c0961914d19be43a8125369f37da0352e11eadd2
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"),
342 abfd, shindex);
343 return NULL;
344 }
345
346 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
347 return NULL;
348 }
349
350 if (strindex >= hdr->sh_size)
351 {
352 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
353 _bfd_error_handler
354 (_("%B: invalid string offset %u >= %lu for section `%s'"),
355 abfd, strindex, (unsigned long) hdr->sh_size,
356 (shindex == shstrndx && strindex == hdr->sh_name
357 ? ".shstrtab"
358 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
359 return NULL;
360 }
361
362 return ((char *) hdr->contents) + strindex;
363 }
364
365 /* Read and convert symbols to internal format.
366 SYMCOUNT specifies the number of symbols to read, starting from
367 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
368 are non-NULL, they are used to store the internal symbols, external
369 symbols, and symbol section index extensions, respectively.
370 Returns a pointer to the internal symbol buffer (malloced if necessary)
371 or NULL if there were no symbols or some kind of problem. */
372
373 Elf_Internal_Sym *
374 bfd_elf_get_elf_syms (bfd *ibfd,
375 Elf_Internal_Shdr *symtab_hdr,
376 size_t symcount,
377 size_t symoffset,
378 Elf_Internal_Sym *intsym_buf,
379 void *extsym_buf,
380 Elf_External_Sym_Shndx *extshndx_buf)
381 {
382 Elf_Internal_Shdr *shndx_hdr;
383 void *alloc_ext;
384 const bfd_byte *esym;
385 Elf_External_Sym_Shndx *alloc_extshndx;
386 Elf_External_Sym_Shndx *shndx;
387 Elf_Internal_Sym *alloc_intsym;
388 Elf_Internal_Sym *isym;
389 Elf_Internal_Sym *isymend;
390 const struct elf_backend_data *bed;
391 size_t extsym_size;
392 bfd_size_type amt;
393 file_ptr pos;
394
395 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
396 abort ();
397
398 if (symcount == 0)
399 return intsym_buf;
400
401 /* Normal syms might have section extension entries. */
402 shndx_hdr = NULL;
403 if (elf_symtab_shndx_list (ibfd) != NULL)
404 {
405 elf_section_list * entry;
406 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
407
408 /* Find an index section that is linked to this symtab section. */
409 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
410 {
411 /* PR 20063. */
412 if (entry->hdr.sh_link >= elf_numsections (ibfd))
413 continue;
414
415 if (sections[entry->hdr.sh_link] == symtab_hdr)
416 {
417 shndx_hdr = & entry->hdr;
418 break;
419 };
420 }
421
422 if (shndx_hdr == NULL)
423 {
424 if (symtab_hdr == & elf_symtab_hdr (ibfd))
425 /* Not really accurate, but this was how the old code used to work. */
426 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
427 /* Otherwise we do nothing. The assumption is that
428 the index table will not be needed. */
429 }
430 }
431
432 /* Read the symbols. */
433 alloc_ext = NULL;
434 alloc_extshndx = NULL;
435 alloc_intsym = NULL;
436 bed = get_elf_backend_data (ibfd);
437 extsym_size = bed->s->sizeof_sym;
438 amt = (bfd_size_type) symcount * extsym_size;
439 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
440 if (extsym_buf == NULL)
441 {
442 alloc_ext = bfd_malloc2 (symcount, extsym_size);
443 extsym_buf = alloc_ext;
444 }
445 if (extsym_buf == NULL
446 || bfd_seek (ibfd, pos, SEEK_SET) != 0
447 || bfd_bread (extsym_buf, amt, ibfd) != amt)
448 {
449 intsym_buf = NULL;
450 goto out;
451 }
452
453 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
454 extshndx_buf = NULL;
455 else
456 {
457 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
458 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
459 if (extshndx_buf == NULL)
460 {
461 alloc_extshndx = (Elf_External_Sym_Shndx *)
462 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
463 extshndx_buf = alloc_extshndx;
464 }
465 if (extshndx_buf == NULL
466 || bfd_seek (ibfd, pos, SEEK_SET) != 0
467 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
468 {
469 intsym_buf = NULL;
470 goto out;
471 }
472 }
473
474 if (intsym_buf == NULL)
475 {
476 alloc_intsym = (Elf_Internal_Sym *)
477 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
478 intsym_buf = alloc_intsym;
479 if (intsym_buf == NULL)
480 goto out;
481 }
482
483 /* Convert the symbols to internal form. */
484 isymend = intsym_buf + symcount;
485 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
486 shndx = extshndx_buf;
487 isym < isymend;
488 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
489 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
490 {
491 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
492 _bfd_error_handler (_("%B symbol number %lu references "
493 "nonexistent SHT_SYMTAB_SHNDX section"),
494 ibfd, (unsigned long) symoffset);
495 if (alloc_intsym != NULL)
496 free (alloc_intsym);
497 intsym_buf = NULL;
498 goto out;
499 }
500
501 out:
502 if (alloc_ext != NULL)
503 free (alloc_ext);
504 if (alloc_extshndx != NULL)
505 free (alloc_extshndx);
506
507 return intsym_buf;
508 }
509
510 /* Look up a symbol name. */
511 const char *
512 bfd_elf_sym_name (bfd *abfd,
513 Elf_Internal_Shdr *symtab_hdr,
514 Elf_Internal_Sym *isym,
515 asection *sym_sec)
516 {
517 const char *name;
518 unsigned int iname = isym->st_name;
519 unsigned int shindex = symtab_hdr->sh_link;
520
521 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
522 /* Check for a bogus st_shndx to avoid crashing. */
523 && isym->st_shndx < elf_numsections (abfd))
524 {
525 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
526 shindex = elf_elfheader (abfd)->e_shstrndx;
527 }
528
529 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
530 if (name == NULL)
531 name = "(null)";
532 else if (sym_sec && *name == '\0')
533 name = bfd_section_name (abfd, sym_sec);
534
535 return name;
536 }
537
538 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
539 sections. The first element is the flags, the rest are section
540 pointers. */
541
542 typedef union elf_internal_group {
543 Elf_Internal_Shdr *shdr;
544 unsigned int flags;
545 } Elf_Internal_Group;
546
547 /* Return the name of the group signature symbol. Why isn't the
548 signature just a string? */
549
550 static const char *
551 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
552 {
553 Elf_Internal_Shdr *hdr;
554 unsigned char esym[sizeof (Elf64_External_Sym)];
555 Elf_External_Sym_Shndx eshndx;
556 Elf_Internal_Sym isym;
557
558 /* First we need to ensure the symbol table is available. Make sure
559 that it is a symbol table section. */
560 if (ghdr->sh_link >= elf_numsections (abfd))
561 return NULL;
562 hdr = elf_elfsections (abfd) [ghdr->sh_link];
563 if (hdr->sh_type != SHT_SYMTAB
564 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
565 return NULL;
566
567 /* Go read the symbol. */
568 hdr = &elf_tdata (abfd)->symtab_hdr;
569 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
570 &isym, esym, &eshndx) == NULL)
571 return NULL;
572
573 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
574 }
575
576 /* Set next_in_group list pointer, and group name for NEWSECT. */
577
578 static bfd_boolean
579 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
580 {
581 unsigned int num_group = elf_tdata (abfd)->num_group;
582
583 /* If num_group is zero, read in all SHT_GROUP sections. The count
584 is set to -1 if there are no SHT_GROUP sections. */
585 if (num_group == 0)
586 {
587 unsigned int i, shnum;
588
589 /* First count the number of groups. If we have a SHT_GROUP
590 section with just a flag word (ie. sh_size is 4), ignore it. */
591 shnum = elf_numsections (abfd);
592 num_group = 0;
593
594 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
595 ( (shdr)->sh_type == SHT_GROUP \
596 && (shdr)->sh_size >= minsize \
597 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
598 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
599
600 for (i = 0; i < shnum; i++)
601 {
602 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
603
604 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
605 num_group += 1;
606 }
607
608 if (num_group == 0)
609 {
610 num_group = (unsigned) -1;
611 elf_tdata (abfd)->num_group = num_group;
612 }
613 else
614 {
615 /* We keep a list of elf section headers for group sections,
616 so we can find them quickly. */
617 bfd_size_type amt;
618
619 elf_tdata (abfd)->num_group = num_group;
620 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
621 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
622 if (elf_tdata (abfd)->group_sect_ptr == NULL)
623 return FALSE;
624
625 num_group = 0;
626 for (i = 0; i < shnum; i++)
627 {
628 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
629
630 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
631 {
632 unsigned char *src;
633 Elf_Internal_Group *dest;
634
635 /* Add to list of sections. */
636 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
637 num_group += 1;
638
639 /* Read the raw contents. */
640 BFD_ASSERT (sizeof (*dest) >= 4);
641 amt = shdr->sh_size * sizeof (*dest) / 4;
642 shdr->contents = (unsigned char *)
643 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
644 /* PR binutils/4110: Handle corrupt group headers. */
645 if (shdr->contents == NULL)
646 {
647 _bfd_error_handler
648 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
649 bfd_set_error (bfd_error_bad_value);
650 -- num_group;
651 continue;
652 }
653
654 memset (shdr->contents, 0, amt);
655
656 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
657 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
658 != shdr->sh_size))
659 {
660 _bfd_error_handler
661 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
662 bfd_set_error (bfd_error_bad_value);
663 -- num_group;
664 /* PR 17510: If the group contents are even partially
665 corrupt, do not allow any of the contents to be used. */
666 memset (shdr->contents, 0, amt);
667 continue;
668 }
669
670 /* Translate raw contents, a flag word followed by an
671 array of elf section indices all in target byte order,
672 to the flag word followed by an array of elf section
673 pointers. */
674 src = shdr->contents + shdr->sh_size;
675 dest = (Elf_Internal_Group *) (shdr->contents + amt);
676
677 while (1)
678 {
679 unsigned int idx;
680
681 src -= 4;
682 --dest;
683 idx = H_GET_32 (abfd, src);
684 if (src == shdr->contents)
685 {
686 dest->flags = idx;
687 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
688 shdr->bfd_section->flags
689 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
690 break;
691 }
692 if (idx >= shnum)
693 {
694 _bfd_error_handler
695 (_("%B: invalid SHT_GROUP entry"), abfd);
696 idx = 0;
697 }
698 dest->shdr = elf_elfsections (abfd)[idx];
699 }
700 }
701 }
702
703 /* PR 17510: Corrupt binaries might contain invalid groups. */
704 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
705 {
706 elf_tdata (abfd)->num_group = num_group;
707
708 /* If all groups are invalid then fail. */
709 if (num_group == 0)
710 {
711 elf_tdata (abfd)->group_sect_ptr = NULL;
712 elf_tdata (abfd)->num_group = num_group = -1;
713 _bfd_error_handler
714 (_("%B: no valid group sections found"), abfd);
715 bfd_set_error (bfd_error_bad_value);
716 }
717 }
718 }
719 }
720
721 if (num_group != (unsigned) -1)
722 {
723 unsigned int i;
724
725 for (i = 0; i < num_group; i++)
726 {
727 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
728 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
729 unsigned int n_elt = shdr->sh_size / 4;
730
731 /* Look through this group's sections to see if current
732 section is a member. */
733 while (--n_elt != 0)
734 if ((++idx)->shdr == hdr)
735 {
736 asection *s = NULL;
737
738 /* We are a member of this group. Go looking through
739 other members to see if any others are linked via
740 next_in_group. */
741 idx = (Elf_Internal_Group *) shdr->contents;
742 n_elt = shdr->sh_size / 4;
743 while (--n_elt != 0)
744 if ((s = (++idx)->shdr->bfd_section) != NULL
745 && elf_next_in_group (s) != NULL)
746 break;
747 if (n_elt != 0)
748 {
749 /* Snarf the group name from other member, and
750 insert current section in circular list. */
751 elf_group_name (newsect) = elf_group_name (s);
752 elf_next_in_group (newsect) = elf_next_in_group (s);
753 elf_next_in_group (s) = newsect;
754 }
755 else
756 {
757 const char *gname;
758
759 gname = group_signature (abfd, shdr);
760 if (gname == NULL)
761 return FALSE;
762 elf_group_name (newsect) = gname;
763
764 /* Start a circular list with one element. */
765 elf_next_in_group (newsect) = newsect;
766 }
767
768 /* If the group section has been created, point to the
769 new member. */
770 if (shdr->bfd_section != NULL)
771 elf_next_in_group (shdr->bfd_section) = newsect;
772
773 i = num_group - 1;
774 break;
775 }
776 }
777 }
778
779 if (elf_group_name (newsect) == NULL)
780 {
781 _bfd_error_handler (_("%B: no group info for section %A"),
782 abfd, newsect);
783 return FALSE;
784 }
785 return TRUE;
786 }
787
788 bfd_boolean
789 _bfd_elf_setup_sections (bfd *abfd)
790 {
791 unsigned int i;
792 unsigned int num_group = elf_tdata (abfd)->num_group;
793 bfd_boolean result = TRUE;
794 asection *s;
795
796 /* Process SHF_LINK_ORDER. */
797 for (s = abfd->sections; s != NULL; s = s->next)
798 {
799 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
800 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
801 {
802 unsigned int elfsec = this_hdr->sh_link;
803 /* FIXME: The old Intel compiler and old strip/objcopy may
804 not set the sh_link or sh_info fields. Hence we could
805 get the situation where elfsec is 0. */
806 if (elfsec == 0)
807 {
808 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
809 if (bed->link_order_error_handler)
810 bed->link_order_error_handler
811 (_("%B: warning: sh_link not set for section `%A'"),
812 abfd, s);
813 }
814 else
815 {
816 asection *linksec = NULL;
817
818 if (elfsec < elf_numsections (abfd))
819 {
820 this_hdr = elf_elfsections (abfd)[elfsec];
821 linksec = this_hdr->bfd_section;
822 }
823
824 /* PR 1991, 2008:
825 Some strip/objcopy may leave an incorrect value in
826 sh_link. We don't want to proceed. */
827 if (linksec == NULL)
828 {
829 _bfd_error_handler
830 (_("%B: sh_link [%d] in section `%A' is incorrect"),
831 s->owner, s, elfsec);
832 result = FALSE;
833 }
834
835 elf_linked_to_section (s) = linksec;
836 }
837 }
838 else if (this_hdr->sh_type == SHT_GROUP
839 && elf_next_in_group (s) == NULL)
840 {
841 _bfd_error_handler
842 (_("%B: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
843 abfd, elf_section_data (s)->this_idx);
844 result = FALSE;
845 }
846 }
847
848 /* Process section groups. */
849 if (num_group == (unsigned) -1)
850 return result;
851
852 for (i = 0; i < num_group; i++)
853 {
854 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
855 Elf_Internal_Group *idx;
856 unsigned int n_elt;
857
858 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
859 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
860 {
861 _bfd_error_handler
862 (_("%B: section group entry number %u is corrupt"),
863 abfd, i);
864 result = FALSE;
865 continue;
866 }
867
868 idx = (Elf_Internal_Group *) shdr->contents;
869 n_elt = shdr->sh_size / 4;
870
871 while (--n_elt != 0)
872 if ((++idx)->shdr->bfd_section)
873 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
874 else if (idx->shdr->sh_type == SHT_RELA
875 || idx->shdr->sh_type == SHT_REL)
876 /* We won't include relocation sections in section groups in
877 output object files. We adjust the group section size here
878 so that relocatable link will work correctly when
879 relocation sections are in section group in input object
880 files. */
881 shdr->bfd_section->size -= 4;
882 else
883 {
884 /* There are some unknown sections in the group. */
885 _bfd_error_handler
886 (_("%B: unknown [%d] section `%s' in group [%s]"),
887 abfd,
888 (unsigned int) idx->shdr->sh_type,
889 bfd_elf_string_from_elf_section (abfd,
890 (elf_elfheader (abfd)
891 ->e_shstrndx),
892 idx->shdr->sh_name),
893 shdr->bfd_section->name);
894 result = FALSE;
895 }
896 }
897 return result;
898 }
899
900 bfd_boolean
901 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
902 {
903 return elf_next_in_group (sec) != NULL;
904 }
905
906 static char *
907 convert_debug_to_zdebug (bfd *abfd, const char *name)
908 {
909 unsigned int len = strlen (name);
910 char *new_name = bfd_alloc (abfd, len + 2);
911 if (new_name == NULL)
912 return NULL;
913 new_name[0] = '.';
914 new_name[1] = 'z';
915 memcpy (new_name + 2, name + 1, len);
916 return new_name;
917 }
918
919 static char *
920 convert_zdebug_to_debug (bfd *abfd, const char *name)
921 {
922 unsigned int len = strlen (name);
923 char *new_name = bfd_alloc (abfd, len);
924 if (new_name == NULL)
925 return NULL;
926 new_name[0] = '.';
927 memcpy (new_name + 1, name + 2, len - 1);
928 return new_name;
929 }
930
931 /* Make a BFD section from an ELF section. We store a pointer to the
932 BFD section in the bfd_section field of the header. */
933
934 bfd_boolean
935 _bfd_elf_make_section_from_shdr (bfd *abfd,
936 Elf_Internal_Shdr *hdr,
937 const char *name,
938 int shindex)
939 {
940 asection *newsect;
941 flagword flags;
942 const struct elf_backend_data *bed;
943
944 if (hdr->bfd_section != NULL)
945 return TRUE;
946
947 newsect = bfd_make_section_anyway (abfd, name);
948 if (newsect == NULL)
949 return FALSE;
950
951 hdr->bfd_section = newsect;
952 elf_section_data (newsect)->this_hdr = *hdr;
953 elf_section_data (newsect)->this_idx = shindex;
954
955 /* Always use the real type/flags. */
956 elf_section_type (newsect) = hdr->sh_type;
957 elf_section_flags (newsect) = hdr->sh_flags;
958
959 newsect->filepos = hdr->sh_offset;
960
961 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
962 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
963 || ! bfd_set_section_alignment (abfd, newsect,
964 bfd_log2 (hdr->sh_addralign)))
965 return FALSE;
966
967 flags = SEC_NO_FLAGS;
968 if (hdr->sh_type != SHT_NOBITS)
969 flags |= SEC_HAS_CONTENTS;
970 if (hdr->sh_type == SHT_GROUP)
971 flags |= SEC_GROUP | SEC_EXCLUDE;
972 if ((hdr->sh_flags & SHF_ALLOC) != 0)
973 {
974 flags |= SEC_ALLOC;
975 if (hdr->sh_type != SHT_NOBITS)
976 flags |= SEC_LOAD;
977 }
978 if ((hdr->sh_flags & SHF_WRITE) == 0)
979 flags |= SEC_READONLY;
980 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
981 flags |= SEC_CODE;
982 else if ((flags & SEC_LOAD) != 0)
983 flags |= SEC_DATA;
984 if ((hdr->sh_flags & SHF_MERGE) != 0)
985 {
986 flags |= SEC_MERGE;
987 newsect->entsize = hdr->sh_entsize;
988 }
989 if ((hdr->sh_flags & SHF_STRINGS) != 0)
990 flags |= SEC_STRINGS;
991 if (hdr->sh_flags & SHF_GROUP)
992 if (!setup_group (abfd, hdr, newsect))
993 return FALSE;
994 if ((hdr->sh_flags & SHF_TLS) != 0)
995 flags |= SEC_THREAD_LOCAL;
996 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
997 flags |= SEC_EXCLUDE;
998
999 if ((flags & SEC_ALLOC) == 0)
1000 {
1001 /* The debugging sections appear to be recognized only by name,
1002 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1003 if (name [0] == '.')
1004 {
1005 const char *p;
1006 int n;
1007 if (name[1] == 'd')
1008 p = ".debug", n = 6;
1009 else if (name[1] == 'g' && name[2] == 'n')
1010 p = ".gnu.linkonce.wi.", n = 17;
1011 else if (name[1] == 'g' && name[2] == 'd')
1012 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1013 else if (name[1] == 'l')
1014 p = ".line", n = 5;
1015 else if (name[1] == 's')
1016 p = ".stab", n = 5;
1017 else if (name[1] == 'z')
1018 p = ".zdebug", n = 7;
1019 else
1020 p = NULL, n = 0;
1021 if (p != NULL && strncmp (name, p, n) == 0)
1022 flags |= SEC_DEBUGGING;
1023 }
1024 }
1025
1026 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1027 only link a single copy of the section. This is used to support
1028 g++. g++ will emit each template expansion in its own section.
1029 The symbols will be defined as weak, so that multiple definitions
1030 are permitted. The GNU linker extension is to actually discard
1031 all but one of the sections. */
1032 if (CONST_STRNEQ (name, ".gnu.linkonce")
1033 && elf_next_in_group (newsect) == NULL)
1034 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1035
1036 bed = get_elf_backend_data (abfd);
1037 if (bed->elf_backend_section_flags)
1038 if (! bed->elf_backend_section_flags (&flags, hdr))
1039 return FALSE;
1040
1041 if (! bfd_set_section_flags (abfd, newsect, flags))
1042 return FALSE;
1043
1044 /* We do not parse the PT_NOTE segments as we are interested even in the
1045 separate debug info files which may have the segments offsets corrupted.
1046 PT_NOTEs from the core files are currently not parsed using BFD. */
1047 if (hdr->sh_type == SHT_NOTE)
1048 {
1049 bfd_byte *contents;
1050
1051 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1052 return FALSE;
1053
1054 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
1055 free (contents);
1056 }
1057
1058 if ((flags & SEC_ALLOC) != 0)
1059 {
1060 Elf_Internal_Phdr *phdr;
1061 unsigned int i, nload;
1062
1063 /* Some ELF linkers produce binaries with all the program header
1064 p_paddr fields zero. If we have such a binary with more than
1065 one PT_LOAD header, then leave the section lma equal to vma
1066 so that we don't create sections with overlapping lma. */
1067 phdr = elf_tdata (abfd)->phdr;
1068 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1069 if (phdr->p_paddr != 0)
1070 break;
1071 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1072 ++nload;
1073 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1074 return TRUE;
1075
1076 phdr = elf_tdata (abfd)->phdr;
1077 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1078 {
1079 if (((phdr->p_type == PT_LOAD
1080 && (hdr->sh_flags & SHF_TLS) == 0)
1081 || phdr->p_type == PT_TLS)
1082 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1083 {
1084 if ((flags & SEC_LOAD) == 0)
1085 newsect->lma = (phdr->p_paddr
1086 + hdr->sh_addr - phdr->p_vaddr);
1087 else
1088 /* We used to use the same adjustment for SEC_LOAD
1089 sections, but that doesn't work if the segment
1090 is packed with code from multiple VMAs.
1091 Instead we calculate the section LMA based on
1092 the segment LMA. It is assumed that the
1093 segment will contain sections with contiguous
1094 LMAs, even if the VMAs are not. */
1095 newsect->lma = (phdr->p_paddr
1096 + hdr->sh_offset - phdr->p_offset);
1097
1098 /* With contiguous segments, we can't tell from file
1099 offsets whether a section with zero size should
1100 be placed at the end of one segment or the
1101 beginning of the next. Decide based on vaddr. */
1102 if (hdr->sh_addr >= phdr->p_vaddr
1103 && (hdr->sh_addr + hdr->sh_size
1104 <= phdr->p_vaddr + phdr->p_memsz))
1105 break;
1106 }
1107 }
1108 }
1109
1110 /* Compress/decompress DWARF debug sections with names: .debug_* and
1111 .zdebug_*, after the section flags is set. */
1112 if ((flags & SEC_DEBUGGING)
1113 && ((name[1] == 'd' && name[6] == '_')
1114 || (name[1] == 'z' && name[7] == '_')))
1115 {
1116 enum { nothing, compress, decompress } action = nothing;
1117 int compression_header_size;
1118 bfd_size_type uncompressed_size;
1119 bfd_boolean compressed
1120 = bfd_is_section_compressed_with_header (abfd, newsect,
1121 &compression_header_size,
1122 &uncompressed_size);
1123
1124 if (compressed)
1125 {
1126 /* Compressed section. Check if we should decompress. */
1127 if ((abfd->flags & BFD_DECOMPRESS))
1128 action = decompress;
1129 }
1130
1131 /* Compress the uncompressed section or convert from/to .zdebug*
1132 section. Check if we should compress. */
1133 if (action == nothing)
1134 {
1135 if (newsect->size != 0
1136 && (abfd->flags & BFD_COMPRESS)
1137 && compression_header_size >= 0
1138 && uncompressed_size > 0
1139 && (!compressed
1140 || ((compression_header_size > 0)
1141 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1142 action = compress;
1143 else
1144 return TRUE;
1145 }
1146
1147 if (action == compress)
1148 {
1149 if (!bfd_init_section_compress_status (abfd, newsect))
1150 {
1151 _bfd_error_handler
1152 (_("%B: unable to initialize compress status for section %s"),
1153 abfd, name);
1154 return FALSE;
1155 }
1156 }
1157 else
1158 {
1159 if (!bfd_init_section_decompress_status (abfd, newsect))
1160 {
1161 _bfd_error_handler
1162 (_("%B: unable to initialize decompress status for section %s"),
1163 abfd, name);
1164 return FALSE;
1165 }
1166 }
1167
1168 if (abfd->is_linker_input)
1169 {
1170 if (name[1] == 'z'
1171 && (action == decompress
1172 || (action == compress
1173 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1174 {
1175 /* Convert section name from .zdebug_* to .debug_* so
1176 that linker will consider this section as a debug
1177 section. */
1178 char *new_name = convert_zdebug_to_debug (abfd, name);
1179 if (new_name == NULL)
1180 return FALSE;
1181 bfd_rename_section (abfd, newsect, new_name);
1182 }
1183 }
1184 else
1185 /* For objdump, don't rename the section. For objcopy, delay
1186 section rename to elf_fake_sections. */
1187 newsect->flags |= SEC_ELF_RENAME;
1188 }
1189
1190 return TRUE;
1191 }
1192
1193 const char *const bfd_elf_section_type_names[] =
1194 {
1195 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1196 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1197 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1198 };
1199
1200 /* ELF relocs are against symbols. If we are producing relocatable
1201 output, and the reloc is against an external symbol, and nothing
1202 has given us any additional addend, the resulting reloc will also
1203 be against the same symbol. In such a case, we don't want to
1204 change anything about the way the reloc is handled, since it will
1205 all be done at final link time. Rather than put special case code
1206 into bfd_perform_relocation, all the reloc types use this howto
1207 function. It just short circuits the reloc if producing
1208 relocatable output against an external symbol. */
1209
1210 bfd_reloc_status_type
1211 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1212 arelent *reloc_entry,
1213 asymbol *symbol,
1214 void *data ATTRIBUTE_UNUSED,
1215 asection *input_section,
1216 bfd *output_bfd,
1217 char **error_message ATTRIBUTE_UNUSED)
1218 {
1219 if (output_bfd != NULL
1220 && (symbol->flags & BSF_SECTION_SYM) == 0
1221 && (! reloc_entry->howto->partial_inplace
1222 || reloc_entry->addend == 0))
1223 {
1224 reloc_entry->address += input_section->output_offset;
1225 return bfd_reloc_ok;
1226 }
1227
1228 return bfd_reloc_continue;
1229 }
1230 \f
1231 /* Returns TRUE if section A matches section B.
1232 Names, addresses and links may be different, but everything else
1233 should be the same. */
1234
1235 static bfd_boolean
1236 section_match (const Elf_Internal_Shdr * a,
1237 const Elf_Internal_Shdr * b)
1238 {
1239 return
1240 a->sh_type == b->sh_type
1241 && (a->sh_flags & ~ SHF_INFO_LINK)
1242 == (b->sh_flags & ~ SHF_INFO_LINK)
1243 && a->sh_addralign == b->sh_addralign
1244 && a->sh_size == b->sh_size
1245 && a->sh_entsize == b->sh_entsize
1246 /* FIXME: Check sh_addr ? */
1247 ;
1248 }
1249
1250 /* Find a section in OBFD that has the same characteristics
1251 as IHEADER. Return the index of this section or SHN_UNDEF if
1252 none can be found. Check's section HINT first, as this is likely
1253 to be the correct section. */
1254
1255 static unsigned int
1256 find_link (const bfd * obfd, const Elf_Internal_Shdr * iheader, const unsigned int hint)
1257 {
1258 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1259 unsigned int i;
1260
1261 if (section_match (oheaders[hint], iheader))
1262 return hint;
1263
1264 for (i = 1; i < elf_numsections (obfd); i++)
1265 {
1266 Elf_Internal_Shdr * oheader = oheaders[i];
1267
1268 if (section_match (oheader, iheader))
1269 /* FIXME: Do we care if there is a potential for
1270 multiple matches ? */
1271 return i;
1272 }
1273
1274 return SHN_UNDEF;
1275 }
1276
1277 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1278 Processor specific section, based upon a matching input section.
1279 Returns TRUE upon success, FALSE otherwise. */
1280
1281 static bfd_boolean
1282 copy_special_section_fields (const bfd *ibfd,
1283 bfd *obfd,
1284 const Elf_Internal_Shdr *iheader,
1285 Elf_Internal_Shdr *oheader,
1286 const unsigned int secnum)
1287 {
1288 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1289 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1290 bfd_boolean changed = FALSE;
1291 unsigned int sh_link;
1292
1293 if (oheader->sh_type == SHT_NOBITS)
1294 {
1295 /* This is a feature for objcopy --only-keep-debug:
1296 When a section's type is changed to NOBITS, we preserve
1297 the sh_link and sh_info fields so that they can be
1298 matched up with the original.
1299
1300 Note: Strictly speaking these assignments are wrong.
1301 The sh_link and sh_info fields should point to the
1302 relevent sections in the output BFD, which may not be in
1303 the same location as they were in the input BFD. But
1304 the whole point of this action is to preserve the
1305 original values of the sh_link and sh_info fields, so
1306 that they can be matched up with the section headers in
1307 the original file. So strictly speaking we may be
1308 creating an invalid ELF file, but it is only for a file
1309 that just contains debug info and only for sections
1310 without any contents. */
1311 if (oheader->sh_link == 0)
1312 oheader->sh_link = iheader->sh_link;
1313 if (oheader->sh_info == 0)
1314 oheader->sh_info = iheader->sh_info;
1315 return TRUE;
1316 }
1317
1318 /* Allow the target a chance to decide how these fields should be set. */
1319 if (bed->elf_backend_copy_special_section_fields != NULL
1320 && bed->elf_backend_copy_special_section_fields
1321 (ibfd, obfd, iheader, oheader))
1322 return TRUE;
1323
1324 /* We have an iheader which might match oheader, and which has non-zero
1325 sh_info and/or sh_link fields. Attempt to follow those links and find
1326 the section in the output bfd which corresponds to the linked section
1327 in the input bfd. */
1328 if (iheader->sh_link != SHN_UNDEF)
1329 {
1330 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1331 if (sh_link != SHN_UNDEF)
1332 {
1333 oheader->sh_link = sh_link;
1334 changed = TRUE;
1335 }
1336 else
1337 /* FIXME: Should we install iheader->sh_link
1338 if we could not find a match ? */
1339 (* _bfd_error_handler)
1340 (_("%B: Failed to find link section for section %d"), obfd, secnum);
1341 }
1342
1343 if (iheader->sh_info)
1344 {
1345 /* The sh_info field can hold arbitrary information, but if the
1346 SHF_LINK_INFO flag is set then it should be interpreted as a
1347 section index. */
1348 if (iheader->sh_flags & SHF_INFO_LINK)
1349 {
1350 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1351 iheader->sh_info);
1352 if (sh_link != SHN_UNDEF)
1353 oheader->sh_flags |= SHF_INFO_LINK;
1354 }
1355 else
1356 /* No idea what it means - just copy it. */
1357 sh_link = iheader->sh_info;
1358
1359 if (sh_link != SHN_UNDEF)
1360 {
1361 oheader->sh_info = sh_link;
1362 changed = TRUE;
1363 }
1364 else
1365 (* _bfd_error_handler)
1366 (_("%B: Failed to find info section for section %d"), obfd, secnum);
1367 }
1368
1369 return changed;
1370 }
1371
1372 /* Copy the program header and other data from one object module to
1373 another. */
1374
1375 bfd_boolean
1376 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1377 {
1378 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1379 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1380 const struct elf_backend_data *bed;
1381 unsigned int i;
1382
1383 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1384 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1385 return TRUE;
1386
1387 if (!elf_flags_init (obfd))
1388 {
1389 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1390 elf_flags_init (obfd) = TRUE;
1391 }
1392
1393 elf_gp (obfd) = elf_gp (ibfd);
1394
1395 /* Also copy the EI_OSABI field. */
1396 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1397 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1398
1399 /* If set, copy the EI_ABIVERSION field. */
1400 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1401 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1402 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1403
1404 /* Copy object attributes. */
1405 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1406
1407 if (iheaders == NULL || oheaders == NULL)
1408 return TRUE;
1409
1410 bed = get_elf_backend_data (obfd);
1411
1412 /* Possibly copy other fields in the section header. */
1413 for (i = 1; i < elf_numsections (obfd); i++)
1414 {
1415 unsigned int j;
1416 Elf_Internal_Shdr * oheader = oheaders[i];
1417
1418 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1419 because of a special case need for generating separate debug info
1420 files. See below for more details. */
1421 if (oheader == NULL
1422 || (oheader->sh_type != SHT_NOBITS
1423 && oheader->sh_type < SHT_LOOS))
1424 continue;
1425
1426 /* Ignore empty sections, and sections whose
1427 fields have already been initialised. */
1428 if (oheader->sh_size == 0
1429 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1430 continue;
1431
1432 /* Scan for the matching section in the input bfd.
1433 First we try for a direct mapping between the input and output sections. */
1434 for (j = 1; j < elf_numsections (ibfd); j++)
1435 {
1436 const Elf_Internal_Shdr * iheader = iheaders[j];
1437
1438 if (iheader == NULL)
1439 continue;
1440
1441 if (oheader->bfd_section != NULL
1442 && iheader->bfd_section != NULL
1443 && iheader->bfd_section->output_section != NULL
1444 && iheader->bfd_section->output_section == oheader->bfd_section)
1445 {
1446 /* We have found a connection from the input section to the
1447 output section. Attempt to copy the header fields. If
1448 this fails then do not try any further sections - there
1449 should only be a one-to-one mapping between input and output. */
1450 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1451 j = elf_numsections (ibfd);
1452 break;
1453 }
1454 }
1455
1456 if (j < elf_numsections (ibfd))
1457 continue;
1458
1459 /* That failed. So try to deduce the corresponding input section.
1460 Unfortunately we cannot compare names as the output string table
1461 is empty, so instead we check size, address and type. */
1462 for (j = 1; j < elf_numsections (ibfd); j++)
1463 {
1464 const Elf_Internal_Shdr * iheader = iheaders[j];
1465
1466 if (iheader == NULL)
1467 continue;
1468
1469 /* Try matching fields in the input section's header.
