ea44f7246619defe370c09aed684830850bf7079
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /*
25 SECTION
26 ELF backends
27
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
31
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
35
36 /* For sparc64-cross-sparc32. */
37 #define _SYSCALL32
38 #include "sysdep.h"
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
49 static bfd_boolean prep_headers (bfd *);
50 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
51 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
52 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
53 file_ptr offset);
54
55 /* Swap version information in and out. The version information is
56 currently size independent. If that ever changes, this code will
57 need to move into elfcode.h. */
58
59 /* Swap in a Verdef structure. */
60
61 void
62 _bfd_elf_swap_verdef_in (bfd *abfd,
63 const Elf_External_Verdef *src,
64 Elf_Internal_Verdef *dst)
65 {
66 dst->vd_version = H_GET_16 (abfd, src->vd_version);
67 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
68 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
69 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
70 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
71 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
72 dst->vd_next = H_GET_32 (abfd, src->vd_next);
73 }
74
75 /* Swap out a Verdef structure. */
76
77 void
78 _bfd_elf_swap_verdef_out (bfd *abfd,
79 const Elf_Internal_Verdef *src,
80 Elf_External_Verdef *dst)
81 {
82 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
83 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
84 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
85 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
86 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
87 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
88 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
89 }
90
91 /* Swap in a Verdaux structure. */
92
93 void
94 _bfd_elf_swap_verdaux_in (bfd *abfd,
95 const Elf_External_Verdaux *src,
96 Elf_Internal_Verdaux *dst)
97 {
98 dst->vda_name = H_GET_32 (abfd, src->vda_name);
99 dst->vda_next = H_GET_32 (abfd, src->vda_next);
100 }
101
102 /* Swap out a Verdaux structure. */
103
104 void
105 _bfd_elf_swap_verdaux_out (bfd *abfd,
106 const Elf_Internal_Verdaux *src,
107 Elf_External_Verdaux *dst)
108 {
109 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
110 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
111 }
112
113 /* Swap in a Verneed structure. */
114
115 void
116 _bfd_elf_swap_verneed_in (bfd *abfd,
117 const Elf_External_Verneed *src,
118 Elf_Internal_Verneed *dst)
119 {
120 dst->vn_version = H_GET_16 (abfd, src->vn_version);
121 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
122 dst->vn_file = H_GET_32 (abfd, src->vn_file);
123 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
124 dst->vn_next = H_GET_32 (abfd, src->vn_next);
125 }
126
127 /* Swap out a Verneed structure. */
128
129 void
130 _bfd_elf_swap_verneed_out (bfd *abfd,
131 const Elf_Internal_Verneed *src,
132 Elf_External_Verneed *dst)
133 {
134 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
135 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
136 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
137 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
138 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
139 }
140
141 /* Swap in a Vernaux structure. */
142
143 void
144 _bfd_elf_swap_vernaux_in (bfd *abfd,
145 const Elf_External_Vernaux *src,
146 Elf_Internal_Vernaux *dst)
147 {
148 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
149 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
150 dst->vna_other = H_GET_16 (abfd, src->vna_other);
151 dst->vna_name = H_GET_32 (abfd, src->vna_name);
152 dst->vna_next = H_GET_32 (abfd, src->vna_next);
153 }
154
155 /* Swap out a Vernaux structure. */
156
157 void
158 _bfd_elf_swap_vernaux_out (bfd *abfd,
159 const Elf_Internal_Vernaux *src,
160 Elf_External_Vernaux *dst)
161 {
162 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
163 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
164 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
165 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
166 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
167 }
168
169 /* Swap in a Versym structure. */
170
171 void
172 _bfd_elf_swap_versym_in (bfd *abfd,
173 const Elf_External_Versym *src,
174 Elf_Internal_Versym *dst)
175 {
176 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
177 }
178
179 /* Swap out a Versym structure. */
180
181 void
182 _bfd_elf_swap_versym_out (bfd *abfd,
183 const Elf_Internal_Versym *src,
184 Elf_External_Versym *dst)
185 {
186 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
187 }
188
189 /* Standard ELF hash function. Do not change this function; you will
190 cause invalid hash tables to be generated. */
191
192 unsigned long
193 bfd_elf_hash (const char *namearg)
194 {
195 const unsigned char *name = (const unsigned char *) namearg;
196 unsigned long h = 0;
197 unsigned long g;
198 int ch;
199
200 while ((ch = *name++) != '\0')
201 {
202 h = (h << 4) + ch;
203 if ((g = (h & 0xf0000000)) != 0)
204 {
205 h ^= g >> 24;
206 /* The ELF ABI says `h &= ~g', but this is equivalent in
207 this case and on some machines one insn instead of two. */
208 h ^= g;
209 }
210 }
211 return h & 0xffffffff;
212 }
213
214 /* DT_GNU_HASH hash function. Do not change this function; you will
215 cause invalid hash tables to be generated. */
216
217 unsigned long
218 bfd_elf_gnu_hash (const char *namearg)
219 {
220 const unsigned char *name = (const unsigned char *) namearg;
221 unsigned long h = 5381;
222 unsigned char ch;
223
224 while ((ch = *name++) != '\0')
225 h = (h << 5) + h + ch;
226 return h & 0xffffffff;
227 }
228
229 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
230 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
231 bfd_boolean
232 bfd_elf_allocate_object (bfd *abfd,
233 size_t object_size,
234 enum elf_object_id object_id)
235 {
236 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
237 abfd->tdata.any = bfd_zalloc (abfd, object_size);
238 if (abfd->tdata.any == NULL)
239 return FALSE;
240
241 elf_object_id (abfd) = object_id;
242 elf_program_header_size (abfd) = (bfd_size_type) -1;
243 return TRUE;
244 }
245
246
247 bfd_boolean
248 bfd_elf_make_generic_object (bfd *abfd)
249 {
250 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
251 GENERIC_ELF_TDATA);
252 }
253
254 bfd_boolean
255 bfd_elf_mkcorefile (bfd *abfd)
256 {
257 /* I think this can be done just like an object file. */
258 return bfd_elf_make_generic_object (abfd);
259 }
260
261 char *
262 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
263 {
264 Elf_Internal_Shdr **i_shdrp;
265 bfd_byte *shstrtab = NULL;
266 file_ptr offset;
267 bfd_size_type shstrtabsize;
268
269 i_shdrp = elf_elfsections (abfd);
270 if (i_shdrp == 0
271 || shindex >= elf_numsections (abfd)
272 || i_shdrp[shindex] == 0)
273 return NULL;
274
275 shstrtab = i_shdrp[shindex]->contents;
276 if (shstrtab == NULL)
277 {
278 /* No cached one, attempt to read, and cache what we read. */
279 offset = i_shdrp[shindex]->sh_offset;
280 shstrtabsize = i_shdrp[shindex]->sh_size;
281
282 /* Allocate and clear an extra byte at the end, to prevent crashes
283 in case the string table is not terminated. */
284 if (shstrtabsize + 1 <= 1
285 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
286 || bfd_seek (abfd, offset, SEEK_SET) != 0)
287 shstrtab = NULL;
288 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
289 {
290 if (bfd_get_error () != bfd_error_system_call)
291 bfd_set_error (bfd_error_file_truncated);
292 shstrtab = NULL;
293 /* Once we've failed to read it, make sure we don't keep
294 trying. Otherwise, we'll keep allocating space for
295 the string table over and over. */
296 i_shdrp[shindex]->sh_size = 0;
297 }
298 else
299 shstrtab[shstrtabsize] = '\0';
300 i_shdrp[shindex]->contents = shstrtab;
301 }
302 return (char *) shstrtab;
303 }
304
305 char *
306 bfd_elf_string_from_elf_section (bfd *abfd,
307 unsigned int shindex,
308 unsigned int strindex)
309 {
310 Elf_Internal_Shdr *hdr;
311
312 if (strindex == 0)
313 return "";
314
315 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
316 return NULL;
317
318 hdr = elf_elfsections (abfd)[shindex];
319
320 if (hdr->contents == NULL
321 && bfd_elf_get_str_section (abfd, shindex) == NULL)
322 return NULL;
323
324 if (strindex >= hdr->sh_size)
325 {
326 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
327 (*_bfd_error_handler)
328 (_("%B: invalid string offset %u >= %lu for section `%s'"),
329 abfd, strindex, (unsigned long) hdr->sh_size,
330 (shindex == shstrndx && strindex == hdr->sh_name
331 ? ".shstrtab"
332 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
333 return "";
334 }
335
336 return ((char *) hdr->contents) + strindex;
337 }
338
339 /* Read and convert symbols to internal format.
340 SYMCOUNT specifies the number of symbols to read, starting from
341 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
342 are non-NULL, they are used to store the internal symbols, external
343 symbols, and symbol section index extensions, respectively.
344 Returns a pointer to the internal symbol buffer (malloced if necessary)
345 or NULL if there were no symbols or some kind of problem. */
346
347 Elf_Internal_Sym *
348 bfd_elf_get_elf_syms (bfd *ibfd,
349 Elf_Internal_Shdr *symtab_hdr,
350 size_t symcount,
351 size_t symoffset,
352 Elf_Internal_Sym *intsym_buf,
353 void *extsym_buf,
354 Elf_External_Sym_Shndx *extshndx_buf)
355 {
356 Elf_Internal_Shdr *shndx_hdr;
357 void *alloc_ext;
358 const bfd_byte *esym;
359 Elf_External_Sym_Shndx *alloc_extshndx;
360 Elf_External_Sym_Shndx *shndx;
361 Elf_Internal_Sym *alloc_intsym;
362 Elf_Internal_Sym *isym;
363 Elf_Internal_Sym *isymend;
364 const struct elf_backend_data *bed;
365 size_t extsym_size;
366 bfd_size_type amt;
367 file_ptr pos;
368
369 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
370 abort ();
371
372 if (symcount == 0)
373 return intsym_buf;
374
375 /* Normal syms might have section extension entries. */
376 shndx_hdr = NULL;
377 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
378 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
379
380 /* Read the symbols. */
381 alloc_ext = NULL;
382 alloc_extshndx = NULL;
383 alloc_intsym = NULL;
384 bed = get_elf_backend_data (ibfd);
385 extsym_size = bed->s->sizeof_sym;
386 amt = symcount * extsym_size;
387 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
388 if (extsym_buf == NULL)
389 {
390 alloc_ext = bfd_malloc2 (symcount, extsym_size);
391 extsym_buf = alloc_ext;
392 }
393 if (extsym_buf == NULL
394 || bfd_seek (ibfd, pos, SEEK_SET) != 0
395 || bfd_bread (extsym_buf, amt, ibfd) != amt)
396 {
397 intsym_buf = NULL;
398 goto out;
399 }
400
401 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
402 extshndx_buf = NULL;
403 else
404 {
405 amt = symcount * sizeof (Elf_External_Sym_Shndx);
406 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
407 if (extshndx_buf == NULL)
408 {
409 alloc_extshndx = bfd_malloc2 (symcount,
410 sizeof (Elf_External_Sym_Shndx));
411 extshndx_buf = alloc_extshndx;
412 }
413 if (extshndx_buf == NULL
414 || bfd_seek (ibfd, pos, SEEK_SET) != 0
415 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
416 {
417 intsym_buf = NULL;
418 goto out;
419 }
420 }
421
422 if (intsym_buf == NULL)
423 {
424 alloc_intsym = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
425 intsym_buf = alloc_intsym;
426 if (intsym_buf == NULL)
427 goto out;
428 }
429
430 /* Convert the symbols to internal form. */
431 isymend = intsym_buf + symcount;
432 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
433 isym < isymend;
434 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
435 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
436 {
437 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
438 (*_bfd_error_handler) (_("%B symbol number %lu references "
439 "nonexistent SHT_SYMTAB_SHNDX section"),
440 ibfd, (unsigned long) symoffset);
441 if (alloc_intsym != NULL)
442 free (alloc_intsym);
443 intsym_buf = NULL;
444 goto out;
445 }
446
447 out:
448 if (alloc_ext != NULL)
449 free (alloc_ext);
450 if (alloc_extshndx != NULL)
451 free (alloc_extshndx);
452
453 return intsym_buf;
454 }
455
456 /* Look up a symbol name. */
457 const char *
458 bfd_elf_sym_name (bfd *abfd,
459 Elf_Internal_Shdr *symtab_hdr,
460 Elf_Internal_Sym *isym,
461 asection *sym_sec)
462 {
463 const char *name;
464 unsigned int iname = isym->st_name;
465 unsigned int shindex = symtab_hdr->sh_link;
466
467 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
468 /* Check for a bogus st_shndx to avoid crashing. */
469 && isym->st_shndx < elf_numsections (abfd))
470 {
471 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
472 shindex = elf_elfheader (abfd)->e_shstrndx;
473 }
474
475 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
476 if (name == NULL)
477 name = "(null)";
478 else if (sym_sec && *name == '\0')
479 name = bfd_section_name (abfd, sym_sec);
480
481 return name;
482 }
483
484 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
485 sections. The first element is the flags, the rest are section
486 pointers. */
487
488 typedef union elf_internal_group {
489 Elf_Internal_Shdr *shdr;
490 unsigned int flags;
491 } Elf_Internal_Group;
492
493 /* Return the name of the group signature symbol. Why isn't the
494 signature just a string? */
495
496 static const char *
497 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
498 {
499 Elf_Internal_Shdr *hdr;
500 unsigned char esym[sizeof (Elf64_External_Sym)];
501 Elf_External_Sym_Shndx eshndx;
502 Elf_Internal_Sym isym;
503
504 /* First we need to ensure the symbol table is available. Make sure
505 that it is a symbol table section. */
506 if (ghdr->sh_link >= elf_numsections (abfd))
507 return NULL;
508 hdr = elf_elfsections (abfd) [ghdr->sh_link];
509 if (hdr->sh_type != SHT_SYMTAB
510 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
511 return NULL;
512
513 /* Go read the symbol. */
514 hdr = &elf_tdata (abfd)->symtab_hdr;
515 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
516 &isym, esym, &eshndx) == NULL)
517 return NULL;
518
519 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
520 }
521
522 /* Set next_in_group list pointer, and group name for NEWSECT. */
523
524 static bfd_boolean
525 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
526 {
527 unsigned int num_group = elf_tdata (abfd)->num_group;
528
529 /* If num_group is zero, read in all SHT_GROUP sections. The count
530 is set to -1 if there are no SHT_GROUP sections. */
531 if (num_group == 0)
532 {
533 unsigned int i, shnum;
534
535 /* First count the number of groups. If we have a SHT_GROUP
536 section with just a flag word (ie. sh_size is 4), ignore it. */
537 shnum = elf_numsections (abfd);
538 num_group = 0;
539
540 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
541 ( (shdr)->sh_type == SHT_GROUP \
542 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
543 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
544 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
545
546 for (i = 0; i < shnum; i++)
547 {
548 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
549
550 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
551 num_group += 1;
552 }
553
554 if (num_group == 0)
555 {
556 num_group = (unsigned) -1;
557 elf_tdata (abfd)->num_group = num_group;
558 }
559 else
560 {
561 /* We keep a list of elf section headers for group sections,
562 so we can find them quickly. */
563 bfd_size_type amt;
564
565 elf_tdata (abfd)->num_group = num_group;
566 elf_tdata (abfd)->group_sect_ptr
567 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
568 if (elf_tdata (abfd)->group_sect_ptr == NULL)
569 return FALSE;
570
571 num_group = 0;
572 for (i = 0; i < shnum; i++)
573 {
574 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
575
576 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
577 {
578 unsigned char *src;
579 Elf_Internal_Group *dest;
580
581 /* Add to list of sections. */
582 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
583 num_group += 1;
584
585 /* Read the raw contents. */
586 BFD_ASSERT (sizeof (*dest) >= 4);
587 amt = shdr->sh_size * sizeof (*dest) / 4;
588 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
589 sizeof (*dest) / 4);
590 /* PR binutils/4110: Handle corrupt group headers. */
591 if (shdr->contents == NULL)
592 {
593 _bfd_error_handler
594 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
595 bfd_set_error (bfd_error_bad_value);
596 return FALSE;
597 }
598
599 memset (shdr->contents, 0, amt);
600
601 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
602 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
603 != shdr->sh_size))
604 return FALSE;
605
606 /* Translate raw contents, a flag word followed by an
607 array of elf section indices all in target byte order,
608 to the flag word followed by an array of elf section
609 pointers. */
610 src = shdr->contents + shdr->sh_size;
611 dest = (Elf_Internal_Group *) (shdr->contents + amt);
612 while (1)
613 {
614 unsigned int idx;
615
616 src -= 4;
617 --dest;
618 idx = H_GET_32 (abfd, src);
619 if (src == shdr->contents)
620 {
621 dest->flags = idx;
622 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
623 shdr->bfd_section->flags
624 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
625 break;
626 }
627 if (idx >= shnum)
628 {
629 ((*_bfd_error_handler)
630 (_("%B: invalid SHT_GROUP entry"), abfd));
631 idx = 0;
632 }
633 dest->shdr = elf_elfsections (abfd)[idx];
634 }
635 }
636 }
637 }
638 }
639
640 if (num_group != (unsigned) -1)
641 {
642 unsigned int i;
643
644 for (i = 0; i < num_group; i++)
645 {
646 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
647 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
648 unsigned int n_elt = shdr->sh_size / 4;
649
650 /* Look through this group's sections to see if current
651 section is a member. */
652 while (--n_elt != 0)
653 if ((++idx)->shdr == hdr)
654 {
655 asection *s = NULL;
656
657 /* We are a member of this group. Go looking through
658 other members to see if any others are linked via
659 next_in_group. */
660 idx = (Elf_Internal_Group *) shdr->contents;
661 n_elt = shdr->sh_size / 4;
662 while (--n_elt != 0)
663 if ((s = (++idx)->shdr->bfd_section) != NULL
664 && elf_next_in_group (s) != NULL)
665 break;
666 if (n_elt != 0)
667 {
668 /* Snarf the group name from other member, and
669 insert current section in circular list. */
670 elf_group_name (newsect) = elf_group_name (s);
671 elf_next_in_group (newsect) = elf_next_in_group (s);
672 elf_next_in_group (s) = newsect;
673 }
674 else
675 {
676 const char *gname;
677
678 gname = group_signature (abfd, shdr);
679 if (gname == NULL)
680 return FALSE;
681 elf_group_name (newsect) = gname;
682
683 /* Start a circular list with one element. */
684 elf_next_in_group (newsect) = newsect;
685 }
686
687 /* If the group section has been created, point to the
688 new member. */
689 if (shdr->bfd_section != NULL)
690 elf_next_in_group (shdr->bfd_section) = newsect;
691
692 i = num_group - 1;
693 break;
694 }
695 }
696 }
697
698 if (elf_group_name (newsect) == NULL)
699 {
700 (*_bfd_error_handler) (_("%B: no group info for section %A"),
701 abfd, newsect);
702 }
703 return TRUE;
704 }
705
706 bfd_boolean
707 _bfd_elf_setup_sections (bfd *abfd)
708 {
709 unsigned int i;
710 unsigned int num_group = elf_tdata (abfd)->num_group;
711 bfd_boolean result = TRUE;
712 asection *s;
713
714 /* Process SHF_LINK_ORDER. */
715 for (s = abfd->sections; s != NULL; s = s->next)
716 {
717 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
718 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
719 {
720 unsigned int elfsec = this_hdr->sh_link;
721 /* FIXME: The old Intel compiler and old strip/objcopy may
722 not set the sh_link or sh_info fields. Hence we could
723 get the situation where elfsec is 0. */
724 if (elfsec == 0)
725 {
726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
727 if (bed->link_order_error_handler)
728 bed->link_order_error_handler
729 (_("%B: warning: sh_link not set for section `%A'"),
730 abfd, s);
731 }
732 else
733 {
734 asection *link = NULL;
735
736 if (elfsec < elf_numsections (abfd))
737 {
738 this_hdr = elf_elfsections (abfd)[elfsec];
739 link = this_hdr->bfd_section;
740 }
741
742 /* PR 1991, 2008:
743 Some strip/objcopy may leave an incorrect value in
744 sh_link. We don't want to proceed. */
745 if (link == NULL)
746 {
747 (*_bfd_error_handler)
748 (_("%B: sh_link [%d] in section `%A' is incorrect"),
749 s->owner, s, elfsec);
750 result = FALSE;
751 }
752
753 elf_linked_to_section (s) = link;
754 }
755 }
756 }
757
758 /* Process section groups. */
759 if (num_group == (unsigned) -1)
760 return result;
761
762 for (i = 0; i < num_group; i++)
763 {
764 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
765 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
766 unsigned int n_elt = shdr->sh_size / 4;
767
768 while (--n_elt != 0)
769 if ((++idx)->shdr->bfd_section)
770 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
771 else if (idx->shdr->sh_type == SHT_RELA
772 || idx->shdr->sh_type == SHT_REL)
773 /* We won't include relocation sections in section groups in
774 output object files. We adjust the group section size here
775 so that relocatable link will work correctly when
776 relocation sections are in section group in input object
777 files. */
778 shdr->bfd_section->size -= 4;
779 else
780 {
781 /* There are some unknown sections in the group. */
782 (*_bfd_error_handler)
783 (_("%B: unknown [%d] section `%s' in group [%s]"),
784 abfd,
785 (unsigned int) idx->shdr->sh_type,
786 bfd_elf_string_from_elf_section (abfd,
787 (elf_elfheader (abfd)
788 ->e_shstrndx),
789 idx->shdr->sh_name),
790 shdr->bfd_section->name);
791 result = FALSE;
792 }
793 }
794 return result;
795 }
796
797 bfd_boolean
798 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
799 {
800 return elf_next_in_group (sec) != NULL;
801 }
802
803 /* Make a BFD section from an ELF section. We store a pointer to the
804 BFD section in the bfd_section field of the header. */
805
806 bfd_boolean
807 _bfd_elf_make_section_from_shdr (bfd *abfd,
808 Elf_Internal_Shdr *hdr,
809 const char *name,
810 int shindex)
811 {
812 asection *newsect;
813 flagword flags;
814 const struct elf_backend_data *bed;
815
816 if (hdr->bfd_section != NULL)
817 {
818 BFD_ASSERT (strcmp (name,
819 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
820 return TRUE;
821 }
822
823 newsect = bfd_make_section_anyway (abfd, name);
824 if (newsect == NULL)
825 return FALSE;
826
827 hdr->bfd_section = newsect;
828 elf_section_data (newsect)->this_hdr = *hdr;
829 elf_section_data (newsect)->this_idx = shindex;
830
831 /* Always use the real type/flags. */
832 elf_section_type (newsect) = hdr->sh_type;
833 elf_section_flags (newsect) = hdr->sh_flags;
834
835 newsect->filepos = hdr->sh_offset;
836
837 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
838 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
839 || ! bfd_set_section_alignment (abfd, newsect,
840 bfd_log2 (hdr->sh_addralign)))
841 return FALSE;
842
843 flags = SEC_NO_FLAGS;
844 if (hdr->sh_type != SHT_NOBITS)
845 flags |= SEC_HAS_CONTENTS;
846 if (hdr->sh_type == SHT_GROUP)
847 flags |= SEC_GROUP | SEC_EXCLUDE;
848 if ((hdr->sh_flags & SHF_ALLOC) != 0)
849 {
850 flags |= SEC_ALLOC;
851 if (hdr->sh_type != SHT_NOBITS)
852 flags |= SEC_LOAD;
853 }
854 if ((hdr->sh_flags & SHF_WRITE) == 0)
855 flags |= SEC_READONLY;
856 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
857 flags |= SEC_CODE;
858 else if ((flags & SEC_LOAD) != 0)
859 flags |= SEC_DATA;
860 if ((hdr->sh_flags & SHF_MERGE) != 0)
861 {
862 flags |= SEC_MERGE;
863 newsect->entsize = hdr->sh_entsize;
864 if ((hdr->sh_flags & SHF_STRINGS) != 0)
865 flags |= SEC_STRINGS;
866 }
867 if (hdr->sh_flags & SHF_GROUP)
868 if (!setup_group (abfd, hdr, newsect))
869 return FALSE;
870 if ((hdr->sh_flags & SHF_TLS) != 0)
871 flags |= SEC_THREAD_LOCAL;
872
873 if ((flags & SEC_ALLOC) == 0)
874 {
875 /* The debugging sections appear to be recognized only by name,
876 not any sort of flag. Their SEC_ALLOC bits are cleared. */
877 static const struct
878 {
879 const char *name;
880 int len;
881 } debug_sections [] =
882 {
883 { STRING_COMMA_LEN ("debug") }, /* 'd' */
884 { NULL, 0 }, /* 'e' */
885 { NULL, 0 }, /* 'f' */
886 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
887 { NULL, 0 }, /* 'h' */
888 { NULL, 0 }, /* 'i' */
889 { NULL, 0 }, /* 'j' */
890 { NULL, 0 }, /* 'k' */
891 { STRING_COMMA_LEN ("line") }, /* 'l' */
892 { NULL, 0 }, /* 'm' */
893 { NULL, 0 }, /* 'n' */
894 { NULL, 0 }, /* 'o' */
895 { NULL, 0 }, /* 'p' */
896 { NULL, 0 }, /* 'q' */
897 { NULL, 0 }, /* 'r' */
898 { STRING_COMMA_LEN ("stab") }, /* 's' */
899 { NULL, 0 }, /* 't' */
900 { NULL, 0 }, /* 'u' */
901 { NULL, 0 }, /* 'v' */
902 { NULL, 0 }, /* 'w' */
903 { NULL, 0 }, /* 'x' */
904 { NULL, 0 }, /* 'y' */
905 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
906 };
907
908 if (name [0] == '.')
909 {
910 int i = name [1] - 'd';
911 if (i >= 0
912 && i < (int) ARRAY_SIZE (debug_sections)
913 && debug_sections [i].name != NULL
914 && strncmp (&name [1], debug_sections [i].name,
915 debug_sections [i].len) == 0)
916 flags |= SEC_DEBUGGING;
917 }
918 }
919
920 /* As a GNU extension, if the name begins with .gnu.linkonce, we
921 only link a single copy of the section. This is used to support
922 g++. g++ will emit each template expansion in its own section.
923 The symbols will be defined as weak, so that multiple definitions
924 are permitted. The GNU linker extension is to actually discard
925 all but one of the sections. */
926 if (CONST_STRNEQ (name, ".gnu.linkonce")
927 && elf_next_in_group (newsect) == NULL)
928 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
929
930 bed = get_elf_backend_data (abfd);
931 if (bed->elf_backend_section_flags)
932 if (! bed->elf_backend_section_flags (&flags, hdr))
933 return FALSE;
934
935 if (! bfd_set_section_flags (abfd, newsect, flags))
936 return FALSE;
937
938 /* We do not parse the PT_NOTE segments as we are interested even in the
939 separate debug info files which may have the segments offsets corrupted.
940 PT_NOTEs from the core files are currently not parsed using BFD. */
941 if (hdr->sh_type == SHT_NOTE)
942 {
943 bfd_byte *contents;
944
945 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
946 return FALSE;
947
948 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
949 free (contents);
950 }
951
952 if ((flags & SEC_ALLOC) != 0)
953 {
954 Elf_Internal_Phdr *phdr;
955 unsigned int i, nload;
956
957 /* Some ELF linkers produce binaries with all the program header
958 p_paddr fields zero. If we have such a binary with more than
959 one PT_LOAD header, then leave the section lma equal to vma
960 so that we don't create sections with overlapping lma. */
961 phdr = elf_tdata (abfd)->phdr;
962 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
963 if (phdr->p_paddr != 0)
964 break;
965 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
966 ++nload;
967 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
968 return TRUE;
969
970 phdr = elf_tdata (abfd)->phdr;
971 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
972 {
973 /* This section is part of this segment if its file
974 offset plus size lies within the segment's memory
975 span and, if the section is loaded, the extent of the
976 loaded data lies within the extent of the segment.
977
978 Note - we used to check the p_paddr field as well, and
979 refuse to set the LMA if it was 0. This is wrong
980 though, as a perfectly valid initialised segment can
981 have a p_paddr of zero. Some architectures, eg ARM,
982 place special significance on the address 0 and
983 executables need to be able to have a segment which
984 covers this address. */
985 if (phdr->p_type == PT_LOAD
986 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
987 && (hdr->sh_offset + hdr->sh_size
988 <= phdr->p_offset + phdr->p_memsz)
989 && ((flags & SEC_LOAD) == 0
990 || (hdr->sh_offset + hdr->sh_size
991 <= phdr->p_offset + phdr->p_filesz)))
992 {
993 if ((flags & SEC_LOAD) == 0)
994 newsect->lma = (phdr->p_paddr
995 + hdr->sh_addr - phdr->p_vaddr);
996 else
997 /* We used to use the same adjustment for SEC_LOAD
998 sections, but that doesn't work if the segment
999 is packed with code from multiple VMAs.
1000 Instead we calculate the section LMA based on
1001 the segment LMA. It is assumed that the
1002 segment will contain sections with contiguous
1003 LMAs, even if the VMAs are not. */
1004 newsect->lma = (phdr->p_paddr
1005 + hdr->sh_offset - phdr->p_offset);
1006
1007 /* With contiguous segments, we can't tell from file
1008 offsets whether a section with zero size should
1009 be placed at the end of one segment or the
1010 beginning of the next. Decide based on vaddr. */
1011 if (hdr->sh_addr >= phdr->p_vaddr
1012 && (hdr->sh_addr + hdr->sh_size
1013 <= phdr->p_vaddr + phdr->p_memsz))
1014 break;
1015 }
1016 }
1017 }
1018
1019 return TRUE;
1020 }
1021
1022 /*
1023 INTERNAL_FUNCTION
1024 bfd_elf_find_section
1025
1026 SYNOPSIS
1027 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
1028
1029 DESCRIPTION
1030 Helper functions for GDB to locate the string tables.
1031 Since BFD hides string tables from callers, GDB needs to use an
1032 internal hook to find them. Sun's .stabstr, in particular,
1033 isn't even pointed to by the .stab section, so ordinary
1034 mechanisms wouldn't work to find it, even if we had some.
