b463f1df8b246922d39b298398d20c2efc98fc2e
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
57 size_t align) ;
58 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
59 file_ptr offset, size_t align);
60
61 /* Swap version information in and out. The version information is
62 currently size independent. If that ever changes, this code will
63 need to move into elfcode.h. */
64
65 /* Swap in a Verdef structure. */
66
67 void
68 _bfd_elf_swap_verdef_in (bfd *abfd,
69 const Elf_External_Verdef *src,
70 Elf_Internal_Verdef *dst)
71 {
72 dst->vd_version = H_GET_16 (abfd, src->vd_version);
73 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
74 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
75 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
76 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
77 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
78 dst->vd_next = H_GET_32 (abfd, src->vd_next);
79 }
80
81 /* Swap out a Verdef structure. */
82
83 void
84 _bfd_elf_swap_verdef_out (bfd *abfd,
85 const Elf_Internal_Verdef *src,
86 Elf_External_Verdef *dst)
87 {
88 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
89 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
90 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
91 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
92 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
93 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
94 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
95 }
96
97 /* Swap in a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_in (bfd *abfd,
101 const Elf_External_Verdaux *src,
102 Elf_Internal_Verdaux *dst)
103 {
104 dst->vda_name = H_GET_32 (abfd, src->vda_name);
105 dst->vda_next = H_GET_32 (abfd, src->vda_next);
106 }
107
108 /* Swap out a Verdaux structure. */
109
110 void
111 _bfd_elf_swap_verdaux_out (bfd *abfd,
112 const Elf_Internal_Verdaux *src,
113 Elf_External_Verdaux *dst)
114 {
115 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
116 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
117 }
118
119 /* Swap in a Verneed structure. */
120
121 void
122 _bfd_elf_swap_verneed_in (bfd *abfd,
123 const Elf_External_Verneed *src,
124 Elf_Internal_Verneed *dst)
125 {
126 dst->vn_version = H_GET_16 (abfd, src->vn_version);
127 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
128 dst->vn_file = H_GET_32 (abfd, src->vn_file);
129 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
130 dst->vn_next = H_GET_32 (abfd, src->vn_next);
131 }
132
133 /* Swap out a Verneed structure. */
134
135 void
136 _bfd_elf_swap_verneed_out (bfd *abfd,
137 const Elf_Internal_Verneed *src,
138 Elf_External_Verneed *dst)
139 {
140 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
141 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
142 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
143 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
144 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
145 }
146
147 /* Swap in a Vernaux structure. */
148
149 void
150 _bfd_elf_swap_vernaux_in (bfd *abfd,
151 const Elf_External_Vernaux *src,
152 Elf_Internal_Vernaux *dst)
153 {
154 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
155 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
156 dst->vna_other = H_GET_16 (abfd, src->vna_other);
157 dst->vna_name = H_GET_32 (abfd, src->vna_name);
158 dst->vna_next = H_GET_32 (abfd, src->vna_next);
159 }
160
161 /* Swap out a Vernaux structure. */
162
163 void
164 _bfd_elf_swap_vernaux_out (bfd *abfd,
165 const Elf_Internal_Vernaux *src,
166 Elf_External_Vernaux *dst)
167 {
168 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
169 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
170 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
171 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
172 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
173 }
174
175 /* Swap in a Versym structure. */
176
177 void
178 _bfd_elf_swap_versym_in (bfd *abfd,
179 const Elf_External_Versym *src,
180 Elf_Internal_Versym *dst)
181 {
182 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
183 }
184
185 /* Swap out a Versym structure. */
186
187 void
188 _bfd_elf_swap_versym_out (bfd *abfd,
189 const Elf_Internal_Versym *src,
190 Elf_External_Versym *dst)
191 {
192 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
193 }
194
195 /* Standard ELF hash function. Do not change this function; you will
196 cause invalid hash tables to be generated. */
197
198 unsigned long
199 bfd_elf_hash (const char *namearg)
200 {
201 const unsigned char *name = (const unsigned char *) namearg;
202 unsigned long h = 0;
203 unsigned long g;
204 int ch;
205
206 while ((ch = *name++) != '\0')
207 {
208 h = (h << 4) + ch;
209 if ((g = (h & 0xf0000000)) != 0)
210 {
211 h ^= g >> 24;
212 /* The ELF ABI says `h &= ~g', but this is equivalent in
213 this case and on some machines one insn instead of two. */
214 h ^= g;
215 }
216 }
217 return h & 0xffffffff;
218 }
219
220 /* DT_GNU_HASH hash function. Do not change this function; you will
221 cause invalid hash tables to be generated. */
222
223 unsigned long
224 bfd_elf_gnu_hash (const char *namearg)
225 {
226 const unsigned char *name = (const unsigned char *) namearg;
227 unsigned long h = 5381;
228 unsigned char ch;
229
230 while ((ch = *name++) != '\0')
231 h = (h << 5) + h + ch;
232 return h & 0xffffffff;
233 }
234
235 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
236 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
237 bfd_boolean
238 bfd_elf_allocate_object (bfd *abfd,
239 size_t object_size,
240 enum elf_target_id object_id)
241 {
242 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
243 abfd->tdata.any = bfd_zalloc (abfd, object_size);
244 if (abfd->tdata.any == NULL)
245 return FALSE;
246
247 elf_object_id (abfd) = object_id;
248 if (abfd->direction != read_direction)
249 {
250 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
251 if (o == NULL)
252 return FALSE;
253 elf_tdata (abfd)->o = o;
254 elf_program_header_size (abfd) = (bfd_size_type) -1;
255 }
256 return TRUE;
257 }
258
259
260 bfd_boolean
261 bfd_elf_make_object (bfd *abfd)
262 {
263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
264 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
265 bed->target_id);
266 }
267
268 bfd_boolean
269 bfd_elf_mkcorefile (bfd *abfd)
270 {
271 /* I think this can be done just like an object file. */
272 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
273 return FALSE;
274 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
275 return elf_tdata (abfd)->core != NULL;
276 }
277
278 static char *
279 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
280 {
281 Elf_Internal_Shdr **i_shdrp;
282 bfd_byte *shstrtab = NULL;
283 file_ptr offset;
284 bfd_size_type shstrtabsize;
285
286 i_shdrp = elf_elfsections (abfd);
287 if (i_shdrp == 0
288 || shindex >= elf_numsections (abfd)
289 || i_shdrp[shindex] == 0)
290 return NULL;
291
292 shstrtab = i_shdrp[shindex]->contents;
293 if (shstrtab == NULL)
294 {
295 /* No cached one, attempt to read, and cache what we read. */
296 offset = i_shdrp[shindex]->sh_offset;
297 shstrtabsize = i_shdrp[shindex]->sh_size;
298
299 /* Allocate and clear an extra byte at the end, to prevent crashes
300 in case the string table is not terminated. */
301 if (shstrtabsize + 1 <= 1
302 || shstrtabsize > bfd_get_file_size (abfd)
303 || bfd_seek (abfd, offset, SEEK_SET) != 0
304 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
305 shstrtab = NULL;
306 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
307 {
308 if (bfd_get_error () != bfd_error_system_call)
309 bfd_set_error (bfd_error_file_truncated);
310 bfd_release (abfd, shstrtab);
311 shstrtab = NULL;
312 /* Once we've failed to read it, make sure we don't keep
313 trying. Otherwise, we'll keep allocating space for
314 the string table over and over. */
315 i_shdrp[shindex]->sh_size = 0;
316 }
317 else
318 shstrtab[shstrtabsize] = '\0';
319 i_shdrp[shindex]->contents = shstrtab;
320 }
321 return (char *) shstrtab;
322 }
323
324 char *
325 bfd_elf_string_from_elf_section (bfd *abfd,
326 unsigned int shindex,
327 unsigned int strindex)
328 {
329 Elf_Internal_Shdr *hdr;
330
331 if (strindex == 0)
332 return "";
333
334 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
335 return NULL;
336
337 hdr = elf_elfsections (abfd)[shindex];
338
339 if (hdr->contents == NULL)
340 {
341 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
342 {
343 /* PR 17512: file: f057ec89. */
344 /* xgettext:c-format */
345 _bfd_error_handler (_("%pB: attempt to load strings from"
346 " a non-string section (number %d)"),
347 abfd, shindex);
348 return NULL;
349 }
350
351 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
352 return NULL;
353 }
354 else
355 {
356 /* PR 24273: The string section's contents may have already
357 been loaded elsewhere, eg because a corrupt file has the
358 string section index in the ELF header pointing at a group
359 section. So be paranoid, and test that the last byte of
360 the section is zero. */
361 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
362 return NULL;
363 }
364
365 if (strindex >= hdr->sh_size)
366 {
367 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
368 _bfd_error_handler
369 /* xgettext:c-format */
370 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
371 abfd, strindex, (uint64_t) hdr->sh_size,
372 (shindex == shstrndx && strindex == hdr->sh_name
373 ? ".shstrtab"
374 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
375 return NULL;
376 }
377
378 return ((char *) hdr->contents) + strindex;
379 }
380
381 /* Read and convert symbols to internal format.
382 SYMCOUNT specifies the number of symbols to read, starting from
383 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
384 are non-NULL, they are used to store the internal symbols, external
385 symbols, and symbol section index extensions, respectively.
386 Returns a pointer to the internal symbol buffer (malloced if necessary)
387 or NULL if there were no symbols or some kind of problem. */
388
389 Elf_Internal_Sym *
390 bfd_elf_get_elf_syms (bfd *ibfd,
391 Elf_Internal_Shdr *symtab_hdr,
392 size_t symcount,
393 size_t symoffset,
394 Elf_Internal_Sym *intsym_buf,
395 void *extsym_buf,
396 Elf_External_Sym_Shndx *extshndx_buf)
397 {
398 Elf_Internal_Shdr *shndx_hdr;
399 void *alloc_ext;
400 const bfd_byte *esym;
401 Elf_External_Sym_Shndx *alloc_extshndx;
402 Elf_External_Sym_Shndx *shndx;
403 Elf_Internal_Sym *alloc_intsym;
404 Elf_Internal_Sym *isym;
405 Elf_Internal_Sym *isymend;
406 const struct elf_backend_data *bed;
407 size_t extsym_size;
408 bfd_size_type amt;
409 file_ptr pos;
410
411 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
412 abort ();
413
414 if (symcount == 0)
415 return intsym_buf;
416
417 /* Normal syms might have section extension entries. */
418 shndx_hdr = NULL;
419 if (elf_symtab_shndx_list (ibfd) != NULL)
420 {
421 elf_section_list * entry;
422 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
423
424 /* Find an index section that is linked to this symtab section. */
425 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
426 {
427 /* PR 20063. */
428 if (entry->hdr.sh_link >= elf_numsections (ibfd))
429 continue;
430
431 if (sections[entry->hdr.sh_link] == symtab_hdr)
432 {
433 shndx_hdr = & entry->hdr;
434 break;
435 };
436 }
437
438 if (shndx_hdr == NULL)
439 {
440 if (symtab_hdr == & elf_symtab_hdr (ibfd))
441 /* Not really accurate, but this was how the old code used to work. */
442 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
443 /* Otherwise we do nothing. The assumption is that
444 the index table will not be needed. */
445 }
446 }
447
448 /* Read the symbols. */
449 alloc_ext = NULL;
450 alloc_extshndx = NULL;
451 alloc_intsym = NULL;
452 bed = get_elf_backend_data (ibfd);
453 extsym_size = bed->s->sizeof_sym;
454 amt = (bfd_size_type) symcount * extsym_size;
455 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
456 if (extsym_buf == NULL)
457 {
458 alloc_ext = bfd_malloc2 (symcount, extsym_size);
459 extsym_buf = alloc_ext;
460 }
461 if (extsym_buf == NULL
462 || bfd_seek (ibfd, pos, SEEK_SET) != 0
463 || bfd_bread (extsym_buf, amt, ibfd) != amt)
464 {
465 intsym_buf = NULL;
466 goto out;
467 }
468
469 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
470 extshndx_buf = NULL;
471 else
472 {
473 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
474 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
475 if (extshndx_buf == NULL)
476 {
477 alloc_extshndx = (Elf_External_Sym_Shndx *)
478 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
479 extshndx_buf = alloc_extshndx;
480 }
481 if (extshndx_buf == NULL
482 || bfd_seek (ibfd, pos, SEEK_SET) != 0
483 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
484 {
485 intsym_buf = NULL;
486 goto out;
487 }
488 }
489
490 if (intsym_buf == NULL)
491 {
492 alloc_intsym = (Elf_Internal_Sym *)
493 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
494 intsym_buf = alloc_intsym;
495 if (intsym_buf == NULL)
496 goto out;
497 }
498
499 /* Convert the symbols to internal form. */
500 isymend = intsym_buf + symcount;
501 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
502 shndx = extshndx_buf;
503 isym < isymend;
504 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
505 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
506 {
507 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
508 /* xgettext:c-format */
509 _bfd_error_handler (_("%pB symbol number %lu references"
510 " nonexistent SHT_SYMTAB_SHNDX section"),
511 ibfd, (unsigned long) symoffset);
512 if (alloc_intsym != NULL)
513 free (alloc_intsym);
514 intsym_buf = NULL;
515 goto out;
516 }
517
518 out:
519 if (alloc_ext != NULL)
520 free (alloc_ext);
521 if (alloc_extshndx != NULL)
522 free (alloc_extshndx);
523
524 return intsym_buf;
525 }
526
527 /* Look up a symbol name. */
528 const char *
529 bfd_elf_sym_name (bfd *abfd,
530 Elf_Internal_Shdr *symtab_hdr,
531 Elf_Internal_Sym *isym,
532 asection *sym_sec)
533 {
534 const char *name;
535 unsigned int iname = isym->st_name;
536 unsigned int shindex = symtab_hdr->sh_link;
537
538 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
539 /* Check for a bogus st_shndx to avoid crashing. */
540 && isym->st_shndx < elf_numsections (abfd))
541 {
542 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
543 shindex = elf_elfheader (abfd)->e_shstrndx;
544 }
545
546 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
547 if (name == NULL)
548 name = "(null)";
549 else if (sym_sec && *name == '\0')
550 name = bfd_section_name (abfd, sym_sec);
551
552 return name;
553 }
554
555 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
556 sections. The first element is the flags, the rest are section
557 pointers. */
558
559 typedef union elf_internal_group {
560 Elf_Internal_Shdr *shdr;
561 unsigned int flags;
562 } Elf_Internal_Group;
563
564 /* Return the name of the group signature symbol. Why isn't the
565 signature just a string? */
566
567 static const char *
568 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
569 {
570 Elf_Internal_Shdr *hdr;
571 unsigned char esym[sizeof (Elf64_External_Sym)];
572 Elf_External_Sym_Shndx eshndx;
573 Elf_Internal_Sym isym;
574
575 /* First we need to ensure the symbol table is available. Make sure
576 that it is a symbol table section. */
577 if (ghdr->sh_link >= elf_numsections (abfd))
578 return NULL;
579 hdr = elf_elfsections (abfd) [ghdr->sh_link];
580 if (hdr->sh_type != SHT_SYMTAB
581 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
582 return NULL;
583
584 /* Go read the symbol. */
585 hdr = &elf_tdata (abfd)->symtab_hdr;
586 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
587 &isym, esym, &eshndx) == NULL)
588 return NULL;
589
590 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
591 }
592
593 /* Set next_in_group list pointer, and group name for NEWSECT. */
594
595 static bfd_boolean
596 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
597 {
598 unsigned int num_group = elf_tdata (abfd)->num_group;
599
600 /* If num_group is zero, read in all SHT_GROUP sections. The count
601 is set to -1 if there are no SHT_GROUP sections. */
602 if (num_group == 0)
603 {
604 unsigned int i, shnum;
605
606 /* First count the number of groups. If we have a SHT_GROUP
607 section with just a flag word (ie. sh_size is 4), ignore it. */
608 shnum = elf_numsections (abfd);
609 num_group = 0;
610
611 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
612 ( (shdr)->sh_type == SHT_GROUP \
613 && (shdr)->sh_size >= minsize \
614 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
615 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
616
617 for (i = 0; i < shnum; i++)
618 {
619 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
620
621 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
622 num_group += 1;
623 }
624
625 if (num_group == 0)
626 {
627 num_group = (unsigned) -1;
628 elf_tdata (abfd)->num_group = num_group;
629 elf_tdata (abfd)->group_sect_ptr = NULL;
630 }
631 else
632 {
633 /* We keep a list of elf section headers for group sections,
634 so we can find them quickly. */
635 bfd_size_type amt;
636
637 elf_tdata (abfd)->num_group = num_group;
638 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
639 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
640 if (elf_tdata (abfd)->group_sect_ptr == NULL)
641 return FALSE;
642 memset (elf_tdata (abfd)->group_sect_ptr, 0,
643 num_group * sizeof (Elf_Internal_Shdr *));
644 num_group = 0;
645
646 for (i = 0; i < shnum; i++)
647 {
648 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
649
650 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
651 {
652 unsigned char *src;
653 Elf_Internal_Group *dest;
654
655 /* Make sure the group section has a BFD section
656 attached to it. */
657 if (!bfd_section_from_shdr (abfd, i))
658 return FALSE;
659
660 /* Add to list of sections. */
661 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
662 num_group += 1;
663
664 /* Read the raw contents. */
665 BFD_ASSERT (sizeof (*dest) >= 4);
666 amt = shdr->sh_size * sizeof (*dest) / 4;
667 shdr->contents = (unsigned char *)
668 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
669 /* PR binutils/4110: Handle corrupt group headers. */
670 if (shdr->contents == NULL)
671 {
672 _bfd_error_handler
673 /* xgettext:c-format */
674 (_("%pB: corrupt size field in group section"
675 " header: %#" PRIx64),
676 abfd, (uint64_t) shdr->sh_size);
677 bfd_set_error (bfd_error_bad_value);
678 -- num_group;
679 continue;
680 }
681
682 memset (shdr->contents, 0, amt);
683
684 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
685 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
686 != shdr->sh_size))
687 {
688 _bfd_error_handler
689 /* xgettext:c-format */
690 (_("%pB: invalid size field in group section"
691 " header: %#" PRIx64 ""),
692 abfd, (uint64_t) shdr->sh_size);
693 bfd_set_error (bfd_error_bad_value);
694 -- num_group;
695 /* PR 17510: If the group contents are even
696 partially corrupt, do not allow any of the
697 contents to be used. */
698 memset (shdr->contents, 0, amt);
699 continue;
700 }
701
702 /* Translate raw contents, a flag word followed by an
703 array of elf section indices all in target byte order,
704 to the flag word followed by an array of elf section
705 pointers. */
706 src = shdr->contents + shdr->sh_size;
707 dest = (Elf_Internal_Group *) (shdr->contents + amt);
708
709 while (1)
710 {
711 unsigned int idx;
712
713 src -= 4;
714 --dest;
715 idx = H_GET_32 (abfd, src);
716 if (src == shdr->contents)
717 {
718 dest->flags = idx;
719 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
720 shdr->bfd_section->flags
721 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
722 break;
723 }
724 if (idx < shnum)
725 {
726 dest->shdr = elf_elfsections (abfd)[idx];
727 /* PR binutils/23199: All sections in a
728 section group should be marked with
729 SHF_GROUP. But some tools generate
730 broken objects without SHF_GROUP. Fix
731 them up here. */
732 dest->shdr->sh_flags |= SHF_GROUP;
733 }
734 if (idx >= shnum
735 || dest->shdr->sh_type == SHT_GROUP)
736 {
737 _bfd_error_handler
738 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
739 abfd, i);
740 dest->shdr = NULL;
741 }
742 }
743 }
744 }
745
746 /* PR 17510: Corrupt binaries might contain invalid groups. */
747 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
748 {
749 elf_tdata (abfd)->num_group = num_group;
750
751 /* If all groups are invalid then fail. */
752 if (num_group == 0)
753 {
754 elf_tdata (abfd)->group_sect_ptr = NULL;
755 elf_tdata (abfd)->num_group = num_group = -1;
756 _bfd_error_handler
757 (_("%pB: no valid group sections found"), abfd);
758 bfd_set_error (bfd_error_bad_value);
759 }
760 }
761 }
762 }
763
764 if (num_group != (unsigned) -1)
765 {
766 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
767 unsigned int j;
768
769 for (j = 0; j < num_group; j++)
770 {
771 /* Begin search from previous found group. */
772 unsigned i = (j + search_offset) % num_group;
773
774 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
775 Elf_Internal_Group *idx;
776 bfd_size_type n_elt;
777
778 if (shdr == NULL)
779 continue;
780
781 idx = (Elf_Internal_Group *) shdr->contents;
782 if (idx == NULL || shdr->sh_size < 4)
783 {
784 /* See PR 21957 for a reproducer. */
785 /* xgettext:c-format */
786 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
787 abfd, shdr->bfd_section);
788 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
789 bfd_set_error (bfd_error_bad_value);
790 return FALSE;
791 }
792 n_elt = shdr->sh_size / 4;
793
794 /* Look through this group's sections to see if current
795 section is a member. */
796 while (--n_elt != 0)
797 if ((++idx)->shdr == hdr)
798 {
799 asection *s = NULL;
800
801 /* We are a member of this group. Go looking through
802 other members to see if any others are linked via
803 next_in_group. */
804 idx = (Elf_Internal_Group *) shdr->contents;
805 n_elt = shdr->sh_size / 4;
806 while (--n_elt != 0)
807 if ((++idx)->shdr != NULL
808 && (s = idx->shdr->bfd_section) != NULL
809 && elf_next_in_group (s) != NULL)
810 break;
811 if (n_elt != 0)
812 {
813 /* Snarf the group name from other member, and
814 insert current section in circular list. */
815 elf_group_name (newsect) = elf_group_name (s);
816 elf_next_in_group (newsect) = elf_next_in_group (s);
817 elf_next_in_group (s) = newsect;
818 }
819 else
820 {
821 const char *gname;
822
823 gname = group_signature (abfd, shdr);
824 if (gname == NULL)
825 return FALSE;
826 elf_group_name (newsect) = gname;
827
828 /* Start a circular list with one element. */
829 elf_next_in_group (newsect) = newsect;
830 }
831
832 /* If the group section has been created, point to the
833 new member. */
834 if (shdr->bfd_section != NULL)
835 elf_next_in_group (shdr->bfd_section) = newsect;
836
837 elf_tdata (abfd)->group_search_offset = i;
838 j = num_group - 1;
839 break;
840 }
841 }
842 }
843
844 if (elf_group_name (newsect) == NULL)
845 {
846 /* xgettext:c-format */
847 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
848 abfd, newsect);
849 return FALSE;
850 }
851 return TRUE;
852 }
853
854 bfd_boolean
855 _bfd_elf_setup_sections (bfd *abfd)
856 {
857 unsigned int i;
858 unsigned int num_group = elf_tdata (abfd)->num_group;
859 bfd_boolean result = TRUE;
860 asection *s;
861
862 /* Process SHF_LINK_ORDER. */
863 for (s = abfd->sections; s != NULL; s = s->next)
864 {
865 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
866 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
867 {
868 unsigned int elfsec = this_hdr->sh_link;
869 /* FIXME: The old Intel compiler and old strip/objcopy may
870 not set the sh_link or sh_info fields. Hence we could
871 get the situation where elfsec is 0. */
872 if (elfsec == 0)
873 {
874 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
875 if (bed->link_order_error_handler)
876 bed->link_order_error_handler
877 /* xgettext:c-format */
878 (_("%pB: warning: sh_link not set for section `%pA'"),
879 abfd, s);
880 }
881 else
882 {
883 asection *linksec = NULL;
884
885 if (elfsec < elf_numsections (abfd))
886 {
887 this_hdr = elf_elfsections (abfd)[elfsec];
888 linksec = this_hdr->bfd_section;
889 }
890
891 /* PR 1991, 2008:
892 Some strip/objcopy may leave an incorrect value in
893 sh_link. We don't want to proceed. */
894 if (linksec == NULL)
895 {
896 _bfd_error_handler
897 /* xgettext:c-format */
898 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
899 s->owner, elfsec, s);
900 result = FALSE;
901 }
902
903 elf_linked_to_section (s) = linksec;
904 }
905 }
906 else if (this_hdr->sh_type == SHT_GROUP
907 && elf_next_in_group (s) == NULL)
908 {
909 _bfd_error_handler
910 /* xgettext:c-format */
911 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
912 abfd, elf_section_data (s)->this_idx);
913 result = FALSE;
914 }
915 }
916
917 /* Process section groups. */
918 if (num_group == (unsigned) -1)
919 return result;
920
921 for (i = 0; i < num_group; i++)
922 {
923 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
924 Elf_Internal_Group *idx;
925 unsigned int n_elt;
926
927 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
928 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
929 {
930 _bfd_error_handler
931 /* xgettext:c-format */
932 (_("%pB: section group entry number %u is corrupt"),
933 abfd, i);
934 result = FALSE;
935 continue;
936 }
937
938 idx = (Elf_Internal_Group *) shdr->contents;
939 n_elt = shdr->sh_size / 4;
940
941 while (--n_elt != 0)
942 {
943 ++ idx;
944
945 if (idx->shdr == NULL)
946 continue;
947 else if (idx->shdr->bfd_section)
948 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
949 else if (idx->shdr->sh_type != SHT_RELA
950 && idx->shdr->sh_type != SHT_REL)
951 {
952 /* There are some unknown sections in the group. */
953 _bfd_error_handler
954 /* xgettext:c-format */
955 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
956 abfd,
957 idx->shdr->sh_type,
958 bfd_elf_string_from_elf_section (abfd,
959 (elf_elfheader (abfd)
960 ->e_shstrndx),
961 idx->shdr->sh_name),
962 shdr->bfd_section);
963 result = FALSE;
964 }
965 }
966 }
967
968 return result;
969 }
970
971 bfd_boolean
972 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
973 {
974 return elf_next_in_group (sec) != NULL;
975 }
976
977 static char *
978 convert_debug_to_zdebug (bfd *abfd, const char *name)
979 {
980 unsigned int len = strlen (name);
981 char *new_name = bfd_alloc (abfd, len + 2);
982 if (new_name == NULL)
983 return NULL;
984 new_name[0] = '.';
985 new_name[1] = 'z';
986 memcpy (new_name + 2, name + 1, len);
987 return new_name;
988 }
989
990 static char *
991 convert_zdebug_to_debug (bfd *abfd, const char *name)
992 {
993 unsigned int len = strlen (name);
994 char *new_name = bfd_alloc (abfd, len);
995 if (new_name == NULL)
996 return NULL;
997 new_name[0] = '.';
998 memcpy (new_name + 1, name + 2, len - 1);
999 return new_name;
1000 }
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bfd_boolean
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014
1015 if (hdr->bfd_section != NULL)
1016 return TRUE;
1017
1018 newsect = bfd_make_section_anyway (abfd, name);
1019 if (newsect == NULL)
1020 return FALSE;
1021
1022 hdr->bfd_section = newsect;
1023 elf_section_data (newsect)->this_hdr = *hdr;
1024 elf_section_data (newsect)->this_idx = shindex;
1025
1026 /* Always use the real type/flags. */
1027 elf_section_type (newsect) = hdr->sh_type;
1028 elf_section_flags (newsect) = hdr->sh_flags;
1029
1030 newsect->filepos = hdr->sh_offset;
1031
1032 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1033 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1034 || ! bfd_set_section_alignment (abfd, newsect,
1035 bfd_log2 (hdr->sh_addralign)))
1036 return FALSE;
1037
1038 flags = SEC_NO_FLAGS;
1039 if (hdr->sh_type != SHT_NOBITS)
1040 flags |= SEC_HAS_CONTENTS;
1041 if (hdr->sh_type == SHT_GROUP)
1042 flags |= SEC_GROUP;
1043 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1044 {
1045 flags |= SEC_ALLOC;
1046 if (hdr->sh_type != SHT_NOBITS)
1047 flags |= SEC_LOAD;
1048 }
1049 if ((hdr->sh_flags & SHF_WRITE) == 0)
1050 flags |= SEC_READONLY;
1051 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1052 flags |= SEC_CODE;
1053 else if ((flags & SEC_LOAD) != 0)
1054 flags |= SEC_DATA;
1055 if ((hdr->sh_flags & SHF_MERGE) != 0)
1056 {
1057 flags |= SEC_MERGE;
1058 newsect->entsize = hdr->sh_entsize;
1059 }
1060 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1061 flags |= SEC_STRINGS;
1062 if (hdr->sh_flags & SHF_GROUP)
1063 if (!setup_group (abfd, hdr, newsect))
1064 return FALSE;
1065 if ((hdr->sh_flags & SHF_TLS) != 0)
1066 flags |= SEC_THREAD_LOCAL;
1067 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1068 flags |= SEC_EXCLUDE;
1069
1070 if ((flags & SEC_ALLOC) == 0)
1071 {
1072 /* The debugging sections appear to be recognized only by name,
1073 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1074 if (name [0] == '.')
1075 {
1076 const char *p;
1077 int n;
1078 if (name[1] == 'd')
1079 p = ".debug", n = 6;
1080 else if (name[1] == 'g' && name[2] == 'n')
1081 p = ".gnu.linkonce.wi.", n = 17;
1082 else if (name[1] == 'g' && name[2] == 'd')
1083 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1084 else if (name[1] == 'l')
1085 p = ".line", n = 5;
1086 else if (name[1] == 's')
1087 p = ".stab", n = 5;
1088 else if (name[1] == 'z')
1089 p = ".zdebug", n = 7;
1090 else
1091 p = NULL, n = 0;
1092 if (p != NULL && strncmp (name, p, n) == 0)
1093 flags |= SEC_DEBUGGING;
1094 }
1095 }
1096
1097 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1098 only link a single copy of the section. This is used to support
1099 g++. g++ will emit each template expansion in its own section.
1100 The symbols will be defined as weak, so that multiple definitions
1101 are permitted. The GNU linker extension is to actually discard
1102 all but one of the sections. */
1103 if (CONST_STRNEQ (name, ".gnu.linkonce")
1104 && elf_next_in_group (newsect) == NULL)
1105 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1106
1107 bed = get_elf_backend_data (abfd);
1108 if (bed->elf_backend_section_flags)
1109 if (! bed->elf_backend_section_flags (&flags, hdr))
1110 return FALSE;
1111
1112 if (! bfd_set_section_flags (abfd, newsect, flags))
1113 return FALSE;
1114
1115 /* We do not parse the PT_NOTE segments as we are interested even in the
1116 separate debug info files which may have the segments offsets corrupted.
1117 PT_NOTEs from the core files are currently not parsed using BFD. */
1118 if (hdr->sh_type == SHT_NOTE)
1119 {
1120 bfd_byte *contents;
1121
1122 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1123 return FALSE;
1124
1125 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1126 hdr->sh_offset, hdr->sh_addralign);
1127 free (contents);
1128 }
1129
1130 if ((flags & SEC_ALLOC) != 0)
1131 {
1132 Elf_Internal_Phdr *phdr;
1133 unsigned int i, nload;
1134
1135 /* Some ELF linkers produce binaries with all the program header
1136 p_paddr fields zero. If we have such a binary with more than
1137 one PT_LOAD header, then leave the section lma equal to vma
1138 so that we don't create sections with overlapping lma. */
1139 phdr = elf_tdata (abfd)->phdr;
1140 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1141 if (phdr->p_paddr != 0)
1142 break;
1143 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1144 ++nload;
1145 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1146 return TRUE;
1147
1148 phdr = elf_tdata (abfd)->phdr;
1149 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1150 {
1151 if (((phdr->p_type == PT_LOAD
1152 && (hdr->sh_flags & SHF_TLS) == 0)
1153 || phdr->p_type == PT_TLS)
1154 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1155 {
1156 if ((flags & SEC_LOAD) == 0)
1157 newsect->lma = (phdr->p_paddr
1158 + hdr->sh_addr - phdr->p_vaddr);
1159 else
1160 /* We used to use the same adjustment for SEC_LOAD
1161 sections, but that doesn't work if the segment
1162 is packed with code from multiple VMAs.
1163 Instead we calculate the section LMA based on
1164 the segment LMA. It is assumed that the
1165 segment will contain sections with contiguous
1166 LMAs, even if the VMAs are not. */
1167 newsect->lma = (phdr->p_paddr
1168 + hdr->sh_offset - phdr->p_offset);
1169
1170 /* With contiguous segments, we can't tell from file
1171 offsets whether a section with zero size should
1172 be placed at the end of one segment or the
1173 beginning of the next. Decide based on vaddr. */
1174 if (hdr->sh_addr >= phdr->p_vaddr
1175 && (hdr->sh_addr + hdr->sh_size
1176 <= phdr->p_vaddr + phdr->p_memsz))
1177 break;
1178 }
1179 }
1180 }
1181
1182 /* Compress/decompress DWARF debug sections with names: .debug_* and
1183 .zdebug_*, after the section flags is set. */
1184 if ((flags & SEC_DEBUGGING)
1185 && ((name[1] == 'd' && name[6] == '_')
1186 || (name[1] == 'z' && name[7] == '_')))
1187 {
1188 enum { nothing, compress, decompress } action = nothing;
1189 int compression_header_size;
1190 bfd_size_type uncompressed_size;
1191 unsigned int uncompressed_align_power;
1192 bfd_boolean compressed
1193 = bfd_is_section_compressed_with_header (abfd, newsect,
1194 &compression_header_size,
1195 &uncompressed_size,
1196 &uncompressed_align_power);
1197 if (compressed)
1198 {
1199 /* Compressed section. Check if we should decompress. */
1200 if ((abfd->flags & BFD_DECOMPRESS))
1201 action = decompress;
1202 }
1203
1204 /* Compress the uncompressed section or convert from/to .zdebug*
1205 section. Check if we should compress. */
1206 if (action == nothing)
1207 {
1208 if (newsect->size != 0
1209 && (abfd->flags & BFD_COMPRESS)
1210 && compression_header_size >= 0
1211 && uncompressed_size > 0
1212 && (!compressed
1213 || ((compression_header_size > 0)
1214 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1215 action = compress;
1216 else
1217 return TRUE;
1218 }
1219
1220 if (action == compress)
1221 {
1222 if (!bfd_init_section_compress_status (abfd, newsect))
1223 {
1224 _bfd_error_handler
1225 /* xgettext:c-format */
1226 (_("%pB: unable to initialize compress status for section %s"),
1227 abfd, name);
1228 return FALSE;
1229 }
1230 }
1231 else
1232 {
1233 if (!bfd_init_section_decompress_status (abfd, newsect))
1234 {
1235 _bfd_error_handler
1236 /* xgettext:c-format */
1237 (_("%pB: unable to initialize decompress status for section %s"),
1238 abfd, name);
1239 return FALSE;
1240 }
1241 }
1242
1243 if (abfd->is_linker_input)
1244 {
1245 if (name[1] == 'z'
1246 && (action == decompress
1247 || (action == compress
1248 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1249 {
1250 /* Convert section name from .zdebug_* to .debug_* so
1251 that linker will consider this section as a debug
1252 section. */
1253 char *new_name = convert_zdebug_to_debug (abfd, name);
1254 if (new_name == NULL)
1255 return FALSE;
1256 bfd_rename_section (abfd, newsect, new_name);
1257 }
1258 }
1259 else
1260 /* For objdump, don't rename the section. For objcopy, delay
1261 section rename to elf_fake_sections. */
1262 newsect->flags |= SEC_ELF_RENAME;
1263 }
1264
1265 return TRUE;
1266 }
1267
1268 const char *const bfd_elf_section_type_names[] =
1269 {
1270 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1271 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1272 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1273 };
1274
1275 /* ELF relocs are against symbols. If we are producing relocatable
1276 output, and the reloc is against an external symbol, and nothing
1277 has given us any additional addend, the resulting reloc will also
1278 be against the same symbol. In such a case, we don't want to
1279 change anything about the way the reloc is handled, since it will
1280 all be done at final link time. Rather than put special case code
1281 into bfd_perform_relocation, all the reloc types use this howto
1282 function. It just short circuits the reloc if producing
1283 relocatable output against an external symbol. */
1284
1285 bfd_reloc_status_type
1286 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1287 arelent *reloc_entry,
1288 asymbol *symbol,
1289 void *data ATTRIBUTE_UNUSED,
1290 asection *input_section,
1291 bfd *output_bfd,
1292 char **error_message ATTRIBUTE_UNUSED)
1293 {
1294 if (output_bfd != NULL
1295 && (symbol->flags & BSF_SECTION_SYM) == 0
1296 && (! reloc_entry->howto->partial_inplace
1297 || reloc_entry->addend == 0))
1298 {
1299 reloc_entry->address += input_section->output_offset;
1300 return bfd_reloc_ok;
1301 }
1302
1303 return bfd_reloc_continue;
1304 }
1305 \f
1306 /* Returns TRUE if section A matches section B.
1307 Names, addresses and links may be different, but everything else
1308 should be the same. */
1309
1310 static bfd_boolean
1311 section_match (const Elf_Internal_Shdr * a,
1312 const Elf_Internal_Shdr * b)
1313 {
1314 if (a->sh_type != b->sh_type
1315 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1316 || a->sh_addralign != b->sh_addralign
1317 || a->sh_entsize != b->sh_entsize)
1318 return FALSE;
1319 if (a->sh_type == SHT_SYMTAB
1320 || a->sh_type == SHT_STRTAB)
1321 return TRUE;
1322 return a->sh_size == b->sh_size;
1323 }
1324
1325 /* Find a section in OBFD that has the same characteristics
1326 as IHEADER. Return the index of this section or SHN_UNDEF if
1327 none can be found. Check's section HINT first, as this is likely
1328 to be the correct section. */
1329
1330 static unsigned int
1331 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1332 const unsigned int hint)
1333 {
1334 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1335 unsigned int i;
1336
1337 BFD_ASSERT (iheader != NULL);
1338
1339 /* See PR 20922 for a reproducer of the NULL test. */
1340 if (hint < elf_numsections (obfd)
1341 && oheaders[hint] != NULL
1342 && section_match (oheaders[hint], iheader))
1343 return hint;
1344
1345 for (i = 1; i < elf_numsections (obfd); i++)
1346 {
1347 Elf_Internal_Shdr * oheader = oheaders[i];
1348
1349 if (oheader == NULL)
1350 continue;
1351 if (section_match (oheader, iheader))
1352 /* FIXME: Do we care if there is a potential for
1353 multiple matches ? */
1354 return i;
1355 }
1356
1357 return SHN_UNDEF;
1358 }
1359
1360 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1361 Processor specific section, based upon a matching input section.
1362 Returns TRUE upon success, FALSE otherwise. */
1363
1364 static bfd_boolean
1365 copy_special_section_fields (const bfd *ibfd,
1366 bfd *obfd,
1367 const Elf_Internal_Shdr *iheader,
1368 Elf_Internal_Shdr *oheader,
1369 const unsigned int secnum)
1370 {
1371 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1372 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1373 bfd_boolean changed = FALSE;
1374 unsigned int sh_link;
1375
1376 if (oheader->sh_type == SHT_NOBITS)
1377 {
1378 /* This is a feature for objcopy --only-keep-debug:
1379 When a section's type is changed to NOBITS, we preserve
1380 the sh_link and sh_info fields so that they can be
1381 matched up with the original.
1382
1383 Note: Strictly speaking these assignments are wrong.
1384 The sh_link and sh_info fields should point to the
1385 relevent sections in the output BFD, which may not be in
1386 the same location as they were in the input BFD. But
1387 the whole point of this action is to preserve the
1388 original values of the sh_link and sh_info fields, so
1389 that they can be matched up with the section headers in
1390 the original file. So strictly speaking we may be
1391 creating an invalid ELF file, but it is only for a file
1392 that just contains debug info and only for sections
1393 without any contents. */
1394 if (oheader->sh_link == 0)
1395 oheader->sh_link = iheader->sh_link;
1396 if (oheader->sh_info == 0)
1397 oheader->sh_info = iheader->sh_info;
1398 return TRUE;
1399 }
1400
1401 /* Allow the target a chance to decide how these fields should be set. */
1402 if (bed->elf_backend_copy_special_section_fields != NULL
1403 && bed->elf_backend_copy_special_section_fields
1404 (ibfd, obfd, iheader, oheader))
1405 return TRUE;
1406
1407 /* We have an iheader which might match oheader, and which has non-zero
1408 sh_info and/or sh_link fields. Attempt to follow those links and find
1409 the section in the output bfd which corresponds to the linked section
1410 in the input bfd. */
1411 if (iheader->sh_link != SHN_UNDEF)
1412 {
1413 /* See PR 20931 for a reproducer. */
1414 if (iheader->sh_link >= elf_numsections (ibfd))
1415 {
1416 _bfd_error_handler
1417 /* xgettext:c-format */
1418 (_("%pB: invalid sh_link field (%d) in section number %d"),
1419 ibfd, iheader->sh_link, secnum);
1420 return FALSE;
1421 }
1422
1423 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1424 if (sh_link != SHN_UNDEF)
1425 {
1426 oheader->sh_link = sh_link;
1427 changed = TRUE;
1428 }
1429 else
1430 /* FIXME: Should we install iheader->sh_link
1431 if we could not find a match ? */
1432 _bfd_error_handler
1433 /* xgettext:c-format */
1434 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1435 }
1436
1437 if (iheader->sh_info)
1438 {
1439 /* The sh_info field can hold arbitrary information, but if the
1440 SHF_LINK_INFO flag is set then it should be interpreted as a
1441 section index. */
1442 if (iheader->sh_flags & SHF_INFO_LINK)
1443 {
1444 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1445 iheader->sh_info);
1446 if (sh_link != SHN_UNDEF)
1447 oheader->sh_flags |= SHF_INFO_LINK;
1448 }
1449 else
1450 /* No idea what it means - just copy it. */
1451 sh_link = iheader->sh_info;
1452
1453 if (sh_link != SHN_UNDEF)
1454 {
1455 oheader->sh_info = sh_link;
1456 changed = TRUE;
1457 }
1458 else
1459 _bfd_error_handler
1460 /* xgettext:c-format */
1461 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1462 }
1463
1464 return changed;
1465 }
1466
1467 /* Copy the program header and other data from one object module to
1468 another. */
1469
1470 bfd_boolean
1471 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1472 {
1473 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1474 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1475 const struct elf_backend_data *bed;
1476 unsigned int i;
1477
1478 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1479 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1480 return TRUE;
1481
1482 if (!elf_flags_init (obfd))
1483 {
1484 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1485 elf_flags_init (obfd) = TRUE;
1486 }
1487
1488 elf_gp (obfd) = elf_gp (ibfd);
1489
1490 /* Also copy the EI_OSABI field. */
1491 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1492 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1493
1494 /* If set, copy the EI_ABIVERSION field. */
1495 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1496 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1497 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1498
1499 /* Copy object attributes. */
1500 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1501
1502 if (iheaders == NULL || oheaders == NULL)
1503 return TRUE;
1504
1505 bed = get_elf_backend_data (obfd);
1506
1507 /* Possibly copy other fields in the section header. */
1508 for (i = 1; i < elf_numsections (obfd); i++)
1509 {
1510 unsigned int j;
1511 Elf_Internal_Shdr * oheader = oheaders[i];
1512
1513 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1514 because of a special case need for generating separate debug info
1515 files. See below for more details. */
1516 if (oheader == NULL
1517 || (oheader->sh_type != SHT_NOBITS
1518 && oheader->sh_type < SHT_LOOS))
1519 continue;
1520
1521 /* Ignore empty sections, and sections whose
1522 fields have already been initialised. */
1523 if (oheader->sh_size == 0
1524 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1525 continue;
1526
1527 /* Scan for the matching section in the input bfd.
1528 First we try for a direct mapping between the input and output sections. */
1529 for (j = 1; j < elf_numsections (ibfd); j++)
1530 {
1531 const Elf_Internal_Shdr * iheader = iheaders[j];
1532
1533 if (iheader == NULL)
1534 continue;
1535
1536 if (oheader->bfd_section != NULL
1537 && iheader->bfd_section != NULL
1538 && iheader->bfd_section->output_section != NULL
1539 && iheader->bfd_section->output_section == oheader->bfd_section)
1540 {
1541 /* We have found a connection from the input section to the
1542 output section. Attempt to copy the header fields. If
1543 this fails then do not try any further sections - there
1544 should only be a one-to-one mapping between input and output. */
1545 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1546 j = elf_numsections (ibfd);
1547 break;
1548 }
1549 }
1550
1551 if (j < elf_numsections (ibfd))
1552 continue;
1553
1554 /* That failed. So try to deduce the corresponding input section.
