d2124fd4f3e90e104c0e620c08d40b863294435b
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
211 {
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
219
220 return TRUE;
221 }
222
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
225 {
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
228 }
229
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
232 {
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
237
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
241
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
244 {
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
248
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
256 {
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
260 }
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
264 }
265 return (char *) shstrtab;
266 }
267
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
272 {
273 Elf_Internal_Shdr *hdr;
274
275 if (strindex == 0)
276 return "";
277
278 hdr = elf_elfsections (abfd)[shindex];
279
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
283
284 if (strindex >= hdr->sh_size)
285 {
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
294 }
295
296 return ((char *) hdr->contents) + strindex;
297 }
298
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
304
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
313 {
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
325
326 if (symcount == 0)
327 return intsym_buf;
328
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
333
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
342 {
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
345 }
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
349 {
350 intsym_buf = NULL;
351 goto out;
352 }
353
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
357 {
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
361 {
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
365 }
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
369 {
370 intsym_buf = NULL;
371 goto out;
372 }
373 }
374
375 if (intsym_buf == NULL)
376 {
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
380 }
381
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
388
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
394
395 return intsym_buf;
396 }
397
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
404 {
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
408
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
423
424 return name;
425 }
426
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
430
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
435
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
438
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
441 {
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
446
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
453
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
459
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
461 }
462
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
464
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
467 {
468 unsigned int num_group = elf_tdata (abfd)->num_group;
469
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
473 {
474 unsigned int i, shnum;
475
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
481 {
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
485 }
486
487 if (num_group == 0)
488 {
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
491 }
492 else
493 {
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
497
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
503
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
506 {
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
509 {
510 unsigned char *src;
511 Elf_Internal_Group *dest;
512
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
516
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
527
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
535 {
536 unsigned int idx;
537
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
542 {
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
548 }
549 if (idx >= shnum)
550 {
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
554 }
555 dest->shdr = elf_elfsections (abfd)[idx];
556 }
557 }
558 }
559 }
560 }
561
562 if (num_group != (unsigned) -1)
563 {
564 unsigned int i;
565
566 for (i = 0; i < num_group; i++)
567 {
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
571
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
576 {
577 asection *s = NULL;
578
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
589 {
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
595 }
596 else
597 {
598 const char *gname;
599
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
604
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
607 }
608
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
613
614 i = num_group - 1;
615 break;
616 }
617 }
618 }
619
620 if (elf_group_name (newsect) == NULL)
621 {
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
624 }
625 return TRUE;
626 }
627
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
630 {
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
635
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
638 {
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
641 {
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
647 {
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
654 }
655 else
656 {
657 asection *link;
658
659 this_hdr = elf_elfsections (abfd)[elfsec];
660
661 /* PR 1991, 2008:
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link = this_hdr->bfd_section;
665 if (link == NULL)
666 {
667 (*_bfd_error_handler)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s->owner, s, elfsec);
670 result = FALSE;
671 }
672
673 elf_linked_to_section (s) = link;
674 }
675 }
676 }
677
678 /* Process section groups. */
679 if (num_group == (unsigned) -1)
680 return result;
681
682 for (i = 0; i < num_group; i++)
683 {
684 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
685 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
686 unsigned int n_elt = shdr->sh_size / 4;
687
688 while (--n_elt != 0)
689 if ((++idx)->shdr->bfd_section)
690 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
691 else if (idx->shdr->sh_type == SHT_RELA
692 || idx->shdr->sh_type == SHT_REL)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
697 files. */
698 shdr->bfd_section->size -= 4;
699 else
700 {
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
704 abfd,
705 (unsigned int) idx->shdr->sh_type,
706 bfd_elf_string_from_elf_section (abfd,
707 (elf_elfheader (abfd)
708 ->e_shstrndx),
709 idx->shdr->sh_name),
710 shdr->bfd_section->name);
711 result = FALSE;
712 }
713 }
714 return result;
715 }
716
717 bfd_boolean
718 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
719 {
720 return elf_next_in_group (sec) != NULL;
721 }
722
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
725
726 bfd_boolean
727 _bfd_elf_make_section_from_shdr (bfd *abfd,
728 Elf_Internal_Shdr *hdr,
729 const char *name,
730 int shindex)
731 {
732 asection *newsect;
733 flagword flags;
734 const struct elf_backend_data *bed;
735
736 if (hdr->bfd_section != NULL)
737 {
738 BFD_ASSERT (strcmp (name,
739 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
740 return TRUE;
741 }
742
743 newsect = bfd_make_section_anyway (abfd, name);
744 if (newsect == NULL)
745 return FALSE;
746
747 hdr->bfd_section = newsect;
748 elf_section_data (newsect)->this_hdr = *hdr;
749 elf_section_data (newsect)->this_idx = shindex;
750
751 /* Always use the real type/flags. */
752 elf_section_type (newsect) = hdr->sh_type;
753 elf_section_flags (newsect) = hdr->sh_flags;
754
755 newsect->filepos = hdr->sh_offset;
756
757 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
758 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
759 || ! bfd_set_section_alignment (abfd, newsect,
760 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
761 return FALSE;
762
763 flags = SEC_NO_FLAGS;
764 if (hdr->sh_type != SHT_NOBITS)
765 flags |= SEC_HAS_CONTENTS;
766 if (hdr->sh_type == SHT_GROUP)
767 flags |= SEC_GROUP | SEC_EXCLUDE;
768 if ((hdr->sh_flags & SHF_ALLOC) != 0)
769 {
770 flags |= SEC_ALLOC;
771 if (hdr->sh_type != SHT_NOBITS)
772 flags |= SEC_LOAD;
773 }
774 if ((hdr->sh_flags & SHF_WRITE) == 0)
775 flags |= SEC_READONLY;
776 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
777 flags |= SEC_CODE;
778 else if ((flags & SEC_LOAD) != 0)
779 flags |= SEC_DATA;
780 if ((hdr->sh_flags & SHF_MERGE) != 0)
781 {
782 flags |= SEC_MERGE;
783 newsect->entsize = hdr->sh_entsize;
784 if ((hdr->sh_flags & SHF_STRINGS) != 0)
785 flags |= SEC_STRINGS;
786 }
787 if (hdr->sh_flags & SHF_GROUP)
788 if (!setup_group (abfd, hdr, newsect))
789 return FALSE;
790 if ((hdr->sh_flags & SHF_TLS) != 0)
791 flags |= SEC_THREAD_LOCAL;
792
793 if ((flags & SEC_ALLOC) == 0)
794 {
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
797 static const struct
798 {
799 const char *name;
800 int len;
801 } debug_sections [] =
802 {
803 { "debug", 5 }, /* 'd' */
804 { NULL, 0 }, /* 'e' */
805 { NULL, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL, 0 }, /* 'h' */
808 { NULL, 0 }, /* 'i' */
809 { NULL, 0 }, /* 'j' */
810 { NULL, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL, 0 }, /* 'm' */
813 { NULL, 0 }, /* 'n' */
814 { NULL, 0 }, /* 'o' */
815 { NULL, 0 }, /* 'p' */
816 { NULL, 0 }, /* 'q' */
817 { NULL, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
819 };
820
821 if (name [0] == '.')
822 {
823 int i = name [1] - 'd';
824 if (i >= 0
825 && i < (int) ARRAY_SIZE (debug_sections)
826 && debug_sections [i].name != NULL
827 && strncmp (&name [1], debug_sections [i].name,
828 debug_sections [i].len) == 0)
829 flags |= SEC_DEBUGGING;
830 }
831 }
832
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect) == NULL)
841 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
842
843 bed = get_elf_backend_data (abfd);
844 if (bed->elf_backend_section_flags)
845 if (! bed->elf_backend_section_flags (&flags, hdr))
846 return FALSE;
847
848 if (! bfd_set_section_flags (abfd, newsect, flags))
849 return FALSE;
850
851 if ((flags & SEC_ALLOC) != 0)
852 {
853 Elf_Internal_Phdr *phdr;
854 unsigned int i;
855
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr = elf_tdata (abfd)->phdr;
860 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
861 {
862 if (phdr->p_paddr != 0)
863 break;
864 }
865 if (i < elf_elfheader (abfd)->e_phnum)
866 {
867 phdr = elf_tdata (abfd)->phdr;
868 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
869 {
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
874
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr->p_type == PT_LOAD
883 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
884 && (hdr->sh_offset + hdr->sh_size
885 <= phdr->p_offset + phdr->p_memsz)
886 && ((flags & SEC_LOAD) == 0
887 || (hdr->sh_offset + hdr->sh_size
888 <= phdr->p_offset + phdr->p_filesz)))
889 {
890 if ((flags & SEC_LOAD) == 0)
891 newsect->lma = (phdr->p_paddr
892 + hdr->sh_addr - phdr->p_vaddr);
893 else
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect->lma = (phdr->p_paddr
902 + hdr->sh_offset - phdr->p_offset);
903
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr->sh_addr >= phdr->p_vaddr
909 && (hdr->sh_addr + hdr->sh_size
910 <= phdr->p_vaddr + phdr->p_memsz))
911 break;
912 }
913 }
914 }
915 }
916
917 return TRUE;
918 }
919
920 /*
921 INTERNAL_FUNCTION
922 bfd_elf_find_section
923
924 SYNOPSIS
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
926
927 DESCRIPTION
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
933 */
934
935 struct elf_internal_shdr *
936 bfd_elf_find_section (bfd *abfd, char *name)
937 {
938 Elf_Internal_Shdr **i_shdrp;
939 char *shstrtab;
940 unsigned int max;
941 unsigned int i;
942
943 i_shdrp = elf_elfsections (abfd);
944 if (i_shdrp != NULL)
945 {
946 shstrtab = bfd_elf_get_str_section (abfd,
947 elf_elfheader (abfd)->e_shstrndx);
948 if (shstrtab != NULL)
949 {
950 max = elf_numsections (abfd);
951 for (i = 1; i < max; i++)
952 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
953 return i_shdrp[i];
954 }
955 }
956 return 0;
957 }
958
959 const char *const bfd_elf_section_type_names[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
963 };
964
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
974
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
977 arelent *reloc_entry,
978 asymbol *symbol,
979 void *data ATTRIBUTE_UNUSED,
980 asection *input_section,
981 bfd *output_bfd,
982 char **error_message ATTRIBUTE_UNUSED)
983 {
984 if (output_bfd != NULL
985 && (symbol->flags & BSF_SECTION_SYM) == 0
986 && (! reloc_entry->howto->partial_inplace
987 || reloc_entry->addend == 0))
988 {
989 reloc_entry->address += input_section->output_offset;
990 return bfd_reloc_ok;
991 }
992
993 return bfd_reloc_continue;
994 }
995 \f
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
997
998 static void
999 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1000 asection *sec)
1001 {
1002 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1003 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1004 }
1005
1006 /* Finish SHF_MERGE section merging. */
1007
1008 bfd_boolean
1009 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1010 {
1011 bfd *ibfd;
1012 asection *sec;
1013
1014 if (!is_elf_hash_table (info->hash))
1015 return FALSE;
1016
1017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1018 if ((ibfd->flags & DYNAMIC) == 0)
1019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1020 if ((sec->flags & SEC_MERGE) != 0
1021 && !bfd_is_abs_section (sec->output_section))
1022 {
1023 struct bfd_elf_section_data *secdata;
1024
1025 secdata = elf_section_data (sec);
1026 if (! _bfd_add_merge_section (abfd,
1027 &elf_hash_table (info)->merge_info,
1028 sec, &secdata->sec_info))
1029 return FALSE;
1030 else if (secdata->sec_info)
1031 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1032 }
1033
1034 if (elf_hash_table (info)->merge_info != NULL)
1035 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1036 merge_sections_remove_hook);
1037 return TRUE;
1038 }
1039
1040 void
1041 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1042 {
1043 sec->output_section = bfd_abs_section_ptr;
1044 sec->output_offset = sec->vma;
1045 if (!is_elf_hash_table (info->hash))
1046 return;
1047
1048 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1049 }
1050 \f
1051 /* Copy the program header and other data from one object module to
1052 another. */
1053
1054 bfd_boolean
1055 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1056 {
1057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1059 return TRUE;
1060
1061 BFD_ASSERT (!elf_flags_init (obfd)
1062 || (elf_elfheader (obfd)->e_flags
1063 == elf_elfheader (ibfd)->e_flags));
1064
1065 elf_gp (obfd) = elf_gp (ibfd);
1066 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1067 elf_flags_init (obfd) = TRUE;
1068 return TRUE;
1069 }
1070
1071 static const char *
1072 get_segment_type (unsigned int p_type)
1073 {
1074 const char *pt;
1075 switch (p_type)
1076 {
1077 case PT_NULL: pt = "NULL"; break;
1078 case PT_LOAD: pt = "LOAD"; break;
1079 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1080 case PT_INTERP: pt = "INTERP"; break;
1081 case PT_NOTE: pt = "NOTE"; break;
1082 case PT_SHLIB: pt = "SHLIB"; break;
1083 case PT_PHDR: pt = "PHDR"; break;
1084 case PT_TLS: pt = "TLS"; break;
1085 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1086 case PT_GNU_STACK: pt = "STACK"; break;
1087 case PT_GNU_RELRO: pt = "RELRO"; break;
1088 default: pt = NULL; break;
1089 }
1090 return pt;
1091 }
1092
1093 /* Print out the program headers. */
1094
1095 bfd_boolean
1096 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1097 {
1098 FILE *f = farg;
1099 Elf_Internal_Phdr *p;
1100 asection *s;
1101 bfd_byte *dynbuf = NULL;
1102
1103 p = elf_tdata (abfd)->phdr;
1104 if (p != NULL)
1105 {
1106 unsigned int i, c;
1107
1108 fprintf (f, _("\nProgram Header:\n"));
1109 c = elf_elfheader (abfd)->e_phnum;
1110 for (i = 0; i < c; i++, p++)
1111 {
1112 const char *pt = get_segment_type (p->p_type);
1113 char buf[20];
1114
1115 if (pt == NULL)
1116 {
1117 sprintf (buf, "0x%lx", p->p_type);
1118 pt = buf;
1119 }
1120 fprintf (f, "%8s off 0x", pt);
1121 bfd_fprintf_vma (abfd, f, p->p_offset);
1122 fprintf (f, " vaddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1124 fprintf (f, " paddr 0x");
1125 bfd_fprintf_vma (abfd, f, p->p_paddr);
1126 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1127 fprintf (f, " filesz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_filesz);
1129 fprintf (f, " memsz 0x");
1130 bfd_fprintf_vma (abfd, f, p->p_memsz);
1131 fprintf (f, " flags %c%c%c",
1132 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1133 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1134 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1135 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1136 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1137 fprintf (f, "\n");
1138 }
1139 }
1140
1141 s = bfd_get_section_by_name (abfd, ".dynamic");
1142 if (s != NULL)
1143 {
1144 int elfsec;
1145 unsigned long shlink;
1146 bfd_byte *extdyn, *extdynend;
1147 size_t extdynsize;
1148 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1149
1150 fprintf (f, _("\nDynamic Section:\n"));
1151
1152 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1153 goto error_return;
1154
1155 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1156 if (elfsec == -1)
1157 goto error_return;
1158 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1159
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1162
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1166 {
1167 Elf_Internal_Dyn dyn;
1168 const char *name;
1169 char ab[20];
1170 bfd_boolean stringp;
1171
1172 (*swap_dyn_in) (abfd, extdyn, &dyn);
1173
1174 if (dyn.d_tag == DT_NULL)
1175 break;
1176
1177 stringp = FALSE;
1178 switch (dyn.d_tag)
1179 {
1180 default:
1181 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1182 name = ab;
1183 break;
1184
1185 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1186 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1187 case DT_PLTGOT: name = "PLTGOT"; break;
1188 case DT_HASH: name = "HASH"; break;
1189 case DT_STRTAB: name = "STRTAB"; break;
1190 case DT_SYMTAB: name = "SYMTAB"; break;
1191 case DT_RELA: name = "RELA"; break;
1192 case DT_RELASZ: name = "RELASZ"; break;
1193 case DT_RELAENT: name = "RELAENT"; break;
1194 case DT_STRSZ: name = "STRSZ"; break;
1195 case DT_SYMENT: name = "SYMENT"; break;
1196 case DT_INIT: name = "INIT"; break;
1197 case DT_FINI: name = "FINI"; break;
1198 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1199 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1200 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1201 case DT_REL: name = "REL"; break;
1202 case DT_RELSZ: name = "RELSZ"; break;
1203 case DT_RELENT: name = "RELENT"; break;
1204 case DT_PLTREL: name = "PLTREL"; break;
1205 case DT_DEBUG: name = "DEBUG"; break;
1206 case DT_TEXTREL: name = "TEXTREL"; break;
1207 case DT_JMPREL: name = "JMPREL"; break;
1208 case DT_BIND_NOW: name = "BIND_NOW"; break;
1209 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1214 case DT_FLAGS: name = "FLAGS"; break;
1215 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM: name = "CHECKSUM"; break;
1218 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1219 case DT_MOVEENT: name = "MOVEENT"; break;
1220 case DT_MOVESZ: name = "MOVESZ"; break;
1221 case DT_FEATURE: name = "FEATURE"; break;
1222 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1223 case DT_SYMINSZ: name = "SYMINSZ"; break;
1224 case DT_SYMINENT: name = "SYMINENT"; break;
1225 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1226 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1227 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1228 case DT_PLTPAD: name = "PLTPAD"; break;
1229 case DT_MOVETAB: name = "MOVETAB"; break;
1230 case DT_SYMINFO: name = "SYMINFO"; break;
1231 case DT_RELACOUNT: name = "RELACOUNT"; break;
1232 case DT_RELCOUNT: name = "RELCOUNT"; break;
1233 case DT_FLAGS_1: name = "FLAGS_1"; break;
1234 case DT_VERSYM: name = "VERSYM"; break;
1235 case DT_VERDEF: name = "VERDEF"; break;
1236 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1237 case DT_VERNEED: name = "VERNEED"; break;
1238 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1239 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1240 case DT_USED: name = "USED"; break;
1241 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1242 }
1243
1244 fprintf (f, " %-11s ", name);
1245 if (! stringp)
1246 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1247 else
1248 {
1249 const char *string;
1250 unsigned int tagv = dyn.d_un.d_val;
1251
1252 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1253 if (string == NULL)
1254 goto error_return;
1255 fprintf (f, "%s", string);
1256 }
1257 fprintf (f, "\n");
1258 }
1259
1260 free (dynbuf);
1261 dynbuf = NULL;
1262 }
1263
1264 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1265 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1266 {
1267 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1268 return FALSE;
1269 }
1270
1271 if (elf_dynverdef (abfd) != 0)
1272 {
1273 Elf_Internal_Verdef *t;
1274
1275 fprintf (f, _("\nVersion definitions:\n"));
1276 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1277 {
1278 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1279 t->vd_flags, t->vd_hash,
1280 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1281 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1282 {
1283 Elf_Internal_Verdaux *a;
1284
1285 fprintf (f, "\t");
1286 for (a = t->vd_auxptr->vda_nextptr;
1287 a != NULL;
1288 a = a->vda_nextptr)
1289 fprintf (f, "%s ",
1290 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1291 fprintf (f, "\n");
1292 }
1293 }
1294 }
1295
1296 if (elf_dynverref (abfd) != 0)
1297 {
1298 Elf_Internal_Verneed *t;
1299
1300 fprintf (f, _("\nVersion References:\n"));
1301 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1302 {
1303 Elf_Internal_Vernaux *a;
1304
1305 fprintf (f, _(" required from %s:\n"),
1306 t->vn_filename ? t->vn_filename : "<corrupt>");
1307 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1308 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1309 a->vna_flags, a->vna_other,
1310 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1311 }
1312 }
1313
1314 return TRUE;
1315
1316 error_return:
1317 if (dynbuf != NULL)
1318 free (dynbuf);
1319 return FALSE;
1320 }
1321
1322 /* Display ELF-specific fields of a symbol. */
1323
1324 void
1325 bfd_elf_print_symbol (bfd *abfd,
1326 void *filep,
1327 asymbol *symbol,
1328 bfd_print_symbol_type how)
1329 {
1330 FILE *file = filep;
1331 switch (how)
1332 {
1333 case bfd_print_symbol_name:
1334 fprintf (file, "%s", symbol->name);
1335 break;
1336 case bfd_print_symbol_more:
1337 fprintf (file, "elf ");
1338 bfd_fprintf_vma (abfd, file, symbol->value);
1339 fprintf (file, " %lx", (long) symbol->flags);
1340 break;
1341 case bfd_print_symbol_all:
1342 {
1343 const char *section_name;
1344 const char *name = NULL;
1345 const struct elf_backend_data *bed;
1346 unsigned char st_other;
1347 bfd_vma val;
1348
1349 section_name = symbol->section ? symbol->section->name : "(*none*)";
1350
1351 bed = get_elf_backend_data (abfd);
1352 if (bed->elf_backend_print_symbol_all)
1353 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1354
1355 if (name == NULL)
1356 {
1357 name = symbol->name;
1358 bfd_print_symbol_vandf (abfd, file, symbol);
1359 }
1360
1361 fprintf (file, " %s\t", section_name);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol->section))
1367 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1368 else
1369 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1370 bfd_fprintf_vma (abfd, file, val);
1371
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd)->dynversym_section != 0
1374 && (elf_tdata (abfd)->dynverdef_section != 0
1375 || elf_tdata (abfd)->dynverref_section != 0))
1376 {
1377 unsigned int vernum;
1378 const char *version_string;
1379
1380 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1381
1382 if (vernum == 0)
1383 version_string = "";
1384 else if (vernum == 1)
1385 version_string = "Base";
1386 else if (vernum <= elf_tdata (abfd)->cverdefs)
1387 version_string =
1388 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1389 else
1390 {
1391 Elf_Internal_Verneed *t;
1392
1393 version_string = "";
1394 for (t = elf_tdata (abfd)->verref;
1395 t != NULL;
1396 t = t->vn_nextref)
1397 {
1398 Elf_Internal_Vernaux *a;
1399
1400 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1401 {
1402 if (a->vna_other == vernum)
1403 {
1404 version_string = a->vna_nodename;
1405 break;
1406 }
1407 }
1408 }
1409 }
1410
1411 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1412 fprintf (file, " %-11s", version_string);
1413 else
1414 {
1415 int i;
1416
1417 fprintf (file, " (%s)", version_string);
1418 for (i = 10 - strlen (version_string); i > 0; --i)
1419 putc (' ', file);
1420 }
1421 }
1422
1423 /* If the st_other field is not zero, print it. */
1424 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1425
1426 switch (st_other)
1427 {
1428 case 0: break;
1429 case STV_INTERNAL: fprintf (file, " .internal"); break;
1430 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1431 case STV_PROTECTED: fprintf (file, " .protected"); break;
1432 default:
1433 /* Some other non-defined flags are also present, so print
1434 everything hex. */
1435 fprintf (file, " 0x%02x", (unsigned int) st_other);
1436 }
1437
1438 fprintf (file, " %s", name);
1439 }
1440 break;
1441 }
1442 }
1443 \f
1444 /* Create an entry in an ELF linker hash table. */
1445
1446 struct bfd_hash_entry *
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1448 struct bfd_hash_table *table,
1449 const char *string)
1450 {
1451 /* Allocate the structure if it has not already been allocated by a
1452 subclass. */
1453 if (entry == NULL)
1454 {
1455 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1456 if (entry == NULL)
1457 return entry;
1458 }
1459
1460 /* Call the allocation method of the superclass. */
1461 entry = _bfd_link_hash_newfunc (entry, table, string);
1462 if (entry != NULL)
1463 {
1464 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1465 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1466
1467 /* Set local fields. */
1468 ret->indx = -1;
1469 ret->dynindx = -1;
1470 ret->got = htab->init_got_refcount;
1471 ret->plt = htab->init_plt_refcount;
1472 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1473 - offsetof (struct elf_link_hash_entry, size)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1478 ret->non_elf = 1;
1479 }
1480
1481 return entry;
1482 }
1483
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1486
1487 void
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1489 struct elf_link_hash_entry *dir,
1490 struct elf_link_hash_entry *ind)
1491 {
1492 struct elf_link_hash_table *htab;
1493
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1496
1497 dir->ref_dynamic |= ind->ref_dynamic;
1498 dir->ref_regular |= ind->ref_regular;
1499 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1500 dir->non_got_ref |= ind->non_got_ref;
1501 dir->needs_plt |= ind->needs_plt;
1502 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1503
1504 if (ind->root.type != bfd_link_hash_indirect)
1505 return;
1506
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab = elf_hash_table (info);
1510 if (ind->got.refcount > htab->init_got_refcount.refcount)
1511 {
1512 if (dir->got.refcount < 0)
1513 dir->got.refcount = 0;
1514 dir->got.refcount += ind->got.refcount;
1515 ind->got.refcount = htab->init_got_refcount.refcount;
1516 }
1517
1518 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1519 {
1520 if (dir->plt.refcount < 0)
1521 dir->plt.refcount = 0;
1522 dir->plt.refcount += ind->plt.refcount;
1523 ind->plt.refcount = htab->init_plt_refcount.refcount;
1524 }
1525
1526 if (ind->dynindx != -1)
1527 {
1528 if (dir->dynindx != -1)
1529 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1530 dir->dynindx = ind->dynindx;
1531 dir->dynstr_index = ind->dynstr_index;
1532 ind->dynindx = -1;
1533 ind->dynstr_index = 0;
1534 }
1535 }
1536
1537 void
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1539 struct elf_link_hash_entry *h,
1540 bfd_boolean force_local)
1541 {
1542 h->plt = elf_hash_table (info)->init_plt_offset;
1543 h->needs_plt = 0;
1544 if (force_local)
1545 {
1546 h->forced_local = 1;
1547 if (h->dynindx != -1)
1548 {
1549 h->dynindx = -1;
1550 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1551 h->dynstr_index);
1552 }
1553 }
1554 }
1555
1556 /* Initialize an ELF linker hash table. */
1557
1558 bfd_boolean
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table *table,
1561 bfd *abfd,
1562 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1563 struct bfd_hash_table *,
1564 const char *),
1565 unsigned int entsize)
1566 {
1567 bfd_boolean ret;
1568 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1569
1570 table->dynamic_sections_created = FALSE;
1571 table->dynobj = NULL;
1572 table->init_got_refcount.refcount = can_refcount - 1;
1573 table->init_plt_refcount.refcount = can_refcount - 1;
1574 table->init_got_offset.offset = -(bfd_vma) 1;
1575 table->init_plt_offset.offset = -(bfd_vma) 1;
1576 /* The first dynamic symbol is a dummy. */
