* elf32-arm.c (elf32_arm_output_arch_local_syms): Skip non-program
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 static int elf_sort_sections (const void *, const void *);
49 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
50 static bfd_boolean prep_headers (bfd *);
51 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
52 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
53 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
54 file_ptr offset);
55
56 /* Swap version information in and out. The version information is
57 currently size independent. If that ever changes, this code will
58 need to move into elfcode.h. */
59
60 /* Swap in a Verdef structure. */
61
62 void
63 _bfd_elf_swap_verdef_in (bfd *abfd,
64 const Elf_External_Verdef *src,
65 Elf_Internal_Verdef *dst)
66 {
67 dst->vd_version = H_GET_16 (abfd, src->vd_version);
68 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
69 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
70 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
71 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
72 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
73 dst->vd_next = H_GET_32 (abfd, src->vd_next);
74 }
75
76 /* Swap out a Verdef structure. */
77
78 void
79 _bfd_elf_swap_verdef_out (bfd *abfd,
80 const Elf_Internal_Verdef *src,
81 Elf_External_Verdef *dst)
82 {
83 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
84 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
85 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
86 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
87 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
88 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
89 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
90 }
91
92 /* Swap in a Verdaux structure. */
93
94 void
95 _bfd_elf_swap_verdaux_in (bfd *abfd,
96 const Elf_External_Verdaux *src,
97 Elf_Internal_Verdaux *dst)
98 {
99 dst->vda_name = H_GET_32 (abfd, src->vda_name);
100 dst->vda_next = H_GET_32 (abfd, src->vda_next);
101 }
102
103 /* Swap out a Verdaux structure. */
104
105 void
106 _bfd_elf_swap_verdaux_out (bfd *abfd,
107 const Elf_Internal_Verdaux *src,
108 Elf_External_Verdaux *dst)
109 {
110 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
111 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
112 }
113
114 /* Swap in a Verneed structure. */
115
116 void
117 _bfd_elf_swap_verneed_in (bfd *abfd,
118 const Elf_External_Verneed *src,
119 Elf_Internal_Verneed *dst)
120 {
121 dst->vn_version = H_GET_16 (abfd, src->vn_version);
122 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
123 dst->vn_file = H_GET_32 (abfd, src->vn_file);
124 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
125 dst->vn_next = H_GET_32 (abfd, src->vn_next);
126 }
127
128 /* Swap out a Verneed structure. */
129
130 void
131 _bfd_elf_swap_verneed_out (bfd *abfd,
132 const Elf_Internal_Verneed *src,
133 Elf_External_Verneed *dst)
134 {
135 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
136 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
137 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
138 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
139 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
140 }
141
142 /* Swap in a Vernaux structure. */
143
144 void
145 _bfd_elf_swap_vernaux_in (bfd *abfd,
146 const Elf_External_Vernaux *src,
147 Elf_Internal_Vernaux *dst)
148 {
149 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
150 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
151 dst->vna_other = H_GET_16 (abfd, src->vna_other);
152 dst->vna_name = H_GET_32 (abfd, src->vna_name);
153 dst->vna_next = H_GET_32 (abfd, src->vna_next);
154 }
155
156 /* Swap out a Vernaux structure. */
157
158 void
159 _bfd_elf_swap_vernaux_out (bfd *abfd,
160 const Elf_Internal_Vernaux *src,
161 Elf_External_Vernaux *dst)
162 {
163 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
164 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
165 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
166 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
167 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
168 }
169
170 /* Swap in a Versym structure. */
171
172 void
173 _bfd_elf_swap_versym_in (bfd *abfd,
174 const Elf_External_Versym *src,
175 Elf_Internal_Versym *dst)
176 {
177 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
178 }
179
180 /* Swap out a Versym structure. */
181
182 void
183 _bfd_elf_swap_versym_out (bfd *abfd,
184 const Elf_Internal_Versym *src,
185 Elf_External_Versym *dst)
186 {
187 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
188 }
189
190 /* Standard ELF hash function. Do not change this function; you will
191 cause invalid hash tables to be generated. */
192
193 unsigned long
194 bfd_elf_hash (const char *namearg)
195 {
196 const unsigned char *name = (const unsigned char *) namearg;
197 unsigned long h = 0;
198 unsigned long g;
199 int ch;
200
201 while ((ch = *name++) != '\0')
202 {
203 h = (h << 4) + ch;
204 if ((g = (h & 0xf0000000)) != 0)
205 {
206 h ^= g >> 24;
207 /* The ELF ABI says `h &= ~g', but this is equivalent in
208 this case and on some machines one insn instead of two. */
209 h ^= g;
210 }
211 }
212 return h & 0xffffffff;
213 }
214
215 /* DT_GNU_HASH hash function. Do not change this function; you will
216 cause invalid hash tables to be generated. */
217
218 unsigned long
219 bfd_elf_gnu_hash (const char *namearg)
220 {
221 const unsigned char *name = (const unsigned char *) namearg;
222 unsigned long h = 5381;
223 unsigned char ch;
224
225 while ((ch = *name++) != '\0')
226 h = (h << 5) + h + ch;
227 return h & 0xffffffff;
228 }
229
230 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
231 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
232 bfd_boolean
233 bfd_elf_allocate_object (bfd *abfd,
234 size_t object_size,
235 enum elf_target_id object_id)
236 {
237 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
238 abfd->tdata.any = bfd_zalloc (abfd, object_size);
239 if (abfd->tdata.any == NULL)
240 return FALSE;
241
242 elf_object_id (abfd) = object_id;
243 elf_program_header_size (abfd) = (bfd_size_type) -1;
244 return TRUE;
245 }
246
247
248 bfd_boolean
249 bfd_elf_make_generic_object (bfd *abfd)
250 {
251 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
252 GENERIC_ELF_DATA);
253 }
254
255 bfd_boolean
256 bfd_elf_mkcorefile (bfd *abfd)
257 {
258 /* I think this can be done just like an object file. */
259 return bfd_elf_make_generic_object (abfd);
260 }
261
262 static char *
263 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
264 {
265 Elf_Internal_Shdr **i_shdrp;
266 bfd_byte *shstrtab = NULL;
267 file_ptr offset;
268 bfd_size_type shstrtabsize;
269
270 i_shdrp = elf_elfsections (abfd);
271 if (i_shdrp == 0
272 || shindex >= elf_numsections (abfd)
273 || i_shdrp[shindex] == 0)
274 return NULL;
275
276 shstrtab = i_shdrp[shindex]->contents;
277 if (shstrtab == NULL)
278 {
279 /* No cached one, attempt to read, and cache what we read. */
280 offset = i_shdrp[shindex]->sh_offset;
281 shstrtabsize = i_shdrp[shindex]->sh_size;
282
283 /* Allocate and clear an extra byte at the end, to prevent crashes
284 in case the string table is not terminated. */
285 if (shstrtabsize + 1 <= 1
286 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
287 || bfd_seek (abfd, offset, SEEK_SET) != 0)
288 shstrtab = NULL;
289 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
290 {
291 if (bfd_get_error () != bfd_error_system_call)
292 bfd_set_error (bfd_error_file_truncated);
293 shstrtab = NULL;
294 /* Once we've failed to read it, make sure we don't keep
295 trying. Otherwise, we'll keep allocating space for
296 the string table over and over. */
297 i_shdrp[shindex]->sh_size = 0;
298 }
299 else
300 shstrtab[shstrtabsize] = '\0';
301 i_shdrp[shindex]->contents = shstrtab;
302 }
303 return (char *) shstrtab;
304 }
305
306 char *
307 bfd_elf_string_from_elf_section (bfd *abfd,
308 unsigned int shindex,
309 unsigned int strindex)
310 {
311 Elf_Internal_Shdr *hdr;
312
313 if (strindex == 0)
314 return "";
315
316 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
317 return NULL;
318
319 hdr = elf_elfsections (abfd)[shindex];
320
321 if (hdr->contents == NULL
322 && bfd_elf_get_str_section (abfd, shindex) == NULL)
323 return NULL;
324
325 if (strindex >= hdr->sh_size)
326 {
327 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
328 (*_bfd_error_handler)
329 (_("%B: invalid string offset %u >= %lu for section `%s'"),
330 abfd, strindex, (unsigned long) hdr->sh_size,
331 (shindex == shstrndx && strindex == hdr->sh_name
332 ? ".shstrtab"
333 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
334 return NULL;
335 }
336
337 return ((char *) hdr->contents) + strindex;
338 }
339
340 /* Read and convert symbols to internal format.
341 SYMCOUNT specifies the number of symbols to read, starting from
342 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
343 are non-NULL, they are used to store the internal symbols, external
344 symbols, and symbol section index extensions, respectively.
345 Returns a pointer to the internal symbol buffer (malloced if necessary)
346 or NULL if there were no symbols or some kind of problem. */
347
348 Elf_Internal_Sym *
349 bfd_elf_get_elf_syms (bfd *ibfd,
350 Elf_Internal_Shdr *symtab_hdr,
351 size_t symcount,
352 size_t symoffset,
353 Elf_Internal_Sym *intsym_buf,
354 void *extsym_buf,
355 Elf_External_Sym_Shndx *extshndx_buf)
356 {
357 Elf_Internal_Shdr *shndx_hdr;
358 void *alloc_ext;
359 const bfd_byte *esym;
360 Elf_External_Sym_Shndx *alloc_extshndx;
361 Elf_External_Sym_Shndx *shndx;
362 Elf_Internal_Sym *alloc_intsym;
363 Elf_Internal_Sym *isym;
364 Elf_Internal_Sym *isymend;
365 const struct elf_backend_data *bed;
366 size_t extsym_size;
367 bfd_size_type amt;
368 file_ptr pos;
369
370 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
371 abort ();
372
373 if (symcount == 0)
374 return intsym_buf;
375
376 /* Normal syms might have section extension entries. */
377 shndx_hdr = NULL;
378 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
379 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
380
381 /* Read the symbols. */
382 alloc_ext = NULL;
383 alloc_extshndx = NULL;
384 alloc_intsym = NULL;
385 bed = get_elf_backend_data (ibfd);
386 extsym_size = bed->s->sizeof_sym;
387 amt = symcount * extsym_size;
388 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
389 if (extsym_buf == NULL)
390 {
391 alloc_ext = bfd_malloc2 (symcount, extsym_size);
392 extsym_buf = alloc_ext;
393 }
394 if (extsym_buf == NULL
395 || bfd_seek (ibfd, pos, SEEK_SET) != 0
396 || bfd_bread (extsym_buf, amt, ibfd) != amt)
397 {
398 intsym_buf = NULL;
399 goto out;
400 }
401
402 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
403 extshndx_buf = NULL;
404 else
405 {
406 amt = symcount * sizeof (Elf_External_Sym_Shndx);
407 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
408 if (extshndx_buf == NULL)
409 {
410 alloc_extshndx = (Elf_External_Sym_Shndx *)
411 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
412 extshndx_buf = alloc_extshndx;
413 }
414 if (extshndx_buf == NULL
415 || bfd_seek (ibfd, pos, SEEK_SET) != 0
416 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
417 {
418 intsym_buf = NULL;
419 goto out;
420 }
421 }
422
423 if (intsym_buf == NULL)
424 {
425 alloc_intsym = (Elf_Internal_Sym *)
426 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
427 intsym_buf = alloc_intsym;
428 if (intsym_buf == NULL)
429 goto out;
430 }
431
432 /* Convert the symbols to internal form. */
433 isymend = intsym_buf + symcount;
434 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
435 shndx = extshndx_buf;
436 isym < isymend;
437 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
438 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
439 {
440 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
441 (*_bfd_error_handler) (_("%B symbol number %lu references "
442 "nonexistent SHT_SYMTAB_SHNDX section"),
443 ibfd, (unsigned long) symoffset);
444 if (alloc_intsym != NULL)
445 free (alloc_intsym);
446 intsym_buf = NULL;
447 goto out;
448 }
449
450 out:
451 if (alloc_ext != NULL)
452 free (alloc_ext);
453 if (alloc_extshndx != NULL)
454 free (alloc_extshndx);
455
456 return intsym_buf;
457 }
458
459 /* Look up a symbol name. */
460 const char *
461 bfd_elf_sym_name (bfd *abfd,
462 Elf_Internal_Shdr *symtab_hdr,
463 Elf_Internal_Sym *isym,
464 asection *sym_sec)
465 {
466 const char *name;
467 unsigned int iname = isym->st_name;
468 unsigned int shindex = symtab_hdr->sh_link;
469
470 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
471 /* Check for a bogus st_shndx to avoid crashing. */
472 && isym->st_shndx < elf_numsections (abfd))
473 {
474 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
475 shindex = elf_elfheader (abfd)->e_shstrndx;
476 }
477
478 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
479 if (name == NULL)
480 name = "(null)";
481 else if (sym_sec && *name == '\0')
482 name = bfd_section_name (abfd, sym_sec);
483
484 return name;
485 }
486
487 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
488 sections. The first element is the flags, the rest are section
489 pointers. */
490
491 typedef union elf_internal_group {
492 Elf_Internal_Shdr *shdr;
493 unsigned int flags;
494 } Elf_Internal_Group;
495
496 /* Return the name of the group signature symbol. Why isn't the
497 signature just a string? */
498
499 static const char *
500 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
501 {
502 Elf_Internal_Shdr *hdr;
503 unsigned char esym[sizeof (Elf64_External_Sym)];
504 Elf_External_Sym_Shndx eshndx;
505 Elf_Internal_Sym isym;
506
507 /* First we need to ensure the symbol table is available. Make sure
508 that it is a symbol table section. */
509 if (ghdr->sh_link >= elf_numsections (abfd))
510 return NULL;
511 hdr = elf_elfsections (abfd) [ghdr->sh_link];
512 if (hdr->sh_type != SHT_SYMTAB
513 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
514 return NULL;
515
516 /* Go read the symbol. */
517 hdr = &elf_tdata (abfd)->symtab_hdr;
518 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
519 &isym, esym, &eshndx) == NULL)
520 return NULL;
521
522 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
523 }
524
525 /* Set next_in_group list pointer, and group name for NEWSECT. */
526
527 static bfd_boolean
528 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
529 {
530 unsigned int num_group = elf_tdata (abfd)->num_group;
531
532 /* If num_group is zero, read in all SHT_GROUP sections. The count
533 is set to -1 if there are no SHT_GROUP sections. */
534 if (num_group == 0)
535 {
536 unsigned int i, shnum;
537
538 /* First count the number of groups. If we have a SHT_GROUP
539 section with just a flag word (ie. sh_size is 4), ignore it. */
540 shnum = elf_numsections (abfd);
541 num_group = 0;
542
543 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
544 ( (shdr)->sh_type == SHT_GROUP \
545 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
546 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
547 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
548
549 for (i = 0; i < shnum; i++)
550 {
551 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
552
553 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
554 num_group += 1;
555 }
556
557 if (num_group == 0)
558 {
559 num_group = (unsigned) -1;
560 elf_tdata (abfd)->num_group = num_group;
561 }
562 else
563 {
564 /* We keep a list of elf section headers for group sections,
565 so we can find them quickly. */
566 bfd_size_type amt;
567
568 elf_tdata (abfd)->num_group = num_group;
569 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
570 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
571 if (elf_tdata (abfd)->group_sect_ptr == NULL)
572 return FALSE;
573
574 num_group = 0;
575 for (i = 0; i < shnum; i++)
576 {
577 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
578
579 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
580 {
581 unsigned char *src;
582 Elf_Internal_Group *dest;
583
584 /* Add to list of sections. */
585 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
586 num_group += 1;
587
588 /* Read the raw contents. */
589 BFD_ASSERT (sizeof (*dest) >= 4);
590 amt = shdr->sh_size * sizeof (*dest) / 4;
591 shdr->contents = (unsigned char *)
592 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
593 /* PR binutils/4110: Handle corrupt group headers. */
594 if (shdr->contents == NULL)
595 {
596 _bfd_error_handler
597 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
598 bfd_set_error (bfd_error_bad_value);
599 return FALSE;
600 }
601
602 memset (shdr->contents, 0, amt);
603
604 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
605 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
606 != shdr->sh_size))
607 return FALSE;
608
609 /* Translate raw contents, a flag word followed by an
610 array of elf section indices all in target byte order,
611 to the flag word followed by an array of elf section
612 pointers. */
613 src = shdr->contents + shdr->sh_size;
614 dest = (Elf_Internal_Group *) (shdr->contents + amt);
615 while (1)
616 {
617 unsigned int idx;
618
619 src -= 4;
620 --dest;
621 idx = H_GET_32 (abfd, src);
622 if (src == shdr->contents)
623 {
624 dest->flags = idx;
625 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
626 shdr->bfd_section->flags
627 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
628 break;
629 }
630 if (idx >= shnum)
631 {
632 ((*_bfd_error_handler)
633 (_("%B: invalid SHT_GROUP entry"), abfd));
634 idx = 0;
635 }
636 dest->shdr = elf_elfsections (abfd)[idx];
637 }
638 }
639 }
640 }
641 }
642
643 if (num_group != (unsigned) -1)
644 {
645 unsigned int i;
646
647 for (i = 0; i < num_group; i++)
648 {
649 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
650 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
651 unsigned int n_elt = shdr->sh_size / 4;
652
653 /* Look through this group's sections to see if current
654 section is a member. */
655 while (--n_elt != 0)
656 if ((++idx)->shdr == hdr)
657 {
658 asection *s = NULL;
659
660 /* We are a member of this group. Go looking through
661 other members to see if any others are linked via
662 next_in_group. */
663 idx = (Elf_Internal_Group *) shdr->contents;
664 n_elt = shdr->sh_size / 4;
665 while (--n_elt != 0)
666 if ((s = (++idx)->shdr->bfd_section) != NULL
667 && elf_next_in_group (s) != NULL)
668 break;
669 if (n_elt != 0)
670 {
671 /* Snarf the group name from other member, and
672 insert current section in circular list. */
673 elf_group_name (newsect) = elf_group_name (s);
674 elf_next_in_group (newsect) = elf_next_in_group (s);
675 elf_next_in_group (s) = newsect;
676 }
677 else
678 {
679 const char *gname;
680
681 gname = group_signature (abfd, shdr);
682 if (gname == NULL)
683 return FALSE;
684 elf_group_name (newsect) = gname;
685
686 /* Start a circular list with one element. */
687 elf_next_in_group (newsect) = newsect;
688 }
689
690 /* If the group section has been created, point to the
691 new member. */
692 if (shdr->bfd_section != NULL)
693 elf_next_in_group (shdr->bfd_section) = newsect;
694
695 i = num_group - 1;
696 break;
697 }
698 }
699 }
700
701 if (elf_group_name (newsect) == NULL)
702 {
703 (*_bfd_error_handler) (_("%B: no group info for section %A"),
704 abfd, newsect);
705 }
706 return TRUE;
707 }
708
709 bfd_boolean
710 _bfd_elf_setup_sections (bfd *abfd)
711 {
712 unsigned int i;
713 unsigned int num_group = elf_tdata (abfd)->num_group;
714 bfd_boolean result = TRUE;
715 asection *s;
716
717 /* Process SHF_LINK_ORDER. */
718 for (s = abfd->sections; s != NULL; s = s->next)
719 {
720 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
721 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
722 {
723 unsigned int elfsec = this_hdr->sh_link;
724 /* FIXME: The old Intel compiler and old strip/objcopy may
725 not set the sh_link or sh_info fields. Hence we could
726 get the situation where elfsec is 0. */
727 if (elfsec == 0)
728 {
729 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
730 if (bed->link_order_error_handler)
731 bed->link_order_error_handler
732 (_("%B: warning: sh_link not set for section `%A'"),
733 abfd, s);
734 }
735 else
736 {
737 asection *linksec = NULL;
738
739 if (elfsec < elf_numsections (abfd))
740 {
741 this_hdr = elf_elfsections (abfd)[elfsec];
742 linksec = this_hdr->bfd_section;
743 }
744
745 /* PR 1991, 2008:
746 Some strip/objcopy may leave an incorrect value in
747 sh_link. We don't want to proceed. */
748 if (linksec == NULL)
749 {
750 (*_bfd_error_handler)
751 (_("%B: sh_link [%d] in section `%A' is incorrect"),
752 s->owner, s, elfsec);
753 result = FALSE;
754 }
755
756 elf_linked_to_section (s) = linksec;
757 }
758 }
759 }
760
761 /* Process section groups. */
762 if (num_group == (unsigned) -1)
763 return result;
764
765 for (i = 0; i < num_group; i++)
766 {
767 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
768 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
769 unsigned int n_elt = shdr->sh_size / 4;
770
771 while (--n_elt != 0)
772 if ((++idx)->shdr->bfd_section)
773 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
774 else if (idx->shdr->sh_type == SHT_RELA
775 || idx->shdr->sh_type == SHT_REL)
776 /* We won't include relocation sections in section groups in
777 output object files. We adjust the group section size here
778 so that relocatable link will work correctly when
779 relocation sections are in section group in input object
780 files. */
781 shdr->bfd_section->size -= 4;
782 else
783 {
784 /* There are some unknown sections in the group. */
785 (*_bfd_error_handler)
786 (_("%B: unknown [%d] section `%s' in group [%s]"),
787 abfd,
788 (unsigned int) idx->shdr->sh_type,
789 bfd_elf_string_from_elf_section (abfd,
790 (elf_elfheader (abfd)
791 ->e_shstrndx),
792 idx->shdr->sh_name),
793 shdr->bfd_section->name);
794 result = FALSE;
795 }
796 }
797 return result;
798 }
799
800 bfd_boolean
801 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
802 {
803 return elf_next_in_group (sec) != NULL;
804 }
805
806 /* Make a BFD section from an ELF section. We store a pointer to the
807 BFD section in the bfd_section field of the header. */
808
809 bfd_boolean
810 _bfd_elf_make_section_from_shdr (bfd *abfd,
811 Elf_Internal_Shdr *hdr,
812 const char *name,
813 int shindex)
814 {
815 asection *newsect;
816 flagword flags;
817 const struct elf_backend_data *bed;
818
819 if (hdr->bfd_section != NULL)
820 {
821 BFD_ASSERT (strcmp (name,
822 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
823 return TRUE;
824 }
825
826 newsect = bfd_make_section_anyway (abfd, name);
827 if (newsect == NULL)
828 return FALSE;
829
830 hdr->bfd_section = newsect;
831 elf_section_data (newsect)->this_hdr = *hdr;
832 elf_section_data (newsect)->this_idx = shindex;
833
834 /* Always use the real type/flags. */
835 elf_section_type (newsect) = hdr->sh_type;
836 elf_section_flags (newsect) = hdr->sh_flags;
837
838 newsect->filepos = hdr->sh_offset;
839
840 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
841 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
842 || ! bfd_set_section_alignment (abfd, newsect,
843 bfd_log2 (hdr->sh_addralign)))
844 return FALSE;
845
846 flags = SEC_NO_FLAGS;
847 if (hdr->sh_type != SHT_NOBITS)
848 flags |= SEC_HAS_CONTENTS;
849 if (hdr->sh_type == SHT_GROUP)
850 flags |= SEC_GROUP | SEC_EXCLUDE;
851 if ((hdr->sh_flags & SHF_ALLOC) != 0)
852 {
853 flags |= SEC_ALLOC;
854 if (hdr->sh_type != SHT_NOBITS)
855 flags |= SEC_LOAD;
856 }
857 if ((hdr->sh_flags & SHF_WRITE) == 0)
858 flags |= SEC_READONLY;
859 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
860 flags |= SEC_CODE;
861 else if ((flags & SEC_LOAD) != 0)
862 flags |= SEC_DATA;
863 if ((hdr->sh_flags & SHF_MERGE) != 0)
864 {
865 flags |= SEC_MERGE;
866 newsect->entsize = hdr->sh_entsize;
867 if ((hdr->sh_flags & SHF_STRINGS) != 0)
868 flags |= SEC_STRINGS;
869 }
870 if (hdr->sh_flags & SHF_GROUP)
871 if (!setup_group (abfd, hdr, newsect))
872 return FALSE;
873 if ((hdr->sh_flags & SHF_TLS) != 0)
874 flags |= SEC_THREAD_LOCAL;
875
876 if ((flags & SEC_ALLOC) == 0)
877 {
878 /* The debugging sections appear to be recognized only by name,
879 not any sort of flag. Their SEC_ALLOC bits are cleared. */
880 static const struct
881 {
882 const char *name;
883 int len;
884 } debug_sections [] =
885 {
886 { STRING_COMMA_LEN ("debug") }, /* 'd' */
887 { NULL, 0 }, /* 'e' */
888 { NULL, 0 }, /* 'f' */
889 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
890 { NULL, 0 }, /* 'h' */
891 { NULL, 0 }, /* 'i' */
892 { NULL, 0 }, /* 'j' */
893 { NULL, 0 }, /* 'k' */
894 { STRING_COMMA_LEN ("line") }, /* 'l' */
895 { NULL, 0 }, /* 'm' */
896 { NULL, 0 }, /* 'n' */
897 { NULL, 0 }, /* 'o' */
898 { NULL, 0 }, /* 'p' */
899 { NULL, 0 }, /* 'q' */
900 { NULL, 0 }, /* 'r' */
901 { STRING_COMMA_LEN ("stab") }, /* 's' */
902 { NULL, 0 }, /* 't' */
903 { NULL, 0 }, /* 'u' */
904 { NULL, 0 }, /* 'v' */
905 { NULL, 0 }, /* 'w' */
906 { NULL, 0 }, /* 'x' */
907 { NULL, 0 }, /* 'y' */
908 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
909 };
910
911 if (name [0] == '.')
912 {
913 int i = name [1] - 'd';
914 if (i >= 0
915 && i < (int) ARRAY_SIZE (debug_sections)
916 && debug_sections [i].name != NULL
917 && strncmp (&name [1], debug_sections [i].name,
918 debug_sections [i].len) == 0)
919 flags |= SEC_DEBUGGING;
920 }
921 }
922
923 /* As a GNU extension, if the name begins with .gnu.linkonce, we
924 only link a single copy of the section. This is used to support
925 g++. g++ will emit each template expansion in its own section.
926 The symbols will be defined as weak, so that multiple definitions
927 are permitted. The GNU linker extension is to actually discard
928 all but one of the sections. */
929 if (CONST_STRNEQ (name, ".gnu.linkonce")
930 && elf_next_in_group (newsect) == NULL)
931 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
932
933 bed = get_elf_backend_data (abfd);
934 if (bed->elf_backend_section_flags)
935 if (! bed->elf_backend_section_flags (&flags, hdr))
936 return FALSE;
937
938 if (! bfd_set_section_flags (abfd, newsect, flags))
939 return FALSE;
940
941 /* We do not parse the PT_NOTE segments as we are interested even in the
942 separate debug info files which may have the segments offsets corrupted.
943 PT_NOTEs from the core files are currently not parsed using BFD. */
944 if (hdr->sh_type == SHT_NOTE)
945 {
946 bfd_byte *contents;
947
948 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
949 return FALSE;
950
951 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
952 free (contents);
953 }
954
955 if ((flags & SEC_ALLOC) != 0)
956 {
957 Elf_Internal_Phdr *phdr;
958 unsigned int i, nload;
959
960 /* Some ELF linkers produce binaries with all the program header
961 p_paddr fields zero. If we have such a binary with more than
962 one PT_LOAD header, then leave the section lma equal to vma
963 so that we don't create sections with overlapping lma. */
964 phdr = elf_tdata (abfd)->phdr;
965 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
966 if (phdr->p_paddr != 0)
967 break;
968 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
969 ++nload;
970 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
971 return TRUE;
972
973 phdr = elf_tdata (abfd)->phdr;
974 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
975 {
976 if (phdr->p_type == PT_LOAD
977 && ELF_IS_SECTION_IN_SEGMENT (hdr, phdr))
978 {
979 if ((flags & SEC_LOAD) == 0)
980 newsect->lma = (phdr->p_paddr
981 + hdr->sh_addr - phdr->p_vaddr);
982 else
983 /* We used to use the same adjustment for SEC_LOAD
984 sections, but that doesn't work if the segment
985 is packed with code from multiple VMAs.
986 Instead we calculate the section LMA based on
987 the segment LMA. It is assumed that the
988 segment will contain sections with contiguous
989 LMAs, even if the VMAs are not. */
990 newsect->lma = (phdr->p_paddr
991 + hdr->sh_offset - phdr->p_offset);
992
993 /* With contiguous segments, we can't tell from file
994 offsets whether a section with zero size should
995 be placed at the end of one segment or the
996 beginning of the next. Decide based on vaddr. */
997 if (hdr->sh_addr >= phdr->p_vaddr
998 && (hdr->sh_addr + hdr->sh_size
999 <= phdr->p_vaddr + phdr->p_memsz))
1000 break;
1001 }
1002 }
1003 }
1004
1005 return TRUE;
1006 }
1007
1008 const char *const bfd_elf_section_type_names[] = {
1009 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1010 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1011 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1012 };
1013
1014 /* ELF relocs are against symbols. If we are producing relocatable
1015 output, and the reloc is against an external symbol, and nothing
1016 has given us any additional addend, the resulting reloc will also
1017 be against the same symbol. In such a case, we don't want to
1018 change anything about the way the reloc is handled, since it will
1019 all be done at final link time. Rather than put special case code
1020 into bfd_perform_relocation, all the reloc types use this howto
1021 function. It just short circuits the reloc if producing
1022 relocatable output against an external symbol. */
1023
1024 bfd_reloc_status_type
1025 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1026 arelent *reloc_entry,
1027 asymbol *symbol,
1028 void *data ATTRIBUTE_UNUSED,
1029 asection *input_section,
1030 bfd *output_bfd,
1031 char **error_message ATTRIBUTE_UNUSED)
1032 {
1033 if (output_bfd != NULL
1034 && (symbol->flags & BSF_SECTION_SYM) == 0
1035 && (! reloc_entry->howto->partial_inplace
1036 || reloc_entry->addend == 0))
1037 {
1038 reloc_entry->address += input_section->output_offset;
1039 return bfd_reloc_ok;
1040 }
1041
1042 return bfd_reloc_continue;
1043 }
1044 \f
1045 /* Copy the program header and other data from one object module to
1046 another. */
1047
1048 bfd_boolean
1049 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1050 {
1051 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1052 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1053 return TRUE;
1054
1055 BFD_ASSERT (!elf_flags_init (obfd)
1056 || (elf_elfheader (obfd)->e_flags
1057 == elf_elfheader (ibfd)->e_flags));
1058
1059 elf_gp (obfd) = elf_gp (ibfd);
1060 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1061 elf_flags_init (obfd) = TRUE;
1062
1063 /* Copy object attributes. */
1064 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1065
1066 return TRUE;
1067 }
1068
1069 static const char *
1070 get_segment_type (unsigned int p_type)
1071 {
1072 const char *pt;
1073 switch (p_type)
1074 {
1075 case PT_NULL: pt = "NULL"; break;
1076 case PT_LOAD: pt = "LOAD"; break;
1077 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1078 case PT_INTERP: pt = "INTERP"; break;
1079 case PT_NOTE: pt = "NOTE"; break;
1080 case PT_SHLIB: pt = "SHLIB"; break;
1081 case PT_PHDR: pt = "PHDR"; break;
1082 case PT_TLS: pt = "TLS"; break;
1083 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1084 case PT_GNU_STACK: pt = "STACK"; break;
1085 case PT_GNU_RELRO: pt = "RELRO"; break;
1086 default: pt = NULL; break;
1087 }
1088 return pt;
1089 }
1090
1091 /* Print out the program headers. */
1092
1093 bfd_boolean
1094 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1095 {
1096 FILE *f = (FILE *) farg;
1097 Elf_Internal_Phdr *p;
1098 asection *s;
1099 bfd_byte *dynbuf = NULL;
1100
1101 p = elf_tdata (abfd)->phdr;
1102 if (p != NULL)
1103 {
1104 unsigned int i, c;
1105
1106 fprintf (f, _("\nProgram Header:\n"));
1107 c = elf_elfheader (abfd)->e_phnum;
1108 for (i = 0; i < c; i++, p++)
1109 {
1110 const char *pt = get_segment_type (p->p_type);
1111 char buf[20];
1112
1113 if (pt == NULL)
1114 {
1115 sprintf (buf, "0x%lx", p->p_type);
1116 pt = buf;
1117 }
1118 fprintf (f, "%8s off 0x", pt);
1119 bfd_fprintf_vma (abfd, f, p->p_offset);
1120 fprintf (f, " vaddr 0x");
1121 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1122 fprintf (f, " paddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_paddr);
1124 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1125 fprintf (f, " filesz 0x");
1126 bfd_fprintf_vma (abfd, f, p->p_filesz);
1127 fprintf (f, " memsz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_memsz);
1129 fprintf (f, " flags %c%c%c",
1130 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1131 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1132 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1133 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1134 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1135 fprintf (f, "\n");
1136 }
1137 }
1138
1139 s = bfd_get_section_by_name (abfd, ".dynamic");
1140 if (s != NULL)
1141 {
1142 unsigned int elfsec;
1143 unsigned long shlink;
1144 bfd_byte *extdyn, *extdynend;
1145 size_t extdynsize;
1146 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1147
1148 fprintf (f, _("\nDynamic Section:\n"));
1149
1150 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1151 goto error_return;
1152
1153 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1154 if (elfsec == SHN_BAD)
1155 goto error_return;
1156 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1157
1158 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1159 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1160
1161 extdyn = dynbuf;
1162 extdynend = extdyn + s->size;
1163 for (; extdyn < extdynend; extdyn += extdynsize)
1164 {
1165 Elf_Internal_Dyn dyn;
1166 const char *name = "";
1167 char ab[20];
1168 bfd_boolean stringp;
1169 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1170
1171 (*swap_dyn_in) (abfd, extdyn, &dyn);
1172
1173 if (dyn.d_tag == DT_NULL)
1174 break;
1175
1176 stringp = FALSE;
1177 switch (dyn.d_tag)
1178 {
1179 default:
1180 if (bed->elf_backend_get_target_dtag)
1181 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1182
1183 if (!strcmp (name, ""))
1184 {
1185 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1186 name = ab;
1187 }
1188 break;
1189
1190 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1191 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1192 case DT_PLTGOT: name = "PLTGOT"; break;
1193 case DT_HASH: name = "HASH"; break;
1194 case DT_STRTAB: name = "STRTAB"; break;
1195 case DT_SYMTAB: name = "SYMTAB"; break;
1196 case DT_RELA: name = "RELA"; break;
1197 case DT_RELASZ: name = "RELASZ"; break;
1198 case DT_RELAENT: name = "RELAENT"; break;
1199 case DT_STRSZ: name = "STRSZ"; break;
1200 case DT_SYMENT: name = "SYMENT"; break;
1201 case DT_INIT: name = "INIT"; break;
1202 case DT_FINI: name = "FINI"; break;
1203 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1204 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1205 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1206 case DT_REL: name = "REL"; break;
1207 case DT_RELSZ: name = "RELSZ"; break;
1208 case DT_RELENT: name = "RELENT"; break;
1209 case DT_PLTREL: name = "PLTREL"; break;
1210 case DT_DEBUG: name = "DEBUG"; break;
1211 case DT_TEXTREL: name = "TEXTREL"; break;
1212 case DT_JMPREL: name = "JMPREL"; break;
1213 case DT_BIND_NOW: name = "BIND_NOW"; break;
1214 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1215 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1216 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1217 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1218 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1219 case DT_FLAGS: name = "FLAGS"; break;
1220 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1221 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1222 case DT_CHECKSUM: name = "CHECKSUM"; break;
1223 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1224 case DT_MOVEENT: name = "MOVEENT"; break;
1225 case DT_MOVESZ: name = "MOVESZ"; break;
1226 case DT_FEATURE: name = "FEATURE"; break;
1227 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1228 case DT_SYMINSZ: name = "SYMINSZ"; break;
1229 case DT_SYMINENT: name = "SYMINENT"; break;
1230 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1231 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1232 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1233 case DT_PLTPAD: name = "PLTPAD"; break;
1234 case DT_MOVETAB: name = "MOVETAB"; break;
1235 case DT_SYMINFO: name = "SYMINFO"; break;
1236 case DT_RELACOUNT: name = "RELACOUNT"; break;
1237 case DT_RELCOUNT: name = "RELCOUNT"; break;
1238 case DT_FLAGS_1: name = "FLAGS_1"; break;
1239 case DT_VERSYM: name = "VERSYM"; break;
1240 case DT_VERDEF: name = "VERDEF"; break;
1241 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1242 case DT_VERNEED: name = "VERNEED"; break;
1243 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1244 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1245 case DT_USED: name = "USED"; break;
1246 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1247 case DT_GNU_HASH: name = "GNU_HASH"; break;
1248 }
1249
1250 fprintf (f, " %-20s ", name);
1251 if (! stringp)
1252 {
1253 fprintf (f, "0x");
1254 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1255 }
1256 else
1257 {
1258 const char *string;
1259 unsigned int tagv = dyn.d_un.d_val;
1260
1261 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1262 if (string == NULL)
1263 goto error_return;
1264 fprintf (f, "%s", string);
1265 }
1266 fprintf (f, "\n");
1267 }
1268
1269 free (dynbuf);
1270 dynbuf = NULL;
1271 }
1272
1273 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1274 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1275 {
1276 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1277 return FALSE;
1278 }
1279
1280 if (elf_dynverdef (abfd) != 0)
1281 {
1282 Elf_Internal_Verdef *t;
1283
1284 fprintf (f, _("\nVersion definitions:\n"));
1285 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1286 {
1287 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1288 t->vd_flags, t->vd_hash,
1289 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1290 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1291 {
1292 Elf_Internal_Verdaux *a;
1293
1294 fprintf (f, "\t");
1295 for (a = t->vd_auxptr->vda_nextptr;
1296 a != NULL;
1297 a = a->vda_nextptr)
1298 fprintf (f, "%s ",
1299 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1300 fprintf (f, "\n");
1301 }
1302 }
1303 }
1304
1305 if (elf_dynverref (abfd) != 0)
1306 {
1307 Elf_Internal_Verneed *t;
1308
1309 fprintf (f, _("\nVersion References:\n"));
1310 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1311 {
1312 Elf_Internal_Vernaux *a;
1313
1314 fprintf (f, _(" required from %s:\n"),
1315 t->vn_filename ? t->vn_filename : "<corrupt>");
1316 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1317 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1318 a->vna_flags, a->vna_other,
1319 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1320 }
1321 }
1322
1323 return TRUE;
1324
1325 error_return:
1326 if (dynbuf != NULL)
1327 free (dynbuf);
1328 return FALSE;
1329 }
1330
1331 /* Display ELF-specific fields of a symbol. */
1332
1333 void
1334 bfd_elf_print_symbol (bfd *abfd,
1335 void *filep,
1336 asymbol *symbol,
1337 bfd_print_symbol_type how)
1338 {
1339 FILE *file = (FILE *) filep;
1340 switch (how)
1341 {
1342 case bfd_print_symbol_name:
1343 fprintf (file, "%s", symbol->name);
1344 break;
1345 case bfd_print_symbol_more:
1346 fprintf (file, "elf ");
1347 bfd_fprintf_vma (abfd, file, symbol->value);
1348 fprintf (file, " %lx", (unsigned long) symbol->flags);
1349 break;
1350 case bfd_print_symbol_all:
1351 {
1352 const char *section_name;
1353 const char *name = NULL;
1354 const struct elf_backend_data *bed;
1355 unsigned char st_other;
1356 bfd_vma val;
1357
1358 section_name = symbol->section ? symbol->section->name : "(*none*)";
1359
1360 bed = get_elf_backend_data (abfd);
1361 if (bed->elf_backend_print_symbol_all)
1362 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1363
1364 if (name == NULL)
1365 {
1366 name = symbol->name;
1367 bfd_print_symbol_vandf (abfd, file, symbol);
1368 }
1369
1370 fprintf (file, " %s\t", section_name);
1371 /* Print the "other" value for a symbol. For common symbols,
1372 we've already printed the size; now print the alignment.