1555 Unfortunately we cannot compare names as the output string table
1556 is empty, so instead we check size, address and type. */
1557 for (j = 1; j < elf_numsections (ibfd); j++)
1558 {
1559 const Elf_Internal_Shdr * iheader = iheaders[j];
1560
1561 if (iheader == NULL)
1562 continue;
1563
1564 /* Try matching fields in the input section's header.
1565 Since --only-keep-debug turns all non-debug sections into
1566 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1567 input type. */
1568 if ((oheader->sh_type == SHT_NOBITS
1569 || iheader->sh_type == oheader->sh_type)
1570 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1571 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1572 && iheader->sh_addralign == oheader->sh_addralign
1573 && iheader->sh_entsize == oheader->sh_entsize
1574 && iheader->sh_size == oheader->sh_size
1575 && iheader->sh_addr == oheader->sh_addr
1576 && (iheader->sh_info != oheader->sh_info
1577 || iheader->sh_link != oheader->sh_link))
1578 {
1579 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1580 break;
1581 }
1582 }
1583
1584 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1585 {
1586 /* Final attempt. Call the backend copy function
1587 with a NULL input section. */
1588 if (bed->elf_backend_copy_special_section_fields != NULL)
1589 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1590 }
1591 }
1592
1593 return TRUE;
1594 }
1595
1596 static const char *
1597 get_segment_type (unsigned int p_type)
1598 {
1599 const char *pt;
1600 switch (p_type)
1601 {
1602 case PT_NULL: pt = "NULL"; break;
1603 case PT_LOAD: pt = "LOAD"; break;
1604 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1605 case PT_INTERP: pt = "INTERP"; break;
1606 case PT_NOTE: pt = "NOTE"; break;
1607 case PT_SHLIB: pt = "SHLIB"; break;
1608 case PT_PHDR: pt = "PHDR"; break;
1609 case PT_TLS: pt = "TLS"; break;
1610 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1611 case PT_GNU_STACK: pt = "STACK"; break;
1612 case PT_GNU_RELRO: pt = "RELRO"; break;
1613 default: pt = NULL; break;
1614 }
1615 return pt;
1616 }
1617
1618 /* Print out the program headers. */
1619
1620 bfd_boolean
1621 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1622 {
1623 FILE *f = (FILE *) farg;
1624 Elf_Internal_Phdr *p;
1625 asection *s;
1626 bfd_byte *dynbuf = NULL;
1627
1628 p = elf_tdata (abfd)->phdr;
1629 if (p != NULL)
1630 {
1631 unsigned int i, c;
1632
1633 fprintf (f, _("\nProgram Header:\n"));
1634 c = elf_elfheader (abfd)->e_phnum;
1635 for (i = 0; i < c; i++, p++)
1636 {
1637 const char *pt = get_segment_type (p->p_type);
1638 char buf[20];
1639
1640 if (pt == NULL)
1641 {
1642 sprintf (buf, "0x%lx", p->p_type);
1643 pt = buf;
1644 }
1645 fprintf (f, "%8s off 0x", pt);
1646 bfd_fprintf_vma (abfd, f, p->p_offset);
1647 fprintf (f, " vaddr 0x");
1648 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1649 fprintf (f, " paddr 0x");
1650 bfd_fprintf_vma (abfd, f, p->p_paddr);
1651 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1652 fprintf (f, " filesz 0x");
1653 bfd_fprintf_vma (abfd, f, p->p_filesz);
1654 fprintf (f, " memsz 0x");
1655 bfd_fprintf_vma (abfd, f, p->p_memsz);
1656 fprintf (f, " flags %c%c%c",
1657 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1658 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1659 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1660 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1661 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1662 fprintf (f, "\n");
1663 }
1664 }
1665
1666 s = bfd_get_section_by_name (abfd, ".dynamic");
1667 if (s != NULL)
1668 {
1669 unsigned int elfsec;
1670 unsigned long shlink;
1671 bfd_byte *extdyn, *extdynend;
1672 size_t extdynsize;
1673 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1674
1675 fprintf (f, _("\nDynamic Section:\n"));
1676
1677 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1678 goto error_return;
1679
1680 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1681 if (elfsec == SHN_BAD)
1682 goto error_return;
1683 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1684
1685 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1686 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1687
1688 extdyn = dynbuf;
1689 /* PR 17512: file: 6f427532. */
1690 if (s->size < extdynsize)
1691 goto error_return;
1692 extdynend = extdyn + s->size;
1693 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1694 Fix range check. */
1695 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1696 {
1697 Elf_Internal_Dyn dyn;
1698 const char *name = "";
1699 char ab[20];
1700 bfd_boolean stringp;
1701 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1702
1703 (*swap_dyn_in) (abfd, extdyn, &dyn);
1704
1705 if (dyn.d_tag == DT_NULL)
1706 break;
1707
1708 stringp = FALSE;
1709 switch (dyn.d_tag)
1710 {
1711 default:
1712 if (bed->elf_backend_get_target_dtag)
1713 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1714
1715 if (!strcmp (name, ""))
1716 {
1717 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1718 name = ab;
1719 }
1720 break;
1721
1722 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1723 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1724 case DT_PLTGOT: name = "PLTGOT"; break;
1725 case DT_HASH: name = "HASH"; break;
1726 case DT_STRTAB: name = "STRTAB"; break;
1727 case DT_SYMTAB: name = "SYMTAB"; break;
1728 case DT_RELA: name = "RELA"; break;
1729 case DT_RELASZ: name = "RELASZ"; break;
1730 case DT_RELAENT: name = "RELAENT"; break;
1731 case DT_STRSZ: name = "STRSZ"; break;
1732 case DT_SYMENT: name = "SYMENT"; break;
1733 case DT_INIT: name = "INIT"; break;
1734 case DT_FINI: name = "FINI"; break;
1735 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1736 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1737 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1738 case DT_REL: name = "REL"; break;
1739 case DT_RELSZ: name = "RELSZ"; break;
1740 case DT_RELENT: name = "RELENT"; break;
1741 case DT_PLTREL: name = "PLTREL"; break;
1742 case DT_DEBUG: name = "DEBUG"; break;
1743 case DT_TEXTREL: name = "TEXTREL"; break;
1744 case DT_JMPREL: name = "JMPREL"; break;
1745 case DT_BIND_NOW: name = "BIND_NOW"; break;
1746 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1747 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1748 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1749 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1750 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1751 case DT_FLAGS: name = "FLAGS"; break;
1752 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1753 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1754 case DT_CHECKSUM: name = "CHECKSUM"; break;
1755 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1756 case DT_MOVEENT: name = "MOVEENT"; break;
1757 case DT_MOVESZ: name = "MOVESZ"; break;
1758 case DT_FEATURE: name = "FEATURE"; break;
1759 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1760 case DT_SYMINSZ: name = "SYMINSZ"; break;
1761 case DT_SYMINENT: name = "SYMINENT"; break;
1762 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1763 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1764 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1765 case DT_PLTPAD: name = "PLTPAD"; break;
1766 case DT_MOVETAB: name = "MOVETAB"; break;
1767 case DT_SYMINFO: name = "SYMINFO"; break;
1768 case DT_RELACOUNT: name = "RELACOUNT"; break;
1769 case DT_RELCOUNT: name = "RELCOUNT"; break;
1770 case DT_FLAGS_1: name = "FLAGS_1"; break;
1771 case DT_VERSYM: name = "VERSYM"; break;
1772 case DT_VERDEF: name = "VERDEF"; break;
1773 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1774 case DT_VERNEED: name = "VERNEED"; break;
1775 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1776 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1777 case DT_USED: name = "USED"; break;
1778 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1779 case DT_GNU_HASH: name = "GNU_HASH"; break;
1780 }
1781
1782 fprintf (f, " %-20s ", name);
1783 if (! stringp)
1784 {
1785 fprintf (f, "0x");
1786 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1787 }
1788 else
1789 {
1790 const char *string;
1791 unsigned int tagv = dyn.d_un.d_val;
1792
1793 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1794 if (string == NULL)
1795 goto error_return;
1796 fprintf (f, "%s", string);
1797 }
1798 fprintf (f, "\n");
1799 }
1800
1801 free (dynbuf);
1802 dynbuf = NULL;
1803 }
1804
1805 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1806 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1807 {
1808 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1809 return FALSE;
1810 }
1811
1812 if (elf_dynverdef (abfd) != 0)
1813 {
1814 Elf_Internal_Verdef *t;
1815
1816 fprintf (f, _("\nVersion definitions:\n"));
1817 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1818 {
1819 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1820 t->vd_flags, t->vd_hash,
1821 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1822 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1823 {
1824 Elf_Internal_Verdaux *a;
1825
1826 fprintf (f, "\t");
1827 for (a = t->vd_auxptr->vda_nextptr;
1828 a != NULL;
1829 a = a->vda_nextptr)
1830 fprintf (f, "%s ",
1831 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1832 fprintf (f, "\n");
1833 }
1834 }
1835 }
1836
1837 if (elf_dynverref (abfd) != 0)
1838 {
1839 Elf_Internal_Verneed *t;
1840
1841 fprintf (f, _("\nVersion References:\n"));
1842 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1843 {
1844 Elf_Internal_Vernaux *a;
1845
1846 fprintf (f, _(" required from %s:\n"),
1847 t->vn_filename ? t->vn_filename : "<corrupt>");
1848 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1849 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1850 a->vna_flags, a->vna_other,
1851 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1852 }
1853 }
1854
1855 return TRUE;
1856
1857 error_return:
1858 if (dynbuf != NULL)
1859 free (dynbuf);
1860 return FALSE;
1861 }
1862
1863 /* Get version string. */
1864
1865 const char *
1866 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1867 bfd_boolean *hidden)
1868 {
1869 const char *version_string = NULL;
1870 if (elf_dynversym (abfd) != 0
1871 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1872 {
1873 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1874
1875 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1876 vernum &= VERSYM_VERSION;
1877
1878 if (vernum == 0)
1879 version_string = "";
1880 else if (vernum == 1
1881 && (vernum > elf_tdata (abfd)->cverdefs
1882 || (elf_tdata (abfd)->verdef[0].vd_flags
1883 == VER_FLG_BASE)))
1884 version_string = "Base";
1885 else if (vernum <= elf_tdata (abfd)->cverdefs)
1886 version_string =
1887 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1888 else
1889 {
1890 Elf_Internal_Verneed *t;
1891
1892 version_string = _("<corrupt>");
1893 for (t = elf_tdata (abfd)->verref;
1894 t != NULL;
1895 t = t->vn_nextref)
1896 {
1897 Elf_Internal_Vernaux *a;
1898
1899 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1900 {
1901 if (a->vna_other == vernum)
1902 {
1903 version_string = a->vna_nodename;
1904 break;
1905 }
1906 }
1907 }
1908 }
1909 }
1910 return version_string;
1911 }
1912
1913 /* Display ELF-specific fields of a symbol. */
1914
1915 void
1916 bfd_elf_print_symbol (bfd *abfd,
1917 void *filep,
1918 asymbol *symbol,
1919 bfd_print_symbol_type how)
1920 {
1921 FILE *file = (FILE *) filep;
1922 switch (how)
1923 {
1924 case bfd_print_symbol_name:
1925 fprintf (file, "%s", symbol->name);
1926 break;
1927 case bfd_print_symbol_more:
1928 fprintf (file, "elf ");
1929 bfd_fprintf_vma (abfd, file, symbol->value);
1930 fprintf (file, " %x", symbol->flags);
1931 break;
1932 case bfd_print_symbol_all:
1933 {
1934 const char *section_name;
1935 const char *name = NULL;
1936 const struct elf_backend_data *bed;
1937 unsigned char st_other;
1938 bfd_vma val;
1939 const char *version_string;
1940 bfd_boolean hidden;
1941
1942 section_name = symbol->section ? symbol->section->name : "(*none*)";
1943
1944 bed = get_elf_backend_data (abfd);
1945 if (bed->elf_backend_print_symbol_all)
1946 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1947
1948 if (name == NULL)
1949 {
1950 name = symbol->name;
1951 bfd_print_symbol_vandf (abfd, file, symbol);
1952 }
1953
1954 fprintf (file, " %s\t", section_name);
1955 /* Print the "other" value for a symbol. For common symbols,
1956 we've already printed the size; now print the alignment.
1957 For other symbols, we have no specified alignment, and
1958 we've printed the address; now print the size. */
1959 if (symbol->section && bfd_is_com_section (symbol->section))
1960 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1961 else
1962 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1963 bfd_fprintf_vma (abfd, file, val);
1964
1965 /* If we have version information, print it. */
1966 version_string = _bfd_elf_get_symbol_version_string (abfd,
1967 symbol,
1968 &hidden);
1969 if (version_string)
1970 {
1971 if (!hidden)
1972 fprintf (file, " %-11s", version_string);
1973 else
1974 {
1975 int i;
1976
1977 fprintf (file, " (%s)", version_string);
1978 for (i = 10 - strlen (version_string); i > 0; --i)
1979 putc (' ', file);
1980 }
1981 }
1982
1983 /* If the st_other field is not zero, print it. */
1984 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1985
1986 switch (st_other)
1987 {
1988 case 0: break;
1989 case STV_INTERNAL: fprintf (file, " .internal"); break;
1990 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1991 case STV_PROTECTED: fprintf (file, " .protected"); break;
1992 default:
1993 /* Some other non-defined flags are also present, so print
1994 everything hex. */
1995 fprintf (file, " 0x%02x", (unsigned int) st_other);
1996 }
1997
1998 fprintf (file, " %s", name);
1999 }
2000 break;
2001 }
2002 }
2003 \f
2004 /* ELF .o/exec file reading */
2005
2006 /* Create a new bfd section from an ELF section header. */
2007
2008 bfd_boolean
2009 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2010 {
2011 Elf_Internal_Shdr *hdr;
2012 Elf_Internal_Ehdr *ehdr;
2013 const struct elf_backend_data *bed;
2014 const char *name;
2015 bfd_boolean ret = TRUE;
2016 static bfd_boolean * sections_being_created = NULL;
2017 static bfd * sections_being_created_abfd = NULL;
2018 static unsigned int nesting = 0;
2019
2020 if (shindex >= elf_numsections (abfd))
2021 return FALSE;
2022
2023 if (++ nesting > 3)
2024 {
2025 /* PR17512: A corrupt ELF binary might contain a recursive group of
2026 sections, with each the string indices pointing to the next in the
2027 loop. Detect this here, by refusing to load a section that we are
2028 already in the process of loading. We only trigger this test if
2029 we have nested at least three sections deep as normal ELF binaries
2030 can expect to recurse at least once.
2031
2032 FIXME: It would be better if this array was attached to the bfd,
2033 rather than being held in a static pointer. */
2034
2035 if (sections_being_created_abfd != abfd)
2036 sections_being_created = NULL;
2037 if (sections_being_created == NULL)
2038 {
2039 sections_being_created = (bfd_boolean *)
2040 bfd_zalloc2 (abfd, elf_numsections (abfd), sizeof (bfd_boolean));
2041 sections_being_created_abfd = abfd;
2042 }
2043 if (sections_being_created [shindex])
2044 {
2045 _bfd_error_handler
2046 (_("%pB: warning: loop in section dependencies detected"), abfd);
2047 return FALSE;
2048 }
2049 sections_being_created [shindex] = TRUE;
2050 }
2051
2052 hdr = elf_elfsections (abfd)[shindex];
2053 ehdr = elf_elfheader (abfd);
2054 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2055 hdr->sh_name);
2056 if (name == NULL)
2057 goto fail;
2058
2059 bed = get_elf_backend_data (abfd);
2060 switch (hdr->sh_type)
2061 {
2062 case SHT_NULL:
2063 /* Inactive section. Throw it away. */
2064 goto success;
2065
2066 case SHT_PROGBITS: /* Normal section with contents. */
2067 case SHT_NOBITS: /* .bss section. */
2068 case SHT_HASH: /* .hash section. */
2069 case SHT_NOTE: /* .note section. */
2070 case SHT_INIT_ARRAY: /* .init_array section. */
2071 case SHT_FINI_ARRAY: /* .fini_array section. */
2072 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2073 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2074 case SHT_GNU_HASH: /* .gnu.hash section. */
2075 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2076 goto success;
2077
2078 case SHT_DYNAMIC: /* Dynamic linking information. */
2079 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2080 goto fail;
2081
2082 if (hdr->sh_link > elf_numsections (abfd))
2083 {
2084 /* PR 10478: Accept Solaris binaries with a sh_link
2085 field set to SHN_BEFORE or SHN_AFTER. */
2086 switch (bfd_get_arch (abfd))
2087 {
2088 case bfd_arch_i386:
2089 case bfd_arch_sparc:
2090 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2091 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2092 break;
2093 /* Otherwise fall through. */
2094 default:
2095 goto fail;
2096 }
2097 }
2098 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2099 goto fail;
2100 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2101 {
2102 Elf_Internal_Shdr *dynsymhdr;
2103
2104 /* The shared libraries distributed with hpux11 have a bogus
2105 sh_link field for the ".dynamic" section. Find the
2106 string table for the ".dynsym" section instead. */
2107 if (elf_dynsymtab (abfd) != 0)
2108 {
2109 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2110 hdr->sh_link = dynsymhdr->sh_link;
2111 }
2112 else
2113 {
2114 unsigned int i, num_sec;
2115
2116 num_sec = elf_numsections (abfd);
2117 for (i = 1; i < num_sec; i++)
2118 {
2119 dynsymhdr = elf_elfsections (abfd)[i];
2120 if (dynsymhdr->sh_type == SHT_DYNSYM)
2121 {
2122 hdr->sh_link = dynsymhdr->sh_link;
2123 break;
2124 }
2125 }
2126 }
2127 }
2128 goto success;
2129
2130 case SHT_SYMTAB: /* A symbol table. */
2131 if (elf_onesymtab (abfd) == shindex)
2132 goto success;
2133
2134 if (hdr->sh_entsize != bed->s->sizeof_sym)
2135 goto fail;
2136
2137 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2138 {
2139 if (hdr->sh_size != 0)
2140 goto fail;
2141 /* Some assemblers erroneously set sh_info to one with a
2142 zero sh_size. ld sees this as a global symbol count
2143 of (unsigned) -1. Fix it here. */
2144 hdr->sh_info = 0;
2145 goto success;
2146 }
2147
2148 /* PR 18854: A binary might contain more than one symbol table.
2149 Unusual, but possible. Warn, but continue. */
2150 if (elf_onesymtab (abfd) != 0)
2151 {
2152 _bfd_error_handler
2153 /* xgettext:c-format */
2154 (_("%pB: warning: multiple symbol tables detected"
2155 " - ignoring the table in section %u"),
2156 abfd, shindex);
2157 goto success;
2158 }
2159 elf_onesymtab (abfd) = shindex;
2160 elf_symtab_hdr (abfd) = *hdr;
2161 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2162 abfd->flags |= HAS_SYMS;
2163
2164 /* Sometimes a shared object will map in the symbol table. If
2165 SHF_ALLOC is set, and this is a shared object, then we also
2166 treat this section as a BFD section. We can not base the
2167 decision purely on SHF_ALLOC, because that flag is sometimes
2168 set in a relocatable object file, which would confuse the
2169 linker. */
2170 if ((hdr->sh_flags & SHF_ALLOC) != 0
2171 && (abfd->flags & DYNAMIC) != 0
2172 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2173 shindex))
2174 goto fail;
2175
2176 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2177 can't read symbols without that section loaded as well. It
2178 is most likely specified by the next section header. */
2179 {
2180 elf_section_list * entry;
2181 unsigned int i, num_sec;
2182
2183 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2184 if (entry->hdr.sh_link == shindex)
2185 goto success;
2186
2187 num_sec = elf_numsections (abfd);
2188 for (i = shindex + 1; i < num_sec; i++)
2189 {
2190 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2191
2192 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2193 && hdr2->sh_link == shindex)
2194 break;
2195 }
2196
2197 if (i == num_sec)
2198 for (i = 1; i < shindex; i++)
2199 {
2200 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2201
2202 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2203 && hdr2->sh_link == shindex)
2204 break;
2205 }
2206
2207 if (i != shindex)
2208 ret = bfd_section_from_shdr (abfd, i);
2209 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2210 goto success;
2211 }
2212
2213 case SHT_DYNSYM: /* A dynamic symbol table. */
2214 if (elf_dynsymtab (abfd) == shindex)
2215 goto success;
2216
2217 if (hdr->sh_entsize != bed->s->sizeof_sym)
2218 goto fail;
2219
2220 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2221 {
2222 if (hdr->sh_size != 0)
2223 goto fail;
2224
2225 /* Some linkers erroneously set sh_info to one with a
2226 zero sh_size. ld sees this as a global symbol count
2227 of (unsigned) -1. Fix it here. */
2228 hdr->sh_info = 0;
2229 goto success;
2230 }
2231
2232 /* PR 18854: A binary might contain more than one dynamic symbol table.
2233 Unusual, but possible. Warn, but continue. */
2234 if (elf_dynsymtab (abfd) != 0)
2235 {
2236 _bfd_error_handler
2237 /* xgettext:c-format */
2238 (_("%pB: warning: multiple dynamic symbol tables detected"
2239 " - ignoring the table in section %u"),
2240 abfd, shindex);
2241 goto success;
2242 }
2243 elf_dynsymtab (abfd) = shindex;
2244 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2245 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2246 abfd->flags |= HAS_SYMS;
2247
2248 /* Besides being a symbol table, we also treat this as a regular
2249 section, so that objcopy can handle it. */
2250 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2251 goto success;
2252
2253 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2254 {
2255 elf_section_list * entry;
2256
2257 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2258 if (entry->ndx == shindex)
2259 goto success;
2260
2261 entry = bfd_alloc (abfd, sizeof (*entry));
2262 if (entry == NULL)
2263 goto fail;
2264 entry->ndx = shindex;
2265 entry->hdr = * hdr;
2266 entry->next = elf_symtab_shndx_list (abfd);
2267 elf_symtab_shndx_list (abfd) = entry;
2268 elf_elfsections (abfd)[shindex] = & entry->hdr;
2269 goto success;
2270 }
2271
2272 case SHT_STRTAB: /* A string table. */
2273 if (hdr->bfd_section != NULL)
2274 goto success;
2275
2276 if (ehdr->e_shstrndx == shindex)
2277 {
2278 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2279 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2280 goto success;
2281 }
2282
2283 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2284 {
2285 symtab_strtab:
2286 elf_tdata (abfd)->strtab_hdr = *hdr;
2287 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2288 goto success;
2289 }
2290
2291 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2292 {
2293 dynsymtab_strtab:
2294 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2295 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2296 elf_elfsections (abfd)[shindex] = hdr;
2297 /* We also treat this as a regular section, so that objcopy
2298 can handle it. */
2299 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2300 shindex);
2301 goto success;
2302 }
2303
2304 /* If the string table isn't one of the above, then treat it as a
2305 regular section. We need to scan all the headers to be sure,
2306 just in case this strtab section appeared before the above. */
2307 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2308 {
2309 unsigned int i, num_sec;
2310
2311 num_sec = elf_numsections (abfd);
2312 for (i = 1; i < num_sec; i++)
2313 {
2314 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2315 if (hdr2->sh_link == shindex)
2316 {
2317 /* Prevent endless recursion on broken objects. */
2318 if (i == shindex)
2319 goto fail;
2320 if (! bfd_section_from_shdr (abfd, i))
2321 goto fail;
2322 if (elf_onesymtab (abfd) == i)
2323 goto symtab_strtab;
2324 if (elf_dynsymtab (abfd) == i)
2325 goto dynsymtab_strtab;
2326 }
2327 }
2328 }
2329 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2330 goto success;
2331
2332 case SHT_REL:
2333 case SHT_RELA:
2334 /* *These* do a lot of work -- but build no sections! */
2335 {
2336 asection *target_sect;
2337 Elf_Internal_Shdr *hdr2, **p_hdr;
2338 unsigned int num_sec = elf_numsections (abfd);
2339 struct bfd_elf_section_data *esdt;
2340
2341 if (hdr->sh_entsize
2342 != (bfd_size_type) (hdr->sh_type == SHT_REL
2343 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2344 goto fail;
2345
2346 /* Check for a bogus link to avoid crashing. */
2347 if (hdr->sh_link >= num_sec)
2348 {
2349 _bfd_error_handler
2350 /* xgettext:c-format */
2351 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2352 abfd, hdr->sh_link, name, shindex);
2353 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2354 shindex);
2355 goto success;
2356 }
2357
2358 /* For some incomprehensible reason Oracle distributes
2359 libraries for Solaris in which some of the objects have
2360 bogus sh_link fields. It would be nice if we could just
2361 reject them, but, unfortunately, some people need to use
2362 them. We scan through the section headers; if we find only
2363 one suitable symbol table, we clobber the sh_link to point
2364 to it. I hope this doesn't break anything.
2365
2366 Don't do it on executable nor shared library. */
2367 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2368 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2369 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2370 {
2371 unsigned int scan;
2372 int found;
2373
2374 found = 0;
2375 for (scan = 1; scan < num_sec; scan++)
2376 {
2377 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2378 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2379 {
2380 if (found != 0)
2381 {
2382 found = 0;
2383 break;
2384 }
2385 found = scan;
2386 }
2387 }
2388 if (found != 0)
2389 hdr->sh_link = found;
2390 }
2391
2392 /* Get the symbol table. */
2393 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2394 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2395 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2396 goto fail;
2397
2398 /* If this is an alloc section in an executable or shared
2399 library, or the reloc section does not use the main symbol
2400 table we don't treat it as a reloc section. BFD can't
2401 adequately represent such a section, so at least for now,
2402 we don't try. We just present it as a normal section. We
2403 also can't use it as a reloc section if it points to the
2404 null section, an invalid section, another reloc section, or
2405 its sh_link points to the null section. */
2406 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2407 && (hdr->sh_flags & SHF_ALLOC) != 0)
2408 || hdr->sh_link == SHN_UNDEF
2409 || hdr->sh_link != elf_onesymtab (abfd)
2410 || hdr->sh_info == SHN_UNDEF
2411 || hdr->sh_info >= num_sec
2412 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2413 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2414 {
2415 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2416 shindex);
2417 goto success;
2418 }
2419
2420 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2421 goto fail;
2422
2423 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2424 if (target_sect == NULL)
2425 goto fail;
2426
2427 esdt = elf_section_data (target_sect);
2428 if (hdr->sh_type == SHT_RELA)
2429 p_hdr = &esdt->rela.hdr;
2430 else
2431 p_hdr = &esdt->rel.hdr;
2432
2433 /* PR 17512: file: 0b4f81b7. */
2434 if (*p_hdr != NULL)
2435 goto fail;
2436 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2437 if (hdr2 == NULL)
2438 goto fail;
2439 *hdr2 = *hdr;
2440 *p_hdr = hdr2;
2441 elf_elfsections (abfd)[shindex] = hdr2;
2442 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2443 * bed->s->int_rels_per_ext_rel);
2444 target_sect->flags |= SEC_RELOC;
2445 target_sect->relocation = NULL;
2446 target_sect->rel_filepos = hdr->sh_offset;
2447 /* In the section to which the relocations apply, mark whether
2448 its relocations are of the REL or RELA variety. */
2449 if (hdr->sh_size != 0)
2450 {
2451 if (hdr->sh_type == SHT_RELA)
2452 target_sect->use_rela_p = 1;
2453 }
2454 abfd->flags |= HAS_RELOC;
2455 goto success;
2456 }
2457
2458 case SHT_GNU_verdef:
2459 elf_dynverdef (abfd) = shindex;
2460 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2461 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2462 goto success;
2463
2464 case SHT_GNU_versym:
2465 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2466 goto fail;
2467
2468 elf_dynversym (abfd) = shindex;
2469 elf_tdata (abfd)->dynversym_hdr = *hdr;
2470 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2471 goto success;
2472
2473 case SHT_GNU_verneed:
2474 elf_dynverref (abfd) = shindex;
2475 elf_tdata (abfd)->dynverref_hdr = *hdr;
2476 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2477 goto success;
2478
2479 case SHT_SHLIB:
2480 goto success;
2481
2482 case SHT_GROUP:
2483 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2484 goto fail;
2485
2486 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2487 goto fail;
2488
2489 goto success;
2490
2491 default:
2492 /* Possibly an attributes section. */
2493 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2494 || hdr->sh_type == bed->obj_attrs_section_type)
2495 {
2496 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2497 goto fail;
2498 _bfd_elf_parse_attributes (abfd, hdr);
2499 goto success;
2500 }
2501
2502 /* Check for any processor-specific section types. */
2503 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2504 goto success;
2505
2506 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2507 {
2508 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2509 /* FIXME: How to properly handle allocated section reserved
2510 for applications? */
2511 _bfd_error_handler
2512 /* xgettext:c-format */
2513 (_("%pB: unknown type [%#x] section `%s'"),
2514 abfd, hdr->sh_type, name);
2515 else
2516 {
2517 /* Allow sections reserved for applications. */
2518 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2519 shindex);
2520 goto success;
2521 }
2522 }
2523 else if (hdr->sh_type >= SHT_LOPROC
2524 && hdr->sh_type <= SHT_HIPROC)
2525 /* FIXME: We should handle this section. */
2526 _bfd_error_handler
2527 /* xgettext:c-format */
2528 (_("%pB: unknown type [%#x] section `%s'"),
2529 abfd, hdr->sh_type, name);
2530 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2531 {
2532 /* Unrecognised OS-specific sections. */
2533 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2534 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2535 required to correctly process the section and the file should
2536 be rejected with an error message. */
2537 _bfd_error_handler
2538 /* xgettext:c-format */
2539 (_("%pB: unknown type [%#x] section `%s'"),
2540 abfd, hdr->sh_type, name);
2541 else
2542 {
2543 /* Otherwise it should be processed. */
2544 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2545 goto success;
2546 }
2547 }
2548 else
2549 /* FIXME: We should handle this section. */
2550 _bfd_error_handler
2551 /* xgettext:c-format */
2552 (_("%pB: unknown type [%#x] section `%s'"),
2553 abfd, hdr->sh_type, name);
2554
2555 goto fail;
2556 }
2557
2558 fail:
2559 ret = FALSE;
2560 success:
2561 if (sections_being_created && sections_being_created_abfd == abfd)
2562 sections_being_created [shindex] = FALSE;
2563 if (-- nesting == 0)
2564 {
2565 sections_being_created = NULL;
2566 sections_being_created_abfd = abfd;
2567 }
2568 return ret;
2569 }
2570
2571 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2572
2573 Elf_Internal_Sym *
2574 bfd_sym_from_r_symndx (struct sym_cache *cache,
2575 bfd *abfd,
2576 unsigned long r_symndx)
2577 {
2578 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2579
2580 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2581 {
2582 Elf_Internal_Shdr *symtab_hdr;
2583 unsigned char esym[sizeof (Elf64_External_Sym)];
2584 Elf_External_Sym_Shndx eshndx;
2585
2586 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2587 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2588 &cache->sym[ent], esym, &eshndx) == NULL)
2589 return NULL;
2590
2591 if (cache->abfd != abfd)
2592 {
2593 memset (cache->indx, -1, sizeof (cache->indx));
2594 cache->abfd = abfd;
2595 }
2596 cache->indx[ent] = r_symndx;
2597 }
2598
2599 return &cache->sym[ent];
2600 }
2601
2602 /* Given an ELF section number, retrieve the corresponding BFD
2603 section. */
2604
2605 asection *
2606 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2607 {
2608 if (sec_index >= elf_numsections (abfd))
2609 return NULL;
2610 return elf_elfsections (abfd)[sec_index]->bfd_section;
2611 }
2612
2613 static const struct bfd_elf_special_section special_sections_b[] =
2614 {
2615 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2616 { NULL, 0, 0, 0, 0 }
2617 };
2618
2619 static const struct bfd_elf_special_section special_sections_c[] =
2620 {
2621 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2622 { NULL, 0, 0, 0, 0 }
2623 };
2624
2625 static const struct bfd_elf_special_section special_sections_d[] =
2626 {
2627 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2628 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2629 /* There are more DWARF sections than these, but they needn't be added here
2630 unless you have to cope with broken compilers that don't emit section
2631 attributes or you want to help the user writing assembler. */
2632 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2633 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2634 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2635 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2636 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2637 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2638 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2639 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2640 { NULL, 0, 0, 0, 0 }
2641 };
2642
2643 static const struct bfd_elf_special_section special_sections_f[] =
2644 {
2645 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2646 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2647 { NULL, 0 , 0, 0, 0 }
2648 };
2649
2650 static const struct bfd_elf_special_section special_sections_g[] =
2651 {
2652 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2653 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2654 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2655 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2656 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2657 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2658 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2659 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2660 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2661 { NULL, 0, 0, 0, 0 }
2662 };
2663
2664 static const struct bfd_elf_special_section special_sections_h[] =
2665 {
2666 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2667 { NULL, 0, 0, 0, 0 }
2668 };
2669
2670 static const struct bfd_elf_special_section special_sections_i[] =
2671 {
2672 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2673 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2674 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2675 { NULL, 0, 0, 0, 0 }
2676 };
2677
2678 static const struct bfd_elf_special_section special_sections_l[] =
2679 {
2680 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2681 { NULL, 0, 0, 0, 0 }
2682 };
2683
2684 static const struct bfd_elf_special_section special_sections_n[] =
2685 {
2686 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2687 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2688 { NULL, 0, 0, 0, 0 }
2689 };
2690
2691 static const struct bfd_elf_special_section special_sections_p[] =
2692 {
2693 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2694 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2695 { NULL, 0, 0, 0, 0 }
2696 };
2697
2698 static const struct bfd_elf_special_section special_sections_r[] =
2699 {
2700 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2701 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2702 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2703 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2704 { NULL, 0, 0, 0, 0 }
2705 };
2706
2707 static const struct bfd_elf_special_section special_sections_s[] =
2708 {
2709 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2710 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2711 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2712 /* See struct bfd_elf_special_section declaration for the semantics of
2713 this special case where .prefix_length != strlen (.prefix). */
2714 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2715 { NULL, 0, 0, 0, 0 }
2716 };
2717
2718 static const struct bfd_elf_special_section special_sections_t[] =
2719 {
2720 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2721 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2722 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2723 { NULL, 0, 0, 0, 0 }
2724 };
2725
2726 static const struct bfd_elf_special_section special_sections_z[] =
2727 {
2728 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2729 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2730 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2731 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2732 { NULL, 0, 0, 0, 0 }
2733 };
2734
2735 static const struct bfd_elf_special_section * const special_sections[] =
2736 {
2737 special_sections_b, /* 'b' */
2738 special_sections_c, /* 'c' */
2739 special_sections_d, /* 'd' */
2740 NULL, /* 'e' */
2741 special_sections_f, /* 'f' */
2742 special_sections_g, /* 'g' */
2743 special_sections_h, /* 'h' */
2744 special_sections_i, /* 'i' */
2745 NULL, /* 'j' */
2746 NULL, /* 'k' */
2747 special_sections_l, /* 'l' */
2748 NULL, /* 'm' */
2749 special_sections_n, /* 'n' */
2750 NULL, /* 'o' */
2751 special_sections_p, /* 'p' */
2752 NULL, /* 'q' */
2753 special_sections_r, /* 'r' */
2754 special_sections_s, /* 's' */
2755 special_sections_t, /* 't' */
2756 NULL, /* 'u' */
2757 NULL, /* 'v' */
2758 NULL, /* 'w' */
2759 NULL, /* 'x' */
2760 NULL, /* 'y' */
2761 special_sections_z /* 'z' */
2762 };
2763
2764 const struct bfd_elf_special_section *
2765 _bfd_elf_get_special_section (const char *name,
2766 const struct bfd_elf_special_section *spec,
2767 unsigned int rela)
2768 {
2769 int i;
2770 int len;
2771
2772 len = strlen (name);
2773
2774 for (i = 0; spec[i].prefix != NULL; i++)
2775 {
2776 int suffix_len;
2777 int prefix_len = spec[i].prefix_length;
2778
2779 if (len < prefix_len)
2780 continue;
2781 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2782 continue;
2783
2784 suffix_len = spec[i].suffix_length;
2785 if (suffix_len <= 0)
2786 {
2787 if (name[prefix_len] != 0)
2788 {
2789 if (suffix_len == 0)
2790 continue;
2791 if (name[prefix_len] != '.'
2792 && (suffix_len == -2
2793 || (rela && spec[i].type == SHT_REL)))
2794 continue;
2795 }
2796 }
2797 else
2798 {
2799 if (len < prefix_len + suffix_len)
2800 continue;
2801 if (memcmp (name + len - suffix_len,
2802 spec[i].prefix + prefix_len,
2803 suffix_len) != 0)
2804 continue;
2805 }
2806 return &spec[i];
2807 }
2808
2809 return NULL;
2810 }
2811
2812 const struct bfd_elf_special_section *
2813 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2814 {
2815 int i;
2816 const struct bfd_elf_special_section *spec;
2817 const struct elf_backend_data *bed;
2818
2819 /* See if this is one of the special sections. */
2820 if (sec->name == NULL)
2821 return NULL;
2822
2823 bed = get_elf_backend_data (abfd);
2824 spec = bed->special_sections;
2825 if (spec)
2826 {
2827 spec = _bfd_elf_get_special_section (sec->name,
2828 bed->special_sections,
2829 sec->use_rela_p);
2830 if (spec != NULL)
2831 return spec;
2832 }
2833
2834 if (sec->name[0] != '.')
2835 return NULL;
2836
2837 i = sec->name[1] - 'b';
2838 if (i < 0 || i > 'z' - 'b')
2839 return NULL;
2840
2841 spec = special_sections[i];
2842
2843 if (spec == NULL)
2844 return NULL;
2845
2846 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2847 }
2848
2849 bfd_boolean
2850 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2851 {
2852 struct bfd_elf_section_data *sdata;
2853 const struct elf_backend_data *bed;
2854 const struct bfd_elf_special_section *ssect;
2855
2856 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2857 if (sdata == NULL)
2858 {
2859 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2860 sizeof (*sdata));
2861 if (sdata == NULL)
2862 return FALSE;
2863 sec->used_by_bfd = sdata;
2864 }
2865
2866 /* Indicate whether or not this section should use RELA relocations. */
2867 bed = get_elf_backend_data (abfd);
2868 sec->use_rela_p = bed->default_use_rela_p;
2869
2870 /* When we read a file, we don't need to set ELF section type and
2871 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2872 anyway. We will set ELF section type and flags for all linker
2873 created sections. If user specifies BFD section flags, we will
2874 set ELF section type and flags based on BFD section flags in
2875 elf_fake_sections. Special handling for .init_array/.fini_array
2876 output sections since they may contain .ctors/.dtors input
2877 sections. We don't want _bfd_elf_init_private_section_data to
2878 copy ELF section type from .ctors/.dtors input sections. */
2879 if (abfd->direction != read_direction
2880 || (sec->flags & SEC_LINKER_CREATED) != 0)
2881 {
2882 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2883 if (ssect != NULL
2884 && (!sec->flags
2885 || (sec->flags & SEC_LINKER_CREATED) != 0
2886 || ssect->type == SHT_INIT_ARRAY
2887 || ssect->type == SHT_FINI_ARRAY))
2888 {
2889 elf_section_type (sec) = ssect->type;
2890 elf_section_flags (sec) = ssect->attr;
2891 }
2892 }
2893
2894 return _bfd_generic_new_section_hook (abfd, sec);
2895 }
2896
2897 /* Create a new bfd section from an ELF program header.
2898
2899 Since program segments have no names, we generate a synthetic name
2900 of the form segment<NUM>, where NUM is generally the index in the
2901 program header table. For segments that are split (see below) we
2902 generate the names segment<NUM>a and segment<NUM>b.
2903
2904 Note that some program segments may have a file size that is different than
2905 (less than) the memory size. All this means is that at execution the
2906 system must allocate the amount of memory specified by the memory size,
2907 but only initialize it with the first "file size" bytes read from the
2908 file. This would occur for example, with program segments consisting
2909 of combined data+bss.
2910
2911 To handle the above situation, this routine generates TWO bfd sections
2912 for the single program segment. The first has the length specified by
2913 the file size of the segment, and the second has the length specified
2914 by the difference between the two sizes. In effect, the segment is split
2915 into its initialized and uninitialized parts.