1577 table->dynsymcount = 1;
1578 table->dynstr = NULL;
1579 table->bucketcount = 0;
1580 table->needed = NULL;
1581 table->hgot = NULL;
1582 table->merge_info = NULL;
1583 memset (&table->stab_info, 0, sizeof (table->stab_info));
1584 memset (&table->eh_info, 0, sizeof (table->eh_info));
1585 table->dynlocal = NULL;
1586 table->runpath = NULL;
1587 table->tls_sec = NULL;
1588 table->tls_size = 0;
1589 table->loaded = NULL;
1590 table->is_relocatable_executable = FALSE;
1591
1592 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1593 table->root.type = bfd_link_elf_hash_table;
1594
1595 return ret;
1596 }
1597
1598 /* Create an ELF linker hash table. */
1599
1600 struct bfd_link_hash_table *
1601 _bfd_elf_link_hash_table_create (bfd *abfd)
1602 {
1603 struct elf_link_hash_table *ret;
1604 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1605
1606 ret = bfd_malloc (amt);
1607 if (ret == NULL)
1608 return NULL;
1609
1610 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1611 sizeof (struct elf_link_hash_entry)))
1612 {
1613 free (ret);
1614 return NULL;
1615 }
1616
1617 return &ret->root;
1618 }
1619
1620 /* This is a hook for the ELF emulation code in the generic linker to
1621 tell the backend linker what file name to use for the DT_NEEDED
1622 entry for a dynamic object. */
1623
1624 void
1625 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1626 {
1627 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1628 && bfd_get_format (abfd) == bfd_object)
1629 elf_dt_name (abfd) = name;
1630 }
1631
1632 int
1633 bfd_elf_get_dyn_lib_class (bfd *abfd)
1634 {
1635 int lib_class;
1636 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1637 && bfd_get_format (abfd) == bfd_object)
1638 lib_class = elf_dyn_lib_class (abfd);
1639 else
1640 lib_class = 0;
1641 return lib_class;
1642 }
1643
1644 void
1645 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1646 {
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 elf_dyn_lib_class (abfd) = lib_class;
1650 }
1651
1652 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1653 the linker ELF emulation code. */
1654
1655 struct bfd_link_needed_list *
1656 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1657 struct bfd_link_info *info)
1658 {
1659 if (! is_elf_hash_table (info->hash))
1660 return NULL;
1661 return elf_hash_table (info)->needed;
1662 }
1663
1664 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1665 hook for the linker ELF emulation code. */
1666
1667 struct bfd_link_needed_list *
1668 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1669 struct bfd_link_info *info)
1670 {
1671 if (! is_elf_hash_table (info->hash))
1672 return NULL;
1673 return elf_hash_table (info)->runpath;
1674 }
1675
1676 /* Get the name actually used for a dynamic object for a link. This
1677 is the SONAME entry if there is one. Otherwise, it is the string
1678 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1679
1680 const char *
1681 bfd_elf_get_dt_soname (bfd *abfd)
1682 {
1683 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1684 && bfd_get_format (abfd) == bfd_object)
1685 return elf_dt_name (abfd);
1686 return NULL;
1687 }
1688
1689 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1690 the ELF linker emulation code. */
1691
1692 bfd_boolean
1693 bfd_elf_get_bfd_needed_list (bfd *abfd,
1694 struct bfd_link_needed_list **pneeded)
1695 {
1696 asection *s;
1697 bfd_byte *dynbuf = NULL;
1698 int elfsec;
1699 unsigned long shlink;
1700 bfd_byte *extdyn, *extdynend;
1701 size_t extdynsize;
1702 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1703
1704 *pneeded = NULL;
1705
1706 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1707 || bfd_get_format (abfd) != bfd_object)
1708 return TRUE;
1709
1710 s = bfd_get_section_by_name (abfd, ".dynamic");
1711 if (s == NULL || s->size == 0)
1712 return TRUE;
1713
1714 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1715 goto error_return;
1716
1717 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1718 if (elfsec == -1)
1719 goto error_return;
1720
1721 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1722
1723 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1724 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1725
1726 extdyn = dynbuf;
1727 extdynend = extdyn + s->size;
1728 for (; extdyn < extdynend; extdyn += extdynsize)
1729 {
1730 Elf_Internal_Dyn dyn;
1731
1732 (*swap_dyn_in) (abfd, extdyn, &dyn);
1733
1734 if (dyn.d_tag == DT_NULL)
1735 break;
1736
1737 if (dyn.d_tag == DT_NEEDED)
1738 {
1739 const char *string;
1740 struct bfd_link_needed_list *l;
1741 unsigned int tagv = dyn.d_un.d_val;
1742 bfd_size_type amt;
1743
1744 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1745 if (string == NULL)
1746 goto error_return;
1747
1748 amt = sizeof *l;
1749 l = bfd_alloc (abfd, amt);
1750 if (l == NULL)
1751 goto error_return;
1752
1753 l->by = abfd;
1754 l->name = string;
1755 l->next = *pneeded;
1756 *pneeded = l;
1757 }
1758 }
1759
1760 free (dynbuf);
1761
1762 return TRUE;
1763
1764 error_return:
1765 if (dynbuf != NULL)
1766 free (dynbuf);
1767 return FALSE;
1768 }
1769 \f
1770 /* Allocate an ELF string table--force the first byte to be zero. */
1771
1772 struct bfd_strtab_hash *
1773 _bfd_elf_stringtab_init (void)
1774 {
1775 struct bfd_strtab_hash *ret;
1776
1777 ret = _bfd_stringtab_init ();
1778 if (ret != NULL)
1779 {
1780 bfd_size_type loc;
1781
1782 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1783 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1784 if (loc == (bfd_size_type) -1)
1785 {
1786 _bfd_stringtab_free (ret);
1787 ret = NULL;
1788 }
1789 }
1790 return ret;
1791 }
1792 \f
1793 /* ELF .o/exec file reading */
1794
1795 /* Create a new bfd section from an ELF section header. */
1796
1797 bfd_boolean
1798 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1799 {
1800 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1801 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1803 const char *name;
1804
1805 name = bfd_elf_string_from_elf_section (abfd,
1806 elf_elfheader (abfd)->e_shstrndx,
1807 hdr->sh_name);
1808 if (name == NULL)
1809 return FALSE;
1810
1811 switch (hdr->sh_type)
1812 {
1813 case SHT_NULL:
1814 /* Inactive section. Throw it away. */
1815 return TRUE;
1816
1817 case SHT_PROGBITS: /* Normal section with contents. */
1818 case SHT_NOBITS: /* .bss section. */
1819 case SHT_HASH: /* .hash section. */
1820 case SHT_NOTE: /* .note section. */
1821 case SHT_INIT_ARRAY: /* .init_array section. */
1822 case SHT_FINI_ARRAY: /* .fini_array section. */
1823 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1824 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1825 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1826
1827 case SHT_DYNAMIC: /* Dynamic linking information. */
1828 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1829 return FALSE;
1830 if (hdr->sh_link > elf_numsections (abfd)
1831 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1832 return FALSE;
1833 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1834 {
1835 Elf_Internal_Shdr *dynsymhdr;
1836
1837 /* The shared libraries distributed with hpux11 have a bogus
1838 sh_link field for the ".dynamic" section. Find the
1839 string table for the ".dynsym" section instead. */
1840 if (elf_dynsymtab (abfd) != 0)
1841 {
1842 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1843 hdr->sh_link = dynsymhdr->sh_link;
1844 }
1845 else
1846 {
1847 unsigned int i, num_sec;
1848
1849 num_sec = elf_numsections (abfd);
1850 for (i = 1; i < num_sec; i++)
1851 {
1852 dynsymhdr = elf_elfsections (abfd)[i];
1853 if (dynsymhdr->sh_type == SHT_DYNSYM)
1854 {
1855 hdr->sh_link = dynsymhdr->sh_link;
1856 break;
1857 }
1858 }
1859 }
1860 }
1861 break;
1862
1863 case SHT_SYMTAB: /* A symbol table */
1864 if (elf_onesymtab (abfd) == shindex)
1865 return TRUE;
1866
1867 if (hdr->sh_entsize != bed->s->sizeof_sym)
1868 return FALSE;
1869 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1870 elf_onesymtab (abfd) = shindex;
1871 elf_tdata (abfd)->symtab_hdr = *hdr;
1872 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1873 abfd->flags |= HAS_SYMS;
1874
1875 /* Sometimes a shared object will map in the symbol table. If
1876 SHF_ALLOC is set, and this is a shared object, then we also
1877 treat this section as a BFD section. We can not base the
1878 decision purely on SHF_ALLOC, because that flag is sometimes
1879 set in a relocatable object file, which would confuse the
1880 linker. */
1881 if ((hdr->sh_flags & SHF_ALLOC) != 0
1882 && (abfd->flags & DYNAMIC) != 0
1883 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1884 shindex))
1885 return FALSE;
1886
1887 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1888 can't read symbols without that section loaded as well. It
1889 is most likely specified by the next section header. */
1890 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1891 {
1892 unsigned int i, num_sec;
1893
1894 num_sec = elf_numsections (abfd);
1895 for (i = shindex + 1; i < num_sec; i++)
1896 {
1897 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1898 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1899 && hdr2->sh_link == shindex)
1900 break;
1901 }
1902 if (i == num_sec)
1903 for (i = 1; i < shindex; i++)
1904 {
1905 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1906 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1907 && hdr2->sh_link == shindex)
1908 break;
1909 }
1910 if (i != shindex)
1911 return bfd_section_from_shdr (abfd, i);
1912 }
1913 return TRUE;
1914
1915 case SHT_DYNSYM: /* A dynamic symbol table */
1916 if (elf_dynsymtab (abfd) == shindex)
1917 return TRUE;
1918
1919 if (hdr->sh_entsize != bed->s->sizeof_sym)
1920 return FALSE;
1921 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1922 elf_dynsymtab (abfd) = shindex;
1923 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1924 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1925 abfd->flags |= HAS_SYMS;
1926
1927 /* Besides being a symbol table, we also treat this as a regular
1928 section, so that objcopy can handle it. */
1929 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1930
1931 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1932 if (elf_symtab_shndx (abfd) == shindex)
1933 return TRUE;
1934
1935 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1936 elf_symtab_shndx (abfd) = shindex;
1937 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1938 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1939 return TRUE;
1940
1941 case SHT_STRTAB: /* A string table */
1942 if (hdr->bfd_section != NULL)
1943 return TRUE;
1944 if (ehdr->e_shstrndx == shindex)
1945 {
1946 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1947 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1948 return TRUE;
1949 }
1950 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1951 {
1952 symtab_strtab:
1953 elf_tdata (abfd)->strtab_hdr = *hdr;
1954 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1955 return TRUE;
1956 }
1957 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1958 {
1959 dynsymtab_strtab:
1960 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1961 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1962 elf_elfsections (abfd)[shindex] = hdr;
1963 /* We also treat this as a regular section, so that objcopy
1964 can handle it. */
1965 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1966 shindex);
1967 }
1968
1969 /* If the string table isn't one of the above, then treat it as a
1970 regular section. We need to scan all the headers to be sure,
1971 just in case this strtab section appeared before the above. */
1972 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1973 {
1974 unsigned int i, num_sec;
1975
1976 num_sec = elf_numsections (abfd);
1977 for (i = 1; i < num_sec; i++)
1978 {
1979 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1980 if (hdr2->sh_link == shindex)
1981 {
1982 /* Prevent endless recursion on broken objects. */
1983 if (i == shindex)
1984 return FALSE;
1985 if (! bfd_section_from_shdr (abfd, i))
1986 return FALSE;
1987 if (elf_onesymtab (abfd) == i)
1988 goto symtab_strtab;
1989 if (elf_dynsymtab (abfd) == i)
1990 goto dynsymtab_strtab;
1991 }
1992 }
1993 }
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995
1996 case SHT_REL:
1997 case SHT_RELA:
1998 /* *These* do a lot of work -- but build no sections! */
1999 {
2000 asection *target_sect;
2001 Elf_Internal_Shdr *hdr2;
2002 unsigned int num_sec = elf_numsections (abfd);
2003
2004 if (hdr->sh_entsize
2005 != (bfd_size_type) (hdr->sh_type == SHT_REL
2006 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2007 return FALSE;
2008
2009 /* Check for a bogus link to avoid crashing. */
2010 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2011 || hdr->sh_link >= num_sec)
2012 {
2013 ((*_bfd_error_handler)
2014 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2015 abfd, hdr->sh_link, name, shindex));
2016 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2017 shindex);
2018 }
2019
2020 /* For some incomprehensible reason Oracle distributes
2021 libraries for Solaris in which some of the objects have
2022 bogus sh_link fields. It would be nice if we could just
2023 reject them, but, unfortunately, some people need to use
2024 them. We scan through the section headers; if we find only
2025 one suitable symbol table, we clobber the sh_link to point
2026 to it. I hope this doesn't break anything. */
2027 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2028 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2029 {
2030 unsigned int scan;
2031 int found;
2032
2033 found = 0;
2034 for (scan = 1; scan < num_sec; scan++)
2035 {
2036 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2037 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2038 {
2039 if (found != 0)
2040 {
2041 found = 0;
2042 break;
2043 }
2044 found = scan;
2045 }
2046 }
2047 if (found != 0)
2048 hdr->sh_link = found;
2049 }
2050
2051 /* Get the symbol table. */
2052 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2053 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2054 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2055 return FALSE;
2056
2057 /* If this reloc section does not use the main symbol table we
2058 don't treat it as a reloc section. BFD can't adequately
2059 represent such a section, so at least for now, we don't
2060 try. We just present it as a normal section. We also
2061 can't use it as a reloc section if it points to the null
2062 section, an invalid section, or another reloc section. */
2063 if (hdr->sh_link != elf_onesymtab (abfd)
2064 || hdr->sh_info == SHN_UNDEF
2065 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2066 || hdr->sh_info >= num_sec
2067 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2068 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2069 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2070 shindex);
2071
2072 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2073 return FALSE;
2074 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2075 if (target_sect == NULL)
2076 return FALSE;
2077
2078 if ((target_sect->flags & SEC_RELOC) == 0
2079 || target_sect->reloc_count == 0)
2080 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2081 else
2082 {
2083 bfd_size_type amt;
2084 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2085 amt = sizeof (*hdr2);
2086 hdr2 = bfd_alloc (abfd, amt);
2087 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2088 }
2089 *hdr2 = *hdr;
2090 elf_elfsections (abfd)[shindex] = hdr2;
2091 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2092 target_sect->flags |= SEC_RELOC;
2093 target_sect->relocation = NULL;
2094 target_sect->rel_filepos = hdr->sh_offset;
2095 /* In the section to which the relocations apply, mark whether
2096 its relocations are of the REL or RELA variety. */
2097 if (hdr->sh_size != 0)
2098 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2099 abfd->flags |= HAS_RELOC;
2100 return TRUE;
2101 }
2102 break;
2103
2104 case SHT_GNU_verdef:
2105 elf_dynverdef (abfd) = shindex;
2106 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2107 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2108 break;
2109
2110 case SHT_GNU_versym:
2111 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2112 return FALSE;
2113 elf_dynversym (abfd) = shindex;
2114 elf_tdata (abfd)->dynversym_hdr = *hdr;
2115 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2116
2117 case SHT_GNU_verneed:
2118 elf_dynverref (abfd) = shindex;
2119 elf_tdata (abfd)->dynverref_hdr = *hdr;
2120 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2121
2122 case SHT_SHLIB:
2123 return TRUE;
2124
2125 case SHT_GROUP:
2126 /* We need a BFD section for objcopy and relocatable linking,
2127 and it's handy to have the signature available as the section
2128 name. */
2129 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2130 return FALSE;
2131 name = group_signature (abfd, hdr);
2132 if (name == NULL)
2133 return FALSE;
2134 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2135 return FALSE;
2136 if (hdr->contents != NULL)
2137 {
2138 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2139 unsigned int n_elt = hdr->sh_size / 4;
2140 asection *s;
2141
2142 if (idx->flags & GRP_COMDAT)
2143 hdr->bfd_section->flags
2144 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2145
2146 /* We try to keep the same section order as it comes in. */
2147 idx += n_elt;
2148 while (--n_elt != 0)
2149 if ((s = (--idx)->shdr->bfd_section) != NULL
2150 && elf_next_in_group (s) != NULL)
2151 {
2152 elf_next_in_group (hdr->bfd_section) = s;
2153 break;
2154 }
2155 }
2156 break;
2157
2158 default:
2159 /* Check for any processor-specific section types. */
2160 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2161 return TRUE;
2162
2163 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2164 {
2165 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2166 /* FIXME: How to properly handle allocated section reserved
2167 for applications? */
2168 (*_bfd_error_handler)
2169 (_("%B: don't know how to handle allocated, application "
2170 "specific section `%s' [0x%8x]"),
2171 abfd, name, hdr->sh_type);
2172 else
2173 /* Allow sections reserved for applications. */
2174 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2175 shindex);
2176 }
2177 else if (hdr->sh_type >= SHT_LOPROC
2178 && hdr->sh_type <= SHT_HIPROC)
2179 /* FIXME: We should handle this section. */
2180 (*_bfd_error_handler)
2181 (_("%B: don't know how to handle processor specific section "
2182 "`%s' [0x%8x]"),
2183 abfd, name, hdr->sh_type);
2184 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2185 /* FIXME: We should handle this section. */
2186 (*_bfd_error_handler)
2187 (_("%B: don't know how to handle OS specific section "
2188 "`%s' [0x%8x]"),
2189 abfd, name, hdr->sh_type);
2190 else
2191 /* FIXME: We should handle this section. */
2192 (*_bfd_error_handler)
2193 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2194 abfd, name, hdr->sh_type);
2195
2196 return FALSE;
2197 }
2198
2199 return TRUE;
2200 }
2201
2202 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2203 Return SEC for sections that have no elf section, and NULL on error. */
2204
2205 asection *
2206 bfd_section_from_r_symndx (bfd *abfd,
2207 struct sym_sec_cache *cache,
2208 asection *sec,
2209 unsigned long r_symndx)
2210 {
2211 Elf_Internal_Shdr *symtab_hdr;
2212 unsigned char esym[sizeof (Elf64_External_Sym)];
2213 Elf_External_Sym_Shndx eshndx;
2214 Elf_Internal_Sym isym;
2215 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2216
2217 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2218 return cache->sec[ent];
2219
2220 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2221 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2222 &isym, esym, &eshndx) == NULL)
2223 return NULL;
2224
2225 if (cache->abfd != abfd)
2226 {
2227 memset (cache->indx, -1, sizeof (cache->indx));
2228 cache->abfd = abfd;
2229 }
2230 cache->indx[ent] = r_symndx;
2231 cache->sec[ent] = sec;
2232 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2233 || isym.st_shndx > SHN_HIRESERVE)
2234 {
2235 asection *s;
2236 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2237 if (s != NULL)
2238 cache->sec[ent] = s;
2239 }
2240 return cache->sec[ent];
2241 }
2242
2243 /* Given an ELF section number, retrieve the corresponding BFD
2244 section. */
2245
2246 asection *
2247 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2248 {
2249 if (index >= elf_numsections (abfd))
2250 return NULL;
2251 return elf_elfsections (abfd)[index]->bfd_section;
2252 }
2253
2254 static const struct bfd_elf_special_section special_sections_b[] =
2255 {
2256 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2257 { NULL, 0, 0, 0, 0 }
2258 };
2259
2260 static const struct bfd_elf_special_section special_sections_c[] =
2261 {
2262 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2263 { NULL, 0, 0, 0, 0 }
2264 };
2265
2266 static const struct bfd_elf_special_section special_sections_d[] =
2267 {
2268 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2269 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2270 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2271 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2272 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2273 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2274 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2275 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2276 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2277 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2278 { NULL, 0, 0, 0, 0 }
2279 };
2280
2281 static const struct bfd_elf_special_section special_sections_f[] =
2282 {
2283 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2284 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2285 { NULL, 0, 0, 0, 0 }
2286 };
2287
2288 static const struct bfd_elf_special_section special_sections_g[] =
2289 {
2290 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2291 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2292 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2293 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2294 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2295 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2296 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2297 { NULL, 0, 0, 0, 0 }
2298 };
2299
2300 static const struct bfd_elf_special_section special_sections_h[] =
2301 {
2302 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2303 { NULL, 0, 0, 0, 0 }
2304 };
2305
2306 static const struct bfd_elf_special_section special_sections_i[] =
2307 {
2308 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2309 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2310 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2311 { NULL, 0, 0, 0, 0 }
2312 };
2313
2314 static const struct bfd_elf_special_section special_sections_l[] =
2315 {
2316 { ".line", 5, 0, SHT_PROGBITS, 0 },
2317 { NULL, 0, 0, 0, 0 }
2318 };
2319
2320 static const struct bfd_elf_special_section special_sections_n[] =
2321 {
2322 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2323 { ".note", 5, -1, SHT_NOTE, 0 },
2324 { NULL, 0, 0, 0, 0 }
2325 };
2326
2327 static const struct bfd_elf_special_section special_sections_p[] =
2328 {
2329 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2330 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2331 { NULL, 0, 0, 0, 0 }
2332 };
2333
2334 static const struct bfd_elf_special_section special_sections_r[] =
2335 {
2336 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2337 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2338 { ".rela", 5, -1, SHT_RELA, 0 },
2339 { ".rel", 4, -1, SHT_REL, 0 },
2340 { NULL, 0, 0, 0, 0 }
2341 };
2342
2343 static const struct bfd_elf_special_section special_sections_s[] =
2344 {
2345 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2346 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2347 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2348 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2349 { NULL, 0, 0, 0, 0 }
2350 };
2351
2352 static const struct bfd_elf_special_section special_sections_t[] =
2353 {
2354 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2355 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2356 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2357 { NULL, 0, 0, 0, 0 }
2358 };
2359
2360 static const struct bfd_elf_special_section *special_sections[] =
2361 {
2362 special_sections_b, /* 'b' */
2363 special_sections_c, /* 'b' */
2364 special_sections_d, /* 'd' */
2365 NULL, /* 'e' */
2366 special_sections_f, /* 'f' */
2367 special_sections_g, /* 'g' */
2368 special_sections_h, /* 'h' */
2369 special_sections_i, /* 'i' */
2370 NULL, /* 'j' */
2371 NULL, /* 'k' */
2372 special_sections_l, /* 'l' */
2373 NULL, /* 'm' */
2374 special_sections_n, /* 'n' */
2375 NULL, /* 'o' */
2376 special_sections_p, /* 'p' */
2377 NULL, /* 'q' */
2378 special_sections_r, /* 'r' */
2379 special_sections_s, /* 's' */
2380 special_sections_t, /* 't' */
2381 };
2382
2383 const struct bfd_elf_special_section *
2384 _bfd_elf_get_special_section (const char *name,
2385 const struct bfd_elf_special_section *spec,
2386 unsigned int rela)
2387 {
2388 int i;
2389 int len;
2390
2391 len = strlen (name);
2392
2393 for (i = 0; spec[i].prefix != NULL; i++)
2394 {
2395 int suffix_len;
2396 int prefix_len = spec[i].prefix_length;
2397
2398 if (len < prefix_len)
2399 continue;
2400 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2401 continue;
2402
2403 suffix_len = spec[i].suffix_length;
2404 if (suffix_len <= 0)
2405 {
2406 if (name[prefix_len] != 0)
2407 {
2408 if (suffix_len == 0)
2409 continue;
2410 if (name[prefix_len] != '.'
2411 && (suffix_len == -2
2412 || (rela && spec[i].type == SHT_REL)))
2413 continue;
2414 }
2415 }
2416 else
2417 {
2418 if (len < prefix_len + suffix_len)
2419 continue;
2420 if (memcmp (name + len - suffix_len,
2421 spec[i].prefix + prefix_len,
2422 suffix_len) != 0)
2423 continue;
2424 }
2425 return &spec[i];
2426 }
2427
2428 return NULL;
2429 }
2430
2431 const struct bfd_elf_special_section *
2432 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2433 {
2434 int i;
2435 const struct bfd_elf_special_section *spec;
2436 const struct elf_backend_data *bed;
2437
2438 /* See if this is one of the special sections. */
2439 if (sec->name == NULL)
2440 return NULL;
2441
2442 bed = get_elf_backend_data (abfd);
2443 spec = bed->special_sections;
2444 if (spec)
2445 {
2446 spec = _bfd_elf_get_special_section (sec->name,
2447 bed->special_sections,
2448 sec->use_rela_p);
2449 if (spec != NULL)
2450 return spec;
2451 }
2452
2453 if (sec->name[0] != '.')
2454 return NULL;
2455
2456 i = sec->name[1] - 'b';
2457 if (i < 0 || i > 't' - 'b')
2458 return NULL;
2459
2460 spec = special_sections[i];
2461
2462 if (spec == NULL)
2463 return NULL;
2464
2465 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2466 }
2467
2468 bfd_boolean
2469 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2470 {
2471 struct bfd_elf_section_data *sdata;
2472 const struct elf_backend_data *bed;
2473 const struct bfd_elf_special_section *ssect;
2474
2475 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2476 if (sdata == NULL)
2477 {
2478 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2479 if (sdata == NULL)
2480 return FALSE;
2481 sec->used_by_bfd = sdata;
2482 }
2483
2484 /* Indicate whether or not this section should use RELA relocations. */
2485 bed = get_elf_backend_data (abfd);
2486 sec->use_rela_p = bed->default_use_rela_p;
2487
2488 /* When we read a file, we don't need to set ELF section type and
2489 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2490 anyway. We will set ELF section type and flags for all linker
2491 created sections. If user specifies BFD section flags, we will
2492 set ELF section type and flags based on BFD section flags in
2493 elf_fake_sections. */
2494 if ((!sec->flags && abfd->direction != read_direction)
2495 || (sec->flags & SEC_LINKER_CREATED) != 0)
2496 {
2497 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2498 if (ssect != NULL)
2499 {
2500 elf_section_type (sec) = ssect->type;
2501 elf_section_flags (sec) = ssect->attr;
2502 }
2503 }
2504
2505 return _bfd_generic_new_section_hook (abfd, sec);
2506 }
2507
2508 /* Create a new bfd section from an ELF program header.
2509
2510 Since program segments have no names, we generate a synthetic name
2511 of the form segment<NUM>, where NUM is generally the index in the
2512 program header table. For segments that are split (see below) we
2513 generate the names segment<NUM>a and segment<NUM>b.
2514
2515 Note that some program segments may have a file size that is different than
2516 (less than) the memory size. All this means is that at execution the
2517 system must allocate the amount of memory specified by the memory size,
2518 but only initialize it with the first "file size" bytes read from the
2519 file. This would occur for example, with program segments consisting
2520 of combined data+bss.
2521
2522 To handle the above situation, this routine generates TWO bfd sections
2523 for the single program segment. The first has the length specified by
2524 the file size of the segment, and the second has the length specified
2525 by the difference between the two sizes. In effect, the segment is split
2526 into it's initialized and uninitialized parts.
