* ld-elfcomm/elfcomm.exp: Run $READELF not readelf.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /*
25 SECTION
26 ELF backends
27
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
31
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
35
36 /* For sparc64-cross-sparc32. */
37 #define _SYSCALL32
38 #include "sysdep.h"
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
49 static bfd_boolean prep_headers (bfd *);
50 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
51 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
52 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
53 file_ptr offset);
54
55 /* Swap version information in and out. The version information is
56 currently size independent. If that ever changes, this code will
57 need to move into elfcode.h. */
58
59 /* Swap in a Verdef structure. */
60
61 void
62 _bfd_elf_swap_verdef_in (bfd *abfd,
63 const Elf_External_Verdef *src,
64 Elf_Internal_Verdef *dst)
65 {
66 dst->vd_version = H_GET_16 (abfd, src->vd_version);
67 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
68 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
69 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
70 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
71 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
72 dst->vd_next = H_GET_32 (abfd, src->vd_next);
73 }
74
75 /* Swap out a Verdef structure. */
76
77 void
78 _bfd_elf_swap_verdef_out (bfd *abfd,
79 const Elf_Internal_Verdef *src,
80 Elf_External_Verdef *dst)
81 {
82 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
83 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
84 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
85 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
86 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
87 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
88 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
89 }
90
91 /* Swap in a Verdaux structure. */
92
93 void
94 _bfd_elf_swap_verdaux_in (bfd *abfd,
95 const Elf_External_Verdaux *src,
96 Elf_Internal_Verdaux *dst)
97 {
98 dst->vda_name = H_GET_32 (abfd, src->vda_name);
99 dst->vda_next = H_GET_32 (abfd, src->vda_next);
100 }
101
102 /* Swap out a Verdaux structure. */
103
104 void
105 _bfd_elf_swap_verdaux_out (bfd *abfd,
106 const Elf_Internal_Verdaux *src,
107 Elf_External_Verdaux *dst)
108 {
109 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
110 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
111 }
112
113 /* Swap in a Verneed structure. */
114
115 void
116 _bfd_elf_swap_verneed_in (bfd *abfd,
117 const Elf_External_Verneed *src,
118 Elf_Internal_Verneed *dst)
119 {
120 dst->vn_version = H_GET_16 (abfd, src->vn_version);
121 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
122 dst->vn_file = H_GET_32 (abfd, src->vn_file);
123 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
124 dst->vn_next = H_GET_32 (abfd, src->vn_next);
125 }
126
127 /* Swap out a Verneed structure. */
128
129 void
130 _bfd_elf_swap_verneed_out (bfd *abfd,
131 const Elf_Internal_Verneed *src,
132 Elf_External_Verneed *dst)
133 {
134 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
135 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
136 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
137 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
138 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
139 }
140
141 /* Swap in a Vernaux structure. */
142
143 void
144 _bfd_elf_swap_vernaux_in (bfd *abfd,
145 const Elf_External_Vernaux *src,
146 Elf_Internal_Vernaux *dst)
147 {
148 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
149 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
150 dst->vna_other = H_GET_16 (abfd, src->vna_other);
151 dst->vna_name = H_GET_32 (abfd, src->vna_name);
152 dst->vna_next = H_GET_32 (abfd, src->vna_next);
153 }
154
155 /* Swap out a Vernaux structure. */
156
157 void
158 _bfd_elf_swap_vernaux_out (bfd *abfd,
159 const Elf_Internal_Vernaux *src,
160 Elf_External_Vernaux *dst)
161 {
162 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
163 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
164 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
165 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
166 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
167 }
168
169 /* Swap in a Versym structure. */
170
171 void
172 _bfd_elf_swap_versym_in (bfd *abfd,
173 const Elf_External_Versym *src,
174 Elf_Internal_Versym *dst)
175 {
176 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
177 }
178
179 /* Swap out a Versym structure. */
180
181 void
182 _bfd_elf_swap_versym_out (bfd *abfd,
183 const Elf_Internal_Versym *src,
184 Elf_External_Versym *dst)
185 {
186 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
187 }
188
189 /* Standard ELF hash function. Do not change this function; you will
190 cause invalid hash tables to be generated. */
191
192 unsigned long
193 bfd_elf_hash (const char *namearg)
194 {
195 const unsigned char *name = (const unsigned char *) namearg;
196 unsigned long h = 0;
197 unsigned long g;
198 int ch;
199
200 while ((ch = *name++) != '\0')
201 {
202 h = (h << 4) + ch;
203 if ((g = (h & 0xf0000000)) != 0)
204 {
205 h ^= g >> 24;
206 /* The ELF ABI says `h &= ~g', but this is equivalent in
207 this case and on some machines one insn instead of two. */
208 h ^= g;
209 }
210 }
211 return h & 0xffffffff;
212 }
213
214 /* DT_GNU_HASH hash function. Do not change this function; you will
215 cause invalid hash tables to be generated. */
216
217 unsigned long
218 bfd_elf_gnu_hash (const char *namearg)
219 {
220 const unsigned char *name = (const unsigned char *) namearg;
221 unsigned long h = 5381;
222 unsigned char ch;
223
224 while ((ch = *name++) != '\0')
225 h = (h << 5) + h + ch;
226 return h & 0xffffffff;
227 }
228
229 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
230 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
231 bfd_boolean
232 bfd_elf_allocate_object (bfd *abfd,
233 size_t object_size,
234 enum elf_object_id object_id)
235 {
236 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
237 abfd->tdata.any = bfd_zalloc (abfd, object_size);
238 if (abfd->tdata.any == NULL)
239 return FALSE;
240
241 elf_object_id (abfd) = object_id;
242 elf_program_header_size (abfd) = (bfd_size_type) -1;
243 return TRUE;
244 }
245
246
247 bfd_boolean
248 bfd_elf_make_generic_object (bfd *abfd)
249 {
250 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
251 GENERIC_ELF_TDATA);
252 }
253
254 bfd_boolean
255 bfd_elf_mkcorefile (bfd *abfd)
256 {
257 /* I think this can be done just like an object file. */
258 return bfd_elf_make_generic_object (abfd);
259 }
260
261 char *
262 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
263 {
264 Elf_Internal_Shdr **i_shdrp;
265 bfd_byte *shstrtab = NULL;
266 file_ptr offset;
267 bfd_size_type shstrtabsize;
268
269 i_shdrp = elf_elfsections (abfd);
270 if (i_shdrp == 0
271 || shindex >= elf_numsections (abfd)
272 || i_shdrp[shindex] == 0)
273 return NULL;
274
275 shstrtab = i_shdrp[shindex]->contents;
276 if (shstrtab == NULL)
277 {
278 /* No cached one, attempt to read, and cache what we read. */
279 offset = i_shdrp[shindex]->sh_offset;
280 shstrtabsize = i_shdrp[shindex]->sh_size;
281
282 /* Allocate and clear an extra byte at the end, to prevent crashes
283 in case the string table is not terminated. */
284 if (shstrtabsize + 1 == 0
285 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
286 || bfd_seek (abfd, offset, SEEK_SET) != 0)
287 shstrtab = NULL;
288 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
289 {
290 if (bfd_get_error () != bfd_error_system_call)
291 bfd_set_error (bfd_error_file_truncated);
292 shstrtab = NULL;
293 }
294 else
295 shstrtab[shstrtabsize] = '\0';
296 i_shdrp[shindex]->contents = shstrtab;
297 }
298 return (char *) shstrtab;
299 }
300
301 char *
302 bfd_elf_string_from_elf_section (bfd *abfd,
303 unsigned int shindex,
304 unsigned int strindex)
305 {
306 Elf_Internal_Shdr *hdr;
307
308 if (strindex == 0)
309 return "";
310
311 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
312 return NULL;
313
314 hdr = elf_elfsections (abfd)[shindex];
315
316 if (hdr->contents == NULL
317 && bfd_elf_get_str_section (abfd, shindex) == NULL)
318 return NULL;
319
320 if (strindex >= hdr->sh_size)
321 {
322 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
323 (*_bfd_error_handler)
324 (_("%B: invalid string offset %u >= %lu for section `%s'"),
325 abfd, strindex, (unsigned long) hdr->sh_size,
326 (shindex == shstrndx && strindex == hdr->sh_name
327 ? ".shstrtab"
328 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
329 return "";
330 }
331
332 return ((char *) hdr->contents) + strindex;
333 }
334
335 /* Read and convert symbols to internal format.
336 SYMCOUNT specifies the number of symbols to read, starting from
337 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
338 are non-NULL, they are used to store the internal symbols, external
339 symbols, and symbol section index extensions, respectively.
340 Returns a pointer to the internal symbol buffer (malloced if necessary)
341 or NULL if there were no symbols or some kind of problem. */
342
343 Elf_Internal_Sym *
344 bfd_elf_get_elf_syms (bfd *ibfd,
345 Elf_Internal_Shdr *symtab_hdr,
346 size_t symcount,
347 size_t symoffset,
348 Elf_Internal_Sym *intsym_buf,
349 void *extsym_buf,
350 Elf_External_Sym_Shndx *extshndx_buf)
351 {
352 Elf_Internal_Shdr *shndx_hdr;
353 void *alloc_ext;
354 const bfd_byte *esym;
355 Elf_External_Sym_Shndx *alloc_extshndx;
356 Elf_External_Sym_Shndx *shndx;
357 Elf_Internal_Sym *isym;
358 Elf_Internal_Sym *isymend;
359 const struct elf_backend_data *bed;
360 size_t extsym_size;
361 bfd_size_type amt;
362 file_ptr pos;
363
364 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
365 abort ();
366
367 if (symcount == 0)
368 return intsym_buf;
369
370 /* Normal syms might have section extension entries. */
371 shndx_hdr = NULL;
372 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
373 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
374
375 /* Read the symbols. */
376 alloc_ext = NULL;
377 alloc_extshndx = NULL;
378 bed = get_elf_backend_data (ibfd);
379 extsym_size = bed->s->sizeof_sym;
380 amt = symcount * extsym_size;
381 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
382 if (extsym_buf == NULL)
383 {
384 alloc_ext = bfd_malloc2 (symcount, extsym_size);
385 extsym_buf = alloc_ext;
386 }
387 if (extsym_buf == NULL
388 || bfd_seek (ibfd, pos, SEEK_SET) != 0
389 || bfd_bread (extsym_buf, amt, ibfd) != amt)
390 {
391 intsym_buf = NULL;
392 goto out;
393 }
394
395 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
396 extshndx_buf = NULL;
397 else
398 {
399 amt = symcount * sizeof (Elf_External_Sym_Shndx);
400 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
401 if (extshndx_buf == NULL)
402 {
403 alloc_extshndx = bfd_malloc2 (symcount,
404 sizeof (Elf_External_Sym_Shndx));
405 extshndx_buf = alloc_extshndx;
406 }
407 if (extshndx_buf == NULL
408 || bfd_seek (ibfd, pos, SEEK_SET) != 0
409 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
410 {
411 intsym_buf = NULL;
412 goto out;
413 }
414 }
415
416 if (intsym_buf == NULL)
417 {
418 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
419 if (intsym_buf == NULL)
420 goto out;
421 }
422
423 /* Convert the symbols to internal form. */
424 isymend = intsym_buf + symcount;
425 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
426 isym < isymend;
427 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
428 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
429 {
430 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
431 (*_bfd_error_handler) (_("%B symbol number %lu references "
432 "nonexistent SHT_SYMTAB_SHNDX section"),
433 ibfd, (unsigned long) symoffset);
434 intsym_buf = NULL;
435 goto out;
436 }
437
438 out:
439 if (alloc_ext != NULL)
440 free (alloc_ext);
441 if (alloc_extshndx != NULL)
442 free (alloc_extshndx);
443
444 return intsym_buf;
445 }
446
447 /* Look up a symbol name. */
448 const char *
449 bfd_elf_sym_name (bfd *abfd,
450 Elf_Internal_Shdr *symtab_hdr,
451 Elf_Internal_Sym *isym,
452 asection *sym_sec)
453 {
454 const char *name;
455 unsigned int iname = isym->st_name;
456 unsigned int shindex = symtab_hdr->sh_link;
457
458 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
459 /* Check for a bogus st_shndx to avoid crashing. */
460 && isym->st_shndx < elf_numsections (abfd))
461 {
462 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
463 shindex = elf_elfheader (abfd)->e_shstrndx;
464 }
465
466 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
467 if (name == NULL)
468 name = "(null)";
469 else if (sym_sec && *name == '\0')
470 name = bfd_section_name (abfd, sym_sec);
471
472 return name;
473 }
474
475 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
476 sections. The first element is the flags, the rest are section
477 pointers. */
478
479 typedef union elf_internal_group {
480 Elf_Internal_Shdr *shdr;
481 unsigned int flags;
482 } Elf_Internal_Group;
483
484 /* Return the name of the group signature symbol. Why isn't the
485 signature just a string? */
486
487 static const char *
488 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
489 {
490 Elf_Internal_Shdr *hdr;
491 unsigned char esym[sizeof (Elf64_External_Sym)];
492 Elf_External_Sym_Shndx eshndx;
493 Elf_Internal_Sym isym;
494
495 /* First we need to ensure the symbol table is available. Make sure
496 that it is a symbol table section. */
497 if (ghdr->sh_link >= elf_numsections (abfd))
498 return NULL;
499 hdr = elf_elfsections (abfd) [ghdr->sh_link];
500 if (hdr->sh_type != SHT_SYMTAB
501 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
502 return NULL;
503
504 /* Go read the symbol. */
505 hdr = &elf_tdata (abfd)->symtab_hdr;
506 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
507 &isym, esym, &eshndx) == NULL)
508 return NULL;
509
510 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
511 }
512
513 /* Set next_in_group list pointer, and group name for NEWSECT. */
514
515 static bfd_boolean
516 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
517 {
518 unsigned int num_group = elf_tdata (abfd)->num_group;
519
520 /* If num_group is zero, read in all SHT_GROUP sections. The count
521 is set to -1 if there are no SHT_GROUP sections. */
522 if (num_group == 0)
523 {
524 unsigned int i, shnum;
525
526 /* First count the number of groups. If we have a SHT_GROUP
527 section with just a flag word (ie. sh_size is 4), ignore it. */
528 shnum = elf_numsections (abfd);
529 num_group = 0;
530
531 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
532 ( (shdr)->sh_type == SHT_GROUP \
533 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
534 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
535 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
536
537 for (i = 0; i < shnum; i++)
538 {
539 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
540
541 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
542 num_group += 1;
543 }
544
545 if (num_group == 0)
546 {
547 num_group = (unsigned) -1;
548 elf_tdata (abfd)->num_group = num_group;
549 }
550 else
551 {
552 /* We keep a list of elf section headers for group sections,
553 so we can find them quickly. */
554 bfd_size_type amt;
555
556 elf_tdata (abfd)->num_group = num_group;
557 elf_tdata (abfd)->group_sect_ptr
558 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
559 if (elf_tdata (abfd)->group_sect_ptr == NULL)
560 return FALSE;
561
562 num_group = 0;
563 for (i = 0; i < shnum; i++)
564 {
565 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
566
567 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
568 {
569 unsigned char *src;
570 Elf_Internal_Group *dest;
571
572 /* Add to list of sections. */
573 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
574 num_group += 1;
575
576 /* Read the raw contents. */
577 BFD_ASSERT (sizeof (*dest) >= 4);
578 amt = shdr->sh_size * sizeof (*dest) / 4;
579 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
580 sizeof (*dest) / 4);
581 /* PR binutils/4110: Handle corrupt group headers. */
582 if (shdr->contents == NULL)
583 {
584 _bfd_error_handler
585 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
586 bfd_set_error (bfd_error_bad_value);
587 return FALSE;
588 }
589
590 memset (shdr->contents, 0, amt);
591
592 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
593 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
594 != shdr->sh_size))
595 return FALSE;
596
597 /* Translate raw contents, a flag word followed by an
598 array of elf section indices all in target byte order,
599 to the flag word followed by an array of elf section
600 pointers. */
601 src = shdr->contents + shdr->sh_size;
602 dest = (Elf_Internal_Group *) (shdr->contents + amt);
603 while (1)
604 {
605 unsigned int idx;
606
607 src -= 4;
608 --dest;
609 idx = H_GET_32 (abfd, src);
610 if (src == shdr->contents)
611 {
612 dest->flags = idx;
613 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
614 shdr->bfd_section->flags
615 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
616 break;
617 }
618 if (idx >= shnum)
619 {
620 ((*_bfd_error_handler)
621 (_("%B: invalid SHT_GROUP entry"), abfd));
622 idx = 0;
623 }
624 dest->shdr = elf_elfsections (abfd)[idx];
625 }
626 }
627 }
628 }
629 }
630
631 if (num_group != (unsigned) -1)
632 {
633 unsigned int i;
634
635 for (i = 0; i < num_group; i++)
636 {
637 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
638 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
639 unsigned int n_elt = shdr->sh_size / 4;
640
641 /* Look through this group's sections to see if current
642 section is a member. */
643 while (--n_elt != 0)
644 if ((++idx)->shdr == hdr)
645 {
646 asection *s = NULL;
647
648 /* We are a member of this group. Go looking through
649 other members to see if any others are linked via
650 next_in_group. */
651 idx = (Elf_Internal_Group *) shdr->contents;
652 n_elt = shdr->sh_size / 4;
653 while (--n_elt != 0)
654 if ((s = (++idx)->shdr->bfd_section) != NULL
655 && elf_next_in_group (s) != NULL)
656 break;
657 if (n_elt != 0)
658 {
659 /* Snarf the group name from other member, and
660 insert current section in circular list. */
661 elf_group_name (newsect) = elf_group_name (s);
662 elf_next_in_group (newsect) = elf_next_in_group (s);
663 elf_next_in_group (s) = newsect;
664 }
665 else
666 {
667 const char *gname;
668
669 gname = group_signature (abfd, shdr);
670 if (gname == NULL)
671 return FALSE;
672 elf_group_name (newsect) = gname;
673
674 /* Start a circular list with one element. */
675 elf_next_in_group (newsect) = newsect;
676 }
677
678 /* If the group section has been created, point to the
679 new member. */
680 if (shdr->bfd_section != NULL)
681 elf_next_in_group (shdr->bfd_section) = newsect;
682
683 i = num_group - 1;
684 break;
685 }
686 }
687 }
688
689 if (elf_group_name (newsect) == NULL)
690 {
691 (*_bfd_error_handler) (_("%B: no group info for section %A"),
692 abfd, newsect);
693 }
694 return TRUE;
695 }
696
697 bfd_boolean
698 _bfd_elf_setup_sections (bfd *abfd)
699 {
700 unsigned int i;
701 unsigned int num_group = elf_tdata (abfd)->num_group;
702 bfd_boolean result = TRUE;
703 asection *s;
704
705 /* Process SHF_LINK_ORDER. */
706 for (s = abfd->sections; s != NULL; s = s->next)
707 {
708 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
709 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
710 {
711 unsigned int elfsec = this_hdr->sh_link;
712 /* FIXME: The old Intel compiler and old strip/objcopy may
713 not set the sh_link or sh_info fields. Hence we could
714 get the situation where elfsec is 0. */
715 if (elfsec == 0)
716 {
717 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
718 if (bed->link_order_error_handler)
719 bed->link_order_error_handler
720 (_("%B: warning: sh_link not set for section `%A'"),
721 abfd, s);
722 }
723 else
724 {
725 asection *link = NULL;
726
727 if (elfsec < elf_numsections (abfd))
728 {
729 this_hdr = elf_elfsections (abfd)[elfsec];
730 link = this_hdr->bfd_section;
731 }
732
733 /* PR 1991, 2008:
734 Some strip/objcopy may leave an incorrect value in
735 sh_link. We don't want to proceed. */
736 if (link == NULL)
737 {
738 (*_bfd_error_handler)
739 (_("%B: sh_link [%d] in section `%A' is incorrect"),
740 s->owner, s, elfsec);
741 result = FALSE;
742 }
743
744 elf_linked_to_section (s) = link;
745 }
746 }
747 }
748
749 /* Process section groups. */
750 if (num_group == (unsigned) -1)
751 return result;
752
753 for (i = 0; i < num_group; i++)
754 {
755 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
756 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
757 unsigned int n_elt = shdr->sh_size / 4;
758
759 while (--n_elt != 0)
760 if ((++idx)->shdr->bfd_section)
761 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
762 else if (idx->shdr->sh_type == SHT_RELA
763 || idx->shdr->sh_type == SHT_REL)
764 /* We won't include relocation sections in section groups in
765 output object files. We adjust the group section size here
766 so that relocatable link will work correctly when
767 relocation sections are in section group in input object
768 files. */
769 shdr->bfd_section->size -= 4;
770 else
771 {
772 /* There are some unknown sections in the group. */
773 (*_bfd_error_handler)
774 (_("%B: unknown [%d] section `%s' in group [%s]"),
775 abfd,
776 (unsigned int) idx->shdr->sh_type,
777 bfd_elf_string_from_elf_section (abfd,
778 (elf_elfheader (abfd)
779 ->e_shstrndx),
780 idx->shdr->sh_name),
781 shdr->bfd_section->name);
782 result = FALSE;
783 }
784 }
785 return result;
786 }
787
788 bfd_boolean
789 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
790 {
791 return elf_next_in_group (sec) != NULL;
792 }
793
794 /* Make a BFD section from an ELF section. We store a pointer to the
795 BFD section in the bfd_section field of the header. */
796
797 bfd_boolean
798 _bfd_elf_make_section_from_shdr (bfd *abfd,
799 Elf_Internal_Shdr *hdr,
800 const char *name,
801 int shindex)
802 {
803 asection *newsect;
804 flagword flags;
805 const struct elf_backend_data *bed;
806
807 if (hdr->bfd_section != NULL)
808 {
809 BFD_ASSERT (strcmp (name,
810 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
811 return TRUE;
812 }
813
814 newsect = bfd_make_section_anyway (abfd, name);
815 if (newsect == NULL)
816 return FALSE;
817
818 hdr->bfd_section = newsect;
819 elf_section_data (newsect)->this_hdr = *hdr;
820 elf_section_data (newsect)->this_idx = shindex;
821
822 /* Always use the real type/flags. */
823 elf_section_type (newsect) = hdr->sh_type;
824 elf_section_flags (newsect) = hdr->sh_flags;
825
826 newsect->filepos = hdr->sh_offset;
827
828 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
829 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
830 || ! bfd_set_section_alignment (abfd, newsect,
831 bfd_log2 (hdr->sh_addralign)))
832 return FALSE;
833
834 flags = SEC_NO_FLAGS;
835 if (hdr->sh_type != SHT_NOBITS)
836 flags |= SEC_HAS_CONTENTS;
837 if (hdr->sh_type == SHT_GROUP)
838 flags |= SEC_GROUP | SEC_EXCLUDE;
839 if ((hdr->sh_flags & SHF_ALLOC) != 0)
840 {
841 flags |= SEC_ALLOC;
842 if (hdr->sh_type != SHT_NOBITS)
843 flags |= SEC_LOAD;
844 }
845 if ((hdr->sh_flags & SHF_WRITE) == 0)
846 flags |= SEC_READONLY;
847 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
848 flags |= SEC_CODE;
849 else if ((flags & SEC_LOAD) != 0)
850 flags |= SEC_DATA;
851 if ((hdr->sh_flags & SHF_MERGE) != 0)
852 {
853 flags |= SEC_MERGE;
854 newsect->entsize = hdr->sh_entsize;
855 if ((hdr->sh_flags & SHF_STRINGS) != 0)
856 flags |= SEC_STRINGS;
857 }
858 if (hdr->sh_flags & SHF_GROUP)
859 if (!setup_group (abfd, hdr, newsect))
860 return FALSE;
861 if ((hdr->sh_flags & SHF_TLS) != 0)
862 flags |= SEC_THREAD_LOCAL;
863
864 if ((flags & SEC_ALLOC) == 0)
865 {
866 /* The debugging sections appear to be recognized only by name,
867 not any sort of flag. Their SEC_ALLOC bits are cleared. */
868 static const struct
869 {
870 const char *name;
871 int len;
872 } debug_sections [] =
873 {
874 { STRING_COMMA_LEN ("debug") }, /* 'd' */
875 { NULL, 0 }, /* 'e' */
876 { NULL, 0 }, /* 'f' */
877 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
878 { NULL, 0 }, /* 'h' */
879 { NULL, 0 }, /* 'i' */
880 { NULL, 0 }, /* 'j' */
881 { NULL, 0 }, /* 'k' */
882 { STRING_COMMA_LEN ("line") }, /* 'l' */
883 { NULL, 0 }, /* 'm' */
884 { NULL, 0 }, /* 'n' */
885 { NULL, 0 }, /* 'o' */
886 { NULL, 0 }, /* 'p' */
887 { NULL, 0 }, /* 'q' */
888 { NULL, 0 }, /* 'r' */
889 { STRING_COMMA_LEN ("stab") } /* 's' */
890 };
891
892 if (name [0] == '.')
893 {
894 int i = name [1] - 'd';
895 if (i >= 0
896 && i < (int) ARRAY_SIZE (debug_sections)
897 && debug_sections [i].name != NULL
898 && strncmp (&name [1], debug_sections [i].name,
899 debug_sections [i].len) == 0)
900 flags |= SEC_DEBUGGING;
901 }
902 }
903
904 /* As a GNU extension, if the name begins with .gnu.linkonce, we
905 only link a single copy of the section. This is used to support
906 g++. g++ will emit each template expansion in its own section.
907 The symbols will be defined as weak, so that multiple definitions
908 are permitted. The GNU linker extension is to actually discard
909 all but one of the sections. */
910 if (CONST_STRNEQ (name, ".gnu.linkonce")
911 && elf_next_in_group (newsect) == NULL)
912 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
913
914 bed = get_elf_backend_data (abfd);
915 if (bed->elf_backend_section_flags)
916 if (! bed->elf_backend_section_flags (&flags, hdr))
917 return FALSE;
918
919 if (! bfd_set_section_flags (abfd, newsect, flags))
920 return FALSE;
921
922 /* We do not parse the PT_NOTE segments as we are interested even in the
923 separate debug info files which may have the segments offsets corrupted.
924 PT_NOTEs from the core files are currently not parsed using BFD. */
925 if (hdr->sh_type == SHT_NOTE)
926 {
927 char *contents;
928
929 contents = bfd_malloc (hdr->sh_size);
930 if (!contents)
931 return FALSE;
932
933 if (!bfd_get_section_contents (abfd, hdr->bfd_section, contents, 0,
934 hdr->sh_size)
935 || !elf_parse_notes (abfd, contents, hdr->sh_size, -1))
936 {
937 free (contents);
938 return FALSE;
939 }
940
941 free (contents);
942 }
943
944 if ((flags & SEC_ALLOC) != 0)
945 {
946 Elf_Internal_Phdr *phdr;
947 unsigned int i;
948
949 /* Look through the phdrs to see if we need to adjust the lma.
950 If all the p_paddr fields are zero, we ignore them, since
951 some ELF linkers produce such output. */
952 phdr = elf_tdata (abfd)->phdr;
953 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
954 {
955 if (phdr->p_paddr != 0)
956 break;
957 }
958 if (i < elf_elfheader (abfd)->e_phnum)
959 {
960 phdr = elf_tdata (abfd)->phdr;
961 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
962 {
963 /* This section is part of this segment if its file
964 offset plus size lies within the segment's memory
965 span and, if the section is loaded, the extent of the
966 loaded data lies within the extent of the segment.
967
968 Note - we used to check the p_paddr field as well, and
969 refuse to set the LMA if it was 0. This is wrong
970 though, as a perfectly valid initialised segment can
971 have a p_paddr of zero. Some architectures, eg ARM,
972 place special significance on the address 0 and
973 executables need to be able to have a segment which
974 covers this address. */
975 if (phdr->p_type == PT_LOAD
976 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
977 && (hdr->sh_offset + hdr->sh_size
978 <= phdr->p_offset + phdr->p_memsz)
979 && ((flags & SEC_LOAD) == 0
980 || (hdr->sh_offset + hdr->sh_size
981 <= phdr->p_offset + phdr->p_filesz)))
982 {
983 if ((flags & SEC_LOAD) == 0)
984 newsect->lma = (phdr->p_paddr
985 + hdr->sh_addr - phdr->p_vaddr);
986 else
987 /* We used to use the same adjustment for SEC_LOAD
988 sections, but that doesn't work if the segment
989 is packed with code from multiple VMAs.
990 Instead we calculate the section LMA based on
991 the segment LMA. It is assumed that the
992 segment will contain sections with contiguous
993 LMAs, even if the VMAs are not. */
994 newsect->lma = (phdr->p_paddr
995 + hdr->sh_offset - phdr->p_offset);
996
997 /* With contiguous segments, we can't tell from file
998 offsets whether a section with zero size should
999 be placed at the end of one segment or the
1000 beginning of the next. Decide based on vaddr. */
1001 if (hdr->sh_addr >= phdr->p_vaddr
1002 && (hdr->sh_addr + hdr->sh_size
1003 <= phdr->p_vaddr + phdr->p_memsz))
1004 break;
1005 }
1006 }
1007 }
1008 }
1009
1010 return TRUE;
1011 }
1012
1013 /*
1014 INTERNAL_FUNCTION
1015 bfd_elf_find_section
1016
1017 SYNOPSIS
1018 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
1019
1020 DESCRIPTION
1021 Helper functions for GDB to locate the string tables.
1022 Since BFD hides string tables from callers, GDB needs to use an
1023 internal hook to find them. Sun's .stabstr, in particular,
1024 isn't even pointed to by the .stab section, so ordinary
1025 mechanisms wouldn't work to find it, even if we had some.
