bfd/
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /*
25 SECTION
26 ELF backends
27
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
31
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
35
36 /* For sparc64-cross-sparc32. */
37 #define _SYSCALL32
38 #include "sysdep.h"
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
49 static bfd_boolean prep_headers (bfd *);
50 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
51 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
52 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
53 file_ptr offset);
54
55 /* Swap version information in and out. The version information is
56 currently size independent. If that ever changes, this code will
57 need to move into elfcode.h. */
58
59 /* Swap in a Verdef structure. */
60
61 void
62 _bfd_elf_swap_verdef_in (bfd *abfd,
63 const Elf_External_Verdef *src,
64 Elf_Internal_Verdef *dst)
65 {
66 dst->vd_version = H_GET_16 (abfd, src->vd_version);
67 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
68 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
69 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
70 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
71 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
72 dst->vd_next = H_GET_32 (abfd, src->vd_next);
73 }
74
75 /* Swap out a Verdef structure. */
76
77 void
78 _bfd_elf_swap_verdef_out (bfd *abfd,
79 const Elf_Internal_Verdef *src,
80 Elf_External_Verdef *dst)
81 {
82 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
83 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
84 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
85 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
86 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
87 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
88 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
89 }
90
91 /* Swap in a Verdaux structure. */
92
93 void
94 _bfd_elf_swap_verdaux_in (bfd *abfd,
95 const Elf_External_Verdaux *src,
96 Elf_Internal_Verdaux *dst)
97 {
98 dst->vda_name = H_GET_32 (abfd, src->vda_name);
99 dst->vda_next = H_GET_32 (abfd, src->vda_next);
100 }
101
102 /* Swap out a Verdaux structure. */
103
104 void
105 _bfd_elf_swap_verdaux_out (bfd *abfd,
106 const Elf_Internal_Verdaux *src,
107 Elf_External_Verdaux *dst)
108 {
109 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
110 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
111 }
112
113 /* Swap in a Verneed structure. */
114
115 void
116 _bfd_elf_swap_verneed_in (bfd *abfd,
117 const Elf_External_Verneed *src,
118 Elf_Internal_Verneed *dst)
119 {
120 dst->vn_version = H_GET_16 (abfd, src->vn_version);
121 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
122 dst->vn_file = H_GET_32 (abfd, src->vn_file);
123 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
124 dst->vn_next = H_GET_32 (abfd, src->vn_next);
125 }
126
127 /* Swap out a Verneed structure. */
128
129 void
130 _bfd_elf_swap_verneed_out (bfd *abfd,
131 const Elf_Internal_Verneed *src,
132 Elf_External_Verneed *dst)
133 {
134 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
135 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
136 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
137 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
138 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
139 }
140
141 /* Swap in a Vernaux structure. */
142
143 void
144 _bfd_elf_swap_vernaux_in (bfd *abfd,
145 const Elf_External_Vernaux *src,
146 Elf_Internal_Vernaux *dst)
147 {
148 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
149 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
150 dst->vna_other = H_GET_16 (abfd, src->vna_other);
151 dst->vna_name = H_GET_32 (abfd, src->vna_name);
152 dst->vna_next = H_GET_32 (abfd, src->vna_next);
153 }
154
155 /* Swap out a Vernaux structure. */
156
157 void
158 _bfd_elf_swap_vernaux_out (bfd *abfd,
159 const Elf_Internal_Vernaux *src,
160 Elf_External_Vernaux *dst)
161 {
162 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
163 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
164 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
165 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
166 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
167 }
168
169 /* Swap in a Versym structure. */
170
171 void
172 _bfd_elf_swap_versym_in (bfd *abfd,
173 const Elf_External_Versym *src,
174 Elf_Internal_Versym *dst)
175 {
176 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
177 }
178
179 /* Swap out a Versym structure. */
180
181 void
182 _bfd_elf_swap_versym_out (bfd *abfd,
183 const Elf_Internal_Versym *src,
184 Elf_External_Versym *dst)
185 {
186 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
187 }
188
189 /* Standard ELF hash function. Do not change this function; you will
190 cause invalid hash tables to be generated. */
191
192 unsigned long
193 bfd_elf_hash (const char *namearg)
194 {
195 const unsigned char *name = (const unsigned char *) namearg;
196 unsigned long h = 0;
197 unsigned long g;
198 int ch;
199
200 while ((ch = *name++) != '\0')
201 {
202 h = (h << 4) + ch;
203 if ((g = (h & 0xf0000000)) != 0)
204 {
205 h ^= g >> 24;
206 /* The ELF ABI says `h &= ~g', but this is equivalent in
207 this case and on some machines one insn instead of two. */
208 h ^= g;
209 }
210 }
211 return h & 0xffffffff;
212 }
213
214 /* DT_GNU_HASH hash function. Do not change this function; you will
215 cause invalid hash tables to be generated. */
216
217 unsigned long
218 bfd_elf_gnu_hash (const char *namearg)
219 {
220 const unsigned char *name = (const unsigned char *) namearg;
221 unsigned long h = 5381;
222 unsigned char ch;
223
224 while ((ch = *name++) != '\0')
225 h = (h << 5) + h + ch;
226 return h & 0xffffffff;
227 }
228
229 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
230 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
231 bfd_boolean
232 bfd_elf_allocate_object (bfd *abfd,
233 size_t object_size,
234 enum elf_object_id object_id)
235 {
236 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
237 abfd->tdata.any = bfd_zalloc (abfd, object_size);
238 if (abfd->tdata.any == NULL)
239 return FALSE;
240
241 elf_object_id (abfd) = object_id;
242 elf_program_header_size (abfd) = (bfd_size_type) -1;
243 return TRUE;
244 }
245
246
247 bfd_boolean
248 bfd_elf_make_generic_object (bfd *abfd)
249 {
250 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
251 GENERIC_ELF_TDATA);
252 }
253
254 bfd_boolean
255 bfd_elf_mkcorefile (bfd *abfd)
256 {
257 /* I think this can be done just like an object file. */
258 return bfd_elf_make_generic_object (abfd);
259 }
260
261 char *
262 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
263 {
264 Elf_Internal_Shdr **i_shdrp;
265 bfd_byte *shstrtab = NULL;
266 file_ptr offset;
267 bfd_size_type shstrtabsize;
268
269 i_shdrp = elf_elfsections (abfd);
270 if (i_shdrp == 0
271 || shindex >= elf_numsections (abfd)
272 || i_shdrp[shindex] == 0)
273 return NULL;
274
275 shstrtab = i_shdrp[shindex]->contents;
276 if (shstrtab == NULL)
277 {
278 /* No cached one, attempt to read, and cache what we read. */
279 offset = i_shdrp[shindex]->sh_offset;
280 shstrtabsize = i_shdrp[shindex]->sh_size;
281
282 /* Allocate and clear an extra byte at the end, to prevent crashes
283 in case the string table is not terminated. */
284 if (shstrtabsize + 1 <= 1
285 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
286 || bfd_seek (abfd, offset, SEEK_SET) != 0)
287 shstrtab = NULL;
288 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
289 {
290 if (bfd_get_error () != bfd_error_system_call)
291 bfd_set_error (bfd_error_file_truncated);
292 shstrtab = NULL;
293 /* Once we've failed to read it, make sure we don't keep
294 trying. Otherwise, we'll keep allocating space for
295 the string table over and over. */
296 i_shdrp[shindex]->sh_size = 0;
297 }
298 else
299 shstrtab[shstrtabsize] = '\0';
300 i_shdrp[shindex]->contents = shstrtab;
301 }
302 return (char *) shstrtab;
303 }
304
305 char *
306 bfd_elf_string_from_elf_section (bfd *abfd,
307 unsigned int shindex,
308 unsigned int strindex)
309 {
310 Elf_Internal_Shdr *hdr;
311
312 if (strindex == 0)
313 return "";
314
315 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
316 return NULL;
317
318 hdr = elf_elfsections (abfd)[shindex];
319
320 if (hdr->contents == NULL
321 && bfd_elf_get_str_section (abfd, shindex) == NULL)
322 return NULL;
323
324 if (strindex >= hdr->sh_size)
325 {
326 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
327 (*_bfd_error_handler)
328 (_("%B: invalid string offset %u >= %lu for section `%s'"),
329 abfd, strindex, (unsigned long) hdr->sh_size,
330 (shindex == shstrndx && strindex == hdr->sh_name
331 ? ".shstrtab"
332 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
333 return "";
334 }
335
336 return ((char *) hdr->contents) + strindex;
337 }
338
339 /* Read and convert symbols to internal format.
340 SYMCOUNT specifies the number of symbols to read, starting from
341 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
342 are non-NULL, they are used to store the internal symbols, external
343 symbols, and symbol section index extensions, respectively.
344 Returns a pointer to the internal symbol buffer (malloced if necessary)
345 or NULL if there were no symbols or some kind of problem. */
346
347 Elf_Internal_Sym *
348 bfd_elf_get_elf_syms (bfd *ibfd,
349 Elf_Internal_Shdr *symtab_hdr,
350 size_t symcount,
351 size_t symoffset,
352 Elf_Internal_Sym *intsym_buf,
353 void *extsym_buf,
354 Elf_External_Sym_Shndx *extshndx_buf)
355 {
356 Elf_Internal_Shdr *shndx_hdr;
357 void *alloc_ext;
358 const bfd_byte *esym;
359 Elf_External_Sym_Shndx *alloc_extshndx;
360 Elf_External_Sym_Shndx *shndx;
361 Elf_Internal_Sym *alloc_intsym;
362 Elf_Internal_Sym *isym;
363 Elf_Internal_Sym *isymend;
364 const struct elf_backend_data *bed;
365 size_t extsym_size;
366 bfd_size_type amt;
367 file_ptr pos;
368
369 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
370 abort ();
371
372 if (symcount == 0)
373 return intsym_buf;
374
375 /* Normal syms might have section extension entries. */
376 shndx_hdr = NULL;
377 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
378 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
379
380 /* Read the symbols. */
381 alloc_ext = NULL;
382 alloc_extshndx = NULL;
383 alloc_intsym = NULL;
384 bed = get_elf_backend_data (ibfd);
385 extsym_size = bed->s->sizeof_sym;
386 amt = symcount * extsym_size;
387 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
388 if (extsym_buf == NULL)
389 {
390 alloc_ext = bfd_malloc2 (symcount, extsym_size);
391 extsym_buf = alloc_ext;
392 }
393 if (extsym_buf == NULL
394 || bfd_seek (ibfd, pos, SEEK_SET) != 0
395 || bfd_bread (extsym_buf, amt, ibfd) != amt)
396 {
397 intsym_buf = NULL;
398 goto out;
399 }
400
401 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
402 extshndx_buf = NULL;
403 else
404 {
405 amt = symcount * sizeof (Elf_External_Sym_Shndx);
406 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
407 if (extshndx_buf == NULL)
408 {
409 alloc_extshndx = bfd_malloc2 (symcount,
410 sizeof (Elf_External_Sym_Shndx));
411 extshndx_buf = alloc_extshndx;
412 }
413 if (extshndx_buf == NULL
414 || bfd_seek (ibfd, pos, SEEK_SET) != 0
415 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
416 {
417 intsym_buf = NULL;
418 goto out;
419 }
420 }
421
422 if (intsym_buf == NULL)
423 {
424 alloc_intsym = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
425 intsym_buf = alloc_intsym;
426 if (intsym_buf == NULL)
427 goto out;
428 }
429
430 /* Convert the symbols to internal form. */
431 isymend = intsym_buf + symcount;
432 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
433 isym < isymend;
434 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
435 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
436 {
437 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
438 (*_bfd_error_handler) (_("%B symbol number %lu references "
439 "nonexistent SHT_SYMTAB_SHNDX section"),
440 ibfd, (unsigned long) symoffset);
441 if (alloc_intsym != NULL)
442 free (alloc_intsym);
443 intsym_buf = NULL;
444 goto out;
445 }
446
447 out:
448 if (alloc_ext != NULL)
449 free (alloc_ext);
450 if (alloc_extshndx != NULL)
451 free (alloc_extshndx);
452
453 return intsym_buf;
454 }
455
456 /* Look up a symbol name. */
457 const char *
458 bfd_elf_sym_name (bfd *abfd,
459 Elf_Internal_Shdr *symtab_hdr,
460 Elf_Internal_Sym *isym,
461 asection *sym_sec)
462 {
463 const char *name;
464 unsigned int iname = isym->st_name;
465 unsigned int shindex = symtab_hdr->sh_link;
466
467 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
468 /* Check for a bogus st_shndx to avoid crashing. */
469 && isym->st_shndx < elf_numsections (abfd))
470 {
471 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
472 shindex = elf_elfheader (abfd)->e_shstrndx;
473 }
474
475 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
476 if (name == NULL)
477 name = "(null)";
478 else if (sym_sec && *name == '\0')
479 name = bfd_section_name (abfd, sym_sec);
480
481 return name;
482 }
483
484 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
485 sections. The first element is the flags, the rest are section
486 pointers. */
487
488 typedef union elf_internal_group {
489 Elf_Internal_Shdr *shdr;
490 unsigned int flags;
491 } Elf_Internal_Group;
492
493 /* Return the name of the group signature symbol. Why isn't the
494 signature just a string? */
495
496 static const char *
497 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
498 {
499 Elf_Internal_Shdr *hdr;
500 unsigned char esym[sizeof (Elf64_External_Sym)];
501 Elf_External_Sym_Shndx eshndx;
502 Elf_Internal_Sym isym;
503
504 /* First we need to ensure the symbol table is available. Make sure
505 that it is a symbol table section. */
506 if (ghdr->sh_link >= elf_numsections (abfd))
507 return NULL;
508 hdr = elf_elfsections (abfd) [ghdr->sh_link];
509 if (hdr->sh_type != SHT_SYMTAB
510 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
511 return NULL;
512
513 /* Go read the symbol. */
514 hdr = &elf_tdata (abfd)->symtab_hdr;
515 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
516 &isym, esym, &eshndx) == NULL)
517 return NULL;
518
519 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
520 }
521
522 /* Set next_in_group list pointer, and group name for NEWSECT. */
523
524 static bfd_boolean
525 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
526 {
527 unsigned int num_group = elf_tdata (abfd)->num_group;
528
529 /* If num_group is zero, read in all SHT_GROUP sections. The count
530 is set to -1 if there are no SHT_GROUP sections. */
531 if (num_group == 0)
532 {
533 unsigned int i, shnum;
534
535 /* First count the number of groups. If we have a SHT_GROUP
536 section with just a flag word (ie. sh_size is 4), ignore it. */
537 shnum = elf_numsections (abfd);
538 num_group = 0;
539
540 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
541 ( (shdr)->sh_type == SHT_GROUP \
542 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
543 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
544 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
545
546 for (i = 0; i < shnum; i++)
547 {
548 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
549
550 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
551 num_group += 1;
552 }
553
554 if (num_group == 0)
555 {
556 num_group = (unsigned) -1;
557 elf_tdata (abfd)->num_group = num_group;
558 }
559 else
560 {
561 /* We keep a list of elf section headers for group sections,
562 so we can find them quickly. */
563 bfd_size_type amt;
564
565 elf_tdata (abfd)->num_group = num_group;
566 elf_tdata (abfd)->group_sect_ptr
567 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
568 if (elf_tdata (abfd)->group_sect_ptr == NULL)
569 return FALSE;
570
571 num_group = 0;
572 for (i = 0; i < shnum; i++)
573 {
574 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
575
576 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
577 {
578 unsigned char *src;
579 Elf_Internal_Group *dest;
580
581 /* Add to list of sections. */
582 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
583 num_group += 1;
584
585 /* Read the raw contents. */
586 BFD_ASSERT (sizeof (*dest) >= 4);
587 amt = shdr->sh_size * sizeof (*dest) / 4;
588 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
589 sizeof (*dest) / 4);
590 /* PR binutils/4110: Handle corrupt group headers. */
591 if (shdr->contents == NULL)
592 {
593 _bfd_error_handler
594 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
595 bfd_set_error (bfd_error_bad_value);
596 return FALSE;
597 }
598
599 memset (shdr->contents, 0, amt);
600
601 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
602 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
603 != shdr->sh_size))
604 return FALSE;
605
606 /* Translate raw contents, a flag word followed by an
607 array of elf section indices all in target byte order,
608 to the flag word followed by an array of elf section
609 pointers. */
610 src = shdr->contents + shdr->sh_size;
611 dest = (Elf_Internal_Group *) (shdr->contents + amt);
612 while (1)
613 {
614 unsigned int idx;
615
616 src -= 4;
617 --dest;
618 idx = H_GET_32 (abfd, src);
619 if (src == shdr->contents)
620 {
621 dest->flags = idx;
622 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
623 shdr->bfd_section->flags
624 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
625 break;
626 }
627 if (idx >= shnum)
628 {
629 ((*_bfd_error_handler)
630 (_("%B: invalid SHT_GROUP entry"), abfd));
631 idx = 0;
632 }
633 dest->shdr = elf_elfsections (abfd)[idx];
634 }
635 }
636 }
637 }
638 }
639
640 if (num_group != (unsigned) -1)
641 {
642 unsigned int i;
643
644 for (i = 0; i < num_group; i++)
645 {
646 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
647 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
648 unsigned int n_elt = shdr->sh_size / 4;
649
650 /* Look through this group's sections to see if current
651 section is a member. */
652 while (--n_elt != 0)
653 if ((++idx)->shdr == hdr)
654 {
655 asection *s = NULL;
656
657 /* We are a member of this group. Go looking through
658 other members to see if any others are linked via
659 next_in_group. */
660 idx = (Elf_Internal_Group *) shdr->contents;
661 n_elt = shdr->sh_size / 4;
662 while (--n_elt != 0)
663 if ((s = (++idx)->shdr->bfd_section) != NULL
664 && elf_next_in_group (s) != NULL)
665 break;
666 if (n_elt != 0)
667 {
668 /* Snarf the group name from other member, and
669 insert current section in circular list. */
670 elf_group_name (newsect) = elf_group_name (s);
671 elf_next_in_group (newsect) = elf_next_in_group (s);
672 elf_next_in_group (s) = newsect;
673 }
674 else
675 {
676 const char *gname;
677
678 gname = group_signature (abfd, shdr);
679 if (gname == NULL)
680 return FALSE;
681 elf_group_name (newsect) = gname;
682
683 /* Start a circular list with one element. */
684 elf_next_in_group (newsect) = newsect;
685 }
686
687 /* If the group section has been created, point to the
688 new member. */
689 if (shdr->bfd_section != NULL)
690 elf_next_in_group (shdr->bfd_section) = newsect;
691
692 i = num_group - 1;
693 break;
694 }
695 }
696 }
697
698 if (elf_group_name (newsect) == NULL)
699 {
700 (*_bfd_error_handler) (_("%B: no group info for section %A"),
701 abfd, newsect);
702 }
703 return TRUE;
704 }
705
706 bfd_boolean
707 _bfd_elf_setup_sections (bfd *abfd)
708 {
709 unsigned int i;
710 unsigned int num_group = elf_tdata (abfd)->num_group;
711 bfd_boolean result = TRUE;
712 asection *s;
713
714 /* Process SHF_LINK_ORDER. */
715 for (s = abfd->sections; s != NULL; s = s->next)
716 {
717 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
718 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
719 {
720 unsigned int elfsec = this_hdr->sh_link;
721 /* FIXME: The old Intel compiler and old strip/objcopy may
722 not set the sh_link or sh_info fields. Hence we could
723 get the situation where elfsec is 0. */
724 if (elfsec == 0)
725 {
726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
727 if (bed->link_order_error_handler)
728 bed->link_order_error_handler
729 (_("%B: warning: sh_link not set for section `%A'"),
730 abfd, s);
731 }
732 else
733 {
734 asection *link = NULL;
735
736 if (elfsec < elf_numsections (abfd))
737 {
738 this_hdr = elf_elfsections (abfd)[elfsec];
739 link = this_hdr->bfd_section;
740 }
741
742 /* PR 1991, 2008:
743 Some strip/objcopy may leave an incorrect value in
744 sh_link. We don't want to proceed. */
745 if (link == NULL)
746 {
747 (*_bfd_error_handler)
748 (_("%B: sh_link [%d] in section `%A' is incorrect"),
749 s->owner, s, elfsec);
750 result = FALSE;
751 }
752
753 elf_linked_to_section (s) = link;
754 }
755 }
756 }
757
758 /* Process section groups. */
759 if (num_group == (unsigned) -1)
760 return result;
761
762 for (i = 0; i < num_group; i++)
763 {
764 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
765 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
766 unsigned int n_elt = shdr->sh_size / 4;
767
768 while (--n_elt != 0)
769 if ((++idx)->shdr->bfd_section)
770 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
771 else if (idx->shdr->sh_type == SHT_RELA
772 || idx->shdr->sh_type == SHT_REL)
773 /* We won't include relocation sections in section groups in
774 output object files. We adjust the group section size here
775 so that relocatable link will work correctly when
776 relocation sections are in section group in input object
777 files. */
778 shdr->bfd_section->size -= 4;
779 else
780 {
781 /* There are some unknown sections in the group. */
782 (*_bfd_error_handler)
783 (_("%B: unknown [%d] section `%s' in group [%s]"),
784 abfd,
785 (unsigned int) idx->shdr->sh_type,
786 bfd_elf_string_from_elf_section (abfd,
787 (elf_elfheader (abfd)
788 ->e_shstrndx),
789 idx->shdr->sh_name),
790 shdr->bfd_section->name);
791 result = FALSE;
792 }
793 }
794 return result;
795 }
796
797 bfd_boolean
798 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
799 {
800 return elf_next_in_group (sec) != NULL;
801 }
802
803 /* Make a BFD section from an ELF section. We store a pointer to the
804 BFD section in the bfd_section field of the header. */
805
806 bfd_boolean
807 _bfd_elf_make_section_from_shdr (bfd *abfd,
808 Elf_Internal_Shdr *hdr,
809 const char *name,
810 int shindex)
811 {
812 asection *newsect;
813 flagword flags;
814 const struct elf_backend_data *bed;
815
816 if (hdr->bfd_section != NULL)
817 {
818 BFD_ASSERT (strcmp (name,
819 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
820 return TRUE;
821 }
822
823 newsect = bfd_make_section_anyway (abfd, name);
824 if (newsect == NULL)
825 return FALSE;
826
827 hdr->bfd_section = newsect;
828 elf_section_data (newsect)->this_hdr = *hdr;
829 elf_section_data (newsect)->this_idx = shindex;
830
831 /* Always use the real type/flags. */
832 elf_section_type (newsect) = hdr->sh_type;
833 elf_section_flags (newsect) = hdr->sh_flags;
834
835 newsect->filepos = hdr->sh_offset;
836
837 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
838 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
839 || ! bfd_set_section_alignment (abfd, newsect,
840 bfd_log2 (hdr->sh_addralign)))
841 return FALSE;
842
843 flags = SEC_NO_FLAGS;
844 if (hdr->sh_type != SHT_NOBITS)
845 flags |= SEC_HAS_CONTENTS;
846 if (hdr->sh_type == SHT_GROUP)
847 flags |= SEC_GROUP | SEC_EXCLUDE;
848 if ((hdr->sh_flags & SHF_ALLOC) != 0)
849 {
850 flags |= SEC_ALLOC;
851 if (hdr->sh_type != SHT_NOBITS)
852 flags |= SEC_LOAD;
853 }
854 if ((hdr->sh_flags & SHF_WRITE) == 0)
855 flags |= SEC_READONLY;
856 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
857 flags |= SEC_CODE;
858 else if ((flags & SEC_LOAD) != 0)
859 flags |= SEC_DATA;
860 if ((hdr->sh_flags & SHF_MERGE) != 0)
861 {
862 flags |= SEC_MERGE;
863 newsect->entsize = hdr->sh_entsize;
864 if ((hdr->sh_flags & SHF_STRINGS) != 0)
865 flags |= SEC_STRINGS;
866 }
867 if (hdr->sh_flags & SHF_GROUP)
868 if (!setup_group (abfd, hdr, newsect))
869 return FALSE;
870 if ((hdr->sh_flags & SHF_TLS) != 0)
871 flags |= SEC_THREAD_LOCAL;
872
873 if ((flags & SEC_ALLOC) == 0)
874 {
875 /* The debugging sections appear to be recognized only by name,
876 not any sort of flag. Their SEC_ALLOC bits are cleared. */
877 static const struct
878 {
879 const char *name;
880 int len;
881 } debug_sections [] =
882 {
883 { STRING_COMMA_LEN ("debug") }, /* 'd' */
884 { NULL, 0 }, /* 'e' */
885 { NULL, 0 }, /* 'f' */
886 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
887 { NULL, 0 }, /* 'h' */
888 { NULL, 0 }, /* 'i' */
889 { NULL, 0 }, /* 'j' */
890 { NULL, 0 }, /* 'k' */
891 { STRING_COMMA_LEN ("line") }, /* 'l' */
892 { NULL, 0 }, /* 'm' */
893 { NULL, 0 }, /* 'n' */
894 { NULL, 0 }, /* 'o' */
895 { NULL, 0 }, /* 'p' */
896 { NULL, 0 }, /* 'q' */
897 { NULL, 0 }, /* 'r' */
898 { STRING_COMMA_LEN ("stab") }, /* 's' */
899 { NULL, 0 }, /* 't' */
900 { NULL, 0 }, /* 'u' */
901 { NULL, 0 }, /* 'v' */
902 { NULL, 0 }, /* 'w' */
903 { NULL, 0 }, /* 'x' */
904 { NULL, 0 }, /* 'y' */
905 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
906 };
907
908 if (name [0] == '.')
909 {
910 int i = name [1] - 'd';
911 if (i >= 0
912 && i < (int) ARRAY_SIZE (debug_sections)
913 && debug_sections [i].name != NULL
914 && strncmp (&name [1], debug_sections [i].name,
915 debug_sections [i].len) == 0)
916 flags |= SEC_DEBUGGING;
917 }
918 }
919
920 /* As a GNU extension, if the name begins with .gnu.linkonce, we
921 only link a single copy of the section. This is used to support
922 g++. g++ will emit each template expansion in its own section.
923 The symbols will be defined as weak, so that multiple definitions
924 are permitted. The GNU linker extension is to actually discard
925 all but one of the sections. */
926 if (CONST_STRNEQ (name, ".gnu.linkonce")
927 && elf_next_in_group (newsect) == NULL)
928 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
929
930 bed = get_elf_backend_data (abfd);
931 if (bed->elf_backend_section_flags)
932 if (! bed->elf_backend_section_flags (&flags, hdr))
933 return FALSE;
934
935 if (! bfd_set_section_flags (abfd, newsect, flags))
936 return FALSE;
937
938 /* We do not parse the PT_NOTE segments as we are interested even in the
939 separate debug info files which may have the segments offsets corrupted.
940 PT_NOTEs from the core files are currently not parsed using BFD. */
941 if (hdr->sh_type == SHT_NOTE)
942 {
943 bfd_byte *contents;
944
945 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
946 return FALSE;
947
948 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
949 free (contents);
950 }
951
952 if ((flags & SEC_ALLOC) != 0)
953 {
954 Elf_Internal_Phdr *phdr;
955 unsigned int i, nload;
956
957 /* Some ELF linkers produce binaries with all the program header
958 p_paddr fields zero. If we have such a binary with more than
959 one PT_LOAD header, then leave the section lma equal to vma
960 so that we don't create sections with overlapping lma. */
961 phdr = elf_tdata (abfd)->phdr;
962 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
963 if (phdr->p_paddr != 0)
964 break;
965 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
966 ++nload;
967 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
968 return TRUE;
969
970 phdr = elf_tdata (abfd)->phdr;
971 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
972 {
973 /* This section is part of this segment if its file
974 offset plus size lies within the segment's memory
975 span and, if the section is loaded, the extent of the
976 loaded data lies within the extent of the segment.
977
978 Note - we used to check the p_paddr field as well, and
979 refuse to set the LMA if it was 0. This is wrong
980 though, as a perfectly valid initialised segment can
981 have a p_paddr of zero. Some architectures, eg ARM,
982 place special significance on the address 0 and
983 executables need to be able to have a segment which
984 covers this address. */
985 if (phdr->p_type == PT_LOAD
986 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
987 && (hdr->sh_offset + hdr->sh_size
988 <= phdr->p_offset + phdr->p_memsz)
989 && ((flags & SEC_LOAD) == 0
990 || (hdr->sh_offset + hdr->sh_size
991 <= phdr->p_offset + phdr->p_filesz)))
992 {
993 if ((flags & SEC_LOAD) == 0)
994 newsect->lma = (phdr->p_paddr
995 + hdr->sh_addr - phdr->p_vaddr);
996 else
997 /* We used to use the same adjustment for SEC_LOAD
998 sections, but that doesn't work if the segment
999 is packed with code from multiple VMAs.
1000 Instead we calculate the section LMA based on
1001 the segment LMA. It is assumed that the
1002 segment will contain sections with contiguous
1003 LMAs, even if the VMAs are not. */
1004 newsect->lma = (phdr->p_paddr
1005 + hdr->sh_offset - phdr->p_offset);
1006
1007 /* With contiguous segments, we can't tell from file
1008 offsets whether a section with zero size should
1009 be placed at the end of one segment or the
1010 beginning of the next. Decide based on vaddr. */
1011 if (hdr->sh_addr >= phdr->p_vaddr
1012 && (hdr->sh_addr + hdr->sh_size
1013 <= phdr->p_vaddr + phdr->p_memsz))
1014 break;
1015 }
1016 }
1017 }
1018
1019 return TRUE;
1020 }
1021
1022 /*
1023 INTERNAL_FUNCTION
1024 bfd_elf_find_section
1025
1026 SYNOPSIS
1027 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
1028
1029 DESCRIPTION
1030 Helper functions for GDB to locate the string tables.
1031 Since BFD hides string tables from callers, GDB needs to use an
1032 internal hook to find them. Sun's .stabstr, in particular,
1033 isn't even pointed to by the .stab section, so ordinary
1034 mechanisms wouldn't work to find it, even if we had some.
