 {
3637 unsigned int new_count;
3638 unsigned int i;
3639
3640 if (m->p_type != PT_LOAD)
3641 continue;
3642
3643 new_count = 0;
3644 for (i = 0; i < m->count; i ++)
3645 {
3646 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3647 {
3648 if (i != new_count)
3649 m->sections[new_count] = m->sections[i];
3650
3651 new_count ++;
3652 }
3653 }
3654
3655 if (new_count != m->count)
3656 m->count = new_count;
3657 }
3658 }
3659
3660 if (bed->elf_backend_modify_segment_map)
3661 {
3662 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3663 return FALSE;
3664 }
3665
3666 count = 0;
3667 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3668 ++count;
3669
3670 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3671 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3672 elf_elfheader (abfd)->e_phnum = count;
3673
3674 if (count == 0)
3675 return TRUE;
3676
3677 /* If we already counted the number of program segments, make sure
3678 that we allocated enough space. This happens when SIZEOF_HEADERS
3679 is used in a linker script. */
3680 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3681 if (alloc != 0 && count > alloc)
3682 {
3683 ((*_bfd_error_handler)
3684 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3685 bfd_get_filename (abfd), alloc, count));
3686 bfd_set_error (bfd_error_bad_value);
3687 return FALSE;
3688 }
3689
3690 if (alloc == 0)
3691 alloc = count;
3692
3693 amt = alloc * sizeof (Elf_Internal_Phdr);
3694 phdrs = bfd_alloc (abfd, amt);
3695 if (phdrs == NULL)
3696 return FALSE;
3697
3698 off = bed->s->sizeof_ehdr;
3699 off += alloc * bed->s->sizeof_phdr;
3700
3701 filehdr_vaddr = 0;
3702 filehdr_paddr = 0;
3703 phdrs_vaddr = 0;
3704 phdrs_paddr = 0;
3705
3706 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3707 m != NULL;
3708 m = m->next, p++)
3709 {
3710 unsigned int i;
3711 asection **secpp;
3712
3713 /* If elf_segment_map is not from map_sections_to_segments, the
3714 sections may not be correctly ordered. NOTE: sorting should
3715 not be done to the PT_NOTE section of a corefile, which may
3716 contain several pseudo-sections artificially created by bfd.
3717 Sorting these pseudo-sections breaks things badly. */
3718 if (m->count > 1
3719 && !(elf_elfheader (abfd)->e_type == ET_CORE
3720 && m->p_type == PT_NOTE))
3721 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3722 elf_sort_sections);
3723
3724 p->p_type = m->p_type;
3725 p->p_flags = m->p_flags;
3726
3727 if (p->p_type == PT_LOAD
3728 && m->count > 0
3729 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3730 {
3731 if ((abfd->flags & D_PAGED) != 0)
3732 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3733 bed->maxpagesize);
3734 else
3735 {
3736 bfd_size_type align;
3737
3738 align = 0;
3739 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3740 {
3741 bfd_size_type secalign;
3742
3743 secalign = bfd_get_section_alignment (abfd, *secpp);
3744 if (secalign > align)
3745 align = secalign;
3746 }
3747
3748 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3749 1 << align);
3750 }
3751 }
3752
3753 if (m->count == 0)
3754 p->p_vaddr = 0;
3755 else
3756 p->p_vaddr = m->sections[0]->vma;
3757
3758 if (m->p_paddr_valid)
3759 p->p_paddr = m->p_paddr;
3760 else if (m->count == 0)
3761 p->p_paddr = 0;
3762 else
3763 p->p_paddr = m->sections[0]->lma;
3764
3765 if (p->p_type == PT_LOAD
3766 && (abfd->flags & D_PAGED) != 0)
3767 p->p_align = bed->maxpagesize;
3768 else if (m->count == 0)
3769 p->p_align = 1 << bed->s->log_file_align;
3770 else
3771 p->p_align = 0;
3772
3773 p->p_offset = 0;
3774 p->p_filesz = 0;
3775 p->p_memsz = 0;
3776
3777 if (m->includes_filehdr)
3778 {
3779 if (! m->p_flags_valid)
3780 p->p_flags |= PF_R;
3781 p->p_offset = 0;
3782 p->p_filesz = bed->s->sizeof_ehdr;
3783 p->p_memsz = bed->s->sizeof_ehdr;
3784 if (m->count > 0)
3785 {
3786 BFD_ASSERT (p->p_type == PT_LOAD);
3787
3788 if (p->p_vaddr < (bfd_vma) off)
3789 {
3790 (*_bfd_error_handler)
3791 (_("%s: Not enough room for program headers, try linking with -N"),
3792 bfd_get_filename (abfd));
3793 bfd_set_error (bfd_error_bad_value);
3794 return FALSE;
3795 }
3796
3797 p->p_vaddr -= off;
3798 if (! m->p_paddr_valid)
3799 p->p_paddr -= off;
3800 }
3801 if (p->p_type == PT_LOAD)
3802 {
3803 filehdr_vaddr = p->p_vaddr;
3804 filehdr_paddr = p->p_paddr;
3805 }
3806 }
3807
3808 if (m->includes_phdrs)
3809 {
3810 if (! m->p_flags_valid)
3811 p->p_flags |= PF_R;
3812
3813 if (m->includes_filehdr)
3814 {
3815 if (p->p_type == PT_LOAD)
3816 {
3817 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3818 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3819 }
3820 }
3821 else
3822 {
3823 p->p_offset = bed->s->sizeof_ehdr;
3824
3825 if (m->count > 0)
3826 {
3827 BFD_ASSERT (p->p_type == PT_LOAD);
3828 p->p_vaddr -= off - p->p_offset;
3829 if (! m->p_paddr_valid)
3830 p->p_paddr -= off - p->p_offset;
3831 }
3832
3833 if (p->p_type == PT_LOAD)
3834 {
3835 phdrs_vaddr = p->p_vaddr;
3836 phdrs_paddr = p->p_paddr;
3837 }
3838 else
3839 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3840 }
3841
3842 p->p_filesz += alloc * bed->s->sizeof_phdr;
3843 p->p_memsz += alloc * bed->s->sizeof_phdr;
3844 }
3845
3846 if (p->p_type == PT_LOAD
3847 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3848 {
3849 if (! m->includes_filehdr && ! m->includes_phdrs)
3850 p->p_offset = off;
3851 else
3852 {
3853 file_ptr adjust;
3854
3855 adjust = off - (p->p_offset + p->p_filesz);
3856 p->p_filesz += adjust;
3857 p->p_memsz += adjust;
3858 }
3859 }
3860
3861 voff = off;
3862
3863 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3864 {
3865 asection *sec;
3866 flagword flags;
3867 bfd_size_type align;
3868
3869 sec = *secpp;
3870 flags = sec->flags;
3871 align = 1 << bfd_get_section_alignment (abfd, sec);
3872
3873 /* The section may have artificial alignment forced by a
3874 link script. Notice this case by the gap between the
3875 cumulative phdr lma and the section's lma. */
3876 if (p->p_paddr + p->p_memsz < sec->lma)
3877 {
3878 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3879
3880 p->p_memsz += adjust;
3881 if (p->p_type == PT_LOAD
3882 || (p->p_type == PT_NOTE
3883 && bfd_get_format (abfd) == bfd_core))
3884 {
3885 off += adjust;
3886 voff += adjust;
3887 }
3888 if ((flags & SEC_LOAD) != 0
3889 || (flags & SEC_THREAD_LOCAL) != 0)
3890 p->p_filesz += adjust;
3891 }
3892
3893 if (p->p_type == PT_LOAD)
3894 {
3895 bfd_signed_vma adjust;
3896
3897 if ((flags & SEC_LOAD) != 0)
3898 {
3899 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3900 if (adjust < 0)
3901 adjust = 0;
3902 }
3903 else if ((flags & SEC_ALLOC) != 0)
3904 {
3905 /* The section VMA must equal the file position
3906 modulo the page size. FIXME: I'm not sure if
3907 this adjustment is really necessary. We used to
3908 not have the SEC_LOAD case just above, and then
3909 this was necessary, but now I'm not sure. */
3910 if ((abfd->flags & D_PAGED) != 0)
3911 adjust = vma_page_aligned_bias (sec->vma, voff,
3912 bed->maxpagesize);
3913 else
3914 adjust = vma_page_aligned_bias (sec->vma, voff,
3915 align);
3916 }
3917 else
3918 adjust = 0;
3919
3920 if (adjust != 0)
3921 {
3922 if (i == 0)
3923 {
3924 (* _bfd_error_handler) (_("\
3925 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3926 bfd_section_name (abfd, sec),
3927 sec->lma,
3928 p->p_paddr);
3929 return FALSE;
3930 }
3931 p->p_memsz += adjust;
3932 off += adjust;
3933 voff += adjust;
3934 if ((flags & SEC_LOAD) != 0)
3935 p->p_filesz += adjust;
3936 }
3937
3938 sec->filepos = off;
3939
3940 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3941 used in a linker script we may have a section with
3942 SEC_LOAD clear but which is supposed to have
3943 contents. */
3944 if ((flags & SEC_LOAD) != 0
3945 || (flags & SEC_HAS_CONTENTS) != 0)
3946 off += sec->_raw_size;
3947
3948 if ((flags & SEC_ALLOC) != 0
3949 && ((flags & SEC_LOAD) != 0
3950 || (flags & SEC_THREAD_LOCAL) == 0))
3951 voff += sec->_raw_size;
3952 }
3953
3954 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3955 {
3956 /* The actual "note" segment has i == 0.
3957 This is the one that actually contains everything. */
3958 if (i == 0)
3959 {
3960 sec->filepos = off;
3961 p->p_filesz = sec->_raw_size;
3962 off += sec->_raw_size;
3963 voff = off;
3964 }
3965 else
3966 {
3967 /* Fake sections -- don't need to be written. */
3968 sec->filepos = 0;
3969 sec->_raw_size = 0;
3970 flags = sec->flags = 0;
3971 }
3972 p->p_memsz = 0;
3973 p->p_align = 1;
3974 }
3975 else
3976 {
3977 if ((sec->flags & SEC_LOAD) != 0
3978 || (sec->flags & SEC_THREAD_LOCAL) == 0
3979 || p->p_type == PT_TLS)
3980 p->p_memsz += sec->_raw_size;
3981
3982 if ((flags & SEC_LOAD) != 0)
3983 p->p_filesz += sec->_raw_size;
3984
3985 if (p->p_type == PT_TLS
3986 && sec->_raw_size == 0
3987 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3988 {
3989 struct bfd_link_order *o;
3990 bfd_vma tbss_size = 0;
3991
3992 for (o = sec->link_order_head; o != NULL; o = o->next)
3993 if (tbss_size < o->offset + o->size)
3994 tbss_size = o->offset + o->size;
3995
3996 p->p_memsz += tbss_size;
3997 }
3998
3999 if (align > p->p_align
4000 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4001 p->p_align = align;
4002 }
4003
4004 if (! m->p_flags_valid)
4005 {
4006 p->p_flags |= PF_R;
4007 if ((flags & SEC_CODE) != 0)
4008 p->p_flags |= PF_X;
4009 if ((flags & SEC_READONLY) == 0)
4010 p->p_flags |= PF_W;
4011 }
4012 }
4013 }
4014
4015 /* Now that we have set the section file positions, we can set up
4016 the file positions for the non PT_LOAD segments. */
4017 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4018 m != NULL;
4019 m = m->next, p++)
4020 {
4021 if (p->p_type != PT_LOAD && m->count > 0)
4022 {
4023 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4024 p->p_offset = m->sections[0]->filepos;
4025 }
4026 if (m->count == 0)
4027 {
4028 if (m->includes_filehdr)
4029 {
4030 p->p_vaddr = filehdr_vaddr;
4031 if (! m->p_paddr_valid)
4032 p->p_paddr = filehdr_paddr;
4033 }
4034 else if (m->includes_phdrs)
4035 {
4036 p->p_vaddr = phdrs_vaddr;
4037 if (! m->p_paddr_valid)
4038 p->p_paddr = phdrs_paddr;
4039 }
4040 }
4041 }
4042
4043 /* Clear out any program headers we allocated but did not use. */
4044 for (; count < alloc; count++, p++)
4045 {
4046 memset (p, 0, sizeof *p);
4047 p->p_type = PT_NULL;
4048 }
4049
4050 elf_tdata (abfd)->phdr = phdrs;
4051
4052 elf_tdata (abfd)->next_file_pos = off;
4053
4054 /* Write out the program headers. */
4055 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4056 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4057 return FALSE;
4058
4059 return TRUE;
4060 }
4061
4062 /* Get the size of the program header.
4063
4064 If this is called by the linker before any of the section VMA's are set, it
4065 can't calculate the correct value for a strange memory layout. This only
4066 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4067 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4068 data segment (exclusive of .interp and .dynamic).