1470 Since --only-keep-debug turns all non-debug sections into
1471 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1472 input type. */
1473 if ((oheader->sh_type == SHT_NOBITS
1474 || iheader->sh_type == oheader->sh_type)
1475 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1476 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1477 && iheader->sh_addralign == oheader->sh_addralign
1478 && iheader->sh_entsize == oheader->sh_entsize
1479 && iheader->sh_size == oheader->sh_size
1480 && iheader->sh_addr == oheader->sh_addr
1481 && (iheader->sh_info != oheader->sh_info
1482 || iheader->sh_link != oheader->sh_link))
1483 {
1484 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1485 break;
1486 }
1487 }
1488
1489 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1490 {
1491 /* Final attempt. Call the backend copy function
1492 with a NULL input section. */
1493 if (bed->elf_backend_copy_special_section_fields != NULL)
1494 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1495 }
1496 }
1497
1498 return TRUE;
1499 }
1500
1501 static const char *
1502 get_segment_type (unsigned int p_type)
1503 {
1504 const char *pt;
1505 switch (p_type)
1506 {
1507 case PT_NULL: pt = "NULL"; break;
1508 case PT_LOAD: pt = "LOAD"; break;
1509 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1510 case PT_INTERP: pt = "INTERP"; break;
1511 case PT_NOTE: pt = "NOTE"; break;
1512 case PT_SHLIB: pt = "SHLIB"; break;
1513 case PT_PHDR: pt = "PHDR"; break;
1514 case PT_TLS: pt = "TLS"; break;
1515 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1516 case PT_GNU_STACK: pt = "STACK"; break;
1517 case PT_GNU_RELRO: pt = "RELRO"; break;
1518 default: pt = NULL; break;
1519 }
1520 return pt;
1521 }
1522
1523 /* Print out the program headers. */
1524
1525 bfd_boolean
1526 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1527 {
1528 FILE *f = (FILE *) farg;
1529 Elf_Internal_Phdr *p;
1530 asection *s;
1531 bfd_byte *dynbuf = NULL;
1532
1533 p = elf_tdata (abfd)->phdr;
1534 if (p != NULL)
1535 {
1536 unsigned int i, c;
1537
1538 fprintf (f, _("\nProgram Header:\n"));
1539 c = elf_elfheader (abfd)->e_phnum;
1540 for (i = 0; i < c; i++, p++)
1541 {
1542 const char *pt = get_segment_type (p->p_type);
1543 char buf[20];
1544
1545 if (pt == NULL)
1546 {
1547 sprintf (buf, "0x%lx", p->p_type);
1548 pt = buf;
1549 }
1550 fprintf (f, "%8s off 0x", pt);
1551 bfd_fprintf_vma (abfd, f, p->p_offset);
1552 fprintf (f, " vaddr 0x");
1553 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1554 fprintf (f, " paddr 0x");
1555 bfd_fprintf_vma (abfd, f, p->p_paddr);
1556 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1557 fprintf (f, " filesz 0x");
1558 bfd_fprintf_vma (abfd, f, p->p_filesz);
1559 fprintf (f, " memsz 0x");
1560 bfd_fprintf_vma (abfd, f, p->p_memsz);
1561 fprintf (f, " flags %c%c%c",
1562 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1563 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1564 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1565 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1566 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1567 fprintf (f, "\n");
1568 }
1569 }
1570
1571 s = bfd_get_section_by_name (abfd, ".dynamic");
1572 if (s != NULL)
1573 {
1574 unsigned int elfsec;
1575 unsigned long shlink;
1576 bfd_byte *extdyn, *extdynend;
1577 size_t extdynsize;
1578 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1579
1580 fprintf (f, _("\nDynamic Section:\n"));
1581
1582 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1583 goto error_return;
1584
1585 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1586 if (elfsec == SHN_BAD)
1587 goto error_return;
1588 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1589
1590 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1591 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1592
1593 extdyn = dynbuf;
1594 /* PR 17512: file: 6f427532. */
1595 if (s->size < extdynsize)
1596 goto error_return;
1597 extdynend = extdyn + s->size;
1598 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1599 Fix range check. */
1600 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1601 {
1602 Elf_Internal_Dyn dyn;
1603 const char *name = "";
1604 char ab[20];
1605 bfd_boolean stringp;
1606 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1607
1608 (*swap_dyn_in) (abfd, extdyn, &dyn);
1609
1610 if (dyn.d_tag == DT_NULL)
1611 break;
1612
1613 stringp = FALSE;
1614 switch (dyn.d_tag)
1615 {
1616 default:
1617 if (bed->elf_backend_get_target_dtag)
1618 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1619
1620 if (!strcmp (name, ""))
1621 {
1622 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1623 name = ab;
1624 }
1625 break;
1626
1627 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1628 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1629 case DT_PLTGOT: name = "PLTGOT"; break;
1630 case DT_HASH: name = "HASH"; break;
1631 case DT_STRTAB: name = "STRTAB"; break;
1632 case DT_SYMTAB: name = "SYMTAB"; break;
1633 case DT_RELA: name = "RELA"; break;
1634 case DT_RELASZ: name = "RELASZ"; break;
1635 case DT_RELAENT: name = "RELAENT"; break;
1636 case DT_STRSZ: name = "STRSZ"; break;
1637 case DT_SYMENT: name = "SYMENT"; break;
1638 case DT_INIT: name = "INIT"; break;
1639 case DT_FINI: name = "FINI"; break;
1640 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1641 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1642 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1643 case DT_REL: name = "REL"; break;
1644 case DT_RELSZ: name = "RELSZ"; break;
1645 case DT_RELENT: name = "RELENT"; break;
1646 case DT_PLTREL: name = "PLTREL"; break;
1647 case DT_DEBUG: name = "DEBUG"; break;
1648 case DT_TEXTREL: name = "TEXTREL"; break;
1649 case DT_JMPREL: name = "JMPREL"; break;
1650 case DT_BIND_NOW: name = "BIND_NOW"; break;
1651 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1652 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1653 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1654 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1655 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1656 case DT_FLAGS: name = "FLAGS"; break;
1657 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1658 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1659 case DT_CHECKSUM: name = "CHECKSUM"; break;
1660 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1661 case DT_MOVEENT: name = "MOVEENT"; break;
1662 case DT_MOVESZ: name = "MOVESZ"; break;
1663 case DT_FEATURE: name = "FEATURE"; break;
1664 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1665 case DT_SYMINSZ: name = "SYMINSZ"; break;
1666 case DT_SYMINENT: name = "SYMINENT"; break;
1667 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1668 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1669 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1670 case DT_PLTPAD: name = "PLTPAD"; break;
1671 case DT_MOVETAB: name = "MOVETAB"; break;
1672 case DT_SYMINFO: name = "SYMINFO"; break;
1673 case DT_RELACOUNT: name = "RELACOUNT"; break;
1674 case DT_RELCOUNT: name = "RELCOUNT"; break;
1675 case DT_FLAGS_1: name = "FLAGS_1"; break;
1676 case DT_VERSYM: name = "VERSYM"; break;
1677 case DT_VERDEF: name = "VERDEF"; break;
1678 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1679 case DT_VERNEED: name = "VERNEED"; break;
1680 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1681 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1682 case DT_USED: name = "USED"; break;
1683 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1684 case DT_GNU_HASH: name = "GNU_HASH"; break;
1685 }
1686
1687 fprintf (f, " %-20s ", name);
1688 if (! stringp)
1689 {
1690 fprintf (f, "0x");
1691 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1692 }
1693 else
1694 {
1695 const char *string;
1696 unsigned int tagv = dyn.d_un.d_val;
1697
1698 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1699 if (string == NULL)
1700 goto error_return;
1701 fprintf (f, "%s", string);
1702 }
1703 fprintf (f, "\n");
1704 }
1705
1706 free (dynbuf);
1707 dynbuf = NULL;
1708 }
1709
1710 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1711 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1712 {
1713 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1714 return FALSE;
1715 }
1716
1717 if (elf_dynverdef (abfd) != 0)
1718 {
1719 Elf_Internal_Verdef *t;
1720
1721 fprintf (f, _("\nVersion definitions:\n"));
1722 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1723 {
1724 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1725 t->vd_flags, t->vd_hash,
1726 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1727 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1728 {
1729 Elf_Internal_Verdaux *a;
1730
1731 fprintf (f, "\t");
1732 for (a = t->vd_auxptr->vda_nextptr;
1733 a != NULL;
1734 a = a->vda_nextptr)
1735 fprintf (f, "%s ",
1736 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1737 fprintf (f, "\n");
1738 }
1739 }
1740 }
1741
1742 if (elf_dynverref (abfd) != 0)
1743 {
1744 Elf_Internal_Verneed *t;
1745
1746 fprintf (f, _("\nVersion References:\n"));
1747 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1748 {
1749 Elf_Internal_Vernaux *a;
1750
1751 fprintf (f, _(" required from %s:\n"),
1752 t->vn_filename ? t->vn_filename : "<corrupt>");
1753 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1754 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1755 a->vna_flags, a->vna_other,
1756 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1757 }
1758 }
1759
1760 return TRUE;
1761
1762 error_return:
1763 if (dynbuf != NULL)
1764 free (dynbuf);
1765 return FALSE;
1766 }
1767
1768 /* Get version string. */
1769
1770 const char *
1771 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1772 bfd_boolean *hidden)
1773 {
1774 const char *version_string = NULL;
1775 if (elf_dynversym (abfd) != 0
1776 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1777 {
1778 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1779
1780 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1781 vernum &= VERSYM_VERSION;
1782
1783 if (vernum == 0)
1784 version_string = "";
1785 else if (vernum == 1)
1786 version_string = "Base";
1787 else if (vernum <= elf_tdata (abfd)->cverdefs)
1788 version_string =
1789 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1790 else
1791 {
1792 Elf_Internal_Verneed *t;
1793
1794 version_string = "";
1795 for (t = elf_tdata (abfd)->verref;
1796 t != NULL;
1797 t = t->vn_nextref)
1798 {
1799 Elf_Internal_Vernaux *a;
1800
1801 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1802 {
1803 if (a->vna_other == vernum)
1804 {
1805 version_string = a->vna_nodename;
1806 break;
1807 }
1808 }
1809 }
1810 }
1811 }
1812 return version_string;
1813 }
1814
1815 /* Display ELF-specific fields of a symbol. */
1816
1817 void
1818 bfd_elf_print_symbol (bfd *abfd,
1819 void *filep,
1820 asymbol *symbol,
1821 bfd_print_symbol_type how)
1822 {
1823 FILE *file = (FILE *) filep;
1824 switch (how)
1825 {
1826 case bfd_print_symbol_name:
1827 fprintf (file, "%s", symbol->name);
1828 break;
1829 case bfd_print_symbol_more:
1830 fprintf (file, "elf ");
1831 bfd_fprintf_vma (abfd, file, symbol->value);
1832 fprintf (file, " %lx", (unsigned long) symbol->flags);
1833 break;
1834 case bfd_print_symbol_all:
1835 {
1836 const char *section_name;
1837 const char *name = NULL;
1838 const struct elf_backend_data *bed;
1839 unsigned char st_other;
1840 bfd_vma val;
1841 const char *version_string;
1842 bfd_boolean hidden;
1843
1844 section_name = symbol->section ? symbol->section->name : "(*none*)";
1845
1846 bed = get_elf_backend_data (abfd);
1847 if (bed->elf_backend_print_symbol_all)
1848 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1849
1850 if (name == NULL)
1851 {
1852 name = symbol->name;
1853 bfd_print_symbol_vandf (abfd, file, symbol);
1854 }
1855
1856 fprintf (file, " %s\t", section_name);
1857 /* Print the "other" value for a symbol. For common symbols,
1858 we've already printed the size; now print the alignment.
1859 For other symbols, we have no specified alignment, and
1860 we've printed the address; now print the size. */
1861 if (symbol->section && bfd_is_com_section (symbol->section))
1862 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1863 else
1864 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1865 bfd_fprintf_vma (abfd, file, val);
1866
1867 /* If we have version information, print it. */
1868 version_string = _bfd_elf_get_symbol_version_string (abfd,
1869 symbol,
1870 &hidden);
1871 if (version_string)
1872 {
1873 if (!hidden)
1874 fprintf (file, " %-11s", version_string);
1875 else
1876 {
1877 int i;
1878
1879 fprintf (file, " (%s)", version_string);
1880 for (i = 10 - strlen (version_string); i > 0; --i)
1881 putc (' ', file);
1882 }
1883 }
1884
1885 /* If the st_other field is not zero, print it. */
1886 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1887
1888 switch (st_other)
1889 {
1890 case 0: break;
1891 case STV_INTERNAL: fprintf (file, " .internal"); break;
1892 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1893 case STV_PROTECTED: fprintf (file, " .protected"); break;
1894 default:
1895 /* Some other non-defined flags are also present, so print
1896 everything hex. */
1897 fprintf (file, " 0x%02x", (unsigned int) st_other);
1898 }
1899
1900 fprintf (file, " %s", name);
1901 }
1902 break;
1903 }
1904 }
1905 \f
1906 /* ELF .o/exec file reading */
1907
1908 /* Create a new bfd section from an ELF section header. */
1909
1910 bfd_boolean
1911 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1912 {
1913 Elf_Internal_Shdr *hdr;
1914 Elf_Internal_Ehdr *ehdr;
1915 const struct elf_backend_data *bed;
1916 const char *name;
1917 bfd_boolean ret = TRUE;
1918 static bfd_boolean * sections_being_created = NULL;
1919 static bfd * sections_being_created_abfd = NULL;
1920 static unsigned int nesting = 0;
1921
1922 if (shindex >= elf_numsections (abfd))
1923 return FALSE;
1924
1925 if (++ nesting > 3)
1926 {
1927 /* PR17512: A corrupt ELF binary might contain a recursive group of
1928 sections, with each the string indicies pointing to the next in the
1929 loop. Detect this here, by refusing to load a section that we are
1930 already in the process of loading. We only trigger this test if
1931 we have nested at least three sections deep as normal ELF binaries
1932 can expect to recurse at least once.
1933
1934 FIXME: It would be better if this array was attached to the bfd,
1935 rather than being held in a static pointer. */
1936
1937 if (sections_being_created_abfd != abfd)
1938 sections_being_created = NULL;
1939 if (sections_being_created == NULL)
1940 {
1941 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1942 sections_being_created = (bfd_boolean *)
1943 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1944 sections_being_created_abfd = abfd;
1945 }
1946 if (sections_being_created [shindex])
1947 {
1948 _bfd_error_handler
1949 (_("%B: warning: loop in section dependencies detected"), abfd);
1950 return FALSE;
1951 }
1952 sections_being_created [shindex] = TRUE;
1953 }
1954
1955 hdr = elf_elfsections (abfd)[shindex];
1956 ehdr = elf_elfheader (abfd);
1957 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1958 hdr->sh_name);
1959 if (name == NULL)
1960 goto fail;
1961
1962 bed = get_elf_backend_data (abfd);
1963 switch (hdr->sh_type)
1964 {
1965 case SHT_NULL:
1966 /* Inactive section. Throw it away. */
1967 goto success;
1968
1969 case SHT_PROGBITS: /* Normal section with contents. */
1970 case SHT_NOBITS: /* .bss section. */
1971 case SHT_HASH: /* .hash section. */
1972 case SHT_NOTE: /* .note section. */
1973 case SHT_INIT_ARRAY: /* .init_array section. */
1974 case SHT_FINI_ARRAY: /* .fini_array section. */
1975 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1976 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1977 case SHT_GNU_HASH: /* .gnu.hash section. */
1978 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1979 goto success;
1980
1981 case SHT_DYNAMIC: /* Dynamic linking information. */
1982 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1983 goto fail;
1984
1985 if (hdr->sh_link > elf_numsections (abfd))
1986 {
1987 /* PR 10478: Accept Solaris binaries with a sh_link
1988 field set to SHN_BEFORE or SHN_AFTER. */
1989 switch (bfd_get_arch (abfd))
1990 {
1991 case bfd_arch_i386:
1992 case bfd_arch_sparc:
1993 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1994 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1995 break;
1996 /* Otherwise fall through. */
1997 default:
1998 goto fail;
1999 }
2000 }
2001 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2002 goto fail;
2003 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2004 {
2005 Elf_Internal_Shdr *dynsymhdr;
2006
2007 /* The shared libraries distributed with hpux11 have a bogus
2008 sh_link field for the ".dynamic" section. Find the
2009 string table for the ".dynsym" section instead. */
2010 if (elf_dynsymtab (abfd) != 0)
2011 {
2012 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2013 hdr->sh_link = dynsymhdr->sh_link;
2014 }
2015 else
2016 {
2017 unsigned int i, num_sec;
2018
2019 num_sec = elf_numsections (abfd);
2020 for (i = 1; i < num_sec; i++)
2021 {
2022 dynsymhdr = elf_elfsections (abfd)[i];
2023 if (dynsymhdr->sh_type == SHT_DYNSYM)
2024 {
2025 hdr->sh_link = dynsymhdr->sh_link;
2026 break;
2027 }
2028 }
2029 }
2030 }
2031 goto success;
2032
2033 case SHT_SYMTAB: /* A symbol table. */
2034 if (elf_onesymtab (abfd) == shindex)
2035 goto success;
2036
2037 if (hdr->sh_entsize != bed->s->sizeof_sym)
2038 goto fail;
2039
2040 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2041 {
2042 if (hdr->sh_size != 0)
2043 goto fail;
2044 /* Some assemblers erroneously set sh_info to one with a
2045 zero sh_size. ld sees this as a global symbol count
2046 of (unsigned) -1. Fix it here. */
2047 hdr->sh_info = 0;
2048 goto success;
2049 }
2050
2051 /* PR 18854: A binary might contain more than one symbol table.
2052 Unusual, but possible. Warn, but continue. */
2053 if (elf_onesymtab (abfd) != 0)
2054 {
2055 _bfd_error_handler
2056 (_("%B: warning: multiple symbol tables detected - ignoring the table in section %u"),
2057 abfd, shindex);
2058 goto success;
2059 }
2060 elf_onesymtab (abfd) = shindex;
2061 elf_symtab_hdr (abfd) = *hdr;
2062 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2063 abfd->flags |= HAS_SYMS;
2064
2065 /* Sometimes a shared object will map in the symbol table. If
2066 SHF_ALLOC is set, and this is a shared object, then we also
2067 treat this section as a BFD section. We can not base the
2068 decision purely on SHF_ALLOC, because that flag is sometimes
2069 set in a relocatable object file, which would confuse the
2070 linker. */
2071 if ((hdr->sh_flags & SHF_ALLOC) != 0
2072 && (abfd->flags & DYNAMIC) != 0
2073 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2074 shindex))
2075 goto fail;
2076
2077 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2078 can't read symbols without that section loaded as well. It
2079 is most likely specified by the next section header. */
2080 {
2081 elf_section_list * entry;
2082 unsigned int i, num_sec;
2083
2084 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2085 if (entry->hdr.sh_link == shindex)
2086 goto success;
2087
2088 num_sec = elf_numsections (abfd);
2089 for (i = shindex + 1; i < num_sec; i++)
2090 {
2091 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2092
2093 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2094 && hdr2->sh_link == shindex)
2095 break;
2096 }
2097
2098 if (i == num_sec)
2099 for (i = 1; i < shindex; i++)
2100 {
2101 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2102
2103 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2104 && hdr2->sh_link == shindex)
2105 break;
2106 }
2107
2108 if (i != shindex)
2109 ret = bfd_section_from_shdr (abfd, i);
2110 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2111 goto success;
2112 }
2113
2114 case SHT_DYNSYM: /* A dynamic symbol table. */
2115 if (elf_dynsymtab (abfd) == shindex)
2116 goto success;
2117
2118 if (hdr->sh_entsize != bed->s->sizeof_sym)
2119 goto fail;
2120
2121 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2122 {
2123 if (hdr->sh_size != 0)
2124 goto fail;
2125
2126 /* Some linkers erroneously set sh_info to one with a
2127 zero sh_size. ld sees this as a global symbol count
2128 of (unsigned) -1. Fix it here. */
2129 hdr->sh_info = 0;
2130 goto success;
2131 }
2132
2133 /* PR 18854: A binary might contain more than one dynamic symbol table.
2134 Unusual, but possible. Warn, but continue. */
2135 if (elf_dynsymtab (abfd) != 0)
2136 {
2137 _bfd_error_handler
2138 (_("%B: warning: multiple dynamic symbol tables detected - ignoring the table in section %u"),
2139 abfd, shindex);
2140 goto success;
2141 }
2142 elf_dynsymtab (abfd) = shindex;
2143 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2144 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2145 abfd->flags |= HAS_SYMS;
2146
2147 /* Besides being a symbol table, we also treat this as a regular
2148 section, so that objcopy can handle it. */
2149 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2150 goto success;
2151
2152 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2153 {
2154 elf_section_list * entry;
2155
2156 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2157 if (entry->ndx == shindex)
2158 goto success;
2159
2160 entry = bfd_alloc (abfd, sizeof * entry);
2161 if (entry == NULL)
2162 goto fail;
2163 entry->ndx = shindex;
2164 entry->hdr = * hdr;
2165 entry->next = elf_symtab_shndx_list (abfd);
2166 elf_symtab_shndx_list (abfd) = entry;
2167 elf_elfsections (abfd)[shindex] = & entry->hdr;
2168 goto success;
2169 }
2170
2171 case SHT_STRTAB: /* A string table. */
2172 if (hdr->bfd_section != NULL)
2173 goto success;
2174
2175 if (ehdr->e_shstrndx == shindex)
2176 {
2177 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2178 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2179 goto success;
2180 }
2181
2182 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2183 {
2184 symtab_strtab:
2185 elf_tdata (abfd)->strtab_hdr = *hdr;
2186 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2187 goto success;
2188 }
2189
2190 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2191 {
2192 dynsymtab_strtab:
2193 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2194 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2195 elf_elfsections (abfd)[shindex] = hdr;
2196 /* We also treat this as a regular section, so that objcopy
2197 can handle it. */
2198 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2199 shindex);
2200 goto success;
2201 }
2202
2203 /* If the string table isn't one of the above, then treat it as a
2204 regular section. We need to scan all the headers to be sure,
2205 just in case this strtab section appeared before the above. */
2206 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2207 {
2208 unsigned int i, num_sec;
2209
2210 num_sec = elf_numsections (abfd);
2211 for (i = 1; i < num_sec; i++)
2212 {
2213 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2214 if (hdr2->sh_link == shindex)
2215 {
2216 /* Prevent endless recursion on broken objects. */
2217 if (i == shindex)
2218 goto fail;
2219 if (! bfd_section_from_shdr (abfd, i))
2220 goto fail;
2221 if (elf_onesymtab (abfd) == i)
2222 goto symtab_strtab;
2223 if (elf_dynsymtab (abfd) == i)
2224 goto dynsymtab_strtab;
2225 }
2226 }
2227 }
2228 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2229 goto success;
2230
2231 case SHT_REL:
2232 case SHT_RELA:
2233 /* *These* do a lot of work -- but build no sections! */
2234 {
2235 asection *target_sect;
2236 Elf_Internal_Shdr *hdr2, **p_hdr;
2237 unsigned int num_sec = elf_numsections (abfd);
2238 struct bfd_elf_section_data *esdt;
2239
2240 if (hdr->sh_entsize
2241 != (bfd_size_type) (hdr->sh_type == SHT_REL
2242 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2243 goto fail;
2244
2245 /* Check for a bogus link to avoid crashing. */
2246 if (hdr->sh_link >= num_sec)
2247 {
2248 _bfd_error_handler
2249 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2250 abfd, hdr->sh_link, name, shindex);
2251 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2252 shindex);
2253 goto success;
2254 }
2255
2256 /* For some incomprehensible reason Oracle distributes
2257 libraries for Solaris in which some of the objects have
2258 bogus sh_link fields. It would be nice if we could just
2259 reject them, but, unfortunately, some people need to use
2260 them. We scan through the section headers; if we find only
2261 one suitable symbol table, we clobber the sh_link to point
2262 to it. I hope this doesn't break anything.
2263
2264 Don't do it on executable nor shared library. */
2265 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2266 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2267 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2268 {
2269 unsigned int scan;
2270 int found;
2271
2272 found = 0;
2273 for (scan = 1; scan < num_sec; scan++)
2274 {
2275 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2276 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2277 {
2278 if (found != 0)
2279 {
2280 found = 0;
2281 break;
2282 }
2283 found = scan;
2284 }
2285 }
2286 if (found != 0)
2287 hdr->sh_link = found;
2288 }
2289
2290 /* Get the symbol table. */
2291 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2292 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2293 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2294 goto fail;
2295
2296 /* If this reloc section does not use the main symbol table we
2297 don't treat it as a reloc section. BFD can't adequately
2298 represent such a section, so at least for now, we don't
2299 try. We just present it as a normal section. We also
2300 can't use it as a reloc section if it points to the null
2301 section, an invalid section, another reloc section, or its
2302 sh_link points to the null section. */
2303 if (hdr->sh_link != elf_onesymtab (abfd)
2304 || hdr->sh_link == SHN_UNDEF
2305 || hdr->sh_info == SHN_UNDEF
2306 || hdr->sh_info >= num_sec
2307 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2308 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2309 {
2310 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2311 shindex);
2312 goto success;
2313 }
2314
2315 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2316 goto fail;
2317
2318 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2319 if (target_sect == NULL)
2320 goto fail;
2321
2322 esdt = elf_section_data (target_sect);
2323 if (hdr->sh_type == SHT_RELA)
2324 p_hdr = &esdt->rela.hdr;
2325 else
2326 p_hdr = &esdt->rel.hdr;
2327
2328 /* PR 17512: file: 0b4f81b7. */
2329 if (*p_hdr != NULL)
2330 goto fail;
2331 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2332 if (hdr2 == NULL)
2333 goto fail;
2334 *hdr2 = *hdr;
2335 *p_hdr = hdr2;
2336 elf_elfsections (abfd)[shindex] = hdr2;
2337 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2338 target_sect->flags |= SEC_RELOC;
2339 target_sect->relocation = NULL;
2340 target_sect->rel_filepos = hdr->sh_offset;
2341 /* In the section to which the relocations apply, mark whether
2342 its relocations are of the REL or RELA variety. */
2343 if (hdr->sh_size != 0)
2344 {
2345 if (hdr->sh_type == SHT_RELA)
2346 target_sect->use_rela_p = 1;
2347 }
2348 abfd->flags |= HAS_RELOC;
2349 goto success;
2350 }
2351
2352 case SHT_GNU_verdef:
2353 elf_dynverdef (abfd) = shindex;
2354 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2355 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2356 goto success;
2357
2358 case SHT_GNU_versym:
2359 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2360 goto fail;
2361
2362 elf_dynversym (abfd) = shindex;
2363 elf_tdata (abfd)->dynversym_hdr = *hdr;
2364 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2365 goto success;
2366
2367 case SHT_GNU_verneed:
2368 elf_dynverref (abfd) = shindex;
2369 elf_tdata (abfd)->dynverref_hdr = *hdr;
2370 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2371 goto success;
2372
2373 case SHT_SHLIB:
2374 goto success;
2375
2376 case SHT_GROUP:
2377 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2378 goto fail;
2379
2380 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2381 goto fail;
2382
2383 if (hdr->contents != NULL)
2384 {
2385 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2386 unsigned int n_elt = hdr->sh_size / sizeof (* idx);
2387 asection *s;
2388
2389 if (n_elt == 0)
2390 goto fail;
2391 if (idx->flags & GRP_COMDAT)
2392 hdr->bfd_section->flags
2393 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2394
2395 /* We try to keep the same section order as it comes in. */
2396 idx += n_elt;
2397
2398 while (--n_elt != 0)
2399 {
2400 --idx;
2401
2402 if (idx->shdr != NULL
2403 && (s = idx->shdr->bfd_section) != NULL
2404 && elf_next_in_group (s) != NULL)
2405 {
2406 elf_next_in_group (hdr->bfd_section) = s;
2407 break;
2408 }
2409 }
2410 }
2411 goto success;
2412
2413 default:
2414 /* Possibly an attributes section. */
2415 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2416 || hdr->sh_type == bed->obj_attrs_section_type)
2417 {
2418 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2419 goto fail;
2420 _bfd_elf_parse_attributes (abfd, hdr);
2421 goto success;
2422 }
2423
2424 /* Check for any processor-specific section types. */
2425 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2426 goto success;
2427
2428 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2429 {
2430 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2431 /* FIXME: How to properly handle allocated section reserved
2432 for applications? */
2433 _bfd_error_handler
2434 (_("%B: don't know how to handle allocated, application "
2435 "specific section `%s' [0x%8x]"),
2436 abfd, name, hdr->sh_type);
2437 else
2438 {
2439 /* Allow sections reserved for applications. */
2440 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2441 shindex);
2442 goto success;
2443 }
2444 }
2445 else if (hdr->sh_type >= SHT_LOPROC
2446 && hdr->sh_type <= SHT_HIPROC)
2447 /* FIXME: We should handle this section. */
2448 _bfd_error_handler
2449 (_("%B: don't know how to handle processor specific section "
2450 "`%s' [0x%8x]"),
2451 abfd, name, hdr->sh_type);
2452 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2453 {
2454 /* Unrecognised OS-specific sections. */
2455 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2456 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2457 required to correctly process the section and the file should
2458 be rejected with an error message. */
2459 _bfd_error_handler
2460 (_("%B: don't know how to handle OS specific section "
2461 "`%s' [0x%8x]"),
2462 abfd, name, hdr->sh_type);
2463 else
2464 {
2465 /* Otherwise it should be processed. */
2466 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2467 goto success;
2468 }
2469 }
2470 else
2471 /* FIXME: We should handle this section. */
2472 _bfd_error_handler
2473 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2474 abfd, name, hdr->sh_type);
2475
2476 goto fail;
2477 }
2478
2479 fail:
2480 ret = FALSE;
2481 success:
2482 if (sections_being_created && sections_being_created_abfd == abfd)
2483 sections_being_created [shindex] = FALSE;
2484 if (-- nesting == 0)
2485 {
2486 sections_being_created = NULL;
2487 sections_being_created_abfd = abfd;
2488 }
2489 return ret;
2490 }
2491
2492 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2493
2494 Elf_Internal_Sym *
2495 bfd_sym_from_r_symndx (struct sym_cache *cache,
2496 bfd *abfd,
2497 unsigned long r_symndx)
2498 {
2499 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2500
2501 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2502 {
2503 Elf_Internal_Shdr *symtab_hdr;
2504 unsigned char esym[sizeof (Elf64_External_Sym)];
2505 Elf_External_Sym_Shndx eshndx;
2506
2507 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2508 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2509 &cache->sym[ent], esym, &eshndx) == NULL)
2510 return NULL;
2511
2512 if (cache->abfd != abfd)
2513 {
2514 memset (cache->indx, -1, sizeof (cache->indx));
2515 cache->abfd = abfd;
2516 }
2517 cache->indx[ent] = r_symndx;
2518 }
2519
2520 return &cache->sym[ent];
2521 }
2522
2523 /* Given an ELF section number, retrieve the corresponding BFD
2524 section. */
2525
2526 asection *
2527 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2528 {
2529 if (sec_index >= elf_numsections (abfd))
2530 return NULL;
2531 return elf_elfsections (abfd)[sec_index]->bfd_section;
2532 }
2533
2534 static const struct bfd_elf_special_section special_sections_b[] =
2535 {
2536 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2537 { NULL, 0, 0, 0, 0 }
2538 };
2539
2540 static const struct bfd_elf_special_section special_sections_c[] =
2541 {
2542 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2543 { NULL, 0, 0, 0, 0 }
2544 };
2545
2546 static const struct bfd_elf_special_section special_sections_d[] =
2547 {
2548 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2549 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2550 /* There are more DWARF sections than these, but they needn't be added here
2551 unless you have to cope with broken compilers that don't emit section
2552 attributes or you want to help the user writing assembler. */
2553 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2554 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2555 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2556 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2557 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2558 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2559 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2560 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2561 { NULL, 0, 0, 0, 0 }
2562 };
2563
2564 static const struct bfd_elf_special_section special_sections_f[] =
2565 {
2566 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2567 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2568 { NULL, 0, 0, 0, 0 }
2569 };
2570
2571 static const struct bfd_elf_special_section special_sections_g[] =
2572 {
2573 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2574 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2575 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2576 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2577 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2578 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2579 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2580 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2581 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2582 { NULL, 0, 0, 0, 0 }
2583 };
2584
2585 static const struct bfd_elf_special_section special_sections_h[] =
2586 {
2587 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2588 { NULL, 0, 0, 0, 0 }
2589 };
2590
2591 static const struct bfd_elf_special_section special_sections_i[] =
2592 {
2593 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2594 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2595 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2596 { NULL, 0, 0, 0, 0 }
2597 };
2598
2599 static const struct bfd_elf_special_section special_sections_l[] =
2600 {
2601 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2602 { NULL, 0, 0, 0, 0 }
2603 };
2604
2605 static const struct bfd_elf_special_section special_sections_n[] =
2606 {
2607 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2608 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2609 { NULL, 0, 0, 0, 0 }
2610 };
2611
2612 static const struct bfd_elf_special_section special_sections_p[] =
2613 {
2614 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2615 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2616 { NULL, 0, 0, 0, 0 }
2617 };
2618
2619 static const struct bfd_elf_special_section special_sections_r[] =
2620 {
2621 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2622 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2623 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2624 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2625 { NULL, 0, 0, 0, 0 }
2626 };
2627
2628 static const struct bfd_elf_special_section special_sections_s[] =
2629 {
2630 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2631 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2632 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2633 /* See struct bfd_elf_special_section declaration for the semantics of
2634 this special case where .prefix_length != strlen (.prefix). */
2635 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2636 { NULL, 0, 0, 0, 0 }
2637 };
2638
2639 static const struct bfd_elf_special_section special_sections_t[] =
2640 {
2641 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2642 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2643 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2644 { NULL, 0, 0, 0, 0 }
2645 };
2646
2647 static const struct bfd_elf_special_section special_sections_z[] =
2648 {
2649 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2650 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2651 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2652 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2653 { NULL, 0, 0, 0, 0 }
2654 };
2655
2656 static const struct bfd_elf_special_section * const special_sections[] =
2657 {
2658 special_sections_b, /* 'b' */
2659 special_sections_c, /* 'c' */
2660 special_sections_d, /* 'd' */
2661 NULL, /* 'e' */
2662 special_sections_f, /* 'f' */
2663 special_sections_g, /* 'g' */
2664 special_sections_h, /* 'h' */
2665 special_sections_i, /* 'i' */
2666 NULL, /* 'j' */
2667 NULL, /* 'k' */
2668 special_sections_l, /* 'l' */
2669 NULL, /* 'm' */
2670 special_sections_n, /* 'n' */
2671 NULL, /* 'o' */
2672 special_sections_p, /* 'p' */
2673 NULL, /* 'q' */
2674 special_sections_r, /* 'r' */
2675 special_sections_s, /* 's' */
2676 special_sections_t, /* 't' */
2677 NULL, /* 'u' */
2678 NULL, /* 'v' */
2679 NULL, /* 'w' */
2680 NULL, /* 'x' */
2681 NULL, /* 'y' */
2682 special_sections_z /* 'z' */
2683 };
2684
2685 const struct bfd_elf_special_section *
2686 _bfd_elf_get_special_section (const char *name,
2687 const struct bfd_elf_special_section *spec,
2688 unsigned int rela)
2689 {
2690 int i;
2691 int len;
2692
2693 len = strlen (name);
2694
2695 for (i = 0; spec[i].prefix != NULL; i++)
2696 {
2697 int suffix_len;
2698 int prefix_len = spec[i].prefix_length;
2699
2700 if (len < prefix_len)
2701 continue;
2702 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2703 continue;
2704
2705 suffix_len = spec[i].suffix_length;
2706 if (suffix_len <= 0)
2707 {
2708 if (name[prefix_len] != 0)
2709 {
2710 if (suffix_len == 0)
2711 continue;
2712 if (name[prefix_len] != '.'
2713 && (suffix_len == -2
2714 || (rela && spec[i].type == SHT_REL)))
2715 continue;
2716 }
2717 }
2718 else
2719 {
2720 if (len < prefix_len + suffix_len)
2721 continue;
2722 if (memcmp (name + len - suffix_len,
2723 spec[i].prefix + prefix_len,
2724 suffix_len) != 0)
2725 continue;
2726 }
2727 return &spec[i];
2728 }
2729
2730 return NULL;
2731 }
2732
2733 const struct bfd_elf_special_section *
2734 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2735 {
2736 int i;
2737 const struct bfd_elf_special_section *spec;
2738 const struct elf_backend_data *bed;
2739
2740 /* See if this is one of the special sections. */
2741 if (sec->name == NULL)
2742 return NULL;
2743
2744 bed = get_elf_backend_data (abfd);
2745 spec = bed->special_sections;
2746 if (spec)
2747 {
2748 spec = _bfd_elf_get_special_section (sec->name,
2749 bed->special_sections,
2750 sec->use_rela_p);
2751 if (spec != NULL)
2752 return spec;
2753 }
2754
2755 if (sec->name[0] != '.')
2756 return NULL;
2757
2758 i = sec->name[1] - 'b';
2759 if (i < 0 || i > 'z' - 'b')
2760 return NULL;
2761
2762 spec = special_sections[i];
2763
2764 if (spec == NULL)
2765 return NULL;
2766
2767 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2768 }
2769
2770 bfd_boolean
2771 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2772 {
2773 struct bfd_elf_section_data *sdata;
2774 const struct elf_backend_data *bed;
2775 const struct bfd_elf_special_section *ssect;
2776
2777 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2778 if (sdata == NULL)
2779 {
2780 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2781 sizeof (*sdata));
2782 if (sdata == NULL)
2783 return FALSE;
2784 sec->used_by_bfd = sdata;
2785 }
2786
2787 /* Indicate whether or not this section should use RELA relocations. */
2788 bed = get_elf_backend_data (abfd);
2789 sec->use_rela_p = bed->default_use_rela_p;
2790
2791 /* When we read a file, we don't need to set ELF section type and
2792 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2793 anyway. We will set ELF section type and flags for all linker
2794 created sections. If user specifies BFD section flags, we will
2795 set ELF section type and flags based on BFD section flags in
2796 elf_fake_sections. Special handling for .init_array/.fini_array
2797 output sections since they may contain .ctors/.dtors input
2798 sections. We don't want _bfd_elf_init_private_section_data to
2799 copy ELF section type from .ctors/.dtors input sections. */
2800 if (abfd->direction != read_direction
2801 || (sec->flags & SEC_LINKER_CREATED) != 0)
2802 {
2803 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2804 if (ssect != NULL
2805 && (!sec->flags
2806 || (sec->flags & SEC_LINKER_CREATED) != 0
2807 || ssect->type == SHT_INIT_ARRAY
2808 || ssect->type == SHT_FINI_ARRAY))
2809 {
2810 elf_section_type (sec) = ssect->type;
2811 elf_section_flags (sec) = ssect->attr;
2812 }
2813 }
2814
2815 return _bfd_generic_new_section_hook (abfd, sec);
2816 }
2817
2818 /* Create a new bfd section from an ELF program header.
2819
2820 Since program segments have no names, we generate a synthetic name
2821 of the form segment<NUM>, where NUM is generally the index in the
2822 program header table. For segments that are split (see below) we
2823 generate the names segment<NUM>a and segment<NUM>b.
2824
2825 Note that some program segments may have a file size that is different than
2826 (less than) the memory size. All this means is that at execution the
2827 system must allocate the amount of memory specified by the memory size,
2828 but only initialize it with the first "file size" bytes read from the
2829 file. This would occur for example, with program segments consisting
2830 of combined data+bss.
2831
2832 To handle the above situation, this routine generates TWO bfd sections
2833 for the single program segment. The first has the length specified by
2834 the file size of the segment, and the second has the length specified
2835 by the difference between the two sizes. In effect, the segment is split
2836 into its initialized and uninitialized parts.