1026 */
1027
1028 struct elf_internal_shdr *
1029 bfd_elf_find_section (bfd *abfd, char *name)
1030 {
1031 Elf_Internal_Shdr **i_shdrp;
1032 char *shstrtab;
1033 unsigned int max;
1034 unsigned int i;
1035
1036 i_shdrp = elf_elfsections (abfd);
1037 if (i_shdrp != NULL)
1038 {
1039 shstrtab = bfd_elf_get_str_section (abfd,
1040 elf_elfheader (abfd)->e_shstrndx);
1041 if (shstrtab != NULL)
1042 {
1043 max = elf_numsections (abfd);
1044 for (i = 1; i < max; i++)
1045 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
1046 return i_shdrp[i];
1047 }
1048 }
1049 return 0;
1050 }
1051
1052 const char *const bfd_elf_section_type_names[] = {
1053 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1054 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1055 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1056 };
1057
1058 /* ELF relocs are against symbols. If we are producing relocatable
1059 output, and the reloc is against an external symbol, and nothing
1060 has given us any additional addend, the resulting reloc will also
1061 be against the same symbol. In such a case, we don't want to
1062 change anything about the way the reloc is handled, since it will
1063 all be done at final link time. Rather than put special case code
1064 into bfd_perform_relocation, all the reloc types use this howto
1065 function. It just short circuits the reloc if producing
1066 relocatable output against an external symbol. */
1067
1068 bfd_reloc_status_type
1069 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1070 arelent *reloc_entry,
1071 asymbol *symbol,
1072 void *data ATTRIBUTE_UNUSED,
1073 asection *input_section,
1074 bfd *output_bfd,
1075 char **error_message ATTRIBUTE_UNUSED)
1076 {
1077 if (output_bfd != NULL
1078 && (symbol->flags & BSF_SECTION_SYM) == 0
1079 && (! reloc_entry->howto->partial_inplace
1080 || reloc_entry->addend == 0))
1081 {
1082 reloc_entry->address += input_section->output_offset;
1083 return bfd_reloc_ok;
1084 }
1085
1086 return bfd_reloc_continue;
1087 }
1088 \f
1089 /* Copy the program header and other data from one object module to
1090 another. */
1091
1092 bfd_boolean
1093 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1094 {
1095 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1096 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1097 return TRUE;
1098
1099 BFD_ASSERT (!elf_flags_init (obfd)
1100 || (elf_elfheader (obfd)->e_flags
1101 == elf_elfheader (ibfd)->e_flags));
1102
1103 elf_gp (obfd) = elf_gp (ibfd);
1104 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1105 elf_flags_init (obfd) = TRUE;
1106
1107 /* Copy object attributes. */
1108 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1109
1110 return TRUE;
1111 }
1112
1113 static const char *
1114 get_segment_type (unsigned int p_type)
1115 {
1116 const char *pt;
1117 switch (p_type)
1118 {
1119 case PT_NULL: pt = "NULL"; break;
1120 case PT_LOAD: pt = "LOAD"; break;
1121 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1122 case PT_INTERP: pt = "INTERP"; break;
1123 case PT_NOTE: pt = "NOTE"; break;
1124 case PT_SHLIB: pt = "SHLIB"; break;
1125 case PT_PHDR: pt = "PHDR"; break;
1126 case PT_TLS: pt = "TLS"; break;
1127 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1128 case PT_GNU_STACK: pt = "STACK"; break;
1129 case PT_GNU_RELRO: pt = "RELRO"; break;
1130 default: pt = NULL; break;
1131 }
1132 return pt;
1133 }
1134
1135 /* Print out the program headers. */
1136
1137 bfd_boolean
1138 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1139 {
1140 FILE *f = farg;
1141 Elf_Internal_Phdr *p;
1142 asection *s;
1143 bfd_byte *dynbuf = NULL;
1144
1145 p = elf_tdata (abfd)->phdr;
1146 if (p != NULL)
1147 {
1148 unsigned int i, c;
1149
1150 fprintf (f, _("\nProgram Header:\n"));
1151 c = elf_elfheader (abfd)->e_phnum;
1152 for (i = 0; i < c; i++, p++)
1153 {
1154 const char *pt = get_segment_type (p->p_type);
1155 char buf[20];
1156
1157 if (pt == NULL)
1158 {
1159 sprintf (buf, "0x%lx", p->p_type);
1160 pt = buf;
1161 }
1162 fprintf (f, "%8s off 0x", pt);
1163 bfd_fprintf_vma (abfd, f, p->p_offset);
1164 fprintf (f, " vaddr 0x");
1165 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1166 fprintf (f, " paddr 0x");
1167 bfd_fprintf_vma (abfd, f, p->p_paddr);
1168 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1169 fprintf (f, " filesz 0x");
1170 bfd_fprintf_vma (abfd, f, p->p_filesz);
1171 fprintf (f, " memsz 0x");
1172 bfd_fprintf_vma (abfd, f, p->p_memsz);
1173 fprintf (f, " flags %c%c%c",
1174 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1175 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1176 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1177 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1178 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1179 fprintf (f, "\n");
1180 }
1181 }
1182
1183 s = bfd_get_section_by_name (abfd, ".dynamic");
1184 if (s != NULL)
1185 {
1186 unsigned int elfsec;
1187 unsigned long shlink;
1188 bfd_byte *extdyn, *extdynend;
1189 size_t extdynsize;
1190 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1191
1192 fprintf (f, _("\nDynamic Section:\n"));
1193
1194 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1195 goto error_return;
1196
1197 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1198 if (elfsec == SHN_BAD)
1199 goto error_return;
1200 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1201
1202 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1203 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1204
1205 extdyn = dynbuf;
1206 extdynend = extdyn + s->size;
1207 for (; extdyn < extdynend; extdyn += extdynsize)
1208 {
1209 Elf_Internal_Dyn dyn;
1210 const char *name = "";
1211 char ab[20];
1212 bfd_boolean stringp;
1213 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1214
1215 (*swap_dyn_in) (abfd, extdyn, &dyn);
1216
1217 if (dyn.d_tag == DT_NULL)
1218 break;
1219
1220 stringp = FALSE;
1221 switch (dyn.d_tag)
1222 {
1223 default:
1224 if (bed->elf_backend_get_target_dtag)
1225 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1226
1227 if (!strcmp (name, ""))
1228 {
1229 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1230 name = ab;
1231 }
1232 break;
1233
1234 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1235 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1236 case DT_PLTGOT: name = "PLTGOT"; break;
1237 case DT_HASH: name = "HASH"; break;
1238 case DT_STRTAB: name = "STRTAB"; break;
1239 case DT_SYMTAB: name = "SYMTAB"; break;
1240 case DT_RELA: name = "RELA"; break;
1241 case DT_RELASZ: name = "RELASZ"; break;
1242 case DT_RELAENT: name = "RELAENT"; break;
1243 case DT_STRSZ: name = "STRSZ"; break;
1244 case DT_SYMENT: name = "SYMENT"; break;
1245 case DT_INIT: name = "INIT"; break;
1246 case DT_FINI: name = "FINI"; break;
1247 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1248 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1249 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1250 case DT_REL: name = "REL"; break;
1251 case DT_RELSZ: name = "RELSZ"; break;
1252 case DT_RELENT: name = "RELENT"; break;
1253 case DT_PLTREL: name = "PLTREL"; break;
1254 case DT_DEBUG: name = "DEBUG"; break;
1255 case DT_TEXTREL: name = "TEXTREL"; break;
1256 case DT_JMPREL: name = "JMPREL"; break;
1257 case DT_BIND_NOW: name = "BIND_NOW"; break;
1258 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1259 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1260 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1261 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1262 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1263 case DT_FLAGS: name = "FLAGS"; break;
1264 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1265 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1266 case DT_CHECKSUM: name = "CHECKSUM"; break;
1267 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1268 case DT_MOVEENT: name = "MOVEENT"; break;
1269 case DT_MOVESZ: name = "MOVESZ"; break;
1270 case DT_FEATURE: name = "FEATURE"; break;
1271 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1272 case DT_SYMINSZ: name = "SYMINSZ"; break;
1273 case DT_SYMINENT: name = "SYMINENT"; break;
1274 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1275 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1276 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1277 case DT_PLTPAD: name = "PLTPAD"; break;
1278 case DT_MOVETAB: name = "MOVETAB"; break;
1279 case DT_SYMINFO: name = "SYMINFO"; break;
1280 case DT_RELACOUNT: name = "RELACOUNT"; break;
1281 case DT_RELCOUNT: name = "RELCOUNT"; break;
1282 case DT_FLAGS_1: name = "FLAGS_1"; break;
1283 case DT_VERSYM: name = "VERSYM"; break;
1284 case DT_VERDEF: name = "VERDEF"; break;
1285 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1286 case DT_VERNEED: name = "VERNEED"; break;
1287 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1288 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1289 case DT_USED: name = "USED"; break;
1290 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1291 case DT_GNU_HASH: name = "GNU_HASH"; break;
1292 }
1293
1294 fprintf (f, " %-20s ", name);
1295 if (! stringp)
1296 {
1297 fprintf (f, "0x");
1298 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1299 }
1300 else
1301 {
1302 const char *string;
1303 unsigned int tagv = dyn.d_un.d_val;
1304
1305 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1306 if (string == NULL)
1307 goto error_return;
1308 fprintf (f, "%s", string);
1309 }
1310 fprintf (f, "\n");
1311 }
1312
1313 free (dynbuf);
1314 dynbuf = NULL;
1315 }
1316
1317 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1318 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1319 {
1320 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1321 return FALSE;
1322 }
1323
1324 if (elf_dynverdef (abfd) != 0)
1325 {
1326 Elf_Internal_Verdef *t;
1327
1328 fprintf (f, _("\nVersion definitions:\n"));
1329 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1330 {
1331 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1332 t->vd_flags, t->vd_hash,
1333 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1334 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1335 {
1336 Elf_Internal_Verdaux *a;
1337
1338 fprintf (f, "\t");
1339 for (a = t->vd_auxptr->vda_nextptr;
1340 a != NULL;
1341 a = a->vda_nextptr)
1342 fprintf (f, "%s ",
1343 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1344 fprintf (f, "\n");
1345 }
1346 }
1347 }
1348
1349 if (elf_dynverref (abfd) != 0)
1350 {
1351 Elf_Internal_Verneed *t;
1352
1353 fprintf (f, _("\nVersion References:\n"));
1354 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1355 {
1356 Elf_Internal_Vernaux *a;
1357
1358 fprintf (f, _(" required from %s:\n"),
1359 t->vn_filename ? t->vn_filename : "<corrupt>");
1360 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1361 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1362 a->vna_flags, a->vna_other,
1363 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1364 }
1365 }
1366
1367 return TRUE;
1368
1369 error_return:
1370 if (dynbuf != NULL)
1371 free (dynbuf);
1372 return FALSE;
1373 }
1374
1375 /* Display ELF-specific fields of a symbol. */
1376
1377 void
1378 bfd_elf_print_symbol (bfd *abfd,
1379 void *filep,
1380 asymbol *symbol,
1381 bfd_print_symbol_type how)
1382 {
1383 FILE *file = filep;
1384 switch (how)
1385 {
1386 case bfd_print_symbol_name:
1387 fprintf (file, "%s", symbol->name);
1388 break;
1389 case bfd_print_symbol_more:
1390 fprintf (file, "elf ");
1391 bfd_fprintf_vma (abfd, file, symbol->value);
1392 fprintf (file, " %lx", (long) symbol->flags);
1393 break;
1394 case bfd_print_symbol_all:
1395 {
1396 const char *section_name;
1397 const char *name = NULL;
1398 const struct elf_backend_data *bed;
1399 unsigned char st_other;
1400 bfd_vma val;
1401
1402 section_name = symbol->section ? symbol->section->name : "(*none*)";
1403
1404 bed = get_elf_backend_data (abfd);
1405 if (bed->elf_backend_print_symbol_all)
1406 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1407
1408 if (name == NULL)
1409 {
1410 name = symbol->name;
1411 bfd_print_symbol_vandf (abfd, file, symbol);
1412 }
1413
1414 fprintf (file, " %s\t", section_name);
1415 /* Print the "other" value for a symbol. For common symbols,
1416 we've already printed the size; now print the alignment.
1417 For other symbols, we have no specified alignment, and
1418 we've printed the address; now print the size. */
1419 if (symbol->section && bfd_is_com_section (symbol->section))
1420 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1421 else
1422 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1423 bfd_fprintf_vma (abfd, file, val);
1424
1425 /* If we have version information, print it. */
1426 if (elf_tdata (abfd)->dynversym_section != 0
1427 && (elf_tdata (abfd)->dynverdef_section != 0
1428 || elf_tdata (abfd)->dynverref_section != 0))
1429 {
1430 unsigned int vernum;
1431 const char *version_string;
1432
1433 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1434
1435 if (vernum == 0)
1436 version_string = "";
1437 else if (vernum == 1)
1438 version_string = "Base";
1439 else if (vernum <= elf_tdata (abfd)->cverdefs)
1440 version_string =
1441 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1442 else
1443 {
1444 Elf_Internal_Verneed *t;
1445
1446 version_string = "";
1447 for (t = elf_tdata (abfd)->verref;
1448 t != NULL;
1449 t = t->vn_nextref)
1450 {
1451 Elf_Internal_Vernaux *a;
1452
1453 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1454 {
1455 if (a->vna_other == vernum)
1456 {
1457 version_string = a->vna_nodename;
1458 break;
1459 }
1460 }
1461 }
1462 }
1463
1464 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1465 fprintf (file, " %-11s", version_string);
1466 else
1467 {
1468 int i;
1469
1470 fprintf (file, " (%s)", version_string);
1471 for (i = 10 - strlen (version_string); i > 0; --i)
1472 putc (' ', file);
1473 }
1474 }
1475
1476 /* If the st_other field is not zero, print it. */
1477 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1478
1479 switch (st_other)
1480 {
1481 case 0: break;
1482 case STV_INTERNAL: fprintf (file, " .internal"); break;
1483 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1484 case STV_PROTECTED: fprintf (file, " .protected"); break;
1485 default:
1486 /* Some other non-defined flags are also present, so print
1487 everything hex. */
1488 fprintf (file, " 0x%02x", (unsigned int) st_other);
1489 }
1490
1491 fprintf (file, " %s", name);
1492 }
1493 break;
1494 }
1495 }
1496
1497 /* Allocate an ELF string table--force the first byte to be zero. */
1498
1499 struct bfd_strtab_hash *
1500 _bfd_elf_stringtab_init (void)
1501 {
1502 struct bfd_strtab_hash *ret;
1503
1504 ret = _bfd_stringtab_init ();
1505 if (ret != NULL)
1506 {
1507 bfd_size_type loc;
1508
1509 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1510 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1511 if (loc == (bfd_size_type) -1)
1512 {
1513 _bfd_stringtab_free (ret);
1514 ret = NULL;
1515 }
1516 }
1517 return ret;
1518 }
1519 \f
1520 /* ELF .o/exec file reading */
1521
1522 /* Create a new bfd section from an ELF section header. */
1523
1524 bfd_boolean
1525 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1526 {
1527 Elf_Internal_Shdr *hdr;
1528 Elf_Internal_Ehdr *ehdr;
1529 const struct elf_backend_data *bed;
1530 const char *name;
1531
1532 if (shindex >= elf_numsections (abfd))
1533 return FALSE;
1534
1535 hdr = elf_elfsections (abfd)[shindex];
1536 ehdr = elf_elfheader (abfd);
1537 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1538 hdr->sh_name);
1539 if (name == NULL)
1540 return FALSE;
1541
1542 bed = get_elf_backend_data (abfd);
1543 switch (hdr->sh_type)
1544 {
1545 case SHT_NULL:
1546 /* Inactive section. Throw it away. */
1547 return TRUE;
1548
1549 case SHT_PROGBITS: /* Normal section with contents. */
1550 case SHT_NOBITS: /* .bss section. */
1551 case SHT_HASH: /* .hash section. */
1552 case SHT_NOTE: /* .note section. */
1553 case SHT_INIT_ARRAY: /* .init_array section. */
1554 case SHT_FINI_ARRAY: /* .fini_array section. */
1555 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1556 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1557 case SHT_GNU_HASH: /* .gnu.hash section. */
1558 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1559
1560 case SHT_DYNAMIC: /* Dynamic linking information. */
1561 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1562 return FALSE;
1563 if (hdr->sh_link > elf_numsections (abfd)
1564 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1565 return FALSE;
1566 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1567 {
1568 Elf_Internal_Shdr *dynsymhdr;
1569
1570 /* The shared libraries distributed with hpux11 have a bogus
1571 sh_link field for the ".dynamic" section. Find the
1572 string table for the ".dynsym" section instead. */
1573 if (elf_dynsymtab (abfd) != 0)
1574 {
1575 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1576 hdr->sh_link = dynsymhdr->sh_link;
1577 }
1578 else
1579 {
1580 unsigned int i, num_sec;
1581
1582 num_sec = elf_numsections (abfd);
1583 for (i = 1; i < num_sec; i++)
1584 {
1585 dynsymhdr = elf_elfsections (abfd)[i];
1586 if (dynsymhdr->sh_type == SHT_DYNSYM)
1587 {
1588 hdr->sh_link = dynsymhdr->sh_link;
1589 break;
1590 }
1591 }
1592 }
1593 }
1594 break;
1595
1596 case SHT_SYMTAB: /* A symbol table */
1597 if (elf_onesymtab (abfd) == shindex)
1598 return TRUE;
1599
1600 if (hdr->sh_entsize != bed->s->sizeof_sym)
1601 return FALSE;
1602 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1603 elf_onesymtab (abfd) = shindex;
1604 elf_tdata (abfd)->symtab_hdr = *hdr;
1605 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1606 abfd->flags |= HAS_SYMS;
1607
1608 /* Sometimes a shared object will map in the symbol table. If
1609 SHF_ALLOC is set, and this is a shared object, then we also
1610 treat this section as a BFD section. We can not base the
1611 decision purely on SHF_ALLOC, because that flag is sometimes
1612 set in a relocatable object file, which would confuse the
1613 linker. */
1614 if ((hdr->sh_flags & SHF_ALLOC) != 0
1615 && (abfd->flags & DYNAMIC) != 0
1616 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1617 shindex))
1618 return FALSE;
1619
1620 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1621 can't read symbols without that section loaded as well. It
1622 is most likely specified by the next section header. */
1623 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1624 {
1625 unsigned int i, num_sec;
1626
1627 num_sec = elf_numsections (abfd);
1628 for (i = shindex + 1; i < num_sec; i++)
1629 {
1630 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1631 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1632 && hdr2->sh_link == shindex)
1633 break;
1634 }
1635 if (i == num_sec)
1636 for (i = 1; i < shindex; i++)
1637 {
1638 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1639 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1640 && hdr2->sh_link == shindex)
1641 break;
1642 }
1643 if (i != shindex)
1644 return bfd_section_from_shdr (abfd, i);
1645 }
1646 return TRUE;
1647
1648 case SHT_DYNSYM: /* A dynamic symbol table */
1649 if (elf_dynsymtab (abfd) == shindex)
1650 return TRUE;
1651
1652 if (hdr->sh_entsize != bed->s->sizeof_sym)
1653 return FALSE;
1654 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1655 elf_dynsymtab (abfd) = shindex;
1656 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1657 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1658 abfd->flags |= HAS_SYMS;
1659
1660 /* Besides being a symbol table, we also treat this as a regular
1661 section, so that objcopy can handle it. */
1662 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1663
1664 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1665 if (elf_symtab_shndx (abfd) == shindex)
1666 return TRUE;
1667
1668 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1669 elf_symtab_shndx (abfd) = shindex;
1670 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1671 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1672 return TRUE;
1673
1674 case SHT_STRTAB: /* A string table */
1675 if (hdr->bfd_section != NULL)
1676 return TRUE;
1677 if (ehdr->e_shstrndx == shindex)
1678 {
1679 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1680 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1681 return TRUE;
1682 }
1683 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1684 {
1685 symtab_strtab:
1686 elf_tdata (abfd)->strtab_hdr = *hdr;
1687 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1688 return TRUE;
1689 }
1690 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1691 {
1692 dynsymtab_strtab:
1693 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1694 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1695 elf_elfsections (abfd)[shindex] = hdr;
1696 /* We also treat this as a regular section, so that objcopy
1697 can handle it. */
1698 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1699 shindex);
1700 }
1701
1702 /* If the string table isn't one of the above, then treat it as a
1703 regular section. We need to scan all the headers to be sure,
1704 just in case this strtab section appeared before the above. */
1705 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1706 {
1707 unsigned int i, num_sec;
1708
1709 num_sec = elf_numsections (abfd);
1710 for (i = 1; i < num_sec; i++)
1711 {
1712 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1713 if (hdr2->sh_link == shindex)
1714 {
1715 /* Prevent endless recursion on broken objects. */
1716 if (i == shindex)
1717 return FALSE;
1718 if (! bfd_section_from_shdr (abfd, i))
1719 return FALSE;
1720 if (elf_onesymtab (abfd) == i)
1721 goto symtab_strtab;
1722 if (elf_dynsymtab (abfd) == i)
1723 goto dynsymtab_strtab;
1724 }
1725 }
1726 }
1727 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1728
1729 case SHT_REL:
1730 case SHT_RELA:
1731 /* *These* do a lot of work -- but build no sections! */
1732 {
1733 asection *target_sect;
1734 Elf_Internal_Shdr *hdr2;
1735 unsigned int num_sec = elf_numsections (abfd);
1736
1737 if (hdr->sh_entsize
1738 != (bfd_size_type) (hdr->sh_type == SHT_REL
1739 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1740 return FALSE;
1741
1742 /* Check for a bogus link to avoid crashing. */
1743 if (hdr->sh_link >= num_sec)
1744 {
1745 ((*_bfd_error_handler)
1746 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1747 abfd, hdr->sh_link, name, shindex));
1748 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1749 shindex);
1750 }
1751
1752 /* For some incomprehensible reason Oracle distributes
1753 libraries for Solaris in which some of the objects have
1754 bogus sh_link fields. It would be nice if we could just
1755 reject them, but, unfortunately, some people need to use
1756 them. We scan through the section headers; if we find only
1757 one suitable symbol table, we clobber the sh_link to point
1758 to it. I hope this doesn't break anything. */
1759 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1760 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1761 {
1762 unsigned int scan;
1763 int found;
1764
1765 found = 0;
1766 for (scan = 1; scan < num_sec; scan++)
1767 {
1768 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1769 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1770 {
1771 if (found != 0)
1772 {
1773 found = 0;
1774 break;
1775 }
1776 found = scan;
1777 }
1778 }
1779 if (found != 0)
1780 hdr->sh_link = found;
1781 }
1782
1783 /* Get the symbol table. */
1784 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1785 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1786 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1787 return FALSE;
1788
1789 /* If this reloc section does not use the main symbol table we
1790 don't treat it as a reloc section. BFD can't adequately
1791 represent such a section, so at least for now, we don't
1792 try. We just present it as a normal section. We also
1793 can't use it as a reloc section if it points to the null
1794 section, an invalid section, or another reloc section. */
1795 if (hdr->sh_link != elf_onesymtab (abfd)
1796 || hdr->sh_info == SHN_UNDEF
1797 || hdr->sh_info >= num_sec
1798 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1799 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1800 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1801 shindex);
1802
1803 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1804 return FALSE;
1805 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1806 if (target_sect == NULL)
1807 return FALSE;
1808
1809 if ((target_sect->flags & SEC_RELOC) == 0
1810 || target_sect->reloc_count == 0)
1811 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1812 else
1813 {
1814 bfd_size_type amt;
1815 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1816 amt = sizeof (*hdr2);
1817 hdr2 = bfd_alloc (abfd, amt);
1818 if (hdr2 == NULL)
1819 return FALSE;
1820 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1821 }
1822 *hdr2 = *hdr;
1823 elf_elfsections (abfd)[shindex] = hdr2;
1824 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1825 target_sect->flags |= SEC_RELOC;
1826 target_sect->relocation = NULL;
1827 target_sect->rel_filepos = hdr->sh_offset;
1828 /* In the section to which the relocations apply, mark whether
1829 its relocations are of the REL or RELA variety. */
1830 if (hdr->sh_size != 0)
1831 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1832 abfd->flags |= HAS_RELOC;
1833 return TRUE;
1834 }
1835
1836 case SHT_GNU_verdef:
1837 elf_dynverdef (abfd) = shindex;
1838 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1839 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1840
1841 case SHT_GNU_versym:
1842 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1843 return FALSE;
1844 elf_dynversym (abfd) = shindex;
1845 elf_tdata (abfd)->dynversym_hdr = *hdr;
1846 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1847
1848 case SHT_GNU_verneed:
1849 elf_dynverref (abfd) = shindex;
1850 elf_tdata (abfd)->dynverref_hdr = *hdr;
1851 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1852
1853 case SHT_SHLIB:
1854 return TRUE;
1855
1856 case SHT_GROUP:
1857 /* We need a BFD section for objcopy and relocatable linking,
1858 and it's handy to have the signature available as the section
1859 name. */
1860 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1861 return FALSE;
1862 name = group_signature (abfd, hdr);
1863 if (name == NULL)
1864 return FALSE;
1865 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1866 return FALSE;
1867 if (hdr->contents != NULL)
1868 {
1869 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1870 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1871 asection *s;
1872
1873 if (idx->flags & GRP_COMDAT)
1874 hdr->bfd_section->flags
1875 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1876
1877 /* We try to keep the same section order as it comes in. */
1878 idx += n_elt;
1879 while (--n_elt != 0)
1880 {
1881 --idx;
1882
1883 if (idx->shdr != NULL
1884 && (s = idx->shdr->bfd_section) != NULL
1885 && elf_next_in_group (s) != NULL)
1886 {
1887 elf_next_in_group (hdr->bfd_section) = s;
1888 break;
1889 }
1890 }
1891 }
1892 break;
1893
1894 default:
1895 /* Possibly an attributes section. */
1896 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1897 || hdr->sh_type == bed->obj_attrs_section_type)
1898 {
1899 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1900 return FALSE;
1901 _bfd_elf_parse_attributes (abfd, hdr);
1902 return TRUE;
1903 }
1904
1905 /* Check for any processor-specific section types. */
1906 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1907 return TRUE;
1908
1909 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1910 {
1911 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1912 /* FIXME: How to properly handle allocated section reserved
1913 for applications? */
1914 (*_bfd_error_handler)
1915 (_("%B: don't know how to handle allocated, application "
1916 "specific section `%s' [0x%8x]"),
1917 abfd, name, hdr->sh_type);
1918 else
1919 /* Allow sections reserved for applications. */
1920 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1921 shindex);
1922 }
1923 else if (hdr->sh_type >= SHT_LOPROC
1924 && hdr->sh_type <= SHT_HIPROC)
1925 /* FIXME: We should handle this section. */
1926 (*_bfd_error_handler)
1927 (_("%B: don't know how to handle processor specific section "
1928 "`%s' [0x%8x]"),
1929 abfd, name, hdr->sh_type);
1930 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1931 {
1932 /* Unrecognised OS-specific sections. */
1933 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1934 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1935 required to correctly process the section and the file should
1936 be rejected with an error message. */
1937 (*_bfd_error_handler)
1938 (_("%B: don't know how to handle OS specific section "
1939 "`%s' [0x%8x]"),
1940 abfd, name, hdr->sh_type);
1941 else
1942 /* Otherwise it should be processed. */
1943 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1944 }
1945 else
1946 /* FIXME: We should handle this section. */
1947 (*_bfd_error_handler)
1948 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1949 abfd, name, hdr->sh_type);
1950
1951 return FALSE;
1952 }
1953
1954 return TRUE;
1955 }
1956
1957 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1958 Return SEC for sections that have no elf section, and NULL on error. */
1959
1960 asection *
1961 bfd_section_from_r_symndx (bfd *abfd,
1962 struct sym_sec_cache *cache,
1963 asection *sec,
1964 unsigned long r_symndx)
1965 {
1966 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1967 asection *s;
1968
1969 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1970 {
1971 Elf_Internal_Shdr *symtab_hdr;
1972 unsigned char esym[sizeof (Elf64_External_Sym)];
1973 Elf_External_Sym_Shndx eshndx;
1974 Elf_Internal_Sym isym;
1975
1976 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1977 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1978 &isym, esym, &eshndx) == NULL)
1979 return NULL;
1980
1981 if (cache->abfd != abfd)
1982 {
1983 memset (cache->indx, -1, sizeof (cache->indx));
1984 cache->abfd = abfd;
1985 }
1986 cache->indx[ent] = r_symndx;
1987 cache->shndx[ent] = isym.st_shndx;
1988 }
1989
1990 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1991 if (s != NULL)
1992 return s;
1993
1994 return sec;
1995 }
1996
1997 /* Given an ELF section number, retrieve the corresponding BFD
1998 section. */
1999
2000 asection *
2001 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2002 {
2003 if (index >= elf_numsections (abfd))
2004 return NULL;
2005 return elf_elfsections (abfd)[index]->bfd_section;
2006 }
2007
2008 static const struct bfd_elf_special_section special_sections_b[] =
2009 {
2010 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2011 { NULL, 0, 0, 0, 0 }
2012 };
2013
2014 static const struct bfd_elf_special_section special_sections_c[] =
2015 {
2016 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2017 { NULL, 0, 0, 0, 0 }
2018 };
2019
2020 static const struct bfd_elf_special_section special_sections_d[] =
2021 {
2022 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2023 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2024 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2025 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2026 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2027 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2028 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2029 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2030 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2031 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2032 { NULL, 0, 0, 0, 0 }
2033 };
2034
2035 static const struct bfd_elf_special_section special_sections_f[] =
2036 {
2037 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2038 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2039 { NULL, 0, 0, 0, 0 }
2040 };
2041
2042 static const struct bfd_elf_special_section special_sections_g[] =
2043 {
2044 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2045 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2046 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2047 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2048 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2049 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2050 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2051 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2052 { NULL, 0, 0, 0, 0 }
2053 };
2054
2055 static const struct bfd_elf_special_section special_sections_h[] =
2056 {
2057 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2058 { NULL, 0, 0, 0, 0 }
2059 };
2060
2061 static const struct bfd_elf_special_section special_sections_i[] =
2062 {
2063 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2064 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2065 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2066 { NULL, 0, 0, 0, 0 }
2067 };
2068
2069 static const struct bfd_elf_special_section special_sections_l[] =
2070 {
2071 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2072 { NULL, 0, 0, 0, 0 }
2073 };
2074
2075 static const struct bfd_elf_special_section special_sections_n[] =
2076 {
2077 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2078 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2079 { NULL, 0, 0, 0, 0 }
2080 };
2081
2082 static const struct bfd_elf_special_section special_sections_p[] =
2083 {
2084 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2085 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2086 { NULL, 0, 0, 0, 0 }
2087 };
2088
2089 static const struct bfd_elf_special_section special_sections_r[] =
2090 {
2091 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2092 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2093 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2094 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2095 { NULL, 0, 0, 0, 0 }
2096 };
2097
2098 static const struct bfd_elf_special_section special_sections_s[] =
2099 {
2100 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2101 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2102 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2103 /* See struct bfd_elf_special_section declaration for the semantics of
2104 this special case where .prefix_length != strlen (.prefix). */
2105 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2106 { NULL, 0, 0, 0, 0 }
2107 };
2108
2109 static const struct bfd_elf_special_section special_sections_t[] =
2110 {
2111 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2112 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2113 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2114 { NULL, 0, 0, 0, 0 }
2115 };
2116
2117 static const struct bfd_elf_special_section *special_sections[] =
2118 {
2119 special_sections_b, /* 'b' */
2120 special_sections_c, /* 'c' */
2121 special_sections_d, /* 'd' */
2122 NULL, /* 'e' */
2123 special_sections_f, /* 'f' */
2124 special_sections_g, /* 'g' */
2125 special_sections_h, /* 'h' */
2126 special_sections_i, /* 'i' */
2127 NULL, /* 'j' */
2128 NULL, /* 'k' */
2129 special_sections_l, /* 'l' */
2130 NULL, /* 'm' */
2131 special_sections_n, /* 'n' */
2132 NULL, /* 'o' */
2133 special_sections_p, /* 'p' */
2134 NULL, /* 'q' */
2135 special_sections_r, /* 'r' */
2136 special_sections_s, /* 's' */
2137 special_sections_t, /* 't' */
2138 };
2139
2140 const struct bfd_elf_special_section *
2141 _bfd_elf_get_special_section (const char *name,
2142 const struct bfd_elf_special_section *spec,
2143 unsigned int rela)
2144 {
2145 int i;
2146 int len;
2147
2148 len = strlen (name);
2149
2150 for (i = 0; spec[i].prefix != NULL; i++)
2151 {
2152 int suffix_len;
2153 int prefix_len = spec[i].prefix_length;
2154
2155 if (len < prefix_len)
2156 continue;
2157 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2158 continue;
2159
2160 suffix_len = spec[i].suffix_length;
2161 if (suffix_len <= 0)
2162 {
2163 if (name[prefix_len] != 0)
2164 {
2165 if (suffix_len == 0)
2166 continue;
2167 if (name[prefix_len] != '.'
2168 && (suffix_len == -2
2169 || (rela && spec[i].type == SHT_REL)))
2170 continue;
2171 }
2172 }
2173 else
2174 {
2175 if (len < prefix_len + suffix_len)
2176 continue;
2177 if (memcmp (name + len - suffix_len,
2178 spec[i].prefix + prefix_len,
2179 suffix_len) != 0)
2180 continue;
2181 }
2182 return &spec[i];
2183 }
2184
2185 return NULL;
2186 }
2187
2188 const struct bfd_elf_special_section *
2189 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2190 {
2191 int i;
2192 const struct bfd_elf_special_section *spec;
2193 const struct elf_backend_data *bed;
2194
2195 /* See if this is one of the special sections. */
2196 if (sec->name == NULL)
2197 return NULL;
2198
2199 bed = get_elf_backend_data (abfd);
2200 spec = bed->special_sections;
2201 if (spec)
2202 {
2203 spec = _bfd_elf_get_special_section (sec->name,
2204 bed->special_sections,
2205 sec->use_rela_p);
2206 if (spec != NULL)
2207 return spec;
2208 }
2209
2210 if (sec->name[0] != '.')
2211 return NULL;
2212
2213 i = sec->name[1] - 'b';
2214 if (i < 0 || i > 't' - 'b')
2215 return NULL;
2216
2217 spec = special_sections[i];
2218
2219 if (spec == NULL)
2220 return NULL;
2221
2222 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2223 }
2224
2225 bfd_boolean
2226 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2227 {
2228 struct bfd_elf_section_data *sdata;
2229 const struct elf_backend_data *bed;
2230 const struct bfd_elf_special_section *ssect;
2231
2232 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2233 if (sdata == NULL)
2234 {
2235 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2236 if (sdata == NULL)
2237 return FALSE;
2238 sec->used_by_bfd = sdata;
2239 }
2240
2241 /* Indicate whether or not this section should use RELA relocations. */
2242 bed = get_elf_backend_data (abfd);
2243 sec->use_rela_p = bed->default_use_rela_p;
2244
2245 /* When we read a file, we don't need to set ELF section type and
2246 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2247 anyway. We will set ELF section type and flags for all linker
2248 created sections. If user specifies BFD section flags, we will
2249 set ELF section type and flags based on BFD section flags in
2250 elf_fake_sections. */
2251 if ((!sec->flags && abfd->direction != read_direction)
2252 || (sec->flags & SEC_LINKER_CREATED) != 0)
2253 {
2254 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2255 if (ssect != NULL)
2256 {
2257 elf_section_type (sec) = ssect->type;
2258 elf_section_flags (sec) = ssect->attr;
2259 }
2260 }
2261
2262 return _bfd_generic_new_section_hook (abfd, sec);
2263 }
2264
2265 /* Create a new bfd section from an ELF program header.