1373 For other symbols, we have no specified alignment, and
1374 we've printed the address; now print the size. */
1375 if (symbol->section && bfd_is_com_section (symbol->section))
1376 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1377 else
1378 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1379 bfd_fprintf_vma (abfd, file, val);
1380
1381 /* If we have version information, print it. */
1382 if (elf_tdata (abfd)->dynversym_section != 0
1383 && (elf_tdata (abfd)->dynverdef_section != 0
1384 || elf_tdata (abfd)->dynverref_section != 0))
1385 {
1386 unsigned int vernum;
1387 const char *version_string;
1388
1389 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1390
1391 if (vernum == 0)
1392 version_string = "";
1393 else if (vernum == 1)
1394 version_string = "Base";
1395 else if (vernum <= elf_tdata (abfd)->cverdefs)
1396 version_string =
1397 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1398 else
1399 {
1400 Elf_Internal_Verneed *t;
1401
1402 version_string = "";
1403 for (t = elf_tdata (abfd)->verref;
1404 t != NULL;
1405 t = t->vn_nextref)
1406 {
1407 Elf_Internal_Vernaux *a;
1408
1409 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1410 {
1411 if (a->vna_other == vernum)
1412 {
1413 version_string = a->vna_nodename;
1414 break;
1415 }
1416 }
1417 }
1418 }
1419
1420 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1421 fprintf (file, " %-11s", version_string);
1422 else
1423 {
1424 int i;
1425
1426 fprintf (file, " (%s)", version_string);
1427 for (i = 10 - strlen (version_string); i > 0; --i)
1428 putc (' ', file);
1429 }
1430 }
1431
1432 /* If the st_other field is not zero, print it. */
1433 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1434
1435 switch (st_other)
1436 {
1437 case 0: break;
1438 case STV_INTERNAL: fprintf (file, " .internal"); break;
1439 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1440 case STV_PROTECTED: fprintf (file, " .protected"); break;
1441 default:
1442 /* Some other non-defined flags are also present, so print
1443 everything hex. */
1444 fprintf (file, " 0x%02x", (unsigned int) st_other);
1445 }
1446
1447 fprintf (file, " %s", name);
1448 }
1449 break;
1450 }
1451 }
1452
1453 /* Allocate an ELF string table--force the first byte to be zero. */
1454
1455 struct bfd_strtab_hash *
1456 _bfd_elf_stringtab_init (void)
1457 {
1458 struct bfd_strtab_hash *ret;
1459
1460 ret = _bfd_stringtab_init ();
1461 if (ret != NULL)
1462 {
1463 bfd_size_type loc;
1464
1465 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1466 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1467 if (loc == (bfd_size_type) -1)
1468 {
1469 _bfd_stringtab_free (ret);
1470 ret = NULL;
1471 }
1472 }
1473 return ret;
1474 }
1475 \f
1476 /* ELF .o/exec file reading */
1477
1478 /* Create a new bfd section from an ELF section header. */
1479
1480 bfd_boolean
1481 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1482 {
1483 Elf_Internal_Shdr *hdr;
1484 Elf_Internal_Ehdr *ehdr;
1485 const struct elf_backend_data *bed;
1486 const char *name;
1487
1488 if (shindex >= elf_numsections (abfd))
1489 return FALSE;
1490
1491 hdr = elf_elfsections (abfd)[shindex];
1492 ehdr = elf_elfheader (abfd);
1493 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1494 hdr->sh_name);
1495 if (name == NULL)
1496 return FALSE;
1497
1498 bed = get_elf_backend_data (abfd);
1499 switch (hdr->sh_type)
1500 {
1501 case SHT_NULL:
1502 /* Inactive section. Throw it away. */
1503 return TRUE;
1504
1505 case SHT_PROGBITS: /* Normal section with contents. */
1506 case SHT_NOBITS: /* .bss section. */
1507 case SHT_HASH: /* .hash section. */
1508 case SHT_NOTE: /* .note section. */
1509 case SHT_INIT_ARRAY: /* .init_array section. */
1510 case SHT_FINI_ARRAY: /* .fini_array section. */
1511 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1512 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1513 case SHT_GNU_HASH: /* .gnu.hash section. */
1514 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1515
1516 case SHT_DYNAMIC: /* Dynamic linking information. */
1517 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1518 return FALSE;
1519 if (hdr->sh_link > elf_numsections (abfd))
1520 {
1521 /* PR 10478: Accept Solaris binaries with a sh_link
1522 field set to SHN_BEFORE or SHN_AFTER. */
1523 switch (bfd_get_arch (abfd))
1524 {
1525 case bfd_arch_i386:
1526 case bfd_arch_sparc:
1527 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1528 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1529 break;
1530 /* Otherwise fall through. */
1531 default:
1532 return FALSE;
1533 }
1534 }
1535 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1536 return FALSE;
1537 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1538 {
1539 Elf_Internal_Shdr *dynsymhdr;
1540
1541 /* The shared libraries distributed with hpux11 have a bogus
1542 sh_link field for the ".dynamic" section. Find the
1543 string table for the ".dynsym" section instead. */
1544 if (elf_dynsymtab (abfd) != 0)
1545 {
1546 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1547 hdr->sh_link = dynsymhdr->sh_link;
1548 }
1549 else
1550 {
1551 unsigned int i, num_sec;
1552
1553 num_sec = elf_numsections (abfd);
1554 for (i = 1; i < num_sec; i++)
1555 {
1556 dynsymhdr = elf_elfsections (abfd)[i];
1557 if (dynsymhdr->sh_type == SHT_DYNSYM)
1558 {
1559 hdr->sh_link = dynsymhdr->sh_link;
1560 break;
1561 }
1562 }
1563 }
1564 }
1565 break;
1566
1567 case SHT_SYMTAB: /* A symbol table */
1568 if (elf_onesymtab (abfd) == shindex)
1569 return TRUE;
1570
1571 if (hdr->sh_entsize != bed->s->sizeof_sym)
1572 return FALSE;
1573 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1574 return FALSE;
1575 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1576 elf_onesymtab (abfd) = shindex;
1577 elf_tdata (abfd)->symtab_hdr = *hdr;
1578 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1579 abfd->flags |= HAS_SYMS;
1580
1581 /* Sometimes a shared object will map in the symbol table. If
1582 SHF_ALLOC is set, and this is a shared object, then we also
1583 treat this section as a BFD section. We can not base the
1584 decision purely on SHF_ALLOC, because that flag is sometimes
1585 set in a relocatable object file, which would confuse the
1586 linker. */
1587 if ((hdr->sh_flags & SHF_ALLOC) != 0
1588 && (abfd->flags & DYNAMIC) != 0
1589 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1590 shindex))
1591 return FALSE;
1592
1593 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1594 can't read symbols without that section loaded as well. It
1595 is most likely specified by the next section header. */
1596 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1597 {
1598 unsigned int i, num_sec;
1599
1600 num_sec = elf_numsections (abfd);
1601 for (i = shindex + 1; i < num_sec; i++)
1602 {
1603 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1604 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1605 && hdr2->sh_link == shindex)
1606 break;
1607 }
1608 if (i == num_sec)
1609 for (i = 1; i < shindex; i++)
1610 {
1611 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1612 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1613 && hdr2->sh_link == shindex)
1614 break;
1615 }
1616 if (i != shindex)
1617 return bfd_section_from_shdr (abfd, i);
1618 }
1619 return TRUE;
1620
1621 case SHT_DYNSYM: /* A dynamic symbol table */
1622 if (elf_dynsymtab (abfd) == shindex)
1623 return TRUE;
1624
1625 if (hdr->sh_entsize != bed->s->sizeof_sym)
1626 return FALSE;
1627 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1628 elf_dynsymtab (abfd) = shindex;
1629 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1630 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1631 abfd->flags |= HAS_SYMS;
1632
1633 /* Besides being a symbol table, we also treat this as a regular
1634 section, so that objcopy can handle it. */
1635 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1636
1637 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1638 if (elf_symtab_shndx (abfd) == shindex)
1639 return TRUE;
1640
1641 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1642 elf_symtab_shndx (abfd) = shindex;
1643 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1644 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1645 return TRUE;
1646
1647 case SHT_STRTAB: /* A string table */
1648 if (hdr->bfd_section != NULL)
1649 return TRUE;
1650 if (ehdr->e_shstrndx == shindex)
1651 {
1652 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1653 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1654 return TRUE;
1655 }
1656 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1657 {
1658 symtab_strtab:
1659 elf_tdata (abfd)->strtab_hdr = *hdr;
1660 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1661 return TRUE;
1662 }
1663 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1664 {
1665 dynsymtab_strtab:
1666 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1667 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1668 elf_elfsections (abfd)[shindex] = hdr;
1669 /* We also treat this as a regular section, so that objcopy
1670 can handle it. */
1671 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1672 shindex);
1673 }
1674
1675 /* If the string table isn't one of the above, then treat it as a
1676 regular section. We need to scan all the headers to be sure,
1677 just in case this strtab section appeared before the above. */
1678 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1679 {
1680 unsigned int i, num_sec;
1681
1682 num_sec = elf_numsections (abfd);
1683 for (i = 1; i < num_sec; i++)
1684 {
1685 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1686 if (hdr2->sh_link == shindex)
1687 {
1688 /* Prevent endless recursion on broken objects. */
1689 if (i == shindex)
1690 return FALSE;
1691 if (! bfd_section_from_shdr (abfd, i))
1692 return FALSE;
1693 if (elf_onesymtab (abfd) == i)
1694 goto symtab_strtab;
1695 if (elf_dynsymtab (abfd) == i)
1696 goto dynsymtab_strtab;
1697 }
1698 }
1699 }
1700 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1701
1702 case SHT_REL:
1703 case SHT_RELA:
1704 /* *These* do a lot of work -- but build no sections! */
1705 {
1706 asection *target_sect;
1707 Elf_Internal_Shdr *hdr2;
1708 unsigned int num_sec = elf_numsections (abfd);
1709
1710 if (hdr->sh_entsize
1711 != (bfd_size_type) (hdr->sh_type == SHT_REL
1712 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1713 return FALSE;
1714
1715 /* Check for a bogus link to avoid crashing. */
1716 if (hdr->sh_link >= num_sec)
1717 {
1718 ((*_bfd_error_handler)
1719 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1720 abfd, hdr->sh_link, name, shindex));
1721 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1722 shindex);
1723 }
1724
1725 /* For some incomprehensible reason Oracle distributes
1726 libraries for Solaris in which some of the objects have
1727 bogus sh_link fields. It would be nice if we could just
1728 reject them, but, unfortunately, some people need to use
1729 them. We scan through the section headers; if we find only
1730 one suitable symbol table, we clobber the sh_link to point
1731 to it. I hope this doesn't break anything.
1732
1733 Don't do it on executable nor shared library. */
1734 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1735 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1736 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1737 {
1738 unsigned int scan;
1739 int found;
1740
1741 found = 0;
1742 for (scan = 1; scan < num_sec; scan++)
1743 {
1744 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1745 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1746 {
1747 if (found != 0)
1748 {
1749 found = 0;
1750 break;
1751 }
1752 found = scan;
1753 }
1754 }
1755 if (found != 0)
1756 hdr->sh_link = found;
1757 }
1758
1759 /* Get the symbol table. */
1760 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1761 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1762 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1763 return FALSE;
1764
1765 /* If this reloc section does not use the main symbol table we
1766 don't treat it as a reloc section. BFD can't adequately
1767 represent such a section, so at least for now, we don't
1768 try. We just present it as a normal section. We also
1769 can't use it as a reloc section if it points to the null
1770 section, an invalid section, another reloc section, or its
1771 sh_link points to the null section. */
1772 if (hdr->sh_link != elf_onesymtab (abfd)
1773 || hdr->sh_link == SHN_UNDEF
1774 || hdr->sh_info == SHN_UNDEF
1775 || hdr->sh_info >= num_sec
1776 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1777 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1778 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1779 shindex);
1780
1781 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1782 return FALSE;
1783 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1784 if (target_sect == NULL)
1785 return FALSE;
1786
1787 if ((target_sect->flags & SEC_RELOC) == 0
1788 || target_sect->reloc_count == 0)
1789 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1790 else
1791 {
1792 bfd_size_type amt;
1793 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1794 amt = sizeof (*hdr2);
1795 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1796 if (hdr2 == NULL)
1797 return FALSE;
1798 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1799 }
1800 *hdr2 = *hdr;
1801 elf_elfsections (abfd)[shindex] = hdr2;
1802 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1803 target_sect->flags |= SEC_RELOC;
1804 target_sect->relocation = NULL;
1805 target_sect->rel_filepos = hdr->sh_offset;
1806 /* In the section to which the relocations apply, mark whether
1807 its relocations are of the REL or RELA variety. */
1808 if (hdr->sh_size != 0)
1809 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1810 abfd->flags |= HAS_RELOC;
1811 return TRUE;
1812 }
1813
1814 case SHT_GNU_verdef:
1815 elf_dynverdef (abfd) = shindex;
1816 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1817 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1818
1819 case SHT_GNU_versym:
1820 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1821 return FALSE;
1822 elf_dynversym (abfd) = shindex;
1823 elf_tdata (abfd)->dynversym_hdr = *hdr;
1824 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1825
1826 case SHT_GNU_verneed:
1827 elf_dynverref (abfd) = shindex;
1828 elf_tdata (abfd)->dynverref_hdr = *hdr;
1829 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1830
1831 case SHT_SHLIB:
1832 return TRUE;
1833
1834 case SHT_GROUP:
1835 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1836 return FALSE;
1837 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1838 return FALSE;
1839 if (hdr->contents != NULL)
1840 {
1841 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1842 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1843 asection *s;
1844
1845 if (idx->flags & GRP_COMDAT)
1846 hdr->bfd_section->flags
1847 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1848
1849 /* We try to keep the same section order as it comes in. */
1850 idx += n_elt;
1851 while (--n_elt != 0)
1852 {
1853 --idx;
1854
1855 if (idx->shdr != NULL
1856 && (s = idx->shdr->bfd_section) != NULL
1857 && elf_next_in_group (s) != NULL)
1858 {
1859 elf_next_in_group (hdr->bfd_section) = s;
1860 break;
1861 }
1862 }
1863 }
1864 break;
1865
1866 default:
1867 /* Possibly an attributes section. */
1868 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1869 || hdr->sh_type == bed->obj_attrs_section_type)
1870 {
1871 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1872 return FALSE;
1873 _bfd_elf_parse_attributes (abfd, hdr);
1874 return TRUE;
1875 }
1876
1877 /* Check for any processor-specific section types. */
1878 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1879 return TRUE;
1880
1881 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1882 {
1883 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1884 /* FIXME: How to properly handle allocated section reserved
1885 for applications? */
1886 (*_bfd_error_handler)
1887 (_("%B: don't know how to handle allocated, application "
1888 "specific section `%s' [0x%8x]"),
1889 abfd, name, hdr->sh_type);
1890 else
1891 /* Allow sections reserved for applications. */
1892 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1893 shindex);
1894 }
1895 else if (hdr->sh_type >= SHT_LOPROC
1896 && hdr->sh_type <= SHT_HIPROC)
1897 /* FIXME: We should handle this section. */
1898 (*_bfd_error_handler)
1899 (_("%B: don't know how to handle processor specific section "
1900 "`%s' [0x%8x]"),
1901 abfd, name, hdr->sh_type);
1902 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1903 {
1904 /* Unrecognised OS-specific sections. */
1905 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1906 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1907 required to correctly process the section and the file should
1908 be rejected with an error message. */
1909 (*_bfd_error_handler)
1910 (_("%B: don't know how to handle OS specific section "
1911 "`%s' [0x%8x]"),
1912 abfd, name, hdr->sh_type);
1913 else
1914 /* Otherwise it should be processed. */
1915 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1916 }
1917 else
1918 /* FIXME: We should handle this section. */
1919 (*_bfd_error_handler)
1920 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1921 abfd, name, hdr->sh_type);
1922
1923 return FALSE;
1924 }
1925
1926 return TRUE;
1927 }
1928
1929 /* Return the local symbol specified by ABFD, R_SYMNDX. */
1930
1931 Elf_Internal_Sym *
1932 bfd_sym_from_r_symndx (struct sym_cache *cache,
1933 bfd *abfd,
1934 unsigned long r_symndx)
1935 {
1936 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1937
1938 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1939 {
1940 Elf_Internal_Shdr *symtab_hdr;
1941 unsigned char esym[sizeof (Elf64_External_Sym)];
1942 Elf_External_Sym_Shndx eshndx;
1943
1944 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1945 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1946 &cache->sym[ent], esym, &eshndx) == NULL)
1947 return NULL;
1948
1949 if (cache->abfd != abfd)
1950 {
1951 memset (cache->indx, -1, sizeof (cache->indx));
1952 cache->abfd = abfd;
1953 }
1954 cache->indx[ent] = r_symndx;
1955 }
1956
1957 return &cache->sym[ent];
1958 }
1959
1960 /* Given an ELF section number, retrieve the corresponding BFD
1961 section. */
1962
1963 asection *
1964 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
1965 {
1966 if (sec_index >= elf_numsections (abfd))
1967 return NULL;
1968 return elf_elfsections (abfd)[sec_index]->bfd_section;
1969 }
1970
1971 static const struct bfd_elf_special_section special_sections_b[] =
1972 {
1973 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1974 { NULL, 0, 0, 0, 0 }
1975 };
1976
1977 static const struct bfd_elf_special_section special_sections_c[] =
1978 {
1979 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
1980 { NULL, 0, 0, 0, 0 }
1981 };
1982
1983 static const struct bfd_elf_special_section special_sections_d[] =
1984 {
1985 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1986 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1987 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
1988 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
1989 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
1990 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
1991 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
1992 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
1993 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
1994 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
1995 { NULL, 0, 0, 0, 0 }
1996 };
1997
1998 static const struct bfd_elf_special_section special_sections_f[] =
1999 {
2000 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2001 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2002 { NULL, 0, 0, 0, 0 }
2003 };
2004
2005 static const struct bfd_elf_special_section special_sections_g[] =
2006 {
2007 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2008 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2009 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2010 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2011 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2012 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2013 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2014 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2015 { NULL, 0, 0, 0, 0 }
2016 };
2017
2018 static const struct bfd_elf_special_section special_sections_h[] =
2019 {
2020 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2021 { NULL, 0, 0, 0, 0 }
2022 };
2023
2024 static const struct bfd_elf_special_section special_sections_i[] =
2025 {
2026 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2027 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2028 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2029 { NULL, 0, 0, 0, 0 }
2030 };
2031
2032 static const struct bfd_elf_special_section special_sections_l[] =
2033 {
2034 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2035 { NULL, 0, 0, 0, 0 }
2036 };
2037
2038 static const struct bfd_elf_special_section special_sections_n[] =
2039 {
2040 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2041 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2042 { NULL, 0, 0, 0, 0 }
2043 };
2044
2045 static const struct bfd_elf_special_section special_sections_p[] =
2046 {
2047 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2048 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2049 { NULL, 0, 0, 0, 0 }
2050 };
2051
2052 static const struct bfd_elf_special_section special_sections_r[] =
2053 {
2054 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2055 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2056 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2057 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2058 { NULL, 0, 0, 0, 0 }
2059 };
2060
2061 static const struct bfd_elf_special_section special_sections_s[] =
2062 {
2063 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2064 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2065 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2066 /* See struct bfd_elf_special_section declaration for the semantics of
2067 this special case where .prefix_length != strlen (.prefix). */
2068 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2069 { NULL, 0, 0, 0, 0 }
2070 };
2071
2072 static const struct bfd_elf_special_section special_sections_t[] =
2073 {
2074 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2075 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2076 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2077 { NULL, 0, 0, 0, 0 }
2078 };
2079
2080 static const struct bfd_elf_special_section special_sections_z[] =
2081 {
2082 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2083 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2084 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2086 { NULL, 0, 0, 0, 0 }
2087 };
2088
2089 static const struct bfd_elf_special_section *special_sections[] =
2090 {
2091 special_sections_b, /* 'b' */
2092 special_sections_c, /* 'c' */
2093 special_sections_d, /* 'd' */
2094 NULL, /* 'e' */
2095 special_sections_f, /* 'f' */
2096 special_sections_g, /* 'g' */
2097 special_sections_h, /* 'h' */
2098 special_sections_i, /* 'i' */
2099 NULL, /* 'j' */
2100 NULL, /* 'k' */
2101 special_sections_l, /* 'l' */
2102 NULL, /* 'm' */
2103 special_sections_n, /* 'n' */
2104 NULL, /* 'o' */
2105 special_sections_p, /* 'p' */
2106 NULL, /* 'q' */
2107 special_sections_r, /* 'r' */
2108 special_sections_s, /* 's' */
2109 special_sections_t, /* 't' */
2110 NULL, /* 'u' */
2111 NULL, /* 'v' */
2112 NULL, /* 'w' */
2113 NULL, /* 'x' */
2114 NULL, /* 'y' */
2115 special_sections_z /* 'z' */
2116 };
2117
2118 const struct bfd_elf_special_section *
2119 _bfd_elf_get_special_section (const char *name,
2120 const struct bfd_elf_special_section *spec,
2121 unsigned int rela)
2122 {
2123 int i;
2124 int len;
2125
2126 len = strlen (name);
2127
2128 for (i = 0; spec[i].prefix != NULL; i++)
2129 {
2130 int suffix_len;
2131 int prefix_len = spec[i].prefix_length;
2132
2133 if (len < prefix_len)
2134 continue;
2135 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2136 continue;
2137
2138 suffix_len = spec[i].suffix_length;
2139 if (suffix_len <= 0)
2140 {
2141 if (name[prefix_len] != 0)
2142 {
2143 if (suffix_len == 0)
2144 continue;
2145 if (name[prefix_len] != '.'
2146 && (suffix_len == -2
2147 || (rela && spec[i].type == SHT_REL)))
2148 continue;
2149 }
2150 }
2151 else
2152 {
2153 if (len < prefix_len + suffix_len)
2154 continue;
2155 if (memcmp (name + len - suffix_len,
2156 spec[i].prefix + prefix_len,
2157 suffix_len) != 0)
2158 continue;
2159 }
2160 return &spec[i];
2161 }
2162
2163 return NULL;
2164 }
2165
2166 const struct bfd_elf_special_section *
2167 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2168 {
2169 int i;
2170 const struct bfd_elf_special_section *spec;
2171 const struct elf_backend_data *bed;
2172
2173 /* See if this is one of the special sections. */
2174 if (sec->name == NULL)
2175 return NULL;
2176
2177 bed = get_elf_backend_data (abfd);
2178 spec = bed->special_sections;
2179 if (spec)
2180 {
2181 spec = _bfd_elf_get_special_section (sec->name,
2182 bed->special_sections,
2183 sec->use_rela_p);
2184 if (spec != NULL)
2185 return spec;
2186 }
2187
2188 if (sec->name[0] != '.')
2189 return NULL;
2190
2191 i = sec->name[1] - 'b';
2192 if (i < 0 || i > 'z' - 'b')
2193 return NULL;
2194
2195 spec = special_sections[i];
2196
2197 if (spec == NULL)
2198 return NULL;
2199
2200 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2201 }
2202
2203 bfd_boolean
2204 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2205 {
2206 struct bfd_elf_section_data *sdata;
2207 const struct elf_backend_data *bed;
2208 const struct bfd_elf_special_section *ssect;
2209
2210 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2211 if (sdata == NULL)
2212 {
2213 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2214 sizeof (*sdata));
2215 if (sdata == NULL)
2216 return FALSE;
2217 sec->used_by_bfd = sdata;
2218 }
2219
2220 /* Indicate whether or not this section should use RELA relocations. */
2221 bed = get_elf_backend_data (abfd);
2222 sec->use_rela_p = bed->default_use_rela_p;
2223
2224 /* When we read a file, we don't need to set ELF section type and
2225 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2226 anyway. We will set ELF section type and flags for all linker
2227 created sections. If user specifies BFD section flags, we will
2228 set ELF section type and flags based on BFD section flags in
2229 elf_fake_sections. */
2230 if ((!sec->flags && abfd->direction != read_direction)
2231 || (sec->flags & SEC_LINKER_CREATED) != 0)
2232 {
2233 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2234 if (ssect != NULL)
2235 {
2236 elf_section_type (sec) = ssect->type;
2237 elf_section_flags (sec) = ssect->attr;
2238 }
2239 }
2240
2241 return _bfd_generic_new_section_hook (abfd, sec);
2242 }
2243
2244 /* Create a new bfd section from an ELF program header.
2245
2246 Since program segments have no names, we generate a synthetic name
2247 of the form segment<NUM>, where NUM is generally the index in the
2248 program header table. For segments that are split (see below) we
2249 generate the names segment<NUM>a and segment<NUM>b.
2250
2251 Note that some program segments may have a file size that is different than
2252 (less than) the memory size. All this means is that at execution the
2253 system must allocate the amount of memory specified by the memory size,
2254 but only initialize it with the first "file size" bytes read from the
2255 file. This would occur for example, with program segments consisting
2256 of combined data+bss.
2257
2258 To handle the above situation, this routine generates TWO bfd sections
2259 for the single program segment. The first has the length specified by
2260 the file size of the segment, and the second has the length specified
2261 by the difference between the two sizes. In effect, the segment is split
2262 into its initialized and uninitialized parts.