4069
4070 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4071 will be two segments. */
4072
4073 static bfd_size_type
4074 get_program_header_size (bfd *abfd)
4075 {
4076 size_t segs;
4077 asection *s;
4078 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4079
4080 /* We can't return a different result each time we're called. */
4081 if (elf_tdata (abfd)->program_header_size != 0)
4082 return elf_tdata (abfd)->program_header_size;
4083
4084 if (elf_tdata (abfd)->segment_map != NULL)
4085 {
4086 struct elf_segment_map *m;
4087
4088 segs = 0;
4089 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4090 ++segs;
4091 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4092 return elf_tdata (abfd)->program_header_size;
4093 }
4094
4095 /* Assume we will need exactly two PT_LOAD segments: one for text
4096 and one for data. */
4097 segs = 2;
4098
4099 s = bfd_get_section_by_name (abfd, ".interp");
4100 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4101 {
4102 /* If we have a loadable interpreter section, we need a
4103 PT_INTERP segment. In this case, assume we also need a
4104 PT_PHDR segment, although that may not be true for all
4105 targets. */
4106 segs += 2;
4107 }
4108
4109 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4110 {
4111 /* We need a PT_DYNAMIC segment. */
4112 ++segs;
4113 }
4114
4115 if (elf_tdata (abfd)->eh_frame_hdr)
4116 {
4117 /* We need a PT_GNU_EH_FRAME segment. */
4118 ++segs;
4119 }
4120
4121 if (elf_tdata (abfd)->stack_flags)
4122 {
4123 /* We need a PT_GNU_STACK segment. */
4124 ++segs;
4125 }
4126
4127 for (s = abfd->sections; s != NULL; s = s->next)
4128 {
4129 if ((s->flags & SEC_LOAD) != 0
4130 && strncmp (s->name, ".note", 5) == 0)
4131 {
4132 /* We need a PT_NOTE segment. */
4133 ++segs;
4134 }
4135 }
4136
4137 for (s = abfd->sections; s != NULL; s = s->next)
4138 {
4139 if (s->flags & SEC_THREAD_LOCAL)
4140 {
4141 /* We need a PT_TLS segment. */
4142 ++segs;
4143 break;
4144 }
4145 }
4146
4147 /* Let the backend count up any program headers it might need. */
4148 if (bed->elf_backend_additional_program_headers)
4149 {
4150 int a;
4151
4152 a = (*bed->elf_backend_additional_program_headers) (abfd);
4153 if (a == -1)
4154 abort ();
4155 segs += a;
4156 }
4157
4158 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4159 return elf_tdata (abfd)->program_header_size;
4160 }
4161
4162 /* Work out the file positions of all the sections. This is called by
4163 _bfd_elf_compute_section_file_positions. All the section sizes and
4164 VMAs must be known before this is called.
4165
4166 We do not consider reloc sections at this point, unless they form
4167 part of the loadable image. Reloc sections are assigned file
4168 positions in assign_file_positions_for_relocs, which is called by
4169 write_object_contents and final_link.
4170
4171 We also don't set the positions of the .symtab and .strtab here. */
4172
4173 static bfd_boolean
4174 assign_file_positions_except_relocs (bfd *abfd,
4175 struct bfd_link_info *link_info)
4176 {
4177 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4178 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4179 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4180 unsigned int num_sec = elf_numsections (abfd);
4181 file_ptr off;
4182 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4183
4184 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4185 && bfd_get_format (abfd) != bfd_core)
4186 {
4187 Elf_Internal_Shdr **hdrpp;
4188 unsigned int i;
4189
4190 /* Start after the ELF header. */
4191 off = i_ehdrp->e_ehsize;
4192
4193 /* We are not creating an executable, which means that we are
4194 not creating a program header, and that the actual order of
4195 the sections in the file is unimportant. */
4196 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4197 {
4198 Elf_Internal_Shdr *hdr;
4199
4200 hdr = *hdrpp;
4201 if (hdr->sh_type == SHT_REL
4202 || hdr->sh_type == SHT_RELA
4203 || i == tdata->symtab_section
4204 || i == tdata->symtab_shndx_section
4205 || i == tdata->strtab_section)
4206 {
4207 hdr->sh_offset = -1;
4208 }
4209 else
4210 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4211
4212 if (i == SHN_LORESERVE - 1)
4213 {
4214 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4215 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4216 }
4217 }
4218 }
4219 else
4220 {
4221 unsigned int i;
4222 Elf_Internal_Shdr **hdrpp;
4223
4224 /* Assign file positions for the loaded sections based on the
4225 assignment of sections to segments. */
4226 if (! assign_file_positions_for_segments (abfd, link_info))
4227 return FALSE;
4228
4229 /* Assign file positions for the other sections. */
4230
4231 off = elf_tdata (abfd)->next_file_pos;
4232 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4233 {
4234 Elf_Internal_Shdr *hdr;
4235
4236 hdr = *hdrpp;
4237 if (hdr->bfd_section != NULL
4238 && hdr->bfd_section->filepos != 0)
4239 hdr->sh_offset = hdr->bfd_section->filepos;
4240 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4241 {
4242 ((*_bfd_error_handler)
4243 (_("%s: warning: allocated section `%s' not in segment"),
4244 bfd_get_filename (abfd),
4245 (hdr->bfd_section == NULL
4246 ? "*unknown*"
4247 : hdr->bfd_section->name)));
4248 if ((abfd->flags & D_PAGED) != 0)
4249 off += vma_page_aligned_bias (hdr->sh_addr, off,
4250 bed->maxpagesize);
4251 else
4252 off += vma_page_aligned_bias (hdr->sh_addr, off,
4253 hdr->sh_addralign);
4254 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4255 FALSE);
4256 }
4257 else if (hdr->sh_type == SHT_REL
4258 || hdr->sh_type == SHT_RELA
4259 || hdr == i_shdrpp[tdata->symtab_section]
4260 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4261 || hdr == i_shdrpp[tdata->strtab_section])
4262 hdr->sh_offset = -1;
4263 else
4264 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4265
4266 if (i == SHN_LORESERVE - 1)
4267 {
4268 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4269 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4270 }
4271 }
4272 }
4273
4274 /* Place the section headers. */
4275 off = align_file_position (off, 1 << bed->s->log_file_align);
4276 i_ehdrp->e_shoff = off;
4277 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4278
4279 elf_tdata (abfd)->next_file_pos = off;
4280
4281 return TRUE;
4282 }
4283
4284 static bfd_boolean
4285 prep_headers (bfd *abfd)
4286 {
4287 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4288 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4289 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4290 struct elf_strtab_hash *shstrtab;
4291 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4292
4293 i_ehdrp = elf_elfheader (abfd);
4294 i_shdrp = elf_elfsections (abfd);
4295
4296 shstrtab = _bfd_elf_strtab_init ();
4297 if (shstrtab == NULL)
4298 return FALSE;
4299
4300 elf_shstrtab (abfd) = shstrtab;
4301
4302 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4303 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4304 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4305 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4306
4307 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4308 i_ehdrp->e_ident[EI_DATA] =
4309 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4310 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4311
4312 if ((abfd->flags & DYNAMIC) != 0)
4313 i_ehdrp->e_type = ET_DYN;
4314 else if ((abfd->flags & EXEC_P) != 0)
4315 i_ehdrp->e_type = ET_EXEC;
4316 else if (bfd_get_format (abfd) == bfd_core)
4317 i_ehdrp->e_type = ET_CORE;
4318 else
4319 i_ehdrp->e_type = ET_REL;
4320
4321 switch (bfd_get_arch (abfd))
4322 {
4323 case bfd_arch_unknown:
4324 i_ehdrp->e_machine = EM_NONE;
4325 break;
4326
4327 /* There used to be a long list of cases here, each one setting
4328 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4329 in the corresponding bfd definition. To avoid duplication,
4330 the switch was removed. Machines that need special handling
4331 can generally do it in elf_backend_final_write_processing(),
4332 unless they need the information earlier than the final write.
4333 Such need can generally be supplied by replacing the tests for
4334 e_machine with the conditions used to determine it. */
4335 default:
4336 i_ehdrp->e_machine = bed->elf_machine_code;
4337 }
4338
4339 i_ehdrp->e_version = bed->s->ev_current;
4340 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4341
4342 /* No program header, for now. */
4343 i_ehdrp->e_phoff = 0;
4344 i_ehdrp->e_phentsize = 0;
4345 i_ehdrp->e_phnum = 0;
4346
4347 /* Each bfd section is section header entry. */
4348 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4349 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4350
4351 /* If we're building an executable, we'll need a program header table. */
4352 if (abfd->flags & EXEC_P)
4353 {
4354 /* It all happens later. */
4355 #if 0
4356 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4357
4358 /* elf_build_phdrs() returns a (NULL-terminated) array of
4359 Elf_Internal_Phdrs. */
4360 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4361 i_ehdrp->e_phoff = outbase;
4362 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4363 #endif
4364 }
4365 else
4366 {
4367 i_ehdrp->e_phentsize = 0;
4368 i_phdrp = 0;
4369 i_ehdrp->e_phoff = 0;
4370 }
4371
4372 elf_tdata (abfd)->symtab_hdr.sh_name =
4373 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4374 elf_tdata (abfd)->strtab_hdr.sh_name =
4375 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4376 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4377 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4378 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4379 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4380 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4381 return FALSE;
4382
4383 return TRUE;
4384 }
4385
4386 /* Assign file positions for all the reloc sections which are not part
4387 of the loadable file image. */
4388
4389 void
4390 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4391 {
4392 file_ptr off;
4393 unsigned int i, num_sec;
4394 Elf_Internal_Shdr **shdrpp;
4395
4396 off = elf_tdata (abfd)->next_file_pos;
4397
4398 num_sec = elf_numsections (abfd);
4399 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4400 {
4401 Elf_Internal_Shdr *shdrp;
4402
4403 shdrp = *shdrpp;
4404 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4405 && shdrp->sh_offset == -1)
4406 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4407 }
4408
4409 elf_tdata (abfd)->next_file_pos = off;
4410 }
4411
4412 bfd_boolean
4413 _bfd_elf_write_object_contents (bfd *abfd)
4414 {
4415 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4416 Elf_Internal_Ehdr *i_ehdrp;
4417 Elf_Internal_Shdr **i_shdrp;
4418 bfd_boolean failed;
4419 unsigned int count, num_sec;
4420
4421 if (! abfd->output_has_begun
4422 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4423 return FALSE;
4424
4425 i_shdrp = elf_elfsections (abfd);
4426 i_ehdrp = elf_elfheader (abfd);
4427
4428 failed = FALSE;
4429 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4430 if (failed)
4431 return FALSE;
4432
4433 _bfd_elf_assign_file_positions_for_relocs (abfd);
4434
4435 /* After writing the headers, we need to write the sections too... */
4436 num_sec = elf_numsections (abfd);
4437 for (count = 1; count < num_sec; count++)
4438 {
4439 if (bed->elf_backend_section_processing)
4440 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4441 if (i_shdrp[count]->contents)
4442 {
4443 bfd_size_type amt = i_shdrp[count]->sh_size;
4444
4445 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4446 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4447 return FALSE;
4448 }
4449 if (count == SHN_LORESERVE - 1)
4450 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4451 }
4452
4453 /* Write out the section header names. */
4454 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4455 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4456 return FALSE;
4457
4458 if (bed->elf_backend_final_write_processing)
4459 (*bed->elf_backend_final_write_processing) (abfd,
4460 elf_tdata (abfd)->linker);
4461
4462 return bed->s->write_shdrs_and_ehdr (abfd);
4463 }
4464
4465 bfd_boolean
4466 _bfd_elf_write_corefile_contents (bfd *abfd)
4467 {
4468 /* Hopefully this can be done just like an object file. */
4469 return _bfd_elf_write_object_contents (abfd);
4470 }
4471
4472 /* Given a section, search the header to find them. */
4473
4474 int
4475 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4476 {
4477 const struct elf_backend_data *bed;
4478 int index;
4479
4480 if (elf_section_data (asect) != NULL
4481 && elf_section_data (asect)->this_idx != 0)
4482 return elf_section_data (asect)->this_idx;
4483
4484 if (bfd_is_abs_section (asect))
4485 index = SHN_ABS;
4486 else if (bfd_is_com_section (asect))
4487 index = SHN_COMMON;
4488 else if (bfd_is_und_section (asect))
4489 index = SHN_UNDEF;
4490 else
4491 {
4492 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4493 int maxindex = elf_numsections (abfd);
4494
4495 for (index = 1; index < maxindex; index++)
4496 {
4497 Elf_Internal_Shdr *hdr = i_shdrp[index];
4498
4499 if (hdr != NULL && hdr->bfd_section == asect)
4500 return index;
4501 }
4502 index = -1;
4503 }
4504
4505 bed = get_elf_backend_data (abfd);
4506 if (bed->elf_backend_section_from_bfd_section)
4507 {
4508 int retval = index;
4509
4510 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4511 return retval;
4512 }
4513
4514 if (index == -1)
4515 bfd_set_error (bfd_error_nonrepresentable_section);
4516
4517 return index;
4518 }
4519
4520 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4521 on error. */
4522
4523 int
4524 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4525 {
4526 asymbol *asym_ptr = *asym_ptr_ptr;
4527 int idx;
4528 flagword flags = asym_ptr->flags;
4529
4530 /* When gas creates relocations against local labels, it creates its
4531 own symbol for the section, but does put the symbol into the
4532 symbol chain, so udata is 0. When the linker is generating
4533 relocatable output, this section symbol may be for one of the
4534 input sections rather than the output section. */
4535 if (asym_ptr->udata.i == 0
4536 && (flags & BSF_SECTION_SYM)
4537 && asym_ptr->section)
4538 {
4539 int indx;
4540
4541 if (asym_ptr->section->output_section != NULL)
4542 indx = asym_ptr->section->output_section->index;
4543 else
4544 indx = asym_ptr->section->index;
4545 if (indx < elf_num_section_syms (abfd)
4546 && elf_section_syms (abfd)[indx] != NULL)
4547 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4548 }
4549
4550 idx = asym_ptr->udata.i;
4551
4552 if (idx == 0)
4553 {
4554 /* This case can occur when using --strip-symbol on a symbol
4555 which is used in a relocation entry. */
4556 (*_bfd_error_handler)
4557 (_("%s: symbol `%s' required but not present"),
4558 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4559 bfd_set_error (bfd_error_no_symbols);
4560 return -1;
4561 }
4562
4563 #if DEBUG & 4
4564 {
4565 fprintf (stderr,
4566 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4567 (long) asym_ptr, asym_ptr->name, idx, flags,
4568 elf_symbol_flags (flags));
4569 fflush (stderr);
4570 }
4571 #endif
4572
4573 return idx;
4574 }
4575
4576 /* Copy private BFD data. This copies any program header information. */
4577
4578 static bfd_boolean
4579 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4580 {
4581 Elf_Internal_Ehdr *iehdr;
4582 struct elf_segment_map *map;
4583 struct elf_segment_map *map_first;
4584 struct elf_segment_map **pointer_to_map;
4585 Elf_Internal_Phdr *segment;
4586 asection *section;
4587 unsigned int i;
4588 unsigned int num_segments;
4589 bfd_boolean phdr_included = FALSE;
4590 bfd_vma maxpagesize;
4591 struct elf_segment_map *phdr_adjust_seg = NULL;
4592 unsigned int phdr_adjust_num = 0;
4593 const struct elf_backend_data *bed;
4594
4595 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4596 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4597 return TRUE;
4598
4599 if (elf_tdata (ibfd)->phdr == NULL)
4600 return TRUE;
4601
4602 bed = get_elf_backend_data (ibfd);
4603 iehdr = elf_elfheader (ibfd);
4604
4605 map_first = NULL;
4606 pointer_to_map = &map_first;
4607
4608 num_segments = elf_elfheader (ibfd)->e_phnum;
4609 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4610
4611 /* Returns the end address of the segment + 1. */
4612 #define SEGMENT_END(segment, start) \
4613 (start + (segment->p_memsz > segment->p_filesz \
4614 ? segment->p_memsz : segment->p_filesz))
4615
4616 #define SECTION_SIZE(section, segment) \
4617 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4618 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4619 ? section->_raw_size : 0)
4620
4621 /* Returns TRUE if the given section is contained within
4622 the given segment. VMA addresses are compared. */
4623 #define IS_CONTAINED_BY_VMA(section, segment) \
4624 (section->vma >= segment->p_vaddr \
4625 && (section->vma + SECTION_SIZE (section, segment) \
4626 <= (SEGMENT_END (segment, segment->p_vaddr))))
4627
4628 /* Returns TRUE if the given section is contained within
4629 the given segment. LMA addresses are compared. */
4630 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4631 (section->lma >= base \
4632 && (section->lma + SECTION_SIZE (section, segment) \
4633 <= SEGMENT_END (segment, base)))
4634
4635 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4636 #define IS_COREFILE_NOTE(p, s) \
4637 (p->p_type == PT_NOTE \
4638 && bfd_get_format (ibfd) == bfd_core \
4639 && s->vma == 0 && s->lma == 0 \
4640 && (bfd_vma) s->filepos >= p->p_offset \
4641 && ((bfd_vma) s->filepos + s->_raw_size \
4642 <= p->p_offset + p->p_filesz))
4643
4644 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4645 linker, which generates a PT_INTERP section with p_vaddr and
4646 p_memsz set to 0. */
4647 #define IS_SOLARIS_PT_INTERP(p, s) \
4648 (p->p_vaddr == 0 \
4649 && p->p_paddr == 0 \
4650 && p->p_memsz == 0 \
4651 && p->p_filesz > 0 \
4652 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4653 && s->_raw_size > 0 \
4654 && (bfd_vma) s->filepos >= p->p_offset \
4655 && ((bfd_vma) s->filepos + s->_raw_size \
4656 <= p->p_offset + p->p_filesz))
4657
4658 /* Decide if the given section should be included in the given segment.