2266
2267 Since program segments have no names, we generate a synthetic name
2268 of the form segment<NUM>, where NUM is generally the index in the
2269 program header table. For segments that are split (see below) we
2270 generate the names segment<NUM>a and segment<NUM>b.
2271
2272 Note that some program segments may have a file size that is different than
2273 (less than) the memory size. All this means is that at execution the
2274 system must allocate the amount of memory specified by the memory size,
2275 but only initialize it with the first "file size" bytes read from the
2276 file. This would occur for example, with program segments consisting
2277 of combined data+bss.
2278
2279 To handle the above situation, this routine generates TWO bfd sections
2280 for the single program segment. The first has the length specified by
2281 the file size of the segment, and the second has the length specified
2282 by the difference between the two sizes. In effect, the segment is split
2283 into its initialized and uninitialized parts.
2284
2285 */
2286
2287 bfd_boolean
2288 _bfd_elf_make_section_from_phdr (bfd *abfd,
2289 Elf_Internal_Phdr *hdr,
2290 int index,
2291 const char *typename)
2292 {
2293 asection *newsect;
2294 char *name;
2295 char namebuf[64];
2296 size_t len;
2297 int split;
2298
2299 split = ((hdr->p_memsz > 0)
2300 && (hdr->p_filesz > 0)
2301 && (hdr->p_memsz > hdr->p_filesz));
2302
2303 if (hdr->p_filesz > 0)
2304 {
2305 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2306 len = strlen (namebuf) + 1;
2307 name = bfd_alloc (abfd, len);
2308 if (!name)
2309 return FALSE;
2310 memcpy (name, namebuf, len);
2311 newsect = bfd_make_section (abfd, name);
2312 if (newsect == NULL)
2313 return FALSE;
2314 newsect->vma = hdr->p_vaddr;
2315 newsect->lma = hdr->p_paddr;
2316 newsect->size = hdr->p_filesz;
2317 newsect->filepos = hdr->p_offset;
2318 newsect->flags |= SEC_HAS_CONTENTS;
2319 newsect->alignment_power = bfd_log2 (hdr->p_align);
2320 if (hdr->p_type == PT_LOAD)
2321 {
2322 newsect->flags |= SEC_ALLOC;
2323 newsect->flags |= SEC_LOAD;
2324 if (hdr->p_flags & PF_X)
2325 {
2326 /* FIXME: all we known is that it has execute PERMISSION,
2327 may be data. */
2328 newsect->flags |= SEC_CODE;
2329 }
2330 }
2331 if (!(hdr->p_flags & PF_W))
2332 {
2333 newsect->flags |= SEC_READONLY;
2334 }
2335 }
2336
2337 if (hdr->p_memsz > hdr->p_filesz)
2338 {
2339 bfd_vma align;
2340
2341 sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
2342 len = strlen (namebuf) + 1;
2343 name = bfd_alloc (abfd, len);
2344 if (!name)
2345 return FALSE;
2346 memcpy (name, namebuf, len);
2347 newsect = bfd_make_section (abfd, name);
2348 if (newsect == NULL)
2349 return FALSE;
2350 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2351 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2352 newsect->size = hdr->p_memsz - hdr->p_filesz;
2353 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2354 align = newsect->vma & -newsect->vma;
2355 if (align == 0 || align > hdr->p_align)
2356 align = hdr->p_align;
2357 newsect->alignment_power = bfd_log2 (align);
2358 if (hdr->p_type == PT_LOAD)
2359 {
2360 /* Hack for gdb. Segments that have not been modified do
2361 not have their contents written to a core file, on the
2362 assumption that a debugger can find the contents in the
2363 executable. We flag this case by setting the fake
2364 section size to zero. Note that "real" bss sections will
2365 always have their contents dumped to the core file. */
2366 if (bfd_get_format (abfd) == bfd_core)
2367 newsect->size = 0;
2368 newsect->flags |= SEC_ALLOC;
2369 if (hdr->p_flags & PF_X)
2370 newsect->flags |= SEC_CODE;
2371 }
2372 if (!(hdr->p_flags & PF_W))
2373 newsect->flags |= SEC_READONLY;
2374 }
2375
2376 return TRUE;
2377 }
2378
2379 bfd_boolean
2380 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2381 {
2382 const struct elf_backend_data *bed;
2383
2384 switch (hdr->p_type)
2385 {
2386 case PT_NULL:
2387 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2388
2389 case PT_LOAD:
2390 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2391
2392 case PT_DYNAMIC:
2393 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2394
2395 case PT_INTERP:
2396 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2397
2398 case PT_NOTE:
2399 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2400 return FALSE;
2401 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2402 return FALSE;
2403 return TRUE;
2404
2405 case PT_SHLIB:
2406 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2407
2408 case PT_PHDR:
2409 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2410
2411 case PT_GNU_EH_FRAME:
2412 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2413 "eh_frame_hdr");
2414
2415 case PT_GNU_STACK:
2416 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2417
2418 case PT_GNU_RELRO:
2419 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2420
2421 default:
2422 /* Check for any processor-specific program segment types. */
2423 bed = get_elf_backend_data (abfd);
2424 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2425 }
2426 }
2427
2428 /* Initialize REL_HDR, the section-header for new section, containing
2429 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2430 relocations; otherwise, we use REL relocations. */
2431
2432 bfd_boolean
2433 _bfd_elf_init_reloc_shdr (bfd *abfd,
2434 Elf_Internal_Shdr *rel_hdr,
2435 asection *asect,
2436 bfd_boolean use_rela_p)
2437 {
2438 char *name;
2439 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2440 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2441
2442 name = bfd_alloc (abfd, amt);
2443 if (name == NULL)
2444 return FALSE;
2445 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2446 rel_hdr->sh_name =
2447 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2448 FALSE);
2449 if (rel_hdr->sh_name == (unsigned int) -1)
2450 return FALSE;
2451 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2452 rel_hdr->sh_entsize = (use_rela_p
2453 ? bed->s->sizeof_rela
2454 : bed->s->sizeof_rel);
2455 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2456 rel_hdr->sh_flags = 0;
2457 rel_hdr->sh_addr = 0;
2458 rel_hdr->sh_size = 0;
2459 rel_hdr->sh_offset = 0;
2460
2461 return TRUE;
2462 }
2463
2464 /* Set up an ELF internal section header for a section. */
2465
2466 static void
2467 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2468 {
2469 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2470 bfd_boolean *failedptr = failedptrarg;
2471 Elf_Internal_Shdr *this_hdr;
2472 unsigned int sh_type;
2473
2474 if (*failedptr)
2475 {
2476 /* We already failed; just get out of the bfd_map_over_sections
2477 loop. */
2478 return;
2479 }
2480
2481 this_hdr = &elf_section_data (asect)->this_hdr;
2482
2483 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2484 asect->name, FALSE);
2485 if (this_hdr->sh_name == (unsigned int) -1)
2486 {
2487 *failedptr = TRUE;
2488 return;
2489 }
2490
2491 /* Don't clear sh_flags. Assembler may set additional bits. */
2492
2493 if ((asect->flags & SEC_ALLOC) != 0
2494 || asect->user_set_vma)
2495 this_hdr->sh_addr = asect->vma;
2496 else
2497 this_hdr->sh_addr = 0;
2498
2499 this_hdr->sh_offset = 0;
2500 this_hdr->sh_size = asect->size;
2501 this_hdr->sh_link = 0;
2502 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2503 /* The sh_entsize and sh_info fields may have been set already by
2504 copy_private_section_data. */
2505
2506 this_hdr->bfd_section = asect;
2507 this_hdr->contents = NULL;
2508
2509 /* If the section type is unspecified, we set it based on
2510 asect->flags. */
2511 if ((asect->flags & SEC_GROUP) != 0)
2512 sh_type = SHT_GROUP;
2513 else if ((asect->flags & SEC_ALLOC) != 0
2514 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2515 || (asect->flags & SEC_NEVER_LOAD) != 0))
2516 sh_type = SHT_NOBITS;
2517 else
2518 sh_type = SHT_PROGBITS;
2519
2520 if (this_hdr->sh_type == SHT_NULL)
2521 this_hdr->sh_type = sh_type;
2522 else if (this_hdr->sh_type == SHT_NOBITS
2523 && sh_type == SHT_PROGBITS
2524 && (asect->flags & SEC_ALLOC) != 0)
2525 {
2526 /* Warn if we are changing a NOBITS section to PROGBITS, but
2527 allow the link to proceed. This can happen when users link
2528 non-bss input sections to bss output sections, or emit data
2529 to a bss output section via a linker script. */
2530 (*_bfd_error_handler)
2531 (_("warning: section `%A' type changed to PROGBITS"), asect);
2532 this_hdr->sh_type = sh_type;
2533 }
2534
2535 switch (this_hdr->sh_type)
2536 {
2537 default:
2538 break;
2539
2540 case SHT_STRTAB:
2541 case SHT_INIT_ARRAY:
2542 case SHT_FINI_ARRAY:
2543 case SHT_PREINIT_ARRAY:
2544 case SHT_NOTE:
2545 case SHT_NOBITS:
2546 case SHT_PROGBITS:
2547 break;
2548
2549 case SHT_HASH:
2550 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2551 break;
2552
2553 case SHT_DYNSYM:
2554 this_hdr->sh_entsize = bed->s->sizeof_sym;
2555 break;
2556
2557 case SHT_DYNAMIC:
2558 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2559 break;
2560
2561 case SHT_RELA:
2562 if (get_elf_backend_data (abfd)->may_use_rela_p)
2563 this_hdr->sh_entsize = bed->s->sizeof_rela;
2564 break;
2565
2566 case SHT_REL:
2567 if (get_elf_backend_data (abfd)->may_use_rel_p)
2568 this_hdr->sh_entsize = bed->s->sizeof_rel;
2569 break;
2570
2571 case SHT_GNU_versym:
2572 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2573 break;
2574
2575 case SHT_GNU_verdef:
2576 this_hdr->sh_entsize = 0;
2577 /* objcopy or strip will copy over sh_info, but may not set
2578 cverdefs. The linker will set cverdefs, but sh_info will be
2579 zero. */
2580 if (this_hdr->sh_info == 0)
2581 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2582 else
2583 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2584 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2585 break;
2586
2587 case SHT_GNU_verneed:
2588 this_hdr->sh_entsize = 0;
2589 /* objcopy or strip will copy over sh_info, but may not set
2590 cverrefs. The linker will set cverrefs, but sh_info will be
2591 zero. */
2592 if (this_hdr->sh_info == 0)
2593 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2594 else
2595 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2596 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2597 break;
2598
2599 case SHT_GROUP:
2600 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2601 break;
2602
2603 case SHT_GNU_HASH:
2604 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2605 break;
2606 }
2607
2608 if ((asect->flags & SEC_ALLOC) != 0)
2609 this_hdr->sh_flags |= SHF_ALLOC;
2610 if ((asect->flags & SEC_READONLY) == 0)
2611 this_hdr->sh_flags |= SHF_WRITE;
2612 if ((asect->flags & SEC_CODE) != 0)
2613 this_hdr->sh_flags |= SHF_EXECINSTR;
2614 if ((asect->flags & SEC_MERGE) != 0)
2615 {
2616 this_hdr->sh_flags |= SHF_MERGE;
2617 this_hdr->sh_entsize = asect->entsize;
2618 if ((asect->flags & SEC_STRINGS) != 0)
2619 this_hdr->sh_flags |= SHF_STRINGS;
2620 }
2621 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2622 this_hdr->sh_flags |= SHF_GROUP;
2623 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2624 {
2625 this_hdr->sh_flags |= SHF_TLS;
2626 if (asect->size == 0
2627 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2628 {
2629 struct bfd_link_order *o = asect->map_tail.link_order;
2630
2631 this_hdr->sh_size = 0;
2632 if (o != NULL)
2633 {
2634 this_hdr->sh_size = o->offset + o->size;
2635 if (this_hdr->sh_size != 0)
2636 this_hdr->sh_type = SHT_NOBITS;
2637 }
2638 }
2639 }
2640
2641 /* Check for processor-specific section types. */
2642 sh_type = this_hdr->sh_type;
2643 if (bed->elf_backend_fake_sections
2644 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2645 *failedptr = TRUE;
2646
2647 if (sh_type == SHT_NOBITS && asect->size != 0)
2648 {
2649 /* Don't change the header type from NOBITS if we are being
2650 called for objcopy --only-keep-debug. */
2651 this_hdr->sh_type = sh_type;
2652 }
2653
2654 /* If the section has relocs, set up a section header for the
2655 SHT_REL[A] section. If two relocation sections are required for
2656 this section, it is up to the processor-specific back-end to
2657 create the other. */
2658 if ((asect->flags & SEC_RELOC) != 0
2659 && !_bfd_elf_init_reloc_shdr (abfd,
2660 &elf_section_data (asect)->rel_hdr,
2661 asect,
2662 asect->use_rela_p))
2663 *failedptr = TRUE;
2664 }
2665
2666 /* Fill in the contents of a SHT_GROUP section. */
2667
2668 void
2669 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2670 {
2671 bfd_boolean *failedptr = failedptrarg;
2672 unsigned long symindx;
2673 asection *elt, *first;
2674 unsigned char *loc;
2675 bfd_boolean gas;
2676
2677 /* Ignore linker created group section. See elfNN_ia64_object_p in
2678 elfxx-ia64.c. */
2679 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2680 || *failedptr)
2681 return;
2682
2683 symindx = 0;
2684 if (elf_group_id (sec) != NULL)
2685 symindx = elf_group_id (sec)->udata.i;
2686
2687 if (symindx == 0)
2688 {
2689 /* If called from the assembler, swap_out_syms will have set up
2690 elf_section_syms; If called for "ld -r", use target_index. */
2691 if (elf_section_syms (abfd) != NULL)
2692 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2693 else
2694 symindx = sec->target_index;
2695 }
2696 elf_section_data (sec)->this_hdr.sh_info = symindx;
2697
2698 /* The contents won't be allocated for "ld -r" or objcopy. */
2699 gas = TRUE;
2700 if (sec->contents == NULL)
2701 {
2702 gas = FALSE;
2703 sec->contents = bfd_alloc (abfd, sec->size);
2704
2705 /* Arrange for the section to be written out. */
2706 elf_section_data (sec)->this_hdr.contents = sec->contents;
2707 if (sec->contents == NULL)
2708 {
2709 *failedptr = TRUE;
2710 return;
2711 }
2712 }
2713
2714 loc = sec->contents + sec->size;
2715
2716 /* Get the pointer to the first section in the group that gas
2717 squirreled away here. objcopy arranges for this to be set to the
2718 start of the input section group. */
2719 first = elt = elf_next_in_group (sec);
2720
2721 /* First element is a flag word. Rest of section is elf section
2722 indices for all the sections of the group. Write them backwards
2723 just to keep the group in the same order as given in .section
2724 directives, not that it matters. */
2725 while (elt != NULL)
2726 {
2727 asection *s;
2728 unsigned int idx;
2729
2730 loc -= 4;
2731 s = elt;
2732 if (!gas)
2733 s = s->output_section;
2734 idx = 0;
2735 if (s != NULL)
2736 idx = elf_section_data (s)->this_idx;
2737 H_PUT_32 (abfd, idx, loc);
2738 elt = elf_next_in_group (elt);
2739 if (elt == first)
2740 break;
2741 }
2742
2743 if ((loc -= 4) != sec->contents)
2744 abort ();
2745
2746 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2747 }
2748
2749 /* Assign all ELF section numbers. The dummy first section is handled here
2750 too. The link/info pointers for the standard section types are filled
2751 in here too, while we're at it. */
2752
2753 static bfd_boolean
2754 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2755 {
2756 struct elf_obj_tdata *t = elf_tdata (abfd);
2757 asection *sec;
2758 unsigned int section_number, secn;
2759 Elf_Internal_Shdr **i_shdrp;
2760 struct bfd_elf_section_data *d;
2761
2762 section_number = 1;
2763
2764 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2765
2766 /* SHT_GROUP sections are in relocatable files only. */
2767 if (link_info == NULL || link_info->relocatable)
2768 {
2769 /* Put SHT_GROUP sections first. */
2770 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2771 {
2772 d = elf_section_data (sec);
2773
2774 if (d->this_hdr.sh_type == SHT_GROUP)
2775 {
2776 if (sec->flags & SEC_LINKER_CREATED)
2777 {
2778 /* Remove the linker created SHT_GROUP sections. */
2779 bfd_section_list_remove (abfd, sec);
2780 abfd->section_count--;
2781 }
2782 else
2783 d->this_idx = section_number++;
2784 }
2785 }
2786 }
2787
2788 for (sec = abfd->sections; sec; sec = sec->next)
2789 {
2790 d = elf_section_data (sec);
2791
2792 if (d->this_hdr.sh_type != SHT_GROUP)
2793 d->this_idx = section_number++;
2794 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2795 if ((sec->flags & SEC_RELOC) == 0)
2796 d->rel_idx = 0;
2797 else
2798 {
2799 d->rel_idx = section_number++;
2800 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2801 }
2802
2803 if (d->rel_hdr2)
2804 {
2805 d->rel_idx2 = section_number++;
2806 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2807 }
2808 else
2809 d->rel_idx2 = 0;
2810 }
2811
2812 t->shstrtab_section = section_number++;
2813 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2814 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2815
2816 if (bfd_get_symcount (abfd) > 0)
2817 {
2818 t->symtab_section = section_number++;
2819 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2820 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2821 {
2822 t->symtab_shndx_section = section_number++;
2823 t->symtab_shndx_hdr.sh_name
2824 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2825 ".symtab_shndx", FALSE);
2826 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2827 return FALSE;
2828 }
2829 t->strtab_section = section_number++;
2830 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2831 }
2832
2833 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2834 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2835
2836 elf_numsections (abfd) = section_number;
2837 elf_elfheader (abfd)->e_shnum = section_number;
2838
2839 /* Set up the list of section header pointers, in agreement with the
2840 indices. */
2841 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2842 if (i_shdrp == NULL)
2843 return FALSE;
2844
2845 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2846 if (i_shdrp[0] == NULL)
2847 {
2848 bfd_release (abfd, i_shdrp);
2849 return FALSE;
2850 }
2851
2852 elf_elfsections (abfd) = i_shdrp;
2853
2854 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2855 if (bfd_get_symcount (abfd) > 0)
2856 {
2857 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2858 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
2859 {
2860 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2861 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2862 }
2863 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2864 t->symtab_hdr.sh_link = t->strtab_section;
2865 }
2866
2867 for (sec = abfd->sections; sec; sec = sec->next)
2868 {
2869 struct bfd_elf_section_data *d = elf_section_data (sec);
2870 asection *s;
2871 const char *name;
2872
2873 i_shdrp[d->this_idx] = &d->this_hdr;
2874 if (d->rel_idx != 0)
2875 i_shdrp[d->rel_idx] = &d->rel_hdr;
2876 if (d->rel_idx2 != 0)
2877 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2878
2879 /* Fill in the sh_link and sh_info fields while we're at it. */
2880
2881 /* sh_link of a reloc section is the section index of the symbol
2882 table. sh_info is the section index of the section to which
2883 the relocation entries apply. */
2884 if (d->rel_idx != 0)
2885 {
2886 d->rel_hdr.sh_link = t->symtab_section;
2887 d->rel_hdr.sh_info = d->this_idx;
2888 }
2889 if (d->rel_idx2 != 0)
2890 {
2891 d->rel_hdr2->sh_link = t->symtab_section;
2892 d->rel_hdr2->sh_info = d->this_idx;
2893 }
2894
2895 /* We need to set up sh_link for SHF_LINK_ORDER. */
2896 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2897 {
2898 s = elf_linked_to_section (sec);
2899 if (s)
2900 {
2901 /* elf_linked_to_section points to the input section. */
2902 if (link_info != NULL)
2903 {
2904 /* Check discarded linkonce section. */
2905 if (elf_discarded_section (s))
2906 {
2907 asection *kept;
2908 (*_bfd_error_handler)
2909 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2910 abfd, d->this_hdr.bfd_section,
2911 s, s->owner);
2912 /* Point to the kept section if it has the same
2913 size as the discarded one. */
2914 kept = _bfd_elf_check_kept_section (s, link_info);
2915 if (kept == NULL)
2916 {
2917 bfd_set_error (bfd_error_bad_value);
2918 return FALSE;
2919 }
2920 s = kept;
2921 }
2922
2923 s = s->output_section;
2924 BFD_ASSERT (s != NULL);
2925 }
2926 else
2927 {
2928 /* Handle objcopy. */
2929 if (s->output_section == NULL)
2930 {
2931 (*_bfd_error_handler)
2932 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2933 abfd, d->this_hdr.bfd_section, s, s->owner);
2934 bfd_set_error (bfd_error_bad_value);
2935 return FALSE;
2936 }
2937 s = s->output_section;
2938 }
2939 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2940 }
2941 else
2942 {
2943 /* PR 290:
2944 The Intel C compiler generates SHT_IA_64_UNWIND with
2945 SHF_LINK_ORDER. But it doesn't set the sh_link or
2946 sh_info fields. Hence we could get the situation
2947 where s is NULL. */
2948 const struct elf_backend_data *bed
2949 = get_elf_backend_data (abfd);
2950 if (bed->link_order_error_handler)
2951 bed->link_order_error_handler
2952 (_("%B: warning: sh_link not set for section `%A'"),
2953 abfd, sec);
2954 }
2955 }
2956
2957 switch (d->this_hdr.sh_type)
2958 {
2959 case SHT_REL:
2960 case SHT_RELA:
2961 /* A reloc section which we are treating as a normal BFD
2962 section. sh_link is the section index of the symbol
2963 table. sh_info is the section index of the section to
2964 which the relocation entries apply. We assume that an
2965 allocated reloc section uses the dynamic symbol table.
2966 FIXME: How can we be sure? */
2967 s = bfd_get_section_by_name (abfd, ".dynsym");
2968 if (s != NULL)
2969 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2970
2971 /* We look up the section the relocs apply to by name. */
2972 name = sec->name;
2973 if (d->this_hdr.sh_type == SHT_REL)
2974 name += 4;
2975 else
2976 name += 5;
2977 s = bfd_get_section_by_name (abfd, name);
2978 if (s != NULL)
2979 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2980 break;
2981
2982 case SHT_STRTAB:
2983 /* We assume that a section named .stab*str is a stabs
2984 string section. We look for a section with the same name
2985 but without the trailing ``str'', and set its sh_link
2986 field to point to this section. */
2987 if (CONST_STRNEQ (sec->name, ".stab")
2988 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2989 {
2990 size_t len;
2991 char *alc;
2992
2993 len = strlen (sec->name);
2994 alc = bfd_malloc (len - 2);
2995 if (alc == NULL)
2996 return FALSE;
2997 memcpy (alc, sec->name, len - 3);
2998 alc[len - 3] = '\0';
2999 s = bfd_get_section_by_name (abfd, alc);
3000 free (alc);
3001 if (s != NULL)
3002 {
3003 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3004
3005 /* This is a .stab section. */
3006 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3007 elf_section_data (s)->this_hdr.sh_entsize
3008 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3009 }
3010 }
3011 break;
3012
3013 case SHT_DYNAMIC:
3014 case SHT_DYNSYM:
3015 case SHT_GNU_verneed:
3016 case SHT_GNU_verdef:
3017 /* sh_link is the section header index of the string table
3018 used for the dynamic entries, or the symbol table, or the
3019 version strings. */
3020 s = bfd_get_section_by_name (abfd, ".dynstr");
3021 if (s != NULL)
3022 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3023 break;
3024
3025 case SHT_GNU_LIBLIST:
3026 /* sh_link is the section header index of the prelink library
3027 list used for the dynamic entries, or the symbol table, or
3028 the version strings. */
3029 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3030 ? ".dynstr" : ".gnu.libstr");
3031 if (s != NULL)
3032 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3033 break;
3034
3035 case SHT_HASH:
3036 case SHT_GNU_HASH:
3037 case SHT_GNU_versym:
3038 /* sh_link is the section header index of the symbol table
3039 this hash table or version table is for. */
3040 s = bfd_get_section_by_name (abfd, ".dynsym");
3041 if (s != NULL)
3042 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3043 break;
3044
3045 case SHT_GROUP:
3046 d->this_hdr.sh_link = t->symtab_section;
3047 }
3048 }
3049
3050 for (secn = 1; secn < section_number; ++secn)
3051 if (i_shdrp[secn] == NULL)
3052 i_shdrp[secn] = i_shdrp[0];
3053 else
3054 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3055 i_shdrp[secn]->sh_name);
3056 return TRUE;
3057 }
3058
3059 /* Map symbol from it's internal number to the external number, moving
3060 all local symbols to be at the head of the list. */
3061
3062 static bfd_boolean
3063 sym_is_global (bfd *abfd, asymbol *sym)
3064 {
3065 /* If the backend has a special mapping, use it. */
3066 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3067 if (bed->elf_backend_sym_is_global)
3068 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3069
3070 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3071 || bfd_is_und_section (bfd_get_section (sym))
3072 || bfd_is_com_section (bfd_get_section (sym)));
3073 }
3074
3075 /* Don't output section symbols for sections that are not going to be
3076 output. Also, don't output section symbols for reloc and other
3077 special sections. */
3078
3079 static bfd_boolean
3080 ignore_section_sym (bfd *abfd, asymbol *sym)
3081 {
3082 return ((sym->flags & BSF_SECTION_SYM) != 0
3083 && (sym->value != 0
3084 || (sym->section->owner != abfd
3085 && (sym->section->output_section->owner != abfd
3086 || sym->section->output_offset != 0))));
3087 }
3088
3089 static bfd_boolean
3090 elf_map_symbols (bfd *abfd)
3091 {
3092 unsigned int symcount = bfd_get_symcount (abfd);
3093 asymbol **syms = bfd_get_outsymbols (abfd);
3094 asymbol **sect_syms;
3095 unsigned int num_locals = 0;
3096 unsigned int num_globals = 0;
3097 unsigned int num_locals2 = 0;
3098 unsigned int num_globals2 = 0;
3099 int max_index = 0;
3100 unsigned int idx;
3101 asection *asect;
3102 asymbol **new_syms;
3103
3104 #ifdef DEBUG
3105 fprintf (stderr, "elf_map_symbols\n");
3106 fflush (stderr);
3107 #endif
3108
3109 for (asect = abfd->sections; asect; asect = asect->next)
3110 {
3111 if (max_index < asect->index)
3112 max_index = asect->index;
3113 }
3114
3115 max_index++;
3116 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3117 if (sect_syms == NULL)
3118 return FALSE;
3119 elf_section_syms (abfd) = sect_syms;
3120 elf_num_section_syms (abfd) = max_index;
3121
3122 /* Init sect_syms entries for any section symbols we have already
3123 decided to output. */
3124 for (idx = 0; idx < symcount; idx++)
3125 {
3126 asymbol *sym = syms[idx];
3127
3128 if ((sym->flags & BSF_SECTION_SYM) != 0
3129 && !ignore_section_sym (abfd, sym))
3130 {
3131 asection *sec = sym->section;
3132
3133 if (sec->owner != abfd)
3134 sec = sec->output_section;
3135
3136 sect_syms[sec->index] = syms[idx];
3137 }
3138 }
3139
3140 /* Classify all of the symbols. */
3141 for (idx = 0; idx < symcount; idx++)
3142 {
3143 if (ignore_section_sym (abfd, syms[idx]))
3144 continue;
3145 if (!sym_is_global (abfd, syms[idx]))
3146 num_locals++;
3147 else
3148 num_globals++;
3149 }
3150
3151 /* We will be adding a section symbol for each normal BFD section. Most
3152 sections will already have a section symbol in outsymbols, but
3153 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3154 at least in that case. */
3155 for (asect = abfd->sections; asect; asect = asect->next)
3156 {
3157 if (sect_syms[asect->index] == NULL)
3158 {
3159 if (!sym_is_global (abfd, asect->symbol))
3160 num_locals++;
3161 else
3162 num_globals++;
3163 }
3164 }
3165
3166 /* Now sort the symbols so the local symbols are first. */
3167 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3168
3169 if (new_syms == NULL)
3170 return FALSE;
3171
3172 for (idx = 0; idx < symcount; idx++)
3173 {
3174 asymbol *sym = syms[idx];
3175 unsigned int i;
3176
3177 if (ignore_section_sym (abfd, sym))
3178 continue;
3179 if (!sym_is_global (abfd, sym))
3180 i = num_locals2++;
3181 else
3182 i = num_locals + num_globals2++;
3183 new_syms[i] = sym;
3184 sym->udata.i = i + 1;
3185 }
3186 for (asect = abfd->sections; asect; asect = asect->next)
3187 {
3188 if (sect_syms[asect->index] == NULL)
3189 {
3190 asymbol *sym = asect->symbol;
3191 unsigned int i;
3192
3193 sect_syms[asect->index] = sym;
3194 if (!sym_is_global (abfd, sym))
3195 i = num_locals2++;
3196 else
3197 i = num_locals + num_globals2++;
3198 new_syms[i] = sym;
3199 sym->udata.i = i + 1;
3200 }
3201 }
3202
3203 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3204
3205 elf_num_locals (abfd) = num_locals;
3206 elf_num_globals (abfd) = num_globals;
3207 return TRUE;
3208 }
3209
3210 /* Align to the maximum file alignment that could be required for any
3211 ELF data structure. */
3212
3213 static inline file_ptr
3214 align_file_position (file_ptr off, int align)
3215 {
3216 return (off + align - 1) & ~(align - 1);
3217 }
3218
3219 /* Assign a file position to a section, optionally aligning to the
3220 required section alignment. */
3221
3222 file_ptr
3223 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3224 file_ptr offset,
3225 bfd_boolean align)
3226 {
3227 if (align && i_shdrp->sh_addralign > 1)
3228 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3229 i_shdrp->sh_offset = offset;
3230 if (i_shdrp->bfd_section != NULL)
3231 i_shdrp->bfd_section->filepos = offset;
3232 if (i_shdrp->sh_type != SHT_NOBITS)
3233 offset += i_shdrp->sh_size;
3234 return offset;
3235 }
3236
3237 /* Compute the file positions we are going to put the sections at, and
3238 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3239 is not NULL, this is being called by the ELF backend linker. */
3240
3241 bfd_boolean
3242 _bfd_elf_compute_section_file_positions (bfd *abfd,
3243 struct bfd_link_info *link_info)
3244 {
3245 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3246 bfd_boolean failed;
3247 struct bfd_strtab_hash *strtab = NULL;
3248 Elf_Internal_Shdr *shstrtab_hdr;
3249
3250 if (abfd->output_has_begun)
3251 return TRUE;
3252
3253 /* Do any elf backend specific processing first. */
3254 if (bed->elf_backend_begin_write_processing)
3255 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3256
3257 if (! prep_headers (abfd))
3258 return FALSE;
3259
3260 /* Post process the headers if necessary. */
3261 if (bed->elf_backend_post_process_headers)
3262 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3263
3264 failed = FALSE;
3265 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3266 if (failed)
3267 return FALSE;
3268
3269 if (!assign_section_numbers (abfd, link_info))
3270 return FALSE;
3271
3272 /* The backend linker builds symbol table information itself. */
3273 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3274 {
3275 /* Non-zero if doing a relocatable link. */
3276 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3277
3278 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3279 return FALSE;
3280 }
3281
3282 if (link_info == NULL)
3283 {
3284 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3285 if (failed)
3286 return FALSE;
3287 }
3288
3289 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3290 /* sh_name was set in prep_headers. */
3291 shstrtab_hdr->sh_type = SHT_STRTAB;
3292 shstrtab_hdr->sh_flags = 0;
3293 shstrtab_hdr->sh_addr = 0;
3294 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3295 shstrtab_hdr->sh_entsize = 0;
3296 shstrtab_hdr->sh_link = 0;
3297 shstrtab_hdr->sh_info = 0;
3298 /* sh_offset is set in assign_file_positions_except_relocs. */
3299 shstrtab_hdr->sh_addralign = 1;
3300
3301 if (!assign_file_positions_except_relocs (abfd, link_info))
3302 return FALSE;
3303
3304 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3305 {
3306 file_ptr off;
3307 Elf_Internal_Shdr *hdr;
3308
3309 off = elf_tdata (abfd)->next_file_pos;
3310
3311 hdr = &elf_tdata (abfd)->symtab_hdr;
3312 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3313
3314 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3315 if (hdr->sh_size != 0)
3316 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3317
3318 hdr = &elf_tdata (abfd)->strtab_hdr;
3319 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3320
3321 elf_tdata (abfd)->next_file_pos = off;
3322
3323 /* Now that we know where the .strtab section goes, write it
3324 out. */
3325 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3326 || ! _bfd_stringtab_emit (abfd, strtab))
3327 return FALSE;
3328 _bfd_stringtab_free (strtab);
3329 }
3330
3331 abfd->output_has_begun = TRUE;
3332
3333 return TRUE;
3334 }
3335
3336 /* Make an initial estimate of the size of the program header. If we
3337 get the number wrong here, we'll redo section placement. */
3338
3339 static bfd_size_type
3340 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3341 {
3342 size_t segs;
3343 asection *s;
3344 const struct elf_backend_data *bed;
3345
3346 /* Assume we will need exactly two PT_LOAD segments: one for text
3347 and one for data. */
3348 segs = 2;
3349
3350 s = bfd_get_section_by_name (abfd, ".interp");
3351 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3352 {
3353 /* If we have a loadable interpreter section, we need a
3354 PT_INTERP segment. In this case, assume we also need a
3355 PT_PHDR segment, although that may not be true for all
3356 targets. */
3357 segs += 2;
3358 }
3359
3360 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3361 {
3362 /* We need a PT_DYNAMIC segment. */
3363 ++segs;
3364 }
3365
3366 if (info->relro)
3367 {
3368 /* We need a PT_GNU_RELRO segment. */
3369 ++segs;
3370 }
3371
3372 if (elf_tdata (abfd)->eh_frame_hdr)
3373 {
3374 /* We need a PT_GNU_EH_FRAME segment. */
3375 ++segs;
3376 }
3377
3378 if (elf_tdata (abfd)->stack_flags)
3379 {
3380 /* We need a PT_GNU_STACK segment. */
3381 ++segs;
3382 }
3383
3384 for (s = abfd->sections; s != NULL; s = s->next)
3385 {
3386 if ((s->flags & SEC_LOAD) != 0
3387 && CONST_STRNEQ (s->name, ".note"))
3388 {
3389 /* We need a PT_NOTE segment. */
3390 ++segs;
3391 /* Try to create just one PT_NOTE segment
3392 for all adjacent loadable .note* sections.
