fe43c9ffe726328b85ab9e87434260b8ecf2127d
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
56 size_t align) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset, size_t align);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 if (abfd->direction != read_direction)
248 {
249 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
250 if (o == NULL)
251 return FALSE;
252 elf_tdata (abfd)->o = o;
253 elf_program_header_size (abfd) = (bfd_size_type) -1;
254 }
255 return TRUE;
256 }
257
258
259 bfd_boolean
260 bfd_elf_make_object (bfd *abfd)
261 {
262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
263 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
264 bed->target_id);
265 }
266
267 bfd_boolean
268 bfd_elf_mkcorefile (bfd *abfd)
269 {
270 /* I think this can be done just like an object file. */
271 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
272 return FALSE;
273 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
274 return elf_tdata (abfd)->core != NULL;
275 }
276
277 static char *
278 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
279 {
280 Elf_Internal_Shdr **i_shdrp;
281 bfd_byte *shstrtab = NULL;
282 file_ptr offset;
283 bfd_size_type shstrtabsize;
284
285 i_shdrp = elf_elfsections (abfd);
286 if (i_shdrp == 0
287 || shindex >= elf_numsections (abfd)
288 || i_shdrp[shindex] == 0)
289 return NULL;
290
291 shstrtab = i_shdrp[shindex]->contents;
292 if (shstrtab == NULL)
293 {
294 /* No cached one, attempt to read, and cache what we read. */
295 offset = i_shdrp[shindex]->sh_offset;
296 shstrtabsize = i_shdrp[shindex]->sh_size;
297
298 /* Allocate and clear an extra byte at the end, to prevent crashes
299 in case the string table is not terminated. */
300 if (shstrtabsize + 1 <= 1
301 || shstrtabsize > bfd_get_file_size (abfd)
302 || bfd_seek (abfd, offset, SEEK_SET) != 0
303 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
304 shstrtab = NULL;
305 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
306 {
307 if (bfd_get_error () != bfd_error_system_call)
308 bfd_set_error (bfd_error_file_truncated);
309 bfd_release (abfd, shstrtab);
310 shstrtab = NULL;
311 /* Once we've failed to read it, make sure we don't keep
312 trying. Otherwise, we'll keep allocating space for
313 the string table over and over. */
314 i_shdrp[shindex]->sh_size = 0;
315 }
316 else
317 shstrtab[shstrtabsize] = '\0';
318 i_shdrp[shindex]->contents = shstrtab;
319 }
320 return (char *) shstrtab;
321 }
322
323 char *
324 bfd_elf_string_from_elf_section (bfd *abfd,
325 unsigned int shindex,
326 unsigned int strindex)
327 {
328 Elf_Internal_Shdr *hdr;
329
330 if (strindex == 0)
331 return "";
332
333 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
334 return NULL;
335
336 hdr = elf_elfsections (abfd)[shindex];
337
338 if (hdr->contents == NULL)
339 {
340 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
341 {
342 /* PR 17512: file: f057ec89. */
343 /* xgettext:c-format */
344 _bfd_error_handler (_("%pB: attempt to load strings from"
345 " a non-string section (number %d)"),
346 abfd, shindex);
347 return NULL;
348 }
349
350 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
351 return NULL;
352 }
353
354 if (strindex >= hdr->sh_size)
355 {
356 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
357 _bfd_error_handler
358 /* xgettext:c-format */
359 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
360 abfd, strindex, (uint64_t) hdr->sh_size,
361 (shindex == shstrndx && strindex == hdr->sh_name
362 ? ".shstrtab"
363 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
364 return NULL;
365 }
366
367 return ((char *) hdr->contents) + strindex;
368 }
369
370 /* Read and convert symbols to internal format.
371 SYMCOUNT specifies the number of symbols to read, starting from
372 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
373 are non-NULL, they are used to store the internal symbols, external
374 symbols, and symbol section index extensions, respectively.
375 Returns a pointer to the internal symbol buffer (malloced if necessary)
376 or NULL if there were no symbols or some kind of problem. */
377
378 Elf_Internal_Sym *
379 bfd_elf_get_elf_syms (bfd *ibfd,
380 Elf_Internal_Shdr *symtab_hdr,
381 size_t symcount,
382 size_t symoffset,
383 Elf_Internal_Sym *intsym_buf,
384 void *extsym_buf,
385 Elf_External_Sym_Shndx *extshndx_buf)
386 {
387 Elf_Internal_Shdr *shndx_hdr;
388 void *alloc_ext;
389 const bfd_byte *esym;
390 Elf_External_Sym_Shndx *alloc_extshndx;
391 Elf_External_Sym_Shndx *shndx;
392 Elf_Internal_Sym *alloc_intsym;
393 Elf_Internal_Sym *isym;
394 Elf_Internal_Sym *isymend;
395 const struct elf_backend_data *bed;
396 size_t extsym_size;
397 bfd_size_type amt;
398 file_ptr pos;
399
400 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
401 abort ();
402
403 if (symcount == 0)
404 return intsym_buf;
405
406 /* Normal syms might have section extension entries. */
407 shndx_hdr = NULL;
408 if (elf_symtab_shndx_list (ibfd) != NULL)
409 {
410 elf_section_list * entry;
411 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
412
413 /* Find an index section that is linked to this symtab section. */
414 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
415 {
416 /* PR 20063. */
417 if (entry->hdr.sh_link >= elf_numsections (ibfd))
418 continue;
419
420 if (sections[entry->hdr.sh_link] == symtab_hdr)
421 {
422 shndx_hdr = & entry->hdr;
423 break;
424 };
425 }
426
427 if (shndx_hdr == NULL)
428 {
429 if (symtab_hdr == & elf_symtab_hdr (ibfd))
430 /* Not really accurate, but this was how the old code used to work. */
431 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
432 /* Otherwise we do nothing. The assumption is that
433 the index table will not be needed. */
434 }
435 }
436
437 /* Read the symbols. */
438 alloc_ext = NULL;
439 alloc_extshndx = NULL;
440 alloc_intsym = NULL;
441 bed = get_elf_backend_data (ibfd);
442 extsym_size = bed->s->sizeof_sym;
443 amt = (bfd_size_type) symcount * extsym_size;
444 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
445 if (extsym_buf == NULL)
446 {
447 alloc_ext = bfd_malloc2 (symcount, extsym_size);
448 extsym_buf = alloc_ext;
449 }
450 if (extsym_buf == NULL
451 || bfd_seek (ibfd, pos, SEEK_SET) != 0
452 || bfd_bread (extsym_buf, amt, ibfd) != amt)
453 {
454 intsym_buf = NULL;
455 goto out;
456 }
457
458 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
459 extshndx_buf = NULL;
460 else
461 {
462 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
463 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
464 if (extshndx_buf == NULL)
465 {
466 alloc_extshndx = (Elf_External_Sym_Shndx *)
467 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
468 extshndx_buf = alloc_extshndx;
469 }
470 if (extshndx_buf == NULL
471 || bfd_seek (ibfd, pos, SEEK_SET) != 0
472 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
473 {
474 intsym_buf = NULL;
475 goto out;
476 }
477 }
478
479 if (intsym_buf == NULL)
480 {
481 alloc_intsym = (Elf_Internal_Sym *)
482 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
483 intsym_buf = alloc_intsym;
484 if (intsym_buf == NULL)
485 goto out;
486 }
487
488 /* Convert the symbols to internal form. */
489 isymend = intsym_buf + symcount;
490 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
491 shndx = extshndx_buf;
492 isym < isymend;
493 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
494 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
495 {
496 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
497 /* xgettext:c-format */
498 _bfd_error_handler (_("%pB symbol number %lu references"
499 " nonexistent SHT_SYMTAB_SHNDX section"),
500 ibfd, (unsigned long) symoffset);
501 if (alloc_intsym != NULL)
502 free (alloc_intsym);
503 intsym_buf = NULL;
504 goto out;
505 }
506
507 out:
508 if (alloc_ext != NULL)
509 free (alloc_ext);
510 if (alloc_extshndx != NULL)
511 free (alloc_extshndx);
512
513 return intsym_buf;
514 }
515
516 /* Look up a symbol name. */
517 const char *
518 bfd_elf_sym_name (bfd *abfd,
519 Elf_Internal_Shdr *symtab_hdr,
520 Elf_Internal_Sym *isym,
521 asection *sym_sec)
522 {
523 const char *name;
524 unsigned int iname = isym->st_name;
525 unsigned int shindex = symtab_hdr->sh_link;
526
527 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
528 /* Check for a bogus st_shndx to avoid crashing. */
529 && isym->st_shndx < elf_numsections (abfd))
530 {
531 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
532 shindex = elf_elfheader (abfd)->e_shstrndx;
533 }
534
535 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
536 if (name == NULL)
537 name = "(null)";
538 else if (sym_sec && *name == '\0')
539 name = bfd_section_name (abfd, sym_sec);
540
541 return name;
542 }
543
544 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
545 sections. The first element is the flags, the rest are section
546 pointers. */
547
548 typedef union elf_internal_group {
549 Elf_Internal_Shdr *shdr;
550 unsigned int flags;
551 } Elf_Internal_Group;
552
553 /* Return the name of the group signature symbol. Why isn't the
554 signature just a string? */
555
556 static const char *
557 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
558 {
559 Elf_Internal_Shdr *hdr;
560 unsigned char esym[sizeof (Elf64_External_Sym)];
561 Elf_External_Sym_Shndx eshndx;
562 Elf_Internal_Sym isym;
563
564 /* First we need to ensure the symbol table is available. Make sure
565 that it is a symbol table section. */
566 if (ghdr->sh_link >= elf_numsections (abfd))
567 return NULL;
568 hdr = elf_elfsections (abfd) [ghdr->sh_link];
569 if (hdr->sh_type != SHT_SYMTAB
570 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
571 return NULL;
572
573 /* Go read the symbol. */
574 hdr = &elf_tdata (abfd)->symtab_hdr;
575 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
576 &isym, esym, &eshndx) == NULL)
577 return NULL;
578
579 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
580 }
581
582 /* Set next_in_group list pointer, and group name for NEWSECT. */
583
584 static bfd_boolean
585 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
586 {
587 unsigned int num_group = elf_tdata (abfd)->num_group;
588
589 /* If num_group is zero, read in all SHT_GROUP sections. The count
590 is set to -1 if there are no SHT_GROUP sections. */
591 if (num_group == 0)
592 {
593 unsigned int i, shnum;
594
595 /* First count the number of groups. If we have a SHT_GROUP
596 section with just a flag word (ie. sh_size is 4), ignore it. */
597 shnum = elf_numsections (abfd);
598 num_group = 0;
599
600 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
601 ( (shdr)->sh_type == SHT_GROUP \
602 && (shdr)->sh_size >= minsize \
603 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
604 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
605
606 for (i = 0; i < shnum; i++)
607 {
608 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
609
610 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
611 num_group += 1;
612 }
613
614 if (num_group == 0)
615 {
616 num_group = (unsigned) -1;
617 elf_tdata (abfd)->num_group = num_group;
618 elf_tdata (abfd)->group_sect_ptr = NULL;
619 }
620 else
621 {
622 /* We keep a list of elf section headers for group sections,
623 so we can find them quickly. */
624 bfd_size_type amt;
625
626 elf_tdata (abfd)->num_group = num_group;
627 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
628 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
629 if (elf_tdata (abfd)->group_sect_ptr == NULL)
630 return FALSE;
631 memset (elf_tdata (abfd)->group_sect_ptr, 0,
632 num_group * sizeof (Elf_Internal_Shdr *));
633 num_group = 0;
634
635 for (i = 0; i < shnum; i++)
636 {
637 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
638
639 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
640 {
641 unsigned char *src;
642 Elf_Internal_Group *dest;
643
644 /* Make sure the group section has a BFD section
645 attached to it. */
646 if (!bfd_section_from_shdr (abfd, i))
647 return FALSE;
648
649 /* Add to list of sections. */
650 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
651 num_group += 1;
652
653 /* Read the raw contents. */
654 BFD_ASSERT (sizeof (*dest) >= 4);
655 amt = shdr->sh_size * sizeof (*dest) / 4;
656 shdr->contents = (unsigned char *)
657 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
658 /* PR binutils/4110: Handle corrupt group headers. */
659 if (shdr->contents == NULL)
660 {
661 _bfd_error_handler
662 /* xgettext:c-format */
663 (_("%pB: corrupt size field in group section"
664 " header: %#" PRIx64),
665 abfd, (uint64_t) shdr->sh_size);
666 bfd_set_error (bfd_error_bad_value);
667 -- num_group;
668 continue;
669 }
670
671 memset (shdr->contents, 0, amt);
672
673 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
674 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
675 != shdr->sh_size))
676 {
677 _bfd_error_handler
678 /* xgettext:c-format */
679 (_("%pB: invalid size field in group section"
680 " header: %#" PRIx64 ""),
681 abfd, (uint64_t) shdr->sh_size);
682 bfd_set_error (bfd_error_bad_value);
683 -- num_group;
684 /* PR 17510: If the group contents are even
685 partially corrupt, do not allow any of the
686 contents to be used. */
687 memset (shdr->contents, 0, amt);
688 continue;
689 }
690
691 /* Translate raw contents, a flag word followed by an
692 array of elf section indices all in target byte order,
693 to the flag word followed by an array of elf section
694 pointers. */
695 src = shdr->contents + shdr->sh_size;
696 dest = (Elf_Internal_Group *) (shdr->contents + amt);
697
698 while (1)
699 {
700 unsigned int idx;
701
702 src -= 4;
703 --dest;
704 idx = H_GET_32 (abfd, src);
705 if (src == shdr->contents)
706 {
707 dest->flags = idx;
708 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
709 shdr->bfd_section->flags
710 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
711 break;
712 }
713 if (idx < shnum)
714 {
715 dest->shdr = elf_elfsections (abfd)[idx];
716 /* PR binutils/23199: All sections in a
717 section group should be marked with
718 SHF_GROUP. But some tools generate
719 broken objects without SHF_GROUP. Fix
720 them up here. */
721 dest->shdr->sh_flags |= SHF_GROUP;
722 }
723 if (idx >= shnum
724 || dest->shdr->sh_type == SHT_GROUP)
725 {
726 _bfd_error_handler
727 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
728 abfd, i);
729 dest->shdr = NULL;
730 }
731 }
732 }
733 }
734
735 /* PR 17510: Corrupt binaries might contain invalid groups. */
736 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
737 {
738 elf_tdata (abfd)->num_group = num_group;
739
740 /* If all groups are invalid then fail. */
741 if (num_group == 0)
742 {
743 elf_tdata (abfd)->group_sect_ptr = NULL;
744 elf_tdata (abfd)->num_group = num_group = -1;
745 _bfd_error_handler
746 (_("%pB: no valid group sections found"), abfd);
747 bfd_set_error (bfd_error_bad_value);
748 }
749 }
750 }
751 }
752
753 if (num_group != (unsigned) -1)
754 {
755 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
756 unsigned int j;
757
758 for (j = 0; j < num_group; j++)
759 {
760 /* Begin search from previous found group. */
761 unsigned i = (j + search_offset) % num_group;
762
763 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
764 Elf_Internal_Group *idx;
765 bfd_size_type n_elt;
766
767 if (shdr == NULL)
768 continue;
769
770 idx = (Elf_Internal_Group *) shdr->contents;
771 if (idx == NULL || shdr->sh_size < 4)
772 {
773 /* See PR 21957 for a reproducer. */
774 /* xgettext:c-format */
775 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
776 abfd, shdr->bfd_section);
777 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
778 bfd_set_error (bfd_error_bad_value);
779 return FALSE;
780 }
781 n_elt = shdr->sh_size / 4;
782
783 /* Look through this group's sections to see if current
784 section is a member. */
785 while (--n_elt != 0)
786 if ((++idx)->shdr == hdr)
787 {
788 asection *s = NULL;
789
790 /* We are a member of this group. Go looking through
791 other members to see if any others are linked via
792 next_in_group. */
793 idx = (Elf_Internal_Group *) shdr->contents;
794 n_elt = shdr->sh_size / 4;
795 while (--n_elt != 0)
796 if ((++idx)->shdr != NULL
797 && (s = idx->shdr->bfd_section) != NULL
798 && elf_next_in_group (s) != NULL)
799 break;
800 if (n_elt != 0)
801 {
802 /* Snarf the group name from other member, and
803 insert current section in circular list. */
804 elf_group_name (newsect) = elf_group_name (s);
805 elf_next_in_group (newsect) = elf_next_in_group (s);
806 elf_next_in_group (s) = newsect;
807 }
808 else
809 {
810 const char *gname;
811
812 gname = group_signature (abfd, shdr);
813 if (gname == NULL)
814 return FALSE;
815 elf_group_name (newsect) = gname;
816
817 /* Start a circular list with one element. */
818 elf_next_in_group (newsect) = newsect;
819 }
820
821 /* If the group section has been created, point to the
822 new member. */
823 if (shdr->bfd_section != NULL)
824 elf_next_in_group (shdr->bfd_section) = newsect;
825
826 elf_tdata (abfd)->group_search_offset = i;
827 j = num_group - 1;
828 break;
829 }
830 }
831 }
832
833 if (elf_group_name (newsect) == NULL)
834 {
835 /* xgettext:c-format */
836 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
837 abfd, newsect);
838 return FALSE;
839 }
840 return TRUE;
841 }
842
843 bfd_boolean
844 _bfd_elf_setup_sections (bfd *abfd)
845 {
846 unsigned int i;
847 unsigned int num_group = elf_tdata (abfd)->num_group;
848 bfd_boolean result = TRUE;
849 asection *s;
850
851 /* Process SHF_LINK_ORDER. */
852 for (s = abfd->sections; s != NULL; s = s->next)
853 {
854 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
855 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
856 {
857 unsigned int elfsec = this_hdr->sh_link;
858 /* FIXME: The old Intel compiler and old strip/objcopy may
859 not set the sh_link or sh_info fields. Hence we could
860 get the situation where elfsec is 0. */
861 if (elfsec == 0)
862 {
863 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
864 if (bed->link_order_error_handler)
865 bed->link_order_error_handler
866 /* xgettext:c-format */
867 (_("%pB: warning: sh_link not set for section `%pA'"),
868 abfd, s);
869 }
870 else
871 {
872 asection *linksec = NULL;
873
874 if (elfsec < elf_numsections (abfd))
875 {
876 this_hdr = elf_elfsections (abfd)[elfsec];
877 linksec = this_hdr->bfd_section;
878 }
879
880 /* PR 1991, 2008:
881 Some strip/objcopy may leave an incorrect value in
882 sh_link. We don't want to proceed. */
883 if (linksec == NULL)
884 {
885 _bfd_error_handler
886 /* xgettext:c-format */
887 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
888 s->owner, elfsec, s);
889 result = FALSE;
890 }
891
892 elf_linked_to_section (s) = linksec;
893 }
894 }
895 else if (this_hdr->sh_type == SHT_GROUP
896 && elf_next_in_group (s) == NULL)
897 {
898 _bfd_error_handler
899 /* xgettext:c-format */
900 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
901 abfd, elf_section_data (s)->this_idx);
902 result = FALSE;
903 }
904 }
905
906 /* Process section groups. */
907 if (num_group == (unsigned) -1)
908 return result;
909
910 for (i = 0; i < num_group; i++)
911 {
912 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
913 Elf_Internal_Group *idx;
914 unsigned int n_elt;
915
916 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
917 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
918 {
919 _bfd_error_handler
920 /* xgettext:c-format */
921 (_("%pB: section group entry number %u is corrupt"),
922 abfd, i);
923 result = FALSE;
924 continue;
925 }
926
927 idx = (Elf_Internal_Group *) shdr->contents;
928 n_elt = shdr->sh_size / 4;
929
930 while (--n_elt != 0)
931 {
932 ++ idx;
933
934 if (idx->shdr == NULL)
935 continue;
936 else if (idx->shdr->bfd_section)
937 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
938 else if (idx->shdr->sh_type != SHT_RELA
939 && idx->shdr->sh_type != SHT_REL)
940 {
941 /* There are some unknown sections in the group. */
942 _bfd_error_handler
943 /* xgettext:c-format */
944 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
945 abfd,
946 idx->shdr->sh_type,
947 bfd_elf_string_from_elf_section (abfd,
948 (elf_elfheader (abfd)
949 ->e_shstrndx),
950 idx->shdr->sh_name),
951 shdr->bfd_section);
952 result = FALSE;
953 }
954 }
955 }
956
957 return result;
958 }
959
960 bfd_boolean
961 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
962 {
963 return elf_next_in_group (sec) != NULL;
964 }
965
966 static char *
967 convert_debug_to_zdebug (bfd *abfd, const char *name)
968 {
969 unsigned int len = strlen (name);
970 char *new_name = bfd_alloc (abfd, len + 2);
971 if (new_name == NULL)
972 return NULL;
973 new_name[0] = '.';
974 new_name[1] = 'z';
975 memcpy (new_name + 2, name + 1, len);
976 return new_name;
977 }
978
979 static char *
980 convert_zdebug_to_debug (bfd *abfd, const char *name)
981 {
982 unsigned int len = strlen (name);
983 char *new_name = bfd_alloc (abfd, len);
984 if (new_name == NULL)
985 return NULL;
986 new_name[0] = '.';
987 memcpy (new_name + 1, name + 2, len - 1);
988 return new_name;
989 }
990
991 /* Make a BFD section from an ELF section. We store a pointer to the
992 BFD section in the bfd_section field of the header. */
993
994 bfd_boolean
995 _bfd_elf_make_section_from_shdr (bfd *abfd,
996 Elf_Internal_Shdr *hdr,
997 const char *name,
998 int shindex)
999 {
1000 asection *newsect;
1001 flagword flags;
1002 const struct elf_backend_data *bed;
1003
1004 if (hdr->bfd_section != NULL)
1005 return TRUE;
1006
1007 newsect = bfd_make_section_anyway (abfd, name);
1008 if (newsect == NULL)
1009 return FALSE;
1010
1011 hdr->bfd_section = newsect;
1012 elf_section_data (newsect)->this_hdr = *hdr;
1013 elf_section_data (newsect)->this_idx = shindex;
1014
1015 /* Always use the real type/flags. */
1016 elf_section_type (newsect) = hdr->sh_type;
1017 elf_section_flags (newsect) = hdr->sh_flags;
1018
1019 newsect->filepos = hdr->sh_offset;
1020
1021 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1022 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1023 || ! bfd_set_section_alignment (abfd, newsect,
1024 bfd_log2 (hdr->sh_addralign)))
1025 return FALSE;
1026
1027 flags = SEC_NO_FLAGS;
1028 if (hdr->sh_type != SHT_NOBITS)
1029 flags |= SEC_HAS_CONTENTS;
1030 if (hdr->sh_type == SHT_GROUP)
1031 flags |= SEC_GROUP;
1032 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1033 {
1034 flags |= SEC_ALLOC;
1035 if (hdr->sh_type != SHT_NOBITS)
1036 flags |= SEC_LOAD;
1037 }
1038 if ((hdr->sh_flags & SHF_WRITE) == 0)
1039 flags |= SEC_READONLY;
1040 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1041 flags |= SEC_CODE;
1042 else if ((flags & SEC_LOAD) != 0)
1043 flags |= SEC_DATA;
1044 if ((hdr->sh_flags & SHF_MERGE) != 0)
1045 {
1046 flags |= SEC_MERGE;
1047 newsect->entsize = hdr->sh_entsize;
1048 }
1049 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1050 flags |= SEC_STRINGS;
1051 if (hdr->sh_flags & SHF_GROUP)
1052 if (!setup_group (abfd, hdr, newsect))
1053 return FALSE;
1054 if ((hdr->sh_flags & SHF_TLS) != 0)
1055 flags |= SEC_THREAD_LOCAL;
1056 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1057 flags |= SEC_EXCLUDE;
1058
1059 if ((flags & SEC_ALLOC) == 0)
1060 {
1061 /* The debugging sections appear to be recognized only by name,
1062 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1063 if (name [0] == '.')
1064 {
1065 const char *p;
1066 int n;
1067 if (name[1] == 'd')
1068 p = ".debug", n = 6;
1069 else if (name[1] == 'g' && name[2] == 'n')
1070 p = ".gnu.linkonce.wi.", n = 17;
1071 else if (name[1] == 'g' && name[2] == 'd')
1072 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1073 else if (name[1] == 'l')
1074 p = ".line", n = 5;
1075 else if (name[1] == 's')
1076 p = ".stab", n = 5;
1077 else if (name[1] == 'z')
1078 p = ".zdebug", n = 7;
1079 else
1080 p = NULL, n = 0;
1081 if (p != NULL && strncmp (name, p, n) == 0)
1082 flags |= SEC_DEBUGGING;
1083 }
1084 }
1085
1086 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1087 only link a single copy of the section. This is used to support
1088 g++. g++ will emit each template expansion in its own section.
1089 The symbols will be defined as weak, so that multiple definitions
1090 are permitted. The GNU linker extension is to actually discard
1091 all but one of the sections. */
1092 if (CONST_STRNEQ (name, ".gnu.linkonce")
1093 && elf_next_in_group (newsect) == NULL)
1094 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1095
1096 bed = get_elf_backend_data (abfd);
1097 if (bed->elf_backend_section_flags)
1098 if (! bed->elf_backend_section_flags (&flags, hdr))
1099 return FALSE;
1100
1101 if (! bfd_set_section_flags (abfd, newsect, flags))
1102 return FALSE;
1103
1104 /* We do not parse the PT_NOTE segments as we are interested even in the
1105 separate debug info files which may have the segments offsets corrupted.
1106 PT_NOTEs from the core files are currently not parsed using BFD. */
1107 if (hdr->sh_type == SHT_NOTE)
1108 {
1109 bfd_byte *contents;
1110
1111 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1112 return FALSE;
1113
1114 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1115 hdr->sh_offset, hdr->sh_addralign);
1116 free (contents);
1117 }
1118
1119 if ((flags & SEC_ALLOC) != 0)
1120 {
1121 Elf_Internal_Phdr *phdr;
1122 unsigned int i, nload;
1123
1124 /* Some ELF linkers produce binaries with all the program header
1125 p_paddr fields zero. If we have such a binary with more than
1126 one PT_LOAD header, then leave the section lma equal to vma
1127 so that we don't create sections with overlapping lma. */
1128 phdr = elf_tdata (abfd)->phdr;
1129 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1130 if (phdr->p_paddr != 0)
1131 break;
1132 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1133 ++nload;
1134 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1135 return TRUE;
1136
1137 phdr = elf_tdata (abfd)->phdr;
1138 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1139 {
1140 if (((phdr->p_type == PT_LOAD
1141 && (hdr->sh_flags & SHF_TLS) == 0)
1142 || phdr->p_type == PT_TLS)
1143 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1144 {
1145 if ((flags & SEC_LOAD) == 0)
1146 newsect->lma = (phdr->p_paddr
1147 + hdr->sh_addr - phdr->p_vaddr);
1148 else
1149 /* We used to use the same adjustment for SEC_LOAD
1150 sections, but that doesn't work if the segment
1151 is packed with code from multiple VMAs.
1152 Instead we calculate the section LMA based on
1153 the segment LMA. It is assumed that the
1154 segment will contain sections with contiguous
1155 LMAs, even if the VMAs are not. */
1156 newsect->lma = (phdr->p_paddr
1157 + hdr->sh_offset - phdr->p_offset);
1158
1159 /* With contiguous segments, we can't tell from file
1160 offsets whether a section with zero size should
1161 be placed at the end of one segment or the
1162 beginning of the next. Decide based on vaddr. */
1163 if (hdr->sh_addr >= phdr->p_vaddr
1164 && (hdr->sh_addr + hdr->sh_size
1165 <= phdr->p_vaddr + phdr->p_memsz))
1166 break;
1167 }
1168 }
1169 }
1170
1171 /* Compress/decompress DWARF debug sections with names: .debug_* and
1172 .zdebug_*, after the section flags is set. */
1173 if ((flags & SEC_DEBUGGING)
1174 && ((name[1] == 'd' && name[6] == '_')
1175 || (name[1] == 'z' && name[7] == '_')))
1176 {
1177 enum { nothing, compress, decompress } action = nothing;
1178 int compression_header_size;
1179 bfd_size_type uncompressed_size;
1180 bfd_boolean compressed
1181 = bfd_is_section_compressed_with_header (abfd, newsect,
1182 &compression_header_size,
1183 &uncompressed_size);
1184
1185 if (compressed)
1186 {
1187 /* Compressed section. Check if we should decompress. */
1188 if ((abfd->flags & BFD_DECOMPRESS))
1189 action = decompress;
1190 }
1191
1192 /* Compress the uncompressed section or convert from/to .zdebug*
1193 section. Check if we should compress. */
1194 if (action == nothing)
1195 {
1196 if (newsect->size != 0
1197 && (abfd->flags & BFD_COMPRESS)
1198 && compression_header_size >= 0
1199 && uncompressed_size > 0
1200 && (!compressed
1201 || ((compression_header_size > 0)
1202 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1203 action = compress;
1204 else
1205 return TRUE;
1206 }
1207
1208 if (action == compress)
1209 {
1210 if (!bfd_init_section_compress_status (abfd, newsect))
1211 {
1212 _bfd_error_handler
1213 /* xgettext:c-format */
1214 (_("%pB: unable to initialize compress status for section %s"),
1215 abfd, name);
1216 return FALSE;
1217 }
1218 }
1219 else
1220 {
1221 if (!bfd_init_section_decompress_status (abfd, newsect))
1222 {
1223 _bfd_error_handler
1224 /* xgettext:c-format */
1225 (_("%pB: unable to initialize decompress status for section %s"),
1226 abfd, name);
1227 return FALSE;
1228 }
1229 }
1230
1231 if (abfd->is_linker_input)
1232 {
1233 if (name[1] == 'z'
1234 && (action == decompress
1235 || (action == compress
1236 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1237 {
1238 /* Convert section name from .zdebug_* to .debug_* so
1239 that linker will consider this section as a debug
1240 section. */
1241 char *new_name = convert_zdebug_to_debug (abfd, name);
1242 if (new_name == NULL)
1243 return FALSE;
1244 bfd_rename_section (abfd, newsect, new_name);
1245 }
1246 }
1247 else
1248 /* For objdump, don't rename the section. For objcopy, delay
1249 section rename to elf_fake_sections. */
1250 newsect->flags |= SEC_ELF_RENAME;
1251 }
1252
1253 return TRUE;
1254 }
1255
1256 const char *const bfd_elf_section_type_names[] =
1257 {
1258 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1259 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1260 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1261 };
1262
1263 /* ELF relocs are against symbols. If we are producing relocatable
1264 output, and the reloc is against an external symbol, and nothing
1265 has given us any additional addend, the resulting reloc will also
1266 be against the same symbol. In such a case, we don't want to
1267 change anything about the way the reloc is handled, since it will
1268 all be done at final link time. Rather than put special case code
1269 into bfd_perform_relocation, all the reloc types use this howto
1270 function. It just short circuits the reloc if producing
1271 relocatable output against an external symbol. */
1272
1273 bfd_reloc_status_type
1274 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1275 arelent *reloc_entry,
1276 asymbol *symbol,
1277 void *data ATTRIBUTE_UNUSED,
1278 asection *input_section,
1279 bfd *output_bfd,
1280 char **error_message ATTRIBUTE_UNUSED)
1281 {
1282 if (output_bfd != NULL
1283 && (symbol->flags & BSF_SECTION_SYM) == 0
1284 && (! reloc_entry->howto->partial_inplace
1285 || reloc_entry->addend == 0))
1286 {
1287 reloc_entry->address += input_section->output_offset;
1288 return bfd_reloc_ok;
1289 }
1290
1291 return bfd_reloc_continue;
1292 }
1293 \f
1294 /* Returns TRUE if section A matches section B.
1295 Names, addresses and links may be different, but everything else
1296 should be the same. */
1297
1298 static bfd_boolean
1299 section_match (const Elf_Internal_Shdr * a,
1300 const Elf_Internal_Shdr * b)
1301 {
1302 return
1303 a->sh_type == b->sh_type
1304 && (a->sh_flags & ~ SHF_INFO_LINK)
1305 == (b->sh_flags & ~ SHF_INFO_LINK)
1306 && a->sh_addralign == b->sh_addralign
1307 && a->sh_size == b->sh_size
1308 && a->sh_entsize == b->sh_entsize
1309 /* FIXME: Check sh_addr ? */
1310 ;
1311 }
1312
1313 /* Find a section in OBFD that has the same characteristics
1314 as IHEADER. Return the index of this section or SHN_UNDEF if
1315 none can be found. Check's section HINT first, as this is likely
1316 to be the correct section. */
1317
1318 static unsigned int
1319 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1320 const unsigned int hint)
1321 {
1322 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1323 unsigned int i;
1324
1325 BFD_ASSERT (iheader != NULL);
1326
1327 /* See PR 20922 for a reproducer of the NULL test. */
1328 if (hint < elf_numsections (obfd)
1329 && oheaders[hint] != NULL
1330 && section_match (oheaders[hint], iheader))
1331 return hint;
1332
1333 for (i = 1; i < elf_numsections (obfd); i++)
1334 {
1335 Elf_Internal_Shdr * oheader = oheaders[i];
1336
1337 if (oheader == NULL)
1338 continue;
1339 if (section_match (oheader, iheader))
1340 /* FIXME: Do we care if there is a potential for
1341 multiple matches ? */
1342 return i;
1343 }
1344
1345 return SHN_UNDEF;
1346 }
1347
1348 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1349 Processor specific section, based upon a matching input section.
1350 Returns TRUE upon success, FALSE otherwise. */
1351
1352 static bfd_boolean
1353 copy_special_section_fields (const bfd *ibfd,
1354 bfd *obfd,
1355 const Elf_Internal_Shdr *iheader,
1356 Elf_Internal_Shdr *oheader,
1357 const unsigned int secnum)
1358 {
1359 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1360 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1361 bfd_boolean changed = FALSE;
1362 unsigned int sh_link;
1363
1364 if (oheader->sh_type == SHT_NOBITS)
1365 {
1366 /* This is a feature for objcopy --only-keep-debug:
1367 When a section's type is changed to NOBITS, we preserve
1368 the sh_link and sh_info fields so that they can be
1369 matched up with the original.
1370
1371 Note: Strictly speaking these assignments are wrong.
1372 The sh_link and sh_info fields should point to the
1373 relevent sections in the output BFD, which may not be in
1374 the same location as they were in the input BFD. But
1375 the whole point of this action is to preserve the
1376 original values of the sh_link and sh_info fields, so
1377 that they can be matched up with the section headers in
1378 the original file. So strictly speaking we may be
1379 creating an invalid ELF file, but it is only for a file
1380 that just contains debug info and only for sections
1381 without any contents. */
1382 if (oheader->sh_link == 0)
1383 oheader->sh_link = iheader->sh_link;
1384 if (oheader->sh_info == 0)
1385 oheader->sh_info = iheader->sh_info;
1386 return TRUE;
1387 }
1388
1389 /* Allow the target a chance to decide how these fields should be set. */
1390 if (bed->elf_backend_copy_special_section_fields != NULL
1391 && bed->elf_backend_copy_special_section_fields
1392 (ibfd, obfd, iheader, oheader))
1393 return TRUE;
1394
1395 /* We have an iheader which might match oheader, and which has non-zero
1396 sh_info and/or sh_link fields. Attempt to follow those links and find
1397 the section in the output bfd which corresponds to the linked section
1398 in the input bfd. */
1399 if (iheader->sh_link != SHN_UNDEF)
1400 {
1401 /* See PR 20931 for a reproducer. */
1402 if (iheader->sh_link >= elf_numsections (ibfd))
1403 {
1404 _bfd_error_handler
1405 /* xgettext:c-format */
1406 (_("%pB: invalid sh_link field (%d) in section number %d"),
1407 ibfd, iheader->sh_link, secnum);
1408 return FALSE;
1409 }
1410
1411 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1412 if (sh_link != SHN_UNDEF)
1413 {
1414 oheader->sh_link = sh_link;
1415 changed = TRUE;
1416 }
1417 else
1418 /* FIXME: Should we install iheader->sh_link
1419 if we could not find a match ? */
1420 _bfd_error_handler
1421 /* xgettext:c-format */
1422 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1423 }
1424
1425 if (iheader->sh_info)
1426 {
1427 /* The sh_info field can hold arbitrary information, but if the
1428 SHF_LINK_INFO flag is set then it should be interpreted as a
1429 section index. */
1430 if (iheader->sh_flags & SHF_INFO_LINK)
1431 {
1432 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1433 iheader->sh_info);
1434 if (sh_link != SHN_UNDEF)
1435 oheader->sh_flags |= SHF_INFO_LINK;
1436 }
1437 else
1438 /* No idea what it means - just copy it. */
1439 sh_link = iheader->sh_info;
1440
1441 if (sh_link != SHN_UNDEF)
1442 {
1443 oheader->sh_info = sh_link;
1444 changed = TRUE;
1445 }
1446 else
1447 _bfd_error_handler
1448 /* xgettext:c-format */
1449 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1450 }
1451
1452 return changed;
1453 }
1454
1455 /* Copy the program header and other data from one object module to
1456 another. */
1457
1458 bfd_boolean
1459 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1460 {
1461 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1462 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1463 const struct elf_backend_data *bed;
1464 unsigned int i;
1465
1466 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1467 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1468 return TRUE;
1469
1470 if (!elf_flags_init (obfd))
1471 {
1472 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1473 elf_flags_init (obfd) = TRUE;
1474 }
1475
1476 elf_gp (obfd) = elf_gp (ibfd);
1477
1478 /* Also copy the EI_OSABI field. */
1479 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1480 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1481
1482 /* If set, copy the EI_ABIVERSION field. */
1483 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1484 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1485 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1486
1487 /* Copy object attributes. */
1488 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1489
1490 if (iheaders == NULL || oheaders == NULL)
1491 return TRUE;
1492
1493 bed = get_elf_backend_data (obfd);
1494
1495 /* Possibly copy other fields in the section header. */
1496 for (i = 1; i < elf_numsections (obfd); i++)
1497 {
1498 unsigned int j;
1499 Elf_Internal_Shdr * oheader = oheaders[i];
1500
1501 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1502 because of a special case need for generating separate debug info
1503 files. See below for more details. */
1504 if (oheader == NULL
1505 || (oheader->sh_type != SHT_NOBITS
1506 && oheader->sh_type < SHT_LOOS))
1507 continue;
1508
1509 /* Ignore empty sections, and sections whose
1510 fields have already been initialised. */
1511 if (oheader->sh_size == 0
1512 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1513 continue;
1514
1515 /* Scan for the matching section in the input bfd.