2527
2528 */
2529
2530 bfd_boolean
2531 _bfd_elf_make_section_from_phdr (bfd *abfd,
2532 Elf_Internal_Phdr *hdr,
2533 int index,
2534 const char *typename)
2535 {
2536 asection *newsect;
2537 char *name;
2538 char namebuf[64];
2539 size_t len;
2540 int split;
2541
2542 split = ((hdr->p_memsz > 0)
2543 && (hdr->p_filesz > 0)
2544 && (hdr->p_memsz > hdr->p_filesz));
2545 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2546 len = strlen (namebuf) + 1;
2547 name = bfd_alloc (abfd, len);
2548 if (!name)
2549 return FALSE;
2550 memcpy (name, namebuf, len);
2551 newsect = bfd_make_section (abfd, name);
2552 if (newsect == NULL)
2553 return FALSE;
2554 newsect->vma = hdr->p_vaddr;
2555 newsect->lma = hdr->p_paddr;
2556 newsect->size = hdr->p_filesz;
2557 newsect->filepos = hdr->p_offset;
2558 newsect->flags |= SEC_HAS_CONTENTS;
2559 newsect->alignment_power = bfd_log2 (hdr->p_align);
2560 if (hdr->p_type == PT_LOAD)
2561 {
2562 newsect->flags |= SEC_ALLOC;
2563 newsect->flags |= SEC_LOAD;
2564 if (hdr->p_flags & PF_X)
2565 {
2566 /* FIXME: all we known is that it has execute PERMISSION,
2567 may be data. */
2568 newsect->flags |= SEC_CODE;
2569 }
2570 }
2571 if (!(hdr->p_flags & PF_W))
2572 {
2573 newsect->flags |= SEC_READONLY;
2574 }
2575
2576 if (split)
2577 {
2578 sprintf (namebuf, "%s%db", typename, index);
2579 len = strlen (namebuf) + 1;
2580 name = bfd_alloc (abfd, len);
2581 if (!name)
2582 return FALSE;
2583 memcpy (name, namebuf, len);
2584 newsect = bfd_make_section (abfd, name);
2585 if (newsect == NULL)
2586 return FALSE;
2587 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2588 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2589 newsect->size = hdr->p_memsz - hdr->p_filesz;
2590 if (hdr->p_type == PT_LOAD)
2591 {
2592 newsect->flags |= SEC_ALLOC;
2593 if (hdr->p_flags & PF_X)
2594 newsect->flags |= SEC_CODE;
2595 }
2596 if (!(hdr->p_flags & PF_W))
2597 newsect->flags |= SEC_READONLY;
2598 }
2599
2600 return TRUE;
2601 }
2602
2603 bfd_boolean
2604 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2605 {
2606 const struct elf_backend_data *bed;
2607
2608 switch (hdr->p_type)
2609 {
2610 case PT_NULL:
2611 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2612
2613 case PT_LOAD:
2614 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2615
2616 case PT_DYNAMIC:
2617 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2618
2619 case PT_INTERP:
2620 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2621
2622 case PT_NOTE:
2623 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2624 return FALSE;
2625 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2626 return FALSE;
2627 return TRUE;
2628
2629 case PT_SHLIB:
2630 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2631
2632 case PT_PHDR:
2633 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2634
2635 case PT_GNU_EH_FRAME:
2636 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2637 "eh_frame_hdr");
2638
2639 case PT_GNU_STACK:
2640 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2641
2642 case PT_GNU_RELRO:
2643 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2644
2645 default:
2646 /* Check for any processor-specific program segment types. */
2647 bed = get_elf_backend_data (abfd);
2648 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2649 }
2650 }
2651
2652 /* Initialize REL_HDR, the section-header for new section, containing
2653 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2654 relocations; otherwise, we use REL relocations. */
2655
2656 bfd_boolean
2657 _bfd_elf_init_reloc_shdr (bfd *abfd,
2658 Elf_Internal_Shdr *rel_hdr,
2659 asection *asect,
2660 bfd_boolean use_rela_p)
2661 {
2662 char *name;
2663 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2664 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2665
2666 name = bfd_alloc (abfd, amt);
2667 if (name == NULL)
2668 return FALSE;
2669 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2670 rel_hdr->sh_name =
2671 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2672 FALSE);
2673 if (rel_hdr->sh_name == (unsigned int) -1)
2674 return FALSE;
2675 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2676 rel_hdr->sh_entsize = (use_rela_p
2677 ? bed->s->sizeof_rela
2678 : bed->s->sizeof_rel);
2679 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2680 rel_hdr->sh_flags = 0;
2681 rel_hdr->sh_addr = 0;
2682 rel_hdr->sh_size = 0;
2683 rel_hdr->sh_offset = 0;
2684
2685 return TRUE;
2686 }
2687
2688 /* Set up an ELF internal section header for a section. */
2689
2690 static void
2691 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2692 {
2693 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2694 bfd_boolean *failedptr = failedptrarg;
2695 Elf_Internal_Shdr *this_hdr;
2696
2697 if (*failedptr)
2698 {
2699 /* We already failed; just get out of the bfd_map_over_sections
2700 loop. */
2701 return;
2702 }
2703
2704 this_hdr = &elf_section_data (asect)->this_hdr;
2705
2706 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2707 asect->name, FALSE);
2708 if (this_hdr->sh_name == (unsigned int) -1)
2709 {
2710 *failedptr = TRUE;
2711 return;
2712 }
2713
2714 /* Don't clear sh_flags. Assembler may set additional bits. */
2715
2716 if ((asect->flags & SEC_ALLOC) != 0
2717 || asect->user_set_vma)
2718 this_hdr->sh_addr = asect->vma;
2719 else
2720 this_hdr->sh_addr = 0;
2721
2722 this_hdr->sh_offset = 0;
2723 this_hdr->sh_size = asect->size;
2724 this_hdr->sh_link = 0;
2725 this_hdr->sh_addralign = 1 << asect->alignment_power;
2726 /* The sh_entsize and sh_info fields may have been set already by
2727 copy_private_section_data. */
2728
2729 this_hdr->bfd_section = asect;
2730 this_hdr->contents = NULL;
2731
2732 /* If the section type is unspecified, we set it based on
2733 asect->flags. */
2734 if (this_hdr->sh_type == SHT_NULL)
2735 {
2736 if ((asect->flags & SEC_GROUP) != 0)
2737 this_hdr->sh_type = SHT_GROUP;
2738 else if ((asect->flags & SEC_ALLOC) != 0
2739 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2740 || (asect->flags & SEC_NEVER_LOAD) != 0))
2741 this_hdr->sh_type = SHT_NOBITS;
2742 else
2743 this_hdr->sh_type = SHT_PROGBITS;
2744 }
2745
2746 switch (this_hdr->sh_type)
2747 {
2748 default:
2749 break;
2750
2751 case SHT_STRTAB:
2752 case SHT_INIT_ARRAY:
2753 case SHT_FINI_ARRAY:
2754 case SHT_PREINIT_ARRAY:
2755 case SHT_NOTE:
2756 case SHT_NOBITS:
2757 case SHT_PROGBITS:
2758 break;
2759
2760 case SHT_HASH:
2761 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2762 break;
2763
2764 case SHT_DYNSYM:
2765 this_hdr->sh_entsize = bed->s->sizeof_sym;
2766 break;
2767
2768 case SHT_DYNAMIC:
2769 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2770 break;
2771
2772 case SHT_RELA:
2773 if (get_elf_backend_data (abfd)->may_use_rela_p)
2774 this_hdr->sh_entsize = bed->s->sizeof_rela;
2775 break;
2776
2777 case SHT_REL:
2778 if (get_elf_backend_data (abfd)->may_use_rel_p)
2779 this_hdr->sh_entsize = bed->s->sizeof_rel;
2780 break;
2781
2782 case SHT_GNU_versym:
2783 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2784 break;
2785
2786 case SHT_GNU_verdef:
2787 this_hdr->sh_entsize = 0;
2788 /* objcopy or strip will copy over sh_info, but may not set
2789 cverdefs. The linker will set cverdefs, but sh_info will be
2790 zero. */
2791 if (this_hdr->sh_info == 0)
2792 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2793 else
2794 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2795 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2796 break;
2797
2798 case SHT_GNU_verneed:
2799 this_hdr->sh_entsize = 0;
2800 /* objcopy or strip will copy over sh_info, but may not set
2801 cverrefs. The linker will set cverrefs, but sh_info will be
2802 zero. */
2803 if (this_hdr->sh_info == 0)
2804 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2805 else
2806 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2807 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2808 break;
2809
2810 case SHT_GROUP:
2811 this_hdr->sh_entsize = 4;
2812 break;
2813 }
2814
2815 if ((asect->flags & SEC_ALLOC) != 0)
2816 this_hdr->sh_flags |= SHF_ALLOC;
2817 if ((asect->flags & SEC_READONLY) == 0)
2818 this_hdr->sh_flags |= SHF_WRITE;
2819 if ((asect->flags & SEC_CODE) != 0)
2820 this_hdr->sh_flags |= SHF_EXECINSTR;
2821 if ((asect->flags & SEC_MERGE) != 0)
2822 {
2823 this_hdr->sh_flags |= SHF_MERGE;
2824 this_hdr->sh_entsize = asect->entsize;
2825 if ((asect->flags & SEC_STRINGS) != 0)
2826 this_hdr->sh_flags |= SHF_STRINGS;
2827 }
2828 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2829 this_hdr->sh_flags |= SHF_GROUP;
2830 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2831 {
2832 this_hdr->sh_flags |= SHF_TLS;
2833 if (asect->size == 0
2834 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2835 {
2836 struct bfd_link_order *o = asect->map_tail.link_order;
2837
2838 this_hdr->sh_size = 0;
2839 if (o != NULL)
2840 {
2841 this_hdr->sh_size = o->offset + o->size;
2842 if (this_hdr->sh_size != 0)
2843 this_hdr->sh_type = SHT_NOBITS;
2844 }
2845 }
2846 }
2847
2848 /* Check for processor-specific section types. */
2849 if (bed->elf_backend_fake_sections
2850 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2851 *failedptr = TRUE;
2852
2853 /* If the section has relocs, set up a section header for the
2854 SHT_REL[A] section. If two relocation sections are required for
2855 this section, it is up to the processor-specific back-end to
2856 create the other. */
2857 if ((asect->flags & SEC_RELOC) != 0
2858 && !_bfd_elf_init_reloc_shdr (abfd,
2859 &elf_section_data (asect)->rel_hdr,
2860 asect,
2861 asect->use_rela_p))
2862 *failedptr = TRUE;
2863 }
2864
2865 /* Fill in the contents of a SHT_GROUP section. */
2866
2867 void
2868 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2869 {
2870 bfd_boolean *failedptr = failedptrarg;
2871 unsigned long symindx;
2872 asection *elt, *first;
2873 unsigned char *loc;
2874 bfd_boolean gas;
2875
2876 /* Ignore linker created group section. See elfNN_ia64_object_p in
2877 elfxx-ia64.c. */
2878 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2879 || *failedptr)
2880 return;
2881
2882 symindx = 0;
2883 if (elf_group_id (sec) != NULL)
2884 symindx = elf_group_id (sec)->udata.i;
2885
2886 if (symindx == 0)
2887 {
2888 /* If called from the assembler, swap_out_syms will have set up
2889 elf_section_syms; If called for "ld -r", use target_index. */
2890 if (elf_section_syms (abfd) != NULL)
2891 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2892 else
2893 symindx = sec->target_index;
2894 }
2895 elf_section_data (sec)->this_hdr.sh_info = symindx;
2896
2897 /* The contents won't be allocated for "ld -r" or objcopy. */
2898 gas = TRUE;
2899 if (sec->contents == NULL)
2900 {
2901 gas = FALSE;
2902 sec->contents = bfd_alloc (abfd, sec->size);
2903
2904 /* Arrange for the section to be written out. */
2905 elf_section_data (sec)->this_hdr.contents = sec->contents;
2906 if (sec->contents == NULL)
2907 {
2908 *failedptr = TRUE;
2909 return;
2910 }
2911 }
2912
2913 loc = sec->contents + sec->size;
2914
2915 /* Get the pointer to the first section in the group that gas
2916 squirreled away here. objcopy arranges for this to be set to the
2917 start of the input section group. */
2918 first = elt = elf_next_in_group (sec);
2919
2920 /* First element is a flag word. Rest of section is elf section
2921 indices for all the sections of the group. Write them backwards
2922 just to keep the group in the same order as given in .section
2923 directives, not that it matters. */
2924 while (elt != NULL)
2925 {
2926 asection *s;
2927 unsigned int idx;
2928
2929 loc -= 4;
2930 s = elt;
2931 if (!gas)
2932 s = s->output_section;
2933 idx = 0;
2934 if (s != NULL)
2935 idx = elf_section_data (s)->this_idx;
2936 H_PUT_32 (abfd, idx, loc);
2937 elt = elf_next_in_group (elt);
2938 if (elt == first)
2939 break;
2940 }
2941
2942 if ((loc -= 4) != sec->contents)
2943 abort ();
2944
2945 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2946 }
2947
2948 /* Assign all ELF section numbers. The dummy first section is handled here
2949 too. The link/info pointers for the standard section types are filled
2950 in here too, while we're at it. */
2951
2952 static bfd_boolean
2953 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2954 {
2955 struct elf_obj_tdata *t = elf_tdata (abfd);
2956 asection *sec;
2957 unsigned int section_number, secn;
2958 Elf_Internal_Shdr **i_shdrp;
2959 struct bfd_elf_section_data *d;
2960
2961 section_number = 1;
2962
2963 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2964
2965 /* SHT_GROUP sections are in relocatable files only. */
2966 if (link_info == NULL || link_info->relocatable)
2967 {
2968 /* Put SHT_GROUP sections first. */
2969 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2970 {
2971 d = elf_section_data (sec);
2972
2973 if (d->this_hdr.sh_type == SHT_GROUP)
2974 {
2975 if (sec->flags & SEC_LINKER_CREATED)
2976 {
2977 /* Remove the linker created SHT_GROUP sections. */
2978 bfd_section_list_remove (abfd, sec);
2979 abfd->section_count--;
2980 }
2981 else
2982 {
2983 if (section_number == SHN_LORESERVE)
2984 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2985 d->this_idx = section_number++;
2986 }
2987 }
2988 }
2989 }
2990
2991 for (sec = abfd->sections; sec; sec = sec->next)
2992 {
2993 d = elf_section_data (sec);
2994
2995 if (d->this_hdr.sh_type != SHT_GROUP)
2996 {
2997 if (section_number == SHN_LORESERVE)
2998 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2999 d->this_idx = section_number++;
3000 }
3001 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3002 if ((sec->flags & SEC_RELOC) == 0)
3003 d->rel_idx = 0;
3004 else
3005 {
3006 if (section_number == SHN_LORESERVE)
3007 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3008 d->rel_idx = section_number++;
3009 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3010 }
3011
3012 if (d->rel_hdr2)
3013 {
3014 if (section_number == SHN_LORESERVE)
3015 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3016 d->rel_idx2 = section_number++;
3017 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3018 }
3019 else
3020 d->rel_idx2 = 0;
3021 }
3022
3023 if (section_number == SHN_LORESERVE)
3024 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3025 t->shstrtab_section = section_number++;
3026 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3027 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3028
3029 if (bfd_get_symcount (abfd) > 0)
3030 {
3031 if (section_number == SHN_LORESERVE)
3032 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3033 t->symtab_section = section_number++;
3034 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3035 if (section_number > SHN_LORESERVE - 2)
3036 {
3037 if (section_number == SHN_LORESERVE)
3038 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3039 t->symtab_shndx_section = section_number++;
3040 t->symtab_shndx_hdr.sh_name
3041 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3042 ".symtab_shndx", FALSE);
3043 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3044 return FALSE;
3045 }
3046 if (section_number == SHN_LORESERVE)
3047 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3048 t->strtab_section = section_number++;
3049 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3050 }
3051
3052 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3053 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3054
3055 elf_numsections (abfd) = section_number;
3056 elf_elfheader (abfd)->e_shnum = section_number;
3057 if (section_number > SHN_LORESERVE)
3058 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3059
3060 /* Set up the list of section header pointers, in agreement with the
3061 indices. */
3062 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3063 if (i_shdrp == NULL)
3064 return FALSE;
3065
3066 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3067 if (i_shdrp[0] == NULL)
3068 {
3069 bfd_release (abfd, i_shdrp);
3070 return FALSE;
3071 }
3072
3073 elf_elfsections (abfd) = i_shdrp;
3074
3075 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3076 if (bfd_get_symcount (abfd) > 0)
3077 {
3078 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3079 if (elf_numsections (abfd) > SHN_LORESERVE)
3080 {
3081 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3082 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3083 }
3084 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3085 t->symtab_hdr.sh_link = t->strtab_section;
3086 }
3087
3088 for (sec = abfd->sections; sec; sec = sec->next)
3089 {
3090 struct bfd_elf_section_data *d = elf_section_data (sec);
3091 asection *s;
3092 const char *name;
3093
3094 i_shdrp[d->this_idx] = &d->this_hdr;
3095 if (d->rel_idx != 0)
3096 i_shdrp[d->rel_idx] = &d->rel_hdr;
3097 if (d->rel_idx2 != 0)
3098 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3099
3100 /* Fill in the sh_link and sh_info fields while we're at it. */
3101
3102 /* sh_link of a reloc section is the section index of the symbol
3103 table. sh_info is the section index of the section to which
3104 the relocation entries apply. */
3105 if (d->rel_idx != 0)
3106 {
3107 d->rel_hdr.sh_link = t->symtab_section;
3108 d->rel_hdr.sh_info = d->this_idx;
3109 }
3110 if (d->rel_idx2 != 0)
3111 {
3112 d->rel_hdr2->sh_link = t->symtab_section;
3113 d->rel_hdr2->sh_info = d->this_idx;
3114 }
3115
3116 /* We need to set up sh_link for SHF_LINK_ORDER. */
3117 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3118 {
3119 s = elf_linked_to_section (sec);
3120 if (s)
3121 {
3122 /* elf_linked_to_section points to the input section. */
3123 if (link_info != NULL)
3124 {
3125 /* Check discarded linkonce section. */
3126 if (elf_discarded_section (s))
3127 {
3128 asection *kept;
3129 (*_bfd_error_handler)
3130 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3131 abfd, d->this_hdr.bfd_section,
3132 s, s->owner);
3133 /* Point to the kept section if it has the same
3134 size as the discarded one. */
3135 kept = _bfd_elf_check_kept_section (s);
3136 if (kept == NULL)
3137 {
3138 bfd_set_error (bfd_error_bad_value);
3139 return FALSE;
3140 }
3141 s = kept;
3142 }
3143
3144 s = s->output_section;
3145 BFD_ASSERT (s != NULL);
3146 }
3147 else
3148 {
3149 /* Handle objcopy. */
3150 if (s->output_section == NULL)
3151 {
3152 (*_bfd_error_handler)
3153 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3154 abfd, d->this_hdr.bfd_section, s, s->owner);
3155 bfd_set_error (bfd_error_bad_value);
3156 return FALSE;
3157 }
3158 s = s->output_section;
3159 }
3160 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3161 }
3162 else
3163 {
3164 /* PR 290:
3165 The Intel C compiler generates SHT_IA_64_UNWIND with
3166 SHF_LINK_ORDER. But it doesn't set the sh_link or
3167 sh_info fields. Hence we could get the situation
3168 where s is NULL. */
3169 const struct elf_backend_data *bed
3170 = get_elf_backend_data (abfd);
3171 if (bed->link_order_error_handler)
3172 bed->link_order_error_handler
3173 (_("%B: warning: sh_link not set for section `%A'"),
3174 abfd, sec);
3175 }
3176 }
3177
3178 switch (d->this_hdr.sh_type)
3179 {
3180 case SHT_REL:
3181 case SHT_RELA:
3182 /* A reloc section which we are treating as a normal BFD
3183 section. sh_link is the section index of the symbol
3184 table. sh_info is the section index of the section to
3185 which the relocation entries apply. We assume that an
3186 allocated reloc section uses the dynamic symbol table.
3187 FIXME: How can we be sure? */
3188 s = bfd_get_section_by_name (abfd, ".dynsym");
3189 if (s != NULL)
3190 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3191
3192 /* We look up the section the relocs apply to by name. */
3193 name = sec->name;
3194 if (d->this_hdr.sh_type == SHT_REL)
3195 name += 4;
3196 else
3197 name += 5;
3198 s = bfd_get_section_by_name (abfd, name);
3199 if (s != NULL)
3200 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3201 break;
3202
3203 case SHT_STRTAB:
3204 /* We assume that a section named .stab*str is a stabs
3205 string section. We look for a section with the same name
3206 but without the trailing ``str'', and set its sh_link
3207 field to point to this section. */
3208 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3209 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3210 {
3211 size_t len;
3212 char *alc;
3213
3214 len = strlen (sec->name);
3215 alc = bfd_malloc (len - 2);
3216 if (alc == NULL)
3217 return FALSE;
3218 memcpy (alc, sec->name, len - 3);
3219 alc[len - 3] = '\0';
3220 s = bfd_get_section_by_name (abfd, alc);
3221 free (alc);
3222 if (s != NULL)
3223 {
3224 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3225
3226 /* This is a .stab section. */
3227 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3228 elf_section_data (s)->this_hdr.sh_entsize
3229 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3230 }
3231 }
3232 break;
3233
3234 case SHT_DYNAMIC:
3235 case SHT_DYNSYM:
3236 case SHT_GNU_verneed:
3237 case SHT_GNU_verdef:
3238 /* sh_link is the section header index of the string table
3239 used for the dynamic entries, or the symbol table, or the
3240 version strings. */
3241 s = bfd_get_section_by_name (abfd, ".dynstr");
3242 if (s != NULL)
3243 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3244 break;
3245
3246 case SHT_GNU_LIBLIST:
3247 /* sh_link is the section header index of the prelink library
3248 list
3249 used for the dynamic entries, or the symbol table, or the
3250 version strings. */
3251 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3252 ? ".dynstr" : ".gnu.libstr");
3253 if (s != NULL)
3254 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3255 break;
3256
3257 case SHT_HASH:
3258 case SHT_GNU_versym:
3259 /* sh_link is the section header index of the symbol table
3260 this hash table or version table is for. */
3261 s = bfd_get_section_by_name (abfd, ".dynsym");
3262 if (s != NULL)
3263 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3264 break;
3265
3266 case SHT_GROUP:
3267 d->this_hdr.sh_link = t->symtab_section;
3268 }
3269 }
3270
3271 for (secn = 1; secn < section_number; ++secn)
3272 if (i_shdrp[secn] == NULL)
3273 i_shdrp[secn] = i_shdrp[0];
3274 else
3275 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3276 i_shdrp[secn]->sh_name);
3277 return TRUE;
3278 }
3279
3280 /* Map symbol from it's internal number to the external number, moving
3281 all local symbols to be at the head of the list. */
3282
3283 static bfd_boolean
3284 sym_is_global (bfd *abfd, asymbol *sym)
3285 {
3286 /* If the backend has a special mapping, use it. */
3287 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3288 if (bed->elf_backend_sym_is_global)
3289 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3290
3291 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3292 || bfd_is_und_section (bfd_get_section (sym))
3293 || bfd_is_com_section (bfd_get_section (sym)));
3294 }
3295
3296 /* Don't output section symbols for sections that are not going to be
3297 output. Also, don't output section symbols for reloc and other
3298 special sections. */
3299
3300 static bfd_boolean
3301 ignore_section_sym (bfd *abfd, asymbol *sym)
3302 {
3303 return ((sym->flags & BSF_SECTION_SYM) != 0
3304 && (sym->value != 0
3305 || (sym->section->owner != abfd
3306 && (sym->section->output_section->owner != abfd
3307 || sym->section->output_offset != 0))));
3308 }
3309
3310 static bfd_boolean
3311 elf_map_symbols (bfd *abfd)
3312 {
3313 unsigned int symcount = bfd_get_symcount (abfd);
3314 asymbol **syms = bfd_get_outsymbols (abfd);
3315 asymbol **sect_syms;
3316 unsigned int num_locals = 0;
3317 unsigned int num_globals = 0;
3318 unsigned int num_locals2 = 0;
3319 unsigned int num_globals2 = 0;
3320 int max_index = 0;
3321 unsigned int idx;
3322 asection *asect;
3323 asymbol **new_syms;
3324
3325 #ifdef DEBUG
3326 fprintf (stderr, "elf_map_symbols\n");
3327 fflush (stderr);
3328 #endif
3329
3330 for (asect = abfd->sections; asect; asect = asect->next)
3331 {
3332 if (max_index < asect->index)
3333 max_index = asect->index;
3334 }
3335
3336 max_index++;
3337 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3338 if (sect_syms == NULL)
3339 return FALSE;
3340 elf_section_syms (abfd) = sect_syms;
3341 elf_num_section_syms (abfd) = max_index;
3342
3343 /* Init sect_syms entries for any section symbols we have already
3344 decided to output. */
3345 for (idx = 0; idx < symcount; idx++)
3346 {
3347 asymbol *sym = syms[idx];
3348
3349 if ((sym->flags & BSF_SECTION_SYM) != 0
3350 && !ignore_section_sym (abfd, sym))
3351 {
3352 asection *sec = sym->section;
3353
3354 if (sec->owner != abfd)
3355 sec = sec->output_section;
3356
3357 sect_syms[sec->index] = syms[idx];
3358 }
3359 }
3360
3361 /* Classify all of the symbols. */
3362 for (idx = 0; idx < symcount; idx++)
3363 {
3364 if (ignore_section_sym (abfd, syms[idx]))
3365 continue;
3366 if (!sym_is_global (abfd, syms[idx]))
3367 num_locals++;
3368 else
3369 num_globals++;
3370 }
3371
3372 /* We will be adding a section symbol for each normal BFD section. Most
3373 sections will already have a section symbol in outsymbols, but
3374 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3375 at least in that case. */
3376 for (asect = abfd->sections; asect; asect = asect->next)
3377 {
3378 if (sect_syms[asect->index] == NULL)
3379 {
3380 if (!sym_is_global (abfd, asect->symbol))
3381 num_locals++;
3382 else
3383 num_globals++;
3384 }
3385 }
3386
3387 /* Now sort the symbols so the local symbols are first. */
3388 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3389
3390 if (new_syms == NULL)
3391 return FALSE;
3392
3393 for (idx = 0; idx < symcount; idx++)
3394 {
3395 asymbol *sym = syms[idx];
3396 unsigned int i;
3397
3398 if (ignore_section_sym (abfd, sym))
3399 continue;
3400 if (!sym_is_global (abfd, sym))
3401 i = num_locals2++;
3402 else
3403 i = num_locals + num_globals2++;
3404 new_syms[i] = sym;
3405 sym->udata.i = i + 1;
3406 }
3407 for (asect = abfd->sections; asect; asect = asect->next)
3408 {
3409 if (sect_syms[asect->index] == NULL)
3410 {
3411 asymbol *sym = asect->symbol;
3412 unsigned int i;
3413
3414 sect_syms[asect->index] = sym;
3415 if (!sym_is_global (abfd, sym))
3416 i = num_locals2++;
3417 else
3418 i = num_locals + num_globals2++;
3419 new_syms[i] = sym;
3420 sym->udata.i = i + 1;
3421 }
3422 }
3423
3424 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3425
3426 elf_num_locals (abfd) = num_locals;
3427 elf_num_globals (abfd) = num_globals;
3428 return TRUE;
3429 }
3430
3431 /* Align to the maximum file alignment that could be required for any
3432 ELF data structure. */
3433
3434 static inline file_ptr
3435 align_file_position (file_ptr off, int align)
3436 {
3437 return (off + align - 1) & ~(align - 1);
3438 }
3439
3440 /* Assign a file position to a section, optionally aligning to the
3441 required section alignment. */
3442
3443 file_ptr
3444 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3445 file_ptr offset,
3446 bfd_boolean align)
3447 {
3448 if (align)
3449 {
3450 unsigned int al;
3451
3452 al = i_shdrp->sh_addralign;
3453 if (al > 1)
3454 offset = BFD_ALIGN (offset, al);
3455 }
3456 i_shdrp->sh_offset = offset;
3457 if (i_shdrp->bfd_section != NULL)
3458 i_shdrp->bfd_section->filepos = offset;
3459 if (i_shdrp->sh_type != SHT_NOBITS)
3460 offset += i_shdrp->sh_size;
3461 return offset;
3462 }
3463
3464 /* Compute the file positions we are going to put the sections at, and
3465 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3466 is not NULL, this is being called by the ELF backend linker. */
3467
3468 bfd_boolean
3469 _bfd_elf_compute_section_file_positions (bfd *abfd,
3470 struct bfd_link_info *link_info)
3471 {
3472 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3473 bfd_boolean failed;
3474 struct bfd_strtab_hash *strtab = NULL;
3475 Elf_Internal_Shdr *shstrtab_hdr;
3476
3477 if (abfd->output_has_begun)
3478 return TRUE;
3479
3480 /* Do any elf backend specific processing first. */
3481 if (bed->elf_backend_begin_write_processing)
3482 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3483
3484 if (! prep_headers (abfd))
3485 return FALSE;
3486
3487 /* Post process the headers if necessary. */
3488 if (bed->elf_backend_post_process_headers)
3489 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3490
3491 failed = FALSE;
3492 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3493 if (failed)
3494 return FALSE;
3495
3496 if (!assign_section_numbers (abfd, link_info))
3497 return FALSE;
3498
3499 /* The backend linker builds symbol table information itself. */
3500 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3501 {
3502 /* Non-zero if doing a relocatable link. */
3503 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3504
3505 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3506 return FALSE;
3507 }
3508
3509 if (link_info == NULL)
3510 {
3511 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3512 if (failed)
3513 return FALSE;
3514 }
3515
3516 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3517 /* sh_name was set in prep_headers. */
3518 shstrtab_hdr->sh_type = SHT_STRTAB;
3519 shstrtab_hdr->sh_flags = 0;
3520 shstrtab_hdr->sh_addr = 0;
3521 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3522 shstrtab_hdr->sh_entsize = 0;
3523 shstrtab_hdr->sh_link = 0;
3524 shstrtab_hdr->sh_info = 0;
3525 /* sh_offset is set in assign_file_positions_except_relocs. */
3526 shstrtab_hdr->sh_addralign = 1;
3527
3528 if (!assign_file_positions_except_relocs (abfd, link_info))
3529 return FALSE;
3530
3531 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3532 {
3533 file_ptr off;
3534 Elf_Internal_Shdr *hdr;
3535
3536 off = elf_tdata (abfd)->next_file_pos;
3537
3538 hdr = &elf_tdata (abfd)->symtab_hdr;
3539 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3540
3541 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3542 if (hdr->sh_size != 0)
3543 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3544
3545 hdr = &elf_tdata (abfd)->strtab_hdr;
3546 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3547
3548 elf_tdata (abfd)->next_file_pos = off;
3549
3550 /* Now that we know where the .strtab section goes, write it
3551 out. */
3552 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3553 || ! _bfd_stringtab_emit (abfd, strtab))
3554 return FALSE;
3555 _bfd_stringtab_free (strtab);
3556 }
3557
3558 abfd->output_has_begun = TRUE;
3559
3560 return TRUE;
3561 }
3562
3563 /* Create a mapping from a set of sections to a program segment. */
3564
3565 static struct elf_segment_map *
3566 make_mapping (bfd *abfd,
3567 asection **sections,
3568 unsigned int from,
3569 unsigned int to,
3570 bfd_boolean phdr)
3571 {
3572 struct elf_segment_map *m;
3573 unsigned int i;
3574 asection **hdrpp;
3575 bfd_size_type amt;
3576
3577 amt = sizeof (struct elf_segment_map);
3578 amt += (to - from - 1) * sizeof (asection *);
3579 m = bfd_zalloc (abfd, amt);
3580 if (m == NULL)
3581 return NULL;
3582 m->next = NULL;
3583 m->p_type = PT_LOAD;
3584 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3585 m->sections[i - from] = *hdrpp;
3586 m->count = to - from;
3587
3588 if (from == 0 && phdr)
3589 {
3590 /* Include the headers in the first PT_LOAD segment. */
3591 m->includes_filehdr = 1;
3592 m->includes_phdrs = 1;
3593 }
3594
3595 return m;
3596 }
3597
3598 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3599 on failure. */
3600
3601 struct elf_segment_map *
3602 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3603 {
3604 struct elf_segment_map *m;
3605
3606 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3607 if (m == NULL)
3608 return NULL;
3609 m->next = NULL;
3610 m->p_type = PT_DYNAMIC;
3611 m->count = 1;
3612 m->sections[0] = dynsec;
3613
3614 return m;
3615 }
3616
3617 /* Set up a mapping from BFD sections to program segments. */
3618
3619 static bfd_boolean
3620 map_sections_to_segments (bfd *abfd)
3621 {
3622 asection **sections = NULL;
3623 asection *s;
3624 unsigned int i;
3625 unsigned int count;
3626 struct elf_segment_map *mfirst;
3627 struct elf_segment_map **pm;
3628 struct elf_segment_map *m;
3629 asection *last_hdr;
3630 bfd_vma last_size;
3631 unsigned int phdr_index;
3632 bfd_vma maxpagesize;
3633 asection **hdrpp;
3634 bfd_boolean phdr_in_segment = TRUE;
3635 bfd_boolean writable;
3636 int tls_count = 0;
3637 asection *first_tls = NULL;
3638 asection *dynsec, *eh_frame_hdr;
3639 bfd_size_type amt;
3640
3641 if (elf_tdata (abfd)->segment_map != NULL)
3642 return TRUE;
3643
3644 if (bfd_count_sections (abfd) == 0)
3645 return TRUE;
3646
3647 /* Select the allocated sections, and sort them. */
3648
3649 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3650 if (sections == NULL)
3651 goto error_return;
3652
3653 i = 0;
3654 for (s = abfd->sections; s != NULL; s = s->next)
3655 {
3656 if ((s->flags & SEC_ALLOC) != 0)
3657 {
3658 sections[i] = s;
3659 ++i;
3660 }
3661 }
3662 BFD_ASSERT (i <= bfd_count_sections (abfd));
3663 count = i;
3664
3665 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3666
3667 /* Build the mapping. */
3668
3669 mfirst = NULL;
3670 pm = &mfirst;
3671
3672 /* If we have a .interp section, then create a PT_PHDR segment for
3673 the program headers and a PT_INTERP segment for the .interp
3674 section. */
3675 s = bfd_get_section_by_name (abfd, ".interp");
3676 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3677 {
3678 amt = sizeof (struct elf_segment_map);
3679 m = bfd_zalloc (abfd, amt);
3680 if (m == NULL)
3681 goto error_return;
3682 m->next = NULL;
3683 m->p_type = PT_PHDR;
3684 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3685 m->p_flags = PF_R | PF_X;
3686 m->p_flags_valid = 1;
3687 m->includes_phdrs = 1;
3688
3689 *pm = m;
3690 pm = &m->next;
3691
3692 amt = sizeof (struct elf_segment_map);
3693 m = bfd_zalloc (abfd, amt);
3694 if (m == NULL)
3695 goto error_return;
3696 m->next = NULL;
3697 m->p_type = PT_INTERP;
3698 m->count = 1;
3699 m->sections[0] = s;
3700
3701 *pm = m;
3702 pm = &m->next;
3703 }
3704
3705 /* Look through the sections. We put sections in the same program
3706 segment when the start of the second section can be placed within
3707 a few bytes of the end of the first section. */
3708 last_hdr = NULL;
3709 last_size = 0;
3710 phdr_index = 0;
3711 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3712 writable = FALSE;
3713 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3714 if (dynsec != NULL
3715 && (dynsec->flags & SEC_LOAD) == 0)
3716 dynsec = NULL;
3717
3718 /* Deal with -Ttext or something similar such that the first section
3719 is not adjacent to the program headers. This is an
3720 approximation, since at this point we don't know exactly how many
3721 program headers we will need. */
3722 if (count > 0)
3723 {
3724 bfd_size_type phdr_size;
3725
3726 phdr_size = elf_tdata (abfd)->program_header_size;
3727 if (phdr_size == 0)
3728 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3729 if ((abfd->flags & D_PAGED) == 0
3730 || sections[0]->lma < phdr_size
3731 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3732 phdr_in_segment = FALSE;
3733 }
3734
3735 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3736 {
3737 asection *hdr;
3738 bfd_boolean new_segment;
3739
3740 hdr = *hdrpp;
3741
3742 /* See if this section and the last one will fit in the same
3743 segment. */
3744
3745 if (last_hdr == NULL)
3746 {
3747 /* If we don't have a segment yet, then we don't need a new
3748 one (we build the last one after this loop). */
3749 new_segment = FALSE;
3750 }
3751 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3752 {
3753 /* If this section has a different relation between the
3754 virtual address and the load address, then we need a new
3755 segment. */
3756 new_segment = TRUE;
3757 }
3758 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3759 < BFD_ALIGN (hdr->lma, maxpagesize))
3760 {
3761 /* If putting this section in this segment would force us to
3762 skip a page in the segment, then we need a new segment. */
3763 new_segment = TRUE;
3764 }
3765 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3766 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3767 {
3768 /* We don't want to put a loadable section after a
3769 nonloadable section in the same segment.
