ld: Support ELF GNU program properties
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2017 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 /* xgettext:c-format */
342 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"),
343 abfd, shindex);
344 return NULL;
345 }
346
347 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
348 return NULL;
349 }
350
351 if (strindex >= hdr->sh_size)
352 {
353 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
354 _bfd_error_handler
355 /* xgettext:c-format */
356 (_("%B: invalid string offset %u >= %lu for section `%s'"),
357 abfd, strindex, (unsigned long) hdr->sh_size,
358 (shindex == shstrndx && strindex == hdr->sh_name
359 ? ".shstrtab"
360 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
361 return NULL;
362 }
363
364 return ((char *) hdr->contents) + strindex;
365 }
366
367 /* Read and convert symbols to internal format.
368 SYMCOUNT specifies the number of symbols to read, starting from
369 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
370 are non-NULL, they are used to store the internal symbols, external
371 symbols, and symbol section index extensions, respectively.
372 Returns a pointer to the internal symbol buffer (malloced if necessary)
373 or NULL if there were no symbols or some kind of problem. */
374
375 Elf_Internal_Sym *
376 bfd_elf_get_elf_syms (bfd *ibfd,
377 Elf_Internal_Shdr *symtab_hdr,
378 size_t symcount,
379 size_t symoffset,
380 Elf_Internal_Sym *intsym_buf,
381 void *extsym_buf,
382 Elf_External_Sym_Shndx *extshndx_buf)
383 {
384 Elf_Internal_Shdr *shndx_hdr;
385 void *alloc_ext;
386 const bfd_byte *esym;
387 Elf_External_Sym_Shndx *alloc_extshndx;
388 Elf_External_Sym_Shndx *shndx;
389 Elf_Internal_Sym *alloc_intsym;
390 Elf_Internal_Sym *isym;
391 Elf_Internal_Sym *isymend;
392 const struct elf_backend_data *bed;
393 size_t extsym_size;
394 bfd_size_type amt;
395 file_ptr pos;
396
397 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
398 abort ();
399
400 if (symcount == 0)
401 return intsym_buf;
402
403 /* Normal syms might have section extension entries. */
404 shndx_hdr = NULL;
405 if (elf_symtab_shndx_list (ibfd) != NULL)
406 {
407 elf_section_list * entry;
408 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
409
410 /* Find an index section that is linked to this symtab section. */
411 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
412 {
413 /* PR 20063. */
414 if (entry->hdr.sh_link >= elf_numsections (ibfd))
415 continue;
416
417 if (sections[entry->hdr.sh_link] == symtab_hdr)
418 {
419 shndx_hdr = & entry->hdr;
420 break;
421 };
422 }
423
424 if (shndx_hdr == NULL)
425 {
426 if (symtab_hdr == & elf_symtab_hdr (ibfd))
427 /* Not really accurate, but this was how the old code used to work. */
428 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
429 /* Otherwise we do nothing. The assumption is that
430 the index table will not be needed. */
431 }
432 }
433
434 /* Read the symbols. */
435 alloc_ext = NULL;
436 alloc_extshndx = NULL;
437 alloc_intsym = NULL;
438 bed = get_elf_backend_data (ibfd);
439 extsym_size = bed->s->sizeof_sym;
440 amt = (bfd_size_type) symcount * extsym_size;
441 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
442 if (extsym_buf == NULL)
443 {
444 alloc_ext = bfd_malloc2 (symcount, extsym_size);
445 extsym_buf = alloc_ext;
446 }
447 if (extsym_buf == NULL
448 || bfd_seek (ibfd, pos, SEEK_SET) != 0
449 || bfd_bread (extsym_buf, amt, ibfd) != amt)
450 {
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
456 extshndx_buf = NULL;
457 else
458 {
459 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
460 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
461 if (extshndx_buf == NULL)
462 {
463 alloc_extshndx = (Elf_External_Sym_Shndx *)
464 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
465 extshndx_buf = alloc_extshndx;
466 }
467 if (extshndx_buf == NULL
468 || bfd_seek (ibfd, pos, SEEK_SET) != 0
469 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
470 {
471 intsym_buf = NULL;
472 goto out;
473 }
474 }
475
476 if (intsym_buf == NULL)
477 {
478 alloc_intsym = (Elf_Internal_Sym *)
479 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
480 intsym_buf = alloc_intsym;
481 if (intsym_buf == NULL)
482 goto out;
483 }
484
485 /* Convert the symbols to internal form. */
486 isymend = intsym_buf + symcount;
487 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
488 shndx = extshndx_buf;
489 isym < isymend;
490 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
491 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
492 {
493 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
494 /* xgettext:c-format */
495 _bfd_error_handler (_("%B symbol number %lu references "
496 "nonexistent SHT_SYMTAB_SHNDX section"),
497 ibfd, (unsigned long) symoffset);
498 if (alloc_intsym != NULL)
499 free (alloc_intsym);
500 intsym_buf = NULL;
501 goto out;
502 }
503
504 out:
505 if (alloc_ext != NULL)
506 free (alloc_ext);
507 if (alloc_extshndx != NULL)
508 free (alloc_extshndx);
509
510 return intsym_buf;
511 }
512
513 /* Look up a symbol name. */
514 const char *
515 bfd_elf_sym_name (bfd *abfd,
516 Elf_Internal_Shdr *symtab_hdr,
517 Elf_Internal_Sym *isym,
518 asection *sym_sec)
519 {
520 const char *name;
521 unsigned int iname = isym->st_name;
522 unsigned int shindex = symtab_hdr->sh_link;
523
524 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
525 /* Check for a bogus st_shndx to avoid crashing. */
526 && isym->st_shndx < elf_numsections (abfd))
527 {
528 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
529 shindex = elf_elfheader (abfd)->e_shstrndx;
530 }
531
532 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
533 if (name == NULL)
534 name = "(null)";
535 else if (sym_sec && *name == '\0')
536 name = bfd_section_name (abfd, sym_sec);
537
538 return name;
539 }
540
541 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
542 sections. The first element is the flags, the rest are section
543 pointers. */
544
545 typedef union elf_internal_group {
546 Elf_Internal_Shdr *shdr;
547 unsigned int flags;
548 } Elf_Internal_Group;
549
550 /* Return the name of the group signature symbol. Why isn't the
551 signature just a string? */
552
553 static const char *
554 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
555 {
556 Elf_Internal_Shdr *hdr;
557 unsigned char esym[sizeof (Elf64_External_Sym)];
558 Elf_External_Sym_Shndx eshndx;
559 Elf_Internal_Sym isym;
560
561 /* First we need to ensure the symbol table is available. Make sure
562 that it is a symbol table section. */
563 if (ghdr->sh_link >= elf_numsections (abfd))
564 return NULL;
565 hdr = elf_elfsections (abfd) [ghdr->sh_link];
566 if (hdr->sh_type != SHT_SYMTAB
567 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
568 return NULL;
569
570 /* Go read the symbol. */
571 hdr = &elf_tdata (abfd)->symtab_hdr;
572 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
573 &isym, esym, &eshndx) == NULL)
574 return NULL;
575
576 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
577 }
578
579 /* Set next_in_group list pointer, and group name for NEWSECT. */
580
581 static bfd_boolean
582 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
583 {
584 unsigned int num_group = elf_tdata (abfd)->num_group;
585
586 /* If num_group is zero, read in all SHT_GROUP sections. The count
587 is set to -1 if there are no SHT_GROUP sections. */
588 if (num_group == 0)
589 {
590 unsigned int i, shnum;
591
592 /* First count the number of groups. If we have a SHT_GROUP
593 section with just a flag word (ie. sh_size is 4), ignore it. */
594 shnum = elf_numsections (abfd);
595 num_group = 0;
596
597 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
598 ( (shdr)->sh_type == SHT_GROUP \
599 && (shdr)->sh_size >= minsize \
600 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
601 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
602
603 for (i = 0; i < shnum; i++)
604 {
605 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
606
607 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
608 num_group += 1;
609 }
610
611 if (num_group == 0)
612 {
613 num_group = (unsigned) -1;
614 elf_tdata (abfd)->num_group = num_group;
615 }
616 else
617 {
618 /* We keep a list of elf section headers for group sections,
619 so we can find them quickly. */
620 bfd_size_type amt;
621
622 elf_tdata (abfd)->num_group = num_group;
623 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
624 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
625 if (elf_tdata (abfd)->group_sect_ptr == NULL)
626 return FALSE;
627
628 num_group = 0;
629 for (i = 0; i < shnum; i++)
630 {
631 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
632
633 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
634 {
635 unsigned char *src;
636 Elf_Internal_Group *dest;
637
638 /* Add to list of sections. */
639 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
640 num_group += 1;
641
642 /* Read the raw contents. */
643 BFD_ASSERT (sizeof (*dest) >= 4);
644 amt = shdr->sh_size * sizeof (*dest) / 4;
645 shdr->contents = (unsigned char *)
646 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
647 /* PR binutils/4110: Handle corrupt group headers. */
648 if (shdr->contents == NULL)
649 {
650 _bfd_error_handler
651 /* xgettext:c-format */
652 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
653 bfd_set_error (bfd_error_bad_value);
654 -- num_group;
655 continue;
656 }
657
658 memset (shdr->contents, 0, amt);
659
660 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
661 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
662 != shdr->sh_size))
663 {
664 _bfd_error_handler
665 /* xgettext:c-format */
666 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
667 bfd_set_error (bfd_error_bad_value);
668 -- num_group;
669 /* PR 17510: If the group contents are even partially
670 corrupt, do not allow any of the contents to be used. */
671 memset (shdr->contents, 0, amt);
672 continue;
673 }
674
675 /* Translate raw contents, a flag word followed by an
676 array of elf section indices all in target byte order,
677 to the flag word followed by an array of elf section
678 pointers. */
679 src = shdr->contents + shdr->sh_size;
680 dest = (Elf_Internal_Group *) (shdr->contents + amt);
681
682 while (1)
683 {
684 unsigned int idx;
685
686 src -= 4;
687 --dest;
688 idx = H_GET_32 (abfd, src);
689 if (src == shdr->contents)
690 {
691 dest->flags = idx;
692 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
693 shdr->bfd_section->flags
694 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
695 break;
696 }
697 if (idx >= shnum)
698 {
699 _bfd_error_handler
700 (_("%B: invalid SHT_GROUP entry"), abfd);
701 idx = 0;
702 }
703 dest->shdr = elf_elfsections (abfd)[idx];
704 }
705 }
706 }
707
708 /* PR 17510: Corrupt binaries might contain invalid groups. */
709 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
710 {
711 elf_tdata (abfd)->num_group = num_group;
712
713 /* If all groups are invalid then fail. */
714 if (num_group == 0)
715 {
716 elf_tdata (abfd)->group_sect_ptr = NULL;
717 elf_tdata (abfd)->num_group = num_group = -1;
718 _bfd_error_handler
719 (_("%B: no valid group sections found"), abfd);
720 bfd_set_error (bfd_error_bad_value);
721 }
722 }
723 }
724 }
725
726 if (num_group != (unsigned) -1)
727 {
728 unsigned int i;
729
730 for (i = 0; i < num_group; i++)
731 {
732 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
733 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
734 unsigned int n_elt = shdr->sh_size / 4;
735
736 /* Look through this group's sections to see if current
737 section is a member. */
738 while (--n_elt != 0)
739 if ((++idx)->shdr == hdr)
740 {
741 asection *s = NULL;
742
743 /* We are a member of this group. Go looking through
744 other members to see if any others are linked via
745 next_in_group. */
746 idx = (Elf_Internal_Group *) shdr->contents;
747 n_elt = shdr->sh_size / 4;
748 while (--n_elt != 0)
749 if ((s = (++idx)->shdr->bfd_section) != NULL
750 && elf_next_in_group (s) != NULL)
751 break;
752 if (n_elt != 0)
753 {
754 /* Snarf the group name from other member, and
755 insert current section in circular list. */
756 elf_group_name (newsect) = elf_group_name (s);
757 elf_next_in_group (newsect) = elf_next_in_group (s);
758 elf_next_in_group (s) = newsect;
759 }
760 else
761 {
762 const char *gname;
763
764 gname = group_signature (abfd, shdr);
765 if (gname == NULL)
766 return FALSE;
767 elf_group_name (newsect) = gname;
768
769 /* Start a circular list with one element. */
770 elf_next_in_group (newsect) = newsect;
771 }
772
773 /* If the group section has been created, point to the
774 new member. */
775 if (shdr->bfd_section != NULL)
776 elf_next_in_group (shdr->bfd_section) = newsect;
777
778 i = num_group - 1;
779 break;
780 }
781 }
782 }
783
784 if (elf_group_name (newsect) == NULL)
785 {
786 /* xgettext:c-format */
787 _bfd_error_handler (_("%B: no group info for section %A"),
788 abfd, newsect);
789 return FALSE;
790 }
791 return TRUE;
792 }
793
794 bfd_boolean
795 _bfd_elf_setup_sections (bfd *abfd)
796 {
797 unsigned int i;
798 unsigned int num_group = elf_tdata (abfd)->num_group;
799 bfd_boolean result = TRUE;
800 asection *s;
801
802 /* Process SHF_LINK_ORDER. */
803 for (s = abfd->sections; s != NULL; s = s->next)
804 {
805 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
806 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
807 {
808 unsigned int elfsec = this_hdr->sh_link;
809 /* FIXME: The old Intel compiler and old strip/objcopy may
810 not set the sh_link or sh_info fields. Hence we could
811 get the situation where elfsec is 0. */
812 if (elfsec == 0)
813 {
814 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
815 if (bed->link_order_error_handler)
816 bed->link_order_error_handler
817 /* xgettext:c-format */
818 (_("%B: warning: sh_link not set for section `%A'"),
819 abfd, s);
820 }
821 else
822 {
823 asection *linksec = NULL;
824
825 if (elfsec < elf_numsections (abfd))
826 {
827 this_hdr = elf_elfsections (abfd)[elfsec];
828 linksec = this_hdr->bfd_section;
829 }
830
831 /* PR 1991, 2008:
832 Some strip/objcopy may leave an incorrect value in
833 sh_link. We don't want to proceed. */
834 if (linksec == NULL)
835 {
836 _bfd_error_handler
837 /* xgettext:c-format */
838 (_("%B: sh_link [%d] in section `%A' is incorrect"),
839 s->owner, s, elfsec);
840 result = FALSE;
841 }
842
843 elf_linked_to_section (s) = linksec;
844 }
845 }
846 else if (this_hdr->sh_type == SHT_GROUP
847 && elf_next_in_group (s) == NULL)
848 {
849 _bfd_error_handler
850 /* xgettext:c-format */
851 (_("%B: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
852 abfd, elf_section_data (s)->this_idx);
853 result = FALSE;
854 }
855 }
856
857 /* Process section groups. */
858 if (num_group == (unsigned) -1)
859 return result;
860
861 for (i = 0; i < num_group; i++)
862 {
863 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
864 Elf_Internal_Group *idx;
865 unsigned int n_elt;
866
867 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
868 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
869 {
870 _bfd_error_handler
871 /* xgettext:c-format */
872 (_("%B: section group entry number %u is corrupt"),
873 abfd, i);
874 result = FALSE;
875 continue;
876 }
877
878 idx = (Elf_Internal_Group *) shdr->contents;
879 n_elt = shdr->sh_size / 4;
880
881 while (--n_elt != 0)
882 if ((++idx)->shdr->bfd_section)
883 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
884 else if (idx->shdr->sh_type == SHT_RELA
885 || idx->shdr->sh_type == SHT_REL)
886 /* We won't include relocation sections in section groups in
887 output object files. We adjust the group section size here
888 so that relocatable link will work correctly when
889 relocation sections are in section group in input object
890 files. */
891 shdr->bfd_section->size -= 4;
892 else
893 {
894 /* There are some unknown sections in the group. */
895 _bfd_error_handler
896 /* xgettext:c-format */
897 (_("%B: unknown [%d] section `%s' in group [%s]"),
898 abfd,
899 (unsigned int) idx->shdr->sh_type,
900 bfd_elf_string_from_elf_section (abfd,
901 (elf_elfheader (abfd)
902 ->e_shstrndx),
903 idx->shdr->sh_name),
904 shdr->bfd_section->name);
905 result = FALSE;
906 }
907 }
908 return result;
909 }
910
911 bfd_boolean
912 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
913 {
914 return elf_next_in_group (sec) != NULL;
915 }
916
917 static char *
918 convert_debug_to_zdebug (bfd *abfd, const char *name)
919 {
920 unsigned int len = strlen (name);
921 char *new_name = bfd_alloc (abfd, len + 2);
922 if (new_name == NULL)
923 return NULL;
924 new_name[0] = '.';
925 new_name[1] = 'z';
926 memcpy (new_name + 2, name + 1, len);
927 return new_name;
928 }
929
930 static char *
931 convert_zdebug_to_debug (bfd *abfd, const char *name)
932 {
933 unsigned int len = strlen (name);
934 char *new_name = bfd_alloc (abfd, len);
935 if (new_name == NULL)
936 return NULL;
937 new_name[0] = '.';
938 memcpy (new_name + 1, name + 2, len - 1);
939 return new_name;
940 }
941
942 /* Make a BFD section from an ELF section. We store a pointer to the
943 BFD section in the bfd_section field of the header. */
944
945 bfd_boolean
946 _bfd_elf_make_section_from_shdr (bfd *abfd,
947 Elf_Internal_Shdr *hdr,
948 const char *name,
949 int shindex)
950 {
951 asection *newsect;
952 flagword flags;
953 const struct elf_backend_data *bed;
954
955 if (hdr->bfd_section != NULL)
956 return TRUE;
957
958 newsect = bfd_make_section_anyway (abfd, name);
959 if (newsect == NULL)
960 return FALSE;
961
962 hdr->bfd_section = newsect;
963 elf_section_data (newsect)->this_hdr = *hdr;
964 elf_section_data (newsect)->this_idx = shindex;
965
966 /* Always use the real type/flags. */
967 elf_section_type (newsect) = hdr->sh_type;
968 elf_section_flags (newsect) = hdr->sh_flags;
969
970 newsect->filepos = hdr->sh_offset;
971
972 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
973 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
974 || ! bfd_set_section_alignment (abfd, newsect,
975 bfd_log2 (hdr->sh_addralign)))
976 return FALSE;
977
978 flags = SEC_NO_FLAGS;
979 if (hdr->sh_type != SHT_NOBITS)
980 flags |= SEC_HAS_CONTENTS;
981 if (hdr->sh_type == SHT_GROUP)
982 flags |= SEC_GROUP | SEC_EXCLUDE;
983 if ((hdr->sh_flags & SHF_ALLOC) != 0)
984 {
985 flags |= SEC_ALLOC;
986 if (hdr->sh_type != SHT_NOBITS)
987 flags |= SEC_LOAD;
988 }
989 if ((hdr->sh_flags & SHF_WRITE) == 0)
990 flags |= SEC_READONLY;
991 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
992 flags |= SEC_CODE;
993 else if ((flags & SEC_LOAD) != 0)
994 flags |= SEC_DATA;
995 if ((hdr->sh_flags & SHF_MERGE) != 0)
996 {
997 flags |= SEC_MERGE;
998 newsect->entsize = hdr->sh_entsize;
999 }
1000 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1001 flags |= SEC_STRINGS;
1002 if (hdr->sh_flags & SHF_GROUP)
1003 if (!setup_group (abfd, hdr, newsect))
1004 return FALSE;
1005 if ((hdr->sh_flags & SHF_TLS) != 0)
1006 flags |= SEC_THREAD_LOCAL;
1007 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1008 flags |= SEC_EXCLUDE;
1009
1010 if ((flags & SEC_ALLOC) == 0)
1011 {
1012 /* The debugging sections appear to be recognized only by name,
1013 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1014 if (name [0] == '.')
1015 {
1016 const char *p;
1017 int n;
1018 if (name[1] == 'd')
1019 p = ".debug", n = 6;
1020 else if (name[1] == 'g' && name[2] == 'n')
1021 p = ".gnu.linkonce.wi.", n = 17;
1022 else if (name[1] == 'g' && name[2] == 'd')
1023 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1024 else if (name[1] == 'l')
1025 p = ".line", n = 5;
1026 else if (name[1] == 's')
1027 p = ".stab", n = 5;
1028 else if (name[1] == 'z')
1029 p = ".zdebug", n = 7;
1030 else
1031 p = NULL, n = 0;
1032 if (p != NULL && strncmp (name, p, n) == 0)
1033 flags |= SEC_DEBUGGING;
1034 }
1035 }
1036
1037 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1038 only link a single copy of the section. This is used to support
1039 g++. g++ will emit each template expansion in its own section.
1040 The symbols will be defined as weak, so that multiple definitions
1041 are permitted. The GNU linker extension is to actually discard
1042 all but one of the sections. */
1043 if (CONST_STRNEQ (name, ".gnu.linkonce")
1044 && elf_next_in_group (newsect) == NULL)
1045 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1046
1047 bed = get_elf_backend_data (abfd);
1048 if (bed->elf_backend_section_flags)
1049 if (! bed->elf_backend_section_flags (&flags, hdr))
1050 return FALSE;
1051
1052 if (! bfd_set_section_flags (abfd, newsect, flags))
1053 return FALSE;
1054
1055 /* We do not parse the PT_NOTE segments as we are interested even in the
1056 separate debug info files which may have the segments offsets corrupted.
1057 PT_NOTEs from the core files are currently not parsed using BFD. */
1058 if (hdr->sh_type == SHT_NOTE)
1059 {
1060 bfd_byte *contents;
1061
1062 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1063 return FALSE;
1064
1065 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, hdr->sh_offset);
1066 free (contents);
1067 }
1068
1069 if ((flags & SEC_ALLOC) != 0)
1070 {
1071 Elf_Internal_Phdr *phdr;
1072 unsigned int i, nload;
1073
1074 /* Some ELF linkers produce binaries with all the program header
1075 p_paddr fields zero. If we have such a binary with more than
1076 one PT_LOAD header, then leave the section lma equal to vma
1077 so that we don't create sections with overlapping lma. */
1078 phdr = elf_tdata (abfd)->phdr;
1079 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1080 if (phdr->p_paddr != 0)
1081 break;
1082 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1083 ++nload;
1084 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1085 return TRUE;
1086
1087 phdr = elf_tdata (abfd)->phdr;
1088 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1089 {
1090 if (((phdr->p_type == PT_LOAD
1091 && (hdr->sh_flags & SHF_TLS) == 0)
1092 || phdr->p_type == PT_TLS)
1093 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1094 {
1095 if ((flags & SEC_LOAD) == 0)
1096 newsect->lma = (phdr->p_paddr
1097 + hdr->sh_addr - phdr->p_vaddr);
1098 else
1099 /* We used to use the same adjustment for SEC_LOAD
1100 sections, but that doesn't work if the segment
1101 is packed with code from multiple VMAs.
1102 Instead we calculate the section LMA based on
1103 the segment LMA. It is assumed that the
1104 segment will contain sections with contiguous
1105 LMAs, even if the VMAs are not. */
1106 newsect->lma = (phdr->p_paddr
1107 + hdr->sh_offset - phdr->p_offset);
1108
1109 /* With contiguous segments, we can't tell from file
1110 offsets whether a section with zero size should
1111 be placed at the end of one segment or the
1112 beginning of the next. Decide based on vaddr. */
1113 if (hdr->sh_addr >= phdr->p_vaddr
1114 && (hdr->sh_addr + hdr->sh_size
1115 <= phdr->p_vaddr + phdr->p_memsz))
1116 break;
1117 }
1118 }
1119 }
1120
1121 /* Compress/decompress DWARF debug sections with names: .debug_* and
1122 .zdebug_*, after the section flags is set. */
1123 if ((flags & SEC_DEBUGGING)
1124 && ((name[1] == 'd' && name[6] == '_')
1125 || (name[1] == 'z' && name[7] == '_')))
1126 {
1127 enum { nothing, compress, decompress } action = nothing;
1128 int compression_header_size;
1129 bfd_size_type uncompressed_size;
1130 bfd_boolean compressed
1131 = bfd_is_section_compressed_with_header (abfd, newsect,
1132 &compression_header_size,
1133 &uncompressed_size);
1134
1135 if (compressed)
1136 {
1137 /* Compressed section. Check if we should decompress. */
1138 if ((abfd->flags & BFD_DECOMPRESS))
1139 action = decompress;
1140 }
1141
1142 /* Compress the uncompressed section or convert from/to .zdebug*
1143 section. Check if we should compress. */
1144 if (action == nothing)
1145 {
1146 if (newsect->size != 0
1147 && (abfd->flags & BFD_COMPRESS)
1148 && compression_header_size >= 0
1149 && uncompressed_size > 0
1150 && (!compressed
1151 || ((compression_header_size > 0)
1152 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1153 action = compress;
1154 else
1155 return TRUE;
1156 }
1157
1158 if (action == compress)
1159 {
1160 if (!bfd_init_section_compress_status (abfd, newsect))
1161 {
1162 _bfd_error_handler
1163 /* xgettext:c-format */
1164 (_("%B: unable to initialize compress status for section %s"),
1165 abfd, name);
1166 return FALSE;
1167 }
1168 }
1169 else
1170 {
1171 if (!bfd_init_section_decompress_status (abfd, newsect))
1172 {
1173 _bfd_error_handler
1174 /* xgettext:c-format */
1175 (_("%B: unable to initialize decompress status for section %s"),
1176 abfd, name);
1177 return FALSE;
1178 }
1179 }
1180
1181 if (abfd->is_linker_input)
1182 {
1183 if (name[1] == 'z'
1184 && (action == decompress
1185 || (action == compress
1186 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1187 {
1188 /* Convert section name from .zdebug_* to .debug_* so
1189 that linker will consider this section as a debug
1190 section. */
1191 char *new_name = convert_zdebug_to_debug (abfd, name);
1192 if (new_name == NULL)
1193 return FALSE;
1194 bfd_rename_section (abfd, newsect, new_name);
1195 }
1196 }
1197 else
1198 /* For objdump, don't rename the section. For objcopy, delay
1199 section rename to elf_fake_sections. */
1200 newsect->flags |= SEC_ELF_RENAME;
1201 }
1202
1203 return TRUE;
1204 }
1205
1206 const char *const bfd_elf_section_type_names[] =
1207 {
1208 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1209 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1210 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1211 };
1212
1213 /* ELF relocs are against symbols. If we are producing relocatable
1214 output, and the reloc is against an external symbol, and nothing
1215 has given us any additional addend, the resulting reloc will also
1216 be against the same symbol. In such a case, we don't want to
1217 change anything about the way the reloc is handled, since it will
1218 all be done at final link time. Rather than put special case code
1219 into bfd_perform_relocation, all the reloc types use this howto
1220 function. It just short circuits the reloc if producing
1221 relocatable output against an external symbol. */
1222
1223 bfd_reloc_status_type
1224 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1225 arelent *reloc_entry,
1226 asymbol *symbol,
1227 void *data ATTRIBUTE_UNUSED,
1228 asection *input_section,
1229 bfd *output_bfd,
1230 char **error_message ATTRIBUTE_UNUSED)
1231 {
1232 if (output_bfd != NULL
1233 && (symbol->flags & BSF_SECTION_SYM) == 0
1234 && (! reloc_entry->howto->partial_inplace
1235 || reloc_entry->addend == 0))
1236 {
1237 reloc_entry->address += input_section->output_offset;
1238 return bfd_reloc_ok;
1239 }
1240
1241 return bfd_reloc_continue;
1242 }
1243 \f
1244 /* Returns TRUE if section A matches section B.
1245 Names, addresses and links may be different, but everything else
1246 should be the same. */
1247
1248 static bfd_boolean
1249 section_match (const Elf_Internal_Shdr * a,
1250 const Elf_Internal_Shdr * b)
1251 {
1252 return
1253 a->sh_type == b->sh_type
1254 && (a->sh_flags & ~ SHF_INFO_LINK)
1255 == (b->sh_flags & ~ SHF_INFO_LINK)
1256 && a->sh_addralign == b->sh_addralign
1257 && a->sh_size == b->sh_size
1258 && a->sh_entsize == b->sh_entsize
1259 /* FIXME: Check sh_addr ? */
1260 ;
1261 }
1262
1263 /* Find a section in OBFD that has the same characteristics
1264 as IHEADER. Return the index of this section or SHN_UNDEF if
1265 none can be found. Check's section HINT first, as this is likely
1266 to be the correct section. */
1267
1268 static unsigned int
1269 find_link (const bfd * obfd, const Elf_Internal_Shdr * iheader, const unsigned int hint)
1270 {
1271 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1272 unsigned int i;
1273
1274 BFD_ASSERT (iheader != NULL);
1275
1276 /* See PR 20922 for a reproducer of the NULL test. */
1277 if (oheaders[hint] != NULL
1278 && section_match (oheaders[hint], iheader))
1279 return hint;
1280
1281 for (i = 1; i < elf_numsections (obfd); i++)
1282 {
1283 Elf_Internal_Shdr * oheader = oheaders[i];
1284
1285 if (oheader == NULL)
1286 continue;
1287 if (section_match (oheader, iheader))
1288 /* FIXME: Do we care if there is a potential for
1289 multiple matches ? */
1290 return i;
1291 }
1292
1293 return SHN_UNDEF;
1294 }
1295
1296 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1297 Processor specific section, based upon a matching input section.
1298 Returns TRUE upon success, FALSE otherwise. */
1299
1300 static bfd_boolean
1301 copy_special_section_fields (const bfd *ibfd,
1302 bfd *obfd,
1303 const Elf_Internal_Shdr *iheader,
1304 Elf_Internal_Shdr *oheader,
1305 const unsigned int secnum)
1306 {
1307 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1308 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1309 bfd_boolean changed = FALSE;
1310 unsigned int sh_link;
1311
1312 if (oheader->sh_type == SHT_NOBITS)
1313 {
1314 /* This is a feature for objcopy --only-keep-debug:
1315 When a section's type is changed to NOBITS, we preserve
1316 the sh_link and sh_info fields so that they can be
1317 matched up with the original.
1318
1319 Note: Strictly speaking these assignments are wrong.
1320 The sh_link and sh_info fields should point to the
1321 relevent sections in the output BFD, which may not be in
1322 the same location as they were in the input BFD. But
1323 the whole point of this action is to preserve the
1324 original values of the sh_link and sh_info fields, so
1325 that they can be matched up with the section headers in
1326 the original file. So strictly speaking we may be
1327 creating an invalid ELF file, but it is only for a file
1328 that just contains debug info and only for sections
1329 without any contents. */
1330 if (oheader->sh_link == 0)
1331 oheader->sh_link = iheader->sh_link;
1332 if (oheader->sh_info == 0)
1333 oheader->sh_info = iheader->sh_info;
1334 return TRUE;
1335 }
1336
1337 /* Allow the target a chance to decide how these fields should be set. */
1338 if (bed->elf_backend_copy_special_section_fields != NULL
1339 && bed->elf_backend_copy_special_section_fields
1340 (ibfd, obfd, iheader, oheader))
1341 return TRUE;
1342
1343 /* We have an iheader which might match oheader, and which has non-zero
1344 sh_info and/or sh_link fields. Attempt to follow those links and find
1345 the section in the output bfd which corresponds to the linked section
1346 in the input bfd. */
1347 if (iheader->sh_link != SHN_UNDEF)
1348 {
1349 /* See PR 20931 for a reproducer. */
1350 if (iheader->sh_link >= elf_numsections (ibfd))
1351 {
1352 (* _bfd_error_handler)
1353 /* xgettext:c-format */
1354 (_("%B: Invalid sh_link field (%d) in section number %d"),
1355 ibfd, iheader->sh_link, secnum);
1356 return FALSE;
1357 }
1358
1359 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1360 if (sh_link != SHN_UNDEF)
1361 {
1362 oheader->sh_link = sh_link;
1363 changed = TRUE;
1364 }
1365 else
1366 /* FIXME: Should we install iheader->sh_link
1367 if we could not find a match ? */
1368 (* _bfd_error_handler)
1369 /* xgettext:c-format */
1370 (_("%B: Failed to find link section for section %d"), obfd, secnum);
1371 }
1372
1373 if (iheader->sh_info)
1374 {
1375 /* The sh_info field can hold arbitrary information, but if the
1376 SHF_LINK_INFO flag is set then it should be interpreted as a
1377 section index. */
1378 if (iheader->sh_flags & SHF_INFO_LINK)
1379 {
1380 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1381 iheader->sh_info);
1382 if (sh_link != SHN_UNDEF)
1383 oheader->sh_flags |= SHF_INFO_LINK;
1384 }
1385 else
1386 /* No idea what it means - just copy it. */
1387 sh_link = iheader->sh_info;
1388
1389 if (sh_link != SHN_UNDEF)
1390 {
1391 oheader->sh_info = sh_link;
1392 changed = TRUE;
1393 }
1394 else
1395 (* _bfd_error_handler)
1396 /* xgettext:c-format */
1397 (_("%B: Failed to find info section for section %d"), obfd, secnum);
1398 }
1399
1400 return changed;
1401 }
1402
1403 /* Copy the program header and other data from one object module to
1404 another. */
1405
1406 bfd_boolean
1407 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1408 {
1409 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1410 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1411 const struct elf_backend_data *bed;
1412 unsigned int i;
1413
1414 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1415 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1416 return TRUE;
1417
1418 if (!elf_flags_init (obfd))
1419 {
1420 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1421 elf_flags_init (obfd) = TRUE;
1422 }
1423
1424 elf_gp (obfd) = elf_gp (ibfd);
1425
1426 /* Also copy the EI_OSABI field. */
1427 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1428 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1429
1430 /* If set, copy the EI_ABIVERSION field. */
1431 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1432 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1433 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1434
1435 /* Copy object attributes. */
1436 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1437
1438 if (iheaders == NULL || oheaders == NULL)
1439 return TRUE;
1440
1441 bed = get_elf_backend_data (obfd);
1442
1443 /* Possibly copy other fields in the section header. */
1444 for (i = 1; i < elf_numsections (obfd); i++)
1445 {
1446 unsigned int j;
1447 Elf_Internal_Shdr * oheader = oheaders[i];
1448
1449 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1450 because of a special case need for generating separate debug info
1451 files. See below for more details. */
1452 if (oheader == NULL
1453 || (oheader->sh_type != SHT_NOBITS
1454 && oheader->sh_type < SHT_LOOS))
1455 continue;
1456
1457 /* Ignore empty sections, and sections whose
1458 fields have already been initialised. */
1459 if (oheader->sh_size == 0
1460 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1461 continue;
1462
1463 /* Scan for the matching section in the input bfd.
1464 First we try for a direct mapping between the input and output sections. */
1465 for (j = 1; j < elf_numsections (ibfd); j++)
1466 {
1467 const Elf_Internal_Shdr * iheader = iheaders[j];
1468
1469 if (iheader == NULL)
1470 continue;
1471
1472 if (oheader->bfd_section != NULL
1473 && iheader->bfd_section != NULL
1474 && iheader->bfd_section->output_section != NULL
1475 && iheader->bfd_section->output_section == oheader->bfd_section)
1476 {
1477 /* We have found a connection from the input section to the
1478 output section. Attempt to copy the header fields. If
1479 this fails then do not try any further sections - there
1480 should only be a one-to-one mapping between input and output. */
1481 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1482 j = elf_numsections (ibfd);
1483 break;
1484 }
1485 }
1486
1487 if (j < elf_numsections (ibfd))
1488 continue;
1489
1490 /* That failed. So try to deduce the corresponding input section.
1491 Unfortunately we cannot compare names as the output string table
1492 is empty, so instead we check size, address and type. */
1493 for (j = 1; j < elf_numsections (ibfd); j++)
1494 {
1495 const Elf_Internal_Shdr * iheader = iheaders[j];
1496
1497 if (iheader == NULL)
1498 continue;
1499
1500 /* Try matching fields in the input section's header.