2263
2264 */
2265
2266 bfd_boolean
2267 _bfd_elf_make_section_from_phdr (bfd *abfd,
2268 Elf_Internal_Phdr *hdr,
2269 int hdr_index,
2270 const char *type_name)
2271 {
2272 asection *newsect;
2273 char *name;
2274 char namebuf[64];
2275 size_t len;
2276 int split;
2277
2278 split = ((hdr->p_memsz > 0)
2279 && (hdr->p_filesz > 0)
2280 && (hdr->p_memsz > hdr->p_filesz));
2281
2282 if (hdr->p_filesz > 0)
2283 {
2284 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2285 len = strlen (namebuf) + 1;
2286 name = (char *) bfd_alloc (abfd, len);
2287 if (!name)
2288 return FALSE;
2289 memcpy (name, namebuf, len);
2290 newsect = bfd_make_section (abfd, name);
2291 if (newsect == NULL)
2292 return FALSE;
2293 newsect->vma = hdr->p_vaddr;
2294 newsect->lma = hdr->p_paddr;
2295 newsect->size = hdr->p_filesz;
2296 newsect->filepos = hdr->p_offset;
2297 newsect->flags |= SEC_HAS_CONTENTS;
2298 newsect->alignment_power = bfd_log2 (hdr->p_align);
2299 if (hdr->p_type == PT_LOAD)
2300 {
2301 newsect->flags |= SEC_ALLOC;
2302 newsect->flags |= SEC_LOAD;
2303 if (hdr->p_flags & PF_X)
2304 {
2305 /* FIXME: all we known is that it has execute PERMISSION,
2306 may be data. */
2307 newsect->flags |= SEC_CODE;
2308 }
2309 }
2310 if (!(hdr->p_flags & PF_W))
2311 {
2312 newsect->flags |= SEC_READONLY;
2313 }
2314 }
2315
2316 if (hdr->p_memsz > hdr->p_filesz)
2317 {
2318 bfd_vma align;
2319
2320 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2321 len = strlen (namebuf) + 1;
2322 name = (char *) bfd_alloc (abfd, len);
2323 if (!name)
2324 return FALSE;
2325 memcpy (name, namebuf, len);
2326 newsect = bfd_make_section (abfd, name);
2327 if (newsect == NULL)
2328 return FALSE;
2329 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2330 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2331 newsect->size = hdr->p_memsz - hdr->p_filesz;
2332 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2333 align = newsect->vma & -newsect->vma;
2334 if (align == 0 || align > hdr->p_align)
2335 align = hdr->p_align;
2336 newsect->alignment_power = bfd_log2 (align);
2337 if (hdr->p_type == PT_LOAD)
2338 {
2339 /* Hack for gdb. Segments that have not been modified do
2340 not have their contents written to a core file, on the
2341 assumption that a debugger can find the contents in the
2342 executable. We flag this case by setting the fake
2343 section size to zero. Note that "real" bss sections will
2344 always have their contents dumped to the core file. */
2345 if (bfd_get_format (abfd) == bfd_core)
2346 newsect->size = 0;
2347 newsect->flags |= SEC_ALLOC;
2348 if (hdr->p_flags & PF_X)
2349 newsect->flags |= SEC_CODE;
2350 }
2351 if (!(hdr->p_flags & PF_W))
2352 newsect->flags |= SEC_READONLY;
2353 }
2354
2355 return TRUE;
2356 }
2357
2358 bfd_boolean
2359 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2360 {
2361 const struct elf_backend_data *bed;
2362
2363 switch (hdr->p_type)
2364 {
2365 case PT_NULL:
2366 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2367
2368 case PT_LOAD:
2369 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2370
2371 case PT_DYNAMIC:
2372 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2373
2374 case PT_INTERP:
2375 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2376
2377 case PT_NOTE:
2378 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2379 return FALSE;
2380 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2381 return FALSE;
2382 return TRUE;
2383
2384 case PT_SHLIB:
2385 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2386
2387 case PT_PHDR:
2388 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2389
2390 case PT_GNU_EH_FRAME:
2391 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2392 "eh_frame_hdr");
2393
2394 case PT_GNU_STACK:
2395 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2396
2397 case PT_GNU_RELRO:
2398 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2399
2400 default:
2401 /* Check for any processor-specific program segment types. */
2402 bed = get_elf_backend_data (abfd);
2403 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2404 }
2405 }
2406
2407 /* Initialize REL_HDR, the section-header for new section, containing
2408 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2409 relocations; otherwise, we use REL relocations. */
2410
2411 bfd_boolean
2412 _bfd_elf_init_reloc_shdr (bfd *abfd,
2413 Elf_Internal_Shdr *rel_hdr,
2414 asection *asect,
2415 bfd_boolean use_rela_p)
2416 {
2417 char *name;
2418 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2419 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2420
2421 name = (char *) bfd_alloc (abfd, amt);
2422 if (name == NULL)
2423 return FALSE;
2424 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2425 rel_hdr->sh_name =
2426 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2427 FALSE);
2428 if (rel_hdr->sh_name == (unsigned int) -1)
2429 return FALSE;
2430 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2431 rel_hdr->sh_entsize = (use_rela_p
2432 ? bed->s->sizeof_rela
2433 : bed->s->sizeof_rel);
2434 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2435 rel_hdr->sh_flags = 0;
2436 rel_hdr->sh_addr = 0;
2437 rel_hdr->sh_size = 0;
2438 rel_hdr->sh_offset = 0;
2439
2440 return TRUE;
2441 }
2442
2443 /* Return the default section type based on the passed in section flags. */
2444
2445 int
2446 bfd_elf_get_default_section_type (flagword flags)
2447 {
2448 if ((flags & SEC_ALLOC) != 0
2449 && ((flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0
2450 || (flags & SEC_NEVER_LOAD) != 0))
2451 return SHT_NOBITS;
2452 return SHT_PROGBITS;
2453 }
2454
2455 /* Set up an ELF internal section header for a section. */
2456
2457 static void
2458 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2459 {
2460 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2461 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2462 Elf_Internal_Shdr *this_hdr;
2463 unsigned int sh_type;
2464
2465 if (*failedptr)
2466 {
2467 /* We already failed; just get out of the bfd_map_over_sections
2468 loop. */
2469 return;
2470 }
2471
2472 this_hdr = &elf_section_data (asect)->this_hdr;
2473
2474 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2475 asect->name, FALSE);
2476 if (this_hdr->sh_name == (unsigned int) -1)
2477 {
2478 *failedptr = TRUE;
2479 return;
2480 }
2481
2482 /* Don't clear sh_flags. Assembler may set additional bits. */
2483
2484 if ((asect->flags & SEC_ALLOC) != 0
2485 || asect->user_set_vma)
2486 this_hdr->sh_addr = asect->vma;
2487 else
2488 this_hdr->sh_addr = 0;
2489
2490 this_hdr->sh_offset = 0;
2491 this_hdr->sh_size = asect->size;
2492 this_hdr->sh_link = 0;
2493 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2494 /* The sh_entsize and sh_info fields may have been set already by
2495 copy_private_section_data. */
2496
2497 this_hdr->bfd_section = asect;
2498 this_hdr->contents = NULL;
2499
2500 /* If the section type is unspecified, we set it based on
2501 asect->flags. */
2502 if ((asect->flags & SEC_GROUP) != 0)
2503 sh_type = SHT_GROUP;
2504 else
2505 sh_type = bfd_elf_get_default_section_type (asect->flags);
2506
2507 if (this_hdr->sh_type == SHT_NULL)
2508 this_hdr->sh_type = sh_type;
2509 else if (this_hdr->sh_type == SHT_NOBITS
2510 && sh_type == SHT_PROGBITS
2511 && (asect->flags & SEC_ALLOC) != 0)
2512 {
2513 /* Warn if we are changing a NOBITS section to PROGBITS, but
2514 allow the link to proceed. This can happen when users link
2515 non-bss input sections to bss output sections, or emit data
2516 to a bss output section via a linker script. */
2517 (*_bfd_error_handler)
2518 (_("warning: section `%A' type changed to PROGBITS"), asect);
2519 this_hdr->sh_type = sh_type;
2520 }
2521
2522 switch (this_hdr->sh_type)
2523 {
2524 default:
2525 break;
2526
2527 case SHT_STRTAB:
2528 case SHT_INIT_ARRAY:
2529 case SHT_FINI_ARRAY:
2530 case SHT_PREINIT_ARRAY:
2531 case SHT_NOTE:
2532 case SHT_NOBITS:
2533 case SHT_PROGBITS:
2534 break;
2535
2536 case SHT_HASH:
2537 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2538 break;
2539
2540 case SHT_DYNSYM:
2541 this_hdr->sh_entsize = bed->s->sizeof_sym;
2542 break;
2543
2544 case SHT_DYNAMIC:
2545 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2546 break;
2547
2548 case SHT_RELA:
2549 if (get_elf_backend_data (abfd)->may_use_rela_p)
2550 this_hdr->sh_entsize = bed->s->sizeof_rela;
2551 break;
2552
2553 case SHT_REL:
2554 if (get_elf_backend_data (abfd)->may_use_rel_p)
2555 this_hdr->sh_entsize = bed->s->sizeof_rel;
2556 break;
2557
2558 case SHT_GNU_versym:
2559 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2560 break;
2561
2562 case SHT_GNU_verdef:
2563 this_hdr->sh_entsize = 0;
2564 /* objcopy or strip will copy over sh_info, but may not set
2565 cverdefs. The linker will set cverdefs, but sh_info will be
2566 zero. */
2567 if (this_hdr->sh_info == 0)
2568 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2569 else
2570 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2571 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2572 break;
2573
2574 case SHT_GNU_verneed:
2575 this_hdr->sh_entsize = 0;
2576 /* objcopy or strip will copy over sh_info, but may not set
2577 cverrefs. The linker will set cverrefs, but sh_info will be
2578 zero. */
2579 if (this_hdr->sh_info == 0)
2580 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2581 else
2582 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2583 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2584 break;
2585
2586 case SHT_GROUP:
2587 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2588 break;
2589
2590 case SHT_GNU_HASH:
2591 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2592 break;
2593 }
2594
2595 if ((asect->flags & SEC_ALLOC) != 0)
2596 this_hdr->sh_flags |= SHF_ALLOC;
2597 if ((asect->flags & SEC_READONLY) == 0)
2598 this_hdr->sh_flags |= SHF_WRITE;
2599 if ((asect->flags & SEC_CODE) != 0)
2600 this_hdr->sh_flags |= SHF_EXECINSTR;
2601 if ((asect->flags & SEC_MERGE) != 0)
2602 {
2603 this_hdr->sh_flags |= SHF_MERGE;
2604 this_hdr->sh_entsize = asect->entsize;
2605 if ((asect->flags & SEC_STRINGS) != 0)
2606 this_hdr->sh_flags |= SHF_STRINGS;
2607 }
2608 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2609 this_hdr->sh_flags |= SHF_GROUP;
2610 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2611 {
2612 this_hdr->sh_flags |= SHF_TLS;
2613 if (asect->size == 0
2614 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2615 {
2616 struct bfd_link_order *o = asect->map_tail.link_order;
2617
2618 this_hdr->sh_size = 0;
2619 if (o != NULL)
2620 {
2621 this_hdr->sh_size = o->offset + o->size;
2622 if (this_hdr->sh_size != 0)
2623 this_hdr->sh_type = SHT_NOBITS;
2624 }
2625 }
2626 }
2627
2628 /* Check for processor-specific section types. */
2629 sh_type = this_hdr->sh_type;
2630 if (bed->elf_backend_fake_sections
2631 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2632 *failedptr = TRUE;
2633
2634 if (sh_type == SHT_NOBITS && asect->size != 0)
2635 {
2636 /* Don't change the header type from NOBITS if we are being
2637 called for objcopy --only-keep-debug. */
2638 this_hdr->sh_type = sh_type;
2639 }
2640
2641 /* If the section has relocs, set up a section header for the
2642 SHT_REL[A] section. If two relocation sections are required for
2643 this section, it is up to the processor-specific back-end to
2644 create the other. */
2645 if ((asect->flags & SEC_RELOC) != 0
2646 && !_bfd_elf_init_reloc_shdr (abfd,
2647 &elf_section_data (asect)->rel_hdr,
2648 asect,
2649 asect->use_rela_p))
2650 *failedptr = TRUE;
2651 }
2652
2653 /* Fill in the contents of a SHT_GROUP section. Called from
2654 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2655 when ELF targets use the generic linker, ld. Called for ld -r
2656 from bfd_elf_final_link. */
2657
2658 void
2659 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2660 {
2661 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2662 asection *elt, *first;
2663 unsigned char *loc;
2664 bfd_boolean gas;
2665
2666 /* Ignore linker created group section. See elfNN_ia64_object_p in
2667 elfxx-ia64.c. */
2668 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2669 || *failedptr)
2670 return;
2671
2672 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2673 {
2674 unsigned long symindx = 0;
2675
2676 /* elf_group_id will have been set up by objcopy and the
2677 generic linker. */
2678 if (elf_group_id (sec) != NULL)
2679 symindx = elf_group_id (sec)->udata.i;
2680
2681 if (symindx == 0)
2682 {
2683 /* If called from the assembler, swap_out_syms will have set up
2684 elf_section_syms. */
2685 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2686 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2687 }
2688 elf_section_data (sec)->this_hdr.sh_info = symindx;
2689 }
2690 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2691 {
2692 /* The ELF backend linker sets sh_info to -2 when the group
2693 signature symbol is global, and thus the index can't be
2694 set until all local symbols are output. */
2695 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2696 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2697 unsigned long symndx = sec_data->this_hdr.sh_info;
2698 unsigned long extsymoff = 0;
2699 struct elf_link_hash_entry *h;
2700
2701 if (!elf_bad_symtab (igroup->owner))
2702 {
2703 Elf_Internal_Shdr *symtab_hdr;
2704
2705 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2706 extsymoff = symtab_hdr->sh_info;
2707 }
2708 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2709 while (h->root.type == bfd_link_hash_indirect
2710 || h->root.type == bfd_link_hash_warning)
2711 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2712
2713 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2714 }
2715
2716 /* The contents won't be allocated for "ld -r" or objcopy. */
2717 gas = TRUE;
2718 if (sec->contents == NULL)
2719 {
2720 gas = FALSE;
2721 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2722
2723 /* Arrange for the section to be written out. */
2724 elf_section_data (sec)->this_hdr.contents = sec->contents;
2725 if (sec->contents == NULL)
2726 {
2727 *failedptr = TRUE;
2728 return;
2729 }
2730 }
2731
2732 loc = sec->contents + sec->size;
2733
2734 /* Get the pointer to the first section in the group that gas
2735 squirreled away here. objcopy arranges for this to be set to the
2736 start of the input section group. */
2737 first = elt = elf_next_in_group (sec);
2738
2739 /* First element is a flag word. Rest of section is elf section
2740 indices for all the sections of the group. Write them backwards
2741 just to keep the group in the same order as given in .section
2742 directives, not that it matters. */
2743 while (elt != NULL)
2744 {
2745 asection *s;
2746
2747 s = elt;
2748 if (!gas)
2749 s = s->output_section;
2750 if (s != NULL
2751 && !bfd_is_abs_section (s))
2752 {
2753 unsigned int idx = elf_section_data (s)->this_idx;
2754
2755 loc -= 4;
2756 H_PUT_32 (abfd, idx, loc);
2757 }
2758 elt = elf_next_in_group (elt);
2759 if (elt == first)
2760 break;
2761 }
2762
2763 if ((loc -= 4) != sec->contents)
2764 abort ();
2765
2766 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2767 }
2768
2769 /* Assign all ELF section numbers. The dummy first section is handled here
2770 too. The link/info pointers for the standard section types are filled
2771 in here too, while we're at it. */
2772
2773 static bfd_boolean
2774 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2775 {
2776 struct elf_obj_tdata *t = elf_tdata (abfd);
2777 asection *sec;
2778 unsigned int section_number, secn;
2779 Elf_Internal_Shdr **i_shdrp;
2780 struct bfd_elf_section_data *d;
2781 bfd_boolean need_symtab;
2782
2783 section_number = 1;
2784
2785 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2786
2787 /* SHT_GROUP sections are in relocatable files only. */
2788 if (link_info == NULL || link_info->relocatable)
2789 {
2790 /* Put SHT_GROUP sections first. */
2791 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2792 {
2793 d = elf_section_data (sec);
2794
2795 if (d->this_hdr.sh_type == SHT_GROUP)
2796 {
2797 if (sec->flags & SEC_LINKER_CREATED)
2798 {
2799 /* Remove the linker created SHT_GROUP sections. */
2800 bfd_section_list_remove (abfd, sec);
2801 abfd->section_count--;
2802 }
2803 else
2804 d->this_idx = section_number++;
2805 }
2806 }
2807 }
2808
2809 for (sec = abfd->sections; sec; sec = sec->next)
2810 {
2811 d = elf_section_data (sec);
2812
2813 if (d->this_hdr.sh_type != SHT_GROUP)
2814 d->this_idx = section_number++;
2815 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2816 if ((sec->flags & SEC_RELOC) == 0)
2817 d->rel_idx = 0;
2818 else
2819 {
2820 d->rel_idx = section_number++;
2821 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2822 }
2823
2824 if (d->rel_hdr2)
2825 {
2826 d->rel_idx2 = section_number++;
2827 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2828 }
2829 else
2830 d->rel_idx2 = 0;
2831 }
2832
2833 t->shstrtab_section = section_number++;
2834 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2835 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2836
2837 need_symtab = (bfd_get_symcount (abfd) > 0
2838 || (link_info == NULL
2839 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2840 == HAS_RELOC)));
2841 if (need_symtab)
2842 {
2843 t->symtab_section = section_number++;
2844 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2845 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2846 {
2847 t->symtab_shndx_section = section_number++;
2848 t->symtab_shndx_hdr.sh_name
2849 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2850 ".symtab_shndx", FALSE);
2851 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2852 return FALSE;
2853 }
2854 t->strtab_section = section_number++;
2855 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2856 }
2857
2858 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2859 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2860
2861 elf_numsections (abfd) = section_number;
2862 elf_elfheader (abfd)->e_shnum = section_number;
2863
2864 /* Set up the list of section header pointers, in agreement with the
2865 indices. */
2866 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
2867 sizeof (Elf_Internal_Shdr *));
2868 if (i_shdrp == NULL)
2869 return FALSE;
2870
2871 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
2872 sizeof (Elf_Internal_Shdr));
2873 if (i_shdrp[0] == NULL)
2874 {
2875 bfd_release (abfd, i_shdrp);
2876 return FALSE;
2877 }
2878
2879 elf_elfsections (abfd) = i_shdrp;
2880
2881 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2882 if (need_symtab)
2883 {
2884 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2885 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
2886 {
2887 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2888 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2889 }
2890 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2891 t->symtab_hdr.sh_link = t->strtab_section;
2892 }
2893
2894 for (sec = abfd->sections; sec; sec = sec->next)
2895 {
2896 asection *s;
2897 const char *name;
2898
2899 d = elf_section_data (sec);
2900
2901 i_shdrp[d->this_idx] = &d->this_hdr;
2902 if (d->rel_idx != 0)
2903 i_shdrp[d->rel_idx] = &d->rel_hdr;
2904 if (d->rel_idx2 != 0)
2905 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2906
2907 /* Fill in the sh_link and sh_info fields while we're at it. */
2908
2909 /* sh_link of a reloc section is the section index of the symbol
2910 table. sh_info is the section index of the section to which
2911 the relocation entries apply. */
2912 if (d->rel_idx != 0)
2913 {
2914 d->rel_hdr.sh_link = t->symtab_section;
2915 d->rel_hdr.sh_info = d->this_idx;
2916 }
2917 if (d->rel_idx2 != 0)
2918 {
2919 d->rel_hdr2->sh_link = t->symtab_section;
2920 d->rel_hdr2->sh_info = d->this_idx;
2921 }
2922
2923 /* We need to set up sh_link for SHF_LINK_ORDER. */
2924 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2925 {
2926 s = elf_linked_to_section (sec);
2927 if (s)
2928 {
2929 /* elf_linked_to_section points to the input section. */
2930 if (link_info != NULL)
2931 {
2932 /* Check discarded linkonce section. */
2933 if (elf_discarded_section (s))
2934 {
2935 asection *kept;
2936 (*_bfd_error_handler)
2937 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2938 abfd, d->this_hdr.bfd_section,
2939 s, s->owner);
2940 /* Point to the kept section if it has the same
2941 size as the discarded one. */
2942 kept = _bfd_elf_check_kept_section (s, link_info);
2943 if (kept == NULL)
2944 {
2945 bfd_set_error (bfd_error_bad_value);
2946 return FALSE;
2947 }
2948 s = kept;
2949 }
2950
2951 s = s->output_section;
2952 BFD_ASSERT (s != NULL);
2953 }
2954 else
2955 {
2956 /* Handle objcopy. */
2957 if (s->output_section == NULL)
2958 {
2959 (*_bfd_error_handler)
2960 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2961 abfd, d->this_hdr.bfd_section, s, s->owner);
2962 bfd_set_error (bfd_error_bad_value);
2963 return FALSE;
2964 }
2965 s = s->output_section;
2966 }
2967 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2968 }
2969 else
2970 {
2971 /* PR 290:
2972 The Intel C compiler generates SHT_IA_64_UNWIND with
2973 SHF_LINK_ORDER. But it doesn't set the sh_link or
2974 sh_info fields. Hence we could get the situation
2975 where s is NULL. */
2976 const struct elf_backend_data *bed
2977 = get_elf_backend_data (abfd);
2978 if (bed->link_order_error_handler)
2979 bed->link_order_error_handler
2980 (_("%B: warning: sh_link not set for section `%A'"),
2981 abfd, sec);
2982 }
2983 }
2984
2985 switch (d->this_hdr.sh_type)
2986 {
2987 case SHT_REL:
2988 case SHT_RELA:
2989 /* A reloc section which we are treating as a normal BFD
2990 section. sh_link is the section index of the symbol
2991 table. sh_info is the section index of the section to
2992 which the relocation entries apply. We assume that an
2993 allocated reloc section uses the dynamic symbol table.
2994 FIXME: How can we be sure? */
2995 s = bfd_get_section_by_name (abfd, ".dynsym");
2996 if (s != NULL)
2997 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2998
2999 /* We look up the section the relocs apply to by name. */
3000 name = sec->name;
3001 if (d->this_hdr.sh_type == SHT_REL)
3002 name += 4;
3003 else
3004 name += 5;
3005 s = bfd_get_section_by_name (abfd, name);
3006 if (s != NULL)
3007 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3008 break;
3009
3010 case SHT_STRTAB:
3011 /* We assume that a section named .stab*str is a stabs
3012 string section. We look for a section with the same name
3013 but without the trailing ``str'', and set its sh_link
3014 field to point to this section. */
3015 if (CONST_STRNEQ (sec->name, ".stab")
3016 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3017 {
3018 size_t len;
3019 char *alc;
3020
3021 len = strlen (sec->name);
3022 alc = (char *) bfd_malloc (len - 2);
3023 if (alc == NULL)
3024 return FALSE;
3025 memcpy (alc, sec->name, len - 3);
3026 alc[len - 3] = '\0';
3027 s = bfd_get_section_by_name (abfd, alc);
3028 free (alc);
3029 if (s != NULL)
3030 {
3031 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3032
3033 /* This is a .stab section. */
3034 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3035 elf_section_data (s)->this_hdr.sh_entsize
3036 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3037 }
3038 }
3039 break;
3040
3041 case SHT_DYNAMIC:
3042 case SHT_DYNSYM:
3043 case SHT_GNU_verneed:
3044 case SHT_GNU_verdef:
3045 /* sh_link is the section header index of the string table
3046 used for the dynamic entries, or the symbol table, or the
3047 version strings. */
3048 s = bfd_get_section_by_name (abfd, ".dynstr");
3049 if (s != NULL)
3050 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3051 break;
3052
3053 case SHT_GNU_LIBLIST:
3054 /* sh_link is the section header index of the prelink library
3055 list used for the dynamic entries, or the symbol table, or
3056 the version strings. */
3057 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3058 ? ".dynstr" : ".gnu.libstr");
3059 if (s != NULL)
3060 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3061 break;
3062
3063 case SHT_HASH:
3064 case SHT_GNU_HASH:
3065 case SHT_GNU_versym:
3066 /* sh_link is the section header index of the symbol table
3067 this hash table or version table is for. */
3068 s = bfd_get_section_by_name (abfd, ".dynsym");
3069 if (s != NULL)
3070 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3071 break;
3072
3073 case SHT_GROUP:
3074 d->this_hdr.sh_link = t->symtab_section;
3075 }
3076 }
3077
3078 for (secn = 1; secn < section_number; ++secn)
3079 if (i_shdrp[secn] == NULL)
3080 i_shdrp[secn] = i_shdrp[0];
3081 else
3082 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3083 i_shdrp[secn]->sh_name);
3084 return TRUE;
3085 }
3086
3087 /* Map symbol from it's internal number to the external number, moving
3088 all local symbols to be at the head of the list. */
3089
3090 static bfd_boolean
3091 sym_is_global (bfd *abfd, asymbol *sym)
3092 {
3093 /* If the backend has a special mapping, use it. */
3094 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3095 if (bed->elf_backend_sym_is_global)
3096 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3097
3098 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3099 || bfd_is_und_section (bfd_get_section (sym))
3100 || bfd_is_com_section (bfd_get_section (sym)));
3101 }
3102
3103 /* Don't output section symbols for sections that are not going to be
3104 output. */
3105
3106 static bfd_boolean
3107 ignore_section_sym (bfd *abfd, asymbol *sym)
3108 {
3109 return ((sym->flags & BSF_SECTION_SYM) != 0
3110 && !(sym->section->owner == abfd
3111 || (sym->section->output_section->owner == abfd
3112 && sym->section->output_offset == 0)));
3113 }
3114
3115 static bfd_boolean
3116 elf_map_symbols (bfd *abfd)
3117 {
3118 unsigned int symcount = bfd_get_symcount (abfd);
3119 asymbol **syms = bfd_get_outsymbols (abfd);
3120 asymbol **sect_syms;
3121 unsigned int num_locals = 0;
3122 unsigned int num_globals = 0;
3123 unsigned int num_locals2 = 0;
3124 unsigned int num_globals2 = 0;
3125 int max_index = 0;
3126 unsigned int idx;
3127 asection *asect;
3128 asymbol **new_syms;
3129
3130 #ifdef DEBUG
3131 fprintf (stderr, "elf_map_symbols\n");
3132 fflush (stderr);
3133 #endif
3134
3135 for (asect = abfd->sections; asect; asect = asect->next)
3136 {
3137 if (max_index < asect->index)
3138 max_index = asect->index;
3139 }
3140
3141 max_index++;
3142 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3143 if (sect_syms == NULL)
3144 return FALSE;
3145 elf_section_syms (abfd) = sect_syms;
3146 elf_num_section_syms (abfd) = max_index;
3147
3148 /* Init sect_syms entries for any section symbols we have already
3149 decided to output. */
3150 for (idx = 0; idx < symcount; idx++)
3151 {
3152 asymbol *sym = syms[idx];
3153
3154 if ((sym->flags & BSF_SECTION_SYM) != 0
3155 && sym->value == 0
3156 && !ignore_section_sym (abfd, sym))
3157 {
3158 asection *sec = sym->section;
3159
3160 if (sec->owner != abfd)
3161 sec = sec->output_section;
3162
3163 sect_syms[sec->index] = syms[idx];
3164 }
3165 }
3166
3167 /* Classify all of the symbols. */
3168 for (idx = 0; idx < symcount; idx++)
3169 {
3170 if (ignore_section_sym (abfd, syms[idx]))
3171 continue;
3172 if (!sym_is_global (abfd, syms[idx]))
3173 num_locals++;
3174 else
3175 num_globals++;
3176 }
3177
3178 /* We will be adding a section symbol for each normal BFD section. Most
3179 sections will already have a section symbol in outsymbols, but
3180 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3181 at least in that case. */
3182 for (asect = abfd->sections; asect; asect = asect->next)
3183 {
3184 if (sect_syms[asect->index] == NULL)
3185 {
3186 if (!sym_is_global (abfd, asect->symbol))
3187 num_locals++;
3188 else
3189 num_globals++;
3190 }
3191 }
3192
3193 /* Now sort the symbols so the local symbols are first. */
3194 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3195 sizeof (asymbol *));
3196
3197 if (new_syms == NULL)
3198 return FALSE;
3199
3200 for (idx = 0; idx < symcount; idx++)
3201 {
3202 asymbol *sym = syms[idx];
3203 unsigned int i;
3204
3205 if (ignore_section_sym (abfd, sym))
3206 continue;
3207 if (!sym_is_global (abfd, sym))
3208 i = num_locals2++;
3209 else
3210 i = num_locals + num_globals2++;
3211 new_syms[i] = sym;
3212 sym->udata.i = i + 1;
3213 }
3214 for (asect = abfd->sections; asect; asect = asect->next)
3215 {
3216 if (sect_syms[asect->index] == NULL)
3217 {
3218 asymbol *sym = asect->symbol;
3219 unsigned int i;
3220
3221 sect_syms[asect->index] = sym;
3222 if (!sym_is_global (abfd, sym))
3223 i = num_locals2++;
3224 else
3225 i = num_locals + num_globals2++;
3226 new_syms[i] = sym;
3227 sym->udata.i = i + 1;
3228 }
3229 }
3230
3231 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3232
3233 elf_num_locals (abfd) = num_locals;
3234 elf_num_globals (abfd) = num_globals;
3235 return TRUE;
3236 }
3237
3238 /* Align to the maximum file alignment that could be required for any
3239 ELF data structure. */
3240
3241 static inline file_ptr
3242 align_file_position (file_ptr off, int align)
3243 {
3244 return (off + align - 1) & ~(align - 1);
3245 }
3246
3247 /* Assign a file position to a section, optionally aligning to the
3248 required section alignment. */
3249
3250 file_ptr
3251 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3252 file_ptr offset,
3253 bfd_boolean align)
3254 {
3255 if (align && i_shdrp->sh_addralign > 1)
3256 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3257 i_shdrp->sh_offset = offset;
3258 if (i_shdrp->bfd_section != NULL)
3259 i_shdrp->bfd_section->filepos = offset;
3260 if (i_shdrp->sh_type != SHT_NOBITS)
3261 offset += i_shdrp->sh_size;
3262 return offset;
3263 }
3264
3265 /* Compute the file positions we are going to put the sections at, and
3266 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3267 is not NULL, this is being called by the ELF backend linker. */
3268
3269 bfd_boolean
3270 _bfd_elf_compute_section_file_positions (bfd *abfd,
3271 struct bfd_link_info *link_info)
3272 {
3273 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3274 bfd_boolean failed;
3275 struct bfd_strtab_hash *strtab = NULL;
3276 Elf_Internal_Shdr *shstrtab_hdr;
3277 bfd_boolean need_symtab;
3278
3279 if (abfd->output_has_begun)
3280 return TRUE;
3281
3282 /* Do any elf backend specific processing first. */
3283 if (bed->elf_backend_begin_write_processing)
3284 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3285
3286 if (! prep_headers (abfd))
3287 return FALSE;
3288
3289 /* Post process the headers if necessary. */
3290 if (bed->elf_backend_post_process_headers)
3291 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3292
3293 failed = FALSE;
3294 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3295 if (failed)
3296 return FALSE;
3297
3298 if (!assign_section_numbers (abfd, link_info))
3299 return FALSE;
3300
3301 /* The backend linker builds symbol table information itself. */
3302 need_symtab = (link_info == NULL
3303 && (bfd_get_symcount (abfd) > 0
3304 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3305 == HAS_RELOC)));
3306 if (need_symtab)
3307 {
3308 /* Non-zero if doing a relocatable link. */
3309 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3310
3311 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3312 return FALSE;
3313 }
3314
3315 if (link_info == NULL)
3316 {
3317 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3318 if (failed)
3319 return FALSE;
3320 }
3321
3322 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3323 /* sh_name was set in prep_headers. */
3324 shstrtab_hdr->sh_type = SHT_STRTAB;
3325 shstrtab_hdr->sh_flags = 0;
3326 shstrtab_hdr->sh_addr = 0;
3327 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3328 shstrtab_hdr->sh_entsize = 0;
3329 shstrtab_hdr->sh_link = 0;
3330 shstrtab_hdr->sh_info = 0;
3331 /* sh_offset is set in assign_file_positions_except_relocs. */
3332 shstrtab_hdr->sh_addralign = 1;
3333
3334 if (!assign_file_positions_except_relocs (abfd, link_info))
3335 return FALSE;
3336
3337 if (need_symtab)
3338 {
3339 file_ptr off;
3340 Elf_Internal_Shdr *hdr;
3341
3342 off = elf_tdata (abfd)->next_file_pos;
3343
3344 hdr = &elf_tdata (abfd)->symtab_hdr;
3345 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3346
3347 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3348 if (hdr->sh_size != 0)
3349 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3350
3351 hdr = &elf_tdata (abfd)->strtab_hdr;
3352 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3353
3354 elf_tdata (abfd)->next_file_pos = off;
3355
3356 /* Now that we know where the .strtab section goes, write it
3357 out. */
3358 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3359 || ! _bfd_stringtab_emit (abfd, strtab))
3360 return FALSE;
3361 _bfd_stringtab_free (strtab);
3362 }
3363
3364 abfd->output_has_begun = TRUE;
3365
3366 return TRUE;
3367 }
3368
3369 /* Make an initial estimate of the size of the program header. If we
3370 get the number wrong here, we'll redo section placement. */
3371
3372 static bfd_size_type
3373 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3374 {
3375 size_t segs;
3376 asection *s;
3377 const struct elf_backend_data *bed;
3378
3379 /* Assume we will need exactly two PT_LOAD segments: one for text
3380 and one for data. */
3381 segs = 2;
3382
3383 s = bfd_get_section_by_name (abfd, ".interp");
3384 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3385 {
3386 /* If we have a loadable interpreter section, we need a
3387 PT_INTERP segment. In this case, assume we also need a
3388 PT_PHDR segment, although that may not be true for all
3389 targets. */
3390 segs += 2;
3391 }
3392
3393 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3394 {
3395 /* We need a PT_DYNAMIC segment. */
3396 ++segs;
3397 }
3398
3399 if (info != NULL && info->relro)
3400 {
3401 /* We need a PT_GNU_RELRO segment. */
3402 ++segs;
3403 }
3404
3405 if (elf_tdata (abfd)->eh_frame_hdr)
3406 {
3407 /* We need a PT_GNU_EH_FRAME segment. */
3408 ++segs;
3409 }
3410
3411 if (elf_tdata (abfd)->stack_flags)
3412 {
3413 /* We need a PT_GNU_STACK segment. */
3414 ++segs;
3415 }
3416
3417 for (s = abfd->sections; s != NULL; s = s->next)
3418 {
3419 if ((s->flags & SEC_LOAD) != 0
3420 && CONST_STRNEQ (s->name, ".note"))
3421 {
3422 /* We need a PT_NOTE segment. */
3423 ++segs;
3424 /* Try to create just one PT_NOTE segment
3425 for all adjacent loadable .note* sections.
