e9db1a0305ab9eab6fd1cdda91291ca128925a14
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* SECTION
22
23 ELF backends
24
25 BFD support for ELF formats is being worked on.
26 Currently, the best supported back ends are for sparc and i386
27 (running svr4 or Solaris 2).
28
29 Documentation of the internals of the support code still needs
30 to be written. The code is changing quickly enough that we
31 haven't bothered yet. */
32
33 /* For sparc64-cross-sparc32. */
34 #define _SYSCALL32
35 #include "bfd.h"
36 #include "sysdep.h"
37 #include "bfdlink.h"
38 #include "libbfd.h"
39 #define ARCH_SIZE 0
40 #include "elf-bfd.h"
41 #include "libiberty.h"
42
43 static int elf_sort_sections (const void *, const void *);
44 static bfd_boolean assign_file_positions_except_relocs (bfd *);
45 static bfd_boolean prep_headers (bfd *);
46 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
47 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
48
49 /* Swap version information in and out. The version information is
50 currently size independent. If that ever changes, this code will
51 need to move into elfcode.h. */
52
53 /* Swap in a Verdef structure. */
54
55 void
56 _bfd_elf_swap_verdef_in (bfd *abfd,
57 const Elf_External_Verdef *src,
58 Elf_Internal_Verdef *dst)
59 {
60 dst->vd_version = H_GET_16 (abfd, src->vd_version);
61 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
62 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
63 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
64 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
65 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
66 dst->vd_next = H_GET_32 (abfd, src->vd_next);
67 }
68
69 /* Swap out a Verdef structure. */
70
71 void
72 _bfd_elf_swap_verdef_out (bfd *abfd,
73 const Elf_Internal_Verdef *src,
74 Elf_External_Verdef *dst)
75 {
76 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
77 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
78 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
79 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
80 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
81 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
82 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
83 }
84
85 /* Swap in a Verdaux structure. */
86
87 void
88 _bfd_elf_swap_verdaux_in (bfd *abfd,
89 const Elf_External_Verdaux *src,
90 Elf_Internal_Verdaux *dst)
91 {
92 dst->vda_name = H_GET_32 (abfd, src->vda_name);
93 dst->vda_next = H_GET_32 (abfd, src->vda_next);
94 }
95
96 /* Swap out a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_out (bfd *abfd,
100 const Elf_Internal_Verdaux *src,
101 Elf_External_Verdaux *dst)
102 {
103 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
104 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
105 }
106
107 /* Swap in a Verneed structure. */
108
109 void
110 _bfd_elf_swap_verneed_in (bfd *abfd,
111 const Elf_External_Verneed *src,
112 Elf_Internal_Verneed *dst)
113 {
114 dst->vn_version = H_GET_16 (abfd, src->vn_version);
115 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
116 dst->vn_file = H_GET_32 (abfd, src->vn_file);
117 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
118 dst->vn_next = H_GET_32 (abfd, src->vn_next);
119 }
120
121 /* Swap out a Verneed structure. */
122
123 void
124 _bfd_elf_swap_verneed_out (bfd *abfd,
125 const Elf_Internal_Verneed *src,
126 Elf_External_Verneed *dst)
127 {
128 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
129 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
130 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
131 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
132 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
133 }
134
135 /* Swap in a Vernaux structure. */
136
137 void
138 _bfd_elf_swap_vernaux_in (bfd *abfd,
139 const Elf_External_Vernaux *src,
140 Elf_Internal_Vernaux *dst)
141 {
142 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
143 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
144 dst->vna_other = H_GET_16 (abfd, src->vna_other);
145 dst->vna_name = H_GET_32 (abfd, src->vna_name);
146 dst->vna_next = H_GET_32 (abfd, src->vna_next);
147 }
148
149 /* Swap out a Vernaux structure. */
150
151 void
152 _bfd_elf_swap_vernaux_out (bfd *abfd,
153 const Elf_Internal_Vernaux *src,
154 Elf_External_Vernaux *dst)
155 {
156 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
157 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
158 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
159 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
160 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
161 }
162
163 /* Swap in a Versym structure. */
164
165 void
166 _bfd_elf_swap_versym_in (bfd *abfd,
167 const Elf_External_Versym *src,
168 Elf_Internal_Versym *dst)
169 {
170 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
171 }
172
173 /* Swap out a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_out (bfd *abfd,
177 const Elf_Internal_Versym *src,
178 Elf_External_Versym *dst)
179 {
180 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
181 }
182
183 /* Standard ELF hash function. Do not change this function; you will
184 cause invalid hash tables to be generated. */
185
186 unsigned long
187 bfd_elf_hash (const char *namearg)
188 {
189 const unsigned char *name = (const unsigned char *) namearg;
190 unsigned long h = 0;
191 unsigned long g;
192 int ch;
193
194 while ((ch = *name++) != '\0')
195 {
196 h = (h << 4) + ch;
197 if ((g = (h & 0xf0000000)) != 0)
198 {
199 h ^= g >> 24;
200 /* The ELF ABI says `h &= ~g', but this is equivalent in
201 this case and on some machines one insn instead of two. */
202 h ^= g;
203 }
204 }
205 return h & 0xffffffff;
206 }
207
208 /* Read a specified number of bytes at a specified offset in an ELF
209 file, into a newly allocated buffer, and return a pointer to the
210 buffer. */
211
212 static char *
213 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
214 {
215 char *buf;
216
217 if ((buf = bfd_alloc (abfd, size)) == NULL)
218 return NULL;
219 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
220 return NULL;
221 if (bfd_bread (buf, size, abfd) != size)
222 {
223 if (bfd_get_error () != bfd_error_system_call)
224 bfd_set_error (bfd_error_file_truncated);
225 return NULL;
226 }
227 return buf;
228 }
229
230 bfd_boolean
231 bfd_elf_mkobject (bfd *abfd)
232 {
233 /* This just does initialization. */
234 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
235 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
236 if (elf_tdata (abfd) == 0)
237 return FALSE;
238 /* Since everything is done at close time, do we need any
239 initialization? */
240
241 return TRUE;
242 }
243
244 bfd_boolean
245 bfd_elf_mkcorefile (bfd *abfd)
246 {
247 /* I think this can be done just like an object file. */
248 return bfd_elf_mkobject (abfd);
249 }
250
251 char *
252 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
253 {
254 Elf_Internal_Shdr **i_shdrp;
255 char *shstrtab = NULL;
256 file_ptr offset;
257 bfd_size_type shstrtabsize;
258
259 i_shdrp = elf_elfsections (abfd);
260 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
261 return 0;
262
263 shstrtab = (char *) i_shdrp[shindex]->contents;
264 if (shstrtab == NULL)
265 {
266 /* No cached one, attempt to read, and cache what we read. */
267 offset = i_shdrp[shindex]->sh_offset;
268 shstrtabsize = i_shdrp[shindex]->sh_size;
269 shstrtab = elf_read (abfd, offset, shstrtabsize);
270 i_shdrp[shindex]->contents = shstrtab;
271 }
272 return shstrtab;
273 }
274
275 char *
276 bfd_elf_string_from_elf_section (bfd *abfd,
277 unsigned int shindex,
278 unsigned int strindex)
279 {
280 Elf_Internal_Shdr *hdr;
281
282 if (strindex == 0)
283 return "";
284
285 hdr = elf_elfsections (abfd)[shindex];
286
287 if (hdr->contents == NULL
288 && bfd_elf_get_str_section (abfd, shindex) == NULL)
289 return NULL;
290
291 if (strindex >= hdr->sh_size)
292 {
293 (*_bfd_error_handler)
294 (_("%s: invalid string offset %u >= %lu for section `%s'"),
295 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
296 ((shindex == elf_elfheader(abfd)->e_shstrndx
297 && strindex == hdr->sh_name)
298 ? ".shstrtab"
299 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
300 return "";
301 }
302
303 return ((char *) hdr->contents) + strindex;
304 }
305
306 /* Read and convert symbols to internal format.
307 SYMCOUNT specifies the number of symbols to read, starting from
308 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
309 are non-NULL, they are used to store the internal symbols, external
310 symbols, and symbol section index extensions, respectively. */
311
312 Elf_Internal_Sym *
313 bfd_elf_get_elf_syms (bfd *ibfd,
314 Elf_Internal_Shdr *symtab_hdr,
315 size_t symcount,
316 size_t symoffset,
317 Elf_Internal_Sym *intsym_buf,
318 void *extsym_buf,
319 Elf_External_Sym_Shndx *extshndx_buf)
320 {
321 Elf_Internal_Shdr *shndx_hdr;
322 void *alloc_ext;
323 const bfd_byte *esym;
324 Elf_External_Sym_Shndx *alloc_extshndx;
325 Elf_External_Sym_Shndx *shndx;
326 Elf_Internal_Sym *isym;
327 Elf_Internal_Sym *isymend;
328 const struct elf_backend_data *bed;
329 size_t extsym_size;
330 bfd_size_type amt;
331 file_ptr pos;
332
333 if (symcount == 0)
334 return intsym_buf;
335
336 /* Normal syms might have section extension entries. */
337 shndx_hdr = NULL;
338 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
339 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
340
341 /* Read the symbols. */
342 alloc_ext = NULL;
343 alloc_extshndx = NULL;
344 bed = get_elf_backend_data (ibfd);
345 extsym_size = bed->s->sizeof_sym;
346 amt = symcount * extsym_size;
347 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
348 if (extsym_buf == NULL)
349 {
350 alloc_ext = bfd_malloc (amt);
351 extsym_buf = alloc_ext;
352 }
353 if (extsym_buf == NULL
354 || bfd_seek (ibfd, pos, SEEK_SET) != 0
355 || bfd_bread (extsym_buf, amt, ibfd) != amt)
356 {
357 intsym_buf = NULL;
358 goto out;
359 }
360
361 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
362 extshndx_buf = NULL;
363 else
364 {
365 amt = symcount * sizeof (Elf_External_Sym_Shndx);
366 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
367 if (extshndx_buf == NULL)
368 {
369 alloc_extshndx = bfd_malloc (amt);
370 extshndx_buf = alloc_extshndx;
371 }
372 if (extshndx_buf == NULL
373 || bfd_seek (ibfd, pos, SEEK_SET) != 0
374 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
375 {
376 intsym_buf = NULL;
377 goto out;
378 }
379 }
380
381 if (intsym_buf == NULL)
382 {
383 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
384 intsym_buf = bfd_malloc (amt);
385 if (intsym_buf == NULL)
386 goto out;
387 }
388
389 /* Convert the symbols to internal form. */
390 isymend = intsym_buf + symcount;
391 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
392 isym < isymend;
393 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
394 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
395
396 out:
397 if (alloc_ext != NULL)
398 free (alloc_ext);
399 if (alloc_extshndx != NULL)
400 free (alloc_extshndx);
401
402 return intsym_buf;
403 }
404
405 /* Look up a symbol name. */
406 const char *
407 bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
408 {
409 unsigned int iname = isym->st_name;
410 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
411 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
412 {
413 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
414 shindex = elf_elfheader (abfd)->e_shstrndx;
415 }
416
417 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
418 }
419
420 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
421 sections. The first element is the flags, the rest are section
422 pointers. */
423
424 typedef union elf_internal_group {
425 Elf_Internal_Shdr *shdr;
426 unsigned int flags;
427 } Elf_Internal_Group;
428
429 /* Return the name of the group signature symbol. Why isn't the
430 signature just a string? */
431
432 static const char *
433 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
434 {
435 Elf_Internal_Shdr *hdr;
436 unsigned char esym[sizeof (Elf64_External_Sym)];
437 Elf_External_Sym_Shndx eshndx;
438 Elf_Internal_Sym isym;
439
440 /* First we need to ensure the symbol table is available. */
441 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
442 return NULL;
443
444 /* Go read the symbol. */
445 hdr = &elf_tdata (abfd)->symtab_hdr;
446 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
447 &isym, esym, &eshndx) == NULL)
448 return NULL;
449
450 return bfd_elf_local_sym_name (abfd, &isym);
451 }
452
453 /* Set next_in_group list pointer, and group name for NEWSECT. */
454
455 static bfd_boolean
456 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
457 {
458 unsigned int num_group = elf_tdata (abfd)->num_group;
459
460 /* If num_group is zero, read in all SHT_GROUP sections. The count
461 is set to -1 if there are no SHT_GROUP sections. */
462 if (num_group == 0)
463 {
464 unsigned int i, shnum;
465
466 /* First count the number of groups. If we have a SHT_GROUP
467 section with just a flag word (ie. sh_size is 4), ignore it. */
468 shnum = elf_numsections (abfd);
469 num_group = 0;
470 for (i = 0; i < shnum; i++)
471 {
472 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
473 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
474 num_group += 1;
475 }
476
477 if (num_group == 0)
478 num_group = (unsigned) -1;
479 elf_tdata (abfd)->num_group = num_group;
480
481 if (num_group > 0)
482 {
483 /* We keep a list of elf section headers for group sections,
484 so we can find them quickly. */
485 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
486 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
487 if (elf_tdata (abfd)->group_sect_ptr == NULL)
488 return FALSE;
489
490 num_group = 0;
491 for (i = 0; i < shnum; i++)
492 {
493 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
494 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
495 {
496 unsigned char *src;
497 Elf_Internal_Group *dest;
498
499 /* Add to list of sections. */
500 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
501 num_group += 1;
502
503 /* Read the raw contents. */
504 BFD_ASSERT (sizeof (*dest) >= 4);
505 amt = shdr->sh_size * sizeof (*dest) / 4;
506 shdr->contents = bfd_alloc (abfd, amt);
507 if (shdr->contents == NULL
508 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
509 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
510 != shdr->sh_size))
511 return FALSE;
512
513 /* Translate raw contents, a flag word followed by an
514 array of elf section indices all in target byte order,
515 to the flag word followed by an array of elf section
516 pointers. */
517 src = shdr->contents + shdr->sh_size;
518 dest = (Elf_Internal_Group *) (shdr->contents + amt);
519 while (1)
520 {
521 unsigned int idx;
522
523 src -= 4;
524 --dest;
525 idx = H_GET_32 (abfd, src);
526 if (src == shdr->contents)
527 {
528 dest->flags = idx;
529 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
530 shdr->bfd_section->flags
531 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
532 break;
533 }
534 if (idx >= shnum)
535 {
536 ((*_bfd_error_handler)
537 (_("%s: invalid SHT_GROUP entry"),
538 bfd_archive_filename (abfd)));
539 idx = 0;
540 }
541 dest->shdr = elf_elfsections (abfd)[idx];
542 }
543 }
544 }
545 }
546 }
547
548 if (num_group != (unsigned) -1)
549 {
550 unsigned int i;
551
552 for (i = 0; i < num_group; i++)
553 {
554 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
555 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
556 unsigned int n_elt = shdr->sh_size / 4;
557
558 /* Look through this group's sections to see if current
559 section is a member. */
560 while (--n_elt != 0)
561 if ((++idx)->shdr == hdr)
562 {
563 asection *s = NULL;
564
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
567 next_in_group. */
568 idx = (Elf_Internal_Group *) shdr->contents;
569 n_elt = shdr->sh_size / 4;
570 while (--n_elt != 0)
571 if ((s = (++idx)->shdr->bfd_section) != NULL
572 && elf_next_in_group (s) != NULL)
573 break;
574 if (n_elt != 0)
575 {
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect) = elf_group_name (s);
579 elf_next_in_group (newsect) = elf_next_in_group (s);
580 elf_next_in_group (s) = newsect;
581 }
582 else
583 {
584 const char *gname;
585
586 gname = group_signature (abfd, shdr);
587 if (gname == NULL)
588 return FALSE;
589 elf_group_name (newsect) = gname;
590
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect) = newsect;
593 }
594
595 /* If the group section has been created, point to the
596 new member. */
597 if (shdr->bfd_section != NULL)
598 elf_next_in_group (shdr->bfd_section) = newsect;
599
600 i = num_group - 1;
601 break;
602 }
603 }
604 }
605
606 if (elf_group_name (newsect) == NULL)
607 {
608 (*_bfd_error_handler) (_("%s: no group info for section %s"),
609 bfd_archive_filename (abfd), newsect->name);
610 }
611 return TRUE;
612 }
613
614 bfd_boolean
615 bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED, asection *group)
616 {
617 asection *first = elf_next_in_group (group);
618 asection *s = first;
619
620 while (s != NULL)
621 {
622 s->output_section = bfd_abs_section_ptr;
623 s = elf_next_in_group (s);
624 /* These lists are circular. */
625 if (s == first)
626 break;
627 }
628 return TRUE;
629 }
630
631 /* Make a BFD section from an ELF section. We store a pointer to the
632 BFD section in the bfd_section field of the header. */
633
634 bfd_boolean
635 _bfd_elf_make_section_from_shdr (bfd *abfd,
636 Elf_Internal_Shdr *hdr,
637 const char *name)
638 {
639 asection *newsect;
640 flagword flags;
641 const struct elf_backend_data *bed;
642
643 if (hdr->bfd_section != NULL)
644 {
645 BFD_ASSERT (strcmp (name,
646 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
647 return TRUE;
648 }
649
650 newsect = bfd_make_section_anyway (abfd, name);
651 if (newsect == NULL)
652 return FALSE;
653
654 /* Always use the real type/flags. */
655 elf_section_type (newsect) = hdr->sh_type;
656 elf_section_flags (newsect) = hdr->sh_flags;
657
658 newsect->filepos = hdr->sh_offset;
659
660 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
661 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
662 || ! bfd_set_section_alignment (abfd, newsect,
663 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
664 return FALSE;
665
666 flags = SEC_NO_FLAGS;
667 if (hdr->sh_type != SHT_NOBITS)
668 flags |= SEC_HAS_CONTENTS;
669 if (hdr->sh_type == SHT_GROUP)
670 flags |= SEC_GROUP | SEC_EXCLUDE;
671 if ((hdr->sh_flags & SHF_ALLOC) != 0)
672 {
673 flags |= SEC_ALLOC;
674 if (hdr->sh_type != SHT_NOBITS)
675 flags |= SEC_LOAD;
676 }
677 if ((hdr->sh_flags & SHF_WRITE) == 0)
678 flags |= SEC_READONLY;
679 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
680 flags |= SEC_CODE;
681 else if ((flags & SEC_LOAD) != 0)
682 flags |= SEC_DATA;
683 if ((hdr->sh_flags & SHF_MERGE) != 0)
684 {
685 flags |= SEC_MERGE;
686 newsect->entsize = hdr->sh_entsize;
687 if ((hdr->sh_flags & SHF_STRINGS) != 0)
688 flags |= SEC_STRINGS;
689 }
690 if (hdr->sh_flags & SHF_GROUP)
691 if (!setup_group (abfd, hdr, newsect))
692 return FALSE;
693 if ((hdr->sh_flags & SHF_TLS) != 0)
694 flags |= SEC_THREAD_LOCAL;
695
696 /* The debugging sections appear to be recognized only by name, not
697 any sort of flag. */
698 {
699 static const char *debug_sec_names [] =
700 {
701 ".debug",
702 ".gnu.linkonce.wi.",
703 ".line",
704 ".stab"
705 };
706 int i;
707
708 for (i = ARRAY_SIZE (debug_sec_names); i--;)
709 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
710 break;
711
712 if (i >= 0)
713 flags |= SEC_DEBUGGING;
714 }
715
716 /* As a GNU extension, if the name begins with .gnu.linkonce, we
717 only link a single copy of the section. This is used to support
718 g++. g++ will emit each template expansion in its own section.
719 The symbols will be defined as weak, so that multiple definitions
720 are permitted. The GNU linker extension is to actually discard
721 all but one of the sections. */
722 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
723 && elf_next_in_group (newsect) == NULL)
724 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
725
726 bed = get_elf_backend_data (abfd);
727 if (bed->elf_backend_section_flags)
728 if (! bed->elf_backend_section_flags (&flags, hdr))
729 return FALSE;
730
731 if (! bfd_set_section_flags (abfd, newsect, flags))
732 return FALSE;
733
734 if ((flags & SEC_ALLOC) != 0)
735 {
736 Elf_Internal_Phdr *phdr;
737 unsigned int i;
738
739 /* Look through the phdrs to see if we need to adjust the lma.
740 If all the p_paddr fields are zero, we ignore them, since
741 some ELF linkers produce such output. */
742 phdr = elf_tdata (abfd)->phdr;
743 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
744 {
745 if (phdr->p_paddr != 0)
746 break;
747 }
748 if (i < elf_elfheader (abfd)->e_phnum)
749 {
750 phdr = elf_tdata (abfd)->phdr;
751 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
752 {
753 /* This section is part of this segment if its file
754 offset plus size lies within the segment's memory
755 span and, if the section is loaded, the extent of the
756 loaded data lies within the extent of the segment.
757
758 Note - we used to check the p_paddr field as well, and
759 refuse to set the LMA if it was 0. This is wrong
760 though, as a perfectly valid initialised segment can
761 have a p_paddr of zero. Some architectures, eg ARM,
762 place special significance on the address 0 and
763 executables need to be able to have a segment which
764 covers this address. */
765 if (phdr->p_type == PT_LOAD
766 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
767 && (hdr->sh_offset + hdr->sh_size
768 <= phdr->p_offset + phdr->p_memsz)
769 && ((flags & SEC_LOAD) == 0
770 || (hdr->sh_offset + hdr->sh_size
771 <= phdr->p_offset + phdr->p_filesz)))
772 {
773 if ((flags & SEC_LOAD) == 0)
774 newsect->lma = (phdr->p_paddr
775 + hdr->sh_addr - phdr->p_vaddr);
776 else
777 /* We used to use the same adjustment for SEC_LOAD
778 sections, but that doesn't work if the segment
779 is packed with code from multiple VMAs.
780 Instead we calculate the section LMA based on
781 the segment LMA. It is assumed that the
782 segment will contain sections with contiguous
783 LMAs, even if the VMAs are not. */
784 newsect->lma = (phdr->p_paddr
785 + hdr->sh_offset - phdr->p_offset);
786
787 /* With contiguous segments, we can't tell from file
788 offsets whether a section with zero size should
789 be placed at the end of one segment or the
790 beginning of the next. Decide based on vaddr. */
791 if (hdr->sh_addr >= phdr->p_vaddr
792 && (hdr->sh_addr + hdr->sh_size
793 <= phdr->p_vaddr + phdr->p_memsz))
794 break;
795 }
796 }
797 }
798 }
799
800 hdr->bfd_section = newsect;
801 elf_section_data (newsect)->this_hdr = *hdr;
802
803 return TRUE;
804 }
805
806 /*
807 INTERNAL_FUNCTION
808 bfd_elf_find_section
809
810 SYNOPSIS
811 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
812
813 DESCRIPTION
814 Helper functions for GDB to locate the string tables.
815 Since BFD hides string tables from callers, GDB needs to use an
816 internal hook to find them. Sun's .stabstr, in particular,
817 isn't even pointed to by the .stab section, so ordinary
818 mechanisms wouldn't work to find it, even if we had some.