1501 Since --only-keep-debug turns all non-debug sections into
1502 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1503 input type. */
1504 if ((oheader->sh_type == SHT_NOBITS
1505 || iheader->sh_type == oheader->sh_type)
1506 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1507 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1508 && iheader->sh_addralign == oheader->sh_addralign
1509 && iheader->sh_entsize == oheader->sh_entsize
1510 && iheader->sh_size == oheader->sh_size
1511 && iheader->sh_addr == oheader->sh_addr
1512 && (iheader->sh_info != oheader->sh_info
1513 || iheader->sh_link != oheader->sh_link))
1514 {
1515 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1516 break;
1517 }
1518 }
1519
1520 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1521 {
1522 /* Final attempt. Call the backend copy function
1523 with a NULL input section. */
1524 if (bed->elf_backend_copy_special_section_fields != NULL)
1525 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1526 }
1527 }
1528
1529 return TRUE;
1530 }
1531
1532 static const char *
1533 get_segment_type (unsigned int p_type)
1534 {
1535 const char *pt;
1536 switch (p_type)
1537 {
1538 case PT_NULL: pt = "NULL"; break;
1539 case PT_LOAD: pt = "LOAD"; break;
1540 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1541 case PT_INTERP: pt = "INTERP"; break;
1542 case PT_NOTE: pt = "NOTE"; break;
1543 case PT_SHLIB: pt = "SHLIB"; break;
1544 case PT_PHDR: pt = "PHDR"; break;
1545 case PT_TLS: pt = "TLS"; break;
1546 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1547 case PT_GNU_STACK: pt = "STACK"; break;
1548 case PT_GNU_RELRO: pt = "RELRO"; break;
1549 default: pt = NULL; break;
1550 }
1551 return pt;
1552 }
1553
1554 /* Print out the program headers. */
1555
1556 bfd_boolean
1557 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1558 {
1559 FILE *f = (FILE *) farg;
1560 Elf_Internal_Phdr *p;
1561 asection *s;
1562 bfd_byte *dynbuf = NULL;
1563
1564 p = elf_tdata (abfd)->phdr;
1565 if (p != NULL)
1566 {
1567 unsigned int i, c;
1568
1569 fprintf (f, _("\nProgram Header:\n"));
1570 c = elf_elfheader (abfd)->e_phnum;
1571 for (i = 0; i < c; i++, p++)
1572 {
1573 const char *pt = get_segment_type (p->p_type);
1574 char buf[20];
1575
1576 if (pt == NULL)
1577 {
1578 sprintf (buf, "0x%lx", p->p_type);
1579 pt = buf;
1580 }
1581 fprintf (f, "%8s off 0x", pt);
1582 bfd_fprintf_vma (abfd, f, p->p_offset);
1583 fprintf (f, " vaddr 0x");
1584 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1585 fprintf (f, " paddr 0x");
1586 bfd_fprintf_vma (abfd, f, p->p_paddr);
1587 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1588 fprintf (f, " filesz 0x");
1589 bfd_fprintf_vma (abfd, f, p->p_filesz);
1590 fprintf (f, " memsz 0x");
1591 bfd_fprintf_vma (abfd, f, p->p_memsz);
1592 fprintf (f, " flags %c%c%c",
1593 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1594 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1595 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1596 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1597 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1598 fprintf (f, "\n");
1599 }
1600 }
1601
1602 s = bfd_get_section_by_name (abfd, ".dynamic");
1603 if (s != NULL)
1604 {
1605 unsigned int elfsec;
1606 unsigned long shlink;
1607 bfd_byte *extdyn, *extdynend;
1608 size_t extdynsize;
1609 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1610
1611 fprintf (f, _("\nDynamic Section:\n"));
1612
1613 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1614 goto error_return;
1615
1616 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1617 if (elfsec == SHN_BAD)
1618 goto error_return;
1619 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1620
1621 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1622 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1623
1624 extdyn = dynbuf;
1625 /* PR 17512: file: 6f427532. */
1626 if (s->size < extdynsize)
1627 goto error_return;
1628 extdynend = extdyn + s->size;
1629 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1630 Fix range check. */
1631 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1632 {
1633 Elf_Internal_Dyn dyn;
1634 const char *name = "";
1635 char ab[20];
1636 bfd_boolean stringp;
1637 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1638
1639 (*swap_dyn_in) (abfd, extdyn, &dyn);
1640
1641 if (dyn.d_tag == DT_NULL)
1642 break;
1643
1644 stringp = FALSE;
1645 switch (dyn.d_tag)
1646 {
1647 default:
1648 if (bed->elf_backend_get_target_dtag)
1649 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1650
1651 if (!strcmp (name, ""))
1652 {
1653 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1654 name = ab;
1655 }
1656 break;
1657
1658 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1659 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1660 case DT_PLTGOT: name = "PLTGOT"; break;
1661 case DT_HASH: name = "HASH"; break;
1662 case DT_STRTAB: name = "STRTAB"; break;
1663 case DT_SYMTAB: name = "SYMTAB"; break;
1664 case DT_RELA: name = "RELA"; break;
1665 case DT_RELASZ: name = "RELASZ"; break;
1666 case DT_RELAENT: name = "RELAENT"; break;
1667 case DT_STRSZ: name = "STRSZ"; break;
1668 case DT_SYMENT: name = "SYMENT"; break;
1669 case DT_INIT: name = "INIT"; break;
1670 case DT_FINI: name = "FINI"; break;
1671 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1672 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1673 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1674 case DT_REL: name = "REL"; break;
1675 case DT_RELSZ: name = "RELSZ"; break;
1676 case DT_RELENT: name = "RELENT"; break;
1677 case DT_PLTREL: name = "PLTREL"; break;
1678 case DT_DEBUG: name = "DEBUG"; break;
1679 case DT_TEXTREL: name = "TEXTREL"; break;
1680 case DT_JMPREL: name = "JMPREL"; break;
1681 case DT_BIND_NOW: name = "BIND_NOW"; break;
1682 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1683 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1684 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1685 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1686 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1687 case DT_FLAGS: name = "FLAGS"; break;
1688 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1689 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1690 case DT_CHECKSUM: name = "CHECKSUM"; break;
1691 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1692 case DT_MOVEENT: name = "MOVEENT"; break;
1693 case DT_MOVESZ: name = "MOVESZ"; break;
1694 case DT_FEATURE: name = "FEATURE"; break;
1695 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1696 case DT_SYMINSZ: name = "SYMINSZ"; break;
1697 case DT_SYMINENT: name = "SYMINENT"; break;
1698 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1699 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1700 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1701 case DT_PLTPAD: name = "PLTPAD"; break;
1702 case DT_MOVETAB: name = "MOVETAB"; break;
1703 case DT_SYMINFO: name = "SYMINFO"; break;
1704 case DT_RELACOUNT: name = "RELACOUNT"; break;
1705 case DT_RELCOUNT: name = "RELCOUNT"; break;
1706 case DT_FLAGS_1: name = "FLAGS_1"; break;
1707 case DT_VERSYM: name = "VERSYM"; break;
1708 case DT_VERDEF: name = "VERDEF"; break;
1709 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1710 case DT_VERNEED: name = "VERNEED"; break;
1711 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1712 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1713 case DT_USED: name = "USED"; break;
1714 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1715 case DT_GNU_HASH: name = "GNU_HASH"; break;
1716 }
1717
1718 fprintf (f, " %-20s ", name);
1719 if (! stringp)
1720 {
1721 fprintf (f, "0x");
1722 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1723 }
1724 else
1725 {
1726 const char *string;
1727 unsigned int tagv = dyn.d_un.d_val;
1728
1729 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1730 if (string == NULL)
1731 goto error_return;
1732 fprintf (f, "%s", string);
1733 }
1734 fprintf (f, "\n");
1735 }
1736
1737 free (dynbuf);
1738 dynbuf = NULL;
1739 }
1740
1741 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1742 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1743 {
1744 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1745 return FALSE;
1746 }
1747
1748 if (elf_dynverdef (abfd) != 0)
1749 {
1750 Elf_Internal_Verdef *t;
1751
1752 fprintf (f, _("\nVersion definitions:\n"));
1753 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1754 {
1755 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1756 t->vd_flags, t->vd_hash,
1757 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1758 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1759 {
1760 Elf_Internal_Verdaux *a;
1761
1762 fprintf (f, "\t");
1763 for (a = t->vd_auxptr->vda_nextptr;
1764 a != NULL;
1765 a = a->vda_nextptr)
1766 fprintf (f, "%s ",
1767 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1768 fprintf (f, "\n");
1769 }
1770 }
1771 }
1772
1773 if (elf_dynverref (abfd) != 0)
1774 {
1775 Elf_Internal_Verneed *t;
1776
1777 fprintf (f, _("\nVersion References:\n"));
1778 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1779 {
1780 Elf_Internal_Vernaux *a;
1781
1782 fprintf (f, _(" required from %s:\n"),
1783 t->vn_filename ? t->vn_filename : "<corrupt>");
1784 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1785 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1786 a->vna_flags, a->vna_other,
1787 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1788 }
1789 }
1790
1791 return TRUE;
1792
1793 error_return:
1794 if (dynbuf != NULL)
1795 free (dynbuf);
1796 return FALSE;
1797 }
1798
1799 /* Get version string. */
1800
1801 const char *
1802 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1803 bfd_boolean *hidden)
1804 {
1805 const char *version_string = NULL;
1806 if (elf_dynversym (abfd) != 0
1807 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1808 {
1809 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1810
1811 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1812 vernum &= VERSYM_VERSION;
1813
1814 if (vernum == 0)
1815 version_string = "";
1816 else if (vernum == 1)
1817 version_string = "Base";
1818 else if (vernum <= elf_tdata (abfd)->cverdefs)
1819 version_string =
1820 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1821 else
1822 {
1823 Elf_Internal_Verneed *t;
1824
1825 version_string = "";
1826 for (t = elf_tdata (abfd)->verref;
1827 t != NULL;
1828 t = t->vn_nextref)
1829 {
1830 Elf_Internal_Vernaux *a;
1831
1832 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1833 {
1834 if (a->vna_other == vernum)
1835 {
1836 version_string = a->vna_nodename;
1837 break;
1838 }
1839 }
1840 }
1841 }
1842 }
1843 return version_string;
1844 }
1845
1846 /* Display ELF-specific fields of a symbol. */
1847
1848 void
1849 bfd_elf_print_symbol (bfd *abfd,
1850 void *filep,
1851 asymbol *symbol,
1852 bfd_print_symbol_type how)
1853 {
1854 FILE *file = (FILE *) filep;
1855 switch (how)
1856 {
1857 case bfd_print_symbol_name:
1858 fprintf (file, "%s", symbol->name);
1859 break;
1860 case bfd_print_symbol_more:
1861 fprintf (file, "elf ");
1862 bfd_fprintf_vma (abfd, file, symbol->value);
1863 fprintf (file, " %lx", (unsigned long) symbol->flags);
1864 break;
1865 case bfd_print_symbol_all:
1866 {
1867 const char *section_name;
1868 const char *name = NULL;
1869 const struct elf_backend_data *bed;
1870 unsigned char st_other;
1871 bfd_vma val;
1872 const char *version_string;
1873 bfd_boolean hidden;
1874
1875 section_name = symbol->section ? symbol->section->name : "(*none*)";
1876
1877 bed = get_elf_backend_data (abfd);
1878 if (bed->elf_backend_print_symbol_all)
1879 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1880
1881 if (name == NULL)
1882 {
1883 name = symbol->name;
1884 bfd_print_symbol_vandf (abfd, file, symbol);
1885 }
1886
1887 fprintf (file, " %s\t", section_name);
1888 /* Print the "other" value for a symbol. For common symbols,
1889 we've already printed the size; now print the alignment.
1890 For other symbols, we have no specified alignment, and
1891 we've printed the address; now print the size. */
1892 if (symbol->section && bfd_is_com_section (symbol->section))
1893 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1894 else
1895 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1896 bfd_fprintf_vma (abfd, file, val);
1897
1898 /* If we have version information, print it. */
1899 version_string = _bfd_elf_get_symbol_version_string (abfd,
1900 symbol,
1901 &hidden);
1902 if (version_string)
1903 {
1904 if (!hidden)
1905 fprintf (file, " %-11s", version_string);
1906 else
1907 {
1908 int i;
1909
1910 fprintf (file, " (%s)", version_string);
1911 for (i = 10 - strlen (version_string); i > 0; --i)
1912 putc (' ', file);
1913 }
1914 }
1915
1916 /* If the st_other field is not zero, print it. */
1917 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1918
1919 switch (st_other)
1920 {
1921 case 0: break;
1922 case STV_INTERNAL: fprintf (file, " .internal"); break;
1923 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1924 case STV_PROTECTED: fprintf (file, " .protected"); break;
1925 default:
1926 /* Some other non-defined flags are also present, so print
1927 everything hex. */
1928 fprintf (file, " 0x%02x", (unsigned int) st_other);
1929 }
1930
1931 fprintf (file, " %s", name);
1932 }
1933 break;
1934 }
1935 }
1936 \f
1937 /* ELF .o/exec file reading */
1938
1939 /* Create a new bfd section from an ELF section header. */
1940
1941 bfd_boolean
1942 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1943 {
1944 Elf_Internal_Shdr *hdr;
1945 Elf_Internal_Ehdr *ehdr;
1946 const struct elf_backend_data *bed;
1947 const char *name;
1948 bfd_boolean ret = TRUE;
1949 static bfd_boolean * sections_being_created = NULL;
1950 static bfd * sections_being_created_abfd = NULL;
1951 static unsigned int nesting = 0;
1952
1953 if (shindex >= elf_numsections (abfd))
1954 return FALSE;
1955
1956 if (++ nesting > 3)
1957 {
1958 /* PR17512: A corrupt ELF binary might contain a recursive group of
1959 sections, with each the string indicies pointing to the next in the
1960 loop. Detect this here, by refusing to load a section that we are
1961 already in the process of loading. We only trigger this test if
1962 we have nested at least three sections deep as normal ELF binaries
1963 can expect to recurse at least once.
1964
1965 FIXME: It would be better if this array was attached to the bfd,
1966 rather than being held in a static pointer. */
1967
1968 if (sections_being_created_abfd != abfd)
1969 sections_being_created = NULL;
1970 if (sections_being_created == NULL)
1971 {
1972 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1973 sections_being_created = (bfd_boolean *)
1974 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1975 sections_being_created_abfd = abfd;
1976 }
1977 if (sections_being_created [shindex])
1978 {
1979 _bfd_error_handler
1980 (_("%B: warning: loop in section dependencies detected"), abfd);
1981 return FALSE;
1982 }
1983 sections_being_created [shindex] = TRUE;
1984 }
1985
1986 hdr = elf_elfsections (abfd)[shindex];
1987 ehdr = elf_elfheader (abfd);
1988 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1989 hdr->sh_name);
1990 if (name == NULL)
1991 goto fail;
1992
1993 bed = get_elf_backend_data (abfd);
1994 switch (hdr->sh_type)
1995 {
1996 case SHT_NULL:
1997 /* Inactive section. Throw it away. */
1998 goto success;
1999
2000 case SHT_PROGBITS: /* Normal section with contents. */
2001 case SHT_NOBITS: /* .bss section. */
2002 case SHT_HASH: /* .hash section. */
2003 case SHT_NOTE: /* .note section. */
2004 case SHT_INIT_ARRAY: /* .init_array section. */
2005 case SHT_FINI_ARRAY: /* .fini_array section. */
2006 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2007 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2008 case SHT_GNU_HASH: /* .gnu.hash section. */
2009 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2010 goto success;
2011
2012 case SHT_DYNAMIC: /* Dynamic linking information. */
2013 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2014 goto fail;
2015
2016 if (hdr->sh_link > elf_numsections (abfd))
2017 {
2018 /* PR 10478: Accept Solaris binaries with a sh_link
2019 field set to SHN_BEFORE or SHN_AFTER. */
2020 switch (bfd_get_arch (abfd))
2021 {
2022 case bfd_arch_i386:
2023 case bfd_arch_sparc:
2024 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2025 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2026 break;
2027 /* Otherwise fall through. */
2028 default:
2029 goto fail;
2030 }
2031 }
2032 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2033 goto fail;
2034 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2035 {
2036 Elf_Internal_Shdr *dynsymhdr;
2037
2038 /* The shared libraries distributed with hpux11 have a bogus
2039 sh_link field for the ".dynamic" section. Find the
2040 string table for the ".dynsym" section instead. */
2041 if (elf_dynsymtab (abfd) != 0)
2042 {
2043 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2044 hdr->sh_link = dynsymhdr->sh_link;
2045 }
2046 else
2047 {
2048 unsigned int i, num_sec;
2049
2050 num_sec = elf_numsections (abfd);
2051 for (i = 1; i < num_sec; i++)
2052 {
2053 dynsymhdr = elf_elfsections (abfd)[i];
2054 if (dynsymhdr->sh_type == SHT_DYNSYM)
2055 {
2056 hdr->sh_link = dynsymhdr->sh_link;
2057 break;
2058 }
2059 }
2060 }
2061 }
2062 goto success;
2063
2064 case SHT_SYMTAB: /* A symbol table. */
2065 if (elf_onesymtab (abfd) == shindex)
2066 goto success;
2067
2068 if (hdr->sh_entsize != bed->s->sizeof_sym)
2069 goto fail;
2070
2071 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2072 {
2073 if (hdr->sh_size != 0)
2074 goto fail;
2075 /* Some assemblers erroneously set sh_info to one with a
2076 zero sh_size. ld sees this as a global symbol count
2077 of (unsigned) -1. Fix it here. */
2078 hdr->sh_info = 0;
2079 goto success;
2080 }
2081
2082 /* PR 18854: A binary might contain more than one symbol table.
2083 Unusual, but possible. Warn, but continue. */
2084 if (elf_onesymtab (abfd) != 0)
2085 {
2086 _bfd_error_handler
2087 /* xgettext:c-format */
2088 (_("%B: warning: multiple symbol tables detected - ignoring the table in section %u"),
2089 abfd, shindex);
2090 goto success;
2091 }
2092 elf_onesymtab (abfd) = shindex;
2093 elf_symtab_hdr (abfd) = *hdr;
2094 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2095 abfd->flags |= HAS_SYMS;
2096
2097 /* Sometimes a shared object will map in the symbol table. If
2098 SHF_ALLOC is set, and this is a shared object, then we also
2099 treat this section as a BFD section. We can not base the
2100 decision purely on SHF_ALLOC, because that flag is sometimes
2101 set in a relocatable object file, which would confuse the
2102 linker. */
2103 if ((hdr->sh_flags & SHF_ALLOC) != 0
2104 && (abfd->flags & DYNAMIC) != 0
2105 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2106 shindex))
2107 goto fail;
2108
2109 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2110 can't read symbols without that section loaded as well. It
2111 is most likely specified by the next section header. */
2112 {
2113 elf_section_list * entry;
2114 unsigned int i, num_sec;
2115
2116 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2117 if (entry->hdr.sh_link == shindex)
2118 goto success;
2119
2120 num_sec = elf_numsections (abfd);
2121 for (i = shindex + 1; i < num_sec; i++)
2122 {
2123 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2124
2125 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2126 && hdr2->sh_link == shindex)
2127 break;
2128 }
2129
2130 if (i == num_sec)
2131 for (i = 1; i < shindex; i++)
2132 {
2133 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2134
2135 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2136 && hdr2->sh_link == shindex)
2137 break;
2138 }
2139
2140 if (i != shindex)
2141 ret = bfd_section_from_shdr (abfd, i);
2142 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2143 goto success;
2144 }
2145
2146 case SHT_DYNSYM: /* A dynamic symbol table. */
2147 if (elf_dynsymtab (abfd) == shindex)
2148 goto success;
2149
2150 if (hdr->sh_entsize != bed->s->sizeof_sym)
2151 goto fail;
2152
2153 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2154 {
2155 if (hdr->sh_size != 0)
2156 goto fail;
2157
2158 /* Some linkers erroneously set sh_info to one with a
2159 zero sh_size. ld sees this as a global symbol count
2160 of (unsigned) -1. Fix it here. */
2161 hdr->sh_info = 0;
2162 goto success;
2163 }
2164
2165 /* PR 18854: A binary might contain more than one dynamic symbol table.
2166 Unusual, but possible. Warn, but continue. */
2167 if (elf_dynsymtab (abfd) != 0)
2168 {
2169 _bfd_error_handler
2170 /* xgettext:c-format */
2171 (_("%B: warning: multiple dynamic symbol tables detected - ignoring the table in section %u"),
2172 abfd, shindex);
2173 goto success;
2174 }
2175 elf_dynsymtab (abfd) = shindex;
2176 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2177 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2178 abfd->flags |= HAS_SYMS;
2179
2180 /* Besides being a symbol table, we also treat this as a regular
2181 section, so that objcopy can handle it. */
2182 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2183 goto success;
2184
2185 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2186 {
2187 elf_section_list * entry;
2188
2189 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2190 if (entry->ndx == shindex)
2191 goto success;
2192
2193 entry = bfd_alloc (abfd, sizeof * entry);
2194 if (entry == NULL)
2195 goto fail;
2196 entry->ndx = shindex;
2197 entry->hdr = * hdr;
2198 entry->next = elf_symtab_shndx_list (abfd);
2199 elf_symtab_shndx_list (abfd) = entry;
2200 elf_elfsections (abfd)[shindex] = & entry->hdr;
2201 goto success;
2202 }
2203
2204 case SHT_STRTAB: /* A string table. */
2205 if (hdr->bfd_section != NULL)
2206 goto success;
2207
2208 if (ehdr->e_shstrndx == shindex)
2209 {
2210 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2211 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2212 goto success;
2213 }
2214
2215 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2216 {
2217 symtab_strtab:
2218 elf_tdata (abfd)->strtab_hdr = *hdr;
2219 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2220 goto success;
2221 }
2222
2223 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2224 {
2225 dynsymtab_strtab:
2226 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2227 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2228 elf_elfsections (abfd)[shindex] = hdr;
2229 /* We also treat this as a regular section, so that objcopy
2230 can handle it. */
2231 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2232 shindex);
2233 goto success;
2234 }
2235
2236 /* If the string table isn't one of the above, then treat it as a
2237 regular section. We need to scan all the headers to be sure,
2238 just in case this strtab section appeared before the above. */
2239 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2240 {
2241 unsigned int i, num_sec;
2242
2243 num_sec = elf_numsections (abfd);
2244 for (i = 1; i < num_sec; i++)
2245 {
2246 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2247 if (hdr2->sh_link == shindex)
2248 {
2249 /* Prevent endless recursion on broken objects. */
2250 if (i == shindex)
2251 goto fail;
2252 if (! bfd_section_from_shdr (abfd, i))
2253 goto fail;
2254 if (elf_onesymtab (abfd) == i)
2255 goto symtab_strtab;
2256 if (elf_dynsymtab (abfd) == i)
2257 goto dynsymtab_strtab;
2258 }
2259 }
2260 }
2261 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2262 goto success;
2263
2264 case SHT_REL:
2265 case SHT_RELA:
2266 /* *These* do a lot of work -- but build no sections! */
2267 {
2268 asection *target_sect;
2269 Elf_Internal_Shdr *hdr2, **p_hdr;
2270 unsigned int num_sec = elf_numsections (abfd);
2271 struct bfd_elf_section_data *esdt;
2272
2273 if (hdr->sh_entsize
2274 != (bfd_size_type) (hdr->sh_type == SHT_REL
2275 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2276 goto fail;
2277
2278 /* Check for a bogus link to avoid crashing. */
2279 if (hdr->sh_link >= num_sec)
2280 {
2281 _bfd_error_handler
2282 /* xgettext:c-format */
2283 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2284 abfd, hdr->sh_link, name, shindex);
2285 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2286 shindex);
2287 goto success;
2288 }
2289
2290 /* For some incomprehensible reason Oracle distributes
2291 libraries for Solaris in which some of the objects have
2292 bogus sh_link fields. It would be nice if we could just
2293 reject them, but, unfortunately, some people need to use
2294 them. We scan through the section headers; if we find only
2295 one suitable symbol table, we clobber the sh_link to point
2296 to it. I hope this doesn't break anything.
2297
2298 Don't do it on executable nor shared library. */
2299 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2300 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2301 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2302 {
2303 unsigned int scan;
2304 int found;
2305
2306 found = 0;
2307 for (scan = 1; scan < num_sec; scan++)
2308 {
2309 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2310 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2311 {
2312 if (found != 0)
2313 {
2314 found = 0;
2315 break;
2316 }
2317 found = scan;
2318 }
2319 }
2320 if (found != 0)
2321 hdr->sh_link = found;
2322 }
2323
2324 /* Get the symbol table. */
2325 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2326 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2327 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2328 goto fail;
2329
2330 /* If this reloc section does not use the main symbol table we
2331 don't treat it as a reloc section. BFD can't adequately
2332 represent such a section, so at least for now, we don't
2333 try. We just present it as a normal section. We also
2334 can't use it as a reloc section if it points to the null
2335 section, an invalid section, another reloc section, or its
2336 sh_link points to the null section. */
2337 if (hdr->sh_link != elf_onesymtab (abfd)
2338 || hdr->sh_link == SHN_UNDEF
2339 || hdr->sh_info == SHN_UNDEF
2340 || hdr->sh_info >= num_sec
2341 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2342 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2343 {
2344 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2345 shindex);
2346 goto success;
2347 }
2348
2349 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2350 goto fail;
2351
2352 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2353 if (target_sect == NULL)
2354 goto fail;
2355
2356 esdt = elf_section_data (target_sect);
2357 if (hdr->sh_type == SHT_RELA)
2358 p_hdr = &esdt->rela.hdr;
2359 else
2360 p_hdr = &esdt->rel.hdr;
2361
2362 /* PR 17512: file: 0b4f81b7. */
2363 if (*p_hdr != NULL)
2364 goto fail;
2365 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2366 if (hdr2 == NULL)
2367 goto fail;
2368 *hdr2 = *hdr;
2369 *p_hdr = hdr2;
2370 elf_elfsections (abfd)[shindex] = hdr2;
2371 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2372 target_sect->flags |= SEC_RELOC;
2373 target_sect->relocation = NULL;
2374 target_sect->rel_filepos = hdr->sh_offset;
2375 /* In the section to which the relocations apply, mark whether
2376 its relocations are of the REL or RELA variety. */
2377 if (hdr->sh_size != 0)
2378 {
2379 if (hdr->sh_type == SHT_RELA)
2380 target_sect->use_rela_p = 1;
2381 }
2382 abfd->flags |= HAS_RELOC;
2383 goto success;
2384 }
2385
2386 case SHT_GNU_verdef:
2387 elf_dynverdef (abfd) = shindex;
2388 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2389 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2390 goto success;
2391
2392 case SHT_GNU_versym:
2393 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2394 goto fail;
2395
2396 elf_dynversym (abfd) = shindex;
2397 elf_tdata (abfd)->dynversym_hdr = *hdr;
2398 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2399 goto success;
2400
2401 case SHT_GNU_verneed:
2402 elf_dynverref (abfd) = shindex;
2403 elf_tdata (abfd)->dynverref_hdr = *hdr;
2404 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2405 goto success;
2406
2407 case SHT_SHLIB:
2408 goto success;
2409
2410 case SHT_GROUP:
2411 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2412 goto fail;
2413
2414 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2415 goto fail;
2416
2417 if (hdr->contents != NULL)
2418 {
2419 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2420 unsigned int n_elt = hdr->sh_size / sizeof (* idx);
2421 asection *s;
2422
2423 if (n_elt == 0)
2424 goto fail;
2425 if (idx->flags & GRP_COMDAT)
2426 hdr->bfd_section->flags
2427 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2428
2429 /* We try to keep the same section order as it comes in. */
2430 idx += n_elt;
2431
2432 while (--n_elt != 0)
2433 {
2434 --idx;
2435
2436 if (idx->shdr != NULL
2437 && (s = idx->shdr->bfd_section) != NULL
2438 && elf_next_in_group (s) != NULL)
2439 {
2440 elf_next_in_group (hdr->bfd_section) = s;
2441 break;
2442 }
2443 }
2444 }
2445 goto success;
2446
2447 default:
2448 /* Possibly an attributes section. */
2449 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2450 || hdr->sh_type == bed->obj_attrs_section_type)
2451 {
2452 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2453 goto fail;
2454 _bfd_elf_parse_attributes (abfd, hdr);
2455 goto success;
2456 }
2457
2458 /* Check for any processor-specific section types. */
2459 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2460 goto success;
2461
2462 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2463 {
2464 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2465 /* FIXME: How to properly handle allocated section reserved
2466 for applications? */
2467 _bfd_error_handler
2468 /* xgettext:c-format */
2469 (_("%B: don't know how to handle allocated, application "
2470 "specific section `%s' [0x%8x]"),
2471 abfd, name, hdr->sh_type);
2472 else
2473 {
2474 /* Allow sections reserved for applications. */
2475 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2476 shindex);
2477 goto success;
2478 }
2479 }
2480 else if (hdr->sh_type >= SHT_LOPROC
2481 && hdr->sh_type <= SHT_HIPROC)
2482 /* FIXME: We should handle this section. */
2483 _bfd_error_handler
2484 /* xgettext:c-format */
2485 (_("%B: don't know how to handle processor specific section "
2486 "`%s' [0x%8x]"),
2487 abfd, name, hdr->sh_type);
2488 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2489 {
2490 /* Unrecognised OS-specific sections. */
2491 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2492 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2493 required to correctly process the section and the file should
2494 be rejected with an error message. */
2495 _bfd_error_handler
2496 /* xgettext:c-format */
2497 (_("%B: don't know how to handle OS specific section "
2498 "`%s' [0x%8x]"),
2499 abfd, name, hdr->sh_type);
2500 else
2501 {
2502 /* Otherwise it should be processed. */
2503 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2504 goto success;
2505 }
2506 }
2507 else
2508 /* FIXME: We should handle this section. */
2509 _bfd_error_handler
2510 /* xgettext:c-format */
2511 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2512 abfd, name, hdr->sh_type);
2513
2514 goto fail;
2515 }
2516
2517 fail:
2518 ret = FALSE;
2519 success:
2520 if (sections_being_created && sections_being_created_abfd == abfd)
2521 sections_being_created [shindex] = FALSE;
2522 if (-- nesting == 0)
2523 {
2524 sections_being_created = NULL;
2525 sections_being_created_abfd = abfd;
2526 }
2527 return ret;
2528 }
2529
2530 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2531
2532 Elf_Internal_Sym *
2533 bfd_sym_from_r_symndx (struct sym_cache *cache,
2534 bfd *abfd,
2535 unsigned long r_symndx)
2536 {
2537 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2538
2539 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2540 {
2541 Elf_Internal_Shdr *symtab_hdr;
2542 unsigned char esym[sizeof (Elf64_External_Sym)];
2543 Elf_External_Sym_Shndx eshndx;
2544
2545 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2546 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2547 &cache->sym[ent], esym, &eshndx) == NULL)
2548 return NULL;
2549
2550 if (cache->abfd != abfd)
2551 {
2552 memset (cache->indx, -1, sizeof (cache->indx));
2553 cache->abfd = abfd;
2554 }
2555 cache->indx[ent] = r_symndx;
2556 }
2557
2558 return &cache->sym[ent];
2559 }
2560
2561 /* Given an ELF section number, retrieve the corresponding BFD
2562 section. */
2563
2564 asection *
2565 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2566 {
2567 if (sec_index >= elf_numsections (abfd))
2568 return NULL;
2569 return elf_elfsections (abfd)[sec_index]->bfd_section;
2570 }
2571
2572 static const struct bfd_elf_special_section special_sections_b[] =
2573 {
2574 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2575 { NULL, 0, 0, 0, 0 }
2576 };
2577
2578 static const struct bfd_elf_special_section special_sections_c[] =
2579 {
2580 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2581 { NULL, 0, 0, 0, 0 }
2582 };
2583
2584 static const struct bfd_elf_special_section special_sections_d[] =
2585 {
2586 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2587 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2588 /* There are more DWARF sections than these, but they needn't be added here
2589 unless you have to cope with broken compilers that don't emit section
2590 attributes or you want to help the user writing assembler. */
2591 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2592 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2593 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2594 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2595 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2596 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2597 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2598 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2599 { NULL, 0, 0, 0, 0 }
2600 };
2601
2602 static const struct bfd_elf_special_section special_sections_f[] =
2603 {
2604 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2605 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2606 { NULL, 0, 0, 0, 0 }
2607 };
2608
2609 static const struct bfd_elf_special_section special_sections_g[] =
2610 {
2611 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2612 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2613 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2614 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2615 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2616 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2617 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2618 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2619 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2620 { NULL, 0, 0, 0, 0 }
2621 };
2622
2623 static const struct bfd_elf_special_section special_sections_h[] =
2624 {
2625 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2626 { NULL, 0, 0, 0, 0 }
2627 };
2628
2629 static const struct bfd_elf_special_section special_sections_i[] =
2630 {
2631 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2632 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2633 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2634 { NULL, 0, 0, 0, 0 }
2635 };
2636
2637 static const struct bfd_elf_special_section special_sections_l[] =
2638 {
2639 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2640 { NULL, 0, 0, 0, 0 }
2641 };
2642
2643 static const struct bfd_elf_special_section special_sections_n[] =
2644 {
2645 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2646 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2647 { NULL, 0, 0, 0, 0 }
2648 };
2649
2650 static const struct bfd_elf_special_section special_sections_p[] =
2651 {
2652 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2653 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2654 { NULL, 0, 0, 0, 0 }
2655 };
2656
2657 static const struct bfd_elf_special_section special_sections_r[] =
2658 {
2659 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2660 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2661 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2662 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2663 { NULL, 0, 0, 0, 0 }
2664 };
2665
2666 static const struct bfd_elf_special_section special_sections_s[] =
2667 {
2668 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2669 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2670 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2671 /* See struct bfd_elf_special_section declaration for the semantics of
2672 this special case where .prefix_length != strlen (.prefix). */
2673 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2674 { NULL, 0, 0, 0, 0 }
2675 };
2676
2677 static const struct bfd_elf_special_section special_sections_t[] =
2678 {
2679 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2680 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2681 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2682 { NULL, 0, 0, 0, 0 }
2683 };
2684
2685 static const struct bfd_elf_special_section special_sections_z[] =
2686 {
2687 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2688 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2689 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2690 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2691 { NULL, 0, 0, 0, 0 }
2692 };
2693
2694 static const struct bfd_elf_special_section * const special_sections[] =
2695 {
2696 special_sections_b, /* 'b' */
2697 special_sections_c, /* 'c' */
2698 special_sections_d, /* 'd' */
2699 NULL, /* 'e' */
2700 special_sections_f, /* 'f' */
2701 special_sections_g, /* 'g' */
2702 special_sections_h, /* 'h' */
2703 special_sections_i, /* 'i' */
2704 NULL, /* 'j' */
2705 NULL, /* 'k' */
2706 special_sections_l, /* 'l' */
2707 NULL, /* 'm' */
2708 special_sections_n, /* 'n' */
2709 NULL, /* 'o' */
2710 special_sections_p, /* 'p' */
2711 NULL, /* 'q' */
2712 special_sections_r, /* 'r' */
2713 special_sections_s, /* 's' */
2714 special_sections_t, /* 't' */
2715 NULL, /* 'u' */
2716 NULL, /* 'v' */
2717 NULL, /* 'w' */
2718 NULL, /* 'x' */
2719 NULL, /* 'y' */
2720 special_sections_z /* 'z' */
2721 };
2722
2723 const struct bfd_elf_special_section *
2724 _bfd_elf_get_special_section (const char *name,
2725 const struct bfd_elf_special_section *spec,
2726 unsigned int rela)
2727 {
2728 int i;
2729 int len;
2730
2731 len = strlen (name);
2732
2733 for (i = 0; spec[i].prefix != NULL; i++)
2734 {
2735 int suffix_len;
2736 int prefix_len = spec[i].prefix_length;
2737
2738 if (len < prefix_len)
2739 continue;
2740 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2741 continue;
2742
2743 suffix_len = spec[i].suffix_length;
2744 if (suffix_len <= 0)
2745 {
2746 if (name[prefix_len] != 0)
2747 {
2748 if (suffix_len == 0)
2749 continue;
2750 if (name[prefix_len] != '.'
2751 && (suffix_len == -2
2752 || (rela && spec[i].type == SHT_REL)))
2753 continue;
2754 }
2755 }
2756 else
2757 {
2758 if (len < prefix_len + suffix_len)
2759 continue;
2760 if (memcmp (name + len - suffix_len,
2761 spec[i].prefix + prefix_len,
2762 suffix_len) != 0)
2763 continue;
2764 }
2765 return &spec[i];
2766 }
2767
2768 return NULL;
2769 }
2770
2771 const struct bfd_elf_special_section *
2772 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2773 {
2774 int i;
2775 const struct bfd_elf_special_section *spec;
2776 const struct elf_backend_data *bed;
2777
2778 /* See if this is one of the special sections. */
2779 if (sec->name == NULL)
2780 return NULL;
2781
2782 bed = get_elf_backend_data (abfd);
2783 spec = bed->special_sections;
2784 if (spec)
2785 {
2786 spec = _bfd_elf_get_special_section (sec->name,
2787 bed->special_sections,
2788 sec->use_rela_p);
2789 if (spec != NULL)
2790 return spec;
2791 }
2792
2793 if (sec->name[0] != '.')
2794 return NULL;
2795
2796 i = sec->name[1] - 'b';
2797 if (i < 0 || i > 'z' - 'b')
2798 return NULL;
2799
2800 spec = special_sections[i];
2801
2802 if (spec == NULL)
2803 return NULL;
2804
2805 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2806 }
2807
2808 bfd_boolean
2809 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2810 {
2811 struct bfd_elf_section_data *sdata;
2812 const struct elf_backend_data *bed;
2813 const struct bfd_elf_special_section *ssect;
2814
2815 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2816 if (sdata == NULL)
2817 {
2818 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2819 sizeof (*sdata));
2820 if (sdata == NULL)
2821 return FALSE;
2822 sec->used_by_bfd = sdata;
2823 }
2824
2825 /* Indicate whether or not this section should use RELA relocations. */
2826 bed = get_elf_backend_data (abfd);
2827 sec->use_rela_p = bed->default_use_rela_p;
2828
2829 /* When we read a file, we don't need to set ELF section type and
2830 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2831 anyway. We will set ELF section type and flags for all linker
2832 created sections. If user specifies BFD section flags, we will
2833 set ELF section type and flags based on BFD section flags in
2834 elf_fake_sections. Special handling for .init_array/.fini_array
2835 output sections since they may contain .ctors/.dtors input
2836 sections. We don't want _bfd_elf_init_private_section_data to
2837 copy ELF section type from .ctors/.dtors input sections. */
2838 if (abfd->direction != read_direction
2839 || (sec->flags & SEC_LINKER_CREATED) != 0)
2840 {
2841 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2842 if (ssect != NULL
2843 && (!sec->flags
2844 || (sec->flags & SEC_LINKER_CREATED) != 0
2845 || ssect->type == SHT_INIT_ARRAY
2846 || ssect->type == SHT_FINI_ARRAY))
2847 {
2848 elf_section_type (sec) = ssect->type;
2849 elf_section_flags (sec) = ssect->attr;
2850 }
2851 }
2852
2853 return _bfd_generic_new_section_hook (abfd, sec);
2854 }
2855
2856 /* Create a new bfd section from an ELF program header.
2857
2858 Since program segments have no names, we generate a synthetic name
2859 of the form segment<NUM>, where NUM is generally the index in the
2860 program header table. For segments that are split (see below) we
2861 generate the names segment<NUM>a and segment<NUM>b.
2862
2863 Note that some program segments may have a file size that is different than
2864 (less than) the memory size. All this means is that at execution the
2865 system must allocate the amount of memory specified by the memory size,
2866 but only initialize it with the first "file size" bytes read from the
2867 file. This would occur for example, with program segments consisting
2868 of combined data+bss.
2869
2870 To handle the above situation, this routine generates TWO bfd sections
2871 for the single program segment. The first has the length specified by
2872 the file size of the segment, and the second has the length specified
2873 by the difference between the two sizes. In effect, the segment is split
2874 into its initialized and uninitialized parts.