1516 First we try for a direct mapping between the input and output sections. */
1517 for (j = 1; j < elf_numsections (ibfd); j++)
1518 {
1519 const Elf_Internal_Shdr * iheader = iheaders[j];
1520
1521 if (iheader == NULL)
1522 continue;
1523
1524 if (oheader->bfd_section != NULL
1525 && iheader->bfd_section != NULL
1526 && iheader->bfd_section->output_section != NULL
1527 && iheader->bfd_section->output_section == oheader->bfd_section)
1528 {
1529 /* We have found a connection from the input section to the
1530 output section. Attempt to copy the header fields. If
1531 this fails then do not try any further sections - there
1532 should only be a one-to-one mapping between input and output. */
1533 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1534 j = elf_numsections (ibfd);
1535 break;
1536 }
1537 }
1538
1539 if (j < elf_numsections (ibfd))
1540 continue;
1541
1542 /* That failed. So try to deduce the corresponding input section.
1543 Unfortunately we cannot compare names as the output string table
1544 is empty, so instead we check size, address and type. */
1545 for (j = 1; j < elf_numsections (ibfd); j++)
1546 {
1547 const Elf_Internal_Shdr * iheader = iheaders[j];
1548
1549 if (iheader == NULL)
1550 continue;
1551
1552 /* Try matching fields in the input section's header.
1553 Since --only-keep-debug turns all non-debug sections into
1554 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1555 input type. */
1556 if ((oheader->sh_type == SHT_NOBITS
1557 || iheader->sh_type == oheader->sh_type)
1558 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1559 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1560 && iheader->sh_addralign == oheader->sh_addralign
1561 && iheader->sh_entsize == oheader->sh_entsize
1562 && iheader->sh_size == oheader->sh_size
1563 && iheader->sh_addr == oheader->sh_addr
1564 && (iheader->sh_info != oheader->sh_info
1565 || iheader->sh_link != oheader->sh_link))
1566 {
1567 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1568 break;
1569 }
1570 }
1571
1572 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1573 {
1574 /* Final attempt. Call the backend copy function
1575 with a NULL input section. */
1576 if (bed->elf_backend_copy_special_section_fields != NULL)
1577 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1578 }
1579 }
1580
1581 return TRUE;
1582 }
1583
1584 static const char *
1585 get_segment_type (unsigned int p_type)
1586 {
1587 const char *pt;
1588 switch (p_type)
1589 {
1590 case PT_NULL: pt = "NULL"; break;
1591 case PT_LOAD: pt = "LOAD"; break;
1592 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1593 case PT_INTERP: pt = "INTERP"; break;
1594 case PT_NOTE: pt = "NOTE"; break;
1595 case PT_SHLIB: pt = "SHLIB"; break;
1596 case PT_PHDR: pt = "PHDR"; break;
1597 case PT_TLS: pt = "TLS"; break;
1598 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1599 case PT_GNU_STACK: pt = "STACK"; break;
1600 case PT_GNU_RELRO: pt = "RELRO"; break;
1601 default: pt = NULL; break;
1602 }
1603 return pt;
1604 }
1605
1606 /* Print out the program headers. */
1607
1608 bfd_boolean
1609 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1610 {
1611 FILE *f = (FILE *) farg;
1612 Elf_Internal_Phdr *p;
1613 asection *s;
1614 bfd_byte *dynbuf = NULL;
1615
1616 p = elf_tdata (abfd)->phdr;
1617 if (p != NULL)
1618 {
1619 unsigned int i, c;
1620
1621 fprintf (f, _("\nProgram Header:\n"));
1622 c = elf_elfheader (abfd)->e_phnum;
1623 for (i = 0; i < c; i++, p++)
1624 {
1625 const char *pt = get_segment_type (p->p_type);
1626 char buf[20];
1627
1628 if (pt == NULL)
1629 {
1630 sprintf (buf, "0x%lx", p->p_type);
1631 pt = buf;
1632 }
1633 fprintf (f, "%8s off 0x", pt);
1634 bfd_fprintf_vma (abfd, f, p->p_offset);
1635 fprintf (f, " vaddr 0x");
1636 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1637 fprintf (f, " paddr 0x");
1638 bfd_fprintf_vma (abfd, f, p->p_paddr);
1639 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1640 fprintf (f, " filesz 0x");
1641 bfd_fprintf_vma (abfd, f, p->p_filesz);
1642 fprintf (f, " memsz 0x");
1643 bfd_fprintf_vma (abfd, f, p->p_memsz);
1644 fprintf (f, " flags %c%c%c",
1645 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1646 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1647 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1648 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1649 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1650 fprintf (f, "\n");
1651 }
1652 }
1653
1654 s = bfd_get_section_by_name (abfd, ".dynamic");
1655 if (s != NULL)
1656 {
1657 unsigned int elfsec;
1658 unsigned long shlink;
1659 bfd_byte *extdyn, *extdynend;
1660 size_t extdynsize;
1661 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1662
1663 fprintf (f, _("\nDynamic Section:\n"));
1664
1665 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1666 goto error_return;
1667
1668 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1669 if (elfsec == SHN_BAD)
1670 goto error_return;
1671 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1672
1673 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1674 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1675
1676 extdyn = dynbuf;
1677 /* PR 17512: file: 6f427532. */
1678 if (s->size < extdynsize)
1679 goto error_return;
1680 extdynend = extdyn + s->size;
1681 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1682 Fix range check. */
1683 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1684 {
1685 Elf_Internal_Dyn dyn;
1686 const char *name = "";
1687 char ab[20];
1688 bfd_boolean stringp;
1689 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1690
1691 (*swap_dyn_in) (abfd, extdyn, &dyn);
1692
1693 if (dyn.d_tag == DT_NULL)
1694 break;
1695
1696 stringp = FALSE;
1697 switch (dyn.d_tag)
1698 {
1699 default:
1700 if (bed->elf_backend_get_target_dtag)
1701 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1702
1703 if (!strcmp (name, ""))
1704 {
1705 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1706 name = ab;
1707 }
1708 break;
1709
1710 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1711 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1712 case DT_PLTGOT: name = "PLTGOT"; break;
1713 case DT_HASH: name = "HASH"; break;
1714 case DT_STRTAB: name = "STRTAB"; break;
1715 case DT_SYMTAB: name = "SYMTAB"; break;
1716 case DT_RELA: name = "RELA"; break;
1717 case DT_RELASZ: name = "RELASZ"; break;
1718 case DT_RELAENT: name = "RELAENT"; break;
1719 case DT_STRSZ: name = "STRSZ"; break;
1720 case DT_SYMENT: name = "SYMENT"; break;
1721 case DT_INIT: name = "INIT"; break;
1722 case DT_FINI: name = "FINI"; break;
1723 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1724 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1725 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1726 case DT_REL: name = "REL"; break;
1727 case DT_RELSZ: name = "RELSZ"; break;
1728 case DT_RELENT: name = "RELENT"; break;
1729 case DT_PLTREL: name = "PLTREL"; break;
1730 case DT_DEBUG: name = "DEBUG"; break;
1731 case DT_TEXTREL: name = "TEXTREL"; break;
1732 case DT_JMPREL: name = "JMPREL"; break;
1733 case DT_BIND_NOW: name = "BIND_NOW"; break;
1734 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1735 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1736 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1737 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1738 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1739 case DT_FLAGS: name = "FLAGS"; break;
1740 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1741 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1742 case DT_CHECKSUM: name = "CHECKSUM"; break;
1743 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1744 case DT_MOVEENT: name = "MOVEENT"; break;
1745 case DT_MOVESZ: name = "MOVESZ"; break;
1746 case DT_FEATURE: name = "FEATURE"; break;
1747 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1748 case DT_SYMINSZ: name = "SYMINSZ"; break;
1749 case DT_SYMINENT: name = "SYMINENT"; break;
1750 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1751 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1752 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1753 case DT_PLTPAD: name = "PLTPAD"; break;
1754 case DT_MOVETAB: name = "MOVETAB"; break;
1755 case DT_SYMINFO: name = "SYMINFO"; break;
1756 case DT_RELACOUNT: name = "RELACOUNT"; break;
1757 case DT_RELCOUNT: name = "RELCOUNT"; break;
1758 case DT_FLAGS_1: name = "FLAGS_1"; break;
1759 case DT_VERSYM: name = "VERSYM"; break;
1760 case DT_VERDEF: name = "VERDEF"; break;
1761 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1762 case DT_VERNEED: name = "VERNEED"; break;
1763 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1764 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1765 case DT_USED: name = "USED"; break;
1766 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1767 case DT_GNU_HASH: name = "GNU_HASH"; break;
1768 }
1769
1770 fprintf (f, " %-20s ", name);
1771 if (! stringp)
1772 {
1773 fprintf (f, "0x");
1774 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1775 }
1776 else
1777 {
1778 const char *string;
1779 unsigned int tagv = dyn.d_un.d_val;
1780
1781 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1782 if (string == NULL)
1783 goto error_return;
1784 fprintf (f, "%s", string);
1785 }
1786 fprintf (f, "\n");
1787 }
1788
1789 free (dynbuf);
1790 dynbuf = NULL;
1791 }
1792
1793 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1794 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1795 {
1796 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1797 return FALSE;
1798 }
1799
1800 if (elf_dynverdef (abfd) != 0)
1801 {
1802 Elf_Internal_Verdef *t;
1803
1804 fprintf (f, _("\nVersion definitions:\n"));
1805 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1806 {
1807 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1808 t->vd_flags, t->vd_hash,
1809 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1810 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1811 {
1812 Elf_Internal_Verdaux *a;
1813
1814 fprintf (f, "\t");
1815 for (a = t->vd_auxptr->vda_nextptr;
1816 a != NULL;
1817 a = a->vda_nextptr)
1818 fprintf (f, "%s ",
1819 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1820 fprintf (f, "\n");
1821 }
1822 }
1823 }
1824
1825 if (elf_dynverref (abfd) != 0)
1826 {
1827 Elf_Internal_Verneed *t;
1828
1829 fprintf (f, _("\nVersion References:\n"));
1830 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1831 {
1832 Elf_Internal_Vernaux *a;
1833
1834 fprintf (f, _(" required from %s:\n"),
1835 t->vn_filename ? t->vn_filename : "<corrupt>");
1836 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1837 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1838 a->vna_flags, a->vna_other,
1839 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1840 }
1841 }
1842
1843 return TRUE;
1844
1845 error_return:
1846 if (dynbuf != NULL)
1847 free (dynbuf);
1848 return FALSE;
1849 }
1850
1851 /* Get version string. */
1852
1853 const char *
1854 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1855 bfd_boolean *hidden)
1856 {
1857 const char *version_string = NULL;
1858 if (elf_dynversym (abfd) != 0
1859 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1860 {
1861 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1862
1863 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1864 vernum &= VERSYM_VERSION;
1865
1866 if (vernum == 0)
1867 version_string = "";
1868 else if (vernum == 1
1869 && (vernum > elf_tdata (abfd)->cverdefs
1870 || (elf_tdata (abfd)->verdef[0].vd_flags
1871 == VER_FLG_BASE)))
1872 version_string = "Base";
1873 else if (vernum <= elf_tdata (abfd)->cverdefs)
1874 version_string =
1875 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1876 else
1877 {
1878 Elf_Internal_Verneed *t;
1879
1880 version_string = _("<corrupt>");
1881 for (t = elf_tdata (abfd)->verref;
1882 t != NULL;
1883 t = t->vn_nextref)
1884 {
1885 Elf_Internal_Vernaux *a;
1886
1887 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1888 {
1889 if (a->vna_other == vernum)
1890 {
1891 version_string = a->vna_nodename;
1892 break;
1893 }
1894 }
1895 }
1896 }
1897 }
1898 return version_string;
1899 }
1900
1901 /* Display ELF-specific fields of a symbol. */
1902
1903 void
1904 bfd_elf_print_symbol (bfd *abfd,
1905 void *filep,
1906 asymbol *symbol,
1907 bfd_print_symbol_type how)
1908 {
1909 FILE *file = (FILE *) filep;
1910 switch (how)
1911 {
1912 case bfd_print_symbol_name:
1913 fprintf (file, "%s", symbol->name);
1914 break;
1915 case bfd_print_symbol_more:
1916 fprintf (file, "elf ");
1917 bfd_fprintf_vma (abfd, file, symbol->value);
1918 fprintf (file, " %x", symbol->flags);
1919 break;
1920 case bfd_print_symbol_all:
1921 {
1922 const char *section_name;
1923 const char *name = NULL;
1924 const struct elf_backend_data *bed;
1925 unsigned char st_other;
1926 bfd_vma val;
1927 const char *version_string;
1928 bfd_boolean hidden;
1929
1930 section_name = symbol->section ? symbol->section->name : "(*none*)";
1931
1932 bed = get_elf_backend_data (abfd);
1933 if (bed->elf_backend_print_symbol_all)
1934 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1935
1936 if (name == NULL)
1937 {
1938 name = symbol->name;
1939 bfd_print_symbol_vandf (abfd, file, symbol);
1940 }
1941
1942 fprintf (file, " %s\t", section_name);
1943 /* Print the "other" value for a symbol. For common symbols,
1944 we've already printed the size; now print the alignment.
1945 For other symbols, we have no specified alignment, and
1946 we've printed the address; now print the size. */
1947 if (symbol->section && bfd_is_com_section (symbol->section))
1948 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1949 else
1950 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1951 bfd_fprintf_vma (abfd, file, val);
1952
1953 /* If we have version information, print it. */
1954 version_string = _bfd_elf_get_symbol_version_string (abfd,
1955 symbol,
1956 &hidden);
1957 if (version_string)
1958 {
1959 if (!hidden)
1960 fprintf (file, " %-11s", version_string);
1961 else
1962 {
1963 int i;
1964
1965 fprintf (file, " (%s)", version_string);
1966 for (i = 10 - strlen (version_string); i > 0; --i)
1967 putc (' ', file);
1968 }
1969 }
1970
1971 /* If the st_other field is not zero, print it. */
1972 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1973
1974 switch (st_other)
1975 {
1976 case 0: break;
1977 case STV_INTERNAL: fprintf (file, " .internal"); break;
1978 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1979 case STV_PROTECTED: fprintf (file, " .protected"); break;
1980 default:
1981 /* Some other non-defined flags are also present, so print
1982 everything hex. */
1983 fprintf (file, " 0x%02x", (unsigned int) st_other);
1984 }
1985
1986 fprintf (file, " %s", name);
1987 }
1988 break;
1989 }
1990 }
1991 \f
1992 /* ELF .o/exec file reading */
1993
1994 /* Create a new bfd section from an ELF section header. */
1995
1996 bfd_boolean
1997 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1998 {
1999 Elf_Internal_Shdr *hdr;
2000 Elf_Internal_Ehdr *ehdr;
2001 const struct elf_backend_data *bed;
2002 const char *name;
2003 bfd_boolean ret = TRUE;
2004 static bfd_boolean * sections_being_created = NULL;
2005 static bfd * sections_being_created_abfd = NULL;
2006 static unsigned int nesting = 0;
2007
2008 if (shindex >= elf_numsections (abfd))
2009 return FALSE;
2010
2011 if (++ nesting > 3)
2012 {
2013 /* PR17512: A corrupt ELF binary might contain a recursive group of
2014 sections, with each the string indices pointing to the next in the
2015 loop. Detect this here, by refusing to load a section that we are
2016 already in the process of loading. We only trigger this test if
2017 we have nested at least three sections deep as normal ELF binaries
2018 can expect to recurse at least once.
2019
2020 FIXME: It would be better if this array was attached to the bfd,
2021 rather than being held in a static pointer. */
2022
2023 if (sections_being_created_abfd != abfd)
2024 sections_being_created = NULL;
2025 if (sections_being_created == NULL)
2026 {
2027 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
2028 sections_being_created = (bfd_boolean *)
2029 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
2030 sections_being_created_abfd = abfd;
2031 }
2032 if (sections_being_created [shindex])
2033 {
2034 _bfd_error_handler
2035 (_("%pB: warning: loop in section dependencies detected"), abfd);
2036 return FALSE;
2037 }
2038 sections_being_created [shindex] = TRUE;
2039 }
2040
2041 hdr = elf_elfsections (abfd)[shindex];
2042 ehdr = elf_elfheader (abfd);
2043 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2044 hdr->sh_name);
2045 if (name == NULL)
2046 goto fail;
2047
2048 bed = get_elf_backend_data (abfd);
2049 switch (hdr->sh_type)
2050 {
2051 case SHT_NULL:
2052 /* Inactive section. Throw it away. */
2053 goto success;
2054
2055 case SHT_PROGBITS: /* Normal section with contents. */
2056 case SHT_NOBITS: /* .bss section. */
2057 case SHT_HASH: /* .hash section. */
2058 case SHT_NOTE: /* .note section. */
2059 case SHT_INIT_ARRAY: /* .init_array section. */
2060 case SHT_FINI_ARRAY: /* .fini_array section. */
2061 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2062 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2063 case SHT_GNU_HASH: /* .gnu.hash section. */
2064 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2065 goto success;
2066
2067 case SHT_DYNAMIC: /* Dynamic linking information. */
2068 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2069 goto fail;
2070
2071 if (hdr->sh_link > elf_numsections (abfd))
2072 {
2073 /* PR 10478: Accept Solaris binaries with a sh_link
2074 field set to SHN_BEFORE or SHN_AFTER. */
2075 switch (bfd_get_arch (abfd))
2076 {
2077 case bfd_arch_i386:
2078 case bfd_arch_sparc:
2079 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2080 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2081 break;
2082 /* Otherwise fall through. */
2083 default:
2084 goto fail;
2085 }
2086 }
2087 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2088 goto fail;
2089 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2090 {
2091 Elf_Internal_Shdr *dynsymhdr;
2092
2093 /* The shared libraries distributed with hpux11 have a bogus
2094 sh_link field for the ".dynamic" section. Find the
2095 string table for the ".dynsym" section instead. */
2096 if (elf_dynsymtab (abfd) != 0)
2097 {
2098 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2099 hdr->sh_link = dynsymhdr->sh_link;
2100 }
2101 else
2102 {
2103 unsigned int i, num_sec;
2104
2105 num_sec = elf_numsections (abfd);
2106 for (i = 1; i < num_sec; i++)
2107 {
2108 dynsymhdr = elf_elfsections (abfd)[i];
2109 if (dynsymhdr->sh_type == SHT_DYNSYM)
2110 {
2111 hdr->sh_link = dynsymhdr->sh_link;
2112 break;
2113 }
2114 }
2115 }
2116 }
2117 goto success;
2118
2119 case SHT_SYMTAB: /* A symbol table. */
2120 if (elf_onesymtab (abfd) == shindex)
2121 goto success;
2122
2123 if (hdr->sh_entsize != bed->s->sizeof_sym)
2124 goto fail;
2125
2126 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2127 {
2128 if (hdr->sh_size != 0)
2129 goto fail;
2130 /* Some assemblers erroneously set sh_info to one with a
2131 zero sh_size. ld sees this as a global symbol count
2132 of (unsigned) -1. Fix it here. */
2133 hdr->sh_info = 0;
2134 goto success;
2135 }
2136
2137 /* PR 18854: A binary might contain more than one symbol table.
2138 Unusual, but possible. Warn, but continue. */
2139 if (elf_onesymtab (abfd) != 0)
2140 {
2141 _bfd_error_handler
2142 /* xgettext:c-format */
2143 (_("%pB: warning: multiple symbol tables detected"
2144 " - ignoring the table in section %u"),
2145 abfd, shindex);
2146 goto success;
2147 }
2148 elf_onesymtab (abfd) = shindex;
2149 elf_symtab_hdr (abfd) = *hdr;
2150 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2151 abfd->flags |= HAS_SYMS;
2152
2153 /* Sometimes a shared object will map in the symbol table. If
2154 SHF_ALLOC is set, and this is a shared object, then we also
2155 treat this section as a BFD section. We can not base the
2156 decision purely on SHF_ALLOC, because that flag is sometimes
2157 set in a relocatable object file, which would confuse the
2158 linker. */
2159 if ((hdr->sh_flags & SHF_ALLOC) != 0
2160 && (abfd->flags & DYNAMIC) != 0
2161 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2162 shindex))
2163 goto fail;
2164
2165 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2166 can't read symbols without that section loaded as well. It
2167 is most likely specified by the next section header. */
2168 {
2169 elf_section_list * entry;
2170 unsigned int i, num_sec;
2171
2172 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2173 if (entry->hdr.sh_link == shindex)
2174 goto success;
2175
2176 num_sec = elf_numsections (abfd);
2177 for (i = shindex + 1; i < num_sec; i++)
2178 {
2179 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2180
2181 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2182 && hdr2->sh_link == shindex)
2183 break;
2184 }
2185
2186 if (i == num_sec)
2187 for (i = 1; i < shindex; i++)
2188 {
2189 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2190
2191 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2192 && hdr2->sh_link == shindex)
2193 break;
2194 }
2195
2196 if (i != shindex)
2197 ret = bfd_section_from_shdr (abfd, i);
2198 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2199 goto success;
2200 }
2201
2202 case SHT_DYNSYM: /* A dynamic symbol table. */
2203 if (elf_dynsymtab (abfd) == shindex)
2204 goto success;
2205
2206 if (hdr->sh_entsize != bed->s->sizeof_sym)
2207 goto fail;
2208
2209 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2210 {
2211 if (hdr->sh_size != 0)
2212 goto fail;
2213
2214 /* Some linkers erroneously set sh_info to one with a
2215 zero sh_size. ld sees this as a global symbol count
2216 of (unsigned) -1. Fix it here. */
2217 hdr->sh_info = 0;
2218 goto success;
2219 }
2220
2221 /* PR 18854: A binary might contain more than one dynamic symbol table.
2222 Unusual, but possible. Warn, but continue. */
2223 if (elf_dynsymtab (abfd) != 0)
2224 {
2225 _bfd_error_handler
2226 /* xgettext:c-format */
2227 (_("%pB: warning: multiple dynamic symbol tables detected"
2228 " - ignoring the table in section %u"),
2229 abfd, shindex);
2230 goto success;
2231 }
2232 elf_dynsymtab (abfd) = shindex;
2233 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2234 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2235 abfd->flags |= HAS_SYMS;
2236
2237 /* Besides being a symbol table, we also treat this as a regular
2238 section, so that objcopy can handle it. */
2239 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2240 goto success;
2241
2242 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2243 {
2244 elf_section_list * entry;
2245
2246 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2247 if (entry->ndx == shindex)
2248 goto success;
2249
2250 entry = bfd_alloc (abfd, sizeof * entry);
2251 if (entry == NULL)
2252 goto fail;
2253 entry->ndx = shindex;
2254 entry->hdr = * hdr;
2255 entry->next = elf_symtab_shndx_list (abfd);
2256 elf_symtab_shndx_list (abfd) = entry;
2257 elf_elfsections (abfd)[shindex] = & entry->hdr;
2258 goto success;
2259 }
2260
2261 case SHT_STRTAB: /* A string table. */
2262 if (hdr->bfd_section != NULL)
2263 goto success;
2264
2265 if (ehdr->e_shstrndx == shindex)
2266 {
2267 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2268 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2269 goto success;
2270 }
2271
2272 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2273 {
2274 symtab_strtab:
2275 elf_tdata (abfd)->strtab_hdr = *hdr;
2276 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2277 goto success;
2278 }
2279
2280 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2281 {
2282 dynsymtab_strtab:
2283 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2284 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2285 elf_elfsections (abfd)[shindex] = hdr;
2286 /* We also treat this as a regular section, so that objcopy
2287 can handle it. */
2288 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2289 shindex);
2290 goto success;
2291 }
2292
2293 /* If the string table isn't one of the above, then treat it as a
2294 regular section. We need to scan all the headers to be sure,
2295 just in case this strtab section appeared before the above. */
2296 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2297 {
2298 unsigned int i, num_sec;
2299
2300 num_sec = elf_numsections (abfd);
2301 for (i = 1; i < num_sec; i++)
2302 {
2303 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2304 if (hdr2->sh_link == shindex)
2305 {
2306 /* Prevent endless recursion on broken objects. */
2307 if (i == shindex)
2308 goto fail;
2309 if (! bfd_section_from_shdr (abfd, i))
2310 goto fail;
2311 if (elf_onesymtab (abfd) == i)
2312 goto symtab_strtab;
2313 if (elf_dynsymtab (abfd) == i)
2314 goto dynsymtab_strtab;
2315 }
2316 }
2317 }
2318 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2319 goto success;
2320
2321 case SHT_REL:
2322 case SHT_RELA:
2323 /* *These* do a lot of work -- but build no sections! */
2324 {
2325 asection *target_sect;
2326 Elf_Internal_Shdr *hdr2, **p_hdr;
2327 unsigned int num_sec = elf_numsections (abfd);
2328 struct bfd_elf_section_data *esdt;
2329
2330 if (hdr->sh_entsize
2331 != (bfd_size_type) (hdr->sh_type == SHT_REL
2332 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2333 goto fail;
2334
2335 /* Check for a bogus link to avoid crashing. */
2336 if (hdr->sh_link >= num_sec)
2337 {
2338 _bfd_error_handler
2339 /* xgettext:c-format */
2340 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2341 abfd, hdr->sh_link, name, shindex);
2342 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2343 shindex);
2344 goto success;
2345 }
2346
2347 /* For some incomprehensible reason Oracle distributes
2348 libraries for Solaris in which some of the objects have
2349 bogus sh_link fields. It would be nice if we could just
2350 reject them, but, unfortunately, some people need to use
2351 them. We scan through the section headers; if we find only
2352 one suitable symbol table, we clobber the sh_link to point
2353 to it. I hope this doesn't break anything.
2354
2355 Don't do it on executable nor shared library. */
2356 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2357 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2358 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2359 {
2360 unsigned int scan;
2361 int found;
2362
2363 found = 0;
2364 for (scan = 1; scan < num_sec; scan++)
2365 {
2366 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2367 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2368 {
2369 if (found != 0)
2370 {
2371 found = 0;
2372 break;
2373 }
2374 found = scan;
2375 }
2376 }
2377 if (found != 0)
2378 hdr->sh_link = found;
2379 }
2380
2381 /* Get the symbol table. */
2382 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2383 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2384 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2385 goto fail;
2386
2387 /* If this reloc section does not use the main symbol table we
2388 don't treat it as a reloc section. BFD can't adequately
2389 represent such a section, so at least for now, we don't
2390 try. We just present it as a normal section. We also
2391 can't use it as a reloc section if it points to the null
2392 section, an invalid section, another reloc section, or its
2393 sh_link points to the null section. */
2394 if (hdr->sh_link != elf_onesymtab (abfd)
2395 || hdr->sh_link == SHN_UNDEF
2396 || hdr->sh_info == SHN_UNDEF
2397 || hdr->sh_info >= num_sec
2398 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2399 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2400 {
2401 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2402 shindex);
2403 goto success;
2404 }
2405
2406 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2407 goto fail;
2408
2409 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2410 if (target_sect == NULL)
2411 goto fail;
2412
2413 esdt = elf_section_data (target_sect);
2414 if (hdr->sh_type == SHT_RELA)
2415 p_hdr = &esdt->rela.hdr;
2416 else
2417 p_hdr = &esdt->rel.hdr;
2418
2419 /* PR 17512: file: 0b4f81b7. */
2420 if (*p_hdr != NULL)
2421 goto fail;
2422 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2423 if (hdr2 == NULL)
2424 goto fail;
2425 *hdr2 = *hdr;
2426 *p_hdr = hdr2;
2427 elf_elfsections (abfd)[shindex] = hdr2;
2428 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2429 * bed->s->int_rels_per_ext_rel);
2430 target_sect->flags |= SEC_RELOC;
2431 target_sect->relocation = NULL;
2432 target_sect->rel_filepos = hdr->sh_offset;
2433 /* In the section to which the relocations apply, mark whether
2434 its relocations are of the REL or RELA variety. */
2435 if (hdr->sh_size != 0)
2436 {
2437 if (hdr->sh_type == SHT_RELA)
2438 target_sect->use_rela_p = 1;
2439 }
2440 abfd->flags |= HAS_RELOC;
2441 goto success;
2442 }
2443
2444 case SHT_GNU_verdef:
2445 elf_dynverdef (abfd) = shindex;
2446 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2447 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2448 goto success;
2449
2450 case SHT_GNU_versym:
2451 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2452 goto fail;
2453
2454 elf_dynversym (abfd) = shindex;
2455 elf_tdata (abfd)->dynversym_hdr = *hdr;
2456 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2457 goto success;
2458
2459 case SHT_GNU_verneed:
2460 elf_dynverref (abfd) = shindex;
2461 elf_tdata (abfd)->dynverref_hdr = *hdr;
2462 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2463 goto success;
2464
2465 case SHT_SHLIB:
2466 goto success;
2467
2468 case SHT_GROUP:
2469 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2470 goto fail;
2471
2472 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2473 goto fail;
2474
2475 goto success;
2476
2477 default:
2478 /* Possibly an attributes section. */
2479 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2480 || hdr->sh_type == bed->obj_attrs_section_type)
2481 {
2482 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2483 goto fail;
2484 _bfd_elf_parse_attributes (abfd, hdr);
2485 goto success;
2486 }
2487
2488 /* Check for any processor-specific section types. */
2489 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2490 goto success;
2491
2492 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2493 {
2494 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2495 /* FIXME: How to properly handle allocated section reserved
2496 for applications? */
2497 _bfd_error_handler
2498 /* xgettext:c-format */
2499 (_("%pB: unknown type [%#x] section `%s'"),
2500 abfd, hdr->sh_type, name);
2501 else
2502 {
2503 /* Allow sections reserved for applications. */
2504 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2505 shindex);
2506 goto success;
2507 }
2508 }
2509 else if (hdr->sh_type >= SHT_LOPROC
2510 && hdr->sh_type <= SHT_HIPROC)
2511 /* FIXME: We should handle this section. */
2512 _bfd_error_handler
2513 /* xgettext:c-format */
2514 (_("%pB: unknown type [%#x] section `%s'"),
2515 abfd, hdr->sh_type, name);
2516 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2517 {
2518 /* Unrecognised OS-specific sections. */
2519 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2520 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2521 required to correctly process the section and the file should
2522 be rejected with an error message. */
2523 _bfd_error_handler
2524 /* xgettext:c-format */
2525 (_("%pB: unknown type [%#x] section `%s'"),
2526 abfd, hdr->sh_type, name);
2527 else
2528 {
2529 /* Otherwise it should be processed. */
2530 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2531 goto success;
2532 }
2533 }
2534 else
2535 /* FIXME: We should handle this section. */
2536 _bfd_error_handler
2537 /* xgettext:c-format */
2538 (_("%pB: unknown type [%#x] section `%s'"),
2539 abfd, hdr->sh_type, name);
2540
2541 goto fail;
2542 }
2543
2544 fail:
2545 ret = FALSE;
2546 success:
2547 if (sections_being_created && sections_being_created_abfd == abfd)
2548 sections_being_created [shindex] = FALSE;
2549 if (-- nesting == 0)
2550 {
2551 sections_being_created = NULL;
2552 sections_being_created_abfd = abfd;
2553 }
2554 return ret;
2555 }
2556
2557 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2558
2559 Elf_Internal_Sym *
2560 bfd_sym_from_r_symndx (struct sym_cache *cache,
2561 bfd *abfd,
2562 unsigned long r_symndx)
2563 {
2564 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2565
2566 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2567 {
2568 Elf_Internal_Shdr *symtab_hdr;
2569 unsigned char esym[sizeof (Elf64_External_Sym)];
2570 Elf_External_Sym_Shndx eshndx;
2571
2572 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2573 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2574 &cache->sym[ent], esym, &eshndx) == NULL)
2575 return NULL;
2576
2577 if (cache->abfd != abfd)
2578 {
2579 memset (cache->indx, -1, sizeof (cache->indx));
2580 cache->abfd = abfd;
2581 }
2582 cache->indx[ent] = r_symndx;
2583 }
2584
2585 return &cache->sym[ent];
2586 }
2587
2588 /* Given an ELF section number, retrieve the corresponding BFD
2589 section. */
2590
2591 asection *
2592 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2593 {
2594 if (sec_index >= elf_numsections (abfd))
2595 return NULL;
2596 return elf_elfsections (abfd)[sec_index]->bfd_section;
2597 }
2598
2599 static const struct bfd_elf_special_section special_sections_b[] =
2600 {
2601 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2602 { NULL, 0, 0, 0, 0 }
2603 };
2604
2605 static const struct bfd_elf_special_section special_sections_c[] =
2606 {
2607 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2608 { NULL, 0, 0, 0, 0 }
2609 };
2610
2611 static const struct bfd_elf_special_section special_sections_d[] =
2612 {
2613 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2614 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2615 /* There are more DWARF sections than these, but they needn't be added here
2616 unless you have to cope with broken compilers that don't emit section
2617 attributes or you want to help the user writing assembler. */
2618 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2619 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2620 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2621 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2622 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2623 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2624 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2625 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2626 { NULL, 0, 0, 0, 0 }
2627 };
2628
2629 static const struct bfd_elf_special_section special_sections_f[] =
2630 {
2631 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2632 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2633 { NULL, 0 , 0, 0, 0 }
2634 };
2635
2636 static const struct bfd_elf_special_section special_sections_g[] =
2637 {
2638 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2639 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2640 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2641 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2642 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2643 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2644 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2645 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2646 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2647 { NULL, 0, 0, 0, 0 }
2648 };
2649
2650 static const struct bfd_elf_special_section special_sections_h[] =
2651 {
2652 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2653 { NULL, 0, 0, 0, 0 }
2654 };
2655
2656 static const struct bfd_elf_special_section special_sections_i[] =
2657 {
2658 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2659 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2660 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2661 { NULL, 0, 0, 0, 0 }
2662 };
2663
2664 static const struct bfd_elf_special_section special_sections_l[] =
2665 {
2666 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2667 { NULL, 0, 0, 0, 0 }
2668 };
2669
2670 static const struct bfd_elf_special_section special_sections_n[] =
2671 {
2672 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2673 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2674 { NULL, 0, 0, 0, 0 }
2675 };
2676
2677 static const struct bfd_elf_special_section special_sections_p[] =
2678 {
2679 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2680 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2681 { NULL, 0, 0, 0, 0 }
2682 };
2683
2684 static const struct bfd_elf_special_section special_sections_r[] =
2685 {
2686 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2687 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2688 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2689 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2690 { NULL, 0, 0, 0, 0 }
2691 };
2692
2693 static const struct bfd_elf_special_section special_sections_s[] =
2694 {
2695 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2696 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2697 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2698 /* See struct bfd_elf_special_section declaration for the semantics of
2699 this special case where .prefix_length != strlen (.prefix). */
2700 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2701 { NULL, 0, 0, 0, 0 }
2702 };
2703
2704 static const struct bfd_elf_special_section special_sections_t[] =
2705 {
2706 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2707 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2708 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2709 { NULL, 0, 0, 0, 0 }
2710 };
2711
2712 static const struct bfd_elf_special_section special_sections_z[] =
2713 {
2714 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2715 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2716 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2717 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2718 { NULL, 0, 0, 0, 0 }
2719 };
2720
2721 static const struct bfd_elf_special_section * const special_sections[] =
2722 {
2723 special_sections_b, /* 'b' */
2724 special_sections_c, /* 'c' */
2725 special_sections_d, /* 'd' */
2726 NULL, /* 'e' */
2727 special_sections_f, /* 'f' */
2728 special_sections_g, /* 'g' */
2729 special_sections_h, /* 'h' */
2730 special_sections_i, /* 'i' */
2731 NULL, /* 'j' */
2732 NULL, /* 'k' */
2733 special_sections_l, /* 'l' */
2734 NULL, /* 'm' */
2735 special_sections_n, /* 'n' */
2736 NULL, /* 'o' */
2737 special_sections_p, /* 'p' */
2738 NULL, /* 'q' */
2739 special_sections_r, /* 'r' */
2740 special_sections_s, /* 's' */
2741 special_sections_t, /* 't' */
2742 NULL, /* 'u' */
2743 NULL, /* 'v' */
2744 NULL, /* 'w' */
2745 NULL, /* 'x' */
2746 NULL, /* 'y' */
2747 special_sections_z /* 'z' */
2748 };
2749
2750 const struct bfd_elf_special_section *
2751 _bfd_elf_get_special_section (const char *name,
2752 const struct bfd_elf_special_section *spec,
2753 unsigned int rela)
2754 {
2755 int i;
2756 int len;
2757
2758 len = strlen (name);
2759
2760 for (i = 0; spec[i].prefix != NULL; i++)
2761 {
2762 int suffix_len;
2763 int prefix_len = spec[i].prefix_length;
2764
2765 if (len < prefix_len)
2766 continue;
2767 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2768 continue;
2769
2770 suffix_len = spec[i].suffix_length;
2771 if (suffix_len <= 0)
2772 {
2773 if (name[prefix_len] != 0)
2774 {
2775 if (suffix_len == 0)
2776 continue;
2777 if (name[prefix_len] != '.'
