include/
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static char *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 char *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 char *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return 0;
263
264 shstrtab = (char *) i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 (*_bfd_error_handler)
295 (_("%B: invalid string offset %u >= %lu for section `%s'"),
296 abfd, strindex, (unsigned long) hdr->sh_size,
297 ((shindex == elf_elfheader(abfd)->e_shstrndx
298 && strindex == hdr->sh_name)
299 ? ".shstrtab"
300 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
409 {
410 unsigned int iname = isym->st_name;
411 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
412 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 }
420
421 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
423 pointers. */
424
425 typedef union elf_internal_group {
426 Elf_Internal_Shdr *shdr;
427 unsigned int flags;
428 } Elf_Internal_Group;
429
430 /* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
432
433 static const char *
434 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
435 {
436 Elf_Internal_Shdr *hdr;
437 unsigned char esym[sizeof (Elf64_External_Sym)];
438 Elf_External_Sym_Shndx eshndx;
439 Elf_Internal_Sym isym;
440
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
443 return NULL;
444
445 /* Go read the symbol. */
446 hdr = &elf_tdata (abfd)->symtab_hdr;
447 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
448 &isym, esym, &eshndx) == NULL)
449 return NULL;
450
451 return bfd_elf_local_sym_name (abfd, &isym);
452 }
453
454 /* Set next_in_group list pointer, and group name for NEWSECT. */
455
456 static bfd_boolean
457 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
458 {
459 unsigned int num_group = elf_tdata (abfd)->num_group;
460
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
463 if (num_group == 0)
464 {
465 unsigned int i, shnum;
466
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum = elf_numsections (abfd);
470 num_group = 0;
471 for (i = 0; i < shnum; i++)
472 {
473 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
474 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
475 num_group += 1;
476 }
477
478 if (num_group == 0)
479 num_group = (unsigned) -1;
480 elf_tdata (abfd)->num_group = num_group;
481
482 if (num_group > 0)
483 {
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
487 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
488 if (elf_tdata (abfd)->group_sect_ptr == NULL)
489 return FALSE;
490
491 num_group = 0;
492 for (i = 0; i < shnum; i++)
493 {
494 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
495 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
496 {
497 unsigned char *src;
498 Elf_Internal_Group *dest;
499
500 /* Add to list of sections. */
501 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
502 num_group += 1;
503
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest) >= 4);
506 amt = shdr->sh_size * sizeof (*dest) / 4;
507 shdr->contents = bfd_alloc (abfd, amt);
508 if (shdr->contents == NULL
509 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
510 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
511 != shdr->sh_size))
512 return FALSE;
513
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
517 pointers. */
518 src = shdr->contents + shdr->sh_size;
519 dest = (Elf_Internal_Group *) (shdr->contents + amt);
520 while (1)
521 {
522 unsigned int idx;
523
524 src -= 4;
525 --dest;
526 idx = H_GET_32 (abfd, src);
527 if (src == shdr->contents)
528 {
529 dest->flags = idx;
530 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
531 shdr->bfd_section->flags
532 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
533 break;
534 }
535 if (idx >= shnum)
536 {
537 ((*_bfd_error_handler)
538 (_("%B: invalid SHT_GROUP entry"), abfd));
539 idx = 0;
540 }
541 dest->shdr = elf_elfsections (abfd)[idx];
542 }
543 }
544 }
545 }
546 }
547
548 if (num_group != (unsigned) -1)
549 {
550 unsigned int i;
551
552 for (i = 0; i < num_group; i++)
553 {
554 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
555 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
556 unsigned int n_elt = shdr->sh_size / 4;
557
558 /* Look through this group's sections to see if current
559 section is a member. */
560 while (--n_elt != 0)
561 if ((++idx)->shdr == hdr)
562 {
563 asection *s = NULL;
564
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
567 next_in_group. */
568 idx = (Elf_Internal_Group *) shdr->contents;
569 n_elt = shdr->sh_size / 4;
570 while (--n_elt != 0)
571 if ((s = (++idx)->shdr->bfd_section) != NULL
572 && elf_next_in_group (s) != NULL)
573 break;
574 if (n_elt != 0)
575 {
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect) = elf_group_name (s);
579 elf_next_in_group (newsect) = elf_next_in_group (s);
580 elf_next_in_group (s) = newsect;
581 }
582 else
583 {
584 const char *gname;
585
586 gname = group_signature (abfd, shdr);
587 if (gname == NULL)
588 return FALSE;
589 elf_group_name (newsect) = gname;
590
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect) = newsect;
593 }
594
595 /* If the group section has been created, point to the
596 new member. */
597 if (shdr->bfd_section != NULL)
598 elf_next_in_group (shdr->bfd_section) = newsect;
599
600 i = num_group - 1;
601 break;
602 }
603 }
604 }
605
606 if (elf_group_name (newsect) == NULL)
607 {
608 (*_bfd_error_handler) (_("%B: no group info for section %A"),
609 abfd, newsect);
610 }
611 return TRUE;
612 }
613
614 bfd_boolean
615 _bfd_elf_setup_group_pointers (bfd *abfd)
616 {
617 unsigned int i;
618 unsigned int num_group = elf_tdata (abfd)->num_group;
619 bfd_boolean result = TRUE;
620
621 if (num_group == (unsigned) -1)
622 return result;
623
624 for (i = 0; i < num_group; i++)
625 {
626 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
627 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
628 unsigned int n_elt = shdr->sh_size / 4;
629
630 while (--n_elt != 0)
631 if ((++idx)->shdr->bfd_section)
632 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
633 else if (idx->shdr->sh_type == SHT_RELA
634 || idx->shdr->sh_type == SHT_REL)
635 /* We won't include relocation sections in section groups in
636 output object files. We adjust the group section size here
637 so that relocatable link will work correctly when
638 relocation sections are in section group in input object
639 files. */
640 shdr->bfd_section->size -= 4;
641 else
642 {
643 /* There are some unknown sections in the group. */
644 (*_bfd_error_handler)
645 (_("%B: unknown [%d] section `%s' in group [%s]"),
646 abfd,
647 (unsigned int) idx->shdr->sh_type,
648 elf_string_from_elf_strtab (abfd, idx->shdr->sh_name),
649 shdr->bfd_section->name);
650 result = FALSE;
651 }
652 }
653 return result;
654 }
655
656 bfd_boolean
657 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
658 {
659 return elf_next_in_group (sec) != NULL;
660 }
661
662 bfd_boolean
663 bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
664 asection *group ATTRIBUTE_UNUSED)
665 {
666 #if 0
667 asection *first = elf_next_in_group (group);
668 asection *s = first;
669
670 while (s != NULL)
671 {
672 s->output_section = bfd_abs_section_ptr;
673 s = elf_next_in_group (s);
674 /* These lists are circular. */
675 if (s == first)
676 break;
677 }
678 #else
679 /* FIXME: Never used. Remove it! */
680 abort ();
681 #endif
682 return TRUE;
683 }
684
685 /* Make a BFD section from an ELF section. We store a pointer to the
686 BFD section in the bfd_section field of the header. */
687
688 bfd_boolean
689 _bfd_elf_make_section_from_shdr (bfd *abfd,
690 Elf_Internal_Shdr *hdr,
691 const char *name)
692 {
693 asection *newsect;
694 flagword flags;
695 const struct elf_backend_data *bed;
696
697 if (hdr->bfd_section != NULL)
698 {
699 BFD_ASSERT (strcmp (name,
700 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
701 return TRUE;
702 }
703
704 newsect = bfd_make_section_anyway (abfd, name);
705 if (newsect == NULL)
706 return FALSE;
707
708 hdr->bfd_section = newsect;
709 elf_section_data (newsect)->this_hdr = *hdr;
710
711 /* Always use the real type/flags. */
712 elf_section_type (newsect) = hdr->sh_type;
713 elf_section_flags (newsect) = hdr->sh_flags;
714
715 newsect->filepos = hdr->sh_offset;
716
717 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
718 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
719 || ! bfd_set_section_alignment (abfd, newsect,
720 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
721 return FALSE;
722
723 flags = SEC_NO_FLAGS;
724 if (hdr->sh_type != SHT_NOBITS)
725 flags |= SEC_HAS_CONTENTS;
726 if (hdr->sh_type == SHT_GROUP)
727 flags |= SEC_GROUP | SEC_EXCLUDE;
728 if ((hdr->sh_flags & SHF_ALLOC) != 0)
729 {
730 flags |= SEC_ALLOC;
731 if (hdr->sh_type != SHT_NOBITS)
732 flags |= SEC_LOAD;
733 }
734 if ((hdr->sh_flags & SHF_WRITE) == 0)
735 flags |= SEC_READONLY;
736 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
737 flags |= SEC_CODE;
738 else if ((flags & SEC_LOAD) != 0)
739 flags |= SEC_DATA;
740 if ((hdr->sh_flags & SHF_MERGE) != 0)
741 {
742 flags |= SEC_MERGE;
743 newsect->entsize = hdr->sh_entsize;
744 if ((hdr->sh_flags & SHF_STRINGS) != 0)
745 flags |= SEC_STRINGS;
746 }
747 if (hdr->sh_flags & SHF_GROUP)
748 if (!setup_group (abfd, hdr, newsect))
749 return FALSE;
750 if ((hdr->sh_flags & SHF_TLS) != 0)
751 flags |= SEC_THREAD_LOCAL;
752
753 /* The debugging sections appear to be recognized only by name, not
754 any sort of flag. */
755 {
756 static const char *debug_sec_names [] =
757 {
758 ".debug",
759 ".gnu.linkonce.wi.",
760 ".line",
761 ".stab"
762 };
763 int i;
764
765 for (i = ARRAY_SIZE (debug_sec_names); i--;)
766 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
767 break;
768
769 if (i >= 0)
770 flags |= SEC_DEBUGGING;
771 }
772
773 /* As a GNU extension, if the name begins with .gnu.linkonce, we
774 only link a single copy of the section. This is used to support
775 g++. g++ will emit each template expansion in its own section.
776 The symbols will be defined as weak, so that multiple definitions
777 are permitted. The GNU linker extension is to actually discard
778 all but one of the sections. */
779 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
780 && elf_next_in_group (newsect) == NULL)
781 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
782
783 bed = get_elf_backend_data (abfd);
784 if (bed->elf_backend_section_flags)
785 if (! bed->elf_backend_section_flags (&flags, hdr))
786 return FALSE;
787
788 if (! bfd_set_section_flags (abfd, newsect, flags))
789 return FALSE;
790
791 if ((flags & SEC_ALLOC) != 0)
792 {
793 Elf_Internal_Phdr *phdr;
794 unsigned int i;
795
796 /* Look through the phdrs to see if we need to adjust the lma.
797 If all the p_paddr fields are zero, we ignore them, since
798 some ELF linkers produce such output. */
799 phdr = elf_tdata (abfd)->phdr;
800 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
801 {
802 if (phdr->p_paddr != 0)
803 break;
804 }
805 if (i < elf_elfheader (abfd)->e_phnum)
806 {
807 phdr = elf_tdata (abfd)->phdr;
808 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
809 {
810 /* This section is part of this segment if its file
811 offset plus size lies within the segment's memory
812 span and, if the section is loaded, the extent of the
813 loaded data lies within the extent of the segment.
814
815 Note - we used to check the p_paddr field as well, and
816 refuse to set the LMA if it was 0. This is wrong
817 though, as a perfectly valid initialised segment can
818 have a p_paddr of zero. Some architectures, eg ARM,
819 place special significance on the address 0 and
820 executables need to be able to have a segment which
821 covers this address. */
822 if (phdr->p_type == PT_LOAD
823 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
824 && (hdr->sh_offset + hdr->sh_size
825 <= phdr->p_offset + phdr->p_memsz)
826 && ((flags & SEC_LOAD) == 0
827 || (hdr->sh_offset + hdr->sh_size
828 <= phdr->p_offset + phdr->p_filesz)))
829 {
830 if ((flags & SEC_LOAD) == 0)
831 newsect->lma = (phdr->p_paddr
832 + hdr->sh_addr - phdr->p_vaddr);
833 else
834 /* We used to use the same adjustment for SEC_LOAD
835 sections, but that doesn't work if the segment
836 is packed with code from multiple VMAs.
837 Instead we calculate the section LMA based on
838 the segment LMA. It is assumed that the
839 segment will contain sections with contiguous
840 LMAs, even if the VMAs are not. */
841 newsect->lma = (phdr->p_paddr
842 + hdr->sh_offset - phdr->p_offset);
843
844 /* With contiguous segments, we can't tell from file
845 offsets whether a section with zero size should
846 be placed at the end of one segment or the
847 beginning of the next. Decide based on vaddr. */
848 if (hdr->sh_addr >= phdr->p_vaddr
849 && (hdr->sh_addr + hdr->sh_size
850 <= phdr->p_vaddr + phdr->p_memsz))
851 break;
852 }
853 }
854 }
855 }
856
857 return TRUE;
858 }
859
860 /*
861 INTERNAL_FUNCTION
862 bfd_elf_find_section
863
864 SYNOPSIS
865 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
866
867 DESCRIPTION
868 Helper functions for GDB to locate the string tables.
869 Since BFD hides string tables from callers, GDB needs to use an
870 internal hook to find them. Sun's .stabstr, in particular,
871 isn't even pointed to by the .stab section, so ordinary
872 mechanisms wouldn't work to find it, even if we had some.
873 */
874
875 struct elf_internal_shdr *
876 bfd_elf_find_section (bfd *abfd, char *name)
877 {
878 Elf_Internal_Shdr **i_shdrp;
879 char *shstrtab;
880 unsigned int max;
881 unsigned int i;
882
883 i_shdrp = elf_elfsections (abfd);
884 if (i_shdrp != NULL)
885 {
886 shstrtab = bfd_elf_get_str_section (abfd,
887 elf_elfheader (abfd)->e_shstrndx);
888 if (shstrtab != NULL)
889 {
890 max = elf_numsections (abfd);
891 for (i = 1; i < max; i++)
892 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
893 return i_shdrp[i];
894 }
895 }
896 return 0;
897 }
898
899 const char *const bfd_elf_section_type_names[] = {
900 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
901 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
902 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
903 };
904
905 /* ELF relocs are against symbols. If we are producing relocatable
906 output, and the reloc is against an external symbol, and nothing
907 has given us any additional addend, the resulting reloc will also
908 be against the same symbol. In such a case, we don't want to
909 change anything about the way the reloc is handled, since it will
910 all be done at final link time. Rather than put special case code
911 into bfd_perform_relocation, all the reloc types use this howto
912 function. It just short circuits the reloc if producing
913 relocatable output against an external symbol. */
914
915 bfd_reloc_status_type
916 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
917 arelent *reloc_entry,
918 asymbol *symbol,
919 void *data ATTRIBUTE_UNUSED,
920 asection *input_section,
921 bfd *output_bfd,
922 char **error_message ATTRIBUTE_UNUSED)
923 {
924 if (output_bfd != NULL
925 && (symbol->flags & BSF_SECTION_SYM) == 0
926 && (! reloc_entry->howto->partial_inplace
927 || reloc_entry->addend == 0))
928 {
929 reloc_entry->address += input_section->output_offset;
930 return bfd_reloc_ok;
931 }
932
933 return bfd_reloc_continue;
934 }
935 \f
936 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
937
938 static void
939 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
940 asection *sec)
941 {
942 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
943 sec->sec_info_type = ELF_INFO_TYPE_NONE;
944 }
945
946 /* Finish SHF_MERGE section merging. */
947
948 bfd_boolean
949 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
950 {
951 bfd *ibfd;
952 asection *sec;
953
954 if (!is_elf_hash_table (info->hash))
955 return FALSE;
956
957 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
958 if ((ibfd->flags & DYNAMIC) == 0)
959 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
960 if ((sec->flags & SEC_MERGE) != 0
961 && !bfd_is_abs_section (sec->output_section))
962 {
963 struct bfd_elf_section_data *secdata;
964
965 secdata = elf_section_data (sec);
966 if (! _bfd_add_merge_section (abfd,
967 &elf_hash_table (info)->merge_info,
968 sec, &secdata->sec_info))
969 return FALSE;
970 else if (secdata->sec_info)
971 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
972 }
973
974 if (elf_hash_table (info)->merge_info != NULL)
975 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
976 merge_sections_remove_hook);
977 return TRUE;
978 }
979
980 void
981 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
982 {
983 sec->output_section = bfd_abs_section_ptr;
984 sec->output_offset = sec->vma;
985 if (!is_elf_hash_table (info->hash))
986 return;
987
988 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
989 }
990 \f
991 /* Copy the program header and other data from one object module to
992 another. */
993
994 bfd_boolean
995 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
996 {
997 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
998 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
999 return TRUE;
1000
1001 BFD_ASSERT (!elf_flags_init (obfd)
1002 || (elf_elfheader (obfd)->e_flags
1003 == elf_elfheader (ibfd)->e_flags));
1004
1005 elf_gp (obfd) = elf_gp (ibfd);
1006 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1007 elf_flags_init (obfd) = TRUE;
1008 return TRUE;
1009 }
1010
1011 /* Print out the program headers. */
1012
1013 bfd_boolean
1014 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1015 {
1016 FILE *f = farg;
1017 Elf_Internal_Phdr *p;
1018 asection *s;
1019 bfd_byte *dynbuf = NULL;
1020
1021 p = elf_tdata (abfd)->phdr;
1022 if (p != NULL)
1023 {
1024 unsigned int i, c;
1025
1026 fprintf (f, _("\nProgram Header:\n"));
1027 c = elf_elfheader (abfd)->e_phnum;
1028 for (i = 0; i < c; i++, p++)
1029 {
1030 const char *pt;
1031 char buf[20];
1032
1033 switch (p->p_type)
1034 {
1035 case PT_NULL: pt = "NULL"; break;
1036 case PT_LOAD: pt = "LOAD"; break;
1037 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1038 case PT_INTERP: pt = "INTERP"; break;
1039 case PT_NOTE: pt = "NOTE"; break;
1040 case PT_SHLIB: pt = "SHLIB"; break;
1041 case PT_PHDR: pt = "PHDR"; break;
1042 case PT_TLS: pt = "TLS"; break;
1043 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1044 case PT_GNU_STACK: pt = "STACK"; break;
1045 case PT_GNU_RELRO: pt = "RELRO"; break;
1046 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1047 }
1048 fprintf (f, "%8s off 0x", pt);
1049 bfd_fprintf_vma (abfd, f, p->p_offset);
1050 fprintf (f, " vaddr 0x");
1051 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1052 fprintf (f, " paddr 0x");
1053 bfd_fprintf_vma (abfd, f, p->p_paddr);
1054 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1055 fprintf (f, " filesz 0x");
1056 bfd_fprintf_vma (abfd, f, p->p_filesz);
1057 fprintf (f, " memsz 0x");
1058 bfd_fprintf_vma (abfd, f, p->p_memsz);
1059 fprintf (f, " flags %c%c%c",
1060 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1061 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1062 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1063 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1064 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1065 fprintf (f, "\n");
1066 }
1067 }
1068
1069 s = bfd_get_section_by_name (abfd, ".dynamic");
1070 if (s != NULL)
1071 {
1072 int elfsec;
1073 unsigned long shlink;
1074 bfd_byte *extdyn, *extdynend;
1075 size_t extdynsize;
1076 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1077
1078 fprintf (f, _("\nDynamic Section:\n"));
1079
1080 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1081 goto error_return;
1082
1083 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1084 if (elfsec == -1)
1085 goto error_return;
1086 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1087
1088 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1089 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1090
1091 extdyn = dynbuf;
1092 extdynend = extdyn + s->size;
1093 for (; extdyn < extdynend; extdyn += extdynsize)
1094 {
1095 Elf_Internal_Dyn dyn;
1096 const char *name;
1097 char ab[20];
1098 bfd_boolean stringp;
1099
1100 (*swap_dyn_in) (abfd, extdyn, &dyn);
1101
1102 if (dyn.d_tag == DT_NULL)
1103 break;
1104
1105 stringp = FALSE;
1106 switch (dyn.d_tag)
1107 {
1108 default:
1109 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1110 name = ab;
1111 break;
1112
1113 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1114 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1115 case DT_PLTGOT: name = "PLTGOT"; break;
1116 case DT_HASH: name = "HASH"; break;
1117 case DT_STRTAB: name = "STRTAB"; break;
1118 case DT_SYMTAB: name = "SYMTAB"; break;
1119 case DT_RELA: name = "RELA"; break;
1120 case DT_RELASZ: name = "RELASZ"; break;
1121 case DT_RELAENT: name = "RELAENT"; break;
1122 case DT_STRSZ: name = "STRSZ"; break;
1123 case DT_SYMENT: name = "SYMENT"; break;
1124 case DT_INIT: name = "INIT"; break;
1125 case DT_FINI: name = "FINI"; break;
1126 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1127 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1128 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1129 case DT_REL: name = "REL"; break;
1130 case DT_RELSZ: name = "RELSZ"; break;
1131 case DT_RELENT: name = "RELENT"; break;
1132 case DT_PLTREL: name = "PLTREL"; break;
1133 case DT_DEBUG: name = "DEBUG"; break;
1134 case DT_TEXTREL: name = "TEXTREL"; break;
1135 case DT_JMPREL: name = "JMPREL"; break;
1136 case DT_BIND_NOW: name = "BIND_NOW"; break;
1137 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1138 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1139 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1140 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1141 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1142 case DT_FLAGS: name = "FLAGS"; break;
1143 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1144 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1145 case DT_CHECKSUM: name = "CHECKSUM"; break;
1146 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1147 case DT_MOVEENT: name = "MOVEENT"; break;
1148 case DT_MOVESZ: name = "MOVESZ"; break;
1149 case DT_FEATURE: name = "FEATURE"; break;
1150 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1151 case DT_SYMINSZ: name = "SYMINSZ"; break;
1152 case DT_SYMINENT: name = "SYMINENT"; break;
1153 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1154 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1155 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1156 case DT_PLTPAD: name = "PLTPAD"; break;
1157 case DT_MOVETAB: name = "MOVETAB"; break;
1158 case DT_SYMINFO: name = "SYMINFO"; break;
1159 case DT_RELACOUNT: name = "RELACOUNT"; break;
1160 case DT_RELCOUNT: name = "RELCOUNT"; break;
1161 case DT_FLAGS_1: name = "FLAGS_1"; break;
1162 case DT_VERSYM: name = "VERSYM"; break;
1163 case DT_VERDEF: name = "VERDEF"; break;
1164 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1165 case DT_VERNEED: name = "VERNEED"; break;
1166 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1167 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1168 case DT_USED: name = "USED"; break;
1169 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1170 }
1171
1172 fprintf (f, " %-11s ", name);
1173 if (! stringp)
1174 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1175 else
1176 {
1177 const char *string;
1178 unsigned int tagv = dyn.d_un.d_val;
1179
1180 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1181 if (string == NULL)
1182 goto error_return;
1183 fprintf (f, "%s", string);
1184 }
1185 fprintf (f, "\n");
1186 }
1187
1188 free (dynbuf);
1189 dynbuf = NULL;
1190 }
1191
1192 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1193 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1194 {
1195 if (! _bfd_elf_slurp_version_tables (abfd))
1196 return FALSE;
1197 }
1198
1199 if (elf_dynverdef (abfd) != 0)
1200 {
1201 Elf_Internal_Verdef *t;
1202
1203 fprintf (f, _("\nVersion definitions:\n"));
1204 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1205 {
1206 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1207 t->vd_flags, t->vd_hash, t->vd_nodename);
1208 if (t->vd_auxptr->vda_nextptr != NULL)
1209 {
1210 Elf_Internal_Verdaux *a;
1211
1212 fprintf (f, "\t");
1213 for (a = t->vd_auxptr->vda_nextptr;
1214 a != NULL;
1215 a = a->vda_nextptr)
1216 fprintf (f, "%s ", a->vda_nodename);
1217 fprintf (f, "\n");
1218 }
1219 }
1220 }
1221
1222 if (elf_dynverref (abfd) != 0)
1223 {
1224 Elf_Internal_Verneed *t;
1225
1226 fprintf (f, _("\nVersion References:\n"));
1227 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1228 {
1229 Elf_Internal_Vernaux *a;
1230
1231 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1232 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1233 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1234 a->vna_flags, a->vna_other, a->vna_nodename);
1235 }
1236 }
1237
1238 return TRUE;
1239
1240 error_return:
1241 if (dynbuf != NULL)
1242 free (dynbuf);
1243 return FALSE;
1244 }
1245
1246 /* Display ELF-specific fields of a symbol. */
1247
1248 void
1249 bfd_elf_print_symbol (bfd *abfd,
1250 void *filep,
1251 asymbol *symbol,
1252 bfd_print_symbol_type how)
1253 {
1254 FILE *file = filep;
1255 switch (how)
1256 {
1257 case bfd_print_symbol_name:
1258 fprintf (file, "%s", symbol->name);
1259 break;
1260 case bfd_print_symbol_more:
1261 fprintf (file, "elf ");
1262 bfd_fprintf_vma (abfd, file, symbol->value);
1263 fprintf (file, " %lx", (long) symbol->flags);
1264 break;
1265 case bfd_print_symbol_all:
1266 {
1267 const char *section_name;
1268 const char *name = NULL;
1269 const struct elf_backend_data *bed;
1270 unsigned char st_other;
1271 bfd_vma val;
1272
1273 section_name = symbol->section ? symbol->section->name : "(*none*)";
1274
1275 bed = get_elf_backend_data (abfd);
1276 if (bed->elf_backend_print_symbol_all)
1277 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1278
1279 if (name == NULL)
1280 {
1281 name = symbol->name;
1282 bfd_print_symbol_vandf (abfd, file, symbol);
1283 }
1284
1285 fprintf (file, " %s\t", section_name);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol->section))
1291 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1292 else
1293 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1294 bfd_fprintf_vma (abfd, file, val);
1295
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd)->dynversym_section != 0
1298 && (elf_tdata (abfd)->dynverdef_section != 0
1299 || elf_tdata (abfd)->dynverref_section != 0))
1300 {
1301 unsigned int vernum;
1302 const char *version_string;
1303
1304 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1305
1306 if (vernum == 0)
1307 version_string = "";
1308 else if (vernum == 1)
1309 version_string = "Base";
1310 else if (vernum <= elf_tdata (abfd)->cverdefs)
1311 version_string =
1312 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1313 else
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 version_string = "";
1318 for (t = elf_tdata (abfd)->verref;
1319 t != NULL;
1320 t = t->vn_nextref)
1321 {
1322 Elf_Internal_Vernaux *a;
1323
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 {
1326 if (a->vna_other == vernum)
1327 {
1328 version_string = a->vna_nodename;
1329 break;
1330 }
1331 }
1332 }
1333 }
1334
1335 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1336 fprintf (file, " %-11s", version_string);
1337 else
1338 {
1339 int i;
1340
1341 fprintf (file, " (%s)", version_string);
1342 for (i = 10 - strlen (version_string); i > 0; --i)
1343 putc (' ', file);
1344 }
1345 }
1346
1347 /* If the st_other field is not zero, print it. */
1348 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1349
1350 switch (st_other)
1351 {
1352 case 0: break;
1353 case STV_INTERNAL: fprintf (file, " .internal"); break;
1354 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1355 case STV_PROTECTED: fprintf (file, " .protected"); break;
1356 default:
1357 /* Some other non-defined flags are also present, so print
1358 everything hex. */
1359 fprintf (file, " 0x%02x", (unsigned int) st_other);
1360 }
1361
1362 fprintf (file, " %s", name);
1363 }
1364 break;
1365 }
1366 }
1367 \f
1368 /* Create an entry in an ELF linker hash table. */
1369
1370 struct bfd_hash_entry *
1371 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1372 struct bfd_hash_table *table,
1373 const char *string)
1374 {
1375 /* Allocate the structure if it has not already been allocated by a
1376 subclass. */
1377 if (entry == NULL)
1378 {
1379 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1380 if (entry == NULL)
1381 return entry;
1382 }
1383
1384 /* Call the allocation method of the superclass. */
1385 entry = _bfd_link_hash_newfunc (entry, table, string);
1386 if (entry != NULL)
1387 {
1388 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1389 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1390
1391 /* Set local fields. */
1392 ret->indx = -1;
1393 ret->dynindx = -1;
1394 ret->got = ret->plt = htab->init_refcount;
1395 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1396 - offsetof (struct elf_link_hash_entry, size)));
1397 /* Assume that we have been called by a non-ELF symbol reader.