1035 */
1036
1037 struct elf_internal_shdr *
1038 bfd_elf_find_section (bfd *abfd, char *name)
1039 {
1040 Elf_Internal_Shdr **i_shdrp;
1041 char *shstrtab;
1042 unsigned int max;
1043 unsigned int i;
1044
1045 i_shdrp = elf_elfsections (abfd);
1046 if (i_shdrp != NULL)
1047 {
1048 shstrtab = bfd_elf_get_str_section (abfd,
1049 elf_elfheader (abfd)->e_shstrndx);
1050 if (shstrtab != NULL)
1051 {
1052 max = elf_numsections (abfd);
1053 for (i = 1; i < max; i++)
1054 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
1055 return i_shdrp[i];
1056 }
1057 }
1058 return 0;
1059 }
1060
1061 const char *const bfd_elf_section_type_names[] = {
1062 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1063 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1064 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1065 };
1066
1067 /* ELF relocs are against symbols. If we are producing relocatable
1068 output, and the reloc is against an external symbol, and nothing
1069 has given us any additional addend, the resulting reloc will also
1070 be against the same symbol. In such a case, we don't want to
1071 change anything about the way the reloc is handled, since it will
1072 all be done at final link time. Rather than put special case code
1073 into bfd_perform_relocation, all the reloc types use this howto
1074 function. It just short circuits the reloc if producing
1075 relocatable output against an external symbol. */
1076
1077 bfd_reloc_status_type
1078 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1079 arelent *reloc_entry,
1080 asymbol *symbol,
1081 void *data ATTRIBUTE_UNUSED,
1082 asection *input_section,
1083 bfd *output_bfd,
1084 char **error_message ATTRIBUTE_UNUSED)
1085 {
1086 if (output_bfd != NULL
1087 && (symbol->flags & BSF_SECTION_SYM) == 0
1088 && (! reloc_entry->howto->partial_inplace
1089 || reloc_entry->addend == 0))
1090 {
1091 reloc_entry->address += input_section->output_offset;
1092 return bfd_reloc_ok;
1093 }
1094
1095 return bfd_reloc_continue;
1096 }
1097 \f
1098 /* Copy the program header and other data from one object module to
1099 another. */
1100
1101 bfd_boolean
1102 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1103 {
1104 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1105 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1106 return TRUE;
1107
1108 BFD_ASSERT (!elf_flags_init (obfd)
1109 || (elf_elfheader (obfd)->e_flags
1110 == elf_elfheader (ibfd)->e_flags));
1111
1112 elf_gp (obfd) = elf_gp (ibfd);
1113 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1114 elf_flags_init (obfd) = TRUE;
1115
1116 /* Copy object attributes. */
1117 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1118
1119 return TRUE;
1120 }
1121
1122 static const char *
1123 get_segment_type (unsigned int p_type)
1124 {
1125 const char *pt;
1126 switch (p_type)
1127 {
1128 case PT_NULL: pt = "NULL"; break;
1129 case PT_LOAD: pt = "LOAD"; break;
1130 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1131 case PT_INTERP: pt = "INTERP"; break;
1132 case PT_NOTE: pt = "NOTE"; break;
1133 case PT_SHLIB: pt = "SHLIB"; break;
1134 case PT_PHDR: pt = "PHDR"; break;
1135 case PT_TLS: pt = "TLS"; break;
1136 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1137 case PT_GNU_STACK: pt = "STACK"; break;
1138 case PT_GNU_RELRO: pt = "RELRO"; break;
1139 default: pt = NULL; break;
1140 }
1141 return pt;
1142 }
1143
1144 /* Print out the program headers. */
1145
1146 bfd_boolean
1147 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1148 {
1149 FILE *f = farg;
1150 Elf_Internal_Phdr *p;
1151 asection *s;
1152 bfd_byte *dynbuf = NULL;
1153
1154 p = elf_tdata (abfd)->phdr;
1155 if (p != NULL)
1156 {
1157 unsigned int i, c;
1158
1159 fprintf (f, _("\nProgram Header:\n"));
1160 c = elf_elfheader (abfd)->e_phnum;
1161 for (i = 0; i < c; i++, p++)
1162 {
1163 const char *pt = get_segment_type (p->p_type);
1164 char buf[20];
1165
1166 if (pt == NULL)
1167 {
1168 sprintf (buf, "0x%lx", p->p_type);
1169 pt = buf;
1170 }
1171 fprintf (f, "%8s off 0x", pt);
1172 bfd_fprintf_vma (abfd, f, p->p_offset);
1173 fprintf (f, " vaddr 0x");
1174 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1175 fprintf (f, " paddr 0x");
1176 bfd_fprintf_vma (abfd, f, p->p_paddr);
1177 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1178 fprintf (f, " filesz 0x");
1179 bfd_fprintf_vma (abfd, f, p->p_filesz);
1180 fprintf (f, " memsz 0x");
1181 bfd_fprintf_vma (abfd, f, p->p_memsz);
1182 fprintf (f, " flags %c%c%c",
1183 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1184 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1185 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1186 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1187 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1188 fprintf (f, "\n");
1189 }
1190 }
1191
1192 s = bfd_get_section_by_name (abfd, ".dynamic");
1193 if (s != NULL)
1194 {
1195 unsigned int elfsec;
1196 unsigned long shlink;
1197 bfd_byte *extdyn, *extdynend;
1198 size_t extdynsize;
1199 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1200
1201 fprintf (f, _("\nDynamic Section:\n"));
1202
1203 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1204 goto error_return;
1205
1206 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1207 if (elfsec == SHN_BAD)
1208 goto error_return;
1209 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1210
1211 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1212 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1213
1214 extdyn = dynbuf;
1215 extdynend = extdyn + s->size;
1216 for (; extdyn < extdynend; extdyn += extdynsize)
1217 {
1218 Elf_Internal_Dyn dyn;
1219 const char *name = "";
1220 char ab[20];
1221 bfd_boolean stringp;
1222 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1223
1224 (*swap_dyn_in) (abfd, extdyn, &dyn);
1225
1226 if (dyn.d_tag == DT_NULL)
1227 break;
1228
1229 stringp = FALSE;
1230 switch (dyn.d_tag)
1231 {
1232 default:
1233 if (bed->elf_backend_get_target_dtag)
1234 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1235
1236 if (!strcmp (name, ""))
1237 {
1238 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1239 name = ab;
1240 }
1241 break;
1242
1243 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1244 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1245 case DT_PLTGOT: name = "PLTGOT"; break;
1246 case DT_HASH: name = "HASH"; break;
1247 case DT_STRTAB: name = "STRTAB"; break;
1248 case DT_SYMTAB: name = "SYMTAB"; break;
1249 case DT_RELA: name = "RELA"; break;
1250 case DT_RELASZ: name = "RELASZ"; break;
1251 case DT_RELAENT: name = "RELAENT"; break;
1252 case DT_STRSZ: name = "STRSZ"; break;
1253 case DT_SYMENT: name = "SYMENT"; break;
1254 case DT_INIT: name = "INIT"; break;
1255 case DT_FINI: name = "FINI"; break;
1256 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1257 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1258 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1259 case DT_REL: name = "REL"; break;
1260 case DT_RELSZ: name = "RELSZ"; break;
1261 case DT_RELENT: name = "RELENT"; break;
1262 case DT_PLTREL: name = "PLTREL"; break;
1263 case DT_DEBUG: name = "DEBUG"; break;
1264 case DT_TEXTREL: name = "TEXTREL"; break;
1265 case DT_JMPREL: name = "JMPREL"; break;
1266 case DT_BIND_NOW: name = "BIND_NOW"; break;
1267 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1268 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1269 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1270 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1271 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1272 case DT_FLAGS: name = "FLAGS"; break;
1273 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1274 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1275 case DT_CHECKSUM: name = "CHECKSUM"; break;
1276 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1277 case DT_MOVEENT: name = "MOVEENT"; break;
1278 case DT_MOVESZ: name = "MOVESZ"; break;
1279 case DT_FEATURE: name = "FEATURE"; break;
1280 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1281 case DT_SYMINSZ: name = "SYMINSZ"; break;
1282 case DT_SYMINENT: name = "SYMINENT"; break;
1283 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1284 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1285 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1286 case DT_PLTPAD: name = "PLTPAD"; break;
1287 case DT_MOVETAB: name = "MOVETAB"; break;
1288 case DT_SYMINFO: name = "SYMINFO"; break;
1289 case DT_RELACOUNT: name = "RELACOUNT"; break;
1290 case DT_RELCOUNT: name = "RELCOUNT"; break;
1291 case DT_FLAGS_1: name = "FLAGS_1"; break;
1292 case DT_VERSYM: name = "VERSYM"; break;
1293 case DT_VERDEF: name = "VERDEF"; break;
1294 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1295 case DT_VERNEED: name = "VERNEED"; break;
1296 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1297 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1298 case DT_USED: name = "USED"; break;
1299 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1300 case DT_GNU_HASH: name = "GNU_HASH"; break;
1301 }
1302
1303 fprintf (f, " %-20s ", name);
1304 if (! stringp)
1305 {
1306 fprintf (f, "0x");
1307 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1308 }
1309 else
1310 {
1311 const char *string;
1312 unsigned int tagv = dyn.d_un.d_val;
1313
1314 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1315 if (string == NULL)
1316 goto error_return;
1317 fprintf (f, "%s", string);
1318 }
1319 fprintf (f, "\n");
1320 }
1321
1322 free (dynbuf);
1323 dynbuf = NULL;
1324 }
1325
1326 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1327 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1328 {
1329 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1330 return FALSE;
1331 }
1332
1333 if (elf_dynverdef (abfd) != 0)
1334 {
1335 Elf_Internal_Verdef *t;
1336
1337 fprintf (f, _("\nVersion definitions:\n"));
1338 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1339 {
1340 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1341 t->vd_flags, t->vd_hash,
1342 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1343 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1344 {
1345 Elf_Internal_Verdaux *a;
1346
1347 fprintf (f, "\t");
1348 for (a = t->vd_auxptr->vda_nextptr;
1349 a != NULL;
1350 a = a->vda_nextptr)
1351 fprintf (f, "%s ",
1352 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1353 fprintf (f, "\n");
1354 }
1355 }
1356 }
1357
1358 if (elf_dynverref (abfd) != 0)
1359 {
1360 Elf_Internal_Verneed *t;
1361
1362 fprintf (f, _("\nVersion References:\n"));
1363 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1364 {
1365 Elf_Internal_Vernaux *a;
1366
1367 fprintf (f, _(" required from %s:\n"),
1368 t->vn_filename ? t->vn_filename : "<corrupt>");
1369 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1370 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1371 a->vna_flags, a->vna_other,
1372 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1373 }
1374 }
1375
1376 return TRUE;
1377
1378 error_return:
1379 if (dynbuf != NULL)
1380 free (dynbuf);
1381 return FALSE;
1382 }
1383
1384 /* Display ELF-specific fields of a symbol. */
1385
1386 void
1387 bfd_elf_print_symbol (bfd *abfd,
1388 void *filep,
1389 asymbol *symbol,
1390 bfd_print_symbol_type how)
1391 {
1392 FILE *file = filep;
1393 switch (how)
1394 {
1395 case bfd_print_symbol_name:
1396 fprintf (file, "%s", symbol->name);
1397 break;
1398 case bfd_print_symbol_more:
1399 fprintf (file, "elf ");
1400 bfd_fprintf_vma (abfd, file, symbol->value);
1401 fprintf (file, " %lx", (unsigned long) symbol->flags);
1402 break;
1403 case bfd_print_symbol_all:
1404 {
1405 const char *section_name;
1406 const char *name = NULL;
1407 const struct elf_backend_data *bed;
1408 unsigned char st_other;
1409 bfd_vma val;
1410
1411 section_name = symbol->section ? symbol->section->name : "(*none*)";
1412
1413 bed = get_elf_backend_data (abfd);
1414 if (bed->elf_backend_print_symbol_all)
1415 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1416
1417 if (name == NULL)
1418 {
1419 name = symbol->name;
1420 bfd_print_symbol_vandf (abfd, file, symbol);
1421 }
1422
1423 fprintf (file, " %s\t", section_name);
1424 /* Print the "other" value for a symbol. For common symbols,
1425 we've already printed the size; now print the alignment.
1426 For other symbols, we have no specified alignment, and
1427 we've printed the address; now print the size. */
1428 if (symbol->section && bfd_is_com_section (symbol->section))
1429 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1430 else
1431 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1432 bfd_fprintf_vma (abfd, file, val);
1433
1434 /* If we have version information, print it. */
1435 if (elf_tdata (abfd)->dynversym_section != 0
1436 && (elf_tdata (abfd)->dynverdef_section != 0
1437 || elf_tdata (abfd)->dynverref_section != 0))
1438 {
1439 unsigned int vernum;
1440 const char *version_string;
1441
1442 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1443
1444 if (vernum == 0)
1445 version_string = "";
1446 else if (vernum == 1)
1447 version_string = "Base";
1448 else if (vernum <= elf_tdata (abfd)->cverdefs)
1449 version_string =
1450 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1451 else
1452 {
1453 Elf_Internal_Verneed *t;
1454
1455 version_string = "";
1456 for (t = elf_tdata (abfd)->verref;
1457 t != NULL;
1458 t = t->vn_nextref)
1459 {
1460 Elf_Internal_Vernaux *a;
1461
1462 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1463 {
1464 if (a->vna_other == vernum)
1465 {
1466 version_string = a->vna_nodename;
1467 break;
1468 }
1469 }
1470 }
1471 }
1472
1473 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1474 fprintf (file, " %-11s", version_string);
1475 else
1476 {
1477 int i;
1478
1479 fprintf (file, " (%s)", version_string);
1480 for (i = 10 - strlen (version_string); i > 0; --i)
1481 putc (' ', file);
1482 }
1483 }
1484
1485 /* If the st_other field is not zero, print it. */
1486 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1487
1488 switch (st_other)
1489 {
1490 case 0: break;
1491 case STV_INTERNAL: fprintf (file, " .internal"); break;
1492 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1493 case STV_PROTECTED: fprintf (file, " .protected"); break;
1494 default:
1495 /* Some other non-defined flags are also present, so print
1496 everything hex. */
1497 fprintf (file, " 0x%02x", (unsigned int) st_other);
1498 }
1499
1500 fprintf (file, " %s", name);
1501 }
1502 break;
1503 }
1504 }
1505
1506 /* Allocate an ELF string table--force the first byte to be zero. */
1507
1508 struct bfd_strtab_hash *
1509 _bfd_elf_stringtab_init (void)
1510 {
1511 struct bfd_strtab_hash *ret;
1512
1513 ret = _bfd_stringtab_init ();
1514 if (ret != NULL)
1515 {
1516 bfd_size_type loc;
1517
1518 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1519 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1520 if (loc == (bfd_size_type) -1)
1521 {
1522 _bfd_stringtab_free (ret);
1523 ret = NULL;
1524 }
1525 }
1526 return ret;
1527 }
1528 \f
1529 /* ELF .o/exec file reading */
1530
1531 /* Create a new bfd section from an ELF section header. */
1532
1533 bfd_boolean
1534 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1535 {
1536 Elf_Internal_Shdr *hdr;
1537 Elf_Internal_Ehdr *ehdr;
1538 const struct elf_backend_data *bed;
1539 const char *name;
1540
1541 if (shindex >= elf_numsections (abfd))
1542 return FALSE;
1543
1544 hdr = elf_elfsections (abfd)[shindex];
1545 ehdr = elf_elfheader (abfd);
1546 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1547 hdr->sh_name);
1548 if (name == NULL)
1549 return FALSE;
1550
1551 bed = get_elf_backend_data (abfd);
1552 switch (hdr->sh_type)
1553 {
1554 case SHT_NULL:
1555 /* Inactive section. Throw it away. */
1556 return TRUE;
1557
1558 case SHT_PROGBITS: /* Normal section with contents. */
1559 case SHT_NOBITS: /* .bss section. */
1560 case SHT_HASH: /* .hash section. */
1561 case SHT_NOTE: /* .note section. */
1562 case SHT_INIT_ARRAY: /* .init_array section. */
1563 case SHT_FINI_ARRAY: /* .fini_array section. */
1564 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1565 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1566 case SHT_GNU_HASH: /* .gnu.hash section. */
1567 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1568
1569 case SHT_DYNAMIC: /* Dynamic linking information. */
1570 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1571 return FALSE;
1572 if (hdr->sh_link > elf_numsections (abfd)
1573 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1574 return FALSE;
1575 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1576 {
1577 Elf_Internal_Shdr *dynsymhdr;
1578
1579 /* The shared libraries distributed with hpux11 have a bogus
1580 sh_link field for the ".dynamic" section. Find the
1581 string table for the ".dynsym" section instead. */
1582 if (elf_dynsymtab (abfd) != 0)
1583 {
1584 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1585 hdr->sh_link = dynsymhdr->sh_link;
1586 }
1587 else
1588 {
1589 unsigned int i, num_sec;
1590
1591 num_sec = elf_numsections (abfd);
1592 for (i = 1; i < num_sec; i++)
1593 {
1594 dynsymhdr = elf_elfsections (abfd)[i];
1595 if (dynsymhdr->sh_type == SHT_DYNSYM)
1596 {
1597 hdr->sh_link = dynsymhdr->sh_link;
1598 break;
1599 }
1600 }
1601 }
1602 }
1603 break;
1604
1605 case SHT_SYMTAB: /* A symbol table */
1606 if (elf_onesymtab (abfd) == shindex)
1607 return TRUE;
1608
1609 if (hdr->sh_entsize != bed->s->sizeof_sym)
1610 return FALSE;
1611 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1612 elf_onesymtab (abfd) = shindex;
1613 elf_tdata (abfd)->symtab_hdr = *hdr;
1614 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1615 abfd->flags |= HAS_SYMS;
1616
1617 /* Sometimes a shared object will map in the symbol table. If
1618 SHF_ALLOC is set, and this is a shared object, then we also
1619 treat this section as a BFD section. We can not base the
1620 decision purely on SHF_ALLOC, because that flag is sometimes
1621 set in a relocatable object file, which would confuse the
1622 linker. */
1623 if ((hdr->sh_flags & SHF_ALLOC) != 0
1624 && (abfd->flags & DYNAMIC) != 0
1625 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1626 shindex))
1627 return FALSE;
1628
1629 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1630 can't read symbols without that section loaded as well. It
1631 is most likely specified by the next section header. */
1632 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1633 {
1634 unsigned int i, num_sec;
1635
1636 num_sec = elf_numsections (abfd);
1637 for (i = shindex + 1; i < num_sec; i++)
1638 {
1639 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1640 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1641 && hdr2->sh_link == shindex)
1642 break;
1643 }
1644 if (i == num_sec)
1645 for (i = 1; i < shindex; i++)
1646 {
1647 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1648 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1649 && hdr2->sh_link == shindex)
1650 break;
1651 }
1652 if (i != shindex)
1653 return bfd_section_from_shdr (abfd, i);
1654 }
1655 return TRUE;
1656
1657 case SHT_DYNSYM: /* A dynamic symbol table */
1658 if (elf_dynsymtab (abfd) == shindex)
1659 return TRUE;
1660
1661 if (hdr->sh_entsize != bed->s->sizeof_sym)
1662 return FALSE;
1663 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1664 elf_dynsymtab (abfd) = shindex;
1665 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1666 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1667 abfd->flags |= HAS_SYMS;
1668
1669 /* Besides being a symbol table, we also treat this as a regular
1670 section, so that objcopy can handle it. */
1671 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1672
1673 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1674 if (elf_symtab_shndx (abfd) == shindex)
1675 return TRUE;
1676
1677 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1678 elf_symtab_shndx (abfd) = shindex;
1679 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1680 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1681 return TRUE;
1682
1683 case SHT_STRTAB: /* A string table */
1684 if (hdr->bfd_section != NULL)
1685 return TRUE;
1686 if (ehdr->e_shstrndx == shindex)
1687 {
1688 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1689 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1690 return TRUE;
1691 }
1692 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1693 {
1694 symtab_strtab:
1695 elf_tdata (abfd)->strtab_hdr = *hdr;
1696 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1697 return TRUE;
1698 }
1699 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1700 {
1701 dynsymtab_strtab:
1702 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1703 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1704 elf_elfsections (abfd)[shindex] = hdr;
1705 /* We also treat this as a regular section, so that objcopy
1706 can handle it. */
1707 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1708 shindex);
1709 }
1710
1711 /* If the string table isn't one of the above, then treat it as a
1712 regular section. We need to scan all the headers to be sure,
1713 just in case this strtab section appeared before the above. */
1714 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1715 {
1716 unsigned int i, num_sec;
1717
1718 num_sec = elf_numsections (abfd);
1719 for (i = 1; i < num_sec; i++)
1720 {
1721 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1722 if (hdr2->sh_link == shindex)
1723 {
1724 /* Prevent endless recursion on broken objects. */
1725 if (i == shindex)
1726 return FALSE;
1727 if (! bfd_section_from_shdr (abfd, i))
1728 return FALSE;
1729 if (elf_onesymtab (abfd) == i)
1730 goto symtab_strtab;
1731 if (elf_dynsymtab (abfd) == i)
1732 goto dynsymtab_strtab;
1733 }
1734 }
1735 }
1736 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1737
1738 case SHT_REL:
1739 case SHT_RELA:
1740 /* *These* do a lot of work -- but build no sections! */
1741 {
1742 asection *target_sect;
1743 Elf_Internal_Shdr *hdr2;
1744 unsigned int num_sec = elf_numsections (abfd);
1745
1746 if (hdr->sh_entsize
1747 != (bfd_size_type) (hdr->sh_type == SHT_REL
1748 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1749 return FALSE;
1750
1751 /* Check for a bogus link to avoid crashing. */
1752 if (hdr->sh_link >= num_sec)
1753 {
1754 ((*_bfd_error_handler)
1755 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1756 abfd, hdr->sh_link, name, shindex));
1757 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1758 shindex);
1759 }
1760
1761 /* For some incomprehensible reason Oracle distributes
1762 libraries for Solaris in which some of the objects have
1763 bogus sh_link fields. It would be nice if we could just
1764 reject them, but, unfortunately, some people need to use
1765 them. We scan through the section headers; if we find only
1766 one suitable symbol table, we clobber the sh_link to point
1767 to it. I hope this doesn't break anything. */
1768 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1769 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1770 {
1771 unsigned int scan;
1772 int found;
1773
1774 found = 0;
1775 for (scan = 1; scan < num_sec; scan++)
1776 {
1777 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1778 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1779 {
1780 if (found != 0)
1781 {
1782 found = 0;
1783 break;
1784 }
1785 found = scan;
1786 }
1787 }
1788 if (found != 0)
1789 hdr->sh_link = found;
1790 }
1791
1792 /* Get the symbol table. */
1793 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1794 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1795 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1796 return FALSE;
1797
1798 /* If this reloc section does not use the main symbol table we
1799 don't treat it as a reloc section. BFD can't adequately
1800 represent such a section, so at least for now, we don't
1801 try. We just present it as a normal section. We also
1802 can't use it as a reloc section if it points to the null
1803 section, an invalid section, or another reloc section. */
1804 if (hdr->sh_link != elf_onesymtab (abfd)
1805 || hdr->sh_info == SHN_UNDEF
1806 || hdr->sh_info >= num_sec
1807 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1808 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1809 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1810 shindex);
1811
1812 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1813 return FALSE;
1814 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1815 if (target_sect == NULL)
1816 return FALSE;
1817
1818 if ((target_sect->flags & SEC_RELOC) == 0
1819 || target_sect->reloc_count == 0)
1820 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1821 else
1822 {
1823 bfd_size_type amt;
1824 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1825 amt = sizeof (*hdr2);
1826 hdr2 = bfd_alloc (abfd, amt);
1827 if (hdr2 == NULL)
1828 return FALSE;
1829 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1830 }
1831 *hdr2 = *hdr;
1832 elf_elfsections (abfd)[shindex] = hdr2;
1833 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1834 target_sect->flags |= SEC_RELOC;
1835 target_sect->relocation = NULL;
1836 target_sect->rel_filepos = hdr->sh_offset;
1837 /* In the section to which the relocations apply, mark whether
1838 its relocations are of the REL or RELA variety. */
1839 if (hdr->sh_size != 0)
1840 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1841 abfd->flags |= HAS_RELOC;
1842 return TRUE;
1843 }
1844
1845 case SHT_GNU_verdef:
1846 elf_dynverdef (abfd) = shindex;
1847 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1848 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1849
1850 case SHT_GNU_versym:
1851 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1852 return FALSE;
1853 elf_dynversym (abfd) = shindex;
1854 elf_tdata (abfd)->dynversym_hdr = *hdr;
1855 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1856
1857 case SHT_GNU_verneed:
1858 elf_dynverref (abfd) = shindex;
1859 elf_tdata (abfd)->dynverref_hdr = *hdr;
1860 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1861
1862 case SHT_SHLIB:
1863 return TRUE;
1864
1865 case SHT_GROUP:
1866 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1867 return FALSE;
1868 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1869 return FALSE;
1870 if (hdr->contents != NULL)
1871 {
1872 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1873 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1874 asection *s;
1875
1876 if (idx->flags & GRP_COMDAT)
1877 hdr->bfd_section->flags
1878 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1879
1880 /* We try to keep the same section order as it comes in. */
1881 idx += n_elt;
1882 while (--n_elt != 0)
1883 {
1884 --idx;
1885
1886 if (idx->shdr != NULL
1887 && (s = idx->shdr->bfd_section) != NULL
1888 && elf_next_in_group (s) != NULL)
1889 {
1890 elf_next_in_group (hdr->bfd_section) = s;
1891 break;
1892 }
1893 }
1894 }
1895 break;
1896
1897 default:
1898 /* Possibly an attributes section. */
1899 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1900 || hdr->sh_type == bed->obj_attrs_section_type)
1901 {
1902 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1903 return FALSE;
1904 _bfd_elf_parse_attributes (abfd, hdr);
1905 return TRUE;
1906 }
1907
1908 /* Check for any processor-specific section types. */
1909 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1910 return TRUE;
1911
1912 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1913 {
1914 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1915 /* FIXME: How to properly handle allocated section reserved
1916 for applications? */
1917 (*_bfd_error_handler)
1918 (_("%B: don't know how to handle allocated, application "
1919 "specific section `%s' [0x%8x]"),
1920 abfd, name, hdr->sh_type);
1921 else
1922 /* Allow sections reserved for applications. */
1923 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1924 shindex);
1925 }
1926 else if (hdr->sh_type >= SHT_LOPROC
1927 && hdr->sh_type <= SHT_HIPROC)
1928 /* FIXME: We should handle this section. */
1929 (*_bfd_error_handler)
1930 (_("%B: don't know how to handle processor specific section "
1931 "`%s' [0x%8x]"),
1932 abfd, name, hdr->sh_type);
1933 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1934 {
1935 /* Unrecognised OS-specific sections. */
1936 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1937 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1938 required to correctly process the section and the file should
1939 be rejected with an error message. */
1940 (*_bfd_error_handler)
1941 (_("%B: don't know how to handle OS specific section "
1942 "`%s' [0x%8x]"),
1943 abfd, name, hdr->sh_type);
1944 else
1945 /* Otherwise it should be processed. */
1946 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1947 }
1948 else
1949 /* FIXME: We should handle this section. */
1950 (*_bfd_error_handler)
1951 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1952 abfd, name, hdr->sh_type);
1953
1954 return FALSE;
1955 }
1956
1957 return TRUE;
1958 }
1959
1960 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1961 Return SEC for sections that have no elf section, and NULL on error. */
1962
1963 asection *
1964 bfd_section_from_r_symndx (bfd *abfd,
1965 struct sym_sec_cache *cache,
1966 asection *sec,
1967 unsigned long r_symndx)
1968 {
1969 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1970 asection *s;
1971
1972 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1973 {
1974 Elf_Internal_Shdr *symtab_hdr;
1975 unsigned char esym[sizeof (Elf64_External_Sym)];
1976 Elf_External_Sym_Shndx eshndx;
1977 Elf_Internal_Sym isym;
1978
1979 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1980 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1981 &isym, esym, &eshndx) == NULL)
1982 return NULL;
1983
1984 if (cache->abfd != abfd)
1985 {
1986 memset (cache->indx, -1, sizeof (cache->indx));
1987 cache->abfd = abfd;
1988 }
1989 cache->indx[ent] = r_symndx;
1990 cache->shndx[ent] = isym.st_shndx;
1991 }
1992
1993 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1994 if (s != NULL)
1995 return s;
1996
1997 return sec;
1998 }
1999
2000 /* Given an ELF section number, retrieve the corresponding BFD
2001 section. */
2002
2003 asection *
2004 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2005 {
2006 if (index >= elf_numsections (abfd))
2007 return NULL;
2008 return elf_elfsections (abfd)[index]->bfd_section;
2009 }
2010
2011 static const struct bfd_elf_special_section special_sections_b[] =
2012 {
2013 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2014 { NULL, 0, 0, 0, 0 }
2015 };
2016
2017 static const struct bfd_elf_special_section special_sections_c[] =
2018 {
2019 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2020 { NULL, 0, 0, 0, 0 }
2021 };
2022
2023 static const struct bfd_elf_special_section special_sections_d[] =
2024 {
2025 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2026 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2027 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2028 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2029 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2030 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2031 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2032 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2033 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2034 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2035 { NULL, 0, 0, 0, 0 }
2036 };
2037
2038 static const struct bfd_elf_special_section special_sections_f[] =
2039 {
2040 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2041 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2042 { NULL, 0, 0, 0, 0 }
2043 };
2044
2045 static const struct bfd_elf_special_section special_sections_g[] =
2046 {
2047 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2048 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2049 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2050 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2051 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2052 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2053 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2054 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2055 { NULL, 0, 0, 0, 0 }
2056 };
2057
2058 static const struct bfd_elf_special_section special_sections_h[] =
2059 {
2060 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2061 { NULL, 0, 0, 0, 0 }
2062 };
2063
2064 static const struct bfd_elf_special_section special_sections_i[] =
2065 {
2066 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2067 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2068 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2069 { NULL, 0, 0, 0, 0 }
2070 };
2071
2072 static const struct bfd_elf_special_section special_sections_l[] =
2073 {
2074 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2075 { NULL, 0, 0, 0, 0 }
2076 };
2077
2078 static const struct bfd_elf_special_section special_sections_n[] =
2079 {
2080 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2081 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2082 { NULL, 0, 0, 0, 0 }
2083 };
2084
2085 static const struct bfd_elf_special_section special_sections_p[] =
2086 {
2087 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2088 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2089 { NULL, 0, 0, 0, 0 }
2090 };
2091
2092 static const struct bfd_elf_special_section special_sections_r[] =
2093 {
2094 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2095 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2096 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2097 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2098 { NULL, 0, 0, 0, 0 }
2099 };
2100
2101 static const struct bfd_elf_special_section special_sections_s[] =
2102 {
2103 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2104 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2105 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2106 /* See struct bfd_elf_special_section declaration for the semantics of
2107 this special case where .prefix_length != strlen (.prefix). */
2108 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2109 { NULL, 0, 0, 0, 0 }
2110 };
2111
2112 static const struct bfd_elf_special_section special_sections_t[] =
2113 {
2114 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2115 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2116 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2117 { NULL, 0, 0, 0, 0 }
2118 };
2119
2120 static const struct bfd_elf_special_section special_sections_z[] =
2121 {
2122 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2123 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2124 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2125 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2126 { NULL, 0, 0, 0, 0 }
2127 };
2128
2129 static const struct bfd_elf_special_section *special_sections[] =
2130 {
2131 special_sections_b, /* 'b' */
2132 special_sections_c, /* 'c' */
2133 special_sections_d, /* 'd' */
2134 NULL, /* 'e' */
2135 special_sections_f, /* 'f' */
2136 special_sections_g, /* 'g' */
2137 special_sections_h, /* 'h' */
2138 special_sections_i, /* 'i' */
2139 NULL, /* 'j' */
2140 NULL, /* 'k' */
2141 special_sections_l, /* 'l' */
2142 NULL, /* 'm' */
2143 special_sections_n, /* 'n' */
2144 NULL, /* 'o' */
2145 special_sections_p, /* 'p' */
2146 NULL, /* 'q' */
2147 special_sections_r, /* 'r' */
2148 special_sections_s, /* 's' */
2149 special_sections_t, /* 't' */
2150 NULL, /* 'u' */
2151 NULL, /* 'v' */
2152 NULL, /* 'w' */
2153 NULL, /* 'x' */
2154 NULL, /* 'y' */
2155 special_sections_z /* 'z' */
2156 };
2157
2158 const struct bfd_elf_special_section *
2159 _bfd_elf_get_special_section (const char *name,
2160 const struct bfd_elf_special_section *spec,
2161 unsigned int rela)
2162 {
2163 int i;
2164 int len;
2165
2166 len = strlen (name);
2167
2168 for (i = 0; spec[i].prefix != NULL; i++)
2169 {
2170 int suffix_len;
2171 int prefix_len = spec[i].prefix_length;
2172
2173 if (len < prefix_len)
2174 continue;
2175 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2176 continue;
2177
2178 suffix_len = spec[i].suffix_length;
2179 if (suffix_len <= 0)
2180 {
2181 if (name[prefix_len] != 0)
2182 {
2183 if (suffix_len == 0)
2184 continue;
2185 if (name[prefix_len] != '.'
2186 && (suffix_len == -2
2187 || (rela && spec[i].type == SHT_REL)))
2188 continue;
2189 }
2190 }
2191 else
2192 {
2193 if (len < prefix_len + suffix_len)
2194 continue;
2195 if (memcmp (name + len - suffix_len,
2196 spec[i].prefix + prefix_len,
2197 suffix_len) != 0)
2198 continue;
2199 }
2200 return &spec[i];
2201 }
2202
2203 return NULL;
2204 }
2205
2206 const struct bfd_elf_special_section *
2207 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2208 {
2209 int i;
2210 const struct bfd_elf_special_section *spec;
2211 const struct elf_backend_data *bed;
2212
2213 /* See if this is one of the special sections. */
2214 if (sec->name == NULL)
2215 return NULL;
2216
2217 bed = get_elf_backend_data (abfd);
2218 spec = bed->special_sections;
2219 if (spec)
2220 {
2221 spec = _bfd_elf_get_special_section (sec->name,
2222 bed->special_sections,
2223 sec->use_rela_p);
2224 if (spec != NULL)
2225 return spec;
2226 }
2227
2228 if (sec->name[0] != '.')
2229 return NULL;
2230
2231 i = sec->name[1] - 'b';
2232 if (i < 0 || i > 'z' - 'b')
2233 return NULL;
2234
2235 spec = special_sections[i];
2236
2237 if (spec == NULL)
2238 return NULL;
2239
2240 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2241 }
2242
2243 bfd_boolean
2244 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2245 {
2246 struct bfd_elf_section_data *sdata;
2247 const struct elf_backend_data *bed;
2248 const struct bfd_elf_special_section *ssect;
2249
2250 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2251 if (sdata == NULL)
2252 {
2253 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2254 if (sdata == NULL)
2255 return FALSE;
2256 sec->used_by_bfd = sdata;
2257 }
2258
2259 /* Indicate whether or not this section should use RELA relocations. */
2260 bed = get_elf_backend_data (abfd);
2261 sec->use_rela_p = bed->default_use_rela_p;
2262
2263 /* When we read a file, we don't need to set ELF section type and
2264 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2265 anyway. We will set ELF section type and flags for all linker
2266 created sections. If user specifies BFD section flags, we will
2267 set ELF section type and flags based on BFD section flags in
2268 elf_fake_sections. */
2269 if ((!sec->flags && abfd->direction != read_direction)
2270 || (sec->flags & SEC_LINKER_CREATED) != 0)
2271 {
2272 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2273 if (ssect != NULL)
2274 {
2275 elf_section_type (sec) = ssect->type;
2276 elf_section_flags (sec) = ssect->attr;
2277 }
2278 }
2279
2280 return _bfd_generic_new_section_hook (abfd, sec);
2281 }
2282
2283 /* Create a new bfd section from an ELF program header.