2778 && (suffix_len == -2
2779 || (rela && spec[i].type == SHT_REL)))
2780 continue;
2781 }
2782 }
2783 else
2784 {
2785 if (len < prefix_len + suffix_len)
2786 continue;
2787 if (memcmp (name + len - suffix_len,
2788 spec[i].prefix + prefix_len,
2789 suffix_len) != 0)
2790 continue;
2791 }
2792 return &spec[i];
2793 }
2794
2795 return NULL;
2796 }
2797
2798 const struct bfd_elf_special_section *
2799 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2800 {
2801 int i;
2802 const struct bfd_elf_special_section *spec;
2803 const struct elf_backend_data *bed;
2804
2805 /* See if this is one of the special sections. */
2806 if (sec->name == NULL)
2807 return NULL;
2808
2809 bed = get_elf_backend_data (abfd);
2810 spec = bed->special_sections;
2811 if (spec)
2812 {
2813 spec = _bfd_elf_get_special_section (sec->name,
2814 bed->special_sections,
2815 sec->use_rela_p);
2816 if (spec != NULL)
2817 return spec;
2818 }
2819
2820 if (sec->name[0] != '.')
2821 return NULL;
2822
2823 i = sec->name[1] - 'b';
2824 if (i < 0 || i > 'z' - 'b')
2825 return NULL;
2826
2827 spec = special_sections[i];
2828
2829 if (spec == NULL)
2830 return NULL;
2831
2832 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2833 }
2834
2835 bfd_boolean
2836 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2837 {
2838 struct bfd_elf_section_data *sdata;
2839 const struct elf_backend_data *bed;
2840 const struct bfd_elf_special_section *ssect;
2841
2842 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2843 if (sdata == NULL)
2844 {
2845 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2846 sizeof (*sdata));
2847 if (sdata == NULL)
2848 return FALSE;
2849 sec->used_by_bfd = sdata;
2850 }
2851
2852 /* Indicate whether or not this section should use RELA relocations. */
2853 bed = get_elf_backend_data (abfd);
2854 sec->use_rela_p = bed->default_use_rela_p;
2855
2856 /* When we read a file, we don't need to set ELF section type and
2857 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2858 anyway. We will set ELF section type and flags for all linker
2859 created sections. If user specifies BFD section flags, we will
2860 set ELF section type and flags based on BFD section flags in
2861 elf_fake_sections. Special handling for .init_array/.fini_array
2862 output sections since they may contain .ctors/.dtors input
2863 sections. We don't want _bfd_elf_init_private_section_data to
2864 copy ELF section type from .ctors/.dtors input sections. */
2865 if (abfd->direction != read_direction
2866 || (sec->flags & SEC_LINKER_CREATED) != 0)
2867 {
2868 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2869 if (ssect != NULL
2870 && (!sec->flags
2871 || (sec->flags & SEC_LINKER_CREATED) != 0
2872 || ssect->type == SHT_INIT_ARRAY
2873 || ssect->type == SHT_FINI_ARRAY))
2874 {
2875 elf_section_type (sec) = ssect->type;
2876 elf_section_flags (sec) = ssect->attr;
2877 }
2878 }
2879
2880 return _bfd_generic_new_section_hook (abfd, sec);
2881 }
2882
2883 /* Create a new bfd section from an ELF program header.
2884
2885 Since program segments have no names, we generate a synthetic name
2886 of the form segment<NUM>, where NUM is generally the index in the
2887 program header table. For segments that are split (see below) we
2888 generate the names segment<NUM>a and segment<NUM>b.
2889
2890 Note that some program segments may have a file size that is different than
2891 (less than) the memory size. All this means is that at execution the
2892 system must allocate the amount of memory specified by the memory size,
2893 but only initialize it with the first "file size" bytes read from the
2894 file. This would occur for example, with program segments consisting
2895 of combined data+bss.
2896
2897 To handle the above situation, this routine generates TWO bfd sections
2898 for the single program segment. The first has the length specified by
2899 the file size of the segment, and the second has the length specified
2900 by the difference between the two sizes. In effect, the segment is split
2901 into its initialized and uninitialized parts.
2902
2903 */
2904
2905 bfd_boolean
2906 _bfd_elf_make_section_from_phdr (bfd *abfd,
2907 Elf_Internal_Phdr *hdr,
2908 int hdr_index,
2909 const char *type_name)
2910 {
2911 asection *newsect;
2912 char *name;
2913 char namebuf[64];
2914 size_t len;
2915 int split;
2916
2917 split = ((hdr->p_memsz > 0)
2918 && (hdr->p_filesz > 0)
2919 && (hdr->p_memsz > hdr->p_filesz));
2920
2921 if (hdr->p_filesz > 0)
2922 {
2923 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2924 len = strlen (namebuf) + 1;
2925 name = (char *) bfd_alloc (abfd, len);
2926 if (!name)
2927 return FALSE;
2928 memcpy (name, namebuf, len);
2929 newsect = bfd_make_section (abfd, name);
2930 if (newsect == NULL)
2931 return FALSE;
2932 newsect->vma = hdr->p_vaddr;
2933 newsect->lma = hdr->p_paddr;
2934 newsect->size = hdr->p_filesz;
2935 newsect->filepos = hdr->p_offset;
2936 newsect->flags |= SEC_HAS_CONTENTS;
2937 newsect->alignment_power = bfd_log2 (hdr->p_align);
2938 if (hdr->p_type == PT_LOAD)
2939 {
2940 newsect->flags |= SEC_ALLOC;
2941 newsect->flags |= SEC_LOAD;
2942 if (hdr->p_flags & PF_X)
2943 {
2944 /* FIXME: all we known is that it has execute PERMISSION,
2945 may be data. */
2946 newsect->flags |= SEC_CODE;
2947 }
2948 }
2949 if (!(hdr->p_flags & PF_W))
2950 {
2951 newsect->flags |= SEC_READONLY;
2952 }
2953 }
2954
2955 if (hdr->p_memsz > hdr->p_filesz)
2956 {
2957 bfd_vma align;
2958
2959 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2960 len = strlen (namebuf) + 1;
2961 name = (char *) bfd_alloc (abfd, len);
2962 if (!name)
2963 return FALSE;
2964 memcpy (name, namebuf, len);
2965 newsect = bfd_make_section (abfd, name);
2966 if (newsect == NULL)
2967 return FALSE;
2968 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2969 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2970 newsect->size = hdr->p_memsz - hdr->p_filesz;
2971 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2972 align = newsect->vma & -newsect->vma;
2973 if (align == 0 || align > hdr->p_align)
2974 align = hdr->p_align;
2975 newsect->alignment_power = bfd_log2 (align);
2976 if (hdr->p_type == PT_LOAD)
2977 {
2978 /* Hack for gdb. Segments that have not been modified do
2979 not have their contents written to a core file, on the
2980 assumption that a debugger can find the contents in the
2981 executable. We flag this case by setting the fake
2982 section size to zero. Note that "real" bss sections will
2983 always have their contents dumped to the core file. */
2984 if (bfd_get_format (abfd) == bfd_core)
2985 newsect->size = 0;
2986 newsect->flags |= SEC_ALLOC;
2987 if (hdr->p_flags & PF_X)
2988 newsect->flags |= SEC_CODE;
2989 }
2990 if (!(hdr->p_flags & PF_W))
2991 newsect->flags |= SEC_READONLY;
2992 }
2993
2994 return TRUE;
2995 }
2996
2997 bfd_boolean
2998 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2999 {
3000 const struct elf_backend_data *bed;
3001
3002 switch (hdr->p_type)
3003 {
3004 case PT_NULL:
3005 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3006
3007 case PT_LOAD:
3008 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
3009
3010 case PT_DYNAMIC:
3011 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3012
3013 case PT_INTERP:
3014 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3015
3016 case PT_NOTE:
3017 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3018 return FALSE;
3019 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3020 hdr->p_align))
3021 return FALSE;
3022 return TRUE;
3023
3024 case PT_SHLIB:
3025 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3026
3027 case PT_PHDR:
3028 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3029
3030 case PT_GNU_EH_FRAME:
3031 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3032 "eh_frame_hdr");
3033
3034 case PT_GNU_STACK:
3035 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3036
3037 case PT_GNU_RELRO:
3038 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3039
3040 default:
3041 /* Check for any processor-specific program segment types. */
3042 bed = get_elf_backend_data (abfd);
3043 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3044 }
3045 }
3046
3047 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3048 REL or RELA. */
3049
3050 Elf_Internal_Shdr *
3051 _bfd_elf_single_rel_hdr (asection *sec)
3052 {
3053 if (elf_section_data (sec)->rel.hdr)
3054 {
3055 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3056 return elf_section_data (sec)->rel.hdr;
3057 }
3058 else
3059 return elf_section_data (sec)->rela.hdr;
3060 }
3061
3062 static bfd_boolean
3063 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3064 Elf_Internal_Shdr *rel_hdr,
3065 const char *sec_name,
3066 bfd_boolean use_rela_p)
3067 {
3068 char *name = (char *) bfd_alloc (abfd,
3069 sizeof ".rela" + strlen (sec_name));
3070 if (name == NULL)
3071 return FALSE;
3072
3073 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3074 rel_hdr->sh_name =
3075 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3076 FALSE);
3077 if (rel_hdr->sh_name == (unsigned int) -1)
3078 return FALSE;
3079
3080 return TRUE;
3081 }
3082
3083 /* Allocate and initialize a section-header for a new reloc section,
3084 containing relocations against ASECT. It is stored in RELDATA. If
3085 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3086 relocations. */
3087
3088 static bfd_boolean
3089 _bfd_elf_init_reloc_shdr (bfd *abfd,
3090 struct bfd_elf_section_reloc_data *reldata,
3091 const char *sec_name,
3092 bfd_boolean use_rela_p,
3093 bfd_boolean delay_st_name_p)
3094 {
3095 Elf_Internal_Shdr *rel_hdr;
3096 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3097
3098 BFD_ASSERT (reldata->hdr == NULL);
3099 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3100 reldata->hdr = rel_hdr;
3101
3102 if (delay_st_name_p)
3103 rel_hdr->sh_name = (unsigned int) -1;
3104 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3105 use_rela_p))
3106 return FALSE;
3107 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3108 rel_hdr->sh_entsize = (use_rela_p
3109 ? bed->s->sizeof_rela
3110 : bed->s->sizeof_rel);
3111 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3112 rel_hdr->sh_flags = 0;
3113 rel_hdr->sh_addr = 0;
3114 rel_hdr->sh_size = 0;
3115 rel_hdr->sh_offset = 0;
3116
3117 return TRUE;
3118 }
3119
3120 /* Return the default section type based on the passed in section flags. */
3121
3122 int
3123 bfd_elf_get_default_section_type (flagword flags)
3124 {
3125 if ((flags & SEC_ALLOC) != 0
3126 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3127 return SHT_NOBITS;
3128 return SHT_PROGBITS;
3129 }
3130
3131 struct fake_section_arg
3132 {
3133 struct bfd_link_info *link_info;
3134 bfd_boolean failed;
3135 };
3136
3137 /* Set up an ELF internal section header for a section. */
3138
3139 static void
3140 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3141 {
3142 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3143 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3144 struct bfd_elf_section_data *esd = elf_section_data (asect);
3145 Elf_Internal_Shdr *this_hdr;
3146 unsigned int sh_type;
3147 const char *name = asect->name;
3148 bfd_boolean delay_st_name_p = FALSE;
3149
3150 if (arg->failed)
3151 {
3152 /* We already failed; just get out of the bfd_map_over_sections
3153 loop. */
3154 return;
3155 }
3156
3157 this_hdr = &esd->this_hdr;
3158
3159 if (arg->link_info)
3160 {
3161 /* ld: compress DWARF debug sections with names: .debug_*. */
3162 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3163 && (asect->flags & SEC_DEBUGGING)
3164 && name[1] == 'd'
3165 && name[6] == '_')
3166 {
3167 /* Set SEC_ELF_COMPRESS to indicate this section should be
3168 compressed. */
3169 asect->flags |= SEC_ELF_COMPRESS;
3170
3171 /* If this section will be compressed, delay adding section
3172 name to section name section after it is compressed in
3173 _bfd_elf_assign_file_positions_for_non_load. */
3174 delay_st_name_p = TRUE;
3175 }
3176 }
3177 else if ((asect->flags & SEC_ELF_RENAME))
3178 {
3179 /* objcopy: rename output DWARF debug section. */
3180 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3181 {
3182 /* When we decompress or compress with SHF_COMPRESSED,
3183 convert section name from .zdebug_* to .debug_* if
3184 needed. */
3185 if (name[1] == 'z')
3186 {
3187 char *new_name = convert_zdebug_to_debug (abfd, name);
3188 if (new_name == NULL)
3189 {
3190 arg->failed = TRUE;
3191 return;
3192 }
3193 name = new_name;
3194 }
3195 }
3196 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3197 {
3198 /* PR binutils/18087: Compression does not always make a
3199 section smaller. So only rename the section when
3200 compression has actually taken place. If input section
3201 name is .zdebug_*, we should never compress it again. */
3202 char *new_name = convert_debug_to_zdebug (abfd, name);
3203 if (new_name == NULL)
3204 {
3205 arg->failed = TRUE;
3206 return;
3207 }
3208 BFD_ASSERT (name[1] != 'z');
3209 name = new_name;
3210 }
3211 }
3212
3213 if (delay_st_name_p)
3214 this_hdr->sh_name = (unsigned int) -1;
3215 else
3216 {
3217 this_hdr->sh_name
3218 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3219 name, FALSE);
3220 if (this_hdr->sh_name == (unsigned int) -1)
3221 {
3222 arg->failed = TRUE;
3223 return;
3224 }
3225 }
3226
3227 /* Don't clear sh_flags. Assembler may set additional bits. */
3228
3229 if ((asect->flags & SEC_ALLOC) != 0
3230 || asect->user_set_vma)
3231 this_hdr->sh_addr = asect->vma;
3232 else
3233 this_hdr->sh_addr = 0;
3234
3235 this_hdr->sh_offset = 0;
3236 this_hdr->sh_size = asect->size;
3237 this_hdr->sh_link = 0;
3238 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3239 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3240 {
3241 _bfd_error_handler
3242 /* xgettext:c-format */
3243 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3244 abfd, asect->alignment_power, asect);
3245 arg->failed = TRUE;
3246 return;
3247 }
3248 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3249 /* The sh_entsize and sh_info fields may have been set already by
3250 copy_private_section_data. */
3251
3252 this_hdr->bfd_section = asect;
3253 this_hdr->contents = NULL;
3254
3255 /* If the section type is unspecified, we set it based on
3256 asect->flags. */
3257 if ((asect->flags & SEC_GROUP) != 0)
3258 sh_type = SHT_GROUP;
3259 else
3260 sh_type = bfd_elf_get_default_section_type (asect->flags);
3261
3262 if (this_hdr->sh_type == SHT_NULL)
3263 this_hdr->sh_type = sh_type;
3264 else if (this_hdr->sh_type == SHT_NOBITS
3265 && sh_type == SHT_PROGBITS
3266 && (asect->flags & SEC_ALLOC) != 0)
3267 {
3268 /* Warn if we are changing a NOBITS section to PROGBITS, but
3269 allow the link to proceed. This can happen when users link
3270 non-bss input sections to bss output sections, or emit data
3271 to a bss output section via a linker script. */
3272 _bfd_error_handler
3273 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3274 this_hdr->sh_type = sh_type;
3275 }
3276
3277 switch (this_hdr->sh_type)
3278 {
3279 default:
3280 break;
3281
3282 case SHT_STRTAB:
3283 case SHT_NOTE:
3284 case SHT_NOBITS:
3285 case SHT_PROGBITS:
3286 break;
3287
3288 case SHT_INIT_ARRAY:
3289 case SHT_FINI_ARRAY:
3290 case SHT_PREINIT_ARRAY:
3291 this_hdr->sh_entsize = bed->s->arch_size / 8;
3292 break;
3293
3294 case SHT_HASH:
3295 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3296 break;
3297
3298 case SHT_DYNSYM:
3299 this_hdr->sh_entsize = bed->s->sizeof_sym;
3300 break;
3301
3302 case SHT_DYNAMIC:
3303 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3304 break;
3305
3306 case SHT_RELA:
3307 if (get_elf_backend_data (abfd)->may_use_rela_p)
3308 this_hdr->sh_entsize = bed->s->sizeof_rela;
3309 break;
3310
3311 case SHT_REL:
3312 if (get_elf_backend_data (abfd)->may_use_rel_p)
3313 this_hdr->sh_entsize = bed->s->sizeof_rel;
3314 break;
3315
3316 case SHT_GNU_versym:
3317 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3318 break;
3319
3320 case SHT_GNU_verdef:
3321 this_hdr->sh_entsize = 0;
3322 /* objcopy or strip will copy over sh_info, but may not set
3323 cverdefs. The linker will set cverdefs, but sh_info will be
3324 zero. */
3325 if (this_hdr->sh_info == 0)
3326 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3327 else
3328 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3329 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3330 break;
3331
3332 case SHT_GNU_verneed:
3333 this_hdr->sh_entsize = 0;
3334 /* objcopy or strip will copy over sh_info, but may not set
3335 cverrefs. The linker will set cverrefs, but sh_info will be
3336 zero. */
3337 if (this_hdr->sh_info == 0)
3338 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3339 else
3340 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3341 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3342 break;
3343
3344 case SHT_GROUP:
3345 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3346 break;
3347
3348 case SHT_GNU_HASH:
3349 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3350 break;
3351 }
3352
3353 if ((asect->flags & SEC_ALLOC) != 0)
3354 this_hdr->sh_flags |= SHF_ALLOC;
3355 if ((asect->flags & SEC_READONLY) == 0)
3356 this_hdr->sh_flags |= SHF_WRITE;
3357 if ((asect->flags & SEC_CODE) != 0)
3358 this_hdr->sh_flags |= SHF_EXECINSTR;
3359 if ((asect->flags & SEC_MERGE) != 0)
3360 {
3361 this_hdr->sh_flags |= SHF_MERGE;
3362 this_hdr->sh_entsize = asect->entsize;
3363 }
3364 if ((asect->flags & SEC_STRINGS) != 0)
3365 this_hdr->sh_flags |= SHF_STRINGS;
3366 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3367 this_hdr->sh_flags |= SHF_GROUP;
3368 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3369 {
3370 this_hdr->sh_flags |= SHF_TLS;
3371 if (asect->size == 0
3372 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3373 {
3374 struct bfd_link_order *o = asect->map_tail.link_order;
3375
3376 this_hdr->sh_size = 0;
3377 if (o != NULL)
3378 {
3379 this_hdr->sh_size = o->offset + o->size;
3380 if (this_hdr->sh_size != 0)
3381 this_hdr->sh_type = SHT_NOBITS;
3382 }
3383 }
3384 }
3385 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3386 this_hdr->sh_flags |= SHF_EXCLUDE;
3387
3388 /* If the section has relocs, set up a section header for the
3389 SHT_REL[A] section. If two relocation sections are required for
3390 this section, it is up to the processor-specific back-end to
3391 create the other. */
3392 if ((asect->flags & SEC_RELOC) != 0)
3393 {
3394 /* When doing a relocatable link, create both REL and RELA sections if
3395 needed. */
3396 if (arg->link_info
3397 /* Do the normal setup if we wouldn't create any sections here. */
3398 && esd->rel.count + esd->rela.count > 0
3399 && (bfd_link_relocatable (arg->link_info)
3400 || arg->link_info->emitrelocations))
3401 {
3402 if (esd->rel.count && esd->rel.hdr == NULL
3403 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3404 FALSE, delay_st_name_p))
3405 {
3406 arg->failed = TRUE;
3407 return;
3408 }
3409 if (esd->rela.count && esd->rela.hdr == NULL
3410 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3411 TRUE, delay_st_name_p))
3412 {
3413 arg->failed = TRUE;
3414 return;
3415 }
3416 }
3417 else if (!_bfd_elf_init_reloc_shdr (abfd,
3418 (asect->use_rela_p
3419 ? &esd->rela : &esd->rel),
3420 name,
3421 asect->use_rela_p,
3422 delay_st_name_p))
3423 {
3424 arg->failed = TRUE;
3425 return;
3426 }
3427 }
3428
3429 /* Check for processor-specific section types. */
3430 sh_type = this_hdr->sh_type;
3431 if (bed->elf_backend_fake_sections
3432 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3433 {
3434 arg->failed = TRUE;
3435 return;
3436 }
3437
3438 if (sh_type == SHT_NOBITS && asect->size != 0)
3439 {
3440 /* Don't change the header type from NOBITS if we are being
3441 called for objcopy --only-keep-debug. */
3442 this_hdr->sh_type = sh_type;
3443 }
3444 }
3445
3446 /* Fill in the contents of a SHT_GROUP section. Called from
3447 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3448 when ELF targets use the generic linker, ld. Called for ld -r
3449 from bfd_elf_final_link. */
3450
3451 void
3452 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3453 {
3454 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3455 asection *elt, *first;
3456 unsigned char *loc;
3457 bfd_boolean gas;
3458
3459 /* Ignore linker created group section. See elfNN_ia64_object_p in
3460 elfxx-ia64.c. */
3461 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3462 || *failedptr)
3463 return;
3464
3465 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3466 {
3467 unsigned long symindx = 0;
3468
3469 /* elf_group_id will have been set up by objcopy and the
3470 generic linker. */
3471 if (elf_group_id (sec) != NULL)
3472 symindx = elf_group_id (sec)->udata.i;
3473
3474 if (symindx == 0)
3475 {
3476 /* If called from the assembler, swap_out_syms will have set up
3477 elf_section_syms. */
3478 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3479 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3480 }
3481 elf_section_data (sec)->this_hdr.sh_info = symindx;
3482 }
3483 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3484 {
3485 /* The ELF backend linker sets sh_info to -2 when the group
3486 signature symbol is global, and thus the index can't be
3487 set until all local symbols are output. */
3488 asection *igroup;
3489 struct bfd_elf_section_data *sec_data;
3490 unsigned long symndx;
3491 unsigned long extsymoff;
3492 struct elf_link_hash_entry *h;
3493
3494 /* The point of this little dance to the first SHF_GROUP section
3495 then back to the SHT_GROUP section is that this gets us to
3496 the SHT_GROUP in the input object. */
3497 igroup = elf_sec_group (elf_next_in_group (sec));
3498 sec_data = elf_section_data (igroup);
3499 symndx = sec_data->this_hdr.sh_info;
3500 extsymoff = 0;
3501 if (!elf_bad_symtab (igroup->owner))
3502 {
3503 Elf_Internal_Shdr *symtab_hdr;
3504
3505 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3506 extsymoff = symtab_hdr->sh_info;
3507 }
3508 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3509 while (h->root.type == bfd_link_hash_indirect
3510 || h->root.type == bfd_link_hash_warning)
3511 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3512
3513 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3514 }
3515
3516 /* The contents won't be allocated for "ld -r" or objcopy. */
3517 gas = TRUE;
3518 if (sec->contents == NULL)
3519 {
3520 gas = FALSE;
3521 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3522
3523 /* Arrange for the section to be written out. */
3524 elf_section_data (sec)->this_hdr.contents = sec->contents;
3525 if (sec->contents == NULL)
3526 {
3527 *failedptr = TRUE;
3528 return;
3529 }
3530 }
3531
3532 loc = sec->contents + sec->size;
3533
3534 /* Get the pointer to the first section in the group that gas
3535 squirreled away here. objcopy arranges for this to be set to the
3536 start of the input section group. */
3537 first = elt = elf_next_in_group (sec);
3538
3539 /* First element is a flag word. Rest of section is elf section
3540 indices for all the sections of the group. Write them backwards
3541 just to keep the group in the same order as given in .section
3542 directives, not that it matters. */
3543 while (elt != NULL)
3544 {
3545 asection *s;
3546
3547 s = elt;
3548 if (!gas)
3549 s = s->output_section;
3550 if (s != NULL
3551 && !bfd_is_abs_section (s))
3552 {
3553 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3554 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3555
3556 if (elf_sec->rel.hdr != NULL
3557 && (gas
3558 || (input_elf_sec->rel.hdr != NULL
3559 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3560 {
3561 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3562 loc -= 4;
3563 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3564 }
3565 if (elf_sec->rela.hdr != NULL
3566 && (gas
3567 || (input_elf_sec->rela.hdr != NULL
3568 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3569 {
3570 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3571 loc -= 4;
3572 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3573 }
3574 loc -= 4;
3575 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3576 }
3577 elt = elf_next_in_group (elt);
3578 if (elt == first)
3579 break;
3580 }
3581
3582 loc -= 4;
3583 BFD_ASSERT (loc == sec->contents);
3584
3585 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3586 }
3587
3588 /* Given NAME, the name of a relocation section stripped of its
3589 .rel/.rela prefix, return the section in ABFD to which the
3590 relocations apply. */
3591
3592 asection *
3593 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3594 {
3595 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3596 section likely apply to .got.plt or .got section. */
3597 if (get_elf_backend_data (abfd)->want_got_plt
3598 && strcmp (name, ".plt") == 0)
3599 {
3600 asection *sec;
3601
3602 name = ".got.plt";
3603 sec = bfd_get_section_by_name (abfd, name);
3604 if (sec != NULL)
3605 return sec;
3606 name = ".got";
3607 }
3608
3609 return bfd_get_section_by_name (abfd, name);
3610 }
3611
3612 /* Return the section to which RELOC_SEC applies. */
3613
3614 static asection *
3615 elf_get_reloc_section (asection *reloc_sec)
3616 {
3617 const char *name;
3618 unsigned int type;
3619 bfd *abfd;
3620 const struct elf_backend_data *bed;
3621
3622 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3623 if (type != SHT_REL && type != SHT_RELA)
3624 return NULL;
3625
3626 /* We look up the section the relocs apply to by name. */
3627 name = reloc_sec->name;
3628 if (strncmp (name, ".rel", 4) != 0)
3629 return NULL;
3630 name += 4;
3631 if (type == SHT_RELA && *name++ != 'a')
3632 return NULL;
3633
3634 abfd = reloc_sec->owner;
3635 bed = get_elf_backend_data (abfd);
3636 return bed->get_reloc_section (abfd, name);
3637 }
3638
3639 /* Assign all ELF section numbers. The dummy first section is handled here
3640 too. The link/info pointers for the standard section types are filled
3641 in here too, while we're at it. */
3642
3643 static bfd_boolean
3644 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3645 {
3646 struct elf_obj_tdata *t = elf_tdata (abfd);
3647 asection *sec;
3648 unsigned int section_number;
3649 Elf_Internal_Shdr **i_shdrp;
3650 struct bfd_elf_section_data *d;
3651 bfd_boolean need_symtab;
3652
3653 section_number = 1;
3654
3655 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3656
3657 /* SHT_GROUP sections are in relocatable files only. */
3658 if (link_info == NULL || !link_info->resolve_section_groups)
3659 {
3660 size_t reloc_count = 0;
3661
3662 /* Put SHT_GROUP sections first. */
3663 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3664 {
3665 d = elf_section_data (sec);
3666
3667 if (d->this_hdr.sh_type == SHT_GROUP)
3668 {
3669 if (sec->flags & SEC_LINKER_CREATED)
3670 {
3671 /* Remove the linker created SHT_GROUP sections. */
3672 bfd_section_list_remove (abfd, sec);
3673 abfd->section_count--;
3674 }
3675 else
3676 d->this_idx = section_number++;
3677 }
3678
3679 /* Count relocations. */
3680 reloc_count += sec->reloc_count;
3681 }
3682
3683 /* Clear HAS_RELOC if there are no relocations. */
3684 if (reloc_count == 0)
3685 abfd->flags &= ~HAS_RELOC;
3686 }
3687
3688 for (sec = abfd->sections; sec; sec = sec->next)
3689 {
3690 d = elf_section_data (sec);
3691
3692 if (d->this_hdr.sh_type != SHT_GROUP)
3693 d->this_idx = section_number++;
3694 if (d->this_hdr.sh_name != (unsigned int) -1)
3695 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3696 if (d->rel.hdr)
3697 {
3698 d->rel.idx = section_number++;
3699 if (d->rel.hdr->sh_name != (unsigned int) -1)
3700 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3701 }
3702 else
3703 d->rel.idx = 0;
3704
3705 if (d->rela.hdr)
3706 {
3707 d->rela.idx = section_number++;
3708 if (d->rela.hdr->sh_name != (unsigned int) -1)
3709 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3710 }
3711 else
3712 d->rela.idx = 0;
3713 }
3714
3715 need_symtab = (bfd_get_symcount (abfd) > 0
3716 || (link_info == NULL
3717 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3718 == HAS_RELOC)));
3719 if (need_symtab)
3720 {
3721 elf_onesymtab (abfd) = section_number++;
3722 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3723 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3724 {
3725 elf_section_list * entry;
3726
3727 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3728
3729 entry = bfd_zalloc (abfd, sizeof * entry);
3730 entry->ndx = section_number++;
3731 elf_symtab_shndx_list (abfd) = entry;
3732 entry->hdr.sh_name
3733 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3734 ".symtab_shndx", FALSE);
3735 if (entry->hdr.sh_name == (unsigned int) -1)
3736 return FALSE;
3737 }
3738 elf_strtab_sec (abfd) = section_number++;
3739 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3740 }
3741
3742 elf_shstrtab_sec (abfd) = section_number++;
3743 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3744 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3745
3746 if (section_number >= SHN_LORESERVE)
3747 {
3748 /* xgettext:c-format */
3749 _bfd_error_handler (_("%pB: too many sections: %u"),
3750 abfd, section_number);
3751 return FALSE;
3752 }
3753
3754 elf_numsections (abfd) = section_number;
3755 elf_elfheader (abfd)->e_shnum = section_number;
3756
3757 /* Set up the list of section header pointers, in agreement with the
3758 indices. */
3759 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3760 sizeof (Elf_Internal_Shdr *));
3761 if (i_shdrp == NULL)
3762 return FALSE;
3763
3764 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3765 sizeof (Elf_Internal_Shdr));
3766 if (i_shdrp[0] == NULL)
3767 {
3768 bfd_release (abfd, i_shdrp);
3769 return FALSE;
3770 }
3771
3772 elf_elfsections (abfd) = i_shdrp;
3773
3774 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3775 if (need_symtab)
3776 {
3777 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3778 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3779 {
3780 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3781 BFD_ASSERT (entry != NULL);
3782 i_shdrp[entry->ndx] = & entry->hdr;
3783 entry->hdr.sh_link = elf_onesymtab (abfd);
3784 }
3785 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3786 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3787 }
3788
3789 for (sec = abfd->sections; sec; sec = sec->next)
3790 {
3791 asection *s;
3792
3793 d = elf_section_data (sec);
3794
3795 i_shdrp[d->this_idx] = &d->this_hdr;
3796 if (d->rel.idx != 0)
3797 i_shdrp[d->rel.idx] = d->rel.hdr;
3798 if (d->rela.idx != 0)
3799 i_shdrp[d->rela.idx] = d->rela.hdr;
3800
3801 /* Fill in the sh_link and sh_info fields while we're at it. */
3802
3803 /* sh_link of a reloc section is the section index of the symbol
3804 table. sh_info is the section index of the section to which
3805 the relocation entries apply. */
3806 if (d->rel.idx != 0)
3807 {
3808 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3809 d->rel.hdr->sh_info = d->this_idx;
3810 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3811 }
3812 if (d->rela.idx != 0)
3813 {
3814 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3815 d->rela.hdr->sh_info = d->this_idx;
3816 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3817 }
3818
3819 /* We need to set up sh_link for SHF_LINK_ORDER. */
3820 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3821 {
3822 s = elf_linked_to_section (sec);
3823 if (s)
3824 {
3825 /* elf_linked_to_section points to the input section. */
3826 if (link_info != NULL)
3827 {
3828 /* Check discarded linkonce section. */
3829 if (discarded_section (s))
3830 {
3831 asection *kept;
3832 _bfd_error_handler
3833 /* xgettext:c-format */
3834 (_("%pB: sh_link of section `%pA' points to"
3835 " discarded section `%pA' of `%pB'"),
3836 abfd, d->this_hdr.bfd_section,
3837 s, s->owner);
3838 /* Point to the kept section if it has the same
3839 size as the discarded one. */
3840 kept = _bfd_elf_check_kept_section (s, link_info);
3841 if (kept == NULL)
3842 {
3843 bfd_set_error (bfd_error_bad_value);
3844 return FALSE;
3845 }
3846 s = kept;
3847 }
3848
3849 s = s->output_section;
3850 BFD_ASSERT (s != NULL);
3851 }
3852 else
3853 {
3854 /* Handle objcopy. */
3855 if (s->output_section == NULL)
3856 {
3857 _bfd_error_handler
3858 /* xgettext:c-format */
3859 (_("%pB: sh_link of section `%pA' points to"
3860 " removed section `%pA' of `%pB'"),
3861 abfd, d->this_hdr.bfd_section, s, s->owner);
3862 bfd_set_error (bfd_error_bad_value);
3863 return FALSE;
3864 }
3865 s = s->output_section;
3866 }
3867 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3868 }
3869 else
3870 {
3871 /* PR 290:
3872 The Intel C compiler generates SHT_IA_64_UNWIND with
3873 SHF_LINK_ORDER. But it doesn't set the sh_link or
3874 sh_info fields. Hence we could get the situation
3875 where s is NULL. */
3876 const struct elf_backend_data *bed
3877 = get_elf_backend_data (abfd);
3878 if (bed->link_order_error_handler)
3879 bed->link_order_error_handler
3880 /* xgettext:c-format */
3881 (_("%pB: warning: sh_link not set for section `%pA'"),
3882 abfd, sec);
3883 }
3884 }
3885
3886 switch (d->this_hdr.sh_type)
3887 {
3888 case SHT_REL:
3889 case SHT_RELA:
3890 /* A reloc section which we are treating as a normal BFD
3891 section. sh_link is the section index of the symbol
3892 table. sh_info is the section index of the section to
3893 which the relocation entries apply. We assume that an
3894 allocated reloc section uses the dynamic symbol table.
3895 FIXME: How can we be sure? */
3896 s = bfd_get_section_by_name (abfd, ".dynsym");
3897 if (s != NULL)
3898 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3899
3900 s = elf_get_reloc_section (sec);
3901 if (s != NULL)
3902 {
3903 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3904 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3905 }
3906 break;
3907
3908 case SHT_STRTAB:
3909 /* We assume that a section named .stab*str is a stabs
3910 string section. We look for a section with the same name
3911 but without the trailing ``str'', and set its sh_link
3912 field to point to this section. */
3913 if (CONST_STRNEQ (sec->name, ".stab")
3914 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3915 {
3916 size_t len;
3917 char *alc;
3918
3919 len = strlen (sec->name);
3920 alc = (char *) bfd_malloc (len - 2);
3921 if (alc == NULL)
3922 return FALSE;
3923 memcpy (alc, sec->name, len - 3);
3924 alc[len - 3] = '\0';
3925 s = bfd_get_section_by_name (abfd, alc);
3926 free (alc);
3927 if (s != NULL)
3928 {
3929 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3930
3931 /* This is a .stab section. */
3932 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3933 elf_section_data (s)->this_hdr.sh_entsize
3934 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3935 }
3936 }
3937 break;
3938
3939 case SHT_DYNAMIC:
3940 case SHT_DYNSYM:
3941 case SHT_GNU_verneed:
3942 case SHT_GNU_verdef:
3943 /* sh_link is the section header index of the string table
3944 used for the dynamic entries, or the symbol table, or the
3945 version strings. */
3946 s = bfd_get_section_by_name (abfd, ".dynstr");
3947 if (s != NULL)
3948 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3949 break;
3950
3951 case SHT_GNU_LIBLIST:
3952 /* sh_link is the section header index of the prelink library
3953 list used for the dynamic entries, or the symbol table, or
3954 the version strings. */
3955 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3956 ? ".dynstr" : ".gnu.libstr");
3957 if (s != NULL)
3958 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3959 break;
3960
3961 case SHT_HASH:
3962 case SHT_GNU_HASH:
3963 case SHT_GNU_versym:
3964 /* sh_link is the section header index of the symbol table
3965 this hash table or version table is for. */
3966 s = bfd_get_section_by_name (abfd, ".dynsym");
3967 if (s != NULL)
3968 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3969 break;
3970
3971 case SHT_GROUP:
3972 d->this_hdr.sh_link = elf_onesymtab (abfd);
3973 }
3974 }
3975
3976 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3977 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3978 debug section name from .debug_* to .zdebug_* if needed. */
3979
3980 return TRUE;
3981 }
3982
3983 static bfd_boolean
3984 sym_is_global (bfd *abfd, asymbol *sym)
3985 {
3986 /* If the backend has a special mapping, use it. */
3987 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3988 if (bed->elf_backend_sym_is_global)
3989 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3990
3991 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3992 || bfd_is_und_section (bfd_get_section (sym))
3993 || bfd_is_com_section (bfd_get_section (sym)));
3994 }
3995
3996 /* Filter global symbols of ABFD to include in the import library. All
3997 SYMCOUNT symbols of ABFD can be examined from their pointers in
3998 SYMS. Pointers of symbols to keep should be stored contiguously at
3999 the beginning of that array.