3393 gABI requires that within a PT_NOTE segment
3394 (and also inside of each SHT_NOTE section)
3395 each note is padded to a multiple of 4 size,
3396 so we check whether the sections are correctly
3397 aligned. */
3398 if (s->alignment_power == 2)
3399 while (s->next != NULL
3400 && s->next->alignment_power == 2
3401 && (s->next->flags & SEC_LOAD) != 0
3402 && CONST_STRNEQ (s->next->name, ".note"))
3403 s = s->next;
3404 }
3405 }
3406
3407 for (s = abfd->sections; s != NULL; s = s->next)
3408 {
3409 if (s->flags & SEC_THREAD_LOCAL)
3410 {
3411 /* We need a PT_TLS segment. */
3412 ++segs;
3413 break;
3414 }
3415 }
3416
3417 /* Let the backend count up any program headers it might need. */
3418 bed = get_elf_backend_data (abfd);
3419 if (bed->elf_backend_additional_program_headers)
3420 {
3421 int a;
3422
3423 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3424 if (a == -1)
3425 abort ();
3426 segs += a;
3427 }
3428
3429 return segs * bed->s->sizeof_phdr;
3430 }
3431
3432 /* Find the segment that contains the output_section of section. */
3433
3434 Elf_Internal_Phdr *
3435 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3436 {
3437 struct elf_segment_map *m;
3438 Elf_Internal_Phdr *p;
3439
3440 for (m = elf_tdata (abfd)->segment_map,
3441 p = elf_tdata (abfd)->phdr;
3442 m != NULL;
3443 m = m->next, p++)
3444 {
3445 int i;
3446
3447 for (i = m->count - 1; i >= 0; i--)
3448 if (m->sections[i] == section)
3449 return p;
3450 }
3451
3452 return NULL;
3453 }
3454
3455 /* Create a mapping from a set of sections to a program segment. */
3456
3457 static struct elf_segment_map *
3458 make_mapping (bfd *abfd,
3459 asection **sections,
3460 unsigned int from,
3461 unsigned int to,
3462 bfd_boolean phdr)
3463 {
3464 struct elf_segment_map *m;
3465 unsigned int i;
3466 asection **hdrpp;
3467 bfd_size_type amt;
3468
3469 amt = sizeof (struct elf_segment_map);
3470 amt += (to - from - 1) * sizeof (asection *);
3471 m = bfd_zalloc (abfd, amt);
3472 if (m == NULL)
3473 return NULL;
3474 m->next = NULL;
3475 m->p_type = PT_LOAD;
3476 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3477 m->sections[i - from] = *hdrpp;
3478 m->count = to - from;
3479
3480 if (from == 0 && phdr)
3481 {
3482 /* Include the headers in the first PT_LOAD segment. */
3483 m->includes_filehdr = 1;
3484 m->includes_phdrs = 1;
3485 }
3486
3487 return m;
3488 }
3489
3490 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3491 on failure. */
3492
3493 struct elf_segment_map *
3494 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3495 {
3496 struct elf_segment_map *m;
3497
3498 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3499 if (m == NULL)
3500 return NULL;
3501 m->next = NULL;
3502 m->p_type = PT_DYNAMIC;
3503 m->count = 1;
3504 m->sections[0] = dynsec;
3505
3506 return m;
3507 }
3508
3509 /* Possibly add or remove segments from the segment map. */
3510
3511 static bfd_boolean
3512 elf_modify_segment_map (bfd *abfd,
3513 struct bfd_link_info *info,
3514 bfd_boolean remove_empty_load)
3515 {
3516 struct elf_segment_map **m;
3517 const struct elf_backend_data *bed;
3518
3519 /* The placement algorithm assumes that non allocated sections are
3520 not in PT_LOAD segments. We ensure this here by removing such
3521 sections from the segment map. We also remove excluded
3522 sections. Finally, any PT_LOAD segment without sections is
3523 removed. */
3524 m = &elf_tdata (abfd)->segment_map;
3525 while (*m)
3526 {
3527 unsigned int i, new_count;
3528
3529 for (new_count = 0, i = 0; i < (*m)->count; i++)
3530 {
3531 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3532 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3533 || (*m)->p_type != PT_LOAD))
3534 {
3535 (*m)->sections[new_count] = (*m)->sections[i];
3536 new_count++;
3537 }
3538 }
3539 (*m)->count = new_count;
3540
3541 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3542 *m = (*m)->next;
3543 else
3544 m = &(*m)->next;
3545 }
3546
3547 bed = get_elf_backend_data (abfd);
3548 if (bed->elf_backend_modify_segment_map != NULL)
3549 {
3550 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3551 return FALSE;
3552 }
3553
3554 return TRUE;
3555 }
3556
3557 /* Set up a mapping from BFD sections to program segments. */
3558
3559 bfd_boolean
3560 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3561 {
3562 unsigned int count;
3563 struct elf_segment_map *m;
3564 asection **sections = NULL;
3565 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3566 bfd_boolean no_user_phdrs;
3567
3568 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3569 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3570 {
3571 asection *s;
3572 unsigned int i;
3573 struct elf_segment_map *mfirst;
3574 struct elf_segment_map **pm;
3575 asection *last_hdr;
3576 bfd_vma last_size;
3577 unsigned int phdr_index;
3578 bfd_vma maxpagesize;
3579 asection **hdrpp;
3580 bfd_boolean phdr_in_segment = TRUE;
3581 bfd_boolean writable;
3582 int tls_count = 0;
3583 asection *first_tls = NULL;
3584 asection *dynsec, *eh_frame_hdr;
3585 bfd_size_type amt;
3586
3587 /* Select the allocated sections, and sort them. */
3588
3589 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3590 if (sections == NULL)
3591 goto error_return;
3592
3593 i = 0;
3594 for (s = abfd->sections; s != NULL; s = s->next)
3595 {
3596 if ((s->flags & SEC_ALLOC) != 0)
3597 {
3598 sections[i] = s;
3599 ++i;
3600 }
3601 }
3602 BFD_ASSERT (i <= bfd_count_sections (abfd));
3603 count = i;
3604
3605 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3606
3607 /* Build the mapping. */
3608
3609 mfirst = NULL;
3610 pm = &mfirst;
3611
3612 /* If we have a .interp section, then create a PT_PHDR segment for
3613 the program headers and a PT_INTERP segment for the .interp
3614 section. */
3615 s = bfd_get_section_by_name (abfd, ".interp");
3616 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3617 {
3618 amt = sizeof (struct elf_segment_map);
3619 m = bfd_zalloc (abfd, amt);
3620 if (m == NULL)
3621 goto error_return;
3622 m->next = NULL;
3623 m->p_type = PT_PHDR;
3624 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3625 m->p_flags = PF_R | PF_X;
3626 m->p_flags_valid = 1;
3627 m->includes_phdrs = 1;
3628
3629 *pm = m;
3630 pm = &m->next;
3631
3632 amt = sizeof (struct elf_segment_map);
3633 m = bfd_zalloc (abfd, amt);
3634 if (m == NULL)
3635 goto error_return;
3636 m->next = NULL;
3637 m->p_type = PT_INTERP;
3638 m->count = 1;
3639 m->sections[0] = s;
3640
3641 *pm = m;
3642 pm = &m->next;
3643 }
3644
3645 /* Look through the sections. We put sections in the same program
3646 segment when the start of the second section can be placed within
3647 a few bytes of the end of the first section. */
3648 last_hdr = NULL;
3649 last_size = 0;
3650 phdr_index = 0;
3651 maxpagesize = bed->maxpagesize;
3652 writable = FALSE;
3653 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3654 if (dynsec != NULL
3655 && (dynsec->flags & SEC_LOAD) == 0)
3656 dynsec = NULL;
3657
3658 /* Deal with -Ttext or something similar such that the first section
3659 is not adjacent to the program headers. This is an
3660 approximation, since at this point we don't know exactly how many
3661 program headers we will need. */
3662 if (count > 0)
3663 {
3664 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3665
3666 if (phdr_size == (bfd_size_type) -1)
3667 phdr_size = get_program_header_size (abfd, info);
3668 if ((abfd->flags & D_PAGED) == 0
3669 || sections[0]->lma < phdr_size
3670 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3671 phdr_in_segment = FALSE;
3672 }
3673
3674 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3675 {
3676 asection *hdr;
3677 bfd_boolean new_segment;
3678
3679 hdr = *hdrpp;
3680
3681 /* See if this section and the last one will fit in the same
3682 segment. */
3683
3684 if (last_hdr == NULL)
3685 {
3686 /* If we don't have a segment yet, then we don't need a new
3687 one (we build the last one after this loop). */
3688 new_segment = FALSE;
3689 }
3690 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3691 {
3692 /* If this section has a different relation between the
3693 virtual address and the load address, then we need a new
3694 segment. */
3695 new_segment = TRUE;
3696 }
3697 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3698 < BFD_ALIGN (hdr->lma, maxpagesize))
3699 {
3700 /* If putting this section in this segment would force us to
3701 skip a page in the segment, then we need a new segment. */
3702 new_segment = TRUE;
3703 }
3704 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3705 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3706 {
3707 /* We don't want to put a loadable section after a
3708 nonloadable section in the same segment.
3709 Consider .tbss sections as loadable for this purpose. */
3710 new_segment = TRUE;
3711 }
3712 else if ((abfd->flags & D_PAGED) == 0)
3713 {
3714 /* If the file is not demand paged, which means that we
3715 don't require the sections to be correctly aligned in the
3716 file, then there is no other reason for a new segment. */
3717 new_segment = FALSE;
3718 }
3719 else if (! writable
3720 && (hdr->flags & SEC_READONLY) == 0
3721 && (((last_hdr->lma + last_size - 1)
3722 & ~(maxpagesize - 1))
3723 != (hdr->lma & ~(maxpagesize - 1))))
3724 {
3725 /* We don't want to put a writable section in a read only
3726 segment, unless they are on the same page in memory
3727 anyhow. We already know that the last section does not
3728 bring us past the current section on the page, so the
3729 only case in which the new section is not on the same
3730 page as the previous section is when the previous section
3731 ends precisely on a page boundary. */
3732 new_segment = TRUE;
3733 }
3734 else
3735 {
3736 /* Otherwise, we can use the same segment. */
3737 new_segment = FALSE;
3738 }
3739
3740 /* Allow interested parties a chance to override our decision. */
3741 if (last_hdr && info->callbacks->override_segment_assignment)
3742 new_segment = info->callbacks->override_segment_assignment (info, abfd, hdr, last_hdr, new_segment);
3743
3744 if (! new_segment)
3745 {
3746 if ((hdr->flags & SEC_READONLY) == 0)
3747 writable = TRUE;
3748 last_hdr = hdr;
3749 /* .tbss sections effectively have zero size. */
3750 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3751 != SEC_THREAD_LOCAL)
3752 last_size = hdr->size;
3753 else
3754 last_size = 0;
3755 continue;
3756 }
3757
3758 /* We need a new program segment. We must create a new program
3759 header holding all the sections from phdr_index until hdr. */
3760
3761 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3762 if (m == NULL)
3763 goto error_return;
3764
3765 *pm = m;
3766 pm = &m->next;
3767
3768 if ((hdr->flags & SEC_READONLY) == 0)
3769 writable = TRUE;
3770 else
3771 writable = FALSE;
3772
3773 last_hdr = hdr;
3774 /* .tbss sections effectively have zero size. */
3775 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3776 last_size = hdr->size;
3777 else
3778 last_size = 0;
3779 phdr_index = i;
3780 phdr_in_segment = FALSE;
3781 }
3782
3783 /* Create a final PT_LOAD program segment. */
3784 if (last_hdr != NULL)
3785 {
3786 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3787 if (m == NULL)
3788 goto error_return;
3789
3790 *pm = m;
3791 pm = &m->next;
3792 }
3793
3794 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3795 if (dynsec != NULL)
3796 {
3797 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3798 if (m == NULL)
3799 goto error_return;
3800 *pm = m;
3801 pm = &m->next;
3802 }
3803
3804 /* For each batch of consecutive loadable .note sections,
3805 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3806 because if we link together nonloadable .note sections and
3807 loadable .note sections, we will generate two .note sections
3808 in the output file. FIXME: Using names for section types is
3809 bogus anyhow. */
3810 for (s = abfd->sections; s != NULL; s = s->next)
3811 {
3812 if ((s->flags & SEC_LOAD) != 0
3813 && CONST_STRNEQ (s->name, ".note"))
3814 {
3815 asection *s2;
3816 unsigned count = 1;
3817 amt = sizeof (struct elf_segment_map);
3818 if (s->alignment_power == 2)
3819 for (s2 = s; s2->next != NULL; s2 = s2->next)
3820 {
3821 if (s2->next->alignment_power == 2
3822 && (s2->next->flags & SEC_LOAD) != 0
3823 && CONST_STRNEQ (s2->next->name, ".note")
3824 && align_power (s2->vma + s2->size, 2)
3825 == s2->next->vma)
3826 count++;
3827 else
3828 break;
3829 }
3830 amt += (count - 1) * sizeof (asection *);
3831 m = bfd_zalloc (abfd, amt);
3832 if (m == NULL)
3833 goto error_return;
3834 m->next = NULL;
3835 m->p_type = PT_NOTE;
3836 m->count = count;
3837 while (count > 1)
3838 {
3839 m->sections[m->count - count--] = s;
3840 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3841 s = s->next;
3842 }
3843 m->sections[m->count - 1] = s;
3844 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3845 *pm = m;
3846 pm = &m->next;
3847 }
3848 if (s->flags & SEC_THREAD_LOCAL)
3849 {
3850 if (! tls_count)
3851 first_tls = s;
3852 tls_count++;
3853 }
3854 }
3855
3856 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3857 if (tls_count > 0)
3858 {
3859 int i;
3860
3861 amt = sizeof (struct elf_segment_map);
3862 amt += (tls_count - 1) * sizeof (asection *);
3863 m = bfd_zalloc (abfd, amt);
3864 if (m == NULL)
3865 goto error_return;
3866 m->next = NULL;
3867 m->p_type = PT_TLS;
3868 m->count = tls_count;
3869 /* Mandated PF_R. */
3870 m->p_flags = PF_R;
3871 m->p_flags_valid = 1;
3872 for (i = 0; i < tls_count; ++i)
3873 {
3874 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3875 m->sections[i] = first_tls;
3876 first_tls = first_tls->next;
3877 }
3878
3879 *pm = m;
3880 pm = &m->next;
3881 }
3882
3883 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3884 segment. */
3885 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3886 if (eh_frame_hdr != NULL
3887 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3888 {
3889 amt = sizeof (struct elf_segment_map);
3890 m = bfd_zalloc (abfd, amt);
3891 if (m == NULL)
3892 goto error_return;
3893 m->next = NULL;
3894 m->p_type = PT_GNU_EH_FRAME;
3895 m->count = 1;
3896 m->sections[0] = eh_frame_hdr->output_section;
3897
3898 *pm = m;
3899 pm = &m->next;
3900 }
3901
3902 if (elf_tdata (abfd)->stack_flags)
3903 {
3904 amt = sizeof (struct elf_segment_map);
3905 m = bfd_zalloc (abfd, amt);
3906 if (m == NULL)
3907 goto error_return;
3908 m->next = NULL;
3909 m->p_type = PT_GNU_STACK;
3910 m->p_flags = elf_tdata (abfd)->stack_flags;
3911 m->p_flags_valid = 1;
3912
3913 *pm = m;
3914 pm = &m->next;
3915 }
3916
3917 if (info->relro)
3918 {
3919 for (m = mfirst; m != NULL; m = m->next)
3920 {
3921 if (m->p_type == PT_LOAD)
3922 {
3923 asection *last = m->sections[m->count - 1];
3924 bfd_vma vaddr = m->sections[0]->vma;
3925 bfd_vma filesz = last->vma - vaddr + last->size;
3926
3927 if (vaddr < info->relro_end
3928 && vaddr >= info->relro_start
3929 && (vaddr + filesz) >= info->relro_end)
3930 break;
3931 }
3932 }
3933
3934 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3935 if (m != NULL)
3936 {
3937 amt = sizeof (struct elf_segment_map);
3938 m = bfd_zalloc (abfd, amt);
3939 if (m == NULL)
3940 goto error_return;
3941 m->next = NULL;
3942 m->p_type = PT_GNU_RELRO;
3943 m->p_flags = PF_R;
3944 m->p_flags_valid = 1;
3945
3946 *pm = m;
3947 pm = &m->next;
3948 }
3949 }
3950
3951 free (sections);
3952 elf_tdata (abfd)->segment_map = mfirst;
3953 }
3954
3955 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
3956 return FALSE;
3957
3958 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3959 ++count;
3960 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
3961
3962 return TRUE;
3963
3964 error_return:
3965 if (sections != NULL)
3966 free (sections);
3967 return FALSE;
3968 }
3969
3970 /* Sort sections by address. */
3971
3972 static int
3973 elf_sort_sections (const void *arg1, const void *arg2)
3974 {
3975 const asection *sec1 = *(const asection **) arg1;
3976 const asection *sec2 = *(const asection **) arg2;
3977 bfd_size_type size1, size2;
3978
3979 /* Sort by LMA first, since this is the address used to
3980 place the section into a segment. */
3981 if (sec1->lma < sec2->lma)
3982 return -1;
3983 else if (sec1->lma > sec2->lma)
3984 return 1;
3985
3986 /* Then sort by VMA. Normally the LMA and the VMA will be
3987 the same, and this will do nothing. */
3988 if (sec1->vma < sec2->vma)
3989 return -1;
3990 else if (sec1->vma > sec2->vma)
3991 return 1;
3992
3993 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3994
3995 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3996
3997 if (TOEND (sec1))
3998 {
3999 if (TOEND (sec2))
4000 {
4001 /* If the indicies are the same, do not return 0
4002 here, but continue to try the next comparison. */
4003 if (sec1->target_index - sec2->target_index != 0)
4004 return sec1->target_index - sec2->target_index;
4005 }
4006 else
4007 return 1;
4008 }
4009 else if (TOEND (sec2))
4010 return -1;
4011
4012 #undef TOEND
4013
4014 /* Sort by size, to put zero sized sections
4015 before others at the same address. */
4016
4017 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4018 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4019
4020 if (size1 < size2)
4021 return -1;
4022 if (size1 > size2)
4023 return 1;
4024
4025 return sec1->target_index - sec2->target_index;
4026 }
4027
4028 /* Ian Lance Taylor writes:
4029
4030 We shouldn't be using % with a negative signed number. That's just
4031 not good. We have to make sure either that the number is not
4032 negative, or that the number has an unsigned type. When the types
4033 are all the same size they wind up as unsigned. When file_ptr is a
4034 larger signed type, the arithmetic winds up as signed long long,
4035 which is wrong.
4036
4037 What we're trying to say here is something like ``increase OFF by
4038 the least amount that will cause it to be equal to the VMA modulo
4039 the page size.'' */
4040 /* In other words, something like:
4041
4042 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4043 off_offset = off % bed->maxpagesize;
4044 if (vma_offset < off_offset)
4045 adjustment = vma_offset + bed->maxpagesize - off_offset;
4046 else
4047 adjustment = vma_offset - off_offset;
4048
4049 which can can be collapsed into the expression below. */
4050
4051 static file_ptr
4052 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4053 {
4054 return ((vma - off) % maxpagesize);
4055 }
4056
4057 static void
4058 print_segment_map (const struct elf_segment_map *m)
4059 {
4060 unsigned int j;
4061 const char *pt = get_segment_type (m->p_type);
4062 char buf[32];
4063
4064 if (pt == NULL)
4065 {
4066 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4067 sprintf (buf, "LOPROC+%7.7x",
4068 (unsigned int) (m->p_type - PT_LOPROC));
4069 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4070 sprintf (buf, "LOOS+%7.7x",
4071 (unsigned int) (m->p_type - PT_LOOS));
4072 else
4073 snprintf (buf, sizeof (buf), "%8.8x",
4074 (unsigned int) m->p_type);
4075 pt = buf;
4076 }
4077 fprintf (stderr, "%s:", pt);
4078 for (j = 0; j < m->count; j++)
4079 fprintf (stderr, " %s", m->sections [j]->name);
4080 putc ('\n',stderr);
4081 }
4082
4083 /* Assign file positions to the sections based on the mapping from
4084 sections to segments. This function also sets up some fields in
4085 the file header. */
4086
4087 static bfd_boolean
4088 assign_file_positions_for_load_sections (bfd *abfd,
4089 struct bfd_link_info *link_info)
4090 {
4091 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4092 struct elf_segment_map *m;
4093 Elf_Internal_Phdr *phdrs;
4094 Elf_Internal_Phdr *p;
4095 file_ptr off;
4096 bfd_size_type maxpagesize;
4097 unsigned int alloc;
4098 unsigned int i, j;
4099
4100 if (link_info == NULL
4101 && !elf_modify_segment_map (abfd, link_info, FALSE))
4102 return FALSE;
4103
4104 alloc = 0;
4105 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4106 ++alloc;
4107
4108 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4109 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4110 elf_elfheader (abfd)->e_phnum = alloc;
4111
4112 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4113 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4114 else
4115 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4116 >= alloc * bed->s->sizeof_phdr);
4117
4118 if (alloc == 0)
4119 {
4120 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4121 return TRUE;
4122 }
4123
4124 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4125 elf_tdata (abfd)->phdr = phdrs;
4126 if (phdrs == NULL)
4127 return FALSE;
4128
4129 maxpagesize = 1;
4130 if ((abfd->flags & D_PAGED) != 0)
4131 maxpagesize = bed->maxpagesize;
4132
4133 off = bed->s->sizeof_ehdr;
4134 off += alloc * bed->s->sizeof_phdr;
4135
4136 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4137 m != NULL;
4138 m = m->next, p++, j++)
4139 {
4140 asection **secpp;
4141 bfd_vma off_adjust;
4142 bfd_boolean no_contents;
4143
4144 /* If elf_segment_map is not from map_sections_to_segments, the
4145 sections may not be correctly ordered. NOTE: sorting should
4146 not be done to the PT_NOTE section of a corefile, which may
4147 contain several pseudo-sections artificially created by bfd.
4148 Sorting these pseudo-sections breaks things badly. */
4149 if (m->count > 1
4150 && !(elf_elfheader (abfd)->e_type == ET_CORE
4151 && m->p_type == PT_NOTE))
4152 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4153 elf_sort_sections);
4154
4155 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4156 number of sections with contents contributing to both p_filesz
4157 and p_memsz, followed by a number of sections with no contents
4158 that just contribute to p_memsz. In this loop, OFF tracks next
4159 available file offset for PT_LOAD and PT_NOTE segments. */
4160 p->p_type = m->p_type;
4161 p->p_flags = m->p_flags;
4162
4163 if (m->count == 0)
4164 p->p_vaddr = 0;
4165 else
4166 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4167
4168 if (m->p_paddr_valid)
4169 p->p_paddr = m->p_paddr;
4170 else if (m->count == 0)
4171 p->p_paddr = 0;
4172 else
4173 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4174
4175 if (p->p_type == PT_LOAD
4176 && (abfd->flags & D_PAGED) != 0)
4177 {
4178 /* p_align in demand paged PT_LOAD segments effectively stores
4179 the maximum page size. When copying an executable with
4180 objcopy, we set m->p_align from the input file. Use this
4181 value for maxpagesize rather than bed->maxpagesize, which
4182 may be different. Note that we use maxpagesize for PT_TLS
4183 segment alignment later in this function, so we are relying
4184 on at least one PT_LOAD segment appearing before a PT_TLS
4185 segment. */
4186 if (m->p_align_valid)
4187 maxpagesize = m->p_align;
4188
4189 p->p_align = maxpagesize;
4190 }
4191 else if (m->p_align_valid)
4192 p->p_align = m->p_align;
4193 else if (m->count == 0)
4194 p->p_align = 1 << bed->s->log_file_align;
4195 else
4196 p->p_align = 0;
4197
4198 no_contents = FALSE;
4199 off_adjust = 0;
4200 if (p->p_type == PT_LOAD
4201 && m->count > 0)
4202 {
4203 bfd_size_type align;
4204 unsigned int align_power = 0;
4205
4206 if (m->p_align_valid)
4207 align = p->p_align;
4208 else
4209 {
4210 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4211 {
4212 unsigned int secalign;
4213
4214 secalign = bfd_get_section_alignment (abfd, *secpp);
4215 if (secalign > align_power)
4216 align_power = secalign;
4217 }
4218 align = (bfd_size_type) 1 << align_power;
4219 if (align < maxpagesize)
4220 align = maxpagesize;
4221 }
4222
4223 for (i = 0; i < m->count; i++)
4224 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4225 /* If we aren't making room for this section, then
4226 it must be SHT_NOBITS regardless of what we've
4227 set via struct bfd_elf_special_section. */
4228 elf_section_type (m->sections[i]) = SHT_NOBITS;
4229
4230 /* Find out whether this segment contains any loadable
4231 sections. If the first section isn't loadable, the same
4232 holds for any other sections. */
4233 i = 0;
4234 while (elf_section_type (m->sections[i]) == SHT_NOBITS)
4235 {
4236 /* If a segment starts with .tbss, we need to look
4237 at the next section to decide whether the segment
4238 has any loadable sections. */
4239 if ((elf_section_flags (m->sections[i]) & SHF_TLS) == 0
4240 || ++i >= m->count)
4241 {
4242 no_contents = TRUE;
4243 break;
4244 }
4245 }
4246
4247 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4248 off += off_adjust;
4249 if (no_contents)
4250 {
4251 /* We shouldn't need to align the segment on disk since
4252 the segment doesn't need file space, but the gABI
4253 arguably requires the alignment and glibc ld.so
4254 checks it. So to comply with the alignment
4255 requirement but not waste file space, we adjust
4256 p_offset for just this segment. (OFF_ADJUST is
4257 subtracted from OFF later.) This may put p_offset
4258 past the end of file, but that shouldn't matter. */
4259 }
4260 else
4261 off_adjust = 0;
4262 }
4263 /* Make sure the .dynamic section is the first section in the
4264 PT_DYNAMIC segment. */
4265 else if (p->p_type == PT_DYNAMIC
4266 && m->count > 1
4267 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4268 {
4269 _bfd_error_handler
4270 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4271 abfd);
4272 bfd_set_error (bfd_error_bad_value);
4273 return FALSE;
4274 }
4275 /* Set the note section type to SHT_NOTE. */
4276 else if (p->p_type == PT_NOTE)
4277 for (i = 0; i < m->count; i++)
4278 elf_section_type (m->sections[i]) = SHT_NOTE;
4279
4280 p->p_offset = 0;
4281 p->p_filesz = 0;
4282 p->p_memsz = 0;
4283
4284 if (m->includes_filehdr)
4285 {
4286 if (!m->p_flags_valid)
4287 p->p_flags |= PF_R;
4288 p->p_filesz = bed->s->sizeof_ehdr;
4289 p->p_memsz = bed->s->sizeof_ehdr;
4290 if (m->count > 0)
4291 {
4292 BFD_ASSERT (p->p_type == PT_LOAD);
4293
4294 if (p->p_vaddr < (bfd_vma) off)
4295 {
4296 (*_bfd_error_handler)
4297 (_("%B: Not enough room for program headers, try linking with -N"),
4298 abfd);
4299 bfd_set_error (bfd_error_bad_value);
4300 return FALSE;
4301 }
4302
4303 p->p_vaddr -= off;
4304 if (!m->p_paddr_valid)
4305 p->p_paddr -= off;
4306 }
4307 }
4308
4309 if (m->includes_phdrs)
4310 {
4311 if (!m->p_flags_valid)
4312 p->p_flags |= PF_R;
4313
4314 if (!m->includes_filehdr)
4315 {
4316 p->p_offset = bed->s->sizeof_ehdr;
4317
4318 if (m->count > 0)
4319 {
4320 BFD_ASSERT (p->p_type == PT_LOAD);
4321 p->p_vaddr -= off - p->p_offset;
4322 if (!m->p_paddr_valid)
4323 p->p_paddr -= off - p->p_offset;
4324 }
4325 }
4326
4327 p->p_filesz += alloc * bed->s->sizeof_phdr;
4328 p->p_memsz += alloc * bed->s->sizeof_phdr;
4329 }
4330
4331 if (p->p_type == PT_LOAD
4332 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4333 {
4334 if (!m->includes_filehdr && !m->includes_phdrs)
4335 p->p_offset = off;
4336 else
4337 {
4338 file_ptr adjust;
4339
4340 adjust = off - (p->p_offset + p->p_filesz);
4341 if (!no_contents)
4342 p->p_filesz += adjust;
4343 p->p_memsz += adjust;
4344 }
4345 }
4346
4347 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4348 maps. Set filepos for sections in PT_LOAD segments, and in
4349 core files, for sections in PT_NOTE segments.