819 */
820
821 struct elf_internal_shdr *
822 bfd_elf_find_section (bfd *abfd, char *name)
823 {
824 Elf_Internal_Shdr **i_shdrp;
825 char *shstrtab;
826 unsigned int max;
827 unsigned int i;
828
829 i_shdrp = elf_elfsections (abfd);
830 if (i_shdrp != NULL)
831 {
832 shstrtab = bfd_elf_get_str_section (abfd,
833 elf_elfheader (abfd)->e_shstrndx);
834 if (shstrtab != NULL)
835 {
836 max = elf_numsections (abfd);
837 for (i = 1; i < max; i++)
838 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
839 return i_shdrp[i];
840 }
841 }
842 return 0;
843 }
844
845 const char *const bfd_elf_section_type_names[] = {
846 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
847 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
848 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
849 };
850
851 /* ELF relocs are against symbols. If we are producing relocatable
852 output, and the reloc is against an external symbol, and nothing
853 has given us any additional addend, the resulting reloc will also
854 be against the same symbol. In such a case, we don't want to
855 change anything about the way the reloc is handled, since it will
856 all be done at final link time. Rather than put special case code
857 into bfd_perform_relocation, all the reloc types use this howto
858 function. It just short circuits the reloc if producing
859 relocatable output against an external symbol. */
860
861 bfd_reloc_status_type
862 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
863 arelent *reloc_entry,
864 asymbol *symbol,
865 void *data ATTRIBUTE_UNUSED,
866 asection *input_section,
867 bfd *output_bfd,
868 char **error_message ATTRIBUTE_UNUSED)
869 {
870 if (output_bfd != NULL
871 && (symbol->flags & BSF_SECTION_SYM) == 0
872 && (! reloc_entry->howto->partial_inplace
873 || reloc_entry->addend == 0))
874 {
875 reloc_entry->address += input_section->output_offset;
876 return bfd_reloc_ok;
877 }
878
879 return bfd_reloc_continue;
880 }
881 \f
882 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
883
884 static void
885 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
886 asection *sec)
887 {
888 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
889 sec->sec_info_type = ELF_INFO_TYPE_NONE;
890 }
891
892 /* Finish SHF_MERGE section merging. */
893
894 bfd_boolean
895 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
896 {
897 if (!is_elf_hash_table (info))
898 return FALSE;
899 if (elf_hash_table (info)->merge_info)
900 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
901 merge_sections_remove_hook);
902 return TRUE;
903 }
904
905 void
906 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
907 {
908 sec->output_section = bfd_abs_section_ptr;
909 sec->output_offset = sec->vma;
910 if (!is_elf_hash_table (info))
911 return;
912
913 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
914 }
915 \f
916 /* Copy the program header and other data from one object module to
917 another. */
918
919 bfd_boolean
920 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
921 {
922 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
923 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
924 return TRUE;
925
926 BFD_ASSERT (!elf_flags_init (obfd)
927 || (elf_elfheader (obfd)->e_flags
928 == elf_elfheader (ibfd)->e_flags));
929
930 elf_gp (obfd) = elf_gp (ibfd);
931 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
932 elf_flags_init (obfd) = TRUE;
933 return TRUE;
934 }
935
936 /* Print out the program headers. */
937
938 bfd_boolean
939 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
940 {
941 FILE *f = farg;
942 Elf_Internal_Phdr *p;
943 asection *s;
944 bfd_byte *dynbuf = NULL;
945
946 p = elf_tdata (abfd)->phdr;
947 if (p != NULL)
948 {
949 unsigned int i, c;
950
951 fprintf (f, _("\nProgram Header:\n"));
952 c = elf_elfheader (abfd)->e_phnum;
953 for (i = 0; i < c; i++, p++)
954 {
955 const char *pt;
956 char buf[20];
957
958 switch (p->p_type)
959 {
960 case PT_NULL: pt = "NULL"; break;
961 case PT_LOAD: pt = "LOAD"; break;
962 case PT_DYNAMIC: pt = "DYNAMIC"; break;
963 case PT_INTERP: pt = "INTERP"; break;
964 case PT_NOTE: pt = "NOTE"; break;
965 case PT_SHLIB: pt = "SHLIB"; break;
966 case PT_PHDR: pt = "PHDR"; break;
967 case PT_TLS: pt = "TLS"; break;
968 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
969 case PT_GNU_STACK: pt = "STACK"; break;
970 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
971 }
972 fprintf (f, "%8s off 0x", pt);
973 bfd_fprintf_vma (abfd, f, p->p_offset);
974 fprintf (f, " vaddr 0x");
975 bfd_fprintf_vma (abfd, f, p->p_vaddr);
976 fprintf (f, " paddr 0x");
977 bfd_fprintf_vma (abfd, f, p->p_paddr);
978 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
979 fprintf (f, " filesz 0x");
980 bfd_fprintf_vma (abfd, f, p->p_filesz);
981 fprintf (f, " memsz 0x");
982 bfd_fprintf_vma (abfd, f, p->p_memsz);
983 fprintf (f, " flags %c%c%c",
984 (p->p_flags & PF_R) != 0 ? 'r' : '-',
985 (p->p_flags & PF_W) != 0 ? 'w' : '-',
986 (p->p_flags & PF_X) != 0 ? 'x' : '-');
987 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
988 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
989 fprintf (f, "\n");
990 }
991 }
992
993 s = bfd_get_section_by_name (abfd, ".dynamic");
994 if (s != NULL)
995 {
996 int elfsec;
997 unsigned long shlink;
998 bfd_byte *extdyn, *extdynend;
999 size_t extdynsize;
1000 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1001
1002 fprintf (f, _("\nDynamic Section:\n"));
1003
1004 dynbuf = bfd_malloc (s->_raw_size);
1005 if (dynbuf == NULL)
1006 goto error_return;
1007 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1008 goto error_return;
1009
1010 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1011 if (elfsec == -1)
1012 goto error_return;
1013 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1014
1015 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1016 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1017
1018 extdyn = dynbuf;
1019 extdynend = extdyn + s->_raw_size;
1020 for (; extdyn < extdynend; extdyn += extdynsize)
1021 {
1022 Elf_Internal_Dyn dyn;
1023 const char *name;
1024 char ab[20];
1025 bfd_boolean stringp;
1026
1027 (*swap_dyn_in) (abfd, extdyn, &dyn);
1028
1029 if (dyn.d_tag == DT_NULL)
1030 break;
1031
1032 stringp = FALSE;
1033 switch (dyn.d_tag)
1034 {
1035 default:
1036 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1037 name = ab;
1038 break;
1039
1040 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1041 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1042 case DT_PLTGOT: name = "PLTGOT"; break;
1043 case DT_HASH: name = "HASH"; break;
1044 case DT_STRTAB: name = "STRTAB"; break;
1045 case DT_SYMTAB: name = "SYMTAB"; break;
1046 case DT_RELA: name = "RELA"; break;
1047 case DT_RELASZ: name = "RELASZ"; break;
1048 case DT_RELAENT: name = "RELAENT"; break;
1049 case DT_STRSZ: name = "STRSZ"; break;
1050 case DT_SYMENT: name = "SYMENT"; break;
1051 case DT_INIT: name = "INIT"; break;
1052 case DT_FINI: name = "FINI"; break;
1053 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1054 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1055 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1056 case DT_REL: name = "REL"; break;
1057 case DT_RELSZ: name = "RELSZ"; break;
1058 case DT_RELENT: name = "RELENT"; break;
1059 case DT_PLTREL: name = "PLTREL"; break;
1060 case DT_DEBUG: name = "DEBUG"; break;
1061 case DT_TEXTREL: name = "TEXTREL"; break;
1062 case DT_JMPREL: name = "JMPREL"; break;
1063 case DT_BIND_NOW: name = "BIND_NOW"; break;
1064 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1065 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1066 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1067 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1068 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1069 case DT_FLAGS: name = "FLAGS"; break;
1070 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1071 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1072 case DT_CHECKSUM: name = "CHECKSUM"; break;
1073 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1074 case DT_MOVEENT: name = "MOVEENT"; break;
1075 case DT_MOVESZ: name = "MOVESZ"; break;
1076 case DT_FEATURE: name = "FEATURE"; break;
1077 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1078 case DT_SYMINSZ: name = "SYMINSZ"; break;
1079 case DT_SYMINENT: name = "SYMINENT"; break;
1080 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1081 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1082 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1083 case DT_PLTPAD: name = "PLTPAD"; break;
1084 case DT_MOVETAB: name = "MOVETAB"; break;
1085 case DT_SYMINFO: name = "SYMINFO"; break;
1086 case DT_RELACOUNT: name = "RELACOUNT"; break;
1087 case DT_RELCOUNT: name = "RELCOUNT"; break;
1088 case DT_FLAGS_1: name = "FLAGS_1"; break;
1089 case DT_VERSYM: name = "VERSYM"; break;
1090 case DT_VERDEF: name = "VERDEF"; break;
1091 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1092 case DT_VERNEED: name = "VERNEED"; break;
1093 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1094 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1095 case DT_USED: name = "USED"; break;
1096 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1097 }
1098
1099 fprintf (f, " %-11s ", name);
1100 if (! stringp)
1101 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1102 else
1103 {
1104 const char *string;
1105 unsigned int tagv = dyn.d_un.d_val;
1106
1107 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1108 if (string == NULL)
1109 goto error_return;
1110 fprintf (f, "%s", string);
1111 }
1112 fprintf (f, "\n");
1113 }
1114
1115 free (dynbuf);
1116 dynbuf = NULL;
1117 }
1118
1119 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1120 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1121 {
1122 if (! _bfd_elf_slurp_version_tables (abfd))
1123 return FALSE;
1124 }
1125
1126 if (elf_dynverdef (abfd) != 0)
1127 {
1128 Elf_Internal_Verdef *t;
1129
1130 fprintf (f, _("\nVersion definitions:\n"));
1131 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1132 {
1133 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1134 t->vd_flags, t->vd_hash, t->vd_nodename);
1135 if (t->vd_auxptr->vda_nextptr != NULL)
1136 {
1137 Elf_Internal_Verdaux *a;
1138
1139 fprintf (f, "\t");
1140 for (a = t->vd_auxptr->vda_nextptr;
1141 a != NULL;
1142 a = a->vda_nextptr)
1143 fprintf (f, "%s ", a->vda_nodename);
1144 fprintf (f, "\n");
1145 }
1146 }
1147 }
1148
1149 if (elf_dynverref (abfd) != 0)
1150 {
1151 Elf_Internal_Verneed *t;
1152
1153 fprintf (f, _("\nVersion References:\n"));
1154 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1155 {
1156 Elf_Internal_Vernaux *a;
1157
1158 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1159 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1160 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1161 a->vna_flags, a->vna_other, a->vna_nodename);
1162 }
1163 }
1164
1165 return TRUE;
1166
1167 error_return:
1168 if (dynbuf != NULL)
1169 free (dynbuf);
1170 return FALSE;
1171 }
1172
1173 /* Display ELF-specific fields of a symbol. */
1174
1175 void
1176 bfd_elf_print_symbol (bfd *abfd,
1177 void *filep,
1178 asymbol *symbol,
1179 bfd_print_symbol_type how)
1180 {
1181 FILE *file = filep;
1182 switch (how)
1183 {
1184 case bfd_print_symbol_name:
1185 fprintf (file, "%s", symbol->name);
1186 break;
1187 case bfd_print_symbol_more:
1188 fprintf (file, "elf ");
1189 bfd_fprintf_vma (abfd, file, symbol->value);
1190 fprintf (file, " %lx", (long) symbol->flags);
1191 break;
1192 case bfd_print_symbol_all:
1193 {
1194 const char *section_name;
1195 const char *name = NULL;
1196 const struct elf_backend_data *bed;
1197 unsigned char st_other;
1198 bfd_vma val;
1199
1200 section_name = symbol->section ? symbol->section->name : "(*none*)";
1201
1202 bed = get_elf_backend_data (abfd);
1203 if (bed->elf_backend_print_symbol_all)
1204 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1205
1206 if (name == NULL)
1207 {
1208 name = symbol->name;
1209 bfd_print_symbol_vandf (abfd, file, symbol);
1210 }
1211
1212 fprintf (file, " %s\t", section_name);
1213 /* Print the "other" value for a symbol. For common symbols,
1214 we've already printed the size; now print the alignment.
1215 For other symbols, we have no specified alignment, and
1216 we've printed the address; now print the size. */
1217 if (bfd_is_com_section (symbol->section))
1218 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1219 else
1220 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1221 bfd_fprintf_vma (abfd, file, val);
1222
1223 /* If we have version information, print it. */
1224 if (elf_tdata (abfd)->dynversym_section != 0
1225 && (elf_tdata (abfd)->dynverdef_section != 0
1226 || elf_tdata (abfd)->dynverref_section != 0))
1227 {
1228 unsigned int vernum;
1229 const char *version_string;
1230
1231 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1232
1233 if (vernum == 0)
1234 version_string = "";
1235 else if (vernum == 1)
1236 version_string = "Base";
1237 else if (vernum <= elf_tdata (abfd)->cverdefs)
1238 version_string =
1239 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1240 else
1241 {
1242 Elf_Internal_Verneed *t;
1243
1244 version_string = "";
1245 for (t = elf_tdata (abfd)->verref;
1246 t != NULL;
1247 t = t->vn_nextref)
1248 {
1249 Elf_Internal_Vernaux *a;
1250
1251 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1252 {
1253 if (a->vna_other == vernum)
1254 {
1255 version_string = a->vna_nodename;
1256 break;
1257 }
1258 }
1259 }
1260 }
1261
1262 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1263 fprintf (file, " %-11s", version_string);
1264 else
1265 {
1266 int i;
1267
1268 fprintf (file, " (%s)", version_string);
1269 for (i = 10 - strlen (version_string); i > 0; --i)
1270 putc (' ', file);
1271 }
1272 }
1273
1274 /* If the st_other field is not zero, print it. */
1275 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1276
1277 switch (st_other)
1278 {
1279 case 0: break;
1280 case STV_INTERNAL: fprintf (file, " .internal"); break;
1281 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1282 case STV_PROTECTED: fprintf (file, " .protected"); break;
1283 default:
1284 /* Some other non-defined flags are also present, so print
1285 everything hex. */
1286 fprintf (file, " 0x%02x", (unsigned int) st_other);
1287 }
1288
1289 fprintf (file, " %s", name);
1290 }
1291 break;
1292 }
1293 }
1294 \f
1295 /* Create an entry in an ELF linker hash table. */
1296
1297 struct bfd_hash_entry *
1298 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1299 struct bfd_hash_table *table,
1300 const char *string)
1301 {
1302 /* Allocate the structure if it has not already been allocated by a
1303 subclass. */
1304 if (entry == NULL)
1305 {
1306 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1307 if (entry == NULL)
1308 return entry;
1309 }
1310
1311 /* Call the allocation method of the superclass. */
1312 entry = _bfd_link_hash_newfunc (entry, table, string);
1313 if (entry != NULL)
1314 {
1315 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1316 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1317
1318 /* Set local fields. */
1319 ret->indx = -1;
1320 ret->dynindx = -1;
1321 ret->dynstr_index = 0;
1322 ret->elf_hash_value = 0;
1323 ret->weakdef = NULL;
1324 ret->verinfo.verdef = NULL;
1325 ret->vtable_entries_size = 0;
1326 ret->vtable_entries_used = NULL;
1327 ret->vtable_parent = NULL;
1328 ret->got = htab->init_refcount;
1329 ret->plt = htab->init_refcount;
1330 ret->size = 0;
1331 ret->type = STT_NOTYPE;
1332 ret->other = 0;
1333 /* Assume that we have been called by a non-ELF symbol reader.
1334 This flag is then reset by the code which reads an ELF input
1335 file. This ensures that a symbol created by a non-ELF symbol
1336 reader will have the flag set correctly. */
1337 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1338 }
1339
1340 return entry;
1341 }
1342
1343 /* Copy data from an indirect symbol to its direct symbol, hiding the
1344 old indirect symbol. Also used for copying flags to a weakdef. */
1345
1346 void
1347 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1348 struct elf_link_hash_entry *dir,
1349 struct elf_link_hash_entry *ind)
1350 {
1351 bfd_signed_vma tmp;
1352 bfd_signed_vma lowest_valid = bed->can_refcount;
1353
1354 /* Copy down any references that we may have already seen to the
1355 symbol which just became indirect. */
1356
1357 dir->elf_link_hash_flags |=
1358 (ind->elf_link_hash_flags
1359 & (ELF_LINK_HASH_REF_DYNAMIC
1360 | ELF_LINK_HASH_REF_REGULAR
1361 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1362 | ELF_LINK_NON_GOT_REF));
1363
1364 if (ind->root.type != bfd_link_hash_indirect)
1365 return;
1366
1367 /* Copy over the global and procedure linkage table refcount entries.
1368 These may have been already set up by a check_relocs routine. */
1369 tmp = dir->got.refcount;
1370 if (tmp < lowest_valid)
1371 {
1372 dir->got.refcount = ind->got.refcount;
1373 ind->got.refcount = tmp;
1374 }
1375 else
1376 BFD_ASSERT (ind->got.refcount < lowest_valid);
1377
1378 tmp = dir->plt.refcount;
1379 if (tmp < lowest_valid)
1380 {
1381 dir->plt.refcount = ind->plt.refcount;
1382 ind->plt.refcount = tmp;
1383 }
1384 else
1385 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1386
1387 if (dir->dynindx == -1)
1388 {
1389 dir->dynindx = ind->dynindx;
1390 dir->dynstr_index = ind->dynstr_index;
1391 ind->dynindx = -1;
1392 ind->dynstr_index = 0;
1393 }
1394 else
1395 BFD_ASSERT (ind->dynindx == -1);
1396 }
1397
1398 void
1399 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1400 struct elf_link_hash_entry *h,
1401 bfd_boolean force_local)
1402 {
1403 h->plt = elf_hash_table (info)->init_offset;
1404 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1405 if (force_local)
1406 {
1407 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1408 if (h->dynindx != -1)
1409 {
1410 h->dynindx = -1;
1411 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1412 h->dynstr_index);
1413 }
1414 }
1415 }
1416
1417 /* Initialize an ELF linker hash table. */
1418
1419 bfd_boolean
1420 _bfd_elf_link_hash_table_init
1421 (struct elf_link_hash_table *table,
1422 bfd *abfd,
1423 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1424 struct bfd_hash_table *,
1425 const char *))
1426 {
1427 bfd_boolean ret;
1428
1429 table->dynamic_sections_created = FALSE;
1430 table->dynobj = NULL;
1431 /* Make sure can_refcount is extended to the width and signedness of
1432 init_refcount before we subtract one from it. */
1433 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1434 table->init_refcount.refcount -= 1;
1435 table->init_offset.offset = -(bfd_vma) 1;
1436 /* The first dynamic symbol is a dummy. */
1437 table->dynsymcount = 1;
1438 table->dynstr = NULL;
1439 table->bucketcount = 0;
1440 table->needed = NULL;
1441 table->hgot = NULL;
1442 table->stab_info = NULL;
1443 table->merge_info = NULL;
1444 memset (&table->eh_info, 0, sizeof (table->eh_info));
1445 table->dynlocal = NULL;
1446 table->runpath = NULL;
1447 table->tls_sec = NULL;
1448 table->tls_size = 0;
1449 table->loaded = NULL;
1450
1451 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1452 table->root.type = bfd_link_elf_hash_table;
1453
1454 return ret;
1455 }
1456
1457 /* Create an ELF linker hash table. */
1458
1459 struct bfd_link_hash_table *
1460 _bfd_elf_link_hash_table_create (bfd *abfd)
1461 {
1462 struct elf_link_hash_table *ret;
1463 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1464
1465 ret = bfd_malloc (amt);
1466 if (ret == NULL)
1467 return NULL;
1468
1469 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1470 {
1471 free (ret);
1472 return NULL;
1473 }
1474
1475 return &ret->root;
1476 }
1477
1478 /* This is a hook for the ELF emulation code in the generic linker to
1479 tell the backend linker what file name to use for the DT_NEEDED
1480 entry for a dynamic object. The generic linker passes name as an
1481 empty string to indicate that no DT_NEEDED entry should be made. */
1482
1483 void
1484 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1485 {
1486 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1487 && bfd_get_format (abfd) == bfd_object)
1488 elf_dt_name (abfd) = name;
1489 }
1490
1491 void
1492 bfd_elf_set_dt_needed_soname (bfd *abfd, const char *name)
1493 {
1494 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1495 && bfd_get_format (abfd) == bfd_object)
1496 elf_dt_soname (abfd) = name;
1497 }
1498
1499 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1500 the linker ELF emulation code. */
1501
1502 struct bfd_link_needed_list *
1503 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1504 struct bfd_link_info *info)
1505 {
1506 if (! is_elf_hash_table (info))
1507 return NULL;
1508 return elf_hash_table (info)->needed;
1509 }
1510
1511 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1512 hook for the linker ELF emulation code. */
1513
1514 struct bfd_link_needed_list *
1515 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1516 struct bfd_link_info *info)
1517 {
1518 if (! is_elf_hash_table (info))
1519 return NULL;
1520 return elf_hash_table (info)->runpath;
1521 }
1522
1523 /* Get the name actually used for a dynamic object for a link. This
1524 is the SONAME entry if there is one. Otherwise, it is the string
1525 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1526
1527 const char *
1528 bfd_elf_get_dt_soname (bfd *abfd)
1529 {
1530 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1531 && bfd_get_format (abfd) == bfd_object)
1532 return elf_dt_name (abfd);
1533 return NULL;
1534 }
1535
1536 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1537 the ELF linker emulation code. */
1538
1539 bfd_boolean
1540 bfd_elf_get_bfd_needed_list (bfd *abfd,
1541 struct bfd_link_needed_list **pneeded)
1542 {
1543 asection *s;
1544 bfd_byte *dynbuf = NULL;
1545 int elfsec;
1546 unsigned long shlink;
1547 bfd_byte *extdyn, *extdynend;
1548 size_t extdynsize;
1549 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1550
1551 *pneeded = NULL;
1552
1553 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1554 || bfd_get_format (abfd) != bfd_object)
1555 return TRUE;
1556
1557 s = bfd_get_section_by_name (abfd, ".dynamic");
1558 if (s == NULL || s->_raw_size == 0)
1559 return TRUE;
1560
1561 dynbuf = bfd_malloc (s->_raw_size);
1562 if (dynbuf == NULL)
1563 goto error_return;
1564
1565 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1566 goto error_return;
1567
1568 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1569 if (elfsec == -1)
1570 goto error_return;
1571
1572 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1573
1574 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1575 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1576
1577 extdyn = dynbuf;
1578 extdynend = extdyn + s->_raw_size;
1579 for (; extdyn < extdynend; extdyn += extdynsize)
1580 {
1581 Elf_Internal_Dyn dyn;
1582
1583 (*swap_dyn_in) (abfd, extdyn, &dyn);
1584
1585 if (dyn.d_tag == DT_NULL)
1586 break;
1587
1588 if (dyn.d_tag == DT_NEEDED)
1589 {
1590 const char *string;
1591 struct bfd_link_needed_list *l;
1592 unsigned int tagv = dyn.d_un.d_val;
1593 bfd_size_type amt;
1594
1595 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1596 if (string == NULL)
1597 goto error_return;
1598
1599 amt = sizeof *l;
1600 l = bfd_alloc (abfd, amt);
1601 if (l == NULL)
1602 goto error_return;
1603
1604 l->by = abfd;
1605 l->name = string;
1606 l->next = *pneeded;
1607 *pneeded = l;
1608 }
1609 }
1610
1611 free (dynbuf);
1612
1613 return TRUE;
1614
1615 error_return:
1616 if (dynbuf != NULL)
1617 free (dynbuf);
1618 return FALSE;
1619 }
1620 \f
1621 /* Allocate an ELF string table--force the first byte to be zero. */
1622
1623 struct bfd_strtab_hash *
1624 _bfd_elf_stringtab_init (void)
1625 {
1626 struct bfd_strtab_hash *ret;
1627
1628 ret = _bfd_stringtab_init ();
1629 if (ret != NULL)
1630 {
1631 bfd_size_type loc;
1632
1633 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1634 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1635 if (loc == (bfd_size_type) -1)
1636 {
1637 _bfd_stringtab_free (ret);
1638 ret = NULL;
1639 }
1640 }
1641 return ret;
1642 }
1643 \f
1644 /* ELF .o/exec file reading */
1645
1646 /* Create a new bfd section from an ELF section header. */
1647
1648 bfd_boolean
1649 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1650 {
1651 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1652 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1653 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1654 const char *name;
1655
1656 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1657
1658 switch (hdr->sh_type)
1659 {
1660 case SHT_NULL:
1661 /* Inactive section. Throw it away. */
1662 return TRUE;
1663
1664 case SHT_PROGBITS: /* Normal section with contents. */
1665 case SHT_NOBITS: /* .bss section. */
1666 case SHT_HASH: /* .hash section. */
1667 case SHT_NOTE: /* .note section. */
1668 case SHT_INIT_ARRAY: /* .init_array section. */
1669 case SHT_FINI_ARRAY: /* .fini_array section. */
1670 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1671 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1672
1673 case SHT_DYNAMIC: /* Dynamic linking information. */
1674 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1675 return FALSE;
1676 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1677 {
1678 Elf_Internal_Shdr *dynsymhdr;
1679
1680 /* The shared libraries distributed with hpux11 have a bogus
1681 sh_link field for the ".dynamic" section. Find the
1682 string table for the ".dynsym" section instead. */
1683 if (elf_dynsymtab (abfd) != 0)
1684 {
1685 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1686 hdr->sh_link = dynsymhdr->sh_link;
1687 }
1688 else
1689 {
1690 unsigned int i, num_sec;
1691
1692 num_sec = elf_numsections (abfd);
1693 for (i = 1; i < num_sec; i++)
1694 {
1695 dynsymhdr = elf_elfsections (abfd)[i];
1696 if (dynsymhdr->sh_type == SHT_DYNSYM)
1697 {
1698 hdr->sh_link = dynsymhdr->sh_link;
1699 break;
1700 }
1701 }
1702 }
1703 }
1704 break;
1705
1706 case SHT_SYMTAB: /* A symbol table */
1707 if (elf_onesymtab (abfd) == shindex)
1708 return TRUE;
1709
1710 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1711 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1712 elf_onesymtab (abfd) = shindex;
1713 elf_tdata (abfd)->symtab_hdr = *hdr;
1714 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1715 abfd->flags |= HAS_SYMS;
1716
1717 /* Sometimes a shared object will map in the symbol table. If
1718 SHF_ALLOC is set, and this is a shared object, then we also
1719 treat this section as a BFD section. We can not base the
1720 decision purely on SHF_ALLOC, because that flag is sometimes
1721 set in a relocatable object file, which would confuse the
1722 linker. */
1723 if ((hdr->sh_flags & SHF_ALLOC) != 0
1724 && (abfd->flags & DYNAMIC) != 0
1725 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1726 return FALSE;
1727
1728 return TRUE;
1729
1730 case SHT_DYNSYM: /* A dynamic symbol table */
1731 if (elf_dynsymtab (abfd) == shindex)
1732 return TRUE;
1733
1734 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1735 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1736 elf_dynsymtab (abfd) = shindex;
1737 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1738 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1739 abfd->flags |= HAS_SYMS;
1740
1741 /* Besides being a symbol table, we also treat this as a regular
1742 section, so that objcopy can handle it. */
1743 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1744
1745 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1746 if (elf_symtab_shndx (abfd) == shindex)
1747 return TRUE;
1748
1749 /* Get the associated symbol table. */
1750 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1751 || hdr->sh_link != elf_onesymtab (abfd))
1752 return FALSE;
1753
1754 elf_symtab_shndx (abfd) = shindex;
1755 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1756 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1757 return TRUE;
1758
1759 case SHT_STRTAB: /* A string table */
1760 if (hdr->bfd_section != NULL)
1761 return TRUE;
1762 if (ehdr->e_shstrndx == shindex)
1763 {
1764 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1765 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1766 return TRUE;
1767 }
1768 {
1769 unsigned int i, num_sec;
1770
1771 num_sec = elf_numsections (abfd);
1772 for (i = 1; i < num_sec; i++)
1773 {
1774 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1775 if (hdr2->sh_link == shindex)
1776 {
1777 if (! bfd_section_from_shdr (abfd, i))
1778 return FALSE;
1779 if (elf_onesymtab (abfd) == i)
1780 {
1781 elf_tdata (abfd)->strtab_hdr = *hdr;
1782 elf_elfsections (abfd)[shindex] =
1783 &elf_tdata (abfd)->strtab_hdr;
1784 return TRUE;
1785 }
1786 if (elf_dynsymtab (abfd) == i)
1787 {
1788 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1789 elf_elfsections (abfd)[shindex] = hdr =
1790 &elf_tdata (abfd)->dynstrtab_hdr;
1791 /* We also treat this as a regular section, so
1792 that objcopy can handle it. */
1793 break;
1794 }
1795 #if 0 /* Not handling other string tables specially right now. */
1796 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1797 /* We have a strtab for some random other section. */
1798 newsect = (asection *) hdr2->bfd_section;
1799 if (!newsect)
1800 break;
1801 hdr->bfd_section = newsect;
1802 hdr2 = &elf_section_data (newsect)->str_hdr;
1803 *hdr2 = *hdr;
1804 elf_elfsections (abfd)[shindex] = hdr2;
1805 #endif
1806 }
1807 }
1808 }
1809
1810 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1811
1812 case SHT_REL:
1813 case SHT_RELA:
1814 /* *These* do a lot of work -- but build no sections! */
1815 {
1816 asection *target_sect;
1817 Elf_Internal_Shdr *hdr2;
1818 unsigned int num_sec = elf_numsections (abfd);
1819
1820 /* Check for a bogus link to avoid crashing. */
1821 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1822 || hdr->sh_link >= num_sec)
1823 {
1824 ((*_bfd_error_handler)
1825 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1826 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1827 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1828 }
1829
1830 /* For some incomprehensible reason Oracle distributes
1831 libraries for Solaris in which some of the objects have
1832 bogus sh_link fields. It would be nice if we could just
1833 reject them, but, unfortunately, some people need to use
1834 them. We scan through the section headers; if we find only
1835 one suitable symbol table, we clobber the sh_link to point
1836 to it. I hope this doesn't break anything. */
1837 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1838 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1839 {
1840 unsigned int scan;
1841 int found;
1842
1843 found = 0;
1844 for (scan = 1; scan < num_sec; scan++)
1845 {
1846 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1847 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1848 {
1849 if (found != 0)
1850 {
1851 found = 0;
1852 break;
1853 }
1854 found = scan;
1855 }
1856 }
1857 if (found != 0)
1858 hdr->sh_link = found;
1859 }
1860
1861 /* Get the symbol table. */
1862 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1863 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1864 return FALSE;
1865
1866 /* If this reloc section does not use the main symbol table we
1867 don't treat it as a reloc section. BFD can't adequately
1868 represent such a section, so at least for now, we don't
1869 try. We just present it as a normal section. We also
1870 can't use it as a reloc section if it points to the null
1871 section. */
1872 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1873 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1874
1875 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1876 return FALSE;
1877 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1878 if (target_sect == NULL)
1879 return FALSE;
1880
1881 if ((target_sect->flags & SEC_RELOC) == 0
1882 || target_sect->reloc_count == 0)
1883 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1884 else
1885 {
1886 bfd_size_type amt;
1887 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1888 amt = sizeof (*hdr2);
1889 hdr2 = bfd_alloc (abfd, amt);
1890 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1891 }
1892 *hdr2 = *hdr;
1893 elf_elfsections (abfd)[shindex] = hdr2;
1894 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1895 target_sect->flags |= SEC_RELOC;
1896 target_sect->relocation = NULL;
1897 target_sect->rel_filepos = hdr->sh_offset;
1898 /* In the section to which the relocations apply, mark whether
1899 its relocations are of the REL or RELA variety. */
1900 if (hdr->sh_size != 0)
1901 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1902 abfd->flags |= HAS_RELOC;
1903 return TRUE;
1904 }
1905 break;
1906
1907 case SHT_GNU_verdef:
1908 elf_dynverdef (abfd) = shindex;
1909 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1910 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1911 break;
1912
1913 case SHT_GNU_versym:
1914 elf_dynversym (abfd) = shindex;
1915 elf_tdata (abfd)->dynversym_hdr = *hdr;
1916 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1917 break;
1918
1919 case SHT_GNU_verneed:
1920 elf_dynverref (abfd) = shindex;
1921 elf_tdata (abfd)->dynverref_hdr = *hdr;
1922 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1923 break;
1924
1925 case SHT_SHLIB:
1926 return TRUE;
1927
1928 case SHT_GROUP:
1929 /* We need a BFD section for objcopy and relocatable linking,
1930 and it's handy to have the signature available as the section
1931 name. */
1932 name = group_signature (abfd, hdr);
1933 if (name == NULL)
1934 return FALSE;
1935 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
1936 return FALSE;
1937 if (hdr->contents != NULL)
1938 {
1939 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1940 unsigned int n_elt = hdr->sh_size / 4;
1941 asection *s;
1942
1943 if (idx->flags & GRP_COMDAT)
1944 hdr->bfd_section->flags
1945 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1946
1947 while (--n_elt != 0)
1948 if ((s = (++idx)->shdr->bfd_section) != NULL
1949 && elf_next_in_group (s) != NULL)
1950 {
1951 elf_next_in_group (hdr->bfd_section) = s;
1952 break;
1953 }
1954 }
1955 break;
1956
1957 default:
1958 /* Check for any processor-specific section types. */
1959 {
1960 if (bed->elf_backend_section_from_shdr)
1961 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1962 }
1963 break;
1964 }
1965
1966 return TRUE;
1967 }
1968
1969 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1970 Return SEC for sections that have no elf section, and NULL on error. */
1971
1972 asection *
1973 bfd_section_from_r_symndx (bfd *abfd,
1974 struct sym_sec_cache *cache,
1975 asection *sec,
1976 unsigned long r_symndx)
1977 {
1978 Elf_Internal_Shdr *symtab_hdr;
1979 unsigned char esym[sizeof (Elf64_External_Sym)];
1980 Elf_External_Sym_Shndx eshndx;
1981 Elf_Internal_Sym isym;
1982 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1983
1984 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
1985 return cache->sec[ent];
1986
1987 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1988 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1989 &isym, esym, &eshndx) == NULL)
1990 return NULL;
1991
1992 if (cache->abfd != abfd)
1993 {
1994 memset (cache->indx, -1, sizeof (cache->indx));
1995 cache->abfd = abfd;
1996 }
1997 cache->indx[ent] = r_symndx;
1998 cache->sec[ent] = sec;
1999 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2000 || isym.st_shndx > SHN_HIRESERVE)
2001 {
2002 asection *s;
2003 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2004 if (s != NULL)
2005 cache->sec[ent] = s;
2006 }
2007 return cache->sec[ent];
2008 }
2009
2010 /* Given an ELF section number, retrieve the corresponding BFD
2011 section. */
2012
2013 asection *
2014 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2015 {
2016 if (index >= elf_numsections (abfd))
2017 return NULL;
2018 return elf_elfsections (abfd)[index]->bfd_section;
2019 }
2020
2021 static struct bfd_elf_special_section const special_sections[] =
2022 {
2023 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2024 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2025 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2026 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2027 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2028 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2029 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2030 { ".line", 5, 0, SHT_PROGBITS, 0 },
2031 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2032 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2033 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2034 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2035 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2036 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2037 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2038 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2039 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2040 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2041 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2042 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2043 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2044 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2045 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2046 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2047 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2048 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2049 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2050 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2051 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2052 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2053 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2054 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2055 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2056 { ".note", 5, -1, SHT_NOTE, 0 },
2057 { ".rela", 5, -1, SHT_RELA, 0 },
2058 { ".rel", 4, -1, SHT_REL, 0 },
2059 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2060 { NULL, 0, 0, 0, 0 }
2061 };
2062
2063 static const struct bfd_elf_special_section *
2064 get_special_section (const char *name,
2065 const struct bfd_elf_special_section *special_sections,
2066 unsigned int rela)
2067 {
2068 int i;
2069 int len = strlen (name);
2070
2071 for (i = 0; special_sections[i].prefix != NULL; i++)
2072 {
2073 int suffix_len;
2074 int prefix_len = special_sections[i].prefix_length;
2075
2076 if (len < prefix_len)
2077 continue;
2078 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2079 continue;
2080
2081 suffix_len = special_sections[i].suffix_length;
2082 if (suffix_len <= 0)
2083 {
2084 if (name[prefix_len] != 0)
2085 {
2086 if (suffix_len == 0)
2087 continue;
2088 if (name[prefix_len] != '.'
