Don't change compressed input debug section names
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2015 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"),
342 abfd, shindex);
343 return NULL;
344 }
345
346 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
347 return NULL;
348 }
349
350 if (strindex >= hdr->sh_size)
351 {
352 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
353 (*_bfd_error_handler)
354 (_("%B: invalid string offset %u >= %lu for section `%s'"),
355 abfd, strindex, (unsigned long) hdr->sh_size,
356 (shindex == shstrndx && strindex == hdr->sh_name
357 ? ".shstrtab"
358 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
359 return NULL;
360 }
361
362 return ((char *) hdr->contents) + strindex;
363 }
364
365 /* Read and convert symbols to internal format.
366 SYMCOUNT specifies the number of symbols to read, starting from
367 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
368 are non-NULL, they are used to store the internal symbols, external
369 symbols, and symbol section index extensions, respectively.
370 Returns a pointer to the internal symbol buffer (malloced if necessary)
371 or NULL if there were no symbols or some kind of problem. */
372
373 Elf_Internal_Sym *
374 bfd_elf_get_elf_syms (bfd *ibfd,
375 Elf_Internal_Shdr *symtab_hdr,
376 size_t symcount,
377 size_t symoffset,
378 Elf_Internal_Sym *intsym_buf,
379 void *extsym_buf,
380 Elf_External_Sym_Shndx *extshndx_buf)
381 {
382 Elf_Internal_Shdr *shndx_hdr;
383 void *alloc_ext;
384 const bfd_byte *esym;
385 Elf_External_Sym_Shndx *alloc_extshndx;
386 Elf_External_Sym_Shndx *shndx;
387 Elf_Internal_Sym *alloc_intsym;
388 Elf_Internal_Sym *isym;
389 Elf_Internal_Sym *isymend;
390 const struct elf_backend_data *bed;
391 size_t extsym_size;
392 bfd_size_type amt;
393 file_ptr pos;
394
395 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
396 abort ();
397
398 if (symcount == 0)
399 return intsym_buf;
400
401 /* Normal syms might have section extension entries. */
402 shndx_hdr = NULL;
403 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
404 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
405
406 /* Read the symbols. */
407 alloc_ext = NULL;
408 alloc_extshndx = NULL;
409 alloc_intsym = NULL;
410 bed = get_elf_backend_data (ibfd);
411 extsym_size = bed->s->sizeof_sym;
412 amt = symcount * extsym_size;
413 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
414 if (extsym_buf == NULL)
415 {
416 alloc_ext = bfd_malloc2 (symcount, extsym_size);
417 extsym_buf = alloc_ext;
418 }
419 if (extsym_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extsym_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426
427 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
428 extshndx_buf = NULL;
429 else
430 {
431 amt = symcount * sizeof (Elf_External_Sym_Shndx);
432 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
433 if (extshndx_buf == NULL)
434 {
435 alloc_extshndx = (Elf_External_Sym_Shndx *)
436 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
437 extshndx_buf = alloc_extshndx;
438 }
439 if (extshndx_buf == NULL
440 || bfd_seek (ibfd, pos, SEEK_SET) != 0
441 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
442 {
443 intsym_buf = NULL;
444 goto out;
445 }
446 }
447
448 if (intsym_buf == NULL)
449 {
450 alloc_intsym = (Elf_Internal_Sym *)
451 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
452 intsym_buf = alloc_intsym;
453 if (intsym_buf == NULL)
454 goto out;
455 }
456
457 /* Convert the symbols to internal form. */
458 isymend = intsym_buf + symcount;
459 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
460 shndx = extshndx_buf;
461 isym < isymend;
462 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
463 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
464 {
465 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
466 (*_bfd_error_handler) (_("%B symbol number %lu references "
467 "nonexistent SHT_SYMTAB_SHNDX section"),
468 ibfd, (unsigned long) symoffset);
469 if (alloc_intsym != NULL)
470 free (alloc_intsym);
471 intsym_buf = NULL;
472 goto out;
473 }
474
475 out:
476 if (alloc_ext != NULL)
477 free (alloc_ext);
478 if (alloc_extshndx != NULL)
479 free (alloc_extshndx);
480
481 return intsym_buf;
482 }
483
484 /* Look up a symbol name. */
485 const char *
486 bfd_elf_sym_name (bfd *abfd,
487 Elf_Internal_Shdr *symtab_hdr,
488 Elf_Internal_Sym *isym,
489 asection *sym_sec)
490 {
491 const char *name;
492 unsigned int iname = isym->st_name;
493 unsigned int shindex = symtab_hdr->sh_link;
494
495 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
496 /* Check for a bogus st_shndx to avoid crashing. */
497 && isym->st_shndx < elf_numsections (abfd))
498 {
499 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
500 shindex = elf_elfheader (abfd)->e_shstrndx;
501 }
502
503 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
504 if (name == NULL)
505 name = "(null)";
506 else if (sym_sec && *name == '\0')
507 name = bfd_section_name (abfd, sym_sec);
508
509 return name;
510 }
511
512 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
513 sections. The first element is the flags, the rest are section
514 pointers. */
515
516 typedef union elf_internal_group {
517 Elf_Internal_Shdr *shdr;
518 unsigned int flags;
519 } Elf_Internal_Group;
520
521 /* Return the name of the group signature symbol. Why isn't the
522 signature just a string? */
523
524 static const char *
525 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
526 {
527 Elf_Internal_Shdr *hdr;
528 unsigned char esym[sizeof (Elf64_External_Sym)];
529 Elf_External_Sym_Shndx eshndx;
530 Elf_Internal_Sym isym;
531
532 /* First we need to ensure the symbol table is available. Make sure
533 that it is a symbol table section. */
534 if (ghdr->sh_link >= elf_numsections (abfd))
535 return NULL;
536 hdr = elf_elfsections (abfd) [ghdr->sh_link];
537 if (hdr->sh_type != SHT_SYMTAB
538 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
539 return NULL;
540
541 /* Go read the symbol. */
542 hdr = &elf_tdata (abfd)->symtab_hdr;
543 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
544 &isym, esym, &eshndx) == NULL)
545 return NULL;
546
547 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
548 }
549
550 /* Set next_in_group list pointer, and group name for NEWSECT. */
551
552 static bfd_boolean
553 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
554 {
555 unsigned int num_group = elf_tdata (abfd)->num_group;
556
557 /* If num_group is zero, read in all SHT_GROUP sections. The count
558 is set to -1 if there are no SHT_GROUP sections. */
559 if (num_group == 0)
560 {
561 unsigned int i, shnum;
562
563 /* First count the number of groups. If we have a SHT_GROUP
564 section with just a flag word (ie. sh_size is 4), ignore it. */
565 shnum = elf_numsections (abfd);
566 num_group = 0;
567
568 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
569 ( (shdr)->sh_type == SHT_GROUP \
570 && (shdr)->sh_size >= minsize \
571 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
572 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
573
574 for (i = 0; i < shnum; i++)
575 {
576 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
577
578 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
579 num_group += 1;
580 }
581
582 if (num_group == 0)
583 {
584 num_group = (unsigned) -1;
585 elf_tdata (abfd)->num_group = num_group;
586 }
587 else
588 {
589 /* We keep a list of elf section headers for group sections,
590 so we can find them quickly. */
591 bfd_size_type amt;
592
593 elf_tdata (abfd)->num_group = num_group;
594 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
595 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
596 if (elf_tdata (abfd)->group_sect_ptr == NULL)
597 return FALSE;
598
599 num_group = 0;
600 for (i = 0; i < shnum; i++)
601 {
602 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
603
604 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
605 {
606 unsigned char *src;
607 Elf_Internal_Group *dest;
608
609 /* Add to list of sections. */
610 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
611 num_group += 1;
612
613 /* Read the raw contents. */
614 BFD_ASSERT (sizeof (*dest) >= 4);
615 amt = shdr->sh_size * sizeof (*dest) / 4;
616 shdr->contents = (unsigned char *)
617 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
618 /* PR binutils/4110: Handle corrupt group headers. */
619 if (shdr->contents == NULL)
620 {
621 _bfd_error_handler
622 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
623 bfd_set_error (bfd_error_bad_value);
624 -- num_group;
625 continue;
626 }
627
628 memset (shdr->contents, 0, amt);
629
630 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
631 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
632 != shdr->sh_size))
633 {
634 _bfd_error_handler
635 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
636 bfd_set_error (bfd_error_bad_value);
637 -- num_group;
638 /* PR 17510: If the group contents are even partially
639 corrupt, do not allow any of the contents to be used. */
640 memset (shdr->contents, 0, amt);
641 continue;
642 }
643
644 /* Translate raw contents, a flag word followed by an
645 array of elf section indices all in target byte order,
646 to the flag word followed by an array of elf section
647 pointers. */
648 src = shdr->contents + shdr->sh_size;
649 dest = (Elf_Internal_Group *) (shdr->contents + amt);
650
651 while (1)
652 {
653 unsigned int idx;
654
655 src -= 4;
656 --dest;
657 idx = H_GET_32 (abfd, src);
658 if (src == shdr->contents)
659 {
660 dest->flags = idx;
661 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
662 shdr->bfd_section->flags
663 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
664 break;
665 }
666 if (idx >= shnum)
667 {
668 ((*_bfd_error_handler)
669 (_("%B: invalid SHT_GROUP entry"), abfd));
670 idx = 0;
671 }
672 dest->shdr = elf_elfsections (abfd)[idx];
673 }
674 }
675 }
676
677 /* PR 17510: Corrupt binaries might contain invalid groups. */
678 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
679 {
680 elf_tdata (abfd)->num_group = num_group;
681
682 /* If all groups are invalid then fail. */
683 if (num_group == 0)
684 {
685 elf_tdata (abfd)->group_sect_ptr = NULL;
686 elf_tdata (abfd)->num_group = num_group = -1;
687 (*_bfd_error_handler) (_("%B: no valid group sections found"), abfd);
688 bfd_set_error (bfd_error_bad_value);
689 }
690 }
691 }
692 }
693
694 if (num_group != (unsigned) -1)
695 {
696 unsigned int i;
697
698 for (i = 0; i < num_group; i++)
699 {
700 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
701 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
702 unsigned int n_elt = shdr->sh_size / 4;
703
704 /* Look through this group's sections to see if current
705 section is a member. */
706 while (--n_elt != 0)
707 if ((++idx)->shdr == hdr)
708 {
709 asection *s = NULL;
710
711 /* We are a member of this group. Go looking through
712 other members to see if any others are linked via
713 next_in_group. */
714 idx = (Elf_Internal_Group *) shdr->contents;
715 n_elt = shdr->sh_size / 4;
716 while (--n_elt != 0)
717 if ((s = (++idx)->shdr->bfd_section) != NULL
718 && elf_next_in_group (s) != NULL)
719 break;
720 if (n_elt != 0)
721 {
722 /* Snarf the group name from other member, and
723 insert current section in circular list. */
724 elf_group_name (newsect) = elf_group_name (s);
725 elf_next_in_group (newsect) = elf_next_in_group (s);
726 elf_next_in_group (s) = newsect;
727 }
728 else
729 {
730 const char *gname;
731
732 gname = group_signature (abfd, shdr);
733 if (gname == NULL)
734 return FALSE;
735 elf_group_name (newsect) = gname;
736
737 /* Start a circular list with one element. */
738 elf_next_in_group (newsect) = newsect;
739 }
740
741 /* If the group section has been created, point to the
742 new member. */
743 if (shdr->bfd_section != NULL)
744 elf_next_in_group (shdr->bfd_section) = newsect;
745
746 i = num_group - 1;
747 break;
748 }
749 }
750 }
751
752 if (elf_group_name (newsect) == NULL)
753 {
754 (*_bfd_error_handler) (_("%B: no group info for section %A"),
755 abfd, newsect);
756 return FALSE;
757 }
758 return TRUE;
759 }
760
761 bfd_boolean
762 _bfd_elf_setup_sections (bfd *abfd)
763 {
764 unsigned int i;
765 unsigned int num_group = elf_tdata (abfd)->num_group;
766 bfd_boolean result = TRUE;
767 asection *s;
768
769 /* Process SHF_LINK_ORDER. */
770 for (s = abfd->sections; s != NULL; s = s->next)
771 {
772 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
773 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
774 {
775 unsigned int elfsec = this_hdr->sh_link;
776 /* FIXME: The old Intel compiler and old strip/objcopy may
777 not set the sh_link or sh_info fields. Hence we could
778 get the situation where elfsec is 0. */
779 if (elfsec == 0)
780 {
781 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
782 if (bed->link_order_error_handler)
783 bed->link_order_error_handler
784 (_("%B: warning: sh_link not set for section `%A'"),
785 abfd, s);
786 }
787 else
788 {
789 asection *linksec = NULL;
790
791 if (elfsec < elf_numsections (abfd))
792 {
793 this_hdr = elf_elfsections (abfd)[elfsec];
794 linksec = this_hdr->bfd_section;
795 }
796
797 /* PR 1991, 2008:
798 Some strip/objcopy may leave an incorrect value in
799 sh_link. We don't want to proceed. */
800 if (linksec == NULL)
801 {
802 (*_bfd_error_handler)
803 (_("%B: sh_link [%d] in section `%A' is incorrect"),
804 s->owner, s, elfsec);
805 result = FALSE;
806 }
807
808 elf_linked_to_section (s) = linksec;
809 }
810 }
811 }
812
813 /* Process section groups. */
814 if (num_group == (unsigned) -1)
815 return result;
816
817 for (i = 0; i < num_group; i++)
818 {
819 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
820 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
821 unsigned int n_elt = shdr->sh_size / 4;
822
823 while (--n_elt != 0)
824 if ((++idx)->shdr->bfd_section)
825 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
826 else if (idx->shdr->sh_type == SHT_RELA
827 || idx->shdr->sh_type == SHT_REL)
828 /* We won't include relocation sections in section groups in
829 output object files. We adjust the group section size here
830 so that relocatable link will work correctly when
831 relocation sections are in section group in input object
832 files. */
833 shdr->bfd_section->size -= 4;
834 else
835 {
836 /* There are some unknown sections in the group. */
837 (*_bfd_error_handler)
838 (_("%B: unknown [%d] section `%s' in group [%s]"),
839 abfd,
840 (unsigned int) idx->shdr->sh_type,
841 bfd_elf_string_from_elf_section (abfd,
842 (elf_elfheader (abfd)
843 ->e_shstrndx),
844 idx->shdr->sh_name),
845 shdr->bfd_section->name);
846 result = FALSE;
847 }
848 }
849 return result;
850 }
851
852 bfd_boolean
853 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
854 {
855 return elf_next_in_group (sec) != NULL;
856 }
857
858 static char *
859 convert_debug_to_zdebug (bfd *abfd, const char *name)
860 {
861 unsigned int len = strlen (name);
862 char *new_name = bfd_alloc (abfd, len + 2);
863 if (new_name == NULL)
864 return NULL;
865 new_name[0] = '.';
866 new_name[1] = 'z';
867 memcpy (new_name + 2, name + 1, len);
868 return new_name;
869 }
870
871 static char *
872 convert_zdebug_to_debug (bfd *abfd, const char *name)
873 {
874 unsigned int len = strlen (name);
875 char *new_name = bfd_alloc (abfd, len);
876 if (new_name == NULL)
877 return NULL;
878 new_name[0] = '.';
879 memcpy (new_name + 1, name + 2, len - 1);
880 return new_name;
881 }
882
883 /* Make a BFD section from an ELF section. We store a pointer to the
884 BFD section in the bfd_section field of the header. */
885
886 bfd_boolean
887 _bfd_elf_make_section_from_shdr (bfd *abfd,
888 Elf_Internal_Shdr *hdr,
889 const char *name,
890 int shindex)
891 {
892 asection *newsect;
893 flagword flags;
894 const struct elf_backend_data *bed;
895
896 if (hdr->bfd_section != NULL)
897 return TRUE;
898
899 newsect = bfd_make_section_anyway (abfd, name);
900 if (newsect == NULL)
901 return FALSE;
902
903 hdr->bfd_section = newsect;
904 elf_section_data (newsect)->this_hdr = *hdr;
905 elf_section_data (newsect)->this_idx = shindex;
906
907 /* Always use the real type/flags. */
908 elf_section_type (newsect) = hdr->sh_type;
909 elf_section_flags (newsect) = hdr->sh_flags;
910
911 newsect->filepos = hdr->sh_offset;
912
913 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
914 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
915 || ! bfd_set_section_alignment (abfd, newsect,
916 bfd_log2 (hdr->sh_addralign)))
917 return FALSE;
918
919 flags = SEC_NO_FLAGS;
920 if (hdr->sh_type != SHT_NOBITS)
921 flags |= SEC_HAS_CONTENTS;
922 if (hdr->sh_type == SHT_GROUP)
923 flags |= SEC_GROUP | SEC_EXCLUDE;
924 if ((hdr->sh_flags & SHF_ALLOC) != 0)
925 {
926 flags |= SEC_ALLOC;
927 if (hdr->sh_type != SHT_NOBITS)
928 flags |= SEC_LOAD;
929 }
930 if ((hdr->sh_flags & SHF_WRITE) == 0)
931 flags |= SEC_READONLY;
932 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
933 flags |= SEC_CODE;
934 else if ((flags & SEC_LOAD) != 0)
935 flags |= SEC_DATA;
936 if ((hdr->sh_flags & SHF_MERGE) != 0)
937 {
938 flags |= SEC_MERGE;
939 newsect->entsize = hdr->sh_entsize;
940 if ((hdr->sh_flags & SHF_STRINGS) != 0)
941 flags |= SEC_STRINGS;
942 }
943 if (hdr->sh_flags & SHF_GROUP)
944 if (!setup_group (abfd, hdr, newsect))
945 return FALSE;
946 if ((hdr->sh_flags & SHF_TLS) != 0)
947 flags |= SEC_THREAD_LOCAL;
948 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
949 flags |= SEC_EXCLUDE;
950
951 if ((flags & SEC_ALLOC) == 0)
952 {
953 /* The debugging sections appear to be recognized only by name,
954 not any sort of flag. Their SEC_ALLOC bits are cleared. */
955 if (name [0] == '.')
956 {
957 const char *p;
958 int n;
959 if (name[1] == 'd')
960 p = ".debug", n = 6;
961 else if (name[1] == 'g' && name[2] == 'n')
962 p = ".gnu.linkonce.wi.", n = 17;
963 else if (name[1] == 'g' && name[2] == 'd')
964 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
965 else if (name[1] == 'l')
966 p = ".line", n = 5;
967 else if (name[1] == 's')
968 p = ".stab", n = 5;
969 else if (name[1] == 'z')
970 p = ".zdebug", n = 7;
971 else
972 p = NULL, n = 0;
973 if (p != NULL && strncmp (name, p, n) == 0)
974 flags |= SEC_DEBUGGING;
975 }
976 }
977
978 /* As a GNU extension, if the name begins with .gnu.linkonce, we
979 only link a single copy of the section. This is used to support
980 g++. g++ will emit each template expansion in its own section.
981 The symbols will be defined as weak, so that multiple definitions
982 are permitted. The GNU linker extension is to actually discard
983 all but one of the sections. */
984 if (CONST_STRNEQ (name, ".gnu.linkonce")
985 && elf_next_in_group (newsect) == NULL)
986 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
987
988 bed = get_elf_backend_data (abfd);
989 if (bed->elf_backend_section_flags)
990 if (! bed->elf_backend_section_flags (&flags, hdr))
991 return FALSE;
992
993 if (! bfd_set_section_flags (abfd, newsect, flags))
994 return FALSE;
995
996 /* We do not parse the PT_NOTE segments as we are interested even in the
997 separate debug info files which may have the segments offsets corrupted.
998 PT_NOTEs from the core files are currently not parsed using BFD. */
999 if (hdr->sh_type == SHT_NOTE)
1000 {
1001 bfd_byte *contents;
1002
1003 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1004 return FALSE;
1005
1006 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
1007 free (contents);
1008 }
1009
1010 if ((flags & SEC_ALLOC) != 0)
1011 {
1012 Elf_Internal_Phdr *phdr;
1013 unsigned int i, nload;
1014
1015 /* Some ELF linkers produce binaries with all the program header
1016 p_paddr fields zero. If we have such a binary with more than
1017 one PT_LOAD header, then leave the section lma equal to vma
1018 so that we don't create sections with overlapping lma. */
1019 phdr = elf_tdata (abfd)->phdr;
1020 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1021 if (phdr->p_paddr != 0)
1022 break;
1023 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1024 ++nload;
1025 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1026 return TRUE;
1027
1028 phdr = elf_tdata (abfd)->phdr;
1029 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1030 {
1031 if (((phdr->p_type == PT_LOAD
1032 && (hdr->sh_flags & SHF_TLS) == 0)
1033 || phdr->p_type == PT_TLS)
1034 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1035 {
1036 if ((flags & SEC_LOAD) == 0)
1037 newsect->lma = (phdr->p_paddr
1038 + hdr->sh_addr - phdr->p_vaddr);
1039 else
1040 /* We used to use the same adjustment for SEC_LOAD
1041 sections, but that doesn't work if the segment
1042 is packed with code from multiple VMAs.
1043 Instead we calculate the section LMA based on
1044 the segment LMA. It is assumed that the
1045 segment will contain sections with contiguous
1046 LMAs, even if the VMAs are not. */
1047 newsect->lma = (phdr->p_paddr
1048 + hdr->sh_offset - phdr->p_offset);
1049
1050 /* With contiguous segments, we can't tell from file
1051 offsets whether a section with zero size should
1052 be placed at the end of one segment or the
1053 beginning of the next. Decide based on vaddr. */
1054 if (hdr->sh_addr >= phdr->p_vaddr
1055 && (hdr->sh_addr + hdr->sh_size
1056 <= phdr->p_vaddr + phdr->p_memsz))
1057 break;
1058 }
1059 }
1060 }
1061
1062 /* Compress/decompress DWARF debug sections with names: .debug_* and
1063 .zdebug_*, after the section flags is set. */
1064 if ((flags & SEC_DEBUGGING)
1065 && ((name[1] == 'd' && name[6] == '_')
1066 || (name[1] == 'z' && name[7] == '_')))
1067 {
1068 enum { nothing, compress, decompress } action = nothing;
1069 int compression_header_size;
1070 bfd_boolean compressed
1071 = bfd_is_section_compressed_with_header (abfd, newsect,
1072 &compression_header_size);
1073
1074 if (compressed)
1075 {
1076 /* Compressed section. Check if we should decompress. */
1077 if ((abfd->flags & BFD_DECOMPRESS))
1078 action = decompress;
1079 }
1080
1081 /* Compress the uncompressed section or convert from/to .zdebug*
1082 section. Check if we should compress. */
1083 if (action == nothing)
1084 {
1085 if (newsect->size != 0
1086 && (abfd->flags & BFD_COMPRESS)
1087 && compression_header_size >= 0
1088 && (!compressed
1089 || ((compression_header_size > 0)
1090 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1091 action = compress;
1092 else
1093 return TRUE;
1094 }
1095
1096 if (action == compress)
1097 {
1098 if (!bfd_init_section_compress_status (abfd, newsect))
1099 {
1100 (*_bfd_error_handler)
1101 (_("%B: unable to initialize compress status for section %s"),
1102 abfd, name);
1103 return FALSE;
1104 }
1105 }
1106 else
1107 {
1108 if (!bfd_init_section_decompress_status (abfd, newsect))
1109 {
1110 (*_bfd_error_handler)
1111 (_("%B: unable to initialize decompress status for section %s"),
1112 abfd, name);
1113 return FALSE;
1114 }
1115 }
1116
1117 if (abfd->is_linker_input)
1118 {
1119 if (name[1] == 'z'
1120 && (action == decompress
1121 || (action == compress
1122 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1123 {
1124 /* Convert section name from .zdebug_* to .debug_* so
1125 that linker will consider this section as a debug
1126 section. */
1127 char *new_name = convert_zdebug_to_debug (abfd, name);
1128 if (new_name == NULL)
1129 return FALSE;
1130 bfd_rename_section (abfd, newsect, new_name);
1131 }
1132 }
1133 else
1134 /* For objdump, don't rename the section. For objcopy, delay
1135 section rename to elf_fake_sections. */
1136 newsect->flags |= SEC_ELF_RENAME;
1137 }
1138
1139 return TRUE;
1140 }
1141
1142 const char *const bfd_elf_section_type_names[] = {
1143 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1144 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1145 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1146 };
1147
1148 /* ELF relocs are against symbols. If we are producing relocatable
1149 output, and the reloc is against an external symbol, and nothing
1150 has given us any additional addend, the resulting reloc will also
1151 be against the same symbol. In such a case, we don't want to
1152 change anything about the way the reloc is handled, since it will
1153 all be done at final link time. Rather than put special case code
1154 into bfd_perform_relocation, all the reloc types use this howto
1155 function. It just short circuits the reloc if producing
1156 relocatable output against an external symbol. */
1157
1158 bfd_reloc_status_type
1159 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1160 arelent *reloc_entry,
1161 asymbol *symbol,
1162 void *data ATTRIBUTE_UNUSED,
1163 asection *input_section,
1164 bfd *output_bfd,
1165 char **error_message ATTRIBUTE_UNUSED)
1166 {
1167 if (output_bfd != NULL
1168 && (symbol->flags & BSF_SECTION_SYM) == 0
1169 && (! reloc_entry->howto->partial_inplace
1170 || reloc_entry->addend == 0))
1171 {
1172 reloc_entry->address += input_section->output_offset;
1173 return bfd_reloc_ok;
1174 }
1175
1176 return bfd_reloc_continue;
1177 }
1178 \f
1179 /* Copy the program header and other data from one object module to
1180 another. */
1181
1182 bfd_boolean
1183 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1184 {
1185 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1186 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1187 return TRUE;
1188
1189 if (!elf_flags_init (obfd))
1190 {
1191 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1192 elf_flags_init (obfd) = TRUE;
1193 }
1194
1195 elf_gp (obfd) = elf_gp (ibfd);
1196
1197 /* Also copy the EI_OSABI field. */
1198 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1199 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1200
1201 /* Copy object attributes. */
1202 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1203 return TRUE;
1204 }
1205
1206 static const char *
1207 get_segment_type (unsigned int p_type)
1208 {
1209 const char *pt;
1210 switch (p_type)
1211 {
1212 case PT_NULL: pt = "NULL"; break;
1213 case PT_LOAD: pt = "LOAD"; break;
1214 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1215 case PT_INTERP: pt = "INTERP"; break;
1216 case PT_NOTE: pt = "NOTE"; break;
1217 case PT_SHLIB: pt = "SHLIB"; break;
1218 case PT_PHDR: pt = "PHDR"; break;
1219 case PT_TLS: pt = "TLS"; break;
1220 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1221 case PT_GNU_STACK: pt = "STACK"; break;
1222 case PT_GNU_RELRO: pt = "RELRO"; break;
1223 default: pt = NULL; break;
1224 }
1225 return pt;
1226 }
1227
1228 /* Print out the program headers. */
1229
1230 bfd_boolean
1231 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1232 {
1233 FILE *f = (FILE *) farg;
1234 Elf_Internal_Phdr *p;
1235 asection *s;
1236 bfd_byte *dynbuf = NULL;
1237
1238 p = elf_tdata (abfd)->phdr;
1239 if (p != NULL)
1240 {
1241 unsigned int i, c;
1242
1243 fprintf (f, _("\nProgram Header:\n"));
1244 c = elf_elfheader (abfd)->e_phnum;
1245 for (i = 0; i < c; i++, p++)
1246 {
1247 const char *pt = get_segment_type (p->p_type);
1248 char buf[20];
1249
1250 if (pt == NULL)
1251 {
1252 sprintf (buf, "0x%lx", p->p_type);
1253 pt = buf;
1254 }
1255 fprintf (f, "%8s off 0x", pt);
1256 bfd_fprintf_vma (abfd, f, p->p_offset);
1257 fprintf (f, " vaddr 0x");
1258 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1259 fprintf (f, " paddr 0x");
1260 bfd_fprintf_vma (abfd, f, p->p_paddr);
1261 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1262 fprintf (f, " filesz 0x");
1263 bfd_fprintf_vma (abfd, f, p->p_filesz);
1264 fprintf (f, " memsz 0x");
1265 bfd_fprintf_vma (abfd, f, p->p_memsz);
1266 fprintf (f, " flags %c%c%c",
1267 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1268 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1269 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1270 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1271 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1272 fprintf (f, "\n");
1273 }
1274 }
1275
1276 s = bfd_get_section_by_name (abfd, ".dynamic");
1277 if (s != NULL)
1278 {
1279 unsigned int elfsec;
1280 unsigned long shlink;
1281 bfd_byte *extdyn, *extdynend;
1282 size_t extdynsize;
1283 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1284
1285 fprintf (f, _("\nDynamic Section:\n"));
1286
1287 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1288 goto error_return;
1289
1290 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1291 if (elfsec == SHN_BAD)
1292 goto error_return;
1293 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1294
1295 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1296 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1297
1298 extdyn = dynbuf;
1299 /* PR 17512: file: 6f427532. */
1300 if (s->size < extdynsize)
1301 goto error_return;
1302 extdynend = extdyn + s->size;
1303 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1304 Fix range check. */
1305 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1306 {
1307 Elf_Internal_Dyn dyn;
1308 const char *name = "";
1309 char ab[20];
1310 bfd_boolean stringp;
1311 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1312
1313 (*swap_dyn_in) (abfd, extdyn, &dyn);
1314
1315 if (dyn.d_tag == DT_NULL)
1316 break;
1317
1318 stringp = FALSE;
1319 switch (dyn.d_tag)
1320 {
1321 default:
1322 if (bed->elf_backend_get_target_dtag)
1323 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1324
1325 if (!strcmp (name, ""))
1326 {
1327 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1328 name = ab;
1329 }
1330 break;
1331
1332 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1333 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1334 case DT_PLTGOT: name = "PLTGOT"; break;
1335 case DT_HASH: name = "HASH"; break;
1336 case DT_STRTAB: name = "STRTAB"; break;
1337 case DT_SYMTAB: name = "SYMTAB"; break;
1338 case DT_RELA: name = "RELA"; break;
1339 case DT_RELASZ: name = "RELASZ"; break;
1340 case DT_RELAENT: name = "RELAENT"; break;
1341 case DT_STRSZ: name = "STRSZ"; break;
1342 case DT_SYMENT: name = "SYMENT"; break;
1343 case DT_INIT: name = "INIT"; break;
1344 case DT_FINI: name = "FINI"; break;
1345 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1346 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1347 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1348 case DT_REL: name = "REL"; break;
1349 case DT_RELSZ: name = "RELSZ"; break;
1350 case DT_RELENT: name = "RELENT"; break;
1351 case DT_PLTREL: name = "PLTREL"; break;
1352 case DT_DEBUG: name = "DEBUG"; break;
1353 case DT_TEXTREL: name = "TEXTREL"; break;
1354 case DT_JMPREL: name = "JMPREL"; break;
1355 case DT_BIND_NOW: name = "BIND_NOW"; break;
1356 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1357 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1358 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1359 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1360 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1361 case DT_FLAGS: name = "FLAGS"; break;
1362 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1363 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1364 case DT_CHECKSUM: name = "CHECKSUM"; break;
1365 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1366 case DT_MOVEENT: name = "MOVEENT"; break;
1367 case DT_MOVESZ: name = "MOVESZ"; break;
1368 case DT_FEATURE: name = "FEATURE"; break;
1369 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1370 case DT_SYMINSZ: name = "SYMINSZ"; break;
1371 case DT_SYMINENT: name = "SYMINENT"; break;
1372 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1373 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1374 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1375 case DT_PLTPAD: name = "PLTPAD"; break;
1376 case DT_MOVETAB: name = "MOVETAB"; break;
1377 case DT_SYMINFO: name = "SYMINFO"; break;
1378 case DT_RELACOUNT: name = "RELACOUNT"; break;
1379 case DT_RELCOUNT: name = "RELCOUNT"; break;
1380 case DT_FLAGS_1: name = "FLAGS_1"; break;
1381 case DT_VERSYM: name = "VERSYM"; break;
1382 case DT_VERDEF: name = "VERDEF"; break;
1383 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1384 case DT_VERNEED: name = "VERNEED"; break;
1385 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1386 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1387 case DT_USED: name = "USED"; break;
1388 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1389 case DT_GNU_HASH: name = "GNU_HASH"; break;
1390 }
1391
1392 fprintf (f, " %-20s ", name);
1393 if (! stringp)
1394 {
1395 fprintf (f, "0x");
1396 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1397 }
1398 else
1399 {
1400 const char *string;
1401 unsigned int tagv = dyn.d_un.d_val;
1402
1403 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1404 if (string == NULL)
1405 goto error_return;
1406 fprintf (f, "%s", string);
1407 }
1408 fprintf (f, "\n");
1409 }
1410
1411 free (dynbuf);
1412 dynbuf = NULL;
1413 }
1414
1415 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1416 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1417 {
1418 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1419 return FALSE;
1420 }
1421
1422 if (elf_dynverdef (abfd) != 0)
1423 {
1424 Elf_Internal_Verdef *t;
1425
1426 fprintf (f, _("\nVersion definitions:\n"));
1427 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1428 {
1429 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1430 t->vd_flags, t->vd_hash,
1431 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1432 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1433 {
1434 Elf_Internal_Verdaux *a;
1435
1436 fprintf (f, "\t");
1437 for (a = t->vd_auxptr->vda_nextptr;
1438 a != NULL;
1439 a = a->vda_nextptr)
1440 fprintf (f, "%s ",
1441 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1442 fprintf (f, "\n");
1443 }
1444 }
1445 }
1446
1447 if (elf_dynverref (abfd) != 0)
1448 {
1449 Elf_Internal_Verneed *t;
1450
1451 fprintf (f, _("\nVersion References:\n"));
1452 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1453 {
1454 Elf_Internal_Vernaux *a;
1455
1456 fprintf (f, _(" required from %s:\n"),
1457 t->vn_filename ? t->vn_filename : "<corrupt>");
1458 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1459 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1460 a->vna_flags, a->vna_other,
1461 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1462 }
1463 }
1464
1465 return TRUE;
1466
1467 error_return:
1468 if (dynbuf != NULL)
1469 free (dynbuf);
1470 return FALSE;
1471 }
1472
1473 /* Get version string. */
1474
1475 const char *
1476 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1477 bfd_boolean *hidden)
1478 {
1479 const char *version_string = NULL;
1480 if (elf_dynversym (abfd) != 0
1481 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1482 {
1483 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1484
1485 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1486 vernum &= VERSYM_VERSION;
1487
1488 if (vernum == 0)
1489 version_string = "";
1490 else if (vernum == 1)
1491 version_string = "Base";
1492 else if (vernum <= elf_tdata (abfd)->cverdefs)
1493 version_string =
1494 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1495 else
1496 {
1497 Elf_Internal_Verneed *t;
1498
1499 version_string = "";
1500 for (t = elf_tdata (abfd)->verref;
1501 t != NULL;
1502 t = t->vn_nextref)
1503 {
1504 Elf_Internal_Vernaux *a;
1505
1506 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1507 {
1508 if (a->vna_other == vernum)
1509 {
1510 version_string = a->vna_nodename;
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 }
1517 return version_string;
1518 }
1519
1520 /* Display ELF-specific fields of a symbol. */
1521
1522 void
1523 bfd_elf_print_symbol (bfd *abfd,
1524 void *filep,
1525 asymbol *symbol,
1526 bfd_print_symbol_type how)
1527 {
1528 FILE *file = (FILE *) filep;
1529 switch (how)
1530 {
1531 case bfd_print_symbol_name:
1532 fprintf (file, "%s", symbol->name);
1533 break;
1534 case bfd_print_symbol_more:
1535 fprintf (file, "elf ");
1536 bfd_fprintf_vma (abfd, file, symbol->value);
1537 fprintf (file, " %lx", (unsigned long) symbol->flags);
1538 break;
1539 case bfd_print_symbol_all:
1540 {
1541 const char *section_name;
1542 const char *name = NULL;
1543 const struct elf_backend_data *bed;
1544 unsigned char st_other;
1545 bfd_vma val;
1546 const char *version_string;
1547 bfd_boolean hidden;
1548
1549 section_name = symbol->section ? symbol->section->name : "(*none*)";
1550
1551 bed = get_elf_backend_data (abfd);
1552 if (bed->elf_backend_print_symbol_all)
1553 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1554
1555 if (name == NULL)
1556 {
1557 name = symbol->name;
1558 bfd_print_symbol_vandf (abfd, file, symbol);
1559 }
1560
1561 fprintf (file, " %s\t", section_name);
1562 /* Print the "other" value for a symbol. For common symbols,
1563 we've already printed the size; now print the alignment.