3770 Consider .tbss sections as loadable for this purpose. */
3771 new_segment = TRUE;
3772 }
3773 else if ((abfd->flags & D_PAGED) == 0)
3774 {
3775 /* If the file is not demand paged, which means that we
3776 don't require the sections to be correctly aligned in the
3777 file, then there is no other reason for a new segment. */
3778 new_segment = FALSE;
3779 }
3780 else if (! writable
3781 && (hdr->flags & SEC_READONLY) == 0
3782 && (((last_hdr->lma + last_size - 1)
3783 & ~(maxpagesize - 1))
3784 != (hdr->lma & ~(maxpagesize - 1))))
3785 {
3786 /* We don't want to put a writable section in a read only
3787 segment, unless they are on the same page in memory
3788 anyhow. We already know that the last section does not
3789 bring us past the current section on the page, so the
3790 only case in which the new section is not on the same
3791 page as the previous section is when the previous section
3792 ends precisely on a page boundary. */
3793 new_segment = TRUE;
3794 }
3795 else
3796 {
3797 /* Otherwise, we can use the same segment. */
3798 new_segment = FALSE;
3799 }
3800
3801 if (! new_segment)
3802 {
3803 if ((hdr->flags & SEC_READONLY) == 0)
3804 writable = TRUE;
3805 last_hdr = hdr;
3806 /* .tbss sections effectively have zero size. */
3807 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3808 last_size = hdr->size;
3809 else
3810 last_size = 0;
3811 continue;
3812 }
3813
3814 /* We need a new program segment. We must create a new program
3815 header holding all the sections from phdr_index until hdr. */
3816
3817 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3818 if (m == NULL)
3819 goto error_return;
3820
3821 *pm = m;
3822 pm = &m->next;
3823
3824 if ((hdr->flags & SEC_READONLY) == 0)
3825 writable = TRUE;
3826 else
3827 writable = FALSE;
3828
3829 last_hdr = hdr;
3830 /* .tbss sections effectively have zero size. */
3831 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3832 last_size = hdr->size;
3833 else
3834 last_size = 0;
3835 phdr_index = i;
3836 phdr_in_segment = FALSE;
3837 }
3838
3839 /* Create a final PT_LOAD program segment. */
3840 if (last_hdr != NULL)
3841 {
3842 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3843 if (m == NULL)
3844 goto error_return;
3845
3846 *pm = m;
3847 pm = &m->next;
3848 }
3849
3850 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3851 if (dynsec != NULL)
3852 {
3853 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3854 if (m == NULL)
3855 goto error_return;
3856 *pm = m;
3857 pm = &m->next;
3858 }
3859
3860 /* For each loadable .note section, add a PT_NOTE segment. We don't
3861 use bfd_get_section_by_name, because if we link together
3862 nonloadable .note sections and loadable .note sections, we will
3863 generate two .note sections in the output file. FIXME: Using
3864 names for section types is bogus anyhow. */
3865 for (s = abfd->sections; s != NULL; s = s->next)
3866 {
3867 if ((s->flags & SEC_LOAD) != 0
3868 && strncmp (s->name, ".note", 5) == 0)
3869 {
3870 amt = sizeof (struct elf_segment_map);
3871 m = bfd_zalloc (abfd, amt);
3872 if (m == NULL)
3873 goto error_return;
3874 m->next = NULL;
3875 m->p_type = PT_NOTE;
3876 m->count = 1;
3877 m->sections[0] = s;
3878
3879 *pm = m;
3880 pm = &m->next;
3881 }
3882 if (s->flags & SEC_THREAD_LOCAL)
3883 {
3884 if (! tls_count)
3885 first_tls = s;
3886 tls_count++;
3887 }
3888 }
3889
3890 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3891 if (tls_count > 0)
3892 {
3893 int i;
3894
3895 amt = sizeof (struct elf_segment_map);
3896 amt += (tls_count - 1) * sizeof (asection *);
3897 m = bfd_zalloc (abfd, amt);
3898 if (m == NULL)
3899 goto error_return;
3900 m->next = NULL;
3901 m->p_type = PT_TLS;
3902 m->count = tls_count;
3903 /* Mandated PF_R. */
3904 m->p_flags = PF_R;
3905 m->p_flags_valid = 1;
3906 for (i = 0; i < tls_count; ++i)
3907 {
3908 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3909 m->sections[i] = first_tls;
3910 first_tls = first_tls->next;
3911 }
3912
3913 *pm = m;
3914 pm = &m->next;
3915 }
3916
3917 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3918 segment. */
3919 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3920 if (eh_frame_hdr != NULL
3921 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3922 {
3923 amt = sizeof (struct elf_segment_map);
3924 m = bfd_zalloc (abfd, amt);
3925 if (m == NULL)
3926 goto error_return;
3927 m->next = NULL;
3928 m->p_type = PT_GNU_EH_FRAME;
3929 m->count = 1;
3930 m->sections[0] = eh_frame_hdr->output_section;
3931
3932 *pm = m;
3933 pm = &m->next;
3934 }
3935
3936 if (elf_tdata (abfd)->stack_flags)
3937 {
3938 amt = sizeof (struct elf_segment_map);
3939 m = bfd_zalloc (abfd, amt);
3940 if (m == NULL)
3941 goto error_return;
3942 m->next = NULL;
3943 m->p_type = PT_GNU_STACK;
3944 m->p_flags = elf_tdata (abfd)->stack_flags;
3945 m->p_flags_valid = 1;
3946
3947 *pm = m;
3948 pm = &m->next;
3949 }
3950
3951 if (elf_tdata (abfd)->relro)
3952 {
3953 amt = sizeof (struct elf_segment_map);
3954 m = bfd_zalloc (abfd, amt);
3955 if (m == NULL)
3956 goto error_return;
3957 m->next = NULL;
3958 m->p_type = PT_GNU_RELRO;
3959 m->p_flags = PF_R;
3960 m->p_flags_valid = 1;
3961
3962 *pm = m;
3963 pm = &m->next;
3964 }
3965
3966 free (sections);
3967 sections = NULL;
3968
3969 elf_tdata (abfd)->segment_map = mfirst;
3970 return TRUE;
3971
3972 error_return:
3973 if (sections != NULL)
3974 free (sections);
3975 return FALSE;
3976 }
3977
3978 /* Sort sections by address. */
3979
3980 static int
3981 elf_sort_sections (const void *arg1, const void *arg2)
3982 {
3983 const asection *sec1 = *(const asection **) arg1;
3984 const asection *sec2 = *(const asection **) arg2;
3985 bfd_size_type size1, size2;
3986
3987 /* Sort by LMA first, since this is the address used to
3988 place the section into a segment. */
3989 if (sec1->lma < sec2->lma)
3990 return -1;
3991 else if (sec1->lma > sec2->lma)
3992 return 1;
3993
3994 /* Then sort by VMA. Normally the LMA and the VMA will be
3995 the same, and this will do nothing. */
3996 if (sec1->vma < sec2->vma)
3997 return -1;
3998 else if (sec1->vma > sec2->vma)
3999 return 1;
4000
4001 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4002
4003 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4004
4005 if (TOEND (sec1))
4006 {
4007 if (TOEND (sec2))
4008 {
4009 /* If the indicies are the same, do not return 0
4010 here, but continue to try the next comparison. */
4011 if (sec1->target_index - sec2->target_index != 0)
4012 return sec1->target_index - sec2->target_index;
4013 }
4014 else
4015 return 1;
4016 }
4017 else if (TOEND (sec2))
4018 return -1;
4019
4020 #undef TOEND
4021
4022 /* Sort by size, to put zero sized sections
4023 before others at the same address. */
4024
4025 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4026 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4027
4028 if (size1 < size2)
4029 return -1;
4030 if (size1 > size2)
4031 return 1;
4032
4033 return sec1->target_index - sec2->target_index;
4034 }
4035
4036 /* Ian Lance Taylor writes:
4037
4038 We shouldn't be using % with a negative signed number. That's just
4039 not good. We have to make sure either that the number is not
4040 negative, or that the number has an unsigned type. When the types
4041 are all the same size they wind up as unsigned. When file_ptr is a
4042 larger signed type, the arithmetic winds up as signed long long,
4043 which is wrong.
4044
4045 What we're trying to say here is something like ``increase OFF by
4046 the least amount that will cause it to be equal to the VMA modulo
4047 the page size.'' */
4048 /* In other words, something like:
4049
4050 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4051 off_offset = off % bed->maxpagesize;
4052 if (vma_offset < off_offset)
4053 adjustment = vma_offset + bed->maxpagesize - off_offset;
4054 else
4055 adjustment = vma_offset - off_offset;
4056
4057 which can can be collapsed into the expression below. */
4058
4059 static file_ptr
4060 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4061 {
4062 return ((vma - off) % maxpagesize);
4063 }
4064
4065 static void
4066 print_segment_map (bfd *abfd)
4067 {
4068 struct elf_segment_map *m;
4069 unsigned int i, j;
4070
4071 fprintf (stderr, _(" Section to Segment mapping:\n"));
4072 fprintf (stderr, _(" Segment Sections...\n"));
4073
4074 for (i= 0, m = elf_tdata (abfd)->segment_map;
4075 m != NULL;
4076 i++, m = m->next)
4077 {
4078 const char *pt = get_segment_type (m->p_type);
4079 char buf[32];
4080
4081 if (pt == NULL)
4082 {
4083 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4084 sprintf (buf, "LOPROC+%7.7x",
4085 (unsigned int) (m->p_type - PT_LOPROC));
4086 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4087 sprintf (buf, "LOOS+%7.7x",
4088 (unsigned int) (m->p_type - PT_LOOS));
4089 else
4090 snprintf (buf, sizeof (buf), "%8.8x",
4091 (unsigned int) m->p_type);
4092 pt = buf;
4093 }
4094 fprintf (stderr, " %2.2d: %14.14s: ", i, pt);
4095 for (j = 0; j < m->count; j++)
4096 fprintf (stderr, "%s ", m->sections [j]->name);
4097 putc ('\n',stderr);
4098 }
4099 }
4100
4101 /* Assign file positions to the sections based on the mapping from
4102 sections to segments. This function also sets up some fields in
4103 the file header. */
4104
4105 static bfd_boolean
4106 assign_file_positions_for_load_sections (bfd *abfd,
4107 struct bfd_link_info *link_info)
4108 {
4109 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4110 struct elf_segment_map *m;
4111 Elf_Internal_Phdr *phdrs;
4112 Elf_Internal_Phdr *p;
4113 file_ptr off, voff;
4114 unsigned int count;
4115 unsigned int alloc;
4116 unsigned int i;
4117
4118 if (elf_tdata (abfd)->segment_map == NULL)
4119 {
4120 if (! map_sections_to_segments (abfd))
4121 return FALSE;
4122 }
4123 else
4124 {
4125 /* The placement algorithm assumes that non allocated sections are
4126 not in PT_LOAD segments. We ensure this here by removing such
4127 sections from the segment map. We also remove excluded
4128 sections. */
4129 for (m = elf_tdata (abfd)->segment_map;
4130 m != NULL;
4131 m = m->next)
4132 {
4133 unsigned int new_count;
4134
4135 new_count = 0;
4136 for (i = 0; i < m->count; i ++)
4137 {
4138 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4139 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4140 || m->p_type != PT_LOAD))
4141 {
4142 if (i != new_count)
4143 m->sections[new_count] = m->sections[i];
4144
4145 new_count ++;
4146 }
4147 }
4148
4149 if (new_count != m->count)
4150 m->count = new_count;
4151 }
4152 }
4153
4154 if (bed->elf_backend_modify_segment_map)
4155 {
4156 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4157 return FALSE;
4158 }
4159
4160 count = 0;
4161 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4162 ++count;
4163
4164 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4165 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4166 elf_elfheader (abfd)->e_phnum = count;
4167
4168 if (count == 0)
4169 {
4170 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4171 return TRUE;
4172 }
4173
4174 /* If we already counted the number of program segments, make sure
4175 that we allocated enough space. This happens when SIZEOF_HEADERS
4176 is used in a linker script. */
4177 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4178 if (alloc != 0 && count > alloc)
4179 {
4180 ((*_bfd_error_handler)
4181 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4182 abfd, alloc, count));
4183 print_segment_map (abfd);
4184 bfd_set_error (bfd_error_bad_value);
4185 return FALSE;
4186 }
4187
4188 if (alloc == 0)
4189 {
4190 alloc = count;
4191 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4192 }
4193
4194 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4195 elf_tdata (abfd)->phdr = phdrs;
4196 if (phdrs == NULL)
4197 return FALSE;
4198
4199 off = bed->s->sizeof_ehdr;
4200 off += alloc * bed->s->sizeof_phdr;
4201
4202 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4203 m != NULL;
4204 m = m->next, p++)
4205 {
4206 asection **secpp;
4207
4208 /* If elf_segment_map is not from map_sections_to_segments, the
4209 sections may not be correctly ordered. NOTE: sorting should
4210 not be done to the PT_NOTE section of a corefile, which may
4211 contain several pseudo-sections artificially created by bfd.
4212 Sorting these pseudo-sections breaks things badly. */
4213 if (m->count > 1
4214 && !(elf_elfheader (abfd)->e_type == ET_CORE
4215 && m->p_type == PT_NOTE))
4216 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4217 elf_sort_sections);
4218
4219 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4220 number of sections with contents contributing to both p_filesz
4221 and p_memsz, followed by a number of sections with no contents
4222 that just contribute to p_memsz. In this loop, OFF tracks next
4223 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4224 an adjustment we use for segments that have no file contents
4225 but need zero filled memory allocation. */
4226 voff = 0;
4227 p->p_type = m->p_type;
4228 p->p_flags = m->p_flags;
4229
4230 if (p->p_type == PT_LOAD
4231 && m->count > 0)
4232 {
4233 bfd_size_type align;
4234 bfd_vma adjust;
4235 unsigned int align_power = 0;
4236
4237 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4238 {
4239 unsigned int secalign;
4240
4241 secalign = bfd_get_section_alignment (abfd, *secpp);
4242 if (secalign > align_power)
4243 align_power = secalign;
4244 }
4245 align = (bfd_size_type) 1 << align_power;
4246
4247 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4248 align = bed->maxpagesize;
4249
4250 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4251 off += adjust;
4252 if (adjust != 0
4253 && !m->includes_filehdr
4254 && !m->includes_phdrs
4255 && (ufile_ptr) off >= align)
4256 {
4257 /* If the first section isn't loadable, the same holds for
4258 any other sections. Since the segment won't need file
4259 space, we can make p_offset overlap some prior segment.
4260 However, .tbss is special. If a segment starts with
4261 .tbss, we need to look at the next section to decide
4262 whether the segment has any loadable sections. */
4263 i = 0;
4264 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4265 {
4266 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4267 || ++i >= m->count)
4268 {
4269 off -= adjust;
4270 voff = adjust - align;
4271 break;
4272 }
4273 }
4274 }
4275 }
4276 /* Make sure the .dynamic section is the first section in the
4277 PT_DYNAMIC segment. */
4278 else if (p->p_type == PT_DYNAMIC
4279 && m->count > 1
4280 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4281 {
4282 _bfd_error_handler
4283 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4284 abfd);
4285 bfd_set_error (bfd_error_bad_value);
4286 return FALSE;
4287 }
4288
4289 if (m->count == 0)
4290 p->p_vaddr = 0;
4291 else
4292 p->p_vaddr = m->sections[0]->vma;
4293
4294 if (m->p_paddr_valid)
4295 p->p_paddr = m->p_paddr;
4296 else if (m->count == 0)
4297 p->p_paddr = 0;
4298 else
4299 p->p_paddr = m->sections[0]->lma;
4300
4301 if (p->p_type == PT_LOAD
4302 && (abfd->flags & D_PAGED) != 0)
4303 p->p_align = bed->maxpagesize;
4304 else if (m->count == 0)
4305 p->p_align = 1 << bed->s->log_file_align;
4306 else
4307 p->p_align = 0;
4308
4309 p->p_offset = 0;
4310 p->p_filesz = 0;
4311 p->p_memsz = 0;
4312
4313 if (m->includes_filehdr)
4314 {
4315 if (! m->p_flags_valid)
4316 p->p_flags |= PF_R;
4317 p->p_offset = 0;
4318 p->p_filesz = bed->s->sizeof_ehdr;
4319 p->p_memsz = bed->s->sizeof_ehdr;
4320 if (m->count > 0)
4321 {
4322 BFD_ASSERT (p->p_type == PT_LOAD);
4323
4324 if (p->p_vaddr < (bfd_vma) off)
4325 {
4326 (*_bfd_error_handler)
4327 (_("%B: Not enough room for program headers, try linking with -N"),
4328 abfd);
4329 bfd_set_error (bfd_error_bad_value);
4330 return FALSE;
4331 }
4332
4333 p->p_vaddr -= off;
4334 if (! m->p_paddr_valid)
4335 p->p_paddr -= off;
4336 }
4337 }
4338
4339 if (m->includes_phdrs)
4340 {
4341 if (! m->p_flags_valid)
4342 p->p_flags |= PF_R;
4343
4344 if (!m->includes_filehdr)
4345 {
4346 p->p_offset = bed->s->sizeof_ehdr;
4347
4348 if (m->count > 0)
4349 {
4350 BFD_ASSERT (p->p_type == PT_LOAD);
4351 p->p_vaddr -= off - p->p_offset;
4352 if (! m->p_paddr_valid)
4353 p->p_paddr -= off - p->p_offset;
4354 }
4355 }
4356
4357 p->p_filesz += alloc * bed->s->sizeof_phdr;
4358 p->p_memsz += alloc * bed->s->sizeof_phdr;
4359 }
4360
4361 if (p->p_type == PT_LOAD
4362 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4363 {
4364 if (! m->includes_filehdr && ! m->includes_phdrs)
4365 p->p_offset = off + voff;
4366 else
4367 {
4368 file_ptr adjust;
4369
4370 adjust = off - (p->p_offset + p->p_filesz);
4371 p->p_filesz += adjust;
4372 p->p_memsz += adjust;
4373 }
4374 }
4375
4376 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4377 maps. Set filepos for sections in PT_LOAD segments, and in
4378 core files, for sections in PT_NOTE segments.
4379 assign_file_positions_for_non_load_sections will set filepos
4380 for other sections and update p_filesz for other segments. */
4381 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4382 {
4383 asection *sec;
4384 flagword flags;
4385 bfd_size_type align;
4386
4387 sec = *secpp;
4388 flags = sec->flags;
4389 align = 1 << bfd_get_section_alignment (abfd, sec);
4390
4391 if (p->p_type == PT_LOAD
4392 || p->p_type == PT_TLS)
4393 {
4394 bfd_signed_vma adjust;
4395
4396 if ((flags & SEC_LOAD) != 0)
4397 {
4398 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4399 if (adjust < 0)
4400 {
4401 (*_bfd_error_handler)
4402 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4403 abfd, sec, (unsigned long) sec->lma);
4404 adjust = 0;
4405 }
4406 off += adjust;
4407 p->p_filesz += adjust;
4408 p->p_memsz += adjust;
4409 }
4410 /* .tbss is special. It doesn't contribute to p_memsz of
4411 normal segments. */
4412 else if ((flags & SEC_ALLOC) != 0
4413 && ((flags & SEC_THREAD_LOCAL) == 0
4414 || p->p_type == PT_TLS))
4415 {
4416 /* The section VMA must equal the file position
4417 modulo the page size. */
4418 bfd_size_type page = align;
4419 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4420 page = bed->maxpagesize;
4421 adjust = vma_page_aligned_bias (sec->vma,
4422 p->p_vaddr + p->p_memsz,
4423 page);
4424 p->p_memsz += adjust;
4425 }
4426 }
4427
4428 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4429 {
4430 /* The section at i == 0 is the one that actually contains
4431 everything. */
4432 if (i == 0)
4433 {
4434 sec->filepos = off;
4435 off += sec->size;
4436 p->p_filesz = sec->size;
4437 p->p_memsz = 0;
4438 p->p_align = 1;
4439 }
4440 else
4441 {
4442 /* The rest are fake sections that shouldn't be written. */
4443 sec->filepos = 0;
4444 sec->size = 0;
4445 sec->flags = 0;
4446 continue;
4447 }
4448 }
4449 else
4450 {
4451 if (p->p_type == PT_LOAD)
4452 {
4453 sec->filepos = off;
4454 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4455 1997, and the exact reason for it isn't clear. One
4456 plausible explanation is that it is to work around
4457 a problem we have with linker scripts using data
4458 statements in NOLOAD sections. I don't think it
4459 makes a great deal of sense to have such a section
4460 assigned to a PT_LOAD segment, but apparently
4461 people do this. The data statement results in a
4462 bfd_data_link_order being built, and these need
4463 section contents to write into. Eventually, we get
4464 to _bfd_elf_write_object_contents which writes any
4465 section with contents to the output. Make room
4466 here for the write, so that following segments are
4467 not trashed. */
4468 if ((flags & SEC_LOAD) != 0
4469 || (flags & SEC_HAS_CONTENTS) != 0)
4470 off += sec->size;
4471 }
4472
4473 if ((flags & SEC_LOAD) != 0)
4474 {
4475 p->p_filesz += sec->size;
4476 p->p_memsz += sec->size;
4477 }
4478
4479 /* .tbss is special. It doesn't contribute to p_memsz of
4480 normal segments. */
4481 else if ((flags & SEC_ALLOC) != 0
4482 && ((flags & SEC_THREAD_LOCAL) == 0
4483 || p->p_type == PT_TLS))
4484 p->p_memsz += sec->size;
4485
4486 if (p->p_type == PT_TLS
4487 && sec->size == 0
4488 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4489 {
4490 struct bfd_link_order *o = sec->map_tail.link_order;
4491 if (o != NULL)
4492 p->p_memsz += o->offset + o->size;
4493 }
4494
4495 if (align > p->p_align
4496 && (p->p_type != PT_LOAD
4497 || (abfd->flags & D_PAGED) == 0
4498 || ((p->p_vaddr - p->p_offset) & (align - 1)) == 0))
4499 p->p_align = align;
4500 }
4501
4502 if (! m->p_flags_valid)
4503 {
4504 p->p_flags |= PF_R;
4505 if ((flags & SEC_CODE) != 0)
4506 p->p_flags |= PF_X;
4507 if ((flags & SEC_READONLY) == 0)
4508 p->p_flags |= PF_W;
4509 }
4510 }
4511 }
4512
4513 /* Clear out any program headers we allocated but did not use. */
4514 for (; count < alloc; count++, p++)
4515 {
4516 memset (p, 0, sizeof *p);
4517 p->p_type = PT_NULL;
4518 }
4519
4520 elf_tdata (abfd)->next_file_pos = off;
4521 return TRUE;
4522 }
4523
4524 /* Assign file positions for the other sections. */
4525
4526 static bfd_boolean
4527 assign_file_positions_for_non_load_sections (bfd *abfd,
4528 struct bfd_link_info *link_info)
4529 {
4530 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4531 Elf_Internal_Shdr **i_shdrpp;
4532 Elf_Internal_Shdr **hdrpp;
4533 Elf_Internal_Phdr *phdrs;
4534 Elf_Internal_Phdr *p;
4535 struct elf_segment_map *m;
4536 bfd_vma filehdr_vaddr, filehdr_paddr;
4537 bfd_vma phdrs_vaddr, phdrs_paddr;
4538 file_ptr off;
4539 unsigned int num_sec;
4540 unsigned int i;
4541 unsigned int count;
4542
4543 i_shdrpp = elf_elfsections (abfd);
4544 num_sec = elf_numsections (abfd);
4545 off = elf_tdata (abfd)->next_file_pos;
4546 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4547 {
4548 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4549 Elf_Internal_Shdr *hdr;
4550
4551 hdr = *hdrpp;
4552 if (hdr->bfd_section != NULL
4553 && hdr->bfd_section->filepos != 0)
4554 hdr->sh_offset = hdr->bfd_section->filepos;
4555 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4556 {
4557 ((*_bfd_error_handler)
4558 (_("%B: warning: allocated section `%s' not in segment"),
4559 abfd,
4560 (hdr->bfd_section == NULL
4561 ? "*unknown*"
4562 : hdr->bfd_section->name)));
4563 if ((abfd->flags & D_PAGED) != 0)
4564 off += vma_page_aligned_bias (hdr->sh_addr, off,
4565 bed->maxpagesize);
4566 else
4567 off += vma_page_aligned_bias (hdr->sh_addr, off,
4568 hdr->sh_addralign);
4569 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4570 FALSE);
4571 }
4572 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4573 && hdr->bfd_section == NULL)
4574 || hdr == i_shdrpp[tdata->symtab_section]
4575 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4576 || hdr == i_shdrpp[tdata->strtab_section])
4577 hdr->sh_offset = -1;
4578 else
4579 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4580
4581 if (i == SHN_LORESERVE - 1)
4582 {
4583 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4584 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4585 }
4586 }
4587
4588 /* Now that we have set the section file positions, we can set up
4589 the file positions for the non PT_LOAD segments. */
4590 count = 0;
4591 filehdr_vaddr = 0;
4592 filehdr_paddr = 0;
4593 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4594 phdrs_paddr = 0;
4595 phdrs = elf_tdata (abfd)->phdr;
4596 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4597 m != NULL;
4598 m = m->next, p++)
4599 {
4600 ++count;
4601 if (p->p_type != PT_LOAD)
4602 continue;
4603
4604 if (m->includes_filehdr)
4605 {
4606 filehdr_vaddr = p->p_vaddr;
4607 filehdr_paddr = p->p_paddr;
4608 }
4609 if (m->includes_phdrs)
4610 {
4611 phdrs_vaddr = p->p_vaddr;
4612 phdrs_paddr = p->p_paddr;
4613 if (m->includes_filehdr)
4614 {
4615 phdrs_vaddr += bed->s->sizeof_ehdr;
4616 phdrs_paddr += bed->s->sizeof_ehdr;
4617 }
4618 }
4619 }
4620
4621 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4622 m != NULL;
4623 m = m->next, p++)
4624 {
4625 if (m->count != 0)
4626 {
4627 if (p->p_type != PT_LOAD
4628 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4629 {
4630 Elf_Internal_Shdr *hdr;
4631 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4632
4633 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4634 p->p_filesz = (m->sections[m->count - 1]->filepos
4635 - m->sections[0]->filepos);
4636 if (hdr->sh_type != SHT_NOBITS)
4637 p->p_filesz += hdr->sh_size;
4638
4639 p->p_offset = m->sections[0]->filepos;
4640 }
4641 }
4642 else
4643 {
4644 if (m->includes_filehdr)
4645 {
4646 p->p_vaddr = filehdr_vaddr;
4647 if (! m->p_paddr_valid)
4648 p->p_paddr = filehdr_paddr;
4649 }
4650 else if (m->includes_phdrs)
4651 {
4652 p->p_vaddr = phdrs_vaddr;
4653 if (! m->p_paddr_valid)
4654 p->p_paddr = phdrs_paddr;
4655 }
4656 else if (p->p_type == PT_GNU_RELRO)
4657 {
4658 Elf_Internal_Phdr *lp;
4659
4660 for (lp = phdrs; lp < phdrs + count; ++lp)
4661 {
4662 if (lp->p_type == PT_LOAD
4663 && lp->p_vaddr <= link_info->relro_end
4664 && lp->p_vaddr >= link_info->relro_start
4665 && lp->p_vaddr + lp->p_filesz
4666 >= link_info->relro_end)
4667 break;
4668 }
4669
4670 if (lp < phdrs + count
4671 && link_info->relro_end > lp->p_vaddr)
4672 {
4673 p->p_vaddr = lp->p_vaddr;
4674 p->p_paddr = lp->p_paddr;
4675 p->p_offset = lp->p_offset;
4676 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4677 p->p_memsz = p->p_filesz;
4678 p->p_align = 1;
4679 p->p_flags = (lp->p_flags & ~PF_W);
4680 }
4681 else
4682 {
4683 memset (p, 0, sizeof *p);
4684 p->p_type = PT_NULL;
4685 }
4686 }
4687 }
4688 }
4689
4690 elf_tdata (abfd)->next_file_pos = off;
4691
4692 return TRUE;
4693 }
4694
4695 /* Get the size of the program header.
4696
4697 If this is called by the linker before any of the section VMA's are set, it
4698 can't calculate the correct value for a strange memory layout. This only
4699 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4700 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4701 data segment (exclusive of .interp and .dynamic).