4350 assign_file_positions_for_non_load_sections will set filepos
4351 for other sections and update p_filesz for other segments. */
4352 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4353 {
4354 asection *sec;
4355 bfd_size_type align;
4356 Elf_Internal_Shdr *this_hdr;
4357
4358 sec = *secpp;
4359 this_hdr = &elf_section_data (sec)->this_hdr;
4360 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4361
4362 if (p->p_type == PT_LOAD
4363 || p->p_type == PT_TLS)
4364 {
4365 bfd_signed_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
4366
4367 if (this_hdr->sh_type != SHT_NOBITS
4368 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4369 && ((this_hdr->sh_flags & SHF_TLS) == 0
4370 || p->p_type == PT_TLS)))
4371 {
4372 if (adjust < 0)
4373 {
4374 (*_bfd_error_handler)
4375 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4376 abfd, sec, (unsigned long) sec->lma);
4377 adjust = 0;
4378 }
4379 p->p_memsz += adjust;
4380
4381 if (this_hdr->sh_type != SHT_NOBITS)
4382 {
4383 off += adjust;
4384 p->p_filesz += adjust;
4385 }
4386 }
4387 }
4388
4389 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4390 {
4391 /* The section at i == 0 is the one that actually contains
4392 everything. */
4393 if (i == 0)
4394 {
4395 this_hdr->sh_offset = sec->filepos = off;
4396 off += this_hdr->sh_size;
4397 p->p_filesz = this_hdr->sh_size;
4398 p->p_memsz = 0;
4399 p->p_align = 1;
4400 }
4401 else
4402 {
4403 /* The rest are fake sections that shouldn't be written. */
4404 sec->filepos = 0;
4405 sec->size = 0;
4406 sec->flags = 0;
4407 continue;
4408 }
4409 }
4410 else
4411 {
4412 if (p->p_type == PT_LOAD)
4413 {
4414 this_hdr->sh_offset = sec->filepos = off;
4415 if (this_hdr->sh_type != SHT_NOBITS)
4416 off += this_hdr->sh_size;
4417 }
4418
4419 if (this_hdr->sh_type != SHT_NOBITS)
4420 {
4421 p->p_filesz += this_hdr->sh_size;
4422 /* A load section without SHF_ALLOC is something like
4423 a note section in a PT_NOTE segment. These take
4424 file space but are not loaded into memory. */
4425 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4426 p->p_memsz += this_hdr->sh_size;
4427 }
4428 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4429 {
4430 if (p->p_type == PT_TLS)
4431 p->p_memsz += this_hdr->sh_size;
4432
4433 /* .tbss is special. It doesn't contribute to p_memsz of
4434 normal segments. */
4435 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4436 p->p_memsz += this_hdr->sh_size;
4437 }
4438
4439 if (align > p->p_align
4440 && !m->p_align_valid
4441 && (p->p_type != PT_LOAD
4442 || (abfd->flags & D_PAGED) == 0))
4443 p->p_align = align;
4444 }
4445
4446 if (!m->p_flags_valid)
4447 {
4448 p->p_flags |= PF_R;
4449 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4450 p->p_flags |= PF_X;
4451 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4452 p->p_flags |= PF_W;
4453 }
4454 }
4455 off -= off_adjust;
4456
4457 /* Check that all sections are in a PT_LOAD segment.
4458 Don't check funky gdb generated core files. */
4459 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4460 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4461 {
4462 Elf_Internal_Shdr *this_hdr;
4463 asection *sec;
4464
4465 sec = *secpp;
4466 this_hdr = &(elf_section_data(sec)->this_hdr);
4467 if (this_hdr->sh_size != 0
4468 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4469 {
4470 (*_bfd_error_handler)
4471 (_("%B: section `%A' can't be allocated in segment %d"),
4472 abfd, sec, j);
4473 print_segment_map (m);
4474 bfd_set_error (bfd_error_bad_value);
4475 return FALSE;
4476 }
4477 }
4478 }
4479
4480 elf_tdata (abfd)->next_file_pos = off;
4481 return TRUE;
4482 }
4483
4484 /* Assign file positions for the other sections. */
4485
4486 static bfd_boolean
4487 assign_file_positions_for_non_load_sections (bfd *abfd,
4488 struct bfd_link_info *link_info)
4489 {
4490 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4491 Elf_Internal_Shdr **i_shdrpp;
4492 Elf_Internal_Shdr **hdrpp;
4493 Elf_Internal_Phdr *phdrs;
4494 Elf_Internal_Phdr *p;
4495 struct elf_segment_map *m;
4496 bfd_vma filehdr_vaddr, filehdr_paddr;
4497 bfd_vma phdrs_vaddr, phdrs_paddr;
4498 file_ptr off;
4499 unsigned int num_sec;
4500 unsigned int i;
4501 unsigned int count;
4502
4503 i_shdrpp = elf_elfsections (abfd);
4504 num_sec = elf_numsections (abfd);
4505 off = elf_tdata (abfd)->next_file_pos;
4506 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4507 {
4508 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4509 Elf_Internal_Shdr *hdr;
4510
4511 hdr = *hdrpp;
4512 if (hdr->bfd_section != NULL
4513 && (hdr->bfd_section->filepos != 0
4514 || (hdr->sh_type == SHT_NOBITS
4515 && hdr->contents == NULL)))
4516 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4517 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4518 {
4519 if (hdr->sh_size != 0)
4520 ((*_bfd_error_handler)
4521 (_("%B: warning: allocated section `%s' not in segment"),
4522 abfd,
4523 (hdr->bfd_section == NULL
4524 ? "*unknown*"
4525 : hdr->bfd_section->name)));
4526 /* We don't need to page align empty sections. */
4527 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4528 off += vma_page_aligned_bias (hdr->sh_addr, off,
4529 bed->maxpagesize);
4530 else
4531 off += vma_page_aligned_bias (hdr->sh_addr, off,
4532 hdr->sh_addralign);
4533 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4534 FALSE);
4535 }
4536 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4537 && hdr->bfd_section == NULL)
4538 || hdr == i_shdrpp[tdata->symtab_section]
4539 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4540 || hdr == i_shdrpp[tdata->strtab_section])
4541 hdr->sh_offset = -1;
4542 else
4543 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4544 }
4545
4546 /* Now that we have set the section file positions, we can set up
4547 the file positions for the non PT_LOAD segments. */
4548 count = 0;
4549 filehdr_vaddr = 0;
4550 filehdr_paddr = 0;
4551 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4552 phdrs_paddr = 0;
4553 phdrs = elf_tdata (abfd)->phdr;
4554 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4555 m != NULL;
4556 m = m->next, p++)
4557 {
4558 ++count;
4559 if (p->p_type != PT_LOAD)
4560 continue;
4561
4562 if (m->includes_filehdr)
4563 {
4564 filehdr_vaddr = p->p_vaddr;
4565 filehdr_paddr = p->p_paddr;
4566 }
4567 if (m->includes_phdrs)
4568 {
4569 phdrs_vaddr = p->p_vaddr;
4570 phdrs_paddr = p->p_paddr;
4571 if (m->includes_filehdr)
4572 {
4573 phdrs_vaddr += bed->s->sizeof_ehdr;
4574 phdrs_paddr += bed->s->sizeof_ehdr;
4575 }
4576 }
4577 }
4578
4579 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4580 m != NULL;
4581 m = m->next, p++)
4582 {
4583 if (m->count != 0)
4584 {
4585 if (p->p_type != PT_LOAD
4586 && (p->p_type != PT_NOTE
4587 || bfd_get_format (abfd) != bfd_core))
4588 {
4589 Elf_Internal_Shdr *hdr;
4590 asection *sect;
4591
4592 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4593
4594 sect = m->sections[m->count - 1];
4595 hdr = &elf_section_data (sect)->this_hdr;
4596 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4597 if (hdr->sh_type != SHT_NOBITS)
4598 p->p_filesz += hdr->sh_size;
4599
4600 if (p->p_type == PT_GNU_RELRO)
4601 {
4602 /* When we get here, we are copying executable
4603 or shared library. But we need to use the same
4604 linker logic. */
4605 Elf_Internal_Phdr *lp;
4606
4607 for (lp = phdrs; lp < phdrs + count; ++lp)
4608 {
4609 if (lp->p_type == PT_LOAD
4610 && lp->p_paddr == p->p_paddr)
4611 break;
4612 }
4613
4614 if (lp < phdrs + count)
4615 {
4616 /* We should use p_size if it is valid since it
4617 may contain the first few bytes of the next
4618 SEC_ALLOC section. */
4619 if (m->p_size_valid)
4620 p->p_filesz = m->p_size;
4621 else
4622 abort ();
4623 p->p_vaddr = lp->p_vaddr;
4624 p->p_offset = lp->p_offset;
4625 p->p_memsz = p->p_filesz;
4626 p->p_align = 1;
4627 }
4628 else
4629 abort ();
4630 }
4631 else
4632 p->p_offset = m->sections[0]->filepos;
4633 }
4634 }
4635 else
4636 {
4637 if (m->includes_filehdr)
4638 {
4639 p->p_vaddr = filehdr_vaddr;
4640 if (! m->p_paddr_valid)
4641 p->p_paddr = filehdr_paddr;
4642 }
4643 else if (m->includes_phdrs)
4644 {
4645 p->p_vaddr = phdrs_vaddr;
4646 if (! m->p_paddr_valid)
4647 p->p_paddr = phdrs_paddr;
4648 }
4649 else if (p->p_type == PT_GNU_RELRO)
4650 {
4651 Elf_Internal_Phdr *lp;
4652
4653 for (lp = phdrs; lp < phdrs + count; ++lp)
4654 {
4655 if (lp->p_type == PT_LOAD
4656 && lp->p_vaddr <= link_info->relro_end
4657 && lp->p_vaddr >= link_info->relro_start
4658 && (lp->p_vaddr + lp->p_filesz
4659 >= link_info->relro_end))
4660 break;
4661 }
4662
4663 if (lp < phdrs + count
4664 && link_info->relro_end > lp->p_vaddr)
4665 {
4666 p->p_vaddr = lp->p_vaddr;
4667 p->p_paddr = lp->p_paddr;
4668 p->p_offset = lp->p_offset;
4669 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4670 p->p_memsz = p->p_filesz;
4671 p->p_align = 1;
4672 p->p_flags = (lp->p_flags & ~PF_W);
4673 }
4674 else
4675 {
4676 memset (p, 0, sizeof *p);
4677 p->p_type = PT_NULL;
4678 }
4679 }
4680 }
4681 }
4682
4683 elf_tdata (abfd)->next_file_pos = off;
4684
4685 return TRUE;
4686 }
4687
4688 /* Work out the file positions of all the sections. This is called by
4689 _bfd_elf_compute_section_file_positions. All the section sizes and
4690 VMAs must be known before this is called.
4691
4692 Reloc sections come in two flavours: Those processed specially as
4693 "side-channel" data attached to a section to which they apply, and
4694 those that bfd doesn't process as relocations. The latter sort are
4695 stored in a normal bfd section by bfd_section_from_shdr. We don't
4696 consider the former sort here, unless they form part of the loadable
4697 image. Reloc sections not assigned here will be handled later by
4698 assign_file_positions_for_relocs.
4699
4700 We also don't set the positions of the .symtab and .strtab here. */
4701
4702 static bfd_boolean
4703 assign_file_positions_except_relocs (bfd *abfd,
4704 struct bfd_link_info *link_info)
4705 {
4706 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4707 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4708 file_ptr off;
4709 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4710
4711 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4712 && bfd_get_format (abfd) != bfd_core)
4713 {
4714 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4715 unsigned int num_sec = elf_numsections (abfd);
4716 Elf_Internal_Shdr **hdrpp;
4717 unsigned int i;
4718
4719 /* Start after the ELF header. */
4720 off = i_ehdrp->e_ehsize;
4721
4722 /* We are not creating an executable, which means that we are
4723 not creating a program header, and that the actual order of
4724 the sections in the file is unimportant. */
4725 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4726 {
4727 Elf_Internal_Shdr *hdr;
4728
4729 hdr = *hdrpp;
4730 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4731 && hdr->bfd_section == NULL)
4732 || i == tdata->symtab_section
4733 || i == tdata->symtab_shndx_section
4734 || i == tdata->strtab_section)
4735 {
4736 hdr->sh_offset = -1;
4737 }
4738 else
4739 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4740 }
4741 }
4742 else
4743 {
4744 unsigned int alloc;
4745
4746 /* Assign file positions for the loaded sections based on the
4747 assignment of sections to segments. */
4748 if (!assign_file_positions_for_load_sections (abfd, link_info))
4749 return FALSE;
4750
4751 /* And for non-load sections. */
4752 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4753 return FALSE;
4754
4755 if (bed->elf_backend_modify_program_headers != NULL)
4756 {
4757 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4758 return FALSE;
4759 }
4760
4761 /* Write out the program headers. */
4762 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4763 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4764 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4765 return FALSE;
4766
4767 off = tdata->next_file_pos;
4768 }
4769
4770 /* Place the section headers. */
4771 off = align_file_position (off, 1 << bed->s->log_file_align);
4772 i_ehdrp->e_shoff = off;
4773 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4774
4775 tdata->next_file_pos = off;
4776
4777 return TRUE;
4778 }
4779
4780 static bfd_boolean
4781 prep_headers (bfd *abfd)
4782 {
4783 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4784 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4785 struct elf_strtab_hash *shstrtab;
4786 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4787
4788 i_ehdrp = elf_elfheader (abfd);
4789
4790 shstrtab = _bfd_elf_strtab_init ();
4791 if (shstrtab == NULL)
4792 return FALSE;
4793
4794 elf_shstrtab (abfd) = shstrtab;
4795
4796 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4797 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4798 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4799 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4800
4801 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4802 i_ehdrp->e_ident[EI_DATA] =
4803 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4804 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4805
4806 if ((abfd->flags & DYNAMIC) != 0)
4807 i_ehdrp->e_type = ET_DYN;
4808 else if ((abfd->flags & EXEC_P) != 0)
4809 i_ehdrp->e_type = ET_EXEC;
4810 else if (bfd_get_format (abfd) == bfd_core)
4811 i_ehdrp->e_type = ET_CORE;
4812 else
4813 i_ehdrp->e_type = ET_REL;
4814
4815 switch (bfd_get_arch (abfd))
4816 {
4817 case bfd_arch_unknown:
4818 i_ehdrp->e_machine = EM_NONE;
4819 break;
4820
4821 /* There used to be a long list of cases here, each one setting
4822 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4823 in the corresponding bfd definition. To avoid duplication,
4824 the switch was removed. Machines that need special handling
4825 can generally do it in elf_backend_final_write_processing(),
4826 unless they need the information earlier than the final write.
4827 Such need can generally be supplied by replacing the tests for
4828 e_machine with the conditions used to determine it. */
4829 default:
4830 i_ehdrp->e_machine = bed->elf_machine_code;
4831 }
4832
4833 i_ehdrp->e_version = bed->s->ev_current;
4834 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4835
4836 /* No program header, for now. */
4837 i_ehdrp->e_phoff = 0;
4838 i_ehdrp->e_phentsize = 0;
4839 i_ehdrp->e_phnum = 0;
4840
4841 /* Each bfd section is section header entry. */
4842 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4843 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4844
4845 /* If we're building an executable, we'll need a program header table. */
4846 if (abfd->flags & EXEC_P)
4847 /* It all happens later. */
4848 ;
4849 else
4850 {
4851 i_ehdrp->e_phentsize = 0;
4852 i_phdrp = 0;
4853 i_ehdrp->e_phoff = 0;
4854 }
4855
4856 elf_tdata (abfd)->symtab_hdr.sh_name =
4857 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4858 elf_tdata (abfd)->strtab_hdr.sh_name =
4859 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4860 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4861 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4862 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4863 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4864 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4865 return FALSE;
4866
4867 return TRUE;
4868 }
4869
4870 /* Assign file positions for all the reloc sections which are not part
4871 of the loadable file image. */
4872
4873 void
4874 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4875 {
4876 file_ptr off;
4877 unsigned int i, num_sec;
4878 Elf_Internal_Shdr **shdrpp;
4879
4880 off = elf_tdata (abfd)->next_file_pos;
4881
4882 num_sec = elf_numsections (abfd);
4883 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4884 {
4885 Elf_Internal_Shdr *shdrp;
4886
4887 shdrp = *shdrpp;
4888 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4889 && shdrp->sh_offset == -1)
4890 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4891 }
4892
4893 elf_tdata (abfd)->next_file_pos = off;
4894 }
4895
4896 bfd_boolean
4897 _bfd_elf_write_object_contents (bfd *abfd)
4898 {
4899 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4900 Elf_Internal_Ehdr *i_ehdrp;
4901 Elf_Internal_Shdr **i_shdrp;
4902 bfd_boolean failed;
4903 unsigned int count, num_sec;
4904
4905 if (! abfd->output_has_begun
4906 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4907 return FALSE;
4908
4909 i_shdrp = elf_elfsections (abfd);
4910 i_ehdrp = elf_elfheader (abfd);
4911
4912 failed = FALSE;
4913 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4914 if (failed)
4915 return FALSE;
4916
4917 _bfd_elf_assign_file_positions_for_relocs (abfd);
4918
4919 /* After writing the headers, we need to write the sections too... */
4920 num_sec = elf_numsections (abfd);
4921 for (count = 1; count < num_sec; count++)
4922 {
4923 if (bed->elf_backend_section_processing)
4924 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4925 if (i_shdrp[count]->contents)
4926 {
4927 bfd_size_type amt = i_shdrp[count]->sh_size;
4928
4929 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4930 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4931 return FALSE;
4932 }
4933 }
4934
4935 /* Write out the section header names. */
4936 if (elf_shstrtab (abfd) != NULL
4937 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4938 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4939 return FALSE;
4940
4941 if (bed->elf_backend_final_write_processing)
4942 (*bed->elf_backend_final_write_processing) (abfd,
4943 elf_tdata (abfd)->linker);
4944
4945 if (!bed->s->write_shdrs_and_ehdr (abfd))
4946 return FALSE;
4947
4948 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4949 if (elf_tdata (abfd)->after_write_object_contents)
4950 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
4951
4952 return TRUE;
4953 }
4954
4955 bfd_boolean
4956 _bfd_elf_write_corefile_contents (bfd *abfd)
4957 {
4958 /* Hopefully this can be done just like an object file. */
4959 return _bfd_elf_write_object_contents (abfd);
4960 }
4961
4962 /* Given a section, search the header to find them. */
4963
4964 unsigned int
4965 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4966 {
4967 const struct elf_backend_data *bed;
4968 unsigned int index;
4969
4970 if (elf_section_data (asect) != NULL
4971 && elf_section_data (asect)->this_idx != 0)
4972 return elf_section_data (asect)->this_idx;
4973
4974 if (bfd_is_abs_section (asect))
4975 index = SHN_ABS;
4976 else if (bfd_is_com_section (asect))
4977 index = SHN_COMMON;
4978 else if (bfd_is_und_section (asect))
4979 index = SHN_UNDEF;
4980 else
4981 index = SHN_BAD;
4982
4983 bed = get_elf_backend_data (abfd);
4984 if (bed->elf_backend_section_from_bfd_section)
4985 {
4986 int retval = index;
4987
4988 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4989 return retval;
4990 }
4991
4992 if (index == SHN_BAD)
4993 bfd_set_error (bfd_error_nonrepresentable_section);
4994
4995 return index;
4996 }
4997
4998 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4999 on error. */
5000
5001 int
5002 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5003 {
5004 asymbol *asym_ptr = *asym_ptr_ptr;
5005 int idx;
5006 flagword flags = asym_ptr->flags;
5007
5008 /* When gas creates relocations against local labels, it creates its
5009 own symbol for the section, but does put the symbol into the
5010 symbol chain, so udata is 0. When the linker is generating
5011 relocatable output, this section symbol may be for one of the
5012 input sections rather than the output section. */
5013 if (asym_ptr->udata.i == 0
5014 && (flags & BSF_SECTION_SYM)
5015 && asym_ptr->section)
5016 {
5017 asection *sec;
5018 int indx;
5019
5020 sec = asym_ptr->section;
5021 if (sec->owner != abfd && sec->output_section != NULL)
5022 sec = sec->output_section;
5023 if (sec->owner == abfd
5024 && (indx = sec->index) < elf_num_section_syms (abfd)
5025 && elf_section_syms (abfd)[indx] != NULL)
5026 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5027 }
5028
5029 idx = asym_ptr->udata.i;
5030
5031 if (idx == 0)
5032 {
5033 /* This case can occur when using --strip-symbol on a symbol
5034 which is used in a relocation entry. */
5035 (*_bfd_error_handler)
5036 (_("%B: symbol `%s' required but not present"),
5037 abfd, bfd_asymbol_name (asym_ptr));
5038 bfd_set_error (bfd_error_no_symbols);
5039 return -1;
5040 }
5041
5042 #if DEBUG & 4
5043 {
5044 fprintf (stderr,
5045 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5046 (long) asym_ptr, asym_ptr->name, idx, flags,
5047 elf_symbol_flags (flags));
5048 fflush (stderr);
5049 }
5050 #endif
5051
5052 return idx;
5053 }
5054
5055 /* Rewrite program header information. */
5056
5057 static bfd_boolean
5058 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5059 {
5060 Elf_Internal_Ehdr *iehdr;
5061 struct elf_segment_map *map;
5062 struct elf_segment_map *map_first;
5063 struct elf_segment_map **pointer_to_map;
5064 Elf_Internal_Phdr *segment;
5065 asection *section;
5066 unsigned int i;
5067 unsigned int num_segments;
5068 bfd_boolean phdr_included = FALSE;
5069 bfd_vma maxpagesize;
5070 struct elf_segment_map *phdr_adjust_seg = NULL;
5071 unsigned int phdr_adjust_num = 0;
5072 const struct elf_backend_data *bed;
5073
5074 bed = get_elf_backend_data (ibfd);
5075 iehdr = elf_elfheader (ibfd);
5076
5077 map_first = NULL;
5078 pointer_to_map = &map_first;
5079
5080 num_segments = elf_elfheader (ibfd)->e_phnum;
5081 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5082
5083 /* Returns the end address of the segment + 1. */
5084 #define SEGMENT_END(segment, start) \
5085 (start + (segment->p_memsz > segment->p_filesz \
5086 ? segment->p_memsz : segment->p_filesz))
5087
5088 #define SECTION_SIZE(section, segment) \
5089 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5090 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5091 ? section->size : 0)
5092
5093 /* Returns TRUE if the given section is contained within
5094 the given segment. VMA addresses are compared. */
5095 #define IS_CONTAINED_BY_VMA(section, segment) \
5096 (section->vma >= segment->p_vaddr \
5097 && (section->vma + SECTION_SIZE (section, segment) \
5098 <= (SEGMENT_END (segment, segment->p_vaddr))))
5099
5100 /* Returns TRUE if the given section is contained within
5101 the given segment. LMA addresses are compared. */
5102 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5103 (section->lma >= base \
5104 && (section->lma + SECTION_SIZE (section, segment) \
5105 <= SEGMENT_END (segment, base)))
5106
5107 /* Handle PT_NOTE segment. */
5108 #define IS_NOTE(p, s) \
5109 (p->p_type == PT_NOTE \
5110 && elf_section_type (s) == SHT_NOTE \
5111 && (bfd_vma) s->filepos >= p->p_offset \
5112 && ((bfd_vma) s->filepos + s->size \
5113 <= p->p_offset + p->p_filesz))
5114
5115 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5116 etc. */
5117 #define IS_COREFILE_NOTE(p, s) \
5118 (IS_NOTE (p, s) \
5119 && bfd_get_format (ibfd) == bfd_core \
5120 && s->vma == 0 \
5121 && s->lma == 0)
5122
5123 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5124 linker, which generates a PT_INTERP section with p_vaddr and
5125 p_memsz set to 0. */
5126 #define IS_SOLARIS_PT_INTERP(p, s) \
5127 (p->p_vaddr == 0 \
5128 && p->p_paddr == 0 \
5129 && p->p_memsz == 0 \
5130 && p->p_filesz > 0 \
5131 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5132 && s->size > 0 \
5133 && (bfd_vma) s->filepos >= p->p_offset \
5134 && ((bfd_vma) s->filepos + s->size \
5135 <= p->p_offset + p->p_filesz))
5136
5137 /* Decide if the given section should be included in the given segment.
5138 A section will be included if:
5139 1. It is within the address space of the segment -- we use the LMA
5140 if that is set for the segment and the VMA otherwise,
5141 2. It is an allocated section or a NOTE section in a PT_NOTE
5142 segment.
5143 3. There is an output section associated with it,
5144 4. The section has not already been allocated to a previous segment.
5145 5. PT_GNU_STACK segments do not include any sections.
5146 6. PT_TLS segment includes only SHF_TLS sections.
5147 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5148 8. PT_DYNAMIC should not contain empty sections at the beginning
5149 (with the possible exception of .dynamic). */
5150 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5151 ((((segment->p_paddr \
5152 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5153 : IS_CONTAINED_BY_VMA (section, segment)) \
5154 && (section->flags & SEC_ALLOC) != 0) \
5155 || IS_NOTE (segment, section)) \
5156 && segment->p_type != PT_GNU_STACK \
5157 && (segment->p_type != PT_TLS \
5158 || (section->flags & SEC_THREAD_LOCAL)) \
5159 && (segment->p_type == PT_LOAD \
5160 || segment->p_type == PT_TLS \
5161 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5162 && (segment->p_type != PT_DYNAMIC \
5163 || SECTION_SIZE (section, segment) > 0 \
5164 || (segment->p_paddr \
5165 ? segment->p_paddr != section->lma \
5166 : segment->p_vaddr != section->vma) \
5167 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5168 == 0)) \
5169 && !section->segment_mark)
5170
5171 /* If the output section of a section in the input segment is NULL,
5172 it is removed from the corresponding output segment. */
5173 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5174 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5175 && section->output_section != NULL)
5176
5177 /* Returns TRUE iff seg1 starts after the end of seg2. */
5178 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5179 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5180
5181 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5182 their VMA address ranges and their LMA address ranges overlap.
5183 It is possible to have overlapping VMA ranges without overlapping LMA
5184 ranges. RedBoot images for example can have both .data and .bss mapped
5185 to the same VMA range, but with the .data section mapped to a different
5186 LMA. */
5187 #define SEGMENT_OVERLAPS(seg1, seg2) \
5188 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5189 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5190 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5191 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5192
5193 /* Initialise the segment mark field. */
5194 for (section = ibfd->sections; section != NULL; section = section->next)
5195 section->segment_mark = FALSE;
5196
5197 /* Scan through the segments specified in the program header
5198 of the input BFD. For this first scan we look for overlaps
5199 in the loadable segments. These can be created by weird
5200 parameters to objcopy. Also, fix some solaris weirdness. */
5201 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5202 i < num_segments;
5203 i++, segment++)
5204 {
5205 unsigned int j;
5206 Elf_Internal_Phdr *segment2;
5207
5208 if (segment->p_type == PT_INTERP)
5209 for (section = ibfd->sections; section; section = section->next)
5210 if (IS_SOLARIS_PT_INTERP (segment, section))
5211 {
5212 /* Mininal change so that the normal section to segment
5213 assignment code will work. */
5214 segment->p_vaddr = section->vma;
5215 break;
5216 }
5217
5218 if (segment->p_type != PT_LOAD)
5219 {
5220 /* Remove PT_GNU_RELRO segment. */
5221 if (segment->p_type == PT_GNU_RELRO)
5222 segment->p_type = PT_NULL;
5223 continue;
5224 }
5225
5226 /* Determine if this segment overlaps any previous segments. */
5227 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5228 {
5229 bfd_signed_vma extra_length;
5230
5231 if (segment2->p_type != PT_LOAD
5232 || !SEGMENT_OVERLAPS (segment, segment2))
5233 continue;
5234
5235 /* Merge the two segments together. */
5236 if (segment2->p_vaddr < segment->p_vaddr)
5237 {
5238 /* Extend SEGMENT2 to include SEGMENT and then delete
5239 SEGMENT. */
5240 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5241 - SEGMENT_END (segment2, segment2->p_vaddr));
5242
5243 if (extra_length > 0)
5244 {
5245 segment2->p_memsz += extra_length;
5246 segment2->p_filesz += extra_length;
5247 }
5248
5249 segment->p_type = PT_NULL;
5250
5251 /* Since we have deleted P we must restart the outer loop. */
5252 i = 0;
5253 segment = elf_tdata (ibfd)->phdr;
5254 break;
5255 }
5256 else
5257 {
5258 /* Extend SEGMENT to include SEGMENT2 and then delete
5259 SEGMENT2. */
5260 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5261 - SEGMENT_END (segment, segment->p_vaddr));
5262
5263 if (extra_length > 0)
5264 {
5265 segment->p_memsz += extra_length;
5266 segment->p_filesz += extra_length;
5267 }
5268
5269 segment2->p_type = PT_NULL;
5270 }
5271 }
5272 }
5273
5274 /* The second scan attempts to assign sections to segments. */
5275 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5276 i < num_segments;
5277 i++, segment++)
5278 {
5279 unsigned int section_count;
5280 asection **sections;
5281 asection *output_section;
5282 unsigned int isec;
5283 bfd_vma matching_lma;
5284 bfd_vma suggested_lma;
5285 unsigned int j;
5286 bfd_size_type amt;
5287 asection *first_section;
5288 bfd_boolean first_matching_lma;
5289 bfd_boolean first_suggested_lma;
5290
5291 if (segment->p_type == PT_NULL)
5292 continue;
5293
5294 first_section = NULL;
5295 /* Compute how many sections might be placed into this segment. */
5296 for (section = ibfd->sections, section_count = 0;
5297 section != NULL;
5298 section = section->next)
5299 {
5300 /* Find the first section in the input segment, which may be
5301 removed from the corresponding output segment. */
5302 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5303 {
5304 if (first_section == NULL)
5305 first_section = section;
5306 if (section->output_section != NULL)
5307 ++section_count;
5308 }
5309 }
5310
5311 /* Allocate a segment map big enough to contain
5312 all of the sections we have selected. */
5313 amt = sizeof (struct elf_segment_map);
5314 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5315 map = bfd_zalloc (obfd, amt);
5316 if (map == NULL)
5317 return FALSE;
5318
5319 /* Initialise the fields of the segment map. Default to
5320 using the physical address of the segment in the input BFD. */
5321 map->next = NULL;
5322 map->p_type = segment->p_type;
5323 map->p_flags = segment->p_flags;
5324 map->p_flags_valid = 1;
5325
5326 /* If the first section in the input segment is removed, there is
5327 no need to preserve segment physical address in the corresponding
5328 output segment. */
5329 if (!first_section || first_section->output_section != NULL)
5330 {
5331 map->p_paddr = segment->p_paddr;
5332 map->p_paddr_valid = 1;
5333 }
5334
5335 /* Determine if this segment contains the ELF file header
5336 and if it contains the program headers themselves. */
5337 map->includes_filehdr = (segment->p_offset == 0
5338 && segment->p_filesz >= iehdr->e_ehsize);
5339 map->includes_phdrs = 0;
5340
5341 if (!phdr_included || segment->p_type != PT_LOAD)
5342 {
5343 map->includes_phdrs =
5344 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5345 && (segment->p_offset + segment->p_filesz
5346 >= ((bfd_vma) iehdr->e_phoff
5347 + iehdr->e_phnum * iehdr->e_phentsize)));
5348
5349 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5350 phdr_included = TRUE;
5351 }
5352
5353 if (section_count == 0)
5354 {
5355 /* Special segments, such as the PT_PHDR segment, may contain
5356 no sections, but ordinary, loadable segments should contain
5357 something. They are allowed by the ELF spec however, so only
5358 a warning is produced. */
5359 if (segment->p_type == PT_LOAD)
5360 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5361 " detected, is this intentional ?\n"),
5362 ibfd);
5363
5364 map->count = 0;
5365 *pointer_to_map = map;
5366 pointer_to_map = &map->next;
5367
5368 continue;
5369 }
5370
5371 /* Now scan the sections in the input BFD again and attempt
5372 to add their corresponding output sections to the segment map.
5373 The problem here is how to handle an output section which has
5374 been moved (ie had its LMA changed). There are four possibilities:
5375
5376 1. None of the sections have been moved.
5377 In this case we can continue to use the segment LMA from the
5378 input BFD.
5379
5380 2. All of the sections have been moved by the same amount.
5381 In this case we can change the segment's LMA to match the LMA
5382 of the first section.
5383
5384 3. Some of the sections have been moved, others have not.
5385 In this case those sections which have not been moved can be
5386 placed in the current segment which will have to have its size,
5387 and possibly its LMA changed, and a new segment or segments will
5388 have to be created to contain the other sections.
5389
5390 4. The sections have been moved, but not by the same amount.
5391 In this case we can change the segment's LMA to match the LMA
5392 of the first section and we will have to create a new segment
5393 or segments to contain the other sections.
5394
5395 In order to save time, we allocate an array to hold the section
5396 pointers that we are interested in. As these sections get assigned
5397 to a segment, they are removed from this array. */
5398
5399 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5400 to work around this long long bug. */
5401 sections = bfd_malloc2 (section_count, sizeof (asection *));
5402 if (sections == NULL)
5403 return FALSE;
5404
5405 /* Step One: Scan for segment vs section LMA conflicts.