3426 gABI requires that within a PT_NOTE segment
3427 (and also inside of each SHT_NOTE section)
3428 each note is padded to a multiple of 4 size,
3429 so we check whether the sections are correctly
3430 aligned. */
3431 if (s->alignment_power == 2)
3432 while (s->next != NULL
3433 && s->next->alignment_power == 2
3434 && (s->next->flags & SEC_LOAD) != 0
3435 && CONST_STRNEQ (s->next->name, ".note"))
3436 s = s->next;
3437 }
3438 }
3439
3440 for (s = abfd->sections; s != NULL; s = s->next)
3441 {
3442 if (s->flags & SEC_THREAD_LOCAL)
3443 {
3444 /* We need a PT_TLS segment. */
3445 ++segs;
3446 break;
3447 }
3448 }
3449
3450 /* Let the backend count up any program headers it might need. */
3451 bed = get_elf_backend_data (abfd);
3452 if (bed->elf_backend_additional_program_headers)
3453 {
3454 int a;
3455
3456 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3457 if (a == -1)
3458 abort ();
3459 segs += a;
3460 }
3461
3462 return segs * bed->s->sizeof_phdr;
3463 }
3464
3465 /* Find the segment that contains the output_section of section. */
3466
3467 Elf_Internal_Phdr *
3468 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3469 {
3470 struct elf_segment_map *m;
3471 Elf_Internal_Phdr *p;
3472
3473 for (m = elf_tdata (abfd)->segment_map,
3474 p = elf_tdata (abfd)->phdr;
3475 m != NULL;
3476 m = m->next, p++)
3477 {
3478 int i;
3479
3480 for (i = m->count - 1; i >= 0; i--)
3481 if (m->sections[i] == section)
3482 return p;
3483 }
3484
3485 return NULL;
3486 }
3487
3488 /* Create a mapping from a set of sections to a program segment. */
3489
3490 static struct elf_segment_map *
3491 make_mapping (bfd *abfd,
3492 asection **sections,
3493 unsigned int from,
3494 unsigned int to,
3495 bfd_boolean phdr)
3496 {
3497 struct elf_segment_map *m;
3498 unsigned int i;
3499 asection **hdrpp;
3500 bfd_size_type amt;
3501
3502 amt = sizeof (struct elf_segment_map);
3503 amt += (to - from - 1) * sizeof (asection *);
3504 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3505 if (m == NULL)
3506 return NULL;
3507 m->next = NULL;
3508 m->p_type = PT_LOAD;
3509 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3510 m->sections[i - from] = *hdrpp;
3511 m->count = to - from;
3512
3513 if (from == 0 && phdr)
3514 {
3515 /* Include the headers in the first PT_LOAD segment. */
3516 m->includes_filehdr = 1;
3517 m->includes_phdrs = 1;
3518 }
3519
3520 return m;
3521 }
3522
3523 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3524 on failure. */
3525
3526 struct elf_segment_map *
3527 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3528 {
3529 struct elf_segment_map *m;
3530
3531 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3532 sizeof (struct elf_segment_map));
3533 if (m == NULL)
3534 return NULL;
3535 m->next = NULL;
3536 m->p_type = PT_DYNAMIC;
3537 m->count = 1;
3538 m->sections[0] = dynsec;
3539
3540 return m;
3541 }
3542
3543 /* Possibly add or remove segments from the segment map. */
3544
3545 static bfd_boolean
3546 elf_modify_segment_map (bfd *abfd,
3547 struct bfd_link_info *info,
3548 bfd_boolean remove_empty_load)
3549 {
3550 struct elf_segment_map **m;
3551 const struct elf_backend_data *bed;
3552
3553 /* The placement algorithm assumes that non allocated sections are
3554 not in PT_LOAD segments. We ensure this here by removing such
3555 sections from the segment map. We also remove excluded
3556 sections. Finally, any PT_LOAD segment without sections is
3557 removed. */
3558 m = &elf_tdata (abfd)->segment_map;
3559 while (*m)
3560 {
3561 unsigned int i, new_count;
3562
3563 for (new_count = 0, i = 0; i < (*m)->count; i++)
3564 {
3565 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3566 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3567 || (*m)->p_type != PT_LOAD))
3568 {
3569 (*m)->sections[new_count] = (*m)->sections[i];
3570 new_count++;
3571 }
3572 }
3573 (*m)->count = new_count;
3574
3575 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3576 *m = (*m)->next;
3577 else
3578 m = &(*m)->next;
3579 }
3580
3581 bed = get_elf_backend_data (abfd);
3582 if (bed->elf_backend_modify_segment_map != NULL)
3583 {
3584 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3585 return FALSE;
3586 }
3587
3588 return TRUE;
3589 }
3590
3591 /* Set up a mapping from BFD sections to program segments. */
3592
3593 bfd_boolean
3594 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3595 {
3596 unsigned int count;
3597 struct elf_segment_map *m;
3598 asection **sections = NULL;
3599 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3600 bfd_boolean no_user_phdrs;
3601
3602 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3603 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3604 {
3605 asection *s;
3606 unsigned int i;
3607 struct elf_segment_map *mfirst;
3608 struct elf_segment_map **pm;
3609 asection *last_hdr;
3610 bfd_vma last_size;
3611 unsigned int phdr_index;
3612 bfd_vma maxpagesize;
3613 asection **hdrpp;
3614 bfd_boolean phdr_in_segment = TRUE;
3615 bfd_boolean writable;
3616 int tls_count = 0;
3617 asection *first_tls = NULL;
3618 asection *dynsec, *eh_frame_hdr;
3619 bfd_size_type amt;
3620
3621 /* Select the allocated sections, and sort them. */
3622
3623 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3624 sizeof (asection *));
3625 if (sections == NULL)
3626 goto error_return;
3627
3628 i = 0;
3629 for (s = abfd->sections; s != NULL; s = s->next)
3630 {
3631 if ((s->flags & SEC_ALLOC) != 0)
3632 {
3633 sections[i] = s;
3634 ++i;
3635 }
3636 }
3637 BFD_ASSERT (i <= bfd_count_sections (abfd));
3638 count = i;
3639
3640 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3641
3642 /* Build the mapping. */
3643
3644 mfirst = NULL;
3645 pm = &mfirst;
3646
3647 /* If we have a .interp section, then create a PT_PHDR segment for
3648 the program headers and a PT_INTERP segment for the .interp
3649 section. */
3650 s = bfd_get_section_by_name (abfd, ".interp");
3651 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3652 {
3653 amt = sizeof (struct elf_segment_map);
3654 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3655 if (m == NULL)
3656 goto error_return;
3657 m->next = NULL;
3658 m->p_type = PT_PHDR;
3659 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3660 m->p_flags = PF_R | PF_X;
3661 m->p_flags_valid = 1;
3662 m->includes_phdrs = 1;
3663
3664 *pm = m;
3665 pm = &m->next;
3666
3667 amt = sizeof (struct elf_segment_map);
3668 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3669 if (m == NULL)
3670 goto error_return;
3671 m->next = NULL;
3672 m->p_type = PT_INTERP;
3673 m->count = 1;
3674 m->sections[0] = s;
3675
3676 *pm = m;
3677 pm = &m->next;
3678 }
3679
3680 /* Look through the sections. We put sections in the same program
3681 segment when the start of the second section can be placed within
3682 a few bytes of the end of the first section. */
3683 last_hdr = NULL;
3684 last_size = 0;
3685 phdr_index = 0;
3686 maxpagesize = bed->maxpagesize;
3687 writable = FALSE;
3688 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3689 if (dynsec != NULL
3690 && (dynsec->flags & SEC_LOAD) == 0)
3691 dynsec = NULL;
3692
3693 /* Deal with -Ttext or something similar such that the first section
3694 is not adjacent to the program headers. This is an
3695 approximation, since at this point we don't know exactly how many
3696 program headers we will need. */
3697 if (count > 0)
3698 {
3699 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3700
3701 if (phdr_size == (bfd_size_type) -1)
3702 phdr_size = get_program_header_size (abfd, info);
3703 if ((abfd->flags & D_PAGED) == 0
3704 || sections[0]->lma < phdr_size
3705 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3706 phdr_in_segment = FALSE;
3707 }
3708
3709 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3710 {
3711 asection *hdr;
3712 bfd_boolean new_segment;
3713
3714 hdr = *hdrpp;
3715
3716 /* See if this section and the last one will fit in the same
3717 segment. */
3718
3719 if (last_hdr == NULL)
3720 {
3721 /* If we don't have a segment yet, then we don't need a new
3722 one (we build the last one after this loop). */
3723 new_segment = FALSE;
3724 }
3725 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3726 {
3727 /* If this section has a different relation between the
3728 virtual address and the load address, then we need a new
3729 segment. */
3730 new_segment = TRUE;
3731 }
3732 /* In the next test we have to be careful when last_hdr->lma is close
3733 to the end of the address space. If the aligned address wraps
3734 around to the start of the address space, then there are no more
3735 pages left in memory and it is OK to assume that the current
3736 section can be included in the current segment. */
3737 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3738 > last_hdr->lma)
3739 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3740 <= hdr->lma))
3741 {
3742 /* If putting this section in this segment would force us to
3743 skip a page in the segment, then we need a new segment. */
3744 new_segment = TRUE;
3745 }
3746 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3747 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3748 {
3749 /* We don't want to put a loadable section after a
3750 nonloadable section in the same segment.
3751 Consider .tbss sections as loadable for this purpose. */
3752 new_segment = TRUE;
3753 }
3754 else if ((abfd->flags & D_PAGED) == 0)
3755 {
3756 /* If the file is not demand paged, which means that we
3757 don't require the sections to be correctly aligned in the
3758 file, then there is no other reason for a new segment. */
3759 new_segment = FALSE;
3760 }
3761 else if (! writable
3762 && (hdr->flags & SEC_READONLY) == 0
3763 && (((last_hdr->lma + last_size - 1)
3764 & ~(maxpagesize - 1))
3765 != (hdr->lma & ~(maxpagesize - 1))))
3766 {
3767 /* We don't want to put a writable section in a read only
3768 segment, unless they are on the same page in memory
3769 anyhow. We already know that the last section does not
3770 bring us past the current section on the page, so the
3771 only case in which the new section is not on the same
3772 page as the previous section is when the previous section
3773 ends precisely on a page boundary. */
3774 new_segment = TRUE;
3775 }
3776 else
3777 {
3778 /* Otherwise, we can use the same segment. */
3779 new_segment = FALSE;
3780 }
3781
3782 /* Allow interested parties a chance to override our decision. */
3783 if (last_hdr != NULL
3784 && info != NULL
3785 && info->callbacks->override_segment_assignment != NULL)
3786 new_segment
3787 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3788 last_hdr,
3789 new_segment);
3790
3791 if (! new_segment)
3792 {
3793 if ((hdr->flags & SEC_READONLY) == 0)
3794 writable = TRUE;
3795 last_hdr = hdr;
3796 /* .tbss sections effectively have zero size. */
3797 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3798 != SEC_THREAD_LOCAL)
3799 last_size = hdr->size;
3800 else
3801 last_size = 0;
3802 continue;
3803 }
3804
3805 /* We need a new program segment. We must create a new program
3806 header holding all the sections from phdr_index until hdr. */
3807
3808 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3809 if (m == NULL)
3810 goto error_return;
3811
3812 *pm = m;
3813 pm = &m->next;
3814
3815 if ((hdr->flags & SEC_READONLY) == 0)
3816 writable = TRUE;
3817 else
3818 writable = FALSE;
3819
3820 last_hdr = hdr;
3821 /* .tbss sections effectively have zero size. */
3822 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3823 last_size = hdr->size;
3824 else
3825 last_size = 0;
3826 phdr_index = i;
3827 phdr_in_segment = FALSE;
3828 }
3829
3830 /* Create a final PT_LOAD program segment. */
3831 if (last_hdr != NULL)
3832 {
3833 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3834 if (m == NULL)
3835 goto error_return;
3836
3837 *pm = m;
3838 pm = &m->next;
3839 }
3840
3841 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3842 if (dynsec != NULL)
3843 {
3844 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3845 if (m == NULL)
3846 goto error_return;
3847 *pm = m;
3848 pm = &m->next;
3849 }
3850
3851 /* For each batch of consecutive loadable .note sections,
3852 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3853 because if we link together nonloadable .note sections and
3854 loadable .note sections, we will generate two .note sections
3855 in the output file. FIXME: Using names for section types is
3856 bogus anyhow. */
3857 for (s = abfd->sections; s != NULL; s = s->next)
3858 {
3859 if ((s->flags & SEC_LOAD) != 0
3860 && CONST_STRNEQ (s->name, ".note"))
3861 {
3862 asection *s2;
3863
3864 count = 1;
3865 amt = sizeof (struct elf_segment_map);
3866 if (s->alignment_power == 2)
3867 for (s2 = s; s2->next != NULL; s2 = s2->next)
3868 {
3869 if (s2->next->alignment_power == 2
3870 && (s2->next->flags & SEC_LOAD) != 0
3871 && CONST_STRNEQ (s2->next->name, ".note")
3872 && align_power (s2->vma + s2->size, 2)
3873 == s2->next->vma)
3874 count++;
3875 else
3876 break;
3877 }
3878 amt += (count - 1) * sizeof (asection *);
3879 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3880 if (m == NULL)
3881 goto error_return;
3882 m->next = NULL;
3883 m->p_type = PT_NOTE;
3884 m->count = count;
3885 while (count > 1)
3886 {
3887 m->sections[m->count - count--] = s;
3888 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3889 s = s->next;
3890 }
3891 m->sections[m->count - 1] = s;
3892 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3893 *pm = m;
3894 pm = &m->next;
3895 }
3896 if (s->flags & SEC_THREAD_LOCAL)
3897 {
3898 if (! tls_count)
3899 first_tls = s;
3900 tls_count++;
3901 }
3902 }
3903
3904 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3905 if (tls_count > 0)
3906 {
3907 amt = sizeof (struct elf_segment_map);
3908 amt += (tls_count - 1) * sizeof (asection *);
3909 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3910 if (m == NULL)
3911 goto error_return;
3912 m->next = NULL;
3913 m->p_type = PT_TLS;
3914 m->count = tls_count;
3915 /* Mandated PF_R. */
3916 m->p_flags = PF_R;
3917 m->p_flags_valid = 1;
3918 for (i = 0; i < (unsigned int) tls_count; ++i)
3919 {
3920 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3921 m->sections[i] = first_tls;
3922 first_tls = first_tls->next;
3923 }
3924
3925 *pm = m;
3926 pm = &m->next;
3927 }
3928
3929 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3930 segment. */
3931 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3932 if (eh_frame_hdr != NULL
3933 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3934 {
3935 amt = sizeof (struct elf_segment_map);
3936 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3937 if (m == NULL)
3938 goto error_return;
3939 m->next = NULL;
3940 m->p_type = PT_GNU_EH_FRAME;
3941 m->count = 1;
3942 m->sections[0] = eh_frame_hdr->output_section;
3943
3944 *pm = m;
3945 pm = &m->next;
3946 }
3947
3948 if (elf_tdata (abfd)->stack_flags)
3949 {
3950 amt = sizeof (struct elf_segment_map);
3951 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3952 if (m == NULL)
3953 goto error_return;
3954 m->next = NULL;
3955 m->p_type = PT_GNU_STACK;
3956 m->p_flags = elf_tdata (abfd)->stack_flags;
3957 m->p_flags_valid = 1;
3958
3959 *pm = m;
3960 pm = &m->next;
3961 }
3962
3963 if (info != NULL && info->relro)
3964 {
3965 for (m = mfirst; m != NULL; m = m->next)
3966 {
3967 if (m->p_type == PT_LOAD)
3968 {
3969 asection *last = m->sections[m->count - 1];
3970 bfd_vma vaddr = m->sections[0]->vma;
3971 bfd_vma filesz = last->vma - vaddr + last->size;
3972
3973 if (vaddr < info->relro_end
3974 && vaddr >= info->relro_start
3975 && (vaddr + filesz) >= info->relro_end)
3976 break;
3977 }
3978 }
3979
3980 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3981 if (m != NULL)
3982 {
3983 amt = sizeof (struct elf_segment_map);
3984 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3985 if (m == NULL)
3986 goto error_return;
3987 m->next = NULL;
3988 m->p_type = PT_GNU_RELRO;
3989 m->p_flags = PF_R;
3990 m->p_flags_valid = 1;
3991
3992 *pm = m;
3993 pm = &m->next;
3994 }
3995 }
3996
3997 free (sections);
3998 elf_tdata (abfd)->segment_map = mfirst;
3999 }
4000
4001 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4002 return FALSE;
4003
4004 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4005 ++count;
4006 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4007
4008 return TRUE;
4009
4010 error_return:
4011 if (sections != NULL)
4012 free (sections);
4013 return FALSE;
4014 }
4015
4016 /* Sort sections by address. */
4017
4018 static int
4019 elf_sort_sections (const void *arg1, const void *arg2)
4020 {
4021 const asection *sec1 = *(const asection **) arg1;
4022 const asection *sec2 = *(const asection **) arg2;
4023 bfd_size_type size1, size2;
4024
4025 /* Sort by LMA first, since this is the address used to
4026 place the section into a segment. */
4027 if (sec1->lma < sec2->lma)
4028 return -1;
4029 else if (sec1->lma > sec2->lma)
4030 return 1;
4031
4032 /* Then sort by VMA. Normally the LMA and the VMA will be
4033 the same, and this will do nothing. */
4034 if (sec1->vma < sec2->vma)
4035 return -1;
4036 else if (sec1->vma > sec2->vma)
4037 return 1;
4038
4039 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4040
4041 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4042
4043 if (TOEND (sec1))
4044 {
4045 if (TOEND (sec2))
4046 {
4047 /* If the indicies are the same, do not return 0
4048 here, but continue to try the next comparison. */
4049 if (sec1->target_index - sec2->target_index != 0)
4050 return sec1->target_index - sec2->target_index;
4051 }
4052 else
4053 return 1;
4054 }
4055 else if (TOEND (sec2))
4056 return -1;
4057
4058 #undef TOEND
4059
4060 /* Sort by size, to put zero sized sections
4061 before others at the same address. */
4062
4063 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4064 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4065
4066 if (size1 < size2)
4067 return -1;
4068 if (size1 > size2)
4069 return 1;
4070
4071 return sec1->target_index - sec2->target_index;
4072 }
4073
4074 /* Ian Lance Taylor writes:
4075
4076 We shouldn't be using % with a negative signed number. That's just
4077 not good. We have to make sure either that the number is not
4078 negative, or that the number has an unsigned type. When the types
4079 are all the same size they wind up as unsigned. When file_ptr is a
4080 larger signed type, the arithmetic winds up as signed long long,
4081 which is wrong.
4082
4083 What we're trying to say here is something like ``increase OFF by
4084 the least amount that will cause it to be equal to the VMA modulo
4085 the page size.'' */
4086 /* In other words, something like:
4087
4088 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4089 off_offset = off % bed->maxpagesize;
4090 if (vma_offset < off_offset)
4091 adjustment = vma_offset + bed->maxpagesize - off_offset;
4092 else
4093 adjustment = vma_offset - off_offset;
4094
4095 which can can be collapsed into the expression below. */
4096
4097 static file_ptr
4098 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4099 {
4100 return ((vma - off) % maxpagesize);
4101 }
4102
4103 static void
4104 print_segment_map (const struct elf_segment_map *m)
4105 {
4106 unsigned int j;
4107 const char *pt = get_segment_type (m->p_type);
4108 char buf[32];
4109
4110 if (pt == NULL)
4111 {
4112 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4113 sprintf (buf, "LOPROC+%7.7x",
4114 (unsigned int) (m->p_type - PT_LOPROC));
4115 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4116 sprintf (buf, "LOOS+%7.7x",
4117 (unsigned int) (m->p_type - PT_LOOS));
4118 else
4119 snprintf (buf, sizeof (buf), "%8.8x",
4120 (unsigned int) m->p_type);
4121 pt = buf;
4122 }
4123 fprintf (stderr, "%s:", pt);
4124 for (j = 0; j < m->count; j++)
4125 fprintf (stderr, " %s", m->sections [j]->name);
4126 putc ('\n',stderr);
4127 }
4128
4129 static bfd_boolean
4130 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4131 {
4132 void *buf;
4133 bfd_boolean ret;
4134
4135 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4136 return FALSE;
4137 buf = bfd_zmalloc (len);
4138 if (buf == NULL)
4139 return FALSE;
4140 ret = bfd_bwrite (buf, len, abfd) == len;
4141 free (buf);
4142 return ret;
4143 }
4144
4145 /* Assign file positions to the sections based on the mapping from
4146 sections to segments. This function also sets up some fields in
4147 the file header. */
4148
4149 static bfd_boolean
4150 assign_file_positions_for_load_sections (bfd *abfd,
4151 struct bfd_link_info *link_info)
4152 {
4153 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4154 struct elf_segment_map *m;
4155 Elf_Internal_Phdr *phdrs;
4156 Elf_Internal_Phdr *p;
4157 file_ptr off;
4158 bfd_size_type maxpagesize;
4159 unsigned int alloc;
4160 unsigned int i, j;
4161 bfd_vma header_pad = 0;
4162
4163 if (link_info == NULL
4164 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4165 return FALSE;
4166
4167 alloc = 0;
4168 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4169 {
4170 ++alloc;
4171 if (m->header_size)
4172 header_pad = m->header_size;
4173 }
4174
4175 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4176 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4177 elf_elfheader (abfd)->e_phnum = alloc;
4178
4179 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4180 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4181 else
4182 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4183 >= alloc * bed->s->sizeof_phdr);
4184
4185 if (alloc == 0)
4186 {
4187 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4188 return TRUE;
4189 }
4190
4191 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4192 see assign_file_positions_except_relocs, so make sure we have
4193 that amount allocated, with trailing space cleared.
4194 The variable alloc contains the computed need, while elf_tdata
4195 (abfd)->program_header_size contains the size used for the
4196 layout.
4197 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4198 where the layout is forced to according to a larger size in the
4199 last iterations for the testcase ld-elf/header. */
4200 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4201 == 0);
4202 phdrs = (Elf_Internal_Phdr *)
4203 bfd_zalloc2 (abfd,
4204 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4205 sizeof (Elf_Internal_Phdr));
4206 elf_tdata (abfd)->phdr = phdrs;
4207 if (phdrs == NULL)
4208 return FALSE;
4209
4210 maxpagesize = 1;
4211 if ((abfd->flags & D_PAGED) != 0)
4212 maxpagesize = bed->maxpagesize;
4213
4214 off = bed->s->sizeof_ehdr;
4215 off += alloc * bed->s->sizeof_phdr;
4216 if (header_pad < (bfd_vma) off)
4217 header_pad = 0;
4218 else
4219 header_pad -= off;
4220 off += header_pad;
4221
4222 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4223 m != NULL;
4224 m = m->next, p++, j++)
4225 {
4226 asection **secpp;
4227 bfd_vma off_adjust;
4228 bfd_boolean no_contents;
4229
4230 /* If elf_segment_map is not from map_sections_to_segments, the
4231 sections may not be correctly ordered. NOTE: sorting should
4232 not be done to the PT_NOTE section of a corefile, which may
4233 contain several pseudo-sections artificially created by bfd.
4234 Sorting these pseudo-sections breaks things badly. */
4235 if (m->count > 1
4236 && !(elf_elfheader (abfd)->e_type == ET_CORE
4237 && m->p_type == PT_NOTE))
4238 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4239 elf_sort_sections);
4240
4241 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4242 number of sections with contents contributing to both p_filesz
4243 and p_memsz, followed by a number of sections with no contents
4244 that just contribute to p_memsz. In this loop, OFF tracks next
4245 available file offset for PT_LOAD and PT_NOTE segments. */
4246 p->p_type = m->p_type;
4247 p->p_flags = m->p_flags;
4248
4249 if (m->count == 0)
4250 p->p_vaddr = 0;
4251 else
4252 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4253
4254 if (m->p_paddr_valid)
4255 p->p_paddr = m->p_paddr;
4256 else if (m->count == 0)
4257 p->p_paddr = 0;
4258 else
4259 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4260
4261 if (p->p_type == PT_LOAD
4262 && (abfd->flags & D_PAGED) != 0)
4263 {
4264 /* p_align in demand paged PT_LOAD segments effectively stores
4265 the maximum page size. When copying an executable with
4266 objcopy, we set m->p_align from the input file. Use this
4267 value for maxpagesize rather than bed->maxpagesize, which
4268 may be different. Note that we use maxpagesize for PT_TLS
4269 segment alignment later in this function, so we are relying
4270 on at least one PT_LOAD segment appearing before a PT_TLS
4271 segment. */
4272 if (m->p_align_valid)
4273 maxpagesize = m->p_align;
4274
4275 p->p_align = maxpagesize;
4276 }
4277 else if (m->p_align_valid)
4278 p->p_align = m->p_align;
4279 else if (m->count == 0)
4280 p->p_align = 1 << bed->s->log_file_align;
4281 else
4282 p->p_align = 0;
4283
4284 no_contents = FALSE;
4285 off_adjust = 0;
4286 if (p->p_type == PT_LOAD
4287 && m->count > 0)
4288 {
4289 bfd_size_type align;
4290 unsigned int align_power = 0;
4291
4292 if (m->p_align_valid)
4293 align = p->p_align;
4294 else
4295 {
4296 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4297 {
4298 unsigned int secalign;
4299
4300 secalign = bfd_get_section_alignment (abfd, *secpp);
4301 if (secalign > align_power)
4302 align_power = secalign;
4303 }
4304 align = (bfd_size_type) 1 << align_power;
4305 if (align < maxpagesize)
4306 align = maxpagesize;
4307 }
4308
4309 for (i = 0; i < m->count; i++)
4310 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4311 /* If we aren't making room for this section, then
4312 it must be SHT_NOBITS regardless of what we've
4313 set via struct bfd_elf_special_section. */
4314 elf_section_type (m->sections[i]) = SHT_NOBITS;
4315
4316 /* Find out whether this segment contains any loadable
4317 sections. */
4318 no_contents = TRUE;
4319 for (i = 0; i < m->count; i++)
4320 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4321 {
4322 no_contents = FALSE;
4323 break;
4324 }
4325
4326 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4327 off += off_adjust;
4328 if (no_contents)
4329 {
4330 /* We shouldn't need to align the segment on disk since
4331 the segment doesn't need file space, but the gABI
4332 arguably requires the alignment and glibc ld.so
4333 checks it. So to comply with the alignment
4334 requirement but not waste file space, we adjust
4335 p_offset for just this segment. (OFF_ADJUST is
4336 subtracted from OFF later.) This may put p_offset
4337 past the end of file, but that shouldn't matter. */
4338 }
4339 else
4340 off_adjust = 0;
4341 }
4342 /* Make sure the .dynamic section is the first section in the
4343 PT_DYNAMIC segment. */
4344 else if (p->p_type == PT_DYNAMIC
4345 && m->count > 1
4346 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4347 {
4348 _bfd_error_handler
4349 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4350 abfd);
4351 bfd_set_error (bfd_error_bad_value);
4352 return FALSE;
4353 }
4354 /* Set the note section type to SHT_NOTE. */
4355 else if (p->p_type == PT_NOTE)
4356 for (i = 0; i < m->count; i++)
4357 elf_section_type (m->sections[i]) = SHT_NOTE;
4358
4359 p->p_offset = 0;
4360 p->p_filesz = 0;
4361 p->p_memsz = 0;
4362
4363 if (m->includes_filehdr)
4364 {
4365 if (!m->p_flags_valid)
4366 p->p_flags |= PF_R;
4367 p->p_filesz = bed->s->sizeof_ehdr;
4368 p->p_memsz = bed->s->sizeof_ehdr;
4369 if (m->count > 0)
4370 {
4371 BFD_ASSERT (p->p_type == PT_LOAD);
4372
4373 if (p->p_vaddr < (bfd_vma) off)
4374 {
4375 (*_bfd_error_handler)
4376 (_("%B: Not enough room for program headers, try linking with -N"),
4377 abfd);
4378 bfd_set_error (bfd_error_bad_value);
4379 return FALSE;
4380 }
4381
4382 p->p_vaddr -= off;
4383 if (!m->p_paddr_valid)
4384 p->p_paddr -= off;
4385 }
4386 }
4387
4388 if (m->includes_phdrs)
4389 {
4390 if (!m->p_flags_valid)
4391 p->p_flags |= PF_R;
4392
4393 if (!m->includes_filehdr)
4394 {
4395 p->p_offset = bed->s->sizeof_ehdr;
4396
4397 if (m->count > 0)
4398 {
4399 BFD_ASSERT (p->p_type == PT_LOAD);
4400 p->p_vaddr -= off - p->p_offset;
4401 if (!m->p_paddr_valid)
4402 p->p_paddr -= off - p->p_offset;
4403 }
4404 }
4405
4406 p->p_filesz += alloc * bed->s->sizeof_phdr;
4407 p->p_memsz += alloc * bed->s->sizeof_phdr;
4408 if (m->count)
4409 {
4410 p->p_filesz += header_pad;
4411 p->p_memsz += header_pad;
4412 }
4413 }
4414
4415 if (p->p_type == PT_LOAD
4416 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4417 {
4418 if (!m->includes_filehdr && !m->includes_phdrs)
4419 p->p_offset = off;
4420 else
4421 {
4422 file_ptr adjust;
4423
4424 adjust = off - (p->p_offset + p->p_filesz);
4425 if (!no_contents)
4426 p->p_filesz += adjust;
4427 p->p_memsz += adjust;
4428 }
4429 }
4430
4431 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4432 maps. Set filepos for sections in PT_LOAD segments, and in
4433 core files, for sections in PT_NOTE segments.
4434 assign_file_positions_for_non_load_sections will set filepos
4435 for other sections and update p_filesz for other segments. */
4436 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4437 {
4438 asection *sec;
4439 bfd_size_type align;
4440 Elf_Internal_Shdr *this_hdr;
4441
4442 sec = *secpp;
4443 this_hdr = &elf_section_data (sec)->this_hdr;
4444 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4445
4446 if ((p->p_type == PT_LOAD
4447 || p->p_type == PT_TLS)
4448 && (this_hdr->sh_type != SHT_NOBITS
4449 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4450 && ((this_hdr->sh_flags & SHF_TLS) == 0
4451 || p->p_type == PT_TLS))))
4452 {
4453 bfd_signed_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
4454
4455 if (adjust < 0)
4456 {
4457 (*_bfd_error_handler)
4458 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4459 abfd, sec, (unsigned long) sec->vma);
4460 adjust = 0;
4461 }
4462 p->p_memsz += adjust;
4463
4464 if (p->p_paddr + p->p_memsz != sec->lma)
4465 {
4466 /* This behavior is a compromise--ld has long
4467 silently changed the lma of sections when
4468 lma - vma is not equal for every section in a
4469 pheader--but only in the internal elf structures.
4470 Silently changing the lma is probably a bug, but
4471 changing it would have subtle and unknown
4472 consequences for existing scripts.
4473
4474 Instead modify the bfd data structure to reflect
4475 what happened. This at least fixes the values
4476 for the lma in the mapfile. */
4477 sec->lma = p->p_paddr + p->p_memsz;
4478 }
4479
4480 if (this_hdr->sh_type != SHT_NOBITS)
4481 {
4482 if (p->p_filesz + adjust < p->p_memsz)
4483 {
4484 /* We have a PROGBITS section following NOBITS ones.
4485 Allocate file space for the NOBITS section(s) and
4486 zero it. */
4487 adjust = p->p_memsz - p->p_filesz;
4488 if (!write_zeros (abfd, off, adjust))
4489 return FALSE;
4490 }
4491 off += adjust;
4492 p->p_filesz += adjust;
4493 }
4494 }
4495
4496 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4497 {
4498 /* The section at i == 0 is the one that actually contains
4499 everything. */
4500 if (i == 0)
4501 {
4502 this_hdr->sh_offset = sec->filepos = off;
4503 off += this_hdr->sh_size;
4504 p->p_filesz = this_hdr->sh_size;
4505 p->p_memsz = 0;
4506 p->p_align = 1;
4507 }
4508 else
4509 {
4510 /* The rest are fake sections that shouldn't be written. */
4511 sec->filepos = 0;
4512 sec->size = 0;
4513 sec->flags = 0;
4514 continue;
4515 }
4516 }
4517 else
4518 {
4519 if (p->p_type == PT_LOAD)
4520 {
4521 this_hdr->sh_offset = sec->filepos = off;
4522 if (this_hdr->sh_type != SHT_NOBITS)
4523 off += this_hdr->sh_size;
4524 }
4525
4526 if (this_hdr->sh_type != SHT_NOBITS)
4527 {
4528 p->p_filesz += this_hdr->sh_size;
4529 /* A load section without SHF_ALLOC is something like
4530 a note section in a PT_NOTE segment. These take
4531 file space but are not loaded into memory. */
4532 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4533 p->p_memsz += this_hdr->sh_size;
4534 }
4535 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4536 {
4537 if (p->p_type == PT_TLS)
4538 p->p_memsz += this_hdr->sh_size;
4539
4540 /* .tbss is special. It doesn't contribute to p_memsz of
4541 normal segments. */
4542 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4543 p->p_memsz += this_hdr->sh_size;
4544 }
4545
4546 if (align > p->p_align
4547 && !m->p_align_valid
4548 && (p->p_type != PT_LOAD
4549 || (abfd->flags & D_PAGED) == 0))
4550 p->p_align = align;
4551 }
4552
4553 if (!m->p_flags_valid)
4554 {
4555 p->p_flags |= PF_R;
4556 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4557 p->p_flags |= PF_X;
4558 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4559 p->p_flags |= PF_W;
4560 }
4561 }
4562 off -= off_adjust;
4563
4564 /* Check that all sections are in a PT_LOAD segment.
