PR24144, pdp11-ld overwriting section data with zeros
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
57 size_t align) ;
58 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
59 file_ptr offset, size_t align);
60
61 /* Swap version information in and out. The version information is
62 currently size independent. If that ever changes, this code will
63 need to move into elfcode.h. */
64
65 /* Swap in a Verdef structure. */
66
67 void
68 _bfd_elf_swap_verdef_in (bfd *abfd,
69 const Elf_External_Verdef *src,
70 Elf_Internal_Verdef *dst)
71 {
72 dst->vd_version = H_GET_16 (abfd, src->vd_version);
73 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
74 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
75 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
76 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
77 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
78 dst->vd_next = H_GET_32 (abfd, src->vd_next);
79 }
80
81 /* Swap out a Verdef structure. */
82
83 void
84 _bfd_elf_swap_verdef_out (bfd *abfd,
85 const Elf_Internal_Verdef *src,
86 Elf_External_Verdef *dst)
87 {
88 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
89 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
90 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
91 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
92 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
93 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
94 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
95 }
96
97 /* Swap in a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_in (bfd *abfd,
101 const Elf_External_Verdaux *src,
102 Elf_Internal_Verdaux *dst)
103 {
104 dst->vda_name = H_GET_32 (abfd, src->vda_name);
105 dst->vda_next = H_GET_32 (abfd, src->vda_next);
106 }
107
108 /* Swap out a Verdaux structure. */
109
110 void
111 _bfd_elf_swap_verdaux_out (bfd *abfd,
112 const Elf_Internal_Verdaux *src,
113 Elf_External_Verdaux *dst)
114 {
115 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
116 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
117 }
118
119 /* Swap in a Verneed structure. */
120
121 void
122 _bfd_elf_swap_verneed_in (bfd *abfd,
123 const Elf_External_Verneed *src,
124 Elf_Internal_Verneed *dst)
125 {
126 dst->vn_version = H_GET_16 (abfd, src->vn_version);
127 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
128 dst->vn_file = H_GET_32 (abfd, src->vn_file);
129 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
130 dst->vn_next = H_GET_32 (abfd, src->vn_next);
131 }
132
133 /* Swap out a Verneed structure. */
134
135 void
136 _bfd_elf_swap_verneed_out (bfd *abfd,
137 const Elf_Internal_Verneed *src,
138 Elf_External_Verneed *dst)
139 {
140 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
141 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
142 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
143 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
144 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
145 }
146
147 /* Swap in a Vernaux structure. */
148
149 void
150 _bfd_elf_swap_vernaux_in (bfd *abfd,
151 const Elf_External_Vernaux *src,
152 Elf_Internal_Vernaux *dst)
153 {
154 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
155 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
156 dst->vna_other = H_GET_16 (abfd, src->vna_other);
157 dst->vna_name = H_GET_32 (abfd, src->vna_name);
158 dst->vna_next = H_GET_32 (abfd, src->vna_next);
159 }
160
161 /* Swap out a Vernaux structure. */
162
163 void
164 _bfd_elf_swap_vernaux_out (bfd *abfd,
165 const Elf_Internal_Vernaux *src,
166 Elf_External_Vernaux *dst)
167 {
168 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
169 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
170 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
171 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
172 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
173 }
174
175 /* Swap in a Versym structure. */
176
177 void
178 _bfd_elf_swap_versym_in (bfd *abfd,
179 const Elf_External_Versym *src,
180 Elf_Internal_Versym *dst)
181 {
182 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
183 }
184
185 /* Swap out a Versym structure. */
186
187 void
188 _bfd_elf_swap_versym_out (bfd *abfd,
189 const Elf_Internal_Versym *src,
190 Elf_External_Versym *dst)
191 {
192 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
193 }
194
195 /* Standard ELF hash function. Do not change this function; you will
196 cause invalid hash tables to be generated. */
197
198 unsigned long
199 bfd_elf_hash (const char *namearg)
200 {
201 const unsigned char *name = (const unsigned char *) namearg;
202 unsigned long h = 0;
203 unsigned long g;
204 int ch;
205
206 while ((ch = *name++) != '\0')
207 {
208 h = (h << 4) + ch;
209 if ((g = (h & 0xf0000000)) != 0)
210 {
211 h ^= g >> 24;
212 /* The ELF ABI says `h &= ~g', but this is equivalent in
213 this case and on some machines one insn instead of two. */
214 h ^= g;
215 }
216 }
217 return h & 0xffffffff;
218 }
219
220 /* DT_GNU_HASH hash function. Do not change this function; you will
221 cause invalid hash tables to be generated. */
222
223 unsigned long
224 bfd_elf_gnu_hash (const char *namearg)
225 {
226 const unsigned char *name = (const unsigned char *) namearg;
227 unsigned long h = 5381;
228 unsigned char ch;
229
230 while ((ch = *name++) != '\0')
231 h = (h << 5) + h + ch;
232 return h & 0xffffffff;
233 }
234
235 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
236 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
237 bfd_boolean
238 bfd_elf_allocate_object (bfd *abfd,
239 size_t object_size,
240 enum elf_target_id object_id)
241 {
242 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
243 abfd->tdata.any = bfd_zalloc (abfd, object_size);
244 if (abfd->tdata.any == NULL)
245 return FALSE;
246
247 elf_object_id (abfd) = object_id;
248 if (abfd->direction != read_direction)
249 {
250 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
251 if (o == NULL)
252 return FALSE;
253 elf_tdata (abfd)->o = o;
254 elf_program_header_size (abfd) = (bfd_size_type) -1;
255 }
256 return TRUE;
257 }
258
259
260 bfd_boolean
261 bfd_elf_make_object (bfd *abfd)
262 {
263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
264 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
265 bed->target_id);
266 }
267
268 bfd_boolean
269 bfd_elf_mkcorefile (bfd *abfd)
270 {
271 /* I think this can be done just like an object file. */
272 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
273 return FALSE;
274 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
275 return elf_tdata (abfd)->core != NULL;
276 }
277
278 static char *
279 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
280 {
281 Elf_Internal_Shdr **i_shdrp;
282 bfd_byte *shstrtab = NULL;
283 file_ptr offset;
284 bfd_size_type shstrtabsize;
285
286 i_shdrp = elf_elfsections (abfd);
287 if (i_shdrp == 0
288 || shindex >= elf_numsections (abfd)
289 || i_shdrp[shindex] == 0)
290 return NULL;
291
292 shstrtab = i_shdrp[shindex]->contents;
293 if (shstrtab == NULL)
294 {
295 /* No cached one, attempt to read, and cache what we read. */
296 offset = i_shdrp[shindex]->sh_offset;
297 shstrtabsize = i_shdrp[shindex]->sh_size;
298
299 /* Allocate and clear an extra byte at the end, to prevent crashes
300 in case the string table is not terminated. */
301 if (shstrtabsize + 1 <= 1
302 || shstrtabsize > bfd_get_file_size (abfd)
303 || bfd_seek (abfd, offset, SEEK_SET) != 0
304 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
305 shstrtab = NULL;
306 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
307 {
308 if (bfd_get_error () != bfd_error_system_call)
309 bfd_set_error (bfd_error_file_truncated);
310 bfd_release (abfd, shstrtab);
311 shstrtab = NULL;
312 /* Once we've failed to read it, make sure we don't keep
313 trying. Otherwise, we'll keep allocating space for
314 the string table over and over. */
315 i_shdrp[shindex]->sh_size = 0;
316 }
317 else
318 shstrtab[shstrtabsize] = '\0';
319 i_shdrp[shindex]->contents = shstrtab;
320 }
321 return (char *) shstrtab;
322 }
323
324 char *
325 bfd_elf_string_from_elf_section (bfd *abfd,
326 unsigned int shindex,
327 unsigned int strindex)
328 {
329 Elf_Internal_Shdr *hdr;
330
331 if (strindex == 0)
332 return "";
333
334 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
335 return NULL;
336
337 hdr = elf_elfsections (abfd)[shindex];
338
339 if (hdr->contents == NULL)
340 {
341 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
342 {
343 /* PR 17512: file: f057ec89. */
344 /* xgettext:c-format */
345 _bfd_error_handler (_("%pB: attempt to load strings from"
346 " a non-string section (number %d)"),
347 abfd, shindex);
348 return NULL;
349 }
350
351 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
352 return NULL;
353 }
354
355 if (strindex >= hdr->sh_size)
356 {
357 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
358 _bfd_error_handler
359 /* xgettext:c-format */
360 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
361 abfd, strindex, (uint64_t) hdr->sh_size,
362 (shindex == shstrndx && strindex == hdr->sh_name
363 ? ".shstrtab"
364 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
365 return NULL;
366 }
367
368 return ((char *) hdr->contents) + strindex;
369 }
370
371 /* Read and convert symbols to internal format.
372 SYMCOUNT specifies the number of symbols to read, starting from
373 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
374 are non-NULL, they are used to store the internal symbols, external
375 symbols, and symbol section index extensions, respectively.
376 Returns a pointer to the internal symbol buffer (malloced if necessary)
377 or NULL if there were no symbols or some kind of problem. */
378
379 Elf_Internal_Sym *
380 bfd_elf_get_elf_syms (bfd *ibfd,
381 Elf_Internal_Shdr *symtab_hdr,
382 size_t symcount,
383 size_t symoffset,
384 Elf_Internal_Sym *intsym_buf,
385 void *extsym_buf,
386 Elf_External_Sym_Shndx *extshndx_buf)
387 {
388 Elf_Internal_Shdr *shndx_hdr;
389 void *alloc_ext;
390 const bfd_byte *esym;
391 Elf_External_Sym_Shndx *alloc_extshndx;
392 Elf_External_Sym_Shndx *shndx;
393 Elf_Internal_Sym *alloc_intsym;
394 Elf_Internal_Sym *isym;
395 Elf_Internal_Sym *isymend;
396 const struct elf_backend_data *bed;
397 size_t extsym_size;
398 bfd_size_type amt;
399 file_ptr pos;
400
401 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
402 abort ();
403
404 if (symcount == 0)
405 return intsym_buf;
406
407 /* Normal syms might have section extension entries. */
408 shndx_hdr = NULL;
409 if (elf_symtab_shndx_list (ibfd) != NULL)
410 {
411 elf_section_list * entry;
412 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
413
414 /* Find an index section that is linked to this symtab section. */
415 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
416 {
417 /* PR 20063. */
418 if (entry->hdr.sh_link >= elf_numsections (ibfd))
419 continue;
420
421 if (sections[entry->hdr.sh_link] == symtab_hdr)
422 {
423 shndx_hdr = & entry->hdr;
424 break;
425 };
426 }
427
428 if (shndx_hdr == NULL)
429 {
430 if (symtab_hdr == & elf_symtab_hdr (ibfd))
431 /* Not really accurate, but this was how the old code used to work. */
432 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
433 /* Otherwise we do nothing. The assumption is that
434 the index table will not be needed. */
435 }
436 }
437
438 /* Read the symbols. */
439 alloc_ext = NULL;
440 alloc_extshndx = NULL;
441 alloc_intsym = NULL;
442 bed = get_elf_backend_data (ibfd);
443 extsym_size = bed->s->sizeof_sym;
444 amt = (bfd_size_type) symcount * extsym_size;
445 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
446 if (extsym_buf == NULL)
447 {
448 alloc_ext = bfd_malloc2 (symcount, extsym_size);
449 extsym_buf = alloc_ext;
450 }
451 if (extsym_buf == NULL
452 || bfd_seek (ibfd, pos, SEEK_SET) != 0
453 || bfd_bread (extsym_buf, amt, ibfd) != amt)
454 {
455 intsym_buf = NULL;
456 goto out;
457 }
458
459 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
460 extshndx_buf = NULL;
461 else
462 {
463 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
464 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
465 if (extshndx_buf == NULL)
466 {
467 alloc_extshndx = (Elf_External_Sym_Shndx *)
468 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
469 extshndx_buf = alloc_extshndx;
470 }
471 if (extshndx_buf == NULL
472 || bfd_seek (ibfd, pos, SEEK_SET) != 0
473 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
474 {
475 intsym_buf = NULL;
476 goto out;
477 }
478 }
479
480 if (intsym_buf == NULL)
481 {
482 alloc_intsym = (Elf_Internal_Sym *)
483 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
484 intsym_buf = alloc_intsym;
485 if (intsym_buf == NULL)
486 goto out;
487 }
488
489 /* Convert the symbols to internal form. */
490 isymend = intsym_buf + symcount;
491 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
492 shndx = extshndx_buf;
493 isym < isymend;
494 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
495 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
496 {
497 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
498 /* xgettext:c-format */
499 _bfd_error_handler (_("%pB symbol number %lu references"
500 " nonexistent SHT_SYMTAB_SHNDX section"),
501 ibfd, (unsigned long) symoffset);
502 if (alloc_intsym != NULL)
503 free (alloc_intsym);
504 intsym_buf = NULL;
505 goto out;
506 }
507
508 out:
509 if (alloc_ext != NULL)
510 free (alloc_ext);
511 if (alloc_extshndx != NULL)
512 free (alloc_extshndx);
513
514 return intsym_buf;
515 }
516
517 /* Look up a symbol name. */
518 const char *
519 bfd_elf_sym_name (bfd *abfd,
520 Elf_Internal_Shdr *symtab_hdr,
521 Elf_Internal_Sym *isym,
522 asection *sym_sec)
523 {
524 const char *name;
525 unsigned int iname = isym->st_name;
526 unsigned int shindex = symtab_hdr->sh_link;
527
528 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
529 /* Check for a bogus st_shndx to avoid crashing. */
530 && isym->st_shndx < elf_numsections (abfd))
531 {
532 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
533 shindex = elf_elfheader (abfd)->e_shstrndx;
534 }
535
536 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
537 if (name == NULL)
538 name = "(null)";
539 else if (sym_sec && *name == '\0')
540 name = bfd_section_name (abfd, sym_sec);
541
542 return name;
543 }
544
545 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
546 sections. The first element is the flags, the rest are section
547 pointers. */
548
549 typedef union elf_internal_group {
550 Elf_Internal_Shdr *shdr;
551 unsigned int flags;
552 } Elf_Internal_Group;
553
554 /* Return the name of the group signature symbol. Why isn't the
555 signature just a string? */
556
557 static const char *
558 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
559 {
560 Elf_Internal_Shdr *hdr;
561 unsigned char esym[sizeof (Elf64_External_Sym)];
562 Elf_External_Sym_Shndx eshndx;
563 Elf_Internal_Sym isym;
564
565 /* First we need to ensure the symbol table is available. Make sure
566 that it is a symbol table section. */
567 if (ghdr->sh_link >= elf_numsections (abfd))
568 return NULL;
569 hdr = elf_elfsections (abfd) [ghdr->sh_link];
570 if (hdr->sh_type != SHT_SYMTAB
571 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
572 return NULL;
573
574 /* Go read the symbol. */
575 hdr = &elf_tdata (abfd)->symtab_hdr;
576 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
577 &isym, esym, &eshndx) == NULL)
578 return NULL;
579
580 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
581 }
582
583 /* Set next_in_group list pointer, and group name for NEWSECT. */
584
585 static bfd_boolean
586 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
587 {
588 unsigned int num_group = elf_tdata (abfd)->num_group;
589
590 /* If num_group is zero, read in all SHT_GROUP sections. The count
591 is set to -1 if there are no SHT_GROUP sections. */
592 if (num_group == 0)
593 {
594 unsigned int i, shnum;
595
596 /* First count the number of groups. If we have a SHT_GROUP
597 section with just a flag word (ie. sh_size is 4), ignore it. */
598 shnum = elf_numsections (abfd);
599 num_group = 0;
600
601 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
602 ( (shdr)->sh_type == SHT_GROUP \
603 && (shdr)->sh_size >= minsize \
604 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
605 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
606
607 for (i = 0; i < shnum; i++)
608 {
609 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
610
611 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
612 num_group += 1;
613 }
614
615 if (num_group == 0)
616 {
617 num_group = (unsigned) -1;
618 elf_tdata (abfd)->num_group = num_group;
619 elf_tdata (abfd)->group_sect_ptr = NULL;
620 }
621 else
622 {
623 /* We keep a list of elf section headers for group sections,
624 so we can find them quickly. */
625 bfd_size_type amt;
626
627 elf_tdata (abfd)->num_group = num_group;
628 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
629 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
630 if (elf_tdata (abfd)->group_sect_ptr == NULL)
631 return FALSE;
632 memset (elf_tdata (abfd)->group_sect_ptr, 0,
633 num_group * sizeof (Elf_Internal_Shdr *));
634 num_group = 0;
635
636 for (i = 0; i < shnum; i++)
637 {
638 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
639
640 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
641 {
642 unsigned char *src;
643 Elf_Internal_Group *dest;
644
645 /* Make sure the group section has a BFD section
646 attached to it. */
647 if (!bfd_section_from_shdr (abfd, i))
648 return FALSE;
649
650 /* Add to list of sections. */
651 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
652 num_group += 1;
653
654 /* Read the raw contents. */
655 BFD_ASSERT (sizeof (*dest) >= 4);
656 amt = shdr->sh_size * sizeof (*dest) / 4;
657 shdr->contents = (unsigned char *)
658 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
659 /* PR binutils/4110: Handle corrupt group headers. */
660 if (shdr->contents == NULL)
661 {
662 _bfd_error_handler
663 /* xgettext:c-format */
664 (_("%pB: corrupt size field in group section"
665 " header: %#" PRIx64),
666 abfd, (uint64_t) shdr->sh_size);
667 bfd_set_error (bfd_error_bad_value);
668 -- num_group;
669 continue;
670 }
671
672 memset (shdr->contents, 0, amt);
673
674 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
675 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
676 != shdr->sh_size))
677 {
678 _bfd_error_handler
679 /* xgettext:c-format */
680 (_("%pB: invalid size field in group section"
681 " header: %#" PRIx64 ""),
682 abfd, (uint64_t) shdr->sh_size);
683 bfd_set_error (bfd_error_bad_value);
684 -- num_group;
685 /* PR 17510: If the group contents are even
686 partially corrupt, do not allow any of the
687 contents to be used. */
688 memset (shdr->contents, 0, amt);
689 continue;
690 }
691
692 /* Translate raw contents, a flag word followed by an
693 array of elf section indices all in target byte order,
694 to the flag word followed by an array of elf section
695 pointers. */
696 src = shdr->contents + shdr->sh_size;
697 dest = (Elf_Internal_Group *) (shdr->contents + amt);
698
699 while (1)
700 {
701 unsigned int idx;
702
703 src -= 4;
704 --dest;
705 idx = H_GET_32 (abfd, src);
706 if (src == shdr->contents)
707 {
708 dest->flags = idx;
709 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
710 shdr->bfd_section->flags
711 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
712 break;
713 }
714 if (idx < shnum)
715 {
716 dest->shdr = elf_elfsections (abfd)[idx];
717 /* PR binutils/23199: All sections in a
718 section group should be marked with
719 SHF_GROUP. But some tools generate
720 broken objects without SHF_GROUP. Fix
721 them up here. */
722 dest->shdr->sh_flags |= SHF_GROUP;
723 }
724 if (idx >= shnum
725 || dest->shdr->sh_type == SHT_GROUP)
726 {
727 _bfd_error_handler
728 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
729 abfd, i);
730 dest->shdr = NULL;
731 }
732 }
733 }
734 }
735
736 /* PR 17510: Corrupt binaries might contain invalid groups. */
737 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
738 {
739 elf_tdata (abfd)->num_group = num_group;
740
741 /* If all groups are invalid then fail. */
742 if (num_group == 0)
743 {
744 elf_tdata (abfd)->group_sect_ptr = NULL;
745 elf_tdata (abfd)->num_group = num_group = -1;
746 _bfd_error_handler
747 (_("%pB: no valid group sections found"), abfd);
748 bfd_set_error (bfd_error_bad_value);
749 }
750 }
751 }
752 }
753
754 if (num_group != (unsigned) -1)
755 {
756 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
757 unsigned int j;
758
759 for (j = 0; j < num_group; j++)
760 {
761 /* Begin search from previous found group. */
762 unsigned i = (j + search_offset) % num_group;
763
764 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
765 Elf_Internal_Group *idx;
766 bfd_size_type n_elt;
767
768 if (shdr == NULL)
769 continue;
770
771 idx = (Elf_Internal_Group *) shdr->contents;
772 if (idx == NULL || shdr->sh_size < 4)
773 {
774 /* See PR 21957 for a reproducer. */
775 /* xgettext:c-format */
776 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
777 abfd, shdr->bfd_section);
778 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
779 bfd_set_error (bfd_error_bad_value);
780 return FALSE;
781 }
782 n_elt = shdr->sh_size / 4;
783
784 /* Look through this group's sections to see if current
785 section is a member. */
786 while (--n_elt != 0)
787 if ((++idx)->shdr == hdr)
788 {
789 asection *s = NULL;
790
791 /* We are a member of this group. Go looking through
792 other members to see if any others are linked via
793 next_in_group. */
794 idx = (Elf_Internal_Group *) shdr->contents;
795 n_elt = shdr->sh_size / 4;
796 while (--n_elt != 0)
797 if ((++idx)->shdr != NULL
798 && (s = idx->shdr->bfd_section) != NULL
799 && elf_next_in_group (s) != NULL)
800 break;
801 if (n_elt != 0)
802 {
803 /* Snarf the group name from other member, and
804 insert current section in circular list. */
805 elf_group_name (newsect) = elf_group_name (s);
806 elf_next_in_group (newsect) = elf_next_in_group (s);
807 elf_next_in_group (s) = newsect;
808 }
809 else
810 {
811 const char *gname;
812
813 gname = group_signature (abfd, shdr);
814 if (gname == NULL)
815 return FALSE;
816 elf_group_name (newsect) = gname;
817
818 /* Start a circular list with one element. */
819 elf_next_in_group (newsect) = newsect;
820 }
821
822 /* If the group section has been created, point to the
823 new member. */
824 if (shdr->bfd_section != NULL)
825 elf_next_in_group (shdr->bfd_section) = newsect;
826
827 elf_tdata (abfd)->group_search_offset = i;
828 j = num_group - 1;
829 break;
830 }
831 }
832 }
833
834 if (elf_group_name (newsect) == NULL)
835 {
836 /* xgettext:c-format */
837 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
838 abfd, newsect);
839 return FALSE;
840 }
841 return TRUE;
842 }
843
844 bfd_boolean
845 _bfd_elf_setup_sections (bfd *abfd)
846 {
847 unsigned int i;
848 unsigned int num_group = elf_tdata (abfd)->num_group;
849 bfd_boolean result = TRUE;
850 asection *s;
851
852 /* Process SHF_LINK_ORDER. */
853 for (s = abfd->sections; s != NULL; s = s->next)
854 {
855 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
856 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
857 {
858 unsigned int elfsec = this_hdr->sh_link;
859 /* FIXME: The old Intel compiler and old strip/objcopy may
860 not set the sh_link or sh_info fields. Hence we could
861 get the situation where elfsec is 0. */
862 if (elfsec == 0)
863 {
864 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
865 if (bed->link_order_error_handler)
866 bed->link_order_error_handler
867 /* xgettext:c-format */
868 (_("%pB: warning: sh_link not set for section `%pA'"),
869 abfd, s);
870 }
871 else
872 {
873 asection *linksec = NULL;
874
875 if (elfsec < elf_numsections (abfd))
876 {
877 this_hdr = elf_elfsections (abfd)[elfsec];
878 linksec = this_hdr->bfd_section;
879 }
880
881 /* PR 1991, 2008:
882 Some strip/objcopy may leave an incorrect value in
883 sh_link. We don't want to proceed. */
884 if (linksec == NULL)
885 {
886 _bfd_error_handler
887 /* xgettext:c-format */
888 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
889 s->owner, elfsec, s);
890 result = FALSE;
891 }
892
893 elf_linked_to_section (s) = linksec;
894 }
895 }
896 else if (this_hdr->sh_type == SHT_GROUP
897 && elf_next_in_group (s) == NULL)
898 {
899 _bfd_error_handler
900 /* xgettext:c-format */
901 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
902 abfd, elf_section_data (s)->this_idx);
903 result = FALSE;
904 }
905 }
906
907 /* Process section groups. */
908 if (num_group == (unsigned) -1)
909 return result;
910
911 for (i = 0; i < num_group; i++)
912 {
913 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
914 Elf_Internal_Group *idx;
915 unsigned int n_elt;
916
917 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
918 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
919 {
920 _bfd_error_handler
921 /* xgettext:c-format */
922 (_("%pB: section group entry number %u is corrupt"),
923 abfd, i);
924 result = FALSE;
925 continue;
926 }
927
928 idx = (Elf_Internal_Group *) shdr->contents;
929 n_elt = shdr->sh_size / 4;
930
931 while (--n_elt != 0)
932 {
933 ++ idx;
934
935 if (idx->shdr == NULL)
936 continue;
937 else if (idx->shdr->bfd_section)
938 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
939 else if (idx->shdr->sh_type != SHT_RELA
940 && idx->shdr->sh_type != SHT_REL)
941 {
942 /* There are some unknown sections in the group. */
943 _bfd_error_handler
944 /* xgettext:c-format */
945 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
946 abfd,
947 idx->shdr->sh_type,
948 bfd_elf_string_from_elf_section (abfd,
949 (elf_elfheader (abfd)
950 ->e_shstrndx),
951 idx->shdr->sh_name),
952 shdr->bfd_section);
953 result = FALSE;
954 }
955 }
956 }
957
958 return result;
959 }
960
961 bfd_boolean
962 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
963 {
964 return elf_next_in_group (sec) != NULL;
965 }
966
967 static char *
968 convert_debug_to_zdebug (bfd *abfd, const char *name)
969 {
970 unsigned int len = strlen (name);
971 char *new_name = bfd_alloc (abfd, len + 2);
972 if (new_name == NULL)
973 return NULL;
974 new_name[0] = '.';
975 new_name[1] = 'z';
976 memcpy (new_name + 2, name + 1, len);
977 return new_name;
978 }
979
980 static char *
981 convert_zdebug_to_debug (bfd *abfd, const char *name)
982 {
983 unsigned int len = strlen (name);
984 char *new_name = bfd_alloc (abfd, len);
985 if (new_name == NULL)
986 return NULL;
987 new_name[0] = '.';
988 memcpy (new_name + 1, name + 2, len - 1);
989 return new_name;
990 }
991
992 /* Make a BFD section from an ELF section. We store a pointer to the
993 BFD section in the bfd_section field of the header. */
994
995 bfd_boolean
996 _bfd_elf_make_section_from_shdr (bfd *abfd,
997 Elf_Internal_Shdr *hdr,
998 const char *name,
999 int shindex)
1000 {
1001 asection *newsect;
1002 flagword flags;
1003 const struct elf_backend_data *bed;
1004
1005 if (hdr->bfd_section != NULL)
1006 return TRUE;
1007
1008 newsect = bfd_make_section_anyway (abfd, name);
1009 if (newsect == NULL)
1010 return FALSE;
1011
1012 hdr->bfd_section = newsect;
1013 elf_section_data (newsect)->this_hdr = *hdr;
1014 elf_section_data (newsect)->this_idx = shindex;
1015
1016 /* Always use the real type/flags. */
1017 elf_section_type (newsect) = hdr->sh_type;
1018 elf_section_flags (newsect) = hdr->sh_flags;
1019
1020 newsect->filepos = hdr->sh_offset;
1021
1022 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1023 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1024 || ! bfd_set_section_alignment (abfd, newsect,
1025 bfd_log2 (hdr->sh_addralign)))
1026 return FALSE;
1027
1028 flags = SEC_NO_FLAGS;
1029 if (hdr->sh_type != SHT_NOBITS)
1030 flags |= SEC_HAS_CONTENTS;
1031 if (hdr->sh_type == SHT_GROUP)
1032 flags |= SEC_GROUP;
1033 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1034 {
1035 flags |= SEC_ALLOC;
1036 if (hdr->sh_type != SHT_NOBITS)
1037 flags |= SEC_LOAD;
1038 }
1039 if ((hdr->sh_flags & SHF_WRITE) == 0)
1040 flags |= SEC_READONLY;
1041 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1042 flags |= SEC_CODE;
1043 else if ((flags & SEC_LOAD) != 0)
1044 flags |= SEC_DATA;
1045 if ((hdr->sh_flags & SHF_MERGE) != 0)
1046 {
1047 flags |= SEC_MERGE;
1048 newsect->entsize = hdr->sh_entsize;
1049 }
1050 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1051 flags |= SEC_STRINGS;
1052 if (hdr->sh_flags & SHF_GROUP)
1053 if (!setup_group (abfd, hdr, newsect))
1054 return FALSE;
1055 if ((hdr->sh_flags & SHF_TLS) != 0)
1056 flags |= SEC_THREAD_LOCAL;
1057 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1058 flags |= SEC_EXCLUDE;
1059
1060 if ((flags & SEC_ALLOC) == 0)
1061 {
1062 /* The debugging sections appear to be recognized only by name,
1063 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1064 if (name [0] == '.')
1065 {
1066 const char *p;
1067 int n;
1068 if (name[1] == 'd')
1069 p = ".debug", n = 6;
1070 else if (name[1] == 'g' && name[2] == 'n')
1071 p = ".gnu.linkonce.wi.", n = 17;
1072 else if (name[1] == 'g' && name[2] == 'd')
1073 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1074 else if (name[1] == 'l')
1075 p = ".line", n = 5;
1076 else if (name[1] == 's')
1077 p = ".stab", n = 5;
1078 else if (name[1] == 'z')
1079 p = ".zdebug", n = 7;
1080 else
1081 p = NULL, n = 0;
1082 if (p != NULL && strncmp (name, p, n) == 0)
1083 flags |= SEC_DEBUGGING;
1084 }
1085 }
1086
1087 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1088 only link a single copy of the section. This is used to support
1089 g++. g++ will emit each template expansion in its own section.
1090 The symbols will be defined as weak, so that multiple definitions
1091 are permitted. The GNU linker extension is to actually discard
1092 all but one of the sections. */
1093 if (CONST_STRNEQ (name, ".gnu.linkonce")
1094 && elf_next_in_group (newsect) == NULL)
1095 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1096
1097 bed = get_elf_backend_data (abfd);
1098 if (bed->elf_backend_section_flags)
1099 if (! bed->elf_backend_section_flags (&flags, hdr))
1100 return FALSE;
1101
1102 if (! bfd_set_section_flags (abfd, newsect, flags))
1103 return FALSE;
1104
1105 /* We do not parse the PT_NOTE segments as we are interested even in the
1106 separate debug info files which may have the segments offsets corrupted.
1107 PT_NOTEs from the core files are currently not parsed using BFD. */
1108 if (hdr->sh_type == SHT_NOTE)
1109 {
1110 bfd_byte *contents;
1111
1112 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1113 return FALSE;
1114
1115 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1116 hdr->sh_offset, hdr->sh_addralign);
1117 free (contents);
1118 }
1119
1120 if ((flags & SEC_ALLOC) != 0)
1121 {
1122 Elf_Internal_Phdr *phdr;
1123 unsigned int i, nload;
1124
1125 /* Some ELF linkers produce binaries with all the program header
1126 p_paddr fields zero. If we have such a binary with more than
1127 one PT_LOAD header, then leave the section lma equal to vma
1128 so that we don't create sections with overlapping lma. */
1129 phdr = elf_tdata (abfd)->phdr;
1130 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1131 if (phdr->p_paddr != 0)
1132 break;
1133 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1134 ++nload;
1135 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1136 return TRUE;
1137
1138 phdr = elf_tdata (abfd)->phdr;
1139 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1140 {
1141 if (((phdr->p_type == PT_LOAD
1142 && (hdr->sh_flags & SHF_TLS) == 0)
1143 || phdr->p_type == PT_TLS)
1144 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1145 {
1146 if ((flags & SEC_LOAD) == 0)
1147 newsect->lma = (phdr->p_paddr
1148 + hdr->sh_addr - phdr->p_vaddr);
1149 else
1150 /* We used to use the same adjustment for SEC_LOAD
1151 sections, but that doesn't work if the segment
1152 is packed with code from multiple VMAs.
1153 Instead we calculate the section LMA based on
1154 the segment LMA. It is assumed that the
1155 segment will contain sections with contiguous
1156 LMAs, even if the VMAs are not. */
1157 newsect->lma = (phdr->p_paddr
1158 + hdr->sh_offset - phdr->p_offset);
1159
1160 /* With contiguous segments, we can't tell from file
1161 offsets whether a section with zero size should
1162 be placed at the end of one segment or the
1163 beginning of the next. Decide based on vaddr. */
1164 if (hdr->sh_addr >= phdr->p_vaddr
1165 && (hdr->sh_addr + hdr->sh_size
1166 <= phdr->p_vaddr + phdr->p_memsz))
1167 break;
1168 }
1169 }
1170 }
1171
1172 /* Compress/decompress DWARF debug sections with names: .debug_* and
1173 .zdebug_*, after the section flags is set. */
1174 if ((flags & SEC_DEBUGGING)
1175 && ((name[1] == 'd' && name[6] == '_')
1176 || (name[1] == 'z' && name[7] == '_')))
1177 {
1178 enum { nothing, compress, decompress } action = nothing;
1179 int compression_header_size;
1180 bfd_size_type uncompressed_size;
1181 unsigned int uncompressed_align_power;
1182 bfd_boolean compressed
1183 = bfd_is_section_compressed_with_header (abfd, newsect,
1184 &compression_header_size,
1185 &uncompressed_size,
1186 &uncompressed_align_power);
1187 if (compressed)
1188 {
1189 /* Compressed section. Check if we should decompress. */
1190 if ((abfd->flags & BFD_DECOMPRESS))
1191 action = decompress;
1192 }
1193
1194 /* Compress the uncompressed section or convert from/to .zdebug*
1195 section. Check if we should compress. */
1196 if (action == nothing)
1197 {
1198 if (newsect->size != 0
1199 && (abfd->flags & BFD_COMPRESS)
1200 && compression_header_size >= 0
1201 && uncompressed_size > 0
1202 && (!compressed
1203 || ((compression_header_size > 0)
1204 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1205 action = compress;
1206 else
1207 return TRUE;
1208 }
1209
1210 if (action == compress)
1211 {
1212 if (!bfd_init_section_compress_status (abfd, newsect))
1213 {
1214 _bfd_error_handler
1215 /* xgettext:c-format */
1216 (_("%pB: unable to initialize compress status for section %s"),
1217 abfd, name);
1218 return FALSE;
1219 }
1220 }
1221 else
1222 {
1223 if (!bfd_init_section_decompress_status (abfd, newsect))
1224 {
1225 _bfd_error_handler
1226 /* xgettext:c-format */
1227 (_("%pB: unable to initialize decompress status for section %s"),
1228 abfd, name);
1229 return FALSE;
1230 }
1231 }
1232
1233 if (abfd->is_linker_input)
1234 {
1235 if (name[1] == 'z'
1236 && (action == decompress
1237 || (action == compress
1238 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1239 {
1240 /* Convert section name from .zdebug_* to .debug_* so
1241 that linker will consider this section as a debug
1242 section. */
1243 char *new_name = convert_zdebug_to_debug (abfd, name);
1244 if (new_name == NULL)
1245 return FALSE;
1246 bfd_rename_section (abfd, newsect, new_name);
1247 }
1248 }
1249 else
1250 /* For objdump, don't rename the section. For objcopy, delay
1251 section rename to elf_fake_sections. */
1252 newsect->flags |= SEC_ELF_RENAME;
1253 }
1254
1255 return TRUE;
1256 }
1257
1258 const char *const bfd_elf_section_type_names[] =
1259 {
1260 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1261 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1262 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1263 };
1264
1265 /* ELF relocs are against symbols. If we are producing relocatable
1266 output, and the reloc is against an external symbol, and nothing
1267 has given us any additional addend, the resulting reloc will also
1268 be against the same symbol. In such a case, we don't want to
1269 change anything about the way the reloc is handled, since it will
1270 all be done at final link time. Rather than put special case code
1271 into bfd_perform_relocation, all the reloc types use this howto
1272 function. It just short circuits the reloc if producing
1273 relocatable output against an external symbol. */
1274
1275 bfd_reloc_status_type
1276 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1277 arelent *reloc_entry,
1278 asymbol *symbol,
1279 void *data ATTRIBUTE_UNUSED,
1280 asection *input_section,
1281 bfd *output_bfd,
1282 char **error_message ATTRIBUTE_UNUSED)
1283 {
1284 if (output_bfd != NULL
1285 && (symbol->flags & BSF_SECTION_SYM) == 0
1286 && (! reloc_entry->howto->partial_inplace
1287 || reloc_entry->addend == 0))
1288 {
1289 reloc_entry->address += input_section->output_offset;
1290 return bfd_reloc_ok;
1291 }
1292
1293 return bfd_reloc_continue;
1294 }
1295 \f
1296 /* Returns TRUE if section A matches section B.
1297 Names, addresses and links may be different, but everything else
1298 should be the same. */
1299
1300 static bfd_boolean
1301 section_match (const Elf_Internal_Shdr * a,
1302 const Elf_Internal_Shdr * b)
1303 {
1304 if (a->sh_type != b->sh_type
1305 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1306 || a->sh_addralign != b->sh_addralign
1307 || a->sh_entsize != b->sh_entsize)
1308 return FALSE;
1309 if (a->sh_type == SHT_SYMTAB
1310 || a->sh_type == SHT_STRTAB)
1311 return TRUE;
1312 return a->sh_size == b->sh_size;
1313 }
1314
1315 /* Find a section in OBFD that has the same characteristics
1316 as IHEADER. Return the index of this section or SHN_UNDEF if
1317 none can be found. Check's section HINT first, as this is likely
1318 to be the correct section. */
1319
1320 static unsigned int
1321 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1322 const unsigned int hint)
1323 {
1324 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1325 unsigned int i;
1326
1327 BFD_ASSERT (iheader != NULL);
1328
1329 /* See PR 20922 for a reproducer of the NULL test. */
1330 if (hint < elf_numsections (obfd)
1331 && oheaders[hint] != NULL
1332 && section_match (oheaders[hint], iheader))
1333 return hint;
1334
1335 for (i = 1; i < elf_numsections (obfd); i++)
1336 {
1337 Elf_Internal_Shdr * oheader = oheaders[i];
1338
1339 if (oheader == NULL)
1340 continue;
1341 if (section_match (oheader, iheader))
1342 /* FIXME: Do we care if there is a potential for
1343 multiple matches ? */
1344 return i;
1345 }
1346
1347 return SHN_UNDEF;
1348 }
1349
1350 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1351 Processor specific section, based upon a matching input section.
1352 Returns TRUE upon success, FALSE otherwise. */
1353
1354 static bfd_boolean
1355 copy_special_section_fields (const bfd *ibfd,
1356 bfd *obfd,
1357 const Elf_Internal_Shdr *iheader,
1358 Elf_Internal_Shdr *oheader,
1359 const unsigned int secnum)
1360 {
1361 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1362 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1363 bfd_boolean changed = FALSE;
1364 unsigned int sh_link;
1365
1366 if (oheader->sh_type == SHT_NOBITS)
1367 {
1368 /* This is a feature for objcopy --only-keep-debug:
1369 When a section's type is changed to NOBITS, we preserve
1370 the sh_link and sh_info fields so that they can be
1371 matched up with the original.
1372
1373 Note: Strictly speaking these assignments are wrong.
1374 The sh_link and sh_info fields should point to the
1375 relevent sections in the output BFD, which may not be in
1376 the same location as they were in the input BFD. But
1377 the whole point of this action is to preserve the
1378 original values of the sh_link and sh_info fields, so
1379 that they can be matched up with the section headers in
1380 the original file. So strictly speaking we may be
1381 creating an invalid ELF file, but it is only for a file
1382 that just contains debug info and only for sections
1383 without any contents. */
1384 if (oheader->sh_link == 0)
1385 oheader->sh_link = iheader->sh_link;
1386 if (oheader->sh_info == 0)
1387 oheader->sh_info = iheader->sh_info;
1388 return TRUE;
1389 }
1390
1391 /* Allow the target a chance to decide how these fields should be set. */
1392 if (bed->elf_backend_copy_special_section_fields != NULL
1393 && bed->elf_backend_copy_special_section_fields
1394 (ibfd, obfd, iheader, oheader))
1395 return TRUE;
1396
1397 /* We have an iheader which might match oheader, and which has non-zero
1398 sh_info and/or sh_link fields. Attempt to follow those links and find
1399 the section in the output bfd which corresponds to the linked section
1400 in the input bfd. */
1401 if (iheader->sh_link != SHN_UNDEF)
1402 {
1403 /* See PR 20931 for a reproducer. */
1404 if (iheader->sh_link >= elf_numsections (ibfd))
1405 {
1406 _bfd_error_handler
1407 /* xgettext:c-format */
1408 (_("%pB: invalid sh_link field (%d) in section number %d"),
1409 ibfd, iheader->sh_link, secnum);
1410 return FALSE;
1411 }
1412
1413 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1414 if (sh_link != SHN_UNDEF)
1415 {
1416 oheader->sh_link = sh_link;
1417 changed = TRUE;
1418 }
1419 else
1420 /* FIXME: Should we install iheader->sh_link
1421 if we could not find a match ? */
1422 _bfd_error_handler
1423 /* xgettext:c-format */
1424 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1425 }
1426
1427 if (iheader->sh_info)
1428 {
1429 /* The sh_info field can hold arbitrary information, but if the
1430 SHF_LINK_INFO flag is set then it should be interpreted as a
1431 section index. */
1432 if (iheader->sh_flags & SHF_INFO_LINK)
1433 {
1434 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1435 iheader->sh_info);
1436 if (sh_link != SHN_UNDEF)
1437 oheader->sh_flags |= SHF_INFO_LINK;
1438 }
1439 else
1440 /* No idea what it means - just copy it. */
1441 sh_link = iheader->sh_info;
1442
1443 if (sh_link != SHN_UNDEF)
1444 {
1445 oheader->sh_info = sh_link;
1446 changed = TRUE;
1447 }
1448 else
1449 _bfd_error_handler
1450 /* xgettext:c-format */
1451 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1452 }
1453
1454 return changed;
1455 }
1456
1457 /* Copy the program header and other data from one object module to
1458 another. */
1459
1460 bfd_boolean
1461 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1462 {
1463 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1464 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1465 const struct elf_backend_data *bed;
1466 unsigned int i;
1467
1468 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1469 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1470 return TRUE;
1471
1472 if (!elf_flags_init (obfd))
1473 {
1474 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1475 elf_flags_init (obfd) = TRUE;
1476 }
1477
1478 elf_gp (obfd) = elf_gp (ibfd);
1479
1480 /* Also copy the EI_OSABI field. */
1481 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1482 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1483
1484 /* If set, copy the EI_ABIVERSION field. */
1485 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1486 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1487 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1488
1489 /* Copy object attributes. */
1490 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1491
1492 if (iheaders == NULL || oheaders == NULL)
1493 return TRUE;
1494
1495 bed = get_elf_backend_data (obfd);
1496
1497 /* Possibly copy other fields in the section header. */
1498 for (i = 1; i < elf_numsections (obfd); i++)
1499 {
1500 unsigned int j;
1501 Elf_Internal_Shdr * oheader = oheaders[i];
1502
1503 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1504 because of a special case need for generating separate debug info
1505 files. See below for more details. */
1506 if (oheader == NULL
1507 || (oheader->sh_type != SHT_NOBITS
1508 && oheader->sh_type < SHT_LOOS))
1509 continue;
1510
1511 /* Ignore empty sections, and sections whose
1512 fields have already been initialised. */
1513 if (oheader->sh_size == 0
1514 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1515 continue;
1516
1517 /* Scan for the matching section in the input bfd.
1518 First we try for a direct mapping between the input and output sections. */
1519 for (j = 1; j < elf_numsections (ibfd); j++)
1520 {
1521 const Elf_Internal_Shdr * iheader = iheaders[j];
1522
1523 if (iheader == NULL)
1524 continue;
1525
1526 if (oheader->bfd_section != NULL
1527 && iheader->bfd_section != NULL
1528 && iheader->bfd_section->output_section != NULL
1529 && iheader->bfd_section->output_section == oheader->bfd_section)
1530 {
1531 /* We have found a connection from the input section to the
1532 output section. Attempt to copy the header fields. If
1533 this fails then do not try any further sections - there
1534 should only be a one-to-one mapping between input and output. */
1535 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1536 j = elf_numsections (ibfd);
1537 break;
1538 }
1539 }
1540
1541 if (j < elf_numsections (ibfd))
1542 continue;
1543
1544 /* That failed. So try to deduce the corresponding input section.