1035 */
1036
1037 struct elf_internal_shdr *
1038 bfd_elf_find_section (bfd *abfd, char *name)
1039 {
1040 Elf_Internal_Shdr **i_shdrp;
1041 char *shstrtab;
1042 unsigned int max;
1043 unsigned int i;
1044
1045 i_shdrp = elf_elfsections (abfd);
1046 if (i_shdrp != NULL)
1047 {
1048 shstrtab = bfd_elf_get_str_section (abfd,
1049 elf_elfheader (abfd)->e_shstrndx);
1050 if (shstrtab != NULL)
1051 {
1052 max = elf_numsections (abfd);
1053 for (i = 1; i < max; i++)
1054 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
1055 return i_shdrp[i];
1056 }
1057 }
1058 return 0;
1059 }
1060
1061 const char *const bfd_elf_section_type_names[] = {
1062 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1063 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1064 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1065 };
1066
1067 /* ELF relocs are against symbols. If we are producing relocatable
1068 output, and the reloc is against an external symbol, and nothing
1069 has given us any additional addend, the resulting reloc will also
1070 be against the same symbol. In such a case, we don't want to
1071 change anything about the way the reloc is handled, since it will
1072 all be done at final link time. Rather than put special case code
1073 into bfd_perform_relocation, all the reloc types use this howto
1074 function. It just short circuits the reloc if producing
1075 relocatable output against an external symbol. */
1076
1077 bfd_reloc_status_type
1078 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1079 arelent *reloc_entry,
1080 asymbol *symbol,
1081 void *data ATTRIBUTE_UNUSED,
1082 asection *input_section,
1083 bfd *output_bfd,
1084 char **error_message ATTRIBUTE_UNUSED)
1085 {
1086 if (output_bfd != NULL
1087 && (symbol->flags & BSF_SECTION_SYM) == 0
1088 && (! reloc_entry->howto->partial_inplace
1089 || reloc_entry->addend == 0))
1090 {
1091 reloc_entry->address += input_section->output_offset;
1092 return bfd_reloc_ok;
1093 }
1094
1095 return bfd_reloc_continue;
1096 }
1097 \f
1098 /* Copy the program header and other data from one object module to
1099 another. */
1100
1101 bfd_boolean
1102 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1103 {
1104 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1105 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1106 return TRUE;
1107
1108 BFD_ASSERT (!elf_flags_init (obfd)
1109 || (elf_elfheader (obfd)->e_flags
1110 == elf_elfheader (ibfd)->e_flags));
1111
1112 elf_gp (obfd) = elf_gp (ibfd);
1113 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1114 elf_flags_init (obfd) = TRUE;
1115
1116 /* Copy object attributes. */
1117 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1118
1119 return TRUE;
1120 }
1121
1122 static const char *
1123 get_segment_type (unsigned int p_type)
1124 {
1125 const char *pt;
1126 switch (p_type)
1127 {
1128 case PT_NULL: pt = "NULL"; break;
1129 case PT_LOAD: pt = "LOAD"; break;
1130 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1131 case PT_INTERP: pt = "INTERP"; break;
1132 case PT_NOTE: pt = "NOTE"; break;
1133 case PT_SHLIB: pt = "SHLIB"; break;
1134 case PT_PHDR: pt = "PHDR"; break;
1135 case PT_TLS: pt = "TLS"; break;
1136 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1137 case PT_GNU_STACK: pt = "STACK"; break;
1138 case PT_GNU_RELRO: pt = "RELRO"; break;
1139 default: pt = NULL; break;
1140 }
1141 return pt;
1142 }
1143
1144 /* Print out the program headers. */
1145
1146 bfd_boolean
1147 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1148 {
1149 FILE *f = farg;
1150 Elf_Internal_Phdr *p;
1151 asection *s;
1152 bfd_byte *dynbuf = NULL;
1153
1154 p = elf_tdata (abfd)->phdr;
1155 if (p != NULL)
1156 {
1157 unsigned int i, c;
1158
1159 fprintf (f, _("\nProgram Header:\n"));
1160 c = elf_elfheader (abfd)->e_phnum;
1161 for (i = 0; i < c; i++, p++)
1162 {
1163 const char *pt = get_segment_type (p->p_type);
1164 char buf[20];
1165
1166 if (pt == NULL)
1167 {
1168 sprintf (buf, "0x%lx", p->p_type);
1169 pt = buf;
1170 }
1171 fprintf (f, "%8s off 0x", pt);
1172 bfd_fprintf_vma (abfd, f, p->p_offset);
1173 fprintf (f, " vaddr 0x");
1174 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1175 fprintf (f, " paddr 0x");
1176 bfd_fprintf_vma (abfd, f, p->p_paddr);
1177 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1178 fprintf (f, " filesz 0x");
1179 bfd_fprintf_vma (abfd, f, p->p_filesz);
1180 fprintf (f, " memsz 0x");
1181 bfd_fprintf_vma (abfd, f, p->p_memsz);
1182 fprintf (f, " flags %c%c%c",
1183 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1184 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1185 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1186 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1187 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1188 fprintf (f, "\n");
1189 }
1190 }
1191
1192 s = bfd_get_section_by_name (abfd, ".dynamic");
1193 if (s != NULL)
1194 {
1195 unsigned int elfsec;
1196 unsigned long shlink;
1197 bfd_byte *extdyn, *extdynend;
1198 size_t extdynsize;
1199 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1200
1201 fprintf (f, _("\nDynamic Section:\n"));
1202
1203 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1204 goto error_return;
1205
1206 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1207 if (elfsec == SHN_BAD)
1208 goto error_return;
1209 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1210
1211 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1212 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1213
1214 extdyn = dynbuf;
1215 extdynend = extdyn + s->size;
1216 for (; extdyn < extdynend; extdyn += extdynsize)
1217 {
1218 Elf_Internal_Dyn dyn;
1219 const char *name = "";
1220 char ab[20];
1221 bfd_boolean stringp;
1222 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1223
1224 (*swap_dyn_in) (abfd, extdyn, &dyn);
1225
1226 if (dyn.d_tag == DT_NULL)
1227 break;
1228
1229 stringp = FALSE;
1230 switch (dyn.d_tag)
1231 {
1232 default:
1233 if (bed->elf_backend_get_target_dtag)
1234 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1235
1236 if (!strcmp (name, ""))
1237 {
1238 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1239 name = ab;
1240 }
1241 break;
1242
1243 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1244 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1245 case DT_PLTGOT: name = "PLTGOT"; break;
1246 case DT_HASH: name = "HASH"; break;
1247 case DT_STRTAB: name = "STRTAB"; break;
1248 case DT_SYMTAB: name = "SYMTAB"; break;
1249 case DT_RELA: name = "RELA"; break;
1250 case DT_RELASZ: name = "RELASZ"; break;
1251 case DT_RELAENT: name = "RELAENT"; break;
1252 case DT_STRSZ: name = "STRSZ"; break;
1253 case DT_SYMENT: name = "SYMENT"; break;
1254 case DT_INIT: name = "INIT"; break;
1255 case DT_FINI: name = "FINI"; break;
1256 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1257 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1258 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1259 case DT_REL: name = "REL"; break;
1260 case DT_RELSZ: name = "RELSZ"; break;
1261 case DT_RELENT: name = "RELENT"; break;
1262 case DT_PLTREL: name = "PLTREL"; break;
1263 case DT_DEBUG: name = "DEBUG"; break;
1264 case DT_TEXTREL: name = "TEXTREL"; break;
1265 case DT_JMPREL: name = "JMPREL"; break;
1266 case DT_BIND_NOW: name = "BIND_NOW"; break;
1267 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1268 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1269 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1270 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1271 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1272 case DT_FLAGS: name = "FLAGS"; break;
1273 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1274 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1275 case DT_CHECKSUM: name = "CHECKSUM"; break;
1276 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1277 case DT_MOVEENT: name = "MOVEENT"; break;
1278 case DT_MOVESZ: name = "MOVESZ"; break;
1279 case DT_FEATURE: name = "FEATURE"; break;
1280 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1281 case DT_SYMINSZ: name = "SYMINSZ"; break;
1282 case DT_SYMINENT: name = "SYMINENT"; break;
1283 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1284 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1285 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1286 case DT_PLTPAD: name = "PLTPAD"; break;
1287 case DT_MOVETAB: name = "MOVETAB"; break;
1288 case DT_SYMINFO: name = "SYMINFO"; break;
1289 case DT_RELACOUNT: name = "RELACOUNT"; break;
1290 case DT_RELCOUNT: name = "RELCOUNT"; break;
1291 case DT_FLAGS_1: name = "FLAGS_1"; break;
1292 case DT_VERSYM: name = "VERSYM"; break;
1293 case DT_VERDEF: name = "VERDEF"; break;
1294 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1295 case DT_VERNEED: name = "VERNEED"; break;
1296 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1297 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1298 case DT_USED: name = "USED"; break;
1299 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1300 case DT_GNU_HASH: name = "GNU_HASH"; break;
1301 }
1302
1303 fprintf (f, " %-20s ", name);
1304 if (! stringp)
1305 {
1306 fprintf (f, "0x");
1307 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1308 }
1309 else
1310 {
1311 const char *string;
1312 unsigned int tagv = dyn.d_un.d_val;
1313
1314 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1315 if (string == NULL)
1316 goto error_return;
1317 fprintf (f, "%s", string);
1318 }
1319 fprintf (f, "\n");
1320 }
1321
1322 free (dynbuf);
1323 dynbuf = NULL;
1324 }
1325
1326 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1327 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1328 {
1329 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1330 return FALSE;
1331 }
1332
1333 if (elf_dynverdef (abfd) != 0)
1334 {
1335 Elf_Internal_Verdef *t;
1336
1337 fprintf (f, _("\nVersion definitions:\n"));
1338 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1339 {
1340 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1341 t->vd_flags, t->vd_hash,
1342 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1343 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1344 {
1345 Elf_Internal_Verdaux *a;
1346
1347 fprintf (f, "\t");
1348 for (a = t->vd_auxptr->vda_nextptr;
1349 a != NULL;
1350 a = a->vda_nextptr)
1351 fprintf (f, "%s ",
1352 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1353 fprintf (f, "\n");
1354 }
1355 }
1356 }
1357
1358 if (elf_dynverref (abfd) != 0)
1359 {
1360 Elf_Internal_Verneed *t;
1361
1362 fprintf (f, _("\nVersion References:\n"));
1363 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1364 {
1365 Elf_Internal_Vernaux *a;
1366
1367 fprintf (f, _(" required from %s:\n"),
1368 t->vn_filename ? t->vn_filename : "<corrupt>");
1369 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1370 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1371 a->vna_flags, a->vna_other,
1372 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1373 }
1374 }
1375
1376 return TRUE;
1377
1378 error_return:
1379 if (dynbuf != NULL)
1380 free (dynbuf);
1381 return FALSE;
1382 }
1383
1384 /* Display ELF-specific fields of a symbol. */
1385
1386 void
1387 bfd_elf_print_symbol (bfd *abfd,
1388 void *filep,
1389 asymbol *symbol,
1390 bfd_print_symbol_type how)
1391 {
1392 FILE *file = filep;
1393 switch (how)
1394 {
1395 case bfd_print_symbol_name:
1396 fprintf (file, "%s", symbol->name);
1397 break;
1398 case bfd_print_symbol_more:
1399 fprintf (file, "elf ");
1400 bfd_fprintf_vma (abfd, file, symbol->value);
1401 fprintf (file, " %lx", (unsigned long) symbol->flags);
1402 break;
1403 case bfd_print_symbol_all:
1404 {
1405 const char *section_name;
1406 const char *name = NULL;
1407 const struct elf_backend_data *bed;
1408 unsigned char st_other;
1409 bfd_vma val;
1410
1411 section_name = symbol->section ? symbol->section->name : "(*none*)";
1412
1413 bed = get_elf_backend_data (abfd);
1414 if (bed->elf_backend_print_symbol_all)
1415 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1416
1417 if (name == NULL)
1418 {
1419 name = symbol->name;
1420 bfd_print_symbol_vandf (abfd, file, symbol);
1421 }
1422
1423 fprintf (file, " %s\t", section_name);
1424 /* Print the "other" value for a symbol. For common symbols,
1425 we've already printed the size; now print the alignment.
1426 For other symbols, we have no specified alignment, and
1427 we've printed the address; now print the size. */
1428 if (symbol->section && bfd_is_com_section (symbol->section))
1429 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1430 else
1431 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1432 bfd_fprintf_vma (abfd, file, val);
1433
1434 /* If we have version information, print it. */
1435 if (elf_tdata (abfd)->dynversym_section != 0
1436 && (elf_tdata (abfd)->dynverdef_section != 0
1437 || elf_tdata (abfd)->dynverref_section != 0))
1438 {
1439 unsigned int vernum;
1440 const char *version_string;
1441
1442 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1443
1444 if (vernum == 0)
1445 version_string = "";
1446 else if (vernum == 1)
1447 version_string = "Base";
1448 else if (vernum <= elf_tdata (abfd)->cverdefs)
1449 version_string =
1450 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1451 else
1452 {
1453 Elf_Internal_Verneed *t;
1454
1455 version_string = "";
1456 for (t = elf_tdata (abfd)->verref;
1457 t != NULL;
1458 t = t->vn_nextref)
1459 {
1460 Elf_Internal_Vernaux *a;
1461
1462 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1463 {
1464 if (a->vna_other == vernum)
1465 {
1466 version_string = a->vna_nodename;
1467 break;
1468 }
1469 }
1470 }
1471 }
1472
1473 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1474 fprintf (file, " %-11s", version_string);
1475 else
1476 {
1477 int i;
1478
1479 fprintf (file, " (%s)", version_string);
1480 for (i = 10 - strlen (version_string); i > 0; --i)
1481 putc (' ', file);
1482 }
1483 }
1484
1485 /* If the st_other field is not zero, print it. */
1486 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1487
1488 switch (st_other)
1489 {
1490 case 0: break;
1491 case STV_INTERNAL: fprintf (file, " .internal"); break;
1492 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1493 case STV_PROTECTED: fprintf (file, " .protected"); break;
1494 default:
1495 /* Some other non-defined flags are also present, so print
1496 everything hex. */
1497 fprintf (file, " 0x%02x", (unsigned int) st_other);
1498 }
1499
1500 fprintf (file, " %s", name);
1501 }
1502 break;
1503 }
1504 }
1505
1506 /* Allocate an ELF string table--force the first byte to be zero. */
1507
1508 struct bfd_strtab_hash *
1509 _bfd_elf_stringtab_init (void)
1510 {
1511 struct bfd_strtab_hash *ret;
1512
1513 ret = _bfd_stringtab_init ();
1514 if (ret != NULL)
1515 {
1516 bfd_size_type loc;
1517
1518 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1519 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1520 if (loc == (bfd_size_type) -1)
1521 {
1522 _bfd_stringtab_free (ret);
1523 ret = NULL;
1524 }
1525 }
1526 return ret;
1527 }
1528 \f
1529 /* ELF .o/exec file reading */
1530
1531 /* Create a new bfd section from an ELF section header. */
1532
1533 bfd_boolean
1534 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1535 {
1536 Elf_Internal_Shdr *hdr;
1537 Elf_Internal_Ehdr *ehdr;
1538 const struct elf_backend_data *bed;
1539 const char *name;
1540
1541 if (shindex >= elf_numsections (abfd))
1542 return FALSE;
1543
1544 hdr = elf_elfsections (abfd)[shindex];
1545 ehdr = elf_elfheader (abfd);
1546 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1547 hdr->sh_name);
1548 if (name == NULL)
1549 return FALSE;
1550
1551 bed = get_elf_backend_data (abfd);
1552 switch (hdr->sh_type)
1553 {
1554 case SHT_NULL:
1555 /* Inactive section. Throw it away. */
1556 return TRUE;
1557
1558 case SHT_PROGBITS: /* Normal section with contents. */
1559 case SHT_NOBITS: /* .bss section. */
1560 case SHT_HASH: /* .hash section. */
1561 case SHT_NOTE: /* .note section. */
1562 case SHT_INIT_ARRAY: /* .init_array section. */
1563 case SHT_FINI_ARRAY: /* .fini_array section. */
1564 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1565 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1566 case SHT_GNU_HASH: /* .gnu.hash section. */
1567 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1568
1569 case SHT_DYNAMIC: /* Dynamic linking information. */
1570 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1571 return FALSE;
1572 if (hdr->sh_link > elf_numsections (abfd)
1573 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1574 return FALSE;
1575 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1576 {
1577 Elf_Internal_Shdr *dynsymhdr;
1578
1579 /* The shared libraries distributed with hpux11 have a bogus
1580 sh_link field for the ".dynamic" section. Find the
1581 string table for the ".dynsym" section instead. */
1582 if (elf_dynsymtab (abfd) != 0)
1583 {
1584 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1585 hdr->sh_link = dynsymhdr->sh_link;
1586 }
1587 else
1588 {
1589 unsigned int i, num_sec;
1590
1591 num_sec = elf_numsections (abfd);
1592 for (i = 1; i < num_sec; i++)
1593 {
1594 dynsymhdr = elf_elfsections (abfd)[i];
1595 if (dynsymhdr->sh_type == SHT_DYNSYM)
1596 {
1597 hdr->sh_link = dynsymhdr->sh_link;
1598 break;
1599 }
1600 }
1601 }
1602 }
1603 break;
1604
1605 case SHT_SYMTAB: /* A symbol table */
1606 if (elf_onesymtab (abfd) == shindex)
1607 return TRUE;
1608
1609 if (hdr->sh_entsize != bed->s->sizeof_sym)
1610 return FALSE;
1611 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1612 elf_onesymtab (abfd) = shindex;
1613 elf_tdata (abfd)->symtab_hdr = *hdr;
1614 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1615 abfd->flags |= HAS_SYMS;
1616
1617 /* Sometimes a shared object will map in the symbol table. If
1618 SHF_ALLOC is set, and this is a shared object, then we also
1619 treat this section as a BFD section. We can not base the
1620 decision purely on SHF_ALLOC, because that flag is sometimes
1621 set in a relocatable object file, which would confuse the
1622 linker. */
1623 if ((hdr->sh_flags & SHF_ALLOC) != 0
1624 && (abfd->flags & DYNAMIC) != 0
1625 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1626 shindex))
1627 return FALSE;
1628
1629 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1630 can't read symbols without that section loaded as well. It
1631 is most likely specified by the next section header. */
1632 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1633 {
1634 unsigned int i, num_sec;
1635
1636 num_sec = elf_numsections (abfd);
1637 for (i = shindex + 1; i < num_sec; i++)
1638 {
1639 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1640 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1641 && hdr2->sh_link == shindex)
1642 break;
1643 }
1644 if (i == num_sec)
1645 for (i = 1; i < shindex; i++)
1646 {
1647 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1648 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1649 && hdr2->sh_link == shindex)
1650 break;
1651 }
1652 if (i != shindex)
1653 return bfd_section_from_shdr (abfd, i);
1654 }
1655 return TRUE;
1656
1657 case SHT_DYNSYM: /* A dynamic symbol table */
1658 if (elf_dynsymtab (abfd) == shindex)
1659 return TRUE;
1660
1661 if (hdr->sh_entsize != bed->s->sizeof_sym)
1662 return FALSE;
1663 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1664 elf_dynsymtab (abfd) = shindex;
1665 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1666 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1667 abfd->flags |= HAS_SYMS;
1668
1669 /* Besides being a symbol table, we also treat this as a regular
1670 section, so that objcopy can handle it. */
1671 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1672
1673 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1674 if (elf_symtab_shndx (abfd) == shindex)
1675 return TRUE;
1676
1677 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1678 elf_symtab_shndx (abfd) = shindex;
1679 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1680 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1681 return TRUE;
1682
1683 case SHT_STRTAB: /* A string table */
1684 if (hdr->bfd_section != NULL)
1685 return TRUE;
1686 if (ehdr->e_shstrndx == shindex)
1687 {
1688 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1689 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1690 return TRUE;
1691 }
1692 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1693 {
1694 symtab_strtab:
1695 elf_tdata (abfd)->strtab_hdr = *hdr;
1696 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1697 return TRUE;
1698 }
1699 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1700 {
1701 dynsymtab_strtab:
1702 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1703 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1704 elf_elfsections (abfd)[shindex] = hdr;
1705 /* We also treat this as a regular section, so that objcopy
1706 can handle it. */
1707 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1708 shindex);
1709 }
1710
1711 /* If the string table isn't one of the above, then treat it as a
1712 regular section. We need to scan all the headers to be sure,
1713 just in case this strtab section appeared before the above. */
1714 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1715 {
1716 unsigned int i, num_sec;
1717
1718 num_sec = elf_numsections (abfd);
1719 for (i = 1; i < num_sec; i++)
1720 {
1721 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1722 if (hdr2->sh_link == shindex)
1723 {
1724 /* Prevent endless recursion on broken objects. */
1725 if (i == shindex)
1726 return FALSE;
1727 if (! bfd_section_from_shdr (abfd, i))
1728 return FALSE;
1729 if (elf_onesymtab (abfd) == i)
1730 goto symtab_strtab;
1731 if (elf_dynsymtab (abfd) == i)
1732 goto dynsymtab_strtab;
1733 }
1734 }
1735 }
1736 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1737
1738 case SHT_REL:
1739 case SHT_RELA:
1740 /* *These* do a lot of work -- but build no sections! */
1741 {
1742 asection *target_sect;
1743 Elf_Internal_Shdr *hdr2;
1744 unsigned int num_sec = elf_numsections (abfd);
1745
1746 if (hdr->sh_entsize
1747 != (bfd_size_type) (hdr->sh_type == SHT_REL
1748 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1749 return FALSE;
1750
1751 /* Check for a bogus link to avoid crashing. */
1752 if (hdr->sh_link >= num_sec)
1753 {
1754 ((*_bfd_error_handler)
1755 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1756 abfd, hdr->sh_link, name, shindex));
1757 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1758 shindex);
1759 }
1760
1761 /* For some incomprehensible reason Oracle distributes
1762 libraries for Solaris in which some of the objects have
1763 bogus sh_link fields. It would be nice if we could just
1764 reject them, but, unfortunately, some people need to use
1765 them. We scan through the section headers; if we find only
1766 one suitable symbol table, we clobber the sh_link to point
1767 to it. I hope this doesn't break anything. */
1768 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1769 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1770 {
1771 unsigned int scan;
1772 int found;
1773
1774 found = 0;
1775 for (scan = 1; scan < num_sec; scan++)
1776 {
1777 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1778 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1779 {
1780 if (found != 0)
1781 {
1782 found = 0;
1783 break;
1784 }
1785 found = scan;
1786 }
1787 }
1788 if (found != 0)
1789 hdr->sh_link = found;
1790 }
1791
1792 /* Get the symbol table. */
1793 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1794 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1795 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1796 return FALSE;
1797
1798 /* If this reloc section does not use the main symbol table we
1799 don't treat it as a reloc section. BFD can't adequately
1800 represent such a section, so at least for now, we don't
1801 try. We just present it as a normal section. We also
1802 can't use it as a reloc section if it points to the null
1803 section, an invalid section, or another reloc section. */
1804 if (hdr->sh_link != elf_onesymtab (abfd)
1805 || hdr->sh_info == SHN_UNDEF
1806 || hdr->sh_info >= num_sec
1807 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1808 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1809 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1810 shindex);
1811
1812 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1813 return FALSE;
1814 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1815 if (target_sect == NULL)
1816 return FALSE;
1817
1818 if ((target_sect->flags & SEC_RELOC) == 0
1819 || target_sect->reloc_count == 0)
1820 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1821 else
1822 {
1823 bfd_size_type amt;
1824 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1825 amt = sizeof (*hdr2);
1826 hdr2 = bfd_alloc (abfd, amt);
1827 if (hdr2 == NULL)
1828 return FALSE;
1829 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1830 }
1831 *hdr2 = *hdr;
1832 elf_elfsections (abfd)[shindex] = hdr2;
1833 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1834 target_sect->flags |= SEC_RELOC;
1835 target_sect->relocation = NULL;
1836 target_sect->rel_filepos = hdr->sh_offset;
1837 /* In the section to which the relocations apply, mark whether
1838 its relocations are of the REL or RELA variety. */
1839 if (hdr->sh_size != 0)
1840 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1841 abfd->flags |= HAS_RELOC;
1842 return TRUE;
1843 }
1844
1845 case SHT_GNU_verdef:
1846 elf_dynverdef (abfd) = shindex;
1847 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1848 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1849
1850 case SHT_GNU_versym:
1851 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1852 return FALSE;
1853 elf_dynversym (abfd) = shindex;
1854 elf_tdata (abfd)->dynversym_hdr = *hdr;
1855 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1856
1857 case SHT_GNU_verneed:
1858 elf_dynverref (abfd) = shindex;
1859 elf_tdata (abfd)->dynverref_hdr = *hdr;
1860 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1861
1862 case SHT_SHLIB:
1863 return TRUE;
1864
1865 case SHT_GROUP:
1866 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1867 return FALSE;
1868 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1869 return FALSE;
1870 if (hdr->contents != NULL)
1871 {
1872 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1873 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1874 asection *s;
1875
1876 if (idx->flags & GRP_COMDAT)
1877 hdr->bfd_section->flags
1878 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1879
1880 /* We try to keep the same section order as it comes in. */
1881 idx += n_elt;
1882 while (--n_elt != 0)
1883 {
1884 --idx;
1885
1886 if (idx->shdr != NULL
1887 && (s = idx->shdr->bfd_section) != NULL
1888 && elf_next_in_group (s) != NULL)
1889 {
1890 elf_next_in_group (hdr->bfd_section) = s;
1891 break;
1892 }
1893 }
1894 }
1895 break;
1896
1897 default:
1898 /* Possibly an attributes section. */
1899 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1900 || hdr->sh_type == bed->obj_attrs_section_type)
1901 {
1902 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1903 return FALSE;
1904 _bfd_elf_parse_attributes (abfd, hdr);
1905 return TRUE;
1906 }
1907
1908 /* Check for any processor-specific section types. */
1909 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1910 return TRUE;
1911
1912 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1913 {
1914 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1915 /* FIXME: How to properly handle allocated section reserved
1916 for applications? */
1917 (*_bfd_error_handler)
1918 (_("%B: don't know how to handle allocated, application "
1919 "specific section `%s' [0x%8x]"),
1920 abfd, name, hdr->sh_type);
1921 else
1922 /* Allow sections reserved for applications. */
1923 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1924 shindex);
1925 }
1926 else if (hdr->sh_type >= SHT_LOPROC
1927 && hdr->sh_type <= SHT_HIPROC)
1928 /* FIXME: We should handle this section. */
1929 (*_bfd_error_handler)
1930 (_("%B: don't know how to handle processor specific section "
1931 "`%s' [0x%8x]"),
1932 abfd, name, hdr->sh_type);
1933 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1934 {
1935 /* Unrecognised OS-specific sections. */
1936 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1937 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1938 required to correctly process the section and the file should
1939 be rejected with an error message. */
1940 (*_bfd_error_handler)
1941 (_("%B: don't know how to handle OS specific section "
1942 "`%s' [0x%8x]"),
1943 abfd, name, hdr->sh_type);
1944 else
1945 /* Otherwise it should be processed. */
1946 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1947 }
1948 else
1949 /* FIXME: We should handle this section. */
1950 (*_bfd_error_handler)
1951 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1952 abfd, name, hdr->sh_type);
1953
1954 return FALSE;
1955 }
1956
1957 return TRUE;
1958 }
1959
1960 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1961 Return SEC for sections that have no elf section, and NULL on error. */
1962
1963 asection *
1964 bfd_section_from_r_symndx (bfd *abfd,
1965 struct sym_sec_cache *cache,
1966 asection *sec,
1967 unsigned long r_symndx)
1968 {
1969 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1970 asection *s;
1971
1972 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1973 {
1974 Elf_Internal_Shdr *symtab_hdr;
1975 unsigned char esym[sizeof (Elf64_External_Sym)];
1976 Elf_External_Sym_Shndx eshndx;
1977 Elf_Internal_Sym isym;
1978
1979 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1980 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1981 &isym, esym, &eshndx) == NULL)
1982 return NULL;
1983
1984 if (cache->abfd != abfd)
1985 {
1986 memset (cache->indx, -1, sizeof (cache->indx));
1987 cache->abfd = abfd;
1988 }
1989 cache->indx[ent] = r_symndx;
1990 cache->shndx[ent] = isym.st_shndx;
1991 }
1992
1993 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1994 if (s != NULL)
1995 return s;
1996
1997 return sec;
1998 }
1999
2000 /* Given an ELF section number, retrieve the corresponding BFD
2001 section. */
2002
2003 asection *
2004 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2005 {
2006 if (index >= elf_numsections (abfd))
2007 return NULL;
2008 return elf_elfsections (abfd)[index]->bfd_section;
2009 }
2010
2011 static const struct bfd_elf_special_section special_sections_b[] =
2012 {
2013 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2014 { NULL, 0, 0, 0, 0 }
2015 };
2016
2017 static const struct bfd_elf_special_section special_sections_c[] =
2018 {
2019 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2020 { NULL, 0, 0, 0, 0 }
2021 };
2022
2023 static const struct bfd_elf_special_section special_sections_d[] =
2024 {
2025 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2026 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2027 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2028 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2029 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2030 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2031 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2032 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2033 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2034 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2035 { NULL, 0, 0, 0, 0 }
2036 };
2037
2038 static const struct bfd_elf_special_section special_sections_f[] =
2039 {
2040 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2041 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2042 { NULL, 0, 0, 0, 0 }
2043 };
2044
2045 static const struct bfd_elf_special_section special_sections_g[] =
2046 {
2047 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2048 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2049 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2050 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2051 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2052 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2053 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2054 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2055 { NULL, 0, 0, 0, 0 }
2056 };
2057
2058 static const struct bfd_elf_special_section special_sections_h[] =
2059 {
2060 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2061 { NULL, 0, 0, 0, 0 }
2062 };
2063
2064 static const struct bfd_elf_special_section special_sections_i[] =
2065 {
2066 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2067 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2068 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2069 { NULL, 0, 0, 0, 0 }
2070 };
2071
2072 static const struct bfd_elf_special_section special_sections_l[] =
2073 {
2074 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2075 { NULL, 0, 0, 0, 0 }
2076 };
2077
2078 static const struct bfd_elf_special_section special_sections_n[] =
2079 {
2080 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2081 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2082 { NULL, 0, 0, 0, 0 }
2083 };
2084
2085 static const struct bfd_elf_special_section special_sections_p[] =
2086 {
2087 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2088 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2089 { NULL, 0, 0, 0, 0 }
2090 };
2091
2092 static const struct bfd_elf_special_section special_sections_r[] =
2093 {
2094 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2095 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2096 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2097 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2098 { NULL, 0, 0, 0, 0 }
2099 };
2100
2101 static const struct bfd_elf_special_section special_sections_s[] =
2102 {
2103 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2104 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2105 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2106 /* See struct bfd_elf_special_section declaration for the semantics of
2107 this special case where .prefix_length != strlen (.prefix). */
2108 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2109 { NULL, 0, 0, 0, 0 }
2110 };
2111
2112 static const struct bfd_elf_special_section special_sections_t[] =
2113 {
2114 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2115 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2116 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2117 { NULL, 0, 0, 0, 0 }
2118 };
2119
2120 static const struct bfd_elf_special_section special_sections_z[] =
2121 {
2122 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2123 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2124 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2125 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2126 { NULL, 0, 0, 0, 0 }
2127 };
2128
2129 static const struct bfd_elf_special_section *special_sections[] =
2130 {
2131 special_sections_b, /* 'b' */
2132 special_sections_c, /* 'c' */
2133 special_sections_d, /* 'd' */
2134 NULL, /* 'e' */
2135 special_sections_f, /* 'f' */
2136 special_sections_g, /* 'g' */
2137 special_sections_h, /* 'h' */
2138 special_sections_i, /* 'i' */
2139 NULL, /* 'j' */
2140 NULL, /* 'k' */
2141 special_sections_l, /* 'l' */
2142 NULL, /* 'm' */
2143 special_sections_n, /* 'n' */
2144 NULL, /* 'o' */
2145 special_sections_p, /* 'p' */
2146 NULL, /* 'q' */
2147 special_sections_r, /* 'r' */
2148 special_sections_s, /* 's' */
2149 special_sections_t, /* 't' */
2150 NULL, /* 'u' */
2151 NULL, /* 'v' */
2152 NULL, /* 'w' */
2153 NULL, /* 'x' */
2154 NULL, /* 'y' */
2155 special_sections_z /* 'z' */
2156 };
2157
2158 const struct bfd_elf_special_section *
2159 _bfd_elf_get_special_section (const char *name,
2160 const struct bfd_elf_special_section *spec,
2161 unsigned int rela)
2162 {
2163 int i;
2164 int len;
2165
2166 len = strlen (name);
2167
2168 for (i = 0; spec[i].prefix != NULL; i++)
2169 {
2170 int suffix_len;
2171 int prefix_len = spec[i].prefix_length;
2172
2173 if (len < prefix_len)
2174 continue;
2175 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2176 continue;
2177
2178 suffix_len = spec[i].suffix_length;
2179 if (suffix_len <= 0)
2180 {
2181 if (name[prefix_len] != 0)
2182 {
2183 if (suffix_len == 0)
2184 continue;
2185 if (name[prefix_len] != '.'
2186 && (suffix_len == -2
2187 || (rela && spec[i].type == SHT_REL)))
2188 continue;
2189 }
2190 }
2191 else
2192 {
2193 if (len < prefix_len + suffix_len)
2194 continue;
2195 if (memcmp (name + len - suffix_len,
2196 spec[i].prefix + prefix_len,
2197 suffix_len) != 0)
2198 continue;
2199 }
2200 return &spec[i];
2201 }
2202
2203 return NULL;
2204 }
2205
2206 const struct bfd_elf_special_section *
2207 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2208 {
2209 int i;
2210 const struct bfd_elf_special_section *spec;
2211 const struct elf_backend_data *bed;
2212
2213 /* See if this is one of the special sections. */
2214 if (sec->name == NULL)
2215 return NULL;
2216
2217 bed = get_elf_backend_data (abfd);
2218 spec = bed->special_sections;
2219 if (spec)
2220 {
2221 spec = _bfd_elf_get_special_section (sec->name,
2222 bed->special_sections,
2223 sec->use_rela_p);
2224 if (spec != NULL)
2225 return spec;
2226 }
2227
2228 if (sec->name[0] != '.')
2229 return NULL;
2230
2231 i = sec->name[1] - 'b';
2232 if (i < 0 || i > 'z' - 'b')
2233 return NULL;
2234
2235 spec = special_sections[i];
2236
2237 if (spec == NULL)
2238 return NULL;
2239
2240 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2241 }
2242
2243 bfd_boolean
2244 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2245 {
2246 struct bfd_elf_section_data *sdata;
2247 const struct elf_backend_data *bed;
2248 const struct bfd_elf_special_section *ssect;
2249
2250 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2251 if (sdata == NULL)
2252 {
2253 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2254 if (sdata == NULL)
2255 return FALSE;
2256 sec->used_by_bfd = sdata;
2257 }
2258
2259 /* Indicate whether or not this section should use RELA relocations. */
2260 bed = get_elf_backend_data (abfd);
2261 sec->use_rela_p = bed->default_use_rela_p;
2262
2263 /* When we read a file, we don't need to set ELF section type and
2264 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2265 anyway. We will set ELF section type and flags for all linker
2266 created sections. If user specifies BFD section flags, we will
2267 set ELF section type and flags based on BFD section flags in
2268 elf_fake_sections. */
2269 if ((!sec->flags && abfd->direction != read_direction)
2270 || (sec->flags & SEC_LINKER_CREATED) != 0)
2271 {
2272 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2273 if (ssect != NULL)
2274 {
2275 elf_section_type (sec) = ssect->type;
2276 elf_section_flags (sec) = ssect->attr;
2277 }
2278 }
2279
2280 return _bfd_generic_new_section_hook (abfd, sec);
2281 }
2282
2283 /* Create a new bfd section from an ELF program header.