1398 This flag is then reset by the code which reads an ELF input
1399 file. This ensures that a symbol created by a non-ELF symbol
1400 reader will have the flag set correctly. */
1401 ret->non_elf = 1;
1402 }
1403
1404 return entry;
1405 }
1406
1407 /* Copy data from an indirect symbol to its direct symbol, hiding the
1408 old indirect symbol. Also used for copying flags to a weakdef. */
1409
1410 void
1411 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1412 struct elf_link_hash_entry *dir,
1413 struct elf_link_hash_entry *ind)
1414 {
1415 bfd_signed_vma tmp;
1416 bfd_signed_vma lowest_valid = bed->can_refcount;
1417
1418 /* Copy down any references that we may have already seen to the
1419 symbol which just became indirect. */
1420
1421 dir->ref_dynamic |= ind->ref_dynamic;
1422 dir->ref_regular |= ind->ref_regular;
1423 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1424 dir->non_got_ref |= ind->non_got_ref;
1425 dir->needs_plt |= ind->needs_plt;
1426 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1427
1428 if (ind->root.type != bfd_link_hash_indirect)
1429 return;
1430
1431 /* Copy over the global and procedure linkage table refcount entries.
1432 These may have been already set up by a check_relocs routine. */
1433 tmp = dir->got.refcount;
1434 if (tmp < lowest_valid)
1435 {
1436 dir->got.refcount = ind->got.refcount;
1437 ind->got.refcount = tmp;
1438 }
1439 else
1440 BFD_ASSERT (ind->got.refcount < lowest_valid);
1441
1442 tmp = dir->plt.refcount;
1443 if (tmp < lowest_valid)
1444 {
1445 dir->plt.refcount = ind->plt.refcount;
1446 ind->plt.refcount = tmp;
1447 }
1448 else
1449 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1450
1451 if (dir->dynindx == -1)
1452 {
1453 dir->dynindx = ind->dynindx;
1454 dir->dynstr_index = ind->dynstr_index;
1455 ind->dynindx = -1;
1456 ind->dynstr_index = 0;
1457 }
1458 else
1459 BFD_ASSERT (ind->dynindx == -1);
1460 }
1461
1462 void
1463 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1464 struct elf_link_hash_entry *h,
1465 bfd_boolean force_local)
1466 {
1467 h->plt = elf_hash_table (info)->init_offset;
1468 h->needs_plt = 0;
1469 if (force_local)
1470 {
1471 h->forced_local = 1;
1472 if (h->dynindx != -1)
1473 {
1474 h->dynindx = -1;
1475 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1476 h->dynstr_index);
1477 }
1478 }
1479 }
1480
1481 /* Initialize an ELF linker hash table. */
1482
1483 bfd_boolean
1484 _bfd_elf_link_hash_table_init
1485 (struct elf_link_hash_table *table,
1486 bfd *abfd,
1487 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1488 struct bfd_hash_table *,
1489 const char *))
1490 {
1491 bfd_boolean ret;
1492
1493 table->dynamic_sections_created = FALSE;
1494 table->dynobj = NULL;
1495 /* Make sure can_refcount is extended to the width and signedness of
1496 init_refcount before we subtract one from it. */
1497 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1498 table->init_refcount.refcount -= 1;
1499 table->init_offset.offset = -(bfd_vma) 1;
1500 /* The first dynamic symbol is a dummy. */
1501 table->dynsymcount = 1;
1502 table->dynstr = NULL;
1503 table->bucketcount = 0;
1504 table->needed = NULL;
1505 table->hgot = NULL;
1506 table->merge_info = NULL;
1507 memset (&table->stab_info, 0, sizeof (table->stab_info));
1508 memset (&table->eh_info, 0, sizeof (table->eh_info));
1509 table->dynlocal = NULL;
1510 table->runpath = NULL;
1511 table->tls_sec = NULL;
1512 table->tls_size = 0;
1513 table->loaded = NULL;
1514
1515 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1516 table->root.type = bfd_link_elf_hash_table;
1517
1518 return ret;
1519 }
1520
1521 /* Create an ELF linker hash table. */
1522
1523 struct bfd_link_hash_table *
1524 _bfd_elf_link_hash_table_create (bfd *abfd)
1525 {
1526 struct elf_link_hash_table *ret;
1527 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1528
1529 ret = bfd_malloc (amt);
1530 if (ret == NULL)
1531 return NULL;
1532
1533 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1534 {
1535 free (ret);
1536 return NULL;
1537 }
1538
1539 return &ret->root;
1540 }
1541
1542 /* This is a hook for the ELF emulation code in the generic linker to
1543 tell the backend linker what file name to use for the DT_NEEDED
1544 entry for a dynamic object. */
1545
1546 void
1547 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1548 {
1549 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1550 && bfd_get_format (abfd) == bfd_object)
1551 elf_dt_name (abfd) = name;
1552 }
1553
1554 int
1555 bfd_elf_get_dyn_lib_class (bfd *abfd)
1556 {
1557 int lib_class;
1558 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1559 && bfd_get_format (abfd) == bfd_object)
1560 lib_class = elf_dyn_lib_class (abfd);
1561 else
1562 lib_class = 0;
1563 return lib_class;
1564 }
1565
1566 void
1567 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1568 {
1569 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1570 && bfd_get_format (abfd) == bfd_object)
1571 elf_dyn_lib_class (abfd) = lib_class;
1572 }
1573
1574 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1575 the linker ELF emulation code. */
1576
1577 struct bfd_link_needed_list *
1578 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1579 struct bfd_link_info *info)
1580 {
1581 if (! is_elf_hash_table (info->hash))
1582 return NULL;
1583 return elf_hash_table (info)->needed;
1584 }
1585
1586 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1587 hook for the linker ELF emulation code. */
1588
1589 struct bfd_link_needed_list *
1590 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1591 struct bfd_link_info *info)
1592 {
1593 if (! is_elf_hash_table (info->hash))
1594 return NULL;
1595 return elf_hash_table (info)->runpath;
1596 }
1597
1598 /* Get the name actually used for a dynamic object for a link. This
1599 is the SONAME entry if there is one. Otherwise, it is the string
1600 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1601
1602 const char *
1603 bfd_elf_get_dt_soname (bfd *abfd)
1604 {
1605 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1606 && bfd_get_format (abfd) == bfd_object)
1607 return elf_dt_name (abfd);
1608 return NULL;
1609 }
1610
1611 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1612 the ELF linker emulation code. */
1613
1614 bfd_boolean
1615 bfd_elf_get_bfd_needed_list (bfd *abfd,
1616 struct bfd_link_needed_list **pneeded)
1617 {
1618 asection *s;
1619 bfd_byte *dynbuf = NULL;
1620 int elfsec;
1621 unsigned long shlink;
1622 bfd_byte *extdyn, *extdynend;
1623 size_t extdynsize;
1624 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1625
1626 *pneeded = NULL;
1627
1628 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1629 || bfd_get_format (abfd) != bfd_object)
1630 return TRUE;
1631
1632 s = bfd_get_section_by_name (abfd, ".dynamic");
1633 if (s == NULL || s->size == 0)
1634 return TRUE;
1635
1636 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1637 goto error_return;
1638
1639 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1640 if (elfsec == -1)
1641 goto error_return;
1642
1643 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1644
1645 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1646 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1647
1648 extdyn = dynbuf;
1649 extdynend = extdyn + s->size;
1650 for (; extdyn < extdynend; extdyn += extdynsize)
1651 {
1652 Elf_Internal_Dyn dyn;
1653
1654 (*swap_dyn_in) (abfd, extdyn, &dyn);
1655
1656 if (dyn.d_tag == DT_NULL)
1657 break;
1658
1659 if (dyn.d_tag == DT_NEEDED)
1660 {
1661 const char *string;
1662 struct bfd_link_needed_list *l;
1663 unsigned int tagv = dyn.d_un.d_val;
1664 bfd_size_type amt;
1665
1666 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1667 if (string == NULL)
1668 goto error_return;
1669
1670 amt = sizeof *l;
1671 l = bfd_alloc (abfd, amt);
1672 if (l == NULL)
1673 goto error_return;
1674
1675 l->by = abfd;
1676 l->name = string;
1677 l->next = *pneeded;
1678 *pneeded = l;
1679 }
1680 }
1681
1682 free (dynbuf);
1683
1684 return TRUE;
1685
1686 error_return:
1687 if (dynbuf != NULL)
1688 free (dynbuf);
1689 return FALSE;
1690 }
1691 \f
1692 /* Allocate an ELF string table--force the first byte to be zero. */
1693
1694 struct bfd_strtab_hash *
1695 _bfd_elf_stringtab_init (void)
1696 {
1697 struct bfd_strtab_hash *ret;
1698
1699 ret = _bfd_stringtab_init ();
1700 if (ret != NULL)
1701 {
1702 bfd_size_type loc;
1703
1704 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1705 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1706 if (loc == (bfd_size_type) -1)
1707 {
1708 _bfd_stringtab_free (ret);
1709 ret = NULL;
1710 }
1711 }
1712 return ret;
1713 }
1714 \f
1715 /* ELF .o/exec file reading */
1716
1717 /* Create a new bfd section from an ELF section header. */
1718
1719 bfd_boolean
1720 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1721 {
1722 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1723 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1724 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1725 const char *name;
1726
1727 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1728
1729 switch (hdr->sh_type)
1730 {
1731 case SHT_NULL:
1732 /* Inactive section. Throw it away. */
1733 return TRUE;
1734
1735 case SHT_PROGBITS: /* Normal section with contents. */
1736 case SHT_NOBITS: /* .bss section. */
1737 case SHT_HASH: /* .hash section. */
1738 case SHT_NOTE: /* .note section. */
1739 case SHT_INIT_ARRAY: /* .init_array section. */
1740 case SHT_FINI_ARRAY: /* .fini_array section. */
1741 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1742 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1743
1744 case SHT_DYNAMIC: /* Dynamic linking information. */
1745 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1746 return FALSE;
1747 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1748 {
1749 Elf_Internal_Shdr *dynsymhdr;
1750
1751 /* The shared libraries distributed with hpux11 have a bogus
1752 sh_link field for the ".dynamic" section. Find the
1753 string table for the ".dynsym" section instead. */
1754 if (elf_dynsymtab (abfd) != 0)
1755 {
1756 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1757 hdr->sh_link = dynsymhdr->sh_link;
1758 }
1759 else
1760 {
1761 unsigned int i, num_sec;
1762
1763 num_sec = elf_numsections (abfd);
1764 for (i = 1; i < num_sec; i++)
1765 {
1766 dynsymhdr = elf_elfsections (abfd)[i];
1767 if (dynsymhdr->sh_type == SHT_DYNSYM)
1768 {
1769 hdr->sh_link = dynsymhdr->sh_link;
1770 break;
1771 }
1772 }
1773 }
1774 }
1775 break;
1776
1777 case SHT_SYMTAB: /* A symbol table */
1778 if (elf_onesymtab (abfd) == shindex)
1779 return TRUE;
1780
1781 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1782 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1783 elf_onesymtab (abfd) = shindex;
1784 elf_tdata (abfd)->symtab_hdr = *hdr;
1785 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1786 abfd->flags |= HAS_SYMS;
1787
1788 /* Sometimes a shared object will map in the symbol table. If
1789 SHF_ALLOC is set, and this is a shared object, then we also
1790 treat this section as a BFD section. We can not base the
1791 decision purely on SHF_ALLOC, because that flag is sometimes
1792 set in a relocatable object file, which would confuse the
1793 linker. */
1794 if ((hdr->sh_flags & SHF_ALLOC) != 0
1795 && (abfd->flags & DYNAMIC) != 0
1796 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1797 return FALSE;
1798
1799 return TRUE;
1800
1801 case SHT_DYNSYM: /* A dynamic symbol table */
1802 if (elf_dynsymtab (abfd) == shindex)
1803 return TRUE;
1804
1805 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1806 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1807 elf_dynsymtab (abfd) = shindex;
1808 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1809 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1810 abfd->flags |= HAS_SYMS;
1811
1812 /* Besides being a symbol table, we also treat this as a regular
1813 section, so that objcopy can handle it. */
1814 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1815
1816 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1817 if (elf_symtab_shndx (abfd) == shindex)
1818 return TRUE;
1819
1820 /* Get the associated symbol table. */
1821 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1822 || hdr->sh_link != elf_onesymtab (abfd))
1823 return FALSE;
1824
1825 elf_symtab_shndx (abfd) = shindex;
1826 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1827 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1828 return TRUE;
1829
1830 case SHT_STRTAB: /* A string table */
1831 if (hdr->bfd_section != NULL)
1832 return TRUE;
1833 if (ehdr->e_shstrndx == shindex)
1834 {
1835 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1836 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1837 return TRUE;
1838 }
1839 {
1840 unsigned int i, num_sec;
1841
1842 num_sec = elf_numsections (abfd);
1843 for (i = 1; i < num_sec; i++)
1844 {
1845 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1846 if (hdr2->sh_link == shindex)
1847 {
1848 if (! bfd_section_from_shdr (abfd, i))
1849 return FALSE;
1850 if (elf_onesymtab (abfd) == i)
1851 {
1852 elf_tdata (abfd)->strtab_hdr = *hdr;
1853 elf_elfsections (abfd)[shindex] =
1854 &elf_tdata (abfd)->strtab_hdr;
1855 return TRUE;
1856 }
1857 if (elf_dynsymtab (abfd) == i)
1858 {
1859 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1860 elf_elfsections (abfd)[shindex] = hdr =
1861 &elf_tdata (abfd)->dynstrtab_hdr;
1862 /* We also treat this as a regular section, so
1863 that objcopy can handle it. */
1864 break;
1865 }
1866 #if 0 /* Not handling other string tables specially right now. */
1867 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1868 /* We have a strtab for some random other section. */
1869 newsect = (asection *) hdr2->bfd_section;
1870 if (!newsect)
1871 break;
1872 hdr->bfd_section = newsect;
1873 hdr2 = &elf_section_data (newsect)->str_hdr;
1874 *hdr2 = *hdr;
1875 elf_elfsections (abfd)[shindex] = hdr2;
1876 #endif
1877 }
1878 }
1879 }
1880
1881 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1882
1883 case SHT_REL:
1884 case SHT_RELA:
1885 /* *These* do a lot of work -- but build no sections! */
1886 {
1887 asection *target_sect;
1888 Elf_Internal_Shdr *hdr2;
1889 unsigned int num_sec = elf_numsections (abfd);
1890
1891 /* Check for a bogus link to avoid crashing. */
1892 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1893 || hdr->sh_link >= num_sec)
1894 {
1895 ((*_bfd_error_handler)
1896 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1897 abfd, hdr->sh_link, name, shindex));
1898 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1899 }
1900
1901 /* For some incomprehensible reason Oracle distributes
1902 libraries for Solaris in which some of the objects have
1903 bogus sh_link fields. It would be nice if we could just
1904 reject them, but, unfortunately, some people need to use
1905 them. We scan through the section headers; if we find only
1906 one suitable symbol table, we clobber the sh_link to point
1907 to it. I hope this doesn't break anything. */
1908 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1909 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1910 {
1911 unsigned int scan;
1912 int found;
1913
1914 found = 0;
1915 for (scan = 1; scan < num_sec; scan++)
1916 {
1917 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1918 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1919 {
1920 if (found != 0)
1921 {
1922 found = 0;
1923 break;
1924 }
1925 found = scan;
1926 }
1927 }
1928 if (found != 0)
1929 hdr->sh_link = found;
1930 }
1931
1932 /* Get the symbol table. */
1933 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1934 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1935 return FALSE;
1936
1937 /* If this reloc section does not use the main symbol table we
1938 don't treat it as a reloc section. BFD can't adequately
1939 represent such a section, so at least for now, we don't
1940 try. We just present it as a normal section. We also
1941 can't use it as a reloc section if it points to the null
1942 section. */
1943 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1944 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1945
1946 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1947 return FALSE;
1948 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1949 if (target_sect == NULL)
1950 return FALSE;
1951
1952 if ((target_sect->flags & SEC_RELOC) == 0
1953 || target_sect->reloc_count == 0)
1954 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1955 else
1956 {
1957 bfd_size_type amt;
1958 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1959 amt = sizeof (*hdr2);
1960 hdr2 = bfd_alloc (abfd, amt);
1961 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1962 }
1963 *hdr2 = *hdr;
1964 elf_elfsections (abfd)[shindex] = hdr2;
1965 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1966 target_sect->flags |= SEC_RELOC;
1967 target_sect->relocation = NULL;
1968 target_sect->rel_filepos = hdr->sh_offset;
1969 /* In the section to which the relocations apply, mark whether
1970 its relocations are of the REL or RELA variety. */
1971 if (hdr->sh_size != 0)
1972 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1973 abfd->flags |= HAS_RELOC;
1974 return TRUE;
1975 }
1976 break;
1977
1978 case SHT_GNU_verdef:
1979 elf_dynverdef (abfd) = shindex;
1980 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1981 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1982 break;
1983
1984 case SHT_GNU_versym:
1985 elf_dynversym (abfd) = shindex;
1986 elf_tdata (abfd)->dynversym_hdr = *hdr;
1987 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1988 break;
1989
1990 case SHT_GNU_verneed:
1991 elf_dynverref (abfd) = shindex;
1992 elf_tdata (abfd)->dynverref_hdr = *hdr;
1993 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1994 break;
1995
1996 case SHT_SHLIB:
1997 return TRUE;
1998
1999 case SHT_GROUP:
2000 /* We need a BFD section for objcopy and relocatable linking,
2001 and it's handy to have the signature available as the section
2002 name. */
2003 name = group_signature (abfd, hdr);
2004 if (name == NULL)
2005 return FALSE;
2006 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
2007 return FALSE;
2008 if (hdr->contents != NULL)
2009 {
2010 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2011 unsigned int n_elt = hdr->sh_size / 4;
2012 asection *s;
2013
2014 if (idx->flags & GRP_COMDAT)
2015 hdr->bfd_section->flags
2016 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2017
2018 /* We try to keep the same section order as it comes in. */
2019 idx += n_elt;
2020 while (--n_elt != 0)
2021 if ((s = (--idx)->shdr->bfd_section) != NULL
2022 && elf_next_in_group (s) != NULL)
2023 {
2024 elf_next_in_group (hdr->bfd_section) = s;
2025 break;
2026 }
2027 }
2028 break;
2029
2030 default:
2031 /* Check for any processor-specific section types. */
2032 {
2033 if (bed->elf_backend_section_from_shdr)
2034 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
2035 }
2036 break;
2037 }
2038
2039 return TRUE;
2040 }
2041
2042 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2043 Return SEC for sections that have no elf section, and NULL on error. */
2044
2045 asection *
2046 bfd_section_from_r_symndx (bfd *abfd,
2047 struct sym_sec_cache *cache,
2048 asection *sec,
2049 unsigned long r_symndx)
2050 {
2051 Elf_Internal_Shdr *symtab_hdr;
2052 unsigned char esym[sizeof (Elf64_External_Sym)];
2053 Elf_External_Sym_Shndx eshndx;
2054 Elf_Internal_Sym isym;
2055 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2056
2057 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2058 return cache->sec[ent];
2059
2060 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2061 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2062 &isym, esym, &eshndx) == NULL)
2063 return NULL;
2064
2065 if (cache->abfd != abfd)
2066 {
2067 memset (cache->indx, -1, sizeof (cache->indx));
2068 cache->abfd = abfd;
2069 }
2070 cache->indx[ent] = r_symndx;
2071 cache->sec[ent] = sec;
2072 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2073 || isym.st_shndx > SHN_HIRESERVE)
2074 {
2075 asection *s;
2076 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2077 if (s != NULL)
2078 cache->sec[ent] = s;
2079 }
2080 return cache->sec[ent];
2081 }
2082
2083 /* Given an ELF section number, retrieve the corresponding BFD
2084 section. */
2085
2086 asection *
2087 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2088 {
2089 if (index >= elf_numsections (abfd))
2090 return NULL;
2091 return elf_elfsections (abfd)[index]->bfd_section;
2092 }
2093
2094 static struct bfd_elf_special_section const special_sections[] =
2095 {
2096 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2097 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2098 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2099 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2100 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2101 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2102 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2103 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2104 { ".line", 5, 0, SHT_PROGBITS, 0 },
2105 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2106 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2107 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2108 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2109 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2110 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2111 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2112 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2113 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2114 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2115 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2116 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2117 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2118 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2119 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2120 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2121 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2122 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2123 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2124 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2125 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2126 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2127 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2128 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2129 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2130 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2131 { ".note", 5, -1, SHT_NOTE, 0 },
2132 { ".rela", 5, -1, SHT_RELA, 0 },
2133 { ".rel", 4, -1, SHT_REL, 0 },
2134 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2135 { NULL, 0, 0, 0, 0 }
2136 };
2137
2138 static const struct bfd_elf_special_section *
2139 get_special_section (const char *name,
2140 const struct bfd_elf_special_section *special_sections,
2141 unsigned int rela)
2142 {
2143 int i;
2144 int len = strlen (name);
2145
2146 for (i = 0; special_sections[i].prefix != NULL; i++)
2147 {
2148 int suffix_len;
2149 int prefix_len = special_sections[i].prefix_length;
2150
2151 if (len < prefix_len)
2152 continue;
2153 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2154 continue;
2155
2156 suffix_len = special_sections[i].suffix_length;
2157 if (suffix_len <= 0)
2158 {
2159 if (name[prefix_len] != 0)
2160 {
2161 if (suffix_len == 0)
2162 continue;
2163 if (name[prefix_len] != '.'
2164 && (suffix_len == -2
2165 || (rela && special_sections[i].type == SHT_REL)))
2166 continue;
2167 }
2168 }
2169 else
2170 {
2171 if (len < prefix_len + suffix_len)
2172 continue;
2173 if (memcmp (name + len - suffix_len,
2174 special_sections[i].prefix + prefix_len,
2175 suffix_len) != 0)
2176 continue;
2177 }
2178 return &special_sections[i];
2179 }
2180
2181 return NULL;
2182 }
2183
2184 const struct bfd_elf_special_section *
2185 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2186 {
2187 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2188 const struct bfd_elf_special_section *ssect = NULL;
2189
2190 /* See if this is one of the special sections. */
2191 if (name)
2192 {
2193 unsigned int rela = bed->default_use_rela_p;
2194
2195 if (bed->special_sections)
2196 ssect = get_special_section (name, bed->special_sections, rela);
2197
2198 if (! ssect)
2199 ssect = get_special_section (name, special_sections, rela);
2200 }
2201
2202 return ssect;
2203 }
2204
2205 bfd_boolean
2206 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2207 {
2208 struct bfd_elf_section_data *sdata;
2209 const struct bfd_elf_special_section *ssect;
2210
2211 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2212 if (sdata == NULL)
2213 {
2214 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2215 if (sdata == NULL)
2216 return FALSE;
2217 sec->used_by_bfd = sdata;
2218 }
2219
2220 elf_section_type (sec) = SHT_NULL;
2221 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2222 if (ssect != NULL)
2223 {
2224 elf_section_type (sec) = ssect->type;
2225 elf_section_flags (sec) = ssect->attr;
2226 }
2227
2228 /* Indicate whether or not this section should use RELA relocations. */
2229 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2230
2231 return TRUE;
2232 }
2233
2234 /* Create a new bfd section from an ELF program header.
2235
2236 Since program segments have no names, we generate a synthetic name
2237 of the form segment<NUM>, where NUM is generally the index in the
2238 program header table. For segments that are split (see below) we
2239 generate the names segment<NUM>a and segment<NUM>b.
2240
2241 Note that some program segments may have a file size that is different than
2242 (less than) the memory size. All this means is that at execution the
2243 system must allocate the amount of memory specified by the memory size,
2244 but only initialize it with the first "file size" bytes read from the
2245 file. This would occur for example, with program segments consisting
2246 of combined data+bss.
2247
2248 To handle the above situation, this routine generates TWO bfd sections
2249 for the single program segment. The first has the length specified by
2250 the file size of the segment, and the second has the length specified
2251 by the difference between the two sizes. In effect, the segment is split
2252 into it's initialized and uninitialized parts.
2253
2254 */
2255
2256 bfd_boolean
2257 _bfd_elf_make_section_from_phdr (bfd *abfd,
2258 Elf_Internal_Phdr *hdr,
2259 int index,
2260 const char *typename)
2261 {
2262 asection *newsect;
2263 char *name;
2264 char namebuf[64];
2265 size_t len;
2266 int split;
2267
2268 split = ((hdr->p_memsz > 0)
2269 && (hdr->p_filesz > 0)
2270 && (hdr->p_memsz > hdr->p_filesz));
2271 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2272 len = strlen (namebuf) + 1;
2273 name = bfd_alloc (abfd, len);
2274 if (!name)
2275 return FALSE;
2276 memcpy (name, namebuf, len);
2277 newsect = bfd_make_section (abfd, name);
2278 if (newsect == NULL)
2279 return FALSE;
2280 newsect->vma = hdr->p_vaddr;
2281 newsect->lma = hdr->p_paddr;
2282 newsect->size = hdr->p_filesz;
2283 newsect->filepos = hdr->p_offset;
2284 newsect->flags |= SEC_HAS_CONTENTS;
2285 newsect->alignment_power = bfd_log2 (hdr->p_align);
2286 if (hdr->p_type == PT_LOAD)
2287 {
2288 newsect->flags |= SEC_ALLOC;
2289 newsect->flags |= SEC_LOAD;
2290 if (hdr->p_flags & PF_X)
2291 {
2292 /* FIXME: all we known is that it has execute PERMISSION,
2293 may be data. */
2294 newsect->flags |= SEC_CODE;
2295 }
2296 }
2297 if (!(hdr->p_flags & PF_W))
2298 {
2299 newsect->flags |= SEC_READONLY;
2300 }
2301
2302 if (split)
2303 {
2304 sprintf (namebuf, "%s%db", typename, index);
2305 len = strlen (namebuf) + 1;
2306 name = bfd_alloc (abfd, len);
2307 if (!name)
2308 return FALSE;
2309 memcpy (name, namebuf, len);
2310 newsect = bfd_make_section (abfd, name);
2311 if (newsect == NULL)
2312 return FALSE;
2313 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2314 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2315 newsect->size = hdr->p_memsz - hdr->p_filesz;
2316 if (hdr->p_type == PT_LOAD)
2317 {
2318 newsect->flags |= SEC_ALLOC;
2319 if (hdr->p_flags & PF_X)
2320 newsect->flags |= SEC_CODE;
2321 }
2322 if (!(hdr->p_flags & PF_W))
2323 newsect->flags |= SEC_READONLY;
2324 }
2325
2326 return TRUE;
2327 }
2328
2329 bfd_boolean
2330 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2331 {
2332 const struct elf_backend_data *bed;
2333
2334 switch (hdr->p_type)
2335 {
2336 case PT_NULL:
2337 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2338
2339 case PT_LOAD:
2340 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2341
2342 case PT_DYNAMIC:
2343 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2344
2345 case PT_INTERP:
2346 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2347
2348 case PT_NOTE:
2349 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2350 return FALSE;
2351 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2352 return FALSE;
2353 return TRUE;
2354
2355 case PT_SHLIB:
2356 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2357
2358 case PT_PHDR:
2359 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2360
2361 case PT_GNU_EH_FRAME:
2362 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2363 "eh_frame_hdr");
2364
2365 case PT_GNU_STACK:
2366 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2367
2368 case PT_GNU_RELRO:
2369 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2370
2371 default:
2372 /* Check for any processor-specific program segment types.
