Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2015 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"),
342 abfd, shindex);
343 return NULL;
344 }
345
346 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
347 return NULL;
348 }
349
350 if (strindex >= hdr->sh_size)
351 {
352 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
353 (*_bfd_error_handler)
354 (_("%B: invalid string offset %u >= %lu for section `%s'"),
355 abfd, strindex, (unsigned long) hdr->sh_size,
356 (shindex == shstrndx && strindex == hdr->sh_name
357 ? ".shstrtab"
358 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
359 return NULL;
360 }
361
362 return ((char *) hdr->contents) + strindex;
363 }
364
365 /* Read and convert symbols to internal format.
366 SYMCOUNT specifies the number of symbols to read, starting from
367 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
368 are non-NULL, they are used to store the internal symbols, external
369 symbols, and symbol section index extensions, respectively.
370 Returns a pointer to the internal symbol buffer (malloced if necessary)
371 or NULL if there were no symbols or some kind of problem. */
372
373 Elf_Internal_Sym *
374 bfd_elf_get_elf_syms (bfd *ibfd,
375 Elf_Internal_Shdr *symtab_hdr,
376 size_t symcount,
377 size_t symoffset,
378 Elf_Internal_Sym *intsym_buf,
379 void *extsym_buf,
380 Elf_External_Sym_Shndx *extshndx_buf)
381 {
382 Elf_Internal_Shdr *shndx_hdr;
383 void *alloc_ext;
384 const bfd_byte *esym;
385 Elf_External_Sym_Shndx *alloc_extshndx;
386 Elf_External_Sym_Shndx *shndx;
387 Elf_Internal_Sym *alloc_intsym;
388 Elf_Internal_Sym *isym;
389 Elf_Internal_Sym *isymend;
390 const struct elf_backend_data *bed;
391 size_t extsym_size;
392 bfd_size_type amt;
393 file_ptr pos;
394
395 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
396 abort ();
397
398 if (symcount == 0)
399 return intsym_buf;
400
401 /* Normal syms might have section extension entries. */
402 shndx_hdr = NULL;
403 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
404 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
405
406 /* Read the symbols. */
407 alloc_ext = NULL;
408 alloc_extshndx = NULL;
409 alloc_intsym = NULL;
410 bed = get_elf_backend_data (ibfd);
411 extsym_size = bed->s->sizeof_sym;
412 amt = symcount * extsym_size;
413 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
414 if (extsym_buf == NULL)
415 {
416 alloc_ext = bfd_malloc2 (symcount, extsym_size);
417 extsym_buf = alloc_ext;
418 }
419 if (extsym_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extsym_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426
427 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
428 extshndx_buf = NULL;
429 else
430 {
431 amt = symcount * sizeof (Elf_External_Sym_Shndx);
432 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
433 if (extshndx_buf == NULL)
434 {
435 alloc_extshndx = (Elf_External_Sym_Shndx *)
436 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
437 extshndx_buf = alloc_extshndx;
438 }
439 if (extshndx_buf == NULL
440 || bfd_seek (ibfd, pos, SEEK_SET) != 0
441 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
442 {
443 intsym_buf = NULL;
444 goto out;
445 }
446 }
447
448 if (intsym_buf == NULL)
449 {
450 alloc_intsym = (Elf_Internal_Sym *)
451 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
452 intsym_buf = alloc_intsym;
453 if (intsym_buf == NULL)
454 goto out;
455 }
456
457 /* Convert the symbols to internal form. */
458 isymend = intsym_buf + symcount;
459 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
460 shndx = extshndx_buf;
461 isym < isymend;
462 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
463 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
464 {
465 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
466 (*_bfd_error_handler) (_("%B symbol number %lu references "
467 "nonexistent SHT_SYMTAB_SHNDX section"),
468 ibfd, (unsigned long) symoffset);
469 if (alloc_intsym != NULL)
470 free (alloc_intsym);
471 intsym_buf = NULL;
472 goto out;
473 }
474
475 out:
476 if (alloc_ext != NULL)
477 free (alloc_ext);
478 if (alloc_extshndx != NULL)
479 free (alloc_extshndx);
480
481 return intsym_buf;
482 }
483
484 /* Look up a symbol name. */
485 const char *
486 bfd_elf_sym_name (bfd *abfd,
487 Elf_Internal_Shdr *symtab_hdr,
488 Elf_Internal_Sym *isym,
489 asection *sym_sec)
490 {
491 const char *name;
492 unsigned int iname = isym->st_name;
493 unsigned int shindex = symtab_hdr->sh_link;
494
495 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
496 /* Check for a bogus st_shndx to avoid crashing. */
497 && isym->st_shndx < elf_numsections (abfd))
498 {
499 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
500 shindex = elf_elfheader (abfd)->e_shstrndx;
501 }
502
503 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
504 if (name == NULL)
505 name = "(null)";
506 else if (sym_sec && *name == '\0')
507 name = bfd_section_name (abfd, sym_sec);
508
509 return name;
510 }
511
512 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
513 sections. The first element is the flags, the rest are section
514 pointers. */
515
516 typedef union elf_internal_group {
517 Elf_Internal_Shdr *shdr;
518 unsigned int flags;
519 } Elf_Internal_Group;
520
521 /* Return the name of the group signature symbol. Why isn't the
522 signature just a string? */
523
524 static const char *
525 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
526 {
527 Elf_Internal_Shdr *hdr;
528 unsigned char esym[sizeof (Elf64_External_Sym)];
529 Elf_External_Sym_Shndx eshndx;
530 Elf_Internal_Sym isym;
531
532 /* First we need to ensure the symbol table is available. Make sure
533 that it is a symbol table section. */
534 if (ghdr->sh_link >= elf_numsections (abfd))
535 return NULL;
536 hdr = elf_elfsections (abfd) [ghdr->sh_link];
537 if (hdr->sh_type != SHT_SYMTAB
538 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
539 return NULL;
540
541 /* Go read the symbol. */
542 hdr = &elf_tdata (abfd)->symtab_hdr;
543 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
544 &isym, esym, &eshndx) == NULL)
545 return NULL;
546
547 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
548 }
549
550 /* Set next_in_group list pointer, and group name for NEWSECT. */
551
552 static bfd_boolean
553 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
554 {
555 unsigned int num_group = elf_tdata (abfd)->num_group;
556
557 /* If num_group is zero, read in all SHT_GROUP sections. The count
558 is set to -1 if there are no SHT_GROUP sections. */
559 if (num_group == 0)
560 {
561 unsigned int i, shnum;
562
563 /* First count the number of groups. If we have a SHT_GROUP
564 section with just a flag word (ie. sh_size is 4), ignore it. */
565 shnum = elf_numsections (abfd);
566 num_group = 0;
567
568 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
569 ( (shdr)->sh_type == SHT_GROUP \
570 && (shdr)->sh_size >= minsize \
571 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
572 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
573
574 for (i = 0; i < shnum; i++)
575 {
576 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
577
578 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
579 num_group += 1;
580 }
581
582 if (num_group == 0)
583 {
584 num_group = (unsigned) -1;
585 elf_tdata (abfd)->num_group = num_group;
586 }
587 else
588 {
589 /* We keep a list of elf section headers for group sections,
590 so we can find them quickly. */
591 bfd_size_type amt;
592
593 elf_tdata (abfd)->num_group = num_group;
594 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
595 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
596 if (elf_tdata (abfd)->group_sect_ptr == NULL)
597 return FALSE;
598
599 num_group = 0;
600 for (i = 0; i < shnum; i++)
601 {
602 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
603
604 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
605 {
606 unsigned char *src;
607 Elf_Internal_Group *dest;
608
609 /* Add to list of sections. */
610 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
611 num_group += 1;
612
613 /* Read the raw contents. */
614 BFD_ASSERT (sizeof (*dest) >= 4);
615 amt = shdr->sh_size * sizeof (*dest) / 4;
616 shdr->contents = (unsigned char *)
617 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
618 /* PR binutils/4110: Handle corrupt group headers. */
619 if (shdr->contents == NULL)
620 {
621 _bfd_error_handler
622 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
623 bfd_set_error (bfd_error_bad_value);
624 -- num_group;
625 continue;
626 }
627
628 memset (shdr->contents, 0, amt);
629
630 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
631 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
632 != shdr->sh_size))
633 {
634 _bfd_error_handler
635 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
636 bfd_set_error (bfd_error_bad_value);
637 -- num_group;
638 /* PR 17510: If the group contents are even partially
639 corrupt, do not allow any of the contents to be used. */
640 memset (shdr->contents, 0, amt);
641 continue;
642 }
643
644 /* Translate raw contents, a flag word followed by an
645 array of elf section indices all in target byte order,
646 to the flag word followed by an array of elf section
647 pointers. */
648 src = shdr->contents + shdr->sh_size;
649 dest = (Elf_Internal_Group *) (shdr->contents + amt);
650
651 while (1)
652 {
653 unsigned int idx;
654
655 src -= 4;
656 --dest;
657 idx = H_GET_32 (abfd, src);
658 if (src == shdr->contents)
659 {
660 dest->flags = idx;
661 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
662 shdr->bfd_section->flags
663 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
664 break;
665 }
666 if (idx >= shnum)
667 {
668 ((*_bfd_error_handler)
669 (_("%B: invalid SHT_GROUP entry"), abfd));
670 idx = 0;
671 }
672 dest->shdr = elf_elfsections (abfd)[idx];
673 }
674 }
675 }
676
677 /* PR 17510: Corrupt binaries might contain invalid groups. */
678 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
679 {
680 elf_tdata (abfd)->num_group = num_group;
681
682 /* If all groups are invalid then fail. */
683 if (num_group == 0)
684 {
685 elf_tdata (abfd)->group_sect_ptr = NULL;
686 elf_tdata (abfd)->num_group = num_group = -1;
687 (*_bfd_error_handler) (_("%B: no valid group sections found"), abfd);
688 bfd_set_error (bfd_error_bad_value);
689 }
690 }
691 }
692 }
693
694 if (num_group != (unsigned) -1)
695 {
696 unsigned int i;
697
698 for (i = 0; i < num_group; i++)
699 {
700 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
701 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
702 unsigned int n_elt = shdr->sh_size / 4;
703
704 /* Look through this group's sections to see if current
705 section is a member. */
706 while (--n_elt != 0)
707 if ((++idx)->shdr == hdr)
708 {
709 asection *s = NULL;
710
711 /* We are a member of this group. Go looking through
712 other members to see if any others are linked via
713 next_in_group. */
714 idx = (Elf_Internal_Group *) shdr->contents;
715 n_elt = shdr->sh_size / 4;
716 while (--n_elt != 0)
717 if ((s = (++idx)->shdr->bfd_section) != NULL
718 && elf_next_in_group (s) != NULL)
719 break;
720 if (n_elt != 0)
721 {
722 /* Snarf the group name from other member, and
723 insert current section in circular list. */
724 elf_group_name (newsect) = elf_group_name (s);
725 elf_next_in_group (newsect) = elf_next_in_group (s);
726 elf_next_in_group (s) = newsect;
727 }
728 else
729 {
730 const char *gname;
731
732 gname = group_signature (abfd, shdr);
733 if (gname == NULL)
734 return FALSE;
735 elf_group_name (newsect) = gname;
736
737 /* Start a circular list with one element. */
738 elf_next_in_group (newsect) = newsect;
739 }
740
741 /* If the group section has been created, point to the
742 new member. */
743 if (shdr->bfd_section != NULL)
744 elf_next_in_group (shdr->bfd_section) = newsect;
745
746 i = num_group - 1;
747 break;
748 }
749 }
750 }
751
752 if (elf_group_name (newsect) == NULL)
753 {
754 (*_bfd_error_handler) (_("%B: no group info for section %A"),
755 abfd, newsect);
756 return FALSE;
757 }
758 return TRUE;
759 }
760
761 bfd_boolean
762 _bfd_elf_setup_sections (bfd *abfd)
763 {
764 unsigned int i;
765 unsigned int num_group = elf_tdata (abfd)->num_group;
766 bfd_boolean result = TRUE;
767 asection *s;
768
769 /* Process SHF_LINK_ORDER. */
770 for (s = abfd->sections; s != NULL; s = s->next)
771 {
772 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
773 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
774 {
775 unsigned int elfsec = this_hdr->sh_link;
776 /* FIXME: The old Intel compiler and old strip/objcopy may
777 not set the sh_link or sh_info fields. Hence we could
778 get the situation where elfsec is 0. */
779 if (elfsec == 0)
780 {
781 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
782 if (bed->link_order_error_handler)
783 bed->link_order_error_handler
784 (_("%B: warning: sh_link not set for section `%A'"),
785 abfd, s);
786 }
787 else
788 {
789 asection *linksec = NULL;
790
791 if (elfsec < elf_numsections (abfd))
792 {
793 this_hdr = elf_elfsections (abfd)[elfsec];
794 linksec = this_hdr->bfd_section;
795 }
796
797 /* PR 1991, 2008:
798 Some strip/objcopy may leave an incorrect value in
799 sh_link. We don't want to proceed. */
800 if (linksec == NULL)
801 {
802 (*_bfd_error_handler)
803 (_("%B: sh_link [%d] in section `%A' is incorrect"),
804 s->owner, s, elfsec);
805 result = FALSE;
806 }
807
808 elf_linked_to_section (s) = linksec;
809 }
810 }
811 }
812
813 /* Process section groups. */
814 if (num_group == (unsigned) -1)
815 return result;
816
817 for (i = 0; i < num_group; i++)
818 {
819 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
820 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
821 unsigned int n_elt = shdr->sh_size / 4;
822
823 while (--n_elt != 0)
824 if ((++idx)->shdr->bfd_section)
825 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
826 else if (idx->shdr->sh_type == SHT_RELA
827 || idx->shdr->sh_type == SHT_REL)
828 /* We won't include relocation sections in section groups in
829 output object files. We adjust the group section size here
830 so that relocatable link will work correctly when
831 relocation sections are in section group in input object
832 files. */
833 shdr->bfd_section->size -= 4;
834 else
835 {
836 /* There are some unknown sections in the group. */
837 (*_bfd_error_handler)
838 (_("%B: unknown [%d] section `%s' in group [%s]"),
839 abfd,
840 (unsigned int) idx->shdr->sh_type,
841 bfd_elf_string_from_elf_section (abfd,
842 (elf_elfheader (abfd)
843 ->e_shstrndx),
844 idx->shdr->sh_name),
845 shdr->bfd_section->name);
846 result = FALSE;
847 }
848 }
849 return result;
850 }
851
852 bfd_boolean
853 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
854 {
855 return elf_next_in_group (sec) != NULL;
856 }
857
858 static char *
859 convert_debug_to_zdebug (bfd *abfd, const char *name)
860 {
861 unsigned int len = strlen (name);
862 char *new_name = bfd_alloc (abfd, len + 2);
863 if (new_name == NULL)
864 return NULL;
865 new_name[0] = '.';
866 new_name[1] = 'z';
867 memcpy (new_name + 2, name + 1, len);
868 return new_name;
869 }
870
871 static char *
872 convert_zdebug_to_debug (bfd *abfd, const char *name)
873 {
874 unsigned int len = strlen (name);
875 char *new_name = bfd_alloc (abfd, len);
876 if (new_name == NULL)
877 return NULL;
878 new_name[0] = '.';
879 memcpy (new_name + 1, name + 2, len - 1);
880 return new_name;
881 }
882
883 /* Make a BFD section from an ELF section. We store a pointer to the
884 BFD section in the bfd_section field of the header. */
885
886 bfd_boolean
887 _bfd_elf_make_section_from_shdr (bfd *abfd,
888 Elf_Internal_Shdr *hdr,
889 const char *name,
890 int shindex)
891 {
892 asection *newsect;
893 flagword flags;
894 const struct elf_backend_data *bed;
895
896 if (hdr->bfd_section != NULL)
897 return TRUE;
898
899 newsect = bfd_make_section_anyway (abfd, name);
900 if (newsect == NULL)
901 return FALSE;
902
903 hdr->bfd_section = newsect;
904 elf_section_data (newsect)->this_hdr = *hdr;
905 elf_section_data (newsect)->this_idx = shindex;
906
907 /* Always use the real type/flags. */
908 elf_section_type (newsect) = hdr->sh_type;
909 elf_section_flags (newsect) = hdr->sh_flags;
910
911 newsect->filepos = hdr->sh_offset;
912
913 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
914 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
915 || ! bfd_set_section_alignment (abfd, newsect,
916 bfd_log2 (hdr->sh_addralign)))
917 return FALSE;
918
919 flags = SEC_NO_FLAGS;
920 if (hdr->sh_type != SHT_NOBITS)
921 flags |= SEC_HAS_CONTENTS;
922 if (hdr->sh_type == SHT_GROUP)
923 flags |= SEC_GROUP | SEC_EXCLUDE;
924 if ((hdr->sh_flags & SHF_ALLOC) != 0)
925 {
926 flags |= SEC_ALLOC;
927 if (hdr->sh_type != SHT_NOBITS)
928 flags |= SEC_LOAD;
929 }
930 if ((hdr->sh_flags & SHF_WRITE) == 0)
931 flags |= SEC_READONLY;
932 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
933 flags |= SEC_CODE;
934 else if ((flags & SEC_LOAD) != 0)
935 flags |= SEC_DATA;
936 if ((hdr->sh_flags & SHF_MERGE) != 0)
937 {
938 flags |= SEC_MERGE;
939 newsect->entsize = hdr->sh_entsize;
940 if ((hdr->sh_flags & SHF_STRINGS) != 0)
941 flags |= SEC_STRINGS;
942 }
943 if (hdr->sh_flags & SHF_GROUP)
944 if (!setup_group (abfd, hdr, newsect))
945 return FALSE;
946 if ((hdr->sh_flags & SHF_TLS) != 0)
947 flags |= SEC_THREAD_LOCAL;
948 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
949 flags |= SEC_EXCLUDE;
950
951 if ((flags & SEC_ALLOC) == 0)
952 {
953 /* The debugging sections appear to be recognized only by name,
954 not any sort of flag. Their SEC_ALLOC bits are cleared. */
955 if (name [0] == '.')
956 {
957 const char *p;
958 int n;
959 if (name[1] == 'd')
960 p = ".debug", n = 6;
961 else if (name[1] == 'g' && name[2] == 'n')
962 p = ".gnu.linkonce.wi.", n = 17;
963 else if (name[1] == 'g' && name[2] == 'd')
964 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
965 else if (name[1] == 'l')
966 p = ".line", n = 5;
967 else if (name[1] == 's')
968 p = ".stab", n = 5;
969 else if (name[1] == 'z')
970 p = ".zdebug", n = 7;
971 else
972 p = NULL, n = 0;
973 if (p != NULL && strncmp (name, p, n) == 0)
974 flags |= SEC_DEBUGGING;
975 }
976 }
977
978 /* As a GNU extension, if the name begins with .gnu.linkonce, we
979 only link a single copy of the section. This is used to support
980 g++. g++ will emit each template expansion in its own section.
981 The symbols will be defined as weak, so that multiple definitions
982 are permitted. The GNU linker extension is to actually discard
983 all but one of the sections. */
984 if (CONST_STRNEQ (name, ".gnu.linkonce")
985 && elf_next_in_group (newsect) == NULL)
986 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
987
988 bed = get_elf_backend_data (abfd);
989 if (bed->elf_backend_section_flags)
990 if (! bed->elf_backend_section_flags (&flags, hdr))
991 return FALSE;
992
993 if (! bfd_set_section_flags (abfd, newsect, flags))
994 return FALSE;
995
996 /* We do not parse the PT_NOTE segments as we are interested even in the
997 separate debug info files which may have the segments offsets corrupted.
998 PT_NOTEs from the core files are currently not parsed using BFD. */
999 if (hdr->sh_type == SHT_NOTE)
1000 {
1001 bfd_byte *contents;
1002
1003 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1004 return FALSE;
1005
1006 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
1007 free (contents);
1008 }
1009
1010 if ((flags & SEC_ALLOC) != 0)
1011 {
1012 Elf_Internal_Phdr *phdr;
1013 unsigned int i, nload;
1014
1015 /* Some ELF linkers produce binaries with all the program header
1016 p_paddr fields zero. If we have such a binary with more than
1017 one PT_LOAD header, then leave the section lma equal to vma
1018 so that we don't create sections with overlapping lma. */
1019 phdr = elf_tdata (abfd)->phdr;
1020 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1021 if (phdr->p_paddr != 0)
1022 break;
1023 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1024 ++nload;
1025 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1026 return TRUE;
1027
1028 phdr = elf_tdata (abfd)->phdr;
1029 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1030 {
1031 if (((phdr->p_type == PT_LOAD
1032 && (hdr->sh_flags & SHF_TLS) == 0)
1033 || phdr->p_type == PT_TLS)
1034 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1035 {
1036 if ((flags & SEC_LOAD) == 0)
1037 newsect->lma = (phdr->p_paddr
1038 + hdr->sh_addr - phdr->p_vaddr);
1039 else
1040 /* We used to use the same adjustment for SEC_LOAD
1041 sections, but that doesn't work if the segment
1042 is packed with code from multiple VMAs.
1043 Instead we calculate the section LMA based on
1044 the segment LMA. It is assumed that the
1045 segment will contain sections with contiguous
1046 LMAs, even if the VMAs are not. */
1047 newsect->lma = (phdr->p_paddr
1048 + hdr->sh_offset - phdr->p_offset);
1049
1050 /* With contiguous segments, we can't tell from file
1051 offsets whether a section with zero size should
1052 be placed at the end of one segment or the
1053 beginning of the next. Decide based on vaddr. */
1054 if (hdr->sh_addr >= phdr->p_vaddr
1055 && (hdr->sh_addr + hdr->sh_size
1056 <= phdr->p_vaddr + phdr->p_memsz))
1057 break;
1058 }
1059 }
1060 }
1061
1062 /* Compress/decompress DWARF debug sections with names: .debug_* and
1063 .zdebug_*, after the section flags is set. */
1064 if ((flags & SEC_DEBUGGING)
1065 && ((name[1] == 'd' && name[6] == '_')
1066 || (name[1] == 'z' && name[7] == '_')))
1067 {
1068 enum { nothing, compress, decompress } action = nothing;
1069 int compression_header_size;
1070 bfd_boolean compressed
1071 = bfd_is_section_compressed_with_header (abfd, newsect,
1072 &compression_header_size);
1073
1074 if (compressed)
1075 {
1076 /* Compressed section. Check if we should decompress. */
1077 if ((abfd->flags & BFD_DECOMPRESS))
1078 action = decompress;
1079 }
1080
1081 /* Compress the uncompressed section or convert from/to .zdebug*
1082 section. Check if we should compress. */
1083 if (action == nothing)
1084 {
1085 if (newsect->size != 0
1086 && (abfd->flags & BFD_COMPRESS)
1087 && compression_header_size >= 0
1088 && (!compressed
1089 || ((compression_header_size > 0)
1090 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1091 action = compress;
1092 else
1093 return TRUE;
1094 }
1095
1096 if (action == compress)
1097 {
1098 if (!bfd_init_section_compress_status (abfd, newsect))
1099 {
1100 (*_bfd_error_handler)
1101 (_("%B: unable to initialize compress status for section %s"),
1102 abfd, name);
1103 return FALSE;
1104 }
1105 }
1106 else
1107 {
1108 if (!bfd_init_section_decompress_status (abfd, newsect))
1109 {
1110 (*_bfd_error_handler)
1111 (_("%B: unable to initialize decompress status for section %s"),
1112 abfd, name);
1113 return FALSE;
1114 }
1115 }
1116
1117 if (abfd->is_linker_input)
1118 {
1119 if (name[1] == 'z'
1120 && (action == decompress
1121 || (action == compress
1122 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1123 {
1124 /* Convert section name from .zdebug_* to .debug_* so
1125 that linker will consider this section as a debug
1126 section. */
1127 char *new_name = convert_zdebug_to_debug (abfd, name);
1128 if (new_name == NULL)
1129 return FALSE;
1130 bfd_rename_section (abfd, newsect, new_name);
1131 }
1132 }
1133 else
1134 /* For objdump, don't rename the section. For objcopy, delay
1135 section rename to elf_fake_sections. */
1136 newsect->flags |= SEC_ELF_RENAME;
1137 }
1138
1139 return TRUE;
1140 }
1141
1142 const char *const bfd_elf_section_type_names[] = {
1143 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1144 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1145 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1146 };
1147
1148 /* ELF relocs are against symbols. If we are producing relocatable
1149 output, and the reloc is against an external symbol, and nothing
1150 has given us any additional addend, the resulting reloc will also
1151 be against the same symbol. In such a case, we don't want to
1152 change anything about the way the reloc is handled, since it will
1153 all be done at final link time. Rather than put special case code
1154 into bfd_perform_relocation, all the reloc types use this howto
1155 function. It just short circuits the reloc if producing
1156 relocatable output against an external symbol. */
1157
1158 bfd_reloc_status_type
1159 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1160 arelent *reloc_entry,
1161 asymbol *symbol,
1162 void *data ATTRIBUTE_UNUSED,
1163 asection *input_section,
1164 bfd *output_bfd,
1165 char **error_message ATTRIBUTE_UNUSED)
1166 {
1167 if (output_bfd != NULL
1168 && (symbol->flags & BSF_SECTION_SYM) == 0
1169 && (! reloc_entry->howto->partial_inplace
1170 || reloc_entry->addend == 0))
1171 {
1172 reloc_entry->address += input_section->output_offset;
1173 return bfd_reloc_ok;
1174 }
1175
1176 return bfd_reloc_continue;
1177 }
1178 \f
1179 /* Copy the program header and other data from one object module to
1180 another. */
1181
1182 bfd_boolean
1183 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1184 {
1185 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1186 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1187 return TRUE;
1188
1189 if (!elf_flags_init (obfd))
1190 {
1191 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1192 elf_flags_init (obfd) = TRUE;
1193 }
1194
1195 elf_gp (obfd) = elf_gp (ibfd);
1196
1197 /* Also copy the EI_OSABI field. */
1198 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1199 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1200
1201 /* Copy object attributes. */
1202 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1203 return TRUE;
1204 }
1205
1206 static const char *
1207 get_segment_type (unsigned int p_type)
1208 {
1209 const char *pt;
1210 switch (p_type)
1211 {
1212 case PT_NULL: pt = "NULL"; break;
1213 case PT_LOAD: pt = "LOAD"; break;
1214 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1215 case PT_INTERP: pt = "INTERP"; break;
1216 case PT_NOTE: pt = "NOTE"; break;
1217 case PT_SHLIB: pt = "SHLIB"; break;
1218 case PT_PHDR: pt = "PHDR"; break;
1219 case PT_TLS: pt = "TLS"; break;
1220 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1221 case PT_GNU_STACK: pt = "STACK"; break;
1222 case PT_GNU_RELRO: pt = "RELRO"; break;
1223 default: pt = NULL; break;
1224 }
1225 return pt;
1226 }
1227
1228 /* Print out the program headers. */
1229
1230 bfd_boolean
1231 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1232 {
1233 FILE *f = (FILE *) farg;
1234 Elf_Internal_Phdr *p;
1235 asection *s;
1236 bfd_byte *dynbuf = NULL;
1237
1238 p = elf_tdata (abfd)->phdr;
1239 if (p != NULL)
1240 {
1241 unsigned int i, c;
1242
1243 fprintf (f, _("\nProgram Header:\n"));
1244 c = elf_elfheader (abfd)->e_phnum;
1245 for (i = 0; i < c; i++, p++)
1246 {
1247 const char *pt = get_segment_type (p->p_type);
1248 char buf[20];
1249
1250 if (pt == NULL)
1251 {
1252 sprintf (buf, "0x%lx", p->p_type);
1253 pt = buf;
1254 }
1255 fprintf (f, "%8s off 0x", pt);
1256 bfd_fprintf_vma (abfd, f, p->p_offset);
1257 fprintf (f, " vaddr 0x");
1258 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1259 fprintf (f, " paddr 0x");
1260 bfd_fprintf_vma (abfd, f, p->p_paddr);
1261 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1262 fprintf (f, " filesz 0x");
1263 bfd_fprintf_vma (abfd, f, p->p_filesz);
1264 fprintf (f, " memsz 0x");
1265 bfd_fprintf_vma (abfd, f, p->p_memsz);
1266 fprintf (f, " flags %c%c%c",
1267 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1268 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1269 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1270 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1271 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1272 fprintf (f, "\n");
1273 }
1274 }
1275
1276 s = bfd_get_section_by_name (abfd, ".dynamic");
1277 if (s != NULL)
1278 {
1279 unsigned int elfsec;
1280 unsigned long shlink;
1281 bfd_byte *extdyn, *extdynend;
1282 size_t extdynsize;
1283 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1284
1285 fprintf (f, _("\nDynamic Section:\n"));
1286
1287 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1288 goto error_return;
1289
1290 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1291 if (elfsec == SHN_BAD)
1292 goto error_return;
1293 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1294
1295 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1296 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1297
1298 extdyn = dynbuf;
1299 /* PR 17512: file: 6f427532. */
1300 if (s->size < extdynsize)
1301 goto error_return;
1302 extdynend = extdyn + s->size;
1303 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1304 Fix range check. */
1305 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1306 {
1307 Elf_Internal_Dyn dyn;
1308 const char *name = "";
1309 char ab[20];
1310 bfd_boolean stringp;
1311 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1312
1313 (*swap_dyn_in) (abfd, extdyn, &dyn);
1314
1315 if (dyn.d_tag == DT_NULL)
1316 break;
1317
1318 stringp = FALSE;
1319 switch (dyn.d_tag)
1320 {
1321 default:
1322 if (bed->elf_backend_get_target_dtag)
1323 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1324
1325 if (!strcmp (name, ""))
1326 {
1327 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1328 name = ab;
1329 }
1330 break;
1331
1332 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1333 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1334 case DT_PLTGOT: name = "PLTGOT"; break;
1335 case DT_HASH: name = "HASH"; break;
1336 case DT_STRTAB: name = "STRTAB"; break;
1337 case DT_SYMTAB: name = "SYMTAB"; break;
1338 case DT_RELA: name = "RELA"; break;
1339 case DT_RELASZ: name = "RELASZ"; break;
1340 case DT_RELAENT: name = "RELAENT"; break;
1341 case DT_STRSZ: name = "STRSZ"; break;
1342 case DT_SYMENT: name = "SYMENT"; break;
1343 case DT_INIT: name = "INIT"; break;
1344 case DT_FINI: name = "FINI"; break;
1345 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1346 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1347 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1348 case DT_REL: name = "REL"; break;
1349 case DT_RELSZ: name = "RELSZ"; break;
1350 case DT_RELENT: name = "RELENT"; break;
1351 case DT_PLTREL: name = "PLTREL"; break;
1352 case DT_DEBUG: name = "DEBUG"; break;
1353 case DT_TEXTREL: name = "TEXTREL"; break;
1354 case DT_JMPREL: name = "JMPREL"; break;
1355 case DT_BIND_NOW: name = "BIND_NOW"; break;
1356 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1357 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1358 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1359 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1360 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1361 case DT_FLAGS: name = "FLAGS"; break;
1362 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1363 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1364 case DT_CHECKSUM: name = "CHECKSUM"; break;
1365 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1366 case DT_MOVEENT: name = "MOVEENT"; break;
1367 case DT_MOVESZ: name = "MOVESZ"; break;
1368 case DT_FEATURE: name = "FEATURE"; break;
1369 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1370 case DT_SYMINSZ: name = "SYMINSZ"; break;
1371 case DT_SYMINENT: name = "SYMINENT"; break;
1372 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1373 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1374 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1375 case DT_PLTPAD: name = "PLTPAD"; break;
1376 case DT_MOVETAB: name = "MOVETAB"; break;
1377 case DT_SYMINFO: name = "SYMINFO"; break;
1378 case DT_RELACOUNT: name = "RELACOUNT"; break;
1379 case DT_RELCOUNT: name = "RELCOUNT"; break;
1380 case DT_FLAGS_1: name = "FLAGS_1"; break;
1381 case DT_VERSYM: name = "VERSYM"; break;
1382 case DT_VERDEF: name = "VERDEF"; break;
1383 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1384 case DT_VERNEED: name = "VERNEED"; break;
1385 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1386 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1387 case DT_USED: name = "USED"; break;
1388 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1389 case DT_GNU_HASH: name = "GNU_HASH"; break;
1390 }
1391
1392 fprintf (f, " %-20s ", name);
1393 if (! stringp)
1394 {
1395 fprintf (f, "0x");
1396 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1397 }
1398 else
1399 {
1400 const char *string;
1401 unsigned int tagv = dyn.d_un.d_val;
1402
1403 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1404 if (string == NULL)
1405 goto error_return;
1406 fprintf (f, "%s", string);
1407 }
1408 fprintf (f, "\n");
1409 }
1410
1411 free (dynbuf);
1412 dynbuf = NULL;
1413 }
1414
1415 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1416 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1417 {
1418 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1419 return FALSE;
1420 }
1421
1422 if (elf_dynverdef (abfd) != 0)
1423 {
1424 Elf_Internal_Verdef *t;
1425
1426 fprintf (f, _("\nVersion definitions:\n"));
1427 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1428 {
1429 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1430 t->vd_flags, t->vd_hash,
1431 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1432 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1433 {
1434 Elf_Internal_Verdaux *a;
1435
1436 fprintf (f, "\t");
1437 for (a = t->vd_auxptr->vda_nextptr;
1438 a != NULL;
1439 a = a->vda_nextptr)
1440 fprintf (f, "%s ",
1441 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1442 fprintf (f, "\n");
1443 }
1444 }
1445 }
1446
1447 if (elf_dynverref (abfd) != 0)
1448 {
1449 Elf_Internal_Verneed *t;
1450
1451 fprintf (f, _("\nVersion References:\n"));
1452 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1453 {
1454 Elf_Internal_Vernaux *a;
1455
1456 fprintf (f, _(" required from %s:\n"),
1457 t->vn_filename ? t->vn_filename : "<corrupt>");
1458 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1459 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1460 a->vna_flags, a->vna_other,
1461 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1462 }
1463 }
1464
1465 return TRUE;
1466
1467 error_return:
1468 if (dynbuf != NULL)
1469 free (dynbuf);
1470 return FALSE;
1471 }
1472
1473 /* Get version string. */
1474
1475 const char *
1476 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1477 bfd_boolean *hidden)
1478 {
1479 const char *version_string = NULL;
1480 if (elf_dynversym (abfd) != 0
1481 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1482 {
1483 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1484
1485 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1486 vernum &= VERSYM_VERSION;
1487
1488 if (vernum == 0)
1489 version_string = "";
1490 else if (vernum == 1)
1491 version_string = "Base";
1492 else if (vernum <= elf_tdata (abfd)->cverdefs)
1493 version_string =
1494 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1495 else
1496 {
1497 Elf_Internal_Verneed *t;
1498
1499 version_string = "";
1500 for (t = elf_tdata (abfd)->verref;
1501 t != NULL;
1502 t = t->vn_nextref)
1503 {
1504 Elf_Internal_Vernaux *a;
1505
1506 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1507 {
1508 if (a->vna_other == vernum)
1509 {
1510 version_string = a->vna_nodename;
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 }
1517 return version_string;
1518 }
1519
1520 /* Display ELF-specific fields of a symbol. */
1521
1522 void
1523 bfd_elf_print_symbol (bfd *abfd,
1524 void *filep,
1525 asymbol *symbol,
1526 bfd_print_symbol_type how)
1527 {
1528 FILE *file = (FILE *) filep;
1529 switch (how)
1530 {
1531 case bfd_print_symbol_name:
1532 fprintf (file, "%s", symbol->name);
1533 break;
1534 case bfd_print_symbol_more:
1535 fprintf (file, "elf ");
1536 bfd_fprintf_vma (abfd, file, symbol->value);
1537 fprintf (file, " %lx", (unsigned long) symbol->flags);
1538 break;
1539 case bfd_print_symbol_all:
1540 {
1541 const char *section_name;
1542 const char *name = NULL;
1543 const struct elf_backend_data *bed;
1544 unsigned char st_other;
1545 bfd_vma val;
1546 const char *version_string;
1547 bfd_boolean hidden;
1548
1549 section_name = symbol->section ? symbol->section->name : "(*none*)";
1550
1551 bed = get_elf_backend_data (abfd);
1552 if (bed->elf_backend_print_symbol_all)
1553 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1554
1555 if (name == NULL)
1556 {
1557 name = symbol->name;
1558 bfd_print_symbol_vandf (abfd, file, symbol);
1559 }
1560
1561 fprintf (file, " %s\t", section_name);
1562 /* Print the "other" value for a symbol. For common symbols,
1563 we've already printed the size; now print the alignment.