2916
2917 */
2918
2919 bfd_boolean
2920 _bfd_elf_make_section_from_phdr (bfd *abfd,
2921 Elf_Internal_Phdr *hdr,
2922 int hdr_index,
2923 const char *type_name)
2924 {
2925 asection *newsect;
2926 char *name;
2927 char namebuf[64];
2928 size_t len;
2929 int split;
2930
2931 split = ((hdr->p_memsz > 0)
2932 && (hdr->p_filesz > 0)
2933 && (hdr->p_memsz > hdr->p_filesz));
2934
2935 if (hdr->p_filesz > 0)
2936 {
2937 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2938 len = strlen (namebuf) + 1;
2939 name = (char *) bfd_alloc (abfd, len);
2940 if (!name)
2941 return FALSE;
2942 memcpy (name, namebuf, len);
2943 newsect = bfd_make_section (abfd, name);
2944 if (newsect == NULL)
2945 return FALSE;
2946 newsect->vma = hdr->p_vaddr;
2947 newsect->lma = hdr->p_paddr;
2948 newsect->size = hdr->p_filesz;
2949 newsect->filepos = hdr->p_offset;
2950 newsect->flags |= SEC_HAS_CONTENTS;
2951 newsect->alignment_power = bfd_log2 (hdr->p_align);
2952 if (hdr->p_type == PT_LOAD)
2953 {
2954 newsect->flags |= SEC_ALLOC;
2955 newsect->flags |= SEC_LOAD;
2956 if (hdr->p_flags & PF_X)
2957 {
2958 /* FIXME: all we known is that it has execute PERMISSION,
2959 may be data. */
2960 newsect->flags |= SEC_CODE;
2961 }
2962 }
2963 if (!(hdr->p_flags & PF_W))
2964 {
2965 newsect->flags |= SEC_READONLY;
2966 }
2967 }
2968
2969 if (hdr->p_memsz > hdr->p_filesz)
2970 {
2971 bfd_vma align;
2972
2973 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2974 len = strlen (namebuf) + 1;
2975 name = (char *) bfd_alloc (abfd, len);
2976 if (!name)
2977 return FALSE;
2978 memcpy (name, namebuf, len);
2979 newsect = bfd_make_section (abfd, name);
2980 if (newsect == NULL)
2981 return FALSE;
2982 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2983 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2984 newsect->size = hdr->p_memsz - hdr->p_filesz;
2985 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2986 align = newsect->vma & -newsect->vma;
2987 if (align == 0 || align > hdr->p_align)
2988 align = hdr->p_align;
2989 newsect->alignment_power = bfd_log2 (align);
2990 if (hdr->p_type == PT_LOAD)
2991 {
2992 /* Hack for gdb. Segments that have not been modified do
2993 not have their contents written to a core file, on the
2994 assumption that a debugger can find the contents in the
2995 executable. We flag this case by setting the fake
2996 section size to zero. Note that "real" bss sections will
2997 always have their contents dumped to the core file. */
2998 if (bfd_get_format (abfd) == bfd_core)
2999 newsect->size = 0;
3000 newsect->flags |= SEC_ALLOC;
3001 if (hdr->p_flags & PF_X)
3002 newsect->flags |= SEC_CODE;
3003 }
3004 if (!(hdr->p_flags & PF_W))
3005 newsect->flags |= SEC_READONLY;
3006 }
3007
3008 return TRUE;
3009 }
3010
3011 bfd_boolean
3012 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3013 {
3014 const struct elf_backend_data *bed;
3015
3016 switch (hdr->p_type)
3017 {
3018 case PT_NULL:
3019 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3020
3021 case PT_LOAD:
3022 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
3023
3024 case PT_DYNAMIC:
3025 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3026
3027 case PT_INTERP:
3028 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3029
3030 case PT_NOTE:
3031 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3032 return FALSE;
3033 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3034 hdr->p_align))
3035 return FALSE;
3036 return TRUE;
3037
3038 case PT_SHLIB:
3039 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3040
3041 case PT_PHDR:
3042 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3043
3044 case PT_GNU_EH_FRAME:
3045 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3046 "eh_frame_hdr");
3047
3048 case PT_GNU_STACK:
3049 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3050
3051 case PT_GNU_RELRO:
3052 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3053
3054 default:
3055 /* Check for any processor-specific program segment types. */
3056 bed = get_elf_backend_data (abfd);
3057 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3058 }
3059 }
3060
3061 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3062 REL or RELA. */
3063
3064 Elf_Internal_Shdr *
3065 _bfd_elf_single_rel_hdr (asection *sec)
3066 {
3067 if (elf_section_data (sec)->rel.hdr)
3068 {
3069 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3070 return elf_section_data (sec)->rel.hdr;
3071 }
3072 else
3073 return elf_section_data (sec)->rela.hdr;
3074 }
3075
3076 static bfd_boolean
3077 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3078 Elf_Internal_Shdr *rel_hdr,
3079 const char *sec_name,
3080 bfd_boolean use_rela_p)
3081 {
3082 char *name = (char *) bfd_alloc (abfd,
3083 sizeof ".rela" + strlen (sec_name));
3084 if (name == NULL)
3085 return FALSE;
3086
3087 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3088 rel_hdr->sh_name =
3089 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3090 FALSE);
3091 if (rel_hdr->sh_name == (unsigned int) -1)
3092 return FALSE;
3093
3094 return TRUE;
3095 }
3096
3097 /* Allocate and initialize a section-header for a new reloc section,
3098 containing relocations against ASECT. It is stored in RELDATA. If
3099 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3100 relocations. */
3101
3102 static bfd_boolean
3103 _bfd_elf_init_reloc_shdr (bfd *abfd,
3104 struct bfd_elf_section_reloc_data *reldata,
3105 const char *sec_name,
3106 bfd_boolean use_rela_p,
3107 bfd_boolean delay_st_name_p)
3108 {
3109 Elf_Internal_Shdr *rel_hdr;
3110 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3111
3112 BFD_ASSERT (reldata->hdr == NULL);
3113 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3114 reldata->hdr = rel_hdr;
3115
3116 if (delay_st_name_p)
3117 rel_hdr->sh_name = (unsigned int) -1;
3118 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3119 use_rela_p))
3120 return FALSE;
3121 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3122 rel_hdr->sh_entsize = (use_rela_p
3123 ? bed->s->sizeof_rela
3124 : bed->s->sizeof_rel);
3125 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3126 rel_hdr->sh_flags = 0;
3127 rel_hdr->sh_addr = 0;
3128 rel_hdr->sh_size = 0;
3129 rel_hdr->sh_offset = 0;
3130
3131 return TRUE;
3132 }
3133
3134 /* Return the default section type based on the passed in section flags. */
3135
3136 int
3137 bfd_elf_get_default_section_type (flagword flags)
3138 {
3139 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3140 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3141 return SHT_NOBITS;
3142 return SHT_PROGBITS;
3143 }
3144
3145 struct fake_section_arg
3146 {
3147 struct bfd_link_info *link_info;
3148 bfd_boolean failed;
3149 };
3150
3151 /* Set up an ELF internal section header for a section. */
3152
3153 static void
3154 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3155 {
3156 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3157 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3158 struct bfd_elf_section_data *esd = elf_section_data (asect);
3159 Elf_Internal_Shdr *this_hdr;
3160 unsigned int sh_type;
3161 const char *name = asect->name;
3162 bfd_boolean delay_st_name_p = FALSE;
3163
3164 if (arg->failed)
3165 {
3166 /* We already failed; just get out of the bfd_map_over_sections
3167 loop. */
3168 return;
3169 }
3170
3171 this_hdr = &esd->this_hdr;
3172
3173 if (arg->link_info)
3174 {
3175 /* ld: compress DWARF debug sections with names: .debug_*. */
3176 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3177 && (asect->flags & SEC_DEBUGGING)
3178 && name[1] == 'd'
3179 && name[6] == '_')
3180 {
3181 /* Set SEC_ELF_COMPRESS to indicate this section should be
3182 compressed. */
3183 asect->flags |= SEC_ELF_COMPRESS;
3184
3185 /* If this section will be compressed, delay adding section
3186 name to section name section after it is compressed in
3187 _bfd_elf_assign_file_positions_for_non_load. */
3188 delay_st_name_p = TRUE;
3189 }
3190 }
3191 else if ((asect->flags & SEC_ELF_RENAME))
3192 {
3193 /* objcopy: rename output DWARF debug section. */
3194 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3195 {
3196 /* When we decompress or compress with SHF_COMPRESSED,
3197 convert section name from .zdebug_* to .debug_* if
3198 needed. */
3199 if (name[1] == 'z')
3200 {
3201 char *new_name = convert_zdebug_to_debug (abfd, name);
3202 if (new_name == NULL)
3203 {
3204 arg->failed = TRUE;
3205 return;
3206 }
3207 name = new_name;
3208 }
3209 }
3210 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3211 {
3212 /* PR binutils/18087: Compression does not always make a
3213 section smaller. So only rename the section when
3214 compression has actually taken place. If input section
3215 name is .zdebug_*, we should never compress it again. */
3216 char *new_name = convert_debug_to_zdebug (abfd, name);
3217 if (new_name == NULL)
3218 {
3219 arg->failed = TRUE;
3220 return;
3221 }
3222 BFD_ASSERT (name[1] != 'z');
3223 name = new_name;
3224 }
3225 }
3226
3227 if (delay_st_name_p)
3228 this_hdr->sh_name = (unsigned int) -1;
3229 else
3230 {
3231 this_hdr->sh_name
3232 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3233 name, FALSE);
3234 if (this_hdr->sh_name == (unsigned int) -1)
3235 {
3236 arg->failed = TRUE;
3237 return;
3238 }
3239 }
3240
3241 /* Don't clear sh_flags. Assembler may set additional bits. */
3242
3243 if ((asect->flags & SEC_ALLOC) != 0
3244 || asect->user_set_vma)
3245 this_hdr->sh_addr = asect->vma;
3246 else
3247 this_hdr->sh_addr = 0;
3248
3249 this_hdr->sh_offset = 0;
3250 this_hdr->sh_size = asect->size;
3251 this_hdr->sh_link = 0;
3252 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3253 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3254 {
3255 _bfd_error_handler
3256 /* xgettext:c-format */
3257 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3258 abfd, asect->alignment_power, asect);
3259 arg->failed = TRUE;
3260 return;
3261 }
3262 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3263 /* The sh_entsize and sh_info fields may have been set already by
3264 copy_private_section_data. */
3265
3266 this_hdr->bfd_section = asect;
3267 this_hdr->contents = NULL;
3268
3269 /* If the section type is unspecified, we set it based on
3270 asect->flags. */
3271 if ((asect->flags & SEC_GROUP) != 0)
3272 sh_type = SHT_GROUP;
3273 else
3274 sh_type = bfd_elf_get_default_section_type (asect->flags);
3275
3276 if (this_hdr->sh_type == SHT_NULL)
3277 this_hdr->sh_type = sh_type;
3278 else if (this_hdr->sh_type == SHT_NOBITS
3279 && sh_type == SHT_PROGBITS
3280 && (asect->flags & SEC_ALLOC) != 0)
3281 {
3282 /* Warn if we are changing a NOBITS section to PROGBITS, but
3283 allow the link to proceed. This can happen when users link
3284 non-bss input sections to bss output sections, or emit data
3285 to a bss output section via a linker script. */
3286 _bfd_error_handler
3287 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3288 this_hdr->sh_type = sh_type;
3289 }
3290
3291 switch (this_hdr->sh_type)
3292 {
3293 default:
3294 break;
3295
3296 case SHT_STRTAB:
3297 case SHT_NOTE:
3298 case SHT_NOBITS:
3299 case SHT_PROGBITS:
3300 break;
3301
3302 case SHT_INIT_ARRAY:
3303 case SHT_FINI_ARRAY:
3304 case SHT_PREINIT_ARRAY:
3305 this_hdr->sh_entsize = bed->s->arch_size / 8;
3306 break;
3307
3308 case SHT_HASH:
3309 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3310 break;
3311
3312 case SHT_DYNSYM:
3313 this_hdr->sh_entsize = bed->s->sizeof_sym;
3314 break;
3315
3316 case SHT_DYNAMIC:
3317 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3318 break;
3319
3320 case SHT_RELA:
3321 if (get_elf_backend_data (abfd)->may_use_rela_p)
3322 this_hdr->sh_entsize = bed->s->sizeof_rela;
3323 break;
3324
3325 case SHT_REL:
3326 if (get_elf_backend_data (abfd)->may_use_rel_p)
3327 this_hdr->sh_entsize = bed->s->sizeof_rel;
3328 break;
3329
3330 case SHT_GNU_versym:
3331 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3332 break;
3333
3334 case SHT_GNU_verdef:
3335 this_hdr->sh_entsize = 0;
3336 /* objcopy or strip will copy over sh_info, but may not set
3337 cverdefs. The linker will set cverdefs, but sh_info will be
3338 zero. */
3339 if (this_hdr->sh_info == 0)
3340 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3341 else
3342 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3343 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3344 break;
3345
3346 case SHT_GNU_verneed:
3347 this_hdr->sh_entsize = 0;
3348 /* objcopy or strip will copy over sh_info, but may not set
3349 cverrefs. The linker will set cverrefs, but sh_info will be
3350 zero. */
3351 if (this_hdr->sh_info == 0)
3352 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3353 else
3354 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3355 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3356 break;
3357
3358 case SHT_GROUP:
3359 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3360 break;
3361
3362 case SHT_GNU_HASH:
3363 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3364 break;
3365 }
3366
3367 if ((asect->flags & SEC_ALLOC) != 0)
3368 this_hdr->sh_flags |= SHF_ALLOC;
3369 if ((asect->flags & SEC_READONLY) == 0)
3370 this_hdr->sh_flags |= SHF_WRITE;
3371 if ((asect->flags & SEC_CODE) != 0)
3372 this_hdr->sh_flags |= SHF_EXECINSTR;
3373 if ((asect->flags & SEC_MERGE) != 0)
3374 {
3375 this_hdr->sh_flags |= SHF_MERGE;
3376 this_hdr->sh_entsize = asect->entsize;
3377 }
3378 if ((asect->flags & SEC_STRINGS) != 0)
3379 this_hdr->sh_flags |= SHF_STRINGS;
3380 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3381 this_hdr->sh_flags |= SHF_GROUP;
3382 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3383 {
3384 this_hdr->sh_flags |= SHF_TLS;
3385 if (asect->size == 0
3386 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3387 {
3388 struct bfd_link_order *o = asect->map_tail.link_order;
3389
3390 this_hdr->sh_size = 0;
3391 if (o != NULL)
3392 {
3393 this_hdr->sh_size = o->offset + o->size;
3394 if (this_hdr->sh_size != 0)
3395 this_hdr->sh_type = SHT_NOBITS;
3396 }
3397 }
3398 }
3399 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3400 this_hdr->sh_flags |= SHF_EXCLUDE;
3401
3402 /* If the section has relocs, set up a section header for the
3403 SHT_REL[A] section. If two relocation sections are required for
3404 this section, it is up to the processor-specific back-end to
3405 create the other. */
3406 if ((asect->flags & SEC_RELOC) != 0)
3407 {
3408 /* When doing a relocatable link, create both REL and RELA sections if
3409 needed. */
3410 if (arg->link_info
3411 /* Do the normal setup if we wouldn't create any sections here. */
3412 && esd->rel.count + esd->rela.count > 0
3413 && (bfd_link_relocatable (arg->link_info)
3414 || arg->link_info->emitrelocations))
3415 {
3416 if (esd->rel.count && esd->rel.hdr == NULL
3417 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3418 FALSE, delay_st_name_p))
3419 {
3420 arg->failed = TRUE;
3421 return;
3422 }
3423 if (esd->rela.count && esd->rela.hdr == NULL
3424 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3425 TRUE, delay_st_name_p))
3426 {
3427 arg->failed = TRUE;
3428 return;
3429 }
3430 }
3431 else if (!_bfd_elf_init_reloc_shdr (abfd,
3432 (asect->use_rela_p
3433 ? &esd->rela : &esd->rel),
3434 name,
3435 asect->use_rela_p,
3436 delay_st_name_p))
3437 {
3438 arg->failed = TRUE;
3439 return;
3440 }
3441 }
3442
3443 /* Check for processor-specific section types. */
3444 sh_type = this_hdr->sh_type;
3445 if (bed->elf_backend_fake_sections
3446 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3447 {
3448 arg->failed = TRUE;
3449 return;
3450 }
3451
3452 if (sh_type == SHT_NOBITS && asect->size != 0)
3453 {
3454 /* Don't change the header type from NOBITS if we are being
3455 called for objcopy --only-keep-debug. */
3456 this_hdr->sh_type = sh_type;
3457 }
3458 }
3459
3460 /* Fill in the contents of a SHT_GROUP section. Called from
3461 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3462 when ELF targets use the generic linker, ld. Called for ld -r
3463 from bfd_elf_final_link. */
3464
3465 void
3466 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3467 {
3468 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3469 asection *elt, *first;
3470 unsigned char *loc;
3471 bfd_boolean gas;
3472
3473 /* Ignore linker created group section. See elfNN_ia64_object_p in
3474 elfxx-ia64.c. */
3475 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3476 || sec->size == 0
3477 || *failedptr)
3478 return;
3479
3480 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3481 {
3482 unsigned long symindx = 0;
3483
3484 /* elf_group_id will have been set up by objcopy and the
3485 generic linker. */
3486 if (elf_group_id (sec) != NULL)
3487 symindx = elf_group_id (sec)->udata.i;
3488
3489 if (symindx == 0)
3490 {
3491 /* If called from the assembler, swap_out_syms will have set up
3492 elf_section_syms. */
3493 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3494 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3495 }
3496 elf_section_data (sec)->this_hdr.sh_info = symindx;
3497 }
3498 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3499 {
3500 /* The ELF backend linker sets sh_info to -2 when the group
3501 signature symbol is global, and thus the index can't be
3502 set until all local symbols are output. */
3503 asection *igroup;
3504 struct bfd_elf_section_data *sec_data;
3505 unsigned long symndx;
3506 unsigned long extsymoff;
3507 struct elf_link_hash_entry *h;
3508
3509 /* The point of this little dance to the first SHF_GROUP section
3510 then back to the SHT_GROUP section is that this gets us to
3511 the SHT_GROUP in the input object. */
3512 igroup = elf_sec_group (elf_next_in_group (sec));
3513 sec_data = elf_section_data (igroup);
3514 symndx = sec_data->this_hdr.sh_info;
3515 extsymoff = 0;
3516 if (!elf_bad_symtab (igroup->owner))
3517 {
3518 Elf_Internal_Shdr *symtab_hdr;
3519
3520 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3521 extsymoff = symtab_hdr->sh_info;
3522 }
3523 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3524 while (h->root.type == bfd_link_hash_indirect
3525 || h->root.type == bfd_link_hash_warning)
3526 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3527
3528 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3529 }
3530
3531 /* The contents won't be allocated for "ld -r" or objcopy. */
3532 gas = TRUE;
3533 if (sec->contents == NULL)
3534 {
3535 gas = FALSE;
3536 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3537
3538 /* Arrange for the section to be written out. */
3539 elf_section_data (sec)->this_hdr.contents = sec->contents;
3540 if (sec->contents == NULL)
3541 {
3542 *failedptr = TRUE;
3543 return;
3544 }
3545 }
3546
3547 loc = sec->contents + sec->size;
3548
3549 /* Get the pointer to the first section in the group that gas
3550 squirreled away here. objcopy arranges for this to be set to the
3551 start of the input section group. */
3552 first = elt = elf_next_in_group (sec);
3553
3554 /* First element is a flag word. Rest of section is elf section
3555 indices for all the sections of the group. Write them backwards
3556 just to keep the group in the same order as given in .section
3557 directives, not that it matters. */
3558 while (elt != NULL)
3559 {
3560 asection *s;
3561
3562 s = elt;
3563 if (!gas)
3564 s = s->output_section;
3565 if (s != NULL
3566 && !bfd_is_abs_section (s))
3567 {
3568 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3569 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3570
3571 if (elf_sec->rel.hdr != NULL
3572 && (gas
3573 || (input_elf_sec->rel.hdr != NULL
3574 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3575 {
3576 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3577 loc -= 4;
3578 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3579 }
3580 if (elf_sec->rela.hdr != NULL
3581 && (gas
3582 || (input_elf_sec->rela.hdr != NULL
3583 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3584 {
3585 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3586 loc -= 4;
3587 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3588 }
3589 loc -= 4;
3590 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3591 }
3592 elt = elf_next_in_group (elt);
3593 if (elt == first)
3594 break;
3595 }
3596
3597 loc -= 4;
3598 BFD_ASSERT (loc == sec->contents);
3599
3600 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3601 }
3602
3603 /* Given NAME, the name of a relocation section stripped of its
3604 .rel/.rela prefix, return the section in ABFD to which the
3605 relocations apply. */
3606
3607 asection *
3608 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3609 {
3610 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3611 section likely apply to .got.plt or .got section. */
3612 if (get_elf_backend_data (abfd)->want_got_plt
3613 && strcmp (name, ".plt") == 0)
3614 {
3615 asection *sec;
3616
3617 name = ".got.plt";
3618 sec = bfd_get_section_by_name (abfd, name);
3619 if (sec != NULL)
3620 return sec;
3621 name = ".got";
3622 }
3623
3624 return bfd_get_section_by_name (abfd, name);
3625 }
3626
3627 /* Return the section to which RELOC_SEC applies. */
3628
3629 static asection *
3630 elf_get_reloc_section (asection *reloc_sec)
3631 {
3632 const char *name;
3633 unsigned int type;
3634 bfd *abfd;
3635 const struct elf_backend_data *bed;
3636
3637 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3638 if (type != SHT_REL && type != SHT_RELA)
3639 return NULL;
3640
3641 /* We look up the section the relocs apply to by name. */
3642 name = reloc_sec->name;
3643 if (strncmp (name, ".rel", 4) != 0)
3644 return NULL;
3645 name += 4;
3646 if (type == SHT_RELA && *name++ != 'a')
3647 return NULL;
3648
3649 abfd = reloc_sec->owner;
3650 bed = get_elf_backend_data (abfd);
3651 return bed->get_reloc_section (abfd, name);
3652 }
3653
3654 /* Assign all ELF section numbers. The dummy first section is handled here
3655 too. The link/info pointers for the standard section types are filled
3656 in here too, while we're at it. */
3657
3658 static bfd_boolean
3659 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3660 {
3661 struct elf_obj_tdata *t = elf_tdata (abfd);
3662 asection *sec;
3663 unsigned int section_number;
3664 Elf_Internal_Shdr **i_shdrp;
3665 struct bfd_elf_section_data *d;
3666 bfd_boolean need_symtab;
3667
3668 section_number = 1;
3669
3670 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3671
3672 /* SHT_GROUP sections are in relocatable files only. */
3673 if (link_info == NULL || !link_info->resolve_section_groups)
3674 {
3675 size_t reloc_count = 0;
3676
3677 /* Put SHT_GROUP sections first. */
3678 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3679 {
3680 d = elf_section_data (sec);
3681
3682 if (d->this_hdr.sh_type == SHT_GROUP)
3683 {
3684 if (sec->flags & SEC_LINKER_CREATED)
3685 {
3686 /* Remove the linker created SHT_GROUP sections. */
3687 bfd_section_list_remove (abfd, sec);
3688 abfd->section_count--;
3689 }
3690 else
3691 d->this_idx = section_number++;
3692 }
3693
3694 /* Count relocations. */
3695 reloc_count += sec->reloc_count;
3696 }
3697
3698 /* Clear HAS_RELOC if there are no relocations. */
3699 if (reloc_count == 0)
3700 abfd->flags &= ~HAS_RELOC;
3701 }
3702
3703 for (sec = abfd->sections; sec; sec = sec->next)
3704 {
3705 d = elf_section_data (sec);
3706
3707 if (d->this_hdr.sh_type != SHT_GROUP)
3708 d->this_idx = section_number++;
3709 if (d->this_hdr.sh_name != (unsigned int) -1)
3710 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3711 if (d->rel.hdr)
3712 {
3713 d->rel.idx = section_number++;
3714 if (d->rel.hdr->sh_name != (unsigned int) -1)
3715 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3716 }
3717 else
3718 d->rel.idx = 0;
3719
3720 if (d->rela.hdr)
3721 {
3722 d->rela.idx = section_number++;
3723 if (d->rela.hdr->sh_name != (unsigned int) -1)
3724 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3725 }
3726 else
3727 d->rela.idx = 0;
3728 }
3729
3730 need_symtab = (bfd_get_symcount (abfd) > 0
3731 || (link_info == NULL
3732 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3733 == HAS_RELOC)));
3734 if (need_symtab)
3735 {
3736 elf_onesymtab (abfd) = section_number++;
3737 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3738 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3739 {
3740 elf_section_list *entry;
3741
3742 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3743
3744 entry = bfd_zalloc (abfd, sizeof (*entry));
3745 entry->ndx = section_number++;
3746 elf_symtab_shndx_list (abfd) = entry;
3747 entry->hdr.sh_name
3748 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3749 ".symtab_shndx", FALSE);
3750 if (entry->hdr.sh_name == (unsigned int) -1)
3751 return FALSE;
3752 }
3753 elf_strtab_sec (abfd) = section_number++;
3754 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3755 }
3756
3757 elf_shstrtab_sec (abfd) = section_number++;
3758 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3759 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3760
3761 if (section_number >= SHN_LORESERVE)
3762 {
3763 /* xgettext:c-format */
3764 _bfd_error_handler (_("%pB: too many sections: %u"),
3765 abfd, section_number);
3766 return FALSE;
3767 }
3768
3769 elf_numsections (abfd) = section_number;
3770 elf_elfheader (abfd)->e_shnum = section_number;
3771
3772 /* Set up the list of section header pointers, in agreement with the
3773 indices. */
3774 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3775 sizeof (Elf_Internal_Shdr *));
3776 if (i_shdrp == NULL)
3777 return FALSE;
3778
3779 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3780 sizeof (Elf_Internal_Shdr));
3781 if (i_shdrp[0] == NULL)
3782 {
3783 bfd_release (abfd, i_shdrp);
3784 return FALSE;
3785 }
3786
3787 elf_elfsections (abfd) = i_shdrp;
3788
3789 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3790 if (need_symtab)
3791 {
3792 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3793 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3794 {
3795 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3796 BFD_ASSERT (entry != NULL);
3797 i_shdrp[entry->ndx] = & entry->hdr;
3798 entry->hdr.sh_link = elf_onesymtab (abfd);
3799 }
3800 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3801 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3802 }
3803
3804 for (sec = abfd->sections; sec; sec = sec->next)
3805 {
3806 asection *s;
3807
3808 d = elf_section_data (sec);
3809
3810 i_shdrp[d->this_idx] = &d->this_hdr;
3811 if (d->rel.idx != 0)
3812 i_shdrp[d->rel.idx] = d->rel.hdr;
3813 if (d->rela.idx != 0)
3814 i_shdrp[d->rela.idx] = d->rela.hdr;
3815
3816 /* Fill in the sh_link and sh_info fields while we're at it. */
3817
3818 /* sh_link of a reloc section is the section index of the symbol
3819 table. sh_info is the section index of the section to which
3820 the relocation entries apply. */
3821 if (d->rel.idx != 0)
3822 {
3823 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3824 d->rel.hdr->sh_info = d->this_idx;
3825 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3826 }
3827 if (d->rela.idx != 0)
3828 {
3829 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3830 d->rela.hdr->sh_info = d->this_idx;
3831 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3832 }
3833
3834 /* We need to set up sh_link for SHF_LINK_ORDER. */
3835 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3836 {
3837 s = elf_linked_to_section (sec);
3838 if (s)
3839 {
3840 /* elf_linked_to_section points to the input section. */
3841 if (link_info != NULL)
3842 {
3843 /* Check discarded linkonce section. */
3844 if (discarded_section (s))
3845 {
3846 asection *kept;
3847 _bfd_error_handler
3848 /* xgettext:c-format */
3849 (_("%pB: sh_link of section `%pA' points to"
3850 " discarded section `%pA' of `%pB'"),
3851 abfd, d->this_hdr.bfd_section,
3852 s, s->owner);
3853 /* Point to the kept section if it has the same
3854 size as the discarded one. */
3855 kept = _bfd_elf_check_kept_section (s, link_info);
3856 if (kept == NULL)
3857 {
3858 bfd_set_error (bfd_error_bad_value);
3859 return FALSE;
3860 }
3861 s = kept;
3862 }
3863
3864 s = s->output_section;
3865 BFD_ASSERT (s != NULL);
3866 }
3867 else
3868 {
3869 /* Handle objcopy. */
3870 if (s->output_section == NULL)
3871 {
3872 _bfd_error_handler
3873 /* xgettext:c-format */
3874 (_("%pB: sh_link of section `%pA' points to"
3875 " removed section `%pA' of `%pB'"),
3876 abfd, d->this_hdr.bfd_section, s, s->owner);
3877 bfd_set_error (bfd_error_bad_value);
3878 return FALSE;
3879 }
3880 s = s->output_section;
3881 }
3882 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3883 }
3884 else
3885 {
3886 /* PR 290:
3887 The Intel C compiler generates SHT_IA_64_UNWIND with
3888 SHF_LINK_ORDER. But it doesn't set the sh_link or
3889 sh_info fields. Hence we could get the situation
3890 where s is NULL. */
3891 const struct elf_backend_data *bed
3892 = get_elf_backend_data (abfd);
3893 if (bed->link_order_error_handler)
3894 bed->link_order_error_handler
3895 /* xgettext:c-format */
3896 (_("%pB: warning: sh_link not set for section `%pA'"),
3897 abfd, sec);
3898 }
3899 }
3900
3901 switch (d->this_hdr.sh_type)
3902 {
3903 case SHT_REL:
3904 case SHT_RELA:
3905 /* A reloc section which we are treating as a normal BFD
3906 section. sh_link is the section index of the symbol
3907 table. sh_info is the section index of the section to
3908 which the relocation entries apply. We assume that an
3909 allocated reloc section uses the dynamic symbol table.
3910 FIXME: How can we be sure? */
3911 s = bfd_get_section_by_name (abfd, ".dynsym");
3912 if (s != NULL)
3913 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3914
3915 s = elf_get_reloc_section (sec);
3916 if (s != NULL)
3917 {
3918 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3919 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3920 }
3921 break;
3922
3923 case SHT_STRTAB:
3924 /* We assume that a section named .stab*str is a stabs
3925 string section. We look for a section with the same name
3926 but without the trailing ``str'', and set its sh_link
3927 field to point to this section. */
3928 if (CONST_STRNEQ (sec->name, ".stab")
3929 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3930 {
3931 size_t len;
3932 char *alc;
3933
3934 len = strlen (sec->name);
3935 alc = (char *) bfd_malloc (len - 2);
3936 if (alc == NULL)
3937 return FALSE;
3938 memcpy (alc, sec->name, len - 3);
3939 alc[len - 3] = '\0';
3940 s = bfd_get_section_by_name (abfd, alc);
3941 free (alc);
3942 if (s != NULL)
3943 {
3944 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3945
3946 /* This is a .stab section. */
3947 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3948 elf_section_data (s)->this_hdr.sh_entsize
3949 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3950 }
3951 }
3952 break;
3953
3954 case SHT_DYNAMIC:
3955 case SHT_DYNSYM:
3956 case SHT_GNU_verneed:
3957 case SHT_GNU_verdef:
3958 /* sh_link is the section header index of the string table
3959 used for the dynamic entries, or the symbol table, or the
3960 version strings. */
3961 s = bfd_get_section_by_name (abfd, ".dynstr");
3962 if (s != NULL)
3963 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3964 break;
3965
3966 case SHT_GNU_LIBLIST:
3967 /* sh_link is the section header index of the prelink library
3968 list used for the dynamic entries, or the symbol table, or
3969 the version strings. */
3970 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3971 ? ".dynstr" : ".gnu.libstr");
3972 if (s != NULL)
3973 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3974 break;
3975
3976 case SHT_HASH:
3977 case SHT_GNU_HASH:
3978 case SHT_GNU_versym:
3979 /* sh_link is the section header index of the symbol table
3980 this hash table or version table is for. */
3981 s = bfd_get_section_by_name (abfd, ".dynsym");
3982 if (s != NULL)
3983 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3984 break;
3985
3986 case SHT_GROUP:
3987 d->this_hdr.sh_link = elf_onesymtab (abfd);
3988 }
3989 }
3990
3991 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3992 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3993 debug section name from .debug_* to .zdebug_* if needed. */
3994
3995 return TRUE;
3996 }
3997
3998 static bfd_boolean
3999 sym_is_global (bfd *abfd, asymbol *sym)
4000 {
4001 /* If the backend has a special mapping, use it. */
4002 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4003 if (bed->elf_backend_sym_is_global)
4004 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4005
4006 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4007 || bfd_is_und_section (bfd_get_section (sym))
4008 || bfd_is_com_section (bfd_get_section (sym)));
4009 }
4010
4011 /* Filter global symbols of ABFD to include in the import library. All
4012 SYMCOUNT symbols of ABFD can be examined from their pointers in
4013 SYMS. Pointers of symbols to keep should be stored contiguously at
4014 the beginning of that array.
4015
4016 Returns the number of symbols to keep. */
4017
4018 unsigned int
4019 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4020 asymbol **syms, long symcount)
4021 {
4022 long src_count, dst_count = 0;
4023
4024 for (src_count = 0; src_count < symcount; src_count++)
4025 {
4026 asymbol *sym = syms[src_count];
4027 char *name = (char *) bfd_asymbol_name (sym);
4028 struct bfd_link_hash_entry *h;
4029
4030 if (!sym_is_global (abfd, sym))
4031 continue;
4032
4033 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4034 if (h == NULL)
4035 continue;
4036 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4037 continue;
4038 if (h->linker_def || h->ldscript_def)
4039 continue;
4040
4041 syms[dst_count++] = sym;
4042 }
4043
4044 syms[dst_count] = NULL;
4045
4046 return dst_count;
4047 }
4048
4049 /* Don't output section symbols for sections that are not going to be
4050 output, that are duplicates or there is no BFD section. */
4051
4052 static bfd_boolean
4053 ignore_section_sym (bfd *abfd, asymbol *sym)
4054 {
4055 elf_symbol_type *type_ptr;
4056
4057 if (sym == NULL)
4058 return FALSE;
4059
4060 if ((sym->flags & BSF_SECTION_SYM) == 0)
4061 return FALSE;
4062
4063 if (sym->section == NULL)
4064 return TRUE;
4065
4066 type_ptr = elf_symbol_from (abfd, sym);
4067 return ((type_ptr != NULL
4068 && type_ptr->internal_elf_sym.st_shndx != 0
4069 && bfd_is_abs_section (sym->section))
4070 || !(sym->section->owner == abfd
4071 || (sym->section->output_section != NULL
4072 && sym->section->output_section->owner == abfd
4073 && sym->section->output_offset == 0)
4074 || bfd_is_abs_section (sym->section)));
4075 }
4076
4077 /* Map symbol from it's internal number to the external number, moving
4078 all local symbols to be at the head of the list. */
4079
4080 static bfd_boolean
4081 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4082 {
4083 unsigned int symcount = bfd_get_symcount (abfd);
4084 asymbol **syms = bfd_get_outsymbols (abfd);
4085 asymbol **sect_syms;
4086 unsigned int num_locals = 0;
4087 unsigned int num_globals = 0;
4088 unsigned int num_locals2 = 0;
4089 unsigned int num_globals2 = 0;
4090 unsigned int max_index = 0;
4091 unsigned int idx;
4092 asection *asect;
4093 asymbol **new_syms;
4094
4095 #ifdef DEBUG
4096 fprintf (stderr, "elf_map_symbols\n");
4097 fflush (stderr);
4098 #endif
4099
4100 for (asect = abfd->sections; asect; asect = asect->next)
4101 {
4102 if (max_index < asect->index)
4103 max_index = asect->index;
4104 }
4105
4106 max_index++;
4107 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4108 if (sect_syms == NULL)
4109 return FALSE;
4110 elf_section_syms (abfd) = sect_syms;
4111 elf_num_section_syms (abfd) = max_index;
4112
4113 /* Init sect_syms entries for any section symbols we have already
4114 decided to output. */
4115 for (idx = 0; idx < symcount; idx++)
4116 {
4117 asymbol *sym = syms[idx];
4118
4119 if ((sym->flags & BSF_SECTION_SYM) != 0
4120 && sym->value == 0
4121 && !ignore_section_sym (abfd, sym)
4122 && !bfd_is_abs_section (sym->section))
4123 {
4124 asection *sec = sym->section;
4125
4126 if (sec->owner != abfd)
4127 sec = sec->output_section;
4128
4129 sect_syms[sec->index] = syms[idx];
4130 }
4131 }
4132
4133 /* Classify all of the symbols. */
4134 for (idx = 0; idx < symcount; idx++)
4135 {
4136 if (sym_is_global (abfd, syms[idx]))
4137 num_globals++;
4138 else if (!ignore_section_sym (abfd, syms[idx]))
4139 num_locals++;
4140 }
4141
4142 /* We will be adding a section symbol for each normal BFD section. Most
4143 sections will already have a section symbol in outsymbols, but
4144 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4145 at least in that case. */
4146 for (asect = abfd->sections; asect; asect = asect->next)
4147 {
4148 if (sect_syms[asect->index] == NULL)
4149 {
4150 if (!sym_is_global (abfd, asect->symbol))
4151 num_locals++;
4152 else
4153 num_globals++;
4154 }
4155 }
4156
4157 /* Now sort the symbols so the local symbols are first. */
4158 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4159 sizeof (asymbol *));
4160
4161 if (new_syms == NULL)
4162 return FALSE;
4163
4164 for (idx = 0; idx < symcount; idx++)
4165 {
4166 asymbol *sym = syms[idx];
4167 unsigned int i;
4168
4169 if (sym_is_global (abfd, sym))
4170 i = num_locals + num_globals2++;
4171 else if (!ignore_section_sym (abfd, sym))
4172 i = num_locals2++;
4173 else
4174 continue;
4175 new_syms[i] = sym;
4176 sym->udata.i = i + 1;
4177 }
4178 for (asect = abfd->sections; asect; asect = asect->next)
4179 {
4180 if (sect_syms[asect->index] == NULL)
4181 {
4182 asymbol *sym = asect->symbol;
4183 unsigned int i;
4184
4185 sect_syms[asect->index] = sym;
4186 if (!sym_is_global (abfd, sym))
4187 i = num_locals2++;
4188 else
4189 i = num_locals + num_globals2++;
4190 new_syms[i] = sym;
4191 sym->udata.i = i + 1;
4192 }
4193 }
4194
4195 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4196
4197 *pnum_locals = num_locals;
4198 return TRUE;
4199 }
4200
4201 /* Align to the maximum file alignment that could be required for any
4202 ELF data structure. */
4203
4204 static inline file_ptr
4205 align_file_position (file_ptr off, int align)
4206 {
4207 return (off + align - 1) & ~(align - 1);
4208 }
4209
4210 /* Assign a file position to a section, optionally aligning to the
4211 required section alignment. */
4212
4213 file_ptr
4214 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4215 file_ptr offset,
4216 bfd_boolean align)
4217 {
4218 if (align && i_shdrp->sh_addralign > 1)
4219 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4220 i_shdrp->sh_offset = offset;
4221 if (i_shdrp->bfd_section != NULL)
4222 i_shdrp->bfd_section->filepos = offset;
4223 if (i_shdrp->sh_type != SHT_NOBITS)
4224 offset += i_shdrp->sh_size;
4225 return offset;
4226 }
4227
4228 /* Compute the file positions we are going to put the sections at, and
4229 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4230 is not NULL, this is being called by the ELF backend linker. */
4231
4232 bfd_boolean
4233 _bfd_elf_compute_section_file_positions (bfd *abfd,
4234 struct bfd_link_info *link_info)
4235 {
4236 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4237 struct fake_section_arg fsargs;
4238 bfd_boolean failed;
4239 struct elf_strtab_hash *strtab = NULL;
4240 Elf_Internal_Shdr *shstrtab_hdr;
4241 bfd_boolean need_symtab;
4242
4243 if (abfd->output_has_begun)
4244 return TRUE;
4245
4246 /* Do any elf backend specific processing first. */
4247 if (bed->elf_backend_begin_write_processing)
4248 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4249
4250 if (! prep_headers (abfd))
4251 return FALSE;
4252
4253 /* Post process the headers if necessary. */
4254 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4255
4256 fsargs.failed = FALSE;
4257 fsargs.link_info = link_info;
4258 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4259 if (fsargs.failed)
4260 return FALSE;
4261
4262 if (!assign_section_numbers (abfd, link_info))
4263 return FALSE;
4264
4265 /* The backend linker builds symbol table information itself. */
4266 need_symtab = (link_info == NULL
4267 && (bfd_get_symcount (abfd) > 0
4268 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4269 == HAS_RELOC)));
4270 if (need_symtab)
4271 {
4272 /* Non-zero if doing a relocatable link. */
4273 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4274
4275 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4276 return FALSE;
4277 }
4278
4279 failed = FALSE;
4280 if (link_info == NULL)
4281 {
4282 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4283 if (failed)
4284 return FALSE;
4285 }
4286
4287 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4288 /* sh_name was set in prep_headers. */
4289 shstrtab_hdr->sh_type = SHT_STRTAB;
4290 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4291 shstrtab_hdr->sh_addr = 0;
4292 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4293 shstrtab_hdr->sh_entsize = 0;
4294 shstrtab_hdr->sh_link = 0;
4295 shstrtab_hdr->sh_info = 0;
4296 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4297 shstrtab_hdr->sh_addralign = 1;
4298
4299 if (!assign_file_positions_except_relocs (abfd, link_info))
4300 return FALSE;
4301
4302 if (need_symtab)
4303 {
4304 file_ptr off;
4305 Elf_Internal_Shdr *hdr;
4306
4307 off = elf_next_file_pos (abfd);
4308
4309 hdr = & elf_symtab_hdr (abfd);
4310 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4311
4312 if (elf_symtab_shndx_list (abfd) != NULL)
4313 {
4314 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4315 if (hdr->sh_size != 0)
4316 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4317 /* FIXME: What about other symtab_shndx sections in the list ? */
4318 }
4319
4320 hdr = &elf_tdata (abfd)->strtab_hdr;
4321 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4322
4323 elf_next_file_pos (abfd) = off;
4324
4325 /* Now that we know where the .strtab section goes, write it
4326 out. */
4327 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4328 || ! _bfd_elf_strtab_emit (abfd, strtab))
4329 return FALSE;
4330 _bfd_elf_strtab_free (strtab);
4331 }
4332
4333 abfd->output_has_begun = TRUE;
4334
4335 return TRUE;
4336 }
4337
4338 /* Make an initial estimate of the size of the program header. If we
4339 get the number wrong here, we'll redo section placement. */
4340
4341 static bfd_size_type
4342 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4343 {
4344 size_t segs;
4345 asection *s;
4346 const struct elf_backend_data *bed;
4347
4348 /* Assume we will need exactly two PT_LOAD segments: one for text
4349 and one for data. */
4350 segs = 2;
4351
4352 s = bfd_get_section_by_name (abfd, ".interp");
4353 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4354 {
4355 /* If we have a loadable interpreter section, we need a
4356 PT_INTERP segment. In this case, assume we also need a
4357 PT_PHDR segment, although that may not be true for all
4358 targets. */
4359 segs += 2;
4360 }
4361
4362 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4363 {
4364 /* We need a PT_DYNAMIC segment. */
4365 ++segs;
4366 }
4367
4368 if (info != NULL && info->relro)
4369 {
4370 /* We need a PT_GNU_RELRO segment. */
4371 ++segs;
4372 }
4373
4374 if (elf_eh_frame_hdr (abfd))
4375 {
4376 /* We need a PT_GNU_EH_FRAME segment. */
4377 ++segs;
4378 }
4379
4380 if (elf_stack_flags (abfd))
4381 {
4382 /* We need a PT_GNU_STACK segment. */
4383 ++segs;
4384 }
4385
4386 s = bfd_get_section_by_name (abfd,
4387 NOTE_GNU_PROPERTY_SECTION_NAME);
4388 if (s != NULL && s->size != 0)
4389 {
4390 /* We need a PT_GNU_PROPERTY segment. */
4391 ++segs;
4392 }
4393
4394 for (s = abfd->sections; s != NULL; s = s->next)
4395 {
4396 if ((s->flags & SEC_LOAD) != 0
4397 && elf_section_type (s) == SHT_NOTE)
4398 {
4399 unsigned int alignment_power;
4400 /* We need a PT_NOTE segment. */
4401 ++segs;
4402 /* Try to create just one PT_NOTE segment for all adjacent
4403 loadable SHT_NOTE sections. gABI requires that within a
4404 PT_NOTE segment (and also inside of each SHT_NOTE section)
4405 each note should have the same alignment. So we check
4406 whether the sections are correctly aligned. */
4407 alignment_power = s->alignment_power;
4408 while (s->next != NULL
4409 && s->next->alignment_power == alignment_power
4410 && (s->next->flags & SEC_LOAD) != 0
4411 && elf_section_type (s->next) == SHT_NOTE)
4412 s = s->next;
4413 }
4414 }
4415
4416 for (s = abfd->sections; s != NULL; s = s->next)
4417 {
4418 if (s->flags & SEC_THREAD_LOCAL)
4419 {
4420 /* We need a PT_TLS segment. */
4421 ++segs;
4422 break;
4423 }
4424 }
4425
4426 bed = get_elf_backend_data (abfd);
4427
4428 if ((abfd->flags & D_PAGED) != 0)
4429 {
4430 /* Add a PT_GNU_MBIND segment for each mbind section. */
4431 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4432 for (s = abfd->sections; s != NULL; s = s->next)
4433 if (elf_section_flags (s) & SHF_GNU_MBIND)
4434 {
4435 if (elf_section_data (s)->this_hdr.sh_info
4436 > PT_GNU_MBIND_NUM)
4437 {
4438 _bfd_error_handler
4439 /* xgettext:c-format */
4440 (_("%pB: GNU_MBIN section `%pA' has invalid sh_info field: %d"),
4441 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4442 continue;
4443 }
4444 /* Align mbind section to page size. */
4445 if (s->alignment_power < page_align_power)
4446 s->alignment_power = page_align_power;
4447 segs ++;
4448 }
4449 }
4450
4451 /* Let the backend count up any program headers it might need. */
4452 if (bed->elf_backend_additional_program_headers)
4453 {
4454 int a;
4455
4456 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4457 if (a == -1)
4458 abort ();
4459 segs += a;
4460 }
4461
4462 return segs * bed->s->sizeof_phdr;
4463 }
4464
4465 /* Find the segment that contains the output_section of section. */
4466
4467 Elf_Internal_Phdr *
4468 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4469 {
4470 struct elf_segment_map *m;
4471 Elf_Internal_Phdr *p;
4472
4473 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4474 m != NULL;
4475 m = m->next, p++)
4476 {
4477 int i;
4478
4479 for (i = m->count - 1; i >= 0; i--)
4480 if (m->sections[i] == section)
4481 return p;
4482 }
4483
4484 return NULL;
4485 }
4486
4487 /* Create a mapping from a set of sections to a program segment. */
4488
4489 static struct elf_segment_map *
4490 make_mapping (bfd *abfd,
4491 asection **sections,
4492 unsigned int from,
4493 unsigned int to,
4494 bfd_boolean phdr)
4495 {
4496 struct elf_segment_map *m;
4497 unsigned int i;
4498 asection **hdrpp;
4499 bfd_size_type amt;
4500
4501 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4502 amt += (to - from) * sizeof (asection *);
4503 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4504 if (m == NULL)
4505 return NULL;
4506 m->next = NULL;
4507 m->p_type = PT_LOAD;
4508 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4509 m->sections[i - from] = *hdrpp;
4510 m->count = to - from;
4511
4512 if (from == 0 && phdr)
4513 {
4514 /* Include the headers in the first PT_LOAD segment. */
4515 m->includes_filehdr = 1;
4516 m->includes_phdrs = 1;
4517 }
4518
4519 return m;
4520 }
4521
4522 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4523 on failure. */
4524
4525 struct elf_segment_map *
4526 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4527 {
4528 struct elf_segment_map *m;
4529
4530 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4531 sizeof (struct elf_segment_map));
4532 if (m == NULL)
4533 return NULL;
4534 m->next = NULL;
4535 m->p_type = PT_DYNAMIC;
4536 m->count = 1;
4537 m->sections[0] = dynsec;
4538
4539 return m;
4540 }
4541
4542 /* Possibly add or remove segments from the segment map. */
4543
4544 static bfd_boolean
4545 elf_modify_segment_map (bfd *abfd,
4546 struct bfd_link_info *info,
4547 bfd_boolean remove_empty_load)
4548 {
4549 struct elf_segment_map **m;
4550 const struct elf_backend_data *bed;
4551
4552 /* The placement algorithm assumes that non allocated sections are
4553 not in PT_LOAD segments. We ensure this here by removing such
4554 sections from the segment map. We also remove excluded
4555 sections. Finally, any PT_LOAD segment without sections is
4556 removed. */
4557 m = &elf_seg_map (abfd);
4558 while (*m)
4559 {
4560 unsigned int i, new_count;
4561
4562 for (new_count = 0, i = 0; i < (*m)->count; i++)
4563 {
4564 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4565 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4566 || (*m)->p_type != PT_LOAD))
4567 {
4568 (*m)->sections[new_count] = (*m)->sections[i];
4569 new_count++;
4570 }
4571 }
4572 (*m)->count = new_count;
4573
4574 if (remove_empty_load
4575 && (*m)->p_type == PT_LOAD
4576 && (*m)->count == 0
4577 && !(*m)->includes_phdrs)
4578 *m = (*m)->next;
4579 else
4580 m = &(*m)->next;
4581 }
4582
4583 bed = get_elf_backend_data (abfd);
4584 if (bed->elf_backend_modify_segment_map != NULL)
4585 {
4586 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4587 return FALSE;
4588 }
4589
4590 return TRUE;
4591 }
4592
4593 #define IS_TBSS(s) \
4594 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4595
4596 /* Set up a mapping from BFD sections to program segments. */
4597
4598 bfd_boolean
4599 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4600 {
4601 unsigned int count;
4602 struct elf_segment_map *m;
4603 asection **sections = NULL;
4604 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4605 bfd_boolean no_user_phdrs;
4606
4607 no_user_phdrs = elf_seg_map (abfd) == NULL;
4608
4609 if (info != NULL)
4610 info->user_phdrs = !no_user_phdrs;
4611
4612 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4613 {
4614 asection *s;
4615 unsigned int i;
4616 struct elf_segment_map *mfirst;
4617 struct elf_segment_map **pm;
4618 asection *last_hdr;
4619 bfd_vma last_size;
4620 unsigned int hdr_index;
4621 bfd_vma maxpagesize;
4622 asection **hdrpp;
4623 bfd_boolean phdr_in_segment;
4624 bfd_boolean writable;
4625 bfd_boolean executable;
4626 int tls_count = 0;
4627 asection *first_tls = NULL;
4628 asection *first_mbind = NULL;
4629 asection *dynsec, *eh_frame_hdr;
4630 bfd_size_type amt;
4631 bfd_vma addr_mask, wrap_to = 0;
4632 bfd_size_type phdr_size;
4633
4634 /* Select the allocated sections, and sort them. */
4635
4636 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4637 sizeof (asection *));
4638 if (sections == NULL)
4639 goto error_return;
4640
4641 /* Calculate top address, avoiding undefined behaviour of shift
4642 left operator when shift count is equal to size of type
4643 being shifted. */
4644 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4645 addr_mask = (addr_mask << 1) + 1;
4646
4647 i = 0;
4648 for (s = abfd->sections; s != NULL; s = s->next)
4649 {
4650 if ((s->flags & SEC_ALLOC) != 0)
4651 {
4652 sections[i] = s;
4653 ++i;
4654 /* A wrapping section potentially clashes with header. */
4655 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4656 wrap_to = (s->lma + s->size) & addr_mask;
4657 }
4658 }
4659 BFD_ASSERT (i <= bfd_count_sections (abfd));
4660 count = i;
4661
4662 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4663
4664 phdr_size = elf_program_header_size (abfd);
4665 if (phdr_size == (bfd_size_type) -1)
4666 phdr_size = get_program_header_size (abfd, info);
4667 phdr_size += bed->s->sizeof_ehdr;
4668 maxpagesize = bed->maxpagesize;
4669 if (maxpagesize == 0)
4670 maxpagesize = 1;
4671 phdr_in_segment = info != NULL && info->load_phdrs;
4672 if (count != 0
4673 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4674 >= (phdr_size & (maxpagesize - 1))))
4675 /* For compatibility with old scripts that may not be using
4676 SIZEOF_HEADERS, add headers when it looks like space has
4677 been left for them. */
4678 phdr_in_segment = TRUE;
4679
4680 /* Build the mapping. */
4681 mfirst = NULL;
4682 pm = &mfirst;
4683
4684 /* If we have a .interp section, then create a PT_PHDR segment for
4685 the program headers and a PT_INTERP segment for the .interp
4686 section. */
4687 s = bfd_get_section_by_name (abfd, ".interp");
4688 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4689 {
4690 amt = sizeof (struct elf_segment_map);
4691 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4692 if (m == NULL)
4693 goto error_return;
4694 m->next = NULL;
4695 m->p_type = PT_PHDR;
4696 m->p_flags = PF_R;
4697 m->p_flags_valid = 1;
4698 m->includes_phdrs = 1;
4699 phdr_in_segment = TRUE;
4700 *pm = m;
4701 pm = &m->next;
4702
4703 amt = sizeof (struct elf_segment_map);
4704 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4705 if (m == NULL)
4706 goto error_return;
4707 m->next = NULL;
4708 m->p_type = PT_INTERP;
4709 m->count = 1;
4710 m->sections[0] = s;
4711
4712 *pm = m;
4713 pm = &m->next;
4714 }
4715
4716 /* Look through the sections. We put sections in the same program
4717 segment when the start of the second section can be placed within
4718 a few bytes of the end of the first section. */
4719 last_hdr = NULL;
4720 last_size = 0;
4721 hdr_index = 0;
4722 writable = FALSE;
4723 executable = FALSE;
4724 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4725 if (dynsec != NULL
4726 && (dynsec->flags & SEC_LOAD) == 0)
4727 dynsec = NULL;
4728
4729 if ((abfd->flags & D_PAGED) == 0)
4730 phdr_in_segment = FALSE;
4731
4732 /* Deal with -Ttext or something similar such that the first section
4733 is not adjacent to the program headers. This is an
4734 approximation, since at this point we don't know exactly how many
4735 program headers we will need. */
4736 if (phdr_in_segment && count > 0)
4737 {
4738 bfd_vma phdr_lma;
4739 bfd_boolean separate_phdr = FALSE;
4740
4741 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4742 if (info != NULL
4743 && info->separate_code
4744 && (sections[0]->flags & SEC_CODE) != 0)
4745 {
4746 /* If data sections should be separate from code and
4747 thus not executable, and the first section is
4748 executable then put the file and program headers in
4749 their own PT_LOAD. */
4750 separate_phdr = TRUE;
4751 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4752 == (sections[0]->lma & addr_mask & -maxpagesize)))
4753 {
4754 /* The file and program headers are currently on the
4755 same page as the first section. Put them on the
4756 previous page if we can. */
4757 if (phdr_lma >= maxpagesize)
4758 phdr_lma -= maxpagesize;
4759 else
4760 separate_phdr = FALSE;
4761 }
4762 }
4763 if ((sections[0]->lma & addr_mask) < phdr_lma
4764 || (sections[0]->lma & addr_mask) < phdr_size)
4765 /* If file and program headers would be placed at the end
4766 of memory then it's probably better to omit them. */
4767 phdr_in_segment = FALSE;
4768 else if (phdr_lma < wrap_to)
4769 /* If a section wraps around to where we'll be placing
4770 file and program headers, then the headers will be
4771 overwritten. */
4772 phdr_in_segment = FALSE;
4773 else if (separate_phdr)
4774 {
4775 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4776 if (m == NULL)
4777 goto error_return;
4778 m->p_paddr = phdr_lma;
4779 m->p_vaddr_offset
4780 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4781 m->p_paddr_valid = 1;
4782 *pm = m;
4783 pm = &m->next;
4784 phdr_in_segment = FALSE;
4785 }
4786 }
4787
4788 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4789 {
4790 asection *hdr;
4791 bfd_boolean new_segment;
4792
4793 hdr = *hdrpp;
4794
4795 /* See if this section and the last one will fit in the same
4796 segment. */
4797
4798 if (last_hdr == NULL)
4799 {
4800 /* If we don't have a segment yet, then we don't need a new
4801 one (we build the last one after this loop). */
4802 new_segment = FALSE;
4803 }
4804 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4805 {
4806 /* If this section has a different relation between the
4807 virtual address and the load address, then we need a new
4808 segment. */
4809 new_segment = TRUE;
4810 }
4811 else if (hdr->lma < last_hdr->lma + last_size
4812 || last_hdr->lma + last_size < last_hdr->lma)
4813 {
4814 /* If this section has a load address that makes it overlap
4815 the previous section, then we need a new segment. */
4816 new_segment = TRUE;
4817 }
4818 else if ((abfd->flags & D_PAGED) != 0
4819 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4820 == (hdr->lma & -maxpagesize)))
4821 {
4822 /* If we are demand paged then we can't map two disk
4823 pages onto the same memory page. */
4824 new_segment = FALSE;
4825 }
4826 /* In the next test we have to be careful when last_hdr->lma is close
4827 to the end of the address space. If the aligned address wraps
4828 around to the start of the address space, then there are no more
4829 pages left in memory and it is OK to assume that the current
4830 section can be included in the current segment. */
4831 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4832 + maxpagesize > last_hdr->lma)
4833 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4834 + maxpagesize <= hdr->lma))
4835 {
4836 /* If putting this section in this segment would force us to
4837 skip a page in the segment, then we need a new segment. */
4838 new_segment = TRUE;
4839 }
4840 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4841 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4842 {
4843 /* We don't want to put a loaded section after a
4844 nonloaded (ie. bss style) section in the same segment
4845 as that will force the non-loaded section to be loaded.