2373 If no handler for them, default to making "segment" sections. */
2374 bed = get_elf_backend_data (abfd);
2375 if (bed->elf_backend_section_from_phdr)
2376 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2377 else
2378 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2379 }
2380 }
2381
2382 /* Initialize REL_HDR, the section-header for new section, containing
2383 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2384 relocations; otherwise, we use REL relocations. */
2385
2386 bfd_boolean
2387 _bfd_elf_init_reloc_shdr (bfd *abfd,
2388 Elf_Internal_Shdr *rel_hdr,
2389 asection *asect,
2390 bfd_boolean use_rela_p)
2391 {
2392 char *name;
2393 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2394 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2395
2396 name = bfd_alloc (abfd, amt);
2397 if (name == NULL)
2398 return FALSE;
2399 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2400 rel_hdr->sh_name =
2401 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2402 FALSE);
2403 if (rel_hdr->sh_name == (unsigned int) -1)
2404 return FALSE;
2405 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2406 rel_hdr->sh_entsize = (use_rela_p
2407 ? bed->s->sizeof_rela
2408 : bed->s->sizeof_rel);
2409 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2410 rel_hdr->sh_flags = 0;
2411 rel_hdr->sh_addr = 0;
2412 rel_hdr->sh_size = 0;
2413 rel_hdr->sh_offset = 0;
2414
2415 return TRUE;
2416 }
2417
2418 /* Set up an ELF internal section header for a section. */
2419
2420 static void
2421 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2422 {
2423 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2424 bfd_boolean *failedptr = failedptrarg;
2425 Elf_Internal_Shdr *this_hdr;
2426
2427 if (*failedptr)
2428 {
2429 /* We already failed; just get out of the bfd_map_over_sections
2430 loop. */
2431 return;
2432 }
2433
2434 this_hdr = &elf_section_data (asect)->this_hdr;
2435
2436 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2437 asect->name, FALSE);
2438 if (this_hdr->sh_name == (unsigned int) -1)
2439 {
2440 *failedptr = TRUE;
2441 return;
2442 }
2443
2444 this_hdr->sh_flags = 0;
2445
2446 if ((asect->flags & SEC_ALLOC) != 0
2447 || asect->user_set_vma)
2448 this_hdr->sh_addr = asect->vma;
2449 else
2450 this_hdr->sh_addr = 0;
2451
2452 this_hdr->sh_offset = 0;
2453 this_hdr->sh_size = asect->size;
2454 this_hdr->sh_link = 0;
2455 this_hdr->sh_addralign = 1 << asect->alignment_power;
2456 /* The sh_entsize and sh_info fields may have been set already by
2457 copy_private_section_data. */
2458
2459 this_hdr->bfd_section = asect;
2460 this_hdr->contents = NULL;
2461
2462 /* If the section type is unspecified, we set it based on
2463 asect->flags. */
2464 if (this_hdr->sh_type == SHT_NULL)
2465 {
2466 if ((asect->flags & SEC_GROUP) != 0)
2467 {
2468 /* We also need to mark SHF_GROUP here for relocatable
2469 link. */
2470 struct bfd_link_order *l;
2471 asection *elt;
2472
2473 for (l = asect->link_order_head; l != NULL; l = l->next)
2474 if (l->type == bfd_indirect_link_order
2475 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2476 do
2477 {
2478 /* The name is not important. Anything will do. */
2479 elf_group_name (elt->output_section) = "G";
2480 elf_section_flags (elt->output_section) |= SHF_GROUP;
2481
2482 elt = elf_next_in_group (elt);
2483 /* During a relocatable link, the lists are
2484 circular. */
2485 }
2486 while (elt != elf_next_in_group (l->u.indirect.section));
2487
2488 this_hdr->sh_type = SHT_GROUP;
2489 }
2490 else if ((asect->flags & SEC_ALLOC) != 0
2491 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2492 || (asect->flags & SEC_NEVER_LOAD) != 0))
2493 this_hdr->sh_type = SHT_NOBITS;
2494 else
2495 this_hdr->sh_type = SHT_PROGBITS;
2496 }
2497
2498 switch (this_hdr->sh_type)
2499 {
2500 default:
2501 break;
2502
2503 case SHT_STRTAB:
2504 case SHT_INIT_ARRAY:
2505 case SHT_FINI_ARRAY:
2506 case SHT_PREINIT_ARRAY:
2507 case SHT_NOTE:
2508 case SHT_NOBITS:
2509 case SHT_PROGBITS:
2510 break;
2511
2512 case SHT_HASH:
2513 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2514 break;
2515
2516 case SHT_DYNSYM:
2517 this_hdr->sh_entsize = bed->s->sizeof_sym;
2518 break;
2519
2520 case SHT_DYNAMIC:
2521 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2522 break;
2523
2524 case SHT_RELA:
2525 if (get_elf_backend_data (abfd)->may_use_rela_p)
2526 this_hdr->sh_entsize = bed->s->sizeof_rela;
2527 break;
2528
2529 case SHT_REL:
2530 if (get_elf_backend_data (abfd)->may_use_rel_p)
2531 this_hdr->sh_entsize = bed->s->sizeof_rel;
2532 break;
2533
2534 case SHT_GNU_versym:
2535 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2536 break;
2537
2538 case SHT_GNU_verdef:
2539 this_hdr->sh_entsize = 0;
2540 /* objcopy or strip will copy over sh_info, but may not set
2541 cverdefs. The linker will set cverdefs, but sh_info will be
2542 zero. */
2543 if (this_hdr->sh_info == 0)
2544 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2545 else
2546 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2547 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2548 break;
2549
2550 case SHT_GNU_verneed:
2551 this_hdr->sh_entsize = 0;
2552 /* objcopy or strip will copy over sh_info, but may not set
2553 cverrefs. The linker will set cverrefs, but sh_info will be
2554 zero. */
2555 if (this_hdr->sh_info == 0)
2556 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2557 else
2558 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2559 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2560 break;
2561
2562 case SHT_GROUP:
2563 this_hdr->sh_entsize = 4;
2564 break;
2565 }
2566
2567 if ((asect->flags & SEC_ALLOC) != 0)
2568 this_hdr->sh_flags |= SHF_ALLOC;
2569 if ((asect->flags & SEC_READONLY) == 0)
2570 this_hdr->sh_flags |= SHF_WRITE;
2571 if ((asect->flags & SEC_CODE) != 0)
2572 this_hdr->sh_flags |= SHF_EXECINSTR;
2573 if ((asect->flags & SEC_MERGE) != 0)
2574 {
2575 this_hdr->sh_flags |= SHF_MERGE;
2576 this_hdr->sh_entsize = asect->entsize;
2577 if ((asect->flags & SEC_STRINGS) != 0)
2578 this_hdr->sh_flags |= SHF_STRINGS;
2579 }
2580 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2581 this_hdr->sh_flags |= SHF_GROUP;
2582 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2583 {
2584 this_hdr->sh_flags |= SHF_TLS;
2585 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2586 {
2587 struct bfd_link_order *o;
2588
2589 this_hdr->sh_size = 0;
2590 for (o = asect->link_order_head; o != NULL; o = o->next)
2591 if (this_hdr->sh_size < o->offset + o->size)
2592 this_hdr->sh_size = o->offset + o->size;
2593 if (this_hdr->sh_size)
2594 this_hdr->sh_type = SHT_NOBITS;
2595 }
2596 }
2597
2598 /* Check for processor-specific section types. */
2599 if (bed->elf_backend_fake_sections
2600 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2601 *failedptr = TRUE;
2602
2603 /* If the section has relocs, set up a section header for the
2604 SHT_REL[A] section. If two relocation sections are required for
2605 this section, it is up to the processor-specific back-end to
2606 create the other. */
2607 if ((asect->flags & SEC_RELOC) != 0
2608 && !_bfd_elf_init_reloc_shdr (abfd,
2609 &elf_section_data (asect)->rel_hdr,
2610 asect,
2611 asect->use_rela_p))
2612 *failedptr = TRUE;
2613 }
2614
2615 /* Fill in the contents of a SHT_GROUP section. */
2616
2617 void
2618 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2619 {
2620 bfd_boolean *failedptr = failedptrarg;
2621 unsigned long symindx;
2622 asection *elt, *first;
2623 unsigned char *loc;
2624 struct bfd_link_order *l;
2625 bfd_boolean gas;
2626
2627 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2628 || *failedptr)
2629 return;
2630
2631 symindx = 0;
2632 if (elf_group_id (sec) != NULL)
2633 symindx = elf_group_id (sec)->udata.i;
2634
2635 if (symindx == 0)
2636 {
2637 /* If called from the assembler, swap_out_syms will have set up
2638 elf_section_syms; If called for "ld -r", use target_index. */
2639 if (elf_section_syms (abfd) != NULL)
2640 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2641 else
2642 symindx = sec->target_index;
2643 }
2644 elf_section_data (sec)->this_hdr.sh_info = symindx;
2645
2646 /* The contents won't be allocated for "ld -r" or objcopy. */
2647 gas = TRUE;
2648 if (sec->contents == NULL)
2649 {
2650 gas = FALSE;
2651 sec->contents = bfd_alloc (abfd, sec->size);
2652
2653 /* Arrange for the section to be written out. */
2654 elf_section_data (sec)->this_hdr.contents = sec->contents;
2655 if (sec->contents == NULL)
2656 {
2657 *failedptr = TRUE;
2658 return;
2659 }
2660 }
2661
2662 loc = sec->contents + sec->size;
2663
2664 /* Get the pointer to the first section in the group that gas
2665 squirreled away here. objcopy arranges for this to be set to the
2666 start of the input section group. */
2667 first = elt = elf_next_in_group (sec);
2668
2669 /* First element is a flag word. Rest of section is elf section
2670 indices for all the sections of the group. Write them backwards
2671 just to keep the group in the same order as given in .section
2672 directives, not that it matters. */
2673 while (elt != NULL)
2674 {
2675 asection *s;
2676 unsigned int idx;
2677
2678 loc -= 4;
2679 s = elt;
2680 if (!gas)
2681 s = s->output_section;
2682 idx = 0;
2683 if (s != NULL)
2684 idx = elf_section_data (s)->this_idx;
2685 H_PUT_32 (abfd, idx, loc);
2686 elt = elf_next_in_group (elt);
2687 if (elt == first)
2688 break;
2689 }
2690
2691 /* If this is a relocatable link, then the above did nothing because
2692 SEC is the output section. Look through the input sections
2693 instead. */
2694 for (l = sec->link_order_head; l != NULL; l = l->next)
2695 if (l->type == bfd_indirect_link_order
2696 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2697 do
2698 {
2699 loc -= 4;
2700 H_PUT_32 (abfd,
2701 elf_section_data (elt->output_section)->this_idx, loc);
2702 elt = elf_next_in_group (elt);
2703 /* During a relocatable link, the lists are circular. */
2704 }
2705 while (elt != elf_next_in_group (l->u.indirect.section));
2706
2707 if ((loc -= 4) != sec->contents)
2708 abort ();
2709
2710 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2711 }
2712
2713 /* Assign all ELF section numbers. The dummy first section is handled here
2714 too. The link/info pointers for the standard section types are filled
2715 in here too, while we're at it. */
2716
2717 static bfd_boolean
2718 assign_section_numbers (bfd *abfd)
2719 {
2720 struct elf_obj_tdata *t = elf_tdata (abfd);
2721 asection *sec;
2722 unsigned int section_number, secn;
2723 Elf_Internal_Shdr **i_shdrp;
2724 bfd_size_type amt;
2725
2726 section_number = 1;
2727
2728 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2729
2730 for (sec = abfd->sections; sec; sec = sec->next)
2731 {
2732 struct bfd_elf_section_data *d = elf_section_data (sec);
2733
2734 if (section_number == SHN_LORESERVE)
2735 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2736 d->this_idx = section_number++;
2737 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2738 if ((sec->flags & SEC_RELOC) == 0)
2739 d->rel_idx = 0;
2740 else
2741 {
2742 if (section_number == SHN_LORESERVE)
2743 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2744 d->rel_idx = section_number++;
2745 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2746 }
2747
2748 if (d->rel_hdr2)
2749 {
2750 if (section_number == SHN_LORESERVE)
2751 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2752 d->rel_idx2 = section_number++;
2753 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2754 }
2755 else
2756 d->rel_idx2 = 0;
2757 }
2758
2759 if (section_number == SHN_LORESERVE)
2760 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2761 t->shstrtab_section = section_number++;
2762 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2763 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2764
2765 if (bfd_get_symcount (abfd) > 0)
2766 {
2767 if (section_number == SHN_LORESERVE)
2768 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2769 t->symtab_section = section_number++;
2770 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2771 if (section_number > SHN_LORESERVE - 2)
2772 {
2773 if (section_number == SHN_LORESERVE)
2774 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2775 t->symtab_shndx_section = section_number++;
2776 t->symtab_shndx_hdr.sh_name
2777 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2778 ".symtab_shndx", FALSE);
2779 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2780 return FALSE;
2781 }
2782 if (section_number == SHN_LORESERVE)
2783 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2784 t->strtab_section = section_number++;
2785 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2786 }
2787
2788 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2789 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2790
2791 elf_numsections (abfd) = section_number;
2792 elf_elfheader (abfd)->e_shnum = section_number;
2793 if (section_number > SHN_LORESERVE)
2794 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2795
2796 /* Set up the list of section header pointers, in agreement with the
2797 indices. */
2798 amt = section_number * sizeof (Elf_Internal_Shdr *);
2799 i_shdrp = bfd_zalloc (abfd, amt);
2800 if (i_shdrp == NULL)
2801 return FALSE;
2802
2803 amt = sizeof (Elf_Internal_Shdr);
2804 i_shdrp[0] = bfd_zalloc (abfd, amt);
2805 if (i_shdrp[0] == NULL)
2806 {
2807 bfd_release (abfd, i_shdrp);
2808 return FALSE;
2809 }
2810
2811 elf_elfsections (abfd) = i_shdrp;
2812
2813 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2814 if (bfd_get_symcount (abfd) > 0)
2815 {
2816 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2817 if (elf_numsections (abfd) > SHN_LORESERVE)
2818 {
2819 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2820 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2821 }
2822 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2823 t->symtab_hdr.sh_link = t->strtab_section;
2824 }
2825
2826 for (sec = abfd->sections; sec; sec = sec->next)
2827 {
2828 struct bfd_elf_section_data *d = elf_section_data (sec);
2829 asection *s;
2830 const char *name;
2831
2832 i_shdrp[d->this_idx] = &d->this_hdr;
2833 if (d->rel_idx != 0)
2834 i_shdrp[d->rel_idx] = &d->rel_hdr;
2835 if (d->rel_idx2 != 0)
2836 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2837
2838 /* Fill in the sh_link and sh_info fields while we're at it. */
2839
2840 /* sh_link of a reloc section is the section index of the symbol
2841 table. sh_info is the section index of the section to which
2842 the relocation entries apply. */
2843 if (d->rel_idx != 0)
2844 {
2845 d->rel_hdr.sh_link = t->symtab_section;
2846 d->rel_hdr.sh_info = d->this_idx;
2847 }
2848 if (d->rel_idx2 != 0)
2849 {
2850 d->rel_hdr2->sh_link = t->symtab_section;
2851 d->rel_hdr2->sh_info = d->this_idx;
2852 }
2853
2854 /* We need to set up sh_link for SHF_LINK_ORDER. */
2855 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2856 {
2857 s = elf_linked_to_section (sec);
2858 if (s)
2859 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2860 else
2861 {
2862 struct bfd_link_order *p;
2863
2864 /* Find out what the corresponding section in output
2865 is. */
2866 for (p = sec->link_order_head; p != NULL; p = p->next)
2867 {
2868 s = p->u.indirect.section;
2869 if (p->type == bfd_indirect_link_order
2870 && (bfd_get_flavour (s->owner)
2871 == bfd_target_elf_flavour))
2872 {
2873 Elf_Internal_Shdr ** const elf_shdrp
2874 = elf_elfsections (s->owner);
2875 int elfsec
2876 = _bfd_elf_section_from_bfd_section (s->owner, s);
2877 elfsec = elf_shdrp[elfsec]->sh_link;
2878 /* PR 290:
2879 The Intel C compiler generates SHT_IA_64_UNWIND with
2880 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2881 sh_info fields. Hence we could get the situation
2882 where elfsec is 0. */
2883 if (elfsec == 0)
2884 {
2885 const struct elf_backend_data *bed
2886 = get_elf_backend_data (abfd);
2887 if (bed->link_order_error_handler)
2888 bed->link_order_error_handler
2889 (_("%B: warning: sh_link not set for section `%S'"),
2890 abfd, s);
2891 }
2892 else
2893 {
2894 s = elf_shdrp[elfsec]->bfd_section->output_section;
2895 BFD_ASSERT (s != NULL);
2896 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2897 }
2898 break;
2899 }
2900 }
2901 }
2902 }
2903
2904 switch (d->this_hdr.sh_type)
2905 {
2906 case SHT_REL:
2907 case SHT_RELA:
2908 /* A reloc section which we are treating as a normal BFD
2909 section. sh_link is the section index of the symbol
2910 table. sh_info is the section index of the section to
2911 which the relocation entries apply. We assume that an
2912 allocated reloc section uses the dynamic symbol table.
2913 FIXME: How can we be sure? */
2914 s = bfd_get_section_by_name (abfd, ".dynsym");
2915 if (s != NULL)
2916 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2917
2918 /* We look up the section the relocs apply to by name. */
2919 name = sec->name;
2920 if (d->this_hdr.sh_type == SHT_REL)
2921 name += 4;
2922 else
2923 name += 5;
2924 s = bfd_get_section_by_name (abfd, name);
2925 if (s != NULL)
2926 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2927 break;
2928
2929 case SHT_STRTAB:
2930 /* We assume that a section named .stab*str is a stabs
2931 string section. We look for a section with the same name
2932 but without the trailing ``str'', and set its sh_link
2933 field to point to this section. */
2934 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2935 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2936 {
2937 size_t len;
2938 char *alc;
2939
2940 len = strlen (sec->name);
2941 alc = bfd_malloc (len - 2);
2942 if (alc == NULL)
2943 return FALSE;
2944 memcpy (alc, sec->name, len - 3);
2945 alc[len - 3] = '\0';
2946 s = bfd_get_section_by_name (abfd, alc);
2947 free (alc);
2948 if (s != NULL)
2949 {
2950 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2951
2952 /* This is a .stab section. */
2953 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2954 elf_section_data (s)->this_hdr.sh_entsize
2955 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2956 }
2957 }
2958 break;
2959
2960 case SHT_DYNAMIC:
2961 case SHT_DYNSYM:
2962 case SHT_GNU_verneed:
2963 case SHT_GNU_verdef:
2964 /* sh_link is the section header index of the string table
2965 used for the dynamic entries, or the symbol table, or the
2966 version strings. */
2967 s = bfd_get_section_by_name (abfd, ".dynstr");
2968 if (s != NULL)
2969 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2970 break;
2971
2972 case SHT_HASH:
2973 case SHT_GNU_versym:
2974 /* sh_link is the section header index of the symbol table
2975 this hash table or version table is for. */
2976 s = bfd_get_section_by_name (abfd, ".dynsym");
2977 if (s != NULL)
2978 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2979 break;
2980
2981 case SHT_GROUP:
2982 d->this_hdr.sh_link = t->symtab_section;
2983 }
2984 }
2985
2986 for (secn = 1; secn < section_number; ++secn)
2987 if (i_shdrp[secn] == NULL)
2988 i_shdrp[secn] = i_shdrp[0];
2989 else
2990 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2991 i_shdrp[secn]->sh_name);
2992 return TRUE;
2993 }
2994
2995 /* Map symbol from it's internal number to the external number, moving
2996 all local symbols to be at the head of the list. */
2997
2998 static int
2999 sym_is_global (bfd *abfd, asymbol *sym)
3000 {
3001 /* If the backend has a special mapping, use it. */
3002 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3003 if (bed->elf_backend_sym_is_global)
3004 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3005
3006 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3007 || bfd_is_und_section (bfd_get_section (sym))
3008 || bfd_is_com_section (bfd_get_section (sym)));
3009 }
3010
3011 static bfd_boolean
3012 elf_map_symbols (bfd *abfd)
3013 {
3014 unsigned int symcount = bfd_get_symcount (abfd);
3015 asymbol **syms = bfd_get_outsymbols (abfd);
3016 asymbol **sect_syms;
3017 unsigned int num_locals = 0;
3018 unsigned int num_globals = 0;
3019 unsigned int num_locals2 = 0;
3020 unsigned int num_globals2 = 0;
3021 int max_index = 0;
3022 unsigned int idx;
3023 asection *asect;
3024 asymbol **new_syms;
3025 bfd_size_type amt;
3026
3027 #ifdef DEBUG
3028 fprintf (stderr, "elf_map_symbols\n");
3029 fflush (stderr);
3030 #endif
3031
3032 for (asect = abfd->sections; asect; asect = asect->next)
3033 {
3034 if (max_index < asect->index)
3035 max_index = asect->index;
3036 }
3037
3038 max_index++;
3039 amt = max_index * sizeof (asymbol *);
3040 sect_syms = bfd_zalloc (abfd, amt);
3041 if (sect_syms == NULL)
3042 return FALSE;
3043 elf_section_syms (abfd) = sect_syms;
3044 elf_num_section_syms (abfd) = max_index;
3045
3046 /* Init sect_syms entries for any section symbols we have already
3047 decided to output. */
3048 for (idx = 0; idx < symcount; idx++)
3049 {
3050 asymbol *sym = syms[idx];
3051
3052 if ((sym->flags & BSF_SECTION_SYM) != 0
3053 && sym->value == 0)
3054 {
3055 asection *sec;
3056
3057 sec = sym->section;
3058
3059 if (sec->owner != NULL)
3060 {
3061 if (sec->owner != abfd)
3062 {
3063 if (sec->output_offset != 0)
3064 continue;
3065
3066 sec = sec->output_section;
3067
3068 /* Empty sections in the input files may have had a
3069 section symbol created for them. (See the comment
3070 near the end of _bfd_generic_link_output_symbols in
3071 linker.c). If the linker script discards such
3072 sections then we will reach this point. Since we know
3073 that we cannot avoid this case, we detect it and skip
3074 the abort and the assignment to the sect_syms array.