2837
2838 */
2839
2840 bfd_boolean
2841 _bfd_elf_make_section_from_phdr (bfd *abfd,
2842 Elf_Internal_Phdr *hdr,
2843 int hdr_index,
2844 const char *type_name)
2845 {
2846 asection *newsect;
2847 char *name;
2848 char namebuf[64];
2849 size_t len;
2850 int split;
2851
2852 split = ((hdr->p_memsz > 0)
2853 && (hdr->p_filesz > 0)
2854 && (hdr->p_memsz > hdr->p_filesz));
2855
2856 if (hdr->p_filesz > 0)
2857 {
2858 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2859 len = strlen (namebuf) + 1;
2860 name = (char *) bfd_alloc (abfd, len);
2861 if (!name)
2862 return FALSE;
2863 memcpy (name, namebuf, len);
2864 newsect = bfd_make_section (abfd, name);
2865 if (newsect == NULL)
2866 return FALSE;
2867 newsect->vma = hdr->p_vaddr;
2868 newsect->lma = hdr->p_paddr;
2869 newsect->size = hdr->p_filesz;
2870 newsect->filepos = hdr->p_offset;
2871 newsect->flags |= SEC_HAS_CONTENTS;
2872 newsect->alignment_power = bfd_log2 (hdr->p_align);
2873 if (hdr->p_type == PT_LOAD)
2874 {
2875 newsect->flags |= SEC_ALLOC;
2876 newsect->flags |= SEC_LOAD;
2877 if (hdr->p_flags & PF_X)
2878 {
2879 /* FIXME: all we known is that it has execute PERMISSION,
2880 may be data. */
2881 newsect->flags |= SEC_CODE;
2882 }
2883 }
2884 if (!(hdr->p_flags & PF_W))
2885 {
2886 newsect->flags |= SEC_READONLY;
2887 }
2888 }
2889
2890 if (hdr->p_memsz > hdr->p_filesz)
2891 {
2892 bfd_vma align;
2893
2894 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2895 len = strlen (namebuf) + 1;
2896 name = (char *) bfd_alloc (abfd, len);
2897 if (!name)
2898 return FALSE;
2899 memcpy (name, namebuf, len);
2900 newsect = bfd_make_section (abfd, name);
2901 if (newsect == NULL)
2902 return FALSE;
2903 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2904 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2905 newsect->size = hdr->p_memsz - hdr->p_filesz;
2906 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2907 align = newsect->vma & -newsect->vma;
2908 if (align == 0 || align > hdr->p_align)
2909 align = hdr->p_align;
2910 newsect->alignment_power = bfd_log2 (align);
2911 if (hdr->p_type == PT_LOAD)
2912 {
2913 /* Hack for gdb. Segments that have not been modified do
2914 not have their contents written to a core file, on the
2915 assumption that a debugger can find the contents in the
2916 executable. We flag this case by setting the fake
2917 section size to zero. Note that "real" bss sections will
2918 always have their contents dumped to the core file. */
2919 if (bfd_get_format (abfd) == bfd_core)
2920 newsect->size = 0;
2921 newsect->flags |= SEC_ALLOC;
2922 if (hdr->p_flags & PF_X)
2923 newsect->flags |= SEC_CODE;
2924 }
2925 if (!(hdr->p_flags & PF_W))
2926 newsect->flags |= SEC_READONLY;
2927 }
2928
2929 return TRUE;
2930 }
2931
2932 bfd_boolean
2933 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2934 {
2935 const struct elf_backend_data *bed;
2936
2937 switch (hdr->p_type)
2938 {
2939 case PT_NULL:
2940 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2941
2942 case PT_LOAD:
2943 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2944
2945 case PT_DYNAMIC:
2946 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2947
2948 case PT_INTERP:
2949 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2950
2951 case PT_NOTE:
2952 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2953 return FALSE;
2954 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2955 return FALSE;
2956 return TRUE;
2957
2958 case PT_SHLIB:
2959 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2960
2961 case PT_PHDR:
2962 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2963
2964 case PT_GNU_EH_FRAME:
2965 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2966 "eh_frame_hdr");
2967
2968 case PT_GNU_STACK:
2969 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2970
2971 case PT_GNU_RELRO:
2972 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2973
2974 default:
2975 /* Check for any processor-specific program segment types. */
2976 bed = get_elf_backend_data (abfd);
2977 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2978 }
2979 }
2980
2981 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2982 REL or RELA. */
2983
2984 Elf_Internal_Shdr *
2985 _bfd_elf_single_rel_hdr (asection *sec)
2986 {
2987 if (elf_section_data (sec)->rel.hdr)
2988 {
2989 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2990 return elf_section_data (sec)->rel.hdr;
2991 }
2992 else
2993 return elf_section_data (sec)->rela.hdr;
2994 }
2995
2996 static bfd_boolean
2997 _bfd_elf_set_reloc_sh_name (bfd *abfd,
2998 Elf_Internal_Shdr *rel_hdr,
2999 const char *sec_name,
3000 bfd_boolean use_rela_p)
3001 {
3002 char *name = (char *) bfd_alloc (abfd,
3003 sizeof ".rela" + strlen (sec_name));
3004 if (name == NULL)
3005 return FALSE;
3006
3007 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3008 rel_hdr->sh_name =
3009 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3010 FALSE);
3011 if (rel_hdr->sh_name == (unsigned int) -1)
3012 return FALSE;
3013
3014 return TRUE;
3015 }
3016
3017 /* Allocate and initialize a section-header for a new reloc section,
3018 containing relocations against ASECT. It is stored in RELDATA. If
3019 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3020 relocations. */
3021
3022 static bfd_boolean
3023 _bfd_elf_init_reloc_shdr (bfd *abfd,
3024 struct bfd_elf_section_reloc_data *reldata,
3025 const char *sec_name,
3026 bfd_boolean use_rela_p,
3027 bfd_boolean delay_st_name_p)
3028 {
3029 Elf_Internal_Shdr *rel_hdr;
3030 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3031
3032 BFD_ASSERT (reldata->hdr == NULL);
3033 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3034 reldata->hdr = rel_hdr;
3035
3036 if (delay_st_name_p)
3037 rel_hdr->sh_name = (unsigned int) -1;
3038 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3039 use_rela_p))
3040 return FALSE;
3041 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3042 rel_hdr->sh_entsize = (use_rela_p
3043 ? bed->s->sizeof_rela
3044 : bed->s->sizeof_rel);
3045 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3046 rel_hdr->sh_flags = 0;
3047 rel_hdr->sh_addr = 0;
3048 rel_hdr->sh_size = 0;
3049 rel_hdr->sh_offset = 0;
3050
3051 return TRUE;
3052 }
3053
3054 /* Return the default section type based on the passed in section flags. */
3055
3056 int
3057 bfd_elf_get_default_section_type (flagword flags)
3058 {
3059 if ((flags & SEC_ALLOC) != 0
3060 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3061 return SHT_NOBITS;
3062 return SHT_PROGBITS;
3063 }
3064
3065 struct fake_section_arg
3066 {
3067 struct bfd_link_info *link_info;
3068 bfd_boolean failed;
3069 };
3070
3071 /* Set up an ELF internal section header for a section. */
3072
3073 static void
3074 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3075 {
3076 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3077 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3078 struct bfd_elf_section_data *esd = elf_section_data (asect);
3079 Elf_Internal_Shdr *this_hdr;
3080 unsigned int sh_type;
3081 const char *name = asect->name;
3082 bfd_boolean delay_st_name_p = FALSE;
3083
3084 if (arg->failed)
3085 {
3086 /* We already failed; just get out of the bfd_map_over_sections
3087 loop. */
3088 return;
3089 }
3090
3091 this_hdr = &esd->this_hdr;
3092
3093 if (arg->link_info)
3094 {
3095 /* ld: compress DWARF debug sections with names: .debug_*. */
3096 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3097 && (asect->flags & SEC_DEBUGGING)
3098 && name[1] == 'd'
3099 && name[6] == '_')
3100 {
3101 /* Set SEC_ELF_COMPRESS to indicate this section should be
3102 compressed. */
3103 asect->flags |= SEC_ELF_COMPRESS;
3104
3105 /* If this section will be compressed, delay adding section
3106 name to section name section after it is compressed in
3107 _bfd_elf_assign_file_positions_for_non_load. */
3108 delay_st_name_p = TRUE;
3109 }
3110 }
3111 else if ((asect->flags & SEC_ELF_RENAME))
3112 {
3113 /* objcopy: rename output DWARF debug section. */
3114 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3115 {
3116 /* When we decompress or compress with SHF_COMPRESSED,
3117 convert section name from .zdebug_* to .debug_* if
3118 needed. */
3119 if (name[1] == 'z')
3120 {
3121 char *new_name = convert_zdebug_to_debug (abfd, name);
3122 if (new_name == NULL)
3123 {
3124 arg->failed = TRUE;
3125 return;
3126 }
3127 name = new_name;
3128 }
3129 }
3130 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3131 {
3132 /* PR binutils/18087: Compression does not always make a
3133 section smaller. So only rename the section when
3134 compression has actually taken place. If input section
3135 name is .zdebug_*, we should never compress it again. */
3136 char *new_name = convert_debug_to_zdebug (abfd, name);
3137 if (new_name == NULL)
3138 {
3139 arg->failed = TRUE;
3140 return;
3141 }
3142 BFD_ASSERT (name[1] != 'z');
3143 name = new_name;
3144 }
3145 }
3146
3147 if (delay_st_name_p)
3148 this_hdr->sh_name = (unsigned int) -1;
3149 else
3150 {
3151 this_hdr->sh_name
3152 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3153 name, FALSE);
3154 if (this_hdr->sh_name == (unsigned int) -1)
3155 {
3156 arg->failed = TRUE;
3157 return;
3158 }
3159 }
3160
3161 /* Don't clear sh_flags. Assembler may set additional bits. */
3162
3163 if ((asect->flags & SEC_ALLOC) != 0
3164 || asect->user_set_vma)
3165 this_hdr->sh_addr = asect->vma;
3166 else
3167 this_hdr->sh_addr = 0;
3168
3169 this_hdr->sh_offset = 0;
3170 this_hdr->sh_size = asect->size;
3171 this_hdr->sh_link = 0;
3172 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3173 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3174 {
3175 _bfd_error_handler
3176 (_("%B: error: Alignment power %d of section `%A' is too big"),
3177 abfd, asect, asect->alignment_power);
3178 arg->failed = TRUE;
3179 return;
3180 }
3181 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3182 /* The sh_entsize and sh_info fields may have been set already by
3183 copy_private_section_data. */
3184
3185 this_hdr->bfd_section = asect;
3186 this_hdr->contents = NULL;
3187
3188 /* If the section type is unspecified, we set it based on
3189 asect->flags. */
3190 if ((asect->flags & SEC_GROUP) != 0)
3191 sh_type = SHT_GROUP;
3192 else
3193 sh_type = bfd_elf_get_default_section_type (asect->flags);
3194
3195 if (this_hdr->sh_type == SHT_NULL)
3196 this_hdr->sh_type = sh_type;
3197 else if (this_hdr->sh_type == SHT_NOBITS
3198 && sh_type == SHT_PROGBITS
3199 && (asect->flags & SEC_ALLOC) != 0)
3200 {
3201 /* Warn if we are changing a NOBITS section to PROGBITS, but
3202 allow the link to proceed. This can happen when users link
3203 non-bss input sections to bss output sections, or emit data
3204 to a bss output section via a linker script. */
3205 _bfd_error_handler
3206 (_("warning: section `%A' type changed to PROGBITS"), asect);
3207 this_hdr->sh_type = sh_type;
3208 }
3209
3210 switch (this_hdr->sh_type)
3211 {
3212 default:
3213 break;
3214
3215 case SHT_STRTAB:
3216 case SHT_NOTE:
3217 case SHT_NOBITS:
3218 case SHT_PROGBITS:
3219 break;
3220
3221 case SHT_INIT_ARRAY:
3222 case SHT_FINI_ARRAY:
3223 case SHT_PREINIT_ARRAY:
3224 this_hdr->sh_entsize = bed->s->arch_size / 8;
3225 break;
3226
3227 case SHT_HASH:
3228 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3229 break;
3230
3231 case SHT_DYNSYM:
3232 this_hdr->sh_entsize = bed->s->sizeof_sym;
3233 break;
3234
3235 case SHT_DYNAMIC:
3236 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3237 break;
3238
3239 case SHT_RELA:
3240 if (get_elf_backend_data (abfd)->may_use_rela_p)
3241 this_hdr->sh_entsize = bed->s->sizeof_rela;
3242 break;
3243
3244 case SHT_REL:
3245 if (get_elf_backend_data (abfd)->may_use_rel_p)
3246 this_hdr->sh_entsize = bed->s->sizeof_rel;
3247 break;
3248
3249 case SHT_GNU_versym:
3250 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3251 break;
3252
3253 case SHT_GNU_verdef:
3254 this_hdr->sh_entsize = 0;
3255 /* objcopy or strip will copy over sh_info, but may not set
3256 cverdefs. The linker will set cverdefs, but sh_info will be
3257 zero. */
3258 if (this_hdr->sh_info == 0)
3259 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3260 else
3261 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3262 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3263 break;
3264
3265 case SHT_GNU_verneed:
3266 this_hdr->sh_entsize = 0;
3267 /* objcopy or strip will copy over sh_info, but may not set
3268 cverrefs. The linker will set cverrefs, but sh_info will be
3269 zero. */
3270 if (this_hdr->sh_info == 0)
3271 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3272 else
3273 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3274 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3275 break;
3276
3277 case SHT_GROUP:
3278 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3279 break;
3280
3281 case SHT_GNU_HASH:
3282 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3283 break;
3284 }
3285
3286 if ((asect->flags & SEC_ALLOC) != 0)
3287 this_hdr->sh_flags |= SHF_ALLOC;
3288 if ((asect->flags & SEC_READONLY) == 0)
3289 this_hdr->sh_flags |= SHF_WRITE;
3290 if ((asect->flags & SEC_CODE) != 0)
3291 this_hdr->sh_flags |= SHF_EXECINSTR;
3292 if ((asect->flags & SEC_MERGE) != 0)
3293 {
3294 this_hdr->sh_flags |= SHF_MERGE;
3295 this_hdr->sh_entsize = asect->entsize;
3296 }
3297 if ((asect->flags & SEC_STRINGS) != 0)
3298 this_hdr->sh_flags |= SHF_STRINGS;
3299 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3300 this_hdr->sh_flags |= SHF_GROUP;
3301 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3302 {
3303 this_hdr->sh_flags |= SHF_TLS;
3304 if (asect->size == 0
3305 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3306 {
3307 struct bfd_link_order *o = asect->map_tail.link_order;
3308
3309 this_hdr->sh_size = 0;
3310 if (o != NULL)
3311 {
3312 this_hdr->sh_size = o->offset + o->size;
3313 if (this_hdr->sh_size != 0)
3314 this_hdr->sh_type = SHT_NOBITS;
3315 }
3316 }
3317 }
3318 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3319 this_hdr->sh_flags |= SHF_EXCLUDE;
3320
3321 /* If the section has relocs, set up a section header for the
3322 SHT_REL[A] section. If two relocation sections are required for
3323 this section, it is up to the processor-specific back-end to
3324 create the other. */
3325 if ((asect->flags & SEC_RELOC) != 0)
3326 {
3327 /* When doing a relocatable link, create both REL and RELA sections if
3328 needed. */
3329 if (arg->link_info
3330 /* Do the normal setup if we wouldn't create any sections here. */
3331 && esd->rel.count + esd->rela.count > 0
3332 && (bfd_link_relocatable (arg->link_info)
3333 || arg->link_info->emitrelocations))
3334 {
3335 if (esd->rel.count && esd->rel.hdr == NULL
3336 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE,
3337 delay_st_name_p))
3338 {
3339 arg->failed = TRUE;
3340 return;
3341 }
3342 if (esd->rela.count && esd->rela.hdr == NULL
3343 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE,
3344 delay_st_name_p))
3345 {
3346 arg->failed = TRUE;
3347 return;
3348 }
3349 }
3350 else if (!_bfd_elf_init_reloc_shdr (abfd,
3351 (asect->use_rela_p
3352 ? &esd->rela : &esd->rel),
3353 name,
3354 asect->use_rela_p,
3355 delay_st_name_p))
3356 arg->failed = TRUE;
3357 }
3358
3359 /* Check for processor-specific section types. */
3360 sh_type = this_hdr->sh_type;
3361 if (bed->elf_backend_fake_sections
3362 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3363 arg->failed = TRUE;
3364
3365 if (sh_type == SHT_NOBITS && asect->size != 0)
3366 {
3367 /* Don't change the header type from NOBITS if we are being
3368 called for objcopy --only-keep-debug. */
3369 this_hdr->sh_type = sh_type;
3370 }
3371 }
3372
3373 /* Fill in the contents of a SHT_GROUP section. Called from
3374 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3375 when ELF targets use the generic linker, ld. Called for ld -r
3376 from bfd_elf_final_link. */
3377
3378 void
3379 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3380 {
3381 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3382 asection *elt, *first;
3383 unsigned char *loc;
3384 bfd_boolean gas;
3385
3386 /* Ignore linker created group section. See elfNN_ia64_object_p in
3387 elfxx-ia64.c. */
3388 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3389 || *failedptr)
3390 return;
3391
3392 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3393 {
3394 unsigned long symindx = 0;
3395
3396 /* elf_group_id will have been set up by objcopy and the
3397 generic linker. */
3398 if (elf_group_id (sec) != NULL)
3399 symindx = elf_group_id (sec)->udata.i;
3400
3401 if (symindx == 0)
3402 {
3403 /* If called from the assembler, swap_out_syms will have set up
3404 elf_section_syms. */
3405 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3406 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3407 }
3408 elf_section_data (sec)->this_hdr.sh_info = symindx;
3409 }
3410 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3411 {
3412 /* The ELF backend linker sets sh_info to -2 when the group
3413 signature symbol is global, and thus the index can't be
3414 set until all local symbols are output. */
3415 asection *igroup;
3416 struct bfd_elf_section_data *sec_data;
3417 unsigned long symndx;
3418 unsigned long extsymoff;
3419 struct elf_link_hash_entry *h;
3420
3421 /* The point of this little dance to the first SHF_GROUP section
3422 then back to the SHT_GROUP section is that this gets us to
3423 the SHT_GROUP in the input object. */
3424 igroup = elf_sec_group (elf_next_in_group (sec));
3425 sec_data = elf_section_data (igroup);
3426 symndx = sec_data->this_hdr.sh_info;
3427 extsymoff = 0;
3428 if (!elf_bad_symtab (igroup->owner))
3429 {
3430 Elf_Internal_Shdr *symtab_hdr;
3431
3432 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3433 extsymoff = symtab_hdr->sh_info;
3434 }
3435 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3436 while (h->root.type == bfd_link_hash_indirect
3437 || h->root.type == bfd_link_hash_warning)
3438 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3439
3440 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3441 }
3442
3443 /* The contents won't be allocated for "ld -r" or objcopy. */
3444 gas = TRUE;
3445 if (sec->contents == NULL)
3446 {
3447 gas = FALSE;
3448 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3449
3450 /* Arrange for the section to be written out. */
3451 elf_section_data (sec)->this_hdr.contents = sec->contents;
3452 if (sec->contents == NULL)
3453 {
3454 *failedptr = TRUE;
3455 return;
3456 }
3457 }
3458
3459 loc = sec->contents + sec->size;
3460
3461 /* Get the pointer to the first section in the group that gas
3462 squirreled away here. objcopy arranges for this to be set to the
3463 start of the input section group. */
3464 first = elt = elf_next_in_group (sec);
3465
3466 /* First element is a flag word. Rest of section is elf section
3467 indices for all the sections of the group. Write them backwards
3468 just to keep the group in the same order as given in .section
3469 directives, not that it matters. */
3470 while (elt != NULL)
3471 {
3472 asection *s;
3473
3474 s = elt;
3475 if (!gas)
3476 s = s->output_section;
3477 if (s != NULL
3478 && !bfd_is_abs_section (s))
3479 {
3480 unsigned int idx = elf_section_data (s)->this_idx;
3481
3482 loc -= 4;
3483 H_PUT_32 (abfd, idx, loc);
3484 }
3485 elt = elf_next_in_group (elt);
3486 if (elt == first)
3487 break;
3488 }
3489
3490 if ((loc -= 4) != sec->contents)
3491 abort ();
3492
3493 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3494 }
3495
3496 /* Return the section which RELOC_SEC applies to. */
3497
3498 asection *
3499 _bfd_elf_get_reloc_section (asection *reloc_sec)
3500 {
3501 const char *name;
3502 unsigned int type;
3503 bfd *abfd;
3504
3505 if (reloc_sec == NULL)
3506 return NULL;
3507
3508 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3509 if (type != SHT_REL && type != SHT_RELA)
3510 return NULL;
3511
3512 /* We look up the section the relocs apply to by name. */
3513 name = reloc_sec->name;
3514 if (type == SHT_REL)
3515 name += 4;
3516 else
3517 name += 5;
3518
3519 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3520 section apply to .got.plt section. */
3521 abfd = reloc_sec->owner;
3522 if (get_elf_backend_data (abfd)->want_got_plt
3523 && strcmp (name, ".plt") == 0)
3524 {
3525 /* .got.plt is a linker created input section. It may be mapped
3526 to some other output section. Try two likely sections. */
3527 name = ".got.plt";
3528 reloc_sec = bfd_get_section_by_name (abfd, name);
3529 if (reloc_sec != NULL)
3530 return reloc_sec;
3531 name = ".got";
3532 }
3533
3534 reloc_sec = bfd_get_section_by_name (abfd, name);
3535 return reloc_sec;
3536 }
3537
3538 /* Assign all ELF section numbers. The dummy first section is handled here
3539 too. The link/info pointers for the standard section types are filled
3540 in here too, while we're at it. */
3541
3542 static bfd_boolean
3543 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3544 {
3545 struct elf_obj_tdata *t = elf_tdata (abfd);
3546 asection *sec;
3547 unsigned int section_number;
3548 Elf_Internal_Shdr **i_shdrp;
3549 struct bfd_elf_section_data *d;
3550 bfd_boolean need_symtab;
3551
3552 section_number = 1;
3553
3554 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3555
3556 /* SHT_GROUP sections are in relocatable files only. */
3557 if (link_info == NULL || bfd_link_relocatable (link_info))
3558 {
3559 size_t reloc_count = 0;
3560
3561 /* Put SHT_GROUP sections first. */
3562 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3563 {
3564 d = elf_section_data (sec);
3565
3566 if (d->this_hdr.sh_type == SHT_GROUP)
3567 {
3568 if (sec->flags & SEC_LINKER_CREATED)
3569 {
3570 /* Remove the linker created SHT_GROUP sections. */
3571 bfd_section_list_remove (abfd, sec);
3572 abfd->section_count--;
3573 }
3574 else
3575 d->this_idx = section_number++;
3576 }
3577
3578 /* Count relocations. */
3579 reloc_count += sec->reloc_count;
3580 }
3581
3582 /* Clear HAS_RELOC if there are no relocations. */
3583 if (reloc_count == 0)
3584 abfd->flags &= ~HAS_RELOC;
3585 }
3586
3587 for (sec = abfd->sections; sec; sec = sec->next)
3588 {
3589 d = elf_section_data (sec);
3590
3591 if (d->this_hdr.sh_type != SHT_GROUP)
3592 d->this_idx = section_number++;
3593 if (d->this_hdr.sh_name != (unsigned int) -1)
3594 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3595 if (d->rel.hdr)
3596 {
3597 d->rel.idx = section_number++;
3598 if (d->rel.hdr->sh_name != (unsigned int) -1)
3599 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3600 }
3601 else
3602 d->rel.idx = 0;
3603
3604 if (d->rela.hdr)
3605 {
3606 d->rela.idx = section_number++;
3607 if (d->rela.hdr->sh_name != (unsigned int) -1)
3608 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3609 }
3610 else
3611 d->rela.idx = 0;
3612 }
3613
3614 need_symtab = (bfd_get_symcount (abfd) > 0
3615 || (link_info == NULL
3616 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3617 == HAS_RELOC)));
3618 if (need_symtab)
3619 {
3620 elf_onesymtab (abfd) = section_number++;
3621 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3622 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3623 {
3624 elf_section_list * entry;
3625
3626 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3627
3628 entry = bfd_zalloc (abfd, sizeof * entry);
3629 entry->ndx = section_number++;
3630 elf_symtab_shndx_list (abfd) = entry;
3631 entry->hdr.sh_name
3632 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3633 ".symtab_shndx", FALSE);
3634 if (entry->hdr.sh_name == (unsigned int) -1)
3635 return FALSE;
3636 }
3637 elf_strtab_sec (abfd) = section_number++;
3638 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3639 }
3640
3641 elf_shstrtab_sec (abfd) = section_number++;
3642 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3643 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3644
3645 if (section_number >= SHN_LORESERVE)
3646 {
3647 _bfd_error_handler (_("%B: too many sections: %u"),
3648 abfd, section_number);
3649 return FALSE;
3650 }
3651
3652 elf_numsections (abfd) = section_number;
3653 elf_elfheader (abfd)->e_shnum = section_number;
3654
3655 /* Set up the list of section header pointers, in agreement with the
3656 indices. */
3657 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3658 sizeof (Elf_Internal_Shdr *));
3659 if (i_shdrp == NULL)
3660 return FALSE;
3661
3662 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3663 sizeof (Elf_Internal_Shdr));
3664 if (i_shdrp[0] == NULL)
3665 {
3666 bfd_release (abfd, i_shdrp);
3667 return FALSE;
3668 }
3669
3670 elf_elfsections (abfd) = i_shdrp;
3671
3672 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3673 if (need_symtab)
3674 {
3675 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3676 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3677 {
3678 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3679 BFD_ASSERT (entry != NULL);
3680 i_shdrp[entry->ndx] = & entry->hdr;
3681 entry->hdr.sh_link = elf_onesymtab (abfd);
3682 }
3683 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3684 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3685 }
3686
3687 for (sec = abfd->sections; sec; sec = sec->next)
3688 {
3689 asection *s;
3690
3691 d = elf_section_data (sec);
3692
3693 i_shdrp[d->this_idx] = &d->this_hdr;
3694 if (d->rel.idx != 0)
3695 i_shdrp[d->rel.idx] = d->rel.hdr;
3696 if (d->rela.idx != 0)
3697 i_shdrp[d->rela.idx] = d->rela.hdr;
3698
3699 /* Fill in the sh_link and sh_info fields while we're at it. */
3700
3701 /* sh_link of a reloc section is the section index of the symbol
3702 table. sh_info is the section index of the section to which
3703 the relocation entries apply. */
3704 if (d->rel.idx != 0)
3705 {
3706 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3707 d->rel.hdr->sh_info = d->this_idx;
3708 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3709 }
3710 if (d->rela.idx != 0)
3711 {
3712 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3713 d->rela.hdr->sh_info = d->this_idx;
3714 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3715 }
3716
3717 /* We need to set up sh_link for SHF_LINK_ORDER. */
3718 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3719 {
3720 s = elf_linked_to_section (sec);
3721 if (s)
3722 {
3723 /* elf_linked_to_section points to the input section. */
3724 if (link_info != NULL)
3725 {
3726 /* Check discarded linkonce section. */
3727 if (discarded_section (s))
3728 {
3729 asection *kept;
3730 _bfd_error_handler
3731 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3732 abfd, d->this_hdr.bfd_section,
3733 s, s->owner);
3734 /* Point to the kept section if it has the same
3735 size as the discarded one. */
3736 kept = _bfd_elf_check_kept_section (s, link_info);
3737 if (kept == NULL)
3738 {
3739 bfd_set_error (bfd_error_bad_value);
3740 return FALSE;
3741 }
3742 s = kept;
3743 }
3744
3745 s = s->output_section;
3746 BFD_ASSERT (s != NULL);
3747 }
3748 else
3749 {
3750 /* Handle objcopy. */
3751 if (s->output_section == NULL)
3752 {
3753 _bfd_error_handler
3754 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3755 abfd, d->this_hdr.bfd_section, s, s->owner);
3756 bfd_set_error (bfd_error_bad_value);
3757 return FALSE;
3758 }
3759 s = s->output_section;
3760 }
3761 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3762 }
3763 else
3764 {
3765 /* PR 290:
3766 The Intel C compiler generates SHT_IA_64_UNWIND with
3767 SHF_LINK_ORDER. But it doesn't set the sh_link or
3768 sh_info fields. Hence we could get the situation
3769 where s is NULL. */
3770 const struct elf_backend_data *bed
3771 = get_elf_backend_data (abfd);
3772 if (bed->link_order_error_handler)
3773 bed->link_order_error_handler
3774 (_("%B: warning: sh_link not set for section `%A'"),
3775 abfd, sec);
3776 }
3777 }
3778
3779 switch (d->this_hdr.sh_type)
3780 {
3781 case SHT_REL:
3782 case SHT_RELA:
3783 /* A reloc section which we are treating as a normal BFD
3784 section. sh_link is the section index of the symbol
3785 table. sh_info is the section index of the section to
3786 which the relocation entries apply. We assume that an
3787 allocated reloc section uses the dynamic symbol table.
3788 FIXME: How can we be sure? */
3789 s = bfd_get_section_by_name (abfd, ".dynsym");
3790 if (s != NULL)
3791 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3792
3793 s = get_elf_backend_data (abfd)->get_reloc_section (sec);
3794 if (s != NULL)
3795 {
3796 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3797 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3798 }
3799 break;
3800
3801 case SHT_STRTAB:
3802 /* We assume that a section named .stab*str is a stabs
3803 string section. We look for a section with the same name
3804 but without the trailing ``str'', and set its sh_link
3805 field to point to this section. */
3806 if (CONST_STRNEQ (sec->name, ".stab")
3807 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3808 {
3809 size_t len;
3810 char *alc;
3811
3812 len = strlen (sec->name);
3813 alc = (char *) bfd_malloc (len - 2);
3814 if (alc == NULL)
3815 return FALSE;
3816 memcpy (alc, sec->name, len - 3);
3817 alc[len - 3] = '\0';
3818 s = bfd_get_section_by_name (abfd, alc);
3819 free (alc);
3820 if (s != NULL)
3821 {
3822 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3823
3824 /* This is a .stab section. */
3825 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3826 elf_section_data (s)->this_hdr.sh_entsize
3827 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3828 }
3829 }
3830 break;
3831
3832 case SHT_DYNAMIC:
3833 case SHT_DYNSYM:
3834 case SHT_GNU_verneed:
3835 case SHT_GNU_verdef:
3836 /* sh_link is the section header index of the string table
3837 used for the dynamic entries, or the symbol table, or the
3838 version strings. */
3839 s = bfd_get_section_by_name (abfd, ".dynstr");
3840 if (s != NULL)
3841 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3842 break;
3843
3844 case SHT_GNU_LIBLIST:
3845 /* sh_link is the section header index of the prelink library
3846 list used for the dynamic entries, or the symbol table, or
3847 the version strings. */
3848 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3849 ? ".dynstr" : ".gnu.libstr");
3850 if (s != NULL)
3851 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3852 break;
3853
3854 case SHT_HASH:
3855 case SHT_GNU_HASH:
3856 case SHT_GNU_versym:
3857 /* sh_link is the section header index of the symbol table
3858 this hash table or version table is for. */
3859 s = bfd_get_section_by_name (abfd, ".dynsym");
3860 if (s != NULL)
3861 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3862 break;
3863
3864 case SHT_GROUP:
3865 d->this_hdr.sh_link = elf_onesymtab (abfd);
3866 }
3867 }
3868
3869 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3870 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3871 debug section name from .debug_* to .zdebug_* if needed. */
3872
3873 return TRUE;
3874 }
3875
3876 static bfd_boolean
3877 sym_is_global (bfd *abfd, asymbol *sym)
3878 {
3879 /* If the backend has a special mapping, use it. */
3880 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3881 if (bed->elf_backend_sym_is_global)
3882 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3883
3884 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3885 || bfd_is_und_section (bfd_get_section (sym))
3886 || bfd_is_com_section (bfd_get_section (sym)));
3887 }
3888
3889 /* Filter global symbols of ABFD to include in the import library. All
3890 SYMCOUNT symbols of ABFD can be examined from their pointers in
3891 SYMS. Pointers of symbols to keep should be stored contiguously at
3892 the beginning of that array.
3893
3894 Returns the number of symbols to keep. */
3895
3896 unsigned int
3897 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3898 asymbol **syms, long symcount)
3899 {
3900 long src_count, dst_count = 0;
3901
3902 for (src_count = 0; src_count < symcount; src_count++)
3903 {
3904 asymbol *sym = syms[src_count];
3905 char *name = (char *) bfd_asymbol_name (sym);
3906 struct bfd_link_hash_entry *h;
3907
3908 if (!sym_is_global (abfd, sym))
3909 continue;
3910
3911 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
3912 if (h == NULL)
3913 continue;
3914 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
3915 continue;
3916 if (h->linker_def || h->ldscript_def)
3917 continue;
3918
3919 syms[dst_count++] = sym;
3920 }
3921
3922 syms[dst_count] = NULL;
3923
3924 return dst_count;
3925 }
3926
3927 /* Don't output section symbols for sections that are not going to be
3928 output, that are duplicates or there is no BFD section. */
3929
3930 static bfd_boolean
3931 ignore_section_sym (bfd *abfd, asymbol *sym)
3932 {
3933 elf_symbol_type *type_ptr;
3934
3935 if ((sym->flags & BSF_SECTION_SYM) == 0)
3936 return FALSE;
3937
3938 type_ptr = elf_symbol_from (abfd, sym);
3939 return ((type_ptr != NULL
3940 && type_ptr->internal_elf_sym.st_shndx != 0
3941 && bfd_is_abs_section (sym->section))
3942 || !(sym->section->owner == abfd
3943 || (sym->section->output_section->owner == abfd
3944 && sym->section->output_offset == 0)
3945 || bfd_is_abs_section (sym->section)));
3946 }
3947
3948 /* Map symbol from it's internal number to the external number, moving
3949 all local symbols to be at the head of the list. */
3950
3951 static bfd_boolean
3952 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3953 {
3954 unsigned int symcount = bfd_get_symcount (abfd);
3955 asymbol **syms = bfd_get_outsymbols (abfd);
3956 asymbol **sect_syms;
3957 unsigned int num_locals = 0;
3958 unsigned int num_globals = 0;
3959 unsigned int num_locals2 = 0;
3960 unsigned int num_globals2 = 0;
3961 unsigned int max_index = 0;
3962 unsigned int idx;
3963 asection *asect;
3964 asymbol **new_syms;
3965
3966 #ifdef DEBUG
3967 fprintf (stderr, "elf_map_symbols\n");
3968 fflush (stderr);
3969 #endif
3970
3971 for (asect = abfd->sections; asect; asect = asect->next)
3972 {
3973 if (max_index < asect->index)
3974 max_index = asect->index;
3975 }
3976
3977 max_index++;
3978 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3979 if (sect_syms == NULL)
3980 return FALSE;
3981 elf_section_syms (abfd) = sect_syms;
3982 elf_num_section_syms (abfd) = max_index;
3983
3984 /* Init sect_syms entries for any section symbols we have already
3985 decided to output. */
3986 for (idx = 0; idx < symcount; idx++)
3987 {
3988 asymbol *sym = syms[idx];
3989
3990 if ((sym->flags & BSF_SECTION_SYM) != 0
3991 && sym->value == 0
3992 && !ignore_section_sym (abfd, sym)
3993 && !bfd_is_abs_section (sym->section))
3994 {
3995 asection *sec = sym->section;
3996
3997 if (sec->owner != abfd)
3998 sec = sec->output_section;
3999
4000 sect_syms[sec->index] = syms[idx];
4001 }
4002 }
4003
4004 /* Classify all of the symbols. */
4005 for (idx = 0; idx < symcount; idx++)
4006 {
4007 if (sym_is_global (abfd, syms[idx]))
4008 num_globals++;
4009 else if (!ignore_section_sym (abfd, syms[idx]))
4010 num_locals++;
4011 }
4012
4013 /* We will be adding a section symbol for each normal BFD section. Most
4014 sections will already have a section symbol in outsymbols, but
4015 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4016 at least in that case. */
4017 for (asect = abfd->sections; asect; asect = asect->next)
4018 {
4019 if (sect_syms[asect->index] == NULL)
4020 {
4021 if (!sym_is_global (abfd, asect->symbol))
4022 num_locals++;
4023 else
4024 num_globals++;
4025 }
4026 }
4027
4028 /* Now sort the symbols so the local symbols are first. */
4029 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4030 sizeof (asymbol *));
4031
4032 if (new_syms == NULL)
4033 return FALSE;
4034
4035 for (idx = 0; idx < symcount; idx++)
4036 {
4037 asymbol *sym = syms[idx];
4038 unsigned int i;
4039
4040 if (sym_is_global (abfd, sym))
4041 i = num_locals + num_globals2++;
4042 else if (!ignore_section_sym (abfd, sym))
4043 i = num_locals2++;
4044 else
4045 continue;
4046 new_syms[i] = sym;
4047 sym->udata.i = i + 1;
4048 }
4049 for (asect = abfd->sections; asect; asect = asect->next)
4050 {
4051 if (sect_syms[asect->index] == NULL)
4052 {
4053 asymbol *sym = asect->symbol;
4054 unsigned int i;
4055
4056 sect_syms[asect->index] = sym;
4057 if (!sym_is_global (abfd, sym))
4058 i = num_locals2++;
4059 else
4060 i = num_locals + num_globals2++;
4061 new_syms[i] = sym;
4062 sym->udata.i = i + 1;
4063 }
4064 }
4065
4066 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4067
4068 *pnum_locals = num_locals;
4069 return TRUE;
4070 }
4071
4072 /* Align to the maximum file alignment that could be required for any
4073 ELF data structure. */
4074
4075 static inline file_ptr
4076 align_file_position (file_ptr off, int align)
4077 {
4078 return (off + align - 1) & ~(align - 1);
4079 }
4080
4081 /* Assign a file position to a section, optionally aligning to the
4082 required section alignment. */
4083
4084 file_ptr
4085 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4086 file_ptr offset,
4087 bfd_boolean align)
4088 {
4089 if (align && i_shdrp->sh_addralign > 1)
4090 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4091 i_shdrp->sh_offset = offset;
4092 if (i_shdrp->bfd_section != NULL)
4093 i_shdrp->bfd_section->filepos = offset;
4094 if (i_shdrp->sh_type != SHT_NOBITS)
4095 offset += i_shdrp->sh_size;
4096 return offset;
4097 }
4098
4099 /* Compute the file positions we are going to put the sections at, and
4100 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4101 is not NULL, this is being called by the ELF backend linker. */
4102
4103 bfd_boolean
4104 _bfd_elf_compute_section_file_positions (bfd *abfd,
4105 struct bfd_link_info *link_info)
4106 {
4107 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4108 struct fake_section_arg fsargs;
4109 bfd_boolean failed;
4110 struct elf_strtab_hash *strtab = NULL;
4111 Elf_Internal_Shdr *shstrtab_hdr;
4112 bfd_boolean need_symtab;
4113
4114 if (abfd->output_has_begun)
4115 return TRUE;
4116
4117 /* Do any elf backend specific processing first. */
4118 if (bed->elf_backend_begin_write_processing)
4119 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4120
4121 if (! prep_headers (abfd))
4122 return FALSE;
4123
4124 /* Post process the headers if necessary. */
4125 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4126
4127 fsargs.failed = FALSE;
4128 fsargs.link_info = link_info;
4129 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4130 if (fsargs.failed)
4131 return FALSE;
4132
4133 if (!assign_section_numbers (abfd, link_info))
4134 return FALSE;
4135
4136 /* The backend linker builds symbol table information itself. */
4137 need_symtab = (link_info == NULL
4138 && (bfd_get_symcount (abfd) > 0
4139 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4140 == HAS_RELOC)));
4141 if (need_symtab)
4142 {
4143 /* Non-zero if doing a relocatable link. */
4144 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4145
4146 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4147 return FALSE;
4148 }
4149
4150 failed = FALSE;
4151 if (link_info == NULL)
4152 {
4153 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4154 if (failed)
4155 return FALSE;
4156 }
4157
4158 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4159 /* sh_name was set in prep_headers. */
4160 shstrtab_hdr->sh_type = SHT_STRTAB;
4161 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4162 shstrtab_hdr->sh_addr = 0;
4163 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4164 shstrtab_hdr->sh_entsize = 0;
4165 shstrtab_hdr->sh_link = 0;
4166 shstrtab_hdr->sh_info = 0;
4167 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4168 shstrtab_hdr->sh_addralign = 1;
4169
4170 if (!assign_file_positions_except_relocs (abfd, link_info))
4171 return FALSE;
4172
4173 if (need_symtab)
4174 {
4175 file_ptr off;
4176 Elf_Internal_Shdr *hdr;
4177
4178 off = elf_next_file_pos (abfd);
4179
4180 hdr = & elf_symtab_hdr (abfd);
4181 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4182
4183 if (elf_symtab_shndx_list (abfd) != NULL)
4184 {
4185 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4186 if (hdr->sh_size != 0)
4187 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4188 /* FIXME: What about other symtab_shndx sections in the list ? */
4189 }
4190
4191 hdr = &elf_tdata (abfd)->strtab_hdr;
4192 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4193
4194 elf_next_file_pos (abfd) = off;
4195
4196 /* Now that we know where the .strtab section goes, write it
4197 out. */
4198 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4199 || ! _bfd_elf_strtab_emit (abfd, strtab))
4200 return FALSE;
4201 _bfd_elf_strtab_free (strtab);
4202 }
4203
4204 abfd->output_has_begun = TRUE;
4205
4206 return TRUE;
4207 }
4208
4209 /* Make an initial estimate of the size of the program header. If we
4210 get the number wrong here, we'll redo section placement. */
4211
4212 static bfd_size_type
4213 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4214 {
4215 size_t segs;
4216 asection *s;
4217 const struct elf_backend_data *bed;
4218
4219 /* Assume we will need exactly two PT_LOAD segments: one for text
4220 and one for data. */
4221 segs = 2;
4222
4223 s = bfd_get_section_by_name (abfd, ".interp");
4224 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4225 {
4226 /* If we have a loadable interpreter section, we need a
4227 PT_INTERP segment. In this case, assume we also need a
4228 PT_PHDR segment, although that may not be true for all
4229 targets. */
4230 segs += 2;
4231 }
4232
4233 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4234 {
4235 /* We need a PT_DYNAMIC segment. */
4236 ++segs;
4237 }
4238
4239 if (info != NULL && info->relro)
4240 {
4241 /* We need a PT_GNU_RELRO segment. */
4242 ++segs;
4243 }
4244
4245 if (elf_eh_frame_hdr (abfd))
4246 {
4247 /* We need a PT_GNU_EH_FRAME segment. */
4248 ++segs;
4249 }
4250
4251 if (elf_stack_flags (abfd))
4252 {
4253 /* We need a PT_GNU_STACK segment. */
4254 ++segs;
4255 }
4256
4257 for (s = abfd->sections; s != NULL; s = s->next)
4258 {
4259 if ((s->flags & SEC_LOAD) != 0
4260 && CONST_STRNEQ (s->name, ".note"))
4261 {
4262 /* We need a PT_NOTE segment. */
4263 ++segs;
4264 /* Try to create just one PT_NOTE segment
4265 for all adjacent loadable .note* sections.