4846 Consider .tbss sections as loaded for this purpose. */
4847 new_segment = TRUE;
4848 }
4849 else if ((abfd->flags & D_PAGED) == 0)
4850 {
4851 /* If the file is not demand paged, which means that we
4852 don't require the sections to be correctly aligned in the
4853 file, then there is no other reason for a new segment. */
4854 new_segment = FALSE;
4855 }
4856 else if (info != NULL
4857 && info->separate_code
4858 && executable != ((hdr->flags & SEC_CODE) != 0))
4859 {
4860 new_segment = TRUE;
4861 }
4862 else if (! writable
4863 && (hdr->flags & SEC_READONLY) == 0)
4864 {
4865 /* We don't want to put a writable section in a read only
4866 segment. */
4867 new_segment = TRUE;
4868 }
4869 else
4870 {
4871 /* Otherwise, we can use the same segment. */
4872 new_segment = FALSE;
4873 }
4874
4875 /* Allow interested parties a chance to override our decision. */
4876 if (last_hdr != NULL
4877 && info != NULL
4878 && info->callbacks->override_segment_assignment != NULL)
4879 new_segment
4880 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4881 last_hdr,
4882 new_segment);
4883
4884 if (! new_segment)
4885 {
4886 if ((hdr->flags & SEC_READONLY) == 0)
4887 writable = TRUE;
4888 if ((hdr->flags & SEC_CODE) != 0)
4889 executable = TRUE;
4890 last_hdr = hdr;
4891 /* .tbss sections effectively have zero size. */
4892 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4893 continue;
4894 }
4895
4896 /* We need a new program segment. We must create a new program
4897 header holding all the sections from hdr_index until hdr. */
4898
4899 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4900 if (m == NULL)
4901 goto error_return;
4902
4903 *pm = m;
4904 pm = &m->next;
4905
4906 if ((hdr->flags & SEC_READONLY) == 0)
4907 writable = TRUE;
4908 else
4909 writable = FALSE;
4910
4911 if ((hdr->flags & SEC_CODE) == 0)
4912 executable = FALSE;
4913 else
4914 executable = TRUE;
4915
4916 last_hdr = hdr;
4917 /* .tbss sections effectively have zero size. */
4918 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4919 hdr_index = i;
4920 phdr_in_segment = FALSE;
4921 }
4922
4923 /* Create a final PT_LOAD program segment, but not if it's just
4924 for .tbss. */
4925 if (last_hdr != NULL
4926 && (i - hdr_index != 1
4927 || !IS_TBSS (last_hdr)))
4928 {
4929 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4930 if (m == NULL)
4931 goto error_return;
4932
4933 *pm = m;
4934 pm = &m->next;
4935 }
4936
4937 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4938 if (dynsec != NULL)
4939 {
4940 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4941 if (m == NULL)
4942 goto error_return;
4943 *pm = m;
4944 pm = &m->next;
4945 }
4946
4947 /* For each batch of consecutive loadable SHT_NOTE sections,
4948 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4949 because if we link together nonloadable .note sections and
4950 loadable .note sections, we will generate two .note sections
4951 in the output file. */
4952 for (s = abfd->sections; s != NULL; s = s->next)
4953 {
4954 if ((s->flags & SEC_LOAD) != 0
4955 && elf_section_type (s) == SHT_NOTE)
4956 {
4957 asection *s2;
4958 unsigned int alignment_power = s->alignment_power;
4959
4960 count = 1;
4961 for (s2 = s; s2->next != NULL; s2 = s2->next)
4962 {
4963 if (s2->next->alignment_power == alignment_power
4964 && (s2->next->flags & SEC_LOAD) != 0
4965 && elf_section_type (s2->next) == SHT_NOTE
4966 && align_power (s2->lma + s2->size,
4967 alignment_power)
4968 == s2->next->lma)
4969 count++;
4970 else
4971 break;
4972 }
4973 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4974 amt += count * sizeof (asection *);
4975 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4976 if (m == NULL)
4977 goto error_return;
4978 m->next = NULL;
4979 m->p_type = PT_NOTE;
4980 m->count = count;
4981 while (count > 1)
4982 {
4983 m->sections[m->count - count--] = s;
4984 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4985 s = s->next;
4986 }
4987 m->sections[m->count - 1] = s;
4988 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4989 *pm = m;
4990 pm = &m->next;
4991 }
4992 if (s->flags & SEC_THREAD_LOCAL)
4993 {
4994 if (! tls_count)
4995 first_tls = s;
4996 tls_count++;
4997 }
4998 if (first_mbind == NULL
4999 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5000 first_mbind = s;
5001 }
5002
5003 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5004 if (tls_count > 0)
5005 {
5006 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5007 amt += tls_count * sizeof (asection *);
5008 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5009 if (m == NULL)
5010 goto error_return;
5011 m->next = NULL;
5012 m->p_type = PT_TLS;
5013 m->count = tls_count;
5014 /* Mandated PF_R. */
5015 m->p_flags = PF_R;
5016 m->p_flags_valid = 1;
5017 s = first_tls;
5018 for (i = 0; i < (unsigned int) tls_count; ++i)
5019 {
5020 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5021 {
5022 _bfd_error_handler
5023 (_("%pB: TLS sections are not adjacent:"), abfd);
5024 s = first_tls;
5025 i = 0;
5026 while (i < (unsigned int) tls_count)
5027 {
5028 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5029 {
5030 _bfd_error_handler (_(" TLS: %pA"), s);
5031 i++;
5032 }
5033 else
5034 _bfd_error_handler (_(" non-TLS: %pA"), s);
5035 s = s->next;
5036 }
5037 bfd_set_error (bfd_error_bad_value);
5038 goto error_return;
5039 }
5040 m->sections[i] = s;
5041 s = s->next;
5042 }
5043
5044 *pm = m;
5045 pm = &m->next;
5046 }
5047
5048 if (first_mbind && (abfd->flags & D_PAGED) != 0)
5049 for (s = first_mbind; s != NULL; s = s->next)
5050 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5051 && (elf_section_data (s)->this_hdr.sh_info
5052 <= PT_GNU_MBIND_NUM))
5053 {
5054 /* Mandated PF_R. */
5055 unsigned long p_flags = PF_R;
5056 if ((s->flags & SEC_READONLY) == 0)
5057 p_flags |= PF_W;
5058 if ((s->flags & SEC_CODE) != 0)
5059 p_flags |= PF_X;
5060
5061 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5062 m = bfd_zalloc (abfd, amt);
5063 if (m == NULL)
5064 goto error_return;
5065 m->next = NULL;
5066 m->p_type = (PT_GNU_MBIND_LO
5067 + elf_section_data (s)->this_hdr.sh_info);
5068 m->count = 1;
5069 m->p_flags_valid = 1;
5070 m->sections[0] = s;
5071 m->p_flags = p_flags;
5072
5073 *pm = m;
5074 pm = &m->next;
5075 }
5076
5077 s = bfd_get_section_by_name (abfd,
5078 NOTE_GNU_PROPERTY_SECTION_NAME);
5079 if (s != NULL && s->size != 0)
5080 {
5081 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5082 m = bfd_zalloc (abfd, amt);
5083 if (m == NULL)
5084 goto error_return;
5085 m->next = NULL;
5086 m->p_type = PT_GNU_PROPERTY;
5087 m->count = 1;
5088 m->p_flags_valid = 1;
5089 m->sections[0] = s;
5090 m->p_flags = PF_R;
5091 *pm = m;
5092 pm = &m->next;
5093 }
5094
5095 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5096 segment. */
5097 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5098 if (eh_frame_hdr != NULL
5099 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5100 {
5101 amt = sizeof (struct elf_segment_map);
5102 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5103 if (m == NULL)
5104 goto error_return;
5105 m->next = NULL;
5106 m->p_type = PT_GNU_EH_FRAME;
5107 m->count = 1;
5108 m->sections[0] = eh_frame_hdr->output_section;
5109
5110 *pm = m;
5111 pm = &m->next;
5112 }
5113
5114 if (elf_stack_flags (abfd))
5115 {
5116 amt = sizeof (struct elf_segment_map);
5117 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5118 if (m == NULL)
5119 goto error_return;
5120 m->next = NULL;
5121 m->p_type = PT_GNU_STACK;
5122 m->p_flags = elf_stack_flags (abfd);
5123 m->p_align = bed->stack_align;
5124 m->p_flags_valid = 1;
5125 m->p_align_valid = m->p_align != 0;
5126 if (info->stacksize > 0)
5127 {
5128 m->p_size = info->stacksize;
5129 m->p_size_valid = 1;
5130 }
5131
5132 *pm = m;
5133 pm = &m->next;
5134 }
5135
5136 if (info != NULL && info->relro)
5137 {
5138 for (m = mfirst; m != NULL; m = m->next)
5139 {
5140 if (m->p_type == PT_LOAD
5141 && m->count != 0
5142 && m->sections[0]->vma >= info->relro_start
5143 && m->sections[0]->vma < info->relro_end)
5144 {
5145 i = m->count;
5146 while (--i != (unsigned) -1)
5147 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5148 == (SEC_LOAD | SEC_HAS_CONTENTS))
5149 break;
5150
5151 if (i != (unsigned) -1)
5152 break;
5153 }
5154 }
5155
5156 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5157 if (m != NULL)
5158 {
5159 amt = sizeof (struct elf_segment_map);
5160 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5161 if (m == NULL)
5162 goto error_return;
5163 m->next = NULL;
5164 m->p_type = PT_GNU_RELRO;
5165 *pm = m;
5166 pm = &m->next;
5167 }
5168 }
5169
5170 free (sections);
5171 elf_seg_map (abfd) = mfirst;
5172 }
5173
5174 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5175 return FALSE;
5176
5177 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5178 ++count;
5179 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5180
5181 return TRUE;
5182
5183 error_return:
5184 if (sections != NULL)
5185 free (sections);
5186 return FALSE;
5187 }
5188
5189 /* Sort sections by address. */
5190
5191 static int
5192 elf_sort_sections (const void *arg1, const void *arg2)
5193 {
5194 const asection *sec1 = *(const asection **) arg1;
5195 const asection *sec2 = *(const asection **) arg2;
5196 bfd_size_type size1, size2;
5197
5198 /* Sort by LMA first, since this is the address used to
5199 place the section into a segment. */
5200 if (sec1->lma < sec2->lma)
5201 return -1;
5202 else if (sec1->lma > sec2->lma)
5203 return 1;
5204
5205 /* Then sort by VMA. Normally the LMA and the VMA will be
5206 the same, and this will do nothing. */
5207 if (sec1->vma < sec2->vma)
5208 return -1;
5209 else if (sec1->vma > sec2->vma)
5210 return 1;
5211
5212 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5213
5214 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5215
5216 if (TOEND (sec1))
5217 {
5218 if (TOEND (sec2))
5219 {
5220 /* If the indices are the same, do not return 0
5221 here, but continue to try the next comparison. */
5222 if (sec1->target_index - sec2->target_index != 0)
5223 return sec1->target_index - sec2->target_index;
5224 }
5225 else
5226 return 1;
5227 }
5228 else if (TOEND (sec2))
5229 return -1;
5230
5231 #undef TOEND
5232
5233 /* Sort by size, to put zero sized sections
5234 before others at the same address. */
5235
5236 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5237 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5238
5239 if (size1 < size2)
5240 return -1;
5241 if (size1 > size2)
5242 return 1;
5243
5244 return sec1->target_index - sec2->target_index;
5245 }
5246
5247 /* Ian Lance Taylor writes:
5248
5249 We shouldn't be using % with a negative signed number. That's just
5250 not good. We have to make sure either that the number is not
5251 negative, or that the number has an unsigned type. When the types
5252 are all the same size they wind up as unsigned. When file_ptr is a
5253 larger signed type, the arithmetic winds up as signed long long,
5254 which is wrong.
5255
5256 What we're trying to say here is something like ``increase OFF by
5257 the least amount that will cause it to be equal to the VMA modulo
5258 the page size.'' */
5259 /* In other words, something like:
5260
5261 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5262 off_offset = off % bed->maxpagesize;
5263 if (vma_offset < off_offset)
5264 adjustment = vma_offset + bed->maxpagesize - off_offset;
5265 else
5266 adjustment = vma_offset - off_offset;
5267
5268 which can be collapsed into the expression below. */
5269
5270 static file_ptr
5271 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5272 {
5273 /* PR binutils/16199: Handle an alignment of zero. */
5274 if (maxpagesize == 0)
5275 maxpagesize = 1;
5276 return ((vma - off) % maxpagesize);
5277 }
5278
5279 static void
5280 print_segment_map (const struct elf_segment_map *m)
5281 {
5282 unsigned int j;
5283 const char *pt = get_segment_type (m->p_type);
5284 char buf[32];
5285
5286 if (pt == NULL)
5287 {
5288 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5289 sprintf (buf, "LOPROC+%7.7x",
5290 (unsigned int) (m->p_type - PT_LOPROC));
5291 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5292 sprintf (buf, "LOOS+%7.7x",
5293 (unsigned int) (m->p_type - PT_LOOS));
5294 else
5295 snprintf (buf, sizeof (buf), "%8.8x",
5296 (unsigned int) m->p_type);
5297 pt = buf;
5298 }
5299 fflush (stdout);
5300 fprintf (stderr, "%s:", pt);
5301 for (j = 0; j < m->count; j++)
5302 fprintf (stderr, " %s", m->sections [j]->name);
5303 putc ('\n',stderr);
5304 fflush (stderr);
5305 }
5306
5307 static bfd_boolean
5308 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5309 {
5310 void *buf;
5311 bfd_boolean ret;
5312
5313 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5314 return FALSE;
5315 buf = bfd_zmalloc (len);
5316 if (buf == NULL)
5317 return FALSE;
5318 ret = bfd_bwrite (buf, len, abfd) == len;
5319 free (buf);
5320 return ret;
5321 }
5322
5323 /* Assign file positions to the sections based on the mapping from
5324 sections to segments. This function also sets up some fields in
5325 the file header. */
5326
5327 static bfd_boolean
5328 assign_file_positions_for_load_sections (bfd *abfd,
5329 struct bfd_link_info *link_info)
5330 {
5331 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5332 struct elf_segment_map *m;
5333 Elf_Internal_Phdr *phdrs;
5334 Elf_Internal_Phdr *p;
5335 file_ptr off;
5336 bfd_size_type maxpagesize;
5337 unsigned int pt_load_count = 0;
5338 unsigned int alloc;
5339 unsigned int i, j;
5340 bfd_vma header_pad = 0;
5341
5342 if (link_info == NULL
5343 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5344 return FALSE;
5345
5346 alloc = 0;
5347 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5348 {
5349 ++alloc;
5350 if (m->header_size)
5351 header_pad = m->header_size;
5352 }
5353
5354 if (alloc)
5355 {
5356 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5357 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5358 }
5359 else
5360 {
5361 /* PR binutils/12467. */
5362 elf_elfheader (abfd)->e_phoff = 0;
5363 elf_elfheader (abfd)->e_phentsize = 0;
5364 }
5365
5366 elf_elfheader (abfd)->e_phnum = alloc;
5367
5368 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5369 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5370 else
5371 BFD_ASSERT (elf_program_header_size (abfd)
5372 >= alloc * bed->s->sizeof_phdr);
5373
5374 if (alloc == 0)
5375 {
5376 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5377 return TRUE;
5378 }
5379
5380 /* We're writing the size in elf_program_header_size (abfd),
5381 see assign_file_positions_except_relocs, so make sure we have
5382 that amount allocated, with trailing space cleared.
5383 The variable alloc contains the computed need, while
5384 elf_program_header_size (abfd) contains the size used for the
5385 layout.
5386 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5387 where the layout is forced to according to a larger size in the
5388 last iterations for the testcase ld-elf/header. */
5389 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5390 == 0);
5391 phdrs = (Elf_Internal_Phdr *)
5392 bfd_zalloc2 (abfd,
5393 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5394 sizeof (Elf_Internal_Phdr));
5395 elf_tdata (abfd)->phdr = phdrs;
5396 if (phdrs == NULL)
5397 return FALSE;
5398
5399 maxpagesize = 1;
5400 if ((abfd->flags & D_PAGED) != 0)
5401 maxpagesize = bed->maxpagesize;
5402
5403 off = bed->s->sizeof_ehdr;
5404 off += alloc * bed->s->sizeof_phdr;
5405 if (header_pad < (bfd_vma) off)
5406 header_pad = 0;
5407 else
5408 header_pad -= off;
5409 off += header_pad;
5410
5411 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5412 m != NULL;
5413 m = m->next, p++, j++)
5414 {
5415 asection **secpp;
5416 bfd_vma off_adjust;
5417 bfd_boolean no_contents;
5418
5419 /* If elf_segment_map is not from map_sections_to_segments, the
5420 sections may not be correctly ordered. NOTE: sorting should
5421 not be done to the PT_NOTE section of a corefile, which may
5422 contain several pseudo-sections artificially created by bfd.
5423 Sorting these pseudo-sections breaks things badly. */
5424 if (m->count > 1
5425 && !(elf_elfheader (abfd)->e_type == ET_CORE
5426 && m->p_type == PT_NOTE))
5427 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5428 elf_sort_sections);
5429
5430 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5431 number of sections with contents contributing to both p_filesz
5432 and p_memsz, followed by a number of sections with no contents
5433 that just contribute to p_memsz. In this loop, OFF tracks next
5434 available file offset for PT_LOAD and PT_NOTE segments. */
5435 p->p_type = m->p_type;
5436 p->p_flags = m->p_flags;
5437
5438 if (m->count == 0)
5439 p->p_vaddr = m->p_vaddr_offset;
5440 else
5441 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5442
5443 if (m->p_paddr_valid)
5444 p->p_paddr = m->p_paddr;
5445 else if (m->count == 0)
5446 p->p_paddr = 0;
5447 else
5448 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5449
5450 if (p->p_type == PT_LOAD
5451 && (abfd->flags & D_PAGED) != 0)
5452 {
5453 /* p_align in demand paged PT_LOAD segments effectively stores
5454 the maximum page size. When copying an executable with
5455 objcopy, we set m->p_align from the input file. Use this
5456 value for maxpagesize rather than bed->maxpagesize, which
5457 may be different. Note that we use maxpagesize for PT_TLS
5458 segment alignment later in this function, so we are relying
5459 on at least one PT_LOAD segment appearing before a PT_TLS
5460 segment. */
5461 if (m->p_align_valid)
5462 maxpagesize = m->p_align;
5463
5464 p->p_align = maxpagesize;
5465 pt_load_count += 1;
5466 }
5467 else if (m->p_align_valid)
5468 p->p_align = m->p_align;
5469 else if (m->count == 0)
5470 p->p_align = 1 << bed->s->log_file_align;
5471 else
5472 p->p_align = 0;
5473
5474 no_contents = FALSE;
5475 off_adjust = 0;
5476 if (p->p_type == PT_LOAD
5477 && m->count > 0)
5478 {
5479 bfd_size_type align;
5480 unsigned int align_power = 0;
5481
5482 if (m->p_align_valid)
5483 align = p->p_align;
5484 else
5485 {
5486 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5487 {
5488 unsigned int secalign;
5489
5490 secalign = bfd_get_section_alignment (abfd, *secpp);
5491 if (secalign > align_power)
5492 align_power = secalign;
5493 }
5494 align = (bfd_size_type) 1 << align_power;
5495 if (align < maxpagesize)
5496 align = maxpagesize;
5497 }
5498
5499 for (i = 0; i < m->count; i++)
5500 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5501 /* If we aren't making room for this section, then
5502 it must be SHT_NOBITS regardless of what we've
5503 set via struct bfd_elf_special_section. */
5504 elf_section_type (m->sections[i]) = SHT_NOBITS;
5505
5506 /* Find out whether this segment contains any loadable
5507 sections. */
5508 no_contents = TRUE;
5509 for (i = 0; i < m->count; i++)
5510 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5511 {
5512 no_contents = FALSE;
5513 break;
5514 }
5515
5516 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5517
5518 /* Broken hardware and/or kernel require that files do not
5519 map the same page with different permissions on some hppa
5520 processors. */
5521 if (pt_load_count > 1
5522 && bed->no_page_alias
5523 && (off & (maxpagesize - 1)) != 0
5524 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5525 off_adjust += maxpagesize;
5526 off += off_adjust;
5527 if (no_contents)
5528 {
5529 /* We shouldn't need to align the segment on disk since
5530 the segment doesn't need file space, but the gABI
5531 arguably requires the alignment and glibc ld.so
5532 checks it. So to comply with the alignment
5533 requirement but not waste file space, we adjust
5534 p_offset for just this segment. (OFF_ADJUST is
5535 subtracted from OFF later.) This may put p_offset
5536 past the end of file, but that shouldn't matter. */
5537 }
5538 else
5539 off_adjust = 0;
5540 }
5541 /* Make sure the .dynamic section is the first section in the
5542 PT_DYNAMIC segment. */
5543 else if (p->p_type == PT_DYNAMIC
5544 && m->count > 1
5545 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5546 {
5547 _bfd_error_handler
5548 (_("%pB: The first section in the PT_DYNAMIC segment"
5549 " is not the .dynamic section"),
5550 abfd);
5551 bfd_set_error (bfd_error_bad_value);
5552 return FALSE;
5553 }
5554 /* Set the note section type to SHT_NOTE. */
5555 else if (p->p_type == PT_NOTE)
5556 for (i = 0; i < m->count; i++)
5557 elf_section_type (m->sections[i]) = SHT_NOTE;
5558
5559 p->p_offset = 0;
5560 p->p_filesz = 0;
5561 p->p_memsz = 0;
5562
5563 if (m->includes_filehdr)
5564 {
5565 if (!m->p_flags_valid)
5566 p->p_flags |= PF_R;
5567 p->p_filesz = bed->s->sizeof_ehdr;
5568 p->p_memsz = bed->s->sizeof_ehdr;
5569 if (m->count > 0)
5570 {
5571 if (p->p_vaddr < (bfd_vma) off
5572 || (!m->p_paddr_valid
5573 && p->p_paddr < (bfd_vma) off))
5574 {
5575 _bfd_error_handler
5576 (_("%pB: not enough room for program headers,"
5577 " try linking with -N"),
5578 abfd);
5579 bfd_set_error (bfd_error_bad_value);
5580 return FALSE;
5581 }
5582
5583 p->p_vaddr -= off;
5584 if (!m->p_paddr_valid)
5585 p->p_paddr -= off;
5586 }
5587 }
5588
5589 if (m->includes_phdrs)
5590 {
5591 if (!m->p_flags_valid)
5592 p->p_flags |= PF_R;
5593
5594 if (!m->includes_filehdr)
5595 {
5596 p->p_offset = bed->s->sizeof_ehdr;
5597
5598 if (m->count > 0)
5599 {
5600 p->p_vaddr -= off - p->p_offset;
5601 if (!m->p_paddr_valid)
5602 p->p_paddr -= off - p->p_offset;
5603 }
5604 }
5605
5606 p->p_filesz += alloc * bed->s->sizeof_phdr;
5607 p->p_memsz += alloc * bed->s->sizeof_phdr;
5608 if (m->count)
5609 {
5610 p->p_filesz += header_pad;
5611 p->p_memsz += header_pad;
5612 }
5613 }
5614
5615 if (p->p_type == PT_LOAD
5616 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5617 {
5618 if (!m->includes_filehdr && !m->includes_phdrs)
5619 p->p_offset = off;
5620 else
5621 {
5622 file_ptr adjust;
5623
5624 adjust = off - (p->p_offset + p->p_filesz);
5625 if (!no_contents)
5626 p->p_filesz += adjust;
5627 p->p_memsz += adjust;
5628 }
5629 }
5630
5631 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5632 maps. Set filepos for sections in PT_LOAD segments, and in
5633 core files, for sections in PT_NOTE segments.
5634 assign_file_positions_for_non_load_sections will set filepos
5635 for other sections and update p_filesz for other segments. */
5636 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5637 {
5638 asection *sec;
5639 bfd_size_type align;
5640 Elf_Internal_Shdr *this_hdr;
5641
5642 sec = *secpp;
5643 this_hdr = &elf_section_data (sec)->this_hdr;
5644 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5645
5646 if ((p->p_type == PT_LOAD
5647 || p->p_type == PT_TLS)
5648 && (this_hdr->sh_type != SHT_NOBITS
5649 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5650 && ((this_hdr->sh_flags & SHF_TLS) == 0
5651 || p->p_type == PT_TLS))))
5652 {
5653 bfd_vma p_start = p->p_paddr;
5654 bfd_vma p_end = p_start + p->p_memsz;
5655 bfd_vma s_start = sec->lma;
5656 bfd_vma adjust = s_start - p_end;
5657
5658 if (adjust != 0
5659 && (s_start < p_end
5660 || p_end < p_start))
5661 {
5662 _bfd_error_handler
5663 /* xgettext:c-format */
5664 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5665 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5666 adjust = 0;
5667 sec->lma = p_end;
5668 }
5669 p->p_memsz += adjust;
5670
5671 if (this_hdr->sh_type != SHT_NOBITS)
5672 {
5673 if (p->p_filesz + adjust < p->p_memsz)
5674 {
5675 /* We have a PROGBITS section following NOBITS ones.
5676 Allocate file space for the NOBITS section(s) and
5677 zero it. */
5678 adjust = p->p_memsz - p->p_filesz;
5679 if (!write_zeros (abfd, off, adjust))
5680 return FALSE;
5681 }
5682 off += adjust;
5683 p->p_filesz += adjust;
5684 }
5685 }
5686
5687 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5688 {
5689 /* The section at i == 0 is the one that actually contains
5690 everything. */
5691 if (i == 0)
5692 {
5693 this_hdr->sh_offset = sec->filepos = off;
5694 off += this_hdr->sh_size;
5695 p->p_filesz = this_hdr->sh_size;
5696 p->p_memsz = 0;
5697 p->p_align = 1;
5698 }
5699 else
5700 {
5701 /* The rest are fake sections that shouldn't be written. */
5702 sec->filepos = 0;
5703 sec->size = 0;
5704 sec->flags = 0;
5705 continue;
5706 }
5707 }
5708 else
5709 {
5710 if (p->p_type == PT_LOAD)
5711 {
5712 this_hdr->sh_offset = sec->filepos = off;
5713 if (this_hdr->sh_type != SHT_NOBITS)
5714 off += this_hdr->sh_size;
5715 }
5716 else if (this_hdr->sh_type == SHT_NOBITS
5717 && (this_hdr->sh_flags & SHF_TLS) != 0
5718 && this_hdr->sh_offset == 0)
5719 {
5720 /* This is a .tbss section that didn't get a PT_LOAD.
5721 (See _bfd_elf_map_sections_to_segments "Create a
5722 final PT_LOAD".) Set sh_offset to the value it
5723 would have if we had created a zero p_filesz and
5724 p_memsz PT_LOAD header for the section. This
5725 also makes the PT_TLS header have the same
5726 p_offset value. */
5727 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5728 off, align);
5729 this_hdr->sh_offset = sec->filepos = off + adjust;
5730 }
5731
5732 if (this_hdr->sh_type != SHT_NOBITS)
5733 {
5734 p->p_filesz += this_hdr->sh_size;
5735 /* A load section without SHF_ALLOC is something like
5736 a note section in a PT_NOTE segment. These take
5737 file space but are not loaded into memory. */
5738 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5739 p->p_memsz += this_hdr->sh_size;
5740 }
5741 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5742 {
5743 if (p->p_type == PT_TLS)
5744 p->p_memsz += this_hdr->sh_size;
5745
5746 /* .tbss is special. It doesn't contribute to p_memsz of
5747 normal segments. */
5748 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5749 p->p_memsz += this_hdr->sh_size;
5750 }
5751
5752 if (align > p->p_align
5753 && !m->p_align_valid
5754 && (p->p_type != PT_LOAD
5755 || (abfd->flags & D_PAGED) == 0))
5756 p->p_align = align;
5757 }
5758
5759 if (!m->p_flags_valid)
5760 {
5761 p->p_flags |= PF_R;
5762 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5763 p->p_flags |= PF_X;
5764 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5765 p->p_flags |= PF_W;
5766 }
5767 }
5768
5769 off -= off_adjust;
5770
5771 /* Check that all sections are in a PT_LOAD segment.
5772 Don't check funky gdb generated core files. */
5773 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5774 {
5775 bfd_boolean check_vma = TRUE;
5776
5777 for (i = 1; i < m->count; i++)
5778 if (m->sections[i]->vma == m->sections[i - 1]->vma
5779 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5780 ->this_hdr), p) != 0
5781 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5782 ->this_hdr), p) != 0)
5783 {
5784 /* Looks like we have overlays packed into the segment. */
5785 check_vma = FALSE;
5786 break;
5787 }
5788
5789 for (i = 0; i < m->count; i++)
5790 {
5791 Elf_Internal_Shdr *this_hdr;
5792 asection *sec;
5793
5794 sec = m->sections[i];
5795 this_hdr = &(elf_section_data(sec)->this_hdr);
5796 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5797 && !ELF_TBSS_SPECIAL (this_hdr, p))
5798 {
5799 _bfd_error_handler
5800 /* xgettext:c-format */
5801 (_("%pB: section `%pA' can't be allocated in segment %d"),
5802 abfd, sec, j);
5803 print_segment_map (m);
5804 }
5805 }
5806 }
5807 }
5808
5809 elf_next_file_pos (abfd) = off;
5810 return TRUE;
5811 }
5812
5813 /* Assign file positions for the other sections. */
5814
5815 static bfd_boolean
5816 assign_file_positions_for_non_load_sections (bfd *abfd,
5817 struct bfd_link_info *link_info)
5818 {
5819 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5820 Elf_Internal_Shdr **i_shdrpp;
5821 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5822 Elf_Internal_Phdr *phdrs;
5823 Elf_Internal_Phdr *p;
5824 struct elf_segment_map *m;
5825 struct elf_segment_map *hdrs_segment;
5826 bfd_vma filehdr_vaddr, filehdr_paddr;
5827 bfd_vma phdrs_vaddr, phdrs_paddr;
5828 file_ptr off;
5829 unsigned int count;
5830
5831 i_shdrpp = elf_elfsections (abfd);
5832 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5833 off = elf_next_file_pos (abfd);
5834 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5835 {
5836 Elf_Internal_Shdr *hdr;
5837
5838 hdr = *hdrpp;
5839 if (hdr->bfd_section != NULL
5840 && (hdr->bfd_section->filepos != 0
5841 || (hdr->sh_type == SHT_NOBITS
5842 && hdr->contents == NULL)))
5843 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5844 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5845 {
5846 if (hdr->sh_size != 0)
5847 _bfd_error_handler
5848 /* xgettext:c-format */
5849 (_("%pB: warning: allocated section `%s' not in segment"),
5850 abfd,
5851 (hdr->bfd_section == NULL
5852 ? "*unknown*"
5853 : hdr->bfd_section->name));
5854 /* We don't need to page align empty sections. */
5855 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5856 off += vma_page_aligned_bias (hdr->sh_addr, off,
5857 bed->maxpagesize);
5858 else
5859 off += vma_page_aligned_bias (hdr->sh_addr, off,
5860 hdr->sh_addralign);
5861 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5862 FALSE);
5863 }
5864 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5865 && hdr->bfd_section == NULL)
5866 || (hdr->bfd_section != NULL
5867 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5868 /* Compress DWARF debug sections. */
5869 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5870 || (elf_symtab_shndx_list (abfd) != NULL
5871 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5872 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5873 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5874 hdr->sh_offset = -1;
5875 else
5876 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5877 }
5878
5879 /* Now that we have set the section file positions, we can set up
5880 the file positions for the non PT_LOAD segments. */
5881 count = 0;
5882 filehdr_vaddr = 0;
5883 filehdr_paddr = 0;
5884 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5885 phdrs_paddr = 0;
5886 hdrs_segment = NULL;
5887 phdrs = elf_tdata (abfd)->phdr;
5888 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5889 {
5890 ++count;
5891 if (p->p_type != PT_LOAD)
5892 continue;
5893
5894 if (m->includes_filehdr)
5895 {
5896 filehdr_vaddr = p->p_vaddr;
5897 filehdr_paddr = p->p_paddr;
5898 }
5899 if (m->includes_phdrs)
5900 {
5901 phdrs_vaddr = p->p_vaddr;
5902 phdrs_paddr = p->p_paddr;
5903 if (m->includes_filehdr)
5904 {
5905 hdrs_segment = m;
5906 phdrs_vaddr += bed->s->sizeof_ehdr;
5907 phdrs_paddr += bed->s->sizeof_ehdr;
5908 }
5909 }
5910 }
5911
5912 if (hdrs_segment != NULL && link_info != NULL)
5913 {
5914 /* There is a segment that contains both the file headers and the
5915 program headers, so provide a symbol __ehdr_start pointing there.
5916 A program can use this to examine itself robustly. */
5917
5918 struct elf_link_hash_entry *hash
5919 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5920 FALSE, FALSE, TRUE);
5921 /* If the symbol was referenced and not defined, define it. */
5922 if (hash != NULL
5923 && (hash->root.type == bfd_link_hash_new
5924 || hash->root.type == bfd_link_hash_undefined
5925 || hash->root.type == bfd_link_hash_undefweak
5926 || hash->root.type == bfd_link_hash_common))
5927 {
5928 asection *s = NULL;
5929 if (hdrs_segment->count != 0)
5930 /* The segment contains sections, so use the first one. */
5931 s = hdrs_segment->sections[0];
5932 else
5933 /* Use the first (i.e. lowest-addressed) section in any segment. */
5934 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5935 if (m->count != 0)
5936 {
5937 s = m->sections[0];
5938 break;
5939 }
5940
5941 if (s != NULL)
5942 {
5943 hash->root.u.def.value = filehdr_vaddr - s->vma;
5944 hash->root.u.def.section = s;
5945 }
5946 else
5947 {
5948 hash->root.u.def.value = filehdr_vaddr;
5949 hash->root.u.def.section = bfd_abs_section_ptr;
5950 }
5951
5952 hash->root.type = bfd_link_hash_defined;
5953 hash->def_regular = 1;
5954 hash->non_elf = 0;
5955 }
5956 }
5957
5958 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5959 {
5960 if (p->p_type == PT_GNU_RELRO)
5961 {
5962 bfd_vma start, end;
5963 bfd_boolean ok;
5964
5965 if (link_info != NULL)
5966 {
5967 /* During linking the range of the RELRO segment is passed
5968 in link_info. Note that there may be padding between
5969 relro_start and the first RELRO section. */
5970 start = link_info->relro_start;
5971 end = link_info->relro_end;
5972 }
5973 else if (m->count != 0)
5974 {
5975 if (!m->p_size_valid)
5976 abort ();
5977 start = m->sections[0]->vma;
5978 end = start + m->p_size;
5979 }
5980 else
5981 {
5982 start = 0;
5983 end = 0;
5984 }
5985
5986 ok = FALSE;
5987 if (start < end)
5988 {
5989 struct elf_segment_map *lm;
5990 const Elf_Internal_Phdr *lp;
5991 unsigned int i;
5992
5993 /* Find a LOAD segment containing a section in the RELRO
5994 segment. */
5995 for (lm = elf_seg_map (abfd), lp = phdrs;
5996 lm != NULL;
5997 lm = lm->next, lp++)
5998 {
5999 if (lp->p_type == PT_LOAD
6000 && lm->count != 0
6001 && (lm->sections[lm->count - 1]->vma
6002 + (!IS_TBSS (lm->sections[lm->count - 1])
6003 ? lm->sections[lm->count - 1]->size
6004 : 0)) > start
6005 && lm->sections[0]->vma < end)
6006 break;
6007 }
6008
6009 if (lm != NULL)
6010 {
6011 /* Find the section starting the RELRO segment. */
6012 for (i = 0; i < lm->count; i++)
6013 {
6014 asection *s = lm->sections[i];
6015 if (s->vma >= start
6016 && s->vma < end
6017 && s->size != 0)
6018 break;
6019 }
6020
6021 if (i < lm->count)
6022 {
6023 p->p_vaddr = lm->sections[i]->vma;
6024 p->p_paddr = lm->sections[i]->lma;
6025 p->p_offset = lm->sections[i]->filepos;
6026 p->p_memsz = end - p->p_vaddr;
6027 p->p_filesz = p->p_memsz;
6028
6029 /* The RELRO segment typically ends a few bytes
6030 into .got.plt but other layouts are possible.