4000
4001 Returns the number of symbols to keep. */
4002
4003 unsigned int
4004 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4005 asymbol **syms, long symcount)
4006 {
4007 long src_count, dst_count = 0;
4008
4009 for (src_count = 0; src_count < symcount; src_count++)
4010 {
4011 asymbol *sym = syms[src_count];
4012 char *name = (char *) bfd_asymbol_name (sym);
4013 struct bfd_link_hash_entry *h;
4014
4015 if (!sym_is_global (abfd, sym))
4016 continue;
4017
4018 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4019 if (h == NULL)
4020 continue;
4021 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4022 continue;
4023 if (h->linker_def || h->ldscript_def)
4024 continue;
4025
4026 syms[dst_count++] = sym;
4027 }
4028
4029 syms[dst_count] = NULL;
4030
4031 return dst_count;
4032 }
4033
4034 /* Don't output section symbols for sections that are not going to be
4035 output, that are duplicates or there is no BFD section. */
4036
4037 static bfd_boolean
4038 ignore_section_sym (bfd *abfd, asymbol *sym)
4039 {
4040 elf_symbol_type *type_ptr;
4041
4042 if (sym == NULL)
4043 return FALSE;
4044
4045 if ((sym->flags & BSF_SECTION_SYM) == 0)
4046 return FALSE;
4047
4048 if (sym->section == NULL)
4049 return TRUE;
4050
4051 type_ptr = elf_symbol_from (abfd, sym);
4052 return ((type_ptr != NULL
4053 && type_ptr->internal_elf_sym.st_shndx != 0
4054 && bfd_is_abs_section (sym->section))
4055 || !(sym->section->owner == abfd
4056 || (sym->section->output_section != NULL
4057 && sym->section->output_section->owner == abfd
4058 && sym->section->output_offset == 0)
4059 || bfd_is_abs_section (sym->section)));
4060 }
4061
4062 /* Map symbol from it's internal number to the external number, moving
4063 all local symbols to be at the head of the list. */
4064
4065 static bfd_boolean
4066 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4067 {
4068 unsigned int symcount = bfd_get_symcount (abfd);
4069 asymbol **syms = bfd_get_outsymbols (abfd);
4070 asymbol **sect_syms;
4071 unsigned int num_locals = 0;
4072 unsigned int num_globals = 0;
4073 unsigned int num_locals2 = 0;
4074 unsigned int num_globals2 = 0;
4075 unsigned int max_index = 0;
4076 unsigned int idx;
4077 asection *asect;
4078 asymbol **new_syms;
4079
4080 #ifdef DEBUG
4081 fprintf (stderr, "elf_map_symbols\n");
4082 fflush (stderr);
4083 #endif
4084
4085 for (asect = abfd->sections; asect; asect = asect->next)
4086 {
4087 if (max_index < asect->index)
4088 max_index = asect->index;
4089 }
4090
4091 max_index++;
4092 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4093 if (sect_syms == NULL)
4094 return FALSE;
4095 elf_section_syms (abfd) = sect_syms;
4096 elf_num_section_syms (abfd) = max_index;
4097
4098 /* Init sect_syms entries for any section symbols we have already
4099 decided to output. */
4100 for (idx = 0; idx < symcount; idx++)
4101 {
4102 asymbol *sym = syms[idx];
4103
4104 if ((sym->flags & BSF_SECTION_SYM) != 0
4105 && sym->value == 0
4106 && !ignore_section_sym (abfd, sym)
4107 && !bfd_is_abs_section (sym->section))
4108 {
4109 asection *sec = sym->section;
4110
4111 if (sec->owner != abfd)
4112 sec = sec->output_section;
4113
4114 sect_syms[sec->index] = syms[idx];
4115 }
4116 }
4117
4118 /* Classify all of the symbols. */
4119 for (idx = 0; idx < symcount; idx++)
4120 {
4121 if (sym_is_global (abfd, syms[idx]))
4122 num_globals++;
4123 else if (!ignore_section_sym (abfd, syms[idx]))
4124 num_locals++;
4125 }
4126
4127 /* We will be adding a section symbol for each normal BFD section. Most
4128 sections will already have a section symbol in outsymbols, but
4129 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4130 at least in that case. */
4131 for (asect = abfd->sections; asect; asect = asect->next)
4132 {
4133 if (sect_syms[asect->index] == NULL)
4134 {
4135 if (!sym_is_global (abfd, asect->symbol))
4136 num_locals++;
4137 else
4138 num_globals++;
4139 }
4140 }
4141
4142 /* Now sort the symbols so the local symbols are first. */
4143 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4144 sizeof (asymbol *));
4145
4146 if (new_syms == NULL)
4147 return FALSE;
4148
4149 for (idx = 0; idx < symcount; idx++)
4150 {
4151 asymbol *sym = syms[idx];
4152 unsigned int i;
4153
4154 if (sym_is_global (abfd, sym))
4155 i = num_locals + num_globals2++;
4156 else if (!ignore_section_sym (abfd, sym))
4157 i = num_locals2++;
4158 else
4159 continue;
4160 new_syms[i] = sym;
4161 sym->udata.i = i + 1;
4162 }
4163 for (asect = abfd->sections; asect; asect = asect->next)
4164 {
4165 if (sect_syms[asect->index] == NULL)
4166 {
4167 asymbol *sym = asect->symbol;
4168 unsigned int i;
4169
4170 sect_syms[asect->index] = sym;
4171 if (!sym_is_global (abfd, sym))
4172 i = num_locals2++;
4173 else
4174 i = num_locals + num_globals2++;
4175 new_syms[i] = sym;
4176 sym->udata.i = i + 1;
4177 }
4178 }
4179
4180 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4181
4182 *pnum_locals = num_locals;
4183 return TRUE;
4184 }
4185
4186 /* Align to the maximum file alignment that could be required for any
4187 ELF data structure. */
4188
4189 static inline file_ptr
4190 align_file_position (file_ptr off, int align)
4191 {
4192 return (off + align - 1) & ~(align - 1);
4193 }
4194
4195 /* Assign a file position to a section, optionally aligning to the
4196 required section alignment. */
4197
4198 file_ptr
4199 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4200 file_ptr offset,
4201 bfd_boolean align)
4202 {
4203 if (align && i_shdrp->sh_addralign > 1)
4204 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4205 i_shdrp->sh_offset = offset;
4206 if (i_shdrp->bfd_section != NULL)
4207 i_shdrp->bfd_section->filepos = offset;
4208 if (i_shdrp->sh_type != SHT_NOBITS)
4209 offset += i_shdrp->sh_size;
4210 return offset;
4211 }
4212
4213 /* Compute the file positions we are going to put the sections at, and
4214 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4215 is not NULL, this is being called by the ELF backend linker. */
4216
4217 bfd_boolean
4218 _bfd_elf_compute_section_file_positions (bfd *abfd,
4219 struct bfd_link_info *link_info)
4220 {
4221 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4222 struct fake_section_arg fsargs;
4223 bfd_boolean failed;
4224 struct elf_strtab_hash *strtab = NULL;
4225 Elf_Internal_Shdr *shstrtab_hdr;
4226 bfd_boolean need_symtab;
4227
4228 if (abfd->output_has_begun)
4229 return TRUE;
4230
4231 /* Do any elf backend specific processing first. */
4232 if (bed->elf_backend_begin_write_processing)
4233 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4234
4235 if (! prep_headers (abfd))
4236 return FALSE;
4237
4238 /* Post process the headers if necessary. */
4239 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4240
4241 fsargs.failed = FALSE;
4242 fsargs.link_info = link_info;
4243 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4244 if (fsargs.failed)
4245 return FALSE;
4246
4247 if (!assign_section_numbers (abfd, link_info))
4248 return FALSE;
4249
4250 /* The backend linker builds symbol table information itself. */
4251 need_symtab = (link_info == NULL
4252 && (bfd_get_symcount (abfd) > 0
4253 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4254 == HAS_RELOC)));
4255 if (need_symtab)
4256 {
4257 /* Non-zero if doing a relocatable link. */
4258 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4259
4260 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4261 return FALSE;
4262 }
4263
4264 failed = FALSE;
4265 if (link_info == NULL)
4266 {
4267 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4268 if (failed)
4269 return FALSE;
4270 }
4271
4272 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4273 /* sh_name was set in prep_headers. */
4274 shstrtab_hdr->sh_type = SHT_STRTAB;
4275 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4276 shstrtab_hdr->sh_addr = 0;
4277 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4278 shstrtab_hdr->sh_entsize = 0;
4279 shstrtab_hdr->sh_link = 0;
4280 shstrtab_hdr->sh_info = 0;
4281 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4282 shstrtab_hdr->sh_addralign = 1;
4283
4284 if (!assign_file_positions_except_relocs (abfd, link_info))
4285 return FALSE;
4286
4287 if (need_symtab)
4288 {
4289 file_ptr off;
4290 Elf_Internal_Shdr *hdr;
4291
4292 off = elf_next_file_pos (abfd);
4293
4294 hdr = & elf_symtab_hdr (abfd);
4295 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4296
4297 if (elf_symtab_shndx_list (abfd) != NULL)
4298 {
4299 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4300 if (hdr->sh_size != 0)
4301 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4302 /* FIXME: What about other symtab_shndx sections in the list ? */
4303 }
4304
4305 hdr = &elf_tdata (abfd)->strtab_hdr;
4306 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4307
4308 elf_next_file_pos (abfd) = off;
4309
4310 /* Now that we know where the .strtab section goes, write it
4311 out. */
4312 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4313 || ! _bfd_elf_strtab_emit (abfd, strtab))
4314 return FALSE;
4315 _bfd_elf_strtab_free (strtab);
4316 }
4317
4318 abfd->output_has_begun = TRUE;
4319
4320 return TRUE;
4321 }
4322
4323 /* Make an initial estimate of the size of the program header. If we
4324 get the number wrong here, we'll redo section placement. */
4325
4326 static bfd_size_type
4327 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4328 {
4329 size_t segs;
4330 asection *s;
4331 const struct elf_backend_data *bed;
4332
4333 /* Assume we will need exactly two PT_LOAD segments: one for text
4334 and one for data. */
4335 segs = 2;
4336
4337 s = bfd_get_section_by_name (abfd, ".interp");
4338 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4339 {
4340 /* If we have a loadable interpreter section, we need a
4341 PT_INTERP segment. In this case, assume we also need a
4342 PT_PHDR segment, although that may not be true for all
4343 targets. */
4344 segs += 2;
4345 }
4346
4347 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4348 {
4349 /* We need a PT_DYNAMIC segment. */
4350 ++segs;
4351 }
4352
4353 if (info != NULL && info->relro)
4354 {
4355 /* We need a PT_GNU_RELRO segment. */
4356 ++segs;
4357 }
4358
4359 if (elf_eh_frame_hdr (abfd))
4360 {
4361 /* We need a PT_GNU_EH_FRAME segment. */
4362 ++segs;
4363 }
4364
4365 if (elf_stack_flags (abfd))
4366 {
4367 /* We need a PT_GNU_STACK segment. */
4368 ++segs;
4369 }
4370
4371 for (s = abfd->sections; s != NULL; s = s->next)
4372 {
4373 if ((s->flags & SEC_LOAD) != 0
4374 && elf_section_type (s) == SHT_NOTE)
4375 {
4376 unsigned int alignment_power;
4377 /* We need a PT_NOTE segment. */
4378 ++segs;
4379 /* Try to create just one PT_NOTE segment for all adjacent
4380 loadable SHT_NOTE sections. gABI requires that within a
4381 PT_NOTE segment (and also inside of each SHT_NOTE section)
4382 each note should have the same alignment. So we check
4383 whether the sections are correctly aligned. */
4384 alignment_power = s->alignment_power;
4385 while (s->next != NULL
4386 && s->next->alignment_power == alignment_power
4387 && (s->next->flags & SEC_LOAD) != 0
4388 && elf_section_type (s->next) == SHT_NOTE)
4389 s = s->next;
4390 }
4391 }
4392
4393 for (s = abfd->sections; s != NULL; s = s->next)
4394 {
4395 if (s->flags & SEC_THREAD_LOCAL)
4396 {
4397 /* We need a PT_TLS segment. */
4398 ++segs;
4399 break;
4400 }
4401 }
4402
4403 bed = get_elf_backend_data (abfd);
4404
4405 if ((abfd->flags & D_PAGED) != 0)
4406 {
4407 /* Add a PT_GNU_MBIND segment for each mbind section. */
4408 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4409 for (s = abfd->sections; s != NULL; s = s->next)
4410 if (elf_section_flags (s) & SHF_GNU_MBIND)
4411 {
4412 if (elf_section_data (s)->this_hdr.sh_info
4413 > PT_GNU_MBIND_NUM)
4414 {
4415 _bfd_error_handler
4416 /* xgettext:c-format */
4417 (_("%pB: GNU_MBIN section `%pA' has invalid sh_info field: %d"),
4418 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4419 continue;
4420 }
4421 /* Align mbind section to page size. */
4422 if (s->alignment_power < page_align_power)
4423 s->alignment_power = page_align_power;
4424 segs ++;
4425 }
4426 }
4427
4428 /* Let the backend count up any program headers it might need. */
4429 if (bed->elf_backend_additional_program_headers)
4430 {
4431 int a;
4432
4433 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4434 if (a == -1)
4435 abort ();
4436 segs += a;
4437 }
4438
4439 return segs * bed->s->sizeof_phdr;
4440 }
4441
4442 /* Find the segment that contains the output_section of section. */
4443
4444 Elf_Internal_Phdr *
4445 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4446 {
4447 struct elf_segment_map *m;
4448 Elf_Internal_Phdr *p;
4449
4450 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4451 m != NULL;
4452 m = m->next, p++)
4453 {
4454 int i;
4455
4456 for (i = m->count - 1; i >= 0; i--)
4457 if (m->sections[i] == section)
4458 return p;
4459 }
4460
4461 return NULL;
4462 }
4463
4464 /* Create a mapping from a set of sections to a program segment. */
4465
4466 static struct elf_segment_map *
4467 make_mapping (bfd *abfd,
4468 asection **sections,
4469 unsigned int from,
4470 unsigned int to,
4471 bfd_boolean phdr)
4472 {
4473 struct elf_segment_map *m;
4474 unsigned int i;
4475 asection **hdrpp;
4476 bfd_size_type amt;
4477
4478 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4479 amt += (to - from) * sizeof (asection *);
4480 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4481 if (m == NULL)
4482 return NULL;
4483 m->next = NULL;
4484 m->p_type = PT_LOAD;
4485 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4486 m->sections[i - from] = *hdrpp;
4487 m->count = to - from;
4488
4489 if (from == 0 && phdr)
4490 {
4491 /* Include the headers in the first PT_LOAD segment. */
4492 m->includes_filehdr = 1;
4493 m->includes_phdrs = 1;
4494 }
4495
4496 return m;
4497 }
4498
4499 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4500 on failure. */
4501
4502 struct elf_segment_map *
4503 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4504 {
4505 struct elf_segment_map *m;
4506
4507 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4508 sizeof (struct elf_segment_map));
4509 if (m == NULL)
4510 return NULL;
4511 m->next = NULL;
4512 m->p_type = PT_DYNAMIC;
4513 m->count = 1;
4514 m->sections[0] = dynsec;
4515
4516 return m;
4517 }
4518
4519 /* Possibly add or remove segments from the segment map. */
4520
4521 static bfd_boolean
4522 elf_modify_segment_map (bfd *abfd,
4523 struct bfd_link_info *info,
4524 bfd_boolean remove_empty_load)
4525 {
4526 struct elf_segment_map **m;
4527 const struct elf_backend_data *bed;
4528
4529 /* The placement algorithm assumes that non allocated sections are
4530 not in PT_LOAD segments. We ensure this here by removing such
4531 sections from the segment map. We also remove excluded
4532 sections. Finally, any PT_LOAD segment without sections is
4533 removed. */
4534 m = &elf_seg_map (abfd);
4535 while (*m)
4536 {
4537 unsigned int i, new_count;
4538
4539 for (new_count = 0, i = 0; i < (*m)->count; i++)
4540 {
4541 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4542 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4543 || (*m)->p_type != PT_LOAD))
4544 {
4545 (*m)->sections[new_count] = (*m)->sections[i];
4546 new_count++;
4547 }
4548 }
4549 (*m)->count = new_count;
4550
4551 if (remove_empty_load
4552 && (*m)->p_type == PT_LOAD
4553 && (*m)->count == 0
4554 && !(*m)->includes_phdrs)
4555 *m = (*m)->next;
4556 else
4557 m = &(*m)->next;
4558 }
4559
4560 bed = get_elf_backend_data (abfd);
4561 if (bed->elf_backend_modify_segment_map != NULL)
4562 {
4563 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4564 return FALSE;
4565 }
4566
4567 return TRUE;
4568 }
4569
4570 #define IS_TBSS(s) \
4571 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4572
4573 /* Set up a mapping from BFD sections to program segments. */
4574
4575 bfd_boolean
4576 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4577 {
4578 unsigned int count;
4579 struct elf_segment_map *m;
4580 asection **sections = NULL;
4581 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4582 bfd_boolean no_user_phdrs;
4583
4584 no_user_phdrs = elf_seg_map (abfd) == NULL;
4585
4586 if (info != NULL)
4587 info->user_phdrs = !no_user_phdrs;
4588
4589 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4590 {
4591 asection *s;
4592 unsigned int i;
4593 struct elf_segment_map *mfirst;
4594 struct elf_segment_map **pm;
4595 asection *last_hdr;
4596 bfd_vma last_size;
4597 unsigned int hdr_index;
4598 bfd_vma maxpagesize;
4599 asection **hdrpp;
4600 bfd_boolean phdr_in_segment = TRUE;
4601 bfd_boolean writable;
4602 bfd_boolean executable;
4603 int tls_count = 0;
4604 asection *first_tls = NULL;
4605 asection *first_mbind = NULL;
4606 asection *dynsec, *eh_frame_hdr;
4607 bfd_size_type amt;
4608 bfd_vma addr_mask, wrap_to = 0;
4609 bfd_boolean linker_created_pt_phdr_segment = FALSE;
4610
4611 /* Select the allocated sections, and sort them. */
4612
4613 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4614 sizeof (asection *));
4615 if (sections == NULL)
4616 goto error_return;
4617
4618 /* Calculate top address, avoiding undefined behaviour of shift
4619 left operator when shift count is equal to size of type
4620 being shifted. */
4621 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4622 addr_mask = (addr_mask << 1) + 1;
4623
4624 i = 0;
4625 for (s = abfd->sections; s != NULL; s = s->next)
4626 {
4627 if ((s->flags & SEC_ALLOC) != 0)
4628 {
4629 sections[i] = s;
4630 ++i;
4631 /* A wrapping section potentially clashes with header. */
4632 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4633 wrap_to = (s->lma + s->size) & addr_mask;
4634 }
4635 }
4636 BFD_ASSERT (i <= bfd_count_sections (abfd));
4637 count = i;
4638
4639 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4640
4641 /* Build the mapping. */
4642
4643 mfirst = NULL;
4644 pm = &mfirst;
4645
4646 /* If we have a .interp section, then create a PT_PHDR segment for
4647 the program headers and a PT_INTERP segment for the .interp
4648 section. */
4649 s = bfd_get_section_by_name (abfd, ".interp");
4650 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4651 {
4652 amt = sizeof (struct elf_segment_map);
4653 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4654 if (m == NULL)
4655 goto error_return;
4656 m->next = NULL;
4657 m->p_type = PT_PHDR;
4658 m->p_flags = PF_R;
4659 m->p_flags_valid = 1;
4660 m->includes_phdrs = 1;
4661 linker_created_pt_phdr_segment = TRUE;
4662 *pm = m;
4663 pm = &m->next;
4664
4665 amt = sizeof (struct elf_segment_map);
4666 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4667 if (m == NULL)
4668 goto error_return;
4669 m->next = NULL;
4670 m->p_type = PT_INTERP;
4671 m->count = 1;
4672 m->sections[0] = s;
4673
4674 *pm = m;
4675 pm = &m->next;
4676 }
4677
4678 /* Look through the sections. We put sections in the same program
4679 segment when the start of the second section can be placed within
4680 a few bytes of the end of the first section. */
4681 last_hdr = NULL;
4682 last_size = 0;
4683 hdr_index = 0;
4684 maxpagesize = bed->maxpagesize;
4685 /* PR 17512: file: c8455299.
4686 Avoid divide-by-zero errors later on.
4687 FIXME: Should we abort if the maxpagesize is zero ? */
4688 if (maxpagesize == 0)
4689 maxpagesize = 1;
4690 writable = FALSE;
4691 executable = FALSE;
4692 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4693 if (dynsec != NULL
4694 && (dynsec->flags & SEC_LOAD) == 0)
4695 dynsec = NULL;
4696
4697 /* Deal with -Ttext or something similar such that the first section
4698 is not adjacent to the program headers. This is an
4699 approximation, since at this point we don't know exactly how many
4700 program headers we will need. */
4701 if (count > 0)
4702 {
4703 bfd_size_type phdr_size = elf_program_header_size (abfd);
4704
4705 if (phdr_size == (bfd_size_type) -1)
4706 phdr_size = get_program_header_size (abfd, info);
4707 phdr_size += bed->s->sizeof_ehdr;
4708 if ((abfd->flags & D_PAGED) == 0
4709 || (sections[0]->lma & addr_mask) < phdr_size
4710 || ((sections[0]->lma & addr_mask) % maxpagesize
4711 < phdr_size % maxpagesize)
4712 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4713 {
4714 /* PR 20815: The ELF standard says that a PT_PHDR segment, if
4715 present, must be included as part of the memory image of the
4716 program. Ie it must be part of a PT_LOAD segment as well.
4717 If we have had to create our own PT_PHDR segment, but it is
4718 not going to be covered by the first PT_LOAD segment, then
4719 force the inclusion if we can... */
4720 if ((abfd->flags & D_PAGED) != 0
4721 && linker_created_pt_phdr_segment)
4722 phdr_in_segment = TRUE;
4723 else
4724 phdr_in_segment = FALSE;
4725 }
4726 }
4727
4728 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4729 {
4730 asection *hdr;
4731 bfd_boolean new_segment;
4732
4733 hdr = *hdrpp;
4734
4735 /* See if this section and the last one will fit in the same
4736 segment. */
4737
4738 if (last_hdr == NULL)
4739 {
4740 /* If we don't have a segment yet, then we don't need a new
4741 one (we build the last one after this loop). */
4742 new_segment = FALSE;
4743 }
4744 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4745 {
4746 /* If this section has a different relation between the
4747 virtual address and the load address, then we need a new
4748 segment. */
4749 new_segment = TRUE;
4750 }
4751 else if (hdr->lma < last_hdr->lma + last_size
4752 || last_hdr->lma + last_size < last_hdr->lma)
4753 {
4754 /* If this section has a load address that makes it overlap
4755 the previous section, then we need a new segment. */
4756 new_segment = TRUE;
4757 }
4758 else if ((abfd->flags & D_PAGED) != 0
4759 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4760 == (hdr->lma & -maxpagesize)))
4761 {
4762 /* If we are demand paged then we can't map two disk
4763 pages onto the same memory page. */
4764 new_segment = FALSE;
4765 }
4766 /* In the next test we have to be careful when last_hdr->lma is close
4767 to the end of the address space. If the aligned address wraps
4768 around to the start of the address space, then there are no more
4769 pages left in memory and it is OK to assume that the current
4770 section can be included in the current segment. */
4771 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4772 + maxpagesize > last_hdr->lma)
4773 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4774 + maxpagesize <= hdr->lma))
4775 {
4776 /* If putting this section in this segment would force us to
4777 skip a page in the segment, then we need a new segment. */
4778 new_segment = TRUE;
4779 }
4780 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4781 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4782 {
4783 /* We don't want to put a loaded section after a
4784 nonloaded (ie. bss style) section in the same segment
4785 as that will force the non-loaded section to be loaded.
4786 Consider .tbss sections as loaded for this purpose. */
4787 new_segment = TRUE;
4788 }
4789 else if ((abfd->flags & D_PAGED) == 0)
4790 {
4791 /* If the file is not demand paged, which means that we
4792 don't require the sections to be correctly aligned in the
4793 file, then there is no other reason for a new segment. */
4794 new_segment = FALSE;
4795 }
4796 else if (info != NULL
4797 && info->separate_code
4798 && executable != ((hdr->flags & SEC_CODE) != 0))
4799 {
4800 new_segment = TRUE;
4801 }
4802 else if (! writable
4803 && (hdr->flags & SEC_READONLY) == 0)
4804 {
4805 /* We don't want to put a writable section in a read only
4806 segment. */
4807 new_segment = TRUE;
4808 }
4809 else
4810 {
4811 /* Otherwise, we can use the same segment. */
4812 new_segment = FALSE;
4813 }
4814
4815 /* Allow interested parties a chance to override our decision. */
4816 if (last_hdr != NULL
4817 && info != NULL
4818 && info->callbacks->override_segment_assignment != NULL)
4819 new_segment
4820 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4821 last_hdr,
4822 new_segment);
4823
4824 if (! new_segment)
4825 {
4826 if ((hdr->flags & SEC_READONLY) == 0)
4827 writable = TRUE;
4828 if ((hdr->flags & SEC_CODE) != 0)
4829 executable = TRUE;
4830 last_hdr = hdr;
4831 /* .tbss sections effectively have zero size. */
4832 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4833 continue;
4834 }
4835
4836 /* We need a new program segment. We must create a new program
4837 header holding all the sections from hdr_index until hdr. */
4838
4839 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4840 if (m == NULL)
4841 goto error_return;
4842
4843 *pm = m;
4844 pm = &m->next;
4845
4846 if ((hdr->flags & SEC_READONLY) == 0)
4847 writable = TRUE;
4848 else
4849 writable = FALSE;
4850
4851 if ((hdr->flags & SEC_CODE) == 0)
4852 executable = FALSE;
4853 else
4854 executable = TRUE;
4855
4856 last_hdr = hdr;
4857 /* .tbss sections effectively have zero size. */
4858 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4859 hdr_index = i;
4860 phdr_in_segment = FALSE;
4861 }
4862
4863 /* Create a final PT_LOAD program segment, but not if it's just
4864 for .tbss. */
4865 if (last_hdr != NULL
4866 && (i - hdr_index != 1
4867 || !IS_TBSS (last_hdr)))
4868 {
4869 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4870 if (m == NULL)
4871 goto error_return;
4872
4873 *pm = m;
4874 pm = &m->next;
4875 }
4876
4877 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4878 if (dynsec != NULL)
4879 {
4880 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4881 if (m == NULL)
4882 goto error_return;
4883 *pm = m;
4884 pm = &m->next;
4885 }
4886
4887 /* For each batch of consecutive loadable SHT_NOTE sections,
4888 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4889 because if we link together nonloadable .note sections and
4890 loadable .note sections, we will generate two .note sections
4891 in the output file. */
4892 for (s = abfd->sections; s != NULL; s = s->next)
4893 {
4894 if ((s->flags & SEC_LOAD) != 0
4895 && elf_section_type (s) == SHT_NOTE)
4896 {
4897 asection *s2;
4898 unsigned int alignment_power = s->alignment_power;
4899
4900 count = 1;
4901 for (s2 = s; s2->next != NULL; s2 = s2->next)
4902 {
4903 if (s2->next->alignment_power == alignment_power
4904 && (s2->next->flags & SEC_LOAD) != 0
4905 && elf_section_type (s2->next) == SHT_NOTE
4906 && align_power (s2->lma + s2->size,
4907 alignment_power)
4908 == s2->next->lma)
4909 count++;
4910 else
4911 break;
4912 }
4913 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4914 amt += count * sizeof (asection *);
4915 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4916 if (m == NULL)
4917 goto error_return;
4918 m->next = NULL;
4919 m->p_type = PT_NOTE;
4920 m->count = count;
4921 while (count > 1)
4922 {
4923 m->sections[m->count - count--] = s;
4924 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4925 s = s->next;
4926 }
4927 m->sections[m->count - 1] = s;
4928 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4929 *pm = m;
4930 pm = &m->next;
4931 }
4932 if (s->flags & SEC_THREAD_LOCAL)
4933 {
4934 if (! tls_count)
4935 first_tls = s;
4936 tls_count++;
4937 }
4938 if (first_mbind == NULL
4939 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
4940 first_mbind = s;
4941 }
4942
4943 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4944 if (tls_count > 0)
4945 {
4946 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4947 amt += tls_count * sizeof (asection *);
4948 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4949 if (m == NULL)
4950 goto error_return;
4951 m->next = NULL;
4952 m->p_type = PT_TLS;
4953 m->count = tls_count;
4954 /* Mandated PF_R. */
4955 m->p_flags = PF_R;
4956 m->p_flags_valid = 1;
4957 s = first_tls;
4958 for (i = 0; i < (unsigned int) tls_count; ++i)
4959 {
4960 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4961 {
4962 _bfd_error_handler
4963 (_("%pB: TLS sections are not adjacent:"), abfd);
4964 s = first_tls;
4965 i = 0;
4966 while (i < (unsigned int) tls_count)
4967 {
4968 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4969 {
4970 _bfd_error_handler (_(" TLS: %pA"), s);
4971 i++;
4972 }
4973 else
4974 _bfd_error_handler (_(" non-TLS: %pA"), s);
4975 s = s->next;
4976 }
4977 bfd_set_error (bfd_error_bad_value);
4978 goto error_return;
4979 }
4980 m->sections[i] = s;
4981 s = s->next;
4982 }
4983
4984 *pm = m;
4985 pm = &m->next;
4986 }
4987
4988 if (first_mbind && (abfd->flags & D_PAGED) != 0)
4989 for (s = first_mbind; s != NULL; s = s->next)
4990 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
4991 && (elf_section_data (s)->this_hdr.sh_info
4992 <= PT_GNU_MBIND_NUM))
4993 {
4994 /* Mandated PF_R. */
4995 unsigned long p_flags = PF_R;
4996 if ((s->flags & SEC_READONLY) == 0)
4997 p_flags |= PF_W;
4998 if ((s->flags & SEC_CODE) != 0)
4999 p_flags |= PF_X;
5000
5001 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5002 m = bfd_zalloc (abfd, amt);
5003 if (m == NULL)
5004 goto error_return;
5005 m->next = NULL;
5006 m->p_type = (PT_GNU_MBIND_LO
5007 + elf_section_data (s)->this_hdr.sh_info);
5008 m->count = 1;
5009 m->p_flags_valid = 1;
5010 m->sections[0] = s;
5011 m->p_flags = p_flags;
5012
5013 *pm = m;
5014 pm = &m->next;
5015 }
5016
5017 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5018 segment. */
5019 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5020 if (eh_frame_hdr != NULL
5021 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5022 {
5023 amt = sizeof (struct elf_segment_map);
5024 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5025 if (m == NULL)
5026 goto error_return;
5027 m->next = NULL;
5028 m->p_type = PT_GNU_EH_FRAME;
5029 m->count = 1;
5030 m->sections[0] = eh_frame_hdr->output_section;
5031
5032 *pm = m;
5033 pm = &m->next;
5034 }
5035
5036 if (elf_stack_flags (abfd))
5037 {
5038 amt = sizeof (struct elf_segment_map);
5039 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5040 if (m == NULL)
5041 goto error_return;
5042 m->next = NULL;
5043 m->p_type = PT_GNU_STACK;
5044 m->p_flags = elf_stack_flags (abfd);
5045 m->p_align = bed->stack_align;
5046 m->p_flags_valid = 1;
5047 m->p_align_valid = m->p_align != 0;
5048 if (info->stacksize > 0)
5049 {
5050 m->p_size = info->stacksize;
5051 m->p_size_valid = 1;
5052 }
5053
5054 *pm = m;
5055 pm = &m->next;
5056 }
5057
5058 if (info != NULL && info->relro)
5059 {
5060 for (m = mfirst; m != NULL; m = m->next)
5061 {
5062 if (m->p_type == PT_LOAD
5063 && m->count != 0
5064 && m->sections[0]->vma >= info->relro_start
5065 && m->sections[0]->vma < info->relro_end)
5066 {
5067 i = m->count;
5068 while (--i != (unsigned) -1)
5069 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5070 == (SEC_LOAD | SEC_HAS_CONTENTS))
5071 break;
5072
5073 if (i != (unsigned) -1)
5074 break;
5075 }
5076 }
5077
5078 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5079 if (m != NULL)
5080 {
5081 amt = sizeof (struct elf_segment_map);
5082 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5083 if (m == NULL)
5084 goto error_return;
5085 m->next = NULL;
5086 m->p_type = PT_GNU_RELRO;
5087 *pm = m;
5088 pm = &m->next;
5089 }
5090 }
5091
5092 free (sections);
5093 elf_seg_map (abfd) = mfirst;
5094 }
5095
5096 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5097 return FALSE;
5098
5099 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5100 ++count;
5101 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5102
5103 return TRUE;
5104
5105 error_return:
5106 if (sections != NULL)
5107 free (sections);
5108 return FALSE;
5109 }
5110
5111 /* Sort sections by address. */
5112
5113 static int
5114 elf_sort_sections (const void *arg1, const void *arg2)
5115 {
5116 const asection *sec1 = *(const asection **) arg1;
5117 const asection *sec2 = *(const asection **) arg2;
5118 bfd_size_type size1, size2;
5119
5120 /* Sort by LMA first, since this is the address used to
5121 place the section into a segment. */
5122 if (sec1->lma < sec2->lma)
5123 return -1;
5124 else if (sec1->lma > sec2->lma)
5125 return 1;
5126
5127 /* Then sort by VMA. Normally the LMA and the VMA will be
5128 the same, and this will do nothing. */
5129 if (sec1->vma < sec2->vma)
5130 return -1;
5131 else if (sec1->vma > sec2->vma)
5132 return 1;
5133
5134 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5135
5136 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5137
5138 if (TOEND (sec1))
5139 {
5140 if (TOEND (sec2))
5141 {
5142 /* If the indices are the same, do not return 0
5143 here, but continue to try the next comparison. */
5144 if (sec1->target_index - sec2->target_index != 0)
5145 return sec1->target_index - sec2->target_index;
5146 }
5147 else
5148 return 1;
5149 }
5150 else if (TOEND (sec2))
5151 return -1;
5152
5153 #undef TOEND
5154
5155 /* Sort by size, to put zero sized sections
5156 before others at the same address. */
5157
5158 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5159 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5160
5161 if (size1 < size2)
5162 return -1;
5163 if (size1 > size2)
5164 return 1;
5165
5166 return sec1->target_index - sec2->target_index;
5167 }
5168
5169 /* Ian Lance Taylor writes:
5170
5171 We shouldn't be using % with a negative signed number. That's just
5172 not good. We have to make sure either that the number is not
5173 negative, or that the number has an unsigned type. When the types
5174 are all the same size they wind up as unsigned. When file_ptr is a
5175 larger signed type, the arithmetic winds up as signed long long,
5176 which is wrong.
5177
5178 What we're trying to say here is something like ``increase OFF by
5179 the least amount that will cause it to be equal to the VMA modulo
5180 the page size.'' */
5181 /* In other words, something like:
5182
5183 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5184 off_offset = off % bed->maxpagesize;
5185 if (vma_offset < off_offset)
5186 adjustment = vma_offset + bed->maxpagesize - off_offset;
5187 else
5188 adjustment = vma_offset - off_offset;
5189
5190 which can be collapsed into the expression below. */
5191
5192 static file_ptr
5193 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5194 {
5195 /* PR binutils/16199: Handle an alignment of zero. */
5196 if (maxpagesize == 0)
5197 maxpagesize = 1;
5198 return ((vma - off) % maxpagesize);
5199 }
5200
5201 static void
5202 print_segment_map (const struct elf_segment_map *m)
5203 {
5204 unsigned int j;
5205 const char *pt = get_segment_type (m->p_type);
5206 char buf[32];
5207
5208 if (pt == NULL)
5209 {
5210 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5211 sprintf (buf, "LOPROC+%7.7x",
5212 (unsigned int) (m->p_type - PT_LOPROC));
5213 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5214 sprintf (buf, "LOOS+%7.7x",
5215 (unsigned int) (m->p_type - PT_LOOS));
5216 else
5217 snprintf (buf, sizeof (buf), "%8.8x",
5218 (unsigned int) m->p_type);
5219 pt = buf;
5220 }
5221 fflush (stdout);
5222 fprintf (stderr, "%s:", pt);
5223 for (j = 0; j < m->count; j++)
5224 fprintf (stderr, " %s", m->sections [j]->name);
5225 putc ('\n',stderr);
5226 fflush (stderr);
5227 }
5228
5229 static bfd_boolean
5230 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5231 {
5232 void *buf;
5233 bfd_boolean ret;
5234
5235 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5236 return FALSE;
5237 buf = bfd_zmalloc (len);
5238 if (buf == NULL)
5239 return FALSE;
5240 ret = bfd_bwrite (buf, len, abfd) == len;
5241 free (buf);
5242 return ret;
5243 }
5244
5245 /* Assign file positions to the sections based on the mapping from
5246 sections to segments. This function also sets up some fields in
5247 the file header. */
5248
5249 static bfd_boolean
5250 assign_file_positions_for_load_sections (bfd *abfd,
5251 struct bfd_link_info *link_info)
5252 {
5253 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5254 struct elf_segment_map *m;
5255 Elf_Internal_Phdr *phdrs;
5256 Elf_Internal_Phdr *p;
5257 file_ptr off;
5258 bfd_size_type maxpagesize;
5259 unsigned int pt_load_count = 0;
5260 unsigned int alloc;
5261 unsigned int i, j;
5262 bfd_vma header_pad = 0;
5263
5264 if (link_info == NULL
5265 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5266 return FALSE;
5267
5268 alloc = 0;
5269 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5270 {
5271 ++alloc;
5272 if (m->header_size)
5273 header_pad = m->header_size;
5274 }
5275
5276 if (alloc)
5277 {
5278 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5279 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5280 }
5281 else
5282 {
5283 /* PR binutils/12467. */
5284 elf_elfheader (abfd)->e_phoff = 0;
5285 elf_elfheader (abfd)->e_phentsize = 0;
5286 }
5287
5288 elf_elfheader (abfd)->e_phnum = alloc;
5289
5290 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5291 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5292 else
5293 BFD_ASSERT (elf_program_header_size (abfd)
5294 >= alloc * bed->s->sizeof_phdr);
5295
5296 if (alloc == 0)
5297 {
5298 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5299 return TRUE;
5300 }
5301
5302 /* We're writing the size in elf_program_header_size (abfd),
5303 see assign_file_positions_except_relocs, so make sure we have
5304 that amount allocated, with trailing space cleared.
5305 The variable alloc contains the computed need, while
5306 elf_program_header_size (abfd) contains the size used for the
5307 layout.