4266 gABI requires that within a PT_NOTE segment
4267 (and also inside of each SHT_NOTE section)
4268 each note is padded to a multiple of 4 size,
4269 so we check whether the sections are correctly
4270 aligned. */
4271 if (s->alignment_power == 2)
4272 while (s->next != NULL
4273 && s->next->alignment_power == 2
4274 && (s->next->flags & SEC_LOAD) != 0
4275 && CONST_STRNEQ (s->next->name, ".note"))
4276 s = s->next;
4277 }
4278 }
4279
4280 for (s = abfd->sections; s != NULL; s = s->next)
4281 {
4282 if (s->flags & SEC_THREAD_LOCAL)
4283 {
4284 /* We need a PT_TLS segment. */
4285 ++segs;
4286 break;
4287 }
4288 }
4289
4290 /* Let the backend count up any program headers it might need. */
4291 bed = get_elf_backend_data (abfd);
4292 if (bed->elf_backend_additional_program_headers)
4293 {
4294 int a;
4295
4296 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4297 if (a == -1)
4298 abort ();
4299 segs += a;
4300 }
4301
4302 return segs * bed->s->sizeof_phdr;
4303 }
4304
4305 /* Find the segment that contains the output_section of section. */
4306
4307 Elf_Internal_Phdr *
4308 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4309 {
4310 struct elf_segment_map *m;
4311 Elf_Internal_Phdr *p;
4312
4313 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4314 m != NULL;
4315 m = m->next, p++)
4316 {
4317 int i;
4318
4319 for (i = m->count - 1; i >= 0; i--)
4320 if (m->sections[i] == section)
4321 return p;
4322 }
4323
4324 return NULL;
4325 }
4326
4327 /* Create a mapping from a set of sections to a program segment. */
4328
4329 static struct elf_segment_map *
4330 make_mapping (bfd *abfd,
4331 asection **sections,
4332 unsigned int from,
4333 unsigned int to,
4334 bfd_boolean phdr)
4335 {
4336 struct elf_segment_map *m;
4337 unsigned int i;
4338 asection **hdrpp;
4339 bfd_size_type amt;
4340
4341 amt = sizeof (struct elf_segment_map);
4342 amt += (to - from - 1) * sizeof (asection *);
4343 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4344 if (m == NULL)
4345 return NULL;
4346 m->next = NULL;
4347 m->p_type = PT_LOAD;
4348 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4349 m->sections[i - from] = *hdrpp;
4350 m->count = to - from;
4351
4352 if (from == 0 && phdr)
4353 {
4354 /* Include the headers in the first PT_LOAD segment. */
4355 m->includes_filehdr = 1;
4356 m->includes_phdrs = 1;
4357 }
4358
4359 return m;
4360 }
4361
4362 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4363 on failure. */
4364
4365 struct elf_segment_map *
4366 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4367 {
4368 struct elf_segment_map *m;
4369
4370 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4371 sizeof (struct elf_segment_map));
4372 if (m == NULL)
4373 return NULL;
4374 m->next = NULL;
4375 m->p_type = PT_DYNAMIC;
4376 m->count = 1;
4377 m->sections[0] = dynsec;
4378
4379 return m;
4380 }
4381
4382 /* Possibly add or remove segments from the segment map. */
4383
4384 static bfd_boolean
4385 elf_modify_segment_map (bfd *abfd,
4386 struct bfd_link_info *info,
4387 bfd_boolean remove_empty_load)
4388 {
4389 struct elf_segment_map **m;
4390 const struct elf_backend_data *bed;
4391
4392 /* The placement algorithm assumes that non allocated sections are
4393 not in PT_LOAD segments. We ensure this here by removing such
4394 sections from the segment map. We also remove excluded
4395 sections. Finally, any PT_LOAD segment without sections is
4396 removed. */
4397 m = &elf_seg_map (abfd);
4398 while (*m)
4399 {
4400 unsigned int i, new_count;
4401
4402 for (new_count = 0, i = 0; i < (*m)->count; i++)
4403 {
4404 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4405 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4406 || (*m)->p_type != PT_LOAD))
4407 {
4408 (*m)->sections[new_count] = (*m)->sections[i];
4409 new_count++;
4410 }
4411 }
4412 (*m)->count = new_count;
4413
4414 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
4415 *m = (*m)->next;
4416 else
4417 m = &(*m)->next;
4418 }
4419
4420 bed = get_elf_backend_data (abfd);
4421 if (bed->elf_backend_modify_segment_map != NULL)
4422 {
4423 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4424 return FALSE;
4425 }
4426
4427 return TRUE;
4428 }
4429
4430 /* Set up a mapping from BFD sections to program segments. */
4431
4432 bfd_boolean
4433 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4434 {
4435 unsigned int count;
4436 struct elf_segment_map *m;
4437 asection **sections = NULL;
4438 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4439 bfd_boolean no_user_phdrs;
4440
4441 no_user_phdrs = elf_seg_map (abfd) == NULL;
4442
4443 if (info != NULL)
4444 info->user_phdrs = !no_user_phdrs;
4445
4446 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4447 {
4448 asection *s;
4449 unsigned int i;
4450 struct elf_segment_map *mfirst;
4451 struct elf_segment_map **pm;
4452 asection *last_hdr;
4453 bfd_vma last_size;
4454 unsigned int phdr_index;
4455 bfd_vma maxpagesize;
4456 asection **hdrpp;
4457 bfd_boolean phdr_in_segment = TRUE;
4458 bfd_boolean writable;
4459 int tls_count = 0;
4460 asection *first_tls = NULL;
4461 asection *dynsec, *eh_frame_hdr;
4462 bfd_size_type amt;
4463 bfd_vma addr_mask, wrap_to = 0;
4464
4465 /* Select the allocated sections, and sort them. */
4466
4467 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4468 sizeof (asection *));
4469 if (sections == NULL)
4470 goto error_return;
4471
4472 /* Calculate top address, avoiding undefined behaviour of shift
4473 left operator when shift count is equal to size of type
4474 being shifted. */
4475 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4476 addr_mask = (addr_mask << 1) + 1;
4477
4478 i = 0;
4479 for (s = abfd->sections; s != NULL; s = s->next)
4480 {
4481 if ((s->flags & SEC_ALLOC) != 0)
4482 {
4483 sections[i] = s;
4484 ++i;
4485 /* A wrapping section potentially clashes with header. */
4486 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4487 wrap_to = (s->lma + s->size) & addr_mask;
4488 }
4489 }
4490 BFD_ASSERT (i <= bfd_count_sections (abfd));
4491 count = i;
4492
4493 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4494
4495 /* Build the mapping. */
4496
4497 mfirst = NULL;
4498 pm = &mfirst;
4499
4500 /* If we have a .interp section, then create a PT_PHDR segment for
4501 the program headers and a PT_INTERP segment for the .interp
4502 section. */
4503 s = bfd_get_section_by_name (abfd, ".interp");
4504 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4505 {
4506 amt = sizeof (struct elf_segment_map);
4507 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4508 if (m == NULL)
4509 goto error_return;
4510 m->next = NULL;
4511 m->p_type = PT_PHDR;
4512 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4513 m->p_flags = PF_R | PF_X;
4514 m->p_flags_valid = 1;
4515 m->includes_phdrs = 1;
4516
4517 *pm = m;
4518 pm = &m->next;
4519
4520 amt = sizeof (struct elf_segment_map);
4521 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4522 if (m == NULL)
4523 goto error_return;
4524 m->next = NULL;
4525 m->p_type = PT_INTERP;
4526 m->count = 1;
4527 m->sections[0] = s;
4528
4529 *pm = m;
4530 pm = &m->next;
4531 }
4532
4533 /* Look through the sections. We put sections in the same program
4534 segment when the start of the second section can be placed within
4535 a few bytes of the end of the first section. */
4536 last_hdr = NULL;
4537 last_size = 0;
4538 phdr_index = 0;
4539 maxpagesize = bed->maxpagesize;
4540 /* PR 17512: file: c8455299.
4541 Avoid divide-by-zero errors later on.
4542 FIXME: Should we abort if the maxpagesize is zero ? */
4543 if (maxpagesize == 0)
4544 maxpagesize = 1;
4545 writable = FALSE;
4546 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4547 if (dynsec != NULL
4548 && (dynsec->flags & SEC_LOAD) == 0)
4549 dynsec = NULL;
4550
4551 /* Deal with -Ttext or something similar such that the first section
4552 is not adjacent to the program headers. This is an
4553 approximation, since at this point we don't know exactly how many
4554 program headers we will need. */
4555 if (count > 0)
4556 {
4557 bfd_size_type phdr_size = elf_program_header_size (abfd);
4558
4559 if (phdr_size == (bfd_size_type) -1)
4560 phdr_size = get_program_header_size (abfd, info);
4561 phdr_size += bed->s->sizeof_ehdr;
4562 if ((abfd->flags & D_PAGED) == 0
4563 || (sections[0]->lma & addr_mask) < phdr_size
4564 || ((sections[0]->lma & addr_mask) % maxpagesize
4565 < phdr_size % maxpagesize)
4566 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4567 phdr_in_segment = FALSE;
4568 }
4569
4570 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4571 {
4572 asection *hdr;
4573 bfd_boolean new_segment;
4574
4575 hdr = *hdrpp;
4576
4577 /* See if this section and the last one will fit in the same
4578 segment. */
4579
4580 if (last_hdr == NULL)
4581 {
4582 /* If we don't have a segment yet, then we don't need a new
4583 one (we build the last one after this loop). */
4584 new_segment = FALSE;
4585 }
4586 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4587 {
4588 /* If this section has a different relation between the
4589 virtual address and the load address, then we need a new
4590 segment. */
4591 new_segment = TRUE;
4592 }
4593 else if (hdr->lma < last_hdr->lma + last_size
4594 || last_hdr->lma + last_size < last_hdr->lma)
4595 {
4596 /* If this section has a load address that makes it overlap
4597 the previous section, then we need a new segment. */
4598 new_segment = TRUE;
4599 }
4600 /* In the next test we have to be careful when last_hdr->lma is close
4601 to the end of the address space. If the aligned address wraps
4602 around to the start of the address space, then there are no more
4603 pages left in memory and it is OK to assume that the current
4604 section can be included in the current segment. */
4605 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4606 > last_hdr->lma)
4607 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4608 <= hdr->lma))
4609 {
4610 /* If putting this section in this segment would force us to
4611 skip a page in the segment, then we need a new segment. */
4612 new_segment = TRUE;
4613 }
4614 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4615 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0
4616 && ((abfd->flags & D_PAGED) == 0
4617 || (((last_hdr->lma + last_size - 1) & -maxpagesize)
4618 != (hdr->lma & -maxpagesize))))
4619 {
4620 /* We don't want to put a loaded section after a
4621 nonloaded (ie. bss style) section in the same segment
4622 as that will force the non-loaded section to be loaded.
4623 Consider .tbss sections as loaded for this purpose.
4624 However, like the writable/non-writable case below,
4625 if they are on the same page then they must be put
4626 in the same segment. */
4627 new_segment = TRUE;
4628 }
4629 else if ((abfd->flags & D_PAGED) == 0)
4630 {
4631 /* If the file is not demand paged, which means that we
4632 don't require the sections to be correctly aligned in the
4633 file, then there is no other reason for a new segment. */
4634 new_segment = FALSE;
4635 }
4636 else if (! writable
4637 && (hdr->flags & SEC_READONLY) == 0
4638 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4639 != (hdr->lma & -maxpagesize)))
4640 {
4641 /* We don't want to put a writable section in a read only
4642 segment, unless they are on the same page in memory
4643 anyhow. We already know that the last section does not
4644 bring us past the current section on the page, so the
4645 only case in which the new section is not on the same
4646 page as the previous section is when the previous section
4647 ends precisely on a page boundary. */
4648 new_segment = TRUE;
4649 }
4650 else
4651 {
4652 /* Otherwise, we can use the same segment. */
4653 new_segment = FALSE;
4654 }
4655
4656 /* Allow interested parties a chance to override our decision. */
4657 if (last_hdr != NULL
4658 && info != NULL
4659 && info->callbacks->override_segment_assignment != NULL)
4660 new_segment
4661 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4662 last_hdr,
4663 new_segment);
4664
4665 if (! new_segment)
4666 {
4667 if ((hdr->flags & SEC_READONLY) == 0)
4668 writable = TRUE;
4669 last_hdr = hdr;
4670 /* .tbss sections effectively have zero size. */
4671 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4672 != SEC_THREAD_LOCAL)
4673 last_size = hdr->size;
4674 else
4675 last_size = 0;
4676 continue;
4677 }
4678
4679 /* We need a new program segment. We must create a new program
4680 header holding all the sections from phdr_index until hdr. */
4681
4682 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4683 if (m == NULL)
4684 goto error_return;
4685
4686 *pm = m;
4687 pm = &m->next;
4688
4689 if ((hdr->flags & SEC_READONLY) == 0)
4690 writable = TRUE;
4691 else
4692 writable = FALSE;
4693
4694 last_hdr = hdr;
4695 /* .tbss sections effectively have zero size. */
4696 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4697 last_size = hdr->size;
4698 else
4699 last_size = 0;
4700 phdr_index = i;
4701 phdr_in_segment = FALSE;
4702 }
4703
4704 /* Create a final PT_LOAD program segment, but not if it's just
4705 for .tbss. */
4706 if (last_hdr != NULL
4707 && (i - phdr_index != 1
4708 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4709 != SEC_THREAD_LOCAL)))
4710 {
4711 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4712 if (m == NULL)
4713 goto error_return;
4714
4715 *pm = m;
4716 pm = &m->next;
4717 }
4718
4719 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4720 if (dynsec != NULL)
4721 {
4722 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4723 if (m == NULL)
4724 goto error_return;
4725 *pm = m;
4726 pm = &m->next;
4727 }
4728
4729 /* For each batch of consecutive loadable .note sections,
4730 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4731 because if we link together nonloadable .note sections and
4732 loadable .note sections, we will generate two .note sections
4733 in the output file. FIXME: Using names for section types is
4734 bogus anyhow. */
4735 for (s = abfd->sections; s != NULL; s = s->next)
4736 {
4737 if ((s->flags & SEC_LOAD) != 0
4738 && CONST_STRNEQ (s->name, ".note"))
4739 {
4740 asection *s2;
4741
4742 count = 1;
4743 amt = sizeof (struct elf_segment_map);
4744 if (s->alignment_power == 2)
4745 for (s2 = s; s2->next != NULL; s2 = s2->next)
4746 {
4747 if (s2->next->alignment_power == 2
4748 && (s2->next->flags & SEC_LOAD) != 0
4749 && CONST_STRNEQ (s2->next->name, ".note")
4750 && align_power (s2->lma + s2->size, 2)
4751 == s2->next->lma)
4752 count++;
4753 else
4754 break;
4755 }
4756 amt += (count - 1) * sizeof (asection *);
4757 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4758 if (m == NULL)
4759 goto error_return;
4760 m->next = NULL;
4761 m->p_type = PT_NOTE;
4762 m->count = count;
4763 while (count > 1)
4764 {
4765 m->sections[m->count - count--] = s;
4766 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4767 s = s->next;
4768 }
4769 m->sections[m->count - 1] = s;
4770 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4771 *pm = m;
4772 pm = &m->next;
4773 }
4774 if (s->flags & SEC_THREAD_LOCAL)
4775 {
4776 if (! tls_count)
4777 first_tls = s;
4778 tls_count++;
4779 }
4780 }
4781
4782 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4783 if (tls_count > 0)
4784 {
4785 amt = sizeof (struct elf_segment_map);
4786 amt += (tls_count - 1) * sizeof (asection *);
4787 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4788 if (m == NULL)
4789 goto error_return;
4790 m->next = NULL;
4791 m->p_type = PT_TLS;
4792 m->count = tls_count;
4793 /* Mandated PF_R. */
4794 m->p_flags = PF_R;
4795 m->p_flags_valid = 1;
4796 s = first_tls;
4797 for (i = 0; i < (unsigned int) tls_count; ++i)
4798 {
4799 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4800 {
4801 _bfd_error_handler
4802 (_("%B: TLS sections are not adjacent:"), abfd);
4803 s = first_tls;
4804 i = 0;
4805 while (i < (unsigned int) tls_count)
4806 {
4807 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4808 {
4809 _bfd_error_handler (_(" TLS: %A"), s);
4810 i++;
4811 }
4812 else
4813 _bfd_error_handler (_(" non-TLS: %A"), s);
4814 s = s->next;
4815 }
4816 bfd_set_error (bfd_error_bad_value);
4817 goto error_return;
4818 }
4819 m->sections[i] = s;
4820 s = s->next;
4821 }
4822
4823 *pm = m;
4824 pm = &m->next;
4825 }
4826
4827 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4828 segment. */
4829 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4830 if (eh_frame_hdr != NULL
4831 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4832 {
4833 amt = sizeof (struct elf_segment_map);
4834 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4835 if (m == NULL)
4836 goto error_return;
4837 m->next = NULL;
4838 m->p_type = PT_GNU_EH_FRAME;
4839 m->count = 1;
4840 m->sections[0] = eh_frame_hdr->output_section;
4841
4842 *pm = m;
4843 pm = &m->next;
4844 }
4845
4846 if (elf_stack_flags (abfd))
4847 {
4848 amt = sizeof (struct elf_segment_map);
4849 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4850 if (m == NULL)
4851 goto error_return;
4852 m->next = NULL;
4853 m->p_type = PT_GNU_STACK;
4854 m->p_flags = elf_stack_flags (abfd);
4855 m->p_align = bed->stack_align;
4856 m->p_flags_valid = 1;
4857 m->p_align_valid = m->p_align != 0;
4858 if (info->stacksize > 0)
4859 {
4860 m->p_size = info->stacksize;
4861 m->p_size_valid = 1;
4862 }
4863
4864 *pm = m;
4865 pm = &m->next;
4866 }
4867
4868 if (info != NULL && info->relro)
4869 {
4870 for (m = mfirst; m != NULL; m = m->next)
4871 {
4872 if (m->p_type == PT_LOAD
4873 && m->count != 0
4874 && m->sections[0]->vma >= info->relro_start
4875 && m->sections[0]->vma < info->relro_end)
4876 {
4877 i = m->count;
4878 while (--i != (unsigned) -1)
4879 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4880 == (SEC_LOAD | SEC_HAS_CONTENTS))
4881 break;
4882
4883 if (i != (unsigned) -1)
4884 break;
4885 }
4886 }
4887
4888 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4889 if (m != NULL)
4890 {
4891 amt = sizeof (struct elf_segment_map);
4892 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4893 if (m == NULL)
4894 goto error_return;
4895 m->next = NULL;
4896 m->p_type = PT_GNU_RELRO;
4897 *pm = m;
4898 pm = &m->next;
4899 }
4900 }
4901
4902 free (sections);
4903 elf_seg_map (abfd) = mfirst;
4904 }
4905
4906 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4907 return FALSE;
4908
4909 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4910 ++count;
4911 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4912
4913 return TRUE;
4914
4915 error_return:
4916 if (sections != NULL)
4917 free (sections);
4918 return FALSE;
4919 }
4920
4921 /* Sort sections by address. */
4922
4923 static int
4924 elf_sort_sections (const void *arg1, const void *arg2)
4925 {
4926 const asection *sec1 = *(const asection **) arg1;
4927 const asection *sec2 = *(const asection **) arg2;
4928 bfd_size_type size1, size2;
4929
4930 /* Sort by LMA first, since this is the address used to
4931 place the section into a segment. */
4932 if (sec1->lma < sec2->lma)
4933 return -1;
4934 else if (sec1->lma > sec2->lma)
4935 return 1;
4936
4937 /* Then sort by VMA. Normally the LMA and the VMA will be
4938 the same, and this will do nothing. */
4939 if (sec1->vma < sec2->vma)
4940 return -1;
4941 else if (sec1->vma > sec2->vma)
4942 return 1;
4943
4944 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4945
4946 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4947
4948 if (TOEND (sec1))
4949 {
4950 if (TOEND (sec2))
4951 {
4952 /* If the indicies are the same, do not return 0
4953 here, but continue to try the next comparison. */
4954 if (sec1->target_index - sec2->target_index != 0)
4955 return sec1->target_index - sec2->target_index;
4956 }
4957 else
4958 return 1;
4959 }
4960 else if (TOEND (sec2))
4961 return -1;
4962
4963 #undef TOEND
4964
4965 /* Sort by size, to put zero sized sections
4966 before others at the same address. */
4967
4968 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4969 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4970
4971 if (size1 < size2)
4972 return -1;
4973 if (size1 > size2)
4974 return 1;
4975
4976 return sec1->target_index - sec2->target_index;
4977 }
4978
4979 /* Ian Lance Taylor writes:
4980
4981 We shouldn't be using % with a negative signed number. That's just
4982 not good. We have to make sure either that the number is not
4983 negative, or that the number has an unsigned type. When the types
4984 are all the same size they wind up as unsigned. When file_ptr is a
4985 larger signed type, the arithmetic winds up as signed long long,
4986 which is wrong.
4987
4988 What we're trying to say here is something like ``increase OFF by
4989 the least amount that will cause it to be equal to the VMA modulo
4990 the page size.'' */
4991 /* In other words, something like:
4992
4993 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4994 off_offset = off % bed->maxpagesize;
4995 if (vma_offset < off_offset)
4996 adjustment = vma_offset + bed->maxpagesize - off_offset;
4997 else
4998 adjustment = vma_offset - off_offset;
4999
5000 which can can be collapsed into the expression below. */
5001
5002 static file_ptr
5003 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5004 {
5005 /* PR binutils/16199: Handle an alignment of zero. */
5006 if (maxpagesize == 0)
5007 maxpagesize = 1;
5008 return ((vma - off) % maxpagesize);
5009 }
5010
5011 static void
5012 print_segment_map (const struct elf_segment_map *m)
5013 {
5014 unsigned int j;
5015 const char *pt = get_segment_type (m->p_type);
5016 char buf[32];
5017
5018 if (pt == NULL)
5019 {
5020 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5021 sprintf (buf, "LOPROC+%7.7x",
5022 (unsigned int) (m->p_type - PT_LOPROC));
5023 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5024 sprintf (buf, "LOOS+%7.7x",
5025 (unsigned int) (m->p_type - PT_LOOS));
5026 else
5027 snprintf (buf, sizeof (buf), "%8.8x",
5028 (unsigned int) m->p_type);
5029 pt = buf;
5030 }
5031 fflush (stdout);
5032 fprintf (stderr, "%s:", pt);
5033 for (j = 0; j < m->count; j++)
5034 fprintf (stderr, " %s", m->sections [j]->name);
5035 putc ('\n',stderr);
5036 fflush (stderr);
5037 }
5038
5039 static bfd_boolean
5040 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5041 {
5042 void *buf;
5043 bfd_boolean ret;
5044
5045 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5046 return FALSE;
5047 buf = bfd_zmalloc (len);
5048 if (buf == NULL)
5049 return FALSE;
5050 ret = bfd_bwrite (buf, len, abfd) == len;
5051 free (buf);
5052 return ret;
5053 }
5054
5055 /* Assign file positions to the sections based on the mapping from
5056 sections to segments. This function also sets up some fields in
5057 the file header. */
5058
5059 static bfd_boolean
5060 assign_file_positions_for_load_sections (bfd *abfd,
5061 struct bfd_link_info *link_info)
5062 {
5063 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5064 struct elf_segment_map *m;
5065 Elf_Internal_Phdr *phdrs;
5066 Elf_Internal_Phdr *p;
5067 file_ptr off;
5068 bfd_size_type maxpagesize;
5069 unsigned int alloc;
5070 unsigned int i, j;
5071 bfd_vma header_pad = 0;
5072
5073 if (link_info == NULL
5074 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5075 return FALSE;
5076
5077 alloc = 0;
5078 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5079 {
5080 ++alloc;
5081 if (m->header_size)
5082 header_pad = m->header_size;
5083 }
5084
5085 if (alloc)
5086 {
5087 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5088 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5089 }
5090 else
5091 {
5092 /* PR binutils/12467. */
5093 elf_elfheader (abfd)->e_phoff = 0;
5094 elf_elfheader (abfd)->e_phentsize = 0;
5095 }
5096
5097 elf_elfheader (abfd)->e_phnum = alloc;
5098
5099 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5100 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5101 else
5102 BFD_ASSERT (elf_program_header_size (abfd)
5103 >= alloc * bed->s->sizeof_phdr);
5104
5105 if (alloc == 0)
5106 {
5107 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5108 return TRUE;
5109 }
5110
5111 /* We're writing the size in elf_program_header_size (abfd),
5112 see assign_file_positions_except_relocs, so make sure we have
5113 that amount allocated, with trailing space cleared.
5114 The variable alloc contains the computed need, while
5115 elf_program_header_size (abfd) contains the size used for the
5116 layout.
5117 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5118 where the layout is forced to according to a larger size in the
5119 last iterations for the testcase ld-elf/header. */
5120 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5121 == 0);
5122 phdrs = (Elf_Internal_Phdr *)
5123 bfd_zalloc2 (abfd,
5124 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5125 sizeof (Elf_Internal_Phdr));
5126 elf_tdata (abfd)->phdr = phdrs;
5127 if (phdrs == NULL)
5128 return FALSE;
5129
5130 maxpagesize = 1;
5131 if ((abfd->flags & D_PAGED) != 0)
5132 maxpagesize = bed->maxpagesize;
5133
5134 off = bed->s->sizeof_ehdr;
5135 off += alloc * bed->s->sizeof_phdr;
5136 if (header_pad < (bfd_vma) off)
5137 header_pad = 0;
5138 else
5139 header_pad -= off;
5140 off += header_pad;
5141
5142 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5143 m != NULL;
5144 m = m->next, p++, j++)
5145 {
5146 asection **secpp;
5147 bfd_vma off_adjust;
5148 bfd_boolean no_contents;
5149
5150 /* If elf_segment_map is not from map_sections_to_segments, the
5151 sections may not be correctly ordered. NOTE: sorting should
5152 not be done to the PT_NOTE section of a corefile, which may
5153 contain several pseudo-sections artificially created by bfd.
5154 Sorting these pseudo-sections breaks things badly. */
5155 if (m->count > 1
5156 && !(elf_elfheader (abfd)->e_type == ET_CORE
5157 && m->p_type == PT_NOTE))
5158 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5159 elf_sort_sections);
5160
5161 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5162 number of sections with contents contributing to both p_filesz
5163 and p_memsz, followed by a number of sections with no contents
5164 that just contribute to p_memsz. In this loop, OFF tracks next
5165 available file offset for PT_LOAD and PT_NOTE segments. */
5166 p->p_type = m->p_type;
5167 p->p_flags = m->p_flags;
5168
5169 if (m->count == 0)
5170 p->p_vaddr = 0;
5171 else
5172 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5173
5174 if (m->p_paddr_valid)
5175 p->p_paddr = m->p_paddr;
5176 else if (m->count == 0)
5177 p->p_paddr = 0;
5178 else
5179 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5180
5181 if (p->p_type == PT_LOAD
5182 && (abfd->flags & D_PAGED) != 0)
5183 {
5184 /* p_align in demand paged PT_LOAD segments effectively stores
5185 the maximum page size. When copying an executable with
5186 objcopy, we set m->p_align from the input file. Use this
5187 value for maxpagesize rather than bed->maxpagesize, which
5188 may be different. Note that we use maxpagesize for PT_TLS
5189 segment alignment later in this function, so we are relying
5190 on at least one PT_LOAD segment appearing before a PT_TLS
5191 segment. */
5192 if (m->p_align_valid)
5193 maxpagesize = m->p_align;
5194
5195 p->p_align = maxpagesize;
5196 }
5197 else if (m->p_align_valid)
5198 p->p_align = m->p_align;
5199 else if (m->count == 0)
5200 p->p_align = 1 << bed->s->log_file_align;
5201 else
5202 p->p_align = 0;
5203
5204 no_contents = FALSE;
5205 off_adjust = 0;
5206 if (p->p_type == PT_LOAD
5207 && m->count > 0)
5208 {
5209 bfd_size_type align;
5210 unsigned int align_power = 0;
5211
5212 if (m->p_align_valid)
5213 align = p->p_align;
5214 else
5215 {
5216 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5217 {
5218 unsigned int secalign;
5219
5220 secalign = bfd_get_section_alignment (abfd, *secpp);
5221 if (secalign > align_power)
5222 align_power = secalign;
5223 }
5224 align = (bfd_size_type) 1 << align_power;
5225 if (align < maxpagesize)
5226 align = maxpagesize;
5227 }
5228
5229 for (i = 0; i < m->count; i++)
5230 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5231 /* If we aren't making room for this section, then
5232 it must be SHT_NOBITS regardless of what we've
5233 set via struct bfd_elf_special_section. */
5234 elf_section_type (m->sections[i]) = SHT_NOBITS;
5235
5236 /* Find out whether this segment contains any loadable
5237 sections. */
5238 no_contents = TRUE;
5239 for (i = 0; i < m->count; i++)
5240 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5241 {
5242 no_contents = FALSE;
5243 break;
5244 }
5245
5246 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5247 off += off_adjust;
5248 if (no_contents)
5249 {
5250 /* We shouldn't need to align the segment on disk since
5251 the segment doesn't need file space, but the gABI
5252 arguably requires the alignment and glibc ld.so
5253 checks it. So to comply with the alignment
5254 requirement but not waste file space, we adjust
5255 p_offset for just this segment. (OFF_ADJUST is
5256 subtracted from OFF later.) This may put p_offset
5257 past the end of file, but that shouldn't matter. */
5258 }
5259 else
5260 off_adjust = 0;
5261 }
5262 /* Make sure the .dynamic section is the first section in the
5263 PT_DYNAMIC segment. */
5264 else if (p->p_type == PT_DYNAMIC
5265 && m->count > 1
5266 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5267 {
5268 _bfd_error_handler
5269 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
5270 abfd);
5271 bfd_set_error (bfd_error_bad_value);
5272 return FALSE;
5273 }
5274 /* Set the note section type to SHT_NOTE. */
5275 else if (p->p_type == PT_NOTE)
5276 for (i = 0; i < m->count; i++)
5277 elf_section_type (m->sections[i]) = SHT_NOTE;
5278
5279 p->p_offset = 0;
5280 p->p_filesz = 0;
5281 p->p_memsz = 0;
5282
5283 if (m->includes_filehdr)
5284 {
5285 if (!m->p_flags_valid)
5286 p->p_flags |= PF_R;
5287 p->p_filesz = bed->s->sizeof_ehdr;
5288 p->p_memsz = bed->s->sizeof_ehdr;
5289 if (m->count > 0)
5290 {
5291 if (p->p_vaddr < (bfd_vma) off
5292 || (!m->p_paddr_valid
5293 && p->p_paddr < (bfd_vma) off))
5294 {
5295 _bfd_error_handler
5296 (_("%B: Not enough room for program headers, try linking with -N"),
5297 abfd);
5298 bfd_set_error (bfd_error_bad_value);
5299 return FALSE;
5300 }
5301
5302 p->p_vaddr -= off;
5303 if (!m->p_paddr_valid)
5304 p->p_paddr -= off;
5305 }
5306 }
5307
5308 if (m->includes_phdrs)
5309 {
5310 if (!m->p_flags_valid)
5311 p->p_flags |= PF_R;
5312
5313 if (!m->includes_filehdr)
5314 {
5315 p->p_offset = bed->s->sizeof_ehdr;
5316
5317 if (m->count > 0)
5318 {
5319 p->p_vaddr -= off - p->p_offset;
5320 if (!m->p_paddr_valid)
5321 p->p_paddr -= off - p->p_offset;
5322 }
5323 }
5324
5325 p->p_filesz += alloc * bed->s->sizeof_phdr;
5326 p->p_memsz += alloc * bed->s->sizeof_phdr;
5327 if (m->count)
5328 {
5329 p->p_filesz += header_pad;
5330 p->p_memsz += header_pad;
5331 }
5332 }
5333
5334 if (p->p_type == PT_LOAD
5335 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5336 {
5337 if (!m->includes_filehdr && !m->includes_phdrs)
5338 p->p_offset = off;
5339 else
5340 {
5341 file_ptr adjust;
5342
5343 adjust = off - (p->p_offset + p->p_filesz);
5344 if (!no_contents)
5345 p->p_filesz += adjust;
5346 p->p_memsz += adjust;
5347 }
5348 }
5349
5350 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5351 maps. Set filepos for sections in PT_LOAD segments, and in
5352 core files, for sections in PT_NOTE segments.
5353 assign_file_positions_for_non_load_sections will set filepos
5354 for other sections and update p_filesz for other segments. */
5355 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5356 {
5357 asection *sec;
5358 bfd_size_type align;
5359 Elf_Internal_Shdr *this_hdr;
5360
5361 sec = *secpp;
5362 this_hdr = &elf_section_data (sec)->this_hdr;
5363 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5364
5365 if ((p->p_type == PT_LOAD
5366 || p->p_type == PT_TLS)
5367 && (this_hdr->sh_type != SHT_NOBITS
5368 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5369 && ((this_hdr->sh_flags & SHF_TLS) == 0
5370 || p->p_type == PT_TLS))))
5371 {
5372 bfd_vma p_start = p->p_paddr;
5373 bfd_vma p_end = p_start + p->p_memsz;
5374 bfd_vma s_start = sec->lma;
5375 bfd_vma adjust = s_start - p_end;
5376
5377 if (adjust != 0
5378 && (s_start < p_end
5379 || p_end < p_start))
5380 {
5381 _bfd_error_handler
5382 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
5383 (unsigned long) s_start, (unsigned long) p_end);
5384 adjust = 0;
5385 sec->lma = p_end;
5386 }
5387 p->p_memsz += adjust;
5388
5389 if (this_hdr->sh_type != SHT_NOBITS)
5390 {
5391 if (p->p_filesz + adjust < p->p_memsz)
5392 {
5393 /* We have a PROGBITS section following NOBITS ones.
5394 Allocate file space for the NOBITS section(s) and
5395 zero it. */
5396 adjust = p->p_memsz - p->p_filesz;
5397 if (!write_zeros (abfd, off, adjust))
5398 return FALSE;
5399 }
5400 off += adjust;
5401 p->p_filesz += adjust;
5402 }
5403 }
5404
5405 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5406 {
5407 /* The section at i == 0 is the one that actually contains
5408 everything. */
5409 if (i == 0)
5410 {
5411 this_hdr->sh_offset = sec->filepos = off;
5412 off += this_hdr->sh_size;
5413 p->p_filesz = this_hdr->sh_size;
5414 p->p_memsz = 0;
5415 p->p_align = 1;
5416 }
5417 else
5418 {
5419 /* The rest are fake sections that shouldn't be written. */
5420 sec->filepos = 0;
5421 sec->size = 0;
5422 sec->flags = 0;
5423 continue;
5424 }
5425 }
5426 else
5427 {
5428 if (p->p_type == PT_LOAD)
5429 {
5430 this_hdr->sh_offset = sec->filepos = off;
5431 if (this_hdr->sh_type != SHT_NOBITS)
5432 off += this_hdr->sh_size;
5433 }
5434 else if (this_hdr->sh_type == SHT_NOBITS
5435 && (this_hdr->sh_flags & SHF_TLS) != 0
5436 && this_hdr->sh_offset == 0)
5437 {
5438 /* This is a .tbss section that didn't get a PT_LOAD.
5439 (See _bfd_elf_map_sections_to_segments "Create a
5440 final PT_LOAD".) Set sh_offset to the value it
5441 would have if we had created a zero p_filesz and
5442 p_memsz PT_LOAD header for the section. This
5443 also makes the PT_TLS header have the same
5444 p_offset value. */
5445 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5446 off, align);
5447 this_hdr->sh_offset = sec->filepos = off + adjust;
5448 }
5449
5450 if (this_hdr->sh_type != SHT_NOBITS)
5451 {
5452 p->p_filesz += this_hdr->sh_size;
5453 /* A load section without SHF_ALLOC is something like
5454 a note section in a PT_NOTE segment. These take
5455 file space but are not loaded into memory. */
5456 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5457 p->p_memsz += this_hdr->sh_size;
5458 }
5459 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5460 {
5461 if (p->p_type == PT_TLS)
5462 p->p_memsz += this_hdr->sh_size;
5463
5464 /* .tbss is special. It doesn't contribute to p_memsz of
5465 normal segments. */
5466 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5467 p->p_memsz += this_hdr->sh_size;
5468 }
5469
5470 if (align > p->p_align
5471 && !m->p_align_valid
5472 && (p->p_type != PT_LOAD
5473 || (abfd->flags & D_PAGED) == 0))
5474 p->p_align = align;
5475 }
5476
5477 if (!m->p_flags_valid)
5478 {
5479 p->p_flags |= PF_R;
5480 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5481 p->p_flags |= PF_X;
5482 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5483 p->p_flags |= PF_W;
5484 }
5485 }
5486
5487 off -= off_adjust;
5488
5489 /* Check that all sections are in a PT_LOAD segment.
5490 Don't check funky gdb generated core files. */
5491 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5492 {
5493 bfd_boolean check_vma = TRUE;
5494
5495 for (i = 1; i < m->count; i++)
5496 if (m->sections[i]->vma == m->sections[i - 1]->vma
5497 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5498 ->this_hdr), p) != 0
5499 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5500 ->this_hdr), p) != 0)
5501 {
5502 /* Looks like we have overlays packed into the segment. */
5503 check_vma = FALSE;
5504 break;
5505 }
5506
5507 for (i = 0; i < m->count; i++)
5508 {
5509 Elf_Internal_Shdr *this_hdr;
5510 asection *sec;
5511
5512 sec = m->sections[i];
5513 this_hdr = &(elf_section_data(sec)->this_hdr);
5514 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5515 && !ELF_TBSS_SPECIAL (this_hdr, p))
5516 {
5517 _bfd_error_handler
5518 (_("%B: section `%A' can't be allocated in segment %d"),
5519 abfd, sec, j);
5520 print_segment_map (m);
5521 }
5522 }
5523 }
5524 }
5525
5526 elf_next_file_pos (abfd) = off;
5527 return TRUE;
5528 }
5529
5530 /* Assign file positions for the other sections. */
5531
5532 static bfd_boolean
5533 assign_file_positions_for_non_load_sections (bfd *abfd,
5534 struct bfd_link_info *link_info)
5535 {
5536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5537 Elf_Internal_Shdr **i_shdrpp;
5538 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5539 Elf_Internal_Phdr *phdrs;
5540 Elf_Internal_Phdr *p;
5541 struct elf_segment_map *m;
5542 struct elf_segment_map *hdrs_segment;
5543 bfd_vma filehdr_vaddr, filehdr_paddr;
5544 bfd_vma phdrs_vaddr, phdrs_paddr;
5545 file_ptr off;
5546 unsigned int count;
5547
5548 i_shdrpp = elf_elfsections (abfd);
5549 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5550 off = elf_next_file_pos (abfd);
5551 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5552 {
5553 Elf_Internal_Shdr *hdr;
5554
5555 hdr = *hdrpp;
5556 if (hdr->bfd_section != NULL
5557 && (hdr->bfd_section->filepos != 0
5558 || (hdr->sh_type == SHT_NOBITS
5559 && hdr->contents == NULL)))
5560 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5561 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5562 {
5563 if (hdr->sh_size != 0)
5564 _bfd_error_handler
5565 (_("%B: warning: allocated section `%s' not in segment"),
5566 abfd,
5567 (hdr->bfd_section == NULL
5568 ? "*unknown*"
5569 : hdr->bfd_section->name));
5570 /* We don't need to page align empty sections. */
5571 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5572 off += vma_page_aligned_bias (hdr->sh_addr, off,
5573 bed->maxpagesize);
5574 else
5575 off += vma_page_aligned_bias (hdr->sh_addr, off,
5576 hdr->sh_addralign);
5577 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5578 FALSE);
5579 }
5580 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5581 && hdr->bfd_section == NULL)
5582 || (hdr->bfd_section != NULL
5583 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5584 /* Compress DWARF debug sections. */
5585 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5586 || (elf_symtab_shndx_list (abfd) != NULL
5587 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5588 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5589 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5590 hdr->sh_offset = -1;
5591 else
5592 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5593 }
5594
5595 /* Now that we have set the section file positions, we can set up
5596 the file positions for the non PT_LOAD segments. */
5597 count = 0;
5598 filehdr_vaddr = 0;
5599 filehdr_paddr = 0;
5600 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5601 phdrs_paddr = 0;
5602 hdrs_segment = NULL;
5603 phdrs = elf_tdata (abfd)->phdr;
5604 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5605 {
5606 ++count;
5607 if (p->p_type != PT_LOAD)
5608 continue;
5609
5610 if (m->includes_filehdr)
5611 {
5612 filehdr_vaddr = p->p_vaddr;
5613 filehdr_paddr = p->p_paddr;
5614 }
5615 if (m->includes_phdrs)
5616 {
5617 phdrs_vaddr = p->p_vaddr;
5618 phdrs_paddr = p->p_paddr;
5619 if (m->includes_filehdr)
5620 {
5621 hdrs_segment = m;
5622 phdrs_vaddr += bed->s->sizeof_ehdr;
5623 phdrs_paddr += bed->s->sizeof_ehdr;
5624 }
5625 }
5626 }
5627
5628 if (hdrs_segment != NULL && link_info != NULL)
5629 {
5630 /* There is a segment that contains both the file headers and the
5631 program headers, so provide a symbol __ehdr_start pointing there.