5406 Also add the sections to the section array allocated above.
5407 Also add the sections to the current segment. In the common
5408 case, where the sections have not been moved, this means that
5409 we have completely filled the segment, and there is nothing
5410 more to do. */
5411 isec = 0;
5412 matching_lma = 0;
5413 suggested_lma = 0;
5414 first_matching_lma = TRUE;
5415 first_suggested_lma = TRUE;
5416
5417 for (section = ibfd->sections;
5418 section != NULL;
5419 section = section->next)
5420 if (section == first_section)
5421 break;
5422
5423 for (j = 0; section != NULL; section = section->next)
5424 {
5425 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5426 {
5427 output_section = section->output_section;
5428
5429 sections[j++] = section;
5430
5431 /* The Solaris native linker always sets p_paddr to 0.
5432 We try to catch that case here, and set it to the
5433 correct value. Note - some backends require that
5434 p_paddr be left as zero. */
5435 if (segment->p_paddr == 0
5436 && segment->p_vaddr != 0
5437 && !bed->want_p_paddr_set_to_zero
5438 && isec == 0
5439 && output_section->lma != 0
5440 && output_section->vma == (segment->p_vaddr
5441 + (map->includes_filehdr
5442 ? iehdr->e_ehsize
5443 : 0)
5444 + (map->includes_phdrs
5445 ? (iehdr->e_phnum
5446 * iehdr->e_phentsize)
5447 : 0)))
5448 map->p_paddr = segment->p_vaddr;
5449
5450 /* Match up the physical address of the segment with the
5451 LMA address of the output section. */
5452 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5453 || IS_COREFILE_NOTE (segment, section)
5454 || (bed->want_p_paddr_set_to_zero
5455 && IS_CONTAINED_BY_VMA (output_section, segment)))
5456 {
5457 if (first_matching_lma || output_section->lma < matching_lma)
5458 {
5459 matching_lma = output_section->lma;
5460 first_matching_lma = FALSE;
5461 }
5462
5463 /* We assume that if the section fits within the segment
5464 then it does not overlap any other section within that
5465 segment. */
5466 map->sections[isec++] = output_section;
5467 }
5468 else if (first_suggested_lma)
5469 {
5470 suggested_lma = output_section->lma;
5471 first_suggested_lma = FALSE;
5472 }
5473
5474 if (j == section_count)
5475 break;
5476 }
5477 }
5478
5479 BFD_ASSERT (j == section_count);
5480
5481 /* Step Two: Adjust the physical address of the current segment,
5482 if necessary. */
5483 if (isec == section_count)
5484 {
5485 /* All of the sections fitted within the segment as currently
5486 specified. This is the default case. Add the segment to
5487 the list of built segments and carry on to process the next
5488 program header in the input BFD. */
5489 map->count = section_count;
5490 *pointer_to_map = map;
5491 pointer_to_map = &map->next;
5492
5493 if (!bed->want_p_paddr_set_to_zero
5494 && matching_lma != map->p_paddr
5495 && !map->includes_filehdr && !map->includes_phdrs)
5496 /* There is some padding before the first section in the
5497 segment. So, we must account for that in the output
5498 segment's vma. */
5499 map->p_vaddr_offset = matching_lma - map->p_paddr;
5500
5501 free (sections);
5502 continue;
5503 }
5504 else
5505 {
5506 if (!first_matching_lma)
5507 {
5508 /* At least one section fits inside the current segment.
5509 Keep it, but modify its physical address to match the
5510 LMA of the first section that fitted. */
5511 map->p_paddr = matching_lma;
5512 }
5513 else
5514 {
5515 /* None of the sections fitted inside the current segment.
5516 Change the current segment's physical address to match
5517 the LMA of the first section. */
5518 map->p_paddr = suggested_lma;
5519 }
5520
5521 /* Offset the segment physical address from the lma
5522 to allow for space taken up by elf headers. */
5523 if (map->includes_filehdr)
5524 map->p_paddr -= iehdr->e_ehsize;
5525
5526 if (map->includes_phdrs)
5527 {
5528 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5529
5530 /* iehdr->e_phnum is just an estimate of the number
5531 of program headers that we will need. Make a note
5532 here of the number we used and the segment we chose
5533 to hold these headers, so that we can adjust the
5534 offset when we know the correct value. */
5535 phdr_adjust_num = iehdr->e_phnum;
5536 phdr_adjust_seg = map;
5537 }
5538 }
5539
5540 /* Step Three: Loop over the sections again, this time assigning
5541 those that fit to the current segment and removing them from the
5542 sections array; but making sure not to leave large gaps. Once all
5543 possible sections have been assigned to the current segment it is
5544 added to the list of built segments and if sections still remain
5545 to be assigned, a new segment is constructed before repeating
5546 the loop. */
5547 isec = 0;
5548 do
5549 {
5550 map->count = 0;
5551 suggested_lma = 0;
5552 first_suggested_lma = TRUE;
5553
5554 /* Fill the current segment with sections that fit. */
5555 for (j = 0; j < section_count; j++)
5556 {
5557 section = sections[j];
5558
5559 if (section == NULL)
5560 continue;
5561
5562 output_section = section->output_section;
5563
5564 BFD_ASSERT (output_section != NULL);
5565
5566 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5567 || IS_COREFILE_NOTE (segment, section))
5568 {
5569 if (map->count == 0)
5570 {
5571 /* If the first section in a segment does not start at
5572 the beginning of the segment, then something is
5573 wrong. */
5574 if (output_section->lma
5575 != (map->p_paddr
5576 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5577 + (map->includes_phdrs
5578 ? iehdr->e_phnum * iehdr->e_phentsize
5579 : 0)))
5580 abort ();
5581 }
5582 else
5583 {
5584 asection *prev_sec;
5585
5586 prev_sec = map->sections[map->count - 1];
5587
5588 /* If the gap between the end of the previous section
5589 and the start of this section is more than
5590 maxpagesize then we need to start a new segment. */
5591 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5592 maxpagesize)
5593 < BFD_ALIGN (output_section->lma, maxpagesize))
5594 || (prev_sec->lma + prev_sec->size
5595 > output_section->lma))
5596 {
5597 if (first_suggested_lma)
5598 {
5599 suggested_lma = output_section->lma;
5600 first_suggested_lma = FALSE;
5601 }
5602
5603 continue;
5604 }
5605 }
5606
5607 map->sections[map->count++] = output_section;
5608 ++isec;
5609 sections[j] = NULL;
5610 section->segment_mark = TRUE;
5611 }
5612 else if (first_suggested_lma)
5613 {
5614 suggested_lma = output_section->lma;
5615 first_suggested_lma = FALSE;
5616 }
5617 }
5618
5619 BFD_ASSERT (map->count > 0);
5620
5621 /* Add the current segment to the list of built segments. */
5622 *pointer_to_map = map;
5623 pointer_to_map = &map->next;
5624
5625 if (isec < section_count)
5626 {
5627 /* We still have not allocated all of the sections to
5628 segments. Create a new segment here, initialise it
5629 and carry on looping. */
5630 amt = sizeof (struct elf_segment_map);
5631 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5632 map = bfd_alloc (obfd, amt);
5633 if (map == NULL)
5634 {
5635 free (sections);
5636 return FALSE;
5637 }
5638
5639 /* Initialise the fields of the segment map. Set the physical
5640 physical address to the LMA of the first section that has
5641 not yet been assigned. */
5642 map->next = NULL;
5643 map->p_type = segment->p_type;
5644 map->p_flags = segment->p_flags;
5645 map->p_flags_valid = 1;
5646 map->p_paddr = suggested_lma;
5647 map->p_paddr_valid = 1;
5648 map->includes_filehdr = 0;
5649 map->includes_phdrs = 0;
5650 }
5651 }
5652 while (isec < section_count);
5653
5654 free (sections);
5655 }
5656
5657 /* The Solaris linker creates program headers in which all the
5658 p_paddr fields are zero. When we try to objcopy or strip such a
5659 file, we get confused. Check for this case, and if we find it
5660 reset the p_paddr_valid fields. */
5661 for (map = map_first; map != NULL; map = map->next)
5662 if (map->p_paddr != 0)
5663 break;
5664 if (map == NULL)
5665 for (map = map_first; map != NULL; map = map->next)
5666 map->p_paddr_valid = 0;
5667
5668 elf_tdata (obfd)->segment_map = map_first;
5669
5670 /* If we had to estimate the number of program headers that were
5671 going to be needed, then check our estimate now and adjust
5672 the offset if necessary. */
5673 if (phdr_adjust_seg != NULL)
5674 {
5675 unsigned int count;
5676
5677 for (count = 0, map = map_first; map != NULL; map = map->next)
5678 count++;
5679
5680 if (count > phdr_adjust_num)
5681 phdr_adjust_seg->p_paddr
5682 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5683 }
5684
5685 #undef SEGMENT_END
5686 #undef SECTION_SIZE
5687 #undef IS_CONTAINED_BY_VMA
5688 #undef IS_CONTAINED_BY_LMA
5689 #undef IS_NOTE
5690 #undef IS_COREFILE_NOTE
5691 #undef IS_SOLARIS_PT_INTERP
5692 #undef IS_SECTION_IN_INPUT_SEGMENT
5693 #undef INCLUDE_SECTION_IN_SEGMENT
5694 #undef SEGMENT_AFTER_SEGMENT
5695 #undef SEGMENT_OVERLAPS
5696 return TRUE;
5697 }
5698
5699 /* Copy ELF program header information. */
5700
5701 static bfd_boolean
5702 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5703 {
5704 Elf_Internal_Ehdr *iehdr;
5705 struct elf_segment_map *map;
5706 struct elf_segment_map *map_first;
5707 struct elf_segment_map **pointer_to_map;
5708 Elf_Internal_Phdr *segment;
5709 unsigned int i;
5710 unsigned int num_segments;
5711 bfd_boolean phdr_included = FALSE;
5712
5713 iehdr = elf_elfheader (ibfd);
5714
5715 map_first = NULL;
5716 pointer_to_map = &map_first;
5717
5718 num_segments = elf_elfheader (ibfd)->e_phnum;
5719 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5720 i < num_segments;
5721 i++, segment++)
5722 {
5723 asection *section;
5724 unsigned int section_count;
5725 bfd_size_type amt;
5726 Elf_Internal_Shdr *this_hdr;
5727 asection *first_section = NULL;
5728 asection *lowest_section = NULL;
5729
5730 /* Compute how many sections are in this segment. */
5731 for (section = ibfd->sections, section_count = 0;
5732 section != NULL;
5733 section = section->next)
5734 {
5735 this_hdr = &(elf_section_data(section)->this_hdr);
5736 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5737 {
5738 if (!first_section)
5739 first_section = lowest_section = section;
5740 if (section->lma < lowest_section->lma)
5741 lowest_section = section;
5742 section_count++;
5743 }
5744 }
5745
5746 /* Allocate a segment map big enough to contain
5747 all of the sections we have selected. */
5748 amt = sizeof (struct elf_segment_map);
5749 if (section_count != 0)
5750 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5751 map = bfd_zalloc (obfd, amt);
5752 if (map == NULL)
5753 return FALSE;
5754
5755 /* Initialize the fields of the output segment map with the
5756 input segment. */
5757 map->next = NULL;
5758 map->p_type = segment->p_type;
5759 map->p_flags = segment->p_flags;
5760 map->p_flags_valid = 1;
5761 map->p_paddr = segment->p_paddr;
5762 map->p_paddr_valid = 1;
5763 map->p_align = segment->p_align;
5764 map->p_align_valid = 1;
5765 map->p_vaddr_offset = 0;
5766
5767 if (map->p_type == PT_GNU_RELRO
5768 && segment->p_filesz == segment->p_memsz)
5769 {
5770 /* The PT_GNU_RELRO segment may contain the first a few
5771 bytes in the .got.plt section even if the whole .got.plt
5772 section isn't in the PT_GNU_RELRO segment. We won't
5773 change the size of the PT_GNU_RELRO segment. */
5774 map->p_size = segment->p_filesz;
5775 map->p_size_valid = 1;
5776 }
5777
5778 /* Determine if this segment contains the ELF file header
5779 and if it contains the program headers themselves. */
5780 map->includes_filehdr = (segment->p_offset == 0
5781 && segment->p_filesz >= iehdr->e_ehsize);
5782
5783 map->includes_phdrs = 0;
5784 if (! phdr_included || segment->p_type != PT_LOAD)
5785 {
5786 map->includes_phdrs =
5787 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5788 && (segment->p_offset + segment->p_filesz
5789 >= ((bfd_vma) iehdr->e_phoff
5790 + iehdr->e_phnum * iehdr->e_phentsize)));
5791
5792 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5793 phdr_included = TRUE;
5794 }
5795
5796 if (!map->includes_phdrs && !map->includes_filehdr)
5797 /* There is some other padding before the first section. */
5798 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5799 - segment->p_paddr);
5800
5801 if (section_count != 0)
5802 {
5803 unsigned int isec = 0;
5804
5805 for (section = first_section;
5806 section != NULL;
5807 section = section->next)
5808 {
5809 this_hdr = &(elf_section_data(section)->this_hdr);
5810 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5811 {
5812 map->sections[isec++] = section->output_section;
5813 if (isec == section_count)
5814 break;
5815 }
5816 }
5817 }
5818
5819 map->count = section_count;
5820 *pointer_to_map = map;
5821 pointer_to_map = &map->next;
5822 }
5823
5824 elf_tdata (obfd)->segment_map = map_first;
5825 return TRUE;
5826 }
5827
5828 /* Copy private BFD data. This copies or rewrites ELF program header
5829 information. */
5830
5831 static bfd_boolean
5832 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5833 {
5834 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5835 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5836 return TRUE;
5837
5838 if (elf_tdata (ibfd)->phdr == NULL)
5839 return TRUE;
5840
5841 if (ibfd->xvec == obfd->xvec)
5842 {
5843 /* Check to see if any sections in the input BFD
5844 covered by ELF program header have changed. */
5845 Elf_Internal_Phdr *segment;
5846 asection *section, *osec;
5847 unsigned int i, num_segments;
5848 Elf_Internal_Shdr *this_hdr;
5849 const struct elf_backend_data *bed;
5850
5851 bed = get_elf_backend_data (ibfd);
5852
5853 /* Regenerate the segment map if p_paddr is set to 0. */
5854 if (bed->want_p_paddr_set_to_zero)
5855 goto rewrite;
5856
5857 /* Initialize the segment mark field. */
5858 for (section = obfd->sections; section != NULL;
5859 section = section->next)
5860 section->segment_mark = FALSE;
5861
5862 num_segments = elf_elfheader (ibfd)->e_phnum;
5863 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5864 i < num_segments;
5865 i++, segment++)
5866 {
5867 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5868 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5869 which severly confuses things, so always regenerate the segment
5870 map in this case. */
5871 if (segment->p_paddr == 0
5872 && segment->p_memsz == 0
5873 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5874 goto rewrite;
5875
5876 for (section = ibfd->sections;
5877 section != NULL; section = section->next)
5878 {
5879 /* We mark the output section so that we know it comes
5880 from the input BFD. */
5881 osec = section->output_section;
5882 if (osec)
5883 osec->segment_mark = TRUE;
5884
5885 /* Check if this section is covered by the segment. */
5886 this_hdr = &(elf_section_data(section)->this_hdr);
5887 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5888 {
5889 /* FIXME: Check if its output section is changed or
5890 removed. What else do we need to check? */
5891 if (osec == NULL
5892 || section->flags != osec->flags
5893 || section->lma != osec->lma
5894 || section->vma != osec->vma
5895 || section->size != osec->size
5896 || section->rawsize != osec->rawsize
5897 || section->alignment_power != osec->alignment_power)
5898 goto rewrite;
5899 }
5900 }
5901 }
5902
5903 /* Check to see if any output section do not come from the
5904 input BFD. */
5905 for (section = obfd->sections; section != NULL;
5906 section = section->next)
5907 {
5908 if (section->segment_mark == FALSE)
5909 goto rewrite;
5910 else
5911 section->segment_mark = FALSE;
5912 }
5913
5914 return copy_elf_program_header (ibfd, obfd);
5915 }
5916
5917 rewrite:
5918 return rewrite_elf_program_header (ibfd, obfd);
5919 }
5920
5921 /* Initialize private output section information from input section. */
5922
5923 bfd_boolean
5924 _bfd_elf_init_private_section_data (bfd *ibfd,
5925 asection *isec,
5926 bfd *obfd,
5927 asection *osec,
5928 struct bfd_link_info *link_info)
5929
5930 {
5931 Elf_Internal_Shdr *ihdr, *ohdr;
5932 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5933
5934 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5935 || obfd->xvec->flavour != bfd_target_elf_flavour)
5936 return TRUE;
5937
5938 /* Don't copy the output ELF section type from input if the
5939 output BFD section flags have been set to something different.
5940 elf_fake_sections will set ELF section type based on BFD
5941 section flags. */
5942 if (elf_section_type (osec) == SHT_NULL
5943 && (osec->flags == isec->flags || !osec->flags))
5944 elf_section_type (osec) = elf_section_type (isec);
5945
5946 /* FIXME: Is this correct for all OS/PROC specific flags? */
5947 elf_section_flags (osec) |= (elf_section_flags (isec)
5948 & (SHF_MASKOS | SHF_MASKPROC));
5949
5950 /* Set things up for objcopy and relocatable link. The output
5951 SHT_GROUP section will have its elf_next_in_group pointing back
5952 to the input group members. Ignore linker created group section.
5953 See elfNN_ia64_object_p in elfxx-ia64.c. */
5954 if (need_group)
5955 {
5956 if (elf_sec_group (isec) == NULL
5957 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5958 {
5959 if (elf_section_flags (isec) & SHF_GROUP)
5960 elf_section_flags (osec) |= SHF_GROUP;
5961 elf_next_in_group (osec) = elf_next_in_group (isec);
5962 elf_group_name (osec) = elf_group_name (isec);
5963 }
5964 }
5965
5966 ihdr = &elf_section_data (isec)->this_hdr;
5967
5968 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5969 don't use the output section of the linked-to section since it
5970 may be NULL at this point. */
5971 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5972 {
5973 ohdr = &elf_section_data (osec)->this_hdr;
5974 ohdr->sh_flags |= SHF_LINK_ORDER;
5975 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5976 }
5977
5978 osec->use_rela_p = isec->use_rela_p;
5979
5980 return TRUE;
5981 }
5982
5983 /* Copy private section information. This copies over the entsize
5984 field, and sometimes the info field. */
5985
5986 bfd_boolean
5987 _bfd_elf_copy_private_section_data (bfd *ibfd,
5988 asection *isec,
5989 bfd *obfd,
5990 asection *osec)
5991 {
5992 Elf_Internal_Shdr *ihdr, *ohdr;
5993
5994 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5995 || obfd->xvec->flavour != bfd_target_elf_flavour)
5996 return TRUE;
5997
5998 ihdr = &elf_section_data (isec)->this_hdr;
5999 ohdr = &elf_section_data (osec)->this_hdr;
6000
6001 ohdr->sh_entsize = ihdr->sh_entsize;
6002
6003 if (ihdr->sh_type == SHT_SYMTAB
6004 || ihdr->sh_type == SHT_DYNSYM
6005 || ihdr->sh_type == SHT_GNU_verneed
6006 || ihdr->sh_type == SHT_GNU_verdef)
6007 ohdr->sh_info = ihdr->sh_info;
6008
6009 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6010 NULL);
6011 }
6012
6013 /* Copy private header information. */
6014
6015 bfd_boolean
6016 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6017 {
6018 asection *isec;
6019
6020 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6021 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6022 return TRUE;
6023
6024 /* Copy over private BFD data if it has not already been copied.
6025 This must be done here, rather than in the copy_private_bfd_data
6026 entry point, because the latter is called after the section
6027 contents have been set, which means that the program headers have
6028 already been worked out. */
6029 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6030 {
6031 if (! copy_private_bfd_data (ibfd, obfd))
6032 return FALSE;
6033 }
6034
6035 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6036 but this might be wrong if we deleted the group section. */
6037 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6038 if (elf_section_type (isec) == SHT_GROUP
6039 && isec->output_section == NULL)
6040 {
6041 asection *first = elf_next_in_group (isec);
6042 asection *s = first;
6043 while (s != NULL)
6044 {
6045 if (s->output_section != NULL)
6046 {
6047 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6048 elf_group_name (s->output_section) = NULL;
6049 }
6050 s = elf_next_in_group (s);
6051 if (s == first)
6052 break;
6053 }
6054 }
6055
6056 return TRUE;
6057 }
6058
6059 /* Copy private symbol information. If this symbol is in a section
6060 which we did not map into a BFD section, try to map the section
6061 index correctly. We use special macro definitions for the mapped
6062 section indices; these definitions are interpreted by the
6063 swap_out_syms function. */
6064
6065 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6066 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6067 #define MAP_STRTAB (SHN_HIOS + 3)
6068 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6069 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6070
6071 bfd_boolean
6072 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6073 asymbol *isymarg,
6074 bfd *obfd,
6075 asymbol *osymarg)
6076 {
6077 elf_symbol_type *isym, *osym;
6078
6079 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6080 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6081 return TRUE;
6082
6083 isym = elf_symbol_from (ibfd, isymarg);
6084 osym = elf_symbol_from (obfd, osymarg);
6085
6086 if (isym != NULL
6087 && isym->internal_elf_sym.st_shndx != 0
6088 && osym != NULL
6089 && bfd_is_abs_section (isym->symbol.section))
6090 {
6091 unsigned int shndx;
6092
6093 shndx = isym->internal_elf_sym.st_shndx;
6094 if (shndx == elf_onesymtab (ibfd))
6095 shndx = MAP_ONESYMTAB;
6096 else if (shndx == elf_dynsymtab (ibfd))
6097 shndx = MAP_DYNSYMTAB;
6098 else if (shndx == elf_tdata (ibfd)->strtab_section)
6099 shndx = MAP_STRTAB;
6100 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6101 shndx = MAP_SHSTRTAB;
6102 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6103 shndx = MAP_SYM_SHNDX;
6104 osym->internal_elf_sym.st_shndx = shndx;
6105 }
6106
6107 return TRUE;
6108 }
6109
6110 /* Swap out the symbols. */
6111
6112 static bfd_boolean
6113 swap_out_syms (bfd *abfd,
6114 struct bfd_strtab_hash **sttp,
6115 int relocatable_p)
6116 {
6117 const struct elf_backend_data *bed;
6118 int symcount;
6119 asymbol **syms;
6120 struct bfd_strtab_hash *stt;
6121 Elf_Internal_Shdr *symtab_hdr;
6122 Elf_Internal_Shdr *symtab_shndx_hdr;
6123 Elf_Internal_Shdr *symstrtab_hdr;
6124 bfd_byte *outbound_syms;
6125 bfd_byte *outbound_shndx;
6126 int idx;
6127 bfd_size_type amt;
6128 bfd_boolean name_local_sections;
6129
6130 if (!elf_map_symbols (abfd))
6131 return FALSE;
6132
6133 /* Dump out the symtabs. */
6134 stt = _bfd_elf_stringtab_init ();
6135 if (stt == NULL)
6136 return FALSE;
6137
6138 bed = get_elf_backend_data (abfd);
6139 symcount = bfd_get_symcount (abfd);
6140 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6141 symtab_hdr->sh_type = SHT_SYMTAB;
6142 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6143 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6144 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6145 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6146
6147 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6148 symstrtab_hdr->sh_type = SHT_STRTAB;
6149
6150 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6151 if (outbound_syms == NULL)
6152 {
6153 _bfd_stringtab_free (stt);
6154 return FALSE;
6155 }
6156 symtab_hdr->contents = outbound_syms;
6157
6158 outbound_shndx = NULL;
6159 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6160 if (symtab_shndx_hdr->sh_name != 0)
6161 {
6162 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6163 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6164 sizeof (Elf_External_Sym_Shndx));
6165 if (outbound_shndx == NULL)
6166 {
6167 _bfd_stringtab_free (stt);
6168 return FALSE;
6169 }
6170
6171 symtab_shndx_hdr->contents = outbound_shndx;
6172 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6173 symtab_shndx_hdr->sh_size = amt;
6174 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6175 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6176 }
6177
6178 /* Now generate the data (for "contents"). */
6179 {
6180 /* Fill in zeroth symbol and swap it out. */
6181 Elf_Internal_Sym sym;
6182 sym.st_name = 0;
6183 sym.st_value = 0;
6184 sym.st_size = 0;
6185 sym.st_info = 0;
6186 sym.st_other = 0;
6187 sym.st_shndx = SHN_UNDEF;
6188 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6189 outbound_syms += bed->s->sizeof_sym;
6190 if (outbound_shndx != NULL)
6191 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6192 }
6193
6194 name_local_sections
6195 = (bed->elf_backend_name_local_section_symbols
6196 && bed->elf_backend_name_local_section_symbols (abfd));
6197
6198 syms = bfd_get_outsymbols (abfd);
6199 for (idx = 0; idx < symcount; idx++)
6200 {
6201 Elf_Internal_Sym sym;
6202 bfd_vma value = syms[idx]->value;
6203 elf_symbol_type *type_ptr;
6204 flagword flags = syms[idx]->flags;
6205 int type;
6206
6207 if (!name_local_sections
6208 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6209 {
6210 /* Local section symbols have no name. */
6211 sym.st_name = 0;
6212 }
6213 else
6214 {
6215 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6216 syms[idx]->name,
6217 TRUE, FALSE);
6218 if (sym.st_name == (unsigned long) -1)
6219 {
6220 _bfd_stringtab_free (stt);
6221 return FALSE;
6222 }
6223 }
6224
6225 type_ptr = elf_symbol_from (abfd, syms[idx]);
6226
6227 if ((flags & BSF_SECTION_SYM) == 0
6228 && bfd_is_com_section (syms[idx]->section))
6229 {
6230 /* ELF common symbols put the alignment into the `value' field,
6231 and the size into the `size' field. This is backwards from
6232 how BFD handles it, so reverse it here. */
6233 sym.st_size = value;
6234 if (type_ptr == NULL
6235 || type_ptr->internal_elf_sym.st_value == 0)
6236 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6237 else
6238 sym.st_value = type_ptr->internal_elf_sym.st_value;
6239 sym.st_shndx = _bfd_elf_section_from_bfd_section
6240 (abfd, syms[idx]->section);
6241 }
6242 else
6243 {
6244 asection *sec = syms[idx]->section;
6245 unsigned int shndx;
6246
6247 if (sec->output_section)
6248 {
6249 value += sec->output_offset;
6250 sec = sec->output_section;
6251 }
6252
6253 /* Don't add in the section vma for relocatable output. */
6254 if (! relocatable_p)
6255 value += sec->vma;
6256 sym.st_value = value;
6257 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6258
6259 if (bfd_is_abs_section (sec)
6260 && type_ptr != NULL
6261 && type_ptr->internal_elf_sym.st_shndx != 0)
6262 {
6263 /* This symbol is in a real ELF section which we did
6264 not create as a BFD section. Undo the mapping done
6265 by copy_private_symbol_data. */
6266 shndx = type_ptr->internal_elf_sym.st_shndx;
6267 switch (shndx)
6268 {
6269 case MAP_ONESYMTAB:
6270 shndx = elf_onesymtab (abfd);
6271 break;
6272 case MAP_DYNSYMTAB:
6273 shndx = elf_dynsymtab (abfd);
6274 break;
6275 case MAP_STRTAB:
6276 shndx = elf_tdata (abfd)->strtab_section;
6277 break;
6278 case MAP_SHSTRTAB:
6279 shndx = elf_tdata (abfd)->shstrtab_section;
6280 break;
6281 case MAP_SYM_SHNDX:
6282 shndx = elf_tdata (abfd)->symtab_shndx_section;
6283 break;
6284 default:
6285 break;
6286 }
6287 }
6288 else
6289 {
6290 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6291
6292 if (shndx == SHN_BAD)
6293 {
6294 asection *sec2;
6295
6296 /* Writing this would be a hell of a lot easier if
6297 we had some decent documentation on bfd, and
6298 knew what to expect of the library, and what to
6299 demand of applications. For example, it
6300 appears that `objcopy' might not set the
6301 section of a symbol to be a section that is
6302 actually in the output file. */
6303 sec2 = bfd_get_section_by_name (abfd, sec->name);
6304 if (sec2 == NULL)
6305 {
6306 _bfd_error_handler (_("\
6307 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6308 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6309 sec->name);
6310 bfd_set_error (bfd_error_invalid_operation);
6311 _bfd_stringtab_free (stt);
6312 return FALSE;
6313 }
6314
6315 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6316 BFD_ASSERT (shndx != SHN_BAD);
6317 }
6318 }
6319
6320 sym.st_shndx = shndx;
6321 }
6322
6323 if ((flags & BSF_THREAD_LOCAL) != 0)
6324 type = STT_TLS;
6325 else if ((flags & BSF_FUNCTION) != 0)
6326 type = STT_FUNC;
6327 else if ((flags & BSF_OBJECT) != 0)
6328 type = STT_OBJECT;
6329 else if ((flags & BSF_RELC) != 0)
6330 type = STT_RELC;
6331 else if ((flags & BSF_SRELC) != 0)
6332 type = STT_SRELC;
6333 else
6334 type = STT_NOTYPE;
6335
6336 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6337 type = STT_TLS;
6338
6339 /* Processor-specific types. */
6340 if (type_ptr != NULL
6341 && bed->elf_backend_get_symbol_type)
6342 type = ((*bed->elf_backend_get_symbol_type)
6343 (&type_ptr->internal_elf_sym, type));
6344
6345 if (flags & BSF_SECTION_SYM)
6346 {
6347 if (flags & BSF_GLOBAL)
6348 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6349 else
6350 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6351 }
6352 else if (bfd_is_com_section (syms[idx]->section))
6353 {
6354 #ifdef USE_STT_COMMON
6355 if (type == STT_OBJECT)
6356 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6357 else
6358 #else
6359 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6360 #endif
6361 }
6362 else if (bfd_is_und_section (syms[idx]->section))
6363 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6364 ? STB_WEAK
6365 : STB_GLOBAL),
6366 type);
6367 else if (flags & BSF_FILE)
6368 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6369 else
6370 {
6371 int bind = STB_LOCAL;
6372
6373 if (flags & BSF_LOCAL)
6374 bind = STB_LOCAL;
6375 else if (flags & BSF_WEAK)
6376 bind = STB_WEAK;
6377 else if (flags & BSF_GLOBAL)
6378 bind = STB_GLOBAL;
6379
6380 sym.st_info = ELF_ST_INFO (bind, type);
6381 }
6382
6383 if (type_ptr != NULL)
6384 sym.st_other = type_ptr->internal_elf_sym.st_other;
6385 else
6386 sym.st_other = 0;
6387
6388 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6389 outbound_syms += bed->s->sizeof_sym;
6390 if (outbound_shndx != NULL)
6391 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6392 }
6393
6394 *sttp = stt;
6395 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6396 symstrtab_hdr->sh_type = SHT_STRTAB;
6397
6398 symstrtab_hdr->sh_flags = 0;
6399 symstrtab_hdr->sh_addr = 0;
6400 symstrtab_hdr->sh_entsize = 0;
6401 symstrtab_hdr->sh_link = 0;
6402 symstrtab_hdr->sh_info = 0;
6403 symstrtab_hdr->sh_addralign = 1;
6404
6405 return TRUE;
6406 }
6407
6408 /* Return the number of bytes required to hold the symtab vector.