5308 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5309 where the layout is forced to according to a larger size in the
5310 last iterations for the testcase ld-elf/header. */
5311 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5312 == 0);
5313 phdrs = (Elf_Internal_Phdr *)
5314 bfd_zalloc2 (abfd,
5315 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5316 sizeof (Elf_Internal_Phdr));
5317 elf_tdata (abfd)->phdr = phdrs;
5318 if (phdrs == NULL)
5319 return FALSE;
5320
5321 maxpagesize = 1;
5322 if ((abfd->flags & D_PAGED) != 0)
5323 maxpagesize = bed->maxpagesize;
5324
5325 off = bed->s->sizeof_ehdr;
5326 off += alloc * bed->s->sizeof_phdr;
5327 if (header_pad < (bfd_vma) off)
5328 header_pad = 0;
5329 else
5330 header_pad -= off;
5331 off += header_pad;
5332
5333 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5334 m != NULL;
5335 m = m->next, p++, j++)
5336 {
5337 asection **secpp;
5338 bfd_vma off_adjust;
5339 bfd_boolean no_contents;
5340
5341 /* If elf_segment_map is not from map_sections_to_segments, the
5342 sections may not be correctly ordered. NOTE: sorting should
5343 not be done to the PT_NOTE section of a corefile, which may
5344 contain several pseudo-sections artificially created by bfd.
5345 Sorting these pseudo-sections breaks things badly. */
5346 if (m->count > 1
5347 && !(elf_elfheader (abfd)->e_type == ET_CORE
5348 && m->p_type == PT_NOTE))
5349 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5350 elf_sort_sections);
5351
5352 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5353 number of sections with contents contributing to both p_filesz
5354 and p_memsz, followed by a number of sections with no contents
5355 that just contribute to p_memsz. In this loop, OFF tracks next
5356 available file offset for PT_LOAD and PT_NOTE segments. */
5357 p->p_type = m->p_type;
5358 p->p_flags = m->p_flags;
5359
5360 if (m->count == 0)
5361 p->p_vaddr = 0;
5362 else
5363 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5364
5365 if (m->p_paddr_valid)
5366 p->p_paddr = m->p_paddr;
5367 else if (m->count == 0)
5368 p->p_paddr = 0;
5369 else
5370 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5371
5372 if (p->p_type == PT_LOAD
5373 && (abfd->flags & D_PAGED) != 0)
5374 {
5375 /* p_align in demand paged PT_LOAD segments effectively stores
5376 the maximum page size. When copying an executable with
5377 objcopy, we set m->p_align from the input file. Use this
5378 value for maxpagesize rather than bed->maxpagesize, which
5379 may be different. Note that we use maxpagesize for PT_TLS
5380 segment alignment later in this function, so we are relying
5381 on at least one PT_LOAD segment appearing before a PT_TLS
5382 segment. */
5383 if (m->p_align_valid)
5384 maxpagesize = m->p_align;
5385
5386 p->p_align = maxpagesize;
5387 pt_load_count += 1;
5388 }
5389 else if (m->p_align_valid)
5390 p->p_align = m->p_align;
5391 else if (m->count == 0)
5392 p->p_align = 1 << bed->s->log_file_align;
5393 else
5394 p->p_align = 0;
5395
5396 no_contents = FALSE;
5397 off_adjust = 0;
5398 if (p->p_type == PT_LOAD
5399 && m->count > 0)
5400 {
5401 bfd_size_type align;
5402 unsigned int align_power = 0;
5403
5404 if (m->p_align_valid)
5405 align = p->p_align;
5406 else
5407 {
5408 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5409 {
5410 unsigned int secalign;
5411
5412 secalign = bfd_get_section_alignment (abfd, *secpp);
5413 if (secalign > align_power)
5414 align_power = secalign;
5415 }
5416 align = (bfd_size_type) 1 << align_power;
5417 if (align < maxpagesize)
5418 align = maxpagesize;
5419 }
5420
5421 for (i = 0; i < m->count; i++)
5422 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5423 /* If we aren't making room for this section, then
5424 it must be SHT_NOBITS regardless of what we've
5425 set via struct bfd_elf_special_section. */
5426 elf_section_type (m->sections[i]) = SHT_NOBITS;
5427
5428 /* Find out whether this segment contains any loadable
5429 sections. */
5430 no_contents = TRUE;
5431 for (i = 0; i < m->count; i++)
5432 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5433 {
5434 no_contents = FALSE;
5435 break;
5436 }
5437
5438 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5439
5440 /* Broken hardware and/or kernel require that files do not
5441 map the same page with different permissions on some hppa
5442 processors. */
5443 if (pt_load_count > 1
5444 && bed->no_page_alias
5445 && (off & (maxpagesize - 1)) != 0
5446 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5447 off_adjust += maxpagesize;
5448 off += off_adjust;
5449 if (no_contents)
5450 {
5451 /* We shouldn't need to align the segment on disk since
5452 the segment doesn't need file space, but the gABI
5453 arguably requires the alignment and glibc ld.so
5454 checks it. So to comply with the alignment
5455 requirement but not waste file space, we adjust
5456 p_offset for just this segment. (OFF_ADJUST is
5457 subtracted from OFF later.) This may put p_offset
5458 past the end of file, but that shouldn't matter. */
5459 }
5460 else
5461 off_adjust = 0;
5462 }
5463 /* Make sure the .dynamic section is the first section in the
5464 PT_DYNAMIC segment. */
5465 else if (p->p_type == PT_DYNAMIC
5466 && m->count > 1
5467 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5468 {
5469 _bfd_error_handler
5470 (_("%pB: The first section in the PT_DYNAMIC segment"
5471 " is not the .dynamic section"),
5472 abfd);
5473 bfd_set_error (bfd_error_bad_value);
5474 return FALSE;
5475 }
5476 /* Set the note section type to SHT_NOTE. */
5477 else if (p->p_type == PT_NOTE)
5478 for (i = 0; i < m->count; i++)
5479 elf_section_type (m->sections[i]) = SHT_NOTE;
5480
5481 p->p_offset = 0;
5482 p->p_filesz = 0;
5483 p->p_memsz = 0;
5484
5485 if (m->includes_filehdr)
5486 {
5487 if (!m->p_flags_valid)
5488 p->p_flags |= PF_R;
5489 p->p_filesz = bed->s->sizeof_ehdr;
5490 p->p_memsz = bed->s->sizeof_ehdr;
5491 if (m->count > 0)
5492 {
5493 if (p->p_vaddr < (bfd_vma) off
5494 || (!m->p_paddr_valid
5495 && p->p_paddr < (bfd_vma) off))
5496 {
5497 _bfd_error_handler
5498 (_("%pB: not enough room for program headers,"
5499 " try linking with -N"),
5500 abfd);
5501 bfd_set_error (bfd_error_bad_value);
5502 return FALSE;
5503 }
5504
5505 p->p_vaddr -= off;
5506 if (!m->p_paddr_valid)
5507 p->p_paddr -= off;
5508 }
5509 }
5510
5511 if (m->includes_phdrs)
5512 {
5513 if (!m->p_flags_valid)
5514 p->p_flags |= PF_R;
5515
5516 if (!m->includes_filehdr)
5517 {
5518 p->p_offset = bed->s->sizeof_ehdr;
5519
5520 if (m->count > 0)
5521 {
5522 p->p_vaddr -= off - p->p_offset;
5523 if (!m->p_paddr_valid)
5524 p->p_paddr -= off - p->p_offset;
5525 }
5526 }
5527
5528 p->p_filesz += alloc * bed->s->sizeof_phdr;
5529 p->p_memsz += alloc * bed->s->sizeof_phdr;
5530 if (m->count)
5531 {
5532 p->p_filesz += header_pad;
5533 p->p_memsz += header_pad;
5534 }
5535 }
5536
5537 if (p->p_type == PT_LOAD
5538 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5539 {
5540 if (!m->includes_filehdr && !m->includes_phdrs)
5541 p->p_offset = off;
5542 else
5543 {
5544 file_ptr adjust;
5545
5546 adjust = off - (p->p_offset + p->p_filesz);
5547 if (!no_contents)
5548 p->p_filesz += adjust;
5549 p->p_memsz += adjust;
5550 }
5551 }
5552
5553 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5554 maps. Set filepos for sections in PT_LOAD segments, and in
5555 core files, for sections in PT_NOTE segments.
5556 assign_file_positions_for_non_load_sections will set filepos
5557 for other sections and update p_filesz for other segments. */
5558 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5559 {
5560 asection *sec;
5561 bfd_size_type align;
5562 Elf_Internal_Shdr *this_hdr;
5563
5564 sec = *secpp;
5565 this_hdr = &elf_section_data (sec)->this_hdr;
5566 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5567
5568 if ((p->p_type == PT_LOAD
5569 || p->p_type == PT_TLS)
5570 && (this_hdr->sh_type != SHT_NOBITS
5571 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5572 && ((this_hdr->sh_flags & SHF_TLS) == 0
5573 || p->p_type == PT_TLS))))
5574 {
5575 bfd_vma p_start = p->p_paddr;
5576 bfd_vma p_end = p_start + p->p_memsz;
5577 bfd_vma s_start = sec->lma;
5578 bfd_vma adjust = s_start - p_end;
5579
5580 if (adjust != 0
5581 && (s_start < p_end
5582 || p_end < p_start))
5583 {
5584 _bfd_error_handler
5585 /* xgettext:c-format */
5586 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5587 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5588 adjust = 0;
5589 sec->lma = p_end;
5590 }
5591 p->p_memsz += adjust;
5592
5593 if (this_hdr->sh_type != SHT_NOBITS)
5594 {
5595 if (p->p_filesz + adjust < p->p_memsz)
5596 {
5597 /* We have a PROGBITS section following NOBITS ones.
5598 Allocate file space for the NOBITS section(s) and
5599 zero it. */
5600 adjust = p->p_memsz - p->p_filesz;
5601 if (!write_zeros (abfd, off, adjust))
5602 return FALSE;
5603 }
5604 off += adjust;
5605 p->p_filesz += adjust;
5606 }
5607 }
5608
5609 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5610 {
5611 /* The section at i == 0 is the one that actually contains
5612 everything. */
5613 if (i == 0)
5614 {
5615 this_hdr->sh_offset = sec->filepos = off;
5616 off += this_hdr->sh_size;
5617 p->p_filesz = this_hdr->sh_size;
5618 p->p_memsz = 0;
5619 p->p_align = 1;
5620 }
5621 else
5622 {
5623 /* The rest are fake sections that shouldn't be written. */
5624 sec->filepos = 0;
5625 sec->size = 0;
5626 sec->flags = 0;
5627 continue;
5628 }
5629 }
5630 else
5631 {
5632 if (p->p_type == PT_LOAD)
5633 {
5634 this_hdr->sh_offset = sec->filepos = off;
5635 if (this_hdr->sh_type != SHT_NOBITS)
5636 off += this_hdr->sh_size;
5637 }
5638 else if (this_hdr->sh_type == SHT_NOBITS
5639 && (this_hdr->sh_flags & SHF_TLS) != 0
5640 && this_hdr->sh_offset == 0)
5641 {
5642 /* This is a .tbss section that didn't get a PT_LOAD.
5643 (See _bfd_elf_map_sections_to_segments "Create a
5644 final PT_LOAD".) Set sh_offset to the value it
5645 would have if we had created a zero p_filesz and
5646 p_memsz PT_LOAD header for the section. This
5647 also makes the PT_TLS header have the same
5648 p_offset value. */
5649 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5650 off, align);
5651 this_hdr->sh_offset = sec->filepos = off + adjust;
5652 }
5653
5654 if (this_hdr->sh_type != SHT_NOBITS)
5655 {
5656 p->p_filesz += this_hdr->sh_size;
5657 /* A load section without SHF_ALLOC is something like
5658 a note section in a PT_NOTE segment. These take
5659 file space but are not loaded into memory. */
5660 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5661 p->p_memsz += this_hdr->sh_size;
5662 }
5663 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5664 {
5665 if (p->p_type == PT_TLS)
5666 p->p_memsz += this_hdr->sh_size;
5667
5668 /* .tbss is special. It doesn't contribute to p_memsz of
5669 normal segments. */
5670 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5671 p->p_memsz += this_hdr->sh_size;
5672 }
5673
5674 if (align > p->p_align
5675 && !m->p_align_valid
5676 && (p->p_type != PT_LOAD
5677 || (abfd->flags & D_PAGED) == 0))
5678 p->p_align = align;
5679 }
5680
5681 if (!m->p_flags_valid)
5682 {
5683 p->p_flags |= PF_R;
5684 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5685 p->p_flags |= PF_X;
5686 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5687 p->p_flags |= PF_W;
5688 }
5689 }
5690
5691 off -= off_adjust;
5692
5693 /* Check that all sections are in a PT_LOAD segment.
5694 Don't check funky gdb generated core files. */
5695 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5696 {
5697 bfd_boolean check_vma = TRUE;
5698
5699 for (i = 1; i < m->count; i++)
5700 if (m->sections[i]->vma == m->sections[i - 1]->vma
5701 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5702 ->this_hdr), p) != 0
5703 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5704 ->this_hdr), p) != 0)
5705 {
5706 /* Looks like we have overlays packed into the segment. */
5707 check_vma = FALSE;
5708 break;
5709 }
5710
5711 for (i = 0; i < m->count; i++)
5712 {
5713 Elf_Internal_Shdr *this_hdr;
5714 asection *sec;
5715
5716 sec = m->sections[i];
5717 this_hdr = &(elf_section_data(sec)->this_hdr);
5718 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5719 && !ELF_TBSS_SPECIAL (this_hdr, p))
5720 {
5721 _bfd_error_handler
5722 /* xgettext:c-format */
5723 (_("%pB: section `%pA' can't be allocated in segment %d"),
5724 abfd, sec, j);
5725 print_segment_map (m);
5726 }
5727 }
5728 }
5729 }
5730
5731 elf_next_file_pos (abfd) = off;
5732 return TRUE;
5733 }
5734
5735 /* Assign file positions for the other sections. */
5736
5737 static bfd_boolean
5738 assign_file_positions_for_non_load_sections (bfd *abfd,
5739 struct bfd_link_info *link_info)
5740 {
5741 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5742 Elf_Internal_Shdr **i_shdrpp;
5743 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5744 Elf_Internal_Phdr *phdrs;
5745 Elf_Internal_Phdr *p;
5746 struct elf_segment_map *m;
5747 struct elf_segment_map *hdrs_segment;
5748 bfd_vma filehdr_vaddr, filehdr_paddr;
5749 bfd_vma phdrs_vaddr, phdrs_paddr;
5750 file_ptr off;
5751 unsigned int count;
5752
5753 i_shdrpp = elf_elfsections (abfd);
5754 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5755 off = elf_next_file_pos (abfd);
5756 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5757 {
5758 Elf_Internal_Shdr *hdr;
5759
5760 hdr = *hdrpp;
5761 if (hdr->bfd_section != NULL
5762 && (hdr->bfd_section->filepos != 0
5763 || (hdr->sh_type == SHT_NOBITS
5764 && hdr->contents == NULL)))
5765 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5766 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5767 {
5768 if (hdr->sh_size != 0)
5769 _bfd_error_handler
5770 /* xgettext:c-format */
5771 (_("%pB: warning: allocated section `%s' not in segment"),
5772 abfd,
5773 (hdr->bfd_section == NULL
5774 ? "*unknown*"
5775 : hdr->bfd_section->name));
5776 /* We don't need to page align empty sections. */
5777 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5778 off += vma_page_aligned_bias (hdr->sh_addr, off,
5779 bed->maxpagesize);
5780 else
5781 off += vma_page_aligned_bias (hdr->sh_addr, off,
5782 hdr->sh_addralign);
5783 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5784 FALSE);
5785 }
5786 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5787 && hdr->bfd_section == NULL)
5788 || (hdr->bfd_section != NULL
5789 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5790 /* Compress DWARF debug sections. */
5791 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5792 || (elf_symtab_shndx_list (abfd) != NULL
5793 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5794 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5795 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5796 hdr->sh_offset = -1;
5797 else
5798 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5799 }
5800
5801 /* Now that we have set the section file positions, we can set up
5802 the file positions for the non PT_LOAD segments. */
5803 count = 0;
5804 filehdr_vaddr = 0;
5805 filehdr_paddr = 0;
5806 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5807 phdrs_paddr = 0;
5808 hdrs_segment = NULL;
5809 phdrs = elf_tdata (abfd)->phdr;
5810 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5811 {
5812 ++count;
5813 if (p->p_type != PT_LOAD)
5814 continue;
5815
5816 if (m->includes_filehdr)
5817 {
5818 filehdr_vaddr = p->p_vaddr;
5819 filehdr_paddr = p->p_paddr;
5820 }
5821 if (m->includes_phdrs)
5822 {
5823 phdrs_vaddr = p->p_vaddr;
5824 phdrs_paddr = p->p_paddr;
5825 if (m->includes_filehdr)
5826 {
5827 hdrs_segment = m;
5828 phdrs_vaddr += bed->s->sizeof_ehdr;
5829 phdrs_paddr += bed->s->sizeof_ehdr;
5830 }
5831 }
5832 }
5833
5834 if (hdrs_segment != NULL && link_info != NULL)
5835 {
5836 /* There is a segment that contains both the file headers and the
5837 program headers, so provide a symbol __ehdr_start pointing there.
5838 A program can use this to examine itself robustly. */
5839
5840 struct elf_link_hash_entry *hash
5841 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5842 FALSE, FALSE, TRUE);
5843 /* If the symbol was referenced and not defined, define it. */
5844 if (hash != NULL
5845 && (hash->root.type == bfd_link_hash_new
5846 || hash->root.type == bfd_link_hash_undefined
5847 || hash->root.type == bfd_link_hash_undefweak
5848 || hash->root.type == bfd_link_hash_common))
5849 {
5850 asection *s = NULL;
5851 if (hdrs_segment->count != 0)
5852 /* The segment contains sections, so use the first one. */
5853 s = hdrs_segment->sections[0];
5854 else
5855 /* Use the first (i.e. lowest-addressed) section in any segment. */
5856 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5857 if (m->count != 0)
5858 {
5859 s = m->sections[0];
5860 break;
5861 }
5862
5863 if (s != NULL)
5864 {
5865 hash->root.u.def.value = filehdr_vaddr - s->vma;
5866 hash->root.u.def.section = s;
5867 }
5868 else
5869 {
5870 hash->root.u.def.value = filehdr_vaddr;
5871 hash->root.u.def.section = bfd_abs_section_ptr;
5872 }
5873
5874 hash->root.type = bfd_link_hash_defined;
5875 hash->def_regular = 1;
5876 hash->non_elf = 0;
5877 }
5878 }
5879
5880 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5881 {
5882 if (p->p_type == PT_GNU_RELRO)
5883 {
5884 bfd_vma start, end;
5885 bfd_boolean ok;
5886
5887 if (link_info != NULL)
5888 {
5889 /* During linking the range of the RELRO segment is passed
5890 in link_info. Note that there may be padding between
5891 relro_start and the first RELRO section. */
5892 start = link_info->relro_start;
5893 end = link_info->relro_end;
5894 }
5895 else if (m->count != 0)
5896 {
5897 if (!m->p_size_valid)
5898 abort ();
5899 start = m->sections[0]->vma;
5900 end = start + m->p_size;
5901 }
5902 else
5903 {
5904 start = 0;
5905 end = 0;
5906 }
5907
5908 ok = FALSE;
5909 if (start < end)
5910 {
5911 struct elf_segment_map *lm;
5912 const Elf_Internal_Phdr *lp;
5913 unsigned int i;
5914
5915 /* Find a LOAD segment containing a section in the RELRO
5916 segment. */
5917 for (lm = elf_seg_map (abfd), lp = phdrs;
5918 lm != NULL;
5919 lm = lm->next, lp++)
5920 {
5921 if (lp->p_type == PT_LOAD
5922 && lm->count != 0
5923 && (lm->sections[lm->count - 1]->vma
5924 + (!IS_TBSS (lm->sections[lm->count - 1])
5925 ? lm->sections[lm->count - 1]->size
5926 : 0)) > start
5927 && lm->sections[0]->vma < end)
5928 break;
5929 }
5930
5931 if (lm != NULL)
5932 {
5933 /* Find the section starting the RELRO segment. */
5934 for (i = 0; i < lm->count; i++)
5935 {
5936 asection *s = lm->sections[i];
5937 if (s->vma >= start
5938 && s->vma < end
5939 && s->size != 0)
5940 break;
5941 }
5942
5943 if (i < lm->count)
5944 {
5945 p->p_vaddr = lm->sections[i]->vma;
5946 p->p_paddr = lm->sections[i]->lma;
5947 p->p_offset = lm->sections[i]->filepos;
5948 p->p_memsz = end - p->p_vaddr;
5949 p->p_filesz = p->p_memsz;
5950
5951 /* The RELRO segment typically ends a few bytes
5952 into .got.plt but other layouts are possible.
5953 In cases where the end does not match any
5954 loaded section (for instance is in file
5955 padding), trim p_filesz back to correspond to
5956 the end of loaded section contents. */
5957 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
5958 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
5959
5960 /* Preserve the alignment and flags if they are
5961 valid. The gold linker generates RW/4 for
5962 the PT_GNU_RELRO section. It is better for
5963 objcopy/strip to honor these attributes
5964 otherwise gdb will choke when using separate
5965 debug files. */
5966 if (!m->p_align_valid)
5967 p->p_align = 1;
5968 if (!m->p_flags_valid)
5969 p->p_flags = PF_R;
5970 ok = TRUE;
5971 }
5972 }
5973 }
5974 if (link_info != NULL)
5975 BFD_ASSERT (ok);
5976 if (!ok)
5977 memset (p, 0, sizeof *p);
5978 }
5979 else if (p->p_type == PT_GNU_STACK)
5980 {
5981 if (m->p_size_valid)
5982 p->p_memsz = m->p_size;
5983 }
5984 else if (m->count != 0)
5985 {
5986 unsigned int i;
5987
5988 if (p->p_type != PT_LOAD
5989 && (p->p_type != PT_NOTE
5990 || bfd_get_format (abfd) != bfd_core))
5991 {
5992 /* A user specified segment layout may include a PHDR
5993 segment that overlaps with a LOAD segment... */
5994 if (p->p_type == PT_PHDR)
5995 {
5996 m->count = 0;
5997 continue;
5998 }
5999
6000 if (m->includes_filehdr || m->includes_phdrs)
6001 {
6002 /* PR 17512: file: 2195325e. */
6003 _bfd_error_handler
6004 (_("%pB: error: non-load segment %d includes file header "
6005 "and/or program header"),
6006 abfd, (int) (p - phdrs));
6007 return FALSE;
6008 }
6009
6010 p->p_filesz = 0;
6011 p->p_offset = m->sections[0]->filepos;
6012 for (i = m->count; i-- != 0;)
6013 {
6014 asection *sect = m->sections[i];
6015 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6016 if (hdr->sh_type != SHT_NOBITS)
6017 {
6018 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6019 + hdr->sh_size);
6020 break;
6021 }
6022 }
6023 }
6024 }
6025 else if (m->includes_filehdr)
6026 {
6027 p->p_vaddr = filehdr_vaddr;
6028 if (! m->p_paddr_valid)
6029 p->p_paddr = filehdr_paddr;
6030 }
6031 else if (m->includes_phdrs)
6032 {
6033 p->p_vaddr = phdrs_vaddr;
6034 if (! m->p_paddr_valid)
6035 p->p_paddr = phdrs_paddr;
6036 }
6037 }
6038
6039 elf_next_file_pos (abfd) = off;
6040
6041 return TRUE;
6042 }
6043
6044 static elf_section_list *
6045 find_section_in_list (unsigned int i, elf_section_list * list)
6046 {
6047 for (;list != NULL; list = list->next)
6048 if (list->ndx == i)
6049 break;
6050 return list;
6051 }
6052
6053 /* Work out the file positions of all the sections. This is called by
6054 _bfd_elf_compute_section_file_positions. All the section sizes and
6055 VMAs must be known before this is called.
6056
6057 Reloc sections come in two flavours: Those processed specially as
6058 "side-channel" data attached to a section to which they apply, and
6059 those that bfd doesn't process as relocations. The latter sort are
6060 stored in a normal bfd section by bfd_section_from_shdr. We don't
6061 consider the former sort here, unless they form part of the loadable
6062 image. Reloc sections not assigned here will be handled later by
6063 assign_file_positions_for_relocs.
6064
6065 We also don't set the positions of the .symtab and .strtab here. */
6066
6067 static bfd_boolean
6068 assign_file_positions_except_relocs (bfd *abfd,
6069 struct bfd_link_info *link_info)
6070 {
6071 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6072 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6073 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6074
6075 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6076 && bfd_get_format (abfd) != bfd_core)
6077 {
6078 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6079 unsigned int num_sec = elf_numsections (abfd);
6080 Elf_Internal_Shdr **hdrpp;
6081 unsigned int i;
6082 file_ptr off;
6083
6084 /* Start after the ELF header. */
6085 off = i_ehdrp->e_ehsize;
6086
6087 /* We are not creating an executable, which means that we are
6088 not creating a program header, and that the actual order of
6089 the sections in the file is unimportant. */
6090 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6091 {
6092 Elf_Internal_Shdr *hdr;
6093
6094 hdr = *hdrpp;
6095 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6096 && hdr->bfd_section == NULL)
6097 || (hdr->bfd_section != NULL
6098 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6099 /* Compress DWARF debug sections. */
6100 || i == elf_onesymtab (abfd)
6101 || (elf_symtab_shndx_list (abfd) != NULL
6102 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6103 || i == elf_strtab_sec (abfd)
6104 || i == elf_shstrtab_sec (abfd))
6105 {
6106 hdr->sh_offset = -1;
6107 }
6108 else
6109 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6110 }
6111
6112 elf_next_file_pos (abfd) = off;
6113 }
6114 else
6115 {
6116 unsigned int alloc;
6117
6118 /* Assign file positions for the loaded sections based on the
6119 assignment of sections to segments. */
6120 if (!assign_file_positions_for_load_sections (abfd, link_info))
6121 return FALSE;
6122
6123 /* And for non-load sections. */
6124 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6125 return FALSE;
6126
6127 if (bed->elf_backend_modify_program_headers != NULL)
6128 {
6129 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6130 return FALSE;
6131 }
6132
6133 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6134 if (link_info != NULL && bfd_link_pie (link_info))
6135 {
6136 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6137 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6138 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6139
6140 /* Find the lowest p_vaddr in PT_LOAD segments. */
6141 bfd_vma p_vaddr = (bfd_vma) -1;
6142 for (; segment < end_segment; segment++)
6143 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6144 p_vaddr = segment->p_vaddr;
6145
6146 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6147 segments is non-zero. */
6148 if (p_vaddr)
6149 i_ehdrp->e_type = ET_EXEC;
6150 }
6151
6152 /* Write out the program headers. */
6153 alloc = elf_elfheader (abfd)->e_phnum;
6154 if (alloc == 0)
6155 return TRUE;
6156
6157 /* PR ld/20815 - Check that the program header segment, if present, will
6158 be loaded into memory. FIXME: The check below is not sufficient as
6159 really all PT_LOAD segments should be checked before issuing an error
6160 message. Plus the PHDR segment does not have to be the first segment
6161 in the program header table. But this version of the check should
6162 catch all real world use cases.
6163
6164 FIXME: We used to have code here to sort the PT_LOAD segments into
6165 ascending order, as per the ELF spec. But this breaks some programs,
6166 including the Linux kernel. But really either the spec should be
6167 changed or the programs updated. */
6168 if (alloc > 1
6169 && tdata->phdr[0].p_type == PT_PHDR
6170 && (bed->elf_backend_allow_non_load_phdr == NULL
6171 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6172 alloc))
6173 && tdata->phdr[1].p_type == PT_LOAD
6174 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6175 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz
6176 < tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6177 {
6178 /* The fix for this error is usually to edit the linker script being
6179 used and set up the program headers manually. Either that or
6180 leave room for the headers at the start of the SECTIONS. */
6181 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
6182 " by LOAD segment"),
6183 abfd);
6184 return FALSE;
6185 }
6186
6187 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6188 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6189 return FALSE;
6190 }
6191
6192 return TRUE;
6193 }
6194
6195 static bfd_boolean
6196 prep_headers (bfd *abfd)
6197 {
6198 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6199 struct elf_strtab_hash *shstrtab;
6200 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6201
6202 i_ehdrp = elf_elfheader (abfd);
6203
6204 shstrtab = _bfd_elf_strtab_init ();
6205 if (shstrtab == NULL)
6206 return FALSE;
6207
6208 elf_shstrtab (abfd) = shstrtab;
6209
6210 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6211 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6212 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6213 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6214
6215 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6216 i_ehdrp->e_ident[EI_DATA] =
6217 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6218 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6219
6220 if ((abfd->flags & DYNAMIC) != 0)
6221 i_ehdrp->e_type = ET_DYN;
6222 else if ((abfd->flags & EXEC_P) != 0)
6223 i_ehdrp->e_type = ET_EXEC;
6224 else if (bfd_get_format (abfd) == bfd_core)
6225 i_ehdrp->e_type = ET_CORE;
6226 else
6227 i_ehdrp->e_type = ET_REL;
6228
6229 switch (bfd_get_arch (abfd))
6230 {
6231 case bfd_arch_unknown:
6232 i_ehdrp->e_machine = EM_NONE;
6233 break;
6234
6235 /* There used to be a long list of cases here, each one setting
6236 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6237 in the corresponding bfd definition. To avoid duplication,
6238 the switch was removed. Machines that need special handling
6239 can generally do it in elf_backend_final_write_processing(),
6240 unless they need the information earlier than the final write.
6241 Such need can generally be supplied by replacing the tests for
6242 e_machine with the conditions used to determine it. */
6243 default:
6244 i_ehdrp->e_machine = bed->elf_machine_code;
6245 }
6246
6247 i_ehdrp->e_version = bed->s->ev_current;
6248 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6249
6250 /* No program header, for now. */
6251 i_ehdrp->e_phoff = 0;
6252 i_ehdrp->e_phentsize = 0;
6253 i_ehdrp->e_phnum = 0;
6254
6255 /* Each bfd section is section header entry. */
6256 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6257 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6258
6259 /* If we're building an executable, we'll need a program header table. */
6260 if (abfd->flags & EXEC_P)
6261 /* It all happens later. */
6262 ;
6263 else
6264 {
6265 i_ehdrp->e_phentsize = 0;
6266 i_ehdrp->e_phoff = 0;
6267 }
6268
6269 elf_tdata (abfd)->symtab_hdr.sh_name =
6270 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6271 elf_tdata (abfd)->strtab_hdr.sh_name =
6272 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6273 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6274 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6275 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6276 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6277 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6278 return FALSE;
6279
6280 return TRUE;
6281 }
6282
6283 /* Assign file positions for all the reloc sections which are not part
6284 of the loadable file image, and the file position of section headers. */
6285
6286 static bfd_boolean
6287 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6288 {
6289 file_ptr off;
6290 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6291 Elf_Internal_Shdr *shdrp;
6292 Elf_Internal_Ehdr *i_ehdrp;
6293 const struct elf_backend_data *bed;
6294
6295 off = elf_next_file_pos (abfd);
6296
6297 shdrpp = elf_elfsections (abfd);
6298 end_shdrpp = shdrpp + elf_numsections (abfd);
6299 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6300 {
6301 shdrp = *shdrpp;
6302 if (shdrp->sh_offset == -1)
6303 {
6304 asection *sec = shdrp->bfd_section;
6305 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6306 || shdrp->sh_type == SHT_RELA);
6307 if (is_rel
6308 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6309 {
6310 if (!is_rel)
6311 {
6312 const char *name = sec->name;
6313 struct bfd_elf_section_data *d;
6314
6315 /* Compress DWARF debug sections. */
6316 if (!bfd_compress_section (abfd, sec,
6317 shdrp->contents))
6318 return FALSE;
6319
6320 if (sec->compress_status == COMPRESS_SECTION_DONE
6321 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6322 {
6323 /* If section is compressed with zlib-gnu, convert
6324 section name from .debug_* to .zdebug_*. */
6325 char *new_name
6326 = convert_debug_to_zdebug (abfd, name);
6327 if (new_name == NULL)
6328 return FALSE;
6329 name = new_name;
6330 }
6331 /* Add section name to section name section. */
6332 if (shdrp->sh_name != (unsigned int) -1)
6333 abort ();
6334 shdrp->sh_name
6335 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6336 name, FALSE);
6337 d = elf_section_data (sec);
6338
6339 /* Add reloc section name to section name section. */
6340 if (d->rel.hdr
6341 && !_bfd_elf_set_reloc_sh_name (abfd,
6342 d->rel.hdr,
6343 name, FALSE))
6344 return FALSE;
6345 if (d->rela.hdr
6346 && !_bfd_elf_set_reloc_sh_name (abfd,
6347 d->rela.hdr,
6348 name, TRUE))
6349 return FALSE;
6350
6351 /* Update section size and contents. */
6352 shdrp->sh_size = sec->size;
6353 shdrp->contents = sec->contents;
6354 shdrp->bfd_section->contents = NULL;
6355 }
6356 off = _bfd_elf_assign_file_position_for_section (shdrp,
6357 off,
6358 TRUE);
6359 }
6360 }
6361 }
6362
6363 /* Place section name section after DWARF debug sections have been
6364 compressed. */
6365 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6366 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6367 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6368 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6369
6370 /* Place the section headers. */
6371 i_ehdrp = elf_elfheader (abfd);
6372 bed = get_elf_backend_data (abfd);
6373 off = align_file_position (off, 1 << bed->s->log_file_align);
6374 i_ehdrp->e_shoff = off;
6375 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6376 elf_next_file_pos (abfd) = off;
6377
6378 return TRUE;
6379 }
6380
6381 bfd_boolean
6382 _bfd_elf_write_object_contents (bfd *abfd)
6383 {
6384 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6385 Elf_Internal_Shdr **i_shdrp;
6386 bfd_boolean failed;
6387 unsigned int count, num_sec;
6388 struct elf_obj_tdata *t;
6389
6390 if (! abfd->output_has_begun
6391 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6392 return FALSE;
6393 /* Do not rewrite ELF data when the BFD has been opened for update.
6394 abfd->output_has_begun was set to TRUE on opening, so creation of new
6395 sections, and modification of existing section sizes was restricted.
6396 This means the ELF header, program headers and section headers can't have
6397 changed.