2284
2285 Since program segments have no names, we generate a synthetic name
2286 of the form segment<NUM>, where NUM is generally the index in the
2287 program header table. For segments that are split (see below) we
2288 generate the names segment<NUM>a and segment<NUM>b.
2289
2290 Note that some program segments may have a file size that is different than
2291 (less than) the memory size. All this means is that at execution the
2292 system must allocate the amount of memory specified by the memory size,
2293 but only initialize it with the first "file size" bytes read from the
2294 file. This would occur for example, with program segments consisting
2295 of combined data+bss.
2296
2297 To handle the above situation, this routine generates TWO bfd sections
2298 for the single program segment. The first has the length specified by
2299 the file size of the segment, and the second has the length specified
2300 by the difference between the two sizes. In effect, the segment is split
2301 into its initialized and uninitialized parts.
2302
2303 */
2304
2305 bfd_boolean
2306 _bfd_elf_make_section_from_phdr (bfd *abfd,
2307 Elf_Internal_Phdr *hdr,
2308 int index,
2309 const char *typename)
2310 {
2311 asection *newsect;
2312 char *name;
2313 char namebuf[64];
2314 size_t len;
2315 int split;
2316
2317 split = ((hdr->p_memsz > 0)
2318 && (hdr->p_filesz > 0)
2319 && (hdr->p_memsz > hdr->p_filesz));
2320
2321 if (hdr->p_filesz > 0)
2322 {
2323 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2324 len = strlen (namebuf) + 1;
2325 name = bfd_alloc (abfd, len);
2326 if (!name)
2327 return FALSE;
2328 memcpy (name, namebuf, len);
2329 newsect = bfd_make_section (abfd, name);
2330 if (newsect == NULL)
2331 return FALSE;
2332 newsect->vma = hdr->p_vaddr;
2333 newsect->lma = hdr->p_paddr;
2334 newsect->size = hdr->p_filesz;
2335 newsect->filepos = hdr->p_offset;
2336 newsect->flags |= SEC_HAS_CONTENTS;
2337 newsect->alignment_power = bfd_log2 (hdr->p_align);
2338 if (hdr->p_type == PT_LOAD)
2339 {
2340 newsect->flags |= SEC_ALLOC;
2341 newsect->flags |= SEC_LOAD;
2342 if (hdr->p_flags & PF_X)
2343 {
2344 /* FIXME: all we known is that it has execute PERMISSION,
2345 may be data. */
2346 newsect->flags |= SEC_CODE;
2347 }
2348 }
2349 if (!(hdr->p_flags & PF_W))
2350 {
2351 newsect->flags |= SEC_READONLY;
2352 }
2353 }
2354
2355 if (hdr->p_memsz > hdr->p_filesz)
2356 {
2357 bfd_vma align;
2358
2359 sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
2360 len = strlen (namebuf) + 1;
2361 name = bfd_alloc (abfd, len);
2362 if (!name)
2363 return FALSE;
2364 memcpy (name, namebuf, len);
2365 newsect = bfd_make_section (abfd, name);
2366 if (newsect == NULL)
2367 return FALSE;
2368 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2369 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2370 newsect->size = hdr->p_memsz - hdr->p_filesz;
2371 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2372 align = newsect->vma & -newsect->vma;
2373 if (align == 0 || align > hdr->p_align)
2374 align = hdr->p_align;
2375 newsect->alignment_power = bfd_log2 (align);
2376 if (hdr->p_type == PT_LOAD)
2377 {
2378 /* Hack for gdb. Segments that have not been modified do
2379 not have their contents written to a core file, on the
2380 assumption that a debugger can find the contents in the
2381 executable. We flag this case by setting the fake
2382 section size to zero. Note that "real" bss sections will
2383 always have their contents dumped to the core file. */
2384 if (bfd_get_format (abfd) == bfd_core)
2385 newsect->size = 0;
2386 newsect->flags |= SEC_ALLOC;
2387 if (hdr->p_flags & PF_X)
2388 newsect->flags |= SEC_CODE;
2389 }
2390 if (!(hdr->p_flags & PF_W))
2391 newsect->flags |= SEC_READONLY;
2392 }
2393
2394 return TRUE;
2395 }
2396
2397 bfd_boolean
2398 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2399 {
2400 const struct elf_backend_data *bed;
2401
2402 switch (hdr->p_type)
2403 {
2404 case PT_NULL:
2405 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2406
2407 case PT_LOAD:
2408 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2409
2410 case PT_DYNAMIC:
2411 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2412
2413 case PT_INTERP:
2414 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2415
2416 case PT_NOTE:
2417 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2418 return FALSE;
2419 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2420 return FALSE;
2421 return TRUE;
2422
2423 case PT_SHLIB:
2424 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2425
2426 case PT_PHDR:
2427 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2428
2429 case PT_GNU_EH_FRAME:
2430 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2431 "eh_frame_hdr");
2432
2433 case PT_GNU_STACK:
2434 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2435
2436 case PT_GNU_RELRO:
2437 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2438
2439 default:
2440 /* Check for any processor-specific program segment types. */
2441 bed = get_elf_backend_data (abfd);
2442 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2443 }
2444 }
2445
2446 /* Initialize REL_HDR, the section-header for new section, containing
2447 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2448 relocations; otherwise, we use REL relocations. */
2449
2450 bfd_boolean
2451 _bfd_elf_init_reloc_shdr (bfd *abfd,
2452 Elf_Internal_Shdr *rel_hdr,
2453 asection *asect,
2454 bfd_boolean use_rela_p)
2455 {
2456 char *name;
2457 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2458 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2459
2460 name = bfd_alloc (abfd, amt);
2461 if (name == NULL)
2462 return FALSE;
2463 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2464 rel_hdr->sh_name =
2465 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2466 FALSE);
2467 if (rel_hdr->sh_name == (unsigned int) -1)
2468 return FALSE;
2469 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2470 rel_hdr->sh_entsize = (use_rela_p
2471 ? bed->s->sizeof_rela
2472 : bed->s->sizeof_rel);
2473 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2474 rel_hdr->sh_flags = 0;
2475 rel_hdr->sh_addr = 0;
2476 rel_hdr->sh_size = 0;
2477 rel_hdr->sh_offset = 0;
2478
2479 return TRUE;
2480 }
2481
2482 /* Set up an ELF internal section header for a section. */
2483
2484 static void
2485 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2486 {
2487 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2488 bfd_boolean *failedptr = failedptrarg;
2489 Elf_Internal_Shdr *this_hdr;
2490 unsigned int sh_type;
2491
2492 if (*failedptr)
2493 {
2494 /* We already failed; just get out of the bfd_map_over_sections
2495 loop. */
2496 return;
2497 }
2498
2499 this_hdr = &elf_section_data (asect)->this_hdr;
2500
2501 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2502 asect->name, FALSE);
2503 if (this_hdr->sh_name == (unsigned int) -1)
2504 {
2505 *failedptr = TRUE;
2506 return;
2507 }
2508
2509 /* Don't clear sh_flags. Assembler may set additional bits. */
2510
2511 if ((asect->flags & SEC_ALLOC) != 0
2512 || asect->user_set_vma)
2513 this_hdr->sh_addr = asect->vma;
2514 else
2515 this_hdr->sh_addr = 0;
2516
2517 this_hdr->sh_offset = 0;
2518 this_hdr->sh_size = asect->size;
2519 this_hdr->sh_link = 0;
2520 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2521 /* The sh_entsize and sh_info fields may have been set already by
2522 copy_private_section_data. */
2523
2524 this_hdr->bfd_section = asect;
2525 this_hdr->contents = NULL;
2526
2527 /* If the section type is unspecified, we set it based on
2528 asect->flags. */
2529 if ((asect->flags & SEC_GROUP) != 0)
2530 sh_type = SHT_GROUP;
2531 else if ((asect->flags & SEC_ALLOC) != 0
2532 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2533 || (asect->flags & SEC_NEVER_LOAD) != 0))
2534 sh_type = SHT_NOBITS;
2535 else
2536 sh_type = SHT_PROGBITS;
2537
2538 if (this_hdr->sh_type == SHT_NULL)
2539 this_hdr->sh_type = sh_type;
2540 else if (this_hdr->sh_type == SHT_NOBITS
2541 && sh_type == SHT_PROGBITS
2542 && (asect->flags & SEC_ALLOC) != 0)
2543 {
2544 /* Warn if we are changing a NOBITS section to PROGBITS, but
2545 allow the link to proceed. This can happen when users link
2546 non-bss input sections to bss output sections, or emit data
2547 to a bss output section via a linker script. */
2548 (*_bfd_error_handler)
2549 (_("warning: section `%A' type changed to PROGBITS"), asect);
2550 this_hdr->sh_type = sh_type;
2551 }
2552
2553 switch (this_hdr->sh_type)
2554 {
2555 default:
2556 break;
2557
2558 case SHT_STRTAB:
2559 case SHT_INIT_ARRAY:
2560 case SHT_FINI_ARRAY:
2561 case SHT_PREINIT_ARRAY:
2562 case SHT_NOTE:
2563 case SHT_NOBITS:
2564 case SHT_PROGBITS:
2565 break;
2566
2567 case SHT_HASH:
2568 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2569 break;
2570
2571 case SHT_DYNSYM:
2572 this_hdr->sh_entsize = bed->s->sizeof_sym;
2573 break;
2574
2575 case SHT_DYNAMIC:
2576 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2577 break;
2578
2579 case SHT_RELA:
2580 if (get_elf_backend_data (abfd)->may_use_rela_p)
2581 this_hdr->sh_entsize = bed->s->sizeof_rela;
2582 break;
2583
2584 case SHT_REL:
2585 if (get_elf_backend_data (abfd)->may_use_rel_p)
2586 this_hdr->sh_entsize = bed->s->sizeof_rel;
2587 break;
2588
2589 case SHT_GNU_versym:
2590 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2591 break;
2592
2593 case SHT_GNU_verdef:
2594 this_hdr->sh_entsize = 0;
2595 /* objcopy or strip will copy over sh_info, but may not set
2596 cverdefs. The linker will set cverdefs, but sh_info will be
2597 zero. */
2598 if (this_hdr->sh_info == 0)
2599 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2600 else
2601 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2602 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2603 break;
2604
2605 case SHT_GNU_verneed:
2606 this_hdr->sh_entsize = 0;
2607 /* objcopy or strip will copy over sh_info, but may not set
2608 cverrefs. The linker will set cverrefs, but sh_info will be
2609 zero. */
2610 if (this_hdr->sh_info == 0)
2611 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2612 else
2613 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2614 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2615 break;
2616
2617 case SHT_GROUP:
2618 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2619 break;
2620
2621 case SHT_GNU_HASH:
2622 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2623 break;
2624 }
2625
2626 if ((asect->flags & SEC_ALLOC) != 0)
2627 this_hdr->sh_flags |= SHF_ALLOC;
2628 if ((asect->flags & SEC_READONLY) == 0)
2629 this_hdr->sh_flags |= SHF_WRITE;
2630 if ((asect->flags & SEC_CODE) != 0)
2631 this_hdr->sh_flags |= SHF_EXECINSTR;
2632 if ((asect->flags & SEC_MERGE) != 0)
2633 {
2634 this_hdr->sh_flags |= SHF_MERGE;
2635 this_hdr->sh_entsize = asect->entsize;
2636 if ((asect->flags & SEC_STRINGS) != 0)
2637 this_hdr->sh_flags |= SHF_STRINGS;
2638 }
2639 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2640 this_hdr->sh_flags |= SHF_GROUP;
2641 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2642 {
2643 this_hdr->sh_flags |= SHF_TLS;
2644 if (asect->size == 0
2645 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2646 {
2647 struct bfd_link_order *o = asect->map_tail.link_order;
2648
2649 this_hdr->sh_size = 0;
2650 if (o != NULL)
2651 {
2652 this_hdr->sh_size = o->offset + o->size;
2653 if (this_hdr->sh_size != 0)
2654 this_hdr->sh_type = SHT_NOBITS;
2655 }
2656 }
2657 }
2658
2659 /* Check for processor-specific section types. */
2660 sh_type = this_hdr->sh_type;
2661 if (bed->elf_backend_fake_sections
2662 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2663 *failedptr = TRUE;
2664
2665 if (sh_type == SHT_NOBITS && asect->size != 0)
2666 {
2667 /* Don't change the header type from NOBITS if we are being
2668 called for objcopy --only-keep-debug. */
2669 this_hdr->sh_type = sh_type;
2670 }
2671
2672 /* If the section has relocs, set up a section header for the
2673 SHT_REL[A] section. If two relocation sections are required for
2674 this section, it is up to the processor-specific back-end to
2675 create the other. */
2676 if ((asect->flags & SEC_RELOC) != 0
2677 && !_bfd_elf_init_reloc_shdr (abfd,
2678 &elf_section_data (asect)->rel_hdr,
2679 asect,
2680 asect->use_rela_p))
2681 *failedptr = TRUE;
2682 }
2683
2684 /* Fill in the contents of a SHT_GROUP section. Called from
2685 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2686 when ELF targets use the generic linker, ld. Called for ld -r
2687 from bfd_elf_final_link. */
2688
2689 void
2690 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2691 {
2692 bfd_boolean *failedptr = failedptrarg;
2693 asection *elt, *first;
2694 unsigned char *loc;
2695 bfd_boolean gas;
2696
2697 /* Ignore linker created group section. See elfNN_ia64_object_p in
2698 elfxx-ia64.c. */
2699 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2700 || *failedptr)
2701 return;
2702
2703 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2704 {
2705 unsigned long symindx = 0;
2706
2707 /* elf_group_id will have been set up by objcopy and the
2708 generic linker. */
2709 if (elf_group_id (sec) != NULL)
2710 symindx = elf_group_id (sec)->udata.i;
2711
2712 if (symindx == 0)
2713 {
2714 /* If called from the assembler, swap_out_syms will have set up
2715 elf_section_syms. */
2716 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2717 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2718 }
2719 elf_section_data (sec)->this_hdr.sh_info = symindx;
2720 }
2721 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2722 {
2723 /* The ELF backend linker sets sh_info to -2 when the group
2724 signature symbol is global, and thus the index can't be
2725 set until all local symbols are output. */
2726 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2727 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2728 unsigned long symndx = sec_data->this_hdr.sh_info;
2729 unsigned long extsymoff = 0;
2730 struct elf_link_hash_entry *h;
2731
2732 if (!elf_bad_symtab (igroup->owner))
2733 {
2734 Elf_Internal_Shdr *symtab_hdr;
2735
2736 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2737 extsymoff = symtab_hdr->sh_info;
2738 }
2739 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2740 while (h->root.type == bfd_link_hash_indirect
2741 || h->root.type == bfd_link_hash_warning)
2742 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2743
2744 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2745 }
2746
2747 /* The contents won't be allocated for "ld -r" or objcopy. */
2748 gas = TRUE;
2749 if (sec->contents == NULL)
2750 {
2751 gas = FALSE;
2752 sec->contents = bfd_alloc (abfd, sec->size);
2753
2754 /* Arrange for the section to be written out. */
2755 elf_section_data (sec)->this_hdr.contents = sec->contents;
2756 if (sec->contents == NULL)
2757 {
2758 *failedptr = TRUE;
2759 return;
2760 }
2761 }
2762
2763 loc = sec->contents + sec->size;
2764
2765 /* Get the pointer to the first section in the group that gas
2766 squirreled away here. objcopy arranges for this to be set to the
2767 start of the input section group. */
2768 first = elt = elf_next_in_group (sec);
2769
2770 /* First element is a flag word. Rest of section is elf section
2771 indices for all the sections of the group. Write them backwards
2772 just to keep the group in the same order as given in .section
2773 directives, not that it matters. */
2774 while (elt != NULL)
2775 {
2776 asection *s;
2777 unsigned int idx;
2778
2779 loc -= 4;
2780 s = elt;
2781 if (!gas)
2782 s = s->output_section;
2783 idx = 0;
2784 if (s != NULL)
2785 idx = elf_section_data (s)->this_idx;
2786 H_PUT_32 (abfd, idx, loc);
2787 elt = elf_next_in_group (elt);
2788 if (elt == first)
2789 break;
2790 }
2791
2792 if ((loc -= 4) != sec->contents)
2793 abort ();
2794
2795 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2796 }
2797
2798 /* Assign all ELF section numbers. The dummy first section is handled here
2799 too. The link/info pointers for the standard section types are filled
2800 in here too, while we're at it. */
2801
2802 static bfd_boolean
2803 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2804 {
2805 struct elf_obj_tdata *t = elf_tdata (abfd);
2806 asection *sec;
2807 unsigned int section_number, secn;
2808 Elf_Internal_Shdr **i_shdrp;
2809 struct bfd_elf_section_data *d;
2810
2811 section_number = 1;
2812
2813 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2814
2815 /* SHT_GROUP sections are in relocatable files only. */
2816 if (link_info == NULL || link_info->relocatable)
2817 {
2818 /* Put SHT_GROUP sections first. */
2819 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2820 {
2821 d = elf_section_data (sec);
2822
2823 if (d->this_hdr.sh_type == SHT_GROUP)
2824 {
2825 if (sec->flags & SEC_LINKER_CREATED)
2826 {
2827 /* Remove the linker created SHT_GROUP sections. */
2828 bfd_section_list_remove (abfd, sec);
2829 abfd->section_count--;
2830 }
2831 else
2832 d->this_idx = section_number++;
2833 }
2834 }
2835 }
2836
2837 for (sec = abfd->sections; sec; sec = sec->next)
2838 {
2839 d = elf_section_data (sec);
2840
2841 if (d->this_hdr.sh_type != SHT_GROUP)
2842 d->this_idx = section_number++;
2843 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2844 if ((sec->flags & SEC_RELOC) == 0)
2845 d->rel_idx = 0;
2846 else
2847 {
2848 d->rel_idx = section_number++;
2849 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2850 }
2851
2852 if (d->rel_hdr2)
2853 {
2854 d->rel_idx2 = section_number++;
2855 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2856 }
2857 else
2858 d->rel_idx2 = 0;
2859 }
2860
2861 t->shstrtab_section = section_number++;
2862 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2863 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2864
2865 if (bfd_get_symcount (abfd) > 0)
2866 {
2867 t->symtab_section = section_number++;
2868 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2869 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2870 {
2871 t->symtab_shndx_section = section_number++;
2872 t->symtab_shndx_hdr.sh_name
2873 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2874 ".symtab_shndx", FALSE);
2875 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2876 return FALSE;
2877 }
2878 t->strtab_section = section_number++;
2879 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2880 }
2881
2882 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2883 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2884
2885 elf_numsections (abfd) = section_number;
2886 elf_elfheader (abfd)->e_shnum = section_number;
2887
2888 /* Set up the list of section header pointers, in agreement with the
2889 indices. */
2890 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2891 if (i_shdrp == NULL)
2892 return FALSE;
2893
2894 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2895 if (i_shdrp[0] == NULL)
2896 {
2897 bfd_release (abfd, i_shdrp);
2898 return FALSE;
2899 }
2900
2901 elf_elfsections (abfd) = i_shdrp;
2902
2903 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2904 if (bfd_get_symcount (abfd) > 0)
2905 {
2906 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2907 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
2908 {
2909 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2910 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2911 }
2912 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2913 t->symtab_hdr.sh_link = t->strtab_section;
2914 }
2915
2916 for (sec = abfd->sections; sec; sec = sec->next)
2917 {
2918 struct bfd_elf_section_data *d = elf_section_data (sec);
2919 asection *s;
2920 const char *name;
2921
2922 i_shdrp[d->this_idx] = &d->this_hdr;
2923 if (d->rel_idx != 0)
2924 i_shdrp[d->rel_idx] = &d->rel_hdr;
2925 if (d->rel_idx2 != 0)
2926 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2927
2928 /* Fill in the sh_link and sh_info fields while we're at it. */
2929
2930 /* sh_link of a reloc section is the section index of the symbol
2931 table. sh_info is the section index of the section to which
2932 the relocation entries apply. */
2933 if (d->rel_idx != 0)
2934 {
2935 d->rel_hdr.sh_link = t->symtab_section;
2936 d->rel_hdr.sh_info = d->this_idx;
2937 }
2938 if (d->rel_idx2 != 0)
2939 {
2940 d->rel_hdr2->sh_link = t->symtab_section;
2941 d->rel_hdr2->sh_info = d->this_idx;
2942 }
2943
2944 /* We need to set up sh_link for SHF_LINK_ORDER. */
2945 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2946 {
2947 s = elf_linked_to_section (sec);
2948 if (s)
2949 {
2950 /* elf_linked_to_section points to the input section. */
2951 if (link_info != NULL)
2952 {
2953 /* Check discarded linkonce section. */
2954 if (elf_discarded_section (s))
2955 {
2956 asection *kept;
2957 (*_bfd_error_handler)
2958 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2959 abfd, d->this_hdr.bfd_section,
2960 s, s->owner);
2961 /* Point to the kept section if it has the same
2962 size as the discarded one. */
2963 kept = _bfd_elf_check_kept_section (s, link_info);
2964 if (kept == NULL)
2965 {
2966 bfd_set_error (bfd_error_bad_value);
2967 return FALSE;
2968 }
2969 s = kept;
2970 }
2971
2972 s = s->output_section;
2973 BFD_ASSERT (s != NULL);
2974 }
2975 else
2976 {
2977 /* Handle objcopy. */
2978 if (s->output_section == NULL)
2979 {
2980 (*_bfd_error_handler)
2981 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2982 abfd, d->this_hdr.bfd_section, s, s->owner);
2983 bfd_set_error (bfd_error_bad_value);
2984 return FALSE;
2985 }
2986 s = s->output_section;
2987 }
2988 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2989 }
2990 else
2991 {
2992 /* PR 290:
2993 The Intel C compiler generates SHT_IA_64_UNWIND with
2994 SHF_LINK_ORDER. But it doesn't set the sh_link or
2995 sh_info fields. Hence we could get the situation
2996 where s is NULL. */
2997 const struct elf_backend_data *bed
2998 = get_elf_backend_data (abfd);
2999 if (bed->link_order_error_handler)
3000 bed->link_order_error_handler
3001 (_("%B: warning: sh_link not set for section `%A'"),
3002 abfd, sec);
3003 }
3004 }
3005
3006 switch (d->this_hdr.sh_type)
3007 {
3008 case SHT_REL:
3009 case SHT_RELA:
3010 /* A reloc section which we are treating as a normal BFD
3011 section. sh_link is the section index of the symbol
3012 table. sh_info is the section index of the section to
3013 which the relocation entries apply. We assume that an
3014 allocated reloc section uses the dynamic symbol table.
3015 FIXME: How can we be sure? */
3016 s = bfd_get_section_by_name (abfd, ".dynsym");
3017 if (s != NULL)
3018 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3019
3020 /* We look up the section the relocs apply to by name. */
3021 name = sec->name;
3022 if (d->this_hdr.sh_type == SHT_REL)
3023 name += 4;
3024 else
3025 name += 5;
3026 s = bfd_get_section_by_name (abfd, name);
3027 if (s != NULL)
3028 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3029 break;
3030
3031 case SHT_STRTAB:
3032 /* We assume that a section named .stab*str is a stabs
3033 string section. We look for a section with the same name
3034 but without the trailing ``str'', and set its sh_link
3035 field to point to this section. */
3036 if (CONST_STRNEQ (sec->name, ".stab")
3037 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3038 {
3039 size_t len;
3040 char *alc;
3041
3042 len = strlen (sec->name);
3043 alc = bfd_malloc (len - 2);
3044 if (alc == NULL)
3045 return FALSE;
3046 memcpy (alc, sec->name, len - 3);
3047 alc[len - 3] = '\0';
3048 s = bfd_get_section_by_name (abfd, alc);
3049 free (alc);
3050 if (s != NULL)
3051 {
3052 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3053
3054 /* This is a .stab section. */
3055 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3056 elf_section_data (s)->this_hdr.sh_entsize
3057 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3058 }
3059 }
3060 break;
3061
3062 case SHT_DYNAMIC:
3063 case SHT_DYNSYM:
3064 case SHT_GNU_verneed:
3065 case SHT_GNU_verdef:
3066 /* sh_link is the section header index of the string table
3067 used for the dynamic entries, or the symbol table, or the
3068 version strings. */
3069 s = bfd_get_section_by_name (abfd, ".dynstr");
3070 if (s != NULL)
3071 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3072 break;
3073
3074 case SHT_GNU_LIBLIST:
3075 /* sh_link is the section header index of the prelink library
3076 list used for the dynamic entries, or the symbol table, or
3077 the version strings. */
3078 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3079 ? ".dynstr" : ".gnu.libstr");
3080 if (s != NULL)
3081 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3082 break;
3083
3084 case SHT_HASH:
3085 case SHT_GNU_HASH:
3086 case SHT_GNU_versym:
3087 /* sh_link is the section header index of the symbol table
3088 this hash table or version table is for. */
3089 s = bfd_get_section_by_name (abfd, ".dynsym");
3090 if (s != NULL)
3091 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3092 break;
3093
3094 case SHT_GROUP:
3095 d->this_hdr.sh_link = t->symtab_section;
3096 }
3097 }
3098
3099 for (secn = 1; secn < section_number; ++secn)
3100 if (i_shdrp[secn] == NULL)
3101 i_shdrp[secn] = i_shdrp[0];
3102 else
3103 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3104 i_shdrp[secn]->sh_name);
3105 return TRUE;
3106 }
3107
3108 /* Map symbol from it's internal number to the external number, moving
3109 all local symbols to be at the head of the list. */
3110
3111 static bfd_boolean
3112 sym_is_global (bfd *abfd, asymbol *sym)
3113 {
3114 /* If the backend has a special mapping, use it. */
3115 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3116 if (bed->elf_backend_sym_is_global)
3117 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3118
3119 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3120 || bfd_is_und_section (bfd_get_section (sym))
3121 || bfd_is_com_section (bfd_get_section (sym)));
3122 }
3123
3124 /* Don't output section symbols for sections that are not going to be
3125 output. */
3126
3127 static bfd_boolean
3128 ignore_section_sym (bfd *abfd, asymbol *sym)
3129 {
3130 return ((sym->flags & BSF_SECTION_SYM) != 0
3131 && !(sym->section->owner == abfd
3132 || (sym->section->output_section->owner == abfd
3133 && sym->section->output_offset == 0)));
3134 }
3135
3136 static bfd_boolean
3137 elf_map_symbols (bfd *abfd)
3138 {
3139 unsigned int symcount = bfd_get_symcount (abfd);
3140 asymbol **syms = bfd_get_outsymbols (abfd);
3141 asymbol **sect_syms;
3142 unsigned int num_locals = 0;
3143 unsigned int num_globals = 0;
3144 unsigned int num_locals2 = 0;
3145 unsigned int num_globals2 = 0;
3146 int max_index = 0;
3147 unsigned int idx;
3148 asection *asect;
3149 asymbol **new_syms;
3150
3151 #ifdef DEBUG
3152 fprintf (stderr, "elf_map_symbols\n");
3153 fflush (stderr);
3154 #endif
3155
3156 for (asect = abfd->sections; asect; asect = asect->next)
3157 {
3158 if (max_index < asect->index)
3159 max_index = asect->index;
3160 }
3161
3162 max_index++;
3163 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3164 if (sect_syms == NULL)
3165 return FALSE;
3166 elf_section_syms (abfd) = sect_syms;
3167 elf_num_section_syms (abfd) = max_index;
3168
3169 /* Init sect_syms entries for any section symbols we have already
3170 decided to output. */
3171 for (idx = 0; idx < symcount; idx++)
3172 {
3173 asymbol *sym = syms[idx];
3174
3175 if ((sym->flags & BSF_SECTION_SYM) != 0
3176 && sym->value == 0
3177 && !ignore_section_sym (abfd, sym))
3178 {
3179 asection *sec = sym->section;
3180
3181 if (sec->owner != abfd)
3182 sec = sec->output_section;
3183
3184 sect_syms[sec->index] = syms[idx];
3185 }
3186 }
3187
3188 /* Classify all of the symbols. */
3189 for (idx = 0; idx < symcount; idx++)
3190 {
3191 if (ignore_section_sym (abfd, syms[idx]))
3192 continue;
3193 if (!sym_is_global (abfd, syms[idx]))
3194 num_locals++;
3195 else
3196 num_globals++;
3197 }
3198
3199 /* We will be adding a section symbol for each normal BFD section. Most
3200 sections will already have a section symbol in outsymbols, but
3201 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3202 at least in that case. */
3203 for (asect = abfd->sections; asect; asect = asect->next)
3204 {
3205 if (sect_syms[asect->index] == NULL)
3206 {
3207 if (!sym_is_global (abfd, asect->symbol))
3208 num_locals++;
3209 else
3210 num_globals++;
3211 }
3212 }
3213
3214 /* Now sort the symbols so the local symbols are first. */
3215 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3216
3217 if (new_syms == NULL)
3218 return FALSE;
3219
3220 for (idx = 0; idx < symcount; idx++)
3221 {
3222 asymbol *sym = syms[idx];
3223 unsigned int i;
3224
3225 if (ignore_section_sym (abfd, sym))
3226 continue;
3227 if (!sym_is_global (abfd, sym))
3228 i = num_locals2++;
3229 else
3230 i = num_locals + num_globals2++;
3231 new_syms[i] = sym;
3232 sym->udata.i = i + 1;
3233 }
3234 for (asect = abfd->sections; asect; asect = asect->next)
3235 {
3236 if (sect_syms[asect->index] == NULL)
3237 {
3238 asymbol *sym = asect->symbol;
3239 unsigned int i;
3240
3241 sect_syms[asect->index] = sym;
3242 if (!sym_is_global (abfd, sym))
3243 i = num_locals2++;
3244 else
3245 i = num_locals + num_globals2++;
3246 new_syms[i] = sym;
3247 sym->udata.i = i + 1;
3248 }
3249 }
3250
3251 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3252
3253 elf_num_locals (abfd) = num_locals;
3254 elf_num_globals (abfd) = num_globals;
3255 return TRUE;
3256 }
3257
3258 /* Align to the maximum file alignment that could be required for any
3259 ELF data structure. */
3260
3261 static inline file_ptr
3262 align_file_position (file_ptr off, int align)
3263 {
3264 return (off + align - 1) & ~(align - 1);
3265 }
3266
3267 /* Assign a file position to a section, optionally aligning to the
3268 required section alignment. */
3269
3270 file_ptr
3271 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3272 file_ptr offset,
3273 bfd_boolean align)
3274 {
3275 if (align && i_shdrp->sh_addralign > 1)
3276 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3277 i_shdrp->sh_offset = offset;
3278 if (i_shdrp->bfd_section != NULL)
3279 i_shdrp->bfd_section->filepos = offset;
3280 if (i_shdrp->sh_type != SHT_NOBITS)
3281 offset += i_shdrp->sh_size;
3282 return offset;
3283 }
3284
3285 /* Compute the file positions we are going to put the sections at, and
3286 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3287 is not NULL, this is being called by the ELF backend linker. */
3288
3289 bfd_boolean
3290 _bfd_elf_compute_section_file_positions (bfd *abfd,
3291 struct bfd_link_info *link_info)
3292 {
3293 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3294 bfd_boolean failed;
3295 struct bfd_strtab_hash *strtab = NULL;
3296 Elf_Internal_Shdr *shstrtab_hdr;
3297
3298 if (abfd->output_has_begun)
3299 return TRUE;
3300
3301 /* Do any elf backend specific processing first. */
3302 if (bed->elf_backend_begin_write_processing)
3303 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3304
3305 if (! prep_headers (abfd))
3306 return FALSE;
3307
3308 /* Post process the headers if necessary. */
3309 if (bed->elf_backend_post_process_headers)
3310 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3311
3312 failed = FALSE;
3313 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3314 if (failed)
3315 return FALSE;
3316
3317 if (!assign_section_numbers (abfd, link_info))
3318 return FALSE;
3319
3320 /* The backend linker builds symbol table information itself. */
3321 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3322 {
3323 /* Non-zero if doing a relocatable link. */
3324 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3325
3326 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3327 return FALSE;
3328 }
3329
3330 if (link_info == NULL)
3331 {
3332 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3333 if (failed)
3334 return FALSE;
3335 }
3336
3337 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3338 /* sh_name was set in prep_headers. */
3339 shstrtab_hdr->sh_type = SHT_STRTAB;
3340 shstrtab_hdr->sh_flags = 0;
3341 shstrtab_hdr->sh_addr = 0;
3342 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3343 shstrtab_hdr->sh_entsize = 0;
3344 shstrtab_hdr->sh_link = 0;
3345 shstrtab_hdr->sh_info = 0;
3346 /* sh_offset is set in assign_file_positions_except_relocs. */
3347 shstrtab_hdr->sh_addralign = 1;
3348
3349 if (!assign_file_positions_except_relocs (abfd, link_info))
3350 return FALSE;
3351
3352 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3353 {
3354 file_ptr off;
3355 Elf_Internal_Shdr *hdr;
3356
3357 off = elf_tdata (abfd)->next_file_pos;
3358
3359 hdr = &elf_tdata (abfd)->symtab_hdr;
3360 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3361
3362 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3363 if (hdr->sh_size != 0)
3364 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3365
3366 hdr = &elf_tdata (abfd)->strtab_hdr;
3367 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3368
3369 elf_tdata (abfd)->next_file_pos = off;
3370
3371 /* Now that we know where the .strtab section goes, write it
3372 out. */
3373 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3374 || ! _bfd_stringtab_emit (abfd, strtab))
3375 return FALSE;
3376 _bfd_stringtab_free (strtab);
3377 }
3378
3379 abfd->output_has_begun = TRUE;
3380
3381 return TRUE;
3382 }
3383
3384 /* Make an initial estimate of the size of the program header. If we
3385 get the number wrong here, we'll redo section placement. */
3386
3387 static bfd_size_type
3388 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3389 {
3390 size_t segs;
3391 asection *s;
3392 const struct elf_backend_data *bed;
3393
3394 /* Assume we will need exactly two PT_LOAD segments: one for text
3395 and one for data. */
3396 segs = 2;
3397
3398 s = bfd_get_section_by_name (abfd, ".interp");
3399 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3400 {
3401 /* If we have a loadable interpreter section, we need a
3402 PT_INTERP segment. In this case, assume we also need a
3403 PT_PHDR segment, although that may not be true for all
3404 targets. */
3405 segs += 2;
3406 }
3407
3408 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3409 {
3410 /* We need a PT_DYNAMIC segment. */
3411 ++segs;
3412 }
3413
3414 if (info != NULL && info->relro)
3415 {
3416 /* We need a PT_GNU_RELRO segment. */
3417 ++segs;
3418 }
3419
3420 if (elf_tdata (abfd)->eh_frame_hdr)
3421 {
3422 /* We need a PT_GNU_EH_FRAME segment. */
3423 ++segs;
3424 }
3425
3426 if (elf_tdata (abfd)->stack_flags)
3427 {
3428 /* We need a PT_GNU_STACK segment. */
3429 ++segs;
3430 }
3431
3432 for (s = abfd->sections; s != NULL; s = s->next)
3433 {
3434 if ((s->flags & SEC_LOAD) != 0
3435 && CONST_STRNEQ (s->name, ".note"))
3436 {
3437 /* We need a PT_NOTE segment. */
3438 ++segs;
3439 /* Try to create just one PT_NOTE segment
3440 for all adjacent loadable .note* sections.