2875
2876 */
2877
2878 bfd_boolean
2879 _bfd_elf_make_section_from_phdr (bfd *abfd,
2880 Elf_Internal_Phdr *hdr,
2881 int hdr_index,
2882 const char *type_name)
2883 {
2884 asection *newsect;
2885 char *name;
2886 char namebuf[64];
2887 size_t len;
2888 int split;
2889
2890 split = ((hdr->p_memsz > 0)
2891 && (hdr->p_filesz > 0)
2892 && (hdr->p_memsz > hdr->p_filesz));
2893
2894 if (hdr->p_filesz > 0)
2895 {
2896 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2897 len = strlen (namebuf) + 1;
2898 name = (char *) bfd_alloc (abfd, len);
2899 if (!name)
2900 return FALSE;
2901 memcpy (name, namebuf, len);
2902 newsect = bfd_make_section (abfd, name);
2903 if (newsect == NULL)
2904 return FALSE;
2905 newsect->vma = hdr->p_vaddr;
2906 newsect->lma = hdr->p_paddr;
2907 newsect->size = hdr->p_filesz;
2908 newsect->filepos = hdr->p_offset;
2909 newsect->flags |= SEC_HAS_CONTENTS;
2910 newsect->alignment_power = bfd_log2 (hdr->p_align);
2911 if (hdr->p_type == PT_LOAD)
2912 {
2913 newsect->flags |= SEC_ALLOC;
2914 newsect->flags |= SEC_LOAD;
2915 if (hdr->p_flags & PF_X)
2916 {
2917 /* FIXME: all we known is that it has execute PERMISSION,
2918 may be data. */
2919 newsect->flags |= SEC_CODE;
2920 }
2921 }
2922 if (!(hdr->p_flags & PF_W))
2923 {
2924 newsect->flags |= SEC_READONLY;
2925 }
2926 }
2927
2928 if (hdr->p_memsz > hdr->p_filesz)
2929 {
2930 bfd_vma align;
2931
2932 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2933 len = strlen (namebuf) + 1;
2934 name = (char *) bfd_alloc (abfd, len);
2935 if (!name)
2936 return FALSE;
2937 memcpy (name, namebuf, len);
2938 newsect = bfd_make_section (abfd, name);
2939 if (newsect == NULL)
2940 return FALSE;
2941 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2942 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2943 newsect->size = hdr->p_memsz - hdr->p_filesz;
2944 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2945 align = newsect->vma & -newsect->vma;
2946 if (align == 0 || align > hdr->p_align)
2947 align = hdr->p_align;
2948 newsect->alignment_power = bfd_log2 (align);
2949 if (hdr->p_type == PT_LOAD)
2950 {
2951 /* Hack for gdb. Segments that have not been modified do
2952 not have their contents written to a core file, on the
2953 assumption that a debugger can find the contents in the
2954 executable. We flag this case by setting the fake
2955 section size to zero. Note that "real" bss sections will
2956 always have their contents dumped to the core file. */
2957 if (bfd_get_format (abfd) == bfd_core)
2958 newsect->size = 0;
2959 newsect->flags |= SEC_ALLOC;
2960 if (hdr->p_flags & PF_X)
2961 newsect->flags |= SEC_CODE;
2962 }
2963 if (!(hdr->p_flags & PF_W))
2964 newsect->flags |= SEC_READONLY;
2965 }
2966
2967 return TRUE;
2968 }
2969
2970 bfd_boolean
2971 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2972 {
2973 const struct elf_backend_data *bed;
2974
2975 switch (hdr->p_type)
2976 {
2977 case PT_NULL:
2978 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2979
2980 case PT_LOAD:
2981 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2982
2983 case PT_DYNAMIC:
2984 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2985
2986 case PT_INTERP:
2987 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2988
2989 case PT_NOTE:
2990 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2991 return FALSE;
2992 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2993 return FALSE;
2994 return TRUE;
2995
2996 case PT_SHLIB:
2997 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2998
2999 case PT_PHDR:
3000 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3001
3002 case PT_GNU_EH_FRAME:
3003 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3004 "eh_frame_hdr");
3005
3006 case PT_GNU_STACK:
3007 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3008
3009 case PT_GNU_RELRO:
3010 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3011
3012 default:
3013 /* Check for any processor-specific program segment types. */
3014 bed = get_elf_backend_data (abfd);
3015 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3016 }
3017 }
3018
3019 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3020 REL or RELA. */
3021
3022 Elf_Internal_Shdr *
3023 _bfd_elf_single_rel_hdr (asection *sec)
3024 {
3025 if (elf_section_data (sec)->rel.hdr)
3026 {
3027 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3028 return elf_section_data (sec)->rel.hdr;
3029 }
3030 else
3031 return elf_section_data (sec)->rela.hdr;
3032 }
3033
3034 static bfd_boolean
3035 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3036 Elf_Internal_Shdr *rel_hdr,
3037 const char *sec_name,
3038 bfd_boolean use_rela_p)
3039 {
3040 char *name = (char *) bfd_alloc (abfd,
3041 sizeof ".rela" + strlen (sec_name));
3042 if (name == NULL)
3043 return FALSE;
3044
3045 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3046 rel_hdr->sh_name =
3047 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3048 FALSE);
3049 if (rel_hdr->sh_name == (unsigned int) -1)
3050 return FALSE;
3051
3052 return TRUE;
3053 }
3054
3055 /* Allocate and initialize a section-header for a new reloc section,
3056 containing relocations against ASECT. It is stored in RELDATA. If
3057 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3058 relocations. */
3059
3060 static bfd_boolean
3061 _bfd_elf_init_reloc_shdr (bfd *abfd,
3062 struct bfd_elf_section_reloc_data *reldata,
3063 const char *sec_name,
3064 bfd_boolean use_rela_p,
3065 bfd_boolean delay_st_name_p)
3066 {
3067 Elf_Internal_Shdr *rel_hdr;
3068 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3069
3070 BFD_ASSERT (reldata->hdr == NULL);
3071 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3072 reldata->hdr = rel_hdr;
3073
3074 if (delay_st_name_p)
3075 rel_hdr->sh_name = (unsigned int) -1;
3076 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3077 use_rela_p))
3078 return FALSE;
3079 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3080 rel_hdr->sh_entsize = (use_rela_p
3081 ? bed->s->sizeof_rela
3082 : bed->s->sizeof_rel);
3083 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3084 rel_hdr->sh_flags = 0;
3085 rel_hdr->sh_addr = 0;
3086 rel_hdr->sh_size = 0;
3087 rel_hdr->sh_offset = 0;
3088
3089 return TRUE;
3090 }
3091
3092 /* Return the default section type based on the passed in section flags. */
3093
3094 int
3095 bfd_elf_get_default_section_type (flagword flags)
3096 {
3097 if ((flags & SEC_ALLOC) != 0
3098 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3099 return SHT_NOBITS;
3100 return SHT_PROGBITS;
3101 }
3102
3103 struct fake_section_arg
3104 {
3105 struct bfd_link_info *link_info;
3106 bfd_boolean failed;
3107 };
3108
3109 /* Set up an ELF internal section header for a section. */
3110
3111 static void
3112 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3113 {
3114 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3115 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3116 struct bfd_elf_section_data *esd = elf_section_data (asect);
3117 Elf_Internal_Shdr *this_hdr;
3118 unsigned int sh_type;
3119 const char *name = asect->name;
3120 bfd_boolean delay_st_name_p = FALSE;
3121
3122 if (arg->failed)
3123 {
3124 /* We already failed; just get out of the bfd_map_over_sections
3125 loop. */
3126 return;
3127 }
3128
3129 this_hdr = &esd->this_hdr;
3130
3131 if (arg->link_info)
3132 {
3133 /* ld: compress DWARF debug sections with names: .debug_*. */
3134 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3135 && (asect->flags & SEC_DEBUGGING)
3136 && name[1] == 'd'
3137 && name[6] == '_')
3138 {
3139 /* Set SEC_ELF_COMPRESS to indicate this section should be
3140 compressed. */
3141 asect->flags |= SEC_ELF_COMPRESS;
3142
3143 /* If this section will be compressed, delay adding section
3144 name to section name section after it is compressed in
3145 _bfd_elf_assign_file_positions_for_non_load. */
3146 delay_st_name_p = TRUE;
3147 }
3148 }
3149 else if ((asect->flags & SEC_ELF_RENAME))
3150 {
3151 /* objcopy: rename output DWARF debug section. */
3152 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3153 {
3154 /* When we decompress or compress with SHF_COMPRESSED,
3155 convert section name from .zdebug_* to .debug_* if
3156 needed. */
3157 if (name[1] == 'z')
3158 {
3159 char *new_name = convert_zdebug_to_debug (abfd, name);
3160 if (new_name == NULL)
3161 {
3162 arg->failed = TRUE;
3163 return;
3164 }
3165 name = new_name;
3166 }
3167 }
3168 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3169 {
3170 /* PR binutils/18087: Compression does not always make a
3171 section smaller. So only rename the section when
3172 compression has actually taken place. If input section
3173 name is .zdebug_*, we should never compress it again. */
3174 char *new_name = convert_debug_to_zdebug (abfd, name);
3175 if (new_name == NULL)
3176 {
3177 arg->failed = TRUE;
3178 return;
3179 }
3180 BFD_ASSERT (name[1] != 'z');
3181 name = new_name;
3182 }
3183 }
3184
3185 if (delay_st_name_p)
3186 this_hdr->sh_name = (unsigned int) -1;
3187 else
3188 {
3189 this_hdr->sh_name
3190 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3191 name, FALSE);
3192 if (this_hdr->sh_name == (unsigned int) -1)
3193 {
3194 arg->failed = TRUE;
3195 return;
3196 }
3197 }
3198
3199 /* Don't clear sh_flags. Assembler may set additional bits. */
3200
3201 if ((asect->flags & SEC_ALLOC) != 0
3202 || asect->user_set_vma)
3203 this_hdr->sh_addr = asect->vma;
3204 else
3205 this_hdr->sh_addr = 0;
3206
3207 this_hdr->sh_offset = 0;
3208 this_hdr->sh_size = asect->size;
3209 this_hdr->sh_link = 0;
3210 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3211 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3212 {
3213 _bfd_error_handler
3214 /* xgettext:c-format */
3215 (_("%B: error: Alignment power %d of section `%A' is too big"),
3216 abfd, asect, asect->alignment_power);
3217 arg->failed = TRUE;
3218 return;
3219 }
3220 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3221 /* The sh_entsize and sh_info fields may have been set already by
3222 copy_private_section_data. */
3223
3224 this_hdr->bfd_section = asect;
3225 this_hdr->contents = NULL;
3226
3227 /* If the section type is unspecified, we set it based on
3228 asect->flags. */
3229 if ((asect->flags & SEC_GROUP) != 0)
3230 sh_type = SHT_GROUP;
3231 else
3232 sh_type = bfd_elf_get_default_section_type (asect->flags);
3233
3234 if (this_hdr->sh_type == SHT_NULL)
3235 this_hdr->sh_type = sh_type;
3236 else if (this_hdr->sh_type == SHT_NOBITS
3237 && sh_type == SHT_PROGBITS
3238 && (asect->flags & SEC_ALLOC) != 0)
3239 {
3240 /* Warn if we are changing a NOBITS section to PROGBITS, but
3241 allow the link to proceed. This can happen when users link
3242 non-bss input sections to bss output sections, or emit data
3243 to a bss output section via a linker script. */
3244 _bfd_error_handler
3245 (_("warning: section `%A' type changed to PROGBITS"), asect);
3246 this_hdr->sh_type = sh_type;
3247 }
3248
3249 switch (this_hdr->sh_type)
3250 {
3251 default:
3252 break;
3253
3254 case SHT_STRTAB:
3255 case SHT_NOTE:
3256 case SHT_NOBITS:
3257 case SHT_PROGBITS:
3258 break;
3259
3260 case SHT_INIT_ARRAY:
3261 case SHT_FINI_ARRAY:
3262 case SHT_PREINIT_ARRAY:
3263 this_hdr->sh_entsize = bed->s->arch_size / 8;
3264 break;
3265
3266 case SHT_HASH:
3267 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3268 break;
3269
3270 case SHT_DYNSYM:
3271 this_hdr->sh_entsize = bed->s->sizeof_sym;
3272 break;
3273
3274 case SHT_DYNAMIC:
3275 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3276 break;
3277
3278 case SHT_RELA:
3279 if (get_elf_backend_data (abfd)->may_use_rela_p)
3280 this_hdr->sh_entsize = bed->s->sizeof_rela;
3281 break;
3282
3283 case SHT_REL:
3284 if (get_elf_backend_data (abfd)->may_use_rel_p)
3285 this_hdr->sh_entsize = bed->s->sizeof_rel;
3286 break;
3287
3288 case SHT_GNU_versym:
3289 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3290 break;
3291
3292 case SHT_GNU_verdef:
3293 this_hdr->sh_entsize = 0;
3294 /* objcopy or strip will copy over sh_info, but may not set
3295 cverdefs. The linker will set cverdefs, but sh_info will be
3296 zero. */
3297 if (this_hdr->sh_info == 0)
3298 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3299 else
3300 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3301 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3302 break;
3303
3304 case SHT_GNU_verneed:
3305 this_hdr->sh_entsize = 0;
3306 /* objcopy or strip will copy over sh_info, but may not set
3307 cverrefs. The linker will set cverrefs, but sh_info will be
3308 zero. */
3309 if (this_hdr->sh_info == 0)
3310 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3311 else
3312 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3313 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3314 break;
3315
3316 case SHT_GROUP:
3317 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3318 break;
3319
3320 case SHT_GNU_HASH:
3321 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3322 break;
3323 }
3324
3325 if ((asect->flags & SEC_ALLOC) != 0)
3326 this_hdr->sh_flags |= SHF_ALLOC;
3327 if ((asect->flags & SEC_READONLY) == 0)
3328 this_hdr->sh_flags |= SHF_WRITE;
3329 if ((asect->flags & SEC_CODE) != 0)
3330 this_hdr->sh_flags |= SHF_EXECINSTR;
3331 if ((asect->flags & SEC_MERGE) != 0)
3332 {
3333 this_hdr->sh_flags |= SHF_MERGE;
3334 this_hdr->sh_entsize = asect->entsize;
3335 }
3336 if ((asect->flags & SEC_STRINGS) != 0)
3337 this_hdr->sh_flags |= SHF_STRINGS;
3338 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3339 this_hdr->sh_flags |= SHF_GROUP;
3340 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3341 {
3342 this_hdr->sh_flags |= SHF_TLS;
3343 if (asect->size == 0
3344 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3345 {
3346 struct bfd_link_order *o = asect->map_tail.link_order;
3347
3348 this_hdr->sh_size = 0;
3349 if (o != NULL)
3350 {
3351 this_hdr->sh_size = o->offset + o->size;
3352 if (this_hdr->sh_size != 0)
3353 this_hdr->sh_type = SHT_NOBITS;
3354 }
3355 }
3356 }
3357 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3358 this_hdr->sh_flags |= SHF_EXCLUDE;
3359
3360 /* If the section has relocs, set up a section header for the
3361 SHT_REL[A] section. If two relocation sections are required for
3362 this section, it is up to the processor-specific back-end to
3363 create the other. */
3364 if ((asect->flags & SEC_RELOC) != 0)
3365 {
3366 /* When doing a relocatable link, create both REL and RELA sections if
3367 needed. */
3368 if (arg->link_info
3369 /* Do the normal setup if we wouldn't create any sections here. */
3370 && esd->rel.count + esd->rela.count > 0
3371 && (bfd_link_relocatable (arg->link_info)
3372 || arg->link_info->emitrelocations))
3373 {
3374 if (esd->rel.count && esd->rel.hdr == NULL
3375 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE,
3376 delay_st_name_p))
3377 {
3378 arg->failed = TRUE;
3379 return;
3380 }
3381 if (esd->rela.count && esd->rela.hdr == NULL
3382 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE,
3383 delay_st_name_p))
3384 {
3385 arg->failed = TRUE;
3386 return;
3387 }
3388 }
3389 else if (!_bfd_elf_init_reloc_shdr (abfd,
3390 (asect->use_rela_p
3391 ? &esd->rela : &esd->rel),
3392 name,
3393 asect->use_rela_p,
3394 delay_st_name_p))
3395 arg->failed = TRUE;
3396 }
3397
3398 /* Check for processor-specific section types. */
3399 sh_type = this_hdr->sh_type;
3400 if (bed->elf_backend_fake_sections
3401 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3402 arg->failed = TRUE;
3403
3404 if (sh_type == SHT_NOBITS && asect->size != 0)
3405 {
3406 /* Don't change the header type from NOBITS if we are being
3407 called for objcopy --only-keep-debug. */
3408 this_hdr->sh_type = sh_type;
3409 }
3410 }
3411
3412 /* Fill in the contents of a SHT_GROUP section. Called from
3413 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3414 when ELF targets use the generic linker, ld. Called for ld -r
3415 from bfd_elf_final_link. */
3416
3417 void
3418 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3419 {
3420 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3421 asection *elt, *first;
3422 unsigned char *loc;
3423 bfd_boolean gas;
3424
3425 /* Ignore linker created group section. See elfNN_ia64_object_p in
3426 elfxx-ia64.c. */
3427 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3428 || *failedptr)
3429 return;
3430
3431 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3432 {
3433 unsigned long symindx = 0;
3434
3435 /* elf_group_id will have been set up by objcopy and the
3436 generic linker. */
3437 if (elf_group_id (sec) != NULL)
3438 symindx = elf_group_id (sec)->udata.i;
3439
3440 if (symindx == 0)
3441 {
3442 /* If called from the assembler, swap_out_syms will have set up
3443 elf_section_syms. */
3444 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3445 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3446 }
3447 elf_section_data (sec)->this_hdr.sh_info = symindx;
3448 }
3449 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3450 {
3451 /* The ELF backend linker sets sh_info to -2 when the group
3452 signature symbol is global, and thus the index can't be
3453 set until all local symbols are output. */
3454 asection *igroup;
3455 struct bfd_elf_section_data *sec_data;
3456 unsigned long symndx;
3457 unsigned long extsymoff;
3458 struct elf_link_hash_entry *h;
3459
3460 /* The point of this little dance to the first SHF_GROUP section
3461 then back to the SHT_GROUP section is that this gets us to
3462 the SHT_GROUP in the input object. */
3463 igroup = elf_sec_group (elf_next_in_group (sec));
3464 sec_data = elf_section_data (igroup);
3465 symndx = sec_data->this_hdr.sh_info;
3466 extsymoff = 0;
3467 if (!elf_bad_symtab (igroup->owner))
3468 {
3469 Elf_Internal_Shdr *symtab_hdr;
3470
3471 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3472 extsymoff = symtab_hdr->sh_info;
3473 }
3474 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3475 while (h->root.type == bfd_link_hash_indirect
3476 || h->root.type == bfd_link_hash_warning)
3477 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3478
3479 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3480 }
3481
3482 /* The contents won't be allocated for "ld -r" or objcopy. */
3483 gas = TRUE;
3484 if (sec->contents == NULL)
3485 {
3486 gas = FALSE;
3487 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3488
3489 /* Arrange for the section to be written out. */
3490 elf_section_data (sec)->this_hdr.contents = sec->contents;
3491 if (sec->contents == NULL)
3492 {
3493 *failedptr = TRUE;
3494 return;
3495 }
3496 }
3497
3498 loc = sec->contents + sec->size;
3499
3500 /* Get the pointer to the first section in the group that gas
3501 squirreled away here. objcopy arranges for this to be set to the
3502 start of the input section group. */
3503 first = elt = elf_next_in_group (sec);
3504
3505 /* First element is a flag word. Rest of section is elf section
3506 indices for all the sections of the group. Write them backwards
3507 just to keep the group in the same order as given in .section
3508 directives, not that it matters. */
3509 while (elt != NULL)
3510 {
3511 asection *s;
3512
3513 s = elt;
3514 if (!gas)
3515 s = s->output_section;
3516 if (s != NULL
3517 && !bfd_is_abs_section (s))
3518 {
3519 unsigned int idx = elf_section_data (s)->this_idx;
3520
3521 loc -= 4;
3522 H_PUT_32 (abfd, idx, loc);
3523 }
3524 elt = elf_next_in_group (elt);
3525 if (elt == first)
3526 break;
3527 }
3528
3529 if ((loc -= 4) != sec->contents)
3530 abort ();
3531
3532 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3533 }
3534
3535 /* Return the section which RELOC_SEC applies to. */
3536
3537 asection *
3538 _bfd_elf_get_reloc_section (asection *reloc_sec)
3539 {
3540 const char *name;
3541 unsigned int type;
3542 bfd *abfd;
3543
3544 if (reloc_sec == NULL)
3545 return NULL;
3546
3547 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3548 if (type != SHT_REL && type != SHT_RELA)
3549 return NULL;
3550
3551 /* We look up the section the relocs apply to by name. */
3552 name = reloc_sec->name;
3553 if (type == SHT_REL)
3554 name += 4;
3555 else
3556 name += 5;
3557
3558 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3559 section apply to .got.plt section. */
3560 abfd = reloc_sec->owner;
3561 if (get_elf_backend_data (abfd)->want_got_plt
3562 && strcmp (name, ".plt") == 0)
3563 {
3564 /* .got.plt is a linker created input section. It may be mapped
3565 to some other output section. Try two likely sections. */
3566 name = ".got.plt";
3567 reloc_sec = bfd_get_section_by_name (abfd, name);
3568 if (reloc_sec != NULL)
3569 return reloc_sec;
3570 name = ".got";
3571 }
3572
3573 reloc_sec = bfd_get_section_by_name (abfd, name);
3574 return reloc_sec;
3575 }
3576
3577 /* Assign all ELF section numbers. The dummy first section is handled here
3578 too. The link/info pointers for the standard section types are filled
3579 in here too, while we're at it. */
3580
3581 static bfd_boolean
3582 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3583 {
3584 struct elf_obj_tdata *t = elf_tdata (abfd);
3585 asection *sec;
3586 unsigned int section_number;
3587 Elf_Internal_Shdr **i_shdrp;
3588 struct bfd_elf_section_data *d;
3589 bfd_boolean need_symtab;
3590
3591 section_number = 1;
3592
3593 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3594
3595 /* SHT_GROUP sections are in relocatable files only. */
3596 if (link_info == NULL || bfd_link_relocatable (link_info))
3597 {
3598 size_t reloc_count = 0;
3599
3600 /* Put SHT_GROUP sections first. */
3601 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3602 {
3603 d = elf_section_data (sec);
3604
3605 if (d->this_hdr.sh_type == SHT_GROUP)
3606 {
3607 if (sec->flags & SEC_LINKER_CREATED)
3608 {
3609 /* Remove the linker created SHT_GROUP sections. */
3610 bfd_section_list_remove (abfd, sec);
3611 abfd->section_count--;
3612 }
3613 else
3614 d->this_idx = section_number++;
3615 }
3616
3617 /* Count relocations. */
3618 reloc_count += sec->reloc_count;
3619 }
3620
3621 /* Clear HAS_RELOC if there are no relocations. */
3622 if (reloc_count == 0)
3623 abfd->flags &= ~HAS_RELOC;
3624 }
3625
3626 for (sec = abfd->sections; sec; sec = sec->next)
3627 {
3628 d = elf_section_data (sec);
3629
3630 if (d->this_hdr.sh_type != SHT_GROUP)
3631 d->this_idx = section_number++;
3632 if (d->this_hdr.sh_name != (unsigned int) -1)
3633 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3634 if (d->rel.hdr)
3635 {
3636 d->rel.idx = section_number++;
3637 if (d->rel.hdr->sh_name != (unsigned int) -1)
3638 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3639 }
3640 else
3641 d->rel.idx = 0;
3642
3643 if (d->rela.hdr)
3644 {
3645 d->rela.idx = section_number++;
3646 if (d->rela.hdr->sh_name != (unsigned int) -1)
3647 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3648 }
3649 else
3650 d->rela.idx = 0;
3651 }
3652
3653 need_symtab = (bfd_get_symcount (abfd) > 0
3654 || (link_info == NULL
3655 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3656 == HAS_RELOC)));
3657 if (need_symtab)
3658 {
3659 elf_onesymtab (abfd) = section_number++;
3660 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3661 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3662 {
3663 elf_section_list * entry;
3664
3665 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3666
3667 entry = bfd_zalloc (abfd, sizeof * entry);
3668 entry->ndx = section_number++;
3669 elf_symtab_shndx_list (abfd) = entry;
3670 entry->hdr.sh_name
3671 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3672 ".symtab_shndx", FALSE);
3673 if (entry->hdr.sh_name == (unsigned int) -1)
3674 return FALSE;
3675 }
3676 elf_strtab_sec (abfd) = section_number++;
3677 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3678 }
3679
3680 elf_shstrtab_sec (abfd) = section_number++;
3681 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3682 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3683
3684 if (section_number >= SHN_LORESERVE)
3685 {
3686 /* xgettext:c-format */
3687 _bfd_error_handler (_("%B: too many sections: %u"),
3688 abfd, section_number);
3689 return FALSE;
3690 }
3691
3692 elf_numsections (abfd) = section_number;
3693 elf_elfheader (abfd)->e_shnum = section_number;
3694
3695 /* Set up the list of section header pointers, in agreement with the
3696 indices. */
3697 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3698 sizeof (Elf_Internal_Shdr *));
3699 if (i_shdrp == NULL)
3700 return FALSE;
3701
3702 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3703 sizeof (Elf_Internal_Shdr));
3704 if (i_shdrp[0] == NULL)
3705 {
3706 bfd_release (abfd, i_shdrp);
3707 return FALSE;
3708 }
3709
3710 elf_elfsections (abfd) = i_shdrp;
3711
3712 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3713 if (need_symtab)
3714 {
3715 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3716 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3717 {
3718 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3719 BFD_ASSERT (entry != NULL);
3720 i_shdrp[entry->ndx] = & entry->hdr;
3721 entry->hdr.sh_link = elf_onesymtab (abfd);
3722 }
3723 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3724 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3725 }
3726
3727 for (sec = abfd->sections; sec; sec = sec->next)
3728 {
3729 asection *s;
3730
3731 d = elf_section_data (sec);
3732
3733 i_shdrp[d->this_idx] = &d->this_hdr;
3734 if (d->rel.idx != 0)
3735 i_shdrp[d->rel.idx] = d->rel.hdr;
3736 if (d->rela.idx != 0)
3737 i_shdrp[d->rela.idx] = d->rela.hdr;
3738
3739 /* Fill in the sh_link and sh_info fields while we're at it. */
3740
3741 /* sh_link of a reloc section is the section index of the symbol
3742 table. sh_info is the section index of the section to which
3743 the relocation entries apply. */
3744 if (d->rel.idx != 0)
3745 {
3746 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3747 d->rel.hdr->sh_info = d->this_idx;
3748 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3749 }
3750 if (d->rela.idx != 0)
3751 {
3752 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3753 d->rela.hdr->sh_info = d->this_idx;
3754 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3755 }
3756
3757 /* We need to set up sh_link for SHF_LINK_ORDER. */
3758 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3759 {
3760 s = elf_linked_to_section (sec);
3761 if (s)
3762 {
3763 /* elf_linked_to_section points to the input section. */
3764 if (link_info != NULL)
3765 {
3766 /* Check discarded linkonce section. */
3767 if (discarded_section (s))
3768 {
3769 asection *kept;
3770 _bfd_error_handler
3771 /* xgettext:c-format */
3772 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3773 abfd, d->this_hdr.bfd_section,
3774 s, s->owner);
3775 /* Point to the kept section if it has the same
3776 size as the discarded one. */
3777 kept = _bfd_elf_check_kept_section (s, link_info);
3778 if (kept == NULL)
3779 {
3780 bfd_set_error (bfd_error_bad_value);
3781 return FALSE;
3782 }
3783 s = kept;
3784 }
3785
3786 s = s->output_section;
3787 BFD_ASSERT (s != NULL);
3788 }
3789 else
3790 {
3791 /* Handle objcopy. */
3792 if (s->output_section == NULL)
3793 {
3794 _bfd_error_handler
3795 /* xgettext:c-format */
3796 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3797 abfd, d->this_hdr.bfd_section, s, s->owner);
3798 bfd_set_error (bfd_error_bad_value);
3799 return FALSE;
3800 }
3801 s = s->output_section;
3802 }
3803 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3804 }
3805 else
3806 {
3807 /* PR 290:
3808 The Intel C compiler generates SHT_IA_64_UNWIND with
3809 SHF_LINK_ORDER. But it doesn't set the sh_link or
3810 sh_info fields. Hence we could get the situation
3811 where s is NULL. */
3812 const struct elf_backend_data *bed
3813 = get_elf_backend_data (abfd);
3814 if (bed->link_order_error_handler)
3815 bed->link_order_error_handler
3816 /* xgettext:c-format */
3817 (_("%B: warning: sh_link not set for section `%A'"),
3818 abfd, sec);
3819 }
3820 }
3821
3822 switch (d->this_hdr.sh_type)
3823 {
3824 case SHT_REL:
3825 case SHT_RELA:
3826 /* A reloc section which we are treating as a normal BFD
3827 section. sh_link is the section index of the symbol
3828 table. sh_info is the section index of the section to
3829 which the relocation entries apply. We assume that an
3830 allocated reloc section uses the dynamic symbol table.
3831 FIXME: How can we be sure? */
3832 s = bfd_get_section_by_name (abfd, ".dynsym");
3833 if (s != NULL)
3834 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3835
3836 s = get_elf_backend_data (abfd)->get_reloc_section (sec);
3837 if (s != NULL)
3838 {
3839 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3840 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3841 }
3842 break;
3843
3844 case SHT_STRTAB:
3845 /* We assume that a section named .stab*str is a stabs
3846 string section. We look for a section with the same name
3847 but without the trailing ``str'', and set its sh_link
3848 field to point to this section. */
3849 if (CONST_STRNEQ (sec->name, ".stab")
3850 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3851 {
3852 size_t len;
3853 char *alc;
3854
3855 len = strlen (sec->name);
3856 alc = (char *) bfd_malloc (len - 2);
3857 if (alc == NULL)
3858 return FALSE;
3859 memcpy (alc, sec->name, len - 3);
3860 alc[len - 3] = '\0';
3861 s = bfd_get_section_by_name (abfd, alc);
3862 free (alc);
3863 if (s != NULL)
3864 {
3865 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3866
3867 /* This is a .stab section. */
3868 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3869 elf_section_data (s)->this_hdr.sh_entsize
3870 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3871 }
3872 }
3873 break;
3874
3875 case SHT_DYNAMIC:
3876 case SHT_DYNSYM:
3877 case SHT_GNU_verneed:
3878 case SHT_GNU_verdef:
3879 /* sh_link is the section header index of the string table
3880 used for the dynamic entries, or the symbol table, or the
3881 version strings. */
3882 s = bfd_get_section_by_name (abfd, ".dynstr");
3883 if (s != NULL)
3884 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3885 break;
3886
3887 case SHT_GNU_LIBLIST:
3888 /* sh_link is the section header index of the prelink library
3889 list used for the dynamic entries, or the symbol table, or
3890 the version strings. */
3891 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3892 ? ".dynstr" : ".gnu.libstr");
3893 if (s != NULL)
3894 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3895 break;
3896
3897 case SHT_HASH:
3898 case SHT_GNU_HASH:
3899 case SHT_GNU_versym:
3900 /* sh_link is the section header index of the symbol table
3901 this hash table or version table is for. */
3902 s = bfd_get_section_by_name (abfd, ".dynsym");
3903 if (s != NULL)
3904 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3905 break;
3906
3907 case SHT_GROUP:
3908 d->this_hdr.sh_link = elf_onesymtab (abfd);
3909 }
3910 }
3911
3912 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3913 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3914 debug section name from .debug_* to .zdebug_* if needed. */
3915
3916 return TRUE;
3917 }
3918
3919 static bfd_boolean
3920 sym_is_global (bfd *abfd, asymbol *sym)
3921 {
3922 /* If the backend has a special mapping, use it. */
3923 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3924 if (bed->elf_backend_sym_is_global)
3925 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3926
3927 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3928 || bfd_is_und_section (bfd_get_section (sym))
3929 || bfd_is_com_section (bfd_get_section (sym)));
3930 }
3931
3932 /* Filter global symbols of ABFD to include in the import library. All
3933 SYMCOUNT symbols of ABFD can be examined from their pointers in
3934 SYMS. Pointers of symbols to keep should be stored contiguously at
3935 the beginning of that array.
3936
3937 Returns the number of symbols to keep. */
3938
3939 unsigned int
3940 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3941 asymbol **syms, long symcount)
3942 {
3943 long src_count, dst_count = 0;
3944
3945 for (src_count = 0; src_count < symcount; src_count++)
3946 {
3947 asymbol *sym = syms[src_count];
3948 char *name = (char *) bfd_asymbol_name (sym);
3949 struct bfd_link_hash_entry *h;
3950
3951 if (!sym_is_global (abfd, sym))
3952 continue;
3953
3954 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
3955 if (h == NULL)
3956 continue;
3957 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
3958 continue;
3959 if (h->linker_def || h->ldscript_def)
3960 continue;
3961
3962 syms[dst_count++] = sym;
3963 }
3964
3965 syms[dst_count] = NULL;
3966
3967 return dst_count;
3968 }
3969
3970 /* Don't output section symbols for sections that are not going to be
3971 output, that are duplicates or there is no BFD section. */
3972
3973 static bfd_boolean
3974 ignore_section_sym (bfd *abfd, asymbol *sym)
3975 {
3976 elf_symbol_type *type_ptr;
3977
3978 if ((sym->flags & BSF_SECTION_SYM) == 0)
3979 return FALSE;
3980
3981 type_ptr = elf_symbol_from (abfd, sym);
3982 return ((type_ptr != NULL
3983 && type_ptr->internal_elf_sym.st_shndx != 0
3984 && bfd_is_abs_section (sym->section))
3985 || !(sym->section->owner == abfd
3986 || (sym->section->output_section->owner == abfd
3987 && sym->section->output_offset == 0)
3988 || bfd_is_abs_section (sym->section)));
3989 }
3990
3991 /* Map symbol from it's internal number to the external number, moving
3992 all local symbols to be at the head of the list. */
3993
3994 static bfd_boolean
3995 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3996 {
3997 unsigned int symcount = bfd_get_symcount (abfd);
3998 asymbol **syms = bfd_get_outsymbols (abfd);
3999 asymbol **sect_syms;
4000 unsigned int num_locals = 0;
4001 unsigned int num_globals = 0;
4002 unsigned int num_locals2 = 0;
4003 unsigned int num_globals2 = 0;
4004 unsigned int max_index = 0;
4005 unsigned int idx;
4006 asection *asect;
4007 asymbol **new_syms;
4008
4009 #ifdef DEBUG
4010 fprintf (stderr, "elf_map_symbols\n");
4011 fflush (stderr);
4012 #endif
4013
4014 for (asect = abfd->sections; asect; asect = asect->next)
4015 {
4016 if (max_index < asect->index)
4017 max_index = asect->index;
4018 }
4019
4020 max_index++;
4021 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4022 if (sect_syms == NULL)
4023 return FALSE;
4024 elf_section_syms (abfd) = sect_syms;
4025 elf_num_section_syms (abfd) = max_index;
4026
4027 /* Init sect_syms entries for any section symbols we have already
4028 decided to output. */
4029 for (idx = 0; idx < symcount; idx++)
4030 {
4031 asymbol *sym = syms[idx];
4032
4033 if ((sym->flags & BSF_SECTION_SYM) != 0
4034 && sym->value == 0
4035 && !ignore_section_sym (abfd, sym)
4036 && !bfd_is_abs_section (sym->section))
4037 {
4038 asection *sec = sym->section;
4039
4040 if (sec->owner != abfd)
4041 sec = sec->output_section;
4042
4043 sect_syms[sec->index] = syms[idx];
4044 }
4045 }
4046
4047 /* Classify all of the symbols. */
4048 for (idx = 0; idx < symcount; idx++)
4049 {
4050 if (sym_is_global (abfd, syms[idx]))
4051 num_globals++;
4052 else if (!ignore_section_sym (abfd, syms[idx]))
4053 num_locals++;
4054 }
4055
4056 /* We will be adding a section symbol for each normal BFD section. Most
4057 sections will already have a section symbol in outsymbols, but
4058 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4059 at least in that case. */
4060 for (asect = abfd->sections; asect; asect = asect->next)
4061 {
4062 if (sect_syms[asect->index] == NULL)
4063 {
4064 if (!sym_is_global (abfd, asect->symbol))
4065 num_locals++;
4066 else
4067 num_globals++;
4068 }
4069 }
4070
4071 /* Now sort the symbols so the local symbols are first. */
4072 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4073 sizeof (asymbol *));
4074
4075 if (new_syms == NULL)
4076 return FALSE;
4077
4078 for (idx = 0; idx < symcount; idx++)
4079 {
4080 asymbol *sym = syms[idx];
4081 unsigned int i;
4082
4083 if (sym_is_global (abfd, sym))
4084 i = num_locals + num_globals2++;
4085 else if (!ignore_section_sym (abfd, sym))
4086 i = num_locals2++;
4087 else
4088 continue;
4089 new_syms[i] = sym;
4090 sym->udata.i = i + 1;
4091 }
4092 for (asect = abfd->sections; asect; asect = asect->next)
4093 {
4094 if (sect_syms[asect->index] == NULL)
4095 {
4096 asymbol *sym = asect->symbol;
4097 unsigned int i;
4098
4099 sect_syms[asect->index] = sym;
4100 if (!sym_is_global (abfd, sym))
4101 i = num_locals2++;
4102 else
4103 i = num_locals + num_globals2++;
4104 new_syms[i] = sym;
4105 sym->udata.i = i + 1;
4106 }
4107 }
4108
4109 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4110
4111 *pnum_locals = num_locals;
4112 return TRUE;
4113 }
4114
4115 /* Align to the maximum file alignment that could be required for any
4116 ELF data structure. */
4117
4118 static inline file_ptr
4119 align_file_position (file_ptr off, int align)
4120 {
4121 return (off + align - 1) & ~(align - 1);
4122 }
4123
4124 /* Assign a file position to a section, optionally aligning to the
4125 required section alignment. */
4126
4127 file_ptr
4128 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4129 file_ptr offset,
4130 bfd_boolean align)
4131 {
4132 if (align && i_shdrp->sh_addralign > 1)
4133 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4134 i_shdrp->sh_offset = offset;
4135 if (i_shdrp->bfd_section != NULL)
4136 i_shdrp->bfd_section->filepos = offset;
4137 if (i_shdrp->sh_type != SHT_NOBITS)
4138 offset += i_shdrp->sh_size;
4139 return offset;
4140 }
4141
4142 /* Compute the file positions we are going to put the sections at, and
4143 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4144 is not NULL, this is being called by the ELF backend linker. */
4145
4146 bfd_boolean
4147 _bfd_elf_compute_section_file_positions (bfd *abfd,
4148 struct bfd_link_info *link_info)
4149 {
4150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4151 struct fake_section_arg fsargs;
4152 bfd_boolean failed;
4153 struct elf_strtab_hash *strtab = NULL;
4154 Elf_Internal_Shdr *shstrtab_hdr;
4155 bfd_boolean need_symtab;
4156
4157 if (abfd->output_has_begun)
4158 return TRUE;
4159
4160 /* Do any elf backend specific processing first. */
4161 if (bed->elf_backend_begin_write_processing)
4162 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4163
4164 if (! prep_headers (abfd))
4165 return FALSE;
4166
4167 /* Post process the headers if necessary. */
4168 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4169
4170 fsargs.failed = FALSE;
4171 fsargs.link_info = link_info;
4172 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4173 if (fsargs.failed)
4174 return FALSE;
4175
4176 if (!assign_section_numbers (abfd, link_info))
4177 return FALSE;
4178
4179 /* The backend linker builds symbol table information itself. */
4180 need_symtab = (link_info == NULL
4181 && (bfd_get_symcount (abfd) > 0
4182 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4183 == HAS_RELOC)));
4184 if (need_symtab)
4185 {
4186 /* Non-zero if doing a relocatable link. */
4187 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4188
4189 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4190 return FALSE;
4191 }
4192
4193 failed = FALSE;
4194 if (link_info == NULL)
4195 {
4196 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4197 if (failed)
4198 return FALSE;
4199 }
4200
4201 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4202 /* sh_name was set in prep_headers. */
4203 shstrtab_hdr->sh_type = SHT_STRTAB;
4204 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4205 shstrtab_hdr->sh_addr = 0;
4206 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4207 shstrtab_hdr->sh_entsize = 0;
4208 shstrtab_hdr->sh_link = 0;
4209 shstrtab_hdr->sh_info = 0;
4210 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4211 shstrtab_hdr->sh_addralign = 1;
4212
4213 if (!assign_file_positions_except_relocs (abfd, link_info))
4214 return FALSE;
4215
4216 if (need_symtab)
4217 {
4218 file_ptr off;
4219 Elf_Internal_Shdr *hdr;
4220
4221 off = elf_next_file_pos (abfd);
4222
4223 hdr = & elf_symtab_hdr (abfd);
4224 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4225
4226 if (elf_symtab_shndx_list (abfd) != NULL)
4227 {
4228 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4229 if (hdr->sh_size != 0)
4230 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4231 /* FIXME: What about other symtab_shndx sections in the list ? */
4232 }
4233
4234 hdr = &elf_tdata (abfd)->strtab_hdr;
4235 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4236
4237 elf_next_file_pos (abfd) = off;
4238
4239 /* Now that we know where the .strtab section goes, write it
4240 out. */
4241 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4242 || ! _bfd_elf_strtab_emit (abfd, strtab))
4243 return FALSE;
4244 _bfd_elf_strtab_free (strtab);
4245 }
4246
4247 abfd->output_has_begun = TRUE;
4248
4249 return TRUE;
4250 }
4251
4252 /* Make an initial estimate of the size of the program header. If we
4253 get the number wrong here, we'll redo section placement. */
4254
4255 static bfd_size_type
4256 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4257 {
4258 size_t segs;
4259 asection *s;
4260 const struct elf_backend_data *bed;
4261
4262 /* Assume we will need exactly two PT_LOAD segments: one for text
4263 and one for data. */
4264 segs = 2;
4265
4266 s = bfd_get_section_by_name (abfd, ".interp");
4267 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4268 {
4269 /* If we have a loadable interpreter section, we need a
4270 PT_INTERP segment. In this case, assume we also need a
4271 PT_PHDR segment, although that may not be true for all
4272 targets. */
4273 segs += 2;
4274 }
4275
4276 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4277 {
4278 /* We need a PT_DYNAMIC segment. */
4279 ++segs;
4280 }
4281
4282 if (info != NULL && info->relro)
4283 {
4284 /* We need a PT_GNU_RELRO segment. */
4285 ++segs;
4286 }
4287
4288 if (elf_eh_frame_hdr (abfd))
4289 {
4290 /* We need a PT_GNU_EH_FRAME segment. */
4291 ++segs;
4292 }
4293
4294 if (elf_stack_flags (abfd))
4295 {
4296 /* We need a PT_GNU_STACK segment. */
4297 ++segs;
4298 }
4299
4300 for (s = abfd->sections; s != NULL; s = s->next)
4301 {
4302 if ((s->flags & SEC_LOAD) != 0
4303 && CONST_STRNEQ (s->name, ".note"))
4304 {
4305 /* We need a PT_NOTE segment. */
4306 ++segs;
4307 /* Try to create just one PT_NOTE segment
4308 for all adjacent loadable .note* sections.