1564 For other symbols, we have no specified alignment, and
1565 we've printed the address; now print the size. */
1566 if (symbol->section && bfd_is_com_section (symbol->section))
1567 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1568 else
1569 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1570 bfd_fprintf_vma (abfd, file, val);
1571
1572 /* If we have version information, print it. */
1573 version_string = _bfd_elf_get_symbol_version_string (abfd,
1574 symbol,
1575 &hidden);
1576 if (version_string)
1577 {
1578 if (!hidden)
1579 fprintf (file, " %-11s", version_string);
1580 else
1581 {
1582 int i;
1583
1584 fprintf (file, " (%s)", version_string);
1585 for (i = 10 - strlen (version_string); i > 0; --i)
1586 putc (' ', file);
1587 }
1588 }
1589
1590 /* If the st_other field is not zero, print it. */
1591 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1592
1593 switch (st_other)
1594 {
1595 case 0: break;
1596 case STV_INTERNAL: fprintf (file, " .internal"); break;
1597 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1598 case STV_PROTECTED: fprintf (file, " .protected"); break;
1599 default:
1600 /* Some other non-defined flags are also present, so print
1601 everything hex. */
1602 fprintf (file, " 0x%02x", (unsigned int) st_other);
1603 }
1604
1605 fprintf (file, " %s", name);
1606 }
1607 break;
1608 }
1609 }
1610
1611 /* Allocate an ELF string table--force the first byte to be zero. */
1612
1613 struct bfd_strtab_hash *
1614 _bfd_elf_stringtab_init (void)
1615 {
1616 struct bfd_strtab_hash *ret;
1617
1618 ret = _bfd_stringtab_init ();
1619 if (ret != NULL)
1620 {
1621 bfd_size_type loc;
1622
1623 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1624 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1625 if (loc == (bfd_size_type) -1)
1626 {
1627 _bfd_stringtab_free (ret);
1628 ret = NULL;
1629 }
1630 }
1631 return ret;
1632 }
1633 \f
1634 /* ELF .o/exec file reading */
1635
1636 /* Create a new bfd section from an ELF section header. */
1637
1638 bfd_boolean
1639 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1640 {
1641 Elf_Internal_Shdr *hdr;
1642 Elf_Internal_Ehdr *ehdr;
1643 const struct elf_backend_data *bed;
1644 const char *name;
1645 bfd_boolean ret = TRUE;
1646 static bfd_boolean * sections_being_created = NULL;
1647 static bfd * sections_being_created_abfd = NULL;
1648 static unsigned int nesting = 0;
1649
1650 if (shindex >= elf_numsections (abfd))
1651 return FALSE;
1652
1653 if (++ nesting > 3)
1654 {
1655 /* PR17512: A corrupt ELF binary might contain a recursive group of
1656 sections, with each the string indicies pointing to the next in the
1657 loop. Detect this here, by refusing to load a section that we are
1658 already in the process of loading. We only trigger this test if
1659 we have nested at least three sections deep as normal ELF binaries
1660 can expect to recurse at least once.
1661
1662 FIXME: It would be better if this array was attached to the bfd,
1663 rather than being held in a static pointer. */
1664
1665 if (sections_being_created_abfd != abfd)
1666 sections_being_created = NULL;
1667 if (sections_being_created == NULL)
1668 {
1669 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1670 sections_being_created = (bfd_boolean *)
1671 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1672 sections_being_created_abfd = abfd;
1673 }
1674 if (sections_being_created [shindex])
1675 {
1676 (*_bfd_error_handler)
1677 (_("%B: warning: loop in section dependencies detected"), abfd);
1678 return FALSE;
1679 }
1680 sections_being_created [shindex] = TRUE;
1681 }
1682
1683 hdr = elf_elfsections (abfd)[shindex];
1684 ehdr = elf_elfheader (abfd);
1685 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1686 hdr->sh_name);
1687 if (name == NULL)
1688 goto fail;
1689
1690 bed = get_elf_backend_data (abfd);
1691 switch (hdr->sh_type)
1692 {
1693 case SHT_NULL:
1694 /* Inactive section. Throw it away. */
1695 goto success;
1696
1697 case SHT_PROGBITS: /* Normal section with contents. */
1698 case SHT_NOBITS: /* .bss section. */
1699 case SHT_HASH: /* .hash section. */
1700 case SHT_NOTE: /* .note section. */
1701 case SHT_INIT_ARRAY: /* .init_array section. */
1702 case SHT_FINI_ARRAY: /* .fini_array section. */
1703 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1704 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1705 case SHT_GNU_HASH: /* .gnu.hash section. */
1706 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1707 goto success;
1708
1709 case SHT_DYNAMIC: /* Dynamic linking information. */
1710 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1711 goto fail;
1712
1713 if (hdr->sh_link > elf_numsections (abfd))
1714 {
1715 /* PR 10478: Accept Solaris binaries with a sh_link
1716 field set to SHN_BEFORE or SHN_AFTER. */
1717 switch (bfd_get_arch (abfd))
1718 {
1719 case bfd_arch_i386:
1720 case bfd_arch_sparc:
1721 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1722 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1723 break;
1724 /* Otherwise fall through. */
1725 default:
1726 goto fail;
1727 }
1728 }
1729 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1730 goto fail;
1731 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1732 {
1733 Elf_Internal_Shdr *dynsymhdr;
1734
1735 /* The shared libraries distributed with hpux11 have a bogus
1736 sh_link field for the ".dynamic" section. Find the
1737 string table for the ".dynsym" section instead. */
1738 if (elf_dynsymtab (abfd) != 0)
1739 {
1740 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1741 hdr->sh_link = dynsymhdr->sh_link;
1742 }
1743 else
1744 {
1745 unsigned int i, num_sec;
1746
1747 num_sec = elf_numsections (abfd);
1748 for (i = 1; i < num_sec; i++)
1749 {
1750 dynsymhdr = elf_elfsections (abfd)[i];
1751 if (dynsymhdr->sh_type == SHT_DYNSYM)
1752 {
1753 hdr->sh_link = dynsymhdr->sh_link;
1754 break;
1755 }
1756 }
1757 }
1758 }
1759 goto success;
1760
1761 case SHT_SYMTAB: /* A symbol table. */
1762 if (elf_onesymtab (abfd) == shindex)
1763 goto success;
1764
1765 if (hdr->sh_entsize != bed->s->sizeof_sym)
1766 goto fail;
1767
1768 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1769 {
1770 if (hdr->sh_size != 0)
1771 goto fail;
1772 /* Some assemblers erroneously set sh_info to one with a
1773 zero sh_size. ld sees this as a global symbol count
1774 of (unsigned) -1. Fix it here. */
1775 hdr->sh_info = 0;
1776 goto success;
1777 }
1778
1779 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1780 elf_onesymtab (abfd) = shindex;
1781 elf_tdata (abfd)->symtab_hdr = *hdr;
1782 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1783 abfd->flags |= HAS_SYMS;
1784
1785 /* Sometimes a shared object will map in the symbol table. If
1786 SHF_ALLOC is set, and this is a shared object, then we also
1787 treat this section as a BFD section. We can not base the
1788 decision purely on SHF_ALLOC, because that flag is sometimes
1789 set in a relocatable object file, which would confuse the
1790 linker. */
1791 if ((hdr->sh_flags & SHF_ALLOC) != 0
1792 && (abfd->flags & DYNAMIC) != 0
1793 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1794 shindex))
1795 goto fail;
1796
1797 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1798 can't read symbols without that section loaded as well. It
1799 is most likely specified by the next section header. */
1800 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1801 {
1802 unsigned int i, num_sec;
1803
1804 num_sec = elf_numsections (abfd);
1805 for (i = shindex + 1; i < num_sec; i++)
1806 {
1807 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1808 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1809 && hdr2->sh_link == shindex)
1810 break;
1811 }
1812 if (i == num_sec)
1813 for (i = 1; i < shindex; i++)
1814 {
1815 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1816 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1817 && hdr2->sh_link == shindex)
1818 break;
1819 }
1820 if (i != shindex)
1821 ret = bfd_section_from_shdr (abfd, i);
1822 }
1823 goto success;
1824
1825 case SHT_DYNSYM: /* A dynamic symbol table. */
1826 if (elf_dynsymtab (abfd) == shindex)
1827 goto success;
1828
1829 if (hdr->sh_entsize != bed->s->sizeof_sym)
1830 goto fail;
1831
1832 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1833 {
1834 if (hdr->sh_size != 0)
1835 goto fail;
1836
1837 /* Some linkers erroneously set sh_info to one with a
1838 zero sh_size. ld sees this as a global symbol count
1839 of (unsigned) -1. Fix it here. */
1840 hdr->sh_info = 0;
1841 goto success;
1842 }
1843
1844 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1845 elf_dynsymtab (abfd) = shindex;
1846 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1847 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1848 abfd->flags |= HAS_SYMS;
1849
1850 /* Besides being a symbol table, we also treat this as a regular
1851 section, so that objcopy can handle it. */
1852 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1853 goto success;
1854
1855 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
1856 if (elf_symtab_shndx (abfd) == shindex)
1857 goto success;
1858
1859 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1860 elf_symtab_shndx (abfd) = shindex;
1861 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1862 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1863 goto success;
1864
1865 case SHT_STRTAB: /* A string table. */
1866 if (hdr->bfd_section != NULL)
1867 goto success;
1868
1869 if (ehdr->e_shstrndx == shindex)
1870 {
1871 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1872 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1873 goto success;
1874 }
1875
1876 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1877 {
1878 symtab_strtab:
1879 elf_tdata (abfd)->strtab_hdr = *hdr;
1880 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1881 goto success;
1882 }
1883
1884 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1885 {
1886 dynsymtab_strtab:
1887 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1888 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1889 elf_elfsections (abfd)[shindex] = hdr;
1890 /* We also treat this as a regular section, so that objcopy
1891 can handle it. */
1892 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1893 shindex);
1894 goto success;
1895 }
1896
1897 /* If the string table isn't one of the above, then treat it as a
1898 regular section. We need to scan all the headers to be sure,
1899 just in case this strtab section appeared before the above. */
1900 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1901 {
1902 unsigned int i, num_sec;
1903
1904 num_sec = elf_numsections (abfd);
1905 for (i = 1; i < num_sec; i++)
1906 {
1907 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1908 if (hdr2->sh_link == shindex)
1909 {
1910 /* Prevent endless recursion on broken objects. */
1911 if (i == shindex)
1912 goto fail;
1913 if (! bfd_section_from_shdr (abfd, i))
1914 goto fail;
1915 if (elf_onesymtab (abfd) == i)
1916 goto symtab_strtab;
1917 if (elf_dynsymtab (abfd) == i)
1918 goto dynsymtab_strtab;
1919 }
1920 }
1921 }
1922 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1923 goto success;
1924
1925 case SHT_REL:
1926 case SHT_RELA:
1927 /* *These* do a lot of work -- but build no sections! */
1928 {
1929 asection *target_sect;
1930 Elf_Internal_Shdr *hdr2, **p_hdr;
1931 unsigned int num_sec = elf_numsections (abfd);
1932 struct bfd_elf_section_data *esdt;
1933 bfd_size_type amt;
1934
1935 if (hdr->sh_entsize
1936 != (bfd_size_type) (hdr->sh_type == SHT_REL
1937 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1938 goto fail;
1939
1940 /* Check for a bogus link to avoid crashing. */
1941 if (hdr->sh_link >= num_sec)
1942 {
1943 ((*_bfd_error_handler)
1944 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1945 abfd, hdr->sh_link, name, shindex));
1946 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1947 shindex);
1948 goto success;
1949 }
1950
1951 /* For some incomprehensible reason Oracle distributes
1952 libraries for Solaris in which some of the objects have
1953 bogus sh_link fields. It would be nice if we could just
1954 reject them, but, unfortunately, some people need to use
1955 them. We scan through the section headers; if we find only
1956 one suitable symbol table, we clobber the sh_link to point
1957 to it. I hope this doesn't break anything.
1958
1959 Don't do it on executable nor shared library. */
1960 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1961 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1962 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1963 {
1964 unsigned int scan;
1965 int found;
1966
1967 found = 0;
1968 for (scan = 1; scan < num_sec; scan++)
1969 {
1970 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1971 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1972 {
1973 if (found != 0)
1974 {
1975 found = 0;
1976 break;
1977 }
1978 found = scan;
1979 }
1980 }
1981 if (found != 0)
1982 hdr->sh_link = found;
1983 }
1984
1985 /* Get the symbol table. */
1986 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1987 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1988 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1989 goto fail;
1990
1991 /* If this reloc section does not use the main symbol table we
1992 don't treat it as a reloc section. BFD can't adequately
1993 represent such a section, so at least for now, we don't
1994 try. We just present it as a normal section. We also
1995 can't use it as a reloc section if it points to the null
1996 section, an invalid section, another reloc section, or its
1997 sh_link points to the null section. */
1998 if (hdr->sh_link != elf_onesymtab (abfd)
1999 || hdr->sh_link == SHN_UNDEF
2000 || hdr->sh_info == SHN_UNDEF
2001 || hdr->sh_info >= num_sec
2002 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2003 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2004 {
2005 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2006 shindex);
2007 goto success;
2008 }
2009
2010 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2011 goto fail;
2012
2013 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2014 if (target_sect == NULL)
2015 goto fail;
2016
2017 esdt = elf_section_data (target_sect);
2018 if (hdr->sh_type == SHT_RELA)
2019 p_hdr = &esdt->rela.hdr;
2020 else
2021 p_hdr = &esdt->rel.hdr;
2022
2023 /* PR 17512: file: 0b4f81b7. */
2024 if (*p_hdr != NULL)
2025 goto fail;
2026 amt = sizeof (*hdr2);
2027 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
2028 if (hdr2 == NULL)
2029 goto fail;
2030 *hdr2 = *hdr;
2031 *p_hdr = hdr2;
2032 elf_elfsections (abfd)[shindex] = hdr2;
2033 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2034 target_sect->flags |= SEC_RELOC;
2035 target_sect->relocation = NULL;
2036 target_sect->rel_filepos = hdr->sh_offset;
2037 /* In the section to which the relocations apply, mark whether
2038 its relocations are of the REL or RELA variety. */
2039 if (hdr->sh_size != 0)
2040 {
2041 if (hdr->sh_type == SHT_RELA)
2042 target_sect->use_rela_p = 1;
2043 }
2044 abfd->flags |= HAS_RELOC;
2045 goto success;
2046 }
2047
2048 case SHT_GNU_verdef:
2049 elf_dynverdef (abfd) = shindex;
2050 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2051 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2052 goto success;
2053
2054 case SHT_GNU_versym:
2055 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2056 goto fail;
2057
2058 elf_dynversym (abfd) = shindex;
2059 elf_tdata (abfd)->dynversym_hdr = *hdr;
2060 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2061 goto success;
2062
2063 case SHT_GNU_verneed:
2064 elf_dynverref (abfd) = shindex;
2065 elf_tdata (abfd)->dynverref_hdr = *hdr;
2066 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2067 goto success;
2068
2069 case SHT_SHLIB:
2070 goto success;
2071
2072 case SHT_GROUP:
2073 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2074 goto fail;
2075
2076 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2077 goto fail;
2078
2079 if (hdr->contents != NULL)
2080 {
2081 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2082 unsigned int n_elt = hdr->sh_size / sizeof (* idx);
2083 asection *s;
2084
2085 if (n_elt == 0)
2086 goto fail;
2087 if (idx->flags & GRP_COMDAT)
2088 hdr->bfd_section->flags
2089 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2090
2091 /* We try to keep the same section order as it comes in. */
2092 idx += n_elt;
2093
2094 while (--n_elt != 0)
2095 {
2096 --idx;
2097
2098 if (idx->shdr != NULL
2099 && (s = idx->shdr->bfd_section) != NULL
2100 && elf_next_in_group (s) != NULL)
2101 {
2102 elf_next_in_group (hdr->bfd_section) = s;
2103 break;
2104 }
2105 }
2106 }
2107 goto success;
2108
2109 default:
2110 /* Possibly an attributes section. */
2111 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2112 || hdr->sh_type == bed->obj_attrs_section_type)
2113 {
2114 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2115 goto fail;
2116 _bfd_elf_parse_attributes (abfd, hdr);
2117 goto success;
2118 }
2119
2120 /* Check for any processor-specific section types. */
2121 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2122 goto success;
2123
2124 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2125 {
2126 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2127 /* FIXME: How to properly handle allocated section reserved
2128 for applications? */
2129 (*_bfd_error_handler)
2130 (_("%B: don't know how to handle allocated, application "
2131 "specific section `%s' [0x%8x]"),
2132 abfd, name, hdr->sh_type);
2133 else
2134 {
2135 /* Allow sections reserved for applications. */
2136 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2137 shindex);
2138 goto success;
2139 }
2140 }
2141 else if (hdr->sh_type >= SHT_LOPROC
2142 && hdr->sh_type <= SHT_HIPROC)
2143 /* FIXME: We should handle this section. */
2144 (*_bfd_error_handler)
2145 (_("%B: don't know how to handle processor specific section "
2146 "`%s' [0x%8x]"),
2147 abfd, name, hdr->sh_type);
2148 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2149 {
2150 /* Unrecognised OS-specific sections. */
2151 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2152 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2153 required to correctly process the section and the file should
2154 be rejected with an error message. */
2155 (*_bfd_error_handler)
2156 (_("%B: don't know how to handle OS specific section "
2157 "`%s' [0x%8x]"),
2158 abfd, name, hdr->sh_type);
2159 else
2160 {
2161 /* Otherwise it should be processed. */
2162 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2163 goto success;
2164 }
2165 }
2166 else
2167 /* FIXME: We should handle this section. */
2168 (*_bfd_error_handler)
2169 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2170 abfd, name, hdr->sh_type);
2171
2172 goto fail;
2173 }
2174
2175 fail:
2176 ret = FALSE;
2177 success:
2178 if (sections_being_created && sections_being_created_abfd == abfd)
2179 sections_being_created [shindex] = FALSE;
2180 if (-- nesting == 0)
2181 {
2182 sections_being_created = NULL;
2183 sections_being_created_abfd = abfd;
2184 }
2185 return ret;
2186 }
2187
2188 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2189
2190 Elf_Internal_Sym *
2191 bfd_sym_from_r_symndx (struct sym_cache *cache,
2192 bfd *abfd,
2193 unsigned long r_symndx)
2194 {
2195 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2196
2197 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2198 {
2199 Elf_Internal_Shdr *symtab_hdr;
2200 unsigned char esym[sizeof (Elf64_External_Sym)];
2201 Elf_External_Sym_Shndx eshndx;
2202
2203 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2204 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2205 &cache->sym[ent], esym, &eshndx) == NULL)
2206 return NULL;
2207
2208 if (cache->abfd != abfd)
2209 {
2210 memset (cache->indx, -1, sizeof (cache->indx));
2211 cache->abfd = abfd;
2212 }
2213 cache->indx[ent] = r_symndx;
2214 }
2215
2216 return &cache->sym[ent];
2217 }
2218
2219 /* Given an ELF section number, retrieve the corresponding BFD
2220 section. */
2221
2222 asection *
2223 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2224 {
2225 if (sec_index >= elf_numsections (abfd))
2226 return NULL;
2227 return elf_elfsections (abfd)[sec_index]->bfd_section;
2228 }
2229
2230 static const struct bfd_elf_special_section special_sections_b[] =
2231 {
2232 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2233 { NULL, 0, 0, 0, 0 }
2234 };
2235
2236 static const struct bfd_elf_special_section special_sections_c[] =
2237 {
2238 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2239 { NULL, 0, 0, 0, 0 }
2240 };
2241
2242 static const struct bfd_elf_special_section special_sections_d[] =
2243 {
2244 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2245 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2246 /* There are more DWARF sections than these, but they needn't be added here
2247 unless you have to cope with broken compilers that don't emit section
2248 attributes or you want to help the user writing assembler. */
2249 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2250 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2251 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2252 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2253 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2254 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2255 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2256 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2257 { NULL, 0, 0, 0, 0 }
2258 };
2259
2260 static const struct bfd_elf_special_section special_sections_f[] =
2261 {
2262 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2263 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2264 { NULL, 0, 0, 0, 0 }
2265 };
2266
2267 static const struct bfd_elf_special_section special_sections_g[] =
2268 {
2269 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2270 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2271 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2272 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2273 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2274 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2275 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2276 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2277 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2278 { NULL, 0, 0, 0, 0 }
2279 };
2280
2281 static const struct bfd_elf_special_section special_sections_h[] =
2282 {
2283 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2284 { NULL, 0, 0, 0, 0 }
2285 };
2286
2287 static const struct bfd_elf_special_section special_sections_i[] =
2288 {
2289 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2290 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2291 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2292 { NULL, 0, 0, 0, 0 }
2293 };
2294
2295 static const struct bfd_elf_special_section special_sections_l[] =
2296 {
2297 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2298 { NULL, 0, 0, 0, 0 }
2299 };
2300
2301 static const struct bfd_elf_special_section special_sections_n[] =
2302 {
2303 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2304 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2305 { NULL, 0, 0, 0, 0 }
2306 };
2307
2308 static const struct bfd_elf_special_section special_sections_p[] =
2309 {
2310 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2311 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2312 { NULL, 0, 0, 0, 0 }
2313 };
2314
2315 static const struct bfd_elf_special_section special_sections_r[] =
2316 {
2317 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2318 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2319 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2320 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2321 { NULL, 0, 0, 0, 0 }
2322 };
2323
2324 static const struct bfd_elf_special_section special_sections_s[] =
2325 {
2326 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2327 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2328 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2329 /* See struct bfd_elf_special_section declaration for the semantics of
2330 this special case where .prefix_length != strlen (.prefix). */
2331 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2332 { NULL, 0, 0, 0, 0 }
2333 };
2334
2335 static const struct bfd_elf_special_section special_sections_t[] =
2336 {
2337 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2338 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2339 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2340 { NULL, 0, 0, 0, 0 }
2341 };
2342
2343 static const struct bfd_elf_special_section special_sections_z[] =
2344 {
2345 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2346 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2347 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2348 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2349 { NULL, 0, 0, 0, 0 }
2350 };
2351
2352 static const struct bfd_elf_special_section * const special_sections[] =
2353 {
2354 special_sections_b, /* 'b' */
2355 special_sections_c, /* 'c' */
2356 special_sections_d, /* 'd' */
2357 NULL, /* 'e' */
2358 special_sections_f, /* 'f' */
2359 special_sections_g, /* 'g' */
2360 special_sections_h, /* 'h' */
2361 special_sections_i, /* 'i' */
2362 NULL, /* 'j' */
2363 NULL, /* 'k' */
2364 special_sections_l, /* 'l' */
2365 NULL, /* 'm' */
2366 special_sections_n, /* 'n' */
2367 NULL, /* 'o' */
2368 special_sections_p, /* 'p' */
2369 NULL, /* 'q' */
2370 special_sections_r, /* 'r' */
2371 special_sections_s, /* 's' */
2372 special_sections_t, /* 't' */
2373 NULL, /* 'u' */
2374 NULL, /* 'v' */
2375 NULL, /* 'w' */
2376 NULL, /* 'x' */
2377 NULL, /* 'y' */
2378 special_sections_z /* 'z' */
2379 };
2380
2381 const struct bfd_elf_special_section *
2382 _bfd_elf_get_special_section (const char *name,
2383 const struct bfd_elf_special_section *spec,
2384 unsigned int rela)
2385 {
2386 int i;
2387 int len;
2388
2389 len = strlen (name);
2390
2391 for (i = 0; spec[i].prefix != NULL; i++)
2392 {
2393 int suffix_len;
2394 int prefix_len = spec[i].prefix_length;
2395
2396 if (len < prefix_len)
2397 continue;
2398 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2399 continue;
2400
2401 suffix_len = spec[i].suffix_length;
2402 if (suffix_len <= 0)
2403 {
2404 if (name[prefix_len] != 0)
2405 {
2406 if (suffix_len == 0)
2407 continue;
2408 if (name[prefix_len] != '.'
2409 && (suffix_len == -2
2410 || (rela && spec[i].type == SHT_REL)))
2411 continue;
2412 }
2413 }
2414 else
2415 {
2416 if (len < prefix_len + suffix_len)
2417 continue;
2418 if (memcmp (name + len - suffix_len,
2419 spec[i].prefix + prefix_len,
2420 suffix_len) != 0)
2421 continue;
2422 }
2423 return &spec[i];
2424 }
2425
2426 return NULL;
2427 }
2428
2429 const struct bfd_elf_special_section *
2430 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2431 {
2432 int i;
2433 const struct bfd_elf_special_section *spec;
2434 const struct elf_backend_data *bed;
2435
2436 /* See if this is one of the special sections. */
2437 if (sec->name == NULL)
2438 return NULL;
2439
2440 bed = get_elf_backend_data (abfd);
2441 spec = bed->special_sections;
2442 if (spec)
2443 {
2444 spec = _bfd_elf_get_special_section (sec->name,
2445 bed->special_sections,
2446 sec->use_rela_p);
2447 if (spec != NULL)
2448 return spec;
2449 }
2450
2451 if (sec->name[0] != '.')
2452 return NULL;
2453
2454 i = sec->name[1] - 'b';
2455 if (i < 0 || i > 'z' - 'b')
2456 return NULL;
2457
2458 spec = special_sections[i];
2459
2460 if (spec == NULL)
2461 return NULL;
2462
2463 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2464 }
2465
2466 bfd_boolean
2467 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2468 {
2469 struct bfd_elf_section_data *sdata;
2470 const struct elf_backend_data *bed;
2471 const struct bfd_elf_special_section *ssect;
2472
2473 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2474 if (sdata == NULL)
2475 {
2476 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2477 sizeof (*sdata));
2478 if (sdata == NULL)
2479 return FALSE;
2480 sec->used_by_bfd = sdata;
2481 }
2482
2483 /* Indicate whether or not this section should use RELA relocations. */
2484 bed = get_elf_backend_data (abfd);
2485 sec->use_rela_p = bed->default_use_rela_p;
2486
2487 /* When we read a file, we don't need to set ELF section type and
2488 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2489 anyway. We will set ELF section type and flags for all linker
2490 created sections. If user specifies BFD section flags, we will
2491 set ELF section type and flags based on BFD section flags in
2492 elf_fake_sections. Special handling for .init_array/.fini_array
2493 output sections since they may contain .ctors/.dtors input
2494 sections. We don't want _bfd_elf_init_private_section_data to
2495 copy ELF section type from .ctors/.dtors input sections. */
2496 if (abfd->direction != read_direction
2497 || (sec->flags & SEC_LINKER_CREATED) != 0)
2498 {
2499 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2500 if (ssect != NULL
2501 && (!sec->flags
2502 || (sec->flags & SEC_LINKER_CREATED) != 0
2503 || ssect->type == SHT_INIT_ARRAY
2504 || ssect->type == SHT_FINI_ARRAY))
2505 {
2506 elf_section_type (sec) = ssect->type;
2507 elf_section_flags (sec) = ssect->attr;
2508 }
2509 }
2510
2511 return _bfd_generic_new_section_hook (abfd, sec);
2512 }
2513
2514 /* Create a new bfd section from an ELF program header.
2515
2516 Since program segments have no names, we generate a synthetic name
2517 of the form segment<NUM>, where NUM is generally the index in the
2518 program header table. For segments that are split (see below) we
2519 generate the names segment<NUM>a and segment<NUM>b.
2520
2521 Note that some program segments may have a file size that is different than
2522 (less than) the memory size. All this means is that at execution the
2523 system must allocate the amount of memory specified by the memory size,
2524 but only initialize it with the first "file size" bytes read from the
2525 file. This would occur for example, with program segments consisting
2526 of combined data+bss.
2527
2528 To handle the above situation, this routine generates TWO bfd sections
2529 for the single program segment. The first has the length specified by
2530 the file size of the segment, and the second has the length specified
2531 by the difference between the two sizes. In effect, the segment is split
2532 into its initialized and uninitialized parts.