1545 Unfortunately we cannot compare names as the output string table
1546 is empty, so instead we check size, address and type. */
1547 for (j = 1; j < elf_numsections (ibfd); j++)
1548 {
1549 const Elf_Internal_Shdr * iheader = iheaders[j];
1550
1551 if (iheader == NULL)
1552 continue;
1553
1554 /* Try matching fields in the input section's header.
1555 Since --only-keep-debug turns all non-debug sections into
1556 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1557 input type. */
1558 if ((oheader->sh_type == SHT_NOBITS
1559 || iheader->sh_type == oheader->sh_type)
1560 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1561 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1562 && iheader->sh_addralign == oheader->sh_addralign
1563 && iheader->sh_entsize == oheader->sh_entsize
1564 && iheader->sh_size == oheader->sh_size
1565 && iheader->sh_addr == oheader->sh_addr
1566 && (iheader->sh_info != oheader->sh_info
1567 || iheader->sh_link != oheader->sh_link))
1568 {
1569 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1570 break;
1571 }
1572 }
1573
1574 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1575 {
1576 /* Final attempt. Call the backend copy function
1577 with a NULL input section. */
1578 if (bed->elf_backend_copy_special_section_fields != NULL)
1579 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1580 }
1581 }
1582
1583 return TRUE;
1584 }
1585
1586 static const char *
1587 get_segment_type (unsigned int p_type)
1588 {
1589 const char *pt;
1590 switch (p_type)
1591 {
1592 case PT_NULL: pt = "NULL"; break;
1593 case PT_LOAD: pt = "LOAD"; break;
1594 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1595 case PT_INTERP: pt = "INTERP"; break;
1596 case PT_NOTE: pt = "NOTE"; break;
1597 case PT_SHLIB: pt = "SHLIB"; break;
1598 case PT_PHDR: pt = "PHDR"; break;
1599 case PT_TLS: pt = "TLS"; break;
1600 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1601 case PT_GNU_STACK: pt = "STACK"; break;
1602 case PT_GNU_RELRO: pt = "RELRO"; break;
1603 default: pt = NULL; break;
1604 }
1605 return pt;
1606 }
1607
1608 /* Print out the program headers. */
1609
1610 bfd_boolean
1611 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1612 {
1613 FILE *f = (FILE *) farg;
1614 Elf_Internal_Phdr *p;
1615 asection *s;
1616 bfd_byte *dynbuf = NULL;
1617
1618 p = elf_tdata (abfd)->phdr;
1619 if (p != NULL)
1620 {
1621 unsigned int i, c;
1622
1623 fprintf (f, _("\nProgram Header:\n"));
1624 c = elf_elfheader (abfd)->e_phnum;
1625 for (i = 0; i < c; i++, p++)
1626 {
1627 const char *pt = get_segment_type (p->p_type);
1628 char buf[20];
1629
1630 if (pt == NULL)
1631 {
1632 sprintf (buf, "0x%lx", p->p_type);
1633 pt = buf;
1634 }
1635 fprintf (f, "%8s off 0x", pt);
1636 bfd_fprintf_vma (abfd, f, p->p_offset);
1637 fprintf (f, " vaddr 0x");
1638 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1639 fprintf (f, " paddr 0x");
1640 bfd_fprintf_vma (abfd, f, p->p_paddr);
1641 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1642 fprintf (f, " filesz 0x");
1643 bfd_fprintf_vma (abfd, f, p->p_filesz);
1644 fprintf (f, " memsz 0x");
1645 bfd_fprintf_vma (abfd, f, p->p_memsz);
1646 fprintf (f, " flags %c%c%c",
1647 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1648 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1649 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1650 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1651 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1652 fprintf (f, "\n");
1653 }
1654 }
1655
1656 s = bfd_get_section_by_name (abfd, ".dynamic");
1657 if (s != NULL)
1658 {
1659 unsigned int elfsec;
1660 unsigned long shlink;
1661 bfd_byte *extdyn, *extdynend;
1662 size_t extdynsize;
1663 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1664
1665 fprintf (f, _("\nDynamic Section:\n"));
1666
1667 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1668 goto error_return;
1669
1670 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1671 if (elfsec == SHN_BAD)
1672 goto error_return;
1673 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1674
1675 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1676 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1677
1678 extdyn = dynbuf;
1679 /* PR 17512: file: 6f427532. */
1680 if (s->size < extdynsize)
1681 goto error_return;
1682 extdynend = extdyn + s->size;
1683 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1684 Fix range check. */
1685 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1686 {
1687 Elf_Internal_Dyn dyn;
1688 const char *name = "";
1689 char ab[20];
1690 bfd_boolean stringp;
1691 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1692
1693 (*swap_dyn_in) (abfd, extdyn, &dyn);
1694
1695 if (dyn.d_tag == DT_NULL)
1696 break;
1697
1698 stringp = FALSE;
1699 switch (dyn.d_tag)
1700 {
1701 default:
1702 if (bed->elf_backend_get_target_dtag)
1703 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1704
1705 if (!strcmp (name, ""))
1706 {
1707 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1708 name = ab;
1709 }
1710 break;
1711
1712 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1713 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1714 case DT_PLTGOT: name = "PLTGOT"; break;
1715 case DT_HASH: name = "HASH"; break;
1716 case DT_STRTAB: name = "STRTAB"; break;
1717 case DT_SYMTAB: name = "SYMTAB"; break;
1718 case DT_RELA: name = "RELA"; break;
1719 case DT_RELASZ: name = "RELASZ"; break;
1720 case DT_RELAENT: name = "RELAENT"; break;
1721 case DT_STRSZ: name = "STRSZ"; break;
1722 case DT_SYMENT: name = "SYMENT"; break;
1723 case DT_INIT: name = "INIT"; break;
1724 case DT_FINI: name = "FINI"; break;
1725 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1726 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1727 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1728 case DT_REL: name = "REL"; break;
1729 case DT_RELSZ: name = "RELSZ"; break;
1730 case DT_RELENT: name = "RELENT"; break;
1731 case DT_PLTREL: name = "PLTREL"; break;
1732 case DT_DEBUG: name = "DEBUG"; break;
1733 case DT_TEXTREL: name = "TEXTREL"; break;
1734 case DT_JMPREL: name = "JMPREL"; break;
1735 case DT_BIND_NOW: name = "BIND_NOW"; break;
1736 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1737 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1738 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1739 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1740 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1741 case DT_FLAGS: name = "FLAGS"; break;
1742 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1743 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1744 case DT_CHECKSUM: name = "CHECKSUM"; break;
1745 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1746 case DT_MOVEENT: name = "MOVEENT"; break;
1747 case DT_MOVESZ: name = "MOVESZ"; break;
1748 case DT_FEATURE: name = "FEATURE"; break;
1749 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1750 case DT_SYMINSZ: name = "SYMINSZ"; break;
1751 case DT_SYMINENT: name = "SYMINENT"; break;
1752 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1753 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1754 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1755 case DT_PLTPAD: name = "PLTPAD"; break;
1756 case DT_MOVETAB: name = "MOVETAB"; break;
1757 case DT_SYMINFO: name = "SYMINFO"; break;
1758 case DT_RELACOUNT: name = "RELACOUNT"; break;
1759 case DT_RELCOUNT: name = "RELCOUNT"; break;
1760 case DT_FLAGS_1: name = "FLAGS_1"; break;
1761 case DT_VERSYM: name = "VERSYM"; break;
1762 case DT_VERDEF: name = "VERDEF"; break;
1763 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1764 case DT_VERNEED: name = "VERNEED"; break;
1765 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1766 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1767 case DT_USED: name = "USED"; break;
1768 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1769 case DT_GNU_HASH: name = "GNU_HASH"; break;
1770 }
1771
1772 fprintf (f, " %-20s ", name);
1773 if (! stringp)
1774 {
1775 fprintf (f, "0x");
1776 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1777 }
1778 else
1779 {
1780 const char *string;
1781 unsigned int tagv = dyn.d_un.d_val;
1782
1783 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1784 if (string == NULL)
1785 goto error_return;
1786 fprintf (f, "%s", string);
1787 }
1788 fprintf (f, "\n");
1789 }
1790
1791 free (dynbuf);
1792 dynbuf = NULL;
1793 }
1794
1795 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1796 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1797 {
1798 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1799 return FALSE;
1800 }
1801
1802 if (elf_dynverdef (abfd) != 0)
1803 {
1804 Elf_Internal_Verdef *t;
1805
1806 fprintf (f, _("\nVersion definitions:\n"));
1807 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1808 {
1809 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1810 t->vd_flags, t->vd_hash,
1811 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1812 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1813 {
1814 Elf_Internal_Verdaux *a;
1815
1816 fprintf (f, "\t");
1817 for (a = t->vd_auxptr->vda_nextptr;
1818 a != NULL;
1819 a = a->vda_nextptr)
1820 fprintf (f, "%s ",
1821 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1822 fprintf (f, "\n");
1823 }
1824 }
1825 }
1826
1827 if (elf_dynverref (abfd) != 0)
1828 {
1829 Elf_Internal_Verneed *t;
1830
1831 fprintf (f, _("\nVersion References:\n"));
1832 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1833 {
1834 Elf_Internal_Vernaux *a;
1835
1836 fprintf (f, _(" required from %s:\n"),
1837 t->vn_filename ? t->vn_filename : "<corrupt>");
1838 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1839 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1840 a->vna_flags, a->vna_other,
1841 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1842 }
1843 }
1844
1845 return TRUE;
1846
1847 error_return:
1848 if (dynbuf != NULL)
1849 free (dynbuf);
1850 return FALSE;
1851 }
1852
1853 /* Get version string. */
1854
1855 const char *
1856 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1857 bfd_boolean *hidden)
1858 {
1859 const char *version_string = NULL;
1860 if (elf_dynversym (abfd) != 0
1861 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1862 {
1863 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1864
1865 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1866 vernum &= VERSYM_VERSION;
1867
1868 if (vernum == 0)
1869 version_string = "";
1870 else if (vernum == 1
1871 && (vernum > elf_tdata (abfd)->cverdefs
1872 || (elf_tdata (abfd)->verdef[0].vd_flags
1873 == VER_FLG_BASE)))
1874 version_string = "Base";
1875 else if (vernum <= elf_tdata (abfd)->cverdefs)
1876 version_string =
1877 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1878 else
1879 {
1880 Elf_Internal_Verneed *t;
1881
1882 version_string = _("<corrupt>");
1883 for (t = elf_tdata (abfd)->verref;
1884 t != NULL;
1885 t = t->vn_nextref)
1886 {
1887 Elf_Internal_Vernaux *a;
1888
1889 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1890 {
1891 if (a->vna_other == vernum)
1892 {
1893 version_string = a->vna_nodename;
1894 break;
1895 }
1896 }
1897 }
1898 }
1899 }
1900 return version_string;
1901 }
1902
1903 /* Display ELF-specific fields of a symbol. */
1904
1905 void
1906 bfd_elf_print_symbol (bfd *abfd,
1907 void *filep,
1908 asymbol *symbol,
1909 bfd_print_symbol_type how)
1910 {
1911 FILE *file = (FILE *) filep;
1912 switch (how)
1913 {
1914 case bfd_print_symbol_name:
1915 fprintf (file, "%s", symbol->name);
1916 break;
1917 case bfd_print_symbol_more:
1918 fprintf (file, "elf ");
1919 bfd_fprintf_vma (abfd, file, symbol->value);
1920 fprintf (file, " %x", symbol->flags);
1921 break;
1922 case bfd_print_symbol_all:
1923 {
1924 const char *section_name;
1925 const char *name = NULL;
1926 const struct elf_backend_data *bed;
1927 unsigned char st_other;
1928 bfd_vma val;
1929 const char *version_string;
1930 bfd_boolean hidden;
1931
1932 section_name = symbol->section ? symbol->section->name : "(*none*)";
1933
1934 bed = get_elf_backend_data (abfd);
1935 if (bed->elf_backend_print_symbol_all)
1936 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1937
1938 if (name == NULL)
1939 {
1940 name = symbol->name;
1941 bfd_print_symbol_vandf (abfd, file, symbol);
1942 }
1943
1944 fprintf (file, " %s\t", section_name);
1945 /* Print the "other" value for a symbol. For common symbols,
1946 we've already printed the size; now print the alignment.
1947 For other symbols, we have no specified alignment, and
1948 we've printed the address; now print the size. */
1949 if (symbol->section && bfd_is_com_section (symbol->section))
1950 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1951 else
1952 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1953 bfd_fprintf_vma (abfd, file, val);
1954
1955 /* If we have version information, print it. */
1956 version_string = _bfd_elf_get_symbol_version_string (abfd,
1957 symbol,
1958 &hidden);
1959 if (version_string)
1960 {
1961 if (!hidden)
1962 fprintf (file, " %-11s", version_string);
1963 else
1964 {
1965 int i;
1966
1967 fprintf (file, " (%s)", version_string);
1968 for (i = 10 - strlen (version_string); i > 0; --i)
1969 putc (' ', file);
1970 }
1971 }
1972
1973 /* If the st_other field is not zero, print it. */
1974 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1975
1976 switch (st_other)
1977 {
1978 case 0: break;
1979 case STV_INTERNAL: fprintf (file, " .internal"); break;
1980 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1981 case STV_PROTECTED: fprintf (file, " .protected"); break;
1982 default:
1983 /* Some other non-defined flags are also present, so print
1984 everything hex. */
1985 fprintf (file, " 0x%02x", (unsigned int) st_other);
1986 }
1987
1988 fprintf (file, " %s", name);
1989 }
1990 break;
1991 }
1992 }
1993 \f
1994 /* ELF .o/exec file reading */
1995
1996 /* Create a new bfd section from an ELF section header. */
1997
1998 bfd_boolean
1999 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2000 {
2001 Elf_Internal_Shdr *hdr;
2002 Elf_Internal_Ehdr *ehdr;
2003 const struct elf_backend_data *bed;
2004 const char *name;
2005 bfd_boolean ret = TRUE;
2006 static bfd_boolean * sections_being_created = NULL;
2007 static bfd * sections_being_created_abfd = NULL;
2008 static unsigned int nesting = 0;
2009
2010 if (shindex >= elf_numsections (abfd))
2011 return FALSE;
2012
2013 if (++ nesting > 3)
2014 {
2015 /* PR17512: A corrupt ELF binary might contain a recursive group of
2016 sections, with each the string indices pointing to the next in the
2017 loop. Detect this here, by refusing to load a section that we are
2018 already in the process of loading. We only trigger this test if
2019 we have nested at least three sections deep as normal ELF binaries
2020 can expect to recurse at least once.
2021
2022 FIXME: It would be better if this array was attached to the bfd,
2023 rather than being held in a static pointer. */
2024
2025 if (sections_being_created_abfd != abfd)
2026 sections_being_created = NULL;
2027 if (sections_being_created == NULL)
2028 {
2029 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
2030 sections_being_created = (bfd_boolean *)
2031 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
2032 sections_being_created_abfd = abfd;
2033 }
2034 if (sections_being_created [shindex])
2035 {
2036 _bfd_error_handler
2037 (_("%pB: warning: loop in section dependencies detected"), abfd);
2038 return FALSE;
2039 }
2040 sections_being_created [shindex] = TRUE;
2041 }
2042
2043 hdr = elf_elfsections (abfd)[shindex];
2044 ehdr = elf_elfheader (abfd);
2045 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2046 hdr->sh_name);
2047 if (name == NULL)
2048 goto fail;
2049
2050 bed = get_elf_backend_data (abfd);
2051 switch (hdr->sh_type)
2052 {
2053 case SHT_NULL:
2054 /* Inactive section. Throw it away. */
2055 goto success;
2056
2057 case SHT_PROGBITS: /* Normal section with contents. */
2058 case SHT_NOBITS: /* .bss section. */
2059 case SHT_HASH: /* .hash section. */
2060 case SHT_NOTE: /* .note section. */
2061 case SHT_INIT_ARRAY: /* .init_array section. */
2062 case SHT_FINI_ARRAY: /* .fini_array section. */
2063 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2064 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2065 case SHT_GNU_HASH: /* .gnu.hash section. */
2066 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2067 goto success;
2068
2069 case SHT_DYNAMIC: /* Dynamic linking information. */
2070 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2071 goto fail;
2072
2073 if (hdr->sh_link > elf_numsections (abfd))
2074 {
2075 /* PR 10478: Accept Solaris binaries with a sh_link
2076 field set to SHN_BEFORE or SHN_AFTER. */
2077 switch (bfd_get_arch (abfd))
2078 {
2079 case bfd_arch_i386:
2080 case bfd_arch_sparc:
2081 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2082 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2083 break;
2084 /* Otherwise fall through. */
2085 default:
2086 goto fail;
2087 }
2088 }
2089 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2090 goto fail;
2091 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2092 {
2093 Elf_Internal_Shdr *dynsymhdr;
2094
2095 /* The shared libraries distributed with hpux11 have a bogus
2096 sh_link field for the ".dynamic" section. Find the
2097 string table for the ".dynsym" section instead. */
2098 if (elf_dynsymtab (abfd) != 0)
2099 {
2100 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2101 hdr->sh_link = dynsymhdr->sh_link;
2102 }
2103 else
2104 {
2105 unsigned int i, num_sec;
2106
2107 num_sec = elf_numsections (abfd);
2108 for (i = 1; i < num_sec; i++)
2109 {
2110 dynsymhdr = elf_elfsections (abfd)[i];
2111 if (dynsymhdr->sh_type == SHT_DYNSYM)
2112 {
2113 hdr->sh_link = dynsymhdr->sh_link;
2114 break;
2115 }
2116 }
2117 }
2118 }
2119 goto success;
2120
2121 case SHT_SYMTAB: /* A symbol table. */
2122 if (elf_onesymtab (abfd) == shindex)
2123 goto success;
2124
2125 if (hdr->sh_entsize != bed->s->sizeof_sym)
2126 goto fail;
2127
2128 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2129 {
2130 if (hdr->sh_size != 0)
2131 goto fail;
2132 /* Some assemblers erroneously set sh_info to one with a
2133 zero sh_size. ld sees this as a global symbol count
2134 of (unsigned) -1. Fix it here. */
2135 hdr->sh_info = 0;
2136 goto success;
2137 }
2138
2139 /* PR 18854: A binary might contain more than one symbol table.
2140 Unusual, but possible. Warn, but continue. */
2141 if (elf_onesymtab (abfd) != 0)
2142 {
2143 _bfd_error_handler
2144 /* xgettext:c-format */
2145 (_("%pB: warning: multiple symbol tables detected"
2146 " - ignoring the table in section %u"),
2147 abfd, shindex);
2148 goto success;
2149 }
2150 elf_onesymtab (abfd) = shindex;
2151 elf_symtab_hdr (abfd) = *hdr;
2152 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2153 abfd->flags |= HAS_SYMS;
2154
2155 /* Sometimes a shared object will map in the symbol table. If
2156 SHF_ALLOC is set, and this is a shared object, then we also
2157 treat this section as a BFD section. We can not base the
2158 decision purely on SHF_ALLOC, because that flag is sometimes
2159 set in a relocatable object file, which would confuse the
2160 linker. */
2161 if ((hdr->sh_flags & SHF_ALLOC) != 0
2162 && (abfd->flags & DYNAMIC) != 0
2163 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2164 shindex))
2165 goto fail;
2166
2167 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2168 can't read symbols without that section loaded as well. It
2169 is most likely specified by the next section header. */
2170 {
2171 elf_section_list * entry;
2172 unsigned int i, num_sec;
2173
2174 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2175 if (entry->hdr.sh_link == shindex)
2176 goto success;
2177
2178 num_sec = elf_numsections (abfd);
2179 for (i = shindex + 1; i < num_sec; i++)
2180 {
2181 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2182
2183 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2184 && hdr2->sh_link == shindex)
2185 break;
2186 }
2187
2188 if (i == num_sec)
2189 for (i = 1; i < shindex; i++)
2190 {
2191 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2192
2193 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2194 && hdr2->sh_link == shindex)
2195 break;
2196 }
2197
2198 if (i != shindex)
2199 ret = bfd_section_from_shdr (abfd, i);
2200 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2201 goto success;
2202 }
2203
2204 case SHT_DYNSYM: /* A dynamic symbol table. */
2205 if (elf_dynsymtab (abfd) == shindex)
2206 goto success;
2207
2208 if (hdr->sh_entsize != bed->s->sizeof_sym)
2209 goto fail;
2210
2211 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2212 {
2213 if (hdr->sh_size != 0)
2214 goto fail;
2215
2216 /* Some linkers erroneously set sh_info to one with a
2217 zero sh_size. ld sees this as a global symbol count
2218 of (unsigned) -1. Fix it here. */
2219 hdr->sh_info = 0;
2220 goto success;
2221 }
2222
2223 /* PR 18854: A binary might contain more than one dynamic symbol table.
2224 Unusual, but possible. Warn, but continue. */
2225 if (elf_dynsymtab (abfd) != 0)
2226 {
2227 _bfd_error_handler
2228 /* xgettext:c-format */
2229 (_("%pB: warning: multiple dynamic symbol tables detected"
2230 " - ignoring the table in section %u"),
2231 abfd, shindex);
2232 goto success;
2233 }
2234 elf_dynsymtab (abfd) = shindex;
2235 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2236 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2237 abfd->flags |= HAS_SYMS;
2238
2239 /* Besides being a symbol table, we also treat this as a regular
2240 section, so that objcopy can handle it. */
2241 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2242 goto success;
2243
2244 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2245 {
2246 elf_section_list * entry;
2247
2248 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2249 if (entry->ndx == shindex)
2250 goto success;
2251
2252 entry = bfd_alloc (abfd, sizeof * entry);
2253 if (entry == NULL)
2254 goto fail;
2255 entry->ndx = shindex;
2256 entry->hdr = * hdr;
2257 entry->next = elf_symtab_shndx_list (abfd);
2258 elf_symtab_shndx_list (abfd) = entry;
2259 elf_elfsections (abfd)[shindex] = & entry->hdr;
2260 goto success;
2261 }
2262
2263 case SHT_STRTAB: /* A string table. */
2264 if (hdr->bfd_section != NULL)
2265 goto success;
2266
2267 if (ehdr->e_shstrndx == shindex)
2268 {
2269 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2270 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2271 goto success;
2272 }
2273
2274 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2275 {
2276 symtab_strtab:
2277 elf_tdata (abfd)->strtab_hdr = *hdr;
2278 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2279 goto success;
2280 }
2281
2282 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2283 {
2284 dynsymtab_strtab:
2285 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2286 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2287 elf_elfsections (abfd)[shindex] = hdr;
2288 /* We also treat this as a regular section, so that objcopy
2289 can handle it. */
2290 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2291 shindex);
2292 goto success;
2293 }
2294
2295 /* If the string table isn't one of the above, then treat it as a
2296 regular section. We need to scan all the headers to be sure,
2297 just in case this strtab section appeared before the above. */
2298 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2299 {
2300 unsigned int i, num_sec;
2301
2302 num_sec = elf_numsections (abfd);
2303 for (i = 1; i < num_sec; i++)
2304 {
2305 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2306 if (hdr2->sh_link == shindex)
2307 {
2308 /* Prevent endless recursion on broken objects. */
2309 if (i == shindex)
2310 goto fail;
2311 if (! bfd_section_from_shdr (abfd, i))
2312 goto fail;
2313 if (elf_onesymtab (abfd) == i)
2314 goto symtab_strtab;
2315 if (elf_dynsymtab (abfd) == i)
2316 goto dynsymtab_strtab;
2317 }
2318 }
2319 }
2320 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2321 goto success;
2322
2323 case SHT_REL:
2324 case SHT_RELA:
2325 /* *These* do a lot of work -- but build no sections! */
2326 {
2327 asection *target_sect;
2328 Elf_Internal_Shdr *hdr2, **p_hdr;
2329 unsigned int num_sec = elf_numsections (abfd);
2330 struct bfd_elf_section_data *esdt;
2331
2332 if (hdr->sh_entsize
2333 != (bfd_size_type) (hdr->sh_type == SHT_REL
2334 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2335 goto fail;
2336
2337 /* Check for a bogus link to avoid crashing. */
2338 if (hdr->sh_link >= num_sec)
2339 {
2340 _bfd_error_handler
2341 /* xgettext:c-format */
2342 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2343 abfd, hdr->sh_link, name, shindex);
2344 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2345 shindex);
2346 goto success;
2347 }
2348
2349 /* For some incomprehensible reason Oracle distributes
2350 libraries for Solaris in which some of the objects have
2351 bogus sh_link fields. It would be nice if we could just
2352 reject them, but, unfortunately, some people need to use
2353 them. We scan through the section headers; if we find only
2354 one suitable symbol table, we clobber the sh_link to point
2355 to it. I hope this doesn't break anything.
2356
2357 Don't do it on executable nor shared library. */
2358 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2359 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2360 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2361 {
2362 unsigned int scan;
2363 int found;
2364
2365 found = 0;
2366 for (scan = 1; scan < num_sec; scan++)
2367 {
2368 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2369 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2370 {
2371 if (found != 0)
2372 {
2373 found = 0;
2374 break;
2375 }
2376 found = scan;
2377 }
2378 }
2379 if (found != 0)
2380 hdr->sh_link = found;
2381 }
2382
2383 /* Get the symbol table. */
2384 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2385 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2386 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2387 goto fail;
2388
2389 /* If this is an alloc section in an executable or shared
2390 library, or the reloc section does not use the main symbol
2391 table we don't treat it as a reloc section. BFD can't
2392 adequately represent such a section, so at least for now,
2393 we don't try. We just present it as a normal section. We
2394 also can't use it as a reloc section if it points to the
2395 null section, an invalid section, another reloc section, or
2396 its sh_link points to the null section. */
2397 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2398 && (hdr->sh_flags & SHF_ALLOC) != 0)
2399 || hdr->sh_link == SHN_UNDEF
2400 || hdr->sh_link != elf_onesymtab (abfd)
2401 || hdr->sh_info == SHN_UNDEF
2402 || hdr->sh_info >= num_sec
2403 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2404 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2405 {
2406 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2407 shindex);
2408 goto success;
2409 }
2410
2411 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2412 goto fail;
2413
2414 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2415 if (target_sect == NULL)
2416 goto fail;
2417
2418 esdt = elf_section_data (target_sect);
2419 if (hdr->sh_type == SHT_RELA)
2420 p_hdr = &esdt->rela.hdr;
2421 else
2422 p_hdr = &esdt->rel.hdr;
2423
2424 /* PR 17512: file: 0b4f81b7. */
2425 if (*p_hdr != NULL)
2426 goto fail;
2427 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2428 if (hdr2 == NULL)
2429 goto fail;
2430 *hdr2 = *hdr;
2431 *p_hdr = hdr2;
2432 elf_elfsections (abfd)[shindex] = hdr2;
2433 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2434 * bed->s->int_rels_per_ext_rel);
2435 target_sect->flags |= SEC_RELOC;
2436 target_sect->relocation = NULL;
2437 target_sect->rel_filepos = hdr->sh_offset;
2438 /* In the section to which the relocations apply, mark whether
2439 its relocations are of the REL or RELA variety. */
2440 if (hdr->sh_size != 0)
2441 {
2442 if (hdr->sh_type == SHT_RELA)
2443 target_sect->use_rela_p = 1;
2444 }
2445 abfd->flags |= HAS_RELOC;
2446 goto success;
2447 }
2448
2449 case SHT_GNU_verdef:
2450 elf_dynverdef (abfd) = shindex;
2451 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2452 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2453 goto success;
2454
2455 case SHT_GNU_versym:
2456 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2457 goto fail;
2458
2459 elf_dynversym (abfd) = shindex;
2460 elf_tdata (abfd)->dynversym_hdr = *hdr;
2461 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2462 goto success;
2463
2464 case SHT_GNU_verneed:
2465 elf_dynverref (abfd) = shindex;
2466 elf_tdata (abfd)->dynverref_hdr = *hdr;
2467 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2468 goto success;
2469
2470 case SHT_SHLIB:
2471 goto success;
2472
2473 case SHT_GROUP:
2474 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2475 goto fail;
2476
2477 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2478 goto fail;
2479
2480 goto success;
2481
2482 default:
2483 /* Possibly an attributes section. */
2484 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2485 || hdr->sh_type == bed->obj_attrs_section_type)
2486 {
2487 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2488 goto fail;
2489 _bfd_elf_parse_attributes (abfd, hdr);
2490 goto success;
2491 }
2492
2493 /* Check for any processor-specific section types. */
2494 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2495 goto success;
2496
2497 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2498 {
2499 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2500 /* FIXME: How to properly handle allocated section reserved
2501 for applications? */
2502 _bfd_error_handler
2503 /* xgettext:c-format */
2504 (_("%pB: unknown type [%#x] section `%s'"),
2505 abfd, hdr->sh_type, name);
2506 else
2507 {
2508 /* Allow sections reserved for applications. */
2509 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2510 shindex);
2511 goto success;
2512 }
2513 }
2514 else if (hdr->sh_type >= SHT_LOPROC
2515 && hdr->sh_type <= SHT_HIPROC)
2516 /* FIXME: We should handle this section. */
2517 _bfd_error_handler
2518 /* xgettext:c-format */
2519 (_("%pB: unknown type [%#x] section `%s'"),
2520 abfd, hdr->sh_type, name);
2521 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2522 {
2523 /* Unrecognised OS-specific sections. */
2524 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2525 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2526 required to correctly process the section and the file should
2527 be rejected with an error message. */
2528 _bfd_error_handler
2529 /* xgettext:c-format */
2530 (_("%pB: unknown type [%#x] section `%s'"),
2531 abfd, hdr->sh_type, name);
2532 else
2533 {
2534 /* Otherwise it should be processed. */
2535 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2536 goto success;
2537 }
2538 }
2539 else
2540 /* FIXME: We should handle this section. */
2541 _bfd_error_handler
2542 /* xgettext:c-format */
2543 (_("%pB: unknown type [%#x] section `%s'"),
2544 abfd, hdr->sh_type, name);
2545
2546 goto fail;
2547 }
2548
2549 fail:
2550 ret = FALSE;
2551 success:
2552 if (sections_being_created && sections_being_created_abfd == abfd)
2553 sections_being_created [shindex] = FALSE;
2554 if (-- nesting == 0)
2555 {
2556 sections_being_created = NULL;
2557 sections_being_created_abfd = abfd;
2558 }
2559 return ret;
2560 }
2561
2562 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2563
2564 Elf_Internal_Sym *
2565 bfd_sym_from_r_symndx (struct sym_cache *cache,
2566 bfd *abfd,
2567 unsigned long r_symndx)
2568 {
2569 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2570
2571 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2572 {
2573 Elf_Internal_Shdr *symtab_hdr;
2574 unsigned char esym[sizeof (Elf64_External_Sym)];
2575 Elf_External_Sym_Shndx eshndx;
2576
2577 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2578 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2579 &cache->sym[ent], esym, &eshndx) == NULL)
2580 return NULL;
2581
2582 if (cache->abfd != abfd)
2583 {
2584 memset (cache->indx, -1, sizeof (cache->indx));
2585 cache->abfd = abfd;
2586 }
2587 cache->indx[ent] = r_symndx;
2588 }
2589
2590 return &cache->sym[ent];
2591 }
2592
2593 /* Given an ELF section number, retrieve the corresponding BFD
2594 section. */
2595
2596 asection *
2597 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2598 {
2599 if (sec_index >= elf_numsections (abfd))
2600 return NULL;
2601 return elf_elfsections (abfd)[sec_index]->bfd_section;
2602 }
2603
2604 static const struct bfd_elf_special_section special_sections_b[] =
2605 {
2606 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2607 { NULL, 0, 0, 0, 0 }
2608 };
2609
2610 static const struct bfd_elf_special_section special_sections_c[] =
2611 {
2612 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2613 { NULL, 0, 0, 0, 0 }
2614 };
2615
2616 static const struct bfd_elf_special_section special_sections_d[] =
2617 {
2618 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2619 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2620 /* There are more DWARF sections than these, but they needn't be added here
2621 unless you have to cope with broken compilers that don't emit section
2622 attributes or you want to help the user writing assembler. */
2623 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2624 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2625 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2626 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2627 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2628 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2629 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2630 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2631 { NULL, 0, 0, 0, 0 }
2632 };
2633
2634 static const struct bfd_elf_special_section special_sections_f[] =
2635 {
2636 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2637 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2638 { NULL, 0 , 0, 0, 0 }
2639 };
2640
2641 static const struct bfd_elf_special_section special_sections_g[] =
2642 {
2643 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2644 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2645 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2646 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2647 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2648 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2649 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2650 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2651 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2652 { NULL, 0, 0, 0, 0 }
2653 };
2654
2655 static const struct bfd_elf_special_section special_sections_h[] =
2656 {
2657 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2658 { NULL, 0, 0, 0, 0 }
2659 };
2660
2661 static const struct bfd_elf_special_section special_sections_i[] =
2662 {
2663 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2664 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2665 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2666 { NULL, 0, 0, 0, 0 }
2667 };
2668
2669 static const struct bfd_elf_special_section special_sections_l[] =
2670 {
2671 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2672 { NULL, 0, 0, 0, 0 }
2673 };
2674
2675 static const struct bfd_elf_special_section special_sections_n[] =
2676 {
2677 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2678 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2679 { NULL, 0, 0, 0, 0 }
2680 };
2681
2682 static const struct bfd_elf_special_section special_sections_p[] =
2683 {
2684 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2685 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2686 { NULL, 0, 0, 0, 0 }
2687 };
2688
2689 static const struct bfd_elf_special_section special_sections_r[] =
2690 {
2691 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2692 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2693 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2694 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2695 { NULL, 0, 0, 0, 0 }
2696 };
2697
2698 static const struct bfd_elf_special_section special_sections_s[] =
2699 {
2700 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2701 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2702 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2703 /* See struct bfd_elf_special_section declaration for the semantics of
2704 this special case where .prefix_length != strlen (.prefix). */
2705 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2706 { NULL, 0, 0, 0, 0 }
2707 };
2708
2709 static const struct bfd_elf_special_section special_sections_t[] =
2710 {
2711 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2712 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2713 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2714 { NULL, 0, 0, 0, 0 }
2715 };
2716
2717 static const struct bfd_elf_special_section special_sections_z[] =
2718 {
2719 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2720 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2721 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2722 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2723 { NULL, 0, 0, 0, 0 }
2724 };
2725
2726 static const struct bfd_elf_special_section * const special_sections[] =
2727 {
2728 special_sections_b, /* 'b' */
2729 special_sections_c, /* 'c' */
2730 special_sections_d, /* 'd' */
2731 NULL, /* 'e' */
2732 special_sections_f, /* 'f' */
2733 special_sections_g, /* 'g' */
2734 special_sections_h, /* 'h' */
2735 special_sections_i, /* 'i' */
2736 NULL, /* 'j' */
2737 NULL, /* 'k' */
2738 special_sections_l, /* 'l' */
2739 NULL, /* 'm' */
2740 special_sections_n, /* 'n' */
2741 NULL, /* 'o' */
2742 special_sections_p, /* 'p' */
2743 NULL, /* 'q' */
2744 special_sections_r, /* 'r' */
2745 special_sections_s, /* 's' */
2746 special_sections_t, /* 't' */
2747 NULL, /* 'u' */
2748 NULL, /* 'v' */
2749 NULL, /* 'w' */
2750 NULL, /* 'x' */
2751 NULL, /* 'y' */
2752 special_sections_z /* 'z' */
2753 };
2754
2755 const struct bfd_elf_special_section *
2756 _bfd_elf_get_special_section (const char *name,
2757 const struct bfd_elf_special_section *spec,
2758 unsigned int rela)
2759 {
2760 int i;
2761 int len;
2762
2763 len = strlen (name);
2764
2765 for (i = 0; spec[i].prefix != NULL; i++)
2766 {
2767 int suffix_len;
2768 int prefix_len = spec[i].prefix_length;
2769
2770 if (len < prefix_len)
2771 continue;
2772 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2773 continue;
2774
2775 suffix_len = spec[i].suffix_length;
2776 if (suffix_len <= 0)
2777 {
2778 if (name[prefix_len] != 0)
2779 {
2780 if (suffix_len == 0)
2781 continue;
2782 if (name[prefix_len] != '.'
2783 && (suffix_len == -2
2784 || (rela && spec[i].type == SHT_REL)))
2785 continue;
2786 }
2787 }
2788 else
2789 {
2790 if (len < prefix_len + suffix_len)
2791 continue;
2792 if (memcmp (name + len - suffix_len,
2793 spec[i].prefix + prefix_len,
2794 suffix_len) != 0)
2795 continue;
2796 }
2797 return &spec[i];
2798 }
2799
2800 return NULL;
2801 }
2802
2803 const struct bfd_elf_special_section *
2804 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2805 {
2806 int i;
2807 const struct bfd_elf_special_section *spec;
2808 const struct elf_backend_data *bed;
2809
2810 /* See if this is one of the special sections. */
2811 if (sec->name == NULL)
2812 return NULL;
2813
2814 bed = get_elf_backend_data (abfd);
2815 spec = bed->special_sections;
2816 if (spec)
2817 {
2818 spec = _bfd_elf_get_special_section (sec->name,
2819 bed->special_sections,
2820 sec->use_rela_p);
2821 if (spec != NULL)
2822 return spec;
2823 }
2824
2825 if (sec->name[0] != '.')
2826 return NULL;
2827
2828 i = sec->name[1] - 'b';
2829 if (i < 0 || i > 'z' - 'b')
2830 return NULL;
2831
2832 spec = special_sections[i];
2833
2834 if (spec == NULL)
2835 return NULL;
2836
2837 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2838 }
2839
2840 bfd_boolean
2841 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2842 {
2843 struct bfd_elf_section_data *sdata;
2844 const struct elf_backend_data *bed;
2845 const struct bfd_elf_special_section *ssect;
2846
2847 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2848 if (sdata == NULL)
2849 {
2850 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2851 sizeof (*sdata));
2852 if (sdata == NULL)
2853 return FALSE;
2854 sec->used_by_bfd = sdata;
2855 }
2856
2857 /* Indicate whether or not this section should use RELA relocations. */
2858 bed = get_elf_backend_data (abfd);
2859 sec->use_rela_p = bed->default_use_rela_p;
2860
2861 /* When we read a file, we don't need to set ELF section type and
2862 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2863 anyway. We will set ELF section type and flags for all linker
2864 created sections. If user specifies BFD section flags, we will
2865 set ELF section type and flags based on BFD section flags in
2866 elf_fake_sections. Special handling for .init_array/.fini_array
2867 output sections since they may contain .ctors/.dtors input
2868 sections. We don't want _bfd_elf_init_private_section_data to
2869 copy ELF section type from .ctors/.dtors input sections. */
2870 if (abfd->direction != read_direction
2871 || (sec->flags & SEC_LINKER_CREATED) != 0)
2872 {
2873 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2874 if (ssect != NULL
2875 && (!sec->flags
2876 || (sec->flags & SEC_LINKER_CREATED) != 0
2877 || ssect->type == SHT_INIT_ARRAY
2878 || ssect->type == SHT_FINI_ARRAY))
2879 {
2880 elf_section_type (sec) = ssect->type;
2881 elf_section_flags (sec) = ssect->attr;
2882 }
2883 }
2884
2885 return _bfd_generic_new_section_hook (abfd, sec);
2886 }
2887
2888 /* Create a new bfd section from an ELF program header.
2889
2890 Since program segments have no names, we generate a synthetic name
2891 of the form segment<NUM>, where NUM is generally the index in the
2892 program header table. For segments that are split (see below) we
2893 generate the names segment<NUM>a and segment<NUM>b.
2894
2895 Note that some program segments may have a file size that is different than
2896 (less than) the memory size. All this means is that at execution the
2897 system must allocate the amount of memory specified by the memory size,
2898 but only initialize it with the first "file size" bytes read from the
2899 file. This would occur for example, with program segments consisting
2900 of combined data+bss.
2901
2902 To handle the above situation, this routine generates TWO bfd sections
2903 for the single program segment. The first has the length specified by
2904 the file size of the segment, and the second has the length specified
2905 by the difference between the two sizes. In effect, the segment is split
2906 into its initialized and uninitialized parts.