4309 gABI requires that within a PT_NOTE segment
4310 (and also inside of each SHT_NOTE section)
4311 each note is padded to a multiple of 4 size,
4312 so we check whether the sections are correctly
4313 aligned. */
4314 if (s->alignment_power == 2)
4315 while (s->next != NULL
4316 && s->next->alignment_power == 2
4317 && (s->next->flags & SEC_LOAD) != 0
4318 && CONST_STRNEQ (s->next->name, ".note"))
4319 s = s->next;
4320 }
4321 }
4322
4323 for (s = abfd->sections; s != NULL; s = s->next)
4324 {
4325 if (s->flags & SEC_THREAD_LOCAL)
4326 {
4327 /* We need a PT_TLS segment. */
4328 ++segs;
4329 break;
4330 }
4331 }
4332
4333 /* Let the backend count up any program headers it might need. */
4334 bed = get_elf_backend_data (abfd);
4335 if (bed->elf_backend_additional_program_headers)
4336 {
4337 int a;
4338
4339 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4340 if (a == -1)
4341 abort ();
4342 segs += a;
4343 }
4344
4345 return segs * bed->s->sizeof_phdr;
4346 }
4347
4348 /* Find the segment that contains the output_section of section. */
4349
4350 Elf_Internal_Phdr *
4351 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4352 {
4353 struct elf_segment_map *m;
4354 Elf_Internal_Phdr *p;
4355
4356 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4357 m != NULL;
4358 m = m->next, p++)
4359 {
4360 int i;
4361
4362 for (i = m->count - 1; i >= 0; i--)
4363 if (m->sections[i] == section)
4364 return p;
4365 }
4366
4367 return NULL;
4368 }
4369
4370 /* Create a mapping from a set of sections to a program segment. */
4371
4372 static struct elf_segment_map *
4373 make_mapping (bfd *abfd,
4374 asection **sections,
4375 unsigned int from,
4376 unsigned int to,
4377 bfd_boolean phdr)
4378 {
4379 struct elf_segment_map *m;
4380 unsigned int i;
4381 asection **hdrpp;
4382 bfd_size_type amt;
4383
4384 amt = sizeof (struct elf_segment_map);
4385 amt += (to - from - 1) * sizeof (asection *);
4386 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4387 if (m == NULL)
4388 return NULL;
4389 m->next = NULL;
4390 m->p_type = PT_LOAD;
4391 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4392 m->sections[i - from] = *hdrpp;
4393 m->count = to - from;
4394
4395 if (from == 0 && phdr)
4396 {
4397 /* Include the headers in the first PT_LOAD segment. */
4398 m->includes_filehdr = 1;
4399 m->includes_phdrs = 1;
4400 }
4401
4402 return m;
4403 }
4404
4405 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4406 on failure. */
4407
4408 struct elf_segment_map *
4409 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4410 {
4411 struct elf_segment_map *m;
4412
4413 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4414 sizeof (struct elf_segment_map));
4415 if (m == NULL)
4416 return NULL;
4417 m->next = NULL;
4418 m->p_type = PT_DYNAMIC;
4419 m->count = 1;
4420 m->sections[0] = dynsec;
4421
4422 return m;
4423 }
4424
4425 /* Possibly add or remove segments from the segment map. */
4426
4427 static bfd_boolean
4428 elf_modify_segment_map (bfd *abfd,
4429 struct bfd_link_info *info,
4430 bfd_boolean remove_empty_load)
4431 {
4432 struct elf_segment_map **m;
4433 const struct elf_backend_data *bed;
4434
4435 /* The placement algorithm assumes that non allocated sections are
4436 not in PT_LOAD segments. We ensure this here by removing such
4437 sections from the segment map. We also remove excluded
4438 sections. Finally, any PT_LOAD segment without sections is
4439 removed. */
4440 m = &elf_seg_map (abfd);
4441 while (*m)
4442 {
4443 unsigned int i, new_count;
4444
4445 for (new_count = 0, i = 0; i < (*m)->count; i++)
4446 {
4447 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4448 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4449 || (*m)->p_type != PT_LOAD))
4450 {
4451 (*m)->sections[new_count] = (*m)->sections[i];
4452 new_count++;
4453 }
4454 }
4455 (*m)->count = new_count;
4456
4457 if (remove_empty_load
4458 && (*m)->p_type == PT_LOAD
4459 && (*m)->count == 0
4460 && !(*m)->includes_phdrs)
4461 *m = (*m)->next;
4462 else
4463 m = &(*m)->next;
4464 }
4465
4466 bed = get_elf_backend_data (abfd);
4467 if (bed->elf_backend_modify_segment_map != NULL)
4468 {
4469 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4470 return FALSE;
4471 }
4472
4473 return TRUE;
4474 }
4475
4476 /* Set up a mapping from BFD sections to program segments. */
4477
4478 bfd_boolean
4479 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4480 {
4481 unsigned int count;
4482 struct elf_segment_map *m;
4483 asection **sections = NULL;
4484 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4485 bfd_boolean no_user_phdrs;
4486
4487 no_user_phdrs = elf_seg_map (abfd) == NULL;
4488
4489 if (info != NULL)
4490 info->user_phdrs = !no_user_phdrs;
4491
4492 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4493 {
4494 asection *s;
4495 unsigned int i;
4496 struct elf_segment_map *mfirst;
4497 struct elf_segment_map **pm;
4498 asection *last_hdr;
4499 bfd_vma last_size;
4500 unsigned int phdr_index;
4501 bfd_vma maxpagesize;
4502 asection **hdrpp;
4503 bfd_boolean phdr_in_segment = TRUE;
4504 bfd_boolean writable;
4505 int tls_count = 0;
4506 asection *first_tls = NULL;
4507 asection *dynsec, *eh_frame_hdr;
4508 bfd_size_type amt;
4509 bfd_vma addr_mask, wrap_to = 0;
4510 bfd_boolean linker_created_pt_phdr_segment = FALSE;
4511
4512 /* Select the allocated sections, and sort them. */
4513
4514 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4515 sizeof (asection *));
4516 if (sections == NULL)
4517 goto error_return;
4518
4519 /* Calculate top address, avoiding undefined behaviour of shift
4520 left operator when shift count is equal to size of type
4521 being shifted. */
4522 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4523 addr_mask = (addr_mask << 1) + 1;
4524
4525 i = 0;
4526 for (s = abfd->sections; s != NULL; s = s->next)
4527 {
4528 if ((s->flags & SEC_ALLOC) != 0)
4529 {
4530 sections[i] = s;
4531 ++i;
4532 /* A wrapping section potentially clashes with header. */
4533 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4534 wrap_to = (s->lma + s->size) & addr_mask;
4535 }
4536 }
4537 BFD_ASSERT (i <= bfd_count_sections (abfd));
4538 count = i;
4539
4540 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4541
4542 /* Build the mapping. */
4543
4544 mfirst = NULL;
4545 pm = &mfirst;
4546
4547 /* If we have a .interp section, then create a PT_PHDR segment for
4548 the program headers and a PT_INTERP segment for the .interp
4549 section. */
4550 s = bfd_get_section_by_name (abfd, ".interp");
4551 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4552 {
4553 amt = sizeof (struct elf_segment_map);
4554 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4555 if (m == NULL)
4556 goto error_return;
4557 m->next = NULL;
4558 m->p_type = PT_PHDR;
4559 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4560 m->p_flags = PF_R | PF_X;
4561 m->p_flags_valid = 1;
4562 m->includes_phdrs = 1;
4563 linker_created_pt_phdr_segment = TRUE;
4564 *pm = m;
4565 pm = &m->next;
4566
4567 amt = sizeof (struct elf_segment_map);
4568 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4569 if (m == NULL)
4570 goto error_return;
4571 m->next = NULL;
4572 m->p_type = PT_INTERP;
4573 m->count = 1;
4574 m->sections[0] = s;
4575
4576 *pm = m;
4577 pm = &m->next;
4578 }
4579
4580 /* Look through the sections. We put sections in the same program
4581 segment when the start of the second section can be placed within
4582 a few bytes of the end of the first section. */
4583 last_hdr = NULL;
4584 last_size = 0;
4585 phdr_index = 0;
4586 maxpagesize = bed->maxpagesize;
4587 /* PR 17512: file: c8455299.
4588 Avoid divide-by-zero errors later on.
4589 FIXME: Should we abort if the maxpagesize is zero ? */
4590 if (maxpagesize == 0)
4591 maxpagesize = 1;
4592 writable = FALSE;
4593 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4594 if (dynsec != NULL
4595 && (dynsec->flags & SEC_LOAD) == 0)
4596 dynsec = NULL;
4597
4598 /* Deal with -Ttext or something similar such that the first section
4599 is not adjacent to the program headers. This is an
4600 approximation, since at this point we don't know exactly how many
4601 program headers we will need. */
4602 if (count > 0)
4603 {
4604 bfd_size_type phdr_size = elf_program_header_size (abfd);
4605
4606 if (phdr_size == (bfd_size_type) -1)
4607 phdr_size = get_program_header_size (abfd, info);
4608 phdr_size += bed->s->sizeof_ehdr;
4609 if ((abfd->flags & D_PAGED) == 0
4610 || (sections[0]->lma & addr_mask) < phdr_size
4611 || ((sections[0]->lma & addr_mask) % maxpagesize
4612 < phdr_size % maxpagesize)
4613 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4614 {
4615 /* PR 20815: The ELF standard says that a PT_PHDR segment, if
4616 present, must be included as part of the memory image of the
4617 program. Ie it must be part of a PT_LOAD segment as well.
4618 If we have had to create our own PT_PHDR segment, but it is
4619 not going to be covered by the first PT_LOAD segment, then
4620 force the inclusion if we can... */
4621 if ((abfd->flags & D_PAGED) != 0
4622 && linker_created_pt_phdr_segment)
4623 phdr_in_segment = TRUE;
4624 else
4625 phdr_in_segment = FALSE;
4626 }
4627 }
4628
4629 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4630 {
4631 asection *hdr;
4632 bfd_boolean new_segment;
4633
4634 hdr = *hdrpp;
4635
4636 /* See if this section and the last one will fit in the same
4637 segment. */
4638
4639 if (last_hdr == NULL)
4640 {
4641 /* If we don't have a segment yet, then we don't need a new
4642 one (we build the last one after this loop). */
4643 new_segment = FALSE;
4644 }
4645 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4646 {
4647 /* If this section has a different relation between the
4648 virtual address and the load address, then we need a new
4649 segment. */
4650 new_segment = TRUE;
4651 }
4652 else if (hdr->lma < last_hdr->lma + last_size
4653 || last_hdr->lma + last_size < last_hdr->lma)
4654 {
4655 /* If this section has a load address that makes it overlap
4656 the previous section, then we need a new segment. */
4657 new_segment = TRUE;
4658 }
4659 /* In the next test we have to be careful when last_hdr->lma is close
4660 to the end of the address space. If the aligned address wraps
4661 around to the start of the address space, then there are no more
4662 pages left in memory and it is OK to assume that the current
4663 section can be included in the current segment. */
4664 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4665 > last_hdr->lma)
4666 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4667 <= hdr->lma))
4668 {
4669 /* If putting this section in this segment would force us to
4670 skip a page in the segment, then we need a new segment. */
4671 new_segment = TRUE;
4672 }
4673 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4674 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0
4675 && ((abfd->flags & D_PAGED) == 0
4676 || (((last_hdr->lma + last_size - 1) & -maxpagesize)
4677 != (hdr->lma & -maxpagesize))))
4678 {
4679 /* We don't want to put a loaded section after a
4680 nonloaded (ie. bss style) section in the same segment
4681 as that will force the non-loaded section to be loaded.
4682 Consider .tbss sections as loaded for this purpose.
4683 However, like the writable/non-writable case below,
4684 if they are on the same page then they must be put
4685 in the same segment. */
4686 new_segment = TRUE;
4687 }
4688 else if ((abfd->flags & D_PAGED) == 0)
4689 {
4690 /* If the file is not demand paged, which means that we
4691 don't require the sections to be correctly aligned in the
4692 file, then there is no other reason for a new segment. */
4693 new_segment = FALSE;
4694 }
4695 else if (! writable
4696 && (hdr->flags & SEC_READONLY) == 0
4697 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4698 != (hdr->lma & -maxpagesize)))
4699 {
4700 /* We don't want to put a writable section in a read only
4701 segment, unless they are on the same page in memory
4702 anyhow. We already know that the last section does not
4703 bring us past the current section on the page, so the
4704 only case in which the new section is not on the same
4705 page as the previous section is when the previous section
4706 ends precisely on a page boundary. */
4707 new_segment = TRUE;
4708 }
4709 else
4710 {
4711 /* Otherwise, we can use the same segment. */
4712 new_segment = FALSE;
4713 }
4714
4715 /* Allow interested parties a chance to override our decision. */
4716 if (last_hdr != NULL
4717 && info != NULL
4718 && info->callbacks->override_segment_assignment != NULL)
4719 new_segment
4720 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4721 last_hdr,
4722 new_segment);
4723
4724 if (! new_segment)
4725 {
4726 if ((hdr->flags & SEC_READONLY) == 0)
4727 writable = TRUE;
4728 last_hdr = hdr;
4729 /* .tbss sections effectively have zero size. */
4730 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4731 != SEC_THREAD_LOCAL)
4732 last_size = hdr->size;
4733 else
4734 last_size = 0;
4735 continue;
4736 }
4737
4738 /* We need a new program segment. We must create a new program
4739 header holding all the sections from phdr_index until hdr. */
4740
4741 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4742 if (m == NULL)
4743 goto error_return;
4744
4745 *pm = m;
4746 pm = &m->next;
4747
4748 if ((hdr->flags & SEC_READONLY) == 0)
4749 writable = TRUE;
4750 else
4751 writable = FALSE;
4752
4753 last_hdr = hdr;
4754 /* .tbss sections effectively have zero size. */
4755 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4756 last_size = hdr->size;
4757 else
4758 last_size = 0;
4759 phdr_index = i;
4760 phdr_in_segment = FALSE;
4761 }
4762
4763 /* Create a final PT_LOAD program segment, but not if it's just
4764 for .tbss. */
4765 if (last_hdr != NULL
4766 && (i - phdr_index != 1
4767 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4768 != SEC_THREAD_LOCAL)))
4769 {
4770 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4771 if (m == NULL)
4772 goto error_return;
4773
4774 *pm = m;
4775 pm = &m->next;
4776 }
4777
4778 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4779 if (dynsec != NULL)
4780 {
4781 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4782 if (m == NULL)
4783 goto error_return;
4784 *pm = m;
4785 pm = &m->next;
4786 }
4787
4788 /* For each batch of consecutive loadable .note sections,
4789 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4790 because if we link together nonloadable .note sections and
4791 loadable .note sections, we will generate two .note sections
4792 in the output file. FIXME: Using names for section types is
4793 bogus anyhow. */
4794 for (s = abfd->sections; s != NULL; s = s->next)
4795 {
4796 if ((s->flags & SEC_LOAD) != 0
4797 && CONST_STRNEQ (s->name, ".note"))
4798 {
4799 asection *s2;
4800
4801 count = 1;
4802 amt = sizeof (struct elf_segment_map);
4803 if (s->alignment_power == 2)
4804 for (s2 = s; s2->next != NULL; s2 = s2->next)
4805 {
4806 if (s2->next->alignment_power == 2
4807 && (s2->next->flags & SEC_LOAD) != 0
4808 && CONST_STRNEQ (s2->next->name, ".note")
4809 && align_power (s2->lma + s2->size, 2)
4810 == s2->next->lma)
4811 count++;
4812 else
4813 break;
4814 }
4815 amt += (count - 1) * sizeof (asection *);
4816 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4817 if (m == NULL)
4818 goto error_return;
4819 m->next = NULL;
4820 m->p_type = PT_NOTE;
4821 m->count = count;
4822 while (count > 1)
4823 {
4824 m->sections[m->count - count--] = s;
4825 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4826 s = s->next;
4827 }
4828 m->sections[m->count - 1] = s;
4829 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4830 *pm = m;
4831 pm = &m->next;
4832 }
4833 if (s->flags & SEC_THREAD_LOCAL)
4834 {
4835 if (! tls_count)
4836 first_tls = s;
4837 tls_count++;
4838 }
4839 }
4840
4841 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4842 if (tls_count > 0)
4843 {
4844 amt = sizeof (struct elf_segment_map);
4845 amt += (tls_count - 1) * sizeof (asection *);
4846 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4847 if (m == NULL)
4848 goto error_return;
4849 m->next = NULL;
4850 m->p_type = PT_TLS;
4851 m->count = tls_count;
4852 /* Mandated PF_R. */
4853 m->p_flags = PF_R;
4854 m->p_flags_valid = 1;
4855 s = first_tls;
4856 for (i = 0; i < (unsigned int) tls_count; ++i)
4857 {
4858 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4859 {
4860 _bfd_error_handler
4861 (_("%B: TLS sections are not adjacent:"), abfd);
4862 s = first_tls;
4863 i = 0;
4864 while (i < (unsigned int) tls_count)
4865 {
4866 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4867 {
4868 _bfd_error_handler (_(" TLS: %A"), s);
4869 i++;
4870 }
4871 else
4872 _bfd_error_handler (_(" non-TLS: %A"), s);
4873 s = s->next;
4874 }
4875 bfd_set_error (bfd_error_bad_value);
4876 goto error_return;
4877 }
4878 m->sections[i] = s;
4879 s = s->next;
4880 }
4881
4882 *pm = m;
4883 pm = &m->next;
4884 }
4885
4886 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4887 segment. */
4888 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4889 if (eh_frame_hdr != NULL
4890 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4891 {
4892 amt = sizeof (struct elf_segment_map);
4893 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4894 if (m == NULL)
4895 goto error_return;
4896 m->next = NULL;
4897 m->p_type = PT_GNU_EH_FRAME;
4898 m->count = 1;
4899 m->sections[0] = eh_frame_hdr->output_section;
4900
4901 *pm = m;
4902 pm = &m->next;
4903 }
4904
4905 if (elf_stack_flags (abfd))
4906 {
4907 amt = sizeof (struct elf_segment_map);
4908 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4909 if (m == NULL)
4910 goto error_return;
4911 m->next = NULL;
4912 m->p_type = PT_GNU_STACK;
4913 m->p_flags = elf_stack_flags (abfd);
4914 m->p_align = bed->stack_align;
4915 m->p_flags_valid = 1;
4916 m->p_align_valid = m->p_align != 0;
4917 if (info->stacksize > 0)
4918 {
4919 m->p_size = info->stacksize;
4920 m->p_size_valid = 1;
4921 }
4922
4923 *pm = m;
4924 pm = &m->next;
4925 }
4926
4927 if (info != NULL && info->relro)
4928 {
4929 for (m = mfirst; m != NULL; m = m->next)
4930 {
4931 if (m->p_type == PT_LOAD
4932 && m->count != 0
4933 && m->sections[0]->vma >= info->relro_start
4934 && m->sections[0]->vma < info->relro_end)
4935 {
4936 i = m->count;
4937 while (--i != (unsigned) -1)
4938 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4939 == (SEC_LOAD | SEC_HAS_CONTENTS))
4940 break;
4941
4942 if (i != (unsigned) -1)
4943 break;
4944 }
4945 }
4946
4947 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4948 if (m != NULL)
4949 {
4950 amt = sizeof (struct elf_segment_map);
4951 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4952 if (m == NULL)
4953 goto error_return;
4954 m->next = NULL;
4955 m->p_type = PT_GNU_RELRO;
4956 *pm = m;
4957 pm = &m->next;
4958 }
4959 }
4960
4961 free (sections);
4962 elf_seg_map (abfd) = mfirst;
4963 }
4964
4965 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4966 return FALSE;
4967
4968 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4969 ++count;
4970 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4971
4972 return TRUE;
4973
4974 error_return:
4975 if (sections != NULL)
4976 free (sections);
4977 return FALSE;
4978 }
4979
4980 /* Sort sections by address. */
4981
4982 static int
4983 elf_sort_sections (const void *arg1, const void *arg2)
4984 {
4985 const asection *sec1 = *(const asection **) arg1;
4986 const asection *sec2 = *(const asection **) arg2;
4987 bfd_size_type size1, size2;
4988
4989 /* Sort by LMA first, since this is the address used to
4990 place the section into a segment. */
4991 if (sec1->lma < sec2->lma)
4992 return -1;
4993 else if (sec1->lma > sec2->lma)
4994 return 1;
4995
4996 /* Then sort by VMA. Normally the LMA and the VMA will be
4997 the same, and this will do nothing. */
4998 if (sec1->vma < sec2->vma)
4999 return -1;
5000 else if (sec1->vma > sec2->vma)
5001 return 1;
5002
5003 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5004
5005 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5006
5007 if (TOEND (sec1))
5008 {
5009 if (TOEND (sec2))
5010 {
5011 /* If the indicies are the same, do not return 0
5012 here, but continue to try the next comparison. */
5013 if (sec1->target_index - sec2->target_index != 0)
5014 return sec1->target_index - sec2->target_index;
5015 }
5016 else
5017 return 1;
5018 }
5019 else if (TOEND (sec2))
5020 return -1;
5021
5022 #undef TOEND
5023
5024 /* Sort by size, to put zero sized sections
5025 before others at the same address. */
5026
5027 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5028 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5029
5030 if (size1 < size2)
5031 return -1;
5032 if (size1 > size2)
5033 return 1;
5034
5035 return sec1->target_index - sec2->target_index;
5036 }
5037
5038 /* Ian Lance Taylor writes:
5039
5040 We shouldn't be using % with a negative signed number. That's just
5041 not good. We have to make sure either that the number is not
5042 negative, or that the number has an unsigned type. When the types
5043 are all the same size they wind up as unsigned. When file_ptr is a
5044 larger signed type, the arithmetic winds up as signed long long,
5045 which is wrong.
5046
5047 What we're trying to say here is something like ``increase OFF by
5048 the least amount that will cause it to be equal to the VMA modulo
5049 the page size.'' */
5050 /* In other words, something like:
5051
5052 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5053 off_offset = off % bed->maxpagesize;
5054 if (vma_offset < off_offset)
5055 adjustment = vma_offset + bed->maxpagesize - off_offset;
5056 else
5057 adjustment = vma_offset - off_offset;
5058
5059 which can can be collapsed into the expression below. */
5060
5061 static file_ptr
5062 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5063 {
5064 /* PR binutils/16199: Handle an alignment of zero. */
5065 if (maxpagesize == 0)
5066 maxpagesize = 1;
5067 return ((vma - off) % maxpagesize);
5068 }
5069
5070 static void
5071 print_segment_map (const struct elf_segment_map *m)
5072 {
5073 unsigned int j;
5074 const char *pt = get_segment_type (m->p_type);
5075 char buf[32];
5076
5077 if (pt == NULL)
5078 {
5079 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5080 sprintf (buf, "LOPROC+%7.7x",
5081 (unsigned int) (m->p_type - PT_LOPROC));
5082 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5083 sprintf (buf, "LOOS+%7.7x",
5084 (unsigned int) (m->p_type - PT_LOOS));
5085 else
5086 snprintf (buf, sizeof (buf), "%8.8x",
5087 (unsigned int) m->p_type);
5088 pt = buf;
5089 }
5090 fflush (stdout);
5091 fprintf (stderr, "%s:", pt);
5092 for (j = 0; j < m->count; j++)
5093 fprintf (stderr, " %s", m->sections [j]->name);
5094 putc ('\n',stderr);
5095 fflush (stderr);
5096 }
5097
5098 static bfd_boolean
5099 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5100 {
5101 void *buf;
5102 bfd_boolean ret;
5103
5104 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5105 return FALSE;
5106 buf = bfd_zmalloc (len);
5107 if (buf == NULL)
5108 return FALSE;
5109 ret = bfd_bwrite (buf, len, abfd) == len;
5110 free (buf);
5111 return ret;
5112 }
5113
5114 /* Assign file positions to the sections based on the mapping from
5115 sections to segments. This function also sets up some fields in
5116 the file header. */
5117
5118 static bfd_boolean
5119 assign_file_positions_for_load_sections (bfd *abfd,
5120 struct bfd_link_info *link_info)
5121 {
5122 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5123 struct elf_segment_map *m;
5124 Elf_Internal_Phdr *phdrs;
5125 Elf_Internal_Phdr *p;
5126 file_ptr off;
5127 bfd_size_type maxpagesize;
5128 unsigned int pt_load_count = 0;
5129 unsigned int alloc;
5130 unsigned int i, j;
5131 bfd_vma header_pad = 0;
5132
5133 if (link_info == NULL
5134 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5135 return FALSE;
5136
5137 alloc = 0;
5138 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5139 {
5140 ++alloc;
5141 if (m->header_size)
5142 header_pad = m->header_size;
5143 }
5144
5145 if (alloc)
5146 {
5147 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5148 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5149 }
5150 else
5151 {
5152 /* PR binutils/12467. */
5153 elf_elfheader (abfd)->e_phoff = 0;
5154 elf_elfheader (abfd)->e_phentsize = 0;
5155 }
5156
5157 elf_elfheader (abfd)->e_phnum = alloc;
5158
5159 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5160 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5161 else
5162 BFD_ASSERT (elf_program_header_size (abfd)
5163 >= alloc * bed->s->sizeof_phdr);
5164
5165 if (alloc == 0)
5166 {
5167 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5168 return TRUE;
5169 }
5170
5171 /* We're writing the size in elf_program_header_size (abfd),
5172 see assign_file_positions_except_relocs, so make sure we have
5173 that amount allocated, with trailing space cleared.
5174 The variable alloc contains the computed need, while
5175 elf_program_header_size (abfd) contains the size used for the
5176 layout.
5177 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5178 where the layout is forced to according to a larger size in the
5179 last iterations for the testcase ld-elf/header. */
5180 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5181 == 0);
5182 phdrs = (Elf_Internal_Phdr *)
5183 bfd_zalloc2 (abfd,
5184 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5185 sizeof (Elf_Internal_Phdr));
5186 elf_tdata (abfd)->phdr = phdrs;
5187 if (phdrs == NULL)
5188 return FALSE;
5189
5190 maxpagesize = 1;
5191 if ((abfd->flags & D_PAGED) != 0)
5192 maxpagesize = bed->maxpagesize;
5193
5194 off = bed->s->sizeof_ehdr;
5195 off += alloc * bed->s->sizeof_phdr;
5196 if (header_pad < (bfd_vma) off)
5197 header_pad = 0;
5198 else
5199 header_pad -= off;
5200 off += header_pad;
5201
5202 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5203 m != NULL;
5204 m = m->next, p++, j++)
5205 {
5206 asection **secpp;
5207 bfd_vma off_adjust;
5208 bfd_boolean no_contents;
5209
5210 /* If elf_segment_map is not from map_sections_to_segments, the
5211 sections may not be correctly ordered. NOTE: sorting should
5212 not be done to the PT_NOTE section of a corefile, which may
5213 contain several pseudo-sections artificially created by bfd.
5214 Sorting these pseudo-sections breaks things badly. */
5215 if (m->count > 1
5216 && !(elf_elfheader (abfd)->e_type == ET_CORE
5217 && m->p_type == PT_NOTE))
5218 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5219 elf_sort_sections);
5220
5221 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5222 number of sections with contents contributing to both p_filesz
5223 and p_memsz, followed by a number of sections with no contents
5224 that just contribute to p_memsz. In this loop, OFF tracks next
5225 available file offset for PT_LOAD and PT_NOTE segments. */
5226 p->p_type = m->p_type;
5227 p->p_flags = m->p_flags;
5228
5229 if (m->count == 0)
5230 p->p_vaddr = 0;
5231 else
5232 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5233
5234 if (m->p_paddr_valid)
5235 p->p_paddr = m->p_paddr;
5236 else if (m->count == 0)
5237 p->p_paddr = 0;
5238 else
5239 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5240
5241 if (p->p_type == PT_LOAD
5242 && (abfd->flags & D_PAGED) != 0)
5243 {
5244 /* p_align in demand paged PT_LOAD segments effectively stores
5245 the maximum page size. When copying an executable with
5246 objcopy, we set m->p_align from the input file. Use this
5247 value for maxpagesize rather than bed->maxpagesize, which
5248 may be different. Note that we use maxpagesize for PT_TLS
5249 segment alignment later in this function, so we are relying
5250 on at least one PT_LOAD segment appearing before a PT_TLS
5251 segment. */
5252 if (m->p_align_valid)
5253 maxpagesize = m->p_align;
5254
5255 p->p_align = maxpagesize;
5256 pt_load_count += 1;
5257 }
5258 else if (m->p_align_valid)
5259 p->p_align = m->p_align;
5260 else if (m->count == 0)
5261 p->p_align = 1 << bed->s->log_file_align;
5262 else
5263 p->p_align = 0;
5264
5265 no_contents = FALSE;
5266 off_adjust = 0;
5267 if (p->p_type == PT_LOAD
5268 && m->count > 0)
5269 {
5270 bfd_size_type align;
5271 unsigned int align_power = 0;
5272
5273 if (m->p_align_valid)
5274 align = p->p_align;
5275 else
5276 {
5277 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5278 {
5279 unsigned int secalign;
5280
5281 secalign = bfd_get_section_alignment (abfd, *secpp);
5282 if (secalign > align_power)
5283 align_power = secalign;
5284 }
5285 align = (bfd_size_type) 1 << align_power;
5286 if (align < maxpagesize)
5287 align = maxpagesize;
5288 }
5289
5290 for (i = 0; i < m->count; i++)
5291 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5292 /* If we aren't making room for this section, then
5293 it must be SHT_NOBITS regardless of what we've
5294 set via struct bfd_elf_special_section. */
5295 elf_section_type (m->sections[i]) = SHT_NOBITS;
5296
5297 /* Find out whether this segment contains any loadable
5298 sections. */
5299 no_contents = TRUE;
5300 for (i = 0; i < m->count; i++)
5301 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5302 {
5303 no_contents = FALSE;
5304 break;
5305 }
5306
5307 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5308
5309 /* Broken hardware and/or kernel require that files do not
5310 map the same page with different permissions on some hppa
5311 processors. */
5312 if (pt_load_count > 1
5313 && bed->no_page_alias
5314 && (off & (maxpagesize - 1)) != 0
5315 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5316 off_adjust += maxpagesize;
5317 off += off_adjust;
5318 if (no_contents)
5319 {
5320 /* We shouldn't need to align the segment on disk since
5321 the segment doesn't need file space, but the gABI
5322 arguably requires the alignment and glibc ld.so
5323 checks it. So to comply with the alignment
5324 requirement but not waste file space, we adjust
5325 p_offset for just this segment. (OFF_ADJUST is
5326 subtracted from OFF later.) This may put p_offset
5327 past the end of file, but that shouldn't matter. */
5328 }
5329 else
5330 off_adjust = 0;
5331 }
5332 /* Make sure the .dynamic section is the first section in the
5333 PT_DYNAMIC segment. */
5334 else if (p->p_type == PT_DYNAMIC
5335 && m->count > 1
5336 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5337 {
5338 _bfd_error_handler
5339 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
5340 abfd);
5341 bfd_set_error (bfd_error_bad_value);
5342 return FALSE;
5343 }
5344 /* Set the note section type to SHT_NOTE. */
5345 else if (p->p_type == PT_NOTE)
5346 for (i = 0; i < m->count; i++)
5347 elf_section_type (m->sections[i]) = SHT_NOTE;
5348
5349 p->p_offset = 0;
5350 p->p_filesz = 0;
5351 p->p_memsz = 0;
5352
5353 if (m->includes_filehdr)
5354 {
5355 if (!m->p_flags_valid)
5356 p->p_flags |= PF_R;
5357 p->p_filesz = bed->s->sizeof_ehdr;
5358 p->p_memsz = bed->s->sizeof_ehdr;
5359 if (m->count > 0)
5360 {
5361 if (p->p_vaddr < (bfd_vma) off
5362 || (!m->p_paddr_valid
5363 && p->p_paddr < (bfd_vma) off))
5364 {
5365 _bfd_error_handler
5366 (_("%B: Not enough room for program headers, try linking with -N"),
5367 abfd);
5368 bfd_set_error (bfd_error_bad_value);
5369 return FALSE;
5370 }
5371
5372 p->p_vaddr -= off;
5373 if (!m->p_paddr_valid)
5374 p->p_paddr -= off;
5375 }
5376 }
5377
5378 if (m->includes_phdrs)
5379 {
5380 if (!m->p_flags_valid)
5381 p->p_flags |= PF_R;
5382
5383 if (!m->includes_filehdr)
5384 {
5385 p->p_offset = bed->s->sizeof_ehdr;
5386
5387 if (m->count > 0)
5388 {
5389 p->p_vaddr -= off - p->p_offset;
5390 if (!m->p_paddr_valid)
5391 p->p_paddr -= off - p->p_offset;
5392 }
5393 }
5394
5395 p->p_filesz += alloc * bed->s->sizeof_phdr;
5396 p->p_memsz += alloc * bed->s->sizeof_phdr;
5397 if (m->count)
5398 {
5399 p->p_filesz += header_pad;
5400 p->p_memsz += header_pad;
5401 }
5402 }
5403
5404 if (p->p_type == PT_LOAD
5405 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5406 {
5407 if (!m->includes_filehdr && !m->includes_phdrs)
5408 p->p_offset = off;
5409 else
5410 {
5411 file_ptr adjust;
5412
5413 adjust = off - (p->p_offset + p->p_filesz);
5414 if (!no_contents)
5415 p->p_filesz += adjust;
5416 p->p_memsz += adjust;
5417 }
5418 }
5419
5420 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5421 maps. Set filepos for sections in PT_LOAD segments, and in
5422 core files, for sections in PT_NOTE segments.
5423 assign_file_positions_for_non_load_sections will set filepos
5424 for other sections and update p_filesz for other segments. */
5425 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5426 {
5427 asection *sec;
5428 bfd_size_type align;
5429 Elf_Internal_Shdr *this_hdr;
5430
5431 sec = *secpp;
5432 this_hdr = &elf_section_data (sec)->this_hdr;
5433 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5434
5435 if ((p->p_type == PT_LOAD
5436 || p->p_type == PT_TLS)
5437 && (this_hdr->sh_type != SHT_NOBITS
5438 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5439 && ((this_hdr->sh_flags & SHF_TLS) == 0
5440 || p->p_type == PT_TLS))))
5441 {
5442 bfd_vma p_start = p->p_paddr;
5443 bfd_vma p_end = p_start + p->p_memsz;
5444 bfd_vma s_start = sec->lma;
5445 bfd_vma adjust = s_start - p_end;
5446
5447 if (adjust != 0
5448 && (s_start < p_end
5449 || p_end < p_start))
5450 {
5451 _bfd_error_handler
5452 /* xgettext:c-format */
5453 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
5454 (unsigned long) s_start, (unsigned long) p_end);
5455 adjust = 0;
5456 sec->lma = p_end;
5457 }
5458 p->p_memsz += adjust;
5459
5460 if (this_hdr->sh_type != SHT_NOBITS)
5461 {
5462 if (p->p_filesz + adjust < p->p_memsz)
5463 {
5464 /* We have a PROGBITS section following NOBITS ones.
5465 Allocate file space for the NOBITS section(s) and
5466 zero it. */
5467 adjust = p->p_memsz - p->p_filesz;
5468 if (!write_zeros (abfd, off, adjust))
5469 return FALSE;
5470 }
5471 off += adjust;
5472 p->p_filesz += adjust;
5473 }
5474 }
5475
5476 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5477 {
5478 /* The section at i == 0 is the one that actually contains
5479 everything. */
5480 if (i == 0)
5481 {
5482 this_hdr->sh_offset = sec->filepos = off;
5483 off += this_hdr->sh_size;
5484 p->p_filesz = this_hdr->sh_size;
5485 p->p_memsz = 0;
5486 p->p_align = 1;
5487 }
5488 else
5489 {
5490 /* The rest are fake sections that shouldn't be written. */
5491 sec->filepos = 0;
5492 sec->size = 0;
5493 sec->flags = 0;
5494 continue;
5495 }
5496 }
5497 else
5498 {
5499 if (p->p_type == PT_LOAD)
5500 {
5501 this_hdr->sh_offset = sec->filepos = off;
5502 if (this_hdr->sh_type != SHT_NOBITS)
5503 off += this_hdr->sh_size;
5504 }
5505 else if (this_hdr->sh_type == SHT_NOBITS
5506 && (this_hdr->sh_flags & SHF_TLS) != 0
5507 && this_hdr->sh_offset == 0)
5508 {
5509 /* This is a .tbss section that didn't get a PT_LOAD.
5510 (See _bfd_elf_map_sections_to_segments "Create a
5511 final PT_LOAD".) Set sh_offset to the value it
5512 would have if we had created a zero p_filesz and
5513 p_memsz PT_LOAD header for the section. This
5514 also makes the PT_TLS header have the same
5515 p_offset value. */
5516 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5517 off, align);
5518 this_hdr->sh_offset = sec->filepos = off + adjust;
5519 }
5520
5521 if (this_hdr->sh_type != SHT_NOBITS)
5522 {
5523 p->p_filesz += this_hdr->sh_size;
5524 /* A load section without SHF_ALLOC is something like
5525 a note section in a PT_NOTE segment. These take
5526 file space but are not loaded into memory. */
5527 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5528 p->p_memsz += this_hdr->sh_size;
5529 }
5530 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5531 {
5532 if (p->p_type == PT_TLS)
5533 p->p_memsz += this_hdr->sh_size;
5534
5535 /* .tbss is special. It doesn't contribute to p_memsz of
5536 normal segments. */
5537 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5538 p->p_memsz += this_hdr->sh_size;
5539 }
5540
5541 if (align > p->p_align
5542 && !m->p_align_valid
5543 && (p->p_type != PT_LOAD
5544 || (abfd->flags & D_PAGED) == 0))
5545 p->p_align = align;
5546 }
5547
5548 if (!m->p_flags_valid)
5549 {
5550 p->p_flags |= PF_R;
5551 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5552 p->p_flags |= PF_X;
5553 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5554 p->p_flags |= PF_W;
5555 }
5556 }
5557
5558 off -= off_adjust;
5559
5560 /* Check that all sections are in a PT_LOAD segment.
5561 Don't check funky gdb generated core files. */
5562 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5563 {
5564 bfd_boolean check_vma = TRUE;
5565
5566 for (i = 1; i < m->count; i++)
5567 if (m->sections[i]->vma == m->sections[i - 1]->vma
5568 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5569 ->this_hdr), p) != 0
5570 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5571 ->this_hdr), p) != 0)
5572 {
5573 /* Looks like we have overlays packed into the segment. */
5574 check_vma = FALSE;
5575 break;
5576 }
5577
5578 for (i = 0; i < m->count; i++)
5579 {
5580 Elf_Internal_Shdr *this_hdr;
5581 asection *sec;
5582
5583 sec = m->sections[i];
5584 this_hdr = &(elf_section_data(sec)->this_hdr);
5585 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5586 && !ELF_TBSS_SPECIAL (this_hdr, p))
5587 {
5588 _bfd_error_handler
5589 /* xgettext:c-format */
5590 (_("%B: section `%A' can't be allocated in segment %d"),
5591 abfd, sec, j);
5592 print_segment_map (m);
5593 }
5594 }
5595 }
5596 }
5597
5598 elf_next_file_pos (abfd) = off;
5599 return TRUE;
5600 }
5601
5602 /* Assign file positions for the other sections. */
5603
5604 static bfd_boolean
5605 assign_file_positions_for_non_load_sections (bfd *abfd,
5606 struct bfd_link_info *link_info)
5607 {
5608 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5609 Elf_Internal_Shdr **i_shdrpp;
5610 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5611 Elf_Internal_Phdr *phdrs;
5612 Elf_Internal_Phdr *p;
5613 struct elf_segment_map *m;
5614 struct elf_segment_map *hdrs_segment;
5615 bfd_vma filehdr_vaddr, filehdr_paddr;
5616 bfd_vma phdrs_vaddr, phdrs_paddr;
5617 file_ptr off;
5618 unsigned int count;
5619
5620 i_shdrpp = elf_elfsections (abfd);
5621 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5622 off = elf_next_file_pos (abfd);
5623 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5624 {
5625 Elf_Internal_Shdr *hdr;
5626
5627 hdr = *hdrpp;
5628 if (hdr->bfd_section != NULL
5629 && (hdr->bfd_section->filepos != 0
5630 || (hdr->sh_type == SHT_NOBITS
5631 && hdr->contents == NULL)))
5632 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5633 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5634 {
5635 if (hdr->sh_size != 0)
5636 _bfd_error_handler
5637 /* xgettext:c-format */
5638 (_("%B: warning: allocated section `%s' not in segment"),
5639 abfd,
5640 (hdr->bfd_section == NULL
5641 ? "*unknown*"
5642 : hdr->bfd_section->name));
5643 /* We don't need to page align empty sections. */
5644 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5645 off += vma_page_aligned_bias (hdr->sh_addr, off,
5646 bed->maxpagesize);
5647 else
5648 off += vma_page_aligned_bias (hdr->sh_addr, off,
5649 hdr->sh_addralign);
5650 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5651 FALSE);
5652 }
5653 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5654 && hdr->bfd_section == NULL)
5655 || (hdr->bfd_section != NULL
5656 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5657 /* Compress DWARF debug sections. */
5658 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5659 || (elf_symtab_shndx_list (abfd) != NULL
5660 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5661 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5662 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5663 hdr->sh_offset = -1;
5664 else
5665 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5666 }
5667
5668 /* Now that we have set the section file positions, we can set up
5669 the file positions for the non PT_LOAD segments. */
5670 count = 0;
5671 filehdr_vaddr = 0;
5672 filehdr_paddr = 0;
5673 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5674 phdrs_paddr = 0;
5675 hdrs_segment = NULL;
5676 phdrs = elf_tdata (abfd)->phdr;
5677 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5678 {
5679 ++count;
5680 if (p->p_type != PT_LOAD)
5681 continue;
5682
5683 if (m->includes_filehdr)
5684 {
5685 filehdr_vaddr = p->p_vaddr;
5686 filehdr_paddr = p->p_paddr;
5687 }
5688 if (m->includes_phdrs)
5689 {
5690 phdrs_vaddr = p->p_vaddr;
5691 phdrs_paddr = p->p_paddr;
5692 if (m->includes_filehdr)
5693 {
5694 hdrs_segment = m;
5695 phdrs_vaddr += bed->s->sizeof_ehdr;
5696 phdrs_paddr += bed->s->sizeof_ehdr;
5697 }
5698 }
5699 }
5700
5701 if (hdrs_segment != NULL && link_info != NULL)
5702 {
5703 /* There is a segment that contains both the file headers and the
5704 program headers, so provide a symbol __ehdr_start pointing there.