1564 For other symbols, we have no specified alignment, and
1565 we've printed the address; now print the size. */
1566 if (symbol->section && bfd_is_com_section (symbol->section))
1567 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1568 else
1569 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1570 bfd_fprintf_vma (abfd, file, val);
1571
1572 /* If we have version information, print it. */
1573 version_string = _bfd_elf_get_symbol_version_string (abfd,
1574 symbol,
1575 &hidden);
1576 if (version_string)
1577 {
1578 if (!hidden)
1579 fprintf (file, " %-11s", version_string);
1580 else
1581 {
1582 int i;
1583
1584 fprintf (file, " (%s)", version_string);
1585 for (i = 10 - strlen (version_string); i > 0; --i)
1586 putc (' ', file);
1587 }
1588 }
1589
1590 /* If the st_other field is not zero, print it. */
1591 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1592
1593 switch (st_other)
1594 {
1595 case 0: break;
1596 case STV_INTERNAL: fprintf (file, " .internal"); break;
1597 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1598 case STV_PROTECTED: fprintf (file, " .protected"); break;
1599 default:
1600 /* Some other non-defined flags are also present, so print
1601 everything hex. */
1602 fprintf (file, " 0x%02x", (unsigned int) st_other);
1603 }
1604
1605 fprintf (file, " %s", name);
1606 }
1607 break;
1608 }
1609 }
1610
1611 /* Allocate an ELF string table--force the first byte to be zero. */
1612
1613 struct bfd_strtab_hash *
1614 _bfd_elf_stringtab_init (void)
1615 {
1616 struct bfd_strtab_hash *ret;
1617
1618 ret = _bfd_stringtab_init ();
1619 if (ret != NULL)
1620 {
1621 bfd_size_type loc;
1622
1623 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1624 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1625 if (loc == (bfd_size_type) -1)
1626 {
1627 _bfd_stringtab_free (ret);
1628 ret = NULL;
1629 }
1630 }
1631 return ret;
1632 }
1633 \f
1634 /* ELF .o/exec file reading */
1635
1636 /* Create a new bfd section from an ELF section header. */
1637
1638 bfd_boolean
1639 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1640 {
1641 Elf_Internal_Shdr *hdr;
1642 Elf_Internal_Ehdr *ehdr;
1643 const struct elf_backend_data *bed;
1644 const char *name;
1645 bfd_boolean ret = TRUE;
1646 static bfd_boolean * sections_being_created = NULL;
1647 static bfd * sections_being_created_abfd = NULL;
1648 static unsigned int nesting = 0;
1649
1650 if (shindex >= elf_numsections (abfd))
1651 return FALSE;
1652
1653 if (++ nesting > 3)
1654 {
1655 /* PR17512: A corrupt ELF binary might contain a recursive group of
1656 sections, with each the string indicies pointing to the next in the
1657 loop. Detect this here, by refusing to load a section that we are
1658 already in the process of loading. We only trigger this test if
1659 we have nested at least three sections deep as normal ELF binaries
1660 can expect to recurse at least once.
1661
1662 FIXME: It would be better if this array was attached to the bfd,
1663 rather than being held in a static pointer. */
1664
1665 if (sections_being_created_abfd != abfd)
1666 sections_being_created = NULL;
1667 if (sections_being_created == NULL)
1668 {
1669 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1670 sections_being_created = (bfd_boolean *)
1671 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1672 sections_being_created_abfd = abfd;
1673 }
1674 if (sections_being_created [shindex])
1675 {
1676 (*_bfd_error_handler)
1677 (_("%B: warning: loop in section dependencies detected"), abfd);
1678 return FALSE;
1679 }
1680 sections_being_created [shindex] = TRUE;
1681 }
1682
1683 hdr = elf_elfsections (abfd)[shindex];
1684 ehdr = elf_elfheader (abfd);
1685 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1686 hdr->sh_name);
1687 if (name == NULL)
1688 goto fail;
1689
1690 bed = get_elf_backend_data (abfd);
1691 switch (hdr->sh_type)
1692 {
1693 case SHT_NULL:
1694 /* Inactive section. Throw it away. */
1695 goto success;
1696
1697 case SHT_PROGBITS: /* Normal section with contents. */
1698 case SHT_NOBITS: /* .bss section. */
1699 case SHT_HASH: /* .hash section. */
1700 case SHT_NOTE: /* .note section. */
1701 case SHT_INIT_ARRAY: /* .init_array section. */
1702 case SHT_FINI_ARRAY: /* .fini_array section. */
1703 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1704 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1705 case SHT_GNU_HASH: /* .gnu.hash section. */
1706 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1707 goto success;
1708
1709 case SHT_DYNAMIC: /* Dynamic linking information. */
1710 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1711 goto fail;
1712
1713 if (hdr->sh_link > elf_numsections (abfd))
1714 {
1715 /* PR 10478: Accept Solaris binaries with a sh_link
1716 field set to SHN_BEFORE or SHN_AFTER. */
1717 switch (bfd_get_arch (abfd))
1718 {
1719 case bfd_arch_i386:
1720 case bfd_arch_sparc:
1721 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1722 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1723 break;
1724 /* Otherwise fall through. */
1725 default:
1726 goto fail;
1727 }
1728 }
1729 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1730 goto fail;
1731 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1732 {
1733 Elf_Internal_Shdr *dynsymhdr;
1734
1735 /* The shared libraries distributed with hpux11 have a bogus
1736 sh_link field for the ".dynamic" section. Find the
1737 string table for the ".dynsym" section instead. */
1738 if (elf_dynsymtab (abfd) != 0)
1739 {
1740 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1741 hdr->sh_link = dynsymhdr->sh_link;
1742 }
1743 else
1744 {
1745 unsigned int i, num_sec;
1746
1747 num_sec = elf_numsections (abfd);
1748 for (i = 1; i < num_sec; i++)
1749 {
1750 dynsymhdr = elf_elfsections (abfd)[i];
1751 if (dynsymhdr->sh_type == SHT_DYNSYM)
1752 {
1753 hdr->sh_link = dynsymhdr->sh_link;
1754 break;
1755 }
1756 }
1757 }
1758 }
1759 goto success;
1760
1761 case SHT_SYMTAB: /* A symbol table. */
1762 if (elf_onesymtab (abfd) == shindex)
1763 goto success;
1764
1765 if (hdr->sh_entsize != bed->s->sizeof_sym)
1766 goto fail;
1767
1768 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1769 {
1770 if (hdr->sh_size != 0)
1771 goto fail;
1772 /* Some assemblers erroneously set sh_info to one with a
1773 zero sh_size. ld sees this as a global symbol count
1774 of (unsigned) -1. Fix it here. */
1775 hdr->sh_info = 0;
1776 goto success;
1777 }
1778
1779 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1780 elf_onesymtab (abfd) = shindex;
1781 elf_tdata (abfd)->symtab_hdr = *hdr;
1782 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1783 abfd->flags |= HAS_SYMS;
1784
1785 /* Sometimes a shared object will map in the symbol table. If
1786 SHF_ALLOC is set, and this is a shared object, then we also
1787 treat this section as a BFD section. We can not base the
1788 decision purely on SHF_ALLOC, because that flag is sometimes
1789 set in a relocatable object file, which would confuse the
1790 linker. */
1791 if ((hdr->sh_flags & SHF_ALLOC) != 0
1792 && (abfd->flags & DYNAMIC) != 0
1793 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1794 shindex))
1795 goto fail;
1796
1797 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1798 can't read symbols without that section loaded as well. It
1799 is most likely specified by the next section header. */
1800 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1801 {
1802 unsigned int i, num_sec;
1803
1804 num_sec = elf_numsections (abfd);
1805 for (i = shindex + 1; i < num_sec; i++)
1806 {
1807 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1808 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1809 && hdr2->sh_link == shindex)
1810 break;
1811 }
1812 if (i == num_sec)
1813 for (i = 1; i < shindex; i++)
1814 {
1815 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1816 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1817 && hdr2->sh_link == shindex)
1818 break;
1819 }
1820 if (i != shindex)
1821 ret = bfd_section_from_shdr (abfd, i);
1822 }
1823 goto success;
1824
1825 case SHT_DYNSYM: /* A dynamic symbol table. */
1826 if (elf_dynsymtab (abfd) == shindex)
1827 goto success;
1828
1829 if (hdr->sh_entsize != bed->s->sizeof_sym)
1830 goto fail;
1831
1832 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1833 {
1834 if (hdr->sh_size != 0)
1835 goto fail;
1836
1837 /* Some linkers erroneously set sh_info to one with a
1838 zero sh_size. ld sees this as a global symbol count
1839 of (unsigned) -1. Fix it here. */
1840 hdr->sh_info = 0;
1841 goto success;
1842 }
1843
1844 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1845 elf_dynsymtab (abfd) = shindex;
1846 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1847 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1848 abfd->flags |= HAS_SYMS;
1849
1850 /* Besides being a symbol table, we also treat this as a regular
1851 section, so that objcopy can handle it. */
1852 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1853 goto success;
1854
1855 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
1856 if (elf_symtab_shndx (abfd) == shindex)
1857 goto success;
1858
1859 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1860 elf_symtab_shndx (abfd) = shindex;
1861 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1862 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1863 goto success;
1864
1865 case SHT_STRTAB: /* A string table. */
1866 if (hdr->bfd_section != NULL)
1867 goto success;
1868
1869 if (ehdr->e_shstrndx == shindex)
1870 {
1871 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1872 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1873 goto success;
1874 }
1875
1876 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1877 {
1878 symtab_strtab:
1879 elf_tdata (abfd)->strtab_hdr = *hdr;
1880 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1881 goto success;
1882 }
1883
1884 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1885 {
1886 dynsymtab_strtab:
1887 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1888 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1889 elf_elfsections (abfd)[shindex] = hdr;
1890 /* We also treat this as a regular section, so that objcopy
1891 can handle it. */
1892 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1893 shindex);
1894 goto success;
1895 }
1896
1897 /* If the string table isn't one of the above, then treat it as a
1898 regular section. We need to scan all the headers to be sure,
1899 just in case this strtab section appeared before the above. */
1900 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1901 {
1902 unsigned int i, num_sec;
1903
1904 num_sec = elf_numsections (abfd);
1905 for (i = 1; i < num_sec; i++)
1906 {
1907 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1908 if (hdr2->sh_link == shindex)
1909 {
1910 /* Prevent endless recursion on broken objects. */
1911 if (i == shindex)
1912 goto fail;
1913 if (! bfd_section_from_shdr (abfd, i))
1914 goto fail;
1915 if (elf_onesymtab (abfd) == i)
1916 goto symtab_strtab;
1917 if (elf_dynsymtab (abfd) == i)
1918 goto dynsymtab_strtab;
1919 }
1920 }
1921 }
1922 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1923 goto success;
1924
1925 case SHT_REL:
1926 case SHT_RELA:
1927 /* *These* do a lot of work -- but build no sections! */
1928 {
1929 asection *target_sect;
1930 Elf_Internal_Shdr *hdr2, **p_hdr;
1931 unsigned int num_sec = elf_numsections (abfd);
1932 struct bfd_elf_section_data *esdt;
1933 bfd_size_type amt;
1934
1935 if (hdr->sh_entsize
1936 != (bfd_size_type) (hdr->sh_type == SHT_REL
1937 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1938 goto fail;
1939
1940 /* Check for a bogus link to avoid crashing. */
1941 if (hdr->sh_link >= num_sec)
1942 {
1943 ((*_bfd_error_handler)
1944 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1945 abfd, hdr->sh_link, name, shindex));
1946 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1947 shindex);
1948 goto success;
1949 }
1950
1951 /* For some incomprehensible reason Oracle distributes
1952 libraries for Solaris in which some of the objects have
1953 bogus sh_link fields. It would be nice if we could just
1954 reject them, but, unfortunately, some people need to use
1955 them. We scan through the section headers; if we find only
1956 one suitable symbol table, we clobber the sh_link to point
1957 to it. I hope this doesn't break anything.
1958
1959 Don't do it on executable nor shared library. */
1960 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1961 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1962 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1963 {
1964 unsigned int scan;
1965 int found;
1966
1967 found = 0;
1968 for (scan = 1; scan < num_sec; scan++)
1969 {
1970 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1971 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1972 {
1973 if (found != 0)
1974 {
1975 found = 0;
1976 break;
1977 }
1978 found = scan;
1979 }
1980 }
1981 if (found != 0)
1982 hdr->sh_link = found;
1983 }
1984
1985 /* Get the symbol table. */
1986 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1987 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1988 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1989 goto fail;
1990
1991 /* If this reloc section does not use the main symbol table we
1992 don't treat it as a reloc section. BFD can't adequately
1993 represent such a section, so at least for now, we don't
1994 try. We just present it as a normal section. We also
1995 can't use it as a reloc section if it points to the null
1996 section, an invalid section, another reloc section, or its
1997 sh_link points to the null section. */
1998 if (hdr->sh_link != elf_onesymtab (abfd)
1999 || hdr->sh_link == SHN_UNDEF
2000 || hdr->sh_info == SHN_UNDEF
2001 || hdr->sh_info >= num_sec
2002 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2003 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2004 {
2005 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2006 shindex);
2007 goto success;
2008 }
2009
2010 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2011 goto fail;
2012
2013 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2014 if (target_sect == NULL)
2015 goto fail;
2016
2017 esdt = elf_section_data (target_sect);
2018 if (hdr->sh_type == SHT_RELA)
2019 p_hdr = &esdt->rela.hdr;
2020 else
2021 p_hdr = &esdt->rel.hdr;
2022
2023 /* PR 17512: file: 0b4f81b7. */
2024 if (*p_hdr != NULL)
2025 goto fail;
2026 amt = sizeof (*hdr2);
2027 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
2028 if (hdr2 == NULL)
2029 goto fail;
2030 *hdr2 = *hdr;
2031 *p_hdr = hdr2;
2032 elf_elfsections (abfd)[shindex] = hdr2;
2033 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2034 target_sect->flags |= SEC_RELOC;
2035 target_sect->relocation = NULL;
2036 target_sect->rel_filepos = hdr->sh_offset;
2037 /* In the section to which the relocations apply, mark whether
2038 its relocations are of the REL or RELA variety. */
2039 if (hdr->sh_size != 0)
2040 {
2041 if (hdr->sh_type == SHT_RELA)
2042 target_sect->use_rela_p = 1;
2043 }
2044 abfd->flags |= HAS_RELOC;
2045 goto success;
2046 }
2047
2048 case SHT_GNU_verdef:
2049 elf_dynverdef (abfd) = shindex;
2050 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2051 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2052 goto success;
2053
2054 case SHT_GNU_versym:
2055 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2056 goto fail;
2057
2058 elf_dynversym (abfd) = shindex;
2059 elf_tdata (abfd)->dynversym_hdr = *hdr;
2060 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2061 goto success;
2062
2063 case SHT_GNU_verneed:
2064 elf_dynverref (abfd) = shindex;
2065 elf_tdata (abfd)->dynverref_hdr = *hdr;
2066 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2067 goto success;
2068
2069 case SHT_SHLIB:
2070 goto success;
2071
2072 case SHT_GROUP:
2073 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2074 goto fail;
2075
2076 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2077 goto fail;
2078
2079 if (hdr->contents != NULL)
2080 {
2081 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2082 unsigned int n_elt = hdr->sh_size / sizeof (* idx);
2083 asection *s;
2084
2085 if (n_elt == 0)
2086 goto fail;
2087 if (idx->flags & GRP_COMDAT)
2088 hdr->bfd_section->flags
2089 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2090
2091 /* We try to keep the same section order as it comes in. */
2092 idx += n_elt;
2093
2094 while (--n_elt != 0)
2095 {
2096 --idx;
2097
2098 if (idx->shdr != NULL
2099 && (s = idx->shdr->bfd_section) != NULL
2100 && elf_next_in_group (s) != NULL)
2101 {
2102 elf_next_in_group (hdr->bfd_section) = s;
2103 break;
2104 }
2105 }
2106 }
2107 goto success;
2108
2109 default:
2110 /* Possibly an attributes section. */
2111 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2112 || hdr->sh_type == bed->obj_attrs_section_type)
2113 {
2114 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2115 goto fail;
2116 _bfd_elf_parse_attributes (abfd, hdr);
2117 goto success;
2118 }
2119
2120 /* Check for any processor-specific section types. */
2121 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2122 goto success;
2123
2124 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2125 {
2126 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2127 /* FIXME: How to properly handle allocated section reserved
2128 for applications? */
2129 (*_bfd_error_handler)
2130 (_("%B: don't know how to handle allocated, application "
2131 "specific section `%s' [0x%8x]"),
2132 abfd, name, hdr->sh_type);
2133 else
2134 {
2135 /* Allow sections reserved for applications. */
2136 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2137 shindex);
2138 goto success;
2139 }
2140 }
2141 else if (hdr->sh_type >= SHT_LOPROC
2142 && hdr->sh_type <= SHT_HIPROC)
2143 /* FIXME: We should handle this section. */
2144 (*_bfd_error_handler)
2145 (_("%B: don't know how to handle processor specific section "
2146 "`%s' [0x%8x]"),
2147 abfd, name, hdr->sh_type);
2148 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2149 {
2150 /* Unrecognised OS-specific sections. */
2151 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2152 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2153 required to correctly process the section and the file should
2154 be rejected with an error message. */
2155 (*_bfd_error_handler)
2156 (_("%B: don't know how to handle OS specific section "
2157 "`%s' [0x%8x]"),
2158 abfd, name, hdr->sh_type);
2159 else
2160 {
2161 /* Otherwise it should be processed. */
2162 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2163 goto success;
2164 }
2165 }
2166 else
2167 /* FIXME: We should handle this section. */
2168 (*_bfd_error_handler)
2169 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2170 abfd, name, hdr->sh_type);
2171
2172 goto fail;
2173 }
2174
2175 fail:
2176 ret = FALSE;
2177 success:
2178 if (sections_being_created && sections_being_created_abfd == abfd)
2179 sections_being_created [shindex] = FALSE;
2180 if (-- nesting == 0)
2181 {
2182 sections_being_created = NULL;
2183 sections_being_created_abfd = abfd;
2184 }
2185 return ret;
2186 }
2187
2188 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2189
2190 Elf_Internal_Sym *
2191 bfd_sym_from_r_symndx (struct sym_cache *cache,
2192 bfd *abfd,
2193 unsigned long r_symndx)
2194 {
2195 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2196
2197 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2198 {
2199 Elf_Internal_Shdr *symtab_hdr;
2200 unsigned char esym[sizeof (Elf64_External_Sym)];
2201 Elf_External_Sym_Shndx eshndx;
2202
2203 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2204 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2205 &cache->sym[ent], esym, &eshndx) == NULL)
2206 return NULL;
2207
2208 if (cache->abfd != abfd)
2209 {
2210 memset (cache->indx, -1, sizeof (cache->indx));
2211 cache->abfd = abfd;
2212 }
2213 cache->indx[ent] = r_symndx;
2214 }
2215
2216 return &cache->sym[ent];
2217 }
2218
2219 /* Given an ELF section number, retrieve the corresponding BFD
2220 section. */
2221
2222 asection *
2223 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2224 {
2225 if (sec_index >= elf_numsections (abfd))
2226 return NULL;
2227 return elf_elfsections (abfd)[sec_index]->bfd_section;
2228 }
2229
2230 static const struct bfd_elf_special_section special_sections_b[] =
2231 {
2232 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2233 { NULL, 0, 0, 0, 0 }
2234 };
2235
2236 static const struct bfd_elf_special_section special_sections_c[] =
2237 {
2238 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2239 { NULL, 0, 0, 0, 0 }
2240 };
2241
2242 static const struct bfd_elf_special_section special_sections_d[] =
2243 {
2244 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2245 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2246 /* There are more DWARF sections than these, but they needn't be added here
2247 unless you have to cope with broken compilers that don't emit section
2248 attributes or you want to help the user writing assembler. */
2249 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2250 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2251 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2252 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2253 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2254 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2255 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2256 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2257 { NULL, 0, 0, 0, 0 }
2258 };
2259
2260 static const struct bfd_elf_special_section special_sections_f[] =
2261 {
2262 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2263 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2264 { NULL, 0, 0, 0, 0 }
2265 };
2266
2267 static const struct bfd_elf_special_section special_sections_g[] =
2268 {
2269 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2270 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2271 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2272 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2273 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2274 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2275 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2276 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2277 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2278 { NULL, 0, 0, 0, 0 }
2279 };
2280
2281 static const struct bfd_elf_special_section special_sections_h[] =
2282 {
2283 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2284 { NULL, 0, 0, 0, 0 }
2285 };
2286
2287 static const struct bfd_elf_special_section special_sections_i[] =
2288 {
2289 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2290 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2291 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2292 { NULL, 0, 0, 0, 0 }
2293 };
2294
2295 static const struct bfd_elf_special_section special_sections_l[] =
2296 {
2297 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2298 { NULL, 0, 0, 0, 0 }
2299 };
2300
2301 static const struct bfd_elf_special_section special_sections_n[] =
2302 {
2303 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2304 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2305 { NULL, 0, 0, 0, 0 }
2306 };
2307
2308 static const struct bfd_elf_special_section special_sections_p[] =
2309 {
2310 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2311 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2312 { NULL, 0, 0, 0, 0 }
2313 };
2314
2315 static const struct bfd_elf_special_section special_sections_r[] =
2316 {
2317 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2318 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2319 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2320 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2321 { NULL, 0, 0, 0, 0 }
2322 };
2323
2324 static const struct bfd_elf_special_section special_sections_s[] =
2325 {
2326 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2327 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2328 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2329 /* See struct bfd_elf_special_section declaration for the semantics of
2330 this special case where .prefix_length != strlen (.prefix). */
2331 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2332 { NULL, 0, 0, 0, 0 }
2333 };
2334
2335 static const struct bfd_elf_special_section special_sections_t[] =
2336 {
2337 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2338 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2339 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2340 { NULL, 0, 0, 0, 0 }
2341 };
2342
2343 static const struct bfd_elf_special_section special_sections_z[] =
2344 {
2345 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2346 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2347 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2348 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2349 { NULL, 0, 0, 0, 0 }
2350 };
2351
2352 static const struct bfd_elf_special_section * const special_sections[] =
2353 {
2354 special_sections_b, /* 'b' */
2355 special_sections_c, /* 'c' */
2356 special_sections_d, /* 'd' */
2357 NULL, /* 'e' */
2358 special_sections_f, /* 'f' */
2359 special_sections_g, /* 'g' */
2360 special_sections_h, /* 'h' */
2361 special_sections_i, /* 'i' */
2362 NULL, /* 'j' */
2363 NULL, /* 'k' */
2364 special_sections_l, /* 'l' */
2365 NULL, /* 'm' */
2366 special_sections_n, /* 'n' */
2367 NULL, /* 'o' */
2368 special_sections_p, /* 'p' */
2369 NULL, /* 'q' */
2370 special_sections_r, /* 'r' */
2371 special_sections_s, /* 's' */
2372 special_sections_t, /* 't' */
2373 NULL, /* 'u' */
2374 NULL, /* 'v' */
2375 NULL, /* 'w' */
2376 NULL, /* 'x' */
2377 NULL, /* 'y' */
2378 special_sections_z /* 'z' */
2379 };
2380
2381 const struct bfd_elf_special_section *
2382 _bfd_elf_get_special_section (const char *name,
2383 const struct bfd_elf_special_section *spec,
2384 unsigned int rela)
2385 {
2386 int i;
2387 int len;
2388
2389 len = strlen (name);
2390
2391 for (i = 0; spec[i].prefix != NULL; i++)
2392 {
2393 int suffix_len;
2394 int prefix_len = spec[i].prefix_length;
2395
2396 if (len < prefix_len)
2397 continue;
2398 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2399 continue;
2400
2401 suffix_len = spec[i].suffix_length;
2402 if (suffix_len <= 0)
2403 {
2404 if (name[prefix_len] != 0)
2405 {
2406 if (suffix_len == 0)
2407 continue;
2408 if (name[prefix_len] != '.'
2409 && (suffix_len == -2
2410 || (rela && spec[i].type == SHT_REL)))
2411 continue;
2412 }
2413 }
2414 else
2415 {
2416 if (len < prefix_len + suffix_len)
2417 continue;
2418 if (memcmp (name + len - suffix_len,
2419 spec[i].prefix + prefix_len,
2420 suffix_len) != 0)
2421 continue;
2422 }
2423 return &spec[i];
2424 }
2425
2426 return NULL;
2427 }
2428
2429 const struct bfd_elf_special_section *
2430 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2431 {
2432 int i;
2433 const struct bfd_elf_special_section *spec;
2434 const struct elf_backend_data *bed;
2435
2436 /* See if this is one of the special sections. */
2437 if (sec->name == NULL)
2438 return NULL;
2439
2440 bed = get_elf_backend_data (abfd);
2441 spec = bed->special_sections;
2442 if (spec)
2443 {
2444 spec = _bfd_elf_get_special_section (sec->name,
2445 bed->special_sections,
2446 sec->use_rela_p);
2447 if (spec != NULL)
2448 return spec;
2449 }
2450
2451 if (sec->name[0] != '.')
2452 return NULL;
2453
2454 i = sec->name[1] - 'b';
2455 if (i < 0 || i > 'z' - 'b')
2456 return NULL;
2457
2458 spec = special_sections[i];
2459
2460 if (spec == NULL)
2461 return NULL;
2462
2463 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2464 }
2465
2466 bfd_boolean
2467 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2468 {
2469 struct bfd_elf_section_data *sdata;
2470 const struct elf_backend_data *bed;
2471 const struct bfd_elf_special_section *ssect;
2472
2473 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2474 if (sdata == NULL)
2475 {
2476 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2477 sizeof (*sdata));
2478 if (sdata == NULL)
2479 return FALSE;
2480 sec->used_by_bfd = sdata;
2481 }
2482
2483 /* Indicate whether or not this section should use RELA relocations. */
2484 bed = get_elf_backend_data (abfd);
2485 sec->use_rela_p = bed->default_use_rela_p;
2486
2487 /* When we read a file, we don't need to set ELF section type and
2488 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2489 anyway. We will set ELF section type and flags for all linker
2490 created sections. If user specifies BFD section flags, we will
2491 set ELF section type and flags based on BFD section flags in
2492 elf_fake_sections. Special handling for .init_array/.fini_array
2493 output sections since they may contain .ctors/.dtors input
2494 sections. We don't want _bfd_elf_init_private_section_data to
2495 copy ELF section type from .ctors/.dtors input sections. */
2496 if (abfd->direction != read_direction
2497 || (sec->flags & SEC_LINKER_CREATED) != 0)
2498 {
2499 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2500 if (ssect != NULL
2501 && (!sec->flags
2502 || (sec->flags & SEC_LINKER_CREATED) != 0
2503 || ssect->type == SHT_INIT_ARRAY
2504 || ssect->type == SHT_FINI_ARRAY))
2505 {
2506 elf_section_type (sec) = ssect->type;
2507 elf_section_flags (sec) = ssect->attr;
2508 }
2509 }
2510
2511 return _bfd_generic_new_section_hook (abfd, sec);
2512 }
2513
2514 /* Create a new bfd section from an ELF program header.
2515
2516 Since program segments have no names, we generate a synthetic name
2517 of the form segment<NUM>, where NUM is generally the index in the
2518 program header table. For segments that are split (see below) we
2519 generate the names segment<NUM>a and segment<NUM>b.
2520
2521 Note that some program segments may have a file size that is different than
2522 (less than) the memory size. All this means is that at execution the
2523 system must allocate the amount of memory specified by the memory size,
2524 but only initialize it with the first "file size" bytes read from the
2525 file. This would occur for example, with program segments consisting
2526 of combined data+bss.
2527
2528 To handle the above situation, this routine generates TWO bfd sections
2529 for the single program segment. The first has the length specified by
2530 the file size of the segment, and the second has the length specified
2531 by the difference between the two sizes. In effect, the segment is split
2532 into its initialized and uninitialized parts.