3441 gABI requires that within a PT_NOTE segment
3442 (and also inside of each SHT_NOTE section)
3443 each note is padded to a multiple of 4 size,
3444 so we check whether the sections are correctly
3445 aligned. */
3446 if (s->alignment_power == 2)
3447 while (s->next != NULL
3448 && s->next->alignment_power == 2
3449 && (s->next->flags & SEC_LOAD) != 0
3450 && CONST_STRNEQ (s->next->name, ".note"))
3451 s = s->next;
3452 }
3453 }
3454
3455 for (s = abfd->sections; s != NULL; s = s->next)
3456 {
3457 if (s->flags & SEC_THREAD_LOCAL)
3458 {
3459 /* We need a PT_TLS segment. */
3460 ++segs;
3461 break;
3462 }
3463 }
3464
3465 /* Let the backend count up any program headers it might need. */
3466 bed = get_elf_backend_data (abfd);
3467 if (bed->elf_backend_additional_program_headers)
3468 {
3469 int a;
3470
3471 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3472 if (a == -1)
3473 abort ();
3474 segs += a;
3475 }
3476
3477 return segs * bed->s->sizeof_phdr;
3478 }
3479
3480 /* Find the segment that contains the output_section of section. */
3481
3482 Elf_Internal_Phdr *
3483 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3484 {
3485 struct elf_segment_map *m;
3486 Elf_Internal_Phdr *p;
3487
3488 for (m = elf_tdata (abfd)->segment_map,
3489 p = elf_tdata (abfd)->phdr;
3490 m != NULL;
3491 m = m->next, p++)
3492 {
3493 int i;
3494
3495 for (i = m->count - 1; i >= 0; i--)
3496 if (m->sections[i] == section)
3497 return p;
3498 }
3499
3500 return NULL;
3501 }
3502
3503 /* Create a mapping from a set of sections to a program segment. */
3504
3505 static struct elf_segment_map *
3506 make_mapping (bfd *abfd,
3507 asection **sections,
3508 unsigned int from,
3509 unsigned int to,
3510 bfd_boolean phdr)
3511 {
3512 struct elf_segment_map *m;
3513 unsigned int i;
3514 asection **hdrpp;
3515 bfd_size_type amt;
3516
3517 amt = sizeof (struct elf_segment_map);
3518 amt += (to - from - 1) * sizeof (asection *);
3519 m = bfd_zalloc (abfd, amt);
3520 if (m == NULL)
3521 return NULL;
3522 m->next = NULL;
3523 m->p_type = PT_LOAD;
3524 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3525 m->sections[i - from] = *hdrpp;
3526 m->count = to - from;
3527
3528 if (from == 0 && phdr)
3529 {
3530 /* Include the headers in the first PT_LOAD segment. */
3531 m->includes_filehdr = 1;
3532 m->includes_phdrs = 1;
3533 }
3534
3535 return m;
3536 }
3537
3538 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3539 on failure. */
3540
3541 struct elf_segment_map *
3542 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3543 {
3544 struct elf_segment_map *m;
3545
3546 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3547 if (m == NULL)
3548 return NULL;
3549 m->next = NULL;
3550 m->p_type = PT_DYNAMIC;
3551 m->count = 1;
3552 m->sections[0] = dynsec;
3553
3554 return m;
3555 }
3556
3557 /* Possibly add or remove segments from the segment map. */
3558
3559 static bfd_boolean
3560 elf_modify_segment_map (bfd *abfd,
3561 struct bfd_link_info *info,
3562 bfd_boolean remove_empty_load)
3563 {
3564 struct elf_segment_map **m;
3565 const struct elf_backend_data *bed;
3566
3567 /* The placement algorithm assumes that non allocated sections are
3568 not in PT_LOAD segments. We ensure this here by removing such
3569 sections from the segment map. We also remove excluded
3570 sections. Finally, any PT_LOAD segment without sections is
3571 removed. */
3572 m = &elf_tdata (abfd)->segment_map;
3573 while (*m)
3574 {
3575 unsigned int i, new_count;
3576
3577 for (new_count = 0, i = 0; i < (*m)->count; i++)
3578 {
3579 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3580 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3581 || (*m)->p_type != PT_LOAD))
3582 {
3583 (*m)->sections[new_count] = (*m)->sections[i];
3584 new_count++;
3585 }
3586 }
3587 (*m)->count = new_count;
3588
3589 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3590 *m = (*m)->next;
3591 else
3592 m = &(*m)->next;
3593 }
3594
3595 bed = get_elf_backend_data (abfd);
3596 if (bed->elf_backend_modify_segment_map != NULL)
3597 {
3598 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3599 return FALSE;
3600 }
3601
3602 return TRUE;
3603 }
3604
3605 /* Set up a mapping from BFD sections to program segments. */
3606
3607 bfd_boolean
3608 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3609 {
3610 unsigned int count;
3611 struct elf_segment_map *m;
3612 asection **sections = NULL;
3613 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3614 bfd_boolean no_user_phdrs;
3615
3616 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3617 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3618 {
3619 asection *s;
3620 unsigned int i;
3621 struct elf_segment_map *mfirst;
3622 struct elf_segment_map **pm;
3623 asection *last_hdr;
3624 bfd_vma last_size;
3625 unsigned int phdr_index;
3626 bfd_vma maxpagesize;
3627 asection **hdrpp;
3628 bfd_boolean phdr_in_segment = TRUE;
3629 bfd_boolean writable;
3630 int tls_count = 0;
3631 asection *first_tls = NULL;
3632 asection *dynsec, *eh_frame_hdr;
3633 bfd_size_type amt;
3634
3635 /* Select the allocated sections, and sort them. */
3636
3637 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3638 if (sections == NULL)
3639 goto error_return;
3640
3641 i = 0;
3642 for (s = abfd->sections; s != NULL; s = s->next)
3643 {
3644 if ((s->flags & SEC_ALLOC) != 0)
3645 {
3646 sections[i] = s;
3647 ++i;
3648 }
3649 }
3650 BFD_ASSERT (i <= bfd_count_sections (abfd));
3651 count = i;
3652
3653 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3654
3655 /* Build the mapping. */
3656
3657 mfirst = NULL;
3658 pm = &mfirst;
3659
3660 /* If we have a .interp section, then create a PT_PHDR segment for
3661 the program headers and a PT_INTERP segment for the .interp
3662 section. */
3663 s = bfd_get_section_by_name (abfd, ".interp");
3664 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3665 {
3666 amt = sizeof (struct elf_segment_map);
3667 m = bfd_zalloc (abfd, amt);
3668 if (m == NULL)
3669 goto error_return;
3670 m->next = NULL;
3671 m->p_type = PT_PHDR;
3672 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3673 m->p_flags = PF_R | PF_X;
3674 m->p_flags_valid = 1;
3675 m->includes_phdrs = 1;
3676
3677 *pm = m;
3678 pm = &m->next;
3679
3680 amt = sizeof (struct elf_segment_map);
3681 m = bfd_zalloc (abfd, amt);
3682 if (m == NULL)
3683 goto error_return;
3684 m->next = NULL;
3685 m->p_type = PT_INTERP;
3686 m->count = 1;
3687 m->sections[0] = s;
3688
3689 *pm = m;
3690 pm = &m->next;
3691 }
3692
3693 /* Look through the sections. We put sections in the same program
3694 segment when the start of the second section can be placed within
3695 a few bytes of the end of the first section. */
3696 last_hdr = NULL;
3697 last_size = 0;
3698 phdr_index = 0;
3699 maxpagesize = bed->maxpagesize;
3700 writable = FALSE;
3701 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3702 if (dynsec != NULL
3703 && (dynsec->flags & SEC_LOAD) == 0)
3704 dynsec = NULL;
3705
3706 /* Deal with -Ttext or something similar such that the first section
3707 is not adjacent to the program headers. This is an
3708 approximation, since at this point we don't know exactly how many
3709 program headers we will need. */
3710 if (count > 0)
3711 {
3712 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3713
3714 if (phdr_size == (bfd_size_type) -1)
3715 phdr_size = get_program_header_size (abfd, info);
3716 if ((abfd->flags & D_PAGED) == 0
3717 || sections[0]->lma < phdr_size
3718 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3719 phdr_in_segment = FALSE;
3720 }
3721
3722 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3723 {
3724 asection *hdr;
3725 bfd_boolean new_segment;
3726
3727 hdr = *hdrpp;
3728
3729 /* See if this section and the last one will fit in the same
3730 segment. */
3731
3732 if (last_hdr == NULL)
3733 {
3734 /* If we don't have a segment yet, then we don't need a new
3735 one (we build the last one after this loop). */
3736 new_segment = FALSE;
3737 }
3738 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3739 {
3740 /* If this section has a different relation between the
3741 virtual address and the load address, then we need a new
3742 segment. */
3743 new_segment = TRUE;
3744 }
3745 /* In the next test we have to be careful when last_hdr->lma is close
3746 to the end of the address space. If the aligned address wraps
3747 around to the start of the address space, then there are no more
3748 pages left in memory and it is OK to assume that the current
3749 section can be included in the current segment. */
3750 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3751 > last_hdr->lma)
3752 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3753 <= hdr->lma))
3754 {
3755 /* If putting this section in this segment would force us to
3756 skip a page in the segment, then we need a new segment. */
3757 new_segment = TRUE;
3758 }
3759 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3760 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3761 {
3762 /* We don't want to put a loadable section after a
3763 nonloadable section in the same segment.
3764 Consider .tbss sections as loadable for this purpose. */
3765 new_segment = TRUE;
3766 }
3767 else if ((abfd->flags & D_PAGED) == 0)
3768 {
3769 /* If the file is not demand paged, which means that we
3770 don't require the sections to be correctly aligned in the
3771 file, then there is no other reason for a new segment. */
3772 new_segment = FALSE;
3773 }
3774 else if (! writable
3775 && (hdr->flags & SEC_READONLY) == 0
3776 && (((last_hdr->lma + last_size - 1)
3777 & ~(maxpagesize - 1))
3778 != (hdr->lma & ~(maxpagesize - 1))))
3779 {
3780 /* We don't want to put a writable section in a read only
3781 segment, unless they are on the same page in memory
3782 anyhow. We already know that the last section does not
3783 bring us past the current section on the page, so the
3784 only case in which the new section is not on the same
3785 page as the previous section is when the previous section
3786 ends precisely on a page boundary. */
3787 new_segment = TRUE;
3788 }
3789 else
3790 {
3791 /* Otherwise, we can use the same segment. */
3792 new_segment = FALSE;
3793 }
3794
3795 /* Allow interested parties a chance to override our decision. */
3796 if (last_hdr != NULL
3797 && info != NULL
3798 && info->callbacks->override_segment_assignment != NULL)
3799 new_segment
3800 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3801 last_hdr,
3802 new_segment);
3803
3804 if (! new_segment)
3805 {
3806 if ((hdr->flags & SEC_READONLY) == 0)
3807 writable = TRUE;
3808 last_hdr = hdr;
3809 /* .tbss sections effectively have zero size. */
3810 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3811 != SEC_THREAD_LOCAL)
3812 last_size = hdr->size;
3813 else
3814 last_size = 0;
3815 continue;
3816 }
3817
3818 /* We need a new program segment. We must create a new program
3819 header holding all the sections from phdr_index until hdr. */
3820
3821 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3822 if (m == NULL)
3823 goto error_return;
3824
3825 *pm = m;
3826 pm = &m->next;
3827
3828 if ((hdr->flags & SEC_READONLY) == 0)
3829 writable = TRUE;
3830 else
3831 writable = FALSE;
3832
3833 last_hdr = hdr;
3834 /* .tbss sections effectively have zero size. */
3835 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3836 last_size = hdr->size;
3837 else
3838 last_size = 0;
3839 phdr_index = i;
3840 phdr_in_segment = FALSE;
3841 }
3842
3843 /* Create a final PT_LOAD program segment. */
3844 if (last_hdr != NULL)
3845 {
3846 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3847 if (m == NULL)
3848 goto error_return;
3849
3850 *pm = m;
3851 pm = &m->next;
3852 }
3853
3854 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3855 if (dynsec != NULL)
3856 {
3857 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3858 if (m == NULL)
3859 goto error_return;
3860 *pm = m;
3861 pm = &m->next;
3862 }
3863
3864 /* For each batch of consecutive loadable .note sections,
3865 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3866 because if we link together nonloadable .note sections and
3867 loadable .note sections, we will generate two .note sections
3868 in the output file. FIXME: Using names for section types is
3869 bogus anyhow. */
3870 for (s = abfd->sections; s != NULL; s = s->next)
3871 {
3872 if ((s->flags & SEC_LOAD) != 0
3873 && CONST_STRNEQ (s->name, ".note"))
3874 {
3875 asection *s2;
3876 unsigned count = 1;
3877 amt = sizeof (struct elf_segment_map);
3878 if (s->alignment_power == 2)
3879 for (s2 = s; s2->next != NULL; s2 = s2->next)
3880 {
3881 if (s2->next->alignment_power == 2
3882 && (s2->next->flags & SEC_LOAD) != 0
3883 && CONST_STRNEQ (s2->next->name, ".note")
3884 && align_power (s2->vma + s2->size, 2)
3885 == s2->next->vma)
3886 count++;
3887 else
3888 break;
3889 }
3890 amt += (count - 1) * sizeof (asection *);
3891 m = bfd_zalloc (abfd, amt);
3892 if (m == NULL)
3893 goto error_return;
3894 m->next = NULL;
3895 m->p_type = PT_NOTE;
3896 m->count = count;
3897 while (count > 1)
3898 {
3899 m->sections[m->count - count--] = s;
3900 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3901 s = s->next;
3902 }
3903 m->sections[m->count - 1] = s;
3904 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3905 *pm = m;
3906 pm = &m->next;
3907 }
3908 if (s->flags & SEC_THREAD_LOCAL)
3909 {
3910 if (! tls_count)
3911 first_tls = s;
3912 tls_count++;
3913 }
3914 }
3915
3916 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3917 if (tls_count > 0)
3918 {
3919 int i;
3920
3921 amt = sizeof (struct elf_segment_map);
3922 amt += (tls_count - 1) * sizeof (asection *);
3923 m = bfd_zalloc (abfd, amt);
3924 if (m == NULL)
3925 goto error_return;
3926 m->next = NULL;
3927 m->p_type = PT_TLS;
3928 m->count = tls_count;
3929 /* Mandated PF_R. */
3930 m->p_flags = PF_R;
3931 m->p_flags_valid = 1;
3932 for (i = 0; i < tls_count; ++i)
3933 {
3934 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3935 m->sections[i] = first_tls;
3936 first_tls = first_tls->next;
3937 }
3938
3939 *pm = m;
3940 pm = &m->next;
3941 }
3942
3943 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3944 segment. */
3945 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3946 if (eh_frame_hdr != NULL
3947 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3948 {
3949 amt = sizeof (struct elf_segment_map);
3950 m = bfd_zalloc (abfd, amt);
3951 if (m == NULL)
3952 goto error_return;
3953 m->next = NULL;
3954 m->p_type = PT_GNU_EH_FRAME;
3955 m->count = 1;
3956 m->sections[0] = eh_frame_hdr->output_section;
3957
3958 *pm = m;
3959 pm = &m->next;
3960 }
3961
3962 if (elf_tdata (abfd)->stack_flags)
3963 {
3964 amt = sizeof (struct elf_segment_map);
3965 m = bfd_zalloc (abfd, amt);
3966 if (m == NULL)
3967 goto error_return;
3968 m->next = NULL;
3969 m->p_type = PT_GNU_STACK;
3970 m->p_flags = elf_tdata (abfd)->stack_flags;
3971 m->p_flags_valid = 1;
3972
3973 *pm = m;
3974 pm = &m->next;
3975 }
3976
3977 if (info != NULL && info->relro)
3978 {
3979 for (m = mfirst; m != NULL; m = m->next)
3980 {
3981 if (m->p_type == PT_LOAD)
3982 {
3983 asection *last = m->sections[m->count - 1];
3984 bfd_vma vaddr = m->sections[0]->vma;
3985 bfd_vma filesz = last->vma - vaddr + last->size;
3986
3987 if (vaddr < info->relro_end
3988 && vaddr >= info->relro_start
3989 && (vaddr + filesz) >= info->relro_end)
3990 break;
3991 }
3992 }
3993
3994 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3995 if (m != NULL)
3996 {
3997 amt = sizeof (struct elf_segment_map);
3998 m = bfd_zalloc (abfd, amt);
3999 if (m == NULL)
4000 goto error_return;
4001 m->next = NULL;
4002 m->p_type = PT_GNU_RELRO;
4003 m->p_flags = PF_R;
4004 m->p_flags_valid = 1;
4005
4006 *pm = m;
4007 pm = &m->next;
4008 }
4009 }
4010
4011 free (sections);
4012 elf_tdata (abfd)->segment_map = mfirst;
4013 }
4014
4015 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4016 return FALSE;
4017
4018 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4019 ++count;
4020 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4021
4022 return TRUE;
4023
4024 error_return:
4025 if (sections != NULL)
4026 free (sections);
4027 return FALSE;
4028 }
4029
4030 /* Sort sections by address. */
4031
4032 static int
4033 elf_sort_sections (const void *arg1, const void *arg2)
4034 {
4035 const asection *sec1 = *(const asection **) arg1;
4036 const asection *sec2 = *(const asection **) arg2;
4037 bfd_size_type size1, size2;
4038
4039 /* Sort by LMA first, since this is the address used to
4040 place the section into a segment. */
4041 if (sec1->lma < sec2->lma)
4042 return -1;
4043 else if (sec1->lma > sec2->lma)
4044 return 1;
4045
4046 /* Then sort by VMA. Normally the LMA and the VMA will be
4047 the same, and this will do nothing. */
4048 if (sec1->vma < sec2->vma)
4049 return -1;
4050 else if (sec1->vma > sec2->vma)
4051 return 1;
4052
4053 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4054
4055 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4056
4057 if (TOEND (sec1))
4058 {
4059 if (TOEND (sec2))
4060 {
4061 /* If the indicies are the same, do not return 0
4062 here, but continue to try the next comparison. */
4063 if (sec1->target_index - sec2->target_index != 0)
4064 return sec1->target_index - sec2->target_index;
4065 }
4066 else
4067 return 1;
4068 }
4069 else if (TOEND (sec2))
4070 return -1;
4071
4072 #undef TOEND
4073
4074 /* Sort by size, to put zero sized sections
4075 before others at the same address. */
4076
4077 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4078 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4079
4080 if (size1 < size2)
4081 return -1;
4082 if (size1 > size2)
4083 return 1;
4084
4085 return sec1->target_index - sec2->target_index;
4086 }
4087
4088 /* Ian Lance Taylor writes:
4089
4090 We shouldn't be using % with a negative signed number. That's just
4091 not good. We have to make sure either that the number is not
4092 negative, or that the number has an unsigned type. When the types
4093 are all the same size they wind up as unsigned. When file_ptr is a
4094 larger signed type, the arithmetic winds up as signed long long,
4095 which is wrong.
4096
4097 What we're trying to say here is something like ``increase OFF by
4098 the least amount that will cause it to be equal to the VMA modulo
4099 the page size.'' */
4100 /* In other words, something like:
4101
4102 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4103 off_offset = off % bed->maxpagesize;
4104 if (vma_offset < off_offset)
4105 adjustment = vma_offset + bed->maxpagesize - off_offset;
4106 else
4107 adjustment = vma_offset - off_offset;
4108
4109 which can can be collapsed into the expression below. */
4110
4111 static file_ptr
4112 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4113 {
4114 return ((vma - off) % maxpagesize);
4115 }
4116
4117 static void
4118 print_segment_map (const struct elf_segment_map *m)
4119 {
4120 unsigned int j;
4121 const char *pt = get_segment_type (m->p_type);
4122 char buf[32];
4123
4124 if (pt == NULL)
4125 {
4126 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4127 sprintf (buf, "LOPROC+%7.7x",
4128 (unsigned int) (m->p_type - PT_LOPROC));
4129 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4130 sprintf (buf, "LOOS+%7.7x",
4131 (unsigned int) (m->p_type - PT_LOOS));
4132 else
4133 snprintf (buf, sizeof (buf), "%8.8x",
4134 (unsigned int) m->p_type);
4135 pt = buf;
4136 }
4137 fprintf (stderr, "%s:", pt);
4138 for (j = 0; j < m->count; j++)
4139 fprintf (stderr, " %s", m->sections [j]->name);
4140 putc ('\n',stderr);
4141 }
4142
4143 /* Assign file positions to the sections based on the mapping from
4144 sections to segments. This function also sets up some fields in
4145 the file header. */
4146
4147 static bfd_boolean
4148 assign_file_positions_for_load_sections (bfd *abfd,
4149 struct bfd_link_info *link_info)
4150 {
4151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4152 struct elf_segment_map *m;
4153 Elf_Internal_Phdr *phdrs;
4154 Elf_Internal_Phdr *p;
4155 file_ptr off;
4156 bfd_size_type maxpagesize;
4157 unsigned int alloc;
4158 unsigned int i, j;
4159
4160 if (link_info == NULL
4161 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4162 return FALSE;
4163
4164 alloc = 0;
4165 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4166 ++alloc;
4167
4168 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4169 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4170 elf_elfheader (abfd)->e_phnum = alloc;
4171
4172 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4173 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4174 else
4175 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4176 >= alloc * bed->s->sizeof_phdr);
4177
4178 if (alloc == 0)
4179 {
4180 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4181 return TRUE;
4182 }
4183
4184 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4185 elf_tdata (abfd)->phdr = phdrs;
4186 if (phdrs == NULL)
4187 return FALSE;
4188
4189 maxpagesize = 1;
4190 if ((abfd->flags & D_PAGED) != 0)
4191 maxpagesize = bed->maxpagesize;
4192
4193 off = bed->s->sizeof_ehdr;
4194 off += alloc * bed->s->sizeof_phdr;
4195
4196 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4197 m != NULL;
4198 m = m->next, p++, j++)
4199 {
4200 asection **secpp;
4201 bfd_vma off_adjust;
4202 bfd_boolean no_contents;
4203
4204 /* If elf_segment_map is not from map_sections_to_segments, the
4205 sections may not be correctly ordered. NOTE: sorting should
4206 not be done to the PT_NOTE section of a corefile, which may
4207 contain several pseudo-sections artificially created by bfd.
4208 Sorting these pseudo-sections breaks things badly. */
4209 if (m->count > 1
4210 && !(elf_elfheader (abfd)->e_type == ET_CORE
4211 && m->p_type == PT_NOTE))
4212 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4213 elf_sort_sections);
4214
4215 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4216 number of sections with contents contributing to both p_filesz
4217 and p_memsz, followed by a number of sections with no contents
4218 that just contribute to p_memsz. In this loop, OFF tracks next
4219 available file offset for PT_LOAD and PT_NOTE segments. */
4220 p->p_type = m->p_type;
4221 p->p_flags = m->p_flags;
4222
4223 if (m->count == 0)
4224 p->p_vaddr = 0;
4225 else
4226 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4227
4228 if (m->p_paddr_valid)
4229 p->p_paddr = m->p_paddr;
4230 else if (m->count == 0)
4231 p->p_paddr = 0;
4232 else
4233 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4234
4235 if (p->p_type == PT_LOAD
4236 && (abfd->flags & D_PAGED) != 0)
4237 {
4238 /* p_align in demand paged PT_LOAD segments effectively stores
4239 the maximum page size. When copying an executable with
4240 objcopy, we set m->p_align from the input file. Use this
4241 value for maxpagesize rather than bed->maxpagesize, which
4242 may be different. Note that we use maxpagesize for PT_TLS
4243 segment alignment later in this function, so we are relying
4244 on at least one PT_LOAD segment appearing before a PT_TLS
4245 segment. */
4246 if (m->p_align_valid)
4247 maxpagesize = m->p_align;
4248
4249 p->p_align = maxpagesize;
4250 }
4251 else if (m->p_align_valid)
4252 p->p_align = m->p_align;
4253 else if (m->count == 0)
4254 p->p_align = 1 << bed->s->log_file_align;
4255 else
4256 p->p_align = 0;
4257
4258 no_contents = FALSE;
4259 off_adjust = 0;
4260 if (p->p_type == PT_LOAD
4261 && m->count > 0)
4262 {
4263 bfd_size_type align;
4264 unsigned int align_power = 0;
4265
4266 if (m->p_align_valid)
4267 align = p->p_align;
4268 else
4269 {
4270 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4271 {
4272 unsigned int secalign;
4273
4274 secalign = bfd_get_section_alignment (abfd, *secpp);
4275 if (secalign > align_power)
4276 align_power = secalign;
4277 }
4278 align = (bfd_size_type) 1 << align_power;
4279 if (align < maxpagesize)
4280 align = maxpagesize;
4281 }
4282
4283 for (i = 0; i < m->count; i++)
4284 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4285 /* If we aren't making room for this section, then
4286 it must be SHT_NOBITS regardless of what we've
4287 set via struct bfd_elf_special_section. */
4288 elf_section_type (m->sections[i]) = SHT_NOBITS;
4289
4290 /* Find out whether this segment contains any loadable
4291 sections. */
4292 no_contents = TRUE;
4293 for (i = 0; i < m->count; i++)
4294 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4295 {
4296 no_contents = FALSE;
4297 break;
4298 }
4299
4300 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4301 off += off_adjust;
4302 if (no_contents)
4303 {
4304 /* We shouldn't need to align the segment on disk since
4305 the segment doesn't need file space, but the gABI
4306 arguably requires the alignment and glibc ld.so
4307 checks it. So to comply with the alignment
4308 requirement but not waste file space, we adjust
4309 p_offset for just this segment. (OFF_ADJUST is
4310 subtracted from OFF later.) This may put p_offset
4311 past the end of file, but that shouldn't matter. */
4312 }
4313 else
4314 off_adjust = 0;
4315 }
4316 /* Make sure the .dynamic section is the first section in the
4317 PT_DYNAMIC segment. */
4318 else if (p->p_type == PT_DYNAMIC
4319 && m->count > 1
4320 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4321 {
4322 _bfd_error_handler
4323 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4324 abfd);
4325 bfd_set_error (bfd_error_bad_value);
4326 return FALSE;
4327 }
4328 /* Set the note section type to SHT_NOTE. */
4329 else if (p->p_type == PT_NOTE)
4330 for (i = 0; i < m->count; i++)
4331 elf_section_type (m->sections[i]) = SHT_NOTE;
4332
4333 p->p_offset = 0;
4334 p->p_filesz = 0;
4335 p->p_memsz = 0;
4336
4337 if (m->includes_filehdr)
4338 {
4339 if (!m->p_flags_valid)
4340 p->p_flags |= PF_R;
4341 p->p_filesz = bed->s->sizeof_ehdr;
4342 p->p_memsz = bed->s->sizeof_ehdr;
4343 if (m->count > 0)
4344 {
4345 BFD_ASSERT (p->p_type == PT_LOAD);
4346
4347 if (p->p_vaddr < (bfd_vma) off)
4348 {
4349 (*_bfd_error_handler)
4350 (_("%B: Not enough room for program headers, try linking with -N"),
4351 abfd);
4352 bfd_set_error (bfd_error_bad_value);
4353 return FALSE;
4354 }
4355
4356 p->p_vaddr -= off;
4357 if (!m->p_paddr_valid)
4358 p->p_paddr -= off;
4359 }
4360 }
4361
4362 if (m->includes_phdrs)
4363 {
4364 if (!m->p_flags_valid)
4365 p->p_flags |= PF_R;
4366
4367 if (!m->includes_filehdr)
4368 {
4369 p->p_offset = bed->s->sizeof_ehdr;
4370
4371 if (m->count > 0)
4372 {
4373 BFD_ASSERT (p->p_type == PT_LOAD);
4374 p->p_vaddr -= off - p->p_offset;
4375 if (!m->p_paddr_valid)
4376 p->p_paddr -= off - p->p_offset;
4377 }
4378 }
4379
4380 p->p_filesz += alloc * bed->s->sizeof_phdr;
4381 p->p_memsz += alloc * bed->s->sizeof_phdr;
4382 }
4383
4384 if (p->p_type == PT_LOAD
4385 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4386 {
4387 if (!m->includes_filehdr && !m->includes_phdrs)
4388 p->p_offset = off;
4389 else
4390 {
4391 file_ptr adjust;
4392
4393 adjust = off - (p->p_offset + p->p_filesz);
4394 if (!no_contents)
4395 p->p_filesz += adjust;
4396 p->p_memsz += adjust;
4397 }
4398 }
4399
4400 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4401 maps. Set filepos for sections in PT_LOAD segments, and in
4402 core files, for sections in PT_NOTE segments.