5705 A program can use this to examine itself robustly. */
5706
5707 struct elf_link_hash_entry *hash
5708 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5709 FALSE, FALSE, TRUE);
5710 /* If the symbol was referenced and not defined, define it. */
5711 if (hash != NULL
5712 && (hash->root.type == bfd_link_hash_new
5713 || hash->root.type == bfd_link_hash_undefined
5714 || hash->root.type == bfd_link_hash_undefweak
5715 || hash->root.type == bfd_link_hash_common))
5716 {
5717 asection *s = NULL;
5718 if (hdrs_segment->count != 0)
5719 /* The segment contains sections, so use the first one. */
5720 s = hdrs_segment->sections[0];
5721 else
5722 /* Use the first (i.e. lowest-addressed) section in any segment. */
5723 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5724 if (m->count != 0)
5725 {
5726 s = m->sections[0];
5727 break;
5728 }
5729
5730 if (s != NULL)
5731 {
5732 hash->root.u.def.value = filehdr_vaddr - s->vma;
5733 hash->root.u.def.section = s;
5734 }
5735 else
5736 {
5737 hash->root.u.def.value = filehdr_vaddr;
5738 hash->root.u.def.section = bfd_abs_section_ptr;
5739 }
5740
5741 hash->root.type = bfd_link_hash_defined;
5742 hash->def_regular = 1;
5743 hash->non_elf = 0;
5744 }
5745 }
5746
5747 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5748 {
5749 if (p->p_type == PT_GNU_RELRO)
5750 {
5751 const Elf_Internal_Phdr *lp;
5752 struct elf_segment_map *lm;
5753
5754 if (link_info != NULL)
5755 {
5756 /* During linking the range of the RELRO segment is passed
5757 in link_info. */
5758 for (lm = elf_seg_map (abfd), lp = phdrs;
5759 lm != NULL;
5760 lm = lm->next, lp++)
5761 {
5762 if (lp->p_type == PT_LOAD
5763 && lp->p_vaddr < link_info->relro_end
5764 && lm->count != 0
5765 && lm->sections[0]->vma >= link_info->relro_start)
5766 break;
5767 }
5768
5769 BFD_ASSERT (lm != NULL);
5770 }
5771 else
5772 {
5773 /* Otherwise we are copying an executable or shared
5774 library, but we need to use the same linker logic. */
5775 for (lp = phdrs; lp < phdrs + count; ++lp)
5776 {
5777 if (lp->p_type == PT_LOAD
5778 && lp->p_paddr == p->p_paddr)
5779 break;
5780 }
5781 }
5782
5783 if (lp < phdrs + count)
5784 {
5785 p->p_vaddr = lp->p_vaddr;
5786 p->p_paddr = lp->p_paddr;
5787 p->p_offset = lp->p_offset;
5788 if (link_info != NULL)
5789 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5790 else if (m->p_size_valid)
5791 p->p_filesz = m->p_size;
5792 else
5793 abort ();
5794 p->p_memsz = p->p_filesz;
5795 /* Preserve the alignment and flags if they are valid. The
5796 gold linker generates RW/4 for the PT_GNU_RELRO section.
5797 It is better for objcopy/strip to honor these attributes
5798 otherwise gdb will choke when using separate debug files.
5799 */
5800 if (!m->p_align_valid)
5801 p->p_align = 1;
5802 if (!m->p_flags_valid)
5803 p->p_flags = PF_R;
5804 }
5805 else
5806 {
5807 memset (p, 0, sizeof *p);
5808 p->p_type = PT_NULL;
5809 }
5810 }
5811 else if (p->p_type == PT_GNU_STACK)
5812 {
5813 if (m->p_size_valid)
5814 p->p_memsz = m->p_size;
5815 }
5816 else if (m->count != 0)
5817 {
5818 unsigned int i;
5819
5820 if (p->p_type != PT_LOAD
5821 && (p->p_type != PT_NOTE
5822 || bfd_get_format (abfd) != bfd_core))
5823 {
5824 /* A user specified segment layout may include a PHDR
5825 segment that overlaps with a LOAD segment... */
5826 if (p->p_type == PT_PHDR)
5827 {
5828 m->count = 0;
5829 continue;
5830 }
5831
5832 if (m->includes_filehdr || m->includes_phdrs)
5833 {
5834 /* PR 17512: file: 2195325e. */
5835 _bfd_error_handler
5836 (_("%B: error: non-load segment %d includes file header and/or program header"),
5837 abfd, (int)(p - phdrs));
5838 return FALSE;
5839 }
5840
5841 p->p_filesz = 0;
5842 p->p_offset = m->sections[0]->filepos;
5843 for (i = m->count; i-- != 0;)
5844 {
5845 asection *sect = m->sections[i];
5846 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5847 if (hdr->sh_type != SHT_NOBITS)
5848 {
5849 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5850 + hdr->sh_size);
5851 break;
5852 }
5853 }
5854 }
5855 }
5856 else if (m->includes_filehdr)
5857 {
5858 p->p_vaddr = filehdr_vaddr;
5859 if (! m->p_paddr_valid)
5860 p->p_paddr = filehdr_paddr;
5861 }
5862 else if (m->includes_phdrs)
5863 {
5864 p->p_vaddr = phdrs_vaddr;
5865 if (! m->p_paddr_valid)
5866 p->p_paddr = phdrs_paddr;
5867 }
5868 }
5869
5870 elf_next_file_pos (abfd) = off;
5871
5872 return TRUE;
5873 }
5874
5875 static elf_section_list *
5876 find_section_in_list (unsigned int i, elf_section_list * list)
5877 {
5878 for (;list != NULL; list = list->next)
5879 if (list->ndx == i)
5880 break;
5881 return list;
5882 }
5883
5884 /* Work out the file positions of all the sections. This is called by
5885 _bfd_elf_compute_section_file_positions. All the section sizes and
5886 VMAs must be known before this is called.
5887
5888 Reloc sections come in two flavours: Those processed specially as
5889 "side-channel" data attached to a section to which they apply, and
5890 those that bfd doesn't process as relocations. The latter sort are
5891 stored in a normal bfd section by bfd_section_from_shdr. We don't
5892 consider the former sort here, unless they form part of the loadable
5893 image. Reloc sections not assigned here will be handled later by
5894 assign_file_positions_for_relocs.
5895
5896 We also don't set the positions of the .symtab and .strtab here. */
5897
5898 static bfd_boolean
5899 assign_file_positions_except_relocs (bfd *abfd,
5900 struct bfd_link_info *link_info)
5901 {
5902 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5903 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5904 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5905
5906 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5907 && bfd_get_format (abfd) != bfd_core)
5908 {
5909 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5910 unsigned int num_sec = elf_numsections (abfd);
5911 Elf_Internal_Shdr **hdrpp;
5912 unsigned int i;
5913 file_ptr off;
5914
5915 /* Start after the ELF header. */
5916 off = i_ehdrp->e_ehsize;
5917
5918 /* We are not creating an executable, which means that we are
5919 not creating a program header, and that the actual order of
5920 the sections in the file is unimportant. */
5921 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5922 {
5923 Elf_Internal_Shdr *hdr;
5924
5925 hdr = *hdrpp;
5926 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5927 && hdr->bfd_section == NULL)
5928 || (hdr->bfd_section != NULL
5929 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5930 /* Compress DWARF debug sections. */
5931 || i == elf_onesymtab (abfd)
5932 || (elf_symtab_shndx_list (abfd) != NULL
5933 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5934 || i == elf_strtab_sec (abfd)
5935 || i == elf_shstrtab_sec (abfd))
5936 {
5937 hdr->sh_offset = -1;
5938 }
5939 else
5940 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5941 }
5942
5943 elf_next_file_pos (abfd) = off;
5944 }
5945 else
5946 {
5947 unsigned int alloc;
5948
5949 /* Assign file positions for the loaded sections based on the
5950 assignment of sections to segments. */
5951 if (!assign_file_positions_for_load_sections (abfd, link_info))
5952 return FALSE;
5953
5954 /* And for non-load sections. */
5955 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5956 return FALSE;
5957
5958 if (bed->elf_backend_modify_program_headers != NULL)
5959 {
5960 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5961 return FALSE;
5962 }
5963
5964 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5965 if (link_info != NULL && bfd_link_pie (link_info))
5966 {
5967 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5968 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5969 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5970
5971 /* Find the lowest p_vaddr in PT_LOAD segments. */
5972 bfd_vma p_vaddr = (bfd_vma) -1;
5973 for (; segment < end_segment; segment++)
5974 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5975 p_vaddr = segment->p_vaddr;
5976
5977 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5978 segments is non-zero. */
5979 if (p_vaddr)
5980 i_ehdrp->e_type = ET_EXEC;
5981 }
5982
5983 /* Write out the program headers. */
5984 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5985
5986 /* Sort the program headers into the ordering required by the ELF standard. */
5987 if (alloc == 0)
5988 return TRUE;
5989
5990 /* PR ld/20815 - Check that the program header segment, if present, will
5991 be loaded into memory. FIXME: The check below is not sufficient as
5992 really all PT_LOAD segments should be checked before issuing an error
5993 message. Plus the PHDR segment does not have to be the first segment
5994 in the program header table. But this version of the check should
5995 catch all real world use cases.
5996
5997 FIXME: We used to have code here to sort the PT_LOAD segments into
5998 ascending order, as per the ELF spec. But this breaks some programs,
5999 including the Linux kernel. But really either the spec should be
6000 changed or the programs updated. */
6001 if (alloc > 1
6002 && tdata->phdr[0].p_type == PT_PHDR
6003 && ! bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr, alloc)
6004 && tdata->phdr[1].p_type == PT_LOAD
6005 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6006 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz)
6007 < (tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6008 {
6009 /* The fix for this error is usually to edit the linker script being
6010 used and set up the program headers manually. Either that or
6011 leave room for the headers at the start of the SECTIONS. */
6012 _bfd_error_handler (_("\
6013 %B: error: PHDR segment not covered by LOAD segment"),
6014 abfd);
6015 return FALSE;
6016 }
6017
6018 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6019 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6020 return FALSE;
6021 }
6022
6023 return TRUE;
6024 }
6025
6026 static bfd_boolean
6027 prep_headers (bfd *abfd)
6028 {
6029 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6030 struct elf_strtab_hash *shstrtab;
6031 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6032
6033 i_ehdrp = elf_elfheader (abfd);
6034
6035 shstrtab = _bfd_elf_strtab_init ();
6036 if (shstrtab == NULL)
6037 return FALSE;
6038
6039 elf_shstrtab (abfd) = shstrtab;
6040
6041 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6042 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6043 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6044 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6045
6046 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6047 i_ehdrp->e_ident[EI_DATA] =
6048 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6049 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6050
6051 if ((abfd->flags & DYNAMIC) != 0)
6052 i_ehdrp->e_type = ET_DYN;
6053 else if ((abfd->flags & EXEC_P) != 0)
6054 i_ehdrp->e_type = ET_EXEC;
6055 else if (bfd_get_format (abfd) == bfd_core)
6056 i_ehdrp->e_type = ET_CORE;
6057 else
6058 i_ehdrp->e_type = ET_REL;
6059
6060 switch (bfd_get_arch (abfd))
6061 {
6062 case bfd_arch_unknown:
6063 i_ehdrp->e_machine = EM_NONE;
6064 break;
6065
6066 /* There used to be a long list of cases here, each one setting
6067 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6068 in the corresponding bfd definition. To avoid duplication,
6069 the switch was removed. Machines that need special handling
6070 can generally do it in elf_backend_final_write_processing(),
6071 unless they need the information earlier than the final write.
6072 Such need can generally be supplied by replacing the tests for
6073 e_machine with the conditions used to determine it. */
6074 default:
6075 i_ehdrp->e_machine = bed->elf_machine_code;
6076 }
6077
6078 i_ehdrp->e_version = bed->s->ev_current;
6079 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6080
6081 /* No program header, for now. */
6082 i_ehdrp->e_phoff = 0;
6083 i_ehdrp->e_phentsize = 0;
6084 i_ehdrp->e_phnum = 0;
6085
6086 /* Each bfd section is section header entry. */
6087 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6088 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6089
6090 /* If we're building an executable, we'll need a program header table. */
6091 if (abfd->flags & EXEC_P)
6092 /* It all happens later. */
6093 ;
6094 else
6095 {
6096 i_ehdrp->e_phentsize = 0;
6097 i_ehdrp->e_phoff = 0;
6098 }
6099
6100 elf_tdata (abfd)->symtab_hdr.sh_name =
6101 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6102 elf_tdata (abfd)->strtab_hdr.sh_name =
6103 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6104 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6105 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6106 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6107 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6108 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6109 return FALSE;
6110
6111 return TRUE;
6112 }
6113
6114 /* Assign file positions for all the reloc sections which are not part
6115 of the loadable file image, and the file position of section headers. */
6116
6117 static bfd_boolean
6118 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6119 {
6120 file_ptr off;
6121 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6122 Elf_Internal_Shdr *shdrp;
6123 Elf_Internal_Ehdr *i_ehdrp;
6124 const struct elf_backend_data *bed;
6125
6126 off = elf_next_file_pos (abfd);
6127
6128 shdrpp = elf_elfsections (abfd);
6129 end_shdrpp = shdrpp + elf_numsections (abfd);
6130 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6131 {
6132 shdrp = *shdrpp;
6133 if (shdrp->sh_offset == -1)
6134 {
6135 asection *sec = shdrp->bfd_section;
6136 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6137 || shdrp->sh_type == SHT_RELA);
6138 if (is_rel
6139 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6140 {
6141 if (!is_rel)
6142 {
6143 const char *name = sec->name;
6144 struct bfd_elf_section_data *d;
6145
6146 /* Compress DWARF debug sections. */
6147 if (!bfd_compress_section (abfd, sec,
6148 shdrp->contents))
6149 return FALSE;
6150
6151 if (sec->compress_status == COMPRESS_SECTION_DONE
6152 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6153 {
6154 /* If section is compressed with zlib-gnu, convert
6155 section name from .debug_* to .zdebug_*. */
6156 char *new_name
6157 = convert_debug_to_zdebug (abfd, name);
6158 if (new_name == NULL)
6159 return FALSE;
6160 name = new_name;
6161 }
6162 /* Add section name to section name section. */
6163 if (shdrp->sh_name != (unsigned int) -1)
6164 abort ();
6165 shdrp->sh_name
6166 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6167 name, FALSE);
6168 d = elf_section_data (sec);
6169
6170 /* Add reloc section name to section name section. */
6171 if (d->rel.hdr
6172 && !_bfd_elf_set_reloc_sh_name (abfd,
6173 d->rel.hdr,
6174 name, FALSE))
6175 return FALSE;
6176 if (d->rela.hdr
6177 && !_bfd_elf_set_reloc_sh_name (abfd,
6178 d->rela.hdr,
6179 name, TRUE))
6180 return FALSE;
6181
6182 /* Update section size and contents. */
6183 shdrp->sh_size = sec->size;
6184 shdrp->contents = sec->contents;
6185 shdrp->bfd_section->contents = NULL;
6186 }
6187 off = _bfd_elf_assign_file_position_for_section (shdrp,
6188 off,
6189 TRUE);
6190 }
6191 }
6192 }
6193
6194 /* Place section name section after DWARF debug sections have been
6195 compressed. */
6196 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6197 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6198 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6199 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6200
6201 /* Place the section headers. */
6202 i_ehdrp = elf_elfheader (abfd);
6203 bed = get_elf_backend_data (abfd);
6204 off = align_file_position (off, 1 << bed->s->log_file_align);
6205 i_ehdrp->e_shoff = off;
6206 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6207 elf_next_file_pos (abfd) = off;
6208
6209 return TRUE;
6210 }
6211
6212 bfd_boolean
6213 _bfd_elf_write_object_contents (bfd *abfd)
6214 {
6215 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6216 Elf_Internal_Shdr **i_shdrp;
6217 bfd_boolean failed;
6218 unsigned int count, num_sec;
6219 struct elf_obj_tdata *t;
6220
6221 if (! abfd->output_has_begun
6222 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6223 return FALSE;
6224
6225 i_shdrp = elf_elfsections (abfd);
6226
6227 failed = FALSE;
6228 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6229 if (failed)
6230 return FALSE;
6231
6232 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6233 return FALSE;
6234
6235 /* After writing the headers, we need to write the sections too... */
6236 num_sec = elf_numsections (abfd);
6237 for (count = 1; count < num_sec; count++)
6238 {
6239 i_shdrp[count]->sh_name
6240 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6241 i_shdrp[count]->sh_name);
6242 if (bed->elf_backend_section_processing)
6243 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
6244 if (i_shdrp[count]->contents)
6245 {
6246 bfd_size_type amt = i_shdrp[count]->sh_size;
6247
6248 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6249 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6250 return FALSE;
6251 }
6252 }
6253
6254 /* Write out the section header names. */
6255 t = elf_tdata (abfd);
6256 if (elf_shstrtab (abfd) != NULL
6257 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6258 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6259 return FALSE;
6260
6261 if (bed->elf_backend_final_write_processing)
6262 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6263
6264 if (!bed->s->write_shdrs_and_ehdr (abfd))
6265 return FALSE;
6266
6267 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6268 if (t->o->build_id.after_write_object_contents != NULL)
6269 return (*t->o->build_id.after_write_object_contents) (abfd);
6270
6271 return TRUE;
6272 }
6273
6274 bfd_boolean
6275 _bfd_elf_write_corefile_contents (bfd *abfd)
6276 {
6277 /* Hopefully this can be done just like an object file. */
6278 return _bfd_elf_write_object_contents (abfd);
6279 }
6280
6281 /* Given a section, search the header to find them. */
6282
6283 unsigned int
6284 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6285 {
6286 const struct elf_backend_data *bed;
6287 unsigned int sec_index;
6288
6289 if (elf_section_data (asect) != NULL
6290 && elf_section_data (asect)->this_idx != 0)
6291 return elf_section_data (asect)->this_idx;
6292
6293 if (bfd_is_abs_section (asect))
6294 sec_index = SHN_ABS;
6295 else if (bfd_is_com_section (asect))
6296 sec_index = SHN_COMMON;
6297 else if (bfd_is_und_section (asect))
6298 sec_index = SHN_UNDEF;
6299 else
6300 sec_index = SHN_BAD;
6301
6302 bed = get_elf_backend_data (abfd);
6303 if (bed->elf_backend_section_from_bfd_section)
6304 {
6305 int retval = sec_index;
6306
6307 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6308 return retval;
6309 }
6310
6311 if (sec_index == SHN_BAD)
6312 bfd_set_error (bfd_error_nonrepresentable_section);
6313
6314 return sec_index;
6315 }
6316
6317 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6318 on error. */
6319
6320 int
6321 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6322 {
6323 asymbol *asym_ptr = *asym_ptr_ptr;
6324 int idx;
6325 flagword flags = asym_ptr->flags;
6326
6327 /* When gas creates relocations against local labels, it creates its
6328 own symbol for the section, but does put the symbol into the
6329 symbol chain, so udata is 0. When the linker is generating
6330 relocatable output, this section symbol may be for one of the
6331 input sections rather than the output section. */
6332 if (asym_ptr->udata.i == 0
6333 && (flags & BSF_SECTION_SYM)
6334 && asym_ptr->section)
6335 {
6336 asection *sec;
6337 int indx;
6338
6339 sec = asym_ptr->section;
6340 if (sec->owner != abfd && sec->output_section != NULL)
6341 sec = sec->output_section;
6342 if (sec->owner == abfd
6343 && (indx = sec->index) < elf_num_section_syms (abfd)
6344 && elf_section_syms (abfd)[indx] != NULL)
6345 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6346 }
6347
6348 idx = asym_ptr->udata.i;
6349
6350 if (idx == 0)
6351 {
6352 /* This case can occur when using --strip-symbol on a symbol
6353 which is used in a relocation entry. */
6354 _bfd_error_handler
6355 /* xgettext:c-format */
6356 (_("%B: symbol `%s' required but not present"),
6357 abfd, bfd_asymbol_name (asym_ptr));
6358 bfd_set_error (bfd_error_no_symbols);
6359 return -1;
6360 }
6361
6362 #if DEBUG & 4
6363 {
6364 fprintf (stderr,
6365 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
6366 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
6367 fflush (stderr);
6368 }
6369 #endif
6370
6371 return idx;
6372 }
6373
6374 /* Rewrite program header information. */
6375
6376 static bfd_boolean
6377 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6378 {
6379 Elf_Internal_Ehdr *iehdr;
6380 struct elf_segment_map *map;
6381 struct elf_segment_map *map_first;
6382 struct elf_segment_map **pointer_to_map;
6383 Elf_Internal_Phdr *segment;
6384 asection *section;
6385 unsigned int i;
6386 unsigned int num_segments;
6387 bfd_boolean phdr_included = FALSE;
6388 bfd_boolean p_paddr_valid;
6389 bfd_vma maxpagesize;
6390 struct elf_segment_map *phdr_adjust_seg = NULL;
6391 unsigned int phdr_adjust_num = 0;
6392 const struct elf_backend_data *bed;
6393
6394 bed = get_elf_backend_data (ibfd);
6395 iehdr = elf_elfheader (ibfd);
6396
6397 map_first = NULL;
6398 pointer_to_map = &map_first;
6399
6400 num_segments = elf_elfheader (ibfd)->e_phnum;
6401 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6402
6403 /* Returns the end address of the segment + 1. */
6404 #define SEGMENT_END(segment, start) \
6405 (start + (segment->p_memsz > segment->p_filesz \
6406 ? segment->p_memsz : segment->p_filesz))
6407
6408 #define SECTION_SIZE(section, segment) \
6409 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6410 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6411 ? section->size : 0)
6412
6413 /* Returns TRUE if the given section is contained within
6414 the given segment. VMA addresses are compared. */
6415 #define IS_CONTAINED_BY_VMA(section, segment) \
6416 (section->vma >= segment->p_vaddr \
6417 && (section->vma + SECTION_SIZE (section, segment) \
6418 <= (SEGMENT_END (segment, segment->p_vaddr))))
6419
6420 /* Returns TRUE if the given section is contained within
6421 the given segment. LMA addresses are compared. */
6422 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6423 (section->lma >= base \
6424 && (section->lma + SECTION_SIZE (section, segment) \
6425 <= SEGMENT_END (segment, base)))
6426
6427 /* Handle PT_NOTE segment. */
6428 #define IS_NOTE(p, s) \
6429 (p->p_type == PT_NOTE \
6430 && elf_section_type (s) == SHT_NOTE \
6431 && (bfd_vma) s->filepos >= p->p_offset \
6432 && ((bfd_vma) s->filepos + s->size \
6433 <= p->p_offset + p->p_filesz))
6434
6435 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6436 etc. */
6437 #define IS_COREFILE_NOTE(p, s) \
6438 (IS_NOTE (p, s) \
6439 && bfd_get_format (ibfd) == bfd_core \
6440 && s->vma == 0 \
6441 && s->lma == 0)
6442
6443 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6444 linker, which generates a PT_INTERP section with p_vaddr and
6445 p_memsz set to 0. */
6446 #define IS_SOLARIS_PT_INTERP(p, s) \
6447 (p->p_vaddr == 0 \
6448 && p->p_paddr == 0 \
6449 && p->p_memsz == 0 \
6450 && p->p_filesz > 0 \
6451 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6452 && s->size > 0 \
6453 && (bfd_vma) s->filepos >= p->p_offset \
6454 && ((bfd_vma) s->filepos + s->size \
6455 <= p->p_offset + p->p_filesz))
6456
6457 /* Decide if the given section should be included in the given segment.
6458 A section will be included if:
6459 1. It is within the address space of the segment -- we use the LMA
6460 if that is set for the segment and the VMA otherwise,
6461 2. It is an allocated section or a NOTE section in a PT_NOTE
6462 segment.
6463 3. There is an output section associated with it,
6464 4. The section has not already been allocated to a previous segment.
6465 5. PT_GNU_STACK segments do not include any sections.
6466 6. PT_TLS segment includes only SHF_TLS sections.
6467 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6468 8. PT_DYNAMIC should not contain empty sections at the beginning
6469 (with the possible exception of .dynamic). */
6470 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6471 ((((segment->p_paddr \
6472 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6473 : IS_CONTAINED_BY_VMA (section, segment)) \
6474 && (section->flags & SEC_ALLOC) != 0) \
6475 || IS_NOTE (segment, section)) \
6476 && segment->p_type != PT_GNU_STACK \
6477 && (segment->p_type != PT_TLS \
6478 || (section->flags & SEC_THREAD_LOCAL)) \
6479 && (segment->p_type == PT_LOAD \
6480 || segment->p_type == PT_TLS \
6481 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6482 && (segment->p_type != PT_DYNAMIC \
6483 || SECTION_SIZE (section, segment) > 0 \
6484 || (segment->p_paddr \
6485 ? segment->p_paddr != section->lma \
6486 : segment->p_vaddr != section->vma) \
6487 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6488 == 0)) \
6489 && !section->segment_mark)
6490
6491 /* If the output section of a section in the input segment is NULL,
6492 it is removed from the corresponding output segment. */
6493 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6494 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6495 && section->output_section != NULL)
6496
6497 /* Returns TRUE iff seg1 starts after the end of seg2. */
6498 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6499 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6500
6501 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6502 their VMA address ranges and their LMA address ranges overlap.
6503 It is possible to have overlapping VMA ranges without overlapping LMA
6504 ranges. RedBoot images for example can have both .data and .bss mapped
6505 to the same VMA range, but with the .data section mapped to a different
6506 LMA. */
6507 #define SEGMENT_OVERLAPS(seg1, seg2) \
6508 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6509 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6510 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6511 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6512
6513 /* Initialise the segment mark field. */
6514 for (section = ibfd->sections; section != NULL; section = section->next)
6515 section->segment_mark = FALSE;
6516
6517 /* The Solaris linker creates program headers in which all the
6518 p_paddr fields are zero. When we try to objcopy or strip such a
6519 file, we get confused. Check for this case, and if we find it
6520 don't set the p_paddr_valid fields. */
6521 p_paddr_valid = FALSE;
6522 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6523 i < num_segments;
6524 i++, segment++)
6525 if (segment->p_paddr != 0)
6526 {
6527 p_paddr_valid = TRUE;
6528 break;
6529 }
6530
6531 /* Scan through the segments specified in the program header
6532 of the input BFD. For this first scan we look for overlaps
6533 in the loadable segments. These can be created by weird
6534 parameters to objcopy. Also, fix some solaris weirdness. */
6535 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6536 i < num_segments;
6537 i++, segment++)
6538 {
6539 unsigned int j;
6540 Elf_Internal_Phdr *segment2;
6541
6542 if (segment->p_type == PT_INTERP)
6543 for (section = ibfd->sections; section; section = section->next)
6544 if (IS_SOLARIS_PT_INTERP (segment, section))
6545 {
6546 /* Mininal change so that the normal section to segment
6547 assignment code will work. */
6548 segment->p_vaddr = section->vma;
6549 break;
6550 }
6551
6552 if (segment->p_type != PT_LOAD)
6553 {
6554 /* Remove PT_GNU_RELRO segment. */
6555 if (segment->p_type == PT_GNU_RELRO)
6556 segment->p_type = PT_NULL;
6557 continue;
6558 }
6559
6560 /* Determine if this segment overlaps any previous segments. */
6561 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6562 {
6563 bfd_signed_vma extra_length;
6564
6565 if (segment2->p_type != PT_LOAD
6566 || !SEGMENT_OVERLAPS (segment, segment2))
6567 continue;
6568
6569 /* Merge the two segments together. */
6570 if (segment2->p_vaddr < segment->p_vaddr)
6571 {
6572 /* Extend SEGMENT2 to include SEGMENT and then delete
6573 SEGMENT. */
6574 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6575 - SEGMENT_END (segment2, segment2->p_vaddr));
6576
6577 if (extra_length > 0)
6578 {
6579 segment2->p_memsz += extra_length;
6580 segment2->p_filesz += extra_length;
6581 }
6582
6583 segment->p_type = PT_NULL;
6584
6585 /* Since we have deleted P we must restart the outer loop. */
6586 i = 0;
6587 segment = elf_tdata (ibfd)->phdr;
6588 break;
6589 }
6590 else
6591 {
6592 /* Extend SEGMENT to include SEGMENT2 and then delete
6593 SEGMENT2. */
6594 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6595 - SEGMENT_END (segment, segment->p_vaddr));
6596
6597 if (extra_length > 0)
6598 {
6599 segment->p_memsz += extra_length;
6600 segment->p_filesz += extra_length;
6601 }
6602
6603 segment2->p_type = PT_NULL;
6604 }
6605 }
6606 }
6607
6608 /* The second scan attempts to assign sections to segments. */
6609 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6610 i < num_segments;
6611 i++, segment++)
6612 {
6613 unsigned int section_count;
6614 asection **sections;
6615 asection *output_section;
6616 unsigned int isec;
6617 bfd_vma matching_lma;
6618 bfd_vma suggested_lma;
6619 unsigned int j;
6620 bfd_size_type amt;
6621 asection *first_section;
6622 bfd_boolean first_matching_lma;
6623 bfd_boolean first_suggested_lma;
6624
6625 if (segment->p_type == PT_NULL)
6626 continue;
6627
6628 first_section = NULL;
6629 /* Compute how many sections might be placed into this segment. */
6630 for (section = ibfd->sections, section_count = 0;
6631 section != NULL;
6632 section = section->next)
6633 {
6634 /* Find the first section in the input segment, which may be
6635 removed from the corresponding output segment. */
6636 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6637 {
6638 if (first_section == NULL)
6639 first_section = section;
6640 if (section->output_section != NULL)
6641 ++section_count;
6642 }
6643 }
6644
6645 /* Allocate a segment map big enough to contain
6646 all of the sections we have selected. */
6647 amt = sizeof (struct elf_segment_map);
6648 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6649 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6650 if (map == NULL)
6651 return FALSE;
6652
6653 /* Initialise the fields of the segment map. Default to
6654 using the physical address of the segment in the input BFD. */
6655 map->next = NULL;
6656 map->p_type = segment->p_type;
6657 map->p_flags = segment->p_flags;
6658 map->p_flags_valid = 1;
6659
6660 /* If the first section in the input segment is removed, there is
6661 no need to preserve segment physical address in the corresponding
6662 output segment. */
6663 if (!first_section || first_section->output_section != NULL)
6664 {
6665 map->p_paddr = segment->p_paddr;
6666 map->p_paddr_valid = p_paddr_valid;
6667 }
6668
6669 /* Determine if this segment contains the ELF file header
6670 and if it contains the program headers themselves. */
6671 map->includes_filehdr = (segment->p_offset == 0
6672 && segment->p_filesz >= iehdr->e_ehsize);
6673 map->includes_phdrs = 0;
6674
6675 if (!phdr_included || segment->p_type != PT_LOAD)
6676 {
6677 map->includes_phdrs =
6678 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6679 && (segment->p_offset + segment->p_filesz
6680 >= ((bfd_vma) iehdr->e_phoff
6681 + iehdr->e_phnum * iehdr->e_phentsize)));
6682
6683 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6684 phdr_included = TRUE;
6685 }
6686
6687 if (section_count == 0)
6688 {
6689 /* Special segments, such as the PT_PHDR segment, may contain
6690 no sections, but ordinary, loadable segments should contain
6691 something. They are allowed by the ELF spec however, so only
6692 a warning is produced.
6693 There is however the valid use case of embedded systems which
6694 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6695 flash memory with zeros. No warning is shown for that case. */
6696 if (segment->p_type == PT_LOAD
6697 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6698 /* xgettext:c-format */
6699 _bfd_error_handler (_("\
6700 %B: warning: Empty loadable segment detected at vaddr=0x%.8x, is this intentional ?"),
6701 ibfd, segment->p_vaddr);
6702
6703 map->count = 0;
6704 *pointer_to_map = map;
6705 pointer_to_map = &map->next;
6706
6707 continue;
6708 }
6709
6710 /* Now scan the sections in the input BFD again and attempt
6711 to add their corresponding output sections to the segment map.
6712 The problem here is how to handle an output section which has
6713 been moved (ie had its LMA changed). There are four possibilities:
6714
6715 1. None of the sections have been moved.
6716 In this case we can continue to use the segment LMA from the
6717 input BFD.
6718
6719 2. All of the sections have been moved by the same amount.
6720 In this case we can change the segment's LMA to match the LMA
6721 of the first section.
6722
6723 3. Some of the sections have been moved, others have not.
6724 In this case those sections which have not been moved can be
6725 placed in the current segment which will have to have its size,
6726 and possibly its LMA changed, and a new segment or segments will
6727 have to be created to contain the other sections.
6728
6729 4. The sections have been moved, but not by the same amount.
6730 In this case we can change the segment's LMA to match the LMA
6731 of the first section and we will have to create a new segment
6732 or segments to contain the other sections.
6733
6734 In order to save time, we allocate an array to hold the section
6735 pointers that we are interested in. As these sections get assigned
6736 to a segment, they are removed from this array. */
6737
6738 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6739 if (sections == NULL)
6740 return FALSE;
6741
6742 /* Step One: Scan for segment vs section LMA conflicts.
6743 Also add the sections to the section array allocated above.
6744 Also add the sections to the current segment. In the common
6745 case, where the sections have not been moved, this means that
6746 we have completely filled the segment, and there is nothing
6747 more to do. */
6748 isec = 0;
6749 matching_lma = 0;
6750 suggested_lma = 0;
6751 first_matching_lma = TRUE;
6752 first_suggested_lma = TRUE;
6753
6754 for (section = first_section, j = 0;
6755 section != NULL;
6756 section = section->next)
6757 {
6758 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6759 {
6760 output_section = section->output_section;
6761
6762 sections[j++] = section;
6763
6764 /* The Solaris native linker always sets p_paddr to 0.
6765 We try to catch that case here, and set it to the
6766 correct value. Note - some backends require that
6767 p_paddr be left as zero. */
6768 if (!p_paddr_valid
6769 && segment->p_vaddr != 0
6770 && !bed->want_p_paddr_set_to_zero
6771 && isec == 0
6772 && output_section->lma != 0
6773 && output_section->vma == (segment->p_vaddr
6774 + (map->includes_filehdr
6775 ? iehdr->e_ehsize
6776 : 0)
6777 + (map->includes_phdrs
6778 ? (iehdr->e_phnum
6779 * iehdr->e_phentsize)
6780 : 0)))
6781 map->p_paddr = segment->p_vaddr;
6782
6783 /* Match up the physical address of the segment with the
6784 LMA address of the output section. */
6785 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6786 || IS_COREFILE_NOTE (segment, section)
6787 || (bed->want_p_paddr_set_to_zero
6788 && IS_CONTAINED_BY_VMA (output_section, segment)))
6789 {
6790 if (first_matching_lma || output_section->lma < matching_lma)
6791 {
6792 matching_lma = output_section->lma;
6793 first_matching_lma = FALSE;
6794 }
6795
6796 /* We assume that if the section fits within the segment
6797 then it does not overlap any other section within that
6798 segment. */
6799 map->sections[isec++] = output_section;
6800 }
6801 else if (first_suggested_lma)
6802 {
6803 suggested_lma = output_section->lma;
6804 first_suggested_lma = FALSE;
6805 }
6806
6807 if (j == section_count)
6808 break;
6809 }
6810 }
6811
6812 BFD_ASSERT (j == section_count);
6813
6814 /* Step Two: Adjust the physical address of the current segment,
6815 if necessary. */
6816 if (isec == section_count)
6817 {
6818 /* All of the sections fitted within the segment as currently
6819 specified. This is the default case. Add the segment to
6820 the list of built segments and carry on to process the next
6821 program header in the input BFD. */
6822 map->count = section_count;
6823 *pointer_to_map = map;
6824 pointer_to_map = &map->next;
6825
6826 if (p_paddr_valid
6827 && !bed->want_p_paddr_set_to_zero
6828 && matching_lma != map->p_paddr
6829 && !map->includes_filehdr
6830 && !map->includes_phdrs)
6831 /* There is some padding before the first section in the
6832 segment. So, we must account for that in the output
6833 segment's vma. */
6834 map->p_vaddr_offset = matching_lma - map->p_paddr;
6835
6836 free (sections);
6837 continue;
6838 }
6839 else
6840 {
6841 if (!first_matching_lma)
6842 {
6843 /* At least one section fits inside the current segment.
6844 Keep it, but modify its physical address to match the
6845 LMA of the first section that fitted. */
6846 map->p_paddr = matching_lma;
6847 }
6848 else
6849 {
6850 /* None of the sections fitted inside the current segment.