6398 If the contents of any sections has been modified, then those changes have
6399 already been written to the BFD. */
6400 else if (abfd->direction == both_direction)
6401 {
6402 BFD_ASSERT (abfd->output_has_begun);
6403 return TRUE;
6404 }
6405
6406 i_shdrp = elf_elfsections (abfd);
6407
6408 failed = FALSE;
6409 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6410 if (failed)
6411 return FALSE;
6412
6413 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6414 return FALSE;
6415
6416 /* After writing the headers, we need to write the sections too... */
6417 num_sec = elf_numsections (abfd);
6418 for (count = 1; count < num_sec; count++)
6419 {
6420 i_shdrp[count]->sh_name
6421 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6422 i_shdrp[count]->sh_name);
6423 if (bed->elf_backend_section_processing)
6424 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6425 return FALSE;
6426 if (i_shdrp[count]->contents)
6427 {
6428 bfd_size_type amt = i_shdrp[count]->sh_size;
6429
6430 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6431 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6432 return FALSE;
6433 }
6434 }
6435
6436 /* Write out the section header names. */
6437 t = elf_tdata (abfd);
6438 if (elf_shstrtab (abfd) != NULL
6439 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6440 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6441 return FALSE;
6442
6443 if (bed->elf_backend_final_write_processing)
6444 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6445
6446 if (!bed->s->write_shdrs_and_ehdr (abfd))
6447 return FALSE;
6448
6449 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6450 if (t->o->build_id.after_write_object_contents != NULL)
6451 return (*t->o->build_id.after_write_object_contents) (abfd);
6452
6453 return TRUE;
6454 }
6455
6456 bfd_boolean
6457 _bfd_elf_write_corefile_contents (bfd *abfd)
6458 {
6459 /* Hopefully this can be done just like an object file. */
6460 return _bfd_elf_write_object_contents (abfd);
6461 }
6462
6463 /* Given a section, search the header to find them. */
6464
6465 unsigned int
6466 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6467 {
6468 const struct elf_backend_data *bed;
6469 unsigned int sec_index;
6470
6471 if (elf_section_data (asect) != NULL
6472 && elf_section_data (asect)->this_idx != 0)
6473 return elf_section_data (asect)->this_idx;
6474
6475 if (bfd_is_abs_section (asect))
6476 sec_index = SHN_ABS;
6477 else if (bfd_is_com_section (asect))
6478 sec_index = SHN_COMMON;
6479 else if (bfd_is_und_section (asect))
6480 sec_index = SHN_UNDEF;
6481 else
6482 sec_index = SHN_BAD;
6483
6484 bed = get_elf_backend_data (abfd);
6485 if (bed->elf_backend_section_from_bfd_section)
6486 {
6487 int retval = sec_index;
6488
6489 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6490 return retval;
6491 }
6492
6493 if (sec_index == SHN_BAD)
6494 bfd_set_error (bfd_error_nonrepresentable_section);
6495
6496 return sec_index;
6497 }
6498
6499 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6500 on error. */
6501
6502 int
6503 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6504 {
6505 asymbol *asym_ptr = *asym_ptr_ptr;
6506 int idx;
6507 flagword flags = asym_ptr->flags;
6508
6509 /* When gas creates relocations against local labels, it creates its
6510 own symbol for the section, but does put the symbol into the
6511 symbol chain, so udata is 0. When the linker is generating
6512 relocatable output, this section symbol may be for one of the
6513 input sections rather than the output section. */
6514 if (asym_ptr->udata.i == 0
6515 && (flags & BSF_SECTION_SYM)
6516 && asym_ptr->section)
6517 {
6518 asection *sec;
6519 int indx;
6520
6521 sec = asym_ptr->section;
6522 if (sec->owner != abfd && sec->output_section != NULL)
6523 sec = sec->output_section;
6524 if (sec->owner == abfd
6525 && (indx = sec->index) < elf_num_section_syms (abfd)
6526 && elf_section_syms (abfd)[indx] != NULL)
6527 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6528 }
6529
6530 idx = asym_ptr->udata.i;
6531
6532 if (idx == 0)
6533 {
6534 /* This case can occur when using --strip-symbol on a symbol
6535 which is used in a relocation entry. */
6536 _bfd_error_handler
6537 /* xgettext:c-format */
6538 (_("%pB: symbol `%s' required but not present"),
6539 abfd, bfd_asymbol_name (asym_ptr));
6540 bfd_set_error (bfd_error_no_symbols);
6541 return -1;
6542 }
6543
6544 #if DEBUG & 4
6545 {
6546 fprintf (stderr,
6547 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6548 (long) asym_ptr, asym_ptr->name, idx, flags);
6549 fflush (stderr);
6550 }
6551 #endif
6552
6553 return idx;
6554 }
6555
6556 /* Rewrite program header information. */
6557
6558 static bfd_boolean
6559 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6560 {
6561 Elf_Internal_Ehdr *iehdr;
6562 struct elf_segment_map *map;
6563 struct elf_segment_map *map_first;
6564 struct elf_segment_map **pointer_to_map;
6565 Elf_Internal_Phdr *segment;
6566 asection *section;
6567 unsigned int i;
6568 unsigned int num_segments;
6569 bfd_boolean phdr_included = FALSE;
6570 bfd_boolean p_paddr_valid;
6571 bfd_vma maxpagesize;
6572 struct elf_segment_map *phdr_adjust_seg = NULL;
6573 unsigned int phdr_adjust_num = 0;
6574 const struct elf_backend_data *bed;
6575
6576 bed = get_elf_backend_data (ibfd);
6577 iehdr = elf_elfheader (ibfd);
6578
6579 map_first = NULL;
6580 pointer_to_map = &map_first;
6581
6582 num_segments = elf_elfheader (ibfd)->e_phnum;
6583 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6584
6585 /* Returns the end address of the segment + 1. */
6586 #define SEGMENT_END(segment, start) \
6587 (start + (segment->p_memsz > segment->p_filesz \
6588 ? segment->p_memsz : segment->p_filesz))
6589
6590 #define SECTION_SIZE(section, segment) \
6591 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6592 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6593 ? section->size : 0)
6594
6595 /* Returns TRUE if the given section is contained within
6596 the given segment. VMA addresses are compared. */
6597 #define IS_CONTAINED_BY_VMA(section, segment) \
6598 (section->vma >= segment->p_vaddr \
6599 && (section->vma + SECTION_SIZE (section, segment) \
6600 <= (SEGMENT_END (segment, segment->p_vaddr))))
6601
6602 /* Returns TRUE if the given section is contained within
6603 the given segment. LMA addresses are compared. */
6604 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6605 (section->lma >= base \
6606 && (section->lma + SECTION_SIZE (section, segment) \
6607 <= SEGMENT_END (segment, base)))
6608
6609 /* Handle PT_NOTE segment. */
6610 #define IS_NOTE(p, s) \
6611 (p->p_type == PT_NOTE \
6612 && elf_section_type (s) == SHT_NOTE \
6613 && (bfd_vma) s->filepos >= p->p_offset \
6614 && ((bfd_vma) s->filepos + s->size \
6615 <= p->p_offset + p->p_filesz))
6616
6617 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6618 etc. */
6619 #define IS_COREFILE_NOTE(p, s) \
6620 (IS_NOTE (p, s) \
6621 && bfd_get_format (ibfd) == bfd_core \
6622 && s->vma == 0 \
6623 && s->lma == 0)
6624
6625 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6626 linker, which generates a PT_INTERP section with p_vaddr and
6627 p_memsz set to 0. */
6628 #define IS_SOLARIS_PT_INTERP(p, s) \
6629 (p->p_vaddr == 0 \
6630 && p->p_paddr == 0 \
6631 && p->p_memsz == 0 \
6632 && p->p_filesz > 0 \
6633 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6634 && s->size > 0 \
6635 && (bfd_vma) s->filepos >= p->p_offset \
6636 && ((bfd_vma) s->filepos + s->size \
6637 <= p->p_offset + p->p_filesz))
6638
6639 /* Decide if the given section should be included in the given segment.
6640 A section will be included if:
6641 1. It is within the address space of the segment -- we use the LMA
6642 if that is set for the segment and the VMA otherwise,
6643 2. It is an allocated section or a NOTE section in a PT_NOTE
6644 segment.
6645 3. There is an output section associated with it,
6646 4. The section has not already been allocated to a previous segment.
6647 5. PT_GNU_STACK segments do not include any sections.
6648 6. PT_TLS segment includes only SHF_TLS sections.
6649 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6650 8. PT_DYNAMIC should not contain empty sections at the beginning
6651 (with the possible exception of .dynamic). */
6652 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6653 ((((segment->p_paddr \
6654 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6655 : IS_CONTAINED_BY_VMA (section, segment)) \
6656 && (section->flags & SEC_ALLOC) != 0) \
6657 || IS_NOTE (segment, section)) \
6658 && segment->p_type != PT_GNU_STACK \
6659 && (segment->p_type != PT_TLS \
6660 || (section->flags & SEC_THREAD_LOCAL)) \
6661 && (segment->p_type == PT_LOAD \
6662 || segment->p_type == PT_TLS \
6663 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6664 && (segment->p_type != PT_DYNAMIC \
6665 || SECTION_SIZE (section, segment) > 0 \
6666 || (segment->p_paddr \
6667 ? segment->p_paddr != section->lma \
6668 : segment->p_vaddr != section->vma) \
6669 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6670 == 0)) \
6671 && (segment->p_type != PT_LOAD || !section->segment_mark))
6672
6673 /* If the output section of a section in the input segment is NULL,
6674 it is removed from the corresponding output segment. */
6675 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6676 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6677 && section->output_section != NULL)
6678
6679 /* Returns TRUE iff seg1 starts after the end of seg2. */
6680 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6681 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6682
6683 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6684 their VMA address ranges and their LMA address ranges overlap.
6685 It is possible to have overlapping VMA ranges without overlapping LMA
6686 ranges. RedBoot images for example can have both .data and .bss mapped
6687 to the same VMA range, but with the .data section mapped to a different
6688 LMA. */
6689 #define SEGMENT_OVERLAPS(seg1, seg2) \
6690 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6691 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6692 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6693 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6694
6695 /* Initialise the segment mark field. */
6696 for (section = ibfd->sections; section != NULL; section = section->next)
6697 section->segment_mark = FALSE;
6698
6699 /* The Solaris linker creates program headers in which all the
6700 p_paddr fields are zero. When we try to objcopy or strip such a
6701 file, we get confused. Check for this case, and if we find it
6702 don't set the p_paddr_valid fields. */
6703 p_paddr_valid = FALSE;
6704 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6705 i < num_segments;
6706 i++, segment++)
6707 if (segment->p_paddr != 0)
6708 {
6709 p_paddr_valid = TRUE;
6710 break;
6711 }
6712
6713 /* Scan through the segments specified in the program header
6714 of the input BFD. For this first scan we look for overlaps
6715 in the loadable segments. These can be created by weird
6716 parameters to objcopy. Also, fix some solaris weirdness. */
6717 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6718 i < num_segments;
6719 i++, segment++)
6720 {
6721 unsigned int j;
6722 Elf_Internal_Phdr *segment2;
6723
6724 if (segment->p_type == PT_INTERP)
6725 for (section = ibfd->sections; section; section = section->next)
6726 if (IS_SOLARIS_PT_INTERP (segment, section))
6727 {
6728 /* Mininal change so that the normal section to segment
6729 assignment code will work. */
6730 segment->p_vaddr = section->vma;
6731 break;
6732 }
6733
6734 if (segment->p_type != PT_LOAD)
6735 {
6736 /* Remove PT_GNU_RELRO segment. */
6737 if (segment->p_type == PT_GNU_RELRO)
6738 segment->p_type = PT_NULL;
6739 continue;
6740 }
6741
6742 /* Determine if this segment overlaps any previous segments. */
6743 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6744 {
6745 bfd_signed_vma extra_length;
6746
6747 if (segment2->p_type != PT_LOAD
6748 || !SEGMENT_OVERLAPS (segment, segment2))
6749 continue;
6750
6751 /* Merge the two segments together. */
6752 if (segment2->p_vaddr < segment->p_vaddr)
6753 {
6754 /* Extend SEGMENT2 to include SEGMENT and then delete
6755 SEGMENT. */
6756 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6757 - SEGMENT_END (segment2, segment2->p_vaddr));
6758
6759 if (extra_length > 0)
6760 {
6761 segment2->p_memsz += extra_length;
6762 segment2->p_filesz += extra_length;
6763 }
6764
6765 segment->p_type = PT_NULL;
6766
6767 /* Since we have deleted P we must restart the outer loop. */
6768 i = 0;
6769 segment = elf_tdata (ibfd)->phdr;
6770 break;
6771 }
6772 else
6773 {
6774 /* Extend SEGMENT to include SEGMENT2 and then delete
6775 SEGMENT2. */
6776 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6777 - SEGMENT_END (segment, segment->p_vaddr));
6778
6779 if (extra_length > 0)
6780 {
6781 segment->p_memsz += extra_length;
6782 segment->p_filesz += extra_length;
6783 }
6784
6785 segment2->p_type = PT_NULL;
6786 }
6787 }
6788 }
6789
6790 /* The second scan attempts to assign sections to segments. */
6791 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6792 i < num_segments;
6793 i++, segment++)
6794 {
6795 unsigned int section_count;
6796 asection **sections;
6797 asection *output_section;
6798 unsigned int isec;
6799 asection *matching_lma;
6800 asection *suggested_lma;
6801 unsigned int j;
6802 bfd_size_type amt;
6803 asection *first_section;
6804
6805 if (segment->p_type == PT_NULL)
6806 continue;
6807
6808 first_section = NULL;
6809 /* Compute how many sections might be placed into this segment. */
6810 for (section = ibfd->sections, section_count = 0;
6811 section != NULL;
6812 section = section->next)
6813 {
6814 /* Find the first section in the input segment, which may be
6815 removed from the corresponding output segment. */
6816 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6817 {
6818 if (first_section == NULL)
6819 first_section = section;
6820 if (section->output_section != NULL)
6821 ++section_count;
6822 }
6823 }
6824
6825 /* Allocate a segment map big enough to contain
6826 all of the sections we have selected. */
6827 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
6828 amt += (bfd_size_type) section_count * sizeof (asection *);
6829 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6830 if (map == NULL)
6831 return FALSE;
6832
6833 /* Initialise the fields of the segment map. Default to
6834 using the physical address of the segment in the input BFD. */
6835 map->next = NULL;
6836 map->p_type = segment->p_type;
6837 map->p_flags = segment->p_flags;
6838 map->p_flags_valid = 1;
6839
6840 /* If the first section in the input segment is removed, there is
6841 no need to preserve segment physical address in the corresponding
6842 output segment. */
6843 if (!first_section || first_section->output_section != NULL)
6844 {
6845 map->p_paddr = segment->p_paddr;
6846 map->p_paddr_valid = p_paddr_valid;
6847 }
6848
6849 /* Determine if this segment contains the ELF file header
6850 and if it contains the program headers themselves. */
6851 map->includes_filehdr = (segment->p_offset == 0
6852 && segment->p_filesz >= iehdr->e_ehsize);
6853 map->includes_phdrs = 0;
6854
6855 if (!phdr_included || segment->p_type != PT_LOAD)
6856 {
6857 map->includes_phdrs =
6858 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6859 && (segment->p_offset + segment->p_filesz
6860 >= ((bfd_vma) iehdr->e_phoff
6861 + iehdr->e_phnum * iehdr->e_phentsize)));
6862
6863 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6864 phdr_included = TRUE;
6865 }
6866
6867 if (section_count == 0)
6868 {
6869 /* Special segments, such as the PT_PHDR segment, may contain
6870 no sections, but ordinary, loadable segments should contain
6871 something. They are allowed by the ELF spec however, so only
6872 a warning is produced.
6873 There is however the valid use case of embedded systems which
6874 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6875 flash memory with zeros. No warning is shown for that case. */
6876 if (segment->p_type == PT_LOAD
6877 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6878 /* xgettext:c-format */
6879 _bfd_error_handler
6880 (_("%pB: warning: empty loadable segment detected"
6881 " at vaddr=%#" PRIx64 ", is this intentional?"),
6882 ibfd, (uint64_t) segment->p_vaddr);
6883
6884 map->count = 0;
6885 *pointer_to_map = map;
6886 pointer_to_map = &map->next;
6887
6888 continue;
6889 }
6890
6891 /* Now scan the sections in the input BFD again and attempt
6892 to add their corresponding output sections to the segment map.
6893 The problem here is how to handle an output section which has
6894 been moved (ie had its LMA changed). There are four possibilities:
6895
6896 1. None of the sections have been moved.
6897 In this case we can continue to use the segment LMA from the
6898 input BFD.
6899
6900 2. All of the sections have been moved by the same amount.
6901 In this case we can change the segment's LMA to match the LMA
6902 of the first section.
6903
6904 3. Some of the sections have been moved, others have not.
6905 In this case those sections which have not been moved can be
6906 placed in the current segment which will have to have its size,
6907 and possibly its LMA changed, and a new segment or segments will
6908 have to be created to contain the other sections.
6909
6910 4. The sections have been moved, but not by the same amount.
6911 In this case we can change the segment's LMA to match the LMA
6912 of the first section and we will have to create a new segment
6913 or segments to contain the other sections.
6914
6915 In order to save time, we allocate an array to hold the section
6916 pointers that we are interested in. As these sections get assigned
6917 to a segment, they are removed from this array. */
6918
6919 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6920 if (sections == NULL)
6921 return FALSE;
6922
6923 /* Step One: Scan for segment vs section LMA conflicts.
6924 Also add the sections to the section array allocated above.
6925 Also add the sections to the current segment. In the common
6926 case, where the sections have not been moved, this means that
6927 we have completely filled the segment, and there is nothing
6928 more to do. */
6929 isec = 0;
6930 matching_lma = NULL;
6931 suggested_lma = NULL;
6932
6933 for (section = first_section, j = 0;
6934 section != NULL;
6935 section = section->next)
6936 {
6937 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6938 {
6939 output_section = section->output_section;
6940
6941 sections[j++] = section;
6942
6943 /* The Solaris native linker always sets p_paddr to 0.
6944 We try to catch that case here, and set it to the
6945 correct value. Note - some backends require that
6946 p_paddr be left as zero. */
6947 if (!p_paddr_valid
6948 && segment->p_vaddr != 0
6949 && !bed->want_p_paddr_set_to_zero
6950 && isec == 0
6951 && output_section->lma != 0
6952 && (align_power (segment->p_vaddr
6953 + (map->includes_filehdr
6954 ? iehdr->e_ehsize : 0)
6955 + (map->includes_phdrs
6956 ? iehdr->e_phnum * iehdr->e_phentsize
6957 : 0),
6958 output_section->alignment_power)
6959 == output_section->vma))
6960 map->p_paddr = segment->p_vaddr;
6961
6962 /* Match up the physical address of the segment with the
6963 LMA address of the output section. */
6964 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6965 || IS_COREFILE_NOTE (segment, section)
6966 || (bed->want_p_paddr_set_to_zero
6967 && IS_CONTAINED_BY_VMA (output_section, segment)))
6968 {
6969 if (matching_lma == NULL
6970 || output_section->lma < matching_lma->lma)
6971 matching_lma = output_section;
6972
6973 /* We assume that if the section fits within the segment
6974 then it does not overlap any other section within that
6975 segment. */
6976 map->sections[isec++] = output_section;
6977 }
6978 else if (suggested_lma == NULL)
6979 suggested_lma = output_section;
6980
6981 if (j == section_count)
6982 break;
6983 }
6984 }
6985
6986 BFD_ASSERT (j == section_count);
6987
6988 /* Step Two: Adjust the physical address of the current segment,
6989 if necessary. */
6990 if (isec == section_count)
6991 {
6992 /* All of the sections fitted within the segment as currently
6993 specified. This is the default case. Add the segment to
6994 the list of built segments and carry on to process the next
6995 program header in the input BFD. */
6996 map->count = section_count;
6997 *pointer_to_map = map;
6998 pointer_to_map = &map->next;
6999
7000 if (p_paddr_valid
7001 && !bed->want_p_paddr_set_to_zero
7002 && matching_lma->lma != map->p_paddr
7003 && !map->includes_filehdr
7004 && !map->includes_phdrs)
7005 /* There is some padding before the first section in the
7006 segment. So, we must account for that in the output
7007 segment's vma. */
7008 map->p_vaddr_offset = matching_lma->lma - map->p_paddr;
7009
7010 free (sections);
7011 continue;
7012 }
7013 else
7014 {
7015 /* Change the current segment's physical address to match
7016 the LMA of the first section that fitted, or if no
7017 section fitted, the first section. */
7018 if (matching_lma == NULL)
7019 matching_lma = suggested_lma;
7020
7021 map->p_paddr = matching_lma->lma;
7022
7023 /* Offset the segment physical address from the lma
7024 to allow for space taken up by elf headers. */
7025 if (map->includes_phdrs)
7026 {
7027 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7028
7029 /* iehdr->e_phnum is just an estimate of the number
7030 of program headers that we will need. Make a note
7031 here of the number we used and the segment we chose
7032 to hold these headers, so that we can adjust the
7033 offset when we know the correct value. */
7034 phdr_adjust_num = iehdr->e_phnum;
7035 phdr_adjust_seg = map;
7036 }
7037
7038 if (map->includes_filehdr)
7039 {
7040 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7041 map->p_paddr -= iehdr->e_ehsize;
7042 /* We've subtracted off the size of headers from the
7043 first section lma, but there may have been some
7044 alignment padding before that section too. Try to
7045 account for that by adjusting the segment lma down to
7046 the same alignment. */
7047 if (segment->p_align != 0 && segment->p_align < align)
7048 align = segment->p_align;
7049 map->p_paddr &= -align;
7050 }
7051 }
7052
7053 /* Step Three: Loop over the sections again, this time assigning
7054 those that fit to the current segment and removing them from the
7055 sections array; but making sure not to leave large gaps. Once all
7056 possible sections have been assigned to the current segment it is
7057 added to the list of built segments and if sections still remain
7058 to be assigned, a new segment is constructed before repeating
7059 the loop. */
7060 isec = 0;
7061 do
7062 {
7063 map->count = 0;
7064 suggested_lma = NULL;
7065
7066 /* Fill the current segment with sections that fit. */
7067 for (j = 0; j < section_count; j++)
7068 {
7069 section = sections[j];
7070
7071 if (section == NULL)
7072 continue;
7073
7074 output_section = section->output_section;
7075
7076 BFD_ASSERT (output_section != NULL);
7077
7078 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7079 || IS_COREFILE_NOTE (segment, section))
7080 {
7081 if (map->count == 0)
7082 {
7083 /* If the first section in a segment does not start at
7084 the beginning of the segment, then something is
7085 wrong. */
7086 if (align_power (map->p_paddr
7087 + (map->includes_filehdr
7088 ? iehdr->e_ehsize : 0)
7089 + (map->includes_phdrs
7090 ? iehdr->e_phnum * iehdr->e_phentsize
7091 : 0),
7092 output_section->alignment_power)
7093 != output_section->lma)
7094 abort ();
7095 }
7096 else
7097 {
7098 asection *prev_sec;
7099
7100 prev_sec = map->sections[map->count - 1];
7101
7102 /* If the gap between the end of the previous section
7103 and the start of this section is more than
7104 maxpagesize then we need to start a new segment. */
7105 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7106 maxpagesize)
7107 < BFD_ALIGN (output_section->lma, maxpagesize))
7108 || (prev_sec->lma + prev_sec->size
7109 > output_section->lma))
7110 {
7111 if (suggested_lma == NULL)
7112 suggested_lma = output_section;
7113
7114 continue;
7115 }
7116 }
7117
7118 map->sections[map->count++] = output_section;
7119 ++isec;
7120 sections[j] = NULL;
7121 if (segment->p_type == PT_LOAD)
7122 section->segment_mark = TRUE;
7123 }
7124 else if (suggested_lma == NULL)
7125 suggested_lma = output_section;
7126 }
7127
7128 BFD_ASSERT (map->count > 0);
7129
7130 /* Add the current segment to the list of built segments. */
7131 *pointer_to_map = map;
7132 pointer_to_map = &map->next;
7133
7134 if (isec < section_count)
7135 {
7136 /* We still have not allocated all of the sections to
7137 segments. Create a new segment here, initialise it
7138 and carry on looping. */
7139 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7140 amt += (bfd_size_type) section_count * sizeof (asection *);
7141 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7142 if (map == NULL)
7143 {
7144 free (sections);
7145 return FALSE;
7146 }
7147
7148 /* Initialise the fields of the segment map. Set the physical
7149 physical address to the LMA of the first section that has
7150 not yet been assigned. */
7151 map->next = NULL;
7152 map->p_type = segment->p_type;
7153 map->p_flags = segment->p_flags;
7154 map->p_flags_valid = 1;
7155 map->p_paddr = suggested_lma->lma;
7156 map->p_paddr_valid = p_paddr_valid;
7157 map->includes_filehdr = 0;
7158 map->includes_phdrs = 0;
7159 }
7160 }
7161 while (isec < section_count);
7162
7163 free (sections);
7164 }
7165
7166 elf_seg_map (obfd) = map_first;
7167
7168 /* If we had to estimate the number of program headers that were
7169 going to be needed, then check our estimate now and adjust
7170 the offset if necessary. */
7171 if (phdr_adjust_seg != NULL)
7172 {
7173 unsigned int count;
7174
7175 for (count = 0, map = map_first; map != NULL; map = map->next)
7176 count++;
7177
7178 if (count > phdr_adjust_num)
7179 phdr_adjust_seg->p_paddr
7180 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7181
7182 for (map = map_first; map != NULL; map = map->next)
7183 if (map->p_type == PT_PHDR)
7184 {
7185 bfd_vma adjust
7186 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7187 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7188 break;
7189 }
7190 }
7191
7192 #undef SEGMENT_END
7193 #undef SECTION_SIZE
7194 #undef IS_CONTAINED_BY_VMA
7195 #undef IS_CONTAINED_BY_LMA
7196 #undef IS_NOTE
7197 #undef IS_COREFILE_NOTE
7198 #undef IS_SOLARIS_PT_INTERP
7199 #undef IS_SECTION_IN_INPUT_SEGMENT
7200 #undef INCLUDE_SECTION_IN_SEGMENT
7201 #undef SEGMENT_AFTER_SEGMENT
7202 #undef SEGMENT_OVERLAPS
7203 return TRUE;
7204 }
7205
7206 /* Copy ELF program header information. */
7207
7208 static bfd_boolean
7209 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7210 {
7211 Elf_Internal_Ehdr *iehdr;
7212 struct elf_segment_map *map;
7213 struct elf_segment_map *map_first;
7214 struct elf_segment_map **pointer_to_map;
7215 Elf_Internal_Phdr *segment;
7216 unsigned int i;
7217 unsigned int num_segments;
7218 bfd_boolean phdr_included = FALSE;
7219 bfd_boolean p_paddr_valid;
7220
7221 iehdr = elf_elfheader (ibfd);
7222
7223 map_first = NULL;
7224 pointer_to_map = &map_first;
7225
7226 /* If all the segment p_paddr fields are zero, don't set
7227 map->p_paddr_valid. */
7228 p_paddr_valid = FALSE;
7229 num_segments = elf_elfheader (ibfd)->e_phnum;
7230 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7231 i < num_segments;
7232 i++, segment++)
7233 if (segment->p_paddr != 0)
7234 {
7235 p_paddr_valid = TRUE;
7236 break;
7237 }
7238
7239 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7240 i < num_segments;
7241 i++, segment++)
7242 {
7243 asection *section;
7244 unsigned int section_count;
7245 bfd_size_type amt;
7246 Elf_Internal_Shdr *this_hdr;
7247 asection *first_section = NULL;
7248 asection *lowest_section;
7249 bfd_boolean no_contents = TRUE;
7250
7251 /* Compute how many sections are in this segment. */
7252 for (section = ibfd->sections, section_count = 0;
7253 section != NULL;
7254 section = section->next)
7255 {
7256 this_hdr = &(elf_section_data(section)->this_hdr);
7257 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7258 {
7259 if (first_section == NULL)
7260 first_section = section;
7261 if (elf_section_type (section) != SHT_NOBITS)
7262 no_contents = FALSE;
7263 section_count++;
7264 }
7265 }
7266
7267 /* Allocate a segment map big enough to contain
7268 all of the sections we have selected. */
7269 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7270 amt += (bfd_size_type) section_count * sizeof (asection *);
7271 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7272 if (map == NULL)
7273 return FALSE;
7274
7275 /* Initialize the fields of the output segment map with the
7276 input segment. */
7277 map->next = NULL;
7278 map->p_type = segment->p_type;
7279 map->p_flags = segment->p_flags;
7280 map->p_flags_valid = 1;
7281 map->p_paddr = segment->p_paddr;
7282 map->p_paddr_valid = p_paddr_valid;
7283 map->p_align = segment->p_align;
7284 map->p_align_valid = 1;
7285 map->p_vaddr_offset = 0;
7286
7287 if (map->p_type == PT_GNU_RELRO
7288 || map->p_type == PT_GNU_STACK)
7289 {
7290 /* The PT_GNU_RELRO segment may contain the first a few
7291 bytes in the .got.plt section even if the whole .got.plt
7292 section isn't in the PT_GNU_RELRO segment. We won't
7293 change the size of the PT_GNU_RELRO segment.
7294 Similarly, PT_GNU_STACK size is significant on uclinux
7295 systems. */
7296 map->p_size = segment->p_memsz;
7297 map->p_size_valid = 1;
7298 }
7299
7300 /* Determine if this segment contains the ELF file header
7301 and if it contains the program headers themselves. */
7302 map->includes_filehdr = (segment->p_offset == 0
7303 && segment->p_filesz >= iehdr->e_ehsize);
7304
7305 map->includes_phdrs = 0;
7306 if (! phdr_included || segment->p_type != PT_LOAD)
7307 {
7308 map->includes_phdrs =
7309 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7310 && (segment->p_offset + segment->p_filesz
7311 >= ((bfd_vma) iehdr->e_phoff
7312 + iehdr->e_phnum * iehdr->e_phentsize)));
7313
7314 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7315 phdr_included = TRUE;
7316 }
7317
7318 lowest_section = NULL;
7319 if (section_count != 0)
7320 {
7321 unsigned int isec = 0;
7322
7323 for (section = first_section;
7324 section != NULL;
7325 section = section->next)
7326 {
7327 this_hdr = &(elf_section_data(section)->this_hdr);
7328 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7329 {
7330 map->sections[isec++] = section->output_section;
7331 if ((section->flags & SEC_ALLOC) != 0)
7332 {
7333 bfd_vma seg_off;
7334
7335 if (lowest_section == NULL
7336 || section->lma < lowest_section->lma)
7337 lowest_section = section;
7338
7339 /* Section lmas are set up from PT_LOAD header
7340 p_paddr in _bfd_elf_make_section_from_shdr.
7341 If this header has a p_paddr that disagrees
7342 with the section lma, flag the p_paddr as
7343 invalid. */
7344 if ((section->flags & SEC_LOAD) != 0)
7345 seg_off = this_hdr->sh_offset - segment->p_offset;
7346 else
7347 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7348 if (section->lma - segment->p_paddr != seg_off)
7349 map->p_paddr_valid = FALSE;
7350 }
7351 if (isec == section_count)
7352 break;
7353 }
7354 }
7355 }
7356
7357 if (map->includes_filehdr && lowest_section != NULL)
7358 {
7359 /* Try to keep the space used by the headers plus any
7360 padding fixed. If there are sections with file contents
7361 in this segment then the lowest sh_offset is the best
7362 guess. Otherwise the segment only has file contents for
7363 the headers, and p_filesz is the best guess. */
7364 if (no_contents)
7365 map->header_size = segment->p_filesz;
7366 else
7367 map->header_size = lowest_section->filepos;
7368 }
7369
7370 if (!map->includes_phdrs
7371 && !map->includes_filehdr
7372 && map->p_paddr_valid)
7373 /* There is some other padding before the first section. */
7374 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7375 - segment->p_paddr);
7376
7377 map->count = section_count;
7378 *pointer_to_map = map;
7379 pointer_to_map = &map->next;
7380 }
7381
7382 elf_seg_map (obfd) = map_first;
7383 return TRUE;
7384 }
7385
7386 /* Copy private BFD data. This copies or rewrites ELF program header
7387 information. */
7388
7389 static bfd_boolean
7390 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7391 {
7392 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7393 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7394 return TRUE;
7395
7396 if (elf_tdata (ibfd)->phdr == NULL)
7397 return TRUE;
7398
7399 if (ibfd->xvec == obfd->xvec)
7400 {
7401 /* Check to see if any sections in the input BFD
7402 covered by ELF program header have changed. */
7403 Elf_Internal_Phdr *segment;
7404 asection *section, *osec;
7405 unsigned int i, num_segments;
7406 Elf_Internal_Shdr *this_hdr;
7407 const struct elf_backend_data *bed;
7408
7409 bed = get_elf_backend_data (ibfd);
7410
7411 /* Regenerate the segment map if p_paddr is set to 0. */
7412 if (bed->want_p_paddr_set_to_zero)
7413 goto rewrite;
7414
7415 /* Initialize the segment mark field. */
7416 for (section = obfd->sections; section != NULL;
7417 section = section->next)
7418 section->segment_mark = FALSE;
7419
7420 num_segments = elf_elfheader (ibfd)->e_phnum;
7421 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7422 i < num_segments;
7423 i++, segment++)
7424 {
7425 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7426 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7427 which severly confuses things, so always regenerate the segment
7428 map in this case. */
7429 if (segment->p_paddr == 0
7430 && segment->p_memsz == 0
7431 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7432 goto rewrite;
7433
7434 for (section = ibfd->sections;
7435 section != NULL; section = section->next)
7436 {
7437 /* We mark the output section so that we know it comes
7438 from the input BFD. */
7439 osec = section->output_section;
7440 if (osec)
7441 osec->segment_mark = TRUE;
7442
7443 /* Check if this section is covered by the segment. */
7444 this_hdr = &(elf_section_data(section)->this_hdr);
7445 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7446 {
7447 /* FIXME: Check if its output section is changed or
7448 removed. What else do we need to check? */
7449 if (osec == NULL
7450 || section->flags != osec->flags
7451 || section->lma != osec->lma
7452 || section->vma != osec->vma
7453 || section->size != osec->size
7454 || section->rawsize != osec->rawsize
7455 || section->alignment_power != osec->alignment_power)
7456 goto rewrite;
7457 }
7458 }
7459 }
7460
7461 /* Check to see if any output section do not come from the
7462 input BFD. */
7463 for (section = obfd->sections; section != NULL;
7464 section = section->next)
7465 {
7466 if (!section->segment_mark)
7467 goto rewrite;
7468 else
7469 section->segment_mark = FALSE;
7470 }
7471
7472 return copy_elf_program_header (ibfd, obfd);
7473 }
7474
7475 rewrite:
7476 if (ibfd->xvec == obfd->xvec)
7477 {
7478 /* When rewriting program header, set the output maxpagesize to
7479 the maximum alignment of input PT_LOAD segments. */
7480 Elf_Internal_Phdr *segment;
7481 unsigned int i;
7482 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7483 bfd_vma maxpagesize = 0;
7484
7485 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7486 i < num_segments;
7487 i++, segment++)
7488 if (segment->p_type == PT_LOAD
7489 && maxpagesize < segment->p_align)
7490 {
7491 /* PR 17512: file: f17299af. */
7492 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7493 /* xgettext:c-format */
7494 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7495 PRIx64 " is too large"),
7496 ibfd, (uint64_t) segment->p_align);
7497 else
7498 maxpagesize = segment->p_align;
7499 }
7500
7501 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7502 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7503 }
7504
7505 return rewrite_elf_program_header (ibfd, obfd);
7506 }
7507
7508 /* Initialize private output section information from input section. */
7509
7510 bfd_boolean
7511 _bfd_elf_init_private_section_data (bfd *ibfd,
7512 asection *isec,
7513 bfd *obfd,
7514 asection *osec,
7515 struct bfd_link_info *link_info)
7516
7517 {
7518 Elf_Internal_Shdr *ihdr, *ohdr;
7519 bfd_boolean final_link = (link_info != NULL
7520 && !bfd_link_relocatable (link_info));
7521
7522 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7523 || obfd->xvec->flavour != bfd_target_elf_flavour)
7524 return TRUE;
7525
7526 BFD_ASSERT (elf_section_data (osec) != NULL);
7527
7528 /* For objcopy and relocatable link, don't copy the output ELF
7529 section type from input if the output BFD section flags have been
7530 set to something different. For a final link allow some flags
7531 that the linker clears to differ. */
7532 if (elf_section_type (osec) == SHT_NULL
7533 && (osec->flags == isec->flags
7534 || (final_link
7535 && ((osec->flags ^ isec->flags)
7536 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7537 elf_section_type (osec) = elf_section_type (isec);
7538
7539 /* FIXME: Is this correct for all OS/PROC specific flags? */
7540 elf_section_flags (osec) |= (elf_section_flags (isec)
7541 & (SHF_MASKOS | SHF_MASKPROC));
7542
7543 /* Copy sh_info from input for mbind section. */
7544 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7545 elf_section_data (osec)->this_hdr.sh_info
7546 = elf_section_data (isec)->this_hdr.sh_info;
7547
7548 /* Set things up for objcopy and relocatable link. The output
7549 SHT_GROUP section will have its elf_next_in_group pointing back
7550 to the input group members. Ignore linker created group section.
7551 See elfNN_ia64_object_p in elfxx-ia64.c. */
7552 if ((link_info == NULL
7553 || !link_info->resolve_section_groups)
7554 && (elf_sec_group (isec) == NULL
7555 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7556 {
7557 if (elf_section_flags (isec) & SHF_GROUP)
7558 elf_section_flags (osec) |= SHF_GROUP;
7559 elf_next_in_group (osec) = elf_next_in_group (isec);
7560 elf_section_data (osec)->group = elf_section_data (isec)->group;
7561 }
7562
7563 /* If not decompress, preserve SHF_COMPRESSED. */
7564 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7565 elf_section_flags (osec) |= (elf_section_flags (isec)
7566 & SHF_COMPRESSED);
7567
7568 ihdr = &elf_section_data (isec)->this_hdr;
7569
7570 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7571 don't use the output section of the linked-to section since it
7572 may be NULL at this point. */
7573 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7574 {
7575 ohdr = &elf_section_data (osec)->this_hdr;
7576 ohdr->sh_flags |= SHF_LINK_ORDER;
7577 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7578 }
7579
7580 osec->use_rela_p = isec->use_rela_p;
7581
7582 return TRUE;
7583 }
7584
7585 /* Copy private section information. This copies over the entsize
7586 field, and sometimes the info field. */
7587
7588 bfd_boolean
7589 _bfd_elf_copy_private_section_data (bfd *ibfd,
7590 asection *isec,
7591 bfd *obfd,
7592 asection *osec)
7593 {
7594 Elf_Internal_Shdr *ihdr, *ohdr;
7595
7596 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7597 || obfd->xvec->flavour != bfd_target_elf_flavour)
7598 return TRUE;
7599
7600 ihdr = &elf_section_data (isec)->this_hdr;
7601 ohdr = &elf_section_data (osec)->this_hdr;
7602
7603 ohdr->sh_entsize = ihdr->sh_entsize;
7604
7605 if (ihdr->sh_type == SHT_SYMTAB
7606 || ihdr->sh_type == SHT_DYNSYM
7607 || ihdr->sh_type == SHT_GNU_verneed
7608 || ihdr->sh_type == SHT_GNU_verdef)
7609 ohdr->sh_info = ihdr->sh_info;
7610
7611 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7612 NULL);
7613 }
7614
7615 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7616 necessary if we are removing either the SHT_GROUP section or any of
7617 the group member sections. DISCARDED is the value that a section's
7618 output_section has if the section will be discarded, NULL when this
7619 function is called from objcopy, bfd_abs_section_ptr when called
7620 from the linker. */
7621
7622 bfd_boolean
7623 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7624 {
7625 asection *isec;
7626
7627 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7628 if (elf_section_type (isec) == SHT_GROUP)
7629 {
7630 asection *first = elf_next_in_group (isec);
7631 asection *s = first;
7632 bfd_size_type removed = 0;
7633
7634 while (s != NULL)
7635 {
7636 /* If this member section is being output but the
7637 SHT_GROUP section is not, then clear the group info
7638 set up by _bfd_elf_copy_private_section_data. */
7639 if (s->output_section != discarded
7640 && isec->output_section == discarded)
7641 {
7642 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7643 elf_group_name (s->output_section) = NULL;
7644 }
7645 /* Conversely, if the member section is not being output
7646 but the SHT_GROUP section is, then adjust its size. */
7647 else if (s->output_section == discarded
7648 && isec->output_section != discarded)
7649 {
7650 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7651 removed += 4;
7652 if (elf_sec->rel.hdr != NULL
7653 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7654 removed += 4;
7655 if (elf_sec->rela.hdr != NULL
7656 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7657 removed += 4;
7658 }
7659 s = elf_next_in_group (s);
7660 if (s == first)
7661 break;
7662 }
7663 if (removed != 0)
7664 {
7665 if (discarded != NULL)
7666 {
7667 /* If we've been called for ld -r, then we need to
7668 adjust the input section size. */
7669 if (isec->rawsize == 0)
7670 isec->rawsize = isec->size;
7671 isec->size = isec->rawsize - removed;
7672 if (isec->size <= 4)
7673 {
7674 isec->size = 0;
7675 isec->flags |= SEC_EXCLUDE;
7676 }
7677 }
7678 else
7679 {
7680 /* Adjust the output section size when called from
7681 objcopy. */
7682 isec->output_section->size -= removed;
7683 if (isec->output_section->size <= 4)
7684 {
7685 isec->output_section->size = 0;
7686 isec->output_section->flags |= SEC_EXCLUDE;
7687 }
7688 }
7689 }
7690 }
7691
7692 return TRUE;
7693 }
7694
7695 /* Copy private header information. */
7696
7697 bfd_boolean
7698 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7699 {
7700 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7701 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7702 return TRUE;
7703
7704 /* Copy over private BFD data if it has not already been copied.