2533
2534 */
2535
2536 bfd_boolean
2537 _bfd_elf_make_section_from_phdr (bfd *abfd,
2538 Elf_Internal_Phdr *hdr,
2539 int hdr_index,
2540 const char *type_name)
2541 {
2542 asection *newsect;
2543 char *name;
2544 char namebuf[64];
2545 size_t len;
2546 int split;
2547
2548 split = ((hdr->p_memsz > 0)
2549 && (hdr->p_filesz > 0)
2550 && (hdr->p_memsz > hdr->p_filesz));
2551
2552 if (hdr->p_filesz > 0)
2553 {
2554 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2555 len = strlen (namebuf) + 1;
2556 name = (char *) bfd_alloc (abfd, len);
2557 if (!name)
2558 return FALSE;
2559 memcpy (name, namebuf, len);
2560 newsect = bfd_make_section (abfd, name);
2561 if (newsect == NULL)
2562 return FALSE;
2563 newsect->vma = hdr->p_vaddr;
2564 newsect->lma = hdr->p_paddr;
2565 newsect->size = hdr->p_filesz;
2566 newsect->filepos = hdr->p_offset;
2567 newsect->flags |= SEC_HAS_CONTENTS;
2568 newsect->alignment_power = bfd_log2 (hdr->p_align);
2569 if (hdr->p_type == PT_LOAD)
2570 {
2571 newsect->flags |= SEC_ALLOC;
2572 newsect->flags |= SEC_LOAD;
2573 if (hdr->p_flags & PF_X)
2574 {
2575 /* FIXME: all we known is that it has execute PERMISSION,
2576 may be data. */
2577 newsect->flags |= SEC_CODE;
2578 }
2579 }
2580 if (!(hdr->p_flags & PF_W))
2581 {
2582 newsect->flags |= SEC_READONLY;
2583 }
2584 }
2585
2586 if (hdr->p_memsz > hdr->p_filesz)
2587 {
2588 bfd_vma align;
2589
2590 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2591 len = strlen (namebuf) + 1;
2592 name = (char *) bfd_alloc (abfd, len);
2593 if (!name)
2594 return FALSE;
2595 memcpy (name, namebuf, len);
2596 newsect = bfd_make_section (abfd, name);
2597 if (newsect == NULL)
2598 return FALSE;
2599 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2600 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2601 newsect->size = hdr->p_memsz - hdr->p_filesz;
2602 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2603 align = newsect->vma & -newsect->vma;
2604 if (align == 0 || align > hdr->p_align)
2605 align = hdr->p_align;
2606 newsect->alignment_power = bfd_log2 (align);
2607 if (hdr->p_type == PT_LOAD)
2608 {
2609 /* Hack for gdb. Segments that have not been modified do
2610 not have their contents written to a core file, on the
2611 assumption that a debugger can find the contents in the
2612 executable. We flag this case by setting the fake
2613 section size to zero. Note that "real" bss sections will
2614 always have their contents dumped to the core file. */
2615 if (bfd_get_format (abfd) == bfd_core)
2616 newsect->size = 0;
2617 newsect->flags |= SEC_ALLOC;
2618 if (hdr->p_flags & PF_X)
2619 newsect->flags |= SEC_CODE;
2620 }
2621 if (!(hdr->p_flags & PF_W))
2622 newsect->flags |= SEC_READONLY;
2623 }
2624
2625 return TRUE;
2626 }
2627
2628 bfd_boolean
2629 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2630 {
2631 const struct elf_backend_data *bed;
2632
2633 switch (hdr->p_type)
2634 {
2635 case PT_NULL:
2636 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2637
2638 case PT_LOAD:
2639 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2640
2641 case PT_DYNAMIC:
2642 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2643
2644 case PT_INTERP:
2645 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2646
2647 case PT_NOTE:
2648 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2649 return FALSE;
2650 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2651 return FALSE;
2652 return TRUE;
2653
2654 case PT_SHLIB:
2655 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2656
2657 case PT_PHDR:
2658 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2659
2660 case PT_GNU_EH_FRAME:
2661 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2662 "eh_frame_hdr");
2663
2664 case PT_GNU_STACK:
2665 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2666
2667 case PT_GNU_RELRO:
2668 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2669
2670 default:
2671 /* Check for any processor-specific program segment types. */
2672 bed = get_elf_backend_data (abfd);
2673 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2674 }
2675 }
2676
2677 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2678 REL or RELA. */
2679
2680 Elf_Internal_Shdr *
2681 _bfd_elf_single_rel_hdr (asection *sec)
2682 {
2683 if (elf_section_data (sec)->rel.hdr)
2684 {
2685 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2686 return elf_section_data (sec)->rel.hdr;
2687 }
2688 else
2689 return elf_section_data (sec)->rela.hdr;
2690 }
2691
2692 static bfd_boolean
2693 _bfd_elf_set_reloc_sh_name (bfd *abfd,
2694 Elf_Internal_Shdr *rel_hdr,
2695 const char *sec_name,
2696 bfd_boolean use_rela_p)
2697 {
2698 char *name = (char *) bfd_alloc (abfd,
2699 sizeof ".rela" + strlen (sec_name));
2700 if (name == NULL)
2701 return FALSE;
2702
2703 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
2704 rel_hdr->sh_name =
2705 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2706 FALSE);
2707 if (rel_hdr->sh_name == (unsigned int) -1)
2708 return FALSE;
2709
2710 return TRUE;
2711 }
2712
2713 /* Allocate and initialize a section-header for a new reloc section,
2714 containing relocations against ASECT. It is stored in RELDATA. If
2715 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2716 relocations. */
2717
2718 static bfd_boolean
2719 _bfd_elf_init_reloc_shdr (bfd *abfd,
2720 struct bfd_elf_section_reloc_data *reldata,
2721 const char *sec_name,
2722 bfd_boolean use_rela_p,
2723 bfd_boolean delay_st_name_p)
2724 {
2725 Elf_Internal_Shdr *rel_hdr;
2726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2727 bfd_size_type amt;
2728
2729 amt = sizeof (Elf_Internal_Shdr);
2730 BFD_ASSERT (reldata->hdr == NULL);
2731 rel_hdr = bfd_zalloc (abfd, amt);
2732 reldata->hdr = rel_hdr;
2733
2734 if (delay_st_name_p)
2735 rel_hdr->sh_name = (unsigned int) -1;
2736 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
2737 use_rela_p))
2738 return FALSE;
2739 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2740 rel_hdr->sh_entsize = (use_rela_p
2741 ? bed->s->sizeof_rela
2742 : bed->s->sizeof_rel);
2743 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2744 rel_hdr->sh_flags = 0;
2745 rel_hdr->sh_addr = 0;
2746 rel_hdr->sh_size = 0;
2747 rel_hdr->sh_offset = 0;
2748
2749 return TRUE;
2750 }
2751
2752 /* Return the default section type based on the passed in section flags. */
2753
2754 int
2755 bfd_elf_get_default_section_type (flagword flags)
2756 {
2757 if ((flags & SEC_ALLOC) != 0
2758 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2759 return SHT_NOBITS;
2760 return SHT_PROGBITS;
2761 }
2762
2763 struct fake_section_arg
2764 {
2765 struct bfd_link_info *link_info;
2766 bfd_boolean failed;
2767 };
2768
2769 /* Set up an ELF internal section header for a section. */
2770
2771 static void
2772 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2773 {
2774 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2775 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2776 struct bfd_elf_section_data *esd = elf_section_data (asect);
2777 Elf_Internal_Shdr *this_hdr;
2778 unsigned int sh_type;
2779 const char *name = asect->name;
2780 bfd_boolean delay_st_name_p = FALSE;
2781
2782 if (arg->failed)
2783 {
2784 /* We already failed; just get out of the bfd_map_over_sections
2785 loop. */
2786 return;
2787 }
2788
2789 this_hdr = &esd->this_hdr;
2790
2791 if (arg->link_info)
2792 {
2793 /* ld: compress DWARF debug sections with names: .debug_*. */
2794 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
2795 && (asect->flags & SEC_DEBUGGING)
2796 && name[1] == 'd'
2797 && name[6] == '_')
2798 {
2799 /* Set SEC_ELF_COMPRESS to indicate this section should be
2800 compressed. */
2801 asect->flags |= SEC_ELF_COMPRESS;
2802
2803 /* If this section will be compressed, delay adding setion
2804 name to section name section after it is compressed in
2805 _bfd_elf_assign_file_positions_for_non_load. */
2806 delay_st_name_p = TRUE;
2807 }
2808 }
2809 else if ((asect->flags & SEC_ELF_RENAME))
2810 {
2811 /* objcopy: rename output DWARF debug section. */
2812 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
2813 {
2814 /* When we decompress or compress with SHF_COMPRESSED,
2815 convert section name from .zdebug_* to .debug_* if
2816 needed. */
2817 if (name[1] == 'z')
2818 {
2819 char *new_name = convert_zdebug_to_debug (abfd, name);
2820 if (new_name == NULL)
2821 {
2822 arg->failed = TRUE;
2823 return;
2824 }
2825 name = new_name;
2826 }
2827 }
2828 else if (asect->compress_status == COMPRESS_SECTION_DONE)
2829 {
2830 /* PR binutils/18087: Compression does not always make a
2831 section smaller. So only rename the section when
2832 compression has actually taken place. If input section
2833 name is .zdebug_*, we should never compress it again. */
2834 char *new_name = convert_debug_to_zdebug (abfd, name);
2835 if (new_name == NULL)
2836 {
2837 arg->failed = TRUE;
2838 return;
2839 }
2840 BFD_ASSERT (name[1] != 'z');
2841 name = new_name;
2842 }
2843 }
2844
2845 if (delay_st_name_p)
2846 this_hdr->sh_name = (unsigned int) -1;
2847 else
2848 {
2849 this_hdr->sh_name
2850 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2851 name, FALSE);
2852 if (this_hdr->sh_name == (unsigned int) -1)
2853 {
2854 arg->failed = TRUE;
2855 return;
2856 }
2857 }
2858
2859 /* Don't clear sh_flags. Assembler may set additional bits. */
2860
2861 if ((asect->flags & SEC_ALLOC) != 0
2862 || asect->user_set_vma)
2863 this_hdr->sh_addr = asect->vma;
2864 else
2865 this_hdr->sh_addr = 0;
2866
2867 this_hdr->sh_offset = 0;
2868 this_hdr->sh_size = asect->size;
2869 this_hdr->sh_link = 0;
2870 /* PR 17512: file: 0eb809fe, 8b0535ee. */
2871 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
2872 {
2873 (*_bfd_error_handler)
2874 (_("%B: error: Alignment power %d of section `%A' is too big"),
2875 abfd, asect, asect->alignment_power);
2876 arg->failed = TRUE;
2877 return;
2878 }
2879 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2880 /* The sh_entsize and sh_info fields may have been set already by
2881 copy_private_section_data. */
2882
2883 this_hdr->bfd_section = asect;
2884 this_hdr->contents = NULL;
2885
2886 /* If the section type is unspecified, we set it based on
2887 asect->flags. */
2888 if ((asect->flags & SEC_GROUP) != 0)
2889 sh_type = SHT_GROUP;
2890 else
2891 sh_type = bfd_elf_get_default_section_type (asect->flags);
2892
2893 if (this_hdr->sh_type == SHT_NULL)
2894 this_hdr->sh_type = sh_type;
2895 else if (this_hdr->sh_type == SHT_NOBITS
2896 && sh_type == SHT_PROGBITS
2897 && (asect->flags & SEC_ALLOC) != 0)
2898 {
2899 /* Warn if we are changing a NOBITS section to PROGBITS, but
2900 allow the link to proceed. This can happen when users link
2901 non-bss input sections to bss output sections, or emit data
2902 to a bss output section via a linker script. */
2903 (*_bfd_error_handler)
2904 (_("warning: section `%A' type changed to PROGBITS"), asect);
2905 this_hdr->sh_type = sh_type;
2906 }
2907
2908 switch (this_hdr->sh_type)
2909 {
2910 default:
2911 break;
2912
2913 case SHT_STRTAB:
2914 case SHT_INIT_ARRAY:
2915 case SHT_FINI_ARRAY:
2916 case SHT_PREINIT_ARRAY:
2917 case SHT_NOTE:
2918 case SHT_NOBITS:
2919 case SHT_PROGBITS:
2920 break;
2921
2922 case SHT_HASH:
2923 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2924 break;
2925
2926 case SHT_DYNSYM:
2927 this_hdr->sh_entsize = bed->s->sizeof_sym;
2928 break;
2929
2930 case SHT_DYNAMIC:
2931 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2932 break;
2933
2934 case SHT_RELA:
2935 if (get_elf_backend_data (abfd)->may_use_rela_p)
2936 this_hdr->sh_entsize = bed->s->sizeof_rela;
2937 break;
2938
2939 case SHT_REL:
2940 if (get_elf_backend_data (abfd)->may_use_rel_p)
2941 this_hdr->sh_entsize = bed->s->sizeof_rel;
2942 break;
2943
2944 case SHT_GNU_versym:
2945 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2946 break;
2947
2948 case SHT_GNU_verdef:
2949 this_hdr->sh_entsize = 0;
2950 /* objcopy or strip will copy over sh_info, but may not set
2951 cverdefs. The linker will set cverdefs, but sh_info will be
2952 zero. */
2953 if (this_hdr->sh_info == 0)
2954 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2955 else
2956 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2957 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2958 break;
2959
2960 case SHT_GNU_verneed:
2961 this_hdr->sh_entsize = 0;
2962 /* objcopy or strip will copy over sh_info, but may not set
2963 cverrefs. The linker will set cverrefs, but sh_info will be
2964 zero. */
2965 if (this_hdr->sh_info == 0)
2966 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2967 else
2968 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2969 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2970 break;
2971
2972 case SHT_GROUP:
2973 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2974 break;
2975
2976 case SHT_GNU_HASH:
2977 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2978 break;
2979 }
2980
2981 if ((asect->flags & SEC_ALLOC) != 0)
2982 this_hdr->sh_flags |= SHF_ALLOC;
2983 if ((asect->flags & SEC_READONLY) == 0)
2984 this_hdr->sh_flags |= SHF_WRITE;
2985 if ((asect->flags & SEC_CODE) != 0)
2986 this_hdr->sh_flags |= SHF_EXECINSTR;
2987 if ((asect->flags & SEC_MERGE) != 0)
2988 {
2989 this_hdr->sh_flags |= SHF_MERGE;
2990 this_hdr->sh_entsize = asect->entsize;
2991 if ((asect->flags & SEC_STRINGS) != 0)
2992 this_hdr->sh_flags |= SHF_STRINGS;
2993 }
2994 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2995 this_hdr->sh_flags |= SHF_GROUP;
2996 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2997 {
2998 this_hdr->sh_flags |= SHF_TLS;
2999 if (asect->size == 0
3000 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3001 {
3002 struct bfd_link_order *o = asect->map_tail.link_order;
3003
3004 this_hdr->sh_size = 0;
3005 if (o != NULL)
3006 {
3007 this_hdr->sh_size = o->offset + o->size;
3008 if (this_hdr->sh_size != 0)
3009 this_hdr->sh_type = SHT_NOBITS;
3010 }
3011 }
3012 }
3013 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3014 this_hdr->sh_flags |= SHF_EXCLUDE;
3015
3016 /* If the section has relocs, set up a section header for the
3017 SHT_REL[A] section. If two relocation sections are required for
3018 this section, it is up to the processor-specific back-end to
3019 create the other. */
3020 if ((asect->flags & SEC_RELOC) != 0)
3021 {
3022 /* When doing a relocatable link, create both REL and RELA sections if
3023 needed. */
3024 if (arg->link_info
3025 /* Do the normal setup if we wouldn't create any sections here. */
3026 && esd->rel.count + esd->rela.count > 0
3027 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
3028 {
3029 if (esd->rel.count && esd->rel.hdr == NULL
3030 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE,
3031 delay_st_name_p))
3032 {
3033 arg->failed = TRUE;
3034 return;
3035 }
3036 if (esd->rela.count && esd->rela.hdr == NULL
3037 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE,
3038 delay_st_name_p))
3039 {
3040 arg->failed = TRUE;
3041 return;
3042 }
3043 }
3044 else if (!_bfd_elf_init_reloc_shdr (abfd,
3045 (asect->use_rela_p
3046 ? &esd->rela : &esd->rel),
3047 name,
3048 asect->use_rela_p,
3049 delay_st_name_p))
3050 arg->failed = TRUE;
3051 }
3052
3053 /* Check for processor-specific section types. */
3054 sh_type = this_hdr->sh_type;
3055 if (bed->elf_backend_fake_sections
3056 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3057 arg->failed = TRUE;
3058
3059 if (sh_type == SHT_NOBITS && asect->size != 0)
3060 {
3061 /* Don't change the header type from NOBITS if we are being
3062 called for objcopy --only-keep-debug. */
3063 this_hdr->sh_type = sh_type;
3064 }
3065 }
3066
3067 /* Fill in the contents of a SHT_GROUP section. Called from
3068 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3069 when ELF targets use the generic linker, ld. Called for ld -r
3070 from bfd_elf_final_link. */
3071
3072 void
3073 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3074 {
3075 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3076 asection *elt, *first;
3077 unsigned char *loc;
3078 bfd_boolean gas;
3079
3080 /* Ignore linker created group section. See elfNN_ia64_object_p in
3081 elfxx-ia64.c. */
3082 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3083 || *failedptr)
3084 return;
3085
3086 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3087 {
3088 unsigned long symindx = 0;
3089
3090 /* elf_group_id will have been set up by objcopy and the
3091 generic linker. */
3092 if (elf_group_id (sec) != NULL)
3093 symindx = elf_group_id (sec)->udata.i;
3094
3095 if (symindx == 0)
3096 {
3097 /* If called from the assembler, swap_out_syms will have set up
3098 elf_section_syms. */
3099 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3100 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3101 }
3102 elf_section_data (sec)->this_hdr.sh_info = symindx;
3103 }
3104 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3105 {
3106 /* The ELF backend linker sets sh_info to -2 when the group
3107 signature symbol is global, and thus the index can't be
3108 set until all local symbols are output. */
3109 asection *igroup = elf_sec_group (elf_next_in_group (sec));
3110 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
3111 unsigned long symndx = sec_data->this_hdr.sh_info;
3112 unsigned long extsymoff = 0;
3113 struct elf_link_hash_entry *h;
3114
3115 if (!elf_bad_symtab (igroup->owner))
3116 {
3117 Elf_Internal_Shdr *symtab_hdr;
3118
3119 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3120 extsymoff = symtab_hdr->sh_info;
3121 }
3122 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3123 while (h->root.type == bfd_link_hash_indirect
3124 || h->root.type == bfd_link_hash_warning)
3125 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3126
3127 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3128 }
3129
3130 /* The contents won't be allocated for "ld -r" or objcopy. */
3131 gas = TRUE;
3132 if (sec->contents == NULL)
3133 {
3134 gas = FALSE;
3135 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3136
3137 /* Arrange for the section to be written out. */
3138 elf_section_data (sec)->this_hdr.contents = sec->contents;
3139 if (sec->contents == NULL)
3140 {
3141 *failedptr = TRUE;
3142 return;
3143 }
3144 }
3145
3146 loc = sec->contents + sec->size;
3147
3148 /* Get the pointer to the first section in the group that gas
3149 squirreled away here. objcopy arranges for this to be set to the
3150 start of the input section group. */
3151 first = elt = elf_next_in_group (sec);
3152
3153 /* First element is a flag word. Rest of section is elf section
3154 indices for all the sections of the group. Write them backwards
3155 just to keep the group in the same order as given in .section
3156 directives, not that it matters. */
3157 while (elt != NULL)
3158 {
3159 asection *s;
3160
3161 s = elt;
3162 if (!gas)
3163 s = s->output_section;
3164 if (s != NULL
3165 && !bfd_is_abs_section (s))
3166 {
3167 unsigned int idx = elf_section_data (s)->this_idx;
3168
3169 loc -= 4;
3170 H_PUT_32 (abfd, idx, loc);
3171 }
3172 elt = elf_next_in_group (elt);
3173 if (elt == first)
3174 break;
3175 }
3176
3177 if ((loc -= 4) != sec->contents)
3178 abort ();
3179
3180 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3181 }
3182
3183 /* Return the section which RELOC_SEC applies to. */
3184
3185 asection *
3186 _bfd_elf_get_reloc_section (asection *reloc_sec)
3187 {
3188 const char *name;
3189 unsigned int type;
3190 bfd *abfd;
3191
3192 if (reloc_sec == NULL)
3193 return NULL;
3194
3195 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3196 if (type != SHT_REL && type != SHT_RELA)
3197 return NULL;
3198
3199 /* We look up the section the relocs apply to by name. */
3200 name = reloc_sec->name;
3201 if (type == SHT_REL)
3202 name += 4;
3203 else
3204 name += 5;
3205
3206 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3207 section apply to .got.plt section. */
3208 abfd = reloc_sec->owner;
3209 if (get_elf_backend_data (abfd)->want_got_plt
3210 && strcmp (name, ".plt") == 0)
3211 {
3212 /* .got.plt is a linker created input section. It may be mapped
3213 to some other output section. Try two likely sections. */
3214 name = ".got.plt";
3215 reloc_sec = bfd_get_section_by_name (abfd, name);
3216 if (reloc_sec != NULL)
3217 return reloc_sec;
3218 name = ".got";
3219 }
3220
3221 reloc_sec = bfd_get_section_by_name (abfd, name);
3222 return reloc_sec;
3223 }
3224
3225 /* Assign all ELF section numbers. The dummy first section is handled here
3226 too. The link/info pointers for the standard section types are filled
3227 in here too, while we're at it. */
3228
3229 static bfd_boolean
3230 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3231 {
3232 struct elf_obj_tdata *t = elf_tdata (abfd);
3233 asection *sec;
3234 unsigned int section_number;
3235 Elf_Internal_Shdr **i_shdrp;
3236 struct bfd_elf_section_data *d;
3237 bfd_boolean need_symtab;
3238
3239 section_number = 1;
3240
3241 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3242
3243 /* SHT_GROUP sections are in relocatable files only. */
3244 if (link_info == NULL || link_info->relocatable)
3245 {
3246 /* Put SHT_GROUP sections first. */
3247 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3248 {
3249 d = elf_section_data (sec);
3250
3251 if (d->this_hdr.sh_type == SHT_GROUP)
3252 {
3253 if (sec->flags & SEC_LINKER_CREATED)
3254 {
3255 /* Remove the linker created SHT_GROUP sections. */
3256 bfd_section_list_remove (abfd, sec);
3257 abfd->section_count--;
3258 }
3259 else
3260 d->this_idx = section_number++;
3261 }
3262 }
3263 }
3264
3265 for (sec = abfd->sections; sec; sec = sec->next)
3266 {
3267 d = elf_section_data (sec);
3268
3269 if (d->this_hdr.sh_type != SHT_GROUP)
3270 d->this_idx = section_number++;
3271 if (d->this_hdr.sh_name != (unsigned int) -1)
3272 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3273 if (d->rel.hdr)
3274 {
3275 d->rel.idx = section_number++;
3276 if (d->rel.hdr->sh_name != (unsigned int) -1)
3277 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3278 }
3279 else
3280 d->rel.idx = 0;
3281
3282 if (d->rela.hdr)
3283 {
3284 d->rela.idx = section_number++;
3285 if (d->rela.hdr->sh_name != (unsigned int) -1)
3286 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3287 }
3288 else
3289 d->rela.idx = 0;
3290 }
3291
3292 elf_shstrtab_sec (abfd) = section_number++;
3293 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3294 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3295
3296 need_symtab = (bfd_get_symcount (abfd) > 0
3297 || (link_info == NULL
3298 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3299 == HAS_RELOC)));
3300 if (need_symtab)
3301 {
3302 elf_onesymtab (abfd) = section_number++;
3303 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3304 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3305 {
3306 elf_symtab_shndx (abfd) = section_number++;
3307 t->symtab_shndx_hdr.sh_name
3308 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3309 ".symtab_shndx", FALSE);
3310 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3311 return FALSE;
3312 }
3313 elf_strtab_sec (abfd) = section_number++;
3314 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3315 }
3316
3317 if (section_number >= SHN_LORESERVE)
3318 {
3319 _bfd_error_handler (_("%B: too many sections: %u"),
3320 abfd, section_number);
3321 return FALSE;
3322 }
3323
3324 elf_numsections (abfd) = section_number;
3325 elf_elfheader (abfd)->e_shnum = section_number;
3326
3327 /* Set up the list of section header pointers, in agreement with the
3328 indices. */
3329 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3330 sizeof (Elf_Internal_Shdr *));
3331 if (i_shdrp == NULL)
3332 return FALSE;
3333
3334 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3335 sizeof (Elf_Internal_Shdr));
3336 if (i_shdrp[0] == NULL)
3337 {
3338 bfd_release (abfd, i_shdrp);
3339 return FALSE;
3340 }
3341
3342 elf_elfsections (abfd) = i_shdrp;
3343
3344 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3345 if (need_symtab)
3346 {
3347 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3348 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3349 {
3350 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3351 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3352 }
3353 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3354 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3355 }
3356
3357 for (sec = abfd->sections; sec; sec = sec->next)
3358 {
3359 asection *s;
3360
3361 d = elf_section_data (sec);
3362
3363 i_shdrp[d->this_idx] = &d->this_hdr;
3364 if (d->rel.idx != 0)
3365 i_shdrp[d->rel.idx] = d->rel.hdr;
3366 if (d->rela.idx != 0)
3367 i_shdrp[d->rela.idx] = d->rela.hdr;
3368
3369 /* Fill in the sh_link and sh_info fields while we're at it. */
3370
3371 /* sh_link of a reloc section is the section index of the symbol
3372 table. sh_info is the section index of the section to which
3373 the relocation entries apply. */
3374 if (d->rel.idx != 0)
3375 {
3376 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3377 d->rel.hdr->sh_info = d->this_idx;
3378 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3379 }
3380 if (d->rela.idx != 0)
3381 {
3382 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3383 d->rela.hdr->sh_info = d->this_idx;
3384 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3385 }
3386
3387 /* We need to set up sh_link for SHF_LINK_ORDER. */
3388 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3389 {
3390 s = elf_linked_to_section (sec);
3391 if (s)
3392 {
3393 /* elf_linked_to_section points to the input section. */
3394 if (link_info != NULL)
3395 {
3396 /* Check discarded linkonce section. */
3397 if (discarded_section (s))
3398 {
3399 asection *kept;
3400 (*_bfd_error_handler)
3401 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3402 abfd, d->this_hdr.bfd_section,
3403 s, s->owner);
3404 /* Point to the kept section if it has the same
3405 size as the discarded one. */
3406 kept = _bfd_elf_check_kept_section (s, link_info);
3407 if (kept == NULL)
3408 {
3409 bfd_set_error (bfd_error_bad_value);
3410 return FALSE;
3411 }
3412 s = kept;
3413 }
3414
3415 s = s->output_section;
3416 BFD_ASSERT (s != NULL);
3417 }
3418 else
3419 {
3420 /* Handle objcopy. */
3421 if (s->output_section == NULL)
3422 {
3423 (*_bfd_error_handler)
3424 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3425 abfd, d->this_hdr.bfd_section, s, s->owner);
3426 bfd_set_error (bfd_error_bad_value);
3427 return FALSE;
3428 }
3429 s = s->output_section;
3430 }
3431 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3432 }
3433 else
3434 {
3435 /* PR 290:
3436 The Intel C compiler generates SHT_IA_64_UNWIND with
3437 SHF_LINK_ORDER. But it doesn't set the sh_link or
3438 sh_info fields. Hence we could get the situation
3439 where s is NULL. */
3440 const struct elf_backend_data *bed
3441 = get_elf_backend_data (abfd);
3442 if (bed->link_order_error_handler)
3443 bed->link_order_error_handler
3444 (_("%B: warning: sh_link not set for section `%A'"),
3445 abfd, sec);
3446 }
3447 }
3448
3449 switch (d->this_hdr.sh_type)
3450 {
3451 case SHT_REL:
3452 case SHT_RELA:
3453 /* A reloc section which we are treating as a normal BFD
3454 section. sh_link is the section index of the symbol
3455 table. sh_info is the section index of the section to
3456 which the relocation entries apply. We assume that an
3457 allocated reloc section uses the dynamic symbol table.
3458 FIXME: How can we be sure? */
3459 s = bfd_get_section_by_name (abfd, ".dynsym");
3460 if (s != NULL)
3461 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3462
3463 s = get_elf_backend_data (abfd)->get_reloc_section (sec);
3464 if (s != NULL)
3465 {
3466 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3467 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3468 }
3469 break;
3470
3471 case SHT_STRTAB:
3472 /* We assume that a section named .stab*str is a stabs
3473 string section. We look for a section with the same name
3474 but without the trailing ``str'', and set its sh_link
3475 field to point to this section. */
3476 if (CONST_STRNEQ (sec->name, ".stab")
3477 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3478 {
3479 size_t len;
3480 char *alc;
3481
3482 len = strlen (sec->name);
3483 alc = (char *) bfd_malloc (len - 2);
3484 if (alc == NULL)
3485 return FALSE;
3486 memcpy (alc, sec->name, len - 3);
3487 alc[len - 3] = '\0';
3488 s = bfd_get_section_by_name (abfd, alc);
3489 free (alc);
3490 if (s != NULL)
3491 {
3492 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3493
3494 /* This is a .stab section. */
3495 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3496 elf_section_data (s)->this_hdr.sh_entsize
3497 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3498 }
3499 }
3500 break;
3501
3502 case SHT_DYNAMIC:
3503 case SHT_DYNSYM:
3504 case SHT_GNU_verneed:
3505 case SHT_GNU_verdef:
3506 /* sh_link is the section header index of the string table
3507 used for the dynamic entries, or the symbol table, or the
3508 version strings. */
3509 s = bfd_get_section_by_name (abfd, ".dynstr");
3510 if (s != NULL)
3511 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3512 break;
3513
3514 case SHT_GNU_LIBLIST:
3515 /* sh_link is the section header index of the prelink library
3516 list used for the dynamic entries, or the symbol table, or
3517 the version strings. */
3518 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3519 ? ".dynstr" : ".gnu.libstr");
3520 if (s != NULL)
3521 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3522 break;
3523
3524 case SHT_HASH:
3525 case SHT_GNU_HASH:
3526 case SHT_GNU_versym:
3527 /* sh_link is the section header index of the symbol table
3528 this hash table or version table is for. */
3529 s = bfd_get_section_by_name (abfd, ".dynsym");
3530 if (s != NULL)
3531 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3532 break;
3533
3534 case SHT_GROUP:
3535 d->this_hdr.sh_link = elf_onesymtab (abfd);
3536 }
3537 }
3538
3539 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3540 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3541 debug section name from .debug_* to .zdebug_* if needed. */
3542
3543 return TRUE;
3544 }
3545
3546 static bfd_boolean
3547 sym_is_global (bfd *abfd, asymbol *sym)
3548 {
3549 /* If the backend has a special mapping, use it. */
3550 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3551 if (bed->elf_backend_sym_is_global)
3552 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3553
3554 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3555 || bfd_is_und_section (bfd_get_section (sym))
3556 || bfd_is_com_section (bfd_get_section (sym)));
3557 }
3558
3559 /* Don't output section symbols for sections that are not going to be
3560 output, that are duplicates or there is no BFD section. */
3561
3562 static bfd_boolean
3563 ignore_section_sym (bfd *abfd, asymbol *sym)
3564 {
3565 elf_symbol_type *type_ptr;
3566
3567 if ((sym->flags & BSF_SECTION_SYM) == 0)
3568 return FALSE;
3569
3570 type_ptr = elf_symbol_from (abfd, sym);
3571 return ((type_ptr != NULL
3572 && type_ptr->internal_elf_sym.st_shndx != 0
3573 && bfd_is_abs_section (sym->section))
3574 || !(sym->section->owner == abfd
3575 || (sym->section->output_section->owner == abfd
3576 && sym->section->output_offset == 0)
3577 || bfd_is_abs_section (sym->section)));
3578 }
3579
3580 /* Map symbol from it's internal number to the external number, moving
3581 all local symbols to be at the head of the list. */
3582
3583 static bfd_boolean
3584 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3585 {
3586 unsigned int symcount = bfd_get_symcount (abfd);
3587 asymbol **syms = bfd_get_outsymbols (abfd);
3588 asymbol **sect_syms;
3589 unsigned int num_locals = 0;
3590 unsigned int num_globals = 0;
3591 unsigned int num_locals2 = 0;
3592 unsigned int num_globals2 = 0;
3593 int max_index = 0;
3594 unsigned int idx;
3595 asection *asect;
3596 asymbol **new_syms;
3597
3598 #ifdef DEBUG
3599 fprintf (stderr, "elf_map_symbols\n");
3600 fflush (stderr);
3601 #endif
3602
3603 for (asect = abfd->sections; asect; asect = asect->next)
3604 {
3605 if (max_index < asect->index)
3606 max_index = asect->index;
3607 }
3608
3609 max_index++;
3610 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3611 if (sect_syms == NULL)
3612 return FALSE;
3613 elf_section_syms (abfd) = sect_syms;
3614 elf_num_section_syms (abfd) = max_index;
3615
3616 /* Init sect_syms entries for any section symbols we have already
3617 decided to output. */
3618 for (idx = 0; idx < symcount; idx++)
3619 {
3620 asymbol *sym = syms[idx];
3621
3622 if ((sym->flags & BSF_SECTION_SYM) != 0
3623 && sym->value == 0
3624 && !ignore_section_sym (abfd, sym)
3625 && !bfd_is_abs_section (sym->section))
3626 {
3627 asection *sec = sym->section;
3628
3629 if (sec->owner != abfd)
3630 sec = sec->output_section;
3631
3632 sect_syms[sec->index] = syms[idx];
3633 }
3634 }
3635
3636 /* Classify all of the symbols. */
3637 for (idx = 0; idx < symcount; idx++)
3638 {
3639 if (sym_is_global (abfd, syms[idx]))
3640 num_globals++;
3641 else if (!ignore_section_sym (abfd, syms[idx]))
3642 num_locals++;
3643 }
3644
3645 /* We will be adding a section symbol for each normal BFD section. Most
3646 sections will already have a section symbol in outsymbols, but
3647 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3648 at least in that case. */
3649 for (asect = abfd->sections; asect; asect = asect->next)
3650 {
3651 if (sect_syms[asect->index] == NULL)
3652 {
3653 if (!sym_is_global (abfd, asect->symbol))
3654 num_locals++;
3655 else
3656 num_globals++;
3657 }
3658 }
3659
3660 /* Now sort the symbols so the local symbols are first. */
3661 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3662 sizeof (asymbol *));
3663
3664 if (new_syms == NULL)
3665 return FALSE;
3666
3667 for (idx = 0; idx < symcount; idx++)
3668 {
3669 asymbol *sym = syms[idx];
3670 unsigned int i;
3671
3672 if (sym_is_global (abfd, sym))
3673 i = num_locals + num_globals2++;
3674 else if (!ignore_section_sym (abfd, sym))
3675 i = num_locals2++;
3676 else
3677 continue;
3678 new_syms[i] = sym;
3679 sym->udata.i = i + 1;
3680 }
3681 for (asect = abfd->sections; asect; asect = asect->next)
3682 {
3683 if (sect_syms[asect->index] == NULL)
3684 {
3685 asymbol *sym = asect->symbol;
3686 unsigned int i;
3687
3688 sect_syms[asect->index] = sym;
3689 if (!sym_is_global (abfd, sym))
3690 i = num_locals2++;
3691 else
3692 i = num_locals + num_globals2++;
3693 new_syms[i] = sym;
3694 sym->udata.i = i + 1;
3695 }
3696 }
3697
3698 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3699
3700 *pnum_locals = num_locals;
3701 return TRUE;
3702 }
3703
3704 /* Align to the maximum file alignment that could be required for any
3705 ELF data structure. */
3706
3707 static inline file_ptr
3708 align_file_position (file_ptr off, int align)
3709 {
3710 return (off + align - 1) & ~(align - 1);
3711 }
3712
3713 /* Assign a file position to a section, optionally aligning to the
3714 required section alignment. */
3715
3716 file_ptr
3717 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3718 file_ptr offset,
3719 bfd_boolean align)
3720 {
3721 if (align && i_shdrp->sh_addralign > 1)
3722 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3723 i_shdrp->sh_offset = offset;
3724 if (i_shdrp->bfd_section != NULL)
3725 i_shdrp->bfd_section->filepos = offset;
3726 if (i_shdrp->sh_type != SHT_NOBITS)
3727 offset += i_shdrp->sh_size;
3728 return offset;
3729 }
3730
3731 /* Compute the file positions we are going to put the sections at, and
3732 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3733 is not NULL, this is being called by the ELF backend linker. */
3734
3735 bfd_boolean
3736 _bfd_elf_compute_section_file_positions (bfd *abfd,
3737 struct bfd_link_info *link_info)
3738 {
3739 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3740 struct fake_section_arg fsargs;
3741 bfd_boolean failed;
3742 struct bfd_strtab_hash *strtab = NULL;
3743 Elf_Internal_Shdr *shstrtab_hdr;
3744 bfd_boolean need_symtab;
3745
3746 if (abfd->output_has_begun)
3747 return TRUE;
3748
3749 /* Do any elf backend specific processing first. */
3750 if (bed->elf_backend_begin_write_processing)
3751 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3752
3753 if (! prep_headers (abfd))
3754 return FALSE;
3755
3756 /* Post process the headers if necessary. */
3757 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3758
3759 fsargs.failed = FALSE;
3760 fsargs.link_info = link_info;
3761 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3762 if (fsargs.failed)
3763 return FALSE;
3764
3765 if (!assign_section_numbers (abfd, link_info))
3766 return FALSE;
3767
3768 /* The backend linker builds symbol table information itself. */
3769 need_symtab = (link_info == NULL
3770 && (bfd_get_symcount (abfd) > 0
3771 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3772 == HAS_RELOC)));
3773 if (need_symtab)
3774 {
3775 /* Non-zero if doing a relocatable link. */
3776 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3777
3778 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3779 return FALSE;
3780 }
3781
3782 failed = FALSE;
3783 if (link_info == NULL)
3784 {
3785 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3786 if (failed)
3787 return FALSE;
3788 }
3789
3790 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3791 /* sh_name was set in prep_headers. */
3792 shstrtab_hdr->sh_type = SHT_STRTAB;
3793 shstrtab_hdr->sh_flags = 0;
3794 shstrtab_hdr->sh_addr = 0;
3795 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3796 shstrtab_hdr->sh_entsize = 0;
3797 shstrtab_hdr->sh_link = 0;
3798 shstrtab_hdr->sh_info = 0;
3799 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
3800 shstrtab_hdr->sh_addralign = 1;
3801
3802 if (!assign_file_positions_except_relocs (abfd, link_info))
3803 return FALSE;
3804
3805 if (need_symtab)
3806 {
3807 file_ptr off;
3808 Elf_Internal_Shdr *hdr;
3809
3810 off = elf_next_file_pos (abfd);
3811
3812 hdr = &elf_tdata (abfd)->symtab_hdr;
3813 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3814
3815 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3816 if (hdr->sh_size != 0)
3817 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3818
3819 hdr = &elf_tdata (abfd)->strtab_hdr;
3820 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3821
3822 elf_next_file_pos (abfd) = off;
3823
3824 /* Now that we know where the .strtab section goes, write it
3825 out. */
3826 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3827 || ! _bfd_stringtab_emit (abfd, strtab))
3828 return FALSE;
3829 _bfd_stringtab_free (strtab);
3830 }
3831
3832 abfd->output_has_begun = TRUE;
3833
3834 return TRUE;
3835 }
3836
3837 /* Make an initial estimate of the size of the program header. If we
3838 get the number wrong here, we'll redo section placement. */
3839
3840 static bfd_size_type
3841 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3842 {
3843 size_t segs;
3844 asection *s;
3845 const struct elf_backend_data *bed;
3846
3847 /* Assume we will need exactly two PT_LOAD segments: one for text
3848 and one for data. */
3849 segs = 2;
3850
3851 s = bfd_get_section_by_name (abfd, ".interp");
3852 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3853 {
3854 /* If we have a loadable interpreter section, we need a
3855 PT_INTERP segment. In this case, assume we also need a
3856 PT_PHDR segment, although that may not be true for all
3857 targets. */
3858 segs += 2;
3859 }
3860
3861 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3862 {
3863 /* We need a PT_DYNAMIC segment. */
3864 ++segs;
3865 }
3866
3867 if (info != NULL && info->relro)
3868 {
3869 /* We need a PT_GNU_RELRO segment. */
3870 ++segs;
3871 }
3872
3873 if (elf_eh_frame_hdr (abfd))
3874 {
3875 /* We need a PT_GNU_EH_FRAME segment. */
3876 ++segs;
3877 }
3878
3879 if (elf_stack_flags (abfd))
3880 {
3881 /* We need a PT_GNU_STACK segment. */
3882 ++segs;
3883 }
3884
3885 for (s = abfd->sections; s != NULL; s = s->next)
3886 {
3887 if ((s->flags & SEC_LOAD) != 0
3888 && CONST_STRNEQ (s->name, ".note"))
3889 {
3890 /* We need a PT_NOTE segment. */
3891 ++segs;
3892 /* Try to create just one PT_NOTE segment
3893 for all adjacent loadable .note* sections.
3894 gABI requires that within a PT_NOTE segment
3895 (and also inside of each SHT_NOTE section)
3896 each note is padded to a multiple of 4 size,
3897 so we check whether the sections are correctly
3898 aligned. */
3899 if (s->alignment_power == 2)
3900 while (s->next != NULL
3901 && s->next->alignment_power == 2
3902 && (s->next->flags & SEC_LOAD) != 0
3903 && CONST_STRNEQ (s->next->name, ".note"))
3904 s = s->next;
3905 }
3906 }
3907
3908 for (s = abfd->sections; s != NULL; s = s->next)
3909 {
3910 if (s->flags & SEC_THREAD_LOCAL)
3911 {
3912 /* We need a PT_TLS segment. */
3913 ++segs;
3914 break;
3915 }
3916 }
3917
3918 /* Let the backend count up any program headers it might need. */
3919 bed = get_elf_backend_data (abfd);
3920 if (bed->elf_backend_additional_program_headers)
3921 {
3922 int a;
3923
3924 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3925 if (a == -1)
3926 abort ();
3927 segs += a;
3928 }
3929
3930 return segs * bed->s->sizeof_phdr;
3931 }
3932
3933 /* Find the segment that contains the output_section of section. */
3934
3935 Elf_Internal_Phdr *
3936 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3937 {
3938 struct elf_segment_map *m;
3939 Elf_Internal_Phdr *p;
3940
3941 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3942 m != NULL;
3943 m = m->next, p++)
3944 {
3945 int i;
3946
3947 for (i = m->count - 1; i >= 0; i--)
3948 if (m->sections[i] == section)
3949 return p;
3950 }
3951
3952 return NULL;
3953 }
3954
3955 /* Create a mapping from a set of sections to a program segment. */
3956
3957 static struct elf_segment_map *
3958 make_mapping (bfd *abfd,
3959 asection **sections,
3960 unsigned int from,
3961 unsigned int to,
3962 bfd_boolean phdr)
3963 {
3964 struct elf_segment_map *m;
3965 unsigned int i;
3966 asection **hdrpp;
3967 bfd_size_type amt;
3968
3969 amt = sizeof (struct elf_segment_map);
3970 amt += (to - from - 1) * sizeof (asection *);
3971 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3972 if (m == NULL)
3973 return NULL;
3974 m->next = NULL;
3975 m->p_type = PT_LOAD;
3976 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3977 m->sections[i - from] = *hdrpp;
3978 m->count = to - from;
3979
3980 if (from == 0 && phdr)
3981 {
3982 /* Include the headers in the first PT_LOAD segment. */
3983 m->includes_filehdr = 1;
3984 m->includes_phdrs = 1;
3985 }
3986
3987 return m;
3988 }
3989
3990 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3991 on failure. */
3992
3993 struct elf_segment_map *
3994 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3995 {
3996 struct elf_segment_map *m;
3997
3998 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3999 sizeof (struct elf_segment_map));
4000 if (m == NULL)
4001 return NULL;
4002 m->next = NULL;
4003 m->p_type = PT_DYNAMIC;
4004 m->count = 1;
4005 m->sections[0] = dynsec;
4006
4007 return m;
4008 }
4009
4010 /* Possibly add or remove segments from the segment map. */
4011
4012 static bfd_boolean
4013 elf_modify_segment_map (bfd *abfd,
4014 struct bfd_link_info *info,
4015 bfd_boolean remove_empty_load)
4016 {
4017 struct elf_segment_map **m;
4018 const struct elf_backend_data *bed;
4019
4020 /* The placement algorithm assumes that non allocated sections are
4021 not in PT_LOAD segments. We ensure this here by removing such
4022 sections from the segment map. We also remove excluded
4023 sections. Finally, any PT_LOAD segment without sections is
4024 removed. */
4025 m = &elf_seg_map (abfd);
4026 while (*m)
4027 {
4028 unsigned int i, new_count;
4029
4030 for (new_count = 0, i = 0; i < (*m)->count; i++)
4031 {
4032 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4033 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4034 || (*m)->p_type != PT_LOAD))
4035 {
4036 (*m)->sections[new_count] = (*m)->sections[i];
4037 new_count++;
4038 }
4039 }
4040 (*m)->count = new_count;
4041
4042 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
4043 *m = (*m)->next;
4044 else
4045 m = &(*m)->next;
4046 }
4047
4048 bed = get_elf_backend_data (abfd);
4049 if (bed->elf_backend_modify_segment_map != NULL)
4050 {
4051 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4052 return FALSE;
4053 }
4054
4055 return TRUE;
4056 }
4057
4058 /* Set up a mapping from BFD sections to program segments. */
4059
4060 bfd_boolean
4061 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4062 {
4063 unsigned int count;
4064 struct elf_segment_map *m;
4065 asection **sections = NULL;
4066 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4067 bfd_boolean no_user_phdrs;
4068
4069 no_user_phdrs = elf_seg_map (abfd) == NULL;
4070
4071 if (info != NULL)
4072 info->user_phdrs = !no_user_phdrs;
4073
4074 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4075 {
4076 asection *s;
4077 unsigned int i;
4078 struct elf_segment_map *mfirst;
4079 struct elf_segment_map **pm;
4080 asection *last_hdr;
4081 bfd_vma last_size;
4082 unsigned int phdr_index;
4083 bfd_vma maxpagesize;
4084 asection **hdrpp;
4085 bfd_boolean phdr_in_segment = TRUE;
4086 bfd_boolean writable;
4087 int tls_count = 0;
4088 asection *first_tls = NULL;
4089 asection *dynsec, *eh_frame_hdr;
4090 bfd_size_type amt;
4091 bfd_vma addr_mask, wrap_to = 0;
4092
4093 /* Select the allocated sections, and sort them. */
4094
4095 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4096 sizeof (asection *));
4097 if (sections == NULL)
4098 goto error_return;
4099
4100 /* Calculate top address, avoiding undefined behaviour of shift
4101 left operator when shift count is equal to size of type
4102 being shifted. */
4103 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4104 addr_mask = (addr_mask << 1) + 1;
4105
4106 i = 0;
4107 for (s = abfd->sections; s != NULL; s = s->next)
4108 {
4109 if ((s->flags & SEC_ALLOC) != 0)
4110 {
4111 sections[i] = s;
4112 ++i;
4113 /* A wrapping section potentially clashes with header. */
4114 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4115 wrap_to = (s->lma + s->size) & addr_mask;
4116 }
4117 }
4118 BFD_ASSERT (i <= bfd_count_sections (abfd));
4119 count = i;
4120
4121 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4122
4123 /* Build the mapping. */
4124
4125 mfirst = NULL;
4126 pm = &mfirst;
4127
4128 /* If we have a .interp section, then create a PT_PHDR segment for
4129 the program headers and a PT_INTERP segment for the .interp
4130 section. */
4131 s = bfd_get_section_by_name (abfd, ".interp");
4132 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4133 {
4134 amt = sizeof (struct elf_segment_map);
4135 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4136 if (m == NULL)
4137 goto error_return;
4138 m->next = NULL;
4139 m->p_type = PT_PHDR;
4140 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4141 m->p_flags = PF_R | PF_X;
4142 m->p_flags_valid = 1;
4143 m->includes_phdrs = 1;
4144
4145 *pm = m;
4146 pm = &m->next;
4147
4148 amt = sizeof (struct elf_segment_map);
4149 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4150 if (m == NULL)
4151 goto error_return;
4152 m->next = NULL;
4153 m->p_type = PT_INTERP;
4154 m->count = 1;
4155 m->sections[0] = s;
4156
4157 *pm = m;
4158 pm = &m->next;
4159 }
4160
4161 /* Look through the sections. We put sections in the same program
4162 segment when the start of the second section can be placed within
4163 a few bytes of the end of the first section. */
4164 last_hdr = NULL;
4165 last_size = 0;
4166 phdr_index = 0;
4167 maxpagesize = bed->maxpagesize;
4168 /* PR 17512: file: c8455299.