2907
2908 */
2909
2910 bfd_boolean
2911 _bfd_elf_make_section_from_phdr (bfd *abfd,
2912 Elf_Internal_Phdr *hdr,
2913 int hdr_index,
2914 const char *type_name)
2915 {
2916 asection *newsect;
2917 char *name;
2918 char namebuf[64];
2919 size_t len;
2920 int split;
2921
2922 split = ((hdr->p_memsz > 0)
2923 && (hdr->p_filesz > 0)
2924 && (hdr->p_memsz > hdr->p_filesz));
2925
2926 if (hdr->p_filesz > 0)
2927 {
2928 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2929 len = strlen (namebuf) + 1;
2930 name = (char *) bfd_alloc (abfd, len);
2931 if (!name)
2932 return FALSE;
2933 memcpy (name, namebuf, len);
2934 newsect = bfd_make_section (abfd, name);
2935 if (newsect == NULL)
2936 return FALSE;
2937 newsect->vma = hdr->p_vaddr;
2938 newsect->lma = hdr->p_paddr;
2939 newsect->size = hdr->p_filesz;
2940 newsect->filepos = hdr->p_offset;
2941 newsect->flags |= SEC_HAS_CONTENTS;
2942 newsect->alignment_power = bfd_log2 (hdr->p_align);
2943 if (hdr->p_type == PT_LOAD)
2944 {
2945 newsect->flags |= SEC_ALLOC;
2946 newsect->flags |= SEC_LOAD;
2947 if (hdr->p_flags & PF_X)
2948 {
2949 /* FIXME: all we known is that it has execute PERMISSION,
2950 may be data. */
2951 newsect->flags |= SEC_CODE;
2952 }
2953 }
2954 if (!(hdr->p_flags & PF_W))
2955 {
2956 newsect->flags |= SEC_READONLY;
2957 }
2958 }
2959
2960 if (hdr->p_memsz > hdr->p_filesz)
2961 {
2962 bfd_vma align;
2963
2964 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2965 len = strlen (namebuf) + 1;
2966 name = (char *) bfd_alloc (abfd, len);
2967 if (!name)
2968 return FALSE;
2969 memcpy (name, namebuf, len);
2970 newsect = bfd_make_section (abfd, name);
2971 if (newsect == NULL)
2972 return FALSE;
2973 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2974 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2975 newsect->size = hdr->p_memsz - hdr->p_filesz;
2976 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2977 align = newsect->vma & -newsect->vma;
2978 if (align == 0 || align > hdr->p_align)
2979 align = hdr->p_align;
2980 newsect->alignment_power = bfd_log2 (align);
2981 if (hdr->p_type == PT_LOAD)
2982 {
2983 /* Hack for gdb. Segments that have not been modified do
2984 not have their contents written to a core file, on the
2985 assumption that a debugger can find the contents in the
2986 executable. We flag this case by setting the fake
2987 section size to zero. Note that "real" bss sections will
2988 always have their contents dumped to the core file. */
2989 if (bfd_get_format (abfd) == bfd_core)
2990 newsect->size = 0;
2991 newsect->flags |= SEC_ALLOC;
2992 if (hdr->p_flags & PF_X)
2993 newsect->flags |= SEC_CODE;
2994 }
2995 if (!(hdr->p_flags & PF_W))
2996 newsect->flags |= SEC_READONLY;
2997 }
2998
2999 return TRUE;
3000 }
3001
3002 bfd_boolean
3003 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3004 {
3005 const struct elf_backend_data *bed;
3006
3007 switch (hdr->p_type)
3008 {
3009 case PT_NULL:
3010 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3011
3012 case PT_LOAD:
3013 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
3014
3015 case PT_DYNAMIC:
3016 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3017
3018 case PT_INTERP:
3019 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3020
3021 case PT_NOTE:
3022 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3023 return FALSE;
3024 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3025 hdr->p_align))
3026 return FALSE;
3027 return TRUE;
3028
3029 case PT_SHLIB:
3030 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3031
3032 case PT_PHDR:
3033 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3034
3035 case PT_GNU_EH_FRAME:
3036 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3037 "eh_frame_hdr");
3038
3039 case PT_GNU_STACK:
3040 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3041
3042 case PT_GNU_RELRO:
3043 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3044
3045 default:
3046 /* Check for any processor-specific program segment types. */
3047 bed = get_elf_backend_data (abfd);
3048 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3049 }
3050 }
3051
3052 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3053 REL or RELA. */
3054
3055 Elf_Internal_Shdr *
3056 _bfd_elf_single_rel_hdr (asection *sec)
3057 {
3058 if (elf_section_data (sec)->rel.hdr)
3059 {
3060 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3061 return elf_section_data (sec)->rel.hdr;
3062 }
3063 else
3064 return elf_section_data (sec)->rela.hdr;
3065 }
3066
3067 static bfd_boolean
3068 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3069 Elf_Internal_Shdr *rel_hdr,
3070 const char *sec_name,
3071 bfd_boolean use_rela_p)
3072 {
3073 char *name = (char *) bfd_alloc (abfd,
3074 sizeof ".rela" + strlen (sec_name));
3075 if (name == NULL)
3076 return FALSE;
3077
3078 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3079 rel_hdr->sh_name =
3080 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3081 FALSE);
3082 if (rel_hdr->sh_name == (unsigned int) -1)
3083 return FALSE;
3084
3085 return TRUE;
3086 }
3087
3088 /* Allocate and initialize a section-header for a new reloc section,
3089 containing relocations against ASECT. It is stored in RELDATA. If
3090 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3091 relocations. */
3092
3093 static bfd_boolean
3094 _bfd_elf_init_reloc_shdr (bfd *abfd,
3095 struct bfd_elf_section_reloc_data *reldata,
3096 const char *sec_name,
3097 bfd_boolean use_rela_p,
3098 bfd_boolean delay_st_name_p)
3099 {
3100 Elf_Internal_Shdr *rel_hdr;
3101 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3102
3103 BFD_ASSERT (reldata->hdr == NULL);
3104 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3105 reldata->hdr = rel_hdr;
3106
3107 if (delay_st_name_p)
3108 rel_hdr->sh_name = (unsigned int) -1;
3109 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3110 use_rela_p))
3111 return FALSE;
3112 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3113 rel_hdr->sh_entsize = (use_rela_p
3114 ? bed->s->sizeof_rela
3115 : bed->s->sizeof_rel);
3116 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3117 rel_hdr->sh_flags = 0;
3118 rel_hdr->sh_addr = 0;
3119 rel_hdr->sh_size = 0;
3120 rel_hdr->sh_offset = 0;
3121
3122 return TRUE;
3123 }
3124
3125 /* Return the default section type based on the passed in section flags. */
3126
3127 int
3128 bfd_elf_get_default_section_type (flagword flags)
3129 {
3130 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3131 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3132 return SHT_NOBITS;
3133 return SHT_PROGBITS;
3134 }
3135
3136 struct fake_section_arg
3137 {
3138 struct bfd_link_info *link_info;
3139 bfd_boolean failed;
3140 };
3141
3142 /* Set up an ELF internal section header for a section. */
3143
3144 static void
3145 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3146 {
3147 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3148 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3149 struct bfd_elf_section_data *esd = elf_section_data (asect);
3150 Elf_Internal_Shdr *this_hdr;
3151 unsigned int sh_type;
3152 const char *name = asect->name;
3153 bfd_boolean delay_st_name_p = FALSE;
3154
3155 if (arg->failed)
3156 {
3157 /* We already failed; just get out of the bfd_map_over_sections
3158 loop. */
3159 return;
3160 }
3161
3162 this_hdr = &esd->this_hdr;
3163
3164 if (arg->link_info)
3165 {
3166 /* ld: compress DWARF debug sections with names: .debug_*. */
3167 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3168 && (asect->flags & SEC_DEBUGGING)
3169 && name[1] == 'd'
3170 && name[6] == '_')
3171 {
3172 /* Set SEC_ELF_COMPRESS to indicate this section should be
3173 compressed. */
3174 asect->flags |= SEC_ELF_COMPRESS;
3175
3176 /* If this section will be compressed, delay adding section
3177 name to section name section after it is compressed in
3178 _bfd_elf_assign_file_positions_for_non_load. */
3179 delay_st_name_p = TRUE;
3180 }
3181 }
3182 else if ((asect->flags & SEC_ELF_RENAME))
3183 {
3184 /* objcopy: rename output DWARF debug section. */
3185 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3186 {
3187 /* When we decompress or compress with SHF_COMPRESSED,
3188 convert section name from .zdebug_* to .debug_* if
3189 needed. */
3190 if (name[1] == 'z')
3191 {
3192 char *new_name = convert_zdebug_to_debug (abfd, name);
3193 if (new_name == NULL)
3194 {
3195 arg->failed = TRUE;
3196 return;
3197 }
3198 name = new_name;
3199 }
3200 }
3201 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3202 {
3203 /* PR binutils/18087: Compression does not always make a
3204 section smaller. So only rename the section when
3205 compression has actually taken place. If input section
3206 name is .zdebug_*, we should never compress it again. */
3207 char *new_name = convert_debug_to_zdebug (abfd, name);
3208 if (new_name == NULL)
3209 {
3210 arg->failed = TRUE;
3211 return;
3212 }
3213 BFD_ASSERT (name[1] != 'z');
3214 name = new_name;
3215 }
3216 }
3217
3218 if (delay_st_name_p)
3219 this_hdr->sh_name = (unsigned int) -1;
3220 else
3221 {
3222 this_hdr->sh_name
3223 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3224 name, FALSE);
3225 if (this_hdr->sh_name == (unsigned int) -1)
3226 {
3227 arg->failed = TRUE;
3228 return;
3229 }
3230 }
3231
3232 /* Don't clear sh_flags. Assembler may set additional bits. */
3233
3234 if ((asect->flags & SEC_ALLOC) != 0
3235 || asect->user_set_vma)
3236 this_hdr->sh_addr = asect->vma;
3237 else
3238 this_hdr->sh_addr = 0;
3239
3240 this_hdr->sh_offset = 0;
3241 this_hdr->sh_size = asect->size;
3242 this_hdr->sh_link = 0;
3243 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3244 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3245 {
3246 _bfd_error_handler
3247 /* xgettext:c-format */
3248 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3249 abfd, asect->alignment_power, asect);
3250 arg->failed = TRUE;
3251 return;
3252 }
3253 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3254 /* The sh_entsize and sh_info fields may have been set already by
3255 copy_private_section_data. */
3256
3257 this_hdr->bfd_section = asect;
3258 this_hdr->contents = NULL;
3259
3260 /* If the section type is unspecified, we set it based on
3261 asect->flags. */
3262 if ((asect->flags & SEC_GROUP) != 0)
3263 sh_type = SHT_GROUP;
3264 else
3265 sh_type = bfd_elf_get_default_section_type (asect->flags);
3266
3267 if (this_hdr->sh_type == SHT_NULL)
3268 this_hdr->sh_type = sh_type;
3269 else if (this_hdr->sh_type == SHT_NOBITS
3270 && sh_type == SHT_PROGBITS
3271 && (asect->flags & SEC_ALLOC) != 0)
3272 {
3273 /* Warn if we are changing a NOBITS section to PROGBITS, but
3274 allow the link to proceed. This can happen when users link
3275 non-bss input sections to bss output sections, or emit data
3276 to a bss output section via a linker script. */
3277 _bfd_error_handler
3278 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3279 this_hdr->sh_type = sh_type;
3280 }
3281
3282 switch (this_hdr->sh_type)
3283 {
3284 default:
3285 break;
3286
3287 case SHT_STRTAB:
3288 case SHT_NOTE:
3289 case SHT_NOBITS:
3290 case SHT_PROGBITS:
3291 break;
3292
3293 case SHT_INIT_ARRAY:
3294 case SHT_FINI_ARRAY:
3295 case SHT_PREINIT_ARRAY:
3296 this_hdr->sh_entsize = bed->s->arch_size / 8;
3297 break;
3298
3299 case SHT_HASH:
3300 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3301 break;
3302
3303 case SHT_DYNSYM:
3304 this_hdr->sh_entsize = bed->s->sizeof_sym;
3305 break;
3306
3307 case SHT_DYNAMIC:
3308 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3309 break;
3310
3311 case SHT_RELA:
3312 if (get_elf_backend_data (abfd)->may_use_rela_p)
3313 this_hdr->sh_entsize = bed->s->sizeof_rela;
3314 break;
3315
3316 case SHT_REL:
3317 if (get_elf_backend_data (abfd)->may_use_rel_p)
3318 this_hdr->sh_entsize = bed->s->sizeof_rel;
3319 break;
3320
3321 case SHT_GNU_versym:
3322 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3323 break;
3324
3325 case SHT_GNU_verdef:
3326 this_hdr->sh_entsize = 0;
3327 /* objcopy or strip will copy over sh_info, but may not set
3328 cverdefs. The linker will set cverdefs, but sh_info will be
3329 zero. */
3330 if (this_hdr->sh_info == 0)
3331 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3332 else
3333 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3334 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3335 break;
3336
3337 case SHT_GNU_verneed:
3338 this_hdr->sh_entsize = 0;
3339 /* objcopy or strip will copy over sh_info, but may not set
3340 cverrefs. The linker will set cverrefs, but sh_info will be
3341 zero. */
3342 if (this_hdr->sh_info == 0)
3343 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3344 else
3345 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3346 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3347 break;
3348
3349 case SHT_GROUP:
3350 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3351 break;
3352
3353 case SHT_GNU_HASH:
3354 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3355 break;
3356 }
3357
3358 if ((asect->flags & SEC_ALLOC) != 0)
3359 this_hdr->sh_flags |= SHF_ALLOC;
3360 if ((asect->flags & SEC_READONLY) == 0)
3361 this_hdr->sh_flags |= SHF_WRITE;
3362 if ((asect->flags & SEC_CODE) != 0)
3363 this_hdr->sh_flags |= SHF_EXECINSTR;
3364 if ((asect->flags & SEC_MERGE) != 0)
3365 {
3366 this_hdr->sh_flags |= SHF_MERGE;
3367 this_hdr->sh_entsize = asect->entsize;
3368 }
3369 if ((asect->flags & SEC_STRINGS) != 0)
3370 this_hdr->sh_flags |= SHF_STRINGS;
3371 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3372 this_hdr->sh_flags |= SHF_GROUP;
3373 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3374 {
3375 this_hdr->sh_flags |= SHF_TLS;
3376 if (asect->size == 0
3377 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3378 {
3379 struct bfd_link_order *o = asect->map_tail.link_order;
3380
3381 this_hdr->sh_size = 0;
3382 if (o != NULL)
3383 {
3384 this_hdr->sh_size = o->offset + o->size;
3385 if (this_hdr->sh_size != 0)
3386 this_hdr->sh_type = SHT_NOBITS;
3387 }
3388 }
3389 }
3390 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3391 this_hdr->sh_flags |= SHF_EXCLUDE;
3392
3393 /* If the section has relocs, set up a section header for the
3394 SHT_REL[A] section. If two relocation sections are required for
3395 this section, it is up to the processor-specific back-end to
3396 create the other. */
3397 if ((asect->flags & SEC_RELOC) != 0)
3398 {
3399 /* When doing a relocatable link, create both REL and RELA sections if
3400 needed. */
3401 if (arg->link_info
3402 /* Do the normal setup if we wouldn't create any sections here. */
3403 && esd->rel.count + esd->rela.count > 0
3404 && (bfd_link_relocatable (arg->link_info)
3405 || arg->link_info->emitrelocations))
3406 {
3407 if (esd->rel.count && esd->rel.hdr == NULL
3408 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3409 FALSE, delay_st_name_p))
3410 {
3411 arg->failed = TRUE;
3412 return;
3413 }
3414 if (esd->rela.count && esd->rela.hdr == NULL
3415 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3416 TRUE, delay_st_name_p))
3417 {
3418 arg->failed = TRUE;
3419 return;
3420 }
3421 }
3422 else if (!_bfd_elf_init_reloc_shdr (abfd,
3423 (asect->use_rela_p
3424 ? &esd->rela : &esd->rel),
3425 name,
3426 asect->use_rela_p,
3427 delay_st_name_p))
3428 {
3429 arg->failed = TRUE;
3430 return;
3431 }
3432 }
3433
3434 /* Check for processor-specific section types. */
3435 sh_type = this_hdr->sh_type;
3436 if (bed->elf_backend_fake_sections
3437 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3438 {
3439 arg->failed = TRUE;
3440 return;
3441 }
3442
3443 if (sh_type == SHT_NOBITS && asect->size != 0)
3444 {
3445 /* Don't change the header type from NOBITS if we are being
3446 called for objcopy --only-keep-debug. */
3447 this_hdr->sh_type = sh_type;
3448 }
3449 }
3450
3451 /* Fill in the contents of a SHT_GROUP section. Called from
3452 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3453 when ELF targets use the generic linker, ld. Called for ld -r
3454 from bfd_elf_final_link. */
3455
3456 void
3457 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3458 {
3459 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3460 asection *elt, *first;
3461 unsigned char *loc;
3462 bfd_boolean gas;
3463
3464 /* Ignore linker created group section. See elfNN_ia64_object_p in
3465 elfxx-ia64.c. */
3466 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3467 || *failedptr)
3468 return;
3469
3470 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3471 {
3472 unsigned long symindx = 0;
3473
3474 /* elf_group_id will have been set up by objcopy and the
3475 generic linker. */
3476 if (elf_group_id (sec) != NULL)
3477 symindx = elf_group_id (sec)->udata.i;
3478
3479 if (symindx == 0)
3480 {
3481 /* If called from the assembler, swap_out_syms will have set up
3482 elf_section_syms. */
3483 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3484 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3485 }
3486 elf_section_data (sec)->this_hdr.sh_info = symindx;
3487 }
3488 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3489 {
3490 /* The ELF backend linker sets sh_info to -2 when the group
3491 signature symbol is global, and thus the index can't be
3492 set until all local symbols are output. */
3493 asection *igroup;
3494 struct bfd_elf_section_data *sec_data;
3495 unsigned long symndx;
3496 unsigned long extsymoff;
3497 struct elf_link_hash_entry *h;
3498
3499 /* The point of this little dance to the first SHF_GROUP section
3500 then back to the SHT_GROUP section is that this gets us to
3501 the SHT_GROUP in the input object. */
3502 igroup = elf_sec_group (elf_next_in_group (sec));
3503 sec_data = elf_section_data (igroup);
3504 symndx = sec_data->this_hdr.sh_info;
3505 extsymoff = 0;
3506 if (!elf_bad_symtab (igroup->owner))
3507 {
3508 Elf_Internal_Shdr *symtab_hdr;
3509
3510 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3511 extsymoff = symtab_hdr->sh_info;
3512 }
3513 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3514 while (h->root.type == bfd_link_hash_indirect
3515 || h->root.type == bfd_link_hash_warning)
3516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3517
3518 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3519 }
3520
3521 /* The contents won't be allocated for "ld -r" or objcopy. */
3522 gas = TRUE;
3523 if (sec->contents == NULL)
3524 {
3525 gas = FALSE;
3526 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3527
3528 /* Arrange for the section to be written out. */
3529 elf_section_data (sec)->this_hdr.contents = sec->contents;
3530 if (sec->contents == NULL)
3531 {
3532 *failedptr = TRUE;
3533 return;
3534 }
3535 }
3536
3537 loc = sec->contents + sec->size;
3538
3539 /* Get the pointer to the first section in the group that gas
3540 squirreled away here. objcopy arranges for this to be set to the
3541 start of the input section group. */
3542 first = elt = elf_next_in_group (sec);
3543
3544 /* First element is a flag word. Rest of section is elf section
3545 indices for all the sections of the group. Write them backwards
3546 just to keep the group in the same order as given in .section
3547 directives, not that it matters. */
3548 while (elt != NULL)
3549 {
3550 asection *s;
3551
3552 s = elt;
3553 if (!gas)
3554 s = s->output_section;
3555 if (s != NULL
3556 && !bfd_is_abs_section (s))
3557 {
3558 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3559 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3560
3561 if (elf_sec->rel.hdr != NULL
3562 && (gas
3563 || (input_elf_sec->rel.hdr != NULL
3564 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3565 {
3566 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3567 loc -= 4;
3568 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3569 }
3570 if (elf_sec->rela.hdr != NULL
3571 && (gas
3572 || (input_elf_sec->rela.hdr != NULL
3573 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3574 {
3575 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3576 loc -= 4;
3577 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3578 }
3579 loc -= 4;
3580 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3581 }
3582 elt = elf_next_in_group (elt);
3583 if (elt == first)
3584 break;
3585 }
3586
3587 loc -= 4;
3588 BFD_ASSERT (loc == sec->contents);
3589
3590 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3591 }
3592
3593 /* Given NAME, the name of a relocation section stripped of its
3594 .rel/.rela prefix, return the section in ABFD to which the
3595 relocations apply. */
3596
3597 asection *
3598 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3599 {
3600 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3601 section likely apply to .got.plt or .got section. */
3602 if (get_elf_backend_data (abfd)->want_got_plt
3603 && strcmp (name, ".plt") == 0)
3604 {
3605 asection *sec;
3606
3607 name = ".got.plt";
3608 sec = bfd_get_section_by_name (abfd, name);
3609 if (sec != NULL)
3610 return sec;
3611 name = ".got";
3612 }
3613
3614 return bfd_get_section_by_name (abfd, name);
3615 }
3616
3617 /* Return the section to which RELOC_SEC applies. */
3618
3619 static asection *
3620 elf_get_reloc_section (asection *reloc_sec)
3621 {
3622 const char *name;
3623 unsigned int type;
3624 bfd *abfd;
3625 const struct elf_backend_data *bed;
3626
3627 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3628 if (type != SHT_REL && type != SHT_RELA)
3629 return NULL;
3630
3631 /* We look up the section the relocs apply to by name. */
3632 name = reloc_sec->name;
3633 if (strncmp (name, ".rel", 4) != 0)
3634 return NULL;
3635 name += 4;
3636 if (type == SHT_RELA && *name++ != 'a')
3637 return NULL;
3638
3639 abfd = reloc_sec->owner;
3640 bed = get_elf_backend_data (abfd);
3641 return bed->get_reloc_section (abfd, name);
3642 }
3643
3644 /* Assign all ELF section numbers. The dummy first section is handled here
3645 too. The link/info pointers for the standard section types are filled
3646 in here too, while we're at it. */
3647
3648 static bfd_boolean
3649 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3650 {
3651 struct elf_obj_tdata *t = elf_tdata (abfd);
3652 asection *sec;
3653 unsigned int section_number;
3654 Elf_Internal_Shdr **i_shdrp;
3655 struct bfd_elf_section_data *d;
3656 bfd_boolean need_symtab;
3657
3658 section_number = 1;
3659
3660 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3661
3662 /* SHT_GROUP sections are in relocatable files only. */
3663 if (link_info == NULL || !link_info->resolve_section_groups)
3664 {
3665 size_t reloc_count = 0;
3666
3667 /* Put SHT_GROUP sections first. */
3668 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3669 {
3670 d = elf_section_data (sec);
3671
3672 if (d->this_hdr.sh_type == SHT_GROUP)
3673 {
3674 if (sec->flags & SEC_LINKER_CREATED)
3675 {
3676 /* Remove the linker created SHT_GROUP sections. */
3677 bfd_section_list_remove (abfd, sec);
3678 abfd->section_count--;
3679 }
3680 else
3681 d->this_idx = section_number++;
3682 }
3683
3684 /* Count relocations. */
3685 reloc_count += sec->reloc_count;
3686 }
3687
3688 /* Clear HAS_RELOC if there are no relocations. */
3689 if (reloc_count == 0)
3690 abfd->flags &= ~HAS_RELOC;
3691 }
3692
3693 for (sec = abfd->sections; sec; sec = sec->next)
3694 {
3695 d = elf_section_data (sec);
3696
3697 if (d->this_hdr.sh_type != SHT_GROUP)
3698 d->this_idx = section_number++;
3699 if (d->this_hdr.sh_name != (unsigned int) -1)
3700 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3701 if (d->rel.hdr)
3702 {
3703 d->rel.idx = section_number++;
3704 if (d->rel.hdr->sh_name != (unsigned int) -1)
3705 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3706 }
3707 else
3708 d->rel.idx = 0;
3709
3710 if (d->rela.hdr)
3711 {
3712 d->rela.idx = section_number++;
3713 if (d->rela.hdr->sh_name != (unsigned int) -1)
3714 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3715 }
3716 else
3717 d->rela.idx = 0;
3718 }
3719
3720 need_symtab = (bfd_get_symcount (abfd) > 0
3721 || (link_info == NULL
3722 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3723 == HAS_RELOC)));
3724 if (need_symtab)
3725 {
3726 elf_onesymtab (abfd) = section_number++;
3727 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3728 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3729 {
3730 elf_section_list * entry;
3731
3732 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3733
3734 entry = bfd_zalloc (abfd, sizeof * entry);
3735 entry->ndx = section_number++;
3736 elf_symtab_shndx_list (abfd) = entry;
3737 entry->hdr.sh_name
3738 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3739 ".symtab_shndx", FALSE);
3740 if (entry->hdr.sh_name == (unsigned int) -1)
3741 return FALSE;
3742 }
3743 elf_strtab_sec (abfd) = section_number++;
3744 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3745 }
3746
3747 elf_shstrtab_sec (abfd) = section_number++;
3748 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3749 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3750
3751 if (section_number >= SHN_LORESERVE)
3752 {
3753 /* xgettext:c-format */
3754 _bfd_error_handler (_("%pB: too many sections: %u"),
3755 abfd, section_number);
3756 return FALSE;
3757 }
3758
3759 elf_numsections (abfd) = section_number;
3760 elf_elfheader (abfd)->e_shnum = section_number;
3761
3762 /* Set up the list of section header pointers, in agreement with the
3763 indices. */
3764 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3765 sizeof (Elf_Internal_Shdr *));
3766 if (i_shdrp == NULL)
3767 return FALSE;
3768
3769 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3770 sizeof (Elf_Internal_Shdr));
3771 if (i_shdrp[0] == NULL)
3772 {
3773 bfd_release (abfd, i_shdrp);
3774 return FALSE;
3775 }
3776
3777 elf_elfsections (abfd) = i_shdrp;
3778
3779 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3780 if (need_symtab)
3781 {
3782 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3783 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3784 {
3785 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3786 BFD_ASSERT (entry != NULL);
3787 i_shdrp[entry->ndx] = & entry->hdr;
3788 entry->hdr.sh_link = elf_onesymtab (abfd);
3789 }
3790 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3791 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3792 }
3793
3794 for (sec = abfd->sections; sec; sec = sec->next)
3795 {
3796 asection *s;
3797
3798 d = elf_section_data (sec);
3799
3800 i_shdrp[d->this_idx] = &d->this_hdr;
3801 if (d->rel.idx != 0)
3802 i_shdrp[d->rel.idx] = d->rel.hdr;
3803 if (d->rela.idx != 0)
3804 i_shdrp[d->rela.idx] = d->rela.hdr;
3805
3806 /* Fill in the sh_link and sh_info fields while we're at it. */
3807
3808 /* sh_link of a reloc section is the section index of the symbol
3809 table. sh_info is the section index of the section to which
3810 the relocation entries apply. */
3811 if (d->rel.idx != 0)
3812 {
3813 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3814 d->rel.hdr->sh_info = d->this_idx;
3815 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3816 }
3817 if (d->rela.idx != 0)
3818 {
3819 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3820 d->rela.hdr->sh_info = d->this_idx;
3821 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3822 }
3823
3824 /* We need to set up sh_link for SHF_LINK_ORDER. */
3825 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3826 {
3827 s = elf_linked_to_section (sec);
3828 if (s)
3829 {
3830 /* elf_linked_to_section points to the input section. */
3831 if (link_info != NULL)
3832 {
3833 /* Check discarded linkonce section. */
3834 if (discarded_section (s))
3835 {
3836 asection *kept;
3837 _bfd_error_handler
3838 /* xgettext:c-format */
3839 (_("%pB: sh_link of section `%pA' points to"
3840 " discarded section `%pA' of `%pB'"),
3841 abfd, d->this_hdr.bfd_section,
3842 s, s->owner);
3843 /* Point to the kept section if it has the same
3844 size as the discarded one. */
3845 kept = _bfd_elf_check_kept_section (s, link_info);
3846 if (kept == NULL)
3847 {
3848 bfd_set_error (bfd_error_bad_value);
3849 return FALSE;
3850 }
3851 s = kept;
3852 }
3853
3854 s = s->output_section;
3855 BFD_ASSERT (s != NULL);
3856 }
3857 else
3858 {
3859 /* Handle objcopy. */
3860 if (s->output_section == NULL)
3861 {
3862 _bfd_error_handler
3863 /* xgettext:c-format */
3864 (_("%pB: sh_link of section `%pA' points to"
3865 " removed section `%pA' of `%pB'"),
3866 abfd, d->this_hdr.bfd_section, s, s->owner);
3867 bfd_set_error (bfd_error_bad_value);
3868 return FALSE;
3869 }
3870 s = s->output_section;
3871 }
3872 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3873 }
3874 else
3875 {
3876 /* PR 290:
3877 The Intel C compiler generates SHT_IA_64_UNWIND with
3878 SHF_LINK_ORDER. But it doesn't set the sh_link or
3879 sh_info fields. Hence we could get the situation
3880 where s is NULL. */
3881 const struct elf_backend_data *bed
3882 = get_elf_backend_data (abfd);
3883 if (bed->link_order_error_handler)
3884 bed->link_order_error_handler
3885 /* xgettext:c-format */
3886 (_("%pB: warning: sh_link not set for section `%pA'"),
3887 abfd, sec);
3888 }
3889 }
3890
3891 switch (d->this_hdr.sh_type)
3892 {
3893 case SHT_REL:
3894 case SHT_RELA:
3895 /* A reloc section which we are treating as a normal BFD
3896 section. sh_link is the section index of the symbol
3897 table. sh_info is the section index of the section to
3898 which the relocation entries apply. We assume that an
3899 allocated reloc section uses the dynamic symbol table.
3900 FIXME: How can we be sure? */
3901 s = bfd_get_section_by_name (abfd, ".dynsym");
3902 if (s != NULL)
3903 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3904
3905 s = elf_get_reloc_section (sec);
3906 if (s != NULL)
3907 {
3908 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3909 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3910 }
3911 break;
3912
3913 case SHT_STRTAB:
3914 /* We assume that a section named .stab*str is a stabs
3915 string section. We look for a section with the same name
3916 but without the trailing ``str'', and set its sh_link
3917 field to point to this section. */
3918 if (CONST_STRNEQ (sec->name, ".stab")
3919 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3920 {
3921 size_t len;
3922 char *alc;
3923
3924 len = strlen (sec->name);
3925 alc = (char *) bfd_malloc (len - 2);
3926 if (alc == NULL)
3927 return FALSE;
3928 memcpy (alc, sec->name, len - 3);
3929 alc[len - 3] = '\0';
3930 s = bfd_get_section_by_name (abfd, alc);
3931 free (alc);
3932 if (s != NULL)
3933 {
3934 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3935
3936 /* This is a .stab section. */
3937 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3938 elf_section_data (s)->this_hdr.sh_entsize
3939 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3940 }
3941 }
3942 break;
3943
3944 case SHT_DYNAMIC:
3945 case SHT_DYNSYM:
3946 case SHT_GNU_verneed:
3947 case SHT_GNU_verdef:
3948 /* sh_link is the section header index of the string table
3949 used for the dynamic entries, or the symbol table, or the
3950 version strings. */
3951 s = bfd_get_section_by_name (abfd, ".dynstr");
3952 if (s != NULL)
3953 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3954 break;
3955
3956 case SHT_GNU_LIBLIST:
3957 /* sh_link is the section header index of the prelink library
3958 list used for the dynamic entries, or the symbol table, or
3959 the version strings. */
3960 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3961 ? ".dynstr" : ".gnu.libstr");
3962 if (s != NULL)
3963 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3964 break;
3965
3966 case SHT_HASH:
3967 case SHT_GNU_HASH:
3968 case SHT_GNU_versym:
3969 /* sh_link is the section header index of the symbol table
3970 this hash table or version table is for. */
3971 s = bfd_get_section_by_name (abfd, ".dynsym");
3972 if (s != NULL)
3973 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3974 break;
3975
3976 case SHT_GROUP:
3977 d->this_hdr.sh_link = elf_onesymtab (abfd);
3978 }
3979 }
3980
3981 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3982 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3983 debug section name from .debug_* to .zdebug_* if needed. */
3984
3985 return TRUE;
3986 }
3987
3988 static bfd_boolean
3989 sym_is_global (bfd *abfd, asymbol *sym)
3990 {
3991 /* If the backend has a special mapping, use it. */
3992 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3993 if (bed->elf_backend_sym_is_global)
3994 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3995
3996 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3997 || bfd_is_und_section (bfd_get_section (sym))
3998 || bfd_is_com_section (bfd_get_section (sym)));
3999 }
4000
4001 /* Filter global symbols of ABFD to include in the import library. All
4002 SYMCOUNT symbols of ABFD can be examined from their pointers in
4003 SYMS. Pointers of symbols to keep should be stored contiguously at
4004 the beginning of that array.
4005
4006 Returns the number of symbols to keep. */
4007
4008 unsigned int
4009 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4010 asymbol **syms, long symcount)
4011 {
4012 long src_count, dst_count = 0;
4013
4014 for (src_count = 0; src_count < symcount; src_count++)
4015 {
4016 asymbol *sym = syms[src_count];
4017 char *name = (char *) bfd_asymbol_name (sym);
4018 struct bfd_link_hash_entry *h;
4019
4020 if (!sym_is_global (abfd, sym))
4021 continue;
4022
4023 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4024 if (h == NULL)
4025 continue;
4026 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4027 continue;
4028 if (h->linker_def || h->ldscript_def)
4029 continue;
4030
4031 syms[dst_count++] = sym;
4032 }
4033
4034 syms[dst_count] = NULL;
4035
4036 return dst_count;
4037 }
4038
4039 /* Don't output section symbols for sections that are not going to be
4040 output, that are duplicates or there is no BFD section. */
4041
4042 static bfd_boolean
4043 ignore_section_sym (bfd *abfd, asymbol *sym)
4044 {
4045 elf_symbol_type *type_ptr;
4046
4047 if (sym == NULL)
4048 return FALSE;
4049
4050 if ((sym->flags & BSF_SECTION_SYM) == 0)
4051 return FALSE;
4052
4053 if (sym->section == NULL)
4054 return TRUE;
4055
4056 type_ptr = elf_symbol_from (abfd, sym);
4057 return ((type_ptr != NULL
4058 && type_ptr->internal_elf_sym.st_shndx != 0
4059 && bfd_is_abs_section (sym->section))
4060 || !(sym->section->owner == abfd
4061 || (sym->section->output_section != NULL
4062 && sym->section->output_section->owner == abfd
4063 && sym->section->output_offset == 0)
4064 || bfd_is_abs_section (sym->section)));
4065 }
4066
4067 /* Map symbol from it's internal number to the external number, moving
4068 all local symbols to be at the head of the list. */
4069
4070 static bfd_boolean
4071 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4072 {
4073 unsigned int symcount = bfd_get_symcount (abfd);
4074 asymbol **syms = bfd_get_outsymbols (abfd);
4075 asymbol **sect_syms;
4076 unsigned int num_locals = 0;
4077 unsigned int num_globals = 0;
4078 unsigned int num_locals2 = 0;
4079 unsigned int num_globals2 = 0;
4080 unsigned int max_index = 0;
4081 unsigned int idx;
4082 asection *asect;
4083 asymbol **new_syms;
4084
4085 #ifdef DEBUG
4086 fprintf (stderr, "elf_map_symbols\n");
4087 fflush (stderr);
4088 #endif
4089
4090 for (asect = abfd->sections; asect; asect = asect->next)
4091 {
4092 if (max_index < asect->index)
4093 max_index = asect->index;
4094 }
4095
4096 max_index++;
4097 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4098 if (sect_syms == NULL)
4099 return FALSE;
4100 elf_section_syms (abfd) = sect_syms;
4101 elf_num_section_syms (abfd) = max_index;
4102
4103 /* Init sect_syms entries for any section symbols we have already
4104 decided to output. */
4105 for (idx = 0; idx < symcount; idx++)
4106 {
4107 asymbol *sym = syms[idx];
4108
4109 if ((sym->flags & BSF_SECTION_SYM) != 0
4110 && sym->value == 0
4111 && !ignore_section_sym (abfd, sym)
4112 && !bfd_is_abs_section (sym->section))
4113 {
4114 asection *sec = sym->section;
4115
4116 if (sec->owner != abfd)
4117 sec = sec->output_section;
4118
4119 sect_syms[sec->index] = syms[idx];
4120 }
4121 }
4122
4123 /* Classify all of the symbols. */
4124 for (idx = 0; idx < symcount; idx++)
4125 {
4126 if (sym_is_global (abfd, syms[idx]))
4127 num_globals++;
4128 else if (!ignore_section_sym (abfd, syms[idx]))
4129 num_locals++;
4130 }
4131
4132 /* We will be adding a section symbol for each normal BFD section. Most
4133 sections will already have a section symbol in outsymbols, but
4134 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4135 at least in that case. */
4136 for (asect = abfd->sections; asect; asect = asect->next)
4137 {
4138 if (sect_syms[asect->index] == NULL)
4139 {
4140 if (!sym_is_global (abfd, asect->symbol))
4141 num_locals++;
4142 else
4143 num_globals++;
4144 }
4145 }
4146
4147 /* Now sort the symbols so the local symbols are first. */
4148 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4149 sizeof (asymbol *));
4150
4151 if (new_syms == NULL)
4152 return FALSE;
4153
4154 for (idx = 0; idx < symcount; idx++)
4155 {
4156 asymbol *sym = syms[idx];
4157 unsigned int i;
4158
4159 if (sym_is_global (abfd, sym))
4160 i = num_locals + num_globals2++;
4161 else if (!ignore_section_sym (abfd, sym))
4162 i = num_locals2++;
4163 else
4164 continue;
4165 new_syms[i] = sym;
4166 sym->udata.i = i + 1;
4167 }
4168 for (asect = abfd->sections; asect; asect = asect->next)
4169 {
4170 if (sect_syms[asect->index] == NULL)
4171 {
4172 asymbol *sym = asect->symbol;
4173 unsigned int i;
4174
4175 sect_syms[asect->index] = sym;
4176 if (!sym_is_global (abfd, sym))
4177 i = num_locals2++;
4178 else
4179 i = num_locals + num_globals2++;
4180 new_syms[i] = sym;
4181 sym->udata.i = i + 1;
4182 }
4183 }
4184
4185 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4186
4187 *pnum_locals = num_locals;
4188 return TRUE;
4189 }
4190
4191 /* Align to the maximum file alignment that could be required for any
4192 ELF data structure. */
4193
4194 static inline file_ptr
4195 align_file_position (file_ptr off, int align)
4196 {
4197 return (off + align - 1) & ~(align - 1);
4198 }
4199
4200 /* Assign a file position to a section, optionally aligning to the
4201 required section alignment. */
4202
4203 file_ptr
4204 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4205 file_ptr offset,
4206 bfd_boolean align)
4207 {
4208 if (align && i_shdrp->sh_addralign > 1)
4209 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4210 i_shdrp->sh_offset = offset;
4211 if (i_shdrp->bfd_section != NULL)
4212 i_shdrp->bfd_section->filepos = offset;
4213 if (i_shdrp->sh_type != SHT_NOBITS)
4214 offset += i_shdrp->sh_size;
4215 return offset;
4216 }
4217
4218 /* Compute the file positions we are going to put the sections at, and
4219 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4220 is not NULL, this is being called by the ELF backend linker. */
4221
4222 bfd_boolean
4223 _bfd_elf_compute_section_file_positions (bfd *abfd,
4224 struct bfd_link_info *link_info)
4225 {
4226 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4227 struct fake_section_arg fsargs;
4228 bfd_boolean failed;
4229 struct elf_strtab_hash *strtab = NULL;
4230 Elf_Internal_Shdr *shstrtab_hdr;
4231 bfd_boolean need_symtab;
4232
4233 if (abfd->output_has_begun)
4234 return TRUE;
4235
4236 /* Do any elf backend specific processing first. */
4237 if (bed->elf_backend_begin_write_processing)
4238 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4239
4240 if (! prep_headers (abfd))
4241 return FALSE;
4242
4243 /* Post process the headers if necessary. */
4244 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4245
4246 fsargs.failed = FALSE;
4247 fsargs.link_info = link_info;
4248 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4249 if (fsargs.failed)
4250 return FALSE;
4251
4252 if (!assign_section_numbers (abfd, link_info))
4253 return FALSE;
4254
4255 /* The backend linker builds symbol table information itself. */
4256 need_symtab = (link_info == NULL
4257 && (bfd_get_symcount (abfd) > 0
4258 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4259 == HAS_RELOC)));
4260 if (need_symtab)
4261 {
4262 /* Non-zero if doing a relocatable link. */
4263 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4264
4265 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4266 return FALSE;
4267 }
4268
4269 failed = FALSE;
4270 if (link_info == NULL)
4271 {
4272 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4273 if (failed)
4274 return FALSE;
4275 }
4276
4277 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4278 /* sh_name was set in prep_headers. */
4279 shstrtab_hdr->sh_type = SHT_STRTAB;
4280 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4281 shstrtab_hdr->sh_addr = 0;
4282 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4283 shstrtab_hdr->sh_entsize = 0;
4284 shstrtab_hdr->sh_link = 0;
4285 shstrtab_hdr->sh_info = 0;
4286 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4287 shstrtab_hdr->sh_addralign = 1;
4288
4289 if (!assign_file_positions_except_relocs (abfd, link_info))
4290 return FALSE;
4291
4292 if (need_symtab)
4293 {
4294 file_ptr off;
4295 Elf_Internal_Shdr *hdr;
4296
4297 off = elf_next_file_pos (abfd);
4298
4299 hdr = & elf_symtab_hdr (abfd);
4300 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4301
4302 if (elf_symtab_shndx_list (abfd) != NULL)
4303 {
4304 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4305 if (hdr->sh_size != 0)
4306 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4307 /* FIXME: What about other symtab_shndx sections in the list ? */
4308 }
4309
4310 hdr = &elf_tdata (abfd)->strtab_hdr;
4311 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4312
4313 elf_next_file_pos (abfd) = off;
4314
4315 /* Now that we know where the .strtab section goes, write it
4316 out. */
4317 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4318 || ! _bfd_elf_strtab_emit (abfd, strtab))
4319 return FALSE;
4320 _bfd_elf_strtab_free (strtab);
4321 }
4322
4323 abfd->output_has_begun = TRUE;
4324
4325 return TRUE;
4326 }
4327
4328 /* Make an initial estimate of the size of the program header. If we
4329 get the number wrong here, we'll redo section placement. */
4330
4331 static bfd_size_type
4332 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4333 {
4334 size_t segs;
4335 asection *s;
4336 const struct elf_backend_data *bed;
4337
4338 /* Assume we will need exactly two PT_LOAD segments: one for text
4339 and one for data. */
4340 segs = 2;
4341
4342 s = bfd_get_section_by_name (abfd, ".interp");
4343 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4344 {
4345 /* If we have a loadable interpreter section, we need a
4346 PT_INTERP segment. In this case, assume we also need a
4347 PT_PHDR segment, although that may not be true for all
4348 targets. */
4349 segs += 2;
4350 }
4351
4352 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4353 {
4354 /* We need a PT_DYNAMIC segment. */
4355 ++segs;
4356 }
4357
4358 if (info != NULL && info->relro)
4359 {
4360 /* We need a PT_GNU_RELRO segment. */
4361 ++segs;
4362 }
4363
4364 if (elf_eh_frame_hdr (abfd))
4365 {
4366 /* We need a PT_GNU_EH_FRAME segment. */
4367 ++segs;
4368 }
4369
4370 if (elf_stack_flags (abfd))
4371 {
4372 /* We need a PT_GNU_STACK segment. */
4373 ++segs;
4374 }
4375
4376 s = bfd_get_section_by_name (abfd,
4377 NOTE_GNU_PROPERTY_SECTION_NAME);
4378 if (s != NULL && s->size != 0)
4379 {
4380 /* We need a PT_GNU_PROPERTY segment. */
4381 ++segs;
4382 }
4383
4384 for (s = abfd->sections; s != NULL; s = s->next)
4385 {
4386 if ((s->flags & SEC_LOAD) != 0
4387 && elf_section_type (s) == SHT_NOTE)
4388 {
4389 unsigned int alignment_power;
4390 /* We need a PT_NOTE segment. */
4391 ++segs;
4392 /* Try to create just one PT_NOTE segment for all adjacent
4393 loadable SHT_NOTE sections. gABI requires that within a
4394 PT_NOTE segment (and also inside of each SHT_NOTE section)
4395 each note should have the same alignment. So we check
4396 whether the sections are correctly aligned. */
4397 alignment_power = s->alignment_power;
4398 while (s->next != NULL
4399 && s->next->alignment_power == alignment_power
4400 && (s->next->flags & SEC_LOAD) != 0
4401 && elf_section_type (s->next) == SHT_NOTE)
4402 s = s->next;
4403 }
4404 }
4405
4406 for (s = abfd->sections; s != NULL; s = s->next)
4407 {
4408 if (s->flags & SEC_THREAD_LOCAL)
4409 {
4410 /* We need a PT_TLS segment. */
4411 ++segs;
4412 break;
4413 }
4414 }
4415
4416 bed = get_elf_backend_data (abfd);
4417
4418 if ((abfd->flags & D_PAGED) != 0)
4419 {
4420 /* Add a PT_GNU_MBIND segment for each mbind section. */
4421 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4422 for (s = abfd->sections; s != NULL; s = s->next)
4423 if (elf_section_flags (s) & SHF_GNU_MBIND)
4424 {
4425 if (elf_section_data (s)->this_hdr.sh_info
4426 > PT_GNU_MBIND_NUM)
4427 {
4428 _bfd_error_handler
4429 /* xgettext:c-format */
4430 (_("%pB: GNU_MBIN section `%pA' has invalid sh_info field: %d"),
4431 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4432 continue;
4433 }
4434 /* Align mbind section to page size. */
4435 if (s->alignment_power < page_align_power)
4436 s->alignment_power = page_align_power;
4437 segs ++;
4438 }
4439 }
4440
4441 /* Let the backend count up any program headers it might need. */
4442 if (bed->elf_backend_additional_program_headers)
4443 {
4444 int a;
4445
4446 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4447 if (a == -1)
4448 abort ();
4449 segs += a;
4450 }
4451
4452 return segs * bed->s->sizeof_phdr;
4453 }
4454
4455 /* Find the segment that contains the output_section of section. */
4456
4457 Elf_Internal_Phdr *
4458 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4459 {
4460 struct elf_segment_map *m;
4461 Elf_Internal_Phdr *p;
4462
4463 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4464 m != NULL;
4465 m = m->next, p++)
4466 {
4467 int i;
4468
4469 for (i = m->count - 1; i >= 0; i--)
4470 if (m->sections[i] == section)
4471 return p;
4472 }
4473
4474 return NULL;
4475 }
4476
4477 /* Create a mapping from a set of sections to a program segment. */
4478
4479 static struct elf_segment_map *
4480 make_mapping (bfd *abfd,
4481 asection **sections,
4482 unsigned int from,
4483 unsigned int to,
4484 bfd_boolean phdr)
4485 {
4486 struct elf_segment_map *m;
4487 unsigned int i;
4488 asection **hdrpp;
4489 bfd_size_type amt;
4490
4491 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4492 amt += (to - from) * sizeof (asection *);
4493 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4494 if (m == NULL)
4495 return NULL;
4496 m->next = NULL;
4497 m->p_type = PT_LOAD;
4498 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4499 m->sections[i - from] = *hdrpp;
4500 m->count = to - from;
4501
4502 if (from == 0 && phdr)
4503 {
4504 /* Include the headers in the first PT_LOAD segment. */
4505 m->includes_filehdr = 1;
4506 m->includes_phdrs = 1;
4507 }
4508
4509 return m;
4510 }
4511
4512 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4513 on failure. */
4514
4515 struct elf_segment_map *
4516 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4517 {
4518 struct elf_segment_map *m;
4519
4520 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4521 sizeof (struct elf_segment_map));
4522 if (m == NULL)
4523 return NULL;
4524 m->next = NULL;
4525 m->p_type = PT_DYNAMIC;
4526 m->count = 1;
4527 m->sections[0] = dynsec;
4528
4529 return m;
4530 }
4531
4532 /* Possibly add or remove segments from the segment map. */
4533
4534 static bfd_boolean
4535 elf_modify_segment_map (bfd *abfd,
4536 struct bfd_link_info *info,
4537 bfd_boolean remove_empty_load)
4538 {
4539 struct elf_segment_map **m;
4540 const struct elf_backend_data *bed;
4541
4542 /* The placement algorithm assumes that non allocated sections are
4543 not in PT_LOAD segments. We ensure this here by removing such
4544 sections from the segment map. We also remove excluded
4545 sections. Finally, any PT_LOAD segment without sections is
4546 removed. */
4547 m = &elf_seg_map (abfd);
4548 while (*m)
4549 {
4550 unsigned int i, new_count;
4551
4552 for (new_count = 0, i = 0; i < (*m)->count; i++)
4553 {
4554 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4555 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4556 || (*m)->p_type != PT_LOAD))
4557 {
4558 (*m)->sections[new_count] = (*m)->sections[i];
4559 new_count++;
4560 }
4561 }
4562 (*m)->count = new_count;
4563
4564 if (remove_empty_load
4565 && (*m)->p_type == PT_LOAD
4566 && (*m)->count == 0
4567 && !(*m)->includes_phdrs)
4568 *m = (*m)->next;
4569 else
4570 m = &(*m)->next;
4571 }
4572
4573 bed = get_elf_backend_data (abfd);
4574 if (bed->elf_backend_modify_segment_map != NULL)
4575 {
4576 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4577 return FALSE;
4578 }
4579
4580 return TRUE;
4581 }
4582
4583 #define IS_TBSS(s) \
4584 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4585
4586 /* Set up a mapping from BFD sections to program segments. */
4587
4588 bfd_boolean
4589 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4590 {
4591 unsigned int count;
4592 struct elf_segment_map *m;
4593 asection **sections = NULL;
4594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4595 bfd_boolean no_user_phdrs;
4596
4597 no_user_phdrs = elf_seg_map (abfd) == NULL;
4598
4599 if (info != NULL)
4600 info->user_phdrs = !no_user_phdrs;
4601
4602 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4603 {
4604 asection *s;
4605 unsigned int i;
4606 struct elf_segment_map *mfirst;
4607 struct elf_segment_map **pm;
4608 asection *last_hdr;
4609 bfd_vma last_size;
4610 unsigned int hdr_index;
4611 bfd_vma maxpagesize;
4612 asection **hdrpp;
4613 bfd_boolean phdr_in_segment;
4614 bfd_boolean writable;
4615 bfd_boolean executable;
4616 int tls_count = 0;
4617 asection *first_tls = NULL;
4618 asection *first_mbind = NULL;
4619 asection *dynsec, *eh_frame_hdr;
4620 bfd_size_type amt;
4621 bfd_vma addr_mask, wrap_to = 0;
4622 bfd_size_type phdr_size;
4623
4624 /* Select the allocated sections, and sort them. */
4625
4626 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4627 sizeof (asection *));
4628 if (sections == NULL)
4629 goto error_return;
4630
4631 /* Calculate top address, avoiding undefined behaviour of shift
4632 left operator when shift count is equal to size of type
4633 being shifted. */
4634 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4635 addr_mask = (addr_mask << 1) + 1;
4636
4637 i = 0;
4638 for (s = abfd->sections; s != NULL; s = s->next)
4639 {
4640 if ((s->flags & SEC_ALLOC) != 0)
4641 {
4642 sections[i] = s;
4643 ++i;
4644 /* A wrapping section potentially clashes with header. */
4645 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4646 wrap_to = (s->lma + s->size) & addr_mask;
4647 }
4648 }
4649 BFD_ASSERT (i <= bfd_count_sections (abfd));
4650 count = i;
4651
4652 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4653
4654 phdr_size = elf_program_header_size (abfd);
4655 if (phdr_size == (bfd_size_type) -1)
4656 phdr_size = get_program_header_size (abfd, info);
4657 phdr_size += bed->s->sizeof_ehdr;
4658 maxpagesize = bed->maxpagesize;
4659 if (maxpagesize == 0)
4660 maxpagesize = 1;
4661 phdr_in_segment = info != NULL && info->load_phdrs;
4662 if (count != 0
4663 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4664 >= (phdr_size & (maxpagesize - 1))))
4665 /* For compatibility with old scripts that may not be using
4666 SIZEOF_HEADERS, add headers when it looks like space has
4667 been left for them. */
4668 phdr_in_segment = TRUE;
4669
4670 /* Build the mapping. */
4671 mfirst = NULL;
4672 pm = &mfirst;
4673
4674 /* If we have a .interp section, then create a PT_PHDR segment for
4675 the program headers and a PT_INTERP segment for the .interp
4676 section. */
4677 s = bfd_get_section_by_name (abfd, ".interp");
4678 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4679 {
4680 amt = sizeof (struct elf_segment_map);
4681 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4682 if (m == NULL)
4683 goto error_return;
4684 m->next = NULL;
4685 m->p_type = PT_PHDR;
4686 m->p_flags = PF_R;
4687 m->p_flags_valid = 1;
4688 m->includes_phdrs = 1;
4689 phdr_in_segment = TRUE;
4690 *pm = m;
4691 pm = &m->next;
4692
4693 amt = sizeof (struct elf_segment_map);
4694 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4695 if (m == NULL)
4696 goto error_return;
4697 m->next = NULL;
4698 m->p_type = PT_INTERP;
4699 m->count = 1;
4700 m->sections[0] = s;
4701
4702 *pm = m;
4703 pm = &m->next;
4704 }
4705
4706 /* Look through the sections. We put sections in the same program
4707 segment when the start of the second section can be placed within
4708 a few bytes of the end of the first section. */
4709 last_hdr = NULL;
4710 last_size = 0;
4711 hdr_index = 0;
4712 writable = FALSE;
4713 executable = FALSE;
4714 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4715 if (dynsec != NULL
4716 && (dynsec->flags & SEC_LOAD) == 0)
4717 dynsec = NULL;
4718
4719 if ((abfd->flags & D_PAGED) == 0)
4720 phdr_in_segment = FALSE;
4721
4722 /* Deal with -Ttext or something similar such that the first section
4723 is not adjacent to the program headers. This is an
4724 approximation, since at this point we don't know exactly how many
4725 program headers we will need. */
4726 if (phdr_in_segment && count > 0)
4727 {
4728 bfd_vma phdr_lma;
4729 bfd_boolean separate_phdr = FALSE;
4730
4731 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4732 if (info != NULL
4733 && info->separate_code
4734 && (sections[0]->flags & SEC_CODE) != 0)
4735 {
4736 /* If data sections should be separate from code and
4737 thus not executable, and the first section is
4738 executable then put the file and program headers in
4739 their own PT_LOAD. */
4740 separate_phdr = TRUE;
4741 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4742 == (sections[0]->lma & addr_mask & -maxpagesize)))
4743 {
4744 /* The file and program headers are currently on the
4745 same page as the first section. Put them on the
4746 previous page if we can. */
4747 if (phdr_lma >= maxpagesize)
4748 phdr_lma -= maxpagesize;
4749 else
4750 separate_phdr = FALSE;
4751 }
4752 }
4753 if ((sections[0]->lma & addr_mask) < phdr_lma
4754 || (sections[0]->lma & addr_mask) < phdr_size)
4755 /* If file and program headers would be placed at the end
4756 of memory then it's probably better to omit them. */
4757 phdr_in_segment = FALSE;
4758 else if (phdr_lma < wrap_to)
4759 /* If a section wraps around to where we'll be placing
4760 file and program headers, then the headers will be
4761 overwritten. */
4762 phdr_in_segment = FALSE;
4763 else if (separate_phdr)
4764 {
4765 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4766 if (m == NULL)
4767 goto error_return;
4768 m->p_paddr = phdr_lma;
4769 m->p_vaddr_offset
4770 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4771 m->p_paddr_valid = 1;
4772 *pm = m;
4773 pm = &m->next;
4774 phdr_in_segment = FALSE;
4775 }
4776 }
4777
4778 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4779 {
4780 asection *hdr;
4781 bfd_boolean new_segment;
4782
4783 hdr = *hdrpp;
4784
4785 /* See if this section and the last one will fit in the same
4786 segment. */
4787
4788 if (last_hdr == NULL)
4789 {
4790 /* If we don't have a segment yet, then we don't need a new
4791 one (we build the last one after this loop). */
4792 new_segment = FALSE;
4793 }
4794 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4795 {
4796 /* If this section has a different relation between the
4797 virtual address and the load address, then we need a new
4798 segment. */
4799 new_segment = TRUE;
4800 }
4801 else if (hdr->lma < last_hdr->lma + last_size
4802 || last_hdr->lma + last_size < last_hdr->lma)
4803 {
4804 /* If this section has a load address that makes it overlap
4805 the previous section, then we need a new segment. */
4806 new_segment = TRUE;
4807 }
4808 else if ((abfd->flags & D_PAGED) != 0
4809 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4810 == (hdr->lma & -maxpagesize)))
4811 {
4812 /* If we are demand paged then we can't map two disk
4813 pages onto the same memory page. */
4814 new_segment = FALSE;
4815 }
4816 /* In the next test we have to be careful when last_hdr->lma is close
4817 to the end of the address space. If the aligned address wraps
4818 around to the start of the address space, then there are no more
4819 pages left in memory and it is OK to assume that the current
4820 section can be included in the current segment. */
4821 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4822 + maxpagesize > last_hdr->lma)
4823 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4824 + maxpagesize <= hdr->lma))
4825 {
4826 /* If putting this section in this segment would force us to
4827 skip a page in the segment, then we need a new segment. */
4828 new_segment = TRUE;
4829 }
4830 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4831 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4832 {
4833 /* We don't want to put a loaded section after a
4834 nonloaded (ie. bss style) section in the same segment
4835 as that will force the non-loaded section to be loaded.