6031 In cases where the end does not match any
6032 loaded section (for instance is in file
6033 padding), trim p_filesz back to correspond to
6034 the end of loaded section contents. */
6035 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6036 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6037
6038 /* Preserve the alignment and flags if they are
6039 valid. The gold linker generates RW/4 for
6040 the PT_GNU_RELRO section. It is better for
6041 objcopy/strip to honor these attributes
6042 otherwise gdb will choke when using separate
6043 debug files. */
6044 if (!m->p_align_valid)
6045 p->p_align = 1;
6046 if (!m->p_flags_valid)
6047 p->p_flags = PF_R;
6048 ok = TRUE;
6049 }
6050 }
6051 }
6052 if (link_info != NULL)
6053 BFD_ASSERT (ok);
6054 if (!ok)
6055 memset (p, 0, sizeof *p);
6056 }
6057 else if (p->p_type == PT_GNU_STACK)
6058 {
6059 if (m->p_size_valid)
6060 p->p_memsz = m->p_size;
6061 }
6062 else if (m->count != 0)
6063 {
6064 unsigned int i;
6065
6066 if (p->p_type != PT_LOAD
6067 && (p->p_type != PT_NOTE
6068 || bfd_get_format (abfd) != bfd_core))
6069 {
6070 /* A user specified segment layout may include a PHDR
6071 segment that overlaps with a LOAD segment... */
6072 if (p->p_type == PT_PHDR)
6073 {
6074 m->count = 0;
6075 continue;
6076 }
6077
6078 if (m->includes_filehdr || m->includes_phdrs)
6079 {
6080 /* PR 17512: file: 2195325e. */
6081 _bfd_error_handler
6082 (_("%pB: error: non-load segment %d includes file header "
6083 "and/or program header"),
6084 abfd, (int) (p - phdrs));
6085 return FALSE;
6086 }
6087
6088 p->p_filesz = 0;
6089 p->p_offset = m->sections[0]->filepos;
6090 for (i = m->count; i-- != 0;)
6091 {
6092 asection *sect = m->sections[i];
6093 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6094 if (hdr->sh_type != SHT_NOBITS)
6095 {
6096 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6097 + hdr->sh_size);
6098 break;
6099 }
6100 }
6101 }
6102 }
6103 else if (m->includes_filehdr)
6104 {
6105 p->p_vaddr = filehdr_vaddr;
6106 if (! m->p_paddr_valid)
6107 p->p_paddr = filehdr_paddr;
6108 }
6109 else if (m->includes_phdrs)
6110 {
6111 p->p_vaddr = phdrs_vaddr;
6112 if (! m->p_paddr_valid)
6113 p->p_paddr = phdrs_paddr;
6114 }
6115 }
6116
6117 elf_next_file_pos (abfd) = off;
6118
6119 return TRUE;
6120 }
6121
6122 static elf_section_list *
6123 find_section_in_list (unsigned int i, elf_section_list * list)
6124 {
6125 for (;list != NULL; list = list->next)
6126 if (list->ndx == i)
6127 break;
6128 return list;
6129 }
6130
6131 /* Work out the file positions of all the sections. This is called by
6132 _bfd_elf_compute_section_file_positions. All the section sizes and
6133 VMAs must be known before this is called.
6134
6135 Reloc sections come in two flavours: Those processed specially as
6136 "side-channel" data attached to a section to which they apply, and
6137 those that bfd doesn't process as relocations. The latter sort are
6138 stored in a normal bfd section by bfd_section_from_shdr. We don't
6139 consider the former sort here, unless they form part of the loadable
6140 image. Reloc sections not assigned here will be handled later by
6141 assign_file_positions_for_relocs.
6142
6143 We also don't set the positions of the .symtab and .strtab here. */
6144
6145 static bfd_boolean
6146 assign_file_positions_except_relocs (bfd *abfd,
6147 struct bfd_link_info *link_info)
6148 {
6149 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6150 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6152
6153 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6154 && bfd_get_format (abfd) != bfd_core)
6155 {
6156 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6157 unsigned int num_sec = elf_numsections (abfd);
6158 Elf_Internal_Shdr **hdrpp;
6159 unsigned int i;
6160 file_ptr off;
6161
6162 /* Start after the ELF header. */
6163 off = i_ehdrp->e_ehsize;
6164
6165 /* We are not creating an executable, which means that we are
6166 not creating a program header, and that the actual order of
6167 the sections in the file is unimportant. */
6168 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6169 {
6170 Elf_Internal_Shdr *hdr;
6171
6172 hdr = *hdrpp;
6173 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6174 && hdr->bfd_section == NULL)
6175 || (hdr->bfd_section != NULL
6176 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6177 /* Compress DWARF debug sections. */
6178 || i == elf_onesymtab (abfd)
6179 || (elf_symtab_shndx_list (abfd) != NULL
6180 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6181 || i == elf_strtab_sec (abfd)
6182 || i == elf_shstrtab_sec (abfd))
6183 {
6184 hdr->sh_offset = -1;
6185 }
6186 else
6187 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6188 }
6189
6190 elf_next_file_pos (abfd) = off;
6191 }
6192 else
6193 {
6194 unsigned int alloc;
6195
6196 /* Assign file positions for the loaded sections based on the
6197 assignment of sections to segments. */
6198 if (!assign_file_positions_for_load_sections (abfd, link_info))
6199 return FALSE;
6200
6201 /* And for non-load sections. */
6202 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6203 return FALSE;
6204
6205 if (bed->elf_backend_modify_program_headers != NULL)
6206 {
6207 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6208 return FALSE;
6209 }
6210
6211 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6212 if (link_info != NULL && bfd_link_pie (link_info))
6213 {
6214 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6215 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6216 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6217
6218 /* Find the lowest p_vaddr in PT_LOAD segments. */
6219 bfd_vma p_vaddr = (bfd_vma) -1;
6220 for (; segment < end_segment; segment++)
6221 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6222 p_vaddr = segment->p_vaddr;
6223
6224 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6225 segments is non-zero. */
6226 if (p_vaddr)
6227 i_ehdrp->e_type = ET_EXEC;
6228 }
6229
6230 /* Write out the program headers. */
6231 alloc = elf_elfheader (abfd)->e_phnum;
6232 if (alloc == 0)
6233 return TRUE;
6234
6235 /* PR ld/20815 - Check that the program header segment, if present, will
6236 be loaded into memory. FIXME: The check below is not sufficient as
6237 really all PT_LOAD segments should be checked before issuing an error
6238 message. Plus the PHDR segment does not have to be the first segment
6239 in the program header table. But this version of the check should
6240 catch all real world use cases.
6241
6242 FIXME: We used to have code here to sort the PT_LOAD segments into
6243 ascending order, as per the ELF spec. But this breaks some programs,
6244 including the Linux kernel. But really either the spec should be
6245 changed or the programs updated. */
6246 if (alloc > 1
6247 && tdata->phdr[0].p_type == PT_PHDR
6248 && (bed->elf_backend_allow_non_load_phdr == NULL
6249 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6250 alloc))
6251 && tdata->phdr[1].p_type == PT_LOAD
6252 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6253 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz
6254 < tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6255 {
6256 /* The fix for this error is usually to edit the linker script being
6257 used and set up the program headers manually. Either that or
6258 leave room for the headers at the start of the SECTIONS. */
6259 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
6260 " by LOAD segment"),
6261 abfd);
6262 return FALSE;
6263 }
6264
6265 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6266 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6267 return FALSE;
6268 }
6269
6270 return TRUE;
6271 }
6272
6273 static bfd_boolean
6274 prep_headers (bfd *abfd)
6275 {
6276 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6277 struct elf_strtab_hash *shstrtab;
6278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6279
6280 i_ehdrp = elf_elfheader (abfd);
6281
6282 shstrtab = _bfd_elf_strtab_init ();
6283 if (shstrtab == NULL)
6284 return FALSE;
6285
6286 elf_shstrtab (abfd) = shstrtab;
6287
6288 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6289 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6290 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6291 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6292
6293 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6294 i_ehdrp->e_ident[EI_DATA] =
6295 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6296 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6297
6298 if ((abfd->flags & DYNAMIC) != 0)
6299 i_ehdrp->e_type = ET_DYN;
6300 else if ((abfd->flags & EXEC_P) != 0)
6301 i_ehdrp->e_type = ET_EXEC;
6302 else if (bfd_get_format (abfd) == bfd_core)
6303 i_ehdrp->e_type = ET_CORE;
6304 else
6305 i_ehdrp->e_type = ET_REL;
6306
6307 switch (bfd_get_arch (abfd))
6308 {
6309 case bfd_arch_unknown:
6310 i_ehdrp->e_machine = EM_NONE;
6311 break;
6312
6313 /* There used to be a long list of cases here, each one setting
6314 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6315 in the corresponding bfd definition. To avoid duplication,
6316 the switch was removed. Machines that need special handling
6317 can generally do it in elf_backend_final_write_processing(),
6318 unless they need the information earlier than the final write.
6319 Such need can generally be supplied by replacing the tests for
6320 e_machine with the conditions used to determine it. */
6321 default:
6322 i_ehdrp->e_machine = bed->elf_machine_code;
6323 }
6324
6325 i_ehdrp->e_version = bed->s->ev_current;
6326 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6327
6328 /* No program header, for now. */
6329 i_ehdrp->e_phoff = 0;
6330 i_ehdrp->e_phentsize = 0;
6331 i_ehdrp->e_phnum = 0;
6332
6333 /* Each bfd section is section header entry. */
6334 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6335 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6336
6337 /* If we're building an executable, we'll need a program header table. */
6338 if (abfd->flags & EXEC_P)
6339 /* It all happens later. */
6340 ;
6341 else
6342 {
6343 i_ehdrp->e_phentsize = 0;
6344 i_ehdrp->e_phoff = 0;
6345 }
6346
6347 elf_tdata (abfd)->symtab_hdr.sh_name =
6348 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6349 elf_tdata (abfd)->strtab_hdr.sh_name =
6350 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6351 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6352 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6353 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6354 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6355 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6356 return FALSE;
6357
6358 return TRUE;
6359 }
6360
6361 /* Assign file positions for all the reloc sections which are not part
6362 of the loadable file image, and the file position of section headers. */
6363
6364 static bfd_boolean
6365 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6366 {
6367 file_ptr off;
6368 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6369 Elf_Internal_Shdr *shdrp;
6370 Elf_Internal_Ehdr *i_ehdrp;
6371 const struct elf_backend_data *bed;
6372
6373 off = elf_next_file_pos (abfd);
6374
6375 shdrpp = elf_elfsections (abfd);
6376 end_shdrpp = shdrpp + elf_numsections (abfd);
6377 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6378 {
6379 shdrp = *shdrpp;
6380 if (shdrp->sh_offset == -1)
6381 {
6382 asection *sec = shdrp->bfd_section;
6383 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6384 || shdrp->sh_type == SHT_RELA);
6385 if (is_rel
6386 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6387 {
6388 if (!is_rel)
6389 {
6390 const char *name = sec->name;
6391 struct bfd_elf_section_data *d;
6392
6393 /* Compress DWARF debug sections. */
6394 if (!bfd_compress_section (abfd, sec,
6395 shdrp->contents))
6396 return FALSE;
6397
6398 if (sec->compress_status == COMPRESS_SECTION_DONE
6399 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6400 {
6401 /* If section is compressed with zlib-gnu, convert
6402 section name from .debug_* to .zdebug_*. */
6403 char *new_name
6404 = convert_debug_to_zdebug (abfd, name);
6405 if (new_name == NULL)
6406 return FALSE;
6407 name = new_name;
6408 }
6409 /* Add section name to section name section. */
6410 if (shdrp->sh_name != (unsigned int) -1)
6411 abort ();
6412 shdrp->sh_name
6413 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6414 name, FALSE);
6415 d = elf_section_data (sec);
6416
6417 /* Add reloc section name to section name section. */
6418 if (d->rel.hdr
6419 && !_bfd_elf_set_reloc_sh_name (abfd,
6420 d->rel.hdr,
6421 name, FALSE))
6422 return FALSE;
6423 if (d->rela.hdr
6424 && !_bfd_elf_set_reloc_sh_name (abfd,
6425 d->rela.hdr,
6426 name, TRUE))
6427 return FALSE;
6428
6429 /* Update section size and contents. */
6430 shdrp->sh_size = sec->size;
6431 shdrp->contents = sec->contents;
6432 shdrp->bfd_section->contents = NULL;
6433 }
6434 off = _bfd_elf_assign_file_position_for_section (shdrp,
6435 off,
6436 TRUE);
6437 }
6438 }
6439 }
6440
6441 /* Place section name section after DWARF debug sections have been
6442 compressed. */
6443 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6444 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6445 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6446 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6447
6448 /* Place the section headers. */
6449 i_ehdrp = elf_elfheader (abfd);
6450 bed = get_elf_backend_data (abfd);
6451 off = align_file_position (off, 1 << bed->s->log_file_align);
6452 i_ehdrp->e_shoff = off;
6453 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6454 elf_next_file_pos (abfd) = off;
6455
6456 return TRUE;
6457 }
6458
6459 bfd_boolean
6460 _bfd_elf_write_object_contents (bfd *abfd)
6461 {
6462 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6463 Elf_Internal_Shdr **i_shdrp;
6464 bfd_boolean failed;
6465 unsigned int count, num_sec;
6466 struct elf_obj_tdata *t;
6467
6468 if (! abfd->output_has_begun
6469 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6470 return FALSE;
6471 /* Do not rewrite ELF data when the BFD has been opened for update.
6472 abfd->output_has_begun was set to TRUE on opening, so creation of new
6473 sections, and modification of existing section sizes was restricted.
6474 This means the ELF header, program headers and section headers can't have
6475 changed.
6476 If the contents of any sections has been modified, then those changes have
6477 already been written to the BFD. */
6478 else if (abfd->direction == both_direction)
6479 {
6480 BFD_ASSERT (abfd->output_has_begun);
6481 return TRUE;
6482 }
6483
6484 i_shdrp = elf_elfsections (abfd);
6485
6486 failed = FALSE;
6487 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6488 if (failed)
6489 return FALSE;
6490
6491 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6492 return FALSE;
6493
6494 /* After writing the headers, we need to write the sections too... */
6495 num_sec = elf_numsections (abfd);
6496 for (count = 1; count < num_sec; count++)
6497 {
6498 i_shdrp[count]->sh_name
6499 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6500 i_shdrp[count]->sh_name);
6501 if (bed->elf_backend_section_processing)
6502 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6503 return FALSE;
6504 if (i_shdrp[count]->contents)
6505 {
6506 bfd_size_type amt = i_shdrp[count]->sh_size;
6507
6508 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6509 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6510 return FALSE;
6511 }
6512 }
6513
6514 /* Write out the section header names. */
6515 t = elf_tdata (abfd);
6516 if (elf_shstrtab (abfd) != NULL
6517 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6518 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6519 return FALSE;
6520
6521 if (bed->elf_backend_final_write_processing)
6522 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6523
6524 if (!bed->s->write_shdrs_and_ehdr (abfd))
6525 return FALSE;
6526
6527 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6528 if (t->o->build_id.after_write_object_contents != NULL)
6529 return (*t->o->build_id.after_write_object_contents) (abfd);
6530
6531 return TRUE;
6532 }
6533
6534 bfd_boolean
6535 _bfd_elf_write_corefile_contents (bfd *abfd)
6536 {
6537 /* Hopefully this can be done just like an object file. */
6538 return _bfd_elf_write_object_contents (abfd);
6539 }
6540
6541 /* Given a section, search the header to find them. */
6542
6543 unsigned int
6544 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6545 {
6546 const struct elf_backend_data *bed;
6547 unsigned int sec_index;
6548
6549 if (elf_section_data (asect) != NULL
6550 && elf_section_data (asect)->this_idx != 0)
6551 return elf_section_data (asect)->this_idx;
6552
6553 if (bfd_is_abs_section (asect))
6554 sec_index = SHN_ABS;
6555 else if (bfd_is_com_section (asect))
6556 sec_index = SHN_COMMON;
6557 else if (bfd_is_und_section (asect))
6558 sec_index = SHN_UNDEF;
6559 else
6560 sec_index = SHN_BAD;
6561
6562 bed = get_elf_backend_data (abfd);
6563 if (bed->elf_backend_section_from_bfd_section)
6564 {
6565 int retval = sec_index;
6566
6567 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6568 return retval;
6569 }
6570
6571 if (sec_index == SHN_BAD)
6572 bfd_set_error (bfd_error_nonrepresentable_section);
6573
6574 return sec_index;
6575 }
6576
6577 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6578 on error. */
6579
6580 int
6581 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6582 {
6583 asymbol *asym_ptr = *asym_ptr_ptr;
6584 int idx;
6585 flagword flags = asym_ptr->flags;
6586
6587 /* When gas creates relocations against local labels, it creates its
6588 own symbol for the section, but does put the symbol into the
6589 symbol chain, so udata is 0. When the linker is generating
6590 relocatable output, this section symbol may be for one of the
6591 input sections rather than the output section. */
6592 if (asym_ptr->udata.i == 0
6593 && (flags & BSF_SECTION_SYM)
6594 && asym_ptr->section)
6595 {
6596 asection *sec;
6597 int indx;
6598
6599 sec = asym_ptr->section;
6600 if (sec->owner != abfd && sec->output_section != NULL)
6601 sec = sec->output_section;
6602 if (sec->owner == abfd
6603 && (indx = sec->index) < elf_num_section_syms (abfd)
6604 && elf_section_syms (abfd)[indx] != NULL)
6605 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6606 }
6607
6608 idx = asym_ptr->udata.i;
6609
6610 if (idx == 0)
6611 {
6612 /* This case can occur when using --strip-symbol on a symbol
6613 which is used in a relocation entry. */
6614 _bfd_error_handler
6615 /* xgettext:c-format */
6616 (_("%pB: symbol `%s' required but not present"),
6617 abfd, bfd_asymbol_name (asym_ptr));
6618 bfd_set_error (bfd_error_no_symbols);
6619 return -1;
6620 }
6621
6622 #if DEBUG & 4
6623 {
6624 fprintf (stderr,
6625 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6626 (long) asym_ptr, asym_ptr->name, idx, flags);
6627 fflush (stderr);
6628 }
6629 #endif
6630
6631 return idx;
6632 }
6633
6634 /* Rewrite program header information. */
6635
6636 static bfd_boolean
6637 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6638 {
6639 Elf_Internal_Ehdr *iehdr;
6640 struct elf_segment_map *map;
6641 struct elf_segment_map *map_first;
6642 struct elf_segment_map **pointer_to_map;
6643 Elf_Internal_Phdr *segment;
6644 asection *section;
6645 unsigned int i;
6646 unsigned int num_segments;
6647 bfd_boolean phdr_included = FALSE;
6648 bfd_boolean p_paddr_valid;
6649 bfd_vma maxpagesize;
6650 struct elf_segment_map *phdr_adjust_seg = NULL;
6651 unsigned int phdr_adjust_num = 0;
6652 const struct elf_backend_data *bed;
6653
6654 bed = get_elf_backend_data (ibfd);
6655 iehdr = elf_elfheader (ibfd);
6656
6657 map_first = NULL;
6658 pointer_to_map = &map_first;
6659
6660 num_segments = elf_elfheader (ibfd)->e_phnum;
6661 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6662
6663 /* Returns the end address of the segment + 1. */
6664 #define SEGMENT_END(segment, start) \
6665 (start + (segment->p_memsz > segment->p_filesz \
6666 ? segment->p_memsz : segment->p_filesz))
6667
6668 #define SECTION_SIZE(section, segment) \
6669 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6670 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6671 ? section->size : 0)
6672
6673 /* Returns TRUE if the given section is contained within
6674 the given segment. VMA addresses are compared. */
6675 #define IS_CONTAINED_BY_VMA(section, segment) \
6676 (section->vma >= segment->p_vaddr \
6677 && (section->vma + SECTION_SIZE (section, segment) \
6678 <= (SEGMENT_END (segment, segment->p_vaddr))))
6679
6680 /* Returns TRUE if the given section is contained within
6681 the given segment. LMA addresses are compared. */
6682 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6683 (section->lma >= base \
6684 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6685 && (section->lma + SECTION_SIZE (section, segment) \
6686 <= SEGMENT_END (segment, base)))
6687
6688 /* Handle PT_NOTE segment. */
6689 #define IS_NOTE(p, s) \
6690 (p->p_type == PT_NOTE \
6691 && elf_section_type (s) == SHT_NOTE \
6692 && (bfd_vma) s->filepos >= p->p_offset \
6693 && ((bfd_vma) s->filepos + s->size \
6694 <= p->p_offset + p->p_filesz))
6695
6696 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6697 etc. */
6698 #define IS_COREFILE_NOTE(p, s) \
6699 (IS_NOTE (p, s) \
6700 && bfd_get_format (ibfd) == bfd_core \
6701 && s->vma == 0 \
6702 && s->lma == 0)
6703
6704 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6705 linker, which generates a PT_INTERP section with p_vaddr and
6706 p_memsz set to 0. */
6707 #define IS_SOLARIS_PT_INTERP(p, s) \
6708 (p->p_vaddr == 0 \
6709 && p->p_paddr == 0 \
6710 && p->p_memsz == 0 \
6711 && p->p_filesz > 0 \
6712 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6713 && s->size > 0 \
6714 && (bfd_vma) s->filepos >= p->p_offset \
6715 && ((bfd_vma) s->filepos + s->size \
6716 <= p->p_offset + p->p_filesz))
6717
6718 /* Decide if the given section should be included in the given segment.
6719 A section will be included if:
6720 1. It is within the address space of the segment -- we use the LMA
6721 if that is set for the segment and the VMA otherwise,
6722 2. It is an allocated section or a NOTE section in a PT_NOTE
6723 segment.
6724 3. There is an output section associated with it,
6725 4. The section has not already been allocated to a previous segment.
6726 5. PT_GNU_STACK segments do not include any sections.
6727 6. PT_TLS segment includes only SHF_TLS sections.
6728 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6729 8. PT_DYNAMIC should not contain empty sections at the beginning
6730 (with the possible exception of .dynamic). */
6731 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6732 ((((segment->p_paddr \
6733 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6734 : IS_CONTAINED_BY_VMA (section, segment)) \
6735 && (section->flags & SEC_ALLOC) != 0) \
6736 || IS_NOTE (segment, section)) \
6737 && segment->p_type != PT_GNU_STACK \
6738 && (segment->p_type != PT_TLS \
6739 || (section->flags & SEC_THREAD_LOCAL)) \
6740 && (segment->p_type == PT_LOAD \
6741 || segment->p_type == PT_TLS \
6742 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6743 && (segment->p_type != PT_DYNAMIC \
6744 || SECTION_SIZE (section, segment) > 0 \
6745 || (segment->p_paddr \
6746 ? segment->p_paddr != section->lma \
6747 : segment->p_vaddr != section->vma) \
6748 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6749 == 0)) \
6750 && (segment->p_type != PT_LOAD || !section->segment_mark))
6751
6752 /* If the output section of a section in the input segment is NULL,
6753 it is removed from the corresponding output segment. */
6754 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6755 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6756 && section->output_section != NULL)
6757
6758 /* Returns TRUE iff seg1 starts after the end of seg2. */
6759 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6760 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6761
6762 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6763 their VMA address ranges and their LMA address ranges overlap.
6764 It is possible to have overlapping VMA ranges without overlapping LMA
6765 ranges. RedBoot images for example can have both .data and .bss mapped
6766 to the same VMA range, but with the .data section mapped to a different
6767 LMA. */
6768 #define SEGMENT_OVERLAPS(seg1, seg2) \
6769 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6770 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6771 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6772 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6773
6774 /* Initialise the segment mark field. */
6775 for (section = ibfd->sections; section != NULL; section = section->next)
6776 section->segment_mark = FALSE;
6777
6778 /* The Solaris linker creates program headers in which all the
6779 p_paddr fields are zero. When we try to objcopy or strip such a
6780 file, we get confused. Check for this case, and if we find it
6781 don't set the p_paddr_valid fields. */
6782 p_paddr_valid = FALSE;
6783 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6784 i < num_segments;
6785 i++, segment++)
6786 if (segment->p_paddr != 0)
6787 {
6788 p_paddr_valid = TRUE;
6789 break;
6790 }
6791
6792 /* Scan through the segments specified in the program header
6793 of the input BFD. For this first scan we look for overlaps
6794 in the loadable segments. These can be created by weird
6795 parameters to objcopy. Also, fix some solaris weirdness. */
6796 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6797 i < num_segments;
6798 i++, segment++)
6799 {
6800 unsigned int j;
6801 Elf_Internal_Phdr *segment2;
6802
6803 if (segment->p_type == PT_INTERP)
6804 for (section = ibfd->sections; section; section = section->next)
6805 if (IS_SOLARIS_PT_INTERP (segment, section))
6806 {
6807 /* Mininal change so that the normal section to segment
6808 assignment code will work. */
6809 segment->p_vaddr = section->vma;
6810 break;
6811 }
6812
6813 if (segment->p_type != PT_LOAD)
6814 {
6815 /* Remove PT_GNU_RELRO segment. */
6816 if (segment->p_type == PT_GNU_RELRO)
6817 segment->p_type = PT_NULL;
6818 continue;
6819 }
6820
6821 /* Determine if this segment overlaps any previous segments. */
6822 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6823 {
6824 bfd_signed_vma extra_length;
6825
6826 if (segment2->p_type != PT_LOAD
6827 || !SEGMENT_OVERLAPS (segment, segment2))
6828 continue;
6829
6830 /* Merge the two segments together. */
6831 if (segment2->p_vaddr < segment->p_vaddr)
6832 {
6833 /* Extend SEGMENT2 to include SEGMENT and then delete
6834 SEGMENT. */
6835 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6836 - SEGMENT_END (segment2, segment2->p_vaddr));
6837
6838 if (extra_length > 0)
6839 {
6840 segment2->p_memsz += extra_length;
6841 segment2->p_filesz += extra_length;
6842 }
6843
6844 segment->p_type = PT_NULL;
6845
6846 /* Since we have deleted P we must restart the outer loop. */
6847 i = 0;
6848 segment = elf_tdata (ibfd)->phdr;
6849 break;
6850 }
6851 else
6852 {
6853 /* Extend SEGMENT to include SEGMENT2 and then delete
6854 SEGMENT2. */
6855 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6856 - SEGMENT_END (segment, segment->p_vaddr));
6857
6858 if (extra_length > 0)
6859 {
6860 segment->p_memsz += extra_length;
6861 segment->p_filesz += extra_length;
6862 }
6863
6864 segment2->p_type = PT_NULL;
6865 }
6866 }
6867 }
6868
6869 /* The second scan attempts to assign sections to segments. */
6870 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6871 i < num_segments;
6872 i++, segment++)
6873 {
6874 unsigned int section_count;
6875 asection **sections;
6876 asection *output_section;
6877 unsigned int isec;
6878 asection *matching_lma;
6879 asection *suggested_lma;
6880 unsigned int j;
6881 bfd_size_type amt;
6882 asection *first_section;
6883
6884 if (segment->p_type == PT_NULL)
6885 continue;
6886
6887 first_section = NULL;
6888 /* Compute how many sections might be placed into this segment. */
6889 for (section = ibfd->sections, section_count = 0;
6890 section != NULL;
6891 section = section->next)
6892 {
6893 /* Find the first section in the input segment, which may be
6894 removed from the corresponding output segment. */
6895 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6896 {
6897 if (first_section == NULL)
6898 first_section = section;
6899 if (section->output_section != NULL)
6900 ++section_count;
6901 }
6902 }
6903
6904 /* Allocate a segment map big enough to contain
6905 all of the sections we have selected. */
6906 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
6907 amt += (bfd_size_type) section_count * sizeof (asection *);
6908 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6909 if (map == NULL)
6910 return FALSE;
6911
6912 /* Initialise the fields of the segment map. Default to
6913 using the physical address of the segment in the input BFD. */
6914 map->next = NULL;
6915 map->p_type = segment->p_type;
6916 map->p_flags = segment->p_flags;
6917 map->p_flags_valid = 1;
6918
6919 /* If the first section in the input segment is removed, there is
6920 no need to preserve segment physical address in the corresponding
6921 output segment. */
6922 if (!first_section || first_section->output_section != NULL)
6923 {
6924 map->p_paddr = segment->p_paddr;
6925 map->p_paddr_valid = p_paddr_valid;
6926 }
6927
6928 /* Determine if this segment contains the ELF file header
6929 and if it contains the program headers themselves. */
6930 map->includes_filehdr = (segment->p_offset == 0
6931 && segment->p_filesz >= iehdr->e_ehsize);
6932 map->includes_phdrs = 0;
6933
6934 if (!phdr_included || segment->p_type != PT_LOAD)
6935 {
6936 map->includes_phdrs =
6937 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6938 && (segment->p_offset + segment->p_filesz
6939 >= ((bfd_vma) iehdr->e_phoff
6940 + iehdr->e_phnum * iehdr->e_phentsize)));
6941
6942 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6943 phdr_included = TRUE;
6944 }
6945
6946 if (section_count == 0)
6947 {
6948 /* Special segments, such as the PT_PHDR segment, may contain
6949 no sections, but ordinary, loadable segments should contain
6950 something. They are allowed by the ELF spec however, so only
6951 a warning is produced.
6952 There is however the valid use case of embedded systems which
6953 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6954 flash memory with zeros. No warning is shown for that case. */
6955 if (segment->p_type == PT_LOAD
6956 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6957 /* xgettext:c-format */
6958 _bfd_error_handler
6959 (_("%pB: warning: empty loadable segment detected"
6960 " at vaddr=%#" PRIx64 ", is this intentional?"),
6961 ibfd, (uint64_t) segment->p_vaddr);
6962
6963 map->p_vaddr_offset = segment->p_vaddr;
6964 map->count = 0;
6965 *pointer_to_map = map;
6966 pointer_to_map = &map->next;
6967
6968 continue;
6969 }
6970
6971 /* Now scan the sections in the input BFD again and attempt
6972 to add their corresponding output sections to the segment map.
6973 The problem here is how to handle an output section which has
6974 been moved (ie had its LMA changed). There are four possibilities:
6975
6976 1. None of the sections have been moved.
6977 In this case we can continue to use the segment LMA from the
6978 input BFD.
6979
6980 2. All of the sections have been moved by the same amount.
6981 In this case we can change the segment's LMA to match the LMA
6982 of the first section.
6983
6984 3. Some of the sections have been moved, others have not.
6985 In this case those sections which have not been moved can be
6986 placed in the current segment which will have to have its size,
6987 and possibly its LMA changed, and a new segment or segments will
6988 have to be created to contain the other sections.
6989
6990 4. The sections have been moved, but not by the same amount.
6991 In this case we can change the segment's LMA to match the LMA
6992 of the first section and we will have to create a new segment
6993 or segments to contain the other sections.
6994
6995 In order to save time, we allocate an array to hold the section
6996 pointers that we are interested in. As these sections get assigned
6997 to a segment, they are removed from this array. */
6998
6999 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
7000 if (sections == NULL)
7001 return FALSE;
7002
7003 /* Step One: Scan for segment vs section LMA conflicts.
7004 Also add the sections to the section array allocated above.
7005 Also add the sections to the current segment. In the common
7006 case, where the sections have not been moved, this means that
7007 we have completely filled the segment, and there is nothing
7008 more to do. */
7009 isec = 0;
7010 matching_lma = NULL;
7011 suggested_lma = NULL;
7012
7013 for (section = first_section, j = 0;
7014 section != NULL;
7015 section = section->next)
7016 {
7017 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7018 {
7019 output_section = section->output_section;
7020
7021 sections[j++] = section;
7022
7023 /* The Solaris native linker always sets p_paddr to 0.
7024 We try to catch that case here, and set it to the
7025 correct value. Note - some backends require that
7026 p_paddr be left as zero. */
7027 if (!p_paddr_valid
7028 && segment->p_vaddr != 0
7029 && !bed->want_p_paddr_set_to_zero
7030 && isec == 0
7031 && output_section->lma != 0
7032 && (align_power (segment->p_vaddr
7033 + (map->includes_filehdr
7034 ? iehdr->e_ehsize : 0)
7035 + (map->includes_phdrs
7036 ? iehdr->e_phnum * iehdr->e_phentsize
7037 : 0),
7038 output_section->alignment_power)
7039 == output_section->vma))
7040 map->p_paddr = segment->p_vaddr;
7041
7042 /* Match up the physical address of the segment with the
7043 LMA address of the output section. */
7044 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7045 || IS_COREFILE_NOTE (segment, section)
7046 || (bed->want_p_paddr_set_to_zero
7047 && IS_CONTAINED_BY_VMA (output_section, segment)))
7048 {
7049 if (matching_lma == NULL
7050 || output_section->lma < matching_lma->lma)
7051 matching_lma = output_section;
7052
7053 /* We assume that if the section fits within the segment
7054 then it does not overlap any other section within that
7055 segment. */
7056 map->sections[isec++] = output_section;
7057 }
7058 else if (suggested_lma == NULL)
7059 suggested_lma = output_section;
7060
7061 if (j == section_count)
7062 break;
7063 }
7064 }
7065
7066 BFD_ASSERT (j == section_count);
7067
7068 /* Step Two: Adjust the physical address of the current segment,
7069 if necessary. */
7070 if (isec == section_count)
7071 {
7072 /* All of the sections fitted within the segment as currently
7073 specified. This is the default case. Add the segment to
7074 the list of built segments and carry on to process the next
7075 program header in the input BFD. */
7076 map->count = section_count;
7077 *pointer_to_map = map;
7078 pointer_to_map = &map->next;
7079
7080 if (p_paddr_valid
7081 && !bed->want_p_paddr_set_to_zero
7082 && matching_lma->lma != map->p_paddr
7083 && !map->includes_filehdr
7084 && !map->includes_phdrs)
7085 /* There is some padding before the first section in the
7086 segment. So, we must account for that in the output
7087 segment's vma. */
7088 map->p_vaddr_offset = map->p_paddr - matching_lma->lma;
7089
7090 free (sections);
7091 continue;
7092 }
7093 else
7094 {
7095 /* Change the current segment's physical address to match
7096 the LMA of the first section that fitted, or if no
7097 section fitted, the first section. */
7098 if (matching_lma == NULL)
7099 matching_lma = suggested_lma;
7100
7101 map->p_paddr = matching_lma->lma;
7102
7103 /* Offset the segment physical address from the lma
7104 to allow for space taken up by elf headers. */
7105 if (map->includes_phdrs)
7106 {
7107 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7108
7109 /* iehdr->e_phnum is just an estimate of the number
7110 of program headers that we will need. Make a note
7111 here of the number we used and the segment we chose
7112 to hold these headers, so that we can adjust the
7113 offset when we know the correct value. */
7114 phdr_adjust_num = iehdr->e_phnum;
7115 phdr_adjust_seg = map;
7116 }
7117
7118 if (map->includes_filehdr)
7119 {
7120 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7121 map->p_paddr -= iehdr->e_ehsize;
7122 /* We've subtracted off the size of headers from the
7123 first section lma, but there may have been some
7124 alignment padding before that section too. Try to
7125 account for that by adjusting the segment lma down to
7126 the same alignment. */
7127 if (segment->p_align != 0 && segment->p_align < align)
7128 align = segment->p_align;
7129 map->p_paddr &= -align;
7130 }
7131 }
7132
7133 /* Step Three: Loop over the sections again, this time assigning
7134 those that fit to the current segment and removing them from the
7135 sections array; but making sure not to leave large gaps. Once all
7136 possible sections have been assigned to the current segment it is
7137 added to the list of built segments and if sections still remain
7138 to be assigned, a new segment is constructed before repeating
7139 the loop. */
7140 isec = 0;
7141 do
7142 {
7143 map->count = 0;
7144 suggested_lma = NULL;
7145
7146 /* Fill the current segment with sections that fit. */
7147 for (j = 0; j < section_count; j++)
7148 {
7149 section = sections[j];
7150
7151 if (section == NULL)
7152 continue;
7153
7154 output_section = section->output_section;
7155
7156 BFD_ASSERT (output_section != NULL);
7157
7158 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7159 || IS_COREFILE_NOTE (segment, section))
7160 {
7161 if (map->count == 0)
7162 {
7163 /* If the first section in a segment does not start at
7164 the beginning of the segment, then something is
7165 wrong. */
7166 if (align_power (map->p_paddr
7167 + (map->includes_filehdr
7168 ? iehdr->e_ehsize : 0)
7169 + (map->includes_phdrs
7170 ? iehdr->e_phnum * iehdr->e_phentsize
7171 : 0),
7172 output_section->alignment_power)
7173 != output_section->lma)
7174 abort ();
7175 }
7176 else
7177 {
7178 asection *prev_sec;
7179
7180 prev_sec = map->sections[map->count - 1];
7181
7182 /* If the gap between the end of the previous section
7183 and the start of this section is more than
7184 maxpagesize then we need to start a new segment. */
7185 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7186 maxpagesize)
7187 < BFD_ALIGN (output_section->lma, maxpagesize))
7188 || (prev_sec->lma + prev_sec->size
7189 > output_section->lma))
7190 {
7191 if (suggested_lma == NULL)
7192 suggested_lma = output_section;
7193
7194 continue;
7195 }
7196 }
7197
7198 map->sections[map->count++] = output_section;
7199 ++isec;
7200 sections[j] = NULL;
7201 if (segment->p_type == PT_LOAD)
7202 section->segment_mark = TRUE;
7203 }
7204 else if (suggested_lma == NULL)
7205 suggested_lma = output_section;
7206 }
7207
7208 /* PR 23932. A corrupt input file may contain sections that cannot
7209 be assigned to any segment - because for example they have a
7210 negative size - or segments that do not contain any sections. */
7211 if (map->count == 0)
7212 {
7213 bfd_set_error (bfd_error_bad_value);
7214 free (sections);
7215 return FALSE;
7216 }
7217
7218 /* Add the current segment to the list of built segments. */
7219 *pointer_to_map = map;
7220 pointer_to_map = &map->next;
7221
7222 if (isec < section_count)
7223 {
7224 /* We still have not allocated all of the sections to
7225 segments. Create a new segment here, initialise it
7226 and carry on looping. */
7227 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7228 amt += (bfd_size_type) section_count * sizeof (asection *);
7229 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7230 if (map == NULL)
7231 {
7232 free (sections);
7233 return FALSE;
7234 }
7235
7236 /* Initialise the fields of the segment map. Set the physical
7237 physical address to the LMA of the first section that has
7238 not yet been assigned. */
7239 map->next = NULL;
7240 map->p_type = segment->p_type;
7241 map->p_flags = segment->p_flags;
7242 map->p_flags_valid = 1;
7243 map->p_paddr = suggested_lma->lma;
7244 map->p_paddr_valid = p_paddr_valid;
7245 map->includes_filehdr = 0;
7246 map->includes_phdrs = 0;
7247 }
7248 }
7249 while (isec < section_count);
7250
7251 free (sections);
7252 }
7253
7254 elf_seg_map (obfd) = map_first;
7255
7256 /* If we had to estimate the number of program headers that were
7257 going to be needed, then check our estimate now and adjust
7258 the offset if necessary. */
7259 if (phdr_adjust_seg != NULL)
7260 {
7261 unsigned int count;
7262
7263 for (count = 0, map = map_first; map != NULL; map = map->next)
7264 count++;
7265
7266 if (count > phdr_adjust_num)
7267 phdr_adjust_seg->p_paddr
7268 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7269
7270 for (map = map_first; map != NULL; map = map->next)
7271 if (map->p_type == PT_PHDR)
7272 {
7273 bfd_vma adjust
7274 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7275 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7276 break;
7277 }
7278 }
7279
7280 #undef SEGMENT_END
7281 #undef SECTION_SIZE
7282 #undef IS_CONTAINED_BY_VMA
7283 #undef IS_CONTAINED_BY_LMA
7284 #undef IS_NOTE
7285 #undef IS_COREFILE_NOTE
7286 #undef IS_SOLARIS_PT_INTERP
7287 #undef IS_SECTION_IN_INPUT_SEGMENT
7288 #undef INCLUDE_SECTION_IN_SEGMENT
7289 #undef SEGMENT_AFTER_SEGMENT
7290 #undef SEGMENT_OVERLAPS
7291 return TRUE;
7292 }
7293
7294 /* Copy ELF program header information. */
7295
7296 static bfd_boolean
7297 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7298 {
7299 Elf_Internal_Ehdr *iehdr;
7300 struct elf_segment_map *map;
7301 struct elf_segment_map *map_first;
7302 struct elf_segment_map **pointer_to_map;
7303 Elf_Internal_Phdr *segment;
7304 unsigned int i;
7305 unsigned int num_segments;
7306 bfd_boolean phdr_included = FALSE;
7307 bfd_boolean p_paddr_valid;
7308
7309 iehdr = elf_elfheader (ibfd);
7310
7311 map_first = NULL;
7312 pointer_to_map = &map_first;
7313
7314 /* If all the segment p_paddr fields are zero, don't set
7315 map->p_paddr_valid. */
7316 p_paddr_valid = FALSE;
7317 num_segments = elf_elfheader (ibfd)->e_phnum;
7318 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7319 i < num_segments;
7320 i++, segment++)
7321 if (segment->p_paddr != 0)
7322 {
7323 p_paddr_valid = TRUE;
7324 break;
7325 }
7326
7327 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7328 i < num_segments;
7329 i++, segment++)
7330 {
7331 asection *section;
7332 unsigned int section_count;
7333 bfd_size_type amt;
7334 Elf_Internal_Shdr *this_hdr;
7335 asection *first_section = NULL;
7336 asection *lowest_section;
7337 bfd_boolean no_contents = TRUE;
7338
7339 /* Compute how many sections are in this segment. */
7340 for (section = ibfd->sections, section_count = 0;
7341 section != NULL;
7342 section = section->next)
7343 {
7344 this_hdr = &(elf_section_data(section)->this_hdr);
7345 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7346 {
7347 if (first_section == NULL)
7348 first_section = section;
7349 if (elf_section_type (section) != SHT_NOBITS)
7350 no_contents = FALSE;
7351 section_count++;
7352 }
7353 }
7354
7355 /* Allocate a segment map big enough to contain
7356 all of the sections we have selected. */
7357 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7358 amt += (bfd_size_type) section_count * sizeof (asection *);
7359 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7360 if (map == NULL)
7361 return FALSE;
7362
7363 /* Initialize the fields of the output segment map with the
7364 input segment. */
7365 map->next = NULL;
7366 map->p_type = segment->p_type;
7367 map->p_flags = segment->p_flags;
7368 map->p_flags_valid = 1;
7369 map->p_paddr = segment->p_paddr;
7370 map->p_paddr_valid = p_paddr_valid;
7371 map->p_align = segment->p_align;
7372 map->p_align_valid = 1;
7373 map->p_vaddr_offset = 0;
7374
7375 if (map->p_type == PT_GNU_RELRO
7376 || map->p_type == PT_GNU_STACK)
7377 {
7378 /* The PT_GNU_RELRO segment may contain the first a few
7379 bytes in the .got.plt section even if the whole .got.plt
7380 section isn't in the PT_GNU_RELRO segment. We won't
7381 change the size of the PT_GNU_RELRO segment.