2089 && (suffix_len == -2
2090 || (rela && special_sections[i].type == SHT_REL)))
2091 continue;
2092 }
2093 }
2094 else
2095 {
2096 if (len < prefix_len + suffix_len)
2097 continue;
2098 if (memcmp (name + len - suffix_len,
2099 special_sections[i].prefix + prefix_len,
2100 suffix_len) != 0)
2101 continue;
2102 }
2103 return &special_sections[i];
2104 }
2105
2106 return NULL;
2107 }
2108
2109 const struct bfd_elf_special_section *
2110 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2111 {
2112 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2113 const struct bfd_elf_special_section *ssect = NULL;
2114
2115 /* See if this is one of the special sections. */
2116 if (name)
2117 {
2118 unsigned int rela = bed->default_use_rela_p;
2119
2120 if (bed->special_sections)
2121 ssect = get_special_section (name, bed->special_sections, rela);
2122
2123 if (! ssect)
2124 ssect = get_special_section (name, special_sections, rela);
2125 }
2126
2127 return ssect;
2128 }
2129
2130 bfd_boolean
2131 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2132 {
2133 struct bfd_elf_section_data *sdata;
2134 const struct bfd_elf_special_section *ssect;
2135
2136 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2137 if (sdata == NULL)
2138 {
2139 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2140 if (sdata == NULL)
2141 return FALSE;
2142 sec->used_by_bfd = sdata;
2143 }
2144
2145 elf_section_type (sec) = SHT_NULL;
2146 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2147 if (ssect != NULL)
2148 {
2149 elf_section_type (sec) = ssect->type;
2150 elf_section_flags (sec) = ssect->attr;
2151 }
2152
2153 /* Indicate whether or not this section should use RELA relocations. */
2154 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2155
2156 return TRUE;
2157 }
2158
2159 /* Create a new bfd section from an ELF program header.
2160
2161 Since program segments have no names, we generate a synthetic name
2162 of the form segment<NUM>, where NUM is generally the index in the
2163 program header table. For segments that are split (see below) we
2164 generate the names segment<NUM>a and segment<NUM>b.
2165
2166 Note that some program segments may have a file size that is different than
2167 (less than) the memory size. All this means is that at execution the
2168 system must allocate the amount of memory specified by the memory size,
2169 but only initialize it with the first "file size" bytes read from the
2170 file. This would occur for example, with program segments consisting
2171 of combined data+bss.
2172
2173 To handle the above situation, this routine generates TWO bfd sections
2174 for the single program segment. The first has the length specified by
2175 the file size of the segment, and the second has the length specified
2176 by the difference between the two sizes. In effect, the segment is split
2177 into it's initialized and uninitialized parts.
2178
2179 */
2180
2181 bfd_boolean
2182 _bfd_elf_make_section_from_phdr (bfd *abfd,
2183 Elf_Internal_Phdr *hdr,
2184 int index,
2185 const char *typename)
2186 {
2187 asection *newsect;
2188 char *name;
2189 char namebuf[64];
2190 size_t len;
2191 int split;
2192
2193 split = ((hdr->p_memsz > 0)
2194 && (hdr->p_filesz > 0)
2195 && (hdr->p_memsz > hdr->p_filesz));
2196 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2197 len = strlen (namebuf) + 1;
2198 name = bfd_alloc (abfd, len);
2199 if (!name)
2200 return FALSE;
2201 memcpy (name, namebuf, len);
2202 newsect = bfd_make_section (abfd, name);
2203 if (newsect == NULL)
2204 return FALSE;
2205 newsect->vma = hdr->p_vaddr;
2206 newsect->lma = hdr->p_paddr;
2207 newsect->_raw_size = hdr->p_filesz;
2208 newsect->filepos = hdr->p_offset;
2209 newsect->flags |= SEC_HAS_CONTENTS;
2210 newsect->alignment_power = bfd_log2 (hdr->p_align);
2211 if (hdr->p_type == PT_LOAD)
2212 {
2213 newsect->flags |= SEC_ALLOC;
2214 newsect->flags |= SEC_LOAD;
2215 if (hdr->p_flags & PF_X)
2216 {
2217 /* FIXME: all we known is that it has execute PERMISSION,
2218 may be data. */
2219 newsect->flags |= SEC_CODE;
2220 }
2221 }
2222 if (!(hdr->p_flags & PF_W))
2223 {
2224 newsect->flags |= SEC_READONLY;
2225 }
2226
2227 if (split)
2228 {
2229 sprintf (namebuf, "%s%db", typename, index);
2230 len = strlen (namebuf) + 1;
2231 name = bfd_alloc (abfd, len);
2232 if (!name)
2233 return FALSE;
2234 memcpy (name, namebuf, len);
2235 newsect = bfd_make_section (abfd, name);
2236 if (newsect == NULL)
2237 return FALSE;
2238 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2239 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2240 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2241 if (hdr->p_type == PT_LOAD)
2242 {
2243 newsect->flags |= SEC_ALLOC;
2244 if (hdr->p_flags & PF_X)
2245 newsect->flags |= SEC_CODE;
2246 }
2247 if (!(hdr->p_flags & PF_W))
2248 newsect->flags |= SEC_READONLY;
2249 }
2250
2251 return TRUE;
2252 }
2253
2254 bfd_boolean
2255 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2256 {
2257 const struct elf_backend_data *bed;
2258
2259 switch (hdr->p_type)
2260 {
2261 case PT_NULL:
2262 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2263
2264 case PT_LOAD:
2265 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2266
2267 case PT_DYNAMIC:
2268 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2269
2270 case PT_INTERP:
2271 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2272
2273 case PT_NOTE:
2274 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2275 return FALSE;
2276 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2277 return FALSE;
2278 return TRUE;
2279
2280 case PT_SHLIB:
2281 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2282
2283 case PT_PHDR:
2284 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2285
2286 case PT_GNU_EH_FRAME:
2287 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2288 "eh_frame_hdr");
2289
2290 case PT_GNU_STACK:
2291 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2292
2293 default:
2294 /* Check for any processor-specific program segment types.
2295 If no handler for them, default to making "segment" sections. */
2296 bed = get_elf_backend_data (abfd);
2297 if (bed->elf_backend_section_from_phdr)
2298 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2299 else
2300 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2301 }
2302 }
2303
2304 /* Initialize REL_HDR, the section-header for new section, containing
2305 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2306 relocations; otherwise, we use REL relocations. */
2307
2308 bfd_boolean
2309 _bfd_elf_init_reloc_shdr (bfd *abfd,
2310 Elf_Internal_Shdr *rel_hdr,
2311 asection *asect,
2312 bfd_boolean use_rela_p)
2313 {
2314 char *name;
2315 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2316 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2317
2318 name = bfd_alloc (abfd, amt);
2319 if (name == NULL)
2320 return FALSE;
2321 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2322 rel_hdr->sh_name =
2323 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2324 FALSE);
2325 if (rel_hdr->sh_name == (unsigned int) -1)
2326 return FALSE;
2327 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2328 rel_hdr->sh_entsize = (use_rela_p
2329 ? bed->s->sizeof_rela
2330 : bed->s->sizeof_rel);
2331 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2332 rel_hdr->sh_flags = 0;
2333 rel_hdr->sh_addr = 0;
2334 rel_hdr->sh_size = 0;
2335 rel_hdr->sh_offset = 0;
2336
2337 return TRUE;
2338 }
2339
2340 /* Set up an ELF internal section header for a section. */
2341
2342 static void
2343 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2344 {
2345 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2346 bfd_boolean *failedptr = failedptrarg;
2347 Elf_Internal_Shdr *this_hdr;
2348
2349 if (*failedptr)
2350 {
2351 /* We already failed; just get out of the bfd_map_over_sections
2352 loop. */
2353 return;
2354 }
2355
2356 this_hdr = &elf_section_data (asect)->this_hdr;
2357
2358 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2359 asect->name, FALSE);
2360 if (this_hdr->sh_name == (unsigned int) -1)
2361 {
2362 *failedptr = TRUE;
2363 return;
2364 }
2365
2366 this_hdr->sh_flags = 0;
2367
2368 if ((asect->flags & SEC_ALLOC) != 0
2369 || asect->user_set_vma)
2370 this_hdr->sh_addr = asect->vma;
2371 else
2372 this_hdr->sh_addr = 0;
2373
2374 this_hdr->sh_offset = 0;
2375 this_hdr->sh_size = asect->_raw_size;
2376 this_hdr->sh_link = 0;
2377 this_hdr->sh_addralign = 1 << asect->alignment_power;
2378 /* The sh_entsize and sh_info fields may have been set already by
2379 copy_private_section_data. */
2380
2381 this_hdr->bfd_section = asect;
2382 this_hdr->contents = NULL;
2383
2384 /* If the section type is unspecified, we set it based on
2385 asect->flags. */
2386 if (this_hdr->sh_type == SHT_NULL)
2387 {
2388 if ((asect->flags & SEC_ALLOC) != 0
2389 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2390 || (asect->flags & SEC_NEVER_LOAD) != 0))
2391 this_hdr->sh_type = SHT_NOBITS;
2392 else
2393 this_hdr->sh_type = SHT_PROGBITS;
2394 }
2395
2396 switch (this_hdr->sh_type)
2397 {
2398 default:
2399 break;
2400
2401 case SHT_STRTAB:
2402 case SHT_INIT_ARRAY:
2403 case SHT_FINI_ARRAY:
2404 case SHT_PREINIT_ARRAY:
2405 case SHT_NOTE:
2406 case SHT_NOBITS:
2407 case SHT_PROGBITS:
2408 break;
2409
2410 case SHT_HASH:
2411 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2412 break;
2413
2414 case SHT_DYNSYM:
2415 this_hdr->sh_entsize = bed->s->sizeof_sym;
2416 break;
2417
2418 case SHT_DYNAMIC:
2419 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2420 break;
2421
2422 case SHT_RELA:
2423 if (get_elf_backend_data (abfd)->may_use_rela_p)
2424 this_hdr->sh_entsize = bed->s->sizeof_rela;
2425 break;
2426
2427 case SHT_REL:
2428 if (get_elf_backend_data (abfd)->may_use_rel_p)
2429 this_hdr->sh_entsize = bed->s->sizeof_rel;
2430 break;
2431
2432 case SHT_GNU_versym:
2433 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2434 break;
2435
2436 case SHT_GNU_verdef:
2437 this_hdr->sh_entsize = 0;
2438 /* objcopy or strip will copy over sh_info, but may not set
2439 cverdefs. The linker will set cverdefs, but sh_info will be
2440 zero. */
2441 if (this_hdr->sh_info == 0)
2442 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2443 else
2444 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2445 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2446 break;
2447
2448 case SHT_GNU_verneed:
2449 this_hdr->sh_entsize = 0;
2450 /* objcopy or strip will copy over sh_info, but may not set
2451 cverrefs. The linker will set cverrefs, but sh_info will be
2452 zero. */
2453 if (this_hdr->sh_info == 0)
2454 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2455 else
2456 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2457 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2458 break;
2459
2460 case SHT_GROUP:
2461 this_hdr->sh_entsize = 4;
2462 break;
2463 }
2464
2465 if ((asect->flags & SEC_ALLOC) != 0)
2466 this_hdr->sh_flags |= SHF_ALLOC;
2467 if ((asect->flags & SEC_READONLY) == 0)
2468 this_hdr->sh_flags |= SHF_WRITE;
2469 if ((asect->flags & SEC_CODE) != 0)
2470 this_hdr->sh_flags |= SHF_EXECINSTR;
2471 if ((asect->flags & SEC_MERGE) != 0)
2472 {
2473 this_hdr->sh_flags |= SHF_MERGE;
2474 this_hdr->sh_entsize = asect->entsize;
2475 if ((asect->flags & SEC_STRINGS) != 0)
2476 this_hdr->sh_flags |= SHF_STRINGS;
2477 }
2478 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2479 this_hdr->sh_flags |= SHF_GROUP;
2480 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2481 {
2482 this_hdr->sh_flags |= SHF_TLS;
2483 if (asect->_raw_size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2484 {
2485 struct bfd_link_order *o;
2486
2487 this_hdr->sh_size = 0;
2488 for (o = asect->link_order_head; o != NULL; o = o->next)
2489 if (this_hdr->sh_size < o->offset + o->size)
2490 this_hdr->sh_size = o->offset + o->size;
2491 if (this_hdr->sh_size)
2492 this_hdr->sh_type = SHT_NOBITS;
2493 }
2494 }
2495
2496 /* Check for processor-specific section types. */
2497 if (bed->elf_backend_fake_sections
2498 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2499 *failedptr = TRUE;
2500
2501 /* If the section has relocs, set up a section header for the
2502 SHT_REL[A] section. If two relocation sections are required for
2503 this section, it is up to the processor-specific back-end to
2504 create the other. */
2505 if ((asect->flags & SEC_RELOC) != 0
2506 && !_bfd_elf_init_reloc_shdr (abfd,
2507 &elf_section_data (asect)->rel_hdr,
2508 asect,
2509 asect->use_rela_p))
2510 *failedptr = TRUE;
2511 }
2512
2513 /* Fill in the contents of a SHT_GROUP section. */
2514
2515 void
2516 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2517 {
2518 bfd_boolean *failedptr = failedptrarg;
2519 unsigned long symindx;
2520 asection *elt, *first;
2521 unsigned char *loc;
2522 struct bfd_link_order *l;
2523 bfd_boolean gas;
2524
2525 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2526 || *failedptr)
2527 return;
2528
2529 symindx = 0;
2530 if (elf_group_id (sec) != NULL)
2531 symindx = elf_group_id (sec)->udata.i;
2532
2533 if (symindx == 0)
2534 {
2535 /* If called from the assembler, swap_out_syms will have set up
2536 elf_section_syms; If called for "ld -r", use target_index. */
2537 if (elf_section_syms (abfd) != NULL)
2538 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2539 else
2540 symindx = sec->target_index;
2541 }
2542 elf_section_data (sec)->this_hdr.sh_info = symindx;
2543
2544 /* The contents won't be allocated for "ld -r" or objcopy. */
2545 gas = TRUE;
2546 if (sec->contents == NULL)
2547 {
2548 gas = FALSE;
2549 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2550
2551 /* Arrange for the section to be written out. */
2552 elf_section_data (sec)->this_hdr.contents = sec->contents;
2553 if (sec->contents == NULL)
2554 {
2555 *failedptr = TRUE;
2556 return;
2557 }
2558 }
2559
2560 loc = sec->contents + sec->_raw_size;
2561
2562 /* Get the pointer to the first section in the group that gas
2563 squirreled away here. objcopy arranges for this to be set to the
2564 start of the input section group. */
2565 first = elt = elf_next_in_group (sec);
2566
2567 /* First element is a flag word. Rest of section is elf section
2568 indices for all the sections of the group. Write them backwards
2569 just to keep the group in the same order as given in .section
2570 directives, not that it matters. */
2571 while (elt != NULL)
2572 {
2573 asection *s;
2574 unsigned int idx;
2575
2576 loc -= 4;
2577 s = elt;
2578 if (!gas)
2579 s = s->output_section;
2580 idx = 0;
2581 if (s != NULL)
2582 idx = elf_section_data (s)->this_idx;
2583 H_PUT_32 (abfd, idx, loc);
2584 elt = elf_next_in_group (elt);
2585 if (elt == first)
2586 break;
2587 }
2588
2589 /* If this is a relocatable link, then the above did nothing because
2590 SEC is the output section. Look through the input sections
2591 instead. */
2592 for (l = sec->link_order_head; l != NULL; l = l->next)
2593 if (l->type == bfd_indirect_link_order
2594 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2595 do
2596 {
2597 loc -= 4;
2598 H_PUT_32 (abfd,
2599 elf_section_data (elt->output_section)->this_idx, loc);
2600 elt = elf_next_in_group (elt);
2601 /* During a relocatable link, the lists are circular. */
2602 }
2603 while (elt != elf_next_in_group (l->u.indirect.section));
2604
2605 /* With ld -r, merging SHT_GROUP sections results in wasted space
2606 due to allowing for the flag word on each input. We may well
2607 duplicate entries too. */
2608 while ((loc -= 4) > sec->contents)
2609 H_PUT_32 (abfd, 0, loc);
2610
2611 if (loc != sec->contents)
2612 abort ();
2613
2614 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2615 }
2616
2617 /* Assign all ELF section numbers. The dummy first section is handled here
2618 too. The link/info pointers for the standard section types are filled
2619 in here too, while we're at it. */
2620
2621 static bfd_boolean
2622 assign_section_numbers (bfd *abfd)
2623 {
2624 struct elf_obj_tdata *t = elf_tdata (abfd);
2625 asection *sec;
2626 unsigned int section_number, secn;
2627 Elf_Internal_Shdr **i_shdrp;
2628 bfd_size_type amt;
2629
2630 section_number = 1;
2631
2632 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2633
2634 for (sec = abfd->sections; sec; sec = sec->next)
2635 {
2636 struct bfd_elf_section_data *d = elf_section_data (sec);
2637
2638 if (section_number == SHN_LORESERVE)
2639 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2640 d->this_idx = section_number++;
2641 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2642 if ((sec->flags & SEC_RELOC) == 0)
2643 d->rel_idx = 0;
2644 else
2645 {
2646 if (section_number == SHN_LORESERVE)
2647 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2648 d->rel_idx = section_number++;
2649 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2650 }
2651
2652 if (d->rel_hdr2)
2653 {
2654 if (section_number == SHN_LORESERVE)
2655 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2656 d->rel_idx2 = section_number++;
2657 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2658 }
2659 else
2660 d->rel_idx2 = 0;
2661 }
2662
2663 if (section_number == SHN_LORESERVE)
2664 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2665 t->shstrtab_section = section_number++;
2666 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2667 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2668
2669 if (bfd_get_symcount (abfd) > 0)
2670 {
2671 if (section_number == SHN_LORESERVE)
2672 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2673 t->symtab_section = section_number++;
2674 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2675 if (section_number > SHN_LORESERVE - 2)
2676 {
2677 if (section_number == SHN_LORESERVE)
2678 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2679 t->symtab_shndx_section = section_number++;
2680 t->symtab_shndx_hdr.sh_name
2681 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2682 ".symtab_shndx", FALSE);
2683 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2684 return FALSE;
2685 }
2686 if (section_number == SHN_LORESERVE)
2687 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2688 t->strtab_section = section_number++;
2689 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2690 }
2691
2692 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2693 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2694
2695 elf_numsections (abfd) = section_number;
2696 elf_elfheader (abfd)->e_shnum = section_number;
2697 if (section_number > SHN_LORESERVE)
2698 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2699
2700 /* Set up the list of section header pointers, in agreement with the
2701 indices. */
2702 amt = section_number * sizeof (Elf_Internal_Shdr *);
2703 i_shdrp = bfd_zalloc (abfd, amt);
2704 if (i_shdrp == NULL)
2705 return FALSE;
2706
2707 amt = sizeof (Elf_Internal_Shdr);
2708 i_shdrp[0] = bfd_zalloc (abfd, amt);
2709 if (i_shdrp[0] == NULL)
2710 {
2711 bfd_release (abfd, i_shdrp);
2712 return FALSE;
2713 }
2714
2715 elf_elfsections (abfd) = i_shdrp;
2716
2717 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2718 if (bfd_get_symcount (abfd) > 0)
2719 {
2720 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2721 if (elf_numsections (abfd) > SHN_LORESERVE)
2722 {
2723 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2724 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2725 }
2726 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2727 t->symtab_hdr.sh_link = t->strtab_section;
2728 }
2729 for (sec = abfd->sections; sec; sec = sec->next)
2730 {
2731 struct bfd_elf_section_data *d = elf_section_data (sec);
2732 asection *s;
2733 const char *name;
2734
2735 i_shdrp[d->this_idx] = &d->this_hdr;
2736 if (d->rel_idx != 0)
2737 i_shdrp[d->rel_idx] = &d->rel_hdr;
2738 if (d->rel_idx2 != 0)
2739 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2740
2741 /* Fill in the sh_link and sh_info fields while we're at it. */
2742
2743 /* sh_link of a reloc section is the section index of the symbol
2744 table. sh_info is the section index of the section to which
2745 the relocation entries apply. */
2746 if (d->rel_idx != 0)
2747 {
2748 d->rel_hdr.sh_link = t->symtab_section;
2749 d->rel_hdr.sh_info = d->this_idx;
2750 }
2751 if (d->rel_idx2 != 0)
2752 {
2753 d->rel_hdr2->sh_link = t->symtab_section;
2754 d->rel_hdr2->sh_info = d->this_idx;
2755 }
2756
2757 switch (d->this_hdr.sh_type)
2758 {
2759 case SHT_REL:
2760 case SHT_RELA:
2761 /* A reloc section which we are treating as a normal BFD
2762 section. sh_link is the section index of the symbol
2763 table. sh_info is the section index of the section to
2764 which the relocation entries apply. We assume that an
2765 allocated reloc section uses the dynamic symbol table.