6409
6410 Note that we base it on the count plus 1, since we will null terminate
6411 the vector allocated based on this size. However, the ELF symbol table
6412 always has a dummy entry as symbol #0, so it ends up even. */
6413
6414 long
6415 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6416 {
6417 long symcount;
6418 long symtab_size;
6419 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6420
6421 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6422 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6423 if (symcount > 0)
6424 symtab_size -= sizeof (asymbol *);
6425
6426 return symtab_size;
6427 }
6428
6429 long
6430 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6431 {
6432 long symcount;
6433 long symtab_size;
6434 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6435
6436 if (elf_dynsymtab (abfd) == 0)
6437 {
6438 bfd_set_error (bfd_error_invalid_operation);
6439 return -1;
6440 }
6441
6442 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6443 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6444 if (symcount > 0)
6445 symtab_size -= sizeof (asymbol *);
6446
6447 return symtab_size;
6448 }
6449
6450 long
6451 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6452 sec_ptr asect)
6453 {
6454 return (asect->reloc_count + 1) * sizeof (arelent *);
6455 }
6456
6457 /* Canonicalize the relocs. */
6458
6459 long
6460 _bfd_elf_canonicalize_reloc (bfd *abfd,
6461 sec_ptr section,
6462 arelent **relptr,
6463 asymbol **symbols)
6464 {
6465 arelent *tblptr;
6466 unsigned int i;
6467 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6468
6469 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6470 return -1;
6471
6472 tblptr = section->relocation;
6473 for (i = 0; i < section->reloc_count; i++)
6474 *relptr++ = tblptr++;
6475
6476 *relptr = NULL;
6477
6478 return section->reloc_count;
6479 }
6480
6481 long
6482 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6483 {
6484 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6485 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6486
6487 if (symcount >= 0)
6488 bfd_get_symcount (abfd) = symcount;
6489 return symcount;
6490 }
6491
6492 long
6493 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6494 asymbol **allocation)
6495 {
6496 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6497 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6498
6499 if (symcount >= 0)
6500 bfd_get_dynamic_symcount (abfd) = symcount;
6501 return symcount;
6502 }
6503
6504 /* Return the size required for the dynamic reloc entries. Any loadable
6505 section that was actually installed in the BFD, and has type SHT_REL
6506 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6507 dynamic reloc section. */
6508
6509 long
6510 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6511 {
6512 long ret;
6513 asection *s;
6514
6515 if (elf_dynsymtab (abfd) == 0)
6516 {
6517 bfd_set_error (bfd_error_invalid_operation);
6518 return -1;
6519 }
6520
6521 ret = sizeof (arelent *);
6522 for (s = abfd->sections; s != NULL; s = s->next)
6523 if ((s->flags & SEC_LOAD) != 0
6524 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6525 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6526 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6527 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6528 * sizeof (arelent *));
6529
6530 return ret;
6531 }
6532
6533 /* Canonicalize the dynamic relocation entries. Note that we return the
6534 dynamic relocations as a single block, although they are actually
6535 associated with particular sections; the interface, which was
6536 designed for SunOS style shared libraries, expects that there is only
6537 one set of dynamic relocs. Any loadable section that was actually
6538 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6539 dynamic symbol table, is considered to be a dynamic reloc section. */
6540
6541 long
6542 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6543 arelent **storage,
6544 asymbol **syms)
6545 {
6546 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6547 asection *s;
6548 long ret;
6549
6550 if (elf_dynsymtab (abfd) == 0)
6551 {
6552 bfd_set_error (bfd_error_invalid_operation);
6553 return -1;
6554 }
6555
6556 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6557 ret = 0;
6558 for (s = abfd->sections; s != NULL; s = s->next)
6559 {
6560 if ((s->flags & SEC_LOAD) != 0
6561 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6562 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6563 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6564 {
6565 arelent *p;
6566 long count, i;
6567
6568 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6569 return -1;
6570 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6571 p = s->relocation;
6572 for (i = 0; i < count; i++)
6573 *storage++ = p++;
6574 ret += count;
6575 }
6576 }
6577
6578 *storage = NULL;
6579
6580 return ret;
6581 }
6582 \f
6583 /* Read in the version information. */
6584
6585 bfd_boolean
6586 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6587 {
6588 bfd_byte *contents = NULL;
6589 unsigned int freeidx = 0;
6590
6591 if (elf_dynverref (abfd) != 0)
6592 {
6593 Elf_Internal_Shdr *hdr;
6594 Elf_External_Verneed *everneed;
6595 Elf_Internal_Verneed *iverneed;
6596 unsigned int i;
6597 bfd_byte *contents_end;
6598
6599 hdr = &elf_tdata (abfd)->dynverref_hdr;
6600
6601 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6602 sizeof (Elf_Internal_Verneed));
6603 if (elf_tdata (abfd)->verref == NULL)
6604 goto error_return;
6605
6606 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6607
6608 contents = bfd_malloc (hdr->sh_size);
6609 if (contents == NULL)
6610 {
6611 error_return_verref:
6612 elf_tdata (abfd)->verref = NULL;
6613 elf_tdata (abfd)->cverrefs = 0;
6614 goto error_return;
6615 }
6616 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6617 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6618 goto error_return_verref;
6619
6620 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6621 goto error_return_verref;
6622
6623 BFD_ASSERT (sizeof (Elf_External_Verneed)
6624 == sizeof (Elf_External_Vernaux));
6625 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6626 everneed = (Elf_External_Verneed *) contents;
6627 iverneed = elf_tdata (abfd)->verref;
6628 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6629 {
6630 Elf_External_Vernaux *evernaux;
6631 Elf_Internal_Vernaux *ivernaux;
6632 unsigned int j;
6633
6634 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6635
6636 iverneed->vn_bfd = abfd;
6637
6638 iverneed->vn_filename =
6639 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6640 iverneed->vn_file);
6641 if (iverneed->vn_filename == NULL)
6642 goto error_return_verref;
6643
6644 if (iverneed->vn_cnt == 0)
6645 iverneed->vn_auxptr = NULL;
6646 else
6647 {
6648 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6649 sizeof (Elf_Internal_Vernaux));
6650 if (iverneed->vn_auxptr == NULL)
6651 goto error_return_verref;
6652 }
6653
6654 if (iverneed->vn_aux
6655 > (size_t) (contents_end - (bfd_byte *) everneed))
6656 goto error_return_verref;
6657
6658 evernaux = ((Elf_External_Vernaux *)
6659 ((bfd_byte *) everneed + iverneed->vn_aux));
6660 ivernaux = iverneed->vn_auxptr;
6661 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6662 {
6663 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6664
6665 ivernaux->vna_nodename =
6666 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6667 ivernaux->vna_name);
6668 if (ivernaux->vna_nodename == NULL)
6669 goto error_return_verref;
6670
6671 if (j + 1 < iverneed->vn_cnt)
6672 ivernaux->vna_nextptr = ivernaux + 1;
6673 else
6674 ivernaux->vna_nextptr = NULL;
6675
6676 if (ivernaux->vna_next
6677 > (size_t) (contents_end - (bfd_byte *) evernaux))
6678 goto error_return_verref;
6679
6680 evernaux = ((Elf_External_Vernaux *)
6681 ((bfd_byte *) evernaux + ivernaux->vna_next));
6682
6683 if (ivernaux->vna_other > freeidx)
6684 freeidx = ivernaux->vna_other;
6685 }
6686
6687 if (i + 1 < hdr->sh_info)
6688 iverneed->vn_nextref = iverneed + 1;
6689 else
6690 iverneed->vn_nextref = NULL;
6691
6692 if (iverneed->vn_next
6693 > (size_t) (contents_end - (bfd_byte *) everneed))
6694 goto error_return_verref;
6695
6696 everneed = ((Elf_External_Verneed *)
6697 ((bfd_byte *) everneed + iverneed->vn_next));
6698 }
6699
6700 free (contents);
6701 contents = NULL;
6702 }
6703
6704 if (elf_dynverdef (abfd) != 0)
6705 {
6706 Elf_Internal_Shdr *hdr;
6707 Elf_External_Verdef *everdef;
6708 Elf_Internal_Verdef *iverdef;
6709 Elf_Internal_Verdef *iverdefarr;
6710 Elf_Internal_Verdef iverdefmem;
6711 unsigned int i;
6712 unsigned int maxidx;
6713 bfd_byte *contents_end_def, *contents_end_aux;
6714
6715 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6716
6717 contents = bfd_malloc (hdr->sh_size);
6718 if (contents == NULL)
6719 goto error_return;
6720 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6721 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6722 goto error_return;
6723
6724 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6725 goto error_return;
6726
6727 BFD_ASSERT (sizeof (Elf_External_Verdef)
6728 >= sizeof (Elf_External_Verdaux));
6729 contents_end_def = contents + hdr->sh_size
6730 - sizeof (Elf_External_Verdef);
6731 contents_end_aux = contents + hdr->sh_size
6732 - sizeof (Elf_External_Verdaux);
6733
6734 /* We know the number of entries in the section but not the maximum
6735 index. Therefore we have to run through all entries and find
6736 the maximum. */
6737 everdef = (Elf_External_Verdef *) contents;
6738 maxidx = 0;
6739 for (i = 0; i < hdr->sh_info; ++i)
6740 {
6741 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6742
6743 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6744 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6745
6746 if (iverdefmem.vd_next
6747 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6748 goto error_return;
6749
6750 everdef = ((Elf_External_Verdef *)
6751 ((bfd_byte *) everdef + iverdefmem.vd_next));
6752 }
6753
6754 if (default_imported_symver)
6755 {
6756 if (freeidx > maxidx)
6757 maxidx = ++freeidx;
6758 else
6759 freeidx = ++maxidx;
6760 }
6761 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6762 sizeof (Elf_Internal_Verdef));
6763 if (elf_tdata (abfd)->verdef == NULL)
6764 goto error_return;
6765
6766 elf_tdata (abfd)->cverdefs = maxidx;
6767
6768 everdef = (Elf_External_Verdef *) contents;
6769 iverdefarr = elf_tdata (abfd)->verdef;
6770 for (i = 0; i < hdr->sh_info; i++)
6771 {
6772 Elf_External_Verdaux *everdaux;
6773 Elf_Internal_Verdaux *iverdaux;
6774 unsigned int j;
6775
6776 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6777
6778 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6779 {
6780 error_return_verdef:
6781 elf_tdata (abfd)->verdef = NULL;
6782 elf_tdata (abfd)->cverdefs = 0;
6783 goto error_return;
6784 }
6785
6786 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6787 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6788
6789 iverdef->vd_bfd = abfd;
6790
6791 if (iverdef->vd_cnt == 0)
6792 iverdef->vd_auxptr = NULL;
6793 else
6794 {
6795 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6796 sizeof (Elf_Internal_Verdaux));
6797 if (iverdef->vd_auxptr == NULL)
6798 goto error_return_verdef;
6799 }
6800
6801 if (iverdef->vd_aux
6802 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6803 goto error_return_verdef;
6804
6805 everdaux = ((Elf_External_Verdaux *)
6806 ((bfd_byte *) everdef + iverdef->vd_aux));
6807 iverdaux = iverdef->vd_auxptr;
6808 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6809 {
6810 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6811
6812 iverdaux->vda_nodename =
6813 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6814 iverdaux->vda_name);
6815 if (iverdaux->vda_nodename == NULL)
6816 goto error_return_verdef;
6817
6818 if (j + 1 < iverdef->vd_cnt)
6819 iverdaux->vda_nextptr = iverdaux + 1;
6820 else
6821 iverdaux->vda_nextptr = NULL;
6822
6823 if (iverdaux->vda_next
6824 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6825 goto error_return_verdef;
6826
6827 everdaux = ((Elf_External_Verdaux *)
6828 ((bfd_byte *) everdaux + iverdaux->vda_next));
6829 }
6830
6831 if (iverdef->vd_cnt)
6832 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6833
6834 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6835 iverdef->vd_nextdef = iverdef + 1;
6836 else
6837 iverdef->vd_nextdef = NULL;
6838
6839 everdef = ((Elf_External_Verdef *)
6840 ((bfd_byte *) everdef + iverdef->vd_next));
6841 }
6842
6843 free (contents);
6844 contents = NULL;
6845 }
6846 else if (default_imported_symver)
6847 {
6848 if (freeidx < 3)
6849 freeidx = 3;
6850 else
6851 freeidx++;
6852
6853 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6854 sizeof (Elf_Internal_Verdef));
6855 if (elf_tdata (abfd)->verdef == NULL)
6856 goto error_return;
6857
6858 elf_tdata (abfd)->cverdefs = freeidx;
6859 }
6860
6861 /* Create a default version based on the soname. */
6862 if (default_imported_symver)
6863 {
6864 Elf_Internal_Verdef *iverdef;
6865 Elf_Internal_Verdaux *iverdaux;
6866
6867 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6868
6869 iverdef->vd_version = VER_DEF_CURRENT;
6870 iverdef->vd_flags = 0;
6871 iverdef->vd_ndx = freeidx;
6872 iverdef->vd_cnt = 1;
6873
6874 iverdef->vd_bfd = abfd;
6875
6876 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6877 if (iverdef->vd_nodename == NULL)
6878 goto error_return_verdef;
6879 iverdef->vd_nextdef = NULL;
6880 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6881 if (iverdef->vd_auxptr == NULL)
6882 goto error_return_verdef;
6883
6884 iverdaux = iverdef->vd_auxptr;
6885 iverdaux->vda_nodename = iverdef->vd_nodename;
6886 iverdaux->vda_nextptr = NULL;
6887 }
6888
6889 return TRUE;
6890
6891 error_return:
6892 if (contents != NULL)
6893 free (contents);
6894 return FALSE;
6895 }
6896 \f
6897 asymbol *
6898 _bfd_elf_make_empty_symbol (bfd *abfd)
6899 {
6900 elf_symbol_type *newsym;
6901 bfd_size_type amt = sizeof (elf_symbol_type);
6902
6903 newsym = bfd_zalloc (abfd, amt);
6904 if (!newsym)
6905 return NULL;
6906 else
6907 {
6908 newsym->symbol.the_bfd = abfd;
6909 return &newsym->symbol;
6910 }
6911 }
6912
6913 void
6914 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6915 asymbol *symbol,
6916 symbol_info *ret)
6917 {
6918 bfd_symbol_info (symbol, ret);
6919 }
6920
6921 /* Return whether a symbol name implies a local symbol. Most targets
6922 use this function for the is_local_label_name entry point, but some
6923 override it. */
6924
6925 bfd_boolean
6926 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6927 const char *name)
6928 {
6929 /* Normal local symbols start with ``.L''. */
6930 if (name[0] == '.' && name[1] == 'L')
6931 return TRUE;
6932
6933 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6934 DWARF debugging symbols starting with ``..''. */
6935 if (name[0] == '.' && name[1] == '.')
6936 return TRUE;
6937
6938 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6939 emitting DWARF debugging output. I suspect this is actually a
6940 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6941 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6942 underscore to be emitted on some ELF targets). For ease of use,
6943 we treat such symbols as local. */
6944 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6945 return TRUE;
6946
6947 return FALSE;
6948 }
6949
6950 alent *
6951 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6952 asymbol *symbol ATTRIBUTE_UNUSED)
6953 {
6954 abort ();
6955 return NULL;
6956 }
6957
6958 bfd_boolean
6959 _bfd_elf_set_arch_mach (bfd *abfd,
6960 enum bfd_architecture arch,
6961 unsigned long machine)
6962 {
6963 /* If this isn't the right architecture for this backend, and this
6964 isn't the generic backend, fail. */
6965 if (arch != get_elf_backend_data (abfd)->arch
6966 && arch != bfd_arch_unknown
6967 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6968 return FALSE;
6969
6970 return bfd_default_set_arch_mach (abfd, arch, machine);
6971 }
6972
6973 /* Find the function to a particular section and offset,
6974 for error reporting. */
6975
6976 static bfd_boolean
6977 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6978 asection *section,
6979 asymbol **symbols,
6980 bfd_vma offset,
6981 const char **filename_ptr,
6982 const char **functionname_ptr)
6983 {
6984 const char *filename;
6985 asymbol *func, *file;
6986 bfd_vma low_func;
6987 asymbol **p;
6988 /* ??? Given multiple file symbols, it is impossible to reliably
6989 choose the right file name for global symbols. File symbols are
6990 local symbols, and thus all file symbols must sort before any
6991 global symbols. The ELF spec may be interpreted to say that a
6992 file symbol must sort before other local symbols, but currently
6993 ld -r doesn't do this. So, for ld -r output, it is possible to
6994 make a better choice of file name for local symbols by ignoring
6995 file symbols appearing after a given local symbol. */
6996 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6997
6998 filename = NULL;
6999 func = NULL;
7000 file = NULL;
7001 low_func = 0;
7002 state = nothing_seen;
7003
7004 for (p = symbols; *p != NULL; p++)
7005 {
7006 elf_symbol_type *q;
7007
7008 q = (elf_symbol_type *) *p;
7009
7010 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7011 {
7012 default:
7013 break;
7014 case STT_FILE:
7015 file = &q->symbol;
7016 if (state == symbol_seen)
7017 state = file_after_symbol_seen;
7018 continue;
7019 case STT_NOTYPE:
7020 case STT_FUNC:
7021 if (bfd_get_section (&q->symbol) == section
7022 && q->symbol.value >= low_func
7023 && q->symbol.value <= offset)
7024 {
7025 func = (asymbol *) q;
7026 low_func = q->symbol.value;
7027 filename = NULL;
7028 if (file != NULL
7029 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7030 || state != file_after_symbol_seen))
7031 filename = bfd_asymbol_name (file);
7032 }
7033 break;
7034 }
7035 if (state == nothing_seen)
7036 state = symbol_seen;
7037 }
7038
7039 if (func == NULL)
7040 return FALSE;
7041
7042 if (filename_ptr)
7043 *filename_ptr = filename;
7044 if (functionname_ptr)
7045 *functionname_ptr = bfd_asymbol_name (func);
7046
7047 return TRUE;
7048 }
7049
7050 /* Find the nearest line to a particular section and offset,
7051 for error reporting. */
7052
7053 bfd_boolean
7054 _bfd_elf_find_nearest_line (bfd *abfd,
7055 asection *section,
7056 asymbol **symbols,
7057 bfd_vma offset,
7058 const char **filename_ptr,
7059 const char **functionname_ptr,
7060 unsigned int *line_ptr)
7061 {
7062 bfd_boolean found;
7063
7064 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7065 filename_ptr, functionname_ptr,
7066 line_ptr))
7067 {
7068 if (!*functionname_ptr)
7069 elf_find_function (abfd, section, symbols, offset,
7070 *filename_ptr ? NULL : filename_ptr,
7071 functionname_ptr);
7072
7073 return TRUE;
7074 }
7075
7076 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7077 filename_ptr, functionname_ptr,
7078 line_ptr, 0,
7079 &elf_tdata (abfd)->dwarf2_find_line_info))
7080 {
7081 if (!*functionname_ptr)
7082 elf_find_function (abfd, section, symbols, offset,
7083 *filename_ptr ? NULL : filename_ptr,
7084 functionname_ptr);
7085
7086 return TRUE;
7087 }
7088
7089 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7090 &found, filename_ptr,
7091 functionname_ptr, line_ptr,
7092 &elf_tdata (abfd)->line_info))
7093 return FALSE;
7094 if (found && (*functionname_ptr || *line_ptr))
7095 return TRUE;
7096
7097 if (symbols == NULL)
7098 return FALSE;
7099
7100 if (! elf_find_function (abfd, section, symbols, offset,
7101 filename_ptr, functionname_ptr))
7102 return FALSE;
7103
7104 *line_ptr = 0;
7105 return TRUE;
7106 }
7107
7108 /* Find the line for a symbol. */
7109
7110 bfd_boolean
7111 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7112 const char **filename_ptr, unsigned int *line_ptr)
7113 {
7114 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7115 filename_ptr, line_ptr, 0,
7116 &elf_tdata (abfd)->dwarf2_find_line_info);
7117 }
7118
7119 /* After a call to bfd_find_nearest_line, successive calls to
7120 bfd_find_inliner_info can be used to get source information about
7121 each level of function inlining that terminated at the address
7122 passed to bfd_find_nearest_line. Currently this is only supported
7123 for DWARF2 with appropriate DWARF3 extensions. */
7124
7125 bfd_boolean
7126 _bfd_elf_find_inliner_info (bfd *abfd,
7127 const char **filename_ptr,
7128 const char **functionname_ptr,
7129 unsigned int *line_ptr)
7130 {
7131 bfd_boolean found;
7132 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7133 functionname_ptr, line_ptr,
7134 & elf_tdata (abfd)->dwarf2_find_line_info);
7135 return found;
7136 }
7137
7138 int
7139 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7140 {
7141 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7142 int ret = bed->s->sizeof_ehdr;
7143
7144 if (!info->relocatable)
7145 {
7146 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7147
7148 if (phdr_size == (bfd_size_type) -1)
7149 {
7150 struct elf_segment_map *m;
7151
7152 phdr_size = 0;
7153 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7154 phdr_size += bed->s->sizeof_phdr;
7155
7156 if (phdr_size == 0)
7157 phdr_size = get_program_header_size (abfd, info);
7158 }
7159
7160 elf_tdata (abfd)->program_header_size = phdr_size;
7161 ret += phdr_size;
7162 }
7163
7164 return ret;
7165 }
7166
7167 bfd_boolean
7168 _bfd_elf_set_section_contents (bfd *abfd,
7169 sec_ptr section,
7170 const void *location,
7171 file_ptr offset,
7172 bfd_size_type count)
7173 {
7174 Elf_Internal_Shdr *hdr;
7175 bfd_signed_vma pos;
7176
7177 if (! abfd->output_has_begun
7178 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7179 return FALSE;
7180
7181 hdr = &elf_section_data (section)->this_hdr;
7182 pos = hdr->sh_offset + offset;
7183 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7184 || bfd_bwrite (location, count, abfd) != count)
7185 return FALSE;
7186
7187 return TRUE;
7188 }
7189
7190 void
7191 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7192 arelent *cache_ptr ATTRIBUTE_UNUSED,
7193 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7194 {
7195 abort ();
7196 }
7197
7198 /* Try to convert a non-ELF reloc into an ELF one. */
7199
7200 bfd_boolean
7201 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7202 {
7203 /* Check whether we really have an ELF howto. */
7204
7205 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7206 {
7207 bfd_reloc_code_real_type code;
7208 reloc_howto_type *howto;
7209
7210 /* Alien reloc: Try to determine its type to replace it with an
7211 equivalent ELF reloc. */
7212
7213 if (areloc->howto->pc_relative)
7214 {
7215 switch (areloc->howto->bitsize)
7216 {
7217 case 8:
7218 code = BFD_RELOC_8_PCREL;
7219 break;
7220 case 12:
7221 code = BFD_RELOC_12_PCREL;
7222 break;
7223 case 16:
7224 code = BFD_RELOC_16_PCREL;
7225 break;
7226 case 24:
7227 code = BFD_RELOC_24_PCREL;
7228 break;
7229 case 32:
7230 code = BFD_RELOC_32_PCREL;
7231 break;
7232 case 64:
7233 code = BFD_RELOC_64_PCREL;
7234 break;
7235 default:
7236 goto fail;
7237 }
7238
7239 howto = bfd_reloc_type_lookup (abfd, code);
7240
7241 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7242 {
7243 if (howto->pcrel_offset)
7244 areloc->addend += areloc->address;
7245 else
7246 areloc->addend -= areloc->address; /* addend is unsigned!! */
7247 }
7248 }
7249 else
7250 {
7251 switch (areloc->howto->bitsize)
7252 {
7253 case 8:
7254 code = BFD_RELOC_8;
7255 break;
7256 case 14:
7257 code = BFD_RELOC_14;
7258 break;
7259 case 16:
7260 code = BFD_RELOC_16;
7261 break;
7262 case 26:
7263 code = BFD_RELOC_26;
7264 break;
7265 case 32:
7266 code = BFD_RELOC_32;
7267 break;
7268 case 64:
7269 code = BFD_RELOC_64;
7270 break;
7271 default:
7272 goto fail;
7273 }
7274
7275 howto = bfd_reloc_type_lookup (abfd, code);
7276 }
7277
7278 if (howto)
7279 areloc->howto = howto;
7280 else
7281 goto fail;
7282 }
7283
7284 return TRUE;
7285
7286 fail:
7287 (*_bfd_error_handler)
7288 (_("%B: unsupported relocation type %s"),
7289 abfd, areloc->howto->name);
7290 bfd_set_error (bfd_error_bad_value);
7291 return FALSE;
7292 }
7293
7294 bfd_boolean
7295 _bfd_elf_close_and_cleanup (bfd *abfd)
7296 {
7297 if (bfd_get_format (abfd) == bfd_object)
7298 {
7299 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7300 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7301 _bfd_dwarf2_cleanup_debug_info (abfd);
7302 }
7303
7304 return _bfd_generic_close_and_cleanup (abfd);
7305 }
7306
7307 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7308 in the relocation's offset. Thus we cannot allow any sort of sanity
7309 range-checking to interfere. There is nothing else to do in processing
7310 this reloc. */
7311
7312 bfd_reloc_status_type
7313 _bfd_elf_rel_vtable_reloc_fn
7314 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7315 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7316 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7317 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7318 {
7319 return bfd_reloc_ok;
7320 }
7321 \f
7322 /* Elf core file support. Much of this only works on native
7323 toolchains, since we rely on knowing the
7324 machine-dependent procfs structure in order to pick
7325 out details about the corefile. */
7326
7327 #ifdef HAVE_SYS_PROCFS_H
7328 # include <sys/procfs.h>
7329 #endif
7330
7331 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7332
7333 static int
7334 elfcore_make_pid (bfd *abfd)
7335 {
7336 return ((elf_tdata (abfd)->core_lwpid << 16)
7337 + (elf_tdata (abfd)->core_pid));
7338 }
7339
7340 /* If there isn't a section called NAME, make one, using
7341 data from SECT. Note, this function will generate a
7342 reference to NAME, so you shouldn't deallocate or
7343 overwrite it. */
7344
7345 static bfd_boolean
7346 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7347 {
7348 asection *sect2;
7349
7350 if (bfd_get_section_by_name (abfd, name) != NULL)
7351 return TRUE;
7352
7353 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7354 if (sect2 == NULL)
7355 return FALSE;
7356
7357 sect2->size = sect->size;
7358 sect2->filepos = sect->filepos;
7359 sect2->alignment_power = sect->alignment_power;
7360 return TRUE;
7361 }
7362
7363 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7364 actually creates up to two pseudosections:
7365 - For the single-threaded case, a section named NAME, unless
7366 such a section already exists.
7367 - For the multi-threaded case, a section named "NAME/PID", where
7368 PID is elfcore_make_pid (abfd).
7369 Both pseudosections have identical contents. */
7370 bfd_boolean
7371 _bfd_elfcore_make_pseudosection (bfd *abfd,
7372 char *name,
7373 size_t size,
7374 ufile_ptr filepos)
7375 {
7376 char buf[100];
7377 char *threaded_name;
7378 size_t len;
7379 asection *sect;
7380
7381 /* Build the section name. */
7382
7383 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7384 len = strlen (buf) + 1;
7385 threaded_name = bfd_alloc (abfd, len);
7386 if (threaded_name == NULL)
7387 return FALSE;
7388 memcpy (threaded_name, buf, len);
7389
7390 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7391 SEC_HAS_CONTENTS);
7392 if (sect == NULL)
7393 return FALSE;
7394 sect->size = size;
7395 sect->filepos = filepos;
7396 sect->alignment_power = 2;
7397
7398 return elfcore_maybe_make_sect (abfd, name, sect);
7399 }
7400
7401 /* prstatus_t exists on:
7402 solaris 2.5+
7403 linux 2.[01] + glibc
7404 unixware 4.2
7405 */
7406
7407 #if defined (HAVE_PRSTATUS_T)
7408
7409 static bfd_boolean
7410 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7411 {
7412 size_t size;
7413 int offset;
7414
7415 if (note->descsz == sizeof (prstatus_t))
7416 {
7417 prstatus_t prstat;
7418
7419 size = sizeof (prstat.pr_reg);
7420 offset = offsetof (prstatus_t, pr_reg);
7421 memcpy (&prstat, note->descdata, sizeof (prstat));
7422
7423 /* Do not overwrite the core signal if it
7424 has already been set by another thread. */
7425 if (elf_tdata (abfd)->core_signal == 0)
7426 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7427 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7428
7429 /* pr_who exists on:
7430 solaris 2.5+
7431 unixware 4.2
7432 pr_who doesn't exist on:
7433 linux 2.[01]
7434 */
7435 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7436 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7437 #endif
7438 }
7439 #if defined (HAVE_PRSTATUS32_T)
7440 else if (note->descsz == sizeof (prstatus32_t))
7441 {
7442 /* 64-bit host, 32-bit corefile */
7443 prstatus32_t prstat;
7444
7445 size = sizeof (prstat.pr_reg);
7446 offset = offsetof (prstatus32_t, pr_reg);
7447 memcpy (&prstat, note->descdata, sizeof (prstat));
7448
7449 /* Do not overwrite the core signal if it
7450 has already been set by another thread. */
7451 if (elf_tdata (abfd)->core_signal == 0)
7452 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7453 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7454
7455 /* pr_who exists on:
7456 solaris 2.5+
7457 unixware 4.2
7458 pr_who doesn't exist on:
7459 linux 2.[01]
7460 */
7461 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7462 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7463 #endif
7464 }
7465 #endif /* HAVE_PRSTATUS32_T */
7466 else
7467 {
7468 /* Fail - we don't know how to handle any other
7469 note size (ie. data object type). */
7470 return TRUE;
7471 }
7472
7473 /* Make a ".reg/999" section and a ".reg" section. */
7474 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7475 size, note->descpos + offset);
7476 }
7477 #endif /* defined (HAVE_PRSTATUS_T) */
7478
7479 /* Create a pseudosection containing the exact contents of NOTE. */
7480 static bfd_boolean
7481 elfcore_make_note_pseudosection (bfd *abfd,
7482 char *name,
7483 Elf_Internal_Note *note)
7484 {
7485 return _bfd_elfcore_make_pseudosection (abfd, name,
7486 note->descsz, note->descpos);
7487 }
7488
7489 /* There isn't a consistent prfpregset_t across platforms,
7490 but it doesn't matter, because we don't have to pick this
7491 data structure apart. */
7492
7493 static bfd_boolean
7494 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7495 {
7496 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7497 }
7498
7499 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7500 type of NT_PRXFPREG. Just include the whole note's contents
7501 literally. */
7502
7503 static bfd_boolean
7504 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7505 {
7506 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7507 }
7508
7509 static bfd_boolean
7510 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7511 {
7512 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7513 }
7514
7515
7516 #if defined (HAVE_PRPSINFO_T)
7517 typedef prpsinfo_t elfcore_psinfo_t;
7518 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7519 typedef prpsinfo32_t elfcore_psinfo32_t;
7520 #endif
7521 #endif
7522
7523 #if defined (HAVE_PSINFO_T)
7524 typedef psinfo_t elfcore_psinfo_t;
7525 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7526 typedef psinfo32_t elfcore_psinfo32_t;
7527 #endif
7528 #endif
7529
7530 /* return a malloc'ed copy of a string at START which is at
7531 most MAX bytes long, possibly without a terminating '\0'.