4169 Avoid divide-by-zero errors later on.
4170 FIXME: Should we abort if the maxpagesize is zero ? */
4171 if (maxpagesize == 0)
4172 maxpagesize = 1;
4173 writable = FALSE;
4174 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4175 if (dynsec != NULL
4176 && (dynsec->flags & SEC_LOAD) == 0)
4177 dynsec = NULL;
4178
4179 /* Deal with -Ttext or something similar such that the first section
4180 is not adjacent to the program headers. This is an
4181 approximation, since at this point we don't know exactly how many
4182 program headers we will need. */
4183 if (count > 0)
4184 {
4185 bfd_size_type phdr_size = elf_program_header_size (abfd);
4186
4187 if (phdr_size == (bfd_size_type) -1)
4188 phdr_size = get_program_header_size (abfd, info);
4189 phdr_size += bed->s->sizeof_ehdr;
4190 if ((abfd->flags & D_PAGED) == 0
4191 || (sections[0]->lma & addr_mask) < phdr_size
4192 || ((sections[0]->lma & addr_mask) % maxpagesize
4193 < phdr_size % maxpagesize)
4194 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4195 phdr_in_segment = FALSE;
4196 }
4197
4198 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4199 {
4200 asection *hdr;
4201 bfd_boolean new_segment;
4202
4203 hdr = *hdrpp;
4204
4205 /* See if this section and the last one will fit in the same
4206 segment. */
4207
4208 if (last_hdr == NULL)
4209 {
4210 /* If we don't have a segment yet, then we don't need a new
4211 one (we build the last one after this loop). */
4212 new_segment = FALSE;
4213 }
4214 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4215 {
4216 /* If this section has a different relation between the
4217 virtual address and the load address, then we need a new
4218 segment. */
4219 new_segment = TRUE;
4220 }
4221 else if (hdr->lma < last_hdr->lma + last_size
4222 || last_hdr->lma + last_size < last_hdr->lma)
4223 {
4224 /* If this section has a load address that makes it overlap
4225 the previous section, then we need a new segment. */
4226 new_segment = TRUE;
4227 }
4228 /* In the next test we have to be careful when last_hdr->lma is close
4229 to the end of the address space. If the aligned address wraps
4230 around to the start of the address space, then there are no more
4231 pages left in memory and it is OK to assume that the current
4232 section can be included in the current segment. */
4233 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4234 > last_hdr->lma)
4235 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4236 <= hdr->lma))
4237 {
4238 /* If putting this section in this segment would force us to
4239 skip a page in the segment, then we need a new segment. */
4240 new_segment = TRUE;
4241 }
4242 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4243 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4244 {
4245 /* We don't want to put a loadable section after a
4246 nonloadable section in the same segment.
4247 Consider .tbss sections as loadable for this purpose. */
4248 new_segment = TRUE;
4249 }
4250 else if ((abfd->flags & D_PAGED) == 0)
4251 {
4252 /* If the file is not demand paged, which means that we
4253 don't require the sections to be correctly aligned in the
4254 file, then there is no other reason for a new segment. */
4255 new_segment = FALSE;
4256 }
4257 else if (! writable
4258 && (hdr->flags & SEC_READONLY) == 0
4259 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4260 != (hdr->lma & -maxpagesize)))
4261 {
4262 /* We don't want to put a writable section in a read only
4263 segment, unless they are on the same page in memory
4264 anyhow. We already know that the last section does not
4265 bring us past the current section on the page, so the
4266 only case in which the new section is not on the same
4267 page as the previous section is when the previous section
4268 ends precisely on a page boundary. */
4269 new_segment = TRUE;
4270 }
4271 else
4272 {
4273 /* Otherwise, we can use the same segment. */
4274 new_segment = FALSE;
4275 }
4276
4277 /* Allow interested parties a chance to override our decision. */
4278 if (last_hdr != NULL
4279 && info != NULL
4280 && info->callbacks->override_segment_assignment != NULL)
4281 new_segment
4282 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4283 last_hdr,
4284 new_segment);
4285
4286 if (! new_segment)
4287 {
4288 if ((hdr->flags & SEC_READONLY) == 0)
4289 writable = TRUE;
4290 last_hdr = hdr;
4291 /* .tbss sections effectively have zero size. */
4292 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4293 != SEC_THREAD_LOCAL)
4294 last_size = hdr->size;
4295 else
4296 last_size = 0;
4297 continue;
4298 }
4299
4300 /* We need a new program segment. We must create a new program
4301 header holding all the sections from phdr_index until hdr. */
4302
4303 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4304 if (m == NULL)
4305 goto error_return;
4306
4307 *pm = m;
4308 pm = &m->next;
4309
4310 if ((hdr->flags & SEC_READONLY) == 0)
4311 writable = TRUE;
4312 else
4313 writable = FALSE;
4314
4315 last_hdr = hdr;
4316 /* .tbss sections effectively have zero size. */
4317 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4318 last_size = hdr->size;
4319 else
4320 last_size = 0;
4321 phdr_index = i;
4322 phdr_in_segment = FALSE;
4323 }
4324
4325 /* Create a final PT_LOAD program segment, but not if it's just
4326 for .tbss. */
4327 if (last_hdr != NULL
4328 && (i - phdr_index != 1
4329 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4330 != SEC_THREAD_LOCAL)))
4331 {
4332 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4333 if (m == NULL)
4334 goto error_return;
4335
4336 *pm = m;
4337 pm = &m->next;
4338 }
4339
4340 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4341 if (dynsec != NULL)
4342 {
4343 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4344 if (m == NULL)
4345 goto error_return;
4346 *pm = m;
4347 pm = &m->next;
4348 }
4349
4350 /* For each batch of consecutive loadable .note sections,
4351 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4352 because if we link together nonloadable .note sections and
4353 loadable .note sections, we will generate two .note sections
4354 in the output file. FIXME: Using names for section types is
4355 bogus anyhow. */
4356 for (s = abfd->sections; s != NULL; s = s->next)
4357 {
4358 if ((s->flags & SEC_LOAD) != 0
4359 && CONST_STRNEQ (s->name, ".note"))
4360 {
4361 asection *s2;
4362
4363 count = 1;
4364 amt = sizeof (struct elf_segment_map);
4365 if (s->alignment_power == 2)
4366 for (s2 = s; s2->next != NULL; s2 = s2->next)
4367 {
4368 if (s2->next->alignment_power == 2
4369 && (s2->next->flags & SEC_LOAD) != 0
4370 && CONST_STRNEQ (s2->next->name, ".note")
4371 && align_power (s2->lma + s2->size, 2)
4372 == s2->next->lma)
4373 count++;
4374 else
4375 break;
4376 }
4377 amt += (count - 1) * sizeof (asection *);
4378 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4379 if (m == NULL)
4380 goto error_return;
4381 m->next = NULL;
4382 m->p_type = PT_NOTE;
4383 m->count = count;
4384 while (count > 1)
4385 {
4386 m->sections[m->count - count--] = s;
4387 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4388 s = s->next;
4389 }
4390 m->sections[m->count - 1] = s;
4391 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4392 *pm = m;
4393 pm = &m->next;
4394 }
4395 if (s->flags & SEC_THREAD_LOCAL)
4396 {
4397 if (! tls_count)
4398 first_tls = s;
4399 tls_count++;
4400 }
4401 }
4402
4403 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4404 if (tls_count > 0)
4405 {
4406 amt = sizeof (struct elf_segment_map);
4407 amt += (tls_count - 1) * sizeof (asection *);
4408 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4409 if (m == NULL)
4410 goto error_return;
4411 m->next = NULL;
4412 m->p_type = PT_TLS;
4413 m->count = tls_count;
4414 /* Mandated PF_R. */
4415 m->p_flags = PF_R;
4416 m->p_flags_valid = 1;
4417 s = first_tls;
4418 for (i = 0; i < (unsigned int) tls_count; ++i)
4419 {
4420 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4421 {
4422 _bfd_error_handler
4423 (_("%B: TLS sections are not adjacent:"), abfd);
4424 s = first_tls;
4425 i = 0;
4426 while (i < (unsigned int) tls_count)
4427 {
4428 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4429 {
4430 _bfd_error_handler (_(" TLS: %A"), s);
4431 i++;
4432 }
4433 else
4434 _bfd_error_handler (_(" non-TLS: %A"), s);
4435 s = s->next;
4436 }
4437 bfd_set_error (bfd_error_bad_value);
4438 goto error_return;
4439 }
4440 m->sections[i] = s;
4441 s = s->next;
4442 }
4443
4444 *pm = m;
4445 pm = &m->next;
4446 }
4447
4448 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4449 segment. */
4450 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4451 if (eh_frame_hdr != NULL
4452 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4453 {
4454 amt = sizeof (struct elf_segment_map);
4455 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4456 if (m == NULL)
4457 goto error_return;
4458 m->next = NULL;
4459 m->p_type = PT_GNU_EH_FRAME;
4460 m->count = 1;
4461 m->sections[0] = eh_frame_hdr->output_section;
4462
4463 *pm = m;
4464 pm = &m->next;
4465 }
4466
4467 if (elf_stack_flags (abfd))
4468 {
4469 amt = sizeof (struct elf_segment_map);
4470 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4471 if (m == NULL)
4472 goto error_return;
4473 m->next = NULL;
4474 m->p_type = PT_GNU_STACK;
4475 m->p_flags = elf_stack_flags (abfd);
4476 m->p_align = bed->stack_align;
4477 m->p_flags_valid = 1;
4478 m->p_align_valid = m->p_align != 0;
4479 if (info->stacksize > 0)
4480 {
4481 m->p_size = info->stacksize;
4482 m->p_size_valid = 1;
4483 }
4484
4485 *pm = m;
4486 pm = &m->next;
4487 }
4488
4489 if (info != NULL && info->relro)
4490 {
4491 for (m = mfirst; m != NULL; m = m->next)
4492 {
4493 if (m->p_type == PT_LOAD
4494 && m->count != 0
4495 && m->sections[0]->vma >= info->relro_start
4496 && m->sections[0]->vma < info->relro_end)
4497 {
4498 i = m->count;
4499 while (--i != (unsigned) -1)
4500 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4501 == (SEC_LOAD | SEC_HAS_CONTENTS))
4502 break;
4503
4504 if (i != (unsigned) -1)
4505 break;
4506 }
4507 }
4508
4509 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4510 if (m != NULL)
4511 {
4512 amt = sizeof (struct elf_segment_map);
4513 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4514 if (m == NULL)
4515 goto error_return;
4516 m->next = NULL;
4517 m->p_type = PT_GNU_RELRO;
4518 m->p_flags = PF_R;
4519 m->p_flags_valid = 1;
4520
4521 *pm = m;
4522 pm = &m->next;
4523 }
4524 }
4525
4526 free (sections);
4527 elf_seg_map (abfd) = mfirst;
4528 }
4529
4530 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4531 return FALSE;
4532
4533 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4534 ++count;
4535 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4536
4537 return TRUE;
4538
4539 error_return:
4540 if (sections != NULL)
4541 free (sections);
4542 return FALSE;
4543 }
4544
4545 /* Sort sections by address. */
4546
4547 static int
4548 elf_sort_sections (const void *arg1, const void *arg2)
4549 {
4550 const asection *sec1 = *(const asection **) arg1;
4551 const asection *sec2 = *(const asection **) arg2;
4552 bfd_size_type size1, size2;
4553
4554 /* Sort by LMA first, since this is the address used to
4555 place the section into a segment. */
4556 if (sec1->lma < sec2->lma)
4557 return -1;
4558 else if (sec1->lma > sec2->lma)
4559 return 1;
4560
4561 /* Then sort by VMA. Normally the LMA and the VMA will be
4562 the same, and this will do nothing. */
4563 if (sec1->vma < sec2->vma)
4564 return -1;
4565 else if (sec1->vma > sec2->vma)
4566 return 1;
4567
4568 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4569
4570 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4571
4572 if (TOEND (sec1))
4573 {
4574 if (TOEND (sec2))
4575 {
4576 /* If the indicies are the same, do not return 0
4577 here, but continue to try the next comparison. */
4578 if (sec1->target_index - sec2->target_index != 0)
4579 return sec1->target_index - sec2->target_index;
4580 }
4581 else
4582 return 1;
4583 }
4584 else if (TOEND (sec2))
4585 return -1;
4586
4587 #undef TOEND
4588
4589 /* Sort by size, to put zero sized sections
4590 before others at the same address. */
4591
4592 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4593 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4594
4595 if (size1 < size2)
4596 return -1;
4597 if (size1 > size2)
4598 return 1;
4599
4600 return sec1->target_index - sec2->target_index;
4601 }
4602
4603 /* Ian Lance Taylor writes:
4604
4605 We shouldn't be using % with a negative signed number. That's just
4606 not good. We have to make sure either that the number is not
4607 negative, or that the number has an unsigned type. When the types
4608 are all the same size they wind up as unsigned. When file_ptr is a
4609 larger signed type, the arithmetic winds up as signed long long,
4610 which is wrong.
4611
4612 What we're trying to say here is something like ``increase OFF by
4613 the least amount that will cause it to be equal to the VMA modulo
4614 the page size.'' */
4615 /* In other words, something like:
4616
4617 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4618 off_offset = off % bed->maxpagesize;
4619 if (vma_offset < off_offset)
4620 adjustment = vma_offset + bed->maxpagesize - off_offset;
4621 else
4622 adjustment = vma_offset - off_offset;
4623
4624 which can can be collapsed into the expression below. */
4625
4626 static file_ptr
4627 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4628 {
4629 /* PR binutils/16199: Handle an alignment of zero. */
4630 if (maxpagesize == 0)
4631 maxpagesize = 1;
4632 return ((vma - off) % maxpagesize);
4633 }
4634
4635 static void
4636 print_segment_map (const struct elf_segment_map *m)
4637 {
4638 unsigned int j;
4639 const char *pt = get_segment_type (m->p_type);
4640 char buf[32];
4641
4642 if (pt == NULL)
4643 {
4644 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4645 sprintf (buf, "LOPROC+%7.7x",
4646 (unsigned int) (m->p_type - PT_LOPROC));
4647 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4648 sprintf (buf, "LOOS+%7.7x",
4649 (unsigned int) (m->p_type - PT_LOOS));
4650 else
4651 snprintf (buf, sizeof (buf), "%8.8x",
4652 (unsigned int) m->p_type);
4653 pt = buf;
4654 }
4655 fflush (stdout);
4656 fprintf (stderr, "%s:", pt);
4657 for (j = 0; j < m->count; j++)
4658 fprintf (stderr, " %s", m->sections [j]->name);
4659 putc ('\n',stderr);
4660 fflush (stderr);
4661 }
4662
4663 static bfd_boolean
4664 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4665 {
4666 void *buf;
4667 bfd_boolean ret;
4668
4669 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4670 return FALSE;
4671 buf = bfd_zmalloc (len);
4672 if (buf == NULL)
4673 return FALSE;
4674 ret = bfd_bwrite (buf, len, abfd) == len;
4675 free (buf);
4676 return ret;
4677 }
4678
4679 /* Assign file positions to the sections based on the mapping from
4680 sections to segments. This function also sets up some fields in
4681 the file header. */
4682
4683 static bfd_boolean
4684 assign_file_positions_for_load_sections (bfd *abfd,
4685 struct bfd_link_info *link_info)
4686 {
4687 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4688 struct elf_segment_map *m;
4689 Elf_Internal_Phdr *phdrs;
4690 Elf_Internal_Phdr *p;
4691 file_ptr off;
4692 bfd_size_type maxpagesize;
4693 unsigned int alloc;
4694 unsigned int i, j;
4695 bfd_vma header_pad = 0;
4696
4697 if (link_info == NULL
4698 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4699 return FALSE;
4700
4701 alloc = 0;
4702 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4703 {
4704 ++alloc;
4705 if (m->header_size)
4706 header_pad = m->header_size;
4707 }
4708
4709 if (alloc)
4710 {
4711 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4712 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4713 }
4714 else
4715 {
4716 /* PR binutils/12467. */
4717 elf_elfheader (abfd)->e_phoff = 0;
4718 elf_elfheader (abfd)->e_phentsize = 0;
4719 }
4720
4721 elf_elfheader (abfd)->e_phnum = alloc;
4722
4723 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4724 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4725 else
4726 BFD_ASSERT (elf_program_header_size (abfd)
4727 >= alloc * bed->s->sizeof_phdr);
4728
4729 if (alloc == 0)
4730 {
4731 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4732 return TRUE;
4733 }
4734
4735 /* We're writing the size in elf_program_header_size (abfd),
4736 see assign_file_positions_except_relocs, so make sure we have
4737 that amount allocated, with trailing space cleared.
4738 The variable alloc contains the computed need, while
4739 elf_program_header_size (abfd) contains the size used for the
4740 layout.
4741 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4742 where the layout is forced to according to a larger size in the
4743 last iterations for the testcase ld-elf/header. */
4744 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4745 == 0);
4746 phdrs = (Elf_Internal_Phdr *)
4747 bfd_zalloc2 (abfd,
4748 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4749 sizeof (Elf_Internal_Phdr));
4750 elf_tdata (abfd)->phdr = phdrs;
4751 if (phdrs == NULL)
4752 return FALSE;
4753
4754 maxpagesize = 1;
4755 if ((abfd->flags & D_PAGED) != 0)
4756 maxpagesize = bed->maxpagesize;
4757
4758 off = bed->s->sizeof_ehdr;
4759 off += alloc * bed->s->sizeof_phdr;
4760 if (header_pad < (bfd_vma) off)
4761 header_pad = 0;
4762 else
4763 header_pad -= off;
4764 off += header_pad;
4765
4766 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4767 m != NULL;
4768 m = m->next, p++, j++)
4769 {
4770 asection **secpp;
4771 bfd_vma off_adjust;
4772 bfd_boolean no_contents;
4773
4774 /* If elf_segment_map is not from map_sections_to_segments, the
4775 sections may not be correctly ordered. NOTE: sorting should
4776 not be done to the PT_NOTE section of a corefile, which may
4777 contain several pseudo-sections artificially created by bfd.
4778 Sorting these pseudo-sections breaks things badly. */
4779 if (m->count > 1
4780 && !(elf_elfheader (abfd)->e_type == ET_CORE
4781 && m->p_type == PT_NOTE))
4782 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4783 elf_sort_sections);
4784
4785 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4786 number of sections with contents contributing to both p_filesz
4787 and p_memsz, followed by a number of sections with no contents
4788 that just contribute to p_memsz. In this loop, OFF tracks next
4789 available file offset for PT_LOAD and PT_NOTE segments. */
4790 p->p_type = m->p_type;
4791 p->p_flags = m->p_flags;
4792
4793 if (m->count == 0)
4794 p->p_vaddr = 0;
4795 else
4796 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4797
4798 if (m->p_paddr_valid)
4799 p->p_paddr = m->p_paddr;
4800 else if (m->count == 0)
4801 p->p_paddr = 0;
4802 else
4803 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4804
4805 if (p->p_type == PT_LOAD
4806 && (abfd->flags & D_PAGED) != 0)
4807 {
4808 /* p_align in demand paged PT_LOAD segments effectively stores
4809 the maximum page size. When copying an executable with
4810 objcopy, we set m->p_align from the input file. Use this
4811 value for maxpagesize rather than bed->maxpagesize, which
4812 may be different. Note that we use maxpagesize for PT_TLS
4813 segment alignment later in this function, so we are relying
4814 on at least one PT_LOAD segment appearing before a PT_TLS
4815 segment. */
4816 if (m->p_align_valid)
4817 maxpagesize = m->p_align;
4818
4819 p->p_align = maxpagesize;
4820 }
4821 else if (m->p_align_valid)
4822 p->p_align = m->p_align;
4823 else if (m->count == 0)
4824 p->p_align = 1 << bed->s->log_file_align;
4825 else
4826 p->p_align = 0;
4827
4828 no_contents = FALSE;
4829 off_adjust = 0;
4830 if (p->p_type == PT_LOAD
4831 && m->count > 0)
4832 {
4833 bfd_size_type align;
4834 unsigned int align_power = 0;
4835
4836 if (m->p_align_valid)
4837 align = p->p_align;
4838 else
4839 {
4840 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4841 {
4842 unsigned int secalign;
4843
4844 secalign = bfd_get_section_alignment (abfd, *secpp);
4845 if (secalign > align_power)
4846 align_power = secalign;
4847 }
4848 align = (bfd_size_type) 1 << align_power;
4849 if (align < maxpagesize)
4850 align = maxpagesize;
4851 }
4852
4853 for (i = 0; i < m->count; i++)
4854 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4855 /* If we aren't making room for this section, then
4856 it must be SHT_NOBITS regardless of what we've
4857 set via struct bfd_elf_special_section. */
4858 elf_section_type (m->sections[i]) = SHT_NOBITS;
4859
4860 /* Find out whether this segment contains any loadable
4861 sections. */
4862 no_contents = TRUE;
4863 for (i = 0; i < m->count; i++)
4864 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4865 {
4866 no_contents = FALSE;
4867 break;
4868 }
4869
4870 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4871 off += off_adjust;
4872 if (no_contents)
4873 {
4874 /* We shouldn't need to align the segment on disk since
4875 the segment doesn't need file space, but the gABI
4876 arguably requires the alignment and glibc ld.so
4877 checks it. So to comply with the alignment
4878 requirement but not waste file space, we adjust
4879 p_offset for just this segment. (OFF_ADJUST is
4880 subtracted from OFF later.) This may put p_offset
4881 past the end of file, but that shouldn't matter. */
4882 }
4883 else
4884 off_adjust = 0;
4885 }
4886 /* Make sure the .dynamic section is the first section in the
4887 PT_DYNAMIC segment. */
4888 else if (p->p_type == PT_DYNAMIC
4889 && m->count > 1
4890 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4891 {
4892 _bfd_error_handler
4893 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4894 abfd);
4895 bfd_set_error (bfd_error_bad_value);
4896 return FALSE;
4897 }
4898 /* Set the note section type to SHT_NOTE. */
4899 else if (p->p_type == PT_NOTE)
4900 for (i = 0; i < m->count; i++)
4901 elf_section_type (m->sections[i]) = SHT_NOTE;
4902
4903 p->p_offset = 0;
4904 p->p_filesz = 0;
4905 p->p_memsz = 0;
4906
4907 if (m->includes_filehdr)
4908 {
4909 if (!m->p_flags_valid)
4910 p->p_flags |= PF_R;
4911 p->p_filesz = bed->s->sizeof_ehdr;
4912 p->p_memsz = bed->s->sizeof_ehdr;
4913 if (m->count > 0)
4914 {
4915 if (p->p_vaddr < (bfd_vma) off)
4916 {
4917 (*_bfd_error_handler)
4918 (_("%B: Not enough room for program headers, try linking with -N"),
4919 abfd);
4920 bfd_set_error (bfd_error_bad_value);
4921 return FALSE;
4922 }
4923
4924 p->p_vaddr -= off;
4925 if (!m->p_paddr_valid)
4926 p->p_paddr -= off;
4927 }
4928 }
4929
4930 if (m->includes_phdrs)
4931 {
4932 if (!m->p_flags_valid)
4933 p->p_flags |= PF_R;
4934
4935 if (!m->includes_filehdr)
4936 {
4937 p->p_offset = bed->s->sizeof_ehdr;
4938
4939 if (m->count > 0)
4940 {
4941 p->p_vaddr -= off - p->p_offset;
4942 if (!m->p_paddr_valid)
4943 p->p_paddr -= off - p->p_offset;
4944 }
4945 }
4946
4947 p->p_filesz += alloc * bed->s->sizeof_phdr;
4948 p->p_memsz += alloc * bed->s->sizeof_phdr;
4949 if (m->count)
4950 {
4951 p->p_filesz += header_pad;
4952 p->p_memsz += header_pad;
4953 }
4954 }
4955
4956 if (p->p_type == PT_LOAD
4957 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4958 {
4959 if (!m->includes_filehdr && !m->includes_phdrs)
4960 p->p_offset = off;
4961 else
4962 {
4963 file_ptr adjust;
4964
4965 adjust = off - (p->p_offset + p->p_filesz);
4966 if (!no_contents)
4967 p->p_filesz += adjust;
4968 p->p_memsz += adjust;
4969 }
4970 }
4971
4972 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4973 maps. Set filepos for sections in PT_LOAD segments, and in
4974 core files, for sections in PT_NOTE segments.
4975 assign_file_positions_for_non_load_sections will set filepos
4976 for other sections and update p_filesz for other segments. */
4977 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4978 {
4979 asection *sec;
4980 bfd_size_type align;
4981 Elf_Internal_Shdr *this_hdr;
4982
4983 sec = *secpp;
4984 this_hdr = &elf_section_data (sec)->this_hdr;
4985 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4986
4987 if ((p->p_type == PT_LOAD
4988 || p->p_type == PT_TLS)
4989 && (this_hdr->sh_type != SHT_NOBITS
4990 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4991 && ((this_hdr->sh_flags & SHF_TLS) == 0
4992 || p->p_type == PT_TLS))))
4993 {
4994 bfd_vma p_start = p->p_paddr;
4995 bfd_vma p_end = p_start + p->p_memsz;
4996 bfd_vma s_start = sec->lma;
4997 bfd_vma adjust = s_start - p_end;
4998
4999 if (adjust != 0
5000 && (s_start < p_end
5001 || p_end < p_start))
5002 {
5003 (*_bfd_error_handler)
5004 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
5005 (unsigned long) s_start, (unsigned long) p_end);
5006 adjust = 0;
5007 sec->lma = p_end;
5008 }
5009 p->p_memsz += adjust;
5010
5011 if (this_hdr->sh_type != SHT_NOBITS)
5012 {
5013 if (p->p_filesz + adjust < p->p_memsz)
5014 {
5015 /* We have a PROGBITS section following NOBITS ones.
5016 Allocate file space for the NOBITS section(s) and
5017 zero it. */
5018 adjust = p->p_memsz - p->p_filesz;
5019 if (!write_zeros (abfd, off, adjust))
5020 return FALSE;
5021 }
5022 off += adjust;
5023 p->p_filesz += adjust;
5024 }
5025 }
5026
5027 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5028 {
5029 /* The section at i == 0 is the one that actually contains
5030 everything. */
5031 if (i == 0)
5032 {
5033 this_hdr->sh_offset = sec->filepos = off;
5034 off += this_hdr->sh_size;
5035 p->p_filesz = this_hdr->sh_size;
5036 p->p_memsz = 0;
5037 p->p_align = 1;
5038 }
5039 else
5040 {
5041 /* The rest are fake sections that shouldn't be written. */
5042 sec->filepos = 0;
5043 sec->size = 0;
5044 sec->flags = 0;
5045 continue;
5046 }
5047 }
5048 else
5049 {
5050 if (p->p_type == PT_LOAD)
5051 {
5052 this_hdr->sh_offset = sec->filepos = off;
5053 if (this_hdr->sh_type != SHT_NOBITS)
5054 off += this_hdr->sh_size;
5055 }
5056 else if (this_hdr->sh_type == SHT_NOBITS
5057 && (this_hdr->sh_flags & SHF_TLS) != 0
5058 && this_hdr->sh_offset == 0)
5059 {
5060 /* This is a .tbss section that didn't get a PT_LOAD.
5061 (See _bfd_elf_map_sections_to_segments "Create a
5062 final PT_LOAD".) Set sh_offset to the value it
5063 would have if we had created a zero p_filesz and
5064 p_memsz PT_LOAD header for the section. This
5065 also makes the PT_TLS header have the same
5066 p_offset value. */
5067 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5068 off, align);
5069 this_hdr->sh_offset = sec->filepos = off + adjust;
5070 }
5071
5072 if (this_hdr->sh_type != SHT_NOBITS)
5073 {
5074 p->p_filesz += this_hdr->sh_size;
5075 /* A load section without SHF_ALLOC is something like
5076 a note section in a PT_NOTE segment. These take
5077 file space but are not loaded into memory. */
5078 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5079 p->p_memsz += this_hdr->sh_size;
5080 }
5081 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5082 {
5083 if (p->p_type == PT_TLS)
5084 p->p_memsz += this_hdr->sh_size;
5085
5086 /* .tbss is special. It doesn't contribute to p_memsz of
5087 normal segments. */
5088 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5089 p->p_memsz += this_hdr->sh_size;
5090 }
5091
5092 if (align > p->p_align
5093 && !m->p_align_valid
5094 && (p->p_type != PT_LOAD
5095 || (abfd->flags & D_PAGED) == 0))
5096 p->p_align = align;
5097 }
5098
5099 if (!m->p_flags_valid)
5100 {
5101 p->p_flags |= PF_R;
5102 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5103 p->p_flags |= PF_X;
5104 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5105 p->p_flags |= PF_W;
5106 }
5107 }
5108
5109 off -= off_adjust;
5110
5111 /* Check that all sections are in a PT_LOAD segment.
5112 Don't check funky gdb generated core files. */
5113 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5114 {
5115 bfd_boolean check_vma = TRUE;
5116
5117 for (i = 1; i < m->count; i++)
5118 if (m->sections[i]->vma == m->sections[i - 1]->vma
5119 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5120 ->this_hdr), p) != 0
5121 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5122 ->this_hdr), p) != 0)
5123 {
5124 /* Looks like we have overlays packed into the segment. */
5125 check_vma = FALSE;
5126 break;
5127 }
5128
5129 for (i = 0; i < m->count; i++)
5130 {
5131 Elf_Internal_Shdr *this_hdr;
5132 asection *sec;
5133
5134 sec = m->sections[i];
5135 this_hdr = &(elf_section_data(sec)->this_hdr);
5136 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5137 && !ELF_TBSS_SPECIAL (this_hdr, p))
5138 {
5139 (*_bfd_error_handler)
5140 (_("%B: section `%A' can't be allocated in segment %d"),
5141 abfd, sec, j);
5142 print_segment_map (m);
5143 }
5144 }
5145 }
5146 }
5147
5148 elf_next_file_pos (abfd) = off;
5149 return TRUE;
5150 }
5151
5152 /* Assign file positions for the other sections. */
5153
5154 static bfd_boolean
5155 assign_file_positions_for_non_load_sections (bfd *abfd,
5156 struct bfd_link_info *link_info)
5157 {
5158 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5159 Elf_Internal_Shdr **i_shdrpp;
5160 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5161 Elf_Internal_Phdr *phdrs;
5162 Elf_Internal_Phdr *p;
5163 struct elf_segment_map *m;
5164 struct elf_segment_map *hdrs_segment;
5165 bfd_vma filehdr_vaddr, filehdr_paddr;
5166 bfd_vma phdrs_vaddr, phdrs_paddr;
5167 file_ptr off;
5168 unsigned int count;
5169
5170 i_shdrpp = elf_elfsections (abfd);
5171 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5172 off = elf_next_file_pos (abfd);
5173 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5174 {
5175 Elf_Internal_Shdr *hdr;
5176
5177 hdr = *hdrpp;
5178 if (hdr->bfd_section != NULL
5179 && (hdr->bfd_section->filepos != 0
5180 || (hdr->sh_type == SHT_NOBITS
5181 && hdr->contents == NULL)))
5182 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5183 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5184 {
5185 if (hdr->sh_size != 0)
5186 (*_bfd_error_handler)
5187 (_("%B: warning: allocated section `%s' not in segment"),
5188 abfd,
5189 (hdr->bfd_section == NULL
5190 ? "*unknown*"
5191 : hdr->bfd_section->name));
5192 /* We don't need to page align empty sections. */
5193 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5194 off += vma_page_aligned_bias (hdr->sh_addr, off,
5195 bed->maxpagesize);
5196 else
5197 off += vma_page_aligned_bias (hdr->sh_addr, off,
5198 hdr->sh_addralign);
5199 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5200 FALSE);
5201 }
5202 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5203 && hdr->bfd_section == NULL)
5204 || (hdr->bfd_section != NULL
5205 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5206 /* Compress DWARF debug sections. */
5207 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5208 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
5209 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5210 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5211 hdr->sh_offset = -1;
5212 else
5213 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5214 }
5215
5216 /* Now that we have set the section file positions, we can set up
5217 the file positions for the non PT_LOAD segments. */
5218 count = 0;
5219 filehdr_vaddr = 0;
5220 filehdr_paddr = 0;
5221 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5222 phdrs_paddr = 0;
5223 hdrs_segment = NULL;
5224 phdrs = elf_tdata (abfd)->phdr;
5225 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5226 {
5227 ++count;
5228 if (p->p_type != PT_LOAD)
5229 continue;
5230
5231 if (m->includes_filehdr)
5232 {
5233 filehdr_vaddr = p->p_vaddr;
5234 filehdr_paddr = p->p_paddr;
5235 }
5236 if (m->includes_phdrs)
5237 {
5238 phdrs_vaddr = p->p_vaddr;
5239 phdrs_paddr = p->p_paddr;
5240 if (m->includes_filehdr)
5241 {
5242 hdrs_segment = m;
5243 phdrs_vaddr += bed->s->sizeof_ehdr;
5244 phdrs_paddr += bed->s->sizeof_ehdr;
5245 }
5246 }
5247 }
5248
5249 if (hdrs_segment != NULL && link_info != NULL)
5250 {
5251 /* There is a segment that contains both the file headers and the
5252 program headers, so provide a symbol __ehdr_start pointing there.
5253 A program can use this to examine itself robustly. */
5254
5255 struct elf_link_hash_entry *hash
5256 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5257 FALSE, FALSE, TRUE);
5258 /* If the symbol was referenced and not defined, define it. */
5259 if (hash != NULL
5260 && (hash->root.type == bfd_link_hash_new
5261 || hash->root.type == bfd_link_hash_undefined
5262 || hash->root.type == bfd_link_hash_undefweak
5263 || hash->root.type == bfd_link_hash_common))
5264 {
5265 asection *s = NULL;
5266 if (hdrs_segment->count != 0)
5267 /* The segment contains sections, so use the first one. */
5268 s = hdrs_segment->sections[0];
5269 else
5270 /* Use the first (i.e. lowest-addressed) section in any segment. */
5271 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5272 if (m->count != 0)
5273 {
5274 s = m->sections[0];
5275 break;
5276 }
5277
5278 if (s != NULL)
5279 {
5280 hash->root.u.def.value = filehdr_vaddr - s->vma;
5281 hash->root.u.def.section = s;
5282 }
5283 else
5284 {
5285 hash->root.u.def.value = filehdr_vaddr;
5286 hash->root.u.def.section = bfd_abs_section_ptr;
5287 }
5288
5289 hash->root.type = bfd_link_hash_defined;
5290 hash->def_regular = 1;
5291 hash->non_elf = 0;
5292 }
5293 }
5294
5295 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5296 {
5297 if (p->p_type == PT_GNU_RELRO)
5298 {
5299 const Elf_Internal_Phdr *lp;
5300 struct elf_segment_map *lm;
5301
5302 if (link_info != NULL)
5303 {
5304 /* During linking the range of the RELRO segment is passed
5305 in link_info. */
5306 for (lm = elf_seg_map (abfd), lp = phdrs;
5307 lm != NULL;
5308 lm = lm->next, lp++)
5309 {
5310 if (lp->p_type == PT_LOAD
5311 && lp->p_vaddr < link_info->relro_end
5312 && lm->count != 0
5313 && lm->sections[0]->vma >= link_info->relro_start)
5314 break;
5315 }
5316
5317 BFD_ASSERT (lm != NULL);
5318 }
5319 else
5320 {
5321 /* Otherwise we are copying an executable or shared
5322 library, but we need to use the same linker logic. */
5323 for (lp = phdrs; lp < phdrs + count; ++lp)
5324 {
5325 if (lp->p_type == PT_LOAD
5326 && lp->p_paddr == p->p_paddr)
5327 break;
5328 }
5329 }
5330
5331 if (lp < phdrs + count)
5332 {
5333 p->p_vaddr = lp->p_vaddr;
5334 p->p_paddr = lp->p_paddr;
5335 p->p_offset = lp->p_offset;
5336 if (link_info != NULL)
5337 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5338 else if (m->p_size_valid)
5339 p->p_filesz = m->p_size;
5340 else
5341 abort ();
5342 p->p_memsz = p->p_filesz;
5343 /* Preserve the alignment and flags if they are valid. The
5344 gold linker generates RW/4 for the PT_GNU_RELRO section.
5345 It is better for objcopy/strip to honor these attributes
5346 otherwise gdb will choke when using separate debug files.