2766 FIXME: How can we be sure? */
2767 s = bfd_get_section_by_name (abfd, ".dynsym");
2768 if (s != NULL)
2769 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2770
2771 /* We look up the section the relocs apply to by name. */
2772 name = sec->name;
2773 if (d->this_hdr.sh_type == SHT_REL)
2774 name += 4;
2775 else
2776 name += 5;
2777 s = bfd_get_section_by_name (abfd, name);
2778 if (s != NULL)
2779 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2780 break;
2781
2782 case SHT_STRTAB:
2783 /* We assume that a section named .stab*str is a stabs
2784 string section. We look for a section with the same name
2785 but without the trailing ``str'', and set its sh_link
2786 field to point to this section. */
2787 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2788 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2789 {
2790 size_t len;
2791 char *alc;
2792
2793 len = strlen (sec->name);
2794 alc = bfd_malloc (len - 2);
2795 if (alc == NULL)
2796 return FALSE;
2797 memcpy (alc, sec->name, len - 3);
2798 alc[len - 3] = '\0';
2799 s = bfd_get_section_by_name (abfd, alc);
2800 free (alc);
2801 if (s != NULL)
2802 {
2803 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2804
2805 /* This is a .stab section. */
2806 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2807 elf_section_data (s)->this_hdr.sh_entsize
2808 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2809 }
2810 }
2811 break;
2812
2813 case SHT_DYNAMIC:
2814 case SHT_DYNSYM:
2815 case SHT_GNU_verneed:
2816 case SHT_GNU_verdef:
2817 /* sh_link is the section header index of the string table
2818 used for the dynamic entries, or the symbol table, or the
2819 version strings. */
2820 s = bfd_get_section_by_name (abfd, ".dynstr");
2821 if (s != NULL)
2822 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2823 break;
2824
2825 case SHT_HASH:
2826 case SHT_GNU_versym:
2827 /* sh_link is the section header index of the symbol table
2828 this hash table or version table is for. */
2829 s = bfd_get_section_by_name (abfd, ".dynsym");
2830 if (s != NULL)
2831 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2832 break;
2833
2834 case SHT_GROUP:
2835 d->this_hdr.sh_link = t->symtab_section;
2836 }
2837 }
2838
2839 for (secn = 1; secn < section_number; ++secn)
2840 if (i_shdrp[secn] == NULL)
2841 i_shdrp[secn] = i_shdrp[0];
2842 else
2843 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2844 i_shdrp[secn]->sh_name);
2845 return TRUE;
2846 }
2847
2848 /* Map symbol from it's internal number to the external number, moving
2849 all local symbols to be at the head of the list. */
2850
2851 static int
2852 sym_is_global (bfd *abfd, asymbol *sym)
2853 {
2854 /* If the backend has a special mapping, use it. */
2855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2856 if (bed->elf_backend_sym_is_global)
2857 return (*bed->elf_backend_sym_is_global) (abfd, sym);
2858
2859 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2860 || bfd_is_und_section (bfd_get_section (sym))
2861 || bfd_is_com_section (bfd_get_section (sym)));
2862 }
2863
2864 static bfd_boolean
2865 elf_map_symbols (bfd *abfd)
2866 {
2867 unsigned int symcount = bfd_get_symcount (abfd);
2868 asymbol **syms = bfd_get_outsymbols (abfd);
2869 asymbol **sect_syms;
2870 unsigned int num_locals = 0;
2871 unsigned int num_globals = 0;
2872 unsigned int num_locals2 = 0;
2873 unsigned int num_globals2 = 0;
2874 int max_index = 0;
2875 unsigned int idx;
2876 asection *asect;
2877 asymbol **new_syms;
2878 bfd_size_type amt;
2879
2880 #ifdef DEBUG
2881 fprintf (stderr, "elf_map_symbols\n");
2882 fflush (stderr);
2883 #endif
2884
2885 for (asect = abfd->sections; asect; asect = asect->next)
2886 {
2887 if (max_index < asect->index)
2888 max_index = asect->index;
2889 }
2890
2891 max_index++;
2892 amt = max_index * sizeof (asymbol *);
2893 sect_syms = bfd_zalloc (abfd, amt);
2894 if (sect_syms == NULL)
2895 return FALSE;
2896 elf_section_syms (abfd) = sect_syms;
2897 elf_num_section_syms (abfd) = max_index;
2898
2899 /* Init sect_syms entries for any section symbols we have already
2900 decided to output. */
2901 for (idx = 0; idx < symcount; idx++)
2902 {
2903 asymbol *sym = syms[idx];
2904
2905 if ((sym->flags & BSF_SECTION_SYM) != 0
2906 && sym->value == 0)
2907 {
2908 asection *sec;
2909
2910 sec = sym->section;
2911
2912 if (sec->owner != NULL)
2913 {
2914 if (sec->owner != abfd)
2915 {
2916 if (sec->output_offset != 0)
2917 continue;
2918
2919 sec = sec->output_section;
2920
2921 /* Empty sections in the input files may have had a
2922 section symbol created for them. (See the comment
2923 near the end of _bfd_generic_link_output_symbols in
2924 linker.c). If the linker script discards such
2925 sections then we will reach this point. Since we know
2926 that we cannot avoid this case, we detect it and skip
2927 the abort and the assignment to the sect_syms array.
2928 To reproduce this particular case try running the
2929 linker testsuite test ld-scripts/weak.exp for an ELF
2930 port that uses the generic linker. */
2931 if (sec->owner == NULL)
2932 continue;
2933
2934 BFD_ASSERT (sec->owner == abfd);
2935 }
2936 sect_syms[sec->index] = syms[idx];
2937 }
2938 }
2939 }
2940
2941 /* Classify all of the symbols. */
2942 for (idx = 0; idx < symcount; idx++)
2943 {
2944 if (!sym_is_global (abfd, syms[idx]))
2945 num_locals++;
2946 else
2947 num_globals++;
2948 }
2949
2950 /* We will be adding a section symbol for each BFD section. Most normal
2951 sections will already have a section symbol in outsymbols, but
2952 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2953 at least in that case. */
2954 for (asect = abfd->sections; asect; asect = asect->next)
2955 {
2956 if (sect_syms[asect->index] == NULL)
2957 {
2958 if (!sym_is_global (abfd, asect->symbol))
2959 num_locals++;
2960 else
2961 num_globals++;
2962 }
2963 }
2964
2965 /* Now sort the symbols so the local symbols are first. */
2966 amt = (num_locals + num_globals) * sizeof (asymbol *);
2967 new_syms = bfd_alloc (abfd, amt);
2968
2969 if (new_syms == NULL)
2970 return FALSE;
2971
2972 for (idx = 0; idx < symcount; idx++)
2973 {
2974 asymbol *sym = syms[idx];
2975 unsigned int i;
2976
2977 if (!sym_is_global (abfd, sym))
2978 i = num_locals2++;
2979 else
2980 i = num_locals + num_globals2++;
2981 new_syms[i] = sym;
2982 sym->udata.i = i + 1;
2983 }
2984 for (asect = abfd->sections; asect; asect = asect->next)
2985 {
2986 if (sect_syms[asect->index] == NULL)
2987 {
2988 asymbol *sym = asect->symbol;
2989 unsigned int i;
2990
2991 sect_syms[asect->index] = sym;
2992 if (!sym_is_global (abfd, sym))
2993 i = num_locals2++;
2994 else
2995 i = num_locals + num_globals2++;
2996 new_syms[i] = sym;
2997 sym->udata.i = i + 1;
2998 }
2999 }
3000
3001 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3002
3003 elf_num_locals (abfd) = num_locals;
3004 elf_num_globals (abfd) = num_globals;
3005 return TRUE;
3006 }
3007
3008 /* Align to the maximum file alignment that could be required for any
3009 ELF data structure. */
3010
3011 static inline file_ptr
3012 align_file_position (file_ptr off, int align)
3013 {
3014 return (off + align - 1) & ~(align - 1);
3015 }
3016
3017 /* Assign a file position to a section, optionally aligning to the
3018 required section alignment. */
3019
3020 file_ptr
3021 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3022 file_ptr offset,
3023 bfd_boolean align)
3024 {
3025 if (align)
3026 {
3027 unsigned int al;
3028
3029 al = i_shdrp->sh_addralign;
3030 if (al > 1)
3031 offset = BFD_ALIGN (offset, al);
3032 }
3033 i_shdrp->sh_offset = offset;
3034 if (i_shdrp->bfd_section != NULL)
3035 i_shdrp->bfd_section->filepos = offset;
3036 if (i_shdrp->sh_type != SHT_NOBITS)
3037 offset += i_shdrp->sh_size;
3038 return offset;
3039 }
3040
3041 /* Compute the file positions we are going to put the sections at, and
3042 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3043 is not NULL, this is being called by the ELF backend linker. */
3044
3045 bfd_boolean
3046 _bfd_elf_compute_section_file_positions (bfd *abfd,
3047 struct bfd_link_info *link_info)
3048 {
3049 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3050 bfd_boolean failed;
3051 struct bfd_strtab_hash *strtab;
3052 Elf_Internal_Shdr *shstrtab_hdr;
3053
3054 if (abfd->output_has_begun)
3055 return TRUE;
3056
3057 /* Do any elf backend specific processing first. */
3058 if (bed->elf_backend_begin_write_processing)
3059 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3060
3061 if (! prep_headers (abfd))
3062 return FALSE;
3063
3064 /* Post process the headers if necessary. */
3065 if (bed->elf_backend_post_process_headers)
3066 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3067
3068 failed = FALSE;
3069 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3070 if (failed)
3071 return FALSE;
3072
3073 if (!assign_section_numbers (abfd))
3074 return FALSE;
3075
3076 /* The backend linker builds symbol table information itself. */
3077 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3078 {
3079 /* Non-zero if doing a relocatable link. */
3080 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3081
3082 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3083 return FALSE;
3084 }
3085
3086 if (link_info == NULL)
3087 {
3088 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3089 if (failed)
3090 return FALSE;
3091 }
3092
3093 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3094 /* sh_name was set in prep_headers. */
3095 shstrtab_hdr->sh_type = SHT_STRTAB;
3096 shstrtab_hdr->sh_flags = 0;
3097 shstrtab_hdr->sh_addr = 0;
3098 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3099 shstrtab_hdr->sh_entsize = 0;
3100 shstrtab_hdr->sh_link = 0;
3101 shstrtab_hdr->sh_info = 0;
3102 /* sh_offset is set in assign_file_positions_except_relocs. */
3103 shstrtab_hdr->sh_addralign = 1;
3104
3105 if (!assign_file_positions_except_relocs (abfd))
3106 return FALSE;
3107
3108 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3109 {
3110 file_ptr off;
3111 Elf_Internal_Shdr *hdr;
3112
3113 off = elf_tdata (abfd)->next_file_pos;
3114
3115 hdr = &elf_tdata (abfd)->symtab_hdr;
3116 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3117
3118 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3119 if (hdr->sh_size != 0)
3120 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3121
3122 hdr = &elf_tdata (abfd)->strtab_hdr;
3123 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3124
3125 elf_tdata (abfd)->next_file_pos = off;
3126
3127 /* Now that we know where the .strtab section goes, write it
3128 out. */
3129 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3130 || ! _bfd_stringtab_emit (abfd, strtab))
3131 return FALSE;
3132 _bfd_stringtab_free (strtab);
3133 }
3134
3135 abfd->output_has_begun = TRUE;
3136
3137 return TRUE;
3138 }
3139
3140 /* Create a mapping from a set of sections to a program segment. */
3141
3142 static struct elf_segment_map *
3143 make_mapping (bfd *abfd,
3144 asection **sections,
3145 unsigned int from,
3146 unsigned int to,
3147 bfd_boolean phdr)
3148 {
3149 struct elf_segment_map *m;
3150 unsigned int i;
3151 asection **hdrpp;
3152 bfd_size_type amt;
3153
3154 amt = sizeof (struct elf_segment_map);
3155 amt += (to - from - 1) * sizeof (asection *);
3156 m = bfd_zalloc (abfd, amt);
3157 if (m == NULL)
3158 return NULL;
3159 m->next = NULL;
3160 m->p_type = PT_LOAD;
3161 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3162 m->sections[i - from] = *hdrpp;
3163 m->count = to - from;
3164
3165 if (from == 0 && phdr)
3166 {
3167 /* Include the headers in the first PT_LOAD segment. */
3168 m->includes_filehdr = 1;
3169 m->includes_phdrs = 1;
3170 }
3171
3172 return m;
3173 }
3174
3175 /* Set up a mapping from BFD sections to program segments. */
3176
3177 static bfd_boolean
3178 map_sections_to_segments (bfd *abfd)
3179 {
3180 asection **sections = NULL;
3181 asection *s;
3182 unsigned int i;
3183 unsigned int count;
3184 struct elf_segment_map *mfirst;
3185 struct elf_segment_map **pm;
3186 struct elf_segment_map *m;
3187 asection *last_hdr;
3188 unsigned int phdr_index;
3189 bfd_vma maxpagesize;
3190 asection **hdrpp;
3191 bfd_boolean phdr_in_segment = TRUE;
3192 bfd_boolean writable;
3193 int tls_count = 0;
3194 asection *first_tls = NULL;
3195 asection *dynsec, *eh_frame_hdr;
3196 bfd_size_type amt;
3197
3198 if (elf_tdata (abfd)->segment_map != NULL)
3199 return TRUE;
3200
3201 if (bfd_count_sections (abfd) == 0)
3202 return TRUE;
3203
3204 /* Select the allocated sections, and sort them. */
3205
3206 amt = bfd_count_sections (abfd) * sizeof (asection *);
3207 sections = bfd_malloc (amt);
3208 if (sections == NULL)
3209 goto error_return;
3210
3211 i = 0;
3212 for (s = abfd->sections; s != NULL; s = s->next)
3213 {
3214 if ((s->flags & SEC_ALLOC) != 0)
3215 {
3216 sections[i] = s;
3217 ++i;
3218 }
3219 }
3220 BFD_ASSERT (i <= bfd_count_sections (abfd));
3221 count = i;
3222
3223 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3224
3225 /* Build the mapping. */
3226
3227 mfirst = NULL;
3228 pm = &mfirst;
3229
3230 /* If we have a .interp section, then create a PT_PHDR segment for
3231 the program headers and a PT_INTERP segment for the .interp
3232 section. */
3233 s = bfd_get_section_by_name (abfd, ".interp");
3234 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3235 {
3236 amt = sizeof (struct elf_segment_map);
3237 m = bfd_zalloc (abfd, amt);
3238 if (m == NULL)
3239 goto error_return;
3240 m->next = NULL;
3241 m->p_type = PT_PHDR;
3242 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3243 m->p_flags = PF_R | PF_X;
3244 m->p_flags_valid = 1;
3245 m->includes_phdrs = 1;
3246
3247 *pm = m;
3248 pm = &m->next;
3249
3250 amt = sizeof (struct elf_segment_map);
3251 m = bfd_zalloc (abfd, amt);
3252 if (m == NULL)
3253 goto error_return;
3254 m->next = NULL;
3255 m->p_type = PT_INTERP;
3256 m->count = 1;
3257 m->sections[0] = s;
3258
3259 *pm = m;
3260 pm = &m->next;
3261 }
3262
3263 /* Look through the sections. We put sections in the same program
3264 segment when the start of the second section can be placed within
3265 a few bytes of the end of the first section. */
3266 last_hdr = NULL;
3267 phdr_index = 0;
3268 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3269 writable = FALSE;
3270 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3271 if (dynsec != NULL
3272 && (dynsec->flags & SEC_LOAD) == 0)
3273 dynsec = NULL;
3274
3275 /* Deal with -Ttext or something similar such that the first section
3276 is not adjacent to the program headers. This is an
3277 approximation, since at this point we don't know exactly how many
3278 program headers we will need. */
3279 if (count > 0)
3280 {
3281 bfd_size_type phdr_size;
3282
3283 phdr_size = elf_tdata (abfd)->program_header_size;
3284 if (phdr_size == 0)
3285 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3286 if ((abfd->flags & D_PAGED) == 0
3287 || sections[0]->lma < phdr_size
3288 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3289 phdr_in_segment = FALSE;
3290 }
3291
3292 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3293 {
3294 asection *hdr;
3295 bfd_boolean new_segment;
3296
3297 hdr = *hdrpp;
3298
3299 /* See if this section and the last one will fit in the same
3300 segment. */
3301
3302 if (last_hdr == NULL)
3303 {
3304 /* If we don't have a segment yet, then we don't need a new
3305 one (we build the last one after this loop). */
3306 new_segment = FALSE;
3307 }
3308 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3309 {
3310 /* If this section has a different relation between the
3311 virtual address and the load address, then we need a new
3312 segment. */
3313 new_segment = TRUE;
3314 }
3315 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3316 < BFD_ALIGN (hdr->lma, maxpagesize))
3317 {
3318 /* If putting this section in this segment would force us to
3319 skip a page in the segment, then we need a new segment. */
3320 new_segment = TRUE;
3321 }
3322 else if ((last_hdr->flags & SEC_LOAD) == 0
3323 && (hdr->flags & SEC_LOAD) != 0)
3324 {
3325 /* We don't want to put a loadable section after a
3326 nonloadable section in the same segment. */
3327 new_segment = TRUE;
3328 }
3329 else if ((abfd->flags & D_PAGED) == 0)
3330 {
3331 /* If the file is not demand paged, which means that we
3332 don't require the sections to be correctly aligned in the
3333 file, then there is no other reason for a new segment. */
3334 new_segment = FALSE;
3335 }
3336 else if (! writable
3337 && (hdr->flags & SEC_READONLY) == 0
3338 && (((last_hdr->lma + last_hdr->_raw_size - 1)
3339 & ~(maxpagesize - 1))
3340 != (hdr->lma & ~(maxpagesize - 1))))
3341 {
3342 /* We don't want to put a writable section in a read only
3343 segment, unless they are on the same page in memory
3344 anyhow. We already know that the last section does not
3345 bring us past the current section on the page, so the
3346 only case in which the new section is not on the same
3347 page as the previous section is when the previous section
3348 ends precisely on a page boundary. */
3349 new_segment = TRUE;
3350 }
3351 else
3352 {
3353 /* Otherwise, we can use the same segment. */
3354 new_segment = FALSE;
3355 }
3356
3357 if (! new_segment)
3358 {
3359 if ((hdr->flags & SEC_READONLY) == 0)
3360 writable = TRUE;
3361 last_hdr = hdr;
3362 continue;
3363 }
3364
3365 /* We need a new program segment. We must create a new program
3366 header holding all the sections from phdr_index until hdr. */
3367
3368 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3369 if (m == NULL)
3370 goto error_return;
3371
3372 *pm = m;
3373 pm = &m->next;
3374
3375 if ((hdr->flags & SEC_READONLY) == 0)
3376 writable = TRUE;
3377 else
3378 writable = FALSE;
3379
3380 last_hdr = hdr;
3381 phdr_index = i;
3382 phdr_in_segment = FALSE;
3383 }
3384
3385 /* Create a final PT_LOAD program segment. */
3386 if (last_hdr != NULL)
3387 {
3388 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3389 if (m == NULL)
3390 goto error_return;
3391
3392 *pm = m;
3393 pm = &m->next;
3394 }
3395
3396 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3397 if (dynsec != NULL)
3398 {
3399 amt = sizeof (struct elf_segment_map);
3400 m = bfd_zalloc (abfd, amt);
3401 if (m == NULL)
3402 goto error_return;
3403 m->next = NULL;
3404 m->p_type = PT_DYNAMIC;
3405 m->count = 1;
3406 m->sections[0] = dynsec;
3407
3408 *pm = m;
3409 pm = &m->next;
3410 }
3411
3412 /* For each loadable .note section, add a PT_NOTE segment. We don't
3413 use bfd_get_section_by_name, because if we link together
3414 nonloadable .note sections and loadable .note sections, we will
3415 generate two .note sections in the output file. FIXME: Using
3416 names for section types is bogus anyhow. */
3417 for (s = abfd->sections; s != NULL; s = s->next)
3418 {
3419 if ((s->flags & SEC_LOAD) != 0
3420 && strncmp (s->name, ".note", 5) == 0)
3421 {
3422 amt = sizeof (struct elf_segment_map);
3423 m = bfd_zalloc (abfd, amt);
3424 if (m == NULL)
3425 goto error_return;
3426 m->next = NULL;
3427 m->p_type = PT_NOTE;
3428 m->count = 1;
3429 m->sections[0] = s;
3430
3431 *pm = m;
3432 pm = &m->next;
3433 }
3434 if (s->flags & SEC_THREAD_LOCAL)
3435 {
3436 if (! tls_count)
3437 first_tls = s;
3438 tls_count++;
3439 }
3440 }
3441
3442 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3443 if (tls_count > 0)
3444 {
3445 int i;
3446
3447 amt = sizeof (struct elf_segment_map);
3448 amt += (tls_count - 1) * sizeof (asection *);
3449 m = bfd_zalloc (abfd, amt);
3450 if (m == NULL)
3451 goto error_return;
3452 m->next = NULL;
3453 m->p_type = PT_TLS;
3454 m->count = tls_count;
3455 /* Mandated PF_R. */
3456 m->p_flags = PF_R;
3457 m->p_flags_valid = 1;
3458 for (i = 0; i < tls_count; ++i)
3459 {
3460 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3461 m->sections[i] = first_tls;
3462 first_tls = first_tls->next;
3463 }
3464
3465 *pm = m;
3466 pm = &m->next;
3467 }
3468
3469 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3470 segment. */
3471 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3472 if (eh_frame_hdr != NULL
3473 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3474 {
3475 amt = sizeof (struct elf_segment_map);
3476 m = bfd_zalloc (abfd, amt);
3477 if (m == NULL)
3478 goto error_return;
3479 m->next = NULL;
3480 m->p_type = PT_GNU_EH_FRAME;
3481 m->count = 1;
3482 m->sections[0] = eh_frame_hdr->output_section;
3483
3484 *pm = m;
3485 pm = &m->next;
3486 }
3487
3488 if (elf_tdata (abfd)->stack_flags)
3489 {
3490 amt = sizeof (struct elf_segment_map);
3491 m = bfd_zalloc (abfd, amt);
3492 if (m == NULL)
3493 goto error_return;
3494 m->next = NULL;
3495 m->p_type = PT_GNU_STACK;
3496 m->p_flags = elf_tdata (abfd)->stack_flags;
3497 m->p_flags_valid = 1;
3498
3499 *pm = m;
3500 pm = &m->next;
3501 }
3502
3503 free (sections);
3504 sections = NULL;
3505
3506 elf_tdata (abfd)->segment_map = mfirst;
3507 return TRUE;
3508
3509 error_return:
3510 if (sections != NULL)
3511 free (sections);
3512 return FALSE;
3513 }
3514
3515 /* Sort sections by address. */
3516
3517 static int
3518 elf_sort_sections (const void *arg1, const void *arg2)
3519 {
3520 const asection *sec1 = *(const asection **) arg1;
3521 const asection *sec2 = *(const asection **) arg2;
3522 bfd_size_type size1, size2;
3523
3524 /* Sort by LMA first, since this is the address used to
3525 place the section into a segment. */
3526 if (sec1->lma < sec2->lma)
3527 return -1;
3528 else if (sec1->lma > sec2->lma)
3529 return 1;
3530
3531 /* Then sort by VMA. Normally the LMA and the VMA will be
3532 the same, and this will do nothing. */
3533 if (sec1->vma < sec2->vma)
3534 return -1;
3535 else if (sec1->vma > sec2->vma)
3536 return 1;
3537
3538 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3539
3540 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3541
3542 if (TOEND (sec1))
3543 {
3544 if (TOEND (sec2))
3545 {
3546 /* If the indicies are the same, do not return 0
3547 here, but continue to try the next comparison. */
3548 if (sec1->target_index - sec2->target_index != 0)
3549 return sec1->target_index - sec2->target_index;
3550 }
3551 else
3552 return 1;
3553 }
3554 else if (TOEND (sec2))
3555 return -1;
3556
3557 #undef TOEND
3558
3559 /* Sort by size, to put zero sized sections
3560 before others at the same address. */
3561
3562 size1 = (sec1->flags & SEC_LOAD) ? sec1->_raw_size : 0;
3563 size2 = (sec2->flags & SEC_LOAD) ? sec2->_raw_size : 0;
3564
3565 if (size1 < size2)
3566 return -1;
3567 if (size1 > size2)
3568 return 1;
3569
3570 return sec1->target_index - sec2->target_index;
3571 }
3572
3573 /* Assign file positions to the sections based on the mapping from
3574 sections to segments. This function also sets up some fields in
3575 the file header, and writes out the program headers. */
3576
3577 static bfd_boolean
3578 assign_file_positions_for_segments (bfd *abfd)
3579 {
3580 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3581 unsigned int count;
3582 struct elf_segment_map *m;
3583 unsigned int alloc;
3584 Elf_Internal_Phdr *phdrs;
3585 file_ptr off, voff;
3586 bfd_vma filehdr_vaddr, filehdr_paddr;
3587 bfd_vma phdrs_vaddr, phdrs_paddr;
3588 Elf_Internal_Phdr *p;
3589 bfd_size_type amt;
3590
3591 if (elf_tdata (abfd)->segment_map == NULL)
3592 {
3593 if (! map_sections_to_segments (abfd))
3594 return FALSE;
3595 }
3596 else
3597 {
3598 /* The placement algorithm assumes that non allocated sections are
3599 not in PT_LOAD segments. We ensure this here by removing such
3600 sections from the segment map. */
3601 for (m = elf_tdata (abfd)->segment_map;
3602 m != NULL;
3603 m = m->next)
3604 {
3605 unsigned int new_count;
3606 unsigned int i;
3607
3608 if (m->p_type != PT_LOAD)
3609 continue;
3610
3611 new_count = 0;
3612 for (i = 0; i < m->count; i ++)
3613 {
3614 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3615 {
3616 if (i != new_count)
3617 m->sections[new_count] = m->sections[i];
3618
3619 new_count ++;
3620 }
3621 }
3622
3623 if (new_count != m->count)
3624 m->count = new_count;
3625 }
3626 }
3627
3628 if (bed->elf_backend_modify_segment_map)
3629 {
3630 if (! (*bed->elf_backend_modify_segment_map) (abfd))
3631 return FALSE;
3632 }
3633
3634 count = 0;
3635 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3636 ++count;
3637
3638 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3639 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3640 elf_elfheader (abfd)->e_phnum = count;
3641
3642 if (count == 0)
3643 return TRUE;
3644
3645 /* If we already counted the number of program segments, make sure
3646 that we allocated enough space. This happens when SIZEOF_HEADERS
3647 is used in a linker script. */
3648 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3649 if (alloc != 0 && count > alloc)
3650 {
3651 ((*_bfd_error_handler)
3652 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3653 bfd_get_filename (abfd), alloc, count));
3654 bfd_set_error (bfd_error_bad_value);
3655 return FALSE;
3656 }
3657
3658 if (alloc == 0)
3659 alloc = count;
3660
3661 amt = alloc * sizeof (Elf_Internal_Phdr);
3662 phdrs = bfd_alloc (abfd, amt);
3663 if (phdrs == NULL)
3664 return FALSE;
3665
3666 off = bed->s->sizeof_ehdr;
3667 off += alloc * bed->s->sizeof_phdr;
3668
3669 filehdr_vaddr = 0;
3670 filehdr_paddr = 0;
3671 phdrs_vaddr = 0;
3672 phdrs_paddr = 0;
3673
3674 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3675 m != NULL;
3676 m = m->next, p++)
3677 {
3678 unsigned int i;
3679 asection **secpp;
3680
3681 /* If elf_segment_map is not from map_sections_to_segments, the
3682 sections may not be correctly ordered. NOTE: sorting should
3683 not be done to the PT_NOTE section of a corefile, which may
3684 contain several pseudo-sections artificially created by bfd.