2284
2285 Since program segments have no names, we generate a synthetic name
2286 of the form segment<NUM>, where NUM is generally the index in the
2287 program header table. For segments that are split (see below) we
2288 generate the names segment<NUM>a and segment<NUM>b.
2289
2290 Note that some program segments may have a file size that is different than
2291 (less than) the memory size. All this means is that at execution the
2292 system must allocate the amount of memory specified by the memory size,
2293 but only initialize it with the first "file size" bytes read from the
2294 file. This would occur for example, with program segments consisting
2295 of combined data+bss.
2296
2297 To handle the above situation, this routine generates TWO bfd sections
2298 for the single program segment. The first has the length specified by
2299 the file size of the segment, and the second has the length specified
2300 by the difference between the two sizes. In effect, the segment is split
2301 into its initialized and uninitialized parts.
2302
2303 */
2304
2305 bfd_boolean
2306 _bfd_elf_make_section_from_phdr (bfd *abfd,
2307 Elf_Internal_Phdr *hdr,
2308 int index,
2309 const char *typename)
2310 {
2311 asection *newsect;
2312 char *name;
2313 char namebuf[64];
2314 size_t len;
2315 int split;
2316
2317 split = ((hdr->p_memsz > 0)
2318 && (hdr->p_filesz > 0)
2319 && (hdr->p_memsz > hdr->p_filesz));
2320
2321 if (hdr->p_filesz > 0)
2322 {
2323 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2324 len = strlen (namebuf) + 1;
2325 name = bfd_alloc (abfd, len);
2326 if (!name)
2327 return FALSE;
2328 memcpy (name, namebuf, len);
2329 newsect = bfd_make_section (abfd, name);
2330 if (newsect == NULL)
2331 return FALSE;
2332 newsect->vma = hdr->p_vaddr;
2333 newsect->lma = hdr->p_paddr;
2334 newsect->size = hdr->p_filesz;
2335 newsect->filepos = hdr->p_offset;
2336 newsect->flags |= SEC_HAS_CONTENTS;
2337 newsect->alignment_power = bfd_log2 (hdr->p_align);
2338 if (hdr->p_type == PT_LOAD)
2339 {
2340 newsect->flags |= SEC_ALLOC;
2341 newsect->flags |= SEC_LOAD;
2342 if (hdr->p_flags & PF_X)
2343 {
2344 /* FIXME: all we known is that it has execute PERMISSION,
2345 may be data. */
2346 newsect->flags |= SEC_CODE;
2347 }
2348 }
2349 if (!(hdr->p_flags & PF_W))
2350 {
2351 newsect->flags |= SEC_READONLY;
2352 }
2353 }
2354
2355 if (hdr->p_memsz > hdr->p_filesz)
2356 {
2357 bfd_vma align;
2358
2359 sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
2360 len = strlen (namebuf) + 1;
2361 name = bfd_alloc (abfd, len);
2362 if (!name)
2363 return FALSE;
2364 memcpy (name, namebuf, len);
2365 newsect = bfd_make_section (abfd, name);
2366 if (newsect == NULL)
2367 return FALSE;
2368 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2369 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2370 newsect->size = hdr->p_memsz - hdr->p_filesz;
2371 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2372 align = newsect->vma & -newsect->vma;
2373 if (align == 0 || align > hdr->p_align)
2374 align = hdr->p_align;
2375 newsect->alignment_power = bfd_log2 (align);
2376 if (hdr->p_type == PT_LOAD)
2377 {
2378 /* Hack for gdb. Segments that have not been modified do
2379 not have their contents written to a core file, on the
2380 assumption that a debugger can find the contents in the
2381 executable. We flag this case by setting the fake
2382 section size to zero. Note that "real" bss sections will
2383 always have their contents dumped to the core file. */
2384 if (bfd_get_format (abfd) == bfd_core)
2385 newsect->size = 0;
2386 newsect->flags |= SEC_ALLOC;
2387 if (hdr->p_flags & PF_X)
2388 newsect->flags |= SEC_CODE;
2389 }
2390 if (!(hdr->p_flags & PF_W))
2391 newsect->flags |= SEC_READONLY;
2392 }
2393
2394 return TRUE;
2395 }
2396
2397 bfd_boolean
2398 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2399 {
2400 const struct elf_backend_data *bed;
2401
2402 switch (hdr->p_type)
2403 {
2404 case PT_NULL:
2405 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2406
2407 case PT_LOAD:
2408 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2409
2410 case PT_DYNAMIC:
2411 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2412
2413 case PT_INTERP:
2414 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2415
2416 case PT_NOTE:
2417 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2418 return FALSE;
2419 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2420 return FALSE;
2421 return TRUE;
2422
2423 case PT_SHLIB:
2424 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2425
2426 case PT_PHDR:
2427 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2428
2429 case PT_GNU_EH_FRAME:
2430 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2431 "eh_frame_hdr");
2432
2433 case PT_GNU_STACK:
2434 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2435
2436 case PT_GNU_RELRO:
2437 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2438
2439 default:
2440 /* Check for any processor-specific program segment types. */
2441 bed = get_elf_backend_data (abfd);
2442 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2443 }
2444 }
2445
2446 /* Initialize REL_HDR, the section-header for new section, containing
2447 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2448 relocations; otherwise, we use REL relocations. */
2449
2450 bfd_boolean
2451 _bfd_elf_init_reloc_shdr (bfd *abfd,
2452 Elf_Internal_Shdr *rel_hdr,
2453 asection *asect,
2454 bfd_boolean use_rela_p)
2455 {
2456 char *name;
2457 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2458 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2459
2460 name = bfd_alloc (abfd, amt);
2461 if (name == NULL)
2462 return FALSE;
2463 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2464 rel_hdr->sh_name =
2465 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2466 FALSE);
2467 if (rel_hdr->sh_name == (unsigned int) -1)
2468 return FALSE;
2469 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2470 rel_hdr->sh_entsize = (use_rela_p
2471 ? bed->s->sizeof_rela
2472 : bed->s->sizeof_rel);
2473 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2474 rel_hdr->sh_flags = 0;
2475 rel_hdr->sh_addr = 0;
2476 rel_hdr->sh_size = 0;
2477 rel_hdr->sh_offset = 0;
2478
2479 return TRUE;
2480 }
2481
2482 /* Set up an ELF internal section header for a section. */
2483
2484 static void
2485 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2486 {
2487 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2488 bfd_boolean *failedptr = failedptrarg;
2489 Elf_Internal_Shdr *this_hdr;
2490 unsigned int sh_type;
2491
2492 if (*failedptr)
2493 {
2494 /* We already failed; just get out of the bfd_map_over_sections
2495 loop. */
2496 return;
2497 }
2498
2499 this_hdr = &elf_section_data (asect)->this_hdr;
2500
2501 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2502 asect->name, FALSE);
2503 if (this_hdr->sh_name == (unsigned int) -1)
2504 {
2505 *failedptr = TRUE;
2506 return;
2507 }
2508
2509 /* Don't clear sh_flags. Assembler may set additional bits. */
2510
2511 if ((asect->flags & SEC_ALLOC) != 0
2512 || asect->user_set_vma)
2513 this_hdr->sh_addr = asect->vma;
2514 else
2515 this_hdr->sh_addr = 0;
2516
2517 this_hdr->sh_offset = 0;
2518 this_hdr->sh_size = asect->size;
2519 this_hdr->sh_link = 0;
2520 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2521 /* The sh_entsize and sh_info fields may have been set already by
2522 copy_private_section_data. */
2523
2524 this_hdr->bfd_section = asect;
2525 this_hdr->contents = NULL;
2526
2527 /* If the section type is unspecified, we set it based on
2528 asect->flags. */
2529 if ((asect->flags & SEC_GROUP) != 0)
2530 sh_type = SHT_GROUP;
2531 else if ((asect->flags & SEC_ALLOC) != 0
2532 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2533 || (asect->flags & SEC_NEVER_LOAD) != 0))
2534 sh_type = SHT_NOBITS;
2535 else
2536 sh_type = SHT_PROGBITS;
2537
2538 if (this_hdr->sh_type == SHT_NULL)
2539 this_hdr->sh_type = sh_type;
2540 else if (this_hdr->sh_type == SHT_NOBITS
2541 && sh_type == SHT_PROGBITS
2542 && (asect->flags & SEC_ALLOC) != 0)
2543 {
2544 /* Warn if we are changing a NOBITS section to PROGBITS, but
2545 allow the link to proceed. This can happen when users link
2546 non-bss input sections to bss output sections, or emit data
2547 to a bss output section via a linker script. */
2548 (*_bfd_error_handler)
2549 (_("warning: section `%A' type changed to PROGBITS"), asect);
2550 this_hdr->sh_type = sh_type;
2551 }
2552
2553 switch (this_hdr->sh_type)
2554 {
2555 default:
2556 break;
2557
2558 case SHT_STRTAB:
2559 case SHT_INIT_ARRAY:
2560 case SHT_FINI_ARRAY:
2561 case SHT_PREINIT_ARRAY:
2562 case SHT_NOTE:
2563 case SHT_NOBITS:
2564 case SHT_PROGBITS:
2565 break;
2566
2567 case SHT_HASH:
2568 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2569 break;
2570
2571 case SHT_DYNSYM:
2572 this_hdr->sh_entsize = bed->s->sizeof_sym;
2573 break;
2574
2575 case SHT_DYNAMIC:
2576 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2577 break;
2578
2579 case SHT_RELA:
2580 if (get_elf_backend_data (abfd)->may_use_rela_p)
2581 this_hdr->sh_entsize = bed->s->sizeof_rela;
2582 break;
2583
2584 case SHT_REL:
2585 if (get_elf_backend_data (abfd)->may_use_rel_p)
2586 this_hdr->sh_entsize = bed->s->sizeof_rel;
2587 break;
2588
2589 case SHT_GNU_versym:
2590 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2591 break;
2592
2593 case SHT_GNU_verdef:
2594 this_hdr->sh_entsize = 0;
2595 /* objcopy or strip will copy over sh_info, but may not set
2596 cverdefs. The linker will set cverdefs, but sh_info will be
2597 zero. */
2598 if (this_hdr->sh_info == 0)
2599 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2600 else
2601 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2602 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2603 break;
2604
2605 case SHT_GNU_verneed:
2606 this_hdr->sh_entsize = 0;
2607 /* objcopy or strip will copy over sh_info, but may not set
2608 cverrefs. The linker will set cverrefs, but sh_info will be
2609 zero. */
2610 if (this_hdr->sh_info == 0)
2611 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2612 else
2613 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2614 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2615 break;
2616
2617 case SHT_GROUP:
2618 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2619 break;
2620
2621 case SHT_GNU_HASH:
2622 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2623 break;
2624 }
2625
2626 if ((asect->flags & SEC_ALLOC) != 0)
2627 this_hdr->sh_flags |= SHF_ALLOC;
2628 if ((asect->flags & SEC_READONLY) == 0)
2629 this_hdr->sh_flags |= SHF_WRITE;
2630 if ((asect->flags & SEC_CODE) != 0)
2631 this_hdr->sh_flags |= SHF_EXECINSTR;
2632 if ((asect->flags & SEC_MERGE) != 0)
2633 {
2634 this_hdr->sh_flags |= SHF_MERGE;
2635 this_hdr->sh_entsize = asect->entsize;
2636 if ((asect->flags & SEC_STRINGS) != 0)
2637 this_hdr->sh_flags |= SHF_STRINGS;
2638 }
2639 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2640 this_hdr->sh_flags |= SHF_GROUP;
2641 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2642 {
2643 this_hdr->sh_flags |= SHF_TLS;
2644 if (asect->size == 0
2645 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2646 {
2647 struct bfd_link_order *o = asect->map_tail.link_order;
2648
2649 this_hdr->sh_size = 0;
2650 if (o != NULL)
2651 {
2652 this_hdr->sh_size = o->offset + o->size;
2653 if (this_hdr->sh_size != 0)
2654 this_hdr->sh_type = SHT_NOBITS;
2655 }
2656 }
2657 }
2658
2659 /* Check for processor-specific section types. */
2660 sh_type = this_hdr->sh_type;
2661 if (bed->elf_backend_fake_sections
2662 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2663 *failedptr = TRUE;
2664
2665 if (sh_type == SHT_NOBITS && asect->size != 0)
2666 {
2667 /* Don't change the header type from NOBITS if we are being
2668 called for objcopy --only-keep-debug. */
2669 this_hdr->sh_type = sh_type;
2670 }
2671
2672 /* If the section has relocs, set up a section header for the
2673 SHT_REL[A] section. If two relocation sections are required for
2674 this section, it is up to the processor-specific back-end to
2675 create the other. */
2676 if ((asect->flags & SEC_RELOC) != 0
2677 && !_bfd_elf_init_reloc_shdr (abfd,
2678 &elf_section_data (asect)->rel_hdr,
2679 asect,
2680 asect->use_rela_p))
2681 *failedptr = TRUE;
2682 }
2683
2684 /* Fill in the contents of a SHT_GROUP section. Called from
2685 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2686 when ELF targets use the generic linker, ld. Called for ld -r
2687 from bfd_elf_final_link. */
2688
2689 void
2690 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2691 {
2692 bfd_boolean *failedptr = failedptrarg;
2693 asection *elt, *first;
2694 unsigned char *loc;
2695 bfd_boolean gas;
2696
2697 /* Ignore linker created group section. See elfNN_ia64_object_p in
2698 elfxx-ia64.c. */
2699 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2700 || *failedptr)
2701 return;
2702
2703 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2704 {
2705 unsigned long symindx = 0;
2706
2707 /* elf_group_id will have been set up by objcopy and the
2708 generic linker. */
2709 if (elf_group_id (sec) != NULL)
2710 symindx = elf_group_id (sec)->udata.i;
2711
2712 if (symindx == 0)
2713 {
2714 /* If called from the assembler, swap_out_syms will have set up
2715 elf_section_syms. */
2716 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2717 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2718 }
2719 elf_section_data (sec)->this_hdr.sh_info = symindx;
2720 }
2721 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2722 {
2723 /* The ELF backend linker sets sh_info to -2 when the group
2724 signature symbol is global, and thus the index can't be
2725 set until all local symbols are output. */
2726 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2727 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2728 unsigned long symndx = sec_data->this_hdr.sh_info;
2729 unsigned long extsymoff = 0;
2730 struct elf_link_hash_entry *h;
2731
2732 if (!elf_bad_symtab (igroup->owner))
2733 {
2734 Elf_Internal_Shdr *symtab_hdr;
2735
2736 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2737 extsymoff = symtab_hdr->sh_info;
2738 }
2739 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2740 while (h->root.type == bfd_link_hash_indirect
2741 || h->root.type == bfd_link_hash_warning)
2742 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2743
2744 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2745 }
2746
2747 /* The contents won't be allocated for "ld -r" or objcopy. */
2748 gas = TRUE;
2749 if (sec->contents == NULL)
2750 {
2751 gas = FALSE;
2752 sec->contents = bfd_alloc (abfd, sec->size);
2753
2754 /* Arrange for the section to be written out. */
2755 elf_section_data (sec)->this_hdr.contents = sec->contents;
2756 if (sec->contents == NULL)
2757 {
2758 *failedptr = TRUE;
2759 return;
2760 }
2761 }
2762
2763 loc = sec->contents + sec->size;
2764
2765 /* Get the pointer to the first section in the group that gas
2766 squirreled away here. objcopy arranges for this to be set to the
2767 start of the input section group. */
2768 first = elt = elf_next_in_group (sec);
2769
2770 /* First element is a flag word. Rest of section is elf section
2771 indices for all the sections of the group. Write them backwards
2772 just to keep the group in the same order as given in .section
2773 directives, not that it matters. */
2774 while (elt != NULL)
2775 {
2776 asection *s;
2777 unsigned int idx;
2778
2779 loc -= 4;
2780 s = elt;
2781 if (!gas)
2782 s = s->output_section;
2783 idx = 0;
2784 if (s != NULL)
2785 idx = elf_section_data (s)->this_idx;
2786 H_PUT_32 (abfd, idx, loc);
2787 elt = elf_next_in_group (elt);
2788 if (elt == first)
2789 break;
2790 }
2791
2792 if ((loc -= 4) != sec->contents)
2793 abort ();
2794
2795 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2796 }
2797
2798 /* Assign all ELF section numbers. The dummy first section is handled here
2799 too. The link/info pointers for the standard section types are filled
2800 in here too, while we're at it. */
2801
2802 static bfd_boolean
2803 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2804 {
2805 struct elf_obj_tdata *t = elf_tdata (abfd);
2806 asection *sec;
2807 unsigned int section_number, secn;
2808 Elf_Internal_Shdr **i_shdrp;
2809 struct bfd_elf_section_data *d;
2810
2811 section_number = 1;
2812
2813 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2814
2815 /* SHT_GROUP sections are in relocatable files only. */
2816 if (link_info == NULL || link_info->relocatable)
2817 {
2818 /* Put SHT_GROUP sections first. */
2819 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2820 {
2821 d = elf_section_data (sec);
2822
2823 if (d->this_hdr.sh_type == SHT_GROUP)
2824 {
2825 if (sec->flags & SEC_LINKER_CREATED)
2826 {
2827 /* Remove the linker created SHT_GROUP sections. */
2828 bfd_section_list_remove (abfd, sec);
2829 abfd->section_count--;
2830 }
2831 else
2832 d->this_idx = section_number++;
2833 }
2834 }
2835 }
2836
2837 for (sec = abfd->sections; sec; sec = sec->next)
2838 {
2839 d = elf_section_data (sec);
2840
2841 if (d->this_hdr.sh_type != SHT_GROUP)
2842 d->this_idx = section_number++;
2843 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2844 if ((sec->flags & SEC_RELOC) == 0)
2845 d->rel_idx = 0;
2846 else
2847 {
2848 d->rel_idx = section_number++;
2849 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2850 }
2851
2852 if (d->rel_hdr2)
2853 {
2854 d->rel_idx2 = section_number++;
2855 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2856 }
2857 else
2858 d->rel_idx2 = 0;
2859 }
2860
2861 t->shstrtab_section = section_number++;
2862 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2863 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2864
2865 if (bfd_get_symcount (abfd) > 0)
2866 {
2867 t->symtab_section = section_number++;
2868 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2869 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2870 {
2871 t->symtab_shndx_section = section_number++;
2872 t->symtab_shndx_hdr.sh_name
2873 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2874 ".symtab_shndx", FALSE);
2875 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2876 return FALSE;
2877 }
2878 t->strtab_section = section_number++;
2879 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2880 }
2881
2882 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2883 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2884
2885 elf_numsections (abfd) = section_number;
2886 elf_elfheader (abfd)->e_shnum = section_number;
2887
2888 /* Set up the list of section header pointers, in agreement with the
2889 indices. */
2890 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2891 if (i_shdrp == NULL)
2892 return FALSE;
2893
2894 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2895 if (i_shdrp[0] == NULL)
2896 {
2897 bfd_release (abfd, i_shdrp);
2898 return FALSE;
2899 }
2900
2901 elf_elfsections (abfd) = i_shdrp;
2902
2903 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2904 if (bfd_get_symcount (abfd) > 0)
2905 {
2906 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2907 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
2908 {
2909 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2910 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2911 }
2912 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2913 t->symtab_hdr.sh_link = t->strtab_section;
2914 }
2915
2916 for (sec = abfd->sections; sec; sec = sec->next)
2917 {
2918 struct bfd_elf_section_data *d = elf_section_data (sec);
2919 asection *s;
2920 const char *name;
2921
2922 i_shdrp[d->this_idx] = &d->this_hdr;
2923 if (d->rel_idx != 0)
2924 i_shdrp[d->rel_idx] = &d->rel_hdr;
2925 if (d->rel_idx2 != 0)
2926 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2927
2928 /* Fill in the sh_link and sh_info fields while we're at it. */
2929
2930 /* sh_link of a reloc section is the section index of the symbol
2931 table. sh_info is the section index of the section to which
2932 the relocation entries apply. */
2933 if (d->rel_idx != 0)
2934 {
2935 d->rel_hdr.sh_link = t->symtab_section;
2936 d->rel_hdr.sh_info = d->this_idx;
2937 }
2938 if (d->rel_idx2 != 0)
2939 {
2940 d->rel_hdr2->sh_link = t->symtab_section;
2941 d->rel_hdr2->sh_info = d->this_idx;
2942 }
2943
2944 /* We need to set up sh_link for SHF_LINK_ORDER. */
2945 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2946 {
2947 s = elf_linked_to_section (sec);
2948 if (s)
2949 {
2950 /* elf_linked_to_section points to the input section. */
2951 if (link_info != NULL)
2952 {
2953 /* Check discarded linkonce section. */
2954 if (elf_discarded_section (s))
2955 {
2956 asection *kept;
2957 (*_bfd_error_handler)
2958 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2959 abfd, d->this_hdr.bfd_section,
2960 s, s->owner);
2961 /* Point to the kept section if it has the same
2962 size as the discarded one. */
2963 kept = _bfd_elf_check_kept_section (s, link_info);
2964 if (kept == NULL)
2965 {
2966 bfd_set_error (bfd_error_bad_value);
2967 return FALSE;
2968 }
2969 s = kept;
2970 }
2971
2972 s = s->output_section;
2973 BFD_ASSERT (s != NULL);
2974 }
2975 else
2976 {
2977 /* Handle objcopy. */
2978 if (s->output_section == NULL)
2979 {
2980 (*_bfd_error_handler)
2981 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2982 abfd, d->this_hdr.bfd_section, s, s->owner);
2983 bfd_set_error (bfd_error_bad_value);
2984 return FALSE;
2985 }
2986 s = s->output_section;
2987 }
2988 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2989 }
2990 else
2991 {
2992 /* PR 290:
2993 The Intel C compiler generates SHT_IA_64_UNWIND with
2994 SHF_LINK_ORDER. But it doesn't set the sh_link or
2995 sh_info fields. Hence we could get the situation
2996 where s is NULL. */
2997 const struct elf_backend_data *bed
2998 = get_elf_backend_data (abfd);
2999 if (bed->link_order_error_handler)
3000 bed->link_order_error_handler
3001 (_("%B: warning: sh_link not set for section `%A'"),
3002 abfd, sec);
3003 }
3004 }
3005
3006 switch (d->this_hdr.sh_type)
3007 {
3008 case SHT_REL:
3009 case SHT_RELA:
3010 /* A reloc section which we are treating as a normal BFD
3011 section. sh_link is the section index of the symbol
3012 table. sh_info is the section index of the section to
3013 which the relocation entries apply. We assume that an
3014 allocated reloc section uses the dynamic symbol table.
3015 FIXME: How can we be sure? */
3016 s = bfd_get_section_by_name (abfd, ".dynsym");
3017 if (s != NULL)
3018 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3019
3020 /* We look up the section the relocs apply to by name. */
3021 name = sec->name;
3022 if (d->this_hdr.sh_type == SHT_REL)
3023 name += 4;
3024 else
3025 name += 5;
3026 s = bfd_get_section_by_name (abfd, name);
3027 if (s != NULL)
3028 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3029 break;
3030
3031 case SHT_STRTAB:
3032 /* We assume that a section named .stab*str is a stabs
3033 string section. We look for a section with the same name
3034 but without the trailing ``str'', and set its sh_link
3035 field to point to this section. */
3036 if (CONST_STRNEQ (sec->name, ".stab")
3037 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3038 {
3039 size_t len;
3040 char *alc;
3041
3042 len = strlen (sec->name);
3043 alc = bfd_malloc (len - 2);
3044 if (alc == NULL)
3045 return FALSE;
3046 memcpy (alc, sec->name, len - 3);
3047 alc[len - 3] = '\0';
3048 s = bfd_get_section_by_name (abfd, alc);
3049 free (alc);
3050 if (s != NULL)
3051 {
3052 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3053
3054 /* This is a .stab section. */
3055 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3056 elf_section_data (s)->this_hdr.sh_entsize
3057 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3058 }
3059 }
3060 break;
3061
3062 case SHT_DYNAMIC:
3063 case SHT_DYNSYM:
3064 case SHT_GNU_verneed:
3065 case SHT_GNU_verdef:
3066 /* sh_link is the section header index of the string table
3067 used for the dynamic entries, or the symbol table, or the
3068 version strings. */
3069 s = bfd_get_section_by_name (abfd, ".dynstr");
3070 if (s != NULL)
3071 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3072 break;
3073
3074 case SHT_GNU_LIBLIST:
3075 /* sh_link is the section header index of the prelink library
3076 list used for the dynamic entries, or the symbol table, or
3077 the version strings. */
3078 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3079 ? ".dynstr" : ".gnu.libstr");
3080 if (s != NULL)
3081 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3082 break;
3083
3084 case SHT_HASH:
3085 case SHT_GNU_HASH:
3086 case SHT_GNU_versym:
3087 /* sh_link is the section header index of the symbol table
3088 this hash table or version table is for. */
3089 s = bfd_get_section_by_name (abfd, ".dynsym");
3090 if (s != NULL)
3091 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3092 break;
3093
3094 case SHT_GROUP:
3095 d->this_hdr.sh_link = t->symtab_section;
3096 }
3097 }
3098
3099 for (secn = 1; secn < section_number; ++secn)
3100 if (i_shdrp[secn] == NULL)
3101 i_shdrp[secn] = i_shdrp[0];
3102 else
3103 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3104 i_shdrp[secn]->sh_name);
3105 return TRUE;
3106 }
3107
3108 /* Map symbol from it's internal number to the external number, moving
3109 all local symbols to be at the head of the list. */
3110
3111 static bfd_boolean
3112 sym_is_global (bfd *abfd, asymbol *sym)
3113 {
3114 /* If the backend has a special mapping, use it. */
3115 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3116 if (bed->elf_backend_sym_is_global)
3117 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3118
3119 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3120 || bfd_is_und_section (bfd_get_section (sym))
3121 || bfd_is_com_section (bfd_get_section (sym)));
3122 }
3123
3124 /* Don't output section symbols for sections that are not going to be
3125 output. */
3126
3127 static bfd_boolean
3128 ignore_section_sym (bfd *abfd, asymbol *sym)
3129 {
3130 return ((sym->flags & BSF_SECTION_SYM) != 0
3131 && !(sym->section->owner == abfd
3132 || (sym->section->output_section->owner == abfd
3133 && sym->section->output_offset == 0)));
3134 }
3135
3136 static bfd_boolean
3137 elf_map_symbols (bfd *abfd)
3138 {
3139 unsigned int symcount = bfd_get_symcount (abfd);
3140 asymbol **syms = bfd_get_outsymbols (abfd);
3141 asymbol **sect_syms;
3142 unsigned int num_locals = 0;
3143 unsigned int num_globals = 0;
3144 unsigned int num_locals2 = 0;
3145 unsigned int num_globals2 = 0;
3146 int max_index = 0;
3147 unsigned int idx;
3148 asection *asect;
3149 asymbol **new_syms;
3150
3151 #ifdef DEBUG
3152 fprintf (stderr, "elf_map_symbols\n");
3153 fflush (stderr);
3154 #endif
3155
3156 for (asect = abfd->sections; asect; asect = asect->next)
3157 {
3158 if (max_index < asect->index)
3159 max_index = asect->index;
3160 }
3161
3162 max_index++;
3163 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3164 if (sect_syms == NULL)
3165 return FALSE;
3166 elf_section_syms (abfd) = sect_syms;
3167 elf_num_section_syms (abfd) = max_index;
3168
3169 /* Init sect_syms entries for any section symbols we have already
3170 decided to output. */
3171 for (idx = 0; idx < symcount; idx++)
3172 {
3173 asymbol *sym = syms[idx];
3174
3175 if ((sym->flags & BSF_SECTION_SYM) != 0
3176 && sym->value == 0
3177 && !ignore_section_sym (abfd, sym))
3178 {
3179 asection *sec = sym->section;
3180
3181 if (sec->owner != abfd)
3182 sec = sec->output_section;
3183
3184 sect_syms[sec->index] = syms[idx];
3185 }
3186 }
3187
3188 /* Classify all of the symbols. */
3189 for (idx = 0; idx < symcount; idx++)
3190 {
3191 if (ignore_section_sym (abfd, syms[idx]))
3192 continue;
3193 if (!sym_is_global (abfd, syms[idx]))
3194 num_locals++;
3195 else
3196 num_globals++;
3197 }
3198
3199 /* We will be adding a section symbol for each normal BFD section. Most
3200 sections will already have a section symbol in outsymbols, but
3201 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3202 at least in that case. */
3203 for (asect = abfd->sections; asect; asect = asect->next)
3204 {
3205 if (sect_syms[asect->index] == NULL)
3206 {
3207 if (!sym_is_global (abfd, asect->symbol))
3208 num_locals++;
3209 else
3210 num_globals++;
3211 }
3212 }
3213
3214 /* Now sort the symbols so the local symbols are first. */
3215 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3216
3217 if (new_syms == NULL)
3218 return FALSE;
3219
3220 for (idx = 0; idx < symcount; idx++)
3221 {
3222 asymbol *sym = syms[idx];
3223 unsigned int i;
3224
3225 if (ignore_section_sym (abfd, sym))
3226 continue;
3227 if (!sym_is_global (abfd, sym))
3228 i = num_locals2++;
3229 else
3230 i = num_locals + num_globals2++;
3231 new_syms[i] = sym;
3232 sym->udata.i = i + 1;
3233 }
3234 for (asect = abfd->sections; asect; asect = asect->next)
3235 {
3236 if (sect_syms[asect->index] == NULL)
3237 {
3238 asymbol *sym = asect->symbol;
3239 unsigned int i;
3240
3241 sect_syms[asect->index] = sym;
3242 if (!sym_is_global (abfd, sym))
3243 i = num_locals2++;
3244 else
3245 i = num_locals + num_globals2++;
3246 new_syms[i] = sym;
3247 sym->udata.i = i + 1;
3248 }
3249 }
3250
3251 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3252
3253 elf_num_locals (abfd) = num_locals;
3254 elf_num_globals (abfd) = num_globals;
3255 return TRUE;
3256 }
3257
3258 /* Align to the maximum file alignment that could be required for any
3259 ELF data structure. */
3260
3261 static inline file_ptr
3262 align_file_position (file_ptr off, int align)
3263 {
3264 return (off + align - 1) & ~(align - 1);
3265 }
3266
3267 /* Assign a file position to a section, optionally aligning to the
3268 required section alignment. */
3269
3270 file_ptr
3271 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3272 file_ptr offset,
3273 bfd_boolean align)
3274 {
3275 if (align && i_shdrp->sh_addralign > 1)
3276 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3277 i_shdrp->sh_offset = offset;
3278 if (i_shdrp->bfd_section != NULL)
3279 i_shdrp->bfd_section->filepos = offset;
3280 if (i_shdrp->sh_type != SHT_NOBITS)
3281 offset += i_shdrp->sh_size;
3282 return offset;
3283 }
3284
3285 /* Compute the file positions we are going to put the sections at, and
3286 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3287 is not NULL, this is being called by the ELF backend linker. */
3288
3289 bfd_boolean
3290 _bfd_elf_compute_section_file_positions (bfd *abfd,
3291 struct bfd_link_info *link_info)
3292 {
3293 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3294 bfd_boolean failed;
3295 struct bfd_strtab_hash *strtab = NULL;
3296 Elf_Internal_Shdr *shstrtab_hdr;
3297
3298 if (abfd->output_has_begun)
3299 return TRUE;
3300
3301 /* Do any elf backend specific processing first. */
3302 if (bed->elf_backend_begin_write_processing)
3303 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3304
3305 if (! prep_headers (abfd))
3306 return FALSE;
3307
3308 /* Post process the headers if necessary. */
3309 if (bed->elf_backend_post_process_headers)
3310 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3311
3312 failed = FALSE;
3313 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3314 if (failed)
3315 return FALSE;
3316
3317 if (!assign_section_numbers (abfd, link_info))
3318 return FALSE;
3319
3320 /* The backend linker builds symbol table information itself. */
3321 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3322 {
3323 /* Non-zero if doing a relocatable link. */
3324 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3325
3326 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3327 return FALSE;
3328 }
3329
3330 if (link_info == NULL)
3331 {
3332 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3333 if (failed)
3334 return FALSE;
3335 }
3336
3337 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3338 /* sh_name was set in prep_headers. */
3339 shstrtab_hdr->sh_type = SHT_STRTAB;
3340 shstrtab_hdr->sh_flags = 0;
3341 shstrtab_hdr->sh_addr = 0;
3342 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3343 shstrtab_hdr->sh_entsize = 0;
3344 shstrtab_hdr->sh_link = 0;
3345 shstrtab_hdr->sh_info = 0;
3346 /* sh_offset is set in assign_file_positions_except_relocs. */
3347 shstrtab_hdr->sh_addralign = 1;
3348
3349 if (!assign_file_positions_except_relocs (abfd, link_info))
3350 return FALSE;
3351
3352 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3353 {
3354 file_ptr off;
3355 Elf_Internal_Shdr *hdr;
3356
3357 off = elf_tdata (abfd)->next_file_pos;
3358
3359 hdr = &elf_tdata (abfd)->symtab_hdr;
3360 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3361
3362 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3363 if (hdr->sh_size != 0)
3364 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3365
3366 hdr = &elf_tdata (abfd)->strtab_hdr;
3367 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3368
3369 elf_tdata (abfd)->next_file_pos = off;
3370
3371 /* Now that we know where the .strtab section goes, write it
3372 out. */
3373 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3374 || ! _bfd_stringtab_emit (abfd, strtab))
3375 return FALSE;
3376 _bfd_stringtab_free (strtab);
3377 }
3378
3379 abfd->output_has_begun = TRUE;
3380
3381 return TRUE;
3382 }
3383
3384 /* Make an initial estimate of the size of the program header. If we
3385 get the number wrong here, we'll redo section placement. */
3386
3387 static bfd_size_type
3388 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3389 {
3390 size_t segs;
3391 asection *s;
3392 const struct elf_backend_data *bed;
3393
3394 /* Assume we will need exactly two PT_LOAD segments: one for text
3395 and one for data. */
3396 segs = 2;
3397
3398 s = bfd_get_section_by_name (abfd, ".interp");
3399 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3400 {
3401 /* If we have a loadable interpreter section, we need a
3402 PT_INTERP segment. In this case, assume we also need a
3403 PT_PHDR segment, although that may not be true for all
3404 targets. */
3405 segs += 2;
3406 }
3407
3408 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3409 {
3410 /* We need a PT_DYNAMIC segment. */
3411 ++segs;
3412 }
3413
3414 if (info != NULL && info->relro)
3415 {
3416 /* We need a PT_GNU_RELRO segment. */
3417 ++segs;
3418 }
3419
3420 if (elf_tdata (abfd)->eh_frame_hdr)
3421 {
3422 /* We need a PT_GNU_EH_FRAME segment. */
3423 ++segs;
3424 }
3425
3426 if (elf_tdata (abfd)->stack_flags)
3427 {
3428 /* We need a PT_GNU_STACK segment. */
3429 ++segs;
3430 }
3431
3432 for (s = abfd->sections; s != NULL; s = s->next)
3433 {
3434 if ((s->flags & SEC_LOAD) != 0
3435 && CONST_STRNEQ (s->name, ".note"))
3436 {
3437 /* We need a PT_NOTE segment. */
3438 ++segs;
3439 /* Try to create just one PT_NOTE segment
3440 for all adjacent loadable .note* sections.