7532 the copy will always have a terminating '\0'. */
7533
7534 char *
7535 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7536 {
7537 char *dups;
7538 char *end = memchr (start, '\0', max);
7539 size_t len;
7540
7541 if (end == NULL)
7542 len = max;
7543 else
7544 len = end - start;
7545
7546 dups = bfd_alloc (abfd, len + 1);
7547 if (dups == NULL)
7548 return NULL;
7549
7550 memcpy (dups, start, len);
7551 dups[len] = '\0';
7552
7553 return dups;
7554 }
7555
7556 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7557 static bfd_boolean
7558 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7559 {
7560 if (note->descsz == sizeof (elfcore_psinfo_t))
7561 {
7562 elfcore_psinfo_t psinfo;
7563
7564 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7565
7566 elf_tdata (abfd)->core_program
7567 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7568 sizeof (psinfo.pr_fname));
7569
7570 elf_tdata (abfd)->core_command
7571 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7572 sizeof (psinfo.pr_psargs));
7573 }
7574 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7575 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7576 {
7577 /* 64-bit host, 32-bit corefile */
7578 elfcore_psinfo32_t psinfo;
7579
7580 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7581
7582 elf_tdata (abfd)->core_program
7583 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7584 sizeof (psinfo.pr_fname));
7585
7586 elf_tdata (abfd)->core_command
7587 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7588 sizeof (psinfo.pr_psargs));
7589 }
7590 #endif
7591
7592 else
7593 {
7594 /* Fail - we don't know how to handle any other
7595 note size (ie. data object type). */
7596 return TRUE;
7597 }
7598
7599 /* Note that for some reason, a spurious space is tacked
7600 onto the end of the args in some (at least one anyway)
7601 implementations, so strip it off if it exists. */
7602
7603 {
7604 char *command = elf_tdata (abfd)->core_command;
7605 int n = strlen (command);
7606
7607 if (0 < n && command[n - 1] == ' ')
7608 command[n - 1] = '\0';
7609 }
7610
7611 return TRUE;
7612 }
7613 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7614
7615 #if defined (HAVE_PSTATUS_T)
7616 static bfd_boolean
7617 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7618 {
7619 if (note->descsz == sizeof (pstatus_t)
7620 #if defined (HAVE_PXSTATUS_T)
7621 || note->descsz == sizeof (pxstatus_t)
7622 #endif
7623 )
7624 {
7625 pstatus_t pstat;
7626
7627 memcpy (&pstat, note->descdata, sizeof (pstat));
7628
7629 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7630 }
7631 #if defined (HAVE_PSTATUS32_T)
7632 else if (note->descsz == sizeof (pstatus32_t))
7633 {
7634 /* 64-bit host, 32-bit corefile */
7635 pstatus32_t pstat;
7636
7637 memcpy (&pstat, note->descdata, sizeof (pstat));
7638
7639 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7640 }
7641 #endif
7642 /* Could grab some more details from the "representative"
7643 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7644 NT_LWPSTATUS note, presumably. */
7645
7646 return TRUE;
7647 }
7648 #endif /* defined (HAVE_PSTATUS_T) */
7649
7650 #if defined (HAVE_LWPSTATUS_T)
7651 static bfd_boolean
7652 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7653 {
7654 lwpstatus_t lwpstat;
7655 char buf[100];
7656 char *name;
7657 size_t len;
7658 asection *sect;
7659
7660 if (note->descsz != sizeof (lwpstat)
7661 #if defined (HAVE_LWPXSTATUS_T)
7662 && note->descsz != sizeof (lwpxstatus_t)
7663 #endif
7664 )
7665 return TRUE;
7666
7667 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7668
7669 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7670 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7671
7672 /* Make a ".reg/999" section. */
7673
7674 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7675 len = strlen (buf) + 1;
7676 name = bfd_alloc (abfd, len);
7677 if (name == NULL)
7678 return FALSE;
7679 memcpy (name, buf, len);
7680
7681 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7682 if (sect == NULL)
7683 return FALSE;
7684
7685 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7686 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7687 sect->filepos = note->descpos
7688 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7689 #endif
7690
7691 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7692 sect->size = sizeof (lwpstat.pr_reg);
7693 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7694 #endif
7695
7696 sect->alignment_power = 2;
7697
7698 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7699 return FALSE;
7700
7701 /* Make a ".reg2/999" section */
7702
7703 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7704 len = strlen (buf) + 1;
7705 name = bfd_alloc (abfd, len);
7706 if (name == NULL)
7707 return FALSE;
7708 memcpy (name, buf, len);
7709
7710 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7711 if (sect == NULL)
7712 return FALSE;
7713
7714 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7715 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7716 sect->filepos = note->descpos
7717 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7718 #endif
7719
7720 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7721 sect->size = sizeof (lwpstat.pr_fpreg);
7722 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7723 #endif
7724
7725 sect->alignment_power = 2;
7726
7727 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7728 }
7729 #endif /* defined (HAVE_LWPSTATUS_T) */
7730
7731 static bfd_boolean
7732 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7733 {
7734 char buf[30];
7735 char *name;
7736 size_t len;
7737 asection *sect;
7738 int type;
7739 int is_active_thread;
7740 bfd_vma base_addr;
7741
7742 if (note->descsz < 728)
7743 return TRUE;
7744
7745 if (! CONST_STRNEQ (note->namedata, "win32"))
7746 return TRUE;
7747
7748 type = bfd_get_32 (abfd, note->descdata);
7749
7750 switch (type)
7751 {
7752 case 1 /* NOTE_INFO_PROCESS */:
7753 /* FIXME: need to add ->core_command. */
7754 /* process_info.pid */
7755 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7756 /* process_info.signal */
7757 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7758 break;
7759
7760 case 2 /* NOTE_INFO_THREAD */:
7761 /* Make a ".reg/999" section. */
7762 /* thread_info.tid */
7763 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7764
7765 len = strlen (buf) + 1;
7766 name = bfd_alloc (abfd, len);
7767 if (name == NULL)
7768 return FALSE;
7769
7770 memcpy (name, buf, len);
7771
7772 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7773 if (sect == NULL)
7774 return FALSE;
7775
7776 /* sizeof (thread_info.thread_context) */
7777 sect->size = 716;
7778 /* offsetof (thread_info.thread_context) */
7779 sect->filepos = note->descpos + 12;
7780 sect->alignment_power = 2;
7781
7782 /* thread_info.is_active_thread */
7783 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7784
7785 if (is_active_thread)
7786 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7787 return FALSE;
7788 break;
7789
7790 case 3 /* NOTE_INFO_MODULE */:
7791 /* Make a ".module/xxxxxxxx" section. */
7792 /* module_info.base_address */
7793 base_addr = bfd_get_32 (abfd, note->descdata + 4);
7794 sprintf (buf, ".module/%08lx", (long) base_addr);
7795
7796 len = strlen (buf) + 1;
7797 name = bfd_alloc (abfd, len);
7798 if (name == NULL)
7799 return FALSE;
7800
7801 memcpy (name, buf, len);
7802
7803 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7804
7805 if (sect == NULL)
7806 return FALSE;
7807
7808 sect->size = note->descsz;
7809 sect->filepos = note->descpos;
7810 sect->alignment_power = 2;
7811 break;
7812
7813 default:
7814 return TRUE;
7815 }
7816
7817 return TRUE;
7818 }
7819
7820 static bfd_boolean
7821 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7822 {
7823 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7824
7825 switch (note->type)
7826 {
7827 default:
7828 return TRUE;
7829
7830 case NT_PRSTATUS:
7831 if (bed->elf_backend_grok_prstatus)
7832 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7833 return TRUE;
7834 #if defined (HAVE_PRSTATUS_T)
7835 return elfcore_grok_prstatus (abfd, note);
7836 #else
7837 return TRUE;
7838 #endif
7839
7840 #if defined (HAVE_PSTATUS_T)
7841 case NT_PSTATUS:
7842 return elfcore_grok_pstatus (abfd, note);
7843 #endif
7844
7845 #if defined (HAVE_LWPSTATUS_T)
7846 case NT_LWPSTATUS:
7847 return elfcore_grok_lwpstatus (abfd, note);
7848 #endif
7849
7850 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7851 return elfcore_grok_prfpreg (abfd, note);
7852
7853 case NT_WIN32PSTATUS:
7854 return elfcore_grok_win32pstatus (abfd, note);
7855
7856 case NT_PRXFPREG: /* Linux SSE extension */
7857 if (note->namesz == 6
7858 && strcmp (note->namedata, "LINUX") == 0)
7859 return elfcore_grok_prxfpreg (abfd, note);
7860 else
7861 return TRUE;
7862
7863 case NT_PPC_VMX:
7864 if (note->namesz == 6
7865 && strcmp (note->namedata, "LINUX") == 0)
7866 return elfcore_grok_ppc_vmx (abfd, note);
7867 else
7868 return TRUE;
7869
7870 case NT_PRPSINFO:
7871 case NT_PSINFO:
7872 if (bed->elf_backend_grok_psinfo)
7873 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7874 return TRUE;
7875 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7876 return elfcore_grok_psinfo (abfd, note);
7877 #else
7878 return TRUE;
7879 #endif
7880
7881 case NT_AUXV:
7882 {
7883 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7884 SEC_HAS_CONTENTS);
7885
7886 if (sect == NULL)
7887 return FALSE;
7888 sect->size = note->descsz;
7889 sect->filepos = note->descpos;
7890 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7891
7892 return TRUE;
7893 }
7894 }
7895 }
7896
7897 static bfd_boolean
7898 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
7899 {
7900 elf_tdata (abfd)->build_id_size = note->descsz;
7901 elf_tdata (abfd)->build_id = bfd_alloc (abfd, note->descsz);
7902 if (elf_tdata (abfd)->build_id == NULL)
7903 return FALSE;
7904
7905 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
7906
7907 return TRUE;
7908 }
7909
7910 static bfd_boolean
7911 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
7912 {
7913 switch (note->type)
7914 {
7915 default:
7916 return TRUE;
7917
7918 case NT_GNU_BUILD_ID:
7919 return elfobj_grok_gnu_build_id (abfd, note);
7920 }
7921 }
7922
7923 static bfd_boolean
7924 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7925 {
7926 char *cp;
7927
7928 cp = strchr (note->namedata, '@');
7929 if (cp != NULL)
7930 {
7931 *lwpidp = atoi(cp + 1);
7932 return TRUE;
7933 }
7934 return FALSE;
7935 }
7936
7937 static bfd_boolean
7938 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7939 {
7940 /* Signal number at offset 0x08. */
7941 elf_tdata (abfd)->core_signal
7942 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7943
7944 /* Process ID at offset 0x50. */
7945 elf_tdata (abfd)->core_pid
7946 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7947
7948 /* Command name at 0x7c (max 32 bytes, including nul). */
7949 elf_tdata (abfd)->core_command
7950 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7951
7952 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7953 note);
7954 }
7955
7956 static bfd_boolean
7957 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7958 {
7959 int lwp;
7960
7961 if (elfcore_netbsd_get_lwpid (note, &lwp))
7962 elf_tdata (abfd)->core_lwpid = lwp;
7963
7964 if (note->type == NT_NETBSDCORE_PROCINFO)
7965 {
7966 /* NetBSD-specific core "procinfo". Note that we expect to
7967 find this note before any of the others, which is fine,
7968 since the kernel writes this note out first when it
7969 creates a core file. */
7970
7971 return elfcore_grok_netbsd_procinfo (abfd, note);
7972 }
7973
7974 /* As of Jan 2002 there are no other machine-independent notes
7975 defined for NetBSD core files. If the note type is less
7976 than the start of the machine-dependent note types, we don't
7977 understand it. */
7978
7979 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7980 return TRUE;
7981
7982
7983 switch (bfd_get_arch (abfd))
7984 {
7985 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7986 PT_GETFPREGS == mach+2. */
7987
7988 case bfd_arch_alpha:
7989 case bfd_arch_sparc:
7990 switch (note->type)
7991 {
7992 case NT_NETBSDCORE_FIRSTMACH+0:
7993 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7994
7995 case NT_NETBSDCORE_FIRSTMACH+2:
7996 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7997
7998 default:
7999 return TRUE;
8000 }
8001
8002 /* On all other arch's, PT_GETREGS == mach+1 and
8003 PT_GETFPREGS == mach+3. */
8004
8005 default:
8006 switch (note->type)
8007 {
8008 case NT_NETBSDCORE_FIRSTMACH+1:
8009 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8010
8011 case NT_NETBSDCORE_FIRSTMACH+3:
8012 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8013
8014 default:
8015 return TRUE;
8016 }
8017 }
8018 /* NOTREACHED */
8019 }
8020
8021 static bfd_boolean
8022 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8023 {
8024 void *ddata = note->descdata;
8025 char buf[100];
8026 char *name;
8027 asection *sect;
8028 short sig;
8029 unsigned flags;
8030
8031 /* nto_procfs_status 'pid' field is at offset 0. */
8032 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8033
8034 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8035 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8036
8037 /* nto_procfs_status 'flags' field is at offset 8. */
8038 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8039
8040 /* nto_procfs_status 'what' field is at offset 14. */
8041 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8042 {
8043 elf_tdata (abfd)->core_signal = sig;
8044 elf_tdata (abfd)->core_lwpid = *tid;
8045 }
8046
8047 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8048 do not come from signals so we make sure we set the current
8049 thread just in case. */
8050 if (flags & 0x00000080)
8051 elf_tdata (abfd)->core_lwpid = *tid;
8052
8053 /* Make a ".qnx_core_status/%d" section. */
8054 sprintf (buf, ".qnx_core_status/%ld", *tid);
8055
8056 name = bfd_alloc (abfd, strlen (buf) + 1);
8057 if (name == NULL)
8058 return FALSE;
8059 strcpy (name, buf);
8060
8061 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8062 if (sect == NULL)
8063 return FALSE;
8064
8065 sect->size = note->descsz;
8066 sect->filepos = note->descpos;
8067 sect->alignment_power = 2;
8068
8069 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8070 }
8071
8072 static bfd_boolean
8073 elfcore_grok_nto_regs (bfd *abfd,
8074 Elf_Internal_Note *note,
8075 long tid,
8076 char *base)
8077 {
8078 char buf[100];
8079 char *name;
8080 asection *sect;
8081
8082 /* Make a "(base)/%d" section. */
8083 sprintf (buf, "%s/%ld", base, tid);
8084
8085 name = bfd_alloc (abfd, strlen (buf) + 1);
8086 if (name == NULL)
8087 return FALSE;
8088 strcpy (name, buf);
8089
8090 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8091 if (sect == NULL)
8092 return FALSE;
8093
8094 sect->size = note->descsz;
8095 sect->filepos = note->descpos;
8096 sect->alignment_power = 2;
8097
8098 /* This is the current thread. */
8099 if (elf_tdata (abfd)->core_lwpid == tid)
8100 return elfcore_maybe_make_sect (abfd, base, sect);
8101
8102 return TRUE;
8103 }
8104
8105 #define BFD_QNT_CORE_INFO 7
8106 #define BFD_QNT_CORE_STATUS 8
8107 #define BFD_QNT_CORE_GREG 9
8108 #define BFD_QNT_CORE_FPREG 10
8109
8110 static bfd_boolean
8111 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8112 {
8113 /* Every GREG section has a STATUS section before it. Store the
8114 tid from the previous call to pass down to the next gregs
8115 function. */
8116 static long tid = 1;
8117
8118 switch (note->type)
8119 {
8120 case BFD_QNT_CORE_INFO:
8121 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8122 case BFD_QNT_CORE_STATUS:
8123 return elfcore_grok_nto_status (abfd, note, &tid);
8124 case BFD_QNT_CORE_GREG:
8125 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8126 case BFD_QNT_CORE_FPREG:
8127 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8128 default:
8129 return TRUE;
8130 }
8131 }
8132
8133 static bfd_boolean
8134 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8135 {
8136 char *name;
8137 asection *sect;
8138 size_t len;
8139
8140 /* Use note name as section name. */
8141 len = note->namesz;
8142 name = bfd_alloc (abfd, len);
8143 if (name == NULL)
8144 return FALSE;
8145 memcpy (name, note->namedata, len);
8146 name[len - 1] = '\0';
8147
8148 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8149 if (sect == NULL)
8150 return FALSE;
8151
8152 sect->size = note->descsz;
8153 sect->filepos = note->descpos;
8154 sect->alignment_power = 1;
8155
8156 return TRUE;
8157 }
8158
8159 /* Function: elfcore_write_note
8160
8161 Inputs:
8162 buffer to hold note, and current size of buffer
8163 name of note
8164 type of note
8165 data for note
8166 size of data for note
8167
8168 Writes note to end of buffer. ELF64 notes are written exactly as
8169 for ELF32, despite the current (as of 2006) ELF gabi specifying
8170 that they ought to have 8-byte namesz and descsz field, and have
8171 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8172
8173 Return:
8174 Pointer to realloc'd buffer, *BUFSIZ updated. */
8175
8176 char *
8177 elfcore_write_note (bfd *abfd,
8178 char *buf,
8179 int *bufsiz,
8180 const char *name,
8181 int type,
8182 const void *input,
8183 int size)
8184 {
8185 Elf_External_Note *xnp;
8186 size_t namesz;
8187 size_t newspace;
8188 char *dest;
8189
8190 namesz = 0;
8191 if (name != NULL)
8192 namesz = strlen (name) + 1;
8193
8194 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8195
8196 buf = realloc (buf, *bufsiz + newspace);
8197 if (buf == NULL)
8198 return buf;
8199 dest = buf + *bufsiz;
8200 *bufsiz += newspace;
8201 xnp = (Elf_External_Note *) dest;
8202 H_PUT_32 (abfd, namesz, xnp->namesz);
8203 H_PUT_32 (abfd, size, xnp->descsz);
8204 H_PUT_32 (abfd, type, xnp->type);
8205 dest = xnp->name;
8206 if (name != NULL)
8207 {
8208 memcpy (dest, name, namesz);
8209 dest += namesz;
8210 while (namesz & 3)
8211 {
8212 *dest++ = '\0';
8213 ++namesz;
8214 }
8215 }
8216 memcpy (dest, input, size);
8217 dest += size;
8218 while (size & 3)
8219 {
8220 *dest++ = '\0';
8221 ++size;
8222 }
8223 return buf;
8224 }
8225
8226 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8227 char *
8228 elfcore_write_prpsinfo (bfd *abfd,
8229 char *buf,
8230 int *bufsiz,
8231 const char *fname,
8232 const char *psargs)
8233 {
8234 const char *note_name = "CORE";
8235 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8236
8237 if (bed->elf_backend_write_core_note != NULL)
8238 {
8239 char *ret;
8240 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8241 NT_PRPSINFO, fname, psargs);
8242 if (ret != NULL)
8243 return ret;
8244 }
8245
8246 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8247 if (bed->s->elfclass == ELFCLASS32)
8248 {
8249 #if defined (HAVE_PSINFO32_T)
8250 psinfo32_t data;
8251 int note_type = NT_PSINFO;
8252 #else
8253 prpsinfo32_t data;
8254 int note_type = NT_PRPSINFO;
8255 #endif
8256
8257 memset (&data, 0, sizeof (data));
8258 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8259 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8260 return elfcore_write_note (abfd, buf, bufsiz,
8261 note_name, note_type, &data, sizeof (data));
8262 }
8263 else
8264 #endif
8265 {
8266 #if defined (HAVE_PSINFO_T)
8267 psinfo_t data;
8268 int note_type = NT_PSINFO;
8269 #else
8270 prpsinfo_t data;
8271 int note_type = NT_PRPSINFO;
8272 #endif
8273
8274 memset (&data, 0, sizeof (data));
8275 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8276 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8277 return elfcore_write_note (abfd, buf, bufsiz,
8278 note_name, note_type, &data, sizeof (data));
8279 }
8280 }
8281 #endif /* PSINFO_T or PRPSINFO_T */
8282
8283 #if defined (HAVE_PRSTATUS_T)
8284 char *
8285 elfcore_write_prstatus (bfd *abfd,
8286 char *buf,
8287 int *bufsiz,
8288 long pid,
8289 int cursig,
8290 const void *gregs)
8291 {
8292 const char *note_name = "CORE";
8293 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8294
8295 if (bed->elf_backend_write_core_note != NULL)
8296 {
8297 char *ret;
8298 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8299 NT_PRSTATUS,
8300 pid, cursig, gregs);
8301 if (ret != NULL)
8302 return ret;
8303 }
8304
8305 #if defined (HAVE_PRSTATUS32_T)
8306 if (bed->s->elfclass == ELFCLASS32)
8307 {
8308 prstatus32_t prstat;
8309
8310 memset (&prstat, 0, sizeof (prstat));
8311 prstat.pr_pid = pid;
8312 prstat.pr_cursig = cursig;
8313 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8314 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8315 NT_PRSTATUS, &prstat, sizeof (prstat));
8316 }
8317 else
8318 #endif
8319 {
8320 prstatus_t prstat;
8321
8322 memset (&prstat, 0, sizeof (prstat));
8323 prstat.pr_pid = pid;
8324 prstat.pr_cursig = cursig;
8325 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8326 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8327 NT_PRSTATUS, &prstat, sizeof (prstat));
8328 }
8329 }
8330 #endif /* HAVE_PRSTATUS_T */
8331
8332 #if defined (HAVE_LWPSTATUS_T)
8333 char *
8334 elfcore_write_lwpstatus (bfd *abfd,
8335 char *buf,
8336 int *bufsiz,
8337 long pid,
8338 int cursig,
8339 const void *gregs)
8340 {
8341 lwpstatus_t lwpstat;
8342 const char *note_name = "CORE";
8343
8344 memset (&lwpstat, 0, sizeof (lwpstat));
8345 lwpstat.pr_lwpid = pid >> 16;
8346 lwpstat.pr_cursig = cursig;
8347 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8348 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8349 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8350 #if !defined(gregs)
8351 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8352 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8353 #else
8354 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8355 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8356 #endif
8357 #endif
8358 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8359 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8360 }
8361 #endif /* HAVE_LWPSTATUS_T */
8362
8363 #if defined (HAVE_PSTATUS_T)
8364 char *
8365 elfcore_write_pstatus (bfd *abfd,
8366 char *buf,
8367 int *bufsiz,
8368 long pid,
8369 int cursig ATTRIBUTE_UNUSED,
8370 const void *gregs ATTRIBUTE_UNUSED)
8371 {
8372 const char *note_name = "CORE";
8373 #if defined (HAVE_PSTATUS32_T)
8374 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8375
8376 if (bed->s->elfclass == ELFCLASS32)
8377 {
8378 pstatus32_t pstat;
8379
8380 memset (&pstat, 0, sizeof (pstat));
8381 pstat.pr_pid = pid & 0xffff;
8382 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8383 NT_PSTATUS, &pstat, sizeof (pstat));
8384 return buf;
8385 }
8386 else
8387 #endif
8388 {
8389 pstatus_t pstat;
8390
8391 memset (&pstat, 0, sizeof (pstat));
8392 pstat.pr_pid = pid & 0xffff;
8393 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8394 NT_PSTATUS, &pstat, sizeof (pstat));
8395 return buf;
8396 }
8397 }
8398 #endif /* HAVE_PSTATUS_T */
8399
8400 char *
8401 elfcore_write_prfpreg (bfd *abfd,
8402 char *buf,
8403 int *bufsiz,
8404 const void *fpregs,
8405 int size)
8406 {
8407 const char *note_name = "CORE";
8408 return elfcore_write_note (abfd, buf, bufsiz,
8409 note_name, NT_FPREGSET, fpregs, size);
8410 }
8411
8412 char *
8413 elfcore_write_prxfpreg (bfd *abfd,
8414 char *buf,
8415 int *bufsiz,
8416 const void *xfpregs,
8417 int size)
8418 {
8419 char *note_name = "LINUX";
8420 return elfcore_write_note (abfd, buf, bufsiz,
8421 note_name, NT_PRXFPREG, xfpregs, size);
8422 }
8423
8424 char *
8425 elfcore_write_ppc_vmx (bfd *abfd,
8426 char *buf,
8427 int *bufsiz,
8428 const void *ppc_vmx,
8429 int size)
8430 {
8431 char *note_name = "LINUX";
8432 return elfcore_write_note (abfd, buf, bufsiz,
8433 note_name, NT_PPC_VMX, ppc_vmx, size);
8434 }
8435
8436 static bfd_boolean
8437 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8438 {
8439 char *p;
8440
8441 p = buf;
8442 while (p < buf + size)
8443 {
8444 /* FIXME: bad alignment assumption. */
8445 Elf_External_Note *xnp = (Elf_External_Note *) p;
8446 Elf_Internal_Note in;
8447
8448 in.type = H_GET_32 (abfd, xnp->type);
8449
8450 in.namesz = H_GET_32 (abfd, xnp->namesz);
8451 in.namedata = xnp->name;
8452
8453 in.descsz = H_GET_32 (abfd, xnp->descsz);
8454 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8455 in.descpos = offset + (in.descdata - buf);
8456
8457 switch (bfd_get_format (abfd))
8458 {
8459 default:
8460 return TRUE;
8461
8462 case bfd_core:
8463 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8464 {
8465 if (! elfcore_grok_netbsd_note (abfd, &in))
8466 return FALSE;
8467 }
8468 else if (CONST_STRNEQ (in.namedata, "QNX"))
8469 {
8470 if (! elfcore_grok_nto_note (abfd, &in))
8471 return FALSE;
8472 }
8473 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8474 {
8475 if (! elfcore_grok_spu_note (abfd, &in))
8476 return FALSE;
8477 }
8478 else
8479 {
8480 if (! elfcore_grok_note (abfd, &in))
8481 return FALSE;
8482 }
8483 break;
8484
8485 case bfd_object:
8486 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8487 {
8488 if (! elfobj_grok_gnu_note (abfd, &in))
8489 return FALSE;
8490 }
8491 break;
8492 }
8493
8494 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8495 }
8496
8497 return TRUE;
8498 }
8499
8500 static bfd_boolean
8501 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8502 {
8503 char *buf;
8504
8505 if (size <= 0)
8506 return TRUE;
8507
8508 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8509 return FALSE;
8510
8511 buf = bfd_malloc (size);
8512 if (buf == NULL)
8513 return FALSE;
8514
8515 if (bfd_bread (buf, size, abfd) != size
8516 || !elf_parse_notes (abfd, buf, size, offset))
8517 {
8518 free (buf);
8519 return FALSE;
8520 }
8521
8522 free (buf);
8523 return TRUE;
8524 }
8525 \f
8526 /* Providing external access to the ELF program header table. */
8527
8528 /* Return an upper bound on the number of bytes required to store a
8529 copy of ABFD's program header table entries. Return -1 if an error
8530 occurs; bfd_get_error will return an appropriate code. */
8531
8532 long
8533 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8534 {
8535 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8536 {
8537 bfd_set_error (bfd_error_wrong_format);
8538 return -1;
8539 }
8540
8541 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8542 }
8543
8544 /* Copy ABFD's program header table entries to *PHDRS. The entries
8545 will be stored as an array of Elf_Internal_Phdr structures, as
8546 defined in include/elf/internal.h. To find out how large the
8547 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8548
8549 Return the number of program header table entries read, or -1 if an
8550 error occurs; bfd_get_error will return an appropriate code. */
8551
8552 int
8553 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8554 {
8555 int num_phdrs;
8556
8557 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8558 {
8559 bfd_set_error (bfd_error_wrong_format);
8560 return -1;
8561 }
8562
8563 num_phdrs = elf_elfheader (abfd)->e_phnum;
8564 memcpy (phdrs, elf_tdata (abfd)->phdr,
8565 num_phdrs * sizeof (Elf_Internal_Phdr));
8566
8567 return num_phdrs;
8568 }
8569
8570 enum elf_reloc_type_class
8571 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8572 {
8573 return reloc_class_normal;
8574 }
8575
8576 /* For RELA architectures, return the relocation value for a
8577 relocation against a local symbol. */
8578
8579 bfd_vma
8580 _bfd_elf_rela_local_sym (bfd *abfd,
8581 Elf_Internal_Sym *sym,
8582 asection **psec,
8583 Elf_Internal_Rela *rel)
8584 {
8585 asection *sec = *psec;
8586 bfd_vma relocation;
8587
8588 relocation = (sec->output_section->vma
8589 + sec->output_offset
8590 + sym->st_value);
8591 if ((sec->flags & SEC_MERGE)
8592 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8593 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8594 {
8595 rel->r_addend =
8596 _bfd_merged_section_offset (abfd, psec,
8597 elf_section_data (sec)->sec_info,
8598 sym->st_value + rel->r_addend);
8599 if (sec != *psec)
8600 {
8601 /* If we have changed the section, and our original section is
8602 marked with SEC_EXCLUDE, it means that the original
8603 SEC_MERGE section has been completely subsumed in some
8604 other SEC_MERGE section. In this case, we need to leave
8605 some info around for --emit-relocs. */
8606 if ((sec->flags & SEC_EXCLUDE) != 0)
8607 sec->kept_section = *psec;
8608 sec = *psec;
8609 }
8610 rel->r_addend -= relocation;
8611 rel->r_addend += sec->output_section->vma + sec->output_offset;
8612 }
8613 return relocation;
8614 }
8615
8616 bfd_vma
8617 _bfd_elf_rel_local_sym (bfd *abfd,
8618 Elf_Internal_Sym *sym,
8619 asection **psec,
8620 bfd_vma addend)
8621 {
8622 asection *sec = *psec;
8623
8624 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8625 return sym->st_value + addend;
8626
8627 return _bfd_merged_section_offset (abfd, psec,
8628 elf_section_data (sec)->sec_info,
8629 sym->st_value + addend);
8630 }
8631
8632 bfd_vma
8633 _bfd_elf_section_offset (bfd *abfd,
8634 struct bfd_link_info *info,
8635 asection *sec,
8636 bfd_vma offset)
8637 {
8638 switch (sec->sec_info_type)
8639 {
8640 case ELF_INFO_TYPE_STABS:
8641 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8642 offset);
8643 case ELF_INFO_TYPE_EH_FRAME:
8644 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8645 default:
8646 return offset;
8647 }
8648 }
8649 \f
8650 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8651 reconstruct an ELF file by reading the segments out of remote memory
8652 based on the ELF file header at EHDR_VMA and the ELF program headers it
8653 points to. If not null, *LOADBASEP is filled in with the difference
8654 between the VMAs from which the segments were read, and the VMAs the
8655 file headers (and hence BFD's idea of each section's VMA) put them at.
8656
8657 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8658 remote memory at target address VMA into the local buffer at MYADDR; it
8659 should return zero on success or an `errno' code on failure. TEMPL must
8660 be a BFD for an ELF target with the word size and byte order found in
8661 the remote memory. */
8662
8663 bfd *
8664 bfd_elf_bfd_from_remote_memory
8665 (bfd *templ,
8666 bfd_vma ehdr_vma,
8667 bfd_vma *loadbasep,
8668 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8669 {
8670 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8671 (templ, ehdr_vma, loadbasep, target_read_memory);
8672 }
8673 \f
8674 long
8675 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8676 long symcount ATTRIBUTE_UNUSED,
8677 asymbol **syms ATTRIBUTE_UNUSED,
8678 long dynsymcount,
8679 asymbol **dynsyms,
8680 asymbol **ret)
8681 {
8682 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8683 asection *relplt;
8684 asymbol *s;
8685 const char *relplt_name;
8686 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8687 arelent *p;
8688 long count, i, n;
8689 size_t size;
8690 Elf_Internal_Shdr *hdr;
8691 char *names;
8692 asection *plt;
8693
8694 *ret = NULL;
8695
8696 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8697 return 0;
8698
8699 if (dynsymcount <= 0)
8700 return 0;
8701
8702 if (!bed->plt_sym_val)
8703 return 0;
8704
8705 relplt_name = bed->relplt_name;
8706 if (relplt_name == NULL)
8707 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8708 relplt = bfd_get_section_by_name (abfd, relplt_name);
8709 if (relplt == NULL)
8710 return 0;
8711
8712 hdr = &elf_section_data (relplt)->this_hdr;
8713 if (hdr->sh_link != elf_dynsymtab (abfd)
8714 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8715 return 0;
8716
8717 plt = bfd_get_section_by_name (abfd, ".plt");
8718 if (plt == NULL)
8719 return 0;
8720
8721 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8722 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8723 return -1;
8724
8725 count = relplt->size / hdr->sh_entsize;
8726 size = count * sizeof (asymbol);
8727 p = relplt->relocation;
8728 for (i = 0; i < count; i++, p++)
8729 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8730
8731 s = *ret = bfd_malloc (size);
8732 if (s == NULL)
8733 return -1;
8734
8735 names = (char *) (s + count);
8736 p = relplt->relocation;
8737 n = 0;
8738 for (i = 0; i < count; i++, p++)
8739 {
8740 size_t len;
8741 bfd_vma addr;
8742
8743 addr = bed->plt_sym_val (i, plt, p);
8744 if (addr == (bfd_vma) -1)
8745 continue;
8746
8747 *s = **p->sym_ptr_ptr;
8748 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8749 we are defining a symbol, ensure one of them is set. */
8750 if ((s->flags & BSF_LOCAL) == 0)
8751 s->flags |= BSF_GLOBAL;
8752 s->section = plt;
8753 s->value = addr - plt->vma;
8754 s->name = names;
8755 s->udata.p = NULL;
8756 len = strlen ((*p->sym_ptr_ptr)->name);
8757 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8758 names += len;
8759 memcpy (names, "@plt", sizeof ("@plt"));
8760 names += sizeof ("@plt");
8761 ++s, ++n;
8762 }
8763
8764 return n;
8765 }
8766
8767 /* It is only used by x86-64 so far. */
8768 asection _bfd_elf_large_com_section
8769 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8770 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8771
8772 void
8773 _bfd_elf_set_osabi (bfd * abfd,
8774 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8775 {
8776 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8777
8778 i_ehdrp = elf_elfheader (abfd);
8779
8780 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8781 }
8782
8783
8784 /* Return TRUE for ELF symbol types that represent functions.
8785 This is the default version of this function, which is sufficient for
8786 most targets. It returns true if TYPE is STT_FUNC. */
8787
8788 bfd_boolean
8789 _bfd_elf_is_function_type (unsigned int type)
8790 {
8791 return (type == STT_FUNC);
8792 }
This page took 0.301848 seconds and 4 git commands to generate.