4565 Don't check funky gdb generated core files. */
4566 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4567 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4568 {
4569 Elf_Internal_Shdr *this_hdr;
4570 asection *sec;
4571
4572 sec = *secpp;
4573 this_hdr = &(elf_section_data(sec)->this_hdr);
4574 if (this_hdr->sh_size != 0
4575 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4576 {
4577 (*_bfd_error_handler)
4578 (_("%B: section `%A' can't be allocated in segment %d"),
4579 abfd, sec, j);
4580 print_segment_map (m);
4581 bfd_set_error (bfd_error_bad_value);
4582 return FALSE;
4583 }
4584 }
4585 }
4586
4587 elf_tdata (abfd)->next_file_pos = off;
4588 return TRUE;
4589 }
4590
4591 /* Assign file positions for the other sections. */
4592
4593 static bfd_boolean
4594 assign_file_positions_for_non_load_sections (bfd *abfd,
4595 struct bfd_link_info *link_info)
4596 {
4597 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4598 Elf_Internal_Shdr **i_shdrpp;
4599 Elf_Internal_Shdr **hdrpp;
4600 Elf_Internal_Phdr *phdrs;
4601 Elf_Internal_Phdr *p;
4602 struct elf_segment_map *m;
4603 bfd_vma filehdr_vaddr, filehdr_paddr;
4604 bfd_vma phdrs_vaddr, phdrs_paddr;
4605 file_ptr off;
4606 unsigned int num_sec;
4607 unsigned int i;
4608 unsigned int count;
4609
4610 i_shdrpp = elf_elfsections (abfd);
4611 num_sec = elf_numsections (abfd);
4612 off = elf_tdata (abfd)->next_file_pos;
4613 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4614 {
4615 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4616 Elf_Internal_Shdr *hdr;
4617
4618 hdr = *hdrpp;
4619 if (hdr->bfd_section != NULL
4620 && (hdr->bfd_section->filepos != 0
4621 || (hdr->sh_type == SHT_NOBITS
4622 && hdr->contents == NULL)))
4623 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4624 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4625 {
4626 if (hdr->sh_size != 0)
4627 ((*_bfd_error_handler)
4628 (_("%B: warning: allocated section `%s' not in segment"),
4629 abfd,
4630 (hdr->bfd_section == NULL
4631 ? "*unknown*"
4632 : hdr->bfd_section->name)));
4633 /* We don't need to page align empty sections. */
4634 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4635 off += vma_page_aligned_bias (hdr->sh_addr, off,
4636 bed->maxpagesize);
4637 else
4638 off += vma_page_aligned_bias (hdr->sh_addr, off,
4639 hdr->sh_addralign);
4640 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4641 FALSE);
4642 }
4643 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4644 && hdr->bfd_section == NULL)
4645 || hdr == i_shdrpp[tdata->symtab_section]
4646 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4647 || hdr == i_shdrpp[tdata->strtab_section])
4648 hdr->sh_offset = -1;
4649 else
4650 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4651 }
4652
4653 /* Now that we have set the section file positions, we can set up
4654 the file positions for the non PT_LOAD segments. */
4655 count = 0;
4656 filehdr_vaddr = 0;
4657 filehdr_paddr = 0;
4658 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4659 phdrs_paddr = 0;
4660 phdrs = elf_tdata (abfd)->phdr;
4661 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4662 m != NULL;
4663 m = m->next, p++)
4664 {
4665 ++count;
4666 if (p->p_type != PT_LOAD)
4667 continue;
4668
4669 if (m->includes_filehdr)
4670 {
4671 filehdr_vaddr = p->p_vaddr;
4672 filehdr_paddr = p->p_paddr;
4673 }
4674 if (m->includes_phdrs)
4675 {
4676 phdrs_vaddr = p->p_vaddr;
4677 phdrs_paddr = p->p_paddr;
4678 if (m->includes_filehdr)
4679 {
4680 phdrs_vaddr += bed->s->sizeof_ehdr;
4681 phdrs_paddr += bed->s->sizeof_ehdr;
4682 }
4683 }
4684 }
4685
4686 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4687 m != NULL;
4688 m = m->next, p++)
4689 {
4690 if (p->p_type == PT_GNU_RELRO)
4691 {
4692 const Elf_Internal_Phdr *lp;
4693
4694 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4695
4696 if (link_info != NULL)
4697 {
4698 /* During linking the range of the RELRO segment is passed
4699 in link_info. */
4700 for (lp = phdrs; lp < phdrs + count; ++lp)
4701 {
4702 if (lp->p_type == PT_LOAD
4703 && lp->p_vaddr >= link_info->relro_start
4704 && lp->p_vaddr < link_info->relro_end
4705 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4706 break;
4707 }
4708 }
4709 else
4710 {
4711 /* Otherwise we are copying an executable or shared
4712 library, but we need to use the same linker logic. */
4713 for (lp = phdrs; lp < phdrs + count; ++lp)
4714 {
4715 if (lp->p_type == PT_LOAD
4716 && lp->p_paddr == p->p_paddr)
4717 break;
4718 }
4719 }
4720
4721 if (lp < phdrs + count)
4722 {
4723 p->p_vaddr = lp->p_vaddr;
4724 p->p_paddr = lp->p_paddr;
4725 p->p_offset = lp->p_offset;
4726 if (link_info != NULL)
4727 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4728 else if (m->p_size_valid)
4729 p->p_filesz = m->p_size;
4730 else
4731 abort ();
4732 p->p_memsz = p->p_filesz;
4733 p->p_align = 1;
4734 p->p_flags = (lp->p_flags & ~PF_W);
4735 }
4736 else
4737 {
4738 memset (p, 0, sizeof *p);
4739 p->p_type = PT_NULL;
4740 }
4741 }
4742 else if (m->count != 0)
4743 {
4744 if (p->p_type != PT_LOAD
4745 && (p->p_type != PT_NOTE
4746 || bfd_get_format (abfd) != bfd_core))
4747 {
4748 Elf_Internal_Shdr *hdr;
4749 asection *sect;
4750
4751 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4752
4753 sect = m->sections[m->count - 1];
4754 hdr = &elf_section_data (sect)->this_hdr;
4755 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4756 if (hdr->sh_type != SHT_NOBITS)
4757 p->p_filesz += hdr->sh_size;
4758 p->p_offset = m->sections[0]->filepos;
4759 }
4760 }
4761 else if (m->includes_filehdr)
4762 {
4763 p->p_vaddr = filehdr_vaddr;
4764 if (! m->p_paddr_valid)
4765 p->p_paddr = filehdr_paddr;
4766 }
4767 else if (m->includes_phdrs)
4768 {
4769 p->p_vaddr = phdrs_vaddr;
4770 if (! m->p_paddr_valid)
4771 p->p_paddr = phdrs_paddr;
4772 }
4773 }
4774
4775 elf_tdata (abfd)->next_file_pos = off;
4776
4777 return TRUE;
4778 }
4779
4780 /* Work out the file positions of all the sections. This is called by
4781 _bfd_elf_compute_section_file_positions. All the section sizes and
4782 VMAs must be known before this is called.
4783
4784 Reloc sections come in two flavours: Those processed specially as
4785 "side-channel" data attached to a section to which they apply, and
4786 those that bfd doesn't process as relocations. The latter sort are
4787 stored in a normal bfd section by bfd_section_from_shdr. We don't
4788 consider the former sort here, unless they form part of the loadable
4789 image. Reloc sections not assigned here will be handled later by
4790 assign_file_positions_for_relocs.
4791
4792 We also don't set the positions of the .symtab and .strtab here. */
4793
4794 static bfd_boolean
4795 assign_file_positions_except_relocs (bfd *abfd,
4796 struct bfd_link_info *link_info)
4797 {
4798 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4799 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4800 file_ptr off;
4801 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4802
4803 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4804 && bfd_get_format (abfd) != bfd_core)
4805 {
4806 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4807 unsigned int num_sec = elf_numsections (abfd);
4808 Elf_Internal_Shdr **hdrpp;
4809 unsigned int i;
4810
4811 /* Start after the ELF header. */
4812 off = i_ehdrp->e_ehsize;
4813
4814 /* We are not creating an executable, which means that we are
4815 not creating a program header, and that the actual order of
4816 the sections in the file is unimportant. */
4817 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4818 {
4819 Elf_Internal_Shdr *hdr;
4820
4821 hdr = *hdrpp;
4822 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4823 && hdr->bfd_section == NULL)
4824 || i == tdata->symtab_section
4825 || i == tdata->symtab_shndx_section
4826 || i == tdata->strtab_section)
4827 {
4828 hdr->sh_offset = -1;
4829 }
4830 else
4831 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4832 }
4833 }
4834 else
4835 {
4836 unsigned int alloc;
4837
4838 /* Assign file positions for the loaded sections based on the
4839 assignment of sections to segments. */
4840 if (!assign_file_positions_for_load_sections (abfd, link_info))
4841 return FALSE;
4842
4843 /* And for non-load sections. */
4844 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4845 return FALSE;
4846
4847 if (bed->elf_backend_modify_program_headers != NULL)
4848 {
4849 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4850 return FALSE;
4851 }
4852
4853 /* Write out the program headers. */
4854 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4855 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4856 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4857 return FALSE;
4858
4859 off = tdata->next_file_pos;
4860 }
4861
4862 /* Place the section headers. */
4863 off = align_file_position (off, 1 << bed->s->log_file_align);
4864 i_ehdrp->e_shoff = off;
4865 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4866
4867 tdata->next_file_pos = off;
4868
4869 return TRUE;
4870 }
4871
4872 static bfd_boolean
4873 prep_headers (bfd *abfd)
4874 {
4875 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4876 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4877 struct elf_strtab_hash *shstrtab;
4878 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4879
4880 i_ehdrp = elf_elfheader (abfd);
4881
4882 shstrtab = _bfd_elf_strtab_init ();
4883 if (shstrtab == NULL)
4884 return FALSE;
4885
4886 elf_shstrtab (abfd) = shstrtab;
4887
4888 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4889 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4890 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4891 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4892
4893 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4894 i_ehdrp->e_ident[EI_DATA] =
4895 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4896 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4897
4898 if ((abfd->flags & DYNAMIC) != 0)
4899 i_ehdrp->e_type = ET_DYN;
4900 else if ((abfd->flags & EXEC_P) != 0)
4901 i_ehdrp->e_type = ET_EXEC;
4902 else if (bfd_get_format (abfd) == bfd_core)
4903 i_ehdrp->e_type = ET_CORE;
4904 else
4905 i_ehdrp->e_type = ET_REL;
4906
4907 switch (bfd_get_arch (abfd))
4908 {
4909 case bfd_arch_unknown:
4910 i_ehdrp->e_machine = EM_NONE;
4911 break;
4912
4913 /* There used to be a long list of cases here, each one setting
4914 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4915 in the corresponding bfd definition. To avoid duplication,
4916 the switch was removed. Machines that need special handling
4917 can generally do it in elf_backend_final_write_processing(),
4918 unless they need the information earlier than the final write.
4919 Such need can generally be supplied by replacing the tests for
4920 e_machine with the conditions used to determine it. */
4921 default:
4922 i_ehdrp->e_machine = bed->elf_machine_code;
4923 }
4924
4925 i_ehdrp->e_version = bed->s->ev_current;
4926 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4927
4928 /* No program header, for now. */
4929 i_ehdrp->e_phoff = 0;
4930 i_ehdrp->e_phentsize = 0;
4931 i_ehdrp->e_phnum = 0;
4932
4933 /* Each bfd section is section header entry. */
4934 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4935 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4936
4937 /* If we're building an executable, we'll need a program header table. */
4938 if (abfd->flags & EXEC_P)
4939 /* It all happens later. */
4940 ;
4941 else
4942 {
4943 i_ehdrp->e_phentsize = 0;
4944 i_phdrp = 0;
4945 i_ehdrp->e_phoff = 0;
4946 }
4947
4948 elf_tdata (abfd)->symtab_hdr.sh_name =
4949 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4950 elf_tdata (abfd)->strtab_hdr.sh_name =
4951 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4952 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4953 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4954 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4955 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4956 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4957 return FALSE;
4958
4959 return TRUE;
4960 }
4961
4962 /* Assign file positions for all the reloc sections which are not part
4963 of the loadable file image. */
4964
4965 void
4966 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4967 {
4968 file_ptr off;
4969 unsigned int i, num_sec;
4970 Elf_Internal_Shdr **shdrpp;
4971
4972 off = elf_tdata (abfd)->next_file_pos;
4973
4974 num_sec = elf_numsections (abfd);
4975 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4976 {
4977 Elf_Internal_Shdr *shdrp;
4978
4979 shdrp = *shdrpp;
4980 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4981 && shdrp->sh_offset == -1)
4982 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4983 }
4984
4985 elf_tdata (abfd)->next_file_pos = off;
4986 }
4987
4988 bfd_boolean
4989 _bfd_elf_write_object_contents (bfd *abfd)
4990 {
4991 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4992 Elf_Internal_Ehdr *i_ehdrp;
4993 Elf_Internal_Shdr **i_shdrp;
4994 bfd_boolean failed;
4995 unsigned int count, num_sec;
4996
4997 if (! abfd->output_has_begun
4998 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4999 return FALSE;
5000
5001 i_shdrp = elf_elfsections (abfd);
5002 i_ehdrp = elf_elfheader (abfd);
5003
5004 failed = FALSE;
5005 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5006 if (failed)
5007 return FALSE;
5008
5009 _bfd_elf_assign_file_positions_for_relocs (abfd);
5010
5011 /* After writing the headers, we need to write the sections too... */
5012 num_sec = elf_numsections (abfd);
5013 for (count = 1; count < num_sec; count++)
5014 {
5015 if (bed->elf_backend_section_processing)
5016 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5017 if (i_shdrp[count]->contents)
5018 {
5019 bfd_size_type amt = i_shdrp[count]->sh_size;
5020
5021 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5022 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5023 return FALSE;
5024 }
5025 }
5026
5027 /* Write out the section header names. */
5028 if (elf_shstrtab (abfd) != NULL
5029 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5030 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5031 return FALSE;
5032
5033 if (bed->elf_backend_final_write_processing)
5034 (*bed->elf_backend_final_write_processing) (abfd,
5035 elf_tdata (abfd)->linker);
5036
5037 if (!bed->s->write_shdrs_and_ehdr (abfd))
5038 return FALSE;
5039
5040 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5041 if (elf_tdata (abfd)->after_write_object_contents)
5042 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5043
5044 return TRUE;
5045 }
5046
5047 bfd_boolean
5048 _bfd_elf_write_corefile_contents (bfd *abfd)
5049 {
5050 /* Hopefully this can be done just like an object file. */
5051 return _bfd_elf_write_object_contents (abfd);
5052 }
5053
5054 /* Given a section, search the header to find them. */
5055
5056 unsigned int
5057 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5058 {
5059 const struct elf_backend_data *bed;
5060 unsigned int sec_index;
5061
5062 if (elf_section_data (asect) != NULL
5063 && elf_section_data (asect)->this_idx != 0)
5064 return elf_section_data (asect)->this_idx;
5065
5066 if (bfd_is_abs_section (asect))
5067 sec_index = SHN_ABS;
5068 else if (bfd_is_com_section (asect))
5069 sec_index = SHN_COMMON;
5070 else if (bfd_is_und_section (asect))
5071 sec_index = SHN_UNDEF;
5072 else
5073 sec_index = SHN_BAD;
5074
5075 bed = get_elf_backend_data (abfd);
5076 if (bed->elf_backend_section_from_bfd_section)
5077 {
5078 int retval = sec_index;
5079
5080 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5081 return retval;
5082 }
5083
5084 if (sec_index == SHN_BAD)
5085 bfd_set_error (bfd_error_nonrepresentable_section);
5086
5087 return sec_index;
5088 }
5089
5090 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5091 on error. */
5092
5093 int
5094 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5095 {
5096 asymbol *asym_ptr = *asym_ptr_ptr;
5097 int idx;
5098 flagword flags = asym_ptr->flags;
5099
5100 /* When gas creates relocations against local labels, it creates its
5101 own symbol for the section, but does put the symbol into the
5102 symbol chain, so udata is 0. When the linker is generating
5103 relocatable output, this section symbol may be for one of the
5104 input sections rather than the output section. */
5105 if (asym_ptr->udata.i == 0
5106 && (flags & BSF_SECTION_SYM)
5107 && asym_ptr->section)
5108 {
5109 asection *sec;
5110 int indx;
5111
5112 sec = asym_ptr->section;
5113 if (sec->owner != abfd && sec->output_section != NULL)
5114 sec = sec->output_section;
5115 if (sec->owner == abfd
5116 && (indx = sec->index) < elf_num_section_syms (abfd)
5117 && elf_section_syms (abfd)[indx] != NULL)
5118 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5119 }
5120
5121 idx = asym_ptr->udata.i;
5122
5123 if (idx == 0)
5124 {
5125 /* This case can occur when using --strip-symbol on a symbol
5126 which is used in a relocation entry. */
5127 (*_bfd_error_handler)
5128 (_("%B: symbol `%s' required but not present"),
5129 abfd, bfd_asymbol_name (asym_ptr));
5130 bfd_set_error (bfd_error_no_symbols);
5131 return -1;
5132 }
5133
5134 #if DEBUG & 4
5135 {
5136 fprintf (stderr,
5137 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5138 (long) asym_ptr, asym_ptr->name, idx, flags,
5139 elf_symbol_flags (flags));
5140 fflush (stderr);
5141 }
5142 #endif
5143
5144 return idx;
5145 }
5146
5147 /* Rewrite program header information. */
5148
5149 static bfd_boolean
5150 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5151 {
5152 Elf_Internal_Ehdr *iehdr;
5153 struct elf_segment_map *map;
5154 struct elf_segment_map *map_first;
5155 struct elf_segment_map **pointer_to_map;
5156 Elf_Internal_Phdr *segment;
5157 asection *section;
5158 unsigned int i;
5159 unsigned int num_segments;
5160 bfd_boolean phdr_included = FALSE;
5161 bfd_boolean p_paddr_valid;
5162 bfd_vma maxpagesize;
5163 struct elf_segment_map *phdr_adjust_seg = NULL;
5164 unsigned int phdr_adjust_num = 0;
5165 const struct elf_backend_data *bed;
5166
5167 bed = get_elf_backend_data (ibfd);
5168 iehdr = elf_elfheader (ibfd);
5169
5170 map_first = NULL;
5171 pointer_to_map = &map_first;
5172
5173 num_segments = elf_elfheader (ibfd)->e_phnum;
5174 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5175
5176 /* Returns the end address of the segment + 1. */
5177 #define SEGMENT_END(segment, start) \
5178 (start + (segment->p_memsz > segment->p_filesz \
5179 ? segment->p_memsz : segment->p_filesz))
5180
5181 #define SECTION_SIZE(section, segment) \
5182 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5183 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5184 ? section->size : 0)
5185
5186 /* Returns TRUE if the given section is contained within
5187 the given segment. VMA addresses are compared. */
5188 #define IS_CONTAINED_BY_VMA(section, segment) \
5189 (section->vma >= segment->p_vaddr \
5190 && (section->vma + SECTION_SIZE (section, segment) \
5191 <= (SEGMENT_END (segment, segment->p_vaddr))))
5192
5193 /* Returns TRUE if the given section is contained within
5194 the given segment. LMA addresses are compared. */
5195 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5196 (section->lma >= base \
5197 && (section->lma + SECTION_SIZE (section, segment) \
5198 <= SEGMENT_END (segment, base)))
5199
5200 /* Handle PT_NOTE segment. */
5201 #define IS_NOTE(p, s) \
5202 (p->p_type == PT_NOTE \
5203 && elf_section_type (s) == SHT_NOTE \
5204 && (bfd_vma) s->filepos >= p->p_offset \
5205 && ((bfd_vma) s->filepos + s->size \
5206 <= p->p_offset + p->p_filesz))
5207
5208 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5209 etc. */
5210 #define IS_COREFILE_NOTE(p, s) \
5211 (IS_NOTE (p, s) \
5212 && bfd_get_format (ibfd) == bfd_core \
5213 && s->vma == 0 \
5214 && s->lma == 0)
5215
5216 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5217 linker, which generates a PT_INTERP section with p_vaddr and
5218 p_memsz set to 0. */
5219 #define IS_SOLARIS_PT_INTERP(p, s) \
5220 (p->p_vaddr == 0 \
5221 && p->p_paddr == 0 \
5222 && p->p_memsz == 0 \
5223 && p->p_filesz > 0 \
5224 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5225 && s->size > 0 \
5226 && (bfd_vma) s->filepos >= p->p_offset \
5227 && ((bfd_vma) s->filepos + s->size \
5228 <= p->p_offset + p->p_filesz))
5229
5230 /* Decide if the given section should be included in the given segment.
5231 A section will be included if:
5232 1. It is within the address space of the segment -- we use the LMA
5233 if that is set for the segment and the VMA otherwise,
5234 2. It is an allocated section or a NOTE section in a PT_NOTE
5235 segment.
5236 3. There is an output section associated with it,
5237 4. The section has not already been allocated to a previous segment.
5238 5. PT_GNU_STACK segments do not include any sections.
5239 6. PT_TLS segment includes only SHF_TLS sections.
5240 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5241 8. PT_DYNAMIC should not contain empty sections at the beginning
5242 (with the possible exception of .dynamic). */
5243 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5244 ((((segment->p_paddr \
5245 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5246 : IS_CONTAINED_BY_VMA (section, segment)) \
5247 && (section->flags & SEC_ALLOC) != 0) \
5248 || IS_NOTE (segment, section)) \
5249 && segment->p_type != PT_GNU_STACK \
5250 && (segment->p_type != PT_TLS \
5251 || (section->flags & SEC_THREAD_LOCAL)) \
5252 && (segment->p_type == PT_LOAD \
5253 || segment->p_type == PT_TLS \
5254 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5255 && (segment->p_type != PT_DYNAMIC \
5256 || SECTION_SIZE (section, segment) > 0 \
5257 || (segment->p_paddr \
5258 ? segment->p_paddr != section->lma \
5259 : segment->p_vaddr != section->vma) \
5260 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5261 == 0)) \
5262 && !section->segment_mark)
5263
5264 /* If the output section of a section in the input segment is NULL,
5265 it is removed from the corresponding output segment. */
5266 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5267 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5268 && section->output_section != NULL)
5269
5270 /* Returns TRUE iff seg1 starts after the end of seg2. */
5271 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5272 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5273
5274 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5275 their VMA address ranges and their LMA address ranges overlap.
5276 It is possible to have overlapping VMA ranges without overlapping LMA
5277 ranges. RedBoot images for example can have both .data and .bss mapped
5278 to the same VMA range, but with the .data section mapped to a different
5279 LMA. */
5280 #define SEGMENT_OVERLAPS(seg1, seg2) \
5281 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5282 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5283 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5284 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5285
5286 /* Initialise the segment mark field. */
5287 for (section = ibfd->sections; section != NULL; section = section->next)
5288 section->segment_mark = FALSE;
5289
5290 /* The Solaris linker creates program headers in which all the
5291 p_paddr fields are zero. When we try to objcopy or strip such a
5292 file, we get confused. Check for this case, and if we find it
5293 don't set the p_paddr_valid fields. */
5294 p_paddr_valid = FALSE;
5295 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5296 i < num_segments;
5297 i++, segment++)
5298 if (segment->p_paddr != 0)
5299 {
5300 p_paddr_valid = TRUE;
5301 break;
5302 }
5303
5304 /* Scan through the segments specified in the program header
5305 of the input BFD. For this first scan we look for overlaps
5306 in the loadable segments. These can be created by weird
5307 parameters to objcopy. Also, fix some solaris weirdness. */
5308 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5309 i < num_segments;
5310 i++, segment++)
5311 {
5312 unsigned int j;
5313 Elf_Internal_Phdr *segment2;
5314
5315 if (segment->p_type == PT_INTERP)
5316 for (section = ibfd->sections; section; section = section->next)
5317 if (IS_SOLARIS_PT_INTERP (segment, section))
5318 {
5319 /* Mininal change so that the normal section to segment
5320 assignment code will work. */
5321 segment->p_vaddr = section->vma;
5322 break;
5323 }
5324
5325 if (segment->p_type != PT_LOAD)
5326 {
5327 /* Remove PT_GNU_RELRO segment. */
5328 if (segment->p_type == PT_GNU_RELRO)
5329 segment->p_type = PT_NULL;
5330 continue;
5331 }
5332
5333 /* Determine if this segment overlaps any previous segments. */
5334 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5335 {
5336 bfd_signed_vma extra_length;
5337
5338 if (segment2->p_type != PT_LOAD
5339 || !SEGMENT_OVERLAPS (segment, segment2))
5340 continue;
5341
5342 /* Merge the two segments together. */
5343 if (segment2->p_vaddr < segment->p_vaddr)
5344 {
5345 /* Extend SEGMENT2 to include SEGMENT and then delete
5346 SEGMENT. */
5347 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5348 - SEGMENT_END (segment2, segment2->p_vaddr));
5349
5350 if (extra_length > 0)
5351 {
5352 segment2->p_memsz += extra_length;
5353 segment2->p_filesz += extra_length;
5354 }
5355
5356 segment->p_type = PT_NULL;
5357
5358 /* Since we have deleted P we must restart the outer loop. */
5359 i = 0;
5360 segment = elf_tdata (ibfd)->phdr;
5361 break;
5362 }
5363 else
5364 {
5365 /* Extend SEGMENT to include SEGMENT2 and then delete
5366 SEGMENT2. */
5367 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5368 - SEGMENT_END (segment, segment->p_vaddr));
5369
5370 if (extra_length > 0)
5371 {
5372 segment->p_memsz += extra_length;
5373 segment->p_filesz += extra_length;
5374 }
5375
5376 segment2->p_type = PT_NULL;
5377 }
5378 }
5379 }
5380
5381 /* The second scan attempts to assign sections to segments. */
5382 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5383 i < num_segments;
5384 i++, segment++)
5385 {
5386 unsigned int section_count;
5387 asection **sections;
5388 asection *output_section;
5389 unsigned int isec;
5390 bfd_vma matching_lma;
5391 bfd_vma suggested_lma;
5392 unsigned int j;
5393 bfd_size_type amt;
5394 asection *first_section;
5395 bfd_boolean first_matching_lma;
5396 bfd_boolean first_suggested_lma;
5397
5398 if (segment->p_type == PT_NULL)
5399 continue;
5400
5401 first_section = NULL;
5402 /* Compute how many sections might be placed into this segment. */
5403 for (section = ibfd->sections, section_count = 0;
5404 section != NULL;
5405 section = section->next)
5406 {
5407 /* Find the first section in the input segment, which may be
5408 removed from the corresponding output segment. */
5409 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5410 {
5411 if (first_section == NULL)
5412 first_section = section;
5413 if (section->output_section != NULL)
5414 ++section_count;
5415 }
5416 }
5417
5418 /* Allocate a segment map big enough to contain
5419 all of the sections we have selected. */
5420 amt = sizeof (struct elf_segment_map);
5421 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5422 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5423 if (map == NULL)
5424 return FALSE;
5425
5426 /* Initialise the fields of the segment map. Default to
5427 using the physical address of the segment in the input BFD. */
5428 map->next = NULL;
5429 map->p_type = segment->p_type;
5430 map->p_flags = segment->p_flags;
5431 map->p_flags_valid = 1;
5432
5433 /* If the first section in the input segment is removed, there is
5434 no need to preserve segment physical address in the corresponding
5435 output segment. */
5436 if (!first_section || first_section->output_section != NULL)
5437 {
5438 map->p_paddr = segment->p_paddr;
5439 map->p_paddr_valid = p_paddr_valid;
5440 }
5441
5442 /* Determine if this segment contains the ELF file header
5443 and if it contains the program headers themselves. */
5444 map->includes_filehdr = (segment->p_offset == 0
5445 && segment->p_filesz >= iehdr->e_ehsize);
5446 map->includes_phdrs = 0;
5447
5448 if (!phdr_included || segment->p_type != PT_LOAD)
5449 {
5450 map->includes_phdrs =
5451 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5452 && (segment->p_offset + segment->p_filesz
5453 >= ((bfd_vma) iehdr->e_phoff
5454 + iehdr->e_phnum * iehdr->e_phentsize)));
5455
5456 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5457 phdr_included = TRUE;
5458 }
5459
5460 if (section_count == 0)
5461 {
5462 /* Special segments, such as the PT_PHDR segment, may contain
5463 no sections, but ordinary, loadable segments should contain
5464 something. They are allowed by the ELF spec however, so only
5465 a warning is produced. */
5466 if (segment->p_type == PT_LOAD)
5467 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5468 " detected, is this intentional ?\n"),
5469 ibfd);
5470
5471 map->count = 0;
5472 *pointer_to_map = map;
5473 pointer_to_map = &map->next;
5474
5475 continue;
5476 }
5477
5478 /* Now scan the sections in the input BFD again and attempt
5479 to add their corresponding output sections to the segment map.
5480 The problem here is how to handle an output section which has
5481 been moved (ie had its LMA changed). There are four possibilities:
5482
5483 1. None of the sections have been moved.
5484 In this case we can continue to use the segment LMA from the
5485 input BFD.
5486
5487 2. All of the sections have been moved by the same amount.
5488 In this case we can change the segment's LMA to match the LMA
5489 of the first section.
5490
5491 3. Some of the sections have been moved, others have not.
5492 In this case those sections which have not been moved can be
5493 placed in the current segment which will have to have its size,
5494 and possibly its LMA changed, and a new segment or segments will
5495 have to be created to contain the other sections.
5496
5497 4. The sections have been moved, but not by the same amount.
5498 In this case we can change the segment's LMA to match the LMA
5499 of the first section and we will have to create a new segment
5500 or segments to contain the other sections.
5501
5502 In order to save time, we allocate an array to hold the section
5503 pointers that we are interested in. As these sections get assigned
5504 to a segment, they are removed from this array. */
5505
5506 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5507 if (sections == NULL)
5508 return FALSE;
5509
5510 /* Step One: Scan for segment vs section LMA conflicts.
5511 Also add the sections to the section array allocated above.
5512 Also add the sections to the current segment. In the common
5513 case, where the sections have not been moved, this means that
5514 we have completely filled the segment, and there is nothing
5515 more to do. */
5516 isec = 0;
5517 matching_lma = 0;
5518 suggested_lma = 0;
5519 first_matching_lma = TRUE;
5520 first_suggested_lma = TRUE;
5521
5522 for (section = ibfd->sections;
5523 section != NULL;
5524 section = section->next)
5525 if (section == first_section)
5526 break;
5527
5528 for (j = 0; section != NULL; section = section->next)
5529 {
5530 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5531 {
5532 output_section = section->output_section;
5533
5534 sections[j++] = section;
5535
5536 /* The Solaris native linker always sets p_paddr to 0.
5537 We try to catch that case here, and set it to the
5538 correct value. Note - some backends require that
5539 p_paddr be left as zero. */
5540 if (!p_paddr_valid
5541 && segment->p_vaddr != 0
5542 && !bed->want_p_paddr_set_to_zero
5543 && isec == 0
5544 && output_section->lma != 0
5545 && output_section->vma == (segment->p_vaddr
5546 + (map->includes_filehdr
5547 ? iehdr->e_ehsize
5548 : 0)
5549 + (map->includes_phdrs
5550 ? (iehdr->e_phnum
5551 * iehdr->e_phentsize)
5552 : 0)))
5553 map->p_paddr = segment->p_vaddr;
5554
5555 /* Match up the physical address of the segment with the
5556 LMA address of the output section. */
5557 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5558 || IS_COREFILE_NOTE (segment, section)
5559 || (bed->want_p_paddr_set_to_zero
5560 && IS_CONTAINED_BY_VMA (output_section, segment)))
5561 {
5562 if (first_matching_lma || output_section->lma < matching_lma)
5563 {
5564 matching_lma = output_section->lma;
5565 first_matching_lma = FALSE;
5566 }
5567
5568 /* We assume that if the section fits within the segment
5569 then it does not overlap any other section within that
5570 segment. */
5571 map->sections[isec++] = output_section;
5572 }
5573 else if (first_suggested_lma)
5574 {
5575 suggested_lma = output_section->lma;
5576 first_suggested_lma = FALSE;
5577 }
5578
5579 if (j == section_count)
5580 break;
5581 }
5582 }
5583
5584 BFD_ASSERT (j == section_count);
5585
5586 /* Step Two: Adjust the physical address of the current segment,
5587 if necessary. */
5588 if (isec == section_count)
5589 {
5590 /* All of the sections fitted within the segment as currently
5591 specified. This is the default case. Add the segment to
5592 the list of built segments and carry on to process the next
5593 program header in the input BFD. */
5594 map->count = section_count;
5595 *pointer_to_map = map;
5596 pointer_to_map = &map->next;
5597
5598 if (p_paddr_valid
5599 && !bed->want_p_paddr_set_to_zero
5600 && matching_lma != map->p_paddr
5601 && !map->includes_filehdr
5602 && !map->includes_phdrs)
5603 /* There is some padding before the first section in the
5604 segment. So, we must account for that in the output
5605 segment's vma. */
5606 map->p_vaddr_offset = matching_lma - map->p_paddr;
5607
5608 free (sections);
5609 continue;
5610 }
5611 else
5612 {
5613 if (!first_matching_lma)
5614 {
5615 /* At least one section fits inside the current segment.
5616 Keep it, but modify its physical address to match the
5617 LMA of the first section that fitted. */
5618 map->p_paddr = matching_lma;
5619 }
5620 else
5621 {
5622 /* None of the sections fitted inside the current segment.