4403 assign_file_positions_for_non_load_sections will set filepos
4404 for other sections and update p_filesz for other segments. */
4405 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4406 {
4407 asection *sec;
4408 bfd_size_type align;
4409 Elf_Internal_Shdr *this_hdr;
4410
4411 sec = *secpp;
4412 this_hdr = &elf_section_data (sec)->this_hdr;
4413 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4414
4415 if ((p->p_type == PT_LOAD
4416 || p->p_type == PT_TLS)
4417 && (this_hdr->sh_type != SHT_NOBITS
4418 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4419 && ((this_hdr->sh_flags & SHF_TLS) == 0
4420 || p->p_type == PT_TLS))))
4421 {
4422 bfd_signed_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
4423
4424 if (adjust < 0)
4425 {
4426 (*_bfd_error_handler)
4427 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4428 abfd, sec, (unsigned long) sec->vma);
4429 adjust = 0;
4430 }
4431 p->p_memsz += adjust;
4432
4433 if (this_hdr->sh_type != SHT_NOBITS)
4434 {
4435 off += adjust;
4436 p->p_filesz += adjust;
4437 }
4438 }
4439
4440 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4441 {
4442 /* The section at i == 0 is the one that actually contains
4443 everything. */
4444 if (i == 0)
4445 {
4446 this_hdr->sh_offset = sec->filepos = off;
4447 off += this_hdr->sh_size;
4448 p->p_filesz = this_hdr->sh_size;
4449 p->p_memsz = 0;
4450 p->p_align = 1;
4451 }
4452 else
4453 {
4454 /* The rest are fake sections that shouldn't be written. */
4455 sec->filepos = 0;
4456 sec->size = 0;
4457 sec->flags = 0;
4458 continue;
4459 }
4460 }
4461 else
4462 {
4463 if (p->p_type == PT_LOAD)
4464 {
4465 this_hdr->sh_offset = sec->filepos = off;
4466 if (this_hdr->sh_type != SHT_NOBITS)
4467 off += this_hdr->sh_size;
4468 }
4469
4470 if (this_hdr->sh_type != SHT_NOBITS)
4471 {
4472 p->p_filesz += this_hdr->sh_size;
4473 /* A load section without SHF_ALLOC is something like
4474 a note section in a PT_NOTE segment. These take
4475 file space but are not loaded into memory. */
4476 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4477 p->p_memsz += this_hdr->sh_size;
4478 }
4479 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4480 {
4481 if (p->p_type == PT_TLS)
4482 p->p_memsz += this_hdr->sh_size;
4483
4484 /* .tbss is special. It doesn't contribute to p_memsz of
4485 normal segments. */
4486 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4487 p->p_memsz += this_hdr->sh_size;
4488 }
4489
4490 if (align > p->p_align
4491 && !m->p_align_valid
4492 && (p->p_type != PT_LOAD
4493 || (abfd->flags & D_PAGED) == 0))
4494 p->p_align = align;
4495 }
4496
4497 if (!m->p_flags_valid)
4498 {
4499 p->p_flags |= PF_R;
4500 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4501 p->p_flags |= PF_X;
4502 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4503 p->p_flags |= PF_W;
4504 }
4505 }
4506 off -= off_adjust;
4507
4508 /* Check that all sections are in a PT_LOAD segment.
4509 Don't check funky gdb generated core files. */
4510 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4511 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4512 {
4513 Elf_Internal_Shdr *this_hdr;
4514 asection *sec;
4515
4516 sec = *secpp;
4517 this_hdr = &(elf_section_data(sec)->this_hdr);
4518 if (this_hdr->sh_size != 0
4519 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4520 {
4521 (*_bfd_error_handler)
4522 (_("%B: section `%A' can't be allocated in segment %d"),
4523 abfd, sec, j);
4524 print_segment_map (m);
4525 bfd_set_error (bfd_error_bad_value);
4526 return FALSE;
4527 }
4528 }
4529 }
4530
4531 elf_tdata (abfd)->next_file_pos = off;
4532 return TRUE;
4533 }
4534
4535 /* Assign file positions for the other sections. */
4536
4537 static bfd_boolean
4538 assign_file_positions_for_non_load_sections (bfd *abfd,
4539 struct bfd_link_info *link_info)
4540 {
4541 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4542 Elf_Internal_Shdr **i_shdrpp;
4543 Elf_Internal_Shdr **hdrpp;
4544 Elf_Internal_Phdr *phdrs;
4545 Elf_Internal_Phdr *p;
4546 struct elf_segment_map *m;
4547 bfd_vma filehdr_vaddr, filehdr_paddr;
4548 bfd_vma phdrs_vaddr, phdrs_paddr;
4549 file_ptr off;
4550 unsigned int num_sec;
4551 unsigned int i;
4552 unsigned int count;
4553
4554 i_shdrpp = elf_elfsections (abfd);
4555 num_sec = elf_numsections (abfd);
4556 off = elf_tdata (abfd)->next_file_pos;
4557 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4558 {
4559 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4560 Elf_Internal_Shdr *hdr;
4561
4562 hdr = *hdrpp;
4563 if (hdr->bfd_section != NULL
4564 && (hdr->bfd_section->filepos != 0
4565 || (hdr->sh_type == SHT_NOBITS
4566 && hdr->contents == NULL)))
4567 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4568 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4569 {
4570 if (hdr->sh_size != 0)
4571 ((*_bfd_error_handler)
4572 (_("%B: warning: allocated section `%s' not in segment"),
4573 abfd,
4574 (hdr->bfd_section == NULL
4575 ? "*unknown*"
4576 : hdr->bfd_section->name)));
4577 /* We don't need to page align empty sections. */
4578 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4579 off += vma_page_aligned_bias (hdr->sh_addr, off,
4580 bed->maxpagesize);
4581 else
4582 off += vma_page_aligned_bias (hdr->sh_addr, off,
4583 hdr->sh_addralign);
4584 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4585 FALSE);
4586 }
4587 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4588 && hdr->bfd_section == NULL)
4589 || hdr == i_shdrpp[tdata->symtab_section]
4590 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4591 || hdr == i_shdrpp[tdata->strtab_section])
4592 hdr->sh_offset = -1;
4593 else
4594 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4595 }
4596
4597 /* Now that we have set the section file positions, we can set up
4598 the file positions for the non PT_LOAD segments. */
4599 count = 0;
4600 filehdr_vaddr = 0;
4601 filehdr_paddr = 0;
4602 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4603 phdrs_paddr = 0;
4604 phdrs = elf_tdata (abfd)->phdr;
4605 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4606 m != NULL;
4607 m = m->next, p++)
4608 {
4609 ++count;
4610 if (p->p_type != PT_LOAD)
4611 continue;
4612
4613 if (m->includes_filehdr)
4614 {
4615 filehdr_vaddr = p->p_vaddr;
4616 filehdr_paddr = p->p_paddr;
4617 }
4618 if (m->includes_phdrs)
4619 {
4620 phdrs_vaddr = p->p_vaddr;
4621 phdrs_paddr = p->p_paddr;
4622 if (m->includes_filehdr)
4623 {
4624 phdrs_vaddr += bed->s->sizeof_ehdr;
4625 phdrs_paddr += bed->s->sizeof_ehdr;
4626 }
4627 }
4628 }
4629
4630 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4631 m != NULL;
4632 m = m->next, p++)
4633 {
4634 if (m->count != 0)
4635 {
4636 if (p->p_type != PT_LOAD
4637 && (p->p_type != PT_NOTE
4638 || bfd_get_format (abfd) != bfd_core))
4639 {
4640 Elf_Internal_Shdr *hdr;
4641 asection *sect;
4642
4643 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4644
4645 sect = m->sections[m->count - 1];
4646 hdr = &elf_section_data (sect)->this_hdr;
4647 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4648 if (hdr->sh_type != SHT_NOBITS)
4649 p->p_filesz += hdr->sh_size;
4650
4651 if (p->p_type == PT_GNU_RELRO)
4652 {
4653 /* When we get here, we are copying executable
4654 or shared library. But we need to use the same
4655 linker logic. */
4656 Elf_Internal_Phdr *lp;
4657
4658 for (lp = phdrs; lp < phdrs + count; ++lp)
4659 {
4660 if (lp->p_type == PT_LOAD
4661 && lp->p_paddr == p->p_paddr)
4662 break;
4663 }
4664
4665 if (lp < phdrs + count)
4666 {
4667 /* We should use p_size if it is valid since it
4668 may contain the first few bytes of the next
4669 SEC_ALLOC section. */
4670 if (m->p_size_valid)
4671 p->p_filesz = m->p_size;
4672 else
4673 abort ();
4674 p->p_vaddr = lp->p_vaddr;
4675 p->p_offset = lp->p_offset;
4676 p->p_memsz = p->p_filesz;
4677 p->p_align = 1;
4678 }
4679 else
4680 abort ();
4681 }
4682 else
4683 p->p_offset = m->sections[0]->filepos;
4684 }
4685 }
4686 else
4687 {
4688 if (m->includes_filehdr)
4689 {
4690 p->p_vaddr = filehdr_vaddr;
4691 if (! m->p_paddr_valid)
4692 p->p_paddr = filehdr_paddr;
4693 }
4694 else if (m->includes_phdrs)
4695 {
4696 p->p_vaddr = phdrs_vaddr;
4697 if (! m->p_paddr_valid)
4698 p->p_paddr = phdrs_paddr;
4699 }
4700 else if (p->p_type == PT_GNU_RELRO)
4701 {
4702 Elf_Internal_Phdr *lp;
4703
4704 for (lp = phdrs; lp < phdrs + count; ++lp)
4705 {
4706 if (lp->p_type == PT_LOAD
4707 && lp->p_vaddr <= link_info->relro_end
4708 && lp->p_vaddr >= link_info->relro_start
4709 && (lp->p_vaddr + lp->p_filesz
4710 >= link_info->relro_end))
4711 break;
4712 }
4713
4714 if (lp < phdrs + count
4715 && link_info->relro_end > lp->p_vaddr)
4716 {
4717 p->p_vaddr = lp->p_vaddr;
4718 p->p_paddr = lp->p_paddr;
4719 p->p_offset = lp->p_offset;
4720 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4721 p->p_memsz = p->p_filesz;
4722 p->p_align = 1;
4723 p->p_flags = (lp->p_flags & ~PF_W);
4724 }
4725 else
4726 {
4727 memset (p, 0, sizeof *p);
4728 p->p_type = PT_NULL;
4729 }
4730 }
4731 }
4732 }
4733
4734 elf_tdata (abfd)->next_file_pos = off;
4735
4736 return TRUE;
4737 }
4738
4739 /* Work out the file positions of all the sections. This is called by
4740 _bfd_elf_compute_section_file_positions. All the section sizes and
4741 VMAs must be known before this is called.
4742
4743 Reloc sections come in two flavours: Those processed specially as
4744 "side-channel" data attached to a section to which they apply, and
4745 those that bfd doesn't process as relocations. The latter sort are
4746 stored in a normal bfd section by bfd_section_from_shdr. We don't
4747 consider the former sort here, unless they form part of the loadable
4748 image. Reloc sections not assigned here will be handled later by
4749 assign_file_positions_for_relocs.
4750
4751 We also don't set the positions of the .symtab and .strtab here. */
4752
4753 static bfd_boolean
4754 assign_file_positions_except_relocs (bfd *abfd,
4755 struct bfd_link_info *link_info)
4756 {
4757 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4758 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4759 file_ptr off;
4760 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4761
4762 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4763 && bfd_get_format (abfd) != bfd_core)
4764 {
4765 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4766 unsigned int num_sec = elf_numsections (abfd);
4767 Elf_Internal_Shdr **hdrpp;
4768 unsigned int i;
4769
4770 /* Start after the ELF header. */
4771 off = i_ehdrp->e_ehsize;
4772
4773 /* We are not creating an executable, which means that we are
4774 not creating a program header, and that the actual order of
4775 the sections in the file is unimportant. */
4776 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4777 {
4778 Elf_Internal_Shdr *hdr;
4779
4780 hdr = *hdrpp;
4781 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4782 && hdr->bfd_section == NULL)
4783 || i == tdata->symtab_section
4784 || i == tdata->symtab_shndx_section
4785 || i == tdata->strtab_section)
4786 {
4787 hdr->sh_offset = -1;
4788 }
4789 else
4790 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4791 }
4792 }
4793 else
4794 {
4795 unsigned int alloc;
4796
4797 /* Assign file positions for the loaded sections based on the
4798 assignment of sections to segments. */
4799 if (!assign_file_positions_for_load_sections (abfd, link_info))
4800 return FALSE;
4801
4802 /* And for non-load sections. */
4803 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4804 return FALSE;
4805
4806 if (bed->elf_backend_modify_program_headers != NULL)
4807 {
4808 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4809 return FALSE;
4810 }
4811
4812 /* Write out the program headers. */
4813 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4814 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4815 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4816 return FALSE;
4817
4818 off = tdata->next_file_pos;
4819 }
4820
4821 /* Place the section headers. */
4822 off = align_file_position (off, 1 << bed->s->log_file_align);
4823 i_ehdrp->e_shoff = off;
4824 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4825
4826 tdata->next_file_pos = off;
4827
4828 return TRUE;
4829 }
4830
4831 static bfd_boolean
4832 prep_headers (bfd *abfd)
4833 {
4834 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4835 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4836 struct elf_strtab_hash *shstrtab;
4837 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4838
4839 i_ehdrp = elf_elfheader (abfd);
4840
4841 shstrtab = _bfd_elf_strtab_init ();
4842 if (shstrtab == NULL)
4843 return FALSE;
4844
4845 elf_shstrtab (abfd) = shstrtab;
4846
4847 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4848 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4849 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4850 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4851
4852 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4853 i_ehdrp->e_ident[EI_DATA] =
4854 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4855 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4856
4857 if ((abfd->flags & DYNAMIC) != 0)
4858 i_ehdrp->e_type = ET_DYN;
4859 else if ((abfd->flags & EXEC_P) != 0)
4860 i_ehdrp->e_type = ET_EXEC;
4861 else if (bfd_get_format (abfd) == bfd_core)
4862 i_ehdrp->e_type = ET_CORE;
4863 else
4864 i_ehdrp->e_type = ET_REL;
4865
4866 switch (bfd_get_arch (abfd))
4867 {
4868 case bfd_arch_unknown:
4869 i_ehdrp->e_machine = EM_NONE;
4870 break;
4871
4872 /* There used to be a long list of cases here, each one setting
4873 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4874 in the corresponding bfd definition. To avoid duplication,
4875 the switch was removed. Machines that need special handling
4876 can generally do it in elf_backend_final_write_processing(),
4877 unless they need the information earlier than the final write.
4878 Such need can generally be supplied by replacing the tests for
4879 e_machine with the conditions used to determine it. */
4880 default:
4881 i_ehdrp->e_machine = bed->elf_machine_code;
4882 }
4883
4884 i_ehdrp->e_version = bed->s->ev_current;
4885 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4886
4887 /* No program header, for now. */
4888 i_ehdrp->e_phoff = 0;
4889 i_ehdrp->e_phentsize = 0;
4890 i_ehdrp->e_phnum = 0;
4891
4892 /* Each bfd section is section header entry. */
4893 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4894 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4895
4896 /* If we're building an executable, we'll need a program header table. */
4897 if (abfd->flags & EXEC_P)
4898 /* It all happens later. */
4899 ;
4900 else
4901 {
4902 i_ehdrp->e_phentsize = 0;
4903 i_phdrp = 0;
4904 i_ehdrp->e_phoff = 0;
4905 }
4906
4907 elf_tdata (abfd)->symtab_hdr.sh_name =
4908 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4909 elf_tdata (abfd)->strtab_hdr.sh_name =
4910 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4911 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4912 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4913 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4914 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4915 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4916 return FALSE;
4917
4918 return TRUE;
4919 }
4920
4921 /* Assign file positions for all the reloc sections which are not part
4922 of the loadable file image. */
4923
4924 void
4925 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4926 {
4927 file_ptr off;
4928 unsigned int i, num_sec;
4929 Elf_Internal_Shdr **shdrpp;
4930
4931 off = elf_tdata (abfd)->next_file_pos;
4932
4933 num_sec = elf_numsections (abfd);
4934 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4935 {
4936 Elf_Internal_Shdr *shdrp;
4937
4938 shdrp = *shdrpp;
4939 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4940 && shdrp->sh_offset == -1)
4941 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4942 }
4943
4944 elf_tdata (abfd)->next_file_pos = off;
4945 }
4946
4947 bfd_boolean
4948 _bfd_elf_write_object_contents (bfd *abfd)
4949 {
4950 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4951 Elf_Internal_Ehdr *i_ehdrp;
4952 Elf_Internal_Shdr **i_shdrp;
4953 bfd_boolean failed;
4954 unsigned int count, num_sec;
4955
4956 if (! abfd->output_has_begun
4957 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4958 return FALSE;
4959
4960 i_shdrp = elf_elfsections (abfd);
4961 i_ehdrp = elf_elfheader (abfd);
4962
4963 failed = FALSE;
4964 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4965 if (failed)
4966 return FALSE;
4967
4968 _bfd_elf_assign_file_positions_for_relocs (abfd);
4969
4970 /* After writing the headers, we need to write the sections too... */
4971 num_sec = elf_numsections (abfd);
4972 for (count = 1; count < num_sec; count++)
4973 {
4974 if (bed->elf_backend_section_processing)
4975 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4976 if (i_shdrp[count]->contents)
4977 {
4978 bfd_size_type amt = i_shdrp[count]->sh_size;
4979
4980 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4981 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4982 return FALSE;
4983 }
4984 }
4985
4986 /* Write out the section header names. */
4987 if (elf_shstrtab (abfd) != NULL
4988 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4989 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4990 return FALSE;
4991
4992 if (bed->elf_backend_final_write_processing)
4993 (*bed->elf_backend_final_write_processing) (abfd,
4994 elf_tdata (abfd)->linker);
4995
4996 if (!bed->s->write_shdrs_and_ehdr (abfd))
4997 return FALSE;
4998
4999 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5000 if (elf_tdata (abfd)->after_write_object_contents)
5001 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5002
5003 return TRUE;
5004 }
5005
5006 bfd_boolean
5007 _bfd_elf_write_corefile_contents (bfd *abfd)
5008 {
5009 /* Hopefully this can be done just like an object file. */
5010 return _bfd_elf_write_object_contents (abfd);
5011 }
5012
5013 /* Given a section, search the header to find them. */
5014
5015 unsigned int
5016 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5017 {
5018 const struct elf_backend_data *bed;
5019 unsigned int index;
5020
5021 if (elf_section_data (asect) != NULL
5022 && elf_section_data (asect)->this_idx != 0)
5023 return elf_section_data (asect)->this_idx;
5024
5025 if (bfd_is_abs_section (asect))
5026 index = SHN_ABS;
5027 else if (bfd_is_com_section (asect))
5028 index = SHN_COMMON;
5029 else if (bfd_is_und_section (asect))
5030 index = SHN_UNDEF;
5031 else
5032 index = SHN_BAD;
5033
5034 bed = get_elf_backend_data (abfd);
5035 if (bed->elf_backend_section_from_bfd_section)
5036 {
5037 int retval = index;
5038
5039 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5040 return retval;
5041 }
5042
5043 if (index == SHN_BAD)
5044 bfd_set_error (bfd_error_nonrepresentable_section);
5045
5046 return index;
5047 }
5048
5049 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5050 on error. */
5051
5052 int
5053 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5054 {
5055 asymbol *asym_ptr = *asym_ptr_ptr;
5056 int idx;
5057 flagword flags = asym_ptr->flags;
5058
5059 /* When gas creates relocations against local labels, it creates its
5060 own symbol for the section, but does put the symbol into the
5061 symbol chain, so udata is 0. When the linker is generating
5062 relocatable output, this section symbol may be for one of the
5063 input sections rather than the output section. */
5064 if (asym_ptr->udata.i == 0
5065 && (flags & BSF_SECTION_SYM)
5066 && asym_ptr->section)
5067 {
5068 asection *sec;
5069 int indx;
5070
5071 sec = asym_ptr->section;
5072 if (sec->owner != abfd && sec->output_section != NULL)
5073 sec = sec->output_section;
5074 if (sec->owner == abfd
5075 && (indx = sec->index) < elf_num_section_syms (abfd)
5076 && elf_section_syms (abfd)[indx] != NULL)
5077 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5078 }
5079
5080 idx = asym_ptr->udata.i;
5081
5082 if (idx == 0)
5083 {
5084 /* This case can occur when using --strip-symbol on a symbol
5085 which is used in a relocation entry. */
5086 (*_bfd_error_handler)
5087 (_("%B: symbol `%s' required but not present"),
5088 abfd, bfd_asymbol_name (asym_ptr));
5089 bfd_set_error (bfd_error_no_symbols);
5090 return -1;
5091 }
5092
5093 #if DEBUG & 4
5094 {
5095 fprintf (stderr,
5096 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5097 (long) asym_ptr, asym_ptr->name, idx, flags,
5098 elf_symbol_flags (flags));
5099 fflush (stderr);
5100 }
5101 #endif
5102
5103 return idx;
5104 }
5105
5106 /* Rewrite program header information. */
5107
5108 static bfd_boolean
5109 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5110 {
5111 Elf_Internal_Ehdr *iehdr;
5112 struct elf_segment_map *map;
5113 struct elf_segment_map *map_first;
5114 struct elf_segment_map **pointer_to_map;
5115 Elf_Internal_Phdr *segment;
5116 asection *section;
5117 unsigned int i;
5118 unsigned int num_segments;
5119 bfd_boolean phdr_included = FALSE;
5120 bfd_boolean p_paddr_valid;
5121 bfd_vma maxpagesize;
5122 struct elf_segment_map *phdr_adjust_seg = NULL;
5123 unsigned int phdr_adjust_num = 0;
5124 const struct elf_backend_data *bed;
5125
5126 bed = get_elf_backend_data (ibfd);
5127 iehdr = elf_elfheader (ibfd);
5128
5129 map_first = NULL;
5130 pointer_to_map = &map_first;
5131
5132 num_segments = elf_elfheader (ibfd)->e_phnum;
5133 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5134
5135 /* Returns the end address of the segment + 1. */
5136 #define SEGMENT_END(segment, start) \
5137 (start + (segment->p_memsz > segment->p_filesz \
5138 ? segment->p_memsz : segment->p_filesz))
5139
5140 #define SECTION_SIZE(section, segment) \
5141 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5142 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5143 ? section->size : 0)
5144
5145 /* Returns TRUE if the given section is contained within
5146 the given segment. VMA addresses are compared. */
5147 #define IS_CONTAINED_BY_VMA(section, segment) \
5148 (section->vma >= segment->p_vaddr \
5149 && (section->vma + SECTION_SIZE (section, segment) \
5150 <= (SEGMENT_END (segment, segment->p_vaddr))))
5151
5152 /* Returns TRUE if the given section is contained within
5153 the given segment. LMA addresses are compared. */
5154 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5155 (section->lma >= base \
5156 && (section->lma + SECTION_SIZE (section, segment) \
5157 <= SEGMENT_END (segment, base)))
5158
5159 /* Handle PT_NOTE segment. */
5160 #define IS_NOTE(p, s) \
5161 (p->p_type == PT_NOTE \
5162 && elf_section_type (s) == SHT_NOTE \
5163 && (bfd_vma) s->filepos >= p->p_offset \
5164 && ((bfd_vma) s->filepos + s->size \
5165 <= p->p_offset + p->p_filesz))
5166
5167 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5168 etc. */
5169 #define IS_COREFILE_NOTE(p, s) \
5170 (IS_NOTE (p, s) \
5171 && bfd_get_format (ibfd) == bfd_core \
5172 && s->vma == 0 \
5173 && s->lma == 0)
5174
5175 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5176 linker, which generates a PT_INTERP section with p_vaddr and
5177 p_memsz set to 0. */
5178 #define IS_SOLARIS_PT_INTERP(p, s) \
5179 (p->p_vaddr == 0 \
5180 && p->p_paddr == 0 \
5181 && p->p_memsz == 0 \
5182 && p->p_filesz > 0 \
5183 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5184 && s->size > 0 \
5185 && (bfd_vma) s->filepos >= p->p_offset \
5186 && ((bfd_vma) s->filepos + s->size \
5187 <= p->p_offset + p->p_filesz))
5188
5189 /* Decide if the given section should be included in the given segment.
5190 A section will be included if:
5191 1. It is within the address space of the segment -- we use the LMA
5192 if that is set for the segment and the VMA otherwise,
5193 2. It is an allocated section or a NOTE section in a PT_NOTE
5194 segment.
5195 3. There is an output section associated with it,
5196 4. The section has not already been allocated to a previous segment.
5197 5. PT_GNU_STACK segments do not include any sections.
5198 6. PT_TLS segment includes only SHF_TLS sections.
5199 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5200 8. PT_DYNAMIC should not contain empty sections at the beginning
5201 (with the possible exception of .dynamic). */
5202 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5203 ((((segment->p_paddr \
5204 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5205 : IS_CONTAINED_BY_VMA (section, segment)) \
5206 && (section->flags & SEC_ALLOC) != 0) \
5207 || IS_NOTE (segment, section)) \
5208 && segment->p_type != PT_GNU_STACK \
5209 && (segment->p_type != PT_TLS \
5210 || (section->flags & SEC_THREAD_LOCAL)) \
5211 && (segment->p_type == PT_LOAD \
5212 || segment->p_type == PT_TLS \
5213 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5214 && (segment->p_type != PT_DYNAMIC \
5215 || SECTION_SIZE (section, segment) > 0 \
5216 || (segment->p_paddr \
5217 ? segment->p_paddr != section->lma \
5218 : segment->p_vaddr != section->vma) \
5219 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5220 == 0)) \
5221 && !section->segment_mark)
5222
5223 /* If the output section of a section in the input segment is NULL,
5224 it is removed from the corresponding output segment. */
5225 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5226 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5227 && section->output_section != NULL)
5228
5229 /* Returns TRUE iff seg1 starts after the end of seg2. */
5230 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5231 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5232
5233 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5234 their VMA address ranges and their LMA address ranges overlap.
5235 It is possible to have overlapping VMA ranges without overlapping LMA
5236 ranges. RedBoot images for example can have both .data and .bss mapped
5237 to the same VMA range, but with the .data section mapped to a different
5238 LMA. */
5239 #define SEGMENT_OVERLAPS(seg1, seg2) \
5240 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5241 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5242 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5243 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5244
5245 /* Initialise the segment mark field. */
5246 for (section = ibfd->sections; section != NULL; section = section->next)
5247 section->segment_mark = FALSE;
5248
5249 /* The Solaris linker creates program headers in which all the
5250 p_paddr fields are zero. When we try to objcopy or strip such a
5251 file, we get confused. Check for this case, and if we find it
5252 don't set the p_paddr_valid fields. */
5253 p_paddr_valid = FALSE;
5254 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5255 i < num_segments;
5256 i++, segment++)
5257 if (segment->p_paddr != 0)
5258 {
5259 p_paddr_valid = TRUE;
5260 break;
5261 }
5262
5263 /* Scan through the segments specified in the program header
5264 of the input BFD. For this first scan we look for overlaps
5265 in the loadable segments. These can be created by weird
5266 parameters to objcopy. Also, fix some solaris weirdness. */
5267 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5268 i < num_segments;
5269 i++, segment++)
5270 {
5271 unsigned int j;
5272 Elf_Internal_Phdr *segment2;
5273
5274 if (segment->p_type == PT_INTERP)
5275 for (section = ibfd->sections; section; section = section->next)
5276 if (IS_SOLARIS_PT_INTERP (segment, section))
5277 {
5278 /* Mininal change so that the normal section to segment
5279 assignment code will work. */
5280 segment->p_vaddr = section->vma;
5281 break;
5282 }
5283
5284 if (segment->p_type != PT_LOAD)
5285 {
5286 /* Remove PT_GNU_RELRO segment. */
5287 if (segment->p_type == PT_GNU_RELRO)
5288 segment->p_type = PT_NULL;
5289 continue;
5290 }
5291
5292 /* Determine if this segment overlaps any previous segments. */
5293 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5294 {
5295 bfd_signed_vma extra_length;
5296
5297 if (segment2->p_type != PT_LOAD
5298 || !SEGMENT_OVERLAPS (segment, segment2))
5299 continue;
5300
5301 /* Merge the two segments together. */
5302 if (segment2->p_vaddr < segment->p_vaddr)
5303 {
5304 /* Extend SEGMENT2 to include SEGMENT and then delete
5305 SEGMENT. */
5306 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5307 - SEGMENT_END (segment2, segment2->p_vaddr));
5308
5309 if (extra_length > 0)
5310 {
5311 segment2->p_memsz += extra_length;
5312 segment2->p_filesz += extra_length;
5313 }
5314
5315 segment->p_type = PT_NULL;
5316
5317 /* Since we have deleted P we must restart the outer loop. */
5318 i = 0;
5319 segment = elf_tdata (ibfd)->phdr;
5320 break;
5321 }
5322 else
5323 {
5324 /* Extend SEGMENT to include SEGMENT2 and then delete
5325 SEGMENT2. */
5326 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5327 - SEGMENT_END (segment, segment->p_vaddr));
5328
5329 if (extra_length > 0)
5330 {
5331 segment->p_memsz += extra_length;
5332 segment->p_filesz += extra_length;
5333 }
5334
5335 segment2->p_type = PT_NULL;
5336 }
5337 }
5338 }
5339
5340 /* The second scan attempts to assign sections to segments. */
5341 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5342 i < num_segments;
5343 i++, segment++)
5344 {
5345 unsigned int section_count;
5346 asection **sections;
5347 asection *output_section;
5348 unsigned int isec;
5349 bfd_vma matching_lma;
5350 bfd_vma suggested_lma;
5351 unsigned int j;
5352 bfd_size_type amt;
5353 asection *first_section;
5354 bfd_boolean first_matching_lma;
5355 bfd_boolean first_suggested_lma;
5356
5357 if (segment->p_type == PT_NULL)
5358 continue;
5359
5360 first_section = NULL;
5361 /* Compute how many sections might be placed into this segment. */
5362 for (section = ibfd->sections, section_count = 0;
5363 section != NULL;
5364 section = section->next)
5365 {
5366 /* Find the first section in the input segment, which may be
5367 removed from the corresponding output segment. */
5368 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5369 {
5370 if (first_section == NULL)
5371 first_section = section;
5372 if (section->output_section != NULL)
5373 ++section_count;
5374 }
5375 }
5376
5377 /* Allocate a segment map big enough to contain
5378 all of the sections we have selected. */
5379 amt = sizeof (struct elf_segment_map);
5380 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5381 map = bfd_zalloc (obfd, amt);
5382 if (map == NULL)
5383 return FALSE;
5384
5385 /* Initialise the fields of the segment map. Default to
5386 using the physical address of the segment in the input BFD. */
5387 map->next = NULL;
5388 map->p_type = segment->p_type;
5389 map->p_flags = segment->p_flags;
5390 map->p_flags_valid = 1;
5391
5392 /* If the first section in the input segment is removed, there is
5393 no need to preserve segment physical address in the corresponding
5394 output segment. */
5395 if (!first_section || first_section->output_section != NULL)
5396 {
5397 map->p_paddr = segment->p_paddr;
5398 map->p_paddr_valid = p_paddr_valid;
5399 }
5400
5401 /* Determine if this segment contains the ELF file header
5402 and if it contains the program headers themselves. */
5403 map->includes_filehdr = (segment->p_offset == 0
5404 && segment->p_filesz >= iehdr->e_ehsize);
5405 map->includes_phdrs = 0;
5406
5407 if (!phdr_included || segment->p_type != PT_LOAD)
5408 {
5409 map->includes_phdrs =
5410 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5411 && (segment->p_offset + segment->p_filesz
5412 >= ((bfd_vma) iehdr->e_phoff
5413 + iehdr->e_phnum * iehdr->e_phentsize)));
5414
5415 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5416 phdr_included = TRUE;
5417 }
5418
5419 if (section_count == 0)
5420 {
5421 /* Special segments, such as the PT_PHDR segment, may contain
5422 no sections, but ordinary, loadable segments should contain
5423 something. They are allowed by the ELF spec however, so only
5424 a warning is produced. */
5425 if (segment->p_type == PT_LOAD)
5426 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5427 " detected, is this intentional ?\n"),
5428 ibfd);
5429
5430 map->count = 0;
5431 *pointer_to_map = map;
5432 pointer_to_map = &map->next;
5433
5434 continue;
5435 }
5436
5437 /* Now scan the sections in the input BFD again and attempt
5438 to add their corresponding output sections to the segment map.
5439 The problem here is how to handle an output section which has
5440 been moved (ie had its LMA changed). There are four possibilities:
5441
5442 1. None of the sections have been moved.
5443 In this case we can continue to use the segment LMA from the
5444 input BFD.
5445
5446 2. All of the sections have been moved by the same amount.
5447 In this case we can change the segment's LMA to match the LMA
5448 of the first section.
5449
5450 3. Some of the sections have been moved, others have not.
5451 In this case those sections which have not been moved can be
5452 placed in the current segment which will have to have its size,
5453 and possibly its LMA changed, and a new segment or segments will
5454 have to be created to contain the other sections.
5455
5456 4. The sections have been moved, but not by the same amount.
5457 In this case we can change the segment's LMA to match the LMA
5458 of the first section and we will have to create a new segment
5459 or segments to contain the other sections.
5460
5461 In order to save time, we allocate an array to hold the section
5462 pointers that we are interested in. As these sections get assigned
5463 to a segment, they are removed from this array. */
5464
5465 sections = bfd_malloc2 (section_count, sizeof (asection *));
5466 if (sections == NULL)
5467 return FALSE;
5468
5469 /* Step One: Scan for segment vs section LMA conflicts.