4702
4703 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4704 will be two segments. */
4705
4706 static bfd_size_type
4707 get_program_header_size (bfd *abfd)
4708 {
4709 size_t segs;
4710 asection *s;
4711 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4712
4713 /* We can't return a different result each time we're called. */
4714 if (elf_tdata (abfd)->program_header_size != 0)
4715 return elf_tdata (abfd)->program_header_size;
4716
4717 if (elf_tdata (abfd)->segment_map != NULL)
4718 {
4719 struct elf_segment_map *m;
4720
4721 segs = 0;
4722 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4723 ++segs;
4724 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4725 return elf_tdata (abfd)->program_header_size;
4726 }
4727
4728 /* Assume we will need exactly two PT_LOAD segments: one for text
4729 and one for data. */
4730 segs = 2;
4731
4732 s = bfd_get_section_by_name (abfd, ".interp");
4733 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4734 {
4735 /* If we have a loadable interpreter section, we need a
4736 PT_INTERP segment. In this case, assume we also need a
4737 PT_PHDR segment, although that may not be true for all
4738 targets. */
4739 segs += 2;
4740 }
4741
4742 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4743 {
4744 /* We need a PT_DYNAMIC segment. */
4745 ++segs;
4746 }
4747
4748 if (elf_tdata (abfd)->eh_frame_hdr)
4749 {
4750 /* We need a PT_GNU_EH_FRAME segment. */
4751 ++segs;
4752 }
4753
4754 if (elf_tdata (abfd)->stack_flags)
4755 {
4756 /* We need a PT_GNU_STACK segment. */
4757 ++segs;
4758 }
4759
4760 if (elf_tdata (abfd)->relro)
4761 {
4762 /* We need a PT_GNU_RELRO segment. */
4763 ++segs;
4764 }
4765
4766 for (s = abfd->sections; s != NULL; s = s->next)
4767 {
4768 if ((s->flags & SEC_LOAD) != 0
4769 && strncmp (s->name, ".note", 5) == 0)
4770 {
4771 /* We need a PT_NOTE segment. */
4772 ++segs;
4773 }
4774 }
4775
4776 for (s = abfd->sections; s != NULL; s = s->next)
4777 {
4778 if (s->flags & SEC_THREAD_LOCAL)
4779 {
4780 /* We need a PT_TLS segment. */
4781 ++segs;
4782 break;
4783 }
4784 }
4785
4786 /* Let the backend count up any program headers it might need. */
4787 if (bed->elf_backend_additional_program_headers)
4788 {
4789 int a;
4790
4791 a = (*bed->elf_backend_additional_program_headers) (abfd);
4792 if (a == -1)
4793 abort ();
4794 segs += a;
4795 }
4796
4797 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4798 return elf_tdata (abfd)->program_header_size;
4799 }
4800
4801 /* Work out the file positions of all the sections. This is called by
4802 _bfd_elf_compute_section_file_positions. All the section sizes and
4803 VMAs must be known before this is called.
4804
4805 Reloc sections come in two flavours: Those processed specially as
4806 "side-channel" data attached to a section to which they apply, and
4807 those that bfd doesn't process as relocations. The latter sort are
4808 stored in a normal bfd section by bfd_section_from_shdr. We don't
4809 consider the former sort here, unless they form part of the loadable
4810 image. Reloc sections not assigned here will be handled later by
4811 assign_file_positions_for_relocs.
4812
4813 We also don't set the positions of the .symtab and .strtab here. */
4814
4815 static bfd_boolean
4816 assign_file_positions_except_relocs (bfd *abfd,
4817 struct bfd_link_info *link_info)
4818 {
4819 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4820 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4821 file_ptr off;
4822 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4823
4824 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4825 && bfd_get_format (abfd) != bfd_core)
4826 {
4827 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4828 unsigned int num_sec = elf_numsections (abfd);
4829 Elf_Internal_Shdr **hdrpp;
4830 unsigned int i;
4831
4832 /* Start after the ELF header. */
4833 off = i_ehdrp->e_ehsize;
4834
4835 /* We are not creating an executable, which means that we are
4836 not creating a program header, and that the actual order of
4837 the sections in the file is unimportant. */
4838 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4839 {
4840 Elf_Internal_Shdr *hdr;
4841
4842 hdr = *hdrpp;
4843 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4844 && hdr->bfd_section == NULL)
4845 || i == tdata->symtab_section
4846 || i == tdata->symtab_shndx_section
4847 || i == tdata->strtab_section)
4848 {
4849 hdr->sh_offset = -1;
4850 }
4851 else
4852 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4853
4854 if (i == SHN_LORESERVE - 1)
4855 {
4856 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4857 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4858 }
4859 }
4860 }
4861 else
4862 {
4863 unsigned int alloc;
4864
4865 /* Assign file positions for the loaded sections based on the
4866 assignment of sections to segments. */
4867 if (!assign_file_positions_for_load_sections (abfd, link_info))
4868 return FALSE;
4869
4870 /* And for non-load sections. */
4871 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4872 return FALSE;
4873
4874 /* Write out the program headers. */
4875 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4876 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4877 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4878 return FALSE;
4879
4880 off = tdata->next_file_pos;
4881 }
4882
4883 /* Place the section headers. */
4884 off = align_file_position (off, 1 << bed->s->log_file_align);
4885 i_ehdrp->e_shoff = off;
4886 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4887
4888 tdata->next_file_pos = off;
4889
4890 return TRUE;
4891 }
4892
4893 static bfd_boolean
4894 prep_headers (bfd *abfd)
4895 {
4896 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4897 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4898 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4899 struct elf_strtab_hash *shstrtab;
4900 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4901
4902 i_ehdrp = elf_elfheader (abfd);
4903 i_shdrp = elf_elfsections (abfd);
4904
4905 shstrtab = _bfd_elf_strtab_init ();
4906 if (shstrtab == NULL)
4907 return FALSE;
4908
4909 elf_shstrtab (abfd) = shstrtab;
4910
4911 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4912 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4913 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4914 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4915
4916 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4917 i_ehdrp->e_ident[EI_DATA] =
4918 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4919 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4920
4921 if ((abfd->flags & DYNAMIC) != 0)
4922 i_ehdrp->e_type = ET_DYN;
4923 else if ((abfd->flags & EXEC_P) != 0)
4924 i_ehdrp->e_type = ET_EXEC;
4925 else if (bfd_get_format (abfd) == bfd_core)
4926 i_ehdrp->e_type = ET_CORE;
4927 else
4928 i_ehdrp->e_type = ET_REL;
4929
4930 switch (bfd_get_arch (abfd))
4931 {
4932 case bfd_arch_unknown:
4933 i_ehdrp->e_machine = EM_NONE;
4934 break;
4935
4936 /* There used to be a long list of cases here, each one setting
4937 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4938 in the corresponding bfd definition. To avoid duplication,
4939 the switch was removed. Machines that need special handling
4940 can generally do it in elf_backend_final_write_processing(),
4941 unless they need the information earlier than the final write.
4942 Such need can generally be supplied by replacing the tests for
4943 e_machine with the conditions used to determine it. */
4944 default:
4945 i_ehdrp->e_machine = bed->elf_machine_code;
4946 }
4947
4948 i_ehdrp->e_version = bed->s->ev_current;
4949 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4950
4951 /* No program header, for now. */
4952 i_ehdrp->e_phoff = 0;
4953 i_ehdrp->e_phentsize = 0;
4954 i_ehdrp->e_phnum = 0;
4955
4956 /* Each bfd section is section header entry. */
4957 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4958 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4959
4960 /* If we're building an executable, we'll need a program header table. */
4961 if (abfd->flags & EXEC_P)
4962 /* It all happens later. */
4963 ;
4964 else
4965 {
4966 i_ehdrp->e_phentsize = 0;
4967 i_phdrp = 0;
4968 i_ehdrp->e_phoff = 0;
4969 }
4970
4971 elf_tdata (abfd)->symtab_hdr.sh_name =
4972 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4973 elf_tdata (abfd)->strtab_hdr.sh_name =
4974 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4975 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4976 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4977 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4978 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4979 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4980 return FALSE;
4981
4982 return TRUE;
4983 }
4984
4985 /* Assign file positions for all the reloc sections which are not part
4986 of the loadable file image. */
4987
4988 void
4989 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4990 {
4991 file_ptr off;
4992 unsigned int i, num_sec;
4993 Elf_Internal_Shdr **shdrpp;
4994
4995 off = elf_tdata (abfd)->next_file_pos;
4996
4997 num_sec = elf_numsections (abfd);
4998 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4999 {
5000 Elf_Internal_Shdr *shdrp;
5001
5002 shdrp = *shdrpp;
5003 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5004 && shdrp->sh_offset == -1)
5005 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5006 }
5007
5008 elf_tdata (abfd)->next_file_pos = off;
5009 }
5010
5011 bfd_boolean
5012 _bfd_elf_write_object_contents (bfd *abfd)
5013 {
5014 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5015 Elf_Internal_Ehdr *i_ehdrp;
5016 Elf_Internal_Shdr **i_shdrp;
5017 bfd_boolean failed;
5018 unsigned int count, num_sec;
5019
5020 if (! abfd->output_has_begun
5021 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5022 return FALSE;
5023
5024 i_shdrp = elf_elfsections (abfd);
5025 i_ehdrp = elf_elfheader (abfd);
5026
5027 failed = FALSE;
5028 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5029 if (failed)
5030 return FALSE;
5031
5032 _bfd_elf_assign_file_positions_for_relocs (abfd);
5033
5034 /* After writing the headers, we need to write the sections too... */
5035 num_sec = elf_numsections (abfd);
5036 for (count = 1; count < num_sec; count++)
5037 {
5038 if (bed->elf_backend_section_processing)
5039 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5040 if (i_shdrp[count]->contents)
5041 {
5042 bfd_size_type amt = i_shdrp[count]->sh_size;
5043
5044 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5045 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5046 return FALSE;
5047 }
5048 if (count == SHN_LORESERVE - 1)
5049 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5050 }
5051
5052 /* Write out the section header names. */
5053 if (elf_shstrtab (abfd) != NULL
5054 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5055 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5056 return FALSE;
5057
5058 if (bed->elf_backend_final_write_processing)
5059 (*bed->elf_backend_final_write_processing) (abfd,
5060 elf_tdata (abfd)->linker);
5061
5062 return bed->s->write_shdrs_and_ehdr (abfd);
5063 }
5064
5065 bfd_boolean
5066 _bfd_elf_write_corefile_contents (bfd *abfd)
5067 {
5068 /* Hopefully this can be done just like an object file. */
5069 return _bfd_elf_write_object_contents (abfd);
5070 }
5071
5072 /* Given a section, search the header to find them. */
5073
5074 int
5075 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5076 {
5077 const struct elf_backend_data *bed;
5078 int index;
5079
5080 if (elf_section_data (asect) != NULL
5081 && elf_section_data (asect)->this_idx != 0)
5082 return elf_section_data (asect)->this_idx;
5083
5084 if (bfd_is_abs_section (asect))
5085 index = SHN_ABS;
5086 else if (bfd_is_com_section (asect))
5087 index = SHN_COMMON;
5088 else if (bfd_is_und_section (asect))
5089 index = SHN_UNDEF;
5090 else
5091 index = -1;
5092
5093 bed = get_elf_backend_data (abfd);
5094 if (bed->elf_backend_section_from_bfd_section)
5095 {
5096 int retval = index;
5097
5098 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5099 return retval;
5100 }
5101
5102 if (index == -1)
5103 bfd_set_error (bfd_error_nonrepresentable_section);
5104
5105 return index;
5106 }
5107
5108 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5109 on error. */
5110
5111 int
5112 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5113 {
5114 asymbol *asym_ptr = *asym_ptr_ptr;
5115 int idx;
5116 flagword flags = asym_ptr->flags;
5117
5118 /* When gas creates relocations against local labels, it creates its
5119 own symbol for the section, but does put the symbol into the
5120 symbol chain, so udata is 0. When the linker is generating
5121 relocatable output, this section symbol may be for one of the
5122 input sections rather than the output section. */
5123 if (asym_ptr->udata.i == 0
5124 && (flags & BSF_SECTION_SYM)
5125 && asym_ptr->section)
5126 {
5127 asection *sec;
5128 int indx;
5129
5130 sec = asym_ptr->section;
5131 if (sec->owner != abfd && sec->output_section != NULL)
5132 sec = sec->output_section;
5133 if (sec->owner == abfd
5134 && (indx = sec->index) < elf_num_section_syms (abfd)
5135 && elf_section_syms (abfd)[indx] != NULL)
5136 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5137 }
5138
5139 idx = asym_ptr->udata.i;
5140
5141 if (idx == 0)
5142 {
5143 /* This case can occur when using --strip-symbol on a symbol
5144 which is used in a relocation entry. */
5145 (*_bfd_error_handler)
5146 (_("%B: symbol `%s' required but not present"),
5147 abfd, bfd_asymbol_name (asym_ptr));
5148 bfd_set_error (bfd_error_no_symbols);
5149 return -1;
5150 }
5151
5152 #if DEBUG & 4
5153 {
5154 fprintf (stderr,
5155 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5156 (long) asym_ptr, asym_ptr->name, idx, flags,
5157 elf_symbol_flags (flags));
5158 fflush (stderr);
5159 }
5160 #endif
5161
5162 return idx;
5163 }
5164
5165 /* Rewrite program header information. */
5166
5167 static bfd_boolean
5168 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5169 {
5170 Elf_Internal_Ehdr *iehdr;
5171 struct elf_segment_map *map;
5172 struct elf_segment_map *map_first;
5173 struct elf_segment_map **pointer_to_map;
5174 Elf_Internal_Phdr *segment;
5175 asection *section;
5176 unsigned int i;
5177 unsigned int num_segments;
5178 bfd_boolean phdr_included = FALSE;
5179 bfd_vma maxpagesize;
5180 struct elf_segment_map *phdr_adjust_seg = NULL;
5181 unsigned int phdr_adjust_num = 0;
5182 const struct elf_backend_data *bed;
5183
5184 bed = get_elf_backend_data (ibfd);
5185 iehdr = elf_elfheader (ibfd);
5186
5187 map_first = NULL;
5188 pointer_to_map = &map_first;
5189
5190 num_segments = elf_elfheader (ibfd)->e_phnum;
5191 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5192
5193 /* Returns the end address of the segment + 1. */
5194 #define SEGMENT_END(segment, start) \
5195 (start + (segment->p_memsz > segment->p_filesz \
5196 ? segment->p_memsz : segment->p_filesz))
5197
5198 #define SECTION_SIZE(section, segment) \
5199 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5200 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5201 ? section->size : 0)
5202
5203 /* Returns TRUE if the given section is contained within
5204 the given segment. VMA addresses are compared. */
5205 #define IS_CONTAINED_BY_VMA(section, segment) \
5206 (section->vma >= segment->p_vaddr \
5207 && (section->vma + SECTION_SIZE (section, segment) \
5208 <= (SEGMENT_END (segment, segment->p_vaddr))))
5209
5210 /* Returns TRUE if the given section is contained within
5211 the given segment. LMA addresses are compared. */
5212 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5213 (section->lma >= base \
5214 && (section->lma + SECTION_SIZE (section, segment) \
5215 <= SEGMENT_END (segment, base)))
5216
5217 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5218 #define IS_COREFILE_NOTE(p, s) \
5219 (p->p_type == PT_NOTE \
5220 && bfd_get_format (ibfd) == bfd_core \
5221 && s->vma == 0 && s->lma == 0 \
5222 && (bfd_vma) s->filepos >= p->p_offset \
5223 && ((bfd_vma) s->filepos + s->size \
5224 <= p->p_offset + p->p_filesz))
5225
5226 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5227 linker, which generates a PT_INTERP section with p_vaddr and
5228 p_memsz set to 0. */
5229 #define IS_SOLARIS_PT_INTERP(p, s) \
5230 (p->p_vaddr == 0 \
5231 && p->p_paddr == 0 \
5232 && p->p_memsz == 0 \
5233 && p->p_filesz > 0 \
5234 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5235 && s->size > 0 \
5236 && (bfd_vma) s->filepos >= p->p_offset \
5237 && ((bfd_vma) s->filepos + s->size \
5238 <= p->p_offset + p->p_filesz))
5239
5240 /* Decide if the given section should be included in the given segment.
5241 A section will be included if:
5242 1. It is within the address space of the segment -- we use the LMA
5243 if that is set for the segment and the VMA otherwise,
5244 2. It is an allocated segment,
5245 3. There is an output section associated with it,
5246 4. The section has not already been allocated to a previous segment.
5247 5. PT_GNU_STACK segments do not include any sections.
5248 6. PT_TLS segment includes only SHF_TLS sections.
5249 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5250 8. PT_DYNAMIC should not contain empty sections at the beginning
5251 (with the possible exception of .dynamic). */
5252 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5253 ((((segment->p_paddr \
5254 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5255 : IS_CONTAINED_BY_VMA (section, segment)) \
5256 && (section->flags & SEC_ALLOC) != 0) \
5257 || IS_COREFILE_NOTE (segment, section)) \
5258 && section->output_section != NULL \
5259 && segment->p_type != PT_GNU_STACK \
5260 && (segment->p_type != PT_TLS \
5261 || (section->flags & SEC_THREAD_LOCAL)) \
5262 && (segment->p_type == PT_LOAD \
5263 || segment->p_type == PT_TLS \
5264 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5265 && (segment->p_type != PT_DYNAMIC \
5266 || SECTION_SIZE (section, segment) > 0 \
5267 || (segment->p_paddr \
5268 ? segment->p_paddr != section->lma \
5269 : segment->p_vaddr != section->vma) \
5270 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5271 == 0)) \
5272 && ! section->segment_mark)
5273
5274 /* Returns TRUE iff seg1 starts after the end of seg2. */
5275 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5276 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5277
5278 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5279 their VMA address ranges and their LMA address ranges overlap.
5280 It is possible to have overlapping VMA ranges without overlapping LMA
5281 ranges. RedBoot images for example can have both .data and .bss mapped
5282 to the same VMA range, but with the .data section mapped to a different
5283 LMA. */
5284 #define SEGMENT_OVERLAPS(seg1, seg2) \
5285 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5286 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5287 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5288 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5289
5290 /* Initialise the segment mark field. */
5291 for (section = ibfd->sections; section != NULL; section = section->next)
5292 section->segment_mark = FALSE;
5293
5294 /* Scan through the segments specified in the program header
5295 of the input BFD. For this first scan we look for overlaps
5296 in the loadable segments. These can be created by weird
5297 parameters to objcopy. Also, fix some solaris weirdness. */
5298 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5299 i < num_segments;
5300 i++, segment++)
5301 {
5302 unsigned int j;
5303 Elf_Internal_Phdr *segment2;
5304
5305 if (segment->p_type == PT_INTERP)
5306 for (section = ibfd->sections; section; section = section->next)
5307 if (IS_SOLARIS_PT_INTERP (segment, section))
5308 {
5309 /* Mininal change so that the normal section to segment
5310 assignment code will work. */
5311 segment->p_vaddr = section->vma;
5312 break;
5313 }
5314
5315 if (segment->p_type != PT_LOAD)
5316 continue;
5317
5318 /* Determine if this segment overlaps any previous segments. */
5319 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5320 {
5321 bfd_signed_vma extra_length;
5322
5323 if (segment2->p_type != PT_LOAD
5324 || ! SEGMENT_OVERLAPS (segment, segment2))
5325 continue;
5326
5327 /* Merge the two segments together. */
5328 if (segment2->p_vaddr < segment->p_vaddr)
5329 {
5330 /* Extend SEGMENT2 to include SEGMENT and then delete
5331 SEGMENT. */
5332 extra_length =
5333 SEGMENT_END (segment, segment->p_vaddr)
5334 - SEGMENT_END (segment2, segment2->p_vaddr);
5335
5336 if (extra_length > 0)
5337 {
5338 segment2->p_memsz += extra_length;
5339 segment2->p_filesz += extra_length;
5340 }
5341
5342 segment->p_type = PT_NULL;
5343
5344 /* Since we have deleted P we must restart the outer loop. */
5345 i = 0;
5346 segment = elf_tdata (ibfd)->phdr;
5347 break;
5348 }
5349 else
5350 {
5351 /* Extend SEGMENT to include SEGMENT2 and then delete
5352 SEGMENT2. */
5353 extra_length =
5354 SEGMENT_END (segment2, segment2->p_vaddr)
5355 - SEGMENT_END (segment, segment->p_vaddr);
5356
5357 if (extra_length > 0)
5358 {
5359 segment->p_memsz += extra_length;
5360 segment->p_filesz += extra_length;
5361 }
5362
5363 segment2->p_type = PT_NULL;
5364 }
5365 }
5366 }
5367
5368 /* The second scan attempts to assign sections to segments. */
5369 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5370 i < num_segments;
5371 i ++, segment ++)
5372 {
5373 unsigned int section_count;
5374 asection ** sections;
5375 asection * output_section;
5376 unsigned int isec;
5377 bfd_vma matching_lma;
5378 bfd_vma suggested_lma;
5379 unsigned int j;
5380 bfd_size_type amt;
5381
5382 if (segment->p_type == PT_NULL)
5383 continue;
5384
5385 /* Compute how many sections might be placed into this segment. */
5386 for (section = ibfd->sections, section_count = 0;
5387 section != NULL;
5388 section = section->next)
5389 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5390 ++section_count;
5391
5392 /* Allocate a segment map big enough to contain
5393 all of the sections we have selected. */
5394 amt = sizeof (struct elf_segment_map);
5395 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5396 map = bfd_alloc (obfd, amt);
5397 if (map == NULL)
5398 return FALSE;
5399
5400 /* Initialise the fields of the segment map. Default to
5401 using the physical address of the segment in the input BFD. */
5402 map->next = NULL;
5403 map->p_type = segment->p_type;
5404 map->p_flags = segment->p_flags;
5405 map->p_flags_valid = 1;
5406 map->p_paddr = segment->p_paddr;
5407 map->p_paddr_valid = 1;
5408
5409 /* Determine if this segment contains the ELF file header
5410 and if it contains the program headers themselves. */
5411 map->includes_filehdr = (segment->p_offset == 0
5412 && segment->p_filesz >= iehdr->e_ehsize);
5413
5414 map->includes_phdrs = 0;
5415
5416 if (! phdr_included || segment->p_type != PT_LOAD)
5417 {
5418 map->includes_phdrs =
5419 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5420 && (segment->p_offset + segment->p_filesz
5421 >= ((bfd_vma) iehdr->e_phoff
5422 + iehdr->e_phnum * iehdr->e_phentsize)));
5423
5424 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5425 phdr_included = TRUE;
5426 }
5427
5428 if (section_count == 0)
5429 {
5430 /* Special segments, such as the PT_PHDR segment, may contain
5431 no sections, but ordinary, loadable segments should contain
5432 something. They are allowed by the ELF spec however, so only
5433 a warning is produced. */
5434 if (segment->p_type == PT_LOAD)
5435 (*_bfd_error_handler)
5436 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5437 ibfd);
5438
5439 map->count = 0;
5440 *pointer_to_map = map;
5441 pointer_to_map = &map->next;
5442
5443 continue;
5444 }
5445
5446 /* Now scan the sections in the input BFD again and attempt
5447 to add their corresponding output sections to the segment map.
5448 The problem here is how to handle an output section which has
5449 been moved (ie had its LMA changed). There are four possibilities:
5450
5451 1. None of the sections have been moved.
5452 In this case we can continue to use the segment LMA from the
5453 input BFD.
5454
5455 2. All of the sections have been moved by the same amount.
5456 In this case we can change the segment's LMA to match the LMA
5457 of the first section.
5458
5459 3. Some of the sections have been moved, others have not.
5460 In this case those sections which have not been moved can be
5461 placed in the current segment which will have to have its size,
5462 and possibly its LMA changed, and a new segment or segments will
5463 have to be created to contain the other sections.
5464
5465 4. The sections have been moved, but not by the same amount.
5466 In this case we can change the segment's LMA to match the LMA
5467 of the first section and we will have to create a new segment
5468 or segments to contain the other sections.
5469
5470 In order to save time, we allocate an array to hold the section
5471 pointers that we are interested in. As these sections get assigned
5472 to a segment, they are removed from this array. */
5473
5474 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5475 to work around this long long bug. */
5476 sections = bfd_malloc2 (section_count, sizeof (asection *));
5477 if (sections == NULL)
5478 return FALSE;
5479
5480 /* Step One: Scan for segment vs section LMA conflicts.
5481 Also add the sections to the section array allocated above.
5482 Also add the sections to the current segment. In the common
5483 case, where the sections have not been moved, this means that
5484 we have completely filled the segment, and there is nothing
5485 more to do. */
5486 isec = 0;
5487 matching_lma = 0;
5488 suggested_lma = 0;
5489
5490 for (j = 0, section = ibfd->sections;
5491 section != NULL;
5492 section = section->next)
5493 {
5494 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5495 {
5496 output_section = section->output_section;
5497
5498 sections[j ++] = section;
5499
5500 /* The Solaris native linker always sets p_paddr to 0.
5501 We try to catch that case here, and set it to the
5502 correct value. Note - some backends require that
5503 p_paddr be left as zero. */
5504 if (segment->p_paddr == 0
5505 && segment->p_vaddr != 0
5506 && (! bed->want_p_paddr_set_to_zero)
5507 && isec == 0
5508 && output_section->lma != 0
5509 && (output_section->vma == (segment->p_vaddr
5510 + (map->includes_filehdr
5511 ? iehdr->e_ehsize
5512 : 0)
5513 + (map->includes_phdrs
5514 ? (iehdr->e_phnum
5515 * iehdr->e_phentsize)
5516 : 0))))
5517 map->p_paddr = segment->p_vaddr;
5518
5519 /* Match up the physical address of the segment with the
5520 LMA address of the output section. */
5521 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5522 || IS_COREFILE_NOTE (segment, section)
5523 || (bed->want_p_paddr_set_to_zero &&
5524 IS_CONTAINED_BY_VMA (output_section, segment))
5525 )
5526 {
5527 if (matching_lma == 0)
5528 matching_lma = output_section->lma;
5529
5530 /* We assume that if the section fits within the segment
5531 then it does not overlap any other section within that
5532 segment. */
5533 map->sections[isec ++] = output_section;
5534 }
5535 else if (suggested_lma == 0)
5536 suggested_lma = output_section->lma;
5537 }
5538 }
5539
5540 BFD_ASSERT (j == section_count);
5541
5542 /* Step Two: Adjust the physical address of the current segment,
5543 if necessary. */
5544 if (isec == section_count)
5545 {
5546 /* All of the sections fitted within the segment as currently
5547 specified. This is the default case. Add the segment to
5548 the list of built segments and carry on to process the next
5549 program header in the input BFD. */
5550 map->count = section_count;
5551 *pointer_to_map = map;
5552 pointer_to_map = &map->next;
5553
5554 free (sections);
5555 continue;
5556 }
5557 else
5558 {
5559 if (matching_lma != 0)
5560 {
5561 /* At least one section fits inside the current segment.
5562 Keep it, but modify its physical address to match the
5563 LMA of the first section that fitted. */
5564 map->p_paddr = matching_lma;
5565 }
5566 else
5567 {
5568 /* None of the sections fitted inside the current segment.