5632 A program can use this to examine itself robustly. */
5633
5634 struct elf_link_hash_entry *hash
5635 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5636 FALSE, FALSE, TRUE);
5637 /* If the symbol was referenced and not defined, define it. */
5638 if (hash != NULL
5639 && (hash->root.type == bfd_link_hash_new
5640 || hash->root.type == bfd_link_hash_undefined
5641 || hash->root.type == bfd_link_hash_undefweak
5642 || hash->root.type == bfd_link_hash_common))
5643 {
5644 asection *s = NULL;
5645 if (hdrs_segment->count != 0)
5646 /* The segment contains sections, so use the first one. */
5647 s = hdrs_segment->sections[0];
5648 else
5649 /* Use the first (i.e. lowest-addressed) section in any segment. */
5650 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5651 if (m->count != 0)
5652 {
5653 s = m->sections[0];
5654 break;
5655 }
5656
5657 if (s != NULL)
5658 {
5659 hash->root.u.def.value = filehdr_vaddr - s->vma;
5660 hash->root.u.def.section = s;
5661 }
5662 else
5663 {
5664 hash->root.u.def.value = filehdr_vaddr;
5665 hash->root.u.def.section = bfd_abs_section_ptr;
5666 }
5667
5668 hash->root.type = bfd_link_hash_defined;
5669 hash->def_regular = 1;
5670 hash->non_elf = 0;
5671 }
5672 }
5673
5674 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5675 {
5676 if (p->p_type == PT_GNU_RELRO)
5677 {
5678 const Elf_Internal_Phdr *lp;
5679 struct elf_segment_map *lm;
5680
5681 if (link_info != NULL)
5682 {
5683 /* During linking the range of the RELRO segment is passed
5684 in link_info. */
5685 for (lm = elf_seg_map (abfd), lp = phdrs;
5686 lm != NULL;
5687 lm = lm->next, lp++)
5688 {
5689 if (lp->p_type == PT_LOAD
5690 && lp->p_vaddr < link_info->relro_end
5691 && lm->count != 0
5692 && lm->sections[0]->vma >= link_info->relro_start)
5693 break;
5694 }
5695
5696 BFD_ASSERT (lm != NULL);
5697 }
5698 else
5699 {
5700 /* Otherwise we are copying an executable or shared
5701 library, but we need to use the same linker logic. */
5702 for (lp = phdrs; lp < phdrs + count; ++lp)
5703 {
5704 if (lp->p_type == PT_LOAD
5705 && lp->p_paddr == p->p_paddr)
5706 break;
5707 }
5708 }
5709
5710 if (lp < phdrs + count)
5711 {
5712 p->p_vaddr = lp->p_vaddr;
5713 p->p_paddr = lp->p_paddr;
5714 p->p_offset = lp->p_offset;
5715 if (link_info != NULL)
5716 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5717 else if (m->p_size_valid)
5718 p->p_filesz = m->p_size;
5719 else
5720 abort ();
5721 p->p_memsz = p->p_filesz;
5722 /* Preserve the alignment and flags if they are valid. The
5723 gold linker generates RW/4 for the PT_GNU_RELRO section.
5724 It is better for objcopy/strip to honor these attributes
5725 otherwise gdb will choke when using separate debug files.
5726 */
5727 if (!m->p_align_valid)
5728 p->p_align = 1;
5729 if (!m->p_flags_valid)
5730 p->p_flags = PF_R;
5731 }
5732 else
5733 {
5734 memset (p, 0, sizeof *p);
5735 p->p_type = PT_NULL;
5736 }
5737 }
5738 else if (p->p_type == PT_GNU_STACK)
5739 {
5740 if (m->p_size_valid)
5741 p->p_memsz = m->p_size;
5742 }
5743 else if (m->count != 0)
5744 {
5745 unsigned int i;
5746 if (p->p_type != PT_LOAD
5747 && (p->p_type != PT_NOTE
5748 || bfd_get_format (abfd) != bfd_core))
5749 {
5750 if (m->includes_filehdr || m->includes_phdrs)
5751 {
5752 /* PR 17512: file: 2195325e. */
5753 _bfd_error_handler
5754 (_("%B: warning: non-load segment includes file header and/or program header"),
5755 abfd);
5756 return FALSE;
5757 }
5758
5759 p->p_filesz = 0;
5760 p->p_offset = m->sections[0]->filepos;
5761 for (i = m->count; i-- != 0;)
5762 {
5763 asection *sect = m->sections[i];
5764 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5765 if (hdr->sh_type != SHT_NOBITS)
5766 {
5767 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5768 + hdr->sh_size);
5769 break;
5770 }
5771 }
5772 }
5773 }
5774 else if (m->includes_filehdr)
5775 {
5776 p->p_vaddr = filehdr_vaddr;
5777 if (! m->p_paddr_valid)
5778 p->p_paddr = filehdr_paddr;
5779 }
5780 else if (m->includes_phdrs)
5781 {
5782 p->p_vaddr = phdrs_vaddr;
5783 if (! m->p_paddr_valid)
5784 p->p_paddr = phdrs_paddr;
5785 }
5786 }
5787
5788 elf_next_file_pos (abfd) = off;
5789
5790 return TRUE;
5791 }
5792
5793 static elf_section_list *
5794 find_section_in_list (unsigned int i, elf_section_list * list)
5795 {
5796 for (;list != NULL; list = list->next)
5797 if (list->ndx == i)
5798 break;
5799 return list;
5800 }
5801
5802 /* Work out the file positions of all the sections. This is called by
5803 _bfd_elf_compute_section_file_positions. All the section sizes and
5804 VMAs must be known before this is called.
5805
5806 Reloc sections come in two flavours: Those processed specially as
5807 "side-channel" data attached to a section to which they apply, and
5808 those that bfd doesn't process as relocations. The latter sort are
5809 stored in a normal bfd section by bfd_section_from_shdr. We don't
5810 consider the former sort here, unless they form part of the loadable
5811 image. Reloc sections not assigned here will be handled later by
5812 assign_file_positions_for_relocs.
5813
5814 We also don't set the positions of the .symtab and .strtab here. */
5815
5816 static bfd_boolean
5817 assign_file_positions_except_relocs (bfd *abfd,
5818 struct bfd_link_info *link_info)
5819 {
5820 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5821 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5822 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5823
5824 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5825 && bfd_get_format (abfd) != bfd_core)
5826 {
5827 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5828 unsigned int num_sec = elf_numsections (abfd);
5829 Elf_Internal_Shdr **hdrpp;
5830 unsigned int i;
5831 file_ptr off;
5832
5833 /* Start after the ELF header. */
5834 off = i_ehdrp->e_ehsize;
5835
5836 /* We are not creating an executable, which means that we are
5837 not creating a program header, and that the actual order of
5838 the sections in the file is unimportant. */
5839 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5840 {
5841 Elf_Internal_Shdr *hdr;
5842
5843 hdr = *hdrpp;
5844 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5845 && hdr->bfd_section == NULL)
5846 || (hdr->bfd_section != NULL
5847 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5848 /* Compress DWARF debug sections. */
5849 || i == elf_onesymtab (abfd)
5850 || (elf_symtab_shndx_list (abfd) != NULL
5851 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5852 || i == elf_strtab_sec (abfd)
5853 || i == elf_shstrtab_sec (abfd))
5854 {
5855 hdr->sh_offset = -1;
5856 }
5857 else
5858 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5859 }
5860
5861 elf_next_file_pos (abfd) = off;
5862 }
5863 else
5864 {
5865 unsigned int alloc;
5866
5867 /* Assign file positions for the loaded sections based on the
5868 assignment of sections to segments. */
5869 if (!assign_file_positions_for_load_sections (abfd, link_info))
5870 return FALSE;
5871
5872 /* And for non-load sections. */
5873 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5874 return FALSE;
5875
5876 if (bed->elf_backend_modify_program_headers != NULL)
5877 {
5878 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5879 return FALSE;
5880 }
5881
5882 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5883 if (link_info != NULL && bfd_link_pie (link_info))
5884 {
5885 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5886 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5887 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5888
5889 /* Find the lowest p_vaddr in PT_LOAD segments. */
5890 bfd_vma p_vaddr = (bfd_vma) -1;
5891 for (; segment < end_segment; segment++)
5892 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5893 p_vaddr = segment->p_vaddr;
5894
5895 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5896 segments is non-zero. */
5897 if (p_vaddr)
5898 i_ehdrp->e_type = ET_EXEC;
5899 }
5900
5901 /* Write out the program headers. */
5902 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5903 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5904 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5905 return FALSE;
5906 }
5907
5908 return TRUE;
5909 }
5910
5911 static bfd_boolean
5912 prep_headers (bfd *abfd)
5913 {
5914 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5915 struct elf_strtab_hash *shstrtab;
5916 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5917
5918 i_ehdrp = elf_elfheader (abfd);
5919
5920 shstrtab = _bfd_elf_strtab_init ();
5921 if (shstrtab == NULL)
5922 return FALSE;
5923
5924 elf_shstrtab (abfd) = shstrtab;
5925
5926 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5927 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5928 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5929 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5930
5931 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5932 i_ehdrp->e_ident[EI_DATA] =
5933 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5934 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5935
5936 if ((abfd->flags & DYNAMIC) != 0)
5937 i_ehdrp->e_type = ET_DYN;
5938 else if ((abfd->flags & EXEC_P) != 0)
5939 i_ehdrp->e_type = ET_EXEC;
5940 else if (bfd_get_format (abfd) == bfd_core)
5941 i_ehdrp->e_type = ET_CORE;
5942 else
5943 i_ehdrp->e_type = ET_REL;
5944
5945 switch (bfd_get_arch (abfd))
5946 {
5947 case bfd_arch_unknown:
5948 i_ehdrp->e_machine = EM_NONE;
5949 break;
5950
5951 /* There used to be a long list of cases here, each one setting
5952 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5953 in the corresponding bfd definition. To avoid duplication,
5954 the switch was removed. Machines that need special handling
5955 can generally do it in elf_backend_final_write_processing(),
5956 unless they need the information earlier than the final write.
5957 Such need can generally be supplied by replacing the tests for
5958 e_machine with the conditions used to determine it. */
5959 default:
5960 i_ehdrp->e_machine = bed->elf_machine_code;
5961 }
5962
5963 i_ehdrp->e_version = bed->s->ev_current;
5964 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5965
5966 /* No program header, for now. */
5967 i_ehdrp->e_phoff = 0;
5968 i_ehdrp->e_phentsize = 0;
5969 i_ehdrp->e_phnum = 0;
5970
5971 /* Each bfd section is section header entry. */
5972 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5973 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5974
5975 /* If we're building an executable, we'll need a program header table. */
5976 if (abfd->flags & EXEC_P)
5977 /* It all happens later. */
5978 ;
5979 else
5980 {
5981 i_ehdrp->e_phentsize = 0;
5982 i_ehdrp->e_phoff = 0;
5983 }
5984
5985 elf_tdata (abfd)->symtab_hdr.sh_name =
5986 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5987 elf_tdata (abfd)->strtab_hdr.sh_name =
5988 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5989 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5990 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5991 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5992 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
5993 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5994 return FALSE;
5995
5996 return TRUE;
5997 }
5998
5999 /* Assign file positions for all the reloc sections which are not part
6000 of the loadable file image, and the file position of section headers. */
6001
6002 static bfd_boolean
6003 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6004 {
6005 file_ptr off;
6006 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6007 Elf_Internal_Shdr *shdrp;
6008 Elf_Internal_Ehdr *i_ehdrp;
6009 const struct elf_backend_data *bed;
6010
6011 off = elf_next_file_pos (abfd);
6012
6013 shdrpp = elf_elfsections (abfd);
6014 end_shdrpp = shdrpp + elf_numsections (abfd);
6015 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6016 {
6017 shdrp = *shdrpp;
6018 if (shdrp->sh_offset == -1)
6019 {
6020 asection *sec = shdrp->bfd_section;
6021 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6022 || shdrp->sh_type == SHT_RELA);
6023 if (is_rel
6024 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6025 {
6026 if (!is_rel)
6027 {
6028 const char *name = sec->name;
6029 struct bfd_elf_section_data *d;
6030
6031 /* Compress DWARF debug sections. */
6032 if (!bfd_compress_section (abfd, sec,
6033 shdrp->contents))
6034 return FALSE;
6035
6036 if (sec->compress_status == COMPRESS_SECTION_DONE
6037 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6038 {
6039 /* If section is compressed with zlib-gnu, convert
6040 section name from .debug_* to .zdebug_*. */
6041 char *new_name
6042 = convert_debug_to_zdebug (abfd, name);
6043 if (new_name == NULL)
6044 return FALSE;
6045 name = new_name;
6046 }
6047 /* Add section name to section name section. */
6048 if (shdrp->sh_name != (unsigned int) -1)
6049 abort ();
6050 shdrp->sh_name
6051 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6052 name, FALSE);
6053 d = elf_section_data (sec);
6054
6055 /* Add reloc section name to section name section. */
6056 if (d->rel.hdr
6057 && !_bfd_elf_set_reloc_sh_name (abfd,
6058 d->rel.hdr,
6059 name, FALSE))
6060 return FALSE;
6061 if (d->rela.hdr
6062 && !_bfd_elf_set_reloc_sh_name (abfd,
6063 d->rela.hdr,
6064 name, TRUE))
6065 return FALSE;
6066
6067 /* Update section size and contents. */
6068 shdrp->sh_size = sec->size;
6069 shdrp->contents = sec->contents;
6070 shdrp->bfd_section->contents = NULL;
6071 }
6072 off = _bfd_elf_assign_file_position_for_section (shdrp,
6073 off,
6074 TRUE);
6075 }
6076 }
6077 }
6078
6079 /* Place section name section after DWARF debug sections have been
6080 compressed. */
6081 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6082 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6083 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6084 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6085
6086 /* Place the section headers. */
6087 i_ehdrp = elf_elfheader (abfd);
6088 bed = get_elf_backend_data (abfd);
6089 off = align_file_position (off, 1 << bed->s->log_file_align);
6090 i_ehdrp->e_shoff = off;
6091 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6092 elf_next_file_pos (abfd) = off;
6093
6094 return TRUE;
6095 }
6096
6097 bfd_boolean
6098 _bfd_elf_write_object_contents (bfd *abfd)
6099 {
6100 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6101 Elf_Internal_Shdr **i_shdrp;
6102 bfd_boolean failed;
6103 unsigned int count, num_sec;
6104 struct elf_obj_tdata *t;
6105
6106 if (! abfd->output_has_begun
6107 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6108 return FALSE;
6109
6110 i_shdrp = elf_elfsections (abfd);
6111
6112 failed = FALSE;
6113 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6114 if (failed)
6115 return FALSE;
6116
6117 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6118 return FALSE;
6119
6120 /* After writing the headers, we need to write the sections too... */
6121 num_sec = elf_numsections (abfd);
6122 for (count = 1; count < num_sec; count++)
6123 {
6124 i_shdrp[count]->sh_name
6125 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6126 i_shdrp[count]->sh_name);
6127 if (bed->elf_backend_section_processing)
6128 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
6129 if (i_shdrp[count]->contents)
6130 {
6131 bfd_size_type amt = i_shdrp[count]->sh_size;
6132
6133 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6134 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6135 return FALSE;
6136 }
6137 }
6138
6139 /* Write out the section header names. */
6140 t = elf_tdata (abfd);
6141 if (elf_shstrtab (abfd) != NULL
6142 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6143 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6144 return FALSE;
6145
6146 if (bed->elf_backend_final_write_processing)
6147 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6148
6149 if (!bed->s->write_shdrs_and_ehdr (abfd))
6150 return FALSE;
6151
6152 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6153 if (t->o->build_id.after_write_object_contents != NULL)
6154 return (*t->o->build_id.after_write_object_contents) (abfd);
6155
6156 return TRUE;
6157 }
6158
6159 bfd_boolean
6160 _bfd_elf_write_corefile_contents (bfd *abfd)
6161 {
6162 /* Hopefully this can be done just like an object file. */
6163 return _bfd_elf_write_object_contents (abfd);
6164 }
6165
6166 /* Given a section, search the header to find them. */
6167
6168 unsigned int
6169 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6170 {
6171 const struct elf_backend_data *bed;
6172 unsigned int sec_index;
6173
6174 if (elf_section_data (asect) != NULL
6175 && elf_section_data (asect)->this_idx != 0)
6176 return elf_section_data (asect)->this_idx;
6177
6178 if (bfd_is_abs_section (asect))
6179 sec_index = SHN_ABS;
6180 else if (bfd_is_com_section (asect))
6181 sec_index = SHN_COMMON;
6182 else if (bfd_is_und_section (asect))
6183 sec_index = SHN_UNDEF;
6184 else
6185 sec_index = SHN_BAD;
6186
6187 bed = get_elf_backend_data (abfd);
6188 if (bed->elf_backend_section_from_bfd_section)
6189 {
6190 int retval = sec_index;
6191
6192 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6193 return retval;
6194 }
6195
6196 if (sec_index == SHN_BAD)
6197 bfd_set_error (bfd_error_nonrepresentable_section);
6198
6199 return sec_index;
6200 }
6201
6202 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6203 on error. */
6204
6205 int
6206 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6207 {
6208 asymbol *asym_ptr = *asym_ptr_ptr;
6209 int idx;
6210 flagword flags = asym_ptr->flags;
6211
6212 /* When gas creates relocations against local labels, it creates its
6213 own symbol for the section, but does put the symbol into the
6214 symbol chain, so udata is 0. When the linker is generating
6215 relocatable output, this section symbol may be for one of the
6216 input sections rather than the output section. */
6217 if (asym_ptr->udata.i == 0
6218 && (flags & BSF_SECTION_SYM)
6219 && asym_ptr->section)
6220 {
6221 asection *sec;
6222 int indx;
6223
6224 sec = asym_ptr->section;
6225 if (sec->owner != abfd && sec->output_section != NULL)
6226 sec = sec->output_section;
6227 if (sec->owner == abfd
6228 && (indx = sec->index) < elf_num_section_syms (abfd)
6229 && elf_section_syms (abfd)[indx] != NULL)
6230 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6231 }
6232
6233 idx = asym_ptr->udata.i;
6234
6235 if (idx == 0)
6236 {
6237 /* This case can occur when using --strip-symbol on a symbol
6238 which is used in a relocation entry. */
6239 _bfd_error_handler
6240 (_("%B: symbol `%s' required but not present"),
6241 abfd, bfd_asymbol_name (asym_ptr));
6242 bfd_set_error (bfd_error_no_symbols);
6243 return -1;
6244 }
6245
6246 #if DEBUG & 4
6247 {
6248 fprintf (stderr,
6249 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
6250 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
6251 fflush (stderr);
6252 }
6253 #endif
6254
6255 return idx;
6256 }
6257
6258 /* Rewrite program header information. */
6259
6260 static bfd_boolean
6261 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6262 {
6263 Elf_Internal_Ehdr *iehdr;
6264 struct elf_segment_map *map;
6265 struct elf_segment_map *map_first;
6266 struct elf_segment_map **pointer_to_map;
6267 Elf_Internal_Phdr *segment;
6268 asection *section;
6269 unsigned int i;
6270 unsigned int num_segments;
6271 bfd_boolean phdr_included = FALSE;
6272 bfd_boolean p_paddr_valid;
6273 bfd_vma maxpagesize;
6274 struct elf_segment_map *phdr_adjust_seg = NULL;
6275 unsigned int phdr_adjust_num = 0;
6276 const struct elf_backend_data *bed;
6277
6278 bed = get_elf_backend_data (ibfd);
6279 iehdr = elf_elfheader (ibfd);
6280
6281 map_first = NULL;
6282 pointer_to_map = &map_first;
6283
6284 num_segments = elf_elfheader (ibfd)->e_phnum;
6285 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6286
6287 /* Returns the end address of the segment + 1. */
6288 #define SEGMENT_END(segment, start) \
6289 (start + (segment->p_memsz > segment->p_filesz \
6290 ? segment->p_memsz : segment->p_filesz))
6291
6292 #define SECTION_SIZE(section, segment) \
6293 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6294 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6295 ? section->size : 0)
6296
6297 /* Returns TRUE if the given section is contained within
6298 the given segment. VMA addresses are compared. */
6299 #define IS_CONTAINED_BY_VMA(section, segment) \
6300 (section->vma >= segment->p_vaddr \
6301 && (section->vma + SECTION_SIZE (section, segment) \
6302 <= (SEGMENT_END (segment, segment->p_vaddr))))
6303
6304 /* Returns TRUE if the given section is contained within
6305 the given segment. LMA addresses are compared. */
6306 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6307 (section->lma >= base \
6308 && (section->lma + SECTION_SIZE (section, segment) \
6309 <= SEGMENT_END (segment, base)))
6310
6311 /* Handle PT_NOTE segment. */
6312 #define IS_NOTE(p, s) \
6313 (p->p_type == PT_NOTE \
6314 && elf_section_type (s) == SHT_NOTE \
6315 && (bfd_vma) s->filepos >= p->p_offset \
6316 && ((bfd_vma) s->filepos + s->size \
6317 <= p->p_offset + p->p_filesz))
6318
6319 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6320 etc. */
6321 #define IS_COREFILE_NOTE(p, s) \
6322 (IS_NOTE (p, s) \
6323 && bfd_get_format (ibfd) == bfd_core \
6324 && s->vma == 0 \
6325 && s->lma == 0)
6326
6327 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6328 linker, which generates a PT_INTERP section with p_vaddr and
6329 p_memsz set to 0. */
6330 #define IS_SOLARIS_PT_INTERP(p, s) \
6331 (p->p_vaddr == 0 \
6332 && p->p_paddr == 0 \
6333 && p->p_memsz == 0 \
6334 && p->p_filesz > 0 \
6335 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6336 && s->size > 0 \
6337 && (bfd_vma) s->filepos >= p->p_offset \
6338 && ((bfd_vma) s->filepos + s->size \
6339 <= p->p_offset + p->p_filesz))
6340
6341 /* Decide if the given section should be included in the given segment.
6342 A section will be included if:
6343 1. It is within the address space of the segment -- we use the LMA
6344 if that is set for the segment and the VMA otherwise,
6345 2. It is an allocated section or a NOTE section in a PT_NOTE
6346 segment.
6347 3. There is an output section associated with it,
6348 4. The section has not already been allocated to a previous segment.
6349 5. PT_GNU_STACK segments do not include any sections.
6350 6. PT_TLS segment includes only SHF_TLS sections.
6351 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6352 8. PT_DYNAMIC should not contain empty sections at the beginning
6353 (with the possible exception of .dynamic). */
6354 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6355 ((((segment->p_paddr \
6356 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6357 : IS_CONTAINED_BY_VMA (section, segment)) \
6358 && (section->flags & SEC_ALLOC) != 0) \
6359 || IS_NOTE (segment, section)) \
6360 && segment->p_type != PT_GNU_STACK \
6361 && (segment->p_type != PT_TLS \
6362 || (section->flags & SEC_THREAD_LOCAL)) \
6363 && (segment->p_type == PT_LOAD \
6364 || segment->p_type == PT_TLS \
6365 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6366 && (segment->p_type != PT_DYNAMIC \
6367 || SECTION_SIZE (section, segment) > 0 \
6368 || (segment->p_paddr \
6369 ? segment->p_paddr != section->lma \
6370 : segment->p_vaddr != section->vma) \
6371 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6372 == 0)) \
6373 && !section->segment_mark)
6374
6375 /* If the output section of a section in the input segment is NULL,
6376 it is removed from the corresponding output segment. */
6377 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6378 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6379 && section->output_section != NULL)
6380
6381 /* Returns TRUE iff seg1 starts after the end of seg2. */
6382 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6383 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6384
6385 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6386 their VMA address ranges and their LMA address ranges overlap.
6387 It is possible to have overlapping VMA ranges without overlapping LMA
6388 ranges. RedBoot images for example can have both .data and .bss mapped
6389 to the same VMA range, but with the .data section mapped to a different
6390 LMA. */
6391 #define SEGMENT_OVERLAPS(seg1, seg2) \
6392 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6393 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6394 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6395 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6396
6397 /* Initialise the segment mark field. */
6398 for (section = ibfd->sections; section != NULL; section = section->next)
6399 section->segment_mark = FALSE;
6400
6401 /* The Solaris linker creates program headers in which all the
6402 p_paddr fields are zero. When we try to objcopy or strip such a
6403 file, we get confused. Check for this case, and if we find it
6404 don't set the p_paddr_valid fields. */
6405 p_paddr_valid = FALSE;
6406 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6407 i < num_segments;
6408 i++, segment++)
6409 if (segment->p_paddr != 0)
6410 {
6411 p_paddr_valid = TRUE;
6412 break;
6413 }
6414
6415 /* Scan through the segments specified in the program header
6416 of the input BFD. For this first scan we look for overlaps
6417 in the loadable segments. These can be created by weird
6418 parameters to objcopy. Also, fix some solaris weirdness. */
6419 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6420 i < num_segments;
6421 i++, segment++)
6422 {
6423 unsigned int j;
6424 Elf_Internal_Phdr *segment2;
6425
6426 if (segment->p_type == PT_INTERP)
6427 for (section = ibfd->sections; section; section = section->next)
6428 if (IS_SOLARIS_PT_INTERP (segment, section))
6429 {
6430 /* Mininal change so that the normal section to segment
6431 assignment code will work. */
6432 segment->p_vaddr = section->vma;
6433 break;
6434 }
6435
6436 if (segment->p_type != PT_LOAD)
6437 {
6438 /* Remove PT_GNU_RELRO segment. */
6439 if (segment->p_type == PT_GNU_RELRO)
6440 segment->p_type = PT_NULL;
6441 continue;
6442 }
6443
6444 /* Determine if this segment overlaps any previous segments. */
6445 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6446 {
6447 bfd_signed_vma extra_length;
6448
6449 if (segment2->p_type != PT_LOAD
6450 || !SEGMENT_OVERLAPS (segment, segment2))
6451 continue;
6452
6453 /* Merge the two segments together. */
6454 if (segment2->p_vaddr < segment->p_vaddr)
6455 {
6456 /* Extend SEGMENT2 to include SEGMENT and then delete
6457 SEGMENT. */
6458 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6459 - SEGMENT_END (segment2, segment2->p_vaddr));
6460
6461 if (extra_length > 0)
6462 {
6463 segment2->p_memsz += extra_length;
6464 segment2->p_filesz += extra_length;
6465 }
6466
6467 segment->p_type = PT_NULL;
6468
6469 /* Since we have deleted P we must restart the outer loop. */
6470 i = 0;
6471 segment = elf_tdata (ibfd)->phdr;
6472 break;
6473 }
6474 else
6475 {
6476 /* Extend SEGMENT to include SEGMENT2 and then delete
6477 SEGMENT2. */
6478 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6479 - SEGMENT_END (segment, segment->p_vaddr));
6480
6481 if (extra_length > 0)
6482 {
6483 segment->p_memsz += extra_length;
6484 segment->p_filesz += extra_length;
6485 }
6486
6487 segment2->p_type = PT_NULL;
6488 }
6489 }
6490 }
6491
6492 /* The second scan attempts to assign sections to segments. */
6493 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6494 i < num_segments;
6495 i++, segment++)
6496 {
6497 unsigned int section_count;
6498 asection **sections;
6499 asection *output_section;
6500 unsigned int isec;
6501 bfd_vma matching_lma;
6502 bfd_vma suggested_lma;
6503 unsigned int j;
6504 bfd_size_type amt;
6505 asection *first_section;
6506 bfd_boolean first_matching_lma;
6507 bfd_boolean first_suggested_lma;
6508
6509 if (segment->p_type == PT_NULL)
6510 continue;
6511
6512 first_section = NULL;
6513 /* Compute how many sections might be placed into this segment. */
6514 for (section = ibfd->sections, section_count = 0;
6515 section != NULL;
6516 section = section->next)
6517 {
6518 /* Find the first section in the input segment, which may be
6519 removed from the corresponding output segment. */
6520 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6521 {
6522 if (first_section == NULL)
6523 first_section = section;
6524 if (section->output_section != NULL)
6525 ++section_count;
6526 }
6527 }
6528
6529 /* Allocate a segment map big enough to contain
6530 all of the sections we have selected. */
6531 amt = sizeof (struct elf_segment_map);
6532 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6533 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6534 if (map == NULL)
6535 return FALSE;
6536
6537 /* Initialise the fields of the segment map. Default to
6538 using the physical address of the segment in the input BFD. */
6539 map->next = NULL;
6540 map->p_type = segment->p_type;
6541 map->p_flags = segment->p_flags;
6542 map->p_flags_valid = 1;
6543
6544 /* If the first section in the input segment is removed, there is
6545 no need to preserve segment physical address in the corresponding
6546 output segment. */
6547 if (!first_section || first_section->output_section != NULL)
6548 {
6549 map->p_paddr = segment->p_paddr;
6550 map->p_paddr_valid = p_paddr_valid;
6551 }
6552
6553 /* Determine if this segment contains the ELF file header
6554 and if it contains the program headers themselves. */
6555 map->includes_filehdr = (segment->p_offset == 0
6556 && segment->p_filesz >= iehdr->e_ehsize);
6557 map->includes_phdrs = 0;
6558
6559 if (!phdr_included || segment->p_type != PT_LOAD)
6560 {
6561 map->includes_phdrs =
6562 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6563 && (segment->p_offset + segment->p_filesz
6564 >= ((bfd_vma) iehdr->e_phoff
6565 + iehdr->e_phnum * iehdr->e_phentsize)));
6566
6567 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6568 phdr_included = TRUE;
6569 }
6570
6571 if (section_count == 0)
6572 {
6573 /* Special segments, such as the PT_PHDR segment, may contain
6574 no sections, but ordinary, loadable segments should contain
6575 something. They are allowed by the ELF spec however, so only
6576 a warning is produced. */
6577 if (segment->p_type == PT_LOAD)
6578 _bfd_error_handler (_("\
6579 %B: warning: Empty loadable segment detected, is this intentional ?"),
6580 ibfd);
6581
6582 map->count = 0;
6583 *pointer_to_map = map;
6584 pointer_to_map = &map->next;
6585
6586 continue;
6587 }
6588
6589 /* Now scan the sections in the input BFD again and attempt
6590 to add their corresponding output sections to the segment map.
6591 The problem here is how to handle an output section which has
6592 been moved (ie had its LMA changed). There are four possibilities:
6593
6594 1. None of the sections have been moved.
6595 In this case we can continue to use the segment LMA from the
6596 input BFD.
6597
6598 2. All of the sections have been moved by the same amount.
6599 In this case we can change the segment's LMA to match the LMA
6600 of the first section.
6601
6602 3. Some of the sections have been moved, others have not.
6603 In this case those sections which have not been moved can be
6604 placed in the current segment which will have to have its size,
6605 and possibly its LMA changed, and a new segment or segments will
6606 have to be created to contain the other sections.
6607
6608 4. The sections have been moved, but not by the same amount.
6609 In this case we can change the segment's LMA to match the LMA
6610 of the first section and we will have to create a new segment
6611 or segments to contain the other sections.
6612
6613 In order to save time, we allocate an array to hold the section
6614 pointers that we are interested in. As these sections get assigned
6615 to a segment, they are removed from this array. */
6616
6617 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6618 if (sections == NULL)
6619 return FALSE;
6620
6621 /* Step One: Scan for segment vs section LMA conflicts.
6622 Also add the sections to the section array allocated above.
6623 Also add the sections to the current segment. In the common
6624 case, where the sections have not been moved, this means that
6625 we have completely filled the segment, and there is nothing
6626 more to do. */
6627 isec = 0;
6628 matching_lma = 0;
6629 suggested_lma = 0;
6630 first_matching_lma = TRUE;
6631 first_suggested_lma = TRUE;
6632
6633 for (section = first_section, j = 0;
6634 section != NULL;
6635 section = section->next)
6636 {
6637 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6638 {
6639 output_section = section->output_section;
6640
6641 sections[j++] = section;
6642
6643 /* The Solaris native linker always sets p_paddr to 0.
6644 We try to catch that case here, and set it to the
6645 correct value. Note - some backends require that
6646 p_paddr be left as zero. */
6647 if (!p_paddr_valid
6648 && segment->p_vaddr != 0
6649 && !bed->want_p_paddr_set_to_zero
6650 && isec == 0
6651 && output_section->lma != 0
6652 && output_section->vma == (segment->p_vaddr
6653 + (map->includes_filehdr
6654 ? iehdr->e_ehsize
6655 : 0)
6656 + (map->includes_phdrs
6657 ? (iehdr->e_phnum
6658 * iehdr->e_phentsize)
6659 : 0)))
6660 map->p_paddr = segment->p_vaddr;
6661
6662 /* Match up the physical address of the segment with the
6663 LMA address of the output section. */
6664 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6665 || IS_COREFILE_NOTE (segment, section)
6666 || (bed->want_p_paddr_set_to_zero
6667 && IS_CONTAINED_BY_VMA (output_section, segment)))
6668 {
6669 if (first_matching_lma || output_section->lma < matching_lma)
6670 {
6671 matching_lma = output_section->lma;
6672 first_matching_lma = FALSE;
6673 }
6674
6675 /* We assume that if the section fits within the segment
6676 then it does not overlap any other section within that
6677 segment. */
6678 map->sections[isec++] = output_section;
6679 }
6680 else if (first_suggested_lma)
6681 {
6682 suggested_lma = output_section->lma;
6683 first_suggested_lma = FALSE;
6684 }
6685
6686 if (j == section_count)
6687 break;
6688 }
6689 }
6690
6691 BFD_ASSERT (j == section_count);
6692
6693 /* Step Two: Adjust the physical address of the current segment,
6694 if necessary. */
6695 if (isec == section_count)
6696 {
6697 /* All of the sections fitted within the segment as currently
6698 specified. This is the default case. Add the segment to
6699 the list of built segments and carry on to process the next
6700 program header in the input BFD. */
6701 map->count = section_count;
6702 *pointer_to_map = map;
6703 pointer_to_map = &map->next;
6704
6705 if (p_paddr_valid
6706 && !bed->want_p_paddr_set_to_zero
6707 && matching_lma != map->p_paddr
6708 && !map->includes_filehdr
6709 && !map->includes_phdrs)
6710 /* There is some padding before the first section in the
6711 segment. So, we must account for that in the output
6712 segment's vma. */
6713 map->p_vaddr_offset = matching_lma - map->p_paddr;
6714
6715 free (sections);
6716 continue;
6717 }
6718 else
6719 {
6720 if (!first_matching_lma)
6721 {
6722 /* At least one section fits inside the current segment.
6723 Keep it, but modify its physical address to match the
6724 LMA of the first section that fitted. */
6725 map->p_paddr = matching_lma;
6726 }
6727 else
6728 {
6729 /* None of the sections fitted inside the current segment.
6730 Change the current segment's physical address to match
6731 the LMA of the first section. */
6732 map->p_paddr = suggested_lma;
6733 }
6734
6735 /* Offset the segment physical address from the lma
6736 to allow for space taken up by elf headers. */
6737 if (map->includes_filehdr)
6738 {
6739 if (map->p_paddr >= iehdr->e_ehsize)
6740 map->p_paddr -= iehdr->e_ehsize;
6741 else
6742 {
6743 map->includes_filehdr = FALSE;
6744 map->includes_phdrs = FALSE;
6745 }
6746 }
6747
6748 if (map->includes_phdrs)
6749 {
6750 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6751 {
6752 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6753
6754 /* iehdr->e_phnum is just an estimate of the number
6755 of program headers that we will need. Make a note
6756 here of the number we used and the segment we chose
6757 to hold these headers, so that we can adjust the
6758 offset when we know the correct value. */
6759 phdr_adjust_num = iehdr->e_phnum;
6760 phdr_adjust_seg = map;
6761 }
6762 else
6763 map->includes_phdrs = FALSE;
6764 }
6765 }
6766
6767 /* Step Three: Loop over the sections again, this time assigning
6768 those that fit to the current segment and removing them from the
6769 sections array; but making sure not to leave large gaps. Once all
6770 possible sections have been assigned to the current segment it is
6771 added to the list of built segments and if sections still remain
6772 to be assigned, a new segment is constructed before repeating
6773 the loop. */
6774 isec = 0;
6775 do
6776 {
6777 map->count = 0;
6778 suggested_lma = 0;
6779 first_suggested_lma = TRUE;
6780
6781 /* Fill the current segment with sections that fit. */
6782 for (j = 0; j < section_count; j++)
6783 {
6784 section = sections[j];
6785
6786 if (section == NULL)
6787 continue;
6788
6789 output_section = section->output_section;
6790
6791 BFD_ASSERT (output_section != NULL);
6792
6793 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6794 || IS_COREFILE_NOTE (segment, section))
6795 {
6796 if (map->count == 0)
6797 {
6798 /* If the first section in a segment does not start at
6799 the beginning of the segment, then something is
6800 wrong. */
6801 if (output_section->lma
6802 != (map->p_paddr
6803 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6804 + (map->includes_phdrs
6805 ? iehdr->e_phnum * iehdr->e_phentsize
6806 : 0)))
6807 abort ();
6808 }
6809 else
6810 {
6811 asection *prev_sec;
6812
6813 prev_sec = map->sections[map->count - 1];
6814
6815 /* If the gap between the end of the previous section
6816 and the start of this section is more than
6817 maxpagesize then we need to start a new segment. */
6818 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6819 maxpagesize)
6820 < BFD_ALIGN (output_section->lma, maxpagesize))
6821 || (prev_sec->lma + prev_sec->size
6822 > output_section->lma))
6823 {
6824 if (first_suggested_lma)
6825 {
6826 suggested_lma = output_section->lma;
6827 first_suggested_lma = FALSE;
6828 }
6829
6830 continue;
6831 }
6832 }
6833
6834 map->sections[map->count++] = output_section;
6835 ++isec;
6836 sections[j] = NULL;
6837 section->segment_mark = TRUE;
6838 }
6839 else if (first_suggested_lma)
6840 {
6841 suggested_lma = output_section->lma;
6842 first_suggested_lma = FALSE;
6843 }
6844 }
6845
6846 BFD_ASSERT (map->count > 0);
6847
6848 /* Add the current segment to the list of built segments. */
6849 *pointer_to_map = map;
6850 pointer_to_map = &map->next;
6851
6852 if (isec < section_count)
6853 {
6854 /* We still have not allocated all of the sections to
6855 segments. Create a new segment here, initialise it
6856 and carry on looping. */
6857 amt = sizeof (struct elf_segment_map);
6858 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6859 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6860 if (map == NULL)
6861 {
6862 free (sections);
6863 return FALSE;
6864 }
6865
6866 /* Initialise the fields of the segment map. Set the physical
6867 physical address to the LMA of the first section that has
6868 not yet been assigned. */
6869 map->next = NULL;
6870 map->p_type = segment->p_type;
6871 map->p_flags = segment->p_flags;
6872 map->p_flags_valid = 1;
6873 map->p_paddr = suggested_lma;
6874 map->p_paddr_valid = p_paddr_valid;
6875 map->includes_filehdr = 0;
6876 map->includes_phdrs = 0;
6877 }
6878 }
6879 while (isec < section_count);
6880
6881 free (sections);
6882 }
6883
6884 elf_seg_map (obfd) = map_first;
6885
6886 /* If we had to estimate the number of program headers that were
6887 going to be needed, then check our estimate now and adjust
6888 the offset if necessary. */
6889 if (phdr_adjust_seg != NULL)
6890 {
6891 unsigned int count;
6892
6893 for (count = 0, map = map_first; map != NULL; map = map->next)
6894 count++;
6895
6896 if (count > phdr_adjust_num)
6897 phdr_adjust_seg->p_paddr
6898 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6899 }
6900
6901 #undef SEGMENT_END
6902 #undef SECTION_SIZE
6903 #undef IS_CONTAINED_BY_VMA
6904 #undef IS_CONTAINED_BY_LMA
6905 #undef IS_NOTE
6906 #undef IS_COREFILE_NOTE
6907 #undef IS_SOLARIS_PT_INTERP
6908 #undef IS_SECTION_IN_INPUT_SEGMENT
6909 #undef INCLUDE_SECTION_IN_SEGMENT
6910 #undef SEGMENT_AFTER_SEGMENT
6911 #undef SEGMENT_OVERLAPS
6912 return TRUE;
6913 }
6914
6915 /* Copy ELF program header information. */
6916
6917 static bfd_boolean
6918 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6919 {
6920 Elf_Internal_Ehdr *iehdr;
6921 struct elf_segment_map *map;
6922 struct elf_segment_map *map_first;
6923 struct elf_segment_map **pointer_to_map;
6924 Elf_Internal_Phdr *segment;
6925 unsigned int i;
6926 unsigned int num_segments;
6927 bfd_boolean phdr_included = FALSE;
6928 bfd_boolean p_paddr_valid;
6929
6930 iehdr = elf_elfheader (ibfd);
6931
6932 map_first = NULL;
6933 pointer_to_map = &map_first;
6934
6935 /* If all the segment p_paddr fields are zero, don't set
6936 map->p_paddr_valid. */
6937 p_paddr_valid = FALSE;
6938 num_segments = elf_elfheader (ibfd)->e_phnum;
6939 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6940 i < num_segments;
6941 i++, segment++)
6942 if (segment->p_paddr != 0)
6943 {
6944 p_paddr_valid = TRUE;
6945 break;
6946 }
6947
6948 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6949 i < num_segments;
6950 i++, segment++)
6951 {
6952 asection *section;
6953 unsigned int section_count;
6954 bfd_size_type amt;
6955 Elf_Internal_Shdr *this_hdr;
6956 asection *first_section = NULL;
6957 asection *lowest_section;
6958
6959 /* Compute how many sections are in this segment. */
6960 for (section = ibfd->sections, section_count = 0;
6961 section != NULL;
6962 section = section->next)
6963 {
6964 this_hdr = &(elf_section_data(section)->this_hdr);
6965 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6966 {
6967 if (first_section == NULL)
6968 first_section = section;
6969 section_count++;
6970 }
6971 }
6972
6973 /* Allocate a segment map big enough to contain
6974 all of the sections we have selected. */
6975 amt = sizeof (struct elf_segment_map);
6976 if (section_count != 0)
6977 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6978 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6979 if (map == NULL)
6980 return FALSE;
6981
6982 /* Initialize the fields of the output segment map with the
6983 input segment. */
6984 map->next = NULL;
6985 map->p_type = segment->p_type;
6986 map->p_flags = segment->p_flags;
6987 map->p_flags_valid = 1;
6988 map->p_paddr = segment->p_paddr;
6989 map->p_paddr_valid = p_paddr_valid;
6990 map->p_align = segment->p_align;
6991 map->p_align_valid = 1;
6992 map->p_vaddr_offset = 0;
6993
6994 if (map->p_type == PT_GNU_RELRO
6995 || map->p_type == PT_GNU_STACK)
6996 {
6997 /* The PT_GNU_RELRO segment may contain the first a few
6998 bytes in the .got.plt section even if the whole .got.plt
6999 section isn't in the PT_GNU_RELRO segment. We won't
7000 change the size of the PT_GNU_RELRO segment.