6851 Change the current segment's physical address to match
6852 the LMA of the first section. */
6853 map->p_paddr = suggested_lma;
6854 }
6855
6856 /* Offset the segment physical address from the lma
6857 to allow for space taken up by elf headers. */
6858 if (map->includes_filehdr)
6859 {
6860 if (map->p_paddr >= iehdr->e_ehsize)
6861 map->p_paddr -= iehdr->e_ehsize;
6862 else
6863 {
6864 map->includes_filehdr = FALSE;
6865 map->includes_phdrs = FALSE;
6866 }
6867 }
6868
6869 if (map->includes_phdrs)
6870 {
6871 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6872 {
6873 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6874
6875 /* iehdr->e_phnum is just an estimate of the number
6876 of program headers that we will need. Make a note
6877 here of the number we used and the segment we chose
6878 to hold these headers, so that we can adjust the
6879 offset when we know the correct value. */
6880 phdr_adjust_num = iehdr->e_phnum;
6881 phdr_adjust_seg = map;
6882 }
6883 else
6884 map->includes_phdrs = FALSE;
6885 }
6886 }
6887
6888 /* Step Three: Loop over the sections again, this time assigning
6889 those that fit to the current segment and removing them from the
6890 sections array; but making sure not to leave large gaps. Once all
6891 possible sections have been assigned to the current segment it is
6892 added to the list of built segments and if sections still remain
6893 to be assigned, a new segment is constructed before repeating
6894 the loop. */
6895 isec = 0;
6896 do
6897 {
6898 map->count = 0;
6899 suggested_lma = 0;
6900 first_suggested_lma = TRUE;
6901
6902 /* Fill the current segment with sections that fit. */
6903 for (j = 0; j < section_count; j++)
6904 {
6905 section = sections[j];
6906
6907 if (section == NULL)
6908 continue;
6909
6910 output_section = section->output_section;
6911
6912 BFD_ASSERT (output_section != NULL);
6913
6914 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6915 || IS_COREFILE_NOTE (segment, section))
6916 {
6917 if (map->count == 0)
6918 {
6919 /* If the first section in a segment does not start at
6920 the beginning of the segment, then something is
6921 wrong. */
6922 if (output_section->lma
6923 != (map->p_paddr
6924 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6925 + (map->includes_phdrs
6926 ? iehdr->e_phnum * iehdr->e_phentsize
6927 : 0)))
6928 abort ();
6929 }
6930 else
6931 {
6932 asection *prev_sec;
6933
6934 prev_sec = map->sections[map->count - 1];
6935
6936 /* If the gap between the end of the previous section
6937 and the start of this section is more than
6938 maxpagesize then we need to start a new segment. */
6939 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6940 maxpagesize)
6941 < BFD_ALIGN (output_section->lma, maxpagesize))
6942 || (prev_sec->lma + prev_sec->size
6943 > output_section->lma))
6944 {
6945 if (first_suggested_lma)
6946 {
6947 suggested_lma = output_section->lma;
6948 first_suggested_lma = FALSE;
6949 }
6950
6951 continue;
6952 }
6953 }
6954
6955 map->sections[map->count++] = output_section;
6956 ++isec;
6957 sections[j] = NULL;
6958 section->segment_mark = TRUE;
6959 }
6960 else if (first_suggested_lma)
6961 {
6962 suggested_lma = output_section->lma;
6963 first_suggested_lma = FALSE;
6964 }
6965 }
6966
6967 BFD_ASSERT (map->count > 0);
6968
6969 /* Add the current segment to the list of built segments. */
6970 *pointer_to_map = map;
6971 pointer_to_map = &map->next;
6972
6973 if (isec < section_count)
6974 {
6975 /* We still have not allocated all of the sections to
6976 segments. Create a new segment here, initialise it
6977 and carry on looping. */
6978 amt = sizeof (struct elf_segment_map);
6979 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6980 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6981 if (map == NULL)
6982 {
6983 free (sections);
6984 return FALSE;
6985 }
6986
6987 /* Initialise the fields of the segment map. Set the physical
6988 physical address to the LMA of the first section that has
6989 not yet been assigned. */
6990 map->next = NULL;
6991 map->p_type = segment->p_type;
6992 map->p_flags = segment->p_flags;
6993 map->p_flags_valid = 1;
6994 map->p_paddr = suggested_lma;
6995 map->p_paddr_valid = p_paddr_valid;
6996 map->includes_filehdr = 0;
6997 map->includes_phdrs = 0;
6998 }
6999 }
7000 while (isec < section_count);
7001
7002 free (sections);
7003 }
7004
7005 elf_seg_map (obfd) = map_first;
7006
7007 /* If we had to estimate the number of program headers that were
7008 going to be needed, then check our estimate now and adjust
7009 the offset if necessary. */
7010 if (phdr_adjust_seg != NULL)
7011 {
7012 unsigned int count;
7013
7014 for (count = 0, map = map_first; map != NULL; map = map->next)
7015 count++;
7016
7017 if (count > phdr_adjust_num)
7018 phdr_adjust_seg->p_paddr
7019 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7020 }
7021
7022 #undef SEGMENT_END
7023 #undef SECTION_SIZE
7024 #undef IS_CONTAINED_BY_VMA
7025 #undef IS_CONTAINED_BY_LMA
7026 #undef IS_NOTE
7027 #undef IS_COREFILE_NOTE
7028 #undef IS_SOLARIS_PT_INTERP
7029 #undef IS_SECTION_IN_INPUT_SEGMENT
7030 #undef INCLUDE_SECTION_IN_SEGMENT
7031 #undef SEGMENT_AFTER_SEGMENT
7032 #undef SEGMENT_OVERLAPS
7033 return TRUE;
7034 }
7035
7036 /* Copy ELF program header information. */
7037
7038 static bfd_boolean
7039 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7040 {
7041 Elf_Internal_Ehdr *iehdr;
7042 struct elf_segment_map *map;
7043 struct elf_segment_map *map_first;
7044 struct elf_segment_map **pointer_to_map;
7045 Elf_Internal_Phdr *segment;
7046 unsigned int i;
7047 unsigned int num_segments;
7048 bfd_boolean phdr_included = FALSE;
7049 bfd_boolean p_paddr_valid;
7050
7051 iehdr = elf_elfheader (ibfd);
7052
7053 map_first = NULL;
7054 pointer_to_map = &map_first;
7055
7056 /* If all the segment p_paddr fields are zero, don't set
7057 map->p_paddr_valid. */
7058 p_paddr_valid = FALSE;
7059 num_segments = elf_elfheader (ibfd)->e_phnum;
7060 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7061 i < num_segments;
7062 i++, segment++)
7063 if (segment->p_paddr != 0)
7064 {
7065 p_paddr_valid = TRUE;
7066 break;
7067 }
7068
7069 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7070 i < num_segments;
7071 i++, segment++)
7072 {
7073 asection *section;
7074 unsigned int section_count;
7075 bfd_size_type amt;
7076 Elf_Internal_Shdr *this_hdr;
7077 asection *first_section = NULL;
7078 asection *lowest_section;
7079
7080 /* Compute how many sections are in this segment. */
7081 for (section = ibfd->sections, section_count = 0;
7082 section != NULL;
7083 section = section->next)
7084 {
7085 this_hdr = &(elf_section_data(section)->this_hdr);
7086 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7087 {
7088 if (first_section == NULL)
7089 first_section = section;
7090 section_count++;
7091 }
7092 }
7093
7094 /* Allocate a segment map big enough to contain
7095 all of the sections we have selected. */
7096 amt = sizeof (struct elf_segment_map);
7097 if (section_count != 0)
7098 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7099 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7100 if (map == NULL)
7101 return FALSE;
7102
7103 /* Initialize the fields of the output segment map with the
7104 input segment. */
7105 map->next = NULL;
7106 map->p_type = segment->p_type;
7107 map->p_flags = segment->p_flags;
7108 map->p_flags_valid = 1;
7109 map->p_paddr = segment->p_paddr;
7110 map->p_paddr_valid = p_paddr_valid;
7111 map->p_align = segment->p_align;
7112 map->p_align_valid = 1;
7113 map->p_vaddr_offset = 0;
7114
7115 if (map->p_type == PT_GNU_RELRO
7116 || map->p_type == PT_GNU_STACK)
7117 {
7118 /* The PT_GNU_RELRO segment may contain the first a few
7119 bytes in the .got.plt section even if the whole .got.plt
7120 section isn't in the PT_GNU_RELRO segment. We won't
7121 change the size of the PT_GNU_RELRO segment.
7122 Similarly, PT_GNU_STACK size is significant on uclinux
7123 systems. */
7124 map->p_size = segment->p_memsz;
7125 map->p_size_valid = 1;
7126 }
7127
7128 /* Determine if this segment contains the ELF file header
7129 and if it contains the program headers themselves. */
7130 map->includes_filehdr = (segment->p_offset == 0
7131 && segment->p_filesz >= iehdr->e_ehsize);
7132
7133 map->includes_phdrs = 0;
7134 if (! phdr_included || segment->p_type != PT_LOAD)
7135 {
7136 map->includes_phdrs =
7137 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7138 && (segment->p_offset + segment->p_filesz
7139 >= ((bfd_vma) iehdr->e_phoff
7140 + iehdr->e_phnum * iehdr->e_phentsize)));
7141
7142 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7143 phdr_included = TRUE;
7144 }
7145
7146 lowest_section = NULL;
7147 if (section_count != 0)
7148 {
7149 unsigned int isec = 0;
7150
7151 for (section = first_section;
7152 section != NULL;
7153 section = section->next)
7154 {
7155 this_hdr = &(elf_section_data(section)->this_hdr);
7156 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7157 {
7158 map->sections[isec++] = section->output_section;
7159 if ((section->flags & SEC_ALLOC) != 0)
7160 {
7161 bfd_vma seg_off;
7162
7163 if (lowest_section == NULL
7164 || section->lma < lowest_section->lma)
7165 lowest_section = section;
7166
7167 /* Section lmas are set up from PT_LOAD header
7168 p_paddr in _bfd_elf_make_section_from_shdr.
7169 If this header has a p_paddr that disagrees
7170 with the section lma, flag the p_paddr as
7171 invalid. */
7172 if ((section->flags & SEC_LOAD) != 0)
7173 seg_off = this_hdr->sh_offset - segment->p_offset;
7174 else
7175 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7176 if (section->lma - segment->p_paddr != seg_off)
7177 map->p_paddr_valid = FALSE;
7178 }
7179 if (isec == section_count)
7180 break;
7181 }
7182 }
7183 }
7184
7185 if (map->includes_filehdr && lowest_section != NULL)
7186 /* We need to keep the space used by the headers fixed. */
7187 map->header_size = lowest_section->vma - segment->p_vaddr;
7188
7189 if (!map->includes_phdrs
7190 && !map->includes_filehdr
7191 && map->p_paddr_valid)
7192 /* There is some other padding before the first section. */
7193 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7194 - segment->p_paddr);
7195
7196 map->count = section_count;
7197 *pointer_to_map = map;
7198 pointer_to_map = &map->next;
7199 }
7200
7201 elf_seg_map (obfd) = map_first;
7202 return TRUE;
7203 }
7204
7205 /* Copy private BFD data. This copies or rewrites ELF program header
7206 information. */
7207
7208 static bfd_boolean
7209 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7210 {
7211 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7212 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7213 return TRUE;
7214
7215 if (elf_tdata (ibfd)->phdr == NULL)
7216 return TRUE;
7217
7218 if (ibfd->xvec == obfd->xvec)
7219 {
7220 /* Check to see if any sections in the input BFD
7221 covered by ELF program header have changed. */
7222 Elf_Internal_Phdr *segment;
7223 asection *section, *osec;
7224 unsigned int i, num_segments;
7225 Elf_Internal_Shdr *this_hdr;
7226 const struct elf_backend_data *bed;
7227
7228 bed = get_elf_backend_data (ibfd);
7229
7230 /* Regenerate the segment map if p_paddr is set to 0. */
7231 if (bed->want_p_paddr_set_to_zero)
7232 goto rewrite;
7233
7234 /* Initialize the segment mark field. */
7235 for (section = obfd->sections; section != NULL;
7236 section = section->next)
7237 section->segment_mark = FALSE;
7238
7239 num_segments = elf_elfheader (ibfd)->e_phnum;
7240 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7241 i < num_segments;
7242 i++, segment++)
7243 {
7244 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7245 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7246 which severly confuses things, so always regenerate the segment
7247 map in this case. */
7248 if (segment->p_paddr == 0
7249 && segment->p_memsz == 0
7250 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7251 goto rewrite;
7252
7253 for (section = ibfd->sections;
7254 section != NULL; section = section->next)
7255 {
7256 /* We mark the output section so that we know it comes
7257 from the input BFD. */
7258 osec = section->output_section;
7259 if (osec)
7260 osec->segment_mark = TRUE;
7261
7262 /* Check if this section is covered by the segment. */
7263 this_hdr = &(elf_section_data(section)->this_hdr);
7264 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7265 {
7266 /* FIXME: Check if its output section is changed or
7267 removed. What else do we need to check? */
7268 if (osec == NULL
7269 || section->flags != osec->flags
7270 || section->lma != osec->lma
7271 || section->vma != osec->vma
7272 || section->size != osec->size
7273 || section->rawsize != osec->rawsize
7274 || section->alignment_power != osec->alignment_power)
7275 goto rewrite;
7276 }
7277 }
7278 }
7279
7280 /* Check to see if any output section do not come from the
7281 input BFD. */
7282 for (section = obfd->sections; section != NULL;
7283 section = section->next)
7284 {
7285 if (section->segment_mark == FALSE)
7286 goto rewrite;
7287 else
7288 section->segment_mark = FALSE;
7289 }
7290
7291 return copy_elf_program_header (ibfd, obfd);
7292 }
7293
7294 rewrite:
7295 if (ibfd->xvec == obfd->xvec)
7296 {
7297 /* When rewriting program header, set the output maxpagesize to
7298 the maximum alignment of input PT_LOAD segments. */
7299 Elf_Internal_Phdr *segment;
7300 unsigned int i;
7301 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7302 bfd_vma maxpagesize = 0;
7303
7304 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7305 i < num_segments;
7306 i++, segment++)
7307 if (segment->p_type == PT_LOAD
7308 && maxpagesize < segment->p_align)
7309 {
7310 /* PR 17512: file: f17299af. */
7311 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7312 /* xgettext:c-format */
7313 _bfd_error_handler (_("\
7314 %B: warning: segment alignment of 0x%llx is too large"),
7315 ibfd, (long long) segment->p_align);
7316 else
7317 maxpagesize = segment->p_align;
7318 }
7319
7320 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7321 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7322 }
7323
7324 return rewrite_elf_program_header (ibfd, obfd);
7325 }
7326
7327 /* Initialize private output section information from input section. */
7328
7329 bfd_boolean
7330 _bfd_elf_init_private_section_data (bfd *ibfd,
7331 asection *isec,
7332 bfd *obfd,
7333 asection *osec,
7334 struct bfd_link_info *link_info)
7335
7336 {
7337 Elf_Internal_Shdr *ihdr, *ohdr;
7338 bfd_boolean final_link = (link_info != NULL
7339 && !bfd_link_relocatable (link_info));
7340
7341 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7342 || obfd->xvec->flavour != bfd_target_elf_flavour)
7343 return TRUE;
7344
7345 BFD_ASSERT (elf_section_data (osec) != NULL);
7346
7347 /* For objcopy and relocatable link, don't copy the output ELF
7348 section type from input if the output BFD section flags have been
7349 set to something different. For a final link allow some flags
7350 that the linker clears to differ. */
7351 if (elf_section_type (osec) == SHT_NULL
7352 && (osec->flags == isec->flags
7353 || (final_link
7354 && ((osec->flags ^ isec->flags)
7355 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7356 elf_section_type (osec) = elf_section_type (isec);
7357
7358 /* FIXME: Is this correct for all OS/PROC specific flags? */
7359 elf_section_flags (osec) |= (elf_section_flags (isec)
7360 & (SHF_MASKOS | SHF_MASKPROC));
7361
7362 /* Set things up for objcopy and relocatable link. The output
7363 SHT_GROUP section will have its elf_next_in_group pointing back
7364 to the input group members. Ignore linker created group section.
7365 See elfNN_ia64_object_p in elfxx-ia64.c. */
7366 if (!final_link)
7367 {
7368 if (elf_sec_group (isec) == NULL
7369 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
7370 {
7371 if (elf_section_flags (isec) & SHF_GROUP)
7372 elf_section_flags (osec) |= SHF_GROUP;
7373 elf_next_in_group (osec) = elf_next_in_group (isec);
7374 elf_section_data (osec)->group = elf_section_data (isec)->group;
7375 }
7376
7377 /* If not decompress, preserve SHF_COMPRESSED. */
7378 if ((ibfd->flags & BFD_DECOMPRESS) == 0)
7379 elf_section_flags (osec) |= (elf_section_flags (isec)
7380 & SHF_COMPRESSED);
7381 }
7382
7383 ihdr = &elf_section_data (isec)->this_hdr;
7384
7385 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7386 don't use the output section of the linked-to section since it
7387 may be NULL at this point. */
7388 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7389 {
7390 ohdr = &elf_section_data (osec)->this_hdr;
7391 ohdr->sh_flags |= SHF_LINK_ORDER;
7392 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7393 }
7394
7395 osec->use_rela_p = isec->use_rela_p;
7396
7397 return TRUE;
7398 }
7399
7400 /* Copy private section information. This copies over the entsize
7401 field, and sometimes the info field. */
7402
7403 bfd_boolean
7404 _bfd_elf_copy_private_section_data (bfd *ibfd,
7405 asection *isec,
7406 bfd *obfd,
7407 asection *osec)
7408 {
7409 Elf_Internal_Shdr *ihdr, *ohdr;
7410
7411 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7412 || obfd->xvec->flavour != bfd_target_elf_flavour)
7413 return TRUE;
7414
7415 ihdr = &elf_section_data (isec)->this_hdr;
7416 ohdr = &elf_section_data (osec)->this_hdr;
7417
7418 ohdr->sh_entsize = ihdr->sh_entsize;
7419
7420 if (ihdr->sh_type == SHT_SYMTAB
7421 || ihdr->sh_type == SHT_DYNSYM
7422 || ihdr->sh_type == SHT_GNU_verneed
7423 || ihdr->sh_type == SHT_GNU_verdef)
7424 ohdr->sh_info = ihdr->sh_info;
7425
7426 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7427 NULL);
7428 }
7429
7430 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7431 necessary if we are removing either the SHT_GROUP section or any of
7432 the group member sections. DISCARDED is the value that a section's
7433 output_section has if the section will be discarded, NULL when this
7434 function is called from objcopy, bfd_abs_section_ptr when called
7435 from the linker. */
7436
7437 bfd_boolean
7438 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7439 {
7440 asection *isec;
7441
7442 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7443 if (elf_section_type (isec) == SHT_GROUP)
7444 {
7445 asection *first = elf_next_in_group (isec);
7446 asection *s = first;
7447 bfd_size_type removed = 0;
7448
7449 while (s != NULL)
7450 {
7451 /* If this member section is being output but the
7452 SHT_GROUP section is not, then clear the group info
7453 set up by _bfd_elf_copy_private_section_data. */
7454 if (s->output_section != discarded
7455 && isec->output_section == discarded)
7456 {
7457 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7458 elf_group_name (s->output_section) = NULL;
7459 }
7460 /* Conversely, if the member section is not being output
7461 but the SHT_GROUP section is, then adjust its size. */
7462 else if (s->output_section == discarded
7463 && isec->output_section != discarded)
7464 removed += 4;
7465 s = elf_next_in_group (s);
7466 if (s == first)
7467 break;
7468 }
7469 if (removed != 0)
7470 {
7471 if (discarded != NULL)
7472 {
7473 /* If we've been called for ld -r, then we need to
7474 adjust the input section size. This function may
7475 be called multiple times, so save the original
7476 size. */
7477 if (isec->rawsize == 0)
7478 isec->rawsize = isec->size;
7479 isec->size = isec->rawsize - removed;
7480 }
7481 else
7482 {
7483 /* Adjust the output section size when called from
7484 objcopy. */
7485 isec->output_section->size -= removed;
7486 }
7487 }
7488 }
7489
7490 return TRUE;
7491 }
7492
7493 /* Copy private header information. */
7494
7495 bfd_boolean
7496 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7497 {
7498 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7499 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7500 return TRUE;
7501
7502 /* Copy over private BFD data if it has not already been copied.
7503 This must be done here, rather than in the copy_private_bfd_data
7504 entry point, because the latter is called after the section
7505 contents have been set, which means that the program headers have
7506 already been worked out. */
7507 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7508 {
7509 if (! copy_private_bfd_data (ibfd, obfd))
7510 return FALSE;
7511 }
7512
7513 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7514 }
7515
7516 /* Copy private symbol information. If this symbol is in a section
7517 which we did not map into a BFD section, try to map the section
7518 index correctly. We use special macro definitions for the mapped
7519 section indices; these definitions are interpreted by the
7520 swap_out_syms function. */
7521
7522 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7523 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7524 #define MAP_STRTAB (SHN_HIOS + 3)
7525 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7526 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7527
7528 bfd_boolean
7529 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7530 asymbol *isymarg,
7531 bfd *obfd,
7532 asymbol *osymarg)
7533 {
7534 elf_symbol_type *isym, *osym;
7535
7536 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7537 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7538 return TRUE;
7539
7540 isym = elf_symbol_from (ibfd, isymarg);
7541 osym = elf_symbol_from (obfd, osymarg);
7542
7543 if (isym != NULL
7544 && isym->internal_elf_sym.st_shndx != 0
7545 && osym != NULL
7546 && bfd_is_abs_section (isym->symbol.section))
7547 {
7548 unsigned int shndx;
7549
7550 shndx = isym->internal_elf_sym.st_shndx;
7551 if (shndx == elf_onesymtab (ibfd))
7552 shndx = MAP_ONESYMTAB;
7553 else if (shndx == elf_dynsymtab (ibfd))
7554 shndx = MAP_DYNSYMTAB;
7555 else if (shndx == elf_strtab_sec (ibfd))
7556 shndx = MAP_STRTAB;
7557 else if (shndx == elf_shstrtab_sec (ibfd))
7558 shndx = MAP_SHSTRTAB;
7559 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7560 shndx = MAP_SYM_SHNDX;
7561 osym->internal_elf_sym.st_shndx = shndx;
7562 }
7563
7564 return TRUE;
7565 }
7566
7567 /* Swap out the symbols. */
7568
7569 static bfd_boolean
7570 swap_out_syms (bfd *abfd,
7571 struct elf_strtab_hash **sttp,
7572 int relocatable_p)
7573 {
7574 const struct elf_backend_data *bed;
7575 int symcount;
7576 asymbol **syms;
7577 struct elf_strtab_hash *stt;
7578 Elf_Internal_Shdr *symtab_hdr;
7579 Elf_Internal_Shdr *symtab_shndx_hdr;
7580 Elf_Internal_Shdr *symstrtab_hdr;
7581 struct elf_sym_strtab *symstrtab;
7582 bfd_byte *outbound_syms;
7583 bfd_byte *outbound_shndx;
7584 unsigned long outbound_syms_index;
7585 unsigned long outbound_shndx_index;
7586 int idx;
7587 unsigned int num_locals;
7588 bfd_size_type amt;
7589 bfd_boolean name_local_sections;
7590
7591 if (!elf_map_symbols (abfd, &num_locals))
7592 return FALSE;
7593
7594 /* Dump out the symtabs. */
7595 stt = _bfd_elf_strtab_init ();
7596 if (stt == NULL)
7597 return FALSE;
7598
7599 bed = get_elf_backend_data (abfd);
7600 symcount = bfd_get_symcount (abfd);
7601 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7602 symtab_hdr->sh_type = SHT_SYMTAB;
7603 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7604 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7605 symtab_hdr->sh_info = num_locals + 1;
7606 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7607
7608 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7609 symstrtab_hdr->sh_type = SHT_STRTAB;
7610
7611 /* Allocate buffer to swap out the .strtab section. */
7612 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7613 * sizeof (*symstrtab));
7614 if (symstrtab == NULL)
7615 {
7616 _bfd_elf_strtab_free (stt);
7617 return FALSE;
7618 }
7619
7620 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7621 bed->s->sizeof_sym);
7622 if (outbound_syms == NULL)
7623 {
7624 error_return:
7625 _bfd_elf_strtab_free (stt);
7626 free (symstrtab);
7627 return FALSE;
7628 }
7629 symtab_hdr->contents = outbound_syms;
7630 outbound_syms_index = 0;
7631
7632 outbound_shndx = NULL;
7633 outbound_shndx_index = 0;
7634
7635 if (elf_symtab_shndx_list (abfd))
7636 {
7637 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7638 if (symtab_shndx_hdr->sh_name != 0)
7639 {
7640 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7641 outbound_shndx = (bfd_byte *)
7642 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7643 if (outbound_shndx == NULL)
7644 goto error_return;
7645
7646 symtab_shndx_hdr->contents = outbound_shndx;
7647 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7648 symtab_shndx_hdr->sh_size = amt;
7649 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7650 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7651 }
7652 /* FIXME: What about any other headers in the list ? */
7653 }
7654
7655 /* Now generate the data (for "contents"). */
7656 {
7657 /* Fill in zeroth symbol and swap it out. */
7658 Elf_Internal_Sym sym;
7659 sym.st_name = 0;
7660 sym.st_value = 0;
7661 sym.st_size = 0;
7662 sym.st_info = 0;
7663 sym.st_other = 0;
7664 sym.st_shndx = SHN_UNDEF;
7665 sym.st_target_internal = 0;
7666 symstrtab[0].sym = sym;
7667 symstrtab[0].dest_index = outbound_syms_index;
7668 symstrtab[0].destshndx_index = outbound_shndx_index;
7669 outbound_syms_index++;
7670 if (outbound_shndx != NULL)
7671 outbound_shndx_index++;
7672 }
7673
7674 name_local_sections
7675 = (bed->elf_backend_name_local_section_symbols
7676 && bed->elf_backend_name_local_section_symbols (abfd));
7677
7678 syms = bfd_get_outsymbols (abfd);
7679 for (idx = 0; idx < symcount;)
7680 {
7681 Elf_Internal_Sym sym;
7682 bfd_vma value = syms[idx]->value;
7683 elf_symbol_type *type_ptr;
7684 flagword flags = syms[idx]->flags;
7685 int type;
7686
7687 if (!name_local_sections
7688 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7689 {
7690 /* Local section symbols have no name. */
7691 sym.st_name = (unsigned long) -1;
7692 }
7693 else
7694 {
7695 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7696 to get the final offset for st_name. */
7697 sym.st_name
7698 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7699 FALSE);
7700 if (sym.st_name == (unsigned long) -1)
7701 goto error_return;
7702 }
7703
7704 type_ptr = elf_symbol_from (abfd, syms[idx]);
7705
7706 if ((flags & BSF_SECTION_SYM) == 0
7707 && bfd_is_com_section (syms[idx]->section))
7708 {
7709 /* ELF common symbols put the alignment into the `value' field,
7710 and the size into the `size' field. This is backwards from
7711 how BFD handles it, so reverse it here. */
7712 sym.st_size = value;
7713 if (type_ptr == NULL
7714 || type_ptr->internal_elf_sym.st_value == 0)
7715 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7716 else
7717 sym.st_value = type_ptr->internal_elf_sym.st_value;
7718 sym.st_shndx = _bfd_elf_section_from_bfd_section
7719 (abfd, syms[idx]->section);
7720 }
7721 else
7722 {
7723 asection *sec = syms[idx]->section;
7724 unsigned int shndx;
7725
7726 if (sec->output_section)
7727 {
7728 value += sec->output_offset;
7729 sec = sec->output_section;
7730 }
7731
7732 /* Don't add in the section vma for relocatable output. */
7733 if (! relocatable_p)
7734 value += sec->vma;
7735 sym.st_value = value;
7736 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7737
7738 if (bfd_is_abs_section (sec)
7739 && type_ptr != NULL
7740 && type_ptr->internal_elf_sym.st_shndx != 0)
7741 {
7742 /* This symbol is in a real ELF section which we did
7743 not create as a BFD section. Undo the mapping done
7744 by copy_private_symbol_data. */
7745 shndx = type_ptr->internal_elf_sym.st_shndx;
7746 switch (shndx)
7747 {
7748 case MAP_ONESYMTAB:
7749 shndx = elf_onesymtab (abfd);
7750 break;
7751 case MAP_DYNSYMTAB:
7752 shndx = elf_dynsymtab (abfd);
7753 break;
7754 case MAP_STRTAB:
7755 shndx = elf_strtab_sec (abfd);
7756 break;
7757 case MAP_SHSTRTAB:
7758 shndx = elf_shstrtab_sec (abfd);
7759 break;
7760 case MAP_SYM_SHNDX:
7761 if (elf_symtab_shndx_list (abfd))
7762 shndx = elf_symtab_shndx_list (abfd)->ndx;
7763 break;
7764 default:
7765 shndx = SHN_ABS;
7766 break;
7767 }
7768 }
7769 else
7770 {
7771 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7772
7773 if (shndx == SHN_BAD)
7774 {
7775 asection *sec2;
7776
7777 /* Writing this would be a hell of a lot easier if
7778 we had some decent documentation on bfd, and
7779 knew what to expect of the library, and what to
7780 demand of applications. For example, it
7781 appears that `objcopy' might not set the
7782 section of a symbol to be a section that is
7783 actually in the output file. */
7784 sec2 = bfd_get_section_by_name (abfd, sec->name);
7785 if (sec2 != NULL)
7786 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7787 if (shndx == SHN_BAD)
7788 {
7789 /* xgettext:c-format */
7790 _bfd_error_handler (_("\
7791 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7792 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7793 sec->name);
7794 bfd_set_error (bfd_error_invalid_operation);
7795 goto error_return;
7796 }
7797 }
7798 }
7799
7800 sym.st_shndx = shndx;
7801 }
7802
7803 if ((flags & BSF_THREAD_LOCAL) != 0)
7804 type = STT_TLS;
7805 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7806 type = STT_GNU_IFUNC;
7807 else if ((flags & BSF_FUNCTION) != 0)
7808 type = STT_FUNC;
7809 else if ((flags & BSF_OBJECT) != 0)
7810 type = STT_OBJECT;
7811 else if ((flags & BSF_RELC) != 0)
7812 type = STT_RELC;
7813 else if ((flags & BSF_SRELC) != 0)
7814 type = STT_SRELC;
7815 else
7816 type = STT_NOTYPE;
7817
7818 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7819 type = STT_TLS;
7820
7821 /* Processor-specific types. */
7822 if (type_ptr != NULL
7823 && bed->elf_backend_get_symbol_type)
7824 type = ((*bed->elf_backend_get_symbol_type)
7825 (&type_ptr->internal_elf_sym, type));
7826
7827 if (flags & BSF_SECTION_SYM)
7828 {
7829 if (flags & BSF_GLOBAL)
7830 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7831 else
7832 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7833 }
7834 else if (bfd_is_com_section (syms[idx]->section))
7835 {
7836 if (type != STT_TLS)
7837 {
7838 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
7839 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
7840 ? STT_COMMON : STT_OBJECT);
7841 else
7842 type = ((flags & BSF_ELF_COMMON) != 0
7843 ? STT_COMMON : STT_OBJECT);
7844 }
7845 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7846 }
7847 else if (bfd_is_und_section (syms[idx]->section))
7848 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7849 ? STB_WEAK
7850 : STB_GLOBAL),
7851 type);
7852 else if (flags & BSF_FILE)
7853 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7854 else
7855 {
7856 int bind = STB_LOCAL;
7857
7858 if (flags & BSF_LOCAL)
7859 bind = STB_LOCAL;
7860 else if (flags & BSF_GNU_UNIQUE)
7861 bind = STB_GNU_UNIQUE;
7862 else if (flags & BSF_WEAK)
7863 bind = STB_WEAK;
7864 else if (flags & BSF_GLOBAL)
7865 bind = STB_GLOBAL;
7866
7867 sym.st_info = ELF_ST_INFO (bind, type);
7868 }
7869
7870 if (type_ptr != NULL)
7871 {
7872 sym.st_other = type_ptr->internal_elf_sym.st_other;
7873 sym.st_target_internal
7874 = type_ptr->internal_elf_sym.st_target_internal;
7875 }
7876 else
7877 {
7878 sym.st_other = 0;
7879 sym.st_target_internal = 0;
7880 }
7881
7882 idx++;
7883 symstrtab[idx].sym = sym;
7884 symstrtab[idx].dest_index = outbound_syms_index;
7885 symstrtab[idx].destshndx_index = outbound_shndx_index;
7886
7887 outbound_syms_index++;
7888 if (outbound_shndx != NULL)
7889 outbound_shndx_index++;
7890 }
7891
7892 /* Finalize the .strtab section. */
7893 _bfd_elf_strtab_finalize (stt);
7894
7895 /* Swap out the .strtab section. */
7896 for (idx = 0; idx <= symcount; idx++)
7897 {
7898 struct elf_sym_strtab *elfsym = &symstrtab[idx];
7899 if (elfsym->sym.st_name == (unsigned long) -1)
7900 elfsym->sym.st_name = 0;
7901 else
7902 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
7903 elfsym->sym.st_name);
7904 bed->s->swap_symbol_out (abfd, &elfsym->sym,
7905 (outbound_syms
7906 + (elfsym->dest_index
7907 * bed->s->sizeof_sym)),
7908 (outbound_shndx
7909 + (elfsym->destshndx_index
7910 * sizeof (Elf_External_Sym_Shndx))));
7911 }
7912 free (symstrtab);
7913
7914 *sttp = stt;
7915 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
7916 symstrtab_hdr->sh_type = SHT_STRTAB;
7917 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
7918 symstrtab_hdr->sh_addr = 0;
7919 symstrtab_hdr->sh_entsize = 0;
7920 symstrtab_hdr->sh_link = 0;
7921 symstrtab_hdr->sh_info = 0;
7922 symstrtab_hdr->sh_addralign = 1;
7923
7924 return TRUE;
7925 }
7926
7927 /* Return the number of bytes required to hold the symtab vector.
7928
7929 Note that we base it on the count plus 1, since we will null terminate
7930 the vector allocated based on this size. However, the ELF symbol table
7931 always has a dummy entry as symbol #0, so it ends up even. */
7932
7933 long
7934 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7935 {
7936 long symcount;
7937 long symtab_size;
7938 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7939
7940 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7941 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7942 if (symcount > 0)
7943 symtab_size -= sizeof (asymbol *);
7944
7945 return symtab_size;
7946 }
7947
7948 long
7949 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7950 {
7951 long symcount;
7952 long symtab_size;
7953 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7954
7955 if (elf_dynsymtab (abfd) == 0)
7956 {
7957 bfd_set_error (bfd_error_invalid_operation);
7958 return -1;
7959 }
7960
7961 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7962 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7963 if (symcount > 0)
7964 symtab_size -= sizeof (asymbol *);
7965
7966 return symtab_size;
7967 }
7968
7969 long
7970 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7971 sec_ptr asect)
7972 {
7973 return (asect->reloc_count + 1) * sizeof (arelent *);
7974 }
7975
7976 /* Canonicalize the relocs. */
7977
7978 long
7979 _bfd_elf_canonicalize_reloc (bfd *abfd,
7980 sec_ptr section,
7981 arelent **relptr,
7982 asymbol **symbols)
7983 {
7984 arelent *tblptr;
7985 unsigned int i;
7986 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7987
7988 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7989 return -1;
7990
7991 tblptr = section->relocation;
7992 for (i = 0; i < section->reloc_count; i++)
7993 *relptr++ = tblptr++;
7994
7995 *relptr = NULL;
7996
7997 return section->reloc_count;
7998 }
7999
8000 long
8001 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8002 {
8003 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8004 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8005
8006 if (symcount >= 0)
8007 bfd_get_symcount (abfd) = symcount;
8008 return symcount;
8009 }
8010
8011 long
8012 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8013 asymbol **allocation)
8014 {
8015 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8016 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8017
8018 if (symcount >= 0)
8019 bfd_get_dynamic_symcount (abfd) = symcount;
8020 return symcount;
8021 }
8022
8023 /* Return the size required for the dynamic reloc entries. Any loadable
8024 section that was actually installed in the BFD, and has type SHT_REL
8025 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8026 dynamic reloc section. */
8027
8028 long
8029 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8030 {
8031 long ret;
8032 asection *s;
8033
8034 if (elf_dynsymtab (abfd) == 0)
8035 {
8036 bfd_set_error (bfd_error_invalid_operation);
8037 return -1;
8038 }
8039
8040 ret = sizeof (arelent *);
8041 for (s = abfd->sections; s != NULL; s = s->next)
8042 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8043 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8044 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8045 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8046 * sizeof (arelent *));
8047
8048 return ret;
8049 }
8050
8051 /* Canonicalize the dynamic relocation entries. Note that we return the
8052 dynamic relocations as a single block, although they are actually
8053 associated with particular sections; the interface, which was
8054 designed for SunOS style shared libraries, expects that there is only
8055 one set of dynamic relocs. Any loadable section that was actually
8056 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8057 dynamic symbol table, is considered to be a dynamic reloc section. */
8058
8059 long
8060 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8061 arelent **storage,
8062 asymbol **syms)
8063 {
8064 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8065 asection *s;
8066 long ret;
8067
8068 if (elf_dynsymtab (abfd) == 0)
8069 {
8070 bfd_set_error (bfd_error_invalid_operation);
8071 return -1;
8072 }
8073
8074 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8075 ret = 0;
8076 for (s = abfd->sections; s != NULL; s = s->next)
8077 {
8078 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8079 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8080 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8081 {
8082 arelent *p;
8083 long count, i;
8084
8085 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8086 return -1;
8087 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8088 p = s->relocation;
8089 for (i = 0; i < count; i++)
8090 *storage++ = p++;
8091 ret += count;
8092 }
8093 }
8094
8095 *storage = NULL;
8096
8097 return ret;
8098 }
8099 \f
8100 /* Read in the version information. */
8101
8102 bfd_boolean
8103 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8104 {
8105 bfd_byte *contents = NULL;
8106 unsigned int freeidx = 0;
8107
8108 if (elf_dynverref (abfd) != 0)
8109 {
8110 Elf_Internal_Shdr *hdr;
8111 Elf_External_Verneed *everneed;
8112 Elf_Internal_Verneed *iverneed;
8113 unsigned int i;
8114 bfd_byte *contents_end;
8115
8116 hdr = &elf_tdata (abfd)->dynverref_hdr;
8117
8118 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
8119 {
8120 error_return_bad_verref:
8121 _bfd_error_handler
8122 (_("%B: .gnu.version_r invalid entry"), abfd);
8123 bfd_set_error (bfd_error_bad_value);
8124 error_return_verref:
8125 elf_tdata (abfd)->verref = NULL;
8126 elf_tdata (abfd)->cverrefs = 0;
8127 goto error_return;
8128 }
8129
8130 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8131 if (contents == NULL)
8132 goto error_return_verref;
8133
8134 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8135 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8136 goto error_return_verref;
8137
8138 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8139 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8140
8141 if (elf_tdata (abfd)->verref == NULL)
8142 goto error_return_verref;
8143
8144 BFD_ASSERT (sizeof (Elf_External_Verneed)
8145 == sizeof (Elf_External_Vernaux));
8146 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8147 everneed = (Elf_External_Verneed *) contents;
8148 iverneed = elf_tdata (abfd)->verref;
8149 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8150 {
8151 Elf_External_Vernaux *evernaux;
8152 Elf_Internal_Vernaux *ivernaux;
8153 unsigned int j;
8154
8155 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8156
8157 iverneed->vn_bfd = abfd;
8158
8159 iverneed->vn_filename =
8160 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8161 iverneed->vn_file);
8162 if (iverneed->vn_filename == NULL)
8163 goto error_return_bad_verref;
8164
8165 if (iverneed->vn_cnt == 0)
8166 iverneed->vn_auxptr = NULL;
8167 else
8168 {
8169 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8170 bfd_alloc2 (abfd, iverneed->vn_cnt,
8171 sizeof (Elf_Internal_Vernaux));
8172 if (iverneed->vn_auxptr == NULL)
8173 goto error_return_verref;
8174 }
8175
8176 if (iverneed->vn_aux
8177 > (size_t) (contents_end - (bfd_byte *) everneed))
8178 goto error_return_bad_verref;
8179
8180 evernaux = ((Elf_External_Vernaux *)
8181 ((bfd_byte *) everneed + iverneed->vn_aux));
8182 ivernaux = iverneed->vn_auxptr;
8183 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8184 {
8185 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8186
8187 ivernaux->vna_nodename =
8188 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8189 ivernaux->vna_name);
8190 if (ivernaux->vna_nodename == NULL)
8191 goto error_return_bad_verref;
8192
8193 if (ivernaux->vna_other > freeidx)
8194 freeidx = ivernaux->vna_other;
8195
8196 ivernaux->vna_nextptr = NULL;
8197 if (ivernaux->vna_next == 0)
8198 {
8199 iverneed->vn_cnt = j + 1;
8200 break;
8201 }
8202 if (j + 1 < iverneed->vn_cnt)
8203 ivernaux->vna_nextptr = ivernaux + 1;
8204
8205 if (ivernaux->vna_next
8206 > (size_t) (contents_end - (bfd_byte *) evernaux))
8207 goto error_return_bad_verref;
8208
8209 evernaux = ((Elf_External_Vernaux *)
8210 ((bfd_byte *) evernaux + ivernaux->vna_next));
8211 }
8212
8213 iverneed->vn_nextref = NULL;
8214 if (iverneed->vn_next == 0)
8215 break;
8216 if (i + 1 < hdr->sh_info)
8217 iverneed->vn_nextref = iverneed + 1;
8218
8219 if (iverneed->vn_next
8220 > (size_t) (contents_end - (bfd_byte *) everneed))
8221 goto error_return_bad_verref;
8222
8223 everneed = ((Elf_External_Verneed *)
8224 ((bfd_byte *) everneed + iverneed->vn_next));
8225 }
8226 elf_tdata (abfd)->cverrefs = i;
8227
8228 free (contents);
8229 contents = NULL;
8230 }
8231
8232 if (elf_dynverdef (abfd) != 0)
8233 {
8234 Elf_Internal_Shdr *hdr;
8235 Elf_External_Verdef *everdef;
8236 Elf_Internal_Verdef *iverdef;
8237 Elf_Internal_Verdef *iverdefarr;
8238 Elf_Internal_Verdef iverdefmem;
8239 unsigned int i;
8240 unsigned int maxidx;
8241 bfd_byte *contents_end_def, *contents_end_aux;
8242
8243 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8244
8245 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8246 {
8247 error_return_bad_verdef:
8248 _bfd_error_handler
8249 (_("%B: .gnu.version_d invalid entry"), abfd);
8250 bfd_set_error (bfd_error_bad_value);
8251 error_return_verdef:
8252 elf_tdata (abfd)->verdef = NULL;
8253 elf_tdata (abfd)->cverdefs = 0;
8254 goto error_return;
8255 }
8256
8257 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8258 if (contents == NULL)
8259 goto error_return_verdef;
8260 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8261 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8262 goto error_return_verdef;
8263
8264 BFD_ASSERT (sizeof (Elf_External_Verdef)
8265 >= sizeof (Elf_External_Verdaux));
8266 contents_end_def = contents + hdr->sh_size
8267 - sizeof (Elf_External_Verdef);
8268 contents_end_aux = contents + hdr->sh_size
8269 - sizeof (Elf_External_Verdaux);
8270
8271 /* We know the number of entries in the section but not the maximum
8272 index. Therefore we have to run through all entries and find
8273 the maximum. */
8274 everdef = (Elf_External_Verdef *) contents;
8275 maxidx = 0;
8276 for (i = 0; i < hdr->sh_info; ++i)
8277 {
8278 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8279
8280 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8281 goto error_return_bad_verdef;
8282 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8283 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8284
8285 if (iverdefmem.vd_next == 0)
8286 break;
8287
8288 if (iverdefmem.vd_next
8289 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8290 goto error_return_bad_verdef;
8291
8292 everdef = ((Elf_External_Verdef *)
8293 ((bfd_byte *) everdef + iverdefmem.vd_next));
8294 }
8295
8296 if (default_imported_symver)
8297 {
8298 if (freeidx > maxidx)
8299 maxidx = ++freeidx;
8300 else
8301 freeidx = ++maxidx;
8302 }
8303
8304 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8305 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8306 if (elf_tdata (abfd)->verdef == NULL)
8307 goto error_return_verdef;
8308
8309 elf_tdata (abfd)->cverdefs = maxidx;
8310
8311 everdef = (Elf_External_Verdef *) contents;
8312 iverdefarr = elf_tdata (abfd)->verdef;
8313 for (i = 0; i < hdr->sh_info; i++)
8314 {
8315 Elf_External_Verdaux *everdaux;
8316 Elf_Internal_Verdaux *iverdaux;
8317 unsigned int j;
8318
8319 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8320
8321 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8322 goto error_return_bad_verdef;
8323
8324 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8325 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8326
8327 iverdef->vd_bfd = abfd;
8328
8329 if (iverdef->vd_cnt == 0)
8330 iverdef->vd_auxptr = NULL;
8331 else
8332 {
8333 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8334 bfd_alloc2 (abfd, iverdef->vd_cnt,
8335 sizeof (Elf_Internal_Verdaux));
8336 if (iverdef->vd_auxptr == NULL)
8337 goto error_return_verdef;
8338 }
8339
8340 if (iverdef->vd_aux
8341 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8342 goto error_return_bad_verdef;
8343
8344 everdaux = ((Elf_External_Verdaux *)
8345 ((bfd_byte *) everdef + iverdef->vd_aux));
8346 iverdaux = iverdef->vd_auxptr;
8347 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8348 {
8349 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8350
8351 iverdaux->vda_nodename =
8352 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8353 iverdaux->vda_name);
8354 if (iverdaux->vda_nodename == NULL)
8355 goto error_return_bad_verdef;
8356
8357 iverdaux->vda_nextptr = NULL;
8358 if (iverdaux->vda_next == 0)
8359 {
8360 iverdef->vd_cnt = j + 1;
8361 break;
8362 }
8363 if (j + 1 < iverdef->vd_cnt)
8364 iverdaux->vda_nextptr = iverdaux + 1;
8365
8366 if (iverdaux->vda_next
8367 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8368 goto error_return_bad_verdef;
8369
8370 everdaux = ((Elf_External_Verdaux *)
8371 ((bfd_byte *) everdaux + iverdaux->vda_next));
8372 }
8373
8374 iverdef->vd_nodename = NULL;
8375 if (iverdef->vd_cnt)
8376 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8377
8378 iverdef->vd_nextdef = NULL;
8379 if (iverdef->vd_next == 0)
8380 break;
8381 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8382 iverdef->vd_nextdef = iverdef + 1;
8383
8384 everdef = ((Elf_External_Verdef *)
8385 ((bfd_byte *) everdef + iverdef->vd_next));
8386 }
8387
8388 free (contents);
8389 contents = NULL;
8390 }
8391 else if (default_imported_symver)
8392 {
8393 if (freeidx < 3)
8394 freeidx = 3;
8395 else
8396 freeidx++;
8397
8398 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8399 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8400 if (elf_tdata (abfd)->verdef == NULL)
8401 goto error_return;
8402
8403 elf_tdata (abfd)->cverdefs = freeidx;
8404 }
8405
8406 /* Create a default version based on the soname. */
8407 if (default_imported_symver)
8408 {
8409 Elf_Internal_Verdef *iverdef;
8410 Elf_Internal_Verdaux *iverdaux;
8411
8412 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8413
8414 iverdef->vd_version = VER_DEF_CURRENT;
8415 iverdef->vd_flags = 0;
8416 iverdef->vd_ndx = freeidx;
8417 iverdef->vd_cnt = 1;
8418
8419 iverdef->vd_bfd = abfd;
8420
8421 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8422 if (iverdef->vd_nodename == NULL)
8423 goto error_return_verdef;
8424 iverdef->vd_nextdef = NULL;
8425 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8426 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8427 if (iverdef->vd_auxptr == NULL)
8428 goto error_return_verdef;
8429
8430 iverdaux = iverdef->vd_auxptr;
8431 iverdaux->vda_nodename = iverdef->vd_nodename;
8432 }
8433
8434 return TRUE;
8435
8436 error_return:
8437 if (contents != NULL)
8438 free (contents);
8439 return FALSE;
8440 }
8441 \f
8442 asymbol *
8443 _bfd_elf_make_empty_symbol (bfd *abfd)
8444 {
8445 elf_symbol_type *newsym;
8446
8447 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8448 if (!newsym)
8449 return NULL;
8450 newsym->symbol.the_bfd = abfd;
8451 return &newsym->symbol;
8452 }
8453
8454 void
8455 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8456 asymbol *symbol,
8457 symbol_info *ret)
8458 {
8459 bfd_symbol_info (symbol, ret);
8460 }
8461
8462 /* Return whether a symbol name implies a local symbol. Most targets
8463 use this function for the is_local_label_name entry point, but some
8464 override it. */
8465
8466 bfd_boolean
8467 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8468 const char *name)
8469 {
8470 /* Normal local symbols start with ``.L''. */
8471 if (name[0] == '.' && name[1] == 'L')
8472 return TRUE;
8473
8474 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8475 DWARF debugging symbols starting with ``..''. */
8476 if (name[0] == '.' && name[1] == '.')