4659 A section will be included if:
4660 1. It is within the address space of the segment -- we use the LMA
4661 if that is set for the segment and the VMA otherwise,
4662 2. It is an allocated segment,
4663 3. There is an output section associated with it,
4664 4. The section has not already been allocated to a previous segment.
4665 5. PT_GNU_STACK segments do not include any sections.
4666 6. PT_TLS segment includes only SHF_TLS sections.
4667 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4668 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4669 ((((segment->p_paddr \
4670 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4671 : IS_CONTAINED_BY_VMA (section, segment)) \
4672 && (section->flags & SEC_ALLOC) != 0) \
4673 || IS_COREFILE_NOTE (segment, section)) \
4674 && section->output_section != NULL \
4675 && segment->p_type != PT_GNU_STACK \
4676 && (segment->p_type != PT_TLS \
4677 || (section->flags & SEC_THREAD_LOCAL)) \
4678 && (segment->p_type == PT_LOAD \
4679 || segment->p_type == PT_TLS \
4680 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4681 && ! section->segment_mark)
4682
4683 /* Returns TRUE iff seg1 starts after the end of seg2. */
4684 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4685 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4686
4687 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4688 their VMA address ranges and their LMA address ranges overlap.
4689 It is possible to have overlapping VMA ranges without overlapping LMA
4690 ranges. RedBoot images for example can have both .data and .bss mapped
4691 to the same VMA range, but with the .data section mapped to a different
4692 LMA. */
4693 #define SEGMENT_OVERLAPS(seg1, seg2) \
4694 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4695 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4696 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4697 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4698
4699 /* Initialise the segment mark field. */
4700 for (section = ibfd->sections; section != NULL; section = section->next)
4701 section->segment_mark = FALSE;
4702
4703 /* Scan through the segments specified in the program header
4704 of the input BFD. For this first scan we look for overlaps
4705 in the loadable segments. These can be created by weird
4706 parameters to objcopy. Also, fix some solaris weirdness. */
4707 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4708 i < num_segments;
4709 i++, segment++)
4710 {
4711 unsigned int j;
4712 Elf_Internal_Phdr *segment2;
4713
4714 if (segment->p_type == PT_INTERP)
4715 for (section = ibfd->sections; section; section = section->next)
4716 if (IS_SOLARIS_PT_INTERP (segment, section))
4717 {
4718 /* Mininal change so that the normal section to segment
4719 assignment code will work. */
4720 segment->p_vaddr = section->vma;
4721 break;
4722 }
4723
4724 if (segment->p_type != PT_LOAD)
4725 continue;
4726
4727 /* Determine if this segment overlaps any previous segments. */
4728 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4729 {
4730 bfd_signed_vma extra_length;
4731
4732 if (segment2->p_type != PT_LOAD
4733 || ! SEGMENT_OVERLAPS (segment, segment2))
4734 continue;
4735
4736 /* Merge the two segments together. */
4737 if (segment2->p_vaddr < segment->p_vaddr)
4738 {
4739 /* Extend SEGMENT2 to include SEGMENT and then delete
4740 SEGMENT. */
4741 extra_length =
4742 SEGMENT_END (segment, segment->p_vaddr)
4743 - SEGMENT_END (segment2, segment2->p_vaddr);
4744
4745 if (extra_length > 0)
4746 {
4747 segment2->p_memsz += extra_length;
4748 segment2->p_filesz += extra_length;
4749 }
4750
4751 segment->p_type = PT_NULL;
4752
4753 /* Since we have deleted P we must restart the outer loop. */
4754 i = 0;
4755 segment = elf_tdata (ibfd)->phdr;
4756 break;
4757 }
4758 else
4759 {
4760 /* Extend SEGMENT to include SEGMENT2 and then delete
4761 SEGMENT2. */
4762 extra_length =
4763 SEGMENT_END (segment2, segment2->p_vaddr)
4764 - SEGMENT_END (segment, segment->p_vaddr);
4765
4766 if (extra_length > 0)
4767 {
4768 segment->p_memsz += extra_length;
4769 segment->p_filesz += extra_length;
4770 }
4771
4772 segment2->p_type = PT_NULL;
4773 }
4774 }
4775 }
4776
4777 /* The second scan attempts to assign sections to segments. */
4778 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4779 i < num_segments;
4780 i ++, segment ++)
4781 {
4782 unsigned int section_count;
4783 asection ** sections;
4784 asection * output_section;
4785 unsigned int isec;
4786 bfd_vma matching_lma;
4787 bfd_vma suggested_lma;
4788 unsigned int j;
4789 bfd_size_type amt;
4790
4791 if (segment->p_type == PT_NULL)
4792 continue;
4793
4794 /* Compute how many sections might be placed into this segment. */
4795 for (section = ibfd->sections, section_count = 0;
4796 section != NULL;
4797 section = section->next)
4798 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4799 ++section_count;
4800
4801 /* Allocate a segment map big enough to contain
4802 all of the sections we have selected. */
4803 amt = sizeof (struct elf_segment_map);
4804 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4805 map = bfd_alloc (obfd, amt);
4806 if (map == NULL)
4807 return FALSE;
4808
4809 /* Initialise the fields of the segment map. Default to
4810 using the physical address of the segment in the input BFD. */
4811 map->next = NULL;
4812 map->p_type = segment->p_type;
4813 map->p_flags = segment->p_flags;
4814 map->p_flags_valid = 1;
4815 map->p_paddr = segment->p_paddr;
4816 map->p_paddr_valid = 1;
4817
4818 /* Determine if this segment contains the ELF file header
4819 and if it contains the program headers themselves. */
4820 map->includes_filehdr = (segment->p_offset == 0
4821 && segment->p_filesz >= iehdr->e_ehsize);
4822
4823 map->includes_phdrs = 0;
4824
4825 if (! phdr_included || segment->p_type != PT_LOAD)
4826 {
4827 map->includes_phdrs =
4828 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4829 && (segment->p_offset + segment->p_filesz
4830 >= ((bfd_vma) iehdr->e_phoff
4831 + iehdr->e_phnum * iehdr->e_phentsize)));
4832
4833 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4834 phdr_included = TRUE;
4835 }
4836
4837 if (section_count == 0)
4838 {
4839 /* Special segments, such as the PT_PHDR segment, may contain
4840 no sections, but ordinary, loadable segments should contain
4841 something. They are allowed by the ELF spec however, so only
4842 a warning is produced. */
4843 if (segment->p_type == PT_LOAD)
4844 (*_bfd_error_handler)
4845 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4846 bfd_archive_filename (ibfd));
4847
4848 map->count = 0;
4849 *pointer_to_map = map;
4850 pointer_to_map = &map->next;
4851
4852 continue;
4853 }
4854
4855 /* Now scan the sections in the input BFD again and attempt
4856 to add their corresponding output sections to the segment map.
4857 The problem here is how to handle an output section which has
4858 been moved (ie had its LMA changed). There are four possibilities:
4859
4860 1. None of the sections have been moved.
4861 In this case we can continue to use the segment LMA from the
4862 input BFD.
4863
4864 2. All of the sections have been moved by the same amount.
4865 In this case we can change the segment's LMA to match the LMA
4866 of the first section.
4867
4868 3. Some of the sections have been moved, others have not.
4869 In this case those sections which have not been moved can be
4870 placed in the current segment which will have to have its size,
4871 and possibly its LMA changed, and a new segment or segments will
4872 have to be created to contain the other sections.
4873
4874 4. The sections have been moved, but not by the same amount.
4875 In this case we can change the segment's LMA to match the LMA
4876 of the first section and we will have to create a new segment
4877 or segments to contain the other sections.
4878
4879 In order to save time, we allocate an array to hold the section
4880 pointers that we are interested in. As these sections get assigned
4881 to a segment, they are removed from this array. */
4882
4883 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4884 to work around this long long bug. */
4885 amt = section_count * sizeof (asection *);
4886 sections = bfd_malloc (amt);
4887 if (sections == NULL)
4888 return FALSE;
4889
4890 /* Step One: Scan for segment vs section LMA conflicts.
4891 Also add the sections to the section array allocated above.
4892 Also add the sections to the current segment. In the common
4893 case, where the sections have not been moved, this means that
4894 we have completely filled the segment, and there is nothing
4895 more to do. */
4896 isec = 0;
4897 matching_lma = 0;
4898 suggested_lma = 0;
4899
4900 for (j = 0, section = ibfd->sections;
4901 section != NULL;
4902 section = section->next)
4903 {
4904 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4905 {
4906 output_section = section->output_section;
4907
4908 sections[j ++] = section;
4909
4910 /* The Solaris native linker always sets p_paddr to 0.
4911 We try to catch that case here, and set it to the
4912 correct value. Note - some backends require that
4913 p_paddr be left as zero. */
4914 if (segment->p_paddr == 0
4915 && segment->p_vaddr != 0
4916 && (! bed->want_p_paddr_set_to_zero)
4917 && isec == 0
4918 && output_section->lma != 0
4919 && (output_section->vma == (segment->p_vaddr
4920 + (map->includes_filehdr
4921 ? iehdr->e_ehsize
4922 : 0)
4923 + (map->includes_phdrs
4924 ? (iehdr->e_phnum
4925 * iehdr->e_phentsize)
4926 : 0))))
4927 map->p_paddr = segment->p_vaddr;
4928
4929 /* Match up the physical address of the segment with the
4930 LMA address of the output section. */
4931 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4932 || IS_COREFILE_NOTE (segment, section)
4933 || (bed->want_p_paddr_set_to_zero &&
4934 IS_CONTAINED_BY_VMA (output_section, segment))
4935 )
4936 {
4937 if (matching_lma == 0)
4938 matching_lma = output_section->lma;
4939
4940 /* We assume that if the section fits within the segment
4941 then it does not overlap any other section within that
4942 segment. */
4943 map->sections[isec ++] = output_section;
4944 }
4945 else if (suggested_lma == 0)
4946 suggested_lma = output_section->lma;
4947 }
4948 }
4949
4950 BFD_ASSERT (j == section_count);
4951
4952 /* Step Two: Adjust the physical address of the current segment,
4953 if necessary. */
4954 if (isec == section_count)
4955 {
4956 /* All of the sections fitted within the segment as currently
4957 specified. This is the default case. Add the segment to
4958 the list of built segments and carry on to process the next
4959 program header in the input BFD. */
4960 map->count = section_count;
4961 *pointer_to_map = map;
4962 pointer_to_map = &map->next;
4963
4964 free (sections);
4965 continue;
4966 }
4967 else
4968 {
4969 if (matching_lma != 0)
4970 {
4971 /* At least one section fits inside the current segment.
4972 Keep it, but modify its physical address to match the
4973 LMA of the first section that fitted. */
4974 map->p_paddr = matching_lma;
4975 }
4976 else
4977 {
4978 /* None of the sections fitted inside the current segment.