5470 Also add the sections to the section array allocated above.
5471 Also add the sections to the current segment. In the common
5472 case, where the sections have not been moved, this means that
5473 we have completely filled the segment, and there is nothing
5474 more to do. */
5475 isec = 0;
5476 matching_lma = 0;
5477 suggested_lma = 0;
5478 first_matching_lma = TRUE;
5479 first_suggested_lma = TRUE;
5480
5481 for (section = ibfd->sections;
5482 section != NULL;
5483 section = section->next)
5484 if (section == first_section)
5485 break;
5486
5487 for (j = 0; section != NULL; section = section->next)
5488 {
5489 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5490 {
5491 output_section = section->output_section;
5492
5493 sections[j++] = section;
5494
5495 /* The Solaris native linker always sets p_paddr to 0.
5496 We try to catch that case here, and set it to the
5497 correct value. Note - some backends require that
5498 p_paddr be left as zero. */
5499 if (!p_paddr_valid
5500 && segment->p_vaddr != 0
5501 && !bed->want_p_paddr_set_to_zero
5502 && isec == 0
5503 && output_section->lma != 0
5504 && output_section->vma == (segment->p_vaddr
5505 + (map->includes_filehdr
5506 ? iehdr->e_ehsize
5507 : 0)
5508 + (map->includes_phdrs
5509 ? (iehdr->e_phnum
5510 * iehdr->e_phentsize)
5511 : 0)))
5512 map->p_paddr = segment->p_vaddr;
5513
5514 /* Match up the physical address of the segment with the
5515 LMA address of the output section. */
5516 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5517 || IS_COREFILE_NOTE (segment, section)
5518 || (bed->want_p_paddr_set_to_zero
5519 && IS_CONTAINED_BY_VMA (output_section, segment)))
5520 {
5521 if (first_matching_lma || output_section->lma < matching_lma)
5522 {
5523 matching_lma = output_section->lma;
5524 first_matching_lma = FALSE;
5525 }
5526
5527 /* We assume that if the section fits within the segment
5528 then it does not overlap any other section within that
5529 segment. */
5530 map->sections[isec++] = output_section;
5531 }
5532 else if (first_suggested_lma)
5533 {
5534 suggested_lma = output_section->lma;
5535 first_suggested_lma = FALSE;
5536 }
5537
5538 if (j == section_count)
5539 break;
5540 }
5541 }
5542
5543 BFD_ASSERT (j == section_count);
5544
5545 /* Step Two: Adjust the physical address of the current segment,
5546 if necessary. */
5547 if (isec == section_count)
5548 {
5549 /* All of the sections fitted within the segment as currently
5550 specified. This is the default case. Add the segment to
5551 the list of built segments and carry on to process the next
5552 program header in the input BFD. */
5553 map->count = section_count;
5554 *pointer_to_map = map;
5555 pointer_to_map = &map->next;
5556
5557 if (p_paddr_valid
5558 && !bed->want_p_paddr_set_to_zero
5559 && matching_lma != map->p_paddr
5560 && !map->includes_filehdr
5561 && !map->includes_phdrs)
5562 /* There is some padding before the first section in the
5563 segment. So, we must account for that in the output
5564 segment's vma. */
5565 map->p_vaddr_offset = matching_lma - map->p_paddr;
5566
5567 free (sections);
5568 continue;
5569 }
5570 else
5571 {
5572 if (!first_matching_lma)
5573 {
5574 /* At least one section fits inside the current segment.
5575 Keep it, but modify its physical address to match the
5576 LMA of the first section that fitted. */
5577 map->p_paddr = matching_lma;
5578 }
5579 else
5580 {
5581 /* None of the sections fitted inside the current segment.
5582 Change the current segment's physical address to match
5583 the LMA of the first section. */
5584 map->p_paddr = suggested_lma;
5585 }
5586
5587 /* Offset the segment physical address from the lma
5588 to allow for space taken up by elf headers. */
5589 if (map->includes_filehdr)
5590 {
5591 if (map->p_paddr >= iehdr->e_ehsize)
5592 map->p_paddr -= iehdr->e_ehsize;
5593 else
5594 {
5595 map->includes_filehdr = FALSE;
5596 map->includes_phdrs = FALSE;
5597 }
5598 }
5599
5600 if (map->includes_phdrs)
5601 {
5602 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5603 {
5604 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5605
5606 /* iehdr->e_phnum is just an estimate of the number
5607 of program headers that we will need. Make a note
5608 here of the number we used and the segment we chose
5609 to hold these headers, so that we can adjust the
5610 offset when we know the correct value. */
5611 phdr_adjust_num = iehdr->e_phnum;
5612 phdr_adjust_seg = map;
5613 }
5614 else
5615 map->includes_phdrs = FALSE;
5616 }
5617 }
5618
5619 /* Step Three: Loop over the sections again, this time assigning
5620 those that fit to the current segment and removing them from the
5621 sections array; but making sure not to leave large gaps. Once all
5622 possible sections have been assigned to the current segment it is
5623 added to the list of built segments and if sections still remain
5624 to be assigned, a new segment is constructed before repeating
5625 the loop. */
5626 isec = 0;
5627 do
5628 {
5629 map->count = 0;
5630 suggested_lma = 0;
5631 first_suggested_lma = TRUE;
5632
5633 /* Fill the current segment with sections that fit. */
5634 for (j = 0; j < section_count; j++)
5635 {
5636 section = sections[j];
5637
5638 if (section == NULL)
5639 continue;
5640
5641 output_section = section->output_section;
5642
5643 BFD_ASSERT (output_section != NULL);
5644
5645 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5646 || IS_COREFILE_NOTE (segment, section))
5647 {
5648 if (map->count == 0)
5649 {
5650 /* If the first section in a segment does not start at
5651 the beginning of the segment, then something is
5652 wrong. */
5653 if (output_section->lma
5654 != (map->p_paddr
5655 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5656 + (map->includes_phdrs
5657 ? iehdr->e_phnum * iehdr->e_phentsize
5658 : 0)))
5659 abort ();
5660 }
5661 else
5662 {
5663 asection *prev_sec;
5664
5665 prev_sec = map->sections[map->count - 1];
5666
5667 /* If the gap between the end of the previous section
5668 and the start of this section is more than
5669 maxpagesize then we need to start a new segment. */
5670 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5671 maxpagesize)
5672 < BFD_ALIGN (output_section->lma, maxpagesize))
5673 || (prev_sec->lma + prev_sec->size
5674 > output_section->lma))
5675 {
5676 if (first_suggested_lma)
5677 {
5678 suggested_lma = output_section->lma;
5679 first_suggested_lma = FALSE;
5680 }
5681
5682 continue;
5683 }
5684 }
5685
5686 map->sections[map->count++] = output_section;
5687 ++isec;
5688 sections[j] = NULL;
5689 section->segment_mark = TRUE;
5690 }
5691 else if (first_suggested_lma)
5692 {
5693 suggested_lma = output_section->lma;
5694 first_suggested_lma = FALSE;
5695 }
5696 }
5697
5698 BFD_ASSERT (map->count > 0);
5699
5700 /* Add the current segment to the list of built segments. */
5701 *pointer_to_map = map;
5702 pointer_to_map = &map->next;
5703
5704 if (isec < section_count)
5705 {
5706 /* We still have not allocated all of the sections to
5707 segments. Create a new segment here, initialise it
5708 and carry on looping. */
5709 amt = sizeof (struct elf_segment_map);
5710 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5711 map = bfd_alloc (obfd, amt);
5712 if (map == NULL)
5713 {
5714 free (sections);
5715 return FALSE;
5716 }
5717
5718 /* Initialise the fields of the segment map. Set the physical
5719 physical address to the LMA of the first section that has
5720 not yet been assigned. */
5721 map->next = NULL;
5722 map->p_type = segment->p_type;
5723 map->p_flags = segment->p_flags;
5724 map->p_flags_valid = 1;
5725 map->p_paddr = suggested_lma;
5726 map->p_paddr_valid = p_paddr_valid;
5727 map->includes_filehdr = 0;
5728 map->includes_phdrs = 0;
5729 }
5730 }
5731 while (isec < section_count);
5732
5733 free (sections);
5734 }
5735
5736 elf_tdata (obfd)->segment_map = map_first;
5737
5738 /* If we had to estimate the number of program headers that were
5739 going to be needed, then check our estimate now and adjust
5740 the offset if necessary. */
5741 if (phdr_adjust_seg != NULL)
5742 {
5743 unsigned int count;
5744
5745 for (count = 0, map = map_first; map != NULL; map = map->next)
5746 count++;
5747
5748 if (count > phdr_adjust_num)
5749 phdr_adjust_seg->p_paddr
5750 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5751 }
5752
5753 #undef SEGMENT_END
5754 #undef SECTION_SIZE
5755 #undef IS_CONTAINED_BY_VMA
5756 #undef IS_CONTAINED_BY_LMA
5757 #undef IS_NOTE
5758 #undef IS_COREFILE_NOTE
5759 #undef IS_SOLARIS_PT_INTERP
5760 #undef IS_SECTION_IN_INPUT_SEGMENT
5761 #undef INCLUDE_SECTION_IN_SEGMENT
5762 #undef SEGMENT_AFTER_SEGMENT
5763 #undef SEGMENT_OVERLAPS
5764 return TRUE;
5765 }
5766
5767 /* Copy ELF program header information. */
5768
5769 static bfd_boolean
5770 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5771 {
5772 Elf_Internal_Ehdr *iehdr;
5773 struct elf_segment_map *map;
5774 struct elf_segment_map *map_first;
5775 struct elf_segment_map **pointer_to_map;
5776 Elf_Internal_Phdr *segment;
5777 unsigned int i;
5778 unsigned int num_segments;
5779 bfd_boolean phdr_included = FALSE;
5780 bfd_boolean p_paddr_valid;
5781
5782 iehdr = elf_elfheader (ibfd);
5783
5784 map_first = NULL;
5785 pointer_to_map = &map_first;
5786
5787 /* If all the segment p_paddr fields are zero, don't set
5788 map->p_paddr_valid. */
5789 p_paddr_valid = FALSE;
5790 num_segments = elf_elfheader (ibfd)->e_phnum;
5791 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5792 i < num_segments;
5793 i++, segment++)
5794 if (segment->p_paddr != 0)
5795 {
5796 p_paddr_valid = TRUE;
5797 break;
5798 }
5799
5800 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5801 i < num_segments;
5802 i++, segment++)
5803 {
5804 asection *section;
5805 unsigned int section_count;
5806 bfd_size_type amt;
5807 Elf_Internal_Shdr *this_hdr;
5808 asection *first_section = NULL;
5809 asection *lowest_section = NULL;
5810
5811 /* Compute how many sections are in this segment. */
5812 for (section = ibfd->sections, section_count = 0;
5813 section != NULL;
5814 section = section->next)
5815 {
5816 this_hdr = &(elf_section_data(section)->this_hdr);
5817 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5818 {
5819 if (!first_section)
5820 first_section = lowest_section = section;
5821 if (section->lma < lowest_section->lma)
5822 lowest_section = section;
5823 section_count++;
5824 }
5825 }
5826
5827 /* Allocate a segment map big enough to contain
5828 all of the sections we have selected. */
5829 amt = sizeof (struct elf_segment_map);
5830 if (section_count != 0)
5831 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5832 map = bfd_zalloc (obfd, amt);
5833 if (map == NULL)
5834 return FALSE;
5835
5836 /* Initialize the fields of the output segment map with the
5837 input segment. */
5838 map->next = NULL;
5839 map->p_type = segment->p_type;
5840 map->p_flags = segment->p_flags;
5841 map->p_flags_valid = 1;
5842 map->p_paddr = segment->p_paddr;
5843 map->p_paddr_valid = p_paddr_valid;
5844 map->p_align = segment->p_align;
5845 map->p_align_valid = 1;
5846 map->p_vaddr_offset = 0;
5847
5848 if (map->p_type == PT_GNU_RELRO
5849 && segment->p_filesz == segment->p_memsz)
5850 {
5851 /* The PT_GNU_RELRO segment may contain the first a few
5852 bytes in the .got.plt section even if the whole .got.plt
5853 section isn't in the PT_GNU_RELRO segment. We won't
5854 change the size of the PT_GNU_RELRO segment. */
5855 map->p_size = segment->p_filesz;
5856 map->p_size_valid = 1;
5857 }
5858
5859 /* Determine if this segment contains the ELF file header
5860 and if it contains the program headers themselves. */
5861 map->includes_filehdr = (segment->p_offset == 0
5862 && segment->p_filesz >= iehdr->e_ehsize);
5863
5864 map->includes_phdrs = 0;
5865 if (! phdr_included || segment->p_type != PT_LOAD)
5866 {
5867 map->includes_phdrs =
5868 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5869 && (segment->p_offset + segment->p_filesz
5870 >= ((bfd_vma) iehdr->e_phoff
5871 + iehdr->e_phnum * iehdr->e_phentsize)));
5872
5873 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5874 phdr_included = TRUE;
5875 }
5876
5877 if (!map->includes_phdrs
5878 && !map->includes_filehdr
5879 && map->p_paddr_valid)
5880 /* There is some other padding before the first section. */
5881 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5882 - segment->p_paddr);
5883
5884 if (section_count != 0)
5885 {
5886 unsigned int isec = 0;
5887
5888 for (section = first_section;
5889 section != NULL;
5890 section = section->next)
5891 {
5892 this_hdr = &(elf_section_data(section)->this_hdr);
5893 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5894 {
5895 map->sections[isec++] = section->output_section;
5896 if (isec == section_count)
5897 break;
5898 }
5899 }
5900 }
5901
5902 map->count = section_count;
5903 *pointer_to_map = map;
5904 pointer_to_map = &map->next;
5905 }
5906
5907 elf_tdata (obfd)->segment_map = map_first;
5908 return TRUE;
5909 }
5910
5911 /* Copy private BFD data. This copies or rewrites ELF program header
5912 information. */
5913
5914 static bfd_boolean
5915 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5916 {
5917 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5918 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5919 return TRUE;
5920
5921 if (elf_tdata (ibfd)->phdr == NULL)
5922 return TRUE;
5923
5924 if (ibfd->xvec == obfd->xvec)
5925 {
5926 /* Check to see if any sections in the input BFD
5927 covered by ELF program header have changed. */
5928 Elf_Internal_Phdr *segment;
5929 asection *section, *osec;
5930 unsigned int i, num_segments;
5931 Elf_Internal_Shdr *this_hdr;
5932 const struct elf_backend_data *bed;
5933
5934 bed = get_elf_backend_data (ibfd);
5935
5936 /* Regenerate the segment map if p_paddr is set to 0. */
5937 if (bed->want_p_paddr_set_to_zero)
5938 goto rewrite;
5939
5940 /* Initialize the segment mark field. */
5941 for (section = obfd->sections; section != NULL;
5942 section = section->next)
5943 section->segment_mark = FALSE;
5944
5945 num_segments = elf_elfheader (ibfd)->e_phnum;
5946 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5947 i < num_segments;
5948 i++, segment++)
5949 {
5950 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5951 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5952 which severly confuses things, so always regenerate the segment
5953 map in this case. */
5954 if (segment->p_paddr == 0
5955 && segment->p_memsz == 0
5956 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5957 goto rewrite;
5958
5959 for (section = ibfd->sections;
5960 section != NULL; section = section->next)
5961 {
5962 /* We mark the output section so that we know it comes
5963 from the input BFD. */
5964 osec = section->output_section;
5965 if (osec)
5966 osec->segment_mark = TRUE;
5967
5968 /* Check if this section is covered by the segment. */
5969 this_hdr = &(elf_section_data(section)->this_hdr);
5970 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5971 {
5972 /* FIXME: Check if its output section is changed or
5973 removed. What else do we need to check? */
5974 if (osec == NULL
5975 || section->flags != osec->flags
5976 || section->lma != osec->lma
5977 || section->vma != osec->vma
5978 || section->size != osec->size
5979 || section->rawsize != osec->rawsize
5980 || section->alignment_power != osec->alignment_power)
5981 goto rewrite;
5982 }
5983 }
5984 }
5985
5986 /* Check to see if any output section do not come from the
5987 input BFD. */
5988 for (section = obfd->sections; section != NULL;
5989 section = section->next)
5990 {
5991 if (section->segment_mark == FALSE)
5992 goto rewrite;
5993 else
5994 section->segment_mark = FALSE;
5995 }
5996
5997 return copy_elf_program_header (ibfd, obfd);
5998 }
5999
6000 rewrite:
6001 return rewrite_elf_program_header (ibfd, obfd);
6002 }
6003
6004 /* Initialize private output section information from input section. */
6005
6006 bfd_boolean
6007 _bfd_elf_init_private_section_data (bfd *ibfd,
6008 asection *isec,
6009 bfd *obfd,
6010 asection *osec,
6011 struct bfd_link_info *link_info)
6012
6013 {
6014 Elf_Internal_Shdr *ihdr, *ohdr;
6015 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
6016
6017 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6018 || obfd->xvec->flavour != bfd_target_elf_flavour)
6019 return TRUE;
6020
6021 /* Don't copy the output ELF section type from input if the
6022 output BFD section flags have been set to something different.
6023 elf_fake_sections will set ELF section type based on BFD
6024 section flags. */
6025 if (elf_section_type (osec) == SHT_NULL
6026 && (osec->flags == isec->flags || !osec->flags))
6027 elf_section_type (osec) = elf_section_type (isec);
6028
6029 /* FIXME: Is this correct for all OS/PROC specific flags? */
6030 elf_section_flags (osec) |= (elf_section_flags (isec)
6031 & (SHF_MASKOS | SHF_MASKPROC));
6032
6033 /* Set things up for objcopy and relocatable link. The output
6034 SHT_GROUP section will have its elf_next_in_group pointing back
6035 to the input group members. Ignore linker created group section.
6036 See elfNN_ia64_object_p in elfxx-ia64.c. */
6037 if (need_group)
6038 {
6039 if (elf_sec_group (isec) == NULL
6040 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6041 {
6042 if (elf_section_flags (isec) & SHF_GROUP)
6043 elf_section_flags (osec) |= SHF_GROUP;
6044 elf_next_in_group (osec) = elf_next_in_group (isec);
6045 elf_section_data (osec)->group = elf_section_data (isec)->group;
6046 }
6047 }
6048
6049 ihdr = &elf_section_data (isec)->this_hdr;
6050
6051 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6052 don't use the output section of the linked-to section since it
6053 may be NULL at this point. */
6054 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6055 {
6056 ohdr = &elf_section_data (osec)->this_hdr;
6057 ohdr->sh_flags |= SHF_LINK_ORDER;
6058 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6059 }
6060
6061 osec->use_rela_p = isec->use_rela_p;
6062
6063 return TRUE;
6064 }
6065
6066 /* Copy private section information. This copies over the entsize
6067 field, and sometimes the info field. */
6068
6069 bfd_boolean
6070 _bfd_elf_copy_private_section_data (bfd *ibfd,
6071 asection *isec,
6072 bfd *obfd,
6073 asection *osec)
6074 {
6075 Elf_Internal_Shdr *ihdr, *ohdr;
6076
6077 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6078 || obfd->xvec->flavour != bfd_target_elf_flavour)
6079 return TRUE;
6080
6081 ihdr = &elf_section_data (isec)->this_hdr;
6082 ohdr = &elf_section_data (osec)->this_hdr;
6083
6084 ohdr->sh_entsize = ihdr->sh_entsize;
6085
6086 if (ihdr->sh_type == SHT_SYMTAB
6087 || ihdr->sh_type == SHT_DYNSYM
6088 || ihdr->sh_type == SHT_GNU_verneed
6089 || ihdr->sh_type == SHT_GNU_verdef)
6090 ohdr->sh_info = ihdr->sh_info;
6091
6092 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6093 NULL);
6094 }
6095
6096 /* Copy private header information. */
6097
6098 bfd_boolean
6099 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6100 {
6101 asection *isec;
6102
6103 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6104 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6105 return TRUE;
6106
6107 /* Copy over private BFD data if it has not already been copied.
6108 This must be done here, rather than in the copy_private_bfd_data
6109 entry point, because the latter is called after the section
6110 contents have been set, which means that the program headers have
6111 already been worked out. */
6112 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6113 {
6114 if (! copy_private_bfd_data (ibfd, obfd))
6115 return FALSE;
6116 }
6117
6118 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6119 but this might be wrong if we deleted the group section. */
6120 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6121 if (elf_section_type (isec) == SHT_GROUP
6122 && isec->output_section == NULL)
6123 {
6124 asection *first = elf_next_in_group (isec);
6125 asection *s = first;
6126 while (s != NULL)
6127 {
6128 if (s->output_section != NULL)
6129 {
6130 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6131 elf_group_name (s->output_section) = NULL;
6132 }
6133 s = elf_next_in_group (s);
6134 if (s == first)
6135 break;
6136 }
6137 }
6138
6139 return TRUE;
6140 }
6141
6142 /* Copy private symbol information. If this symbol is in a section
6143 which we did not map into a BFD section, try to map the section
6144 index correctly. We use special macro definitions for the mapped
6145 section indices; these definitions are interpreted by the
6146 swap_out_syms function. */
6147
6148 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6149 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6150 #define MAP_STRTAB (SHN_HIOS + 3)
6151 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6152 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6153
6154 bfd_boolean
6155 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6156 asymbol *isymarg,
6157 bfd *obfd,
6158 asymbol *osymarg)
6159 {
6160 elf_symbol_type *isym, *osym;
6161
6162 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6163 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6164 return TRUE;
6165
6166 isym = elf_symbol_from (ibfd, isymarg);
6167 osym = elf_symbol_from (obfd, osymarg);
6168
6169 if (isym != NULL
6170 && isym->internal_elf_sym.st_shndx != 0
6171 && osym != NULL
6172 && bfd_is_abs_section (isym->symbol.section))
6173 {
6174 unsigned int shndx;
6175
6176 shndx = isym->internal_elf_sym.st_shndx;
6177 if (shndx == elf_onesymtab (ibfd))
6178 shndx = MAP_ONESYMTAB;
6179 else if (shndx == elf_dynsymtab (ibfd))
6180 shndx = MAP_DYNSYMTAB;
6181 else if (shndx == elf_tdata (ibfd)->strtab_section)
6182 shndx = MAP_STRTAB;
6183 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6184 shndx = MAP_SHSTRTAB;
6185 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6186 shndx = MAP_SYM_SHNDX;
6187 osym->internal_elf_sym.st_shndx = shndx;
6188 }
6189
6190 return TRUE;
6191 }
6192
6193 /* Swap out the symbols. */
6194
6195 static bfd_boolean
6196 swap_out_syms (bfd *abfd,
6197 struct bfd_strtab_hash **sttp,
6198 int relocatable_p)
6199 {
6200 const struct elf_backend_data *bed;
6201 int symcount;
6202 asymbol **syms;
6203 struct bfd_strtab_hash *stt;
6204 Elf_Internal_Shdr *symtab_hdr;
6205 Elf_Internal_Shdr *symtab_shndx_hdr;
6206 Elf_Internal_Shdr *symstrtab_hdr;
6207 bfd_byte *outbound_syms;
6208 bfd_byte *outbound_shndx;
6209 int idx;
6210 bfd_size_type amt;
6211 bfd_boolean name_local_sections;
6212
6213 if (!elf_map_symbols (abfd))
6214 return FALSE;
6215
6216 /* Dump out the symtabs. */
6217 stt = _bfd_elf_stringtab_init ();
6218 if (stt == NULL)
6219 return FALSE;
6220
6221 bed = get_elf_backend_data (abfd);
6222 symcount = bfd_get_symcount (abfd);
6223 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6224 symtab_hdr->sh_type = SHT_SYMTAB;
6225 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6226 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6227 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6228 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6229
6230 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6231 symstrtab_hdr->sh_type = SHT_STRTAB;
6232
6233 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6234 if (outbound_syms == NULL)
6235 {
6236 _bfd_stringtab_free (stt);
6237 return FALSE;
6238 }
6239 symtab_hdr->contents = outbound_syms;
6240
6241 outbound_shndx = NULL;
6242 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6243 if (symtab_shndx_hdr->sh_name != 0)
6244 {
6245 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6246 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6247 sizeof (Elf_External_Sym_Shndx));
6248 if (outbound_shndx == NULL)
6249 {
6250 _bfd_stringtab_free (stt);
6251 return FALSE;
6252 }
6253
6254 symtab_shndx_hdr->contents = outbound_shndx;
6255 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6256 symtab_shndx_hdr->sh_size = amt;
6257 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6258 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6259 }
6260
6261 /* Now generate the data (for "contents"). */
6262 {
6263 /* Fill in zeroth symbol and swap it out. */
6264 Elf_Internal_Sym sym;
6265 sym.st_name = 0;
6266 sym.st_value = 0;
6267 sym.st_size = 0;
6268 sym.st_info = 0;
6269 sym.st_other = 0;
6270 sym.st_shndx = SHN_UNDEF;
6271 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6272 outbound_syms += bed->s->sizeof_sym;
6273 if (outbound_shndx != NULL)
6274 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6275 }
6276
6277 name_local_sections
6278 = (bed->elf_backend_name_local_section_symbols
6279 && bed->elf_backend_name_local_section_symbols (abfd));
6280
6281 syms = bfd_get_outsymbols (abfd);
6282 for (idx = 0; idx < symcount; idx++)
6283 {
6284 Elf_Internal_Sym sym;
6285 bfd_vma value = syms[idx]->value;
6286 elf_symbol_type *type_ptr;
6287 flagword flags = syms[idx]->flags;
6288 int type;
6289
6290 if (!name_local_sections
6291 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6292 {
6293 /* Local section symbols have no name. */
6294 sym.st_name = 0;
6295 }
6296 else
6297 {
6298 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6299 syms[idx]->name,
6300 TRUE, FALSE);
6301 if (sym.st_name == (unsigned long) -1)
6302 {
6303 _bfd_stringtab_free (stt);
6304 return FALSE;
6305 }
6306 }
6307
6308 type_ptr = elf_symbol_from (abfd, syms[idx]);
6309
6310 if ((flags & BSF_SECTION_SYM) == 0
6311 && bfd_is_com_section (syms[idx]->section))
6312 {
6313 /* ELF common symbols put the alignment into the `value' field,
6314 and the size into the `size' field. This is backwards from
6315 how BFD handles it, so reverse it here. */
6316 sym.st_size = value;
6317 if (type_ptr == NULL
6318 || type_ptr->internal_elf_sym.st_value == 0)
6319 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6320 else
6321 sym.st_value = type_ptr->internal_elf_sym.st_value;
6322 sym.st_shndx = _bfd_elf_section_from_bfd_section
6323 (abfd, syms[idx]->section);
6324 }
6325 else
6326 {
6327 asection *sec = syms[idx]->section;
6328 unsigned int shndx;
6329
6330 if (sec->output_section)
6331 {
6332 value += sec->output_offset;
6333 sec = sec->output_section;
6334 }
6335
6336 /* Don't add in the section vma for relocatable output. */
6337 if (! relocatable_p)
6338 value += sec->vma;
6339 sym.st_value = value;
6340 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6341
6342 if (bfd_is_abs_section (sec)
6343 && type_ptr != NULL
6344 && type_ptr->internal_elf_sym.st_shndx != 0)
6345 {
6346 /* This symbol is in a real ELF section which we did
6347 not create as a BFD section. Undo the mapping done
6348 by copy_private_symbol_data. */
6349 shndx = type_ptr->internal_elf_sym.st_shndx;
6350 switch (shndx)
6351 {
6352 case MAP_ONESYMTAB:
6353 shndx = elf_onesymtab (abfd);
6354 break;
6355 case MAP_DYNSYMTAB:
6356 shndx = elf_dynsymtab (abfd);
6357 break;
6358 case MAP_STRTAB:
6359 shndx = elf_tdata (abfd)->strtab_section;
6360 break;
6361 case MAP_SHSTRTAB:
6362 shndx = elf_tdata (abfd)->shstrtab_section;
6363 break;
6364 case MAP_SYM_SHNDX:
6365 shndx = elf_tdata (abfd)->symtab_shndx_section;
6366 break;
6367 default:
6368 break;
6369 }
6370 }
6371 else
6372 {
6373 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6374
6375 if (shndx == SHN_BAD)
6376 {
6377 asection *sec2;
6378
6379 /* Writing this would be a hell of a lot easier if
6380 we had some decent documentation on bfd, and
6381 knew what to expect of the library, and what to
6382 demand of applications. For example, it
6383 appears that `objcopy' might not set the
6384 section of a symbol to be a section that is
6385 actually in the output file. */
6386 sec2 = bfd_get_section_by_name (abfd, sec->name);
6387 if (sec2 == NULL)
6388 {
6389 _bfd_error_handler (_("\
6390 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6391 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6392 sec->name);
6393 bfd_set_error (bfd_error_invalid_operation);
6394 _bfd_stringtab_free (stt);
6395 return FALSE;
6396 }
6397
6398 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6399 BFD_ASSERT (shndx != SHN_BAD);
6400 }
6401 }
6402
6403 sym.st_shndx = shndx;
6404 }
6405
6406 if ((flags & BSF_THREAD_LOCAL) != 0)
6407 type = STT_TLS;
6408 else if ((flags & BSF_FUNCTION) != 0)
6409 type = STT_FUNC;
6410 else if ((flags & BSF_OBJECT) != 0)
6411 type = STT_OBJECT;
6412 else if ((flags & BSF_RELC) != 0)
6413 type = STT_RELC;
6414 else if ((flags & BSF_SRELC) != 0)
6415 type = STT_SRELC;
6416 else
6417 type = STT_NOTYPE;
6418
6419 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6420 type = STT_TLS;
6421
6422 /* Processor-specific types. */
6423 if (type_ptr != NULL
6424 && bed->elf_backend_get_symbol_type)
6425 type = ((*bed->elf_backend_get_symbol_type)
6426 (&type_ptr->internal_elf_sym, type));
6427
6428 if (flags & BSF_SECTION_SYM)
6429 {
6430 if (flags & BSF_GLOBAL)
6431 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6432 else
6433 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6434 }
6435 else if (bfd_is_com_section (syms[idx]->section))
6436 {
6437 #ifdef USE_STT_COMMON
6438 if (type == STT_OBJECT)
6439 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6440 else
6441 #else
6442 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6443 #endif
6444 }
6445 else if (bfd_is_und_section (syms[idx]->section))
6446 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6447 ? STB_WEAK
6448 : STB_GLOBAL),
6449 type);
6450 else if (flags & BSF_FILE)
6451 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6452 else
6453 {
6454 int bind = STB_LOCAL;
6455
6456 if (flags & BSF_LOCAL)
6457 bind = STB_LOCAL;
6458 else if (flags & BSF_WEAK)
6459 bind = STB_WEAK;
6460 else if (flags & BSF_GLOBAL)
6461 bind = STB_GLOBAL;
6462
6463 sym.st_info = ELF_ST_INFO (bind, type);
6464 }
6465
6466 if (type_ptr != NULL)
6467 sym.st_other = type_ptr->internal_elf_sym.st_other;
6468 else
6469 sym.st_other = 0;
6470
6471 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6472 outbound_syms += bed->s->sizeof_sym;
6473 if (outbound_shndx != NULL)
6474 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6475 }
6476
6477 *sttp = stt;
6478 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6479 symstrtab_hdr->sh_type = SHT_STRTAB;
6480
6481 symstrtab_hdr->sh_flags = 0;
6482 symstrtab_hdr->sh_addr = 0;
6483 symstrtab_hdr->sh_entsize = 0;
6484 symstrtab_hdr->sh_link = 0;
6485 symstrtab_hdr->sh_info = 0;
6486 symstrtab_hdr->sh_addralign = 1;
6487
6488 return TRUE;
6489 }
6490
6491 /* Return the number of bytes required to hold the symtab vector.