4836 Consider .tbss sections as loaded for this purpose. */
4837 new_segment = TRUE;
4838 }
4839 else if ((abfd->flags & D_PAGED) == 0)
4840 {
4841 /* If the file is not demand paged, which means that we
4842 don't require the sections to be correctly aligned in the
4843 file, then there is no other reason for a new segment. */
4844 new_segment = FALSE;
4845 }
4846 else if (info != NULL
4847 && info->separate_code
4848 && executable != ((hdr->flags & SEC_CODE) != 0))
4849 {
4850 new_segment = TRUE;
4851 }
4852 else if (! writable
4853 && (hdr->flags & SEC_READONLY) == 0)
4854 {
4855 /* We don't want to put a writable section in a read only
4856 segment. */
4857 new_segment = TRUE;
4858 }
4859 else
4860 {
4861 /* Otherwise, we can use the same segment. */
4862 new_segment = FALSE;
4863 }
4864
4865 /* Allow interested parties a chance to override our decision. */
4866 if (last_hdr != NULL
4867 && info != NULL
4868 && info->callbacks->override_segment_assignment != NULL)
4869 new_segment
4870 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4871 last_hdr,
4872 new_segment);
4873
4874 if (! new_segment)
4875 {
4876 if ((hdr->flags & SEC_READONLY) == 0)
4877 writable = TRUE;
4878 if ((hdr->flags & SEC_CODE) != 0)
4879 executable = TRUE;
4880 last_hdr = hdr;
4881 /* .tbss sections effectively have zero size. */
4882 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4883 continue;
4884 }
4885
4886 /* We need a new program segment. We must create a new program
4887 header holding all the sections from hdr_index until hdr. */
4888
4889 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4890 if (m == NULL)
4891 goto error_return;
4892
4893 *pm = m;
4894 pm = &m->next;
4895
4896 if ((hdr->flags & SEC_READONLY) == 0)
4897 writable = TRUE;
4898 else
4899 writable = FALSE;
4900
4901 if ((hdr->flags & SEC_CODE) == 0)
4902 executable = FALSE;
4903 else
4904 executable = TRUE;
4905
4906 last_hdr = hdr;
4907 /* .tbss sections effectively have zero size. */
4908 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4909 hdr_index = i;
4910 phdr_in_segment = FALSE;
4911 }
4912
4913 /* Create a final PT_LOAD program segment, but not if it's just
4914 for .tbss. */
4915 if (last_hdr != NULL
4916 && (i - hdr_index != 1
4917 || !IS_TBSS (last_hdr)))
4918 {
4919 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4920 if (m == NULL)
4921 goto error_return;
4922
4923 *pm = m;
4924 pm = &m->next;
4925 }
4926
4927 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4928 if (dynsec != NULL)
4929 {
4930 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4931 if (m == NULL)
4932 goto error_return;
4933 *pm = m;
4934 pm = &m->next;
4935 }
4936
4937 /* For each batch of consecutive loadable SHT_NOTE sections,
4938 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4939 because if we link together nonloadable .note sections and
4940 loadable .note sections, we will generate two .note sections
4941 in the output file. */
4942 for (s = abfd->sections; s != NULL; s = s->next)
4943 {
4944 if ((s->flags & SEC_LOAD) != 0
4945 && elf_section_type (s) == SHT_NOTE)
4946 {
4947 asection *s2;
4948 unsigned int alignment_power = s->alignment_power;
4949
4950 count = 1;
4951 for (s2 = s; s2->next != NULL; s2 = s2->next)
4952 {
4953 if (s2->next->alignment_power == alignment_power
4954 && (s2->next->flags & SEC_LOAD) != 0
4955 && elf_section_type (s2->next) == SHT_NOTE
4956 && align_power (s2->lma + s2->size,
4957 alignment_power)
4958 == s2->next->lma)
4959 count++;
4960 else
4961 break;
4962 }
4963 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4964 amt += count * sizeof (asection *);
4965 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4966 if (m == NULL)
4967 goto error_return;
4968 m->next = NULL;
4969 m->p_type = PT_NOTE;
4970 m->count = count;
4971 while (count > 1)
4972 {
4973 m->sections[m->count - count--] = s;
4974 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4975 s = s->next;
4976 }
4977 m->sections[m->count - 1] = s;
4978 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4979 *pm = m;
4980 pm = &m->next;
4981 }
4982 if (s->flags & SEC_THREAD_LOCAL)
4983 {
4984 if (! tls_count)
4985 first_tls = s;
4986 tls_count++;
4987 }
4988 if (first_mbind == NULL
4989 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
4990 first_mbind = s;
4991 }
4992
4993 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4994 if (tls_count > 0)
4995 {
4996 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4997 amt += tls_count * sizeof (asection *);
4998 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4999 if (m == NULL)
5000 goto error_return;
5001 m->next = NULL;
5002 m->p_type = PT_TLS;
5003 m->count = tls_count;
5004 /* Mandated PF_R. */
5005 m->p_flags = PF_R;
5006 m->p_flags_valid = 1;
5007 s = first_tls;
5008 for (i = 0; i < (unsigned int) tls_count; ++i)
5009 {
5010 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5011 {
5012 _bfd_error_handler
5013 (_("%pB: TLS sections are not adjacent:"), abfd);
5014 s = first_tls;
5015 i = 0;
5016 while (i < (unsigned int) tls_count)
5017 {
5018 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5019 {
5020 _bfd_error_handler (_(" TLS: %pA"), s);
5021 i++;
5022 }
5023 else
5024 _bfd_error_handler (_(" non-TLS: %pA"), s);
5025 s = s->next;
5026 }
5027 bfd_set_error (bfd_error_bad_value);
5028 goto error_return;
5029 }
5030 m->sections[i] = s;
5031 s = s->next;
5032 }
5033
5034 *pm = m;
5035 pm = &m->next;
5036 }
5037
5038 if (first_mbind && (abfd->flags & D_PAGED) != 0)
5039 for (s = first_mbind; s != NULL; s = s->next)
5040 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5041 && (elf_section_data (s)->this_hdr.sh_info
5042 <= PT_GNU_MBIND_NUM))
5043 {
5044 /* Mandated PF_R. */
5045 unsigned long p_flags = PF_R;
5046 if ((s->flags & SEC_READONLY) == 0)
5047 p_flags |= PF_W;
5048 if ((s->flags & SEC_CODE) != 0)
5049 p_flags |= PF_X;
5050
5051 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5052 m = bfd_zalloc (abfd, amt);
5053 if (m == NULL)
5054 goto error_return;
5055 m->next = NULL;
5056 m->p_type = (PT_GNU_MBIND_LO
5057 + elf_section_data (s)->this_hdr.sh_info);
5058 m->count = 1;
5059 m->p_flags_valid = 1;
5060 m->sections[0] = s;
5061 m->p_flags = p_flags;
5062
5063 *pm = m;
5064 pm = &m->next;
5065 }
5066
5067 s = bfd_get_section_by_name (abfd,
5068 NOTE_GNU_PROPERTY_SECTION_NAME);
5069 if (s != NULL && s->size != 0)
5070 {
5071 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5072 m = bfd_zalloc (abfd, amt);
5073 if (m == NULL)
5074 goto error_return;
5075 m->next = NULL;
5076 m->p_type = PT_GNU_PROPERTY;
5077 m->count = 1;
5078 m->p_flags_valid = 1;
5079 m->sections[0] = s;
5080 m->p_flags = PF_R;
5081 *pm = m;
5082 pm = &m->next;
5083 }
5084
5085 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5086 segment. */
5087 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5088 if (eh_frame_hdr != NULL
5089 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5090 {
5091 amt = sizeof (struct elf_segment_map);
5092 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5093 if (m == NULL)
5094 goto error_return;
5095 m->next = NULL;
5096 m->p_type = PT_GNU_EH_FRAME;
5097 m->count = 1;
5098 m->sections[0] = eh_frame_hdr->output_section;
5099
5100 *pm = m;
5101 pm = &m->next;
5102 }
5103
5104 if (elf_stack_flags (abfd))
5105 {
5106 amt = sizeof (struct elf_segment_map);
5107 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5108 if (m == NULL)
5109 goto error_return;
5110 m->next = NULL;
5111 m->p_type = PT_GNU_STACK;
5112 m->p_flags = elf_stack_flags (abfd);
5113 m->p_align = bed->stack_align;
5114 m->p_flags_valid = 1;
5115 m->p_align_valid = m->p_align != 0;
5116 if (info->stacksize > 0)
5117 {
5118 m->p_size = info->stacksize;
5119 m->p_size_valid = 1;
5120 }
5121
5122 *pm = m;
5123 pm = &m->next;
5124 }
5125
5126 if (info != NULL && info->relro)
5127 {
5128 for (m = mfirst; m != NULL; m = m->next)
5129 {
5130 if (m->p_type == PT_LOAD
5131 && m->count != 0
5132 && m->sections[0]->vma >= info->relro_start
5133 && m->sections[0]->vma < info->relro_end)
5134 {
5135 i = m->count;
5136 while (--i != (unsigned) -1)
5137 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5138 == (SEC_LOAD | SEC_HAS_CONTENTS))
5139 break;
5140
5141 if (i != (unsigned) -1)
5142 break;
5143 }
5144 }
5145
5146 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5147 if (m != NULL)
5148 {
5149 amt = sizeof (struct elf_segment_map);
5150 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5151 if (m == NULL)
5152 goto error_return;
5153 m->next = NULL;
5154 m->p_type = PT_GNU_RELRO;
5155 *pm = m;
5156 pm = &m->next;
5157 }
5158 }
5159
5160 free (sections);
5161 elf_seg_map (abfd) = mfirst;
5162 }
5163
5164 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5165 return FALSE;
5166
5167 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5168 ++count;
5169 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5170
5171 return TRUE;
5172
5173 error_return:
5174 if (sections != NULL)
5175 free (sections);
5176 return FALSE;
5177 }
5178
5179 /* Sort sections by address. */
5180
5181 static int
5182 elf_sort_sections (const void *arg1, const void *arg2)
5183 {
5184 const asection *sec1 = *(const asection **) arg1;
5185 const asection *sec2 = *(const asection **) arg2;
5186 bfd_size_type size1, size2;
5187
5188 /* Sort by LMA first, since this is the address used to
5189 place the section into a segment. */
5190 if (sec1->lma < sec2->lma)
5191 return -1;
5192 else if (sec1->lma > sec2->lma)
5193 return 1;
5194
5195 /* Then sort by VMA. Normally the LMA and the VMA will be
5196 the same, and this will do nothing. */
5197 if (sec1->vma < sec2->vma)
5198 return -1;
5199 else if (sec1->vma > sec2->vma)
5200 return 1;
5201
5202 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5203
5204 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5205
5206 if (TOEND (sec1))
5207 {
5208 if (TOEND (sec2))
5209 {
5210 /* If the indices are the same, do not return 0
5211 here, but continue to try the next comparison. */
5212 if (sec1->target_index - sec2->target_index != 0)
5213 return sec1->target_index - sec2->target_index;
5214 }
5215 else
5216 return 1;
5217 }
5218 else if (TOEND (sec2))
5219 return -1;
5220
5221 #undef TOEND
5222
5223 /* Sort by size, to put zero sized sections
5224 before others at the same address. */
5225
5226 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5227 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5228
5229 if (size1 < size2)
5230 return -1;
5231 if (size1 > size2)
5232 return 1;
5233
5234 return sec1->target_index - sec2->target_index;
5235 }
5236
5237 /* Ian Lance Taylor writes:
5238
5239 We shouldn't be using % with a negative signed number. That's just
5240 not good. We have to make sure either that the number is not
5241 negative, or that the number has an unsigned type. When the types
5242 are all the same size they wind up as unsigned. When file_ptr is a
5243 larger signed type, the arithmetic winds up as signed long long,
5244 which is wrong.
5245
5246 What we're trying to say here is something like ``increase OFF by
5247 the least amount that will cause it to be equal to the VMA modulo
5248 the page size.'' */
5249 /* In other words, something like:
5250
5251 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5252 off_offset = off % bed->maxpagesize;
5253 if (vma_offset < off_offset)
5254 adjustment = vma_offset + bed->maxpagesize - off_offset;
5255 else
5256 adjustment = vma_offset - off_offset;
5257
5258 which can be collapsed into the expression below. */
5259
5260 static file_ptr
5261 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5262 {
5263 /* PR binutils/16199: Handle an alignment of zero. */
5264 if (maxpagesize == 0)
5265 maxpagesize = 1;
5266 return ((vma - off) % maxpagesize);
5267 }
5268
5269 static void
5270 print_segment_map (const struct elf_segment_map *m)
5271 {
5272 unsigned int j;
5273 const char *pt = get_segment_type (m->p_type);
5274 char buf[32];
5275
5276 if (pt == NULL)
5277 {
5278 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5279 sprintf (buf, "LOPROC+%7.7x",
5280 (unsigned int) (m->p_type - PT_LOPROC));
5281 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5282 sprintf (buf, "LOOS+%7.7x",
5283 (unsigned int) (m->p_type - PT_LOOS));
5284 else
5285 snprintf (buf, sizeof (buf), "%8.8x",
5286 (unsigned int) m->p_type);
5287 pt = buf;
5288 }
5289 fflush (stdout);
5290 fprintf (stderr, "%s:", pt);
5291 for (j = 0; j < m->count; j++)
5292 fprintf (stderr, " %s", m->sections [j]->name);
5293 putc ('\n',stderr);
5294 fflush (stderr);
5295 }
5296
5297 static bfd_boolean
5298 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5299 {
5300 void *buf;
5301 bfd_boolean ret;
5302
5303 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5304 return FALSE;
5305 buf = bfd_zmalloc (len);
5306 if (buf == NULL)
5307 return FALSE;
5308 ret = bfd_bwrite (buf, len, abfd) == len;
5309 free (buf);
5310 return ret;
5311 }
5312
5313 /* Assign file positions to the sections based on the mapping from
5314 sections to segments. This function also sets up some fields in
5315 the file header. */
5316
5317 static bfd_boolean
5318 assign_file_positions_for_load_sections (bfd *abfd,
5319 struct bfd_link_info *link_info)
5320 {
5321 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5322 struct elf_segment_map *m;
5323 Elf_Internal_Phdr *phdrs;
5324 Elf_Internal_Phdr *p;
5325 file_ptr off;
5326 bfd_size_type maxpagesize;
5327 unsigned int pt_load_count = 0;
5328 unsigned int alloc;
5329 unsigned int i, j;
5330 bfd_vma header_pad = 0;
5331
5332 if (link_info == NULL
5333 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5334 return FALSE;
5335
5336 alloc = 0;
5337 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5338 {
5339 ++alloc;
5340 if (m->header_size)
5341 header_pad = m->header_size;
5342 }
5343
5344 if (alloc)
5345 {
5346 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5347 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5348 }
5349 else
5350 {
5351 /* PR binutils/12467. */
5352 elf_elfheader (abfd)->e_phoff = 0;
5353 elf_elfheader (abfd)->e_phentsize = 0;
5354 }
5355
5356 elf_elfheader (abfd)->e_phnum = alloc;
5357
5358 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5359 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5360 else
5361 BFD_ASSERT (elf_program_header_size (abfd)
5362 >= alloc * bed->s->sizeof_phdr);
5363
5364 if (alloc == 0)
5365 {
5366 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5367 return TRUE;
5368 }
5369
5370 /* We're writing the size in elf_program_header_size (abfd),
5371 see assign_file_positions_except_relocs, so make sure we have
5372 that amount allocated, with trailing space cleared.
5373 The variable alloc contains the computed need, while
5374 elf_program_header_size (abfd) contains the size used for the
5375 layout.
5376 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5377 where the layout is forced to according to a larger size in the
5378 last iterations for the testcase ld-elf/header. */
5379 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5380 == 0);
5381 phdrs = (Elf_Internal_Phdr *)
5382 bfd_zalloc2 (abfd,
5383 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5384 sizeof (Elf_Internal_Phdr));
5385 elf_tdata (abfd)->phdr = phdrs;
5386 if (phdrs == NULL)
5387 return FALSE;
5388
5389 maxpagesize = 1;
5390 if ((abfd->flags & D_PAGED) != 0)
5391 maxpagesize = bed->maxpagesize;
5392
5393 off = bed->s->sizeof_ehdr;
5394 off += alloc * bed->s->sizeof_phdr;
5395 if (header_pad < (bfd_vma) off)
5396 header_pad = 0;
5397 else
5398 header_pad -= off;
5399 off += header_pad;
5400
5401 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5402 m != NULL;
5403 m = m->next, p++, j++)
5404 {
5405 asection **secpp;
5406 bfd_vma off_adjust;
5407 bfd_boolean no_contents;
5408
5409 /* If elf_segment_map is not from map_sections_to_segments, the
5410 sections may not be correctly ordered. NOTE: sorting should
5411 not be done to the PT_NOTE section of a corefile, which may
5412 contain several pseudo-sections artificially created by bfd.
5413 Sorting these pseudo-sections breaks things badly. */
5414 if (m->count > 1
5415 && !(elf_elfheader (abfd)->e_type == ET_CORE
5416 && m->p_type == PT_NOTE))
5417 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5418 elf_sort_sections);
5419
5420 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5421 number of sections with contents contributing to both p_filesz
5422 and p_memsz, followed by a number of sections with no contents
5423 that just contribute to p_memsz. In this loop, OFF tracks next
5424 available file offset for PT_LOAD and PT_NOTE segments. */
5425 p->p_type = m->p_type;
5426 p->p_flags = m->p_flags;
5427
5428 if (m->count == 0)
5429 p->p_vaddr = m->p_vaddr_offset;
5430 else
5431 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5432
5433 if (m->p_paddr_valid)
5434 p->p_paddr = m->p_paddr;
5435 else if (m->count == 0)
5436 p->p_paddr = 0;
5437 else
5438 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5439
5440 if (p->p_type == PT_LOAD
5441 && (abfd->flags & D_PAGED) != 0)
5442 {
5443 /* p_align in demand paged PT_LOAD segments effectively stores
5444 the maximum page size. When copying an executable with
5445 objcopy, we set m->p_align from the input file. Use this
5446 value for maxpagesize rather than bed->maxpagesize, which
5447 may be different. Note that we use maxpagesize for PT_TLS
5448 segment alignment later in this function, so we are relying
5449 on at least one PT_LOAD segment appearing before a PT_TLS
5450 segment. */
5451 if (m->p_align_valid)
5452 maxpagesize = m->p_align;
5453
5454 p->p_align = maxpagesize;
5455 pt_load_count += 1;
5456 }
5457 else if (m->p_align_valid)
5458 p->p_align = m->p_align;
5459 else if (m->count == 0)
5460 p->p_align = 1 << bed->s->log_file_align;
5461 else
5462 p->p_align = 0;
5463
5464 no_contents = FALSE;
5465 off_adjust = 0;
5466 if (p->p_type == PT_LOAD
5467 && m->count > 0)
5468 {
5469 bfd_size_type align;
5470 unsigned int align_power = 0;
5471
5472 if (m->p_align_valid)
5473 align = p->p_align;
5474 else
5475 {
5476 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5477 {
5478 unsigned int secalign;
5479
5480 secalign = bfd_get_section_alignment (abfd, *secpp);
5481 if (secalign > align_power)
5482 align_power = secalign;
5483 }
5484 align = (bfd_size_type) 1 << align_power;
5485 if (align < maxpagesize)
5486 align = maxpagesize;
5487 }
5488
5489 for (i = 0; i < m->count; i++)
5490 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5491 /* If we aren't making room for this section, then
5492 it must be SHT_NOBITS regardless of what we've
5493 set via struct bfd_elf_special_section. */
5494 elf_section_type (m->sections[i]) = SHT_NOBITS;
5495
5496 /* Find out whether this segment contains any loadable
5497 sections. */
5498 no_contents = TRUE;
5499 for (i = 0; i < m->count; i++)
5500 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5501 {
5502 no_contents = FALSE;
5503 break;
5504 }
5505
5506 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5507
5508 /* Broken hardware and/or kernel require that files do not
5509 map the same page with different permissions on some hppa
5510 processors. */
5511 if (pt_load_count > 1
5512 && bed->no_page_alias
5513 && (off & (maxpagesize - 1)) != 0
5514 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5515 off_adjust += maxpagesize;
5516 off += off_adjust;
5517 if (no_contents)
5518 {
5519 /* We shouldn't need to align the segment on disk since
5520 the segment doesn't need file space, but the gABI
5521 arguably requires the alignment and glibc ld.so
5522 checks it. So to comply with the alignment
5523 requirement but not waste file space, we adjust
5524 p_offset for just this segment. (OFF_ADJUST is
5525 subtracted from OFF later.) This may put p_offset
5526 past the end of file, but that shouldn't matter. */
5527 }
5528 else
5529 off_adjust = 0;
5530 }
5531 /* Make sure the .dynamic section is the first section in the
5532 PT_DYNAMIC segment. */
5533 else if (p->p_type == PT_DYNAMIC
5534 && m->count > 1
5535 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5536 {
5537 _bfd_error_handler
5538 (_("%pB: The first section in the PT_DYNAMIC segment"
5539 " is not the .dynamic section"),
5540 abfd);
5541 bfd_set_error (bfd_error_bad_value);
5542 return FALSE;
5543 }
5544 /* Set the note section type to SHT_NOTE. */
5545 else if (p->p_type == PT_NOTE)
5546 for (i = 0; i < m->count; i++)
5547 elf_section_type (m->sections[i]) = SHT_NOTE;
5548
5549 p->p_offset = 0;
5550 p->p_filesz = 0;
5551 p->p_memsz = 0;
5552
5553 if (m->includes_filehdr)
5554 {
5555 if (!m->p_flags_valid)
5556 p->p_flags |= PF_R;
5557 p->p_filesz = bed->s->sizeof_ehdr;
5558 p->p_memsz = bed->s->sizeof_ehdr;
5559 if (m->count > 0)
5560 {
5561 if (p->p_vaddr < (bfd_vma) off
5562 || (!m->p_paddr_valid
5563 && p->p_paddr < (bfd_vma) off))
5564 {
5565 _bfd_error_handler
5566 (_("%pB: not enough room for program headers,"
5567 " try linking with -N"),
5568 abfd);
5569 bfd_set_error (bfd_error_bad_value);
5570 return FALSE;
5571 }
5572
5573 p->p_vaddr -= off;
5574 if (!m->p_paddr_valid)
5575 p->p_paddr -= off;
5576 }
5577 }
5578
5579 if (m->includes_phdrs)
5580 {
5581 if (!m->p_flags_valid)
5582 p->p_flags |= PF_R;
5583
5584 if (!m->includes_filehdr)
5585 {
5586 p->p_offset = bed->s->sizeof_ehdr;
5587
5588 if (m->count > 0)
5589 {
5590 p->p_vaddr -= off - p->p_offset;
5591 if (!m->p_paddr_valid)
5592 p->p_paddr -= off - p->p_offset;
5593 }
5594 }
5595
5596 p->p_filesz += alloc * bed->s->sizeof_phdr;
5597 p->p_memsz += alloc * bed->s->sizeof_phdr;
5598 if (m->count)
5599 {
5600 p->p_filesz += header_pad;
5601 p->p_memsz += header_pad;
5602 }
5603 }
5604
5605 if (p->p_type == PT_LOAD
5606 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5607 {
5608 if (!m->includes_filehdr && !m->includes_phdrs)
5609 p->p_offset = off;
5610 else
5611 {
5612 file_ptr adjust;
5613
5614 adjust = off - (p->p_offset + p->p_filesz);
5615 if (!no_contents)
5616 p->p_filesz += adjust;
5617 p->p_memsz += adjust;
5618 }
5619 }
5620
5621 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5622 maps. Set filepos for sections in PT_LOAD segments, and in
5623 core files, for sections in PT_NOTE segments.
5624 assign_file_positions_for_non_load_sections will set filepos
5625 for other sections and update p_filesz for other segments. */
5626 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5627 {
5628 asection *sec;
5629 bfd_size_type align;
5630 Elf_Internal_Shdr *this_hdr;
5631
5632 sec = *secpp;
5633 this_hdr = &elf_section_data (sec)->this_hdr;
5634 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5635
5636 if ((p->p_type == PT_LOAD
5637 || p->p_type == PT_TLS)
5638 && (this_hdr->sh_type != SHT_NOBITS
5639 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5640 && ((this_hdr->sh_flags & SHF_TLS) == 0
5641 || p->p_type == PT_TLS))))
5642 {
5643 bfd_vma p_start = p->p_paddr;
5644 bfd_vma p_end = p_start + p->p_memsz;
5645 bfd_vma s_start = sec->lma;
5646 bfd_vma adjust = s_start - p_end;
5647
5648 if (adjust != 0
5649 && (s_start < p_end
5650 || p_end < p_start))
5651 {
5652 _bfd_error_handler
5653 /* xgettext:c-format */
5654 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5655 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5656 adjust = 0;
5657 sec->lma = p_end;
5658 }
5659 p->p_memsz += adjust;
5660
5661 if (this_hdr->sh_type != SHT_NOBITS)
5662 {
5663 if (p->p_filesz + adjust < p->p_memsz)
5664 {
5665 /* We have a PROGBITS section following NOBITS ones.
5666 Allocate file space for the NOBITS section(s) and
5667 zero it. */
5668 adjust = p->p_memsz - p->p_filesz;
5669 if (!write_zeros (abfd, off, adjust))
5670 return FALSE;
5671 }
5672 off += adjust;
5673 p->p_filesz += adjust;
5674 }
5675 }
5676
5677 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5678 {
5679 /* The section at i == 0 is the one that actually contains
5680 everything. */
5681 if (i == 0)
5682 {
5683 this_hdr->sh_offset = sec->filepos = off;
5684 off += this_hdr->sh_size;
5685 p->p_filesz = this_hdr->sh_size;
5686 p->p_memsz = 0;
5687 p->p_align = 1;
5688 }
5689 else
5690 {
5691 /* The rest are fake sections that shouldn't be written. */
5692 sec->filepos = 0;
5693 sec->size = 0;
5694 sec->flags = 0;
5695 continue;
5696 }
5697 }
5698 else
5699 {
5700 if (p->p_type == PT_LOAD)
5701 {
5702 this_hdr->sh_offset = sec->filepos = off;
5703 if (this_hdr->sh_type != SHT_NOBITS)
5704 off += this_hdr->sh_size;
5705 }
5706 else if (this_hdr->sh_type == SHT_NOBITS
5707 && (this_hdr->sh_flags & SHF_TLS) != 0
5708 && this_hdr->sh_offset == 0)
5709 {
5710 /* This is a .tbss section that didn't get a PT_LOAD.
5711 (See _bfd_elf_map_sections_to_segments "Create a
5712 final PT_LOAD".) Set sh_offset to the value it
5713 would have if we had created a zero p_filesz and
5714 p_memsz PT_LOAD header for the section. This
5715 also makes the PT_TLS header have the same
5716 p_offset value. */
5717 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5718 off, align);
5719 this_hdr->sh_offset = sec->filepos = off + adjust;
5720 }
5721
5722 if (this_hdr->sh_type != SHT_NOBITS)
5723 {
5724 p->p_filesz += this_hdr->sh_size;
5725 /* A load section without SHF_ALLOC is something like
5726 a note section in a PT_NOTE segment. These take
5727 file space but are not loaded into memory. */
5728 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5729 p->p_memsz += this_hdr->sh_size;
5730 }
5731 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5732 {
5733 if (p->p_type == PT_TLS)
5734 p->p_memsz += this_hdr->sh_size;
5735
5736 /* .tbss is special. It doesn't contribute to p_memsz of
5737 normal segments. */
5738 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5739 p->p_memsz += this_hdr->sh_size;
5740 }
5741
5742 if (align > p->p_align
5743 && !m->p_align_valid
5744 && (p->p_type != PT_LOAD
5745 || (abfd->flags & D_PAGED) == 0))
5746 p->p_align = align;
5747 }
5748
5749 if (!m->p_flags_valid)
5750 {
5751 p->p_flags |= PF_R;
5752 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5753 p->p_flags |= PF_X;
5754 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5755 p->p_flags |= PF_W;
5756 }
5757 }
5758
5759 off -= off_adjust;
5760
5761 /* Check that all sections are in a PT_LOAD segment.
5762 Don't check funky gdb generated core files. */
5763 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5764 {
5765 bfd_boolean check_vma = TRUE;
5766
5767 for (i = 1; i < m->count; i++)
5768 if (m->sections[i]->vma == m->sections[i - 1]->vma
5769 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5770 ->this_hdr), p) != 0
5771 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5772 ->this_hdr), p) != 0)
5773 {
5774 /* Looks like we have overlays packed into the segment. */
5775 check_vma = FALSE;
5776 break;
5777 }
5778
5779 for (i = 0; i < m->count; i++)
5780 {
5781 Elf_Internal_Shdr *this_hdr;
5782 asection *sec;
5783
5784 sec = m->sections[i];
5785 this_hdr = &(elf_section_data(sec)->this_hdr);
5786 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5787 && !ELF_TBSS_SPECIAL (this_hdr, p))
5788 {
5789 _bfd_error_handler
5790 /* xgettext:c-format */
5791 (_("%pB: section `%pA' can't be allocated in segment %d"),
5792 abfd, sec, j);
5793 print_segment_map (m);
5794 }
5795 }
5796 }
5797 }
5798
5799 elf_next_file_pos (abfd) = off;
5800 return TRUE;
5801 }
5802
5803 /* Assign file positions for the other sections. */
5804
5805 static bfd_boolean
5806 assign_file_positions_for_non_load_sections (bfd *abfd,
5807 struct bfd_link_info *link_info)
5808 {
5809 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5810 Elf_Internal_Shdr **i_shdrpp;
5811 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5812 Elf_Internal_Phdr *phdrs;
5813 Elf_Internal_Phdr *p;
5814 struct elf_segment_map *m;
5815 struct elf_segment_map *hdrs_segment;
5816 bfd_vma filehdr_vaddr, filehdr_paddr;
5817 bfd_vma phdrs_vaddr, phdrs_paddr;
5818 file_ptr off;
5819 unsigned int count;
5820
5821 i_shdrpp = elf_elfsections (abfd);
5822 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5823 off = elf_next_file_pos (abfd);
5824 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5825 {
5826 Elf_Internal_Shdr *hdr;
5827
5828 hdr = *hdrpp;
5829 if (hdr->bfd_section != NULL
5830 && (hdr->bfd_section->filepos != 0
5831 || (hdr->sh_type == SHT_NOBITS
5832 && hdr->contents == NULL)))
5833 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5834 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5835 {
5836 if (hdr->sh_size != 0)
5837 _bfd_error_handler
5838 /* xgettext:c-format */
5839 (_("%pB: warning: allocated section `%s' not in segment"),
5840 abfd,
5841 (hdr->bfd_section == NULL
5842 ? "*unknown*"
5843 : hdr->bfd_section->name));
5844 /* We don't need to page align empty sections. */
5845 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5846 off += vma_page_aligned_bias (hdr->sh_addr, off,
5847 bed->maxpagesize);
5848 else
5849 off += vma_page_aligned_bias (hdr->sh_addr, off,
5850 hdr->sh_addralign);
5851 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5852 FALSE);
5853 }
5854 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5855 && hdr->bfd_section == NULL)
5856 || (hdr->bfd_section != NULL
5857 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5858 /* Compress DWARF debug sections. */
5859 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5860 || (elf_symtab_shndx_list (abfd) != NULL
5861 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5862 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5863 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5864 hdr->sh_offset = -1;
5865 else
5866 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5867 }
5868
5869 /* Now that we have set the section file positions, we can set up
5870 the file positions for the non PT_LOAD segments. */
5871 count = 0;
5872 filehdr_vaddr = 0;
5873 filehdr_paddr = 0;
5874 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5875 phdrs_paddr = 0;
5876 hdrs_segment = NULL;
5877 phdrs = elf_tdata (abfd)->phdr;
5878 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5879 {
5880 ++count;
5881 if (p->p_type != PT_LOAD)
5882 continue;
5883
5884 if (m->includes_filehdr)
5885 {
5886 filehdr_vaddr = p->p_vaddr;
5887 filehdr_paddr = p->p_paddr;
5888 }
5889 if (m->includes_phdrs)
5890 {
5891 phdrs_vaddr = p->p_vaddr;
5892 phdrs_paddr = p->p_paddr;
5893 if (m->includes_filehdr)
5894 {
5895 hdrs_segment = m;
5896 phdrs_vaddr += bed->s->sizeof_ehdr;
5897 phdrs_paddr += bed->s->sizeof_ehdr;
5898 }
5899 }
5900 }
5901
5902 if (hdrs_segment != NULL && link_info != NULL)
5903 {
5904 /* There is a segment that contains both the file headers and the
5905 program headers, so provide a symbol __ehdr_start pointing there.
5906 A program can use this to examine itself robustly. */
5907
5908 struct elf_link_hash_entry *hash
5909 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5910 FALSE, FALSE, TRUE);
5911 /* If the symbol was referenced and not defined, define it. */
5912 if (hash != NULL
5913 && (hash->root.type == bfd_link_hash_new
5914 || hash->root.type == bfd_link_hash_undefined
5915 || hash->root.type == bfd_link_hash_undefweak
5916 || hash->root.type == bfd_link_hash_common))
5917 {
5918 asection *s = NULL;
5919 if (hdrs_segment->count != 0)
5920 /* The segment contains sections, so use the first one. */
5921 s = hdrs_segment->sections[0];
5922 else
5923 /* Use the first (i.e. lowest-addressed) section in any segment. */
5924 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5925 if (m->count != 0)
5926 {
5927 s = m->sections[0];
5928 break;
5929 }
5930
5931 if (s != NULL)
5932 {
5933 hash->root.u.def.value = filehdr_vaddr - s->vma;
5934 hash->root.u.def.section = s;
5935 }
5936 else
5937 {
5938 hash->root.u.def.value = filehdr_vaddr;
5939 hash->root.u.def.section = bfd_abs_section_ptr;
5940 }
5941
5942 hash->root.type = bfd_link_hash_defined;
5943 hash->def_regular = 1;
5944 hash->non_elf = 0;
5945 }
5946 }
5947
5948 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5949 {
5950 if (p->p_type == PT_GNU_RELRO)
5951 {
5952 bfd_vma start, end;
5953 bfd_boolean ok;
5954
5955 if (link_info != NULL)
5956 {
5957 /* During linking the range of the RELRO segment is passed
5958 in link_info. Note that there may be padding between
5959 relro_start and the first RELRO section. */
5960 start = link_info->relro_start;
5961 end = link_info->relro_end;
5962 }
5963 else if (m->count != 0)
5964 {
5965 if (!m->p_size_valid)
5966 abort ();
5967 start = m->sections[0]->vma;
5968 end = start + m->p_size;
5969 }
5970 else
5971 {
5972 start = 0;
5973 end = 0;
5974 }
5975
5976 ok = FALSE;
5977 if (start < end)
5978 {
5979 struct elf_segment_map *lm;
5980 const Elf_Internal_Phdr *lp;
5981 unsigned int i;
5982
5983 /* Find a LOAD segment containing a section in the RELRO
5984 segment. */
5985 for (lm = elf_seg_map (abfd), lp = phdrs;
5986 lm != NULL;
5987 lm = lm->next, lp++)
5988 {
5989 if (lp->p_type == PT_LOAD
5990 && lm->count != 0
5991 && (lm->sections[lm->count - 1]->vma
5992 + (!IS_TBSS (lm->sections[lm->count - 1])
5993 ? lm->sections[lm->count - 1]->size
5994 : 0)) > start
5995 && lm->sections[0]->vma < end)
5996 break;
5997 }
5998
5999 if (lm != NULL)
6000 {
6001 /* Find the section starting the RELRO segment. */
6002 for (i = 0; i < lm->count; i++)
6003 {
6004 asection *s = lm->sections[i];
6005 if (s->vma >= start
6006 && s->vma < end
6007 && s->size != 0)
6008 break;
6009 }
6010
6011 if (i < lm->count)
6012 {
6013 p->p_vaddr = lm->sections[i]->vma;
6014 p->p_paddr = lm->sections[i]->lma;
6015 p->p_offset = lm->sections[i]->filepos;
6016 p->p_memsz = end - p->p_vaddr;
6017 p->p_filesz = p->p_memsz;
6018
6019 /* The RELRO segment typically ends a few bytes
6020 into .got.plt but other layouts are possible.