2533
2534 */
2535
2536 bfd_boolean
2537 _bfd_elf_make_section_from_phdr (bfd *abfd,
2538 Elf_Internal_Phdr *hdr,
2539 int hdr_index,
2540 const char *type_name)
2541 {
2542 asection *newsect;
2543 char *name;
2544 char namebuf[64];
2545 size_t len;
2546 int split;
2547
2548 split = ((hdr->p_memsz > 0)
2549 && (hdr->p_filesz > 0)
2550 && (hdr->p_memsz > hdr->p_filesz));
2551
2552 if (hdr->p_filesz > 0)
2553 {
2554 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2555 len = strlen (namebuf) + 1;
2556 name = (char *) bfd_alloc (abfd, len);
2557 if (!name)
2558 return FALSE;
2559 memcpy (name, namebuf, len);
2560 newsect = bfd_make_section (abfd, name);
2561 if (newsect == NULL)
2562 return FALSE;
2563 newsect->vma = hdr->p_vaddr;
2564 newsect->lma = hdr->p_paddr;
2565 newsect->size = hdr->p_filesz;
2566 newsect->filepos = hdr->p_offset;
2567 newsect->flags |= SEC_HAS_CONTENTS;
2568 newsect->alignment_power = bfd_log2 (hdr->p_align);
2569 if (hdr->p_type == PT_LOAD)
2570 {
2571 newsect->flags |= SEC_ALLOC;
2572 newsect->flags |= SEC_LOAD;
2573 if (hdr->p_flags & PF_X)
2574 {
2575 /* FIXME: all we known is that it has execute PERMISSION,
2576 may be data. */
2577 newsect->flags |= SEC_CODE;
2578 }
2579 }
2580 if (!(hdr->p_flags & PF_W))
2581 {
2582 newsect->flags |= SEC_READONLY;
2583 }
2584 }
2585
2586 if (hdr->p_memsz > hdr->p_filesz)
2587 {
2588 bfd_vma align;
2589
2590 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2591 len = strlen (namebuf) + 1;
2592 name = (char *) bfd_alloc (abfd, len);
2593 if (!name)
2594 return FALSE;
2595 memcpy (name, namebuf, len);
2596 newsect = bfd_make_section (abfd, name);
2597 if (newsect == NULL)
2598 return FALSE;
2599 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2600 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2601 newsect->size = hdr->p_memsz - hdr->p_filesz;
2602 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2603 align = newsect->vma & -newsect->vma;
2604 if (align == 0 || align > hdr->p_align)
2605 align = hdr->p_align;
2606 newsect->alignment_power = bfd_log2 (align);
2607 if (hdr->p_type == PT_LOAD)
2608 {
2609 /* Hack for gdb. Segments that have not been modified do
2610 not have their contents written to a core file, on the
2611 assumption that a debugger can find the contents in the
2612 executable. We flag this case by setting the fake
2613 section size to zero. Note that "real" bss sections will
2614 always have their contents dumped to the core file. */
2615 if (bfd_get_format (abfd) == bfd_core)
2616 newsect->size = 0;
2617 newsect->flags |= SEC_ALLOC;
2618 if (hdr->p_flags & PF_X)
2619 newsect->flags |= SEC_CODE;
2620 }
2621 if (!(hdr->p_flags & PF_W))
2622 newsect->flags |= SEC_READONLY;
2623 }
2624
2625 return TRUE;
2626 }
2627
2628 bfd_boolean
2629 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2630 {
2631 const struct elf_backend_data *bed;
2632
2633 switch (hdr->p_type)
2634 {
2635 case PT_NULL:
2636 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2637
2638 case PT_LOAD:
2639 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2640
2641 case PT_DYNAMIC:
2642 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2643
2644 case PT_INTERP:
2645 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2646
2647 case PT_NOTE:
2648 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2649 return FALSE;
2650 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2651 return FALSE;
2652 return TRUE;
2653
2654 case PT_SHLIB:
2655 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2656
2657 case PT_PHDR:
2658 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2659
2660 case PT_GNU_EH_FRAME:
2661 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2662 "eh_frame_hdr");
2663
2664 case PT_GNU_STACK:
2665 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2666
2667 case PT_GNU_RELRO:
2668 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2669
2670 default:
2671 /* Check for any processor-specific program segment types. */
2672 bed = get_elf_backend_data (abfd);
2673 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2674 }
2675 }
2676
2677 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2678 REL or RELA. */
2679
2680 Elf_Internal_Shdr *
2681 _bfd_elf_single_rel_hdr (asection *sec)
2682 {
2683 if (elf_section_data (sec)->rel.hdr)
2684 {
2685 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2686 return elf_section_data (sec)->rel.hdr;
2687 }
2688 else
2689 return elf_section_data (sec)->rela.hdr;
2690 }
2691
2692 /* Allocate and initialize a section-header for a new reloc section,
2693 containing relocations against ASECT. It is stored in RELDATA. If
2694 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2695 relocations. */
2696
2697 static bfd_boolean
2698 _bfd_elf_init_reloc_shdr (bfd *abfd,
2699 struct bfd_elf_section_reloc_data *reldata,
2700 const char *sec_name,
2701 bfd_boolean use_rela_p)
2702 {
2703 Elf_Internal_Shdr *rel_hdr;
2704 char *name;
2705 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2706 bfd_size_type amt;
2707
2708 amt = sizeof (Elf_Internal_Shdr);
2709 BFD_ASSERT (reldata->hdr == NULL);
2710 rel_hdr = bfd_zalloc (abfd, amt);
2711 reldata->hdr = rel_hdr;
2712
2713 amt = sizeof ".rela" + strlen (sec_name);
2714 name = (char *) bfd_alloc (abfd, amt);
2715 if (name == NULL)
2716 return FALSE;
2717 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
2718 rel_hdr->sh_name =
2719 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2720 FALSE);
2721 if (rel_hdr->sh_name == (unsigned int) -1)
2722 return FALSE;
2723 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2724 rel_hdr->sh_entsize = (use_rela_p
2725 ? bed->s->sizeof_rela
2726 : bed->s->sizeof_rel);
2727 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2728 rel_hdr->sh_flags = 0;
2729 rel_hdr->sh_addr = 0;
2730 rel_hdr->sh_size = 0;
2731 rel_hdr->sh_offset = 0;
2732
2733 return TRUE;
2734 }
2735
2736 /* Return the default section type based on the passed in section flags. */
2737
2738 int
2739 bfd_elf_get_default_section_type (flagword flags)
2740 {
2741 if ((flags & SEC_ALLOC) != 0
2742 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2743 return SHT_NOBITS;
2744 return SHT_PROGBITS;
2745 }
2746
2747 struct fake_section_arg
2748 {
2749 struct bfd_link_info *link_info;
2750 bfd_boolean failed;
2751 };
2752
2753 /* Set up an ELF internal section header for a section. */
2754
2755 static void
2756 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2757 {
2758 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2759 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2760 struct bfd_elf_section_data *esd = elf_section_data (asect);
2761 Elf_Internal_Shdr *this_hdr;
2762 unsigned int sh_type;
2763 const char *name = asect->name;
2764
2765 if (arg->failed)
2766 {
2767 /* We already failed; just get out of the bfd_map_over_sections
2768 loop. */
2769 return;
2770 }
2771
2772 this_hdr = &esd->this_hdr;
2773
2774 if (arg->link_info)
2775 {
2776 /* ld: compress DWARF debug sections with names: .debug_*. */
2777 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
2778 && (asect->flags & SEC_DEBUGGING)
2779 && name[1] == 'd'
2780 && name[6] == '_')
2781 {
2782 /* Set SEC_ELF_COMPRESS to indicate this section should be
2783 compressed. */
2784 asect->flags |= SEC_ELF_COMPRESS;
2785
2786 if (arg->link_info->compress_debug != COMPRESS_DEBUG_GABI_ZLIB)
2787 {
2788 /* If SHF_COMPRESSED isn't used, rename compressed DWARF
2789 debug section to .zdebug_*. */
2790 char *new_name = convert_debug_to_zdebug (abfd, name);
2791 if (new_name == NULL)
2792 {
2793 arg->failed = TRUE;
2794 return;
2795 }
2796 bfd_rename_section (abfd, asect, new_name);
2797 name = asect->name;
2798 }
2799 }
2800 }
2801 else if ((asect->flags & SEC_ELF_RENAME))
2802 {
2803 /* objcopy: rename output DWARF debug section. */
2804 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
2805 {
2806 /* When we decompress or compress with SHF_COMPRESSED,
2807 convert section name from .zdebug_* to .debug_* if
2808 needed. */
2809 if (name[1] == 'z')
2810 {
2811 char *new_name = convert_zdebug_to_debug (abfd, name);
2812 if (new_name == NULL)
2813 {
2814 arg->failed = TRUE;
2815 return;
2816 }
2817 name = new_name;
2818 }
2819 }
2820 else if (asect->compress_status == COMPRESS_SECTION_DONE)
2821 {
2822 /* PR binutils/18087: Compression does not always make a
2823 section smaller. So only rename the section when
2824 compression has actually taken place. If input section
2825 name is .zdebug_*, we should never compress it again. */
2826 char *new_name = convert_debug_to_zdebug (abfd, name);
2827 if (new_name == NULL)
2828 {
2829 arg->failed = TRUE;
2830 return;
2831 }
2832 BFD_ASSERT (name[1] != 'z');
2833 name = new_name;
2834 }
2835 }
2836
2837 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2838 name, FALSE);
2839 if (this_hdr->sh_name == (unsigned int) -1)
2840 {
2841 arg->failed = TRUE;
2842 return;
2843 }
2844
2845 /* Don't clear sh_flags. Assembler may set additional bits. */
2846
2847 if ((asect->flags & SEC_ALLOC) != 0
2848 || asect->user_set_vma)
2849 this_hdr->sh_addr = asect->vma;
2850 else
2851 this_hdr->sh_addr = 0;
2852
2853 this_hdr->sh_offset = 0;
2854 this_hdr->sh_size = asect->size;
2855 this_hdr->sh_link = 0;
2856 /* PR 17512: file: 0eb809fe, 8b0535ee. */
2857 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
2858 {
2859 (*_bfd_error_handler)
2860 (_("%B: error: Alignment power %d of section `%A' is too big"),
2861 abfd, asect, asect->alignment_power);
2862 arg->failed = TRUE;
2863 return;
2864 }
2865 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2866 /* The sh_entsize and sh_info fields may have been set already by
2867 copy_private_section_data. */
2868
2869 this_hdr->bfd_section = asect;
2870 this_hdr->contents = NULL;
2871
2872 /* If the section type is unspecified, we set it based on
2873 asect->flags. */
2874 if ((asect->flags & SEC_GROUP) != 0)
2875 sh_type = SHT_GROUP;
2876 else
2877 sh_type = bfd_elf_get_default_section_type (asect->flags);
2878
2879 if (this_hdr->sh_type == SHT_NULL)
2880 this_hdr->sh_type = sh_type;
2881 else if (this_hdr->sh_type == SHT_NOBITS
2882 && sh_type == SHT_PROGBITS
2883 && (asect->flags & SEC_ALLOC) != 0)
2884 {
2885 /* Warn if we are changing a NOBITS section to PROGBITS, but
2886 allow the link to proceed. This can happen when users link
2887 non-bss input sections to bss output sections, or emit data
2888 to a bss output section via a linker script. */
2889 (*_bfd_error_handler)
2890 (_("warning: section `%A' type changed to PROGBITS"), asect);
2891 this_hdr->sh_type = sh_type;
2892 }
2893
2894 switch (this_hdr->sh_type)
2895 {
2896 default:
2897 break;
2898
2899 case SHT_STRTAB:
2900 case SHT_INIT_ARRAY:
2901 case SHT_FINI_ARRAY:
2902 case SHT_PREINIT_ARRAY:
2903 case SHT_NOTE:
2904 case SHT_NOBITS:
2905 case SHT_PROGBITS:
2906 break;
2907
2908 case SHT_HASH:
2909 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2910 break;
2911
2912 case SHT_DYNSYM:
2913 this_hdr->sh_entsize = bed->s->sizeof_sym;
2914 break;
2915
2916 case SHT_DYNAMIC:
2917 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2918 break;
2919
2920 case SHT_RELA:
2921 if (get_elf_backend_data (abfd)->may_use_rela_p)
2922 this_hdr->sh_entsize = bed->s->sizeof_rela;
2923 break;
2924
2925 case SHT_REL:
2926 if (get_elf_backend_data (abfd)->may_use_rel_p)
2927 this_hdr->sh_entsize = bed->s->sizeof_rel;
2928 break;
2929
2930 case SHT_GNU_versym:
2931 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2932 break;
2933
2934 case SHT_GNU_verdef:
2935 this_hdr->sh_entsize = 0;
2936 /* objcopy or strip will copy over sh_info, but may not set
2937 cverdefs. The linker will set cverdefs, but sh_info will be
2938 zero. */
2939 if (this_hdr->sh_info == 0)
2940 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2941 else
2942 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2943 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2944 break;
2945
2946 case SHT_GNU_verneed:
2947 this_hdr->sh_entsize = 0;
2948 /* objcopy or strip will copy over sh_info, but may not set
2949 cverrefs. The linker will set cverrefs, but sh_info will be
2950 zero. */
2951 if (this_hdr->sh_info == 0)
2952 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2953 else
2954 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2955 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2956 break;
2957
2958 case SHT_GROUP:
2959 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2960 break;
2961
2962 case SHT_GNU_HASH:
2963 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2964 break;
2965 }
2966
2967 if ((asect->flags & SEC_ALLOC) != 0)
2968 this_hdr->sh_flags |= SHF_ALLOC;
2969 if ((asect->flags & SEC_READONLY) == 0)
2970 this_hdr->sh_flags |= SHF_WRITE;
2971 if ((asect->flags & SEC_CODE) != 0)
2972 this_hdr->sh_flags |= SHF_EXECINSTR;
2973 if ((asect->flags & SEC_MERGE) != 0)
2974 {
2975 this_hdr->sh_flags |= SHF_MERGE;
2976 this_hdr->sh_entsize = asect->entsize;
2977 if ((asect->flags & SEC_STRINGS) != 0)
2978 this_hdr->sh_flags |= SHF_STRINGS;
2979 }
2980 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2981 this_hdr->sh_flags |= SHF_GROUP;
2982 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2983 {
2984 this_hdr->sh_flags |= SHF_TLS;
2985 if (asect->size == 0
2986 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2987 {
2988 struct bfd_link_order *o = asect->map_tail.link_order;
2989
2990 this_hdr->sh_size = 0;
2991 if (o != NULL)
2992 {
2993 this_hdr->sh_size = o->offset + o->size;
2994 if (this_hdr->sh_size != 0)
2995 this_hdr->sh_type = SHT_NOBITS;
2996 }
2997 }
2998 }
2999 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3000 this_hdr->sh_flags |= SHF_EXCLUDE;
3001
3002 /* If the section has relocs, set up a section header for the
3003 SHT_REL[A] section. If two relocation sections are required for
3004 this section, it is up to the processor-specific back-end to
3005 create the other. */
3006 if ((asect->flags & SEC_RELOC) != 0)
3007 {
3008 /* When doing a relocatable link, create both REL and RELA sections if
3009 needed. */
3010 if (arg->link_info
3011 /* Do the normal setup if we wouldn't create any sections here. */
3012 && esd->rel.count + esd->rela.count > 0
3013 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
3014 {
3015 if (esd->rel.count && esd->rel.hdr == NULL
3016 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE))
3017 {
3018 arg->failed = TRUE;
3019 return;
3020 }
3021 if (esd->rela.count && esd->rela.hdr == NULL
3022 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE))
3023 {
3024 arg->failed = TRUE;
3025 return;
3026 }
3027 }
3028 else if (!_bfd_elf_init_reloc_shdr (abfd,
3029 (asect->use_rela_p
3030 ? &esd->rela : &esd->rel),
3031 name,
3032 asect->use_rela_p))
3033 arg->failed = TRUE;
3034 }
3035
3036 /* Check for processor-specific section types. */
3037 sh_type = this_hdr->sh_type;
3038 if (bed->elf_backend_fake_sections
3039 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3040 arg->failed = TRUE;
3041
3042 if (sh_type == SHT_NOBITS && asect->size != 0)
3043 {
3044 /* Don't change the header type from NOBITS if we are being
3045 called for objcopy --only-keep-debug. */
3046 this_hdr->sh_type = sh_type;
3047 }
3048 }
3049
3050 /* Fill in the contents of a SHT_GROUP section. Called from
3051 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3052 when ELF targets use the generic linker, ld. Called for ld -r
3053 from bfd_elf_final_link. */
3054
3055 void
3056 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3057 {
3058 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3059 asection *elt, *first;
3060 unsigned char *loc;
3061 bfd_boolean gas;
3062
3063 /* Ignore linker created group section. See elfNN_ia64_object_p in
3064 elfxx-ia64.c. */
3065 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3066 || *failedptr)
3067 return;
3068
3069 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3070 {
3071 unsigned long symindx = 0;
3072
3073 /* elf_group_id will have been set up by objcopy and the
3074 generic linker. */
3075 if (elf_group_id (sec) != NULL)
3076 symindx = elf_group_id (sec)->udata.i;
3077
3078 if (symindx == 0)
3079 {
3080 /* If called from the assembler, swap_out_syms will have set up
3081 elf_section_syms. */
3082 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3083 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3084 }
3085 elf_section_data (sec)->this_hdr.sh_info = symindx;
3086 }
3087 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3088 {
3089 /* The ELF backend linker sets sh_info to -2 when the group
3090 signature symbol is global, and thus the index can't be
3091 set until all local symbols are output. */
3092 asection *igroup = elf_sec_group (elf_next_in_group (sec));
3093 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
3094 unsigned long symndx = sec_data->this_hdr.sh_info;
3095 unsigned long extsymoff = 0;
3096 struct elf_link_hash_entry *h;
3097
3098 if (!elf_bad_symtab (igroup->owner))
3099 {
3100 Elf_Internal_Shdr *symtab_hdr;
3101
3102 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3103 extsymoff = symtab_hdr->sh_info;
3104 }
3105 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3106 while (h->root.type == bfd_link_hash_indirect
3107 || h->root.type == bfd_link_hash_warning)
3108 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3109
3110 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3111 }
3112
3113 /* The contents won't be allocated for "ld -r" or objcopy. */
3114 gas = TRUE;
3115 if (sec->contents == NULL)
3116 {
3117 gas = FALSE;
3118 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3119
3120 /* Arrange for the section to be written out. */
3121 elf_section_data (sec)->this_hdr.contents = sec->contents;
3122 if (sec->contents == NULL)
3123 {
3124 *failedptr = TRUE;
3125 return;
3126 }
3127 }
3128
3129 loc = sec->contents + sec->size;
3130
3131 /* Get the pointer to the first section in the group that gas
3132 squirreled away here. objcopy arranges for this to be set to the
3133 start of the input section group. */
3134 first = elt = elf_next_in_group (sec);
3135
3136 /* First element is a flag word. Rest of section is elf section
3137 indices for all the sections of the group. Write them backwards
3138 just to keep the group in the same order as given in .section
3139 directives, not that it matters. */
3140 while (elt != NULL)
3141 {
3142 asection *s;
3143
3144 s = elt;
3145 if (!gas)
3146 s = s->output_section;
3147 if (s != NULL
3148 && !bfd_is_abs_section (s))
3149 {
3150 unsigned int idx = elf_section_data (s)->this_idx;
3151
3152 loc -= 4;
3153 H_PUT_32 (abfd, idx, loc);
3154 }
3155 elt = elf_next_in_group (elt);
3156 if (elt == first)
3157 break;
3158 }
3159
3160 if ((loc -= 4) != sec->contents)
3161 abort ();
3162
3163 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3164 }
3165
3166 /* Return the section which RELOC_SEC applies to. */
3167
3168 asection *
3169 _bfd_elf_get_reloc_section (asection *reloc_sec)
3170 {
3171 const char *name;
3172 unsigned int type;
3173 bfd *abfd;
3174
3175 if (reloc_sec == NULL)
3176 return NULL;
3177
3178 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3179 if (type != SHT_REL && type != SHT_RELA)
3180 return NULL;
3181
3182 /* We look up the section the relocs apply to by name. */
3183 name = reloc_sec->name;
3184 if (type == SHT_REL)
3185 name += 4;
3186 else
3187 name += 5;
3188
3189 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3190 section apply to .got.plt section. */
3191 abfd = reloc_sec->owner;
3192 if (get_elf_backend_data (abfd)->want_got_plt
3193 && strcmp (name, ".plt") == 0)
3194 {
3195 /* .got.plt is a linker created input section. It may be mapped
3196 to some other output section. Try two likely sections. */
3197 name = ".got.plt";
3198 reloc_sec = bfd_get_section_by_name (abfd, name);
3199 if (reloc_sec != NULL)
3200 return reloc_sec;
3201 name = ".got";
3202 }
3203
3204 reloc_sec = bfd_get_section_by_name (abfd, name);
3205 return reloc_sec;
3206 }
3207
3208 /* Assign all ELF section numbers. The dummy first section is handled here
3209 too. The link/info pointers for the standard section types are filled
3210 in here too, while we're at it. */
3211
3212 static bfd_boolean
3213 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3214 {
3215 struct elf_obj_tdata *t = elf_tdata (abfd);
3216 asection *sec;
3217 unsigned int section_number, secn;
3218 Elf_Internal_Shdr **i_shdrp;
3219 struct bfd_elf_section_data *d;
3220 bfd_boolean need_symtab;
3221
3222 section_number = 1;
3223
3224 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3225
3226 /* SHT_GROUP sections are in relocatable files only. */
3227 if (link_info == NULL || link_info->relocatable)
3228 {
3229 /* Put SHT_GROUP sections first. */
3230 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3231 {
3232 d = elf_section_data (sec);
3233
3234 if (d->this_hdr.sh_type == SHT_GROUP)
3235 {
3236 if (sec->flags & SEC_LINKER_CREATED)
3237 {
3238 /* Remove the linker created SHT_GROUP sections. */
3239 bfd_section_list_remove (abfd, sec);
3240 abfd->section_count--;
3241 }
3242 else
3243 d->this_idx = section_number++;
3244 }
3245 }
3246 }
3247
3248 for (sec = abfd->sections; sec; sec = sec->next)
3249 {
3250 d = elf_section_data (sec);
3251
3252 if (d->this_hdr.sh_type != SHT_GROUP)
3253 d->this_idx = section_number++;
3254 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3255 if (d->rel.hdr)
3256 {
3257 d->rel.idx = section_number++;
3258 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3259 }
3260 else
3261 d->rel.idx = 0;
3262
3263 if (d->rela.hdr)
3264 {
3265 d->rela.idx = section_number++;
3266 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3267 }
3268 else
3269 d->rela.idx = 0;
3270 }
3271
3272 elf_shstrtab_sec (abfd) = section_number++;
3273 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3274 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3275
3276 need_symtab = (bfd_get_symcount (abfd) > 0
3277 || (link_info == NULL
3278 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3279 == HAS_RELOC)));
3280 if (need_symtab)
3281 {
3282 elf_onesymtab (abfd) = section_number++;
3283 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3284 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3285 {
3286 elf_symtab_shndx (abfd) = section_number++;
3287 t->symtab_shndx_hdr.sh_name
3288 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3289 ".symtab_shndx", FALSE);
3290 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3291 return FALSE;
3292 }
3293 elf_strtab_sec (abfd) = section_number++;
3294 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3295 }
3296
3297 if (section_number >= SHN_LORESERVE)
3298 {
3299 _bfd_error_handler (_("%B: too many sections: %u"),
3300 abfd, section_number);
3301 return FALSE;
3302 }
3303
3304 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3305 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3306
3307 elf_numsections (abfd) = section_number;
3308 elf_elfheader (abfd)->e_shnum = section_number;
3309
3310 /* Set up the list of section header pointers, in agreement with the
3311 indices. */
3312 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3313 sizeof (Elf_Internal_Shdr *));
3314 if (i_shdrp == NULL)
3315 return FALSE;
3316
3317 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3318 sizeof (Elf_Internal_Shdr));
3319 if (i_shdrp[0] == NULL)
3320 {
3321 bfd_release (abfd, i_shdrp);
3322 return FALSE;
3323 }
3324
3325 elf_elfsections (abfd) = i_shdrp;
3326
3327 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3328 if (need_symtab)
3329 {
3330 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3331 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3332 {
3333 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3334 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3335 }
3336 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3337 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3338 }
3339
3340 for (sec = abfd->sections; sec; sec = sec->next)
3341 {
3342 asection *s;
3343
3344 d = elf_section_data (sec);
3345
3346 i_shdrp[d->this_idx] = &d->this_hdr;
3347 if (d->rel.idx != 0)
3348 i_shdrp[d->rel.idx] = d->rel.hdr;
3349 if (d->rela.idx != 0)
3350 i_shdrp[d->rela.idx] = d->rela.hdr;
3351
3352 /* Fill in the sh_link and sh_info fields while we're at it. */
3353
3354 /* sh_link of a reloc section is the section index of the symbol
3355 table. sh_info is the section index of the section to which
3356 the relocation entries apply. */
3357 if (d->rel.idx != 0)
3358 {
3359 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3360 d->rel.hdr->sh_info = d->this_idx;
3361 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3362 }
3363 if (d->rela.idx != 0)
3364 {
3365 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3366 d->rela.hdr->sh_info = d->this_idx;
3367 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3368 }
3369
3370 /* We need to set up sh_link for SHF_LINK_ORDER. */
3371 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3372 {
3373 s = elf_linked_to_section (sec);
3374 if (s)
3375 {
3376 /* elf_linked_to_section points to the input section. */
3377 if (link_info != NULL)
3378 {
3379 /* Check discarded linkonce section. */
3380 if (discarded_section (s))
3381 {
3382 asection *kept;
3383 (*_bfd_error_handler)
3384 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3385 abfd, d->this_hdr.bfd_section,
3386 s, s->owner);
3387 /* Point to the kept section if it has the same
3388 size as the discarded one. */
3389 kept = _bfd_elf_check_kept_section (s, link_info);
3390 if (kept == NULL)
3391 {
3392 bfd_set_error (bfd_error_bad_value);
3393 return FALSE;
3394 }
3395 s = kept;
3396 }
3397
3398 s = s->output_section;
3399 BFD_ASSERT (s != NULL);
3400 }
3401 else
3402 {
3403 /* Handle objcopy. */
3404 if (s->output_section == NULL)
3405 {
3406 (*_bfd_error_handler)
3407 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3408 abfd, d->this_hdr.bfd_section, s, s->owner);
3409 bfd_set_error (bfd_error_bad_value);
3410 return FALSE;
3411 }
3412 s = s->output_section;
3413 }
3414 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3415 }
3416 else
3417 {
3418 /* PR 290:
3419 The Intel C compiler generates SHT_IA_64_UNWIND with
3420 SHF_LINK_ORDER. But it doesn't set the sh_link or
3421 sh_info fields. Hence we could get the situation
3422 where s is NULL. */
3423 const struct elf_backend_data *bed
3424 = get_elf_backend_data (abfd);
3425 if (bed->link_order_error_handler)
3426 bed->link_order_error_handler
3427 (_("%B: warning: sh_link not set for section `%A'"),
3428 abfd, sec);
3429 }
3430 }
3431
3432 switch (d->this_hdr.sh_type)
3433 {
3434 case SHT_REL:
3435 case SHT_RELA:
3436 /* A reloc section which we are treating as a normal BFD
3437 section. sh_link is the section index of the symbol
3438 table. sh_info is the section index of the section to
3439 which the relocation entries apply. We assume that an
3440 allocated reloc section uses the dynamic symbol table.
3441 FIXME: How can we be sure? */
3442 s = bfd_get_section_by_name (abfd, ".dynsym");
3443 if (s != NULL)
3444 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3445
3446 s = get_elf_backend_data (abfd)->get_reloc_section (sec);
3447 if (s != NULL)
3448 {
3449 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3450 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3451 }
3452 break;
3453
3454 case SHT_STRTAB:
3455 /* We assume that a section named .stab*str is a stabs
3456 string section. We look for a section with the same name
3457 but without the trailing ``str'', and set its sh_link
3458 field to point to this section. */
3459 if (CONST_STRNEQ (sec->name, ".stab")
3460 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3461 {
3462 size_t len;
3463 char *alc;
3464
3465 len = strlen (sec->name);
3466 alc = (char *) bfd_malloc (len - 2);
3467 if (alc == NULL)
3468 return FALSE;
3469 memcpy (alc, sec->name, len - 3);
3470 alc[len - 3] = '\0';
3471 s = bfd_get_section_by_name (abfd, alc);
3472 free (alc);
3473 if (s != NULL)
3474 {
3475 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3476
3477 /* This is a .stab section. */
3478 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3479 elf_section_data (s)->this_hdr.sh_entsize
3480 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3481 }
3482 }
3483 break;
3484
3485 case SHT_DYNAMIC:
3486 case SHT_DYNSYM:
3487 case SHT_GNU_verneed:
3488 case SHT_GNU_verdef:
3489 /* sh_link is the section header index of the string table
3490 used for the dynamic entries, or the symbol table, or the
3491 version strings. */
3492 s = bfd_get_section_by_name (abfd, ".dynstr");
3493 if (s != NULL)
3494 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3495 break;
3496
3497 case SHT_GNU_LIBLIST:
3498 /* sh_link is the section header index of the prelink library
3499 list used for the dynamic entries, or the symbol table, or
3500 the version strings. */
3501 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3502 ? ".dynstr" : ".gnu.libstr");
3503 if (s != NULL)
3504 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3505 break;
3506
3507 case SHT_HASH:
3508 case SHT_GNU_HASH:
3509 case SHT_GNU_versym:
3510 /* sh_link is the section header index of the symbol table
3511 this hash table or version table is for. */
3512 s = bfd_get_section_by_name (abfd, ".dynsym");
3513 if (s != NULL)
3514 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3515 break;
3516
3517 case SHT_GROUP:
3518 d->this_hdr.sh_link = elf_onesymtab (abfd);
3519 }
3520 }
3521
3522 for (secn = 1; secn < section_number; ++secn)
3523 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3524 i_shdrp[secn]->sh_name);
3525 return TRUE;
3526 }
3527
3528 static bfd_boolean
3529 sym_is_global (bfd *abfd, asymbol *sym)
3530 {
3531 /* If the backend has a special mapping, use it. */
3532 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3533 if (bed->elf_backend_sym_is_global)
3534 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3535
3536 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3537 || bfd_is_und_section (bfd_get_section (sym))
3538 || bfd_is_com_section (bfd_get_section (sym)));
3539 }
3540
3541 /* Don't output section symbols for sections that are not going to be
3542 output, that are duplicates or there is no BFD section. */
3543
3544 static bfd_boolean
3545 ignore_section_sym (bfd *abfd, asymbol *sym)
3546 {
3547 elf_symbol_type *type_ptr;
3548
3549 if ((sym->flags & BSF_SECTION_SYM) == 0)
3550 return FALSE;
3551
3552 type_ptr = elf_symbol_from (abfd, sym);
3553 return ((type_ptr != NULL
3554 && type_ptr->internal_elf_sym.st_shndx != 0
3555 && bfd_is_abs_section (sym->section))
3556 || !(sym->section->owner == abfd
3557 || (sym->section->output_section->owner == abfd
3558 && sym->section->output_offset == 0)
3559 || bfd_is_abs_section (sym->section)));
3560 }
3561
3562 /* Map symbol from it's internal number to the external number, moving
3563 all local symbols to be at the head of the list. */
3564
3565 static bfd_boolean
3566 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3567 {
3568 unsigned int symcount = bfd_get_symcount (abfd);
3569 asymbol **syms = bfd_get_outsymbols (abfd);
3570 asymbol **sect_syms;
3571 unsigned int num_locals = 0;
3572 unsigned int num_globals = 0;
3573 unsigned int num_locals2 = 0;
3574 unsigned int num_globals2 = 0;
3575 int max_index = 0;
3576 unsigned int idx;
3577 asection *asect;
3578 asymbol **new_syms;
3579
3580 #ifdef DEBUG
3581 fprintf (stderr, "elf_map_symbols\n");
3582 fflush (stderr);
3583 #endif
3584
3585 for (asect = abfd->sections; asect; asect = asect->next)
3586 {
3587 if (max_index < asect->index)
3588 max_index = asect->index;
3589 }
3590
3591 max_index++;
3592 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3593 if (sect_syms == NULL)
3594 return FALSE;
3595 elf_section_syms (abfd) = sect_syms;
3596 elf_num_section_syms (abfd) = max_index;
3597
3598 /* Init sect_syms entries for any section symbols we have already
3599 decided to output. */
3600 for (idx = 0; idx < symcount; idx++)
3601 {
3602 asymbol *sym = syms[idx];
3603
3604 if ((sym->flags & BSF_SECTION_SYM) != 0
3605 && sym->value == 0
3606 && !ignore_section_sym (abfd, sym)
3607 && !bfd_is_abs_section (sym->section))
3608 {
3609 asection *sec = sym->section;
3610
3611 if (sec->owner != abfd)
3612 sec = sec->output_section;
3613
3614 sect_syms[sec->index] = syms[idx];
3615 }
3616 }
3617
3618 /* Classify all of the symbols. */
3619 for (idx = 0; idx < symcount; idx++)
3620 {
3621 if (sym_is_global (abfd, syms[idx]))
3622 num_globals++;
3623 else if (!ignore_section_sym (abfd, syms[idx]))
3624 num_locals++;
3625 }
3626
3627 /* We will be adding a section symbol for each normal BFD section. Most
3628 sections will already have a section symbol in outsymbols, but
3629 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3630 at least in that case. */
3631 for (asect = abfd->sections; asect; asect = asect->next)
3632 {
3633 if (sect_syms[asect->index] == NULL)
3634 {
3635 if (!sym_is_global (abfd, asect->symbol))
3636 num_locals++;
3637 else
3638 num_globals++;
3639 }
3640 }
3641
3642 /* Now sort the symbols so the local symbols are first. */
3643 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3644 sizeof (asymbol *));
3645
3646 if (new_syms == NULL)
3647 return FALSE;
3648
3649 for (idx = 0; idx < symcount; idx++)
3650 {
3651 asymbol *sym = syms[idx];
3652 unsigned int i;
3653
3654 if (sym_is_global (abfd, sym))
3655 i = num_locals + num_globals2++;
3656 else if (!ignore_section_sym (abfd, sym))
3657 i = num_locals2++;
3658 else
3659 continue;
3660 new_syms[i] = sym;
3661 sym->udata.i = i + 1;
3662 }
3663 for (asect = abfd->sections; asect; asect = asect->next)
3664 {
3665 if (sect_syms[asect->index] == NULL)
3666 {
3667 asymbol *sym = asect->symbol;
3668 unsigned int i;
3669
3670 sect_syms[asect->index] = sym;
3671 if (!sym_is_global (abfd, sym))
3672 i = num_locals2++;
3673 else
3674 i = num_locals + num_globals2++;
3675 new_syms[i] = sym;
3676 sym->udata.i = i + 1;
3677 }
3678 }
3679
3680 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3681
3682 *pnum_locals = num_locals;
3683 return TRUE;
3684 }
3685
3686 /* Align to the maximum file alignment that could be required for any
3687 ELF data structure. */
3688
3689 static inline file_ptr
3690 align_file_position (file_ptr off, int align)
3691 {
3692 return (off + align - 1) & ~(align - 1);
3693 }
3694
3695 /* Assign a file position to a section, optionally aligning to the
3696 required section alignment. */
3697
3698 file_ptr
3699 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3700 file_ptr offset,
3701 bfd_boolean align)
3702 {
3703 if (align && i_shdrp->sh_addralign > 1)
3704 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3705 i_shdrp->sh_offset = offset;
3706 if (i_shdrp->bfd_section != NULL)
3707 i_shdrp->bfd_section->filepos = offset;
3708 if (i_shdrp->sh_type != SHT_NOBITS)
3709 offset += i_shdrp->sh_size;
3710 return offset;
3711 }
3712
3713 /* Compute the file positions we are going to put the sections at, and
3714 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3715 is not NULL, this is being called by the ELF backend linker. */
3716
3717 bfd_boolean
3718 _bfd_elf_compute_section_file_positions (bfd *abfd,
3719 struct bfd_link_info *link_info)
3720 {
3721 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3722 struct fake_section_arg fsargs;
3723 bfd_boolean failed;
3724 struct bfd_strtab_hash *strtab = NULL;
3725 Elf_Internal_Shdr *shstrtab_hdr;
3726 bfd_boolean need_symtab;
3727
3728 if (abfd->output_has_begun)
3729 return TRUE;
3730
3731 /* Do any elf backend specific processing first. */
3732 if (bed->elf_backend_begin_write_processing)
3733 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3734
3735 if (! prep_headers (abfd))
3736 return FALSE;
3737
3738 /* Post process the headers if necessary. */
3739 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3740
3741 fsargs.failed = FALSE;
3742 fsargs.link_info = link_info;
3743 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3744 if (fsargs.failed)
3745 return FALSE;
3746
3747 if (!assign_section_numbers (abfd, link_info))
3748 return FALSE;
3749
3750 /* The backend linker builds symbol table information itself. */
3751 need_symtab = (link_info == NULL
3752 && (bfd_get_symcount (abfd) > 0
3753 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3754 == HAS_RELOC)));
3755 if (need_symtab)
3756 {
3757 /* Non-zero if doing a relocatable link. */
3758 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3759
3760 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3761 return FALSE;
3762 }
3763
3764 failed = FALSE;
3765 if (link_info == NULL)
3766 {
3767 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3768 if (failed)
3769 return FALSE;
3770 }
3771
3772 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3773 /* sh_name was set in prep_headers. */
3774 shstrtab_hdr->sh_type = SHT_STRTAB;
3775 shstrtab_hdr->sh_flags = 0;
3776 shstrtab_hdr->sh_addr = 0;
3777 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3778 shstrtab_hdr->sh_entsize = 0;
3779 shstrtab_hdr->sh_link = 0;
3780 shstrtab_hdr->sh_info = 0;
3781 /* sh_offset is set in assign_file_positions_except_relocs. */
3782 shstrtab_hdr->sh_addralign = 1;
3783
3784 if (!assign_file_positions_except_relocs (abfd, link_info))
3785 return FALSE;
3786
3787 if (need_symtab)
3788 {
3789 file_ptr off;
3790 Elf_Internal_Shdr *hdr;
3791
3792 off = elf_next_file_pos (abfd);
3793
3794 hdr = &elf_tdata (abfd)->symtab_hdr;
3795 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3796
3797 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3798 if (hdr->sh_size != 0)
3799 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3800
3801 hdr = &elf_tdata (abfd)->strtab_hdr;
3802 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3803
3804 elf_next_file_pos (abfd) = off;
3805
3806 /* Now that we know where the .strtab section goes, write it
3807 out. */
3808 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3809 || ! _bfd_stringtab_emit (abfd, strtab))
3810 return FALSE;
3811 _bfd_stringtab_free (strtab);
3812 }
3813
3814 abfd->output_has_begun = TRUE;
3815
3816 return TRUE;
3817 }
3818
3819 /* Make an initial estimate of the size of the program header. If we
3820 get the number wrong here, we'll redo section placement. */
3821
3822 static bfd_size_type
3823 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3824 {
3825 size_t segs;
3826 asection *s;
3827 const struct elf_backend_data *bed;
3828
3829 /* Assume we will need exactly two PT_LOAD segments: one for text
3830 and one for data. */
3831 segs = 2;
3832
3833 s = bfd_get_section_by_name (abfd, ".interp");
3834 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3835 {
3836 /* If we have a loadable interpreter section, we need a
3837 PT_INTERP segment. In this case, assume we also need a
3838 PT_PHDR segment, although that may not be true for all
3839 targets. */
3840 segs += 2;
3841 }
3842
3843 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3844 {
3845 /* We need a PT_DYNAMIC segment. */
3846 ++segs;
3847 }
3848
3849 if (info != NULL && info->relro)
3850 {
3851 /* We need a PT_GNU_RELRO segment. */
3852 ++segs;
3853 }
3854
3855 if (elf_eh_frame_hdr (abfd))
3856 {
3857 /* We need a PT_GNU_EH_FRAME segment. */
3858 ++segs;
3859 }
3860
3861 if (elf_stack_flags (abfd))
3862 {
3863 /* We need a PT_GNU_STACK segment. */
3864 ++segs;
3865 }
3866
3867 for (s = abfd->sections; s != NULL; s = s->next)
3868 {
3869 if ((s->flags & SEC_LOAD) != 0
3870 && CONST_STRNEQ (s->name, ".note"))
3871 {
3872 /* We need a PT_NOTE segment. */
3873 ++segs;
3874 /* Try to create just one PT_NOTE segment
3875 for all adjacent loadable .note* sections.
3876 gABI requires that within a PT_NOTE segment
3877 (and also inside of each SHT_NOTE section)
3878 each note is padded to a multiple of 4 size,
3879 so we check whether the sections are correctly
3880 aligned. */
3881 if (s->alignment_power == 2)
3882 while (s->next != NULL
3883 && s->next->alignment_power == 2
3884 && (s->next->flags & SEC_LOAD) != 0
3885 && CONST_STRNEQ (s->next->name, ".note"))
3886 s = s->next;
3887 }
3888 }
3889
3890 for (s = abfd->sections; s != NULL; s = s->next)
3891 {
3892 if (s->flags & SEC_THREAD_LOCAL)
3893 {
3894 /* We need a PT_TLS segment. */
3895 ++segs;
3896 break;
3897 }
3898 }
3899
3900 /* Let the backend count up any program headers it might need. */
3901 bed = get_elf_backend_data (abfd);
3902 if (bed->elf_backend_additional_program_headers)
3903 {
3904 int a;
3905
3906 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3907 if (a == -1)
3908 abort ();
3909 segs += a;
3910 }
3911
3912 return segs * bed->s->sizeof_phdr;
3913 }
3914
3915 /* Find the segment that contains the output_section of section. */
3916
3917 Elf_Internal_Phdr *
3918 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3919 {
3920 struct elf_segment_map *m;
3921 Elf_Internal_Phdr *p;
3922
3923 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3924 m != NULL;
3925 m = m->next, p++)
3926 {
3927 int i;
3928
3929 for (i = m->count - 1; i >= 0; i--)
3930 if (m->sections[i] == section)
3931 return p;
3932 }
3933
3934 return NULL;
3935 }
3936
3937 /* Create a mapping from a set of sections to a program segment. */
3938
3939 static struct elf_segment_map *
3940 make_mapping (bfd *abfd,
3941 asection **sections,
3942 unsigned int from,
3943 unsigned int to,
3944 bfd_boolean phdr)
3945 {
3946 struct elf_segment_map *m;
3947 unsigned int i;
3948 asection **hdrpp;
3949 bfd_size_type amt;
3950
3951 amt = sizeof (struct elf_segment_map);
3952 amt += (to - from - 1) * sizeof (asection *);
3953 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3954 if (m == NULL)
3955 return NULL;
3956 m->next = NULL;
3957 m->p_type = PT_LOAD;
3958 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3959 m->sections[i - from] = *hdrpp;
3960 m->count = to - from;
3961
3962 if (from == 0 && phdr)
3963 {
3964 /* Include the headers in the first PT_LOAD segment. */
3965 m->includes_filehdr = 1;
3966 m->includes_phdrs = 1;
3967 }
3968
3969 return m;
3970 }
3971
3972 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3973 on failure. */
3974
3975 struct elf_segment_map *
3976 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3977 {
3978 struct elf_segment_map *m;
3979
3980 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3981 sizeof (struct elf_segment_map));
3982 if (m == NULL)
3983 return NULL;
3984 m->next = NULL;
3985 m->p_type = PT_DYNAMIC;
3986 m->count = 1;
3987 m->sections[0] = dynsec;
3988
3989 return m;
3990 }
3991
3992 /* Possibly add or remove segments from the segment map. */
3993
3994 static bfd_boolean
3995 elf_modify_segment_map (bfd *abfd,
3996 struct bfd_link_info *info,
3997 bfd_boolean remove_empty_load)
3998 {
3999 struct elf_segment_map **m;
4000 const struct elf_backend_data *bed;
4001
4002 /* The placement algorithm assumes that non allocated sections are
4003 not in PT_LOAD segments. We ensure this here by removing such
4004 sections from the segment map. We also remove excluded
4005 sections. Finally, any PT_LOAD segment without sections is
4006 removed. */
4007 m = &elf_seg_map (abfd);
4008 while (*m)
4009 {
4010 unsigned int i, new_count;
4011
4012 for (new_count = 0, i = 0; i < (*m)->count; i++)
4013 {
4014 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4015 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4016 || (*m)->p_type != PT_LOAD))
4017 {
4018 (*m)->sections[new_count] = (*m)->sections[i];
4019 new_count++;
4020 }
4021 }
4022 (*m)->count = new_count;
4023
4024 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
4025 *m = (*m)->next;
4026 else
4027 m = &(*m)->next;
4028 }
4029
4030 bed = get_elf_backend_data (abfd);
4031 if (bed->elf_backend_modify_segment_map != NULL)
4032 {
4033 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4034 return FALSE;
4035 }
4036
4037 return TRUE;
4038 }
4039
4040 /* Set up a mapping from BFD sections to program segments. */
4041
4042 bfd_boolean
4043 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4044 {
4045 unsigned int count;
4046 struct elf_segment_map *m;
4047 asection **sections = NULL;
4048 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4049 bfd_boolean no_user_phdrs;
4050
4051 no_user_phdrs = elf_seg_map (abfd) == NULL;
4052
4053 if (info != NULL)
4054 info->user_phdrs = !no_user_phdrs;
4055
4056 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4057 {
4058 asection *s;
4059 unsigned int i;
4060 struct elf_segment_map *mfirst;
4061 struct elf_segment_map **pm;
4062 asection *last_hdr;
4063 bfd_vma last_size;
4064 unsigned int phdr_index;
4065 bfd_vma maxpagesize;
4066 asection **hdrpp;
4067 bfd_boolean phdr_in_segment = TRUE;
4068 bfd_boolean writable;
4069 int tls_count = 0;
4070 asection *first_tls = NULL;
4071 asection *dynsec, *eh_frame_hdr;
4072 bfd_size_type amt;
4073 bfd_vma addr_mask, wrap_to = 0;
4074
4075 /* Select the allocated sections, and sort them. */
4076
4077 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4078 sizeof (asection *));
4079 if (sections == NULL)
4080 goto error_return;
4081
4082 /* Calculate top address, avoiding undefined behaviour of shift
4083 left operator when shift count is equal to size of type
4084 being shifted. */
4085 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4086 addr_mask = (addr_mask << 1) + 1;
4087
4088 i = 0;
4089 for (s = abfd->sections; s != NULL; s = s->next)
4090 {
4091 if ((s->flags & SEC_ALLOC) != 0)
4092 {
4093 sections[i] = s;
4094 ++i;
4095 /* A wrapping section potentially clashes with header. */
4096 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4097 wrap_to = (s->lma + s->size) & addr_mask;
4098 }
4099 }
4100 BFD_ASSERT (i <= bfd_count_sections (abfd));
4101 count = i;
4102
4103 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4104
4105 /* Build the mapping. */
4106
4107 mfirst = NULL;
4108 pm = &mfirst;
4109
4110 /* If we have a .interp section, then create a PT_PHDR segment for
4111 the program headers and a PT_INTERP segment for the .interp
4112 section. */
4113 s = bfd_get_section_by_name (abfd, ".interp");
4114 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4115 {
4116 amt = sizeof (struct elf_segment_map);
4117 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4118 if (m == NULL)
4119 goto error_return;
4120 m->next = NULL;
4121 m->p_type = PT_PHDR;
4122 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4123 m->p_flags = PF_R | PF_X;
4124 m->p_flags_valid = 1;
4125 m->includes_phdrs = 1;
4126
4127 *pm = m;
4128 pm = &m->next;
4129
4130 amt = sizeof (struct elf_segment_map);
4131 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4132 if (m == NULL)
4133 goto error_return;
4134 m->next = NULL;
4135 m->p_type = PT_INTERP;
4136 m->count = 1;
4137 m->sections[0] = s;
4138
4139 *pm = m;
4140 pm = &m->next;
4141 }
4142
4143 /* Look through the sections. We put sections in the same program
4144 segment when the start of the second section can be placed within
4145 a few bytes of the end of the first section. */
4146 last_hdr = NULL;
4147 last_size = 0;
4148 phdr_index = 0;
4149 maxpagesize = bed->maxpagesize;
4150 /* PR 17512: file: c8455299.