7001 Similarly, PT_GNU_STACK size is significant on uclinux
7002 systems. */
7003 map->p_size = segment->p_memsz;
7004 map->p_size_valid = 1;
7005 }
7006
7007 /* Determine if this segment contains the ELF file header
7008 and if it contains the program headers themselves. */
7009 map->includes_filehdr = (segment->p_offset == 0
7010 && segment->p_filesz >= iehdr->e_ehsize);
7011
7012 map->includes_phdrs = 0;
7013 if (! phdr_included || segment->p_type != PT_LOAD)
7014 {
7015 map->includes_phdrs =
7016 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7017 && (segment->p_offset + segment->p_filesz
7018 >= ((bfd_vma) iehdr->e_phoff
7019 + iehdr->e_phnum * iehdr->e_phentsize)));
7020
7021 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7022 phdr_included = TRUE;
7023 }
7024
7025 lowest_section = NULL;
7026 if (section_count != 0)
7027 {
7028 unsigned int isec = 0;
7029
7030 for (section = first_section;
7031 section != NULL;
7032 section = section->next)
7033 {
7034 this_hdr = &(elf_section_data(section)->this_hdr);
7035 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7036 {
7037 map->sections[isec++] = section->output_section;
7038 if ((section->flags & SEC_ALLOC) != 0)
7039 {
7040 bfd_vma seg_off;
7041
7042 if (lowest_section == NULL
7043 || section->lma < lowest_section->lma)
7044 lowest_section = section;
7045
7046 /* Section lmas are set up from PT_LOAD header
7047 p_paddr in _bfd_elf_make_section_from_shdr.
7048 If this header has a p_paddr that disagrees
7049 with the section lma, flag the p_paddr as
7050 invalid. */
7051 if ((section->flags & SEC_LOAD) != 0)
7052 seg_off = this_hdr->sh_offset - segment->p_offset;
7053 else
7054 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7055 if (section->lma - segment->p_paddr != seg_off)
7056 map->p_paddr_valid = FALSE;
7057 }
7058 if (isec == section_count)
7059 break;
7060 }
7061 }
7062 }
7063
7064 if (map->includes_filehdr && lowest_section != NULL)
7065 /* We need to keep the space used by the headers fixed. */
7066 map->header_size = lowest_section->vma - segment->p_vaddr;
7067
7068 if (!map->includes_phdrs
7069 && !map->includes_filehdr
7070 && map->p_paddr_valid)
7071 /* There is some other padding before the first section. */
7072 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7073 - segment->p_paddr);
7074
7075 map->count = section_count;
7076 *pointer_to_map = map;
7077 pointer_to_map = &map->next;
7078 }
7079
7080 elf_seg_map (obfd) = map_first;
7081 return TRUE;
7082 }
7083
7084 /* Copy private BFD data. This copies or rewrites ELF program header
7085 information. */
7086
7087 static bfd_boolean
7088 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7089 {
7090 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7091 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7092 return TRUE;
7093
7094 if (elf_tdata (ibfd)->phdr == NULL)
7095 return TRUE;
7096
7097 if (ibfd->xvec == obfd->xvec)
7098 {
7099 /* Check to see if any sections in the input BFD
7100 covered by ELF program header have changed. */
7101 Elf_Internal_Phdr *segment;
7102 asection *section, *osec;
7103 unsigned int i, num_segments;
7104 Elf_Internal_Shdr *this_hdr;
7105 const struct elf_backend_data *bed;
7106
7107 bed = get_elf_backend_data (ibfd);
7108
7109 /* Regenerate the segment map if p_paddr is set to 0. */
7110 if (bed->want_p_paddr_set_to_zero)
7111 goto rewrite;
7112
7113 /* Initialize the segment mark field. */
7114 for (section = obfd->sections; section != NULL;
7115 section = section->next)
7116 section->segment_mark = FALSE;
7117
7118 num_segments = elf_elfheader (ibfd)->e_phnum;
7119 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7120 i < num_segments;
7121 i++, segment++)
7122 {
7123 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7124 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7125 which severly confuses things, so always regenerate the segment
7126 map in this case. */
7127 if (segment->p_paddr == 0
7128 && segment->p_memsz == 0
7129 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7130 goto rewrite;
7131
7132 for (section = ibfd->sections;
7133 section != NULL; section = section->next)
7134 {
7135 /* We mark the output section so that we know it comes
7136 from the input BFD. */
7137 osec = section->output_section;
7138 if (osec)
7139 osec->segment_mark = TRUE;
7140
7141 /* Check if this section is covered by the segment. */
7142 this_hdr = &(elf_section_data(section)->this_hdr);
7143 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7144 {
7145 /* FIXME: Check if its output section is changed or
7146 removed. What else do we need to check? */
7147 if (osec == NULL
7148 || section->flags != osec->flags
7149 || section->lma != osec->lma
7150 || section->vma != osec->vma
7151 || section->size != osec->size
7152 || section->rawsize != osec->rawsize
7153 || section->alignment_power != osec->alignment_power)
7154 goto rewrite;
7155 }
7156 }
7157 }
7158
7159 /* Check to see if any output section do not come from the
7160 input BFD. */
7161 for (section = obfd->sections; section != NULL;
7162 section = section->next)
7163 {
7164 if (section->segment_mark == FALSE)
7165 goto rewrite;
7166 else
7167 section->segment_mark = FALSE;
7168 }
7169
7170 return copy_elf_program_header (ibfd, obfd);
7171 }
7172
7173 rewrite:
7174 if (ibfd->xvec == obfd->xvec)
7175 {
7176 /* When rewriting program header, set the output maxpagesize to
7177 the maximum alignment of input PT_LOAD segments. */
7178 Elf_Internal_Phdr *segment;
7179 unsigned int i;
7180 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7181 bfd_vma maxpagesize = 0;
7182
7183 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7184 i < num_segments;
7185 i++, segment++)
7186 if (segment->p_type == PT_LOAD
7187 && maxpagesize < segment->p_align)
7188 {
7189 /* PR 17512: file: f17299af. */
7190 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7191 _bfd_error_handler (_("\
7192 %B: warning: segment alignment of 0x%llx is too large"),
7193 ibfd, (long long) segment->p_align);
7194 else
7195 maxpagesize = segment->p_align;
7196 }
7197
7198 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7199 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7200 }
7201
7202 return rewrite_elf_program_header (ibfd, obfd);
7203 }
7204
7205 /* Initialize private output section information from input section. */
7206
7207 bfd_boolean
7208 _bfd_elf_init_private_section_data (bfd *ibfd,
7209 asection *isec,
7210 bfd *obfd,
7211 asection *osec,
7212 struct bfd_link_info *link_info)
7213
7214 {
7215 Elf_Internal_Shdr *ihdr, *ohdr;
7216 bfd_boolean final_link = (link_info != NULL
7217 && !bfd_link_relocatable (link_info));
7218
7219 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7220 || obfd->xvec->flavour != bfd_target_elf_flavour)
7221 return TRUE;
7222
7223 BFD_ASSERT (elf_section_data (osec) != NULL);
7224
7225 /* For objcopy and relocatable link, don't copy the output ELF
7226 section type from input if the output BFD section flags have been
7227 set to something different. For a final link allow some flags
7228 that the linker clears to differ. */
7229 if (elf_section_type (osec) == SHT_NULL
7230 && (osec->flags == isec->flags
7231 || (final_link
7232 && ((osec->flags ^ isec->flags)
7233 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7234 elf_section_type (osec) = elf_section_type (isec);
7235
7236 /* FIXME: Is this correct for all OS/PROC specific flags? */
7237 elf_section_flags (osec) |= (elf_section_flags (isec)
7238 & (SHF_MASKOS | SHF_MASKPROC));
7239
7240 /* Set things up for objcopy and relocatable link. The output
7241 SHT_GROUP section will have its elf_next_in_group pointing back
7242 to the input group members. Ignore linker created group section.
7243 See elfNN_ia64_object_p in elfxx-ia64.c. */
7244 if (!final_link)
7245 {
7246 if (elf_sec_group (isec) == NULL
7247 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
7248 {
7249 if (elf_section_flags (isec) & SHF_GROUP)
7250 elf_section_flags (osec) |= SHF_GROUP;
7251 elf_next_in_group (osec) = elf_next_in_group (isec);
7252 elf_section_data (osec)->group = elf_section_data (isec)->group;
7253 }
7254
7255 /* If not decompress, preserve SHF_COMPRESSED. */
7256 if ((ibfd->flags & BFD_DECOMPRESS) == 0)
7257 elf_section_flags (osec) |= (elf_section_flags (isec)
7258 & SHF_COMPRESSED);
7259 }
7260
7261 ihdr = &elf_section_data (isec)->this_hdr;
7262
7263 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7264 don't use the output section of the linked-to section since it
7265 may be NULL at this point. */
7266 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7267 {
7268 ohdr = &elf_section_data (osec)->this_hdr;
7269 ohdr->sh_flags |= SHF_LINK_ORDER;
7270 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7271 }
7272
7273 osec->use_rela_p = isec->use_rela_p;
7274
7275 return TRUE;
7276 }
7277
7278 /* Copy private section information. This copies over the entsize
7279 field, and sometimes the info field. */
7280
7281 bfd_boolean
7282 _bfd_elf_copy_private_section_data (bfd *ibfd,
7283 asection *isec,
7284 bfd *obfd,
7285 asection *osec)
7286 {
7287 Elf_Internal_Shdr *ihdr, *ohdr;
7288
7289 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7290 || obfd->xvec->flavour != bfd_target_elf_flavour)
7291 return TRUE;
7292
7293 ihdr = &elf_section_data (isec)->this_hdr;
7294 ohdr = &elf_section_data (osec)->this_hdr;
7295
7296 ohdr->sh_entsize = ihdr->sh_entsize;
7297
7298 if (ihdr->sh_type == SHT_SYMTAB
7299 || ihdr->sh_type == SHT_DYNSYM
7300 || ihdr->sh_type == SHT_GNU_verneed
7301 || ihdr->sh_type == SHT_GNU_verdef)
7302 ohdr->sh_info = ihdr->sh_info;
7303
7304 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7305 NULL);
7306 }
7307
7308 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7309 necessary if we are removing either the SHT_GROUP section or any of
7310 the group member sections. DISCARDED is the value that a section's
7311 output_section has if the section will be discarded, NULL when this
7312 function is called from objcopy, bfd_abs_section_ptr when called
7313 from the linker. */
7314
7315 bfd_boolean
7316 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7317 {
7318 asection *isec;
7319
7320 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7321 if (elf_section_type (isec) == SHT_GROUP)
7322 {
7323 asection *first = elf_next_in_group (isec);
7324 asection *s = first;
7325 bfd_size_type removed = 0;
7326
7327 while (s != NULL)
7328 {
7329 /* If this member section is being output but the
7330 SHT_GROUP section is not, then clear the group info
7331 set up by _bfd_elf_copy_private_section_data. */
7332 if (s->output_section != discarded
7333 && isec->output_section == discarded)
7334 {
7335 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7336 elf_group_name (s->output_section) = NULL;
7337 }
7338 /* Conversely, if the member section is not being output
7339 but the SHT_GROUP section is, then adjust its size. */
7340 else if (s->output_section == discarded
7341 && isec->output_section != discarded)
7342 removed += 4;
7343 s = elf_next_in_group (s);
7344 if (s == first)
7345 break;
7346 }
7347 if (removed != 0)
7348 {
7349 if (discarded != NULL)
7350 {
7351 /* If we've been called for ld -r, then we need to
7352 adjust the input section size. This function may
7353 be called multiple times, so save the original
7354 size. */
7355 if (isec->rawsize == 0)
7356 isec->rawsize = isec->size;
7357 isec->size = isec->rawsize - removed;
7358 }
7359 else
7360 {
7361 /* Adjust the output section size when called from
7362 objcopy. */
7363 isec->output_section->size -= removed;
7364 }
7365 }
7366 }
7367
7368 return TRUE;
7369 }
7370
7371 /* Copy private header information. */
7372
7373 bfd_boolean
7374 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7375 {
7376 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7377 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7378 return TRUE;
7379
7380 /* Copy over private BFD data if it has not already been copied.
7381 This must be done here, rather than in the copy_private_bfd_data
7382 entry point, because the latter is called after the section
7383 contents have been set, which means that the program headers have
7384 already been worked out. */
7385 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7386 {
7387 if (! copy_private_bfd_data (ibfd, obfd))
7388 return FALSE;
7389 }
7390
7391 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7392 }
7393
7394 /* Copy private symbol information. If this symbol is in a section
7395 which we did not map into a BFD section, try to map the section
7396 index correctly. We use special macro definitions for the mapped
7397 section indices; these definitions are interpreted by the
7398 swap_out_syms function. */
7399
7400 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7401 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7402 #define MAP_STRTAB (SHN_HIOS + 3)
7403 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7404 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7405
7406 bfd_boolean
7407 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7408 asymbol *isymarg,
7409 bfd *obfd,
7410 asymbol *osymarg)
7411 {
7412 elf_symbol_type *isym, *osym;
7413
7414 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7415 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7416 return TRUE;
7417
7418 isym = elf_symbol_from (ibfd, isymarg);
7419 osym = elf_symbol_from (obfd, osymarg);
7420
7421 if (isym != NULL
7422 && isym->internal_elf_sym.st_shndx != 0
7423 && osym != NULL
7424 && bfd_is_abs_section (isym->symbol.section))
7425 {
7426 unsigned int shndx;
7427
7428 shndx = isym->internal_elf_sym.st_shndx;
7429 if (shndx == elf_onesymtab (ibfd))
7430 shndx = MAP_ONESYMTAB;
7431 else if (shndx == elf_dynsymtab (ibfd))
7432 shndx = MAP_DYNSYMTAB;
7433 else if (shndx == elf_strtab_sec (ibfd))
7434 shndx = MAP_STRTAB;
7435 else if (shndx == elf_shstrtab_sec (ibfd))
7436 shndx = MAP_SHSTRTAB;
7437 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7438 shndx = MAP_SYM_SHNDX;
7439 osym->internal_elf_sym.st_shndx = shndx;
7440 }
7441
7442 return TRUE;
7443 }
7444
7445 /* Swap out the symbols. */
7446
7447 static bfd_boolean
7448 swap_out_syms (bfd *abfd,
7449 struct elf_strtab_hash **sttp,
7450 int relocatable_p)
7451 {
7452 const struct elf_backend_data *bed;
7453 int symcount;
7454 asymbol **syms;
7455 struct elf_strtab_hash *stt;
7456 Elf_Internal_Shdr *symtab_hdr;
7457 Elf_Internal_Shdr *symtab_shndx_hdr;
7458 Elf_Internal_Shdr *symstrtab_hdr;
7459 struct elf_sym_strtab *symstrtab;
7460 bfd_byte *outbound_syms;
7461 bfd_byte *outbound_shndx;
7462 unsigned long outbound_syms_index;
7463 unsigned long outbound_shndx_index;
7464 int idx;
7465 unsigned int num_locals;
7466 bfd_size_type amt;
7467 bfd_boolean name_local_sections;
7468
7469 if (!elf_map_symbols (abfd, &num_locals))
7470 return FALSE;
7471
7472 /* Dump out the symtabs. */
7473 stt = _bfd_elf_strtab_init ();
7474 if (stt == NULL)
7475 return FALSE;
7476
7477 bed = get_elf_backend_data (abfd);
7478 symcount = bfd_get_symcount (abfd);
7479 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7480 symtab_hdr->sh_type = SHT_SYMTAB;
7481 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7482 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7483 symtab_hdr->sh_info = num_locals + 1;
7484 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7485
7486 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7487 symstrtab_hdr->sh_type = SHT_STRTAB;
7488
7489 /* Allocate buffer to swap out the .strtab section. */
7490 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7491 * sizeof (*symstrtab));
7492 if (symstrtab == NULL)
7493 {
7494 _bfd_elf_strtab_free (stt);
7495 return FALSE;
7496 }
7497
7498 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7499 bed->s->sizeof_sym);
7500 if (outbound_syms == NULL)
7501 {
7502 error_return:
7503 _bfd_elf_strtab_free (stt);
7504 free (symstrtab);
7505 return FALSE;
7506 }
7507 symtab_hdr->contents = outbound_syms;
7508 outbound_syms_index = 0;
7509
7510 outbound_shndx = NULL;
7511 outbound_shndx_index = 0;
7512
7513 if (elf_symtab_shndx_list (abfd))
7514 {
7515 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7516 if (symtab_shndx_hdr->sh_name != 0)
7517 {
7518 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7519 outbound_shndx = (bfd_byte *)
7520 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7521 if (outbound_shndx == NULL)
7522 goto error_return;
7523
7524 symtab_shndx_hdr->contents = outbound_shndx;
7525 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7526 symtab_shndx_hdr->sh_size = amt;
7527 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7528 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7529 }
7530 /* FIXME: What about any other headers in the list ? */
7531 }
7532
7533 /* Now generate the data (for "contents"). */
7534 {
7535 /* Fill in zeroth symbol and swap it out. */
7536 Elf_Internal_Sym sym;
7537 sym.st_name = 0;
7538 sym.st_value = 0;
7539 sym.st_size = 0;
7540 sym.st_info = 0;
7541 sym.st_other = 0;
7542 sym.st_shndx = SHN_UNDEF;
7543 sym.st_target_internal = 0;
7544 symstrtab[0].sym = sym;
7545 symstrtab[0].dest_index = outbound_syms_index;
7546 symstrtab[0].destshndx_index = outbound_shndx_index;
7547 outbound_syms_index++;
7548 if (outbound_shndx != NULL)
7549 outbound_shndx_index++;
7550 }
7551
7552 name_local_sections
7553 = (bed->elf_backend_name_local_section_symbols
7554 && bed->elf_backend_name_local_section_symbols (abfd));
7555
7556 syms = bfd_get_outsymbols (abfd);
7557 for (idx = 0; idx < symcount;)
7558 {
7559 Elf_Internal_Sym sym;
7560 bfd_vma value = syms[idx]->value;
7561 elf_symbol_type *type_ptr;
7562 flagword flags = syms[idx]->flags;
7563 int type;
7564
7565 if (!name_local_sections
7566 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7567 {
7568 /* Local section symbols have no name. */
7569 sym.st_name = (unsigned long) -1;
7570 }
7571 else
7572 {
7573 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7574 to get the final offset for st_name. */
7575 sym.st_name
7576 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7577 FALSE);
7578 if (sym.st_name == (unsigned long) -1)
7579 goto error_return;
7580 }
7581
7582 type_ptr = elf_symbol_from (abfd, syms[idx]);
7583
7584 if ((flags & BSF_SECTION_SYM) == 0
7585 && bfd_is_com_section (syms[idx]->section))
7586 {
7587 /* ELF common symbols put the alignment into the `value' field,
7588 and the size into the `size' field. This is backwards from
7589 how BFD handles it, so reverse it here. */
7590 sym.st_size = value;
7591 if (type_ptr == NULL
7592 || type_ptr->internal_elf_sym.st_value == 0)
7593 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7594 else
7595 sym.st_value = type_ptr->internal_elf_sym.st_value;
7596 sym.st_shndx = _bfd_elf_section_from_bfd_section
7597 (abfd, syms[idx]->section);
7598 }
7599 else
7600 {
7601 asection *sec = syms[idx]->section;
7602 unsigned int shndx;
7603
7604 if (sec->output_section)
7605 {
7606 value += sec->output_offset;
7607 sec = sec->output_section;
7608 }
7609
7610 /* Don't add in the section vma for relocatable output. */
7611 if (! relocatable_p)
7612 value += sec->vma;
7613 sym.st_value = value;
7614 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7615
7616 if (bfd_is_abs_section (sec)
7617 && type_ptr != NULL
7618 && type_ptr->internal_elf_sym.st_shndx != 0)
7619 {
7620 /* This symbol is in a real ELF section which we did
7621 not create as a BFD section. Undo the mapping done
7622 by copy_private_symbol_data. */
7623 shndx = type_ptr->internal_elf_sym.st_shndx;
7624 switch (shndx)
7625 {
7626 case MAP_ONESYMTAB:
7627 shndx = elf_onesymtab (abfd);
7628 break;
7629 case MAP_DYNSYMTAB:
7630 shndx = elf_dynsymtab (abfd);
7631 break;
7632 case MAP_STRTAB:
7633 shndx = elf_strtab_sec (abfd);
7634 break;
7635 case MAP_SHSTRTAB:
7636 shndx = elf_shstrtab_sec (abfd);
7637 break;
7638 case MAP_SYM_SHNDX:
7639 if (elf_symtab_shndx_list (abfd))
7640 shndx = elf_symtab_shndx_list (abfd)->ndx;
7641 break;
7642 default:
7643 shndx = SHN_ABS;
7644 break;
7645 }
7646 }
7647 else
7648 {
7649 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7650
7651 if (shndx == SHN_BAD)
7652 {
7653 asection *sec2;
7654
7655 /* Writing this would be a hell of a lot easier if
7656 we had some decent documentation on bfd, and
7657 knew what to expect of the library, and what to
7658 demand of applications. For example, it
7659 appears that `objcopy' might not set the
7660 section of a symbol to be a section that is
7661 actually in the output file. */
7662 sec2 = bfd_get_section_by_name (abfd, sec->name);
7663 if (sec2 != NULL)
7664 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7665 if (shndx == SHN_BAD)
7666 {
7667 _bfd_error_handler (_("\
7668 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7669 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7670 sec->name);
7671 bfd_set_error (bfd_error_invalid_operation);
7672 goto error_return;
7673 }
7674 }
7675 }
7676
7677 sym.st_shndx = shndx;
7678 }
7679
7680 if ((flags & BSF_THREAD_LOCAL) != 0)
7681 type = STT_TLS;
7682 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7683 type = STT_GNU_IFUNC;
7684 else if ((flags & BSF_FUNCTION) != 0)
7685 type = STT_FUNC;
7686 else if ((flags & BSF_OBJECT) != 0)
7687 type = STT_OBJECT;
7688 else if ((flags & BSF_RELC) != 0)
7689 type = STT_RELC;
7690 else if ((flags & BSF_SRELC) != 0)
7691 type = STT_SRELC;
7692 else
7693 type = STT_NOTYPE;
7694
7695 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7696 type = STT_TLS;
7697
7698 /* Processor-specific types. */
7699 if (type_ptr != NULL
7700 && bed->elf_backend_get_symbol_type)
7701 type = ((*bed->elf_backend_get_symbol_type)
7702 (&type_ptr->internal_elf_sym, type));
7703
7704 if (flags & BSF_SECTION_SYM)
7705 {
7706 if (flags & BSF_GLOBAL)
7707 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7708 else
7709 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7710 }
7711 else if (bfd_is_com_section (syms[idx]->section))
7712 {
7713 if (type != STT_TLS)
7714 {
7715 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
7716 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
7717 ? STT_COMMON : STT_OBJECT);
7718 else
7719 type = ((flags & BSF_ELF_COMMON) != 0
7720 ? STT_COMMON : STT_OBJECT);
7721 }
7722 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7723 }
7724 else if (bfd_is_und_section (syms[idx]->section))
7725 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7726 ? STB_WEAK
7727 : STB_GLOBAL),
7728 type);
7729 else if (flags & BSF_FILE)
7730 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7731 else
7732 {
7733 int bind = STB_LOCAL;
7734
7735 if (flags & BSF_LOCAL)
7736 bind = STB_LOCAL;
7737 else if (flags & BSF_GNU_UNIQUE)
7738 bind = STB_GNU_UNIQUE;
7739 else if (flags & BSF_WEAK)
7740 bind = STB_WEAK;
7741 else if (flags & BSF_GLOBAL)
7742 bind = STB_GLOBAL;
7743
7744 sym.st_info = ELF_ST_INFO (bind, type);
7745 }
7746
7747 if (type_ptr != NULL)
7748 {
7749 sym.st_other = type_ptr->internal_elf_sym.st_other;
7750 sym.st_target_internal
7751 = type_ptr->internal_elf_sym.st_target_internal;
7752 }
7753 else
7754 {
7755 sym.st_other = 0;
7756 sym.st_target_internal = 0;
7757 }
7758
7759 idx++;
7760 symstrtab[idx].sym = sym;
7761 symstrtab[idx].dest_index = outbound_syms_index;
7762 symstrtab[idx].destshndx_index = outbound_shndx_index;
7763
7764 outbound_syms_index++;
7765 if (outbound_shndx != NULL)
7766 outbound_shndx_index++;
7767 }
7768
7769 /* Finalize the .strtab section. */
7770 _bfd_elf_strtab_finalize (stt);
7771
7772 /* Swap out the .strtab section. */
7773 for (idx = 0; idx <= symcount; idx++)
7774 {
7775 struct elf_sym_strtab *elfsym = &symstrtab[idx];
7776 if (elfsym->sym.st_name == (unsigned long) -1)
7777 elfsym->sym.st_name = 0;
7778 else
7779 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
7780 elfsym->sym.st_name);
7781 bed->s->swap_symbol_out (abfd, &elfsym->sym,
7782 (outbound_syms
7783 + (elfsym->dest_index
7784 * bed->s->sizeof_sym)),
7785 (outbound_shndx
7786 + (elfsym->destshndx_index
7787 * sizeof (Elf_External_Sym_Shndx))));
7788 }
7789 free (symstrtab);
7790
7791 *sttp = stt;
7792 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
7793 symstrtab_hdr->sh_type = SHT_STRTAB;
7794 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
7795 symstrtab_hdr->sh_addr = 0;
7796 symstrtab_hdr->sh_entsize = 0;
7797 symstrtab_hdr->sh_link = 0;
7798 symstrtab_hdr->sh_info = 0;
7799 symstrtab_hdr->sh_addralign = 1;
7800
7801 return TRUE;
7802 }
7803
7804 /* Return the number of bytes required to hold the symtab vector.
7805
7806 Note that we base it on the count plus 1, since we will null terminate
7807 the vector allocated based on this size. However, the ELF symbol table
7808 always has a dummy entry as symbol #0, so it ends up even. */
7809
7810 long
7811 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7812 {
7813 long symcount;
7814 long symtab_size;
7815 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7816
7817 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7818 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7819 if (symcount > 0)
7820 symtab_size -= sizeof (asymbol *);
7821
7822 return symtab_size;
7823 }
7824
7825 long
7826 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7827 {
7828 long symcount;
7829 long symtab_size;
7830 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7831
7832 if (elf_dynsymtab (abfd) == 0)
7833 {
7834 bfd_set_error (bfd_error_invalid_operation);
7835 return -1;
7836 }
7837
7838 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7839 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7840 if (symcount > 0)
7841 symtab_size -= sizeof (asymbol *);
7842
7843 return symtab_size;
7844 }
7845
7846 long
7847 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7848 sec_ptr asect)
7849 {
7850 return (asect->reloc_count + 1) * sizeof (arelent *);
7851 }
7852
7853 /* Canonicalize the relocs. */
7854
7855 long
7856 _bfd_elf_canonicalize_reloc (bfd *abfd,
7857 sec_ptr section,
7858 arelent **relptr,
7859 asymbol **symbols)
7860 {
7861 arelent *tblptr;
7862 unsigned int i;
7863 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7864
7865 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7866 return -1;
7867
7868 tblptr = section->relocation;
7869 for (i = 0; i < section->reloc_count; i++)
7870 *relptr++ = tblptr++;
7871
7872 *relptr = NULL;
7873
7874 return section->reloc_count;
7875 }
7876
7877 long
7878 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7879 {
7880 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7881 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7882
7883 if (symcount >= 0)
7884 bfd_get_symcount (abfd) = symcount;
7885 return symcount;
7886 }
7887
7888 long
7889 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7890 asymbol **allocation)
7891 {
7892 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7893 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7894
7895 if (symcount >= 0)
7896 bfd_get_dynamic_symcount (abfd) = symcount;
7897 return symcount;
7898 }
7899
7900 /* Return the size required for the dynamic reloc entries. Any loadable
7901 section that was actually installed in the BFD, and has type SHT_REL
7902 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7903 dynamic reloc section. */
7904
7905 long
7906 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7907 {
7908 long ret;
7909 asection *s;
7910
7911 if (elf_dynsymtab (abfd) == 0)
7912 {
7913 bfd_set_error (bfd_error_invalid_operation);
7914 return -1;
7915 }
7916
7917 ret = sizeof (arelent *);
7918 for (s = abfd->sections; s != NULL; s = s->next)
7919 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7920 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7921 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7922 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7923 * sizeof (arelent *));
7924
7925 return ret;
7926 }
7927
7928 /* Canonicalize the dynamic relocation entries. Note that we return the
7929 dynamic relocations as a single block, although they are actually
7930 associated with particular sections; the interface, which was
7931 designed for SunOS style shared libraries, expects that there is only
7932 one set of dynamic relocs. Any loadable section that was actually
7933 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7934 dynamic symbol table, is considered to be a dynamic reloc section. */
7935
7936 long
7937 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7938 arelent **storage,
7939 asymbol **syms)
7940 {
7941 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7942 asection *s;
7943 long ret;
7944
7945 if (elf_dynsymtab (abfd) == 0)
7946 {
7947 bfd_set_error (bfd_error_invalid_operation);
7948 return -1;
7949 }
7950
7951 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7952 ret = 0;
7953 for (s = abfd->sections; s != NULL; s = s->next)
7954 {
7955 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7956 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7957 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7958 {
7959 arelent *p;
7960 long count, i;
7961
7962 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7963 return -1;
7964 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7965 p = s->relocation;
7966 for (i = 0; i < count; i++)
7967 *storage++ = p++;
7968 ret += count;
7969 }
7970 }
7971
7972 *storage = NULL;
7973
7974 return ret;
7975 }
7976 \f
7977 /* Read in the version information. */
7978
7979 bfd_boolean
7980 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7981 {
7982 bfd_byte *contents = NULL;
7983 unsigned int freeidx = 0;
7984
7985 if (elf_dynverref (abfd) != 0)
7986 {
7987 Elf_Internal_Shdr *hdr;
7988 Elf_External_Verneed *everneed;
7989 Elf_Internal_Verneed *iverneed;
7990 unsigned int i;
7991 bfd_byte *contents_end;
7992
7993 hdr = &elf_tdata (abfd)->dynverref_hdr;
7994
7995 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
7996 {
7997 error_return_bad_verref:
7998 _bfd_error_handler
7999 (_("%B: .gnu.version_r invalid entry"), abfd);
8000 bfd_set_error (bfd_error_bad_value);
8001 error_return_verref:
8002 elf_tdata (abfd)->verref = NULL;
8003 elf_tdata (abfd)->cverrefs = 0;
8004 goto error_return;
8005 }
8006
8007 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8008 if (contents == NULL)
8009 goto error_return_verref;
8010
8011 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8012 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8013 goto error_return_verref;
8014
8015 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8016 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8017
8018 if (elf_tdata (abfd)->verref == NULL)
8019 goto error_return_verref;
8020
8021 BFD_ASSERT (sizeof (Elf_External_Verneed)
8022 == sizeof (Elf_External_Vernaux));
8023 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8024 everneed = (Elf_External_Verneed *) contents;
8025 iverneed = elf_tdata (abfd)->verref;
8026 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8027 {
8028 Elf_External_Vernaux *evernaux;
8029 Elf_Internal_Vernaux *ivernaux;
8030 unsigned int j;
8031
8032 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8033
8034 iverneed->vn_bfd = abfd;
8035
8036 iverneed->vn_filename =
8037 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8038 iverneed->vn_file);
8039 if (iverneed->vn_filename == NULL)
8040 goto error_return_bad_verref;
8041
8042 if (iverneed->vn_cnt == 0)
8043 iverneed->vn_auxptr = NULL;
8044 else
8045 {
8046 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8047 bfd_alloc2 (abfd, iverneed->vn_cnt,
8048 sizeof (Elf_Internal_Vernaux));
8049 if (iverneed->vn_auxptr == NULL)
8050 goto error_return_verref;
8051 }
8052
8053 if (iverneed->vn_aux
8054 > (size_t) (contents_end - (bfd_byte *) everneed))
8055 goto error_return_bad_verref;
8056
8057 evernaux = ((Elf_External_Vernaux *)
8058 ((bfd_byte *) everneed + iverneed->vn_aux));
8059 ivernaux = iverneed->vn_auxptr;
8060 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8061 {
8062 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8063
8064 ivernaux->vna_nodename =
8065 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8066 ivernaux->vna_name);
8067 if (ivernaux->vna_nodename == NULL)
8068 goto error_return_bad_verref;
8069
8070 if (ivernaux->vna_other > freeidx)
8071 freeidx = ivernaux->vna_other;
8072
8073 ivernaux->vna_nextptr = NULL;
8074 if (ivernaux->vna_next == 0)
8075 {
8076 iverneed->vn_cnt = j + 1;
8077 break;
8078 }
8079 if (j + 1 < iverneed->vn_cnt)
8080 ivernaux->vna_nextptr = ivernaux + 1;
8081
8082 if (ivernaux->vna_next
8083 > (size_t) (contents_end - (bfd_byte *) evernaux))
8084 goto error_return_bad_verref;
8085
8086 evernaux = ((Elf_External_Vernaux *)
8087 ((bfd_byte *) evernaux + ivernaux->vna_next));
8088 }
8089
8090 iverneed->vn_nextref = NULL;
8091 if (iverneed->vn_next == 0)
8092 break;
8093 if (i + 1 < hdr->sh_info)
8094 iverneed->vn_nextref = iverneed + 1;
8095
8096 if (iverneed->vn_next
8097 > (size_t) (contents_end - (bfd_byte *) everneed))
8098 goto error_return_bad_verref;
8099
8100 everneed = ((Elf_External_Verneed *)
8101 ((bfd_byte *) everneed + iverneed->vn_next));
8102 }
8103 elf_tdata (abfd)->cverrefs = i;
8104
8105 free (contents);
8106 contents = NULL;
8107 }
8108
8109 if (elf_dynverdef (abfd) != 0)
8110 {
8111 Elf_Internal_Shdr *hdr;
8112 Elf_External_Verdef *everdef;
8113 Elf_Internal_Verdef *iverdef;
8114 Elf_Internal_Verdef *iverdefarr;
8115 Elf_Internal_Verdef iverdefmem;
8116 unsigned int i;
8117 unsigned int maxidx;
8118 bfd_byte *contents_end_def, *contents_end_aux;
8119
8120 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8121
8122 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8123 {
8124 error_return_bad_verdef:
8125 _bfd_error_handler
8126 (_("%B: .gnu.version_d invalid entry"), abfd);
8127 bfd_set_error (bfd_error_bad_value);
8128 error_return_verdef:
8129 elf_tdata (abfd)->verdef = NULL;
8130 elf_tdata (abfd)->cverdefs = 0;
8131 goto error_return;
8132 }
8133
8134 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8135 if (contents == NULL)
8136 goto error_return_verdef;
8137 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8138 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8139 goto error_return_verdef;
8140
8141 BFD_ASSERT (sizeof (Elf_External_Verdef)
8142 >= sizeof (Elf_External_Verdaux));
8143 contents_end_def = contents + hdr->sh_size
8144 - sizeof (Elf_External_Verdef);
8145 contents_end_aux = contents + hdr->sh_size
8146 - sizeof (Elf_External_Verdaux);
8147
8148 /* We know the number of entries in the section but not the maximum
8149 index. Therefore we have to run through all entries and find
8150 the maximum. */
8151 everdef = (Elf_External_Verdef *) contents;
8152 maxidx = 0;
8153 for (i = 0; i < hdr->sh_info; ++i)
8154 {
8155 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8156
8157 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8158 goto error_return_bad_verdef;
8159 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8160 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8161
8162 if (iverdefmem.vd_next == 0)
8163 break;
8164
8165 if (iverdefmem.vd_next
8166 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8167 goto error_return_bad_verdef;
8168
8169 everdef = ((Elf_External_Verdef *)
8170 ((bfd_byte *) everdef + iverdefmem.vd_next));
8171 }
8172
8173 if (default_imported_symver)
8174 {
8175 if (freeidx > maxidx)
8176 maxidx = ++freeidx;
8177 else
8178 freeidx = ++maxidx;
8179 }
8180
8181 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8182 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8183 if (elf_tdata (abfd)->verdef == NULL)
8184 goto error_return_verdef;
8185
8186 elf_tdata (abfd)->cverdefs = maxidx;
8187
8188 everdef = (Elf_External_Verdef *) contents;
8189 iverdefarr = elf_tdata (abfd)->verdef;
8190 for (i = 0; i < hdr->sh_info; i++)
8191 {
8192 Elf_External_Verdaux *everdaux;
8193 Elf_Internal_Verdaux *iverdaux;
8194 unsigned int j;
8195
8196 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8197
8198 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8199 goto error_return_bad_verdef;
8200
8201 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8202 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8203
8204 iverdef->vd_bfd = abfd;
8205
8206 if (iverdef->vd_cnt == 0)
8207 iverdef->vd_auxptr = NULL;
8208 else
8209 {
8210 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8211 bfd_alloc2 (abfd, iverdef->vd_cnt,
8212 sizeof (Elf_Internal_Verdaux));
8213 if (iverdef->vd_auxptr == NULL)
8214 goto error_return_verdef;
8215 }
8216
8217 if (iverdef->vd_aux
8218 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8219 goto error_return_bad_verdef;
8220
8221 everdaux = ((Elf_External_Verdaux *)
8222 ((bfd_byte *) everdef + iverdef->vd_aux));
8223 iverdaux = iverdef->vd_auxptr;
8224 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8225 {
8226 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8227
8228 iverdaux->vda_nodename =
8229 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8230 iverdaux->vda_name);
8231 if (iverdaux->vda_nodename == NULL)
8232 goto error_return_bad_verdef;
8233
8234 iverdaux->vda_nextptr = NULL;
8235 if (iverdaux->vda_next == 0)
8236 {
8237 iverdef->vd_cnt = j + 1;
8238 break;
8239 }
8240 if (j + 1 < iverdef->vd_cnt)
8241 iverdaux->vda_nextptr = iverdaux + 1;
8242
8243 if (iverdaux->vda_next
8244 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8245 goto error_return_bad_verdef;
8246
8247 everdaux = ((Elf_External_Verdaux *)
8248 ((bfd_byte *) everdaux + iverdaux->vda_next));
8249 }
8250
8251 iverdef->vd_nodename = NULL;
8252 if (iverdef->vd_cnt)
8253 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8254
8255 iverdef->vd_nextdef = NULL;
8256 if (iverdef->vd_next == 0)
8257 break;
8258 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8259 iverdef->vd_nextdef = iverdef + 1;
8260
8261 everdef = ((Elf_External_Verdef *)
8262 ((bfd_byte *) everdef + iverdef->vd_next));
8263 }
8264
8265 free (contents);
8266 contents = NULL;
8267 }
8268 else if (default_imported_symver)
8269 {
8270 if (freeidx < 3)
8271 freeidx = 3;
8272 else
8273 freeidx++;
8274
8275 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8276 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8277 if (elf_tdata (abfd)->verdef == NULL)
8278 goto error_return;
8279
8280 elf_tdata (abfd)->cverdefs = freeidx;
8281 }
8282
8283 /* Create a default version based on the soname. */
8284 if (default_imported_symver)
8285 {
8286 Elf_Internal_Verdef *iverdef;
8287 Elf_Internal_Verdaux *iverdaux;
8288
8289 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8290
8291 iverdef->vd_version = VER_DEF_CURRENT;
8292 iverdef->vd_flags = 0;
8293 iverdef->vd_ndx = freeidx;
8294 iverdef->vd_cnt = 1;
8295
8296 iverdef->vd_bfd = abfd;
8297
8298 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8299 if (iverdef->vd_nodename == NULL)
8300 goto error_return_verdef;
8301 iverdef->vd_nextdef = NULL;
8302 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8303 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8304 if (iverdef->vd_auxptr == NULL)
8305 goto error_return_verdef;
8306
8307 iverdaux = iverdef->vd_auxptr;
8308 iverdaux->vda_nodename = iverdef->vd_nodename;
8309 }
8310
8311 return TRUE;
8312
8313 error_return:
8314 if (contents != NULL)
8315 free (contents);
8316 return FALSE;
8317 }
8318 \f
8319 asymbol *
8320 _bfd_elf_make_empty_symbol (bfd *abfd)
8321 {
8322 elf_symbol_type *newsym;
8323
8324 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8325 if (!newsym)
8326 return NULL;
8327 newsym->symbol.the_bfd = abfd;
8328 return &newsym->symbol;
8329 }
8330
8331 void
8332 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8333 asymbol *symbol,
8334 symbol_info *ret)
8335 {
8336 bfd_symbol_info (symbol, ret);
8337 }
8338
8339 /* Return whether a symbol name implies a local symbol. Most targets
8340 use this function for the is_local_label_name entry point, but some
8341 override it. */
8342
8343 bfd_boolean
8344 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8345 const char *name)
8346 {
8347 /* Normal local symbols start with ``.L''. */
8348 if (name[0] == '.' && name[1] == 'L')
8349 return TRUE;
8350
8351 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8352 DWARF debugging symbols starting with ``..''. */
8353 if (name[0] == '.' && name[1] == '.')