4979 Change the current segment's physical address to match
4980 the LMA of the first section. */
4981 map->p_paddr = suggested_lma;
4982 }
4983
4984 /* Offset the segment physical address from the lma
4985 to allow for space taken up by elf headers. */
4986 if (map->includes_filehdr)
4987 map->p_paddr -= iehdr->e_ehsize;
4988
4989 if (map->includes_phdrs)
4990 {
4991 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4992
4993 /* iehdr->e_phnum is just an estimate of the number
4994 of program headers that we will need. Make a note
4995 here of the number we used and the segment we chose
4996 to hold these headers, so that we can adjust the
4997 offset when we know the correct value. */
4998 phdr_adjust_num = iehdr->e_phnum;
4999 phdr_adjust_seg = map;
5000 }
5001 }
5002
5003 /* Step Three: Loop over the sections again, this time assigning
5004 those that fit to the current segment and removing them from the
5005 sections array; but making sure not to leave large gaps. Once all
5006 possible sections have been assigned to the current segment it is
5007 added to the list of built segments and if sections still remain
5008 to be assigned, a new segment is constructed before repeating
5009 the loop. */
5010 isec = 0;
5011 do
5012 {
5013 map->count = 0;
5014 suggested_lma = 0;
5015
5016 /* Fill the current segment with sections that fit. */
5017 for (j = 0; j < section_count; j++)
5018 {
5019 section = sections[j];
5020
5021 if (section == NULL)
5022 continue;
5023
5024 output_section = section->output_section;
5025
5026 BFD_ASSERT (output_section != NULL);
5027
5028 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5029 || IS_COREFILE_NOTE (segment, section))
5030 {
5031 if (map->count == 0)
5032 {
5033 /* If the first section in a segment does not start at
5034 the beginning of the segment, then something is
5035 wrong. */
5036 if (output_section->lma !=
5037 (map->p_paddr
5038 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5039 + (map->includes_phdrs
5040 ? iehdr->e_phnum * iehdr->e_phentsize
5041 : 0)))
5042 abort ();
5043 }
5044 else
5045 {
5046 asection * prev_sec;
5047
5048 prev_sec = map->sections[map->count - 1];
5049
5050 /* If the gap between the end of the previous section
5051 and the start of this section is more than
5052 maxpagesize then we need to start a new segment. */
5053 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
5054 maxpagesize)
5055 < BFD_ALIGN (output_section->lma, maxpagesize))
5056 || ((prev_sec->lma + prev_sec->_raw_size)
5057 > output_section->lma))
5058 {
5059 if (suggested_lma == 0)
5060 suggested_lma = output_section->lma;
5061
5062 continue;
5063 }
5064 }
5065
5066 map->sections[map->count++] = output_section;
5067 ++isec;
5068 sections[j] = NULL;
5069 section->segment_mark = TRUE;
5070 }
5071 else if (suggested_lma == 0)
5072 suggested_lma = output_section->lma;
5073 }
5074
5075 BFD_ASSERT (map->count > 0);
5076
5077 /* Add the current segment to the list of built segments. */
5078 *pointer_to_map = map;
5079 pointer_to_map = &map->next;
5080
5081 if (isec < section_count)
5082 {
5083 /* We still have not allocated all of the sections to
5084 segments. Create a new segment here, initialise it
5085 and carry on looping. */
5086 amt = sizeof (struct elf_segment_map);
5087 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5088 map = bfd_alloc (obfd, amt);
5089 if (map == NULL)
5090 {
5091 free (sections);
5092 return FALSE;
5093 }
5094
5095 /* Initialise the fields of the segment map. Set the physical
5096 physical address to the LMA of the first section that has
5097 not yet been assigned. */
5098 map->next = NULL;
5099 map->p_type = segment->p_type;
5100 map->p_flags = segment->p_flags;
5101 map->p_flags_valid = 1;
5102 map->p_paddr = suggested_lma;
5103 map->p_paddr_valid = 1;
5104 map->includes_filehdr = 0;
5105 map->includes_phdrs = 0;
5106 }
5107 }
5108 while (isec < section_count);
5109
5110 free (sections);
5111 }
5112
5113 /* The Solaris linker creates program headers in which all the
5114 p_paddr fields are zero. When we try to objcopy or strip such a
5115 file, we get confused. Check for this case, and if we find it
5116 reset the p_paddr_valid fields. */
5117 for (map = map_first; map != NULL; map = map->next)
5118 if (map->p_paddr != 0)
5119 break;
5120 if (map == NULL)
5121 for (map = map_first; map != NULL; map = map->next)
5122 map->p_paddr_valid = 0;
5123
5124 elf_tdata (obfd)->segment_map = map_first;
5125
5126 /* If we had to estimate the number of program headers that were
5127 going to be needed, then check our estimate now and adjust
5128 the offset if necessary. */
5129 if (phdr_adjust_seg != NULL)
5130 {
5131 unsigned int count;
5132
5133 for (count = 0, map = map_first; map != NULL; map = map->next)
5134 count++;
5135
5136 if (count > phdr_adjust_num)
5137 phdr_adjust_seg->p_paddr
5138 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5139 }
5140
5141 #if 0
5142 /* Final Step: Sort the segments into ascending order of physical
5143 address. */
5144 if (map_first != NULL)
5145 {
5146 struct elf_segment_map *prev;
5147
5148 prev = map_first;
5149 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5150 {
5151 /* Yes I know - its a bubble sort.... */
5152 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5153 {
5154 /* Swap map and map->next. */
5155 prev->next = map->next;
5156 map->next = map->next->next;
5157 prev->next->next = map;
5158
5159 /* Restart loop. */
5160 map = map_first;
5161 }
5162 }
5163 }
5164 #endif
5165
5166 #undef SEGMENT_END
5167 #undef SECTION_SIZE
5168 #undef IS_CONTAINED_BY_VMA
5169 #undef IS_CONTAINED_BY_LMA
5170 #undef IS_COREFILE_NOTE
5171 #undef IS_SOLARIS_PT_INTERP
5172 #undef INCLUDE_SECTION_IN_SEGMENT
5173 #undef SEGMENT_AFTER_SEGMENT
5174 #undef SEGMENT_OVERLAPS
5175 return TRUE;
5176 }
5177
5178 /* Copy private section information. This copies over the entsize
5179 field, and sometimes the info field. */
5180
5181 bfd_boolean
5182 _bfd_elf_copy_private_section_data (bfd *ibfd,
5183 asection *isec,
5184 bfd *obfd,
5185 asection *osec)
5186 {
5187 Elf_Internal_Shdr *ihdr, *ohdr;
5188
5189 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5190 || obfd->xvec->flavour != bfd_target_elf_flavour)
5191 return TRUE;
5192
5193 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5194 {
5195 asection *s;
5196
5197 /* Only set up the segments if there are no more SEC_ALLOC
5198 sections. FIXME: This won't do the right thing if objcopy is
5199 used to remove the last SEC_ALLOC section, since objcopy
5200 won't call this routine in that case. */
5201 for (s = isec->next; s != NULL; s = s->next)
5202 if ((s->flags & SEC_ALLOC) != 0)
5203 break;
5204 if (s == NULL)
5205 {
5206 if (! copy_private_bfd_data (ibfd, obfd))
5207 return FALSE;
5208 }
5209 }
5210
5211 ihdr = &elf_section_data (isec)->this_hdr;
5212 ohdr = &elf_section_data (osec)->this_hdr;
5213
5214 ohdr->sh_entsize = ihdr->sh_entsize;
5215
5216 if (ihdr->sh_type == SHT_SYMTAB
5217 || ihdr->sh_type == SHT_DYNSYM
5218 || ihdr->sh_type == SHT_GNU_verneed
5219 || ihdr->sh_type == SHT_GNU_verdef)
5220 ohdr->sh_info = ihdr->sh_info;
5221
5222 /* Set things up for objcopy. The output SHT_GROUP section will
5223 have its elf_next_in_group pointing back to the input group
5224 members. */
5225 elf_next_in_group (osec) = elf_next_in_group (isec);
5226 elf_group_name (osec) = elf_group_name (isec);
5227
5228 osec->use_rela_p = isec->use_rela_p;
5229
5230 return TRUE;
5231 }
5232
5233 /* Copy private symbol information. If this symbol is in a section
5234 which we did not map into a BFD section, try to map the section
5235 index correctly. We use special macro definitions for the mapped
5236 section indices; these definitions are interpreted by the
5237 swap_out_syms function. */
5238
5239 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5240 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5241 #define MAP_STRTAB (SHN_HIOS + 3)
5242 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5243 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5244
5245 bfd_boolean
5246 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5247 asymbol *isymarg,
5248 bfd *obfd,
5249 asymbol *osymarg)
5250 {
5251 elf_symbol_type *isym, *osym;
5252
5253 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5254 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5255 return TRUE;
5256
5257 isym = elf_symbol_from (ibfd, isymarg);
5258 osym = elf_symbol_from (obfd, osymarg);
5259
5260 if (isym != NULL
5261 && osym != NULL
5262 && bfd_is_abs_section (isym->symbol.section))
5263 {
5264 unsigned int shndx;
5265
5266 shndx = isym->internal_elf_sym.st_shndx;
5267 if (shndx == elf_onesymtab (ibfd))
5268 shndx = MAP_ONESYMTAB;
5269 else if (shndx == elf_dynsymtab (ibfd))
5270 shndx = MAP_DYNSYMTAB;
5271 else if (shndx == elf_tdata (ibfd)->strtab_section)
5272 shndx = MAP_STRTAB;
5273 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5274 shndx = MAP_SHSTRTAB;
5275 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5276 shndx = MAP_SYM_SHNDX;
5277 osym->internal_elf_sym.st_shndx = shndx;
5278 }
5279
5280 return TRUE;
5281 }
5282
5283 /* Swap out the symbols. */
5284
5285 static bfd_boolean
5286 swap_out_syms (bfd *abfd,
5287 struct bfd_strtab_hash **sttp,
5288 int relocatable_p)
5289 {
5290 const struct elf_backend_data *bed;
5291 int symcount;
5292 asymbol **syms;
5293 struct bfd_strtab_hash *stt;
5294 Elf_Internal_Shdr *symtab_hdr;
5295 Elf_Internal_Shdr *symtab_shndx_hdr;
5296 Elf_Internal_Shdr *symstrtab_hdr;
5297 char *outbound_syms;
5298 char *outbound_shndx;
5299 int idx;
5300 bfd_size_type amt;
5301 bfd_boolean name_local_sections;
5302
5303 if (!elf_map_symbols (abfd))
5304 return FALSE;
5305
5306 /* Dump out the symtabs. */
5307 stt = _bfd_elf_stringtab_init ();
5308 if (stt == NULL)
5309 return FALSE;
5310
5311 bed = get_elf_backend_data (abfd);
5312 symcount = bfd_get_symcount (abfd);
5313 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5314 symtab_hdr->sh_type = SHT_SYMTAB;
5315 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5316 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5317 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5318 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5319
5320 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5321 symstrtab_hdr->sh_type = SHT_STRTAB;
5322
5323 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5324 outbound_syms = bfd_alloc (abfd, amt);
5325 if (outbound_syms == NULL)
5326 {
5327 _bfd_stringtab_free (stt);
5328 return FALSE;
5329 }
5330 symtab_hdr->contents = outbound_syms;
5331
5332 outbound_shndx = NULL;
5333 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5334 if (symtab_shndx_hdr->sh_name != 0)
5335 {
5336 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5337 outbound_shndx = bfd_zalloc (abfd, amt);
5338 if (outbound_shndx == NULL)
5339 {
5340 _bfd_stringtab_free (stt);
5341 return FALSE;
5342 }
5343
5344 symtab_shndx_hdr->contents = outbound_shndx;
5345 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5346 symtab_shndx_hdr->sh_size = amt;
5347 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5348 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5349 }
5350
5351 /* Now generate the data (for "contents"). */
5352 {
5353 /* Fill in zeroth symbol and swap it out. */
5354 Elf_Internal_Sym sym;
5355 sym.st_name = 0;
5356 sym.st_value = 0;
5357 sym.st_size = 0;
5358 sym.st_info = 0;
5359 sym.st_other = 0;
5360 sym.st_shndx = SHN_UNDEF;
5361 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5362 outbound_syms += bed->s->sizeof_sym;
5363 if (outbound_shndx != NULL)
5364 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5365 }
5366
5367 name_local_sections
5368 = (bed->elf_backend_name_local_section_symbols
5369 && bed->elf_backend_name_local_section_symbols (abfd));
5370
5371 syms = bfd_get_outsymbols (abfd);
5372 for (idx = 0; idx < symcount; idx++)
5373 {
5374 Elf_Internal_Sym sym;
5375 bfd_vma value = syms[idx]->value;
5376 elf_symbol_type *type_ptr;
5377 flagword flags = syms[idx]->flags;
5378 int type;
5379
5380 if (!name_local_sections
5381 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5382 {
5383 /* Local section symbols have no name. */
5384 sym.st_name = 0;
5385 }
5386 else
5387 {
5388 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5389 syms[idx]->name,
5390 TRUE, FALSE);
5391 if (sym.st_name == (unsigned long) -1)
5392 {
5393 _bfd_stringtab_free (stt);
5394 return FALSE;
5395 }
5396 }
5397
5398 type_ptr = elf_symbol_from (abfd, syms[idx]);
5399
5400 if ((flags & BSF_SECTION_SYM) == 0
5401 && bfd_is_com_section (syms[idx]->section))
5402 {
5403 /* ELF common symbols put the alignment into the `value' field,
5404 and the size into the `size' field. This is backwards from
5405 how BFD handles it, so reverse it here. */
5406 sym.st_size = value;
5407 if (type_ptr == NULL
5408 || type_ptr->internal_elf_sym.st_value == 0)
5409 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5410 else
5411 sym.st_value = type_ptr->internal_elf_sym.st_value;
5412 sym.st_shndx = _bfd_elf_section_from_bfd_section
5413 (abfd, syms[idx]->section);
5414 }
5415 else
5416 {
5417 asection *sec = syms[idx]->section;
5418 int shndx;
5419
5420 if (sec->output_section)
5421 {
5422 value += sec->output_offset;
5423 sec = sec->output_section;
5424 }
5425
5426 /* Don't add in the section vma for relocatable output. */
5427 if (! relocatable_p)
5428 value += sec->vma;
5429 sym.st_value = value;
5430 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5431
5432 if (bfd_is_abs_section (sec)
5433 && type_ptr != NULL
5434 && type_ptr->internal_elf_sym.st_shndx != 0)
5435 {
5436 /* This symbol is in a real ELF section which we did
5437 not create as a BFD section. Undo the mapping done
5438 by copy_private_symbol_data. */
5439 shndx = type_ptr->internal_elf_sym.st_shndx;
5440 switch (shndx)
5441 {
5442 case MAP_ONESYMTAB:
5443 shndx = elf_onesymtab (abfd);
5444 break;
5445 case MAP_DYNSYMTAB:
5446 shndx = elf_dynsymtab (abfd);
5447 break;
5448 case MAP_STRTAB:
5449 shndx = elf_tdata (abfd)->strtab_section;
5450 break;
5451 case MAP_SHSTRTAB:
5452 shndx = elf_tdata (abfd)->shstrtab_section;
5453 break;
5454 case MAP_SYM_SHNDX:
5455 shndx = elf_tdata (abfd)->symtab_shndx_section;
5456 break;
5457 default:
5458 break;
5459 }
5460 }
5461 else
5462 {
5463 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5464
5465 if (shndx == -1)
5466 {
5467 asection *sec2;
5468
5469 /* Writing this would be a hell of a lot easier if
5470 we had some decent documentation on bfd, and
5471 knew what to expect of the library, and what to
5472 demand of applications. For example, it
5473 appears that `objcopy' might not set the
5474 section of a symbol to be a section that is
5475 actually in the output file. */
5476 sec2 = bfd_get_section_by_name (abfd, sec->name);
5477 if (sec2 == NULL)
5478 {
5479 _bfd_error_handler (_("\
5480 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5481 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5482 sec->name);
5483 bfd_set_error (bfd_error_invalid_operation);
5484 _bfd_stringtab_free (stt);
5485 return FALSE;
5486 }
5487
5488 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5489 BFD_ASSERT (shndx != -1);
5490 }
5491 }
5492
5493 sym.st_shndx = shndx;
5494 }
5495
5496 if ((flags & BSF_THREAD_LOCAL) != 0)
5497 type = STT_TLS;
5498 else if ((flags & BSF_FUNCTION) != 0)
5499 type = STT_FUNC;
5500 else if ((flags & BSF_OBJECT) != 0)
5501 type = STT_OBJECT;
5502 else
5503 type = STT_NOTYPE;
5504
5505 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5506 type = STT_TLS;
5507
5508 /* Processor-specific types. */
5509 if (type_ptr != NULL
5510 && bed->elf_backend_get_symbol_type)
5511 type = ((*bed->elf_backend_get_symbol_type)
5512 (&type_ptr->internal_elf_sym, type));
5513
5514 if (flags & BSF_SECTION_SYM)
5515 {
5516 if (flags & BSF_GLOBAL)
5517 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5518 else
5519 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5520 }
5521 else if (bfd_is_com_section (syms[idx]->section))
5522 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5523 else if (bfd_is_und_section (syms[idx]->section))
5524 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5525 ? STB_WEAK
5526 : STB_GLOBAL),
5527 type);
5528 else if (flags & BSF_FILE)
5529 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5530 else
5531 {
5532 int bind = STB_LOCAL;
5533
5534 if (flags & BSF_LOCAL)
5535 bind = STB_LOCAL;
5536 else if (flags & BSF_WEAK)
5537 bind = STB_WEAK;
5538 else if (flags & BSF_GLOBAL)
5539 bind = STB_GLOBAL;
5540
5541 sym.st_info = ELF_ST_INFO (bind, type);
5542 }
5543
5544 if (type_ptr != NULL)
5545 sym.st_other = type_ptr->internal_elf_sym.st_other;
5546 else
5547 sym.st_other = 0;
5548
5549 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5550 outbound_syms += bed->s->sizeof_sym;
5551 if (outbound_shndx != NULL)
5552 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5553 }
5554
5555 *sttp = stt;
5556 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5557 symstrtab_hdr->sh_type = SHT_STRTAB;
5558
5559 symstrtab_hdr->sh_flags = 0;
5560 symstrtab_hdr->sh_addr = 0;
5561 symstrtab_hdr->sh_entsize = 0;
5562 symstrtab_hdr->sh_link = 0;
5563 symstrtab_hdr->sh_info = 0;
5564 symstrtab_hdr->sh_addralign = 1;
5565
5566 return TRUE;
5567 }
5568
5569 /* Return the number of bytes required to hold the symtab vector.