5623 Change the current segment's physical address to match
5624 the LMA of the first section. */
5625 map->p_paddr = suggested_lma;
5626 }
5627
5628 /* Offset the segment physical address from the lma
5629 to allow for space taken up by elf headers. */
5630 if (map->includes_filehdr)
5631 {
5632 if (map->p_paddr >= iehdr->e_ehsize)
5633 map->p_paddr -= iehdr->e_ehsize;
5634 else
5635 {
5636 map->includes_filehdr = FALSE;
5637 map->includes_phdrs = FALSE;
5638 }
5639 }
5640
5641 if (map->includes_phdrs)
5642 {
5643 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5644 {
5645 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5646
5647 /* iehdr->e_phnum is just an estimate of the number
5648 of program headers that we will need. Make a note
5649 here of the number we used and the segment we chose
5650 to hold these headers, so that we can adjust the
5651 offset when we know the correct value. */
5652 phdr_adjust_num = iehdr->e_phnum;
5653 phdr_adjust_seg = map;
5654 }
5655 else
5656 map->includes_phdrs = FALSE;
5657 }
5658 }
5659
5660 /* Step Three: Loop over the sections again, this time assigning
5661 those that fit to the current segment and removing them from the
5662 sections array; but making sure not to leave large gaps. Once all
5663 possible sections have been assigned to the current segment it is
5664 added to the list of built segments and if sections still remain
5665 to be assigned, a new segment is constructed before repeating
5666 the loop. */
5667 isec = 0;
5668 do
5669 {
5670 map->count = 0;
5671 suggested_lma = 0;
5672 first_suggested_lma = TRUE;
5673
5674 /* Fill the current segment with sections that fit. */
5675 for (j = 0; j < section_count; j++)
5676 {
5677 section = sections[j];
5678
5679 if (section == NULL)
5680 continue;
5681
5682 output_section = section->output_section;
5683
5684 BFD_ASSERT (output_section != NULL);
5685
5686 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5687 || IS_COREFILE_NOTE (segment, section))
5688 {
5689 if (map->count == 0)
5690 {
5691 /* If the first section in a segment does not start at
5692 the beginning of the segment, then something is
5693 wrong. */
5694 if (output_section->lma
5695 != (map->p_paddr
5696 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5697 + (map->includes_phdrs
5698 ? iehdr->e_phnum * iehdr->e_phentsize
5699 : 0)))
5700 abort ();
5701 }
5702 else
5703 {
5704 asection *prev_sec;
5705
5706 prev_sec = map->sections[map->count - 1];
5707
5708 /* If the gap between the end of the previous section
5709 and the start of this section is more than
5710 maxpagesize then we need to start a new segment. */
5711 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5712 maxpagesize)
5713 < BFD_ALIGN (output_section->lma, maxpagesize))
5714 || (prev_sec->lma + prev_sec->size
5715 > output_section->lma))
5716 {
5717 if (first_suggested_lma)
5718 {
5719 suggested_lma = output_section->lma;
5720 first_suggested_lma = FALSE;
5721 }
5722
5723 continue;
5724 }
5725 }
5726
5727 map->sections[map->count++] = output_section;
5728 ++isec;
5729 sections[j] = NULL;
5730 section->segment_mark = TRUE;
5731 }
5732 else if (first_suggested_lma)
5733 {
5734 suggested_lma = output_section->lma;
5735 first_suggested_lma = FALSE;
5736 }
5737 }
5738
5739 BFD_ASSERT (map->count > 0);
5740
5741 /* Add the current segment to the list of built segments. */
5742 *pointer_to_map = map;
5743 pointer_to_map = &map->next;
5744
5745 if (isec < section_count)
5746 {
5747 /* We still have not allocated all of the sections to
5748 segments. Create a new segment here, initialise it
5749 and carry on looping. */
5750 amt = sizeof (struct elf_segment_map);
5751 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5752 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5753 if (map == NULL)
5754 {
5755 free (sections);
5756 return FALSE;
5757 }
5758
5759 /* Initialise the fields of the segment map. Set the physical
5760 physical address to the LMA of the first section that has
5761 not yet been assigned. */
5762 map->next = NULL;
5763 map->p_type = segment->p_type;
5764 map->p_flags = segment->p_flags;
5765 map->p_flags_valid = 1;
5766 map->p_paddr = suggested_lma;
5767 map->p_paddr_valid = p_paddr_valid;
5768 map->includes_filehdr = 0;
5769 map->includes_phdrs = 0;
5770 }
5771 }
5772 while (isec < section_count);
5773
5774 free (sections);
5775 }
5776
5777 elf_tdata (obfd)->segment_map = map_first;
5778
5779 /* If we had to estimate the number of program headers that were
5780 going to be needed, then check our estimate now and adjust
5781 the offset if necessary. */
5782 if (phdr_adjust_seg != NULL)
5783 {
5784 unsigned int count;
5785
5786 for (count = 0, map = map_first; map != NULL; map = map->next)
5787 count++;
5788
5789 if (count > phdr_adjust_num)
5790 phdr_adjust_seg->p_paddr
5791 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5792 }
5793
5794 #undef SEGMENT_END
5795 #undef SECTION_SIZE
5796 #undef IS_CONTAINED_BY_VMA
5797 #undef IS_CONTAINED_BY_LMA
5798 #undef IS_NOTE
5799 #undef IS_COREFILE_NOTE
5800 #undef IS_SOLARIS_PT_INTERP
5801 #undef IS_SECTION_IN_INPUT_SEGMENT
5802 #undef INCLUDE_SECTION_IN_SEGMENT
5803 #undef SEGMENT_AFTER_SEGMENT
5804 #undef SEGMENT_OVERLAPS
5805 return TRUE;
5806 }
5807
5808 /* Copy ELF program header information. */
5809
5810 static bfd_boolean
5811 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5812 {
5813 Elf_Internal_Ehdr *iehdr;
5814 struct elf_segment_map *map;
5815 struct elf_segment_map *map_first;
5816 struct elf_segment_map **pointer_to_map;
5817 Elf_Internal_Phdr *segment;
5818 unsigned int i;
5819 unsigned int num_segments;
5820 bfd_boolean phdr_included = FALSE;
5821 bfd_boolean p_paddr_valid;
5822
5823 iehdr = elf_elfheader (ibfd);
5824
5825 map_first = NULL;
5826 pointer_to_map = &map_first;
5827
5828 /* If all the segment p_paddr fields are zero, don't set
5829 map->p_paddr_valid. */
5830 p_paddr_valid = FALSE;
5831 num_segments = elf_elfheader (ibfd)->e_phnum;
5832 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5833 i < num_segments;
5834 i++, segment++)
5835 if (segment->p_paddr != 0)
5836 {
5837 p_paddr_valid = TRUE;
5838 break;
5839 }
5840
5841 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5842 i < num_segments;
5843 i++, segment++)
5844 {
5845 asection *section;
5846 unsigned int section_count;
5847 bfd_size_type amt;
5848 Elf_Internal_Shdr *this_hdr;
5849 asection *first_section = NULL;
5850 asection *lowest_section = NULL;
5851
5852 /* Compute how many sections are in this segment. */
5853 for (section = ibfd->sections, section_count = 0;
5854 section != NULL;
5855 section = section->next)
5856 {
5857 this_hdr = &(elf_section_data(section)->this_hdr);
5858 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5859 {
5860 if (!first_section)
5861 first_section = lowest_section = section;
5862 if (section->lma < lowest_section->lma)
5863 lowest_section = section;
5864 section_count++;
5865 }
5866 }
5867
5868 /* Allocate a segment map big enough to contain
5869 all of the sections we have selected. */
5870 amt = sizeof (struct elf_segment_map);
5871 if (section_count != 0)
5872 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5873 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5874 if (map == NULL)
5875 return FALSE;
5876
5877 /* Initialize the fields of the output segment map with the
5878 input segment. */
5879 map->next = NULL;
5880 map->p_type = segment->p_type;
5881 map->p_flags = segment->p_flags;
5882 map->p_flags_valid = 1;
5883 map->p_paddr = segment->p_paddr;
5884 map->p_paddr_valid = p_paddr_valid;
5885 map->p_align = segment->p_align;
5886 map->p_align_valid = 1;
5887 map->p_vaddr_offset = 0;
5888
5889 if (map->p_type == PT_GNU_RELRO)
5890 {
5891 /* The PT_GNU_RELRO segment may contain the first a few
5892 bytes in the .got.plt section even if the whole .got.plt
5893 section isn't in the PT_GNU_RELRO segment. We won't
5894 change the size of the PT_GNU_RELRO segment. */
5895 map->p_size = segment->p_memsz;
5896 map->p_size_valid = 1;
5897 }
5898
5899 /* Determine if this segment contains the ELF file header
5900 and if it contains the program headers themselves. */
5901 map->includes_filehdr = (segment->p_offset == 0
5902 && segment->p_filesz >= iehdr->e_ehsize);
5903
5904 map->includes_phdrs = 0;
5905 if (! phdr_included || segment->p_type != PT_LOAD)
5906 {
5907 map->includes_phdrs =
5908 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5909 && (segment->p_offset + segment->p_filesz
5910 >= ((bfd_vma) iehdr->e_phoff
5911 + iehdr->e_phnum * iehdr->e_phentsize)));
5912
5913 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5914 phdr_included = TRUE;
5915 }
5916
5917 if (map->includes_filehdr && first_section)
5918 /* We need to keep the space used by the headers fixed. */
5919 map->header_size = first_section->vma - segment->p_vaddr;
5920
5921 if (!map->includes_phdrs
5922 && !map->includes_filehdr
5923 && map->p_paddr_valid)
5924 /* There is some other padding before the first section. */
5925 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5926 - segment->p_paddr);
5927
5928 if (section_count != 0)
5929 {
5930 unsigned int isec = 0;
5931
5932 for (section = first_section;
5933 section != NULL;
5934 section = section->next)
5935 {
5936 this_hdr = &(elf_section_data(section)->this_hdr);
5937 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5938 {
5939 map->sections[isec++] = section->output_section;
5940 if (isec == section_count)
5941 break;
5942 }
5943 }
5944 }
5945
5946 map->count = section_count;
5947 *pointer_to_map = map;
5948 pointer_to_map = &map->next;
5949 }
5950
5951 elf_tdata (obfd)->segment_map = map_first;
5952 return TRUE;
5953 }
5954
5955 /* Copy private BFD data. This copies or rewrites ELF program header
5956 information. */
5957
5958 static bfd_boolean
5959 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5960 {
5961 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5962 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5963 return TRUE;
5964
5965 if (elf_tdata (ibfd)->phdr == NULL)
5966 return TRUE;
5967
5968 if (ibfd->xvec == obfd->xvec)
5969 {
5970 /* Check to see if any sections in the input BFD
5971 covered by ELF program header have changed. */
5972 Elf_Internal_Phdr *segment;
5973 asection *section, *osec;
5974 unsigned int i, num_segments;
5975 Elf_Internal_Shdr *this_hdr;
5976 const struct elf_backend_data *bed;
5977
5978 bed = get_elf_backend_data (ibfd);
5979
5980 /* Regenerate the segment map if p_paddr is set to 0. */
5981 if (bed->want_p_paddr_set_to_zero)
5982 goto rewrite;
5983
5984 /* Initialize the segment mark field. */
5985 for (section = obfd->sections; section != NULL;
5986 section = section->next)
5987 section->segment_mark = FALSE;
5988
5989 num_segments = elf_elfheader (ibfd)->e_phnum;
5990 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5991 i < num_segments;
5992 i++, segment++)
5993 {
5994 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5995 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5996 which severly confuses things, so always regenerate the segment
5997 map in this case. */
5998 if (segment->p_paddr == 0
5999 && segment->p_memsz == 0
6000 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6001 goto rewrite;
6002
6003 for (section = ibfd->sections;
6004 section != NULL; section = section->next)
6005 {
6006 /* We mark the output section so that we know it comes
6007 from the input BFD. */
6008 osec = section->output_section;
6009 if (osec)
6010 osec->segment_mark = TRUE;
6011
6012 /* Check if this section is covered by the segment. */
6013 this_hdr = &(elf_section_data(section)->this_hdr);
6014 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
6015 {
6016 /* FIXME: Check if its output section is changed or
6017 removed. What else do we need to check? */
6018 if (osec == NULL
6019 || section->flags != osec->flags
6020 || section->lma != osec->lma
6021 || section->vma != osec->vma
6022 || section->size != osec->size
6023 || section->rawsize != osec->rawsize
6024 || section->alignment_power != osec->alignment_power)
6025 goto rewrite;
6026 }
6027 }
6028 }
6029
6030 /* Check to see if any output section do not come from the
6031 input BFD. */
6032 for (section = obfd->sections; section != NULL;
6033 section = section->next)
6034 {
6035 if (section->segment_mark == FALSE)
6036 goto rewrite;
6037 else
6038 section->segment_mark = FALSE;
6039 }
6040
6041 return copy_elf_program_header (ibfd, obfd);
6042 }
6043
6044 rewrite:
6045 return rewrite_elf_program_header (ibfd, obfd);
6046 }
6047
6048 /* Initialize private output section information from input section. */
6049
6050 bfd_boolean
6051 _bfd_elf_init_private_section_data (bfd *ibfd,
6052 asection *isec,
6053 bfd *obfd,
6054 asection *osec,
6055 struct bfd_link_info *link_info)
6056
6057 {
6058 Elf_Internal_Shdr *ihdr, *ohdr;
6059 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6060
6061 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6062 || obfd->xvec->flavour != bfd_target_elf_flavour)
6063 return TRUE;
6064
6065 /* For objcopy and relocatable link, don't copy the output ELF
6066 section type from input if the output BFD section flags have been
6067 set to something different. For a final link allow some flags
6068 that the linker clears to differ. */
6069 if (elf_section_type (osec) == SHT_NULL
6070 && (osec->flags == isec->flags
6071 || (final_link
6072 && ((osec->flags ^ isec->flags)
6073 & ~ (SEC_LINK_ONCE | SEC_LINK_DUPLICATES)) == 0)))
6074 elf_section_type (osec) = elf_section_type (isec);
6075
6076 /* FIXME: Is this correct for all OS/PROC specific flags? */
6077 elf_section_flags (osec) |= (elf_section_flags (isec)
6078 & (SHF_MASKOS | SHF_MASKPROC));
6079
6080 /* Set things up for objcopy and relocatable link. The output
6081 SHT_GROUP section will have its elf_next_in_group pointing back
6082 to the input group members. Ignore linker created group section.
6083 See elfNN_ia64_object_p in elfxx-ia64.c. */
6084 if (!final_link)
6085 {
6086 if (elf_sec_group (isec) == NULL
6087 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6088 {
6089 if (elf_section_flags (isec) & SHF_GROUP)
6090 elf_section_flags (osec) |= SHF_GROUP;
6091 elf_next_in_group (osec) = elf_next_in_group (isec);
6092 elf_section_data (osec)->group = elf_section_data (isec)->group;
6093 }
6094 }
6095
6096 ihdr = &elf_section_data (isec)->this_hdr;
6097
6098 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6099 don't use the output section of the linked-to section since it
6100 may be NULL at this point. */
6101 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6102 {
6103 ohdr = &elf_section_data (osec)->this_hdr;
6104 ohdr->sh_flags |= SHF_LINK_ORDER;
6105 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6106 }
6107
6108 osec->use_rela_p = isec->use_rela_p;
6109
6110 return TRUE;
6111 }
6112
6113 /* Copy private section information. This copies over the entsize
6114 field, and sometimes the info field. */
6115
6116 bfd_boolean
6117 _bfd_elf_copy_private_section_data (bfd *ibfd,
6118 asection *isec,
6119 bfd *obfd,
6120 asection *osec)
6121 {
6122 Elf_Internal_Shdr *ihdr, *ohdr;
6123
6124 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6125 || obfd->xvec->flavour != bfd_target_elf_flavour)
6126 return TRUE;
6127
6128 ihdr = &elf_section_data (isec)->this_hdr;
6129 ohdr = &elf_section_data (osec)->this_hdr;
6130
6131 ohdr->sh_entsize = ihdr->sh_entsize;
6132
6133 if (ihdr->sh_type == SHT_SYMTAB
6134 || ihdr->sh_type == SHT_DYNSYM
6135 || ihdr->sh_type == SHT_GNU_verneed
6136 || ihdr->sh_type == SHT_GNU_verdef)
6137 ohdr->sh_info = ihdr->sh_info;
6138
6139 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6140 NULL);
6141 }
6142
6143 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6144 necessary if we are removing either the SHT_GROUP section or any of
6145 the group member sections. DISCARDED is the value that a section's
6146 output_section has if the section will be discarded, NULL when this
6147 function is called from objcopy, bfd_abs_section_ptr when called
6148 from the linker. */
6149
6150 bfd_boolean
6151 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6152 {
6153 asection *isec;
6154
6155 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6156 if (elf_section_type (isec) == SHT_GROUP)
6157 {
6158 asection *first = elf_next_in_group (isec);
6159 asection *s = first;
6160 bfd_size_type removed = 0;
6161
6162 while (s != NULL)
6163 {
6164 /* If this member section is being output but the
6165 SHT_GROUP section is not, then clear the group info
6166 set up by _bfd_elf_copy_private_section_data. */
6167 if (s->output_section != discarded
6168 && isec->output_section == discarded)
6169 {
6170 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6171 elf_group_name (s->output_section) = NULL;
6172 }
6173 /* Conversely, if the member section is not being output
6174 but the SHT_GROUP section is, then adjust its size. */
6175 else if (s->output_section == discarded
6176 && isec->output_section != discarded)
6177 removed += 4;
6178 s = elf_next_in_group (s);
6179 if (s == first)
6180 break;
6181 }
6182 if (removed != 0)
6183 {
6184 if (discarded != NULL)
6185 {
6186 /* If we've been called for ld -r, then we need to
6187 adjust the input section size. This function may
6188 be called multiple times, so save the original
6189 size. */
6190 if (isec->rawsize == 0)
6191 isec->rawsize = isec->size;
6192 isec->size = isec->rawsize - removed;
6193 }
6194 else
6195 {
6196 /* Adjust the output section size when called from
6197 objcopy. */
6198 isec->output_section->size -= removed;
6199 }
6200 }
6201 }
6202
6203 return TRUE;
6204 }
6205
6206 /* Copy private header information. */
6207
6208 bfd_boolean
6209 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6210 {
6211 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6212 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6213 return TRUE;
6214
6215 /* Copy over private BFD data if it has not already been copied.
6216 This must be done here, rather than in the copy_private_bfd_data
6217 entry point, because the latter is called after the section
6218 contents have been set, which means that the program headers have
6219 already been worked out. */
6220 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6221 {
6222 if (! copy_private_bfd_data (ibfd, obfd))
6223 return FALSE;
6224 }
6225
6226 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6227 }
6228
6229 /* Copy private symbol information. If this symbol is in a section
6230 which we did not map into a BFD section, try to map the section
6231 index correctly. We use special macro definitions for the mapped
6232 section indices; these definitions are interpreted by the
6233 swap_out_syms function. */
6234
6235 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6236 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6237 #define MAP_STRTAB (SHN_HIOS + 3)
6238 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6239 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6240
6241 bfd_boolean
6242 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6243 asymbol *isymarg,
6244 bfd *obfd,
6245 asymbol *osymarg)
6246 {
6247 elf_symbol_type *isym, *osym;
6248
6249 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6250 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6251 return TRUE;
6252
6253 isym = elf_symbol_from (ibfd, isymarg);
6254 osym = elf_symbol_from (obfd, osymarg);
6255
6256 if (isym != NULL
6257 && isym->internal_elf_sym.st_shndx != 0
6258 && osym != NULL
6259 && bfd_is_abs_section (isym->symbol.section))
6260 {
6261 unsigned int shndx;
6262
6263 shndx = isym->internal_elf_sym.st_shndx;
6264 if (shndx == elf_onesymtab (ibfd))
6265 shndx = MAP_ONESYMTAB;
6266 else if (shndx == elf_dynsymtab (ibfd))
6267 shndx = MAP_DYNSYMTAB;
6268 else if (shndx == elf_tdata (ibfd)->strtab_section)
6269 shndx = MAP_STRTAB;
6270 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6271 shndx = MAP_SHSTRTAB;
6272 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6273 shndx = MAP_SYM_SHNDX;
6274 osym->internal_elf_sym.st_shndx = shndx;
6275 }
6276
6277 return TRUE;
6278 }
6279
6280 /* Swap out the symbols. */
6281
6282 static bfd_boolean
6283 swap_out_syms (bfd *abfd,
6284 struct bfd_strtab_hash **sttp,
6285 int relocatable_p)
6286 {
6287 const struct elf_backend_data *bed;
6288 int symcount;
6289 asymbol **syms;
6290 struct bfd_strtab_hash *stt;
6291 Elf_Internal_Shdr *symtab_hdr;
6292 Elf_Internal_Shdr *symtab_shndx_hdr;
6293 Elf_Internal_Shdr *symstrtab_hdr;
6294 bfd_byte *outbound_syms;
6295 bfd_byte *outbound_shndx;
6296 int idx;
6297 bfd_size_type amt;
6298 bfd_boolean name_local_sections;
6299
6300 if (!elf_map_symbols (abfd))
6301 return FALSE;
6302
6303 /* Dump out the symtabs. */
6304 stt = _bfd_elf_stringtab_init ();
6305 if (stt == NULL)
6306 return FALSE;
6307
6308 bed = get_elf_backend_data (abfd);
6309 symcount = bfd_get_symcount (abfd);
6310 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6311 symtab_hdr->sh_type = SHT_SYMTAB;
6312 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6313 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6314 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6315 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6316
6317 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6318 symstrtab_hdr->sh_type = SHT_STRTAB;
6319
6320 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6321 bed->s->sizeof_sym);
6322 if (outbound_syms == NULL)
6323 {
6324 _bfd_stringtab_free (stt);
6325 return FALSE;
6326 }
6327 symtab_hdr->contents = outbound_syms;
6328
6329 outbound_shndx = NULL;
6330 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6331 if (symtab_shndx_hdr->sh_name != 0)
6332 {
6333 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6334 outbound_shndx = (bfd_byte *)
6335 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6336 if (outbound_shndx == NULL)
6337 {
6338 _bfd_stringtab_free (stt);
6339 return FALSE;
6340 }
6341
6342 symtab_shndx_hdr->contents = outbound_shndx;
6343 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6344 symtab_shndx_hdr->sh_size = amt;
6345 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6346 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6347 }
6348
6349 /* Now generate the data (for "contents"). */
6350 {
6351 /* Fill in zeroth symbol and swap it out. */
6352 Elf_Internal_Sym sym;
6353 sym.st_name = 0;
6354 sym.st_value = 0;
6355 sym.st_size = 0;
6356 sym.st_info = 0;
6357 sym.st_other = 0;
6358 sym.st_shndx = SHN_UNDEF;
6359 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6360 outbound_syms += bed->s->sizeof_sym;
6361 if (outbound_shndx != NULL)
6362 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6363 }
6364
6365 name_local_sections
6366 = (bed->elf_backend_name_local_section_symbols
6367 && bed->elf_backend_name_local_section_symbols (abfd));
6368
6369 syms = bfd_get_outsymbols (abfd);
6370 for (idx = 0; idx < symcount; idx++)
6371 {
6372 Elf_Internal_Sym sym;
6373 bfd_vma value = syms[idx]->value;
6374 elf_symbol_type *type_ptr;
6375 flagword flags = syms[idx]->flags;
6376 int type;
6377
6378 if (!name_local_sections
6379 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6380 {
6381 /* Local section symbols have no name. */
6382 sym.st_name = 0;
6383 }
6384 else
6385 {
6386 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6387 syms[idx]->name,
6388 TRUE, FALSE);
6389 if (sym.st_name == (unsigned long) -1)
6390 {
6391 _bfd_stringtab_free (stt);
6392 return FALSE;
6393 }
6394 }
6395
6396 type_ptr = elf_symbol_from (abfd, syms[idx]);
6397
6398 if ((flags & BSF_SECTION_SYM) == 0
6399 && bfd_is_com_section (syms[idx]->section))
6400 {
6401 /* ELF common symbols put the alignment into the `value' field,
6402 and the size into the `size' field. This is backwards from
6403 how BFD handles it, so reverse it here. */
6404 sym.st_size = value;
6405 if (type_ptr == NULL
6406 || type_ptr->internal_elf_sym.st_value == 0)
6407 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6408 else
6409 sym.st_value = type_ptr->internal_elf_sym.st_value;
6410 sym.st_shndx = _bfd_elf_section_from_bfd_section
6411 (abfd, syms[idx]->section);
6412 }
6413 else
6414 {
6415 asection *sec = syms[idx]->section;
6416 unsigned int shndx;
6417
6418 if (sec->output_section)
6419 {
6420 value += sec->output_offset;
6421 sec = sec->output_section;
6422 }
6423
6424 /* Don't add in the section vma for relocatable output. */
6425 if (! relocatable_p)
6426 value += sec->vma;
6427 sym.st_value = value;
6428 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6429
6430 if (bfd_is_abs_section (sec)
6431 && type_ptr != NULL
6432 && type_ptr->internal_elf_sym.st_shndx != 0)
6433 {
6434 /* This symbol is in a real ELF section which we did
6435 not create as a BFD section. Undo the mapping done
6436 by copy_private_symbol_data. */
6437 shndx = type_ptr->internal_elf_sym.st_shndx;
6438 switch (shndx)
6439 {
6440 case MAP_ONESYMTAB:
6441 shndx = elf_onesymtab (abfd);
6442 break;
6443 case MAP_DYNSYMTAB:
6444 shndx = elf_dynsymtab (abfd);
6445 break;
6446 case MAP_STRTAB:
6447 shndx = elf_tdata (abfd)->strtab_section;
6448 break;
6449 case MAP_SHSTRTAB:
6450 shndx = elf_tdata (abfd)->shstrtab_section;
6451 break;
6452 case MAP_SYM_SHNDX:
6453 shndx = elf_tdata (abfd)->symtab_shndx_section;
6454 break;
6455 default:
6456 break;
6457 }
6458 }
6459 else
6460 {
6461 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6462
6463 if (shndx == SHN_BAD)
6464 {
6465 asection *sec2;
6466
6467 /* Writing this would be a hell of a lot easier if
6468 we had some decent documentation on bfd, and
6469 knew what to expect of the library, and what to
6470 demand of applications. For example, it
6471 appears that `objcopy' might not set the
6472 section of a symbol to be a section that is
6473 actually in the output file. */
6474 sec2 = bfd_get_section_by_name (abfd, sec->name);
6475 if (sec2 == NULL)
6476 {
6477 _bfd_error_handler (_("\
6478 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6479 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6480 sec->name);
6481 bfd_set_error (bfd_error_invalid_operation);
6482 _bfd_stringtab_free (stt);
6483 return FALSE;
6484 }
6485
6486 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6487 BFD_ASSERT (shndx != SHN_BAD);
6488 }
6489 }
6490
6491 sym.st_shndx = shndx;
6492 }
6493
6494 if ((flags & BSF_THREAD_LOCAL) != 0)
6495 type = STT_TLS;
6496 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6497 type = STT_GNU_IFUNC;
6498 else if ((flags & BSF_FUNCTION) != 0)
6499 type = STT_FUNC;
6500 else if ((flags & BSF_OBJECT) != 0)
6501 type = STT_OBJECT;
6502 else if ((flags & BSF_RELC) != 0)
6503 type = STT_RELC;
6504 else if ((flags & BSF_SRELC) != 0)
6505 type = STT_SRELC;
6506 else
6507 type = STT_NOTYPE;
6508
6509 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6510 type = STT_TLS;
6511
6512 /* Processor-specific types. */
6513 if (type_ptr != NULL
6514 && bed->elf_backend_get_symbol_type)
6515 type = ((*bed->elf_backend_get_symbol_type)
6516 (&type_ptr->internal_elf_sym, type));
6517
6518 if (flags & BSF_SECTION_SYM)
6519 {
6520 if (flags & BSF_GLOBAL)
6521 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6522 else
6523 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6524 }
6525 else if (bfd_is_com_section (syms[idx]->section))
6526 {
6527 #ifdef USE_STT_COMMON
6528 if (type == STT_OBJECT)
6529 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6530 else
6531 #endif
6532 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6533 }
6534 else if (bfd_is_und_section (syms[idx]->section))
6535 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6536 ? STB_WEAK
6537 : STB_GLOBAL),
6538 type);
6539 else if (flags & BSF_FILE)
6540 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6541 else
6542 {
6543 int bind = STB_LOCAL;
6544
6545 if (flags & BSF_LOCAL)
6546 bind = STB_LOCAL;
6547 else if (flags & BSF_GNU_UNIQUE)
6548 bind = STB_GNU_UNIQUE;
6549 else if (flags & BSF_WEAK)
6550 bind = STB_WEAK;
6551 else if (flags & BSF_GLOBAL)
6552 bind = STB_GLOBAL;
6553
6554 sym.st_info = ELF_ST_INFO (bind, type);
6555 }
6556
6557 if (type_ptr != NULL)
6558 sym.st_other = type_ptr->internal_elf_sym.st_other;
6559 else
6560 sym.st_other = 0;
6561
6562 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6563 outbound_syms += bed->s->sizeof_sym;
6564 if (outbound_shndx != NULL)
6565 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6566 }
6567
6568 *sttp = stt;
6569 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6570 symstrtab_hdr->sh_type = SHT_STRTAB;
6571
6572 symstrtab_hdr->sh_flags = 0;
6573 symstrtab_hdr->sh_addr = 0;
6574 symstrtab_hdr->sh_entsize = 0;
6575 symstrtab_hdr->sh_link = 0;
6576 symstrtab_hdr->sh_info = 0;
6577 symstrtab_hdr->sh_addralign = 1;
6578
6579 return TRUE;
6580 }
6581
6582 /* Return the number of bytes required to hold the symtab vector.
6583
6584 Note that we base it on the count plus 1, since we will null terminate
6585 the vector allocated based on this size. However, the ELF symbol table
6586 always has a dummy entry as symbol #0, so it ends up even. */
6587
6588 long
6589 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6590 {
6591 long symcount;
6592 long symtab_size;
6593 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6594
6595 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6596 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6597 if (symcount > 0)
6598 symtab_size -= sizeof (asymbol *);
6599
6600 return symtab_size;
6601 }
6602
6603 long
6604 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6605 {
6606 long symcount;
6607 long symtab_size;
6608 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6609
6610 if (elf_dynsymtab (abfd) == 0)
6611 {
6612 bfd_set_error (bfd_error_invalid_operation);
6613 return -1;
6614 }
6615
6616 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6617 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6618 if (symcount > 0)
6619 symtab_size -= sizeof (asymbol *);
6620
6621 return symtab_size;
6622 }
6623
6624 long
6625 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6626 sec_ptr asect)
6627 {
6628 return (asect->reloc_count + 1) * sizeof (arelent *);
6629 }
6630
6631 /* Canonicalize the relocs. */
6632
6633 long
6634 _bfd_elf_canonicalize_reloc (bfd *abfd,
6635 sec_ptr section,
6636 arelent **relptr,
6637 asymbol **symbols)
6638 {
6639 arelent *tblptr;
6640 unsigned int i;
6641 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6642
6643 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6644 return -1;
6645
6646 tblptr = section->relocation;
6647 for (i = 0; i < section->reloc_count; i++)
6648 *relptr++ = tblptr++;
6649
6650 *relptr = NULL;
6651
6652 return section->reloc_count;
6653 }
6654
6655 long
6656 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6657 {
6658 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6659 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6660
6661 if (symcount >= 0)
6662 bfd_get_symcount (abfd) = symcount;
6663 return symcount;
6664 }
6665
6666 long
6667 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6668 asymbol **allocation)
6669 {
6670 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6671 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6672
6673 if (symcount >= 0)
6674 bfd_get_dynamic_symcount (abfd) = symcount;
6675 return symcount;
6676 }
6677
6678 /* Return the size required for the dynamic reloc entries. Any loadable
6679 section that was actually installed in the BFD, and has type SHT_REL
6680 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6681 dynamic reloc section. */
6682
6683 long
6684 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6685 {
6686 long ret;
6687 asection *s;
6688
6689 if (elf_dynsymtab (abfd) == 0)
6690 {
6691 bfd_set_error (bfd_error_invalid_operation);
6692 return -1;
6693 }
6694
6695 ret = sizeof (arelent *);
6696 for (s = abfd->sections; s != NULL; s = s->next)
6697 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6698 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6699 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6700 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6701 * sizeof (arelent *));
6702
6703 return ret;
6704 }
6705
6706 /* Canonicalize the dynamic relocation entries. Note that we return the
6707 dynamic relocations as a single block, although they are actually
6708 associated with particular sections; the interface, which was
6709 designed for SunOS style shared libraries, expects that there is only
6710 one set of dynamic relocs. Any loadable section that was actually
6711 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6712 dynamic symbol table, is considered to be a dynamic reloc section. */
6713
6714 long
6715 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6716 arelent **storage,
6717 asymbol **syms)
6718 {
6719 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6720 asection *s;
6721 long ret;
6722
6723 if (elf_dynsymtab (abfd) == 0)
6724 {
6725 bfd_set_error (bfd_error_invalid_operation);
6726 return -1;
6727 }
6728
6729 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6730 ret = 0;
6731 for (s = abfd->sections; s != NULL; s = s->next)
6732 {
6733 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6734 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6735 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6736 {
6737 arelent *p;
6738 long count, i;
6739
6740 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6741 return -1;
6742 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6743 p = s->relocation;
6744 for (i = 0; i < count; i++)
6745 *storage++ = p++;
6746 ret += count;
6747 }
6748 }
6749
6750 *storage = NULL;
6751
6752 return ret;
6753 }
6754 \f
6755 /* Read in the version information. */
6756
6757 bfd_boolean
6758 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6759 {
6760 bfd_byte *contents = NULL;
6761 unsigned int freeidx = 0;
6762
6763 if (elf_dynverref (abfd) != 0)
6764 {
6765 Elf_Internal_Shdr *hdr;
6766 Elf_External_Verneed *everneed;
6767 Elf_Internal_Verneed *iverneed;
6768 unsigned int i;
6769 bfd_byte *contents_end;
6770
6771 hdr = &elf_tdata (abfd)->dynverref_hdr;
6772
6773 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
6774 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
6775 if (elf_tdata (abfd)->verref == NULL)
6776 goto error_return;
6777
6778 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6779
6780 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
6781 if (contents == NULL)
6782 {
6783 error_return_verref:
6784 elf_tdata (abfd)->verref = NULL;
6785 elf_tdata (abfd)->cverrefs = 0;
6786 goto error_return;
6787 }
6788 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6789 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6790 goto error_return_verref;
6791
6792 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6793 goto error_return_verref;
6794
6795 BFD_ASSERT (sizeof (Elf_External_Verneed)
6796 == sizeof (Elf_External_Vernaux));
6797 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6798 everneed = (Elf_External_Verneed *) contents;
6799 iverneed = elf_tdata (abfd)->verref;
6800 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6801 {
6802 Elf_External_Vernaux *evernaux;
6803 Elf_Internal_Vernaux *ivernaux;
6804 unsigned int j;
6805
6806 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6807
6808 iverneed->vn_bfd = abfd;
6809
6810 iverneed->vn_filename =
6811 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6812 iverneed->vn_file);
6813 if (iverneed->vn_filename == NULL)
6814 goto error_return_verref;
6815
6816 if (iverneed->vn_cnt == 0)
6817 iverneed->vn_auxptr = NULL;
6818 else
6819 {
6820 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
6821 bfd_alloc2 (abfd, iverneed->vn_cnt,
6822 sizeof (Elf_Internal_Vernaux));
6823 if (iverneed->vn_auxptr == NULL)
6824 goto error_return_verref;
6825 }
6826
6827 if (iverneed->vn_aux
6828 > (size_t) (contents_end - (bfd_byte *) everneed))
6829 goto error_return_verref;
6830
6831 evernaux = ((Elf_External_Vernaux *)
6832 ((bfd_byte *) everneed + iverneed->vn_aux));
6833 ivernaux = iverneed->vn_auxptr;
6834 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6835 {
6836 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6837
6838 ivernaux->vna_nodename =
6839 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6840 ivernaux->vna_name);
6841 if (ivernaux->vna_nodename == NULL)
6842 goto error_return_verref;
6843
6844 if (j + 1 < iverneed->vn_cnt)
6845 ivernaux->vna_nextptr = ivernaux + 1;
6846 else
6847 ivernaux->vna_nextptr = NULL;
6848
6849 if (ivernaux->vna_next
6850 > (size_t) (contents_end - (bfd_byte *) evernaux))
6851 goto error_return_verref;
6852
6853 evernaux = ((Elf_External_Vernaux *)
6854 ((bfd_byte *) evernaux + ivernaux->vna_next));
6855
6856 if (ivernaux->vna_other > freeidx)
6857 freeidx = ivernaux->vna_other;
6858 }
6859
6860 if (i + 1 < hdr->sh_info)
6861 iverneed->vn_nextref = iverneed + 1;
6862 else
6863 iverneed->vn_nextref = NULL;
6864
6865 if (iverneed->vn_next
6866 > (size_t) (contents_end - (bfd_byte *) everneed))
6867 goto error_return_verref;
6868
6869 everneed = ((Elf_External_Verneed *)
6870 ((bfd_byte *) everneed + iverneed->vn_next));
6871 }
6872
6873 free (contents);
6874 contents = NULL;
6875 }
6876
6877 if (elf_dynverdef (abfd) != 0)
6878 {
6879 Elf_Internal_Shdr *hdr;
6880 Elf_External_Verdef *everdef;
6881 Elf_Internal_Verdef *iverdef;
6882 Elf_Internal_Verdef *iverdefarr;
6883 Elf_Internal_Verdef iverdefmem;
6884 unsigned int i;
6885 unsigned int maxidx;
6886 bfd_byte *contents_end_def, *contents_end_aux;
6887
6888 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6889
6890 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
6891 if (contents == NULL)
6892 goto error_return;
6893 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6894 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6895 goto error_return;
6896
6897 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6898 goto error_return;
6899
6900 BFD_ASSERT (sizeof (Elf_External_Verdef)
6901 >= sizeof (Elf_External_Verdaux));
6902 contents_end_def = contents + hdr->sh_size
6903 - sizeof (Elf_External_Verdef);
6904 contents_end_aux = contents + hdr->sh_size
6905 - sizeof (Elf_External_Verdaux);
6906
6907 /* We know the number of entries in the section but not the maximum
6908 index. Therefore we have to run through all entries and find
6909 the maximum. */
6910 everdef = (Elf_External_Verdef *) contents;
6911 maxidx = 0;
6912 for (i = 0; i < hdr->sh_info; ++i)
6913 {
6914 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6915
6916 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6917 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6918
6919 if (iverdefmem.vd_next
6920 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6921 goto error_return;
6922
6923 everdef = ((Elf_External_Verdef *)
6924 ((bfd_byte *) everdef + iverdefmem.vd_next));
6925 }
6926
6927 if (default_imported_symver)
6928 {
6929 if (freeidx > maxidx)
6930 maxidx = ++freeidx;
6931 else
6932 freeidx = ++maxidx;
6933 }
6934 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
6935 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
6936 if (elf_tdata (abfd)->verdef == NULL)
6937 goto error_return;
6938
6939 elf_tdata (abfd)->cverdefs = maxidx;
6940
6941 everdef = (Elf_External_Verdef *) contents;
6942 iverdefarr = elf_tdata (abfd)->verdef;
6943 for (i = 0; i < hdr->sh_info; i++)
6944 {
6945 Elf_External_Verdaux *everdaux;
6946 Elf_Internal_Verdaux *iverdaux;
6947 unsigned int j;
6948
6949 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6950
6951 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6952 {
6953 error_return_verdef:
6954 elf_tdata (abfd)->verdef = NULL;
6955 elf_tdata (abfd)->cverdefs = 0;
6956 goto error_return;
6957 }
6958
6959 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6960 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6961
6962 iverdef->vd_bfd = abfd;
6963
6964 if (iverdef->vd_cnt == 0)
6965 iverdef->vd_auxptr = NULL;
6966 else
6967 {
6968 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
6969 bfd_alloc2 (abfd, iverdef->vd_cnt,
6970 sizeof (Elf_Internal_Verdaux));
6971 if (iverdef->vd_auxptr == NULL)
6972 goto error_return_verdef;
6973 }
6974
6975 if (iverdef->vd_aux
6976 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6977 goto error_return_verdef;
6978
6979 everdaux = ((Elf_External_Verdaux *)
6980 ((bfd_byte *) everdef + iverdef->vd_aux));
6981 iverdaux = iverdef->vd_auxptr;
6982 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6983 {
6984 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6985
6986 iverdaux->vda_nodename =
6987 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6988 iverdaux->vda_name);
6989 if (iverdaux->vda_nodename == NULL)
6990 goto error_return_verdef;
6991
6992 if (j + 1 < iverdef->vd_cnt)
6993 iverdaux->vda_nextptr = iverdaux + 1;
6994 else
6995 iverdaux->vda_nextptr = NULL;
6996
6997 if (iverdaux->vda_next
6998 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6999 goto error_return_verdef;
7000
7001 everdaux = ((Elf_External_Verdaux *)
7002 ((bfd_byte *) everdaux + iverdaux->vda_next));
7003 }
7004
7005 if (iverdef->vd_cnt)
7006 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7007
7008 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7009 iverdef->vd_nextdef = iverdef + 1;
7010 else
7011 iverdef->vd_nextdef = NULL;
7012
7013 everdef = ((Elf_External_Verdef *)
7014 ((bfd_byte *) everdef + iverdef->vd_next));
7015 }
7016
7017 free (contents);
7018 contents = NULL;
7019 }
7020 else if (default_imported_symver)
7021 {
7022 if (freeidx < 3)
7023 freeidx = 3;
7024 else
7025 freeidx++;
7026
7027 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7028 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7029 if (elf_tdata (abfd)->verdef == NULL)
7030 goto error_return;
7031
7032 elf_tdata (abfd)->cverdefs = freeidx;
7033 }
7034
7035 /* Create a default version based on the soname. */
7036 if (default_imported_symver)
7037 {
7038 Elf_Internal_Verdef *iverdef;
7039 Elf_Internal_Verdaux *iverdaux;
7040
7041 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7042
7043 iverdef->vd_version = VER_DEF_CURRENT;
7044 iverdef->vd_flags = 0;
7045 iverdef->vd_ndx = freeidx;
7046 iverdef->vd_cnt = 1;
7047
7048 iverdef->vd_bfd = abfd;
7049
7050 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7051 if (iverdef->vd_nodename == NULL)
7052 goto error_return_verdef;
7053 iverdef->vd_nextdef = NULL;
7054 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7055 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7056 if (iverdef->vd_auxptr == NULL)
7057 goto error_return_verdef;
7058
7059 iverdaux = iverdef->vd_auxptr;
7060 iverdaux->vda_nodename = iverdef->vd_nodename;
7061 iverdaux->vda_nextptr = NULL;
7062 }
7063
7064 return TRUE;
7065
7066 error_return:
7067 if (contents != NULL)
7068 free (contents);
7069 return FALSE;
7070 }
7071 \f
7072 asymbol *
7073 _bfd_elf_make_empty_symbol (bfd *abfd)
7074 {
7075 elf_symbol_type *newsym;
7076 bfd_size_type amt = sizeof (elf_symbol_type);
7077
7078 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7079 if (!newsym)
7080 return NULL;
7081 else
7082 {
7083 newsym->symbol.the_bfd = abfd;
7084 return &newsym->symbol;
7085 }
7086 }
7087
7088 void
7089 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7090 asymbol *symbol,
7091 symbol_info *ret)
7092 {
7093 bfd_symbol_info (symbol, ret);
7094 }
7095
7096 /* Return whether a symbol name implies a local symbol. Most targets
7097 use this function for the is_local_label_name entry point, but some
7098 override it. */
7099
7100 bfd_boolean
7101 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7102 const char *name)
7103 {
7104 /* Normal local symbols start with ``.L''. */
7105 if (name[0] == '.' && name[1] == 'L')
7106 return TRUE;
7107
7108 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7109 DWARF debugging symbols starting with ``..''. */
7110 if (name[0] == '.' && name[1] == '.')