3685 Sorting these pseudo-sections breaks things badly. */
3686 if (m->count > 1
3687 && !(elf_elfheader (abfd)->e_type == ET_CORE
3688 && m->p_type == PT_NOTE))
3689 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3690 elf_sort_sections);
3691
3692 p->p_type = m->p_type;
3693 p->p_flags = m->p_flags;
3694
3695 if (p->p_type == PT_LOAD
3696 && m->count > 0
3697 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3698 {
3699 if ((abfd->flags & D_PAGED) != 0)
3700 off += (m->sections[0]->vma - off) % bed->maxpagesize;
3701 else
3702 {
3703 bfd_size_type align;
3704
3705 align = 0;
3706 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3707 {
3708 bfd_size_type secalign;
3709
3710 secalign = bfd_get_section_alignment (abfd, *secpp);
3711 if (secalign > align)
3712 align = secalign;
3713 }
3714
3715 off += (m->sections[0]->vma - off) % (1 << align);
3716 }
3717 }
3718
3719 if (m->count == 0)
3720 p->p_vaddr = 0;
3721 else
3722 p->p_vaddr = m->sections[0]->vma;
3723
3724 if (m->p_paddr_valid)
3725 p->p_paddr = m->p_paddr;
3726 else if (m->count == 0)
3727 p->p_paddr = 0;
3728 else
3729 p->p_paddr = m->sections[0]->lma;
3730
3731 if (p->p_type == PT_LOAD
3732 && (abfd->flags & D_PAGED) != 0)
3733 p->p_align = bed->maxpagesize;
3734 else if (m->count == 0)
3735 p->p_align = 1 << bed->s->log_file_align;
3736 else
3737 p->p_align = 0;
3738
3739 p->p_offset = 0;
3740 p->p_filesz = 0;
3741 p->p_memsz = 0;
3742
3743 if (m->includes_filehdr)
3744 {
3745 if (! m->p_flags_valid)
3746 p->p_flags |= PF_R;
3747 p->p_offset = 0;
3748 p->p_filesz = bed->s->sizeof_ehdr;
3749 p->p_memsz = bed->s->sizeof_ehdr;
3750 if (m->count > 0)
3751 {
3752 BFD_ASSERT (p->p_type == PT_LOAD);
3753
3754 if (p->p_vaddr < (bfd_vma) off)
3755 {
3756 (*_bfd_error_handler)
3757 (_("%s: Not enough room for program headers, try linking with -N"),
3758 bfd_get_filename (abfd));
3759 bfd_set_error (bfd_error_bad_value);
3760 return FALSE;
3761 }
3762
3763 p->p_vaddr -= off;
3764 if (! m->p_paddr_valid)
3765 p->p_paddr -= off;
3766 }
3767 if (p->p_type == PT_LOAD)
3768 {
3769 filehdr_vaddr = p->p_vaddr;
3770 filehdr_paddr = p->p_paddr;
3771 }
3772 }
3773
3774 if (m->includes_phdrs)
3775 {
3776 if (! m->p_flags_valid)
3777 p->p_flags |= PF_R;
3778
3779 if (m->includes_filehdr)
3780 {
3781 if (p->p_type == PT_LOAD)
3782 {
3783 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3784 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3785 }
3786 }
3787 else
3788 {
3789 p->p_offset = bed->s->sizeof_ehdr;
3790
3791 if (m->count > 0)
3792 {
3793 BFD_ASSERT (p->p_type == PT_LOAD);
3794 p->p_vaddr -= off - p->p_offset;
3795 if (! m->p_paddr_valid)
3796 p->p_paddr -= off - p->p_offset;
3797 }
3798
3799 if (p->p_type == PT_LOAD)
3800 {
3801 phdrs_vaddr = p->p_vaddr;
3802 phdrs_paddr = p->p_paddr;
3803 }
3804 else
3805 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3806 }
3807
3808 p->p_filesz += alloc * bed->s->sizeof_phdr;
3809 p->p_memsz += alloc * bed->s->sizeof_phdr;
3810 }
3811
3812 if (p->p_type == PT_LOAD
3813 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3814 {
3815 if (! m->includes_filehdr && ! m->includes_phdrs)
3816 p->p_offset = off;
3817 else
3818 {
3819 file_ptr adjust;
3820
3821 adjust = off - (p->p_offset + p->p_filesz);
3822 p->p_filesz += adjust;
3823 p->p_memsz += adjust;
3824 }
3825 }
3826
3827 voff = off;
3828
3829 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3830 {
3831 asection *sec;
3832 flagword flags;
3833 bfd_size_type align;
3834
3835 sec = *secpp;
3836 flags = sec->flags;
3837 align = 1 << bfd_get_section_alignment (abfd, sec);
3838
3839 /* The section may have artificial alignment forced by a
3840 link script. Notice this case by the gap between the
3841 cumulative phdr lma and the section's lma. */
3842 if (p->p_paddr + p->p_memsz < sec->lma)
3843 {
3844 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3845
3846 p->p_memsz += adjust;
3847 if (p->p_type == PT_LOAD
3848 || (p->p_type == PT_NOTE
3849 && bfd_get_format (abfd) == bfd_core))
3850 {
3851 off += adjust;
3852 voff += adjust;
3853 }
3854 if ((flags & SEC_LOAD) != 0
3855 || (flags & SEC_THREAD_LOCAL) != 0)
3856 p->p_filesz += adjust;
3857 }
3858
3859 if (p->p_type == PT_LOAD)
3860 {
3861 bfd_signed_vma adjust;
3862
3863 if ((flags & SEC_LOAD) != 0)
3864 {
3865 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3866 if (adjust < 0)
3867 adjust = 0;
3868 }
3869 else if ((flags & SEC_ALLOC) != 0)
3870 {
3871 /* The section VMA must equal the file position
3872 modulo the page size. FIXME: I'm not sure if
3873 this adjustment is really necessary. We used to
3874 not have the SEC_LOAD case just above, and then
3875 this was necessary, but now I'm not sure. */
3876 if ((abfd->flags & D_PAGED) != 0)
3877 adjust = (sec->vma - voff) % bed->maxpagesize;
3878 else
3879 adjust = (sec->vma - voff) % align;
3880 }
3881 else
3882 adjust = 0;
3883
3884 if (adjust != 0)
3885 {
3886 if (i == 0)
3887 {
3888 (* _bfd_error_handler) (_("\
3889 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3890 bfd_section_name (abfd, sec),
3891 sec->lma,
3892 p->p_paddr);
3893 return FALSE;
3894 }
3895 p->p_memsz += adjust;
3896 off += adjust;
3897 voff += adjust;
3898 if ((flags & SEC_LOAD) != 0)
3899 p->p_filesz += adjust;
3900 }
3901
3902 sec->filepos = off;
3903
3904 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3905 used in a linker script we may have a section with
3906 SEC_LOAD clear but which is supposed to have
3907 contents. */
3908 if ((flags & SEC_LOAD) != 0
3909 || (flags & SEC_HAS_CONTENTS) != 0)
3910 off += sec->_raw_size;
3911
3912 if ((flags & SEC_ALLOC) != 0
3913 && ((flags & SEC_LOAD) != 0
3914 || (flags & SEC_THREAD_LOCAL) == 0))
3915 voff += sec->_raw_size;
3916 }
3917
3918 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3919 {
3920 /* The actual "note" segment has i == 0.
3921 This is the one that actually contains everything. */
3922 if (i == 0)
3923 {
3924 sec->filepos = off;
3925 p->p_filesz = sec->_raw_size;
3926 off += sec->_raw_size;
3927 voff = off;
3928 }
3929 else
3930 {
3931 /* Fake sections -- don't need to be written. */
3932 sec->filepos = 0;
3933 sec->_raw_size = 0;
3934 flags = sec->flags = 0;
3935 }
3936 p->p_memsz = 0;
3937 p->p_align = 1;
3938 }
3939 else
3940 {
3941 if ((sec->flags & SEC_LOAD) != 0
3942 || (sec->flags & SEC_THREAD_LOCAL) == 0
3943 || p->p_type == PT_TLS)
3944 p->p_memsz += sec->_raw_size;
3945
3946 if ((flags & SEC_LOAD) != 0)
3947 p->p_filesz += sec->_raw_size;
3948
3949 if (p->p_type == PT_TLS
3950 && sec->_raw_size == 0
3951 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3952 {
3953 struct bfd_link_order *o;
3954 bfd_vma tbss_size = 0;
3955
3956 for (o = sec->link_order_head; o != NULL; o = o->next)
3957 if (tbss_size < o->offset + o->size)
3958 tbss_size = o->offset + o->size;
3959
3960 p->p_memsz += tbss_size;
3961 }
3962
3963 if (align > p->p_align
3964 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
3965 p->p_align = align;
3966 }
3967
3968 if (! m->p_flags_valid)
3969 {
3970 p->p_flags |= PF_R;
3971 if ((flags & SEC_CODE) != 0)
3972 p->p_flags |= PF_X;
3973 if ((flags & SEC_READONLY) == 0)
3974 p->p_flags |= PF_W;
3975 }
3976 }
3977 }
3978
3979 /* Now that we have set the section file positions, we can set up
3980 the file positions for the non PT_LOAD segments. */
3981 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3982 m != NULL;
3983 m = m->next, p++)
3984 {
3985 if (p->p_type != PT_LOAD && m->count > 0)
3986 {
3987 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
3988 p->p_offset = m->sections[0]->filepos;
3989 }
3990 if (m->count == 0)
3991 {
3992 if (m->includes_filehdr)
3993 {
3994 p->p_vaddr = filehdr_vaddr;
3995 if (! m->p_paddr_valid)
3996 p->p_paddr = filehdr_paddr;
3997 }
3998 else if (m->includes_phdrs)
3999 {
4000 p->p_vaddr = phdrs_vaddr;
4001 if (! m->p_paddr_valid)
4002 p->p_paddr = phdrs_paddr;
4003 }
4004 }
4005 }
4006
4007 /* Clear out any program headers we allocated but did not use. */
4008 for (; count < alloc; count++, p++)
4009 {
4010 memset (p, 0, sizeof *p);
4011 p->p_type = PT_NULL;
4012 }
4013
4014 elf_tdata (abfd)->phdr = phdrs;
4015
4016 elf_tdata (abfd)->next_file_pos = off;
4017
4018 /* Write out the program headers. */
4019 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4020 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4021 return FALSE;
4022
4023 return TRUE;
4024 }
4025
4026 /* Get the size of the program header.
4027
4028 If this is called by the linker before any of the section VMA's are set, it
4029 can't calculate the correct value for a strange memory layout. This only
4030 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4031 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4032 data segment (exclusive of .interp and .dynamic).
4033
4034 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4035 will be two segments. */
4036
4037 static bfd_size_type
4038 get_program_header_size (bfd *abfd)
4039 {
4040 size_t segs;
4041 asection *s;
4042 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4043
4044 /* We can't return a different result each time we're called. */
4045 if (elf_tdata (abfd)->program_header_size != 0)
4046 return elf_tdata (abfd)->program_header_size;
4047
4048 if (elf_tdata (abfd)->segment_map != NULL)
4049 {
4050 struct elf_segment_map *m;
4051
4052 segs = 0;
4053 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4054 ++segs;
4055 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4056 return elf_tdata (abfd)->program_header_size;
4057 }
4058
4059 /* Assume we will need exactly two PT_LOAD segments: one for text
4060 and one for data. */
4061 segs = 2;
4062
4063 s = bfd_get_section_by_name (abfd, ".interp");
4064 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4065 {
4066 /* If we have a loadable interpreter section, we need a
4067 PT_INTERP segment. In this case, assume we also need a
4068 PT_PHDR segment, although that may not be true for all
4069 targets. */
4070 segs += 2;
4071 }
4072
4073 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4074 {
4075 /* We need a PT_DYNAMIC segment. */
4076 ++segs;
4077 }
4078
4079 if (elf_tdata (abfd)->eh_frame_hdr)
4080 {
4081 /* We need a PT_GNU_EH_FRAME segment. */
4082 ++segs;
4083 }
4084
4085 if (elf_tdata (abfd)->stack_flags)
4086 {
4087 /* We need a PT_GNU_STACK segment. */
4088 ++segs;
4089 }
4090
4091 for (s = abfd->sections; s != NULL; s = s->next)
4092 {
4093 if ((s->flags & SEC_LOAD) != 0
4094 && strncmp (s->name, ".note", 5) == 0)
4095 {
4096 /* We need a PT_NOTE segment. */
4097 ++segs;
4098 }
4099 }
4100
4101 for (s = abfd->sections; s != NULL; s = s->next)
4102 {
4103 if (s->flags & SEC_THREAD_LOCAL)
4104 {
4105 /* We need a PT_TLS segment. */
4106 ++segs;
4107 break;
4108 }
4109 }
4110
4111 /* Let the backend count up any program headers it might need. */
4112 if (bed->elf_backend_additional_program_headers)
4113 {
4114 int a;
4115
4116 a = (*bed->elf_backend_additional_program_headers) (abfd);
4117 if (a == -1)
4118 abort ();
4119 segs += a;
4120 }
4121
4122 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4123 return elf_tdata (abfd)->program_header_size;
4124 }
4125
4126 /* Work out the file positions of all the sections. This is called by
4127 _bfd_elf_compute_section_file_positions. All the section sizes and
4128 VMAs must be known before this is called.
4129
4130 We do not consider reloc sections at this point, unless they form
4131 part of the loadable image. Reloc sections are assigned file
4132 positions in assign_file_positions_for_relocs, which is called by
4133 write_object_contents and final_link.
4134
4135 We also don't set the positions of the .symtab and .strtab here. */
4136
4137 static bfd_boolean
4138 assign_file_positions_except_relocs (bfd *abfd)
4139 {
4140 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4141 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4142 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4143 unsigned int num_sec = elf_numsections (abfd);
4144 file_ptr off;
4145 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4146
4147 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4148 && bfd_get_format (abfd) != bfd_core)
4149 {
4150 Elf_Internal_Shdr **hdrpp;
4151 unsigned int i;
4152
4153 /* Start after the ELF header. */
4154 off = i_ehdrp->e_ehsize;
4155
4156 /* We are not creating an executable, which means that we are
4157 not creating a program header, and that the actual order of
4158 the sections in the file is unimportant. */
4159 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4160 {
4161 Elf_Internal_Shdr *hdr;
4162
4163 hdr = *hdrpp;
4164 if (hdr->sh_type == SHT_REL
4165 || hdr->sh_type == SHT_RELA
4166 || i == tdata->symtab_section
4167 || i == tdata->symtab_shndx_section
4168 || i == tdata->strtab_section)
4169 {
4170 hdr->sh_offset = -1;
4171 }
4172 else
4173 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4174
4175 if (i == SHN_LORESERVE - 1)
4176 {
4177 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4178 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4179 }
4180 }
4181 }
4182 else
4183 {
4184 unsigned int i;
4185 Elf_Internal_Shdr **hdrpp;
4186
4187 /* Assign file positions for the loaded sections based on the
4188 assignment of sections to segments. */
4189 if (! assign_file_positions_for_segments (abfd))
4190 return FALSE;
4191
4192 /* Assign file positions for the other sections. */
4193
4194 off = elf_tdata (abfd)->next_file_pos;
4195 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4196 {
4197 Elf_Internal_Shdr *hdr;
4198
4199 hdr = *hdrpp;
4200 if (hdr->bfd_section != NULL
4201 && hdr->bfd_section->filepos != 0)
4202 hdr->sh_offset = hdr->bfd_section->filepos;
4203 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4204 {
4205 ((*_bfd_error_handler)
4206 (_("%s: warning: allocated section `%s' not in segment"),
4207 bfd_get_filename (abfd),
4208 (hdr->bfd_section == NULL
4209 ? "*unknown*"
4210 : hdr->bfd_section->name)));
4211 if ((abfd->flags & D_PAGED) != 0)
4212 off += (hdr->sh_addr - off) % bed->maxpagesize;
4213 else
4214 off += (hdr->sh_addr - off) % hdr->sh_addralign;
4215 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4216 FALSE);
4217 }
4218 else if (hdr->sh_type == SHT_REL
4219 || hdr->sh_type == SHT_RELA
4220 || hdr == i_shdrpp[tdata->symtab_section]
4221 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4222 || hdr == i_shdrpp[tdata->strtab_section])
4223 hdr->sh_offset = -1;
4224 else
4225 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4226
4227 if (i == SHN_LORESERVE - 1)
4228 {
4229 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4230 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4231 }
4232 }
4233 }
4234
4235 /* Place the section headers. */
4236 off = align_file_position (off, 1 << bed->s->log_file_align);
4237 i_ehdrp->e_shoff = off;
4238 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4239
4240 elf_tdata (abfd)->next_file_pos = off;
4241
4242 return TRUE;
4243 }
4244
4245 static bfd_boolean
4246 prep_headers (bfd *abfd)
4247 {
4248 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4249 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4250 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4251 struct elf_strtab_hash *shstrtab;
4252 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4253
4254 i_ehdrp = elf_elfheader (abfd);
4255 i_shdrp = elf_elfsections (abfd);
4256
4257 shstrtab = _bfd_elf_strtab_init ();
4258 if (shstrtab == NULL)
4259 return FALSE;
4260
4261 elf_shstrtab (abfd) = shstrtab;
4262
4263 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4264 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4265 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4266 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4267
4268 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4269 i_ehdrp->e_ident[EI_DATA] =
4270 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4271 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4272
4273 if ((abfd->flags & DYNAMIC) != 0)
4274 i_ehdrp->e_type = ET_DYN;
4275 else if ((abfd->flags & EXEC_P) != 0)
4276 i_ehdrp->e_type = ET_EXEC;
4277 else if (bfd_get_format (abfd) == bfd_core)
4278 i_ehdrp->e_type = ET_CORE;
4279 else
4280 i_ehdrp->e_type = ET_REL;
4281
4282 switch (bfd_get_arch (abfd))
4283 {
4284 case bfd_arch_unknown:
4285 i_ehdrp->e_machine = EM_NONE;
4286 break;
4287
4288 /* There used to be a long list of cases here, each one setting
4289 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4290 in the corresponding bfd definition. To avoid duplication,
4291 the switch was removed. Machines that need special handling
4292 can generally do it in elf_backend_final_write_processing(),
4293 unless they need the information earlier than the final write.
4294 Such need can generally be supplied by replacing the tests for
4295 e_machine with the conditions used to determine it. */
4296 default:
4297 i_ehdrp->e_machine = bed->elf_machine_code;
4298 }
4299
4300 i_ehdrp->e_version = bed->s->ev_current;
4301 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4302
4303 /* No program header, for now. */
4304 i_ehdrp->e_phoff = 0;
4305 i_ehdrp->e_phentsize = 0;
4306 i_ehdrp->e_phnum = 0;
4307
4308 /* Each bfd section is section header entry. */
4309 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4310 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4311
4312 /* If we're building an executable, we'll need a program header table. */
4313 if (abfd->flags & EXEC_P)
4314 {
4315 /* It all happens later. */
4316 #if 0
4317 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4318
4319 /* elf_build_phdrs() returns a (NULL-terminated) array of
4320 Elf_Internal_Phdrs. */
4321 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4322 i_ehdrp->e_phoff = outbase;
4323 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4324 #endif
4325 }
4326 else
4327 {
4328 i_ehdrp->e_phentsize = 0;
4329 i_phdrp = 0;
4330 i_ehdrp->e_phoff = 0;
4331 }
4332
4333 elf_tdata (abfd)->symtab_hdr.sh_name =
4334 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4335 elf_tdata (abfd)->strtab_hdr.sh_name =
4336 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4337 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4338 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4339 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4340 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4341 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4342 return FALSE;
4343
4344 return TRUE;
4345 }
4346
4347 /* Assign file positions for all the reloc sections which are not part
4348 of the loadable file image. */
4349
4350 void
4351 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4352 {
4353 file_ptr off;
4354 unsigned int i, num_sec;
4355 Elf_Internal_Shdr **shdrpp;
4356
4357 off = elf_tdata (abfd)->next_file_pos;
4358
4359 num_sec = elf_numsections (abfd);
4360 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4361 {
4362 Elf_Internal_Shdr *shdrp;
4363
4364 shdrp = *shdrpp;
4365 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4366 && shdrp->sh_offset == -1)
4367 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4368 }
4369
4370 elf_tdata (abfd)->next_file_pos = off;
4371 }
4372
4373 bfd_boolean
4374 _bfd_elf_write_object_contents (bfd *abfd)
4375 {
4376 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4377 Elf_Internal_Ehdr *i_ehdrp;
4378 Elf_Internal_Shdr **i_shdrp;
4379 bfd_boolean failed;
4380 unsigned int count, num_sec;
4381
4382 if (! abfd->output_has_begun
4383 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4384 return FALSE;
4385
4386 i_shdrp = elf_elfsections (abfd);
4387 i_ehdrp = elf_elfheader (abfd);
4388
4389 failed = FALSE;
4390 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4391 if (failed)
4392 return FALSE;
4393
4394 _bfd_elf_assign_file_positions_for_relocs (abfd);
4395
4396 /* After writing the headers, we need to write the sections too... */
4397 num_sec = elf_numsections (abfd);
4398 for (count = 1; count < num_sec; count++)
4399 {
4400 if (bed->elf_backend_section_processing)
4401 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4402 if (i_shdrp[count]->contents)
4403 {
4404 bfd_size_type amt = i_shdrp[count]->sh_size;
4405
4406 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4407 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4408 return FALSE;
4409 }
4410 if (count == SHN_LORESERVE - 1)
4411 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4412 }
4413
4414 /* Write out the section header names. */
4415 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4416 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4417 return FALSE;
4418
4419 if (bed->elf_backend_final_write_processing)
4420 (*bed->elf_backend_final_write_processing) (abfd,
4421 elf_tdata (abfd)->linker);
4422
4423 return bed->s->write_shdrs_and_ehdr (abfd);
4424 }
4425
4426 bfd_boolean
4427 _bfd_elf_write_corefile_contents (bfd *abfd)
4428 {
4429 /* Hopefully this can be done just like an object file. */
4430 return _bfd_elf_write_object_contents (abfd);
4431 }
4432
4433 /* Given a section, search the header to find them. */
4434
4435 int
4436 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4437 {
4438 const struct elf_backend_data *bed;
4439 int index;
4440
4441 if (elf_section_data (asect) != NULL
4442 && elf_section_data (asect)->this_idx != 0)
4443 return elf_section_data (asect)->this_idx;
4444
4445 if (bfd_is_abs_section (asect))
4446 index = SHN_ABS;
4447 else if (bfd_is_com_section (asect))
4448 index = SHN_COMMON;
4449 else if (bfd_is_und_section (asect))
4450 index = SHN_UNDEF;
4451 else
4452 {
4453 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4454 int maxindex = elf_numsections (abfd);
4455
4456 for (index = 1; index < maxindex; index++)
4457 {
4458 Elf_Internal_Shdr *hdr = i_shdrp[index];
4459
4460 if (hdr != NULL && hdr->bfd_section == asect)
4461 return index;
4462 }
4463 index = -1;
4464 }
4465
4466 bed = get_elf_backend_data (abfd);
4467 if (bed->elf_backend_section_from_bfd_section)
4468 {
4469 int retval = index;
4470
4471 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4472 return retval;
4473 }
4474
4475 if (index == -1)
4476 bfd_set_error (bfd_error_nonrepresentable_section);
4477
4478 return index;
4479 }
4480
4481 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4482 on error. */
4483
4484 int
4485 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4486 {
4487 asymbol *asym_ptr = *asym_ptr_ptr;
4488 int idx;
4489 flagword flags = asym_ptr->flags;
4490
4491 /* When gas creates relocations against local labels, it creates its
4492 own symbol for the section, but does put the symbol into the
4493 symbol chain, so udata is 0. When the linker is generating
4494 relocatable output, this section symbol may be for one of the
4495 input sections rather than the output section. */
4496 if (asym_ptr->udata.i == 0
4497 && (flags & BSF_SECTION_SYM)
4498 && asym_ptr->section)
4499 {
4500 int indx;
4501
4502 if (asym_ptr->section->output_section != NULL)
4503 indx = asym_ptr->section->output_section->index;
4504 else
4505 indx = asym_ptr->section->index;
4506 if (indx < elf_num_section_syms (abfd)
4507 && elf_section_syms (abfd)[indx] != NULL)
4508 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4509 }
4510
4511 idx = asym_ptr->udata.i;
4512
4513 if (idx == 0)
4514 {
4515 /* This case can occur when using --strip-symbol on a symbol
4516 which is used in a relocation entry. */
4517 (*_bfd_error_handler)
4518 (_("%s: symbol `%s' required but not present"),
4519 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4520 bfd_set_error (bfd_error_no_symbols);
4521 return -1;
4522 }
4523
4524 #if DEBUG & 4
4525 {
4526 fprintf (stderr,
4527 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4528 (long) asym_ptr, asym_ptr->name, idx, flags,
4529 elf_symbol_flags (flags));
4530 fflush (stderr);
4531 }
4532 #endif
4533
4534 return idx;
4535 }
4536
4537 /* Copy private BFD data. This copies any program header information. */
4538
4539 static bfd_boolean
4540 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4541 {
4542 Elf_Internal_Ehdr *iehdr;
4543 struct elf_segment_map *map;
4544 struct elf_segment_map *map_first;
4545 struct elf_segment_map **pointer_to_map;
4546 Elf_Internal_Phdr *segment;
4547 asection *section;
4548 unsigned int i;
4549 unsigned int num_segments;
4550 bfd_boolean phdr_included = FALSE;
4551 bfd_vma maxpagesize;
4552 struct elf_segment_map *phdr_adjust_seg = NULL;
4553 unsigned int phdr_adjust_num = 0;
4554 const struct elf_backend_data *bed;
4555
4556 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4557 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4558 return TRUE;
4559
4560 if (elf_tdata (ibfd)->phdr == NULL)
4561 return TRUE;
4562
4563 bed = get_elf_backend_data (ibfd);
4564 iehdr = elf_elfheader (ibfd);
4565
4566 map_first = NULL;
4567 pointer_to_map = &map_first;
4568
4569 num_segments = elf_elfheader (ibfd)->e_phnum;
4570 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4571
4572 /* Returns the end address of the segment + 1. */
4573 #define SEGMENT_END(segment, start) \
4574 (start + (segment->p_memsz > segment->p_filesz \
4575 ? segment->p_memsz : segment->p_filesz))
4576
4577 #define SECTION_SIZE(section, segment) \
4578 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4579 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4580 ? section->_raw_size : 0)
4581
4582 /* Returns TRUE if the given section is contained within
4583 the given segment. VMA addresses are compared. */
4584 #define IS_CONTAINED_BY_VMA(section, segment) \
4585 (section->vma >= segment->p_vaddr \
4586 && (section->vma + SECTION_SIZE (section, segment) \
4587 <= (SEGMENT_END (segment, segment->p_vaddr))))
4588
4589 /* Returns TRUE if the given section is contained within
4590 the given segment. LMA addresses are compared. */
4591 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4592 (section->lma >= base \
4593 && (section->lma + SECTION_SIZE (section, segment) \
4594 <= SEGMENT_END (segment, base)))
4595
4596 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4597 #define IS_COREFILE_NOTE(p, s) \
4598 (p->p_type == PT_NOTE \
4599 && bfd_get_format (ibfd) == bfd_core \
4600 && s->vma == 0 && s->lma == 0 \
4601 && (bfd_vma) s->filepos >= p->p_offset \
4602 && ((bfd_vma) s->filepos + s->_raw_size \
4603 <= p->p_offset + p->p_filesz))
4604
4605 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4606 linker, which generates a PT_INTERP section with p_vaddr and
4607 p_memsz set to 0. */
4608 #define IS_SOLARIS_PT_INTERP(p, s) \
4609 (p->p_vaddr == 0 \
4610 && p->p_paddr == 0 \
4611 && p->p_memsz == 0 \
4612 && p->p_filesz > 0 \
4613 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4614 && s->_raw_size > 0 \
4615 && (bfd_vma) s->filepos >= p->p_offset \
4616 && ((bfd_vma) s->filepos + s->_raw_size \
4617 <= p->p_offset + p->p_filesz))
4618
4619 /* Decide if the given section should be included in the given segment.