4151 Avoid divide-by-zero errors later on.
4152 FIXME: Should we abort if the maxpagesize is zero ? */
4153 if (maxpagesize == 0)
4154 maxpagesize = 1;
4155 writable = FALSE;
4156 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4157 if (dynsec != NULL
4158 && (dynsec->flags & SEC_LOAD) == 0)
4159 dynsec = NULL;
4160
4161 /* Deal with -Ttext or something similar such that the first section
4162 is not adjacent to the program headers. This is an
4163 approximation, since at this point we don't know exactly how many
4164 program headers we will need. */
4165 if (count > 0)
4166 {
4167 bfd_size_type phdr_size = elf_program_header_size (abfd);
4168
4169 if (phdr_size == (bfd_size_type) -1)
4170 phdr_size = get_program_header_size (abfd, info);
4171 phdr_size += bed->s->sizeof_ehdr;
4172 if ((abfd->flags & D_PAGED) == 0
4173 || (sections[0]->lma & addr_mask) < phdr_size
4174 || ((sections[0]->lma & addr_mask) % maxpagesize
4175 < phdr_size % maxpagesize)
4176 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4177 phdr_in_segment = FALSE;
4178 }
4179
4180 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4181 {
4182 asection *hdr;
4183 bfd_boolean new_segment;
4184
4185 hdr = *hdrpp;
4186
4187 /* See if this section and the last one will fit in the same
4188 segment. */
4189
4190 if (last_hdr == NULL)
4191 {
4192 /* If we don't have a segment yet, then we don't need a new
4193 one (we build the last one after this loop). */
4194 new_segment = FALSE;
4195 }
4196 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4197 {
4198 /* If this section has a different relation between the
4199 virtual address and the load address, then we need a new
4200 segment. */
4201 new_segment = TRUE;
4202 }
4203 else if (hdr->lma < last_hdr->lma + last_size
4204 || last_hdr->lma + last_size < last_hdr->lma)
4205 {
4206 /* If this section has a load address that makes it overlap
4207 the previous section, then we need a new segment. */
4208 new_segment = TRUE;
4209 }
4210 /* In the next test we have to be careful when last_hdr->lma is close
4211 to the end of the address space. If the aligned address wraps
4212 around to the start of the address space, then there are no more
4213 pages left in memory and it is OK to assume that the current
4214 section can be included in the current segment. */
4215 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4216 > last_hdr->lma)
4217 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4218 <= hdr->lma))
4219 {
4220 /* If putting this section in this segment would force us to
4221 skip a page in the segment, then we need a new segment. */
4222 new_segment = TRUE;
4223 }
4224 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4225 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4226 {
4227 /* We don't want to put a loadable section after a
4228 nonloadable section in the same segment.
4229 Consider .tbss sections as loadable for this purpose. */
4230 new_segment = TRUE;
4231 }
4232 else if ((abfd->flags & D_PAGED) == 0)
4233 {
4234 /* If the file is not demand paged, which means that we
4235 don't require the sections to be correctly aligned in the
4236 file, then there is no other reason for a new segment. */
4237 new_segment = FALSE;
4238 }
4239 else if (! writable
4240 && (hdr->flags & SEC_READONLY) == 0
4241 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4242 != (hdr->lma & -maxpagesize)))
4243 {
4244 /* We don't want to put a writable section in a read only
4245 segment, unless they are on the same page in memory
4246 anyhow. We already know that the last section does not
4247 bring us past the current section on the page, so the
4248 only case in which the new section is not on the same
4249 page as the previous section is when the previous section
4250 ends precisely on a page boundary. */
4251 new_segment = TRUE;
4252 }
4253 else
4254 {
4255 /* Otherwise, we can use the same segment. */
4256 new_segment = FALSE;
4257 }
4258
4259 /* Allow interested parties a chance to override our decision. */
4260 if (last_hdr != NULL
4261 && info != NULL
4262 && info->callbacks->override_segment_assignment != NULL)
4263 new_segment
4264 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4265 last_hdr,
4266 new_segment);
4267
4268 if (! new_segment)
4269 {
4270 if ((hdr->flags & SEC_READONLY) == 0)
4271 writable = TRUE;
4272 last_hdr = hdr;
4273 /* .tbss sections effectively have zero size. */
4274 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4275 != SEC_THREAD_LOCAL)
4276 last_size = hdr->size;
4277 else
4278 last_size = 0;
4279 continue;
4280 }
4281
4282 /* We need a new program segment. We must create a new program
4283 header holding all the sections from phdr_index until hdr. */
4284
4285 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4286 if (m == NULL)
4287 goto error_return;
4288
4289 *pm = m;
4290 pm = &m->next;
4291
4292 if ((hdr->flags & SEC_READONLY) == 0)
4293 writable = TRUE;
4294 else
4295 writable = FALSE;
4296
4297 last_hdr = hdr;
4298 /* .tbss sections effectively have zero size. */
4299 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4300 last_size = hdr->size;
4301 else
4302 last_size = 0;
4303 phdr_index = i;
4304 phdr_in_segment = FALSE;
4305 }
4306
4307 /* Create a final PT_LOAD program segment, but not if it's just
4308 for .tbss. */
4309 if (last_hdr != NULL
4310 && (i - phdr_index != 1
4311 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4312 != SEC_THREAD_LOCAL)))
4313 {
4314 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4315 if (m == NULL)
4316 goto error_return;
4317
4318 *pm = m;
4319 pm = &m->next;
4320 }
4321
4322 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4323 if (dynsec != NULL)
4324 {
4325 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4326 if (m == NULL)
4327 goto error_return;
4328 *pm = m;
4329 pm = &m->next;
4330 }
4331
4332 /* For each batch of consecutive loadable .note sections,
4333 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4334 because if we link together nonloadable .note sections and
4335 loadable .note sections, we will generate two .note sections
4336 in the output file. FIXME: Using names for section types is
4337 bogus anyhow. */
4338 for (s = abfd->sections; s != NULL; s = s->next)
4339 {
4340 if ((s->flags & SEC_LOAD) != 0
4341 && CONST_STRNEQ (s->name, ".note"))
4342 {
4343 asection *s2;
4344
4345 count = 1;
4346 amt = sizeof (struct elf_segment_map);
4347 if (s->alignment_power == 2)
4348 for (s2 = s; s2->next != NULL; s2 = s2->next)
4349 {
4350 if (s2->next->alignment_power == 2
4351 && (s2->next->flags & SEC_LOAD) != 0
4352 && CONST_STRNEQ (s2->next->name, ".note")
4353 && align_power (s2->lma + s2->size, 2)
4354 == s2->next->lma)
4355 count++;
4356 else
4357 break;
4358 }
4359 amt += (count - 1) * sizeof (asection *);
4360 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4361 if (m == NULL)
4362 goto error_return;
4363 m->next = NULL;
4364 m->p_type = PT_NOTE;
4365 m->count = count;
4366 while (count > 1)
4367 {
4368 m->sections[m->count - count--] = s;
4369 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4370 s = s->next;
4371 }
4372 m->sections[m->count - 1] = s;
4373 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4374 *pm = m;
4375 pm = &m->next;
4376 }
4377 if (s->flags & SEC_THREAD_LOCAL)
4378 {
4379 if (! tls_count)
4380 first_tls = s;
4381 tls_count++;
4382 }
4383 }
4384
4385 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4386 if (tls_count > 0)
4387 {
4388 amt = sizeof (struct elf_segment_map);
4389 amt += (tls_count - 1) * sizeof (asection *);
4390 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4391 if (m == NULL)
4392 goto error_return;
4393 m->next = NULL;
4394 m->p_type = PT_TLS;
4395 m->count = tls_count;
4396 /* Mandated PF_R. */
4397 m->p_flags = PF_R;
4398 m->p_flags_valid = 1;
4399 s = first_tls;
4400 for (i = 0; i < (unsigned int) tls_count; ++i)
4401 {
4402 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4403 {
4404 _bfd_error_handler
4405 (_("%B: TLS sections are not adjacent:"), abfd);
4406 s = first_tls;
4407 i = 0;
4408 while (i < (unsigned int) tls_count)
4409 {
4410 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4411 {
4412 _bfd_error_handler (_(" TLS: %A"), s);
4413 i++;
4414 }
4415 else
4416 _bfd_error_handler (_(" non-TLS: %A"), s);
4417 s = s->next;
4418 }
4419 bfd_set_error (bfd_error_bad_value);
4420 goto error_return;
4421 }
4422 m->sections[i] = s;
4423 s = s->next;
4424 }
4425
4426 *pm = m;
4427 pm = &m->next;
4428 }
4429
4430 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4431 segment. */
4432 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4433 if (eh_frame_hdr != NULL
4434 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4435 {
4436 amt = sizeof (struct elf_segment_map);
4437 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4438 if (m == NULL)
4439 goto error_return;
4440 m->next = NULL;
4441 m->p_type = PT_GNU_EH_FRAME;
4442 m->count = 1;
4443 m->sections[0] = eh_frame_hdr->output_section;
4444
4445 *pm = m;
4446 pm = &m->next;
4447 }
4448
4449 if (elf_stack_flags (abfd))
4450 {
4451 amt = sizeof (struct elf_segment_map);
4452 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4453 if (m == NULL)
4454 goto error_return;
4455 m->next = NULL;
4456 m->p_type = PT_GNU_STACK;
4457 m->p_flags = elf_stack_flags (abfd);
4458 m->p_align = bed->stack_align;
4459 m->p_flags_valid = 1;
4460 m->p_align_valid = m->p_align != 0;
4461 if (info->stacksize > 0)
4462 {
4463 m->p_size = info->stacksize;
4464 m->p_size_valid = 1;
4465 }
4466
4467 *pm = m;
4468 pm = &m->next;
4469 }
4470
4471 if (info != NULL && info->relro)
4472 {
4473 for (m = mfirst; m != NULL; m = m->next)
4474 {
4475 if (m->p_type == PT_LOAD
4476 && m->count != 0
4477 && m->sections[0]->vma >= info->relro_start
4478 && m->sections[0]->vma < info->relro_end)
4479 {
4480 i = m->count;
4481 while (--i != (unsigned) -1)
4482 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4483 == (SEC_LOAD | SEC_HAS_CONTENTS))
4484 break;
4485
4486 if (i != (unsigned) -1)
4487 break;
4488 }
4489 }
4490
4491 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4492 if (m != NULL)
4493 {
4494 amt = sizeof (struct elf_segment_map);
4495 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4496 if (m == NULL)
4497 goto error_return;
4498 m->next = NULL;
4499 m->p_type = PT_GNU_RELRO;
4500 m->p_flags = PF_R;
4501 m->p_flags_valid = 1;
4502
4503 *pm = m;
4504 pm = &m->next;
4505 }
4506 }
4507
4508 free (sections);
4509 elf_seg_map (abfd) = mfirst;
4510 }
4511
4512 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4513 return FALSE;
4514
4515 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4516 ++count;
4517 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4518
4519 return TRUE;
4520
4521 error_return:
4522 if (sections != NULL)
4523 free (sections);
4524 return FALSE;
4525 }
4526
4527 /* Sort sections by address. */
4528
4529 static int
4530 elf_sort_sections (const void *arg1, const void *arg2)
4531 {
4532 const asection *sec1 = *(const asection **) arg1;
4533 const asection *sec2 = *(const asection **) arg2;
4534 bfd_size_type size1, size2;
4535
4536 /* Sort by LMA first, since this is the address used to
4537 place the section into a segment. */
4538 if (sec1->lma < sec2->lma)
4539 return -1;
4540 else if (sec1->lma > sec2->lma)
4541 return 1;
4542
4543 /* Then sort by VMA. Normally the LMA and the VMA will be
4544 the same, and this will do nothing. */
4545 if (sec1->vma < sec2->vma)
4546 return -1;
4547 else if (sec1->vma > sec2->vma)
4548 return 1;
4549
4550 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4551
4552 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4553
4554 if (TOEND (sec1))
4555 {
4556 if (TOEND (sec2))
4557 {
4558 /* If the indicies are the same, do not return 0
4559 here, but continue to try the next comparison. */
4560 if (sec1->target_index - sec2->target_index != 0)
4561 return sec1->target_index - sec2->target_index;
4562 }
4563 else
4564 return 1;
4565 }
4566 else if (TOEND (sec2))
4567 return -1;
4568
4569 #undef TOEND
4570
4571 /* Sort by size, to put zero sized sections
4572 before others at the same address. */
4573
4574 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4575 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4576
4577 if (size1 < size2)
4578 return -1;
4579 if (size1 > size2)
4580 return 1;
4581
4582 return sec1->target_index - sec2->target_index;
4583 }
4584
4585 /* Ian Lance Taylor writes:
4586
4587 We shouldn't be using % with a negative signed number. That's just
4588 not good. We have to make sure either that the number is not
4589 negative, or that the number has an unsigned type. When the types
4590 are all the same size they wind up as unsigned. When file_ptr is a
4591 larger signed type, the arithmetic winds up as signed long long,
4592 which is wrong.
4593
4594 What we're trying to say here is something like ``increase OFF by
4595 the least amount that will cause it to be equal to the VMA modulo
4596 the page size.'' */
4597 /* In other words, something like:
4598
4599 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4600 off_offset = off % bed->maxpagesize;
4601 if (vma_offset < off_offset)
4602 adjustment = vma_offset + bed->maxpagesize - off_offset;
4603 else
4604 adjustment = vma_offset - off_offset;
4605
4606 which can can be collapsed into the expression below. */
4607
4608 static file_ptr
4609 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4610 {
4611 /* PR binutils/16199: Handle an alignment of zero. */
4612 if (maxpagesize == 0)
4613 maxpagesize = 1;
4614 return ((vma - off) % maxpagesize);
4615 }
4616
4617 static void
4618 print_segment_map (const struct elf_segment_map *m)
4619 {
4620 unsigned int j;
4621 const char *pt = get_segment_type (m->p_type);
4622 char buf[32];
4623
4624 if (pt == NULL)
4625 {
4626 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4627 sprintf (buf, "LOPROC+%7.7x",
4628 (unsigned int) (m->p_type - PT_LOPROC));
4629 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4630 sprintf (buf, "LOOS+%7.7x",
4631 (unsigned int) (m->p_type - PT_LOOS));
4632 else
4633 snprintf (buf, sizeof (buf), "%8.8x",
4634 (unsigned int) m->p_type);
4635 pt = buf;
4636 }
4637 fflush (stdout);
4638 fprintf (stderr, "%s:", pt);
4639 for (j = 0; j < m->count; j++)
4640 fprintf (stderr, " %s", m->sections [j]->name);
4641 putc ('\n',stderr);
4642 fflush (stderr);
4643 }
4644
4645 static bfd_boolean
4646 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4647 {
4648 void *buf;
4649 bfd_boolean ret;
4650
4651 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4652 return FALSE;
4653 buf = bfd_zmalloc (len);
4654 if (buf == NULL)
4655 return FALSE;
4656 ret = bfd_bwrite (buf, len, abfd) == len;
4657 free (buf);
4658 return ret;
4659 }
4660
4661 /* Assign file positions to the sections based on the mapping from
4662 sections to segments. This function also sets up some fields in
4663 the file header. */
4664
4665 static bfd_boolean
4666 assign_file_positions_for_load_sections (bfd *abfd,
4667 struct bfd_link_info *link_info)
4668 {
4669 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4670 struct elf_segment_map *m;
4671 Elf_Internal_Phdr *phdrs;
4672 Elf_Internal_Phdr *p;
4673 file_ptr off;
4674 bfd_size_type maxpagesize;
4675 unsigned int alloc;
4676 unsigned int i, j;
4677 bfd_vma header_pad = 0;
4678
4679 if (link_info == NULL
4680 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4681 return FALSE;
4682
4683 alloc = 0;
4684 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4685 {
4686 ++alloc;
4687 if (m->header_size)
4688 header_pad = m->header_size;
4689 }
4690
4691 if (alloc)
4692 {
4693 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4694 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4695 }
4696 else
4697 {
4698 /* PR binutils/12467. */
4699 elf_elfheader (abfd)->e_phoff = 0;
4700 elf_elfheader (abfd)->e_phentsize = 0;
4701 }
4702
4703 elf_elfheader (abfd)->e_phnum = alloc;
4704
4705 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4706 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4707 else
4708 BFD_ASSERT (elf_program_header_size (abfd)
4709 >= alloc * bed->s->sizeof_phdr);
4710
4711 if (alloc == 0)
4712 {
4713 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4714 return TRUE;
4715 }
4716
4717 /* We're writing the size in elf_program_header_size (abfd),
4718 see assign_file_positions_except_relocs, so make sure we have
4719 that amount allocated, with trailing space cleared.
4720 The variable alloc contains the computed need, while
4721 elf_program_header_size (abfd) contains the size used for the
4722 layout.
4723 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4724 where the layout is forced to according to a larger size in the
4725 last iterations for the testcase ld-elf/header. */
4726 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4727 == 0);
4728 phdrs = (Elf_Internal_Phdr *)
4729 bfd_zalloc2 (abfd,
4730 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4731 sizeof (Elf_Internal_Phdr));
4732 elf_tdata (abfd)->phdr = phdrs;
4733 if (phdrs == NULL)
4734 return FALSE;
4735
4736 maxpagesize = 1;
4737 if ((abfd->flags & D_PAGED) != 0)
4738 maxpagesize = bed->maxpagesize;
4739
4740 off = bed->s->sizeof_ehdr;
4741 off += alloc * bed->s->sizeof_phdr;
4742 if (header_pad < (bfd_vma) off)
4743 header_pad = 0;
4744 else
4745 header_pad -= off;
4746 off += header_pad;
4747
4748 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4749 m != NULL;
4750 m = m->next, p++, j++)
4751 {
4752 asection **secpp;
4753 bfd_vma off_adjust;
4754 bfd_boolean no_contents;
4755
4756 /* If elf_segment_map is not from map_sections_to_segments, the
4757 sections may not be correctly ordered. NOTE: sorting should
4758 not be done to the PT_NOTE section of a corefile, which may
4759 contain several pseudo-sections artificially created by bfd.
4760 Sorting these pseudo-sections breaks things badly. */
4761 if (m->count > 1
4762 && !(elf_elfheader (abfd)->e_type == ET_CORE
4763 && m->p_type == PT_NOTE))
4764 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4765 elf_sort_sections);
4766
4767 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4768 number of sections with contents contributing to both p_filesz
4769 and p_memsz, followed by a number of sections with no contents
4770 that just contribute to p_memsz. In this loop, OFF tracks next
4771 available file offset for PT_LOAD and PT_NOTE segments. */
4772 p->p_type = m->p_type;
4773 p->p_flags = m->p_flags;
4774
4775 if (m->count == 0)
4776 p->p_vaddr = 0;
4777 else
4778 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4779
4780 if (m->p_paddr_valid)
4781 p->p_paddr = m->p_paddr;
4782 else if (m->count == 0)
4783 p->p_paddr = 0;
4784 else
4785 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4786
4787 if (p->p_type == PT_LOAD
4788 && (abfd->flags & D_PAGED) != 0)
4789 {
4790 /* p_align in demand paged PT_LOAD segments effectively stores
4791 the maximum page size. When copying an executable with
4792 objcopy, we set m->p_align from the input file. Use this
4793 value for maxpagesize rather than bed->maxpagesize, which
4794 may be different. Note that we use maxpagesize for PT_TLS
4795 segment alignment later in this function, so we are relying
4796 on at least one PT_LOAD segment appearing before a PT_TLS
4797 segment. */
4798 if (m->p_align_valid)
4799 maxpagesize = m->p_align;
4800
4801 p->p_align = maxpagesize;
4802 }
4803 else if (m->p_align_valid)
4804 p->p_align = m->p_align;
4805 else if (m->count == 0)
4806 p->p_align = 1 << bed->s->log_file_align;
4807 else
4808 p->p_align = 0;
4809
4810 no_contents = FALSE;
4811 off_adjust = 0;
4812 if (p->p_type == PT_LOAD
4813 && m->count > 0)
4814 {
4815 bfd_size_type align;
4816 unsigned int align_power = 0;
4817
4818 if (m->p_align_valid)
4819 align = p->p_align;
4820 else
4821 {
4822 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4823 {
4824 unsigned int secalign;
4825
4826 secalign = bfd_get_section_alignment (abfd, *secpp);
4827 if (secalign > align_power)
4828 align_power = secalign;
4829 }
4830 align = (bfd_size_type) 1 << align_power;
4831 if (align < maxpagesize)
4832 align = maxpagesize;
4833 }
4834
4835 for (i = 0; i < m->count; i++)
4836 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4837 /* If we aren't making room for this section, then
4838 it must be SHT_NOBITS regardless of what we've
4839 set via struct bfd_elf_special_section. */
4840 elf_section_type (m->sections[i]) = SHT_NOBITS;
4841
4842 /* Find out whether this segment contains any loadable
4843 sections. */
4844 no_contents = TRUE;
4845 for (i = 0; i < m->count; i++)
4846 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4847 {
4848 no_contents = FALSE;
4849 break;
4850 }
4851
4852 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4853 off += off_adjust;
4854 if (no_contents)
4855 {
4856 /* We shouldn't need to align the segment on disk since
4857 the segment doesn't need file space, but the gABI
4858 arguably requires the alignment and glibc ld.so
4859 checks it. So to comply with the alignment
4860 requirement but not waste file space, we adjust
4861 p_offset for just this segment. (OFF_ADJUST is
4862 subtracted from OFF later.) This may put p_offset
4863 past the end of file, but that shouldn't matter. */
4864 }
4865 else
4866 off_adjust = 0;
4867 }
4868 /* Make sure the .dynamic section is the first section in the
4869 PT_DYNAMIC segment. */
4870 else if (p->p_type == PT_DYNAMIC
4871 && m->count > 1
4872 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4873 {
4874 _bfd_error_handler
4875 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4876 abfd);
4877 bfd_set_error (bfd_error_bad_value);
4878 return FALSE;
4879 }
4880 /* Set the note section type to SHT_NOTE. */
4881 else if (p->p_type == PT_NOTE)
4882 for (i = 0; i < m->count; i++)
4883 elf_section_type (m->sections[i]) = SHT_NOTE;
4884
4885 p->p_offset = 0;
4886 p->p_filesz = 0;
4887 p->p_memsz = 0;
4888
4889 if (m->includes_filehdr)
4890 {
4891 if (!m->p_flags_valid)
4892 p->p_flags |= PF_R;
4893 p->p_filesz = bed->s->sizeof_ehdr;
4894 p->p_memsz = bed->s->sizeof_ehdr;
4895 if (m->count > 0)
4896 {
4897 if (p->p_vaddr < (bfd_vma) off)
4898 {
4899 (*_bfd_error_handler)
4900 (_("%B: Not enough room for program headers, try linking with -N"),
4901 abfd);
4902 bfd_set_error (bfd_error_bad_value);
4903 return FALSE;
4904 }
4905
4906 p->p_vaddr -= off;
4907 if (!m->p_paddr_valid)
4908 p->p_paddr -= off;
4909 }
4910 }
4911
4912 if (m->includes_phdrs)
4913 {
4914 if (!m->p_flags_valid)
4915 p->p_flags |= PF_R;
4916
4917 if (!m->includes_filehdr)
4918 {
4919 p->p_offset = bed->s->sizeof_ehdr;
4920
4921 if (m->count > 0)
4922 {
4923 p->p_vaddr -= off - p->p_offset;
4924 if (!m->p_paddr_valid)
4925 p->p_paddr -= off - p->p_offset;
4926 }
4927 }
4928
4929 p->p_filesz += alloc * bed->s->sizeof_phdr;
4930 p->p_memsz += alloc * bed->s->sizeof_phdr;
4931 if (m->count)
4932 {
4933 p->p_filesz += header_pad;
4934 p->p_memsz += header_pad;
4935 }
4936 }
4937
4938 if (p->p_type == PT_LOAD
4939 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4940 {
4941 if (!m->includes_filehdr && !m->includes_phdrs)
4942 p->p_offset = off;
4943 else
4944 {
4945 file_ptr adjust;
4946
4947 adjust = off - (p->p_offset + p->p_filesz);
4948 if (!no_contents)
4949 p->p_filesz += adjust;
4950 p->p_memsz += adjust;
4951 }
4952 }
4953
4954 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4955 maps. Set filepos for sections in PT_LOAD segments, and in
4956 core files, for sections in PT_NOTE segments.
4957 assign_file_positions_for_non_load_sections will set filepos
4958 for other sections and update p_filesz for other segments. */
4959 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4960 {
4961 asection *sec;
4962 bfd_size_type align;
4963 Elf_Internal_Shdr *this_hdr;
4964
4965 sec = *secpp;
4966 this_hdr = &elf_section_data (sec)->this_hdr;
4967 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4968
4969 if ((p->p_type == PT_LOAD
4970 || p->p_type == PT_TLS)
4971 && (this_hdr->sh_type != SHT_NOBITS
4972 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4973 && ((this_hdr->sh_flags & SHF_TLS) == 0
4974 || p->p_type == PT_TLS))))
4975 {
4976 bfd_vma p_start = p->p_paddr;
4977 bfd_vma p_end = p_start + p->p_memsz;
4978 bfd_vma s_start = sec->lma;
4979 bfd_vma adjust = s_start - p_end;
4980
4981 if (adjust != 0
4982 && (s_start < p_end
4983 || p_end < p_start))
4984 {
4985 (*_bfd_error_handler)
4986 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4987 (unsigned long) s_start, (unsigned long) p_end);
4988 adjust = 0;
4989 sec->lma = p_end;
4990 }
4991 p->p_memsz += adjust;
4992
4993 if (this_hdr->sh_type != SHT_NOBITS)
4994 {
4995 if (p->p_filesz + adjust < p->p_memsz)
4996 {
4997 /* We have a PROGBITS section following NOBITS ones.
4998 Allocate file space for the NOBITS section(s) and
4999 zero it. */
5000 adjust = p->p_memsz - p->p_filesz;
5001 if (!write_zeros (abfd, off, adjust))
5002 return FALSE;
5003 }
5004 off += adjust;
5005 p->p_filesz += adjust;
5006 }
5007 }
5008
5009 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5010 {
5011 /* The section at i == 0 is the one that actually contains
5012 everything. */
5013 if (i == 0)
5014 {
5015 this_hdr->sh_offset = sec->filepos = off;
5016 off += this_hdr->sh_size;
5017 p->p_filesz = this_hdr->sh_size;
5018 p->p_memsz = 0;
5019 p->p_align = 1;
5020 }
5021 else
5022 {
5023 /* The rest are fake sections that shouldn't be written. */
5024 sec->filepos = 0;
5025 sec->size = 0;
5026 sec->flags = 0;
5027 continue;
5028 }
5029 }
5030 else
5031 {
5032 if (p->p_type == PT_LOAD)
5033 {
5034 this_hdr->sh_offset = sec->filepos = off;
5035 if (this_hdr->sh_type != SHT_NOBITS)
5036 off += this_hdr->sh_size;
5037 }
5038 else if (this_hdr->sh_type == SHT_NOBITS
5039 && (this_hdr->sh_flags & SHF_TLS) != 0
5040 && this_hdr->sh_offset == 0)
5041 {
5042 /* This is a .tbss section that didn't get a PT_LOAD.
5043 (See _bfd_elf_map_sections_to_segments "Create a
5044 final PT_LOAD".) Set sh_offset to the value it
5045 would have if we had created a zero p_filesz and
5046 p_memsz PT_LOAD header for the section. This
5047 also makes the PT_TLS header have the same
5048 p_offset value. */
5049 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5050 off, align);
5051 this_hdr->sh_offset = sec->filepos = off + adjust;
5052 }
5053
5054 if (this_hdr->sh_type != SHT_NOBITS)
5055 {
5056 p->p_filesz += this_hdr->sh_size;
5057 /* A load section without SHF_ALLOC is something like
5058 a note section in a PT_NOTE segment. These take
5059 file space but are not loaded into memory. */
5060 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5061 p->p_memsz += this_hdr->sh_size;
5062 }
5063 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5064 {
5065 if (p->p_type == PT_TLS)
5066 p->p_memsz += this_hdr->sh_size;
5067
5068 /* .tbss is special. It doesn't contribute to p_memsz of
5069 normal segments. */
5070 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5071 p->p_memsz += this_hdr->sh_size;
5072 }
5073
5074 if (align > p->p_align
5075 && !m->p_align_valid
5076 && (p->p_type != PT_LOAD
5077 || (abfd->flags & D_PAGED) == 0))
5078 p->p_align = align;
5079 }
5080
5081 if (!m->p_flags_valid)
5082 {
5083 p->p_flags |= PF_R;
5084 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5085 p->p_flags |= PF_X;
5086 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5087 p->p_flags |= PF_W;
5088 }
5089 }
5090
5091 off -= off_adjust;
5092
5093 /* Check that all sections are in a PT_LOAD segment.
5094 Don't check funky gdb generated core files. */
5095 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5096 {
5097 bfd_boolean check_vma = TRUE;
5098
5099 for (i = 1; i < m->count; i++)
5100 if (m->sections[i]->vma == m->sections[i - 1]->vma
5101 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5102 ->this_hdr), p) != 0
5103 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5104 ->this_hdr), p) != 0)
5105 {
5106 /* Looks like we have overlays packed into the segment. */
5107 check_vma = FALSE;
5108 break;
5109 }
5110
5111 for (i = 0; i < m->count; i++)
5112 {
5113 Elf_Internal_Shdr *this_hdr;
5114 asection *sec;
5115
5116 sec = m->sections[i];
5117 this_hdr = &(elf_section_data(sec)->this_hdr);
5118 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5119 && !ELF_TBSS_SPECIAL (this_hdr, p))
5120 {
5121 (*_bfd_error_handler)
5122 (_("%B: section `%A' can't be allocated in segment %d"),
5123 abfd, sec, j);
5124 print_segment_map (m);
5125 }
5126 }
5127 }
5128 }
5129
5130 elf_next_file_pos (abfd) = off;
5131 return TRUE;
5132 }
5133
5134 /* Assign file positions for the other sections. */
5135
5136 static bfd_boolean
5137 assign_file_positions_for_non_load_sections (bfd *abfd,
5138 struct bfd_link_info *link_info)
5139 {
5140 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5141 Elf_Internal_Shdr **i_shdrpp;
5142 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5143 Elf_Internal_Phdr *phdrs;
5144 Elf_Internal_Phdr *p;
5145 struct elf_segment_map *m;
5146 struct elf_segment_map *hdrs_segment;
5147 bfd_vma filehdr_vaddr, filehdr_paddr;
5148 bfd_vma phdrs_vaddr, phdrs_paddr;
5149 file_ptr off;
5150 unsigned int count;
5151
5152 i_shdrpp = elf_elfsections (abfd);
5153 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5154 off = elf_next_file_pos (abfd);
5155 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5156 {
5157 Elf_Internal_Shdr *hdr;
5158
5159 hdr = *hdrpp;
5160 if (hdr->bfd_section != NULL
5161 && (hdr->bfd_section->filepos != 0
5162 || (hdr->sh_type == SHT_NOBITS
5163 && hdr->contents == NULL)))
5164 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5165 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5166 {
5167 if (hdr->sh_size != 0)
5168 (*_bfd_error_handler)
5169 (_("%B: warning: allocated section `%s' not in segment"),
5170 abfd,
5171 (hdr->bfd_section == NULL
5172 ? "*unknown*"
5173 : hdr->bfd_section->name));
5174 /* We don't need to page align empty sections. */
5175 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5176 off += vma_page_aligned_bias (hdr->sh_addr, off,
5177 bed->maxpagesize);
5178 else
5179 off += vma_page_aligned_bias (hdr->sh_addr, off,
5180 hdr->sh_addralign);
5181 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5182 FALSE);
5183 }
5184 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5185 && hdr->bfd_section == NULL)
5186 || (hdr->bfd_section != NULL
5187 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5188 /* Compress DWARF debug sections. */
5189 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5190 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
5191 || hdr == i_shdrpp[elf_strtab_sec (abfd)])
5192 hdr->sh_offset = -1;
5193 else
5194 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5195 }
5196
5197 /* Now that we have set the section file positions, we can set up
5198 the file positions for the non PT_LOAD segments. */
5199 count = 0;
5200 filehdr_vaddr = 0;
5201 filehdr_paddr = 0;
5202 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5203 phdrs_paddr = 0;
5204 hdrs_segment = NULL;
5205 phdrs = elf_tdata (abfd)->phdr;
5206 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5207 {
5208 ++count;
5209 if (p->p_type != PT_LOAD)
5210 continue;
5211
5212 if (m->includes_filehdr)
5213 {
5214 filehdr_vaddr = p->p_vaddr;
5215 filehdr_paddr = p->p_paddr;
5216 }
5217 if (m->includes_phdrs)
5218 {
5219 phdrs_vaddr = p->p_vaddr;
5220 phdrs_paddr = p->p_paddr;
5221 if (m->includes_filehdr)
5222 {
5223 hdrs_segment = m;
5224 phdrs_vaddr += bed->s->sizeof_ehdr;
5225 phdrs_paddr += bed->s->sizeof_ehdr;
5226 }
5227 }
5228 }
5229
5230 if (hdrs_segment != NULL && link_info != NULL)
5231 {
5232 /* There is a segment that contains both the file headers and the
5233 program headers, so provide a symbol __ehdr_start pointing there.
5234 A program can use this to examine itself robustly. */
5235
5236 struct elf_link_hash_entry *hash
5237 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5238 FALSE, FALSE, TRUE);
5239 /* If the symbol was referenced and not defined, define it. */
5240 if (hash != NULL
5241 && (hash->root.type == bfd_link_hash_new
5242 || hash->root.type == bfd_link_hash_undefined
5243 || hash->root.type == bfd_link_hash_undefweak
5244 || hash->root.type == bfd_link_hash_common))
5245 {
5246 asection *s = NULL;
5247 if (hdrs_segment->count != 0)
5248 /* The segment contains sections, so use the first one. */
5249 s = hdrs_segment->sections[0];
5250 else
5251 /* Use the first (i.e. lowest-addressed) section in any segment. */
5252 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5253 if (m->count != 0)
5254 {
5255 s = m->sections[0];
5256 break;
5257 }
5258
5259 if (s != NULL)
5260 {
5261 hash->root.u.def.value = filehdr_vaddr - s->vma;
5262 hash->root.u.def.section = s;
5263 }
5264 else
5265 {
5266 hash->root.u.def.value = filehdr_vaddr;
5267 hash->root.u.def.section = bfd_abs_section_ptr;
5268 }
5269
5270 hash->root.type = bfd_link_hash_defined;
5271 hash->def_regular = 1;
5272 hash->non_elf = 0;
5273 }
5274 }
5275
5276 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5277 {
5278 if (p->p_type == PT_GNU_RELRO)
5279 {
5280 const Elf_Internal_Phdr *lp;
5281 struct elf_segment_map *lm;
5282
5283 if (link_info != NULL)
5284 {
5285 /* During linking the range of the RELRO segment is passed
5286 in link_info. */
5287 for (lm = elf_seg_map (abfd), lp = phdrs;
5288 lm != NULL;
5289 lm = lm->next, lp++)
5290 {
5291 if (lp->p_type == PT_LOAD
5292 && lp->p_vaddr < link_info->relro_end
5293 && lm->count != 0
5294 && lm->sections[0]->vma >= link_info->relro_start)
5295 break;
5296 }
5297
5298 BFD_ASSERT (lm != NULL);
5299 }
5300 else
5301 {
5302 /* Otherwise we are copying an executable or shared
5303 library, but we need to use the same linker logic. */
5304 for (lp = phdrs; lp < phdrs + count; ++lp)
5305 {
5306 if (lp->p_type == PT_LOAD
5307 && lp->p_paddr == p->p_paddr)
5308 break;
5309 }
5310 }
5311
5312 if (lp < phdrs + count)
5313 {
5314 p->p_vaddr = lp->p_vaddr;
5315 p->p_paddr = lp->p_paddr;
5316 p->p_offset = lp->p_offset;
5317 if (link_info != NULL)
5318 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5319 else if (m->p_size_valid)
5320 p->p_filesz = m->p_size;
5321 else
5322 abort ();
5323 p->p_memsz = p->p_filesz;
5324 /* Preserve the alignment and flags if they are valid. The
5325 gold linker generates RW/4 for the PT_GNU_RELRO section.