6492
6493 Note that we base it on the count plus 1, since we will null terminate
6494 the vector allocated based on this size. However, the ELF symbol table
6495 always has a dummy entry as symbol #0, so it ends up even. */
6496
6497 long
6498 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6499 {
6500 long symcount;
6501 long symtab_size;
6502 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6503
6504 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6505 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6506 if (symcount > 0)
6507 symtab_size -= sizeof (asymbol *);
6508
6509 return symtab_size;
6510 }
6511
6512 long
6513 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6514 {
6515 long symcount;
6516 long symtab_size;
6517 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6518
6519 if (elf_dynsymtab (abfd) == 0)
6520 {
6521 bfd_set_error (bfd_error_invalid_operation);
6522 return -1;
6523 }
6524
6525 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6526 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6527 if (symcount > 0)
6528 symtab_size -= sizeof (asymbol *);
6529
6530 return symtab_size;
6531 }
6532
6533 long
6534 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6535 sec_ptr asect)
6536 {
6537 return (asect->reloc_count + 1) * sizeof (arelent *);
6538 }
6539
6540 /* Canonicalize the relocs. */
6541
6542 long
6543 _bfd_elf_canonicalize_reloc (bfd *abfd,
6544 sec_ptr section,
6545 arelent **relptr,
6546 asymbol **symbols)
6547 {
6548 arelent *tblptr;
6549 unsigned int i;
6550 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6551
6552 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6553 return -1;
6554
6555 tblptr = section->relocation;
6556 for (i = 0; i < section->reloc_count; i++)
6557 *relptr++ = tblptr++;
6558
6559 *relptr = NULL;
6560
6561 return section->reloc_count;
6562 }
6563
6564 long
6565 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6566 {
6567 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6568 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6569
6570 if (symcount >= 0)
6571 bfd_get_symcount (abfd) = symcount;
6572 return symcount;
6573 }
6574
6575 long
6576 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6577 asymbol **allocation)
6578 {
6579 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6580 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6581
6582 if (symcount >= 0)
6583 bfd_get_dynamic_symcount (abfd) = symcount;
6584 return symcount;
6585 }
6586
6587 /* Return the size required for the dynamic reloc entries. Any loadable
6588 section that was actually installed in the BFD, and has type SHT_REL
6589 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6590 dynamic reloc section. */
6591
6592 long
6593 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6594 {
6595 long ret;
6596 asection *s;
6597
6598 if (elf_dynsymtab (abfd) == 0)
6599 {
6600 bfd_set_error (bfd_error_invalid_operation);
6601 return -1;
6602 }
6603
6604 ret = sizeof (arelent *);
6605 for (s = abfd->sections; s != NULL; s = s->next)
6606 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6607 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6608 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6609 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6610 * sizeof (arelent *));
6611
6612 return ret;
6613 }
6614
6615 /* Canonicalize the dynamic relocation entries. Note that we return the
6616 dynamic relocations as a single block, although they are actually
6617 associated with particular sections; the interface, which was
6618 designed for SunOS style shared libraries, expects that there is only
6619 one set of dynamic relocs. Any loadable section that was actually
6620 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6621 dynamic symbol table, is considered to be a dynamic reloc section. */
6622
6623 long
6624 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6625 arelent **storage,
6626 asymbol **syms)
6627 {
6628 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6629 asection *s;
6630 long ret;
6631
6632 if (elf_dynsymtab (abfd) == 0)
6633 {
6634 bfd_set_error (bfd_error_invalid_operation);
6635 return -1;
6636 }
6637
6638 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6639 ret = 0;
6640 for (s = abfd->sections; s != NULL; s = s->next)
6641 {
6642 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6643 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6644 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6645 {
6646 arelent *p;
6647 long count, i;
6648
6649 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6650 return -1;
6651 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6652 p = s->relocation;
6653 for (i = 0; i < count; i++)
6654 *storage++ = p++;
6655 ret += count;
6656 }
6657 }
6658
6659 *storage = NULL;
6660
6661 return ret;
6662 }
6663 \f
6664 /* Read in the version information. */
6665
6666 bfd_boolean
6667 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6668 {
6669 bfd_byte *contents = NULL;
6670 unsigned int freeidx = 0;
6671
6672 if (elf_dynverref (abfd) != 0)
6673 {
6674 Elf_Internal_Shdr *hdr;
6675 Elf_External_Verneed *everneed;
6676 Elf_Internal_Verneed *iverneed;
6677 unsigned int i;
6678 bfd_byte *contents_end;
6679
6680 hdr = &elf_tdata (abfd)->dynverref_hdr;
6681
6682 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6683 sizeof (Elf_Internal_Verneed));
6684 if (elf_tdata (abfd)->verref == NULL)
6685 goto error_return;
6686
6687 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6688
6689 contents = bfd_malloc (hdr->sh_size);
6690 if (contents == NULL)
6691 {
6692 error_return_verref:
6693 elf_tdata (abfd)->verref = NULL;
6694 elf_tdata (abfd)->cverrefs = 0;
6695 goto error_return;
6696 }
6697 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6698 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6699 goto error_return_verref;
6700
6701 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6702 goto error_return_verref;
6703
6704 BFD_ASSERT (sizeof (Elf_External_Verneed)
6705 == sizeof (Elf_External_Vernaux));
6706 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6707 everneed = (Elf_External_Verneed *) contents;
6708 iverneed = elf_tdata (abfd)->verref;
6709 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6710 {
6711 Elf_External_Vernaux *evernaux;
6712 Elf_Internal_Vernaux *ivernaux;
6713 unsigned int j;
6714
6715 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6716
6717 iverneed->vn_bfd = abfd;
6718
6719 iverneed->vn_filename =
6720 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6721 iverneed->vn_file);
6722 if (iverneed->vn_filename == NULL)
6723 goto error_return_verref;
6724
6725 if (iverneed->vn_cnt == 0)
6726 iverneed->vn_auxptr = NULL;
6727 else
6728 {
6729 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6730 sizeof (Elf_Internal_Vernaux));
6731 if (iverneed->vn_auxptr == NULL)
6732 goto error_return_verref;
6733 }
6734
6735 if (iverneed->vn_aux
6736 > (size_t) (contents_end - (bfd_byte *) everneed))
6737 goto error_return_verref;
6738
6739 evernaux = ((Elf_External_Vernaux *)
6740 ((bfd_byte *) everneed + iverneed->vn_aux));
6741 ivernaux = iverneed->vn_auxptr;
6742 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6743 {
6744 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6745
6746 ivernaux->vna_nodename =
6747 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6748 ivernaux->vna_name);
6749 if (ivernaux->vna_nodename == NULL)
6750 goto error_return_verref;
6751
6752 if (j + 1 < iverneed->vn_cnt)
6753 ivernaux->vna_nextptr = ivernaux + 1;
6754 else
6755 ivernaux->vna_nextptr = NULL;
6756
6757 if (ivernaux->vna_next
6758 > (size_t) (contents_end - (bfd_byte *) evernaux))
6759 goto error_return_verref;
6760
6761 evernaux = ((Elf_External_Vernaux *)
6762 ((bfd_byte *) evernaux + ivernaux->vna_next));
6763
6764 if (ivernaux->vna_other > freeidx)
6765 freeidx = ivernaux->vna_other;
6766 }
6767
6768 if (i + 1 < hdr->sh_info)
6769 iverneed->vn_nextref = iverneed + 1;
6770 else
6771 iverneed->vn_nextref = NULL;
6772
6773 if (iverneed->vn_next
6774 > (size_t) (contents_end - (bfd_byte *) everneed))
6775 goto error_return_verref;
6776
6777 everneed = ((Elf_External_Verneed *)
6778 ((bfd_byte *) everneed + iverneed->vn_next));
6779 }
6780
6781 free (contents);
6782 contents = NULL;
6783 }
6784
6785 if (elf_dynverdef (abfd) != 0)
6786 {
6787 Elf_Internal_Shdr *hdr;
6788 Elf_External_Verdef *everdef;
6789 Elf_Internal_Verdef *iverdef;
6790 Elf_Internal_Verdef *iverdefarr;
6791 Elf_Internal_Verdef iverdefmem;
6792 unsigned int i;
6793 unsigned int maxidx;
6794 bfd_byte *contents_end_def, *contents_end_aux;
6795
6796 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6797
6798 contents = bfd_malloc (hdr->sh_size);
6799 if (contents == NULL)
6800 goto error_return;
6801 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6802 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6803 goto error_return;
6804
6805 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6806 goto error_return;
6807
6808 BFD_ASSERT (sizeof (Elf_External_Verdef)
6809 >= sizeof (Elf_External_Verdaux));
6810 contents_end_def = contents + hdr->sh_size
6811 - sizeof (Elf_External_Verdef);
6812 contents_end_aux = contents + hdr->sh_size
6813 - sizeof (Elf_External_Verdaux);
6814
6815 /* We know the number of entries in the section but not the maximum
6816 index. Therefore we have to run through all entries and find
6817 the maximum. */
6818 everdef = (Elf_External_Verdef *) contents;
6819 maxidx = 0;
6820 for (i = 0; i < hdr->sh_info; ++i)
6821 {
6822 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6823
6824 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6825 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6826
6827 if (iverdefmem.vd_next
6828 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6829 goto error_return;
6830
6831 everdef = ((Elf_External_Verdef *)
6832 ((bfd_byte *) everdef + iverdefmem.vd_next));
6833 }
6834
6835 if (default_imported_symver)
6836 {
6837 if (freeidx > maxidx)
6838 maxidx = ++freeidx;
6839 else
6840 freeidx = ++maxidx;
6841 }
6842 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6843 sizeof (Elf_Internal_Verdef));
6844 if (elf_tdata (abfd)->verdef == NULL)
6845 goto error_return;
6846
6847 elf_tdata (abfd)->cverdefs = maxidx;
6848
6849 everdef = (Elf_External_Verdef *) contents;
6850 iverdefarr = elf_tdata (abfd)->verdef;
6851 for (i = 0; i < hdr->sh_info; i++)
6852 {
6853 Elf_External_Verdaux *everdaux;
6854 Elf_Internal_Verdaux *iverdaux;
6855 unsigned int j;
6856
6857 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6858
6859 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6860 {
6861 error_return_verdef:
6862 elf_tdata (abfd)->verdef = NULL;
6863 elf_tdata (abfd)->cverdefs = 0;
6864 goto error_return;
6865 }
6866
6867 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6868 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6869
6870 iverdef->vd_bfd = abfd;
6871
6872 if (iverdef->vd_cnt == 0)
6873 iverdef->vd_auxptr = NULL;
6874 else
6875 {
6876 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6877 sizeof (Elf_Internal_Verdaux));
6878 if (iverdef->vd_auxptr == NULL)
6879 goto error_return_verdef;
6880 }
6881
6882 if (iverdef->vd_aux
6883 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6884 goto error_return_verdef;
6885
6886 everdaux = ((Elf_External_Verdaux *)
6887 ((bfd_byte *) everdef + iverdef->vd_aux));
6888 iverdaux = iverdef->vd_auxptr;
6889 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6890 {
6891 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6892
6893 iverdaux->vda_nodename =
6894 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6895 iverdaux->vda_name);
6896 if (iverdaux->vda_nodename == NULL)
6897 goto error_return_verdef;
6898
6899 if (j + 1 < iverdef->vd_cnt)
6900 iverdaux->vda_nextptr = iverdaux + 1;
6901 else
6902 iverdaux->vda_nextptr = NULL;
6903
6904 if (iverdaux->vda_next
6905 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6906 goto error_return_verdef;
6907
6908 everdaux = ((Elf_External_Verdaux *)
6909 ((bfd_byte *) everdaux + iverdaux->vda_next));
6910 }
6911
6912 if (iverdef->vd_cnt)
6913 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6914
6915 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6916 iverdef->vd_nextdef = iverdef + 1;
6917 else
6918 iverdef->vd_nextdef = NULL;
6919
6920 everdef = ((Elf_External_Verdef *)
6921 ((bfd_byte *) everdef + iverdef->vd_next));
6922 }
6923
6924 free (contents);
6925 contents = NULL;
6926 }
6927 else if (default_imported_symver)
6928 {
6929 if (freeidx < 3)
6930 freeidx = 3;
6931 else
6932 freeidx++;
6933
6934 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6935 sizeof (Elf_Internal_Verdef));
6936 if (elf_tdata (abfd)->verdef == NULL)
6937 goto error_return;
6938
6939 elf_tdata (abfd)->cverdefs = freeidx;
6940 }
6941
6942 /* Create a default version based on the soname. */
6943 if (default_imported_symver)
6944 {
6945 Elf_Internal_Verdef *iverdef;
6946 Elf_Internal_Verdaux *iverdaux;
6947
6948 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6949
6950 iverdef->vd_version = VER_DEF_CURRENT;
6951 iverdef->vd_flags = 0;
6952 iverdef->vd_ndx = freeidx;
6953 iverdef->vd_cnt = 1;
6954
6955 iverdef->vd_bfd = abfd;
6956
6957 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6958 if (iverdef->vd_nodename == NULL)
6959 goto error_return_verdef;
6960 iverdef->vd_nextdef = NULL;
6961 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6962 if (iverdef->vd_auxptr == NULL)
6963 goto error_return_verdef;
6964
6965 iverdaux = iverdef->vd_auxptr;
6966 iverdaux->vda_nodename = iverdef->vd_nodename;
6967 iverdaux->vda_nextptr = NULL;
6968 }
6969
6970 return TRUE;
6971
6972 error_return:
6973 if (contents != NULL)
6974 free (contents);
6975 return FALSE;
6976 }
6977 \f
6978 asymbol *
6979 _bfd_elf_make_empty_symbol (bfd *abfd)
6980 {
6981 elf_symbol_type *newsym;
6982 bfd_size_type amt = sizeof (elf_symbol_type);
6983
6984 newsym = bfd_zalloc (abfd, amt);
6985 if (!newsym)
6986 return NULL;
6987 else
6988 {
6989 newsym->symbol.the_bfd = abfd;
6990 return &newsym->symbol;
6991 }
6992 }
6993
6994 void
6995 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6996 asymbol *symbol,
6997 symbol_info *ret)
6998 {
6999 bfd_symbol_info (symbol, ret);
7000 }
7001
7002 /* Return whether a symbol name implies a local symbol. Most targets
7003 use this function for the is_local_label_name entry point, but some
7004 override it. */
7005
7006 bfd_boolean
7007 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7008 const char *name)
7009 {
7010 /* Normal local symbols start with ``.L''. */
7011 if (name[0] == '.' && name[1] == 'L')
7012 return TRUE;
7013
7014 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7015 DWARF debugging symbols starting with ``..''. */
7016 if (name[0] == '.' && name[1] == '.')
7017 return TRUE;
7018
7019 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7020 emitting DWARF debugging output. I suspect this is actually a
7021 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7022 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7023 underscore to be emitted on some ELF targets). For ease of use,
7024 we treat such symbols as local. */
7025 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7026 return TRUE;
7027
7028 return FALSE;
7029 }
7030
7031 alent *
7032 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7033 asymbol *symbol ATTRIBUTE_UNUSED)
7034 {
7035 abort ();
7036 return NULL;
7037 }
7038
7039 bfd_boolean
7040 _bfd_elf_set_arch_mach (bfd *abfd,
7041 enum bfd_architecture arch,
7042 unsigned long machine)
7043 {
7044 /* If this isn't the right architecture for this backend, and this
7045 isn't the generic backend, fail. */
7046 if (arch != get_elf_backend_data (abfd)->arch
7047 && arch != bfd_arch_unknown
7048 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7049 return FALSE;
7050
7051 return bfd_default_set_arch_mach (abfd, arch, machine);
7052 }
7053
7054 /* Find the function to a particular section and offset,
7055 for error reporting. */
7056
7057 static bfd_boolean
7058 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7059 asection *section,
7060 asymbol **symbols,
7061 bfd_vma offset,
7062 const char **filename_ptr,
7063 const char **functionname_ptr)
7064 {
7065 const char *filename;
7066 asymbol *func, *file;
7067 bfd_vma low_func;
7068 asymbol **p;
7069 /* ??? Given multiple file symbols, it is impossible to reliably
7070 choose the right file name for global symbols. File symbols are
7071 local symbols, and thus all file symbols must sort before any
7072 global symbols. The ELF spec may be interpreted to say that a
7073 file symbol must sort before other local symbols, but currently
7074 ld -r doesn't do this. So, for ld -r output, it is possible to
7075 make a better choice of file name for local symbols by ignoring
7076 file symbols appearing after a given local symbol. */
7077 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7078
7079 filename = NULL;
7080 func = NULL;
7081 file = NULL;
7082 low_func = 0;
7083 state = nothing_seen;
7084
7085 for (p = symbols; *p != NULL; p++)
7086 {
7087 elf_symbol_type *q;
7088
7089 q = (elf_symbol_type *) *p;
7090
7091 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7092 {
7093 default:
7094 break;
7095 case STT_FILE:
7096 file = &q->symbol;
7097 if (state == symbol_seen)
7098 state = file_after_symbol_seen;
7099 continue;
7100 case STT_NOTYPE:
7101 case STT_FUNC:
7102 if (bfd_get_section (&q->symbol) == section
7103 && q->symbol.value >= low_func
7104 && q->symbol.value <= offset)
7105 {
7106 func = (asymbol *) q;
7107 low_func = q->symbol.value;
7108 filename = NULL;
7109 if (file != NULL
7110 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7111 || state != file_after_symbol_seen))
7112 filename = bfd_asymbol_name (file);
7113 }
7114 break;
7115 }
7116 if (state == nothing_seen)
7117 state = symbol_seen;
7118 }
7119
7120 if (func == NULL)
7121 return FALSE;
7122
7123 if (filename_ptr)
7124 *filename_ptr = filename;
7125 if (functionname_ptr)
7126 *functionname_ptr = bfd_asymbol_name (func);
7127
7128 return TRUE;
7129 }
7130
7131 /* Find the nearest line to a particular section and offset,
7132 for error reporting. */
7133
7134 bfd_boolean
7135 _bfd_elf_find_nearest_line (bfd *abfd,
7136 asection *section,
7137 asymbol **symbols,
7138 bfd_vma offset,
7139 const char **filename_ptr,
7140 const char **functionname_ptr,
7141 unsigned int *line_ptr)
7142 {
7143 bfd_boolean found;
7144
7145 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7146 filename_ptr, functionname_ptr,
7147 line_ptr))
7148 {
7149 if (!*functionname_ptr)
7150 elf_find_function (abfd, section, symbols, offset,
7151 *filename_ptr ? NULL : filename_ptr,
7152 functionname_ptr);
7153
7154 return TRUE;
7155 }
7156
7157 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7158 filename_ptr, functionname_ptr,
7159 line_ptr, 0,
7160 &elf_tdata (abfd)->dwarf2_find_line_info))
7161 {
7162 if (!*functionname_ptr)
7163 elf_find_function (abfd, section, symbols, offset,
7164 *filename_ptr ? NULL : filename_ptr,
7165 functionname_ptr);
7166
7167 return TRUE;
7168 }
7169
7170 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7171 &found, filename_ptr,
7172 functionname_ptr, line_ptr,
7173 &elf_tdata (abfd)->line_info))
7174 return FALSE;
7175 if (found && (*functionname_ptr || *line_ptr))
7176 return TRUE;
7177
7178 if (symbols == NULL)
7179 return FALSE;
7180
7181 if (! elf_find_function (abfd, section, symbols, offset,
7182 filename_ptr, functionname_ptr))
7183 return FALSE;
7184
7185 *line_ptr = 0;
7186 return TRUE;
7187 }
7188
7189 /* Find the line for a symbol. */
7190
7191 bfd_boolean
7192 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7193 const char **filename_ptr, unsigned int *line_ptr)
7194 {
7195 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7196 filename_ptr, line_ptr, 0,
7197 &elf_tdata (abfd)->dwarf2_find_line_info);
7198 }
7199
7200 /* After a call to bfd_find_nearest_line, successive calls to
7201 bfd_find_inliner_info can be used to get source information about
7202 each level of function inlining that terminated at the address
7203 passed to bfd_find_nearest_line. Currently this is only supported
7204 for DWARF2 with appropriate DWARF3 extensions. */
7205
7206 bfd_boolean
7207 _bfd_elf_find_inliner_info (bfd *abfd,
7208 const char **filename_ptr,
7209 const char **functionname_ptr,
7210 unsigned int *line_ptr)
7211 {
7212 bfd_boolean found;
7213 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7214 functionname_ptr, line_ptr,
7215 & elf_tdata (abfd)->dwarf2_find_line_info);
7216 return found;
7217 }
7218
7219 int
7220 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7221 {
7222 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7223 int ret = bed->s->sizeof_ehdr;
7224
7225 if (!info->relocatable)
7226 {
7227 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7228
7229 if (phdr_size == (bfd_size_type) -1)
7230 {
7231 struct elf_segment_map *m;
7232
7233 phdr_size = 0;
7234 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7235 phdr_size += bed->s->sizeof_phdr;
7236
7237 if (phdr_size == 0)
7238 phdr_size = get_program_header_size (abfd, info);
7239 }
7240
7241 elf_tdata (abfd)->program_header_size = phdr_size;
7242 ret += phdr_size;
7243 }
7244
7245 return ret;
7246 }
7247
7248 bfd_boolean
7249 _bfd_elf_set_section_contents (bfd *abfd,
7250 sec_ptr section,
7251 const void *location,
7252 file_ptr offset,
7253 bfd_size_type count)
7254 {
7255 Elf_Internal_Shdr *hdr;
7256 bfd_signed_vma pos;
7257
7258 if (! abfd->output_has_begun
7259 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7260 return FALSE;
7261
7262 hdr = &elf_section_data (section)->this_hdr;
7263 pos = hdr->sh_offset + offset;
7264 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7265 || bfd_bwrite (location, count, abfd) != count)
7266 return FALSE;
7267
7268 return TRUE;
7269 }
7270
7271 void
7272 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7273 arelent *cache_ptr ATTRIBUTE_UNUSED,
7274 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7275 {
7276 abort ();
7277 }
7278
7279 /* Try to convert a non-ELF reloc into an ELF one. */
7280
7281 bfd_boolean
7282 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7283 {
7284 /* Check whether we really have an ELF howto. */
7285
7286 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7287 {
7288 bfd_reloc_code_real_type code;
7289 reloc_howto_type *howto;
7290
7291 /* Alien reloc: Try to determine its type to replace it with an
7292 equivalent ELF reloc. */
7293
7294 if (areloc->howto->pc_relative)
7295 {
7296 switch (areloc->howto->bitsize)
7297 {
7298 case 8:
7299 code = BFD_RELOC_8_PCREL;
7300 break;
7301 case 12:
7302 code = BFD_RELOC_12_PCREL;
7303 break;
7304 case 16:
7305 code = BFD_RELOC_16_PCREL;
7306 break;
7307 case 24:
7308 code = BFD_RELOC_24_PCREL;
7309 break;
7310 case 32:
7311 code = BFD_RELOC_32_PCREL;
7312 break;
7313 case 64:
7314 code = BFD_RELOC_64_PCREL;
7315 break;
7316 default:
7317 goto fail;
7318 }
7319
7320 howto = bfd_reloc_type_lookup (abfd, code);
7321
7322 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7323 {
7324 if (howto->pcrel_offset)
7325 areloc->addend += areloc->address;
7326 else
7327 areloc->addend -= areloc->address; /* addend is unsigned!! */
7328 }
7329 }
7330 else
7331 {
7332 switch (areloc->howto->bitsize)
7333 {
7334 case 8:
7335 code = BFD_RELOC_8;
7336 break;
7337 case 14:
7338 code = BFD_RELOC_14;
7339 break;
7340 case 16:
7341 code = BFD_RELOC_16;
7342 break;
7343 case 26:
7344 code = BFD_RELOC_26;
7345 break;
7346 case 32:
7347 code = BFD_RELOC_32;
7348 break;
7349 case 64:
7350 code = BFD_RELOC_64;
7351 break;
7352 default:
7353 goto fail;
7354 }
7355
7356 howto = bfd_reloc_type_lookup (abfd, code);
7357 }
7358
7359 if (howto)
7360 areloc->howto = howto;
7361 else
7362 goto fail;
7363 }
7364
7365 return TRUE;
7366
7367 fail:
7368 (*_bfd_error_handler)
7369 (_("%B: unsupported relocation type %s"),
7370 abfd, areloc->howto->name);
7371 bfd_set_error (bfd_error_bad_value);
7372 return FALSE;
7373 }
7374
7375 bfd_boolean
7376 _bfd_elf_close_and_cleanup (bfd *abfd)
7377 {
7378 if (bfd_get_format (abfd) == bfd_object)
7379 {
7380 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7381 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7382 _bfd_dwarf2_cleanup_debug_info (abfd);
7383 }
7384
7385 return _bfd_generic_close_and_cleanup (abfd);
7386 }
7387
7388 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7389 in the relocation's offset. Thus we cannot allow any sort of sanity
7390 range-checking to interfere. There is nothing else to do in processing
7391 this reloc. */
7392
7393 bfd_reloc_status_type
7394 _bfd_elf_rel_vtable_reloc_fn
7395 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7396 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7397 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7398 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7399 {
7400 return bfd_reloc_ok;
7401 }
7402 \f
7403 /* Elf core file support. Much of this only works on native
7404 toolchains, since we rely on knowing the
7405 machine-dependent procfs structure in order to pick
7406 out details about the corefile. */
7407
7408 #ifdef HAVE_SYS_PROCFS_H
7409 # include <sys/procfs.h>
7410 #endif
7411
7412 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7413
7414 static int
7415 elfcore_make_pid (bfd *abfd)
7416 {
7417 return ((elf_tdata (abfd)->core_lwpid << 16)
7418 + (elf_tdata (abfd)->core_pid));
7419 }
7420
7421 /* If there isn't a section called NAME, make one, using
7422 data from SECT. Note, this function will generate a
7423 reference to NAME, so you shouldn't deallocate or
7424 overwrite it. */
7425
7426 static bfd_boolean
7427 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7428 {
7429 asection *sect2;
7430
7431 if (bfd_get_section_by_name (abfd, name) != NULL)
7432 return TRUE;
7433
7434 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7435 if (sect2 == NULL)
7436 return FALSE;
7437
7438 sect2->size = sect->size;
7439 sect2->filepos = sect->filepos;
7440 sect2->alignment_power = sect->alignment_power;
7441 return TRUE;
7442 }
7443
7444 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7445 actually creates up to two pseudosections:
7446 - For the single-threaded case, a section named NAME, unless
7447 such a section already exists.
7448 - For the multi-threaded case, a section named "NAME/PID", where
7449 PID is elfcore_make_pid (abfd).
7450 Both pseudosections have identical contents. */
7451 bfd_boolean
7452 _bfd_elfcore_make_pseudosection (bfd *abfd,
7453 char *name,
7454 size_t size,
7455 ufile_ptr filepos)
7456 {
7457 char buf[100];
7458 char *threaded_name;
7459 size_t len;
7460 asection *sect;
7461
7462 /* Build the section name. */
7463
7464 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7465 len = strlen (buf) + 1;
7466 threaded_name = bfd_alloc (abfd, len);
7467 if (threaded_name == NULL)
7468 return FALSE;
7469 memcpy (threaded_name, buf, len);
7470
7471 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7472 SEC_HAS_CONTENTS);
7473 if (sect == NULL)
7474 return FALSE;
7475 sect->size = size;
7476 sect->filepos = filepos;
7477 sect->alignment_power = 2;
7478
7479 return elfcore_maybe_make_sect (abfd, name, sect);
7480 }
7481
7482 /* prstatus_t exists on:
7483 solaris 2.5+
7484 linux 2.[01] + glibc
7485 unixware 4.2
7486 */
7487
7488 #if defined (HAVE_PRSTATUS_T)
7489
7490 static bfd_boolean
7491 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7492 {
7493 size_t size;
7494 int offset;
7495
7496 if (note->descsz == sizeof (prstatus_t))
7497 {
7498 prstatus_t prstat;
7499
7500 size = sizeof (prstat.pr_reg);
7501 offset = offsetof (prstatus_t, pr_reg);
7502 memcpy (&prstat, note->descdata, sizeof (prstat));
7503
7504 /* Do not overwrite the core signal if it
7505 has already been set by another thread. */
7506 if (elf_tdata (abfd)->core_signal == 0)
7507 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7508 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7509
7510 /* pr_who exists on:
7511 solaris 2.5+
7512 unixware 4.2
7513 pr_who doesn't exist on:
7514 linux 2.[01]
7515 */
7516 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7517 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7518 #endif
7519 }
7520 #if defined (HAVE_PRSTATUS32_T)
7521 else if (note->descsz == sizeof (prstatus32_t))
7522 {
7523 /* 64-bit host, 32-bit corefile */
7524 prstatus32_t prstat;
7525
7526 size = sizeof (prstat.pr_reg);
7527 offset = offsetof (prstatus32_t, pr_reg);
7528 memcpy (&prstat, note->descdata, sizeof (prstat));
7529
7530 /* Do not overwrite the core signal if it
7531 has already been set by another thread. */
7532 if (elf_tdata (abfd)->core_signal == 0)
7533 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7534 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7535
7536 /* pr_who exists on:
7537 solaris 2.5+
7538 unixware 4.2
7539 pr_who doesn't exist on:
7540 linux 2.[01]
7541 */
7542 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7543 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7544 #endif
7545 }
7546 #endif /* HAVE_PRSTATUS32_T */
7547 else
7548 {
7549 /* Fail - we don't know how to handle any other
7550 note size (ie. data object type). */
7551 return TRUE;
7552 }
7553
7554 /* Make a ".reg/999" section and a ".reg" section. */
7555 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7556 size, note->descpos + offset);
7557 }
7558 #endif /* defined (HAVE_PRSTATUS_T) */
7559
7560 /* Create a pseudosection containing the exact contents of NOTE. */
7561 static bfd_boolean
7562 elfcore_make_note_pseudosection (bfd *abfd,
7563 char *name,
7564 Elf_Internal_Note *note)
7565 {
7566 return _bfd_elfcore_make_pseudosection (abfd, name,
7567 note->descsz, note->descpos);
7568 }
7569
7570 /* There isn't a consistent prfpregset_t across platforms,
7571 but it doesn't matter, because we don't have to pick this
7572 data structure apart. */
7573
7574 static bfd_boolean
7575 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7576 {
7577 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7578 }
7579
7580 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7581 type of NT_PRXFPREG. Just include the whole note's contents
7582 literally. */
7583
7584 static bfd_boolean
7585 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7586 {
7587 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7588 }
7589
7590 static bfd_boolean
7591 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7592 {
7593 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7594 }
7595
7596 static bfd_boolean
7597 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7598 {
7599 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7600 }
7601
7602 #if defined (HAVE_PRPSINFO_T)
7603 typedef prpsinfo_t elfcore_psinfo_t;
7604 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7605 typedef prpsinfo32_t elfcore_psinfo32_t;
7606 #endif
7607 #endif
7608
7609 #if defined (HAVE_PSINFO_T)
7610 typedef psinfo_t elfcore_psinfo_t;
7611 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7612 typedef psinfo32_t elfcore_psinfo32_t;
7613 #endif
7614 #endif
7615
7616 /* return a malloc'ed copy of a string at START which is at
7617 most MAX bytes long, possibly without a terminating '\0'.