7382 Similarly, PT_GNU_STACK size is significant on uclinux
7383 systems. */
7384 map->p_size = segment->p_memsz;
7385 map->p_size_valid = 1;
7386 }
7387
7388 /* Determine if this segment contains the ELF file header
7389 and if it contains the program headers themselves. */
7390 map->includes_filehdr = (segment->p_offset == 0
7391 && segment->p_filesz >= iehdr->e_ehsize);
7392
7393 map->includes_phdrs = 0;
7394 if (! phdr_included || segment->p_type != PT_LOAD)
7395 {
7396 map->includes_phdrs =
7397 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7398 && (segment->p_offset + segment->p_filesz
7399 >= ((bfd_vma) iehdr->e_phoff
7400 + iehdr->e_phnum * iehdr->e_phentsize)));
7401
7402 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7403 phdr_included = TRUE;
7404 }
7405
7406 lowest_section = NULL;
7407 if (section_count != 0)
7408 {
7409 unsigned int isec = 0;
7410
7411 for (section = first_section;
7412 section != NULL;
7413 section = section->next)
7414 {
7415 this_hdr = &(elf_section_data(section)->this_hdr);
7416 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7417 {
7418 map->sections[isec++] = section->output_section;
7419 if ((section->flags & SEC_ALLOC) != 0)
7420 {
7421 bfd_vma seg_off;
7422
7423 if (lowest_section == NULL
7424 || section->lma < lowest_section->lma)
7425 lowest_section = section;
7426
7427 /* Section lmas are set up from PT_LOAD header
7428 p_paddr in _bfd_elf_make_section_from_shdr.
7429 If this header has a p_paddr that disagrees
7430 with the section lma, flag the p_paddr as
7431 invalid. */
7432 if ((section->flags & SEC_LOAD) != 0)
7433 seg_off = this_hdr->sh_offset - segment->p_offset;
7434 else
7435 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7436 if (section->lma - segment->p_paddr != seg_off)
7437 map->p_paddr_valid = FALSE;
7438 }
7439 if (isec == section_count)
7440 break;
7441 }
7442 }
7443 }
7444
7445 if (map->includes_filehdr && lowest_section != NULL)
7446 {
7447 /* Try to keep the space used by the headers plus any
7448 padding fixed. If there are sections with file contents
7449 in this segment then the lowest sh_offset is the best
7450 guess. Otherwise the segment only has file contents for
7451 the headers, and p_filesz is the best guess. */
7452 if (no_contents)
7453 map->header_size = segment->p_filesz;
7454 else
7455 map->header_size = lowest_section->filepos;
7456 }
7457
7458 if (section_count == 0)
7459 map->p_vaddr_offset = segment->p_vaddr;
7460 else if (!map->includes_phdrs
7461 && !map->includes_filehdr
7462 && map->p_paddr_valid)
7463 /* Account for padding before the first section. */
7464 map->p_vaddr_offset = (segment->p_paddr
7465 - (lowest_section ? lowest_section->lma : 0));
7466
7467 map->count = section_count;
7468 *pointer_to_map = map;
7469 pointer_to_map = &map->next;
7470 }
7471
7472 elf_seg_map (obfd) = map_first;
7473 return TRUE;
7474 }
7475
7476 /* Copy private BFD data. This copies or rewrites ELF program header
7477 information. */
7478
7479 static bfd_boolean
7480 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7481 {
7482 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7483 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7484 return TRUE;
7485
7486 if (elf_tdata (ibfd)->phdr == NULL)
7487 return TRUE;
7488
7489 if (ibfd->xvec == obfd->xvec)
7490 {
7491 /* Check to see if any sections in the input BFD
7492 covered by ELF program header have changed. */
7493 Elf_Internal_Phdr *segment;
7494 asection *section, *osec;
7495 unsigned int i, num_segments;
7496 Elf_Internal_Shdr *this_hdr;
7497 const struct elf_backend_data *bed;
7498
7499 bed = get_elf_backend_data (ibfd);
7500
7501 /* Regenerate the segment map if p_paddr is set to 0. */
7502 if (bed->want_p_paddr_set_to_zero)
7503 goto rewrite;
7504
7505 /* Initialize the segment mark field. */
7506 for (section = obfd->sections; section != NULL;
7507 section = section->next)
7508 section->segment_mark = FALSE;
7509
7510 num_segments = elf_elfheader (ibfd)->e_phnum;
7511 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7512 i < num_segments;
7513 i++, segment++)
7514 {
7515 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7516 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7517 which severly confuses things, so always regenerate the segment
7518 map in this case. */
7519 if (segment->p_paddr == 0
7520 && segment->p_memsz == 0
7521 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7522 goto rewrite;
7523
7524 for (section = ibfd->sections;
7525 section != NULL; section = section->next)
7526 {
7527 /* We mark the output section so that we know it comes
7528 from the input BFD. */
7529 osec = section->output_section;
7530 if (osec)
7531 osec->segment_mark = TRUE;
7532
7533 /* Check if this section is covered by the segment. */
7534 this_hdr = &(elf_section_data(section)->this_hdr);
7535 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7536 {
7537 /* FIXME: Check if its output section is changed or
7538 removed. What else do we need to check? */
7539 if (osec == NULL
7540 || section->flags != osec->flags
7541 || section->lma != osec->lma
7542 || section->vma != osec->vma
7543 || section->size != osec->size
7544 || section->rawsize != osec->rawsize
7545 || section->alignment_power != osec->alignment_power)
7546 goto rewrite;
7547 }
7548 }
7549 }
7550
7551 /* Check to see if any output section do not come from the
7552 input BFD. */
7553 for (section = obfd->sections; section != NULL;
7554 section = section->next)
7555 {
7556 if (!section->segment_mark)
7557 goto rewrite;
7558 else
7559 section->segment_mark = FALSE;
7560 }
7561
7562 return copy_elf_program_header (ibfd, obfd);
7563 }
7564
7565 rewrite:
7566 if (ibfd->xvec == obfd->xvec)
7567 {
7568 /* When rewriting program header, set the output maxpagesize to
7569 the maximum alignment of input PT_LOAD segments. */
7570 Elf_Internal_Phdr *segment;
7571 unsigned int i;
7572 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7573 bfd_vma maxpagesize = 0;
7574
7575 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7576 i < num_segments;
7577 i++, segment++)
7578 if (segment->p_type == PT_LOAD
7579 && maxpagesize < segment->p_align)
7580 {
7581 /* PR 17512: file: f17299af. */
7582 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7583 /* xgettext:c-format */
7584 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7585 PRIx64 " is too large"),
7586 ibfd, (uint64_t) segment->p_align);
7587 else
7588 maxpagesize = segment->p_align;
7589 }
7590
7591 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7592 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7593 }
7594
7595 return rewrite_elf_program_header (ibfd, obfd);
7596 }
7597
7598 /* Initialize private output section information from input section. */
7599
7600 bfd_boolean
7601 _bfd_elf_init_private_section_data (bfd *ibfd,
7602 asection *isec,
7603 bfd *obfd,
7604 asection *osec,
7605 struct bfd_link_info *link_info)
7606
7607 {
7608 Elf_Internal_Shdr *ihdr, *ohdr;
7609 bfd_boolean final_link = (link_info != NULL
7610 && !bfd_link_relocatable (link_info));
7611
7612 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7613 || obfd->xvec->flavour != bfd_target_elf_flavour)
7614 return TRUE;
7615
7616 BFD_ASSERT (elf_section_data (osec) != NULL);
7617
7618 /* For objcopy and relocatable link, don't copy the output ELF
7619 section type from input if the output BFD section flags have been
7620 set to something different. For a final link allow some flags
7621 that the linker clears to differ. */
7622 if (elf_section_type (osec) == SHT_NULL
7623 && (osec->flags == isec->flags
7624 || (final_link
7625 && ((osec->flags ^ isec->flags)
7626 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7627 elf_section_type (osec) = elf_section_type (isec);
7628
7629 /* FIXME: Is this correct for all OS/PROC specific flags? */
7630 elf_section_flags (osec) |= (elf_section_flags (isec)
7631 & (SHF_MASKOS | SHF_MASKPROC));
7632
7633 /* Copy sh_info from input for mbind section. */
7634 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7635 elf_section_data (osec)->this_hdr.sh_info
7636 = elf_section_data (isec)->this_hdr.sh_info;
7637
7638 /* Set things up for objcopy and relocatable link. The output
7639 SHT_GROUP section will have its elf_next_in_group pointing back
7640 to the input group members. Ignore linker created group section.
7641 See elfNN_ia64_object_p in elfxx-ia64.c. */
7642 if ((link_info == NULL
7643 || !link_info->resolve_section_groups)
7644 && (elf_sec_group (isec) == NULL
7645 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7646 {
7647 if (elf_section_flags (isec) & SHF_GROUP)
7648 elf_section_flags (osec) |= SHF_GROUP;
7649 elf_next_in_group (osec) = elf_next_in_group (isec);
7650 elf_section_data (osec)->group = elf_section_data (isec)->group;
7651 }
7652
7653 /* If not decompress, preserve SHF_COMPRESSED. */
7654 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7655 elf_section_flags (osec) |= (elf_section_flags (isec)
7656 & SHF_COMPRESSED);
7657
7658 ihdr = &elf_section_data (isec)->this_hdr;
7659
7660 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7661 don't use the output section of the linked-to section since it
7662 may be NULL at this point. */
7663 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7664 {
7665 ohdr = &elf_section_data (osec)->this_hdr;
7666 ohdr->sh_flags |= SHF_LINK_ORDER;
7667 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7668 }
7669
7670 osec->use_rela_p = isec->use_rela_p;
7671
7672 return TRUE;
7673 }
7674
7675 /* Copy private section information. This copies over the entsize
7676 field, and sometimes the info field. */
7677
7678 bfd_boolean
7679 _bfd_elf_copy_private_section_data (bfd *ibfd,
7680 asection *isec,
7681 bfd *obfd,
7682 asection *osec)
7683 {
7684 Elf_Internal_Shdr *ihdr, *ohdr;
7685
7686 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7687 || obfd->xvec->flavour != bfd_target_elf_flavour)
7688 return TRUE;
7689
7690 ihdr = &elf_section_data (isec)->this_hdr;
7691 ohdr = &elf_section_data (osec)->this_hdr;
7692
7693 ohdr->sh_entsize = ihdr->sh_entsize;
7694
7695 if (ihdr->sh_type == SHT_SYMTAB
7696 || ihdr->sh_type == SHT_DYNSYM
7697 || ihdr->sh_type == SHT_GNU_verneed
7698 || ihdr->sh_type == SHT_GNU_verdef)
7699 ohdr->sh_info = ihdr->sh_info;
7700
7701 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7702 NULL);
7703 }
7704
7705 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7706 necessary if we are removing either the SHT_GROUP section or any of
7707 the group member sections. DISCARDED is the value that a section's
7708 output_section has if the section will be discarded, NULL when this
7709 function is called from objcopy, bfd_abs_section_ptr when called
7710 from the linker. */
7711
7712 bfd_boolean
7713 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7714 {
7715 asection *isec;
7716
7717 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7718 if (elf_section_type (isec) == SHT_GROUP)
7719 {
7720 asection *first = elf_next_in_group (isec);
7721 asection *s = first;
7722 bfd_size_type removed = 0;
7723
7724 while (s != NULL)
7725 {
7726 /* If this member section is being output but the
7727 SHT_GROUP section is not, then clear the group info
7728 set up by _bfd_elf_copy_private_section_data. */
7729 if (s->output_section != discarded
7730 && isec->output_section == discarded)
7731 {
7732 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7733 elf_group_name (s->output_section) = NULL;
7734 }
7735 /* Conversely, if the member section is not being output
7736 but the SHT_GROUP section is, then adjust its size. */
7737 else if (s->output_section == discarded
7738 && isec->output_section != discarded)
7739 {
7740 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7741 removed += 4;
7742 if (elf_sec->rel.hdr != NULL
7743 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7744 removed += 4;
7745 if (elf_sec->rela.hdr != NULL
7746 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7747 removed += 4;
7748 }
7749 s = elf_next_in_group (s);
7750 if (s == first)
7751 break;
7752 }
7753 if (removed != 0)
7754 {
7755 if (discarded != NULL)
7756 {
7757 /* If we've been called for ld -r, then we need to
7758 adjust the input section size. */
7759 if (isec->rawsize == 0)
7760 isec->rawsize = isec->size;
7761 isec->size = isec->rawsize - removed;
7762 if (isec->size <= 4)
7763 {
7764 isec->size = 0;
7765 isec->flags |= SEC_EXCLUDE;
7766 }
7767 }
7768 else
7769 {
7770 /* Adjust the output section size when called from
7771 objcopy. */
7772 isec->output_section->size -= removed;
7773 if (isec->output_section->size <= 4)
7774 {
7775 isec->output_section->size = 0;
7776 isec->output_section->flags |= SEC_EXCLUDE;
7777 }
7778 }
7779 }
7780 }
7781
7782 return TRUE;
7783 }
7784
7785 /* Copy private header information. */
7786
7787 bfd_boolean
7788 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7789 {
7790 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7791 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7792 return TRUE;
7793
7794 /* Copy over private BFD data if it has not already been copied.
7795 This must be done here, rather than in the copy_private_bfd_data
7796 entry point, because the latter is called after the section
7797 contents have been set, which means that the program headers have
7798 already been worked out. */
7799 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7800 {
7801 if (! copy_private_bfd_data (ibfd, obfd))
7802 return FALSE;
7803 }
7804
7805 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7806 }
7807
7808 /* Copy private symbol information. If this symbol is in a section
7809 which we did not map into a BFD section, try to map the section
7810 index correctly. We use special macro definitions for the mapped
7811 section indices; these definitions are interpreted by the
7812 swap_out_syms function. */
7813
7814 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7815 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7816 #define MAP_STRTAB (SHN_HIOS + 3)
7817 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7818 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7819
7820 bfd_boolean
7821 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7822 asymbol *isymarg,
7823 bfd *obfd,
7824 asymbol *osymarg)
7825 {
7826 elf_symbol_type *isym, *osym;
7827
7828 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7829 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7830 return TRUE;
7831
7832 isym = elf_symbol_from (ibfd, isymarg);
7833 osym = elf_symbol_from (obfd, osymarg);
7834
7835 if (isym != NULL
7836 && isym->internal_elf_sym.st_shndx != 0
7837 && osym != NULL
7838 && bfd_is_abs_section (isym->symbol.section))
7839 {
7840 unsigned int shndx;
7841
7842 shndx = isym->internal_elf_sym.st_shndx;
7843 if (shndx == elf_onesymtab (ibfd))
7844 shndx = MAP_ONESYMTAB;
7845 else if (shndx == elf_dynsymtab (ibfd))
7846 shndx = MAP_DYNSYMTAB;
7847 else if (shndx == elf_strtab_sec (ibfd))
7848 shndx = MAP_STRTAB;
7849 else if (shndx == elf_shstrtab_sec (ibfd))
7850 shndx = MAP_SHSTRTAB;
7851 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7852 shndx = MAP_SYM_SHNDX;
7853 osym->internal_elf_sym.st_shndx = shndx;
7854 }
7855
7856 return TRUE;
7857 }
7858
7859 /* Swap out the symbols. */
7860
7861 static bfd_boolean
7862 swap_out_syms (bfd *abfd,
7863 struct elf_strtab_hash **sttp,
7864 int relocatable_p)
7865 {
7866 const struct elf_backend_data *bed;
7867 int symcount;
7868 asymbol **syms;
7869 struct elf_strtab_hash *stt;
7870 Elf_Internal_Shdr *symtab_hdr;
7871 Elf_Internal_Shdr *symtab_shndx_hdr;
7872 Elf_Internal_Shdr *symstrtab_hdr;
7873 struct elf_sym_strtab *symstrtab;
7874 bfd_byte *outbound_syms;
7875 bfd_byte *outbound_shndx;
7876 unsigned long outbound_syms_index;
7877 unsigned long outbound_shndx_index;
7878 int idx;
7879 unsigned int num_locals;
7880 bfd_size_type amt;
7881 bfd_boolean name_local_sections;
7882
7883 if (!elf_map_symbols (abfd, &num_locals))
7884 return FALSE;
7885
7886 /* Dump out the symtabs. */
7887 stt = _bfd_elf_strtab_init ();
7888 if (stt == NULL)
7889 return FALSE;
7890
7891 bed = get_elf_backend_data (abfd);
7892 symcount = bfd_get_symcount (abfd);
7893 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7894 symtab_hdr->sh_type = SHT_SYMTAB;
7895 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7896 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7897 symtab_hdr->sh_info = num_locals + 1;
7898 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7899
7900 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7901 symstrtab_hdr->sh_type = SHT_STRTAB;
7902
7903 /* Allocate buffer to swap out the .strtab section. */
7904 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
7905 sizeof (*symstrtab));
7906 if (symstrtab == NULL)
7907 {
7908 _bfd_elf_strtab_free (stt);
7909 return FALSE;
7910 }
7911
7912 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7913 bed->s->sizeof_sym);
7914 if (outbound_syms == NULL)
7915 {
7916 error_return:
7917 _bfd_elf_strtab_free (stt);
7918 free (symstrtab);
7919 return FALSE;
7920 }
7921 symtab_hdr->contents = outbound_syms;
7922 outbound_syms_index = 0;
7923
7924 outbound_shndx = NULL;
7925 outbound_shndx_index = 0;
7926
7927 if (elf_symtab_shndx_list (abfd))
7928 {
7929 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7930 if (symtab_shndx_hdr->sh_name != 0)
7931 {
7932 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7933 outbound_shndx = (bfd_byte *)
7934 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7935 if (outbound_shndx == NULL)
7936 goto error_return;
7937
7938 symtab_shndx_hdr->contents = outbound_shndx;
7939 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7940 symtab_shndx_hdr->sh_size = amt;
7941 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7942 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7943 }
7944 /* FIXME: What about any other headers in the list ? */
7945 }
7946
7947 /* Now generate the data (for "contents"). */
7948 {
7949 /* Fill in zeroth symbol and swap it out. */
7950 Elf_Internal_Sym sym;
7951 sym.st_name = 0;
7952 sym.st_value = 0;
7953 sym.st_size = 0;
7954 sym.st_info = 0;
7955 sym.st_other = 0;
7956 sym.st_shndx = SHN_UNDEF;
7957 sym.st_target_internal = 0;
7958 symstrtab[0].sym = sym;
7959 symstrtab[0].dest_index = outbound_syms_index;
7960 symstrtab[0].destshndx_index = outbound_shndx_index;
7961 outbound_syms_index++;
7962 if (outbound_shndx != NULL)
7963 outbound_shndx_index++;
7964 }
7965
7966 name_local_sections
7967 = (bed->elf_backend_name_local_section_symbols
7968 && bed->elf_backend_name_local_section_symbols (abfd));
7969
7970 syms = bfd_get_outsymbols (abfd);
7971 for (idx = 0; idx < symcount;)
7972 {
7973 Elf_Internal_Sym sym;
7974 bfd_vma value = syms[idx]->value;
7975 elf_symbol_type *type_ptr;
7976 flagword flags = syms[idx]->flags;
7977 int type;
7978
7979 if (!name_local_sections
7980 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7981 {
7982 /* Local section symbols have no name. */
7983 sym.st_name = (unsigned long) -1;
7984 }
7985 else
7986 {
7987 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7988 to get the final offset for st_name. */
7989 sym.st_name
7990 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7991 FALSE);
7992 if (sym.st_name == (unsigned long) -1)
7993 goto error_return;
7994 }
7995
7996 type_ptr = elf_symbol_from (abfd, syms[idx]);
7997
7998 if ((flags & BSF_SECTION_SYM) == 0
7999 && bfd_is_com_section (syms[idx]->section))
8000 {
8001 /* ELF common symbols put the alignment into the `value' field,
8002 and the size into the `size' field. This is backwards from
8003 how BFD handles it, so reverse it here. */
8004 sym.st_size = value;
8005 if (type_ptr == NULL
8006 || type_ptr->internal_elf_sym.st_value == 0)
8007 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8008 else
8009 sym.st_value = type_ptr->internal_elf_sym.st_value;
8010 sym.st_shndx = _bfd_elf_section_from_bfd_section
8011 (abfd, syms[idx]->section);
8012 }
8013 else
8014 {
8015 asection *sec = syms[idx]->section;
8016 unsigned int shndx;
8017
8018 if (sec->output_section)
8019 {
8020 value += sec->output_offset;
8021 sec = sec->output_section;
8022 }
8023
8024 /* Don't add in the section vma for relocatable output. */
8025 if (! relocatable_p)
8026 value += sec->vma;
8027 sym.st_value = value;
8028 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8029
8030 if (bfd_is_abs_section (sec)
8031 && type_ptr != NULL
8032 && type_ptr->internal_elf_sym.st_shndx != 0)
8033 {
8034 /* This symbol is in a real ELF section which we did
8035 not create as a BFD section. Undo the mapping done
8036 by copy_private_symbol_data. */
8037 shndx = type_ptr->internal_elf_sym.st_shndx;
8038 switch (shndx)
8039 {
8040 case MAP_ONESYMTAB:
8041 shndx = elf_onesymtab (abfd);
8042 break;
8043 case MAP_DYNSYMTAB:
8044 shndx = elf_dynsymtab (abfd);
8045 break;
8046 case MAP_STRTAB:
8047 shndx = elf_strtab_sec (abfd);
8048 break;
8049 case MAP_SHSTRTAB:
8050 shndx = elf_shstrtab_sec (abfd);
8051 break;
8052 case MAP_SYM_SHNDX:
8053 if (elf_symtab_shndx_list (abfd))
8054 shndx = elf_symtab_shndx_list (abfd)->ndx;
8055 break;
8056 default:
8057 shndx = SHN_ABS;
8058 break;
8059 }
8060 }
8061 else
8062 {
8063 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8064
8065 if (shndx == SHN_BAD)
8066 {
8067 asection *sec2;
8068
8069 /* Writing this would be a hell of a lot easier if
8070 we had some decent documentation on bfd, and
8071 knew what to expect of the library, and what to
8072 demand of applications. For example, it
8073 appears that `objcopy' might not set the
8074 section of a symbol to be a section that is
8075 actually in the output file. */
8076 sec2 = bfd_get_section_by_name (abfd, sec->name);
8077 if (sec2 != NULL)
8078 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8079 if (shndx == SHN_BAD)
8080 {
8081 /* xgettext:c-format */
8082 _bfd_error_handler
8083 (_("unable to find equivalent output section"
8084 " for symbol '%s' from section '%s'"),
8085 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8086 sec->name);
8087 bfd_set_error (bfd_error_invalid_operation);
8088 goto error_return;
8089 }
8090 }
8091 }
8092
8093 sym.st_shndx = shndx;
8094 }
8095
8096 if ((flags & BSF_THREAD_LOCAL) != 0)
8097 type = STT_TLS;
8098 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8099 type = STT_GNU_IFUNC;
8100 else if ((flags & BSF_FUNCTION) != 0)
8101 type = STT_FUNC;
8102 else if ((flags & BSF_OBJECT) != 0)
8103 type = STT_OBJECT;
8104 else if ((flags & BSF_RELC) != 0)
8105 type = STT_RELC;
8106 else if ((flags & BSF_SRELC) != 0)
8107 type = STT_SRELC;
8108 else
8109 type = STT_NOTYPE;
8110
8111 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8112 type = STT_TLS;
8113
8114 /* Processor-specific types. */
8115 if (type_ptr != NULL
8116 && bed->elf_backend_get_symbol_type)
8117 type = ((*bed->elf_backend_get_symbol_type)
8118 (&type_ptr->internal_elf_sym, type));
8119
8120 if (flags & BSF_SECTION_SYM)
8121 {
8122 if (flags & BSF_GLOBAL)
8123 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8124 else
8125 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8126 }
8127 else if (bfd_is_com_section (syms[idx]->section))
8128 {
8129 if (type != STT_TLS)
8130 {
8131 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8132 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8133 ? STT_COMMON : STT_OBJECT);
8134 else
8135 type = ((flags & BSF_ELF_COMMON) != 0
8136 ? STT_COMMON : STT_OBJECT);
8137 }
8138 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8139 }
8140 else if (bfd_is_und_section (syms[idx]->section))
8141 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8142 ? STB_WEAK
8143 : STB_GLOBAL),
8144 type);
8145 else if (flags & BSF_FILE)
8146 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8147 else
8148 {
8149 int bind = STB_LOCAL;
8150
8151 if (flags & BSF_LOCAL)
8152 bind = STB_LOCAL;
8153 else if (flags & BSF_GNU_UNIQUE)
8154 bind = STB_GNU_UNIQUE;
8155 else if (flags & BSF_WEAK)
8156 bind = STB_WEAK;
8157 else if (flags & BSF_GLOBAL)
8158 bind = STB_GLOBAL;
8159
8160 sym.st_info = ELF_ST_INFO (bind, type);
8161 }
8162
8163 if (type_ptr != NULL)
8164 {
8165 sym.st_other = type_ptr->internal_elf_sym.st_other;
8166 sym.st_target_internal
8167 = type_ptr->internal_elf_sym.st_target_internal;
8168 }
8169 else
8170 {
8171 sym.st_other = 0;
8172 sym.st_target_internal = 0;
8173 }
8174
8175 idx++;
8176 symstrtab[idx].sym = sym;
8177 symstrtab[idx].dest_index = outbound_syms_index;
8178 symstrtab[idx].destshndx_index = outbound_shndx_index;
8179
8180 outbound_syms_index++;
8181 if (outbound_shndx != NULL)
8182 outbound_shndx_index++;
8183 }
8184
8185 /* Finalize the .strtab section. */
8186 _bfd_elf_strtab_finalize (stt);
8187
8188 /* Swap out the .strtab section. */
8189 for (idx = 0; idx <= symcount; idx++)
8190 {
8191 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8192 if (elfsym->sym.st_name == (unsigned long) -1)
8193 elfsym->sym.st_name = 0;
8194 else
8195 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8196 elfsym->sym.st_name);
8197 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8198 (outbound_syms
8199 + (elfsym->dest_index
8200 * bed->s->sizeof_sym)),
8201 (outbound_shndx
8202 + (elfsym->destshndx_index
8203 * sizeof (Elf_External_Sym_Shndx))));
8204 }
8205 free (symstrtab);
8206
8207 *sttp = stt;
8208 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8209 symstrtab_hdr->sh_type = SHT_STRTAB;
8210 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8211 symstrtab_hdr->sh_addr = 0;
8212 symstrtab_hdr->sh_entsize = 0;
8213 symstrtab_hdr->sh_link = 0;
8214 symstrtab_hdr->sh_info = 0;
8215 symstrtab_hdr->sh_addralign = 1;
8216
8217 return TRUE;
8218 }
8219
8220 /* Return the number of bytes required to hold the symtab vector.
8221
8222 Note that we base it on the count plus 1, since we will null terminate
8223 the vector allocated based on this size. However, the ELF symbol table
8224 always has a dummy entry as symbol #0, so it ends up even. */
8225
8226 long
8227 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8228 {
8229 bfd_size_type symcount;
8230 long symtab_size;
8231 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8232
8233 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8234 if (symcount >= LONG_MAX / sizeof (asymbol *))
8235 {
8236 bfd_set_error (bfd_error_file_too_big);
8237 return -1;
8238 }
8239 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8240 if (symcount > 0)
8241 symtab_size -= sizeof (asymbol *);
8242
8243 return symtab_size;
8244 }
8245
8246 long
8247 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8248 {
8249 bfd_size_type symcount;
8250 long symtab_size;
8251 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8252
8253 if (elf_dynsymtab (abfd) == 0)
8254 {
8255 bfd_set_error (bfd_error_invalid_operation);
8256 return -1;
8257 }
8258
8259 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8260 if (symcount >= LONG_MAX / sizeof (asymbol *))
8261 {
8262 bfd_set_error (bfd_error_file_too_big);
8263 return -1;
8264 }
8265 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8266 if (symcount > 0)
8267 symtab_size -= sizeof (asymbol *);
8268
8269 return symtab_size;
8270 }
8271
8272 long
8273 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8274 sec_ptr asect)
8275 {
8276 #if SIZEOF_LONG == SIZEOF_INT
8277 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8278 {
8279 bfd_set_error (bfd_error_file_too_big);
8280 return -1;
8281 }
8282 #endif
8283 return (asect->reloc_count + 1) * sizeof (arelent *);
8284 }
8285
8286 /* Canonicalize the relocs. */
8287
8288 long
8289 _bfd_elf_canonicalize_reloc (bfd *abfd,
8290 sec_ptr section,
8291 arelent **relptr,
8292 asymbol **symbols)
8293 {
8294 arelent *tblptr;
8295 unsigned int i;
8296 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8297
8298 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8299 return -1;
8300
8301 tblptr = section->relocation;
8302 for (i = 0; i < section->reloc_count; i++)
8303 *relptr++ = tblptr++;
8304
8305 *relptr = NULL;
8306
8307 return section->reloc_count;
8308 }
8309
8310 long
8311 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8312 {
8313 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8314 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8315
8316 if (symcount >= 0)
8317 bfd_get_symcount (abfd) = symcount;
8318 return symcount;
8319 }
8320
8321 long
8322 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8323 asymbol **allocation)
8324 {
8325 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8326 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8327
8328 if (symcount >= 0)
8329 bfd_get_dynamic_symcount (abfd) = symcount;
8330 return symcount;
8331 }
8332
8333 /* Return the size required for the dynamic reloc entries. Any loadable
8334 section that was actually installed in the BFD, and has type SHT_REL
8335 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8336 dynamic reloc section. */
8337
8338 long
8339 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8340 {
8341 bfd_size_type count;
8342 asection *s;
8343
8344 if (elf_dynsymtab (abfd) == 0)
8345 {
8346 bfd_set_error (bfd_error_invalid_operation);
8347 return -1;
8348 }
8349
8350 count = 1;
8351 for (s = abfd->sections; s != NULL; s = s->next)
8352 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8353 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8354 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8355 {
8356 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8357 if (count > LONG_MAX / sizeof (arelent *))
8358 {
8359 bfd_set_error (bfd_error_file_too_big);
8360 return -1;
8361 }
8362 }
8363 return count * sizeof (arelent *);
8364 }
8365
8366 /* Canonicalize the dynamic relocation entries. Note that we return the
8367 dynamic relocations as a single block, although they are actually
8368 associated with particular sections; the interface, which was
8369 designed for SunOS style shared libraries, expects that there is only
8370 one set of dynamic relocs. Any loadable section that was actually
8371 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8372 dynamic symbol table, is considered to be a dynamic reloc section. */
8373
8374 long
8375 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8376 arelent **storage,
8377 asymbol **syms)
8378 {
8379 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8380 asection *s;
8381 long ret;
8382
8383 if (elf_dynsymtab (abfd) == 0)
8384 {
8385 bfd_set_error (bfd_error_invalid_operation);
8386 return -1;
8387 }
8388
8389 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8390 ret = 0;
8391 for (s = abfd->sections; s != NULL; s = s->next)
8392 {
8393 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8394 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8395 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8396 {
8397 arelent *p;
8398 long count, i;
8399
8400 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8401 return -1;
8402 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8403 p = s->relocation;
8404 for (i = 0; i < count; i++)
8405 *storage++ = p++;
8406 ret += count;
8407 }
8408 }
8409
8410 *storage = NULL;
8411
8412 return ret;
8413 }
8414 \f
8415 /* Read in the version information. */
8416
8417 bfd_boolean
8418 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8419 {
8420 bfd_byte *contents = NULL;
8421 unsigned int freeidx = 0;
8422
8423 if (elf_dynverref (abfd) != 0)
8424 {
8425 Elf_Internal_Shdr *hdr;
8426 Elf_External_Verneed *everneed;
8427 Elf_Internal_Verneed *iverneed;
8428 unsigned int i;
8429 bfd_byte *contents_end;
8430
8431 hdr = &elf_tdata (abfd)->dynverref_hdr;
8432
8433 if (hdr->sh_info == 0
8434 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8435 {
8436 error_return_bad_verref:
8437 _bfd_error_handler
8438 (_("%pB: .gnu.version_r invalid entry"), abfd);
8439 bfd_set_error (bfd_error_bad_value);
8440 error_return_verref:
8441 elf_tdata (abfd)->verref = NULL;
8442 elf_tdata (abfd)->cverrefs = 0;
8443 goto error_return;
8444 }
8445
8446 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8447 if (contents == NULL)
8448 goto error_return_verref;
8449
8450 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8451 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8452 goto error_return_verref;
8453
8454 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8455 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8456
8457 if (elf_tdata (abfd)->verref == NULL)
8458 goto error_return_verref;
8459
8460 BFD_ASSERT (sizeof (Elf_External_Verneed)
8461 == sizeof (Elf_External_Vernaux));
8462 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8463 everneed = (Elf_External_Verneed *) contents;
8464 iverneed = elf_tdata (abfd)->verref;
8465 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8466 {
8467 Elf_External_Vernaux *evernaux;
8468 Elf_Internal_Vernaux *ivernaux;
8469 unsigned int j;
8470
8471 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8472
8473 iverneed->vn_bfd = abfd;
8474
8475 iverneed->vn_filename =
8476 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8477 iverneed->vn_file);
8478 if (iverneed->vn_filename == NULL)
8479 goto error_return_bad_verref;
8480
8481 if (iverneed->vn_cnt == 0)
8482 iverneed->vn_auxptr = NULL;
8483 else
8484 {
8485 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8486 bfd_alloc2 (abfd, iverneed->vn_cnt,
8487 sizeof (Elf_Internal_Vernaux));
8488 if (iverneed->vn_auxptr == NULL)
8489 goto error_return_verref;
8490 }
8491
8492 if (iverneed->vn_aux
8493 > (size_t) (contents_end - (bfd_byte *) everneed))
8494 goto error_return_bad_verref;
8495
8496 evernaux = ((Elf_External_Vernaux *)
8497 ((bfd_byte *) everneed + iverneed->vn_aux));
8498 ivernaux = iverneed->vn_auxptr;
8499 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8500 {
8501 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8502
8503 ivernaux->vna_nodename =
8504 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8505 ivernaux->vna_name);
8506 if (ivernaux->vna_nodename == NULL)
8507 goto error_return_bad_verref;
8508
8509 if (ivernaux->vna_other > freeidx)
8510 freeidx = ivernaux->vna_other;
8511
8512 ivernaux->vna_nextptr = NULL;
8513 if (ivernaux->vna_next == 0)
8514 {
8515 iverneed->vn_cnt = j + 1;
8516 break;
8517 }
8518 if (j + 1 < iverneed->vn_cnt)
8519 ivernaux->vna_nextptr = ivernaux + 1;
8520
8521 if (ivernaux->vna_next
8522 > (size_t) (contents_end - (bfd_byte *) evernaux))
8523 goto error_return_bad_verref;
8524
8525 evernaux = ((Elf_External_Vernaux *)
8526 ((bfd_byte *) evernaux + ivernaux->vna_next));
8527 }
8528
8529 iverneed->vn_nextref = NULL;
8530 if (iverneed->vn_next == 0)
8531 break;
8532 if (i + 1 < hdr->sh_info)
8533 iverneed->vn_nextref = iverneed + 1;
8534
8535 if (iverneed->vn_next
8536 > (size_t) (contents_end - (bfd_byte *) everneed))
8537 goto error_return_bad_verref;
8538
8539 everneed = ((Elf_External_Verneed *)
8540 ((bfd_byte *) everneed + iverneed->vn_next));
8541 }
8542 elf_tdata (abfd)->cverrefs = i;
8543
8544 free (contents);
8545 contents = NULL;
8546 }
8547
8548 if (elf_dynverdef (abfd) != 0)
8549 {
8550 Elf_Internal_Shdr *hdr;
8551 Elf_External_Verdef *everdef;
8552 Elf_Internal_Verdef *iverdef;
8553 Elf_Internal_Verdef *iverdefarr;
8554 Elf_Internal_Verdef iverdefmem;
8555 unsigned int i;
8556 unsigned int maxidx;
8557 bfd_byte *contents_end_def, *contents_end_aux;
8558
8559 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8560
8561 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8562 {
8563 error_return_bad_verdef:
8564 _bfd_error_handler
8565 (_("%pB: .gnu.version_d invalid entry"), abfd);
8566 bfd_set_error (bfd_error_bad_value);
8567 error_return_verdef:
8568 elf_tdata (abfd)->verdef = NULL;
8569 elf_tdata (abfd)->cverdefs = 0;
8570 goto error_return;
8571 }
8572
8573 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8574 if (contents == NULL)
8575 goto error_return_verdef;
8576 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8577 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8578 goto error_return_verdef;
8579
8580 BFD_ASSERT (sizeof (Elf_External_Verdef)
8581 >= sizeof (Elf_External_Verdaux));
8582 contents_end_def = contents + hdr->sh_size
8583 - sizeof (Elf_External_Verdef);
8584 contents_end_aux = contents + hdr->sh_size
8585 - sizeof (Elf_External_Verdaux);
8586
8587 /* We know the number of entries in the section but not the maximum
8588 index. Therefore we have to run through all entries and find
8589 the maximum. */
8590 everdef = (Elf_External_Verdef *) contents;
8591 maxidx = 0;
8592 for (i = 0; i < hdr->sh_info; ++i)
8593 {
8594 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8595
8596 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8597 goto error_return_bad_verdef;
8598 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8599 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8600
8601 if (iverdefmem.vd_next == 0)
8602 break;
8603
8604 if (iverdefmem.vd_next
8605 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8606 goto error_return_bad_verdef;
8607
8608 everdef = ((Elf_External_Verdef *)
8609 ((bfd_byte *) everdef + iverdefmem.vd_next));
8610 }
8611
8612 if (default_imported_symver)
8613 {
8614 if (freeidx > maxidx)
8615 maxidx = ++freeidx;
8616 else
8617 freeidx = ++maxidx;
8618 }
8619
8620 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8621 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8622 if (elf_tdata (abfd)->verdef == NULL)
8623 goto error_return_verdef;
8624
8625 elf_tdata (abfd)->cverdefs = maxidx;
8626
8627 everdef = (Elf_External_Verdef *) contents;
8628 iverdefarr = elf_tdata (abfd)->verdef;
8629 for (i = 0; i < hdr->sh_info; i++)
8630 {
8631 Elf_External_Verdaux *everdaux;
8632 Elf_Internal_Verdaux *iverdaux;
8633 unsigned int j;
8634
8635 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8636
8637 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8638 goto error_return_bad_verdef;
8639
8640 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8641 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8642
8643 iverdef->vd_bfd = abfd;
8644
8645 if (iverdef->vd_cnt == 0)
8646 iverdef->vd_auxptr = NULL;
8647 else
8648 {
8649 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8650 bfd_alloc2 (abfd, iverdef->vd_cnt,
8651 sizeof (Elf_Internal_Verdaux));
8652 if (iverdef->vd_auxptr == NULL)
8653 goto error_return_verdef;
8654 }
8655
8656 if (iverdef->vd_aux
8657 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8658 goto error_return_bad_verdef;
8659
8660 everdaux = ((Elf_External_Verdaux *)
8661 ((bfd_byte *) everdef + iverdef->vd_aux));
8662 iverdaux = iverdef->vd_auxptr;
8663 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8664 {
8665 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8666
8667 iverdaux->vda_nodename =
8668 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8669 iverdaux->vda_name);
8670 if (iverdaux->vda_nodename == NULL)
8671 goto error_return_bad_verdef;
8672
8673 iverdaux->vda_nextptr = NULL;
8674 if (iverdaux->vda_next == 0)
8675 {
8676 iverdef->vd_cnt = j + 1;
8677 break;
8678 }
8679 if (j + 1 < iverdef->vd_cnt)
8680 iverdaux->vda_nextptr = iverdaux + 1;
8681
8682 if (iverdaux->vda_next
8683 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8684 goto error_return_bad_verdef;
8685
8686 everdaux = ((Elf_External_Verdaux *)
8687 ((bfd_byte *) everdaux + iverdaux->vda_next));
8688 }
8689
8690 iverdef->vd_nodename = NULL;
8691 if (iverdef->vd_cnt)
8692 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8693
8694 iverdef->vd_nextdef = NULL;
8695 if (iverdef->vd_next == 0)
8696 break;
8697 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8698 iverdef->vd_nextdef = iverdef + 1;
8699
8700 everdef = ((Elf_External_Verdef *)
8701 ((bfd_byte *) everdef + iverdef->vd_next));
8702 }
8703
8704 free (contents);
8705 contents = NULL;
8706 }
8707 else if (default_imported_symver)
8708 {
8709 if (freeidx < 3)
8710 freeidx = 3;
8711 else
8712 freeidx++;
8713
8714 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8715 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8716 if (elf_tdata (abfd)->verdef == NULL)
8717 goto error_return;
8718
8719 elf_tdata (abfd)->cverdefs = freeidx;
8720 }
8721
8722 /* Create a default version based on the soname. */
8723 if (default_imported_symver)
8724 {
8725 Elf_Internal_Verdef *iverdef;
8726 Elf_Internal_Verdaux *iverdaux;
8727
8728 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8729
8730 iverdef->vd_version = VER_DEF_CURRENT;
8731 iverdef->vd_flags = 0;
8732 iverdef->vd_ndx = freeidx;
8733 iverdef->vd_cnt = 1;
8734
8735 iverdef->vd_bfd = abfd;
8736
8737 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8738 if (iverdef->vd_nodename == NULL)
8739 goto error_return_verdef;
8740 iverdef->vd_nextdef = NULL;
8741 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8742 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8743 if (iverdef->vd_auxptr == NULL)
8744 goto error_return_verdef;
8745
8746 iverdaux = iverdef->vd_auxptr;
8747 iverdaux->vda_nodename = iverdef->vd_nodename;
8748 }
8749
8750 return TRUE;
8751
8752 error_return:
8753 if (contents != NULL)
8754 free (contents);
8755 return FALSE;
8756 }
8757 \f
8758 asymbol *
8759 _bfd_elf_make_empty_symbol (bfd *abfd)
8760 {
8761 elf_symbol_type *newsym;
8762
8763 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8764 if (!newsym)
8765 return NULL;
8766 newsym->symbol.the_bfd = abfd;
8767 return &newsym->symbol;
8768 }
8769
8770 void
8771 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8772 asymbol *symbol,
8773 symbol_info *ret)
8774 {
8775 bfd_symbol_info (symbol, ret);
8776 }
8777
8778 /* Return whether a symbol name implies a local symbol. Most targets
8779 use this function for the is_local_label_name entry point, but some
8780 override it. */
8781
8782 bfd_boolean
8783 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8784 const char *name)
8785 {
8786 /* Normal local symbols start with ``.L''. */
8787 if (name[0] == '.' && name[1] == 'L')
8788 return TRUE;
8789
8790 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8791 DWARF debugging symbols starting with ``..''. */
8792 if (name[0] == '.' && name[1] == '.')
8793 return TRUE;
8794
8795 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8796 emitting DWARF debugging output. I suspect this is actually a
8797 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8798 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8799 underscore to be emitted on some ELF targets). For ease of use,
8800 we treat such symbols as local. */
8801 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8802 return TRUE;
8803
8804 /* Treat assembler generated fake symbols, dollar local labels and
8805 forward-backward labels (aka local labels) as locals.