5570
5571 Note that we base it on the count plus 1, since we will null terminate
5572 the vector allocated based on this size. However, the ELF symbol table
5573 always has a dummy entry as symbol #0, so it ends up even. */
5574
5575 long
5576 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5577 {
5578 long symcount;
5579 long symtab_size;
5580 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5581
5582 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5583 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5584 if (symcount > 0)
5585 symtab_size -= sizeof (asymbol *);
5586
5587 return symtab_size;
5588 }
5589
5590 long
5591 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5592 {
5593 long symcount;
5594 long symtab_size;
5595 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5596
5597 if (elf_dynsymtab (abfd) == 0)
5598 {
5599 bfd_set_error (bfd_error_invalid_operation);
5600 return -1;
5601 }
5602
5603 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5604 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5605 if (symcount > 0)
5606 symtab_size -= sizeof (asymbol *);
5607
5608 return symtab_size;
5609 }
5610
5611 long
5612 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5613 sec_ptr asect)
5614 {
5615 return (asect->reloc_count + 1) * sizeof (arelent *);
5616 }
5617
5618 /* Canonicalize the relocs. */
5619
5620 long
5621 _bfd_elf_canonicalize_reloc (bfd *abfd,
5622 sec_ptr section,
5623 arelent **relptr,
5624 asymbol **symbols)
5625 {
5626 arelent *tblptr;
5627 unsigned int i;
5628 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5629
5630 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5631 return -1;
5632
5633 tblptr = section->relocation;
5634 for (i = 0; i < section->reloc_count; i++)
5635 *relptr++ = tblptr++;
5636
5637 *relptr = NULL;
5638
5639 return section->reloc_count;
5640 }
5641
5642 long
5643 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5644 {
5645 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5646 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5647
5648 if (symcount >= 0)
5649 bfd_get_symcount (abfd) = symcount;
5650 return symcount;
5651 }
5652
5653 long
5654 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5655 asymbol **allocation)
5656 {
5657 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5658 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5659
5660 if (symcount >= 0)
5661 bfd_get_dynamic_symcount (abfd) = symcount;
5662 return symcount;
5663 }
5664
5665 /* Return the size required for the dynamic reloc entries. Any
5666 section that was actually installed in the BFD, and has type
5667 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5668 considered to be a dynamic reloc section. */
5669
5670 long
5671 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5672 {
5673 long ret;
5674 asection *s;
5675
5676 if (elf_dynsymtab (abfd) == 0)
5677 {
5678 bfd_set_error (bfd_error_invalid_operation);
5679 return -1;
5680 }
5681
5682 ret = sizeof (arelent *);
5683 for (s = abfd->sections; s != NULL; s = s->next)
5684 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5685 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5686 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5687 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5688 * sizeof (arelent *));
5689
5690 return ret;
5691 }
5692
5693 /* Canonicalize the dynamic relocation entries. Note that we return
5694 the dynamic relocations as a single block, although they are
5695 actually associated with particular sections; the interface, which
5696 was designed for SunOS style shared libraries, expects that there
5697 is only one set of dynamic relocs. Any section that was actually
5698 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5699 the dynamic symbol table, is considered to be a dynamic reloc
5700 section. */
5701
5702 long
5703 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5704 arelent **storage,
5705 asymbol **syms)
5706 {
5707 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5708 asection *s;
5709 long ret;
5710
5711 if (elf_dynsymtab (abfd) == 0)
5712 {
5713 bfd_set_error (bfd_error_invalid_operation);
5714 return -1;
5715 }
5716
5717 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5718 ret = 0;
5719 for (s = abfd->sections; s != NULL; s = s->next)
5720 {
5721 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5722 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5723 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5724 {
5725 arelent *p;
5726 long count, i;
5727
5728 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5729 return -1;
5730 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5731 p = s->relocation;
5732 for (i = 0; i < count; i++)
5733 *storage++ = p++;
5734 ret += count;
5735 }
5736 }
5737
5738 *storage = NULL;
5739
5740 return ret;
5741 }
5742 \f
5743 /* Read in the version information. */
5744
5745 bfd_boolean
5746 _bfd_elf_slurp_version_tables (bfd *abfd)
5747 {
5748 bfd_byte *contents = NULL;
5749 bfd_size_type amt;
5750
5751 if (elf_dynverdef (abfd) != 0)
5752 {
5753 Elf_Internal_Shdr *hdr;
5754 Elf_External_Verdef *everdef;
5755 Elf_Internal_Verdef *iverdef;
5756 Elf_Internal_Verdef *iverdefarr;
5757 Elf_Internal_Verdef iverdefmem;
5758 unsigned int i;
5759 unsigned int maxidx;
5760
5761 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5762
5763 contents = bfd_malloc (hdr->sh_size);
5764 if (contents == NULL)
5765 goto error_return;
5766 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5767 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5768 goto error_return;
5769
5770 /* We know the number of entries in the section but not the maximum
5771 index. Therefore we have to run through all entries and find
5772 the maximum. */
5773 everdef = (Elf_External_Verdef *) contents;
5774 maxidx = 0;
5775 for (i = 0; i < hdr->sh_info; ++i)
5776 {
5777 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5778
5779 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5780 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5781
5782 everdef = ((Elf_External_Verdef *)
5783 ((bfd_byte *) everdef + iverdefmem.vd_next));
5784 }
5785
5786 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5787 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
5788 if (elf_tdata (abfd)->verdef == NULL)
5789 goto error_return;
5790
5791 elf_tdata (abfd)->cverdefs = maxidx;
5792
5793 everdef = (Elf_External_Verdef *) contents;
5794 iverdefarr = elf_tdata (abfd)->verdef;
5795 for (i = 0; i < hdr->sh_info; i++)
5796 {
5797 Elf_External_Verdaux *everdaux;
5798 Elf_Internal_Verdaux *iverdaux;
5799 unsigned int j;
5800
5801 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5802
5803 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5804 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5805
5806 iverdef->vd_bfd = abfd;
5807
5808 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5809 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
5810 if (iverdef->vd_auxptr == NULL)
5811 goto error_return;
5812
5813 everdaux = ((Elf_External_Verdaux *)
5814 ((bfd_byte *) everdef + iverdef->vd_aux));
5815 iverdaux = iverdef->vd_auxptr;
5816 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5817 {
5818 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5819
5820 iverdaux->vda_nodename =
5821 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5822 iverdaux->vda_name);
5823 if (iverdaux->vda_nodename == NULL)
5824 goto error_return;
5825
5826 if (j + 1 < iverdef->vd_cnt)
5827 iverdaux->vda_nextptr = iverdaux + 1;
5828 else
5829 iverdaux->vda_nextptr = NULL;
5830
5831 everdaux = ((Elf_External_Verdaux *)
5832 ((bfd_byte *) everdaux + iverdaux->vda_next));
5833 }
5834
5835 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5836
5837 if (i + 1 < hdr->sh_info)
5838 iverdef->vd_nextdef = iverdef + 1;
5839 else
5840 iverdef->vd_nextdef = NULL;
5841
5842 everdef = ((Elf_External_Verdef *)
5843 ((bfd_byte *) everdef + iverdef->vd_next));
5844 }
5845
5846 free (contents);
5847 contents = NULL;
5848 }
5849
5850 if (elf_dynverref (abfd) != 0)
5851 {
5852 Elf_Internal_Shdr *hdr;
5853 Elf_External_Verneed *everneed;
5854 Elf_Internal_Verneed *iverneed;
5855 unsigned int i;
5856
5857 hdr = &elf_tdata (abfd)->dynverref_hdr;
5858
5859 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5860 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
5861 if (elf_tdata (abfd)->verref == NULL)
5862 goto error_return;
5863
5864 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5865
5866 contents = bfd_malloc (hdr->sh_size);
5867 if (contents == NULL)
5868 goto error_return;
5869 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5870 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5871 goto error_return;
5872
5873 everneed = (Elf_External_Verneed *) contents;
5874 iverneed = elf_tdata (abfd)->verref;
5875 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5876 {
5877 Elf_External_Vernaux *evernaux;
5878 Elf_Internal_Vernaux *ivernaux;
5879 unsigned int j;
5880
5881 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5882
5883 iverneed->vn_bfd = abfd;
5884
5885 iverneed->vn_filename =
5886 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5887 iverneed->vn_file);
5888 if (iverneed->vn_filename == NULL)
5889 goto error_return;
5890
5891 amt = iverneed->vn_cnt;
5892 amt *= sizeof (Elf_Internal_Vernaux);
5893 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
5894
5895 evernaux = ((Elf_External_Vernaux *)
5896 ((bfd_byte *) everneed + iverneed->vn_aux));
5897 ivernaux = iverneed->vn_auxptr;
5898 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5899 {
5900 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5901
5902 ivernaux->vna_nodename =
5903 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5904 ivernaux->vna_name);
5905 if (ivernaux->vna_nodename == NULL)
5906 goto error_return;
5907
5908 if (j + 1 < iverneed->vn_cnt)
5909 ivernaux->vna_nextptr = ivernaux + 1;
5910 else
5911 ivernaux->vna_nextptr = NULL;
5912
5913 evernaux = ((Elf_External_Vernaux *)
5914 ((bfd_byte *) evernaux + ivernaux->vna_next));
5915 }
5916
5917 if (i + 1 < hdr->sh_info)
5918 iverneed->vn_nextref = iverneed + 1;
5919 else
5920 iverneed->vn_nextref = NULL;
5921
5922 everneed = ((Elf_External_Verneed *)
5923 ((bfd_byte *) everneed + iverneed->vn_next));
5924 }
5925
5926 free (contents);
5927 contents = NULL;
5928 }
5929
5930 return TRUE;
5931
5932 error_return:
5933 if (contents != NULL)
5934 free (contents);
5935 return FALSE;
5936 }
5937 \f
5938 asymbol *
5939 _bfd_elf_make_empty_symbol (bfd *abfd)
5940 {
5941 elf_symbol_type *newsym;
5942 bfd_size_type amt = sizeof (elf_symbol_type);
5943
5944 newsym = bfd_zalloc (abfd, amt);
5945 if (!newsym)
5946 return NULL;
5947 else
5948 {
5949 newsym->symbol.the_bfd = abfd;
5950 return &newsym->symbol;
5951 }
5952 }
5953
5954 void
5955 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
5956 asymbol *symbol,
5957 symbol_info *ret)
5958 {
5959 bfd_symbol_info (symbol, ret);
5960 }
5961
5962 /* Return whether a symbol name implies a local symbol. Most targets
5963 use this function for the is_local_label_name entry point, but some
5964 override it. */
5965
5966 bfd_boolean
5967 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
5968 const char *name)
5969 {
5970 /* Normal local symbols start with ``.L''. */
5971 if (name[0] == '.' && name[1] == 'L')
5972 return TRUE;
5973
5974 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5975 DWARF debugging symbols starting with ``..''. */
5976 if (name[0] == '.' && name[1] == '.')