7705 This must be done here, rather than in the copy_private_bfd_data
7706 entry point, because the latter is called after the section
7707 contents have been set, which means that the program headers have
7708 already been worked out. */
7709 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7710 {
7711 if (! copy_private_bfd_data (ibfd, obfd))
7712 return FALSE;
7713 }
7714
7715 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7716 }
7717
7718 /* Copy private symbol information. If this symbol is in a section
7719 which we did not map into a BFD section, try to map the section
7720 index correctly. We use special macro definitions for the mapped
7721 section indices; these definitions are interpreted by the
7722 swap_out_syms function. */
7723
7724 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7725 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7726 #define MAP_STRTAB (SHN_HIOS + 3)
7727 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7728 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7729
7730 bfd_boolean
7731 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7732 asymbol *isymarg,
7733 bfd *obfd,
7734 asymbol *osymarg)
7735 {
7736 elf_symbol_type *isym, *osym;
7737
7738 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7739 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7740 return TRUE;
7741
7742 isym = elf_symbol_from (ibfd, isymarg);
7743 osym = elf_symbol_from (obfd, osymarg);
7744
7745 if (isym != NULL
7746 && isym->internal_elf_sym.st_shndx != 0
7747 && osym != NULL
7748 && bfd_is_abs_section (isym->symbol.section))
7749 {
7750 unsigned int shndx;
7751
7752 shndx = isym->internal_elf_sym.st_shndx;
7753 if (shndx == elf_onesymtab (ibfd))
7754 shndx = MAP_ONESYMTAB;
7755 else if (shndx == elf_dynsymtab (ibfd))
7756 shndx = MAP_DYNSYMTAB;
7757 else if (shndx == elf_strtab_sec (ibfd))
7758 shndx = MAP_STRTAB;
7759 else if (shndx == elf_shstrtab_sec (ibfd))
7760 shndx = MAP_SHSTRTAB;
7761 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7762 shndx = MAP_SYM_SHNDX;
7763 osym->internal_elf_sym.st_shndx = shndx;
7764 }
7765
7766 return TRUE;
7767 }
7768
7769 /* Swap out the symbols. */
7770
7771 static bfd_boolean
7772 swap_out_syms (bfd *abfd,
7773 struct elf_strtab_hash **sttp,
7774 int relocatable_p)
7775 {
7776 const struct elf_backend_data *bed;
7777 int symcount;
7778 asymbol **syms;
7779 struct elf_strtab_hash *stt;
7780 Elf_Internal_Shdr *symtab_hdr;
7781 Elf_Internal_Shdr *symtab_shndx_hdr;
7782 Elf_Internal_Shdr *symstrtab_hdr;
7783 struct elf_sym_strtab *symstrtab;
7784 bfd_byte *outbound_syms;
7785 bfd_byte *outbound_shndx;
7786 unsigned long outbound_syms_index;
7787 unsigned long outbound_shndx_index;
7788 int idx;
7789 unsigned int num_locals;
7790 bfd_size_type amt;
7791 bfd_boolean name_local_sections;
7792
7793 if (!elf_map_symbols (abfd, &num_locals))
7794 return FALSE;
7795
7796 /* Dump out the symtabs. */
7797 stt = _bfd_elf_strtab_init ();
7798 if (stt == NULL)
7799 return FALSE;
7800
7801 bed = get_elf_backend_data (abfd);
7802 symcount = bfd_get_symcount (abfd);
7803 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7804 symtab_hdr->sh_type = SHT_SYMTAB;
7805 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7806 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7807 symtab_hdr->sh_info = num_locals + 1;
7808 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7809
7810 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7811 symstrtab_hdr->sh_type = SHT_STRTAB;
7812
7813 /* Allocate buffer to swap out the .strtab section. */
7814 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7815 * sizeof (*symstrtab));
7816 if (symstrtab == NULL)
7817 {
7818 _bfd_elf_strtab_free (stt);
7819 return FALSE;
7820 }
7821
7822 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7823 bed->s->sizeof_sym);
7824 if (outbound_syms == NULL)
7825 {
7826 error_return:
7827 _bfd_elf_strtab_free (stt);
7828 free (symstrtab);
7829 return FALSE;
7830 }
7831 symtab_hdr->contents = outbound_syms;
7832 outbound_syms_index = 0;
7833
7834 outbound_shndx = NULL;
7835 outbound_shndx_index = 0;
7836
7837 if (elf_symtab_shndx_list (abfd))
7838 {
7839 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7840 if (symtab_shndx_hdr->sh_name != 0)
7841 {
7842 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7843 outbound_shndx = (bfd_byte *)
7844 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7845 if (outbound_shndx == NULL)
7846 goto error_return;
7847
7848 symtab_shndx_hdr->contents = outbound_shndx;
7849 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7850 symtab_shndx_hdr->sh_size = amt;
7851 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7852 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7853 }
7854 /* FIXME: What about any other headers in the list ? */
7855 }
7856
7857 /* Now generate the data (for "contents"). */
7858 {
7859 /* Fill in zeroth symbol and swap it out. */
7860 Elf_Internal_Sym sym;
7861 sym.st_name = 0;
7862 sym.st_value = 0;
7863 sym.st_size = 0;
7864 sym.st_info = 0;
7865 sym.st_other = 0;
7866 sym.st_shndx = SHN_UNDEF;
7867 sym.st_target_internal = 0;
7868 symstrtab[0].sym = sym;
7869 symstrtab[0].dest_index = outbound_syms_index;
7870 symstrtab[0].destshndx_index = outbound_shndx_index;
7871 outbound_syms_index++;
7872 if (outbound_shndx != NULL)
7873 outbound_shndx_index++;
7874 }
7875
7876 name_local_sections
7877 = (bed->elf_backend_name_local_section_symbols
7878 && bed->elf_backend_name_local_section_symbols (abfd));
7879
7880 syms = bfd_get_outsymbols (abfd);
7881 for (idx = 0; idx < symcount;)
7882 {
7883 Elf_Internal_Sym sym;
7884 bfd_vma value = syms[idx]->value;
7885 elf_symbol_type *type_ptr;
7886 flagword flags = syms[idx]->flags;
7887 int type;
7888
7889 if (!name_local_sections
7890 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7891 {
7892 /* Local section symbols have no name. */
7893 sym.st_name = (unsigned long) -1;
7894 }
7895 else
7896 {
7897 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7898 to get the final offset for st_name. */
7899 sym.st_name
7900 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7901 FALSE);
7902 if (sym.st_name == (unsigned long) -1)
7903 goto error_return;
7904 }
7905
7906 type_ptr = elf_symbol_from (abfd, syms[idx]);
7907
7908 if ((flags & BSF_SECTION_SYM) == 0
7909 && bfd_is_com_section (syms[idx]->section))
7910 {
7911 /* ELF common symbols put the alignment into the `value' field,
7912 and the size into the `size' field. This is backwards from
7913 how BFD handles it, so reverse it here. */
7914 sym.st_size = value;
7915 if (type_ptr == NULL
7916 || type_ptr->internal_elf_sym.st_value == 0)
7917 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7918 else
7919 sym.st_value = type_ptr->internal_elf_sym.st_value;
7920 sym.st_shndx = _bfd_elf_section_from_bfd_section
7921 (abfd, syms[idx]->section);
7922 }
7923 else
7924 {
7925 asection *sec = syms[idx]->section;
7926 unsigned int shndx;
7927
7928 if (sec->output_section)
7929 {
7930 value += sec->output_offset;
7931 sec = sec->output_section;
7932 }
7933
7934 /* Don't add in the section vma for relocatable output. */
7935 if (! relocatable_p)
7936 value += sec->vma;
7937 sym.st_value = value;
7938 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7939
7940 if (bfd_is_abs_section (sec)
7941 && type_ptr != NULL
7942 && type_ptr->internal_elf_sym.st_shndx != 0)
7943 {
7944 /* This symbol is in a real ELF section which we did
7945 not create as a BFD section. Undo the mapping done
7946 by copy_private_symbol_data. */
7947 shndx = type_ptr->internal_elf_sym.st_shndx;
7948 switch (shndx)
7949 {
7950 case MAP_ONESYMTAB:
7951 shndx = elf_onesymtab (abfd);
7952 break;
7953 case MAP_DYNSYMTAB:
7954 shndx = elf_dynsymtab (abfd);
7955 break;
7956 case MAP_STRTAB:
7957 shndx = elf_strtab_sec (abfd);
7958 break;
7959 case MAP_SHSTRTAB:
7960 shndx = elf_shstrtab_sec (abfd);
7961 break;
7962 case MAP_SYM_SHNDX:
7963 if (elf_symtab_shndx_list (abfd))
7964 shndx = elf_symtab_shndx_list (abfd)->ndx;
7965 break;
7966 default:
7967 shndx = SHN_ABS;
7968 break;
7969 }
7970 }
7971 else
7972 {
7973 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7974
7975 if (shndx == SHN_BAD)
7976 {
7977 asection *sec2;
7978
7979 /* Writing this would be a hell of a lot easier if
7980 we had some decent documentation on bfd, and
7981 knew what to expect of the library, and what to
7982 demand of applications. For example, it
7983 appears that `objcopy' might not set the
7984 section of a symbol to be a section that is
7985 actually in the output file. */
7986 sec2 = bfd_get_section_by_name (abfd, sec->name);
7987 if (sec2 != NULL)
7988 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7989 if (shndx == SHN_BAD)
7990 {
7991 /* xgettext:c-format */
7992 _bfd_error_handler
7993 (_("unable to find equivalent output section"
7994 " for symbol '%s' from section '%s'"),
7995 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7996 sec->name);
7997 bfd_set_error (bfd_error_invalid_operation);
7998 goto error_return;
7999 }
8000 }
8001 }
8002
8003 sym.st_shndx = shndx;
8004 }
8005
8006 if ((flags & BSF_THREAD_LOCAL) != 0)
8007 type = STT_TLS;
8008 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8009 type = STT_GNU_IFUNC;
8010 else if ((flags & BSF_FUNCTION) != 0)
8011 type = STT_FUNC;
8012 else if ((flags & BSF_OBJECT) != 0)
8013 type = STT_OBJECT;
8014 else if ((flags & BSF_RELC) != 0)
8015 type = STT_RELC;
8016 else if ((flags & BSF_SRELC) != 0)
8017 type = STT_SRELC;
8018 else
8019 type = STT_NOTYPE;
8020
8021 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8022 type = STT_TLS;
8023
8024 /* Processor-specific types. */
8025 if (type_ptr != NULL
8026 && bed->elf_backend_get_symbol_type)
8027 type = ((*bed->elf_backend_get_symbol_type)
8028 (&type_ptr->internal_elf_sym, type));
8029
8030 if (flags & BSF_SECTION_SYM)
8031 {
8032 if (flags & BSF_GLOBAL)
8033 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8034 else
8035 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8036 }
8037 else if (bfd_is_com_section (syms[idx]->section))
8038 {
8039 if (type != STT_TLS)
8040 {
8041 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8042 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8043 ? STT_COMMON : STT_OBJECT);
8044 else
8045 type = ((flags & BSF_ELF_COMMON) != 0
8046 ? STT_COMMON : STT_OBJECT);
8047 }
8048 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8049 }
8050 else if (bfd_is_und_section (syms[idx]->section))
8051 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8052 ? STB_WEAK
8053 : STB_GLOBAL),
8054 type);
8055 else if (flags & BSF_FILE)
8056 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8057 else
8058 {
8059 int bind = STB_LOCAL;
8060
8061 if (flags & BSF_LOCAL)
8062 bind = STB_LOCAL;
8063 else if (flags & BSF_GNU_UNIQUE)
8064 bind = STB_GNU_UNIQUE;
8065 else if (flags & BSF_WEAK)
8066 bind = STB_WEAK;
8067 else if (flags & BSF_GLOBAL)
8068 bind = STB_GLOBAL;
8069
8070 sym.st_info = ELF_ST_INFO (bind, type);
8071 }
8072
8073 if (type_ptr != NULL)
8074 {
8075 sym.st_other = type_ptr->internal_elf_sym.st_other;
8076 sym.st_target_internal
8077 = type_ptr->internal_elf_sym.st_target_internal;
8078 }
8079 else
8080 {
8081 sym.st_other = 0;
8082 sym.st_target_internal = 0;
8083 }
8084
8085 idx++;
8086 symstrtab[idx].sym = sym;
8087 symstrtab[idx].dest_index = outbound_syms_index;
8088 symstrtab[idx].destshndx_index = outbound_shndx_index;
8089
8090 outbound_syms_index++;
8091 if (outbound_shndx != NULL)
8092 outbound_shndx_index++;
8093 }
8094
8095 /* Finalize the .strtab section. */
8096 _bfd_elf_strtab_finalize (stt);
8097
8098 /* Swap out the .strtab section. */
8099 for (idx = 0; idx <= symcount; idx++)
8100 {
8101 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8102 if (elfsym->sym.st_name == (unsigned long) -1)
8103 elfsym->sym.st_name = 0;
8104 else
8105 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8106 elfsym->sym.st_name);
8107 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8108 (outbound_syms
8109 + (elfsym->dest_index
8110 * bed->s->sizeof_sym)),
8111 (outbound_shndx
8112 + (elfsym->destshndx_index
8113 * sizeof (Elf_External_Sym_Shndx))));
8114 }
8115 free (symstrtab);
8116
8117 *sttp = stt;
8118 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8119 symstrtab_hdr->sh_type = SHT_STRTAB;
8120 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8121 symstrtab_hdr->sh_addr = 0;
8122 symstrtab_hdr->sh_entsize = 0;
8123 symstrtab_hdr->sh_link = 0;
8124 symstrtab_hdr->sh_info = 0;
8125 symstrtab_hdr->sh_addralign = 1;
8126
8127 return TRUE;
8128 }
8129
8130 /* Return the number of bytes required to hold the symtab vector.
8131
8132 Note that we base it on the count plus 1, since we will null terminate
8133 the vector allocated based on this size. However, the ELF symbol table
8134 always has a dummy entry as symbol #0, so it ends up even. */
8135
8136 long
8137 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8138 {
8139 long symcount;
8140 long symtab_size;
8141 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8142
8143 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8144 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8145 if (symcount > 0)
8146 symtab_size -= sizeof (asymbol *);
8147
8148 return symtab_size;
8149 }
8150
8151 long
8152 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8153 {
8154 long symcount;
8155 long symtab_size;
8156 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8157
8158 if (elf_dynsymtab (abfd) == 0)
8159 {
8160 bfd_set_error (bfd_error_invalid_operation);
8161 return -1;
8162 }
8163
8164 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8165 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8166 if (symcount > 0)
8167 symtab_size -= sizeof (asymbol *);
8168
8169 return symtab_size;
8170 }
8171
8172 long
8173 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8174 sec_ptr asect)
8175 {
8176 return (asect->reloc_count + 1) * sizeof (arelent *);
8177 }
8178
8179 /* Canonicalize the relocs. */
8180
8181 long
8182 _bfd_elf_canonicalize_reloc (bfd *abfd,
8183 sec_ptr section,
8184 arelent **relptr,
8185 asymbol **symbols)
8186 {
8187 arelent *tblptr;
8188 unsigned int i;
8189 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8190
8191 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8192 return -1;
8193
8194 tblptr = section->relocation;
8195 for (i = 0; i < section->reloc_count; i++)
8196 *relptr++ = tblptr++;
8197
8198 *relptr = NULL;
8199
8200 return section->reloc_count;
8201 }
8202
8203 long
8204 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8205 {
8206 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8207 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8208
8209 if (symcount >= 0)
8210 bfd_get_symcount (abfd) = symcount;
8211 return symcount;
8212 }
8213
8214 long
8215 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8216 asymbol **allocation)
8217 {
8218 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8219 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8220
8221 if (symcount >= 0)
8222 bfd_get_dynamic_symcount (abfd) = symcount;
8223 return symcount;
8224 }
8225
8226 /* Return the size required for the dynamic reloc entries. Any loadable
8227 section that was actually installed in the BFD, and has type SHT_REL
8228 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8229 dynamic reloc section. */
8230
8231 long
8232 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8233 {
8234 long ret;
8235 asection *s;
8236
8237 if (elf_dynsymtab (abfd) == 0)
8238 {
8239 bfd_set_error (bfd_error_invalid_operation);
8240 return -1;
8241 }
8242
8243 ret = sizeof (arelent *);
8244 for (s = abfd->sections; s != NULL; s = s->next)
8245 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8246 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8247 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8248 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8249 * sizeof (arelent *));
8250
8251 return ret;
8252 }
8253
8254 /* Canonicalize the dynamic relocation entries. Note that we return the
8255 dynamic relocations as a single block, although they are actually
8256 associated with particular sections; the interface, which was
8257 designed for SunOS style shared libraries, expects that there is only
8258 one set of dynamic relocs. Any loadable section that was actually
8259 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8260 dynamic symbol table, is considered to be a dynamic reloc section. */
8261
8262 long
8263 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8264 arelent **storage,
8265 asymbol **syms)
8266 {
8267 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8268 asection *s;
8269 long ret;
8270
8271 if (elf_dynsymtab (abfd) == 0)
8272 {
8273 bfd_set_error (bfd_error_invalid_operation);
8274 return -1;
8275 }
8276
8277 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8278 ret = 0;
8279 for (s = abfd->sections; s != NULL; s = s->next)
8280 {
8281 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8282 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8283 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8284 {
8285 arelent *p;
8286 long count, i;
8287
8288 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8289 return -1;
8290 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8291 p = s->relocation;
8292 for (i = 0; i < count; i++)
8293 *storage++ = p++;
8294 ret += count;
8295 }
8296 }
8297
8298 *storage = NULL;
8299
8300 return ret;
8301 }
8302 \f
8303 /* Read in the version information. */
8304
8305 bfd_boolean
8306 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8307 {
8308 bfd_byte *contents = NULL;
8309 unsigned int freeidx = 0;
8310
8311 if (elf_dynverref (abfd) != 0)
8312 {
8313 Elf_Internal_Shdr *hdr;
8314 Elf_External_Verneed *everneed;
8315 Elf_Internal_Verneed *iverneed;
8316 unsigned int i;
8317 bfd_byte *contents_end;
8318
8319 hdr = &elf_tdata (abfd)->dynverref_hdr;
8320
8321 if (hdr->sh_info == 0
8322 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8323 {
8324 error_return_bad_verref:
8325 _bfd_error_handler
8326 (_("%pB: .gnu.version_r invalid entry"), abfd);
8327 bfd_set_error (bfd_error_bad_value);
8328 error_return_verref:
8329 elf_tdata (abfd)->verref = NULL;
8330 elf_tdata (abfd)->cverrefs = 0;
8331 goto error_return;
8332 }
8333
8334 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8335 if (contents == NULL)
8336 goto error_return_verref;
8337
8338 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8339 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8340 goto error_return_verref;
8341
8342 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8343 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8344
8345 if (elf_tdata (abfd)->verref == NULL)
8346 goto error_return_verref;
8347
8348 BFD_ASSERT (sizeof (Elf_External_Verneed)
8349 == sizeof (Elf_External_Vernaux));
8350 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8351 everneed = (Elf_External_Verneed *) contents;
8352 iverneed = elf_tdata (abfd)->verref;
8353 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8354 {
8355 Elf_External_Vernaux *evernaux;
8356 Elf_Internal_Vernaux *ivernaux;
8357 unsigned int j;
8358
8359 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8360
8361 iverneed->vn_bfd = abfd;
8362
8363 iverneed->vn_filename =
8364 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8365 iverneed->vn_file);
8366 if (iverneed->vn_filename == NULL)
8367 goto error_return_bad_verref;
8368
8369 if (iverneed->vn_cnt == 0)
8370 iverneed->vn_auxptr = NULL;
8371 else
8372 {
8373 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8374 bfd_alloc2 (abfd, iverneed->vn_cnt,
8375 sizeof (Elf_Internal_Vernaux));
8376 if (iverneed->vn_auxptr == NULL)
8377 goto error_return_verref;
8378 }
8379
8380 if (iverneed->vn_aux
8381 > (size_t) (contents_end - (bfd_byte *) everneed))
8382 goto error_return_bad_verref;
8383
8384 evernaux = ((Elf_External_Vernaux *)
8385 ((bfd_byte *) everneed + iverneed->vn_aux));
8386 ivernaux = iverneed->vn_auxptr;
8387 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8388 {
8389 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8390
8391 ivernaux->vna_nodename =
8392 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8393 ivernaux->vna_name);
8394 if (ivernaux->vna_nodename == NULL)
8395 goto error_return_bad_verref;
8396
8397 if (ivernaux->vna_other > freeidx)
8398 freeidx = ivernaux->vna_other;
8399
8400 ivernaux->vna_nextptr = NULL;
8401 if (ivernaux->vna_next == 0)
8402 {
8403 iverneed->vn_cnt = j + 1;
8404 break;
8405 }
8406 if (j + 1 < iverneed->vn_cnt)
8407 ivernaux->vna_nextptr = ivernaux + 1;
8408
8409 if (ivernaux->vna_next
8410 > (size_t) (contents_end - (bfd_byte *) evernaux))
8411 goto error_return_bad_verref;
8412
8413 evernaux = ((Elf_External_Vernaux *)
8414 ((bfd_byte *) evernaux + ivernaux->vna_next));
8415 }
8416
8417 iverneed->vn_nextref = NULL;
8418 if (iverneed->vn_next == 0)
8419 break;
8420 if (i + 1 < hdr->sh_info)
8421 iverneed->vn_nextref = iverneed + 1;
8422
8423 if (iverneed->vn_next
8424 > (size_t) (contents_end - (bfd_byte *) everneed))
8425 goto error_return_bad_verref;
8426
8427 everneed = ((Elf_External_Verneed *)
8428 ((bfd_byte *) everneed + iverneed->vn_next));
8429 }
8430 elf_tdata (abfd)->cverrefs = i;
8431
8432 free (contents);
8433 contents = NULL;
8434 }
8435
8436 if (elf_dynverdef (abfd) != 0)
8437 {
8438 Elf_Internal_Shdr *hdr;
8439 Elf_External_Verdef *everdef;
8440 Elf_Internal_Verdef *iverdef;
8441 Elf_Internal_Verdef *iverdefarr;
8442 Elf_Internal_Verdef iverdefmem;
8443 unsigned int i;
8444 unsigned int maxidx;
8445 bfd_byte *contents_end_def, *contents_end_aux;
8446
8447 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8448
8449 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8450 {
8451 error_return_bad_verdef:
8452 _bfd_error_handler
8453 (_("%pB: .gnu.version_d invalid entry"), abfd);
8454 bfd_set_error (bfd_error_bad_value);
8455 error_return_verdef:
8456 elf_tdata (abfd)->verdef = NULL;
8457 elf_tdata (abfd)->cverdefs = 0;
8458 goto error_return;
8459 }
8460
8461 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8462 if (contents == NULL)
8463 goto error_return_verdef;
8464 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8465 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8466 goto error_return_verdef;
8467
8468 BFD_ASSERT (sizeof (Elf_External_Verdef)
8469 >= sizeof (Elf_External_Verdaux));
8470 contents_end_def = contents + hdr->sh_size
8471 - sizeof (Elf_External_Verdef);
8472 contents_end_aux = contents + hdr->sh_size
8473 - sizeof (Elf_External_Verdaux);
8474
8475 /* We know the number of entries in the section but not the maximum
8476 index. Therefore we have to run through all entries and find
8477 the maximum. */
8478 everdef = (Elf_External_Verdef *) contents;
8479 maxidx = 0;
8480 for (i = 0; i < hdr->sh_info; ++i)
8481 {
8482 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8483
8484 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8485 goto error_return_bad_verdef;
8486 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8487 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8488
8489 if (iverdefmem.vd_next == 0)
8490 break;
8491
8492 if (iverdefmem.vd_next
8493 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8494 goto error_return_bad_verdef;
8495
8496 everdef = ((Elf_External_Verdef *)
8497 ((bfd_byte *) everdef + iverdefmem.vd_next));
8498 }
8499
8500 if (default_imported_symver)
8501 {
8502 if (freeidx > maxidx)
8503 maxidx = ++freeidx;
8504 else
8505 freeidx = ++maxidx;
8506 }
8507
8508 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8509 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8510 if (elf_tdata (abfd)->verdef == NULL)
8511 goto error_return_verdef;
8512
8513 elf_tdata (abfd)->cverdefs = maxidx;
8514
8515 everdef = (Elf_External_Verdef *) contents;
8516 iverdefarr = elf_tdata (abfd)->verdef;
8517 for (i = 0; i < hdr->sh_info; i++)
8518 {
8519 Elf_External_Verdaux *everdaux;
8520 Elf_Internal_Verdaux *iverdaux;
8521 unsigned int j;
8522
8523 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8524
8525 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8526 goto error_return_bad_verdef;
8527
8528 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8529 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8530
8531 iverdef->vd_bfd = abfd;
8532
8533 if (iverdef->vd_cnt == 0)
8534 iverdef->vd_auxptr = NULL;
8535 else
8536 {
8537 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8538 bfd_alloc2 (abfd, iverdef->vd_cnt,
8539 sizeof (Elf_Internal_Verdaux));
8540 if (iverdef->vd_auxptr == NULL)
8541 goto error_return_verdef;
8542 }
8543
8544 if (iverdef->vd_aux
8545 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8546 goto error_return_bad_verdef;
8547
8548 everdaux = ((Elf_External_Verdaux *)
8549 ((bfd_byte *) everdef + iverdef->vd_aux));
8550 iverdaux = iverdef->vd_auxptr;
8551 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8552 {
8553 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8554
8555 iverdaux->vda_nodename =
8556 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8557 iverdaux->vda_name);
8558 if (iverdaux->vda_nodename == NULL)
8559 goto error_return_bad_verdef;
8560
8561 iverdaux->vda_nextptr = NULL;
8562 if (iverdaux->vda_next == 0)
8563 {
8564 iverdef->vd_cnt = j + 1;
8565 break;
8566 }
8567 if (j + 1 < iverdef->vd_cnt)
8568 iverdaux->vda_nextptr = iverdaux + 1;
8569
8570 if (iverdaux->vda_next
8571 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8572 goto error_return_bad_verdef;
8573
8574 everdaux = ((Elf_External_Verdaux *)
8575 ((bfd_byte *) everdaux + iverdaux->vda_next));
8576 }
8577
8578 iverdef->vd_nodename = NULL;
8579 if (iverdef->vd_cnt)
8580 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8581
8582 iverdef->vd_nextdef = NULL;
8583 if (iverdef->vd_next == 0)
8584 break;
8585 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8586 iverdef->vd_nextdef = iverdef + 1;
8587
8588 everdef = ((Elf_External_Verdef *)
8589 ((bfd_byte *) everdef + iverdef->vd_next));
8590 }
8591
8592 free (contents);
8593 contents = NULL;
8594 }
8595 else if (default_imported_symver)
8596 {
8597 if (freeidx < 3)
8598 freeidx = 3;
8599 else
8600 freeidx++;
8601
8602 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8603 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8604 if (elf_tdata (abfd)->verdef == NULL)
8605 goto error_return;
8606
8607 elf_tdata (abfd)->cverdefs = freeidx;
8608 }
8609
8610 /* Create a default version based on the soname. */
8611 if (default_imported_symver)
8612 {
8613 Elf_Internal_Verdef *iverdef;
8614 Elf_Internal_Verdaux *iverdaux;
8615
8616 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8617
8618 iverdef->vd_version = VER_DEF_CURRENT;
8619 iverdef->vd_flags = 0;
8620 iverdef->vd_ndx = freeidx;
8621 iverdef->vd_cnt = 1;
8622
8623 iverdef->vd_bfd = abfd;
8624
8625 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8626 if (iverdef->vd_nodename == NULL)
8627 goto error_return_verdef;
8628 iverdef->vd_nextdef = NULL;
8629 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8630 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8631 if (iverdef->vd_auxptr == NULL)
8632 goto error_return_verdef;
8633
8634 iverdaux = iverdef->vd_auxptr;
8635 iverdaux->vda_nodename = iverdef->vd_nodename;
8636 }
8637
8638 return TRUE;
8639
8640 error_return:
8641 if (contents != NULL)
8642 free (contents);
8643 return FALSE;
8644 }
8645 \f
8646 asymbol *
8647 _bfd_elf_make_empty_symbol (bfd *abfd)
8648 {
8649 elf_symbol_type *newsym;
8650
8651 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8652 if (!newsym)
8653 return NULL;
8654 newsym->symbol.the_bfd = abfd;
8655 return &newsym->symbol;
8656 }
8657
8658 void
8659 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8660 asymbol *symbol,
8661 symbol_info *ret)
8662 {
8663 bfd_symbol_info (symbol, ret);
8664 }
8665
8666 /* Return whether a symbol name implies a local symbol. Most targets
8667 use this function for the is_local_label_name entry point, but some
8668 override it. */
8669
8670 bfd_boolean
8671 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8672 const char *name)
8673 {
8674 /* Normal local symbols start with ``.L''. */
8675 if (name[0] == '.' && name[1] == 'L')
8676 return TRUE;
8677
8678 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8679 DWARF debugging symbols starting with ``..''. */
8680 if (name[0] == '.' && name[1] == '.')
8681 return TRUE;
8682
8683 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8684 emitting DWARF debugging output. I suspect this is actually a
8685 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8686 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8687 underscore to be emitted on some ELF targets). For ease of use,
8688 we treat such symbols as local. */
8689 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8690 return TRUE;
8691
8692 /* Treat assembler generated fake symbols, dollar local labels and
8693 forward-backward labels (aka local labels) as locals.
8694 These labels have the form:
8695
8696 L0^A.* (fake symbols)
8697
8698 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8699
8700 Versions which start with .L will have already been matched above,
8701 so we only need to match the rest. */
8702 if (name[0] == 'L' && ISDIGIT (name[1]))
8703 {
8704 bfd_boolean ret = FALSE;
8705 const char * p;
8706 char c;
8707
8708 for (p = name + 2; (c = *p); p++)
8709 {
8710 if (c == 1 || c == 2)
8711 {
8712 if (c == 1 && p == name + 2)
8713 /* A fake symbol. */
8714 return TRUE;
8715
8716 /* FIXME: We are being paranoid here and treating symbols like
8717 L0^Bfoo as if there were non-local, on the grounds that the
8718 assembler will never generate them. But can any symbol
8719 containing an ASCII value in the range 1-31 ever be anything
8720 other than some kind of local ? */
8721 ret = TRUE;
8722 }
8723
8724 if (! ISDIGIT (c))
8725 {
8726 ret = FALSE;
8727 break;
8728 }
8729 }
8730 return ret;
8731 }
8732
8733 return FALSE;
8734 }
8735
8736 alent *
8737 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8738 asymbol *symbol ATTRIBUTE_UNUSED)
8739 {
8740 abort ();
8741 return NULL;
8742 }
8743
8744 bfd_boolean
8745 _bfd_elf_set_arch_mach (bfd *abfd,
8746 enum bfd_architecture arch,
8747 unsigned long machine)
8748 {
8749 /* If this isn't the right architecture for this backend, and this
8750 isn't the generic backend, fail. */
8751 if (arch != get_elf_backend_data (abfd)->arch
8752 && arch != bfd_arch_unknown
8753 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8754 return FALSE;
8755
8756 return bfd_default_set_arch_mach (abfd, arch, machine);
8757 }
8758
8759 /* Find the nearest line to a particular section and offset,
8760 for error reporting. */
8761
8762 bfd_boolean
8763 _bfd_elf_find_nearest_line (bfd *abfd,
8764 asymbol **symbols,
8765 asection *section,
8766 bfd_vma offset,
8767 const char **filename_ptr,
8768 const char **functionname_ptr,
8769 unsigned int *line_ptr,
8770 unsigned int *discriminator_ptr)
8771 {
8772 bfd_boolean found;
8773
8774 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8775 filename_ptr, functionname_ptr,
8776 line_ptr, discriminator_ptr,
8777 dwarf_debug_sections, 0,
8778 &elf_tdata (abfd)->dwarf2_find_line_info)
8779 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8780 filename_ptr, functionname_ptr,
8781 line_ptr))
8782 {
8783 if (!*functionname_ptr)
8784 _bfd_elf_find_function (abfd, symbols, section, offset,
8785 *filename_ptr ? NULL : filename_ptr,
8786 functionname_ptr);
8787 return TRUE;
8788 }
8789
8790 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8791 &found, filename_ptr,
8792 functionname_ptr, line_ptr,
8793 &elf_tdata (abfd)->line_info))
8794 return FALSE;
8795 if (found && (*functionname_ptr || *line_ptr))
8796 return TRUE;
8797
8798 if (symbols == NULL)
8799 return FALSE;
8800
8801 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8802 filename_ptr, functionname_ptr))
8803 return FALSE;
8804
8805 *line_ptr = 0;
8806 return TRUE;
8807 }
8808
8809 /* Find the line for a symbol. */
8810
8811 bfd_boolean
8812 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8813 const char **filename_ptr, unsigned int *line_ptr)
8814 {
8815 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8816 filename_ptr, NULL, line_ptr, NULL,
8817 dwarf_debug_sections, 0,
8818 &elf_tdata (abfd)->dwarf2_find_line_info);
8819 }
8820
8821 /* After a call to bfd_find_nearest_line, successive calls to
8822 bfd_find_inliner_info can be used to get source information about
8823 each level of function inlining that terminated at the address
8824 passed to bfd_find_nearest_line. Currently this is only supported
8825 for DWARF2 with appropriate DWARF3 extensions. */
8826
8827 bfd_boolean
8828 _bfd_elf_find_inliner_info (bfd *abfd,
8829 const char **filename_ptr,
8830 const char **functionname_ptr,
8831 unsigned int *line_ptr)
8832 {
8833 bfd_boolean found;
8834 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8835 functionname_ptr, line_ptr,
8836 & elf_tdata (abfd)->dwarf2_find_line_info);
8837 return found;
8838 }
8839
8840 int
8841 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8842 {
8843 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8844 int ret = bed->s->sizeof_ehdr;
8845
8846 if (!bfd_link_relocatable (info))
8847 {
8848 bfd_size_type phdr_size = elf_program_header_size (abfd);
8849
8850 if (phdr_size == (bfd_size_type) -1)
8851 {
8852 struct elf_segment_map *m;
8853
8854 phdr_size = 0;
8855 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8856 phdr_size += bed->s->sizeof_phdr;
8857
8858 if (phdr_size == 0)
8859 phdr_size = get_program_header_size (abfd, info);
8860 }
8861
8862 elf_program_header_size (abfd) = phdr_size;
8863 ret += phdr_size;
8864 }
8865
8866 return ret;
8867 }
8868
8869 bfd_boolean
8870 _bfd_elf_set_section_contents (bfd *abfd,
8871 sec_ptr section,
8872 const void *location,
8873 file_ptr offset,
8874 bfd_size_type count)
8875 {
8876 Elf_Internal_Shdr *hdr;
8877 file_ptr pos;
8878
8879 if (! abfd->output_has_begun
8880 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8881 return FALSE;
8882
8883 if (!count)
8884 return TRUE;
8885
8886 hdr = &elf_section_data (section)->this_hdr;
8887 if (hdr->sh_offset == (file_ptr) -1)
8888 {
8889 /* We must compress this section. Write output to the buffer. */
8890 unsigned char *contents = hdr->contents;
8891 if ((offset + count) > hdr->sh_size
8892 || (section->flags & SEC_ELF_COMPRESS) == 0
8893 || contents == NULL)
8894 abort ();
8895 memcpy (contents + offset, location, count);
8896 return TRUE;
8897 }
8898 pos = hdr->sh_offset + offset;
8899 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8900 || bfd_bwrite (location, count, abfd) != count)
8901 return FALSE;
8902
8903 return TRUE;
8904 }
8905
8906 bfd_boolean
8907 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8908 arelent *cache_ptr ATTRIBUTE_UNUSED,
8909 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8910 {
8911 abort ();
8912 return FALSE;
8913 }
8914
8915 /* Try to convert a non-ELF reloc into an ELF one. */
8916
8917 bfd_boolean
8918 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8919 {
8920 /* Check whether we really have an ELF howto. */
8921
8922 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8923 {
8924 bfd_reloc_code_real_type code;
8925 reloc_howto_type *howto;
8926
8927 /* Alien reloc: Try to determine its type to replace it with an
8928 equivalent ELF reloc. */
8929
8930 if (areloc->howto->pc_relative)
8931 {
8932 switch (areloc->howto->bitsize)
8933 {
8934 case 8:
8935 code = BFD_RELOC_8_PCREL;
8936 break;
8937 case 12:
8938 code = BFD_RELOC_12_PCREL;
8939 break;
8940 case 16:
8941 code = BFD_RELOC_16_PCREL;
8942 break;
8943 case 24:
8944 code = BFD_RELOC_24_PCREL;
8945 break;
8946 case 32:
8947 code = BFD_RELOC_32_PCREL;
8948 break;
8949 case 64:
8950 code = BFD_RELOC_64_PCREL;
8951 break;
8952 default:
8953 goto fail;
8954 }
8955
8956 howto = bfd_reloc_type_lookup (abfd, code);
8957
8958 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8959 {
8960 if (howto->pcrel_offset)
8961 areloc->addend += areloc->address;
8962 else
8963 areloc->addend -= areloc->address; /* addend is unsigned!! */
8964 }
8965 }
8966 else
8967 {
8968 switch (areloc->howto->bitsize)
8969 {
8970 case 8:
8971 code = BFD_RELOC_8;
8972 break;
8973 case 14:
8974 code = BFD_RELOC_14;
8975 break;
8976 case 16:
8977 code = BFD_RELOC_16;
8978 break;
8979 case 26:
8980 code = BFD_RELOC_26;
8981 break;
8982 case 32:
8983 code = BFD_RELOC_32;
8984 break;
8985 case 64:
8986 code = BFD_RELOC_64;
8987 break;
8988 default:
8989 goto fail;
8990 }
8991
8992 howto = bfd_reloc_type_lookup (abfd, code);
8993 }
8994
8995 if (howto)
8996 areloc->howto = howto;
8997 else
8998 goto fail;
8999 }
9000
9001 return TRUE;
9002
9003 fail:
9004 /* xgettext:c-format */
9005 _bfd_error_handler (_("%pB: %s unsupported"),
9006 abfd, areloc->howto->name);
9007 bfd_set_error (bfd_error_bad_value);
9008 return FALSE;
9009 }
9010
9011 bfd_boolean
9012 _bfd_elf_close_and_cleanup (bfd *abfd)
9013 {
9014 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9015 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9016 {
9017 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9018 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9019 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9020 }
9021
9022 return _bfd_generic_close_and_cleanup (abfd);
9023 }
9024
9025 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9026 in the relocation's offset. Thus we cannot allow any sort of sanity
9027 range-checking to interfere. There is nothing else to do in processing
9028 this reloc. */
9029
9030 bfd_reloc_status_type
9031 _bfd_elf_rel_vtable_reloc_fn
9032 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9033 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9034 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9035 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9036 {
9037 return bfd_reloc_ok;
9038 }
9039 \f
9040 /* Elf core file support. Much of this only works on native
9041 toolchains, since we rely on knowing the
9042 machine-dependent procfs structure in order to pick
9043 out details about the corefile. */
9044
9045 #ifdef HAVE_SYS_PROCFS_H
9046 /* Needed for new procfs interface on sparc-solaris. */
9047 # define _STRUCTURED_PROC 1
9048 # include <sys/procfs.h>
9049 #endif
9050
9051 /* Return a PID that identifies a "thread" for threaded cores, or the
9052 PID of the main process for non-threaded cores. */
9053
9054 static int
9055 elfcore_make_pid (bfd *abfd)
9056 {
9057 int pid;
9058
9059 pid = elf_tdata (abfd)->core->lwpid;
9060 if (pid == 0)
9061 pid = elf_tdata (abfd)->core->pid;
9062
9063 return pid;
9064 }
9065
9066 /* If there isn't a section called NAME, make one, using
9067 data from SECT. Note, this function will generate a
9068 reference to NAME, so you shouldn't deallocate or
9069 overwrite it. */
9070
9071 static bfd_boolean
9072 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9073 {
9074 asection *sect2;
9075
9076 if (bfd_get_section_by_name (abfd, name) != NULL)
9077 return TRUE;
9078
9079 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9080 if (sect2 == NULL)
9081 return FALSE;
9082
9083 sect2->size = sect->size;
9084 sect2->filepos = sect->filepos;
9085 sect2->alignment_power = sect->alignment_power;
9086 return TRUE;
9087 }
9088
9089 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9090 actually creates up to two pseudosections:
9091 - For the single-threaded case, a section named NAME, unless
9092 such a section already exists.