7111 return TRUE;
7112
7113 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7114 emitting DWARF debugging output. I suspect this is actually a
7115 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7116 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7117 underscore to be emitted on some ELF targets). For ease of use,
7118 we treat such symbols as local. */
7119 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7120 return TRUE;
7121
7122 return FALSE;
7123 }
7124
7125 alent *
7126 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7127 asymbol *symbol ATTRIBUTE_UNUSED)
7128 {
7129 abort ();
7130 return NULL;
7131 }
7132
7133 bfd_boolean
7134 _bfd_elf_set_arch_mach (bfd *abfd,
7135 enum bfd_architecture arch,
7136 unsigned long machine)
7137 {
7138 /* If this isn't the right architecture for this backend, and this
7139 isn't the generic backend, fail. */
7140 if (arch != get_elf_backend_data (abfd)->arch
7141 && arch != bfd_arch_unknown
7142 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7143 return FALSE;
7144
7145 return bfd_default_set_arch_mach (abfd, arch, machine);
7146 }
7147
7148 /* Find the function to a particular section and offset,
7149 for error reporting. */
7150
7151 static bfd_boolean
7152 elf_find_function (bfd *abfd,
7153 asection *section,
7154 asymbol **symbols,
7155 bfd_vma offset,
7156 const char **filename_ptr,
7157 const char **functionname_ptr)
7158 {
7159 const char *filename;
7160 asymbol *func, *file;
7161 bfd_vma low_func;
7162 asymbol **p;
7163 /* ??? Given multiple file symbols, it is impossible to reliably
7164 choose the right file name for global symbols. File symbols are
7165 local symbols, and thus all file symbols must sort before any
7166 global symbols. The ELF spec may be interpreted to say that a
7167 file symbol must sort before other local symbols, but currently
7168 ld -r doesn't do this. So, for ld -r output, it is possible to
7169 make a better choice of file name for local symbols by ignoring
7170 file symbols appearing after a given local symbol. */
7171 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7172 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7173
7174 filename = NULL;
7175 func = NULL;
7176 file = NULL;
7177 low_func = 0;
7178 state = nothing_seen;
7179
7180 for (p = symbols; *p != NULL; p++)
7181 {
7182 elf_symbol_type *q;
7183 unsigned int type;
7184
7185 q = (elf_symbol_type *) *p;
7186
7187 type = ELF_ST_TYPE (q->internal_elf_sym.st_info);
7188 switch (type)
7189 {
7190 case STT_FILE:
7191 file = &q->symbol;
7192 if (state == symbol_seen)
7193 state = file_after_symbol_seen;
7194 continue;
7195 default:
7196 if (!bed->is_function_type (type))
7197 break;
7198 case STT_NOTYPE:
7199 if (bfd_get_section (&q->symbol) == section
7200 && q->symbol.value >= low_func
7201 && q->symbol.value <= offset)
7202 {
7203 func = (asymbol *) q;
7204 low_func = q->symbol.value;
7205 filename = NULL;
7206 if (file != NULL
7207 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7208 || state != file_after_symbol_seen))
7209 filename = bfd_asymbol_name (file);
7210 }
7211 break;
7212 }
7213 if (state == nothing_seen)
7214 state = symbol_seen;
7215 }
7216
7217 if (func == NULL)
7218 return FALSE;
7219
7220 if (filename_ptr)
7221 *filename_ptr = filename;
7222 if (functionname_ptr)
7223 *functionname_ptr = bfd_asymbol_name (func);
7224
7225 return TRUE;
7226 }
7227
7228 /* Find the nearest line to a particular section and offset,
7229 for error reporting. */
7230
7231 bfd_boolean
7232 _bfd_elf_find_nearest_line (bfd *abfd,
7233 asection *section,
7234 asymbol **symbols,
7235 bfd_vma offset,
7236 const char **filename_ptr,
7237 const char **functionname_ptr,
7238 unsigned int *line_ptr)
7239 {
7240 bfd_boolean found;
7241
7242 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7243 filename_ptr, functionname_ptr,
7244 line_ptr))
7245 {
7246 if (!*functionname_ptr)
7247 elf_find_function (abfd, section, symbols, offset,
7248 *filename_ptr ? NULL : filename_ptr,
7249 functionname_ptr);
7250
7251 return TRUE;
7252 }
7253
7254 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7255 filename_ptr, functionname_ptr,
7256 line_ptr, 0,
7257 &elf_tdata (abfd)->dwarf2_find_line_info))
7258 {
7259 if (!*functionname_ptr)
7260 elf_find_function (abfd, section, symbols, offset,
7261 *filename_ptr ? NULL : filename_ptr,
7262 functionname_ptr);
7263
7264 return TRUE;
7265 }
7266
7267 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7268 &found, filename_ptr,
7269 functionname_ptr, line_ptr,
7270 &elf_tdata (abfd)->line_info))
7271 return FALSE;
7272 if (found && (*functionname_ptr || *line_ptr))
7273 return TRUE;
7274
7275 if (symbols == NULL)
7276 return FALSE;
7277
7278 if (! elf_find_function (abfd, section, symbols, offset,
7279 filename_ptr, functionname_ptr))
7280 return FALSE;
7281
7282 *line_ptr = 0;
7283 return TRUE;
7284 }
7285
7286 /* Find the line for a symbol. */
7287
7288 bfd_boolean
7289 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7290 const char **filename_ptr, unsigned int *line_ptr)
7291 {
7292 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7293 filename_ptr, line_ptr, 0,
7294 &elf_tdata (abfd)->dwarf2_find_line_info);
7295 }
7296
7297 /* After a call to bfd_find_nearest_line, successive calls to
7298 bfd_find_inliner_info can be used to get source information about
7299 each level of function inlining that terminated at the address
7300 passed to bfd_find_nearest_line. Currently this is only supported
7301 for DWARF2 with appropriate DWARF3 extensions. */
7302
7303 bfd_boolean
7304 _bfd_elf_find_inliner_info (bfd *abfd,
7305 const char **filename_ptr,
7306 const char **functionname_ptr,
7307 unsigned int *line_ptr)
7308 {
7309 bfd_boolean found;
7310 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7311 functionname_ptr, line_ptr,
7312 & elf_tdata (abfd)->dwarf2_find_line_info);
7313 return found;
7314 }
7315
7316 int
7317 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7318 {
7319 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7320 int ret = bed->s->sizeof_ehdr;
7321
7322 if (!info->relocatable)
7323 {
7324 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7325
7326 if (phdr_size == (bfd_size_type) -1)
7327 {
7328 struct elf_segment_map *m;
7329
7330 phdr_size = 0;
7331 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7332 phdr_size += bed->s->sizeof_phdr;
7333
7334 if (phdr_size == 0)
7335 phdr_size = get_program_header_size (abfd, info);
7336 }
7337
7338 elf_tdata (abfd)->program_header_size = phdr_size;
7339 ret += phdr_size;
7340 }
7341
7342 return ret;
7343 }
7344
7345 bfd_boolean
7346 _bfd_elf_set_section_contents (bfd *abfd,
7347 sec_ptr section,
7348 const void *location,
7349 file_ptr offset,
7350 bfd_size_type count)
7351 {
7352 Elf_Internal_Shdr *hdr;
7353 bfd_signed_vma pos;
7354
7355 if (! abfd->output_has_begun
7356 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7357 return FALSE;
7358
7359 hdr = &elf_section_data (section)->this_hdr;
7360 pos = hdr->sh_offset + offset;
7361 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7362 || bfd_bwrite (location, count, abfd) != count)
7363 return FALSE;
7364
7365 return TRUE;
7366 }
7367
7368 void
7369 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7370 arelent *cache_ptr ATTRIBUTE_UNUSED,
7371 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7372 {
7373 abort ();
7374 }
7375
7376 /* Try to convert a non-ELF reloc into an ELF one. */
7377
7378 bfd_boolean
7379 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7380 {
7381 /* Check whether we really have an ELF howto. */
7382
7383 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7384 {
7385 bfd_reloc_code_real_type code;
7386 reloc_howto_type *howto;
7387
7388 /* Alien reloc: Try to determine its type to replace it with an
7389 equivalent ELF reloc. */
7390
7391 if (areloc->howto->pc_relative)
7392 {
7393 switch (areloc->howto->bitsize)
7394 {
7395 case 8:
7396 code = BFD_RELOC_8_PCREL;
7397 break;
7398 case 12:
7399 code = BFD_RELOC_12_PCREL;
7400 break;
7401 case 16:
7402 code = BFD_RELOC_16_PCREL;
7403 break;
7404 case 24:
7405 code = BFD_RELOC_24_PCREL;
7406 break;
7407 case 32:
7408 code = BFD_RELOC_32_PCREL;
7409 break;
7410 case 64:
7411 code = BFD_RELOC_64_PCREL;
7412 break;
7413 default:
7414 goto fail;
7415 }
7416
7417 howto = bfd_reloc_type_lookup (abfd, code);
7418
7419 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7420 {
7421 if (howto->pcrel_offset)
7422 areloc->addend += areloc->address;
7423 else
7424 areloc->addend -= areloc->address; /* addend is unsigned!! */
7425 }
7426 }
7427 else
7428 {
7429 switch (areloc->howto->bitsize)
7430 {
7431 case 8:
7432 code = BFD_RELOC_8;
7433 break;
7434 case 14:
7435 code = BFD_RELOC_14;
7436 break;
7437 case 16:
7438 code = BFD_RELOC_16;
7439 break;
7440 case 26:
7441 code = BFD_RELOC_26;
7442 break;
7443 case 32:
7444 code = BFD_RELOC_32;
7445 break;
7446 case 64:
7447 code = BFD_RELOC_64;
7448 break;
7449 default:
7450 goto fail;
7451 }
7452
7453 howto = bfd_reloc_type_lookup (abfd, code);
7454 }
7455
7456 if (howto)
7457 areloc->howto = howto;
7458 else
7459 goto fail;
7460 }
7461
7462 return TRUE;
7463
7464 fail:
7465 (*_bfd_error_handler)
7466 (_("%B: unsupported relocation type %s"),
7467 abfd, areloc->howto->name);
7468 bfd_set_error (bfd_error_bad_value);
7469 return FALSE;
7470 }
7471
7472 bfd_boolean
7473 _bfd_elf_close_and_cleanup (bfd *abfd)
7474 {
7475 if (bfd_get_format (abfd) == bfd_object)
7476 {
7477 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7478 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7479 _bfd_dwarf2_cleanup_debug_info (abfd);
7480 }
7481
7482 return _bfd_generic_close_and_cleanup (abfd);
7483 }
7484
7485 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7486 in the relocation's offset. Thus we cannot allow any sort of sanity
7487 range-checking to interfere. There is nothing else to do in processing
7488 this reloc. */
7489
7490 bfd_reloc_status_type
7491 _bfd_elf_rel_vtable_reloc_fn
7492 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7493 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7494 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7495 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7496 {
7497 return bfd_reloc_ok;
7498 }
7499 \f
7500 /* Elf core file support. Much of this only works on native
7501 toolchains, since we rely on knowing the
7502 machine-dependent procfs structure in order to pick
7503 out details about the corefile. */
7504
7505 #ifdef HAVE_SYS_PROCFS_H
7506 /* Needed for new procfs interface on sparc-solaris. */
7507 # define _STRUCTURED_PROC 1
7508 # include <sys/procfs.h>
7509 #endif
7510
7511 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7512
7513 static int
7514 elfcore_make_pid (bfd *abfd)
7515 {
7516 return ((elf_tdata (abfd)->core_lwpid << 16)
7517 + (elf_tdata (abfd)->core_pid));
7518 }
7519
7520 /* If there isn't a section called NAME, make one, using
7521 data from SECT. Note, this function will generate a
7522 reference to NAME, so you shouldn't deallocate or
7523 overwrite it. */
7524
7525 static bfd_boolean
7526 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7527 {
7528 asection *sect2;
7529
7530 if (bfd_get_section_by_name (abfd, name) != NULL)
7531 return TRUE;
7532
7533 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7534 if (sect2 == NULL)
7535 return FALSE;
7536
7537 sect2->size = sect->size;
7538 sect2->filepos = sect->filepos;
7539 sect2->alignment_power = sect->alignment_power;
7540 return TRUE;
7541 }
7542
7543 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7544 actually creates up to two pseudosections:
7545 - For the single-threaded case, a section named NAME, unless
7546 such a section already exists.
7547 - For the multi-threaded case, a section named "NAME/PID", where
7548 PID is elfcore_make_pid (abfd).
7549 Both pseudosections have identical contents. */
7550 bfd_boolean
7551 _bfd_elfcore_make_pseudosection (bfd *abfd,
7552 char *name,
7553 size_t size,
7554 ufile_ptr filepos)
7555 {
7556 char buf[100];
7557 char *threaded_name;
7558 size_t len;
7559 asection *sect;
7560
7561 /* Build the section name. */
7562
7563 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7564 len = strlen (buf) + 1;
7565 threaded_name = (char *) bfd_alloc (abfd, len);
7566 if (threaded_name == NULL)
7567 return FALSE;
7568 memcpy (threaded_name, buf, len);
7569
7570 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7571 SEC_HAS_CONTENTS);
7572 if (sect == NULL)
7573 return FALSE;
7574 sect->size = size;
7575 sect->filepos = filepos;
7576 sect->alignment_power = 2;
7577
7578 return elfcore_maybe_make_sect (abfd, name, sect);
7579 }
7580
7581 /* prstatus_t exists on:
7582 solaris 2.5+
7583 linux 2.[01] + glibc
7584 unixware 4.2
7585 */
7586
7587 #if defined (HAVE_PRSTATUS_T)
7588
7589 static bfd_boolean
7590 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7591 {
7592 size_t size;
7593 int offset;
7594
7595 if (note->descsz == sizeof (prstatus_t))
7596 {
7597 prstatus_t prstat;
7598
7599 size = sizeof (prstat.pr_reg);
7600 offset = offsetof (prstatus_t, pr_reg);
7601 memcpy (&prstat, note->descdata, sizeof (prstat));
7602
7603 /* Do not overwrite the core signal if it
7604 has already been set by another thread. */
7605 if (elf_tdata (abfd)->core_signal == 0)
7606 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7607 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7608
7609 /* pr_who exists on:
7610 solaris 2.5+
7611 unixware 4.2
7612 pr_who doesn't exist on:
7613 linux 2.[01]
7614 */
7615 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7616 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7617 #endif
7618 }
7619 #if defined (HAVE_PRSTATUS32_T)
7620 else if (note->descsz == sizeof (prstatus32_t))
7621 {
7622 /* 64-bit host, 32-bit corefile */
7623 prstatus32_t prstat;
7624
7625 size = sizeof (prstat.pr_reg);
7626 offset = offsetof (prstatus32_t, pr_reg);
7627 memcpy (&prstat, note->descdata, sizeof (prstat));
7628
7629 /* Do not overwrite the core signal if it
7630 has already been set by another thread. */
7631 if (elf_tdata (abfd)->core_signal == 0)
7632 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7633 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7634
7635 /* pr_who exists on:
7636 solaris 2.5+
7637 unixware 4.2
7638 pr_who doesn't exist on:
7639 linux 2.[01]
7640 */
7641 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7642 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7643 #endif
7644 }
7645 #endif /* HAVE_PRSTATUS32_T */
7646 else
7647 {
7648 /* Fail - we don't know how to handle any other
7649 note size (ie. data object type). */
7650 return TRUE;
7651 }
7652
7653 /* Make a ".reg/999" section and a ".reg" section. */
7654 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7655 size, note->descpos + offset);
7656 }
7657 #endif /* defined (HAVE_PRSTATUS_T) */
7658
7659 /* Create a pseudosection containing the exact contents of NOTE. */
7660 static bfd_boolean
7661 elfcore_make_note_pseudosection (bfd *abfd,
7662 char *name,
7663 Elf_Internal_Note *note)
7664 {
7665 return _bfd_elfcore_make_pseudosection (abfd, name,
7666 note->descsz, note->descpos);
7667 }
7668
7669 /* There isn't a consistent prfpregset_t across platforms,
7670 but it doesn't matter, because we don't have to pick this
7671 data structure apart. */
7672
7673 static bfd_boolean
7674 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7675 {
7676 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7677 }
7678
7679 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7680 type of NT_PRXFPREG. Just include the whole note's contents
7681 literally. */
7682
7683 static bfd_boolean
7684 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7685 {
7686 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7687 }
7688
7689 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7690 with a note type of NT_X86_XSTATE. Just include the whole note's
7691 contents literally. */
7692
7693 static bfd_boolean
7694 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7695 {
7696 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7697 }
7698
7699 static bfd_boolean
7700 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7701 {
7702 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7703 }
7704
7705 static bfd_boolean
7706 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7707 {
7708 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7709 }
7710
7711 static bfd_boolean
7712 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
7713 {
7714 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
7715 }
7716
7717 static bfd_boolean
7718 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
7719 {
7720 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
7721 }
7722
7723 static bfd_boolean
7724 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
7725 {
7726 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
7727 }
7728
7729 static bfd_boolean
7730 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
7731 {
7732 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
7733 }
7734
7735 static bfd_boolean
7736 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
7737 {
7738 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
7739 }
7740
7741 static bfd_boolean
7742 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
7743 {
7744 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
7745 }
7746
7747 #if defined (HAVE_PRPSINFO_T)
7748 typedef prpsinfo_t elfcore_psinfo_t;
7749 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7750 typedef prpsinfo32_t elfcore_psinfo32_t;
7751 #endif
7752 #endif
7753
7754 #if defined (HAVE_PSINFO_T)
7755 typedef psinfo_t elfcore_psinfo_t;
7756 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7757 typedef psinfo32_t elfcore_psinfo32_t;
7758 #endif
7759 #endif
7760
7761 /* return a malloc'ed copy of a string at START which is at
7762 most MAX bytes long, possibly without a terminating '\0'.