5347 */
5348 if (!m->p_align_valid)
5349 p->p_align = 1;
5350 if (!m->p_flags_valid)
5351 p->p_flags = (lp->p_flags & ~PF_W);
5352 }
5353 else
5354 {
5355 memset (p, 0, sizeof *p);
5356 p->p_type = PT_NULL;
5357 }
5358 }
5359 else if (p->p_type == PT_GNU_STACK)
5360 {
5361 if (m->p_size_valid)
5362 p->p_memsz = m->p_size;
5363 }
5364 else if (m->count != 0)
5365 {
5366 unsigned int i;
5367 if (p->p_type != PT_LOAD
5368 && (p->p_type != PT_NOTE
5369 || bfd_get_format (abfd) != bfd_core))
5370 {
5371 if (m->includes_filehdr || m->includes_phdrs)
5372 {
5373 /* PR 17512: file: 2195325e. */
5374 (*_bfd_error_handler)
5375 (_("%B: warning: non-load segment includes file header and/or program header"),
5376 abfd);
5377 return FALSE;
5378 }
5379
5380 p->p_filesz = 0;
5381 p->p_offset = m->sections[0]->filepos;
5382 for (i = m->count; i-- != 0;)
5383 {
5384 asection *sect = m->sections[i];
5385 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5386 if (hdr->sh_type != SHT_NOBITS)
5387 {
5388 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5389 + hdr->sh_size);
5390 break;
5391 }
5392 }
5393 }
5394 }
5395 else if (m->includes_filehdr)
5396 {
5397 p->p_vaddr = filehdr_vaddr;
5398 if (! m->p_paddr_valid)
5399 p->p_paddr = filehdr_paddr;
5400 }
5401 else if (m->includes_phdrs)
5402 {
5403 p->p_vaddr = phdrs_vaddr;
5404 if (! m->p_paddr_valid)
5405 p->p_paddr = phdrs_paddr;
5406 }
5407 }
5408
5409 elf_next_file_pos (abfd) = off;
5410
5411 return TRUE;
5412 }
5413
5414 /* Work out the file positions of all the sections. This is called by
5415 _bfd_elf_compute_section_file_positions. All the section sizes and
5416 VMAs must be known before this is called.
5417
5418 Reloc sections come in two flavours: Those processed specially as
5419 "side-channel" data attached to a section to which they apply, and
5420 those that bfd doesn't process as relocations. The latter sort are
5421 stored in a normal bfd section by bfd_section_from_shdr. We don't
5422 consider the former sort here, unless they form part of the loadable
5423 image. Reloc sections not assigned here will be handled later by
5424 assign_file_positions_for_relocs.
5425
5426 We also don't set the positions of the .symtab and .strtab here. */
5427
5428 static bfd_boolean
5429 assign_file_positions_except_relocs (bfd *abfd,
5430 struct bfd_link_info *link_info)
5431 {
5432 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5433 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5434 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5435
5436 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5437 && bfd_get_format (abfd) != bfd_core)
5438 {
5439 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5440 unsigned int num_sec = elf_numsections (abfd);
5441 Elf_Internal_Shdr **hdrpp;
5442 unsigned int i;
5443 file_ptr off;
5444
5445 /* Start after the ELF header. */
5446 off = i_ehdrp->e_ehsize;
5447
5448 /* We are not creating an executable, which means that we are
5449 not creating a program header, and that the actual order of
5450 the sections in the file is unimportant. */
5451 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5452 {
5453 Elf_Internal_Shdr *hdr;
5454
5455 hdr = *hdrpp;
5456 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5457 && hdr->bfd_section == NULL)
5458 || (hdr->bfd_section != NULL
5459 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5460 /* Compress DWARF debug sections. */
5461 || i == elf_onesymtab (abfd)
5462 || i == elf_symtab_shndx (abfd)
5463 || i == elf_strtab_sec (abfd)
5464 || i == elf_shstrtab_sec (abfd))
5465 {
5466 hdr->sh_offset = -1;
5467 }
5468 else
5469 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5470 }
5471
5472 elf_next_file_pos (abfd) = off;
5473 }
5474 else
5475 {
5476 unsigned int alloc;
5477
5478 /* Assign file positions for the loaded sections based on the
5479 assignment of sections to segments. */
5480 if (!assign_file_positions_for_load_sections (abfd, link_info))
5481 return FALSE;
5482
5483 /* And for non-load sections. */
5484 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5485 return FALSE;
5486
5487 if (bed->elf_backend_modify_program_headers != NULL)
5488 {
5489 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5490 return FALSE;
5491 }
5492
5493 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5494 if (link_info != NULL
5495 && link_info->executable
5496 && link_info->shared)
5497 {
5498 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5499 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5500 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5501
5502 /* Find the lowest p_vaddr in PT_LOAD segments. */
5503 bfd_vma p_vaddr = (bfd_vma) -1;
5504 for (; segment < end_segment; segment++)
5505 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5506 p_vaddr = segment->p_vaddr;
5507
5508 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5509 segments is non-zero. */
5510 if (p_vaddr)
5511 i_ehdrp->e_type = ET_EXEC;
5512 }
5513
5514 /* Write out the program headers. */
5515 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5516 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5517 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5518 return FALSE;
5519 }
5520
5521 return TRUE;
5522 }
5523
5524 static bfd_boolean
5525 prep_headers (bfd *abfd)
5526 {
5527 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5528 struct elf_strtab_hash *shstrtab;
5529 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5530
5531 i_ehdrp = elf_elfheader (abfd);
5532
5533 shstrtab = _bfd_elf_strtab_init ();
5534 if (shstrtab == NULL)
5535 return FALSE;
5536
5537 elf_shstrtab (abfd) = shstrtab;
5538
5539 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5540 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5541 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5542 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5543
5544 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5545 i_ehdrp->e_ident[EI_DATA] =
5546 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5547 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5548
5549 if ((abfd->flags & DYNAMIC) != 0)
5550 i_ehdrp->e_type = ET_DYN;
5551 else if ((abfd->flags & EXEC_P) != 0)
5552 i_ehdrp->e_type = ET_EXEC;
5553 else if (bfd_get_format (abfd) == bfd_core)
5554 i_ehdrp->e_type = ET_CORE;
5555 else
5556 i_ehdrp->e_type = ET_REL;
5557
5558 switch (bfd_get_arch (abfd))
5559 {
5560 case bfd_arch_unknown:
5561 i_ehdrp->e_machine = EM_NONE;
5562 break;
5563
5564 /* There used to be a long list of cases here, each one setting
5565 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5566 in the corresponding bfd definition. To avoid duplication,
5567 the switch was removed. Machines that need special handling
5568 can generally do it in elf_backend_final_write_processing(),
5569 unless they need the information earlier than the final write.
5570 Such need can generally be supplied by replacing the tests for
5571 e_machine with the conditions used to determine it. */
5572 default:
5573 i_ehdrp->e_machine = bed->elf_machine_code;
5574 }
5575
5576 i_ehdrp->e_version = bed->s->ev_current;
5577 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5578
5579 /* No program header, for now. */
5580 i_ehdrp->e_phoff = 0;
5581 i_ehdrp->e_phentsize = 0;
5582 i_ehdrp->e_phnum = 0;
5583
5584 /* Each bfd section is section header entry. */
5585 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5586 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5587
5588 /* If we're building an executable, we'll need a program header table. */
5589 if (abfd->flags & EXEC_P)
5590 /* It all happens later. */
5591 ;
5592 else
5593 {
5594 i_ehdrp->e_phentsize = 0;
5595 i_ehdrp->e_phoff = 0;
5596 }
5597
5598 elf_tdata (abfd)->symtab_hdr.sh_name =
5599 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5600 elf_tdata (abfd)->strtab_hdr.sh_name =
5601 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5602 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5603 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5604 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5605 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
5606 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5607 return FALSE;
5608
5609 return TRUE;
5610 }
5611
5612 /* Assign file positions for all the reloc sections which are not part
5613 of the loadable file image, and the file position of section headers. */
5614
5615 static bfd_boolean
5616 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
5617 {
5618 file_ptr off;
5619 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
5620 Elf_Internal_Shdr *shdrp;
5621 Elf_Internal_Ehdr *i_ehdrp;
5622 const struct elf_backend_data *bed;
5623
5624 off = elf_next_file_pos (abfd);
5625
5626 shdrpp = elf_elfsections (abfd);
5627 end_shdrpp = shdrpp + elf_numsections (abfd);
5628 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
5629 {
5630 shdrp = *shdrpp;
5631 if (shdrp->sh_offset == -1)
5632 {
5633 asection *sec = shdrp->bfd_section;
5634 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
5635 || shdrp->sh_type == SHT_RELA);
5636 if (is_rel
5637 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
5638 {
5639 if (!is_rel)
5640 {
5641 const char *name = sec->name;
5642 struct bfd_elf_section_data *d;
5643
5644 /* Compress DWARF debug sections. */
5645 if (!bfd_compress_section (abfd, sec,
5646 shdrp->contents))
5647 return FALSE;
5648
5649 if (sec->compress_status == COMPRESS_SECTION_DONE
5650 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
5651 {
5652 /* If section is compressed with zlib-gnu, convert
5653 section name from .debug_* to .zdebug_*. */
5654 char *new_name
5655 = convert_debug_to_zdebug (abfd, name);
5656 if (new_name == NULL)
5657 return FALSE;
5658 name = new_name;
5659 }
5660 /* Add setion name to section name section. */
5661 if (shdrp->sh_name != (unsigned int) -1)
5662 abort ();
5663 shdrp->sh_name
5664 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
5665 name, FALSE);
5666 d = elf_section_data (sec);
5667
5668 /* Add reloc setion name to section name section. */
5669 if (d->rel.hdr
5670 && !_bfd_elf_set_reloc_sh_name (abfd,
5671 d->rel.hdr,
5672 name, FALSE))
5673 return FALSE;
5674 if (d->rela.hdr
5675 && !_bfd_elf_set_reloc_sh_name (abfd,
5676 d->rela.hdr,
5677 name, FALSE))
5678 return FALSE;
5679
5680 /* Update section size and contents. */
5681 shdrp->sh_size = sec->size;
5682 shdrp->contents = sec->contents;
5683 shdrp->bfd_section->contents = NULL;
5684 }
5685 off = _bfd_elf_assign_file_position_for_section (shdrp,
5686 off,
5687 TRUE);
5688 }
5689 }
5690 }
5691
5692 /* Place section name section after DWARF debug sections have been
5693 compressed. */
5694 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
5695 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
5696 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
5697 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5698
5699 /* Place the section headers. */
5700 i_ehdrp = elf_elfheader (abfd);
5701 bed = get_elf_backend_data (abfd);
5702 off = align_file_position (off, 1 << bed->s->log_file_align);
5703 i_ehdrp->e_shoff = off;
5704 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5705 elf_next_file_pos (abfd) = off;
5706
5707 return TRUE;
5708 }
5709
5710 bfd_boolean
5711 _bfd_elf_write_object_contents (bfd *abfd)
5712 {
5713 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5714 Elf_Internal_Shdr **i_shdrp;
5715 bfd_boolean failed;
5716 unsigned int count, num_sec;
5717 struct elf_obj_tdata *t;
5718
5719 if (! abfd->output_has_begun
5720 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5721 return FALSE;
5722
5723 i_shdrp = elf_elfsections (abfd);
5724
5725 failed = FALSE;
5726 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5727 if (failed)
5728 return FALSE;
5729
5730 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
5731 return FALSE;
5732
5733 /* After writing the headers, we need to write the sections too... */
5734 num_sec = elf_numsections (abfd);
5735 for (count = 1; count < num_sec; count++)
5736 {
5737 i_shdrp[count]->sh_name
5738 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
5739 i_shdrp[count]->sh_name);
5740 if (bed->elf_backend_section_processing)
5741 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5742 if (i_shdrp[count]->contents)
5743 {
5744 bfd_size_type amt = i_shdrp[count]->sh_size;
5745
5746 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5747 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5748 return FALSE;
5749 }
5750 }
5751
5752 /* Write out the section header names. */
5753 t = elf_tdata (abfd);
5754 if (elf_shstrtab (abfd) != NULL
5755 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5756 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5757 return FALSE;
5758
5759 if (bed->elf_backend_final_write_processing)
5760 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5761
5762 if (!bed->s->write_shdrs_and_ehdr (abfd))
5763 return FALSE;
5764
5765 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5766 if (t->o->build_id.after_write_object_contents != NULL)
5767 return (*t->o->build_id.after_write_object_contents) (abfd);
5768
5769 return TRUE;
5770 }
5771
5772 bfd_boolean
5773 _bfd_elf_write_corefile_contents (bfd *abfd)
5774 {
5775 /* Hopefully this can be done just like an object file. */
5776 return _bfd_elf_write_object_contents (abfd);
5777 }
5778
5779 /* Given a section, search the header to find them. */
5780
5781 unsigned int
5782 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5783 {
5784 const struct elf_backend_data *bed;
5785 unsigned int sec_index;
5786
5787 if (elf_section_data (asect) != NULL
5788 && elf_section_data (asect)->this_idx != 0)
5789 return elf_section_data (asect)->this_idx;
5790
5791 if (bfd_is_abs_section (asect))
5792 sec_index = SHN_ABS;
5793 else if (bfd_is_com_section (asect))
5794 sec_index = SHN_COMMON;
5795 else if (bfd_is_und_section (asect))
5796 sec_index = SHN_UNDEF;
5797 else
5798 sec_index = SHN_BAD;
5799
5800 bed = get_elf_backend_data (abfd);
5801 if (bed->elf_backend_section_from_bfd_section)
5802 {
5803 int retval = sec_index;
5804
5805 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5806 return retval;
5807 }
5808
5809 if (sec_index == SHN_BAD)
5810 bfd_set_error (bfd_error_nonrepresentable_section);
5811
5812 return sec_index;
5813 }
5814
5815 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5816 on error. */
5817
5818 int
5819 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5820 {
5821 asymbol *asym_ptr = *asym_ptr_ptr;
5822 int idx;
5823 flagword flags = asym_ptr->flags;
5824
5825 /* When gas creates relocations against local labels, it creates its
5826 own symbol for the section, but does put the symbol into the
5827 symbol chain, so udata is 0. When the linker is generating
5828 relocatable output, this section symbol may be for one of the
5829 input sections rather than the output section. */
5830 if (asym_ptr->udata.i == 0
5831 && (flags & BSF_SECTION_SYM)
5832 && asym_ptr->section)
5833 {
5834 asection *sec;
5835 int indx;
5836
5837 sec = asym_ptr->section;
5838 if (sec->owner != abfd && sec->output_section != NULL)
5839 sec = sec->output_section;
5840 if (sec->owner == abfd
5841 && (indx = sec->index) < elf_num_section_syms (abfd)
5842 && elf_section_syms (abfd)[indx] != NULL)
5843 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5844 }
5845
5846 idx = asym_ptr->udata.i;
5847
5848 if (idx == 0)
5849 {
5850 /* This case can occur when using --strip-symbol on a symbol
5851 which is used in a relocation entry. */
5852 (*_bfd_error_handler)
5853 (_("%B: symbol `%s' required but not present"),
5854 abfd, bfd_asymbol_name (asym_ptr));
5855 bfd_set_error (bfd_error_no_symbols);
5856 return -1;
5857 }
5858
5859 #if DEBUG & 4
5860 {
5861 fprintf (stderr,
5862 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5863 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5864 fflush (stderr);
5865 }
5866 #endif
5867
5868 return idx;
5869 }
5870
5871 /* Rewrite program header information. */
5872
5873 static bfd_boolean
5874 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5875 {
5876 Elf_Internal_Ehdr *iehdr;
5877 struct elf_segment_map *map;
5878 struct elf_segment_map *map_first;
5879 struct elf_segment_map **pointer_to_map;
5880 Elf_Internal_Phdr *segment;
5881 asection *section;
5882 unsigned int i;
5883 unsigned int num_segments;
5884 bfd_boolean phdr_included = FALSE;
5885 bfd_boolean p_paddr_valid;
5886 bfd_vma maxpagesize;
5887 struct elf_segment_map *phdr_adjust_seg = NULL;
5888 unsigned int phdr_adjust_num = 0;
5889 const struct elf_backend_data *bed;
5890
5891 bed = get_elf_backend_data (ibfd);
5892 iehdr = elf_elfheader (ibfd);
5893
5894 map_first = NULL;
5895 pointer_to_map = &map_first;
5896
5897 num_segments = elf_elfheader (ibfd)->e_phnum;
5898 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5899
5900 /* Returns the end address of the segment + 1. */
5901 #define SEGMENT_END(segment, start) \
5902 (start + (segment->p_memsz > segment->p_filesz \
5903 ? segment->p_memsz : segment->p_filesz))
5904
5905 #define SECTION_SIZE(section, segment) \
5906 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5907 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5908 ? section->size : 0)
5909
5910 /* Returns TRUE if the given section is contained within
5911 the given segment. VMA addresses are compared. */
5912 #define IS_CONTAINED_BY_VMA(section, segment) \
5913 (section->vma >= segment->p_vaddr \
5914 && (section->vma + SECTION_SIZE (section, segment) \
5915 <= (SEGMENT_END (segment, segment->p_vaddr))))
5916
5917 /* Returns TRUE if the given section is contained within
5918 the given segment. LMA addresses are compared. */
5919 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5920 (section->lma >= base \
5921 && (section->lma + SECTION_SIZE (section, segment) \
5922 <= SEGMENT_END (segment, base)))
5923
5924 /* Handle PT_NOTE segment. */
5925 #define IS_NOTE(p, s) \
5926 (p->p_type == PT_NOTE \
5927 && elf_section_type (s) == SHT_NOTE \
5928 && (bfd_vma) s->filepos >= p->p_offset \
5929 && ((bfd_vma) s->filepos + s->size \
5930 <= p->p_offset + p->p_filesz))
5931
5932 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5933 etc. */
5934 #define IS_COREFILE_NOTE(p, s) \
5935 (IS_NOTE (p, s) \
5936 && bfd_get_format (ibfd) == bfd_core \
5937 && s->vma == 0 \
5938 && s->lma == 0)
5939
5940 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5941 linker, which generates a PT_INTERP section with p_vaddr and
5942 p_memsz set to 0. */
5943 #define IS_SOLARIS_PT_INTERP(p, s) \
5944 (p->p_vaddr == 0 \
5945 && p->p_paddr == 0 \
5946 && p->p_memsz == 0 \
5947 && p->p_filesz > 0 \
5948 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5949 && s->size > 0 \
5950 && (bfd_vma) s->filepos >= p->p_offset \
5951 && ((bfd_vma) s->filepos + s->size \
5952 <= p->p_offset + p->p_filesz))
5953
5954 /* Decide if the given section should be included in the given segment.
5955 A section will be included if:
5956 1. It is within the address space of the segment -- we use the LMA
5957 if that is set for the segment and the VMA otherwise,
5958 2. It is an allocated section or a NOTE section in a PT_NOTE
5959 segment.
5960 3. There is an output section associated with it,
5961 4. The section has not already been allocated to a previous segment.
5962 5. PT_GNU_STACK segments do not include any sections.
5963 6. PT_TLS segment includes only SHF_TLS sections.
5964 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5965 8. PT_DYNAMIC should not contain empty sections at the beginning
5966 (with the possible exception of .dynamic). */
5967 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5968 ((((segment->p_paddr \
5969 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5970 : IS_CONTAINED_BY_VMA (section, segment)) \
5971 && (section->flags & SEC_ALLOC) != 0) \
5972 || IS_NOTE (segment, section)) \
5973 && segment->p_type != PT_GNU_STACK \
5974 && (segment->p_type != PT_TLS \
5975 || (section->flags & SEC_THREAD_LOCAL)) \
5976 && (segment->p_type == PT_LOAD \
5977 || segment->p_type == PT_TLS \
5978 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5979 && (segment->p_type != PT_DYNAMIC \
5980 || SECTION_SIZE (section, segment) > 0 \
5981 || (segment->p_paddr \
5982 ? segment->p_paddr != section->lma \
5983 : segment->p_vaddr != section->vma) \
5984 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5985 == 0)) \
5986 && !section->segment_mark)
5987
5988 /* If the output section of a section in the input segment is NULL,
5989 it is removed from the corresponding output segment. */
5990 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5991 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5992 && section->output_section != NULL)
5993
5994 /* Returns TRUE iff seg1 starts after the end of seg2. */
5995 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5996 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5997
5998 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5999 their VMA address ranges and their LMA address ranges overlap.
6000 It is possible to have overlapping VMA ranges without overlapping LMA
6001 ranges. RedBoot images for example can have both .data and .bss mapped
6002 to the same VMA range, but with the .data section mapped to a different
6003 LMA. */
6004 #define SEGMENT_OVERLAPS(seg1, seg2) \
6005 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6006 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6007 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6008 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6009
6010 /* Initialise the segment mark field. */
6011 for (section = ibfd->sections; section != NULL; section = section->next)
6012 section->segment_mark = FALSE;
6013
6014 /* The Solaris linker creates program headers in which all the
6015 p_paddr fields are zero. When we try to objcopy or strip such a
6016 file, we get confused. Check for this case, and if we find it
6017 don't set the p_paddr_valid fields. */
6018 p_paddr_valid = FALSE;
6019 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6020 i < num_segments;
6021 i++, segment++)
6022 if (segment->p_paddr != 0)
6023 {
6024 p_paddr_valid = TRUE;
6025 break;
6026 }
6027
6028 /* Scan through the segments specified in the program header
6029 of the input BFD. For this first scan we look for overlaps
6030 in the loadable segments. These can be created by weird
6031 parameters to objcopy. Also, fix some solaris weirdness. */
6032 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6033 i < num_segments;
6034 i++, segment++)
6035 {
6036 unsigned int j;
6037 Elf_Internal_Phdr *segment2;
6038
6039 if (segment->p_type == PT_INTERP)
6040 for (section = ibfd->sections; section; section = section->next)
6041 if (IS_SOLARIS_PT_INTERP (segment, section))
6042 {
6043 /* Mininal change so that the normal section to segment
6044 assignment code will work. */
6045 segment->p_vaddr = section->vma;
6046 break;
6047 }
6048
6049 if (segment->p_type != PT_LOAD)
6050 {
6051 /* Remove PT_GNU_RELRO segment. */
6052 if (segment->p_type == PT_GNU_RELRO)
6053 segment->p_type = PT_NULL;
6054 continue;
6055 }
6056
6057 /* Determine if this segment overlaps any previous segments. */
6058 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6059 {
6060 bfd_signed_vma extra_length;
6061
6062 if (segment2->p_type != PT_LOAD
6063 || !SEGMENT_OVERLAPS (segment, segment2))
6064 continue;
6065
6066 /* Merge the two segments together. */
6067 if (segment2->p_vaddr < segment->p_vaddr)
6068 {
6069 /* Extend SEGMENT2 to include SEGMENT and then delete
6070 SEGMENT. */
6071 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6072 - SEGMENT_END (segment2, segment2->p_vaddr));
6073
6074 if (extra_length > 0)
6075 {
6076 segment2->p_memsz += extra_length;
6077 segment2->p_filesz += extra_length;
6078 }
6079
6080 segment->p_type = PT_NULL;
6081
6082 /* Since we have deleted P we must restart the outer loop. */
6083 i = 0;
6084 segment = elf_tdata (ibfd)->phdr;
6085 break;
6086 }
6087 else
6088 {
6089 /* Extend SEGMENT to include SEGMENT2 and then delete
6090 SEGMENT2. */
6091 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6092 - SEGMENT_END (segment, segment->p_vaddr));
6093
6094 if (extra_length > 0)
6095 {
6096 segment->p_memsz += extra_length;
6097 segment->p_filesz += extra_length;
6098 }
6099
6100 segment2->p_type = PT_NULL;
6101 }
6102 }
6103 }
6104
6105 /* The second scan attempts to assign sections to segments. */
6106 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6107 i < num_segments;
6108 i++, segment++)
6109 {
6110 unsigned int section_count;
6111 asection **sections;
6112 asection *output_section;
6113 unsigned int isec;
6114 bfd_vma matching_lma;
6115 bfd_vma suggested_lma;
6116 unsigned int j;
6117 bfd_size_type amt;
6118 asection *first_section;
6119 bfd_boolean first_matching_lma;
6120 bfd_boolean first_suggested_lma;
6121
6122 if (segment->p_type == PT_NULL)
6123 continue;
6124
6125 first_section = NULL;
6126 /* Compute how many sections might be placed into this segment. */
6127 for (section = ibfd->sections, section_count = 0;
6128 section != NULL;
6129 section = section->next)
6130 {
6131 /* Find the first section in the input segment, which may be
6132 removed from the corresponding output segment. */
6133 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6134 {
6135 if (first_section == NULL)
6136 first_section = section;
6137 if (section->output_section != NULL)
6138 ++section_count;
6139 }
6140 }
6141
6142 /* Allocate a segment map big enough to contain
6143 all of the sections we have selected. */
6144 amt = sizeof (struct elf_segment_map);
6145 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6146 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6147 if (map == NULL)
6148 return FALSE;
6149
6150 /* Initialise the fields of the segment map. Default to
6151 using the physical address of the segment in the input BFD. */
6152 map->next = NULL;
6153 map->p_type = segment->p_type;
6154 map->p_flags = segment->p_flags;
6155 map->p_flags_valid = 1;
6156
6157 /* If the first section in the input segment is removed, there is
6158 no need to preserve segment physical address in the corresponding
6159 output segment. */
6160 if (!first_section || first_section->output_section != NULL)
6161 {
6162 map->p_paddr = segment->p_paddr;
6163 map->p_paddr_valid = p_paddr_valid;
6164 }
6165
6166 /* Determine if this segment contains the ELF file header
6167 and if it contains the program headers themselves. */
6168 map->includes_filehdr = (segment->p_offset == 0
6169 && segment->p_filesz >= iehdr->e_ehsize);
6170 map->includes_phdrs = 0;
6171
6172 if (!phdr_included || segment->p_type != PT_LOAD)
6173 {
6174 map->includes_phdrs =
6175 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6176 && (segment->p_offset + segment->p_filesz
6177 >= ((bfd_vma) iehdr->e_phoff
6178 + iehdr->e_phnum * iehdr->e_phentsize)));
6179
6180 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6181 phdr_included = TRUE;
6182 }
6183
6184 if (section_count == 0)
6185 {
6186 /* Special segments, such as the PT_PHDR segment, may contain
6187 no sections, but ordinary, loadable segments should contain
6188 something. They are allowed by the ELF spec however, so only
6189 a warning is produced. */
6190 if (segment->p_type == PT_LOAD)
6191 (*_bfd_error_handler) (_("\
6192 %B: warning: Empty loadable segment detected, is this intentional ?"),
6193 ibfd);
6194
6195 map->count = 0;
6196 *pointer_to_map = map;
6197 pointer_to_map = &map->next;
6198
6199 continue;
6200 }
6201
6202 /* Now scan the sections in the input BFD again and attempt
6203 to add their corresponding output sections to the segment map.
6204 The problem here is how to handle an output section which has
6205 been moved (ie had its LMA changed). There are four possibilities:
6206
6207 1. None of the sections have been moved.
6208 In this case we can continue to use the segment LMA from the
6209 input BFD.
6210
6211 2. All of the sections have been moved by the same amount.
6212 In this case we can change the segment's LMA to match the LMA
6213 of the first section.
6214
6215 3. Some of the sections have been moved, others have not.
6216 In this case those sections which have not been moved can be
6217 placed in the current segment which will have to have its size,
6218 and possibly its LMA changed, and a new segment or segments will
6219 have to be created to contain the other sections.
6220
6221 4. The sections have been moved, but not by the same amount.
6222 In this case we can change the segment's LMA to match the LMA
6223 of the first section and we will have to create a new segment
6224 or segments to contain the other sections.
6225
6226 In order to save time, we allocate an array to hold the section
6227 pointers that we are interested in. As these sections get assigned
6228 to a segment, they are removed from this array. */
6229
6230 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6231 if (sections == NULL)
6232 return FALSE;
6233
6234 /* Step One: Scan for segment vs section LMA conflicts.
6235 Also add the sections to the section array allocated above.
6236 Also add the sections to the current segment. In the common
6237 case, where the sections have not been moved, this means that
6238 we have completely filled the segment, and there is nothing
6239 more to do. */
6240 isec = 0;
6241 matching_lma = 0;
6242 suggested_lma = 0;
6243 first_matching_lma = TRUE;
6244 first_suggested_lma = TRUE;
6245
6246 for (section = ibfd->sections;
6247 section != NULL;
6248 section = section->next)
6249 if (section == first_section)
6250 break;
6251
6252 for (j = 0; section != NULL; section = section->next)
6253 {
6254 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6255 {
6256 output_section = section->output_section;
6257
6258 sections[j++] = section;
6259
6260 /* The Solaris native linker always sets p_paddr to 0.
6261 We try to catch that case here, and set it to the
6262 correct value. Note - some backends require that
6263 p_paddr be left as zero. */
6264 if (!p_paddr_valid
6265 && segment->p_vaddr != 0
6266 && !bed->want_p_paddr_set_to_zero
6267 && isec == 0
6268 && output_section->lma != 0
6269 && output_section->vma == (segment->p_vaddr
6270 + (map->includes_filehdr
6271 ? iehdr->e_ehsize
6272 : 0)
6273 + (map->includes_phdrs
6274 ? (iehdr->e_phnum
6275 * iehdr->e_phentsize)
6276 : 0)))
6277 map->p_paddr = segment->p_vaddr;
6278
6279 /* Match up the physical address of the segment with the
6280 LMA address of the output section. */
6281 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6282 || IS_COREFILE_NOTE (segment, section)
6283 || (bed->want_p_paddr_set_to_zero
6284 && IS_CONTAINED_BY_VMA (output_section, segment)))
6285 {
6286 if (first_matching_lma || output_section->lma < matching_lma)
6287 {
6288 matching_lma = output_section->lma;
6289 first_matching_lma = FALSE;
6290 }
6291
6292 /* We assume that if the section fits within the segment
6293 then it does not overlap any other section within that
6294 segment. */
6295 map->sections[isec++] = output_section;
6296 }
6297 else if (first_suggested_lma)
6298 {
6299 suggested_lma = output_section->lma;
6300 first_suggested_lma = FALSE;
6301 }
6302
6303 if (j == section_count)
6304 break;
6305 }
6306 }
6307
6308 BFD_ASSERT (j == section_count);
6309
6310 /* Step Two: Adjust the physical address of the current segment,
6311 if necessary. */
6312 if (isec == section_count)
6313 {
6314 /* All of the sections fitted within the segment as currently
6315 specified. This is the default case. Add the segment to
6316 the list of built segments and carry on to process the next
6317 program header in the input BFD. */
6318 map->count = section_count;
6319 *pointer_to_map = map;
6320 pointer_to_map = &map->next;
6321
6322 if (p_paddr_valid
6323 && !bed->want_p_paddr_set_to_zero
6324 && matching_lma != map->p_paddr
6325 && !map->includes_filehdr
6326 && !map->includes_phdrs)
6327 /* There is some padding before the first section in the
6328 segment. So, we must account for that in the output
6329 segment's vma. */
6330 map->p_vaddr_offset = matching_lma - map->p_paddr;
6331
6332 free (sections);
6333 continue;
6334 }
6335 else
6336 {
6337 if (!first_matching_lma)
6338 {
6339 /* At least one section fits inside the current segment.
6340 Keep it, but modify its physical address to match the
6341 LMA of the first section that fitted. */
6342 map->p_paddr = matching_lma;
6343 }
6344 else
6345 {
6346 /* None of the sections fitted inside the current segment.
6347 Change the current segment's physical address to match
6348 the LMA of the first section. */
6349 map->p_paddr = suggested_lma;
6350 }
6351
6352 /* Offset the segment physical address from the lma
6353 to allow for space taken up by elf headers. */
6354 if (map->includes_filehdr)
6355 {
6356 if (map->p_paddr >= iehdr->e_ehsize)
6357 map->p_paddr -= iehdr->e_ehsize;
6358 else
6359 {
6360 map->includes_filehdr = FALSE;
6361 map->includes_phdrs = FALSE;
6362 }
6363 }
6364
6365 if (map->includes_phdrs)
6366 {
6367 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6368 {
6369 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6370
6371 /* iehdr->e_phnum is just an estimate of the number
6372 of program headers that we will need. Make a note
6373 here of the number we used and the segment we chose
6374 to hold these headers, so that we can adjust the
6375 offset when we know the correct value. */
6376 phdr_adjust_num = iehdr->e_phnum;
6377 phdr_adjust_seg = map;
6378 }
6379 else
6380 map->includes_phdrs = FALSE;
6381 }
6382 }
6383
6384 /* Step Three: Loop over the sections again, this time assigning
6385 those that fit to the current segment and removing them from the
6386 sections array; but making sure not to leave large gaps. Once all
6387 possible sections have been assigned to the current segment it is
6388 added to the list of built segments and if sections still remain
6389 to be assigned, a new segment is constructed before repeating
6390 the loop. */
6391 isec = 0;
6392 do
6393 {
6394 map->count = 0;
6395 suggested_lma = 0;
6396 first_suggested_lma = TRUE;
6397
6398 /* Fill the current segment with sections that fit. */
6399 for (j = 0; j < section_count; j++)
6400 {
6401 section = sections[j];
6402
6403 if (section == NULL)
6404 continue;
6405
6406 output_section = section->output_section;
6407
6408 BFD_ASSERT (output_section != NULL);
6409
6410 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6411 || IS_COREFILE_NOTE (segment, section))
6412 {
6413 if (map->count == 0)
6414 {
6415 /* If the first section in a segment does not start at
6416 the beginning of the segment, then something is
6417 wrong. */
6418 if (output_section->lma
6419 != (map->p_paddr
6420 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6421 + (map->includes_phdrs
6422 ? iehdr->e_phnum * iehdr->e_phentsize
6423 : 0)))
6424 abort ();
6425 }
6426 else
6427 {
6428 asection *prev_sec;
6429
6430 prev_sec = map->sections[map->count - 1];
6431
6432 /* If the gap between the end of the previous section
6433 and the start of this section is more than
6434 maxpagesize then we need to start a new segment. */
6435 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6436 maxpagesize)
6437 < BFD_ALIGN (output_section->lma, maxpagesize))
6438 || (prev_sec->lma + prev_sec->size
6439 > output_section->lma))
6440 {
6441 if (first_suggested_lma)
6442 {
6443 suggested_lma = output_section->lma;
6444 first_suggested_lma = FALSE;
6445 }
6446
6447 continue;
6448 }
6449 }
6450
6451 map->sections[map->count++] = output_section;
6452 ++isec;
6453 sections[j] = NULL;
6454 section->segment_mark = TRUE;
6455 }
6456 else if (first_suggested_lma)
6457 {
6458 suggested_lma = output_section->lma;
6459 first_suggested_lma = FALSE;
6460 }
6461 }
6462
6463 BFD_ASSERT (map->count > 0);
6464
6465 /* Add the current segment to the list of built segments. */
6466 *pointer_to_map = map;
6467 pointer_to_map = &map->next;
6468
6469 if (isec < section_count)
6470 {
6471 /* We still have not allocated all of the sections to
6472 segments. Create a new segment here, initialise it
6473 and carry on looping. */
6474 amt = sizeof (struct elf_segment_map);
6475 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6476 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6477 if (map == NULL)
6478 {
6479 free (sections);
6480 return FALSE;
6481 }
6482
6483 /* Initialise the fields of the segment map. Set the physical
6484 physical address to the LMA of the first section that has
6485 not yet been assigned. */
6486 map->next = NULL;
6487 map->p_type = segment->p_type;
6488 map->p_flags = segment->p_flags;
6489 map->p_flags_valid = 1;
6490 map->p_paddr = suggested_lma;
6491 map->p_paddr_valid = p_paddr_valid;
6492 map->includes_filehdr = 0;
6493 map->includes_phdrs = 0;
6494 }
6495 }
6496 while (isec < section_count);
6497
6498 free (sections);
6499 }
6500
6501 elf_seg_map (obfd) = map_first;
6502
6503 /* If we had to estimate the number of program headers that were
6504 going to be needed, then check our estimate now and adjust
6505 the offset if necessary. */
6506 if (phdr_adjust_seg != NULL)
6507 {
6508 unsigned int count;
6509
6510 for (count = 0, map = map_first; map != NULL; map = map->next)
6511 count++;
6512
6513 if (count > phdr_adjust_num)
6514 phdr_adjust_seg->p_paddr
6515 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6516 }
6517
6518 #undef SEGMENT_END
6519 #undef SECTION_SIZE
6520 #undef IS_CONTAINED_BY_VMA
6521 #undef IS_CONTAINED_BY_LMA
6522 #undef IS_NOTE
6523 #undef IS_COREFILE_NOTE
6524 #undef IS_SOLARIS_PT_INTERP
6525 #undef IS_SECTION_IN_INPUT_SEGMENT
6526 #undef INCLUDE_SECTION_IN_SEGMENT
6527 #undef SEGMENT_AFTER_SEGMENT
6528 #undef SEGMENT_OVERLAPS
6529 return TRUE;
6530 }
6531
6532 /* Copy ELF program header information. */
6533
6534 static bfd_boolean
6535 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6536 {
6537 Elf_Internal_Ehdr *iehdr;
6538 struct elf_segment_map *map;
6539 struct elf_segment_map *map_first;
6540 struct elf_segment_map **pointer_to_map;
6541 Elf_Internal_Phdr *segment;
6542 unsigned int i;
6543 unsigned int num_segments;
6544 bfd_boolean phdr_included = FALSE;
6545 bfd_boolean p_paddr_valid;
6546
6547 iehdr = elf_elfheader (ibfd);
6548
6549 map_first = NULL;
6550 pointer_to_map = &map_first;
6551
6552 /* If all the segment p_paddr fields are zero, don't set
6553 map->p_paddr_valid. */
6554 p_paddr_valid = FALSE;
6555 num_segments = elf_elfheader (ibfd)->e_phnum;
6556 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6557 i < num_segments;
6558 i++, segment++)
6559 if (segment->p_paddr != 0)
6560 {
6561 p_paddr_valid = TRUE;
6562 break;
6563 }
6564
6565 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6566 i < num_segments;
6567 i++, segment++)
6568 {
6569 asection *section;
6570 unsigned int section_count;
6571 bfd_size_type amt;
6572 Elf_Internal_Shdr *this_hdr;
6573 asection *first_section = NULL;
6574 asection *lowest_section;
6575
6576 /* Compute how many sections are in this segment. */
6577 for (section = ibfd->sections, section_count = 0;
6578 section != NULL;
6579 section = section->next)
6580 {
6581 this_hdr = &(elf_section_data(section)->this_hdr);
6582 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6583 {
6584 if (first_section == NULL)
6585 first_section = section;
6586 section_count++;
6587 }
6588 }
6589
6590 /* Allocate a segment map big enough to contain
6591 all of the sections we have selected. */
6592 amt = sizeof (struct elf_segment_map);
6593 if (section_count != 0)
6594 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6595 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6596 if (map == NULL)
6597 return FALSE;
6598
6599 /* Initialize the fields of the output segment map with the
6600 input segment. */
6601 map->next = NULL;
6602 map->p_type = segment->p_type;
6603 map->p_flags = segment->p_flags;
6604 map->p_flags_valid = 1;
6605 map->p_paddr = segment->p_paddr;
6606 map->p_paddr_valid = p_paddr_valid;
6607 map->p_align = segment->p_align;
6608 map->p_align_valid = 1;
6609 map->p_vaddr_offset = 0;
6610
6611 if (map->p_type == PT_GNU_RELRO
6612 || map->p_type == PT_GNU_STACK)
6613 {
6614 /* The PT_GNU_RELRO segment may contain the first a few
6615 bytes in the .got.plt section even if the whole .got.plt
6616 section isn't in the PT_GNU_RELRO segment. We won't
6617 change the size of the PT_GNU_RELRO segment.