4620 A section will be included if:
4621 1. It is within the address space of the segment -- we use the LMA
4622 if that is set for the segment and the VMA otherwise,
4623 2. It is an allocated segment,
4624 3. There is an output section associated with it,
4625 4. The section has not already been allocated to a previous segment.
4626 5. PT_TLS segment includes only SHF_TLS sections.
4627 6. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4628 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4629 ((((segment->p_paddr \
4630 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4631 : IS_CONTAINED_BY_VMA (section, segment)) \
4632 && (section->flags & SEC_ALLOC) != 0) \
4633 || IS_COREFILE_NOTE (segment, section)) \
4634 && section->output_section != NULL \
4635 && (segment->p_type != PT_TLS \
4636 || (section->flags & SEC_THREAD_LOCAL)) \
4637 && (segment->p_type == PT_LOAD \
4638 || segment->p_type == PT_TLS \
4639 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4640 && ! section->segment_mark)
4641
4642 /* Returns TRUE iff seg1 starts after the end of seg2. */
4643 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4644 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4645
4646 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4647 their VMA address ranges and their LMA address ranges overlap.
4648 It is possible to have overlapping VMA ranges without overlapping LMA
4649 ranges. RedBoot images for example can have both .data and .bss mapped
4650 to the same VMA range, but with the .data section mapped to a different
4651 LMA. */
4652 #define SEGMENT_OVERLAPS(seg1, seg2) \
4653 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4654 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4655 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4656 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4657
4658 /* Initialise the segment mark field. */
4659 for (section = ibfd->sections; section != NULL; section = section->next)
4660 section->segment_mark = FALSE;
4661
4662 /* Scan through the segments specified in the program header
4663 of the input BFD. For this first scan we look for overlaps
4664 in the loadable segments. These can be created by weird
4665 parameters to objcopy. Also, fix some solaris weirdness. */
4666 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4667 i < num_segments;
4668 i++, segment++)
4669 {
4670 unsigned int j;
4671 Elf_Internal_Phdr *segment2;
4672
4673 if (segment->p_type == PT_INTERP)
4674 for (section = ibfd->sections; section; section = section->next)
4675 if (IS_SOLARIS_PT_INTERP (segment, section))
4676 {
4677 /* Mininal change so that the normal section to segment
4678 assigment code will work. */
4679 segment->p_vaddr = section->vma;
4680 break;
4681 }
4682
4683 if (segment->p_type != PT_LOAD)
4684 continue;
4685
4686 /* Determine if this segment overlaps any previous segments. */
4687 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4688 {
4689 bfd_signed_vma extra_length;
4690
4691 if (segment2->p_type != PT_LOAD
4692 || ! SEGMENT_OVERLAPS (segment, segment2))
4693 continue;
4694
4695 /* Merge the two segments together. */
4696 if (segment2->p_vaddr < segment->p_vaddr)
4697 {
4698 /* Extend SEGMENT2 to include SEGMENT and then delete
4699 SEGMENT. */
4700 extra_length =
4701 SEGMENT_END (segment, segment->p_vaddr)
4702 - SEGMENT_END (segment2, segment2->p_vaddr);
4703
4704 if (extra_length > 0)
4705 {
4706 segment2->p_memsz += extra_length;
4707 segment2->p_filesz += extra_length;
4708 }
4709
4710 segment->p_type = PT_NULL;
4711
4712 /* Since we have deleted P we must restart the outer loop. */
4713 i = 0;
4714 segment = elf_tdata (ibfd)->phdr;
4715 break;
4716 }
4717 else
4718 {
4719 /* Extend SEGMENT to include SEGMENT2 and then delete
4720 SEGMENT2. */
4721 extra_length =
4722 SEGMENT_END (segment2, segment2->p_vaddr)
4723 - SEGMENT_END (segment, segment->p_vaddr);
4724
4725 if (extra_length > 0)
4726 {
4727 segment->p_memsz += extra_length;
4728 segment->p_filesz += extra_length;
4729 }
4730
4731 segment2->p_type = PT_NULL;
4732 }
4733 }
4734 }
4735
4736 /* The second scan attempts to assign sections to segments. */
4737 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4738 i < num_segments;
4739 i ++, segment ++)
4740 {
4741 unsigned int section_count;
4742 asection ** sections;
4743 asection * output_section;
4744 unsigned int isec;
4745 bfd_vma matching_lma;
4746 bfd_vma suggested_lma;
4747 unsigned int j;
4748 bfd_size_type amt;
4749
4750 if (segment->p_type == PT_NULL)
4751 continue;
4752
4753 /* Compute how many sections might be placed into this segment. */
4754 for (section = ibfd->sections, section_count = 0;
4755 section != NULL;
4756 section = section->next)
4757 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4758 ++section_count;
4759
4760 /* Allocate a segment map big enough to contain
4761 all of the sections we have selected. */
4762 amt = sizeof (struct elf_segment_map);
4763 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4764 map = bfd_alloc (obfd, amt);
4765 if (map == NULL)
4766 return FALSE;
4767
4768 /* Initialise the fields of the segment map. Default to
4769 using the physical address of the segment in the input BFD. */
4770 map->next = NULL;
4771 map->p_type = segment->p_type;
4772 map->p_flags = segment->p_flags;
4773 map->p_flags_valid = 1;
4774 map->p_paddr = segment->p_paddr;
4775 map->p_paddr_valid = 1;
4776
4777 /* Determine if this segment contains the ELF file header
4778 and if it contains the program headers themselves. */
4779 map->includes_filehdr = (segment->p_offset == 0
4780 && segment->p_filesz >= iehdr->e_ehsize);
4781
4782 map->includes_phdrs = 0;
4783
4784 if (! phdr_included || segment->p_type != PT_LOAD)
4785 {
4786 map->includes_phdrs =
4787 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4788 && (segment->p_offset + segment->p_filesz
4789 >= ((bfd_vma) iehdr->e_phoff
4790 + iehdr->e_phnum * iehdr->e_phentsize)));
4791
4792 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4793 phdr_included = TRUE;
4794 }
4795
4796 if (section_count == 0)
4797 {
4798 /* Special segments, such as the PT_PHDR segment, may contain
4799 no sections, but ordinary, loadable segments should contain
4800 something. They are allowed by the ELF spec however, so only
4801 a warning is produced. */
4802 if (segment->p_type == PT_LOAD)
4803 (*_bfd_error_handler)
4804 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4805 bfd_archive_filename (ibfd));
4806
4807 map->count = 0;
4808 *pointer_to_map = map;
4809 pointer_to_map = &map->next;
4810
4811 continue;
4812 }
4813
4814 /* Now scan the sections in the input BFD again and attempt
4815 to add their corresponding output sections to the segment map.
4816 The problem here is how to handle an output section which has
4817 been moved (ie had its LMA changed). There are four possibilities:
4818
4819 1. None of the sections have been moved.
4820 In this case we can continue to use the segment LMA from the
4821 input BFD.
4822
4823 2. All of the sections have been moved by the same amount.
4824 In this case we can change the segment's LMA to match the LMA
4825 of the first section.
4826
4827 3. Some of the sections have been moved, others have not.
4828 In this case those sections which have not been moved can be
4829 placed in the current segment which will have to have its size,
4830 and possibly its LMA changed, and a new segment or segments will
4831 have to be created to contain the other sections.
4832
4833 4. The sections have been moved, but not by the same amount.
4834 In this case we can change the segment's LMA to match the LMA
4835 of the first section and we will have to create a new segment
4836 or segments to contain the other sections.
4837
4838 In order to save time, we allocate an array to hold the section
4839 pointers that we are interested in. As these sections get assigned
4840 to a segment, they are removed from this array. */
4841
4842 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4843 to work around this long long bug. */
4844 amt = section_count * sizeof (asection *);
4845 sections = bfd_malloc (amt);
4846 if (sections == NULL)
4847 return FALSE;
4848
4849 /* Step One: Scan for segment vs section LMA conflicts.
4850 Also add the sections to the section array allocated above.
4851 Also add the sections to the current segment. In the common
4852 case, where the sections have not been moved, this means that
4853 we have completely filled the segment, and there is nothing
4854 more to do. */
4855 isec = 0;
4856 matching_lma = 0;
4857 suggested_lma = 0;
4858
4859 for (j = 0, section = ibfd->sections;
4860 section != NULL;
4861 section = section->next)
4862 {
4863 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4864 {
4865 output_section = section->output_section;
4866
4867 sections[j ++] = section;
4868
4869 /* The Solaris native linker always sets p_paddr to 0.
4870 We try to catch that case here, and set it to the
4871 correct value. Note - some backends require that
4872 p_paddr be left as zero. */
4873 if (segment->p_paddr == 0
4874 && segment->p_vaddr != 0
4875 && (! bed->want_p_paddr_set_to_zero)
4876 && isec == 0
4877 && output_section->lma != 0
4878 && (output_section->vma == (segment->p_vaddr
4879 + (map->includes_filehdr
4880 ? iehdr->e_ehsize
4881 : 0)
4882 + (map->includes_phdrs
4883 ? (iehdr->e_phnum
4884 * iehdr->e_phentsize)
4885 : 0))))
4886 map->p_paddr = segment->p_vaddr;
4887
4888 /* Match up the physical address of the segment with the
4889 LMA address of the output section. */
4890 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4891 || IS_COREFILE_NOTE (segment, section)
4892 || (bed->want_p_paddr_set_to_zero &&
4893 IS_CONTAINED_BY_VMA (output_section, segment))
4894 )
4895 {
4896 if (matching_lma == 0)
4897 matching_lma = output_section->lma;
4898
4899 /* We assume that if the section fits within the segment
4900 then it does not overlap any other section within that
4901 segment. */
4902 map->sections[isec ++] = output_section;
4903 }
4904 else if (suggested_lma == 0)
4905 suggested_lma = output_section->lma;
4906 }
4907 }
4908
4909 BFD_ASSERT (j == section_count);
4910
4911 /* Step Two: Adjust the physical address of the current segment,
4912 if necessary. */
4913 if (isec == section_count)
4914 {
4915 /* All of the sections fitted within the segment as currently
4916 specified. This is the default case. Add the segment to
4917 the list of built segments and carry on to process the next
4918 program header in the input BFD. */
4919 map->count = section_count;
4920 *pointer_to_map = map;
4921 pointer_to_map = &map->next;
4922
4923 free (sections);
4924 continue;
4925 }
4926 else
4927 {
4928 if (matching_lma != 0)
4929 {
4930 /* At least one section fits inside the current segment.
4931 Keep it, but modify its physical address to match the
4932 LMA of the first section that fitted. */
4933 map->p_paddr = matching_lma;
4934 }
4935 else
4936 {
4937 /* None of the sections fitted inside the current segment.
4938 Change the current segment's physical address to match
4939 the LMA of the first section. */
4940 map->p_paddr = suggested_lma;
4941 }
4942
4943 /* Offset the segment physical address from the lma
4944 to allow for space taken up by elf headers. */
4945 if (map->includes_filehdr)
4946 map->p_paddr -= iehdr->e_ehsize;
4947
4948 if (map->includes_phdrs)
4949 {
4950 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4951
4952 /* iehdr->e_phnum is just an estimate of the number
4953 of program headers that we will need. Make a note
4954 here of the number we used and the segment we chose
4955 to hold these headers, so that we can adjust the
4956 offset when we know the correct value. */
4957 phdr_adjust_num = iehdr->e_phnum;
4958 phdr_adjust_seg = map;
4959 }
4960 }
4961
4962 /* Step Three: Loop over the sections again, this time assigning
4963 those that fit to the current segment and removing them from the
4964 sections array; but making sure not to leave large gaps. Once all
4965 possible sections have been assigned to the current segment it is
4966 added to the list of built segments and if sections still remain
4967 to be assigned, a new segment is constructed before repeating
4968 the loop. */
4969 isec = 0;
4970 do
4971 {
4972 map->count = 0;
4973 suggested_lma = 0;
4974
4975 /* Fill the current segment with sections that fit. */
4976 for (j = 0; j < section_count; j++)
4977 {
4978 section = sections[j];
4979
4980 if (section == NULL)
4981 continue;
4982
4983 output_section = section->output_section;
4984
4985 BFD_ASSERT (output_section != NULL);
4986
4987 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4988 || IS_COREFILE_NOTE (segment, section))
4989 {
4990 if (map->count == 0)
4991 {
4992 /* If the first section in a segment does not start at
4993 the beginning of the segment, then something is
4994 wrong. */
4995 if (output_section->lma !=
4996 (map->p_paddr
4997 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
4998 + (map->includes_phdrs
4999 ? iehdr->e_phnum * iehdr->e_phentsize
5000 : 0)))
5001 abort ();
5002 }
5003 else
5004 {
5005 asection * prev_sec;
5006
5007 prev_sec = map->sections[map->count - 1];
5008
5009 /* If the gap between the end of the previous section
5010 and the start of this section is more than
5011 maxpagesize then we need to start a new segment. */
5012 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
5013 maxpagesize)
5014 < BFD_ALIGN (output_section->lma, maxpagesize))
5015 || ((prev_sec->lma + prev_sec->_raw_size)
5016 > output_section->lma))
5017 {
5018 if (suggested_lma == 0)
5019 suggested_lma = output_section->lma;
5020
5021 continue;
5022 }
5023 }
5024
5025 map->sections[map->count++] = output_section;
5026 ++isec;
5027 sections[j] = NULL;
5028 section->segment_mark = TRUE;
5029 }
5030 else if (suggested_lma == 0)
5031 suggested_lma = output_section->lma;
5032 }
5033
5034 BFD_ASSERT (map->count > 0);
5035
5036 /* Add the current segment to the list of built segments. */
5037 *pointer_to_map = map;
5038 pointer_to_map = &map->next;
5039
5040 if (isec < section_count)
5041 {
5042 /* We still have not allocated all of the sections to
5043 segments. Create a new segment here, initialise it
5044 and carry on looping. */
5045 amt = sizeof (struct elf_segment_map);
5046 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5047 map = bfd_alloc (obfd, amt);
5048 if (map == NULL)
5049 {
5050 free (sections);
5051 return FALSE;
5052 }
5053
5054 /* Initialise the fields of the segment map. Set the physical
5055 physical address to the LMA of the first section that has
5056 not yet been assigned. */
5057 map->next = NULL;
5058 map->p_type = segment->p_type;
5059 map->p_flags = segment->p_flags;
5060 map->p_flags_valid = 1;
5061 map->p_paddr = suggested_lma;
5062 map->p_paddr_valid = 1;
5063 map->includes_filehdr = 0;
5064 map->includes_phdrs = 0;
5065 }
5066 }
5067 while (isec < section_count);
5068
5069 free (sections);
5070 }
5071
5072 /* The Solaris linker creates program headers in which all the
5073 p_paddr fields are zero. When we try to objcopy or strip such a
5074 file, we get confused. Check for this case, and if we find it
5075 reset the p_paddr_valid fields. */
5076 for (map = map_first; map != NULL; map = map->next)
5077 if (map->p_paddr != 0)
5078 break;
5079 if (map == NULL)
5080 for (map = map_first; map != NULL; map = map->next)
5081 map->p_paddr_valid = 0;
5082
5083 elf_tdata (obfd)->segment_map = map_first;
5084
5085 /* If we had to estimate the number of program headers that were
5086 going to be needed, then check our estimate now and adjust
5087 the offset if necessary. */
5088 if (phdr_adjust_seg != NULL)
5089 {
5090 unsigned int count;
5091
5092 for (count = 0, map = map_first; map != NULL; map = map->next)
5093 count++;
5094
5095 if (count > phdr_adjust_num)
5096 phdr_adjust_seg->p_paddr
5097 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5098 }
5099
5100 #if 0
5101 /* Final Step: Sort the segments into ascending order of physical
5102 address. */
5103 if (map_first != NULL)
5104 {
5105 struct elf_segment_map *prev;
5106
5107 prev = map_first;
5108 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5109 {
5110 /* Yes I know - its a bubble sort.... */
5111 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5112 {
5113 /* Swap map and map->next. */
5114 prev->next = map->next;
5115 map->next = map->next->next;
5116 prev->next->next = map;
5117
5118 /* Restart loop. */
5119 map = map_first;
5120 }
5121 }
5122 }
5123 #endif
5124
5125 #undef SEGMENT_END
5126 #undef SECTION_SIZE
5127 #undef IS_CONTAINED_BY_VMA
5128 #undef IS_CONTAINED_BY_LMA
5129 #undef IS_COREFILE_NOTE
5130 #undef IS_SOLARIS_PT_INTERP
5131 #undef INCLUDE_SECTION_IN_SEGMENT
5132 #undef SEGMENT_AFTER_SEGMENT
5133 #undef SEGMENT_OVERLAPS
5134 return TRUE;
5135 }
5136
5137 /* Copy private section information. This copies over the entsize
5138 field, and sometimes the info field. */
5139
5140 bfd_boolean
5141 _bfd_elf_copy_private_section_data (bfd *ibfd,
5142 asection *isec,
5143 bfd *obfd,
5144 asection *osec)
5145 {
5146 Elf_Internal_Shdr *ihdr, *ohdr;
5147
5148 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5149 || obfd->xvec->flavour != bfd_target_elf_flavour)
5150 return TRUE;
5151
5152 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5153 {
5154 asection *s;
5155
5156 /* Only set up the segments if there are no more SEC_ALLOC
5157 sections. FIXME: This won't do the right thing if objcopy is
5158 used to remove the last SEC_ALLOC section, since objcopy
5159 won't call this routine in that case. */
5160 for (s = isec->next; s != NULL; s = s->next)
5161 if ((s->flags & SEC_ALLOC) != 0)
5162 break;
5163 if (s == NULL)
5164 {
5165 if (! copy_private_bfd_data (ibfd, obfd))
5166 return FALSE;
5167 }
5168 }
5169
5170 ihdr = &elf_section_data (isec)->this_hdr;
5171 ohdr = &elf_section_data (osec)->this_hdr;
5172
5173 ohdr->sh_entsize = ihdr->sh_entsize;
5174
5175 if (ihdr->sh_type == SHT_SYMTAB
5176 || ihdr->sh_type == SHT_DYNSYM
5177 || ihdr->sh_type == SHT_GNU_verneed
5178 || ihdr->sh_type == SHT_GNU_verdef)
5179 ohdr->sh_info = ihdr->sh_info;
5180
5181 /* Set things up for objcopy. The output SHT_GROUP section will
5182 have its elf_next_in_group pointing back to the input group
5183 members. */
5184 elf_next_in_group (osec) = elf_next_in_group (isec);
5185 elf_group_name (osec) = elf_group_name (isec);
5186
5187 osec->use_rela_p = isec->use_rela_p;
5188
5189 return TRUE;
5190 }
5191
5192 /* Copy private symbol information. If this symbol is in a section
5193 which we did not map into a BFD section, try to map the section
5194 index correctly. We use special macro definitions for the mapped
5195 section indices; these definitions are interpreted by the
5196 swap_out_syms function. */
5197
5198 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5199 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5200 #define MAP_STRTAB (SHN_HIOS + 3)
5201 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5202 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5203
5204 bfd_boolean
5205 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5206 asymbol *isymarg,
5207 bfd *obfd,
5208 asymbol *osymarg)
5209 {
5210 elf_symbol_type *isym, *osym;
5211
5212 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5213 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5214 return TRUE;
5215
5216 isym = elf_symbol_from (ibfd, isymarg);
5217 osym = elf_symbol_from (obfd, osymarg);
5218
5219 if (isym != NULL
5220 && osym != NULL
5221 && bfd_is_abs_section (isym->symbol.section))
5222 {
5223 unsigned int shndx;
5224
5225 shndx = isym->internal_elf_sym.st_shndx;
5226 if (shndx == elf_onesymtab (ibfd))
5227 shndx = MAP_ONESYMTAB;
5228 else if (shndx == elf_dynsymtab (ibfd))
5229 shndx = MAP_DYNSYMTAB;
5230 else if (shndx == elf_tdata (ibfd)->strtab_section)
5231 shndx = MAP_STRTAB;
5232 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5233 shndx = MAP_SHSTRTAB;
5234 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5235 shndx = MAP_SYM_SHNDX;
5236 osym->internal_elf_sym.st_shndx = shndx;
5237 }
5238
5239 return TRUE;
5240 }
5241
5242 /* Swap out the symbols. */
5243
5244 static bfd_boolean
5245 swap_out_syms (bfd *abfd,
5246 struct bfd_strtab_hash **sttp,
5247 int relocatable_p)
5248 {
5249 const struct elf_backend_data *bed;
5250 int symcount;
5251 asymbol **syms;
5252 struct bfd_strtab_hash *stt;
5253 Elf_Internal_Shdr *symtab_hdr;
5254 Elf_Internal_Shdr *symtab_shndx_hdr;
5255 Elf_Internal_Shdr *symstrtab_hdr;
5256 char *outbound_syms;
5257 char *outbound_shndx;
5258 int idx;
5259 bfd_size_type amt;
5260
5261 if (!elf_map_symbols (abfd))
5262 return FALSE;
5263
5264 /* Dump out the symtabs. */
5265 stt = _bfd_elf_stringtab_init ();
5266 if (stt == NULL)
5267 return FALSE;
5268
5269 bed = get_elf_backend_data (abfd);
5270 symcount = bfd_get_symcount (abfd);
5271 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5272 symtab_hdr->sh_type = SHT_SYMTAB;
5273 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5274 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5275 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5276 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5277
5278 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5279 symstrtab_hdr->sh_type = SHT_STRTAB;
5280
5281 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5282 outbound_syms = bfd_alloc (abfd, amt);
5283 if (outbound_syms == NULL)
5284 {
5285 _bfd_stringtab_free (stt);
5286 return FALSE;
5287 }
5288 symtab_hdr->contents = outbound_syms;
5289
5290 outbound_shndx = NULL;
5291 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5292 if (symtab_shndx_hdr->sh_name != 0)
5293 {
5294 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5295 outbound_shndx = bfd_zalloc (abfd, amt);
5296 if (outbound_shndx == NULL)
5297 {
5298 _bfd_stringtab_free (stt);
5299 return FALSE;
5300 }
5301
5302 symtab_shndx_hdr->contents = outbound_shndx;
5303 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5304 symtab_shndx_hdr->sh_size = amt;
5305 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5306 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5307 }
5308
5309 /* Now generate the data (for "contents"). */
5310 {
5311 /* Fill in zeroth symbol and swap it out. */
5312 Elf_Internal_Sym sym;
5313 sym.st_name = 0;
5314 sym.st_value = 0;
5315 sym.st_size = 0;
5316 sym.st_info = 0;
5317 sym.st_other = 0;
5318 sym.st_shndx = SHN_UNDEF;
5319 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5320 outbound_syms += bed->s->sizeof_sym;
5321 if (outbound_shndx != NULL)
5322 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5323 }
5324
5325 syms = bfd_get_outsymbols (abfd);
5326 for (idx = 0; idx < symcount; idx++)
5327 {
5328 Elf_Internal_Sym sym;
5329 bfd_vma value = syms[idx]->value;
5330 elf_symbol_type *type_ptr;
5331 flagword flags = syms[idx]->flags;
5332 int type;
5333
5334 if ((flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5335 {
5336 /* Local section symbols have no name. */
5337 sym.st_name = 0;
5338 }
5339 else
5340 {
5341 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5342 syms[idx]->name,
5343 TRUE, FALSE);
5344 if (sym.st_name == (unsigned long) -1)
5345 {
5346 _bfd_stringtab_free (stt);
5347 return FALSE;
5348 }
5349 }
5350
5351 type_ptr = elf_symbol_from (abfd, syms[idx]);
5352
5353 if ((flags & BSF_SECTION_SYM) == 0
5354 && bfd_is_com_section (syms[idx]->section))
5355 {
5356 /* ELF common symbols put the alignment into the `value' field,
5357 and the size into the `size' field. This is backwards from
5358 how BFD handles it, so reverse it here. */
5359 sym.st_size = value;
5360 if (type_ptr == NULL
5361 || type_ptr->internal_elf_sym.st_value == 0)
5362 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5363 else
5364 sym.st_value = type_ptr->internal_elf_sym.st_value;
5365 sym.st_shndx = _bfd_elf_section_from_bfd_section
5366 (abfd, syms[idx]->section);
5367 }
5368 else
5369 {
5370 asection *sec = syms[idx]->section;
5371 int shndx;
5372
5373 if (sec->output_section)
5374 {
5375 value += sec->output_offset;
5376 sec = sec->output_section;
5377 }
5378
5379 /* Don't add in the section vma for relocatable output. */
5380 if (! relocatable_p)
5381 value += sec->vma;
5382 sym.st_value = value;
5383 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5384
5385 if (bfd_is_abs_section (sec)
5386 && type_ptr != NULL
5387 && type_ptr->internal_elf_sym.st_shndx != 0)
5388 {
5389 /* This symbol is in a real ELF section which we did
5390 not create as a BFD section. Undo the mapping done
5391 by copy_private_symbol_data. */
5392 shndx = type_ptr->internal_elf_sym.st_shndx;
5393 switch (shndx)
5394 {
5395 case MAP_ONESYMTAB:
5396 shndx = elf_onesymtab (abfd);
5397 break;
5398 case MAP_DYNSYMTAB:
5399 shndx = elf_dynsymtab (abfd);
5400 break;
5401 case MAP_STRTAB:
5402 shndx = elf_tdata (abfd)->strtab_section;
5403 break;
5404 case MAP_SHSTRTAB:
5405 shndx = elf_tdata (abfd)->shstrtab_section;
5406 break;
5407 case MAP_SYM_SHNDX:
5408 shndx = elf_tdata (abfd)->symtab_shndx_section;
5409 break;
5410 default:
5411 break;
5412 }
5413 }
5414 else
5415 {
5416 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5417
5418 if (shndx == -1)
5419 {
5420 asection *sec2;
5421
5422 /* Writing this would be a hell of a lot easier if
5423 we had some decent documentation on bfd, and
5424 knew what to expect of the library, and what to
5425 demand of applications. For example, it
5426 appears that `objcopy' might not set the
5427 section of a symbol to be a section that is
5428 actually in the output file. */
5429 sec2 = bfd_get_section_by_name (abfd, sec->name);
5430 if (sec2 == NULL)
5431 {
5432 _bfd_error_handler (_("\
5433 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5434 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5435 sec->name);
5436 bfd_set_error (bfd_error_invalid_operation);
5437 _bfd_stringtab_free (stt);
5438 return FALSE;
5439 }
5440
5441 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5442 BFD_ASSERT (shndx != -1);
5443 }
5444 }
5445
5446 sym.st_shndx = shndx;
5447 }
5448
5449 if ((flags & BSF_THREAD_LOCAL) != 0)
5450 type = STT_TLS;
5451 else if ((flags & BSF_FUNCTION) != 0)
5452 type = STT_FUNC;
5453 else if ((flags & BSF_OBJECT) != 0)
5454 type = STT_OBJECT;
5455 else
5456 type = STT_NOTYPE;
5457
5458 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5459 type = STT_TLS;
5460
5461 /* Processor-specific types. */
5462 if (type_ptr != NULL
5463 && bed->elf_backend_get_symbol_type)
5464 type = ((*bed->elf_backend_get_symbol_type)
5465 (&type_ptr->internal_elf_sym, type));
5466
5467 if (flags & BSF_SECTION_SYM)
5468 {
5469 if (flags & BSF_GLOBAL)
5470 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5471 else
5472 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5473 }
5474 else if (bfd_is_com_section (syms[idx]->section))
5475 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5476 else if (bfd_is_und_section (syms[idx]->section))
5477 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5478 ? STB_WEAK
5479 : STB_GLOBAL),
5480 type);
5481 else if (flags & BSF_FILE)
5482 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5483 else
5484 {
5485 int bind = STB_LOCAL;
5486
5487 if (flags & BSF_LOCAL)
5488 bind = STB_LOCAL;
5489 else if (flags & BSF_WEAK)
5490 bind = STB_WEAK;
5491 else if (flags & BSF_GLOBAL)
5492 bind = STB_GLOBAL;
5493
5494 sym.st_info = ELF_ST_INFO (bind, type);
5495 }
5496
5497 if (type_ptr != NULL)
5498 sym.st_other = type_ptr->internal_elf_sym.st_other;
5499 else
5500 sym.st_other = 0;
5501
5502 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5503 outbound_syms += bed->s->sizeof_sym;
5504 if (outbound_shndx != NULL)
5505 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5506 }
5507
5508 *sttp = stt;
5509 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5510 symstrtab_hdr->sh_type = SHT_STRTAB;
5511
5512 symstrtab_hdr->sh_flags = 0;
5513 symstrtab_hdr->sh_addr = 0;
5514 symstrtab_hdr->sh_entsize = 0;
5515 symstrtab_hdr->sh_link = 0;
5516 symstrtab_hdr->sh_info = 0;
5517 symstrtab_hdr->sh_addralign = 1;
5518
5519 return TRUE;
5520 }
5521
5522 /* Return the number of bytes required to hold the symtab vector.