3075 To reproduce this particular case try running the
3076 linker testsuite test ld-scripts/weak.exp for an ELF
3077 port that uses the generic linker. */
3078 if (sec->owner == NULL)
3079 continue;
3080
3081 BFD_ASSERT (sec->owner == abfd);
3082 }
3083 sect_syms[sec->index] = syms[idx];
3084 }
3085 }
3086 }
3087
3088 /* Classify all of the symbols. */
3089 for (idx = 0; idx < symcount; idx++)
3090 {
3091 if (!sym_is_global (abfd, syms[idx]))
3092 num_locals++;
3093 else
3094 num_globals++;
3095 }
3096
3097 /* We will be adding a section symbol for each BFD section. Most normal
3098 sections will already have a section symbol in outsymbols, but
3099 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3100 at least in that case. */
3101 for (asect = abfd->sections; asect; asect = asect->next)
3102 {
3103 if (sect_syms[asect->index] == NULL)
3104 {
3105 if (!sym_is_global (abfd, asect->symbol))
3106 num_locals++;
3107 else
3108 num_globals++;
3109 }
3110 }
3111
3112 /* Now sort the symbols so the local symbols are first. */
3113 amt = (num_locals + num_globals) * sizeof (asymbol *);
3114 new_syms = bfd_alloc (abfd, amt);
3115
3116 if (new_syms == NULL)
3117 return FALSE;
3118
3119 for (idx = 0; idx < symcount; idx++)
3120 {
3121 asymbol *sym = syms[idx];
3122 unsigned int i;
3123
3124 if (!sym_is_global (abfd, sym))
3125 i = num_locals2++;
3126 else
3127 i = num_locals + num_globals2++;
3128 new_syms[i] = sym;
3129 sym->udata.i = i + 1;
3130 }
3131 for (asect = abfd->sections; asect; asect = asect->next)
3132 {
3133 if (sect_syms[asect->index] == NULL)
3134 {
3135 asymbol *sym = asect->symbol;
3136 unsigned int i;
3137
3138 sect_syms[asect->index] = sym;
3139 if (!sym_is_global (abfd, sym))
3140 i = num_locals2++;
3141 else
3142 i = num_locals + num_globals2++;
3143 new_syms[i] = sym;
3144 sym->udata.i = i + 1;
3145 }
3146 }
3147
3148 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3149
3150 elf_num_locals (abfd) = num_locals;
3151 elf_num_globals (abfd) = num_globals;
3152 return TRUE;
3153 }
3154
3155 /* Align to the maximum file alignment that could be required for any
3156 ELF data structure. */
3157
3158 static inline file_ptr
3159 align_file_position (file_ptr off, int align)
3160 {
3161 return (off + align - 1) & ~(align - 1);
3162 }
3163
3164 /* Assign a file position to a section, optionally aligning to the
3165 required section alignment. */
3166
3167 file_ptr
3168 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3169 file_ptr offset,
3170 bfd_boolean align)
3171 {
3172 if (align)
3173 {
3174 unsigned int al;
3175
3176 al = i_shdrp->sh_addralign;
3177 if (al > 1)
3178 offset = BFD_ALIGN (offset, al);
3179 }
3180 i_shdrp->sh_offset = offset;
3181 if (i_shdrp->bfd_section != NULL)
3182 i_shdrp->bfd_section->filepos = offset;
3183 if (i_shdrp->sh_type != SHT_NOBITS)
3184 offset += i_shdrp->sh_size;
3185 return offset;
3186 }
3187
3188 /* Compute the file positions we are going to put the sections at, and
3189 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3190 is not NULL, this is being called by the ELF backend linker. */
3191
3192 bfd_boolean
3193 _bfd_elf_compute_section_file_positions (bfd *abfd,
3194 struct bfd_link_info *link_info)
3195 {
3196 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3197 bfd_boolean failed;
3198 struct bfd_strtab_hash *strtab;
3199 Elf_Internal_Shdr *shstrtab_hdr;
3200
3201 if (abfd->output_has_begun)
3202 return TRUE;
3203
3204 /* Do any elf backend specific processing first. */
3205 if (bed->elf_backend_begin_write_processing)
3206 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3207
3208 if (! prep_headers (abfd))
3209 return FALSE;
3210
3211 /* Post process the headers if necessary. */
3212 if (bed->elf_backend_post_process_headers)
3213 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3214
3215 failed = FALSE;
3216 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3217 if (failed)
3218 return FALSE;
3219
3220 if (!assign_section_numbers (abfd))
3221 return FALSE;
3222
3223 /* The backend linker builds symbol table information itself. */
3224 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3225 {
3226 /* Non-zero if doing a relocatable link. */
3227 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3228
3229 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3230 return FALSE;
3231 }
3232
3233 if (link_info == NULL)
3234 {
3235 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3236 if (failed)
3237 return FALSE;
3238 }
3239
3240 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3241 /* sh_name was set in prep_headers. */
3242 shstrtab_hdr->sh_type = SHT_STRTAB;
3243 shstrtab_hdr->sh_flags = 0;
3244 shstrtab_hdr->sh_addr = 0;
3245 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3246 shstrtab_hdr->sh_entsize = 0;
3247 shstrtab_hdr->sh_link = 0;
3248 shstrtab_hdr->sh_info = 0;
3249 /* sh_offset is set in assign_file_positions_except_relocs. */
3250 shstrtab_hdr->sh_addralign = 1;
3251
3252 if (!assign_file_positions_except_relocs (abfd, link_info))
3253 return FALSE;
3254
3255 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3256 {
3257 file_ptr off;
3258 Elf_Internal_Shdr *hdr;
3259
3260 off = elf_tdata (abfd)->next_file_pos;
3261
3262 hdr = &elf_tdata (abfd)->symtab_hdr;
3263 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3264
3265 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3266 if (hdr->sh_size != 0)
3267 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3268
3269 hdr = &elf_tdata (abfd)->strtab_hdr;
3270 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3271
3272 elf_tdata (abfd)->next_file_pos = off;
3273
3274 /* Now that we know where the .strtab section goes, write it
3275 out. */
3276 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3277 || ! _bfd_stringtab_emit (abfd, strtab))
3278 return FALSE;
3279 _bfd_stringtab_free (strtab);
3280 }
3281
3282 abfd->output_has_begun = TRUE;
3283
3284 return TRUE;
3285 }
3286
3287 /* Create a mapping from a set of sections to a program segment. */
3288
3289 static struct elf_segment_map *
3290 make_mapping (bfd *abfd,
3291 asection **sections,
3292 unsigned int from,
3293 unsigned int to,
3294 bfd_boolean phdr)
3295 {
3296 struct elf_segment_map *m;
3297 unsigned int i;
3298 asection **hdrpp;
3299 bfd_size_type amt;
3300
3301 amt = sizeof (struct elf_segment_map);
3302 amt += (to - from - 1) * sizeof (asection *);
3303 m = bfd_zalloc (abfd, amt);
3304 if (m == NULL)
3305 return NULL;
3306 m->next = NULL;
3307 m->p_type = PT_LOAD;
3308 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3309 m->sections[i - from] = *hdrpp;
3310 m->count = to - from;
3311
3312 if (from == 0 && phdr)
3313 {
3314 /* Include the headers in the first PT_LOAD segment. */
3315 m->includes_filehdr = 1;
3316 m->includes_phdrs = 1;
3317 }
3318
3319 return m;
3320 }
3321
3322 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3323 on failure. */
3324
3325 struct elf_segment_map *
3326 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3327 {
3328 struct elf_segment_map *m;
3329
3330 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3331 if (m == NULL)
3332 return NULL;
3333 m->next = NULL;
3334 m->p_type = PT_DYNAMIC;
3335 m->count = 1;
3336 m->sections[0] = dynsec;
3337
3338 return m;
3339 }
3340
3341 /* Set up a mapping from BFD sections to program segments. */
3342
3343 static bfd_boolean
3344 map_sections_to_segments (bfd *abfd)
3345 {
3346 asection **sections = NULL;
3347 asection *s;
3348 unsigned int i;
3349 unsigned int count;
3350 struct elf_segment_map *mfirst;
3351 struct elf_segment_map **pm;
3352 struct elf_segment_map *m;
3353 asection *last_hdr;
3354 bfd_vma last_size;
3355 unsigned int phdr_index;
3356 bfd_vma maxpagesize;
3357 asection **hdrpp;
3358 bfd_boolean phdr_in_segment = TRUE;
3359 bfd_boolean writable;
3360 int tls_count = 0;
3361 asection *first_tls = NULL;
3362 asection *dynsec, *eh_frame_hdr;
3363 bfd_size_type amt;
3364
3365 if (elf_tdata (abfd)->segment_map != NULL)
3366 return TRUE;
3367
3368 if (bfd_count_sections (abfd) == 0)
3369 return TRUE;
3370
3371 /* Select the allocated sections, and sort them. */
3372
3373 amt = bfd_count_sections (abfd) * sizeof (asection *);
3374 sections = bfd_malloc (amt);
3375 if (sections == NULL)
3376 goto error_return;
3377
3378 i = 0;
3379 for (s = abfd->sections; s != NULL; s = s->next)
3380 {
3381 if ((s->flags & SEC_ALLOC) != 0)
3382 {
3383 sections[i] = s;
3384 ++i;
3385 }
3386 }
3387 BFD_ASSERT (i <= bfd_count_sections (abfd));
3388 count = i;
3389
3390 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3391
3392 /* Build the mapping. */
3393
3394 mfirst = NULL;
3395 pm = &mfirst;
3396
3397 /* If we have a .interp section, then create a PT_PHDR segment for
3398 the program headers and a PT_INTERP segment for the .interp
3399 section. */
3400 s = bfd_get_section_by_name (abfd, ".interp");
3401 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3402 {
3403 amt = sizeof (struct elf_segment_map);
3404 m = bfd_zalloc (abfd, amt);
3405 if (m == NULL)
3406 goto error_return;
3407 m->next = NULL;
3408 m->p_type = PT_PHDR;
3409 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3410 m->p_flags = PF_R | PF_X;
3411 m->p_flags_valid = 1;
3412 m->includes_phdrs = 1;
3413
3414 *pm = m;
3415 pm = &m->next;
3416
3417 amt = sizeof (struct elf_segment_map);
3418 m = bfd_zalloc (abfd, amt);
3419 if (m == NULL)
3420 goto error_return;
3421 m->next = NULL;
3422 m->p_type = PT_INTERP;
3423 m->count = 1;
3424 m->sections[0] = s;
3425
3426 *pm = m;
3427 pm = &m->next;
3428 }
3429
3430 /* Look through the sections. We put sections in the same program
3431 segment when the start of the second section can be placed within
3432 a few bytes of the end of the first section. */
3433 last_hdr = NULL;
3434 last_size = 0;
3435 phdr_index = 0;
3436 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3437 writable = FALSE;
3438 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3439 if (dynsec != NULL
3440 && (dynsec->flags & SEC_LOAD) == 0)
3441 dynsec = NULL;
3442
3443 /* Deal with -Ttext or something similar such that the first section
3444 is not adjacent to the program headers. This is an
3445 approximation, since at this point we don't know exactly how many
3446 program headers we will need. */
3447 if (count > 0)
3448 {
3449 bfd_size_type phdr_size;
3450
3451 phdr_size = elf_tdata (abfd)->program_header_size;
3452 if (phdr_size == 0)
3453 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3454 if ((abfd->flags & D_PAGED) == 0
3455 || sections[0]->lma < phdr_size
3456 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3457 phdr_in_segment = FALSE;
3458 }
3459
3460 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3461 {
3462 asection *hdr;
3463 bfd_boolean new_segment;
3464
3465 hdr = *hdrpp;
3466
3467 /* See if this section and the last one will fit in the same
3468 segment. */
3469
3470 if (last_hdr == NULL)
3471 {
3472 /* If we don't have a segment yet, then we don't need a new
3473 one (we build the last one after this loop). */
3474 new_segment = FALSE;
3475 }
3476 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3477 {
3478 /* If this section has a different relation between the
3479 virtual address and the load address, then we need a new
3480 segment. */
3481 new_segment = TRUE;
3482 }
3483 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3484 < BFD_ALIGN (hdr->lma, maxpagesize))
3485 {
3486 /* If putting this section in this segment would force us to
3487 skip a page in the segment, then we need a new segment. */
3488 new_segment = TRUE;
3489 }
3490 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3491 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3492 {
3493 /* We don't want to put a loadable section after a
3494 nonloadable section in the same segment.
3495 Consider .tbss sections as loadable for this purpose. */
3496 new_segment = TRUE;
3497 }
3498 else if ((abfd->flags & D_PAGED) == 0)
3499 {
3500 /* If the file is not demand paged, which means that we
3501 don't require the sections to be correctly aligned in the
3502 file, then there is no other reason for a new segment. */
3503 new_segment = FALSE;
3504 }
3505 else if (! writable
3506 && (hdr->flags & SEC_READONLY) == 0
3507 && (((last_hdr->lma + last_size - 1)
3508 & ~(maxpagesize - 1))
3509 != (hdr->lma & ~(maxpagesize - 1))))
3510 {
3511 /* We don't want to put a writable section in a read only
3512 segment, unless they are on the same page in memory
3513 anyhow. We already know that the last section does not
3514 bring us past the current section on the page, so the
3515 only case in which the new section is not on the same
3516 page as the previous section is when the previous section
3517 ends precisely on a page boundary. */
3518 new_segment = TRUE;
3519 }
3520 else
3521 {
3522 /* Otherwise, we can use the same segment. */
3523 new_segment = FALSE;
3524 }
3525
3526 if (! new_segment)
3527 {
3528 if ((hdr->flags & SEC_READONLY) == 0)
3529 writable = TRUE;
3530 last_hdr = hdr;
3531 /* .tbss sections effectively have zero size. */
3532 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3533 last_size = hdr->size;
3534 else
3535 last_size = 0;
3536 continue;
3537 }
3538
3539 /* We need a new program segment. We must create a new program
3540 header holding all the sections from phdr_index until hdr. */
3541
3542 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3543 if (m == NULL)
3544 goto error_return;
3545
3546 *pm = m;
3547 pm = &m->next;
3548
3549 if ((hdr->flags & SEC_READONLY) == 0)
3550 writable = TRUE;
3551 else
3552 writable = FALSE;
3553
3554 last_hdr = hdr;
3555 /* .tbss sections effectively have zero size. */
3556 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3557 last_size = hdr->size;
3558 else
3559 last_size = 0;
3560 phdr_index = i;
3561 phdr_in_segment = FALSE;
3562 }
3563
3564 /* Create a final PT_LOAD program segment. */
3565 if (last_hdr != NULL)
3566 {
3567 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3568 if (m == NULL)
3569 goto error_return;
3570
3571 *pm = m;
3572 pm = &m->next;
3573 }
3574
3575 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3576 if (dynsec != NULL)
3577 {
3578 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3579 if (m == NULL)
3580 goto error_return;
3581 *pm = m;
3582 pm = &m->next;
3583 }
3584
3585 /* For each loadable .note section, add a PT_NOTE segment. We don't
3586 use bfd_get_section_by_name, because if we link together
3587 nonloadable .note sections and loadable .note sections, we will
3588 generate two .note sections in the output file. FIXME: Using
3589 names for section types is bogus anyhow. */
3590 for (s = abfd->sections; s != NULL; s = s->next)
3591 {
3592 if ((s->flags & SEC_LOAD) != 0
3593 && strncmp (s->name, ".note", 5) == 0)
3594 {
3595 amt = sizeof (struct elf_segment_map);
3596 m = bfd_zalloc (abfd, amt);
3597 if (m == NULL)
3598 goto error_return;
3599 m->next = NULL;
3600 m->p_type = PT_NOTE;
3601 m->count = 1;
3602 m->sections[0] = s;
3603
3604 *pm = m;
3605 pm = &m->next;
3606 }
3607 if (s->flags & SEC_THREAD_LOCAL)
3608 {
3609 if (! tls_count)
3610 first_tls = s;
3611 tls_count++;
3612 }
3613 }
3614
3615 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3616 if (tls_count > 0)
3617 {
3618 int i;
3619
3620 amt = sizeof (struct elf_segment_map);
3621 amt += (tls_count - 1) * sizeof (asection *);
3622 m = bfd_zalloc (abfd, amt);
3623 if (m == NULL)
3624 goto error_return;
3625 m->next = NULL;
3626 m->p_type = PT_TLS;
3627 m->count = tls_count;
3628 /* Mandated PF_R. */
3629 m->p_flags = PF_R;
3630 m->p_flags_valid = 1;
3631 for (i = 0; i < tls_count; ++i)
3632 {
3633 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3634 m->sections[i] = first_tls;
3635 first_tls = first_tls->next;
3636 }
3637
3638 *pm = m;
3639 pm = &m->next;
3640 }
3641
3642 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3643 segment. */
3644 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3645 if (eh_frame_hdr != NULL
3646 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3647 {
3648 amt = sizeof (struct elf_segment_map);
3649 m = bfd_zalloc (abfd, amt);
3650 if (m == NULL)
3651 goto error_return;
3652 m->next = NULL;
3653 m->p_type = PT_GNU_EH_FRAME;
3654 m->count = 1;
3655 m->sections[0] = eh_frame_hdr->output_section;
3656
3657 *pm = m;
3658 pm = &m->next;
3659 }
3660
3661 if (elf_tdata (abfd)->stack_flags)
3662 {
3663 amt = sizeof (struct elf_segment_map);
3664 m = bfd_zalloc (abfd, amt);
3665 if (m == NULL)
3666 goto error_return;
3667 m->next = NULL;
3668 m->p_type = PT_GNU_STACK;
3669 m->p_flags = elf_tdata (abfd)->stack_flags;
3670 m->p_flags_valid = 1;
3671
3672 *pm = m;
3673 pm = &m->next;
3674 }
3675
3676 if (elf_tdata (abfd)->relro)
3677 {
3678 amt = sizeof (struct elf_segment_map);
3679 m = bfd_zalloc (abfd, amt);
3680 if (m == NULL)
3681 goto error_return;
3682 m->next = NULL;
3683 m->p_type = PT_GNU_RELRO;
3684 m->p_flags = PF_R;
3685 m->p_flags_valid = 1;
3686
3687 *pm = m;
3688 pm = &m->next;
3689 }
3690
3691 free (sections);
3692 sections = NULL;
3693
3694 elf_tdata (abfd)->segment_map = mfirst;
3695 return TRUE;
3696
3697 error_return:
3698 if (sections != NULL)
3699 free (sections);
3700 return FALSE;
3701 }
3702
3703 /* Sort sections by address. */
3704
3705 static int
3706 elf_sort_sections (const void *arg1, const void *arg2)
3707 {
3708 const asection *sec1 = *(const asection **) arg1;
3709 const asection *sec2 = *(const asection **) arg2;
3710 bfd_size_type size1, size2;
3711
3712 /* Sort by LMA first, since this is the address used to
3713 place the section into a segment. */
3714 if (sec1->lma < sec2->lma)
3715 return -1;
3716 else if (sec1->lma > sec2->lma)
3717 return 1;
3718
3719 /* Then sort by VMA. Normally the LMA and the VMA will be
3720 the same, and this will do nothing. */
3721 if (sec1->vma < sec2->vma)
3722 return -1;
3723 else if (sec1->vma > sec2->vma)
3724 return 1;
3725
3726 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3727
3728 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3729
3730 if (TOEND (sec1))
3731 {
3732 if (TOEND (sec2))
3733 {
3734 /* If the indicies are the same, do not return 0
3735 here, but continue to try the next comparison. */
3736 if (sec1->target_index - sec2->target_index != 0)
3737 return sec1->target_index - sec2->target_index;
3738 }
3739 else
3740 return 1;
3741 }
3742 else if (TOEND (sec2))
3743 return -1;
3744
3745 #undef TOEND
3746
3747 /* Sort by size, to put zero sized sections
3748 before others at the same address. */
3749
3750 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3751 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3752
3753 if (size1 < size2)
3754 return -1;
3755 if (size1 > size2)
3756 return 1;
3757
3758 return sec1->target_index - sec2->target_index;
3759 }
3760
3761 /* Ian Lance Taylor writes:
3762
3763 We shouldn't be using % with a negative signed number. That's just
3764 not good. We have to make sure either that the number is not
3765 negative, or that the number has an unsigned type. When the types
3766 are all the same size they wind up as unsigned. When file_ptr is a
3767 larger signed type, the arithmetic winds up as signed long long,
3768 which is wrong.
3769
3770 What we're trying to say here is something like ``increase OFF by
3771 the least amount that will cause it to be equal to the VMA modulo
3772 the page size.'' */
3773 /* In other words, something like:
3774
3775 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3776 off_offset = off % bed->maxpagesize;
3777 if (vma_offset < off_offset)
3778 adjustment = vma_offset + bed->maxpagesize - off_offset;
3779 else
3780 adjustment = vma_offset - off_offset;
3781
3782 which can can be collapsed into the expression below. */
3783
3784 static file_ptr
3785 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3786 {
3787 return ((vma - off) % maxpagesize);
3788 }
3789
3790 /* Assign file positions to the sections based on the mapping from
3791 sections to segments. This function also sets up some fields in
3792 the file header, and writes out the program headers. */
3793
3794 static bfd_boolean
3795 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3796 {
3797 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3798 unsigned int count;
3799 struct elf_segment_map *m;
3800 unsigned int alloc;
3801 Elf_Internal_Phdr *phdrs;
3802 file_ptr off, voff;
3803 bfd_vma filehdr_vaddr, filehdr_paddr;
3804 bfd_vma phdrs_vaddr, phdrs_paddr;
3805 Elf_Internal_Phdr *p;
3806 bfd_size_type amt;
3807
3808 if (elf_tdata (abfd)->segment_map == NULL)
3809 {
3810 if (! map_sections_to_segments (abfd))
3811 return FALSE;
3812 }
3813 else
3814 {
3815 /* The placement algorithm assumes that non allocated sections are
3816 not in PT_LOAD segments. We ensure this here by removing such
3817 sections from the segment map. */
3818 for (m = elf_tdata (abfd)->segment_map;
3819 m != NULL;
3820 m = m->next)
3821 {
3822 unsigned int new_count;
3823 unsigned int i;
3824
3825 if (m->p_type != PT_LOAD)
3826 continue;
3827
3828 new_count = 0;
3829 for (i = 0; i < m->count; i ++)
3830 {
3831 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3832 {
3833 if (i != new_count)
3834 m->sections[new_count] = m->sections[i];
3835
3836 new_count ++;
3837 }
3838 }
3839
3840 if (new_count != m->count)
3841 m->count = new_count;
3842 }
3843 }
3844
3845 if (bed->elf_backend_modify_segment_map)
3846 {
3847 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3848 return FALSE;
3849 }
3850
3851 count = 0;
3852 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3853 ++count;
3854
3855 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3856 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3857 elf_elfheader (abfd)->e_phnum = count;
3858
3859 if (count == 0)
3860 return TRUE;
3861
3862 /* If we already counted the number of program segments, make sure
3863 that we allocated enough space. This happens when SIZEOF_HEADERS
3864 is used in a linker script. */
3865 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3866 if (alloc != 0 && count > alloc)
3867 {
3868 ((*_bfd_error_handler)
3869 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3870 bfd_get_filename (abfd), alloc, count));
3871 bfd_set_error (bfd_error_bad_value);
3872 return FALSE;
3873 }
3874
3875 if (alloc == 0)
3876 alloc = count;
3877
3878 amt = alloc * sizeof (Elf_Internal_Phdr);
3879 phdrs = bfd_alloc (abfd, amt);
3880 if (phdrs == NULL)
3881 return FALSE;
3882
3883 off = bed->s->sizeof_ehdr;
3884 off += alloc * bed->s->sizeof_phdr;
3885
3886 filehdr_vaddr = 0;
3887 filehdr_paddr = 0;
3888 phdrs_vaddr = 0;
3889 phdrs_paddr = 0;
3890
3891 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3892 m != NULL;
3893 m = m->next, p++)
3894 {
3895 unsigned int i;
3896 asection **secpp;
3897
3898 /* If elf_segment_map is not from map_sections_to_segments, the
3899 sections may not be correctly ordered. NOTE: sorting should
3900 not be done to the PT_NOTE section of a corefile, which may
3901 contain several pseudo-sections artificially created by bfd.
3902 Sorting these pseudo-sections breaks things badly. */
3903 if (m->count > 1
3904 && !(elf_elfheader (abfd)->e_type == ET_CORE
3905 && m->p_type == PT_NOTE))
3906 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3907 elf_sort_sections);
3908
3909 p->p_type = m->p_type;
3910 p->p_flags = m->p_flags;
3911
3912 if (p->p_type == PT_LOAD
3913 && m->count > 0
3914 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3915 {
3916 if ((abfd->flags & D_PAGED) != 0)
3917 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3918 bed->maxpagesize);
3919 else
3920 {
3921 bfd_size_type align;
3922
3923 align = 0;
3924 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3925 {
3926 bfd_size_type secalign;
3927
3928 secalign = bfd_get_section_alignment (abfd, *secpp);
3929 if (secalign > align)
3930 align = secalign;
3931 }
3932
3933 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3934 1 << align);
3935 }
3936 }
3937 /* Make sure the .dynamic section is the first section in the
3938 PT_DYNAMIC segment. */
3939 else if (p->p_type == PT_DYNAMIC
3940 && m->count > 1
3941 && strcmp (m->sections[0]->name, ".dynamic") != 0)
3942 {
3943 _bfd_error_handler
3944 (_("%s: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
3945 bfd_get_filename (abfd));
3946 bfd_set_error (bfd_error_bad_value);
3947 return FALSE;
3948 }
3949
3950 if (m->count == 0)
3951 p->p_vaddr = 0;
3952 else
3953 p->p_vaddr = m->sections[0]->vma;
3954
3955 if (m->p_paddr_valid)
3956 p->p_paddr = m->p_paddr;
3957 else if (m->count == 0)
3958 p->p_paddr = 0;
3959 else
3960 p->p_paddr = m->sections[0]->lma;
3961
3962 if (p->p_type == PT_LOAD
3963 && (abfd->flags & D_PAGED) != 0)
3964 p->p_align = bed->maxpagesize;
3965 else if (m->count == 0)
3966 p->p_align = 1 << bed->s->log_file_align;
3967 else
3968 p->p_align = 0;
3969
3970 p->p_offset = 0;
3971 p->p_filesz = 0;
3972 p->p_memsz = 0;
3973
3974 if (m->includes_filehdr)
3975 {
3976 if (! m->p_flags_valid)
3977 p->p_flags |= PF_R;
3978 p->p_offset = 0;
3979 p->p_filesz = bed->s->sizeof_ehdr;
3980 p->p_memsz = bed->s->sizeof_ehdr;
3981 if (m->count > 0)
3982 {
3983 BFD_ASSERT (p->p_type == PT_LOAD);
3984
3985 if (p->p_vaddr < (bfd_vma) off)
3986 {
3987 (*_bfd_error_handler)
3988 (_("%s: Not enough room for program headers, try linking with -N"),
3989 bfd_get_filename (abfd));
3990 bfd_set_error (bfd_error_bad_value);
3991 return FALSE;
3992 }
3993
3994 p->p_vaddr -= off;
3995 if (! m->p_paddr_valid)
3996 p->p_paddr -= off;
3997 }
3998 if (p->p_type == PT_LOAD)
3999 {
4000 filehdr_vaddr = p->p_vaddr;
4001 filehdr_paddr = p->p_paddr;
4002 }
4003 }
4004
4005 if (m->includes_phdrs)
4006 {
4007 if (! m->p_flags_valid)
4008 p->p_flags |= PF_R;
4009
4010 if (m->includes_filehdr)
4011 {
4012 if (p->p_type == PT_LOAD)
4013 {
4014 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4015 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4016 }
4017 }
4018 else
4019 {
4020 p->p_offset = bed->s->sizeof_ehdr;
4021
4022 if (m->count > 0)
4023 {
4024 BFD_ASSERT (p->p_type == PT_LOAD);
4025 p->p_vaddr -= off - p->p_offset;
4026 if (! m->p_paddr_valid)
4027 p->p_paddr -= off - p->p_offset;
4028 }
4029
4030 if (p->p_type == PT_LOAD)
4031 {
4032 phdrs_vaddr = p->p_vaddr;
4033 phdrs_paddr = p->p_paddr;
4034 }
4035 else
4036 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4037 }
4038
4039 p->p_filesz += alloc * bed->s->sizeof_phdr;
4040 p->p_memsz += alloc * bed->s->sizeof_phdr;
4041 }
4042
4043 if (p->p_type == PT_LOAD
4044 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4045 {
4046 if (! m->includes_filehdr && ! m->includes_phdrs)
4047 p->p_offset = off;
4048 else
4049 {
4050 file_ptr adjust;
4051
4052 adjust = off - (p->p_offset + p->p_filesz);
4053 p->p_filesz += adjust;
4054 p->p_memsz += adjust;
4055 }
4056 }
4057
4058 voff = off;
4059
4060 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4061 {
4062 asection *sec;
4063 flagword flags;
4064 bfd_size_type align;
4065
4066 sec = *secpp;
4067 flags = sec->flags;
4068 align = 1 << bfd_get_section_alignment (abfd, sec);
4069
4070 /* The section may have artificial alignment forced by a
4071 link script. Notice this case by the gap between the
4072 cumulative phdr lma and the section's lma. */
4073 if (p->p_paddr + p->p_memsz < sec->lma)
4074 {
4075 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
4076
4077 p->p_memsz += adjust;
4078 if (p->p_type == PT_LOAD
4079 || (p->p_type == PT_NOTE
4080 && bfd_get_format (abfd) == bfd_core))
4081 {
4082 off += adjust;
4083 voff += adjust;
4084 }
4085 if ((flags & SEC_LOAD) != 0
4086 || (flags & SEC_THREAD_LOCAL) != 0)
4087 p->p_filesz += adjust;
4088 }
4089
4090 if (p->p_type == PT_LOAD)
4091 {
4092 bfd_signed_vma adjust;
4093
4094 if ((flags & SEC_LOAD) != 0)
4095 {
4096 adjust = sec->lma - (p->p_paddr + p->p_memsz);
4097 if (adjust < 0)
4098 adjust = 0;
4099 }
4100 else if ((flags & SEC_ALLOC) != 0)
4101 {
4102 /* The section VMA must equal the file position
4103 modulo the page size. FIXME: I'm not sure if
4104 this adjustment is really necessary. We used to
4105 not have the SEC_LOAD case just above, and then
4106 this was necessary, but now I'm not sure. */
4107 if ((abfd->flags & D_PAGED) != 0)
4108 adjust = vma_page_aligned_bias (sec->vma, voff,
4109 bed->maxpagesize);
4110 else
4111 adjust = vma_page_aligned_bias (sec->vma, voff,
4112 align);
4113 }
4114 else
4115 adjust = 0;
4116
4117 if (adjust != 0)
4118 {
4119 if (i == 0)
4120 {
4121 (* _bfd_error_handler) (_("\
4122 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
4123 bfd_section_name (abfd, sec),
4124 sec->lma,
4125 p->p_paddr);
4126 return FALSE;
4127 }
4128 p->p_memsz += adjust;
4129 off += adjust;
4130 voff += adjust;
4131 if ((flags & SEC_LOAD) != 0)
4132 p->p_filesz += adjust;
4133 }
4134
4135 sec->filepos = off;
4136
4137 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
4138 used in a linker script we may have a section with
4139 SEC_LOAD clear but which is supposed to have
4140 contents. */
4141 if ((flags & SEC_LOAD) != 0
4142 || (flags & SEC_HAS_CONTENTS) != 0)
4143 off += sec->size;
4144
4145 if ((flags & SEC_ALLOC) != 0
4146 && ((flags & SEC_LOAD) != 0
4147 || (flags & SEC_THREAD_LOCAL) == 0))
4148 voff += sec->size;
4149 }
4150
4151 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4152 {
4153 /* The actual "note" segment has i == 0.