8477 return TRUE;
8478
8479 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8480 emitting DWARF debugging output. I suspect this is actually a
8481 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8482 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8483 underscore to be emitted on some ELF targets). For ease of use,
8484 we treat such symbols as local. */
8485 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8486 return TRUE;
8487
8488 /* Treat assembler generated fake symbols, dollar local labels and
8489 forward-backward labels (aka local labels) as locals.
8490 These labels have the form:
8491
8492 L0^A.* (fake symbols)
8493
8494 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8495
8496 Versions which start with .L will have already been matched above,
8497 so we only need to match the rest. */
8498 if (name[0] == 'L' && ISDIGIT (name[1]))
8499 {
8500 bfd_boolean ret = FALSE;
8501 const char * p;
8502 char c;
8503
8504 for (p = name + 2; (c = *p); p++)
8505 {
8506 if (c == 1 || c == 2)
8507 {
8508 if (c == 1 && p == name + 2)
8509 /* A fake symbol. */
8510 return TRUE;
8511
8512 /* FIXME: We are being paranoid here and treating symbols like
8513 L0^Bfoo as if there were non-local, on the grounds that the
8514 assembler will never generate them. But can any symbol
8515 containing an ASCII value in the range 1-31 ever be anything
8516 other than some kind of local ? */
8517 ret = TRUE;
8518 }
8519
8520 if (! ISDIGIT (c))
8521 {
8522 ret = FALSE;
8523 break;
8524 }
8525 }
8526 return ret;
8527 }
8528
8529 return FALSE;
8530 }
8531
8532 alent *
8533 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8534 asymbol *symbol ATTRIBUTE_UNUSED)
8535 {
8536 abort ();
8537 return NULL;
8538 }
8539
8540 bfd_boolean
8541 _bfd_elf_set_arch_mach (bfd *abfd,
8542 enum bfd_architecture arch,
8543 unsigned long machine)
8544 {
8545 /* If this isn't the right architecture for this backend, and this
8546 isn't the generic backend, fail. */
8547 if (arch != get_elf_backend_data (abfd)->arch
8548 && arch != bfd_arch_unknown
8549 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8550 return FALSE;
8551
8552 return bfd_default_set_arch_mach (abfd, arch, machine);
8553 }
8554
8555 /* Find the nearest line to a particular section and offset,
8556 for error reporting. */
8557
8558 bfd_boolean
8559 _bfd_elf_find_nearest_line (bfd *abfd,
8560 asymbol **symbols,
8561 asection *section,
8562 bfd_vma offset,
8563 const char **filename_ptr,
8564 const char **functionname_ptr,
8565 unsigned int *line_ptr,
8566 unsigned int *discriminator_ptr)
8567 {
8568 bfd_boolean found;
8569
8570 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8571 filename_ptr, functionname_ptr,
8572 line_ptr, discriminator_ptr,
8573 dwarf_debug_sections, 0,
8574 &elf_tdata (abfd)->dwarf2_find_line_info)
8575 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8576 filename_ptr, functionname_ptr,
8577 line_ptr))
8578 {
8579 if (!*functionname_ptr)
8580 _bfd_elf_find_function (abfd, symbols, section, offset,
8581 *filename_ptr ? NULL : filename_ptr,
8582 functionname_ptr);
8583 return TRUE;
8584 }
8585
8586 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8587 &found, filename_ptr,
8588 functionname_ptr, line_ptr,
8589 &elf_tdata (abfd)->line_info))
8590 return FALSE;
8591 if (found && (*functionname_ptr || *line_ptr))
8592 return TRUE;
8593
8594 if (symbols == NULL)
8595 return FALSE;
8596
8597 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8598 filename_ptr, functionname_ptr))
8599 return FALSE;
8600
8601 *line_ptr = 0;
8602 return TRUE;
8603 }
8604
8605 /* Find the line for a symbol. */
8606
8607 bfd_boolean
8608 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8609 const char **filename_ptr, unsigned int *line_ptr)
8610 {
8611 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8612 filename_ptr, NULL, line_ptr, NULL,
8613 dwarf_debug_sections, 0,
8614 &elf_tdata (abfd)->dwarf2_find_line_info);
8615 }
8616
8617 /* After a call to bfd_find_nearest_line, successive calls to
8618 bfd_find_inliner_info can be used to get source information about
8619 each level of function inlining that terminated at the address
8620 passed to bfd_find_nearest_line. Currently this is only supported
8621 for DWARF2 with appropriate DWARF3 extensions. */
8622
8623 bfd_boolean
8624 _bfd_elf_find_inliner_info (bfd *abfd,
8625 const char **filename_ptr,
8626 const char **functionname_ptr,
8627 unsigned int *line_ptr)
8628 {
8629 bfd_boolean found;
8630 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8631 functionname_ptr, line_ptr,
8632 & elf_tdata (abfd)->dwarf2_find_line_info);
8633 return found;
8634 }
8635
8636 int
8637 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8638 {
8639 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8640 int ret = bed->s->sizeof_ehdr;
8641
8642 if (!bfd_link_relocatable (info))
8643 {
8644 bfd_size_type phdr_size = elf_program_header_size (abfd);
8645
8646 if (phdr_size == (bfd_size_type) -1)
8647 {
8648 struct elf_segment_map *m;
8649
8650 phdr_size = 0;
8651 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8652 phdr_size += bed->s->sizeof_phdr;
8653
8654 if (phdr_size == 0)
8655 phdr_size = get_program_header_size (abfd, info);
8656 }
8657
8658 elf_program_header_size (abfd) = phdr_size;
8659 ret += phdr_size;
8660 }
8661
8662 return ret;
8663 }
8664
8665 bfd_boolean
8666 _bfd_elf_set_section_contents (bfd *abfd,
8667 sec_ptr section,
8668 const void *location,
8669 file_ptr offset,
8670 bfd_size_type count)
8671 {
8672 Elf_Internal_Shdr *hdr;
8673 file_ptr pos;
8674
8675 if (! abfd->output_has_begun
8676 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8677 return FALSE;
8678
8679 if (!count)
8680 return TRUE;
8681
8682 hdr = &elf_section_data (section)->this_hdr;
8683 if (hdr->sh_offset == (file_ptr) -1)
8684 {
8685 /* We must compress this section. Write output to the buffer. */
8686 unsigned char *contents = hdr->contents;
8687 if ((offset + count) > hdr->sh_size
8688 || (section->flags & SEC_ELF_COMPRESS) == 0
8689 || contents == NULL)
8690 abort ();
8691 memcpy (contents + offset, location, count);
8692 return TRUE;
8693 }
8694 pos = hdr->sh_offset + offset;
8695 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8696 || bfd_bwrite (location, count, abfd) != count)
8697 return FALSE;
8698
8699 return TRUE;
8700 }
8701
8702 void
8703 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8704 arelent *cache_ptr ATTRIBUTE_UNUSED,
8705 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8706 {
8707 abort ();
8708 }
8709
8710 /* Try to convert a non-ELF reloc into an ELF one. */
8711
8712 bfd_boolean
8713 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8714 {
8715 /* Check whether we really have an ELF howto. */
8716
8717 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8718 {
8719 bfd_reloc_code_real_type code;
8720 reloc_howto_type *howto;
8721
8722 /* Alien reloc: Try to determine its type to replace it with an
8723 equivalent ELF reloc. */
8724
8725 if (areloc->howto->pc_relative)
8726 {
8727 switch (areloc->howto->bitsize)
8728 {
8729 case 8:
8730 code = BFD_RELOC_8_PCREL;
8731 break;
8732 case 12:
8733 code = BFD_RELOC_12_PCREL;
8734 break;
8735 case 16:
8736 code = BFD_RELOC_16_PCREL;
8737 break;
8738 case 24:
8739 code = BFD_RELOC_24_PCREL;
8740 break;
8741 case 32:
8742 code = BFD_RELOC_32_PCREL;
8743 break;
8744 case 64:
8745 code = BFD_RELOC_64_PCREL;
8746 break;
8747 default:
8748 goto fail;
8749 }
8750
8751 howto = bfd_reloc_type_lookup (abfd, code);
8752
8753 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8754 {
8755 if (howto->pcrel_offset)
8756 areloc->addend += areloc->address;
8757 else
8758 areloc->addend -= areloc->address; /* addend is unsigned!! */
8759 }
8760 }
8761 else
8762 {
8763 switch (areloc->howto->bitsize)
8764 {
8765 case 8:
8766 code = BFD_RELOC_8;
8767 break;
8768 case 14:
8769 code = BFD_RELOC_14;
8770 break;
8771 case 16:
8772 code = BFD_RELOC_16;
8773 break;
8774 case 26:
8775 code = BFD_RELOC_26;
8776 break;
8777 case 32:
8778 code = BFD_RELOC_32;
8779 break;
8780 case 64:
8781 code = BFD_RELOC_64;
8782 break;
8783 default:
8784 goto fail;
8785 }
8786
8787 howto = bfd_reloc_type_lookup (abfd, code);
8788 }
8789
8790 if (howto)
8791 areloc->howto = howto;
8792 else
8793 goto fail;
8794 }
8795
8796 return TRUE;
8797
8798 fail:
8799 _bfd_error_handler
8800 /* xgettext:c-format */
8801 (_("%B: unsupported relocation type %s"),
8802 abfd, areloc->howto->name);
8803 bfd_set_error (bfd_error_bad_value);
8804 return FALSE;
8805 }
8806
8807 bfd_boolean
8808 _bfd_elf_close_and_cleanup (bfd *abfd)
8809 {
8810 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8811 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8812 {
8813 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8814 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8815 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8816 }
8817
8818 return _bfd_generic_close_and_cleanup (abfd);
8819 }
8820
8821 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8822 in the relocation's offset. Thus we cannot allow any sort of sanity
8823 range-checking to interfere. There is nothing else to do in processing
8824 this reloc. */
8825
8826 bfd_reloc_status_type
8827 _bfd_elf_rel_vtable_reloc_fn
8828 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8829 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8830 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8831 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8832 {
8833 return bfd_reloc_ok;
8834 }
8835 \f
8836 /* Elf core file support. Much of this only works on native
8837 toolchains, since we rely on knowing the
8838 machine-dependent procfs structure in order to pick
8839 out details about the corefile. */
8840
8841 #ifdef HAVE_SYS_PROCFS_H
8842 /* Needed for new procfs interface on sparc-solaris. */
8843 # define _STRUCTURED_PROC 1
8844 # include <sys/procfs.h>
8845 #endif
8846
8847 /* Return a PID that identifies a "thread" for threaded cores, or the
8848 PID of the main process for non-threaded cores. */
8849
8850 static int
8851 elfcore_make_pid (bfd *abfd)
8852 {
8853 int pid;
8854
8855 pid = elf_tdata (abfd)->core->lwpid;
8856 if (pid == 0)
8857 pid = elf_tdata (abfd)->core->pid;
8858
8859 return pid;
8860 }
8861
8862 /* If there isn't a section called NAME, make one, using
8863 data from SECT. Note, this function will generate a
8864 reference to NAME, so you shouldn't deallocate or
8865 overwrite it. */
8866
8867 static bfd_boolean
8868 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8869 {
8870 asection *sect2;
8871
8872 if (bfd_get_section_by_name (abfd, name) != NULL)
8873 return TRUE;
8874
8875 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8876 if (sect2 == NULL)
8877 return FALSE;
8878
8879 sect2->size = sect->size;
8880 sect2->filepos = sect->filepos;
8881 sect2->alignment_power = sect->alignment_power;
8882 return TRUE;
8883 }
8884
8885 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8886 actually creates up to two pseudosections:
8887 - For the single-threaded case, a section named NAME, unless
8888 such a section already exists.
8889 - For the multi-threaded case, a section named "NAME/PID", where
8890 PID is elfcore_make_pid (abfd).
8891 Both pseudosections have identical contents. */
8892 bfd_boolean
8893 _bfd_elfcore_make_pseudosection (bfd *abfd,
8894 char *name,
8895 size_t size,
8896 ufile_ptr filepos)
8897 {
8898 char buf[100];
8899 char *threaded_name;
8900 size_t len;
8901 asection *sect;
8902
8903 /* Build the section name. */
8904
8905 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8906 len = strlen (buf) + 1;
8907 threaded_name = (char *) bfd_alloc (abfd, len);
8908 if (threaded_name == NULL)
8909 return FALSE;
8910 memcpy (threaded_name, buf, len);
8911
8912 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8913 SEC_HAS_CONTENTS);
8914 if (sect == NULL)
8915 return FALSE;
8916 sect->size = size;
8917 sect->filepos = filepos;
8918 sect->alignment_power = 2;
8919
8920 return elfcore_maybe_make_sect (abfd, name, sect);
8921 }
8922
8923 /* prstatus_t exists on:
8924 solaris 2.5+
8925 linux 2.[01] + glibc
8926 unixware 4.2
8927 */
8928
8929 #if defined (HAVE_PRSTATUS_T)
8930
8931 static bfd_boolean
8932 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8933 {
8934 size_t size;
8935 int offset;
8936
8937 if (note->descsz == sizeof (prstatus_t))
8938 {
8939 prstatus_t prstat;
8940
8941 size = sizeof (prstat.pr_reg);
8942 offset = offsetof (prstatus_t, pr_reg);
8943 memcpy (&prstat, note->descdata, sizeof (prstat));
8944
8945 /* Do not overwrite the core signal if it
8946 has already been set by another thread. */
8947 if (elf_tdata (abfd)->core->signal == 0)
8948 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8949 if (elf_tdata (abfd)->core->pid == 0)
8950 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8951
8952 /* pr_who exists on:
8953 solaris 2.5+
8954 unixware 4.2
8955 pr_who doesn't exist on:
8956 linux 2.[01]
8957 */
8958 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8959 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8960 #else
8961 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8962 #endif
8963 }
8964 #if defined (HAVE_PRSTATUS32_T)
8965 else if (note->descsz == sizeof (prstatus32_t))
8966 {
8967 /* 64-bit host, 32-bit corefile */
8968 prstatus32_t prstat;
8969
8970 size = sizeof (prstat.pr_reg);
8971 offset = offsetof (prstatus32_t, pr_reg);
8972 memcpy (&prstat, note->descdata, sizeof (prstat));
8973
8974 /* Do not overwrite the core signal if it
8975 has already been set by another thread. */
8976 if (elf_tdata (abfd)->core->signal == 0)
8977 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8978 if (elf_tdata (abfd)->core->pid == 0)
8979 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8980
8981 /* pr_who exists on:
8982 solaris 2.5+
8983 unixware 4.2
8984 pr_who doesn't exist on:
8985 linux 2.[01]
8986 */
8987 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8988 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8989 #else
8990 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8991 #endif
8992 }
8993 #endif /* HAVE_PRSTATUS32_T */
8994 else
8995 {
8996 /* Fail - we don't know how to handle any other
8997 note size (ie. data object type). */
8998 return TRUE;
8999 }
9000
9001 /* Make a ".reg/999" section and a ".reg" section. */
9002 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9003 size, note->descpos + offset);
9004 }
9005 #endif /* defined (HAVE_PRSTATUS_T) */
9006
9007 /* Create a pseudosection containing the exact contents of NOTE. */
9008 static bfd_boolean
9009 elfcore_make_note_pseudosection (bfd *abfd,
9010 char *name,
9011 Elf_Internal_Note *note)
9012 {
9013 return _bfd_elfcore_make_pseudosection (abfd, name,
9014 note->descsz, note->descpos);
9015 }
9016
9017 /* There isn't a consistent prfpregset_t across platforms,
9018 but it doesn't matter, because we don't have to pick this
9019 data structure apart. */
9020
9021 static bfd_boolean
9022 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9023 {
9024 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9025 }
9026
9027 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9028 type of NT_PRXFPREG. Just include the whole note's contents
9029 literally. */
9030
9031 static bfd_boolean
9032 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9033 {
9034 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9035 }
9036
9037 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9038 with a note type of NT_X86_XSTATE. Just include the whole note's
9039 contents literally. */
9040
9041 static bfd_boolean
9042 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9043 {
9044 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9045 }
9046
9047 static bfd_boolean
9048 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9049 {
9050 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9051 }
9052
9053 static bfd_boolean
9054 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9055 {
9056 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9057 }
9058
9059 static bfd_boolean
9060 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9061 {
9062 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9063 }
9064
9065 static bfd_boolean
9066 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9067 {
9068 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9069 }
9070
9071 static bfd_boolean
9072 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9073 {
9074 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9075 }
9076
9077 static bfd_boolean
9078 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9079 {
9080 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9081 }
9082
9083 static bfd_boolean
9084 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9085 {
9086 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9087 }
9088
9089 static bfd_boolean
9090 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9091 {
9092 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9093 }
9094
9095 static bfd_boolean
9096 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9097 {
9098 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9099 }
9100
9101 static bfd_boolean
9102 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9103 {
9104 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9105 }
9106
9107 static bfd_boolean
9108 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9109 {
9110 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9111 }
9112
9113 static bfd_boolean
9114 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9115 {
9116 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9117 }
9118
9119 static bfd_boolean
9120 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9121 {
9122 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9123 }
9124
9125 static bfd_boolean
9126 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9127 {
9128 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9129 }
9130
9131 static bfd_boolean
9132 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9133 {
9134 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9135 }
9136
9137 static bfd_boolean
9138 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9139 {
9140 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9141 }
9142
9143 static bfd_boolean
9144 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9145 {
9146 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9147 }
9148
9149 #if defined (HAVE_PRPSINFO_T)
9150 typedef prpsinfo_t elfcore_psinfo_t;
9151 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9152 typedef prpsinfo32_t elfcore_psinfo32_t;
9153 #endif
9154 #endif
9155
9156 #if defined (HAVE_PSINFO_T)
9157 typedef psinfo_t elfcore_psinfo_t;
9158 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9159 typedef psinfo32_t elfcore_psinfo32_t;
9160 #endif
9161 #endif
9162
9163 /* return a malloc'ed copy of a string at START which is at
9164 most MAX bytes long, possibly without a terminating '\0'.
9165 the copy will always have a terminating '\0'. */
9166
9167 char *
9168 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9169 {
9170 char *dups;
9171 char *end = (char *) memchr (start, '\0', max);
9172 size_t len;
9173
9174 if (end == NULL)
9175 len = max;
9176 else
9177 len = end - start;
9178
9179 dups = (char *) bfd_alloc (abfd, len + 1);
9180 if (dups == NULL)
9181 return NULL;
9182
9183 memcpy (dups, start, len);
9184 dups[len] = '\0';
9185
9186 return dups;
9187 }
9188
9189 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9190 static bfd_boolean
9191 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9192 {
9193 if (note->descsz == sizeof (elfcore_psinfo_t))
9194 {
9195 elfcore_psinfo_t psinfo;
9196
9197 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9198
9199 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9200 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9201 #endif
9202 elf_tdata (abfd)->core->program
9203 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9204 sizeof (psinfo.pr_fname));
9205
9206 elf_tdata (abfd)->core->command
9207 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9208 sizeof (psinfo.pr_psargs));
9209 }
9210 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9211 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9212 {
9213 /* 64-bit host, 32-bit corefile */
9214 elfcore_psinfo32_t psinfo;
9215
9216 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9217
9218 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9219 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9220 #endif
9221 elf_tdata (abfd)->core->program
9222 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9223 sizeof (psinfo.pr_fname));
9224
9225 elf_tdata (abfd)->core->command
9226 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9227 sizeof (psinfo.pr_psargs));
9228 }
9229 #endif
9230
9231 else
9232 {
9233 /* Fail - we don't know how to handle any other
9234 note size (ie. data object type). */
9235 return TRUE;
9236 }
9237
9238 /* Note that for some reason, a spurious space is tacked
9239 onto the end of the args in some (at least one anyway)
9240 implementations, so strip it off if it exists. */
9241
9242 {
9243 char *command = elf_tdata (abfd)->core->command;
9244 int n = strlen (command);
9245
9246 if (0 < n && command[n - 1] == ' ')
9247 command[n - 1] = '\0';
9248 }
9249
9250 return TRUE;
9251 }
9252 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9253
9254 #if defined (HAVE_PSTATUS_T)
9255 static bfd_boolean
9256 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9257 {
9258 if (note->descsz == sizeof (pstatus_t)
9259 #if defined (HAVE_PXSTATUS_T)
9260 || note->descsz == sizeof (pxstatus_t)
9261 #endif
9262 )
9263 {
9264 pstatus_t pstat;
9265
9266 memcpy (&pstat, note->descdata, sizeof (pstat));
9267
9268 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9269 }
9270 #if defined (HAVE_PSTATUS32_T)
9271 else if (note->descsz == sizeof (pstatus32_t))
9272 {
9273 /* 64-bit host, 32-bit corefile */
9274 pstatus32_t pstat;
9275
9276 memcpy (&pstat, note->descdata, sizeof (pstat));
9277
9278 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9279 }
9280 #endif
9281 /* Could grab some more details from the "representative"
9282 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9283 NT_LWPSTATUS note, presumably. */
9284
9285 return TRUE;
9286 }
9287 #endif /* defined (HAVE_PSTATUS_T) */
9288
9289 #if defined (HAVE_LWPSTATUS_T)
9290 static bfd_boolean
9291 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9292 {
9293 lwpstatus_t lwpstat;
9294 char buf[100];
9295 char *name;
9296 size_t len;
9297 asection *sect;
9298
9299 if (note->descsz != sizeof (lwpstat)
9300 #if defined (HAVE_LWPXSTATUS_T)
9301 && note->descsz != sizeof (lwpxstatus_t)
9302 #endif
9303 )
9304 return TRUE;
9305
9306 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9307
9308 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9309 /* Do not overwrite the core signal if it has already been set by
9310 another thread. */
9311 if (elf_tdata (abfd)->core->signal == 0)
9312 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9313
9314 /* Make a ".reg/999" section. */
9315
9316 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9317 len = strlen (buf) + 1;
9318 name = bfd_alloc (abfd, len);
9319 if (name == NULL)
9320 return FALSE;
9321 memcpy (name, buf, len);
9322
9323 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9324 if (sect == NULL)
9325 return FALSE;
9326
9327 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9328 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9329 sect->filepos = note->descpos
9330 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9331 #endif
9332
9333 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9334 sect->size = sizeof (lwpstat.pr_reg);
9335 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9336 #endif
9337
9338 sect->alignment_power = 2;
9339
9340 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9341 return FALSE;
9342
9343 /* Make a ".reg2/999" section */
9344
9345 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9346 len = strlen (buf) + 1;
9347 name = bfd_alloc (abfd, len);
9348 if (name == NULL)
9349 return FALSE;
9350 memcpy (name, buf, len);
9351
9352 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9353 if (sect == NULL)
9354 return FALSE;
9355
9356 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9357 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9358 sect->filepos = note->descpos
9359 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9360 #endif
9361
9362 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9363 sect->size = sizeof (lwpstat.pr_fpreg);
9364 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9365 #endif
9366
9367 sect->alignment_power = 2;
9368
9369 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9370 }
9371 #endif /* defined (HAVE_LWPSTATUS_T) */
9372
9373 static bfd_boolean
9374 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9375 {
9376 char buf[30];
9377 char *name;
9378 size_t len;
9379 asection *sect;
9380 int type;
9381 int is_active_thread;
9382 bfd_vma base_addr;
9383
9384 if (note->descsz < 728)
9385 return TRUE;
9386
9387 if (! CONST_STRNEQ (note->namedata, "win32"))
9388 return TRUE;
9389
9390 type = bfd_get_32 (abfd, note->descdata);
9391
9392 switch (type)
9393 {
9394 case 1 /* NOTE_INFO_PROCESS */:
9395 /* FIXME: need to add ->core->command. */
9396 /* process_info.pid */
9397 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9398 /* process_info.signal */
9399 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9400 break;
9401
9402 case 2 /* NOTE_INFO_THREAD */:
9403 /* Make a ".reg/999" section. */
9404 /* thread_info.tid */
9405 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9406
9407 len = strlen (buf) + 1;
9408 name = (char *) bfd_alloc (abfd, len);
9409 if (name == NULL)
9410 return FALSE;
9411
9412 memcpy (name, buf, len);
9413
9414 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9415 if (sect == NULL)
9416 return FALSE;
9417
9418 /* sizeof (thread_info.thread_context) */
9419 sect->size = 716;
9420 /* offsetof (thread_info.thread_context) */
9421 sect->filepos = note->descpos + 12;
9422 sect->alignment_power = 2;
9423
9424 /* thread_info.is_active_thread */
9425 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9426
9427 if (is_active_thread)
9428 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9429 return FALSE;
9430 break;
9431
9432 case 3 /* NOTE_INFO_MODULE */:
9433 /* Make a ".module/xxxxxxxx" section. */
9434 /* module_info.base_address */
9435 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9436 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9437
9438 len = strlen (buf) + 1;
9439 name = (char *) bfd_alloc (abfd, len);
9440 if (name == NULL)
9441 return FALSE;
9442
9443 memcpy (name, buf, len);
9444
9445 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9446
9447 if (sect == NULL)
9448 return FALSE;
9449
9450 sect->size = note->descsz;
9451 sect->filepos = note->descpos;
9452 sect->alignment_power = 2;
9453 break;
9454
9455 default:
9456 return TRUE;
9457 }
9458
9459 return TRUE;
9460 }
9461
9462 static bfd_boolean
9463 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9464 {
9465 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9466
9467 switch (note->type)
9468 {
9469 default:
9470 return TRUE;
9471
9472 case NT_PRSTATUS:
9473 if (bed->elf_backend_grok_prstatus)
9474 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9475 return TRUE;
9476 #if defined (HAVE_PRSTATUS_T)
9477 return elfcore_grok_prstatus (abfd, note);
9478 #else
9479 return TRUE;
9480 #endif
9481
9482 #if defined (HAVE_PSTATUS_T)
9483 case NT_PSTATUS:
9484 return elfcore_grok_pstatus (abfd, note);
9485 #endif
9486
9487 #if defined (HAVE_LWPSTATUS_T)
9488 case NT_LWPSTATUS:
9489 return elfcore_grok_lwpstatus (abfd, note);
9490 #endif
9491
9492 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9493 return elfcore_grok_prfpreg (abfd, note);
9494
9495 case NT_WIN32PSTATUS:
9496 return elfcore_grok_win32pstatus (abfd, note);
9497
9498 case NT_PRXFPREG: /* Linux SSE extension */
9499 if (note->namesz == 6
9500 && strcmp (note->namedata, "LINUX") == 0)
9501 return elfcore_grok_prxfpreg (abfd, note);
9502 else
9503 return TRUE;
9504
9505 case NT_X86_XSTATE: /* Linux XSAVE extension */
9506 if (note->namesz == 6
9507 && strcmp (note->namedata, "LINUX") == 0)
9508 return elfcore_grok_xstatereg (abfd, note);
9509 else
9510 return TRUE;
9511
9512 case NT_PPC_VMX:
9513 if (note->namesz == 6
9514 && strcmp (note->namedata, "LINUX") == 0)
9515 return elfcore_grok_ppc_vmx (abfd, note);
9516 else
9517 return TRUE;
9518
9519 case NT_PPC_VSX:
9520 if (note->namesz == 6
9521 && strcmp (note->namedata, "LINUX") == 0)
9522 return elfcore_grok_ppc_vsx (abfd, note);
9523 else
9524 return TRUE;
9525
9526 case NT_S390_HIGH_GPRS:
9527 if (note->namesz == 6
9528 && strcmp (note->namedata, "LINUX") == 0)
9529 return elfcore_grok_s390_high_gprs (abfd, note);
9530 else
9531 return TRUE;
9532
9533 case NT_S390_TIMER:
9534 if (note->namesz == 6
9535 && strcmp (note->namedata, "LINUX") == 0)
9536 return elfcore_grok_s390_timer (abfd, note);
9537 else
9538 return TRUE;
9539
9540 case NT_S390_TODCMP:
9541 if (note->namesz == 6
9542 && strcmp (note->namedata, "LINUX") == 0)
9543 return elfcore_grok_s390_todcmp (abfd, note);
9544 else
9545 return TRUE;
9546
9547 case NT_S390_TODPREG:
9548 if (note->namesz == 6
9549 && strcmp (note->namedata, "LINUX") == 0)
9550 return elfcore_grok_s390_todpreg (abfd, note);
9551 else
9552 return TRUE;
9553
9554 case NT_S390_CTRS:
9555 if (note->namesz == 6
9556 && strcmp (note->namedata, "LINUX") == 0)
9557 return elfcore_grok_s390_ctrs (abfd, note);
9558 else
9559 return TRUE;
9560
9561 case NT_S390_PREFIX:
9562 if (note->namesz == 6
9563 && strcmp (note->namedata, "LINUX") == 0)
9564 return elfcore_grok_s390_prefix (abfd, note);
9565 else
9566 return TRUE;
9567
9568 case NT_S390_LAST_BREAK:
9569 if (note->namesz == 6
9570 && strcmp (note->namedata, "LINUX") == 0)
9571 return elfcore_grok_s390_last_break (abfd, note);
9572 else
9573 return TRUE;
9574
9575 case NT_S390_SYSTEM_CALL:
9576 if (note->namesz == 6
9577 && strcmp (note->namedata, "LINUX") == 0)
9578 return elfcore_grok_s390_system_call (abfd, note);
9579 else
9580 return TRUE;
9581
9582 case NT_S390_TDB:
9583 if (note->namesz == 6
9584 && strcmp (note->namedata, "LINUX") == 0)
9585 return elfcore_grok_s390_tdb (abfd, note);
9586 else
9587 return TRUE;
9588
9589 case NT_S390_VXRS_LOW:
9590 if (note->namesz == 6
9591 && strcmp (note->namedata, "LINUX") == 0)
9592 return elfcore_grok_s390_vxrs_low (abfd, note);
9593 else
9594 return TRUE;
9595
9596 case NT_S390_VXRS_HIGH:
9597 if (note->namesz == 6
9598 && strcmp (note->namedata, "LINUX") == 0)
9599 return elfcore_grok_s390_vxrs_high (abfd, note);
9600 else
9601 return TRUE;
9602
9603 case NT_ARM_VFP:
9604 if (note->namesz == 6
9605 && strcmp (note->namedata, "LINUX") == 0)
9606 return elfcore_grok_arm_vfp (abfd, note);
9607 else
9608 return TRUE;
9609
9610 case NT_ARM_TLS:
9611 if (note->namesz == 6
9612 && strcmp (note->namedata, "LINUX") == 0)
9613 return elfcore_grok_aarch_tls (abfd, note);
9614 else
9615 return TRUE;
9616
9617 case NT_ARM_HW_BREAK:
9618 if (note->namesz == 6
9619 && strcmp (note->namedata, "LINUX") == 0)
9620 return elfcore_grok_aarch_hw_break (abfd, note);
9621 else
9622 return TRUE;
9623
9624 case NT_ARM_HW_WATCH:
9625 if (note->namesz == 6
9626 && strcmp (note->namedata, "LINUX") == 0)
9627 return elfcore_grok_aarch_hw_watch (abfd, note);
9628 else
9629 return TRUE;
9630
9631 case NT_PRPSINFO:
9632 case NT_PSINFO:
9633 if (bed->elf_backend_grok_psinfo)
9634 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9635 return TRUE;
9636 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9637 return elfcore_grok_psinfo (abfd, note);
9638 #else
9639 return TRUE;
9640 #endif
9641
9642 case NT_AUXV:
9643 {
9644 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9645 SEC_HAS_CONTENTS);
9646
9647 if (sect == NULL)
9648 return FALSE;
9649 sect->size = note->descsz;
9650 sect->filepos = note->descpos;
9651 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9652
9653 return TRUE;
9654 }
9655
9656 case NT_FILE:
9657 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9658 note);
9659
9660 case NT_SIGINFO:
9661 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9662 note);
9663
9664 }
9665 }
9666
9667 static bfd_boolean
9668 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9669 {
9670 struct bfd_build_id* build_id;
9671
9672 if (note->descsz == 0)
9673 return FALSE;
9674
9675 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9676 if (build_id == NULL)
9677 return FALSE;
9678
9679 build_id->size = note->descsz;
9680 memcpy (build_id->data, note->descdata, note->descsz);
9681 abfd->build_id = build_id;
9682
9683 return TRUE;
9684 }
9685
9686 static bfd_boolean
9687 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9688 {
9689 switch (note->type)
9690 {
9691 default:
9692 return TRUE;
9693
9694 case NT_GNU_PROPERTY_TYPE_0:
9695 return _bfd_elf_parse_gnu_properties (abfd, note);
9696
9697 case NT_GNU_BUILD_ID:
9698 return elfobj_grok_gnu_build_id (abfd, note);
9699 }
9700 }
9701
9702 static bfd_boolean
9703 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9704 {
9705 struct sdt_note *cur =
9706 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9707 + note->descsz);
9708
9709 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9710 cur->size = (bfd_size_type) note->descsz;
9711 memcpy (cur->data, note->descdata, note->descsz);
9712
9713 elf_tdata (abfd)->sdt_note_head = cur;
9714
9715 return TRUE;
9716 }
9717
9718 static bfd_boolean
9719 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9720 {
9721 switch (note->type)
9722 {
9723 case NT_STAPSDT:
9724 return elfobj_grok_stapsdt_note_1 (abfd, note);
9725
9726 default:
9727 return TRUE;
9728 }
9729 }
9730
9731 static bfd_boolean
9732 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9733 {
9734 size_t offset;
9735
9736 switch (abfd->arch_info->bits_per_word)
9737 {
9738 case 32:
9739 if (note->descsz < 108)
9740 return FALSE;
9741 break;
9742
9743 case 64:
9744 if (note->descsz < 120)
9745 return FALSE;
9746 break;
9747
9748 default:
9749 return FALSE;
9750 }
9751
9752 /* Check for version 1 in pr_version. */
9753 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9754 return FALSE;
9755 offset = 4;
9756
9757 /* Skip over pr_psinfosz. */
9758 if (abfd->arch_info->bits_per_word == 32)
9759 offset += 4;
9760 else
9761 {
9762 offset += 4; /* Padding before pr_psinfosz. */
9763 offset += 8;
9764 }
9765
9766 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9767 elf_tdata (abfd)->core->program
9768 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9769 offset += 17;
9770
9771 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9772 elf_tdata (abfd)->core->command
9773 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9774 offset += 81;
9775
9776 /* Padding before pr_pid. */
9777 offset += 2;
9778
9779 /* The pr_pid field was added in version "1a". */
9780 if (note->descsz < offset + 4)
9781 return TRUE;
9782
9783 elf_tdata (abfd)->core->pid
9784 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9785
9786 return TRUE;
9787 }
9788
9789 static bfd_boolean
9790 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9791 {
9792 size_t offset;
9793 size_t size;
9794
9795 /* Check for version 1 in pr_version. */
9796 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9797 return FALSE;
9798 offset = 4;
9799
9800 /* Skip over pr_statussz. */
9801 switch (abfd->arch_info->bits_per_word)
9802 {
9803 case 32:
9804 offset += 4;
9805 break;
9806
9807 case 64:
9808 offset += 4; /* Padding before pr_statussz. */
9809 offset += 8;
9810 break;
9811
9812 default:
9813 return FALSE;
9814 }
9815
9816 /* Extract size of pr_reg from pr_gregsetsz. */
9817 if (abfd->arch_info->bits_per_word == 32)
9818 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9819 else
9820 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
9821
9822 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
9823 offset += (abfd->arch_info->bits_per_word / 8) * 2;
9824
9825 /* Skip over pr_osreldate. */
9826 offset += 4;
9827
9828 /* Read signal from pr_cursig. */
9829 if (elf_tdata (abfd)->core->signal == 0)
9830 elf_tdata (abfd)->core->signal
9831 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9832 offset += 4;
9833
9834 /* Read TID from pr_pid. */
9835 elf_tdata (abfd)->core->lwpid
9836 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9837 offset += 4;
9838
9839 /* Padding before pr_reg. */
9840 if (abfd->arch_info->bits_per_word == 64)
9841 offset += 4;
9842
9843 /* Make a ".reg/999" section and a ".reg" section. */
9844 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9845 size, note->descpos + offset);
9846 }
9847
9848 static bfd_boolean
9849 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
9850 {
9851 switch (note->type)
9852 {
9853 case NT_PRSTATUS:
9854 return elfcore_grok_freebsd_prstatus (abfd, note);
9855
9856 case NT_FPREGSET:
9857 return elfcore_grok_prfpreg (abfd, note);
9858
9859 case NT_PRPSINFO:
9860 return elfcore_grok_freebsd_psinfo (abfd, note);
9861
9862 case NT_FREEBSD_THRMISC:
9863 if (note->namesz == 8)
9864 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
9865 else
9866 return TRUE;
9867
9868 case NT_FREEBSD_PROCSTAT_AUXV:
9869 {
9870 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9871 SEC_HAS_CONTENTS);
9872
9873 if (sect == NULL)
9874 return FALSE;
9875 sect->size = note->descsz - 4;
9876 sect->filepos = note->descpos + 4;
9877 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9878
9879 return TRUE;
9880 }
9881
9882 case NT_X86_XSTATE:
9883 if (note->namesz == 8)
9884 return elfcore_grok_xstatereg (abfd, note);
9885 else
9886 return TRUE;
9887
9888 default:
9889 return TRUE;
9890 }
9891 }
9892
9893 static bfd_boolean
9894 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
9895 {
9896 char *cp;
9897
9898 cp = strchr (note->namedata, '@');
9899 if (cp != NULL)