6618 Similarly, PT_GNU_STACK size is significant on uclinux
6619 systems. */
6620 map->p_size = segment->p_memsz;
6621 map->p_size_valid = 1;
6622 }
6623
6624 /* Determine if this segment contains the ELF file header
6625 and if it contains the program headers themselves. */
6626 map->includes_filehdr = (segment->p_offset == 0
6627 && segment->p_filesz >= iehdr->e_ehsize);
6628
6629 map->includes_phdrs = 0;
6630 if (! phdr_included || segment->p_type != PT_LOAD)
6631 {
6632 map->includes_phdrs =
6633 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6634 && (segment->p_offset + segment->p_filesz
6635 >= ((bfd_vma) iehdr->e_phoff
6636 + iehdr->e_phnum * iehdr->e_phentsize)));
6637
6638 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6639 phdr_included = TRUE;
6640 }
6641
6642 lowest_section = NULL;
6643 if (section_count != 0)
6644 {
6645 unsigned int isec = 0;
6646
6647 for (section = first_section;
6648 section != NULL;
6649 section = section->next)
6650 {
6651 this_hdr = &(elf_section_data(section)->this_hdr);
6652 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6653 {
6654 map->sections[isec++] = section->output_section;
6655 if ((section->flags & SEC_ALLOC) != 0)
6656 {
6657 bfd_vma seg_off;
6658
6659 if (lowest_section == NULL
6660 || section->lma < lowest_section->lma)
6661 lowest_section = section;
6662
6663 /* Section lmas are set up from PT_LOAD header
6664 p_paddr in _bfd_elf_make_section_from_shdr.
6665 If this header has a p_paddr that disagrees
6666 with the section lma, flag the p_paddr as
6667 invalid. */
6668 if ((section->flags & SEC_LOAD) != 0)
6669 seg_off = this_hdr->sh_offset - segment->p_offset;
6670 else
6671 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6672 if (section->lma - segment->p_paddr != seg_off)
6673 map->p_paddr_valid = FALSE;
6674 }
6675 if (isec == section_count)
6676 break;
6677 }
6678 }
6679 }
6680
6681 if (map->includes_filehdr && lowest_section != NULL)
6682 /* We need to keep the space used by the headers fixed. */
6683 map->header_size = lowest_section->vma - segment->p_vaddr;
6684
6685 if (!map->includes_phdrs
6686 && !map->includes_filehdr
6687 && map->p_paddr_valid)
6688 /* There is some other padding before the first section. */
6689 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6690 - segment->p_paddr);
6691
6692 map->count = section_count;
6693 *pointer_to_map = map;
6694 pointer_to_map = &map->next;
6695 }
6696
6697 elf_seg_map (obfd) = map_first;
6698 return TRUE;
6699 }
6700
6701 /* Copy private BFD data. This copies or rewrites ELF program header
6702 information. */
6703
6704 static bfd_boolean
6705 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6706 {
6707 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6708 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6709 return TRUE;
6710
6711 if (elf_tdata (ibfd)->phdr == NULL)
6712 return TRUE;
6713
6714 if (ibfd->xvec == obfd->xvec)
6715 {
6716 /* Check to see if any sections in the input BFD
6717 covered by ELF program header have changed. */
6718 Elf_Internal_Phdr *segment;
6719 asection *section, *osec;
6720 unsigned int i, num_segments;
6721 Elf_Internal_Shdr *this_hdr;
6722 const struct elf_backend_data *bed;
6723
6724 bed = get_elf_backend_data (ibfd);
6725
6726 /* Regenerate the segment map if p_paddr is set to 0. */
6727 if (bed->want_p_paddr_set_to_zero)
6728 goto rewrite;
6729
6730 /* Initialize the segment mark field. */
6731 for (section = obfd->sections; section != NULL;
6732 section = section->next)
6733 section->segment_mark = FALSE;
6734
6735 num_segments = elf_elfheader (ibfd)->e_phnum;
6736 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6737 i < num_segments;
6738 i++, segment++)
6739 {
6740 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6741 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6742 which severly confuses things, so always regenerate the segment
6743 map in this case. */
6744 if (segment->p_paddr == 0
6745 && segment->p_memsz == 0
6746 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6747 goto rewrite;
6748
6749 for (section = ibfd->sections;
6750 section != NULL; section = section->next)
6751 {
6752 /* We mark the output section so that we know it comes
6753 from the input BFD. */
6754 osec = section->output_section;
6755 if (osec)
6756 osec->segment_mark = TRUE;
6757
6758 /* Check if this section is covered by the segment. */
6759 this_hdr = &(elf_section_data(section)->this_hdr);
6760 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6761 {
6762 /* FIXME: Check if its output section is changed or
6763 removed. What else do we need to check? */
6764 if (osec == NULL
6765 || section->flags != osec->flags
6766 || section->lma != osec->lma
6767 || section->vma != osec->vma
6768 || section->size != osec->size
6769 || section->rawsize != osec->rawsize
6770 || section->alignment_power != osec->alignment_power)
6771 goto rewrite;
6772 }
6773 }
6774 }
6775
6776 /* Check to see if any output section do not come from the
6777 input BFD. */
6778 for (section = obfd->sections; section != NULL;
6779 section = section->next)
6780 {
6781 if (section->segment_mark == FALSE)
6782 goto rewrite;
6783 else
6784 section->segment_mark = FALSE;
6785 }
6786
6787 return copy_elf_program_header (ibfd, obfd);
6788 }
6789
6790 rewrite:
6791 if (ibfd->xvec == obfd->xvec)
6792 {
6793 /* When rewriting program header, set the output maxpagesize to
6794 the maximum alignment of input PT_LOAD segments. */
6795 Elf_Internal_Phdr *segment;
6796 unsigned int i;
6797 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6798 bfd_vma maxpagesize = 0;
6799
6800 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6801 i < num_segments;
6802 i++, segment++)
6803 if (segment->p_type == PT_LOAD
6804 && maxpagesize < segment->p_align)
6805 {
6806 /* PR 17512: file: f17299af. */
6807 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
6808 (*_bfd_error_handler) (_("\
6809 %B: warning: segment alignment of 0x%llx is too large"),
6810 ibfd, (long long) segment->p_align);
6811 else
6812 maxpagesize = segment->p_align;
6813 }
6814
6815 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6816 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6817 }
6818
6819 return rewrite_elf_program_header (ibfd, obfd);
6820 }
6821
6822 /* Initialize private output section information from input section. */
6823
6824 bfd_boolean
6825 _bfd_elf_init_private_section_data (bfd *ibfd,
6826 asection *isec,
6827 bfd *obfd,
6828 asection *osec,
6829 struct bfd_link_info *link_info)
6830
6831 {
6832 Elf_Internal_Shdr *ihdr, *ohdr;
6833 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6834
6835 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6836 || obfd->xvec->flavour != bfd_target_elf_flavour)
6837 return TRUE;
6838
6839 BFD_ASSERT (elf_section_data (osec) != NULL);
6840
6841 /* For objcopy and relocatable link, don't copy the output ELF
6842 section type from input if the output BFD section flags have been
6843 set to something different. For a final link allow some flags
6844 that the linker clears to differ. */
6845 if (elf_section_type (osec) == SHT_NULL
6846 && (osec->flags == isec->flags
6847 || (final_link
6848 && ((osec->flags ^ isec->flags)
6849 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6850 elf_section_type (osec) = elf_section_type (isec);
6851
6852 /* FIXME: Is this correct for all OS/PROC specific flags? */
6853 elf_section_flags (osec) |= (elf_section_flags (isec)
6854 & (SHF_MASKOS | SHF_MASKPROC));
6855
6856 /* Set things up for objcopy and relocatable link. The output
6857 SHT_GROUP section will have its elf_next_in_group pointing back
6858 to the input group members. Ignore linker created group section.
6859 See elfNN_ia64_object_p in elfxx-ia64.c. */
6860 if (!final_link)
6861 {
6862 if (elf_sec_group (isec) == NULL
6863 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6864 {
6865 if (elf_section_flags (isec) & SHF_GROUP)
6866 elf_section_flags (osec) |= SHF_GROUP;
6867 elf_next_in_group (osec) = elf_next_in_group (isec);
6868 elf_section_data (osec)->group = elf_section_data (isec)->group;
6869 }
6870
6871 /* If not decompress, preserve SHF_COMPRESSED. */
6872 if ((ibfd->flags & BFD_DECOMPRESS) == 0)
6873 elf_section_flags (osec) |= (elf_section_flags (isec)
6874 & SHF_COMPRESSED);
6875 }
6876
6877 ihdr = &elf_section_data (isec)->this_hdr;
6878
6879 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6880 don't use the output section of the linked-to section since it
6881 may be NULL at this point. */
6882 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6883 {
6884 ohdr = &elf_section_data (osec)->this_hdr;
6885 ohdr->sh_flags |= SHF_LINK_ORDER;
6886 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6887 }
6888
6889 osec->use_rela_p = isec->use_rela_p;
6890
6891 return TRUE;
6892 }
6893
6894 /* Copy private section information. This copies over the entsize
6895 field, and sometimes the info field. */
6896
6897 bfd_boolean
6898 _bfd_elf_copy_private_section_data (bfd *ibfd,
6899 asection *isec,
6900 bfd *obfd,
6901 asection *osec)
6902 {
6903 Elf_Internal_Shdr *ihdr, *ohdr;
6904
6905 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6906 || obfd->xvec->flavour != bfd_target_elf_flavour)
6907 return TRUE;
6908
6909 ihdr = &elf_section_data (isec)->this_hdr;
6910 ohdr = &elf_section_data (osec)->this_hdr;
6911
6912 ohdr->sh_entsize = ihdr->sh_entsize;
6913
6914 if (ihdr->sh_type == SHT_SYMTAB
6915 || ihdr->sh_type == SHT_DYNSYM
6916 || ihdr->sh_type == SHT_GNU_verneed
6917 || ihdr->sh_type == SHT_GNU_verdef)
6918 ohdr->sh_info = ihdr->sh_info;
6919
6920 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6921 NULL);
6922 }
6923
6924 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6925 necessary if we are removing either the SHT_GROUP section or any of
6926 the group member sections. DISCARDED is the value that a section's
6927 output_section has if the section will be discarded, NULL when this
6928 function is called from objcopy, bfd_abs_section_ptr when called
6929 from the linker. */
6930
6931 bfd_boolean
6932 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6933 {
6934 asection *isec;
6935
6936 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6937 if (elf_section_type (isec) == SHT_GROUP)
6938 {
6939 asection *first = elf_next_in_group (isec);
6940 asection *s = first;
6941 bfd_size_type removed = 0;
6942
6943 while (s != NULL)
6944 {
6945 /* If this member section is being output but the
6946 SHT_GROUP section is not, then clear the group info
6947 set up by _bfd_elf_copy_private_section_data. */
6948 if (s->output_section != discarded
6949 && isec->output_section == discarded)
6950 {
6951 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6952 elf_group_name (s->output_section) = NULL;
6953 }
6954 /* Conversely, if the member section is not being output
6955 but the SHT_GROUP section is, then adjust its size. */
6956 else if (s->output_section == discarded
6957 && isec->output_section != discarded)
6958 removed += 4;
6959 s = elf_next_in_group (s);
6960 if (s == first)
6961 break;
6962 }
6963 if (removed != 0)
6964 {
6965 if (discarded != NULL)
6966 {
6967 /* If we've been called for ld -r, then we need to
6968 adjust the input section size. This function may
6969 be called multiple times, so save the original
6970 size. */
6971 if (isec->rawsize == 0)
6972 isec->rawsize = isec->size;
6973 isec->size = isec->rawsize - removed;
6974 }
6975 else
6976 {
6977 /* Adjust the output section size when called from
6978 objcopy. */
6979 isec->output_section->size -= removed;
6980 }
6981 }
6982 }
6983
6984 return TRUE;
6985 }
6986
6987 /* Copy private header information. */
6988
6989 bfd_boolean
6990 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6991 {
6992 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6993 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6994 return TRUE;
6995
6996 /* Copy over private BFD data if it has not already been copied.
6997 This must be done here, rather than in the copy_private_bfd_data
6998 entry point, because the latter is called after the section
6999 contents have been set, which means that the program headers have
7000 already been worked out. */
7001 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7002 {
7003 if (! copy_private_bfd_data (ibfd, obfd))
7004 return FALSE;
7005 }
7006
7007 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7008 }
7009
7010 /* Copy private symbol information. If this symbol is in a section
7011 which we did not map into a BFD section, try to map the section
7012 index correctly. We use special macro definitions for the mapped
7013 section indices; these definitions are interpreted by the
7014 swap_out_syms function. */
7015
7016 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7017 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7018 #define MAP_STRTAB (SHN_HIOS + 3)
7019 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7020 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7021
7022 bfd_boolean
7023 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7024 asymbol *isymarg,
7025 bfd *obfd,
7026 asymbol *osymarg)
7027 {
7028 elf_symbol_type *isym, *osym;
7029
7030 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7031 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7032 return TRUE;
7033
7034 isym = elf_symbol_from (ibfd, isymarg);
7035 osym = elf_symbol_from (obfd, osymarg);
7036
7037 if (isym != NULL
7038 && isym->internal_elf_sym.st_shndx != 0
7039 && osym != NULL
7040 && bfd_is_abs_section (isym->symbol.section))
7041 {
7042 unsigned int shndx;
7043
7044 shndx = isym->internal_elf_sym.st_shndx;
7045 if (shndx == elf_onesymtab (ibfd))
7046 shndx = MAP_ONESYMTAB;
7047 else if (shndx == elf_dynsymtab (ibfd))
7048 shndx = MAP_DYNSYMTAB;
7049 else if (shndx == elf_strtab_sec (ibfd))
7050 shndx = MAP_STRTAB;
7051 else if (shndx == elf_shstrtab_sec (ibfd))
7052 shndx = MAP_SHSTRTAB;
7053 else if (shndx == elf_symtab_shndx (ibfd))
7054 shndx = MAP_SYM_SHNDX;
7055 osym->internal_elf_sym.st_shndx = shndx;
7056 }
7057
7058 return TRUE;
7059 }
7060
7061 /* Swap out the symbols. */
7062
7063 static bfd_boolean
7064 swap_out_syms (bfd *abfd,
7065 struct bfd_strtab_hash **sttp,
7066 int relocatable_p)
7067 {
7068 const struct elf_backend_data *bed;
7069 int symcount;
7070 asymbol **syms;
7071 struct bfd_strtab_hash *stt;
7072 Elf_Internal_Shdr *symtab_hdr;
7073 Elf_Internal_Shdr *symtab_shndx_hdr;
7074 Elf_Internal_Shdr *symstrtab_hdr;
7075 bfd_byte *outbound_syms;
7076 bfd_byte *outbound_shndx;
7077 int idx;
7078 unsigned int num_locals;
7079 bfd_size_type amt;
7080 bfd_boolean name_local_sections;
7081
7082 if (!elf_map_symbols (abfd, &num_locals))
7083 return FALSE;
7084
7085 /* Dump out the symtabs. */
7086 stt = _bfd_elf_stringtab_init ();
7087 if (stt == NULL)
7088 return FALSE;
7089
7090 bed = get_elf_backend_data (abfd);
7091 symcount = bfd_get_symcount (abfd);
7092 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7093 symtab_hdr->sh_type = SHT_SYMTAB;
7094 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7095 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7096 symtab_hdr->sh_info = num_locals + 1;
7097 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7098
7099 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7100 symstrtab_hdr->sh_type = SHT_STRTAB;
7101
7102 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7103 bed->s->sizeof_sym);
7104 if (outbound_syms == NULL)
7105 {
7106 _bfd_stringtab_free (stt);
7107 return FALSE;
7108 }
7109 symtab_hdr->contents = outbound_syms;
7110
7111 outbound_shndx = NULL;
7112 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
7113 if (symtab_shndx_hdr->sh_name != 0)
7114 {
7115 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7116 outbound_shndx = (bfd_byte *)
7117 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7118 if (outbound_shndx == NULL)
7119 {
7120 _bfd_stringtab_free (stt);
7121 return FALSE;
7122 }
7123
7124 symtab_shndx_hdr->contents = outbound_shndx;
7125 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7126 symtab_shndx_hdr->sh_size = amt;
7127 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7128 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7129 }
7130
7131 /* Now generate the data (for "contents"). */
7132 {
7133 /* Fill in zeroth symbol and swap it out. */
7134 Elf_Internal_Sym sym;
7135 sym.st_name = 0;
7136 sym.st_value = 0;
7137 sym.st_size = 0;
7138 sym.st_info = 0;
7139 sym.st_other = 0;
7140 sym.st_shndx = SHN_UNDEF;
7141 sym.st_target_internal = 0;
7142 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
7143 outbound_syms += bed->s->sizeof_sym;
7144 if (outbound_shndx != NULL)
7145 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
7146 }
7147
7148 name_local_sections
7149 = (bed->elf_backend_name_local_section_symbols
7150 && bed->elf_backend_name_local_section_symbols (abfd));
7151
7152 syms = bfd_get_outsymbols (abfd);
7153 for (idx = 0; idx < symcount; idx++)
7154 {
7155 Elf_Internal_Sym sym;
7156 bfd_vma value = syms[idx]->value;
7157 elf_symbol_type *type_ptr;
7158 flagword flags = syms[idx]->flags;
7159 int type;
7160
7161 if (!name_local_sections
7162 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7163 {
7164 /* Local section symbols have no name. */
7165 sym.st_name = 0;
7166 }
7167 else
7168 {
7169 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
7170 syms[idx]->name,
7171 TRUE, FALSE);
7172 if (sym.st_name == (unsigned long) -1)
7173 {
7174 _bfd_stringtab_free (stt);
7175 return FALSE;
7176 }
7177 }
7178
7179 type_ptr = elf_symbol_from (abfd, syms[idx]);
7180
7181 if ((flags & BSF_SECTION_SYM) == 0
7182 && bfd_is_com_section (syms[idx]->section))
7183 {
7184 /* ELF common symbols put the alignment into the `value' field,
7185 and the size into the `size' field. This is backwards from
7186 how BFD handles it, so reverse it here. */
7187 sym.st_size = value;
7188 if (type_ptr == NULL
7189 || type_ptr->internal_elf_sym.st_value == 0)
7190 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7191 else
7192 sym.st_value = type_ptr->internal_elf_sym.st_value;
7193 sym.st_shndx = _bfd_elf_section_from_bfd_section
7194 (abfd, syms[idx]->section);
7195 }
7196 else
7197 {
7198 asection *sec = syms[idx]->section;
7199 unsigned int shndx;
7200
7201 if (sec->output_section)
7202 {
7203 value += sec->output_offset;
7204 sec = sec->output_section;
7205 }
7206
7207 /* Don't add in the section vma for relocatable output. */
7208 if (! relocatable_p)
7209 value += sec->vma;
7210 sym.st_value = value;
7211 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7212
7213 if (bfd_is_abs_section (sec)
7214 && type_ptr != NULL
7215 && type_ptr->internal_elf_sym.st_shndx != 0)
7216 {
7217 /* This symbol is in a real ELF section which we did
7218 not create as a BFD section. Undo the mapping done
7219 by copy_private_symbol_data. */
7220 shndx = type_ptr->internal_elf_sym.st_shndx;
7221 switch (shndx)
7222 {
7223 case MAP_ONESYMTAB:
7224 shndx = elf_onesymtab (abfd);
7225 break;
7226 case MAP_DYNSYMTAB:
7227 shndx = elf_dynsymtab (abfd);
7228 break;
7229 case MAP_STRTAB:
7230 shndx = elf_strtab_sec (abfd);
7231 break;
7232 case MAP_SHSTRTAB:
7233 shndx = elf_shstrtab_sec (abfd);
7234 break;
7235 case MAP_SYM_SHNDX:
7236 shndx = elf_symtab_shndx (abfd);
7237 break;
7238 default:
7239 shndx = SHN_ABS;
7240 break;
7241 }
7242 }
7243 else
7244 {
7245 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7246
7247 if (shndx == SHN_BAD)
7248 {
7249 asection *sec2;
7250
7251 /* Writing this would be a hell of a lot easier if
7252 we had some decent documentation on bfd, and
7253 knew what to expect of the library, and what to
7254 demand of applications. For example, it
7255 appears that `objcopy' might not set the
7256 section of a symbol to be a section that is
7257 actually in the output file. */
7258 sec2 = bfd_get_section_by_name (abfd, sec->name);
7259 if (sec2 == NULL)
7260 {
7261 _bfd_error_handler (_("\
7262 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7263 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7264 sec->name);
7265 bfd_set_error (bfd_error_invalid_operation);
7266 _bfd_stringtab_free (stt);
7267 return FALSE;
7268 }
7269
7270 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7271 BFD_ASSERT (shndx != SHN_BAD);
7272 }
7273 }
7274
7275 sym.st_shndx = shndx;
7276 }
7277
7278 if ((flags & BSF_THREAD_LOCAL) != 0)
7279 type = STT_TLS;
7280 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7281 type = STT_GNU_IFUNC;
7282 else if ((flags & BSF_FUNCTION) != 0)
7283 type = STT_FUNC;
7284 else if ((flags & BSF_OBJECT) != 0)
7285 type = STT_OBJECT;
7286 else if ((flags & BSF_RELC) != 0)
7287 type = STT_RELC;
7288 else if ((flags & BSF_SRELC) != 0)
7289 type = STT_SRELC;
7290 else
7291 type = STT_NOTYPE;
7292
7293 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7294 type = STT_TLS;
7295
7296 /* Processor-specific types. */
7297 if (type_ptr != NULL
7298 && bed->elf_backend_get_symbol_type)
7299 type = ((*bed->elf_backend_get_symbol_type)
7300 (&type_ptr->internal_elf_sym, type));
7301
7302 if (flags & BSF_SECTION_SYM)
7303 {
7304 if (flags & BSF_GLOBAL)
7305 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7306 else
7307 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7308 }
7309 else if (bfd_is_com_section (syms[idx]->section))
7310 {
7311 #ifdef USE_STT_COMMON
7312 if (type == STT_OBJECT)
7313 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
7314 else
7315 #endif
7316 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7317 }
7318 else if (bfd_is_und_section (syms[idx]->section))
7319 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7320 ? STB_WEAK
7321 : STB_GLOBAL),
7322 type);
7323 else if (flags & BSF_FILE)
7324 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7325 else
7326 {
7327 int bind = STB_LOCAL;
7328
7329 if (flags & BSF_LOCAL)
7330 bind = STB_LOCAL;
7331 else if (flags & BSF_GNU_UNIQUE)
7332 bind = STB_GNU_UNIQUE;
7333 else if (flags & BSF_WEAK)
7334 bind = STB_WEAK;
7335 else if (flags & BSF_GLOBAL)
7336 bind = STB_GLOBAL;
7337
7338 sym.st_info = ELF_ST_INFO (bind, type);
7339 }
7340
7341 if (type_ptr != NULL)
7342 {
7343 sym.st_other = type_ptr->internal_elf_sym.st_other;
7344 sym.st_target_internal
7345 = type_ptr->internal_elf_sym.st_target_internal;
7346 }
7347 else
7348 {
7349 sym.st_other = 0;
7350 sym.st_target_internal = 0;
7351 }
7352
7353 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
7354 outbound_syms += bed->s->sizeof_sym;
7355 if (outbound_shndx != NULL)
7356 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
7357 }
7358
7359 *sttp = stt;
7360 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
7361 symstrtab_hdr->sh_type = SHT_STRTAB;
7362
7363 symstrtab_hdr->sh_flags = 0;
7364 symstrtab_hdr->sh_addr = 0;
7365 symstrtab_hdr->sh_entsize = 0;
7366 symstrtab_hdr->sh_link = 0;
7367 symstrtab_hdr->sh_info = 0;
7368 symstrtab_hdr->sh_addralign = 1;
7369
7370 return TRUE;
7371 }
7372
7373 /* Return the number of bytes required to hold the symtab vector.
7374
7375 Note that we base it on the count plus 1, since we will null terminate
7376 the vector allocated based on this size. However, the ELF symbol table
7377 always has a dummy entry as symbol #0, so it ends up even. */
7378
7379 long
7380 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7381 {
7382 long symcount;
7383 long symtab_size;
7384 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7385
7386 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7387 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7388 if (symcount > 0)
7389 symtab_size -= sizeof (asymbol *);
7390
7391 return symtab_size;
7392 }
7393
7394 long
7395 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7396 {
7397 long symcount;
7398 long symtab_size;
7399 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7400
7401 if (elf_dynsymtab (abfd) == 0)
7402 {
7403 bfd_set_error (bfd_error_invalid_operation);
7404 return -1;
7405 }
7406
7407 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7408 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7409 if (symcount > 0)
7410 symtab_size -= sizeof (asymbol *);
7411
7412 return symtab_size;
7413 }
7414
7415 long
7416 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7417 sec_ptr asect)
7418 {
7419 return (asect->reloc_count + 1) * sizeof (arelent *);
7420 }
7421
7422 /* Canonicalize the relocs. */
7423
7424 long
7425 _bfd_elf_canonicalize_reloc (bfd *abfd,
7426 sec_ptr section,
7427 arelent **relptr,
7428 asymbol **symbols)
7429 {
7430 arelent *tblptr;
7431 unsigned int i;
7432 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7433
7434 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7435 return -1;
7436
7437 tblptr = section->relocation;
7438 for (i = 0; i < section->reloc_count; i++)
7439 *relptr++ = tblptr++;
7440
7441 *relptr = NULL;
7442
7443 return section->reloc_count;
7444 }
7445
7446 long
7447 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7448 {
7449 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7450 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7451
7452 if (symcount >= 0)
7453 bfd_get_symcount (abfd) = symcount;
7454 return symcount;
7455 }
7456
7457 long
7458 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7459 asymbol **allocation)
7460 {
7461 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7462 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7463
7464 if (symcount >= 0)
7465 bfd_get_dynamic_symcount (abfd) = symcount;
7466 return symcount;
7467 }
7468
7469 /* Return the size required for the dynamic reloc entries. Any loadable
7470 section that was actually installed in the BFD, and has type SHT_REL
7471 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7472 dynamic reloc section. */
7473
7474 long
7475 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7476 {
7477 long ret;
7478 asection *s;
7479
7480 if (elf_dynsymtab (abfd) == 0)
7481 {
7482 bfd_set_error (bfd_error_invalid_operation);
7483 return -1;
7484 }
7485
7486 ret = sizeof (arelent *);
7487 for (s = abfd->sections; s != NULL; s = s->next)
7488 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7489 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7490 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7491 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7492 * sizeof (arelent *));
7493
7494 return ret;
7495 }
7496
7497 /* Canonicalize the dynamic relocation entries. Note that we return the
7498 dynamic relocations as a single block, although they are actually
7499 associated with particular sections; the interface, which was
7500 designed for SunOS style shared libraries, expects that there is only
7501 one set of dynamic relocs. Any loadable section that was actually
7502 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7503 dynamic symbol table, is considered to be a dynamic reloc section. */
7504
7505 long
7506 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7507 arelent **storage,
7508 asymbol **syms)
7509 {
7510 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7511 asection *s;
7512 long ret;
7513
7514 if (elf_dynsymtab (abfd) == 0)
7515 {
7516 bfd_set_error (bfd_error_invalid_operation);
7517 return -1;
7518 }
7519
7520 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7521 ret = 0;
7522 for (s = abfd->sections; s != NULL; s = s->next)
7523 {
7524 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7525 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7526 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7527 {
7528 arelent *p;
7529 long count, i;
7530
7531 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7532 return -1;
7533 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7534 p = s->relocation;
7535 for (i = 0; i < count; i++)
7536 *storage++ = p++;
7537 ret += count;
7538 }
7539 }
7540
7541 *storage = NULL;
7542
7543 return ret;
7544 }
7545 \f
7546 /* Read in the version information. */
7547
7548 bfd_boolean
7549 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7550 {
7551 bfd_byte *contents = NULL;
7552 unsigned int freeidx = 0;
7553
7554 if (elf_dynverref (abfd) != 0)
7555 {
7556 Elf_Internal_Shdr *hdr;
7557 Elf_External_Verneed *everneed;
7558 Elf_Internal_Verneed *iverneed;
7559 unsigned int i;
7560 bfd_byte *contents_end;
7561
7562 hdr = &elf_tdata (abfd)->dynverref_hdr;
7563
7564 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
7565 {
7566 error_return_bad_verref:
7567 (*_bfd_error_handler)
7568 (_("%B: .gnu.version_r invalid entry"), abfd);
7569 bfd_set_error (bfd_error_bad_value);
7570 error_return_verref:
7571 elf_tdata (abfd)->verref = NULL;
7572 elf_tdata (abfd)->cverrefs = 0;
7573 goto error_return;
7574 }
7575
7576 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7577 if (contents == NULL)
7578 goto error_return_verref;
7579
7580 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7581 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7582 goto error_return_verref;
7583
7584 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7585 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7586
7587 if (elf_tdata (abfd)->verref == NULL)
7588 goto error_return_verref;
7589
7590 BFD_ASSERT (sizeof (Elf_External_Verneed)
7591 == sizeof (Elf_External_Vernaux));
7592 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7593 everneed = (Elf_External_Verneed *) contents;
7594 iverneed = elf_tdata (abfd)->verref;
7595 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7596 {
7597 Elf_External_Vernaux *evernaux;
7598 Elf_Internal_Vernaux *ivernaux;
7599 unsigned int j;
7600
7601 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7602
7603 iverneed->vn_bfd = abfd;
7604
7605 iverneed->vn_filename =
7606 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7607 iverneed->vn_file);
7608 if (iverneed->vn_filename == NULL)
7609 goto error_return_bad_verref;
7610
7611 if (iverneed->vn_cnt == 0)
7612 iverneed->vn_auxptr = NULL;
7613 else
7614 {
7615 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7616 bfd_alloc2 (abfd, iverneed->vn_cnt,
7617 sizeof (Elf_Internal_Vernaux));
7618 if (iverneed->vn_auxptr == NULL)
7619 goto error_return_verref;
7620 }
7621
7622 if (iverneed->vn_aux
7623 > (size_t) (contents_end - (bfd_byte *) everneed))
7624 goto error_return_bad_verref;
7625
7626 evernaux = ((Elf_External_Vernaux *)
7627 ((bfd_byte *) everneed + iverneed->vn_aux));
7628 ivernaux = iverneed->vn_auxptr;
7629 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7630 {
7631 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7632
7633 ivernaux->vna_nodename =
7634 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7635 ivernaux->vna_name);
7636 if (ivernaux->vna_nodename == NULL)
7637 goto error_return_bad_verref;
7638
7639 if (ivernaux->vna_other > freeidx)
7640 freeidx = ivernaux->vna_other;
7641
7642 ivernaux->vna_nextptr = NULL;
7643 if (ivernaux->vna_next == 0)
7644 {
7645 iverneed->vn_cnt = j + 1;
7646 break;
7647 }
7648 if (j + 1 < iverneed->vn_cnt)
7649 ivernaux->vna_nextptr = ivernaux + 1;
7650
7651 if (ivernaux->vna_next
7652 > (size_t) (contents_end - (bfd_byte *) evernaux))
7653 goto error_return_bad_verref;
7654
7655 evernaux = ((Elf_External_Vernaux *)
7656 ((bfd_byte *) evernaux + ivernaux->vna_next));
7657 }
7658
7659 iverneed->vn_nextref = NULL;
7660 if (iverneed->vn_next == 0)
7661 break;
7662 if (i + 1 < hdr->sh_info)
7663 iverneed->vn_nextref = iverneed + 1;
7664
7665 if (iverneed->vn_next
7666 > (size_t) (contents_end - (bfd_byte *) everneed))
7667 goto error_return_bad_verref;
7668
7669 everneed = ((Elf_External_Verneed *)
7670 ((bfd_byte *) everneed + iverneed->vn_next));
7671 }
7672 elf_tdata (abfd)->cverrefs = i;
7673
7674 free (contents);
7675 contents = NULL;
7676 }
7677
7678 if (elf_dynverdef (abfd) != 0)
7679 {
7680 Elf_Internal_Shdr *hdr;
7681 Elf_External_Verdef *everdef;
7682 Elf_Internal_Verdef *iverdef;
7683 Elf_Internal_Verdef *iverdefarr;
7684 Elf_Internal_Verdef iverdefmem;
7685 unsigned int i;
7686 unsigned int maxidx;
7687 bfd_byte *contents_end_def, *contents_end_aux;
7688
7689 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7690
7691 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
7692 {
7693 error_return_bad_verdef:
7694 (*_bfd_error_handler)
7695 (_("%B: .gnu.version_d invalid entry"), abfd);
7696 bfd_set_error (bfd_error_bad_value);
7697 error_return_verdef:
7698 elf_tdata (abfd)->verdef = NULL;
7699 elf_tdata (abfd)->cverdefs = 0;
7700 goto error_return;
7701 }
7702
7703 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7704 if (contents == NULL)
7705 goto error_return_verdef;
7706 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7707 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7708 goto error_return_verdef;
7709
7710 BFD_ASSERT (sizeof (Elf_External_Verdef)
7711 >= sizeof (Elf_External_Verdaux));
7712 contents_end_def = contents + hdr->sh_size
7713 - sizeof (Elf_External_Verdef);
7714 contents_end_aux = contents + hdr->sh_size
7715 - sizeof (Elf_External_Verdaux);
7716
7717 /* We know the number of entries in the section but not the maximum
7718 index. Therefore we have to run through all entries and find
7719 the maximum. */
7720 everdef = (Elf_External_Verdef *) contents;
7721 maxidx = 0;
7722 for (i = 0; i < hdr->sh_info; ++i)
7723 {
7724 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7725
7726 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
7727 goto error_return_bad_verdef;
7728 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7729 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7730
7731 if (iverdefmem.vd_next == 0)
7732 break;
7733
7734 if (iverdefmem.vd_next
7735 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7736 goto error_return_bad_verdef;
7737
7738 everdef = ((Elf_External_Verdef *)
7739 ((bfd_byte *) everdef + iverdefmem.vd_next));
7740 }
7741
7742 if (default_imported_symver)
7743 {
7744 if (freeidx > maxidx)
7745 maxidx = ++freeidx;
7746 else
7747 freeidx = ++maxidx;
7748 }
7749
7750 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7751 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7752 if (elf_tdata (abfd)->verdef == NULL)
7753 goto error_return_verdef;
7754
7755 elf_tdata (abfd)->cverdefs = maxidx;
7756
7757 everdef = (Elf_External_Verdef *) contents;
7758 iverdefarr = elf_tdata (abfd)->verdef;
7759 for (i = 0; i < hdr->sh_info; i++)
7760 {
7761 Elf_External_Verdaux *everdaux;
7762 Elf_Internal_Verdaux *iverdaux;
7763 unsigned int j;
7764
7765 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7766
7767 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7768 goto error_return_bad_verdef;
7769
7770 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7771 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7772
7773 iverdef->vd_bfd = abfd;
7774
7775 if (iverdef->vd_cnt == 0)
7776 iverdef->vd_auxptr = NULL;
7777 else
7778 {
7779 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7780 bfd_alloc2 (abfd, iverdef->vd_cnt,
7781 sizeof (Elf_Internal_Verdaux));
7782 if (iverdef->vd_auxptr == NULL)
7783 goto error_return_verdef;
7784 }
7785
7786 if (iverdef->vd_aux
7787 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7788 goto error_return_bad_verdef;
7789
7790 everdaux = ((Elf_External_Verdaux *)
7791 ((bfd_byte *) everdef + iverdef->vd_aux));
7792 iverdaux = iverdef->vd_auxptr;
7793 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7794 {
7795 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7796
7797 iverdaux->vda_nodename =
7798 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7799 iverdaux->vda_name);
7800 if (iverdaux->vda_nodename == NULL)
7801 goto error_return_bad_verdef;
7802
7803 iverdaux->vda_nextptr = NULL;
7804 if (iverdaux->vda_next == 0)
7805 {
7806 iverdef->vd_cnt = j + 1;
7807 break;
7808 }
7809 if (j + 1 < iverdef->vd_cnt)
7810 iverdaux->vda_nextptr = iverdaux + 1;
7811
7812 if (iverdaux->vda_next
7813 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7814 goto error_return_bad_verdef;
7815
7816 everdaux = ((Elf_External_Verdaux *)
7817 ((bfd_byte *) everdaux + iverdaux->vda_next));
7818 }
7819
7820 if (iverdef->vd_cnt)
7821 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7822
7823 iverdef->vd_nextdef = NULL;
7824 if (iverdef->vd_next == 0)
7825 break;
7826 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7827 iverdef->vd_nextdef = iverdef + 1;
7828
7829 everdef = ((Elf_External_Verdef *)
7830 ((bfd_byte *) everdef + iverdef->vd_next));
7831 }
7832
7833 free (contents);
7834 contents = NULL;
7835 }
7836 else if (default_imported_symver)
7837 {
7838 if (freeidx < 3)
7839 freeidx = 3;
7840 else
7841 freeidx++;
7842
7843 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7844 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7845 if (elf_tdata (abfd)->verdef == NULL)
7846 goto error_return;
7847
7848 elf_tdata (abfd)->cverdefs = freeidx;
7849 }
7850
7851 /* Create a default version based on the soname. */
7852 if (default_imported_symver)
7853 {
7854 Elf_Internal_Verdef *iverdef;
7855 Elf_Internal_Verdaux *iverdaux;
7856
7857 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7858
7859 iverdef->vd_version = VER_DEF_CURRENT;
7860 iverdef->vd_flags = 0;
7861 iverdef->vd_ndx = freeidx;
7862 iverdef->vd_cnt = 1;
7863
7864 iverdef->vd_bfd = abfd;
7865
7866 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7867 if (iverdef->vd_nodename == NULL)
7868 goto error_return_verdef;
7869 iverdef->vd_nextdef = NULL;
7870 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
7871 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
7872 if (iverdef->vd_auxptr == NULL)
7873 goto error_return_verdef;
7874
7875 iverdaux = iverdef->vd_auxptr;
7876 iverdaux->vda_nodename = iverdef->vd_nodename;
7877 }
7878
7879 return TRUE;
7880
7881 error_return:
7882 if (contents != NULL)
7883 free (contents);
7884 return FALSE;
7885 }
7886 \f
7887 asymbol *
7888 _bfd_elf_make_empty_symbol (bfd *abfd)
7889 {
7890 elf_symbol_type *newsym;
7891
7892 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
7893 if (!newsym)
7894 return NULL;
7895 newsym->symbol.the_bfd = abfd;
7896 return &newsym->symbol;
7897 }
7898
7899 void
7900 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7901 asymbol *symbol,
7902 symbol_info *ret)
7903 {
7904 bfd_symbol_info (symbol, ret);
7905 }
7906
7907 /* Return whether a symbol name implies a local symbol. Most targets
7908 use this function for the is_local_label_name entry point, but some
7909 override it. */
7910
7911 bfd_boolean
7912 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7913 const char *name)
7914 {
7915 /* Normal local symbols start with ``.L''. */
7916 if (name[0] == '.' && name[1] == 'L')
7917 return TRUE;
7918
7919 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7920 DWARF debugging symbols starting with ``..''. */
7921 if (name[0] == '.' && name[1] == '.')