7763 the copy will always have a terminating '\0'. */
7764
7765 char *
7766 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7767 {
7768 char *dups;
7769 char *end = (char *) memchr (start, '\0', max);
7770 size_t len;
7771
7772 if (end == NULL)
7773 len = max;
7774 else
7775 len = end - start;
7776
7777 dups = (char *) bfd_alloc (abfd, len + 1);
7778 if (dups == NULL)
7779 return NULL;
7780
7781 memcpy (dups, start, len);
7782 dups[len] = '\0';
7783
7784 return dups;
7785 }
7786
7787 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7788 static bfd_boolean
7789 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7790 {
7791 if (note->descsz == sizeof (elfcore_psinfo_t))
7792 {
7793 elfcore_psinfo_t psinfo;
7794
7795 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7796
7797 elf_tdata (abfd)->core_program
7798 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7799 sizeof (psinfo.pr_fname));
7800
7801 elf_tdata (abfd)->core_command
7802 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7803 sizeof (psinfo.pr_psargs));
7804 }
7805 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7806 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7807 {
7808 /* 64-bit host, 32-bit corefile */
7809 elfcore_psinfo32_t psinfo;
7810
7811 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7812
7813 elf_tdata (abfd)->core_program
7814 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7815 sizeof (psinfo.pr_fname));
7816
7817 elf_tdata (abfd)->core_command
7818 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7819 sizeof (psinfo.pr_psargs));
7820 }
7821 #endif
7822
7823 else
7824 {
7825 /* Fail - we don't know how to handle any other
7826 note size (ie. data object type). */
7827 return TRUE;
7828 }
7829
7830 /* Note that for some reason, a spurious space is tacked
7831 onto the end of the args in some (at least one anyway)
7832 implementations, so strip it off if it exists. */
7833
7834 {
7835 char *command = elf_tdata (abfd)->core_command;
7836 int n = strlen (command);
7837
7838 if (0 < n && command[n - 1] == ' ')
7839 command[n - 1] = '\0';
7840 }
7841
7842 return TRUE;
7843 }
7844 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7845
7846 #if defined (HAVE_PSTATUS_T)
7847 static bfd_boolean
7848 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7849 {
7850 if (note->descsz == sizeof (pstatus_t)
7851 #if defined (HAVE_PXSTATUS_T)
7852 || note->descsz == sizeof (pxstatus_t)
7853 #endif
7854 )
7855 {
7856 pstatus_t pstat;
7857
7858 memcpy (&pstat, note->descdata, sizeof (pstat));
7859
7860 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7861 }
7862 #if defined (HAVE_PSTATUS32_T)
7863 else if (note->descsz == sizeof (pstatus32_t))
7864 {
7865 /* 64-bit host, 32-bit corefile */
7866 pstatus32_t pstat;
7867
7868 memcpy (&pstat, note->descdata, sizeof (pstat));
7869
7870 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7871 }
7872 #endif
7873 /* Could grab some more details from the "representative"
7874 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7875 NT_LWPSTATUS note, presumably. */
7876
7877 return TRUE;
7878 }
7879 #endif /* defined (HAVE_PSTATUS_T) */
7880
7881 #if defined (HAVE_LWPSTATUS_T)
7882 static bfd_boolean
7883 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7884 {
7885 lwpstatus_t lwpstat;
7886 char buf[100];
7887 char *name;
7888 size_t len;
7889 asection *sect;
7890
7891 if (note->descsz != sizeof (lwpstat)
7892 #if defined (HAVE_LWPXSTATUS_T)
7893 && note->descsz != sizeof (lwpxstatus_t)
7894 #endif
7895 )
7896 return TRUE;
7897
7898 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7899
7900 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7901 /* Do not overwrite the core signal if it has already been set by
7902 another thread. */
7903 if (elf_tdata (abfd)->core_signal == 0)
7904 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7905
7906 /* Make a ".reg/999" section. */
7907
7908 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7909 len = strlen (buf) + 1;
7910 name = bfd_alloc (abfd, len);
7911 if (name == NULL)
7912 return FALSE;
7913 memcpy (name, buf, len);
7914
7915 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7916 if (sect == NULL)
7917 return FALSE;
7918
7919 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7920 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7921 sect->filepos = note->descpos
7922 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7923 #endif
7924
7925 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7926 sect->size = sizeof (lwpstat.pr_reg);
7927 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7928 #endif
7929
7930 sect->alignment_power = 2;
7931
7932 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7933 return FALSE;
7934
7935 /* Make a ".reg2/999" section */
7936
7937 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7938 len = strlen (buf) + 1;
7939 name = bfd_alloc (abfd, len);
7940 if (name == NULL)
7941 return FALSE;
7942 memcpy (name, buf, len);
7943
7944 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7945 if (sect == NULL)
7946 return FALSE;
7947
7948 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7949 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7950 sect->filepos = note->descpos
7951 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7952 #endif
7953
7954 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7955 sect->size = sizeof (lwpstat.pr_fpreg);
7956 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7957 #endif
7958
7959 sect->alignment_power = 2;
7960
7961 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7962 }
7963 #endif /* defined (HAVE_LWPSTATUS_T) */
7964
7965 static bfd_boolean
7966 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7967 {
7968 char buf[30];
7969 char *name;
7970 size_t len;
7971 asection *sect;
7972 int type;
7973 int is_active_thread;
7974 bfd_vma base_addr;
7975
7976 if (note->descsz < 728)
7977 return TRUE;
7978
7979 if (! CONST_STRNEQ (note->namedata, "win32"))
7980 return TRUE;
7981
7982 type = bfd_get_32 (abfd, note->descdata);
7983
7984 switch (type)
7985 {
7986 case 1 /* NOTE_INFO_PROCESS */:
7987 /* FIXME: need to add ->core_command. */
7988 /* process_info.pid */
7989 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7990 /* process_info.signal */
7991 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7992 break;
7993
7994 case 2 /* NOTE_INFO_THREAD */:
7995 /* Make a ".reg/999" section. */
7996 /* thread_info.tid */
7997 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7998
7999 len = strlen (buf) + 1;
8000 name = (char *) bfd_alloc (abfd, len);
8001 if (name == NULL)
8002 return FALSE;
8003
8004 memcpy (name, buf, len);
8005
8006 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8007 if (sect == NULL)
8008 return FALSE;
8009
8010 /* sizeof (thread_info.thread_context) */
8011 sect->size = 716;
8012 /* offsetof (thread_info.thread_context) */
8013 sect->filepos = note->descpos + 12;
8014 sect->alignment_power = 2;
8015
8016 /* thread_info.is_active_thread */
8017 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8018
8019 if (is_active_thread)
8020 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8021 return FALSE;
8022 break;
8023
8024 case 3 /* NOTE_INFO_MODULE */:
8025 /* Make a ".module/xxxxxxxx" section. */
8026 /* module_info.base_address */
8027 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8028 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8029
8030 len = strlen (buf) + 1;
8031 name = (char *) bfd_alloc (abfd, len);
8032 if (name == NULL)
8033 return FALSE;
8034
8035 memcpy (name, buf, len);
8036
8037 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8038
8039 if (sect == NULL)
8040 return FALSE;
8041
8042 sect->size = note->descsz;
8043 sect->filepos = note->descpos;
8044 sect->alignment_power = 2;
8045 break;
8046
8047 default:
8048 return TRUE;
8049 }
8050
8051 return TRUE;
8052 }
8053
8054 static bfd_boolean
8055 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8056 {
8057 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8058
8059 switch (note->type)
8060 {
8061 default:
8062 return TRUE;
8063
8064 case NT_PRSTATUS:
8065 if (bed->elf_backend_grok_prstatus)
8066 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8067 return TRUE;
8068 #if defined (HAVE_PRSTATUS_T)
8069 return elfcore_grok_prstatus (abfd, note);
8070 #else
8071 return TRUE;
8072 #endif
8073
8074 #if defined (HAVE_PSTATUS_T)
8075 case NT_PSTATUS:
8076 return elfcore_grok_pstatus (abfd, note);
8077 #endif
8078
8079 #if defined (HAVE_LWPSTATUS_T)
8080 case NT_LWPSTATUS:
8081 return elfcore_grok_lwpstatus (abfd, note);
8082 #endif
8083
8084 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8085 return elfcore_grok_prfpreg (abfd, note);
8086
8087 case NT_WIN32PSTATUS:
8088 return elfcore_grok_win32pstatus (abfd, note);
8089
8090 case NT_PRXFPREG: /* Linux SSE extension */
8091 if (note->namesz == 6
8092 && strcmp (note->namedata, "LINUX") == 0)
8093 return elfcore_grok_prxfpreg (abfd, note);
8094 else
8095 return TRUE;
8096
8097 case NT_X86_XSTATE: /* Linux XSAVE extension */
8098 if (note->namesz == 6
8099 && strcmp (note->namedata, "LINUX") == 0)
8100 return elfcore_grok_xstatereg (abfd, note);
8101 else
8102 return TRUE;
8103
8104 case NT_PPC_VMX:
8105 if (note->namesz == 6
8106 && strcmp (note->namedata, "LINUX") == 0)
8107 return elfcore_grok_ppc_vmx (abfd, note);
8108 else
8109 return TRUE;
8110
8111 case NT_PPC_VSX:
8112 if (note->namesz == 6
8113 && strcmp (note->namedata, "LINUX") == 0)
8114 return elfcore_grok_ppc_vsx (abfd, note);
8115 else
8116 return TRUE;
8117
8118 case NT_S390_HIGH_GPRS:
8119 if (note->namesz == 6
8120 && strcmp (note->namedata, "LINUX") == 0)
8121 return elfcore_grok_s390_high_gprs (abfd, note);
8122 else
8123 return TRUE;
8124
8125 case NT_S390_TIMER:
8126 if (note->namesz == 6
8127 && strcmp (note->namedata, "LINUX") == 0)
8128 return elfcore_grok_s390_timer (abfd, note);
8129 else
8130 return TRUE;
8131
8132 case NT_S390_TODCMP:
8133 if (note->namesz == 6
8134 && strcmp (note->namedata, "LINUX") == 0)
8135 return elfcore_grok_s390_todcmp (abfd, note);
8136 else
8137 return TRUE;
8138
8139 case NT_S390_TODPREG:
8140 if (note->namesz == 6
8141 && strcmp (note->namedata, "LINUX") == 0)
8142 return elfcore_grok_s390_todpreg (abfd, note);
8143 else
8144 return TRUE;
8145
8146 case NT_S390_CTRS:
8147 if (note->namesz == 6
8148 && strcmp (note->namedata, "LINUX") == 0)
8149 return elfcore_grok_s390_ctrs (abfd, note);
8150 else
8151 return TRUE;
8152
8153 case NT_S390_PREFIX:
8154 if (note->namesz == 6
8155 && strcmp (note->namedata, "LINUX") == 0)
8156 return elfcore_grok_s390_prefix (abfd, note);
8157 else
8158 return TRUE;
8159
8160 case NT_PRPSINFO:
8161 case NT_PSINFO:
8162 if (bed->elf_backend_grok_psinfo)
8163 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8164 return TRUE;
8165 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8166 return elfcore_grok_psinfo (abfd, note);
8167 #else
8168 return TRUE;
8169 #endif
8170
8171 case NT_AUXV:
8172 {
8173 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8174 SEC_HAS_CONTENTS);
8175
8176 if (sect == NULL)
8177 return FALSE;
8178 sect->size = note->descsz;
8179 sect->filepos = note->descpos;
8180 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8181
8182 return TRUE;
8183 }
8184 }
8185 }
8186
8187 static bfd_boolean
8188 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8189 {
8190 elf_tdata (abfd)->build_id_size = note->descsz;
8191 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8192 if (elf_tdata (abfd)->build_id == NULL)
8193 return FALSE;
8194
8195 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8196
8197 return TRUE;
8198 }
8199
8200 static bfd_boolean
8201 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8202 {
8203 switch (note->type)
8204 {
8205 default:
8206 return TRUE;
8207
8208 case NT_GNU_BUILD_ID:
8209 return elfobj_grok_gnu_build_id (abfd, note);
8210 }
8211 }
8212
8213 static bfd_boolean
8214 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8215 {
8216 char *cp;
8217
8218 cp = strchr (note->namedata, '@');
8219 if (cp != NULL)
8220 {
8221 *lwpidp = atoi(cp + 1);
8222 return TRUE;
8223 }
8224 return FALSE;
8225 }
8226
8227 static bfd_boolean
8228 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8229 {
8230 /* Signal number at offset 0x08. */
8231 elf_tdata (abfd)->core_signal
8232 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8233
8234 /* Process ID at offset 0x50. */
8235 elf_tdata (abfd)->core_pid
8236 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8237
8238 /* Command name at 0x7c (max 32 bytes, including nul). */
8239 elf_tdata (abfd)->core_command
8240 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8241
8242 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8243 note);
8244 }
8245
8246 static bfd_boolean
8247 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8248 {
8249 int lwp;
8250
8251 if (elfcore_netbsd_get_lwpid (note, &lwp))
8252 elf_tdata (abfd)->core_lwpid = lwp;
8253
8254 if (note->type == NT_NETBSDCORE_PROCINFO)
8255 {
8256 /* NetBSD-specific core "procinfo". Note that we expect to
8257 find this note before any of the others, which is fine,
8258 since the kernel writes this note out first when it
8259 creates a core file. */
8260
8261 return elfcore_grok_netbsd_procinfo (abfd, note);
8262 }
8263
8264 /* As of Jan 2002 there are no other machine-independent notes
8265 defined for NetBSD core files. If the note type is less
8266 than the start of the machine-dependent note types, we don't
8267 understand it. */
8268
8269 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8270 return TRUE;
8271
8272
8273 switch (bfd_get_arch (abfd))
8274 {
8275 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8276 PT_GETFPREGS == mach+2. */
8277
8278 case bfd_arch_alpha:
8279 case bfd_arch_sparc:
8280 switch (note->type)
8281 {
8282 case NT_NETBSDCORE_FIRSTMACH+0:
8283 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8284
8285 case NT_NETBSDCORE_FIRSTMACH+2:
8286 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8287
8288 default:
8289 return TRUE;
8290 }
8291
8292 /* On all other arch's, PT_GETREGS == mach+1 and
8293 PT_GETFPREGS == mach+3. */
8294
8295 default:
8296 switch (note->type)
8297 {
8298 case NT_NETBSDCORE_FIRSTMACH+1:
8299 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8300
8301 case NT_NETBSDCORE_FIRSTMACH+3:
8302 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8303
8304 default:
8305 return TRUE;
8306 }
8307 }
8308 /* NOTREACHED */
8309 }
8310
8311 static bfd_boolean
8312 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8313 {
8314 /* Signal number at offset 0x08. */
8315 elf_tdata (abfd)->core_signal
8316 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8317
8318 /* Process ID at offset 0x20. */
8319 elf_tdata (abfd)->core_pid
8320 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8321
8322 /* Command name at 0x48 (max 32 bytes, including nul). */
8323 elf_tdata (abfd)->core_command
8324 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8325
8326 return TRUE;
8327 }
8328
8329 static bfd_boolean
8330 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8331 {
8332 if (note->type == NT_OPENBSD_PROCINFO)
8333 return elfcore_grok_openbsd_procinfo (abfd, note);
8334
8335 if (note->type == NT_OPENBSD_REGS)
8336 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8337
8338 if (note->type == NT_OPENBSD_FPREGS)
8339 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8340
8341 if (note->type == NT_OPENBSD_XFPREGS)
8342 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8343
8344 if (note->type == NT_OPENBSD_AUXV)
8345 {
8346 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8347 SEC_HAS_CONTENTS);
8348
8349 if (sect == NULL)
8350 return FALSE;
8351 sect->size = note->descsz;
8352 sect->filepos = note->descpos;
8353 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8354
8355 return TRUE;
8356 }
8357
8358 if (note->type == NT_OPENBSD_WCOOKIE)
8359 {
8360 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8361 SEC_HAS_CONTENTS);
8362
8363 if (sect == NULL)
8364 return FALSE;
8365 sect->size = note->descsz;
8366 sect->filepos = note->descpos;
8367 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8368
8369 return TRUE;
8370 }
8371
8372 return TRUE;
8373 }
8374
8375 static bfd_boolean
8376 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8377 {
8378 void *ddata = note->descdata;
8379 char buf[100];
8380 char *name;
8381 asection *sect;
8382 short sig;
8383 unsigned flags;
8384
8385 /* nto_procfs_status 'pid' field is at offset 0. */
8386 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8387
8388 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8389 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8390
8391 /* nto_procfs_status 'flags' field is at offset 8. */
8392 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8393
8394 /* nto_procfs_status 'what' field is at offset 14. */
8395 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8396 {
8397 elf_tdata (abfd)->core_signal = sig;
8398 elf_tdata (abfd)->core_lwpid = *tid;
8399 }
8400
8401 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8402 do not come from signals so we make sure we set the current
8403 thread just in case. */
8404 if (flags & 0x00000080)
8405 elf_tdata (abfd)->core_lwpid = *tid;
8406
8407 /* Make a ".qnx_core_status/%d" section. */
8408 sprintf (buf, ".qnx_core_status/%ld", *tid);
8409
8410 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8411 if (name == NULL)
8412 return FALSE;
8413 strcpy (name, buf);
8414
8415 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8416 if (sect == NULL)
8417 return FALSE;
8418
8419 sect->size = note->descsz;
8420 sect->filepos = note->descpos;
8421 sect->alignment_power = 2;
8422
8423 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8424 }
8425
8426 static bfd_boolean
8427 elfcore_grok_nto_regs (bfd *abfd,
8428 Elf_Internal_Note *note,
8429 long tid,
8430 char *base)
8431 {
8432 char buf[100];
8433 char *name;
8434 asection *sect;
8435
8436 /* Make a "(base)/%d" section. */
8437 sprintf (buf, "%s/%ld", base, tid);
8438
8439 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8440 if (name == NULL)
8441 return FALSE;
8442 strcpy (name, buf);
8443
8444 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8445 if (sect == NULL)
8446 return FALSE;
8447
8448 sect->size = note->descsz;
8449 sect->filepos = note->descpos;
8450 sect->alignment_power = 2;
8451
8452 /* This is the current thread. */
8453 if (elf_tdata (abfd)->core_lwpid == tid)
8454 return elfcore_maybe_make_sect (abfd, base, sect);
8455
8456 return TRUE;
8457 }
8458
8459 #define BFD_QNT_CORE_INFO 7
8460 #define BFD_QNT_CORE_STATUS 8
8461 #define BFD_QNT_CORE_GREG 9
8462 #define BFD_QNT_CORE_FPREG 10
8463
8464 static bfd_boolean
8465 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8466 {
8467 /* Every GREG section has a STATUS section before it. Store the
8468 tid from the previous call to pass down to the next gregs
8469 function. */
8470 static long tid = 1;
8471
8472 switch (note->type)
8473 {
8474 case BFD_QNT_CORE_INFO:
8475 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8476 case BFD_QNT_CORE_STATUS:
8477 return elfcore_grok_nto_status (abfd, note, &tid);
8478 case BFD_QNT_CORE_GREG:
8479 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8480 case BFD_QNT_CORE_FPREG:
8481 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8482 default:
8483 return TRUE;
8484 }
8485 }
8486
8487 static bfd_boolean
8488 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8489 {
8490 char *name;
8491 asection *sect;
8492 size_t len;
8493
8494 /* Use note name as section name. */
8495 len = note->namesz;
8496 name = (char *) bfd_alloc (abfd, len);
8497 if (name == NULL)
8498 return FALSE;
8499 memcpy (name, note->namedata, len);
8500 name[len - 1] = '\0';
8501
8502 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8503 if (sect == NULL)
8504 return FALSE;
8505
8506 sect->size = note->descsz;
8507 sect->filepos = note->descpos;
8508 sect->alignment_power = 1;
8509
8510 return TRUE;
8511 }
8512
8513 /* Function: elfcore_write_note
8514
8515 Inputs:
8516 buffer to hold note, and current size of buffer
8517 name of note
8518 type of note
8519 data for note
8520 size of data for note
8521
8522 Writes note to end of buffer. ELF64 notes are written exactly as
8523 for ELF32, despite the current (as of 2006) ELF gabi specifying
8524 that they ought to have 8-byte namesz and descsz field, and have
8525 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8526
8527 Return:
8528 Pointer to realloc'd buffer, *BUFSIZ updated. */
8529
8530 char *
8531 elfcore_write_note (bfd *abfd,
8532 char *buf,
8533 int *bufsiz,
8534 const char *name,
8535 int type,
8536 const void *input,
8537 int size)
8538 {
8539 Elf_External_Note *xnp;
8540 size_t namesz;
8541 size_t newspace;
8542 char *dest;
8543
8544 namesz = 0;
8545 if (name != NULL)
8546 namesz = strlen (name) + 1;
8547
8548 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8549
8550 buf = (char *) realloc (buf, *bufsiz + newspace);
8551 if (buf == NULL)
8552 return buf;
8553 dest = buf + *bufsiz;
8554 *bufsiz += newspace;
8555 xnp = (Elf_External_Note *) dest;
8556 H_PUT_32 (abfd, namesz, xnp->namesz);
8557 H_PUT_32 (abfd, size, xnp->descsz);
8558 H_PUT_32 (abfd, type, xnp->type);
8559 dest = xnp->name;
8560 if (name != NULL)
8561 {
8562 memcpy (dest, name, namesz);
8563 dest += namesz;
8564 while (namesz & 3)
8565 {
8566 *dest++ = '\0';
8567 ++namesz;
8568 }
8569 }
8570 memcpy (dest, input, size);
8571 dest += size;
8572 while (size & 3)
8573 {
8574 *dest++ = '\0';
8575 ++size;
8576 }
8577 return buf;
8578 }
8579
8580 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8581 char *
8582 elfcore_write_prpsinfo (bfd *abfd,
8583 char *buf,
8584 int *bufsiz,
8585 const char *fname,
8586 const char *psargs)
8587 {
8588 const char *note_name = "CORE";
8589 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8590
8591 if (bed->elf_backend_write_core_note != NULL)
8592 {
8593 char *ret;
8594 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8595 NT_PRPSINFO, fname, psargs);
8596 if (ret != NULL)
8597 return ret;
8598 }
8599
8600 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8601 if (bed->s->elfclass == ELFCLASS32)
8602 {
8603 #if defined (HAVE_PSINFO32_T)
8604 psinfo32_t data;
8605 int note_type = NT_PSINFO;
8606 #else
8607 prpsinfo32_t data;
8608 int note_type = NT_PRPSINFO;
8609 #endif
8610
8611 memset (&data, 0, sizeof (data));
8612 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8613 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8614 return elfcore_write_note (abfd, buf, bufsiz,
8615 note_name, note_type, &data, sizeof (data));
8616 }
8617 else
8618 #endif
8619 {
8620 #if defined (HAVE_PSINFO_T)
8621 psinfo_t data;
8622 int note_type = NT_PSINFO;
8623 #else
8624 prpsinfo_t data;
8625 int note_type = NT_PRPSINFO;
8626 #endif
8627
8628 memset (&data, 0, sizeof (data));
8629 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8630 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8631 return elfcore_write_note (abfd, buf, bufsiz,
8632 note_name, note_type, &data, sizeof (data));
8633 }
8634 }
8635 #endif /* PSINFO_T or PRPSINFO_T */
8636
8637 #if defined (HAVE_PRSTATUS_T)
8638 char *
8639 elfcore_write_prstatus (bfd *abfd,
8640 char *buf,
8641 int *bufsiz,
8642 long pid,
8643 int cursig,
8644 const void *gregs)
8645 {
8646 const char *note_name = "CORE";
8647 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8648
8649 if (bed->elf_backend_write_core_note != NULL)
8650 {
8651 char *ret;
8652 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8653 NT_PRSTATUS,
8654 pid, cursig, gregs);
8655 if (ret != NULL)
8656 return ret;
8657 }
8658
8659 #if defined (HAVE_PRSTATUS32_T)
8660 if (bed->s->elfclass == ELFCLASS32)
8661 {
8662 prstatus32_t prstat;
8663
8664 memset (&prstat, 0, sizeof (prstat));
8665 prstat.pr_pid = pid;
8666 prstat.pr_cursig = cursig;
8667 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8668 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8669 NT_PRSTATUS, &prstat, sizeof (prstat));
8670 }
8671 else
8672 #endif
8673 {
8674 prstatus_t prstat;
8675
8676 memset (&prstat, 0, sizeof (prstat));
8677 prstat.pr_pid = pid;
8678 prstat.pr_cursig = cursig;
8679 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8680 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8681 NT_PRSTATUS, &prstat, sizeof (prstat));
8682 }
8683 }
8684 #endif /* HAVE_PRSTATUS_T */
8685
8686 #if defined (HAVE_LWPSTATUS_T)
8687 char *
8688 elfcore_write_lwpstatus (bfd *abfd,
8689 char *buf,
8690 int *bufsiz,
8691 long pid,
8692 int cursig,
8693 const void *gregs)
8694 {
8695 lwpstatus_t lwpstat;
8696 const char *note_name = "CORE";
8697
8698 memset (&lwpstat, 0, sizeof (lwpstat));
8699 lwpstat.pr_lwpid = pid >> 16;
8700 lwpstat.pr_cursig = cursig;
8701 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8702 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8703 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8704 #if !defined(gregs)
8705 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8706 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8707 #else
8708 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8709 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8710 #endif
8711 #endif
8712 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8713 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8714 }
8715 #endif /* HAVE_LWPSTATUS_T */
8716
8717 #if defined (HAVE_PSTATUS_T)
8718 char *
8719 elfcore_write_pstatus (bfd *abfd,
8720 char *buf,
8721 int *bufsiz,
8722 long pid,
8723 int cursig ATTRIBUTE_UNUSED,
8724 const void *gregs ATTRIBUTE_UNUSED)
8725 {
8726 const char *note_name = "CORE";
8727 #if defined (HAVE_PSTATUS32_T)
8728 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8729
8730 if (bed->s->elfclass == ELFCLASS32)
8731 {
8732 pstatus32_t pstat;
8733
8734 memset (&pstat, 0, sizeof (pstat));
8735 pstat.pr_pid = pid & 0xffff;
8736 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8737 NT_PSTATUS, &pstat, sizeof (pstat));
8738 return buf;
8739 }
8740 else
8741 #endif
8742 {
8743 pstatus_t pstat;
8744
8745 memset (&pstat, 0, sizeof (pstat));
8746 pstat.pr_pid = pid & 0xffff;
8747 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8748 NT_PSTATUS, &pstat, sizeof (pstat));
8749 return buf;
8750 }
8751 }
8752 #endif /* HAVE_PSTATUS_T */
8753
8754 char *
8755 elfcore_write_prfpreg (bfd *abfd,
8756 char *buf,
8757 int *bufsiz,
8758 const void *fpregs,
8759 int size)
8760 {
8761 const char *note_name = "CORE";
8762 return elfcore_write_note (abfd, buf, bufsiz,
8763 note_name, NT_FPREGSET, fpregs, size);
8764 }
8765
8766 char *
8767 elfcore_write_prxfpreg (bfd *abfd,
8768 char *buf,
8769 int *bufsiz,
8770 const void *xfpregs,
8771 int size)
8772 {
8773 char *note_name = "LINUX";
8774 return elfcore_write_note (abfd, buf, bufsiz,
8775 note_name, NT_PRXFPREG, xfpregs, size);
8776 }
8777
8778 char *
8779 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
8780 const void *xfpregs, int size)
8781 {
8782 char *note_name = "LINUX";
8783 return elfcore_write_note (abfd, buf, bufsiz,
8784 note_name, NT_X86_XSTATE, xfpregs, size);
8785 }
8786
8787 char *
8788 elfcore_write_ppc_vmx (bfd *abfd,
8789 char *buf,
8790 int *bufsiz,
8791 const void *ppc_vmx,
8792 int size)
8793 {
8794 char *note_name = "LINUX";
8795 return elfcore_write_note (abfd, buf, bufsiz,
8796 note_name, NT_PPC_VMX, ppc_vmx, size);
8797 }
8798
8799 char *
8800 elfcore_write_ppc_vsx (bfd *abfd,
8801 char *buf,
8802 int *bufsiz,
8803 const void *ppc_vsx,
8804 int size)
8805 {
8806 char *note_name = "LINUX";
8807 return elfcore_write_note (abfd, buf, bufsiz,
8808 note_name, NT_PPC_VSX, ppc_vsx, size);
8809 }
8810
8811 static char *
8812 elfcore_write_s390_high_gprs (bfd *abfd,
8813 char *buf,
8814 int *bufsiz,
8815 const void *s390_high_gprs,
8816 int size)
8817 {
8818 char *note_name = "LINUX";
8819 return elfcore_write_note (abfd, buf, bufsiz,
8820 note_name, NT_S390_HIGH_GPRS,
8821 s390_high_gprs, size);
8822 }
8823
8824 char *
8825 elfcore_write_s390_timer (bfd *abfd,
8826 char *buf,
8827 int *bufsiz,
8828 const void *s390_timer,
8829 int size)
8830 {
8831 char *note_name = "LINUX";
8832 return elfcore_write_note (abfd, buf, bufsiz,
8833 note_name, NT_S390_TIMER, s390_timer, size);
8834 }
8835
8836 char *
8837 elfcore_write_s390_todcmp (bfd *abfd,
8838 char *buf,
8839 int *bufsiz,
8840 const void *s390_todcmp,
8841 int size)
8842 {
8843 char *note_name = "LINUX";
8844 return elfcore_write_note (abfd, buf, bufsiz,
8845 note_name, NT_S390_TODCMP, s390_todcmp, size);
8846 }
8847
8848 char *
8849 elfcore_write_s390_todpreg (bfd *abfd,
8850 char *buf,
8851 int *bufsiz,
8852 const void *s390_todpreg,
8853 int size)
8854 {
8855 char *note_name = "LINUX";
8856 return elfcore_write_note (abfd, buf, bufsiz,
8857 note_name, NT_S390_TODPREG, s390_todpreg, size);
8858 }
8859
8860 char *
8861 elfcore_write_s390_ctrs (bfd *abfd,
8862 char *buf,
8863 int *bufsiz,
8864 const void *s390_ctrs,
8865 int size)
8866 {
8867 char *note_name = "LINUX";
8868 return elfcore_write_note (abfd, buf, bufsiz,
8869 note_name, NT_S390_CTRS, s390_ctrs, size);
8870 }
8871
8872 char *
8873 elfcore_write_s390_prefix (bfd *abfd,
8874 char *buf,
8875 int *bufsiz,
8876 const void *s390_prefix,
8877 int size)
8878 {
8879 char *note_name = "LINUX";
8880 return elfcore_write_note (abfd, buf, bufsiz,
8881 note_name, NT_S390_PREFIX, s390_prefix, size);
8882 }
8883
8884 char *
8885 elfcore_write_register_note (bfd *abfd,
8886 char *buf,
8887 int *bufsiz,
8888 const char *section,
8889 const void *data,
8890 int size)
8891 {
8892 if (strcmp (section, ".reg2") == 0)
8893 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
8894 if (strcmp (section, ".reg-xfp") == 0)
8895 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
8896 if (strcmp (section, ".reg-xstate") == 0)
8897 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
8898 if (strcmp (section, ".reg-ppc-vmx") == 0)
8899 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
8900 if (strcmp (section, ".reg-ppc-vsx") == 0)
8901 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
8902 if (strcmp (section, ".reg-s390-high-gprs") == 0)
8903 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
8904 if (strcmp (section, ".reg-s390-timer") == 0)
8905 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
8906 if (strcmp (section, ".reg-s390-todcmp") == 0)
8907 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
8908 if (strcmp (section, ".reg-s390-todpreg") == 0)
8909 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
8910 if (strcmp (section, ".reg-s390-ctrs") == 0)
8911 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
8912 if (strcmp (section, ".reg-s390-prefix") == 0)
8913 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
8914 return NULL;
8915 }
8916
8917 static bfd_boolean
8918 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8919 {
8920 char *p;
8921
8922 p = buf;
8923 while (p < buf + size)
8924 {
8925 /* FIXME: bad alignment assumption. */
8926 Elf_External_Note *xnp = (Elf_External_Note *) p;
8927 Elf_Internal_Note in;
8928
8929 if (offsetof (Elf_External_Note, name) > buf - p + size)
8930 return FALSE;
8931
8932 in.type = H_GET_32 (abfd, xnp->type);
8933
8934 in.namesz = H_GET_32 (abfd, xnp->namesz);
8935 in.namedata = xnp->name;
8936 if (in.namesz > buf - in.namedata + size)
8937 return FALSE;
8938
8939 in.descsz = H_GET_32 (abfd, xnp->descsz);
8940 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8941 in.descpos = offset + (in.descdata - buf);
8942 if (in.descsz != 0
8943 && (in.descdata >= buf + size
8944 || in.descsz > buf - in.descdata + size))
8945 return FALSE;
8946
8947 switch (bfd_get_format (abfd))
8948 {
8949 default:
8950 return TRUE;
8951
8952 case bfd_core:
8953 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8954 {
8955 if (! elfcore_grok_netbsd_note (abfd, &in))
8956 return FALSE;
8957 }
8958 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
8959 {
8960 if (! elfcore_grok_openbsd_note (abfd, &in))
8961 return FALSE;
8962 }
8963 else if (CONST_STRNEQ (in.namedata, "QNX"))
8964 {
8965 if (! elfcore_grok_nto_note (abfd, &in))
8966 return FALSE;
8967 }
8968 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8969 {
8970 if (! elfcore_grok_spu_note (abfd, &in))
8971 return FALSE;
8972 }
8973 else
8974 {
8975 if (! elfcore_grok_note (abfd, &in))
8976 return FALSE;
8977 }
8978 break;
8979
8980 case bfd_object:
8981 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8982 {
8983 if (! elfobj_grok_gnu_note (abfd, &in))
8984 return FALSE;
8985 }
8986 break;
8987 }
8988
8989 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8990 }
8991
8992 return TRUE;
8993 }
8994
8995 static bfd_boolean
8996 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8997 {
8998 char *buf;
8999
9000 if (size <= 0)
9001 return TRUE;
9002
9003 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9004 return FALSE;
9005
9006 buf = (char *) bfd_malloc (size);
9007 if (buf == NULL)
9008 return FALSE;
9009
9010 if (bfd_bread (buf, size, abfd) != size
9011 || !elf_parse_notes (abfd, buf, size, offset))
9012 {
9013 free (buf);
9014 return FALSE;
9015 }
9016
9017 free (buf);
9018 return TRUE;
9019 }
9020 \f
9021 /* Providing external access to the ELF program header table. */
9022
9023 /* Return an upper bound on the number of bytes required to store a
9024 copy of ABFD's program header table entries. Return -1 if an error
9025 occurs; bfd_get_error will return an appropriate code. */
9026
9027 long
9028 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9029 {
9030 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9031 {
9032 bfd_set_error (bfd_error_wrong_format);
9033 return -1;
9034 }
9035
9036 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9037 }
9038
9039 /* Copy ABFD's program header table entries to *PHDRS. The entries
9040 will be stored as an array of Elf_Internal_Phdr structures, as
9041 defined in include/elf/internal.h. To find out how large the
9042 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9043
9044 Return the number of program header table entries read, or -1 if an
9045 error occurs; bfd_get_error will return an appropriate code. */
9046
9047 int
9048 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9049 {
9050 int num_phdrs;
9051
9052 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9053 {
9054 bfd_set_error (bfd_error_wrong_format);
9055 return -1;
9056 }
9057
9058 num_phdrs = elf_elfheader (abfd)->e_phnum;
9059 memcpy (phdrs, elf_tdata (abfd)->phdr,
9060 num_phdrs * sizeof (Elf_Internal_Phdr));
9061
9062 return num_phdrs;
9063 }
9064
9065 enum elf_reloc_type_class
9066 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9067 {
9068 return reloc_class_normal;
9069 }
9070
9071 /* For RELA architectures, return the relocation value for a
9072 relocation against a local symbol. */
9073
9074 bfd_vma
9075 _bfd_elf_rela_local_sym (bfd *abfd,
9076 Elf_Internal_Sym *sym,
9077 asection **psec,
9078 Elf_Internal_Rela *rel)
9079 {
9080 asection *sec = *psec;
9081 bfd_vma relocation;
9082
9083 relocation = (sec->output_section->vma
9084 + sec->output_offset
9085 + sym->st_value);
9086 if ((sec->flags & SEC_MERGE)
9087 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9088 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
9089 {
9090 rel->r_addend =
9091 _bfd_merged_section_offset (abfd, psec,
9092 elf_section_data (sec)->sec_info,
9093 sym->st_value + rel->r_addend);
9094 if (sec != *psec)
9095 {
9096 /* If we have changed the section, and our original section is
9097 marked with SEC_EXCLUDE, it means that the original
9098 SEC_MERGE section has been completely subsumed in some
9099 other SEC_MERGE section. In this case, we need to leave
9100 some info around for --emit-relocs. */
9101 if ((sec->flags & SEC_EXCLUDE) != 0)
9102 sec->kept_section = *psec;
9103 sec = *psec;
9104 }
9105 rel->r_addend -= relocation;
9106 rel->r_addend += sec->output_section->vma + sec->output_offset;
9107 }
9108 return relocation;
9109 }
9110
9111 bfd_vma
9112 _bfd_elf_rel_local_sym (bfd *abfd,
9113 Elf_Internal_Sym *sym,
9114 asection **psec,
9115 bfd_vma addend)
9116 {
9117 asection *sec = *psec;
9118
9119 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
9120 return sym->st_value + addend;
9121
9122 return _bfd_merged_section_offset (abfd, psec,
9123 elf_section_data (sec)->sec_info,
9124 sym->st_value + addend);
9125 }
9126
9127 bfd_vma
9128 _bfd_elf_section_offset (bfd *abfd,
9129 struct bfd_link_info *info,
9130 asection *sec,
9131 bfd_vma offset)
9132 {
9133 switch (sec->sec_info_type)
9134 {
9135 case ELF_INFO_TYPE_STABS:
9136 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9137 offset);
9138 case ELF_INFO_TYPE_EH_FRAME:
9139 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9140 default:
9141 return offset;
9142 }
9143 }
9144 \f
9145 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9146 reconstruct an ELF file by reading the segments out of remote memory
9147 based on the ELF file header at EHDR_VMA and the ELF program headers it
9148 points to. If not null, *LOADBASEP is filled in with the difference
9149 between the VMAs from which the segments were read, and the VMAs the
9150 file headers (and hence BFD's idea of each section's VMA) put them at.
9151
9152 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9153 remote memory at target address VMA into the local buffer at MYADDR; it
9154 should return zero on success or an `errno' code on failure. TEMPL must
9155 be a BFD for an ELF target with the word size and byte order found in
9156 the remote memory. */
9157
9158 bfd *
9159 bfd_elf_bfd_from_remote_memory
9160 (bfd *templ,
9161 bfd_vma ehdr_vma,
9162 bfd_vma *loadbasep,
9163 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
9164 {
9165 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9166 (templ, ehdr_vma, loadbasep, target_read_memory);
9167 }
9168 \f
9169 long
9170 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9171 long symcount ATTRIBUTE_UNUSED,
9172 asymbol **syms ATTRIBUTE_UNUSED,
9173 long dynsymcount,
9174 asymbol **dynsyms,
9175 asymbol **ret)
9176 {
9177 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9178 asection *relplt;
9179 asymbol *s;
9180 const char *relplt_name;
9181 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9182 arelent *p;
9183 long count, i, n;
9184 size_t size;
9185 Elf_Internal_Shdr *hdr;
9186 char *names;
9187 asection *plt;
9188
9189 *ret = NULL;
9190
9191 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9192 return 0;
9193
9194 if (dynsymcount <= 0)
9195 return 0;
9196
9197 if (!bed->plt_sym_val)
9198 return 0;
9199
9200 relplt_name = bed->relplt_name;
9201 if (relplt_name == NULL)
9202 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9203 relplt = bfd_get_section_by_name (abfd, relplt_name);
9204 if (relplt == NULL)
9205 return 0;
9206
9207 hdr = &elf_section_data (relplt)->this_hdr;
9208 if (hdr->sh_link != elf_dynsymtab (abfd)
9209 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9210 return 0;
9211
9212 plt = bfd_get_section_by_name (abfd, ".plt");
9213 if (plt == NULL)
9214 return 0;
9215
9216 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9217 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9218 return -1;
9219
9220 count = relplt->size / hdr->sh_entsize;
9221 size = count * sizeof (asymbol);
9222 p = relplt->relocation;
9223 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9224 {
9225 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9226 if (p->addend != 0)
9227 {
9228 #ifdef BFD64
9229 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9230 #else
9231 size += sizeof ("+0x") - 1 + 8;
9232 #endif
9233 }
9234 }
9235
9236 s = *ret = (asymbol *) bfd_malloc (size);
9237 if (s == NULL)
9238 return -1;
9239
9240 names = (char *) (s + count);
9241 p = relplt->relocation;
9242 n = 0;
9243 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9244 {
9245 size_t len;
9246 bfd_vma addr;
9247
9248 addr = bed->plt_sym_val (i, plt, p);
9249 if (addr == (bfd_vma) -1)
9250 continue;
9251
9252 *s = **p->sym_ptr_ptr;
9253 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9254 we are defining a symbol, ensure one of them is set. */
9255 if ((s->flags & BSF_LOCAL) == 0)
9256 s->flags |= BSF_GLOBAL;
9257 s->flags |= BSF_SYNTHETIC;
9258 s->section = plt;
9259 s->value = addr - plt->vma;
9260 s->name = names;
9261 s->udata.p = NULL;
9262 len = strlen ((*p->sym_ptr_ptr)->name);
9263 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9264 names += len;
9265 if (p->addend != 0)
9266 {
9267 char buf[30], *a;
9268
9269 memcpy (names, "+0x", sizeof ("+0x") - 1);
9270 names += sizeof ("+0x") - 1;
9271 bfd_sprintf_vma (abfd, buf, p->addend);
9272 for (a = buf; *a == '0'; ++a)
9273 ;
9274 len = strlen (a);
9275 memcpy (names, a, len);
9276 names += len;
9277 }
9278 memcpy (names, "@plt", sizeof ("@plt"));
9279 names += sizeof ("@plt");
9280 ++s, ++n;
9281 }
9282
9283 return n;
9284 }
9285
9286 /* It is only used by x86-64 so far. */
9287 asection _bfd_elf_large_com_section
9288 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9289 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9290
9291 void
9292 _bfd_elf_set_osabi (bfd * abfd,
9293 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9294 {
9295 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9296
9297 i_ehdrp = elf_elfheader (abfd);
9298
9299 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9300
9301 /* To make things simpler for the loader on Linux systems we set the
9302 osabi field to ELFOSABI_LINUX if the binary contains symbols of
9303 the STT_GNU_IFUNC type. */
9304 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9305 && elf_tdata (abfd)->has_ifunc_symbols)
9306 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
9307 }
9308
9309
9310 /* Return TRUE for ELF symbol types that represent functions.
9311 This is the default version of this function, which is sufficient for
9312 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9313
9314 bfd_boolean
9315 _bfd_elf_is_function_type (unsigned int type)
9316 {
9317 return (type == STT_FUNC
9318 || type == STT_GNU_IFUNC);
9319 }
This page took 0.328789 seconds and 4 git commands to generate.