8806 These labels have the form:
8807
8808 L0^A.* (fake symbols)
8809
8810 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8811
8812 Versions which start with .L will have already been matched above,
8813 so we only need to match the rest. */
8814 if (name[0] == 'L' && ISDIGIT (name[1]))
8815 {
8816 bfd_boolean ret = FALSE;
8817 const char * p;
8818 char c;
8819
8820 for (p = name + 2; (c = *p); p++)
8821 {
8822 if (c == 1 || c == 2)
8823 {
8824 if (c == 1 && p == name + 2)
8825 /* A fake symbol. */
8826 return TRUE;
8827
8828 /* FIXME: We are being paranoid here and treating symbols like
8829 L0^Bfoo as if there were non-local, on the grounds that the
8830 assembler will never generate them. But can any symbol
8831 containing an ASCII value in the range 1-31 ever be anything
8832 other than some kind of local ? */
8833 ret = TRUE;
8834 }
8835
8836 if (! ISDIGIT (c))
8837 {
8838 ret = FALSE;
8839 break;
8840 }
8841 }
8842 return ret;
8843 }
8844
8845 return FALSE;
8846 }
8847
8848 alent *
8849 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8850 asymbol *symbol ATTRIBUTE_UNUSED)
8851 {
8852 abort ();
8853 return NULL;
8854 }
8855
8856 bfd_boolean
8857 _bfd_elf_set_arch_mach (bfd *abfd,
8858 enum bfd_architecture arch,
8859 unsigned long machine)
8860 {
8861 /* If this isn't the right architecture for this backend, and this
8862 isn't the generic backend, fail. */
8863 if (arch != get_elf_backend_data (abfd)->arch
8864 && arch != bfd_arch_unknown
8865 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8866 return FALSE;
8867
8868 return bfd_default_set_arch_mach (abfd, arch, machine);
8869 }
8870
8871 /* Find the nearest line to a particular section and offset,
8872 for error reporting. */
8873
8874 bfd_boolean
8875 _bfd_elf_find_nearest_line (bfd *abfd,
8876 asymbol **symbols,
8877 asection *section,
8878 bfd_vma offset,
8879 const char **filename_ptr,
8880 const char **functionname_ptr,
8881 unsigned int *line_ptr,
8882 unsigned int *discriminator_ptr)
8883 {
8884 bfd_boolean found;
8885
8886 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8887 filename_ptr, functionname_ptr,
8888 line_ptr, discriminator_ptr,
8889 dwarf_debug_sections, 0,
8890 &elf_tdata (abfd)->dwarf2_find_line_info)
8891 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8892 filename_ptr, functionname_ptr,
8893 line_ptr))
8894 {
8895 if (!*functionname_ptr)
8896 _bfd_elf_find_function (abfd, symbols, section, offset,
8897 *filename_ptr ? NULL : filename_ptr,
8898 functionname_ptr);
8899 return TRUE;
8900 }
8901
8902 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8903 &found, filename_ptr,
8904 functionname_ptr, line_ptr,
8905 &elf_tdata (abfd)->line_info))
8906 return FALSE;
8907 if (found && (*functionname_ptr || *line_ptr))
8908 return TRUE;
8909
8910 if (symbols == NULL)
8911 return FALSE;
8912
8913 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8914 filename_ptr, functionname_ptr))
8915 return FALSE;
8916
8917 *line_ptr = 0;
8918 return TRUE;
8919 }
8920
8921 /* Find the line for a symbol. */
8922
8923 bfd_boolean
8924 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8925 const char **filename_ptr, unsigned int *line_ptr)
8926 {
8927 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8928 filename_ptr, NULL, line_ptr, NULL,
8929 dwarf_debug_sections, 0,
8930 &elf_tdata (abfd)->dwarf2_find_line_info);
8931 }
8932
8933 /* After a call to bfd_find_nearest_line, successive calls to
8934 bfd_find_inliner_info can be used to get source information about
8935 each level of function inlining that terminated at the address
8936 passed to bfd_find_nearest_line. Currently this is only supported
8937 for DWARF2 with appropriate DWARF3 extensions. */
8938
8939 bfd_boolean
8940 _bfd_elf_find_inliner_info (bfd *abfd,
8941 const char **filename_ptr,
8942 const char **functionname_ptr,
8943 unsigned int *line_ptr)
8944 {
8945 bfd_boolean found;
8946 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8947 functionname_ptr, line_ptr,
8948 & elf_tdata (abfd)->dwarf2_find_line_info);
8949 return found;
8950 }
8951
8952 int
8953 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8954 {
8955 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8956 int ret = bed->s->sizeof_ehdr;
8957
8958 if (!bfd_link_relocatable (info))
8959 {
8960 bfd_size_type phdr_size = elf_program_header_size (abfd);
8961
8962 if (phdr_size == (bfd_size_type) -1)
8963 {
8964 struct elf_segment_map *m;
8965
8966 phdr_size = 0;
8967 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8968 phdr_size += bed->s->sizeof_phdr;
8969
8970 if (phdr_size == 0)
8971 phdr_size = get_program_header_size (abfd, info);
8972 }
8973
8974 elf_program_header_size (abfd) = phdr_size;
8975 ret += phdr_size;
8976 }
8977
8978 return ret;
8979 }
8980
8981 bfd_boolean
8982 _bfd_elf_set_section_contents (bfd *abfd,
8983 sec_ptr section,
8984 const void *location,
8985 file_ptr offset,
8986 bfd_size_type count)
8987 {
8988 Elf_Internal_Shdr *hdr;
8989 file_ptr pos;
8990
8991 if (! abfd->output_has_begun
8992 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8993 return FALSE;
8994
8995 if (!count)
8996 return TRUE;
8997
8998 hdr = &elf_section_data (section)->this_hdr;
8999 if (hdr->sh_offset == (file_ptr) -1)
9000 {
9001 /* We must compress this section. Write output to the buffer. */
9002 unsigned char *contents = hdr->contents;
9003 if ((offset + count) > hdr->sh_size
9004 || (section->flags & SEC_ELF_COMPRESS) == 0
9005 || contents == NULL)
9006 abort ();
9007 memcpy (contents + offset, location, count);
9008 return TRUE;
9009 }
9010 pos = hdr->sh_offset + offset;
9011 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9012 || bfd_bwrite (location, count, abfd) != count)
9013 return FALSE;
9014
9015 return TRUE;
9016 }
9017
9018 bfd_boolean
9019 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9020 arelent *cache_ptr ATTRIBUTE_UNUSED,
9021 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9022 {
9023 abort ();
9024 return FALSE;
9025 }
9026
9027 /* Try to convert a non-ELF reloc into an ELF one. */
9028
9029 bfd_boolean
9030 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9031 {
9032 /* Check whether we really have an ELF howto. */
9033
9034 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9035 {
9036 bfd_reloc_code_real_type code;
9037 reloc_howto_type *howto;
9038
9039 /* Alien reloc: Try to determine its type to replace it with an
9040 equivalent ELF reloc. */
9041
9042 if (areloc->howto->pc_relative)
9043 {
9044 switch (areloc->howto->bitsize)
9045 {
9046 case 8:
9047 code = BFD_RELOC_8_PCREL;
9048 break;
9049 case 12:
9050 code = BFD_RELOC_12_PCREL;
9051 break;
9052 case 16:
9053 code = BFD_RELOC_16_PCREL;
9054 break;
9055 case 24:
9056 code = BFD_RELOC_24_PCREL;
9057 break;
9058 case 32:
9059 code = BFD_RELOC_32_PCREL;
9060 break;
9061 case 64:
9062 code = BFD_RELOC_64_PCREL;
9063 break;
9064 default:
9065 goto fail;
9066 }
9067
9068 howto = bfd_reloc_type_lookup (abfd, code);
9069
9070 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
9071 {
9072 if (howto->pcrel_offset)
9073 areloc->addend += areloc->address;
9074 else
9075 areloc->addend -= areloc->address; /* addend is unsigned!! */
9076 }
9077 }
9078 else
9079 {
9080 switch (areloc->howto->bitsize)
9081 {
9082 case 8:
9083 code = BFD_RELOC_8;
9084 break;
9085 case 14:
9086 code = BFD_RELOC_14;
9087 break;
9088 case 16:
9089 code = BFD_RELOC_16;
9090 break;
9091 case 26:
9092 code = BFD_RELOC_26;
9093 break;
9094 case 32:
9095 code = BFD_RELOC_32;
9096 break;
9097 case 64:
9098 code = BFD_RELOC_64;
9099 break;
9100 default:
9101 goto fail;
9102 }
9103
9104 howto = bfd_reloc_type_lookup (abfd, code);
9105 }
9106
9107 if (howto)
9108 areloc->howto = howto;
9109 else
9110 goto fail;
9111 }
9112
9113 return TRUE;
9114
9115 fail:
9116 /* xgettext:c-format */
9117 _bfd_error_handler (_("%pB: %s unsupported"),
9118 abfd, areloc->howto->name);
9119 bfd_set_error (bfd_error_bad_value);
9120 return FALSE;
9121 }
9122
9123 bfd_boolean
9124 _bfd_elf_close_and_cleanup (bfd *abfd)
9125 {
9126 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9127 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9128 {
9129 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9130 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9131 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9132 }
9133
9134 return _bfd_generic_close_and_cleanup (abfd);
9135 }
9136
9137 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9138 in the relocation's offset. Thus we cannot allow any sort of sanity
9139 range-checking to interfere. There is nothing else to do in processing
9140 this reloc. */
9141
9142 bfd_reloc_status_type
9143 _bfd_elf_rel_vtable_reloc_fn
9144 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9145 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9146 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9147 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9148 {
9149 return bfd_reloc_ok;
9150 }
9151 \f
9152 /* Elf core file support. Much of this only works on native
9153 toolchains, since we rely on knowing the
9154 machine-dependent procfs structure in order to pick
9155 out details about the corefile. */
9156
9157 #ifdef HAVE_SYS_PROCFS_H
9158 /* Needed for new procfs interface on sparc-solaris. */
9159 # define _STRUCTURED_PROC 1
9160 # include <sys/procfs.h>
9161 #endif
9162
9163 /* Return a PID that identifies a "thread" for threaded cores, or the
9164 PID of the main process for non-threaded cores. */
9165
9166 static int
9167 elfcore_make_pid (bfd *abfd)
9168 {
9169 int pid;
9170
9171 pid = elf_tdata (abfd)->core->lwpid;
9172 if (pid == 0)
9173 pid = elf_tdata (abfd)->core->pid;
9174
9175 return pid;
9176 }
9177
9178 /* If there isn't a section called NAME, make one, using
9179 data from SECT. Note, this function will generate a
9180 reference to NAME, so you shouldn't deallocate or
9181 overwrite it. */
9182
9183 static bfd_boolean
9184 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9185 {
9186 asection *sect2;
9187
9188 if (bfd_get_section_by_name (abfd, name) != NULL)
9189 return TRUE;
9190
9191 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9192 if (sect2 == NULL)
9193 return FALSE;
9194
9195 sect2->size = sect->size;
9196 sect2->filepos = sect->filepos;
9197 sect2->alignment_power = sect->alignment_power;
9198 return TRUE;
9199 }
9200
9201 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9202 actually creates up to two pseudosections:
9203 - For the single-threaded case, a section named NAME, unless
9204 such a section already exists.
9205 - For the multi-threaded case, a section named "NAME/PID", where
9206 PID is elfcore_make_pid (abfd).
9207 Both pseudosections have identical contents. */
9208 bfd_boolean
9209 _bfd_elfcore_make_pseudosection (bfd *abfd,
9210 char *name,
9211 size_t size,
9212 ufile_ptr filepos)
9213 {
9214 char buf[100];
9215 char *threaded_name;
9216 size_t len;
9217 asection *sect;
9218
9219 /* Build the section name. */
9220
9221 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9222 len = strlen (buf) + 1;
9223 threaded_name = (char *) bfd_alloc (abfd, len);
9224 if (threaded_name == NULL)
9225 return FALSE;
9226 memcpy (threaded_name, buf, len);
9227
9228 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9229 SEC_HAS_CONTENTS);
9230 if (sect == NULL)
9231 return FALSE;
9232 sect->size = size;
9233 sect->filepos = filepos;
9234 sect->alignment_power = 2;
9235
9236 return elfcore_maybe_make_sect (abfd, name, sect);
9237 }
9238
9239 /* prstatus_t exists on:
9240 solaris 2.5+
9241 linux 2.[01] + glibc
9242 unixware 4.2
9243 */
9244
9245 #if defined (HAVE_PRSTATUS_T)
9246
9247 static bfd_boolean
9248 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9249 {
9250 size_t size;
9251 int offset;
9252
9253 if (note->descsz == sizeof (prstatus_t))
9254 {
9255 prstatus_t prstat;
9256
9257 size = sizeof (prstat.pr_reg);
9258 offset = offsetof (prstatus_t, pr_reg);
9259 memcpy (&prstat, note->descdata, sizeof (prstat));
9260
9261 /* Do not overwrite the core signal if it
9262 has already been set by another thread. */
9263 if (elf_tdata (abfd)->core->signal == 0)
9264 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9265 if (elf_tdata (abfd)->core->pid == 0)
9266 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9267
9268 /* pr_who exists on:
9269 solaris 2.5+
9270 unixware 4.2
9271 pr_who doesn't exist on:
9272 linux 2.[01]
9273 */
9274 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9275 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9276 #else
9277 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9278 #endif
9279 }
9280 #if defined (HAVE_PRSTATUS32_T)
9281 else if (note->descsz == sizeof (prstatus32_t))
9282 {
9283 /* 64-bit host, 32-bit corefile */
9284 prstatus32_t prstat;
9285
9286 size = sizeof (prstat.pr_reg);
9287 offset = offsetof (prstatus32_t, pr_reg);
9288 memcpy (&prstat, note->descdata, sizeof (prstat));
9289
9290 /* Do not overwrite the core signal if it
9291 has already been set by another thread. */
9292 if (elf_tdata (abfd)->core->signal == 0)
9293 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9294 if (elf_tdata (abfd)->core->pid == 0)
9295 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9296
9297 /* pr_who exists on:
9298 solaris 2.5+
9299 unixware 4.2
9300 pr_who doesn't exist on:
9301 linux 2.[01]
9302 */
9303 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9304 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9305 #else
9306 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9307 #endif
9308 }
9309 #endif /* HAVE_PRSTATUS32_T */
9310 else
9311 {
9312 /* Fail - we don't know how to handle any other
9313 note size (ie. data object type). */
9314 return TRUE;
9315 }
9316
9317 /* Make a ".reg/999" section and a ".reg" section. */
9318 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9319 size, note->descpos + offset);
9320 }
9321 #endif /* defined (HAVE_PRSTATUS_T) */
9322
9323 /* Create a pseudosection containing the exact contents of NOTE. */
9324 static bfd_boolean
9325 elfcore_make_note_pseudosection (bfd *abfd,
9326 char *name,
9327 Elf_Internal_Note *note)
9328 {
9329 return _bfd_elfcore_make_pseudosection (abfd, name,
9330 note->descsz, note->descpos);
9331 }
9332
9333 /* There isn't a consistent prfpregset_t across platforms,
9334 but it doesn't matter, because we don't have to pick this
9335 data structure apart. */
9336
9337 static bfd_boolean
9338 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9339 {
9340 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9341 }
9342
9343 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9344 type of NT_PRXFPREG. Just include the whole note's contents
9345 literally. */
9346
9347 static bfd_boolean
9348 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9349 {
9350 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9351 }
9352
9353 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9354 with a note type of NT_X86_XSTATE. Just include the whole note's
9355 contents literally. */
9356
9357 static bfd_boolean
9358 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9359 {
9360 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9361 }
9362
9363 static bfd_boolean
9364 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9365 {
9366 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9367 }
9368
9369 static bfd_boolean
9370 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9371 {
9372 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9373 }
9374
9375 static bfd_boolean
9376 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9377 {
9378 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9379 }
9380
9381 static bfd_boolean
9382 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9383 {
9384 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9385 }
9386
9387 static bfd_boolean
9388 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9389 {
9390 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9391 }
9392
9393 static bfd_boolean
9394 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9395 {
9396 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9397 }
9398
9399 static bfd_boolean
9400 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9401 {
9402 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9403 }
9404
9405 static bfd_boolean
9406 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9407 {
9408 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9409 }
9410
9411 static bfd_boolean
9412 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9413 {
9414 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9415 }
9416
9417 static bfd_boolean
9418 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9419 {
9420 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9421 }
9422
9423 static bfd_boolean
9424 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9425 {
9426 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9427 }
9428
9429 static bfd_boolean
9430 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9431 {
9432 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9433 }
9434
9435 static bfd_boolean
9436 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9437 {
9438 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9439 }
9440
9441 static bfd_boolean
9442 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9443 {
9444 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9445 }
9446
9447 static bfd_boolean
9448 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9449 {
9450 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9451 }
9452
9453 static bfd_boolean
9454 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9455 {
9456 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9457 }
9458
9459 static bfd_boolean
9460 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9461 {
9462 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9463 }
9464
9465 static bfd_boolean
9466 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9467 {
9468 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9469 }
9470
9471 static bfd_boolean
9472 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9473 {
9474 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9475 }
9476
9477 static bfd_boolean
9478 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9479 {
9480 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9481 }
9482
9483 static bfd_boolean
9484 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9485 {
9486 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9487 }
9488
9489 static bfd_boolean
9490 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9491 {
9492 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9493 }
9494
9495 static bfd_boolean
9496 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9497 {
9498 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9499 }
9500
9501 static bfd_boolean
9502 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9503 {
9504 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9505 }
9506
9507 static bfd_boolean
9508 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9509 {
9510 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9511 }
9512
9513 static bfd_boolean
9514 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9515 {
9516 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9517 }
9518
9519 static bfd_boolean
9520 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9521 {
9522 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9523 }
9524
9525 static bfd_boolean
9526 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9527 {
9528 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9529 }
9530
9531 static bfd_boolean
9532 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9533 {
9534 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9535 }
9536
9537 static bfd_boolean
9538 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9539 {
9540 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9541 }
9542
9543 static bfd_boolean
9544 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9545 {
9546 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9547 }
9548
9549 static bfd_boolean
9550 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9551 {
9552 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9553 }
9554
9555 static bfd_boolean
9556 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9557 {
9558 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9559 }
9560
9561 static bfd_boolean
9562 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9563 {
9564 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9565 }
9566
9567 #if defined (HAVE_PRPSINFO_T)
9568 typedef prpsinfo_t elfcore_psinfo_t;
9569 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9570 typedef prpsinfo32_t elfcore_psinfo32_t;
9571 #endif
9572 #endif
9573
9574 #if defined (HAVE_PSINFO_T)
9575 typedef psinfo_t elfcore_psinfo_t;
9576 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9577 typedef psinfo32_t elfcore_psinfo32_t;
9578 #endif
9579 #endif
9580
9581 /* return a malloc'ed copy of a string at START which is at
9582 most MAX bytes long, possibly without a terminating '\0'.
9583 the copy will always have a terminating '\0'. */
9584
9585 char *
9586 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9587 {
9588 char *dups;
9589 char *end = (char *) memchr (start, '\0', max);
9590 size_t len;
9591
9592 if (end == NULL)
9593 len = max;
9594 else
9595 len = end - start;
9596
9597 dups = (char *) bfd_alloc (abfd, len + 1);
9598 if (dups == NULL)
9599 return NULL;
9600
9601 memcpy (dups, start, len);
9602 dups[len] = '\0';
9603
9604 return dups;
9605 }
9606
9607 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9608 static bfd_boolean
9609 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9610 {
9611 if (note->descsz == sizeof (elfcore_psinfo_t))
9612 {
9613 elfcore_psinfo_t psinfo;
9614
9615 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9616
9617 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9618 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9619 #endif
9620 elf_tdata (abfd)->core->program
9621 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9622 sizeof (psinfo.pr_fname));
9623
9624 elf_tdata (abfd)->core->command
9625 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9626 sizeof (psinfo.pr_psargs));
9627 }
9628 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9629 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9630 {
9631 /* 64-bit host, 32-bit corefile */
9632 elfcore_psinfo32_t psinfo;
9633
9634 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9635
9636 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9637 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9638 #endif
9639 elf_tdata (abfd)->core->program
9640 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9641 sizeof (psinfo.pr_fname));
9642
9643 elf_tdata (abfd)->core->command
9644 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9645 sizeof (psinfo.pr_psargs));
9646 }
9647 #endif
9648
9649 else
9650 {
9651 /* Fail - we don't know how to handle any other
9652 note size (ie. data object type). */
9653 return TRUE;
9654 }
9655
9656 /* Note that for some reason, a spurious space is tacked
9657 onto the end of the args in some (at least one anyway)
9658 implementations, so strip it off if it exists. */
9659
9660 {
9661 char *command = elf_tdata (abfd)->core->command;
9662 int n = strlen (command);
9663
9664 if (0 < n && command[n - 1] == ' ')
9665 command[n - 1] = '\0';
9666 }
9667
9668 return TRUE;
9669 }
9670 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9671
9672 #if defined (HAVE_PSTATUS_T)
9673 static bfd_boolean
9674 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9675 {
9676 if (note->descsz == sizeof (pstatus_t)
9677 #if defined (HAVE_PXSTATUS_T)
9678 || note->descsz == sizeof (pxstatus_t)
9679 #endif
9680 )
9681 {
9682 pstatus_t pstat;
9683
9684 memcpy (&pstat, note->descdata, sizeof (pstat));
9685
9686 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9687 }
9688 #if defined (HAVE_PSTATUS32_T)
9689 else if (note->descsz == sizeof (pstatus32_t))
9690 {
9691 /* 64-bit host, 32-bit corefile */
9692 pstatus32_t pstat;
9693
9694 memcpy (&pstat, note->descdata, sizeof (pstat));
9695
9696 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9697 }
9698 #endif
9699 /* Could grab some more details from the "representative"
9700 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9701 NT_LWPSTATUS note, presumably. */
9702
9703 return TRUE;
9704 }
9705 #endif /* defined (HAVE_PSTATUS_T) */
9706
9707 #if defined (HAVE_LWPSTATUS_T)
9708 static bfd_boolean
9709 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9710 {
9711 lwpstatus_t lwpstat;
9712 char buf[100];
9713 char *name;
9714 size_t len;
9715 asection *sect;
9716
9717 if (note->descsz != sizeof (lwpstat)
9718 #if defined (HAVE_LWPXSTATUS_T)
9719 && note->descsz != sizeof (lwpxstatus_t)
9720 #endif
9721 )
9722 return TRUE;
9723
9724 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9725
9726 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9727 /* Do not overwrite the core signal if it has already been set by
9728 another thread. */
9729 if (elf_tdata (abfd)->core->signal == 0)
9730 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9731
9732 /* Make a ".reg/999" section. */
9733
9734 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9735 len = strlen (buf) + 1;
9736 name = bfd_alloc (abfd, len);
9737 if (name == NULL)
9738 return FALSE;
9739 memcpy (name, buf, len);
9740
9741 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9742 if (sect == NULL)
9743 return FALSE;
9744
9745 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9746 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9747 sect->filepos = note->descpos
9748 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9749 #endif
9750
9751 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9752 sect->size = sizeof (lwpstat.pr_reg);
9753 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9754 #endif
9755
9756 sect->alignment_power = 2;
9757
9758 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9759 return FALSE;
9760
9761 /* Make a ".reg2/999" section */
9762
9763 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9764 len = strlen (buf) + 1;
9765 name = bfd_alloc (abfd, len);
9766 if (name == NULL)
9767 return FALSE;
9768 memcpy (name, buf, len);
9769
9770 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9771 if (sect == NULL)
9772 return FALSE;
9773
9774 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9775 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9776 sect->filepos = note->descpos
9777 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9778 #endif
9779
9780 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9781 sect->size = sizeof (lwpstat.pr_fpreg);
9782 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9783 #endif
9784
9785 sect->alignment_power = 2;
9786
9787 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9788 }
9789 #endif /* defined (HAVE_LWPSTATUS_T) */
9790
9791 static bfd_boolean
9792 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9793 {
9794 char buf[30];
9795 char *name;
9796 size_t len;
9797 asection *sect;
9798 int type;
9799 int is_active_thread;
9800 bfd_vma base_addr;
9801
9802 if (note->descsz < 728)
9803 return TRUE;
9804
9805 if (! CONST_STRNEQ (note->namedata, "win32"))
9806 return TRUE;
9807
9808 type = bfd_get_32 (abfd, note->descdata);
9809
9810 switch (type)
9811 {
9812 case 1 /* NOTE_INFO_PROCESS */:
9813 /* FIXME: need to add ->core->command. */
9814 /* process_info.pid */
9815 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9816 /* process_info.signal */
9817 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9818 break;
9819
9820 case 2 /* NOTE_INFO_THREAD */:
9821 /* Make a ".reg/999" section. */
9822 /* thread_info.tid */
9823 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9824
9825 len = strlen (buf) + 1;
9826 name = (char *) bfd_alloc (abfd, len);
9827 if (name == NULL)
9828 return FALSE;
9829
9830 memcpy (name, buf, len);
9831
9832 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9833 if (sect == NULL)
9834 return FALSE;
9835
9836 /* sizeof (thread_info.thread_context) */
9837 sect->size = 716;
9838 /* offsetof (thread_info.thread_context) */
9839 sect->filepos = note->descpos + 12;
9840 sect->alignment_power = 2;
9841
9842 /* thread_info.is_active_thread */
9843 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9844
9845 if (is_active_thread)
9846 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9847 return FALSE;
9848 break;
9849
9850 case 3 /* NOTE_INFO_MODULE */:
9851 /* Make a ".module/xxxxxxxx" section. */
9852 /* module_info.base_address */
9853 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9854 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9855
9856 len = strlen (buf) + 1;
9857 name = (char *) bfd_alloc (abfd, len);
9858 if (name == NULL)
9859 return FALSE;
9860
9861 memcpy (name, buf, len);
9862
9863 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9864
9865 if (sect == NULL)
9866 return FALSE;
9867
9868 sect->size = note->descsz;
9869 sect->filepos = note->descpos;
9870 sect->alignment_power = 2;
9871 break;
9872
9873 default:
9874 return TRUE;
9875 }
9876
9877 return TRUE;
9878 }
9879
9880 static bfd_boolean
9881 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9882 {
9883 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9884
9885 switch (note->type)
9886 {
9887 default:
9888 return TRUE;
9889
9890 case NT_PRSTATUS:
9891 if (bed->elf_backend_grok_prstatus)
9892 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9893 return TRUE;
9894 #if defined (HAVE_PRSTATUS_T)
9895 return elfcore_grok_prstatus (abfd, note);
9896 #else
9897 return TRUE;
9898 #endif
9899
9900 #if defined (HAVE_PSTATUS_T)
9901 case NT_PSTATUS:
9902 return elfcore_grok_pstatus (abfd, note);
9903 #endif
9904
9905 #if defined (HAVE_LWPSTATUS_T)
9906 case NT_LWPSTATUS:
9907 return elfcore_grok_lwpstatus (abfd, note);
9908 #endif
9909
9910 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9911 return elfcore_grok_prfpreg (abfd, note);
9912
9913 case NT_WIN32PSTATUS:
9914 return elfcore_grok_win32pstatus (abfd, note);
9915
9916 case NT_PRXFPREG: /* Linux SSE extension */
9917 if (note->namesz == 6
9918 && strcmp (note->namedata, "LINUX") == 0)
9919 return elfcore_grok_prxfpreg (abfd, note);
9920 else
9921 return TRUE;
9922
9923 case NT_X86_XSTATE: /* Linux XSAVE extension */
9924 if (note->namesz == 6
9925 && strcmp (note->namedata, "LINUX") == 0)
9926 return elfcore_grok_xstatereg (abfd, note);
9927 else
9928 return TRUE;
9929
9930 case NT_PPC_VMX:
9931 if (note->namesz == 6
9932 && strcmp (note->namedata, "LINUX") == 0)
9933 return elfcore_grok_ppc_vmx (abfd, note);
9934 else
9935 return TRUE;
9936
9937 case NT_PPC_VSX:
9938 if (note->namesz == 6
9939 && strcmp (note->namedata, "LINUX") == 0)
9940 return elfcore_grok_ppc_vsx (abfd, note);
9941 else
9942 return TRUE;
9943
9944 case NT_PPC_TAR:
9945 if (note->namesz == 6
9946 && strcmp (note->namedata, "LINUX") == 0)
9947 return elfcore_grok_ppc_tar (abfd, note);
9948 else
9949 return TRUE;
9950
9951 case NT_PPC_PPR:
9952 if (note->namesz == 6
9953 && strcmp (note->namedata, "LINUX") == 0)
9954 return elfcore_grok_ppc_ppr (abfd, note);
9955 else
9956 return TRUE;
9957
9958 case NT_PPC_DSCR:
9959 if (note->namesz == 6
9960 && strcmp (note->namedata, "LINUX") == 0)
9961 return elfcore_grok_ppc_dscr (abfd, note);
9962 else
9963 return TRUE;
9964
9965 case NT_PPC_EBB:
9966 if (note->namesz == 6
9967 && strcmp (note->namedata, "LINUX") == 0)
9968 return elfcore_grok_ppc_ebb (abfd, note);
9969 else
9970 return TRUE;
9971
9972 case NT_PPC_PMU:
9973 if (note->namesz == 6
9974 && strcmp (note->namedata, "LINUX") == 0)
9975 return elfcore_grok_ppc_pmu (abfd, note);
9976 else
9977 return TRUE;
9978
9979 case NT_PPC_TM_CGPR:
9980 if (note->namesz == 6
9981 && strcmp (note->namedata, "LINUX") == 0)
9982 return elfcore_grok_ppc_tm_cgpr (abfd, note);
9983 else
9984 return TRUE;
9985
9986 case NT_PPC_TM_CFPR:
9987 if (note->namesz == 6
9988 && strcmp (note->namedata, "LINUX") == 0)
9989 return elfcore_grok_ppc_tm_cfpr (abfd, note);
9990 else
9991 return TRUE;
9992
9993 case NT_PPC_TM_CVMX:
9994 if (note->namesz == 6
9995 && strcmp (note->namedata, "LINUX") == 0)
9996 return elfcore_grok_ppc_tm_cvmx (abfd, note);
9997 else
9998 return TRUE;
9999
10000 case NT_PPC_TM_CVSX:
10001 if (note->namesz == 6
10002 && strcmp (note->namedata, "LINUX") == 0)
10003 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10004 else
10005 return TRUE;
10006
10007 case NT_PPC_TM_SPR:
10008 if (note->namesz == 6
10009 && strcmp (note->namedata, "LINUX") == 0)
10010 return elfcore_grok_ppc_tm_spr (abfd, note);
10011 else
10012 return TRUE;
10013
10014 case NT_PPC_TM_CTAR:
10015 if (note->namesz == 6
10016 && strcmp (note->namedata, "LINUX") == 0)
10017 return elfcore_grok_ppc_tm_ctar (abfd, note);
10018 else
10019 return TRUE;
10020
10021 case NT_PPC_TM_CPPR:
10022 if (note->namesz == 6
10023 && strcmp (note->namedata, "LINUX") == 0)
10024 return elfcore_grok_ppc_tm_cppr (abfd, note);
10025 else
10026 return TRUE;
10027
10028 case NT_PPC_TM_CDSCR:
10029 if (note->namesz == 6
10030 && strcmp (note->namedata, "LINUX") == 0)
10031 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10032 else
10033 return TRUE;
10034
10035 case NT_S390_HIGH_GPRS:
10036 if (note->namesz == 6
10037 && strcmp (note->namedata, "LINUX") == 0)
10038 return elfcore_grok_s390_high_gprs (abfd, note);
10039 else
10040 return TRUE;
10041
10042 case NT_S390_TIMER:
10043 if (note->namesz == 6
10044 && strcmp (note->namedata, "LINUX") == 0)
10045 return elfcore_grok_s390_timer (abfd, note);
10046 else
10047 return TRUE;
10048
10049 case NT_S390_TODCMP:
10050 if (note->namesz == 6
10051 && strcmp (note->namedata, "LINUX") == 0)
10052 return elfcore_grok_s390_todcmp (abfd, note);
10053 else
10054 return TRUE;
10055
10056 case NT_S390_TODPREG:
10057 if (note->namesz == 6
10058 && strcmp (note->namedata, "LINUX") == 0)
10059 return elfcore_grok_s390_todpreg (abfd, note);
10060 else
10061 return TRUE;
10062
10063 case NT_S390_CTRS:
10064 if (note->namesz == 6
10065 && strcmp (note->namedata, "LINUX") == 0)
10066 return elfcore_grok_s390_ctrs (abfd, note);
10067 else
10068 return TRUE;
10069
10070 case NT_S390_PREFIX:
10071 if (note->namesz == 6
10072 && strcmp (note->namedata, "LINUX") == 0)
10073 return elfcore_grok_s390_prefix (abfd, note);
10074 else
10075 return TRUE;
10076
10077 case NT_S390_LAST_BREAK:
10078 if (note->namesz == 6
10079 && strcmp (note->namedata, "LINUX") == 0)
10080 return elfcore_grok_s390_last_break (abfd, note);
10081 else
10082 return TRUE;
10083
10084 case NT_S390_SYSTEM_CALL:
10085 if (note->namesz == 6
10086 && strcmp (note->namedata, "LINUX") == 0)
10087 return elfcore_grok_s390_system_call (abfd, note);
10088 else
10089 return TRUE;
10090
10091 case NT_S390_TDB:
10092 if (note->namesz == 6
10093 && strcmp (note->namedata, "LINUX") == 0)
10094 return elfcore_grok_s390_tdb (abfd, note);
10095 else
10096 return TRUE;
10097
10098 case NT_S390_VXRS_LOW:
10099 if (note->namesz == 6
10100 && strcmp (note->namedata, "LINUX") == 0)
10101 return elfcore_grok_s390_vxrs_low (abfd, note);
10102 else
10103 return TRUE;
10104
10105 case NT_S390_VXRS_HIGH:
10106 if (note->namesz == 6
10107 && strcmp (note->namedata, "LINUX") == 0)
10108 return elfcore_grok_s390_vxrs_high (abfd, note);
10109 else
10110 return TRUE;
10111
10112 case NT_S390_GS_CB:
10113 if (note->namesz == 6
10114 && strcmp (note->namedata, "LINUX") == 0)
10115 return elfcore_grok_s390_gs_cb (abfd, note);
10116 else
10117 return TRUE;
10118
10119 case NT_S390_GS_BC:
10120 if (note->namesz == 6
10121 && strcmp (note->namedata, "LINUX") == 0)
10122 return elfcore_grok_s390_gs_bc (abfd, note);
10123 else
10124 return TRUE;
10125
10126 case NT_ARM_VFP:
10127 if (note->namesz == 6
10128 && strcmp (note->namedata, "LINUX") == 0)
10129 return elfcore_grok_arm_vfp (abfd, note);
10130 else
10131 return TRUE;
10132
10133 case NT_ARM_TLS:
10134 if (note->namesz == 6
10135 && strcmp (note->namedata, "LINUX") == 0)
10136 return elfcore_grok_aarch_tls (abfd, note);
10137 else
10138 return TRUE;
10139
10140 case NT_ARM_HW_BREAK:
10141 if (note->namesz == 6
10142 && strcmp (note->namedata, "LINUX") == 0)
10143 return elfcore_grok_aarch_hw_break (abfd, note);
10144 else
10145 return TRUE;
10146
10147 case NT_ARM_HW_WATCH:
10148 if (note->namesz == 6
10149 && strcmp (note->namedata, "LINUX") == 0)
10150 return elfcore_grok_aarch_hw_watch (abfd, note);
10151 else
10152 return TRUE;
10153
10154 case NT_ARM_SVE:
10155 if (note->namesz == 6
10156 && strcmp (note->namedata, "LINUX") == 0)
10157 return elfcore_grok_aarch_sve (abfd, note);
10158 else
10159 return TRUE;
10160
10161 case NT_ARM_PAC_MASK:
10162 if (note->namesz == 6
10163 && strcmp (note->namedata, "LINUX") == 0)
10164 return elfcore_grok_aarch_pauth (abfd, note);
10165 else
10166 return TRUE;
10167
10168 case NT_PRPSINFO:
10169 case NT_PSINFO:
10170 if (bed->elf_backend_grok_psinfo)
10171 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10172 return TRUE;
10173 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10174 return elfcore_grok_psinfo (abfd, note);
10175 #else
10176 return TRUE;
10177 #endif
10178
10179 case NT_AUXV:
10180 {
10181 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10182 SEC_HAS_CONTENTS);
10183
10184 if (sect == NULL)
10185 return FALSE;
10186 sect->size = note->descsz;
10187 sect->filepos = note->descpos;
10188 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10189
10190 return TRUE;
10191 }
10192
10193 case NT_FILE:
10194 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10195 note);
10196
10197 case NT_SIGINFO:
10198 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10199 note);
10200
10201 }
10202 }
10203
10204 static bfd_boolean
10205 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10206 {
10207 struct bfd_build_id* build_id;
10208
10209 if (note->descsz == 0)
10210 return FALSE;
10211
10212 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10213 if (build_id == NULL)
10214 return FALSE;
10215
10216 build_id->size = note->descsz;
10217 memcpy (build_id->data, note->descdata, note->descsz);
10218 abfd->build_id = build_id;
10219
10220 return TRUE;
10221 }
10222
10223 static bfd_boolean
10224 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10225 {
10226 switch (note->type)
10227 {
10228 default:
10229 return TRUE;
10230
10231 case NT_GNU_PROPERTY_TYPE_0:
10232 return _bfd_elf_parse_gnu_properties (abfd, note);
10233
10234 case NT_GNU_BUILD_ID:
10235 return elfobj_grok_gnu_build_id (abfd, note);
10236 }
10237 }
10238
10239 static bfd_boolean
10240 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10241 {
10242 struct sdt_note *cur =
10243 (struct sdt_note *) bfd_alloc (abfd,
10244 sizeof (struct sdt_note) + note->descsz);
10245
10246 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10247 cur->size = (bfd_size_type) note->descsz;
10248 memcpy (cur->data, note->descdata, note->descsz);
10249
10250 elf_tdata (abfd)->sdt_note_head = cur;
10251
10252 return TRUE;
10253 }
10254
10255 static bfd_boolean
10256 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10257 {
10258 switch (note->type)
10259 {
10260 case NT_STAPSDT:
10261 return elfobj_grok_stapsdt_note_1 (abfd, note);
10262
10263 default:
10264 return TRUE;
10265 }
10266 }
10267
10268 static bfd_boolean
10269 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10270 {
10271 size_t offset;
10272
10273 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10274 {
10275 case ELFCLASS32:
10276 if (note->descsz < 108)
10277 return FALSE;
10278 break;
10279
10280 case ELFCLASS64:
10281 if (note->descsz < 120)
10282 return FALSE;
10283 break;
10284
10285 default:
10286 return FALSE;
10287 }
10288
10289 /* Check for version 1 in pr_version. */
10290 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10291 return FALSE;
10292
10293 offset = 4;
10294
10295 /* Skip over pr_psinfosz. */
10296 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10297 offset += 4;
10298 else
10299 {
10300 offset += 4; /* Padding before pr_psinfosz. */
10301 offset += 8;
10302 }
10303
10304 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10305 elf_tdata (abfd)->core->program
10306 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10307 offset += 17;
10308
10309 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10310 elf_tdata (abfd)->core->command
10311 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10312 offset += 81;
10313
10314 /* Padding before pr_pid. */
10315 offset += 2;
10316
10317 /* The pr_pid field was added in version "1a". */
10318 if (note->descsz < offset + 4)
10319 return TRUE;
10320
10321 elf_tdata (abfd)->core->pid
10322 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10323
10324 return TRUE;
10325 }
10326
10327 static bfd_boolean
10328 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10329 {
10330 size_t offset;
10331 size_t size;
10332 size_t min_size;
10333
10334 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10335 Also compute minimum size of this note. */
10336 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10337 {
10338 case ELFCLASS32:
10339 offset = 4 + 4;
10340 min_size = offset + (4 * 2) + 4 + 4 + 4;
10341 break;
10342
10343 case ELFCLASS64:
10344 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10345 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10346 break;
10347
10348 default:
10349 return FALSE;
10350 }
10351
10352 if (note->descsz < min_size)
10353 return FALSE;
10354
10355 /* Check for version 1 in pr_version. */
10356 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10357 return FALSE;
10358
10359 /* Extract size of pr_reg from pr_gregsetsz. */
10360 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10361 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10362 {
10363 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10364 offset += 4 * 2;
10365 }
10366 else
10367 {
10368 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10369 offset += 8 * 2;
10370 }
10371
10372 /* Skip over pr_osreldate. */
10373 offset += 4;
10374
10375 /* Read signal from pr_cursig. */
10376 if (elf_tdata (abfd)->core->signal == 0)
10377 elf_tdata (abfd)->core->signal
10378 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10379 offset += 4;
10380
10381 /* Read TID from pr_pid. */
10382 elf_tdata (abfd)->core->lwpid
10383 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10384 offset += 4;
10385
10386 /* Padding before pr_reg. */
10387 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10388 offset += 4;
10389
10390 /* Make sure that there is enough data remaining in the note. */
10391 if ((note->descsz - offset) < size)
10392 return FALSE;
10393
10394 /* Make a ".reg/999" section and a ".reg" section. */
10395 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10396 size, note->descpos + offset);
10397 }
10398
10399 static bfd_boolean
10400 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10401 {
10402 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10403
10404 switch (note->type)
10405 {
10406 case NT_PRSTATUS:
10407 if (bed->elf_backend_grok_freebsd_prstatus)
10408 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10409 return TRUE;
10410 return elfcore_grok_freebsd_prstatus (abfd, note);
10411
10412 case NT_FPREGSET:
10413 return elfcore_grok_prfpreg (abfd, note);
10414
10415 case NT_PRPSINFO:
10416 return elfcore_grok_freebsd_psinfo (abfd, note);
10417
10418 case NT_FREEBSD_THRMISC:
10419 if (note->namesz == 8)
10420 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10421 else
10422 return TRUE;
10423
10424 case NT_FREEBSD_PROCSTAT_PROC:
10425 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10426 note);
10427
10428 case NT_FREEBSD_PROCSTAT_FILES:
10429 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10430 note);
10431
10432 case NT_FREEBSD_PROCSTAT_VMMAP:
10433 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10434 note);
10435
10436 case NT_FREEBSD_PROCSTAT_AUXV:
10437 {
10438 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10439 SEC_HAS_CONTENTS);
10440
10441 if (sect == NULL)
10442 return FALSE;
10443 sect->size = note->descsz - 4;
10444 sect->filepos = note->descpos + 4;
10445 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10446
10447 return TRUE;
10448 }
10449
10450 case NT_X86_XSTATE:
10451 if (note->namesz == 8)
10452 return elfcore_grok_xstatereg (abfd, note);
10453 else
10454 return TRUE;
10455
10456 case NT_FREEBSD_PTLWPINFO:
10457 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10458 note);
10459
10460 case NT_ARM_VFP:
10461 return elfcore_grok_arm_vfp (abfd, note);
10462
10463 default:
10464 return TRUE;
10465 }
10466 }
10467
10468 static bfd_boolean
10469 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10470 {
10471 char *cp;
10472
10473 cp = strchr (note->namedata, '@');
10474 if (cp != NULL)
10475 {
10476 *lwpidp = atoi(cp + 1);
10477 return TRUE;
10478 }
10479 return FALSE;
10480 }
10481
10482 static bfd_boolean
10483 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10484 {
10485 if (note->descsz <= 0x7c + 31)
10486 return FALSE;
10487
10488 /* Signal number at offset 0x08. */
10489 elf_tdata (abfd)->core->signal
10490 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10491
10492 /* Process ID at offset 0x50. */
10493 elf_tdata (abfd)->core->pid
10494 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10495
10496 /* Command name at 0x7c (max 32 bytes, including nul). */
10497 elf_tdata (abfd)->core->command
10498 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10499
10500 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10501 note);
10502 }
10503
10504 static bfd_boolean
10505 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10506 {
10507 int lwp;
10508
10509 if (elfcore_netbsd_get_lwpid (note, &lwp))
10510 elf_tdata (abfd)->core->lwpid = lwp;
10511
10512 if (note->type == NT_NETBSDCORE_PROCINFO)
10513 {
10514 /* NetBSD-specific core "procinfo". Note that we expect to
10515 find this note before any of the others, which is fine,
10516 since the kernel writes this note out first when it
10517 creates a core file. */
10518
10519 return elfcore_grok_netbsd_procinfo (abfd, note);
10520 }
10521
10522 /* As of Jan 2002 there are no other machine-independent notes
10523 defined for NetBSD core files. If the note type is less
10524 than the start of the machine-dependent note types, we don't
10525 understand it. */
10526
10527 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10528 return TRUE;
10529
10530
10531 switch (bfd_get_arch (abfd))
10532 {
10533 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10534 PT_GETFPREGS == mach+2. */
10535
10536 case bfd_arch_alpha:
10537 case bfd_arch_sparc:
10538 switch (note->type)
10539 {
10540 case NT_NETBSDCORE_FIRSTMACH+0:
10541 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10542
10543 case NT_NETBSDCORE_FIRSTMACH+2:
10544 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10545
10546 default:
10547 return TRUE;
10548 }
10549
10550 /* On all other arch's, PT_GETREGS == mach+1 and
10551 PT_GETFPREGS == mach+3. */
10552
10553 default:
10554 switch (note->type)
10555 {
10556 case NT_NETBSDCORE_FIRSTMACH+1:
10557 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10558
10559 case NT_NETBSDCORE_FIRSTMACH+3:
10560 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10561
10562 default:
10563 return TRUE;
10564 }
10565 }
10566 /* NOTREACHED */
10567 }
10568
10569 static bfd_boolean
10570 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10571 {
10572 if (note->descsz <= 0x48 + 31)
10573 return FALSE;
10574
10575 /* Signal number at offset 0x08. */
10576 elf_tdata (abfd)->core->signal
10577 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10578
10579 /* Process ID at offset 0x20. */
10580 elf_tdata (abfd)->core->pid
10581 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10582
10583 /* Command name at 0x48 (max 32 bytes, including nul). */
10584 elf_tdata (abfd)->core->command
10585 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10586
10587 return TRUE;
10588 }
10589
10590 static bfd_boolean
10591 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10592 {
10593 if (note->type == NT_OPENBSD_PROCINFO)
10594 return elfcore_grok_openbsd_procinfo (abfd, note);
10595
10596 if (note->type == NT_OPENBSD_REGS)
10597 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10598
10599 if (note->type == NT_OPENBSD_FPREGS)
10600 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10601
10602 if (note->type == NT_OPENBSD_XFPREGS)
10603 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10604
10605 if (note->type == NT_OPENBSD_AUXV)
10606 {
10607 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10608 SEC_HAS_CONTENTS);
10609
10610 if (sect == NULL)
10611 return FALSE;
10612 sect->size = note->descsz;
10613 sect->filepos = note->descpos;
10614 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10615
10616 return TRUE;
10617 }
10618
10619 if (note->type == NT_OPENBSD_WCOOKIE)
10620 {
10621 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10622 SEC_HAS_CONTENTS);
10623
10624 if (sect == NULL)
10625 return FALSE;
10626 sect->size = note->descsz;
10627 sect->filepos = note->descpos;
10628 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10629
10630 return TRUE;
10631 }
10632
10633 return TRUE;
10634 }
10635
10636 static bfd_boolean
10637 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10638 {
10639 void *ddata = note->descdata;
10640 char buf[100];
10641 char *name;
10642 asection *sect;
10643 short sig;
10644 unsigned flags;
10645
10646 if (note->descsz < 16)
10647 return FALSE;
10648
10649 /* nto_procfs_status 'pid' field is at offset 0. */
10650 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10651
10652 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10653 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10654
10655 /* nto_procfs_status 'flags' field is at offset 8. */
10656 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10657
10658 /* nto_procfs_status 'what' field is at offset 14. */
10659 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10660 {
10661 elf_tdata (abfd)->core->signal = sig;
10662 elf_tdata (abfd)->core->lwpid = *tid;
10663 }
10664
10665 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10666 do not come from signals so we make sure we set the current
10667 thread just in case. */
10668 if (flags & 0x00000080)
10669 elf_tdata (abfd)->core->lwpid = *tid;
10670
10671 /* Make a ".qnx_core_status/%d" section. */
10672 sprintf (buf, ".qnx_core_status/%ld", *tid);
10673
10674 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10675 if (name == NULL)
10676 return FALSE;
10677 strcpy (name, buf);
10678
10679 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10680 if (sect == NULL)
10681 return FALSE;
10682
10683 sect->size = note->descsz;
10684 sect->filepos = note->descpos;
10685 sect->alignment_power = 2;
10686
10687 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10688 }
10689
10690 static bfd_boolean
10691 elfcore_grok_nto_regs (bfd *abfd,
10692 Elf_Internal_Note *note,
10693 long tid,
10694 char *base)
10695 {
10696 char buf[100];
10697 char *name;
10698 asection *sect;
10699
10700 /* Make a "(base)/%d" section. */
10701 sprintf (buf, "%s/%ld", base, tid);
10702
10703 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10704 if (name == NULL)
10705 return FALSE;
10706 strcpy (name, buf);
10707
10708 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10709 if (sect == NULL)
10710 return FALSE;
10711
10712 sect->size = note->descsz;
10713 sect->filepos = note->descpos;
10714 sect->alignment_power = 2;
10715
10716 /* This is the current thread. */
10717 if (elf_tdata (abfd)->core->lwpid == tid)
10718 return elfcore_maybe_make_sect (abfd, base, sect);
10719
10720 return TRUE;
10721 }
10722
10723 #define BFD_QNT_CORE_INFO 7
10724 #define BFD_QNT_CORE_STATUS 8
10725 #define BFD_QNT_CORE_GREG 9
10726 #define BFD_QNT_CORE_FPREG 10
10727
10728 static bfd_boolean
10729 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10730 {
10731 /* Every GREG section has a STATUS section before it. Store the
10732 tid from the previous call to pass down to the next gregs
10733 function. */
10734 static long tid = 1;
10735
10736 switch (note->type)
10737 {
10738 case BFD_QNT_CORE_INFO:
10739 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10740 case BFD_QNT_CORE_STATUS:
10741 return elfcore_grok_nto_status (abfd, note, &tid);
10742 case BFD_QNT_CORE_GREG:
10743 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10744 case BFD_QNT_CORE_FPREG:
10745 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10746 default:
10747 return TRUE;
10748 }
10749 }
10750
10751 static bfd_boolean
10752 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10753 {
10754 char *name;
10755 asection *sect;
10756 size_t len;
10757
10758 /* Use note name as section name. */
10759 len = note->namesz;
10760 name = (char *) bfd_alloc (abfd, len);
10761 if (name == NULL)
10762 return FALSE;
10763 memcpy (name, note->namedata, len);
10764 name[len - 1] = '\0';
10765
10766 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10767 if (sect == NULL)
10768 return FALSE;
10769
10770 sect->size = note->descsz;
10771 sect->filepos = note->descpos;
10772 sect->alignment_power = 1;
10773
10774 return TRUE;
10775 }
10776
10777 /* Function: elfcore_write_note
10778
10779 Inputs:
10780 buffer to hold note, and current size of buffer
10781 name of note
10782 type of note
10783 data for note
10784 size of data for note
10785
10786 Writes note to end of buffer. ELF64 notes are written exactly as
10787 for ELF32, despite the current (as of 2006) ELF gabi specifying
10788 that they ought to have 8-byte namesz and descsz field, and have
10789 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10790
10791 Return:
10792 Pointer to realloc'd buffer, *BUFSIZ updated. */
10793
10794 char *
10795 elfcore_write_note (bfd *abfd,
10796 char *buf,
10797 int *bufsiz,
10798 const char *name,
10799 int type,
10800 const void *input,
10801 int size)
10802 {
10803 Elf_External_Note *xnp;
10804 size_t namesz;
10805 size_t newspace;
10806 char *dest;
10807
10808 namesz = 0;
10809 if (name != NULL)
10810 namesz = strlen (name) + 1;
10811
10812 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10813
10814 buf = (char *) realloc (buf, *bufsiz + newspace);
10815 if (buf == NULL)
10816 return buf;
10817 dest = buf + *bufsiz;
10818 *bufsiz += newspace;
10819 xnp = (Elf_External_Note *) dest;
10820 H_PUT_32 (abfd, namesz, xnp->namesz);
10821 H_PUT_32 (abfd, size, xnp->descsz);
10822 H_PUT_32 (abfd, type, xnp->type);
10823 dest = xnp->name;
10824 if (name != NULL)
10825 {
10826 memcpy (dest, name, namesz);
10827 dest += namesz;
10828 while (namesz & 3)
10829 {
10830 *dest++ = '\0';
10831 ++namesz;
10832 }
10833 }
10834 memcpy (dest, input, size);
10835 dest += size;
10836 while (size & 3)
10837 {
10838 *dest++ = '\0';
10839 ++size;
10840 }
10841 return buf;
10842 }
10843
10844 /* gcc-8 warns (*) on all the strncpy calls in this function about
10845 possible string truncation. The "truncation" is not a bug. We
10846 have an external representation of structs with fields that are not
10847 necessarily NULL terminated and corresponding internal
10848 representation fields that are one larger so that they can always
10849 be NULL terminated.