3441 gABI requires that within a PT_NOTE segment
3442 (and also inside of each SHT_NOTE section)
3443 each note is padded to a multiple of 4 size,
3444 so we check whether the sections are correctly
3445 aligned. */
3446 if (s->alignment_power == 2)
3447 while (s->next != NULL
3448 && s->next->alignment_power == 2
3449 && (s->next->flags & SEC_LOAD) != 0
3450 && CONST_STRNEQ (s->next->name, ".note"))
3451 s = s->next;
3452 }
3453 }
3454
3455 for (s = abfd->sections; s != NULL; s = s->next)
3456 {
3457 if (s->flags & SEC_THREAD_LOCAL)
3458 {
3459 /* We need a PT_TLS segment. */
3460 ++segs;
3461 break;
3462 }
3463 }
3464
3465 /* Let the backend count up any program headers it might need. */
3466 bed = get_elf_backend_data (abfd);
3467 if (bed->elf_backend_additional_program_headers)
3468 {
3469 int a;
3470
3471 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3472 if (a == -1)
3473 abort ();
3474 segs += a;
3475 }
3476
3477 return segs * bed->s->sizeof_phdr;
3478 }
3479
3480 /* Find the segment that contains the output_section of section. */
3481
3482 Elf_Internal_Phdr *
3483 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3484 {
3485 struct elf_segment_map *m;
3486 Elf_Internal_Phdr *p;
3487
3488 for (m = elf_tdata (abfd)->segment_map,
3489 p = elf_tdata (abfd)->phdr;
3490 m != NULL;
3491 m = m->next, p++)
3492 {
3493 int i;
3494
3495 for (i = m->count - 1; i >= 0; i--)
3496 if (m->sections[i] == section)
3497 return p;
3498 }
3499
3500 return NULL;
3501 }
3502
3503 /* Create a mapping from a set of sections to a program segment. */
3504
3505 static struct elf_segment_map *
3506 make_mapping (bfd *abfd,
3507 asection **sections,
3508 unsigned int from,
3509 unsigned int to,
3510 bfd_boolean phdr)
3511 {
3512 struct elf_segment_map *m;
3513 unsigned int i;
3514 asection **hdrpp;
3515 bfd_size_type amt;
3516
3517 amt = sizeof (struct elf_segment_map);
3518 amt += (to - from - 1) * sizeof (asection *);
3519 m = bfd_zalloc (abfd, amt);
3520 if (m == NULL)
3521 return NULL;
3522 m->next = NULL;
3523 m->p_type = PT_LOAD;
3524 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3525 m->sections[i - from] = *hdrpp;
3526 m->count = to - from;
3527
3528 if (from == 0 && phdr)
3529 {
3530 /* Include the headers in the first PT_LOAD segment. */
3531 m->includes_filehdr = 1;
3532 m->includes_phdrs = 1;
3533 }
3534
3535 return m;
3536 }
3537
3538 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3539 on failure. */
3540
3541 struct elf_segment_map *
3542 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3543 {
3544 struct elf_segment_map *m;
3545
3546 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3547 if (m == NULL)
3548 return NULL;
3549 m->next = NULL;
3550 m->p_type = PT_DYNAMIC;
3551 m->count = 1;
3552 m->sections[0] = dynsec;
3553
3554 return m;
3555 }
3556
3557 /* Possibly add or remove segments from the segment map. */
3558
3559 static bfd_boolean
3560 elf_modify_segment_map (bfd *abfd,
3561 struct bfd_link_info *info,
3562 bfd_boolean remove_empty_load)
3563 {
3564 struct elf_segment_map **m;
3565 const struct elf_backend_data *bed;
3566
3567 /* The placement algorithm assumes that non allocated sections are
3568 not in PT_LOAD segments. We ensure this here by removing such
3569 sections from the segment map. We also remove excluded
3570 sections. Finally, any PT_LOAD segment without sections is
3571 removed. */
3572 m = &elf_tdata (abfd)->segment_map;
3573 while (*m)
3574 {
3575 unsigned int i, new_count;
3576
3577 for (new_count = 0, i = 0; i < (*m)->count; i++)
3578 {
3579 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3580 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3581 || (*m)->p_type != PT_LOAD))
3582 {
3583 (*m)->sections[new_count] = (*m)->sections[i];
3584 new_count++;
3585 }
3586 }
3587 (*m)->count = new_count;
3588
3589 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3590 *m = (*m)->next;
3591 else
3592 m = &(*m)->next;
3593 }
3594
3595 bed = get_elf_backend_data (abfd);
3596 if (bed->elf_backend_modify_segment_map != NULL)
3597 {
3598 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3599 return FALSE;
3600 }
3601
3602 return TRUE;
3603 }
3604
3605 /* Set up a mapping from BFD sections to program segments. */
3606
3607 bfd_boolean
3608 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3609 {
3610 unsigned int count;
3611 struct elf_segment_map *m;
3612 asection **sections = NULL;
3613 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3614 bfd_boolean no_user_phdrs;
3615
3616 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3617 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3618 {
3619 asection *s;
3620 unsigned int i;
3621 struct elf_segment_map *mfirst;
3622 struct elf_segment_map **pm;
3623 asection *last_hdr;
3624 bfd_vma last_size;
3625 unsigned int phdr_index;
3626 bfd_vma maxpagesize;
3627 asection **hdrpp;
3628 bfd_boolean phdr_in_segment = TRUE;
3629 bfd_boolean writable;
3630 int tls_count = 0;
3631 asection *first_tls = NULL;
3632 asection *dynsec, *eh_frame_hdr;
3633 bfd_size_type amt;
3634
3635 /* Select the allocated sections, and sort them. */
3636
3637 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3638 if (sections == NULL)
3639 goto error_return;
3640
3641 i = 0;
3642 for (s = abfd->sections; s != NULL; s = s->next)
3643 {
3644 if ((s->flags & SEC_ALLOC) != 0)
3645 {
3646 sections[i] = s;
3647 ++i;
3648 }
3649 }
3650 BFD_ASSERT (i <= bfd_count_sections (abfd));
3651 count = i;
3652
3653 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3654
3655 /* Build the mapping. */
3656
3657 mfirst = NULL;
3658 pm = &mfirst;
3659
3660 /* If we have a .interp section, then create a PT_PHDR segment for
3661 the program headers and a PT_INTERP segment for the .interp
3662 section. */
3663 s = bfd_get_section_by_name (abfd, ".interp");
3664 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3665 {
3666 amt = sizeof (struct elf_segment_map);
3667 m = bfd_zalloc (abfd, amt);
3668 if (m == NULL)
3669 goto error_return;
3670 m->next = NULL;
3671 m->p_type = PT_PHDR;
3672 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3673 m->p_flags = PF_R | PF_X;
3674 m->p_flags_valid = 1;
3675 m->includes_phdrs = 1;
3676
3677 *pm = m;
3678 pm = &m->next;
3679
3680 amt = sizeof (struct elf_segment_map);
3681 m = bfd_zalloc (abfd, amt);
3682 if (m == NULL)
3683 goto error_return;
3684 m->next = NULL;
3685 m->p_type = PT_INTERP;
3686 m->count = 1;
3687 m->sections[0] = s;
3688
3689 *pm = m;
3690 pm = &m->next;
3691 }
3692
3693 /* Look through the sections. We put sections in the same program
3694 segment when the start of the second section can be placed within
3695 a few bytes of the end of the first section. */
3696 last_hdr = NULL;
3697 last_size = 0;
3698 phdr_index = 0;
3699 maxpagesize = bed->maxpagesize;
3700 writable = FALSE;
3701 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3702 if (dynsec != NULL
3703 && (dynsec->flags & SEC_LOAD) == 0)
3704 dynsec = NULL;
3705
3706 /* Deal with -Ttext or something similar such that the first section
3707 is not adjacent to the program headers. This is an
3708 approximation, since at this point we don't know exactly how many
3709 program headers we will need. */
3710 if (count > 0)
3711 {
3712 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3713
3714 if (phdr_size == (bfd_size_type) -1)
3715 phdr_size = get_program_header_size (abfd, info);
3716 if ((abfd->flags & D_PAGED) == 0
3717 || sections[0]->lma < phdr_size
3718 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3719 phdr_in_segment = FALSE;
3720 }
3721
3722 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3723 {
3724 asection *hdr;
3725 bfd_boolean new_segment;
3726
3727 hdr = *hdrpp;
3728
3729 /* See if this section and the last one will fit in the same
3730 segment. */
3731
3732 if (last_hdr == NULL)
3733 {
3734 /* If we don't have a segment yet, then we don't need a new
3735 one (we build the last one after this loop). */
3736 new_segment = FALSE;
3737 }
3738 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3739 {
3740 /* If this section has a different relation between the
3741 virtual address and the load address, then we need a new
3742 segment. */
3743 new_segment = TRUE;
3744 }
3745 /* In the next test we have to be careful when last_hdr->lma is close
3746 to the end of the address space. If the aligned address wraps
3747 around to the start of the address space, then there are no more
3748 pages left in memory and it is OK to assume that the current
3749 section can be included in the current segment. */
3750 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3751 > last_hdr->lma)
3752 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3753 <= hdr->lma))
3754 {
3755 /* If putting this section in this segment would force us to
3756 skip a page in the segment, then we need a new segment. */
3757 new_segment = TRUE;
3758 }
3759 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3760 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3761 {
3762 /* We don't want to put a loadable section after a
3763 nonloadable section in the same segment.
3764 Consider .tbss sections as loadable for this purpose. */
3765 new_segment = TRUE;
3766 }
3767 else if ((abfd->flags & D_PAGED) == 0)
3768 {
3769 /* If the file is not demand paged, which means that we
3770 don't require the sections to be correctly aligned in the
3771 file, then there is no other reason for a new segment. */
3772 new_segment = FALSE;
3773 }
3774 else if (! writable
3775 && (hdr->flags & SEC_READONLY) == 0
3776 && (((last_hdr->lma + last_size - 1)
3777 & ~(maxpagesize - 1))
3778 != (hdr->lma & ~(maxpagesize - 1))))
3779 {
3780 /* We don't want to put a writable section in a read only
3781 segment, unless they are on the same page in memory
3782 anyhow. We already know that the last section does not
3783 bring us past the current section on the page, so the
3784 only case in which the new section is not on the same
3785 page as the previous section is when the previous section
3786 ends precisely on a page boundary. */
3787 new_segment = TRUE;
3788 }
3789 else
3790 {
3791 /* Otherwise, we can use the same segment. */
3792 new_segment = FALSE;
3793 }
3794
3795 /* Allow interested parties a chance to override our decision. */
3796 if (last_hdr != NULL
3797 && info != NULL
3798 && info->callbacks->override_segment_assignment != NULL)
3799 new_segment
3800 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3801 last_hdr,
3802 new_segment);
3803
3804 if (! new_segment)
3805 {
3806 if ((hdr->flags & SEC_READONLY) == 0)
3807 writable = TRUE;
3808 last_hdr = hdr;
3809 /* .tbss sections effectively have zero size. */
3810 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3811 != SEC_THREAD_LOCAL)
3812 last_size = hdr->size;
3813 else
3814 last_size = 0;
3815 continue;
3816 }
3817
3818 /* We need a new program segment. We must create a new program
3819 header holding all the sections from phdr_index until hdr. */
3820
3821 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3822 if (m == NULL)
3823 goto error_return;
3824
3825 *pm = m;
3826 pm = &m->next;
3827
3828 if ((hdr->flags & SEC_READONLY) == 0)
3829 writable = TRUE;
3830 else
3831 writable = FALSE;
3832
3833 last_hdr = hdr;
3834 /* .tbss sections effectively have zero size. */
3835 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3836 last_size = hdr->size;
3837 else
3838 last_size = 0;
3839 phdr_index = i;
3840 phdr_in_segment = FALSE;
3841 }
3842
3843 /* Create a final PT_LOAD program segment. */
3844 if (last_hdr != NULL)
3845 {
3846 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3847 if (m == NULL)
3848 goto error_return;
3849
3850 *pm = m;
3851 pm = &m->next;
3852 }
3853
3854 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3855 if (dynsec != NULL)
3856 {
3857 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3858 if (m == NULL)
3859 goto error_return;
3860 *pm = m;
3861 pm = &m->next;
3862 }
3863
3864 /* For each batch of consecutive loadable .note sections,
3865 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3866 because if we link together nonloadable .note sections and
3867 loadable .note sections, we will generate two .note sections
3868 in the output file. FIXME: Using names for section types is
3869 bogus anyhow. */
3870 for (s = abfd->sections; s != NULL; s = s->next)
3871 {
3872 if ((s->flags & SEC_LOAD) != 0
3873 && CONST_STRNEQ (s->name, ".note"))
3874 {
3875 asection *s2;
3876 unsigned count = 1;
3877 amt = sizeof (struct elf_segment_map);
3878 if (s->alignment_power == 2)
3879 for (s2 = s; s2->next != NULL; s2 = s2->next)
3880 {
3881 if (s2->next->alignment_power == 2
3882 && (s2->next->flags & SEC_LOAD) != 0
3883 && CONST_STRNEQ (s2->next->name, ".note")
3884 && align_power (s2->vma + s2->size, 2)
3885 == s2->next->vma)
3886 count++;
3887 else
3888 break;
3889 }
3890 amt += (count - 1) * sizeof (asection *);
3891 m = bfd_zalloc (abfd, amt);
3892 if (m == NULL)
3893 goto error_return;
3894 m->next = NULL;
3895 m->p_type = PT_NOTE;
3896 m->count = count;
3897 while (count > 1)
3898 {
3899 m->sections[m->count - count--] = s;
3900 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3901 s = s->next;
3902 }
3903 m->sections[m->count - 1] = s;
3904 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3905 *pm = m;
3906 pm = &m->next;
3907 }
3908 if (s->flags & SEC_THREAD_LOCAL)
3909 {
3910 if (! tls_count)
3911 first_tls = s;
3912 tls_count++;
3913 }
3914 }
3915
3916 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3917 if (tls_count > 0)
3918 {
3919 int i;
3920
3921 amt = sizeof (struct elf_segment_map);
3922 amt += (tls_count - 1) * sizeof (asection *);
3923 m = bfd_zalloc (abfd, amt);
3924 if (m == NULL)
3925 goto error_return;
3926 m->next = NULL;
3927 m->p_type = PT_TLS;
3928 m->count = tls_count;
3929 /* Mandated PF_R. */
3930 m->p_flags = PF_R;
3931 m->p_flags_valid = 1;
3932 for (i = 0; i < tls_count; ++i)
3933 {
3934 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3935 m->sections[i] = first_tls;
3936 first_tls = first_tls->next;
3937 }
3938
3939 *pm = m;
3940 pm = &m->next;
3941 }
3942
3943 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3944 segment. */
3945 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3946 if (eh_frame_hdr != NULL
3947 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3948 {
3949 amt = sizeof (struct elf_segment_map);
3950 m = bfd_zalloc (abfd, amt);
3951 if (m == NULL)
3952 goto error_return;
3953 m->next = NULL;
3954 m->p_type = PT_GNU_EH_FRAME;
3955 m->count = 1;
3956 m->sections[0] = eh_frame_hdr->output_section;
3957
3958 *pm = m;
3959 pm = &m->next;
3960 }
3961
3962 if (elf_tdata (abfd)->stack_flags)
3963 {
3964 amt = sizeof (struct elf_segment_map);
3965 m = bfd_zalloc (abfd, amt);
3966 if (m == NULL)
3967 goto error_return;
3968 m->next = NULL;
3969 m->p_type = PT_GNU_STACK;
3970 m->p_flags = elf_tdata (abfd)->stack_flags;
3971 m->p_flags_valid = 1;
3972
3973 *pm = m;
3974 pm = &m->next;
3975 }
3976
3977 if (info != NULL && info->relro)
3978 {
3979 for (m = mfirst; m != NULL; m = m->next)
3980 {
3981 if (m->p_type == PT_LOAD)
3982 {
3983 asection *last = m->sections[m->count - 1];
3984 bfd_vma vaddr = m->sections[0]->vma;
3985 bfd_vma filesz = last->vma - vaddr + last->size;
3986
3987 if (vaddr < info->relro_end
3988 && vaddr >= info->relro_start
3989 && (vaddr + filesz) >= info->relro_end)
3990 break;
3991 }
3992 }
3993
3994 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3995 if (m != NULL)
3996 {
3997 amt = sizeof (struct elf_segment_map);
3998 m = bfd_zalloc (abfd, amt);
3999 if (m == NULL)
4000 goto error_return;
4001 m->next = NULL;
4002 m->p_type = PT_GNU_RELRO;
4003 m->p_flags = PF_R;
4004 m->p_flags_valid = 1;
4005
4006 *pm = m;
4007 pm = &m->next;
4008 }
4009 }
4010
4011 free (sections);
4012 elf_tdata (abfd)->segment_map = mfirst;
4013 }
4014
4015 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4016 return FALSE;
4017
4018 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4019 ++count;
4020 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4021
4022 return TRUE;
4023
4024 error_return:
4025 if (sections != NULL)
4026 free (sections);
4027 return FALSE;
4028 }
4029
4030 /* Sort sections by address. */
4031
4032 static int
4033 elf_sort_sections (const void *arg1, const void *arg2)
4034 {
4035 const asection *sec1 = *(const asection **) arg1;
4036 const asection *sec2 = *(const asection **) arg2;
4037 bfd_size_type size1, size2;
4038
4039 /* Sort by LMA first, since this is the address used to
4040 place the section into a segment. */
4041 if (sec1->lma < sec2->lma)
4042 return -1;
4043 else if (sec1->lma > sec2->lma)
4044 return 1;
4045
4046 /* Then sort by VMA. Normally the LMA and the VMA will be
4047 the same, and this will do nothing. */
4048 if (sec1->vma < sec2->vma)
4049 return -1;
4050 else if (sec1->vma > sec2->vma)
4051 return 1;
4052
4053 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4054
4055 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4056
4057 if (TOEND (sec1))
4058 {
4059 if (TOEND (sec2))
4060 {
4061 /* If the indicies are the same, do not return 0
4062 here, but continue to try the next comparison. */
4063 if (sec1->target_index - sec2->target_index != 0)
4064 return sec1->target_index - sec2->target_index;
4065 }
4066 else
4067 return 1;
4068 }
4069 else if (TOEND (sec2))
4070 return -1;
4071
4072 #undef TOEND
4073
4074 /* Sort by size, to put zero sized sections
4075 before others at the same address. */
4076
4077 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4078 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4079
4080 if (size1 < size2)
4081 return -1;
4082 if (size1 > size2)
4083 return 1;
4084
4085 return sec1->target_index - sec2->target_index;
4086 }
4087
4088 /* Ian Lance Taylor writes:
4089
4090 We shouldn't be using % with a negative signed number. That's just
4091 not good. We have to make sure either that the number is not
4092 negative, or that the number has an unsigned type. When the types
4093 are all the same size they wind up as unsigned. When file_ptr is a
4094 larger signed type, the arithmetic winds up as signed long long,
4095 which is wrong.
4096
4097 What we're trying to say here is something like ``increase OFF by
4098 the least amount that will cause it to be equal to the VMA modulo
4099 the page size.'' */
4100 /* In other words, something like:
4101
4102 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4103 off_offset = off % bed->maxpagesize;
4104 if (vma_offset < off_offset)
4105 adjustment = vma_offset + bed->maxpagesize - off_offset;
4106 else
4107 adjustment = vma_offset - off_offset;
4108
4109 which can can be collapsed into the expression below. */
4110
4111 static file_ptr
4112 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4113 {
4114 return ((vma - off) % maxpagesize);
4115 }
4116
4117 static void
4118 print_segment_map (const struct elf_segment_map *m)
4119 {
4120 unsigned int j;
4121 const char *pt = get_segment_type (m->p_type);
4122 char buf[32];
4123
4124 if (pt == NULL)
4125 {
4126 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4127 sprintf (buf, "LOPROC+%7.7x",
4128 (unsigned int) (m->p_type - PT_LOPROC));
4129 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4130 sprintf (buf, "LOOS+%7.7x",
4131 (unsigned int) (m->p_type - PT_LOOS));
4132 else
4133 snprintf (buf, sizeof (buf), "%8.8x",
4134 (unsigned int) m->p_type);
4135 pt = buf;
4136 }
4137 fprintf (stderr, "%s:", pt);
4138 for (j = 0; j < m->count; j++)
4139 fprintf (stderr, " %s", m->sections [j]->name);
4140 putc ('\n',stderr);
4141 }
4142
4143 /* Assign file positions to the sections based on the mapping from
4144 sections to segments. This function also sets up some fields in
4145 the file header. */
4146
4147 static bfd_boolean
4148 assign_file_positions_for_load_sections (bfd *abfd,
4149 struct bfd_link_info *link_info)
4150 {
4151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4152 struct elf_segment_map *m;
4153 Elf_Internal_Phdr *phdrs;
4154 Elf_Internal_Phdr *p;
4155 file_ptr off;
4156 bfd_size_type maxpagesize;
4157 unsigned int alloc;
4158 unsigned int i, j;
4159
4160 if (link_info == NULL
4161 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4162 return FALSE;
4163
4164 alloc = 0;
4165 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4166 ++alloc;
4167
4168 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4169 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4170 elf_elfheader (abfd)->e_phnum = alloc;
4171
4172 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4173 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4174 else
4175 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4176 >= alloc * bed->s->sizeof_phdr);
4177
4178 if (alloc == 0)
4179 {
4180 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4181 return TRUE;
4182 }
4183
4184 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4185 elf_tdata (abfd)->phdr = phdrs;
4186 if (phdrs == NULL)
4187 return FALSE;
4188
4189 maxpagesize = 1;
4190 if ((abfd->flags & D_PAGED) != 0)
4191 maxpagesize = bed->maxpagesize;
4192
4193 off = bed->s->sizeof_ehdr;
4194 off += alloc * bed->s->sizeof_phdr;
4195
4196 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4197 m != NULL;
4198 m = m->next, p++, j++)
4199 {
4200 asection **secpp;
4201 bfd_vma off_adjust;
4202 bfd_boolean no_contents;
4203
4204 /* If elf_segment_map is not from map_sections_to_segments, the
4205 sections may not be correctly ordered. NOTE: sorting should
4206 not be done to the PT_NOTE section of a corefile, which may
4207 contain several pseudo-sections artificially created by bfd.
4208 Sorting these pseudo-sections breaks things badly. */
4209 if (m->count > 1
4210 && !(elf_elfheader (abfd)->e_type == ET_CORE
4211 && m->p_type == PT_NOTE))
4212 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4213 elf_sort_sections);
4214
4215 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4216 number of sections with contents contributing to both p_filesz
4217 and p_memsz, followed by a number of sections with no contents
4218 that just contribute to p_memsz. In this loop, OFF tracks next
4219 available file offset for PT_LOAD and PT_NOTE segments. */
4220 p->p_type = m->p_type;
4221 p->p_flags = m->p_flags;
4222
4223 if (m->count == 0)
4224 p->p_vaddr = 0;
4225 else
4226 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4227
4228 if (m->p_paddr_valid)
4229 p->p_paddr = m->p_paddr;
4230 else if (m->count == 0)
4231 p->p_paddr = 0;
4232 else
4233 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4234
4235 if (p->p_type == PT_LOAD
4236 && (abfd->flags & D_PAGED) != 0)
4237 {
4238 /* p_align in demand paged PT_LOAD segments effectively stores
4239 the maximum page size. When copying an executable with
4240 objcopy, we set m->p_align from the input file. Use this
4241 value for maxpagesize rather than bed->maxpagesize, which
4242 may be different. Note that we use maxpagesize for PT_TLS
4243 segment alignment later in this function, so we are relying
4244 on at least one PT_LOAD segment appearing before a PT_TLS
4245 segment. */
4246 if (m->p_align_valid)
4247 maxpagesize = m->p_align;
4248
4249 p->p_align = maxpagesize;
4250 }
4251 else if (m->p_align_valid)
4252 p->p_align = m->p_align;
4253 else if (m->count == 0)
4254 p->p_align = 1 << bed->s->log_file_align;
4255 else
4256 p->p_align = 0;
4257
4258 no_contents = FALSE;
4259 off_adjust = 0;
4260 if (p->p_type == PT_LOAD
4261 && m->count > 0)
4262 {
4263 bfd_size_type align;
4264 unsigned int align_power = 0;
4265
4266 if (m->p_align_valid)
4267 align = p->p_align;
4268 else
4269 {
4270 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4271 {
4272 unsigned int secalign;
4273
4274 secalign = bfd_get_section_alignment (abfd, *secpp);
4275 if (secalign > align_power)
4276 align_power = secalign;
4277 }
4278 align = (bfd_size_type) 1 << align_power;
4279 if (align < maxpagesize)
4280 align = maxpagesize;
4281 }
4282
4283 for (i = 0; i < m->count; i++)
4284 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4285 /* If we aren't making room for this section, then
4286 it must be SHT_NOBITS regardless of what we've
4287 set via struct bfd_elf_special_section. */
4288 elf_section_type (m->sections[i]) = SHT_NOBITS;
4289
4290 /* Find out whether this segment contains any loadable
4291 sections. If the first section isn't loadable, the same
4292 holds for any other sections. */
4293 i = 0;
4294 while (elf_section_type (m->sections[i]) == SHT_NOBITS)
4295 {
4296 /* If a segment starts with .tbss, we need to look
4297 at the next section to decide whether the segment
4298 has any loadable sections. */
4299 if ((elf_section_flags (m->sections[i]) & SHF_TLS) == 0
4300 || ++i >= m->count)
4301 {
4302 no_contents = TRUE;
4303 break;
4304 }
4305 }
4306
4307 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4308 off += off_adjust;
4309 if (no_contents)
4310 {
4311 /* We shouldn't need to align the segment on disk since
4312 the segment doesn't need file space, but the gABI
4313 arguably requires the alignment and glibc ld.so
4314 checks it. So to comply with the alignment
4315 requirement but not waste file space, we adjust
4316 p_offset for just this segment. (OFF_ADJUST is
4317 subtracted from OFF later.) This may put p_offset
4318 past the end of file, but that shouldn't matter. */
4319 }
4320 else
4321 off_adjust = 0;
4322 }
4323 /* Make sure the .dynamic section is the first section in the
4324 PT_DYNAMIC segment. */
4325 else if (p->p_type == PT_DYNAMIC
4326 && m->count > 1
4327 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4328 {
4329 _bfd_error_handler
4330 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4331 abfd);
4332 bfd_set_error (bfd_error_bad_value);
4333 return FALSE;
4334 }
4335 /* Set the note section type to SHT_NOTE. */
4336 else if (p->p_type == PT_NOTE)
4337 for (i = 0; i < m->count; i++)
4338 elf_section_type (m->sections[i]) = SHT_NOTE;
4339
4340 p->p_offset = 0;
4341 p->p_filesz = 0;
4342 p->p_memsz = 0;
4343
4344 if (m->includes_filehdr)
4345 {
4346 if (!m->p_flags_valid)
4347 p->p_flags |= PF_R;
4348 p->p_filesz = bed->s->sizeof_ehdr;
4349 p->p_memsz = bed->s->sizeof_ehdr;
4350 if (m->count > 0)
4351 {
4352 BFD_ASSERT (p->p_type == PT_LOAD);
4353
4354 if (p->p_vaddr < (bfd_vma) off)
4355 {
4356 (*_bfd_error_handler)
4357 (_("%B: Not enough room for program headers, try linking with -N"),
4358 abfd);
4359 bfd_set_error (bfd_error_bad_value);
4360 return FALSE;
4361 }
4362
4363 p->p_vaddr -= off;
4364 if (!m->p_paddr_valid)
4365 p->p_paddr -= off;
4366 }
4367 }
4368
4369 if (m->includes_phdrs)
4370 {
4371 if (!m->p_flags_valid)
4372 p->p_flags |= PF_R;
4373
4374 if (!m->includes_filehdr)
4375 {
4376 p->p_offset = bed->s->sizeof_ehdr;
4377
4378 if (m->count > 0)
4379 {
4380 BFD_ASSERT (p->p_type == PT_LOAD);
4381 p->p_vaddr -= off - p->p_offset;
4382 if (!m->p_paddr_valid)
4383 p->p_paddr -= off - p->p_offset;
4384 }
4385 }
4386
4387 p->p_filesz += alloc * bed->s->sizeof_phdr;
4388 p->p_memsz += alloc * bed->s->sizeof_phdr;
4389 }
4390
4391 if (p->p_type == PT_LOAD
4392 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4393 {
4394 if (!m->includes_filehdr && !m->includes_phdrs)
4395 p->p_offset = off;
4396 else
4397 {
4398 file_ptr adjust;
4399
4400 adjust = off - (p->p_offset + p->p_filesz);
4401 if (!no_contents)
4402 p->p_filesz += adjust;
4403 p->p_memsz += adjust;
4404 }
4405 }
4406
4407 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4408 maps. Set filepos for sections in PT_LOAD segments, and in
4409 core files, for sections in PT_NOTE segments.