5569 Change the current segment's physical address to match
5570 the LMA of the first section. */
5571 map->p_paddr = suggested_lma;
5572 }
5573
5574 /* Offset the segment physical address from the lma
5575 to allow for space taken up by elf headers. */
5576 if (map->includes_filehdr)
5577 map->p_paddr -= iehdr->e_ehsize;
5578
5579 if (map->includes_phdrs)
5580 {
5581 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5582
5583 /* iehdr->e_phnum is just an estimate of the number
5584 of program headers that we will need. Make a note
5585 here of the number we used and the segment we chose
5586 to hold these headers, so that we can adjust the
5587 offset when we know the correct value. */
5588 phdr_adjust_num = iehdr->e_phnum;
5589 phdr_adjust_seg = map;
5590 }
5591 }
5592
5593 /* Step Three: Loop over the sections again, this time assigning
5594 those that fit to the current segment and removing them from the
5595 sections array; but making sure not to leave large gaps. Once all
5596 possible sections have been assigned to the current segment it is
5597 added to the list of built segments and if sections still remain
5598 to be assigned, a new segment is constructed before repeating
5599 the loop. */
5600 isec = 0;
5601 do
5602 {
5603 map->count = 0;
5604 suggested_lma = 0;
5605
5606 /* Fill the current segment with sections that fit. */
5607 for (j = 0; j < section_count; j++)
5608 {
5609 section = sections[j];
5610
5611 if (section == NULL)
5612 continue;
5613
5614 output_section = section->output_section;
5615
5616 BFD_ASSERT (output_section != NULL);
5617
5618 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5619 || IS_COREFILE_NOTE (segment, section))
5620 {
5621 if (map->count == 0)
5622 {
5623 /* If the first section in a segment does not start at
5624 the beginning of the segment, then something is
5625 wrong. */
5626 if (output_section->lma !=
5627 (map->p_paddr
5628 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5629 + (map->includes_phdrs
5630 ? iehdr->e_phnum * iehdr->e_phentsize
5631 : 0)))
5632 abort ();
5633 }
5634 else
5635 {
5636 asection * prev_sec;
5637
5638 prev_sec = map->sections[map->count - 1];
5639
5640 /* If the gap between the end of the previous section
5641 and the start of this section is more than
5642 maxpagesize then we need to start a new segment. */
5643 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5644 maxpagesize)
5645 < BFD_ALIGN (output_section->lma, maxpagesize))
5646 || ((prev_sec->lma + prev_sec->size)
5647 > output_section->lma))
5648 {
5649 if (suggested_lma == 0)
5650 suggested_lma = output_section->lma;
5651
5652 continue;
5653 }
5654 }
5655
5656 map->sections[map->count++] = output_section;
5657 ++isec;
5658 sections[j] = NULL;
5659 section->segment_mark = TRUE;
5660 }
5661 else if (suggested_lma == 0)
5662 suggested_lma = output_section->lma;
5663 }
5664
5665 BFD_ASSERT (map->count > 0);
5666
5667 /* Add the current segment to the list of built segments. */
5668 *pointer_to_map = map;
5669 pointer_to_map = &map->next;
5670
5671 if (isec < section_count)
5672 {
5673 /* We still have not allocated all of the sections to
5674 segments. Create a new segment here, initialise it
5675 and carry on looping. */
5676 amt = sizeof (struct elf_segment_map);
5677 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5678 map = bfd_alloc (obfd, amt);
5679 if (map == NULL)
5680 {
5681 free (sections);
5682 return FALSE;
5683 }
5684
5685 /* Initialise the fields of the segment map. Set the physical
5686 physical address to the LMA of the first section that has
5687 not yet been assigned. */
5688 map->next = NULL;
5689 map->p_type = segment->p_type;
5690 map->p_flags = segment->p_flags;
5691 map->p_flags_valid = 1;
5692 map->p_paddr = suggested_lma;
5693 map->p_paddr_valid = 1;
5694 map->includes_filehdr = 0;
5695 map->includes_phdrs = 0;
5696 }
5697 }
5698 while (isec < section_count);
5699
5700 free (sections);
5701 }
5702
5703 /* The Solaris linker creates program headers in which all the
5704 p_paddr fields are zero. When we try to objcopy or strip such a
5705 file, we get confused. Check for this case, and if we find it
5706 reset the p_paddr_valid fields. */
5707 for (map = map_first; map != NULL; map = map->next)
5708 if (map->p_paddr != 0)
5709 break;
5710 if (map == NULL)
5711 for (map = map_first; map != NULL; map = map->next)
5712 map->p_paddr_valid = 0;
5713
5714 elf_tdata (obfd)->segment_map = map_first;
5715
5716 /* If we had to estimate the number of program headers that were
5717 going to be needed, then check our estimate now and adjust
5718 the offset if necessary. */
5719 if (phdr_adjust_seg != NULL)
5720 {
5721 unsigned int count;
5722
5723 for (count = 0, map = map_first; map != NULL; map = map->next)
5724 count++;
5725
5726 if (count > phdr_adjust_num)
5727 phdr_adjust_seg->p_paddr
5728 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5729 }
5730
5731 #undef SEGMENT_END
5732 #undef SECTION_SIZE
5733 #undef IS_CONTAINED_BY_VMA
5734 #undef IS_CONTAINED_BY_LMA
5735 #undef IS_COREFILE_NOTE
5736 #undef IS_SOLARIS_PT_INTERP
5737 #undef INCLUDE_SECTION_IN_SEGMENT
5738 #undef SEGMENT_AFTER_SEGMENT
5739 #undef SEGMENT_OVERLAPS
5740 return TRUE;
5741 }
5742
5743 /* Copy ELF program header information. */
5744
5745 static bfd_boolean
5746 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5747 {
5748 Elf_Internal_Ehdr *iehdr;
5749 struct elf_segment_map *map;
5750 struct elf_segment_map *map_first;
5751 struct elf_segment_map **pointer_to_map;
5752 Elf_Internal_Phdr *segment;
5753 unsigned int i;
5754 unsigned int num_segments;
5755 bfd_boolean phdr_included = FALSE;
5756
5757 iehdr = elf_elfheader (ibfd);
5758
5759 map_first = NULL;
5760 pointer_to_map = &map_first;
5761
5762 num_segments = elf_elfheader (ibfd)->e_phnum;
5763 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5764 i < num_segments;
5765 i++, segment++)
5766 {
5767 asection *section;
5768 unsigned int section_count;
5769 bfd_size_type amt;
5770 Elf_Internal_Shdr *this_hdr;
5771
5772 /* FIXME: Do we need to copy PT_NULL segment? */
5773 if (segment->p_type == PT_NULL)
5774 continue;
5775
5776 /* Compute how many sections are in this segment. */
5777 for (section = ibfd->sections, section_count = 0;
5778 section != NULL;
5779 section = section->next)
5780 {
5781 this_hdr = &(elf_section_data(section)->this_hdr);
5782 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5783 section_count++;
5784 }
5785
5786 /* Allocate a segment map big enough to contain
5787 all of the sections we have selected. */
5788 amt = sizeof (struct elf_segment_map);
5789 if (section_count != 0)
5790 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5791 map = bfd_alloc (obfd, amt);
5792 if (map == NULL)
5793 return FALSE;
5794
5795 /* Initialize the fields of the output segment map with the
5796 input segment. */
5797 map->next = NULL;
5798 map->p_type = segment->p_type;
5799 map->p_flags = segment->p_flags;
5800 map->p_flags_valid = 1;
5801 map->p_paddr = segment->p_paddr;
5802 map->p_paddr_valid = 1;
5803
5804 /* Determine if this segment contains the ELF file header
5805 and if it contains the program headers themselves. */
5806 map->includes_filehdr = (segment->p_offset == 0
5807 && segment->p_filesz >= iehdr->e_ehsize);
5808
5809 map->includes_phdrs = 0;
5810 if (! phdr_included || segment->p_type != PT_LOAD)
5811 {
5812 map->includes_phdrs =
5813 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5814 && (segment->p_offset + segment->p_filesz
5815 >= ((bfd_vma) iehdr->e_phoff
5816 + iehdr->e_phnum * iehdr->e_phentsize)));
5817
5818 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5819 phdr_included = TRUE;
5820 }
5821
5822 if (section_count != 0)
5823 {
5824 unsigned int isec = 0;
5825
5826 for (section = ibfd->sections;
5827 section != NULL;
5828 section = section->next)
5829 {
5830 this_hdr = &(elf_section_data(section)->this_hdr);
5831 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5832 map->sections[isec++] = section->output_section;
5833 }
5834 }
5835
5836 map->count = section_count;
5837 *pointer_to_map = map;
5838 pointer_to_map = &map->next;
5839 }
5840
5841 elf_tdata (obfd)->segment_map = map_first;
5842 return TRUE;
5843 }
5844
5845 /* Copy private BFD data. This copies or rewrites ELF program header
5846 information. */
5847
5848 static bfd_boolean
5849 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5850 {
5851 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5852 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5853 return TRUE;
5854
5855 if (elf_tdata (ibfd)->phdr == NULL)
5856 return TRUE;
5857
5858 if (ibfd->xvec == obfd->xvec)
5859 {
5860 /* Check if any sections in the input BFD covered by ELF program
5861 header are changed. */
5862 Elf_Internal_Phdr *segment;
5863 asection *section, *osec;
5864 unsigned int i, num_segments;
5865 Elf_Internal_Shdr *this_hdr;
5866
5867 /* Initialize the segment mark field. */
5868 for (section = obfd->sections; section != NULL;
5869 section = section->next)
5870 section->segment_mark = FALSE;
5871
5872 num_segments = elf_elfheader (ibfd)->e_phnum;
5873 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5874 i < num_segments;
5875 i++, segment++)
5876 {
5877 for (section = ibfd->sections;
5878 section != NULL; section = section->next)
5879 {
5880 /* We mark the output section so that we know it comes
5881 from the input BFD. */
5882 osec = section->output_section;
5883 if (osec)
5884 osec->segment_mark = TRUE;
5885
5886 /* Check if this section is covered by the segment. */
5887 this_hdr = &(elf_section_data(section)->this_hdr);
5888 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5889 {
5890 /* FIXME: Check if its output section is changed or
5891 removed. What else do we need to check? */
5892 if (osec == NULL
5893 || section->flags != osec->flags
5894 || section->lma != osec->lma
5895 || section->vma != osec->vma
5896 || section->size != osec->size
5897 || section->rawsize != osec->rawsize
5898 || section->alignment_power != osec->alignment_power)
5899 goto rewrite;
5900 }
5901 }
5902 }
5903
5904 /* Check to see if any output section doesn't come from the
5905 input BFD. */
5906 for (section = obfd->sections; section != NULL;
5907 section = section->next)
5908 {
5909 if (section->segment_mark == FALSE)
5910 goto rewrite;
5911 else
5912 section->segment_mark = FALSE;
5913 }
5914
5915 return copy_elf_program_header (ibfd, obfd);
5916 }
5917
5918 rewrite:
5919 return rewrite_elf_program_header (ibfd, obfd);
5920 }
5921
5922 /* Initialize private output section information from input section. */
5923
5924 bfd_boolean
5925 _bfd_elf_init_private_section_data (bfd *ibfd,
5926 asection *isec,
5927 bfd *obfd,
5928 asection *osec,
5929 struct bfd_link_info *link_info)
5930
5931 {
5932 Elf_Internal_Shdr *ihdr, *ohdr;
5933 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5934
5935 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5936 || obfd->xvec->flavour != bfd_target_elf_flavour)
5937 return TRUE;
5938
5939 /* Don't copy the output ELF section type from input if the
5940 output BFD section flags has been set to something different.
5941 elf_fake_sections will set ELF section type based on BFD
5942 section flags. */
5943 if (osec->flags == isec->flags
5944 || (osec->flags == 0 && elf_section_type (osec) == SHT_NULL))
5945 elf_section_type (osec) = elf_section_type (isec);
5946
5947 /* Set things up for objcopy and relocatable link. The output
5948 SHT_GROUP section will have its elf_next_in_group pointing back
5949 to the input group members. Ignore linker created group section.
5950 See elfNN_ia64_object_p in elfxx-ia64.c. */
5951
5952 if (need_group)
5953 {
5954 if (elf_sec_group (isec) == NULL
5955 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5956 {
5957 if (elf_section_flags (isec) & SHF_GROUP)
5958 elf_section_flags (osec) |= SHF_GROUP;
5959 elf_next_in_group (osec) = elf_next_in_group (isec);
5960 elf_group_name (osec) = elf_group_name (isec);
5961 }
5962 }
5963
5964 ihdr = &elf_section_data (isec)->this_hdr;
5965
5966 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5967 don't use the output section of the linked-to section since it
5968 may be NULL at this point. */
5969 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5970 {
5971 ohdr = &elf_section_data (osec)->this_hdr;
5972 ohdr->sh_flags |= SHF_LINK_ORDER;
5973 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5974 }
5975
5976 osec->use_rela_p = isec->use_rela_p;
5977
5978 return TRUE;
5979 }
5980
5981 /* Copy private section information. This copies over the entsize
5982 field, and sometimes the info field. */
5983
5984 bfd_boolean
5985 _bfd_elf_copy_private_section_data (bfd *ibfd,
5986 asection *isec,
5987 bfd *obfd,
5988 asection *osec)
5989 {
5990 Elf_Internal_Shdr *ihdr, *ohdr;
5991
5992 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5993 || obfd->xvec->flavour != bfd_target_elf_flavour)
5994 return TRUE;
5995
5996 ihdr = &elf_section_data (isec)->this_hdr;
5997 ohdr = &elf_section_data (osec)->this_hdr;
5998
5999 ohdr->sh_entsize = ihdr->sh_entsize;
6000
6001 if (ihdr->sh_type == SHT_SYMTAB
6002 || ihdr->sh_type == SHT_DYNSYM
6003 || ihdr->sh_type == SHT_GNU_verneed
6004 || ihdr->sh_type == SHT_GNU_verdef)
6005 ohdr->sh_info = ihdr->sh_info;
6006
6007 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6008 NULL);
6009 }
6010
6011 /* Copy private header information. */
6012
6013 bfd_boolean
6014 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6015 {
6016 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6017 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6018 return TRUE;
6019
6020 /* Copy over private BFD data if it has not already been copied.
6021 This must be done here, rather than in the copy_private_bfd_data
6022 entry point, because the latter is called after the section
6023 contents have been set, which means that the program headers have
6024 already been worked out. */
6025 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6026 {
6027 if (! copy_private_bfd_data (ibfd, obfd))
6028 return FALSE;
6029 }
6030
6031 return TRUE;
6032 }
6033
6034 /* Copy private symbol information. If this symbol is in a section
6035 which we did not map into a BFD section, try to map the section
6036 index correctly. We use special macro definitions for the mapped
6037 section indices; these definitions are interpreted by the
6038 swap_out_syms function. */
6039
6040 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6041 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6042 #define MAP_STRTAB (SHN_HIOS + 3)
6043 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6044 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6045
6046 bfd_boolean
6047 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6048 asymbol *isymarg,
6049 bfd *obfd,
6050 asymbol *osymarg)
6051 {
6052 elf_symbol_type *isym, *osym;
6053
6054 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6055 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6056 return TRUE;
6057
6058 isym = elf_symbol_from (ibfd, isymarg);
6059 osym = elf_symbol_from (obfd, osymarg);
6060
6061 if (isym != NULL
6062 && osym != NULL
6063 && bfd_is_abs_section (isym->symbol.section))
6064 {
6065 unsigned int shndx;
6066
6067 shndx = isym->internal_elf_sym.st_shndx;
6068 if (shndx == elf_onesymtab (ibfd))
6069 shndx = MAP_ONESYMTAB;
6070 else if (shndx == elf_dynsymtab (ibfd))
6071 shndx = MAP_DYNSYMTAB;
6072 else if (shndx == elf_tdata (ibfd)->strtab_section)
6073 shndx = MAP_STRTAB;
6074 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6075 shndx = MAP_SHSTRTAB;
6076 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6077 shndx = MAP_SYM_SHNDX;
6078 osym->internal_elf_sym.st_shndx = shndx;
6079 }
6080
6081 return TRUE;
6082 }
6083
6084 /* Swap out the symbols. */
6085
6086 static bfd_boolean
6087 swap_out_syms (bfd *abfd,
6088 struct bfd_strtab_hash **sttp,
6089 int relocatable_p)
6090 {
6091 const struct elf_backend_data *bed;
6092 int symcount;
6093 asymbol **syms;
6094 struct bfd_strtab_hash *stt;
6095 Elf_Internal_Shdr *symtab_hdr;
6096 Elf_Internal_Shdr *symtab_shndx_hdr;
6097 Elf_Internal_Shdr *symstrtab_hdr;
6098 bfd_byte *outbound_syms;
6099 bfd_byte *outbound_shndx;
6100 int idx;
6101 bfd_size_type amt;
6102 bfd_boolean name_local_sections;
6103
6104 if (!elf_map_symbols (abfd))
6105 return FALSE;
6106
6107 /* Dump out the symtabs. */
6108 stt = _bfd_elf_stringtab_init ();
6109 if (stt == NULL)
6110 return FALSE;
6111
6112 bed = get_elf_backend_data (abfd);
6113 symcount = bfd_get_symcount (abfd);
6114 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6115 symtab_hdr->sh_type = SHT_SYMTAB;
6116 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6117 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6118 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6119 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6120
6121 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6122 symstrtab_hdr->sh_type = SHT_STRTAB;
6123
6124 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6125 if (outbound_syms == NULL)
6126 {
6127 _bfd_stringtab_free (stt);
6128 return FALSE;
6129 }
6130 symtab_hdr->contents = outbound_syms;
6131
6132 outbound_shndx = NULL;
6133 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6134 if (symtab_shndx_hdr->sh_name != 0)
6135 {
6136 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6137 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6138 sizeof (Elf_External_Sym_Shndx));
6139 if (outbound_shndx == NULL)
6140 {
6141 _bfd_stringtab_free (stt);
6142 return FALSE;
6143 }
6144
6145 symtab_shndx_hdr->contents = outbound_shndx;
6146 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6147 symtab_shndx_hdr->sh_size = amt;
6148 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6149 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6150 }
6151
6152 /* Now generate the data (for "contents"). */
6153 {
6154 /* Fill in zeroth symbol and swap it out. */
6155 Elf_Internal_Sym sym;
6156 sym.st_name = 0;
6157 sym.st_value = 0;
6158 sym.st_size = 0;
6159 sym.st_info = 0;
6160 sym.st_other = 0;
6161 sym.st_shndx = SHN_UNDEF;
6162 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6163 outbound_syms += bed->s->sizeof_sym;
6164 if (outbound_shndx != NULL)
6165 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6166 }
6167
6168 name_local_sections
6169 = (bed->elf_backend_name_local_section_symbols
6170 && bed->elf_backend_name_local_section_symbols (abfd));
6171
6172 syms = bfd_get_outsymbols (abfd);
6173 for (idx = 0; idx < symcount; idx++)
6174 {
6175 Elf_Internal_Sym sym;
6176 bfd_vma value = syms[idx]->value;
6177 elf_symbol_type *type_ptr;
6178 flagword flags = syms[idx]->flags;
6179 int type;
6180
6181 if (!name_local_sections
6182 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6183 {
6184 /* Local section symbols have no name. */
6185 sym.st_name = 0;
6186 }
6187 else
6188 {
6189 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6190 syms[idx]->name,
6191 TRUE, FALSE);
6192 if (sym.st_name == (unsigned long) -1)
6193 {
6194 _bfd_stringtab_free (stt);
6195 return FALSE;
6196 }
6197 }
6198
6199 type_ptr = elf_symbol_from (abfd, syms[idx]);
6200
6201 if ((flags & BSF_SECTION_SYM) == 0
6202 && bfd_is_com_section (syms[idx]->section))
6203 {
6204 /* ELF common symbols put the alignment into the `value' field,
6205 and the size into the `size' field. This is backwards from
6206 how BFD handles it, so reverse it here. */
6207 sym.st_size = value;
6208 if (type_ptr == NULL
6209 || type_ptr->internal_elf_sym.st_value == 0)
6210 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6211 else
6212 sym.st_value = type_ptr->internal_elf_sym.st_value;
6213 sym.st_shndx = _bfd_elf_section_from_bfd_section
6214 (abfd, syms[idx]->section);
6215 }
6216 else
6217 {
6218 asection *sec = syms[idx]->section;
6219 int shndx;
6220
6221 if (sec->output_section)
6222 {
6223 value += sec->output_offset;
6224 sec = sec->output_section;
6225 }
6226
6227 /* Don't add in the section vma for relocatable output. */
6228 if (! relocatable_p)
6229 value += sec->vma;
6230 sym.st_value = value;
6231 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6232
6233 if (bfd_is_abs_section (sec)
6234 && type_ptr != NULL
6235 && type_ptr->internal_elf_sym.st_shndx != 0)
6236 {
6237 /* This symbol is in a real ELF section which we did
6238 not create as a BFD section. Undo the mapping done
6239 by copy_private_symbol_data. */
6240 shndx = type_ptr->internal_elf_sym.st_shndx;
6241 switch (shndx)
6242 {
6243 case MAP_ONESYMTAB:
6244 shndx = elf_onesymtab (abfd);
6245 break;
6246 case MAP_DYNSYMTAB:
6247 shndx = elf_dynsymtab (abfd);
6248 break;
6249 case MAP_STRTAB:
6250 shndx = elf_tdata (abfd)->strtab_section;
6251 break;
6252 case MAP_SHSTRTAB:
6253 shndx = elf_tdata (abfd)->shstrtab_section;
6254 break;
6255 case MAP_SYM_SHNDX:
6256 shndx = elf_tdata (abfd)->symtab_shndx_section;
6257 break;
6258 default:
6259 break;
6260 }
6261 }
6262 else
6263 {
6264 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6265
6266 if (shndx == -1)
6267 {
6268 asection *sec2;
6269
6270 /* Writing this would be a hell of a lot easier if
6271 we had some decent documentation on bfd, and
6272 knew what to expect of the library, and what to
6273 demand of applications. For example, it
6274 appears that `objcopy' might not set the
6275 section of a symbol to be a section that is
6276 actually in the output file. */
6277 sec2 = bfd_get_section_by_name (abfd, sec->name);
6278 if (sec2 == NULL)
6279 {
6280 _bfd_error_handler (_("\
6281 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6282 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6283 sec->name);
6284 bfd_set_error (bfd_error_invalid_operation);
6285 _bfd_stringtab_free (stt);
6286 return FALSE;
6287 }
6288
6289 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6290 BFD_ASSERT (shndx != -1);
6291 }
6292 }
6293
6294 sym.st_shndx = shndx;
6295 }
6296
6297 if ((flags & BSF_THREAD_LOCAL) != 0)
6298 type = STT_TLS;
6299 else if ((flags & BSF_FUNCTION) != 0)
6300 type = STT_FUNC;
6301 else if ((flags & BSF_OBJECT) != 0)
6302 type = STT_OBJECT;
6303 else
6304 type = STT_NOTYPE;
6305
6306 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6307 type = STT_TLS;
6308
6309 /* Processor-specific types. */
6310 if (type_ptr != NULL
6311 && bed->elf_backend_get_symbol_type)
6312 type = ((*bed->elf_backend_get_symbol_type)
6313 (&type_ptr->internal_elf_sym, type));
6314
6315 if (flags & BSF_SECTION_SYM)
6316 {
6317 if (flags & BSF_GLOBAL)
6318 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6319 else
6320 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6321 }
6322 else if (bfd_is_com_section (syms[idx]->section))
6323 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6324 else if (bfd_is_und_section (syms[idx]->section))
6325 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6326 ? STB_WEAK
6327 : STB_GLOBAL),
6328 type);
6329 else if (flags & BSF_FILE)
6330 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6331 else
6332 {
6333 int bind = STB_LOCAL;
6334
6335 if (flags & BSF_LOCAL)
6336 bind = STB_LOCAL;
6337 else if (flags & BSF_WEAK)
6338 bind = STB_WEAK;
6339 else if (flags & BSF_GLOBAL)
6340 bind = STB_GLOBAL;
6341
6342 sym.st_info = ELF_ST_INFO (bind, type);
6343 }
6344
6345 if (type_ptr != NULL)
6346 sym.st_other = type_ptr->internal_elf_sym.st_other;
6347 else
6348 sym.st_other = 0;
6349
6350 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6351 outbound_syms += bed->s->sizeof_sym;
6352 if (outbound_shndx != NULL)
6353 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6354 }
6355
6356 *sttp = stt;
6357 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6358 symstrtab_hdr->sh_type = SHT_STRTAB;
6359
6360 symstrtab_hdr->sh_flags = 0;
6361 symstrtab_hdr->sh_addr = 0;
6362 symstrtab_hdr->sh_entsize = 0;
6363 symstrtab_hdr->sh_link = 0;
6364 symstrtab_hdr->sh_info = 0;
6365 symstrtab_hdr->sh_addralign = 1;
6366
6367 return TRUE;
6368 }
6369
6370 /* Return the number of bytes required to hold the symtab vector.
6371
6372 Note that we base it on the count plus 1, since we will null terminate
6373 the vector allocated based on this size. However, the ELF symbol table
6374 always has a dummy entry as symbol #0, so it ends up even. */
6375
6376 long
6377 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6378 {
6379 long symcount;
6380 long symtab_size;
6381 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6382
6383 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6384 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6385 if (symcount > 0)
6386 symtab_size -= sizeof (asymbol *);
6387
6388 return symtab_size;
6389 }
6390
6391 long
6392 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6393 {
6394 long symcount;
6395 long symtab_size;
6396 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6397
6398 if (elf_dynsymtab (abfd) == 0)
6399 {
6400 bfd_set_error (bfd_error_invalid_operation);
6401 return -1;
6402 }
6403
6404 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6405 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6406 if (symcount > 0)
6407 symtab_size -= sizeof (asymbol *);
6408
6409 return symtab_size;
6410 }
6411
6412 long
6413 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6414 sec_ptr asect)
6415 {
6416 return (asect->reloc_count + 1) * sizeof (arelent *);
6417 }
6418
6419 /* Canonicalize the relocs. */
6420
6421 long
6422 _bfd_elf_canonicalize_reloc (bfd *abfd,
6423 sec_ptr section,
6424 arelent **relptr,
6425 asymbol **symbols)
6426 {
6427 arelent *tblptr;
6428 unsigned int i;
6429 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6430
6431 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6432 return -1;
6433
6434 tblptr = section->relocation;
6435 for (i = 0; i < section->reloc_count; i++)
6436 *relptr++ = tblptr++;
6437
6438 *relptr = NULL;
6439
6440 return section->reloc_count;
6441 }
6442
6443 long
6444 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6445 {
6446 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6447 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6448
6449 if (symcount >= 0)
6450 bfd_get_symcount (abfd) = symcount;
6451 return symcount;
6452 }
6453
6454 long
6455 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6456 asymbol **allocation)
6457 {
6458 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6459 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6460
6461 if (symcount >= 0)
6462 bfd_get_dynamic_symcount (abfd) = symcount;
6463 return symcount;
6464 }
6465
6466 /* Return the size required for the dynamic reloc entries. Any loadable
6467 section that was actually installed in the BFD, and has type SHT_REL
6468 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6469 dynamic reloc section. */
6470
6471 long
6472 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6473 {
6474 long ret;
6475 asection *s;
6476
6477 if (elf_dynsymtab (abfd) == 0)
6478 {
6479 bfd_set_error (bfd_error_invalid_operation);
6480 return -1;
6481 }
6482
6483 ret = sizeof (arelent *);
6484 for (s = abfd->sections; s != NULL; s = s->next)
6485 if ((s->flags & SEC_LOAD) != 0
6486 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6487 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6488 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6489 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6490 * sizeof (arelent *));
6491
6492 return ret;
6493 }
6494
6495 /* Canonicalize the dynamic relocation entries. Note that we return the
6496 dynamic relocations as a single block, although they are actually
6497 associated with particular sections; the interface, which was
6498 designed for SunOS style shared libraries, expects that there is only
6499 one set of dynamic relocs. Any loadable section that was actually
6500 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6501 dynamic symbol table, is considered to be a dynamic reloc section. */
6502
6503 long
6504 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6505 arelent **storage,
6506 asymbol **syms)
6507 {
6508 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6509 asection *s;
6510 long ret;
6511
6512 if (elf_dynsymtab (abfd) == 0)
6513 {
6514 bfd_set_error (bfd_error_invalid_operation);
6515 return -1;
6516 }
6517
6518 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6519 ret = 0;
6520 for (s = abfd->sections; s != NULL; s = s->next)
6521 {
6522 if ((s->flags & SEC_LOAD) != 0
6523 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6524 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6525 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6526 {
6527 arelent *p;
6528 long count, i;
6529
6530 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6531 return -1;
6532 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6533 p = s->relocation;
6534 for (i = 0; i < count; i++)
6535 *storage++ = p++;
6536 ret += count;
6537 }
6538 }
6539
6540 *storage = NULL;
6541
6542 return ret;
6543 }
6544 \f
6545 /* Read in the version information. */
6546
6547 bfd_boolean
6548 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6549 {
6550 bfd_byte *contents = NULL;
6551 unsigned int freeidx = 0;
6552
6553 if (elf_dynverref (abfd) != 0)
6554 {
6555 Elf_Internal_Shdr *hdr;
6556 Elf_External_Verneed *everneed;
6557 Elf_Internal_Verneed *iverneed;
6558 unsigned int i;
6559 bfd_byte *contents_end;
6560
6561 hdr = &elf_tdata (abfd)->dynverref_hdr;
6562
6563 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6564 sizeof (Elf_Internal_Verneed));
6565 if (elf_tdata (abfd)->verref == NULL)
6566 goto error_return;
6567
6568 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6569
6570 contents = bfd_malloc (hdr->sh_size);
6571 if (contents == NULL)
6572 {
6573 error_return_verref:
6574 elf_tdata (abfd)->verref = NULL;
6575 elf_tdata (abfd)->cverrefs = 0;
6576 goto error_return;
6577 }
6578 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6579 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6580 goto error_return_verref;
6581
6582 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6583 goto error_return_verref;
6584
6585 BFD_ASSERT (sizeof (Elf_External_Verneed)
6586 == sizeof (Elf_External_Vernaux));
6587 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6588 everneed = (Elf_External_Verneed *) contents;
6589 iverneed = elf_tdata (abfd)->verref;
6590 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6591 {
6592 Elf_External_Vernaux *evernaux;
6593 Elf_Internal_Vernaux *ivernaux;
6594 unsigned int j;
6595
6596 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6597
6598 iverneed->vn_bfd = abfd;
6599
6600 iverneed->vn_filename =
6601 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6602 iverneed->vn_file);
6603 if (iverneed->vn_filename == NULL)
6604 goto error_return_verref;
6605
6606 if (iverneed->vn_cnt == 0)
6607 iverneed->vn_auxptr = NULL;
6608 else
6609 {
6610 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6611 sizeof (Elf_Internal_Vernaux));
6612 if (iverneed->vn_auxptr == NULL)
6613 goto error_return_verref;
6614 }
6615
6616 if (iverneed->vn_aux
6617 > (size_t) (contents_end - (bfd_byte *) everneed))
6618 goto error_return_verref;
6619
6620 evernaux = ((Elf_External_Vernaux *)
6621 ((bfd_byte *) everneed + iverneed->vn_aux));
6622 ivernaux = iverneed->vn_auxptr;
6623 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6624 {
6625 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6626
6627 ivernaux->vna_nodename =
6628 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6629 ivernaux->vna_name);
6630 if (ivernaux->vna_nodename == NULL)
6631 goto error_return_verref;
6632
6633 if (j + 1 < iverneed->vn_cnt)
6634 ivernaux->vna_nextptr = ivernaux + 1;
6635 else
6636 ivernaux->vna_nextptr = NULL;
6637
6638 if (ivernaux->vna_next
6639 > (size_t) (contents_end - (bfd_byte *) evernaux))
6640 goto error_return_verref;
6641
6642 evernaux = ((Elf_External_Vernaux *)
6643 ((bfd_byte *) evernaux + ivernaux->vna_next));
6644
6645 if (ivernaux->vna_other > freeidx)
6646 freeidx = ivernaux->vna_other;
6647 }
6648
6649 if (i + 1 < hdr->sh_info)
6650 iverneed->vn_nextref = iverneed + 1;
6651 else
6652 iverneed->vn_nextref = NULL;
6653
6654 if (iverneed->vn_next
6655 > (size_t) (contents_end - (bfd_byte *) everneed))
6656 goto error_return_verref;
6657
6658 everneed = ((Elf_External_Verneed *)
6659 ((bfd_byte *) everneed + iverneed->vn_next));
6660 }
6661
6662 free (contents);
6663 contents = NULL;
6664 }
6665
6666 if (elf_dynverdef (abfd) != 0)
6667 {
6668 Elf_Internal_Shdr *hdr;
6669 Elf_External_Verdef *everdef;
6670 Elf_Internal_Verdef *iverdef;
6671 Elf_Internal_Verdef *iverdefarr;
6672 Elf_Internal_Verdef iverdefmem;
6673 unsigned int i;
6674 unsigned int maxidx;
6675 bfd_byte *contents_end_def, *contents_end_aux;
6676
6677 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6678
6679 contents = bfd_malloc (hdr->sh_size);
6680 if (contents == NULL)
6681 goto error_return;
6682 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6683 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6684 goto error_return;
6685
6686 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6687 goto error_return;
6688
6689 BFD_ASSERT (sizeof (Elf_External_Verdef)
6690 >= sizeof (Elf_External_Verdaux));
6691 contents_end_def = contents + hdr->sh_size
6692 - sizeof (Elf_External_Verdef);
6693 contents_end_aux = contents + hdr->sh_size
6694 - sizeof (Elf_External_Verdaux);
6695
6696 /* We know the number of entries in the section but not the maximum
6697 index. Therefore we have to run through all entries and find
6698 the maximum. */
6699 everdef = (Elf_External_Verdef *) contents;
6700 maxidx = 0;
6701 for (i = 0; i < hdr->sh_info; ++i)
6702 {
6703 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6704
6705 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6706 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6707
6708 if (iverdefmem.vd_next
6709 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6710 goto error_return;
6711
6712 everdef = ((Elf_External_Verdef *)
6713 ((bfd_byte *) everdef + iverdefmem.vd_next));
6714 }
6715
6716 if (default_imported_symver)
6717 {
6718 if (freeidx > maxidx)
6719 maxidx = ++freeidx;
6720 else
6721 freeidx = ++maxidx;
6722 }
6723 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6724 sizeof (Elf_Internal_Verdef));
6725 if (elf_tdata (abfd)->verdef == NULL)
6726 goto error_return;
6727
6728 elf_tdata (abfd)->cverdefs = maxidx;
6729
6730 everdef = (Elf_External_Verdef *) contents;
6731 iverdefarr = elf_tdata (abfd)->verdef;
6732 for (i = 0; i < hdr->sh_info; i++)
6733 {
6734 Elf_External_Verdaux *everdaux;
6735 Elf_Internal_Verdaux *iverdaux;
6736 unsigned int j;
6737
6738 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6739
6740 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6741 {
6742 error_return_verdef:
6743 elf_tdata (abfd)->verdef = NULL;
6744 elf_tdata (abfd)->cverdefs = 0;
6745 goto error_return;
6746 }
6747
6748 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6749 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6750
6751 iverdef->vd_bfd = abfd;
6752
6753 if (iverdef->vd_cnt == 0)
6754 iverdef->vd_auxptr = NULL;
6755 else
6756 {
6757 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6758 sizeof (Elf_Internal_Verdaux));
6759 if (iverdef->vd_auxptr == NULL)
6760 goto error_return_verdef;
6761 }
6762
6763 if (iverdef->vd_aux
6764 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6765 goto error_return_verdef;
6766
6767 everdaux = ((Elf_External_Verdaux *)
6768 ((bfd_byte *) everdef + iverdef->vd_aux));
6769 iverdaux = iverdef->vd_auxptr;
6770 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6771 {
6772 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6773
6774 iverdaux->vda_nodename =
6775 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6776 iverdaux->vda_name);
6777 if (iverdaux->vda_nodename == NULL)
6778 goto error_return_verdef;
6779
6780 if (j + 1 < iverdef->vd_cnt)
6781 iverdaux->vda_nextptr = iverdaux + 1;
6782 else
6783 iverdaux->vda_nextptr = NULL;
6784
6785 if (iverdaux->vda_next
6786 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6787 goto error_return_verdef;
6788
6789 everdaux = ((Elf_External_Verdaux *)
6790 ((bfd_byte *) everdaux + iverdaux->vda_next));
6791 }
6792
6793 if (iverdef->vd_cnt)
6794 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6795
6796 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6797 iverdef->vd_nextdef = iverdef + 1;
6798 else
6799 iverdef->vd_nextdef = NULL;
6800
6801 everdef = ((Elf_External_Verdef *)
6802 ((bfd_byte *) everdef + iverdef->vd_next));
6803 }
6804
6805 free (contents);
6806 contents = NULL;
6807 }
6808 else if (default_imported_symver)
6809 {
6810 if (freeidx < 3)
6811 freeidx = 3;
6812 else
6813 freeidx++;
6814
6815 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6816 sizeof (Elf_Internal_Verdef));
6817 if (elf_tdata (abfd)->verdef == NULL)
6818 goto error_return;
6819
6820 elf_tdata (abfd)->cverdefs = freeidx;
6821 }
6822
6823 /* Create a default version based on the soname. */
6824 if (default_imported_symver)
6825 {
6826 Elf_Internal_Verdef *iverdef;
6827 Elf_Internal_Verdaux *iverdaux;
6828
6829 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6830
6831 iverdef->vd_version = VER_DEF_CURRENT;
6832 iverdef->vd_flags = 0;
6833 iverdef->vd_ndx = freeidx;
6834 iverdef->vd_cnt = 1;
6835
6836 iverdef->vd_bfd = abfd;
6837
6838 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6839 if (iverdef->vd_nodename == NULL)
6840 goto error_return_verdef;
6841 iverdef->vd_nextdef = NULL;
6842 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6843 if (iverdef->vd_auxptr == NULL)
6844 goto error_return_verdef;
6845
6846 iverdaux = iverdef->vd_auxptr;
6847 iverdaux->vda_nodename = iverdef->vd_nodename;
6848 iverdaux->vda_nextptr = NULL;
6849 }
6850
6851 return TRUE;
6852
6853 error_return:
6854 if (contents != NULL)
6855 free (contents);
6856 return FALSE;
6857 }
6858 \f
6859 asymbol *
6860 _bfd_elf_make_empty_symbol (bfd *abfd)
6861 {
6862 elf_symbol_type *newsym;
6863 bfd_size_type amt = sizeof (elf_symbol_type);
6864
6865 newsym = bfd_zalloc (abfd, amt);
6866 if (!newsym)
6867 return NULL;
6868 else
6869 {
6870 newsym->symbol.the_bfd = abfd;
6871 return &newsym->symbol;
6872 }
6873 }
6874
6875 void
6876 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6877 asymbol *symbol,
6878 symbol_info *ret)
6879 {
6880 bfd_symbol_info (symbol, ret);
6881 }
6882
6883 /* Return whether a symbol name implies a local symbol. Most targets
6884 use this function for the is_local_label_name entry point, but some
6885 override it. */
6886
6887 bfd_boolean
6888 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6889 const char *name)
6890 {
6891 /* Normal local symbols start with ``.L''. */
6892 if (name[0] == '.' && name[1] == 'L')
6893 return TRUE;
6894
6895 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6896 DWARF debugging symbols starting with ``..''. */
6897 if (name[0] == '.' && name[1] == '.')