6021 In cases where the end does not match any
6022 loaded section (for instance is in file
6023 padding), trim p_filesz back to correspond to
6024 the end of loaded section contents. */
6025 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6026 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6027
6028 /* Preserve the alignment and flags if they are
6029 valid. The gold linker generates RW/4 for
6030 the PT_GNU_RELRO section. It is better for
6031 objcopy/strip to honor these attributes
6032 otherwise gdb will choke when using separate
6033 debug files. */
6034 if (!m->p_align_valid)
6035 p->p_align = 1;
6036 if (!m->p_flags_valid)
6037 p->p_flags = PF_R;
6038 ok = TRUE;
6039 }
6040 }
6041 }
6042 if (link_info != NULL)
6043 BFD_ASSERT (ok);
6044 if (!ok)
6045 memset (p, 0, sizeof *p);
6046 }
6047 else if (p->p_type == PT_GNU_STACK)
6048 {
6049 if (m->p_size_valid)
6050 p->p_memsz = m->p_size;
6051 }
6052 else if (m->count != 0)
6053 {
6054 unsigned int i;
6055
6056 if (p->p_type != PT_LOAD
6057 && (p->p_type != PT_NOTE
6058 || bfd_get_format (abfd) != bfd_core))
6059 {
6060 /* A user specified segment layout may include a PHDR
6061 segment that overlaps with a LOAD segment... */
6062 if (p->p_type == PT_PHDR)
6063 {
6064 m->count = 0;
6065 continue;
6066 }
6067
6068 if (m->includes_filehdr || m->includes_phdrs)
6069 {
6070 /* PR 17512: file: 2195325e. */
6071 _bfd_error_handler
6072 (_("%pB: error: non-load segment %d includes file header "
6073 "and/or program header"),
6074 abfd, (int) (p - phdrs));
6075 return FALSE;
6076 }
6077
6078 p->p_filesz = 0;
6079 p->p_offset = m->sections[0]->filepos;
6080 for (i = m->count; i-- != 0;)
6081 {
6082 asection *sect = m->sections[i];
6083 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6084 if (hdr->sh_type != SHT_NOBITS)
6085 {
6086 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6087 + hdr->sh_size);
6088 break;
6089 }
6090 }
6091 }
6092 }
6093 else if (m->includes_filehdr)
6094 {
6095 p->p_vaddr = filehdr_vaddr;
6096 if (! m->p_paddr_valid)
6097 p->p_paddr = filehdr_paddr;
6098 }
6099 else if (m->includes_phdrs)
6100 {
6101 p->p_vaddr = phdrs_vaddr;
6102 if (! m->p_paddr_valid)
6103 p->p_paddr = phdrs_paddr;
6104 }
6105 }
6106
6107 elf_next_file_pos (abfd) = off;
6108
6109 return TRUE;
6110 }
6111
6112 static elf_section_list *
6113 find_section_in_list (unsigned int i, elf_section_list * list)
6114 {
6115 for (;list != NULL; list = list->next)
6116 if (list->ndx == i)
6117 break;
6118 return list;
6119 }
6120
6121 /* Work out the file positions of all the sections. This is called by
6122 _bfd_elf_compute_section_file_positions. All the section sizes and
6123 VMAs must be known before this is called.
6124
6125 Reloc sections come in two flavours: Those processed specially as
6126 "side-channel" data attached to a section to which they apply, and
6127 those that bfd doesn't process as relocations. The latter sort are
6128 stored in a normal bfd section by bfd_section_from_shdr. We don't
6129 consider the former sort here, unless they form part of the loadable
6130 image. Reloc sections not assigned here will be handled later by
6131 assign_file_positions_for_relocs.
6132
6133 We also don't set the positions of the .symtab and .strtab here. */
6134
6135 static bfd_boolean
6136 assign_file_positions_except_relocs (bfd *abfd,
6137 struct bfd_link_info *link_info)
6138 {
6139 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6140 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6141 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6142
6143 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6144 && bfd_get_format (abfd) != bfd_core)
6145 {
6146 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6147 unsigned int num_sec = elf_numsections (abfd);
6148 Elf_Internal_Shdr **hdrpp;
6149 unsigned int i;
6150 file_ptr off;
6151
6152 /* Start after the ELF header. */
6153 off = i_ehdrp->e_ehsize;
6154
6155 /* We are not creating an executable, which means that we are
6156 not creating a program header, and that the actual order of
6157 the sections in the file is unimportant. */
6158 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6159 {
6160 Elf_Internal_Shdr *hdr;
6161
6162 hdr = *hdrpp;
6163 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6164 && hdr->bfd_section == NULL)
6165 || (hdr->bfd_section != NULL
6166 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6167 /* Compress DWARF debug sections. */
6168 || i == elf_onesymtab (abfd)
6169 || (elf_symtab_shndx_list (abfd) != NULL
6170 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6171 || i == elf_strtab_sec (abfd)
6172 || i == elf_shstrtab_sec (abfd))
6173 {
6174 hdr->sh_offset = -1;
6175 }
6176 else
6177 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6178 }
6179
6180 elf_next_file_pos (abfd) = off;
6181 }
6182 else
6183 {
6184 unsigned int alloc;
6185
6186 /* Assign file positions for the loaded sections based on the
6187 assignment of sections to segments. */
6188 if (!assign_file_positions_for_load_sections (abfd, link_info))
6189 return FALSE;
6190
6191 /* And for non-load sections. */
6192 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6193 return FALSE;
6194
6195 if (bed->elf_backend_modify_program_headers != NULL)
6196 {
6197 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6198 return FALSE;
6199 }
6200
6201 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6202 if (link_info != NULL && bfd_link_pie (link_info))
6203 {
6204 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6205 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6206 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6207
6208 /* Find the lowest p_vaddr in PT_LOAD segments. */
6209 bfd_vma p_vaddr = (bfd_vma) -1;
6210 for (; segment < end_segment; segment++)
6211 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6212 p_vaddr = segment->p_vaddr;
6213
6214 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6215 segments is non-zero. */
6216 if (p_vaddr)
6217 i_ehdrp->e_type = ET_EXEC;
6218 }
6219
6220 /* Write out the program headers. */
6221 alloc = elf_elfheader (abfd)->e_phnum;
6222 if (alloc == 0)
6223 return TRUE;
6224
6225 /* PR ld/20815 - Check that the program header segment, if present, will
6226 be loaded into memory. FIXME: The check below is not sufficient as
6227 really all PT_LOAD segments should be checked before issuing an error
6228 message. Plus the PHDR segment does not have to be the first segment
6229 in the program header table. But this version of the check should
6230 catch all real world use cases.
6231
6232 FIXME: We used to have code here to sort the PT_LOAD segments into
6233 ascending order, as per the ELF spec. But this breaks some programs,
6234 including the Linux kernel. But really either the spec should be
6235 changed or the programs updated. */
6236 if (alloc > 1
6237 && tdata->phdr[0].p_type == PT_PHDR
6238 && (bed->elf_backend_allow_non_load_phdr == NULL
6239 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6240 alloc))
6241 && tdata->phdr[1].p_type == PT_LOAD
6242 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6243 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz
6244 < tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6245 {
6246 /* The fix for this error is usually to edit the linker script being
6247 used and set up the program headers manually. Either that or
6248 leave room for the headers at the start of the SECTIONS. */
6249 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
6250 " by LOAD segment"),
6251 abfd);
6252 return FALSE;
6253 }
6254
6255 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6256 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6257 return FALSE;
6258 }
6259
6260 return TRUE;
6261 }
6262
6263 static bfd_boolean
6264 prep_headers (bfd *abfd)
6265 {
6266 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6267 struct elf_strtab_hash *shstrtab;
6268 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6269
6270 i_ehdrp = elf_elfheader (abfd);
6271
6272 shstrtab = _bfd_elf_strtab_init ();
6273 if (shstrtab == NULL)
6274 return FALSE;
6275
6276 elf_shstrtab (abfd) = shstrtab;
6277
6278 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6279 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6280 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6281 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6282
6283 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6284 i_ehdrp->e_ident[EI_DATA] =
6285 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6286 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6287
6288 if ((abfd->flags & DYNAMIC) != 0)
6289 i_ehdrp->e_type = ET_DYN;
6290 else if ((abfd->flags & EXEC_P) != 0)
6291 i_ehdrp->e_type = ET_EXEC;
6292 else if (bfd_get_format (abfd) == bfd_core)
6293 i_ehdrp->e_type = ET_CORE;
6294 else
6295 i_ehdrp->e_type = ET_REL;
6296
6297 switch (bfd_get_arch (abfd))
6298 {
6299 case bfd_arch_unknown:
6300 i_ehdrp->e_machine = EM_NONE;
6301 break;
6302
6303 /* There used to be a long list of cases here, each one setting
6304 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6305 in the corresponding bfd definition. To avoid duplication,
6306 the switch was removed. Machines that need special handling
6307 can generally do it in elf_backend_final_write_processing(),
6308 unless they need the information earlier than the final write.
6309 Such need can generally be supplied by replacing the tests for
6310 e_machine with the conditions used to determine it. */
6311 default:
6312 i_ehdrp->e_machine = bed->elf_machine_code;
6313 }
6314
6315 i_ehdrp->e_version = bed->s->ev_current;
6316 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6317
6318 /* No program header, for now. */
6319 i_ehdrp->e_phoff = 0;
6320 i_ehdrp->e_phentsize = 0;
6321 i_ehdrp->e_phnum = 0;
6322
6323 /* Each bfd section is section header entry. */
6324 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6325 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6326
6327 /* If we're building an executable, we'll need a program header table. */
6328 if (abfd->flags & EXEC_P)
6329 /* It all happens later. */
6330 ;
6331 else
6332 {
6333 i_ehdrp->e_phentsize = 0;
6334 i_ehdrp->e_phoff = 0;
6335 }
6336
6337 elf_tdata (abfd)->symtab_hdr.sh_name =
6338 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6339 elf_tdata (abfd)->strtab_hdr.sh_name =
6340 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6341 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6342 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6343 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6344 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6345 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6346 return FALSE;
6347
6348 return TRUE;
6349 }
6350
6351 /* Assign file positions for all the reloc sections which are not part
6352 of the loadable file image, and the file position of section headers. */
6353
6354 static bfd_boolean
6355 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6356 {
6357 file_ptr off;
6358 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6359 Elf_Internal_Shdr *shdrp;
6360 Elf_Internal_Ehdr *i_ehdrp;
6361 const struct elf_backend_data *bed;
6362
6363 off = elf_next_file_pos (abfd);
6364
6365 shdrpp = elf_elfsections (abfd);
6366 end_shdrpp = shdrpp + elf_numsections (abfd);
6367 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6368 {
6369 shdrp = *shdrpp;
6370 if (shdrp->sh_offset == -1)
6371 {
6372 asection *sec = shdrp->bfd_section;
6373 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6374 || shdrp->sh_type == SHT_RELA);
6375 if (is_rel
6376 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6377 {
6378 if (!is_rel)
6379 {
6380 const char *name = sec->name;
6381 struct bfd_elf_section_data *d;
6382
6383 /* Compress DWARF debug sections. */
6384 if (!bfd_compress_section (abfd, sec,
6385 shdrp->contents))
6386 return FALSE;
6387
6388 if (sec->compress_status == COMPRESS_SECTION_DONE
6389 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6390 {
6391 /* If section is compressed with zlib-gnu, convert
6392 section name from .debug_* to .zdebug_*. */
6393 char *new_name
6394 = convert_debug_to_zdebug (abfd, name);
6395 if (new_name == NULL)
6396 return FALSE;
6397 name = new_name;
6398 }
6399 /* Add section name to section name section. */
6400 if (shdrp->sh_name != (unsigned int) -1)
6401 abort ();
6402 shdrp->sh_name
6403 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6404 name, FALSE);
6405 d = elf_section_data (sec);
6406
6407 /* Add reloc section name to section name section. */
6408 if (d->rel.hdr
6409 && !_bfd_elf_set_reloc_sh_name (abfd,
6410 d->rel.hdr,
6411 name, FALSE))
6412 return FALSE;
6413 if (d->rela.hdr
6414 && !_bfd_elf_set_reloc_sh_name (abfd,
6415 d->rela.hdr,
6416 name, TRUE))
6417 return FALSE;
6418
6419 /* Update section size and contents. */
6420 shdrp->sh_size = sec->size;
6421 shdrp->contents = sec->contents;
6422 shdrp->bfd_section->contents = NULL;
6423 }
6424 off = _bfd_elf_assign_file_position_for_section (shdrp,
6425 off,
6426 TRUE);
6427 }
6428 }
6429 }
6430
6431 /* Place section name section after DWARF debug sections have been
6432 compressed. */
6433 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6434 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6435 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6436 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6437
6438 /* Place the section headers. */
6439 i_ehdrp = elf_elfheader (abfd);
6440 bed = get_elf_backend_data (abfd);
6441 off = align_file_position (off, 1 << bed->s->log_file_align);
6442 i_ehdrp->e_shoff = off;
6443 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6444 elf_next_file_pos (abfd) = off;
6445
6446 return TRUE;
6447 }
6448
6449 bfd_boolean
6450 _bfd_elf_write_object_contents (bfd *abfd)
6451 {
6452 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6453 Elf_Internal_Shdr **i_shdrp;
6454 bfd_boolean failed;
6455 unsigned int count, num_sec;
6456 struct elf_obj_tdata *t;
6457
6458 if (! abfd->output_has_begun
6459 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6460 return FALSE;
6461 /* Do not rewrite ELF data when the BFD has been opened for update.
6462 abfd->output_has_begun was set to TRUE on opening, so creation of new
6463 sections, and modification of existing section sizes was restricted.
6464 This means the ELF header, program headers and section headers can't have
6465 changed.
6466 If the contents of any sections has been modified, then those changes have
6467 already been written to the BFD. */
6468 else if (abfd->direction == both_direction)
6469 {
6470 BFD_ASSERT (abfd->output_has_begun);
6471 return TRUE;
6472 }
6473
6474 i_shdrp = elf_elfsections (abfd);
6475
6476 failed = FALSE;
6477 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6478 if (failed)
6479 return FALSE;
6480
6481 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6482 return FALSE;
6483
6484 /* After writing the headers, we need to write the sections too... */
6485 num_sec = elf_numsections (abfd);
6486 for (count = 1; count < num_sec; count++)
6487 {
6488 i_shdrp[count]->sh_name
6489 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6490 i_shdrp[count]->sh_name);
6491 if (bed->elf_backend_section_processing)
6492 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6493 return FALSE;
6494 if (i_shdrp[count]->contents)
6495 {
6496 bfd_size_type amt = i_shdrp[count]->sh_size;
6497
6498 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6499 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6500 return FALSE;
6501 }
6502 }
6503
6504 /* Write out the section header names. */
6505 t = elf_tdata (abfd);
6506 if (elf_shstrtab (abfd) != NULL
6507 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6508 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6509 return FALSE;
6510
6511 if (bed->elf_backend_final_write_processing)
6512 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6513
6514 if (!bed->s->write_shdrs_and_ehdr (abfd))
6515 return FALSE;
6516
6517 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6518 if (t->o->build_id.after_write_object_contents != NULL)
6519 return (*t->o->build_id.after_write_object_contents) (abfd);
6520
6521 return TRUE;
6522 }
6523
6524 bfd_boolean
6525 _bfd_elf_write_corefile_contents (bfd *abfd)
6526 {
6527 /* Hopefully this can be done just like an object file. */
6528 return _bfd_elf_write_object_contents (abfd);
6529 }
6530
6531 /* Given a section, search the header to find them. */
6532
6533 unsigned int
6534 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6535 {
6536 const struct elf_backend_data *bed;
6537 unsigned int sec_index;
6538
6539 if (elf_section_data (asect) != NULL
6540 && elf_section_data (asect)->this_idx != 0)
6541 return elf_section_data (asect)->this_idx;
6542
6543 if (bfd_is_abs_section (asect))
6544 sec_index = SHN_ABS;
6545 else if (bfd_is_com_section (asect))
6546 sec_index = SHN_COMMON;
6547 else if (bfd_is_und_section (asect))
6548 sec_index = SHN_UNDEF;
6549 else
6550 sec_index = SHN_BAD;
6551
6552 bed = get_elf_backend_data (abfd);
6553 if (bed->elf_backend_section_from_bfd_section)
6554 {
6555 int retval = sec_index;
6556
6557 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6558 return retval;
6559 }
6560
6561 if (sec_index == SHN_BAD)
6562 bfd_set_error (bfd_error_nonrepresentable_section);
6563
6564 return sec_index;
6565 }
6566
6567 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6568 on error. */
6569
6570 int
6571 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6572 {
6573 asymbol *asym_ptr = *asym_ptr_ptr;
6574 int idx;
6575 flagword flags = asym_ptr->flags;
6576
6577 /* When gas creates relocations against local labels, it creates its
6578 own symbol for the section, but does put the symbol into the
6579 symbol chain, so udata is 0. When the linker is generating
6580 relocatable output, this section symbol may be for one of the
6581 input sections rather than the output section. */
6582 if (asym_ptr->udata.i == 0
6583 && (flags & BSF_SECTION_SYM)
6584 && asym_ptr->section)
6585 {
6586 asection *sec;
6587 int indx;
6588
6589 sec = asym_ptr->section;
6590 if (sec->owner != abfd && sec->output_section != NULL)
6591 sec = sec->output_section;
6592 if (sec->owner == abfd
6593 && (indx = sec->index) < elf_num_section_syms (abfd)
6594 && elf_section_syms (abfd)[indx] != NULL)
6595 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6596 }
6597
6598 idx = asym_ptr->udata.i;
6599
6600 if (idx == 0)
6601 {
6602 /* This case can occur when using --strip-symbol on a symbol
6603 which is used in a relocation entry. */
6604 _bfd_error_handler
6605 /* xgettext:c-format */
6606 (_("%pB: symbol `%s' required but not present"),
6607 abfd, bfd_asymbol_name (asym_ptr));
6608 bfd_set_error (bfd_error_no_symbols);
6609 return -1;
6610 }
6611
6612 #if DEBUG & 4
6613 {
6614 fprintf (stderr,
6615 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6616 (long) asym_ptr, asym_ptr->name, idx, flags);
6617 fflush (stderr);
6618 }
6619 #endif
6620
6621 return idx;
6622 }
6623
6624 /* Rewrite program header information. */
6625
6626 static bfd_boolean
6627 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6628 {
6629 Elf_Internal_Ehdr *iehdr;
6630 struct elf_segment_map *map;
6631 struct elf_segment_map *map_first;
6632 struct elf_segment_map **pointer_to_map;
6633 Elf_Internal_Phdr *segment;
6634 asection *section;
6635 unsigned int i;
6636 unsigned int num_segments;
6637 bfd_boolean phdr_included = FALSE;
6638 bfd_boolean p_paddr_valid;
6639 bfd_vma maxpagesize;
6640 struct elf_segment_map *phdr_adjust_seg = NULL;
6641 unsigned int phdr_adjust_num = 0;
6642 const struct elf_backend_data *bed;
6643
6644 bed = get_elf_backend_data (ibfd);
6645 iehdr = elf_elfheader (ibfd);
6646
6647 map_first = NULL;
6648 pointer_to_map = &map_first;
6649
6650 num_segments = elf_elfheader (ibfd)->e_phnum;
6651 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6652
6653 /* Returns the end address of the segment + 1. */
6654 #define SEGMENT_END(segment, start) \
6655 (start + (segment->p_memsz > segment->p_filesz \
6656 ? segment->p_memsz : segment->p_filesz))
6657
6658 #define SECTION_SIZE(section, segment) \
6659 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6660 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6661 ? section->size : 0)
6662
6663 /* Returns TRUE if the given section is contained within
6664 the given segment. VMA addresses are compared. */
6665 #define IS_CONTAINED_BY_VMA(section, segment) \
6666 (section->vma >= segment->p_vaddr \
6667 && (section->vma + SECTION_SIZE (section, segment) \
6668 <= (SEGMENT_END (segment, segment->p_vaddr))))
6669
6670 /* Returns TRUE if the given section is contained within
6671 the given segment. LMA addresses are compared. */
6672 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6673 (section->lma >= base \
6674 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6675 && (section->lma + SECTION_SIZE (section, segment) \
6676 <= SEGMENT_END (segment, base)))
6677
6678 /* Handle PT_NOTE segment. */
6679 #define IS_NOTE(p, s) \
6680 (p->p_type == PT_NOTE \
6681 && elf_section_type (s) == SHT_NOTE \
6682 && (bfd_vma) s->filepos >= p->p_offset \
6683 && ((bfd_vma) s->filepos + s->size \
6684 <= p->p_offset + p->p_filesz))
6685
6686 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6687 etc. */
6688 #define IS_COREFILE_NOTE(p, s) \
6689 (IS_NOTE (p, s) \
6690 && bfd_get_format (ibfd) == bfd_core \
6691 && s->vma == 0 \
6692 && s->lma == 0)
6693
6694 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6695 linker, which generates a PT_INTERP section with p_vaddr and
6696 p_memsz set to 0. */
6697 #define IS_SOLARIS_PT_INTERP(p, s) \
6698 (p->p_vaddr == 0 \
6699 && p->p_paddr == 0 \
6700 && p->p_memsz == 0 \
6701 && p->p_filesz > 0 \
6702 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6703 && s->size > 0 \
6704 && (bfd_vma) s->filepos >= p->p_offset \
6705 && ((bfd_vma) s->filepos + s->size \
6706 <= p->p_offset + p->p_filesz))
6707
6708 /* Decide if the given section should be included in the given segment.
6709 A section will be included if:
6710 1. It is within the address space of the segment -- we use the LMA
6711 if that is set for the segment and the VMA otherwise,
6712 2. It is an allocated section or a NOTE section in a PT_NOTE
6713 segment.
6714 3. There is an output section associated with it,
6715 4. The section has not already been allocated to a previous segment.
6716 5. PT_GNU_STACK segments do not include any sections.
6717 6. PT_TLS segment includes only SHF_TLS sections.
6718 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6719 8. PT_DYNAMIC should not contain empty sections at the beginning
6720 (with the possible exception of .dynamic). */
6721 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6722 ((((segment->p_paddr \
6723 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6724 : IS_CONTAINED_BY_VMA (section, segment)) \
6725 && (section->flags & SEC_ALLOC) != 0) \
6726 || IS_NOTE (segment, section)) \
6727 && segment->p_type != PT_GNU_STACK \
6728 && (segment->p_type != PT_TLS \
6729 || (section->flags & SEC_THREAD_LOCAL)) \
6730 && (segment->p_type == PT_LOAD \
6731 || segment->p_type == PT_TLS \
6732 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6733 && (segment->p_type != PT_DYNAMIC \
6734 || SECTION_SIZE (section, segment) > 0 \
6735 || (segment->p_paddr \
6736 ? segment->p_paddr != section->lma \
6737 : segment->p_vaddr != section->vma) \
6738 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6739 == 0)) \
6740 && (segment->p_type != PT_LOAD || !section->segment_mark))
6741
6742 /* If the output section of a section in the input segment is NULL,
6743 it is removed from the corresponding output segment. */
6744 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6745 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6746 && section->output_section != NULL)
6747
6748 /* Returns TRUE iff seg1 starts after the end of seg2. */
6749 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6750 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6751
6752 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6753 their VMA address ranges and their LMA address ranges overlap.
6754 It is possible to have overlapping VMA ranges without overlapping LMA
6755 ranges. RedBoot images for example can have both .data and .bss mapped
6756 to the same VMA range, but with the .data section mapped to a different
6757 LMA. */
6758 #define SEGMENT_OVERLAPS(seg1, seg2) \
6759 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6760 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6761 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6762 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6763
6764 /* Initialise the segment mark field. */
6765 for (section = ibfd->sections; section != NULL; section = section->next)
6766 section->segment_mark = FALSE;
6767
6768 /* The Solaris linker creates program headers in which all the
6769 p_paddr fields are zero. When we try to objcopy or strip such a
6770 file, we get confused. Check for this case, and if we find it
6771 don't set the p_paddr_valid fields. */
6772 p_paddr_valid = FALSE;
6773 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6774 i < num_segments;
6775 i++, segment++)
6776 if (segment->p_paddr != 0)
6777 {
6778 p_paddr_valid = TRUE;
6779 break;
6780 }
6781
6782 /* Scan through the segments specified in the program header
6783 of the input BFD. For this first scan we look for overlaps
6784 in the loadable segments. These can be created by weird
6785 parameters to objcopy. Also, fix some solaris weirdness. */
6786 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6787 i < num_segments;
6788 i++, segment++)
6789 {
6790 unsigned int j;
6791 Elf_Internal_Phdr *segment2;
6792
6793 if (segment->p_type == PT_INTERP)
6794 for (section = ibfd->sections; section; section = section->next)
6795 if (IS_SOLARIS_PT_INTERP (segment, section))
6796 {
6797 /* Mininal change so that the normal section to segment
6798 assignment code will work. */
6799 segment->p_vaddr = section->vma;
6800 break;
6801 }
6802
6803 if (segment->p_type != PT_LOAD)
6804 {
6805 /* Remove PT_GNU_RELRO segment. */
6806 if (segment->p_type == PT_GNU_RELRO)
6807 segment->p_type = PT_NULL;
6808 continue;
6809 }
6810
6811 /* Determine if this segment overlaps any previous segments. */
6812 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6813 {
6814 bfd_signed_vma extra_length;
6815
6816 if (segment2->p_type != PT_LOAD
6817 || !SEGMENT_OVERLAPS (segment, segment2))
6818 continue;
6819
6820 /* Merge the two segments together. */
6821 if (segment2->p_vaddr < segment->p_vaddr)
6822 {
6823 /* Extend SEGMENT2 to include SEGMENT and then delete
6824 SEGMENT. */
6825 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6826 - SEGMENT_END (segment2, segment2->p_vaddr));
6827
6828 if (extra_length > 0)
6829 {
6830 segment2->p_memsz += extra_length;
6831 segment2->p_filesz += extra_length;
6832 }
6833
6834 segment->p_type = PT_NULL;
6835
6836 /* Since we have deleted P we must restart the outer loop. */
6837 i = 0;
6838 segment = elf_tdata (ibfd)->phdr;
6839 break;
6840 }
6841 else
6842 {
6843 /* Extend SEGMENT to include SEGMENT2 and then delete
6844 SEGMENT2. */
6845 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6846 - SEGMENT_END (segment, segment->p_vaddr));
6847
6848 if (extra_length > 0)
6849 {
6850 segment->p_memsz += extra_length;
6851 segment->p_filesz += extra_length;
6852 }
6853
6854 segment2->p_type = PT_NULL;
6855 }
6856 }
6857 }
6858
6859 /* The second scan attempts to assign sections to segments. */
6860 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6861 i < num_segments;
6862 i++, segment++)
6863 {
6864 unsigned int section_count;
6865 asection **sections;
6866 asection *output_section;
6867 unsigned int isec;
6868 asection *matching_lma;
6869 asection *suggested_lma;
6870 unsigned int j;
6871 bfd_size_type amt;
6872 asection *first_section;
6873
6874 if (segment->p_type == PT_NULL)
6875 continue;
6876
6877 first_section = NULL;
6878 /* Compute how many sections might be placed into this segment. */
6879 for (section = ibfd->sections, section_count = 0;
6880 section != NULL;
6881 section = section->next)
6882 {
6883 /* Find the first section in the input segment, which may be
6884 removed from the corresponding output segment. */
6885 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6886 {
6887 if (first_section == NULL)
6888 first_section = section;
6889 if (section->output_section != NULL)
6890 ++section_count;
6891 }
6892 }
6893
6894 /* Allocate a segment map big enough to contain
6895 all of the sections we have selected. */
6896 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
6897 amt += (bfd_size_type) section_count * sizeof (asection *);
6898 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6899 if (map == NULL)
6900 return FALSE;
6901
6902 /* Initialise the fields of the segment map. Default to
6903 using the physical address of the segment in the input BFD. */
6904 map->next = NULL;
6905 map->p_type = segment->p_type;
6906 map->p_flags = segment->p_flags;
6907 map->p_flags_valid = 1;
6908
6909 /* If the first section in the input segment is removed, there is
6910 no need to preserve segment physical address in the corresponding
6911 output segment. */
6912 if (!first_section || first_section->output_section != NULL)
6913 {
6914 map->p_paddr = segment->p_paddr;
6915 map->p_paddr_valid = p_paddr_valid;
6916 }
6917
6918 /* Determine if this segment contains the ELF file header
6919 and if it contains the program headers themselves. */
6920 map->includes_filehdr = (segment->p_offset == 0
6921 && segment->p_filesz >= iehdr->e_ehsize);
6922 map->includes_phdrs = 0;
6923
6924 if (!phdr_included || segment->p_type != PT_LOAD)
6925 {
6926 map->includes_phdrs =
6927 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6928 && (segment->p_offset + segment->p_filesz
6929 >= ((bfd_vma) iehdr->e_phoff
6930 + iehdr->e_phnum * iehdr->e_phentsize)));
6931
6932 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6933 phdr_included = TRUE;
6934 }
6935
6936 if (section_count == 0)
6937 {
6938 /* Special segments, such as the PT_PHDR segment, may contain
6939 no sections, but ordinary, loadable segments should contain
6940 something. They are allowed by the ELF spec however, so only
6941 a warning is produced.
6942 There is however the valid use case of embedded systems which
6943 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6944 flash memory with zeros. No warning is shown for that case. */
6945 if (segment->p_type == PT_LOAD
6946 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6947 /* xgettext:c-format */
6948 _bfd_error_handler
6949 (_("%pB: warning: empty loadable segment detected"
6950 " at vaddr=%#" PRIx64 ", is this intentional?"),
6951 ibfd, (uint64_t) segment->p_vaddr);
6952
6953 map->p_vaddr_offset = segment->p_vaddr;
6954 map->count = 0;
6955 *pointer_to_map = map;
6956 pointer_to_map = &map->next;
6957
6958 continue;
6959 }
6960
6961 /* Now scan the sections in the input BFD again and attempt
6962 to add their corresponding output sections to the segment map.
6963 The problem here is how to handle an output section which has
6964 been moved (ie had its LMA changed). There are four possibilities:
6965
6966 1. None of the sections have been moved.
6967 In this case we can continue to use the segment LMA from the
6968 input BFD.
6969
6970 2. All of the sections have been moved by the same amount.
6971 In this case we can change the segment's LMA to match the LMA
6972 of the first section.
6973
6974 3. Some of the sections have been moved, others have not.
6975 In this case those sections which have not been moved can be
6976 placed in the current segment which will have to have its size,
6977 and possibly its LMA changed, and a new segment or segments will
6978 have to be created to contain the other sections.
6979
6980 4. The sections have been moved, but not by the same amount.
6981 In this case we can change the segment's LMA to match the LMA
6982 of the first section and we will have to create a new segment
6983 or segments to contain the other sections.
6984
6985 In order to save time, we allocate an array to hold the section
6986 pointers that we are interested in. As these sections get assigned
6987 to a segment, they are removed from this array. */
6988
6989 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6990 if (sections == NULL)
6991 return FALSE;
6992
6993 /* Step One: Scan for segment vs section LMA conflicts.
6994 Also add the sections to the section array allocated above.
6995 Also add the sections to the current segment. In the common
6996 case, where the sections have not been moved, this means that
6997 we have completely filled the segment, and there is nothing
6998 more to do. */
6999 isec = 0;
7000 matching_lma = NULL;
7001 suggested_lma = NULL;
7002
7003 for (section = first_section, j = 0;
7004 section != NULL;
7005 section = section->next)
7006 {
7007 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7008 {
7009 output_section = section->output_section;
7010
7011 sections[j++] = section;
7012
7013 /* The Solaris native linker always sets p_paddr to 0.
7014 We try to catch that case here, and set it to the
7015 correct value. Note - some backends require that
7016 p_paddr be left as zero. */
7017 if (!p_paddr_valid
7018 && segment->p_vaddr != 0
7019 && !bed->want_p_paddr_set_to_zero
7020 && isec == 0
7021 && output_section->lma != 0
7022 && (align_power (segment->p_vaddr
7023 + (map->includes_filehdr
7024 ? iehdr->e_ehsize : 0)
7025 + (map->includes_phdrs
7026 ? iehdr->e_phnum * iehdr->e_phentsize
7027 : 0),
7028 output_section->alignment_power)
7029 == output_section->vma))
7030 map->p_paddr = segment->p_vaddr;
7031
7032 /* Match up the physical address of the segment with the
7033 LMA address of the output section. */
7034 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7035 || IS_COREFILE_NOTE (segment, section)
7036 || (bed->want_p_paddr_set_to_zero
7037 && IS_CONTAINED_BY_VMA (output_section, segment)))
7038 {
7039 if (matching_lma == NULL
7040 || output_section->lma < matching_lma->lma)
7041 matching_lma = output_section;
7042
7043 /* We assume that if the section fits within the segment
7044 then it does not overlap any other section within that
7045 segment. */
7046 map->sections[isec++] = output_section;
7047 }
7048 else if (suggested_lma == NULL)
7049 suggested_lma = output_section;
7050
7051 if (j == section_count)
7052 break;
7053 }
7054 }
7055
7056 BFD_ASSERT (j == section_count);
7057
7058 /* Step Two: Adjust the physical address of the current segment,
7059 if necessary. */
7060 if (isec == section_count)
7061 {
7062 /* All of the sections fitted within the segment as currently
7063 specified. This is the default case. Add the segment to
7064 the list of built segments and carry on to process the next
7065 program header in the input BFD. */
7066 map->count = section_count;
7067 *pointer_to_map = map;
7068 pointer_to_map = &map->next;
7069
7070 if (p_paddr_valid
7071 && !bed->want_p_paddr_set_to_zero
7072 && matching_lma->lma != map->p_paddr
7073 && !map->includes_filehdr
7074 && !map->includes_phdrs)
7075 /* There is some padding before the first section in the
7076 segment. So, we must account for that in the output
7077 segment's vma. */
7078 map->p_vaddr_offset = map->p_paddr - matching_lma->lma;
7079
7080 free (sections);
7081 continue;
7082 }
7083 else
7084 {
7085 /* Change the current segment's physical address to match
7086 the LMA of the first section that fitted, or if no
7087 section fitted, the first section. */
7088 if (matching_lma == NULL)
7089 matching_lma = suggested_lma;
7090
7091 map->p_paddr = matching_lma->lma;
7092
7093 /* Offset the segment physical address from the lma
7094 to allow for space taken up by elf headers. */
7095 if (map->includes_phdrs)
7096 {
7097 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7098
7099 /* iehdr->e_phnum is just an estimate of the number
7100 of program headers that we will need. Make a note
7101 here of the number we used and the segment we chose
7102 to hold these headers, so that we can adjust the
7103 offset when we know the correct value. */
7104 phdr_adjust_num = iehdr->e_phnum;
7105 phdr_adjust_seg = map;
7106 }
7107
7108 if (map->includes_filehdr)
7109 {
7110 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7111 map->p_paddr -= iehdr->e_ehsize;
7112 /* We've subtracted off the size of headers from the
7113 first section lma, but there may have been some
7114 alignment padding before that section too. Try to
7115 account for that by adjusting the segment lma down to
7116 the same alignment. */
7117 if (segment->p_align != 0 && segment->p_align < align)
7118 align = segment->p_align;
7119 map->p_paddr &= -align;
7120 }
7121 }
7122
7123 /* Step Three: Loop over the sections again, this time assigning
7124 those that fit to the current segment and removing them from the
7125 sections array; but making sure not to leave large gaps. Once all
7126 possible sections have been assigned to the current segment it is
7127 added to the list of built segments and if sections still remain
7128 to be assigned, a new segment is constructed before repeating
7129 the loop. */
7130 isec = 0;
7131 do
7132 {
7133 map->count = 0;
7134 suggested_lma = NULL;
7135
7136 /* Fill the current segment with sections that fit. */
7137 for (j = 0; j < section_count; j++)
7138 {
7139 section = sections[j];
7140
7141 if (section == NULL)
7142 continue;
7143
7144 output_section = section->output_section;
7145
7146 BFD_ASSERT (output_section != NULL);
7147
7148 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7149 || IS_COREFILE_NOTE (segment, section))
7150 {
7151 if (map->count == 0)
7152 {
7153 /* If the first section in a segment does not start at
7154 the beginning of the segment, then something is
7155 wrong. */
7156 if (align_power (map->p_paddr
7157 + (map->includes_filehdr
7158 ? iehdr->e_ehsize : 0)
7159 + (map->includes_phdrs
7160 ? iehdr->e_phnum * iehdr->e_phentsize
7161 : 0),
7162 output_section->alignment_power)
7163 != output_section->lma)
7164 abort ();
7165 }
7166 else
7167 {
7168 asection *prev_sec;
7169
7170 prev_sec = map->sections[map->count - 1];
7171
7172 /* If the gap between the end of the previous section
7173 and the start of this section is more than
7174 maxpagesize then we need to start a new segment. */
7175 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7176 maxpagesize)
7177 < BFD_ALIGN (output_section->lma, maxpagesize))
7178 || (prev_sec->lma + prev_sec->size
7179 > output_section->lma))
7180 {
7181 if (suggested_lma == NULL)
7182 suggested_lma = output_section;
7183
7184 continue;
7185 }
7186 }
7187
7188 map->sections[map->count++] = output_section;
7189 ++isec;
7190 sections[j] = NULL;
7191 if (segment->p_type == PT_LOAD)
7192 section->segment_mark = TRUE;
7193 }
7194 else if (suggested_lma == NULL)
7195 suggested_lma = output_section;
7196 }
7197
7198 /* PR 23932. A corrupt input file may contain sections that cannot
7199 be assigned to any segment - because for example they have a
7200 negative size - or segments that do not contain any sections. */
7201 if (map->count == 0)
7202 {
7203 bfd_set_error (bfd_error_bad_value);
7204 free (sections);
7205 return FALSE;
7206 }
7207
7208 /* Add the current segment to the list of built segments. */
7209 *pointer_to_map = map;
7210 pointer_to_map = &map->next;
7211
7212 if (isec < section_count)
7213 {
7214 /* We still have not allocated all of the sections to
7215 segments. Create a new segment here, initialise it
7216 and carry on looping. */
7217 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7218 amt += (bfd_size_type) section_count * sizeof (asection *);
7219 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7220 if (map == NULL)
7221 {
7222 free (sections);
7223 return FALSE;
7224 }
7225
7226 /* Initialise the fields of the segment map. Set the physical
7227 physical address to the LMA of the first section that has
7228 not yet been assigned. */
7229 map->next = NULL;
7230 map->p_type = segment->p_type;
7231 map->p_flags = segment->p_flags;
7232 map->p_flags_valid = 1;
7233 map->p_paddr = suggested_lma->lma;
7234 map->p_paddr_valid = p_paddr_valid;
7235 map->includes_filehdr = 0;
7236 map->includes_phdrs = 0;
7237 }
7238 }
7239 while (isec < section_count);
7240
7241 free (sections);
7242 }
7243
7244 elf_seg_map (obfd) = map_first;
7245
7246 /* If we had to estimate the number of program headers that were
7247 going to be needed, then check our estimate now and adjust
7248 the offset if necessary. */
7249 if (phdr_adjust_seg != NULL)
7250 {
7251 unsigned int count;
7252
7253 for (count = 0, map = map_first; map != NULL; map = map->next)
7254 count++;
7255
7256 if (count > phdr_adjust_num)
7257 phdr_adjust_seg->p_paddr
7258 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7259
7260 for (map = map_first; map != NULL; map = map->next)
7261 if (map->p_type == PT_PHDR)
7262 {
7263 bfd_vma adjust
7264 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7265 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7266 break;
7267 }
7268 }
7269
7270 #undef SEGMENT_END
7271 #undef SECTION_SIZE
7272 #undef IS_CONTAINED_BY_VMA
7273 #undef IS_CONTAINED_BY_LMA
7274 #undef IS_NOTE
7275 #undef IS_COREFILE_NOTE
7276 #undef IS_SOLARIS_PT_INTERP
7277 #undef IS_SECTION_IN_INPUT_SEGMENT
7278 #undef INCLUDE_SECTION_IN_SEGMENT
7279 #undef SEGMENT_AFTER_SEGMENT
7280 #undef SEGMENT_OVERLAPS
7281 return TRUE;
7282 }
7283
7284 /* Copy ELF program header information. */
7285
7286 static bfd_boolean
7287 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7288 {
7289 Elf_Internal_Ehdr *iehdr;
7290 struct elf_segment_map *map;
7291 struct elf_segment_map *map_first;
7292 struct elf_segment_map **pointer_to_map;
7293 Elf_Internal_Phdr *segment;
7294 unsigned int i;
7295 unsigned int num_segments;
7296 bfd_boolean phdr_included = FALSE;
7297 bfd_boolean p_paddr_valid;
7298
7299 iehdr = elf_elfheader (ibfd);
7300
7301 map_first = NULL;
7302 pointer_to_map = &map_first;
7303
7304 /* If all the segment p_paddr fields are zero, don't set
7305 map->p_paddr_valid. */
7306 p_paddr_valid = FALSE;
7307 num_segments = elf_elfheader (ibfd)->e_phnum;
7308 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7309 i < num_segments;
7310 i++, segment++)
7311 if (segment->p_paddr != 0)
7312 {
7313 p_paddr_valid = TRUE;
7314 break;
7315 }
7316
7317 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7318 i < num_segments;
7319 i++, segment++)
7320 {
7321 asection *section;
7322 unsigned int section_count;
7323 bfd_size_type amt;
7324 Elf_Internal_Shdr *this_hdr;
7325 asection *first_section = NULL;
7326 asection *lowest_section;
7327 bfd_boolean no_contents = TRUE;
7328
7329 /* Compute how many sections are in this segment. */
7330 for (section = ibfd->sections, section_count = 0;
7331 section != NULL;
7332 section = section->next)
7333 {
7334 this_hdr = &(elf_section_data(section)->this_hdr);
7335 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7336 {
7337 if (first_section == NULL)
7338 first_section = section;
7339 if (elf_section_type (section) != SHT_NOBITS)
7340 no_contents = FALSE;
7341 section_count++;
7342 }
7343 }
7344
7345 /* Allocate a segment map big enough to contain
7346 all of the sections we have selected. */
7347 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7348 amt += (bfd_size_type) section_count * sizeof (asection *);
7349 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7350 if (map == NULL)
7351 return FALSE;
7352
7353 /* Initialize the fields of the output segment map with the
7354 input segment. */
7355 map->next = NULL;
7356 map->p_type = segment->p_type;
7357 map->p_flags = segment->p_flags;
7358 map->p_flags_valid = 1;
7359 map->p_paddr = segment->p_paddr;
7360 map->p_paddr_valid = p_paddr_valid;
7361 map->p_align = segment->p_align;
7362 map->p_align_valid = 1;
7363 map->p_vaddr_offset = 0;
7364
7365 if (map->p_type == PT_GNU_RELRO
7366 || map->p_type == PT_GNU_STACK)
7367 {
7368 /* The PT_GNU_RELRO segment may contain the first a few
7369 bytes in the .got.plt section even if the whole .got.plt
7370 section isn't in the PT_GNU_RELRO segment. We won't
7371 change the size of the PT_GNU_RELRO segment.