7922 return TRUE;
7923
7924 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7925 emitting DWARF debugging output. I suspect this is actually a
7926 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7927 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7928 underscore to be emitted on some ELF targets). For ease of use,
7929 we treat such symbols as local. */
7930 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7931 return TRUE;
7932
7933 /* Treat assembler generated fake symbols, dollar local labels and
7934 forward-backward labels (aka local labels) as locals.
7935 These labels have the form:
7936
7937 L0^A.* (fake symbols)
7938
7939 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
7940
7941 Versions which start with .L will have already been matched above,
7942 so we only need to match the rest. */
7943 if (name[0] == 'L' && ISDIGIT (name[1]))
7944 {
7945 bfd_boolean ret = FALSE;
7946 const char * p;
7947 char c;
7948
7949 for (p = name + 2; (c = *p); p++)
7950 {
7951 if (c == 1 || c == 2)
7952 {
7953 if (c == 1 && p == name + 2)
7954 /* A fake symbol. */
7955 return TRUE;
7956
7957 /* FIXME: We are being paranoid here and treating symbols like
7958 L0^Bfoo as if there were non-local, on the grounds that the
7959 assembler will never generate them. But can any symbol
7960 containing an ASCII value in the range 1-31 ever be anything
7961 other than some kind of local ? */
7962 ret = TRUE;
7963 }
7964
7965 if (! ISDIGIT (c))
7966 {
7967 ret = FALSE;
7968 break;
7969 }
7970 }
7971 return ret;
7972 }
7973
7974 return FALSE;
7975 }
7976
7977 alent *
7978 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7979 asymbol *symbol ATTRIBUTE_UNUSED)
7980 {
7981 abort ();
7982 return NULL;
7983 }
7984
7985 bfd_boolean
7986 _bfd_elf_set_arch_mach (bfd *abfd,
7987 enum bfd_architecture arch,
7988 unsigned long machine)
7989 {
7990 /* If this isn't the right architecture for this backend, and this
7991 isn't the generic backend, fail. */
7992 if (arch != get_elf_backend_data (abfd)->arch
7993 && arch != bfd_arch_unknown
7994 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7995 return FALSE;
7996
7997 return bfd_default_set_arch_mach (abfd, arch, machine);
7998 }
7999
8000 /* Find the nearest line to a particular section and offset,
8001 for error reporting. */
8002
8003 bfd_boolean
8004 _bfd_elf_find_nearest_line (bfd *abfd,
8005 asymbol **symbols,
8006 asection *section,
8007 bfd_vma offset,
8008 const char **filename_ptr,
8009 const char **functionname_ptr,
8010 unsigned int *line_ptr,
8011 unsigned int *discriminator_ptr)
8012 {
8013 bfd_boolean found;
8014
8015 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8016 filename_ptr, functionname_ptr,
8017 line_ptr, discriminator_ptr,
8018 dwarf_debug_sections, 0,
8019 &elf_tdata (abfd)->dwarf2_find_line_info)
8020 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8021 filename_ptr, functionname_ptr,
8022 line_ptr))
8023 {
8024 if (!*functionname_ptr)
8025 _bfd_elf_find_function (abfd, symbols, section, offset,
8026 *filename_ptr ? NULL : filename_ptr,
8027 functionname_ptr);
8028 return TRUE;
8029 }
8030
8031 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8032 &found, filename_ptr,
8033 functionname_ptr, line_ptr,
8034 &elf_tdata (abfd)->line_info))
8035 return FALSE;
8036 if (found && (*functionname_ptr || *line_ptr))
8037 return TRUE;
8038
8039 if (symbols == NULL)
8040 return FALSE;
8041
8042 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8043 filename_ptr, functionname_ptr))
8044 return FALSE;
8045
8046 *line_ptr = 0;
8047 return TRUE;
8048 }
8049
8050 /* Find the line for a symbol. */
8051
8052 bfd_boolean
8053 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8054 const char **filename_ptr, unsigned int *line_ptr)
8055 {
8056 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8057 filename_ptr, NULL, line_ptr, NULL,
8058 dwarf_debug_sections, 0,
8059 &elf_tdata (abfd)->dwarf2_find_line_info);
8060 }
8061
8062 /* After a call to bfd_find_nearest_line, successive calls to
8063 bfd_find_inliner_info can be used to get source information about
8064 each level of function inlining that terminated at the address
8065 passed to bfd_find_nearest_line. Currently this is only supported
8066 for DWARF2 with appropriate DWARF3 extensions. */
8067
8068 bfd_boolean
8069 _bfd_elf_find_inliner_info (bfd *abfd,
8070 const char **filename_ptr,
8071 const char **functionname_ptr,
8072 unsigned int *line_ptr)
8073 {
8074 bfd_boolean found;
8075 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8076 functionname_ptr, line_ptr,
8077 & elf_tdata (abfd)->dwarf2_find_line_info);
8078 return found;
8079 }
8080
8081 int
8082 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8083 {
8084 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8085 int ret = bed->s->sizeof_ehdr;
8086
8087 if (!info->relocatable)
8088 {
8089 bfd_size_type phdr_size = elf_program_header_size (abfd);
8090
8091 if (phdr_size == (bfd_size_type) -1)
8092 {
8093 struct elf_segment_map *m;
8094
8095 phdr_size = 0;
8096 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8097 phdr_size += bed->s->sizeof_phdr;
8098
8099 if (phdr_size == 0)
8100 phdr_size = get_program_header_size (abfd, info);
8101 }
8102
8103 elf_program_header_size (abfd) = phdr_size;
8104 ret += phdr_size;
8105 }
8106
8107 return ret;
8108 }
8109
8110 bfd_boolean
8111 _bfd_elf_set_section_contents (bfd *abfd,
8112 sec_ptr section,
8113 const void *location,
8114 file_ptr offset,
8115 bfd_size_type count)
8116 {
8117 Elf_Internal_Shdr *hdr;
8118 file_ptr pos;
8119
8120 if (! abfd->output_has_begun
8121 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8122 return FALSE;
8123
8124 if (!count)
8125 return TRUE;
8126
8127 hdr = &elf_section_data (section)->this_hdr;
8128 if (hdr->sh_offset == (file_ptr) -1)
8129 {
8130 /* We must compress this section. Write output to the buffer. */
8131 unsigned char *contents = hdr->contents;
8132 if ((offset + count) > hdr->sh_size
8133 || (section->flags & SEC_ELF_COMPRESS) == 0
8134 || contents == NULL)
8135 abort ();
8136 memcpy (contents + offset, location, count);
8137 return TRUE;
8138 }
8139 pos = hdr->sh_offset + offset;
8140 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8141 || bfd_bwrite (location, count, abfd) != count)
8142 return FALSE;
8143
8144 return TRUE;
8145 }
8146
8147 void
8148 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8149 arelent *cache_ptr ATTRIBUTE_UNUSED,
8150 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8151 {
8152 abort ();
8153 }
8154
8155 /* Try to convert a non-ELF reloc into an ELF one. */
8156
8157 bfd_boolean
8158 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8159 {
8160 /* Check whether we really have an ELF howto. */
8161
8162 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8163 {
8164 bfd_reloc_code_real_type code;
8165 reloc_howto_type *howto;
8166
8167 /* Alien reloc: Try to determine its type to replace it with an
8168 equivalent ELF reloc. */
8169
8170 if (areloc->howto->pc_relative)
8171 {
8172 switch (areloc->howto->bitsize)
8173 {
8174 case 8:
8175 code = BFD_RELOC_8_PCREL;
8176 break;
8177 case 12:
8178 code = BFD_RELOC_12_PCREL;
8179 break;
8180 case 16:
8181 code = BFD_RELOC_16_PCREL;
8182 break;
8183 case 24:
8184 code = BFD_RELOC_24_PCREL;
8185 break;
8186 case 32:
8187 code = BFD_RELOC_32_PCREL;
8188 break;
8189 case 64:
8190 code = BFD_RELOC_64_PCREL;
8191 break;
8192 default:
8193 goto fail;
8194 }
8195
8196 howto = bfd_reloc_type_lookup (abfd, code);
8197
8198 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8199 {
8200 if (howto->pcrel_offset)
8201 areloc->addend += areloc->address;
8202 else
8203 areloc->addend -= areloc->address; /* addend is unsigned!! */
8204 }
8205 }
8206 else
8207 {
8208 switch (areloc->howto->bitsize)
8209 {
8210 case 8:
8211 code = BFD_RELOC_8;
8212 break;
8213 case 14:
8214 code = BFD_RELOC_14;
8215 break;
8216 case 16:
8217 code = BFD_RELOC_16;
8218 break;
8219 case 26:
8220 code = BFD_RELOC_26;
8221 break;
8222 case 32:
8223 code = BFD_RELOC_32;
8224 break;
8225 case 64:
8226 code = BFD_RELOC_64;
8227 break;
8228 default:
8229 goto fail;
8230 }
8231
8232 howto = bfd_reloc_type_lookup (abfd, code);
8233 }
8234
8235 if (howto)
8236 areloc->howto = howto;
8237 else
8238 goto fail;
8239 }
8240
8241 return TRUE;
8242
8243 fail:
8244 (*_bfd_error_handler)
8245 (_("%B: unsupported relocation type %s"),
8246 abfd, areloc->howto->name);
8247 bfd_set_error (bfd_error_bad_value);
8248 return FALSE;
8249 }
8250
8251 bfd_boolean
8252 _bfd_elf_close_and_cleanup (bfd *abfd)
8253 {
8254 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8255 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8256 {
8257 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8258 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8259 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8260 }
8261
8262 return _bfd_generic_close_and_cleanup (abfd);
8263 }
8264
8265 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8266 in the relocation's offset. Thus we cannot allow any sort of sanity
8267 range-checking to interfere. There is nothing else to do in processing
8268 this reloc. */
8269
8270 bfd_reloc_status_type
8271 _bfd_elf_rel_vtable_reloc_fn
8272 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8273 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8274 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8275 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8276 {
8277 return bfd_reloc_ok;
8278 }
8279 \f
8280 /* Elf core file support. Much of this only works on native
8281 toolchains, since we rely on knowing the
8282 machine-dependent procfs structure in order to pick
8283 out details about the corefile. */
8284
8285 #ifdef HAVE_SYS_PROCFS_H
8286 /* Needed for new procfs interface on sparc-solaris. */
8287 # define _STRUCTURED_PROC 1
8288 # include <sys/procfs.h>
8289 #endif
8290
8291 /* Return a PID that identifies a "thread" for threaded cores, or the
8292 PID of the main process for non-threaded cores. */
8293
8294 static int
8295 elfcore_make_pid (bfd *abfd)
8296 {
8297 int pid;
8298
8299 pid = elf_tdata (abfd)->core->lwpid;
8300 if (pid == 0)
8301 pid = elf_tdata (abfd)->core->pid;
8302
8303 return pid;
8304 }
8305
8306 /* If there isn't a section called NAME, make one, using
8307 data from SECT. Note, this function will generate a
8308 reference to NAME, so you shouldn't deallocate or
8309 overwrite it. */
8310
8311 static bfd_boolean
8312 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8313 {
8314 asection *sect2;
8315
8316 if (bfd_get_section_by_name (abfd, name) != NULL)
8317 return TRUE;
8318
8319 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8320 if (sect2 == NULL)
8321 return FALSE;
8322
8323 sect2->size = sect->size;
8324 sect2->filepos = sect->filepos;
8325 sect2->alignment_power = sect->alignment_power;
8326 return TRUE;
8327 }
8328
8329 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8330 actually creates up to two pseudosections:
8331 - For the single-threaded case, a section named NAME, unless
8332 such a section already exists.
8333 - For the multi-threaded case, a section named "NAME/PID", where
8334 PID is elfcore_make_pid (abfd).
8335 Both pseudosections have identical contents. */
8336 bfd_boolean
8337 _bfd_elfcore_make_pseudosection (bfd *abfd,
8338 char *name,
8339 size_t size,
8340 ufile_ptr filepos)
8341 {
8342 char buf[100];
8343 char *threaded_name;
8344 size_t len;
8345 asection *sect;
8346
8347 /* Build the section name. */
8348
8349 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8350 len = strlen (buf) + 1;
8351 threaded_name = (char *) bfd_alloc (abfd, len);
8352 if (threaded_name == NULL)
8353 return FALSE;
8354 memcpy (threaded_name, buf, len);
8355
8356 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8357 SEC_HAS_CONTENTS);
8358 if (sect == NULL)
8359 return FALSE;
8360 sect->size = size;
8361 sect->filepos = filepos;
8362 sect->alignment_power = 2;
8363
8364 return elfcore_maybe_make_sect (abfd, name, sect);
8365 }
8366
8367 /* prstatus_t exists on:
8368 solaris 2.5+
8369 linux 2.[01] + glibc
8370 unixware 4.2
8371 */
8372
8373 #if defined (HAVE_PRSTATUS_T)
8374
8375 static bfd_boolean
8376 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8377 {
8378 size_t size;
8379 int offset;
8380
8381 if (note->descsz == sizeof (prstatus_t))
8382 {
8383 prstatus_t prstat;
8384
8385 size = sizeof (prstat.pr_reg);
8386 offset = offsetof (prstatus_t, pr_reg);
8387 memcpy (&prstat, note->descdata, sizeof (prstat));
8388
8389 /* Do not overwrite the core signal if it
8390 has already been set by another thread. */
8391 if (elf_tdata (abfd)->core->signal == 0)
8392 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8393 if (elf_tdata (abfd)->core->pid == 0)
8394 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8395
8396 /* pr_who exists on:
8397 solaris 2.5+
8398 unixware 4.2
8399 pr_who doesn't exist on:
8400 linux 2.[01]
8401 */
8402 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8403 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8404 #else
8405 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8406 #endif
8407 }
8408 #if defined (HAVE_PRSTATUS32_T)
8409 else if (note->descsz == sizeof (prstatus32_t))
8410 {
8411 /* 64-bit host, 32-bit corefile */
8412 prstatus32_t prstat;
8413
8414 size = sizeof (prstat.pr_reg);
8415 offset = offsetof (prstatus32_t, pr_reg);
8416 memcpy (&prstat, note->descdata, sizeof (prstat));
8417
8418 /* Do not overwrite the core signal if it
8419 has already been set by another thread. */
8420 if (elf_tdata (abfd)->core->signal == 0)
8421 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8422 if (elf_tdata (abfd)->core->pid == 0)
8423 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8424
8425 /* pr_who exists on:
8426 solaris 2.5+
8427 unixware 4.2
8428 pr_who doesn't exist on:
8429 linux 2.[01]
8430 */
8431 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8432 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8433 #else
8434 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8435 #endif
8436 }
8437 #endif /* HAVE_PRSTATUS32_T */
8438 else
8439 {
8440 /* Fail - we don't know how to handle any other
8441 note size (ie. data object type). */
8442 return TRUE;
8443 }
8444
8445 /* Make a ".reg/999" section and a ".reg" section. */
8446 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8447 size, note->descpos + offset);
8448 }
8449 #endif /* defined (HAVE_PRSTATUS_T) */
8450
8451 /* Create a pseudosection containing the exact contents of NOTE. */
8452 static bfd_boolean
8453 elfcore_make_note_pseudosection (bfd *abfd,
8454 char *name,
8455 Elf_Internal_Note *note)
8456 {
8457 return _bfd_elfcore_make_pseudosection (abfd, name,
8458 note->descsz, note->descpos);
8459 }
8460
8461 /* There isn't a consistent prfpregset_t across platforms,
8462 but it doesn't matter, because we don't have to pick this
8463 data structure apart. */
8464
8465 static bfd_boolean
8466 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8467 {
8468 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8469 }
8470
8471 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8472 type of NT_PRXFPREG. Just include the whole note's contents
8473 literally. */
8474
8475 static bfd_boolean
8476 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8477 {
8478 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8479 }
8480
8481 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8482 with a note type of NT_X86_XSTATE. Just include the whole note's
8483 contents literally. */
8484
8485 static bfd_boolean
8486 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8487 {
8488 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8489 }
8490
8491 static bfd_boolean
8492 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8493 {
8494 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8495 }
8496
8497 static bfd_boolean
8498 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8499 {
8500 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8501 }
8502
8503 static bfd_boolean
8504 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8505 {
8506 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8507 }
8508
8509 static bfd_boolean
8510 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8511 {
8512 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8513 }
8514
8515 static bfd_boolean
8516 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8517 {
8518 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8519 }
8520
8521 static bfd_boolean
8522 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8523 {
8524 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8525 }
8526
8527 static bfd_boolean
8528 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8529 {
8530 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8531 }
8532
8533 static bfd_boolean
8534 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8535 {
8536 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8537 }
8538
8539 static bfd_boolean
8540 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8541 {
8542 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8543 }
8544
8545 static bfd_boolean
8546 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8547 {
8548 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8549 }
8550
8551 static bfd_boolean
8552 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8553 {
8554 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8555 }
8556
8557 static bfd_boolean
8558 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
8559 {
8560 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
8561 }
8562
8563 static bfd_boolean
8564 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
8565 {
8566 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
8567 }
8568
8569 static bfd_boolean
8570 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8571 {
8572 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8573 }
8574
8575 static bfd_boolean
8576 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8577 {
8578 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8579 }
8580
8581 static bfd_boolean
8582 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8583 {
8584 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8585 }
8586
8587 static bfd_boolean
8588 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8589 {
8590 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8591 }
8592
8593 #if defined (HAVE_PRPSINFO_T)
8594 typedef prpsinfo_t elfcore_psinfo_t;
8595 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8596 typedef prpsinfo32_t elfcore_psinfo32_t;
8597 #endif
8598 #endif
8599
8600 #if defined (HAVE_PSINFO_T)
8601 typedef psinfo_t elfcore_psinfo_t;
8602 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8603 typedef psinfo32_t elfcore_psinfo32_t;
8604 #endif
8605 #endif
8606
8607 /* return a malloc'ed copy of a string at START which is at
8608 most MAX bytes long, possibly without a terminating '\0'.
8609 the copy will always have a terminating '\0'. */
8610
8611 char *
8612 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8613 {
8614 char *dups;
8615 char *end = (char *) memchr (start, '\0', max);
8616 size_t len;
8617
8618 if (end == NULL)
8619 len = max;
8620 else
8621 len = end - start;
8622
8623 dups = (char *) bfd_alloc (abfd, len + 1);
8624 if (dups == NULL)
8625 return NULL;
8626
8627 memcpy (dups, start, len);
8628 dups[len] = '\0';
8629
8630 return dups;
8631 }
8632
8633 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8634 static bfd_boolean
8635 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8636 {
8637 if (note->descsz == sizeof (elfcore_psinfo_t))
8638 {
8639 elfcore_psinfo_t psinfo;
8640
8641 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8642
8643 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8644 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8645 #endif
8646 elf_tdata (abfd)->core->program
8647 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8648 sizeof (psinfo.pr_fname));
8649
8650 elf_tdata (abfd)->core->command
8651 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8652 sizeof (psinfo.pr_psargs));
8653 }
8654 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8655 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8656 {
8657 /* 64-bit host, 32-bit corefile */
8658 elfcore_psinfo32_t psinfo;
8659
8660 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8661
8662 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8663 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8664 #endif
8665 elf_tdata (abfd)->core->program
8666 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8667 sizeof (psinfo.pr_fname));
8668
8669 elf_tdata (abfd)->core->command
8670 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8671 sizeof (psinfo.pr_psargs));
8672 }
8673 #endif
8674
8675 else
8676 {
8677 /* Fail - we don't know how to handle any other
8678 note size (ie. data object type). */
8679 return TRUE;
8680 }
8681
8682 /* Note that for some reason, a spurious space is tacked
8683 onto the end of the args in some (at least one anyway)
8684 implementations, so strip it off if it exists. */
8685
8686 {
8687 char *command = elf_tdata (abfd)->core->command;
8688 int n = strlen (command);
8689
8690 if (0 < n && command[n - 1] == ' ')
8691 command[n - 1] = '\0';
8692 }
8693
8694 return TRUE;
8695 }
8696 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8697
8698 #if defined (HAVE_PSTATUS_T)
8699 static bfd_boolean
8700 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8701 {
8702 if (note->descsz == sizeof (pstatus_t)
8703 #if defined (HAVE_PXSTATUS_T)
8704 || note->descsz == sizeof (pxstatus_t)
8705 #endif
8706 )
8707 {
8708 pstatus_t pstat;
8709
8710 memcpy (&pstat, note->descdata, sizeof (pstat));
8711
8712 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8713 }
8714 #if defined (HAVE_PSTATUS32_T)
8715 else if (note->descsz == sizeof (pstatus32_t))
8716 {
8717 /* 64-bit host, 32-bit corefile */
8718 pstatus32_t pstat;
8719
8720 memcpy (&pstat, note->descdata, sizeof (pstat));
8721
8722 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8723 }
8724 #endif
8725 /* Could grab some more details from the "representative"
8726 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8727 NT_LWPSTATUS note, presumably. */
8728
8729 return TRUE;
8730 }
8731 #endif /* defined (HAVE_PSTATUS_T) */
8732
8733 #if defined (HAVE_LWPSTATUS_T)
8734 static bfd_boolean
8735 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8736 {
8737 lwpstatus_t lwpstat;
8738 char buf[100];
8739 char *name;
8740 size_t len;
8741 asection *sect;
8742
8743 if (note->descsz != sizeof (lwpstat)
8744 #if defined (HAVE_LWPXSTATUS_T)
8745 && note->descsz != sizeof (lwpxstatus_t)
8746 #endif
8747 )
8748 return TRUE;
8749
8750 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8751
8752 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8753 /* Do not overwrite the core signal if it has already been set by
8754 another thread. */
8755 if (elf_tdata (abfd)->core->signal == 0)
8756 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8757
8758 /* Make a ".reg/999" section. */
8759
8760 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8761 len = strlen (buf) + 1;
8762 name = bfd_alloc (abfd, len);
8763 if (name == NULL)
8764 return FALSE;
8765 memcpy (name, buf, len);
8766
8767 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8768 if (sect == NULL)
8769 return FALSE;
8770
8771 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8772 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8773 sect->filepos = note->descpos
8774 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8775 #endif
8776
8777 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8778 sect->size = sizeof (lwpstat.pr_reg);
8779 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8780 #endif
8781
8782 sect->alignment_power = 2;
8783
8784 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8785 return FALSE;
8786
8787 /* Make a ".reg2/999" section */
8788
8789 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8790 len = strlen (buf) + 1;
8791 name = bfd_alloc (abfd, len);
8792 if (name == NULL)
8793 return FALSE;
8794 memcpy (name, buf, len);
8795
8796 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8797 if (sect == NULL)
8798 return FALSE;
8799
8800 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8801 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8802 sect->filepos = note->descpos
8803 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8804 #endif
8805
8806 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8807 sect->size = sizeof (lwpstat.pr_fpreg);
8808 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8809 #endif
8810
8811 sect->alignment_power = 2;
8812
8813 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8814 }
8815 #endif /* defined (HAVE_LWPSTATUS_T) */
8816
8817 static bfd_boolean
8818 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8819 {
8820 char buf[30];
8821 char *name;
8822 size_t len;
8823 asection *sect;
8824 int type;
8825 int is_active_thread;
8826 bfd_vma base_addr;
8827
8828 if (note->descsz < 728)
8829 return TRUE;
8830
8831 if (! CONST_STRNEQ (note->namedata, "win32"))
8832 return TRUE;
8833
8834 type = bfd_get_32 (abfd, note->descdata);
8835
8836 switch (type)
8837 {
8838 case 1 /* NOTE_INFO_PROCESS */:
8839 /* FIXME: need to add ->core->command. */
8840 /* process_info.pid */
8841 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8842 /* process_info.signal */
8843 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8844 break;
8845
8846 case 2 /* NOTE_INFO_THREAD */:
8847 /* Make a ".reg/999" section. */
8848 /* thread_info.tid */
8849 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8850
8851 len = strlen (buf) + 1;
8852 name = (char *) bfd_alloc (abfd, len);
8853 if (name == NULL)
8854 return FALSE;
8855
8856 memcpy (name, buf, len);
8857
8858 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8859 if (sect == NULL)
8860 return FALSE;
8861
8862 /* sizeof (thread_info.thread_context) */
8863 sect->size = 716;
8864 /* offsetof (thread_info.thread_context) */
8865 sect->filepos = note->descpos + 12;
8866 sect->alignment_power = 2;
8867
8868 /* thread_info.is_active_thread */
8869 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8870
8871 if (is_active_thread)
8872 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8873 return FALSE;
8874 break;
8875
8876 case 3 /* NOTE_INFO_MODULE */:
8877 /* Make a ".module/xxxxxxxx" section. */
8878 /* module_info.base_address */
8879 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8880 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8881
8882 len = strlen (buf) + 1;
8883 name = (char *) bfd_alloc (abfd, len);
8884 if (name == NULL)
8885 return FALSE;
8886
8887 memcpy (name, buf, len);
8888
8889 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8890
8891 if (sect == NULL)
8892 return FALSE;
8893
8894 sect->size = note->descsz;
8895 sect->filepos = note->descpos;
8896 sect->alignment_power = 2;
8897 break;
8898
8899 default:
8900 return TRUE;
8901 }
8902
8903 return TRUE;
8904 }
8905
8906 static bfd_boolean
8907 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8908 {
8909 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8910
8911 switch (note->type)
8912 {
8913 default:
8914 return TRUE;
8915
8916 case NT_PRSTATUS:
8917 if (bed->elf_backend_grok_prstatus)
8918 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8919 return TRUE;
8920 #if defined (HAVE_PRSTATUS_T)
8921 return elfcore_grok_prstatus (abfd, note);
8922 #else
8923 return TRUE;
8924 #endif
8925
8926 #if defined (HAVE_PSTATUS_T)
8927 case NT_PSTATUS:
8928 return elfcore_grok_pstatus (abfd, note);
8929 #endif
8930
8931 #if defined (HAVE_LWPSTATUS_T)
8932 case NT_LWPSTATUS:
8933 return elfcore_grok_lwpstatus (abfd, note);
8934 #endif
8935
8936 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8937 return elfcore_grok_prfpreg (abfd, note);
8938
8939 case NT_WIN32PSTATUS:
8940 return elfcore_grok_win32pstatus (abfd, note);
8941
8942 case NT_PRXFPREG: /* Linux SSE extension */
8943 if (note->namesz == 6
8944 && strcmp (note->namedata, "LINUX") == 0)
8945 return elfcore_grok_prxfpreg (abfd, note);
8946 else
8947 return TRUE;
8948
8949 case NT_X86_XSTATE: /* Linux XSAVE extension */
8950 if (note->namesz == 6
8951 && strcmp (note->namedata, "LINUX") == 0)
8952 return elfcore_grok_xstatereg (abfd, note);
8953 else if (note->namesz == 8
8954 && strcmp (note->namedata, "FreeBSD") == 0)
8955 return elfcore_grok_xstatereg (abfd, note);
8956 else
8957 return TRUE;
8958
8959 case NT_PPC_VMX:
8960 if (note->namesz == 6
8961 && strcmp (note->namedata, "LINUX") == 0)
8962 return elfcore_grok_ppc_vmx (abfd, note);
8963 else
8964 return TRUE;
8965
8966 case NT_PPC_VSX:
8967 if (note->namesz == 6
8968 && strcmp (note->namedata, "LINUX") == 0)
8969 return elfcore_grok_ppc_vsx (abfd, note);
8970 else
8971 return TRUE;
8972
8973 case NT_S390_HIGH_GPRS:
8974 if (note->namesz == 6
8975 && strcmp (note->namedata, "LINUX") == 0)
8976 return elfcore_grok_s390_high_gprs (abfd, note);
8977 else
8978 return TRUE;
8979
8980 case NT_S390_TIMER:
8981 if (note->namesz == 6
8982 && strcmp (note->namedata, "LINUX") == 0)
8983 return elfcore_grok_s390_timer (abfd, note);
8984 else
8985 return TRUE;
8986
8987 case NT_S390_TODCMP:
8988 if (note->namesz == 6
8989 && strcmp (note->namedata, "LINUX") == 0)
8990 return elfcore_grok_s390_todcmp (abfd, note);
8991 else
8992 return TRUE;
8993
8994 case NT_S390_TODPREG:
8995 if (note->namesz == 6
8996 && strcmp (note->namedata, "LINUX") == 0)
8997 return elfcore_grok_s390_todpreg (abfd, note);
8998 else
8999 return TRUE;
9000
9001 case NT_S390_CTRS:
9002 if (note->namesz == 6
9003 && strcmp (note->namedata, "LINUX") == 0)
9004 return elfcore_grok_s390_ctrs (abfd, note);
9005 else
9006 return TRUE;
9007
9008 case NT_S390_PREFIX:
9009 if (note->namesz == 6
9010 && strcmp (note->namedata, "LINUX") == 0)
9011 return elfcore_grok_s390_prefix (abfd, note);
9012 else
9013 return TRUE;
9014
9015 case NT_S390_LAST_BREAK:
9016 if (note->namesz == 6
9017 && strcmp (note->namedata, "LINUX") == 0)
9018 return elfcore_grok_s390_last_break (abfd, note);
9019 else
9020 return TRUE;
9021
9022 case NT_S390_SYSTEM_CALL:
9023 if (note->namesz == 6
9024 && strcmp (note->namedata, "LINUX") == 0)
9025 return elfcore_grok_s390_system_call (abfd, note);
9026 else
9027 return TRUE;
9028
9029 case NT_S390_TDB:
9030 if (note->namesz == 6
9031 && strcmp (note->namedata, "LINUX") == 0)
9032 return elfcore_grok_s390_tdb (abfd, note);
9033 else
9034 return TRUE;
9035
9036 case NT_S390_VXRS_LOW:
9037 if (note->namesz == 6
9038 && strcmp (note->namedata, "LINUX") == 0)
9039 return elfcore_grok_s390_vxrs_low (abfd, note);
9040 else
9041 return TRUE;
9042
9043 case NT_S390_VXRS_HIGH:
9044 if (note->namesz == 6
9045 && strcmp (note->namedata, "LINUX") == 0)
9046 return elfcore_grok_s390_vxrs_high (abfd, note);
9047 else
9048 return TRUE;
9049
9050 case NT_ARM_VFP:
9051 if (note->namesz == 6
9052 && strcmp (note->namedata, "LINUX") == 0)
9053 return elfcore_grok_arm_vfp (abfd, note);
9054 else
9055 return TRUE;
9056
9057 case NT_ARM_TLS:
9058 if (note->namesz == 6
9059 && strcmp (note->namedata, "LINUX") == 0)
9060 return elfcore_grok_aarch_tls (abfd, note);
9061 else
9062 return TRUE;
9063
9064 case NT_ARM_HW_BREAK:
9065 if (note->namesz == 6
9066 && strcmp (note->namedata, "LINUX") == 0)
9067 return elfcore_grok_aarch_hw_break (abfd, note);
9068 else
9069 return TRUE;
9070
9071 case NT_ARM_HW_WATCH:
9072 if (note->namesz == 6
9073 && strcmp (note->namedata, "LINUX") == 0)
9074 return elfcore_grok_aarch_hw_watch (abfd, note);
9075 else
9076 return TRUE;
9077
9078 case NT_PRPSINFO:
9079 case NT_PSINFO:
9080 if (bed->elf_backend_grok_psinfo)
9081 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9082 return TRUE;
9083 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9084 return elfcore_grok_psinfo (abfd, note);
9085 #else
9086 return TRUE;
9087 #endif
9088
9089 case NT_AUXV:
9090 {
9091 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9092 SEC_HAS_CONTENTS);
9093
9094 if (sect == NULL)
9095 return FALSE;
9096 sect->size = note->descsz;
9097 sect->filepos = note->descpos;
9098 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9099
9100 return TRUE;
9101 }
9102
9103 case NT_FILE:
9104 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9105 note);
9106
9107 case NT_SIGINFO:
9108 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9109 note);
9110 }
9111 }
9112
9113 static bfd_boolean
9114 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9115 {
9116 struct elf_obj_tdata *t;
9117
9118 if (note->descsz == 0)
9119 return FALSE;
9120
9121 t = elf_tdata (abfd);
9122 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz);
9123 if (t->build_id == NULL)
9124 return FALSE;
9125
9126 t->build_id->size = note->descsz;
9127 memcpy (t->build_id->data, note->descdata, note->descsz);
9128
9129 return TRUE;
9130 }
9131
9132 static bfd_boolean
9133 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9134 {
9135 switch (note->type)
9136 {
9137 default:
9138 return TRUE;
9139
9140 case NT_GNU_BUILD_ID:
9141 return elfobj_grok_gnu_build_id (abfd, note);
9142 }
9143 }
9144
9145 static bfd_boolean
9146 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9147 {
9148 struct sdt_note *cur =
9149 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9150 + note->descsz);
9151
9152 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9153 cur->size = (bfd_size_type) note->descsz;
9154 memcpy (cur->data, note->descdata, note->descsz);
9155
9156 elf_tdata (abfd)->sdt_note_head = cur;
9157
9158 return TRUE;
9159 }
9160
9161 static bfd_boolean
9162 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9163 {
9164 switch (note->type)
9165 {
9166 case NT_STAPSDT:
9167 return elfobj_grok_stapsdt_note_1 (abfd, note);
9168
9169 default:
9170 return TRUE;
9171 }
9172 }
9173
9174 static bfd_boolean
9175 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
9176 {
9177 char *cp;
9178
9179 cp = strchr (note->namedata, '@');
9180 if (cp != NULL)
9181 {
9182 *lwpidp = atoi(cp + 1);
9183 return TRUE;
9184 }
9185 return FALSE;
9186 }
9187
9188 static bfd_boolean
9189 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9190 {
9191 /* Signal number at offset 0x08. */
9192 elf_tdata (abfd)->core->signal
9193 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9194
9195 /* Process ID at offset 0x50. */
9196 elf_tdata (abfd)->core->pid
9197 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
9198
9199 /* Command name at 0x7c (max 32 bytes, including nul). */
9200 elf_tdata (abfd)->core->command
9201 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
9202
9203 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
9204 note);
9205 }
9206
9207 static bfd_boolean
9208 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
9209 {
9210 int lwp;
9211
9212 if (elfcore_netbsd_get_lwpid (note, &lwp))
9213 elf_tdata (abfd)->core->lwpid = lwp;
9214
9215 if (note->type == NT_NETBSDCORE_PROCINFO)
9216 {
9217 /* NetBSD-specific core "procinfo". Note that we expect to
9218 find this note before any of the others, which is fine,
9219 since the kernel writes this note out first when it
9220 creates a core file. */
9221
9222 return elfcore_grok_netbsd_procinfo (abfd, note);
9223 }
9224
9225 /* As of Jan 2002 there are no other machine-independent notes
9226 defined for NetBSD core files. If the note type is less