5326 It is better for objcopy/strip to honor these attributes
5327 otherwise gdb will choke when using separate debug files.
5328 */
5329 if (!m->p_align_valid)
5330 p->p_align = 1;
5331 if (!m->p_flags_valid)
5332 p->p_flags = (lp->p_flags & ~PF_W);
5333 }
5334 else
5335 {
5336 memset (p, 0, sizeof *p);
5337 p->p_type = PT_NULL;
5338 }
5339 }
5340 else if (p->p_type == PT_GNU_STACK)
5341 {
5342 if (m->p_size_valid)
5343 p->p_memsz = m->p_size;
5344 }
5345 else if (m->count != 0)
5346 {
5347 unsigned int i;
5348 if (p->p_type != PT_LOAD
5349 && (p->p_type != PT_NOTE
5350 || bfd_get_format (abfd) != bfd_core))
5351 {
5352 if (m->includes_filehdr || m->includes_phdrs)
5353 {
5354 /* PR 17512: file: 2195325e. */
5355 (*_bfd_error_handler)
5356 (_("%B: warning: non-load segment includes file header and/or program header"),
5357 abfd);
5358 return FALSE;
5359 }
5360
5361 p->p_filesz = 0;
5362 p->p_offset = m->sections[0]->filepos;
5363 for (i = m->count; i-- != 0;)
5364 {
5365 asection *sect = m->sections[i];
5366 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5367 if (hdr->sh_type != SHT_NOBITS)
5368 {
5369 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5370 + hdr->sh_size);
5371 break;
5372 }
5373 }
5374 }
5375 }
5376 else if (m->includes_filehdr)
5377 {
5378 p->p_vaddr = filehdr_vaddr;
5379 if (! m->p_paddr_valid)
5380 p->p_paddr = filehdr_paddr;
5381 }
5382 else if (m->includes_phdrs)
5383 {
5384 p->p_vaddr = phdrs_vaddr;
5385 if (! m->p_paddr_valid)
5386 p->p_paddr = phdrs_paddr;
5387 }
5388 }
5389
5390 elf_next_file_pos (abfd) = off;
5391
5392 return TRUE;
5393 }
5394
5395 /* Work out the file positions of all the sections. This is called by
5396 _bfd_elf_compute_section_file_positions. All the section sizes and
5397 VMAs must be known before this is called.
5398
5399 Reloc sections come in two flavours: Those processed specially as
5400 "side-channel" data attached to a section to which they apply, and
5401 those that bfd doesn't process as relocations. The latter sort are
5402 stored in a normal bfd section by bfd_section_from_shdr. We don't
5403 consider the former sort here, unless they form part of the loadable
5404 image. Reloc sections not assigned here will be handled later by
5405 assign_file_positions_for_relocs.
5406
5407 We also don't set the positions of the .symtab and .strtab here. */
5408
5409 static bfd_boolean
5410 assign_file_positions_except_relocs (bfd *abfd,
5411 struct bfd_link_info *link_info)
5412 {
5413 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5414 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5415 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5416
5417 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5418 && bfd_get_format (abfd) != bfd_core)
5419 {
5420 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5421 unsigned int num_sec = elf_numsections (abfd);
5422 Elf_Internal_Shdr **hdrpp;
5423 unsigned int i;
5424 file_ptr off;
5425
5426 /* Start after the ELF header. */
5427 off = i_ehdrp->e_ehsize;
5428
5429 /* We are not creating an executable, which means that we are
5430 not creating a program header, and that the actual order of
5431 the sections in the file is unimportant. */
5432 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5433 {
5434 Elf_Internal_Shdr *hdr;
5435
5436 hdr = *hdrpp;
5437 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5438 && hdr->bfd_section == NULL)
5439 || (hdr->bfd_section != NULL
5440 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5441 /* Compress DWARF debug sections. */
5442 || i == elf_onesymtab (abfd)
5443 || i == elf_symtab_shndx (abfd)
5444 || i == elf_strtab_sec (abfd))
5445 {
5446 hdr->sh_offset = -1;
5447 }
5448 else
5449 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5450 }
5451
5452 elf_next_file_pos (abfd) = off;
5453 }
5454 else
5455 {
5456 unsigned int alloc;
5457
5458 /* Assign file positions for the loaded sections based on the
5459 assignment of sections to segments. */
5460 if (!assign_file_positions_for_load_sections (abfd, link_info))
5461 return FALSE;
5462
5463 /* And for non-load sections. */
5464 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5465 return FALSE;
5466
5467 if (bed->elf_backend_modify_program_headers != NULL)
5468 {
5469 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5470 return FALSE;
5471 }
5472
5473 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5474 if (link_info != NULL
5475 && link_info->executable
5476 && link_info->shared)
5477 {
5478 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5479 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5480 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5481
5482 /* Find the lowest p_vaddr in PT_LOAD segments. */
5483 bfd_vma p_vaddr = (bfd_vma) -1;
5484 for (; segment < end_segment; segment++)
5485 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5486 p_vaddr = segment->p_vaddr;
5487
5488 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5489 segments is non-zero. */
5490 if (p_vaddr)
5491 i_ehdrp->e_type = ET_EXEC;
5492 }
5493
5494 /* Write out the program headers. */
5495 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5496 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5497 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5498 return FALSE;
5499 }
5500
5501 return TRUE;
5502 }
5503
5504 static bfd_boolean
5505 prep_headers (bfd *abfd)
5506 {
5507 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5508 struct elf_strtab_hash *shstrtab;
5509 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5510
5511 i_ehdrp = elf_elfheader (abfd);
5512
5513 shstrtab = _bfd_elf_strtab_init ();
5514 if (shstrtab == NULL)
5515 return FALSE;
5516
5517 elf_shstrtab (abfd) = shstrtab;
5518
5519 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5520 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5521 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5522 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5523
5524 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5525 i_ehdrp->e_ident[EI_DATA] =
5526 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5527 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5528
5529 if ((abfd->flags & DYNAMIC) != 0)
5530 i_ehdrp->e_type = ET_DYN;
5531 else if ((abfd->flags & EXEC_P) != 0)
5532 i_ehdrp->e_type = ET_EXEC;
5533 else if (bfd_get_format (abfd) == bfd_core)
5534 i_ehdrp->e_type = ET_CORE;
5535 else
5536 i_ehdrp->e_type = ET_REL;
5537
5538 switch (bfd_get_arch (abfd))
5539 {
5540 case bfd_arch_unknown:
5541 i_ehdrp->e_machine = EM_NONE;
5542 break;
5543
5544 /* There used to be a long list of cases here, each one setting
5545 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5546 in the corresponding bfd definition. To avoid duplication,
5547 the switch was removed. Machines that need special handling
5548 can generally do it in elf_backend_final_write_processing(),
5549 unless they need the information earlier than the final write.
5550 Such need can generally be supplied by replacing the tests for
5551 e_machine with the conditions used to determine it. */
5552 default:
5553 i_ehdrp->e_machine = bed->elf_machine_code;
5554 }
5555
5556 i_ehdrp->e_version = bed->s->ev_current;
5557 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5558
5559 /* No program header, for now. */
5560 i_ehdrp->e_phoff = 0;
5561 i_ehdrp->e_phentsize = 0;
5562 i_ehdrp->e_phnum = 0;
5563
5564 /* Each bfd section is section header entry. */
5565 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5566 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5567
5568 /* If we're building an executable, we'll need a program header table. */
5569 if (abfd->flags & EXEC_P)
5570 /* It all happens later. */
5571 ;
5572 else
5573 {
5574 i_ehdrp->e_phentsize = 0;
5575 i_ehdrp->e_phoff = 0;
5576 }
5577
5578 elf_tdata (abfd)->symtab_hdr.sh_name =
5579 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5580 elf_tdata (abfd)->strtab_hdr.sh_name =
5581 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5582 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5583 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5584 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5585 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
5586 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5587 return FALSE;
5588
5589 return TRUE;
5590 }
5591
5592 /* Assign file positions for all the reloc sections which are not part
5593 of the loadable file image, and the file position of section headers. */
5594
5595 static bfd_boolean
5596 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
5597 {
5598 file_ptr off;
5599 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
5600 Elf_Internal_Ehdr *i_ehdrp;
5601 const struct elf_backend_data *bed;
5602
5603 off = elf_next_file_pos (abfd);
5604
5605 shdrpp = elf_elfsections (abfd);
5606 end_shdrpp = shdrpp + elf_numsections (abfd);
5607 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
5608 {
5609 Elf_Internal_Shdr *shdrp;
5610
5611 shdrp = *shdrpp;
5612 if (shdrp->sh_offset == -1)
5613 {
5614 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
5615 || shdrp->sh_type == SHT_RELA);
5616 if (is_rel
5617 || (shdrp->bfd_section != NULL
5618 && (shdrp->bfd_section->flags & SEC_ELF_COMPRESS)))
5619 {
5620 if (!is_rel)
5621 {
5622 /* Compress DWARF debug sections. */
5623 if (!bfd_compress_section (abfd, shdrp->bfd_section,
5624 shdrp->contents))
5625 return FALSE;
5626 /* Update section size and contents. */
5627 shdrp->sh_size = shdrp->bfd_section->size;
5628 shdrp->contents = shdrp->bfd_section->contents;
5629 shdrp->bfd_section->contents = NULL;
5630 }
5631 off = _bfd_elf_assign_file_position_for_section (shdrp,
5632 off,
5633 TRUE);
5634 }
5635 }
5636 }
5637
5638 /* Place the section headers. */
5639 i_ehdrp = elf_elfheader (abfd);
5640 bed = get_elf_backend_data (abfd);
5641 off = align_file_position (off, 1 << bed->s->log_file_align);
5642 i_ehdrp->e_shoff = off;
5643 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5644 elf_next_file_pos (abfd) = off;
5645
5646 return TRUE;
5647 }
5648
5649 bfd_boolean
5650 _bfd_elf_write_object_contents (bfd *abfd)
5651 {
5652 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5653 Elf_Internal_Shdr **i_shdrp;
5654 bfd_boolean failed;
5655 unsigned int count, num_sec;
5656 struct elf_obj_tdata *t;
5657
5658 if (! abfd->output_has_begun
5659 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5660 return FALSE;
5661
5662 i_shdrp = elf_elfsections (abfd);
5663
5664 failed = FALSE;
5665 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5666 if (failed)
5667 return FALSE;
5668
5669 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
5670 return FALSE;
5671
5672 /* After writing the headers, we need to write the sections too... */
5673 num_sec = elf_numsections (abfd);
5674 for (count = 1; count < num_sec; count++)
5675 {
5676 if (bed->elf_backend_section_processing)
5677 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5678 if (i_shdrp[count]->contents)
5679 {
5680 bfd_size_type amt = i_shdrp[count]->sh_size;
5681
5682 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5683 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5684 return FALSE;
5685 }
5686 }
5687
5688 /* Write out the section header names. */
5689 t = elf_tdata (abfd);
5690 if (elf_shstrtab (abfd) != NULL
5691 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5692 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5693 return FALSE;
5694
5695 if (bed->elf_backend_final_write_processing)
5696 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5697
5698 if (!bed->s->write_shdrs_and_ehdr (abfd))
5699 return FALSE;
5700
5701 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5702 if (t->o->build_id.after_write_object_contents != NULL)
5703 return (*t->o->build_id.after_write_object_contents) (abfd);
5704
5705 return TRUE;
5706 }
5707
5708 bfd_boolean
5709 _bfd_elf_write_corefile_contents (bfd *abfd)
5710 {
5711 /* Hopefully this can be done just like an object file. */
5712 return _bfd_elf_write_object_contents (abfd);
5713 }
5714
5715 /* Given a section, search the header to find them. */
5716
5717 unsigned int
5718 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5719 {
5720 const struct elf_backend_data *bed;
5721 unsigned int sec_index;
5722
5723 if (elf_section_data (asect) != NULL
5724 && elf_section_data (asect)->this_idx != 0)
5725 return elf_section_data (asect)->this_idx;
5726
5727 if (bfd_is_abs_section (asect))
5728 sec_index = SHN_ABS;
5729 else if (bfd_is_com_section (asect))
5730 sec_index = SHN_COMMON;
5731 else if (bfd_is_und_section (asect))
5732 sec_index = SHN_UNDEF;
5733 else
5734 sec_index = SHN_BAD;
5735
5736 bed = get_elf_backend_data (abfd);
5737 if (bed->elf_backend_section_from_bfd_section)
5738 {
5739 int retval = sec_index;
5740
5741 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5742 return retval;
5743 }
5744
5745 if (sec_index == SHN_BAD)
5746 bfd_set_error (bfd_error_nonrepresentable_section);
5747
5748 return sec_index;
5749 }
5750
5751 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5752 on error. */
5753
5754 int
5755 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5756 {
5757 asymbol *asym_ptr = *asym_ptr_ptr;
5758 int idx;
5759 flagword flags = asym_ptr->flags;
5760
5761 /* When gas creates relocations against local labels, it creates its
5762 own symbol for the section, but does put the symbol into the
5763 symbol chain, so udata is 0. When the linker is generating
5764 relocatable output, this section symbol may be for one of the
5765 input sections rather than the output section. */
5766 if (asym_ptr->udata.i == 0
5767 && (flags & BSF_SECTION_SYM)
5768 && asym_ptr->section)
5769 {
5770 asection *sec;
5771 int indx;
5772
5773 sec = asym_ptr->section;
5774 if (sec->owner != abfd && sec->output_section != NULL)
5775 sec = sec->output_section;
5776 if (sec->owner == abfd
5777 && (indx = sec->index) < elf_num_section_syms (abfd)
5778 && elf_section_syms (abfd)[indx] != NULL)
5779 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5780 }
5781
5782 idx = asym_ptr->udata.i;
5783
5784 if (idx == 0)
5785 {
5786 /* This case can occur when using --strip-symbol on a symbol
5787 which is used in a relocation entry. */
5788 (*_bfd_error_handler)
5789 (_("%B: symbol `%s' required but not present"),
5790 abfd, bfd_asymbol_name (asym_ptr));
5791 bfd_set_error (bfd_error_no_symbols);
5792 return -1;
5793 }
5794
5795 #if DEBUG & 4
5796 {
5797 fprintf (stderr,
5798 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5799 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5800 fflush (stderr);
5801 }
5802 #endif
5803
5804 return idx;
5805 }
5806
5807 /* Rewrite program header information. */
5808
5809 static bfd_boolean
5810 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5811 {
5812 Elf_Internal_Ehdr *iehdr;
5813 struct elf_segment_map *map;
5814 struct elf_segment_map *map_first;
5815 struct elf_segment_map **pointer_to_map;
5816 Elf_Internal_Phdr *segment;
5817 asection *section;
5818 unsigned int i;
5819 unsigned int num_segments;
5820 bfd_boolean phdr_included = FALSE;
5821 bfd_boolean p_paddr_valid;
5822 bfd_vma maxpagesize;
5823 struct elf_segment_map *phdr_adjust_seg = NULL;
5824 unsigned int phdr_adjust_num = 0;
5825 const struct elf_backend_data *bed;
5826
5827 bed = get_elf_backend_data (ibfd);
5828 iehdr = elf_elfheader (ibfd);
5829
5830 map_first = NULL;
5831 pointer_to_map = &map_first;
5832
5833 num_segments = elf_elfheader (ibfd)->e_phnum;
5834 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5835
5836 /* Returns the end address of the segment + 1. */
5837 #define SEGMENT_END(segment, start) \
5838 (start + (segment->p_memsz > segment->p_filesz \
5839 ? segment->p_memsz : segment->p_filesz))
5840
5841 #define SECTION_SIZE(section, segment) \
5842 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5843 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5844 ? section->size : 0)
5845
5846 /* Returns TRUE if the given section is contained within
5847 the given segment. VMA addresses are compared. */
5848 #define IS_CONTAINED_BY_VMA(section, segment) \
5849 (section->vma >= segment->p_vaddr \
5850 && (section->vma + SECTION_SIZE (section, segment) \
5851 <= (SEGMENT_END (segment, segment->p_vaddr))))
5852
5853 /* Returns TRUE if the given section is contained within
5854 the given segment. LMA addresses are compared. */
5855 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5856 (section->lma >= base \
5857 && (section->lma + SECTION_SIZE (section, segment) \
5858 <= SEGMENT_END (segment, base)))
5859
5860 /* Handle PT_NOTE segment. */
5861 #define IS_NOTE(p, s) \
5862 (p->p_type == PT_NOTE \
5863 && elf_section_type (s) == SHT_NOTE \
5864 && (bfd_vma) s->filepos >= p->p_offset \
5865 && ((bfd_vma) s->filepos + s->size \
5866 <= p->p_offset + p->p_filesz))
5867
5868 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5869 etc. */
5870 #define IS_COREFILE_NOTE(p, s) \
5871 (IS_NOTE (p, s) \
5872 && bfd_get_format (ibfd) == bfd_core \
5873 && s->vma == 0 \
5874 && s->lma == 0)
5875
5876 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5877 linker, which generates a PT_INTERP section with p_vaddr and
5878 p_memsz set to 0. */
5879 #define IS_SOLARIS_PT_INTERP(p, s) \
5880 (p->p_vaddr == 0 \
5881 && p->p_paddr == 0 \
5882 && p->p_memsz == 0 \
5883 && p->p_filesz > 0 \
5884 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5885 && s->size > 0 \
5886 && (bfd_vma) s->filepos >= p->p_offset \
5887 && ((bfd_vma) s->filepos + s->size \
5888 <= p->p_offset + p->p_filesz))
5889
5890 /* Decide if the given section should be included in the given segment.
5891 A section will be included if:
5892 1. It is within the address space of the segment -- we use the LMA
5893 if that is set for the segment and the VMA otherwise,
5894 2. It is an allocated section or a NOTE section in a PT_NOTE
5895 segment.
5896 3. There is an output section associated with it,
5897 4. The section has not already been allocated to a previous segment.
5898 5. PT_GNU_STACK segments do not include any sections.
5899 6. PT_TLS segment includes only SHF_TLS sections.
5900 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5901 8. PT_DYNAMIC should not contain empty sections at the beginning
5902 (with the possible exception of .dynamic). */
5903 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5904 ((((segment->p_paddr \
5905 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5906 : IS_CONTAINED_BY_VMA (section, segment)) \
5907 && (section->flags & SEC_ALLOC) != 0) \
5908 || IS_NOTE (segment, section)) \
5909 && segment->p_type != PT_GNU_STACK \
5910 && (segment->p_type != PT_TLS \
5911 || (section->flags & SEC_THREAD_LOCAL)) \
5912 && (segment->p_type == PT_LOAD \
5913 || segment->p_type == PT_TLS \
5914 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5915 && (segment->p_type != PT_DYNAMIC \
5916 || SECTION_SIZE (section, segment) > 0 \
5917 || (segment->p_paddr \
5918 ? segment->p_paddr != section->lma \
5919 : segment->p_vaddr != section->vma) \
5920 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5921 == 0)) \
5922 && !section->segment_mark)
5923
5924 /* If the output section of a section in the input segment is NULL,
5925 it is removed from the corresponding output segment. */
5926 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5927 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5928 && section->output_section != NULL)
5929
5930 /* Returns TRUE iff seg1 starts after the end of seg2. */
5931 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5932 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5933
5934 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5935 their VMA address ranges and their LMA address ranges overlap.
5936 It is possible to have overlapping VMA ranges without overlapping LMA
5937 ranges. RedBoot images for example can have both .data and .bss mapped
5938 to the same VMA range, but with the .data section mapped to a different
5939 LMA. */
5940 #define SEGMENT_OVERLAPS(seg1, seg2) \
5941 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5942 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5943 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5944 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5945
5946 /* Initialise the segment mark field. */
5947 for (section = ibfd->sections; section != NULL; section = section->next)
5948 section->segment_mark = FALSE;
5949
5950 /* The Solaris linker creates program headers in which all the
5951 p_paddr fields are zero. When we try to objcopy or strip such a
5952 file, we get confused. Check for this case, and if we find it
5953 don't set the p_paddr_valid fields. */
5954 p_paddr_valid = FALSE;
5955 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5956 i < num_segments;
5957 i++, segment++)
5958 if (segment->p_paddr != 0)
5959 {
5960 p_paddr_valid = TRUE;
5961 break;
5962 }
5963
5964 /* Scan through the segments specified in the program header
5965 of the input BFD. For this first scan we look for overlaps
5966 in the loadable segments. These can be created by weird
5967 parameters to objcopy. Also, fix some solaris weirdness. */
5968 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5969 i < num_segments;
5970 i++, segment++)
5971 {
5972 unsigned int j;
5973 Elf_Internal_Phdr *segment2;
5974
5975 if (segment->p_type == PT_INTERP)
5976 for (section = ibfd->sections; section; section = section->next)
5977 if (IS_SOLARIS_PT_INTERP (segment, section))
5978 {
5979 /* Mininal change so that the normal section to segment
5980 assignment code will work. */
5981 segment->p_vaddr = section->vma;
5982 break;
5983 }
5984
5985 if (segment->p_type != PT_LOAD)
5986 {
5987 /* Remove PT_GNU_RELRO segment. */
5988 if (segment->p_type == PT_GNU_RELRO)
5989 segment->p_type = PT_NULL;
5990 continue;
5991 }
5992
5993 /* Determine if this segment overlaps any previous segments. */
5994 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5995 {
5996 bfd_signed_vma extra_length;
5997
5998 if (segment2->p_type != PT_LOAD
5999 || !SEGMENT_OVERLAPS (segment, segment2))
6000 continue;
6001
6002 /* Merge the two segments together. */
6003 if (segment2->p_vaddr < segment->p_vaddr)
6004 {
6005 /* Extend SEGMENT2 to include SEGMENT and then delete
6006 SEGMENT. */
6007 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6008 - SEGMENT_END (segment2, segment2->p_vaddr));
6009
6010 if (extra_length > 0)
6011 {
6012 segment2->p_memsz += extra_length;
6013 segment2->p_filesz += extra_length;
6014 }
6015
6016 segment->p_type = PT_NULL;
6017
6018 /* Since we have deleted P we must restart the outer loop. */
6019 i = 0;
6020 segment = elf_tdata (ibfd)->phdr;
6021 break;
6022 }
6023 else
6024 {
6025 /* Extend SEGMENT to include SEGMENT2 and then delete
6026 SEGMENT2. */
6027 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6028 - SEGMENT_END (segment, segment->p_vaddr));
6029
6030 if (extra_length > 0)
6031 {
6032 segment->p_memsz += extra_length;
6033 segment->p_filesz += extra_length;
6034 }
6035
6036 segment2->p_type = PT_NULL;
6037 }
6038 }
6039 }
6040
6041 /* The second scan attempts to assign sections to segments. */
6042 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6043 i < num_segments;
6044 i++, segment++)
6045 {
6046 unsigned int section_count;
6047 asection **sections;
6048 asection *output_section;
6049 unsigned int isec;
6050 bfd_vma matching_lma;
6051 bfd_vma suggested_lma;
6052 unsigned int j;
6053 bfd_size_type amt;
6054 asection *first_section;
6055 bfd_boolean first_matching_lma;
6056 bfd_boolean first_suggested_lma;
6057
6058 if (segment->p_type == PT_NULL)
6059 continue;
6060
6061 first_section = NULL;
6062 /* Compute how many sections might be placed into this segment. */
6063 for (section = ibfd->sections, section_count = 0;
6064 section != NULL;
6065 section = section->next)
6066 {
6067 /* Find the first section in the input segment, which may be
6068 removed from the corresponding output segment. */
6069 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6070 {
6071 if (first_section == NULL)
6072 first_section = section;
6073 if (section->output_section != NULL)
6074 ++section_count;
6075 }
6076 }
6077
6078 /* Allocate a segment map big enough to contain
6079 all of the sections we have selected. */
6080 amt = sizeof (struct elf_segment_map);
6081 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6082 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6083 if (map == NULL)
6084 return FALSE;
6085
6086 /* Initialise the fields of the segment map. Default to
6087 using the physical address of the segment in the input BFD. */
6088 map->next = NULL;
6089 map->p_type = segment->p_type;
6090 map->p_flags = segment->p_flags;
6091 map->p_flags_valid = 1;
6092
6093 /* If the first section in the input segment is removed, there is
6094 no need to preserve segment physical address in the corresponding
6095 output segment. */
6096 if (!first_section || first_section->output_section != NULL)
6097 {
6098 map->p_paddr = segment->p_paddr;
6099 map->p_paddr_valid = p_paddr_valid;
6100 }
6101
6102 /* Determine if this segment contains the ELF file header
6103 and if it contains the program headers themselves. */
6104 map->includes_filehdr = (segment->p_offset == 0
6105 && segment->p_filesz >= iehdr->e_ehsize);
6106 map->includes_phdrs = 0;
6107
6108 if (!phdr_included || segment->p_type != PT_LOAD)
6109 {
6110 map->includes_phdrs =
6111 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6112 && (segment->p_offset + segment->p_filesz
6113 >= ((bfd_vma) iehdr->e_phoff
6114 + iehdr->e_phnum * iehdr->e_phentsize)));
6115
6116 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6117 phdr_included = TRUE;
6118 }
6119
6120 if (section_count == 0)
6121 {
6122 /* Special segments, such as the PT_PHDR segment, may contain
6123 no sections, but ordinary, loadable segments should contain
6124 something. They are allowed by the ELF spec however, so only
6125 a warning is produced. */
6126 if (segment->p_type == PT_LOAD)
6127 (*_bfd_error_handler) (_("\
6128 %B: warning: Empty loadable segment detected, is this intentional ?"),
6129 ibfd);
6130
6131 map->count = 0;
6132 *pointer_to_map = map;
6133 pointer_to_map = &map->next;
6134
6135 continue;
6136 }
6137
6138 /* Now scan the sections in the input BFD again and attempt
6139 to add their corresponding output sections to the segment map.
6140 The problem here is how to handle an output section which has
6141 been moved (ie had its LMA changed). There are four possibilities:
6142
6143 1. None of the sections have been moved.
6144 In this case we can continue to use the segment LMA from the
6145 input BFD.
6146
6147 2. All of the sections have been moved by the same amount.
6148 In this case we can change the segment's LMA to match the LMA
6149 of the first section.
6150
6151 3. Some of the sections have been moved, others have not.
6152 In this case those sections which have not been moved can be
6153 placed in the current segment which will have to have its size,
6154 and possibly its LMA changed, and a new segment or segments will
6155 have to be created to contain the other sections.
6156
6157 4. The sections have been moved, but not by the same amount.
6158 In this case we can change the segment's LMA to match the LMA
6159 of the first section and we will have to create a new segment
6160 or segments to contain the other sections.
6161
6162 In order to save time, we allocate an array to hold the section
6163 pointers that we are interested in. As these sections get assigned
6164 to a segment, they are removed from this array. */
6165
6166 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6167 if (sections == NULL)
6168 return FALSE;
6169
6170 /* Step One: Scan for segment vs section LMA conflicts.
6171 Also add the sections to the section array allocated above.
6172 Also add the sections to the current segment. In the common
6173 case, where the sections have not been moved, this means that
6174 we have completely filled the segment, and there is nothing
6175 more to do. */
6176 isec = 0;
6177 matching_lma = 0;
6178 suggested_lma = 0;
6179 first_matching_lma = TRUE;
6180 first_suggested_lma = TRUE;
6181
6182 for (section = ibfd->sections;
6183 section != NULL;
6184 section = section->next)
6185 if (section == first_section)
6186 break;
6187
6188 for (j = 0; section != NULL; section = section->next)
6189 {
6190 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6191 {
6192 output_section = section->output_section;
6193
6194 sections[j++] = section;
6195
6196 /* The Solaris native linker always sets p_paddr to 0.
6197 We try to catch that case here, and set it to the
6198 correct value. Note - some backends require that
6199 p_paddr be left as zero. */
6200 if (!p_paddr_valid
6201 && segment->p_vaddr != 0
6202 && !bed->want_p_paddr_set_to_zero
6203 && isec == 0
6204 && output_section->lma != 0
6205 && output_section->vma == (segment->p_vaddr
6206 + (map->includes_filehdr
6207 ? iehdr->e_ehsize
6208 : 0)
6209 + (map->includes_phdrs
6210 ? (iehdr->e_phnum
6211 * iehdr->e_phentsize)
6212 : 0)))
6213 map->p_paddr = segment->p_vaddr;
6214
6215 /* Match up the physical address of the segment with the
6216 LMA address of the output section. */
6217 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6218 || IS_COREFILE_NOTE (segment, section)
6219 || (bed->want_p_paddr_set_to_zero
6220 && IS_CONTAINED_BY_VMA (output_section, segment)))
6221 {
6222 if (first_matching_lma || output_section->lma < matching_lma)
6223 {
6224 matching_lma = output_section->lma;
6225 first_matching_lma = FALSE;
6226 }
6227
6228 /* We assume that if the section fits within the segment
6229 then it does not overlap any other section within that
6230 segment. */
6231 map->sections[isec++] = output_section;
6232 }
6233 else if (first_suggested_lma)
6234 {
6235 suggested_lma = output_section->lma;
6236 first_suggested_lma = FALSE;
6237 }
6238
6239 if (j == section_count)
6240 break;
6241 }
6242 }
6243
6244 BFD_ASSERT (j == section_count);
6245
6246 /* Step Two: Adjust the physical address of the current segment,
6247 if necessary. */
6248 if (isec == section_count)
6249 {
6250 /* All of the sections fitted within the segment as currently
6251 specified. This is the default case. Add the segment to
6252 the list of built segments and carry on to process the next
6253 program header in the input BFD. */
6254 map->count = section_count;
6255 *pointer_to_map = map;
6256 pointer_to_map = &map->next;
6257
6258 if (p_paddr_valid
6259 && !bed->want_p_paddr_set_to_zero
6260 && matching_lma != map->p_paddr
6261 && !map->includes_filehdr
6262 && !map->includes_phdrs)
6263 /* There is some padding before the first section in the
6264 segment. So, we must account for that in the output
6265 segment's vma. */
6266 map->p_vaddr_offset = matching_lma - map->p_paddr;
6267
6268 free (sections);
6269 continue;
6270 }
6271 else
6272 {
6273 if (!first_matching_lma)
6274 {
6275 /* At least one section fits inside the current segment.
6276 Keep it, but modify its physical address to match the
6277 LMA of the first section that fitted. */
6278 map->p_paddr = matching_lma;
6279 }
6280 else
6281 {
6282 /* None of the sections fitted inside the current segment.
6283 Change the current segment's physical address to match
6284 the LMA of the first section. */
6285 map->p_paddr = suggested_lma;
6286 }
6287
6288 /* Offset the segment physical address from the lma
6289 to allow for space taken up by elf headers. */
6290 if (map->includes_filehdr)
6291 {
6292 if (map->p_paddr >= iehdr->e_ehsize)
6293 map->p_paddr -= iehdr->e_ehsize;
6294 else
6295 {
6296 map->includes_filehdr = FALSE;
6297 map->includes_phdrs = FALSE;
6298 }
6299 }
6300
6301 if (map->includes_phdrs)
6302 {
6303 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6304 {
6305 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6306
6307 /* iehdr->e_phnum is just an estimate of the number
6308 of program headers that we will need. Make a note
6309 here of the number we used and the segment we chose
6310 to hold these headers, so that we can adjust the
6311 offset when we know the correct value. */
6312 phdr_adjust_num = iehdr->e_phnum;
6313 phdr_adjust_seg = map;
6314 }
6315 else
6316 map->includes_phdrs = FALSE;
6317 }
6318 }
6319
6320 /* Step Three: Loop over the sections again, this time assigning
6321 those that fit to the current segment and removing them from the
6322 sections array; but making sure not to leave large gaps. Once all
6323 possible sections have been assigned to the current segment it is
6324 added to the list of built segments and if sections still remain
6325 to be assigned, a new segment is constructed before repeating
6326 the loop. */
6327 isec = 0;
6328 do
6329 {
6330 map->count = 0;
6331 suggested_lma = 0;
6332 first_suggested_lma = TRUE;
6333
6334 /* Fill the current segment with sections that fit. */
6335 for (j = 0; j < section_count; j++)
6336 {
6337 section = sections[j];
6338
6339 if (section == NULL)
6340 continue;
6341
6342 output_section = section->output_section;
6343
6344 BFD_ASSERT (output_section != NULL);
6345
6346 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6347 || IS_COREFILE_NOTE (segment, section))
6348 {
6349 if (map->count == 0)
6350 {
6351 /* If the first section in a segment does not start at
6352 the beginning of the segment, then something is
6353 wrong. */
6354 if (output_section->lma
6355 != (map->p_paddr
6356 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6357 + (map->includes_phdrs
6358 ? iehdr->e_phnum * iehdr->e_phentsize
6359 : 0)))
6360 abort ();
6361 }
6362 else
6363 {
6364 asection *prev_sec;
6365
6366 prev_sec = map->sections[map->count - 1];
6367
6368 /* If the gap between the end of the previous section
6369 and the start of this section is more than
6370 maxpagesize then we need to start a new segment. */
6371 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6372 maxpagesize)
6373 < BFD_ALIGN (output_section->lma, maxpagesize))
6374 || (prev_sec->lma + prev_sec->size
6375 > output_section->lma))
6376 {
6377 if (first_suggested_lma)
6378 {
6379 suggested_lma = output_section->lma;
6380 first_suggested_lma = FALSE;
6381 }
6382
6383 continue;
6384 }
6385 }
6386
6387 map->sections[map->count++] = output_section;
6388 ++isec;
6389 sections[j] = NULL;
6390 section->segment_mark = TRUE;
6391 }
6392 else if (first_suggested_lma)
6393 {
6394 suggested_lma = output_section->lma;
6395 first_suggested_lma = FALSE;
6396 }
6397 }
6398
6399 BFD_ASSERT (map->count > 0);
6400
6401 /* Add the current segment to the list of built segments. */
6402 *pointer_to_map = map;
6403 pointer_to_map = &map->next;
6404
6405 if (isec < section_count)
6406 {
6407 /* We still have not allocated all of the sections to
6408 segments. Create a new segment here, initialise it
6409 and carry on looping. */
6410 amt = sizeof (struct elf_segment_map);
6411 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6412 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6413 if (map == NULL)
6414 {
6415 free (sections);
6416 return FALSE;
6417 }
6418
6419 /* Initialise the fields of the segment map. Set the physical
6420 physical address to the LMA of the first section that has
6421 not yet been assigned. */
6422 map->next = NULL;
6423 map->p_type = segment->p_type;
6424 map->p_flags = segment->p_flags;
6425 map->p_flags_valid = 1;
6426 map->p_paddr = suggested_lma;
6427 map->p_paddr_valid = p_paddr_valid;
6428 map->includes_filehdr = 0;
6429 map->includes_phdrs = 0;
6430 }
6431 }
6432 while (isec < section_count);
6433
6434 free (sections);
6435 }
6436
6437 elf_seg_map (obfd) = map_first;
6438
6439 /* If we had to estimate the number of program headers that were
6440 going to be needed, then check our estimate now and adjust
6441 the offset if necessary. */
6442 if (phdr_adjust_seg != NULL)
6443 {
6444 unsigned int count;
6445
6446 for (count = 0, map = map_first; map != NULL; map = map->next)
6447 count++;
6448
6449 if (count > phdr_adjust_num)
6450 phdr_adjust_seg->p_paddr
6451 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6452 }
6453
6454 #undef SEGMENT_END
6455 #undef SECTION_SIZE
6456 #undef IS_CONTAINED_BY_VMA
6457 #undef IS_CONTAINED_BY_LMA
6458 #undef IS_NOTE
6459 #undef IS_COREFILE_NOTE
6460 #undef IS_SOLARIS_PT_INTERP
6461 #undef IS_SECTION_IN_INPUT_SEGMENT
6462 #undef INCLUDE_SECTION_IN_SEGMENT
6463 #undef SEGMENT_AFTER_SEGMENT
6464 #undef SEGMENT_OVERLAPS
6465 return TRUE;
6466 }
6467
6468 /* Copy ELF program header information. */
6469
6470 static bfd_boolean
6471 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6472 {
6473 Elf_Internal_Ehdr *iehdr;
6474 struct elf_segment_map *map;
6475 struct elf_segment_map *map_first;
6476 struct elf_segment_map **pointer_to_map;
6477 Elf_Internal_Phdr *segment;
6478 unsigned int i;
6479 unsigned int num_segments;
6480 bfd_boolean phdr_included = FALSE;
6481 bfd_boolean p_paddr_valid;
6482
6483 iehdr = elf_elfheader (ibfd);
6484
6485 map_first = NULL;
6486 pointer_to_map = &map_first;
6487
6488 /* If all the segment p_paddr fields are zero, don't set
6489 map->p_paddr_valid. */
6490 p_paddr_valid = FALSE;
6491 num_segments = elf_elfheader (ibfd)->e_phnum;
6492 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6493 i < num_segments;
6494 i++, segment++)
6495 if (segment->p_paddr != 0)
6496 {
6497 p_paddr_valid = TRUE;
6498 break;
6499 }
6500
6501 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6502 i < num_segments;
6503 i++, segment++)
6504 {
6505 asection *section;
6506 unsigned int section_count;
6507 bfd_size_type amt;
6508 Elf_Internal_Shdr *this_hdr;
6509 asection *first_section = NULL;
6510 asection *lowest_section;
6511
6512 /* Compute how many sections are in this segment. */
6513 for (section = ibfd->sections, section_count = 0;
6514 section != NULL;
6515 section = section->next)
6516 {
6517 this_hdr = &(elf_section_data(section)->this_hdr);
6518 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6519 {
6520 if (first_section == NULL)
6521 first_section = section;
6522 section_count++;
6523 }
6524 }
6525
6526 /* Allocate a segment map big enough to contain
6527 all of the sections we have selected. */
6528 amt = sizeof (struct elf_segment_map);
6529 if (section_count != 0)
6530 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6531 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6532 if (map == NULL)
6533 return FALSE;
6534
6535 /* Initialize the fields of the output segment map with the
6536 input segment. */
6537 map->next = NULL;
6538 map->p_type = segment->p_type;
6539 map->p_flags = segment->p_flags;
6540 map->p_flags_valid = 1;
6541 map->p_paddr = segment->p_paddr;
6542 map->p_paddr_valid = p_paddr_valid;
6543 map->p_align = segment->p_align;
6544 map->p_align_valid = 1;
6545 map->p_vaddr_offset = 0;
6546
6547 if (map->p_type == PT_GNU_RELRO
6548 || map->p_type == PT_GNU_STACK)
6549 {
6550 /* The PT_GNU_RELRO segment may contain the first a few
6551 bytes in the .got.plt section even if the whole .got.plt
6552 section isn't in the PT_GNU_RELRO segment. We won't
6553 change the size of the PT_GNU_RELRO segment.