10850 gcc versions between 4.2 and 4.6 do not allow pragma control of
10851 diagnostics inside functions, giving a hard error if you try to use
10852 the finer control available with later versions.
10853 gcc prior to 4.2 warns about diagnostic push and pop.
10854 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
10855 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
10856 (*) Depending on your system header files! */
10857 #if GCC_VERSION >= 8000
10858 # pragma GCC diagnostic push
10859 # pragma GCC diagnostic ignored "-Wstringop-truncation"
10860 #endif
10861 char *
10862 elfcore_write_prpsinfo (bfd *abfd,
10863 char *buf,
10864 int *bufsiz,
10865 const char *fname,
10866 const char *psargs)
10867 {
10868 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10869
10870 if (bed->elf_backend_write_core_note != NULL)
10871 {
10872 char *ret;
10873 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10874 NT_PRPSINFO, fname, psargs);
10875 if (ret != NULL)
10876 return ret;
10877 }
10878
10879 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10880 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10881 if (bed->s->elfclass == ELFCLASS32)
10882 {
10883 # if defined (HAVE_PSINFO32_T)
10884 psinfo32_t data;
10885 int note_type = NT_PSINFO;
10886 # else
10887 prpsinfo32_t data;
10888 int note_type = NT_PRPSINFO;
10889 # endif
10890
10891 memset (&data, 0, sizeof (data));
10892 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10893 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10894 return elfcore_write_note (abfd, buf, bufsiz,
10895 "CORE", note_type, &data, sizeof (data));
10896 }
10897 else
10898 # endif
10899 {
10900 # if defined (HAVE_PSINFO_T)
10901 psinfo_t data;
10902 int note_type = NT_PSINFO;
10903 # else
10904 prpsinfo_t data;
10905 int note_type = NT_PRPSINFO;
10906 # endif
10907
10908 memset (&data, 0, sizeof (data));
10909 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10910 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10911 return elfcore_write_note (abfd, buf, bufsiz,
10912 "CORE", note_type, &data, sizeof (data));
10913 }
10914 #endif /* PSINFO_T or PRPSINFO_T */
10915
10916 free (buf);
10917 return NULL;
10918 }
10919 #if GCC_VERSION >= 8000
10920 # pragma GCC diagnostic pop
10921 #endif
10922
10923 char *
10924 elfcore_write_linux_prpsinfo32
10925 (bfd *abfd, char *buf, int *bufsiz,
10926 const struct elf_internal_linux_prpsinfo *prpsinfo)
10927 {
10928 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10929 {
10930 struct elf_external_linux_prpsinfo32_ugid16 data;
10931
10932 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10933 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10934 &data, sizeof (data));
10935 }
10936 else
10937 {
10938 struct elf_external_linux_prpsinfo32_ugid32 data;
10939
10940 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10941 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10942 &data, sizeof (data));
10943 }
10944 }
10945
10946 char *
10947 elfcore_write_linux_prpsinfo64
10948 (bfd *abfd, char *buf, int *bufsiz,
10949 const struct elf_internal_linux_prpsinfo *prpsinfo)
10950 {
10951 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
10952 {
10953 struct elf_external_linux_prpsinfo64_ugid16 data;
10954
10955 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
10956 return elfcore_write_note (abfd, buf, bufsiz,
10957 "CORE", NT_PRPSINFO, &data, sizeof (data));
10958 }
10959 else
10960 {
10961 struct elf_external_linux_prpsinfo64_ugid32 data;
10962
10963 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
10964 return elfcore_write_note (abfd, buf, bufsiz,
10965 "CORE", NT_PRPSINFO, &data, sizeof (data));
10966 }
10967 }
10968
10969 char *
10970 elfcore_write_prstatus (bfd *abfd,
10971 char *buf,
10972 int *bufsiz,
10973 long pid,
10974 int cursig,
10975 const void *gregs)
10976 {
10977 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10978
10979 if (bed->elf_backend_write_core_note != NULL)
10980 {
10981 char *ret;
10982 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10983 NT_PRSTATUS,
10984 pid, cursig, gregs);
10985 if (ret != NULL)
10986 return ret;
10987 }
10988
10989 #if defined (HAVE_PRSTATUS_T)
10990 #if defined (HAVE_PRSTATUS32_T)
10991 if (bed->s->elfclass == ELFCLASS32)
10992 {
10993 prstatus32_t prstat;
10994
10995 memset (&prstat, 0, sizeof (prstat));
10996 prstat.pr_pid = pid;
10997 prstat.pr_cursig = cursig;
10998 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10999 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11000 NT_PRSTATUS, &prstat, sizeof (prstat));
11001 }
11002 else
11003 #endif
11004 {
11005 prstatus_t prstat;
11006
11007 memset (&prstat, 0, sizeof (prstat));
11008 prstat.pr_pid = pid;
11009 prstat.pr_cursig = cursig;
11010 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11011 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11012 NT_PRSTATUS, &prstat, sizeof (prstat));
11013 }
11014 #endif /* HAVE_PRSTATUS_T */
11015
11016 free (buf);
11017 return NULL;
11018 }
11019
11020 #if defined (HAVE_LWPSTATUS_T)
11021 char *
11022 elfcore_write_lwpstatus (bfd *abfd,
11023 char *buf,
11024 int *bufsiz,
11025 long pid,
11026 int cursig,
11027 const void *gregs)
11028 {
11029 lwpstatus_t lwpstat;
11030 const char *note_name = "CORE";
11031
11032 memset (&lwpstat, 0, sizeof (lwpstat));
11033 lwpstat.pr_lwpid = pid >> 16;
11034 lwpstat.pr_cursig = cursig;
11035 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11036 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11037 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11038 #if !defined(gregs)
11039 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11040 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11041 #else
11042 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11043 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11044 #endif
11045 #endif
11046 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11047 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11048 }
11049 #endif /* HAVE_LWPSTATUS_T */
11050
11051 #if defined (HAVE_PSTATUS_T)
11052 char *
11053 elfcore_write_pstatus (bfd *abfd,
11054 char *buf,
11055 int *bufsiz,
11056 long pid,
11057 int cursig ATTRIBUTE_UNUSED,
11058 const void *gregs ATTRIBUTE_UNUSED)
11059 {
11060 const char *note_name = "CORE";
11061 #if defined (HAVE_PSTATUS32_T)
11062 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11063
11064 if (bed->s->elfclass == ELFCLASS32)
11065 {
11066 pstatus32_t pstat;
11067
11068 memset (&pstat, 0, sizeof (pstat));
11069 pstat.pr_pid = pid & 0xffff;
11070 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11071 NT_PSTATUS, &pstat, sizeof (pstat));
11072 return buf;
11073 }
11074 else
11075 #endif
11076 {
11077 pstatus_t pstat;
11078
11079 memset (&pstat, 0, sizeof (pstat));
11080 pstat.pr_pid = pid & 0xffff;
11081 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11082 NT_PSTATUS, &pstat, sizeof (pstat));
11083 return buf;
11084 }
11085 }
11086 #endif /* HAVE_PSTATUS_T */
11087
11088 char *
11089 elfcore_write_prfpreg (bfd *abfd,
11090 char *buf,
11091 int *bufsiz,
11092 const void *fpregs,
11093 int size)
11094 {
11095 const char *note_name = "CORE";
11096 return elfcore_write_note (abfd, buf, bufsiz,
11097 note_name, NT_FPREGSET, fpregs, size);
11098 }
11099
11100 char *
11101 elfcore_write_prxfpreg (bfd *abfd,
11102 char *buf,
11103 int *bufsiz,
11104 const void *xfpregs,
11105 int size)
11106 {
11107 char *note_name = "LINUX";
11108 return elfcore_write_note (abfd, buf, bufsiz,
11109 note_name, NT_PRXFPREG, xfpregs, size);
11110 }
11111
11112 char *
11113 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11114 const void *xfpregs, int size)
11115 {
11116 char *note_name;
11117 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11118 note_name = "FreeBSD";
11119 else
11120 note_name = "LINUX";
11121 return elfcore_write_note (abfd, buf, bufsiz,
11122 note_name, NT_X86_XSTATE, xfpregs, size);
11123 }
11124
11125 char *
11126 elfcore_write_ppc_vmx (bfd *abfd,
11127 char *buf,
11128 int *bufsiz,
11129 const void *ppc_vmx,
11130 int size)
11131 {
11132 char *note_name = "LINUX";
11133 return elfcore_write_note (abfd, buf, bufsiz,
11134 note_name, NT_PPC_VMX, ppc_vmx, size);
11135 }
11136
11137 char *
11138 elfcore_write_ppc_vsx (bfd *abfd,
11139 char *buf,
11140 int *bufsiz,
11141 const void *ppc_vsx,
11142 int size)
11143 {
11144 char *note_name = "LINUX";
11145 return elfcore_write_note (abfd, buf, bufsiz,
11146 note_name, NT_PPC_VSX, ppc_vsx, size);
11147 }
11148
11149 char *
11150 elfcore_write_ppc_tar (bfd *abfd,
11151 char *buf,
11152 int *bufsiz,
11153 const void *ppc_tar,
11154 int size)
11155 {
11156 char *note_name = "LINUX";
11157 return elfcore_write_note (abfd, buf, bufsiz,
11158 note_name, NT_PPC_TAR, ppc_tar, size);
11159 }
11160
11161 char *
11162 elfcore_write_ppc_ppr (bfd *abfd,
11163 char *buf,
11164 int *bufsiz,
11165 const void *ppc_ppr,
11166 int size)
11167 {
11168 char *note_name = "LINUX";
11169 return elfcore_write_note (abfd, buf, bufsiz,
11170 note_name, NT_PPC_PPR, ppc_ppr, size);
11171 }
11172
11173 char *
11174 elfcore_write_ppc_dscr (bfd *abfd,
11175 char *buf,
11176 int *bufsiz,
11177 const void *ppc_dscr,
11178 int size)
11179 {
11180 char *note_name = "LINUX";
11181 return elfcore_write_note (abfd, buf, bufsiz,
11182 note_name, NT_PPC_DSCR, ppc_dscr, size);
11183 }
11184
11185 char *
11186 elfcore_write_ppc_ebb (bfd *abfd,
11187 char *buf,
11188 int *bufsiz,
11189 const void *ppc_ebb,
11190 int size)
11191 {
11192 char *note_name = "LINUX";
11193 return elfcore_write_note (abfd, buf, bufsiz,
11194 note_name, NT_PPC_EBB, ppc_ebb, size);
11195 }
11196
11197 char *
11198 elfcore_write_ppc_pmu (bfd *abfd,
11199 char *buf,
11200 int *bufsiz,
11201 const void *ppc_pmu,
11202 int size)
11203 {
11204 char *note_name = "LINUX";
11205 return elfcore_write_note (abfd, buf, bufsiz,
11206 note_name, NT_PPC_PMU, ppc_pmu, size);
11207 }
11208
11209 char *
11210 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11211 char *buf,
11212 int *bufsiz,
11213 const void *ppc_tm_cgpr,
11214 int size)
11215 {
11216 char *note_name = "LINUX";
11217 return elfcore_write_note (abfd, buf, bufsiz,
11218 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11219 }
11220
11221 char *
11222 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11223 char *buf,
11224 int *bufsiz,
11225 const void *ppc_tm_cfpr,
11226 int size)
11227 {
11228 char *note_name = "LINUX";
11229 return elfcore_write_note (abfd, buf, bufsiz,
11230 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11231 }
11232
11233 char *
11234 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11235 char *buf,
11236 int *bufsiz,
11237 const void *ppc_tm_cvmx,
11238 int size)
11239 {
11240 char *note_name = "LINUX";
11241 return elfcore_write_note (abfd, buf, bufsiz,
11242 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11243 }
11244
11245 char *
11246 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11247 char *buf,
11248 int *bufsiz,
11249 const void *ppc_tm_cvsx,
11250 int size)
11251 {
11252 char *note_name = "LINUX";
11253 return elfcore_write_note (abfd, buf, bufsiz,
11254 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11255 }
11256
11257 char *
11258 elfcore_write_ppc_tm_spr (bfd *abfd,
11259 char *buf,
11260 int *bufsiz,
11261 const void *ppc_tm_spr,
11262 int size)
11263 {
11264 char *note_name = "LINUX";
11265 return elfcore_write_note (abfd, buf, bufsiz,
11266 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11267 }
11268
11269 char *
11270 elfcore_write_ppc_tm_ctar (bfd *abfd,
11271 char *buf,
11272 int *bufsiz,
11273 const void *ppc_tm_ctar,
11274 int size)
11275 {
11276 char *note_name = "LINUX";
11277 return elfcore_write_note (abfd, buf, bufsiz,
11278 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11279 }
11280
11281 char *
11282 elfcore_write_ppc_tm_cppr (bfd *abfd,
11283 char *buf,
11284 int *bufsiz,
11285 const void *ppc_tm_cppr,
11286 int size)
11287 {
11288 char *note_name = "LINUX";
11289 return elfcore_write_note (abfd, buf, bufsiz,
11290 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11291 }
11292
11293 char *
11294 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11295 char *buf,
11296 int *bufsiz,
11297 const void *ppc_tm_cdscr,
11298 int size)
11299 {
11300 char *note_name = "LINUX";
11301 return elfcore_write_note (abfd, buf, bufsiz,
11302 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11303 }
11304
11305 static char *
11306 elfcore_write_s390_high_gprs (bfd *abfd,
11307 char *buf,
11308 int *bufsiz,
11309 const void *s390_high_gprs,
11310 int size)
11311 {
11312 char *note_name = "LINUX";
11313 return elfcore_write_note (abfd, buf, bufsiz,
11314 note_name, NT_S390_HIGH_GPRS,
11315 s390_high_gprs, size);
11316 }
11317
11318 char *
11319 elfcore_write_s390_timer (bfd *abfd,
11320 char *buf,
11321 int *bufsiz,
11322 const void *s390_timer,
11323 int size)
11324 {
11325 char *note_name = "LINUX";
11326 return elfcore_write_note (abfd, buf, bufsiz,
11327 note_name, NT_S390_TIMER, s390_timer, size);
11328 }
11329
11330 char *
11331 elfcore_write_s390_todcmp (bfd *abfd,
11332 char *buf,
11333 int *bufsiz,
11334 const void *s390_todcmp,
11335 int size)
11336 {
11337 char *note_name = "LINUX";
11338 return elfcore_write_note (abfd, buf, bufsiz,
11339 note_name, NT_S390_TODCMP, s390_todcmp, size);
11340 }
11341
11342 char *
11343 elfcore_write_s390_todpreg (bfd *abfd,
11344 char *buf,
11345 int *bufsiz,
11346 const void *s390_todpreg,
11347 int size)
11348 {
11349 char *note_name = "LINUX";
11350 return elfcore_write_note (abfd, buf, bufsiz,
11351 note_name, NT_S390_TODPREG, s390_todpreg, size);
11352 }
11353
11354 char *
11355 elfcore_write_s390_ctrs (bfd *abfd,
11356 char *buf,
11357 int *bufsiz,
11358 const void *s390_ctrs,
11359 int size)
11360 {
11361 char *note_name = "LINUX";
11362 return elfcore_write_note (abfd, buf, bufsiz,
11363 note_name, NT_S390_CTRS, s390_ctrs, size);
11364 }
11365
11366 char *
11367 elfcore_write_s390_prefix (bfd *abfd,
11368 char *buf,
11369 int *bufsiz,
11370 const void *s390_prefix,
11371 int size)
11372 {
11373 char *note_name = "LINUX";
11374 return elfcore_write_note (abfd, buf, bufsiz,
11375 note_name, NT_S390_PREFIX, s390_prefix, size);
11376 }
11377
11378 char *
11379 elfcore_write_s390_last_break (bfd *abfd,
11380 char *buf,
11381 int *bufsiz,
11382 const void *s390_last_break,
11383 int size)
11384 {
11385 char *note_name = "LINUX";
11386 return elfcore_write_note (abfd, buf, bufsiz,
11387 note_name, NT_S390_LAST_BREAK,
11388 s390_last_break, size);
11389 }
11390
11391 char *
11392 elfcore_write_s390_system_call (bfd *abfd,
11393 char *buf,
11394 int *bufsiz,
11395 const void *s390_system_call,
11396 int size)
11397 {
11398 char *note_name = "LINUX";
11399 return elfcore_write_note (abfd, buf, bufsiz,
11400 note_name, NT_S390_SYSTEM_CALL,
11401 s390_system_call, size);
11402 }
11403
11404 char *
11405 elfcore_write_s390_tdb (bfd *abfd,
11406 char *buf,
11407 int *bufsiz,
11408 const void *s390_tdb,
11409 int size)
11410 {
11411 char *note_name = "LINUX";
11412 return elfcore_write_note (abfd, buf, bufsiz,
11413 note_name, NT_S390_TDB, s390_tdb, size);
11414 }
11415
11416 char *
11417 elfcore_write_s390_vxrs_low (bfd *abfd,
11418 char *buf,
11419 int *bufsiz,
11420 const void *s390_vxrs_low,
11421 int size)
11422 {
11423 char *note_name = "LINUX";
11424 return elfcore_write_note (abfd, buf, bufsiz,
11425 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11426 }
11427
11428 char *
11429 elfcore_write_s390_vxrs_high (bfd *abfd,
11430 char *buf,
11431 int *bufsiz,
11432 const void *s390_vxrs_high,
11433 int size)
11434 {
11435 char *note_name = "LINUX";
11436 return elfcore_write_note (abfd, buf, bufsiz,
11437 note_name, NT_S390_VXRS_HIGH,
11438 s390_vxrs_high, size);
11439 }
11440
11441 char *
11442 elfcore_write_s390_gs_cb (bfd *abfd,
11443 char *buf,
11444 int *bufsiz,
11445 const void *s390_gs_cb,
11446 int size)
11447 {
11448 char *note_name = "LINUX";
11449 return elfcore_write_note (abfd, buf, bufsiz,
11450 note_name, NT_S390_GS_CB,
11451 s390_gs_cb, size);
11452 }
11453
11454 char *
11455 elfcore_write_s390_gs_bc (bfd *abfd,
11456 char *buf,
11457 int *bufsiz,
11458 const void *s390_gs_bc,
11459 int size)
11460 {
11461 char *note_name = "LINUX";
11462 return elfcore_write_note (abfd, buf, bufsiz,
11463 note_name, NT_S390_GS_BC,
11464 s390_gs_bc, size);
11465 }
11466
11467 char *
11468 elfcore_write_arm_vfp (bfd *abfd,
11469 char *buf,
11470 int *bufsiz,
11471 const void *arm_vfp,
11472 int size)
11473 {
11474 char *note_name = "LINUX";
11475 return elfcore_write_note (abfd, buf, bufsiz,
11476 note_name, NT_ARM_VFP, arm_vfp, size);
11477 }
11478
11479 char *
11480 elfcore_write_aarch_tls (bfd *abfd,
11481 char *buf,
11482 int *bufsiz,
11483 const void *aarch_tls,
11484 int size)
11485 {
11486 char *note_name = "LINUX";
11487 return elfcore_write_note (abfd, buf, bufsiz,
11488 note_name, NT_ARM_TLS, aarch_tls, size);
11489 }
11490
11491 char *
11492 elfcore_write_aarch_hw_break (bfd *abfd,
11493 char *buf,
11494 int *bufsiz,
11495 const void *aarch_hw_break,
11496 int size)
11497 {
11498 char *note_name = "LINUX";
11499 return elfcore_write_note (abfd, buf, bufsiz,
11500 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11501 }
11502
11503 char *
11504 elfcore_write_aarch_hw_watch (bfd *abfd,
11505 char *buf,
11506 int *bufsiz,
11507 const void *aarch_hw_watch,
11508 int size)
11509 {
11510 char *note_name = "LINUX";
11511 return elfcore_write_note (abfd, buf, bufsiz,
11512 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11513 }
11514
11515 char *
11516 elfcore_write_aarch_sve (bfd *abfd,
11517 char *buf,
11518 int *bufsiz,
11519 const void *aarch_sve,
11520 int size)
11521 {
11522 char *note_name = "LINUX";
11523 return elfcore_write_note (abfd, buf, bufsiz,
11524 note_name, NT_ARM_SVE, aarch_sve, size);
11525 }
11526
11527 char *
11528 elfcore_write_aarch_pauth (bfd *abfd,
11529 char *buf,
11530 int *bufsiz,
11531 const void *aarch_pauth,
11532 int size)
11533 {
11534 char *note_name = "LINUX";
11535 return elfcore_write_note (abfd, buf, bufsiz,
11536 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11537 }
11538
11539 char *
11540 elfcore_write_register_note (bfd *abfd,
11541 char *buf,
11542 int *bufsiz,
11543 const char *section,
11544 const void *data,
11545 int size)
11546 {
11547 if (strcmp (section, ".reg2") == 0)
11548 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11549 if (strcmp (section, ".reg-xfp") == 0)
11550 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11551 if (strcmp (section, ".reg-xstate") == 0)
11552 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11553 if (strcmp (section, ".reg-ppc-vmx") == 0)
11554 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11555 if (strcmp (section, ".reg-ppc-vsx") == 0)
11556 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11557 if (strcmp (section, ".reg-ppc-tar") == 0)
11558 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11559 if (strcmp (section, ".reg-ppc-ppr") == 0)
11560 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11561 if (strcmp (section, ".reg-ppc-dscr") == 0)
11562 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11563 if (strcmp (section, ".reg-ppc-ebb") == 0)
11564 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11565 if (strcmp (section, ".reg-ppc-pmu") == 0)
11566 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11567 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11568 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11569 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11570 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11571 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11572 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11573 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11574 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11575 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11576 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11577 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11578 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11579 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11580 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11581 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11582 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11583 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11584 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11585 if (strcmp (section, ".reg-s390-timer") == 0)
11586 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11587 if (strcmp (section, ".reg-s390-todcmp") == 0)
11588 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11589 if (strcmp (section, ".reg-s390-todpreg") == 0)
11590 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11591 if (strcmp (section, ".reg-s390-ctrs") == 0)
11592 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11593 if (strcmp (section, ".reg-s390-prefix") == 0)
11594 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11595 if (strcmp (section, ".reg-s390-last-break") == 0)
11596 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11597 if (strcmp (section, ".reg-s390-system-call") == 0)
11598 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11599 if (strcmp (section, ".reg-s390-tdb") == 0)
11600 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11601 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11602 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11603 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11604 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11605 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11606 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11607 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11608 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11609 if (strcmp (section, ".reg-arm-vfp") == 0)
11610 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11611 if (strcmp (section, ".reg-aarch-tls") == 0)
11612 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11613 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11614 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11615 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11616 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11617 if (strcmp (section, ".reg-aarch-sve") == 0)
11618 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11619 if (strcmp (section, ".reg-aarch-pauth") == 0)
11620 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11621 return NULL;
11622 }
11623
11624 static bfd_boolean
11625 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11626 size_t align)
11627 {
11628 char *p;
11629
11630 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11631 gABI specifies that PT_NOTE alignment should be aligned to 4
11632 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11633 align is less than 4, we use 4 byte alignment. */
11634 if (align < 4)
11635 align = 4;
11636 if (align != 4 && align != 8)
11637 return FALSE;
11638
11639 p = buf;
11640 while (p < buf + size)
11641 {
11642 Elf_External_Note *xnp = (Elf_External_Note *) p;
11643 Elf_Internal_Note in;
11644
11645 if (offsetof (Elf_External_Note, name) > buf - p + size)
11646 return FALSE;
11647
11648 in.type = H_GET_32 (abfd, xnp->type);
11649
11650 in.namesz = H_GET_32 (abfd, xnp->namesz);
11651 in.namedata = xnp->name;
11652 if (in.namesz > buf - in.namedata + size)
11653 return FALSE;
11654
11655 in.descsz = H_GET_32 (abfd, xnp->descsz);
11656 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11657 in.descpos = offset + (in.descdata - buf);
11658 if (in.descsz != 0
11659 && (in.descdata >= buf + size
11660 || in.descsz > buf - in.descdata + size))
11661 return FALSE;
11662
11663 switch (bfd_get_format (abfd))
11664 {
11665 default:
11666 return TRUE;
11667
11668 case bfd_core:
11669 {
11670 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11671 struct
11672 {
11673 const char * string;
11674 size_t len;
11675 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11676 }
11677 grokers[] =
11678 {
11679 GROKER_ELEMENT ("", elfcore_grok_note),
11680 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11681 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11682 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11683 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11684 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11685 };
11686 #undef GROKER_ELEMENT
11687 int i;
11688
11689 for (i = ARRAY_SIZE (grokers); i--;)
11690 {
11691 if (in.namesz >= grokers[i].len
11692 && strncmp (in.namedata, grokers[i].string,
11693 grokers[i].len) == 0)
11694 {
11695 if (! grokers[i].func (abfd, & in))
11696 return FALSE;
11697 break;
11698 }
11699 }
11700 break;
11701 }
11702
11703 case bfd_object:
11704 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11705 {
11706 if (! elfobj_grok_gnu_note (abfd, &in))
11707 return FALSE;
11708 }
11709 else if (in.namesz == sizeof "stapsdt"
11710 && strcmp (in.namedata, "stapsdt") == 0)
11711 {
11712 if (! elfobj_grok_stapsdt_note (abfd, &in))
11713 return FALSE;
11714 }
11715 break;
11716 }
11717
11718 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11719 }
11720
11721 return TRUE;
11722 }
11723
11724 static bfd_boolean
11725 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11726 size_t align)
11727 {
11728 char *buf;
11729
11730 if (size == 0 || (size + 1) == 0)
11731 return TRUE;
11732
11733 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11734 return FALSE;
11735
11736 buf = (char *) bfd_malloc (size + 1);
11737 if (buf == NULL)
11738 return FALSE;
11739
11740 /* PR 17512: file: ec08f814
11741 0-termintate the buffer so that string searches will not overflow. */
11742 buf[size] = 0;
11743
11744 if (bfd_bread (buf, size, abfd) != size
11745 || !elf_parse_notes (abfd, buf, size, offset, align))
11746 {
11747 free (buf);
11748 return FALSE;
11749 }
11750
11751 free (buf);
11752 return TRUE;
11753 }
11754 \f
11755 /* Providing external access to the ELF program header table. */
11756
11757 /* Return an upper bound on the number of bytes required to store a
11758 copy of ABFD's program header table entries. Return -1 if an error
11759 occurs; bfd_get_error will return an appropriate code. */
11760
11761 long
11762 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11763 {
11764 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11765 {
11766 bfd_set_error (bfd_error_wrong_format);
11767 return -1;
11768 }
11769
11770 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11771 }
11772
11773 /* Copy ABFD's program header table entries to *PHDRS. The entries
11774 will be stored as an array of Elf_Internal_Phdr structures, as
11775 defined in include/elf/internal.h. To find out how large the
11776 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11777
11778 Return the number of program header table entries read, or -1 if an
11779 error occurs; bfd_get_error will return an appropriate code. */
11780
11781 int
11782 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11783 {
11784 int num_phdrs;
11785
11786 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11787 {
11788 bfd_set_error (bfd_error_wrong_format);
11789 return -1;
11790 }
11791
11792 num_phdrs = elf_elfheader (abfd)->e_phnum;
11793 if (num_phdrs != 0)
11794 memcpy (phdrs, elf_tdata (abfd)->phdr,
11795 num_phdrs * sizeof (Elf_Internal_Phdr));
11796
11797 return num_phdrs;
11798 }
11799
11800 enum elf_reloc_type_class
11801 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11802 const asection *rel_sec ATTRIBUTE_UNUSED,
11803 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11804 {
11805 return reloc_class_normal;
11806 }
11807
11808 /* For RELA architectures, return the relocation value for a
11809 relocation against a local symbol. */
11810
11811 bfd_vma
11812 _bfd_elf_rela_local_sym (bfd *abfd,
11813 Elf_Internal_Sym *sym,
11814 asection **psec,
11815 Elf_Internal_Rela *rel)
11816 {
11817 asection *sec = *psec;
11818 bfd_vma relocation;
11819
11820 relocation = (sec->output_section->vma
11821 + sec->output_offset
11822 + sym->st_value);
11823 if ((sec->flags & SEC_MERGE)
11824 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11825 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11826 {
11827 rel->r_addend =
11828 _bfd_merged_section_offset (abfd, psec,
11829 elf_section_data (sec)->sec_info,
11830 sym->st_value + rel->r_addend);
11831 if (sec != *psec)
11832 {
11833 /* If we have changed the section, and our original section is
11834 marked with SEC_EXCLUDE, it means that the original
11835 SEC_MERGE section has been completely subsumed in some
11836 other SEC_MERGE section. In this case, we need to leave
11837 some info around for --emit-relocs. */
11838 if ((sec->flags & SEC_EXCLUDE) != 0)
11839 sec->kept_section = *psec;
11840 sec = *psec;
11841 }
11842 rel->r_addend -= relocation;
11843 rel->r_addend += sec->output_section->vma + sec->output_offset;
11844 }
11845 return relocation;
11846 }
11847
11848 bfd_vma
11849 _bfd_elf_rel_local_sym (bfd *abfd,
11850 Elf_Internal_Sym *sym,
11851 asection **psec,
11852 bfd_vma addend)
11853 {
11854 asection *sec = *psec;
11855
11856 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11857 return sym->st_value + addend;
11858
11859 return _bfd_merged_section_offset (abfd, psec,
11860 elf_section_data (sec)->sec_info,
11861 sym->st_value + addend);
11862 }
11863
11864 /* Adjust an address within a section. Given OFFSET within SEC, return
11865 the new offset within the section, based upon changes made to the
11866 section. Returns -1 if the offset is now invalid.
11867 The offset (in abnd out) is in target sized bytes, however big a
11868 byte may be. */
11869
11870 bfd_vma
11871 _bfd_elf_section_offset (bfd *abfd,
11872 struct bfd_link_info *info,
11873 asection *sec,
11874 bfd_vma offset)
11875 {
11876 switch (sec->sec_info_type)
11877 {
11878 case SEC_INFO_TYPE_STABS:
11879 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11880 offset);
11881 case SEC_INFO_TYPE_EH_FRAME:
11882 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11883
11884 default:
11885 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11886 {
11887 /* Reverse the offset. */
11888 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11889 bfd_size_type address_size = bed->s->arch_size / 8;
11890
11891 /* address_size and sec->size are in octets. Convert
11892 to bytes before subtracting the original offset. */
11893 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11894 }
11895 return offset;
11896 }
11897 }
11898 \f
11899 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11900 reconstruct an ELF file by reading the segments out of remote memory
11901 based on the ELF file header at EHDR_VMA and the ELF program headers it
11902 points to. If not null, *LOADBASEP is filled in with the difference
11903 between the VMAs from which the segments were read, and the VMAs the
11904 file headers (and hence BFD's idea of each section's VMA) put them at.
11905
11906 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11907 remote memory at target address VMA into the local buffer at MYADDR; it
11908 should return zero on success or an `errno' code on failure. TEMPL must
11909 be a BFD for an ELF target with the word size and byte order found in
11910 the remote memory. */
11911
11912 bfd *
11913 bfd_elf_bfd_from_remote_memory
11914 (bfd *templ,
11915 bfd_vma ehdr_vma,
11916 bfd_size_type size,
11917 bfd_vma *loadbasep,
11918 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11919 {
11920 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11921 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11922 }
11923 \f
11924 long
11925 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11926 long symcount ATTRIBUTE_UNUSED,
11927 asymbol **syms ATTRIBUTE_UNUSED,
11928 long dynsymcount,
11929 asymbol **dynsyms,
11930 asymbol **ret)
11931 {
11932 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11933 asection *relplt;
11934 asymbol *s;
11935 const char *relplt_name;
11936 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11937 arelent *p;
11938 long count, i, n;
11939 size_t size;
11940 Elf_Internal_Shdr *hdr;
11941 char *names;
11942 asection *plt;
11943
11944 *ret = NULL;
11945
11946 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11947 return 0;
11948
11949 if (dynsymcount <= 0)
11950 return 0;
11951
11952 if (!bed->plt_sym_val)
11953 return 0;
11954
11955 relplt_name = bed->relplt_name;
11956 if (relplt_name == NULL)
11957 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11958 relplt = bfd_get_section_by_name (abfd, relplt_name);
11959 if (relplt == NULL)
11960 return 0;
11961
11962 hdr = &elf_section_data (relplt)->this_hdr;
11963 if (hdr->sh_link != elf_dynsymtab (abfd)
11964 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11965 return 0;
11966
11967 plt = bfd_get_section_by_name (abfd, ".plt");
11968 if (plt == NULL)
11969 return 0;
11970
11971 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11972 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11973 return -1;
11974
11975 count = relplt->size / hdr->sh_entsize;
11976 size = count * sizeof (asymbol);
11977 p = relplt->relocation;
11978 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11979 {
11980 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11981 if (p->addend != 0)
11982 {
11983 #ifdef BFD64
11984 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11985 #else
11986 size += sizeof ("+0x") - 1 + 8;
11987 #endif
11988 }
11989 }
11990
11991 s = *ret = (asymbol *) bfd_malloc (size);
11992 if (s == NULL)
11993 return -1;
11994
11995 names = (char *) (s + count);
11996 p = relplt->relocation;
11997 n = 0;
11998 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11999 {
12000 size_t len;
12001 bfd_vma addr;
12002
12003 addr = bed->plt_sym_val (i, plt, p);
12004 if (addr == (bfd_vma) -1)
12005 continue;
12006
12007 *s = **p->sym_ptr_ptr;
12008 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12009 we are defining a symbol, ensure one of them is set. */
12010 if ((s->flags & BSF_LOCAL) == 0)
12011 s->flags |= BSF_GLOBAL;
12012 s->flags |= BSF_SYNTHETIC;
12013 s->section = plt;
12014 s->value = addr - plt->vma;
12015 s->name = names;
12016 s->udata.p = NULL;
12017 len = strlen ((*p->sym_ptr_ptr)->name);
12018 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12019 names += len;
12020 if (p->addend != 0)
12021 {
12022 char buf[30], *a;
12023
12024 memcpy (names, "+0x", sizeof ("+0x") - 1);
12025 names += sizeof ("+0x") - 1;
12026 bfd_sprintf_vma (abfd, buf, p->addend);
12027 for (a = buf; *a == '0'; ++a)
12028 ;
12029 len = strlen (a);
12030 memcpy (names, a, len);
12031 names += len;
12032 }
12033 memcpy (names, "@plt", sizeof ("@plt"));
12034 names += sizeof ("@plt");
12035 ++s, ++n;
12036 }
12037
12038 return n;
12039 }
12040
12041 /* It is only used by x86-64 so far.
12042 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12043 but current usage would allow all of _bfd_std_section to be zero. */
12044 static const asymbol lcomm_sym
12045 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12046 asection _bfd_elf_large_com_section
12047 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12048 "LARGE_COMMON", 0, SEC_IS_COMMON);
12049
12050 void
12051 _bfd_elf_post_process_headers (bfd * abfd,
12052 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
12053 {
12054 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
12055
12056 i_ehdrp = elf_elfheader (abfd);
12057
12058 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12059
12060 /* To make things simpler for the loader on Linux systems we set the
12061 osabi field to ELFOSABI_GNU if the binary contains symbols of
12062 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
12063 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
12064 && elf_tdata (abfd)->has_gnu_symbols)
12065 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12066 }
12067
12068
12069 /* Return TRUE for ELF symbol types that represent functions.
12070 This is the default version of this function, which is sufficient for
12071 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12072
12073 bfd_boolean
12074 _bfd_elf_is_function_type (unsigned int type)
12075 {
12076 return (type == STT_FUNC
12077 || type == STT_GNU_IFUNC);
12078 }
12079
12080 /* If the ELF symbol SYM might be a function in SEC, return the
12081 function size and set *CODE_OFF to the function's entry point,
12082 otherwise return zero. */
12083
12084 bfd_size_type
12085 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12086 bfd_vma *code_off)
12087 {
12088 bfd_size_type size;
12089
12090 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12091 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12092 || sym->section != sec)
12093 return 0;
12094
12095 *code_off = sym->value;
12096 size = 0;
12097 if (!(sym->flags & BSF_SYNTHETIC))
12098 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12099 if (size == 0)
12100 size = 1;
12101 return size;
12102 }
This page took 0.287478 seconds and 4 git commands to generate.