4410 assign_file_positions_for_non_load_sections will set filepos
4411 for other sections and update p_filesz for other segments. */
4412 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4413 {
4414 asection *sec;
4415 bfd_size_type align;
4416 Elf_Internal_Shdr *this_hdr;
4417
4418 sec = *secpp;
4419 this_hdr = &elf_section_data (sec)->this_hdr;
4420 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4421
4422 if ((p->p_type == PT_LOAD
4423 || p->p_type == PT_TLS)
4424 && (this_hdr->sh_type != SHT_NOBITS
4425 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4426 && ((this_hdr->sh_flags & SHF_TLS) == 0
4427 || p->p_type == PT_TLS))))
4428 {
4429 bfd_signed_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
4430
4431 if (adjust < 0)
4432 {
4433 (*_bfd_error_handler)
4434 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4435 abfd, sec, (unsigned long) sec->vma);
4436 adjust = 0;
4437 }
4438 p->p_memsz += adjust;
4439
4440 if (this_hdr->sh_type != SHT_NOBITS)
4441 {
4442 off += adjust;
4443 p->p_filesz += adjust;
4444 }
4445 }
4446
4447 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4448 {
4449 /* The section at i == 0 is the one that actually contains
4450 everything. */
4451 if (i == 0)
4452 {
4453 this_hdr->sh_offset = sec->filepos = off;
4454 off += this_hdr->sh_size;
4455 p->p_filesz = this_hdr->sh_size;
4456 p->p_memsz = 0;
4457 p->p_align = 1;
4458 }
4459 else
4460 {
4461 /* The rest are fake sections that shouldn't be written. */
4462 sec->filepos = 0;
4463 sec->size = 0;
4464 sec->flags = 0;
4465 continue;
4466 }
4467 }
4468 else
4469 {
4470 if (p->p_type == PT_LOAD)
4471 {
4472 this_hdr->sh_offset = sec->filepos = off;
4473 if (this_hdr->sh_type != SHT_NOBITS)
4474 off += this_hdr->sh_size;
4475 }
4476
4477 if (this_hdr->sh_type != SHT_NOBITS)
4478 {
4479 p->p_filesz += this_hdr->sh_size;
4480 /* A load section without SHF_ALLOC is something like
4481 a note section in a PT_NOTE segment. These take
4482 file space but are not loaded into memory. */
4483 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4484 p->p_memsz += this_hdr->sh_size;
4485 }
4486 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4487 {
4488 if (p->p_type == PT_TLS)
4489 p->p_memsz += this_hdr->sh_size;
4490
4491 /* .tbss is special. It doesn't contribute to p_memsz of
4492 normal segments. */
4493 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4494 p->p_memsz += this_hdr->sh_size;
4495 }
4496
4497 if (align > p->p_align
4498 && !m->p_align_valid
4499 && (p->p_type != PT_LOAD
4500 || (abfd->flags & D_PAGED) == 0))
4501 p->p_align = align;
4502 }
4503
4504 if (!m->p_flags_valid)
4505 {
4506 p->p_flags |= PF_R;
4507 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4508 p->p_flags |= PF_X;
4509 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4510 p->p_flags |= PF_W;
4511 }
4512 }
4513 off -= off_adjust;
4514
4515 /* Check that all sections are in a PT_LOAD segment.
4516 Don't check funky gdb generated core files. */
4517 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4518 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4519 {
4520 Elf_Internal_Shdr *this_hdr;
4521 asection *sec;
4522
4523 sec = *secpp;
4524 this_hdr = &(elf_section_data(sec)->this_hdr);
4525 if (this_hdr->sh_size != 0
4526 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4527 {
4528 (*_bfd_error_handler)
4529 (_("%B: section `%A' can't be allocated in segment %d"),
4530 abfd, sec, j);
4531 print_segment_map (m);
4532 bfd_set_error (bfd_error_bad_value);
4533 return FALSE;
4534 }
4535 }
4536 }
4537
4538 elf_tdata (abfd)->next_file_pos = off;
4539 return TRUE;
4540 }
4541
4542 /* Assign file positions for the other sections. */
4543
4544 static bfd_boolean
4545 assign_file_positions_for_non_load_sections (bfd *abfd,
4546 struct bfd_link_info *link_info)
4547 {
4548 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4549 Elf_Internal_Shdr **i_shdrpp;
4550 Elf_Internal_Shdr **hdrpp;
4551 Elf_Internal_Phdr *phdrs;
4552 Elf_Internal_Phdr *p;
4553 struct elf_segment_map *m;
4554 bfd_vma filehdr_vaddr, filehdr_paddr;
4555 bfd_vma phdrs_vaddr, phdrs_paddr;
4556 file_ptr off;
4557 unsigned int num_sec;
4558 unsigned int i;
4559 unsigned int count;
4560
4561 i_shdrpp = elf_elfsections (abfd);
4562 num_sec = elf_numsections (abfd);
4563 off = elf_tdata (abfd)->next_file_pos;
4564 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4565 {
4566 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4567 Elf_Internal_Shdr *hdr;
4568
4569 hdr = *hdrpp;
4570 if (hdr->bfd_section != NULL
4571 && (hdr->bfd_section->filepos != 0
4572 || (hdr->sh_type == SHT_NOBITS
4573 && hdr->contents == NULL)))
4574 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4575 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4576 {
4577 if (hdr->sh_size != 0)
4578 ((*_bfd_error_handler)
4579 (_("%B: warning: allocated section `%s' not in segment"),
4580 abfd,
4581 (hdr->bfd_section == NULL
4582 ? "*unknown*"
4583 : hdr->bfd_section->name)));
4584 /* We don't need to page align empty sections. */
4585 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4586 off += vma_page_aligned_bias (hdr->sh_addr, off,
4587 bed->maxpagesize);
4588 else
4589 off += vma_page_aligned_bias (hdr->sh_addr, off,
4590 hdr->sh_addralign);
4591 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4592 FALSE);
4593 }
4594 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4595 && hdr->bfd_section == NULL)
4596 || hdr == i_shdrpp[tdata->symtab_section]
4597 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4598 || hdr == i_shdrpp[tdata->strtab_section])
4599 hdr->sh_offset = -1;
4600 else
4601 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4602 }
4603
4604 /* Now that we have set the section file positions, we can set up
4605 the file positions for the non PT_LOAD segments. */
4606 count = 0;
4607 filehdr_vaddr = 0;
4608 filehdr_paddr = 0;
4609 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4610 phdrs_paddr = 0;
4611 phdrs = elf_tdata (abfd)->phdr;
4612 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4613 m != NULL;
4614 m = m->next, p++)
4615 {
4616 ++count;
4617 if (p->p_type != PT_LOAD)
4618 continue;
4619
4620 if (m->includes_filehdr)
4621 {
4622 filehdr_vaddr = p->p_vaddr;
4623 filehdr_paddr = p->p_paddr;
4624 }
4625 if (m->includes_phdrs)
4626 {
4627 phdrs_vaddr = p->p_vaddr;
4628 phdrs_paddr = p->p_paddr;
4629 if (m->includes_filehdr)
4630 {
4631 phdrs_vaddr += bed->s->sizeof_ehdr;
4632 phdrs_paddr += bed->s->sizeof_ehdr;
4633 }
4634 }
4635 }
4636
4637 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4638 m != NULL;
4639 m = m->next, p++)
4640 {
4641 if (m->count != 0)
4642 {
4643 if (p->p_type != PT_LOAD
4644 && (p->p_type != PT_NOTE
4645 || bfd_get_format (abfd) != bfd_core))
4646 {
4647 Elf_Internal_Shdr *hdr;
4648 asection *sect;
4649
4650 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4651
4652 sect = m->sections[m->count - 1];
4653 hdr = &elf_section_data (sect)->this_hdr;
4654 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4655 if (hdr->sh_type != SHT_NOBITS)
4656 p->p_filesz += hdr->sh_size;
4657
4658 if (p->p_type == PT_GNU_RELRO)
4659 {
4660 /* When we get here, we are copying executable
4661 or shared library. But we need to use the same
4662 linker logic. */
4663 Elf_Internal_Phdr *lp;
4664
4665 for (lp = phdrs; lp < phdrs + count; ++lp)
4666 {
4667 if (lp->p_type == PT_LOAD
4668 && lp->p_paddr == p->p_paddr)
4669 break;
4670 }
4671
4672 if (lp < phdrs + count)
4673 {
4674 /* We should use p_size if it is valid since it
4675 may contain the first few bytes of the next
4676 SEC_ALLOC section. */
4677 if (m->p_size_valid)
4678 p->p_filesz = m->p_size;
4679 else
4680 abort ();
4681 p->p_vaddr = lp->p_vaddr;
4682 p->p_offset = lp->p_offset;
4683 p->p_memsz = p->p_filesz;
4684 p->p_align = 1;
4685 }
4686 else
4687 abort ();
4688 }
4689 else
4690 p->p_offset = m->sections[0]->filepos;
4691 }
4692 }
4693 else
4694 {
4695 if (m->includes_filehdr)
4696 {
4697 p->p_vaddr = filehdr_vaddr;
4698 if (! m->p_paddr_valid)
4699 p->p_paddr = filehdr_paddr;
4700 }
4701 else if (m->includes_phdrs)
4702 {
4703 p->p_vaddr = phdrs_vaddr;
4704 if (! m->p_paddr_valid)
4705 p->p_paddr = phdrs_paddr;
4706 }
4707 else if (p->p_type == PT_GNU_RELRO)
4708 {
4709 Elf_Internal_Phdr *lp;
4710
4711 for (lp = phdrs; lp < phdrs + count; ++lp)
4712 {
4713 if (lp->p_type == PT_LOAD
4714 && lp->p_vaddr <= link_info->relro_end
4715 && lp->p_vaddr >= link_info->relro_start
4716 && (lp->p_vaddr + lp->p_filesz
4717 >= link_info->relro_end))
4718 break;
4719 }
4720
4721 if (lp < phdrs + count
4722 && link_info->relro_end > lp->p_vaddr)
4723 {
4724 p->p_vaddr = lp->p_vaddr;
4725 p->p_paddr = lp->p_paddr;
4726 p->p_offset = lp->p_offset;
4727 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4728 p->p_memsz = p->p_filesz;
4729 p->p_align = 1;
4730 p->p_flags = (lp->p_flags & ~PF_W);
4731 }
4732 else
4733 {
4734 memset (p, 0, sizeof *p);
4735 p->p_type = PT_NULL;
4736 }
4737 }
4738 }
4739 }
4740
4741 elf_tdata (abfd)->next_file_pos = off;
4742
4743 return TRUE;
4744 }
4745
4746 /* Work out the file positions of all the sections. This is called by
4747 _bfd_elf_compute_section_file_positions. All the section sizes and
4748 VMAs must be known before this is called.
4749
4750 Reloc sections come in two flavours: Those processed specially as
4751 "side-channel" data attached to a section to which they apply, and
4752 those that bfd doesn't process as relocations. The latter sort are
4753 stored in a normal bfd section by bfd_section_from_shdr. We don't
4754 consider the former sort here, unless they form part of the loadable
4755 image. Reloc sections not assigned here will be handled later by
4756 assign_file_positions_for_relocs.
4757
4758 We also don't set the positions of the .symtab and .strtab here. */
4759
4760 static bfd_boolean
4761 assign_file_positions_except_relocs (bfd *abfd,
4762 struct bfd_link_info *link_info)
4763 {
4764 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4765 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4766 file_ptr off;
4767 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4768
4769 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4770 && bfd_get_format (abfd) != bfd_core)
4771 {
4772 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4773 unsigned int num_sec = elf_numsections (abfd);
4774 Elf_Internal_Shdr **hdrpp;
4775 unsigned int i;
4776
4777 /* Start after the ELF header. */
4778 off = i_ehdrp->e_ehsize;
4779
4780 /* We are not creating an executable, which means that we are
4781 not creating a program header, and that the actual order of
4782 the sections in the file is unimportant. */
4783 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4784 {
4785 Elf_Internal_Shdr *hdr;
4786
4787 hdr = *hdrpp;
4788 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4789 && hdr->bfd_section == NULL)
4790 || i == tdata->symtab_section
4791 || i == tdata->symtab_shndx_section
4792 || i == tdata->strtab_section)
4793 {
4794 hdr->sh_offset = -1;
4795 }
4796 else
4797 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4798 }
4799 }
4800 else
4801 {
4802 unsigned int alloc;
4803
4804 /* Assign file positions for the loaded sections based on the
4805 assignment of sections to segments. */
4806 if (!assign_file_positions_for_load_sections (abfd, link_info))
4807 return FALSE;
4808
4809 /* And for non-load sections. */
4810 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4811 return FALSE;
4812
4813 if (bed->elf_backend_modify_program_headers != NULL)
4814 {
4815 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4816 return FALSE;
4817 }
4818
4819 /* Write out the program headers. */
4820 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4821 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4822 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4823 return FALSE;
4824
4825 off = tdata->next_file_pos;
4826 }
4827
4828 /* Place the section headers. */
4829 off = align_file_position (off, 1 << bed->s->log_file_align);
4830 i_ehdrp->e_shoff = off;
4831 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4832
4833 tdata->next_file_pos = off;
4834
4835 return TRUE;
4836 }
4837
4838 static bfd_boolean
4839 prep_headers (bfd *abfd)
4840 {
4841 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4842 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4843 struct elf_strtab_hash *shstrtab;
4844 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4845
4846 i_ehdrp = elf_elfheader (abfd);
4847
4848 shstrtab = _bfd_elf_strtab_init ();
4849 if (shstrtab == NULL)
4850 return FALSE;
4851
4852 elf_shstrtab (abfd) = shstrtab;
4853
4854 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4855 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4856 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4857 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4858
4859 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4860 i_ehdrp->e_ident[EI_DATA] =
4861 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4862 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4863
4864 if ((abfd->flags & DYNAMIC) != 0)
4865 i_ehdrp->e_type = ET_DYN;
4866 else if ((abfd->flags & EXEC_P) != 0)
4867 i_ehdrp->e_type = ET_EXEC;
4868 else if (bfd_get_format (abfd) == bfd_core)
4869 i_ehdrp->e_type = ET_CORE;
4870 else
4871 i_ehdrp->e_type = ET_REL;
4872
4873 switch (bfd_get_arch (abfd))
4874 {
4875 case bfd_arch_unknown:
4876 i_ehdrp->e_machine = EM_NONE;
4877 break;
4878
4879 /* There used to be a long list of cases here, each one setting
4880 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4881 in the corresponding bfd definition. To avoid duplication,
4882 the switch was removed. Machines that need special handling
4883 can generally do it in elf_backend_final_write_processing(),
4884 unless they need the information earlier than the final write.
4885 Such need can generally be supplied by replacing the tests for
4886 e_machine with the conditions used to determine it. */
4887 default:
4888 i_ehdrp->e_machine = bed->elf_machine_code;
4889 }
4890
4891 i_ehdrp->e_version = bed->s->ev_current;
4892 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4893
4894 /* No program header, for now. */
4895 i_ehdrp->e_phoff = 0;
4896 i_ehdrp->e_phentsize = 0;
4897 i_ehdrp->e_phnum = 0;
4898
4899 /* Each bfd section is section header entry. */
4900 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4901 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4902
4903 /* If we're building an executable, we'll need a program header table. */
4904 if (abfd->flags & EXEC_P)
4905 /* It all happens later. */
4906 ;
4907 else
4908 {
4909 i_ehdrp->e_phentsize = 0;
4910 i_phdrp = 0;
4911 i_ehdrp->e_phoff = 0;
4912 }
4913
4914 elf_tdata (abfd)->symtab_hdr.sh_name =
4915 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4916 elf_tdata (abfd)->strtab_hdr.sh_name =
4917 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4918 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4919 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4920 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4921 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4922 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4923 return FALSE;
4924
4925 return TRUE;
4926 }
4927
4928 /* Assign file positions for all the reloc sections which are not part
4929 of the loadable file image. */
4930
4931 void
4932 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4933 {
4934 file_ptr off;
4935 unsigned int i, num_sec;
4936 Elf_Internal_Shdr **shdrpp;
4937
4938 off = elf_tdata (abfd)->next_file_pos;
4939
4940 num_sec = elf_numsections (abfd);
4941 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4942 {
4943 Elf_Internal_Shdr *shdrp;
4944
4945 shdrp = *shdrpp;
4946 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4947 && shdrp->sh_offset == -1)
4948 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4949 }
4950
4951 elf_tdata (abfd)->next_file_pos = off;
4952 }
4953
4954 bfd_boolean
4955 _bfd_elf_write_object_contents (bfd *abfd)
4956 {
4957 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4958 Elf_Internal_Ehdr *i_ehdrp;
4959 Elf_Internal_Shdr **i_shdrp;
4960 bfd_boolean failed;
4961 unsigned int count, num_sec;
4962
4963 if (! abfd->output_has_begun
4964 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4965 return FALSE;
4966
4967 i_shdrp = elf_elfsections (abfd);
4968 i_ehdrp = elf_elfheader (abfd);
4969
4970 failed = FALSE;
4971 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4972 if (failed)
4973 return FALSE;
4974
4975 _bfd_elf_assign_file_positions_for_relocs (abfd);
4976
4977 /* After writing the headers, we need to write the sections too... */
4978 num_sec = elf_numsections (abfd);
4979 for (count = 1; count < num_sec; count++)
4980 {
4981 if (bed->elf_backend_section_processing)
4982 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4983 if (i_shdrp[count]->contents)
4984 {
4985 bfd_size_type amt = i_shdrp[count]->sh_size;
4986
4987 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4988 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4989 return FALSE;
4990 }
4991 }
4992
4993 /* Write out the section header names. */
4994 if (elf_shstrtab (abfd) != NULL
4995 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4996 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4997 return FALSE;
4998
4999 if (bed->elf_backend_final_write_processing)
5000 (*bed->elf_backend_final_write_processing) (abfd,
5001 elf_tdata (abfd)->linker);
5002
5003 if (!bed->s->write_shdrs_and_ehdr (abfd))
5004 return FALSE;
5005
5006 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5007 if (elf_tdata (abfd)->after_write_object_contents)
5008 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5009
5010 return TRUE;
5011 }
5012
5013 bfd_boolean
5014 _bfd_elf_write_corefile_contents (bfd *abfd)
5015 {
5016 /* Hopefully this can be done just like an object file. */
5017 return _bfd_elf_write_object_contents (abfd);
5018 }
5019
5020 /* Given a section, search the header to find them. */
5021
5022 unsigned int
5023 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5024 {
5025 const struct elf_backend_data *bed;
5026 unsigned int index;
5027
5028 if (elf_section_data (asect) != NULL
5029 && elf_section_data (asect)->this_idx != 0)
5030 return elf_section_data (asect)->this_idx;
5031
5032 if (bfd_is_abs_section (asect))
5033 index = SHN_ABS;
5034 else if (bfd_is_com_section (asect))
5035 index = SHN_COMMON;
5036 else if (bfd_is_und_section (asect))
5037 index = SHN_UNDEF;
5038 else
5039 index = SHN_BAD;
5040
5041 bed = get_elf_backend_data (abfd);
5042 if (bed->elf_backend_section_from_bfd_section)
5043 {
5044 int retval = index;
5045
5046 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5047 return retval;
5048 }
5049
5050 if (index == SHN_BAD)
5051 bfd_set_error (bfd_error_nonrepresentable_section);
5052
5053 return index;
5054 }
5055
5056 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5057 on error. */
5058
5059 int
5060 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5061 {
5062 asymbol *asym_ptr = *asym_ptr_ptr;
5063 int idx;
5064 flagword flags = asym_ptr->flags;
5065
5066 /* When gas creates relocations against local labels, it creates its
5067 own symbol for the section, but does put the symbol into the
5068 symbol chain, so udata is 0. When the linker is generating
5069 relocatable output, this section symbol may be for one of the
5070 input sections rather than the output section. */
5071 if (asym_ptr->udata.i == 0
5072 && (flags & BSF_SECTION_SYM)
5073 && asym_ptr->section)
5074 {
5075 asection *sec;
5076 int indx;
5077
5078 sec = asym_ptr->section;
5079 if (sec->owner != abfd && sec->output_section != NULL)
5080 sec = sec->output_section;
5081 if (sec->owner == abfd
5082 && (indx = sec->index) < elf_num_section_syms (abfd)
5083 && elf_section_syms (abfd)[indx] != NULL)
5084 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5085 }
5086
5087 idx = asym_ptr->udata.i;
5088
5089 if (idx == 0)
5090 {
5091 /* This case can occur when using --strip-symbol on a symbol
5092 which is used in a relocation entry. */
5093 (*_bfd_error_handler)
5094 (_("%B: symbol `%s' required but not present"),
5095 abfd, bfd_asymbol_name (asym_ptr));
5096 bfd_set_error (bfd_error_no_symbols);
5097 return -1;
5098 }
5099
5100 #if DEBUG & 4
5101 {
5102 fprintf (stderr,
5103 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5104 (long) asym_ptr, asym_ptr->name, idx, flags,
5105 elf_symbol_flags (flags));
5106 fflush (stderr);
5107 }
5108 #endif
5109
5110 return idx;
5111 }
5112
5113 /* Rewrite program header information. */
5114
5115 static bfd_boolean
5116 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5117 {
5118 Elf_Internal_Ehdr *iehdr;
5119 struct elf_segment_map *map;
5120 struct elf_segment_map *map_first;
5121 struct elf_segment_map **pointer_to_map;
5122 Elf_Internal_Phdr *segment;
5123 asection *section;
5124 unsigned int i;
5125 unsigned int num_segments;
5126 bfd_boolean phdr_included = FALSE;
5127 bfd_boolean p_paddr_valid;
5128 bfd_vma maxpagesize;
5129 struct elf_segment_map *phdr_adjust_seg = NULL;
5130 unsigned int phdr_adjust_num = 0;
5131 const struct elf_backend_data *bed;
5132
5133 bed = get_elf_backend_data (ibfd);
5134 iehdr = elf_elfheader (ibfd);
5135
5136 map_first = NULL;
5137 pointer_to_map = &map_first;
5138
5139 num_segments = elf_elfheader (ibfd)->e_phnum;
5140 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5141
5142 /* Returns the end address of the segment + 1. */
5143 #define SEGMENT_END(segment, start) \
5144 (start + (segment->p_memsz > segment->p_filesz \
5145 ? segment->p_memsz : segment->p_filesz))
5146
5147 #define SECTION_SIZE(section, segment) \
5148 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5149 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5150 ? section->size : 0)
5151
5152 /* Returns TRUE if the given section is contained within
5153 the given segment. VMA addresses are compared. */
5154 #define IS_CONTAINED_BY_VMA(section, segment) \
5155 (section->vma >= segment->p_vaddr \
5156 && (section->vma + SECTION_SIZE (section, segment) \
5157 <= (SEGMENT_END (segment, segment->p_vaddr))))
5158
5159 /* Returns TRUE if the given section is contained within
5160 the given segment. LMA addresses are compared. */
5161 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5162 (section->lma >= base \
5163 && (section->lma + SECTION_SIZE (section, segment) \
5164 <= SEGMENT_END (segment, base)))
5165
5166 /* Handle PT_NOTE segment. */
5167 #define IS_NOTE(p, s) \
5168 (p->p_type == PT_NOTE \
5169 && elf_section_type (s) == SHT_NOTE \
5170 && (bfd_vma) s->filepos >= p->p_offset \
5171 && ((bfd_vma) s->filepos + s->size \
5172 <= p->p_offset + p->p_filesz))
5173
5174 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5175 etc. */
5176 #define IS_COREFILE_NOTE(p, s) \
5177 (IS_NOTE (p, s) \
5178 && bfd_get_format (ibfd) == bfd_core \
5179 && s->vma == 0 \
5180 && s->lma == 0)
5181
5182 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5183 linker, which generates a PT_INTERP section with p_vaddr and
5184 p_memsz set to 0. */
5185 #define IS_SOLARIS_PT_INTERP(p, s) \
5186 (p->p_vaddr == 0 \
5187 && p->p_paddr == 0 \
5188 && p->p_memsz == 0 \
5189 && p->p_filesz > 0 \
5190 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5191 && s->size > 0 \
5192 && (bfd_vma) s->filepos >= p->p_offset \
5193 && ((bfd_vma) s->filepos + s->size \
5194 <= p->p_offset + p->p_filesz))
5195
5196 /* Decide if the given section should be included in the given segment.
5197 A section will be included if:
5198 1. It is within the address space of the segment -- we use the LMA
5199 if that is set for the segment and the VMA otherwise,
5200 2. It is an allocated section or a NOTE section in a PT_NOTE
5201 segment.
5202 3. There is an output section associated with it,
5203 4. The section has not already been allocated to a previous segment.
5204 5. PT_GNU_STACK segments do not include any sections.
5205 6. PT_TLS segment includes only SHF_TLS sections.
5206 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5207 8. PT_DYNAMIC should not contain empty sections at the beginning
5208 (with the possible exception of .dynamic). */
5209 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5210 ((((segment->p_paddr \
5211 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5212 : IS_CONTAINED_BY_VMA (section, segment)) \
5213 && (section->flags & SEC_ALLOC) != 0) \
5214 || IS_NOTE (segment, section)) \
5215 && segment->p_type != PT_GNU_STACK \
5216 && (segment->p_type != PT_TLS \
5217 || (section->flags & SEC_THREAD_LOCAL)) \
5218 && (segment->p_type == PT_LOAD \
5219 || segment->p_type == PT_TLS \
5220 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5221 && (segment->p_type != PT_DYNAMIC \
5222 || SECTION_SIZE (section, segment) > 0 \
5223 || (segment->p_paddr \
5224 ? segment->p_paddr != section->lma \
5225 : segment->p_vaddr != section->vma) \
5226 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5227 == 0)) \
5228 && !section->segment_mark)
5229
5230 /* If the output section of a section in the input segment is NULL,
5231 it is removed from the corresponding output segment. */
5232 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5233 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5234 && section->output_section != NULL)
5235
5236 /* Returns TRUE iff seg1 starts after the end of seg2. */
5237 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5238 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5239
5240 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5241 their VMA address ranges and their LMA address ranges overlap.
5242 It is possible to have overlapping VMA ranges without overlapping LMA
5243 ranges. RedBoot images for example can have both .data and .bss mapped
5244 to the same VMA range, but with the .data section mapped to a different
5245 LMA. */
5246 #define SEGMENT_OVERLAPS(seg1, seg2) \
5247 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5248 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5249 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5250 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5251
5252 /* Initialise the segment mark field. */
5253 for (section = ibfd->sections; section != NULL; section = section->next)
5254 section->segment_mark = FALSE;
5255
5256 /* The Solaris linker creates program headers in which all the
5257 p_paddr fields are zero. When we try to objcopy or strip such a
5258 file, we get confused. Check for this case, and if we find it
5259 don't set the p_paddr_valid fields. */
5260 p_paddr_valid = FALSE;
5261 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5262 i < num_segments;
5263 i++, segment++)
5264 if (segment->p_paddr != 0)
5265 {
5266 p_paddr_valid = TRUE;
5267 break;
5268 }
5269
5270 /* Scan through the segments specified in the program header
5271 of the input BFD. For this first scan we look for overlaps
5272 in the loadable segments. These can be created by weird
5273 parameters to objcopy. Also, fix some solaris weirdness. */
5274 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5275 i < num_segments;
5276 i++, segment++)
5277 {
5278 unsigned int j;
5279 Elf_Internal_Phdr *segment2;
5280
5281 if (segment->p_type == PT_INTERP)
5282 for (section = ibfd->sections; section; section = section->next)
5283 if (IS_SOLARIS_PT_INTERP (segment, section))
5284 {
5285 /* Mininal change so that the normal section to segment
5286 assignment code will work. */
5287 segment->p_vaddr = section->vma;
5288 break;
5289 }
5290
5291 if (segment->p_type != PT_LOAD)
5292 {
5293 /* Remove PT_GNU_RELRO segment. */
5294 if (segment->p_type == PT_GNU_RELRO)
5295 segment->p_type = PT_NULL;
5296 continue;
5297 }
5298
5299 /* Determine if this segment overlaps any previous segments. */
5300 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5301 {
5302 bfd_signed_vma extra_length;
5303
5304 if (segment2->p_type != PT_LOAD
5305 || !SEGMENT_OVERLAPS (segment, segment2))
5306 continue;
5307
5308 /* Merge the two segments together. */
5309 if (segment2->p_vaddr < segment->p_vaddr)
5310 {
5311 /* Extend SEGMENT2 to include SEGMENT and then delete
5312 SEGMENT. */
5313 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5314 - SEGMENT_END (segment2, segment2->p_vaddr));
5315
5316 if (extra_length > 0)
5317 {
5318 segment2->p_memsz += extra_length;
5319 segment2->p_filesz += extra_length;
5320 }
5321
5322 segment->p_type = PT_NULL;
5323
5324 /* Since we have deleted P we must restart the outer loop. */
5325 i = 0;
5326 segment = elf_tdata (ibfd)->phdr;
5327 break;
5328 }
5329 else
5330 {
5331 /* Extend SEGMENT to include SEGMENT2 and then delete
5332 SEGMENT2. */
5333 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5334 - SEGMENT_END (segment, segment->p_vaddr));
5335
5336 if (extra_length > 0)
5337 {
5338 segment->p_memsz += extra_length;
5339 segment->p_filesz += extra_length;
5340 }
5341
5342 segment2->p_type = PT_NULL;
5343 }
5344 }
5345 }
5346
5347 /* The second scan attempts to assign sections to segments. */
5348 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5349 i < num_segments;
5350 i++, segment++)
5351 {
5352 unsigned int section_count;
5353 asection **sections;
5354 asection *output_section;
5355 unsigned int isec;
5356 bfd_vma matching_lma;
5357 bfd_vma suggested_lma;
5358 unsigned int j;
5359 bfd_size_type amt;
5360 asection *first_section;
5361 bfd_boolean first_matching_lma;
5362 bfd_boolean first_suggested_lma;
5363
5364 if (segment->p_type == PT_NULL)
5365 continue;
5366
5367 first_section = NULL;
5368 /* Compute how many sections might be placed into this segment. */
5369 for (section = ibfd->sections, section_count = 0;
5370 section != NULL;
5371 section = section->next)
5372 {
5373 /* Find the first section in the input segment, which may be
5374 removed from the corresponding output segment. */
5375 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5376 {
5377 if (first_section == NULL)
5378 first_section = section;
5379 if (section->output_section != NULL)
5380 ++section_count;
5381 }
5382 }
5383
5384 /* Allocate a segment map big enough to contain
5385 all of the sections we have selected. */
5386 amt = sizeof (struct elf_segment_map);
5387 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5388 map = bfd_zalloc (obfd, amt);
5389 if (map == NULL)
5390 return FALSE;
5391
5392 /* Initialise the fields of the segment map. Default to
5393 using the physical address of the segment in the input BFD. */
5394 map->next = NULL;
5395 map->p_type = segment->p_type;
5396 map->p_flags = segment->p_flags;
5397 map->p_flags_valid = 1;
5398
5399 /* If the first section in the input segment is removed, there is
5400 no need to preserve segment physical address in the corresponding
5401 output segment. */
5402 if (!first_section || first_section->output_section != NULL)
5403 {
5404 map->p_paddr = segment->p_paddr;
5405 map->p_paddr_valid = p_paddr_valid;
5406 }
5407
5408 /* Determine if this segment contains the ELF file header
5409 and if it contains the program headers themselves. */
5410 map->includes_filehdr = (segment->p_offset == 0
5411 && segment->p_filesz >= iehdr->e_ehsize);
5412 map->includes_phdrs = 0;
5413
5414 if (!phdr_included || segment->p_type != PT_LOAD)
5415 {
5416 map->includes_phdrs =
5417 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5418 && (segment->p_offset + segment->p_filesz
5419 >= ((bfd_vma) iehdr->e_phoff
5420 + iehdr->e_phnum * iehdr->e_phentsize)));
5421
5422 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5423 phdr_included = TRUE;
5424 }
5425
5426 if (section_count == 0)
5427 {
5428 /* Special segments, such as the PT_PHDR segment, may contain
5429 no sections, but ordinary, loadable segments should contain
5430 something. They are allowed by the ELF spec however, so only
5431 a warning is produced. */
5432 if (segment->p_type == PT_LOAD)
5433 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5434 " detected, is this intentional ?\n"),
5435 ibfd);
5436
5437 map->count = 0;
5438 *pointer_to_map = map;
5439 pointer_to_map = &map->next;
5440
5441 continue;
5442 }
5443
5444 /* Now scan the sections in the input BFD again and attempt
5445 to add their corresponding output sections to the segment map.
5446 The problem here is how to handle an output section which has
5447 been moved (ie had its LMA changed). There are four possibilities:
5448
5449 1. None of the sections have been moved.
5450 In this case we can continue to use the segment LMA from the
5451 input BFD.
5452
5453 2. All of the sections have been moved by the same amount.
5454 In this case we can change the segment's LMA to match the LMA
5455 of the first section.
5456
5457 3. Some of the sections have been moved, others have not.
5458 In this case those sections which have not been moved can be
5459 placed in the current segment which will have to have its size,
5460 and possibly its LMA changed, and a new segment or segments will
5461 have to be created to contain the other sections.
5462
5463 4. The sections have been moved, but not by the same amount.
5464 In this case we can change the segment's LMA to match the LMA
5465 of the first section and we will have to create a new segment
5466 or segments to contain the other sections.
5467
5468 In order to save time, we allocate an array to hold the section
5469 pointers that we are interested in. As these sections get assigned
5470 to a segment, they are removed from this array. */
5471
5472 sections = bfd_malloc2 (section_count, sizeof (asection *));
5473 if (sections == NULL)
5474 return FALSE;
5475
5476 /* Step One: Scan for segment vs section LMA conflicts.