4154 This is the one that actually contains everything. */
4155 if (i == 0)
4156 {
4157 sec->filepos = off;
4158 p->p_filesz = sec->size;
4159 off += sec->size;
4160 voff = off;
4161 }
4162 else
4163 {
4164 /* Fake sections -- don't need to be written. */
4165 sec->filepos = 0;
4166 sec->size = 0;
4167 flags = sec->flags = 0;
4168 }
4169 p->p_memsz = 0;
4170 p->p_align = 1;
4171 }
4172 else
4173 {
4174 if ((sec->flags & SEC_LOAD) != 0
4175 || (sec->flags & SEC_THREAD_LOCAL) == 0
4176 || p->p_type == PT_TLS)
4177 p->p_memsz += sec->size;
4178
4179 if ((flags & SEC_LOAD) != 0)
4180 p->p_filesz += sec->size;
4181
4182 if (p->p_type == PT_TLS
4183 && sec->size == 0
4184 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4185 {
4186 struct bfd_link_order *o;
4187 bfd_vma tbss_size = 0;
4188
4189 for (o = sec->link_order_head; o != NULL; o = o->next)
4190 if (tbss_size < o->offset + o->size)
4191 tbss_size = o->offset + o->size;
4192
4193 p->p_memsz += tbss_size;
4194 }
4195
4196 if (align > p->p_align
4197 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4198 p->p_align = align;
4199 }
4200
4201 if (! m->p_flags_valid)
4202 {
4203 p->p_flags |= PF_R;
4204 if ((flags & SEC_CODE) != 0)
4205 p->p_flags |= PF_X;
4206 if ((flags & SEC_READONLY) == 0)
4207 p->p_flags |= PF_W;
4208 }
4209 }
4210 }
4211
4212 /* Now that we have set the section file positions, we can set up
4213 the file positions for the non PT_LOAD segments. */
4214 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4215 m != NULL;
4216 m = m->next, p++)
4217 {
4218 if (p->p_type != PT_LOAD && m->count > 0)
4219 {
4220 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4221 /* If the section has not yet been assigned a file position,
4222 do so now. The ARM BPABI requires that .dynamic section
4223 not be marked SEC_ALLOC because it is not part of any
4224 PT_LOAD segment, so it will not be processed above. */
4225 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4226 {
4227 unsigned int i;
4228 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4229
4230 i = 1;
4231 while (i_shdrpp[i]->bfd_section != m->sections[0])
4232 ++i;
4233 off = (_bfd_elf_assign_file_position_for_section
4234 (i_shdrpp[i], off, TRUE));
4235 p->p_filesz = m->sections[0]->size;
4236 }
4237 p->p_offset = m->sections[0]->filepos;
4238 }
4239 if (m->count == 0)
4240 {
4241 if (m->includes_filehdr)
4242 {
4243 p->p_vaddr = filehdr_vaddr;
4244 if (! m->p_paddr_valid)
4245 p->p_paddr = filehdr_paddr;
4246 }
4247 else if (m->includes_phdrs)
4248 {
4249 p->p_vaddr = phdrs_vaddr;
4250 if (! m->p_paddr_valid)
4251 p->p_paddr = phdrs_paddr;
4252 }
4253 else if (p->p_type == PT_GNU_RELRO)
4254 {
4255 Elf_Internal_Phdr *lp;
4256
4257 for (lp = phdrs; lp < phdrs + count; ++lp)
4258 {
4259 if (lp->p_type == PT_LOAD
4260 && lp->p_vaddr <= link_info->relro_end
4261 && lp->p_vaddr >= link_info->relro_start
4262 && lp->p_vaddr + lp->p_filesz
4263 >= link_info->relro_end)
4264 break;
4265 }
4266
4267 if (lp < phdrs + count
4268 && link_info->relro_end > lp->p_vaddr)
4269 {
4270 p->p_vaddr = lp->p_vaddr;
4271 p->p_paddr = lp->p_paddr;
4272 p->p_offset = lp->p_offset;
4273 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4274 p->p_memsz = p->p_filesz;
4275 p->p_align = 1;
4276 p->p_flags = (lp->p_flags & ~PF_W);
4277 }
4278 else
4279 {
4280 memset (p, 0, sizeof *p);
4281 p->p_type = PT_NULL;
4282 }
4283 }
4284 }
4285 }
4286
4287 /* Clear out any program headers we allocated but did not use. */
4288 for (; count < alloc; count++, p++)
4289 {
4290 memset (p, 0, sizeof *p);
4291 p->p_type = PT_NULL;
4292 }
4293
4294 elf_tdata (abfd)->phdr = phdrs;
4295
4296 elf_tdata (abfd)->next_file_pos = off;
4297
4298 /* Write out the program headers. */
4299 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4300 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4301 return FALSE;
4302
4303 return TRUE;
4304 }
4305
4306 /* Get the size of the program header.
4307
4308 If this is called by the linker before any of the section VMA's are set, it
4309 can't calculate the correct value for a strange memory layout. This only
4310 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4311 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4312 data segment (exclusive of .interp and .dynamic).
4313
4314 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4315 will be two segments. */
4316
4317 static bfd_size_type
4318 get_program_header_size (bfd *abfd)
4319 {
4320 size_t segs;
4321 asection *s;
4322 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4323
4324 /* We can't return a different result each time we're called. */
4325 if (elf_tdata (abfd)->program_header_size != 0)
4326 return elf_tdata (abfd)->program_header_size;
4327
4328 if (elf_tdata (abfd)->segment_map != NULL)
4329 {
4330 struct elf_segment_map *m;
4331
4332 segs = 0;
4333 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4334 ++segs;
4335 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4336 return elf_tdata (abfd)->program_header_size;
4337 }
4338
4339 /* Assume we will need exactly two PT_LOAD segments: one for text
4340 and one for data. */
4341 segs = 2;
4342
4343 s = bfd_get_section_by_name (abfd, ".interp");
4344 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4345 {
4346 /* If we have a loadable interpreter section, we need a
4347 PT_INTERP segment. In this case, assume we also need a
4348 PT_PHDR segment, although that may not be true for all
4349 targets. */
4350 segs += 2;
4351 }
4352
4353 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4354 {
4355 /* We need a PT_DYNAMIC segment. */
4356 ++segs;
4357 }
4358
4359 if (elf_tdata (abfd)->eh_frame_hdr)
4360 {
4361 /* We need a PT_GNU_EH_FRAME segment. */
4362 ++segs;
4363 }
4364
4365 if (elf_tdata (abfd)->stack_flags)
4366 {
4367 /* We need a PT_GNU_STACK segment. */
4368 ++segs;
4369 }
4370
4371 if (elf_tdata (abfd)->relro)
4372 {
4373 /* We need a PT_GNU_RELRO segment. */
4374 ++segs;
4375 }
4376
4377 for (s = abfd->sections; s != NULL; s = s->next)
4378 {
4379 if ((s->flags & SEC_LOAD) != 0
4380 && strncmp (s->name, ".note", 5) == 0)
4381 {
4382 /* We need a PT_NOTE segment. */
4383 ++segs;
4384 }
4385 }
4386
4387 for (s = abfd->sections; s != NULL; s = s->next)
4388 {
4389 if (s->flags & SEC_THREAD_LOCAL)
4390 {
4391 /* We need a PT_TLS segment. */
4392 ++segs;
4393 break;
4394 }
4395 }
4396
4397 /* Let the backend count up any program headers it might need. */
4398 if (bed->elf_backend_additional_program_headers)
4399 {
4400 int a;
4401
4402 a = (*bed->elf_backend_additional_program_headers) (abfd);
4403 if (a == -1)
4404 abort ();
4405 segs += a;
4406 }
4407
4408 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4409 return elf_tdata (abfd)->program_header_size;
4410 }
4411
4412 /* Work out the file positions of all the sections. This is called by
4413 _bfd_elf_compute_section_file_positions. All the section sizes and
4414 VMAs must be known before this is called.
4415
4416 Reloc sections come in two flavours: Those processed specially as
4417 "side-channel" data attached to a section to which they apply, and
4418 those that bfd doesn't process as relocations. The latter sort are
4419 stored in a normal bfd section by bfd_section_from_shdr. We don't
4420 consider the former sort here, unless they form part of the loadable
4421 image. Reloc sections not assigned here will be handled later by
4422 assign_file_positions_for_relocs.
4423
4424 We also don't set the positions of the .symtab and .strtab here. */
4425
4426 static bfd_boolean
4427 assign_file_positions_except_relocs (bfd *abfd,
4428 struct bfd_link_info *link_info)
4429 {
4430 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4431 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4432 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4433 unsigned int num_sec = elf_numsections (abfd);
4434 file_ptr off;
4435 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4436
4437 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4438 && bfd_get_format (abfd) != bfd_core)
4439 {
4440 Elf_Internal_Shdr **hdrpp;
4441 unsigned int i;
4442
4443 /* Start after the ELF header. */
4444 off = i_ehdrp->e_ehsize;
4445
4446 /* We are not creating an executable, which means that we are
4447 not creating a program header, and that the actual order of
4448 the sections in the file is unimportant. */
4449 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4450 {
4451 Elf_Internal_Shdr *hdr;
4452
4453 hdr = *hdrpp;
4454 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4455 && hdr->bfd_section == NULL)
4456 || i == tdata->symtab_section
4457 || i == tdata->symtab_shndx_section
4458 || i == tdata->strtab_section)
4459 {
4460 hdr->sh_offset = -1;
4461 }
4462 else
4463 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4464
4465 if (i == SHN_LORESERVE - 1)
4466 {
4467 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4468 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4469 }
4470 }
4471 }
4472 else
4473 {
4474 unsigned int i;
4475 Elf_Internal_Shdr **hdrpp;
4476
4477 /* Assign file positions for the loaded sections based on the
4478 assignment of sections to segments. */
4479 if (! assign_file_positions_for_segments (abfd, link_info))
4480 return FALSE;
4481
4482 /* Assign file positions for the other sections. */
4483
4484 off = elf_tdata (abfd)->next_file_pos;
4485 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4486 {
4487 Elf_Internal_Shdr *hdr;
4488
4489 hdr = *hdrpp;
4490 if (hdr->bfd_section != NULL
4491 && hdr->bfd_section->filepos != 0)
4492 hdr->sh_offset = hdr->bfd_section->filepos;
4493 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4494 {
4495 ((*_bfd_error_handler)
4496 (_("%s: warning: allocated section `%s' not in segment"),
4497 bfd_get_filename (abfd),
4498 (hdr->bfd_section == NULL
4499 ? "*unknown*"
4500 : hdr->bfd_section->name)));
4501 if ((abfd->flags & D_PAGED) != 0)
4502 off += vma_page_aligned_bias (hdr->sh_addr, off,
4503 bed->maxpagesize);
4504 else
4505 off += vma_page_aligned_bias (hdr->sh_addr, off,
4506 hdr->sh_addralign);
4507 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4508 FALSE);
4509 }
4510 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4511 && hdr->bfd_section == NULL)
4512 || hdr == i_shdrpp[tdata->symtab_section]
4513 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4514 || hdr == i_shdrpp[tdata->strtab_section])
4515 hdr->sh_offset = -1;
4516 else
4517 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4518
4519 if (i == SHN_LORESERVE - 1)
4520 {
4521 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4522 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4523 }
4524 }
4525 }
4526
4527 /* Place the section headers. */
4528 off = align_file_position (off, 1 << bed->s->log_file_align);
4529 i_ehdrp->e_shoff = off;
4530 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4531
4532 elf_tdata (abfd)->next_file_pos = off;
4533
4534 return TRUE;
4535 }
4536
4537 static bfd_boolean
4538 prep_headers (bfd *abfd)
4539 {
4540 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4541 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4542 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4543 struct elf_strtab_hash *shstrtab;
4544 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4545
4546 i_ehdrp = elf_elfheader (abfd);
4547 i_shdrp = elf_elfsections (abfd);
4548
4549 shstrtab = _bfd_elf_strtab_init ();
4550 if (shstrtab == NULL)
4551 return FALSE;
4552
4553 elf_shstrtab (abfd) = shstrtab;
4554
4555 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4556 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4557 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4558 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4559
4560 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4561 i_ehdrp->e_ident[EI_DATA] =
4562 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4563 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4564
4565 if ((abfd->flags & DYNAMIC) != 0)
4566 i_ehdrp->e_type = ET_DYN;
4567 else if ((abfd->flags & EXEC_P) != 0)
4568 i_ehdrp->e_type = ET_EXEC;
4569 else if (bfd_get_format (abfd) == bfd_core)
4570 i_ehdrp->e_type = ET_CORE;
4571 else
4572 i_ehdrp->e_type = ET_REL;
4573
4574 switch (bfd_get_arch (abfd))
4575 {
4576 case bfd_arch_unknown:
4577 i_ehdrp->e_machine = EM_NONE;
4578 break;
4579
4580 /* There used to be a long list of cases here, each one setting
4581 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4582 in the corresponding bfd definition. To avoid duplication,
4583 the switch was removed. Machines that need special handling
4584 can generally do it in elf_backend_final_write_processing(),
4585 unless they need the information earlier than the final write.
4586 Such need can generally be supplied by replacing the tests for
4587 e_machine with the conditions used to determine it. */
4588 default:
4589 i_ehdrp->e_machine = bed->elf_machine_code;
4590 }
4591
4592 i_ehdrp->e_version = bed->s->ev_current;
4593 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4594
4595 /* No program header, for now. */
4596 i_ehdrp->e_phoff = 0;
4597 i_ehdrp->e_phentsize = 0;
4598 i_ehdrp->e_phnum = 0;
4599
4600 /* Each bfd section is section header entry. */
4601 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4602 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4603
4604 /* If we're building an executable, we'll need a program header table. */
4605 if (abfd->flags & EXEC_P)
4606 {
4607 /* It all happens later. */
4608 #if 0
4609 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4610
4611 /* elf_build_phdrs() returns a (NULL-terminated) array of
4612 Elf_Internal_Phdrs. */
4613 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4614 i_ehdrp->e_phoff = outbase;
4615 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4616 #endif
4617 }
4618 else
4619 {
4620 i_ehdrp->e_phentsize = 0;
4621 i_phdrp = 0;
4622 i_ehdrp->e_phoff = 0;
4623 }
4624
4625 elf_tdata (abfd)->symtab_hdr.sh_name =
4626 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4627 elf_tdata (abfd)->strtab_hdr.sh_name =
4628 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4629 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4630 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4631 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4632 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4633 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4634 return FALSE;
4635
4636 return TRUE;
4637 }
4638
4639 /* Assign file positions for all the reloc sections which are not part
4640 of the loadable file image. */
4641
4642 void
4643 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4644 {
4645 file_ptr off;
4646 unsigned int i, num_sec;
4647 Elf_Internal_Shdr **shdrpp;
4648
4649 off = elf_tdata (abfd)->next_file_pos;
4650
4651 num_sec = elf_numsections (abfd);
4652 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4653 {
4654 Elf_Internal_Shdr *shdrp;
4655
4656 shdrp = *shdrpp;
4657 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4658 && shdrp->sh_offset == -1)
4659 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4660 }
4661
4662 elf_tdata (abfd)->next_file_pos = off;
4663 }
4664
4665 bfd_boolean
4666 _bfd_elf_write_object_contents (bfd *abfd)
4667 {
4668 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4669 Elf_Internal_Ehdr *i_ehdrp;
4670 Elf_Internal_Shdr **i_shdrp;
4671 bfd_boolean failed;
4672 unsigned int count, num_sec;
4673
4674 if (! abfd->output_has_begun
4675 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4676 return FALSE;
4677
4678 i_shdrp = elf_elfsections (abfd);
4679 i_ehdrp = elf_elfheader (abfd);
4680
4681 failed = FALSE;
4682 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4683 if (failed)
4684 return FALSE;
4685
4686 _bfd_elf_assign_file_positions_for_relocs (abfd);
4687
4688 /* After writing the headers, we need to write the sections too... */
4689 num_sec = elf_numsections (abfd);
4690 for (count = 1; count < num_sec; count++)
4691 {
4692 if (bed->elf_backend_section_processing)
4693 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4694 if (i_shdrp[count]->contents)
4695 {
4696 bfd_size_type amt = i_shdrp[count]->sh_size;
4697
4698 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4699 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4700 return FALSE;
4701 }
4702 if (count == SHN_LORESERVE - 1)
4703 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4704 }
4705
4706 /* Write out the section header names. */
4707 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4708 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4709 return FALSE;
4710
4711 if (bed->elf_backend_final_write_processing)
4712 (*bed->elf_backend_final_write_processing) (abfd,
4713 elf_tdata (abfd)->linker);
4714
4715 return bed->s->write_shdrs_and_ehdr (abfd);
4716 }
4717
4718 bfd_boolean
4719 _bfd_elf_write_corefile_contents (bfd *abfd)
4720 {
4721 /* Hopefully this can be done just like an object file. */
4722 return _bfd_elf_write_object_contents (abfd);
4723 }
4724
4725 /* Given a section, search the header to find them. */
4726
4727 int
4728 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4729 {
4730 const struct elf_backend_data *bed;
4731 int index;
4732
4733 if (elf_section_data (asect) != NULL
4734 && elf_section_data (asect)->this_idx != 0)
4735 return elf_section_data (asect)->this_idx;
4736
4737 if (bfd_is_abs_section (asect))
4738 index = SHN_ABS;
4739 else if (bfd_is_com_section (asect))
4740 index = SHN_COMMON;
4741 else if (bfd_is_und_section (asect))
4742 index = SHN_UNDEF;
4743 else
4744 {
4745 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4746 int maxindex = elf_numsections (abfd);
4747
4748 for (index = 1; index < maxindex; index++)
4749 {
4750 Elf_Internal_Shdr *hdr = i_shdrp[index];
4751
4752 if (hdr != NULL && hdr->bfd_section == asect)
4753 return index;
4754 }
4755 index = -1;
4756 }
4757
4758 bed = get_elf_backend_data (abfd);
4759 if (bed->elf_backend_section_from_bfd_section)
4760 {
4761 int retval = index;
4762
4763 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4764 return retval;
4765 }
4766
4767 if (index == -1)
4768 bfd_set_error (bfd_error_nonrepresentable_section);
4769
4770 return index;
4771 }
4772
4773 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4774 on error. */
4775
4776 int
4777 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4778 {
4779 asymbol *asym_ptr = *asym_ptr_ptr;
4780 int idx;
4781 flagword flags = asym_ptr->flags;
4782
4783 /* When gas creates relocations against local labels, it creates its
4784 own symbol for the section, but does put the symbol into the
4785 symbol chain, so udata is 0. When the linker is generating
4786 relocatable output, this section symbol may be for one of the
4787 input sections rather than the output section. */
4788 if (asym_ptr->udata.i == 0
4789 && (flags & BSF_SECTION_SYM)
4790 && asym_ptr->section)
4791 {
4792 int indx;
4793
4794 if (asym_ptr->section->output_section != NULL)
4795 indx = asym_ptr->section->output_section->index;
4796 else
4797 indx = asym_ptr->section->index;
4798 if (indx < elf_num_section_syms (abfd)
4799 && elf_section_syms (abfd)[indx] != NULL)
4800 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4801 }
4802
4803 idx = asym_ptr->udata.i;
4804
4805 if (idx == 0)
4806 {
4807 /* This case can occur when using --strip-symbol on a symbol
4808 which is used in a relocation entry. */
4809 (*_bfd_error_handler)
4810 (_("%B: symbol `%s' required but not present"),
4811 abfd, bfd_asymbol_name (asym_ptr));
4812 bfd_set_error (bfd_error_no_symbols);
4813 return -1;
4814 }
4815
4816 #if DEBUG & 4
4817 {
4818 fprintf (stderr,
4819 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4820 (long) asym_ptr, asym_ptr->name, idx, flags,
4821 elf_symbol_flags (flags));
4822 fflush (stderr);
4823 }
4824 #endif
4825
4826 return idx;
4827 }
4828
4829 /* Copy private BFD data. This copies any program header information. */
4830
4831 static bfd_boolean
4832 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4833 {
4834 Elf_Internal_Ehdr *iehdr;
4835 struct elf_segment_map *map;
4836 struct elf_segment_map *map_first;
4837 struct elf_segment_map **pointer_to_map;
4838 Elf_Internal_Phdr *segment;
4839 asection *section;
4840 unsigned int i;
4841 unsigned int num_segments;
4842 bfd_boolean phdr_included = FALSE;
4843 bfd_vma maxpagesize;
4844 struct elf_segment_map *phdr_adjust_seg = NULL;
4845 unsigned int phdr_adjust_num = 0;
4846 const struct elf_backend_data *bed;
4847
4848 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4849 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4850 return TRUE;
4851
4852 if (elf_tdata (ibfd)->phdr == NULL)
4853 return TRUE;
4854
4855 bed = get_elf_backend_data (ibfd);
4856 iehdr = elf_elfheader (ibfd);
4857
4858 map_first = NULL;
4859 pointer_to_map = &map_first;
4860
4861 num_segments = elf_elfheader (ibfd)->e_phnum;
4862 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4863
4864 /* Returns the end address of the segment + 1. */
4865 #define SEGMENT_END(segment, start) \
4866 (start + (segment->p_memsz > segment->p_filesz \
4867 ? segment->p_memsz : segment->p_filesz))
4868
4869 #define SECTION_SIZE(section, segment) \
4870 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4871 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4872 ? section->size : 0)
4873
4874 /* Returns TRUE if the given section is contained within
4875 the given segment. VMA addresses are compared. */
4876 #define IS_CONTAINED_BY_VMA(section, segment) \
4877 (section->vma >= segment->p_vaddr \
4878 && (section->vma + SECTION_SIZE (section, segment) \
4879 <= (SEGMENT_END (segment, segment->p_vaddr))))
4880
4881 /* Returns TRUE if the given section is contained within
4882 the given segment. LMA addresses are compared. */
4883 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4884 (section->lma >= base \
4885 && (section->lma + SECTION_SIZE (section, segment) \
4886 <= SEGMENT_END (segment, base)))
4887
4888 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4889 #define IS_COREFILE_NOTE(p, s) \
4890 (p->p_type == PT_NOTE \
4891 && bfd_get_format (ibfd) == bfd_core \
4892 && s->vma == 0 && s->lma == 0 \
4893 && (bfd_vma) s->filepos >= p->p_offset \
4894 && ((bfd_vma) s->filepos + s->size \
4895 <= p->p_offset + p->p_filesz))
4896
4897 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4898 linker, which generates a PT_INTERP section with p_vaddr and
4899 p_memsz set to 0. */
4900 #define IS_SOLARIS_PT_INTERP(p, s) \
4901 (p->p_vaddr == 0 \
4902 && p->p_paddr == 0 \
4903 && p->p_memsz == 0 \
4904 && p->p_filesz > 0 \
4905 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4906 && s->size > 0 \
4907 && (bfd_vma) s->filepos >= p->p_offset \
4908 && ((bfd_vma) s->filepos + s->size \
4909 <= p->p_offset + p->p_filesz))
4910
4911 /* Decide if the given section should be included in the given segment.
4912 A section will be included if:
4913 1. It is within the address space of the segment -- we use the LMA
4914 if that is set for the segment and the VMA otherwise,
4915 2. It is an allocated segment,
4916 3. There is an output section associated with it,
4917 4. The section has not already been allocated to a previous segment.
4918 5. PT_GNU_STACK segments do not include any sections.
4919 6. PT_TLS segment includes only SHF_TLS sections.
4920 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4921 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4922 ((((segment->p_paddr \
4923 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4924 : IS_CONTAINED_BY_VMA (section, segment)) \
4925 && (section->flags & SEC_ALLOC) != 0) \
4926 || IS_COREFILE_NOTE (segment, section)) \
4927 && section->output_section != NULL \
4928 && segment->p_type != PT_GNU_STACK \
4929 && (segment->p_type != PT_TLS \
4930 || (section->flags & SEC_THREAD_LOCAL)) \
4931 && (segment->p_type == PT_LOAD \
4932 || segment->p_type == PT_TLS \
4933 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4934 && ! section->segment_mark)
4935
4936 /* Returns TRUE iff seg1 starts after the end of seg2. */
4937 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4938 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4939
4940 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4941 their VMA address ranges and their LMA address ranges overlap.
4942 It is possible to have overlapping VMA ranges without overlapping LMA
4943 ranges. RedBoot images for example can have both .data and .bss mapped
4944 to the same VMA range, but with the .data section mapped to a different
4945 LMA. */
4946 #define SEGMENT_OVERLAPS(seg1, seg2) \
4947 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4948 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4949 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4950 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4951
4952 /* Initialise the segment mark field. */
4953 for (section = ibfd->sections; section != NULL; section = section->next)
4954 section->segment_mark = FALSE;
4955
4956 /* Scan through the segments specified in the program header
4957 of the input BFD. For this first scan we look for overlaps
4958 in the loadable segments. These can be created by weird
4959 parameters to objcopy. Also, fix some solaris weirdness. */
4960 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4961 i < num_segments;
4962 i++, segment++)
4963 {
4964 unsigned int j;
4965 Elf_Internal_Phdr *segment2;
4966
4967 if (segment->p_type == PT_INTERP)
4968 for (section = ibfd->sections; section; section = section->next)
4969 if (IS_SOLARIS_PT_INTERP (segment, section))
4970 {
4971 /* Mininal change so that the normal section to segment
4972 assignment code will work. */
4973 segment->p_vaddr = section->vma;
4974 break;
4975 }
4976
4977 if (segment->p_type != PT_LOAD)
4978 continue;
4979
4980 /* Determine if this segment overlaps any previous segments. */
4981 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4982 {
4983 bfd_signed_vma extra_length;
4984
4985 if (segment2->p_type != PT_LOAD
4986 || ! SEGMENT_OVERLAPS (segment, segment2))
4987 continue;
4988
4989 /* Merge the two segments together. */
4990 if (segment2->p_vaddr < segment->p_vaddr)
4991 {
4992 /* Extend SEGMENT2 to include SEGMENT and then delete
4993 SEGMENT. */
4994 extra_length =
4995 SEGMENT_END (segment, segment->p_vaddr)
4996 - SEGMENT_END (segment2, segment2->p_vaddr);
4997
4998 if (extra_length > 0)
4999 {
5000 segment2->p_memsz += extra_length;
5001 segment2->p_filesz += extra_length;
5002 }
5003
5004 segment->p_type = PT_NULL;
5005
5006 /* Since we have deleted P we must restart the outer loop. */
5007 i = 0;
5008 segment = elf_tdata (ibfd)->phdr;
5009 break;
5010 }
5011 else
5012 {
5013 /* Extend SEGMENT to include SEGMENT2 and then delete
5014 SEGMENT2. */
5015 extra_length =
5016 SEGMENT_END (segment2, segment2->p_vaddr)
5017 - SEGMENT_END (segment, segment->p_vaddr);
5018
5019 if (extra_length > 0)
5020 {
5021 segment->p_memsz += extra_length;
5022 segment->p_filesz += extra_length;
5023 }
5024
5025 segment2->p_type = PT_NULL;
5026 }
5027 }
5028 }
5029
5030 /* The second scan attempts to assign sections to segments. */
5031 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5032 i < num_segments;
5033 i ++, segment ++)
5034 {
5035 unsigned int section_count;
5036 asection ** sections;
5037 asection * output_section;
5038 unsigned int isec;
5039 bfd_vma matching_lma;
5040 bfd_vma suggested_lma;
5041 unsigned int j;
5042 bfd_size_type amt;
5043
5044 if (segment->p_type == PT_NULL)
5045 continue;
5046
5047 /* Compute how many sections might be placed into this segment. */
5048 for (section = ibfd->sections, section_count = 0;
5049 section != NULL;
5050 section = section->next)
5051 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5052 ++section_count;
5053
5054 /* Allocate a segment map big enough to contain
5055 all of the sections we have selected. */
5056 amt = sizeof (struct elf_segment_map);
5057 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5058 map = bfd_alloc (obfd, amt);
5059 if (map == NULL)
5060 return FALSE;
5061
5062 /* Initialise the fields of the segment map. Default to
5063 using the physical address of the segment in the input BFD. */
5064 map->next = NULL;
5065 map->p_type = segment->p_type;
5066 map->p_flags = segment->p_flags;
5067 map->p_flags_valid = 1;
5068 map->p_paddr = segment->p_paddr;
5069 map->p_paddr_valid = 1;
5070
5071 /* Determine if this segment contains the ELF file header
5072 and if it contains the program headers themselves. */
5073 map->includes_filehdr = (segment->p_offset == 0
5074 && segment->p_filesz >= iehdr->e_ehsize);
5075
5076 map->includes_phdrs = 0;
5077
5078 if (! phdr_included || segment->p_type != PT_LOAD)
5079 {
5080 map->includes_phdrs =
5081 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5082 && (segment->p_offset + segment->p_filesz
5083 >= ((bfd_vma) iehdr->e_phoff
5084 + iehdr->e_phnum * iehdr->e_phentsize)));
5085
5086 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5087 phdr_included = TRUE;
5088 }
5089
5090 if (section_count == 0)
5091 {
5092 /* Special segments, such as the PT_PHDR segment, may contain
5093 no sections, but ordinary, loadable segments should contain
5094 something. They are allowed by the ELF spec however, so only
5095 a warning is produced. */
5096 if (segment->p_type == PT_LOAD)
5097 (*_bfd_error_handler)
5098 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5099 ibfd);
5100
5101 map->count = 0;
5102 *pointer_to_map = map;
5103 pointer_to_map = &map->next;
5104
5105 continue;
5106 }
5107
5108 /* Now scan the sections in the input BFD again and attempt
5109 to add their corresponding output sections to the segment map.