6554 Similarly, PT_GNU_STACK size is significant on uclinux
6555 systems. */
6556 map->p_size = segment->p_memsz;
6557 map->p_size_valid = 1;
6558 }
6559
6560 /* Determine if this segment contains the ELF file header
6561 and if it contains the program headers themselves. */
6562 map->includes_filehdr = (segment->p_offset == 0
6563 && segment->p_filesz >= iehdr->e_ehsize);
6564
6565 map->includes_phdrs = 0;
6566 if (! phdr_included || segment->p_type != PT_LOAD)
6567 {
6568 map->includes_phdrs =
6569 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6570 && (segment->p_offset + segment->p_filesz
6571 >= ((bfd_vma) iehdr->e_phoff
6572 + iehdr->e_phnum * iehdr->e_phentsize)));
6573
6574 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6575 phdr_included = TRUE;
6576 }
6577
6578 lowest_section = NULL;
6579 if (section_count != 0)
6580 {
6581 unsigned int isec = 0;
6582
6583 for (section = first_section;
6584 section != NULL;
6585 section = section->next)
6586 {
6587 this_hdr = &(elf_section_data(section)->this_hdr);
6588 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6589 {
6590 map->sections[isec++] = section->output_section;
6591 if ((section->flags & SEC_ALLOC) != 0)
6592 {
6593 bfd_vma seg_off;
6594
6595 if (lowest_section == NULL
6596 || section->lma < lowest_section->lma)
6597 lowest_section = section;
6598
6599 /* Section lmas are set up from PT_LOAD header
6600 p_paddr in _bfd_elf_make_section_from_shdr.
6601 If this header has a p_paddr that disagrees
6602 with the section lma, flag the p_paddr as
6603 invalid. */
6604 if ((section->flags & SEC_LOAD) != 0)
6605 seg_off = this_hdr->sh_offset - segment->p_offset;
6606 else
6607 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6608 if (section->lma - segment->p_paddr != seg_off)
6609 map->p_paddr_valid = FALSE;
6610 }
6611 if (isec == section_count)
6612 break;
6613 }
6614 }
6615 }
6616
6617 if (map->includes_filehdr && lowest_section != NULL)
6618 /* We need to keep the space used by the headers fixed. */
6619 map->header_size = lowest_section->vma - segment->p_vaddr;
6620
6621 if (!map->includes_phdrs
6622 && !map->includes_filehdr
6623 && map->p_paddr_valid)
6624 /* There is some other padding before the first section. */
6625 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6626 - segment->p_paddr);
6627
6628 map->count = section_count;
6629 *pointer_to_map = map;
6630 pointer_to_map = &map->next;
6631 }
6632
6633 elf_seg_map (obfd) = map_first;
6634 return TRUE;
6635 }
6636
6637 /* Copy private BFD data. This copies or rewrites ELF program header
6638 information. */
6639
6640 static bfd_boolean
6641 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6642 {
6643 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6644 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6645 return TRUE;
6646
6647 if (elf_tdata (ibfd)->phdr == NULL)
6648 return TRUE;
6649
6650 if (ibfd->xvec == obfd->xvec)
6651 {
6652 /* Check to see if any sections in the input BFD
6653 covered by ELF program header have changed. */
6654 Elf_Internal_Phdr *segment;
6655 asection *section, *osec;
6656 unsigned int i, num_segments;
6657 Elf_Internal_Shdr *this_hdr;
6658 const struct elf_backend_data *bed;
6659
6660 bed = get_elf_backend_data (ibfd);
6661
6662 /* Regenerate the segment map if p_paddr is set to 0. */
6663 if (bed->want_p_paddr_set_to_zero)
6664 goto rewrite;
6665
6666 /* Initialize the segment mark field. */
6667 for (section = obfd->sections; section != NULL;
6668 section = section->next)
6669 section->segment_mark = FALSE;
6670
6671 num_segments = elf_elfheader (ibfd)->e_phnum;
6672 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6673 i < num_segments;
6674 i++, segment++)
6675 {
6676 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6677 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6678 which severly confuses things, so always regenerate the segment
6679 map in this case. */
6680 if (segment->p_paddr == 0
6681 && segment->p_memsz == 0
6682 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6683 goto rewrite;
6684
6685 for (section = ibfd->sections;
6686 section != NULL; section = section->next)
6687 {
6688 /* We mark the output section so that we know it comes
6689 from the input BFD. */
6690 osec = section->output_section;
6691 if (osec)
6692 osec->segment_mark = TRUE;
6693
6694 /* Check if this section is covered by the segment. */
6695 this_hdr = &(elf_section_data(section)->this_hdr);
6696 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6697 {
6698 /* FIXME: Check if its output section is changed or
6699 removed. What else do we need to check? */
6700 if (osec == NULL
6701 || section->flags != osec->flags
6702 || section->lma != osec->lma
6703 || section->vma != osec->vma
6704 || section->size != osec->size
6705 || section->rawsize != osec->rawsize
6706 || section->alignment_power != osec->alignment_power)
6707 goto rewrite;
6708 }
6709 }
6710 }
6711
6712 /* Check to see if any output section do not come from the
6713 input BFD. */
6714 for (section = obfd->sections; section != NULL;
6715 section = section->next)
6716 {
6717 if (section->segment_mark == FALSE)
6718 goto rewrite;
6719 else
6720 section->segment_mark = FALSE;
6721 }
6722
6723 return copy_elf_program_header (ibfd, obfd);
6724 }
6725
6726 rewrite:
6727 if (ibfd->xvec == obfd->xvec)
6728 {
6729 /* When rewriting program header, set the output maxpagesize to
6730 the maximum alignment of input PT_LOAD segments. */
6731 Elf_Internal_Phdr *segment;
6732 unsigned int i;
6733 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6734 bfd_vma maxpagesize = 0;
6735
6736 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6737 i < num_segments;
6738 i++, segment++)
6739 if (segment->p_type == PT_LOAD
6740 && maxpagesize < segment->p_align)
6741 {
6742 /* PR 17512: file: f17299af. */
6743 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
6744 (*_bfd_error_handler) (_("\
6745 %B: warning: segment alignment of 0x%llx is too large"),
6746 ibfd, (long long) segment->p_align);
6747 else
6748 maxpagesize = segment->p_align;
6749 }
6750
6751 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6752 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6753 }
6754
6755 return rewrite_elf_program_header (ibfd, obfd);
6756 }
6757
6758 /* Initialize private output section information from input section. */
6759
6760 bfd_boolean
6761 _bfd_elf_init_private_section_data (bfd *ibfd,
6762 asection *isec,
6763 bfd *obfd,
6764 asection *osec,
6765 struct bfd_link_info *link_info)
6766
6767 {
6768 Elf_Internal_Shdr *ihdr, *ohdr;
6769 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6770
6771 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6772 || obfd->xvec->flavour != bfd_target_elf_flavour)
6773 return TRUE;
6774
6775 BFD_ASSERT (elf_section_data (osec) != NULL);
6776
6777 /* For objcopy and relocatable link, don't copy the output ELF
6778 section type from input if the output BFD section flags have been
6779 set to something different. For a final link allow some flags
6780 that the linker clears to differ. */
6781 if (elf_section_type (osec) == SHT_NULL
6782 && (osec->flags == isec->flags
6783 || (final_link
6784 && ((osec->flags ^ isec->flags)
6785 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6786 elf_section_type (osec) = elf_section_type (isec);
6787
6788 /* FIXME: Is this correct for all OS/PROC specific flags? */
6789 elf_section_flags (osec) |= (elf_section_flags (isec)
6790 & (SHF_MASKOS | SHF_MASKPROC));
6791
6792 /* Set things up for objcopy and relocatable link. The output
6793 SHT_GROUP section will have its elf_next_in_group pointing back
6794 to the input group members. Ignore linker created group section.
6795 See elfNN_ia64_object_p in elfxx-ia64.c. */
6796 if (!final_link)
6797 {
6798 if (elf_sec_group (isec) == NULL
6799 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6800 {
6801 if (elf_section_flags (isec) & SHF_GROUP)
6802 elf_section_flags (osec) |= SHF_GROUP;
6803 elf_next_in_group (osec) = elf_next_in_group (isec);
6804 elf_section_data (osec)->group = elf_section_data (isec)->group;
6805 }
6806
6807 /* If not decompress, preserve SHF_COMPRESSED. */
6808 if ((ibfd->flags & BFD_DECOMPRESS) == 0)
6809 elf_section_flags (osec) |= (elf_section_flags (isec)
6810 & SHF_COMPRESSED);
6811 }
6812
6813 ihdr = &elf_section_data (isec)->this_hdr;
6814
6815 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6816 don't use the output section of the linked-to section since it
6817 may be NULL at this point. */
6818 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6819 {
6820 ohdr = &elf_section_data (osec)->this_hdr;
6821 ohdr->sh_flags |= SHF_LINK_ORDER;
6822 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6823 }
6824
6825 osec->use_rela_p = isec->use_rela_p;
6826
6827 return TRUE;
6828 }
6829
6830 /* Copy private section information. This copies over the entsize
6831 field, and sometimes the info field. */
6832
6833 bfd_boolean
6834 _bfd_elf_copy_private_section_data (bfd *ibfd,
6835 asection *isec,
6836 bfd *obfd,
6837 asection *osec)
6838 {
6839 Elf_Internal_Shdr *ihdr, *ohdr;
6840
6841 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6842 || obfd->xvec->flavour != bfd_target_elf_flavour)
6843 return TRUE;
6844
6845 ihdr = &elf_section_data (isec)->this_hdr;
6846 ohdr = &elf_section_data (osec)->this_hdr;
6847
6848 ohdr->sh_entsize = ihdr->sh_entsize;
6849
6850 if (ihdr->sh_type == SHT_SYMTAB
6851 || ihdr->sh_type == SHT_DYNSYM
6852 || ihdr->sh_type == SHT_GNU_verneed
6853 || ihdr->sh_type == SHT_GNU_verdef)
6854 ohdr->sh_info = ihdr->sh_info;
6855
6856 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6857 NULL);
6858 }
6859
6860 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6861 necessary if we are removing either the SHT_GROUP section or any of
6862 the group member sections. DISCARDED is the value that a section's
6863 output_section has if the section will be discarded, NULL when this
6864 function is called from objcopy, bfd_abs_section_ptr when called
6865 from the linker. */
6866
6867 bfd_boolean
6868 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6869 {
6870 asection *isec;
6871
6872 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6873 if (elf_section_type (isec) == SHT_GROUP)
6874 {
6875 asection *first = elf_next_in_group (isec);
6876 asection *s = first;
6877 bfd_size_type removed = 0;
6878
6879 while (s != NULL)
6880 {
6881 /* If this member section is being output but the
6882 SHT_GROUP section is not, then clear the group info
6883 set up by _bfd_elf_copy_private_section_data. */
6884 if (s->output_section != discarded
6885 && isec->output_section == discarded)
6886 {
6887 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6888 elf_group_name (s->output_section) = NULL;
6889 }
6890 /* Conversely, if the member section is not being output
6891 but the SHT_GROUP section is, then adjust its size. */
6892 else if (s->output_section == discarded
6893 && isec->output_section != discarded)
6894 removed += 4;
6895 s = elf_next_in_group (s);
6896 if (s == first)
6897 break;
6898 }
6899 if (removed != 0)
6900 {
6901 if (discarded != NULL)
6902 {
6903 /* If we've been called for ld -r, then we need to
6904 adjust the input section size. This function may
6905 be called multiple times, so save the original
6906 size. */
6907 if (isec->rawsize == 0)
6908 isec->rawsize = isec->size;
6909 isec->size = isec->rawsize - removed;
6910 }
6911 else
6912 {
6913 /* Adjust the output section size when called from
6914 objcopy. */
6915 isec->output_section->size -= removed;
6916 }
6917 }
6918 }
6919
6920 return TRUE;
6921 }
6922
6923 /* Copy private header information. */
6924
6925 bfd_boolean
6926 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6927 {
6928 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6929 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6930 return TRUE;
6931
6932 /* Copy over private BFD data if it has not already been copied.
6933 This must be done here, rather than in the copy_private_bfd_data
6934 entry point, because the latter is called after the section
6935 contents have been set, which means that the program headers have
6936 already been worked out. */
6937 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
6938 {
6939 if (! copy_private_bfd_data (ibfd, obfd))
6940 return FALSE;
6941 }
6942
6943 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6944 }
6945
6946 /* Copy private symbol information. If this symbol is in a section
6947 which we did not map into a BFD section, try to map the section
6948 index correctly. We use special macro definitions for the mapped
6949 section indices; these definitions are interpreted by the
6950 swap_out_syms function. */
6951
6952 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6953 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6954 #define MAP_STRTAB (SHN_HIOS + 3)
6955 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6956 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6957
6958 bfd_boolean
6959 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6960 asymbol *isymarg,
6961 bfd *obfd,
6962 asymbol *osymarg)
6963 {
6964 elf_symbol_type *isym, *osym;
6965
6966 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6967 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6968 return TRUE;
6969
6970 isym = elf_symbol_from (ibfd, isymarg);
6971 osym = elf_symbol_from (obfd, osymarg);
6972
6973 if (isym != NULL
6974 && isym->internal_elf_sym.st_shndx != 0
6975 && osym != NULL
6976 && bfd_is_abs_section (isym->symbol.section))
6977 {
6978 unsigned int shndx;
6979
6980 shndx = isym->internal_elf_sym.st_shndx;
6981 if (shndx == elf_onesymtab (ibfd))
6982 shndx = MAP_ONESYMTAB;
6983 else if (shndx == elf_dynsymtab (ibfd))
6984 shndx = MAP_DYNSYMTAB;
6985 else if (shndx == elf_strtab_sec (ibfd))
6986 shndx = MAP_STRTAB;
6987 else if (shndx == elf_shstrtab_sec (ibfd))
6988 shndx = MAP_SHSTRTAB;
6989 else if (shndx == elf_symtab_shndx (ibfd))
6990 shndx = MAP_SYM_SHNDX;
6991 osym->internal_elf_sym.st_shndx = shndx;
6992 }
6993
6994 return TRUE;
6995 }
6996
6997 /* Swap out the symbols. */
6998
6999 static bfd_boolean
7000 swap_out_syms (bfd *abfd,
7001 struct bfd_strtab_hash **sttp,
7002 int relocatable_p)
7003 {
7004 const struct elf_backend_data *bed;
7005 int symcount;
7006 asymbol **syms;
7007 struct bfd_strtab_hash *stt;
7008 Elf_Internal_Shdr *symtab_hdr;
7009 Elf_Internal_Shdr *symtab_shndx_hdr;
7010 Elf_Internal_Shdr *symstrtab_hdr;
7011 bfd_byte *outbound_syms;
7012 bfd_byte *outbound_shndx;
7013 int idx;
7014 unsigned int num_locals;
7015 bfd_size_type amt;
7016 bfd_boolean name_local_sections;
7017
7018 if (!elf_map_symbols (abfd, &num_locals))
7019 return FALSE;
7020
7021 /* Dump out the symtabs. */
7022 stt = _bfd_elf_stringtab_init ();
7023 if (stt == NULL)
7024 return FALSE;
7025
7026 bed = get_elf_backend_data (abfd);
7027 symcount = bfd_get_symcount (abfd);
7028 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7029 symtab_hdr->sh_type = SHT_SYMTAB;
7030 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7031 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7032 symtab_hdr->sh_info = num_locals + 1;
7033 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7034
7035 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7036 symstrtab_hdr->sh_type = SHT_STRTAB;
7037
7038 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7039 bed->s->sizeof_sym);
7040 if (outbound_syms == NULL)
7041 {
7042 _bfd_stringtab_free (stt);
7043 return FALSE;
7044 }
7045 symtab_hdr->contents = outbound_syms;
7046
7047 outbound_shndx = NULL;
7048 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
7049 if (symtab_shndx_hdr->sh_name != 0)
7050 {
7051 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7052 outbound_shndx = (bfd_byte *)
7053 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7054 if (outbound_shndx == NULL)
7055 {
7056 _bfd_stringtab_free (stt);
7057 return FALSE;
7058 }
7059
7060 symtab_shndx_hdr->contents = outbound_shndx;
7061 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7062 symtab_shndx_hdr->sh_size = amt;
7063 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7064 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7065 }
7066
7067 /* Now generate the data (for "contents"). */
7068 {
7069 /* Fill in zeroth symbol and swap it out. */
7070 Elf_Internal_Sym sym;
7071 sym.st_name = 0;
7072 sym.st_value = 0;
7073 sym.st_size = 0;
7074 sym.st_info = 0;
7075 sym.st_other = 0;
7076 sym.st_shndx = SHN_UNDEF;
7077 sym.st_target_internal = 0;
7078 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
7079 outbound_syms += bed->s->sizeof_sym;
7080 if (outbound_shndx != NULL)
7081 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
7082 }
7083
7084 name_local_sections
7085 = (bed->elf_backend_name_local_section_symbols
7086 && bed->elf_backend_name_local_section_symbols (abfd));
7087
7088 syms = bfd_get_outsymbols (abfd);
7089 for (idx = 0; idx < symcount; idx++)
7090 {
7091 Elf_Internal_Sym sym;
7092 bfd_vma value = syms[idx]->value;
7093 elf_symbol_type *type_ptr;
7094 flagword flags = syms[idx]->flags;
7095 int type;
7096
7097 if (!name_local_sections
7098 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7099 {
7100 /* Local section symbols have no name. */
7101 sym.st_name = 0;
7102 }
7103 else
7104 {
7105 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
7106 syms[idx]->name,
7107 TRUE, FALSE);
7108 if (sym.st_name == (unsigned long) -1)
7109 {
7110 _bfd_stringtab_free (stt);
7111 return FALSE;
7112 }
7113 }
7114
7115 type_ptr = elf_symbol_from (abfd, syms[idx]);
7116
7117 if ((flags & BSF_SECTION_SYM) == 0
7118 && bfd_is_com_section (syms[idx]->section))
7119 {
7120 /* ELF common symbols put the alignment into the `value' field,
7121 and the size into the `size' field. This is backwards from
7122 how BFD handles it, so reverse it here. */
7123 sym.st_size = value;
7124 if (type_ptr == NULL
7125 || type_ptr->internal_elf_sym.st_value == 0)
7126 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7127 else
7128 sym.st_value = type_ptr->internal_elf_sym.st_value;
7129 sym.st_shndx = _bfd_elf_section_from_bfd_section
7130 (abfd, syms[idx]->section);
7131 }
7132 else
7133 {
7134 asection *sec = syms[idx]->section;
7135 unsigned int shndx;
7136
7137 if (sec->output_section)
7138 {
7139 value += sec->output_offset;
7140 sec = sec->output_section;
7141 }
7142
7143 /* Don't add in the section vma for relocatable output. */
7144 if (! relocatable_p)
7145 value += sec->vma;
7146 sym.st_value = value;
7147 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7148
7149 if (bfd_is_abs_section (sec)
7150 && type_ptr != NULL
7151 && type_ptr->internal_elf_sym.st_shndx != 0)
7152 {
7153 /* This symbol is in a real ELF section which we did
7154 not create as a BFD section. Undo the mapping done
7155 by copy_private_symbol_data. */
7156 shndx = type_ptr->internal_elf_sym.st_shndx;
7157 switch (shndx)
7158 {
7159 case MAP_ONESYMTAB:
7160 shndx = elf_onesymtab (abfd);
7161 break;
7162 case MAP_DYNSYMTAB:
7163 shndx = elf_dynsymtab (abfd);
7164 break;
7165 case MAP_STRTAB:
7166 shndx = elf_strtab_sec (abfd);
7167 break;
7168 case MAP_SHSTRTAB:
7169 shndx = elf_shstrtab_sec (abfd);
7170 break;
7171 case MAP_SYM_SHNDX:
7172 shndx = elf_symtab_shndx (abfd);
7173 break;
7174 default:
7175 shndx = SHN_ABS;
7176 break;
7177 }
7178 }
7179 else
7180 {
7181 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7182
7183 if (shndx == SHN_BAD)
7184 {
7185 asection *sec2;
7186
7187 /* Writing this would be a hell of a lot easier if
7188 we had some decent documentation on bfd, and
7189 knew what to expect of the library, and what to
7190 demand of applications. For example, it
7191 appears that `objcopy' might not set the
7192 section of a symbol to be a section that is
7193 actually in the output file. */
7194 sec2 = bfd_get_section_by_name (abfd, sec->name);
7195 if (sec2 == NULL)
7196 {
7197 _bfd_error_handler (_("\
7198 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7199 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7200 sec->name);
7201 bfd_set_error (bfd_error_invalid_operation);
7202 _bfd_stringtab_free (stt);
7203 return FALSE;
7204 }
7205
7206 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7207 BFD_ASSERT (shndx != SHN_BAD);
7208 }
7209 }
7210
7211 sym.st_shndx = shndx;
7212 }
7213
7214 if ((flags & BSF_THREAD_LOCAL) != 0)
7215 type = STT_TLS;
7216 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7217 type = STT_GNU_IFUNC;
7218 else if ((flags & BSF_FUNCTION) != 0)
7219 type = STT_FUNC;
7220 else if ((flags & BSF_OBJECT) != 0)
7221 type = STT_OBJECT;
7222 else if ((flags & BSF_RELC) != 0)
7223 type = STT_RELC;
7224 else if ((flags & BSF_SRELC) != 0)
7225 type = STT_SRELC;
7226 else
7227 type = STT_NOTYPE;
7228
7229 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7230 type = STT_TLS;
7231
7232 /* Processor-specific types. */
7233 if (type_ptr != NULL
7234 && bed->elf_backend_get_symbol_type)
7235 type = ((*bed->elf_backend_get_symbol_type)
7236 (&type_ptr->internal_elf_sym, type));
7237
7238 if (flags & BSF_SECTION_SYM)
7239 {
7240 if (flags & BSF_GLOBAL)
7241 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7242 else
7243 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7244 }
7245 else if (bfd_is_com_section (syms[idx]->section))
7246 {
7247 #ifdef USE_STT_COMMON
7248 if (type == STT_OBJECT)
7249 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
7250 else
7251 #endif
7252 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7253 }
7254 else if (bfd_is_und_section (syms[idx]->section))
7255 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7256 ? STB_WEAK
7257 : STB_GLOBAL),
7258 type);
7259 else if (flags & BSF_FILE)
7260 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7261 else
7262 {
7263 int bind = STB_LOCAL;
7264
7265 if (flags & BSF_LOCAL)
7266 bind = STB_LOCAL;
7267 else if (flags & BSF_GNU_UNIQUE)
7268 bind = STB_GNU_UNIQUE;
7269 else if (flags & BSF_WEAK)
7270 bind = STB_WEAK;
7271 else if (flags & BSF_GLOBAL)
7272 bind = STB_GLOBAL;
7273
7274 sym.st_info = ELF_ST_INFO (bind, type);
7275 }
7276
7277 if (type_ptr != NULL)
7278 {
7279 sym.st_other = type_ptr->internal_elf_sym.st_other;
7280 sym.st_target_internal
7281 = type_ptr->internal_elf_sym.st_target_internal;
7282 }
7283 else
7284 {
7285 sym.st_other = 0;
7286 sym.st_target_internal = 0;
7287 }
7288
7289 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
7290 outbound_syms += bed->s->sizeof_sym;
7291 if (outbound_shndx != NULL)
7292 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
7293 }
7294
7295 *sttp = stt;
7296 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
7297 symstrtab_hdr->sh_type = SHT_STRTAB;
7298
7299 symstrtab_hdr->sh_flags = 0;
7300 symstrtab_hdr->sh_addr = 0;
7301 symstrtab_hdr->sh_entsize = 0;
7302 symstrtab_hdr->sh_link = 0;
7303 symstrtab_hdr->sh_info = 0;
7304 symstrtab_hdr->sh_addralign = 1;
7305
7306 return TRUE;
7307 }
7308
7309 /* Return the number of bytes required to hold the symtab vector.
7310
7311 Note that we base it on the count plus 1, since we will null terminate
7312 the vector allocated based on this size. However, the ELF symbol table
7313 always has a dummy entry as symbol #0, so it ends up even. */
7314
7315 long
7316 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7317 {
7318 long symcount;
7319 long symtab_size;
7320 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7321
7322 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7323 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7324 if (symcount > 0)
7325 symtab_size -= sizeof (asymbol *);
7326
7327 return symtab_size;
7328 }
7329
7330 long
7331 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7332 {
7333 long symcount;
7334 long symtab_size;
7335 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7336
7337 if (elf_dynsymtab (abfd) == 0)
7338 {
7339 bfd_set_error (bfd_error_invalid_operation);
7340 return -1;
7341 }
7342
7343 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7344 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7345 if (symcount > 0)
7346 symtab_size -= sizeof (asymbol *);
7347
7348 return symtab_size;
7349 }
7350
7351 long
7352 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7353 sec_ptr asect)
7354 {
7355 return (asect->reloc_count + 1) * sizeof (arelent *);
7356 }
7357
7358 /* Canonicalize the relocs. */
7359
7360 long
7361 _bfd_elf_canonicalize_reloc (bfd *abfd,
7362 sec_ptr section,
7363 arelent **relptr,
7364 asymbol **symbols)
7365 {
7366 arelent *tblptr;
7367 unsigned int i;
7368 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7369
7370 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7371 return -1;
7372
7373 tblptr = section->relocation;
7374 for (i = 0; i < section->reloc_count; i++)
7375 *relptr++ = tblptr++;
7376
7377 *relptr = NULL;
7378
7379 return section->reloc_count;
7380 }
7381
7382 long
7383 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7384 {
7385 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7386 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7387
7388 if (symcount >= 0)
7389 bfd_get_symcount (abfd) = symcount;
7390 return symcount;
7391 }
7392
7393 long
7394 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7395 asymbol **allocation)
7396 {
7397 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7398 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7399
7400 if (symcount >= 0)
7401 bfd_get_dynamic_symcount (abfd) = symcount;
7402 return symcount;
7403 }
7404
7405 /* Return the size required for the dynamic reloc entries. Any loadable
7406 section that was actually installed in the BFD, and has type SHT_REL
7407 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7408 dynamic reloc section. */
7409
7410 long
7411 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7412 {
7413 long ret;
7414 asection *s;
7415
7416 if (elf_dynsymtab (abfd) == 0)
7417 {
7418 bfd_set_error (bfd_error_invalid_operation);
7419 return -1;
7420 }
7421
7422 ret = sizeof (arelent *);
7423 for (s = abfd->sections; s != NULL; s = s->next)
7424 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7425 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7426 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7427 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7428 * sizeof (arelent *));
7429
7430 return ret;
7431 }
7432
7433 /* Canonicalize the dynamic relocation entries. Note that we return the
7434 dynamic relocations as a single block, although they are actually
7435 associated with particular sections; the interface, which was
7436 designed for SunOS style shared libraries, expects that there is only
7437 one set of dynamic relocs. Any loadable section that was actually
7438 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7439 dynamic symbol table, is considered to be a dynamic reloc section. */
7440
7441 long
7442 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7443 arelent **storage,
7444 asymbol **syms)
7445 {
7446 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7447 asection *s;
7448 long ret;
7449
7450 if (elf_dynsymtab (abfd) == 0)
7451 {
7452 bfd_set_error (bfd_error_invalid_operation);
7453 return -1;
7454 }
7455
7456 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7457 ret = 0;
7458 for (s = abfd->sections; s != NULL; s = s->next)
7459 {
7460 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7461 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7462 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7463 {
7464 arelent *p;
7465 long count, i;
7466
7467 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7468 return -1;
7469 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7470 p = s->relocation;
7471 for (i = 0; i < count; i++)
7472 *storage++ = p++;
7473 ret += count;
7474 }
7475 }
7476
7477 *storage = NULL;
7478
7479 return ret;
7480 }
7481 \f
7482 /* Read in the version information. */
7483
7484 bfd_boolean
7485 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7486 {
7487 bfd_byte *contents = NULL;
7488 unsigned int freeidx = 0;
7489
7490 if (elf_dynverref (abfd) != 0)
7491 {
7492 Elf_Internal_Shdr *hdr;
7493 Elf_External_Verneed *everneed;
7494 Elf_Internal_Verneed *iverneed;
7495 unsigned int i;
7496 bfd_byte *contents_end;
7497
7498 hdr = &elf_tdata (abfd)->dynverref_hdr;
7499
7500 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
7501 {
7502 error_return_bad_verref:
7503 (*_bfd_error_handler)
7504 (_("%B: .gnu.version_r invalid entry"), abfd);
7505 bfd_set_error (bfd_error_bad_value);
7506 error_return_verref:
7507 elf_tdata (abfd)->verref = NULL;
7508 elf_tdata (abfd)->cverrefs = 0;
7509 goto error_return;
7510 }
7511
7512 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7513 if (contents == NULL)
7514 goto error_return_verref;
7515
7516 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7517 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7518 goto error_return_verref;
7519
7520 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7521 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7522
7523 if (elf_tdata (abfd)->verref == NULL)
7524 goto error_return_verref;
7525
7526 BFD_ASSERT (sizeof (Elf_External_Verneed)
7527 == sizeof (Elf_External_Vernaux));
7528 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7529 everneed = (Elf_External_Verneed *) contents;
7530 iverneed = elf_tdata (abfd)->verref;
7531 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7532 {
7533 Elf_External_Vernaux *evernaux;
7534 Elf_Internal_Vernaux *ivernaux;
7535 unsigned int j;
7536
7537 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7538
7539 iverneed->vn_bfd = abfd;
7540
7541 iverneed->vn_filename =
7542 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7543 iverneed->vn_file);
7544 if (iverneed->vn_filename == NULL)
7545 goto error_return_bad_verref;
7546
7547 if (iverneed->vn_cnt == 0)
7548 iverneed->vn_auxptr = NULL;
7549 else
7550 {
7551 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7552 bfd_alloc2 (abfd, iverneed->vn_cnt,
7553 sizeof (Elf_Internal_Vernaux));
7554 if (iverneed->vn_auxptr == NULL)
7555 goto error_return_verref;
7556 }
7557
7558 if (iverneed->vn_aux
7559 > (size_t) (contents_end - (bfd_byte *) everneed))
7560 goto error_return_bad_verref;
7561
7562 evernaux = ((Elf_External_Vernaux *)
7563 ((bfd_byte *) everneed + iverneed->vn_aux));
7564 ivernaux = iverneed->vn_auxptr;
7565 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7566 {
7567 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7568
7569 ivernaux->vna_nodename =
7570 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7571 ivernaux->vna_name);
7572 if (ivernaux->vna_nodename == NULL)
7573 goto error_return_bad_verref;
7574
7575 if (ivernaux->vna_other > freeidx)
7576 freeidx = ivernaux->vna_other;
7577
7578 ivernaux->vna_nextptr = NULL;
7579 if (ivernaux->vna_next == 0)
7580 {
7581 iverneed->vn_cnt = j + 1;
7582 break;
7583 }
7584 if (j + 1 < iverneed->vn_cnt)
7585 ivernaux->vna_nextptr = ivernaux + 1;
7586
7587 if (ivernaux->vna_next
7588 > (size_t) (contents_end - (bfd_byte *) evernaux))
7589 goto error_return_bad_verref;
7590
7591 evernaux = ((Elf_External_Vernaux *)
7592 ((bfd_byte *) evernaux + ivernaux->vna_next));
7593 }
7594
7595 iverneed->vn_nextref = NULL;
7596 if (iverneed->vn_next == 0)
7597 break;
7598 if (i + 1 < hdr->sh_info)
7599 iverneed->vn_nextref = iverneed + 1;
7600
7601 if (iverneed->vn_next
7602 > (size_t) (contents_end - (bfd_byte *) everneed))
7603 goto error_return_bad_verref;
7604
7605 everneed = ((Elf_External_Verneed *)
7606 ((bfd_byte *) everneed + iverneed->vn_next));
7607 }
7608 elf_tdata (abfd)->cverrefs = i;
7609
7610 free (contents);
7611 contents = NULL;
7612 }
7613
7614 if (elf_dynverdef (abfd) != 0)
7615 {
7616 Elf_Internal_Shdr *hdr;
7617 Elf_External_Verdef *everdef;
7618 Elf_Internal_Verdef *iverdef;
7619 Elf_Internal_Verdef *iverdefarr;
7620 Elf_Internal_Verdef iverdefmem;
7621 unsigned int i;
7622 unsigned int maxidx;
7623 bfd_byte *contents_end_def, *contents_end_aux;
7624
7625 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7626
7627 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
7628 {
7629 error_return_bad_verdef:
7630 (*_bfd_error_handler)
7631 (_("%B: .gnu.version_d invalid entry"), abfd);
7632 bfd_set_error (bfd_error_bad_value);
7633 error_return_verdef:
7634 elf_tdata (abfd)->verdef = NULL;
7635 elf_tdata (abfd)->cverdefs = 0;
7636 goto error_return;
7637 }
7638
7639 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7640 if (contents == NULL)
7641 goto error_return_verdef;
7642 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7643 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7644 goto error_return_verdef;
7645
7646 BFD_ASSERT (sizeof (Elf_External_Verdef)
7647 >= sizeof (Elf_External_Verdaux));
7648 contents_end_def = contents + hdr->sh_size
7649 - sizeof (Elf_External_Verdef);
7650 contents_end_aux = contents + hdr->sh_size
7651 - sizeof (Elf_External_Verdaux);
7652
7653 /* We know the number of entries in the section but not the maximum
7654 index. Therefore we have to run through all entries and find
7655 the maximum. */
7656 everdef = (Elf_External_Verdef *) contents;
7657 maxidx = 0;
7658 for (i = 0; i < hdr->sh_info; ++i)
7659 {
7660 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7661
7662 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
7663 goto error_return_bad_verdef;
7664 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7665 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7666
7667 if (iverdefmem.vd_next == 0)
7668 break;
7669
7670 if (iverdefmem.vd_next
7671 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7672 goto error_return_bad_verdef;
7673
7674 everdef = ((Elf_External_Verdef *)
7675 ((bfd_byte *) everdef + iverdefmem.vd_next));
7676 }
7677
7678 if (default_imported_symver)
7679 {
7680 if (freeidx > maxidx)
7681 maxidx = ++freeidx;
7682 else
7683 freeidx = ++maxidx;
7684 }
7685
7686 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7687 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7688 if (elf_tdata (abfd)->verdef == NULL)
7689 goto error_return_verdef;
7690
7691 elf_tdata (abfd)->cverdefs = maxidx;
7692
7693 everdef = (Elf_External_Verdef *) contents;
7694 iverdefarr = elf_tdata (abfd)->verdef;
7695 for (i = 0; i < hdr->sh_info; i++)
7696 {
7697 Elf_External_Verdaux *everdaux;
7698 Elf_Internal_Verdaux *iverdaux;
7699 unsigned int j;
7700
7701 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7702
7703 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7704 goto error_return_bad_verdef;
7705
7706 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7707 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7708
7709 iverdef->vd_bfd = abfd;
7710
7711 if (iverdef->vd_cnt == 0)
7712 iverdef->vd_auxptr = NULL;
7713 else
7714 {
7715 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7716 bfd_alloc2 (abfd, iverdef->vd_cnt,
7717 sizeof (Elf_Internal_Verdaux));
7718 if (iverdef->vd_auxptr == NULL)
7719 goto error_return_verdef;
7720 }
7721
7722 if (iverdef->vd_aux
7723 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7724 goto error_return_bad_verdef;
7725
7726 everdaux = ((Elf_External_Verdaux *)
7727 ((bfd_byte *) everdef + iverdef->vd_aux));
7728 iverdaux = iverdef->vd_auxptr;
7729 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7730 {
7731 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7732
7733 iverdaux->vda_nodename =
7734 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7735 iverdaux->vda_name);
7736 if (iverdaux->vda_nodename == NULL)
7737 goto error_return_bad_verdef;
7738
7739 iverdaux->vda_nextptr = NULL;
7740 if (iverdaux->vda_next == 0)
7741 {
7742 iverdef->vd_cnt = j + 1;
7743 break;
7744 }
7745 if (j + 1 < iverdef->vd_cnt)
7746 iverdaux->vda_nextptr = iverdaux + 1;
7747
7748 if (iverdaux->vda_next
7749 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7750 goto error_return_bad_verdef;
7751
7752 everdaux = ((Elf_External_Verdaux *)
7753 ((bfd_byte *) everdaux + iverdaux->vda_next));
7754 }
7755
7756 if (iverdef->vd_cnt)
7757 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7758
7759 iverdef->vd_nextdef = NULL;
7760 if (iverdef->vd_next == 0)
7761 break;
7762 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7763 iverdef->vd_nextdef = iverdef + 1;
7764
7765 everdef = ((Elf_External_Verdef *)
7766 ((bfd_byte *) everdef + iverdef->vd_next));
7767 }
7768
7769 free (contents);
7770 contents = NULL;
7771 }
7772 else if (default_imported_symver)
7773 {
7774 if (freeidx < 3)
7775 freeidx = 3;
7776 else
7777 freeidx++;
7778
7779 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7780 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7781 if (elf_tdata (abfd)->verdef == NULL)
7782 goto error_return;
7783
7784 elf_tdata (abfd)->cverdefs = freeidx;
7785 }
7786
7787 /* Create a default version based on the soname. */
7788 if (default_imported_symver)
7789 {
7790 Elf_Internal_Verdef *iverdef;
7791 Elf_Internal_Verdaux *iverdaux;
7792
7793 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7794
7795 iverdef->vd_version = VER_DEF_CURRENT;
7796 iverdef->vd_flags = 0;
7797 iverdef->vd_ndx = freeidx;
7798 iverdef->vd_cnt = 1;
7799
7800 iverdef->vd_bfd = abfd;
7801
7802 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7803 if (iverdef->vd_nodename == NULL)
7804 goto error_return_verdef;
7805 iverdef->vd_nextdef = NULL;
7806 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
7807 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
7808 if (iverdef->vd_auxptr == NULL)
7809 goto error_return_verdef;
7810
7811 iverdaux = iverdef->vd_auxptr;
7812 iverdaux->vda_nodename = iverdef->vd_nodename;
7813 }
7814
7815 return TRUE;
7816
7817 error_return:
7818 if (contents != NULL)
7819 free (contents);
7820 return FALSE;
7821 }
7822 \f
7823 asymbol *
7824 _bfd_elf_make_empty_symbol (bfd *abfd)
7825 {
7826 elf_symbol_type *newsym;
7827
7828 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
7829 if (!newsym)
7830 return NULL;
7831 newsym->symbol.the_bfd = abfd;
7832 return &newsym->symbol;
7833 }
7834
7835 void
7836 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7837 asymbol *symbol,
7838 symbol_info *ret)
7839 {
7840 bfd_symbol_info (symbol, ret);
7841 }
7842
7843 /* Return whether a symbol name implies a local symbol. Most targets
7844 use this function for the is_local_label_name entry point, but some
7845 override it. */
7846
7847 bfd_boolean
7848 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7849 const char *name)
7850 {
7851 /* Normal local symbols start with ``.L''. */
7852 if (name[0] == '.' && name[1] == 'L')
7853 return TRUE;
7854
7855 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7856 DWARF debugging symbols starting with ``..''. */
7857 if (name[0] == '.' && name[1] == '.')