5477 Also add the sections to the section array allocated above.
5478 Also add the sections to the current segment. In the common
5479 case, where the sections have not been moved, this means that
5480 we have completely filled the segment, and there is nothing
5481 more to do. */
5482 isec = 0;
5483 matching_lma = 0;
5484 suggested_lma = 0;
5485 first_matching_lma = TRUE;
5486 first_suggested_lma = TRUE;
5487
5488 for (section = ibfd->sections;
5489 section != NULL;
5490 section = section->next)
5491 if (section == first_section)
5492 break;
5493
5494 for (j = 0; section != NULL; section = section->next)
5495 {
5496 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5497 {
5498 output_section = section->output_section;
5499
5500 sections[j++] = section;
5501
5502 /* The Solaris native linker always sets p_paddr to 0.
5503 We try to catch that case here, and set it to the
5504 correct value. Note - some backends require that
5505 p_paddr be left as zero. */
5506 if (!p_paddr_valid
5507 && segment->p_vaddr != 0
5508 && !bed->want_p_paddr_set_to_zero
5509 && isec == 0
5510 && output_section->lma != 0
5511 && output_section->vma == (segment->p_vaddr
5512 + (map->includes_filehdr
5513 ? iehdr->e_ehsize
5514 : 0)
5515 + (map->includes_phdrs
5516 ? (iehdr->e_phnum
5517 * iehdr->e_phentsize)
5518 : 0)))
5519 map->p_paddr = segment->p_vaddr;
5520
5521 /* Match up the physical address of the segment with the
5522 LMA address of the output section. */
5523 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5524 || IS_COREFILE_NOTE (segment, section)
5525 || (bed->want_p_paddr_set_to_zero
5526 && IS_CONTAINED_BY_VMA (output_section, segment)))
5527 {
5528 if (first_matching_lma || output_section->lma < matching_lma)
5529 {
5530 matching_lma = output_section->lma;
5531 first_matching_lma = FALSE;
5532 }
5533
5534 /* We assume that if the section fits within the segment
5535 then it does not overlap any other section within that
5536 segment. */
5537 map->sections[isec++] = output_section;
5538 }
5539 else if (first_suggested_lma)
5540 {
5541 suggested_lma = output_section->lma;
5542 first_suggested_lma = FALSE;
5543 }
5544
5545 if (j == section_count)
5546 break;
5547 }
5548 }
5549
5550 BFD_ASSERT (j == section_count);
5551
5552 /* Step Two: Adjust the physical address of the current segment,
5553 if necessary. */
5554 if (isec == section_count)
5555 {
5556 /* All of the sections fitted within the segment as currently
5557 specified. This is the default case. Add the segment to
5558 the list of built segments and carry on to process the next
5559 program header in the input BFD. */
5560 map->count = section_count;
5561 *pointer_to_map = map;
5562 pointer_to_map = &map->next;
5563
5564 if (p_paddr_valid
5565 && !bed->want_p_paddr_set_to_zero
5566 && matching_lma != map->p_paddr
5567 && !map->includes_filehdr
5568 && !map->includes_phdrs)
5569 /* There is some padding before the first section in the
5570 segment. So, we must account for that in the output
5571 segment's vma. */
5572 map->p_vaddr_offset = matching_lma - map->p_paddr;
5573
5574 free (sections);
5575 continue;
5576 }
5577 else
5578 {
5579 if (!first_matching_lma)
5580 {
5581 /* At least one section fits inside the current segment.
5582 Keep it, but modify its physical address to match the
5583 LMA of the first section that fitted. */
5584 map->p_paddr = matching_lma;
5585 }
5586 else
5587 {
5588 /* None of the sections fitted inside the current segment.
5589 Change the current segment's physical address to match
5590 the LMA of the first section. */
5591 map->p_paddr = suggested_lma;
5592 }
5593
5594 /* Offset the segment physical address from the lma
5595 to allow for space taken up by elf headers. */
5596 if (map->includes_filehdr)
5597 {
5598 if (map->p_paddr >= iehdr->e_ehsize)
5599 map->p_paddr -= iehdr->e_ehsize;
5600 else
5601 {
5602 map->includes_filehdr = FALSE;
5603 map->includes_phdrs = FALSE;
5604 }
5605 }
5606
5607 if (map->includes_phdrs)
5608 {
5609 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5610 {
5611 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5612
5613 /* iehdr->e_phnum is just an estimate of the number
5614 of program headers that we will need. Make a note
5615 here of the number we used and the segment we chose
5616 to hold these headers, so that we can adjust the
5617 offset when we know the correct value. */
5618 phdr_adjust_num = iehdr->e_phnum;
5619 phdr_adjust_seg = map;
5620 }
5621 else
5622 map->includes_phdrs = FALSE;
5623 }
5624 }
5625
5626 /* Step Three: Loop over the sections again, this time assigning
5627 those that fit to the current segment and removing them from the
5628 sections array; but making sure not to leave large gaps. Once all
5629 possible sections have been assigned to the current segment it is
5630 added to the list of built segments and if sections still remain
5631 to be assigned, a new segment is constructed before repeating
5632 the loop. */
5633 isec = 0;
5634 do
5635 {
5636 map->count = 0;
5637 suggested_lma = 0;
5638 first_suggested_lma = TRUE;
5639
5640 /* Fill the current segment with sections that fit. */
5641 for (j = 0; j < section_count; j++)
5642 {
5643 section = sections[j];
5644
5645 if (section == NULL)
5646 continue;
5647
5648 output_section = section->output_section;
5649
5650 BFD_ASSERT (output_section != NULL);
5651
5652 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5653 || IS_COREFILE_NOTE (segment, section))
5654 {
5655 if (map->count == 0)
5656 {
5657 /* If the first section in a segment does not start at
5658 the beginning of the segment, then something is
5659 wrong. */
5660 if (output_section->lma
5661 != (map->p_paddr
5662 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5663 + (map->includes_phdrs
5664 ? iehdr->e_phnum * iehdr->e_phentsize
5665 : 0)))
5666 abort ();
5667 }
5668 else
5669 {
5670 asection *prev_sec;
5671
5672 prev_sec = map->sections[map->count - 1];
5673
5674 /* If the gap between the end of the previous section
5675 and the start of this section is more than
5676 maxpagesize then we need to start a new segment. */
5677 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5678 maxpagesize)
5679 < BFD_ALIGN (output_section->lma, maxpagesize))
5680 || (prev_sec->lma + prev_sec->size
5681 > output_section->lma))
5682 {
5683 if (first_suggested_lma)
5684 {
5685 suggested_lma = output_section->lma;
5686 first_suggested_lma = FALSE;
5687 }
5688
5689 continue;
5690 }
5691 }
5692
5693 map->sections[map->count++] = output_section;
5694 ++isec;
5695 sections[j] = NULL;
5696 section->segment_mark = TRUE;
5697 }
5698 else if (first_suggested_lma)
5699 {
5700 suggested_lma = output_section->lma;
5701 first_suggested_lma = FALSE;
5702 }
5703 }
5704
5705 BFD_ASSERT (map->count > 0);
5706
5707 /* Add the current segment to the list of built segments. */
5708 *pointer_to_map = map;
5709 pointer_to_map = &map->next;
5710
5711 if (isec < section_count)
5712 {
5713 /* We still have not allocated all of the sections to
5714 segments. Create a new segment here, initialise it
5715 and carry on looping. */
5716 amt = sizeof (struct elf_segment_map);
5717 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5718 map = bfd_alloc (obfd, amt);
5719 if (map == NULL)
5720 {
5721 free (sections);
5722 return FALSE;
5723 }
5724
5725 /* Initialise the fields of the segment map. Set the physical
5726 physical address to the LMA of the first section that has
5727 not yet been assigned. */
5728 map->next = NULL;
5729 map->p_type = segment->p_type;
5730 map->p_flags = segment->p_flags;
5731 map->p_flags_valid = 1;
5732 map->p_paddr = suggested_lma;
5733 map->p_paddr_valid = p_paddr_valid;
5734 map->includes_filehdr = 0;
5735 map->includes_phdrs = 0;
5736 }
5737 }
5738 while (isec < section_count);
5739
5740 free (sections);
5741 }
5742
5743 elf_tdata (obfd)->segment_map = map_first;
5744
5745 /* If we had to estimate the number of program headers that were
5746 going to be needed, then check our estimate now and adjust
5747 the offset if necessary. */
5748 if (phdr_adjust_seg != NULL)
5749 {
5750 unsigned int count;
5751
5752 for (count = 0, map = map_first; map != NULL; map = map->next)
5753 count++;
5754
5755 if (count > phdr_adjust_num)
5756 phdr_adjust_seg->p_paddr
5757 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5758 }
5759
5760 #undef SEGMENT_END
5761 #undef SECTION_SIZE
5762 #undef IS_CONTAINED_BY_VMA
5763 #undef IS_CONTAINED_BY_LMA
5764 #undef IS_NOTE
5765 #undef IS_COREFILE_NOTE
5766 #undef IS_SOLARIS_PT_INTERP
5767 #undef IS_SECTION_IN_INPUT_SEGMENT
5768 #undef INCLUDE_SECTION_IN_SEGMENT
5769 #undef SEGMENT_AFTER_SEGMENT
5770 #undef SEGMENT_OVERLAPS
5771 return TRUE;
5772 }
5773
5774 /* Copy ELF program header information. */
5775
5776 static bfd_boolean
5777 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5778 {
5779 Elf_Internal_Ehdr *iehdr;
5780 struct elf_segment_map *map;
5781 struct elf_segment_map *map_first;
5782 struct elf_segment_map **pointer_to_map;
5783 Elf_Internal_Phdr *segment;
5784 unsigned int i;
5785 unsigned int num_segments;
5786 bfd_boolean phdr_included = FALSE;
5787 bfd_boolean p_paddr_valid;
5788
5789 iehdr = elf_elfheader (ibfd);
5790
5791 map_first = NULL;
5792 pointer_to_map = &map_first;
5793
5794 /* If all the segment p_paddr fields are zero, don't set
5795 map->p_paddr_valid. */
5796 p_paddr_valid = FALSE;
5797 num_segments = elf_elfheader (ibfd)->e_phnum;
5798 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5799 i < num_segments;
5800 i++, segment++)
5801 if (segment->p_paddr != 0)
5802 {
5803 p_paddr_valid = TRUE;
5804 break;
5805 }
5806
5807 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5808 i < num_segments;
5809 i++, segment++)
5810 {
5811 asection *section;
5812 unsigned int section_count;
5813 bfd_size_type amt;
5814 Elf_Internal_Shdr *this_hdr;
5815 asection *first_section = NULL;
5816 asection *lowest_section = NULL;
5817
5818 /* Compute how many sections are in this segment. */
5819 for (section = ibfd->sections, section_count = 0;
5820 section != NULL;
5821 section = section->next)
5822 {
5823 this_hdr = &(elf_section_data(section)->this_hdr);
5824 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5825 {
5826 if (!first_section)
5827 first_section = lowest_section = section;
5828 if (section->lma < lowest_section->lma)
5829 lowest_section = section;
5830 section_count++;
5831 }
5832 }
5833
5834 /* Allocate a segment map big enough to contain
5835 all of the sections we have selected. */
5836 amt = sizeof (struct elf_segment_map);
5837 if (section_count != 0)
5838 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5839 map = bfd_zalloc (obfd, amt);
5840 if (map == NULL)
5841 return FALSE;
5842
5843 /* Initialize the fields of the output segment map with the
5844 input segment. */
5845 map->next = NULL;
5846 map->p_type = segment->p_type;
5847 map->p_flags = segment->p_flags;
5848 map->p_flags_valid = 1;
5849 map->p_paddr = segment->p_paddr;
5850 map->p_paddr_valid = p_paddr_valid;
5851 map->p_align = segment->p_align;
5852 map->p_align_valid = 1;
5853 map->p_vaddr_offset = 0;
5854
5855 if (map->p_type == PT_GNU_RELRO
5856 && segment->p_filesz == segment->p_memsz)
5857 {
5858 /* The PT_GNU_RELRO segment may contain the first a few
5859 bytes in the .got.plt section even if the whole .got.plt
5860 section isn't in the PT_GNU_RELRO segment. We won't
5861 change the size of the PT_GNU_RELRO segment. */
5862 map->p_size = segment->p_filesz;
5863 map->p_size_valid = 1;
5864 }
5865
5866 /* Determine if this segment contains the ELF file header
5867 and if it contains the program headers themselves. */
5868 map->includes_filehdr = (segment->p_offset == 0
5869 && segment->p_filesz >= iehdr->e_ehsize);
5870
5871 map->includes_phdrs = 0;
5872 if (! phdr_included || segment->p_type != PT_LOAD)
5873 {
5874 map->includes_phdrs =
5875 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5876 && (segment->p_offset + segment->p_filesz
5877 >= ((bfd_vma) iehdr->e_phoff
5878 + iehdr->e_phnum * iehdr->e_phentsize)));
5879
5880 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5881 phdr_included = TRUE;
5882 }
5883
5884 if (!map->includes_phdrs
5885 && !map->includes_filehdr
5886 && map->p_paddr_valid)
5887 /* There is some other padding before the first section. */
5888 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5889 - segment->p_paddr);
5890
5891 if (section_count != 0)
5892 {
5893 unsigned int isec = 0;
5894
5895 for (section = first_section;
5896 section != NULL;
5897 section = section->next)
5898 {
5899 this_hdr = &(elf_section_data(section)->this_hdr);
5900 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5901 {
5902 map->sections[isec++] = section->output_section;
5903 if (isec == section_count)
5904 break;
5905 }
5906 }
5907 }
5908
5909 map->count = section_count;
5910 *pointer_to_map = map;
5911 pointer_to_map = &map->next;
5912 }
5913
5914 elf_tdata (obfd)->segment_map = map_first;
5915 return TRUE;
5916 }
5917
5918 /* Copy private BFD data. This copies or rewrites ELF program header
5919 information. */
5920
5921 static bfd_boolean
5922 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5923 {
5924 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5925 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5926 return TRUE;
5927
5928 if (elf_tdata (ibfd)->phdr == NULL)
5929 return TRUE;
5930
5931 if (ibfd->xvec == obfd->xvec)
5932 {
5933 /* Check to see if any sections in the input BFD
5934 covered by ELF program header have changed. */
5935 Elf_Internal_Phdr *segment;
5936 asection *section, *osec;
5937 unsigned int i, num_segments;
5938 Elf_Internal_Shdr *this_hdr;
5939 const struct elf_backend_data *bed;
5940
5941 bed = get_elf_backend_data (ibfd);
5942
5943 /* Regenerate the segment map if p_paddr is set to 0. */
5944 if (bed->want_p_paddr_set_to_zero)
5945 goto rewrite;
5946
5947 /* Initialize the segment mark field. */
5948 for (section = obfd->sections; section != NULL;
5949 section = section->next)
5950 section->segment_mark = FALSE;
5951
5952 num_segments = elf_elfheader (ibfd)->e_phnum;
5953 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5954 i < num_segments;
5955 i++, segment++)
5956 {
5957 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5958 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5959 which severly confuses things, so always regenerate the segment
5960 map in this case. */
5961 if (segment->p_paddr == 0
5962 && segment->p_memsz == 0
5963 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5964 goto rewrite;
5965
5966 for (section = ibfd->sections;
5967 section != NULL; section = section->next)
5968 {
5969 /* We mark the output section so that we know it comes
5970 from the input BFD. */
5971 osec = section->output_section;
5972 if (osec)
5973 osec->segment_mark = TRUE;
5974
5975 /* Check if this section is covered by the segment. */
5976 this_hdr = &(elf_section_data(section)->this_hdr);
5977 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5978 {
5979 /* FIXME: Check if its output section is changed or
5980 removed. What else do we need to check? */
5981 if (osec == NULL
5982 || section->flags != osec->flags
5983 || section->lma != osec->lma
5984 || section->vma != osec->vma
5985 || section->size != osec->size
5986 || section->rawsize != osec->rawsize
5987 || section->alignment_power != osec->alignment_power)
5988 goto rewrite;
5989 }
5990 }
5991 }
5992
5993 /* Check to see if any output section do not come from the
5994 input BFD. */
5995 for (section = obfd->sections; section != NULL;
5996 section = section->next)
5997 {
5998 if (section->segment_mark == FALSE)
5999 goto rewrite;
6000 else
6001 section->segment_mark = FALSE;
6002 }
6003
6004 return copy_elf_program_header (ibfd, obfd);
6005 }
6006
6007 rewrite:
6008 return rewrite_elf_program_header (ibfd, obfd);
6009 }
6010
6011 /* Initialize private output section information from input section. */
6012
6013 bfd_boolean
6014 _bfd_elf_init_private_section_data (bfd *ibfd,
6015 asection *isec,
6016 bfd *obfd,
6017 asection *osec,
6018 struct bfd_link_info *link_info)
6019
6020 {
6021 Elf_Internal_Shdr *ihdr, *ohdr;
6022 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
6023
6024 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6025 || obfd->xvec->flavour != bfd_target_elf_flavour)
6026 return TRUE;
6027
6028 /* Don't copy the output ELF section type from input if the
6029 output BFD section flags have been set to something different.
6030 elf_fake_sections will set ELF section type based on BFD
6031 section flags. */
6032 if (elf_section_type (osec) == SHT_NULL
6033 && (osec->flags == isec->flags || !osec->flags))
6034 elf_section_type (osec) = elf_section_type (isec);
6035
6036 /* FIXME: Is this correct for all OS/PROC specific flags? */
6037 elf_section_flags (osec) |= (elf_section_flags (isec)
6038 & (SHF_MASKOS | SHF_MASKPROC));
6039
6040 /* Set things up for objcopy and relocatable link. The output
6041 SHT_GROUP section will have its elf_next_in_group pointing back
6042 to the input group members. Ignore linker created group section.
6043 See elfNN_ia64_object_p in elfxx-ia64.c. */
6044 if (need_group)
6045 {
6046 if (elf_sec_group (isec) == NULL
6047 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6048 {
6049 if (elf_section_flags (isec) & SHF_GROUP)
6050 elf_section_flags (osec) |= SHF_GROUP;
6051 elf_next_in_group (osec) = elf_next_in_group (isec);
6052 elf_section_data (osec)->group = elf_section_data (isec)->group;
6053 }
6054 }
6055
6056 ihdr = &elf_section_data (isec)->this_hdr;
6057
6058 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6059 don't use the output section of the linked-to section since it
6060 may be NULL at this point. */
6061 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6062 {
6063 ohdr = &elf_section_data (osec)->this_hdr;
6064 ohdr->sh_flags |= SHF_LINK_ORDER;
6065 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6066 }
6067
6068 osec->use_rela_p = isec->use_rela_p;
6069
6070 return TRUE;
6071 }
6072
6073 /* Copy private section information. This copies over the entsize
6074 field, and sometimes the info field. */
6075
6076 bfd_boolean
6077 _bfd_elf_copy_private_section_data (bfd *ibfd,
6078 asection *isec,
6079 bfd *obfd,
6080 asection *osec)
6081 {
6082 Elf_Internal_Shdr *ihdr, *ohdr;
6083
6084 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6085 || obfd->xvec->flavour != bfd_target_elf_flavour)
6086 return TRUE;
6087
6088 ihdr = &elf_section_data (isec)->this_hdr;
6089 ohdr = &elf_section_data (osec)->this_hdr;
6090
6091 ohdr->sh_entsize = ihdr->sh_entsize;
6092
6093 if (ihdr->sh_type == SHT_SYMTAB
6094 || ihdr->sh_type == SHT_DYNSYM
6095 || ihdr->sh_type == SHT_GNU_verneed
6096 || ihdr->sh_type == SHT_GNU_verdef)
6097 ohdr->sh_info = ihdr->sh_info;
6098
6099 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6100 NULL);
6101 }
6102
6103 /* Copy private header information. */
6104
6105 bfd_boolean
6106 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6107 {
6108 asection *isec;
6109
6110 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6111 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6112 return TRUE;
6113
6114 /* Copy over private BFD data if it has not already been copied.
6115 This must be done here, rather than in the copy_private_bfd_data
6116 entry point, because the latter is called after the section
6117 contents have been set, which means that the program headers have
6118 already been worked out. */
6119 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6120 {
6121 if (! copy_private_bfd_data (ibfd, obfd))
6122 return FALSE;
6123 }
6124
6125 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6126 but this might be wrong if we deleted the group section. */
6127 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6128 if (elf_section_type (isec) == SHT_GROUP
6129 && isec->output_section == NULL)
6130 {
6131 asection *first = elf_next_in_group (isec);
6132 asection *s = first;
6133 while (s != NULL)
6134 {
6135 if (s->output_section != NULL)
6136 {
6137 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6138 elf_group_name (s->output_section) = NULL;
6139 }
6140 s = elf_next_in_group (s);
6141 if (s == first)
6142 break;
6143 }
6144 }
6145
6146 return TRUE;
6147 }
6148
6149 /* Copy private symbol information. If this symbol is in a section
6150 which we did not map into a BFD section, try to map the section
6151 index correctly. We use special macro definitions for the mapped
6152 section indices; these definitions are interpreted by the
6153 swap_out_syms function. */
6154
6155 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6156 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6157 #define MAP_STRTAB (SHN_HIOS + 3)
6158 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6159 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6160
6161 bfd_boolean
6162 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6163 asymbol *isymarg,
6164 bfd *obfd,
6165 asymbol *osymarg)
6166 {
6167 elf_symbol_type *isym, *osym;
6168
6169 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6170 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6171 return TRUE;
6172
6173 isym = elf_symbol_from (ibfd, isymarg);
6174 osym = elf_symbol_from (obfd, osymarg);
6175
6176 if (isym != NULL
6177 && isym->internal_elf_sym.st_shndx != 0
6178 && osym != NULL
6179 && bfd_is_abs_section (isym->symbol.section))
6180 {
6181 unsigned int shndx;
6182
6183 shndx = isym->internal_elf_sym.st_shndx;
6184 if (shndx == elf_onesymtab (ibfd))
6185 shndx = MAP_ONESYMTAB;
6186 else if (shndx == elf_dynsymtab (ibfd))
6187 shndx = MAP_DYNSYMTAB;
6188 else if (shndx == elf_tdata (ibfd)->strtab_section)
6189 shndx = MAP_STRTAB;
6190 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6191 shndx = MAP_SHSTRTAB;
6192 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6193 shndx = MAP_SYM_SHNDX;
6194 osym->internal_elf_sym.st_shndx = shndx;
6195 }
6196
6197 return TRUE;
6198 }
6199
6200 /* Swap out the symbols. */
6201
6202 static bfd_boolean
6203 swap_out_syms (bfd *abfd,
6204 struct bfd_strtab_hash **sttp,
6205 int relocatable_p)
6206 {
6207 const struct elf_backend_data *bed;
6208 int symcount;
6209 asymbol **syms;
6210 struct bfd_strtab_hash *stt;
6211 Elf_Internal_Shdr *symtab_hdr;
6212 Elf_Internal_Shdr *symtab_shndx_hdr;
6213 Elf_Internal_Shdr *symstrtab_hdr;
6214 bfd_byte *outbound_syms;
6215 bfd_byte *outbound_shndx;
6216 int idx;
6217 bfd_size_type amt;
6218 bfd_boolean name_local_sections;
6219
6220 if (!elf_map_symbols (abfd))
6221 return FALSE;
6222
6223 /* Dump out the symtabs. */
6224 stt = _bfd_elf_stringtab_init ();
6225 if (stt == NULL)
6226 return FALSE;
6227
6228 bed = get_elf_backend_data (abfd);
6229 symcount = bfd_get_symcount (abfd);
6230 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6231 symtab_hdr->sh_type = SHT_SYMTAB;
6232 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6233 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6234 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6235 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6236
6237 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6238 symstrtab_hdr->sh_type = SHT_STRTAB;
6239
6240 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6241 if (outbound_syms == NULL)
6242 {
6243 _bfd_stringtab_free (stt);
6244 return FALSE;
6245 }
6246 symtab_hdr->contents = outbound_syms;
6247
6248 outbound_shndx = NULL;
6249 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6250 if (symtab_shndx_hdr->sh_name != 0)
6251 {
6252 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6253 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6254 sizeof (Elf_External_Sym_Shndx));
6255 if (outbound_shndx == NULL)
6256 {
6257 _bfd_stringtab_free (stt);
6258 return FALSE;
6259 }
6260
6261 symtab_shndx_hdr->contents = outbound_shndx;
6262 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6263 symtab_shndx_hdr->sh_size = amt;
6264 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6265 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6266 }
6267
6268 /* Now generate the data (for "contents"). */
6269 {
6270 /* Fill in zeroth symbol and swap it out. */
6271 Elf_Internal_Sym sym;
6272 sym.st_name = 0;
6273 sym.st_value = 0;
6274 sym.st_size = 0;
6275 sym.st_info = 0;
6276 sym.st_other = 0;
6277 sym.st_shndx = SHN_UNDEF;
6278 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6279 outbound_syms += bed->s->sizeof_sym;
6280 if (outbound_shndx != NULL)
6281 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6282 }
6283
6284 name_local_sections
6285 = (bed->elf_backend_name_local_section_symbols
6286 && bed->elf_backend_name_local_section_symbols (abfd));
6287
6288 syms = bfd_get_outsymbols (abfd);
6289 for (idx = 0; idx < symcount; idx++)
6290 {
6291 Elf_Internal_Sym sym;
6292 bfd_vma value = syms[idx]->value;
6293 elf_symbol_type *type_ptr;
6294 flagword flags = syms[idx]->flags;
6295 int type;
6296
6297 if (!name_local_sections
6298 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6299 {
6300 /* Local section symbols have no name. */
6301 sym.st_name = 0;
6302 }
6303 else
6304 {
6305 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6306 syms[idx]->name,
6307 TRUE, FALSE);
6308 if (sym.st_name == (unsigned long) -1)
6309 {
6310 _bfd_stringtab_free (stt);
6311 return FALSE;
6312 }
6313 }
6314
6315 type_ptr = elf_symbol_from (abfd, syms[idx]);
6316
6317 if ((flags & BSF_SECTION_SYM) == 0
6318 && bfd_is_com_section (syms[idx]->section))
6319 {
6320 /* ELF common symbols put the alignment into the `value' field,
6321 and the size into the `size' field. This is backwards from
6322 how BFD handles it, so reverse it here. */
6323 sym.st_size = value;
6324 if (type_ptr == NULL
6325 || type_ptr->internal_elf_sym.st_value == 0)
6326 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6327 else
6328 sym.st_value = type_ptr->internal_elf_sym.st_value;
6329 sym.st_shndx = _bfd_elf_section_from_bfd_section
6330 (abfd, syms[idx]->section);
6331 }
6332 else
6333 {
6334 asection *sec = syms[idx]->section;
6335 unsigned int shndx;
6336
6337 if (sec->output_section)
6338 {
6339 value += sec->output_offset;
6340 sec = sec->output_section;
6341 }
6342
6343 /* Don't add in the section vma for relocatable output. */
6344 if (! relocatable_p)
6345 value += sec->vma;
6346 sym.st_value = value;
6347 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6348
6349 if (bfd_is_abs_section (sec)
6350 && type_ptr != NULL
6351 && type_ptr->internal_elf_sym.st_shndx != 0)
6352 {
6353 /* This symbol is in a real ELF section which we did
6354 not create as a BFD section. Undo the mapping done
6355 by copy_private_symbol_data. */
6356 shndx = type_ptr->internal_elf_sym.st_shndx;
6357 switch (shndx)
6358 {
6359 case MAP_ONESYMTAB:
6360 shndx = elf_onesymtab (abfd);
6361 break;
6362 case MAP_DYNSYMTAB:
6363 shndx = elf_dynsymtab (abfd);
6364 break;
6365 case MAP_STRTAB:
6366 shndx = elf_tdata (abfd)->strtab_section;
6367 break;
6368 case MAP_SHSTRTAB:
6369 shndx = elf_tdata (abfd)->shstrtab_section;
6370 break;
6371 case MAP_SYM_SHNDX:
6372 shndx = elf_tdata (abfd)->symtab_shndx_section;
6373 break;
6374 default:
6375 break;
6376 }
6377 }
6378 else
6379 {
6380 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6381
6382 if (shndx == SHN_BAD)
6383 {
6384 asection *sec2;
6385
6386 /* Writing this would be a hell of a lot easier if
6387 we had some decent documentation on bfd, and
6388 knew what to expect of the library, and what to
6389 demand of applications. For example, it
6390 appears that `objcopy' might not set the
6391 section of a symbol to be a section that is
6392 actually in the output file. */
6393 sec2 = bfd_get_section_by_name (abfd, sec->name);
6394 if (sec2 == NULL)
6395 {
6396 _bfd_error_handler (_("\
6397 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6398 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6399 sec->name);
6400 bfd_set_error (bfd_error_invalid_operation);
6401 _bfd_stringtab_free (stt);
6402 return FALSE;
6403 }
6404
6405 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6406 BFD_ASSERT (shndx != SHN_BAD);
6407 }
6408 }
6409
6410 sym.st_shndx = shndx;
6411 }
6412
6413 if ((flags & BSF_THREAD_LOCAL) != 0)
6414 type = STT_TLS;
6415 else if ((flags & BSF_FUNCTION) != 0)
6416 type = STT_FUNC;
6417 else if ((flags & BSF_OBJECT) != 0)
6418 type = STT_OBJECT;
6419 else if ((flags & BSF_RELC) != 0)
6420 type = STT_RELC;
6421 else if ((flags & BSF_SRELC) != 0)
6422 type = STT_SRELC;
6423 else
6424 type = STT_NOTYPE;
6425
6426 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6427 type = STT_TLS;
6428
6429 /* Processor-specific types. */
6430 if (type_ptr != NULL
6431 && bed->elf_backend_get_symbol_type)
6432 type = ((*bed->elf_backend_get_symbol_type)
6433 (&type_ptr->internal_elf_sym, type));
6434
6435 if (flags & BSF_SECTION_SYM)
6436 {
6437 if (flags & BSF_GLOBAL)
6438 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6439 else
6440 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6441 }
6442 else if (bfd_is_com_section (syms[idx]->section))
6443 {
6444 #ifdef USE_STT_COMMON
6445 if (type == STT_OBJECT)
6446 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6447 else
6448 #else
6449 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6450 #endif
6451 }
6452 else if (bfd_is_und_section (syms[idx]->section))
6453 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6454 ? STB_WEAK
6455 : STB_GLOBAL),
6456 type);
6457 else if (flags & BSF_FILE)
6458 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6459 else
6460 {
6461 int bind = STB_LOCAL;
6462
6463 if (flags & BSF_LOCAL)
6464 bind = STB_LOCAL;
6465 else if (flags & BSF_WEAK)
6466 bind = STB_WEAK;
6467 else if (flags & BSF_GLOBAL)
6468 bind = STB_GLOBAL;
6469
6470 sym.st_info = ELF_ST_INFO (bind, type);
6471 }
6472
6473 if (type_ptr != NULL)
6474 sym.st_other = type_ptr->internal_elf_sym.st_other;
6475 else
6476 sym.st_other = 0;
6477
6478 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6479 outbound_syms += bed->s->sizeof_sym;
6480 if (outbound_shndx != NULL)
6481 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6482 }
6483
6484 *sttp = stt;
6485 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6486 symstrtab_hdr->sh_type = SHT_STRTAB;
6487
6488 symstrtab_hdr->sh_flags = 0;
6489 symstrtab_hdr->sh_addr = 0;
6490 symstrtab_hdr->sh_entsize = 0;
6491 symstrtab_hdr->sh_link = 0;
6492 symstrtab_hdr->sh_info = 0;
6493 symstrtab_hdr->sh_addralign = 1;
6494
6495 return TRUE;
6496 }
6497
6498 /* Return the number of bytes required to hold the symtab vector.