5110 The problem here is how to handle an output section which has
5111 been moved (ie had its LMA changed). There are four possibilities:
5112
5113 1. None of the sections have been moved.
5114 In this case we can continue to use the segment LMA from the
5115 input BFD.
5116
5117 2. All of the sections have been moved by the same amount.
5118 In this case we can change the segment's LMA to match the LMA
5119 of the first section.
5120
5121 3. Some of the sections have been moved, others have not.
5122 In this case those sections which have not been moved can be
5123 placed in the current segment which will have to have its size,
5124 and possibly its LMA changed, and a new segment or segments will
5125 have to be created to contain the other sections.
5126
5127 4. The sections have been moved, but not by the same amount.
5128 In this case we can change the segment's LMA to match the LMA
5129 of the first section and we will have to create a new segment
5130 or segments to contain the other sections.
5131
5132 In order to save time, we allocate an array to hold the section
5133 pointers that we are interested in. As these sections get assigned
5134 to a segment, they are removed from this array. */
5135
5136 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5137 to work around this long long bug. */
5138 amt = section_count * sizeof (asection *);
5139 sections = bfd_malloc (amt);
5140 if (sections == NULL)
5141 return FALSE;
5142
5143 /* Step One: Scan for segment vs section LMA conflicts.
5144 Also add the sections to the section array allocated above.
5145 Also add the sections to the current segment. In the common
5146 case, where the sections have not been moved, this means that
5147 we have completely filled the segment, and there is nothing
5148 more to do. */
5149 isec = 0;
5150 matching_lma = 0;
5151 suggested_lma = 0;
5152
5153 for (j = 0, section = ibfd->sections;
5154 section != NULL;
5155 section = section->next)
5156 {
5157 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5158 {
5159 output_section = section->output_section;
5160
5161 sections[j ++] = section;
5162
5163 /* The Solaris native linker always sets p_paddr to 0.
5164 We try to catch that case here, and set it to the
5165 correct value. Note - some backends require that
5166 p_paddr be left as zero. */
5167 if (segment->p_paddr == 0
5168 && segment->p_vaddr != 0
5169 && (! bed->want_p_paddr_set_to_zero)
5170 && isec == 0
5171 && output_section->lma != 0
5172 && (output_section->vma == (segment->p_vaddr
5173 + (map->includes_filehdr
5174 ? iehdr->e_ehsize
5175 : 0)
5176 + (map->includes_phdrs
5177 ? (iehdr->e_phnum
5178 * iehdr->e_phentsize)
5179 : 0))))
5180 map->p_paddr = segment->p_vaddr;
5181
5182 /* Match up the physical address of the segment with the
5183 LMA address of the output section. */
5184 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5185 || IS_COREFILE_NOTE (segment, section)
5186 || (bed->want_p_paddr_set_to_zero &&
5187 IS_CONTAINED_BY_VMA (output_section, segment))
5188 )
5189 {
5190 if (matching_lma == 0)
5191 matching_lma = output_section->lma;
5192
5193 /* We assume that if the section fits within the segment
5194 then it does not overlap any other section within that
5195 segment. */
5196 map->sections[isec ++] = output_section;
5197 }
5198 else if (suggested_lma == 0)
5199 suggested_lma = output_section->lma;
5200 }
5201 }
5202
5203 BFD_ASSERT (j == section_count);
5204
5205 /* Step Two: Adjust the physical address of the current segment,
5206 if necessary. */
5207 if (isec == section_count)
5208 {
5209 /* All of the sections fitted within the segment as currently
5210 specified. This is the default case. Add the segment to
5211 the list of built segments and carry on to process the next
5212 program header in the input BFD. */
5213 map->count = section_count;
5214 *pointer_to_map = map;
5215 pointer_to_map = &map->next;
5216
5217 free (sections);
5218 continue;
5219 }
5220 else
5221 {
5222 if (matching_lma != 0)
5223 {
5224 /* At least one section fits inside the current segment.
5225 Keep it, but modify its physical address to match the
5226 LMA of the first section that fitted. */
5227 map->p_paddr = matching_lma;
5228 }
5229 else
5230 {
5231 /* None of the sections fitted inside the current segment.
5232 Change the current segment's physical address to match
5233 the LMA of the first section. */
5234 map->p_paddr = suggested_lma;
5235 }
5236
5237 /* Offset the segment physical address from the lma
5238 to allow for space taken up by elf headers. */
5239 if (map->includes_filehdr)
5240 map->p_paddr -= iehdr->e_ehsize;
5241
5242 if (map->includes_phdrs)
5243 {
5244 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5245
5246 /* iehdr->e_phnum is just an estimate of the number
5247 of program headers that we will need. Make a note
5248 here of the number we used and the segment we chose
5249 to hold these headers, so that we can adjust the
5250 offset when we know the correct value. */
5251 phdr_adjust_num = iehdr->e_phnum;
5252 phdr_adjust_seg = map;
5253 }
5254 }
5255
5256 /* Step Three: Loop over the sections again, this time assigning
5257 those that fit to the current segment and removing them from the
5258 sections array; but making sure not to leave large gaps. Once all
5259 possible sections have been assigned to the current segment it is
5260 added to the list of built segments and if sections still remain
5261 to be assigned, a new segment is constructed before repeating
5262 the loop. */
5263 isec = 0;
5264 do
5265 {
5266 map->count = 0;
5267 suggested_lma = 0;
5268
5269 /* Fill the current segment with sections that fit. */
5270 for (j = 0; j < section_count; j++)
5271 {
5272 section = sections[j];
5273
5274 if (section == NULL)
5275 continue;
5276
5277 output_section = section->output_section;
5278
5279 BFD_ASSERT (output_section != NULL);
5280
5281 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5282 || IS_COREFILE_NOTE (segment, section))
5283 {
5284 if (map->count == 0)
5285 {
5286 /* If the first section in a segment does not start at
5287 the beginning of the segment, then something is
5288 wrong. */
5289 if (output_section->lma !=
5290 (map->p_paddr
5291 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5292 + (map->includes_phdrs
5293 ? iehdr->e_phnum * iehdr->e_phentsize
5294 : 0)))
5295 abort ();
5296 }
5297 else
5298 {
5299 asection * prev_sec;
5300
5301 prev_sec = map->sections[map->count - 1];
5302
5303 /* If the gap between the end of the previous section
5304 and the start of this section is more than
5305 maxpagesize then we need to start a new segment. */
5306 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5307 maxpagesize)
5308 < BFD_ALIGN (output_section->lma, maxpagesize))
5309 || ((prev_sec->lma + prev_sec->size)
5310 > output_section->lma))
5311 {
5312 if (suggested_lma == 0)
5313 suggested_lma = output_section->lma;
5314
5315 continue;
5316 }
5317 }
5318
5319 map->sections[map->count++] = output_section;
5320 ++isec;
5321 sections[j] = NULL;
5322 section->segment_mark = TRUE;
5323 }
5324 else if (suggested_lma == 0)
5325 suggested_lma = output_section->lma;
5326 }
5327
5328 BFD_ASSERT (map->count > 0);
5329
5330 /* Add the current segment to the list of built segments. */
5331 *pointer_to_map = map;
5332 pointer_to_map = &map->next;
5333
5334 if (isec < section_count)
5335 {
5336 /* We still have not allocated all of the sections to
5337 segments. Create a new segment here, initialise it
5338 and carry on looping. */
5339 amt = sizeof (struct elf_segment_map);
5340 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5341 map = bfd_alloc (obfd, amt);
5342 if (map == NULL)
5343 {
5344 free (sections);
5345 return FALSE;
5346 }
5347
5348 /* Initialise the fields of the segment map. Set the physical
5349 physical address to the LMA of the first section that has
5350 not yet been assigned. */
5351 map->next = NULL;
5352 map->p_type = segment->p_type;
5353 map->p_flags = segment->p_flags;
5354 map->p_flags_valid = 1;
5355 map->p_paddr = suggested_lma;
5356 map->p_paddr_valid = 1;
5357 map->includes_filehdr = 0;
5358 map->includes_phdrs = 0;
5359 }
5360 }
5361 while (isec < section_count);
5362
5363 free (sections);
5364 }
5365
5366 /* The Solaris linker creates program headers in which all the
5367 p_paddr fields are zero. When we try to objcopy or strip such a
5368 file, we get confused. Check for this case, and if we find it
5369 reset the p_paddr_valid fields. */
5370 for (map = map_first; map != NULL; map = map->next)
5371 if (map->p_paddr != 0)
5372 break;
5373 if (map == NULL)
5374 for (map = map_first; map != NULL; map = map->next)
5375 map->p_paddr_valid = 0;
5376
5377 elf_tdata (obfd)->segment_map = map_first;
5378
5379 /* If we had to estimate the number of program headers that were
5380 going to be needed, then check our estimate now and adjust
5381 the offset if necessary. */
5382 if (phdr_adjust_seg != NULL)
5383 {
5384 unsigned int count;
5385
5386 for (count = 0, map = map_first; map != NULL; map = map->next)
5387 count++;
5388
5389 if (count > phdr_adjust_num)
5390 phdr_adjust_seg->p_paddr
5391 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5392 }
5393
5394 #if 0
5395 /* Final Step: Sort the segments into ascending order of physical
5396 address. */
5397 if (map_first != NULL)
5398 {
5399 struct elf_segment_map *prev;
5400
5401 prev = map_first;
5402 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5403 {
5404 /* Yes I know - its a bubble sort.... */
5405 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5406 {
5407 /* Swap map and map->next. */
5408 prev->next = map->next;
5409 map->next = map->next->next;
5410 prev->next->next = map;
5411
5412 /* Restart loop. */
5413 map = map_first;
5414 }
5415 }
5416 }
5417 #endif
5418
5419 #undef SEGMENT_END
5420 #undef SECTION_SIZE
5421 #undef IS_CONTAINED_BY_VMA
5422 #undef IS_CONTAINED_BY_LMA
5423 #undef IS_COREFILE_NOTE
5424 #undef IS_SOLARIS_PT_INTERP
5425 #undef INCLUDE_SECTION_IN_SEGMENT
5426 #undef SEGMENT_AFTER_SEGMENT
5427 #undef SEGMENT_OVERLAPS
5428 return TRUE;
5429 }
5430
5431 /* Copy private section information. This copies over the entsize
5432 field, and sometimes the info field. */
5433
5434 bfd_boolean
5435 _bfd_elf_copy_private_section_data (bfd *ibfd,
5436 asection *isec,
5437 bfd *obfd,
5438 asection *osec)
5439 {
5440 Elf_Internal_Shdr *ihdr, *ohdr;
5441
5442 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5443 || obfd->xvec->flavour != bfd_target_elf_flavour)
5444 return TRUE;
5445
5446 ihdr = &elf_section_data (isec)->this_hdr;
5447 ohdr = &elf_section_data (osec)->this_hdr;
5448
5449 ohdr->sh_entsize = ihdr->sh_entsize;
5450
5451 if (ihdr->sh_type == SHT_SYMTAB
5452 || ihdr->sh_type == SHT_DYNSYM
5453 || ihdr->sh_type == SHT_GNU_verneed
5454 || ihdr->sh_type == SHT_GNU_verdef)
5455 ohdr->sh_info = ihdr->sh_info;
5456
5457 /* Set things up for objcopy. The output SHT_GROUP section will
5458 have its elf_next_in_group pointing back to the input group
5459 members. */
5460 elf_next_in_group (osec) = elf_next_in_group (isec);
5461 elf_group_name (osec) = elf_group_name (isec);
5462
5463 osec->use_rela_p = isec->use_rela_p;
5464
5465 return TRUE;
5466 }
5467
5468 /* Copy private header information. */
5469
5470 bfd_boolean
5471 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5472 {
5473 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5474 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5475 return TRUE;
5476
5477 /* Copy over private BFD data if it has not already been copied.
5478 This must be done here, rather than in the copy_private_bfd_data
5479 entry point, because the latter is called after the section
5480 contents have been set, which means that the program headers have
5481 already been worked out. */
5482 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5483 {
5484 if (! copy_private_bfd_data (ibfd, obfd))
5485 return FALSE;
5486 }
5487
5488 return TRUE;
5489 }
5490
5491 /* Copy private symbol information. If this symbol is in a section
5492 which we did not map into a BFD section, try to map the section
5493 index correctly. We use special macro definitions for the mapped
5494 section indices; these definitions are interpreted by the
5495 swap_out_syms function. */
5496
5497 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5498 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5499 #define MAP_STRTAB (SHN_HIOS + 3)
5500 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5501 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5502
5503 bfd_boolean
5504 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5505 asymbol *isymarg,
5506 bfd *obfd,
5507 asymbol *osymarg)
5508 {
5509 elf_symbol_type *isym, *osym;
5510
5511 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5512 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5513 return TRUE;
5514
5515 isym = elf_symbol_from (ibfd, isymarg);
5516 osym = elf_symbol_from (obfd, osymarg);
5517
5518 if (isym != NULL
5519 && osym != NULL
5520 && bfd_is_abs_section (isym->symbol.section))
5521 {
5522 unsigned int shndx;
5523
5524 shndx = isym->internal_elf_sym.st_shndx;
5525 if (shndx == elf_onesymtab (ibfd))
5526 shndx = MAP_ONESYMTAB;
5527 else if (shndx == elf_dynsymtab (ibfd))
5528 shndx = MAP_DYNSYMTAB;
5529 else if (shndx == elf_tdata (ibfd)->strtab_section)
5530 shndx = MAP_STRTAB;
5531 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5532 shndx = MAP_SHSTRTAB;
5533 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5534 shndx = MAP_SYM_SHNDX;
5535 osym->internal_elf_sym.st_shndx = shndx;
5536 }
5537
5538 return TRUE;
5539 }
5540
5541 /* Swap out the symbols. */
5542
5543 static bfd_boolean
5544 swap_out_syms (bfd *abfd,
5545 struct bfd_strtab_hash **sttp,
5546 int relocatable_p)
5547 {
5548 const struct elf_backend_data *bed;
5549 int symcount;
5550 asymbol **syms;
5551 struct bfd_strtab_hash *stt;
5552 Elf_Internal_Shdr *symtab_hdr;
5553 Elf_Internal_Shdr *symtab_shndx_hdr;
5554 Elf_Internal_Shdr *symstrtab_hdr;
5555 char *outbound_syms;
5556 char *outbound_shndx;
5557 int idx;
5558 bfd_size_type amt;
5559 bfd_boolean name_local_sections;
5560
5561 if (!elf_map_symbols (abfd))
5562 return FALSE;
5563
5564 /* Dump out the symtabs. */
5565 stt = _bfd_elf_stringtab_init ();
5566 if (stt == NULL)
5567 return FALSE;
5568
5569 bed = get_elf_backend_data (abfd);
5570 symcount = bfd_get_symcount (abfd);
5571 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5572 symtab_hdr->sh_type = SHT_SYMTAB;
5573 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5574 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5575 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5576 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5577
5578 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5579 symstrtab_hdr->sh_type = SHT_STRTAB;
5580
5581 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5582 outbound_syms = bfd_alloc (abfd, amt);
5583 if (outbound_syms == NULL)
5584 {
5585 _bfd_stringtab_free (stt);
5586 return FALSE;
5587 }
5588 symtab_hdr->contents = outbound_syms;
5589
5590 outbound_shndx = NULL;
5591 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5592 if (symtab_shndx_hdr->sh_name != 0)
5593 {
5594 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5595 outbound_shndx = bfd_zalloc (abfd, amt);
5596 if (outbound_shndx == NULL)
5597 {
5598 _bfd_stringtab_free (stt);
5599 return FALSE;
5600 }
5601
5602 symtab_shndx_hdr->contents = outbound_shndx;
5603 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5604 symtab_shndx_hdr->sh_size = amt;
5605 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5606 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5607 }
5608
5609 /* Now generate the data (for "contents"). */
5610 {
5611 /* Fill in zeroth symbol and swap it out. */
5612 Elf_Internal_Sym sym;
5613 sym.st_name = 0;
5614 sym.st_value = 0;
5615 sym.st_size = 0;
5616 sym.st_info = 0;
5617 sym.st_other = 0;
5618 sym.st_shndx = SHN_UNDEF;
5619 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5620 outbound_syms += bed->s->sizeof_sym;
5621 if (outbound_shndx != NULL)
5622 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5623 }
5624
5625 name_local_sections
5626 = (bed->elf_backend_name_local_section_symbols
5627 && bed->elf_backend_name_local_section_symbols (abfd));
5628
5629 syms = bfd_get_outsymbols (abfd);
5630 for (idx = 0; idx < symcount; idx++)
5631 {
5632 Elf_Internal_Sym sym;
5633 bfd_vma value = syms[idx]->value;
5634 elf_symbol_type *type_ptr;
5635 flagword flags = syms[idx]->flags;
5636 int type;
5637
5638 if (!name_local_sections
5639 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5640 {
5641 /* Local section symbols have no name. */
5642 sym.st_name = 0;
5643 }
5644 else
5645 {
5646 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5647 syms[idx]->name,
5648 TRUE, FALSE);
5649 if (sym.st_name == (unsigned long) -1)
5650 {
5651 _bfd_stringtab_free (stt);
5652 return FALSE;
5653 }
5654 }
5655
5656 type_ptr = elf_symbol_from (abfd, syms[idx]);
5657
5658 if ((flags & BSF_SECTION_SYM) == 0
5659 && bfd_is_com_section (syms[idx]->section))
5660 {
5661 /* ELF common symbols put the alignment into the `value' field,
5662 and the size into the `size' field. This is backwards from
5663 how BFD handles it, so reverse it here. */
5664 sym.st_size = value;
5665 if (type_ptr == NULL
5666 || type_ptr->internal_elf_sym.st_value == 0)
5667 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5668 else
5669 sym.st_value = type_ptr->internal_elf_sym.st_value;
5670 sym.st_shndx = _bfd_elf_section_from_bfd_section
5671 (abfd, syms[idx]->section);
5672 }
5673 else
5674 {
5675 asection *sec = syms[idx]->section;
5676 int shndx;
5677
5678 if (sec->output_section)
5679 {
5680 value += sec->output_offset;
5681 sec = sec->output_section;
5682 }
5683
5684 /* Don't add in the section vma for relocatable output. */
5685 if (! relocatable_p)
5686 value += sec->vma;
5687 sym.st_value = value;
5688 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5689
5690 if (bfd_is_abs_section (sec)
5691 && type_ptr != NULL
5692 && type_ptr->internal_elf_sym.st_shndx != 0)
5693 {
5694 /* This symbol is in a real ELF section which we did
5695 not create as a BFD section. Undo the mapping done
5696 by copy_private_symbol_data. */
5697 shndx = type_ptr->internal_elf_sym.st_shndx;
5698 switch (shndx)
5699 {
5700 case MAP_ONESYMTAB:
5701 shndx = elf_onesymtab (abfd);
5702 break;
5703 case MAP_DYNSYMTAB:
5704 shndx = elf_dynsymtab (abfd);
5705 break;
5706 case MAP_STRTAB:
5707 shndx = elf_tdata (abfd)->strtab_section;
5708 break;
5709 case MAP_SHSTRTAB:
5710 shndx = elf_tdata (abfd)->shstrtab_section;
5711 break;
5712 case MAP_SYM_SHNDX:
5713 shndx = elf_tdata (abfd)->symtab_shndx_section;
5714 break;
5715 default:
5716 break;
5717 }
5718 }
5719 else
5720 {
5721 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5722
5723 if (shndx == -1)
5724 {
5725 asection *sec2;
5726
5727 /* Writing this would be a hell of a lot easier if
5728 we had some decent documentation on bfd, and
5729 knew what to expect of the library, and what to
5730 demand of applications. For example, it
5731 appears that `objcopy' might not set the
5732 section of a symbol to be a section that is
5733 actually in the output file. */
5734 sec2 = bfd_get_section_by_name (abfd, sec->name);
5735 if (sec2 == NULL)
5736 {
5737 _bfd_error_handler (_("\
5738 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5739 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5740 sec->name);
5741 bfd_set_error (bfd_error_invalid_operation);
5742 _bfd_stringtab_free (stt);
5743 return FALSE;
5744 }
5745
5746 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5747 BFD_ASSERT (shndx != -1);
5748 }
5749 }
5750
5751 sym.st_shndx = shndx;
5752 }
5753
5754 if ((flags & BSF_THREAD_LOCAL) != 0)
5755 type = STT_TLS;
5756 else if ((flags & BSF_FUNCTION) != 0)
5757 type = STT_FUNC;
5758 else if ((flags & BSF_OBJECT) != 0)
5759 type = STT_OBJECT;
5760 else
5761 type = STT_NOTYPE;
5762
5763 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5764 type = STT_TLS;
5765
5766 /* Processor-specific types. */
5767 if (type_ptr != NULL
5768 && bed->elf_backend_get_symbol_type)
5769 type = ((*bed->elf_backend_get_symbol_type)
5770 (&type_ptr->internal_elf_sym, type));
5771
5772 if (flags & BSF_SECTION_SYM)
5773 {
5774 if (flags & BSF_GLOBAL)
5775 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5776 else
5777 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5778 }
5779 else if (bfd_is_com_section (syms[idx]->section))
5780 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5781 else if (bfd_is_und_section (syms[idx]->section))
5782 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5783 ? STB_WEAK
5784 : STB_GLOBAL),
5785 type);
5786 else if (flags & BSF_FILE)
5787 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5788 else
5789 {
5790 int bind = STB_LOCAL;
5791
5792 if (flags & BSF_LOCAL)
5793 bind = STB_LOCAL;
5794 else if (flags & BSF_WEAK)
5795 bind = STB_WEAK;
5796 else if (flags & BSF_GLOBAL)
5797 bind = STB_GLOBAL;
5798
5799 sym.st_info = ELF_ST_INFO (bind, type);
5800 }
5801
5802 if (type_ptr != NULL)
5803 sym.st_other = type_ptr->internal_elf_sym.st_other;
5804 else
5805 sym.st_other = 0;
5806
5807 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5808 outbound_syms += bed->s->sizeof_sym;
5809 if (outbound_shndx != NULL)
5810 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5811 }
5812
5813 *sttp = stt;
5814 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5815 symstrtab_hdr->sh_type = SHT_STRTAB;
5816
5817 symstrtab_hdr->sh_flags = 0;
5818 symstrtab_hdr->sh_addr = 0;
5819 symstrtab_hdr->sh_entsize = 0;
5820 symstrtab_hdr->sh_link = 0;
5821 symstrtab_hdr->sh_info = 0;
5822 symstrtab_hdr->sh_addralign = 1;
5823
5824 return TRUE;
5825 }
5826
5827 /* Return the number of bytes required to hold the symtab vector.
5828
5829 Note that we base it on the count plus 1, since we will null terminate
5830 the vector allocated based on this size. However, the ELF symbol table
5831 always has a dummy entry as symbol #0, so it ends up even. */
5832
5833 long
5834 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5835 {
5836 long symcount;
5837 long symtab_size;
5838 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5839
5840 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5841 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5842 if (symcount > 0)
5843 symtab_size -= sizeof (asymbol *);
5844
5845 return symtab_size;
5846 }
5847
5848 long
5849 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5850 {
5851 long symcount;
5852 long symtab_size;
5853 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5854
5855 if (elf_dynsymtab (abfd) == 0)
5856 {
5857 bfd_set_error (bfd_error_invalid_operation);
5858 return -1;
5859 }
5860
5861 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5862 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5863 if (symcount > 0)
5864 symtab_size -= sizeof (asymbol *);
5865
5866 return symtab_size;
5867 }
5868
5869 long
5870 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5871 sec_ptr asect)
5872 {
5873 return (asect->reloc_count + 1) * sizeof (arelent *);
5874 }
5875
5876 /* Canonicalize the relocs. */
5877
5878 long
5879 _bfd_elf_canonicalize_reloc (bfd *abfd,
5880 sec_ptr section,
5881 arelent **relptr,
5882 asymbol **symbols)
5883 {
5884 arelent *tblptr;
5885 unsigned int i;
5886 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5887
5888 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5889 return -1;
5890
5891 tblptr = section->relocation;
5892 for (i = 0; i < section->reloc_count; i++)
5893 *relptr++ = tblptr++;
5894
5895 *relptr = NULL;
5896
5897 return section->reloc_count;
5898 }
5899
5900 long
5901 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5902 {
5903 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5904 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5905
5906 if (symcount >= 0)
5907 bfd_get_symcount (abfd) = symcount;
5908 return symcount;
5909 }
5910
5911 long
5912 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5913 asymbol **allocation)
5914 {
5915 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5916 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5917
5918 if (symcount >= 0)
5919 bfd_get_dynamic_symcount (abfd) = symcount;
5920 return symcount;
5921 }
5922
5923 /* Return the size required for the dynamic reloc entries. Any
5924 section that was actually installed in the BFD, and has type
5925 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5926 considered to be a dynamic reloc section. */
5927
5928 long
5929 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5930 {
5931 long ret;
5932 asection *s;
5933
5934 if (elf_dynsymtab (abfd) == 0)
5935 {
5936 bfd_set_error (bfd_error_invalid_operation);
5937 return -1;
5938 }
5939
5940 ret = sizeof (arelent *);
5941 for (s = abfd->sections; s != NULL; s = s->next)
5942 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5943 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5944 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5945 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
5946 * sizeof (arelent *));
5947
5948 return ret;
5949 }
5950
5951 /* Canonicalize the dynamic relocation entries. Note that we return
5952 the dynamic relocations as a single block, although they are
5953 actually associated with particular sections; the interface, which
5954 was designed for SunOS style shared libraries, expects that there
5955 is only one set of dynamic relocs. Any section that was actually
5956 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5957 the dynamic symbol table, is considered to be a dynamic reloc
5958 section. */
5959
5960 long
5961 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5962 arelent **storage,
5963 asymbol **syms)
5964 {
5965 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5966 asection *s;
5967 long ret;
5968
5969 if (elf_dynsymtab (abfd) == 0)
5970 {
5971 bfd_set_error (bfd_error_invalid_operation);
5972 return -1;
5973 }
5974
5975 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5976 ret = 0;
5977 for (s = abfd->sections; s != NULL; s = s->next)
5978 {
5979 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5980 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5981 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5982 {
5983 arelent *p;
5984 long count, i;
5985
5986 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5987 return -1;
5988 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
5989 p = s->relocation;
5990 for (i = 0; i < count; i++)
5991 *storage++ = p++;
5992 ret += count;
5993 }
5994 }
5995
5996 *storage = NULL;
5997
5998 return ret;
5999 }
6000 \f
6001 /* Read in the version information. */
6002
6003 bfd_boolean
6004 _bfd_elf_slurp_version_tables (bfd *abfd)
6005 {
6006 bfd_byte *contents = NULL;
6007 bfd_size_type amt;
6008
6009 if (elf_dynverdef (abfd) != 0)
6010 {
6011 Elf_Internal_Shdr *hdr;
6012 Elf_External_Verdef *everdef;
6013 Elf_Internal_Verdef *iverdef;
6014 Elf_Internal_Verdef *iverdefarr;
6015 Elf_Internal_Verdef iverdefmem;
6016 unsigned int i;
6017 unsigned int maxidx;
6018
6019 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6020
6021 contents = bfd_malloc (hdr->sh_size);
6022 if (contents == NULL)
6023 goto error_return;
6024 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6025 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6026 goto error_return;
6027
6028 /* We know the number of entries in the section but not the maximum
6029 index. Therefore we have to run through all entries and find
6030 the maximum. */
6031 everdef = (Elf_External_Verdef *) contents;
6032 maxidx = 0;
6033 for (i = 0; i < hdr->sh_info; ++i)
6034 {
6035 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6036
6037 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6038 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6039
6040 everdef = ((Elf_External_Verdef *)
6041 ((bfd_byte *) everdef + iverdefmem.vd_next));
6042 }
6043
6044 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6045 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6046 if (elf_tdata (abfd)->verdef == NULL)
6047 goto error_return;
6048
6049 elf_tdata (abfd)->cverdefs = maxidx;
6050
6051 everdef = (Elf_External_Verdef *) contents;
6052 iverdefarr = elf_tdata (abfd)->verdef;
6053 for (i = 0; i < hdr->sh_info; i++)
6054 {
6055 Elf_External_Verdaux *everdaux;
6056 Elf_Internal_Verdaux *iverdaux;
6057 unsigned int j;
6058
6059 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6060
6061 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6062 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6063
6064 iverdef->vd_bfd = abfd;
6065
6066 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6067 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6068 if (iverdef->vd_auxptr == NULL)
6069 goto error_return;
6070
6071 everdaux = ((Elf_External_Verdaux *)
6072 ((bfd_byte *) everdef + iverdef->vd_aux));
6073 iverdaux = iverdef->vd_auxptr;
6074 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6075 {
6076 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6077
6078 iverdaux->vda_nodename =
6079 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6080 iverdaux->vda_name);
6081 if (iverdaux->vda_nodename == NULL)
6082 goto error_return;
6083
6084 if (j + 1 < iverdef->vd_cnt)
6085 iverdaux->vda_nextptr = iverdaux + 1;
6086 else
6087 iverdaux->vda_nextptr = NULL;
6088
6089 everdaux = ((Elf_External_Verdaux *)
6090 ((bfd_byte *) everdaux + iverdaux->vda_next));
6091 }
6092
6093 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6094
6095 if (i + 1 < hdr->sh_info)
6096 iverdef->vd_nextdef = iverdef + 1;
6097 else
6098 iverdef->vd_nextdef = NULL;
6099
6100 everdef = ((Elf_External_Verdef *)
6101 ((bfd_byte *) everdef + iverdef->vd_next));
6102 }
6103
6104 free (contents);
6105 contents = NULL;
6106 }
6107
6108 if (elf_dynverref (abfd) != 0)
6109 {
6110 Elf_Internal_Shdr *hdr;
6111 Elf_External_Verneed *everneed;
6112 Elf_Internal_Verneed *iverneed;
6113 unsigned int i;
6114
6115 hdr = &elf_tdata (abfd)->dynverref_hdr;
6116
6117 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6118 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6119 if (elf_tdata (abfd)->verref == NULL)
6120 goto error_return;
6121
6122 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6123
6124 contents = bfd_malloc (hdr->sh_size);
6125 if (contents == NULL)
6126 goto error_return;
6127 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6128 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6129 goto error_return;
6130
6131 everneed = (Elf_External_Verneed *) contents;
6132 iverneed = elf_tdata (abfd)->verref;
6133 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6134 {
6135 Elf_External_Vernaux *evernaux;
6136 Elf_Internal_Vernaux *ivernaux;
6137 unsigned int j;
6138
6139 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6140
6141 iverneed->vn_bfd = abfd;
6142
6143 iverneed->vn_filename =
6144 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6145 iverneed->vn_file);
6146 if (iverneed->vn_filename == NULL)
6147 goto error_return;
6148
6149 amt = iverneed->vn_cnt;
6150 amt *= sizeof (Elf_Internal_Vernaux);
6151 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6152
6153 evernaux = ((Elf_External_Vernaux *)
6154 ((bfd_byte *) everneed + iverneed->vn_aux));
6155 ivernaux = iverneed->vn_auxptr;
6156 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6157 {
6158 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6159
6160 ivernaux->vna_nodename =
6161 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6162 ivernaux->vna_name);
6163 if (ivernaux->vna_nodename == NULL)
6164 goto error_return;
6165
6166 if (j + 1 < iverneed->vn_cnt)
6167 ivernaux->vna_nextptr = ivernaux + 1;
6168 else
6169 ivernaux->vna_nextptr = NULL;
6170
6171 evernaux = ((Elf_External_Vernaux *)
6172 ((bfd_byte *) evernaux + ivernaux->vna_next));
6173 }
6174
6175 if (i + 1 < hdr->sh_info)
6176 iverneed->vn_nextref = iverneed + 1;
6177 else
6178 iverneed->vn_nextref = NULL;
6179
6180 everneed = ((Elf_External_Verneed *)
6181 ((bfd_byte *) everneed + iverneed->vn_next));
6182 }
6183
6184 free (contents);
6185 contents = NULL;
6186 }
6187
6188 return TRUE;
6189
6190 error_return:
6191 if (contents != NULL)
6192 free (contents);
6193 return FALSE;
6194 }
6195 \f
6196 asymbol *
6197 _bfd_elf_make_empty_symbol (bfd *abfd)
6198 {
6199 elf_symbol_type *newsym;
6200 bfd_size_type amt = sizeof (elf_symbol_type);
6201
6202 newsym = bfd_zalloc (abfd, amt);
6203 if (!newsym)
6204 return NULL;
6205 else
6206 {
6207 newsym->symbol.the_bfd = abfd;
6208 return &newsym->symbol;
6209 }
6210 }
6211
6212 void
6213 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6214 asymbol *symbol,
6215 symbol_info *ret)
6216 {
6217 bfd_symbol_info (symbol, ret);
6218 }
6219
6220 /* Return whether a symbol name implies a local symbol. Most targets
6221 use this function for the is_local_label_name entry point, but some
6222 override it. */
6223
6224 bfd_boolean
6225 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6226 const char *name)
6227 {
6228 /* Normal local symbols start with ``.L''. */
6229 if (name[0] == '.' && name[1] == 'L')
6230 return TRUE;
6231
6232 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6233 DWARF debugging symbols starting with ``..''. */
6234 if (name[0] == '.' && name[1] == '.')