8354 return TRUE;
8355
8356 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8357 emitting DWARF debugging output. I suspect this is actually a
8358 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8359 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8360 underscore to be emitted on some ELF targets). For ease of use,
8361 we treat such symbols as local. */
8362 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8363 return TRUE;
8364
8365 /* Treat assembler generated fake symbols, dollar local labels and
8366 forward-backward labels (aka local labels) as locals.
8367 These labels have the form:
8368
8369 L0^A.* (fake symbols)
8370
8371 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8372
8373 Versions which start with .L will have already been matched above,
8374 so we only need to match the rest. */
8375 if (name[0] == 'L' && ISDIGIT (name[1]))
8376 {
8377 bfd_boolean ret = FALSE;
8378 const char * p;
8379 char c;
8380
8381 for (p = name + 2; (c = *p); p++)
8382 {
8383 if (c == 1 || c == 2)
8384 {
8385 if (c == 1 && p == name + 2)
8386 /* A fake symbol. */
8387 return TRUE;
8388
8389 /* FIXME: We are being paranoid here and treating symbols like
8390 L0^Bfoo as if there were non-local, on the grounds that the
8391 assembler will never generate them. But can any symbol
8392 containing an ASCII value in the range 1-31 ever be anything
8393 other than some kind of local ? */
8394 ret = TRUE;
8395 }
8396
8397 if (! ISDIGIT (c))
8398 {
8399 ret = FALSE;
8400 break;
8401 }
8402 }
8403 return ret;
8404 }
8405
8406 return FALSE;
8407 }
8408
8409 alent *
8410 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8411 asymbol *symbol ATTRIBUTE_UNUSED)
8412 {
8413 abort ();
8414 return NULL;
8415 }
8416
8417 bfd_boolean
8418 _bfd_elf_set_arch_mach (bfd *abfd,
8419 enum bfd_architecture arch,
8420 unsigned long machine)
8421 {
8422 /* If this isn't the right architecture for this backend, and this
8423 isn't the generic backend, fail. */
8424 if (arch != get_elf_backend_data (abfd)->arch
8425 && arch != bfd_arch_unknown
8426 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8427 return FALSE;
8428
8429 return bfd_default_set_arch_mach (abfd, arch, machine);
8430 }
8431
8432 /* Find the nearest line to a particular section and offset,
8433 for error reporting. */
8434
8435 bfd_boolean
8436 _bfd_elf_find_nearest_line (bfd *abfd,
8437 asymbol **symbols,
8438 asection *section,
8439 bfd_vma offset,
8440 const char **filename_ptr,
8441 const char **functionname_ptr,
8442 unsigned int *line_ptr,
8443 unsigned int *discriminator_ptr)
8444 {
8445 bfd_boolean found;
8446
8447 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8448 filename_ptr, functionname_ptr,
8449 line_ptr, discriminator_ptr,
8450 dwarf_debug_sections, 0,
8451 &elf_tdata (abfd)->dwarf2_find_line_info)
8452 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8453 filename_ptr, functionname_ptr,
8454 line_ptr))
8455 {
8456 if (!*functionname_ptr)
8457 _bfd_elf_find_function (abfd, symbols, section, offset,
8458 *filename_ptr ? NULL : filename_ptr,
8459 functionname_ptr);
8460 return TRUE;
8461 }
8462
8463 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8464 &found, filename_ptr,
8465 functionname_ptr, line_ptr,
8466 &elf_tdata (abfd)->line_info))
8467 return FALSE;
8468 if (found && (*functionname_ptr || *line_ptr))
8469 return TRUE;
8470
8471 if (symbols == NULL)
8472 return FALSE;
8473
8474 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8475 filename_ptr, functionname_ptr))
8476 return FALSE;
8477
8478 *line_ptr = 0;
8479 return TRUE;
8480 }
8481
8482 /* Find the line for a symbol. */
8483
8484 bfd_boolean
8485 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8486 const char **filename_ptr, unsigned int *line_ptr)
8487 {
8488 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8489 filename_ptr, NULL, line_ptr, NULL,
8490 dwarf_debug_sections, 0,
8491 &elf_tdata (abfd)->dwarf2_find_line_info);
8492 }
8493
8494 /* After a call to bfd_find_nearest_line, successive calls to
8495 bfd_find_inliner_info can be used to get source information about
8496 each level of function inlining that terminated at the address
8497 passed to bfd_find_nearest_line. Currently this is only supported
8498 for DWARF2 with appropriate DWARF3 extensions. */
8499
8500 bfd_boolean
8501 _bfd_elf_find_inliner_info (bfd *abfd,
8502 const char **filename_ptr,
8503 const char **functionname_ptr,
8504 unsigned int *line_ptr)
8505 {
8506 bfd_boolean found;
8507 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8508 functionname_ptr, line_ptr,
8509 & elf_tdata (abfd)->dwarf2_find_line_info);
8510 return found;
8511 }
8512
8513 int
8514 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8515 {
8516 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8517 int ret = bed->s->sizeof_ehdr;
8518
8519 if (!bfd_link_relocatable (info))
8520 {
8521 bfd_size_type phdr_size = elf_program_header_size (abfd);
8522
8523 if (phdr_size == (bfd_size_type) -1)
8524 {
8525 struct elf_segment_map *m;
8526
8527 phdr_size = 0;
8528 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8529 phdr_size += bed->s->sizeof_phdr;
8530
8531 if (phdr_size == 0)
8532 phdr_size = get_program_header_size (abfd, info);
8533 }
8534
8535 elf_program_header_size (abfd) = phdr_size;
8536 ret += phdr_size;
8537 }
8538
8539 return ret;
8540 }
8541
8542 bfd_boolean
8543 _bfd_elf_set_section_contents (bfd *abfd,
8544 sec_ptr section,
8545 const void *location,
8546 file_ptr offset,
8547 bfd_size_type count)
8548 {
8549 Elf_Internal_Shdr *hdr;
8550 file_ptr pos;
8551
8552 if (! abfd->output_has_begun
8553 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8554 return FALSE;
8555
8556 if (!count)
8557 return TRUE;
8558
8559 hdr = &elf_section_data (section)->this_hdr;
8560 if (hdr->sh_offset == (file_ptr) -1)
8561 {
8562 /* We must compress this section. Write output to the buffer. */
8563 unsigned char *contents = hdr->contents;
8564 if ((offset + count) > hdr->sh_size
8565 || (section->flags & SEC_ELF_COMPRESS) == 0
8566 || contents == NULL)
8567 abort ();
8568 memcpy (contents + offset, location, count);
8569 return TRUE;
8570 }
8571 pos = hdr->sh_offset + offset;
8572 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8573 || bfd_bwrite (location, count, abfd) != count)
8574 return FALSE;
8575
8576 return TRUE;
8577 }
8578
8579 void
8580 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8581 arelent *cache_ptr ATTRIBUTE_UNUSED,
8582 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8583 {
8584 abort ();
8585 }
8586
8587 /* Try to convert a non-ELF reloc into an ELF one. */
8588
8589 bfd_boolean
8590 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8591 {
8592 /* Check whether we really have an ELF howto. */
8593
8594 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8595 {
8596 bfd_reloc_code_real_type code;
8597 reloc_howto_type *howto;
8598
8599 /* Alien reloc: Try to determine its type to replace it with an
8600 equivalent ELF reloc. */
8601
8602 if (areloc->howto->pc_relative)
8603 {
8604 switch (areloc->howto->bitsize)
8605 {
8606 case 8:
8607 code = BFD_RELOC_8_PCREL;
8608 break;
8609 case 12:
8610 code = BFD_RELOC_12_PCREL;
8611 break;
8612 case 16:
8613 code = BFD_RELOC_16_PCREL;
8614 break;
8615 case 24:
8616 code = BFD_RELOC_24_PCREL;
8617 break;
8618 case 32:
8619 code = BFD_RELOC_32_PCREL;
8620 break;
8621 case 64:
8622 code = BFD_RELOC_64_PCREL;
8623 break;
8624 default:
8625 goto fail;
8626 }
8627
8628 howto = bfd_reloc_type_lookup (abfd, code);
8629
8630 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8631 {
8632 if (howto->pcrel_offset)
8633 areloc->addend += areloc->address;
8634 else
8635 areloc->addend -= areloc->address; /* addend is unsigned!! */
8636 }
8637 }
8638 else
8639 {
8640 switch (areloc->howto->bitsize)
8641 {
8642 case 8:
8643 code = BFD_RELOC_8;
8644 break;
8645 case 14:
8646 code = BFD_RELOC_14;
8647 break;
8648 case 16:
8649 code = BFD_RELOC_16;
8650 break;
8651 case 26:
8652 code = BFD_RELOC_26;
8653 break;
8654 case 32:
8655 code = BFD_RELOC_32;
8656 break;
8657 case 64:
8658 code = BFD_RELOC_64;
8659 break;
8660 default:
8661 goto fail;
8662 }
8663
8664 howto = bfd_reloc_type_lookup (abfd, code);
8665 }
8666
8667 if (howto)
8668 areloc->howto = howto;
8669 else
8670 goto fail;
8671 }
8672
8673 return TRUE;
8674
8675 fail:
8676 _bfd_error_handler
8677 (_("%B: unsupported relocation type %s"),
8678 abfd, areloc->howto->name);
8679 bfd_set_error (bfd_error_bad_value);
8680 return FALSE;
8681 }
8682
8683 bfd_boolean
8684 _bfd_elf_close_and_cleanup (bfd *abfd)
8685 {
8686 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8687 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8688 {
8689 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8690 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8691 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8692 }
8693
8694 return _bfd_generic_close_and_cleanup (abfd);
8695 }
8696
8697 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8698 in the relocation's offset. Thus we cannot allow any sort of sanity
8699 range-checking to interfere. There is nothing else to do in processing
8700 this reloc. */
8701
8702 bfd_reloc_status_type
8703 _bfd_elf_rel_vtable_reloc_fn
8704 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8705 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8706 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8707 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8708 {
8709 return bfd_reloc_ok;
8710 }
8711 \f
8712 /* Elf core file support. Much of this only works on native
8713 toolchains, since we rely on knowing the
8714 machine-dependent procfs structure in order to pick
8715 out details about the corefile. */
8716
8717 #ifdef HAVE_SYS_PROCFS_H
8718 /* Needed for new procfs interface on sparc-solaris. */
8719 # define _STRUCTURED_PROC 1
8720 # include <sys/procfs.h>
8721 #endif
8722
8723 /* Return a PID that identifies a "thread" for threaded cores, or the
8724 PID of the main process for non-threaded cores. */
8725
8726 static int
8727 elfcore_make_pid (bfd *abfd)
8728 {
8729 int pid;
8730
8731 pid = elf_tdata (abfd)->core->lwpid;
8732 if (pid == 0)
8733 pid = elf_tdata (abfd)->core->pid;
8734
8735 return pid;
8736 }
8737
8738 /* If there isn't a section called NAME, make one, using
8739 data from SECT. Note, this function will generate a
8740 reference to NAME, so you shouldn't deallocate or
8741 overwrite it. */
8742
8743 static bfd_boolean
8744 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8745 {
8746 asection *sect2;
8747
8748 if (bfd_get_section_by_name (abfd, name) != NULL)
8749 return TRUE;
8750
8751 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8752 if (sect2 == NULL)
8753 return FALSE;
8754
8755 sect2->size = sect->size;
8756 sect2->filepos = sect->filepos;
8757 sect2->alignment_power = sect->alignment_power;
8758 return TRUE;
8759 }
8760
8761 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8762 actually creates up to two pseudosections:
8763 - For the single-threaded case, a section named NAME, unless
8764 such a section already exists.
8765 - For the multi-threaded case, a section named "NAME/PID", where
8766 PID is elfcore_make_pid (abfd).
8767 Both pseudosections have identical contents. */
8768 bfd_boolean
8769 _bfd_elfcore_make_pseudosection (bfd *abfd,
8770 char *name,
8771 size_t size,
8772 ufile_ptr filepos)
8773 {
8774 char buf[100];
8775 char *threaded_name;
8776 size_t len;
8777 asection *sect;
8778
8779 /* Build the section name. */
8780
8781 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8782 len = strlen (buf) + 1;
8783 threaded_name = (char *) bfd_alloc (abfd, len);
8784 if (threaded_name == NULL)
8785 return FALSE;
8786 memcpy (threaded_name, buf, len);
8787
8788 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8789 SEC_HAS_CONTENTS);
8790 if (sect == NULL)
8791 return FALSE;
8792 sect->size = size;
8793 sect->filepos = filepos;
8794 sect->alignment_power = 2;
8795
8796 return elfcore_maybe_make_sect (abfd, name, sect);
8797 }
8798
8799 /* prstatus_t exists on:
8800 solaris 2.5+
8801 linux 2.[01] + glibc
8802 unixware 4.2
8803 */
8804
8805 #if defined (HAVE_PRSTATUS_T)
8806
8807 static bfd_boolean
8808 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8809 {
8810 size_t size;
8811 int offset;
8812
8813 if (note->descsz == sizeof (prstatus_t))
8814 {
8815 prstatus_t prstat;
8816
8817 size = sizeof (prstat.pr_reg);
8818 offset = offsetof (prstatus_t, pr_reg);
8819 memcpy (&prstat, note->descdata, sizeof (prstat));
8820
8821 /* Do not overwrite the core signal if it
8822 has already been set by another thread. */
8823 if (elf_tdata (abfd)->core->signal == 0)
8824 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8825 if (elf_tdata (abfd)->core->pid == 0)
8826 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8827
8828 /* pr_who exists on:
8829 solaris 2.5+
8830 unixware 4.2
8831 pr_who doesn't exist on:
8832 linux 2.[01]
8833 */
8834 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8835 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8836 #else
8837 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8838 #endif
8839 }
8840 #if defined (HAVE_PRSTATUS32_T)
8841 else if (note->descsz == sizeof (prstatus32_t))
8842 {
8843 /* 64-bit host, 32-bit corefile */
8844 prstatus32_t prstat;
8845
8846 size = sizeof (prstat.pr_reg);
8847 offset = offsetof (prstatus32_t, pr_reg);
8848 memcpy (&prstat, note->descdata, sizeof (prstat));
8849
8850 /* Do not overwrite the core signal if it
8851 has already been set by another thread. */
8852 if (elf_tdata (abfd)->core->signal == 0)
8853 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8854 if (elf_tdata (abfd)->core->pid == 0)
8855 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8856
8857 /* pr_who exists on:
8858 solaris 2.5+
8859 unixware 4.2
8860 pr_who doesn't exist on:
8861 linux 2.[01]
8862 */
8863 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8864 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8865 #else
8866 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8867 #endif
8868 }
8869 #endif /* HAVE_PRSTATUS32_T */
8870 else
8871 {
8872 /* Fail - we don't know how to handle any other
8873 note size (ie. data object type). */
8874 return TRUE;
8875 }
8876
8877 /* Make a ".reg/999" section and a ".reg" section. */
8878 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8879 size, note->descpos + offset);
8880 }
8881 #endif /* defined (HAVE_PRSTATUS_T) */
8882
8883 /* Create a pseudosection containing the exact contents of NOTE. */
8884 static bfd_boolean
8885 elfcore_make_note_pseudosection (bfd *abfd,
8886 char *name,
8887 Elf_Internal_Note *note)
8888 {
8889 return _bfd_elfcore_make_pseudosection (abfd, name,
8890 note->descsz, note->descpos);
8891 }
8892
8893 /* There isn't a consistent prfpregset_t across platforms,
8894 but it doesn't matter, because we don't have to pick this
8895 data structure apart. */
8896
8897 static bfd_boolean
8898 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8899 {
8900 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8901 }
8902
8903 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8904 type of NT_PRXFPREG. Just include the whole note's contents
8905 literally. */
8906
8907 static bfd_boolean
8908 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8909 {
8910 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8911 }
8912
8913 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8914 with a note type of NT_X86_XSTATE. Just include the whole note's
8915 contents literally. */
8916
8917 static bfd_boolean
8918 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8919 {
8920 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8921 }
8922
8923 static bfd_boolean
8924 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8925 {
8926 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8927 }
8928
8929 static bfd_boolean
8930 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8931 {
8932 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8933 }
8934
8935 static bfd_boolean
8936 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8937 {
8938 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8939 }
8940
8941 static bfd_boolean
8942 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8943 {
8944 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8945 }
8946
8947 static bfd_boolean
8948 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8949 {
8950 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8951 }
8952
8953 static bfd_boolean
8954 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8955 {
8956 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8957 }
8958
8959 static bfd_boolean
8960 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8961 {
8962 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8963 }
8964
8965 static bfd_boolean
8966 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8967 {
8968 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8969 }
8970
8971 static bfd_boolean
8972 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8973 {
8974 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8975 }
8976
8977 static bfd_boolean
8978 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8979 {
8980 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8981 }
8982
8983 static bfd_boolean
8984 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8985 {
8986 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8987 }
8988
8989 static bfd_boolean
8990 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
8991 {
8992 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
8993 }
8994
8995 static bfd_boolean
8996 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
8997 {
8998 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
8999 }
9000
9001 static bfd_boolean
9002 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9003 {
9004 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9005 }
9006
9007 static bfd_boolean
9008 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9009 {
9010 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9011 }
9012
9013 static bfd_boolean
9014 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9015 {
9016 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9017 }
9018
9019 static bfd_boolean
9020 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9021 {
9022 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9023 }
9024
9025 #if defined (HAVE_PRPSINFO_T)
9026 typedef prpsinfo_t elfcore_psinfo_t;
9027 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9028 typedef prpsinfo32_t elfcore_psinfo32_t;
9029 #endif
9030 #endif
9031
9032 #if defined (HAVE_PSINFO_T)
9033 typedef psinfo_t elfcore_psinfo_t;
9034 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9035 typedef psinfo32_t elfcore_psinfo32_t;
9036 #endif
9037 #endif
9038
9039 /* return a malloc'ed copy of a string at START which is at
9040 most MAX bytes long, possibly without a terminating '\0'.
9041 the copy will always have a terminating '\0'. */
9042
9043 char *
9044 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9045 {
9046 char *dups;
9047 char *end = (char *) memchr (start, '\0', max);
9048 size_t len;
9049
9050 if (end == NULL)
9051 len = max;
9052 else
9053 len = end - start;
9054
9055 dups = (char *) bfd_alloc (abfd, len + 1);
9056 if (dups == NULL)
9057 return NULL;
9058
9059 memcpy (dups, start, len);
9060 dups[len] = '\0';
9061
9062 return dups;
9063 }
9064
9065 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9066 static bfd_boolean
9067 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9068 {
9069 if (note->descsz == sizeof (elfcore_psinfo_t))
9070 {
9071 elfcore_psinfo_t psinfo;
9072
9073 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9074
9075 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9076 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9077 #endif
9078 elf_tdata (abfd)->core->program
9079 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9080 sizeof (psinfo.pr_fname));
9081
9082 elf_tdata (abfd)->core->command
9083 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9084 sizeof (psinfo.pr_psargs));
9085 }
9086 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9087 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9088 {
9089 /* 64-bit host, 32-bit corefile */
9090 elfcore_psinfo32_t psinfo;
9091
9092 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9093
9094 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9095 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9096 #endif
9097 elf_tdata (abfd)->core->program
9098 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9099 sizeof (psinfo.pr_fname));
9100
9101 elf_tdata (abfd)->core->command
9102 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9103 sizeof (psinfo.pr_psargs));
9104 }
9105 #endif
9106
9107 else
9108 {
9109 /* Fail - we don't know how to handle any other
9110 note size (ie. data object type). */
9111 return TRUE;
9112 }
9113
9114 /* Note that for some reason, a spurious space is tacked
9115 onto the end of the args in some (at least one anyway)
9116 implementations, so strip it off if it exists. */
9117
9118 {
9119 char *command = elf_tdata (abfd)->core->command;
9120 int n = strlen (command);
9121
9122 if (0 < n && command[n - 1] == ' ')
9123 command[n - 1] = '\0';
9124 }
9125
9126 return TRUE;
9127 }
9128 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9129
9130 #if defined (HAVE_PSTATUS_T)
9131 static bfd_boolean
9132 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9133 {
9134 if (note->descsz == sizeof (pstatus_t)
9135 #if defined (HAVE_PXSTATUS_T)
9136 || note->descsz == sizeof (pxstatus_t)
9137 #endif
9138 )
9139 {
9140 pstatus_t pstat;
9141
9142 memcpy (&pstat, note->descdata, sizeof (pstat));
9143
9144 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9145 }
9146 #if defined (HAVE_PSTATUS32_T)
9147 else if (note->descsz == sizeof (pstatus32_t))
9148 {
9149 /* 64-bit host, 32-bit corefile */
9150 pstatus32_t pstat;
9151
9152 memcpy (&pstat, note->descdata, sizeof (pstat));
9153
9154 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9155 }
9156 #endif
9157 /* Could grab some more details from the "representative"
9158 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9159 NT_LWPSTATUS note, presumably. */
9160
9161 return TRUE;
9162 }
9163 #endif /* defined (HAVE_PSTATUS_T) */
9164
9165 #if defined (HAVE_LWPSTATUS_T)
9166 static bfd_boolean
9167 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9168 {
9169 lwpstatus_t lwpstat;
9170 char buf[100];
9171 char *name;
9172 size_t len;
9173 asection *sect;
9174
9175 if (note->descsz != sizeof (lwpstat)
9176 #if defined (HAVE_LWPXSTATUS_T)
9177 && note->descsz != sizeof (lwpxstatus_t)
9178 #endif
9179 )
9180 return TRUE;
9181
9182 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9183
9184 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9185 /* Do not overwrite the core signal if it has already been set by
9186 another thread. */
9187 if (elf_tdata (abfd)->core->signal == 0)
9188 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9189
9190 /* Make a ".reg/999" section. */
9191
9192 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9193 len = strlen (buf) + 1;
9194 name = bfd_alloc (abfd, len);
9195 if (name == NULL)
9196 return FALSE;
9197 memcpy (name, buf, len);
9198
9199 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9200 if (sect == NULL)
9201 return FALSE;
9202
9203 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9204 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9205 sect->filepos = note->descpos
9206 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9207 #endif
9208
9209 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9210 sect->size = sizeof (lwpstat.pr_reg);
9211 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9212 #endif
9213
9214 sect->alignment_power = 2;
9215
9216 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9217 return FALSE;
9218
9219 /* Make a ".reg2/999" section */
9220
9221 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9222 len = strlen (buf) + 1;
9223 name = bfd_alloc (abfd, len);
9224 if (name == NULL)
9225 return FALSE;
9226 memcpy (name, buf, len);
9227
9228 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9229 if (sect == NULL)
9230 return FALSE;
9231
9232 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9233 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9234 sect->filepos = note->descpos
9235 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9236 #endif
9237
9238 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9239 sect->size = sizeof (lwpstat.pr_fpreg);
9240 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9241 #endif
9242
9243 sect->alignment_power = 2;
9244
9245 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9246 }
9247 #endif /* defined (HAVE_LWPSTATUS_T) */
9248
9249 static bfd_boolean
9250 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9251 {
9252 char buf[30];
9253 char *name;
9254 size_t len;
9255 asection *sect;
9256 int type;
9257 int is_active_thread;
9258 bfd_vma base_addr;
9259
9260 if (note->descsz < 728)
9261 return TRUE;
9262
9263 if (! CONST_STRNEQ (note->namedata, "win32"))
9264 return TRUE;
9265
9266 type = bfd_get_32 (abfd, note->descdata);
9267
9268 switch (type)
9269 {
9270 case 1 /* NOTE_INFO_PROCESS */:
9271 /* FIXME: need to add ->core->command. */
9272 /* process_info.pid */
9273 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9274 /* process_info.signal */
9275 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9276 break;
9277
9278 case 2 /* NOTE_INFO_THREAD */:
9279 /* Make a ".reg/999" section. */
9280 /* thread_info.tid */
9281 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9282
9283 len = strlen (buf) + 1;
9284 name = (char *) bfd_alloc (abfd, len);
9285 if (name == NULL)
9286 return FALSE;
9287
9288 memcpy (name, buf, len);
9289
9290 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9291 if (sect == NULL)
9292 return FALSE;
9293
9294 /* sizeof (thread_info.thread_context) */
9295 sect->size = 716;
9296 /* offsetof (thread_info.thread_context) */
9297 sect->filepos = note->descpos + 12;
9298 sect->alignment_power = 2;
9299
9300 /* thread_info.is_active_thread */
9301 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9302
9303 if (is_active_thread)
9304 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9305 return FALSE;
9306 break;
9307
9308 case 3 /* NOTE_INFO_MODULE */:
9309 /* Make a ".module/xxxxxxxx" section. */
9310 /* module_info.base_address */
9311 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9312 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9313
9314 len = strlen (buf) + 1;
9315 name = (char *) bfd_alloc (abfd, len);
9316 if (name == NULL)
9317 return FALSE;
9318
9319 memcpy (name, buf, len);
9320
9321 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9322
9323 if (sect == NULL)
9324 return FALSE;
9325
9326 sect->size = note->descsz;
9327 sect->filepos = note->descpos;
9328 sect->alignment_power = 2;
9329 break;
9330
9331 default:
9332 return TRUE;
9333 }
9334
9335 return TRUE;
9336 }
9337
9338 static bfd_boolean
9339 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9340 {
9341 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9342
9343 switch (note->type)
9344 {
9345 default:
9346 return TRUE;
9347
9348 case NT_PRSTATUS:
9349 if (bed->elf_backend_grok_prstatus)
9350 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9351 return TRUE;
9352 #if defined (HAVE_PRSTATUS_T)
9353 return elfcore_grok_prstatus (abfd, note);
9354 #else
9355 return TRUE;
9356 #endif
9357
9358 #if defined (HAVE_PSTATUS_T)
9359 case NT_PSTATUS:
9360 return elfcore_grok_pstatus (abfd, note);
9361 #endif
9362
9363 #if defined (HAVE_LWPSTATUS_T)
9364 case NT_LWPSTATUS:
9365 return elfcore_grok_lwpstatus (abfd, note);
9366 #endif
9367
9368 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9369 return elfcore_grok_prfpreg (abfd, note);
9370
9371 case NT_WIN32PSTATUS:
9372 return elfcore_grok_win32pstatus (abfd, note);
9373
9374 case NT_PRXFPREG: /* Linux SSE extension */
9375 if (note->namesz == 6
9376 && strcmp (note->namedata, "LINUX") == 0)
9377 return elfcore_grok_prxfpreg (abfd, note);
9378 else
9379 return TRUE;
9380
9381 case NT_X86_XSTATE: /* Linux XSAVE extension */
9382 if (note->namesz == 6
9383 && strcmp (note->namedata, "LINUX") == 0)
9384 return elfcore_grok_xstatereg (abfd, note);
9385 else
9386 return TRUE;
9387
9388 case NT_PPC_VMX:
9389 if (note->namesz == 6
9390 && strcmp (note->namedata, "LINUX") == 0)
9391 return elfcore_grok_ppc_vmx (abfd, note);
9392 else
9393 return TRUE;
9394
9395 case NT_PPC_VSX:
9396 if (note->namesz == 6
9397 && strcmp (note->namedata, "LINUX") == 0)
9398 return elfcore_grok_ppc_vsx (abfd, note);
9399 else
9400 return TRUE;
9401
9402 case NT_S390_HIGH_GPRS:
9403 if (note->namesz == 6
9404 && strcmp (note->namedata, "LINUX") == 0)
9405 return elfcore_grok_s390_high_gprs (abfd, note);
9406 else
9407 return TRUE;
9408
9409 case NT_S390_TIMER:
9410 if (note->namesz == 6
9411 && strcmp (note->namedata, "LINUX") == 0)
9412 return elfcore_grok_s390_timer (abfd, note);
9413 else
9414 return TRUE;
9415
9416 case NT_S390_TODCMP:
9417 if (note->namesz == 6
9418 && strcmp (note->namedata, "LINUX") == 0)
9419 return elfcore_grok_s390_todcmp (abfd, note);
9420 else
9421 return TRUE;
9422
9423 case NT_S390_TODPREG:
9424 if (note->namesz == 6
9425 && strcmp (note->namedata, "LINUX") == 0)
9426 return elfcore_grok_s390_todpreg (abfd, note);
9427 else
9428 return TRUE;
9429
9430 case NT_S390_CTRS:
9431 if (note->namesz == 6
9432 && strcmp (note->namedata, "LINUX") == 0)
9433 return elfcore_grok_s390_ctrs (abfd, note);
9434 else
9435 return TRUE;
9436
9437 case NT_S390_PREFIX:
9438 if (note->namesz == 6
9439 && strcmp (note->namedata, "LINUX") == 0)
9440 return elfcore_grok_s390_prefix (abfd, note);
9441 else
9442 return TRUE;
9443
9444 case NT_S390_LAST_BREAK:
9445 if (note->namesz == 6
9446 && strcmp (note->namedata, "LINUX") == 0)
9447 return elfcore_grok_s390_last_break (abfd, note);
9448 else
9449 return TRUE;
9450
9451 case NT_S390_SYSTEM_CALL:
9452 if (note->namesz == 6
9453 && strcmp (note->namedata, "LINUX") == 0)
9454 return elfcore_grok_s390_system_call (abfd, note);
9455 else
9456 return TRUE;
9457
9458 case NT_S390_TDB:
9459 if (note->namesz == 6
9460 && strcmp (note->namedata, "LINUX") == 0)
9461 return elfcore_grok_s390_tdb (abfd, note);
9462 else
9463 return TRUE;
9464
9465 case NT_S390_VXRS_LOW:
9466 if (note->namesz == 6
9467 && strcmp (note->namedata, "LINUX") == 0)
9468 return elfcore_grok_s390_vxrs_low (abfd, note);
9469 else
9470 return TRUE;
9471
9472 case NT_S390_VXRS_HIGH:
9473 if (note->namesz == 6
9474 && strcmp (note->namedata, "LINUX") == 0)
9475 return elfcore_grok_s390_vxrs_high (abfd, note);
9476 else
9477 return TRUE;
9478
9479 case NT_ARM_VFP:
9480 if (note->namesz == 6
9481 && strcmp (note->namedata, "LINUX") == 0)
9482 return elfcore_grok_arm_vfp (abfd, note);
9483 else
9484 return TRUE;
9485
9486 case NT_ARM_TLS:
9487 if (note->namesz == 6
9488 && strcmp (note->namedata, "LINUX") == 0)
9489 return elfcore_grok_aarch_tls (abfd, note);
9490 else
9491 return TRUE;
9492
9493 case NT_ARM_HW_BREAK:
9494 if (note->namesz == 6
9495 && strcmp (note->namedata, "LINUX") == 0)
9496 return elfcore_grok_aarch_hw_break (abfd, note);
9497 else
9498 return TRUE;
9499
9500 case NT_ARM_HW_WATCH:
9501 if (note->namesz == 6
9502 && strcmp (note->namedata, "LINUX") == 0)
9503 return elfcore_grok_aarch_hw_watch (abfd, note);
9504 else
9505 return TRUE;
9506
9507 case NT_PRPSINFO:
9508 case NT_PSINFO:
9509 if (bed->elf_backend_grok_psinfo)
9510 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9511 return TRUE;
9512 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9513 return elfcore_grok_psinfo (abfd, note);
9514 #else
9515 return TRUE;
9516 #endif
9517
9518 case NT_AUXV:
9519 {
9520 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9521 SEC_HAS_CONTENTS);
9522
9523 if (sect == NULL)
9524 return FALSE;
9525 sect->size = note->descsz;
9526 sect->filepos = note->descpos;
9527 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9528
9529 return TRUE;
9530 }
9531
9532 case NT_FILE:
9533 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9534 note);
9535
9536 case NT_SIGINFO:
9537 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9538 note);
9539
9540 }
9541 }
9542
9543 static bfd_boolean
9544 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9545 {
9546 struct bfd_build_id* build_id;
9547
9548 if (note->descsz == 0)
9549 return FALSE;
9550
9551 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9552 if (build_id == NULL)
9553 return FALSE;
9554
9555 build_id->size = note->descsz;
9556 memcpy (build_id->data, note->descdata, note->descsz);
9557 abfd->build_id = build_id;
9558
9559 return TRUE;
9560 }
9561
9562 static bfd_boolean
9563 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9564 {
9565 switch (note->type)
9566 {
9567 default:
9568 return TRUE;
9569
9570 case NT_GNU_BUILD_ID:
9571 return elfobj_grok_gnu_build_id (abfd, note);
9572 }
9573 }
9574
9575 static bfd_boolean
9576 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9577 {
9578 struct sdt_note *cur =
9579 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9580 + note->descsz);
9581
9582 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9583 cur->size = (bfd_size_type) note->descsz;
9584 memcpy (cur->data, note->descdata, note->descsz);
9585
9586 elf_tdata (abfd)->sdt_note_head = cur;
9587
9588 return TRUE;
9589 }
9590
9591 static bfd_boolean
9592 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9593 {
9594 switch (note->type)
9595 {
9596 case NT_STAPSDT:
9597 return elfobj_grok_stapsdt_note_1 (abfd, note);
9598
9599 default:
9600 return TRUE;
9601 }
9602 }
9603
9604 static bfd_boolean
9605 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9606 {
9607 size_t offset;
9608
9609 switch (abfd->arch_info->bits_per_word)
9610 {
9611 case 32:
9612 if (note->descsz < 108)
9613 return FALSE;
9614 break;
9615
9616 case 64:
9617 if (note->descsz < 120)
9618 return FALSE;
9619 break;
9620
9621 default:
9622 return FALSE;
9623 }
9624
9625 /* Check for version 1 in pr_version. */
9626 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9627 return FALSE;
9628 offset = 4;
9629
9630 /* Skip over pr_psinfosz. */
9631 if (abfd->arch_info->bits_per_word == 32)
9632 offset += 4;
9633 else
9634 {
9635 offset += 4; /* Padding before pr_psinfosz. */
9636 offset += 8;
9637 }
9638
9639 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9640 elf_tdata (abfd)->core->program
9641 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9642 offset += 17;
9643
9644 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9645 elf_tdata (abfd)->core->command
9646 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9647 offset += 81;
9648
9649 /* Padding before pr_pid. */
9650 offset += 2;
9651
9652 /* The pr_pid field was added in version "1a". */
9653 if (note->descsz < offset + 4)
9654 return TRUE;
9655
9656 elf_tdata (abfd)->core->pid
9657 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9658
9659 return TRUE;
9660 }
9661
9662 static bfd_boolean
9663 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9664 {
9665 size_t offset;
9666 size_t size;
9667
9668 /* Check for version 1 in pr_version. */
9669 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9670 return FALSE;
9671 offset = 4;
9672
9673 /* Skip over pr_statussz. */
9674 switch (abfd->arch_info->bits_per_word)
9675 {
9676 case 32:
9677 offset += 4;
9678 break;
9679
9680 case 64:
9681 offset += 4; /* Padding before pr_statussz. */
9682 offset += 8;
9683 break;
9684
9685 default:
9686 return FALSE;
9687 }
9688
9689 /* Extract size of pr_reg from pr_gregsetsz. */
9690 if (abfd->arch_info->bits_per_word == 32)
9691 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9692 else
9693 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
9694
9695 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
9696 offset += (abfd->arch_info->bits_per_word / 8) * 2;
9697
9698 /* Skip over pr_osreldate. */
9699 offset += 4;
9700
9701 /* Read signal from pr_cursig. */
9702 if (elf_tdata (abfd)->core->signal == 0)
9703 elf_tdata (abfd)->core->signal
9704 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9705 offset += 4;
9706
9707 /* Read TID from pr_pid. */
9708 elf_tdata (abfd)->core->lwpid
9709 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9710 offset += 4;
9711
9712 /* Padding before pr_reg. */
9713 if (abfd->arch_info->bits_per_word == 64)
9714 offset += 4;
9715
9716 /* Make a ".reg/999" section and a ".reg" section. */
9717 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9718 size, note->descpos + offset);
9719 }
9720
9721 static bfd_boolean
9722 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
9723 {
9724 switch (note->type)
9725 {
9726 case NT_PRSTATUS:
9727 return elfcore_grok_freebsd_prstatus (abfd, note);
9728
9729 case NT_FPREGSET:
9730 return elfcore_grok_prfpreg (abfd, note);
9731
9732 case NT_PRPSINFO:
9733 return elfcore_grok_freebsd_psinfo (abfd, note);
9734
9735 case NT_FREEBSD_THRMISC:
9736 if (note->namesz == 8)
9737 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
9738 else
9739 return TRUE;
9740
9741 case NT_FREEBSD_PROCSTAT_AUXV:
9742 {
9743 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9744 SEC_HAS_CONTENTS);
9745
9746 if (sect == NULL)
9747 return FALSE;
9748 sect->size = note->descsz - 4;
9749 sect->filepos = note->descpos + 4;
9750 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9751
9752 return TRUE;
9753 }
9754
9755 case NT_X86_XSTATE:
9756 if (note->namesz == 8)
9757 return elfcore_grok_xstatereg (abfd, note);
9758 else
9759 return TRUE;
9760
9761 default:
9762 return TRUE;
9763 }
9764 }
9765
9766 static bfd_boolean
9767 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
9768 {
9769 char *cp;
9770