5523
5524 Note that we base it on the count plus 1, since we will null terminate
5525 the vector allocated based on this size. However, the ELF symbol table
5526 always has a dummy entry as symbol #0, so it ends up even. */
5527
5528 long
5529 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5530 {
5531 long symcount;
5532 long symtab_size;
5533 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5534
5535 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5536 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5537 if (symcount > 0)
5538 symtab_size -= sizeof (asymbol *);
5539
5540 return symtab_size;
5541 }
5542
5543 long
5544 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5545 {
5546 long symcount;
5547 long symtab_size;
5548 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5549
5550 if (elf_dynsymtab (abfd) == 0)
5551 {
5552 bfd_set_error (bfd_error_invalid_operation);
5553 return -1;
5554 }
5555
5556 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5557 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5558 if (symcount > 0)
5559 symtab_size -= sizeof (asymbol *);
5560
5561 return symtab_size;
5562 }
5563
5564 long
5565 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5566 sec_ptr asect)
5567 {
5568 return (asect->reloc_count + 1) * sizeof (arelent *);
5569 }
5570
5571 /* Canonicalize the relocs. */
5572
5573 long
5574 _bfd_elf_canonicalize_reloc (bfd *abfd,
5575 sec_ptr section,
5576 arelent **relptr,
5577 asymbol **symbols)
5578 {
5579 arelent *tblptr;
5580 unsigned int i;
5581 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5582
5583 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5584 return -1;
5585
5586 tblptr = section->relocation;
5587 for (i = 0; i < section->reloc_count; i++)
5588 *relptr++ = tblptr++;
5589
5590 *relptr = NULL;
5591
5592 return section->reloc_count;
5593 }
5594
5595 long
5596 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5597 {
5598 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5599 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5600
5601 if (symcount >= 0)
5602 bfd_get_symcount (abfd) = symcount;
5603 return symcount;
5604 }
5605
5606 long
5607 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5608 asymbol **allocation)
5609 {
5610 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5611 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5612
5613 if (symcount >= 0)
5614 bfd_get_dynamic_symcount (abfd) = symcount;
5615 return symcount;
5616 }
5617
5618 /* Return the size required for the dynamic reloc entries. Any
5619 section that was actually installed in the BFD, and has type
5620 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5621 considered to be a dynamic reloc section. */
5622
5623 long
5624 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5625 {
5626 long ret;
5627 asection *s;
5628
5629 if (elf_dynsymtab (abfd) == 0)
5630 {
5631 bfd_set_error (bfd_error_invalid_operation);
5632 return -1;
5633 }
5634
5635 ret = sizeof (arelent *);
5636 for (s = abfd->sections; s != NULL; s = s->next)
5637 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5638 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5639 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5640 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5641 * sizeof (arelent *));
5642
5643 return ret;
5644 }
5645
5646 /* Canonicalize the dynamic relocation entries. Note that we return
5647 the dynamic relocations as a single block, although they are
5648 actually associated with particular sections; the interface, which
5649 was designed for SunOS style shared libraries, expects that there
5650 is only one set of dynamic relocs. Any section that was actually
5651 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5652 the dynamic symbol table, is considered to be a dynamic reloc
5653 section. */
5654
5655 long
5656 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5657 arelent **storage,
5658 asymbol **syms)
5659 {
5660 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5661 asection *s;
5662 long ret;
5663
5664 if (elf_dynsymtab (abfd) == 0)
5665 {
5666 bfd_set_error (bfd_error_invalid_operation);
5667 return -1;
5668 }
5669
5670 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5671 ret = 0;
5672 for (s = abfd->sections; s != NULL; s = s->next)
5673 {
5674 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5675 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5676 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5677 {
5678 arelent *p;
5679 long count, i;
5680
5681 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5682 return -1;
5683 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5684 p = s->relocation;
5685 for (i = 0; i < count; i++)
5686 *storage++ = p++;
5687 ret += count;
5688 }
5689 }
5690
5691 *storage = NULL;
5692
5693 return ret;
5694 }
5695 \f
5696 /* Read in the version information. */
5697
5698 bfd_boolean
5699 _bfd_elf_slurp_version_tables (bfd *abfd)
5700 {
5701 bfd_byte *contents = NULL;
5702 bfd_size_type amt;
5703
5704 if (elf_dynverdef (abfd) != 0)
5705 {
5706 Elf_Internal_Shdr *hdr;
5707 Elf_External_Verdef *everdef;
5708 Elf_Internal_Verdef *iverdef;
5709 Elf_Internal_Verdef *iverdefarr;
5710 Elf_Internal_Verdef iverdefmem;
5711 unsigned int i;
5712 unsigned int maxidx;
5713
5714 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5715
5716 contents = bfd_malloc (hdr->sh_size);
5717 if (contents == NULL)
5718 goto error_return;
5719 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5720 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5721 goto error_return;
5722
5723 /* We know the number of entries in the section but not the maximum
5724 index. Therefore we have to run through all entries and find
5725 the maximum. */
5726 everdef = (Elf_External_Verdef *) contents;
5727 maxidx = 0;
5728 for (i = 0; i < hdr->sh_info; ++i)
5729 {
5730 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5731
5732 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5733 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5734
5735 everdef = ((Elf_External_Verdef *)
5736 ((bfd_byte *) everdef + iverdefmem.vd_next));
5737 }
5738
5739 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5740 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
5741 if (elf_tdata (abfd)->verdef == NULL)
5742 goto error_return;
5743
5744 elf_tdata (abfd)->cverdefs = maxidx;
5745
5746 everdef = (Elf_External_Verdef *) contents;
5747 iverdefarr = elf_tdata (abfd)->verdef;
5748 for (i = 0; i < hdr->sh_info; i++)
5749 {
5750 Elf_External_Verdaux *everdaux;
5751 Elf_Internal_Verdaux *iverdaux;
5752 unsigned int j;
5753
5754 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5755
5756 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5757 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5758
5759 iverdef->vd_bfd = abfd;
5760
5761 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5762 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
5763 if (iverdef->vd_auxptr == NULL)
5764 goto error_return;
5765
5766 everdaux = ((Elf_External_Verdaux *)
5767 ((bfd_byte *) everdef + iverdef->vd_aux));
5768 iverdaux = iverdef->vd_auxptr;
5769 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5770 {
5771 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5772
5773 iverdaux->vda_nodename =
5774 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5775 iverdaux->vda_name);
5776 if (iverdaux->vda_nodename == NULL)
5777 goto error_return;
5778
5779 if (j + 1 < iverdef->vd_cnt)
5780 iverdaux->vda_nextptr = iverdaux + 1;
5781 else
5782 iverdaux->vda_nextptr = NULL;
5783
5784 everdaux = ((Elf_External_Verdaux *)
5785 ((bfd_byte *) everdaux + iverdaux->vda_next));
5786 }
5787
5788 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5789
5790 if (i + 1 < hdr->sh_info)
5791 iverdef->vd_nextdef = iverdef + 1;
5792 else
5793 iverdef->vd_nextdef = NULL;
5794
5795 everdef = ((Elf_External_Verdef *)
5796 ((bfd_byte *) everdef + iverdef->vd_next));
5797 }
5798
5799 free (contents);
5800 contents = NULL;
5801 }
5802
5803 if (elf_dynverref (abfd) != 0)
5804 {
5805 Elf_Internal_Shdr *hdr;
5806 Elf_External_Verneed *everneed;
5807 Elf_Internal_Verneed *iverneed;
5808 unsigned int i;
5809
5810 hdr = &elf_tdata (abfd)->dynverref_hdr;
5811
5812 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5813 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
5814 if (elf_tdata (abfd)->verref == NULL)
5815 goto error_return;
5816
5817 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5818
5819 contents = bfd_malloc (hdr->sh_size);
5820 if (contents == NULL)
5821 goto error_return;
5822 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5823 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5824 goto error_return;
5825
5826 everneed = (Elf_External_Verneed *) contents;
5827 iverneed = elf_tdata (abfd)->verref;
5828 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5829 {
5830 Elf_External_Vernaux *evernaux;
5831 Elf_Internal_Vernaux *ivernaux;
5832 unsigned int j;
5833
5834 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5835
5836 iverneed->vn_bfd = abfd;
5837
5838 iverneed->vn_filename =
5839 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5840 iverneed->vn_file);
5841 if (iverneed->vn_filename == NULL)
5842 goto error_return;
5843
5844 amt = iverneed->vn_cnt;
5845 amt *= sizeof (Elf_Internal_Vernaux);
5846 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
5847
5848 evernaux = ((Elf_External_Vernaux *)
5849 ((bfd_byte *) everneed + iverneed->vn_aux));
5850 ivernaux = iverneed->vn_auxptr;
5851 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5852 {
5853 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5854
5855 ivernaux->vna_nodename =
5856 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5857 ivernaux->vna_name);
5858 if (ivernaux->vna_nodename == NULL)
5859 goto error_return;
5860
5861 if (j + 1 < iverneed->vn_cnt)
5862 ivernaux->vna_nextptr = ivernaux + 1;
5863 else
5864 ivernaux->vna_nextptr = NULL;
5865
5866 evernaux = ((Elf_External_Vernaux *)
5867 ((bfd_byte *) evernaux + ivernaux->vna_next));
5868 }
5869
5870 if (i + 1 < hdr->sh_info)
5871 iverneed->vn_nextref = iverneed + 1;
5872 else
5873 iverneed->vn_nextref = NULL;
5874
5875 everneed = ((Elf_External_Verneed *)
5876 ((bfd_byte *) everneed + iverneed->vn_next));
5877 }
5878
5879 free (contents);
5880 contents = NULL;
5881 }
5882
5883 return TRUE;
5884
5885 error_return:
5886 if (contents != NULL)
5887 free (contents);
5888 return FALSE;
5889 }
5890 \f
5891 asymbol *
5892 _bfd_elf_make_empty_symbol (bfd *abfd)
5893 {
5894 elf_symbol_type *newsym;
5895 bfd_size_type amt = sizeof (elf_symbol_type);
5896
5897 newsym = bfd_zalloc (abfd, amt);
5898 if (!newsym)
5899 return NULL;
5900 else
5901 {
5902 newsym->symbol.the_bfd = abfd;
5903 return &newsym->symbol;
5904 }
5905 }
5906
5907 void
5908 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
5909 asymbol *symbol,
5910 symbol_info *ret)
5911 {
5912 bfd_symbol_info (symbol, ret);
5913 }
5914
5915 /* Return whether a symbol name implies a local symbol. Most targets
5916 use this function for the is_local_label_name entry point, but some
5917 override it. */
5918
5919 bfd_boolean
5920 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
5921 const char *name)
5922 {
5923 /* Normal local symbols start with ``.L''. */
5924 if (name[0] == '.' && name[1] == 'L')
5925 return TRUE;
5926
5927 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5928 DWARF debugging symbols starting with ``..''. */
5929 if (name[0] == '.' && name[1] == '.')
5930 return TRUE;
5931
5932 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5933 emitting DWARF debugging output. I suspect this is actually a
5934 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5935 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5936 underscore to be emitted on some ELF targets). For ease of use,
5937 we treat such symbols as local. */
5938 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5939 return TRUE;
5940
5941 return FALSE;
5942 }
5943
5944 alent *
5945 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
5946 asymbol *symbol ATTRIBUTE_UNUSED)
5947 {
5948 abort ();
5949 return NULL;
5950 }
5951
5952 bfd_boolean
5953 _bfd_elf_set_arch_mach (bfd *abfd,
5954 enum bfd_architecture arch,
5955 unsigned long machine)
5956 {
5957 /* If this isn't the right architecture for this backend, and this
5958 isn't the generic backend, fail. */
5959 if (arch != get_elf_backend_data (abfd)->arch
5960 && arch != bfd_arch_unknown
5961 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
5962 return FALSE;
5963
5964 return bfd_default_set_arch_mach (abfd, arch, machine);
5965 }
5966
5967 /* Find the function to a particular section and offset,
5968 for error reporting. */
5969
5970 static bfd_boolean
5971 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
5972 asection *section,
5973 asymbol **symbols,
5974 bfd_vma offset,
5975 const char **filename_ptr,
5976 const char **functionname_ptr)
5977 {
5978 const char *filename;
5979 asymbol *func;
5980 bfd_vma low_func;
5981 asymbol **p;
5982
5983 filename = NULL;
5984 func = NULL;
5985 low_func = 0;
5986
5987 for (p = symbols; *p != NULL; p++)
5988 {
5989 elf_symbol_type *q;
5990
5991 q = (elf_symbol_type *) *p;
5992
5993 if (bfd_get_section (&q->symbol) != section)
5994 continue;
5995
5996 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5997 {
5998 default:
5999 break;
6000 case STT_FILE:
6001 filename = bfd_asymbol_name (&q->symbol);
6002 break;
6003 case STT_NOTYPE:
6004 case STT_FUNC:
6005 if (q->symbol.section == section
6006 && q->symbol.value >= low_func
6007 && q->symbol.value <= offset)
6008 {
6009 func = (asymbol *) q;
6010 low_func = q->symbol.value;
6011 }
6012 break;
6013 }
6014 }
6015
6016 if (func == NULL)
6017 return FALSE;
6018
6019 if (filename_ptr)
6020 *filename_ptr = filename;
6021 if (functionname_ptr)
6022 *functionname_ptr = bfd_asymbol_name (func);
6023
6024 return TRUE;
6025 }
6026
6027 /* Find the nearest line to a particular section and offset,
6028 for error reporting. */
6029
6030 bfd_boolean
6031 _bfd_elf_find_nearest_line (bfd *abfd,
6032 asection *section,
6033 asymbol **symbols,
6034 bfd_vma offset,
6035 const char **filename_ptr,
6036 const char **functionname_ptr,
6037 unsigned int *line_ptr)
6038 {
6039 bfd_boolean found;
6040
6041 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6042 filename_ptr, functionname_ptr,
6043 line_ptr))
6044 {
6045 if (!*functionname_ptr)
6046 elf_find_function (abfd, section, symbols, offset,
6047 *filename_ptr ? NULL : filename_ptr,
6048 functionname_ptr);
6049
6050 return TRUE;
6051 }
6052
6053 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6054 filename_ptr, functionname_ptr,
6055 line_ptr, 0,
6056 &elf_tdata (abfd)->dwarf2_find_line_info))
6057 {
6058 if (!*functionname_ptr)
6059 elf_find_function (abfd, section, symbols, offset,
6060 *filename_ptr ? NULL : filename_ptr,
6061 functionname_ptr);
6062
6063 return TRUE;
6064 }
6065
6066 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6067 &found, filename_ptr,
6068 functionname_ptr, line_ptr,
6069 &elf_tdata (abfd)->line_info))
6070 return FALSE;
6071 if (found && (*functionname_ptr || *line_ptr))
6072 return TRUE;
6073
6074 if (symbols == NULL)
6075 return FALSE;
6076
6077 if (! elf_find_function (abfd, section, symbols, offset,
6078 filename_ptr, functionname_ptr))
6079 return FALSE;
6080
6081 *line_ptr = 0;
6082 return TRUE;
6083 }
6084
6085 int
6086 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6087 {
6088 int ret;
6089
6090 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6091 if (! reloc)
6092 ret += get_program_header_size (abfd);
6093 return ret;
6094 }
6095
6096 bfd_boolean
6097 _bfd_elf_set_section_contents (bfd *abfd,
6098 sec_ptr section,
6099 const void *location,
6100 file_ptr offset,
6101 bfd_size_type count)
6102 {
6103 Elf_Internal_Shdr *hdr;
6104 bfd_signed_vma pos;
6105
6106 if (! abfd->output_has_begun
6107 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6108 return FALSE;
6109
6110 hdr = &elf_section_data (section)->this_hdr;
6111 pos = hdr->sh_offset + offset;
6112 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6113 || bfd_bwrite (location, count, abfd) != count)
6114 return FALSE;
6115
6116 return TRUE;
6117 }
6118
6119 void
6120 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6121 arelent *cache_ptr ATTRIBUTE_UNUSED,
6122 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6123 {
6124 abort ();
6125 }
6126
6127 /* Try to convert a non-ELF reloc into an ELF one. */
6128
6129 bfd_boolean
6130 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6131 {
6132 /* Check whether we really have an ELF howto. */
6133
6134 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6135 {
6136 bfd_reloc_code_real_type code;
6137 reloc_howto_type *howto;
6138
6139 /* Alien reloc: Try to determine its type to replace it with an
6140 equivalent ELF reloc. */
6141
6142 if (areloc->howto->pc_relative)
6143 {
6144 switch (areloc->howto->bitsize)
6145 {
6146 case 8:
6147 code = BFD_RELOC_8_PCREL;
6148 break;
6149 case 12:
6150 code = BFD_RELOC_12_PCREL;
6151 break;
6152 case 16:
6153 code = BFD_RELOC_16_PCREL;
6154 break;
6155 case 24:
6156 code = BFD_RELOC_24_PCREL;
6157 break;
6158 case 32:
6159 code = BFD_RELOC_32_PCREL;
6160 break;
6161 case 64:
6162 code = BFD_RELOC_64_PCREL;
6163 break;
6164 default:
6165 goto fail;
6166 }
6167
6168 howto = bfd_reloc_type_lookup (abfd, code);
6169
6170 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6171 {
6172 if (howto->pcrel_offset)
6173 areloc->addend += areloc->address;
6174 else
6175 areloc->addend -= areloc->address; /* addend is unsigned!! */
6176 }
6177 }
6178 else
6179 {
6180 switch (areloc->howto->bitsize)
6181 {
6182 case 8:
6183 code = BFD_RELOC_8;
6184 break;
6185 case 14:
6186 code = BFD_RELOC_14;
6187 break;
6188 case 16:
6189 code = BFD_RELOC_16;
6190 break;
6191 case 26:
6192 code = BFD_RELOC_26;
6193 break;
6194 case 32:
6195 code = BFD_RELOC_32;
6196 break;
6197 case 64:
6198 code = BFD_RELOC_64;
6199 break;
6200 default:
6201 goto fail;
6202 }
6203
6204 howto = bfd_reloc_type_lookup (abfd, code);
6205 }
6206
6207 if (howto)
6208 areloc->howto = howto;
6209 else
6210 goto fail;
6211 }
6212
6213 return TRUE;
6214
6215 fail:
6216 (*_bfd_error_handler)
6217 (_("%s: unsupported relocation type %s"),
6218 bfd_archive_filename (abfd), areloc->howto->name);
6219 bfd_set_error (bfd_error_bad_value);
6220 return FALSE;
6221 }
6222
6223 bfd_boolean
6224 _bfd_elf_close_and_cleanup (bfd *abfd)
6225 {
6226 if (bfd_get_format (abfd) == bfd_object)
6227 {
6228 if (elf_shstrtab (abfd) != NULL)
6229 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6230 }
6231
6232 return _bfd_generic_close_and_cleanup (abfd);
6233 }
6234
6235 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6236 in the relocation's offset. Thus we cannot allow any sort of sanity
6237 range-checking to interfere. There is nothing else to do in processing
6238 this reloc. */
6239
6240 bfd_reloc_status_type
6241 _bfd_elf_rel_vtable_reloc_fn
6242 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6243 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6244 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6245 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6246 {
6247 return bfd_reloc_ok;
6248 }
6249 \f
6250 /* Elf core file support. Much of this only works on native
6251 toolchains, since we rely on knowing the
6252 machine-dependent procfs structure in order to pick
6253 out details about the corefile. */
6254
6255 #ifdef HAVE_SYS_PROCFS_H
6256 # include <sys/procfs.h>
6257 #endif
6258
6259 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6260
6261 static int
6262 elfcore_make_pid (bfd *abfd)
6263 {
6264 return ((elf_tdata (abfd)->core_lwpid << 16)
6265 + (elf_tdata (abfd)->core_pid));
6266 }
6267
6268 /* If there isn't a section called NAME, make one, using
6269 data from SECT. Note, this function will generate a
6270 reference to NAME, so you shouldn't deallocate or
6271 overwrite it. */
6272
6273 static bfd_boolean
6274 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6275 {
6276 asection *sect2;
6277
6278 if (bfd_get_section_by_name (abfd, name) != NULL)
6279 return TRUE;
6280
6281 sect2 = bfd_make_section (abfd, name);
6282 if (sect2 == NULL)
6283 return FALSE;
6284
6285 sect2->_raw_size = sect->_raw_size;
6286 sect2->filepos = sect->filepos;
6287 sect2->flags = sect->flags;
6288 sect2->alignment_power = sect->alignment_power;
6289 return TRUE;
6290 }
6291
6292 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6293 actually creates up to two pseudosections:
6294 - For the single-threaded case, a section named NAME, unless
6295 such a section already exists.
6296 - For the multi-threaded case, a section named "NAME/PID", where
6297 PID is elfcore_make_pid (abfd).
6298 Both pseudosections have identical contents. */
6299 bfd_boolean
6300 _bfd_elfcore_make_pseudosection (bfd *abfd,
6301 char *name,
6302 size_t size,
6303 ufile_ptr filepos)
6304 {
6305 char buf[100];
6306 char *threaded_name;
6307 size_t len;
6308 asection *sect;
6309
6310 /* Build the section name. */
6311
6312 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6313 len = strlen (buf) + 1;
6314 threaded_name = bfd_alloc (abfd, len);
6315 if (threaded_name == NULL)
6316 return FALSE;
6317 memcpy (threaded_name, buf, len);
6318
6319 sect = bfd_make_section_anyway (abfd, threaded_name);
6320 if (sect == NULL)
6321 return FALSE;
6322 sect->_raw_size = size;
6323 sect->filepos = filepos;
6324 sect->flags = SEC_HAS_CONTENTS;
6325 sect->alignment_power = 2;
6326
6327 return elfcore_maybe_make_sect (abfd, name, sect);
6328 }
6329
6330 /* prstatus_t exists on:
6331 solaris 2.5+
6332 linux 2.[01] + glibc
6333 unixware 4.2
6334 */
6335
6336 #if defined (HAVE_PRSTATUS_T)
6337
6338 static bfd_boolean
6339 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6340 {
6341 size_t raw_size;
6342 int offset;
6343
6344 if (note->descsz == sizeof (prstatus_t))
6345 {
6346 prstatus_t prstat;
6347
6348 raw_size = sizeof (prstat.pr_reg);
6349 offset = offsetof (prstatus_t, pr_reg);
6350 memcpy (&prstat, note->descdata, sizeof (prstat));
6351
6352 /* Do not overwrite the core signal if it
6353 has already been set by another thread. */
6354 if (elf_tdata (abfd)->core_signal == 0)
6355 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6356 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6357
6358 /* pr_who exists on:
6359 solaris 2.5+
6360 unixware 4.2
6361 pr_who doesn't exist on:
6362 linux 2.[01]
6363 */
6364 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6365 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6366 #endif
6367 }
6368 #if defined (HAVE_PRSTATUS32_T)
6369 else if (note->descsz == sizeof (prstatus32_t))
6370 {
6371 /* 64-bit host, 32-bit corefile */
6372 prstatus32_t prstat;
6373
6374 raw_size = sizeof (prstat.pr_reg);
6375 offset = offsetof (prstatus32_t, pr_reg);
6376 memcpy (&prstat, note->descdata, sizeof (prstat));
6377
6378 /* Do not overwrite the core signal if it
6379 has already been set by another thread. */
6380 if (elf_tdata (abfd)->core_signal == 0)
6381 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6382 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6383
6384 /* pr_who exists on:
6385 solaris 2.5+
6386 unixware 4.2
6387 pr_who doesn't exist on:
6388 linux 2.[01]
6389 */
6390 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6391 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6392 #endif
6393 }
6394 #endif /* HAVE_PRSTATUS32_T */
6395 else
6396 {
6397 /* Fail - we don't know how to handle any other
6398 note size (ie. data object type). */
6399 return TRUE;
6400 }
6401
6402 /* Make a ".reg/999" section and a ".reg" section. */
6403 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6404 raw_size, note->descpos + offset);
6405 }
6406 #endif /* defined (HAVE_PRSTATUS_T) */
6407
6408 /* Create a pseudosection containing the exact contents of NOTE. */
6409 static bfd_boolean
6410 elfcore_make_note_pseudosection (bfd *abfd,
6411 char *name,
6412 Elf_Internal_Note *note)
6413 {
6414 return _bfd_elfcore_make_pseudosection (abfd, name,
6415 note->descsz, note->descpos);
6416 }
6417
6418 /* There isn't a consistent prfpregset_t across platforms,
6419 but it doesn't matter, because we don't have to pick this
6420 data structure apart. */
6421
6422 static bfd_boolean
6423 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6424 {
6425 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6426 }
6427
6428 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6429 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6430 literally. */
6431
6432 static bfd_boolean
6433 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6434 {
6435 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6436 }
6437
6438 #if defined (HAVE_PRPSINFO_T)
6439 typedef prpsinfo_t elfcore_psinfo_t;
6440 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6441 typedef prpsinfo32_t elfcore_psinfo32_t;
6442 #endif
6443 #endif
6444
6445 #if defined (HAVE_PSINFO_T)
6446 typedef psinfo_t elfcore_psinfo_t;
6447 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6448 typedef psinfo32_t elfcore_psinfo32_t;
6449 #endif
6450 #endif
6451
6452 /* return a malloc'ed copy of a string at START which is at
6453 most MAX bytes long, possibly without a terminating '\0'.