5977 return TRUE;
5978
5979 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5980 emitting DWARF debugging output. I suspect this is actually a
5981 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5982 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5983 underscore to be emitted on some ELF targets). For ease of use,
5984 we treat such symbols as local. */
5985 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5986 return TRUE;
5987
5988 return FALSE;
5989 }
5990
5991 alent *
5992 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
5993 asymbol *symbol ATTRIBUTE_UNUSED)
5994 {
5995 abort ();
5996 return NULL;
5997 }
5998
5999 bfd_boolean
6000 _bfd_elf_set_arch_mach (bfd *abfd,
6001 enum bfd_architecture arch,
6002 unsigned long machine)
6003 {
6004 /* If this isn't the right architecture for this backend, and this
6005 isn't the generic backend, fail. */
6006 if (arch != get_elf_backend_data (abfd)->arch
6007 && arch != bfd_arch_unknown
6008 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6009 return FALSE;
6010
6011 return bfd_default_set_arch_mach (abfd, arch, machine);
6012 }
6013
6014 /* Find the function to a particular section and offset,
6015 for error reporting. */
6016
6017 static bfd_boolean
6018 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6019 asection *section,
6020 asymbol **symbols,
6021 bfd_vma offset,
6022 const char **filename_ptr,
6023 const char **functionname_ptr)
6024 {
6025 const char *filename;
6026 asymbol *func;
6027 bfd_vma low_func;
6028 asymbol **p;
6029
6030 filename = NULL;
6031 func = NULL;
6032 low_func = 0;
6033
6034 for (p = symbols; *p != NULL; p++)
6035 {
6036 elf_symbol_type *q;
6037
6038 q = (elf_symbol_type *) *p;
6039
6040 if (bfd_get_section (&q->symbol) != section)
6041 continue;
6042
6043 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6044 {
6045 default:
6046 break;
6047 case STT_FILE:
6048 filename = bfd_asymbol_name (&q->symbol);
6049 break;
6050 case STT_NOTYPE:
6051 case STT_FUNC:
6052 if (q->symbol.section == section
6053 && q->symbol.value >= low_func
6054 && q->symbol.value <= offset)
6055 {
6056 func = (asymbol *) q;
6057 low_func = q->symbol.value;
6058 }
6059 break;
6060 }
6061 }
6062
6063 if (func == NULL)
6064 return FALSE;
6065
6066 if (filename_ptr)
6067 *filename_ptr = filename;
6068 if (functionname_ptr)
6069 *functionname_ptr = bfd_asymbol_name (func);
6070
6071 return TRUE;
6072 }
6073
6074 /* Find the nearest line to a particular section and offset,
6075 for error reporting. */
6076
6077 bfd_boolean
6078 _bfd_elf_find_nearest_line (bfd *abfd,
6079 asection *section,
6080 asymbol **symbols,
6081 bfd_vma offset,
6082 const char **filename_ptr,
6083 const char **functionname_ptr,
6084 unsigned int *line_ptr)
6085 {
6086 bfd_boolean found;
6087
6088 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6089 filename_ptr, functionname_ptr,
6090 line_ptr))
6091 {
6092 if (!*functionname_ptr)
6093 elf_find_function (abfd, section, symbols, offset,
6094 *filename_ptr ? NULL : filename_ptr,
6095 functionname_ptr);
6096
6097 return TRUE;
6098 }
6099
6100 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6101 filename_ptr, functionname_ptr,
6102 line_ptr, 0,
6103 &elf_tdata (abfd)->dwarf2_find_line_info))
6104 {
6105 if (!*functionname_ptr)
6106 elf_find_function (abfd, section, symbols, offset,
6107 *filename_ptr ? NULL : filename_ptr,
6108 functionname_ptr);
6109
6110 return TRUE;
6111 }
6112
6113 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6114 &found, filename_ptr,
6115 functionname_ptr, line_ptr,
6116 &elf_tdata (abfd)->line_info))
6117 return FALSE;
6118 if (found && (*functionname_ptr || *line_ptr))
6119 return TRUE;
6120
6121 if (symbols == NULL)
6122 return FALSE;
6123
6124 if (! elf_find_function (abfd, section, symbols, offset,
6125 filename_ptr, functionname_ptr))
6126 return FALSE;
6127
6128 *line_ptr = 0;
6129 return TRUE;
6130 }
6131
6132 int
6133 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6134 {
6135 int ret;
6136
6137 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6138 if (! reloc)
6139 ret += get_program_header_size (abfd);
6140 return ret;
6141 }
6142
6143 bfd_boolean
6144 _bfd_elf_set_section_contents (bfd *abfd,
6145 sec_ptr section,
6146 const void *location,
6147 file_ptr offset,
6148 bfd_size_type count)
6149 {
6150 Elf_Internal_Shdr *hdr;
6151 bfd_signed_vma pos;
6152
6153 if (! abfd->output_has_begun
6154 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6155 return FALSE;
6156
6157 hdr = &elf_section_data (section)->this_hdr;
6158 pos = hdr->sh_offset + offset;
6159 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6160 || bfd_bwrite (location, count, abfd) != count)
6161 return FALSE;
6162
6163 return TRUE;
6164 }
6165
6166 void
6167 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6168 arelent *cache_ptr ATTRIBUTE_UNUSED,
6169 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6170 {
6171 abort ();
6172 }
6173
6174 /* Try to convert a non-ELF reloc into an ELF one. */
6175
6176 bfd_boolean
6177 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6178 {
6179 /* Check whether we really have an ELF howto. */
6180
6181 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6182 {
6183 bfd_reloc_code_real_type code;
6184 reloc_howto_type *howto;
6185
6186 /* Alien reloc: Try to determine its type to replace it with an
6187 equivalent ELF reloc. */
6188
6189 if (areloc->howto->pc_relative)
6190 {
6191 switch (areloc->howto->bitsize)
6192 {
6193 case 8:
6194 code = BFD_RELOC_8_PCREL;
6195 break;
6196 case 12:
6197 code = BFD_RELOC_12_PCREL;
6198 break;
6199 case 16:
6200 code = BFD_RELOC_16_PCREL;
6201 break;
6202 case 24:
6203 code = BFD_RELOC_24_PCREL;
6204 break;
6205 case 32:
6206 code = BFD_RELOC_32_PCREL;
6207 break;
6208 case 64:
6209 code = BFD_RELOC_64_PCREL;
6210 break;
6211 default:
6212 goto fail;
6213 }
6214
6215 howto = bfd_reloc_type_lookup (abfd, code);
6216
6217 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6218 {
6219 if (howto->pcrel_offset)
6220 areloc->addend += areloc->address;
6221 else
6222 areloc->addend -= areloc->address; /* addend is unsigned!! */
6223 }
6224 }
6225 else
6226 {
6227 switch (areloc->howto->bitsize)
6228 {
6229 case 8:
6230 code = BFD_RELOC_8;
6231 break;
6232 case 14:
6233 code = BFD_RELOC_14;
6234 break;
6235 case 16:
6236 code = BFD_RELOC_16;
6237 break;
6238 case 26:
6239 code = BFD_RELOC_26;
6240 break;
6241 case 32:
6242 code = BFD_RELOC_32;
6243 break;
6244 case 64:
6245 code = BFD_RELOC_64;
6246 break;
6247 default:
6248 goto fail;
6249 }
6250
6251 howto = bfd_reloc_type_lookup (abfd, code);
6252 }
6253
6254 if (howto)
6255 areloc->howto = howto;
6256 else
6257 goto fail;
6258 }
6259
6260 return TRUE;
6261
6262 fail:
6263 (*_bfd_error_handler)
6264 (_("%s: unsupported relocation type %s"),
6265 bfd_archive_filename (abfd), areloc->howto->name);
6266 bfd_set_error (bfd_error_bad_value);
6267 return FALSE;
6268 }
6269
6270 bfd_boolean
6271 _bfd_elf_close_and_cleanup (bfd *abfd)
6272 {
6273 if (bfd_get_format (abfd) == bfd_object)
6274 {
6275 if (elf_shstrtab (abfd) != NULL)
6276 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6277 }
6278
6279 return _bfd_generic_close_and_cleanup (abfd);
6280 }
6281
6282 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6283 in the relocation's offset. Thus we cannot allow any sort of sanity
6284 range-checking to interfere. There is nothing else to do in processing
6285 this reloc. */
6286
6287 bfd_reloc_status_type
6288 _bfd_elf_rel_vtable_reloc_fn
6289 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6290 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6291 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6292 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6293 {
6294 return bfd_reloc_ok;
6295 }
6296 \f
6297 /* Elf core file support. Much of this only works on native
6298 toolchains, since we rely on knowing the
6299 machine-dependent procfs structure in order to pick
6300 out details about the corefile. */
6301
6302 #ifdef HAVE_SYS_PROCFS_H
6303 # include <sys/procfs.h>
6304 #endif
6305
6306 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6307
6308 static int
6309 elfcore_make_pid (bfd *abfd)
6310 {
6311 return ((elf_tdata (abfd)->core_lwpid << 16)
6312 + (elf_tdata (abfd)->core_pid));
6313 }
6314
6315 /* If there isn't a section called NAME, make one, using
6316 data from SECT. Note, this function will generate a
6317 reference to NAME, so you shouldn't deallocate or
6318 overwrite it. */
6319
6320 static bfd_boolean
6321 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6322 {
6323 asection *sect2;
6324
6325 if (bfd_get_section_by_name (abfd, name) != NULL)
6326 return TRUE;
6327
6328 sect2 = bfd_make_section (abfd, name);
6329 if (sect2 == NULL)
6330 return FALSE;
6331
6332 sect2->_raw_size = sect->_raw_size;
6333 sect2->filepos = sect->filepos;
6334 sect2->flags = sect->flags;
6335 sect2->alignment_power = sect->alignment_power;
6336 return TRUE;
6337 }
6338
6339 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6340 actually creates up to two pseudosections:
6341 - For the single-threaded case, a section named NAME, unless
6342 such a section already exists.
6343 - For the multi-threaded case, a section named "NAME/PID", where
6344 PID is elfcore_make_pid (abfd).
6345 Both pseudosections have identical contents. */
6346 bfd_boolean
6347 _bfd_elfcore_make_pseudosection (bfd *abfd,
6348 char *name,
6349 size_t size,
6350 ufile_ptr filepos)
6351 {
6352 char buf[100];
6353 char *threaded_name;
6354 size_t len;
6355 asection *sect;
6356
6357 /* Build the section name. */
6358
6359 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6360 len = strlen (buf) + 1;
6361 threaded_name = bfd_alloc (abfd, len);
6362 if (threaded_name == NULL)
6363 return FALSE;
6364 memcpy (threaded_name, buf, len);
6365
6366 sect = bfd_make_section_anyway (abfd, threaded_name);
6367 if (sect == NULL)
6368 return FALSE;
6369 sect->_raw_size = size;
6370 sect->filepos = filepos;
6371 sect->flags = SEC_HAS_CONTENTS;
6372 sect->alignment_power = 2;
6373
6374 return elfcore_maybe_make_sect (abfd, name, sect);
6375 }
6376
6377 /* prstatus_t exists on:
6378 solaris 2.5+
6379 linux 2.[01] + glibc
6380 unixware 4.2
6381 */
6382
6383 #if defined (HAVE_PRSTATUS_T)
6384
6385 static bfd_boolean
6386 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6387 {
6388 size_t raw_size;
6389 int offset;
6390
6391 if (note->descsz == sizeof (prstatus_t))
6392 {
6393 prstatus_t prstat;
6394
6395 raw_size = sizeof (prstat.pr_reg);
6396 offset = offsetof (prstatus_t, pr_reg);
6397 memcpy (&prstat, note->descdata, sizeof (prstat));
6398
6399 /* Do not overwrite the core signal if it
6400 has already been set by another thread. */
6401 if (elf_tdata (abfd)->core_signal == 0)
6402 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6403 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6404
6405 /* pr_who exists on:
6406 solaris 2.5+
6407 unixware 4.2
6408 pr_who doesn't exist on:
6409 linux 2.[01]
6410 */
6411 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6412 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6413 #endif
6414 }
6415 #if defined (HAVE_PRSTATUS32_T)
6416 else if (note->descsz == sizeof (prstatus32_t))
6417 {
6418 /* 64-bit host, 32-bit corefile */
6419 prstatus32_t prstat;
6420
6421 raw_size = sizeof (prstat.pr_reg);
6422 offset = offsetof (prstatus32_t, pr_reg);
6423 memcpy (&prstat, note->descdata, sizeof (prstat));
6424
6425 /* Do not overwrite the core signal if it
6426 has already been set by another thread. */
6427 if (elf_tdata (abfd)->core_signal == 0)
6428 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6429 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6430
6431 /* pr_who exists on:
6432 solaris 2.5+
6433 unixware 4.2
6434 pr_who doesn't exist on:
6435 linux 2.[01]
6436 */
6437 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6438 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6439 #endif
6440 }
6441 #endif /* HAVE_PRSTATUS32_T */
6442 else
6443 {
6444 /* Fail - we don't know how to handle any other
6445 note size (ie. data object type). */
6446 return TRUE;
6447 }
6448
6449 /* Make a ".reg/999" section and a ".reg" section. */
6450 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6451 raw_size, note->descpos + offset);
6452 }
6453 #endif /* defined (HAVE_PRSTATUS_T) */
6454
6455 /* Create a pseudosection containing the exact contents of NOTE. */
6456 static bfd_boolean
6457 elfcore_make_note_pseudosection (bfd *abfd,
6458 char *name,
6459 Elf_Internal_Note *note)
6460 {
6461 return _bfd_elfcore_make_pseudosection (abfd, name,
6462 note->descsz, note->descpos);
6463 }
6464
6465 /* There isn't a consistent prfpregset_t across platforms,
6466 but it doesn't matter, because we don't have to pick this
6467 data structure apart. */
6468
6469 static bfd_boolean
6470 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6471 {
6472 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6473 }
6474
6475 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6476 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6477 literally. */
6478
6479 static bfd_boolean
6480 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6481 {
6482 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6483 }
6484
6485 #if defined (HAVE_PRPSINFO_T)
6486 typedef prpsinfo_t elfcore_psinfo_t;
6487 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6488 typedef prpsinfo32_t elfcore_psinfo32_t;
6489 #endif
6490 #endif
6491
6492 #if defined (HAVE_PSINFO_T)
6493 typedef psinfo_t elfcore_psinfo_t;
6494 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6495 typedef psinfo32_t elfcore_psinfo32_t;
6496 #endif
6497 #endif
6498
6499 /* return a malloc'ed copy of a string at START which is at
6500 most MAX bytes long, possibly without a terminating '\0'.