9771 cp = strchr (note->namedata, '@');
9772 if (cp != NULL)
9773 {
9774 *lwpidp = atoi(cp + 1);
9775 return TRUE;
9776 }
9777 return FALSE;
9778 }
9779
9780 static bfd_boolean
9781 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9782 {
9783 /* Signal number at offset 0x08. */
9784 elf_tdata (abfd)->core->signal
9785 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9786
9787 /* Process ID at offset 0x50. */
9788 elf_tdata (abfd)->core->pid
9789 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
9790
9791 /* Command name at 0x7c (max 32 bytes, including nul). */
9792 elf_tdata (abfd)->core->command
9793 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
9794
9795 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
9796 note);
9797 }
9798
9799 static bfd_boolean
9800 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
9801 {
9802 int lwp;
9803
9804 if (elfcore_netbsd_get_lwpid (note, &lwp))
9805 elf_tdata (abfd)->core->lwpid = lwp;
9806
9807 if (note->type == NT_NETBSDCORE_PROCINFO)
9808 {
9809 /* NetBSD-specific core "procinfo". Note that we expect to
9810 find this note before any of the others, which is fine,
9811 since the kernel writes this note out first when it
9812 creates a core file. */
9813
9814 return elfcore_grok_netbsd_procinfo (abfd, note);
9815 }
9816
9817 /* As of Jan 2002 there are no other machine-independent notes
9818 defined for NetBSD core files. If the note type is less
9819 than the start of the machine-dependent note types, we don't
9820 understand it. */
9821
9822 if (note->type < NT_NETBSDCORE_FIRSTMACH)
9823 return TRUE;
9824
9825
9826 switch (bfd_get_arch (abfd))
9827 {
9828 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
9829 PT_GETFPREGS == mach+2. */
9830
9831 case bfd_arch_alpha:
9832 case bfd_arch_sparc:
9833 switch (note->type)
9834 {
9835 case NT_NETBSDCORE_FIRSTMACH+0:
9836 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9837
9838 case NT_NETBSDCORE_FIRSTMACH+2:
9839 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9840
9841 default:
9842 return TRUE;
9843 }
9844
9845 /* On all other arch's, PT_GETREGS == mach+1 and
9846 PT_GETFPREGS == mach+3. */
9847
9848 default:
9849 switch (note->type)
9850 {
9851 case NT_NETBSDCORE_FIRSTMACH+1:
9852 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9853
9854 case NT_NETBSDCORE_FIRSTMACH+3:
9855 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9856
9857 default:
9858 return TRUE;
9859 }
9860 }
9861 /* NOTREACHED */
9862 }
9863
9864 static bfd_boolean
9865 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9866 {
9867 /* Signal number at offset 0x08. */
9868 elf_tdata (abfd)->core->signal
9869 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9870
9871 /* Process ID at offset 0x20. */
9872 elf_tdata (abfd)->core->pid
9873 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
9874
9875 /* Command name at 0x48 (max 32 bytes, including nul). */
9876 elf_tdata (abfd)->core->command
9877 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
9878
9879 return TRUE;
9880 }
9881
9882 static bfd_boolean
9883 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
9884 {
9885 if (note->type == NT_OPENBSD_PROCINFO)
9886 return elfcore_grok_openbsd_procinfo (abfd, note);
9887
9888 if (note->type == NT_OPENBSD_REGS)
9889 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9890
9891 if (note->type == NT_OPENBSD_FPREGS)
9892 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9893
9894 if (note->type == NT_OPENBSD_XFPREGS)
9895 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9896
9897 if (note->type == NT_OPENBSD_AUXV)
9898 {
9899 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9900 SEC_HAS_CONTENTS);
9901
9902 if (sect == NULL)
9903 return FALSE;
9904 sect->size = note->descsz;
9905 sect->filepos = note->descpos;
9906 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9907
9908 return TRUE;
9909 }
9910
9911 if (note->type == NT_OPENBSD_WCOOKIE)
9912 {
9913 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
9914 SEC_HAS_CONTENTS);
9915
9916 if (sect == NULL)
9917 return FALSE;
9918 sect->size = note->descsz;
9919 sect->filepos = note->descpos;
9920 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9921
9922 return TRUE;
9923 }
9924
9925 return TRUE;
9926 }
9927
9928 static bfd_boolean
9929 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
9930 {
9931 void *ddata = note->descdata;
9932 char buf[100];
9933 char *name;
9934 asection *sect;
9935 short sig;
9936 unsigned flags;
9937
9938 /* nto_procfs_status 'pid' field is at offset 0. */
9939 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
9940
9941 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
9942 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
9943
9944 /* nto_procfs_status 'flags' field is at offset 8. */
9945 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
9946
9947 /* nto_procfs_status 'what' field is at offset 14. */
9948 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
9949 {
9950 elf_tdata (abfd)->core->signal = sig;
9951 elf_tdata (abfd)->core->lwpid = *tid;
9952 }
9953
9954 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9955 do not come from signals so we make sure we set the current
9956 thread just in case. */
9957 if (flags & 0x00000080)
9958 elf_tdata (abfd)->core->lwpid = *tid;
9959
9960 /* Make a ".qnx_core_status/%d" section. */
9961 sprintf (buf, ".qnx_core_status/%ld", *tid);
9962
9963 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9964 if (name == NULL)
9965 return FALSE;
9966 strcpy (name, buf);
9967
9968 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9969 if (sect == NULL)
9970 return FALSE;
9971
9972 sect->size = note->descsz;
9973 sect->filepos = note->descpos;
9974 sect->alignment_power = 2;
9975
9976 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9977 }
9978
9979 static bfd_boolean
9980 elfcore_grok_nto_regs (bfd *abfd,
9981 Elf_Internal_Note *note,
9982 long tid,
9983 char *base)
9984 {
9985 char buf[100];
9986 char *name;
9987 asection *sect;
9988
9989 /* Make a "(base)/%d" section. */
9990 sprintf (buf, "%s/%ld", base, tid);
9991
9992 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9993 if (name == NULL)
9994 return FALSE;
9995 strcpy (name, buf);
9996
9997 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9998 if (sect == NULL)
9999 return FALSE;
10000
10001 sect->size = note->descsz;
10002 sect->filepos = note->descpos;
10003 sect->alignment_power = 2;
10004
10005 /* This is the current thread. */
10006 if (elf_tdata (abfd)->core->lwpid == tid)
10007 return elfcore_maybe_make_sect (abfd, base, sect);
10008
10009 return TRUE;
10010 }
10011
10012 #define BFD_QNT_CORE_INFO 7
10013 #define BFD_QNT_CORE_STATUS 8
10014 #define BFD_QNT_CORE_GREG 9
10015 #define BFD_QNT_CORE_FPREG 10
10016
10017 static bfd_boolean
10018 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10019 {
10020 /* Every GREG section has a STATUS section before it. Store the
10021 tid from the previous call to pass down to the next gregs
10022 function. */
10023 static long tid = 1;
10024
10025 switch (note->type)
10026 {
10027 case BFD_QNT_CORE_INFO:
10028 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10029 case BFD_QNT_CORE_STATUS:
10030 return elfcore_grok_nto_status (abfd, note, &tid);
10031 case BFD_QNT_CORE_GREG:
10032 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10033 case BFD_QNT_CORE_FPREG:
10034 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10035 default:
10036 return TRUE;
10037 }
10038 }
10039
10040 static bfd_boolean
10041 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10042 {
10043 char *name;
10044 asection *sect;
10045 size_t len;
10046
10047 /* Use note name as section name. */
10048 len = note->namesz;
10049 name = (char *) bfd_alloc (abfd, len);
10050 if (name == NULL)
10051 return FALSE;
10052 memcpy (name, note->namedata, len);
10053 name[len - 1] = '\0';
10054
10055 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10056 if (sect == NULL)
10057 return FALSE;
10058
10059 sect->size = note->descsz;
10060 sect->filepos = note->descpos;
10061 sect->alignment_power = 1;
10062
10063 return TRUE;
10064 }
10065
10066 /* Function: elfcore_write_note
10067
10068 Inputs:
10069 buffer to hold note, and current size of buffer
10070 name of note
10071 type of note
10072 data for note
10073 size of data for note
10074
10075 Writes note to end of buffer. ELF64 notes are written exactly as
10076 for ELF32, despite the current (as of 2006) ELF gabi specifying
10077 that they ought to have 8-byte namesz and descsz field, and have
10078 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10079
10080 Return:
10081 Pointer to realloc'd buffer, *BUFSIZ updated. */
10082
10083 char *
10084 elfcore_write_note (bfd *abfd,
10085 char *buf,
10086 int *bufsiz,
10087 const char *name,
10088 int type,
10089 const void *input,
10090 int size)
10091 {
10092 Elf_External_Note *xnp;
10093 size_t namesz;
10094 size_t newspace;
10095 char *dest;
10096
10097 namesz = 0;
10098 if (name != NULL)
10099 namesz = strlen (name) + 1;
10100
10101 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10102
10103 buf = (char *) realloc (buf, *bufsiz + newspace);
10104 if (buf == NULL)
10105 return buf;
10106 dest = buf + *bufsiz;
10107 *bufsiz += newspace;
10108 xnp = (Elf_External_Note *) dest;
10109 H_PUT_32 (abfd, namesz, xnp->namesz);
10110 H_PUT_32 (abfd, size, xnp->descsz);
10111 H_PUT_32 (abfd, type, xnp->type);
10112 dest = xnp->name;
10113 if (name != NULL)
10114 {
10115 memcpy (dest, name, namesz);
10116 dest += namesz;
10117 while (namesz & 3)
10118 {
10119 *dest++ = '\0';
10120 ++namesz;
10121 }
10122 }
10123 memcpy (dest, input, size);
10124 dest += size;
10125 while (size & 3)
10126 {
10127 *dest++ = '\0';
10128 ++size;
10129 }
10130 return buf;
10131 }
10132
10133 char *
10134 elfcore_write_prpsinfo (bfd *abfd,
10135 char *buf,
10136 int *bufsiz,
10137 const char *fname,
10138 const char *psargs)
10139 {
10140 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10141
10142 if (bed->elf_backend_write_core_note != NULL)
10143 {
10144 char *ret;
10145 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10146 NT_PRPSINFO, fname, psargs);
10147 if (ret != NULL)
10148 return ret;
10149 }
10150
10151 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10152 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10153 if (bed->s->elfclass == ELFCLASS32)
10154 {
10155 #if defined (HAVE_PSINFO32_T)
10156 psinfo32_t data;
10157 int note_type = NT_PSINFO;
10158 #else
10159 prpsinfo32_t data;
10160 int note_type = NT_PRPSINFO;
10161 #endif
10162
10163 memset (&data, 0, sizeof (data));
10164 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10165 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10166 return elfcore_write_note (abfd, buf, bufsiz,
10167 "CORE", note_type, &data, sizeof (data));
10168 }
10169 else
10170 #endif
10171 {
10172 #if defined (HAVE_PSINFO_T)
10173 psinfo_t data;
10174 int note_type = NT_PSINFO;
10175 #else
10176 prpsinfo_t data;
10177 int note_type = NT_PRPSINFO;
10178 #endif
10179
10180 memset (&data, 0, sizeof (data));
10181 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10182 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10183 return elfcore_write_note (abfd, buf, bufsiz,
10184 "CORE", note_type, &data, sizeof (data));
10185 }
10186 #endif /* PSINFO_T or PRPSINFO_T */
10187
10188 free (buf);
10189 return NULL;
10190 }
10191
10192 char *
10193 elfcore_write_linux_prpsinfo32
10194 (bfd *abfd, char *buf, int *bufsiz,
10195 const struct elf_internal_linux_prpsinfo *prpsinfo)
10196 {
10197 struct elf_external_linux_prpsinfo32 data;
10198
10199 swap_linux_prpsinfo32_out (abfd, prpsinfo, &data);
10200 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10201 &data, sizeof (data));
10202 }
10203
10204 char *
10205 elfcore_write_linux_prpsinfo64
10206 (bfd *abfd, char *buf, int *bufsiz,
10207 const struct elf_internal_linux_prpsinfo *prpsinfo)
10208 {
10209 struct elf_external_linux_prpsinfo64 data;
10210
10211 swap_linux_prpsinfo64_out (abfd, prpsinfo, &data);
10212 return elfcore_write_note (abfd, buf, bufsiz,
10213 "CORE", NT_PRPSINFO, &data, sizeof (data));
10214 }
10215
10216 char *
10217 elfcore_write_prstatus (bfd *abfd,
10218 char *buf,
10219 int *bufsiz,
10220 long pid,
10221 int cursig,
10222 const void *gregs)
10223 {
10224 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10225
10226 if (bed->elf_backend_write_core_note != NULL)
10227 {
10228 char *ret;
10229 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10230 NT_PRSTATUS,
10231 pid, cursig, gregs);
10232 if (ret != NULL)
10233 return ret;
10234 }
10235
10236 #if defined (HAVE_PRSTATUS_T)
10237 #if defined (HAVE_PRSTATUS32_T)
10238 if (bed->s->elfclass == ELFCLASS32)
10239 {
10240 prstatus32_t prstat;
10241
10242 memset (&prstat, 0, sizeof (prstat));
10243 prstat.pr_pid = pid;
10244 prstat.pr_cursig = cursig;
10245 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10246 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10247 NT_PRSTATUS, &prstat, sizeof (prstat));
10248 }
10249 else
10250 #endif
10251 {
10252 prstatus_t prstat;
10253
10254 memset (&prstat, 0, sizeof (prstat));
10255 prstat.pr_pid = pid;
10256 prstat.pr_cursig = cursig;
10257 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10258 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10259 NT_PRSTATUS, &prstat, sizeof (prstat));
10260 }
10261 #endif /* HAVE_PRSTATUS_T */
10262
10263 free (buf);
10264 return NULL;
10265 }
10266
10267 #if defined (HAVE_LWPSTATUS_T)
10268 char *
10269 elfcore_write_lwpstatus (bfd *abfd,
10270 char *buf,
10271 int *bufsiz,
10272 long pid,
10273 int cursig,
10274 const void *gregs)
10275 {
10276 lwpstatus_t lwpstat;
10277 const char *note_name = "CORE";
10278
10279 memset (&lwpstat, 0, sizeof (lwpstat));
10280 lwpstat.pr_lwpid = pid >> 16;
10281 lwpstat.pr_cursig = cursig;
10282 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10283 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10284 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10285 #if !defined(gregs)
10286 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10287 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10288 #else
10289 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10290 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10291 #endif
10292 #endif
10293 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10294 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10295 }
10296 #endif /* HAVE_LWPSTATUS_T */
10297
10298 #if defined (HAVE_PSTATUS_T)
10299 char *
10300 elfcore_write_pstatus (bfd *abfd,
10301 char *buf,
10302 int *bufsiz,
10303 long pid,
10304 int cursig ATTRIBUTE_UNUSED,
10305 const void *gregs ATTRIBUTE_UNUSED)
10306 {
10307 const char *note_name = "CORE";
10308 #if defined (HAVE_PSTATUS32_T)
10309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10310
10311 if (bed->s->elfclass == ELFCLASS32)
10312 {
10313 pstatus32_t pstat;
10314
10315 memset (&pstat, 0, sizeof (pstat));
10316 pstat.pr_pid = pid & 0xffff;
10317 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10318 NT_PSTATUS, &pstat, sizeof (pstat));
10319 return buf;
10320 }
10321 else
10322 #endif
10323 {
10324 pstatus_t pstat;
10325
10326 memset (&pstat, 0, sizeof (pstat));
10327 pstat.pr_pid = pid & 0xffff;
10328 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10329 NT_PSTATUS, &pstat, sizeof (pstat));
10330 return buf;
10331 }
10332 }
10333 #endif /* HAVE_PSTATUS_T */
10334
10335 char *
10336 elfcore_write_prfpreg (bfd *abfd,
10337 char *buf,
10338 int *bufsiz,
10339 const void *fpregs,
10340 int size)
10341 {
10342 const char *note_name = "CORE";
10343 return elfcore_write_note (abfd, buf, bufsiz,
10344 note_name, NT_FPREGSET, fpregs, size);
10345 }
10346
10347 char *
10348 elfcore_write_prxfpreg (bfd *abfd,
10349 char *buf,
10350 int *bufsiz,
10351 const void *xfpregs,
10352 int size)
10353 {
10354 char *note_name = "LINUX";
10355 return elfcore_write_note (abfd, buf, bufsiz,
10356 note_name, NT_PRXFPREG, xfpregs, size);
10357 }
10358
10359 char *
10360 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10361 const void *xfpregs, int size)
10362 {
10363 char *note_name;
10364 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10365 note_name = "FreeBSD";
10366 else
10367 note_name = "LINUX";
10368 return elfcore_write_note (abfd, buf, bufsiz,
10369 note_name, NT_X86_XSTATE, xfpregs, size);
10370 }
10371
10372 char *
10373 elfcore_write_ppc_vmx (bfd *abfd,
10374 char *buf,
10375 int *bufsiz,
10376 const void *ppc_vmx,
10377 int size)
10378 {
10379 char *note_name = "LINUX";
10380 return elfcore_write_note (abfd, buf, bufsiz,
10381 note_name, NT_PPC_VMX, ppc_vmx, size);
10382 }
10383
10384 char *
10385 elfcore_write_ppc_vsx (bfd *abfd,
10386 char *buf,
10387 int *bufsiz,
10388 const void *ppc_vsx,
10389 int size)
10390 {
10391 char *note_name = "LINUX";
10392 return elfcore_write_note (abfd, buf, bufsiz,
10393 note_name, NT_PPC_VSX, ppc_vsx, size);
10394 }
10395
10396 static char *
10397 elfcore_write_s390_high_gprs (bfd *abfd,
10398 char *buf,
10399 int *bufsiz,
10400 const void *s390_high_gprs,
10401 int size)
10402 {
10403 char *note_name = "LINUX";
10404 return elfcore_write_note (abfd, buf, bufsiz,
10405 note_name, NT_S390_HIGH_GPRS,
10406 s390_high_gprs, size);
10407 }
10408
10409 char *
10410 elfcore_write_s390_timer (bfd *abfd,
10411 char *buf,
10412 int *bufsiz,
10413 const void *s390_timer,
10414 int size)
10415 {
10416 char *note_name = "LINUX";
10417 return elfcore_write_note (abfd, buf, bufsiz,
10418 note_name, NT_S390_TIMER, s390_timer, size);
10419 }
10420
10421 char *
10422 elfcore_write_s390_todcmp (bfd *abfd,
10423 char *buf,
10424 int *bufsiz,
10425 const void *s390_todcmp,
10426 int size)
10427 {
10428 char *note_name = "LINUX";
10429 return elfcore_write_note (abfd, buf, bufsiz,
10430 note_name, NT_S390_TODCMP, s390_todcmp, size);
10431 }
10432
10433 char *
10434 elfcore_write_s390_todpreg (bfd *abfd,
10435 char *buf,
10436 int *bufsiz,
10437 const void *s390_todpreg,
10438 int size)
10439 {
10440 char *note_name = "LINUX";
10441 return elfcore_write_note (abfd, buf, bufsiz,
10442 note_name, NT_S390_TODPREG, s390_todpreg, size);
10443 }
10444
10445 char *
10446 elfcore_write_s390_ctrs (bfd *abfd,
10447 char *buf,
10448 int *bufsiz,
10449 const void *s390_ctrs,
10450 int size)
10451 {
10452 char *note_name = "LINUX";
10453 return elfcore_write_note (abfd, buf, bufsiz,
10454 note_name, NT_S390_CTRS, s390_ctrs, size);
10455 }
10456
10457 char *
10458 elfcore_write_s390_prefix (bfd *abfd,
10459 char *buf,
10460 int *bufsiz,
10461 const void *s390_prefix,
10462 int size)
10463 {
10464 char *note_name = "LINUX";
10465 return elfcore_write_note (abfd, buf, bufsiz,
10466 note_name, NT_S390_PREFIX, s390_prefix, size);
10467 }
10468
10469 char *
10470 elfcore_write_s390_last_break (bfd *abfd,
10471 char *buf,
10472 int *bufsiz,
10473 const void *s390_last_break,
10474 int size)
10475 {
10476 char *note_name = "LINUX";
10477 return elfcore_write_note (abfd, buf, bufsiz,
10478 note_name, NT_S390_LAST_BREAK,
10479 s390_last_break, size);
10480 }
10481
10482 char *
10483 elfcore_write_s390_system_call (bfd *abfd,
10484 char *buf,
10485 int *bufsiz,
10486 const void *s390_system_call,
10487 int size)
10488 {
10489 char *note_name = "LINUX";
10490 return elfcore_write_note (abfd, buf, bufsiz,
10491 note_name, NT_S390_SYSTEM_CALL,
10492 s390_system_call, size);
10493 }
10494
10495 char *
10496 elfcore_write_s390_tdb (bfd *abfd,
10497 char *buf,
10498 int *bufsiz,
10499 const void *s390_tdb,
10500 int size)
10501 {
10502 char *note_name = "LINUX";
10503 return elfcore_write_note (abfd, buf, bufsiz,
10504 note_name, NT_S390_TDB, s390_tdb, size);
10505 }
10506
10507 char *
10508 elfcore_write_s390_vxrs_low (bfd *abfd,
10509 char *buf,
10510 int *bufsiz,
10511 const void *s390_vxrs_low,
10512 int size)
10513 {
10514 char *note_name = "LINUX";
10515 return elfcore_write_note (abfd, buf, bufsiz,
10516 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10517 }
10518
10519 char *
10520 elfcore_write_s390_vxrs_high (bfd *abfd,
10521 char *buf,
10522 int *bufsiz,
10523 const void *s390_vxrs_high,
10524 int size)
10525 {
10526 char *note_name = "LINUX";
10527 return elfcore_write_note (abfd, buf, bufsiz,
10528 note_name, NT_S390_VXRS_HIGH,
10529 s390_vxrs_high, size);
10530 }
10531
10532 char *
10533 elfcore_write_arm_vfp (bfd *abfd,
10534 char *buf,
10535 int *bufsiz,
10536 const void *arm_vfp,
10537 int size)
10538 {
10539 char *note_name = "LINUX";
10540 return elfcore_write_note (abfd, buf, bufsiz,
10541 note_name, NT_ARM_VFP, arm_vfp, size);
10542 }
10543
10544 char *
10545 elfcore_write_aarch_tls (bfd *abfd,
10546 char *buf,
10547 int *bufsiz,
10548 const void *aarch_tls,
10549 int size)
10550 {
10551 char *note_name = "LINUX";
10552 return elfcore_write_note (abfd, buf, bufsiz,
10553 note_name, NT_ARM_TLS, aarch_tls, size);
10554 }
10555
10556 char *
10557 elfcore_write_aarch_hw_break (bfd *abfd,
10558 char *buf,
10559 int *bufsiz,
10560 const void *aarch_hw_break,
10561 int size)
10562 {
10563 char *note_name = "LINUX";
10564 return elfcore_write_note (abfd, buf, bufsiz,
10565 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10566 }
10567
10568 char *
10569 elfcore_write_aarch_hw_watch (bfd *abfd,
10570 char *buf,
10571 int *bufsiz,
10572 const void *aarch_hw_watch,
10573 int size)
10574 {
10575 char *note_name = "LINUX";
10576 return elfcore_write_note (abfd, buf, bufsiz,
10577 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10578 }
10579
10580 char *
10581 elfcore_write_register_note (bfd *abfd,
10582 char *buf,
10583 int *bufsiz,
10584 const char *section,
10585 const void *data,
10586 int size)
10587 {
10588 if (strcmp (section, ".reg2") == 0)
10589 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10590 if (strcmp (section, ".reg-xfp") == 0)
10591 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10592 if (strcmp (section, ".reg-xstate") == 0)
10593 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10594 if (strcmp (section, ".reg-ppc-vmx") == 0)
10595 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10596 if (strcmp (section, ".reg-ppc-vsx") == 0)
10597 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10598 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10599 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10600 if (strcmp (section, ".reg-s390-timer") == 0)
10601 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10602 if (strcmp (section, ".reg-s390-todcmp") == 0)
10603 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10604 if (strcmp (section, ".reg-s390-todpreg") == 0)
10605 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10606 if (strcmp (section, ".reg-s390-ctrs") == 0)
10607 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10608 if (strcmp (section, ".reg-s390-prefix") == 0)
10609 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10610 if (strcmp (section, ".reg-s390-last-break") == 0)
10611 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10612 if (strcmp (section, ".reg-s390-system-call") == 0)
10613 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10614 if (strcmp (section, ".reg-s390-tdb") == 0)
10615 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10616 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10617 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10618 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10619 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10620 if (strcmp (section, ".reg-arm-vfp") == 0)
10621 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10622 if (strcmp (section, ".reg-aarch-tls") == 0)
10623 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10624 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10625 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10626 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10627 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
10628 return NULL;
10629 }
10630
10631 static bfd_boolean
10632 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
10633 {
10634 char *p;
10635
10636 p = buf;
10637 while (p < buf + size)
10638 {
10639 /* FIXME: bad alignment assumption. */
10640 Elf_External_Note *xnp = (Elf_External_Note *) p;
10641 Elf_Internal_Note in;
10642
10643 if (offsetof (Elf_External_Note, name) > buf - p + size)
10644 return FALSE;
10645
10646 in.type = H_GET_32 (abfd, xnp->type);
10647
10648 in.namesz = H_GET_32 (abfd, xnp->namesz);
10649 in.namedata = xnp->name;
10650 if (in.namesz > buf - in.namedata + size)
10651 return FALSE;
10652
10653 in.descsz = H_GET_32 (abfd, xnp->descsz);
10654 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
10655 in.descpos = offset + (in.descdata - buf);
10656 if (in.descsz != 0
10657 && (in.descdata >= buf + size
10658 || in.descsz > buf - in.descdata + size))
10659 return FALSE;
10660
10661 switch (bfd_get_format (abfd))
10662 {
10663 default:
10664 return TRUE;
10665
10666 case bfd_core:
10667 {
10668 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
10669 struct
10670 {
10671 const char * string;
10672 size_t len;
10673 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
10674 }
10675 grokers[] =
10676 {
10677 GROKER_ELEMENT ("", elfcore_grok_note),
10678 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
10679 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
10680 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
10681 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
10682 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
10683 };
10684 #undef GROKER_ELEMENT
10685 int i;
10686
10687 for (i = ARRAY_SIZE (grokers); i--;)
10688 {
10689 if (in.namesz >= grokers[i].len
10690 && strncmp (in.namedata, grokers[i].string,
10691 grokers[i].len) == 0)
10692 {
10693 if (! grokers[i].func (abfd, & in))
10694 return FALSE;
10695 break;
10696 }
10697 }
10698 break;
10699 }
10700
10701 case bfd_object:
10702 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10703 {
10704 if (! elfobj_grok_gnu_note (abfd, &in))
10705 return FALSE;
10706 }
10707 else if (in.namesz == sizeof "stapsdt"
10708 && strcmp (in.namedata, "stapsdt") == 0)
10709 {
10710 if (! elfobj_grok_stapsdt_note (abfd, &in))
10711 return FALSE;
10712 }
10713 break;
10714 }
10715
10716 p = in.descdata + BFD_ALIGN (in.descsz, 4);
10717 }
10718
10719 return TRUE;
10720 }
10721
10722 static bfd_boolean
10723 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
10724 {
10725 char *buf;
10726
10727 if (size <= 0)
10728 return TRUE;
10729
10730 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
10731 return FALSE;
10732
10733 buf = (char *) bfd_malloc (size + 1);
10734 if (buf == NULL)
10735 return FALSE;
10736
10737 /* PR 17512: file: ec08f814
10738 0-termintate the buffer so that string searches will not overflow. */
10739 buf[size] = 0;
10740
10741 if (bfd_bread (buf, size, abfd) != size
10742 || !elf_parse_notes (abfd, buf, size, offset))
10743 {
10744 free (buf);
10745 return FALSE;
10746 }
10747
10748 free (buf);
10749 return TRUE;
10750 }
10751 \f
10752 /* Providing external access to the ELF program header table. */
10753
10754 /* Return an upper bound on the number of bytes required to store a
10755 copy of ABFD's program header table entries. Return -1 if an error
10756 occurs; bfd_get_error will return an appropriate code. */
10757
10758 long
10759 bfd_get_elf_phdr_upper_bound (bfd *abfd)
10760 {
10761 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10762 {
10763 bfd_set_error (bfd_error_wrong_format);
10764 return -1;
10765 }
10766
10767 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
10768 }
10769
10770 /* Copy ABFD's program header table entries to *PHDRS. The entries
10771 will be stored as an array of Elf_Internal_Phdr structures, as
10772 defined in include/elf/internal.h. To find out how large the
10773 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
10774
10775 Return the number of program header table entries read, or -1 if an
10776 error occurs; bfd_get_error will return an appropriate code. */
10777
10778 int
10779 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
10780 {
10781 int num_phdrs;
10782
10783 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10784 {
10785 bfd_set_error (bfd_error_wrong_format);
10786 return -1;
10787 }
10788
10789 num_phdrs = elf_elfheader (abfd)->e_phnum;
10790 memcpy (phdrs, elf_tdata (abfd)->phdr,
10791 num_phdrs * sizeof (Elf_Internal_Phdr));
10792
10793 return num_phdrs;
10794 }
10795
10796 enum elf_reloc_type_class
10797 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
10798 const asection *rel_sec ATTRIBUTE_UNUSED,
10799 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
10800 {
10801 return reloc_class_normal;
10802 }
10803
10804 /* For RELA architectures, return the relocation value for a
10805 relocation against a local symbol. */
10806
10807 bfd_vma
10808 _bfd_elf_rela_local_sym (bfd *abfd,
10809 Elf_Internal_Sym *sym,
10810 asection **psec,
10811 Elf_Internal_Rela *rel)
10812 {
10813 asection *sec = *psec;
10814 bfd_vma relocation;
10815
10816 relocation = (sec->output_section->vma
10817 + sec->output_offset
10818 + sym->st_value);
10819 if ((sec->flags & SEC_MERGE)
10820 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
10821 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
10822 {
10823 rel->r_addend =
10824 _bfd_merged_section_offset (abfd, psec,
10825 elf_section_data (sec)->sec_info,
10826 sym->st_value + rel->r_addend);
10827 if (sec != *psec)
10828 {
10829 /* If we have changed the section, and our original section is
10830 marked with SEC_EXCLUDE, it means that the original
10831 SEC_MERGE section has been completely subsumed in some
10832 other SEC_MERGE section. In this case, we need to leave
10833 some info around for --emit-relocs. */
10834 if ((sec->flags & SEC_EXCLUDE) != 0)
10835 sec->kept_section = *psec;
10836 sec = *psec;
10837 }
10838 rel->r_addend -= relocation;
10839 rel->r_addend += sec->output_section->vma + sec->output_offset;
10840 }
10841 return relocation;
10842 }
10843
10844 bfd_vma
10845 _bfd_elf_rel_local_sym (bfd *abfd,
10846 Elf_Internal_Sym *sym,
10847 asection **psec,
10848 bfd_vma addend)
10849 {
10850 asection *sec = *psec;
10851
10852 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
10853 return sym->st_value + addend;
10854
10855 return _bfd_merged_section_offset (abfd, psec,
10856 elf_section_data (sec)->sec_info,
10857 sym->st_value + addend);
10858 }
10859
10860 /* Adjust an address within a section. Given OFFSET within SEC, return
10861 the new offset within the section, based upon changes made to the
10862 section. Returns -1 if the offset is now invalid.
10863 The offset (in abnd out) is in target sized bytes, however big a
10864 byte may be. */
10865
10866 bfd_vma
10867 _bfd_elf_section_offset (bfd *abfd,
10868 struct bfd_link_info *info,
10869 asection *sec,
10870 bfd_vma offset)
10871 {
10872 switch (sec->sec_info_type)
10873 {
10874 case SEC_INFO_TYPE_STABS:
10875 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
10876 offset);
10877 case SEC_INFO_TYPE_EH_FRAME:
10878 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
10879
10880 default:
10881 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
10882 {
10883 /* Reverse the offset. */
10884 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10885 bfd_size_type address_size = bed->s->arch_size / 8;
10886
10887 /* address_size and sec->size are in octets. Convert
10888 to bytes before subtracting the original offset. */
10889 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
10890 }
10891 return offset;
10892 }
10893 }
10894 \f
10895 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
10896 reconstruct an ELF file by reading the segments out of remote memory
10897 based on the ELF file header at EHDR_VMA and the ELF program headers it
10898 points to. If not null, *LOADBASEP is filled in with the difference
10899 between the VMAs from which the segments were read, and the VMAs the
10900 file headers (and hence BFD's idea of each section's VMA) put them at.
10901
10902 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
10903 remote memory at target address VMA into the local buffer at MYADDR; it
10904 should return zero on success or an `errno' code on failure. TEMPL must
10905 be a BFD for an ELF target with the word size and byte order found in
10906 the remote memory. */
10907
10908 bfd *
10909 bfd_elf_bfd_from_remote_memory
10910 (bfd *templ,
10911 bfd_vma ehdr_vma,
10912 bfd_size_type size,
10913 bfd_vma *loadbasep,
10914 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
10915 {
10916 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
10917 (templ, ehdr_vma, size, loadbasep, target_read_memory);
10918 }
10919 \f
10920 long
10921 _bfd_elf_get_synthetic_symtab (bfd *abfd,
10922 long symcount ATTRIBUTE_UNUSED,
10923 asymbol **syms ATTRIBUTE_UNUSED,
10924 long dynsymcount,
10925 asymbol **dynsyms,
10926 asymbol **ret)
10927 {
10928 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10929 asection *relplt;
10930 asymbol *s;
10931 const char *relplt_name;
10932 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
10933 arelent *p;
10934 long count, i, n;
10935 size_t size;
10936 Elf_Internal_Shdr *hdr;
10937 char *names;
10938 asection *plt;
10939
10940 *ret = NULL;
10941
10942 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
10943 return 0;
10944
10945 if (dynsymcount <= 0)
10946 return 0;
10947
10948 if (!bed->plt_sym_val)
10949 return 0;
10950
10951 relplt_name = bed->relplt_name;
10952 if (relplt_name == NULL)
10953 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
10954 relplt = bfd_get_section_by_name (abfd, relplt_name);
10955 if (relplt == NULL)
10956 return 0;
10957
10958 hdr = &elf_section_data (relplt)->this_hdr;
10959 if (hdr->sh_link != elf_dynsymtab (abfd)
10960 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
10961 return 0;
10962
10963 plt = bfd_get_section_by_name (abfd, ".plt");
10964 if (plt == NULL)
10965 return 0;
10966
10967 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
10968 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
10969 return -1;
10970
10971 count = relplt->size / hdr->sh_entsize;
10972 size = count * sizeof (asymbol);
10973 p = relplt->relocation;
10974 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10975 {
10976 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
10977 if (p->addend != 0)
10978 {
10979 #ifdef BFD64
10980 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
10981 #else
10982 size += sizeof ("+0x") - 1 + 8;
10983 #endif
10984 }
10985 }
10986
10987 s = *ret = (asymbol *) bfd_malloc (size);
10988 if (s == NULL)
10989 return -1;
10990
10991 names = (char *) (s + count);
10992 p = relplt->relocation;
10993 n = 0;
10994 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10995 {
10996 size_t len;
10997 bfd_vma addr;
10998
10999 addr = bed->plt_sym_val (i, plt, p);
11000 if (addr == (bfd_vma) -1)
11001 continue;
11002
11003 *s = **p->sym_ptr_ptr;
11004 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11005 we are defining a symbol, ensure one of them is set. */
11006 if ((s->flags & BSF_LOCAL) == 0)
11007 s->flags |= BSF_GLOBAL;
11008 s->flags |= BSF_SYNTHETIC;
11009 s->section = plt;
11010 s->value = addr - plt->vma;
11011 s->name = names;
11012 s->udata.p = NULL;
11013 len = strlen ((*p->sym_ptr_ptr)->name);
11014 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11015 names += len;
11016 if (p->addend != 0)
11017 {
11018 char buf[30], *a;
11019
11020 memcpy (names, "+0x", sizeof ("+0x") - 1);
11021 names += sizeof ("+0x") - 1;
11022 bfd_sprintf_vma (abfd, buf, p->addend);
11023 for (a = buf; *a == '0'; ++a)
11024 ;
11025 len = strlen (a);
11026 memcpy (names, a, len);
11027 names += len;
11028 }
11029 memcpy (names, "@plt", sizeof ("@plt"));
11030 names += sizeof ("@plt");
11031 ++s, ++n;
11032 }
11033
11034 return n;
11035 }
11036
11037 /* It is only used by x86-64 so far. */
11038 asection _bfd_elf_large_com_section
11039 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
11040 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
11041
11042 void
11043 _bfd_elf_post_process_headers (bfd * abfd,
11044 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11045 {
11046 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11047
11048 i_ehdrp = elf_elfheader (abfd);
11049
11050 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11051
11052 /* To make things simpler for the loader on Linux systems we set the
11053 osabi field to ELFOSABI_GNU if the binary contains symbols of
11054 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11055 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11056 && elf_tdata (abfd)->has_gnu_symbols)
11057 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11058 }
11059
11060
11061 /* Return TRUE for ELF symbol types that represent functions.
11062 This is the default version of this function, which is sufficient for
11063 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11064
11065 bfd_boolean
11066 _bfd_elf_is_function_type (unsigned int type)
11067 {
11068 return (type == STT_FUNC
11069 || type == STT_GNU_IFUNC);
11070 }
11071
11072 /* If the ELF symbol SYM might be a function in SEC, return the
11073 function size and set *CODE_OFF to the function's entry point,
11074 otherwise return zero. */
11075
11076 bfd_size_type
11077 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11078 bfd_vma *code_off)
11079 {
11080 bfd_size_type size;
11081
11082 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11083 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11084 || sym->section != sec)
11085 return 0;
11086
11087 *code_off = sym->value;
11088 size = 0;
11089 if (!(sym->flags & BSF_SYNTHETIC))
11090 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11091 if (size == 0)
11092 size = 1;
11093 return size;
11094 }
This page took 0.299659 seconds and 3 git commands to generate.