9900 {
9901 *lwpidp = atoi(cp + 1);
9902 return TRUE;
9903 }
9904 return FALSE;
9905 }
9906
9907 static bfd_boolean
9908 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9909 {
9910 /* Signal number at offset 0x08. */
9911 elf_tdata (abfd)->core->signal
9912 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9913
9914 /* Process ID at offset 0x50. */
9915 elf_tdata (abfd)->core->pid
9916 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
9917
9918 /* Command name at 0x7c (max 32 bytes, including nul). */
9919 elf_tdata (abfd)->core->command
9920 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
9921
9922 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
9923 note);
9924 }
9925
9926 static bfd_boolean
9927 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
9928 {
9929 int lwp;
9930
9931 if (elfcore_netbsd_get_lwpid (note, &lwp))
9932 elf_tdata (abfd)->core->lwpid = lwp;
9933
9934 if (note->type == NT_NETBSDCORE_PROCINFO)
9935 {
9936 /* NetBSD-specific core "procinfo". Note that we expect to
9937 find this note before any of the others, which is fine,
9938 since the kernel writes this note out first when it
9939 creates a core file. */
9940
9941 return elfcore_grok_netbsd_procinfo (abfd, note);
9942 }
9943
9944 /* As of Jan 2002 there are no other machine-independent notes
9945 defined for NetBSD core files. If the note type is less
9946 than the start of the machine-dependent note types, we don't
9947 understand it. */
9948
9949 if (note->type < NT_NETBSDCORE_FIRSTMACH)
9950 return TRUE;
9951
9952
9953 switch (bfd_get_arch (abfd))
9954 {
9955 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
9956 PT_GETFPREGS == mach+2. */
9957
9958 case bfd_arch_alpha:
9959 case bfd_arch_sparc:
9960 switch (note->type)
9961 {
9962 case NT_NETBSDCORE_FIRSTMACH+0:
9963 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9964
9965 case NT_NETBSDCORE_FIRSTMACH+2:
9966 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9967
9968 default:
9969 return TRUE;
9970 }
9971
9972 /* On all other arch's, PT_GETREGS == mach+1 and
9973 PT_GETFPREGS == mach+3. */
9974
9975 default:
9976 switch (note->type)
9977 {
9978 case NT_NETBSDCORE_FIRSTMACH+1:
9979 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9980
9981 case NT_NETBSDCORE_FIRSTMACH+3:
9982 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9983
9984 default:
9985 return TRUE;
9986 }
9987 }
9988 /* NOTREACHED */
9989 }
9990
9991 static bfd_boolean
9992 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9993 {
9994 /* Signal number at offset 0x08. */
9995 elf_tdata (abfd)->core->signal
9996 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9997
9998 /* Process ID at offset 0x20. */
9999 elf_tdata (abfd)->core->pid
10000 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10001
10002 /* Command name at 0x48 (max 32 bytes, including nul). */
10003 elf_tdata (abfd)->core->command
10004 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10005
10006 return TRUE;
10007 }
10008
10009 static bfd_boolean
10010 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10011 {
10012 if (note->type == NT_OPENBSD_PROCINFO)
10013 return elfcore_grok_openbsd_procinfo (abfd, note);
10014
10015 if (note->type == NT_OPENBSD_REGS)
10016 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10017
10018 if (note->type == NT_OPENBSD_FPREGS)
10019 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10020
10021 if (note->type == NT_OPENBSD_XFPREGS)
10022 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10023
10024 if (note->type == NT_OPENBSD_AUXV)
10025 {
10026 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10027 SEC_HAS_CONTENTS);
10028
10029 if (sect == NULL)
10030 return FALSE;
10031 sect->size = note->descsz;
10032 sect->filepos = note->descpos;
10033 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10034
10035 return TRUE;
10036 }
10037
10038 if (note->type == NT_OPENBSD_WCOOKIE)
10039 {
10040 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10041 SEC_HAS_CONTENTS);
10042
10043 if (sect == NULL)
10044 return FALSE;
10045 sect->size = note->descsz;
10046 sect->filepos = note->descpos;
10047 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10048
10049 return TRUE;
10050 }
10051
10052 return TRUE;
10053 }
10054
10055 static bfd_boolean
10056 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10057 {
10058 void *ddata = note->descdata;
10059 char buf[100];
10060 char *name;
10061 asection *sect;
10062 short sig;
10063 unsigned flags;
10064
10065 /* nto_procfs_status 'pid' field is at offset 0. */
10066 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10067
10068 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10069 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10070
10071 /* nto_procfs_status 'flags' field is at offset 8. */
10072 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10073
10074 /* nto_procfs_status 'what' field is at offset 14. */
10075 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10076 {
10077 elf_tdata (abfd)->core->signal = sig;
10078 elf_tdata (abfd)->core->lwpid = *tid;
10079 }
10080
10081 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10082 do not come from signals so we make sure we set the current
10083 thread just in case. */
10084 if (flags & 0x00000080)
10085 elf_tdata (abfd)->core->lwpid = *tid;
10086
10087 /* Make a ".qnx_core_status/%d" section. */
10088 sprintf (buf, ".qnx_core_status/%ld", *tid);
10089
10090 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10091 if (name == NULL)
10092 return FALSE;
10093 strcpy (name, buf);
10094
10095 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10096 if (sect == NULL)
10097 return FALSE;
10098
10099 sect->size = note->descsz;
10100 sect->filepos = note->descpos;
10101 sect->alignment_power = 2;
10102
10103 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10104 }
10105
10106 static bfd_boolean
10107 elfcore_grok_nto_regs (bfd *abfd,
10108 Elf_Internal_Note *note,
10109 long tid,
10110 char *base)
10111 {
10112 char buf[100];
10113 char *name;
10114 asection *sect;
10115
10116 /* Make a "(base)/%d" section. */
10117 sprintf (buf, "%s/%ld", base, tid);
10118
10119 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10120 if (name == NULL)
10121 return FALSE;
10122 strcpy (name, buf);
10123
10124 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10125 if (sect == NULL)
10126 return FALSE;
10127
10128 sect->size = note->descsz;
10129 sect->filepos = note->descpos;
10130 sect->alignment_power = 2;
10131
10132 /* This is the current thread. */
10133 if (elf_tdata (abfd)->core->lwpid == tid)
10134 return elfcore_maybe_make_sect (abfd, base, sect);
10135
10136 return TRUE;
10137 }
10138
10139 #define BFD_QNT_CORE_INFO 7
10140 #define BFD_QNT_CORE_STATUS 8
10141 #define BFD_QNT_CORE_GREG 9
10142 #define BFD_QNT_CORE_FPREG 10
10143
10144 static bfd_boolean
10145 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10146 {
10147 /* Every GREG section has a STATUS section before it. Store the
10148 tid from the previous call to pass down to the next gregs
10149 function. */
10150 static long tid = 1;
10151
10152 switch (note->type)
10153 {
10154 case BFD_QNT_CORE_INFO:
10155 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10156 case BFD_QNT_CORE_STATUS:
10157 return elfcore_grok_nto_status (abfd, note, &tid);
10158 case BFD_QNT_CORE_GREG:
10159 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10160 case BFD_QNT_CORE_FPREG:
10161 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10162 default:
10163 return TRUE;
10164 }
10165 }
10166
10167 static bfd_boolean
10168 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10169 {
10170 char *name;
10171 asection *sect;
10172 size_t len;
10173
10174 /* Use note name as section name. */
10175 len = note->namesz;
10176 name = (char *) bfd_alloc (abfd, len);
10177 if (name == NULL)
10178 return FALSE;
10179 memcpy (name, note->namedata, len);
10180 name[len - 1] = '\0';
10181
10182 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10183 if (sect == NULL)
10184 return FALSE;
10185
10186 sect->size = note->descsz;
10187 sect->filepos = note->descpos;
10188 sect->alignment_power = 1;
10189
10190 return TRUE;
10191 }
10192
10193 /* Function: elfcore_write_note
10194
10195 Inputs:
10196 buffer to hold note, and current size of buffer
10197 name of note
10198 type of note
10199 data for note
10200 size of data for note
10201
10202 Writes note to end of buffer. ELF64 notes are written exactly as
10203 for ELF32, despite the current (as of 2006) ELF gabi specifying
10204 that they ought to have 8-byte namesz and descsz field, and have
10205 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10206
10207 Return:
10208 Pointer to realloc'd buffer, *BUFSIZ updated. */
10209
10210 char *
10211 elfcore_write_note (bfd *abfd,
10212 char *buf,
10213 int *bufsiz,
10214 const char *name,
10215 int type,
10216 const void *input,
10217 int size)
10218 {
10219 Elf_External_Note *xnp;
10220 size_t namesz;
10221 size_t newspace;
10222 char *dest;
10223
10224 namesz = 0;
10225 if (name != NULL)
10226 namesz = strlen (name) + 1;
10227
10228 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10229
10230 buf = (char *) realloc (buf, *bufsiz + newspace);
10231 if (buf == NULL)
10232 return buf;
10233 dest = buf + *bufsiz;
10234 *bufsiz += newspace;
10235 xnp = (Elf_External_Note *) dest;
10236 H_PUT_32 (abfd, namesz, xnp->namesz);
10237 H_PUT_32 (abfd, size, xnp->descsz);
10238 H_PUT_32 (abfd, type, xnp->type);
10239 dest = xnp->name;
10240 if (name != NULL)
10241 {
10242 memcpy (dest, name, namesz);
10243 dest += namesz;
10244 while (namesz & 3)
10245 {
10246 *dest++ = '\0';
10247 ++namesz;
10248 }
10249 }
10250 memcpy (dest, input, size);
10251 dest += size;
10252 while (size & 3)
10253 {
10254 *dest++ = '\0';
10255 ++size;
10256 }
10257 return buf;
10258 }
10259
10260 char *
10261 elfcore_write_prpsinfo (bfd *abfd,
10262 char *buf,
10263 int *bufsiz,
10264 const char *fname,
10265 const char *psargs)
10266 {
10267 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10268
10269 if (bed->elf_backend_write_core_note != NULL)
10270 {
10271 char *ret;
10272 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10273 NT_PRPSINFO, fname, psargs);
10274 if (ret != NULL)
10275 return ret;
10276 }
10277
10278 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10279 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10280 if (bed->s->elfclass == ELFCLASS32)
10281 {
10282 #if defined (HAVE_PSINFO32_T)
10283 psinfo32_t data;
10284 int note_type = NT_PSINFO;
10285 #else
10286 prpsinfo32_t data;
10287 int note_type = NT_PRPSINFO;
10288 #endif
10289
10290 memset (&data, 0, sizeof (data));
10291 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10292 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10293 return elfcore_write_note (abfd, buf, bufsiz,
10294 "CORE", note_type, &data, sizeof (data));
10295 }
10296 else
10297 #endif
10298 {
10299 #if defined (HAVE_PSINFO_T)
10300 psinfo_t data;
10301 int note_type = NT_PSINFO;
10302 #else
10303 prpsinfo_t data;
10304 int note_type = NT_PRPSINFO;
10305 #endif
10306
10307 memset (&data, 0, sizeof (data));
10308 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10309 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10310 return elfcore_write_note (abfd, buf, bufsiz,
10311 "CORE", note_type, &data, sizeof (data));
10312 }
10313 #endif /* PSINFO_T or PRPSINFO_T */
10314
10315 free (buf);
10316 return NULL;
10317 }
10318
10319 char *
10320 elfcore_write_linux_prpsinfo32
10321 (bfd *abfd, char *buf, int *bufsiz,
10322 const struct elf_internal_linux_prpsinfo *prpsinfo)
10323 {
10324 struct elf_external_linux_prpsinfo32 data;
10325
10326 swap_linux_prpsinfo32_out (abfd, prpsinfo, &data);
10327 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10328 &data, sizeof (data));
10329 }
10330
10331 char *
10332 elfcore_write_linux_prpsinfo64
10333 (bfd *abfd, char *buf, int *bufsiz,
10334 const struct elf_internal_linux_prpsinfo *prpsinfo)
10335 {
10336 struct elf_external_linux_prpsinfo64 data;
10337
10338 swap_linux_prpsinfo64_out (abfd, prpsinfo, &data);
10339 return elfcore_write_note (abfd, buf, bufsiz,
10340 "CORE", NT_PRPSINFO, &data, sizeof (data));
10341 }
10342
10343 char *
10344 elfcore_write_prstatus (bfd *abfd,
10345 char *buf,
10346 int *bufsiz,
10347 long pid,
10348 int cursig,
10349 const void *gregs)
10350 {
10351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10352
10353 if (bed->elf_backend_write_core_note != NULL)
10354 {
10355 char *ret;
10356 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10357 NT_PRSTATUS,
10358 pid, cursig, gregs);
10359 if (ret != NULL)
10360 return ret;
10361 }
10362
10363 #if defined (HAVE_PRSTATUS_T)
10364 #if defined (HAVE_PRSTATUS32_T)
10365 if (bed->s->elfclass == ELFCLASS32)
10366 {
10367 prstatus32_t prstat;
10368
10369 memset (&prstat, 0, sizeof (prstat));
10370 prstat.pr_pid = pid;
10371 prstat.pr_cursig = cursig;
10372 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10373 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10374 NT_PRSTATUS, &prstat, sizeof (prstat));
10375 }
10376 else
10377 #endif
10378 {
10379 prstatus_t prstat;
10380
10381 memset (&prstat, 0, sizeof (prstat));
10382 prstat.pr_pid = pid;
10383 prstat.pr_cursig = cursig;
10384 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10385 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10386 NT_PRSTATUS, &prstat, sizeof (prstat));
10387 }
10388 #endif /* HAVE_PRSTATUS_T */
10389
10390 free (buf);
10391 return NULL;
10392 }
10393
10394 #if defined (HAVE_LWPSTATUS_T)
10395 char *
10396 elfcore_write_lwpstatus (bfd *abfd,
10397 char *buf,
10398 int *bufsiz,
10399 long pid,
10400 int cursig,
10401 const void *gregs)
10402 {
10403 lwpstatus_t lwpstat;
10404 const char *note_name = "CORE";
10405
10406 memset (&lwpstat, 0, sizeof (lwpstat));
10407 lwpstat.pr_lwpid = pid >> 16;
10408 lwpstat.pr_cursig = cursig;
10409 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10410 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10411 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10412 #if !defined(gregs)
10413 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10414 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10415 #else
10416 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10417 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10418 #endif
10419 #endif
10420 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10421 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10422 }
10423 #endif /* HAVE_LWPSTATUS_T */
10424
10425 #if defined (HAVE_PSTATUS_T)
10426 char *
10427 elfcore_write_pstatus (bfd *abfd,
10428 char *buf,
10429 int *bufsiz,
10430 long pid,
10431 int cursig ATTRIBUTE_UNUSED,
10432 const void *gregs ATTRIBUTE_UNUSED)
10433 {
10434 const char *note_name = "CORE";
10435 #if defined (HAVE_PSTATUS32_T)
10436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10437
10438 if (bed->s->elfclass == ELFCLASS32)
10439 {
10440 pstatus32_t pstat;
10441
10442 memset (&pstat, 0, sizeof (pstat));
10443 pstat.pr_pid = pid & 0xffff;
10444 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10445 NT_PSTATUS, &pstat, sizeof (pstat));
10446 return buf;
10447 }
10448 else
10449 #endif
10450 {
10451 pstatus_t pstat;
10452
10453 memset (&pstat, 0, sizeof (pstat));
10454 pstat.pr_pid = pid & 0xffff;
10455 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10456 NT_PSTATUS, &pstat, sizeof (pstat));
10457 return buf;
10458 }
10459 }
10460 #endif /* HAVE_PSTATUS_T */
10461
10462 char *
10463 elfcore_write_prfpreg (bfd *abfd,
10464 char *buf,
10465 int *bufsiz,
10466 const void *fpregs,
10467 int size)
10468 {
10469 const char *note_name = "CORE";
10470 return elfcore_write_note (abfd, buf, bufsiz,
10471 note_name, NT_FPREGSET, fpregs, size);
10472 }
10473
10474 char *
10475 elfcore_write_prxfpreg (bfd *abfd,
10476 char *buf,
10477 int *bufsiz,
10478 const void *xfpregs,
10479 int size)
10480 {
10481 char *note_name = "LINUX";
10482 return elfcore_write_note (abfd, buf, bufsiz,
10483 note_name, NT_PRXFPREG, xfpregs, size);
10484 }
10485
10486 char *
10487 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10488 const void *xfpregs, int size)
10489 {
10490 char *note_name;
10491 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10492 note_name = "FreeBSD";
10493 else
10494 note_name = "LINUX";
10495 return elfcore_write_note (abfd, buf, bufsiz,
10496 note_name, NT_X86_XSTATE, xfpregs, size);
10497 }
10498
10499 char *
10500 elfcore_write_ppc_vmx (bfd *abfd,
10501 char *buf,
10502 int *bufsiz,
10503 const void *ppc_vmx,
10504 int size)
10505 {
10506 char *note_name = "LINUX";
10507 return elfcore_write_note (abfd, buf, bufsiz,
10508 note_name, NT_PPC_VMX, ppc_vmx, size);
10509 }
10510
10511 char *
10512 elfcore_write_ppc_vsx (bfd *abfd,
10513 char *buf,
10514 int *bufsiz,
10515 const void *ppc_vsx,
10516 int size)
10517 {
10518 char *note_name = "LINUX";
10519 return elfcore_write_note (abfd, buf, bufsiz,
10520 note_name, NT_PPC_VSX, ppc_vsx, size);
10521 }
10522
10523 static char *
10524 elfcore_write_s390_high_gprs (bfd *abfd,
10525 char *buf,
10526 int *bufsiz,
10527 const void *s390_high_gprs,
10528 int size)
10529 {
10530 char *note_name = "LINUX";
10531 return elfcore_write_note (abfd, buf, bufsiz,
10532 note_name, NT_S390_HIGH_GPRS,
10533 s390_high_gprs, size);
10534 }
10535
10536 char *
10537 elfcore_write_s390_timer (bfd *abfd,
10538 char *buf,
10539 int *bufsiz,
10540 const void *s390_timer,
10541 int size)
10542 {
10543 char *note_name = "LINUX";
10544 return elfcore_write_note (abfd, buf, bufsiz,
10545 note_name, NT_S390_TIMER, s390_timer, size);
10546 }
10547
10548 char *
10549 elfcore_write_s390_todcmp (bfd *abfd,
10550 char *buf,
10551 int *bufsiz,
10552 const void *s390_todcmp,
10553 int size)
10554 {
10555 char *note_name = "LINUX";
10556 return elfcore_write_note (abfd, buf, bufsiz,
10557 note_name, NT_S390_TODCMP, s390_todcmp, size);
10558 }
10559
10560 char *
10561 elfcore_write_s390_todpreg (bfd *abfd,
10562 char *buf,
10563 int *bufsiz,
10564 const void *s390_todpreg,
10565 int size)
10566 {
10567 char *note_name = "LINUX";
10568 return elfcore_write_note (abfd, buf, bufsiz,
10569 note_name, NT_S390_TODPREG, s390_todpreg, size);
10570 }
10571
10572 char *
10573 elfcore_write_s390_ctrs (bfd *abfd,
10574 char *buf,
10575 int *bufsiz,
10576 const void *s390_ctrs,
10577 int size)
10578 {
10579 char *note_name = "LINUX";
10580 return elfcore_write_note (abfd, buf, bufsiz,
10581 note_name, NT_S390_CTRS, s390_ctrs, size);
10582 }
10583
10584 char *
10585 elfcore_write_s390_prefix (bfd *abfd,
10586 char *buf,
10587 int *bufsiz,
10588 const void *s390_prefix,
10589 int size)
10590 {
10591 char *note_name = "LINUX";
10592 return elfcore_write_note (abfd, buf, bufsiz,
10593 note_name, NT_S390_PREFIX, s390_prefix, size);
10594 }
10595
10596 char *
10597 elfcore_write_s390_last_break (bfd *abfd,
10598 char *buf,
10599 int *bufsiz,
10600 const void *s390_last_break,
10601 int size)
10602 {
10603 char *note_name = "LINUX";
10604 return elfcore_write_note (abfd, buf, bufsiz,
10605 note_name, NT_S390_LAST_BREAK,
10606 s390_last_break, size);
10607 }
10608
10609 char *
10610 elfcore_write_s390_system_call (bfd *abfd,
10611 char *buf,
10612 int *bufsiz,
10613 const void *s390_system_call,
10614 int size)
10615 {
10616 char *note_name = "LINUX";
10617 return elfcore_write_note (abfd, buf, bufsiz,
10618 note_name, NT_S390_SYSTEM_CALL,
10619 s390_system_call, size);
10620 }
10621
10622 char *
10623 elfcore_write_s390_tdb (bfd *abfd,
10624 char *buf,
10625 int *bufsiz,
10626 const void *s390_tdb,
10627 int size)
10628 {
10629 char *note_name = "LINUX";
10630 return elfcore_write_note (abfd, buf, bufsiz,
10631 note_name, NT_S390_TDB, s390_tdb, size);
10632 }
10633
10634 char *
10635 elfcore_write_s390_vxrs_low (bfd *abfd,
10636 char *buf,
10637 int *bufsiz,
10638 const void *s390_vxrs_low,
10639 int size)
10640 {
10641 char *note_name = "LINUX";
10642 return elfcore_write_note (abfd, buf, bufsiz,
10643 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10644 }
10645
10646 char *
10647 elfcore_write_s390_vxrs_high (bfd *abfd,
10648 char *buf,
10649 int *bufsiz,
10650 const void *s390_vxrs_high,
10651 int size)
10652 {
10653 char *note_name = "LINUX";
10654 return elfcore_write_note (abfd, buf, bufsiz,
10655 note_name, NT_S390_VXRS_HIGH,
10656 s390_vxrs_high, size);
10657 }
10658
10659 char *
10660 elfcore_write_arm_vfp (bfd *abfd,
10661 char *buf,
10662 int *bufsiz,
10663 const void *arm_vfp,
10664 int size)
10665 {
10666 char *note_name = "LINUX";
10667 return elfcore_write_note (abfd, buf, bufsiz,
10668 note_name, NT_ARM_VFP, arm_vfp, size);
10669 }
10670
10671 char *
10672 elfcore_write_aarch_tls (bfd *abfd,
10673 char *buf,
10674 int *bufsiz,
10675 const void *aarch_tls,
10676 int size)
10677 {
10678 char *note_name = "LINUX";
10679 return elfcore_write_note (abfd, buf, bufsiz,
10680 note_name, NT_ARM_TLS, aarch_tls, size);
10681 }
10682
10683 char *
10684 elfcore_write_aarch_hw_break (bfd *abfd,
10685 char *buf,
10686 int *bufsiz,
10687 const void *aarch_hw_break,
10688 int size)
10689 {
10690 char *note_name = "LINUX";
10691 return elfcore_write_note (abfd, buf, bufsiz,
10692 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10693 }
10694
10695 char *
10696 elfcore_write_aarch_hw_watch (bfd *abfd,
10697 char *buf,
10698 int *bufsiz,
10699 const void *aarch_hw_watch,
10700 int size)
10701 {
10702 char *note_name = "LINUX";
10703 return elfcore_write_note (abfd, buf, bufsiz,
10704 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10705 }
10706
10707 char *
10708 elfcore_write_register_note (bfd *abfd,
10709 char *buf,
10710 int *bufsiz,
10711 const char *section,
10712 const void *data,
10713 int size)
10714 {
10715 if (strcmp (section, ".reg2") == 0)
10716 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10717 if (strcmp (section, ".reg-xfp") == 0)
10718 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10719 if (strcmp (section, ".reg-xstate") == 0)
10720 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10721 if (strcmp (section, ".reg-ppc-vmx") == 0)
10722 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10723 if (strcmp (section, ".reg-ppc-vsx") == 0)
10724 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10725 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10726 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10727 if (strcmp (section, ".reg-s390-timer") == 0)
10728 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10729 if (strcmp (section, ".reg-s390-todcmp") == 0)
10730 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10731 if (strcmp (section, ".reg-s390-todpreg") == 0)
10732 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10733 if (strcmp (section, ".reg-s390-ctrs") == 0)
10734 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10735 if (strcmp (section, ".reg-s390-prefix") == 0)
10736 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10737 if (strcmp (section, ".reg-s390-last-break") == 0)
10738 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10739 if (strcmp (section, ".reg-s390-system-call") == 0)
10740 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10741 if (strcmp (section, ".reg-s390-tdb") == 0)
10742 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10743 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10744 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10745 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10746 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10747 if (strcmp (section, ".reg-arm-vfp") == 0)
10748 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10749 if (strcmp (section, ".reg-aarch-tls") == 0)
10750 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10751 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10752 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10753 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10754 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
10755 return NULL;
10756 }
10757
10758 static bfd_boolean
10759 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
10760 {
10761 char *p;
10762
10763 p = buf;
10764 while (p < buf + size)
10765 {
10766 /* FIXME: bad alignment assumption. */
10767 Elf_External_Note *xnp = (Elf_External_Note *) p;
10768 Elf_Internal_Note in;
10769
10770 if (offsetof (Elf_External_Note, name) > buf - p + size)
10771 return FALSE;
10772
10773 in.type = H_GET_32 (abfd, xnp->type);
10774
10775 in.namesz = H_GET_32 (abfd, xnp->namesz);
10776 in.namedata = xnp->name;
10777 if (in.namesz > buf - in.namedata + size)
10778 return FALSE;
10779
10780 in.descsz = H_GET_32 (abfd, xnp->descsz);
10781 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
10782 in.descpos = offset + (in.descdata - buf);
10783 if (in.descsz != 0
10784 && (in.descdata >= buf + size
10785 || in.descsz > buf - in.descdata + size))
10786 return FALSE;
10787
10788 switch (bfd_get_format (abfd))
10789 {
10790 default:
10791 return TRUE;
10792
10793 case bfd_core:
10794 {
10795 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
10796 struct
10797 {
10798 const char * string;
10799 size_t len;
10800 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
10801 }
10802 grokers[] =
10803 {
10804 GROKER_ELEMENT ("", elfcore_grok_note),
10805 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
10806 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
10807 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
10808 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
10809 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
10810 };
10811 #undef GROKER_ELEMENT
10812 int i;
10813
10814 for (i = ARRAY_SIZE (grokers); i--;)
10815 {
10816 if (in.namesz >= grokers[i].len
10817 && strncmp (in.namedata, grokers[i].string,
10818 grokers[i].len) == 0)
10819 {
10820 if (! grokers[i].func (abfd, & in))
10821 return FALSE;
10822 break;
10823 }
10824 }
10825 break;
10826 }
10827
10828 case bfd_object:
10829 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10830 {
10831 if (! elfobj_grok_gnu_note (abfd, &in))
10832 return FALSE;
10833 }
10834 else if (in.namesz == sizeof "stapsdt"
10835 && strcmp (in.namedata, "stapsdt") == 0)
10836 {
10837 if (! elfobj_grok_stapsdt_note (abfd, &in))
10838 return FALSE;
10839 }
10840 break;
10841 }
10842
10843 p = in.descdata + BFD_ALIGN (in.descsz, 4);
10844 }
10845
10846 return TRUE;
10847 }
10848
10849 static bfd_boolean
10850 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
10851 {
10852 char *buf;
10853
10854 if (size <= 0)
10855 return TRUE;
10856
10857 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
10858 return FALSE;
10859
10860 buf = (char *) bfd_malloc (size + 1);
10861 if (buf == NULL)
10862 return FALSE;
10863
10864 /* PR 17512: file: ec08f814
10865 0-termintate the buffer so that string searches will not overflow. */
10866 buf[size] = 0;
10867
10868 if (bfd_bread (buf, size, abfd) != size
10869 || !elf_parse_notes (abfd, buf, size, offset))
10870 {
10871 free (buf);
10872 return FALSE;
10873 }
10874
10875 free (buf);
10876 return TRUE;
10877 }
10878 \f
10879 /* Providing external access to the ELF program header table. */
10880
10881 /* Return an upper bound on the number of bytes required to store a
10882 copy of ABFD's program header table entries. Return -1 if an error
10883 occurs; bfd_get_error will return an appropriate code. */
10884
10885 long
10886 bfd_get_elf_phdr_upper_bound (bfd *abfd)
10887 {
10888 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10889 {
10890 bfd_set_error (bfd_error_wrong_format);
10891 return -1;
10892 }
10893
10894 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
10895 }
10896
10897 /* Copy ABFD's program header table entries to *PHDRS. The entries
10898 will be stored as an array of Elf_Internal_Phdr structures, as
10899 defined in include/elf/internal.h. To find out how large the
10900 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
10901
10902 Return the number of program header table entries read, or -1 if an
10903 error occurs; bfd_get_error will return an appropriate code. */
10904
10905 int
10906 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
10907 {
10908 int num_phdrs;
10909
10910 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10911 {
10912 bfd_set_error (bfd_error_wrong_format);
10913 return -1;
10914 }
10915
10916 num_phdrs = elf_elfheader (abfd)->e_phnum;
10917 memcpy (phdrs, elf_tdata (abfd)->phdr,
10918 num_phdrs * sizeof (Elf_Internal_Phdr));
10919
10920 return num_phdrs;
10921 }
10922
10923 enum elf_reloc_type_class
10924 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
10925 const asection *rel_sec ATTRIBUTE_UNUSED,
10926 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
10927 {
10928 return reloc_class_normal;
10929 }
10930
10931 /* For RELA architectures, return the relocation value for a
10932 relocation against a local symbol. */
10933
10934 bfd_vma
10935 _bfd_elf_rela_local_sym (bfd *abfd,
10936 Elf_Internal_Sym *sym,
10937 asection **psec,
10938 Elf_Internal_Rela *rel)
10939 {
10940 asection *sec = *psec;
10941 bfd_vma relocation;
10942
10943 relocation = (sec->output_section->vma
10944 + sec->output_offset
10945 + sym->st_value);
10946 if ((sec->flags & SEC_MERGE)
10947 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
10948 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
10949 {
10950 rel->r_addend =
10951 _bfd_merged_section_offset (abfd, psec,
10952 elf_section_data (sec)->sec_info,
10953 sym->st_value + rel->r_addend);
10954 if (sec != *psec)
10955 {
10956 /* If we have changed the section, and our original section is
10957 marked with SEC_EXCLUDE, it means that the original
10958 SEC_MERGE section has been completely subsumed in some
10959 other SEC_MERGE section. In this case, we need to leave
10960 some info around for --emit-relocs. */
10961 if ((sec->flags & SEC_EXCLUDE) != 0)
10962 sec->kept_section = *psec;
10963 sec = *psec;
10964 }
10965 rel->r_addend -= relocation;
10966 rel->r_addend += sec->output_section->vma + sec->output_offset;
10967 }
10968 return relocation;
10969 }
10970
10971 bfd_vma
10972 _bfd_elf_rel_local_sym (bfd *abfd,
10973 Elf_Internal_Sym *sym,
10974 asection **psec,
10975 bfd_vma addend)
10976 {
10977 asection *sec = *psec;
10978
10979 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
10980 return sym->st_value + addend;
10981
10982 return _bfd_merged_section_offset (abfd, psec,
10983 elf_section_data (sec)->sec_info,
10984 sym->st_value + addend);
10985 }
10986
10987 /* Adjust an address within a section. Given OFFSET within SEC, return
10988 the new offset within the section, based upon changes made to the
10989 section. Returns -1 if the offset is now invalid.
10990 The offset (in abnd out) is in target sized bytes, however big a
10991 byte may be. */
10992
10993 bfd_vma
10994 _bfd_elf_section_offset (bfd *abfd,
10995 struct bfd_link_info *info,
10996 asection *sec,
10997 bfd_vma offset)
10998 {
10999 switch (sec->sec_info_type)
11000 {
11001 case SEC_INFO_TYPE_STABS:
11002 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11003 offset);
11004 case SEC_INFO_TYPE_EH_FRAME:
11005 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11006
11007 default:
11008 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11009 {
11010 /* Reverse the offset. */
11011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11012 bfd_size_type address_size = bed->s->arch_size / 8;
11013
11014 /* address_size and sec->size are in octets. Convert
11015 to bytes before subtracting the original offset. */
11016 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11017 }
11018 return offset;
11019 }
11020 }
11021 \f
11022 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11023 reconstruct an ELF file by reading the segments out of remote memory
11024 based on the ELF file header at EHDR_VMA and the ELF program headers it
11025 points to. If not null, *LOADBASEP is filled in with the difference
11026 between the VMAs from which the segments were read, and the VMAs the
11027 file headers (and hence BFD's idea of each section's VMA) put them at.
11028
11029 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11030 remote memory at target address VMA into the local buffer at MYADDR; it
11031 should return zero on success or an `errno' code on failure. TEMPL must
11032 be a BFD for an ELF target with the word size and byte order found in
11033 the remote memory. */
11034
11035 bfd *
11036 bfd_elf_bfd_from_remote_memory
11037 (bfd *templ,
11038 bfd_vma ehdr_vma,
11039 bfd_size_type size,
11040 bfd_vma *loadbasep,
11041 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11042 {
11043 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11044 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11045 }
11046 \f
11047 long
11048 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11049 long symcount ATTRIBUTE_UNUSED,
11050 asymbol **syms ATTRIBUTE_UNUSED,
11051 long dynsymcount,
11052 asymbol **dynsyms,
11053 asymbol **ret)
11054 {
11055 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11056 asection *relplt;
11057 asymbol *s;
11058 const char *relplt_name;
11059 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11060 arelent *p;
11061 long count, i, n;
11062 size_t size;
11063 Elf_Internal_Shdr *hdr;
11064 char *names;
11065 asection *plt;
11066
11067 *ret = NULL;
11068
11069 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11070 return 0;
11071
11072 if (dynsymcount <= 0)
11073 return 0;
11074
11075 if (!bed->plt_sym_val)
11076 return 0;
11077
11078 relplt_name = bed->relplt_name;
11079 if (relplt_name == NULL)
11080 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11081 relplt = bfd_get_section_by_name (abfd, relplt_name);
11082 if (relplt == NULL)
11083 return 0;
11084
11085 hdr = &elf_section_data (relplt)->this_hdr;
11086 if (hdr->sh_link != elf_dynsymtab (abfd)
11087 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11088 return 0;
11089
11090 plt = bfd_get_section_by_name (abfd, ".plt");
11091 if (plt == NULL)
11092 return 0;
11093
11094 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11095 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11096 return -1;
11097
11098 count = relplt->size / hdr->sh_entsize;
11099 size = count * sizeof (asymbol);
11100 p = relplt->relocation;
11101 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11102 {
11103 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11104 if (p->addend != 0)
11105 {
11106 #ifdef BFD64
11107 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11108 #else
11109 size += sizeof ("+0x") - 1 + 8;
11110 #endif
11111 }
11112 }
11113
11114 s = *ret = (asymbol *) bfd_malloc (size);
11115 if (s == NULL)
11116 return -1;
11117
11118 names = (char *) (s + count);
11119 p = relplt->relocation;
11120 n = 0;
11121 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11122 {
11123 size_t len;
11124 bfd_vma addr;
11125
11126 addr = bed->plt_sym_val (i, plt, p);
11127 if (addr == (bfd_vma) -1)
11128 continue;
11129
11130 *s = **p->sym_ptr_ptr;
11131 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11132 we are defining a symbol, ensure one of them is set. */
11133 if ((s->flags & BSF_LOCAL) == 0)
11134 s->flags |= BSF_GLOBAL;
11135 s->flags |= BSF_SYNTHETIC;
11136 s->section = plt;
11137 s->value = addr - plt->vma;
11138 s->name = names;
11139 s->udata.p = NULL;
11140 len = strlen ((*p->sym_ptr_ptr)->name);
11141 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11142 names += len;
11143 if (p->addend != 0)
11144 {
11145 char buf[30], *a;
11146
11147 memcpy (names, "+0x", sizeof ("+0x") - 1);
11148 names += sizeof ("+0x") - 1;
11149 bfd_sprintf_vma (abfd, buf, p->addend);
11150 for (a = buf; *a == '0'; ++a)
11151 ;
11152 len = strlen (a);
11153 memcpy (names, a, len);
11154 names += len;
11155 }
11156 memcpy (names, "@plt", sizeof ("@plt"));
11157 names += sizeof ("@plt");
11158 ++s, ++n;
11159 }
11160
11161 return n;
11162 }
11163
11164 /* It is only used by x86-64 so far.
11165 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11166 but current usage would allow all of _bfd_std_section to be zero. t*/
11167 asection _bfd_elf_large_com_section
11168 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, NULL,
11169 "LARGE_COMMON", 0, SEC_IS_COMMON);
11170
11171 void
11172 _bfd_elf_post_process_headers (bfd * abfd,
11173 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11174 {
11175 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11176
11177 i_ehdrp = elf_elfheader (abfd);
11178
11179 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11180
11181 /* To make things simpler for the loader on Linux systems we set the
11182 osabi field to ELFOSABI_GNU if the binary contains symbols of
11183 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11184 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11185 && elf_tdata (abfd)->has_gnu_symbols)
11186 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11187 }
11188
11189
11190 /* Return TRUE for ELF symbol types that represent functions.
11191 This is the default version of this function, which is sufficient for
11192 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11193
11194 bfd_boolean
11195 _bfd_elf_is_function_type (unsigned int type)
11196 {
11197 return (type == STT_FUNC
11198 || type == STT_GNU_IFUNC);
11199 }
11200
11201 /* If the ELF symbol SYM might be a function in SEC, return the
11202 function size and set *CODE_OFF to the function's entry point,
11203 otherwise return zero. */
11204
11205 bfd_size_type
11206 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11207 bfd_vma *code_off)
11208 {
11209 bfd_size_type size;
11210
11211 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11212 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11213 || sym->section != sec)
11214 return 0;
11215
11216 *code_off = sym->value;
11217 size = 0;
11218 if (!(sym->flags & BSF_SYNTHETIC))
11219 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11220 if (size == 0)
11221 size = 1;
11222 return size;
11223 }
This page took 0.289329 seconds and 4 git commands to generate.