7858 return TRUE;
7859
7860 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7861 emitting DWARF debugging output. I suspect this is actually a
7862 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7863 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7864 underscore to be emitted on some ELF targets). For ease of use,
7865 we treat such symbols as local. */
7866 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7867 return TRUE;
7868
7869 /* Treat assembler generated local labels as local. */
7870 if (name[0] == 'L' && name[strlen (name) - 1] < 32)
7871 return TRUE;
7872
7873 return FALSE;
7874 }
7875
7876 alent *
7877 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7878 asymbol *symbol ATTRIBUTE_UNUSED)
7879 {
7880 abort ();
7881 return NULL;
7882 }
7883
7884 bfd_boolean
7885 _bfd_elf_set_arch_mach (bfd *abfd,
7886 enum bfd_architecture arch,
7887 unsigned long machine)
7888 {
7889 /* If this isn't the right architecture for this backend, and this
7890 isn't the generic backend, fail. */
7891 if (arch != get_elf_backend_data (abfd)->arch
7892 && arch != bfd_arch_unknown
7893 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7894 return FALSE;
7895
7896 return bfd_default_set_arch_mach (abfd, arch, machine);
7897 }
7898
7899 /* Find the nearest line to a particular section and offset,
7900 for error reporting. */
7901
7902 bfd_boolean
7903 _bfd_elf_find_nearest_line (bfd *abfd,
7904 asymbol **symbols,
7905 asection *section,
7906 bfd_vma offset,
7907 const char **filename_ptr,
7908 const char **functionname_ptr,
7909 unsigned int *line_ptr,
7910 unsigned int *discriminator_ptr)
7911 {
7912 bfd_boolean found;
7913
7914 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7915 filename_ptr, functionname_ptr,
7916 line_ptr, discriminator_ptr,
7917 dwarf_debug_sections, 0,
7918 &elf_tdata (abfd)->dwarf2_find_line_info)
7919 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
7920 filename_ptr, functionname_ptr,
7921 line_ptr))
7922 {
7923 if (!*functionname_ptr)
7924 _bfd_elf_find_function (abfd, symbols, section, offset,
7925 *filename_ptr ? NULL : filename_ptr,
7926 functionname_ptr);
7927 return TRUE;
7928 }
7929
7930 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7931 &found, filename_ptr,
7932 functionname_ptr, line_ptr,
7933 &elf_tdata (abfd)->line_info))
7934 return FALSE;
7935 if (found && (*functionname_ptr || *line_ptr))
7936 return TRUE;
7937
7938 if (symbols == NULL)
7939 return FALSE;
7940
7941 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
7942 filename_ptr, functionname_ptr))
7943 return FALSE;
7944
7945 *line_ptr = 0;
7946 return TRUE;
7947 }
7948
7949 /* Find the line for a symbol. */
7950
7951 bfd_boolean
7952 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7953 const char **filename_ptr, unsigned int *line_ptr)
7954 {
7955 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
7956 filename_ptr, NULL, line_ptr, NULL,
7957 dwarf_debug_sections, 0,
7958 &elf_tdata (abfd)->dwarf2_find_line_info);
7959 }
7960
7961 /* After a call to bfd_find_nearest_line, successive calls to
7962 bfd_find_inliner_info can be used to get source information about
7963 each level of function inlining that terminated at the address
7964 passed to bfd_find_nearest_line. Currently this is only supported
7965 for DWARF2 with appropriate DWARF3 extensions. */
7966
7967 bfd_boolean
7968 _bfd_elf_find_inliner_info (bfd *abfd,
7969 const char **filename_ptr,
7970 const char **functionname_ptr,
7971 unsigned int *line_ptr)
7972 {
7973 bfd_boolean found;
7974 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7975 functionname_ptr, line_ptr,
7976 & elf_tdata (abfd)->dwarf2_find_line_info);
7977 return found;
7978 }
7979
7980 int
7981 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7982 {
7983 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7984 int ret = bed->s->sizeof_ehdr;
7985
7986 if (!info->relocatable)
7987 {
7988 bfd_size_type phdr_size = elf_program_header_size (abfd);
7989
7990 if (phdr_size == (bfd_size_type) -1)
7991 {
7992 struct elf_segment_map *m;
7993
7994 phdr_size = 0;
7995 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
7996 phdr_size += bed->s->sizeof_phdr;
7997
7998 if (phdr_size == 0)
7999 phdr_size = get_program_header_size (abfd, info);
8000 }
8001
8002 elf_program_header_size (abfd) = phdr_size;
8003 ret += phdr_size;
8004 }
8005
8006 return ret;
8007 }
8008
8009 bfd_boolean
8010 _bfd_elf_set_section_contents (bfd *abfd,
8011 sec_ptr section,
8012 const void *location,
8013 file_ptr offset,
8014 bfd_size_type count)
8015 {
8016 Elf_Internal_Shdr *hdr;
8017 file_ptr pos;
8018
8019 if (! abfd->output_has_begun
8020 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8021 return FALSE;
8022
8023 if (!count)
8024 return TRUE;
8025
8026 hdr = &elf_section_data (section)->this_hdr;
8027 if (hdr->sh_offset == (file_ptr) -1)
8028 {
8029 /* We must compress this section. Write output to the buffer. */
8030 unsigned char *contents = hdr->contents;
8031 if ((offset + count) > hdr->sh_size
8032 || (section->flags & SEC_ELF_COMPRESS) == 0
8033 || contents == NULL)
8034 abort ();
8035 memcpy (contents + offset, location, count);
8036 return TRUE;
8037 }
8038 pos = hdr->sh_offset + offset;
8039 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8040 || bfd_bwrite (location, count, abfd) != count)
8041 return FALSE;
8042
8043 return TRUE;
8044 }
8045
8046 void
8047 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8048 arelent *cache_ptr ATTRIBUTE_UNUSED,
8049 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8050 {
8051 abort ();
8052 }
8053
8054 /* Try to convert a non-ELF reloc into an ELF one. */
8055
8056 bfd_boolean
8057 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8058 {
8059 /* Check whether we really have an ELF howto. */
8060
8061 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8062 {
8063 bfd_reloc_code_real_type code;
8064 reloc_howto_type *howto;
8065
8066 /* Alien reloc: Try to determine its type to replace it with an
8067 equivalent ELF reloc. */
8068
8069 if (areloc->howto->pc_relative)
8070 {
8071 switch (areloc->howto->bitsize)
8072 {
8073 case 8:
8074 code = BFD_RELOC_8_PCREL;
8075 break;
8076 case 12:
8077 code = BFD_RELOC_12_PCREL;
8078 break;
8079 case 16:
8080 code = BFD_RELOC_16_PCREL;
8081 break;
8082 case 24:
8083 code = BFD_RELOC_24_PCREL;
8084 break;
8085 case 32:
8086 code = BFD_RELOC_32_PCREL;
8087 break;
8088 case 64:
8089 code = BFD_RELOC_64_PCREL;
8090 break;
8091 default:
8092 goto fail;
8093 }
8094
8095 howto = bfd_reloc_type_lookup (abfd, code);
8096
8097 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8098 {
8099 if (howto->pcrel_offset)
8100 areloc->addend += areloc->address;
8101 else
8102 areloc->addend -= areloc->address; /* addend is unsigned!! */
8103 }
8104 }
8105 else
8106 {
8107 switch (areloc->howto->bitsize)
8108 {
8109 case 8:
8110 code = BFD_RELOC_8;
8111 break;
8112 case 14:
8113 code = BFD_RELOC_14;
8114 break;
8115 case 16:
8116 code = BFD_RELOC_16;
8117 break;
8118 case 26:
8119 code = BFD_RELOC_26;
8120 break;
8121 case 32:
8122 code = BFD_RELOC_32;
8123 break;
8124 case 64:
8125 code = BFD_RELOC_64;
8126 break;
8127 default:
8128 goto fail;
8129 }
8130
8131 howto = bfd_reloc_type_lookup (abfd, code);
8132 }
8133
8134 if (howto)
8135 areloc->howto = howto;
8136 else
8137 goto fail;
8138 }
8139
8140 return TRUE;
8141
8142 fail:
8143 (*_bfd_error_handler)
8144 (_("%B: unsupported relocation type %s"),
8145 abfd, areloc->howto->name);
8146 bfd_set_error (bfd_error_bad_value);
8147 return FALSE;
8148 }
8149
8150 bfd_boolean
8151 _bfd_elf_close_and_cleanup (bfd *abfd)
8152 {
8153 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8154 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8155 {
8156 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8157 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8158 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8159 }
8160
8161 return _bfd_generic_close_and_cleanup (abfd);
8162 }
8163
8164 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8165 in the relocation's offset. Thus we cannot allow any sort of sanity
8166 range-checking to interfere. There is nothing else to do in processing
8167 this reloc. */
8168
8169 bfd_reloc_status_type
8170 _bfd_elf_rel_vtable_reloc_fn
8171 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8172 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8173 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8174 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8175 {
8176 return bfd_reloc_ok;
8177 }
8178 \f
8179 /* Elf core file support. Much of this only works on native
8180 toolchains, since we rely on knowing the
8181 machine-dependent procfs structure in order to pick
8182 out details about the corefile. */
8183
8184 #ifdef HAVE_SYS_PROCFS_H
8185 /* Needed for new procfs interface on sparc-solaris. */
8186 # define _STRUCTURED_PROC 1
8187 # include <sys/procfs.h>
8188 #endif
8189
8190 /* Return a PID that identifies a "thread" for threaded cores, or the
8191 PID of the main process for non-threaded cores. */
8192
8193 static int
8194 elfcore_make_pid (bfd *abfd)
8195 {
8196 int pid;
8197
8198 pid = elf_tdata (abfd)->core->lwpid;
8199 if (pid == 0)
8200 pid = elf_tdata (abfd)->core->pid;
8201
8202 return pid;
8203 }
8204
8205 /* If there isn't a section called NAME, make one, using
8206 data from SECT. Note, this function will generate a
8207 reference to NAME, so you shouldn't deallocate or
8208 overwrite it. */
8209
8210 static bfd_boolean
8211 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8212 {
8213 asection *sect2;
8214
8215 if (bfd_get_section_by_name (abfd, name) != NULL)
8216 return TRUE;
8217
8218 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8219 if (sect2 == NULL)
8220 return FALSE;
8221
8222 sect2->size = sect->size;
8223 sect2->filepos = sect->filepos;
8224 sect2->alignment_power = sect->alignment_power;
8225 return TRUE;
8226 }
8227
8228 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8229 actually creates up to two pseudosections:
8230 - For the single-threaded case, a section named NAME, unless
8231 such a section already exists.
8232 - For the multi-threaded case, a section named "NAME/PID", where
8233 PID is elfcore_make_pid (abfd).
8234 Both pseudosections have identical contents. */
8235 bfd_boolean
8236 _bfd_elfcore_make_pseudosection (bfd *abfd,
8237 char *name,
8238 size_t size,
8239 ufile_ptr filepos)
8240 {
8241 char buf[100];
8242 char *threaded_name;
8243 size_t len;
8244 asection *sect;
8245
8246 /* Build the section name. */
8247
8248 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8249 len = strlen (buf) + 1;
8250 threaded_name = (char *) bfd_alloc (abfd, len);
8251 if (threaded_name == NULL)
8252 return FALSE;
8253 memcpy (threaded_name, buf, len);
8254
8255 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8256 SEC_HAS_CONTENTS);
8257 if (sect == NULL)
8258 return FALSE;
8259 sect->size = size;
8260 sect->filepos = filepos;
8261 sect->alignment_power = 2;
8262
8263 return elfcore_maybe_make_sect (abfd, name, sect);
8264 }
8265
8266 /* prstatus_t exists on:
8267 solaris 2.5+
8268 linux 2.[01] + glibc
8269 unixware 4.2
8270 */
8271
8272 #if defined (HAVE_PRSTATUS_T)
8273
8274 static bfd_boolean
8275 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8276 {
8277 size_t size;
8278 int offset;
8279
8280 if (note->descsz == sizeof (prstatus_t))
8281 {
8282 prstatus_t prstat;
8283
8284 size = sizeof (prstat.pr_reg);
8285 offset = offsetof (prstatus_t, pr_reg);
8286 memcpy (&prstat, note->descdata, sizeof (prstat));
8287
8288 /* Do not overwrite the core signal if it
8289 has already been set by another thread. */
8290 if (elf_tdata (abfd)->core->signal == 0)
8291 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8292 if (elf_tdata (abfd)->core->pid == 0)
8293 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8294
8295 /* pr_who exists on:
8296 solaris 2.5+
8297 unixware 4.2
8298 pr_who doesn't exist on:
8299 linux 2.[01]
8300 */
8301 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8302 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8303 #else
8304 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8305 #endif
8306 }
8307 #if defined (HAVE_PRSTATUS32_T)
8308 else if (note->descsz == sizeof (prstatus32_t))
8309 {
8310 /* 64-bit host, 32-bit corefile */
8311 prstatus32_t prstat;
8312
8313 size = sizeof (prstat.pr_reg);
8314 offset = offsetof (prstatus32_t, pr_reg);
8315 memcpy (&prstat, note->descdata, sizeof (prstat));
8316
8317 /* Do not overwrite the core signal if it
8318 has already been set by another thread. */
8319 if (elf_tdata (abfd)->core->signal == 0)
8320 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8321 if (elf_tdata (abfd)->core->pid == 0)
8322 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8323
8324 /* pr_who exists on:
8325 solaris 2.5+
8326 unixware 4.2
8327 pr_who doesn't exist on:
8328 linux 2.[01]
8329 */
8330 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8331 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8332 #else
8333 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8334 #endif
8335 }
8336 #endif /* HAVE_PRSTATUS32_T */
8337 else
8338 {
8339 /* Fail - we don't know how to handle any other
8340 note size (ie. data object type). */
8341 return TRUE;
8342 }
8343
8344 /* Make a ".reg/999" section and a ".reg" section. */
8345 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8346 size, note->descpos + offset);
8347 }
8348 #endif /* defined (HAVE_PRSTATUS_T) */
8349
8350 /* Create a pseudosection containing the exact contents of NOTE. */
8351 static bfd_boolean
8352 elfcore_make_note_pseudosection (bfd *abfd,
8353 char *name,
8354 Elf_Internal_Note *note)
8355 {
8356 return _bfd_elfcore_make_pseudosection (abfd, name,
8357 note->descsz, note->descpos);
8358 }
8359
8360 /* There isn't a consistent prfpregset_t across platforms,
8361 but it doesn't matter, because we don't have to pick this
8362 data structure apart. */
8363
8364 static bfd_boolean
8365 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8366 {
8367 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8368 }
8369
8370 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8371 type of NT_PRXFPREG. Just include the whole note's contents
8372 literally. */
8373
8374 static bfd_boolean
8375 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8376 {
8377 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8378 }
8379
8380 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8381 with a note type of NT_X86_XSTATE. Just include the whole note's
8382 contents literally. */
8383
8384 static bfd_boolean
8385 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8386 {
8387 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8388 }
8389
8390 static bfd_boolean
8391 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8392 {
8393 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8394 }
8395
8396 static bfd_boolean
8397 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8398 {
8399 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8400 }
8401
8402 static bfd_boolean
8403 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8404 {
8405 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8406 }
8407
8408 static bfd_boolean
8409 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8410 {
8411 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8412 }
8413
8414 static bfd_boolean
8415 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8416 {
8417 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8418 }
8419
8420 static bfd_boolean
8421 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8422 {
8423 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8424 }
8425
8426 static bfd_boolean
8427 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8428 {
8429 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8430 }
8431
8432 static bfd_boolean
8433 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8434 {
8435 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8436 }
8437
8438 static bfd_boolean
8439 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8440 {
8441 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8442 }
8443
8444 static bfd_boolean
8445 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8446 {
8447 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8448 }
8449
8450 static bfd_boolean
8451 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8452 {
8453 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8454 }
8455
8456 static bfd_boolean
8457 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
8458 {
8459 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
8460 }
8461
8462 static bfd_boolean
8463 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
8464 {
8465 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
8466 }
8467
8468 static bfd_boolean
8469 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8470 {
8471 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8472 }
8473
8474 static bfd_boolean
8475 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8476 {
8477 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8478 }
8479
8480 static bfd_boolean
8481 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8482 {
8483 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8484 }
8485
8486 static bfd_boolean
8487 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8488 {
8489 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8490 }
8491
8492 #if defined (HAVE_PRPSINFO_T)
8493 typedef prpsinfo_t elfcore_psinfo_t;
8494 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8495 typedef prpsinfo32_t elfcore_psinfo32_t;
8496 #endif
8497 #endif
8498
8499 #if defined (HAVE_PSINFO_T)
8500 typedef psinfo_t elfcore_psinfo_t;
8501 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8502 typedef psinfo32_t elfcore_psinfo32_t;
8503 #endif
8504 #endif
8505
8506 /* return a malloc'ed copy of a string at START which is at
8507 most MAX bytes long, possibly without a terminating '\0'.
8508 the copy will always have a terminating '\0'. */
8509
8510 char *
8511 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8512 {
8513 char *dups;
8514 char *end = (char *) memchr (start, '\0', max);
8515 size_t len;
8516
8517 if (end == NULL)
8518 len = max;
8519 else
8520 len = end - start;
8521
8522 dups = (char *) bfd_alloc (abfd, len + 1);
8523 if (dups == NULL)
8524 return NULL;
8525
8526 memcpy (dups, start, len);
8527 dups[len] = '\0';
8528
8529 return dups;
8530 }
8531
8532 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8533 static bfd_boolean
8534 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8535 {
8536 if (note->descsz == sizeof (elfcore_psinfo_t))
8537 {
8538 elfcore_psinfo_t psinfo;
8539
8540 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8541
8542 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8543 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8544 #endif
8545 elf_tdata (abfd)->core->program
8546 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8547 sizeof (psinfo.pr_fname));
8548
8549 elf_tdata (abfd)->core->command
8550 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8551 sizeof (psinfo.pr_psargs));
8552 }
8553 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8554 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8555 {
8556 /* 64-bit host, 32-bit corefile */
8557 elfcore_psinfo32_t psinfo;
8558
8559 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8560
8561 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8562 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8563 #endif
8564 elf_tdata (abfd)->core->program
8565 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8566 sizeof (psinfo.pr_fname));
8567
8568 elf_tdata (abfd)->core->command
8569 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8570 sizeof (psinfo.pr_psargs));
8571 }
8572 #endif
8573
8574 else
8575 {
8576 /* Fail - we don't know how to handle any other
8577 note size (ie. data object type). */
8578 return TRUE;
8579 }
8580
8581 /* Note that for some reason, a spurious space is tacked
8582 onto the end of the args in some (at least one anyway)
8583 implementations, so strip it off if it exists. */
8584
8585 {
8586 char *command = elf_tdata (abfd)->core->command;
8587 int n = strlen (command);
8588
8589 if (0 < n && command[n - 1] == ' ')
8590 command[n - 1] = '\0';
8591 }
8592
8593 return TRUE;
8594 }
8595 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8596
8597 #if defined (HAVE_PSTATUS_T)
8598 static bfd_boolean
8599 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8600 {
8601 if (note->descsz == sizeof (pstatus_t)
8602 #if defined (HAVE_PXSTATUS_T)
8603 || note->descsz == sizeof (pxstatus_t)
8604 #endif
8605 )
8606 {
8607 pstatus_t pstat;
8608
8609 memcpy (&pstat, note->descdata, sizeof (pstat));
8610
8611 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8612 }
8613 #if defined (HAVE_PSTATUS32_T)
8614 else if (note->descsz == sizeof (pstatus32_t))
8615 {
8616 /* 64-bit host, 32-bit corefile */
8617 pstatus32_t pstat;
8618
8619 memcpy (&pstat, note->descdata, sizeof (pstat));
8620
8621 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8622 }
8623 #endif
8624 /* Could grab some more details from the "representative"
8625 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8626 NT_LWPSTATUS note, presumably. */
8627
8628 return TRUE;
8629 }
8630 #endif /* defined (HAVE_PSTATUS_T) */
8631
8632 #if defined (HAVE_LWPSTATUS_T)
8633 static bfd_boolean
8634 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8635 {
8636 lwpstatus_t lwpstat;
8637 char buf[100];
8638 char *name;
8639 size_t len;
8640 asection *sect;
8641
8642 if (note->descsz != sizeof (lwpstat)
8643 #if defined (HAVE_LWPXSTATUS_T)
8644 && note->descsz != sizeof (lwpxstatus_t)
8645 #endif
8646 )
8647 return TRUE;
8648
8649 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8650
8651 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8652 /* Do not overwrite the core signal if it has already been set by
8653 another thread. */
8654 if (elf_tdata (abfd)->core->signal == 0)
8655 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8656
8657 /* Make a ".reg/999" section. */
8658
8659 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8660 len = strlen (buf) + 1;
8661 name = bfd_alloc (abfd, len);
8662 if (name == NULL)
8663 return FALSE;
8664 memcpy (name, buf, len);
8665
8666 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8667 if (sect == NULL)
8668 return FALSE;
8669
8670 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8671 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8672 sect->filepos = note->descpos
8673 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8674 #endif
8675
8676 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8677 sect->size = sizeof (lwpstat.pr_reg);
8678 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8679 #endif
8680
8681 sect->alignment_power = 2;
8682
8683 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8684 return FALSE;
8685
8686 /* Make a ".reg2/999" section */
8687
8688 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8689 len = strlen (buf) + 1;
8690 name = bfd_alloc (abfd, len);
8691 if (name == NULL)
8692 return FALSE;
8693 memcpy (name, buf, len);
8694
8695 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8696 if (sect == NULL)
8697 return FALSE;
8698
8699 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8700 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8701 sect->filepos = note->descpos
8702 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8703 #endif
8704
8705 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8706 sect->size = sizeof (lwpstat.pr_fpreg);
8707 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8708 #endif
8709
8710 sect->alignment_power = 2;
8711
8712 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8713 }
8714 #endif /* defined (HAVE_LWPSTATUS_T) */
8715
8716 static bfd_boolean
8717 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8718 {
8719 char buf[30];
8720 char *name;
8721 size_t len;
8722 asection *sect;
8723 int type;
8724 int is_active_thread;
8725 bfd_vma base_addr;
8726
8727 if (note->descsz < 728)
8728 return TRUE;
8729
8730 if (! CONST_STRNEQ (note->namedata, "win32"))
8731 return TRUE;
8732
8733 type = bfd_get_32 (abfd, note->descdata);
8734
8735 switch (type)
8736 {
8737 case 1 /* NOTE_INFO_PROCESS */:
8738 /* FIXME: need to add ->core->command. */
8739 /* process_info.pid */
8740 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8741 /* process_info.signal */
8742 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8743 break;
8744
8745 case 2 /* NOTE_INFO_THREAD */:
8746 /* Make a ".reg/999" section. */
8747 /* thread_info.tid */
8748 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8749
8750 len = strlen (buf) + 1;
8751 name = (char *) bfd_alloc (abfd, len);
8752 if (name == NULL)
8753 return FALSE;
8754
8755 memcpy (name, buf, len);
8756
8757 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8758 if (sect == NULL)
8759 return FALSE;
8760
8761 /* sizeof (thread_info.thread_context) */
8762 sect->size = 716;
8763 /* offsetof (thread_info.thread_context) */
8764 sect->filepos = note->descpos + 12;
8765 sect->alignment_power = 2;
8766
8767 /* thread_info.is_active_thread */
8768 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8769
8770 if (is_active_thread)
8771 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8772 return FALSE;
8773 break;
8774
8775 case 3 /* NOTE_INFO_MODULE */:
8776 /* Make a ".module/xxxxxxxx" section. */
8777 /* module_info.base_address */
8778 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8779 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8780
8781 len = strlen (buf) + 1;
8782 name = (char *) bfd_alloc (abfd, len);
8783 if (name == NULL)
8784 return FALSE;
8785
8786 memcpy (name, buf, len);
8787
8788 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8789
8790 if (sect == NULL)
8791 return FALSE;
8792
8793 sect->size = note->descsz;
8794 sect->filepos = note->descpos;
8795 sect->alignment_power = 2;
8796 break;
8797
8798 default:
8799 return TRUE;
8800 }
8801
8802 return TRUE;
8803 }
8804
8805 static bfd_boolean
8806 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8807 {
8808 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8809
8810 switch (note->type)
8811 {
8812 default:
8813 return TRUE;
8814
8815 case NT_PRSTATUS:
8816 if (bed->elf_backend_grok_prstatus)
8817 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8818 return TRUE;
8819 #if defined (HAVE_PRSTATUS_T)
8820 return elfcore_grok_prstatus (abfd, note);
8821 #else
8822 return TRUE;
8823 #endif
8824
8825 #if defined (HAVE_PSTATUS_T)
8826 case NT_PSTATUS:
8827 return elfcore_grok_pstatus (abfd, note);
8828 #endif
8829
8830 #if defined (HAVE_LWPSTATUS_T)
8831 case NT_LWPSTATUS:
8832 return elfcore_grok_lwpstatus (abfd, note);
8833 #endif
8834
8835 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8836 return elfcore_grok_prfpreg (abfd, note);
8837
8838 case NT_WIN32PSTATUS:
8839 return elfcore_grok_win32pstatus (abfd, note);
8840
8841 case NT_PRXFPREG: /* Linux SSE extension */
8842 if (note->namesz == 6
8843 && strcmp (note->namedata, "LINUX") == 0)
8844 return elfcore_grok_prxfpreg (abfd, note);
8845 else
8846 return TRUE;
8847
8848 case NT_X86_XSTATE: /* Linux XSAVE extension */
8849 if (note->namesz == 6
8850 && strcmp (note->namedata, "LINUX") == 0)
8851 return elfcore_grok_xstatereg (abfd, note);
8852 else if (note->namesz == 8
8853 && strcmp (note->namedata, "FreeBSD") == 0)
8854 return elfcore_grok_xstatereg (abfd, note);
8855 else
8856 return TRUE;
8857
8858 case NT_PPC_VMX:
8859 if (note->namesz == 6
8860 && strcmp (note->namedata, "LINUX") == 0)
8861 return elfcore_grok_ppc_vmx (abfd, note);
8862 else
8863 return TRUE;
8864
8865 case NT_PPC_VSX:
8866 if (note->namesz == 6
8867 && strcmp (note->namedata, "LINUX") == 0)
8868 return elfcore_grok_ppc_vsx (abfd, note);
8869 else
8870 return TRUE;
8871
8872 case NT_S390_HIGH_GPRS:
8873 if (note->namesz == 6
8874 && strcmp (note->namedata, "LINUX") == 0)
8875 return elfcore_grok_s390_high_gprs (abfd, note);
8876 else
8877 return TRUE;
8878
8879 case NT_S390_TIMER:
8880 if (note->namesz == 6
8881 && strcmp (note->namedata, "LINUX") == 0)
8882 return elfcore_grok_s390_timer (abfd, note);
8883 else
8884 return TRUE;
8885
8886 case NT_S390_TODCMP:
8887 if (note->namesz == 6
8888 && strcmp (note->namedata, "LINUX") == 0)
8889 return elfcore_grok_s390_todcmp (abfd, note);
8890 else
8891 return TRUE;
8892
8893 case NT_S390_TODPREG:
8894 if (note->namesz == 6
8895 && strcmp (note->namedata, "LINUX") == 0)
8896 return elfcore_grok_s390_todpreg (abfd, note);
8897 else
8898 return TRUE;
8899
8900 case NT_S390_CTRS:
8901 if (note->namesz == 6
8902 && strcmp (note->namedata, "LINUX") == 0)
8903 return elfcore_grok_s390_ctrs (abfd, note);
8904 else
8905 return TRUE;
8906
8907 case NT_S390_PREFIX:
8908 if (note->namesz == 6
8909 && strcmp (note->namedata, "LINUX") == 0)
8910 return elfcore_grok_s390_prefix (abfd, note);
8911 else
8912 return TRUE;
8913
8914 case NT_S390_LAST_BREAK:
8915 if (note->namesz == 6
8916 && strcmp (note->namedata, "LINUX") == 0)
8917 return elfcore_grok_s390_last_break (abfd, note);
8918 else
8919 return TRUE;
8920
8921 case NT_S390_SYSTEM_CALL:
8922 if (note->namesz == 6
8923 && strcmp (note->namedata, "LINUX") == 0)
8924 return elfcore_grok_s390_system_call (abfd, note);
8925 else
8926 return TRUE;
8927
8928 case NT_S390_TDB:
8929 if (note->namesz == 6
8930 && strcmp (note->namedata, "LINUX") == 0)
8931 return elfcore_grok_s390_tdb (abfd, note);
8932 else
8933 return TRUE;
8934
8935 case NT_S390_VXRS_LOW:
8936 if (note->namesz == 6
8937 && strcmp (note->namedata, "LINUX") == 0)
8938 return elfcore_grok_s390_vxrs_low (abfd, note);
8939 else
8940 return TRUE;
8941
8942 case NT_S390_VXRS_HIGH:
8943 if (note->namesz == 6
8944 && strcmp (note->namedata, "LINUX") == 0)
8945 return elfcore_grok_s390_vxrs_high (abfd, note);
8946 else
8947 return TRUE;
8948
8949 case NT_ARM_VFP:
8950 if (note->namesz == 6
8951 && strcmp (note->namedata, "LINUX") == 0)
8952 return elfcore_grok_arm_vfp (abfd, note);
8953 else
8954 return TRUE;
8955
8956 case NT_ARM_TLS:
8957 if (note->namesz == 6
8958 && strcmp (note->namedata, "LINUX") == 0)
8959 return elfcore_grok_aarch_tls (abfd, note);
8960 else
8961 return TRUE;
8962
8963 case NT_ARM_HW_BREAK:
8964 if (note->namesz == 6
8965 && strcmp (note->namedata, "LINUX") == 0)
8966 return elfcore_grok_aarch_hw_break (abfd, note);
8967 else
8968 return TRUE;
8969
8970 case NT_ARM_HW_WATCH:
8971 if (note->namesz == 6
8972 && strcmp (note->namedata, "LINUX") == 0)
8973 return elfcore_grok_aarch_hw_watch (abfd, note);
8974 else
8975 return TRUE;
8976
8977 case NT_PRPSINFO:
8978 case NT_PSINFO:
8979 if (bed->elf_backend_grok_psinfo)
8980 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8981 return TRUE;
8982 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8983 return elfcore_grok_psinfo (abfd, note);
8984 #else
8985 return TRUE;
8986 #endif
8987
8988 case NT_AUXV:
8989 {
8990 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8991 SEC_HAS_CONTENTS);
8992
8993 if (sect == NULL)
8994 return FALSE;
8995 sect->size = note->descsz;
8996 sect->filepos = note->descpos;
8997 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8998
8999 return TRUE;
9000 }
9001
9002 case NT_FILE:
9003 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9004 note);
9005
9006 case NT_SIGINFO:
9007 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9008 note);
9009 }
9010 }
9011
9012 static bfd_boolean
9013 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9014 {
9015 struct elf_obj_tdata *t;
9016
9017 if (note->descsz == 0)
9018 return FALSE;
9019
9020 t = elf_tdata (abfd);
9021 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz);
9022 if (t->build_id == NULL)
9023 return FALSE;
9024
9025 t->build_id->size = note->descsz;
9026 memcpy (t->build_id->data, note->descdata, note->descsz);
9027
9028 return TRUE;
9029 }
9030
9031 static bfd_boolean
9032 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9033 {
9034 switch (note->type)
9035 {
9036 default:
9037 return TRUE;
9038
9039 case NT_GNU_BUILD_ID:
9040 return elfobj_grok_gnu_build_id (abfd, note);
9041 }
9042 }
9043
9044 static bfd_boolean
9045 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9046 {
9047 struct sdt_note *cur =
9048 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9049 + note->descsz);
9050
9051 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9052 cur->size = (bfd_size_type) note->descsz;
9053 memcpy (cur->data, note->descdata, note->descsz);
9054
9055 elf_tdata (abfd)->sdt_note_head = cur;
9056
9057 return TRUE;
9058 }
9059
9060 static bfd_boolean
9061 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9062 {
9063 switch (note->type)
9064 {
9065 case NT_STAPSDT:
9066 return elfobj_grok_stapsdt_note_1 (abfd, note);
9067
9068 default:
9069 return TRUE;
9070 }
9071 }
9072
9073 static bfd_boolean
9074 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
9075 {
9076 char *cp;
9077
9078 cp = strchr (note->namedata, '@');
9079 if (cp != NULL)
9080 {
9081 *lwpidp = atoi(cp + 1);
9082 return TRUE;
9083 }
9084 return FALSE;
9085 }
9086
9087 static bfd_boolean
9088 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9089 {
9090 /* Signal number at offset 0x08. */
9091 elf_tdata (abfd)->core->signal
9092 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9093
9094 /* Process ID at offset 0x50. */
9095 elf_tdata (abfd)->core->pid
9096 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
9097
9098 /* Command name at 0x7c (max 32 bytes, including nul). */
9099 elf_tdata (abfd)->core->command
9100 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
9101
9102 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
9103 note);
9104 }
9105
9106 static bfd_boolean
9107 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
9108 {
9109 int lwp;
9110
9111 if (elfcore_netbsd_get_lwpid (note, &lwp))
9112 elf_tdata (abfd)->core->lwpid = lwp;
9113
9114 if (note->type == NT_NETBSDCORE_PROCINFO)
9115 {
9116 /* NetBSD-specific core "procinfo". Note that we expect to
9117 find this note before any of the others, which is fine,
9118 since the kernel writes this note out first when it
9119 creates a core file. */
9120
9121 return elfcore_grok_netbsd_procinfo (abfd, note);
9122 }
9123
9124 /* As of Jan 2002 there are no other machine-independent notes
9125 defined for NetBSD core files. If the note type is less
9126 than the start of the machine-dependent note types, we don't
9127 understand it. */
9128
9129 if (note->type < NT_NETBSDCORE_FIRSTMACH)
9130 return TRUE;
9131
9132
9133 switch (bfd_get_arch (abfd))
9134 {
9135 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
9136 PT_GETFPREGS == mach+2. */
9137
9138 case bfd_arch_alpha:
9139 case bfd_arch_sparc:
9140 switch (note->type)
9141 {
9142 case NT_NETBSDCORE_FIRSTMACH+0:
9143 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9144
9145 case NT_NETBSDCORE_FIRSTMACH+2:
9146 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9147
9148 default:
9149 return TRUE;
9150 }
9151
9152 /* On all other arch's, PT_GETREGS == mach+1 and
9153 PT_GETFPREGS == mach+3. */
9154
9155 default:
9156 switch (note->type)
9157 {
9158 case NT_NETBSDCORE_FIRSTMACH+1:
9159 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9160
9161 case NT_NETBSDCORE_FIRSTMACH+3:
9162 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9163
9164 default:
9165 return TRUE;
9166 }
9167 }
9168 /* NOTREACHED */
9169 }
9170
9171 static bfd_boolean
9172 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9173 {
9174 /* Signal number at offset 0x08. */
9175 elf_tdata (abfd)->core->signal
9176 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9177
9178 /* Process ID at offset 0x20. */
9179 elf_tdata (abfd)->core->pid
9180 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
9181
9182 /* Command name at 0x48 (max 32 bytes, including nul). */
9183 elf_tdata (abfd)->core->command
9184 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
9185
9186 return TRUE;
9187 }
9188
9189 static bfd_boolean
9190 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
9191 {
9192 if (note->type == NT_OPENBSD_PROCINFO)
9193 return elfcore_grok_openbsd_procinfo (abfd, note);
9194
9195 if (note->type == NT_OPENBSD_REGS)
9196 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9197
9198 if (note->type == NT_OPENBSD_FPREGS)
9199 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9200
9201 if (note->type == NT_OPENBSD_XFPREGS)
9202 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9203
9204 if (note->type == NT_OPENBSD_AUXV)
9205 {
9206 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9207 SEC_HAS_CONTENTS);
9208
9209 if (sect == NULL)
9210 return FALSE;
9211 sect->size = note->descsz;
9212 sect->filepos = note->descpos;
9213 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9214
9215 return TRUE;
9216 }
9217
9218 if (note->type == NT_OPENBSD_WCOOKIE)
9219 {
9220 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
9221 SEC_HAS_CONTENTS);
9222
9223 if (sect == NULL)
9224 return FALSE;
9225 sect->size = note->descsz;
9226 sect->filepos = note->descpos;
9227 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9228
9229 return TRUE;
9230 }
9231
9232 return TRUE;
9233 }
9234
9235 static bfd_boolean
9236 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
9237 {
9238 void *ddata = note->descdata;
9239 char buf[100];
9240 char *name;
9241 asection *sect;
9242 short sig;
9243 unsigned flags;
9244
9245 /* nto_procfs_status 'pid' field is at offset 0. */
9246 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
9247
9248 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
9249 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
9250
9251 /* nto_procfs_status 'flags' field is at offset 8. */
9252 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
9253
9254 /* nto_procfs_status 'what' field is at offset 14. */
9255 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
9256 {
9257 elf_tdata (abfd)->core->signal = sig;
9258 elf_tdata (abfd)->core->lwpid = *tid;
9259 }
9260
9261 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9262 do not come from signals so we make sure we set the current
9263 thread just in case. */
9264 if (flags & 0x00000080)
9265 elf_tdata (abfd)->core->lwpid = *tid;
9266
9267 /* Make a ".qnx_core_status/%d" section. */
9268 sprintf (buf, ".qnx_core_status/%ld", *tid);
9269
9270 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9271 if (name == NULL)
9272 return FALSE;
9273 strcpy (name, buf);
9274
9275 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9276 if (sect == NULL)
9277 return FALSE;
9278
9279 sect->size = note->descsz;
9280 sect->filepos = note->descpos;
9281 sect->alignment_power = 2;
9282
9283 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9284 }
9285
9286 static bfd_boolean
9287 elfcore_grok_nto_regs (bfd *abfd,
9288 Elf_Internal_Note *note,
9289 long tid,
9290 char *base)
9291 {
9292 char buf[100];
9293 char *name;
9294 asection *sect;
9295
9296 /* Make a "(base)/%d" section. */
9297 sprintf (buf, "%s/%ld", base, tid);
9298
9299 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9300 if (name == NULL)
9301 return FALSE;
9302 strcpy (name, buf);
9303
9304 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9305 if (sect == NULL)
9306 return FALSE;
9307
9308 sect->size = note->descsz;
9309 sect->filepos = note->descpos;
9310 sect->alignment_power = 2;
9311
9312 /* This is the current thread. */
9313 if (elf_tdata (abfd)->core->lwpid == tid)
9314 return elfcore_maybe_make_sect (abfd, base, sect);
9315
9316 return TRUE;
9317 }
9318
9319 #define BFD_QNT_CORE_INFO 7
9320 #define BFD_QNT_CORE_STATUS 8
9321 #define BFD_QNT_CORE_GREG 9
9322 #define BFD_QNT_CORE_FPREG 10
9323
9324 static bfd_boolean
9325 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9326 {
9327 /* Every GREG section has a STATUS section before it. Store the
9328 tid from the previous call to pass down to the next gregs
9329 function. */
9330 static long tid = 1;
9331
9332 switch (note->type)
9333 {
9334 case BFD_QNT_CORE_INFO:
9335 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9336 case BFD_QNT_CORE_STATUS:
9337 return elfcore_grok_nto_status (abfd, note, &tid);
9338 case BFD_QNT_CORE_GREG:
9339 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9340 case BFD_QNT_CORE_FPREG:
9341 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9342 default:
9343 return TRUE;
9344 }
9345 }
9346
9347 static bfd_boolean
9348 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9349 {
9350 char *name;
9351 asection *sect;
9352 size_t len;
9353
9354 /* Use note name as section name. */
9355 len = note->namesz;
9356 name = (char *) bfd_alloc (abfd, len);
9357 if (name == NULL)
9358 return FALSE;
9359 memcpy (name, note->namedata, len);
9360 name[len - 1] = '\0';
9361
9362 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9363 if (sect == NULL)
9364 return FALSE;
9365
9366 sect->size = note->descsz;
9367 sect->filepos = note->descpos;
9368 sect->alignment_power = 1;
9369
9370 return TRUE;
9371 }
9372
9373 /* Function: elfcore_write_note
9374
9375 Inputs:
9376 buffer to hold note, and current size of buffer
9377 name of note
9378 type of note
9379 data for note
9380 size of data for note
9381
9382 Writes note to end of buffer. ELF64 notes are written exactly as
9383 for ELF32, despite the current (as of 2006) ELF gabi specifying
9384 that they ought to have 8-byte namesz and descsz field, and have
9385 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9386
9387 Return:
9388 Pointer to realloc'd buffer, *BUFSIZ updated. */
9389
9390 char *
9391 elfcore_write_note (bfd *abfd,
9392 char *buf,
9393 int *bufsiz,
9394 const char *name,
9395 int type,
9396 const void *input,
9397 int size)
9398 {
9399 Elf_External_Note *xnp;
9400 size_t namesz;
9401 size_t newspace;
9402 char *dest;
9403
9404 namesz = 0;
9405 if (name != NULL)
9406 namesz = strlen (name) + 1;
9407
9408 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9409
9410 buf = (char *) realloc (buf, *bufsiz + newspace);
9411 if (buf == NULL)
9412 return buf;
9413 dest = buf + *bufsiz;
9414 *bufsiz += newspace;
9415 xnp = (Elf_External_Note *) dest;
9416 H_PUT_32 (abfd, namesz, xnp->namesz);
9417 H_PUT_32 (abfd, size, xnp->descsz);
9418 H_PUT_32 (abfd, type, xnp->type);
9419 dest = xnp->name;
9420 if (name != NULL)
9421 {
9422 memcpy (dest, name, namesz);
9423 dest += namesz;
9424 while (namesz & 3)
9425 {
9426 *dest++ = '\0';
9427 ++namesz;
9428 }
9429 }
9430 memcpy (dest, input, size);
9431 dest += size;
9432 while (size & 3)
9433 {
9434 *dest++ = '\0';
9435 ++size;
9436 }
9437 return buf;
9438 }
9439
9440 char *
9441 elfcore_write_prpsinfo (bfd *abfd,
9442 char *buf,
9443 int *bufsiz,
9444 const char *fname,
9445 const char *psargs)
9446 {
9447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9448
9449 if (bed->elf_backend_write_core_note != NULL)
9450 {
9451 char *ret;
9452 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9453 NT_PRPSINFO, fname, psargs);
9454 if (ret != NULL)
9455 return ret;
9456 }
9457
9458 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9459 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9460 if (bed->s->elfclass == ELFCLASS32)
9461 {
9462 #if defined (HAVE_PSINFO32_T)
9463 psinfo32_t data;
9464 int note_type = NT_PSINFO;
9465 #else
9466 prpsinfo32_t data;
9467 int note_type = NT_PRPSINFO;
9468 #endif
9469
9470 memset (&data, 0, sizeof (data));
9471 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9472 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9473 return elfcore_write_note (abfd, buf, bufsiz,
9474 "CORE", note_type, &data, sizeof (data));
9475 }
9476 else
9477 #endif
9478 {
9479 #if defined (HAVE_PSINFO_T)
9480 psinfo_t data;
9481 int note_type = NT_PSINFO;
9482 #else
9483 prpsinfo_t data;
9484 int note_type = NT_PRPSINFO;
9485 #endif
9486
9487 memset (&data, 0, sizeof (data));
9488 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9489 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9490 return elfcore_write_note (abfd, buf, bufsiz,
9491 "CORE", note_type, &data, sizeof (data));
9492 }
9493 #endif /* PSINFO_T or PRPSINFO_T */
9494
9495 free (buf);
9496 return NULL;
9497 }
9498
9499 char *
9500 elfcore_write_linux_prpsinfo32
9501 (bfd *abfd, char *buf, int *bufsiz,
9502 const struct elf_internal_linux_prpsinfo *prpsinfo)
9503 {
9504 struct elf_external_linux_prpsinfo32 data;
9505
9506 memset (&data, 0, sizeof (data));
9507 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9508
9509 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9510 &data, sizeof (data));
9511 }
9512
9513 char *
9514 elfcore_write_linux_prpsinfo64
9515 (bfd *abfd, char *buf, int *bufsiz,
9516 const struct elf_internal_linux_prpsinfo *prpsinfo)
9517 {
9518 struct elf_external_linux_prpsinfo64 data;
9519
9520 memset (&data, 0, sizeof (data));
9521 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9522
9523 return elfcore_write_note (abfd, buf, bufsiz,
9524 "CORE", NT_PRPSINFO, &data, sizeof (data));
9525 }
9526
9527 char *
9528 elfcore_write_prstatus (bfd *abfd,
9529 char *buf,
9530 int *bufsiz,
9531 long pid,
9532 int cursig,
9533 const void *gregs)
9534 {
9535 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9536
9537 if (bed->elf_backend_write_core_note != NULL)
9538 {
9539 char *ret;
9540 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9541 NT_PRSTATUS,
9542 pid, cursig, gregs);
9543 if (ret != NULL)
9544 return ret;
9545 }
9546
9547 #if defined (HAVE_PRSTATUS_T)
9548 #if defined (HAVE_PRSTATUS32_T)
9549 if (bed->s->elfclass == ELFCLASS32)
9550 {
9551 prstatus32_t prstat;
9552
9553 memset (&prstat, 0, sizeof (prstat));
9554 prstat.pr_pid = pid;
9555 prstat.pr_cursig = cursig;
9556 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9557 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9558 NT_PRSTATUS, &prstat, sizeof (prstat));
9559 }
9560 else
9561 #endif
9562 {
9563 prstatus_t prstat;
9564
9565 memset (&prstat, 0, sizeof (prstat));
9566 prstat.pr_pid = pid;
9567 prstat.pr_cursig = cursig;
9568 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9569 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9570 NT_PRSTATUS, &prstat, sizeof (prstat));
9571 }
9572 #endif /* HAVE_PRSTATUS_T */
9573
9574 free (buf);
9575 return NULL;
9576 }
9577
9578 #if defined (HAVE_LWPSTATUS_T)
9579 char *
9580 elfcore_write_lwpstatus (bfd *abfd,
9581 char *buf,
9582 int *bufsiz,
9583 long pid,
9584 int cursig,
9585 const void *gregs)
9586 {
9587 lwpstatus_t lwpstat;
9588 const char *note_name = "CORE";
9589
9590 memset (&lwpstat, 0, sizeof (lwpstat));
9591 lwpstat.pr_lwpid = pid >> 16;
9592 lwpstat.pr_cursig = cursig;
9593 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9594 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9595 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9596 #if !defined(gregs)
9597 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9598 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9599 #else
9600 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9601 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9602 #endif
9603 #endif
9604 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9605 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9606 }
9607 #endif /* HAVE_LWPSTATUS_T */
9608
9609 #if defined (HAVE_PSTATUS_T)
9610 char *
9611 elfcore_write_pstatus (bfd *abfd,
9612 char *buf,
9613 int *bufsiz,
9614 long pid,
9615 int cursig ATTRIBUTE_UNUSED,
9616 const void *gregs ATTRIBUTE_UNUSED)
9617 {
9618 const char *note_name = "CORE";
9619 #if defined (HAVE_PSTATUS32_T)
9620 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9621
9622 if (bed->s->elfclass == ELFCLASS32)
9623 {
9624 pstatus32_t pstat;
9625
9626 memset (&pstat, 0, sizeof (pstat));
9627 pstat.pr_pid = pid & 0xffff;
9628 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9629 NT_PSTATUS, &pstat, sizeof (pstat));
9630 return buf;
9631 }
9632 else
9633 #endif
9634 {
9635 pstatus_t pstat;
9636
9637 memset (&pstat, 0, sizeof (pstat));
9638 pstat.pr_pid = pid & 0xffff;
9639 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9640 NT_PSTATUS, &pstat, sizeof (pstat));
9641 return buf;
9642 }
9643 }
9644 #endif /* HAVE_PSTATUS_T */
9645
9646 char *
9647 elfcore_write_prfpreg (bfd *abfd,
9648 char *buf,
9649 int *bufsiz,
9650 const void *fpregs,
9651 int size)
9652 {
9653 const char *note_name = "CORE";
9654 return elfcore_write_note (abfd, buf, bufsiz,
9655 note_name, NT_FPREGSET, fpregs, size);
9656 }
9657
9658 char *
9659 elfcore_write_prxfpreg (bfd *abfd,
9660 char *buf,
9661 int *bufsiz,
9662 const void *xfpregs,
9663 int size)
9664 {
9665 char *note_name = "LINUX";
9666 return elfcore_write_note (abfd, buf, bufsiz,
9667 note_name, NT_PRXFPREG, xfpregs, size);
9668 }
9669
9670 char *
9671 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9672 const void *xfpregs, int size)
9673 {
9674 char *note_name;
9675 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
9676 note_name = "FreeBSD";
9677 else
9678 note_name = "LINUX";
9679 return elfcore_write_note (abfd, buf, bufsiz,
9680 note_name, NT_X86_XSTATE, xfpregs, size);
9681 }
9682
9683 char *
9684 elfcore_write_ppc_vmx (bfd *abfd,
9685 char *buf,
9686 int *bufsiz,
9687 const void *ppc_vmx,
9688 int size)
9689 {
9690 char *note_name = "LINUX";
9691 return elfcore_write_note (abfd, buf, bufsiz,
9692 note_name, NT_PPC_VMX, ppc_vmx, size);
9693 }
9694
9695 char *
9696 elfcore_write_ppc_vsx (bfd *abfd,
9697 char *buf,
9698 int *bufsiz,
9699 const void *ppc_vsx,
9700 int size)
9701 {
9702 char *note_name = "LINUX";
9703 return elfcore_write_note (abfd, buf, bufsiz,
9704 note_name, NT_PPC_VSX, ppc_vsx, size);
9705 }
9706
9707 static char *
9708 elfcore_write_s390_high_gprs (bfd *abfd,
9709 char *buf,
9710 int *bufsiz,
9711 const void *s390_high_gprs,
9712 int size)
9713 {
9714 char *note_name = "LINUX";
9715 return elfcore_write_note (abfd, buf, bufsiz,
9716 note_name, NT_S390_HIGH_GPRS,
9717 s390_high_gprs, size);
9718 }
9719
9720 char *
9721 elfcore_write_s390_timer (bfd *abfd,
9722 char *buf,
9723 int *bufsiz,
9724 const void *s390_timer,
9725 int size)
9726 {
9727 char *note_name = "LINUX";
9728 return elfcore_write_note (abfd, buf, bufsiz,
9729 note_name, NT_S390_TIMER, s390_timer, size);
9730 }
9731
9732 char *
9733 elfcore_write_s390_todcmp (bfd *abfd,
9734 char *buf,
9735 int *bufsiz,
9736 const void *s390_todcmp,
9737 int size)
9738 {
9739 char *note_name = "LINUX";
9740 return elfcore_write_note (abfd, buf, bufsiz,
9741 note_name, NT_S390_TODCMP, s390_todcmp, size);
9742 }
9743
9744 char *
9745 elfcore_write_s390_todpreg (bfd *abfd,
9746 char *buf,
9747 int *bufsiz,
9748 const void *s390_todpreg,
9749 int size)
9750 {
9751 char *note_name = "LINUX";
9752 return elfcore_write_note (abfd, buf, bufsiz,
9753 note_name, NT_S390_TODPREG, s390_todpreg, size);
9754 }
9755
9756 char *
9757 elfcore_write_s390_ctrs (bfd *abfd,
9758 char *buf,
9759 int *bufsiz,
9760 const void *s390_ctrs,
9761 int size)
9762 {
9763 char *note_name = "LINUX";
9764 return elfcore_write_note (abfd, buf, bufsiz,
9765 note_name, NT_S390_CTRS, s390_ctrs, size);
9766 }
9767
9768 char *
9769 elfcore_write_s390_prefix (bfd *abfd,
9770 char *buf,
9771 int *bufsiz,
9772 const void *s390_prefix,
9773 int size)
9774 {
9775 char *note_name = "LINUX";
9776 return elfcore_write_note (abfd, buf, bufsiz,
9777 note_name, NT_S390_PREFIX, s390_prefix, size);
9778 }
9779
9780 char *
9781 elfcore_write_s390_last_break (bfd *abfd,
9782 char *buf,
9783 int *bufsiz,
9784 const void *s390_last_break,
9785 int size)
9786 {
9787 char *note_name = "LINUX";
9788 return elfcore_write_note (abfd, buf, bufsiz,
9789 note_name, NT_S390_LAST_BREAK,
9790 s390_last_break, size);
9791 }
9792
9793 char *
9794 elfcore_write_s390_system_call (bfd *abfd,
9795 char *buf,
9796 int *bufsiz,
9797 const void *s390_system_call,
9798 int size)
9799 {
9800 char *note_name = "LINUX";
9801 return elfcore_write_note (abfd, buf, bufsiz,
9802 note_name, NT_S390_SYSTEM_CALL,
9803 s390_system_call, size);
9804 }
9805
9806 char *
9807 elfcore_write_s390_tdb (bfd *abfd,
9808 char *buf,
9809 int *bufsiz,
9810 const void *s390_tdb,
9811 int size)
9812 {
9813 char *note_name = "LINUX";
9814 return elfcore_write_note (abfd, buf, bufsiz,
9815 note_name, NT_S390_TDB, s390_tdb, size);
9816 }
9817
9818 char *
9819 elfcore_write_s390_vxrs_low (bfd *abfd,
9820 char *buf,
9821 int *bufsiz,
9822 const void *s390_vxrs_low,
9823 int size)
9824 {
9825 char *note_name = "LINUX";
9826 return elfcore_write_note (abfd, buf, bufsiz,
9827 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
9828 }
9829
9830 char *
9831 elfcore_write_s390_vxrs_high (bfd *abfd,
9832 char *buf,
9833 int *bufsiz,
9834 const void *s390_vxrs_high,
9835 int size)
9836 {
9837 char *note_name = "LINUX";
9838 return elfcore_write_note (abfd, buf, bufsiz,
9839 note_name, NT_S390_VXRS_HIGH,
9840 s390_vxrs_high, size);
9841 }
9842
9843 char *
9844 elfcore_write_arm_vfp (bfd *abfd,
9845 char *buf,
9846 int *bufsiz,
9847 const void *arm_vfp,
9848 int size)
9849 {
9850 char *note_name = "LINUX";
9851 return elfcore_write_note (abfd, buf, bufsiz,
9852 note_name, NT_ARM_VFP, arm_vfp, size);
9853 }
9854
9855 char *
9856 elfcore_write_aarch_tls (bfd *abfd,
9857 char *buf,
9858 int *bufsiz,
9859 const void *aarch_tls,
9860 int size)
9861 {
9862 char *note_name = "LINUX";
9863 return elfcore_write_note (abfd, buf, bufsiz,
9864 note_name, NT_ARM_TLS, aarch_tls, size);
9865 }
9866
9867 char *
9868 elfcore_write_aarch_hw_break (bfd *abfd,
9869 char *buf,
9870 int *bufsiz,
9871 const void *aarch_hw_break,
9872 int size)
9873 {
9874 char *note_name = "LINUX";
9875 return elfcore_write_note (abfd, buf, bufsiz,
9876 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9877 }
9878
9879 char *
9880 elfcore_write_aarch_hw_watch (bfd *abfd,
9881 char *buf,
9882 int *bufsiz,
9883 const void *aarch_hw_watch,
9884 int size)
9885 {
9886 char *note_name = "LINUX";
9887 return elfcore_write_note (abfd, buf, bufsiz,
9888 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9889 }
9890
9891 char *
9892 elfcore_write_register_note (bfd *abfd,
9893 char *buf,
9894 int *bufsiz,
9895 const char *section,
9896 const void *data,
9897 int size)
9898 {
9899 if (strcmp (section, ".reg2") == 0)
9900 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9901 if (strcmp (section, ".reg-xfp") == 0)
9902 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9903 if (strcmp (section, ".reg-xstate") == 0)
9904 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9905 if (strcmp (section, ".reg-ppc-vmx") == 0)
9906 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9907 if (strcmp (section, ".reg-ppc-vsx") == 0)
9908 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9909 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9910 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9911 if (strcmp (section, ".reg-s390-timer") == 0)
9912 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9913 if (strcmp (section, ".reg-s390-todcmp") == 0)
9914 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9915 if (strcmp (section, ".reg-s390-todpreg") == 0)
9916 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9917 if (strcmp (section, ".reg-s390-ctrs") == 0)
9918 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9919 if (strcmp (section, ".reg-s390-prefix") == 0)
9920 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9921 if (strcmp (section, ".reg-s390-last-break") == 0)
9922 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9923 if (strcmp (section, ".reg-s390-system-call") == 0)
9924 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9925 if (strcmp (section, ".reg-s390-tdb") == 0)
9926 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
9927 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
9928 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
9929 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
9930 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
9931 if (strcmp (section, ".reg-arm-vfp") == 0)
9932 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9933 if (strcmp (section, ".reg-aarch-tls") == 0)
9934 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9935 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9936 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9937 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9938 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9939 return NULL;
9940 }
9941
9942 static bfd_boolean
9943 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9944 {
9945 char *p;
9946
9947 p = buf;
9948 while (p < buf + size)
9949 {
9950 /* FIXME: bad alignment assumption. */
9951 Elf_External_Note *xnp = (Elf_External_Note *) p;
9952 Elf_Internal_Note in;
9953
9954 if (offsetof (Elf_External_Note, name) > buf - p + size)
9955 return FALSE;
9956
9957 in.type = H_GET_32 (abfd, xnp->type);
9958
9959 in.namesz = H_GET_32 (abfd, xnp->namesz);
9960 in.namedata = xnp->name;
9961 if (in.namesz > buf - in.namedata + size)
9962 return FALSE;
9963
9964 in.descsz = H_GET_32 (abfd, xnp->descsz);
9965 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9966 in.descpos = offset + (in.descdata - buf);
9967 if (in.descsz != 0
9968 && (in.descdata >= buf + size
9969 || in.descsz > buf - in.descdata + size))
9970 return FALSE;
9971
9972 switch (bfd_get_format (abfd))
9973 {
9974 default:
9975 return TRUE;
9976
9977 case bfd_core:
9978 {
9979 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
9980 struct
9981 {
9982 const char * string;
9983 size_t len;
9984 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
9985 }
9986 grokers[] =
9987 {
9988 GROKER_ELEMENT ("", elfcore_grok_note),
9989 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
9990 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
9991 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
9992 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
9993 };
9994 #undef GROKER_ELEMENT
9995 int i;
9996
9997 for (i = ARRAY_SIZE (grokers); i--;)
9998 {
9999 if (in.namesz >= grokers[i].len
10000 && strncmp (in.namedata, grokers[i].string,
10001 grokers[i].len) == 0)
10002 {
10003 if (! grokers[i].func (abfd, & in))
10004 return FALSE;
10005 break;
10006 }
10007 }
10008 break;
10009 }
10010
10011 case bfd_object:
10012 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10013 {
10014 if (! elfobj_grok_gnu_note (abfd, &in))
10015 return FALSE;
10016 }
10017 else if (in.namesz == sizeof "stapsdt"
10018 && strcmp (in.namedata, "stapsdt") == 0)
10019 {
10020 if (! elfobj_grok_stapsdt_note (abfd, &in))
10021 return FALSE;
10022 }
10023 break;
10024 }
10025
10026 p = in.descdata + BFD_ALIGN (in.descsz, 4);
10027 }
10028
10029 return TRUE;
10030 }
10031
10032 static bfd_boolean
10033 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
10034 {
10035 char *buf;
10036
10037 if (size <= 0)
10038 return TRUE;
10039
10040 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
10041 return FALSE;
10042
10043 buf = (char *) bfd_malloc (size + 1);
10044 if (buf == NULL)
10045 return FALSE;
10046
10047 /* PR 17512: file: ec08f814
10048 0-termintate the buffer so that string searches will not overflow. */
10049 buf[size] = 0;
10050
10051 if (bfd_bread (buf, size, abfd) != size
10052 || !elf_parse_notes (abfd, buf, size, offset))
10053 {
10054 free (buf);
10055 return FALSE;
10056 }
10057
10058 free (buf);
10059 return TRUE;
10060 }
10061 \f
10062 /* Providing external access to the ELF program header table. */
10063
10064 /* Return an upper bound on the number of bytes required to store a
10065 copy of ABFD's program header table entries. Return -1 if an error
10066 occurs; bfd_get_error will return an appropriate code. */
10067
10068 long
10069 bfd_get_elf_phdr_upper_bound (bfd *abfd)
10070 {
10071 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10072 {
10073 bfd_set_error (bfd_error_wrong_format);
10074 return -1;
10075 }
10076
10077 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
10078 }
10079
10080 /* Copy ABFD's program header table entries to *PHDRS. The entries
10081 will be stored as an array of Elf_Internal_Phdr structures, as
10082 defined in include/elf/internal.h. To find out how large the
10083 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
10084
10085 Return the number of program header table entries read, or -1 if an
10086 error occurs; bfd_get_error will return an appropriate code. */
10087
10088 int
10089 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
10090 {
10091 int num_phdrs;
10092
10093 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10094 {
10095 bfd_set_error (bfd_error_wrong_format);
10096 return -1;
10097 }
10098
10099 num_phdrs = elf_elfheader (abfd)->e_phnum;
10100 memcpy (phdrs, elf_tdata (abfd)->phdr,
10101 num_phdrs * sizeof (Elf_Internal_Phdr));
10102
10103 return num_phdrs;
10104 }
10105
10106 enum elf_reloc_type_class
10107 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
10108 const asection *rel_sec ATTRIBUTE_UNUSED,
10109 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
10110 {
10111 return reloc_class_normal;
10112 }
10113
10114 /* For RELA architectures, return the relocation value for a
10115 relocation against a local symbol. */
10116
10117 bfd_vma
10118 _bfd_elf_rela_local_sym (bfd *abfd,
10119 Elf_Internal_Sym *sym,
10120 asection **psec,
10121 Elf_Internal_Rela *rel)
10122 {
10123 asection *sec = *psec;
10124 bfd_vma relocation;
10125
10126 relocation = (sec->output_section->vma
10127 + sec->output_offset
10128 + sym->st_value);
10129 if ((sec->flags & SEC_MERGE)
10130 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
10131 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
10132 {
10133 rel->r_addend =
10134 _bfd_merged_section_offset (abfd, psec,
10135 elf_section_data (sec)->sec_info,
10136 sym->st_value + rel->r_addend);
10137 if (sec != *psec)
10138 {
10139 /* If we have changed the section, and our original section is
10140 marked with SEC_EXCLUDE, it means that the original
10141 SEC_MERGE section has been completely subsumed in some
10142 other SEC_MERGE section. In this case, we need to leave
10143 some info around for --emit-relocs. */
10144 if ((sec->flags & SEC_EXCLUDE) != 0)
10145 sec->kept_section = *psec;
10146 sec = *psec;
10147 }
10148 rel->r_addend -= relocation;
10149 rel->r_addend += sec->output_section->vma + sec->output_offset;
10150 }
10151 return relocation;
10152 }
10153
10154 bfd_vma
10155 _bfd_elf_rel_local_sym (bfd *abfd,
10156 Elf_Internal_Sym *sym,
10157 asection **psec,
10158 bfd_vma addend)
10159 {
10160 asection *sec = *psec;
10161
10162 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
10163 return sym->st_value + addend;
10164
10165 return _bfd_merged_section_offset (abfd, psec,
10166 elf_section_data (sec)->sec_info,
10167 sym->st_value + addend);
10168 }
10169
10170 bfd_vma
10171 _bfd_elf_section_offset (bfd *abfd,
10172 struct bfd_link_info *info,
10173 asection *sec,
10174 bfd_vma offset)
10175 {
10176 switch (sec->sec_info_type)
10177 {
10178 case SEC_INFO_TYPE_STABS:
10179 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
10180 offset);
10181 case SEC_INFO_TYPE_EH_FRAME:
10182 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
10183 default:
10184 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
10185 {
10186 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10187 bfd_size_type address_size = bed->s->arch_size / 8;
10188 offset = sec->size - offset - address_size;
10189 }
10190 return offset;
10191 }
10192 }
10193 \f
10194 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
10195 reconstruct an ELF file by reading the segments out of remote memory
10196 based on the ELF file header at EHDR_VMA and the ELF program headers it
10197 points to. If not null, *LOADBASEP is filled in with the difference
10198 between the VMAs from which the segments were read, and the VMAs the
10199 file headers (and hence BFD's idea of each section's VMA) put them at.
10200
10201 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
10202 remote memory at target address VMA into the local buffer at MYADDR; it
10203 should return zero on success or an `errno' code on failure. TEMPL must
10204 be a BFD for an ELF target with the word size and byte order found in
10205 the remote memory. */
10206
10207 bfd *
10208 bfd_elf_bfd_from_remote_memory
10209 (bfd *templ,
10210 bfd_vma ehdr_vma,
10211 bfd_size_type size,
10212 bfd_vma *loadbasep,
10213 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
10214 {
10215 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
10216 (templ, ehdr_vma, size, loadbasep, target_read_memory);
10217 }
10218 \f
10219 long
10220 _bfd_elf_get_synthetic_symtab (bfd *abfd,
10221 long symcount ATTRIBUTE_UNUSED,
10222 asymbol **syms ATTRIBUTE_UNUSED,
10223 long dynsymcount,
10224 asymbol **dynsyms,
10225 asymbol **ret)
10226 {
10227 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10228 asection *relplt;
10229 asymbol *s;
10230 const char *relplt_name;
10231 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
10232 arelent *p;
10233 long count, i, n;
10234 size_t size;
10235 Elf_Internal_Shdr *hdr;
10236 char *names;
10237 asection *plt;
10238
10239 *ret = NULL;
10240
10241 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
10242 return 0;
10243
10244 if (dynsymcount <= 0)
10245 return 0;
10246
10247 if (!bed->plt_sym_val)
10248 return 0;
10249
10250 relplt_name = bed->relplt_name;
10251 if (relplt_name == NULL)
10252 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
10253 relplt = bfd_get_section_by_name (abfd, relplt_name);
10254 if (relplt == NULL)
10255 return 0;
10256
10257 hdr = &elf_section_data (relplt)->this_hdr;
10258 if (hdr->sh_link != elf_dynsymtab (abfd)
10259 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
10260 return 0;
10261
10262 plt = bfd_get_section_by_name (abfd, ".plt");
10263 if (plt == NULL)
10264 return 0;
10265
10266 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
10267 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
10268 return -1;
10269
10270 count = relplt->size / hdr->sh_entsize;
10271 size = count * sizeof (asymbol);
10272 p = relplt->relocation;
10273 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10274 {
10275 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
10276 if (p->addend != 0)
10277 {
10278 #ifdef BFD64
10279 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
10280 #else
10281 size += sizeof ("+0x") - 1 + 8;
10282 #endif
10283 }
10284 }
10285
10286 s = *ret = (asymbol *) bfd_malloc (size);
10287 if (s == NULL)
10288 return -1;
10289
10290 names = (char *) (s + count);
10291 p = relplt->relocation;
10292 n = 0;
10293 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10294 {
10295 size_t len;
10296 bfd_vma addr;
10297
10298 addr = bed->plt_sym_val (i, plt, p);
10299 if (addr == (bfd_vma) -1)
10300 continue;
10301
10302 *s = **p->sym_ptr_ptr;
10303 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
10304 we are defining a symbol, ensure one of them is set. */
10305 if ((s->flags & BSF_LOCAL) == 0)
10306 s->flags |= BSF_GLOBAL;
10307 s->flags |= BSF_SYNTHETIC;
10308 s->section = plt;
10309 s->value = addr - plt->vma;
10310 s->name = names;
10311 s->udata.p = NULL;
10312 len = strlen ((*p->sym_ptr_ptr)->name);
10313 memcpy (names, (*p->sym_ptr_ptr)->name, len);
10314 names += len;
10315 if (p->addend != 0)
10316 {
10317 char buf[30], *a;
10318
10319 memcpy (names, "+0x", sizeof ("+0x") - 1);
10320 names += sizeof ("+0x") - 1;
10321 bfd_sprintf_vma (abfd, buf, p->addend);
10322 for (a = buf; *a == '0'; ++a)
10323 ;
10324 len = strlen (a);
10325 memcpy (names, a, len);
10326 names += len;
10327 }
10328 memcpy (names, "@plt", sizeof ("@plt"));
10329 names += sizeof ("@plt");
10330 ++s, ++n;
10331 }
10332
10333 return n;
10334 }
10335
10336 /* It is only used by x86-64 so far. */
10337 asection _bfd_elf_large_com_section
10338 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10339 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10340
10341 void
10342 _bfd_elf_post_process_headers (bfd * abfd,
10343 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10344 {
10345 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10346
10347 i_ehdrp = elf_elfheader (abfd);
10348
10349 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10350
10351 /* To make things simpler for the loader on Linux systems we set the
10352 osabi field to ELFOSABI_GNU if the binary contains symbols of
10353 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10354 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10355 && elf_tdata (abfd)->has_gnu_symbols)
10356 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10357 }
10358
10359
10360 /* Return TRUE for ELF symbol types that represent functions.
10361 This is the default version of this function, which is sufficient for
10362 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10363
10364 bfd_boolean
10365 _bfd_elf_is_function_type (unsigned int type)
10366 {
10367 return (type == STT_FUNC
10368 || type == STT_GNU_IFUNC);
10369 }
10370
10371 /* If the ELF symbol SYM might be a function in SEC, return the
10372 function size and set *CODE_OFF to the function's entry point,
10373 otherwise return zero. */
10374
10375 bfd_size_type
10376 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10377 bfd_vma *code_off)
10378 {
10379 bfd_size_type size;
10380
10381 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10382 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10383 || sym->section != sec)
10384 return 0;
10385
10386 *code_off = sym->value;
10387 size = 0;
10388 if (!(sym->flags & BSF_SYNTHETIC))
10389 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10390 if (size == 0)
10391 size = 1;
10392 return size;
10393 }
This page took 0.271295 seconds and 4 git commands to generate.