6235 return TRUE;
6236
6237 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6238 emitting DWARF debugging output. I suspect this is actually a
6239 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6240 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6241 underscore to be emitted on some ELF targets). For ease of use,
6242 we treat such symbols as local. */
6243 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6244 return TRUE;
6245
6246 return FALSE;
6247 }
6248
6249 alent *
6250 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6251 asymbol *symbol ATTRIBUTE_UNUSED)
6252 {
6253 abort ();
6254 return NULL;
6255 }
6256
6257 bfd_boolean
6258 _bfd_elf_set_arch_mach (bfd *abfd,
6259 enum bfd_architecture arch,
6260 unsigned long machine)
6261 {
6262 /* If this isn't the right architecture for this backend, and this
6263 isn't the generic backend, fail. */
6264 if (arch != get_elf_backend_data (abfd)->arch
6265 && arch != bfd_arch_unknown
6266 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6267 return FALSE;
6268
6269 return bfd_default_set_arch_mach (abfd, arch, machine);
6270 }
6271
6272 /* Find the function to a particular section and offset,
6273 for error reporting. */
6274
6275 static bfd_boolean
6276 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6277 asection *section,
6278 asymbol **symbols,
6279 bfd_vma offset,
6280 const char **filename_ptr,
6281 const char **functionname_ptr)
6282 {
6283 const char *filename;
6284 asymbol *func;
6285 bfd_vma low_func;
6286 asymbol **p;
6287
6288 filename = NULL;
6289 func = NULL;
6290 low_func = 0;
6291
6292 for (p = symbols; *p != NULL; p++)
6293 {
6294 elf_symbol_type *q;
6295
6296 q = (elf_symbol_type *) *p;
6297
6298 if (bfd_get_section (&q->symbol) != section)
6299 continue;
6300
6301 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6302 {
6303 default:
6304 break;
6305 case STT_FILE:
6306 filename = bfd_asymbol_name (&q->symbol);
6307 break;
6308 case STT_NOTYPE:
6309 case STT_FUNC:
6310 if (q->symbol.section == section
6311 && q->symbol.value >= low_func
6312 && q->symbol.value <= offset)
6313 {
6314 func = (asymbol *) q;
6315 low_func = q->symbol.value;
6316 }
6317 break;
6318 }
6319 }
6320
6321 if (func == NULL)
6322 return FALSE;
6323
6324 if (filename_ptr)
6325 *filename_ptr = filename;
6326 if (functionname_ptr)
6327 *functionname_ptr = bfd_asymbol_name (func);
6328
6329 return TRUE;
6330 }
6331
6332 /* Find the nearest line to a particular section and offset,
6333 for error reporting. */
6334
6335 bfd_boolean
6336 _bfd_elf_find_nearest_line (bfd *abfd,
6337 asection *section,
6338 asymbol **symbols,
6339 bfd_vma offset,
6340 const char **filename_ptr,
6341 const char **functionname_ptr,
6342 unsigned int *line_ptr)
6343 {
6344 bfd_boolean found;
6345
6346 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6347 filename_ptr, functionname_ptr,
6348 line_ptr))
6349 {
6350 if (!*functionname_ptr)
6351 elf_find_function (abfd, section, symbols, offset,
6352 *filename_ptr ? NULL : filename_ptr,
6353 functionname_ptr);
6354
6355 return TRUE;
6356 }
6357
6358 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6359 filename_ptr, functionname_ptr,
6360 line_ptr, 0,
6361 &elf_tdata (abfd)->dwarf2_find_line_info))
6362 {
6363 if (!*functionname_ptr)
6364 elf_find_function (abfd, section, symbols, offset,
6365 *filename_ptr ? NULL : filename_ptr,
6366 functionname_ptr);
6367
6368 return TRUE;
6369 }
6370
6371 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6372 &found, filename_ptr,
6373 functionname_ptr, line_ptr,
6374 &elf_tdata (abfd)->line_info))
6375 return FALSE;
6376 if (found && (*functionname_ptr || *line_ptr))
6377 return TRUE;
6378
6379 if (symbols == NULL)
6380 return FALSE;
6381
6382 if (! elf_find_function (abfd, section, symbols, offset,
6383 filename_ptr, functionname_ptr))
6384 return FALSE;
6385
6386 *line_ptr = 0;
6387 return TRUE;
6388 }
6389
6390 int
6391 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6392 {
6393 int ret;
6394
6395 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6396 if (! reloc)
6397 ret += get_program_header_size (abfd);
6398 return ret;
6399 }
6400
6401 bfd_boolean
6402 _bfd_elf_set_section_contents (bfd *abfd,
6403 sec_ptr section,
6404 const void *location,
6405 file_ptr offset,
6406 bfd_size_type count)
6407 {
6408 Elf_Internal_Shdr *hdr;
6409 bfd_signed_vma pos;
6410
6411 if (! abfd->output_has_begun
6412 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6413 return FALSE;
6414
6415 hdr = &elf_section_data (section)->this_hdr;
6416 pos = hdr->sh_offset + offset;
6417 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6418 || bfd_bwrite (location, count, abfd) != count)
6419 return FALSE;
6420
6421 return TRUE;
6422 }
6423
6424 void
6425 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6426 arelent *cache_ptr ATTRIBUTE_UNUSED,
6427 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6428 {
6429 abort ();
6430 }
6431
6432 /* Try to convert a non-ELF reloc into an ELF one. */
6433
6434 bfd_boolean
6435 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6436 {
6437 /* Check whether we really have an ELF howto. */
6438
6439 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6440 {
6441 bfd_reloc_code_real_type code;
6442 reloc_howto_type *howto;
6443
6444 /* Alien reloc: Try to determine its type to replace it with an
6445 equivalent ELF reloc. */
6446
6447 if (areloc->howto->pc_relative)
6448 {
6449 switch (areloc->howto->bitsize)
6450 {
6451 case 8:
6452 code = BFD_RELOC_8_PCREL;
6453 break;
6454 case 12:
6455 code = BFD_RELOC_12_PCREL;
6456 break;
6457 case 16:
6458 code = BFD_RELOC_16_PCREL;
6459 break;
6460 case 24:
6461 code = BFD_RELOC_24_PCREL;
6462 break;
6463 case 32:
6464 code = BFD_RELOC_32_PCREL;
6465 break;
6466 case 64:
6467 code = BFD_RELOC_64_PCREL;
6468 break;
6469 default:
6470 goto fail;
6471 }
6472
6473 howto = bfd_reloc_type_lookup (abfd, code);
6474
6475 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6476 {
6477 if (howto->pcrel_offset)
6478 areloc->addend += areloc->address;
6479 else
6480 areloc->addend -= areloc->address; /* addend is unsigned!! */
6481 }
6482 }
6483 else
6484 {
6485 switch (areloc->howto->bitsize)
6486 {
6487 case 8:
6488 code = BFD_RELOC_8;
6489 break;
6490 case 14:
6491 code = BFD_RELOC_14;
6492 break;
6493 case 16:
6494 code = BFD_RELOC_16;
6495 break;
6496 case 26:
6497 code = BFD_RELOC_26;
6498 break;
6499 case 32:
6500 code = BFD_RELOC_32;
6501 break;
6502 case 64:
6503 code = BFD_RELOC_64;
6504 break;
6505 default:
6506 goto fail;
6507 }
6508
6509 howto = bfd_reloc_type_lookup (abfd, code);
6510 }
6511
6512 if (howto)
6513 areloc->howto = howto;
6514 else
6515 goto fail;
6516 }
6517
6518 return TRUE;
6519
6520 fail:
6521 (*_bfd_error_handler)
6522 (_("%B: unsupported relocation type %s"),
6523 abfd, areloc->howto->name);
6524 bfd_set_error (bfd_error_bad_value);
6525 return FALSE;
6526 }
6527
6528 bfd_boolean
6529 _bfd_elf_close_and_cleanup (bfd *abfd)
6530 {
6531 if (bfd_get_format (abfd) == bfd_object)
6532 {
6533 if (elf_shstrtab (abfd) != NULL)
6534 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6535 }
6536
6537 return _bfd_generic_close_and_cleanup (abfd);
6538 }
6539
6540 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6541 in the relocation's offset. Thus we cannot allow any sort of sanity
6542 range-checking to interfere. There is nothing else to do in processing
6543 this reloc. */
6544
6545 bfd_reloc_status_type
6546 _bfd_elf_rel_vtable_reloc_fn
6547 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6548 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6549 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6550 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6551 {
6552 return bfd_reloc_ok;
6553 }
6554 \f
6555 /* Elf core file support. Much of this only works on native
6556 toolchains, since we rely on knowing the
6557 machine-dependent procfs structure in order to pick
6558 out details about the corefile. */
6559
6560 #ifdef HAVE_SYS_PROCFS_H
6561 # include <sys/procfs.h>
6562 #endif
6563
6564 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6565
6566 static int
6567 elfcore_make_pid (bfd *abfd)
6568 {
6569 return ((elf_tdata (abfd)->core_lwpid << 16)
6570 + (elf_tdata (abfd)->core_pid));
6571 }
6572
6573 /* If there isn't a section called NAME, make one, using
6574 data from SECT. Note, this function will generate a
6575 reference to NAME, so you shouldn't deallocate or
6576 overwrite it. */
6577
6578 static bfd_boolean
6579 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6580 {
6581 asection *sect2;
6582
6583 if (bfd_get_section_by_name (abfd, name) != NULL)
6584 return TRUE;
6585
6586 sect2 = bfd_make_section (abfd, name);
6587 if (sect2 == NULL)
6588 return FALSE;
6589
6590 sect2->size = sect->size;
6591 sect2->filepos = sect->filepos;
6592 sect2->flags = sect->flags;
6593 sect2->alignment_power = sect->alignment_power;
6594 return TRUE;
6595 }
6596
6597 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6598 actually creates up to two pseudosections:
6599 - For the single-threaded case, a section named NAME, unless
6600 such a section already exists.
6601 - For the multi-threaded case, a section named "NAME/PID", where
6602 PID is elfcore_make_pid (abfd).
6603 Both pseudosections have identical contents. */
6604 bfd_boolean
6605 _bfd_elfcore_make_pseudosection (bfd *abfd,
6606 char *name,
6607 size_t size,
6608 ufile_ptr filepos)
6609 {
6610 char buf[100];
6611 char *threaded_name;
6612 size_t len;
6613 asection *sect;
6614
6615 /* Build the section name. */
6616
6617 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6618 len = strlen (buf) + 1;
6619 threaded_name = bfd_alloc (abfd, len);
6620 if (threaded_name == NULL)
6621 return FALSE;
6622 memcpy (threaded_name, buf, len);
6623
6624 sect = bfd_make_section_anyway (abfd, threaded_name);
6625 if (sect == NULL)
6626 return FALSE;
6627 sect->size = size;
6628 sect->filepos = filepos;
6629 sect->flags = SEC_HAS_CONTENTS;
6630 sect->alignment_power = 2;
6631
6632 return elfcore_maybe_make_sect (abfd, name, sect);
6633 }
6634
6635 /* prstatus_t exists on:
6636 solaris 2.5+
6637 linux 2.[01] + glibc
6638 unixware 4.2
6639 */
6640
6641 #if defined (HAVE_PRSTATUS_T)
6642
6643 static bfd_boolean
6644 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6645 {
6646 size_t size;
6647 int offset;
6648
6649 if (note->descsz == sizeof (prstatus_t))
6650 {
6651 prstatus_t prstat;
6652
6653 size = sizeof (prstat.pr_reg);
6654 offset = offsetof (prstatus_t, pr_reg);
6655 memcpy (&prstat, note->descdata, sizeof (prstat));
6656
6657 /* Do not overwrite the core signal if it
6658 has already been set by another thread. */
6659 if (elf_tdata (abfd)->core_signal == 0)
6660 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6661 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6662
6663 /* pr_who exists on:
6664 solaris 2.5+
6665 unixware 4.2
6666 pr_who doesn't exist on:
6667 linux 2.[01]
6668 */
6669 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6670 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6671 #endif
6672 }
6673 #if defined (HAVE_PRSTATUS32_T)
6674 else if (note->descsz == sizeof (prstatus32_t))
6675 {
6676 /* 64-bit host, 32-bit corefile */
6677 prstatus32_t prstat;
6678
6679 size = sizeof (prstat.pr_reg);
6680 offset = offsetof (prstatus32_t, pr_reg);
6681 memcpy (&prstat, note->descdata, sizeof (prstat));
6682
6683 /* Do not overwrite the core signal if it
6684 has already been set by another thread. */
6685 if (elf_tdata (abfd)->core_signal == 0)
6686 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6687 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6688
6689 /* pr_who exists on:
6690 solaris 2.5+
6691 unixware 4.2
6692 pr_who doesn't exist on:
6693 linux 2.[01]
6694 */
6695 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6696 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6697 #endif
6698 }
6699 #endif /* HAVE_PRSTATUS32_T */
6700 else
6701 {
6702 /* Fail - we don't know how to handle any other
6703 note size (ie. data object type). */
6704 return TRUE;
6705 }
6706
6707 /* Make a ".reg/999" section and a ".reg" section. */
6708 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6709 size, note->descpos + offset);
6710 }
6711 #endif /* defined (HAVE_PRSTATUS_T) */
6712
6713 /* Create a pseudosection containing the exact contents of NOTE. */
6714 static bfd_boolean
6715 elfcore_make_note_pseudosection (bfd *abfd,
6716 char *name,
6717 Elf_Internal_Note *note)
6718 {
6719 return _bfd_elfcore_make_pseudosection (abfd, name,
6720 note->descsz, note->descpos);
6721 }
6722
6723 /* There isn't a consistent prfpregset_t across platforms,
6724 but it doesn't matter, because we don't have to pick this
6725 data structure apart. */
6726
6727 static bfd_boolean
6728 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6729 {
6730 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6731 }
6732
6733 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6734 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6735 literally. */
6736
6737 static bfd_boolean
6738 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6739 {
6740 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6741 }
6742
6743 #if defined (HAVE_PRPSINFO_T)
6744 typedef prpsinfo_t elfcore_psinfo_t;
6745 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6746 typedef prpsinfo32_t elfcore_psinfo32_t;
6747 #endif
6748 #endif
6749
6750 #if defined (HAVE_PSINFO_T)
6751 typedef psinfo_t elfcore_psinfo_t;
6752 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6753 typedef psinfo32_t elfcore_psinfo32_t;
6754 #endif
6755 #endif
6756
6757 /* return a malloc'ed copy of a string at START which is at
6758 most MAX bytes long, possibly without a terminating '\0'.