6499
6500 Note that we base it on the count plus 1, since we will null terminate
6501 the vector allocated based on this size. However, the ELF symbol table
6502 always has a dummy entry as symbol #0, so it ends up even. */
6503
6504 long
6505 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6506 {
6507 long symcount;
6508 long symtab_size;
6509 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6510
6511 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6512 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6513 if (symcount > 0)
6514 symtab_size -= sizeof (asymbol *);
6515
6516 return symtab_size;
6517 }
6518
6519 long
6520 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6521 {
6522 long symcount;
6523 long symtab_size;
6524 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6525
6526 if (elf_dynsymtab (abfd) == 0)
6527 {
6528 bfd_set_error (bfd_error_invalid_operation);
6529 return -1;
6530 }
6531
6532 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6533 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6534 if (symcount > 0)
6535 symtab_size -= sizeof (asymbol *);
6536
6537 return symtab_size;
6538 }
6539
6540 long
6541 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6542 sec_ptr asect)
6543 {
6544 return (asect->reloc_count + 1) * sizeof (arelent *);
6545 }
6546
6547 /* Canonicalize the relocs. */
6548
6549 long
6550 _bfd_elf_canonicalize_reloc (bfd *abfd,
6551 sec_ptr section,
6552 arelent **relptr,
6553 asymbol **symbols)
6554 {
6555 arelent *tblptr;
6556 unsigned int i;
6557 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6558
6559 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6560 return -1;
6561
6562 tblptr = section->relocation;
6563 for (i = 0; i < section->reloc_count; i++)
6564 *relptr++ = tblptr++;
6565
6566 *relptr = NULL;
6567
6568 return section->reloc_count;
6569 }
6570
6571 long
6572 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6573 {
6574 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6575 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6576
6577 if (symcount >= 0)
6578 bfd_get_symcount (abfd) = symcount;
6579 return symcount;
6580 }
6581
6582 long
6583 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6584 asymbol **allocation)
6585 {
6586 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6587 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6588
6589 if (symcount >= 0)
6590 bfd_get_dynamic_symcount (abfd) = symcount;
6591 return symcount;
6592 }
6593
6594 /* Return the size required for the dynamic reloc entries. Any loadable
6595 section that was actually installed in the BFD, and has type SHT_REL
6596 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6597 dynamic reloc section. */
6598
6599 long
6600 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6601 {
6602 long ret;
6603 asection *s;
6604
6605 if (elf_dynsymtab (abfd) == 0)
6606 {
6607 bfd_set_error (bfd_error_invalid_operation);
6608 return -1;
6609 }
6610
6611 ret = sizeof (arelent *);
6612 for (s = abfd->sections; s != NULL; s = s->next)
6613 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6614 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6615 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6616 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6617 * sizeof (arelent *));
6618
6619 return ret;
6620 }
6621
6622 /* Canonicalize the dynamic relocation entries. Note that we return the
6623 dynamic relocations as a single block, although they are actually
6624 associated with particular sections; the interface, which was
6625 designed for SunOS style shared libraries, expects that there is only
6626 one set of dynamic relocs. Any loadable section that was actually
6627 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6628 dynamic symbol table, is considered to be a dynamic reloc section. */
6629
6630 long
6631 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6632 arelent **storage,
6633 asymbol **syms)
6634 {
6635 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6636 asection *s;
6637 long ret;
6638
6639 if (elf_dynsymtab (abfd) == 0)
6640 {
6641 bfd_set_error (bfd_error_invalid_operation);
6642 return -1;
6643 }
6644
6645 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6646 ret = 0;
6647 for (s = abfd->sections; s != NULL; s = s->next)
6648 {
6649 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6650 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6651 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6652 {
6653 arelent *p;
6654 long count, i;
6655
6656 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6657 return -1;
6658 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6659 p = s->relocation;
6660 for (i = 0; i < count; i++)
6661 *storage++ = p++;
6662 ret += count;
6663 }
6664 }
6665
6666 *storage = NULL;
6667
6668 return ret;
6669 }
6670 \f
6671 /* Read in the version information. */
6672
6673 bfd_boolean
6674 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6675 {
6676 bfd_byte *contents = NULL;
6677 unsigned int freeidx = 0;
6678
6679 if (elf_dynverref (abfd) != 0)
6680 {
6681 Elf_Internal_Shdr *hdr;
6682 Elf_External_Verneed *everneed;
6683 Elf_Internal_Verneed *iverneed;
6684 unsigned int i;
6685 bfd_byte *contents_end;
6686
6687 hdr = &elf_tdata (abfd)->dynverref_hdr;
6688
6689 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6690 sizeof (Elf_Internal_Verneed));
6691 if (elf_tdata (abfd)->verref == NULL)
6692 goto error_return;
6693
6694 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6695
6696 contents = bfd_malloc (hdr->sh_size);
6697 if (contents == NULL)
6698 {
6699 error_return_verref:
6700 elf_tdata (abfd)->verref = NULL;
6701 elf_tdata (abfd)->cverrefs = 0;
6702 goto error_return;
6703 }
6704 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6705 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6706 goto error_return_verref;
6707
6708 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6709 goto error_return_verref;
6710
6711 BFD_ASSERT (sizeof (Elf_External_Verneed)
6712 == sizeof (Elf_External_Vernaux));
6713 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6714 everneed = (Elf_External_Verneed *) contents;
6715 iverneed = elf_tdata (abfd)->verref;
6716 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6717 {
6718 Elf_External_Vernaux *evernaux;
6719 Elf_Internal_Vernaux *ivernaux;
6720 unsigned int j;
6721
6722 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6723
6724 iverneed->vn_bfd = abfd;
6725
6726 iverneed->vn_filename =
6727 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6728 iverneed->vn_file);
6729 if (iverneed->vn_filename == NULL)
6730 goto error_return_verref;
6731
6732 if (iverneed->vn_cnt == 0)
6733 iverneed->vn_auxptr = NULL;
6734 else
6735 {
6736 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6737 sizeof (Elf_Internal_Vernaux));
6738 if (iverneed->vn_auxptr == NULL)
6739 goto error_return_verref;
6740 }
6741
6742 if (iverneed->vn_aux
6743 > (size_t) (contents_end - (bfd_byte *) everneed))
6744 goto error_return_verref;
6745
6746 evernaux = ((Elf_External_Vernaux *)
6747 ((bfd_byte *) everneed + iverneed->vn_aux));
6748 ivernaux = iverneed->vn_auxptr;
6749 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6750 {
6751 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6752
6753 ivernaux->vna_nodename =
6754 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6755 ivernaux->vna_name);
6756 if (ivernaux->vna_nodename == NULL)
6757 goto error_return_verref;
6758
6759 if (j + 1 < iverneed->vn_cnt)
6760 ivernaux->vna_nextptr = ivernaux + 1;
6761 else
6762 ivernaux->vna_nextptr = NULL;
6763
6764 if (ivernaux->vna_next
6765 > (size_t) (contents_end - (bfd_byte *) evernaux))
6766 goto error_return_verref;
6767
6768 evernaux = ((Elf_External_Vernaux *)
6769 ((bfd_byte *) evernaux + ivernaux->vna_next));
6770
6771 if (ivernaux->vna_other > freeidx)
6772 freeidx = ivernaux->vna_other;
6773 }
6774
6775 if (i + 1 < hdr->sh_info)
6776 iverneed->vn_nextref = iverneed + 1;
6777 else
6778 iverneed->vn_nextref = NULL;
6779
6780 if (iverneed->vn_next
6781 > (size_t) (contents_end - (bfd_byte *) everneed))
6782 goto error_return_verref;
6783
6784 everneed = ((Elf_External_Verneed *)
6785 ((bfd_byte *) everneed + iverneed->vn_next));
6786 }
6787
6788 free (contents);
6789 contents = NULL;
6790 }
6791
6792 if (elf_dynverdef (abfd) != 0)
6793 {
6794 Elf_Internal_Shdr *hdr;
6795 Elf_External_Verdef *everdef;
6796 Elf_Internal_Verdef *iverdef;
6797 Elf_Internal_Verdef *iverdefarr;
6798 Elf_Internal_Verdef iverdefmem;
6799 unsigned int i;
6800 unsigned int maxidx;
6801 bfd_byte *contents_end_def, *contents_end_aux;
6802
6803 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6804
6805 contents = bfd_malloc (hdr->sh_size);
6806 if (contents == NULL)
6807 goto error_return;
6808 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6809 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6810 goto error_return;
6811
6812 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6813 goto error_return;
6814
6815 BFD_ASSERT (sizeof (Elf_External_Verdef)
6816 >= sizeof (Elf_External_Verdaux));
6817 contents_end_def = contents + hdr->sh_size
6818 - sizeof (Elf_External_Verdef);
6819 contents_end_aux = contents + hdr->sh_size
6820 - sizeof (Elf_External_Verdaux);
6821
6822 /* We know the number of entries in the section but not the maximum
6823 index. Therefore we have to run through all entries and find
6824 the maximum. */
6825 everdef = (Elf_External_Verdef *) contents;
6826 maxidx = 0;
6827 for (i = 0; i < hdr->sh_info; ++i)
6828 {
6829 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6830
6831 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6832 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6833
6834 if (iverdefmem.vd_next
6835 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6836 goto error_return;
6837
6838 everdef = ((Elf_External_Verdef *)
6839 ((bfd_byte *) everdef + iverdefmem.vd_next));
6840 }
6841
6842 if (default_imported_symver)
6843 {
6844 if (freeidx > maxidx)
6845 maxidx = ++freeidx;
6846 else
6847 freeidx = ++maxidx;
6848 }
6849 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6850 sizeof (Elf_Internal_Verdef));
6851 if (elf_tdata (abfd)->verdef == NULL)
6852 goto error_return;
6853
6854 elf_tdata (abfd)->cverdefs = maxidx;
6855
6856 everdef = (Elf_External_Verdef *) contents;
6857 iverdefarr = elf_tdata (abfd)->verdef;
6858 for (i = 0; i < hdr->sh_info; i++)
6859 {
6860 Elf_External_Verdaux *everdaux;
6861 Elf_Internal_Verdaux *iverdaux;
6862 unsigned int j;
6863
6864 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6865
6866 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6867 {
6868 error_return_verdef:
6869 elf_tdata (abfd)->verdef = NULL;
6870 elf_tdata (abfd)->cverdefs = 0;
6871 goto error_return;
6872 }
6873
6874 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6875 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6876
6877 iverdef->vd_bfd = abfd;
6878
6879 if (iverdef->vd_cnt == 0)
6880 iverdef->vd_auxptr = NULL;
6881 else
6882 {
6883 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6884 sizeof (Elf_Internal_Verdaux));
6885 if (iverdef->vd_auxptr == NULL)
6886 goto error_return_verdef;
6887 }
6888
6889 if (iverdef->vd_aux
6890 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6891 goto error_return_verdef;
6892
6893 everdaux = ((Elf_External_Verdaux *)
6894 ((bfd_byte *) everdef + iverdef->vd_aux));
6895 iverdaux = iverdef->vd_auxptr;
6896 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6897 {
6898 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6899
6900 iverdaux->vda_nodename =
6901 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6902 iverdaux->vda_name);
6903 if (iverdaux->vda_nodename == NULL)
6904 goto error_return_verdef;
6905
6906 if (j + 1 < iverdef->vd_cnt)
6907 iverdaux->vda_nextptr = iverdaux + 1;
6908 else
6909 iverdaux->vda_nextptr = NULL;
6910
6911 if (iverdaux->vda_next
6912 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6913 goto error_return_verdef;
6914
6915 everdaux = ((Elf_External_Verdaux *)
6916 ((bfd_byte *) everdaux + iverdaux->vda_next));
6917 }
6918
6919 if (iverdef->vd_cnt)
6920 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6921
6922 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6923 iverdef->vd_nextdef = iverdef + 1;
6924 else
6925 iverdef->vd_nextdef = NULL;
6926
6927 everdef = ((Elf_External_Verdef *)
6928 ((bfd_byte *) everdef + iverdef->vd_next));
6929 }
6930
6931 free (contents);
6932 contents = NULL;
6933 }
6934 else if (default_imported_symver)
6935 {
6936 if (freeidx < 3)
6937 freeidx = 3;
6938 else
6939 freeidx++;
6940
6941 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6942 sizeof (Elf_Internal_Verdef));
6943 if (elf_tdata (abfd)->verdef == NULL)
6944 goto error_return;
6945
6946 elf_tdata (abfd)->cverdefs = freeidx;
6947 }
6948
6949 /* Create a default version based on the soname. */
6950 if (default_imported_symver)
6951 {
6952 Elf_Internal_Verdef *iverdef;
6953 Elf_Internal_Verdaux *iverdaux;
6954
6955 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6956
6957 iverdef->vd_version = VER_DEF_CURRENT;
6958 iverdef->vd_flags = 0;
6959 iverdef->vd_ndx = freeidx;
6960 iverdef->vd_cnt = 1;
6961
6962 iverdef->vd_bfd = abfd;
6963
6964 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6965 if (iverdef->vd_nodename == NULL)
6966 goto error_return_verdef;
6967 iverdef->vd_nextdef = NULL;
6968 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6969 if (iverdef->vd_auxptr == NULL)
6970 goto error_return_verdef;
6971
6972 iverdaux = iverdef->vd_auxptr;
6973 iverdaux->vda_nodename = iverdef->vd_nodename;
6974 iverdaux->vda_nextptr = NULL;
6975 }
6976
6977 return TRUE;
6978
6979 error_return:
6980 if (contents != NULL)
6981 free (contents);
6982 return FALSE;
6983 }
6984 \f
6985 asymbol *
6986 _bfd_elf_make_empty_symbol (bfd *abfd)
6987 {
6988 elf_symbol_type *newsym;
6989 bfd_size_type amt = sizeof (elf_symbol_type);
6990
6991 newsym = bfd_zalloc (abfd, amt);
6992 if (!newsym)
6993 return NULL;
6994 else
6995 {
6996 newsym->symbol.the_bfd = abfd;
6997 return &newsym->symbol;
6998 }
6999 }
7000
7001 void
7002 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7003 asymbol *symbol,
7004 symbol_info *ret)
7005 {
7006 bfd_symbol_info (symbol, ret);
7007 }
7008
7009 /* Return whether a symbol name implies a local symbol. Most targets
7010 use this function for the is_local_label_name entry point, but some
7011 override it. */
7012
7013 bfd_boolean
7014 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7015 const char *name)
7016 {
7017 /* Normal local symbols start with ``.L''. */
7018 if (name[0] == '.' && name[1] == 'L')
7019 return TRUE;
7020
7021 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7022 DWARF debugging symbols starting with ``..''. */
7023 if (name[0] == '.' && name[1] == '.')
7024 return TRUE;
7025
7026 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7027 emitting DWARF debugging output. I suspect this is actually a
7028 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7029 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7030 underscore to be emitted on some ELF targets). For ease of use,
7031 we treat such symbols as local. */
7032 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7033 return TRUE;
7034
7035 return FALSE;
7036 }
7037
7038 alent *
7039 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7040 asymbol *symbol ATTRIBUTE_UNUSED)
7041 {
7042 abort ();
7043 return NULL;
7044 }
7045
7046 bfd_boolean
7047 _bfd_elf_set_arch_mach (bfd *abfd,
7048 enum bfd_architecture arch,
7049 unsigned long machine)
7050 {
7051 /* If this isn't the right architecture for this backend, and this
7052 isn't the generic backend, fail. */
7053 if (arch != get_elf_backend_data (abfd)->arch
7054 && arch != bfd_arch_unknown
7055 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7056 return FALSE;
7057
7058 return bfd_default_set_arch_mach (abfd, arch, machine);
7059 }
7060
7061 /* Find the function to a particular section and offset,
7062 for error reporting. */
7063
7064 static bfd_boolean
7065 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7066 asection *section,
7067 asymbol **symbols,
7068 bfd_vma offset,
7069 const char **filename_ptr,
7070 const char **functionname_ptr)
7071 {
7072 const char *filename;
7073 asymbol *func, *file;
7074 bfd_vma low_func;
7075 asymbol **p;
7076 /* ??? Given multiple file symbols, it is impossible to reliably
7077 choose the right file name for global symbols. File symbols are
7078 local symbols, and thus all file symbols must sort before any
7079 global symbols. The ELF spec may be interpreted to say that a
7080 file symbol must sort before other local symbols, but currently
7081 ld -r doesn't do this. So, for ld -r output, it is possible to
7082 make a better choice of file name for local symbols by ignoring
7083 file symbols appearing after a given local symbol. */
7084 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7085
7086 filename = NULL;
7087 func = NULL;
7088 file = NULL;
7089 low_func = 0;
7090 state = nothing_seen;
7091
7092 for (p = symbols; *p != NULL; p++)
7093 {
7094 elf_symbol_type *q;
7095
7096 q = (elf_symbol_type *) *p;
7097
7098 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7099 {
7100 default:
7101 break;
7102 case STT_FILE:
7103 file = &q->symbol;
7104 if (state == symbol_seen)
7105 state = file_after_symbol_seen;
7106 continue;
7107 case STT_NOTYPE:
7108 case STT_FUNC:
7109 if (bfd_get_section (&q->symbol) == section
7110 && q->symbol.value >= low_func
7111 && q->symbol.value <= offset)
7112 {
7113 func = (asymbol *) q;
7114 low_func = q->symbol.value;
7115 filename = NULL;
7116 if (file != NULL
7117 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7118 || state != file_after_symbol_seen))
7119 filename = bfd_asymbol_name (file);
7120 }
7121 break;
7122 }
7123 if (state == nothing_seen)
7124 state = symbol_seen;
7125 }
7126
7127 if (func == NULL)
7128 return FALSE;
7129
7130 if (filename_ptr)
7131 *filename_ptr = filename;
7132 if (functionname_ptr)
7133 *functionname_ptr = bfd_asymbol_name (func);
7134
7135 return TRUE;
7136 }
7137
7138 /* Find the nearest line to a particular section and offset,
7139 for error reporting. */
7140
7141 bfd_boolean
7142 _bfd_elf_find_nearest_line (bfd *abfd,
7143 asection *section,
7144 asymbol **symbols,
7145 bfd_vma offset,
7146 const char **filename_ptr,
7147 const char **functionname_ptr,
7148 unsigned int *line_ptr)
7149 {
7150 bfd_boolean found;
7151
7152 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7153 filename_ptr, functionname_ptr,
7154 line_ptr))
7155 {
7156 if (!*functionname_ptr)
7157 elf_find_function (abfd, section, symbols, offset,
7158 *filename_ptr ? NULL : filename_ptr,
7159 functionname_ptr);
7160
7161 return TRUE;
7162 }
7163
7164 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7165 filename_ptr, functionname_ptr,
7166 line_ptr, 0,
7167 &elf_tdata (abfd)->dwarf2_find_line_info))
7168 {
7169 if (!*functionname_ptr)
7170 elf_find_function (abfd, section, symbols, offset,
7171 *filename_ptr ? NULL : filename_ptr,
7172 functionname_ptr);
7173
7174 return TRUE;
7175 }
7176
7177 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7178 &found, filename_ptr,
7179 functionname_ptr, line_ptr,
7180 &elf_tdata (abfd)->line_info))
7181 return FALSE;
7182 if (found && (*functionname_ptr || *line_ptr))
7183 return TRUE;
7184
7185 if (symbols == NULL)
7186 return FALSE;
7187
7188 if (! elf_find_function (abfd, section, symbols, offset,
7189 filename_ptr, functionname_ptr))
7190 return FALSE;
7191
7192 *line_ptr = 0;
7193 return TRUE;
7194 }
7195
7196 /* Find the line for a symbol. */
7197
7198 bfd_boolean
7199 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7200 const char **filename_ptr, unsigned int *line_ptr)
7201 {
7202 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7203 filename_ptr, line_ptr, 0,
7204 &elf_tdata (abfd)->dwarf2_find_line_info);
7205 }
7206
7207 /* After a call to bfd_find_nearest_line, successive calls to
7208 bfd_find_inliner_info can be used to get source information about
7209 each level of function inlining that terminated at the address
7210 passed to bfd_find_nearest_line. Currently this is only supported
7211 for DWARF2 with appropriate DWARF3 extensions. */
7212
7213 bfd_boolean
7214 _bfd_elf_find_inliner_info (bfd *abfd,
7215 const char **filename_ptr,
7216 const char **functionname_ptr,
7217 unsigned int *line_ptr)
7218 {
7219 bfd_boolean found;
7220 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7221 functionname_ptr, line_ptr,
7222 & elf_tdata (abfd)->dwarf2_find_line_info);
7223 return found;
7224 }
7225
7226 int
7227 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7228 {
7229 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7230 int ret = bed->s->sizeof_ehdr;
7231
7232 if (!info->relocatable)
7233 {
7234 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7235
7236 if (phdr_size == (bfd_size_type) -1)
7237 {
7238 struct elf_segment_map *m;
7239
7240 phdr_size = 0;
7241 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7242 phdr_size += bed->s->sizeof_phdr;
7243
7244 if (phdr_size == 0)
7245 phdr_size = get_program_header_size (abfd, info);
7246 }
7247
7248 elf_tdata (abfd)->program_header_size = phdr_size;
7249 ret += phdr_size;
7250 }
7251
7252 return ret;
7253 }
7254
7255 bfd_boolean
7256 _bfd_elf_set_section_contents (bfd *abfd,
7257 sec_ptr section,
7258 const void *location,
7259 file_ptr offset,
7260 bfd_size_type count)
7261 {
7262 Elf_Internal_Shdr *hdr;
7263 bfd_signed_vma pos;
7264
7265 if (! abfd->output_has_begun
7266 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7267 return FALSE;
7268
7269 hdr = &elf_section_data (section)->this_hdr;
7270 pos = hdr->sh_offset + offset;
7271 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7272 || bfd_bwrite (location, count, abfd) != count)
7273 return FALSE;
7274
7275 return TRUE;
7276 }
7277
7278 void
7279 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7280 arelent *cache_ptr ATTRIBUTE_UNUSED,
7281 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7282 {
7283 abort ();
7284 }
7285
7286 /* Try to convert a non-ELF reloc into an ELF one. */
7287
7288 bfd_boolean
7289 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7290 {
7291 /* Check whether we really have an ELF howto. */
7292
7293 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7294 {
7295 bfd_reloc_code_real_type code;
7296 reloc_howto_type *howto;
7297
7298 /* Alien reloc: Try to determine its type to replace it with an
7299 equivalent ELF reloc. */
7300
7301 if (areloc->howto->pc_relative)
7302 {
7303 switch (areloc->howto->bitsize)
7304 {
7305 case 8:
7306 code = BFD_RELOC_8_PCREL;
7307 break;
7308 case 12:
7309 code = BFD_RELOC_12_PCREL;
7310 break;
7311 case 16:
7312 code = BFD_RELOC_16_PCREL;
7313 break;
7314 case 24:
7315 code = BFD_RELOC_24_PCREL;
7316 break;
7317 case 32:
7318 code = BFD_RELOC_32_PCREL;
7319 break;
7320 case 64:
7321 code = BFD_RELOC_64_PCREL;
7322 break;
7323 default:
7324 goto fail;
7325 }
7326
7327 howto = bfd_reloc_type_lookup (abfd, code);
7328
7329 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7330 {
7331 if (howto->pcrel_offset)
7332 areloc->addend += areloc->address;
7333 else
7334 areloc->addend -= areloc->address; /* addend is unsigned!! */
7335 }
7336 }
7337 else
7338 {
7339 switch (areloc->howto->bitsize)
7340 {
7341 case 8:
7342 code = BFD_RELOC_8;
7343 break;
7344 case 14:
7345 code = BFD_RELOC_14;
7346 break;
7347 case 16:
7348 code = BFD_RELOC_16;
7349 break;
7350 case 26:
7351 code = BFD_RELOC_26;
7352 break;
7353 case 32:
7354 code = BFD_RELOC_32;
7355 break;
7356 case 64:
7357 code = BFD_RELOC_64;
7358 break;
7359 default:
7360 goto fail;
7361 }
7362
7363 howto = bfd_reloc_type_lookup (abfd, code);
7364 }
7365
7366 if (howto)
7367 areloc->howto = howto;
7368 else
7369 goto fail;
7370 }
7371
7372 return TRUE;
7373
7374 fail:
7375 (*_bfd_error_handler)
7376 (_("%B: unsupported relocation type %s"),
7377 abfd, areloc->howto->name);
7378 bfd_set_error (bfd_error_bad_value);
7379 return FALSE;
7380 }
7381
7382 bfd_boolean
7383 _bfd_elf_close_and_cleanup (bfd *abfd)
7384 {
7385 if (bfd_get_format (abfd) == bfd_object)
7386 {
7387 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7388 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7389 _bfd_dwarf2_cleanup_debug_info (abfd);
7390 }
7391
7392 return _bfd_generic_close_and_cleanup (abfd);
7393 }
7394
7395 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7396 in the relocation's offset. Thus we cannot allow any sort of sanity
7397 range-checking to interfere. There is nothing else to do in processing
7398 this reloc. */
7399
7400 bfd_reloc_status_type
7401 _bfd_elf_rel_vtable_reloc_fn
7402 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7403 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7404 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7405 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7406 {
7407 return bfd_reloc_ok;
7408 }
7409 \f
7410 /* Elf core file support. Much of this only works on native
7411 toolchains, since we rely on knowing the
7412 machine-dependent procfs structure in order to pick
7413 out details about the corefile. */
7414
7415 #ifdef HAVE_SYS_PROCFS_H
7416 # include <sys/procfs.h>
7417 #endif
7418
7419 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7420
7421 static int
7422 elfcore_make_pid (bfd *abfd)
7423 {
7424 return ((elf_tdata (abfd)->core_lwpid << 16)
7425 + (elf_tdata (abfd)->core_pid));
7426 }
7427
7428 /* If there isn't a section called NAME, make one, using
7429 data from SECT. Note, this function will generate a
7430 reference to NAME, so you shouldn't deallocate or
7431 overwrite it. */
7432
7433 static bfd_boolean
7434 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7435 {
7436 asection *sect2;
7437
7438 if (bfd_get_section_by_name (abfd, name) != NULL)
7439 return TRUE;
7440
7441 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7442 if (sect2 == NULL)
7443 return FALSE;
7444
7445 sect2->size = sect->size;
7446 sect2->filepos = sect->filepos;
7447 sect2->alignment_power = sect->alignment_power;
7448 return TRUE;
7449 }
7450
7451 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7452 actually creates up to two pseudosections:
7453 - For the single-threaded case, a section named NAME, unless
7454 such a section already exists.
7455 - For the multi-threaded case, a section named "NAME/PID", where
7456 PID is elfcore_make_pid (abfd).
7457 Both pseudosections have identical contents. */
7458 bfd_boolean
7459 _bfd_elfcore_make_pseudosection (bfd *abfd,
7460 char *name,
7461 size_t size,
7462 ufile_ptr filepos)
7463 {
7464 char buf[100];
7465 char *threaded_name;
7466 size_t len;
7467 asection *sect;
7468
7469 /* Build the section name. */
7470
7471 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7472 len = strlen (buf) + 1;
7473 threaded_name = bfd_alloc (abfd, len);
7474 if (threaded_name == NULL)
7475 return FALSE;
7476 memcpy (threaded_name, buf, len);
7477
7478 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7479 SEC_HAS_CONTENTS);
7480 if (sect == NULL)
7481 return FALSE;
7482 sect->size = size;
7483 sect->filepos = filepos;
7484 sect->alignment_power = 2;
7485
7486 return elfcore_maybe_make_sect (abfd, name, sect);
7487 }
7488
7489 /* prstatus_t exists on:
7490 solaris 2.5+
7491 linux 2.[01] + glibc
7492 unixware 4.2
7493 */
7494
7495 #if defined (HAVE_PRSTATUS_T)
7496
7497 static bfd_boolean
7498 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7499 {
7500 size_t size;
7501 int offset;
7502
7503 if (note->descsz == sizeof (prstatus_t))
7504 {
7505 prstatus_t prstat;
7506
7507 size = sizeof (prstat.pr_reg);
7508 offset = offsetof (prstatus_t, pr_reg);
7509 memcpy (&prstat, note->descdata, sizeof (prstat));
7510
7511 /* Do not overwrite the core signal if it
7512 has already been set by another thread. */
7513 if (elf_tdata (abfd)->core_signal == 0)
7514 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7515 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7516
7517 /* pr_who exists on:
7518 solaris 2.5+
7519 unixware 4.2
7520 pr_who doesn't exist on:
7521 linux 2.[01]
7522 */
7523 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7524 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7525 #endif
7526 }
7527 #if defined (HAVE_PRSTATUS32_T)
7528 else if (note->descsz == sizeof (prstatus32_t))
7529 {
7530 /* 64-bit host, 32-bit corefile */
7531 prstatus32_t prstat;
7532
7533 size = sizeof (prstat.pr_reg);
7534 offset = offsetof (prstatus32_t, pr_reg);
7535 memcpy (&prstat, note->descdata, sizeof (prstat));
7536
7537 /* Do not overwrite the core signal if it
7538 has already been set by another thread. */
7539 if (elf_tdata (abfd)->core_signal == 0)
7540 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7541 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7542
7543 /* pr_who exists on:
7544 solaris 2.5+
7545 unixware 4.2
7546 pr_who doesn't exist on:
7547 linux 2.[01]
7548 */
7549 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7550 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7551 #endif
7552 }
7553 #endif /* HAVE_PRSTATUS32_T */
7554 else
7555 {
7556 /* Fail - we don't know how to handle any other
7557 note size (ie. data object type). */
7558 return TRUE;
7559 }
7560
7561 /* Make a ".reg/999" section and a ".reg" section. */
7562 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7563 size, note->descpos + offset);
7564 }
7565 #endif /* defined (HAVE_PRSTATUS_T) */
7566
7567 /* Create a pseudosection containing the exact contents of NOTE. */
7568 static bfd_boolean
7569 elfcore_make_note_pseudosection (bfd *abfd,
7570 char *name,
7571 Elf_Internal_Note *note)
7572 {
7573 return _bfd_elfcore_make_pseudosection (abfd, name,
7574 note->descsz, note->descpos);
7575 }
7576
7577 /* There isn't a consistent prfpregset_t across platforms,
7578 but it doesn't matter, because we don't have to pick this
7579 data structure apart. */
7580
7581 static bfd_boolean
7582 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7583 {
7584 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7585 }
7586
7587 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7588 type of NT_PRXFPREG. Just include the whole note's contents
7589 literally. */
7590
7591 static bfd_boolean
7592 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7593 {
7594 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7595 }
7596
7597 static bfd_boolean
7598 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7599 {
7600 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7601 }
7602
7603 static bfd_boolean
7604 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7605 {
7606 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7607 }
7608
7609 #if defined (HAVE_PRPSINFO_T)
7610 typedef prpsinfo_t elfcore_psinfo_t;
7611 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7612 typedef prpsinfo32_t elfcore_psinfo32_t;
7613 #endif
7614 #endif
7615
7616 #if defined (HAVE_PSINFO_T)
7617 typedef psinfo_t elfcore_psinfo_t;
7618 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7619 typedef psinfo32_t elfcore_psinfo32_t;
7620 #endif
7621 #endif
7622
7623 /* return a malloc'ed copy of a string at START which is at
7624 most MAX bytes long, possibly without a terminating '\0'.