7372 Similarly, PT_GNU_STACK size is significant on uclinux
7373 systems. */
7374 map->p_size = segment->p_memsz;
7375 map->p_size_valid = 1;
7376 }
7377
7378 /* Determine if this segment contains the ELF file header
7379 and if it contains the program headers themselves. */
7380 map->includes_filehdr = (segment->p_offset == 0
7381 && segment->p_filesz >= iehdr->e_ehsize);
7382
7383 map->includes_phdrs = 0;
7384 if (! phdr_included || segment->p_type != PT_LOAD)
7385 {
7386 map->includes_phdrs =
7387 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7388 && (segment->p_offset + segment->p_filesz
7389 >= ((bfd_vma) iehdr->e_phoff
7390 + iehdr->e_phnum * iehdr->e_phentsize)));
7391
7392 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7393 phdr_included = TRUE;
7394 }
7395
7396 lowest_section = NULL;
7397 if (section_count != 0)
7398 {
7399 unsigned int isec = 0;
7400
7401 for (section = first_section;
7402 section != NULL;
7403 section = section->next)
7404 {
7405 this_hdr = &(elf_section_data(section)->this_hdr);
7406 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7407 {
7408 map->sections[isec++] = section->output_section;
7409 if ((section->flags & SEC_ALLOC) != 0)
7410 {
7411 bfd_vma seg_off;
7412
7413 if (lowest_section == NULL
7414 || section->lma < lowest_section->lma)
7415 lowest_section = section;
7416
7417 /* Section lmas are set up from PT_LOAD header
7418 p_paddr in _bfd_elf_make_section_from_shdr.
7419 If this header has a p_paddr that disagrees
7420 with the section lma, flag the p_paddr as
7421 invalid. */
7422 if ((section->flags & SEC_LOAD) != 0)
7423 seg_off = this_hdr->sh_offset - segment->p_offset;
7424 else
7425 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7426 if (section->lma - segment->p_paddr != seg_off)
7427 map->p_paddr_valid = FALSE;
7428 }
7429 if (isec == section_count)
7430 break;
7431 }
7432 }
7433 }
7434
7435 if (map->includes_filehdr && lowest_section != NULL)
7436 {
7437 /* Try to keep the space used by the headers plus any
7438 padding fixed. If there are sections with file contents
7439 in this segment then the lowest sh_offset is the best
7440 guess. Otherwise the segment only has file contents for
7441 the headers, and p_filesz is the best guess. */
7442 if (no_contents)
7443 map->header_size = segment->p_filesz;
7444 else
7445 map->header_size = lowest_section->filepos;
7446 }
7447
7448 if (section_count == 0)
7449 map->p_vaddr_offset = segment->p_vaddr;
7450 else if (!map->includes_phdrs
7451 && !map->includes_filehdr
7452 && map->p_paddr_valid)
7453 /* Account for padding before the first section. */
7454 map->p_vaddr_offset = (segment->p_paddr
7455 - (lowest_section ? lowest_section->lma : 0));
7456
7457 map->count = section_count;
7458 *pointer_to_map = map;
7459 pointer_to_map = &map->next;
7460 }
7461
7462 elf_seg_map (obfd) = map_first;
7463 return TRUE;
7464 }
7465
7466 /* Copy private BFD data. This copies or rewrites ELF program header
7467 information. */
7468
7469 static bfd_boolean
7470 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7471 {
7472 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7473 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7474 return TRUE;
7475
7476 if (elf_tdata (ibfd)->phdr == NULL)
7477 return TRUE;
7478
7479 if (ibfd->xvec == obfd->xvec)
7480 {
7481 /* Check to see if any sections in the input BFD
7482 covered by ELF program header have changed. */
7483 Elf_Internal_Phdr *segment;
7484 asection *section, *osec;
7485 unsigned int i, num_segments;
7486 Elf_Internal_Shdr *this_hdr;
7487 const struct elf_backend_data *bed;
7488
7489 bed = get_elf_backend_data (ibfd);
7490
7491 /* Regenerate the segment map if p_paddr is set to 0. */
7492 if (bed->want_p_paddr_set_to_zero)
7493 goto rewrite;
7494
7495 /* Initialize the segment mark field. */
7496 for (section = obfd->sections; section != NULL;
7497 section = section->next)
7498 section->segment_mark = FALSE;
7499
7500 num_segments = elf_elfheader (ibfd)->e_phnum;
7501 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7502 i < num_segments;
7503 i++, segment++)
7504 {
7505 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7506 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7507 which severly confuses things, so always regenerate the segment
7508 map in this case. */
7509 if (segment->p_paddr == 0
7510 && segment->p_memsz == 0
7511 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7512 goto rewrite;
7513
7514 for (section = ibfd->sections;
7515 section != NULL; section = section->next)
7516 {
7517 /* We mark the output section so that we know it comes
7518 from the input BFD. */
7519 osec = section->output_section;
7520 if (osec)
7521 osec->segment_mark = TRUE;
7522
7523 /* Check if this section is covered by the segment. */
7524 this_hdr = &(elf_section_data(section)->this_hdr);
7525 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7526 {
7527 /* FIXME: Check if its output section is changed or
7528 removed. What else do we need to check? */
7529 if (osec == NULL
7530 || section->flags != osec->flags
7531 || section->lma != osec->lma
7532 || section->vma != osec->vma
7533 || section->size != osec->size
7534 || section->rawsize != osec->rawsize
7535 || section->alignment_power != osec->alignment_power)
7536 goto rewrite;
7537 }
7538 }
7539 }
7540
7541 /* Check to see if any output section do not come from the
7542 input BFD. */
7543 for (section = obfd->sections; section != NULL;
7544 section = section->next)
7545 {
7546 if (!section->segment_mark)
7547 goto rewrite;
7548 else
7549 section->segment_mark = FALSE;
7550 }
7551
7552 return copy_elf_program_header (ibfd, obfd);
7553 }
7554
7555 rewrite:
7556 if (ibfd->xvec == obfd->xvec)
7557 {
7558 /* When rewriting program header, set the output maxpagesize to
7559 the maximum alignment of input PT_LOAD segments. */
7560 Elf_Internal_Phdr *segment;
7561 unsigned int i;
7562 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7563 bfd_vma maxpagesize = 0;
7564
7565 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7566 i < num_segments;
7567 i++, segment++)
7568 if (segment->p_type == PT_LOAD
7569 && maxpagesize < segment->p_align)
7570 {
7571 /* PR 17512: file: f17299af. */
7572 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7573 /* xgettext:c-format */
7574 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7575 PRIx64 " is too large"),
7576 ibfd, (uint64_t) segment->p_align);
7577 else
7578 maxpagesize = segment->p_align;
7579 }
7580
7581 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7582 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7583 }
7584
7585 return rewrite_elf_program_header (ibfd, obfd);
7586 }
7587
7588 /* Initialize private output section information from input section. */
7589
7590 bfd_boolean
7591 _bfd_elf_init_private_section_data (bfd *ibfd,
7592 asection *isec,
7593 bfd *obfd,
7594 asection *osec,
7595 struct bfd_link_info *link_info)
7596
7597 {
7598 Elf_Internal_Shdr *ihdr, *ohdr;
7599 bfd_boolean final_link = (link_info != NULL
7600 && !bfd_link_relocatable (link_info));
7601
7602 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7603 || obfd->xvec->flavour != bfd_target_elf_flavour)
7604 return TRUE;
7605
7606 BFD_ASSERT (elf_section_data (osec) != NULL);
7607
7608 /* For objcopy and relocatable link, don't copy the output ELF
7609 section type from input if the output BFD section flags have been
7610 set to something different. For a final link allow some flags
7611 that the linker clears to differ. */
7612 if (elf_section_type (osec) == SHT_NULL
7613 && (osec->flags == isec->flags
7614 || (final_link
7615 && ((osec->flags ^ isec->flags)
7616 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7617 elf_section_type (osec) = elf_section_type (isec);
7618
7619 /* FIXME: Is this correct for all OS/PROC specific flags? */
7620 elf_section_flags (osec) |= (elf_section_flags (isec)
7621 & (SHF_MASKOS | SHF_MASKPROC));
7622
7623 /* Copy sh_info from input for mbind section. */
7624 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7625 elf_section_data (osec)->this_hdr.sh_info
7626 = elf_section_data (isec)->this_hdr.sh_info;
7627
7628 /* Set things up for objcopy and relocatable link. The output
7629 SHT_GROUP section will have its elf_next_in_group pointing back
7630 to the input group members. Ignore linker created group section.
7631 See elfNN_ia64_object_p in elfxx-ia64.c. */
7632 if ((link_info == NULL
7633 || !link_info->resolve_section_groups)
7634 && (elf_sec_group (isec) == NULL
7635 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7636 {
7637 if (elf_section_flags (isec) & SHF_GROUP)
7638 elf_section_flags (osec) |= SHF_GROUP;
7639 elf_next_in_group (osec) = elf_next_in_group (isec);
7640 elf_section_data (osec)->group = elf_section_data (isec)->group;
7641 }
7642
7643 /* If not decompress, preserve SHF_COMPRESSED. */
7644 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7645 elf_section_flags (osec) |= (elf_section_flags (isec)
7646 & SHF_COMPRESSED);
7647
7648 ihdr = &elf_section_data (isec)->this_hdr;
7649
7650 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7651 don't use the output section of the linked-to section since it
7652 may be NULL at this point. */
7653 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7654 {
7655 ohdr = &elf_section_data (osec)->this_hdr;
7656 ohdr->sh_flags |= SHF_LINK_ORDER;
7657 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7658 }
7659
7660 osec->use_rela_p = isec->use_rela_p;
7661
7662 return TRUE;
7663 }
7664
7665 /* Copy private section information. This copies over the entsize
7666 field, and sometimes the info field. */
7667
7668 bfd_boolean
7669 _bfd_elf_copy_private_section_data (bfd *ibfd,
7670 asection *isec,
7671 bfd *obfd,
7672 asection *osec)
7673 {
7674 Elf_Internal_Shdr *ihdr, *ohdr;
7675
7676 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7677 || obfd->xvec->flavour != bfd_target_elf_flavour)
7678 return TRUE;
7679
7680 ihdr = &elf_section_data (isec)->this_hdr;
7681 ohdr = &elf_section_data (osec)->this_hdr;
7682
7683 ohdr->sh_entsize = ihdr->sh_entsize;
7684
7685 if (ihdr->sh_type == SHT_SYMTAB
7686 || ihdr->sh_type == SHT_DYNSYM
7687 || ihdr->sh_type == SHT_GNU_verneed
7688 || ihdr->sh_type == SHT_GNU_verdef)
7689 ohdr->sh_info = ihdr->sh_info;
7690
7691 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7692 NULL);
7693 }
7694
7695 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7696 necessary if we are removing either the SHT_GROUP section or any of
7697 the group member sections. DISCARDED is the value that a section's
7698 output_section has if the section will be discarded, NULL when this
7699 function is called from objcopy, bfd_abs_section_ptr when called
7700 from the linker. */
7701
7702 bfd_boolean
7703 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7704 {
7705 asection *isec;
7706
7707 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7708 if (elf_section_type (isec) == SHT_GROUP)
7709 {
7710 asection *first = elf_next_in_group (isec);
7711 asection *s = first;
7712 bfd_size_type removed = 0;
7713
7714 while (s != NULL)
7715 {
7716 /* If this member section is being output but the
7717 SHT_GROUP section is not, then clear the group info
7718 set up by _bfd_elf_copy_private_section_data. */
7719 if (s->output_section != discarded
7720 && isec->output_section == discarded)
7721 {
7722 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7723 elf_group_name (s->output_section) = NULL;
7724 }
7725 /* Conversely, if the member section is not being output
7726 but the SHT_GROUP section is, then adjust its size. */
7727 else if (s->output_section == discarded
7728 && isec->output_section != discarded)
7729 {
7730 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7731 removed += 4;
7732 if (elf_sec->rel.hdr != NULL
7733 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7734 removed += 4;
7735 if (elf_sec->rela.hdr != NULL
7736 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7737 removed += 4;
7738 }
7739 s = elf_next_in_group (s);
7740 if (s == first)
7741 break;
7742 }
7743 if (removed != 0)
7744 {
7745 if (discarded != NULL)
7746 {
7747 /* If we've been called for ld -r, then we need to
7748 adjust the input section size. */
7749 if (isec->rawsize == 0)
7750 isec->rawsize = isec->size;
7751 isec->size = isec->rawsize - removed;
7752 if (isec->size <= 4)
7753 {
7754 isec->size = 0;
7755 isec->flags |= SEC_EXCLUDE;
7756 }
7757 }
7758 else
7759 {
7760 /* Adjust the output section size when called from
7761 objcopy. */
7762 isec->output_section->size -= removed;
7763 if (isec->output_section->size <= 4)
7764 {
7765 isec->output_section->size = 0;
7766 isec->output_section->flags |= SEC_EXCLUDE;
7767 }
7768 }
7769 }
7770 }
7771
7772 return TRUE;
7773 }
7774
7775 /* Copy private header information. */
7776
7777 bfd_boolean
7778 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7779 {
7780 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7781 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7782 return TRUE;
7783
7784 /* Copy over private BFD data if it has not already been copied.
7785 This must be done here, rather than in the copy_private_bfd_data
7786 entry point, because the latter is called after the section
7787 contents have been set, which means that the program headers have
7788 already been worked out. */
7789 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7790 {
7791 if (! copy_private_bfd_data (ibfd, obfd))
7792 return FALSE;
7793 }
7794
7795 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7796 }
7797
7798 /* Copy private symbol information. If this symbol is in a section
7799 which we did not map into a BFD section, try to map the section
7800 index correctly. We use special macro definitions for the mapped
7801 section indices; these definitions are interpreted by the
7802 swap_out_syms function. */
7803
7804 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7805 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7806 #define MAP_STRTAB (SHN_HIOS + 3)
7807 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7808 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7809
7810 bfd_boolean
7811 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7812 asymbol *isymarg,
7813 bfd *obfd,
7814 asymbol *osymarg)
7815 {
7816 elf_symbol_type *isym, *osym;
7817
7818 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7819 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7820 return TRUE;
7821
7822 isym = elf_symbol_from (ibfd, isymarg);
7823 osym = elf_symbol_from (obfd, osymarg);
7824
7825 if (isym != NULL
7826 && isym->internal_elf_sym.st_shndx != 0
7827 && osym != NULL
7828 && bfd_is_abs_section (isym->symbol.section))
7829 {
7830 unsigned int shndx;
7831
7832 shndx = isym->internal_elf_sym.st_shndx;
7833 if (shndx == elf_onesymtab (ibfd))
7834 shndx = MAP_ONESYMTAB;
7835 else if (shndx == elf_dynsymtab (ibfd))
7836 shndx = MAP_DYNSYMTAB;
7837 else if (shndx == elf_strtab_sec (ibfd))
7838 shndx = MAP_STRTAB;
7839 else if (shndx == elf_shstrtab_sec (ibfd))
7840 shndx = MAP_SHSTRTAB;
7841 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7842 shndx = MAP_SYM_SHNDX;
7843 osym->internal_elf_sym.st_shndx = shndx;
7844 }
7845
7846 return TRUE;
7847 }
7848
7849 /* Swap out the symbols. */
7850
7851 static bfd_boolean
7852 swap_out_syms (bfd *abfd,
7853 struct elf_strtab_hash **sttp,
7854 int relocatable_p)
7855 {
7856 const struct elf_backend_data *bed;
7857 int symcount;
7858 asymbol **syms;
7859 struct elf_strtab_hash *stt;
7860 Elf_Internal_Shdr *symtab_hdr;
7861 Elf_Internal_Shdr *symtab_shndx_hdr;
7862 Elf_Internal_Shdr *symstrtab_hdr;
7863 struct elf_sym_strtab *symstrtab;
7864 bfd_byte *outbound_syms;
7865 bfd_byte *outbound_shndx;
7866 unsigned long outbound_syms_index;
7867 unsigned long outbound_shndx_index;
7868 int idx;
7869 unsigned int num_locals;
7870 bfd_size_type amt;
7871 bfd_boolean name_local_sections;
7872
7873 if (!elf_map_symbols (abfd, &num_locals))
7874 return FALSE;
7875
7876 /* Dump out the symtabs. */
7877 stt = _bfd_elf_strtab_init ();
7878 if (stt == NULL)
7879 return FALSE;
7880
7881 bed = get_elf_backend_data (abfd);
7882 symcount = bfd_get_symcount (abfd);
7883 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7884 symtab_hdr->sh_type = SHT_SYMTAB;
7885 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7886 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7887 symtab_hdr->sh_info = num_locals + 1;
7888 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7889
7890 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7891 symstrtab_hdr->sh_type = SHT_STRTAB;
7892
7893 /* Allocate buffer to swap out the .strtab section. */
7894 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7895 * sizeof (*symstrtab));
7896 if (symstrtab == NULL)
7897 {
7898 _bfd_elf_strtab_free (stt);
7899 return FALSE;
7900 }
7901
7902 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7903 bed->s->sizeof_sym);
7904 if (outbound_syms == NULL)
7905 {
7906 error_return:
7907 _bfd_elf_strtab_free (stt);
7908 free (symstrtab);
7909 return FALSE;
7910 }
7911 symtab_hdr->contents = outbound_syms;
7912 outbound_syms_index = 0;
7913
7914 outbound_shndx = NULL;
7915 outbound_shndx_index = 0;
7916
7917 if (elf_symtab_shndx_list (abfd))
7918 {
7919 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7920 if (symtab_shndx_hdr->sh_name != 0)
7921 {
7922 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7923 outbound_shndx = (bfd_byte *)
7924 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7925 if (outbound_shndx == NULL)
7926 goto error_return;
7927
7928 symtab_shndx_hdr->contents = outbound_shndx;
7929 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7930 symtab_shndx_hdr->sh_size = amt;
7931 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7932 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7933 }
7934 /* FIXME: What about any other headers in the list ? */
7935 }
7936
7937 /* Now generate the data (for "contents"). */
7938 {
7939 /* Fill in zeroth symbol and swap it out. */
7940 Elf_Internal_Sym sym;
7941 sym.st_name = 0;
7942 sym.st_value = 0;
7943 sym.st_size = 0;
7944 sym.st_info = 0;
7945 sym.st_other = 0;
7946 sym.st_shndx = SHN_UNDEF;
7947 sym.st_target_internal = 0;
7948 symstrtab[0].sym = sym;
7949 symstrtab[0].dest_index = outbound_syms_index;
7950 symstrtab[0].destshndx_index = outbound_shndx_index;
7951 outbound_syms_index++;
7952 if (outbound_shndx != NULL)
7953 outbound_shndx_index++;
7954 }
7955
7956 name_local_sections
7957 = (bed->elf_backend_name_local_section_symbols
7958 && bed->elf_backend_name_local_section_symbols (abfd));
7959
7960 syms = bfd_get_outsymbols (abfd);
7961 for (idx = 0; idx < symcount;)
7962 {
7963 Elf_Internal_Sym sym;
7964 bfd_vma value = syms[idx]->value;
7965 elf_symbol_type *type_ptr;
7966 flagword flags = syms[idx]->flags;
7967 int type;
7968
7969 if (!name_local_sections
7970 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7971 {
7972 /* Local section symbols have no name. */
7973 sym.st_name = (unsigned long) -1;
7974 }
7975 else
7976 {
7977 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7978 to get the final offset for st_name. */
7979 sym.st_name
7980 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7981 FALSE);
7982 if (sym.st_name == (unsigned long) -1)
7983 goto error_return;
7984 }
7985
7986 type_ptr = elf_symbol_from (abfd, syms[idx]);
7987
7988 if ((flags & BSF_SECTION_SYM) == 0
7989 && bfd_is_com_section (syms[idx]->section))
7990 {
7991 /* ELF common symbols put the alignment into the `value' field,
7992 and the size into the `size' field. This is backwards from
7993 how BFD handles it, so reverse it here. */
7994 sym.st_size = value;
7995 if (type_ptr == NULL
7996 || type_ptr->internal_elf_sym.st_value == 0)
7997 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7998 else
7999 sym.st_value = type_ptr->internal_elf_sym.st_value;
8000 sym.st_shndx = _bfd_elf_section_from_bfd_section
8001 (abfd, syms[idx]->section);
8002 }
8003 else
8004 {
8005 asection *sec = syms[idx]->section;
8006 unsigned int shndx;
8007
8008 if (sec->output_section)
8009 {
8010 value += sec->output_offset;
8011 sec = sec->output_section;
8012 }
8013
8014 /* Don't add in the section vma for relocatable output. */
8015 if (! relocatable_p)
8016 value += sec->vma;
8017 sym.st_value = value;
8018 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8019
8020 if (bfd_is_abs_section (sec)
8021 && type_ptr != NULL
8022 && type_ptr->internal_elf_sym.st_shndx != 0)
8023 {
8024 /* This symbol is in a real ELF section which we did
8025 not create as a BFD section. Undo the mapping done
8026 by copy_private_symbol_data. */
8027 shndx = type_ptr->internal_elf_sym.st_shndx;
8028 switch (shndx)
8029 {
8030 case MAP_ONESYMTAB:
8031 shndx = elf_onesymtab (abfd);
8032 break;
8033 case MAP_DYNSYMTAB:
8034 shndx = elf_dynsymtab (abfd);
8035 break;
8036 case MAP_STRTAB:
8037 shndx = elf_strtab_sec (abfd);
8038 break;
8039 case MAP_SHSTRTAB:
8040 shndx = elf_shstrtab_sec (abfd);
8041 break;
8042 case MAP_SYM_SHNDX:
8043 if (elf_symtab_shndx_list (abfd))
8044 shndx = elf_symtab_shndx_list (abfd)->ndx;
8045 break;
8046 default:
8047 shndx = SHN_ABS;
8048 break;
8049 }
8050 }
8051 else
8052 {
8053 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8054
8055 if (shndx == SHN_BAD)
8056 {
8057 asection *sec2;
8058
8059 /* Writing this would be a hell of a lot easier if
8060 we had some decent documentation on bfd, and
8061 knew what to expect of the library, and what to
8062 demand of applications. For example, it
8063 appears that `objcopy' might not set the
8064 section of a symbol to be a section that is
8065 actually in the output file. */
8066 sec2 = bfd_get_section_by_name (abfd, sec->name);
8067 if (sec2 != NULL)
8068 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8069 if (shndx == SHN_BAD)
8070 {
8071 /* xgettext:c-format */
8072 _bfd_error_handler
8073 (_("unable to find equivalent output section"
8074 " for symbol '%s' from section '%s'"),
8075 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8076 sec->name);
8077 bfd_set_error (bfd_error_invalid_operation);
8078 goto error_return;
8079 }
8080 }
8081 }
8082
8083 sym.st_shndx = shndx;
8084 }
8085
8086 if ((flags & BSF_THREAD_LOCAL) != 0)
8087 type = STT_TLS;
8088 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8089 type = STT_GNU_IFUNC;
8090 else if ((flags & BSF_FUNCTION) != 0)
8091 type = STT_FUNC;
8092 else if ((flags & BSF_OBJECT) != 0)
8093 type = STT_OBJECT;
8094 else if ((flags & BSF_RELC) != 0)
8095 type = STT_RELC;
8096 else if ((flags & BSF_SRELC) != 0)
8097 type = STT_SRELC;
8098 else
8099 type = STT_NOTYPE;
8100
8101 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8102 type = STT_TLS;
8103
8104 /* Processor-specific types. */
8105 if (type_ptr != NULL
8106 && bed->elf_backend_get_symbol_type)
8107 type = ((*bed->elf_backend_get_symbol_type)
8108 (&type_ptr->internal_elf_sym, type));
8109
8110 if (flags & BSF_SECTION_SYM)
8111 {
8112 if (flags & BSF_GLOBAL)
8113 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8114 else
8115 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8116 }
8117 else if (bfd_is_com_section (syms[idx]->section))
8118 {
8119 if (type != STT_TLS)
8120 {
8121 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8122 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8123 ? STT_COMMON : STT_OBJECT);
8124 else
8125 type = ((flags & BSF_ELF_COMMON) != 0
8126 ? STT_COMMON : STT_OBJECT);
8127 }
8128 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8129 }
8130 else if (bfd_is_und_section (syms[idx]->section))
8131 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8132 ? STB_WEAK
8133 : STB_GLOBAL),
8134 type);
8135 else if (flags & BSF_FILE)
8136 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8137 else
8138 {
8139 int bind = STB_LOCAL;
8140
8141 if (flags & BSF_LOCAL)
8142 bind = STB_LOCAL;
8143 else if (flags & BSF_GNU_UNIQUE)
8144 bind = STB_GNU_UNIQUE;
8145 else if (flags & BSF_WEAK)
8146 bind = STB_WEAK;
8147 else if (flags & BSF_GLOBAL)
8148 bind = STB_GLOBAL;
8149
8150 sym.st_info = ELF_ST_INFO (bind, type);
8151 }
8152
8153 if (type_ptr != NULL)
8154 {
8155 sym.st_other = type_ptr->internal_elf_sym.st_other;
8156 sym.st_target_internal
8157 = type_ptr->internal_elf_sym.st_target_internal;
8158 }
8159 else
8160 {
8161 sym.st_other = 0;
8162 sym.st_target_internal = 0;
8163 }
8164
8165 idx++;
8166 symstrtab[idx].sym = sym;
8167 symstrtab[idx].dest_index = outbound_syms_index;
8168 symstrtab[idx].destshndx_index = outbound_shndx_index;
8169
8170 outbound_syms_index++;
8171 if (outbound_shndx != NULL)
8172 outbound_shndx_index++;
8173 }
8174
8175 /* Finalize the .strtab section. */
8176 _bfd_elf_strtab_finalize (stt);
8177
8178 /* Swap out the .strtab section. */
8179 for (idx = 0; idx <= symcount; idx++)
8180 {
8181 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8182 if (elfsym->sym.st_name == (unsigned long) -1)
8183 elfsym->sym.st_name = 0;
8184 else
8185 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8186 elfsym->sym.st_name);
8187 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8188 (outbound_syms
8189 + (elfsym->dest_index
8190 * bed->s->sizeof_sym)),
8191 (outbound_shndx
8192 + (elfsym->destshndx_index
8193 * sizeof (Elf_External_Sym_Shndx))));
8194 }
8195 free (symstrtab);
8196
8197 *sttp = stt;
8198 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8199 symstrtab_hdr->sh_type = SHT_STRTAB;
8200 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8201 symstrtab_hdr->sh_addr = 0;
8202 symstrtab_hdr->sh_entsize = 0;
8203 symstrtab_hdr->sh_link = 0;
8204 symstrtab_hdr->sh_info = 0;
8205 symstrtab_hdr->sh_addralign = 1;
8206
8207 return TRUE;
8208 }
8209
8210 /* Return the number of bytes required to hold the symtab vector.
8211
8212 Note that we base it on the count plus 1, since we will null terminate
8213 the vector allocated based on this size. However, the ELF symbol table
8214 always has a dummy entry as symbol #0, so it ends up even. */
8215
8216 long
8217 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8218 {
8219 bfd_size_type symcount;
8220 long symtab_size;
8221 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8222
8223 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8224 if (symcount >= LONG_MAX / sizeof (asymbol *))
8225 {
8226 bfd_set_error (bfd_error_file_too_big);
8227 return -1;
8228 }
8229 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8230 if (symcount > 0)
8231 symtab_size -= sizeof (asymbol *);
8232
8233 return symtab_size;
8234 }
8235
8236 long
8237 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8238 {
8239 bfd_size_type symcount;
8240 long symtab_size;
8241 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8242
8243 if (elf_dynsymtab (abfd) == 0)
8244 {
8245 bfd_set_error (bfd_error_invalid_operation);
8246 return -1;
8247 }
8248
8249 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8250 if (symcount >= LONG_MAX / sizeof (asymbol *))
8251 {
8252 bfd_set_error (bfd_error_file_too_big);
8253 return -1;
8254 }
8255 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8256 if (symcount > 0)
8257 symtab_size -= sizeof (asymbol *);
8258
8259 return symtab_size;
8260 }
8261
8262 long
8263 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8264 sec_ptr asect)
8265 {
8266 return (asect->reloc_count + 1) * sizeof (arelent *);
8267 }
8268
8269 /* Canonicalize the relocs. */
8270
8271 long
8272 _bfd_elf_canonicalize_reloc (bfd *abfd,
8273 sec_ptr section,
8274 arelent **relptr,
8275 asymbol **symbols)
8276 {
8277 arelent *tblptr;
8278 unsigned int i;
8279 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8280
8281 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8282 return -1;
8283
8284 tblptr = section->relocation;
8285 for (i = 0; i < section->reloc_count; i++)
8286 *relptr++ = tblptr++;
8287
8288 *relptr = NULL;
8289
8290 return section->reloc_count;
8291 }
8292
8293 long
8294 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8295 {
8296 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8297 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8298
8299 if (symcount >= 0)
8300 bfd_get_symcount (abfd) = symcount;
8301 return symcount;
8302 }
8303
8304 long
8305 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8306 asymbol **allocation)
8307 {
8308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8309 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8310
8311 if (symcount >= 0)
8312 bfd_get_dynamic_symcount (abfd) = symcount;
8313 return symcount;
8314 }
8315
8316 /* Return the size required for the dynamic reloc entries. Any loadable
8317 section that was actually installed in the BFD, and has type SHT_REL
8318 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8319 dynamic reloc section. */
8320
8321 long
8322 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8323 {
8324 bfd_size_type count;
8325 asection *s;
8326
8327 if (elf_dynsymtab (abfd) == 0)
8328 {
8329 bfd_set_error (bfd_error_invalid_operation);
8330 return -1;
8331 }
8332
8333 count = 1;
8334 for (s = abfd->sections; s != NULL; s = s->next)
8335 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8336 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8337 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8338 {
8339 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8340 if (count > LONG_MAX / sizeof (arelent *))
8341 {
8342 bfd_set_error (bfd_error_file_too_big);
8343 return -1;
8344 }
8345 }
8346 return count * sizeof (arelent *);
8347 }
8348
8349 /* Canonicalize the dynamic relocation entries. Note that we return the
8350 dynamic relocations as a single block, although they are actually
8351 associated with particular sections; the interface, which was
8352 designed for SunOS style shared libraries, expects that there is only
8353 one set of dynamic relocs. Any loadable section that was actually
8354 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8355 dynamic symbol table, is considered to be a dynamic reloc section. */
8356
8357 long
8358 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8359 arelent **storage,
8360 asymbol **syms)
8361 {
8362 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8363 asection *s;
8364 long ret;
8365
8366 if (elf_dynsymtab (abfd) == 0)
8367 {
8368 bfd_set_error (bfd_error_invalid_operation);
8369 return -1;
8370 }
8371
8372 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8373 ret = 0;
8374 for (s = abfd->sections; s != NULL; s = s->next)
8375 {
8376 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8377 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8378 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8379 {
8380 arelent *p;
8381 long count, i;
8382
8383 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8384 return -1;
8385 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8386 p = s->relocation;
8387 for (i = 0; i < count; i++)
8388 *storage++ = p++;
8389 ret += count;
8390 }
8391 }
8392
8393 *storage = NULL;
8394
8395 return ret;
8396 }
8397 \f
8398 /* Read in the version information. */
8399
8400 bfd_boolean
8401 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8402 {
8403 bfd_byte *contents = NULL;
8404 unsigned int freeidx = 0;
8405
8406 if (elf_dynverref (abfd) != 0)
8407 {
8408 Elf_Internal_Shdr *hdr;
8409 Elf_External_Verneed *everneed;
8410 Elf_Internal_Verneed *iverneed;
8411 unsigned int i;
8412 bfd_byte *contents_end;
8413
8414 hdr = &elf_tdata (abfd)->dynverref_hdr;
8415
8416 if (hdr->sh_info == 0
8417 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8418 {
8419 error_return_bad_verref:
8420 _bfd_error_handler
8421 (_("%pB: .gnu.version_r invalid entry"), abfd);
8422 bfd_set_error (bfd_error_bad_value);
8423 error_return_verref:
8424 elf_tdata (abfd)->verref = NULL;
8425 elf_tdata (abfd)->cverrefs = 0;
8426 goto error_return;
8427 }
8428
8429 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8430 if (contents == NULL)
8431 goto error_return_verref;
8432
8433 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8434 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8435 goto error_return_verref;
8436
8437 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8438 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8439
8440 if (elf_tdata (abfd)->verref == NULL)
8441 goto error_return_verref;
8442
8443 BFD_ASSERT (sizeof (Elf_External_Verneed)
8444 == sizeof (Elf_External_Vernaux));
8445 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8446 everneed = (Elf_External_Verneed *) contents;
8447 iverneed = elf_tdata (abfd)->verref;
8448 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8449 {
8450 Elf_External_Vernaux *evernaux;
8451 Elf_Internal_Vernaux *ivernaux;
8452 unsigned int j;
8453
8454 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8455
8456 iverneed->vn_bfd = abfd;
8457
8458 iverneed->vn_filename =
8459 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8460 iverneed->vn_file);
8461 if (iverneed->vn_filename == NULL)
8462 goto error_return_bad_verref;
8463
8464 if (iverneed->vn_cnt == 0)
8465 iverneed->vn_auxptr = NULL;
8466 else
8467 {
8468 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8469 bfd_alloc2 (abfd, iverneed->vn_cnt,
8470 sizeof (Elf_Internal_Vernaux));
8471 if (iverneed->vn_auxptr == NULL)
8472 goto error_return_verref;
8473 }
8474
8475 if (iverneed->vn_aux
8476 > (size_t) (contents_end - (bfd_byte *) everneed))
8477 goto error_return_bad_verref;
8478
8479 evernaux = ((Elf_External_Vernaux *)
8480 ((bfd_byte *) everneed + iverneed->vn_aux));
8481 ivernaux = iverneed->vn_auxptr;
8482 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8483 {
8484 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8485
8486 ivernaux->vna_nodename =
8487 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8488 ivernaux->vna_name);
8489 if (ivernaux->vna_nodename == NULL)
8490 goto error_return_bad_verref;
8491
8492 if (ivernaux->vna_other > freeidx)
8493 freeidx = ivernaux->vna_other;
8494
8495 ivernaux->vna_nextptr = NULL;
8496 if (ivernaux->vna_next == 0)
8497 {
8498 iverneed->vn_cnt = j + 1;
8499 break;
8500 }
8501 if (j + 1 < iverneed->vn_cnt)
8502 ivernaux->vna_nextptr = ivernaux + 1;
8503
8504 if (ivernaux->vna_next
8505 > (size_t) (contents_end - (bfd_byte *) evernaux))
8506 goto error_return_bad_verref;
8507
8508 evernaux = ((Elf_External_Vernaux *)
8509 ((bfd_byte *) evernaux + ivernaux->vna_next));
8510 }
8511
8512 iverneed->vn_nextref = NULL;
8513 if (iverneed->vn_next == 0)
8514 break;
8515 if (i + 1 < hdr->sh_info)
8516 iverneed->vn_nextref = iverneed + 1;
8517
8518 if (iverneed->vn_next
8519 > (size_t) (contents_end - (bfd_byte *) everneed))
8520 goto error_return_bad_verref;
8521
8522 everneed = ((Elf_External_Verneed *)
8523 ((bfd_byte *) everneed + iverneed->vn_next));
8524 }
8525 elf_tdata (abfd)->cverrefs = i;
8526
8527 free (contents);
8528 contents = NULL;
8529 }
8530
8531 if (elf_dynverdef (abfd) != 0)
8532 {
8533 Elf_Internal_Shdr *hdr;
8534 Elf_External_Verdef *everdef;
8535 Elf_Internal_Verdef *iverdef;
8536 Elf_Internal_Verdef *iverdefarr;
8537 Elf_Internal_Verdef iverdefmem;
8538 unsigned int i;
8539 unsigned int maxidx;
8540 bfd_byte *contents_end_def, *contents_end_aux;
8541
8542 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8543
8544 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8545 {
8546 error_return_bad_verdef:
8547 _bfd_error_handler
8548 (_("%pB: .gnu.version_d invalid entry"), abfd);
8549 bfd_set_error (bfd_error_bad_value);
8550 error_return_verdef:
8551 elf_tdata (abfd)->verdef = NULL;
8552 elf_tdata (abfd)->cverdefs = 0;
8553 goto error_return;
8554 }
8555
8556 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8557 if (contents == NULL)
8558 goto error_return_verdef;
8559 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8560 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8561 goto error_return_verdef;
8562
8563 BFD_ASSERT (sizeof (Elf_External_Verdef)
8564 >= sizeof (Elf_External_Verdaux));
8565 contents_end_def = contents + hdr->sh_size
8566 - sizeof (Elf_External_Verdef);
8567 contents_end_aux = contents + hdr->sh_size
8568 - sizeof (Elf_External_Verdaux);
8569
8570 /* We know the number of entries in the section but not the maximum
8571 index. Therefore we have to run through all entries and find
8572 the maximum. */
8573 everdef = (Elf_External_Verdef *) contents;
8574 maxidx = 0;
8575 for (i = 0; i < hdr->sh_info; ++i)
8576 {
8577 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8578
8579 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8580 goto error_return_bad_verdef;
8581 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8582 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8583
8584 if (iverdefmem.vd_next == 0)
8585 break;
8586
8587 if (iverdefmem.vd_next
8588 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8589 goto error_return_bad_verdef;
8590
8591 everdef = ((Elf_External_Verdef *)
8592 ((bfd_byte *) everdef + iverdefmem.vd_next));
8593 }
8594
8595 if (default_imported_symver)
8596 {
8597 if (freeidx > maxidx)
8598 maxidx = ++freeidx;
8599 else
8600 freeidx = ++maxidx;
8601 }
8602
8603 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8604 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8605 if (elf_tdata (abfd)->verdef == NULL)
8606 goto error_return_verdef;
8607
8608 elf_tdata (abfd)->cverdefs = maxidx;
8609
8610 everdef = (Elf_External_Verdef *) contents;
8611 iverdefarr = elf_tdata (abfd)->verdef;
8612 for (i = 0; i < hdr->sh_info; i++)
8613 {
8614 Elf_External_Verdaux *everdaux;
8615 Elf_Internal_Verdaux *iverdaux;
8616 unsigned int j;
8617
8618 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8619
8620 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8621 goto error_return_bad_verdef;
8622
8623 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8624 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8625
8626 iverdef->vd_bfd = abfd;
8627
8628 if (iverdef->vd_cnt == 0)
8629 iverdef->vd_auxptr = NULL;
8630 else
8631 {
8632 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8633 bfd_alloc2 (abfd, iverdef->vd_cnt,
8634 sizeof (Elf_Internal_Verdaux));
8635 if (iverdef->vd_auxptr == NULL)
8636 goto error_return_verdef;
8637 }
8638
8639 if (iverdef->vd_aux
8640 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8641 goto error_return_bad_verdef;
8642
8643 everdaux = ((Elf_External_Verdaux *)
8644 ((bfd_byte *) everdef + iverdef->vd_aux));
8645 iverdaux = iverdef->vd_auxptr;
8646 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8647 {
8648 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8649
8650 iverdaux->vda_nodename =
8651 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8652 iverdaux->vda_name);
8653 if (iverdaux->vda_nodename == NULL)
8654 goto error_return_bad_verdef;
8655
8656 iverdaux->vda_nextptr = NULL;
8657 if (iverdaux->vda_next == 0)
8658 {
8659 iverdef->vd_cnt = j + 1;
8660 break;
8661 }
8662 if (j + 1 < iverdef->vd_cnt)
8663 iverdaux->vda_nextptr = iverdaux + 1;
8664
8665 if (iverdaux->vda_next
8666 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8667 goto error_return_bad_verdef;
8668
8669 everdaux = ((Elf_External_Verdaux *)
8670 ((bfd_byte *) everdaux + iverdaux->vda_next));
8671 }
8672
8673 iverdef->vd_nodename = NULL;
8674 if (iverdef->vd_cnt)
8675 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8676
8677 iverdef->vd_nextdef = NULL;
8678 if (iverdef->vd_next == 0)
8679 break;
8680 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8681 iverdef->vd_nextdef = iverdef + 1;
8682
8683 everdef = ((Elf_External_Verdef *)
8684 ((bfd_byte *) everdef + iverdef->vd_next));
8685 }
8686
8687 free (contents);
8688 contents = NULL;
8689 }
8690 else if (default_imported_symver)
8691 {
8692 if (freeidx < 3)
8693 freeidx = 3;
8694 else
8695 freeidx++;
8696
8697 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8698 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8699 if (elf_tdata (abfd)->verdef == NULL)
8700 goto error_return;
8701
8702 elf_tdata (abfd)->cverdefs = freeidx;
8703 }
8704
8705 /* Create a default version based on the soname. */
8706 if (default_imported_symver)
8707 {
8708 Elf_Internal_Verdef *iverdef;
8709 Elf_Internal_Verdaux *iverdaux;
8710
8711 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8712
8713 iverdef->vd_version = VER_DEF_CURRENT;
8714 iverdef->vd_flags = 0;
8715 iverdef->vd_ndx = freeidx;
8716 iverdef->vd_cnt = 1;
8717
8718 iverdef->vd_bfd = abfd;
8719
8720 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8721 if (iverdef->vd_nodename == NULL)
8722 goto error_return_verdef;
8723 iverdef->vd_nextdef = NULL;
8724 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8725 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8726 if (iverdef->vd_auxptr == NULL)
8727 goto error_return_verdef;
8728
8729 iverdaux = iverdef->vd_auxptr;
8730 iverdaux->vda_nodename = iverdef->vd_nodename;
8731 }
8732
8733 return TRUE;
8734
8735 error_return:
8736 if (contents != NULL)
8737 free (contents);
8738 return FALSE;
8739 }
8740 \f
8741 asymbol *
8742 _bfd_elf_make_empty_symbol (bfd *abfd)
8743 {
8744 elf_symbol_type *newsym;
8745
8746 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8747 if (!newsym)
8748 return NULL;
8749 newsym->symbol.the_bfd = abfd;
8750 return &newsym->symbol;
8751 }
8752
8753 void
8754 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8755 asymbol *symbol,
8756 symbol_info *ret)
8757 {
8758 bfd_symbol_info (symbol, ret);
8759 }
8760
8761 /* Return whether a symbol name implies a local symbol. Most targets
8762 use this function for the is_local_label_name entry point, but some
8763 override it. */
8764
8765 bfd_boolean
8766 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8767 const char *name)
8768 {
8769 /* Normal local symbols start with ``.L''. */
8770 if (name[0] == '.' && name[1] == 'L')
8771 return TRUE;
8772
8773 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8774 DWARF debugging symbols starting with ``..''. */
8775 if (name[0] == '.' && name[1] == '.')
8776 return TRUE;
8777
8778 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8779 emitting DWARF debugging output. I suspect this is actually a
8780 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8781 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8782 underscore to be emitted on some ELF targets). For ease of use,
8783 we treat such symbols as local. */
8784 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8785 return TRUE;
8786
8787 /* Treat assembler generated fake symbols, dollar local labels and
8788 forward-backward labels (aka local labels) as locals.