6898 return TRUE;
6899
6900 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6901 emitting DWARF debugging output. I suspect this is actually a
6902 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6903 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6904 underscore to be emitted on some ELF targets). For ease of use,
6905 we treat such symbols as local. */
6906 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6907 return TRUE;
6908
6909 return FALSE;
6910 }
6911
6912 alent *
6913 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6914 asymbol *symbol ATTRIBUTE_UNUSED)
6915 {
6916 abort ();
6917 return NULL;
6918 }
6919
6920 bfd_boolean
6921 _bfd_elf_set_arch_mach (bfd *abfd,
6922 enum bfd_architecture arch,
6923 unsigned long machine)
6924 {
6925 /* If this isn't the right architecture for this backend, and this
6926 isn't the generic backend, fail. */
6927 if (arch != get_elf_backend_data (abfd)->arch
6928 && arch != bfd_arch_unknown
6929 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6930 return FALSE;
6931
6932 return bfd_default_set_arch_mach (abfd, arch, machine);
6933 }
6934
6935 /* Find the function to a particular section and offset,
6936 for error reporting. */
6937
6938 static bfd_boolean
6939 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6940 asection *section,
6941 asymbol **symbols,
6942 bfd_vma offset,
6943 const char **filename_ptr,
6944 const char **functionname_ptr)
6945 {
6946 const char *filename;
6947 asymbol *func, *file;
6948 bfd_vma low_func;
6949 asymbol **p;
6950 /* ??? Given multiple file symbols, it is impossible to reliably
6951 choose the right file name for global symbols. File symbols are
6952 local symbols, and thus all file symbols must sort before any
6953 global symbols. The ELF spec may be interpreted to say that a
6954 file symbol must sort before other local symbols, but currently
6955 ld -r doesn't do this. So, for ld -r output, it is possible to
6956 make a better choice of file name for local symbols by ignoring
6957 file symbols appearing after a given local symbol. */
6958 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6959
6960 filename = NULL;
6961 func = NULL;
6962 file = NULL;
6963 low_func = 0;
6964 state = nothing_seen;
6965
6966 for (p = symbols; *p != NULL; p++)
6967 {
6968 elf_symbol_type *q;
6969
6970 q = (elf_symbol_type *) *p;
6971
6972 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6973 {
6974 default:
6975 break;
6976 case STT_FILE:
6977 file = &q->symbol;
6978 if (state == symbol_seen)
6979 state = file_after_symbol_seen;
6980 continue;
6981 case STT_NOTYPE:
6982 case STT_FUNC:
6983 if (bfd_get_section (&q->symbol) == section
6984 && q->symbol.value >= low_func
6985 && q->symbol.value <= offset)
6986 {
6987 func = (asymbol *) q;
6988 low_func = q->symbol.value;
6989 filename = NULL;
6990 if (file != NULL
6991 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6992 || state != file_after_symbol_seen))
6993 filename = bfd_asymbol_name (file);
6994 }
6995 break;
6996 }
6997 if (state == nothing_seen)
6998 state = symbol_seen;
6999 }
7000
7001 if (func == NULL)
7002 return FALSE;
7003
7004 if (filename_ptr)
7005 *filename_ptr = filename;
7006 if (functionname_ptr)
7007 *functionname_ptr = bfd_asymbol_name (func);
7008
7009 return TRUE;
7010 }
7011
7012 /* Find the nearest line to a particular section and offset,
7013 for error reporting. */
7014
7015 bfd_boolean
7016 _bfd_elf_find_nearest_line (bfd *abfd,
7017 asection *section,
7018 asymbol **symbols,
7019 bfd_vma offset,
7020 const char **filename_ptr,
7021 const char **functionname_ptr,
7022 unsigned int *line_ptr)
7023 {
7024 bfd_boolean found;
7025
7026 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7027 filename_ptr, functionname_ptr,
7028 line_ptr))
7029 {
7030 if (!*functionname_ptr)
7031 elf_find_function (abfd, section, symbols, offset,
7032 *filename_ptr ? NULL : filename_ptr,
7033 functionname_ptr);
7034
7035 return TRUE;
7036 }
7037
7038 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7039 filename_ptr, functionname_ptr,
7040 line_ptr, 0,
7041 &elf_tdata (abfd)->dwarf2_find_line_info))
7042 {
7043 if (!*functionname_ptr)
7044 elf_find_function (abfd, section, symbols, offset,
7045 *filename_ptr ? NULL : filename_ptr,
7046 functionname_ptr);
7047
7048 return TRUE;
7049 }
7050
7051 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7052 &found, filename_ptr,
7053 functionname_ptr, line_ptr,
7054 &elf_tdata (abfd)->line_info))
7055 return FALSE;
7056 if (found && (*functionname_ptr || *line_ptr))
7057 return TRUE;
7058
7059 if (symbols == NULL)
7060 return FALSE;
7061
7062 if (! elf_find_function (abfd, section, symbols, offset,
7063 filename_ptr, functionname_ptr))
7064 return FALSE;
7065
7066 *line_ptr = 0;
7067 return TRUE;
7068 }
7069
7070 /* Find the line for a symbol. */
7071
7072 bfd_boolean
7073 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7074 const char **filename_ptr, unsigned int *line_ptr)
7075 {
7076 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7077 filename_ptr, line_ptr, 0,
7078 &elf_tdata (abfd)->dwarf2_find_line_info);
7079 }
7080
7081 /* After a call to bfd_find_nearest_line, successive calls to
7082 bfd_find_inliner_info can be used to get source information about
7083 each level of function inlining that terminated at the address
7084 passed to bfd_find_nearest_line. Currently this is only supported
7085 for DWARF2 with appropriate DWARF3 extensions. */
7086
7087 bfd_boolean
7088 _bfd_elf_find_inliner_info (bfd *abfd,
7089 const char **filename_ptr,
7090 const char **functionname_ptr,
7091 unsigned int *line_ptr)
7092 {
7093 bfd_boolean found;
7094 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7095 functionname_ptr, line_ptr,
7096 & elf_tdata (abfd)->dwarf2_find_line_info);
7097 return found;
7098 }
7099
7100 int
7101 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
7102 {
7103 int ret;
7104
7105 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
7106 if (! reloc)
7107 ret += get_program_header_size (abfd);
7108 return ret;
7109 }
7110
7111 bfd_boolean
7112 _bfd_elf_set_section_contents (bfd *abfd,
7113 sec_ptr section,
7114 const void *location,
7115 file_ptr offset,
7116 bfd_size_type count)
7117 {
7118 Elf_Internal_Shdr *hdr;
7119 bfd_signed_vma pos;
7120
7121 if (! abfd->output_has_begun
7122 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7123 return FALSE;
7124
7125 hdr = &elf_section_data (section)->this_hdr;
7126 pos = hdr->sh_offset + offset;
7127 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7128 || bfd_bwrite (location, count, abfd) != count)
7129 return FALSE;
7130
7131 return TRUE;
7132 }
7133
7134 void
7135 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7136 arelent *cache_ptr ATTRIBUTE_UNUSED,
7137 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7138 {
7139 abort ();
7140 }
7141
7142 /* Try to convert a non-ELF reloc into an ELF one. */
7143
7144 bfd_boolean
7145 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7146 {
7147 /* Check whether we really have an ELF howto. */
7148
7149 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7150 {
7151 bfd_reloc_code_real_type code;
7152 reloc_howto_type *howto;
7153
7154 /* Alien reloc: Try to determine its type to replace it with an
7155 equivalent ELF reloc. */
7156
7157 if (areloc->howto->pc_relative)
7158 {
7159 switch (areloc->howto->bitsize)
7160 {
7161 case 8:
7162 code = BFD_RELOC_8_PCREL;
7163 break;
7164 case 12:
7165 code = BFD_RELOC_12_PCREL;
7166 break;
7167 case 16:
7168 code = BFD_RELOC_16_PCREL;
7169 break;
7170 case 24:
7171 code = BFD_RELOC_24_PCREL;
7172 break;
7173 case 32:
7174 code = BFD_RELOC_32_PCREL;
7175 break;
7176 case 64:
7177 code = BFD_RELOC_64_PCREL;
7178 break;
7179 default:
7180 goto fail;
7181 }
7182
7183 howto = bfd_reloc_type_lookup (abfd, code);
7184
7185 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7186 {
7187 if (howto->pcrel_offset)
7188 areloc->addend += areloc->address;
7189 else
7190 areloc->addend -= areloc->address; /* addend is unsigned!! */
7191 }
7192 }
7193 else
7194 {
7195 switch (areloc->howto->bitsize)
7196 {
7197 case 8:
7198 code = BFD_RELOC_8;
7199 break;
7200 case 14:
7201 code = BFD_RELOC_14;
7202 break;
7203 case 16:
7204 code = BFD_RELOC_16;
7205 break;
7206 case 26:
7207 code = BFD_RELOC_26;
7208 break;
7209 case 32:
7210 code = BFD_RELOC_32;
7211 break;
7212 case 64:
7213 code = BFD_RELOC_64;
7214 break;
7215 default:
7216 goto fail;
7217 }
7218
7219 howto = bfd_reloc_type_lookup (abfd, code);
7220 }
7221
7222 if (howto)
7223 areloc->howto = howto;
7224 else
7225 goto fail;
7226 }
7227
7228 return TRUE;
7229
7230 fail:
7231 (*_bfd_error_handler)
7232 (_("%B: unsupported relocation type %s"),
7233 abfd, areloc->howto->name);
7234 bfd_set_error (bfd_error_bad_value);
7235 return FALSE;
7236 }
7237
7238 bfd_boolean
7239 _bfd_elf_close_and_cleanup (bfd *abfd)
7240 {
7241 if (bfd_get_format (abfd) == bfd_object)
7242 {
7243 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7244 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7245 _bfd_dwarf2_cleanup_debug_info (abfd);
7246 }
7247
7248 return _bfd_generic_close_and_cleanup (abfd);
7249 }
7250
7251 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7252 in the relocation's offset. Thus we cannot allow any sort of sanity
7253 range-checking to interfere. There is nothing else to do in processing
7254 this reloc. */
7255
7256 bfd_reloc_status_type
7257 _bfd_elf_rel_vtable_reloc_fn
7258 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7259 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7260 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7261 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7262 {
7263 return bfd_reloc_ok;
7264 }
7265 \f
7266 /* Elf core file support. Much of this only works on native
7267 toolchains, since we rely on knowing the
7268 machine-dependent procfs structure in order to pick
7269 out details about the corefile. */
7270
7271 #ifdef HAVE_SYS_PROCFS_H
7272 # include <sys/procfs.h>
7273 #endif
7274
7275 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7276
7277 static int
7278 elfcore_make_pid (bfd *abfd)
7279 {
7280 return ((elf_tdata (abfd)->core_lwpid << 16)
7281 + (elf_tdata (abfd)->core_pid));
7282 }
7283
7284 /* If there isn't a section called NAME, make one, using
7285 data from SECT. Note, this function will generate a
7286 reference to NAME, so you shouldn't deallocate or
7287 overwrite it. */
7288
7289 static bfd_boolean
7290 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7291 {
7292 asection *sect2;
7293
7294 if (bfd_get_section_by_name (abfd, name) != NULL)
7295 return TRUE;
7296
7297 sect2 = bfd_make_section (abfd, name);
7298 if (sect2 == NULL)
7299 return FALSE;
7300
7301 sect2->size = sect->size;
7302 sect2->filepos = sect->filepos;
7303 sect2->flags = sect->flags;
7304 sect2->alignment_power = sect->alignment_power;
7305 return TRUE;
7306 }
7307
7308 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7309 actually creates up to two pseudosections:
7310 - For the single-threaded case, a section named NAME, unless
7311 such a section already exists.
7312 - For the multi-threaded case, a section named "NAME/PID", where
7313 PID is elfcore_make_pid (abfd).
7314 Both pseudosections have identical contents. */
7315 bfd_boolean
7316 _bfd_elfcore_make_pseudosection (bfd *abfd,
7317 char *name,
7318 size_t size,
7319 ufile_ptr filepos)
7320 {
7321 char buf[100];
7322 char *threaded_name;
7323 size_t len;
7324 asection *sect;
7325
7326 /* Build the section name. */
7327
7328 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7329 len = strlen (buf) + 1;
7330 threaded_name = bfd_alloc (abfd, len);
7331 if (threaded_name == NULL)
7332 return FALSE;
7333 memcpy (threaded_name, buf, len);
7334
7335 sect = bfd_make_section_anyway (abfd, threaded_name);
7336 if (sect == NULL)
7337 return FALSE;
7338 sect->size = size;
7339 sect->filepos = filepos;
7340 sect->flags = SEC_HAS_CONTENTS;
7341 sect->alignment_power = 2;
7342
7343 return elfcore_maybe_make_sect (abfd, name, sect);
7344 }
7345
7346 /* prstatus_t exists on:
7347 solaris 2.5+
7348 linux 2.[01] + glibc
7349 unixware 4.2
7350 */
7351
7352 #if defined (HAVE_PRSTATUS_T)
7353
7354 static bfd_boolean
7355 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7356 {
7357 size_t size;
7358 int offset;
7359
7360 if (note->descsz == sizeof (prstatus_t))
7361 {
7362 prstatus_t prstat;
7363
7364 size = sizeof (prstat.pr_reg);
7365 offset = offsetof (prstatus_t, pr_reg);
7366 memcpy (&prstat, note->descdata, sizeof (prstat));
7367
7368 /* Do not overwrite the core signal if it
7369 has already been set by another thread. */
7370 if (elf_tdata (abfd)->core_signal == 0)
7371 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7372 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7373
7374 /* pr_who exists on:
7375 solaris 2.5+
7376 unixware 4.2
7377 pr_who doesn't exist on:
7378 linux 2.[01]
7379 */
7380 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7381 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7382 #endif
7383 }
7384 #if defined (HAVE_PRSTATUS32_T)
7385 else if (note->descsz == sizeof (prstatus32_t))
7386 {
7387 /* 64-bit host, 32-bit corefile */
7388 prstatus32_t prstat;
7389
7390 size = sizeof (prstat.pr_reg);
7391 offset = offsetof (prstatus32_t, pr_reg);
7392 memcpy (&prstat, note->descdata, sizeof (prstat));
7393
7394 /* Do not overwrite the core signal if it
7395 has already been set by another thread. */
7396 if (elf_tdata (abfd)->core_signal == 0)
7397 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7398 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7399
7400 /* pr_who exists on:
7401 solaris 2.5+
7402 unixware 4.2
7403 pr_who doesn't exist on:
7404 linux 2.[01]
7405 */
7406 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7407 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7408 #endif
7409 }
7410 #endif /* HAVE_PRSTATUS32_T */
7411 else
7412 {
7413 /* Fail - we don't know how to handle any other
7414 note size (ie. data object type). */
7415 return TRUE;
7416 }
7417
7418 /* Make a ".reg/999" section and a ".reg" section. */
7419 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7420 size, note->descpos + offset);
7421 }
7422 #endif /* defined (HAVE_PRSTATUS_T) */
7423
7424 /* Create a pseudosection containing the exact contents of NOTE. */
7425 static bfd_boolean
7426 elfcore_make_note_pseudosection (bfd *abfd,
7427 char *name,
7428 Elf_Internal_Note *note)
7429 {
7430 return _bfd_elfcore_make_pseudosection (abfd, name,
7431 note->descsz, note->descpos);
7432 }
7433
7434 /* There isn't a consistent prfpregset_t across platforms,
7435 but it doesn't matter, because we don't have to pick this
7436 data structure apart. */
7437
7438 static bfd_boolean
7439 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7440 {
7441 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7442 }
7443
7444 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7445 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7446 literally. */
7447
7448 static bfd_boolean
7449 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7450 {
7451 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7452 }
7453
7454 #if defined (HAVE_PRPSINFO_T)
7455 typedef prpsinfo_t elfcore_psinfo_t;
7456 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7457 typedef prpsinfo32_t elfcore_psinfo32_t;
7458 #endif
7459 #endif
7460
7461 #if defined (HAVE_PSINFO_T)
7462 typedef psinfo_t elfcore_psinfo_t;
7463 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7464 typedef psinfo32_t elfcore_psinfo32_t;
7465 #endif
7466 #endif
7467
7468 /* return a malloc'ed copy of a string at START which is at
7469 most MAX bytes long, possibly without a terminating '\0'.