7625 the copy will always have a terminating '\0'. */
7626
7627 char *
7628 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7629 {
7630 char *dups;
7631 char *end = memchr (start, '\0', max);
7632 size_t len;
7633
7634 if (end == NULL)
7635 len = max;
7636 else
7637 len = end - start;
7638
7639 dups = bfd_alloc (abfd, len + 1);
7640 if (dups == NULL)
7641 return NULL;
7642
7643 memcpy (dups, start, len);
7644 dups[len] = '\0';
7645
7646 return dups;
7647 }
7648
7649 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7650 static bfd_boolean
7651 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7652 {
7653 if (note->descsz == sizeof (elfcore_psinfo_t))
7654 {
7655 elfcore_psinfo_t psinfo;
7656
7657 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7658
7659 elf_tdata (abfd)->core_program
7660 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7661 sizeof (psinfo.pr_fname));
7662
7663 elf_tdata (abfd)->core_command
7664 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7665 sizeof (psinfo.pr_psargs));
7666 }
7667 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7668 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7669 {
7670 /* 64-bit host, 32-bit corefile */
7671 elfcore_psinfo32_t psinfo;
7672
7673 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7674
7675 elf_tdata (abfd)->core_program
7676 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7677 sizeof (psinfo.pr_fname));
7678
7679 elf_tdata (abfd)->core_command
7680 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7681 sizeof (psinfo.pr_psargs));
7682 }
7683 #endif
7684
7685 else
7686 {
7687 /* Fail - we don't know how to handle any other
7688 note size (ie. data object type). */
7689 return TRUE;
7690 }
7691
7692 /* Note that for some reason, a spurious space is tacked
7693 onto the end of the args in some (at least one anyway)
7694 implementations, so strip it off if it exists. */
7695
7696 {
7697 char *command = elf_tdata (abfd)->core_command;
7698 int n = strlen (command);
7699
7700 if (0 < n && command[n - 1] == ' ')
7701 command[n - 1] = '\0';
7702 }
7703
7704 return TRUE;
7705 }
7706 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7707
7708 #if defined (HAVE_PSTATUS_T)
7709 static bfd_boolean
7710 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7711 {
7712 if (note->descsz == sizeof (pstatus_t)
7713 #if defined (HAVE_PXSTATUS_T)
7714 || note->descsz == sizeof (pxstatus_t)
7715 #endif
7716 )
7717 {
7718 pstatus_t pstat;
7719
7720 memcpy (&pstat, note->descdata, sizeof (pstat));
7721
7722 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7723 }
7724 #if defined (HAVE_PSTATUS32_T)
7725 else if (note->descsz == sizeof (pstatus32_t))
7726 {
7727 /* 64-bit host, 32-bit corefile */
7728 pstatus32_t pstat;
7729
7730 memcpy (&pstat, note->descdata, sizeof (pstat));
7731
7732 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7733 }
7734 #endif
7735 /* Could grab some more details from the "representative"
7736 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7737 NT_LWPSTATUS note, presumably. */
7738
7739 return TRUE;
7740 }
7741 #endif /* defined (HAVE_PSTATUS_T) */
7742
7743 #if defined (HAVE_LWPSTATUS_T)
7744 static bfd_boolean
7745 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7746 {
7747 lwpstatus_t lwpstat;
7748 char buf[100];
7749 char *name;
7750 size_t len;
7751 asection *sect;
7752
7753 if (note->descsz != sizeof (lwpstat)
7754 #if defined (HAVE_LWPXSTATUS_T)
7755 && note->descsz != sizeof (lwpxstatus_t)
7756 #endif
7757 )
7758 return TRUE;
7759
7760 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7761
7762 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7763 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7764
7765 /* Make a ".reg/999" section. */
7766
7767 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7768 len = strlen (buf) + 1;
7769 name = bfd_alloc (abfd, len);
7770 if (name == NULL)
7771 return FALSE;
7772 memcpy (name, buf, len);
7773
7774 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7775 if (sect == NULL)
7776 return FALSE;
7777
7778 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7779 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7780 sect->filepos = note->descpos
7781 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7782 #endif
7783
7784 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7785 sect->size = sizeof (lwpstat.pr_reg);
7786 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7787 #endif
7788
7789 sect->alignment_power = 2;
7790
7791 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7792 return FALSE;
7793
7794 /* Make a ".reg2/999" section */
7795
7796 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7797 len = strlen (buf) + 1;
7798 name = bfd_alloc (abfd, len);
7799 if (name == NULL)
7800 return FALSE;
7801 memcpy (name, buf, len);
7802
7803 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7804 if (sect == NULL)
7805 return FALSE;
7806
7807 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7808 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7809 sect->filepos = note->descpos
7810 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7811 #endif
7812
7813 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7814 sect->size = sizeof (lwpstat.pr_fpreg);
7815 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7816 #endif
7817
7818 sect->alignment_power = 2;
7819
7820 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7821 }
7822 #endif /* defined (HAVE_LWPSTATUS_T) */
7823
7824 static bfd_boolean
7825 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7826 {
7827 char buf[30];
7828 char *name;
7829 size_t len;
7830 asection *sect;
7831 int type;
7832 int is_active_thread;
7833 bfd_vma base_addr;
7834
7835 if (note->descsz < 728)
7836 return TRUE;
7837
7838 if (! CONST_STRNEQ (note->namedata, "win32"))
7839 return TRUE;
7840
7841 type = bfd_get_32 (abfd, note->descdata);
7842
7843 switch (type)
7844 {
7845 case 1 /* NOTE_INFO_PROCESS */:
7846 /* FIXME: need to add ->core_command. */
7847 /* process_info.pid */
7848 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7849 /* process_info.signal */
7850 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7851 break;
7852
7853 case 2 /* NOTE_INFO_THREAD */:
7854 /* Make a ".reg/999" section. */
7855 /* thread_info.tid */
7856 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7857
7858 len = strlen (buf) + 1;
7859 name = bfd_alloc (abfd, len);
7860 if (name == NULL)
7861 return FALSE;
7862
7863 memcpy (name, buf, len);
7864
7865 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7866 if (sect == NULL)
7867 return FALSE;
7868
7869 /* sizeof (thread_info.thread_context) */
7870 sect->size = 716;
7871 /* offsetof (thread_info.thread_context) */
7872 sect->filepos = note->descpos + 12;
7873 sect->alignment_power = 2;
7874
7875 /* thread_info.is_active_thread */
7876 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7877
7878 if (is_active_thread)
7879 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7880 return FALSE;
7881 break;
7882
7883 case 3 /* NOTE_INFO_MODULE */:
7884 /* Make a ".module/xxxxxxxx" section. */
7885 /* module_info.base_address */
7886 base_addr = bfd_get_32 (abfd, note->descdata + 4);
7887 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
7888
7889 len = strlen (buf) + 1;
7890 name = bfd_alloc (abfd, len);
7891 if (name == NULL)
7892 return FALSE;
7893
7894 memcpy (name, buf, len);
7895
7896 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7897
7898 if (sect == NULL)
7899 return FALSE;
7900
7901 sect->size = note->descsz;
7902 sect->filepos = note->descpos;
7903 sect->alignment_power = 2;
7904 break;
7905
7906 default:
7907 return TRUE;
7908 }
7909
7910 return TRUE;
7911 }
7912
7913 static bfd_boolean
7914 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7915 {
7916 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7917
7918 switch (note->type)
7919 {
7920 default:
7921 return TRUE;
7922
7923 case NT_PRSTATUS:
7924 if (bed->elf_backend_grok_prstatus)
7925 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7926 return TRUE;
7927 #if defined (HAVE_PRSTATUS_T)
7928 return elfcore_grok_prstatus (abfd, note);
7929 #else
7930 return TRUE;
7931 #endif
7932
7933 #if defined (HAVE_PSTATUS_T)
7934 case NT_PSTATUS:
7935 return elfcore_grok_pstatus (abfd, note);
7936 #endif
7937
7938 #if defined (HAVE_LWPSTATUS_T)
7939 case NT_LWPSTATUS:
7940 return elfcore_grok_lwpstatus (abfd, note);
7941 #endif
7942
7943 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7944 return elfcore_grok_prfpreg (abfd, note);
7945
7946 case NT_WIN32PSTATUS:
7947 return elfcore_grok_win32pstatus (abfd, note);
7948
7949 case NT_PRXFPREG: /* Linux SSE extension */
7950 if (note->namesz == 6
7951 && strcmp (note->namedata, "LINUX") == 0)
7952 return elfcore_grok_prxfpreg (abfd, note);
7953 else
7954 return TRUE;
7955
7956 case NT_PPC_VMX:
7957 if (note->namesz == 6
7958 && strcmp (note->namedata, "LINUX") == 0)
7959 return elfcore_grok_ppc_vmx (abfd, note);
7960 else
7961 return TRUE;
7962
7963 case NT_PPC_VSX:
7964 if (note->namesz == 6
7965 && strcmp (note->namedata, "LINUX") == 0)
7966 return elfcore_grok_ppc_vsx (abfd, note);
7967 else
7968 return TRUE;
7969
7970 case NT_PRPSINFO:
7971 case NT_PSINFO:
7972 if (bed->elf_backend_grok_psinfo)
7973 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7974 return TRUE;
7975 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7976 return elfcore_grok_psinfo (abfd, note);
7977 #else
7978 return TRUE;
7979 #endif
7980
7981 case NT_AUXV:
7982 {
7983 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7984 SEC_HAS_CONTENTS);
7985
7986 if (sect == NULL)
7987 return FALSE;
7988 sect->size = note->descsz;
7989 sect->filepos = note->descpos;
7990 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7991
7992 return TRUE;
7993 }
7994 }
7995 }
7996
7997 static bfd_boolean
7998 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
7999 {
8000 elf_tdata (abfd)->build_id_size = note->descsz;
8001 elf_tdata (abfd)->build_id = bfd_alloc (abfd, note->descsz);
8002 if (elf_tdata (abfd)->build_id == NULL)
8003 return FALSE;
8004
8005 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8006
8007 return TRUE;
8008 }
8009
8010 static bfd_boolean
8011 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8012 {
8013 switch (note->type)
8014 {
8015 default:
8016 return TRUE;
8017
8018 case NT_GNU_BUILD_ID:
8019 return elfobj_grok_gnu_build_id (abfd, note);
8020 }
8021 }
8022
8023 static bfd_boolean
8024 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8025 {
8026 char *cp;
8027
8028 cp = strchr (note->namedata, '@');
8029 if (cp != NULL)
8030 {
8031 *lwpidp = atoi(cp + 1);
8032 return TRUE;
8033 }
8034 return FALSE;
8035 }
8036
8037 static bfd_boolean
8038 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8039 {
8040 /* Signal number at offset 0x08. */
8041 elf_tdata (abfd)->core_signal
8042 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8043
8044 /* Process ID at offset 0x50. */
8045 elf_tdata (abfd)->core_pid
8046 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8047
8048 /* Command name at 0x7c (max 32 bytes, including nul). */
8049 elf_tdata (abfd)->core_command
8050 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8051
8052 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8053 note);
8054 }
8055
8056 static bfd_boolean
8057 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8058 {
8059 int lwp;
8060
8061 if (elfcore_netbsd_get_lwpid (note, &lwp))
8062 elf_tdata (abfd)->core_lwpid = lwp;
8063
8064 if (note->type == NT_NETBSDCORE_PROCINFO)
8065 {
8066 /* NetBSD-specific core "procinfo". Note that we expect to
8067 find this note before any of the others, which is fine,
8068 since the kernel writes this note out first when it
8069 creates a core file. */
8070
8071 return elfcore_grok_netbsd_procinfo (abfd, note);
8072 }
8073
8074 /* As of Jan 2002 there are no other machine-independent notes
8075 defined for NetBSD core files. If the note type is less
8076 than the start of the machine-dependent note types, we don't
8077 understand it. */
8078
8079 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8080 return TRUE;
8081
8082
8083 switch (bfd_get_arch (abfd))
8084 {
8085 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8086 PT_GETFPREGS == mach+2. */
8087
8088 case bfd_arch_alpha:
8089 case bfd_arch_sparc:
8090 switch (note->type)
8091 {
8092 case NT_NETBSDCORE_FIRSTMACH+0:
8093 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8094
8095 case NT_NETBSDCORE_FIRSTMACH+2:
8096 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8097
8098 default:
8099 return TRUE;
8100 }
8101
8102 /* On all other arch's, PT_GETREGS == mach+1 and
8103 PT_GETFPREGS == mach+3. */
8104
8105 default:
8106 switch (note->type)
8107 {
8108 case NT_NETBSDCORE_FIRSTMACH+1:
8109 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8110
8111 case NT_NETBSDCORE_FIRSTMACH+3:
8112 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8113
8114 default:
8115 return TRUE;
8116 }
8117 }
8118 /* NOTREACHED */
8119 }
8120
8121 static bfd_boolean
8122 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8123 {
8124 void *ddata = note->descdata;
8125 char buf[100];
8126 char *name;
8127 asection *sect;
8128 short sig;
8129 unsigned flags;
8130
8131 /* nto_procfs_status 'pid' field is at offset 0. */
8132 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8133
8134 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8135 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8136
8137 /* nto_procfs_status 'flags' field is at offset 8. */
8138 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8139
8140 /* nto_procfs_status 'what' field is at offset 14. */
8141 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8142 {
8143 elf_tdata (abfd)->core_signal = sig;
8144 elf_tdata (abfd)->core_lwpid = *tid;
8145 }
8146
8147 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8148 do not come from signals so we make sure we set the current
8149 thread just in case. */
8150 if (flags & 0x00000080)
8151 elf_tdata (abfd)->core_lwpid = *tid;
8152
8153 /* Make a ".qnx_core_status/%d" section. */
8154 sprintf (buf, ".qnx_core_status/%ld", *tid);
8155
8156 name = bfd_alloc (abfd, strlen (buf) + 1);
8157 if (name == NULL)
8158 return FALSE;
8159 strcpy (name, buf);
8160
8161 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8162 if (sect == NULL)
8163 return FALSE;
8164
8165 sect->size = note->descsz;
8166 sect->filepos = note->descpos;
8167 sect->alignment_power = 2;
8168
8169 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8170 }
8171
8172 static bfd_boolean
8173 elfcore_grok_nto_regs (bfd *abfd,
8174 Elf_Internal_Note *note,
8175 long tid,
8176 char *base)
8177 {
8178 char buf[100];
8179 char *name;
8180 asection *sect;
8181
8182 /* Make a "(base)/%d" section. */
8183 sprintf (buf, "%s/%ld", base, tid);
8184
8185 name = bfd_alloc (abfd, strlen (buf) + 1);
8186 if (name == NULL)
8187 return FALSE;
8188 strcpy (name, buf);
8189
8190 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8191 if (sect == NULL)
8192 return FALSE;
8193
8194 sect->size = note->descsz;
8195 sect->filepos = note->descpos;
8196 sect->alignment_power = 2;
8197
8198 /* This is the current thread. */
8199 if (elf_tdata (abfd)->core_lwpid == tid)
8200 return elfcore_maybe_make_sect (abfd, base, sect);
8201
8202 return TRUE;
8203 }
8204
8205 #define BFD_QNT_CORE_INFO 7
8206 #define BFD_QNT_CORE_STATUS 8
8207 #define BFD_QNT_CORE_GREG 9
8208 #define BFD_QNT_CORE_FPREG 10
8209
8210 static bfd_boolean
8211 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8212 {
8213 /* Every GREG section has a STATUS section before it. Store the
8214 tid from the previous call to pass down to the next gregs
8215 function. */
8216 static long tid = 1;
8217
8218 switch (note->type)
8219 {
8220 case BFD_QNT_CORE_INFO:
8221 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8222 case BFD_QNT_CORE_STATUS:
8223 return elfcore_grok_nto_status (abfd, note, &tid);
8224 case BFD_QNT_CORE_GREG:
8225 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8226 case BFD_QNT_CORE_FPREG:
8227 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8228 default:
8229 return TRUE;
8230 }
8231 }
8232
8233 static bfd_boolean
8234 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8235 {
8236 char *name;
8237 asection *sect;
8238 size_t len;
8239
8240 /* Use note name as section name. */
8241 len = note->namesz;
8242 name = bfd_alloc (abfd, len);
8243 if (name == NULL)
8244 return FALSE;
8245 memcpy (name, note->namedata, len);
8246 name[len - 1] = '\0';
8247
8248 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8249 if (sect == NULL)
8250 return FALSE;
8251
8252 sect->size = note->descsz;
8253 sect->filepos = note->descpos;
8254 sect->alignment_power = 1;
8255
8256 return TRUE;
8257 }
8258
8259 /* Function: elfcore_write_note
8260
8261 Inputs:
8262 buffer to hold note, and current size of buffer
8263 name of note
8264 type of note
8265 data for note
8266 size of data for note
8267
8268 Writes note to end of buffer. ELF64 notes are written exactly as
8269 for ELF32, despite the current (as of 2006) ELF gabi specifying
8270 that they ought to have 8-byte namesz and descsz field, and have
8271 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8272
8273 Return:
8274 Pointer to realloc'd buffer, *BUFSIZ updated. */
8275
8276 char *
8277 elfcore_write_note (bfd *abfd,
8278 char *buf,
8279 int *bufsiz,
8280 const char *name,
8281 int type,
8282 const void *input,
8283 int size)
8284 {
8285 Elf_External_Note *xnp;
8286 size_t namesz;
8287 size_t newspace;
8288 char *dest;
8289
8290 namesz = 0;
8291 if (name != NULL)
8292 namesz = strlen (name) + 1;
8293
8294 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8295
8296 buf = realloc (buf, *bufsiz + newspace);
8297 if (buf == NULL)
8298 return buf;
8299 dest = buf + *bufsiz;
8300 *bufsiz += newspace;
8301 xnp = (Elf_External_Note *) dest;
8302 H_PUT_32 (abfd, namesz, xnp->namesz);
8303 H_PUT_32 (abfd, size, xnp->descsz);
8304 H_PUT_32 (abfd, type, xnp->type);
8305 dest = xnp->name;
8306 if (name != NULL)
8307 {
8308 memcpy (dest, name, namesz);
8309 dest += namesz;
8310 while (namesz & 3)
8311 {
8312 *dest++ = '\0';
8313 ++namesz;
8314 }
8315 }
8316 memcpy (dest, input, size);
8317 dest += size;
8318 while (size & 3)
8319 {
8320 *dest++ = '\0';
8321 ++size;
8322 }
8323 return buf;
8324 }
8325
8326 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8327 char *
8328 elfcore_write_prpsinfo (bfd *abfd,
8329 char *buf,
8330 int *bufsiz,
8331 const char *fname,
8332 const char *psargs)
8333 {
8334 const char *note_name = "CORE";
8335 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8336
8337 if (bed->elf_backend_write_core_note != NULL)
8338 {
8339 char *ret;
8340 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8341 NT_PRPSINFO, fname, psargs);
8342 if (ret != NULL)
8343 return ret;
8344 }
8345
8346 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8347 if (bed->s->elfclass == ELFCLASS32)
8348 {
8349 #if defined (HAVE_PSINFO32_T)
8350 psinfo32_t data;
8351 int note_type = NT_PSINFO;
8352 #else
8353 prpsinfo32_t data;
8354 int note_type = NT_PRPSINFO;
8355 #endif
8356
8357 memset (&data, 0, sizeof (data));
8358 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8359 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8360 return elfcore_write_note (abfd, buf, bufsiz,
8361 note_name, note_type, &data, sizeof (data));
8362 }
8363 else
8364 #endif
8365 {
8366 #if defined (HAVE_PSINFO_T)
8367 psinfo_t data;
8368 int note_type = NT_PSINFO;
8369 #else
8370 prpsinfo_t data;
8371 int note_type = NT_PRPSINFO;
8372 #endif
8373
8374 memset (&data, 0, sizeof (data));
8375 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8376 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8377 return elfcore_write_note (abfd, buf, bufsiz,
8378 note_name, note_type, &data, sizeof (data));
8379 }
8380 }
8381 #endif /* PSINFO_T or PRPSINFO_T */
8382
8383 #if defined (HAVE_PRSTATUS_T)
8384 char *
8385 elfcore_write_prstatus (bfd *abfd,
8386 char *buf,
8387 int *bufsiz,
8388 long pid,
8389 int cursig,
8390 const void *gregs)
8391 {
8392 const char *note_name = "CORE";
8393 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8394
8395 if (bed->elf_backend_write_core_note != NULL)
8396 {
8397 char *ret;
8398 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8399 NT_PRSTATUS,
8400 pid, cursig, gregs);
8401 if (ret != NULL)
8402 return ret;
8403 }
8404
8405 #if defined (HAVE_PRSTATUS32_T)
8406 if (bed->s->elfclass == ELFCLASS32)
8407 {
8408 prstatus32_t prstat;
8409
8410 memset (&prstat, 0, sizeof (prstat));
8411 prstat.pr_pid = pid;
8412 prstat.pr_cursig = cursig;
8413 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8414 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8415 NT_PRSTATUS, &prstat, sizeof (prstat));
8416 }
8417 else
8418 #endif
8419 {
8420 prstatus_t prstat;
8421
8422 memset (&prstat, 0, sizeof (prstat));
8423 prstat.pr_pid = pid;
8424 prstat.pr_cursig = cursig;
8425 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8426 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8427 NT_PRSTATUS, &prstat, sizeof (prstat));
8428 }
8429 }
8430 #endif /* HAVE_PRSTATUS_T */
8431
8432 #if defined (HAVE_LWPSTATUS_T)
8433 char *
8434 elfcore_write_lwpstatus (bfd *abfd,
8435 char *buf,
8436 int *bufsiz,
8437 long pid,
8438 int cursig,
8439 const void *gregs)
8440 {
8441 lwpstatus_t lwpstat;
8442 const char *note_name = "CORE";
8443
8444 memset (&lwpstat, 0, sizeof (lwpstat));
8445 lwpstat.pr_lwpid = pid >> 16;
8446 lwpstat.pr_cursig = cursig;
8447 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8448 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8449 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8450 #if !defined(gregs)
8451 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8452 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8453 #else
8454 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8455 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8456 #endif
8457 #endif
8458 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8459 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8460 }
8461 #endif /* HAVE_LWPSTATUS_T */
8462
8463 #if defined (HAVE_PSTATUS_T)
8464 char *
8465 elfcore_write_pstatus (bfd *abfd,
8466 char *buf,
8467 int *bufsiz,
8468 long pid,
8469 int cursig ATTRIBUTE_UNUSED,
8470 const void *gregs ATTRIBUTE_UNUSED)
8471 {
8472 const char *note_name = "CORE";
8473 #if defined (HAVE_PSTATUS32_T)
8474 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8475
8476 if (bed->s->elfclass == ELFCLASS32)
8477 {
8478 pstatus32_t pstat;
8479
8480 memset (&pstat, 0, sizeof (pstat));
8481 pstat.pr_pid = pid & 0xffff;
8482 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8483 NT_PSTATUS, &pstat, sizeof (pstat));
8484 return buf;
8485 }
8486 else
8487 #endif
8488 {
8489 pstatus_t pstat;
8490
8491 memset (&pstat, 0, sizeof (pstat));
8492 pstat.pr_pid = pid & 0xffff;
8493 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8494 NT_PSTATUS, &pstat, sizeof (pstat));
8495 return buf;
8496 }
8497 }
8498 #endif /* HAVE_PSTATUS_T */
8499
8500 char *
8501 elfcore_write_prfpreg (bfd *abfd,
8502 char *buf,
8503 int *bufsiz,
8504 const void *fpregs,
8505 int size)
8506 {
8507 const char *note_name = "CORE";
8508 return elfcore_write_note (abfd, buf, bufsiz,
8509 note_name, NT_FPREGSET, fpregs, size);
8510 }
8511
8512 char *
8513 elfcore_write_prxfpreg (bfd *abfd,
8514 char *buf,
8515 int *bufsiz,
8516 const void *xfpregs,
8517 int size)
8518 {
8519 char *note_name = "LINUX";
8520 return elfcore_write_note (abfd, buf, bufsiz,
8521 note_name, NT_PRXFPREG, xfpregs, size);
8522 }
8523
8524 char *
8525 elfcore_write_ppc_vmx (bfd *abfd,
8526 char *buf,
8527 int *bufsiz,
8528 const void *ppc_vmx,
8529 int size)
8530 {
8531 char *note_name = "LINUX";
8532 return elfcore_write_note (abfd, buf, bufsiz,
8533 note_name, NT_PPC_VMX, ppc_vmx, size);
8534 }
8535
8536 char *
8537 elfcore_write_ppc_vsx (bfd *abfd,
8538 char *buf,
8539 int *bufsiz,
8540 const void *ppc_vsx,
8541 int size)
8542 {
8543 char *note_name = "LINUX";
8544 return elfcore_write_note (abfd, buf, bufsiz,
8545 note_name, NT_PPC_VSX, ppc_vsx, size);
8546 }
8547
8548 char *
8549 elfcore_write_register_note (bfd *abfd,
8550 char *buf,
8551 int *bufsiz,
8552 const char *section,
8553 const void *data,
8554 int size)
8555 {
8556 if (strcmp (section, ".reg2") == 0)
8557 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
8558 if (strcmp (section, ".reg-xfp") == 0)
8559 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
8560 if (strcmp (section, ".reg-ppc-vmx") == 0)
8561 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
8562 if (strcmp (section, ".reg-ppc-vsx") == 0)
8563 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
8564 return NULL;
8565 }
8566
8567 static bfd_boolean
8568 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8569 {
8570 char *p;
8571
8572 p = buf;
8573 while (p < buf + size)
8574 {
8575 /* FIXME: bad alignment assumption. */
8576 Elf_External_Note *xnp = (Elf_External_Note *) p;
8577 Elf_Internal_Note in;
8578
8579 if (offsetof (Elf_External_Note, name) > buf - p + size)
8580 return FALSE;
8581
8582 in.type = H_GET_32 (abfd, xnp->type);
8583
8584 in.namesz = H_GET_32 (abfd, xnp->namesz);
8585 in.namedata = xnp->name;
8586 if (in.namesz > buf - in.namedata + size)
8587 return FALSE;
8588
8589 in.descsz = H_GET_32 (abfd, xnp->descsz);
8590 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8591 in.descpos = offset + (in.descdata - buf);
8592 if (in.descsz != 0
8593 && (in.descdata >= buf + size
8594 || in.descsz > buf - in.descdata + size))
8595 return FALSE;
8596
8597 switch (bfd_get_format (abfd))
8598 {
8599 default:
8600 return TRUE;
8601
8602 case bfd_core:
8603 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8604 {
8605 if (! elfcore_grok_netbsd_note (abfd, &in))
8606 return FALSE;
8607 }
8608 else if (CONST_STRNEQ (in.namedata, "QNX"))
8609 {
8610 if (! elfcore_grok_nto_note (abfd, &in))
8611 return FALSE;
8612 }
8613 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8614 {
8615 if (! elfcore_grok_spu_note (abfd, &in))
8616 return FALSE;
8617 }
8618 else
8619 {
8620 if (! elfcore_grok_note (abfd, &in))
8621 return FALSE;
8622 }
8623 break;
8624
8625 case bfd_object:
8626 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8627 {
8628 if (! elfobj_grok_gnu_note (abfd, &in))
8629 return FALSE;
8630 }
8631 break;
8632 }
8633
8634 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8635 }
8636
8637 return TRUE;
8638 }
8639
8640 static bfd_boolean
8641 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8642 {
8643 char *buf;
8644
8645 if (size <= 0)
8646 return TRUE;
8647
8648 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8649 return FALSE;
8650
8651 buf = bfd_malloc (size);
8652 if (buf == NULL)
8653 return FALSE;
8654
8655 if (bfd_bread (buf, size, abfd) != size
8656 || !elf_parse_notes (abfd, buf, size, offset))
8657 {
8658 free (buf);
8659 return FALSE;
8660 }
8661
8662 free (buf);
8663 return TRUE;
8664 }
8665 \f
8666 /* Providing external access to the ELF program header table. */
8667
8668 /* Return an upper bound on the number of bytes required to store a
8669 copy of ABFD's program header table entries. Return -1 if an error
8670 occurs; bfd_get_error will return an appropriate code. */
8671
8672 long
8673 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8674 {
8675 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8676 {
8677 bfd_set_error (bfd_error_wrong_format);
8678 return -1;
8679 }
8680
8681 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8682 }
8683
8684 /* Copy ABFD's program header table entries to *PHDRS. The entries
8685 will be stored as an array of Elf_Internal_Phdr structures, as
8686 defined in include/elf/internal.h. To find out how large the
8687 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8688
8689 Return the number of program header table entries read, or -1 if an
8690 error occurs; bfd_get_error will return an appropriate code. */
8691
8692 int
8693 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8694 {
8695 int num_phdrs;
8696
8697 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8698 {
8699 bfd_set_error (bfd_error_wrong_format);
8700 return -1;
8701 }
8702
8703 num_phdrs = elf_elfheader (abfd)->e_phnum;
8704 memcpy (phdrs, elf_tdata (abfd)->phdr,
8705 num_phdrs * sizeof (Elf_Internal_Phdr));
8706
8707 return num_phdrs;
8708 }
8709
8710 enum elf_reloc_type_class
8711 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8712 {
8713 return reloc_class_normal;
8714 }
8715
8716 /* For RELA architectures, return the relocation value for a
8717 relocation against a local symbol. */
8718
8719 bfd_vma
8720 _bfd_elf_rela_local_sym (bfd *abfd,
8721 Elf_Internal_Sym *sym,
8722 asection **psec,
8723 Elf_Internal_Rela *rel)
8724 {
8725 asection *sec = *psec;
8726 bfd_vma relocation;
8727
8728 relocation = (sec->output_section->vma
8729 + sec->output_offset
8730 + sym->st_value);
8731 if ((sec->flags & SEC_MERGE)
8732 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8733 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8734 {
8735 rel->r_addend =
8736 _bfd_merged_section_offset (abfd, psec,
8737 elf_section_data (sec)->sec_info,
8738 sym->st_value + rel->r_addend);
8739 if (sec != *psec)
8740 {
8741 /* If we have changed the section, and our original section is
8742 marked with SEC_EXCLUDE, it means that the original
8743 SEC_MERGE section has been completely subsumed in some
8744 other SEC_MERGE section. In this case, we need to leave
8745 some info around for --emit-relocs. */
8746 if ((sec->flags & SEC_EXCLUDE) != 0)
8747 sec->kept_section = *psec;
8748 sec = *psec;
8749 }
8750 rel->r_addend -= relocation;
8751 rel->r_addend += sec->output_section->vma + sec->output_offset;
8752 }
8753 return relocation;
8754 }
8755
8756 bfd_vma
8757 _bfd_elf_rel_local_sym (bfd *abfd,
8758 Elf_Internal_Sym *sym,
8759 asection **psec,
8760 bfd_vma addend)
8761 {
8762 asection *sec = *psec;
8763
8764 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8765 return sym->st_value + addend;
8766
8767 return _bfd_merged_section_offset (abfd, psec,
8768 elf_section_data (sec)->sec_info,
8769 sym->st_value + addend);
8770 }
8771
8772 bfd_vma
8773 _bfd_elf_section_offset (bfd *abfd,
8774 struct bfd_link_info *info,
8775 asection *sec,
8776 bfd_vma offset)
8777 {
8778 switch (sec->sec_info_type)
8779 {
8780 case ELF_INFO_TYPE_STABS:
8781 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8782 offset);
8783 case ELF_INFO_TYPE_EH_FRAME:
8784 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8785 default:
8786 return offset;
8787 }
8788 }
8789 \f
8790 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8791 reconstruct an ELF file by reading the segments out of remote memory
8792 based on the ELF file header at EHDR_VMA and the ELF program headers it
8793 points to. If not null, *LOADBASEP is filled in with the difference
8794 between the VMAs from which the segments were read, and the VMAs the
8795 file headers (and hence BFD's idea of each section's VMA) put them at.
8796
8797 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8798 remote memory at target address VMA into the local buffer at MYADDR; it
8799 should return zero on success or an `errno' code on failure. TEMPL must
8800 be a BFD for an ELF target with the word size and byte order found in
8801 the remote memory. */
8802
8803 bfd *
8804 bfd_elf_bfd_from_remote_memory
8805 (bfd *templ,
8806 bfd_vma ehdr_vma,
8807 bfd_vma *loadbasep,
8808 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8809 {
8810 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8811 (templ, ehdr_vma, loadbasep, target_read_memory);
8812 }
8813 \f
8814 long
8815 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8816 long symcount ATTRIBUTE_UNUSED,
8817 asymbol **syms ATTRIBUTE_UNUSED,
8818 long dynsymcount,
8819 asymbol **dynsyms,
8820 asymbol **ret)
8821 {
8822 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8823 asection *relplt;
8824 asymbol *s;
8825 const char *relplt_name;
8826 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8827 arelent *p;
8828 long count, i, n;
8829 size_t size;
8830 Elf_Internal_Shdr *hdr;
8831 char *names;
8832 asection *plt;
8833
8834 *ret = NULL;
8835
8836 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8837 return 0;
8838
8839 if (dynsymcount <= 0)
8840 return 0;
8841
8842 if (!bed->plt_sym_val)
8843 return 0;
8844
8845 relplt_name = bed->relplt_name;
8846 if (relplt_name == NULL)
8847 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
8848 relplt = bfd_get_section_by_name (abfd, relplt_name);
8849 if (relplt == NULL)
8850 return 0;
8851
8852 hdr = &elf_section_data (relplt)->this_hdr;
8853 if (hdr->sh_link != elf_dynsymtab (abfd)
8854 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8855 return 0;
8856
8857 plt = bfd_get_section_by_name (abfd, ".plt");
8858 if (plt == NULL)
8859 return 0;
8860
8861 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8862 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8863 return -1;
8864
8865 count = relplt->size / hdr->sh_entsize;
8866 size = count * sizeof (asymbol);
8867 p = relplt->relocation;
8868 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
8869 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8870
8871 s = *ret = bfd_malloc (size);
8872 if (s == NULL)
8873 return -1;
8874
8875 names = (char *) (s + count);
8876 p = relplt->relocation;
8877 n = 0;
8878 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
8879 {
8880 size_t len;
8881 bfd_vma addr;
8882
8883 addr = bed->plt_sym_val (i, plt, p);
8884 if (addr == (bfd_vma) -1)
8885 continue;
8886
8887 *s = **p->sym_ptr_ptr;
8888 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8889 we are defining a symbol, ensure one of them is set. */
8890 if ((s->flags & BSF_LOCAL) == 0)
8891 s->flags |= BSF_GLOBAL;
8892 s->flags |= BSF_SYNTHETIC;
8893 s->section = plt;
8894 s->value = addr - plt->vma;
8895 s->name = names;
8896 s->udata.p = NULL;
8897 len = strlen ((*p->sym_ptr_ptr)->name);
8898 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8899 names += len;
8900 memcpy (names, "@plt", sizeof ("@plt"));
8901 names += sizeof ("@plt");
8902 ++s, ++n;
8903 }
8904
8905 return n;
8906 }
8907
8908 /* It is only used by x86-64 so far. */
8909 asection _bfd_elf_large_com_section
8910 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8911 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8912
8913 void
8914 _bfd_elf_set_osabi (bfd * abfd,
8915 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8916 {
8917 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8918
8919 i_ehdrp = elf_elfheader (abfd);
8920
8921 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8922 }
8923
8924
8925 /* Return TRUE for ELF symbol types that represent functions.
8926 This is the default version of this function, which is sufficient for
8927 most targets. It returns true if TYPE is STT_FUNC. */
8928
8929 bfd_boolean
8930 _bfd_elf_is_function_type (unsigned int type)
8931 {
8932 return (type == STT_FUNC);
8933 }
This page took 0.216492 seconds and 4 git commands to generate.