8789 These labels have the form:
8790
8791 L0^A.* (fake symbols)
8792
8793 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8794
8795 Versions which start with .L will have already been matched above,
8796 so we only need to match the rest. */
8797 if (name[0] == 'L' && ISDIGIT (name[1]))
8798 {
8799 bfd_boolean ret = FALSE;
8800 const char * p;
8801 char c;
8802
8803 for (p = name + 2; (c = *p); p++)
8804 {
8805 if (c == 1 || c == 2)
8806 {
8807 if (c == 1 && p == name + 2)
8808 /* A fake symbol. */
8809 return TRUE;
8810
8811 /* FIXME: We are being paranoid here and treating symbols like
8812 L0^Bfoo as if there were non-local, on the grounds that the
8813 assembler will never generate them. But can any symbol
8814 containing an ASCII value in the range 1-31 ever be anything
8815 other than some kind of local ? */
8816 ret = TRUE;
8817 }
8818
8819 if (! ISDIGIT (c))
8820 {
8821 ret = FALSE;
8822 break;
8823 }
8824 }
8825 return ret;
8826 }
8827
8828 return FALSE;
8829 }
8830
8831 alent *
8832 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8833 asymbol *symbol ATTRIBUTE_UNUSED)
8834 {
8835 abort ();
8836 return NULL;
8837 }
8838
8839 bfd_boolean
8840 _bfd_elf_set_arch_mach (bfd *abfd,
8841 enum bfd_architecture arch,
8842 unsigned long machine)
8843 {
8844 /* If this isn't the right architecture for this backend, and this
8845 isn't the generic backend, fail. */
8846 if (arch != get_elf_backend_data (abfd)->arch
8847 && arch != bfd_arch_unknown
8848 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8849 return FALSE;
8850
8851 return bfd_default_set_arch_mach (abfd, arch, machine);
8852 }
8853
8854 /* Find the nearest line to a particular section and offset,
8855 for error reporting. */
8856
8857 bfd_boolean
8858 _bfd_elf_find_nearest_line (bfd *abfd,
8859 asymbol **symbols,
8860 asection *section,
8861 bfd_vma offset,
8862 const char **filename_ptr,
8863 const char **functionname_ptr,
8864 unsigned int *line_ptr,
8865 unsigned int *discriminator_ptr)
8866 {
8867 bfd_boolean found;
8868
8869 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8870 filename_ptr, functionname_ptr,
8871 line_ptr, discriminator_ptr,
8872 dwarf_debug_sections, 0,
8873 &elf_tdata (abfd)->dwarf2_find_line_info)
8874 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8875 filename_ptr, functionname_ptr,
8876 line_ptr))
8877 {
8878 if (!*functionname_ptr)
8879 _bfd_elf_find_function (abfd, symbols, section, offset,
8880 *filename_ptr ? NULL : filename_ptr,
8881 functionname_ptr);
8882 return TRUE;
8883 }
8884
8885 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8886 &found, filename_ptr,
8887 functionname_ptr, line_ptr,
8888 &elf_tdata (abfd)->line_info))
8889 return FALSE;
8890 if (found && (*functionname_ptr || *line_ptr))
8891 return TRUE;
8892
8893 if (symbols == NULL)
8894 return FALSE;
8895
8896 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8897 filename_ptr, functionname_ptr))
8898 return FALSE;
8899
8900 *line_ptr = 0;
8901 return TRUE;
8902 }
8903
8904 /* Find the line for a symbol. */
8905
8906 bfd_boolean
8907 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8908 const char **filename_ptr, unsigned int *line_ptr)
8909 {
8910 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8911 filename_ptr, NULL, line_ptr, NULL,
8912 dwarf_debug_sections, 0,
8913 &elf_tdata (abfd)->dwarf2_find_line_info);
8914 }
8915
8916 /* After a call to bfd_find_nearest_line, successive calls to
8917 bfd_find_inliner_info can be used to get source information about
8918 each level of function inlining that terminated at the address
8919 passed to bfd_find_nearest_line. Currently this is only supported
8920 for DWARF2 with appropriate DWARF3 extensions. */
8921
8922 bfd_boolean
8923 _bfd_elf_find_inliner_info (bfd *abfd,
8924 const char **filename_ptr,
8925 const char **functionname_ptr,
8926 unsigned int *line_ptr)
8927 {
8928 bfd_boolean found;
8929 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8930 functionname_ptr, line_ptr,
8931 & elf_tdata (abfd)->dwarf2_find_line_info);
8932 return found;
8933 }
8934
8935 int
8936 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8937 {
8938 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8939 int ret = bed->s->sizeof_ehdr;
8940
8941 if (!bfd_link_relocatable (info))
8942 {
8943 bfd_size_type phdr_size = elf_program_header_size (abfd);
8944
8945 if (phdr_size == (bfd_size_type) -1)
8946 {
8947 struct elf_segment_map *m;
8948
8949 phdr_size = 0;
8950 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8951 phdr_size += bed->s->sizeof_phdr;
8952
8953 if (phdr_size == 0)
8954 phdr_size = get_program_header_size (abfd, info);
8955 }
8956
8957 elf_program_header_size (abfd) = phdr_size;
8958 ret += phdr_size;
8959 }
8960
8961 return ret;
8962 }
8963
8964 bfd_boolean
8965 _bfd_elf_set_section_contents (bfd *abfd,
8966 sec_ptr section,
8967 const void *location,
8968 file_ptr offset,
8969 bfd_size_type count)
8970 {
8971 Elf_Internal_Shdr *hdr;
8972 file_ptr pos;
8973
8974 if (! abfd->output_has_begun
8975 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8976 return FALSE;
8977
8978 if (!count)
8979 return TRUE;
8980
8981 hdr = &elf_section_data (section)->this_hdr;
8982 if (hdr->sh_offset == (file_ptr) -1)
8983 {
8984 /* We must compress this section. Write output to the buffer. */
8985 unsigned char *contents = hdr->contents;
8986 if ((offset + count) > hdr->sh_size
8987 || (section->flags & SEC_ELF_COMPRESS) == 0
8988 || contents == NULL)
8989 abort ();
8990 memcpy (contents + offset, location, count);
8991 return TRUE;
8992 }
8993 pos = hdr->sh_offset + offset;
8994 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8995 || bfd_bwrite (location, count, abfd) != count)
8996 return FALSE;
8997
8998 return TRUE;
8999 }
9000
9001 bfd_boolean
9002 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9003 arelent *cache_ptr ATTRIBUTE_UNUSED,
9004 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9005 {
9006 abort ();
9007 return FALSE;
9008 }
9009
9010 /* Try to convert a non-ELF reloc into an ELF one. */
9011
9012 bfd_boolean
9013 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9014 {
9015 /* Check whether we really have an ELF howto. */
9016
9017 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9018 {
9019 bfd_reloc_code_real_type code;
9020 reloc_howto_type *howto;
9021
9022 /* Alien reloc: Try to determine its type to replace it with an
9023 equivalent ELF reloc. */
9024
9025 if (areloc->howto->pc_relative)
9026 {
9027 switch (areloc->howto->bitsize)
9028 {
9029 case 8:
9030 code = BFD_RELOC_8_PCREL;
9031 break;
9032 case 12:
9033 code = BFD_RELOC_12_PCREL;
9034 break;
9035 case 16:
9036 code = BFD_RELOC_16_PCREL;
9037 break;
9038 case 24:
9039 code = BFD_RELOC_24_PCREL;
9040 break;
9041 case 32:
9042 code = BFD_RELOC_32_PCREL;
9043 break;
9044 case 64:
9045 code = BFD_RELOC_64_PCREL;
9046 break;
9047 default:
9048 goto fail;
9049 }
9050
9051 howto = bfd_reloc_type_lookup (abfd, code);
9052
9053 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
9054 {
9055 if (howto->pcrel_offset)
9056 areloc->addend += areloc->address;
9057 else
9058 areloc->addend -= areloc->address; /* addend is unsigned!! */
9059 }
9060 }
9061 else
9062 {
9063 switch (areloc->howto->bitsize)
9064 {
9065 case 8:
9066 code = BFD_RELOC_8;
9067 break;
9068 case 14:
9069 code = BFD_RELOC_14;
9070 break;
9071 case 16:
9072 code = BFD_RELOC_16;
9073 break;
9074 case 26:
9075 code = BFD_RELOC_26;
9076 break;
9077 case 32:
9078 code = BFD_RELOC_32;
9079 break;
9080 case 64:
9081 code = BFD_RELOC_64;
9082 break;
9083 default:
9084 goto fail;
9085 }
9086
9087 howto = bfd_reloc_type_lookup (abfd, code);
9088 }
9089
9090 if (howto)
9091 areloc->howto = howto;
9092 else
9093 goto fail;
9094 }
9095
9096 return TRUE;
9097
9098 fail:
9099 /* xgettext:c-format */
9100 _bfd_error_handler (_("%pB: %s unsupported"),
9101 abfd, areloc->howto->name);
9102 bfd_set_error (bfd_error_bad_value);
9103 return FALSE;
9104 }
9105
9106 bfd_boolean
9107 _bfd_elf_close_and_cleanup (bfd *abfd)
9108 {
9109 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9110 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9111 {
9112 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9113 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9114 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9115 }
9116
9117 return _bfd_generic_close_and_cleanup (abfd);
9118 }
9119
9120 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9121 in the relocation's offset. Thus we cannot allow any sort of sanity
9122 range-checking to interfere. There is nothing else to do in processing
9123 this reloc. */
9124
9125 bfd_reloc_status_type
9126 _bfd_elf_rel_vtable_reloc_fn
9127 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9128 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9129 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9130 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9131 {
9132 return bfd_reloc_ok;
9133 }
9134 \f
9135 /* Elf core file support. Much of this only works on native
9136 toolchains, since we rely on knowing the
9137 machine-dependent procfs structure in order to pick
9138 out details about the corefile. */
9139
9140 #ifdef HAVE_SYS_PROCFS_H
9141 /* Needed for new procfs interface on sparc-solaris. */
9142 # define _STRUCTURED_PROC 1
9143 # include <sys/procfs.h>
9144 #endif
9145
9146 /* Return a PID that identifies a "thread" for threaded cores, or the
9147 PID of the main process for non-threaded cores. */
9148
9149 static int
9150 elfcore_make_pid (bfd *abfd)
9151 {
9152 int pid;
9153
9154 pid = elf_tdata (abfd)->core->lwpid;
9155 if (pid == 0)
9156 pid = elf_tdata (abfd)->core->pid;
9157
9158 return pid;
9159 }
9160
9161 /* If there isn't a section called NAME, make one, using
9162 data from SECT. Note, this function will generate a
9163 reference to NAME, so you shouldn't deallocate or
9164 overwrite it. */
9165
9166 static bfd_boolean
9167 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9168 {
9169 asection *sect2;
9170
9171 if (bfd_get_section_by_name (abfd, name) != NULL)
9172 return TRUE;
9173
9174 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9175 if (sect2 == NULL)
9176 return FALSE;
9177
9178 sect2->size = sect->size;
9179 sect2->filepos = sect->filepos;
9180 sect2->alignment_power = sect->alignment_power;
9181 return TRUE;
9182 }
9183
9184 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9185 actually creates up to two pseudosections:
9186 - For the single-threaded case, a section named NAME, unless
9187 such a section already exists.
9188 - For the multi-threaded case, a section named "NAME/PID", where
9189 PID is elfcore_make_pid (abfd).
9190 Both pseudosections have identical contents. */
9191 bfd_boolean
9192 _bfd_elfcore_make_pseudosection (bfd *abfd,
9193 char *name,
9194 size_t size,
9195 ufile_ptr filepos)
9196 {
9197 char buf[100];
9198 char *threaded_name;
9199 size_t len;
9200 asection *sect;
9201
9202 /* Build the section name. */
9203
9204 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9205 len = strlen (buf) + 1;
9206 threaded_name = (char *) bfd_alloc (abfd, len);
9207 if (threaded_name == NULL)
9208 return FALSE;
9209 memcpy (threaded_name, buf, len);
9210
9211 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9212 SEC_HAS_CONTENTS);
9213 if (sect == NULL)
9214 return FALSE;
9215 sect->size = size;
9216 sect->filepos = filepos;
9217 sect->alignment_power = 2;
9218
9219 return elfcore_maybe_make_sect (abfd, name, sect);
9220 }
9221
9222 /* prstatus_t exists on:
9223 solaris 2.5+
9224 linux 2.[01] + glibc
9225 unixware 4.2
9226 */
9227
9228 #if defined (HAVE_PRSTATUS_T)
9229
9230 static bfd_boolean
9231 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9232 {
9233 size_t size;
9234 int offset;
9235
9236 if (note->descsz == sizeof (prstatus_t))
9237 {
9238 prstatus_t prstat;
9239
9240 size = sizeof (prstat.pr_reg);
9241 offset = offsetof (prstatus_t, pr_reg);
9242 memcpy (&prstat, note->descdata, sizeof (prstat));
9243
9244 /* Do not overwrite the core signal if it
9245 has already been set by another thread. */
9246 if (elf_tdata (abfd)->core->signal == 0)
9247 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9248 if (elf_tdata (abfd)->core->pid == 0)
9249 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9250
9251 /* pr_who exists on:
9252 solaris 2.5+
9253 unixware 4.2
9254 pr_who doesn't exist on:
9255 linux 2.[01]
9256 */
9257 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9258 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9259 #else
9260 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9261 #endif
9262 }
9263 #if defined (HAVE_PRSTATUS32_T)
9264 else if (note->descsz == sizeof (prstatus32_t))
9265 {
9266 /* 64-bit host, 32-bit corefile */
9267 prstatus32_t prstat;
9268
9269 size = sizeof (prstat.pr_reg);
9270 offset = offsetof (prstatus32_t, pr_reg);
9271 memcpy (&prstat, note->descdata, sizeof (prstat));
9272
9273 /* Do not overwrite the core signal if it
9274 has already been set by another thread. */
9275 if (elf_tdata (abfd)->core->signal == 0)
9276 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9277 if (elf_tdata (abfd)->core->pid == 0)
9278 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9279
9280 /* pr_who exists on:
9281 solaris 2.5+
9282 unixware 4.2
9283 pr_who doesn't exist on:
9284 linux 2.[01]
9285 */
9286 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9287 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9288 #else
9289 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9290 #endif
9291 }
9292 #endif /* HAVE_PRSTATUS32_T */
9293 else
9294 {
9295 /* Fail - we don't know how to handle any other
9296 note size (ie. data object type). */
9297 return TRUE;
9298 }
9299
9300 /* Make a ".reg/999" section and a ".reg" section. */
9301 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9302 size, note->descpos + offset);
9303 }
9304 #endif /* defined (HAVE_PRSTATUS_T) */
9305
9306 /* Create a pseudosection containing the exact contents of NOTE. */
9307 static bfd_boolean
9308 elfcore_make_note_pseudosection (bfd *abfd,
9309 char *name,
9310 Elf_Internal_Note *note)
9311 {
9312 return _bfd_elfcore_make_pseudosection (abfd, name,
9313 note->descsz, note->descpos);
9314 }
9315
9316 /* There isn't a consistent prfpregset_t across platforms,
9317 but it doesn't matter, because we don't have to pick this
9318 data structure apart. */
9319
9320 static bfd_boolean
9321 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9322 {
9323 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9324 }
9325
9326 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9327 type of NT_PRXFPREG. Just include the whole note's contents
9328 literally. */
9329
9330 static bfd_boolean
9331 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9332 {
9333 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9334 }
9335
9336 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9337 with a note type of NT_X86_XSTATE. Just include the whole note's
9338 contents literally. */
9339
9340 static bfd_boolean
9341 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9342 {
9343 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9344 }
9345
9346 static bfd_boolean
9347 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9348 {
9349 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9350 }
9351
9352 static bfd_boolean
9353 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9354 {
9355 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9356 }
9357
9358 static bfd_boolean
9359 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9360 {
9361 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9362 }
9363
9364 static bfd_boolean
9365 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9366 {
9367 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9368 }
9369
9370 static bfd_boolean
9371 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9372 {
9373 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9374 }
9375
9376 static bfd_boolean
9377 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9378 {
9379 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9380 }
9381
9382 static bfd_boolean
9383 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9384 {
9385 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9386 }
9387
9388 static bfd_boolean
9389 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9390 {
9391 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9392 }
9393
9394 static bfd_boolean
9395 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9396 {
9397 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9398 }
9399
9400 static bfd_boolean
9401 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9402 {
9403 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9404 }
9405
9406 static bfd_boolean
9407 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9408 {
9409 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9410 }
9411
9412 static bfd_boolean
9413 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9414 {
9415 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9416 }
9417
9418 static bfd_boolean
9419 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9420 {
9421 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9422 }
9423
9424 static bfd_boolean
9425 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9426 {
9427 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9428 }
9429
9430 static bfd_boolean
9431 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9432 {
9433 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9434 }
9435
9436 static bfd_boolean
9437 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9438 {
9439 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9440 }
9441
9442 static bfd_boolean
9443 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9444 {
9445 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9446 }
9447
9448 static bfd_boolean
9449 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9450 {
9451 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9452 }
9453
9454 static bfd_boolean
9455 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9456 {
9457 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9458 }
9459
9460 static bfd_boolean
9461 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9462 {
9463 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9464 }
9465
9466 static bfd_boolean
9467 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9468 {
9469 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9470 }
9471
9472 static bfd_boolean
9473 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9474 {
9475 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9476 }
9477
9478 static bfd_boolean
9479 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9480 {
9481 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9482 }
9483
9484 static bfd_boolean
9485 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9486 {
9487 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9488 }
9489
9490 static bfd_boolean
9491 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9492 {
9493 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9494 }
9495
9496 static bfd_boolean
9497 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9498 {
9499 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9500 }
9501
9502 static bfd_boolean
9503 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9504 {
9505 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9506 }
9507
9508 static bfd_boolean
9509 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9510 {
9511 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9512 }
9513
9514 static bfd_boolean
9515 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9516 {
9517 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9518 }
9519
9520 static bfd_boolean
9521 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9522 {
9523 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9524 }
9525
9526 static bfd_boolean
9527 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9528 {
9529 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9530 }
9531
9532 static bfd_boolean
9533 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9534 {
9535 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9536 }
9537
9538 static bfd_boolean
9539 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9540 {
9541 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9542 }
9543
9544 static bfd_boolean
9545 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9546 {
9547 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9548 }
9549
9550 #if defined (HAVE_PRPSINFO_T)
9551 typedef prpsinfo_t elfcore_psinfo_t;
9552 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9553 typedef prpsinfo32_t elfcore_psinfo32_t;
9554 #endif
9555 #endif
9556
9557 #if defined (HAVE_PSINFO_T)
9558 typedef psinfo_t elfcore_psinfo_t;
9559 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9560 typedef psinfo32_t elfcore_psinfo32_t;
9561 #endif
9562 #endif
9563
9564 /* return a malloc'ed copy of a string at START which is at
9565 most MAX bytes long, possibly without a terminating '\0'.
9566 the copy will always have a terminating '\0'. */
9567
9568 char *
9569 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9570 {
9571 char *dups;
9572 char *end = (char *) memchr (start, '\0', max);
9573 size_t len;
9574
9575 if (end == NULL)
9576 len = max;
9577 else
9578 len = end - start;
9579
9580 dups = (char *) bfd_alloc (abfd, len + 1);
9581 if (dups == NULL)
9582 return NULL;
9583
9584 memcpy (dups, start, len);
9585 dups[len] = '\0';
9586
9587 return dups;
9588 }
9589
9590 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9591 static bfd_boolean
9592 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9593 {
9594 if (note->descsz == sizeof (elfcore_psinfo_t))
9595 {
9596 elfcore_psinfo_t psinfo;
9597
9598 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9599
9600 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9601 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9602 #endif
9603 elf_tdata (abfd)->core->program
9604 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9605 sizeof (psinfo.pr_fname));
9606
9607 elf_tdata (abfd)->core->command
9608 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9609 sizeof (psinfo.pr_psargs));
9610 }
9611 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9612 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9613 {
9614 /* 64-bit host, 32-bit corefile */
9615 elfcore_psinfo32_t psinfo;
9616
9617 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9618
9619 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9620 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9621 #endif
9622 elf_tdata (abfd)->core->program
9623 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9624 sizeof (psinfo.pr_fname));
9625
9626 elf_tdata (abfd)->core->command
9627 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9628 sizeof (psinfo.pr_psargs));
9629 }
9630 #endif
9631
9632 else
9633 {
9634 /* Fail - we don't know how to handle any other
9635 note size (ie. data object type). */
9636 return TRUE;
9637 }
9638
9639 /* Note that for some reason, a spurious space is tacked
9640 onto the end of the args in some (at least one anyway)
9641 implementations, so strip it off if it exists. */
9642
9643 {
9644 char *command = elf_tdata (abfd)->core->command;
9645 int n = strlen (command);
9646
9647 if (0 < n && command[n - 1] == ' ')
9648 command[n - 1] = '\0';
9649 }
9650
9651 return TRUE;
9652 }
9653 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9654
9655 #if defined (HAVE_PSTATUS_T)
9656 static bfd_boolean
9657 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9658 {
9659 if (note->descsz == sizeof (pstatus_t)
9660 #if defined (HAVE_PXSTATUS_T)
9661 || note->descsz == sizeof (pxstatus_t)
9662 #endif
9663 )
9664 {
9665 pstatus_t pstat;
9666
9667 memcpy (&pstat, note->descdata, sizeof (pstat));
9668
9669 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9670 }
9671 #if defined (HAVE_PSTATUS32_T)
9672 else if (note->descsz == sizeof (pstatus32_t))
9673 {
9674 /* 64-bit host, 32-bit corefile */
9675 pstatus32_t pstat;
9676
9677 memcpy (&pstat, note->descdata, sizeof (pstat));
9678
9679 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9680 }
9681 #endif
9682 /* Could grab some more details from the "representative"
9683 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9684 NT_LWPSTATUS note, presumably. */
9685
9686 return TRUE;
9687 }
9688 #endif /* defined (HAVE_PSTATUS_T) */
9689
9690 #if defined (HAVE_LWPSTATUS_T)
9691 static bfd_boolean
9692 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9693 {
9694 lwpstatus_t lwpstat;
9695 char buf[100];
9696 char *name;
9697 size_t len;
9698 asection *sect;
9699
9700 if (note->descsz != sizeof (lwpstat)
9701 #if defined (HAVE_LWPXSTATUS_T)
9702 && note->descsz != sizeof (lwpxstatus_t)
9703 #endif
9704 )
9705 return TRUE;
9706
9707 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9708
9709 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9710 /* Do not overwrite the core signal if it has already been set by
9711 another thread. */
9712 if (elf_tdata (abfd)->core->signal == 0)
9713 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9714
9715 /* Make a ".reg/999" section. */
9716
9717 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9718 len = strlen (buf) + 1;
9719 name = bfd_alloc (abfd, len);
9720 if (name == NULL)
9721 return FALSE;
9722 memcpy (name, buf, len);
9723
9724 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9725 if (sect == NULL)
9726 return FALSE;
9727
9728 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9729 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9730 sect->filepos = note->descpos
9731 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9732 #endif
9733
9734 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9735 sect->size = sizeof (lwpstat.pr_reg);
9736 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9737 #endif
9738
9739 sect->alignment_power = 2;
9740
9741 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9742 return FALSE;
9743
9744 /* Make a ".reg2/999" section */
9745
9746 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9747 len = strlen (buf) + 1;
9748 name = bfd_alloc (abfd, len);
9749 if (name == NULL)
9750 return FALSE;
9751 memcpy (name, buf, len);
9752
9753 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9754 if (sect == NULL)
9755 return FALSE;
9756
9757 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9758 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9759 sect->filepos = note->descpos
9760 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9761 #endif
9762
9763 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9764 sect->size = sizeof (lwpstat.pr_fpreg);
9765 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9766 #endif
9767
9768 sect->alignment_power = 2;
9769
9770 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9771 }
9772 #endif /* defined (HAVE_LWPSTATUS_T) */
9773
9774 static bfd_boolean
9775 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9776 {
9777 char buf[30];
9778 char *name;
9779 size_t len;
9780 asection *sect;
9781 int type;
9782 int is_active_thread;
9783 bfd_vma base_addr;
9784
9785 if (note->descsz < 728)
9786 return TRUE;
9787
9788 if (! CONST_STRNEQ (note->namedata, "win32"))
9789 return TRUE;
9790
9791 type = bfd_get_32 (abfd, note->descdata);
9792
9793 switch (type)
9794 {
9795 case 1 /* NOTE_INFO_PROCESS */:
9796 /* FIXME: need to add ->core->command. */
9797 /* process_info.pid */
9798 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9799 /* process_info.signal */
9800 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9801 break;
9802
9803 case 2 /* NOTE_INFO_THREAD */:
9804 /* Make a ".reg/999" section. */
9805 /* thread_info.tid */
9806 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9807
9808 len = strlen (buf) + 1;
9809 name = (char *) bfd_alloc (abfd, len);
9810 if (name == NULL)
9811 return FALSE;
9812
9813 memcpy (name, buf, len);
9814
9815 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9816 if (sect == NULL)
9817 return FALSE;
9818
9819 /* sizeof (thread_info.thread_context) */
9820 sect->size = 716;
9821 /* offsetof (thread_info.thread_context) */
9822 sect->filepos = note->descpos + 12;
9823 sect->alignment_power = 2;
9824
9825 /* thread_info.is_active_thread */
9826 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9827
9828 if (is_active_thread)
9829 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9830 return FALSE;
9831 break;
9832
9833 case 3 /* NOTE_INFO_MODULE */:
9834 /* Make a ".module/xxxxxxxx" section. */
9835 /* module_info.base_address */
9836 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9837 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9838
9839 len = strlen (buf) + 1;
9840 name = (char *) bfd_alloc (abfd, len);
9841 if (name == NULL)
9842 return FALSE;
9843
9844 memcpy (name, buf, len);
9845
9846 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9847
9848 if (sect == NULL)
9849 return FALSE;
9850
9851 sect->size = note->descsz;
9852 sect->filepos = note->descpos;
9853 sect->alignment_power = 2;
9854 break;
9855
9856 default:
9857 return TRUE;
9858 }
9859
9860 return TRUE;
9861 }
9862
9863 static bfd_boolean
9864 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9865 {
9866 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9867
9868 switch (note->type)
9869 {
9870 default:
9871 return TRUE;
9872
9873 case NT_PRSTATUS:
9874 if (bed->elf_backend_grok_prstatus)
9875 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9876 return TRUE;
9877 #if defined (HAVE_PRSTATUS_T)
9878 return elfcore_grok_prstatus (abfd, note);
9879 #else
9880 return TRUE;
9881 #endif
9882
9883 #if defined (HAVE_PSTATUS_T)
9884 case NT_PSTATUS:
9885 return elfcore_grok_pstatus (abfd, note);
9886 #endif
9887
9888 #if defined (HAVE_LWPSTATUS_T)
9889 case NT_LWPSTATUS:
9890 return elfcore_grok_lwpstatus (abfd, note);
9891 #endif
9892
9893 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9894 return elfcore_grok_prfpreg (abfd, note);
9895
9896 case NT_WIN32PSTATUS:
9897 return elfcore_grok_win32pstatus (abfd, note);
9898
9899 case NT_PRXFPREG: /* Linux SSE extension */
9900 if (note->namesz == 6
9901 && strcmp (note->namedata, "LINUX") == 0)
9902 return elfcore_grok_prxfpreg (abfd, note);
9903 else
9904 return TRUE;
9905
9906 case NT_X86_XSTATE: /* Linux XSAVE extension */
9907 if (note->namesz == 6
9908 && strcmp (note->namedata, "LINUX") == 0)
9909 return elfcore_grok_xstatereg (abfd, note);
9910 else
9911 return TRUE;
9912
9913 case NT_PPC_VMX:
9914 if (note->namesz == 6
9915 && strcmp (note->namedata, "LINUX") == 0)
9916 return elfcore_grok_ppc_vmx (abfd, note);
9917 else
9918 return TRUE;
9919
9920 case NT_PPC_VSX:
9921 if (note->namesz == 6
9922 && strcmp (note->namedata, "LINUX") == 0)
9923 return elfcore_grok_ppc_vsx (abfd, note);
9924 else
9925 return TRUE;
9926
9927 case NT_PPC_TAR:
9928 if (note->namesz == 6
9929 && strcmp (note->namedata, "LINUX") == 0)
9930 return elfcore_grok_ppc_tar (abfd, note);
9931 else
9932 return TRUE;
9933
9934 case NT_PPC_PPR:
9935 if (note->namesz == 6
9936 && strcmp (note->namedata, "LINUX") == 0)
9937 return elfcore_grok_ppc_ppr (abfd, note);
9938 else
9939 return TRUE;
9940
9941 case NT_PPC_DSCR:
9942 if (note->namesz == 6
9943 && strcmp (note->namedata, "LINUX") == 0)
9944 return elfcore_grok_ppc_dscr (abfd, note);
9945 else
9946 return TRUE;
9947
9948 case NT_PPC_EBB:
9949 if (note->namesz == 6
9950 && strcmp (note->namedata, "LINUX") == 0)
9951 return elfcore_grok_ppc_ebb (abfd, note);
9952 else
9953 return TRUE;
9954
9955 case NT_PPC_PMU:
9956 if (note->namesz == 6
9957 && strcmp (note->namedata, "LINUX") == 0)
9958 return elfcore_grok_ppc_pmu (abfd, note);
9959 else
9960 return TRUE;
9961
9962 case NT_PPC_TM_CGPR:
9963 if (note->namesz == 6
9964 && strcmp (note->namedata, "LINUX") == 0)
9965 return elfcore_grok_ppc_tm_cgpr (abfd, note);
9966 else
9967 return TRUE;
9968
9969 case NT_PPC_TM_CFPR:
9970 if (note->namesz == 6
9971 && strcmp (note->namedata, "LINUX") == 0)
9972 return elfcore_grok_ppc_tm_cfpr (abfd, note);
9973 else
9974 return TRUE;
9975
9976 case NT_PPC_TM_CVMX:
9977 if (note->namesz == 6
9978 && strcmp (note->namedata, "LINUX") == 0)
9979 return elfcore_grok_ppc_tm_cvmx (abfd, note);
9980 else
9981 return TRUE;
9982
9983 case NT_PPC_TM_CVSX:
9984 if (note->namesz == 6
9985 && strcmp (note->namedata, "LINUX") == 0)
9986 return elfcore_grok_ppc_tm_cvsx (abfd, note);
9987 else
9988 return TRUE;
9989
9990 case NT_PPC_TM_SPR:
9991 if (note->namesz == 6
9992 && strcmp (note->namedata, "LINUX") == 0)
9993 return elfcore_grok_ppc_tm_spr (abfd, note);
9994 else
9995 return TRUE;
9996
9997 case NT_PPC_TM_CTAR:
9998 if (note->namesz == 6
9999 && strcmp (note->namedata, "LINUX") == 0)
10000 return elfcore_grok_ppc_tm_ctar (abfd, note);
10001 else
10002 return TRUE;
10003
10004 case NT_PPC_TM_CPPR:
10005 if (note->namesz == 6
10006 && strcmp (note->namedata, "LINUX") == 0)
10007 return elfcore_grok_ppc_tm_cppr (abfd, note);
10008 else
10009 return TRUE;
10010
10011 case NT_PPC_TM_CDSCR:
10012 if (note->namesz == 6
10013 && strcmp (note->namedata, "LINUX") == 0)
10014 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10015 else
10016 return TRUE;
10017
10018 case NT_S390_HIGH_GPRS:
10019 if (note->namesz == 6
10020 && strcmp (note->namedata, "LINUX") == 0)
10021 return elfcore_grok_s390_high_gprs (abfd, note);
10022 else
10023 return TRUE;
10024
10025 case NT_S390_TIMER:
10026 if (note->namesz == 6
10027 && strcmp (note->namedata, "LINUX") == 0)
10028 return elfcore_grok_s390_timer (abfd, note);
10029 else
10030 return TRUE;
10031
10032 case NT_S390_TODCMP:
10033 if (note->namesz == 6
10034 && strcmp (note->namedata, "LINUX") == 0)
10035 return elfcore_grok_s390_todcmp (abfd, note);
10036 else
10037 return TRUE;
10038
10039 case NT_S390_TODPREG:
10040 if (note->namesz == 6
10041 && strcmp (note->namedata, "LINUX") == 0)
10042 return elfcore_grok_s390_todpreg (abfd, note);
10043 else
10044 return TRUE;
10045
10046 case NT_S390_CTRS:
10047 if (note->namesz == 6
10048 && strcmp (note->namedata, "LINUX") == 0)
10049 return elfcore_grok_s390_ctrs (abfd, note);
10050 else
10051 return TRUE;
10052
10053 case NT_S390_PREFIX:
10054 if (note->namesz == 6
10055 && strcmp (note->namedata, "LINUX") == 0)
10056 return elfcore_grok_s390_prefix (abfd, note);
10057 else
10058 return TRUE;
10059
10060 case NT_S390_LAST_BREAK:
10061 if (note->namesz == 6
10062 && strcmp (note->namedata, "LINUX") == 0)
10063 return elfcore_grok_s390_last_break (abfd, note);
10064 else
10065 return TRUE;
10066
10067 case NT_S390_SYSTEM_CALL:
10068 if (note->namesz == 6
10069 && strcmp (note->namedata, "LINUX") == 0)
10070 return elfcore_grok_s390_system_call (abfd, note);
10071 else
10072 return TRUE;
10073
10074 case NT_S390_TDB:
10075 if (note->namesz == 6
10076 && strcmp (note->namedata, "LINUX") == 0)
10077 return elfcore_grok_s390_tdb (abfd, note);
10078 else
10079 return TRUE;
10080
10081 case NT_S390_VXRS_LOW:
10082 if (note->namesz == 6
10083 && strcmp (note->namedata, "LINUX") == 0)
10084 return elfcore_grok_s390_vxrs_low (abfd, note);
10085 else
10086 return TRUE;
10087
10088 case NT_S390_VXRS_HIGH:
10089 if (note->namesz == 6
10090 && strcmp (note->namedata, "LINUX") == 0)
10091 return elfcore_grok_s390_vxrs_high (abfd, note);
10092 else
10093 return TRUE;
10094
10095 case NT_S390_GS_CB:
10096 if (note->namesz == 6
10097 && strcmp (note->namedata, "LINUX") == 0)
10098 return elfcore_grok_s390_gs_cb (abfd, note);
10099 else
10100 return TRUE;
10101
10102 case NT_S390_GS_BC:
10103 if (note->namesz == 6
10104 && strcmp (note->namedata, "LINUX") == 0)
10105 return elfcore_grok_s390_gs_bc (abfd, note);
10106 else
10107 return TRUE;
10108
10109 case NT_ARM_VFP:
10110 if (note->namesz == 6
10111 && strcmp (note->namedata, "LINUX") == 0)
10112 return elfcore_grok_arm_vfp (abfd, note);
10113 else
10114 return TRUE;
10115
10116 case NT_ARM_TLS:
10117 if (note->namesz == 6
10118 && strcmp (note->namedata, "LINUX") == 0)
10119 return elfcore_grok_aarch_tls (abfd, note);
10120 else
10121 return TRUE;
10122
10123 case NT_ARM_HW_BREAK:
10124 if (note->namesz == 6
10125 && strcmp (note->namedata, "LINUX") == 0)
10126 return elfcore_grok_aarch_hw_break (abfd, note);
10127 else
10128 return TRUE;
10129
10130 case NT_ARM_HW_WATCH:
10131 if (note->namesz == 6
10132 && strcmp (note->namedata, "LINUX") == 0)
10133 return elfcore_grok_aarch_hw_watch (abfd, note);
10134 else
10135 return TRUE;
10136
10137 case NT_ARM_SVE:
10138 if (note->namesz == 6
10139 && strcmp (note->namedata, "LINUX") == 0)
10140 return elfcore_grok_aarch_sve (abfd, note);
10141 else
10142 return TRUE;
10143
10144 case NT_ARM_PAC_MASK:
10145 if (note->namesz == 6
10146 && strcmp (note->namedata, "LINUX") == 0)
10147 return elfcore_grok_aarch_pauth (abfd, note);
10148 else
10149 return TRUE;
10150
10151 case NT_PRPSINFO:
10152 case NT_PSINFO:
10153 if (bed->elf_backend_grok_psinfo)
10154 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10155 return TRUE;
10156 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10157 return elfcore_grok_psinfo (abfd, note);
10158 #else
10159 return TRUE;
10160 #endif
10161
10162 case NT_AUXV:
10163 {
10164 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10165 SEC_HAS_CONTENTS);
10166
10167 if (sect == NULL)
10168 return FALSE;
10169 sect->size = note->descsz;
10170 sect->filepos = note->descpos;
10171 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10172
10173 return TRUE;
10174 }
10175
10176 case NT_FILE:
10177 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10178 note);
10179
10180 case NT_SIGINFO:
10181 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10182 note);
10183
10184 }
10185 }
10186
10187 static bfd_boolean
10188 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10189 {
10190 struct bfd_build_id* build_id;
10191
10192 if (note->descsz == 0)
10193 return FALSE;
10194
10195 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10196 if (build_id == NULL)
10197 return FALSE;
10198
10199 build_id->size = note->descsz;
10200 memcpy (build_id->data, note->descdata, note->descsz);
10201 abfd->build_id = build_id;
10202
10203 return TRUE;
10204 }
10205
10206 static bfd_boolean
10207 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10208 {
10209 switch (note->type)
10210 {
10211 default:
10212 return TRUE;
10213
10214 case NT_GNU_PROPERTY_TYPE_0:
10215 return _bfd_elf_parse_gnu_properties (abfd, note);
10216
10217 case NT_GNU_BUILD_ID:
10218 return elfobj_grok_gnu_build_id (abfd, note);
10219 }
10220 }
10221
10222 static bfd_boolean
10223 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10224 {
10225 struct sdt_note *cur =
10226 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
10227 + note->descsz);
10228
10229 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10230 cur->size = (bfd_size_type) note->descsz;
10231 memcpy (cur->data, note->descdata, note->descsz);
10232
10233 elf_tdata (abfd)->sdt_note_head = cur;
10234
10235 return TRUE;
10236 }
10237
10238 static bfd_boolean
10239 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10240 {
10241 switch (note->type)
10242 {
10243 case NT_STAPSDT:
10244 return elfobj_grok_stapsdt_note_1 (abfd, note);
10245
10246 default:
10247 return TRUE;
10248 }
10249 }
10250
10251 static bfd_boolean
10252 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10253 {
10254 size_t offset;
10255
10256 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10257 {
10258 case ELFCLASS32:
10259 if (note->descsz < 108)
10260 return FALSE;
10261 break;
10262
10263 case ELFCLASS64:
10264 if (note->descsz < 120)
10265 return FALSE;
10266 break;
10267
10268 default:
10269 return FALSE;
10270 }
10271
10272 /* Check for version 1 in pr_version. */
10273 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10274 return FALSE;
10275
10276 offset = 4;
10277
10278 /* Skip over pr_psinfosz. */
10279 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10280 offset += 4;
10281 else
10282 {
10283 offset += 4; /* Padding before pr_psinfosz. */
10284 offset += 8;
10285 }
10286
10287 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10288 elf_tdata (abfd)->core->program
10289 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10290 offset += 17;
10291
10292 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10293 elf_tdata (abfd)->core->command
10294 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10295 offset += 81;
10296
10297 /* Padding before pr_pid. */
10298 offset += 2;
10299
10300 /* The pr_pid field was added in version "1a". */
10301 if (note->descsz < offset + 4)
10302 return TRUE;
10303
10304 elf_tdata (abfd)->core->pid
10305 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10306
10307 return TRUE;
10308 }
10309
10310 static bfd_boolean
10311 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10312 {
10313 size_t offset;
10314 size_t size;
10315 size_t min_size;
10316
10317 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10318 Also compute minimum size of this note. */
10319 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10320 {
10321 case ELFCLASS32:
10322 offset = 4 + 4;
10323 min_size = offset + (4 * 2) + 4 + 4 + 4;
10324 break;
10325
10326 case ELFCLASS64:
10327 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10328 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10329 break;
10330
10331 default:
10332 return FALSE;
10333 }
10334
10335 if (note->descsz < min_size)
10336 return FALSE;
10337
10338 /* Check for version 1 in pr_version. */
10339 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10340 return FALSE;
10341
10342 /* Extract size of pr_reg from pr_gregsetsz. */
10343 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10344 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10345 {
10346 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10347 offset += 4 * 2;
10348 }
10349 else
10350 {
10351 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10352 offset += 8 * 2;
10353 }
10354
10355 /* Skip over pr_osreldate. */
10356 offset += 4;
10357
10358 /* Read signal from pr_cursig. */
10359 if (elf_tdata (abfd)->core->signal == 0)
10360 elf_tdata (abfd)->core->signal
10361 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10362 offset += 4;
10363
10364 /* Read TID from pr_pid. */
10365 elf_tdata (abfd)->core->lwpid
10366 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10367 offset += 4;
10368
10369 /* Padding before pr_reg. */
10370 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10371 offset += 4;
10372
10373 /* Make sure that there is enough data remaining in the note. */
10374 if ((note->descsz - offset) < size)
10375 return FALSE;
10376
10377 /* Make a ".reg/999" section and a ".reg" section. */
10378 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10379 size, note->descpos + offset);
10380 }
10381
10382 static bfd_boolean
10383 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10384 {
10385 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10386
10387 switch (note->type)
10388 {
10389 case NT_PRSTATUS:
10390 if (bed->elf_backend_grok_freebsd_prstatus)
10391 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10392 return TRUE;
10393 return elfcore_grok_freebsd_prstatus (abfd, note);
10394
10395 case NT_FPREGSET:
10396 return elfcore_grok_prfpreg (abfd, note);
10397
10398 case NT_PRPSINFO:
10399 return elfcore_grok_freebsd_psinfo (abfd, note);
10400
10401 case NT_FREEBSD_THRMISC:
10402 if (note->namesz == 8)
10403 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10404 else
10405 return TRUE;
10406
10407 case NT_FREEBSD_PROCSTAT_PROC:
10408 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10409 note);
10410
10411 case NT_FREEBSD_PROCSTAT_FILES:
10412 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10413 note);
10414
10415 case NT_FREEBSD_PROCSTAT_VMMAP:
10416 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10417 note);
10418
10419 case NT_FREEBSD_PROCSTAT_AUXV:
10420 {
10421 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10422 SEC_HAS_CONTENTS);
10423
10424 if (sect == NULL)
10425 return FALSE;
10426 sect->size = note->descsz - 4;
10427 sect->filepos = note->descpos + 4;
10428 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10429
10430 return TRUE;
10431 }
10432
10433 case NT_X86_XSTATE:
10434 if (note->namesz == 8)
10435 return elfcore_grok_xstatereg (abfd, note);
10436 else
10437 return TRUE;
10438
10439 case NT_FREEBSD_PTLWPINFO:
10440 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10441 note);
10442
10443 case NT_ARM_VFP:
10444 return elfcore_grok_arm_vfp (abfd, note);
10445
10446 default:
10447 return TRUE;
10448 }
10449 }
10450
10451 static bfd_boolean
10452 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10453 {
10454 char *cp;
10455
10456 cp = strchr (note->namedata, '@');
10457 if (cp != NULL)
10458 {
10459 *lwpidp = atoi(cp + 1);
10460 return TRUE;
10461 }
10462 return FALSE;
10463 }
10464
10465 static bfd_boolean
10466 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10467 {
10468 if (note->descsz <= 0x7c + 31)
10469 return FALSE;
10470
10471 /* Signal number at offset 0x08. */
10472 elf_tdata (abfd)->core->signal
10473 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10474
10475 /* Process ID at offset 0x50. */
10476 elf_tdata (abfd)->core->pid
10477 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10478
10479 /* Command name at 0x7c (max 32 bytes, including nul). */
10480 elf_tdata (abfd)->core->command
10481 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10482
10483 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10484 note);
10485 }
10486
10487 static bfd_boolean
10488 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10489 {
10490 int lwp;
10491
10492 if (elfcore_netbsd_get_lwpid (note, &lwp))
10493 elf_tdata (abfd)->core->lwpid = lwp;
10494
10495 if (note->type == NT_NETBSDCORE_PROCINFO)
10496 {
10497 /* NetBSD-specific core "procinfo". Note that we expect to
10498 find this note before any of the others, which is fine,
10499 since the kernel writes this note out first when it
10500 creates a core file. */
10501
10502 return elfcore_grok_netbsd_procinfo (abfd, note);
10503 }
10504
10505 /* As of Jan 2002 there are no other machine-independent notes
10506 defined for NetBSD core files. If the note type is less
10507 than the start of the machine-dependent note types, we don't
10508 understand it. */
10509
10510 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10511 return TRUE;
10512
10513
10514 switch (bfd_get_arch (abfd))
10515 {
10516 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10517 PT_GETFPREGS == mach+2. */
10518
10519 case bfd_arch_alpha:
10520 case bfd_arch_sparc:
10521 switch (note->type)
10522 {
10523 case NT_NETBSDCORE_FIRSTMACH+0:
10524 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10525
10526 case NT_NETBSDCORE_FIRSTMACH+2:
10527 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10528
10529 default:
10530 return TRUE;
10531 }
10532
10533 /* On all other arch's, PT_GETREGS == mach+1 and
10534 PT_GETFPREGS == mach+3. */
10535
10536 default:
10537 switch (note->type)
10538 {
10539 case NT_NETBSDCORE_FIRSTMACH+1:
10540 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10541
10542 case NT_NETBSDCORE_FIRSTMACH+3:
10543 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10544
10545 default:
10546 return TRUE;
10547 }
10548 }
10549 /* NOTREACHED */
10550 }
10551
10552 static bfd_boolean
10553 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10554 {
10555 if (note->descsz <= 0x48 + 31)
10556 return FALSE;
10557
10558 /* Signal number at offset 0x08. */
10559 elf_tdata (abfd)->core->signal
10560 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10561
10562 /* Process ID at offset 0x20. */
10563 elf_tdata (abfd)->core->pid
10564 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10565
10566 /* Command name at 0x48 (max 32 bytes, including nul). */
10567 elf_tdata (abfd)->core->command
10568 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10569
10570 return TRUE;
10571 }
10572
10573 static bfd_boolean
10574 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10575 {
10576 if (note->type == NT_OPENBSD_PROCINFO)
10577 return elfcore_grok_openbsd_procinfo (abfd, note);
10578
10579 if (note->type == NT_OPENBSD_REGS)
10580 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10581
10582 if (note->type == NT_OPENBSD_FPREGS)
10583 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10584
10585 if (note->type == NT_OPENBSD_XFPREGS)
10586 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10587
10588 if (note->type == NT_OPENBSD_AUXV)
10589 {
10590 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10591 SEC_HAS_CONTENTS);
10592
10593 if (sect == NULL)
10594 return FALSE;
10595 sect->size = note->descsz;
10596 sect->filepos = note->descpos;
10597 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10598
10599 return TRUE;
10600 }
10601
10602 if (note->type == NT_OPENBSD_WCOOKIE)
10603 {
10604 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10605 SEC_HAS_CONTENTS);
10606
10607 if (sect == NULL)
10608 return FALSE;
10609 sect->size = note->descsz;
10610 sect->filepos = note->descpos;
10611 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10612
10613 return TRUE;
10614 }
10615
10616 return TRUE;
10617 }
10618
10619 static bfd_boolean
10620 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10621 {
10622 void *ddata = note->descdata;
10623 char buf[100];
10624 char *name;
10625 asection *sect;
10626 short sig;
10627 unsigned flags;
10628
10629 if (note->descsz < 16)
10630 return FALSE;
10631
10632 /* nto_procfs_status 'pid' field is at offset 0. */
10633 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10634
10635 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10636 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10637
10638 /* nto_procfs_status 'flags' field is at offset 8. */
10639 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10640
10641 /* nto_procfs_status 'what' field is at offset 14. */
10642 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10643 {
10644 elf_tdata (abfd)->core->signal = sig;
10645 elf_tdata (abfd)->core->lwpid = *tid;
10646 }
10647
10648 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10649 do not come from signals so we make sure we set the current
10650 thread just in case. */
10651 if (flags & 0x00000080)
10652 elf_tdata (abfd)->core->lwpid = *tid;
10653
10654 /* Make a ".qnx_core_status/%d" section. */
10655 sprintf (buf, ".qnx_core_status/%ld", *tid);
10656
10657 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10658 if (name == NULL)
10659 return FALSE;
10660 strcpy (name, buf);
10661
10662 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10663 if (sect == NULL)
10664 return FALSE;
10665
10666 sect->size = note->descsz;
10667 sect->filepos = note->descpos;
10668 sect->alignment_power = 2;
10669
10670 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10671 }
10672
10673 static bfd_boolean
10674 elfcore_grok_nto_regs (bfd *abfd,
10675 Elf_Internal_Note *note,
10676 long tid,
10677 char *base)
10678 {
10679 char buf[100];
10680 char *name;
10681 asection *sect;
10682
10683 /* Make a "(base)/%d" section. */
10684 sprintf (buf, "%s/%ld", base, tid);
10685
10686 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10687 if (name == NULL)
10688 return FALSE;
10689 strcpy (name, buf);
10690
10691 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10692 if (sect == NULL)
10693 return FALSE;
10694
10695 sect->size = note->descsz;
10696 sect->filepos = note->descpos;
10697 sect->alignment_power = 2;
10698
10699 /* This is the current thread. */
10700 if (elf_tdata (abfd)->core->lwpid == tid)
10701 return elfcore_maybe_make_sect (abfd, base, sect);
10702
10703 return TRUE;
10704 }
10705
10706 #define BFD_QNT_CORE_INFO 7
10707 #define BFD_QNT_CORE_STATUS 8
10708 #define BFD_QNT_CORE_GREG 9
10709 #define BFD_QNT_CORE_FPREG 10
10710
10711 static bfd_boolean
10712 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10713 {
10714 /* Every GREG section has a STATUS section before it. Store the
10715 tid from the previous call to pass down to the next gregs
10716 function. */
10717 static long tid = 1;
10718
10719 switch (note->type)
10720 {
10721 case BFD_QNT_CORE_INFO:
10722 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10723 case BFD_QNT_CORE_STATUS:
10724 return elfcore_grok_nto_status (abfd, note, &tid);
10725 case BFD_QNT_CORE_GREG:
10726 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10727 case BFD_QNT_CORE_FPREG:
10728 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10729 default:
10730 return TRUE;
10731 }
10732 }
10733
10734 static bfd_boolean
10735 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10736 {
10737 char *name;
10738 asection *sect;
10739 size_t len;
10740
10741 /* Use note name as section name. */
10742 len = note->namesz;
10743 name = (char *) bfd_alloc (abfd, len);
10744 if (name == NULL)
10745 return FALSE;
10746 memcpy (name, note->namedata, len);
10747 name[len - 1] = '\0';
10748
10749 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10750 if (sect == NULL)
10751 return FALSE;
10752
10753 sect->size = note->descsz;
10754 sect->filepos = note->descpos;
10755 sect->alignment_power = 1;
10756
10757 return TRUE;
10758 }
10759
10760 /* Function: elfcore_write_note
10761
10762 Inputs:
10763 buffer to hold note, and current size of buffer
10764 name of note
10765 type of note
10766 data for note
10767 size of data for note
10768
10769 Writes note to end of buffer. ELF64 notes are written exactly as
10770 for ELF32, despite the current (as of 2006) ELF gabi specifying
10771 that they ought to have 8-byte namesz and descsz field, and have
10772 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10773
10774 Return:
10775 Pointer to realloc'd buffer, *BUFSIZ updated. */
10776
10777 char *
10778 elfcore_write_note (bfd *abfd,
10779 char *buf,
10780 int *bufsiz,
10781 const char *name,
10782 int type,
10783 const void *input,
10784 int size)
10785 {
10786 Elf_External_Note *xnp;
10787 size_t namesz;
10788 size_t newspace;
10789 char *dest;
10790
10791 namesz = 0;
10792 if (name != NULL)
10793 namesz = strlen (name) + 1;
10794
10795 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10796
10797 buf = (char *) realloc (buf, *bufsiz + newspace);
10798 if (buf == NULL)
10799 return buf;
10800 dest = buf + *bufsiz;
10801 *bufsiz += newspace;
10802 xnp = (Elf_External_Note *) dest;
10803 H_PUT_32 (abfd, namesz, xnp->namesz);
10804 H_PUT_32 (abfd, size, xnp->descsz);
10805 H_PUT_32 (abfd, type, xnp->type);
10806 dest = xnp->name;
10807 if (name != NULL)
10808 {
10809 memcpy (dest, name, namesz);
10810 dest += namesz;
10811 while (namesz & 3)
10812 {
10813 *dest++ = '\0';
10814 ++namesz;
10815 }
10816 }
10817 memcpy (dest, input, size);
10818 dest += size;
10819 while (size & 3)
10820 {
10821 *dest++ = '\0';
10822 ++size;
10823 }
10824 return buf;
10825 }
10826
10827 /* gcc-8 warns (*) on all the strncpy calls in this function about
10828 possible string truncation. The "truncation" is not a bug. We
10829 have an external representation of structs with fields that are not
10830 necessarily NULL terminated and corresponding internal
10831 representation fields that are one larger so that they can always
10832 be NULL terminated.