9227 than the start of the machine-dependent note types, we don't
9228 understand it. */
9229
9230 if (note->type < NT_NETBSDCORE_FIRSTMACH)
9231 return TRUE;
9232
9233
9234 switch (bfd_get_arch (abfd))
9235 {
9236 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
9237 PT_GETFPREGS == mach+2. */
9238
9239 case bfd_arch_alpha:
9240 case bfd_arch_sparc:
9241 switch (note->type)
9242 {
9243 case NT_NETBSDCORE_FIRSTMACH+0:
9244 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9245
9246 case NT_NETBSDCORE_FIRSTMACH+2:
9247 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9248
9249 default:
9250 return TRUE;
9251 }
9252
9253 /* On all other arch's, PT_GETREGS == mach+1 and
9254 PT_GETFPREGS == mach+3. */
9255
9256 default:
9257 switch (note->type)
9258 {
9259 case NT_NETBSDCORE_FIRSTMACH+1:
9260 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9261
9262 case NT_NETBSDCORE_FIRSTMACH+3:
9263 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9264
9265 default:
9266 return TRUE;
9267 }
9268 }
9269 /* NOTREACHED */
9270 }
9271
9272 static bfd_boolean
9273 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9274 {
9275 /* Signal number at offset 0x08. */
9276 elf_tdata (abfd)->core->signal
9277 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9278
9279 /* Process ID at offset 0x20. */
9280 elf_tdata (abfd)->core->pid
9281 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
9282
9283 /* Command name at 0x48 (max 32 bytes, including nul). */
9284 elf_tdata (abfd)->core->command
9285 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
9286
9287 return TRUE;
9288 }
9289
9290 static bfd_boolean
9291 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
9292 {
9293 if (note->type == NT_OPENBSD_PROCINFO)
9294 return elfcore_grok_openbsd_procinfo (abfd, note);
9295
9296 if (note->type == NT_OPENBSD_REGS)
9297 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9298
9299 if (note->type == NT_OPENBSD_FPREGS)
9300 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9301
9302 if (note->type == NT_OPENBSD_XFPREGS)
9303 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9304
9305 if (note->type == NT_OPENBSD_AUXV)
9306 {
9307 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9308 SEC_HAS_CONTENTS);
9309
9310 if (sect == NULL)
9311 return FALSE;
9312 sect->size = note->descsz;
9313 sect->filepos = note->descpos;
9314 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9315
9316 return TRUE;
9317 }
9318
9319 if (note->type == NT_OPENBSD_WCOOKIE)
9320 {
9321 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
9322 SEC_HAS_CONTENTS);
9323
9324 if (sect == NULL)
9325 return FALSE;
9326 sect->size = note->descsz;
9327 sect->filepos = note->descpos;
9328 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9329
9330 return TRUE;
9331 }
9332
9333 return TRUE;
9334 }
9335
9336 static bfd_boolean
9337 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
9338 {
9339 void *ddata = note->descdata;
9340 char buf[100];
9341 char *name;
9342 asection *sect;
9343 short sig;
9344 unsigned flags;
9345
9346 /* nto_procfs_status 'pid' field is at offset 0. */
9347 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
9348
9349 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
9350 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
9351
9352 /* nto_procfs_status 'flags' field is at offset 8. */
9353 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
9354
9355 /* nto_procfs_status 'what' field is at offset 14. */
9356 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
9357 {
9358 elf_tdata (abfd)->core->signal = sig;
9359 elf_tdata (abfd)->core->lwpid = *tid;
9360 }
9361
9362 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9363 do not come from signals so we make sure we set the current
9364 thread just in case. */
9365 if (flags & 0x00000080)
9366 elf_tdata (abfd)->core->lwpid = *tid;
9367
9368 /* Make a ".qnx_core_status/%d" section. */
9369 sprintf (buf, ".qnx_core_status/%ld", *tid);
9370
9371 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9372 if (name == NULL)
9373 return FALSE;
9374 strcpy (name, buf);
9375
9376 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9377 if (sect == NULL)
9378 return FALSE;
9379
9380 sect->size = note->descsz;
9381 sect->filepos = note->descpos;
9382 sect->alignment_power = 2;
9383
9384 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9385 }
9386
9387 static bfd_boolean
9388 elfcore_grok_nto_regs (bfd *abfd,
9389 Elf_Internal_Note *note,
9390 long tid,
9391 char *base)
9392 {
9393 char buf[100];
9394 char *name;
9395 asection *sect;
9396
9397 /* Make a "(base)/%d" section. */
9398 sprintf (buf, "%s/%ld", base, tid);
9399
9400 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9401 if (name == NULL)
9402 return FALSE;
9403 strcpy (name, buf);
9404
9405 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9406 if (sect == NULL)
9407 return FALSE;
9408
9409 sect->size = note->descsz;
9410 sect->filepos = note->descpos;
9411 sect->alignment_power = 2;
9412
9413 /* This is the current thread. */
9414 if (elf_tdata (abfd)->core->lwpid == tid)
9415 return elfcore_maybe_make_sect (abfd, base, sect);
9416
9417 return TRUE;
9418 }
9419
9420 #define BFD_QNT_CORE_INFO 7
9421 #define BFD_QNT_CORE_STATUS 8
9422 #define BFD_QNT_CORE_GREG 9
9423 #define BFD_QNT_CORE_FPREG 10
9424
9425 static bfd_boolean
9426 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9427 {
9428 /* Every GREG section has a STATUS section before it. Store the
9429 tid from the previous call to pass down to the next gregs
9430 function. */
9431 static long tid = 1;
9432
9433 switch (note->type)
9434 {
9435 case BFD_QNT_CORE_INFO:
9436 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9437 case BFD_QNT_CORE_STATUS:
9438 return elfcore_grok_nto_status (abfd, note, &tid);
9439 case BFD_QNT_CORE_GREG:
9440 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9441 case BFD_QNT_CORE_FPREG:
9442 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9443 default:
9444 return TRUE;
9445 }
9446 }
9447
9448 static bfd_boolean
9449 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9450 {
9451 char *name;
9452 asection *sect;
9453 size_t len;
9454
9455 /* Use note name as section name. */
9456 len = note->namesz;
9457 name = (char *) bfd_alloc (abfd, len);
9458 if (name == NULL)
9459 return FALSE;
9460 memcpy (name, note->namedata, len);
9461 name[len - 1] = '\0';
9462
9463 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9464 if (sect == NULL)
9465 return FALSE;
9466
9467 sect->size = note->descsz;
9468 sect->filepos = note->descpos;
9469 sect->alignment_power = 1;
9470
9471 return TRUE;
9472 }
9473
9474 /* Function: elfcore_write_note
9475
9476 Inputs:
9477 buffer to hold note, and current size of buffer
9478 name of note
9479 type of note
9480 data for note
9481 size of data for note
9482
9483 Writes note to end of buffer. ELF64 notes are written exactly as
9484 for ELF32, despite the current (as of 2006) ELF gabi specifying
9485 that they ought to have 8-byte namesz and descsz field, and have
9486 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9487
9488 Return:
9489 Pointer to realloc'd buffer, *BUFSIZ updated. */
9490
9491 char *
9492 elfcore_write_note (bfd *abfd,
9493 char *buf,
9494 int *bufsiz,
9495 const char *name,
9496 int type,
9497 const void *input,
9498 int size)
9499 {
9500 Elf_External_Note *xnp;
9501 size_t namesz;
9502 size_t newspace;
9503 char *dest;
9504
9505 namesz = 0;
9506 if (name != NULL)
9507 namesz = strlen (name) + 1;
9508
9509 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9510
9511 buf = (char *) realloc (buf, *bufsiz + newspace);
9512 if (buf == NULL)
9513 return buf;
9514 dest = buf + *bufsiz;
9515 *bufsiz += newspace;
9516 xnp = (Elf_External_Note *) dest;
9517 H_PUT_32 (abfd, namesz, xnp->namesz);
9518 H_PUT_32 (abfd, size, xnp->descsz);
9519 H_PUT_32 (abfd, type, xnp->type);
9520 dest = xnp->name;
9521 if (name != NULL)
9522 {
9523 memcpy (dest, name, namesz);
9524 dest += namesz;
9525 while (namesz & 3)
9526 {
9527 *dest++ = '\0';
9528 ++namesz;
9529 }
9530 }
9531 memcpy (dest, input, size);
9532 dest += size;
9533 while (size & 3)
9534 {
9535 *dest++ = '\0';
9536 ++size;
9537 }
9538 return buf;
9539 }
9540
9541 char *
9542 elfcore_write_prpsinfo (bfd *abfd,
9543 char *buf,
9544 int *bufsiz,
9545 const char *fname,
9546 const char *psargs)
9547 {
9548 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9549
9550 if (bed->elf_backend_write_core_note != NULL)
9551 {
9552 char *ret;
9553 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9554 NT_PRPSINFO, fname, psargs);
9555 if (ret != NULL)
9556 return ret;
9557 }
9558
9559 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9560 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9561 if (bed->s->elfclass == ELFCLASS32)
9562 {
9563 #if defined (HAVE_PSINFO32_T)
9564 psinfo32_t data;
9565 int note_type = NT_PSINFO;
9566 #else
9567 prpsinfo32_t data;
9568 int note_type = NT_PRPSINFO;
9569 #endif
9570
9571 memset (&data, 0, sizeof (data));
9572 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9573 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9574 return elfcore_write_note (abfd, buf, bufsiz,
9575 "CORE", note_type, &data, sizeof (data));
9576 }
9577 else
9578 #endif
9579 {
9580 #if defined (HAVE_PSINFO_T)
9581 psinfo_t data;
9582 int note_type = NT_PSINFO;
9583 #else
9584 prpsinfo_t data;
9585 int note_type = NT_PRPSINFO;
9586 #endif
9587
9588 memset (&data, 0, sizeof (data));
9589 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9590 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9591 return elfcore_write_note (abfd, buf, bufsiz,
9592 "CORE", note_type, &data, sizeof (data));
9593 }
9594 #endif /* PSINFO_T or PRPSINFO_T */
9595
9596 free (buf);
9597 return NULL;
9598 }
9599
9600 char *
9601 elfcore_write_linux_prpsinfo32
9602 (bfd *abfd, char *buf, int *bufsiz,
9603 const struct elf_internal_linux_prpsinfo *prpsinfo)
9604 {
9605 struct elf_external_linux_prpsinfo32 data;
9606
9607 memset (&data, 0, sizeof (data));
9608 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9609
9610 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9611 &data, sizeof (data));
9612 }
9613
9614 char *
9615 elfcore_write_linux_prpsinfo64
9616 (bfd *abfd, char *buf, int *bufsiz,
9617 const struct elf_internal_linux_prpsinfo *prpsinfo)
9618 {
9619 struct elf_external_linux_prpsinfo64 data;
9620
9621 memset (&data, 0, sizeof (data));
9622 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9623
9624 return elfcore_write_note (abfd, buf, bufsiz,
9625 "CORE", NT_PRPSINFO, &data, sizeof (data));
9626 }
9627
9628 char *
9629 elfcore_write_prstatus (bfd *abfd,
9630 char *buf,
9631 int *bufsiz,
9632 long pid,
9633 int cursig,
9634 const void *gregs)
9635 {
9636 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9637
9638 if (bed->elf_backend_write_core_note != NULL)
9639 {
9640 char *ret;
9641 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9642 NT_PRSTATUS,
9643 pid, cursig, gregs);
9644 if (ret != NULL)
9645 return ret;
9646 }
9647
9648 #if defined (HAVE_PRSTATUS_T)
9649 #if defined (HAVE_PRSTATUS32_T)
9650 if (bed->s->elfclass == ELFCLASS32)
9651 {
9652 prstatus32_t prstat;
9653
9654 memset (&prstat, 0, sizeof (prstat));
9655 prstat.pr_pid = pid;
9656 prstat.pr_cursig = cursig;
9657 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9658 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9659 NT_PRSTATUS, &prstat, sizeof (prstat));
9660 }
9661 else
9662 #endif
9663 {
9664 prstatus_t prstat;
9665
9666 memset (&prstat, 0, sizeof (prstat));
9667 prstat.pr_pid = pid;
9668 prstat.pr_cursig = cursig;
9669 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9670 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9671 NT_PRSTATUS, &prstat, sizeof (prstat));
9672 }
9673 #endif /* HAVE_PRSTATUS_T */
9674
9675 free (buf);
9676 return NULL;
9677 }
9678
9679 #if defined (HAVE_LWPSTATUS_T)
9680 char *
9681 elfcore_write_lwpstatus (bfd *abfd,
9682 char *buf,
9683 int *bufsiz,
9684 long pid,
9685 int cursig,
9686 const void *gregs)
9687 {
9688 lwpstatus_t lwpstat;
9689 const char *note_name = "CORE";
9690
9691 memset (&lwpstat, 0, sizeof (lwpstat));
9692 lwpstat.pr_lwpid = pid >> 16;
9693 lwpstat.pr_cursig = cursig;
9694 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9695 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9696 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9697 #if !defined(gregs)
9698 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9699 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9700 #else
9701 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9702 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9703 #endif
9704 #endif
9705 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9706 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9707 }
9708 #endif /* HAVE_LWPSTATUS_T */
9709
9710 #if defined (HAVE_PSTATUS_T)
9711 char *
9712 elfcore_write_pstatus (bfd *abfd,
9713 char *buf,
9714 int *bufsiz,
9715 long pid,
9716 int cursig ATTRIBUTE_UNUSED,
9717 const void *gregs ATTRIBUTE_UNUSED)
9718 {
9719 const char *note_name = "CORE";
9720 #if defined (HAVE_PSTATUS32_T)
9721 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9722
9723 if (bed->s->elfclass == ELFCLASS32)
9724 {
9725 pstatus32_t pstat;
9726
9727 memset (&pstat, 0, sizeof (pstat));
9728 pstat.pr_pid = pid & 0xffff;
9729 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9730 NT_PSTATUS, &pstat, sizeof (pstat));
9731 return buf;
9732 }
9733 else
9734 #endif
9735 {
9736 pstatus_t pstat;
9737
9738 memset (&pstat, 0, sizeof (pstat));
9739 pstat.pr_pid = pid & 0xffff;
9740 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9741 NT_PSTATUS, &pstat, sizeof (pstat));
9742 return buf;
9743 }
9744 }
9745 #endif /* HAVE_PSTATUS_T */
9746
9747 char *
9748 elfcore_write_prfpreg (bfd *abfd,
9749 char *buf,
9750 int *bufsiz,
9751 const void *fpregs,
9752 int size)
9753 {
9754 const char *note_name = "CORE";
9755 return elfcore_write_note (abfd, buf, bufsiz,
9756 note_name, NT_FPREGSET, fpregs, size);
9757 }
9758
9759 char *
9760 elfcore_write_prxfpreg (bfd *abfd,
9761 char *buf,
9762 int *bufsiz,
9763 const void *xfpregs,
9764 int size)
9765 {
9766 char *note_name = "LINUX";
9767 return elfcore_write_note (abfd, buf, bufsiz,
9768 note_name, NT_PRXFPREG, xfpregs, size);
9769 }
9770
9771 char *
9772 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9773 const void *xfpregs, int size)
9774 {
9775 char *note_name;
9776 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
9777 note_name = "FreeBSD";
9778 else
9779 note_name = "LINUX";
9780 return elfcore_write_note (abfd, buf, bufsiz,
9781 note_name, NT_X86_XSTATE, xfpregs, size);
9782 }
9783
9784 char *
9785 elfcore_write_ppc_vmx (bfd *abfd,
9786 char *buf,
9787 int *bufsiz,
9788 const void *ppc_vmx,
9789 int size)
9790 {
9791 char *note_name = "LINUX";
9792 return elfcore_write_note (abfd, buf, bufsiz,
9793 note_name, NT_PPC_VMX, ppc_vmx, size);
9794 }
9795
9796 char *
9797 elfcore_write_ppc_vsx (bfd *abfd,
9798 char *buf,
9799 int *bufsiz,
9800 const void *ppc_vsx,
9801 int size)
9802 {
9803 char *note_name = "LINUX";
9804 return elfcore_write_note (abfd, buf, bufsiz,
9805 note_name, NT_PPC_VSX, ppc_vsx, size);
9806 }
9807
9808 static char *
9809 elfcore_write_s390_high_gprs (bfd *abfd,
9810 char *buf,
9811 int *bufsiz,
9812 const void *s390_high_gprs,
9813 int size)
9814 {
9815 char *note_name = "LINUX";
9816 return elfcore_write_note (abfd, buf, bufsiz,
9817 note_name, NT_S390_HIGH_GPRS,
9818 s390_high_gprs, size);
9819 }
9820
9821 char *
9822 elfcore_write_s390_timer (bfd *abfd,
9823 char *buf,
9824 int *bufsiz,
9825 const void *s390_timer,
9826 int size)
9827 {
9828 char *note_name = "LINUX";
9829 return elfcore_write_note (abfd, buf, bufsiz,
9830 note_name, NT_S390_TIMER, s390_timer, size);
9831 }
9832
9833 char *
9834 elfcore_write_s390_todcmp (bfd *abfd,
9835 char *buf,
9836 int *bufsiz,
9837 const void *s390_todcmp,
9838 int size)
9839 {
9840 char *note_name = "LINUX";
9841 return elfcore_write_note (abfd, buf, bufsiz,
9842 note_name, NT_S390_TODCMP, s390_todcmp, size);
9843 }
9844
9845 char *
9846 elfcore_write_s390_todpreg (bfd *abfd,
9847 char *buf,
9848 int *bufsiz,
9849 const void *s390_todpreg,
9850 int size)
9851 {
9852 char *note_name = "LINUX";
9853 return elfcore_write_note (abfd, buf, bufsiz,
9854 note_name, NT_S390_TODPREG, s390_todpreg, size);
9855 }
9856
9857 char *
9858 elfcore_write_s390_ctrs (bfd *abfd,
9859 char *buf,
9860 int *bufsiz,
9861 const void *s390_ctrs,
9862 int size)
9863 {
9864 char *note_name = "LINUX";
9865 return elfcore_write_note (abfd, buf, bufsiz,
9866 note_name, NT_S390_CTRS, s390_ctrs, size);
9867 }
9868
9869 char *
9870 elfcore_write_s390_prefix (bfd *abfd,
9871 char *buf,
9872 int *bufsiz,
9873 const void *s390_prefix,
9874 int size)
9875 {
9876 char *note_name = "LINUX";
9877 return elfcore_write_note (abfd, buf, bufsiz,
9878 note_name, NT_S390_PREFIX, s390_prefix, size);
9879 }
9880
9881 char *
9882 elfcore_write_s390_last_break (bfd *abfd,
9883 char *buf,
9884 int *bufsiz,
9885 const void *s390_last_break,
9886 int size)
9887 {
9888 char *note_name = "LINUX";
9889 return elfcore_write_note (abfd, buf, bufsiz,
9890 note_name, NT_S390_LAST_BREAK,
9891 s390_last_break, size);
9892 }
9893
9894 char *
9895 elfcore_write_s390_system_call (bfd *abfd,
9896 char *buf,
9897 int *bufsiz,
9898 const void *s390_system_call,
9899 int size)
9900 {
9901 char *note_name = "LINUX";
9902 return elfcore_write_note (abfd, buf, bufsiz,
9903 note_name, NT_S390_SYSTEM_CALL,
9904 s390_system_call, size);
9905 }
9906
9907 char *
9908 elfcore_write_s390_tdb (bfd *abfd,
9909 char *buf,
9910 int *bufsiz,
9911 const void *s390_tdb,
9912 int size)
9913 {
9914 char *note_name = "LINUX";
9915 return elfcore_write_note (abfd, buf, bufsiz,
9916 note_name, NT_S390_TDB, s390_tdb, size);
9917 }
9918
9919 char *
9920 elfcore_write_s390_vxrs_low (bfd *abfd,
9921 char *buf,
9922 int *bufsiz,
9923 const void *s390_vxrs_low,
9924 int size)
9925 {
9926 char *note_name = "LINUX";
9927 return elfcore_write_note (abfd, buf, bufsiz,
9928 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
9929 }
9930
9931 char *
9932 elfcore_write_s390_vxrs_high (bfd *abfd,
9933 char *buf,
9934 int *bufsiz,
9935 const void *s390_vxrs_high,
9936 int size)
9937 {
9938 char *note_name = "LINUX";
9939 return elfcore_write_note (abfd, buf, bufsiz,
9940 note_name, NT_S390_VXRS_HIGH,
9941 s390_vxrs_high, size);
9942 }
9943
9944 char *
9945 elfcore_write_arm_vfp (bfd *abfd,
9946 char *buf,
9947 int *bufsiz,
9948 const void *arm_vfp,
9949 int size)
9950 {
9951 char *note_name = "LINUX";
9952 return elfcore_write_note (abfd, buf, bufsiz,
9953 note_name, NT_ARM_VFP, arm_vfp, size);
9954 }
9955
9956 char *
9957 elfcore_write_aarch_tls (bfd *abfd,
9958 char *buf,
9959 int *bufsiz,
9960 const void *aarch_tls,
9961 int size)
9962 {
9963 char *note_name = "LINUX";
9964 return elfcore_write_note (abfd, buf, bufsiz,
9965 note_name, NT_ARM_TLS, aarch_tls, size);
9966 }
9967
9968 char *
9969 elfcore_write_aarch_hw_break (bfd *abfd,
9970 char *buf,
9971 int *bufsiz,
9972 const void *aarch_hw_break,
9973 int size)
9974 {
9975 char *note_name = "LINUX";
9976 return elfcore_write_note (abfd, buf, bufsiz,
9977 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9978 }
9979
9980 char *
9981 elfcore_write_aarch_hw_watch (bfd *abfd,
9982 char *buf,
9983 int *bufsiz,
9984 const void *aarch_hw_watch,
9985 int size)
9986 {
9987 char *note_name = "LINUX";
9988 return elfcore_write_note (abfd, buf, bufsiz,
9989 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9990 }
9991
9992 char *
9993 elfcore_write_register_note (bfd *abfd,
9994 char *buf,
9995 int *bufsiz,
9996 const char *section,
9997 const void *data,
9998 int size)
9999 {
10000 if (strcmp (section, ".reg2") == 0)
10001 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10002 if (strcmp (section, ".reg-xfp") == 0)
10003 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10004 if (strcmp (section, ".reg-xstate") == 0)
10005 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10006 if (strcmp (section, ".reg-ppc-vmx") == 0)
10007 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10008 if (strcmp (section, ".reg-ppc-vsx") == 0)
10009 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10010 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10011 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10012 if (strcmp (section, ".reg-s390-timer") == 0)
10013 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10014 if (strcmp (section, ".reg-s390-todcmp") == 0)
10015 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10016 if (strcmp (section, ".reg-s390-todpreg") == 0)
10017 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10018 if (strcmp (section, ".reg-s390-ctrs") == 0)
10019 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10020 if (strcmp (section, ".reg-s390-prefix") == 0)
10021 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10022 if (strcmp (section, ".reg-s390-last-break") == 0)
10023 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10024 if (strcmp (section, ".reg-s390-system-call") == 0)
10025 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10026 if (strcmp (section, ".reg-s390-tdb") == 0)
10027 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10028 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10029 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10030 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10031 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10032 if (strcmp (section, ".reg-arm-vfp") == 0)
10033 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10034 if (strcmp (section, ".reg-aarch-tls") == 0)
10035 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10036 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10037 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10038 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10039 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
10040 return NULL;
10041 }
10042
10043 static bfd_boolean
10044 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
10045 {
10046 char *p;
10047
10048 p = buf;
10049 while (p < buf + size)
10050 {
10051 /* FIXME: bad alignment assumption. */
10052 Elf_External_Note *xnp = (Elf_External_Note *) p;
10053 Elf_Internal_Note in;
10054
10055 if (offsetof (Elf_External_Note, name) > buf - p + size)
10056 return FALSE;
10057
10058 in.type = H_GET_32 (abfd, xnp->type);
10059
10060 in.namesz = H_GET_32 (abfd, xnp->namesz);
10061 in.namedata = xnp->name;
10062 if (in.namesz > buf - in.namedata + size)
10063 return FALSE;
10064
10065 in.descsz = H_GET_32 (abfd, xnp->descsz);
10066 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
10067 in.descpos = offset + (in.descdata - buf);
10068 if (in.descsz != 0
10069 && (in.descdata >= buf + size
10070 || in.descsz > buf - in.descdata + size))
10071 return FALSE;
10072
10073 switch (bfd_get_format (abfd))
10074 {
10075 default:
10076 return TRUE;
10077
10078 case bfd_core:
10079 {
10080 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
10081 struct
10082 {
10083 const char * string;
10084 size_t len;
10085 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
10086 }
10087 grokers[] =
10088 {
10089 GROKER_ELEMENT ("", elfcore_grok_note),
10090 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
10091 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
10092 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
10093 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
10094 };
10095 #undef GROKER_ELEMENT
10096 int i;
10097
10098 for (i = ARRAY_SIZE (grokers); i--;)
10099 {
10100 if (in.namesz >= grokers[i].len
10101 && strncmp (in.namedata, grokers[i].string,
10102 grokers[i].len) == 0)
10103 {
10104 if (! grokers[i].func (abfd, & in))
10105 return FALSE;
10106 break;
10107 }
10108 }
10109 break;
10110 }
10111
10112 case bfd_object:
10113 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10114 {
10115 if (! elfobj_grok_gnu_note (abfd, &in))
10116 return FALSE;
10117 }
10118 else if (in.namesz == sizeof "stapsdt"
10119 && strcmp (in.namedata, "stapsdt") == 0)
10120 {
10121 if (! elfobj_grok_stapsdt_note (abfd, &in))
10122 return FALSE;
10123 }
10124 break;
10125 }
10126
10127 p = in.descdata + BFD_ALIGN (in.descsz, 4);
10128 }
10129
10130 return TRUE;
10131 }
10132
10133 static bfd_boolean
10134 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
10135 {
10136 char *buf;
10137
10138 if (size <= 0)
10139 return TRUE;
10140
10141 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
10142 return FALSE;
10143
10144 buf = (char *) bfd_malloc (size + 1);
10145 if (buf == NULL)
10146 return FALSE;
10147
10148 /* PR 17512: file: ec08f814
10149 0-termintate the buffer so that string searches will not overflow. */
10150 buf[size] = 0;
10151
10152 if (bfd_bread (buf, size, abfd) != size
10153 || !elf_parse_notes (abfd, buf, size, offset))
10154 {
10155 free (buf);
10156 return FALSE;
10157 }
10158
10159 free (buf);
10160 return TRUE;
10161 }
10162 \f
10163 /* Providing external access to the ELF program header table. */
10164
10165 /* Return an upper bound on the number of bytes required to store a
10166 copy of ABFD's program header table entries. Return -1 if an error
10167 occurs; bfd_get_error will return an appropriate code. */
10168
10169 long
10170 bfd_get_elf_phdr_upper_bound (bfd *abfd)
10171 {
10172 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10173 {
10174 bfd_set_error (bfd_error_wrong_format);
10175 return -1;
10176 }
10177
10178 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
10179 }
10180
10181 /* Copy ABFD's program header table entries to *PHDRS. The entries
10182 will be stored as an array of Elf_Internal_Phdr structures, as
10183 defined in include/elf/internal.h. To find out how large the
10184 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
10185
10186 Return the number of program header table entries read, or -1 if an
10187 error occurs; bfd_get_error will return an appropriate code. */
10188
10189 int
10190 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
10191 {
10192 int num_phdrs;
10193
10194 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10195 {
10196 bfd_set_error (bfd_error_wrong_format);
10197 return -1;
10198 }
10199
10200 num_phdrs = elf_elfheader (abfd)->e_phnum;
10201 memcpy (phdrs, elf_tdata (abfd)->phdr,
10202 num_phdrs * sizeof (Elf_Internal_Phdr));
10203
10204 return num_phdrs;
10205 }
10206
10207 enum elf_reloc_type_class
10208 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
10209 const asection *rel_sec ATTRIBUTE_UNUSED,
10210 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
10211 {
10212 return reloc_class_normal;
10213 }
10214
10215 /* For RELA architectures, return the relocation value for a
10216 relocation against a local symbol. */
10217
10218 bfd_vma
10219 _bfd_elf_rela_local_sym (bfd *abfd,
10220 Elf_Internal_Sym *sym,
10221 asection **psec,
10222 Elf_Internal_Rela *rel)
10223 {
10224 asection *sec = *psec;
10225 bfd_vma relocation;
10226
10227 relocation = (sec->output_section->vma
10228 + sec->output_offset
10229 + sym->st_value);
10230 if ((sec->flags & SEC_MERGE)
10231 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
10232 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
10233 {
10234 rel->r_addend =
10235 _bfd_merged_section_offset (abfd, psec,
10236 elf_section_data (sec)->sec_info,
10237 sym->st_value + rel->r_addend);
10238 if (sec != *psec)
10239 {
10240 /* If we have changed the section, and our original section is
10241 marked with SEC_EXCLUDE, it means that the original
10242 SEC_MERGE section has been completely subsumed in some
10243 other SEC_MERGE section. In this case, we need to leave
10244 some info around for --emit-relocs. */
10245 if ((sec->flags & SEC_EXCLUDE) != 0)
10246 sec->kept_section = *psec;
10247 sec = *psec;
10248 }
10249 rel->r_addend -= relocation;
10250 rel->r_addend += sec->output_section->vma + sec->output_offset;
10251 }
10252 return relocation;
10253 }
10254
10255 bfd_vma
10256 _bfd_elf_rel_local_sym (bfd *abfd,
10257 Elf_Internal_Sym *sym,
10258 asection **psec,
10259 bfd_vma addend)
10260 {
10261 asection *sec = *psec;
10262
10263 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
10264 return sym->st_value + addend;
10265
10266 return _bfd_merged_section_offset (abfd, psec,
10267 elf_section_data (sec)->sec_info,
10268 sym->st_value + addend);
10269 }
10270
10271 bfd_vma
10272 _bfd_elf_section_offset (bfd *abfd,
10273 struct bfd_link_info *info,
10274 asection *sec,
10275 bfd_vma offset)
10276 {
10277 switch (sec->sec_info_type)
10278 {
10279 case SEC_INFO_TYPE_STABS:
10280 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
10281 offset);
10282 case SEC_INFO_TYPE_EH_FRAME:
10283 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
10284 default:
10285 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
10286 {
10287 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10288 bfd_size_type address_size = bed->s->arch_size / 8;
10289 offset = sec->size - offset - address_size;
10290 }
10291 return offset;
10292 }
10293 }
10294 \f
10295 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
10296 reconstruct an ELF file by reading the segments out of remote memory
10297 based on the ELF file header at EHDR_VMA and the ELF program headers it
10298 points to. If not null, *LOADBASEP is filled in with the difference
10299 between the VMAs from which the segments were read, and the VMAs the
10300 file headers (and hence BFD's idea of each section's VMA) put them at.
10301
10302 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
10303 remote memory at target address VMA into the local buffer at MYADDR; it
10304 should return zero on success or an `errno' code on failure. TEMPL must
10305 be a BFD for an ELF target with the word size and byte order found in
10306 the remote memory. */
10307
10308 bfd *
10309 bfd_elf_bfd_from_remote_memory
10310 (bfd *templ,
10311 bfd_vma ehdr_vma,
10312 bfd_size_type size,
10313 bfd_vma *loadbasep,
10314 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
10315 {
10316 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
10317 (templ, ehdr_vma, size, loadbasep, target_read_memory);
10318 }
10319 \f
10320 long
10321 _bfd_elf_get_synthetic_symtab (bfd *abfd,
10322 long symcount ATTRIBUTE_UNUSED,
10323 asymbol **syms ATTRIBUTE_UNUSED,
10324 long dynsymcount,
10325 asymbol **dynsyms,
10326 asymbol **ret)
10327 {
10328 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10329 asection *relplt;
10330 asymbol *s;
10331 const char *relplt_name;
10332 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
10333 arelent *p;
10334 long count, i, n;
10335 size_t size;
10336 Elf_Internal_Shdr *hdr;
10337 char *names;
10338 asection *plt;
10339
10340 *ret = NULL;
10341
10342 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
10343 return 0;
10344
10345 if (dynsymcount <= 0)
10346 return 0;
10347
10348 if (!bed->plt_sym_val)
10349 return 0;
10350
10351 relplt_name = bed->relplt_name;
10352 if (relplt_name == NULL)
10353 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
10354 relplt = bfd_get_section_by_name (abfd, relplt_name);
10355 if (relplt == NULL)
10356 return 0;
10357
10358 hdr = &elf_section_data (relplt)->this_hdr;
10359 if (hdr->sh_link != elf_dynsymtab (abfd)
10360 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
10361 return 0;
10362
10363 plt = bfd_get_section_by_name (abfd, ".plt");
10364 if (plt == NULL)
10365 return 0;
10366
10367 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
10368 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
10369 return -1;
10370
10371 count = relplt->size / hdr->sh_entsize;
10372 size = count * sizeof (asymbol);
10373 p = relplt->relocation;
10374 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10375 {
10376 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
10377 if (p->addend != 0)
10378 {
10379 #ifdef BFD64
10380 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
10381 #else
10382 size += sizeof ("+0x") - 1 + 8;
10383 #endif
10384 }
10385 }
10386
10387 s = *ret = (asymbol *) bfd_malloc (size);
10388 if (s == NULL)
10389 return -1;
10390
10391 names = (char *) (s + count);
10392 p = relplt->relocation;
10393 n = 0;
10394 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10395 {
10396 size_t len;
10397 bfd_vma addr;
10398
10399 addr = bed->plt_sym_val (i, plt, p);
10400 if (addr == (bfd_vma) -1)
10401 continue;
10402
10403 *s = **p->sym_ptr_ptr;
10404 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
10405 we are defining a symbol, ensure one of them is set. */
10406 if ((s->flags & BSF_LOCAL) == 0)
10407 s->flags |= BSF_GLOBAL;
10408 s->flags |= BSF_SYNTHETIC;
10409 s->section = plt;
10410 s->value = addr - plt->vma;
10411 s->name = names;
10412 s->udata.p = NULL;
10413 len = strlen ((*p->sym_ptr_ptr)->name);
10414 memcpy (names, (*p->sym_ptr_ptr)->name, len);
10415 names += len;
10416 if (p->addend != 0)
10417 {
10418 char buf[30], *a;
10419
10420 memcpy (names, "+0x", sizeof ("+0x") - 1);
10421 names += sizeof ("+0x") - 1;
10422 bfd_sprintf_vma (abfd, buf, p->addend);
10423 for (a = buf; *a == '0'; ++a)
10424 ;
10425 len = strlen (a);
10426 memcpy (names, a, len);
10427 names += len;
10428 }
10429 memcpy (names, "@plt", sizeof ("@plt"));
10430 names += sizeof ("@plt");
10431 ++s, ++n;
10432 }
10433
10434 return n;
10435 }
10436
10437 /* It is only used by x86-64 so far. */
10438 asection _bfd_elf_large_com_section
10439 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10440 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10441
10442 void
10443 _bfd_elf_post_process_headers (bfd * abfd,
10444 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10445 {
10446 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10447
10448 i_ehdrp = elf_elfheader (abfd);
10449
10450 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10451
10452 /* To make things simpler for the loader on Linux systems we set the
10453 osabi field to ELFOSABI_GNU if the binary contains symbols of
10454 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10455 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10456 && elf_tdata (abfd)->has_gnu_symbols)
10457 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10458 }
10459
10460
10461 /* Return TRUE for ELF symbol types that represent functions.
10462 This is the default version of this function, which is sufficient for
10463 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10464
10465 bfd_boolean
10466 _bfd_elf_is_function_type (unsigned int type)
10467 {
10468 return (type == STT_FUNC
10469 || type == STT_GNU_IFUNC);
10470 }
10471
10472 /* If the ELF symbol SYM might be a function in SEC, return the
10473 function size and set *CODE_OFF to the function's entry point,
10474 otherwise return zero. */
10475
10476 bfd_size_type
10477 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10478 bfd_vma *code_off)
10479 {
10480 bfd_size_type size;
10481
10482 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10483 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10484 || sym->section != sec)
10485 return 0;
10486
10487 *code_off = sym->value;
10488 size = 0;
10489 if (!(sym->flags & BSF_SYNTHETIC))
10490 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10491 if (size == 0)
10492 size = 1;
10493 return size;
10494 }
This page took 0.277127 seconds and 4 git commands to generate.