6501 the copy will always have a terminating '\0'. */
6502
6503 char *
6504 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6505 {
6506 char *dups;
6507 char *end = memchr (start, '\0', max);
6508 size_t len;
6509
6510 if (end == NULL)
6511 len = max;
6512 else
6513 len = end - start;
6514
6515 dups = bfd_alloc (abfd, len + 1);
6516 if (dups == NULL)
6517 return NULL;
6518
6519 memcpy (dups, start, len);
6520 dups[len] = '\0';
6521
6522 return dups;
6523 }
6524
6525 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6526 static bfd_boolean
6527 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6528 {
6529 if (note->descsz == sizeof (elfcore_psinfo_t))
6530 {
6531 elfcore_psinfo_t psinfo;
6532
6533 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6534
6535 elf_tdata (abfd)->core_program
6536 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6537 sizeof (psinfo.pr_fname));
6538
6539 elf_tdata (abfd)->core_command
6540 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6541 sizeof (psinfo.pr_psargs));
6542 }
6543 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6544 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6545 {
6546 /* 64-bit host, 32-bit corefile */
6547 elfcore_psinfo32_t psinfo;
6548
6549 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6550
6551 elf_tdata (abfd)->core_program
6552 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6553 sizeof (psinfo.pr_fname));
6554
6555 elf_tdata (abfd)->core_command
6556 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6557 sizeof (psinfo.pr_psargs));
6558 }
6559 #endif
6560
6561 else
6562 {
6563 /* Fail - we don't know how to handle any other
6564 note size (ie. data object type). */
6565 return TRUE;
6566 }
6567
6568 /* Note that for some reason, a spurious space is tacked
6569 onto the end of the args in some (at least one anyway)
6570 implementations, so strip it off if it exists. */
6571
6572 {
6573 char *command = elf_tdata (abfd)->core_command;
6574 int n = strlen (command);
6575
6576 if (0 < n && command[n - 1] == ' ')
6577 command[n - 1] = '\0';
6578 }
6579
6580 return TRUE;
6581 }
6582 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6583
6584 #if defined (HAVE_PSTATUS_T)
6585 static bfd_boolean
6586 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6587 {
6588 if (note->descsz == sizeof (pstatus_t)
6589 #if defined (HAVE_PXSTATUS_T)
6590 || note->descsz == sizeof (pxstatus_t)
6591 #endif
6592 )
6593 {
6594 pstatus_t pstat;
6595
6596 memcpy (&pstat, note->descdata, sizeof (pstat));
6597
6598 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6599 }
6600 #if defined (HAVE_PSTATUS32_T)
6601 else if (note->descsz == sizeof (pstatus32_t))
6602 {
6603 /* 64-bit host, 32-bit corefile */
6604 pstatus32_t pstat;
6605
6606 memcpy (&pstat, note->descdata, sizeof (pstat));
6607
6608 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6609 }
6610 #endif
6611 /* Could grab some more details from the "representative"
6612 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6613 NT_LWPSTATUS note, presumably. */
6614
6615 return TRUE;
6616 }
6617 #endif /* defined (HAVE_PSTATUS_T) */
6618
6619 #if defined (HAVE_LWPSTATUS_T)
6620 static bfd_boolean
6621 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6622 {
6623 lwpstatus_t lwpstat;
6624 char buf[100];
6625 char *name;
6626 size_t len;
6627 asection *sect;
6628
6629 if (note->descsz != sizeof (lwpstat)
6630 #if defined (HAVE_LWPXSTATUS_T)
6631 && note->descsz != sizeof (lwpxstatus_t)
6632 #endif
6633 )
6634 return TRUE;
6635
6636 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6637
6638 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6639 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6640
6641 /* Make a ".reg/999" section. */
6642
6643 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6644 len = strlen (buf) + 1;
6645 name = bfd_alloc (abfd, len);
6646 if (name == NULL)
6647 return FALSE;
6648 memcpy (name, buf, len);
6649
6650 sect = bfd_make_section_anyway (abfd, name);
6651 if (sect == NULL)
6652 return FALSE;
6653
6654 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6655 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6656 sect->filepos = note->descpos
6657 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6658 #endif
6659
6660 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6661 sect->_raw_size = sizeof (lwpstat.pr_reg);
6662 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6663 #endif
6664
6665 sect->flags = SEC_HAS_CONTENTS;
6666 sect->alignment_power = 2;
6667
6668 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6669 return FALSE;
6670
6671 /* Make a ".reg2/999" section */
6672
6673 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6674 len = strlen (buf) + 1;
6675 name = bfd_alloc (abfd, len);
6676 if (name == NULL)
6677 return FALSE;
6678 memcpy (name, buf, len);
6679
6680 sect = bfd_make_section_anyway (abfd, name);
6681 if (sect == NULL)
6682 return FALSE;
6683
6684 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6685 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6686 sect->filepos = note->descpos
6687 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6688 #endif
6689
6690 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6691 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6692 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6693 #endif
6694
6695 sect->flags = SEC_HAS_CONTENTS;
6696 sect->alignment_power = 2;
6697
6698 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6699 }
6700 #endif /* defined (HAVE_LWPSTATUS_T) */
6701
6702 #if defined (HAVE_WIN32_PSTATUS_T)
6703 static bfd_boolean
6704 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6705 {
6706 char buf[30];
6707 char *name;
6708 size_t len;
6709 asection *sect;
6710 win32_pstatus_t pstatus;
6711
6712 if (note->descsz < sizeof (pstatus))
6713 return TRUE;
6714
6715 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6716
6717 switch (pstatus.data_type)
6718 {
6719 case NOTE_INFO_PROCESS:
6720 /* FIXME: need to add ->core_command. */
6721 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6722 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6723 break;
6724
6725 case NOTE_INFO_THREAD:
6726 /* Make a ".reg/999" section. */
6727 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6728
6729 len = strlen (buf) + 1;
6730 name = bfd_alloc (abfd, len);
6731 if (name == NULL)
6732 return FALSE;
6733
6734 memcpy (name, buf, len);
6735
6736 sect = bfd_make_section_anyway (abfd, name);
6737 if (sect == NULL)
6738 return FALSE;
6739
6740 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6741 sect->filepos = (note->descpos
6742 + offsetof (struct win32_pstatus,
6743 data.thread_info.thread_context));
6744 sect->flags = SEC_HAS_CONTENTS;
6745 sect->alignment_power = 2;
6746
6747 if (pstatus.data.thread_info.is_active_thread)
6748 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6749 return FALSE;
6750 break;
6751
6752 case NOTE_INFO_MODULE:
6753 /* Make a ".module/xxxxxxxx" section. */
6754 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6755
6756 len = strlen (buf) + 1;
6757 name = bfd_alloc (abfd, len);
6758 if (name == NULL)
6759 return FALSE;
6760
6761 memcpy (name, buf, len);
6762
6763 sect = bfd_make_section_anyway (abfd, name);
6764
6765 if (sect == NULL)
6766 return FALSE;
6767
6768 sect->_raw_size = note->descsz;
6769 sect->filepos = note->descpos;
6770 sect->flags = SEC_HAS_CONTENTS;
6771 sect->alignment_power = 2;
6772 break;
6773
6774 default:
6775 return TRUE;
6776 }
6777
6778 return TRUE;
6779 }
6780 #endif /* HAVE_WIN32_PSTATUS_T */
6781
6782 static bfd_boolean
6783 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
6784 {
6785 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6786
6787 switch (note->type)
6788 {
6789 default:
6790 return TRUE;
6791
6792 case NT_PRSTATUS:
6793 if (bed->elf_backend_grok_prstatus)
6794 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6795 return TRUE;
6796 #if defined (HAVE_PRSTATUS_T)
6797 return elfcore_grok_prstatus (abfd, note);
6798 #else
6799 return TRUE;
6800 #endif
6801
6802 #if defined (HAVE_PSTATUS_T)
6803 case NT_PSTATUS:
6804 return elfcore_grok_pstatus (abfd, note);
6805 #endif
6806
6807 #if defined (HAVE_LWPSTATUS_T)
6808 case NT_LWPSTATUS:
6809 return elfcore_grok_lwpstatus (abfd, note);
6810 #endif
6811
6812 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6813 return elfcore_grok_prfpreg (abfd, note);
6814
6815 #if defined (HAVE_WIN32_PSTATUS_T)
6816 case NT_WIN32PSTATUS:
6817 return elfcore_grok_win32pstatus (abfd, note);
6818 #endif
6819
6820 case NT_PRXFPREG: /* Linux SSE extension */
6821 if (note->namesz == 6
6822 && strcmp (note->namedata, "LINUX") == 0)
6823 return elfcore_grok_prxfpreg (abfd, note);
6824 else
6825 return TRUE;
6826
6827 case NT_PRPSINFO:
6828 case NT_PSINFO:
6829 if (bed->elf_backend_grok_psinfo)
6830 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6831 return TRUE;
6832 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6833 return elfcore_grok_psinfo (abfd, note);
6834 #else
6835 return TRUE;
6836 #endif
6837
6838 case NT_AUXV:
6839 {
6840 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
6841
6842 if (sect == NULL)
6843 return FALSE;
6844 sect->_raw_size = note->descsz;
6845 sect->filepos = note->descpos;
6846 sect->flags = SEC_HAS_CONTENTS;
6847 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
6848
6849 return TRUE;
6850 }
6851 }
6852 }
6853
6854 static bfd_boolean
6855 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
6856 {
6857 char *cp;
6858
6859 cp = strchr (note->namedata, '@');
6860 if (cp != NULL)
6861 {
6862 *lwpidp = atoi(cp + 1);
6863 return TRUE;
6864 }
6865 return FALSE;
6866 }
6867
6868 static bfd_boolean
6869 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
6870 {
6871
6872 /* Signal number at offset 0x08. */
6873 elf_tdata (abfd)->core_signal
6874 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6875
6876 /* Process ID at offset 0x50. */
6877 elf_tdata (abfd)->core_pid
6878 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6879
6880 /* Command name at 0x7c (max 32 bytes, including nul). */
6881 elf_tdata (abfd)->core_command
6882 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6883
6884 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
6885 note);
6886 }
6887
6888 static bfd_boolean
6889 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
6890 {
6891 int lwp;
6892
6893 if (elfcore_netbsd_get_lwpid (note, &lwp))
6894 elf_tdata (abfd)->core_lwpid = lwp;
6895
6896 if (note->type == NT_NETBSDCORE_PROCINFO)
6897 {
6898 /* NetBSD-specific core "procinfo". Note that we expect to
6899 find this note before any of the others, which is fine,
6900 since the kernel writes this note out first when it
6901 creates a core file. */
6902
6903 return elfcore_grok_netbsd_procinfo (abfd, note);
6904 }
6905
6906 /* As of Jan 2002 there are no other machine-independent notes
6907 defined for NetBSD core files. If the note type is less
6908 than the start of the machine-dependent note types, we don't
6909 understand it. */
6910
6911 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6912 return TRUE;
6913
6914
6915 switch (bfd_get_arch (abfd))
6916 {
6917 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6918 PT_GETFPREGS == mach+2. */
6919
6920 case bfd_arch_alpha:
6921 case bfd_arch_sparc:
6922 switch (note->type)
6923 {
6924 case NT_NETBSDCORE_FIRSTMACH+0:
6925 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6926
6927 case NT_NETBSDCORE_FIRSTMACH+2:
6928 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6929
6930 default:
6931 return TRUE;
6932 }
6933
6934 /* On all other arch's, PT_GETREGS == mach+1 and
6935 PT_GETFPREGS == mach+3. */
6936
6937 default:
6938 switch (note->type)
6939 {
6940 case NT_NETBSDCORE_FIRSTMACH+1:
6941 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6942
6943 case NT_NETBSDCORE_FIRSTMACH+3:
6944 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6945
6946 default:
6947 return TRUE;
6948 }
6949 }
6950 /* NOTREACHED */
6951 }
6952
6953 static bfd_boolean
6954 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
6955 {
6956 void *ddata = note->descdata;
6957 char buf[100];
6958 char *name;
6959 asection *sect;
6960 short sig;
6961 unsigned flags;
6962
6963 /* nto_procfs_status 'pid' field is at offset 0. */
6964 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
6965
6966 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
6967 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
6968
6969 /* nto_procfs_status 'flags' field is at offset 8. */
6970 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
6971
6972 /* nto_procfs_status 'what' field is at offset 14. */
6973 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
6974 {
6975 elf_tdata (abfd)->core_signal = sig;
6976 elf_tdata (abfd)->core_lwpid = *tid;
6977 }
6978
6979 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
6980 do not come from signals so we make sure we set the current
6981 thread just in case. */
6982 if (flags & 0x00000080)
6983 elf_tdata (abfd)->core_lwpid = *tid;
6984
6985 /* Make a ".qnx_core_status/%d" section. */
6986 sprintf (buf, ".qnx_core_status/%d", *tid);
6987
6988 name = bfd_alloc (abfd, strlen (buf) + 1);
6989 if (name == NULL)
6990 return FALSE;
6991 strcpy (name, buf);
6992
6993 sect = bfd_make_section_anyway (abfd, name);
6994 if (sect == NULL)
6995 return FALSE;
6996
6997 sect->_raw_size = note->descsz;
6998 sect->filepos = note->descpos;