10833 gcc versions between 4.2 and 4.6 do not allow pragma control of
10834 diagnostics inside functions, giving a hard error if you try to use
10835 the finer control available with later versions.
10836 gcc prior to 4.2 warns about diagnostic push and pop.
10837 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
10838 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
10839 (*) Depending on your system header files! */
10840 #if GCC_VERSION >= 8000
10841 # pragma GCC diagnostic push
10842 # pragma GCC diagnostic ignored "-Wstringop-truncation"
10843 #endif
10844 char *
10845 elfcore_write_prpsinfo (bfd *abfd,
10846 char *buf,
10847 int *bufsiz,
10848 const char *fname,
10849 const char *psargs)
10850 {
10851 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10852
10853 if (bed->elf_backend_write_core_note != NULL)
10854 {
10855 char *ret;
10856 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10857 NT_PRPSINFO, fname, psargs);
10858 if (ret != NULL)
10859 return ret;
10860 }
10861
10862 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10863 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10864 if (bed->s->elfclass == ELFCLASS32)
10865 {
10866 # if defined (HAVE_PSINFO32_T)
10867 psinfo32_t data;
10868 int note_type = NT_PSINFO;
10869 # else
10870 prpsinfo32_t data;
10871 int note_type = NT_PRPSINFO;
10872 # endif
10873
10874 memset (&data, 0, sizeof (data));
10875 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10876 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10877 return elfcore_write_note (abfd, buf, bufsiz,
10878 "CORE", note_type, &data, sizeof (data));
10879 }
10880 else
10881 # endif
10882 {
10883 # if defined (HAVE_PSINFO_T)
10884 psinfo_t data;
10885 int note_type = NT_PSINFO;
10886 # else
10887 prpsinfo_t data;
10888 int note_type = NT_PRPSINFO;
10889 # endif
10890
10891 memset (&data, 0, sizeof (data));
10892 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10893 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10894 return elfcore_write_note (abfd, buf, bufsiz,
10895 "CORE", note_type, &data, sizeof (data));
10896 }
10897 #endif /* PSINFO_T or PRPSINFO_T */
10898
10899 free (buf);
10900 return NULL;
10901 }
10902 #if GCC_VERSION >= 8000
10903 # pragma GCC diagnostic pop
10904 #endif
10905
10906 char *
10907 elfcore_write_linux_prpsinfo32
10908 (bfd *abfd, char *buf, int *bufsiz,
10909 const struct elf_internal_linux_prpsinfo *prpsinfo)
10910 {
10911 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10912 {
10913 struct elf_external_linux_prpsinfo32_ugid16 data;
10914
10915 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10916 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10917 &data, sizeof (data));
10918 }
10919 else
10920 {
10921 struct elf_external_linux_prpsinfo32_ugid32 data;
10922
10923 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10924 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10925 &data, sizeof (data));
10926 }
10927 }
10928
10929 char *
10930 elfcore_write_linux_prpsinfo64
10931 (bfd *abfd, char *buf, int *bufsiz,
10932 const struct elf_internal_linux_prpsinfo *prpsinfo)
10933 {
10934 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
10935 {
10936 struct elf_external_linux_prpsinfo64_ugid16 data;
10937
10938 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
10939 return elfcore_write_note (abfd, buf, bufsiz,
10940 "CORE", NT_PRPSINFO, &data, sizeof (data));
10941 }
10942 else
10943 {
10944 struct elf_external_linux_prpsinfo64_ugid32 data;
10945
10946 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
10947 return elfcore_write_note (abfd, buf, bufsiz,
10948 "CORE", NT_PRPSINFO, &data, sizeof (data));
10949 }
10950 }
10951
10952 char *
10953 elfcore_write_prstatus (bfd *abfd,
10954 char *buf,
10955 int *bufsiz,
10956 long pid,
10957 int cursig,
10958 const void *gregs)
10959 {
10960 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10961
10962 if (bed->elf_backend_write_core_note != NULL)
10963 {
10964 char *ret;
10965 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10966 NT_PRSTATUS,
10967 pid, cursig, gregs);
10968 if (ret != NULL)
10969 return ret;
10970 }
10971
10972 #if defined (HAVE_PRSTATUS_T)
10973 #if defined (HAVE_PRSTATUS32_T)
10974 if (bed->s->elfclass == ELFCLASS32)
10975 {
10976 prstatus32_t prstat;
10977
10978 memset (&prstat, 0, sizeof (prstat));
10979 prstat.pr_pid = pid;
10980 prstat.pr_cursig = cursig;
10981 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10982 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10983 NT_PRSTATUS, &prstat, sizeof (prstat));
10984 }
10985 else
10986 #endif
10987 {
10988 prstatus_t prstat;
10989
10990 memset (&prstat, 0, sizeof (prstat));
10991 prstat.pr_pid = pid;
10992 prstat.pr_cursig = cursig;
10993 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10994 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10995 NT_PRSTATUS, &prstat, sizeof (prstat));
10996 }
10997 #endif /* HAVE_PRSTATUS_T */
10998
10999 free (buf);
11000 return NULL;
11001 }
11002
11003 #if defined (HAVE_LWPSTATUS_T)
11004 char *
11005 elfcore_write_lwpstatus (bfd *abfd,
11006 char *buf,
11007 int *bufsiz,
11008 long pid,
11009 int cursig,
11010 const void *gregs)
11011 {
11012 lwpstatus_t lwpstat;
11013 const char *note_name = "CORE";
11014
11015 memset (&lwpstat, 0, sizeof (lwpstat));
11016 lwpstat.pr_lwpid = pid >> 16;
11017 lwpstat.pr_cursig = cursig;
11018 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11019 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11020 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11021 #if !defined(gregs)
11022 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11023 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11024 #else
11025 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11026 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11027 #endif
11028 #endif
11029 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11030 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11031 }
11032 #endif /* HAVE_LWPSTATUS_T */
11033
11034 #if defined (HAVE_PSTATUS_T)
11035 char *
11036 elfcore_write_pstatus (bfd *abfd,
11037 char *buf,
11038 int *bufsiz,
11039 long pid,
11040 int cursig ATTRIBUTE_UNUSED,
11041 const void *gregs ATTRIBUTE_UNUSED)
11042 {
11043 const char *note_name = "CORE";
11044 #if defined (HAVE_PSTATUS32_T)
11045 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11046
11047 if (bed->s->elfclass == ELFCLASS32)
11048 {
11049 pstatus32_t pstat;
11050
11051 memset (&pstat, 0, sizeof (pstat));
11052 pstat.pr_pid = pid & 0xffff;
11053 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11054 NT_PSTATUS, &pstat, sizeof (pstat));
11055 return buf;
11056 }
11057 else
11058 #endif
11059 {
11060 pstatus_t pstat;
11061
11062 memset (&pstat, 0, sizeof (pstat));
11063 pstat.pr_pid = pid & 0xffff;
11064 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11065 NT_PSTATUS, &pstat, sizeof (pstat));
11066 return buf;
11067 }
11068 }
11069 #endif /* HAVE_PSTATUS_T */
11070
11071 char *
11072 elfcore_write_prfpreg (bfd *abfd,
11073 char *buf,
11074 int *bufsiz,
11075 const void *fpregs,
11076 int size)
11077 {
11078 const char *note_name = "CORE";
11079 return elfcore_write_note (abfd, buf, bufsiz,
11080 note_name, NT_FPREGSET, fpregs, size);
11081 }
11082
11083 char *
11084 elfcore_write_prxfpreg (bfd *abfd,
11085 char *buf,
11086 int *bufsiz,
11087 const void *xfpregs,
11088 int size)
11089 {
11090 char *note_name = "LINUX";
11091 return elfcore_write_note (abfd, buf, bufsiz,
11092 note_name, NT_PRXFPREG, xfpregs, size);
11093 }
11094
11095 char *
11096 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11097 const void *xfpregs, int size)
11098 {
11099 char *note_name;
11100 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11101 note_name = "FreeBSD";
11102 else
11103 note_name = "LINUX";
11104 return elfcore_write_note (abfd, buf, bufsiz,
11105 note_name, NT_X86_XSTATE, xfpregs, size);
11106 }
11107
11108 char *
11109 elfcore_write_ppc_vmx (bfd *abfd,
11110 char *buf,
11111 int *bufsiz,
11112 const void *ppc_vmx,
11113 int size)
11114 {
11115 char *note_name = "LINUX";
11116 return elfcore_write_note (abfd, buf, bufsiz,
11117 note_name, NT_PPC_VMX, ppc_vmx, size);
11118 }
11119
11120 char *
11121 elfcore_write_ppc_vsx (bfd *abfd,
11122 char *buf,
11123 int *bufsiz,
11124 const void *ppc_vsx,
11125 int size)
11126 {
11127 char *note_name = "LINUX";
11128 return elfcore_write_note (abfd, buf, bufsiz,
11129 note_name, NT_PPC_VSX, ppc_vsx, size);
11130 }
11131
11132 char *
11133 elfcore_write_ppc_tar (bfd *abfd,
11134 char *buf,
11135 int *bufsiz,
11136 const void *ppc_tar,
11137 int size)
11138 {
11139 char *note_name = "LINUX";
11140 return elfcore_write_note (abfd, buf, bufsiz,
11141 note_name, NT_PPC_TAR, ppc_tar, size);
11142 }
11143
11144 char *
11145 elfcore_write_ppc_ppr (bfd *abfd,
11146 char *buf,
11147 int *bufsiz,
11148 const void *ppc_ppr,
11149 int size)
11150 {
11151 char *note_name = "LINUX";
11152 return elfcore_write_note (abfd, buf, bufsiz,
11153 note_name, NT_PPC_PPR, ppc_ppr, size);
11154 }
11155
11156 char *
11157 elfcore_write_ppc_dscr (bfd *abfd,
11158 char *buf,
11159 int *bufsiz,
11160 const void *ppc_dscr,
11161 int size)
11162 {
11163 char *note_name = "LINUX";
11164 return elfcore_write_note (abfd, buf, bufsiz,
11165 note_name, NT_PPC_DSCR, ppc_dscr, size);
11166 }
11167
11168 char *
11169 elfcore_write_ppc_ebb (bfd *abfd,
11170 char *buf,
11171 int *bufsiz,
11172 const void *ppc_ebb,
11173 int size)
11174 {
11175 char *note_name = "LINUX";
11176 return elfcore_write_note (abfd, buf, bufsiz,
11177 note_name, NT_PPC_EBB, ppc_ebb, size);
11178 }
11179
11180 char *
11181 elfcore_write_ppc_pmu (bfd *abfd,
11182 char *buf,
11183 int *bufsiz,
11184 const void *ppc_pmu,
11185 int size)
11186 {
11187 char *note_name = "LINUX";
11188 return elfcore_write_note (abfd, buf, bufsiz,
11189 note_name, NT_PPC_PMU, ppc_pmu, size);
11190 }
11191
11192 char *
11193 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11194 char *buf,
11195 int *bufsiz,
11196 const void *ppc_tm_cgpr,
11197 int size)
11198 {
11199 char *note_name = "LINUX";
11200 return elfcore_write_note (abfd, buf, bufsiz,
11201 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11202 }
11203
11204 char *
11205 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11206 char *buf,
11207 int *bufsiz,
11208 const void *ppc_tm_cfpr,
11209 int size)
11210 {
11211 char *note_name = "LINUX";
11212 return elfcore_write_note (abfd, buf, bufsiz,
11213 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11214 }
11215
11216 char *
11217 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11218 char *buf,
11219 int *bufsiz,
11220 const void *ppc_tm_cvmx,
11221 int size)
11222 {
11223 char *note_name = "LINUX";
11224 return elfcore_write_note (abfd, buf, bufsiz,
11225 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11226 }
11227
11228 char *
11229 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11230 char *buf,
11231 int *bufsiz,
11232 const void *ppc_tm_cvsx,
11233 int size)
11234 {
11235 char *note_name = "LINUX";
11236 return elfcore_write_note (abfd, buf, bufsiz,
11237 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11238 }
11239
11240 char *
11241 elfcore_write_ppc_tm_spr (bfd *abfd,
11242 char *buf,
11243 int *bufsiz,
11244 const void *ppc_tm_spr,
11245 int size)
11246 {
11247 char *note_name = "LINUX";
11248 return elfcore_write_note (abfd, buf, bufsiz,
11249 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11250 }
11251
11252 char *
11253 elfcore_write_ppc_tm_ctar (bfd *abfd,
11254 char *buf,
11255 int *bufsiz,
11256 const void *ppc_tm_ctar,
11257 int size)
11258 {
11259 char *note_name = "LINUX";
11260 return elfcore_write_note (abfd, buf, bufsiz,
11261 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11262 }
11263
11264 char *
11265 elfcore_write_ppc_tm_cppr (bfd *abfd,
11266 char *buf,
11267 int *bufsiz,
11268 const void *ppc_tm_cppr,
11269 int size)
11270 {
11271 char *note_name = "LINUX";
11272 return elfcore_write_note (abfd, buf, bufsiz,
11273 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11274 }
11275
11276 char *
11277 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11278 char *buf,
11279 int *bufsiz,
11280 const void *ppc_tm_cdscr,
11281 int size)
11282 {
11283 char *note_name = "LINUX";
11284 return elfcore_write_note (abfd, buf, bufsiz,
11285 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11286 }
11287
11288 static char *
11289 elfcore_write_s390_high_gprs (bfd *abfd,
11290 char *buf,
11291 int *bufsiz,
11292 const void *s390_high_gprs,
11293 int size)
11294 {
11295 char *note_name = "LINUX";
11296 return elfcore_write_note (abfd, buf, bufsiz,
11297 note_name, NT_S390_HIGH_GPRS,
11298 s390_high_gprs, size);
11299 }
11300
11301 char *
11302 elfcore_write_s390_timer (bfd *abfd,
11303 char *buf,
11304 int *bufsiz,
11305 const void *s390_timer,
11306 int size)
11307 {
11308 char *note_name = "LINUX";
11309 return elfcore_write_note (abfd, buf, bufsiz,
11310 note_name, NT_S390_TIMER, s390_timer, size);
11311 }
11312
11313 char *
11314 elfcore_write_s390_todcmp (bfd *abfd,
11315 char *buf,
11316 int *bufsiz,
11317 const void *s390_todcmp,
11318 int size)
11319 {
11320 char *note_name = "LINUX";
11321 return elfcore_write_note (abfd, buf, bufsiz,
11322 note_name, NT_S390_TODCMP, s390_todcmp, size);
11323 }
11324
11325 char *
11326 elfcore_write_s390_todpreg (bfd *abfd,
11327 char *buf,
11328 int *bufsiz,
11329 const void *s390_todpreg,
11330 int size)
11331 {
11332 char *note_name = "LINUX";
11333 return elfcore_write_note (abfd, buf, bufsiz,
11334 note_name, NT_S390_TODPREG, s390_todpreg, size);
11335 }
11336
11337 char *
11338 elfcore_write_s390_ctrs (bfd *abfd,
11339 char *buf,
11340 int *bufsiz,
11341 const void *s390_ctrs,
11342 int size)
11343 {
11344 char *note_name = "LINUX";
11345 return elfcore_write_note (abfd, buf, bufsiz,
11346 note_name, NT_S390_CTRS, s390_ctrs, size);
11347 }
11348
11349 char *
11350 elfcore_write_s390_prefix (bfd *abfd,
11351 char *buf,
11352 int *bufsiz,
11353 const void *s390_prefix,
11354 int size)
11355 {
11356 char *note_name = "LINUX";
11357 return elfcore_write_note (abfd, buf, bufsiz,
11358 note_name, NT_S390_PREFIX, s390_prefix, size);
11359 }
11360
11361 char *
11362 elfcore_write_s390_last_break (bfd *abfd,
11363 char *buf,
11364 int *bufsiz,
11365 const void *s390_last_break,
11366 int size)
11367 {
11368 char *note_name = "LINUX";
11369 return elfcore_write_note (abfd, buf, bufsiz,
11370 note_name, NT_S390_LAST_BREAK,
11371 s390_last_break, size);
11372 }
11373
11374 char *
11375 elfcore_write_s390_system_call (bfd *abfd,
11376 char *buf,
11377 int *bufsiz,
11378 const void *s390_system_call,
11379 int size)
11380 {
11381 char *note_name = "LINUX";
11382 return elfcore_write_note (abfd, buf, bufsiz,
11383 note_name, NT_S390_SYSTEM_CALL,
11384 s390_system_call, size);
11385 }
11386
11387 char *
11388 elfcore_write_s390_tdb (bfd *abfd,
11389 char *buf,
11390 int *bufsiz,
11391 const void *s390_tdb,
11392 int size)
11393 {
11394 char *note_name = "LINUX";
11395 return elfcore_write_note (abfd, buf, bufsiz,
11396 note_name, NT_S390_TDB, s390_tdb, size);
11397 }
11398
11399 char *
11400 elfcore_write_s390_vxrs_low (bfd *abfd,
11401 char *buf,
11402 int *bufsiz,
11403 const void *s390_vxrs_low,
11404 int size)
11405 {
11406 char *note_name = "LINUX";
11407 return elfcore_write_note (abfd, buf, bufsiz,
11408 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11409 }
11410
11411 char *
11412 elfcore_write_s390_vxrs_high (bfd *abfd,
11413 char *buf,
11414 int *bufsiz,
11415 const void *s390_vxrs_high,
11416 int size)
11417 {
11418 char *note_name = "LINUX";
11419 return elfcore_write_note (abfd, buf, bufsiz,
11420 note_name, NT_S390_VXRS_HIGH,
11421 s390_vxrs_high, size);
11422 }
11423
11424 char *
11425 elfcore_write_s390_gs_cb (bfd *abfd,
11426 char *buf,
11427 int *bufsiz,
11428 const void *s390_gs_cb,
11429 int size)
11430 {
11431 char *note_name = "LINUX";
11432 return elfcore_write_note (abfd, buf, bufsiz,
11433 note_name, NT_S390_GS_CB,
11434 s390_gs_cb, size);
11435 }
11436
11437 char *
11438 elfcore_write_s390_gs_bc (bfd *abfd,
11439 char *buf,
11440 int *bufsiz,
11441 const void *s390_gs_bc,
11442 int size)
11443 {
11444 char *note_name = "LINUX";
11445 return elfcore_write_note (abfd, buf, bufsiz,
11446 note_name, NT_S390_GS_BC,
11447 s390_gs_bc, size);
11448 }
11449
11450 char *
11451 elfcore_write_arm_vfp (bfd *abfd,
11452 char *buf,
11453 int *bufsiz,
11454 const void *arm_vfp,
11455 int size)
11456 {
11457 char *note_name = "LINUX";
11458 return elfcore_write_note (abfd, buf, bufsiz,
11459 note_name, NT_ARM_VFP, arm_vfp, size);
11460 }
11461
11462 char *
11463 elfcore_write_aarch_tls (bfd *abfd,
11464 char *buf,
11465 int *bufsiz,
11466 const void *aarch_tls,
11467 int size)
11468 {
11469 char *note_name = "LINUX";
11470 return elfcore_write_note (abfd, buf, bufsiz,
11471 note_name, NT_ARM_TLS, aarch_tls, size);
11472 }
11473
11474 char *
11475 elfcore_write_aarch_hw_break (bfd *abfd,
11476 char *buf,
11477 int *bufsiz,
11478 const void *aarch_hw_break,
11479 int size)
11480 {
11481 char *note_name = "LINUX";
11482 return elfcore_write_note (abfd, buf, bufsiz,
11483 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11484 }
11485
11486 char *
11487 elfcore_write_aarch_hw_watch (bfd *abfd,
11488 char *buf,
11489 int *bufsiz,
11490 const void *aarch_hw_watch,
11491 int size)
11492 {
11493 char *note_name = "LINUX";
11494 return elfcore_write_note (abfd, buf, bufsiz,
11495 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11496 }
11497
11498 char *
11499 elfcore_write_aarch_sve (bfd *abfd,
11500 char *buf,
11501 int *bufsiz,
11502 const void *aarch_sve,
11503 int size)
11504 {
11505 char *note_name = "LINUX";
11506 return elfcore_write_note (abfd, buf, bufsiz,
11507 note_name, NT_ARM_SVE, aarch_sve, size);
11508 }
11509
11510 char *
11511 elfcore_write_aarch_pauth (bfd *abfd,
11512 char *buf,
11513 int *bufsiz,
11514 const void *aarch_pauth,
11515 int size)
11516 {
11517 char *note_name = "LINUX";
11518 return elfcore_write_note (abfd, buf, bufsiz,
11519 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11520 }
11521
11522 char *
11523 elfcore_write_register_note (bfd *abfd,
11524 char *buf,
11525 int *bufsiz,
11526 const char *section,
11527 const void *data,
11528 int size)
11529 {
11530 if (strcmp (section, ".reg2") == 0)
11531 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11532 if (strcmp (section, ".reg-xfp") == 0)
11533 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11534 if (strcmp (section, ".reg-xstate") == 0)
11535 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11536 if (strcmp (section, ".reg-ppc-vmx") == 0)
11537 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11538 if (strcmp (section, ".reg-ppc-vsx") == 0)
11539 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11540 if (strcmp (section, ".reg-ppc-tar") == 0)
11541 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11542 if (strcmp (section, ".reg-ppc-ppr") == 0)
11543 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11544 if (strcmp (section, ".reg-ppc-dscr") == 0)
11545 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11546 if (strcmp (section, ".reg-ppc-ebb") == 0)
11547 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11548 if (strcmp (section, ".reg-ppc-pmu") == 0)
11549 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11550 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11551 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11552 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11553 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11554 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11555 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11556 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11557 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11558 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11559 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11560 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11561 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11562 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11563 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11564 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11565 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11566 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11567 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11568 if (strcmp (section, ".reg-s390-timer") == 0)
11569 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11570 if (strcmp (section, ".reg-s390-todcmp") == 0)
11571 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11572 if (strcmp (section, ".reg-s390-todpreg") == 0)
11573 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11574 if (strcmp (section, ".reg-s390-ctrs") == 0)
11575 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11576 if (strcmp (section, ".reg-s390-prefix") == 0)
11577 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11578 if (strcmp (section, ".reg-s390-last-break") == 0)
11579 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11580 if (strcmp (section, ".reg-s390-system-call") == 0)
11581 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11582 if (strcmp (section, ".reg-s390-tdb") == 0)
11583 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11584 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11585 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11586 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11587 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11588 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11589 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11590 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11591 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11592 if (strcmp (section, ".reg-arm-vfp") == 0)
11593 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11594 if (strcmp (section, ".reg-aarch-tls") == 0)
11595 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11596 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11597 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11598 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11599 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11600 if (strcmp (section, ".reg-aarch-sve") == 0)
11601 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11602 if (strcmp (section, ".reg-aarch-pauth") == 0)
11603 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11604 return NULL;
11605 }
11606
11607 static bfd_boolean
11608 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11609 size_t align)
11610 {
11611 char *p;
11612
11613 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11614 gABI specifies that PT_NOTE alignment should be aligned to 4
11615 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11616 align is less than 4, we use 4 byte alignment. */
11617 if (align < 4)
11618 align = 4;
11619 if (align != 4 && align != 8)
11620 return FALSE;
11621
11622 p = buf;
11623 while (p < buf + size)
11624 {
11625 Elf_External_Note *xnp = (Elf_External_Note *) p;
11626 Elf_Internal_Note in;
11627
11628 if (offsetof (Elf_External_Note, name) > buf - p + size)
11629 return FALSE;
11630
11631 in.type = H_GET_32 (abfd, xnp->type);
11632
11633 in.namesz = H_GET_32 (abfd, xnp->namesz);
11634 in.namedata = xnp->name;
11635 if (in.namesz > buf - in.namedata + size)
11636 return FALSE;
11637
11638 in.descsz = H_GET_32 (abfd, xnp->descsz);
11639 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11640 in.descpos = offset + (in.descdata - buf);
11641 if (in.descsz != 0
11642 && (in.descdata >= buf + size
11643 || in.descsz > buf - in.descdata + size))
11644 return FALSE;
11645
11646 switch (bfd_get_format (abfd))
11647 {
11648 default:
11649 return TRUE;
11650
11651 case bfd_core:
11652 {
11653 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11654 struct
11655 {
11656 const char * string;
11657 size_t len;
11658 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11659 }
11660 grokers[] =
11661 {
11662 GROKER_ELEMENT ("", elfcore_grok_note),
11663 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11664 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11665 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11666 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11667 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11668 };
11669 #undef GROKER_ELEMENT
11670 int i;
11671
11672 for (i = ARRAY_SIZE (grokers); i--;)
11673 {
11674 if (in.namesz >= grokers[i].len
11675 && strncmp (in.namedata, grokers[i].string,
11676 grokers[i].len) == 0)
11677 {
11678 if (! grokers[i].func (abfd, & in))
11679 return FALSE;
11680 break;
11681 }
11682 }
11683 break;
11684 }
11685
11686 case bfd_object:
11687 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11688 {
11689 if (! elfobj_grok_gnu_note (abfd, &in))
11690 return FALSE;
11691 }
11692 else if (in.namesz == sizeof "stapsdt"
11693 && strcmp (in.namedata, "stapsdt") == 0)
11694 {
11695 if (! elfobj_grok_stapsdt_note (abfd, &in))
11696 return FALSE;
11697 }
11698 break;
11699 }
11700
11701 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11702 }
11703
11704 return TRUE;
11705 }
11706
11707 static bfd_boolean
11708 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11709 size_t align)
11710 {
11711 char *buf;
11712
11713 if (size == 0 || (size + 1) == 0)
11714 return TRUE;
11715
11716 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11717 return FALSE;
11718
11719 buf = (char *) bfd_malloc (size + 1);
11720 if (buf == NULL)
11721 return FALSE;
11722
11723 /* PR 17512: file: ec08f814
11724 0-termintate the buffer so that string searches will not overflow. */
11725 buf[size] = 0;
11726
11727 if (bfd_bread (buf, size, abfd) != size
11728 || !elf_parse_notes (abfd, buf, size, offset, align))
11729 {
11730 free (buf);
11731 return FALSE;
11732 }
11733
11734 free (buf);
11735 return TRUE;
11736 }
11737 \f
11738 /* Providing external access to the ELF program header table. */
11739
11740 /* Return an upper bound on the number of bytes required to store a
11741 copy of ABFD's program header table entries. Return -1 if an error
11742 occurs; bfd_get_error will return an appropriate code. */
11743
11744 long
11745 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11746 {
11747 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11748 {
11749 bfd_set_error (bfd_error_wrong_format);
11750 return -1;
11751 }
11752
11753 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11754 }
11755
11756 /* Copy ABFD's program header table entries to *PHDRS. The entries
11757 will be stored as an array of Elf_Internal_Phdr structures, as
11758 defined in include/elf/internal.h. To find out how large the
11759 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11760
11761 Return the number of program header table entries read, or -1 if an
11762 error occurs; bfd_get_error will return an appropriate code. */
11763
11764 int
11765 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11766 {
11767 int num_phdrs;
11768
11769 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11770 {
11771 bfd_set_error (bfd_error_wrong_format);
11772 return -1;
11773 }
11774
11775 num_phdrs = elf_elfheader (abfd)->e_phnum;
11776 if (num_phdrs != 0)
11777 memcpy (phdrs, elf_tdata (abfd)->phdr,
11778 num_phdrs * sizeof (Elf_Internal_Phdr));
11779
11780 return num_phdrs;
11781 }
11782
11783 enum elf_reloc_type_class
11784 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11785 const asection *rel_sec ATTRIBUTE_UNUSED,
11786 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11787 {
11788 return reloc_class_normal;
11789 }
11790
11791 /* For RELA architectures, return the relocation value for a
11792 relocation against a local symbol. */
11793
11794 bfd_vma
11795 _bfd_elf_rela_local_sym (bfd *abfd,
11796 Elf_Internal_Sym *sym,
11797 asection **psec,
11798 Elf_Internal_Rela *rel)
11799 {
11800 asection *sec = *psec;
11801 bfd_vma relocation;
11802
11803 relocation = (sec->output_section->vma
11804 + sec->output_offset
11805 + sym->st_value);
11806 if ((sec->flags & SEC_MERGE)
11807 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11808 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11809 {
11810 rel->r_addend =
11811 _bfd_merged_section_offset (abfd, psec,
11812 elf_section_data (sec)->sec_info,
11813 sym->st_value + rel->r_addend);
11814 if (sec != *psec)
11815 {
11816 /* If we have changed the section, and our original section is
11817 marked with SEC_EXCLUDE, it means that the original
11818 SEC_MERGE section has been completely subsumed in some
11819 other SEC_MERGE section. In this case, we need to leave
11820 some info around for --emit-relocs. */
11821 if ((sec->flags & SEC_EXCLUDE) != 0)
11822 sec->kept_section = *psec;
11823 sec = *psec;
11824 }
11825 rel->r_addend -= relocation;
11826 rel->r_addend += sec->output_section->vma + sec->output_offset;
11827 }
11828 return relocation;
11829 }
11830
11831 bfd_vma
11832 _bfd_elf_rel_local_sym (bfd *abfd,
11833 Elf_Internal_Sym *sym,
11834 asection **psec,
11835 bfd_vma addend)
11836 {
11837 asection *sec = *psec;
11838
11839 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11840 return sym->st_value + addend;
11841
11842 return _bfd_merged_section_offset (abfd, psec,
11843 elf_section_data (sec)->sec_info,
11844 sym->st_value + addend);
11845 }
11846
11847 /* Adjust an address within a section. Given OFFSET within SEC, return
11848 the new offset within the section, based upon changes made to the
11849 section. Returns -1 if the offset is now invalid.
11850 The offset (in abnd out) is in target sized bytes, however big a
11851 byte may be. */
11852
11853 bfd_vma
11854 _bfd_elf_section_offset (bfd *abfd,
11855 struct bfd_link_info *info,
11856 asection *sec,
11857 bfd_vma offset)
11858 {
11859 switch (sec->sec_info_type)
11860 {
11861 case SEC_INFO_TYPE_STABS:
11862 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11863 offset);
11864 case SEC_INFO_TYPE_EH_FRAME:
11865 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11866
11867 default:
11868 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11869 {
11870 /* Reverse the offset. */
11871 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11872 bfd_size_type address_size = bed->s->arch_size / 8;
11873
11874 /* address_size and sec->size are in octets. Convert
11875 to bytes before subtracting the original offset. */
11876 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11877 }
11878 return offset;
11879 }
11880 }
11881 \f
11882 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11883 reconstruct an ELF file by reading the segments out of remote memory
11884 based on the ELF file header at EHDR_VMA and the ELF program headers it
11885 points to. If not null, *LOADBASEP is filled in with the difference
11886 between the VMAs from which the segments were read, and the VMAs the
11887 file headers (and hence BFD's idea of each section's VMA) put them at.
11888
11889 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11890 remote memory at target address VMA into the local buffer at MYADDR; it
11891 should return zero on success or an `errno' code on failure. TEMPL must
11892 be a BFD for an ELF target with the word size and byte order found in
11893 the remote memory. */
11894
11895 bfd *
11896 bfd_elf_bfd_from_remote_memory
11897 (bfd *templ,
11898 bfd_vma ehdr_vma,
11899 bfd_size_type size,
11900 bfd_vma *loadbasep,
11901 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11902 {
11903 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11904 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11905 }
11906 \f
11907 long
11908 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11909 long symcount ATTRIBUTE_UNUSED,
11910 asymbol **syms ATTRIBUTE_UNUSED,
11911 long dynsymcount,
11912 asymbol **dynsyms,
11913 asymbol **ret)
11914 {
11915 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11916 asection *relplt;
11917 asymbol *s;
11918 const char *relplt_name;
11919 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11920 arelent *p;
11921 long count, i, n;
11922 size_t size;
11923 Elf_Internal_Shdr *hdr;
11924 char *names;
11925 asection *plt;
11926
11927 *ret = NULL;
11928
11929 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11930 return 0;
11931
11932 if (dynsymcount <= 0)
11933 return 0;
11934
11935 if (!bed->plt_sym_val)
11936 return 0;
11937
11938 relplt_name = bed->relplt_name;
11939 if (relplt_name == NULL)
11940 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11941 relplt = bfd_get_section_by_name (abfd, relplt_name);
11942 if (relplt == NULL)
11943 return 0;
11944
11945 hdr = &elf_section_data (relplt)->this_hdr;
11946 if (hdr->sh_link != elf_dynsymtab (abfd)
11947 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11948 return 0;
11949
11950 plt = bfd_get_section_by_name (abfd, ".plt");
11951 if (plt == NULL)
11952 return 0;
11953
11954 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11955 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11956 return -1;
11957
11958 count = relplt->size / hdr->sh_entsize;
11959 size = count * sizeof (asymbol);
11960 p = relplt->relocation;
11961 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11962 {
11963 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11964 if (p->addend != 0)
11965 {
11966 #ifdef BFD64
11967 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11968 #else
11969 size += sizeof ("+0x") - 1 + 8;
11970 #endif
11971 }
11972 }
11973
11974 s = *ret = (asymbol *) bfd_malloc (size);
11975 if (s == NULL)
11976 return -1;
11977
11978 names = (char *) (s + count);
11979 p = relplt->relocation;
11980 n = 0;
11981 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11982 {
11983 size_t len;
11984 bfd_vma addr;
11985
11986 addr = bed->plt_sym_val (i, plt, p);
11987 if (addr == (bfd_vma) -1)
11988 continue;
11989
11990 *s = **p->sym_ptr_ptr;
11991 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11992 we are defining a symbol, ensure one of them is set. */
11993 if ((s->flags & BSF_LOCAL) == 0)
11994 s->flags |= BSF_GLOBAL;
11995 s->flags |= BSF_SYNTHETIC;
11996 s->section = plt;
11997 s->value = addr - plt->vma;
11998 s->name = names;
11999 s->udata.p = NULL;
12000 len = strlen ((*p->sym_ptr_ptr)->name);
12001 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12002 names += len;
12003 if (p->addend != 0)
12004 {
12005 char buf[30], *a;
12006
12007 memcpy (names, "+0x", sizeof ("+0x") - 1);
12008 names += sizeof ("+0x") - 1;
12009 bfd_sprintf_vma (abfd, buf, p->addend);
12010 for (a = buf; *a == '0'; ++a)
12011 ;
12012 len = strlen (a);
12013 memcpy (names, a, len);
12014 names += len;
12015 }
12016 memcpy (names, "@plt", sizeof ("@plt"));
12017 names += sizeof ("@plt");
12018 ++s, ++n;
12019 }
12020
12021 return n;
12022 }
12023
12024 /* It is only used by x86-64 so far.
12025 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12026 but current usage would allow all of _bfd_std_section to be zero. */
12027 static const asymbol lcomm_sym
12028 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12029 asection _bfd_elf_large_com_section
12030 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12031 "LARGE_COMMON", 0, SEC_IS_COMMON);
12032
12033 void
12034 _bfd_elf_post_process_headers (bfd * abfd,
12035 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
12036 {
12037 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
12038
12039 i_ehdrp = elf_elfheader (abfd);
12040
12041 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12042
12043 /* To make things simpler for the loader on Linux systems we set the
12044 osabi field to ELFOSABI_GNU if the binary contains symbols of
12045 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
12046 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
12047 && elf_tdata (abfd)->has_gnu_symbols)
12048 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12049 }
12050
12051
12052 /* Return TRUE for ELF symbol types that represent functions.
12053 This is the default version of this function, which is sufficient for
12054 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12055
12056 bfd_boolean
12057 _bfd_elf_is_function_type (unsigned int type)
12058 {
12059 return (type == STT_FUNC
12060 || type == STT_GNU_IFUNC);
12061 }
12062
12063 /* If the ELF symbol SYM might be a function in SEC, return the
12064 function size and set *CODE_OFF to the function's entry point,
12065 otherwise return zero. */
12066
12067 bfd_size_type
12068 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12069 bfd_vma *code_off)
12070 {
12071 bfd_size_type size;
12072
12073 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12074 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12075 || sym->section != sec)
12076 return 0;
12077
12078 *code_off = sym->value;
12079 size = 0;
12080 if (!(sym->flags & BSF_SYNTHETIC))
12081 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12082 if (size == 0)
12083 size = 1;
12084 return size;
12085 }
This page took 0.311082 seconds and 4 git commands to generate.