7470 the copy will always have a terminating '\0'. */
7471
7472 char *
7473 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7474 {
7475 char *dups;
7476 char *end = memchr (start, '\0', max);
7477 size_t len;
7478
7479 if (end == NULL)
7480 len = max;
7481 else
7482 len = end - start;
7483
7484 dups = bfd_alloc (abfd, len + 1);
7485 if (dups == NULL)
7486 return NULL;
7487
7488 memcpy (dups, start, len);
7489 dups[len] = '\0';
7490
7491 return dups;
7492 }
7493
7494 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7495 static bfd_boolean
7496 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7497 {
7498 if (note->descsz == sizeof (elfcore_psinfo_t))
7499 {
7500 elfcore_psinfo_t psinfo;
7501
7502 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7503
7504 elf_tdata (abfd)->core_program
7505 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7506 sizeof (psinfo.pr_fname));
7507
7508 elf_tdata (abfd)->core_command
7509 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7510 sizeof (psinfo.pr_psargs));
7511 }
7512 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7513 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7514 {
7515 /* 64-bit host, 32-bit corefile */
7516 elfcore_psinfo32_t psinfo;
7517
7518 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7519
7520 elf_tdata (abfd)->core_program
7521 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7522 sizeof (psinfo.pr_fname));
7523
7524 elf_tdata (abfd)->core_command
7525 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7526 sizeof (psinfo.pr_psargs));
7527 }
7528 #endif
7529
7530 else
7531 {
7532 /* Fail - we don't know how to handle any other
7533 note size (ie. data object type). */
7534 return TRUE;
7535 }
7536
7537 /* Note that for some reason, a spurious space is tacked
7538 onto the end of the args in some (at least one anyway)
7539 implementations, so strip it off if it exists. */
7540
7541 {
7542 char *command = elf_tdata (abfd)->core_command;
7543 int n = strlen (command);
7544
7545 if (0 < n && command[n - 1] == ' ')
7546 command[n - 1] = '\0';
7547 }
7548
7549 return TRUE;
7550 }
7551 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7552
7553 #if defined (HAVE_PSTATUS_T)
7554 static bfd_boolean
7555 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7556 {
7557 if (note->descsz == sizeof (pstatus_t)
7558 #if defined (HAVE_PXSTATUS_T)
7559 || note->descsz == sizeof (pxstatus_t)
7560 #endif
7561 )
7562 {
7563 pstatus_t pstat;
7564
7565 memcpy (&pstat, note->descdata, sizeof (pstat));
7566
7567 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7568 }
7569 #if defined (HAVE_PSTATUS32_T)
7570 else if (note->descsz == sizeof (pstatus32_t))
7571 {
7572 /* 64-bit host, 32-bit corefile */
7573 pstatus32_t pstat;
7574
7575 memcpy (&pstat, note->descdata, sizeof (pstat));
7576
7577 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7578 }
7579 #endif
7580 /* Could grab some more details from the "representative"
7581 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7582 NT_LWPSTATUS note, presumably. */
7583
7584 return TRUE;
7585 }
7586 #endif /* defined (HAVE_PSTATUS_T) */
7587
7588 #if defined (HAVE_LWPSTATUS_T)
7589 static bfd_boolean
7590 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7591 {
7592 lwpstatus_t lwpstat;
7593 char buf[100];
7594 char *name;
7595 size_t len;
7596 asection *sect;
7597
7598 if (note->descsz != sizeof (lwpstat)
7599 #if defined (HAVE_LWPXSTATUS_T)
7600 && note->descsz != sizeof (lwpxstatus_t)
7601 #endif
7602 )
7603 return TRUE;
7604
7605 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7606
7607 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7608 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7609
7610 /* Make a ".reg/999" section. */
7611
7612 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7613 len = strlen (buf) + 1;
7614 name = bfd_alloc (abfd, len);
7615 if (name == NULL)
7616 return FALSE;
7617 memcpy (name, buf, len);
7618
7619 sect = bfd_make_section_anyway (abfd, name);
7620 if (sect == NULL)
7621 return FALSE;
7622
7623 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7624 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7625 sect->filepos = note->descpos
7626 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7627 #endif
7628
7629 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7630 sect->size = sizeof (lwpstat.pr_reg);
7631 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7632 #endif
7633
7634 sect->flags = SEC_HAS_CONTENTS;
7635 sect->alignment_power = 2;
7636
7637 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7638 return FALSE;
7639
7640 /* Make a ".reg2/999" section */
7641
7642 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7643 len = strlen (buf) + 1;
7644 name = bfd_alloc (abfd, len);
7645 if (name == NULL)
7646 return FALSE;
7647 memcpy (name, buf, len);
7648
7649 sect = bfd_make_section_anyway (abfd, name);
7650 if (sect == NULL)
7651 return FALSE;
7652
7653 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7654 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7655 sect->filepos = note->descpos
7656 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7657 #endif
7658
7659 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7660 sect->size = sizeof (lwpstat.pr_fpreg);
7661 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7662 #endif
7663
7664 sect->flags = SEC_HAS_CONTENTS;
7665 sect->alignment_power = 2;
7666
7667 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7668 }
7669 #endif /* defined (HAVE_LWPSTATUS_T) */
7670
7671 #if defined (HAVE_WIN32_PSTATUS_T)
7672 static bfd_boolean
7673 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7674 {
7675 char buf[30];
7676 char *name;
7677 size_t len;
7678 asection *sect;
7679 win32_pstatus_t pstatus;
7680
7681 if (note->descsz < sizeof (pstatus))
7682 return TRUE;
7683
7684 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7685
7686 switch (pstatus.data_type)
7687 {
7688 case NOTE_INFO_PROCESS:
7689 /* FIXME: need to add ->core_command. */
7690 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7691 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7692 break;
7693
7694 case NOTE_INFO_THREAD:
7695 /* Make a ".reg/999" section. */
7696 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7697
7698 len = strlen (buf) + 1;
7699 name = bfd_alloc (abfd, len);
7700 if (name == NULL)
7701 return FALSE;
7702
7703 memcpy (name, buf, len);
7704
7705 sect = bfd_make_section_anyway (abfd, name);
7706 if (sect == NULL)
7707 return FALSE;
7708
7709 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7710 sect->filepos = (note->descpos
7711 + offsetof (struct win32_pstatus,
7712 data.thread_info.thread_context));
7713 sect->flags = SEC_HAS_CONTENTS;
7714 sect->alignment_power = 2;
7715
7716 if (pstatus.data.thread_info.is_active_thread)
7717 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7718 return FALSE;
7719 break;
7720
7721 case NOTE_INFO_MODULE:
7722 /* Make a ".module/xxxxxxxx" section. */
7723 sprintf (buf, ".module/%08lx",
7724 (long) pstatus.data.module_info.base_address);
7725
7726 len = strlen (buf) + 1;
7727 name = bfd_alloc (abfd, len);
7728 if (name == NULL)
7729 return FALSE;
7730
7731 memcpy (name, buf, len);
7732
7733 sect = bfd_make_section_anyway (abfd, name);
7734
7735 if (sect == NULL)
7736 return FALSE;
7737
7738 sect->size = note->descsz;
7739 sect->filepos = note->descpos;
7740 sect->flags = SEC_HAS_CONTENTS;
7741 sect->alignment_power = 2;
7742 break;
7743
7744 default:
7745 return TRUE;
7746 }
7747
7748 return TRUE;
7749 }
7750 #endif /* HAVE_WIN32_PSTATUS_T */
7751
7752 static bfd_boolean
7753 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7754 {
7755 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7756
7757 switch (note->type)
7758 {
7759 default:
7760 return TRUE;
7761
7762 case NT_PRSTATUS:
7763 if (bed->elf_backend_grok_prstatus)
7764 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7765 return TRUE;
7766 #if defined (HAVE_PRSTATUS_T)
7767 return elfcore_grok_prstatus (abfd, note);
7768 #else
7769 return TRUE;
7770 #endif
7771
7772 #if defined (HAVE_PSTATUS_T)
7773 case NT_PSTATUS:
7774 return elfcore_grok_pstatus (abfd, note);
7775 #endif
7776
7777 #if defined (HAVE_LWPSTATUS_T)
7778 case NT_LWPSTATUS:
7779 return elfcore_grok_lwpstatus (abfd, note);
7780 #endif
7781
7782 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7783 return elfcore_grok_prfpreg (abfd, note);
7784
7785 #if defined (HAVE_WIN32_PSTATUS_T)
7786 case NT_WIN32PSTATUS:
7787 return elfcore_grok_win32pstatus (abfd, note);
7788 #endif
7789
7790 case NT_PRXFPREG: /* Linux SSE extension */
7791 if (note->namesz == 6
7792 && strcmp (note->namedata, "LINUX") == 0)
7793 return elfcore_grok_prxfpreg (abfd, note);
7794 else
7795 return TRUE;
7796
7797 case NT_PRPSINFO:
7798 case NT_PSINFO:
7799 if (bed->elf_backend_grok_psinfo)
7800 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7801 return TRUE;
7802 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7803 return elfcore_grok_psinfo (abfd, note);
7804 #else
7805 return TRUE;
7806 #endif
7807
7808 case NT_AUXV:
7809 {
7810 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7811
7812 if (sect == NULL)
7813 return FALSE;
7814 sect->size = note->descsz;
7815 sect->filepos = note->descpos;
7816 sect->flags = SEC_HAS_CONTENTS;
7817 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7818
7819 return TRUE;
7820 }
7821 }
7822 }
7823
7824 static bfd_boolean
7825 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7826 {
7827 char *cp;
7828
7829 cp = strchr (note->namedata, '@');
7830 if (cp != NULL)
7831 {
7832 *lwpidp = atoi(cp + 1);
7833 return TRUE;
7834 }
7835 return FALSE;
7836 }
7837
7838 static bfd_boolean
7839 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7840 {
7841
7842 /* Signal number at offset 0x08. */
7843 elf_tdata (abfd)->core_signal
7844 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7845
7846 /* Process ID at offset 0x50. */
7847 elf_tdata (abfd)->core_pid
7848 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7849
7850 /* Command name at 0x7c (max 32 bytes, including nul). */
7851 elf_tdata (abfd)->core_command
7852 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7853
7854 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7855 note);
7856 }
7857
7858 static bfd_boolean
7859 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7860 {
7861 int lwp;
7862
7863 if (elfcore_netbsd_get_lwpid (note, &lwp))
7864 elf_tdata (abfd)->core_lwpid = lwp;
7865
7866 if (note->type == NT_NETBSDCORE_PROCINFO)
7867 {
7868 /* NetBSD-specific core "procinfo". Note that we expect to
7869 find this note before any of the others, which is fine,
7870 since the kernel writes this note out first when it
7871 creates a core file. */
7872
7873 return elfcore_grok_netbsd_procinfo (abfd, note);
7874 }
7875
7876 /* As of Jan 2002 there are no other machine-independent notes
7877 defined for NetBSD core files. If the note type is less
7878 than the start of the machine-dependent note types, we don't
7879 understand it. */
7880
7881 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7882 return TRUE;
7883
7884
7885 switch (bfd_get_arch (abfd))
7886 {
7887 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7888 PT_GETFPREGS == mach+2. */
7889
7890 case bfd_arch_alpha:
7891 case bfd_arch_sparc:
7892 switch (note->type)
7893 {
7894 case NT_NETBSDCORE_FIRSTMACH+0:
7895 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7896
7897 case NT_NETBSDCORE_FIRSTMACH+2:
7898 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7899
7900 default:
7901 return TRUE;
7902 }
7903
7904 /* On all other arch's, PT_GETREGS == mach+1 and
7905 PT_GETFPREGS == mach+3. */
7906
7907 default:
7908 switch (note->type)
7909 {
7910 case NT_NETBSDCORE_FIRSTMACH+1:
7911 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7912
7913 case NT_NETBSDCORE_FIRSTMACH+3:
7914 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7915
7916 default:
7917 return TRUE;
7918 }
7919 }
7920 /* NOTREACHED */
7921 }
7922
7923 static bfd_boolean
7924 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7925 {
7926 void *ddata = note->descdata;
7927 char buf[100];
7928 char *name;
7929 asection *sect;
7930 short sig;
7931 unsigned flags;
7932
7933 /* nto_procfs_status 'pid' field is at offset 0. */
7934 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7935
7936 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7937 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7938
7939 /* nto_procfs_status 'flags' field is at offset 8. */
7940 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7941
7942 /* nto_procfs_status 'what' field is at offset 14. */
7943 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7944 {
7945 elf_tdata (abfd)->core_signal = sig;
7946 elf_tdata (abfd)->core_lwpid = *tid;
7947 }
7948
7949 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7950 do not come from signals so we make sure we set the current
7951 thread just in case. */
7952 if (flags & 0x00000080)
7953 elf_tdata (abfd)->core_lwpid = *tid;
7954
7955 /* Make a ".qnx_core_status/%d" section. */
7956 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7957
7958 name = bfd_alloc (abfd, strlen (buf) + 1);
7959 if (name == NULL)
7960 return FALSE;
7961 strcpy (name, buf);
7962
7963 sect = bfd_make_section_anyway (abfd, name);
7964 if (sect == NULL)
7965 return FALSE;
7966
7967 sect->size = note->descsz;
7968 sect->filepos = note->descpos;
7969 sect->flags = SEC_HAS_CONTENTS;
7970 sect->alignment_power = 2;
7971
7972 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7973 }
7974
7975 static bfd_boolean
7976 elfcore_grok_nto_regs (bfd *abfd,
7977 Elf_Internal_Note *note,
7978 pid_t tid,
7979 char *base)
7980 {
7981 char buf[100];
7982 char *name;
7983 asection *sect;
7984
7985 /* Make a "(base)/%d" section. */
7986 sprintf (buf, "%s/%ld", base, (long) tid);
7987
7988 name = bfd_alloc (abfd, strlen (buf) + 1);
7989 if (name == NULL)
7990 return FALSE;
7991 strcpy (name, buf);
7992
7993 sect = bfd_make_section_anyway (abfd, name);
7994 if (sect == NULL)
7995 return FALSE;
7996
7997 sect->size = note->descsz;
7998 sect->filepos = note->descpos;
7999 sect->flags = SEC_HAS_CONTENTS;
8000 sect->alignment_power = 2;
8001
8002 /* This is the current thread. */
8003 if (elf_tdata (abfd)->core_lwpid == tid)
8004 return elfcore_maybe_make_sect (abfd, base, sect);
8005
8006 return TRUE;
8007 }
8008
8009 #define BFD_QNT_CORE_INFO 7
8010 #define BFD_QNT_CORE_STATUS 8
8011 #define BFD_QNT_CORE_GREG 9
8012 #define BFD_QNT_CORE_FPREG 10
8013
8014 static bfd_boolean
8015 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8016 {
8017 /* Every GREG section has a STATUS section before it. Store the
8018 tid from the previous call to pass down to the next gregs
8019 function. */
8020 static pid_t tid = 1;
8021
8022 switch (note->type)
8023 {
8024 case BFD_QNT_CORE_INFO:
8025 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8026 case BFD_QNT_CORE_STATUS:
8027 return elfcore_grok_nto_status (abfd, note, &tid);
8028 case BFD_QNT_CORE_GREG:
8029 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8030 case BFD_QNT_CORE_FPREG:
8031 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8032 default:
8033 return TRUE;
8034 }
8035 }
8036
8037 /* Function: elfcore_write_note
8038
8039 Inputs:
8040 buffer to hold note
8041 name of note
8042 type of note
8043 data for note
8044 size of data for note
8045
8046 Return:
8047 End of buffer containing note. */
8048
8049 char *
8050 elfcore_write_note (bfd *abfd,
8051 char *buf,
8052 int *bufsiz,
8053 const char *name,
8054 int type,
8055 const void *input,
8056 int size)
8057 {
8058 Elf_External_Note *xnp;
8059 size_t namesz;
8060 size_t pad;
8061 size_t newspace;
8062 char *p, *dest;
8063
8064 namesz = 0;
8065 pad = 0;
8066 if (name != NULL)
8067 {
8068 const struct elf_backend_data *bed;
8069
8070 namesz = strlen (name) + 1;
8071 bed = get_elf_backend_data (abfd);
8072 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8073 }
8074
8075 newspace = 12 + namesz + pad + size;
8076
8077 p = realloc (buf, *bufsiz + newspace);
8078 dest = p + *bufsiz;
8079 *bufsiz += newspace;
8080 xnp = (Elf_External_Note *) dest;
8081 H_PUT_32 (abfd, namesz, xnp->namesz);
8082 H_PUT_32 (abfd, size, xnp->descsz);
8083 H_PUT_32 (abfd, type, xnp->type);
8084 dest = xnp->name;
8085 if (name != NULL)
8086 {
8087 memcpy (dest, name, namesz);
8088 dest += namesz;
8089 while (pad != 0)
8090 {
8091 *dest++ = '\0';
8092 --pad;
8093 }
8094 }
8095 memcpy (dest, input, size);
8096 return p;
8097 }
8098
8099 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8100 char *
8101 elfcore_write_prpsinfo (bfd *abfd,
8102 char *buf,
8103 int *bufsiz,
8104 const char *fname,
8105 const char *psargs)
8106 {
8107 int note_type;
8108 char *note_name = "CORE";
8109
8110 #if defined (HAVE_PSINFO_T)
8111 psinfo_t data;
8112 note_type = NT_PSINFO;
8113 #else
8114 prpsinfo_t data;
8115 note_type = NT_PRPSINFO;
8116 #endif
8117
8118 memset (&data, 0, sizeof (data));
8119 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8120 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8121 return elfcore_write_note (abfd, buf, bufsiz,
8122 note_name, note_type, &data, sizeof (data));
8123 }
8124 #endif /* PSINFO_T or PRPSINFO_T */
8125
8126 #if defined (HAVE_PRSTATUS_T)
8127 char *
8128 elfcore_write_prstatus (bfd *abfd,
8129 char *buf,
8130 int *bufsiz,
8131 long pid,
8132 int cursig,
8133 const void *gregs)
8134 {
8135 prstatus_t prstat;
8136 char *note_name = "CORE";
8137
8138 memset (&prstat, 0, sizeof (prstat));
8139 prstat.pr_pid = pid;
8140 prstat.pr_cursig = cursig;
8141 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8142 return elfcore_write_note (abfd, buf, bufsiz,
8143 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8144 }
8145 #endif /* HAVE_PRSTATUS_T */
8146
8147 #if defined (HAVE_LWPSTATUS_T)
8148 char *
8149 elfcore_write_lwpstatus (bfd *abfd,
8150 char *buf,
8151 int *bufsiz,
8152 long pid,
8153 int cursig,
8154 const void *gregs)
8155 {
8156 lwpstatus_t lwpstat;
8157 char *note_name = "CORE";
8158
8159 memset (&lwpstat, 0, sizeof (lwpstat));
8160 lwpstat.pr_lwpid = pid >> 16;
8161 lwpstat.pr_cursig = cursig;
8162 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8163 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8164 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8165 #if !defined(gregs)
8166 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8167 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8168 #else
8169 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8170 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8171 #endif
8172 #endif
8173 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8174 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8175 }
8176 #endif /* HAVE_LWPSTATUS_T */
8177
8178 #if defined (HAVE_PSTATUS_T)
8179 char *
8180 elfcore_write_pstatus (bfd *abfd,
8181 char *buf,
8182 int *bufsiz,
8183 long pid,
8184 int cursig ATTRIBUTE_UNUSED,
8185 const void *gregs ATTRIBUTE_UNUSED)
8186 {
8187 pstatus_t pstat;
8188 char *note_name = "CORE";
8189
8190 memset (&pstat, 0, sizeof (pstat));
8191 pstat.pr_pid = pid & 0xffff;
8192 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8193 NT_PSTATUS, &pstat, sizeof (pstat));
8194 return buf;
8195 }
8196 #endif /* HAVE_PSTATUS_T */
8197
8198 char *
8199 elfcore_write_prfpreg (bfd *abfd,
8200 char *buf,
8201 int *bufsiz,
8202 const void *fpregs,
8203 int size)
8204 {
8205 char *note_name = "CORE";
8206 return elfcore_write_note (abfd, buf, bufsiz,
8207 note_name, NT_FPREGSET, fpregs, size);
8208 }
8209
8210 char *
8211 elfcore_write_prxfpreg (bfd *abfd,
8212 char *buf,
8213 int *bufsiz,
8214 const void *xfpregs,
8215 int size)
8216 {
8217 char *note_name = "LINUX";
8218 return elfcore_write_note (abfd, buf, bufsiz,
8219 note_name, NT_PRXFPREG, xfpregs, size);
8220 }
8221
8222 static bfd_boolean
8223 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8224 {
8225 char *buf;
8226 char *p;
8227
8228 if (size <= 0)
8229 return TRUE;
8230
8231 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8232 return FALSE;
8233
8234 buf = bfd_malloc (size);
8235 if (buf == NULL)
8236 return FALSE;
8237
8238 if (bfd_bread (buf, size, abfd) != size)
8239 {
8240 error:
8241 free (buf);
8242 return FALSE;
8243 }
8244
8245 p = buf;
8246 while (p < buf + size)
8247 {
8248 /* FIXME: bad alignment assumption. */
8249 Elf_External_Note *xnp = (Elf_External_Note *) p;
8250 Elf_Internal_Note in;
8251
8252 in.type = H_GET_32 (abfd, xnp->type);
8253
8254 in.namesz = H_GET_32 (abfd, xnp->namesz);
8255 in.namedata = xnp->name;
8256
8257 in.descsz = H_GET_32 (abfd, xnp->descsz);
8258 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8259 in.descpos = offset + (in.descdata - buf);
8260
8261 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8262 {
8263 if (! elfcore_grok_netbsd_note (abfd, &in))
8264 goto error;
8265 }
8266 else if (strncmp (in.namedata, "QNX", 3) == 0)
8267 {
8268 if (! elfcore_grok_nto_note (abfd, &in))
8269 goto error;
8270 }
8271 else
8272 {
8273 if (! elfcore_grok_note (abfd, &in))
8274 goto error;
8275 }
8276
8277 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8278 }
8279
8280 free (buf);
8281 return TRUE;
8282 }
8283 \f
8284 /* Providing external access to the ELF program header table. */
8285
8286 /* Return an upper bound on the number of bytes required to store a
8287 copy of ABFD's program header table entries. Return -1 if an error
8288 occurs; bfd_get_error will return an appropriate code. */
8289
8290 long
8291 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8292 {
8293 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8294 {
8295 bfd_set_error (bfd_error_wrong_format);
8296 return -1;
8297 }
8298
8299 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8300 }
8301
8302 /* Copy ABFD's program header table entries to *PHDRS. The entries
8303 will be stored as an array of Elf_Internal_Phdr structures, as
8304 defined in include/elf/internal.h. To find out how large the
8305 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8306
8307 Return the number of program header table entries read, or -1 if an
8308 error occurs; bfd_get_error will return an appropriate code. */
8309
8310 int
8311 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8312 {
8313 int num_phdrs;
8314
8315 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8316 {
8317 bfd_set_error (bfd_error_wrong_format);
8318 return -1;
8319 }
8320
8321 num_phdrs = elf_elfheader (abfd)->e_phnum;
8322 memcpy (phdrs, elf_tdata (abfd)->phdr,
8323 num_phdrs * sizeof (Elf_Internal_Phdr));
8324
8325 return num_phdrs;
8326 }
8327
8328 void
8329 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8330 {
8331 #ifdef BFD64
8332 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8333
8334 i_ehdrp = elf_elfheader (abfd);
8335 if (i_ehdrp == NULL)
8336 sprintf_vma (buf, value);
8337 else
8338 {
8339 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8340 {
8341 #if BFD_HOST_64BIT_LONG
8342 sprintf (buf, "%016lx", value);
8343 #else
8344 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8345 _bfd_int64_low (value));
8346 #endif
8347 }
8348 else
8349 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8350 }
8351 #else
8352 sprintf_vma (buf, value);
8353 #endif
8354 }
8355
8356 void
8357 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8358 {
8359 #ifdef BFD64
8360 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8361
8362 i_ehdrp = elf_elfheader (abfd);
8363 if (i_ehdrp == NULL)
8364 fprintf_vma ((FILE *) stream, value);
8365 else
8366 {
8367 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8368 {
8369 #if BFD_HOST_64BIT_LONG
8370 fprintf ((FILE *) stream, "%016lx", value);
8371 #else
8372 fprintf ((FILE *) stream, "%08lx%08lx",
8373 _bfd_int64_high (value), _bfd_int64_low (value));
8374 #endif
8375 }
8376 else
8377 fprintf ((FILE *) stream, "%08lx",
8378 (unsigned long) (value & 0xffffffff));
8379 }
8380 #else
8381 fprintf_vma ((FILE *) stream, value);
8382 #endif
8383 }
8384
8385 enum elf_reloc_type_class
8386 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8387 {
8388 return reloc_class_normal;
8389 }
8390
8391 /* For RELA architectures, return the relocation value for a
8392 relocation against a local symbol. */
8393
8394 bfd_vma
8395 _bfd_elf_rela_local_sym (bfd *abfd,
8396 Elf_Internal_Sym *sym,
8397 asection **psec,
8398 Elf_Internal_Rela *rel)
8399 {
8400 asection *sec = *psec;
8401 bfd_vma relocation;
8402
8403 relocation = (sec->output_section->vma
8404 + sec->output_offset
8405 + sym->st_value);
8406 if ((sec->flags & SEC_MERGE)
8407 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8408 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8409 {
8410 rel->r_addend =
8411 _bfd_merged_section_offset (abfd, psec,
8412 elf_section_data (sec)->sec_info,
8413 sym->st_value + rel->r_addend);
8414 if (sec != *psec)
8415 {
8416 /* If we have changed the section, and our original section is
8417 marked with SEC_EXCLUDE, it means that the original
8418 SEC_MERGE section has been completely subsumed in some
8419 other SEC_MERGE section. In this case, we need to leave
8420 some info around for --emit-relocs. */
8421 if ((sec->flags & SEC_EXCLUDE) != 0)
8422 sec->kept_section = *psec;
8423 sec = *psec;
8424 }
8425 rel->r_addend -= relocation;
8426 rel->r_addend += sec->output_section->vma + sec->output_offset;
8427 }
8428 return relocation;
8429 }
8430
8431 bfd_vma
8432 _bfd_elf_rel_local_sym (bfd *abfd,
8433 Elf_Internal_Sym *sym,
8434 asection **psec,
8435 bfd_vma addend)
8436 {
8437 asection *sec = *psec;
8438
8439 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8440 return sym->st_value + addend;
8441
8442 return _bfd_merged_section_offset (abfd, psec,
8443 elf_section_data (sec)->sec_info,
8444 sym->st_value + addend);
8445 }
8446
8447 bfd_vma
8448 _bfd_elf_section_offset (bfd *abfd,
8449 struct bfd_link_info *info,
8450 asection *sec,
8451 bfd_vma offset)
8452 {
8453 switch (sec->sec_info_type)
8454 {
8455 case ELF_INFO_TYPE_STABS:
8456 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8457 offset);
8458 case ELF_INFO_TYPE_EH_FRAME:
8459 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8460 default:
8461 return offset;
8462 }
8463 }
8464 \f
8465 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8466 reconstruct an ELF file by reading the segments out of remote memory
8467 based on the ELF file header at EHDR_VMA and the ELF program headers it
8468 points to. If not null, *LOADBASEP is filled in with the difference
8469 between the VMAs from which the segments were read, and the VMAs the
8470 file headers (and hence BFD's idea of each section's VMA) put them at.
8471
8472 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8473 remote memory at target address VMA into the local buffer at MYADDR; it
8474 should return zero on success or an `errno' code on failure. TEMPL must
8475 be a BFD for an ELF target with the word size and byte order found in
8476 the remote memory. */
8477
8478 bfd *
8479 bfd_elf_bfd_from_remote_memory
8480 (bfd *templ,
8481 bfd_vma ehdr_vma,
8482 bfd_vma *loadbasep,
8483 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8484 {
8485 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8486 (templ, ehdr_vma, loadbasep, target_read_memory);
8487 }
8488 \f
8489 long
8490 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8491 long symcount ATTRIBUTE_UNUSED,
8492 asymbol **syms ATTRIBUTE_UNUSED,
8493 long dynsymcount,
8494 asymbol **dynsyms,
8495 asymbol **ret)
8496 {
8497 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8498 asection *relplt;
8499 asymbol *s;
8500 const char *relplt_name;
8501 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8502 arelent *p;
8503 long count, i, n;
8504 size_t size;
8505 Elf_Internal_Shdr *hdr;
8506 char *names;
8507 asection *plt;
8508
8509 *ret = NULL;
8510
8511 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8512 return 0;
8513
8514 if (dynsymcount <= 0)
8515 return 0;
8516
8517 if (!bed->plt_sym_val)
8518 return 0;
8519
8520 relplt_name = bed->relplt_name;
8521 if (relplt_name == NULL)
8522 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8523 relplt = bfd_get_section_by_name (abfd, relplt_name);
8524 if (relplt == NULL)
8525 return 0;
8526
8527 hdr = &elf_section_data (relplt)->this_hdr;
8528 if (hdr->sh_link != elf_dynsymtab (abfd)
8529 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8530 return 0;
8531
8532 plt = bfd_get_section_by_name (abfd, ".plt");
8533 if (plt == NULL)
8534 return 0;
8535
8536 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8537 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8538 return -1;
8539
8540 count = relplt->size / hdr->sh_entsize;
8541 size = count * sizeof (asymbol);
8542 p = relplt->relocation;
8543 for (i = 0; i < count; i++, s++, p++)
8544 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8545
8546 s = *ret = bfd_malloc (size);
8547 if (s == NULL)
8548 return -1;
8549
8550 names = (char *) (s + count);
8551 p = relplt->relocation;
8552 n = 0;
8553 for (i = 0; i < count; i++, s++, p++)
8554 {
8555 size_t len;
8556 bfd_vma addr;
8557
8558 addr = bed->plt_sym_val (i, plt, p);
8559 if (addr == (bfd_vma) -1)
8560 continue;
8561
8562 *s = **p->sym_ptr_ptr;
8563 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8564 we are defining a symbol, ensure one of them is set. */
8565 if ((s->flags & BSF_LOCAL) == 0)
8566 s->flags |= BSF_GLOBAL;
8567 s->section = plt;
8568 s->value = addr - plt->vma;
8569 s->name = names;
8570 len = strlen ((*p->sym_ptr_ptr)->name);
8571 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8572 names += len;
8573 memcpy (names, "@plt", sizeof ("@plt"));
8574 names += sizeof ("@plt");
8575 ++n;
8576 }
8577
8578 return n;
8579 }
8580
8581 /* Sort symbol by binding and section. We want to put definitions
8582 sorted by section at the beginning. */
8583
8584 static int
8585 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8586 {
8587 const Elf_Internal_Sym *s1;
8588 const Elf_Internal_Sym *s2;
8589 int shndx;
8590
8591 /* Make sure that undefined symbols are at the end. */
8592 s1 = (const Elf_Internal_Sym *) arg1;
8593 if (s1->st_shndx == SHN_UNDEF)
8594 return 1;
8595 s2 = (const Elf_Internal_Sym *) arg2;
8596 if (s2->st_shndx == SHN_UNDEF)
8597 return -1;
8598
8599 /* Sorted by section index. */
8600 shndx = s1->st_shndx - s2->st_shndx;
8601 if (shndx != 0)
8602 return shndx;
8603
8604 /* Sorted by binding. */
8605 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8606 }
8607
8608 struct elf_symbol
8609 {
8610 Elf_Internal_Sym *sym;
8611 const char *name;
8612 };
8613
8614 static int
8615 elf_sym_name_compare (const void *arg1, const void *arg2)
8616 {
8617 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8618 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8619 return strcmp (s1->name, s2->name);
8620 }
8621
8622 /* Check if 2 sections define the same set of local and global
8623 symbols. */
8624
8625 bfd_boolean
8626 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8627 {
8628 bfd *bfd1, *bfd2;
8629 const struct elf_backend_data *bed1, *bed2;
8630 Elf_Internal_Shdr *hdr1, *hdr2;
8631 bfd_size_type symcount1, symcount2;
8632 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8633 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8634 Elf_Internal_Sym *isymend;
8635 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8636 bfd_size_type count1, count2, i;
8637 int shndx1, shndx2;
8638 bfd_boolean result;
8639
8640 bfd1 = sec1->owner;
8641 bfd2 = sec2->owner;
8642
8643 /* If both are .gnu.linkonce sections, they have to have the same
8644 section name. */
8645 if (strncmp (sec1->name, ".gnu.linkonce",
8646 sizeof ".gnu.linkonce" - 1) == 0
8647 && strncmp (sec2->name, ".gnu.linkonce",
8648 sizeof ".gnu.linkonce" - 1) == 0)
8649 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8650 sec2->name + sizeof ".gnu.linkonce") == 0;
8651
8652 /* Both sections have to be in ELF. */
8653 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8654 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8655 return FALSE;
8656
8657 if (elf_section_type (sec1) != elf_section_type (sec2))
8658 return FALSE;
8659
8660 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8661 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8662 {
8663 /* If both are members of section groups, they have to have the
8664 same group name. */
8665 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8666 return FALSE;
8667 }
8668
8669 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8670 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8671 if (shndx1 == -1 || shndx2 == -1)
8672 return FALSE;
8673
8674 bed1 = get_elf_backend_data (bfd1);
8675 bed2 = get_elf_backend_data (bfd2);
8676 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8677 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8678 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8679 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8680
8681 if (symcount1 == 0 || symcount2 == 0)
8682 return FALSE;
8683
8684 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8685 NULL, NULL, NULL);
8686 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8687 NULL, NULL, NULL);
8688
8689 result = FALSE;
8690 if (isymbuf1 == NULL || isymbuf2 == NULL)
8691 goto done;
8692
8693 /* Sort symbols by binding and section. Global definitions are at
8694 the beginning. */
8695 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8696 elf_sort_elf_symbol);
8697 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8698 elf_sort_elf_symbol);
8699
8700 /* Count definitions in the section. */
8701 count1 = 0;
8702 for (isym = isymbuf1, isymend = isym + symcount1;
8703 isym < isymend; isym++)
8704 {
8705 if (isym->st_shndx == (unsigned int) shndx1)
8706 {
8707 if (count1 == 0)
8708 isymstart1 = isym;
8709 count1++;
8710 }
8711
8712 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8713 break;
8714 }
8715
8716 count2 = 0;
8717 for (isym = isymbuf2, isymend = isym + symcount2;
8718 isym < isymend; isym++)
8719 {
8720 if (isym->st_shndx == (unsigned int) shndx2)
8721 {
8722 if (count2 == 0)
8723 isymstart2 = isym;
8724 count2++;
8725 }
8726
8727 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8728 break;
8729 }
8730
8731 if (count1 == 0 || count2 == 0 || count1 != count2)
8732 goto done;
8733
8734 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8735 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8736
8737 if (symtable1 == NULL || symtable2 == NULL)
8738 goto done;
8739
8740 symp = symtable1;
8741 for (isym = isymstart1, isymend = isym + count1;
8742 isym < isymend; isym++)
8743 {
8744 symp->sym = isym;
8745 symp->name = bfd_elf_string_from_elf_section (bfd1,
8746 hdr1->sh_link,
8747 isym->st_name);
8748 symp++;
8749 }
8750
8751 symp = symtable2;
8752 for (isym = isymstart2, isymend = isym + count1;
8753 isym < isymend; isym++)
8754 {
8755 symp->sym = isym;
8756 symp->name = bfd_elf_string_from_elf_section (bfd2,
8757 hdr2->sh_link,
8758 isym->st_name);
8759 symp++;
8760 }
8761
8762 /* Sort symbol by name. */
8763 qsort (symtable1, count1, sizeof (struct elf_symbol),
8764 elf_sym_name_compare);
8765 qsort (symtable2, count1, sizeof (struct elf_symbol),
8766 elf_sym_name_compare);
8767
8768 for (i = 0; i < count1; i++)
8769 /* Two symbols must have the same binding, type and name. */
8770 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8771 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8772 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8773 goto done;
8774
8775 result = TRUE;
8776
8777 done:
8778 if (symtable1)
8779 free (symtable1);
8780 if (symtable2)
8781 free (symtable2);
8782 if (isymbuf1)
8783 free (isymbuf1);
8784 if (isymbuf2)
8785 free (isymbuf2);
8786
8787 return result;
8788 }
8789
8790 /* It is only used by x86-64 so far. */
8791 asection _bfd_elf_large_com_section
8792 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8793 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8794
8795 /* Return TRUE if 2 section types are compatible. */
8796
8797 bfd_boolean
8798 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8799 bfd *bbfd, const asection *bsec)
8800 {
8801 if (asec == NULL
8802 || bsec == NULL
8803 || abfd->xvec->flavour != bfd_target_elf_flavour
8804 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8805 return TRUE;
8806
8807 return elf_section_type (asec) == elf_section_type (bsec);
8808 }
This page took 0.224595 seconds and 3 git commands to generate.