6759 the copy will always have a terminating '\0'. */
6760
6761 char *
6762 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6763 {
6764 char *dups;
6765 char *end = memchr (start, '\0', max);
6766 size_t len;
6767
6768 if (end == NULL)
6769 len = max;
6770 else
6771 len = end - start;
6772
6773 dups = bfd_alloc (abfd, len + 1);
6774 if (dups == NULL)
6775 return NULL;
6776
6777 memcpy (dups, start, len);
6778 dups[len] = '\0';
6779
6780 return dups;
6781 }
6782
6783 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6784 static bfd_boolean
6785 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6786 {
6787 if (note->descsz == sizeof (elfcore_psinfo_t))
6788 {
6789 elfcore_psinfo_t psinfo;
6790
6791 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6792
6793 elf_tdata (abfd)->core_program
6794 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6795 sizeof (psinfo.pr_fname));
6796
6797 elf_tdata (abfd)->core_command
6798 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6799 sizeof (psinfo.pr_psargs));
6800 }
6801 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6802 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6803 {
6804 /* 64-bit host, 32-bit corefile */
6805 elfcore_psinfo32_t psinfo;
6806
6807 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6808
6809 elf_tdata (abfd)->core_program
6810 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6811 sizeof (psinfo.pr_fname));
6812
6813 elf_tdata (abfd)->core_command
6814 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6815 sizeof (psinfo.pr_psargs));
6816 }
6817 #endif
6818
6819 else
6820 {
6821 /* Fail - we don't know how to handle any other
6822 note size (ie. data object type). */
6823 return TRUE;
6824 }
6825
6826 /* Note that for some reason, a spurious space is tacked
6827 onto the end of the args in some (at least one anyway)
6828 implementations, so strip it off if it exists. */
6829
6830 {
6831 char *command = elf_tdata (abfd)->core_command;
6832 int n = strlen (command);
6833
6834 if (0 < n && command[n - 1] == ' ')
6835 command[n - 1] = '\0';
6836 }
6837
6838 return TRUE;
6839 }
6840 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6841
6842 #if defined (HAVE_PSTATUS_T)
6843 static bfd_boolean
6844 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6845 {
6846 if (note->descsz == sizeof (pstatus_t)
6847 #if defined (HAVE_PXSTATUS_T)
6848 || note->descsz == sizeof (pxstatus_t)
6849 #endif
6850 )
6851 {
6852 pstatus_t pstat;
6853
6854 memcpy (&pstat, note->descdata, sizeof (pstat));
6855
6856 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6857 }
6858 #if defined (HAVE_PSTATUS32_T)
6859 else if (note->descsz == sizeof (pstatus32_t))
6860 {
6861 /* 64-bit host, 32-bit corefile */
6862 pstatus32_t pstat;
6863
6864 memcpy (&pstat, note->descdata, sizeof (pstat));
6865
6866 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6867 }
6868 #endif
6869 /* Could grab some more details from the "representative"
6870 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6871 NT_LWPSTATUS note, presumably. */
6872
6873 return TRUE;
6874 }
6875 #endif /* defined (HAVE_PSTATUS_T) */
6876
6877 #if defined (HAVE_LWPSTATUS_T)
6878 static bfd_boolean
6879 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6880 {
6881 lwpstatus_t lwpstat;
6882 char buf[100];
6883 char *name;
6884 size_t len;
6885 asection *sect;
6886
6887 if (note->descsz != sizeof (lwpstat)
6888 #if defined (HAVE_LWPXSTATUS_T)
6889 && note->descsz != sizeof (lwpxstatus_t)
6890 #endif
6891 )
6892 return TRUE;
6893
6894 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6895
6896 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6897 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6898
6899 /* Make a ".reg/999" section. */
6900
6901 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6902 len = strlen (buf) + 1;
6903 name = bfd_alloc (abfd, len);
6904 if (name == NULL)
6905 return FALSE;
6906 memcpy (name, buf, len);
6907
6908 sect = bfd_make_section_anyway (abfd, name);
6909 if (sect == NULL)
6910 return FALSE;
6911
6912 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6913 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6914 sect->filepos = note->descpos
6915 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6916 #endif
6917
6918 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6919 sect->size = sizeof (lwpstat.pr_reg);
6920 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6921 #endif
6922
6923 sect->flags = SEC_HAS_CONTENTS;
6924 sect->alignment_power = 2;
6925
6926 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6927 return FALSE;
6928
6929 /* Make a ".reg2/999" section */
6930
6931 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6932 len = strlen (buf) + 1;
6933 name = bfd_alloc (abfd, len);
6934 if (name == NULL)
6935 return FALSE;
6936 memcpy (name, buf, len);
6937
6938 sect = bfd_make_section_anyway (abfd, name);
6939 if (sect == NULL)
6940 return FALSE;
6941
6942 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6943 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6944 sect->filepos = note->descpos
6945 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6946 #endif
6947
6948 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6949 sect->size = sizeof (lwpstat.pr_fpreg);
6950 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6951 #endif
6952
6953 sect->flags = SEC_HAS_CONTENTS;
6954 sect->alignment_power = 2;
6955
6956 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6957 }
6958 #endif /* defined (HAVE_LWPSTATUS_T) */
6959
6960 #if defined (HAVE_WIN32_PSTATUS_T)
6961 static bfd_boolean
6962 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6963 {
6964 char buf[30];
6965 char *name;
6966 size_t len;
6967 asection *sect;
6968 win32_pstatus_t pstatus;
6969
6970 if (note->descsz < sizeof (pstatus))
6971 return TRUE;
6972
6973 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6974
6975 switch (pstatus.data_type)
6976 {
6977 case NOTE_INFO_PROCESS:
6978 /* FIXME: need to add ->core_command. */
6979 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6980 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6981 break;
6982
6983 case NOTE_INFO_THREAD:
6984 /* Make a ".reg/999" section. */
6985 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6986
6987 len = strlen (buf) + 1;
6988 name = bfd_alloc (abfd, len);
6989 if (name == NULL)
6990 return FALSE;
6991
6992 memcpy (name, buf, len);
6993
6994 sect = bfd_make_section_anyway (abfd, name);
6995 if (sect == NULL)
6996 return FALSE;
6997
6998 sect->size = sizeof (pstatus.data.thread_info.thread_context);
6999 sect->filepos = (note->descpos
7000 + offsetof (struct win32_pstatus,
7001 data.thread_info.thread_context));
7002 sect->flags = SEC_HAS_CONTENTS;
7003 sect->alignment_power = 2;
7004
7005 if (pstatus.data.thread_info.is_active_thread)
7006 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7007 return FALSE;
7008 break;
7009
7010 case NOTE_INFO_MODULE:
7011 /* Make a ".module/xxxxxxxx" section. */
7012 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
7013
7014 len = strlen (buf) + 1;
7015 name = bfd_alloc (abfd, len);
7016 if (name == NULL)
7017 return FALSE;
7018
7019 memcpy (name, buf, len);
7020
7021 sect = bfd_make_section_anyway (abfd, name);
7022
7023 if (sect == NULL)
7024 return FALSE;
7025
7026 sect->size = note->descsz;
7027 sect->filepos = note->descpos;
7028 sect->flags = SEC_HAS_CONTENTS;
7029 sect->alignment_power = 2;
7030 break;
7031
7032 default:
7033 return TRUE;
7034 }
7035
7036 return TRUE;
7037 }
7038 #endif /* HAVE_WIN32_PSTATUS_T */
7039
7040 static bfd_boolean
7041 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7042 {
7043 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7044
7045 switch (note->type)
7046 {
7047 default:
7048 return TRUE;
7049
7050 case NT_PRSTATUS:
7051 if (bed->elf_backend_grok_prstatus)
7052 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7053 return TRUE;
7054 #if defined (HAVE_PRSTATUS_T)
7055 return elfcore_grok_prstatus (abfd, note);
7056 #else
7057 return TRUE;
7058 #endif
7059
7060 #if defined (HAVE_PSTATUS_T)
7061 case NT_PSTATUS:
7062 return elfcore_grok_pstatus (abfd, note);
7063 #endif
7064
7065 #if defined (HAVE_LWPSTATUS_T)
7066 case NT_LWPSTATUS:
7067 return elfcore_grok_lwpstatus (abfd, note);
7068 #endif
7069
7070 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7071 return elfcore_grok_prfpreg (abfd, note);
7072
7073 #if defined (HAVE_WIN32_PSTATUS_T)
7074 case NT_WIN32PSTATUS:
7075 return elfcore_grok_win32pstatus (abfd, note);
7076 #endif
7077
7078 case NT_PRXFPREG: /* Linux SSE extension */
7079 if (note->namesz == 6
7080 && strcmp (note->namedata, "LINUX") == 0)
7081 return elfcore_grok_prxfpreg (abfd, note);
7082 else
7083 return TRUE;
7084
7085 case NT_PRPSINFO:
7086 case NT_PSINFO:
7087 if (bed->elf_backend_grok_psinfo)
7088 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7089 return TRUE;
7090 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7091 return elfcore_grok_psinfo (abfd, note);
7092 #else
7093 return TRUE;
7094 #endif
7095
7096 case NT_AUXV:
7097 {
7098 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7099
7100 if (sect == NULL)
7101 return FALSE;
7102 sect->size = note->descsz;
7103 sect->filepos = note->descpos;
7104 sect->flags = SEC_HAS_CONTENTS;
7105 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7106
7107 return TRUE;
7108 }
7109 }
7110 }
7111
7112 static bfd_boolean
7113 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7114 {
7115 char *cp;
7116
7117 cp = strchr (note->namedata, '@');
7118 if (cp != NULL)
7119 {
7120 *lwpidp = atoi(cp + 1);
7121 return TRUE;
7122 }
7123 return FALSE;
7124 }
7125
7126 static bfd_boolean
7127 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7128 {
7129
7130 /* Signal number at offset 0x08. */
7131 elf_tdata (abfd)->core_signal
7132 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7133
7134 /* Process ID at offset 0x50. */
7135 elf_tdata (abfd)->core_pid
7136 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7137
7138 /* Command name at 0x7c (max 32 bytes, including nul). */
7139 elf_tdata (abfd)->core_command
7140 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7141
7142 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7143 note);
7144 }
7145
7146 static bfd_boolean
7147 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7148 {
7149 int lwp;
7150
7151 if (elfcore_netbsd_get_lwpid (note, &lwp))
7152 elf_tdata (abfd)->core_lwpid = lwp;
7153
7154 if (note->type == NT_NETBSDCORE_PROCINFO)
7155 {
7156 /* NetBSD-specific core "procinfo". Note that we expect to
7157 find this note before any of the others, which is fine,
7158 since the kernel writes this note out first when it
7159 creates a core file. */
7160
7161 return elfcore_grok_netbsd_procinfo (abfd, note);
7162 }
7163
7164 /* As of Jan 2002 there are no other machine-independent notes
7165 defined for NetBSD core files. If the note type is less
7166 than the start of the machine-dependent note types, we don't
7167 understand it. */
7168
7169 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7170 return TRUE;
7171
7172
7173 switch (bfd_get_arch (abfd))
7174 {
7175 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7176 PT_GETFPREGS == mach+2. */
7177
7178 case bfd_arch_alpha:
7179 case bfd_arch_sparc:
7180 switch (note->type)
7181 {
7182 case NT_NETBSDCORE_FIRSTMACH+0:
7183 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7184
7185 case NT_NETBSDCORE_FIRSTMACH+2:
7186 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7187
7188 default:
7189 return TRUE;
7190 }
7191
7192 /* On all other arch's, PT_GETREGS == mach+1 and
7193 PT_GETFPREGS == mach+3. */
7194
7195 default:
7196 switch (note->type)
7197 {
7198 case NT_NETBSDCORE_FIRSTMACH+1:
7199 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7200
7201 case NT_NETBSDCORE_FIRSTMACH+3:
7202 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7203
7204 default:
7205 return TRUE;
7206 }
7207 }
7208 /* NOTREACHED */
7209 }
7210
7211 static bfd_boolean
7212 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7213 {
7214 void *ddata = note->descdata;
7215 char buf[100];
7216 char *name;
7217 asection *sect;
7218 short sig;
7219 unsigned flags;
7220
7221 /* nto_procfs_status 'pid' field is at offset 0. */
7222 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7223
7224 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7225 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7226
7227 /* nto_procfs_status 'flags' field is at offset 8. */
7228 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7229
7230 /* nto_procfs_status 'what' field is at offset 14. */
7231 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7232 {
7233 elf_tdata (abfd)->core_signal = sig;
7234 elf_tdata (abfd)->core_lwpid = *tid;
7235 }
7236
7237 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7238 do not come from signals so we make sure we set the current
7239 thread just in case. */
7240 if (flags & 0x00000080)
7241 elf_tdata (abfd)->core_lwpid = *tid;
7242
7243 /* Make a ".qnx_core_status/%d" section. */
7244 sprintf (buf, ".qnx_core_status/%d", *tid);
7245
7246 name = bfd_alloc (abfd, strlen (buf) + 1);
7247 if (name == NULL)
7248 return FALSE;
7249 strcpy (name, buf);
7250
7251 sect = bfd_make_section_anyway (abfd, name);
7252 if (sect == NULL)
7253 return FALSE;
7254
7255 sect->size = note->descsz;
7256 sect->filepos = note->descpos;
7257 sect->flags = SEC_HAS_CONTENTS;
7258 sect->alignment_power = 2;
7259
7260 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7261 }
7262
7263 static bfd_boolean
7264 elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
7265 {
7266 char buf[100];
7267 char *name;
7268 asection *sect;
7269
7270 /* Make a ".reg/%d" section. */
7271 sprintf (buf, ".reg/%d", tid);
7272
7273 name = bfd_alloc (abfd, strlen (buf) + 1);
7274 if (name == NULL)
7275 return FALSE;
7276 strcpy (name, buf);
7277
7278 sect = bfd_make_section_anyway (abfd, name);
7279 if (sect == NULL)
7280 return FALSE;
7281
7282 sect->size = note->descsz;
7283 sect->filepos = note->descpos;
7284 sect->flags = SEC_HAS_CONTENTS;
7285 sect->alignment_power = 2;
7286
7287 /* This is the current thread. */
7288 if (elf_tdata (abfd)->core_lwpid == tid)
7289 return elfcore_maybe_make_sect (abfd, ".reg", sect);
7290
7291 return TRUE;
7292 }
7293
7294 #define BFD_QNT_CORE_INFO 7
7295 #define BFD_QNT_CORE_STATUS 8
7296 #define BFD_QNT_CORE_GREG 9
7297 #define BFD_QNT_CORE_FPREG 10
7298
7299 static bfd_boolean
7300 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7301 {
7302 /* Every GREG section has a STATUS section before it. Store the
7303 tid from the previous call to pass down to the next gregs
7304 function. */
7305 static pid_t tid = 1;
7306
7307 switch (note->type)
7308 {
7309 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7310 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7311 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7312 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7313 default: return TRUE;
7314 }
7315 }
7316
7317 /* Function: elfcore_write_note
7318
7319 Inputs:
7320 buffer to hold note
7321 name of note
7322 type of note
7323 data for note
7324 size of data for note
7325
7326 Return:
7327 End of buffer containing note. */
7328
7329 char *
7330 elfcore_write_note (bfd *abfd,
7331 char *buf,
7332 int *bufsiz,
7333 const char *name,
7334 int type,
7335 const void *input,
7336 int size)
7337 {
7338 Elf_External_Note *xnp;
7339 size_t namesz;
7340 size_t pad;
7341 size_t newspace;
7342 char *p, *dest;
7343
7344 namesz = 0;
7345 pad = 0;
7346 if (name != NULL)
7347 {
7348 const struct elf_backend_data *bed;
7349
7350 namesz = strlen (name) + 1;
7351 bed = get_elf_backend_data (abfd);
7352 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7353 }
7354
7355 newspace = 12 + namesz + pad + size;
7356
7357 p = realloc (buf, *bufsiz + newspace);
7358 dest = p + *bufsiz;
7359 *bufsiz += newspace;
7360 xnp = (Elf_External_Note *) dest;
7361 H_PUT_32 (abfd, namesz, xnp->namesz);
7362 H_PUT_32 (abfd, size, xnp->descsz);
7363 H_PUT_32 (abfd, type, xnp->type);
7364 dest = xnp->name;
7365 if (name != NULL)
7366 {
7367 memcpy (dest, name, namesz);
7368 dest += namesz;
7369 while (pad != 0)
7370 {
7371 *dest++ = '\0';
7372 --pad;
7373 }
7374 }
7375 memcpy (dest, input, size);
7376 return p;
7377 }
7378
7379 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7380 char *
7381 elfcore_write_prpsinfo (bfd *abfd,
7382 char *buf,
7383 int *bufsiz,
7384 const char *fname,
7385 const char *psargs)
7386 {
7387 int note_type;
7388 char *note_name = "CORE";
7389
7390 #if defined (HAVE_PSINFO_T)
7391 psinfo_t data;
7392 note_type = NT_PSINFO;
7393 #else
7394 prpsinfo_t data;
7395 note_type = NT_PRPSINFO;
7396 #endif
7397
7398 memset (&data, 0, sizeof (data));
7399 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7400 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7401 return elfcore_write_note (abfd, buf, bufsiz,
7402 note_name, note_type, &data, sizeof (data));
7403 }
7404 #endif /* PSINFO_T or PRPSINFO_T */
7405
7406 #if defined (HAVE_PRSTATUS_T)
7407 char *
7408 elfcore_write_prstatus (bfd *abfd,
7409 char *buf,
7410 int *bufsiz,
7411 long pid,
7412 int cursig,
7413 const void *gregs)
7414 {
7415 prstatus_t prstat;
7416 char *note_name = "CORE";
7417
7418 memset (&prstat, 0, sizeof (prstat));
7419 prstat.pr_pid = pid;
7420 prstat.pr_cursig = cursig;
7421 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7422 return elfcore_write_note (abfd, buf, bufsiz,
7423 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7424 }
7425 #endif /* HAVE_PRSTATUS_T */
7426
7427 #if defined (HAVE_LWPSTATUS_T)
7428 char *
7429 elfcore_write_lwpstatus (bfd *abfd,
7430 char *buf,
7431 int *bufsiz,
7432 long pid,
7433 int cursig,
7434 const void *gregs)
7435 {
7436 lwpstatus_t lwpstat;
7437 char *note_name = "CORE";
7438
7439 memset (&lwpstat, 0, sizeof (lwpstat));
7440 lwpstat.pr_lwpid = pid >> 16;
7441 lwpstat.pr_cursig = cursig;
7442 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7443 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7444 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7445 #if !defined(gregs)
7446 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7447 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7448 #else
7449 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7450 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7451 #endif
7452 #endif
7453 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7454 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7455 }
7456 #endif /* HAVE_LWPSTATUS_T */
7457
7458 #if defined (HAVE_PSTATUS_T)
7459 char *
7460 elfcore_write_pstatus (bfd *abfd,
7461 char *buf,
7462 int *bufsiz,
7463 long pid,
7464 int cursig,
7465 const void *gregs)
7466 {
7467 pstatus_t pstat;
7468 char *note_name = "CORE";
7469
7470 memset (&pstat, 0, sizeof (pstat));
7471 pstat.pr_pid = pid & 0xffff;
7472 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7473 NT_PSTATUS, &pstat, sizeof (pstat));
7474 return buf;
7475 }
7476 #endif /* HAVE_PSTATUS_T */
7477
7478 char *
7479 elfcore_write_prfpreg (bfd *abfd,
7480 char *buf,
7481 int *bufsiz,
7482 const void *fpregs,
7483 int size)
7484 {
7485 char *note_name = "CORE";
7486 return elfcore_write_note (abfd, buf, bufsiz,
7487 note_name, NT_FPREGSET, fpregs, size);
7488 }
7489
7490 char *
7491 elfcore_write_prxfpreg (bfd *abfd,
7492 char *buf,
7493 int *bufsiz,
7494 const void *xfpregs,
7495 int size)
7496 {
7497 char *note_name = "LINUX";
7498 return elfcore_write_note (abfd, buf, bufsiz,
7499 note_name, NT_PRXFPREG, xfpregs, size);
7500 }
7501
7502 static bfd_boolean
7503 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7504 {
7505 char *buf;
7506 char *p;
7507
7508 if (size <= 0)
7509 return TRUE;
7510
7511 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7512 return FALSE;
7513
7514 buf = bfd_malloc (size);
7515 if (buf == NULL)
7516 return FALSE;
7517
7518 if (bfd_bread (buf, size, abfd) != size)
7519 {
7520 error:
7521 free (buf);
7522 return FALSE;
7523 }
7524
7525 p = buf;
7526 while (p < buf + size)
7527 {
7528 /* FIXME: bad alignment assumption. */
7529 Elf_External_Note *xnp = (Elf_External_Note *) p;
7530 Elf_Internal_Note in;
7531
7532 in.type = H_GET_32 (abfd, xnp->type);
7533
7534 in.namesz = H_GET_32 (abfd, xnp->namesz);
7535 in.namedata = xnp->name;
7536
7537 in.descsz = H_GET_32 (abfd, xnp->descsz);
7538 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7539 in.descpos = offset + (in.descdata - buf);
7540
7541 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7542 {
7543 if (! elfcore_grok_netbsd_note (abfd, &in))
7544 goto error;
7545 }
7546 else if (strncmp (in.namedata, "QNX", 3) == 0)
7547 {
7548 if (! elfcore_grok_nto_note (abfd, &in))
7549 goto error;
7550 }
7551 else
7552 {
7553 if (! elfcore_grok_note (abfd, &in))
7554 goto error;
7555 }
7556
7557 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7558 }
7559
7560 free (buf);
7561 return TRUE;
7562 }
7563 \f
7564 /* Providing external access to the ELF program header table. */
7565
7566 /* Return an upper bound on the number of bytes required to store a
7567 copy of ABFD's program header table entries. Return -1 if an error
7568 occurs; bfd_get_error will return an appropriate code. */
7569
7570 long
7571 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7572 {
7573 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7574 {
7575 bfd_set_error (bfd_error_wrong_format);
7576 return -1;
7577 }
7578
7579 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7580 }
7581
7582 /* Copy ABFD's program header table entries to *PHDRS. The entries
7583 will be stored as an array of Elf_Internal_Phdr structures, as
7584 defined in include/elf/internal.h. To find out how large the
7585 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7586
7587 Return the number of program header table entries read, or -1 if an
7588 error occurs; bfd_get_error will return an appropriate code. */
7589
7590 int
7591 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7592 {
7593 int num_phdrs;
7594
7595 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7596 {
7597 bfd_set_error (bfd_error_wrong_format);
7598 return -1;
7599 }
7600
7601 num_phdrs = elf_elfheader (abfd)->e_phnum;
7602 memcpy (phdrs, elf_tdata (abfd)->phdr,
7603 num_phdrs * sizeof (Elf_Internal_Phdr));
7604
7605 return num_phdrs;
7606 }
7607
7608 void
7609 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7610 {
7611 #ifdef BFD64
7612 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7613
7614 i_ehdrp = elf_elfheader (abfd);
7615 if (i_ehdrp == NULL)
7616 sprintf_vma (buf, value);
7617 else
7618 {
7619 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7620 {
7621 #if BFD_HOST_64BIT_LONG
7622 sprintf (buf, "%016lx", value);
7623 #else
7624 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7625 _bfd_int64_low (value));
7626 #endif
7627 }
7628 else
7629 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7630 }
7631 #else
7632 sprintf_vma (buf, value);
7633 #endif
7634 }
7635
7636 void
7637 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7638 {
7639 #ifdef BFD64
7640 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7641
7642 i_ehdrp = elf_elfheader (abfd);
7643 if (i_ehdrp == NULL)
7644 fprintf_vma ((FILE *) stream, value);
7645 else
7646 {
7647 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7648 {
7649 #if BFD_HOST_64BIT_LONG
7650 fprintf ((FILE *) stream, "%016lx", value);
7651 #else
7652 fprintf ((FILE *) stream, "%08lx%08lx",
7653 _bfd_int64_high (value), _bfd_int64_low (value));
7654 #endif
7655 }
7656 else
7657 fprintf ((FILE *) stream, "%08lx",
7658 (unsigned long) (value & 0xffffffff));
7659 }
7660 #else
7661 fprintf_vma ((FILE *) stream, value);
7662 #endif
7663 }
7664
7665 enum elf_reloc_type_class
7666 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7667 {
7668 return reloc_class_normal;
7669 }
7670
7671 /* For RELA architectures, return the relocation value for a
7672 relocation against a local symbol. */
7673
7674 bfd_vma
7675 _bfd_elf_rela_local_sym (bfd *abfd,
7676 Elf_Internal_Sym *sym,
7677 asection **psec,
7678 Elf_Internal_Rela *rel)
7679 {
7680 asection *sec = *psec;
7681 bfd_vma relocation;
7682
7683 relocation = (sec->output_section->vma
7684 + sec->output_offset
7685 + sym->st_value);
7686 if ((sec->flags & SEC_MERGE)
7687 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7688 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7689 {
7690 rel->r_addend =
7691 _bfd_merged_section_offset (abfd, psec,
7692 elf_section_data (sec)->sec_info,
7693 sym->st_value + rel->r_addend);
7694 if (sec != *psec)
7695 {
7696 /* If we have changed the section, and our original section is
7697 marked with SEC_EXCLUDE, it means that the original
7698 SEC_MERGE section has been completely subsumed in some
7699 other SEC_MERGE section. In this case, we need to leave
7700 some info around for --emit-relocs. */
7701 if ((sec->flags & SEC_EXCLUDE) != 0)
7702 sec->kept_section = *psec;
7703 sec = *psec;
7704 }
7705 rel->r_addend -= relocation;
7706 rel->r_addend += sec->output_section->vma + sec->output_offset;
7707 }
7708 return relocation;
7709 }
7710
7711 bfd_vma
7712 _bfd_elf_rel_local_sym (bfd *abfd,
7713 Elf_Internal_Sym *sym,
7714 asection **psec,
7715 bfd_vma addend)
7716 {
7717 asection *sec = *psec;
7718
7719 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7720 return sym->st_value + addend;
7721
7722 return _bfd_merged_section_offset (abfd, psec,
7723 elf_section_data (sec)->sec_info,
7724 sym->st_value + addend);
7725 }
7726
7727 bfd_vma
7728 _bfd_elf_section_offset (bfd *abfd,
7729 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7730 asection *sec,
7731 bfd_vma offset)
7732 {
7733 switch (sec->sec_info_type)
7734 {
7735 case ELF_INFO_TYPE_STABS:
7736 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
7737 offset);
7738 case ELF_INFO_TYPE_EH_FRAME:
7739 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7740 default:
7741 return offset;
7742 }
7743 }
7744 \f
7745 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7746 reconstruct an ELF file by reading the segments out of remote memory
7747 based on the ELF file header at EHDR_VMA and the ELF program headers it
7748 points to. If not null, *LOADBASEP is filled in with the difference
7749 between the VMAs from which the segments were read, and the VMAs the
7750 file headers (and hence BFD's idea of each section's VMA) put them at.
7751
7752 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7753 remote memory at target address VMA into the local buffer at MYADDR; it
7754 should return zero on success or an `errno' code on failure. TEMPL must
7755 be a BFD for an ELF target with the word size and byte order found in
7756 the remote memory. */
7757
7758 bfd *
7759 bfd_elf_bfd_from_remote_memory
7760 (bfd *templ,
7761 bfd_vma ehdr_vma,
7762 bfd_vma *loadbasep,
7763 int (*target_read_memory) (bfd_vma, char *, int))
7764 {
7765 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7766 (templ, ehdr_vma, loadbasep, target_read_memory);
7767 }
7768 \f
7769 long
7770 _bfd_elf_get_synthetic_symtab (bfd *abfd,
7771 long symcount ATTRIBUTE_UNUSED,
7772 asymbol **syms ATTRIBUTE_UNUSED,
7773 long dynsymcount ATTRIBUTE_UNUSED,
7774 asymbol **dynsyms,
7775 asymbol **ret)
7776 {
7777 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7778 asection *relplt;
7779 asymbol *s;
7780 const char *relplt_name;
7781 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7782 arelent *p;
7783 long count, i, n;
7784 size_t size;
7785 Elf_Internal_Shdr *hdr;
7786 char *names;
7787 asection *plt;
7788
7789 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
7790 return 0;
7791
7792 *ret = NULL;
7793 if (!bed->plt_sym_val)
7794 return 0;
7795
7796 relplt_name = bed->relplt_name;
7797 if (relplt_name == NULL)
7798 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7799 relplt = bfd_get_section_by_name (abfd, relplt_name);
7800 if (relplt == NULL)
7801 return 0;
7802
7803 hdr = &elf_section_data (relplt)->this_hdr;
7804 if (hdr->sh_link != elf_dynsymtab (abfd)
7805 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7806 return 0;
7807
7808 plt = bfd_get_section_by_name (abfd, ".plt");
7809 if (plt == NULL)
7810 return 0;
7811
7812 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7813 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7814 return -1;
7815
7816 count = relplt->size / hdr->sh_entsize;
7817 size = count * sizeof (asymbol);
7818 p = relplt->relocation;
7819 for (i = 0; i < count; i++, s++, p++)
7820 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7821
7822 s = *ret = bfd_malloc (size);
7823 if (s == NULL)
7824 return -1;
7825
7826 names = (char *) (s + count);
7827 p = relplt->relocation;
7828 n = 0;
7829 for (i = 0; i < count; i++, s++, p++)
7830 {
7831 size_t len;
7832 bfd_vma addr;
7833
7834 addr = bed->plt_sym_val (i, plt, p);
7835 if (addr == (bfd_vma) -1)
7836 continue;
7837
7838 *s = **p->sym_ptr_ptr;
7839 s->section = plt;
7840 s->value = addr - plt->vma;
7841 s->name = names;
7842 len = strlen ((*p->sym_ptr_ptr)->name);
7843 memcpy (names, (*p->sym_ptr_ptr)->name, len);
7844 names += len;
7845 memcpy (names, "@plt", sizeof ("@plt"));
7846 names += sizeof ("@plt");
7847 ++n;
7848 }
7849
7850 return n;
7851 }
7852
7853 /* Sort symbol by binding and section. We want to put definitions
7854 sorted by section at the beginning. */
7855
7856 static int
7857 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7858 {
7859 const Elf_Internal_Sym *s1;
7860 const Elf_Internal_Sym *s2;
7861 int shndx;
7862
7863 /* Make sure that undefined symbols are at the end. */
7864 s1 = (const Elf_Internal_Sym *) arg1;
7865 if (s1->st_shndx == SHN_UNDEF)
7866 return 1;
7867 s2 = (const Elf_Internal_Sym *) arg2;
7868 if (s2->st_shndx == SHN_UNDEF)
7869 return -1;
7870
7871 /* Sorted by section index. */
7872 shndx = s1->st_shndx - s2->st_shndx;
7873 if (shndx != 0)
7874 return shndx;
7875
7876 /* Sorted by binding. */
7877 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
7878 }
7879
7880 struct elf_symbol
7881 {
7882 Elf_Internal_Sym *sym;
7883 const char *name;
7884 };
7885
7886 static int
7887 elf_sym_name_compare (const void *arg1, const void *arg2)
7888 {
7889 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7890 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7891 return strcmp (s1->name, s2->name);
7892 }
7893
7894 /* Check if 2 sections define the same set of local and global
7895 symbols. */
7896
7897 bfd_boolean
7898 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
7899 {
7900 bfd *bfd1, *bfd2;
7901 const struct elf_backend_data *bed1, *bed2;
7902 Elf_Internal_Shdr *hdr1, *hdr2;
7903 bfd_size_type symcount1, symcount2;
7904 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7905 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
7906 Elf_Internal_Sym *isymend;
7907 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
7908 bfd_size_type count1, count2, i;
7909 int shndx1, shndx2;
7910 bfd_boolean result;
7911
7912 bfd1 = sec1->owner;
7913 bfd2 = sec2->owner;
7914
7915 /* If both are .gnu.linkonce sections, they have to have the same
7916 section name. */
7917 if (strncmp (sec1->name, ".gnu.linkonce",
7918 sizeof ".gnu.linkonce" - 1) == 0
7919 && strncmp (sec2->name, ".gnu.linkonce",
7920 sizeof ".gnu.linkonce" - 1) == 0)
7921 return strcmp (sec1->name + sizeof ".gnu.linkonce",
7922 sec2->name + sizeof ".gnu.linkonce") == 0;
7923
7924 /* Both sections have to be in ELF. */
7925 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7926 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7927 return FALSE;
7928
7929 if (elf_section_type (sec1) != elf_section_type (sec2))
7930 return FALSE;
7931
7932 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
7933 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
7934 {
7935 /* If both are members of section groups, they have to have the
7936 same group name. */
7937 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
7938 return FALSE;
7939 }
7940
7941 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7942 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7943 if (shndx1 == -1 || shndx2 == -1)
7944 return FALSE;
7945
7946 bed1 = get_elf_backend_data (bfd1);
7947 bed2 = get_elf_backend_data (bfd2);
7948 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7949 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7950 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7951 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7952
7953 if (symcount1 == 0 || symcount2 == 0)
7954 return FALSE;
7955
7956 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7957 NULL, NULL, NULL);
7958 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7959 NULL, NULL, NULL);
7960
7961 result = FALSE;
7962 if (isymbuf1 == NULL || isymbuf2 == NULL)
7963 goto done;
7964
7965 /* Sort symbols by binding and section. Global definitions are at
7966 the beginning. */
7967 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
7968 elf_sort_elf_symbol);
7969 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
7970 elf_sort_elf_symbol);
7971
7972 /* Count definitions in the section. */
7973 count1 = 0;
7974 for (isym = isymbuf1, isymend = isym + symcount1;
7975 isym < isymend; isym++)
7976 {
7977 if (isym->st_shndx == (unsigned int) shndx1)
7978 {
7979 if (count1 == 0)
7980 isymstart1 = isym;
7981 count1++;
7982 }
7983
7984 if (count1 && isym->st_shndx != (unsigned int) shndx1)
7985 break;
7986 }
7987
7988 count2 = 0;
7989 for (isym = isymbuf2, isymend = isym + symcount2;
7990 isym < isymend; isym++)
7991 {
7992 if (isym->st_shndx == (unsigned int) shndx2)
7993 {
7994 if (count2 == 0)
7995 isymstart2 = isym;
7996 count2++;
7997 }
7998
7999 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8000 break;
8001 }
8002
8003 if (count1 == 0 || count2 == 0 || count1 != count2)
8004 goto done;
8005
8006 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8007 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8008
8009 if (symtable1 == NULL || symtable2 == NULL)
8010 goto done;
8011
8012 symp = symtable1;
8013 for (isym = isymstart1, isymend = isym + count1;
8014 isym < isymend; isym++)
8015 {
8016 symp->sym = isym;
8017 symp->name = bfd_elf_string_from_elf_section (bfd1,
8018 hdr1->sh_link,
8019 isym->st_name);
8020 symp++;
8021 }
8022
8023 symp = symtable2;
8024 for (isym = isymstart2, isymend = isym + count1;
8025 isym < isymend; isym++)
8026 {
8027 symp->sym = isym;
8028 symp->name = bfd_elf_string_from_elf_section (bfd2,
8029 hdr2->sh_link,
8030 isym->st_name);
8031 symp++;
8032 }
8033
8034 /* Sort symbol by name. */
8035 qsort (symtable1, count1, sizeof (struct elf_symbol),
8036 elf_sym_name_compare);
8037 qsort (symtable2, count1, sizeof (struct elf_symbol),
8038 elf_sym_name_compare);
8039
8040 for (i = 0; i < count1; i++)
8041 /* Two symbols must have the same binding, type and name. */
8042 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8043 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8044 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8045 goto done;
8046
8047 result = TRUE;
8048
8049 done:
8050 if (symtable1)
8051 free (symtable1);
8052 if (symtable2)
8053 free (symtable2);
8054 if (isymbuf1)
8055 free (isymbuf1);
8056 if (isymbuf2)
8057 free (isymbuf2);
8058
8059 return result;
8060 }
This page took 0.32454 seconds and 4 git commands to generate.