7618 the copy will always have a terminating '\0'. */
7619
7620 char *
7621 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7622 {
7623 char *dups;
7624 char *end = memchr (start, '\0', max);
7625 size_t len;
7626
7627 if (end == NULL)
7628 len = max;
7629 else
7630 len = end - start;
7631
7632 dups = bfd_alloc (abfd, len + 1);
7633 if (dups == NULL)
7634 return NULL;
7635
7636 memcpy (dups, start, len);
7637 dups[len] = '\0';
7638
7639 return dups;
7640 }
7641
7642 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7643 static bfd_boolean
7644 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7645 {
7646 if (note->descsz == sizeof (elfcore_psinfo_t))
7647 {
7648 elfcore_psinfo_t psinfo;
7649
7650 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7651
7652 elf_tdata (abfd)->core_program
7653 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7654 sizeof (psinfo.pr_fname));
7655
7656 elf_tdata (abfd)->core_command
7657 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7658 sizeof (psinfo.pr_psargs));
7659 }
7660 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7661 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7662 {
7663 /* 64-bit host, 32-bit corefile */
7664 elfcore_psinfo32_t psinfo;
7665
7666 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7667
7668 elf_tdata (abfd)->core_program
7669 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7670 sizeof (psinfo.pr_fname));
7671
7672 elf_tdata (abfd)->core_command
7673 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7674 sizeof (psinfo.pr_psargs));
7675 }
7676 #endif
7677
7678 else
7679 {
7680 /* Fail - we don't know how to handle any other
7681 note size (ie. data object type). */
7682 return TRUE;
7683 }
7684
7685 /* Note that for some reason, a spurious space is tacked
7686 onto the end of the args in some (at least one anyway)
7687 implementations, so strip it off if it exists. */
7688
7689 {
7690 char *command = elf_tdata (abfd)->core_command;
7691 int n = strlen (command);
7692
7693 if (0 < n && command[n - 1] == ' ')
7694 command[n - 1] = '\0';
7695 }
7696
7697 return TRUE;
7698 }
7699 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7700
7701 #if defined (HAVE_PSTATUS_T)
7702 static bfd_boolean
7703 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7704 {
7705 if (note->descsz == sizeof (pstatus_t)
7706 #if defined (HAVE_PXSTATUS_T)
7707 || note->descsz == sizeof (pxstatus_t)
7708 #endif
7709 )
7710 {
7711 pstatus_t pstat;
7712
7713 memcpy (&pstat, note->descdata, sizeof (pstat));
7714
7715 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7716 }
7717 #if defined (HAVE_PSTATUS32_T)
7718 else if (note->descsz == sizeof (pstatus32_t))
7719 {
7720 /* 64-bit host, 32-bit corefile */
7721 pstatus32_t pstat;
7722
7723 memcpy (&pstat, note->descdata, sizeof (pstat));
7724
7725 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7726 }
7727 #endif
7728 /* Could grab some more details from the "representative"
7729 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7730 NT_LWPSTATUS note, presumably. */
7731
7732 return TRUE;
7733 }
7734 #endif /* defined (HAVE_PSTATUS_T) */
7735
7736 #if defined (HAVE_LWPSTATUS_T)
7737 static bfd_boolean
7738 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7739 {
7740 lwpstatus_t lwpstat;
7741 char buf[100];
7742 char *name;
7743 size_t len;
7744 asection *sect;
7745
7746 if (note->descsz != sizeof (lwpstat)
7747 #if defined (HAVE_LWPXSTATUS_T)
7748 && note->descsz != sizeof (lwpxstatus_t)
7749 #endif
7750 )
7751 return TRUE;
7752
7753 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7754
7755 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7756 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7757
7758 /* Make a ".reg/999" section. */
7759
7760 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7761 len = strlen (buf) + 1;
7762 name = bfd_alloc (abfd, len);
7763 if (name == NULL)
7764 return FALSE;
7765 memcpy (name, buf, len);
7766
7767 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7768 if (sect == NULL)
7769 return FALSE;
7770
7771 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7772 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7773 sect->filepos = note->descpos
7774 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7775 #endif
7776
7777 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7778 sect->size = sizeof (lwpstat.pr_reg);
7779 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7780 #endif
7781
7782 sect->alignment_power = 2;
7783
7784 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7785 return FALSE;
7786
7787 /* Make a ".reg2/999" section */
7788
7789 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7790 len = strlen (buf) + 1;
7791 name = bfd_alloc (abfd, len);
7792 if (name == NULL)
7793 return FALSE;
7794 memcpy (name, buf, len);
7795
7796 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7797 if (sect == NULL)
7798 return FALSE;
7799
7800 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7801 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7802 sect->filepos = note->descpos
7803 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7804 #endif
7805
7806 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7807 sect->size = sizeof (lwpstat.pr_fpreg);
7808 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7809 #endif
7810
7811 sect->alignment_power = 2;
7812
7813 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7814 }
7815 #endif /* defined (HAVE_LWPSTATUS_T) */
7816
7817 static bfd_boolean
7818 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7819 {
7820 char buf[30];
7821 char *name;
7822 size_t len;
7823 asection *sect;
7824 int type;
7825 int is_active_thread;
7826 bfd_vma base_addr;
7827
7828 if (note->descsz < 728)
7829 return TRUE;
7830
7831 if (! CONST_STRNEQ (note->namedata, "win32"))
7832 return TRUE;
7833
7834 type = bfd_get_32 (abfd, note->descdata);
7835
7836 switch (type)
7837 {
7838 case 1 /* NOTE_INFO_PROCESS */:
7839 /* FIXME: need to add ->core_command. */
7840 /* process_info.pid */
7841 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7842 /* process_info.signal */
7843 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7844 break;
7845
7846 case 2 /* NOTE_INFO_THREAD */:
7847 /* Make a ".reg/999" section. */
7848 /* thread_info.tid */
7849 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7850
7851 len = strlen (buf) + 1;
7852 name = bfd_alloc (abfd, len);
7853 if (name == NULL)
7854 return FALSE;
7855
7856 memcpy (name, buf, len);
7857
7858 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7859 if (sect == NULL)
7860 return FALSE;
7861
7862 /* sizeof (thread_info.thread_context) */
7863 sect->size = 716;
7864 /* offsetof (thread_info.thread_context) */
7865 sect->filepos = note->descpos + 12;
7866 sect->alignment_power = 2;
7867
7868 /* thread_info.is_active_thread */
7869 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7870
7871 if (is_active_thread)
7872 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7873 return FALSE;
7874 break;
7875
7876 case 3 /* NOTE_INFO_MODULE */:
7877 /* Make a ".module/xxxxxxxx" section. */
7878 /* module_info.base_address */
7879 base_addr = bfd_get_32 (abfd, note->descdata + 4);
7880 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
7881
7882 len = strlen (buf) + 1;
7883 name = bfd_alloc (abfd, len);
7884 if (name == NULL)
7885 return FALSE;
7886
7887 memcpy (name, buf, len);
7888
7889 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7890
7891 if (sect == NULL)
7892 return FALSE;
7893
7894 sect->size = note->descsz;
7895 sect->filepos = note->descpos;
7896 sect->alignment_power = 2;
7897 break;
7898
7899 default:
7900 return TRUE;
7901 }
7902
7903 return TRUE;
7904 }
7905
7906 static bfd_boolean
7907 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7908 {
7909 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7910
7911 switch (note->type)
7912 {
7913 default:
7914 return TRUE;
7915
7916 case NT_PRSTATUS:
7917 if (bed->elf_backend_grok_prstatus)
7918 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7919 return TRUE;
7920 #if defined (HAVE_PRSTATUS_T)
7921 return elfcore_grok_prstatus (abfd, note);
7922 #else
7923 return TRUE;
7924 #endif
7925
7926 #if defined (HAVE_PSTATUS_T)
7927 case NT_PSTATUS:
7928 return elfcore_grok_pstatus (abfd, note);
7929 #endif
7930
7931 #if defined (HAVE_LWPSTATUS_T)
7932 case NT_LWPSTATUS:
7933 return elfcore_grok_lwpstatus (abfd, note);
7934 #endif
7935
7936 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7937 return elfcore_grok_prfpreg (abfd, note);
7938
7939 case NT_WIN32PSTATUS:
7940 return elfcore_grok_win32pstatus (abfd, note);
7941
7942 case NT_PRXFPREG: /* Linux SSE extension */
7943 if (note->namesz == 6
7944 && strcmp (note->namedata, "LINUX") == 0)
7945 return elfcore_grok_prxfpreg (abfd, note);
7946 else
7947 return TRUE;
7948
7949 case NT_PPC_VMX:
7950 if (note->namesz == 6
7951 && strcmp (note->namedata, "LINUX") == 0)
7952 return elfcore_grok_ppc_vmx (abfd, note);
7953 else
7954 return TRUE;
7955
7956 case NT_PPC_VSX:
7957 if (note->namesz == 6
7958 && strcmp (note->namedata, "LINUX") == 0)
7959 return elfcore_grok_ppc_vsx (abfd, note);
7960 else
7961 return TRUE;
7962
7963 case NT_PRPSINFO:
7964 case NT_PSINFO:
7965 if (bed->elf_backend_grok_psinfo)
7966 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7967 return TRUE;
7968 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7969 return elfcore_grok_psinfo (abfd, note);
7970 #else
7971 return TRUE;
7972 #endif
7973
7974 case NT_AUXV:
7975 {
7976 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7977 SEC_HAS_CONTENTS);
7978
7979 if (sect == NULL)
7980 return FALSE;
7981 sect->size = note->descsz;
7982 sect->filepos = note->descpos;
7983 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7984
7985 return TRUE;
7986 }
7987 }
7988 }
7989
7990 static bfd_boolean
7991 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
7992 {
7993 elf_tdata (abfd)->build_id_size = note->descsz;
7994 elf_tdata (abfd)->build_id = bfd_alloc (abfd, note->descsz);
7995 if (elf_tdata (abfd)->build_id == NULL)
7996 return FALSE;
7997
7998 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
7999
8000 return TRUE;
8001 }
8002
8003 static bfd_boolean
8004 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8005 {
8006 switch (note->type)
8007 {
8008 default:
8009 return TRUE;
8010
8011 case NT_GNU_BUILD_ID:
8012 return elfobj_grok_gnu_build_id (abfd, note);
8013 }
8014 }
8015
8016 static bfd_boolean
8017 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8018 {
8019 char *cp;
8020
8021 cp = strchr (note->namedata, '@');
8022 if (cp != NULL)
8023 {
8024 *lwpidp = atoi(cp + 1);
8025 return TRUE;
8026 }
8027 return FALSE;
8028 }
8029
8030 static bfd_boolean
8031 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8032 {
8033 /* Signal number at offset 0x08. */
8034 elf_tdata (abfd)->core_signal
8035 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8036
8037 /* Process ID at offset 0x50. */
8038 elf_tdata (abfd)->core_pid
8039 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8040
8041 /* Command name at 0x7c (max 32 bytes, including nul). */
8042 elf_tdata (abfd)->core_command
8043 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8044
8045 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8046 note);
8047 }
8048
8049 static bfd_boolean
8050 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8051 {
8052 int lwp;
8053
8054 if (elfcore_netbsd_get_lwpid (note, &lwp))
8055 elf_tdata (abfd)->core_lwpid = lwp;
8056
8057 if (note->type == NT_NETBSDCORE_PROCINFO)
8058 {
8059 /* NetBSD-specific core "procinfo". Note that we expect to
8060 find this note before any of the others, which is fine,
8061 since the kernel writes this note out first when it
8062 creates a core file. */
8063
8064 return elfcore_grok_netbsd_procinfo (abfd, note);
8065 }
8066
8067 /* As of Jan 2002 there are no other machine-independent notes
8068 defined for NetBSD core files. If the note type is less
8069 than the start of the machine-dependent note types, we don't
8070 understand it. */
8071
8072 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8073 return TRUE;
8074
8075
8076 switch (bfd_get_arch (abfd))
8077 {
8078 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8079 PT_GETFPREGS == mach+2. */
8080
8081 case bfd_arch_alpha:
8082 case bfd_arch_sparc:
8083 switch (note->type)
8084 {
8085 case NT_NETBSDCORE_FIRSTMACH+0:
8086 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8087
8088 case NT_NETBSDCORE_FIRSTMACH+2:
8089 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8090
8091 default:
8092 return TRUE;
8093 }
8094
8095 /* On all other arch's, PT_GETREGS == mach+1 and
8096 PT_GETFPREGS == mach+3. */
8097
8098 default:
8099 switch (note->type)
8100 {
8101 case NT_NETBSDCORE_FIRSTMACH+1:
8102 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8103
8104 case NT_NETBSDCORE_FIRSTMACH+3:
8105 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8106
8107 default:
8108 return TRUE;
8109 }
8110 }
8111 /* NOTREACHED */
8112 }
8113
8114 static bfd_boolean
8115 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8116 {
8117 void *ddata = note->descdata;
8118 char buf[100];
8119 char *name;
8120 asection *sect;
8121 short sig;
8122 unsigned flags;
8123
8124 /* nto_procfs_status 'pid' field is at offset 0. */
8125 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8126
8127 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8128 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8129
8130 /* nto_procfs_status 'flags' field is at offset 8. */
8131 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8132
8133 /* nto_procfs_status 'what' field is at offset 14. */
8134 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8135 {
8136 elf_tdata (abfd)->core_signal = sig;
8137 elf_tdata (abfd)->core_lwpid = *tid;
8138 }
8139
8140 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8141 do not come from signals so we make sure we set the current
8142 thread just in case. */
8143 if (flags & 0x00000080)
8144 elf_tdata (abfd)->core_lwpid = *tid;
8145
8146 /* Make a ".qnx_core_status/%d" section. */
8147 sprintf (buf, ".qnx_core_status/%ld", *tid);
8148
8149 name = bfd_alloc (abfd, strlen (buf) + 1);
8150 if (name == NULL)
8151 return FALSE;
8152 strcpy (name, buf);
8153
8154 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8155 if (sect == NULL)
8156 return FALSE;
8157
8158 sect->size = note->descsz;
8159 sect->filepos = note->descpos;
8160 sect->alignment_power = 2;
8161
8162 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8163 }
8164
8165 static bfd_boolean
8166 elfcore_grok_nto_regs (bfd *abfd,
8167 Elf_Internal_Note *note,
8168 long tid,
8169 char *base)
8170 {
8171 char buf[100];
8172 char *name;
8173 asection *sect;
8174
8175 /* Make a "(base)/%d" section. */
8176 sprintf (buf, "%s/%ld", base, tid);
8177
8178 name = bfd_alloc (abfd, strlen (buf) + 1);
8179 if (name == NULL)
8180 return FALSE;
8181 strcpy (name, buf);
8182
8183 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8184 if (sect == NULL)
8185 return FALSE;
8186
8187 sect->size = note->descsz;
8188 sect->filepos = note->descpos;
8189 sect->alignment_power = 2;
8190
8191 /* This is the current thread. */
8192 if (elf_tdata (abfd)->core_lwpid == tid)
8193 return elfcore_maybe_make_sect (abfd, base, sect);
8194
8195 return TRUE;
8196 }
8197
8198 #define BFD_QNT_CORE_INFO 7
8199 #define BFD_QNT_CORE_STATUS 8
8200 #define BFD_QNT_CORE_GREG 9
8201 #define BFD_QNT_CORE_FPREG 10
8202
8203 static bfd_boolean
8204 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8205 {
8206 /* Every GREG section has a STATUS section before it. Store the
8207 tid from the previous call to pass down to the next gregs
8208 function. */
8209 static long tid = 1;
8210
8211 switch (note->type)
8212 {
8213 case BFD_QNT_CORE_INFO:
8214 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8215 case BFD_QNT_CORE_STATUS:
8216 return elfcore_grok_nto_status (abfd, note, &tid);
8217 case BFD_QNT_CORE_GREG:
8218 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8219 case BFD_QNT_CORE_FPREG:
8220 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8221 default:
8222 return TRUE;
8223 }
8224 }
8225
8226 static bfd_boolean
8227 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8228 {
8229 char *name;
8230 asection *sect;
8231 size_t len;
8232
8233 /* Use note name as section name. */
8234 len = note->namesz;
8235 name = bfd_alloc (abfd, len);
8236 if (name == NULL)
8237 return FALSE;
8238 memcpy (name, note->namedata, len);
8239 name[len - 1] = '\0';
8240
8241 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8242 if (sect == NULL)
8243 return FALSE;
8244
8245 sect->size = note->descsz;
8246 sect->filepos = note->descpos;
8247 sect->alignment_power = 1;
8248
8249 return TRUE;
8250 }
8251
8252 /* Function: elfcore_write_note
8253
8254 Inputs:
8255 buffer to hold note, and current size of buffer
8256 name of note
8257 type of note
8258 data for note
8259 size of data for note
8260
8261 Writes note to end of buffer. ELF64 notes are written exactly as
8262 for ELF32, despite the current (as of 2006) ELF gabi specifying
8263 that they ought to have 8-byte namesz and descsz field, and have
8264 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8265
8266 Return:
8267 Pointer to realloc'd buffer, *BUFSIZ updated. */
8268
8269 char *
8270 elfcore_write_note (bfd *abfd,
8271 char *buf,
8272 int *bufsiz,
8273 const char *name,
8274 int type,
8275 const void *input,
8276 int size)
8277 {
8278 Elf_External_Note *xnp;
8279 size_t namesz;
8280 size_t newspace;
8281 char *dest;
8282
8283 namesz = 0;
8284 if (name != NULL)
8285 namesz = strlen (name) + 1;
8286
8287 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8288
8289 buf = realloc (buf, *bufsiz + newspace);
8290 if (buf == NULL)
8291 return buf;
8292 dest = buf + *bufsiz;
8293 *bufsiz += newspace;
8294 xnp = (Elf_External_Note *) dest;
8295 H_PUT_32 (abfd, namesz, xnp->namesz);
8296 H_PUT_32 (abfd, size, xnp->descsz);
8297 H_PUT_32 (abfd, type, xnp->type);
8298 dest = xnp->name;
8299 if (name != NULL)
8300 {
8301 memcpy (dest, name, namesz);
8302 dest += namesz;
8303 while (namesz & 3)
8304 {
8305 *dest++ = '\0';
8306 ++namesz;
8307 }
8308 }
8309 memcpy (dest, input, size);
8310 dest += size;
8311 while (size & 3)
8312 {
8313 *dest++ = '\0';
8314 ++size;
8315 }
8316 return buf;
8317 }
8318
8319 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8320 char *
8321 elfcore_write_prpsinfo (bfd *abfd,
8322 char *buf,
8323 int *bufsiz,
8324 const char *fname,
8325 const char *psargs)
8326 {
8327 const char *note_name = "CORE";
8328 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8329
8330 if (bed->elf_backend_write_core_note != NULL)
8331 {
8332 char *ret;
8333 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8334 NT_PRPSINFO, fname, psargs);
8335 if (ret != NULL)
8336 return ret;
8337 }
8338
8339 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8340 if (bed->s->elfclass == ELFCLASS32)
8341 {
8342 #if defined (HAVE_PSINFO32_T)
8343 psinfo32_t data;
8344 int note_type = NT_PSINFO;
8345 #else
8346 prpsinfo32_t data;
8347 int note_type = NT_PRPSINFO;
8348 #endif
8349
8350 memset (&data, 0, sizeof (data));
8351 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8352 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8353 return elfcore_write_note (abfd, buf, bufsiz,
8354 note_name, note_type, &data, sizeof (data));
8355 }
8356 else
8357 #endif
8358 {
8359 #if defined (HAVE_PSINFO_T)
8360 psinfo_t data;
8361 int note_type = NT_PSINFO;
8362 #else
8363 prpsinfo_t data;
8364 int note_type = NT_PRPSINFO;
8365 #endif
8366
8367 memset (&data, 0, sizeof (data));
8368 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8369 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8370 return elfcore_write_note (abfd, buf, bufsiz,
8371 note_name, note_type, &data, sizeof (data));
8372 }
8373 }
8374 #endif /* PSINFO_T or PRPSINFO_T */
8375
8376 #if defined (HAVE_PRSTATUS_T)
8377 char *
8378 elfcore_write_prstatus (bfd *abfd,
8379 char *buf,
8380 int *bufsiz,
8381 long pid,
8382 int cursig,
8383 const void *gregs)
8384 {
8385 const char *note_name = "CORE";
8386 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8387
8388 if (bed->elf_backend_write_core_note != NULL)
8389 {
8390 char *ret;
8391 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8392 NT_PRSTATUS,
8393 pid, cursig, gregs);
8394 if (ret != NULL)
8395 return ret;
8396 }
8397
8398 #if defined (HAVE_PRSTATUS32_T)
8399 if (bed->s->elfclass == ELFCLASS32)
8400 {
8401 prstatus32_t prstat;
8402
8403 memset (&prstat, 0, sizeof (prstat));
8404 prstat.pr_pid = pid;
8405 prstat.pr_cursig = cursig;
8406 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8407 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8408 NT_PRSTATUS, &prstat, sizeof (prstat));
8409 }
8410 else
8411 #endif
8412 {
8413 prstatus_t prstat;
8414
8415 memset (&prstat, 0, sizeof (prstat));
8416 prstat.pr_pid = pid;
8417 prstat.pr_cursig = cursig;
8418 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8419 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8420 NT_PRSTATUS, &prstat, sizeof (prstat));
8421 }
8422 }
8423 #endif /* HAVE_PRSTATUS_T */
8424
8425 #if defined (HAVE_LWPSTATUS_T)
8426 char *
8427 elfcore_write_lwpstatus (bfd *abfd,
8428 char *buf,
8429 int *bufsiz,
8430 long pid,
8431 int cursig,
8432 const void *gregs)
8433 {
8434 lwpstatus_t lwpstat;
8435 const char *note_name = "CORE";
8436
8437 memset (&lwpstat, 0, sizeof (lwpstat));
8438 lwpstat.pr_lwpid = pid >> 16;
8439 lwpstat.pr_cursig = cursig;
8440 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8441 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8442 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8443 #if !defined(gregs)
8444 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8445 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8446 #else
8447 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8448 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8449 #endif
8450 #endif
8451 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8452 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8453 }
8454 #endif /* HAVE_LWPSTATUS_T */
8455
8456 #if defined (HAVE_PSTATUS_T)
8457 char *
8458 elfcore_write_pstatus (bfd *abfd,
8459 char *buf,
8460 int *bufsiz,
8461 long pid,
8462 int cursig ATTRIBUTE_UNUSED,
8463 const void *gregs ATTRIBUTE_UNUSED)
8464 {
8465 const char *note_name = "CORE";
8466 #if defined (HAVE_PSTATUS32_T)
8467 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8468
8469 if (bed->s->elfclass == ELFCLASS32)
8470 {
8471 pstatus32_t pstat;
8472
8473 memset (&pstat, 0, sizeof (pstat));
8474 pstat.pr_pid = pid & 0xffff;
8475 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8476 NT_PSTATUS, &pstat, sizeof (pstat));
8477 return buf;
8478 }
8479 else
8480 #endif
8481 {
8482 pstatus_t pstat;
8483
8484 memset (&pstat, 0, sizeof (pstat));
8485 pstat.pr_pid = pid & 0xffff;
8486 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8487 NT_PSTATUS, &pstat, sizeof (pstat));
8488 return buf;
8489 }
8490 }
8491 #endif /* HAVE_PSTATUS_T */
8492
8493 char *
8494 elfcore_write_prfpreg (bfd *abfd,
8495 char *buf,
8496 int *bufsiz,
8497 const void *fpregs,
8498 int size)
8499 {
8500 const char *note_name = "CORE";
8501 return elfcore_write_note (abfd, buf, bufsiz,
8502 note_name, NT_FPREGSET, fpregs, size);
8503 }
8504
8505 char *
8506 elfcore_write_prxfpreg (bfd *abfd,
8507 char *buf,
8508 int *bufsiz,
8509 const void *xfpregs,
8510 int size)
8511 {
8512 char *note_name = "LINUX";
8513 return elfcore_write_note (abfd, buf, bufsiz,
8514 note_name, NT_PRXFPREG, xfpregs, size);
8515 }
8516
8517 char *
8518 elfcore_write_ppc_vmx (bfd *abfd,
8519 char *buf,
8520 int *bufsiz,
8521 const void *ppc_vmx,
8522 int size)
8523 {
8524 char *note_name = "LINUX";
8525 return elfcore_write_note (abfd, buf, bufsiz,
8526 note_name, NT_PPC_VMX, ppc_vmx, size);
8527 }
8528
8529 char *
8530 elfcore_write_ppc_vsx (bfd *abfd,
8531 char *buf,
8532 int *bufsiz,
8533 const void *ppc_vsx,
8534 int size)
8535 {
8536 char *note_name = "LINUX";
8537 return elfcore_write_note (abfd, buf, bufsiz,
8538 note_name, NT_PPC_VSX, ppc_vsx, size);
8539 }
8540
8541 char *
8542 elfcore_write_register_note (bfd *abfd,
8543 char *buf,
8544 int *bufsiz,
8545 const char *section,
8546 const void *data,
8547 int size)
8548 {
8549 if (strcmp (section, ".reg2") == 0)
8550 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
8551 if (strcmp (section, ".reg-xfp") == 0)
8552 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
8553 if (strcmp (section, ".reg-ppc-vmx") == 0)
8554 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
8555 if (strcmp (section, ".reg-ppc-vsx") == 0)
8556 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
8557 return NULL;
8558 }
8559
8560 static bfd_boolean
8561 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8562 {
8563 char *p;
8564
8565 p = buf;
8566 while (p < buf + size)
8567 {
8568 /* FIXME: bad alignment assumption. */
8569 Elf_External_Note *xnp = (Elf_External_Note *) p;
8570 Elf_Internal_Note in;
8571
8572 if (offsetof (Elf_External_Note, name) > buf - p + size)
8573 return FALSE;
8574
8575 in.type = H_GET_32 (abfd, xnp->type);
8576
8577 in.namesz = H_GET_32 (abfd, xnp->namesz);
8578 in.namedata = xnp->name;
8579 if (in.namesz > buf - in.namedata + size)
8580 return FALSE;
8581
8582 in.descsz = H_GET_32 (abfd, xnp->descsz);
8583 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8584 in.descpos = offset + (in.descdata - buf);
8585 if (in.descsz != 0
8586 && (in.descdata >= buf + size
8587 || in.descsz > buf - in.descdata + size))
8588 return FALSE;
8589
8590 switch (bfd_get_format (abfd))
8591 {
8592 default:
8593 return TRUE;
8594
8595 case bfd_core:
8596 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8597 {
8598 if (! elfcore_grok_netbsd_note (abfd, &in))
8599 return FALSE;
8600 }
8601 else if (CONST_STRNEQ (in.namedata, "QNX"))
8602 {
8603 if (! elfcore_grok_nto_note (abfd, &in))
8604 return FALSE;
8605 }
8606 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8607 {
8608 if (! elfcore_grok_spu_note (abfd, &in))
8609 return FALSE;
8610 }
8611 else
8612 {
8613 if (! elfcore_grok_note (abfd, &in))
8614 return FALSE;
8615 }
8616 break;
8617
8618 case bfd_object:
8619 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8620 {
8621 if (! elfobj_grok_gnu_note (abfd, &in))
8622 return FALSE;
8623 }
8624 break;
8625 }
8626
8627 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8628 }
8629
8630 return TRUE;
8631 }
8632
8633 static bfd_boolean
8634 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8635 {
8636 char *buf;
8637
8638 if (size <= 0)
8639 return TRUE;
8640
8641 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8642 return FALSE;
8643
8644 buf = bfd_malloc (size);
8645 if (buf == NULL)
8646 return FALSE;
8647
8648 if (bfd_bread (buf, size, abfd) != size
8649 || !elf_parse_notes (abfd, buf, size, offset))
8650 {
8651 free (buf);
8652 return FALSE;
8653 }
8654
8655 free (buf);
8656 return TRUE;
8657 }
8658 \f
8659 /* Providing external access to the ELF program header table. */
8660
8661 /* Return an upper bound on the number of bytes required to store a
8662 copy of ABFD's program header table entries. Return -1 if an error
8663 occurs; bfd_get_error will return an appropriate code. */
8664
8665 long
8666 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8667 {
8668 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8669 {
8670 bfd_set_error (bfd_error_wrong_format);
8671 return -1;
8672 }
8673
8674 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8675 }
8676
8677 /* Copy ABFD's program header table entries to *PHDRS. The entries
8678 will be stored as an array of Elf_Internal_Phdr structures, as
8679 defined in include/elf/internal.h. To find out how large the
8680 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8681
8682 Return the number of program header table entries read, or -1 if an
8683 error occurs; bfd_get_error will return an appropriate code. */
8684
8685 int
8686 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8687 {
8688 int num_phdrs;
8689
8690 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8691 {
8692 bfd_set_error (bfd_error_wrong_format);
8693 return -1;
8694 }
8695
8696 num_phdrs = elf_elfheader (abfd)->e_phnum;
8697 memcpy (phdrs, elf_tdata (abfd)->phdr,
8698 num_phdrs * sizeof (Elf_Internal_Phdr));
8699
8700 return num_phdrs;
8701 }
8702
8703 enum elf_reloc_type_class
8704 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8705 {
8706 return reloc_class_normal;
8707 }
8708
8709 /* For RELA architectures, return the relocation value for a
8710 relocation against a local symbol. */
8711
8712 bfd_vma
8713 _bfd_elf_rela_local_sym (bfd *abfd,
8714 Elf_Internal_Sym *sym,
8715 asection **psec,
8716 Elf_Internal_Rela *rel)
8717 {
8718 asection *sec = *psec;
8719 bfd_vma relocation;
8720
8721 relocation = (sec->output_section->vma
8722 + sec->output_offset
8723 + sym->st_value);
8724 if ((sec->flags & SEC_MERGE)
8725 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8726 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8727 {
8728 rel->r_addend =
8729 _bfd_merged_section_offset (abfd, psec,
8730 elf_section_data (sec)->sec_info,
8731 sym->st_value + rel->r_addend);
8732 if (sec != *psec)
8733 {
8734 /* If we have changed the section, and our original section is
8735 marked with SEC_EXCLUDE, it means that the original
8736 SEC_MERGE section has been completely subsumed in some
8737 other SEC_MERGE section. In this case, we need to leave
8738 some info around for --emit-relocs. */
8739 if ((sec->flags & SEC_EXCLUDE) != 0)
8740 sec->kept_section = *psec;
8741 sec = *psec;
8742 }
8743 rel->r_addend -= relocation;
8744 rel->r_addend += sec->output_section->vma + sec->output_offset;
8745 }
8746 return relocation;
8747 }
8748
8749 bfd_vma
8750 _bfd_elf_rel_local_sym (bfd *abfd,
8751 Elf_Internal_Sym *sym,
8752 asection **psec,
8753 bfd_vma addend)
8754 {
8755 asection *sec = *psec;
8756
8757 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8758 return sym->st_value + addend;
8759
8760 return _bfd_merged_section_offset (abfd, psec,
8761 elf_section_data (sec)->sec_info,
8762 sym->st_value + addend);
8763 }
8764
8765 bfd_vma
8766 _bfd_elf_section_offset (bfd *abfd,
8767 struct bfd_link_info *info,
8768 asection *sec,
8769 bfd_vma offset)
8770 {
8771 switch (sec->sec_info_type)
8772 {
8773 case ELF_INFO_TYPE_STABS:
8774 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8775 offset);
8776 case ELF_INFO_TYPE_EH_FRAME:
8777 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8778 default:
8779 return offset;
8780 }
8781 }
8782 \f
8783 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8784 reconstruct an ELF file by reading the segments out of remote memory
8785 based on the ELF file header at EHDR_VMA and the ELF program headers it
8786 points to. If not null, *LOADBASEP is filled in with the difference
8787 between the VMAs from which the segments were read, and the VMAs the
8788 file headers (and hence BFD's idea of each section's VMA) put them at.
8789
8790 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8791 remote memory at target address VMA into the local buffer at MYADDR; it
8792 should return zero on success or an `errno' code on failure. TEMPL must
8793 be a BFD for an ELF target with the word size and byte order found in
8794 the remote memory. */
8795
8796 bfd *
8797 bfd_elf_bfd_from_remote_memory
8798 (bfd *templ,
8799 bfd_vma ehdr_vma,
8800 bfd_vma *loadbasep,
8801 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8802 {
8803 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8804 (templ, ehdr_vma, loadbasep, target_read_memory);
8805 }
8806 \f
8807 long
8808 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8809 long symcount ATTRIBUTE_UNUSED,
8810 asymbol **syms ATTRIBUTE_UNUSED,
8811 long dynsymcount,
8812 asymbol **dynsyms,
8813 asymbol **ret)
8814 {
8815 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8816 asection *relplt;
8817 asymbol *s;
8818 const char *relplt_name;
8819 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8820 arelent *p;
8821 long count, i, n;
8822 size_t size;
8823 Elf_Internal_Shdr *hdr;
8824 char *names;
8825 asection *plt;
8826
8827 *ret = NULL;
8828
8829 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8830 return 0;
8831
8832 if (dynsymcount <= 0)
8833 return 0;
8834
8835 if (!bed->plt_sym_val)
8836 return 0;
8837
8838 relplt_name = bed->relplt_name;
8839 if (relplt_name == NULL)
8840 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
8841 relplt = bfd_get_section_by_name (abfd, relplt_name);
8842 if (relplt == NULL)
8843 return 0;
8844
8845 hdr = &elf_section_data (relplt)->this_hdr;
8846 if (hdr->sh_link != elf_dynsymtab (abfd)
8847 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8848 return 0;
8849
8850 plt = bfd_get_section_by_name (abfd, ".plt");
8851 if (plt == NULL)
8852 return 0;
8853
8854 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8855 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8856 return -1;
8857
8858 count = relplt->size / hdr->sh_entsize;
8859 size = count * sizeof (asymbol);
8860 p = relplt->relocation;
8861 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
8862 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8863
8864 s = *ret = bfd_malloc (size);
8865 if (s == NULL)
8866 return -1;
8867
8868 names = (char *) (s + count);
8869 p = relplt->relocation;
8870 n = 0;
8871 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
8872 {
8873 size_t len;
8874 bfd_vma addr;
8875
8876 addr = bed->plt_sym_val (i, plt, p);
8877 if (addr == (bfd_vma) -1)
8878 continue;
8879
8880 *s = **p->sym_ptr_ptr;
8881 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8882 we are defining a symbol, ensure one of them is set. */
8883 if ((s->flags & BSF_LOCAL) == 0)
8884 s->flags |= BSF_GLOBAL;
8885 s->flags |= BSF_SYNTHETIC;
8886 s->section = plt;
8887 s->value = addr - plt->vma;
8888 s->name = names;
8889 s->udata.p = NULL;
8890 len = strlen ((*p->sym_ptr_ptr)->name);
8891 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8892 names += len;
8893 memcpy (names, "@plt", sizeof ("@plt"));
8894 names += sizeof ("@plt");
8895 ++s, ++n;
8896 }
8897
8898 return n;
8899 }
8900
8901 /* It is only used by x86-64 so far. */
8902 asection _bfd_elf_large_com_section
8903 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8904 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8905
8906 void
8907 _bfd_elf_set_osabi (bfd * abfd,
8908 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8909 {
8910 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8911
8912 i_ehdrp = elf_elfheader (abfd);
8913
8914 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8915 }
8916
8917
8918 /* Return TRUE for ELF symbol types that represent functions.
8919 This is the default version of this function, which is sufficient for
8920 most targets. It returns true if TYPE is STT_FUNC. */
8921
8922 bfd_boolean
8923 _bfd_elf_is_function_type (unsigned int type)
8924 {
8925 return (type == STT_FUNC);
8926 }
This page took 0.227404 seconds and 3 git commands to generate.