6999 sect->flags = SEC_HAS_CONTENTS;
7000 sect->alignment_power = 2;
7001
7002 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7003 }
7004
7005 static bfd_boolean
7006 elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
7007 {
7008 char buf[100];
7009 char *name;
7010 asection *sect;
7011
7012 /* Make a ".reg/%d" section. */
7013 sprintf (buf, ".reg/%d", tid);
7014
7015 name = bfd_alloc (abfd, strlen (buf) + 1);
7016 if (name == NULL)
7017 return FALSE;
7018 strcpy (name, buf);
7019
7020 sect = bfd_make_section_anyway (abfd, name);
7021 if (sect == NULL)
7022 return FALSE;
7023
7024 sect->_raw_size = note->descsz;
7025 sect->filepos = note->descpos;
7026 sect->flags = SEC_HAS_CONTENTS;
7027 sect->alignment_power = 2;
7028
7029 /* This is the current thread. */
7030 if (elf_tdata (abfd)->core_lwpid == tid)
7031 return elfcore_maybe_make_sect (abfd, ".reg", sect);
7032
7033 return TRUE;
7034 }
7035
7036 #define BFD_QNT_CORE_INFO 7
7037 #define BFD_QNT_CORE_STATUS 8
7038 #define BFD_QNT_CORE_GREG 9
7039 #define BFD_QNT_CORE_FPREG 10
7040
7041 static bfd_boolean
7042 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7043 {
7044 /* Every GREG section has a STATUS section before it. Store the
7045 tid from the previous call to pass down to the next gregs
7046 function. */
7047 static pid_t tid = 1;
7048
7049 switch (note->type)
7050 {
7051 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7052 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7053 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7054 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7055 default: return TRUE;
7056 }
7057 }
7058
7059 /* Function: elfcore_write_note
7060
7061 Inputs:
7062 buffer to hold note
7063 name of note
7064 type of note
7065 data for note
7066 size of data for note
7067
7068 Return:
7069 End of buffer containing note. */
7070
7071 char *
7072 elfcore_write_note (bfd *abfd,
7073 char *buf,
7074 int *bufsiz,
7075 const char *name,
7076 int type,
7077 const void *input,
7078 int size)
7079 {
7080 Elf_External_Note *xnp;
7081 size_t namesz;
7082 size_t pad;
7083 size_t newspace;
7084 char *p, *dest;
7085
7086 namesz = 0;
7087 pad = 0;
7088 if (name != NULL)
7089 {
7090 const struct elf_backend_data *bed;
7091
7092 namesz = strlen (name) + 1;
7093 bed = get_elf_backend_data (abfd);
7094 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7095 }
7096
7097 newspace = 12 + namesz + pad + size;
7098
7099 p = realloc (buf, *bufsiz + newspace);
7100 dest = p + *bufsiz;
7101 *bufsiz += newspace;
7102 xnp = (Elf_External_Note *) dest;
7103 H_PUT_32 (abfd, namesz, xnp->namesz);
7104 H_PUT_32 (abfd, size, xnp->descsz);
7105 H_PUT_32 (abfd, type, xnp->type);
7106 dest = xnp->name;
7107 if (name != NULL)
7108 {
7109 memcpy (dest, name, namesz);
7110 dest += namesz;
7111 while (pad != 0)
7112 {
7113 *dest++ = '\0';
7114 --pad;
7115 }
7116 }
7117 memcpy (dest, input, size);
7118 return p;
7119 }
7120
7121 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7122 char *
7123 elfcore_write_prpsinfo (bfd *abfd,
7124 char *buf,
7125 int *bufsiz,
7126 const char *fname,
7127 const char *psargs)
7128 {
7129 int note_type;
7130 char *note_name = "CORE";
7131
7132 #if defined (HAVE_PSINFO_T)
7133 psinfo_t data;
7134 note_type = NT_PSINFO;
7135 #else
7136 prpsinfo_t data;
7137 note_type = NT_PRPSINFO;
7138 #endif
7139
7140 memset (&data, 0, sizeof (data));
7141 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7142 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7143 return elfcore_write_note (abfd, buf, bufsiz,
7144 note_name, note_type, &data, sizeof (data));
7145 }
7146 #endif /* PSINFO_T or PRPSINFO_T */
7147
7148 #if defined (HAVE_PRSTATUS_T)
7149 char *
7150 elfcore_write_prstatus (bfd *abfd,
7151 char *buf,
7152 int *bufsiz,
7153 long pid,
7154 int cursig,
7155 const void *gregs)
7156 {
7157 prstatus_t prstat;
7158 char *note_name = "CORE";
7159
7160 memset (&prstat, 0, sizeof (prstat));
7161 prstat.pr_pid = pid;
7162 prstat.pr_cursig = cursig;
7163 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7164 return elfcore_write_note (abfd, buf, bufsiz,
7165 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7166 }
7167 #endif /* HAVE_PRSTATUS_T */
7168
7169 #if defined (HAVE_LWPSTATUS_T)
7170 char *
7171 elfcore_write_lwpstatus (bfd *abfd,
7172 char *buf,
7173 int *bufsiz,
7174 long pid,
7175 int cursig,
7176 const void *gregs)
7177 {
7178 lwpstatus_t lwpstat;
7179 char *note_name = "CORE";
7180
7181 memset (&lwpstat, 0, sizeof (lwpstat));
7182 lwpstat.pr_lwpid = pid >> 16;
7183 lwpstat.pr_cursig = cursig;
7184 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7185 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7186 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7187 #if !defined(gregs)
7188 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7189 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7190 #else
7191 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7192 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7193 #endif
7194 #endif
7195 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7196 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7197 }
7198 #endif /* HAVE_LWPSTATUS_T */
7199
7200 #if defined (HAVE_PSTATUS_T)
7201 char *
7202 elfcore_write_pstatus (bfd *abfd,
7203 char *buf,
7204 int *bufsiz,
7205 long pid,
7206 int cursig,
7207 const void *gregs)
7208 {
7209 pstatus_t pstat;
7210 char *note_name = "CORE";
7211
7212 memset (&pstat, 0, sizeof (pstat));
7213 pstat.pr_pid = pid & 0xffff;
7214 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7215 NT_PSTATUS, &pstat, sizeof (pstat));
7216 return buf;
7217 }
7218 #endif /* HAVE_PSTATUS_T */
7219
7220 char *
7221 elfcore_write_prfpreg (bfd *abfd,
7222 char *buf,
7223 int *bufsiz,
7224 const void *fpregs,
7225 int size)
7226 {
7227 char *note_name = "CORE";
7228 return elfcore_write_note (abfd, buf, bufsiz,
7229 note_name, NT_FPREGSET, fpregs, size);
7230 }
7231
7232 char *
7233 elfcore_write_prxfpreg (bfd *abfd,
7234 char *buf,
7235 int *bufsiz,
7236 const void *xfpregs,
7237 int size)
7238 {
7239 char *note_name = "LINUX";
7240 return elfcore_write_note (abfd, buf, bufsiz,
7241 note_name, NT_PRXFPREG, xfpregs, size);
7242 }
7243
7244 static bfd_boolean
7245 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7246 {
7247 char *buf;
7248 char *p;
7249
7250 if (size <= 0)
7251 return TRUE;
7252
7253 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7254 return FALSE;
7255
7256 buf = bfd_malloc (size);
7257 if (buf == NULL)
7258 return FALSE;
7259
7260 if (bfd_bread (buf, size, abfd) != size)
7261 {
7262 error:
7263 free (buf);
7264 return FALSE;
7265 }
7266
7267 p = buf;
7268 while (p < buf + size)
7269 {
7270 /* FIXME: bad alignment assumption. */
7271 Elf_External_Note *xnp = (Elf_External_Note *) p;
7272 Elf_Internal_Note in;
7273
7274 in.type = H_GET_32 (abfd, xnp->type);
7275
7276 in.namesz = H_GET_32 (abfd, xnp->namesz);
7277 in.namedata = xnp->name;
7278
7279 in.descsz = H_GET_32 (abfd, xnp->descsz);
7280 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7281 in.descpos = offset + (in.descdata - buf);
7282
7283 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7284 {
7285 if (! elfcore_grok_netbsd_note (abfd, &in))
7286 goto error;
7287 }
7288 else if (strncmp (in.namedata, "QNX", 3) == 0)
7289 {
7290 if (! elfcore_grok_nto_note (abfd, &in))
7291 goto error;
7292 }
7293 else
7294 {
7295 if (! elfcore_grok_note (abfd, &in))
7296 goto error;
7297 }
7298
7299 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7300 }
7301
7302 free (buf);
7303 return TRUE;
7304 }
7305 \f
7306 /* Providing external access to the ELF program header table. */
7307
7308 /* Return an upper bound on the number of bytes required to store a
7309 copy of ABFD's program header table entries. Return -1 if an error
7310 occurs; bfd_get_error will return an appropriate code. */
7311
7312 long
7313 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7314 {
7315 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7316 {
7317 bfd_set_error (bfd_error_wrong_format);
7318 return -1;
7319 }
7320
7321 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7322 }
7323
7324 /* Copy ABFD's program header table entries to *PHDRS. The entries
7325 will be stored as an array of Elf_Internal_Phdr structures, as
7326 defined in include/elf/internal.h. To find out how large the
7327 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7328
7329 Return the number of program header table entries read, or -1 if an
7330 error occurs; bfd_get_error will return an appropriate code. */
7331
7332 int
7333 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7334 {
7335 int num_phdrs;
7336
7337 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7338 {
7339 bfd_set_error (bfd_error_wrong_format);
7340 return -1;
7341 }
7342
7343 num_phdrs = elf_elfheader (abfd)->e_phnum;
7344 memcpy (phdrs, elf_tdata (abfd)->phdr,
7345 num_phdrs * sizeof (Elf_Internal_Phdr));
7346
7347 return num_phdrs;
7348 }
7349
7350 void
7351 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7352 {
7353 #ifdef BFD64
7354 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7355
7356 i_ehdrp = elf_elfheader (abfd);
7357 if (i_ehdrp == NULL)
7358 sprintf_vma (buf, value);
7359 else
7360 {
7361 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7362 {
7363 #if BFD_HOST_64BIT_LONG
7364 sprintf (buf, "%016lx", value);
7365 #else
7366 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7367 _bfd_int64_low (value));
7368 #endif
7369 }
7370 else
7371 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7372 }
7373 #else
7374 sprintf_vma (buf, value);
7375 #endif
7376 }
7377
7378 void
7379 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7380 {
7381 #ifdef BFD64
7382 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7383
7384 i_ehdrp = elf_elfheader (abfd);
7385 if (i_ehdrp == NULL)
7386 fprintf_vma ((FILE *) stream, value);
7387 else
7388 {
7389 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7390 {
7391 #if BFD_HOST_64BIT_LONG
7392 fprintf ((FILE *) stream, "%016lx", value);
7393 #else
7394 fprintf ((FILE *) stream, "%08lx%08lx",
7395 _bfd_int64_high (value), _bfd_int64_low (value));
7396 #endif
7397 }
7398 else
7399 fprintf ((FILE *) stream, "%08lx",
7400 (unsigned long) (value & 0xffffffff));
7401 }
7402 #else
7403 fprintf_vma ((FILE *) stream, value);
7404 #endif
7405 }
7406
7407 enum elf_reloc_type_class
7408 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7409 {
7410 return reloc_class_normal;
7411 }
7412
7413 /* For RELA architectures, return the relocation value for a
7414 relocation against a local symbol. */
7415
7416 bfd_vma
7417 _bfd_elf_rela_local_sym (bfd *abfd,
7418 Elf_Internal_Sym *sym,
7419 asection **psec,
7420 Elf_Internal_Rela *rel)
7421 {
7422 asection *sec = *psec;
7423 bfd_vma relocation;
7424
7425 relocation = (sec->output_section->vma
7426 + sec->output_offset
7427 + sym->st_value);
7428 if ((sec->flags & SEC_MERGE)
7429 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7430 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7431 {
7432 rel->r_addend =
7433 _bfd_merged_section_offset (abfd, psec,
7434 elf_section_data (sec)->sec_info,
7435 sym->st_value + rel->r_addend,
7436 0);
7437 sec = *psec;
7438 rel->r_addend -= relocation;
7439 rel->r_addend += sec->output_section->vma + sec->output_offset;
7440 }
7441 return relocation;
7442 }
7443
7444 bfd_vma
7445 _bfd_elf_rel_local_sym (bfd *abfd,
7446 Elf_Internal_Sym *sym,
7447 asection **psec,
7448 bfd_vma addend)
7449 {
7450 asection *sec = *psec;
7451
7452 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7453 return sym->st_value + addend;
7454
7455 return _bfd_merged_section_offset (abfd, psec,
7456 elf_section_data (sec)->sec_info,
7457 sym->st_value + addend, 0);
7458 }
7459
7460 bfd_vma
7461 _bfd_elf_section_offset (bfd *abfd,
7462 struct bfd_link_info *info,
7463 asection *sec,
7464 bfd_vma offset)
7465 {
7466 struct bfd_elf_section_data *sec_data;
7467
7468 sec_data = elf_section_data (sec);
7469 switch (sec->sec_info_type)
7470 {
7471 case ELF_INFO_TYPE_STABS:
7472 return _bfd_stab_section_offset (abfd,
7473 &elf_hash_table (info)->merge_info,
7474 sec, &sec_data->sec_info, offset);
7475 case ELF_INFO_TYPE_EH_FRAME:
7476 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7477 default:
7478 return offset;
7479 }
7480 }
7481 \f
7482 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7483 reconstruct an ELF file by reading the segments out of remote memory
7484 based on the ELF file header at EHDR_VMA and the ELF program headers it
7485 points to. If not null, *LOADBASEP is filled in with the difference
7486 between the VMAs from which the segments were read, and the VMAs the
7487 file headers (and hence BFD's idea of each section's VMA) put them at.
7488
7489 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7490 remote memory at target address VMA into the local buffer at MYADDR; it
7491 should return zero on success or an `errno' code on failure. TEMPL must
7492 be a BFD for an ELF target with the word size and byte order found in
7493 the remote memory. */
7494
7495 bfd *
7496 bfd_elf_bfd_from_remote_memory
7497 (bfd *templ,
7498 bfd_vma ehdr_vma,
7499 bfd_vma *loadbasep,
7500 int (*target_read_memory) (bfd_vma, char *, int))
7501 {
7502 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7503 (templ, ehdr_vma, loadbasep, target_read_memory);
7504 }
This page took 0.222409 seconds and 4 git commands to generate.