6454 the copy will always have a terminating '\0'. */
6455
6456 char *
6457 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6458 {
6459 char *dups;
6460 char *end = memchr (start, '\0', max);
6461 size_t len;
6462
6463 if (end == NULL)
6464 len = max;
6465 else
6466 len = end - start;
6467
6468 dups = bfd_alloc (abfd, len + 1);
6469 if (dups == NULL)
6470 return NULL;
6471
6472 memcpy (dups, start, len);
6473 dups[len] = '\0';
6474
6475 return dups;
6476 }
6477
6478 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6479 static bfd_boolean
6480 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6481 {
6482 if (note->descsz == sizeof (elfcore_psinfo_t))
6483 {
6484 elfcore_psinfo_t psinfo;
6485
6486 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6487
6488 elf_tdata (abfd)->core_program
6489 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6490 sizeof (psinfo.pr_fname));
6491
6492 elf_tdata (abfd)->core_command
6493 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6494 sizeof (psinfo.pr_psargs));
6495 }
6496 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6497 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6498 {
6499 /* 64-bit host, 32-bit corefile */
6500 elfcore_psinfo32_t psinfo;
6501
6502 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6503
6504 elf_tdata (abfd)->core_program
6505 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6506 sizeof (psinfo.pr_fname));
6507
6508 elf_tdata (abfd)->core_command
6509 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6510 sizeof (psinfo.pr_psargs));
6511 }
6512 #endif
6513
6514 else
6515 {
6516 /* Fail - we don't know how to handle any other
6517 note size (ie. data object type). */
6518 return TRUE;
6519 }
6520
6521 /* Note that for some reason, a spurious space is tacked
6522 onto the end of the args in some (at least one anyway)
6523 implementations, so strip it off if it exists. */
6524
6525 {
6526 char *command = elf_tdata (abfd)->core_command;
6527 int n = strlen (command);
6528
6529 if (0 < n && command[n - 1] == ' ')
6530 command[n - 1] = '\0';
6531 }
6532
6533 return TRUE;
6534 }
6535 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6536
6537 #if defined (HAVE_PSTATUS_T)
6538 static bfd_boolean
6539 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6540 {
6541 if (note->descsz == sizeof (pstatus_t)
6542 #if defined (HAVE_PXSTATUS_T)
6543 || note->descsz == sizeof (pxstatus_t)
6544 #endif
6545 )
6546 {
6547 pstatus_t pstat;
6548
6549 memcpy (&pstat, note->descdata, sizeof (pstat));
6550
6551 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6552 }
6553 #if defined (HAVE_PSTATUS32_T)
6554 else if (note->descsz == sizeof (pstatus32_t))
6555 {
6556 /* 64-bit host, 32-bit corefile */
6557 pstatus32_t pstat;
6558
6559 memcpy (&pstat, note->descdata, sizeof (pstat));
6560
6561 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6562 }
6563 #endif
6564 /* Could grab some more details from the "representative"
6565 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6566 NT_LWPSTATUS note, presumably. */
6567
6568 return TRUE;
6569 }
6570 #endif /* defined (HAVE_PSTATUS_T) */
6571
6572 #if defined (HAVE_LWPSTATUS_T)
6573 static bfd_boolean
6574 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6575 {
6576 lwpstatus_t lwpstat;
6577 char buf[100];
6578 char *name;
6579 size_t len;
6580 asection *sect;
6581
6582 if (note->descsz != sizeof (lwpstat)
6583 #if defined (HAVE_LWPXSTATUS_T)
6584 && note->descsz != sizeof (lwpxstatus_t)
6585 #endif
6586 )
6587 return TRUE;
6588
6589 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6590
6591 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6592 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6593
6594 /* Make a ".reg/999" section. */
6595
6596 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6597 len = strlen (buf) + 1;
6598 name = bfd_alloc (abfd, len);
6599 if (name == NULL)
6600 return FALSE;
6601 memcpy (name, buf, len);
6602
6603 sect = bfd_make_section_anyway (abfd, name);
6604 if (sect == NULL)
6605 return FALSE;
6606
6607 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6608 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6609 sect->filepos = note->descpos
6610 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6611 #endif
6612
6613 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6614 sect->_raw_size = sizeof (lwpstat.pr_reg);
6615 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6616 #endif
6617
6618 sect->flags = SEC_HAS_CONTENTS;
6619 sect->alignment_power = 2;
6620
6621 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6622 return FALSE;
6623
6624 /* Make a ".reg2/999" section */
6625
6626 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6627 len = strlen (buf) + 1;
6628 name = bfd_alloc (abfd, len);
6629 if (name == NULL)
6630 return FALSE;
6631 memcpy (name, buf, len);
6632
6633 sect = bfd_make_section_anyway (abfd, name);
6634 if (sect == NULL)
6635 return FALSE;
6636
6637 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6638 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6639 sect->filepos = note->descpos
6640 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6641 #endif
6642
6643 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6644 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6645 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6646 #endif
6647
6648 sect->flags = SEC_HAS_CONTENTS;
6649 sect->alignment_power = 2;
6650
6651 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6652 }
6653 #endif /* defined (HAVE_LWPSTATUS_T) */
6654
6655 #if defined (HAVE_WIN32_PSTATUS_T)
6656 static bfd_boolean
6657 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6658 {
6659 char buf[30];
6660 char *name;
6661 size_t len;
6662 asection *sect;
6663 win32_pstatus_t pstatus;
6664
6665 if (note->descsz < sizeof (pstatus))
6666 return TRUE;
6667
6668 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6669
6670 switch (pstatus.data_type)
6671 {
6672 case NOTE_INFO_PROCESS:
6673 /* FIXME: need to add ->core_command. */
6674 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6675 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6676 break;
6677
6678 case NOTE_INFO_THREAD:
6679 /* Make a ".reg/999" section. */
6680 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6681
6682 len = strlen (buf) + 1;
6683 name = bfd_alloc (abfd, len);
6684 if (name == NULL)
6685 return FALSE;
6686
6687 memcpy (name, buf, len);
6688
6689 sect = bfd_make_section_anyway (abfd, name);
6690 if (sect == NULL)
6691 return FALSE;
6692
6693 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6694 sect->filepos = (note->descpos
6695 + offsetof (struct win32_pstatus,
6696 data.thread_info.thread_context));
6697 sect->flags = SEC_HAS_CONTENTS;
6698 sect->alignment_power = 2;
6699
6700 if (pstatus.data.thread_info.is_active_thread)
6701 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6702 return FALSE;
6703 break;
6704
6705 case NOTE_INFO_MODULE:
6706 /* Make a ".module/xxxxxxxx" section. */
6707 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6708
6709 len = strlen (buf) + 1;
6710 name = bfd_alloc (abfd, len);
6711 if (name == NULL)
6712 return FALSE;
6713
6714 memcpy (name, buf, len);
6715
6716 sect = bfd_make_section_anyway (abfd, name);
6717
6718 if (sect == NULL)
6719 return FALSE;
6720
6721 sect->_raw_size = note->descsz;
6722 sect->filepos = note->descpos;
6723 sect->flags = SEC_HAS_CONTENTS;
6724 sect->alignment_power = 2;
6725 break;
6726
6727 default:
6728 return TRUE;
6729 }
6730
6731 return TRUE;
6732 }
6733 #endif /* HAVE_WIN32_PSTATUS_T */
6734
6735 static bfd_boolean
6736 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
6737 {
6738 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6739
6740 switch (note->type)
6741 {
6742 default:
6743 return TRUE;
6744
6745 case NT_PRSTATUS:
6746 if (bed->elf_backend_grok_prstatus)
6747 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6748 return TRUE;
6749 #if defined (HAVE_PRSTATUS_T)
6750 return elfcore_grok_prstatus (abfd, note);
6751 #else
6752 return TRUE;
6753 #endif
6754
6755 #if defined (HAVE_PSTATUS_T)
6756 case NT_PSTATUS:
6757 return elfcore_grok_pstatus (abfd, note);
6758 #endif
6759
6760 #if defined (HAVE_LWPSTATUS_T)
6761 case NT_LWPSTATUS:
6762 return elfcore_grok_lwpstatus (abfd, note);
6763 #endif
6764
6765 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6766 return elfcore_grok_prfpreg (abfd, note);
6767
6768 #if defined (HAVE_WIN32_PSTATUS_T)
6769 case NT_WIN32PSTATUS:
6770 return elfcore_grok_win32pstatus (abfd, note);
6771 #endif
6772
6773 case NT_PRXFPREG: /* Linux SSE extension */
6774 if (note->namesz == 6
6775 && strcmp (note->namedata, "LINUX") == 0)
6776 return elfcore_grok_prxfpreg (abfd, note);
6777 else
6778 return TRUE;
6779
6780 case NT_PRPSINFO:
6781 case NT_PSINFO:
6782 if (bed->elf_backend_grok_psinfo)
6783 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6784 return TRUE;
6785 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6786 return elfcore_grok_psinfo (abfd, note);
6787 #else
6788 return TRUE;
6789 #endif
6790
6791 case NT_AUXV:
6792 {
6793 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
6794
6795 if (sect == NULL)
6796 return FALSE;
6797 sect->_raw_size = note->descsz;
6798 sect->filepos = note->descpos;
6799 sect->flags = SEC_HAS_CONTENTS;
6800 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
6801
6802 return TRUE;
6803 }
6804 }
6805 }
6806
6807 static bfd_boolean
6808 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
6809 {
6810 char *cp;
6811
6812 cp = strchr (note->namedata, '@');
6813 if (cp != NULL)
6814 {
6815 *lwpidp = atoi(cp + 1);
6816 return TRUE;
6817 }
6818 return FALSE;
6819 }
6820
6821 static bfd_boolean
6822 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
6823 {
6824
6825 /* Signal number at offset 0x08. */
6826 elf_tdata (abfd)->core_signal
6827 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6828
6829 /* Process ID at offset 0x50. */
6830 elf_tdata (abfd)->core_pid
6831 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6832
6833 /* Command name at 0x7c (max 32 bytes, including nul). */
6834 elf_tdata (abfd)->core_command
6835 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6836
6837 return TRUE;
6838 }
6839
6840 static bfd_boolean
6841 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
6842 {
6843 int lwp;
6844
6845 if (elfcore_netbsd_get_lwpid (note, &lwp))
6846 elf_tdata (abfd)->core_lwpid = lwp;
6847
6848 if (note->type == NT_NETBSDCORE_PROCINFO)
6849 {
6850 /* NetBSD-specific core "procinfo". Note that we expect to
6851 find this note before any of the others, which is fine,
6852 since the kernel writes this note out first when it
6853 creates a core file. */
6854
6855 return elfcore_grok_netbsd_procinfo (abfd, note);
6856 }
6857
6858 /* As of Jan 2002 there are no other machine-independent notes
6859 defined for NetBSD core files. If the note type is less
6860 than the start of the machine-dependent note types, we don't
6861 understand it. */
6862
6863 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6864 return TRUE;
6865
6866
6867 switch (bfd_get_arch (abfd))
6868 {
6869 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6870 PT_GETFPREGS == mach+2. */
6871
6872 case bfd_arch_alpha:
6873 case bfd_arch_sparc:
6874 switch (note->type)
6875 {
6876 case NT_NETBSDCORE_FIRSTMACH+0:
6877 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6878
6879 case NT_NETBSDCORE_FIRSTMACH+2:
6880 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6881
6882 default:
6883 return TRUE;
6884 }
6885
6886 /* On all other arch's, PT_GETREGS == mach+1 and
6887 PT_GETFPREGS == mach+3. */
6888
6889 default:
6890 switch (note->type)
6891 {
6892 case NT_NETBSDCORE_FIRSTMACH+1:
6893 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6894
6895 case NT_NETBSDCORE_FIRSTMACH+3:
6896 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6897
6898 default:
6899 return TRUE;
6900 }
6901 }
6902 /* NOTREACHED */
6903 }
6904
6905 static bfd_boolean
6906 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
6907 {
6908 void *ddata = note->descdata;
6909 char buf[100];
6910 char *name;
6911 asection *sect;
6912 short sig;
6913 unsigned flags;
6914
6915 /* nto_procfs_status 'pid' field is at offset 0. */
6916 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
6917
6918 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
6919 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
6920
6921 /* nto_procfs_status 'flags' field is at offset 8. */
6922 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
6923
6924 /* nto_procfs_status 'what' field is at offset 14. */
6925 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
6926 {
6927 elf_tdata (abfd)->core_signal = sig;
6928 elf_tdata (abfd)->core_lwpid = *tid;
6929 }
6930
6931 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
6932 do not come from signals so we make sure we set the current
6933 thread just in case. */
6934 if (flags & 0x00000080)
6935 elf_tdata (abfd)->core_lwpid = *tid;
6936
6937 /* Make a ".qnx_core_status/%d" section. */
6938 sprintf (buf, ".qnx_core_status/%d", *tid);
6939
6940 name = bfd_alloc (abfd, strlen (buf) + 1);
6941 if (name == NULL)
6942 return FALSE;
6943 strcpy (name, buf);
6944
6945 sect = bfd_make_section_anyway (abfd, name);
6946 if (sect == NULL)
6947 return FALSE;
6948
6949 sect->_raw_size = note->descsz;
6950 sect->filepos = note->descpos;
6951 sect->flags = SEC_HAS_CONTENTS;
6952 sect->alignment_power = 2;
6953
6954 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
6955 }
6956
6957 static bfd_boolean
6958 elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
6959 {
6960 char buf[100];
6961 char *name;
6962 asection *sect;
6963
6964 /* Make a ".reg/%d" section. */
6965 sprintf (buf, ".reg/%d", tid);
6966
6967 name = bfd_alloc (abfd, strlen (buf) + 1);
6968 if (name == NULL)
6969 return FALSE;
6970 strcpy (name, buf);
6971
6972 sect = bfd_make_section_anyway (abfd, name);
6973 if (sect == NULL)
6974 return FALSE;
6975
6976 sect->_raw_size = note->descsz;
6977 sect->filepos = note->descpos;
6978 sect->flags = SEC_HAS_CONTENTS;
6979 sect->alignment_power = 2;
6980
6981 /* This is the current thread. */
6982 if (elf_tdata (abfd)->core_lwpid == tid)
6983 return elfcore_maybe_make_sect (abfd, ".reg", sect);
6984
6985 return TRUE;
6986 }
6987
6988 #define BFD_QNT_CORE_INFO 7
6989 #define BFD_QNT_CORE_STATUS 8
6990 #define BFD_QNT_CORE_GREG 9
6991 #define BFD_QNT_CORE_FPREG 10
6992
6993 static bfd_boolean
6994 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
6995 {
6996 /* Every GREG section has a STATUS section before it. Store the
6997 tid from the previous call to pass down to the next gregs
6998 function. */
6999 static pid_t tid = 1;
7000
7001 switch (note->type)
7002 {
7003 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7004 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7005 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7006 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7007 default: return TRUE;
7008 }
7009 }
7010
7011 /* Function: elfcore_write_note
7012
7013 Inputs:
7014 buffer to hold note
7015 name of note
7016 type of note
7017 data for note
7018 size of data for note
7019
7020 Return:
7021 End of buffer containing note. */
7022
7023 char *
7024 elfcore_write_note (bfd *abfd,
7025 char *buf,
7026 int *bufsiz,
7027 const char *name,
7028 int type,
7029 const void *input,
7030 int size)
7031 {
7032 Elf_External_Note *xnp;
7033 size_t namesz;
7034 size_t pad;
7035 size_t newspace;
7036 char *p, *dest;
7037
7038 namesz = 0;
7039 pad = 0;
7040 if (name != NULL)
7041 {
7042 const struct elf_backend_data *bed;
7043
7044 namesz = strlen (name) + 1;
7045 bed = get_elf_backend_data (abfd);
7046 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7047 }
7048
7049 newspace = 12 + namesz + pad + size;
7050
7051 p = realloc (buf, *bufsiz + newspace);
7052 dest = p + *bufsiz;
7053 *bufsiz += newspace;
7054 xnp = (Elf_External_Note *) dest;
7055 H_PUT_32 (abfd, namesz, xnp->namesz);
7056 H_PUT_32 (abfd, size, xnp->descsz);
7057 H_PUT_32 (abfd, type, xnp->type);
7058 dest = xnp->name;
7059 if (name != NULL)
7060 {
7061 memcpy (dest, name, namesz);
7062 dest += namesz;
7063 while (pad != 0)
7064 {
7065 *dest++ = '\0';
7066 --pad;
7067 }
7068 }
7069 memcpy (dest, input, size);
7070 return p;
7071 }
7072
7073 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7074 char *
7075 elfcore_write_prpsinfo (bfd *abfd,
7076 char *buf,
7077 int *bufsiz,
7078 const char *fname,
7079 const char *psargs)
7080 {
7081 int note_type;
7082 char *note_name = "CORE";
7083
7084 #if defined (HAVE_PSINFO_T)
7085 psinfo_t data;
7086 note_type = NT_PSINFO;
7087 #else
7088 prpsinfo_t data;
7089 note_type = NT_PRPSINFO;
7090 #endif
7091
7092 memset (&data, 0, sizeof (data));
7093 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7094 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7095 return elfcore_write_note (abfd, buf, bufsiz,
7096 note_name, note_type, &data, sizeof (data));
7097 }
7098 #endif /* PSINFO_T or PRPSINFO_T */
7099
7100 #if defined (HAVE_PRSTATUS_T)
7101 char *
7102 elfcore_write_prstatus (bfd *abfd,
7103 char *buf,
7104 int *bufsiz,
7105 long pid,
7106 int cursig,
7107 const void *gregs)
7108 {
7109 prstatus_t prstat;
7110 char *note_name = "CORE";
7111
7112 memset (&prstat, 0, sizeof (prstat));
7113 prstat.pr_pid = pid;
7114 prstat.pr_cursig = cursig;
7115 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7116 return elfcore_write_note (abfd, buf, bufsiz,
7117 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7118 }
7119 #endif /* HAVE_PRSTATUS_T */
7120
7121 #if defined (HAVE_LWPSTATUS_T)
7122 char *
7123 elfcore_write_lwpstatus (bfd *abfd,
7124 char *buf,
7125 int *bufsiz,
7126 long pid,
7127 int cursig,
7128 const void *gregs)
7129 {
7130 lwpstatus_t lwpstat;
7131 char *note_name = "CORE";
7132
7133 memset (&lwpstat, 0, sizeof (lwpstat));
7134 lwpstat.pr_lwpid = pid >> 16;
7135 lwpstat.pr_cursig = cursig;
7136 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7137 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7138 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7139 #if !defined(gregs)
7140 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7141 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7142 #else
7143 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7144 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7145 #endif
7146 #endif
7147 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7148 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7149 }
7150 #endif /* HAVE_LWPSTATUS_T */
7151
7152 #if defined (HAVE_PSTATUS_T)
7153 char *
7154 elfcore_write_pstatus (bfd *abfd,
7155 char *buf,
7156 int *bufsiz,
7157 long pid,
7158 int cursig,
7159 const void *gregs)
7160 {
7161 pstatus_t pstat;
7162 char *note_name = "CORE";
7163
7164 memset (&pstat, 0, sizeof (pstat));
7165 pstat.pr_pid = pid & 0xffff;
7166 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7167 NT_PSTATUS, &pstat, sizeof (pstat));
7168 return buf;
7169 }
7170 #endif /* HAVE_PSTATUS_T */
7171
7172 char *
7173 elfcore_write_prfpreg (bfd *abfd,
7174 char *buf,
7175 int *bufsiz,
7176 const void *fpregs,
7177 int size)
7178 {
7179 char *note_name = "CORE";
7180 return elfcore_write_note (abfd, buf, bufsiz,
7181 note_name, NT_FPREGSET, fpregs, size);
7182 }
7183
7184 char *
7185 elfcore_write_prxfpreg (bfd *abfd,
7186 char *buf,
7187 int *bufsiz,
7188 const void *xfpregs,
7189 int size)
7190 {
7191 char *note_name = "LINUX";
7192 return elfcore_write_note (abfd, buf, bufsiz,
7193 note_name, NT_PRXFPREG, xfpregs, size);
7194 }
7195
7196 static bfd_boolean
7197 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7198 {
7199 char *buf;
7200 char *p;
7201
7202 if (size <= 0)
7203 return TRUE;
7204
7205 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7206 return FALSE;
7207
7208 buf = bfd_malloc (size);
7209 if (buf == NULL)
7210 return FALSE;
7211
7212 if (bfd_bread (buf, size, abfd) != size)
7213 {
7214 error:
7215 free (buf);
7216 return FALSE;
7217 }
7218
7219 p = buf;
7220 while (p < buf + size)
7221 {
7222 /* FIXME: bad alignment assumption. */
7223 Elf_External_Note *xnp = (Elf_External_Note *) p;
7224 Elf_Internal_Note in;
7225
7226 in.type = H_GET_32 (abfd, xnp->type);
7227
7228 in.namesz = H_GET_32 (abfd, xnp->namesz);
7229 in.namedata = xnp->name;
7230
7231 in.descsz = H_GET_32 (abfd, xnp->descsz);
7232 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7233 in.descpos = offset + (in.descdata - buf);
7234
7235 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7236 {
7237 if (! elfcore_grok_netbsd_note (abfd, &in))
7238 goto error;
7239 }
7240 else if (strncmp (in.namedata, "QNX", 3) == 0)
7241 {
7242 if (! elfcore_grok_nto_note (abfd, &in))
7243 goto error;
7244 }
7245 else
7246 {
7247 if (! elfcore_grok_note (abfd, &in))
7248 goto error;
7249 }
7250
7251 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7252 }
7253
7254 free (buf);
7255 return TRUE;
7256 }
7257 \f
7258 /* Providing external access to the ELF program header table. */
7259
7260 /* Return an upper bound on the number of bytes required to store a
7261 copy of ABFD's program header table entries. Return -1 if an error
7262 occurs; bfd_get_error will return an appropriate code. */
7263
7264 long
7265 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7266 {
7267 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7268 {
7269 bfd_set_error (bfd_error_wrong_format);
7270 return -1;
7271 }
7272
7273 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7274 }
7275
7276 /* Copy ABFD's program header table entries to *PHDRS. The entries
7277 will be stored as an array of Elf_Internal_Phdr structures, as
7278 defined in include/elf/internal.h. To find out how large the
7279 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7280
7281 Return the number of program header table entries read, or -1 if an
7282 error occurs; bfd_get_error will return an appropriate code. */
7283
7284 int
7285 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7286 {
7287 int num_phdrs;
7288
7289 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7290 {
7291 bfd_set_error (bfd_error_wrong_format);
7292 return -1;
7293 }
7294
7295 num_phdrs = elf_elfheader (abfd)->e_phnum;
7296 memcpy (phdrs, elf_tdata (abfd)->phdr,
7297 num_phdrs * sizeof (Elf_Internal_Phdr));
7298
7299 return num_phdrs;
7300 }
7301
7302 void
7303 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7304 {
7305 #ifdef BFD64
7306 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7307
7308 i_ehdrp = elf_elfheader (abfd);
7309 if (i_ehdrp == NULL)
7310 sprintf_vma (buf, value);
7311 else
7312 {
7313 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7314 {
7315 #if BFD_HOST_64BIT_LONG
7316 sprintf (buf, "%016lx", value);
7317 #else
7318 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7319 _bfd_int64_low (value));
7320 #endif
7321 }
7322 else
7323 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7324 }
7325 #else
7326 sprintf_vma (buf, value);
7327 #endif
7328 }
7329
7330 void
7331 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7332 {
7333 #ifdef BFD64
7334 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7335
7336 i_ehdrp = elf_elfheader (abfd);
7337 if (i_ehdrp == NULL)
7338 fprintf_vma ((FILE *) stream, value);
7339 else
7340 {
7341 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7342 {
7343 #if BFD_HOST_64BIT_LONG
7344 fprintf ((FILE *) stream, "%016lx", value);
7345 #else
7346 fprintf ((FILE *) stream, "%08lx%08lx",
7347 _bfd_int64_high (value), _bfd_int64_low (value));
7348 #endif
7349 }
7350 else
7351 fprintf ((FILE *) stream, "%08lx",
7352 (unsigned long) (value & 0xffffffff));
7353 }
7354 #else
7355 fprintf_vma ((FILE *) stream, value);
7356 #endif
7357 }
7358
7359 enum elf_reloc_type_class
7360 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7361 {
7362 return reloc_class_normal;
7363 }
7364
7365 /* For RELA architectures, return the relocation value for a
7366 relocation against a local symbol. */
7367
7368 bfd_vma
7369 _bfd_elf_rela_local_sym (bfd *abfd,
7370 Elf_Internal_Sym *sym,
7371 asection *sec,
7372 Elf_Internal_Rela *rel)
7373 {
7374 bfd_vma relocation;
7375
7376 relocation = (sec->output_section->vma
7377 + sec->output_offset
7378 + sym->st_value);
7379 if ((sec->flags & SEC_MERGE)
7380 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7381 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7382 {
7383 asection *msec;
7384
7385 msec = sec;
7386 rel->r_addend =
7387 _bfd_merged_section_offset (abfd, &msec,
7388 elf_section_data (sec)->sec_info,
7389 sym->st_value + rel->r_addend,
7390 0)
7391 - relocation;
7392 rel->r_addend += msec->output_section->vma + msec->output_offset;
7393 }
7394 return relocation;
7395 }
7396
7397 bfd_vma
7398 _bfd_elf_rel_local_sym (bfd *abfd,
7399 Elf_Internal_Sym *sym,
7400 asection **psec,
7401 bfd_vma addend)
7402 {
7403 asection *sec = *psec;
7404
7405 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7406 return sym->st_value + addend;
7407
7408 return _bfd_merged_section_offset (abfd, psec,
7409 elf_section_data (sec)->sec_info,
7410 sym->st_value + addend, 0);
7411 }
7412
7413 bfd_vma
7414 _bfd_elf_section_offset (bfd *abfd,
7415 struct bfd_link_info *info,
7416 asection *sec,
7417 bfd_vma offset)
7418 {
7419 struct bfd_elf_section_data *sec_data;
7420
7421 sec_data = elf_section_data (sec);
7422 switch (sec->sec_info_type)
7423 {
7424 case ELF_INFO_TYPE_STABS:
7425 return _bfd_stab_section_offset (abfd,
7426 &elf_hash_table (info)->merge_info,
7427 sec, &sec_data->sec_info, offset);
7428 case ELF_INFO_TYPE_EH_FRAME:
7429 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7430 default:
7431 return offset;
7432 }
7433 }
7434 \f
7435 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7436 reconstruct an ELF file by reading the segments out of remote memory
7437 based on the ELF file header at EHDR_VMA and the ELF program headers it
7438 points to. If not null, *LOADBASEP is filled in with the difference
7439 between the VMAs from which the segments were read, and the VMAs the
7440 file headers (and hence BFD's idea of each section's VMA) put them at.
7441
7442 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7443 remote memory at target address VMA into the local buffer at MYADDR; it
7444 should return zero on success or an `errno' code on failure. TEMPL must
7445 be a BFD for an ELF target with the word size and byte order found in
7446 the remote memory. */
7447
7448 bfd *
7449 bfd_elf_bfd_from_remote_memory
7450 (bfd *templ,
7451 bfd_vma ehdr_vma,
7452 bfd_vma *loadbasep,
7453 int (*target_read_memory) (bfd_vma, char *, int))
7454 {
7455 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7456 (templ, ehdr_vma, loadbasep, target_read_memory);
7457 }
This page took 0.17848 seconds and 3 git commands to generate.