9093 - For the multi-threaded case, a section named "NAME/PID", where
9094 PID is elfcore_make_pid (abfd).
9095 Both pseudosections have identical contents. */
9096 bfd_boolean
9097 _bfd_elfcore_make_pseudosection (bfd *abfd,
9098 char *name,
9099 size_t size,
9100 ufile_ptr filepos)
9101 {
9102 char buf[100];
9103 char *threaded_name;
9104 size_t len;
9105 asection *sect;
9106
9107 /* Build the section name. */
9108
9109 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9110 len = strlen (buf) + 1;
9111 threaded_name = (char *) bfd_alloc (abfd, len);
9112 if (threaded_name == NULL)
9113 return FALSE;
9114 memcpy (threaded_name, buf, len);
9115
9116 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9117 SEC_HAS_CONTENTS);
9118 if (sect == NULL)
9119 return FALSE;
9120 sect->size = size;
9121 sect->filepos = filepos;
9122 sect->alignment_power = 2;
9123
9124 return elfcore_maybe_make_sect (abfd, name, sect);
9125 }
9126
9127 /* prstatus_t exists on:
9128 solaris 2.5+
9129 linux 2.[01] + glibc
9130 unixware 4.2
9131 */
9132
9133 #if defined (HAVE_PRSTATUS_T)
9134
9135 static bfd_boolean
9136 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9137 {
9138 size_t size;
9139 int offset;
9140
9141 if (note->descsz == sizeof (prstatus_t))
9142 {
9143 prstatus_t prstat;
9144
9145 size = sizeof (prstat.pr_reg);
9146 offset = offsetof (prstatus_t, pr_reg);
9147 memcpy (&prstat, note->descdata, sizeof (prstat));
9148
9149 /* Do not overwrite the core signal if it
9150 has already been set by another thread. */
9151 if (elf_tdata (abfd)->core->signal == 0)
9152 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9153 if (elf_tdata (abfd)->core->pid == 0)
9154 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9155
9156 /* pr_who exists on:
9157 solaris 2.5+
9158 unixware 4.2
9159 pr_who doesn't exist on:
9160 linux 2.[01]
9161 */
9162 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9163 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9164 #else
9165 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9166 #endif
9167 }
9168 #if defined (HAVE_PRSTATUS32_T)
9169 else if (note->descsz == sizeof (prstatus32_t))
9170 {
9171 /* 64-bit host, 32-bit corefile */
9172 prstatus32_t prstat;
9173
9174 size = sizeof (prstat.pr_reg);
9175 offset = offsetof (prstatus32_t, pr_reg);
9176 memcpy (&prstat, note->descdata, sizeof (prstat));
9177
9178 /* Do not overwrite the core signal if it
9179 has already been set by another thread. */
9180 if (elf_tdata (abfd)->core->signal == 0)
9181 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9182 if (elf_tdata (abfd)->core->pid == 0)
9183 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9184
9185 /* pr_who exists on:
9186 solaris 2.5+
9187 unixware 4.2
9188 pr_who doesn't exist on:
9189 linux 2.[01]
9190 */
9191 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9192 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9193 #else
9194 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9195 #endif
9196 }
9197 #endif /* HAVE_PRSTATUS32_T */
9198 else
9199 {
9200 /* Fail - we don't know how to handle any other
9201 note size (ie. data object type). */
9202 return TRUE;
9203 }
9204
9205 /* Make a ".reg/999" section and a ".reg" section. */
9206 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9207 size, note->descpos + offset);
9208 }
9209 #endif /* defined (HAVE_PRSTATUS_T) */
9210
9211 /* Create a pseudosection containing the exact contents of NOTE. */
9212 static bfd_boolean
9213 elfcore_make_note_pseudosection (bfd *abfd,
9214 char *name,
9215 Elf_Internal_Note *note)
9216 {
9217 return _bfd_elfcore_make_pseudosection (abfd, name,
9218 note->descsz, note->descpos);
9219 }
9220
9221 /* There isn't a consistent prfpregset_t across platforms,
9222 but it doesn't matter, because we don't have to pick this
9223 data structure apart. */
9224
9225 static bfd_boolean
9226 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9227 {
9228 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9229 }
9230
9231 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9232 type of NT_PRXFPREG. Just include the whole note's contents
9233 literally. */
9234
9235 static bfd_boolean
9236 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9237 {
9238 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9239 }
9240
9241 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9242 with a note type of NT_X86_XSTATE. Just include the whole note's
9243 contents literally. */
9244
9245 static bfd_boolean
9246 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9247 {
9248 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9249 }
9250
9251 static bfd_boolean
9252 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9253 {
9254 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9255 }
9256
9257 static bfd_boolean
9258 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9259 {
9260 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9261 }
9262
9263 static bfd_boolean
9264 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9265 {
9266 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9267 }
9268
9269 static bfd_boolean
9270 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9271 {
9272 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9273 }
9274
9275 static bfd_boolean
9276 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9277 {
9278 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9279 }
9280
9281 static bfd_boolean
9282 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9283 {
9284 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9285 }
9286
9287 static bfd_boolean
9288 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9289 {
9290 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9291 }
9292
9293 static bfd_boolean
9294 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9295 {
9296 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9297 }
9298
9299 static bfd_boolean
9300 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9301 {
9302 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9303 }
9304
9305 static bfd_boolean
9306 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9307 {
9308 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9309 }
9310
9311 static bfd_boolean
9312 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9313 {
9314 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9315 }
9316
9317 static bfd_boolean
9318 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9319 {
9320 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9321 }
9322
9323 static bfd_boolean
9324 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9325 {
9326 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9327 }
9328
9329 static bfd_boolean
9330 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9331 {
9332 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9333 }
9334
9335 static bfd_boolean
9336 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9337 {
9338 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9339 }
9340
9341 static bfd_boolean
9342 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9343 {
9344 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9345 }
9346
9347 static bfd_boolean
9348 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9349 {
9350 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9351 }
9352
9353 static bfd_boolean
9354 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9355 {
9356 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9357 }
9358
9359 static bfd_boolean
9360 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9361 {
9362 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9363 }
9364
9365 static bfd_boolean
9366 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9367 {
9368 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9369 }
9370
9371 static bfd_boolean
9372 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9373 {
9374 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9375 }
9376
9377 static bfd_boolean
9378 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9379 {
9380 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9381 }
9382
9383 static bfd_boolean
9384 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9385 {
9386 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9387 }
9388
9389 static bfd_boolean
9390 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9391 {
9392 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9393 }
9394
9395 static bfd_boolean
9396 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9397 {
9398 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9399 }
9400
9401 static bfd_boolean
9402 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9403 {
9404 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9405 }
9406
9407 static bfd_boolean
9408 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9409 {
9410 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9411 }
9412
9413 static bfd_boolean
9414 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9415 {
9416 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9417 }
9418
9419 static bfd_boolean
9420 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9421 {
9422 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9423 }
9424
9425 static bfd_boolean
9426 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9427 {
9428 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9429 }
9430
9431 static bfd_boolean
9432 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9433 {
9434 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9435 }
9436
9437 static bfd_boolean
9438 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9439 {
9440 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9441 }
9442
9443 static bfd_boolean
9444 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9445 {
9446 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9447 }
9448
9449 #if defined (HAVE_PRPSINFO_T)
9450 typedef prpsinfo_t elfcore_psinfo_t;
9451 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9452 typedef prpsinfo32_t elfcore_psinfo32_t;
9453 #endif
9454 #endif
9455
9456 #if defined (HAVE_PSINFO_T)
9457 typedef psinfo_t elfcore_psinfo_t;
9458 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9459 typedef psinfo32_t elfcore_psinfo32_t;
9460 #endif
9461 #endif
9462
9463 /* return a malloc'ed copy of a string at START which is at
9464 most MAX bytes long, possibly without a terminating '\0'.
9465 the copy will always have a terminating '\0'. */
9466
9467 char *
9468 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9469 {
9470 char *dups;
9471 char *end = (char *) memchr (start, '\0', max);
9472 size_t len;
9473
9474 if (end == NULL)
9475 len = max;
9476 else
9477 len = end - start;
9478
9479 dups = (char *) bfd_alloc (abfd, len + 1);
9480 if (dups == NULL)
9481 return NULL;
9482
9483 memcpy (dups, start, len);
9484 dups[len] = '\0';
9485
9486 return dups;
9487 }
9488
9489 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9490 static bfd_boolean
9491 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9492 {
9493 if (note->descsz == sizeof (elfcore_psinfo_t))
9494 {
9495 elfcore_psinfo_t psinfo;
9496
9497 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9498
9499 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9500 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9501 #endif
9502 elf_tdata (abfd)->core->program
9503 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9504 sizeof (psinfo.pr_fname));
9505
9506 elf_tdata (abfd)->core->command
9507 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9508 sizeof (psinfo.pr_psargs));
9509 }
9510 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9511 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9512 {
9513 /* 64-bit host, 32-bit corefile */
9514 elfcore_psinfo32_t psinfo;
9515
9516 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9517
9518 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9519 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9520 #endif
9521 elf_tdata (abfd)->core->program
9522 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9523 sizeof (psinfo.pr_fname));
9524
9525 elf_tdata (abfd)->core->command
9526 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9527 sizeof (psinfo.pr_psargs));
9528 }
9529 #endif
9530
9531 else
9532 {
9533 /* Fail - we don't know how to handle any other
9534 note size (ie. data object type). */
9535 return TRUE;
9536 }
9537
9538 /* Note that for some reason, a spurious space is tacked
9539 onto the end of the args in some (at least one anyway)
9540 implementations, so strip it off if it exists. */
9541
9542 {
9543 char *command = elf_tdata (abfd)->core->command;
9544 int n = strlen (command);
9545
9546 if (0 < n && command[n - 1] == ' ')
9547 command[n - 1] = '\0';
9548 }
9549
9550 return TRUE;
9551 }
9552 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9553
9554 #if defined (HAVE_PSTATUS_T)
9555 static bfd_boolean
9556 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9557 {
9558 if (note->descsz == sizeof (pstatus_t)
9559 #if defined (HAVE_PXSTATUS_T)
9560 || note->descsz == sizeof (pxstatus_t)
9561 #endif
9562 )
9563 {
9564 pstatus_t pstat;
9565
9566 memcpy (&pstat, note->descdata, sizeof (pstat));
9567
9568 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9569 }
9570 #if defined (HAVE_PSTATUS32_T)
9571 else if (note->descsz == sizeof (pstatus32_t))
9572 {
9573 /* 64-bit host, 32-bit corefile */
9574 pstatus32_t pstat;
9575
9576 memcpy (&pstat, note->descdata, sizeof (pstat));
9577
9578 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9579 }
9580 #endif
9581 /* Could grab some more details from the "representative"
9582 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9583 NT_LWPSTATUS note, presumably. */
9584
9585 return TRUE;
9586 }
9587 #endif /* defined (HAVE_PSTATUS_T) */
9588
9589 #if defined (HAVE_LWPSTATUS_T)
9590 static bfd_boolean
9591 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9592 {
9593 lwpstatus_t lwpstat;
9594 char buf[100];
9595 char *name;
9596 size_t len;
9597 asection *sect;
9598
9599 if (note->descsz != sizeof (lwpstat)
9600 #if defined (HAVE_LWPXSTATUS_T)
9601 && note->descsz != sizeof (lwpxstatus_t)
9602 #endif
9603 )
9604 return TRUE;
9605
9606 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9607
9608 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9609 /* Do not overwrite the core signal if it has already been set by
9610 another thread. */
9611 if (elf_tdata (abfd)->core->signal == 0)
9612 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9613
9614 /* Make a ".reg/999" section. */
9615
9616 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9617 len = strlen (buf) + 1;
9618 name = bfd_alloc (abfd, len);
9619 if (name == NULL)
9620 return FALSE;
9621 memcpy (name, buf, len);
9622
9623 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9624 if (sect == NULL)
9625 return FALSE;
9626
9627 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9628 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9629 sect->filepos = note->descpos
9630 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9631 #endif
9632
9633 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9634 sect->size = sizeof (lwpstat.pr_reg);
9635 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9636 #endif
9637
9638 sect->alignment_power = 2;
9639
9640 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9641 return FALSE;
9642
9643 /* Make a ".reg2/999" section */
9644
9645 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9646 len = strlen (buf) + 1;
9647 name = bfd_alloc (abfd, len);
9648 if (name == NULL)
9649 return FALSE;
9650 memcpy (name, buf, len);
9651
9652 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9653 if (sect == NULL)
9654 return FALSE;
9655
9656 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9657 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9658 sect->filepos = note->descpos
9659 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9660 #endif
9661
9662 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9663 sect->size = sizeof (lwpstat.pr_fpreg);
9664 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9665 #endif
9666
9667 sect->alignment_power = 2;
9668
9669 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9670 }
9671 #endif /* defined (HAVE_LWPSTATUS_T) */
9672
9673 static bfd_boolean
9674 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9675 {
9676 char buf[30];
9677 char *name;
9678 size_t len;
9679 asection *sect;
9680 int type;
9681 int is_active_thread;
9682 bfd_vma base_addr;
9683
9684 if (note->descsz < 728)
9685 return TRUE;
9686
9687 if (! CONST_STRNEQ (note->namedata, "win32"))
9688 return TRUE;
9689
9690 type = bfd_get_32 (abfd, note->descdata);
9691
9692 switch (type)
9693 {
9694 case 1 /* NOTE_INFO_PROCESS */:
9695 /* FIXME: need to add ->core->command. */
9696 /* process_info.pid */
9697 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9698 /* process_info.signal */
9699 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9700 break;
9701
9702 case 2 /* NOTE_INFO_THREAD */:
9703 /* Make a ".reg/999" section. */
9704 /* thread_info.tid */
9705 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9706
9707 len = strlen (buf) + 1;
9708 name = (char *) bfd_alloc (abfd, len);
9709 if (name == NULL)
9710 return FALSE;
9711
9712 memcpy (name, buf, len);
9713
9714 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9715 if (sect == NULL)
9716 return FALSE;
9717
9718 /* sizeof (thread_info.thread_context) */
9719 sect->size = 716;
9720 /* offsetof (thread_info.thread_context) */
9721 sect->filepos = note->descpos + 12;
9722 sect->alignment_power = 2;
9723
9724 /* thread_info.is_active_thread */
9725 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9726
9727 if (is_active_thread)
9728 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9729 return FALSE;
9730 break;
9731
9732 case 3 /* NOTE_INFO_MODULE */:
9733 /* Make a ".module/xxxxxxxx" section. */
9734 /* module_info.base_address */
9735 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9736 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9737
9738 len = strlen (buf) + 1;
9739 name = (char *) bfd_alloc (abfd, len);
9740 if (name == NULL)
9741 return FALSE;
9742
9743 memcpy (name, buf, len);
9744
9745 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9746
9747 if (sect == NULL)
9748 return FALSE;
9749
9750 sect->size = note->descsz;
9751 sect->filepos = note->descpos;
9752 sect->alignment_power = 2;
9753 break;
9754
9755 default:
9756 return TRUE;
9757 }
9758
9759 return TRUE;
9760 }
9761
9762 static bfd_boolean
9763 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9764 {
9765 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9766
9767 switch (note->type)
9768 {
9769 default:
9770 return TRUE;
9771
9772 case NT_PRSTATUS:
9773 if (bed->elf_backend_grok_prstatus)
9774 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9775 return TRUE;
9776 #if defined (HAVE_PRSTATUS_T)
9777 return elfcore_grok_prstatus (abfd, note);
9778 #else
9779 return TRUE;
9780 #endif
9781
9782 #if defined (HAVE_PSTATUS_T)
9783 case NT_PSTATUS:
9784 return elfcore_grok_pstatus (abfd, note);
9785 #endif
9786
9787 #if defined (HAVE_LWPSTATUS_T)
9788 case NT_LWPSTATUS:
9789 return elfcore_grok_lwpstatus (abfd, note);
9790 #endif
9791
9792 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9793 return elfcore_grok_prfpreg (abfd, note);
9794
9795 case NT_WIN32PSTATUS:
9796 return elfcore_grok_win32pstatus (abfd, note);
9797
9798 case NT_PRXFPREG: /* Linux SSE extension */
9799 if (note->namesz == 6
9800 && strcmp (note->namedata, "LINUX") == 0)
9801 return elfcore_grok_prxfpreg (abfd, note);
9802 else
9803 return TRUE;
9804
9805 case NT_X86_XSTATE: /* Linux XSAVE extension */
9806 if (note->namesz == 6
9807 && strcmp (note->namedata, "LINUX") == 0)
9808 return elfcore_grok_xstatereg (abfd, note);
9809 else
9810 return TRUE;
9811
9812 case NT_PPC_VMX:
9813 if (note->namesz == 6
9814 && strcmp (note->namedata, "LINUX") == 0)
9815 return elfcore_grok_ppc_vmx (abfd, note);
9816 else
9817 return TRUE;
9818
9819 case NT_PPC_VSX:
9820 if (note->namesz == 6
9821 && strcmp (note->namedata, "LINUX") == 0)
9822 return elfcore_grok_ppc_vsx (abfd, note);
9823 else
9824 return TRUE;
9825
9826 case NT_PPC_TAR:
9827 if (note->namesz == 6
9828 && strcmp (note->namedata, "LINUX") == 0)
9829 return elfcore_grok_ppc_tar (abfd, note);
9830 else
9831 return TRUE;
9832
9833 case NT_PPC_PPR:
9834 if (note->namesz == 6
9835 && strcmp (note->namedata, "LINUX") == 0)
9836 return elfcore_grok_ppc_ppr (abfd, note);
9837 else
9838 return TRUE;
9839
9840 case NT_PPC_DSCR:
9841 if (note->namesz == 6
9842 && strcmp (note->namedata, "LINUX") == 0)
9843 return elfcore_grok_ppc_dscr (abfd, note);
9844 else
9845 return TRUE;
9846
9847 case NT_PPC_EBB:
9848 if (note->namesz == 6
9849 && strcmp (note->namedata, "LINUX") == 0)
9850 return elfcore_grok_ppc_ebb (abfd, note);
9851 else
9852 return TRUE;
9853
9854 case NT_PPC_PMU:
9855 if (note->namesz == 6
9856 && strcmp (note->namedata, "LINUX") == 0)
9857 return elfcore_grok_ppc_pmu (abfd, note);
9858 else
9859 return TRUE;
9860
9861 case NT_PPC_TM_CGPR:
9862 if (note->namesz == 6
9863 && strcmp (note->namedata, "LINUX") == 0)
9864 return elfcore_grok_ppc_tm_cgpr (abfd, note);
9865 else
9866 return TRUE;
9867
9868 case NT_PPC_TM_CFPR:
9869 if (note->namesz == 6
9870 && strcmp (note->namedata, "LINUX") == 0)
9871 return elfcore_grok_ppc_tm_cfpr (abfd, note);
9872 else
9873 return TRUE;
9874
9875 case NT_PPC_TM_CVMX:
9876 if (note->namesz == 6
9877 && strcmp (note->namedata, "LINUX") == 0)
9878 return elfcore_grok_ppc_tm_cvmx (abfd, note);
9879 else
9880 return TRUE;
9881
9882 case NT_PPC_TM_CVSX:
9883 if (note->namesz == 6
9884 && strcmp (note->namedata, "LINUX") == 0)
9885 return elfcore_grok_ppc_tm_cvsx (abfd, note);
9886 else
9887 return TRUE;
9888
9889 case NT_PPC_TM_SPR:
9890 if (note->namesz == 6
9891 && strcmp (note->namedata, "LINUX") == 0)
9892 return elfcore_grok_ppc_tm_spr (abfd, note);
9893 else
9894 return TRUE;
9895
9896 case NT_PPC_TM_CTAR:
9897 if (note->namesz == 6
9898 && strcmp (note->namedata, "LINUX") == 0)
9899 return elfcore_grok_ppc_tm_ctar (abfd, note);
9900 else
9901 return TRUE;
9902
9903 case NT_PPC_TM_CPPR:
9904 if (note->namesz == 6
9905 && strcmp (note->namedata, "LINUX") == 0)
9906 return elfcore_grok_ppc_tm_cppr (abfd, note);
9907 else
9908 return TRUE;
9909
9910 case NT_PPC_TM_CDSCR:
9911 if (note->namesz == 6
9912 && strcmp (note->namedata, "LINUX") == 0)
9913 return elfcore_grok_ppc_tm_cdscr (abfd, note);
9914 else
9915 return TRUE;
9916
9917 case NT_S390_HIGH_GPRS:
9918 if (note->namesz == 6
9919 && strcmp (note->namedata, "LINUX") == 0)
9920 return elfcore_grok_s390_high_gprs (abfd, note);
9921 else
9922 return TRUE;
9923
9924 case NT_S390_TIMER:
9925 if (note->namesz == 6
9926 && strcmp (note->namedata, "LINUX") == 0)
9927 return elfcore_grok_s390_timer (abfd, note);
9928 else
9929 return TRUE;
9930
9931 case NT_S390_TODCMP:
9932 if (note->namesz == 6
9933 && strcmp (note->namedata, "LINUX") == 0)
9934 return elfcore_grok_s390_todcmp (abfd, note);
9935 else
9936 return TRUE;
9937
9938 case NT_S390_TODPREG:
9939 if (note->namesz == 6
9940 && strcmp (note->namedata, "LINUX") == 0)
9941 return elfcore_grok_s390_todpreg (abfd, note);
9942 else
9943 return TRUE;
9944
9945 case NT_S390_CTRS:
9946 if (note->namesz == 6
9947 && strcmp (note->namedata, "LINUX") == 0)
9948 return elfcore_grok_s390_ctrs (abfd, note);
9949 else
9950 return TRUE;
9951
9952 case NT_S390_PREFIX:
9953 if (note->namesz == 6
9954 && strcmp (note->namedata, "LINUX") == 0)
9955 return elfcore_grok_s390_prefix (abfd, note);
9956 else
9957 return TRUE;
9958
9959 case NT_S390_LAST_BREAK:
9960 if (note->namesz == 6
9961 && strcmp (note->namedata, "LINUX") == 0)
9962 return elfcore_grok_s390_last_break (abfd, note);
9963 else
9964 return TRUE;
9965
9966 case NT_S390_SYSTEM_CALL:
9967 if (note->namesz == 6
9968 && strcmp (note->namedata, "LINUX") == 0)
9969 return elfcore_grok_s390_system_call (abfd, note);
9970 else
9971 return TRUE;
9972
9973 case NT_S390_TDB:
9974 if (note->namesz == 6
9975 && strcmp (note->namedata, "LINUX") == 0)
9976 return elfcore_grok_s390_tdb (abfd, note);
9977 else
9978 return TRUE;
9979
9980 case NT_S390_VXRS_LOW:
9981 if (note->namesz == 6
9982 && strcmp (note->namedata, "LINUX") == 0)
9983 return elfcore_grok_s390_vxrs_low (abfd, note);
9984 else
9985 return TRUE;
9986
9987 case NT_S390_VXRS_HIGH:
9988 if (note->namesz == 6
9989 && strcmp (note->namedata, "LINUX") == 0)
9990 return elfcore_grok_s390_vxrs_high (abfd, note);
9991 else
9992 return TRUE;
9993
9994 case NT_S390_GS_CB:
9995 if (note->namesz == 6
9996 && strcmp (note->namedata, "LINUX") == 0)
9997 return elfcore_grok_s390_gs_cb (abfd, note);
9998 else
9999 return TRUE;
10000
10001 case NT_S390_GS_BC:
10002 if (note->namesz == 6
10003 && strcmp (note->namedata, "LINUX") == 0)
10004 return elfcore_grok_s390_gs_bc (abfd, note);
10005 else
10006 return TRUE;
10007
10008 case NT_ARM_VFP:
10009 if (note->namesz == 6
10010 && strcmp (note->namedata, "LINUX") == 0)
10011 return elfcore_grok_arm_vfp (abfd, note);
10012 else
10013 return TRUE;
10014
10015 case NT_ARM_TLS:
10016 if (note->namesz == 6
10017 && strcmp (note->namedata, "LINUX") == 0)
10018 return elfcore_grok_aarch_tls (abfd, note);
10019 else
10020 return TRUE;
10021
10022 case NT_ARM_HW_BREAK:
10023 if (note->namesz == 6
10024 && strcmp (note->namedata, "LINUX") == 0)
10025 return elfcore_grok_aarch_hw_break (abfd, note);
10026 else
10027 return TRUE;
10028
10029 case NT_ARM_HW_WATCH:
10030 if (note->namesz == 6
10031 && strcmp (note->namedata, "LINUX") == 0)
10032 return elfcore_grok_aarch_hw_watch (abfd, note);
10033 else
10034 return TRUE;
10035
10036 case NT_ARM_SVE:
10037 if (note->namesz == 6
10038 && strcmp (note->namedata, "LINUX") == 0)
10039 return elfcore_grok_aarch_sve (abfd, note);
10040 else
10041 return TRUE;
10042
10043 case NT_PRPSINFO:
10044 case NT_PSINFO:
10045 if (bed->elf_backend_grok_psinfo)
10046 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10047 return TRUE;
10048 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10049 return elfcore_grok_psinfo (abfd, note);
10050 #else
10051 return TRUE;
10052 #endif
10053
10054 case NT_AUXV:
10055 {
10056 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10057 SEC_HAS_CONTENTS);
10058
10059 if (sect == NULL)
10060 return FALSE;
10061 sect->size = note->descsz;
10062 sect->filepos = note->descpos;
10063 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10064
10065 return TRUE;
10066 }
10067
10068 case NT_FILE:
10069 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10070 note);
10071
10072 case NT_SIGINFO:
10073 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10074 note);
10075
10076 }
10077 }
10078
10079 static bfd_boolean
10080 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10081 {
10082 struct bfd_build_id* build_id;
10083
10084 if (note->descsz == 0)
10085 return FALSE;
10086
10087 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10088 if (build_id == NULL)
10089 return FALSE;
10090
10091 build_id->size = note->descsz;
10092 memcpy (build_id->data, note->descdata, note->descsz);
10093 abfd->build_id = build_id;
10094
10095 return TRUE;
10096 }
10097
10098 static bfd_boolean
10099 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10100 {
10101 switch (note->type)
10102 {
10103 default:
10104 return TRUE;
10105
10106 case NT_GNU_PROPERTY_TYPE_0:
10107 return _bfd_elf_parse_gnu_properties (abfd, note);
10108
10109 case NT_GNU_BUILD_ID:
10110 return elfobj_grok_gnu_build_id (abfd, note);
10111 }
10112 }
10113
10114 static bfd_boolean
10115 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10116 {
10117 struct sdt_note *cur =
10118 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
10119 + note->descsz);
10120
10121 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10122 cur->size = (bfd_size_type) note->descsz;
10123 memcpy (cur->data, note->descdata, note->descsz);
10124
10125 elf_tdata (abfd)->sdt_note_head = cur;
10126
10127 return TRUE;
10128 }
10129
10130 static bfd_boolean
10131 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10132 {
10133 switch (note->type)
10134 {
10135 case NT_STAPSDT:
10136 return elfobj_grok_stapsdt_note_1 (abfd, note);
10137
10138 default:
10139 return TRUE;
10140 }
10141 }
10142
10143 static bfd_boolean
10144 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10145 {
10146 size_t offset;
10147
10148 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10149 {
10150 case ELFCLASS32:
10151 if (note->descsz < 108)
10152 return FALSE;
10153 break;
10154
10155 case ELFCLASS64:
10156 if (note->descsz < 120)
10157 return FALSE;
10158 break;
10159
10160 default:
10161 return FALSE;
10162 }
10163
10164 /* Check for version 1 in pr_version. */
10165 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10166 return FALSE;
10167
10168 offset = 4;
10169
10170 /* Skip over pr_psinfosz. */
10171 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10172 offset += 4;
10173 else
10174 {
10175 offset += 4; /* Padding before pr_psinfosz. */
10176 offset += 8;
10177 }
10178
10179 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10180 elf_tdata (abfd)->core->program
10181 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10182 offset += 17;
10183
10184 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10185 elf_tdata (abfd)->core->command
10186 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10187 offset += 81;
10188
10189 /* Padding before pr_pid. */
10190 offset += 2;
10191
10192 /* The pr_pid field was added in version "1a". */
10193 if (note->descsz < offset + 4)
10194 return TRUE;
10195
10196 elf_tdata (abfd)->core->pid
10197 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10198
10199 return TRUE;
10200 }
10201
10202 static bfd_boolean
10203 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10204 {
10205 size_t offset;
10206 size_t size;
10207 size_t min_size;
10208
10209 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10210 Also compute minimum size of this note. */
10211 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10212 {
10213 case ELFCLASS32:
10214 offset = 4 + 4;
10215 min_size = offset + (4 * 2) + 4 + 4 + 4;
10216 break;
10217
10218 case ELFCLASS64:
10219 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10220 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10221 break;
10222
10223 default:
10224 return FALSE;
10225 }
10226
10227 if (note->descsz < min_size)
10228 return FALSE;
10229
10230 /* Check for version 1 in pr_version. */
10231 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10232 return FALSE;
10233
10234 /* Extract size of pr_reg from pr_gregsetsz. */
10235 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10236 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10237 {
10238 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10239 offset += 4 * 2;
10240 }
10241 else
10242 {
10243 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10244 offset += 8 * 2;
10245 }
10246
10247 /* Skip over pr_osreldate. */
10248 offset += 4;
10249
10250 /* Read signal from pr_cursig. */
10251 if (elf_tdata (abfd)->core->signal == 0)
10252 elf_tdata (abfd)->core->signal
10253 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10254 offset += 4;
10255
10256 /* Read TID from pr_pid. */
10257 elf_tdata (abfd)->core->lwpid
10258 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10259 offset += 4;
10260
10261 /* Padding before pr_reg. */
10262 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10263 offset += 4;
10264
10265 /* Make sure that there is enough data remaining in the note. */
10266 if ((note->descsz - offset) < size)
10267 return FALSE;
10268
10269 /* Make a ".reg/999" section and a ".reg" section. */
10270 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10271 size, note->descpos + offset);
10272 }
10273
10274 static bfd_boolean
10275 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10276 {
10277 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10278
10279 switch (note->type)
10280 {
10281 case NT_PRSTATUS:
10282 if (bed->elf_backend_grok_freebsd_prstatus)
10283 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10284 return TRUE;
10285 return elfcore_grok_freebsd_prstatus (abfd, note);
10286
10287 case NT_FPREGSET:
10288 return elfcore_grok_prfpreg (abfd, note);
10289
10290 case NT_PRPSINFO:
10291 return elfcore_grok_freebsd_psinfo (abfd, note);
10292
10293 case NT_FREEBSD_THRMISC:
10294 if (note->namesz == 8)
10295 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10296 else
10297 return TRUE;
10298
10299 case NT_FREEBSD_PROCSTAT_PROC:
10300 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10301 note);
10302
10303 case NT_FREEBSD_PROCSTAT_FILES:
10304 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10305 note);
10306
10307 case NT_FREEBSD_PROCSTAT_VMMAP:
10308 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10309 note);
10310
10311 case NT_FREEBSD_PROCSTAT_AUXV:
10312 {
10313 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10314 SEC_HAS_CONTENTS);
10315
10316 if (sect == NULL)
10317 return FALSE;
10318 sect->size = note->descsz - 4;
10319 sect->filepos = note->descpos + 4;
10320 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10321
10322 return TRUE;
10323 }
10324
10325 case NT_X86_XSTATE:
10326 if (note->namesz == 8)
10327 return elfcore_grok_xstatereg (abfd, note);
10328 else
10329 return TRUE;
10330
10331 case NT_FREEBSD_PTLWPINFO:
10332 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10333 note);
10334
10335 case NT_ARM_VFP:
10336 return elfcore_grok_arm_vfp (abfd, note);
10337
10338 default:
10339 return TRUE;
10340 }
10341 }
10342
10343 static bfd_boolean
10344 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10345 {
10346 char *cp;
10347
10348 cp = strchr (note->namedata, '@');
10349 if (cp != NULL)
10350 {
10351 *lwpidp = atoi(cp + 1);
10352 return TRUE;
10353 }
10354 return FALSE;
10355 }
10356
10357 static bfd_boolean
10358 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10359 {
10360 if (note->descsz <= 0x7c + 31)
10361 return FALSE;
10362
10363 /* Signal number at offset 0x08. */
10364 elf_tdata (abfd)->core->signal
10365 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10366
10367 /* Process ID at offset 0x50. */
10368 elf_tdata (abfd)->core->pid
10369 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10370
10371 /* Command name at 0x7c (max 32 bytes, including nul). */
10372 elf_tdata (abfd)->core->command
10373 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10374
10375 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10376 note);
10377 }
10378
10379 static bfd_boolean
10380 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10381 {
10382 int lwp;
10383
10384 if (elfcore_netbsd_get_lwpid (note, &lwp))
10385 elf_tdata (abfd)->core->lwpid = lwp;
10386
10387 if (note->type == NT_NETBSDCORE_PROCINFO)
10388 {
10389 /* NetBSD-specific core "procinfo". Note that we expect to
10390 find this note before any of the others, which is fine,
10391 since the kernel writes this note out first when it
10392 creates a core file. */
10393
10394 return elfcore_grok_netbsd_procinfo (abfd, note);
10395 }
10396
10397 /* As of Jan 2002 there are no other machine-independent notes
10398 defined for NetBSD core files. If the note type is less
10399 than the start of the machine-dependent note types, we don't
10400 understand it. */
10401
10402 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10403 return TRUE;
10404
10405
10406 switch (bfd_get_arch (abfd))
10407 {
10408 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10409 PT_GETFPREGS == mach+2. */
10410
10411 case bfd_arch_alpha:
10412 case bfd_arch_sparc:
10413 switch (note->type)
10414 {
10415 case NT_NETBSDCORE_FIRSTMACH+0:
10416 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10417
10418 case NT_NETBSDCORE_FIRSTMACH+2:
10419 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10420
10421 default:
10422 return TRUE;
10423 }
10424
10425 /* On all other arch's, PT_GETREGS == mach+1 and
10426 PT_GETFPREGS == mach+3. */
10427
10428 default:
10429 switch (note->type)
10430 {
10431 case NT_NETBSDCORE_FIRSTMACH+1:
10432 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10433
10434 case NT_NETBSDCORE_FIRSTMACH+3:
10435 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10436
10437 default:
10438 return TRUE;
10439 }
10440 }
10441 /* NOTREACHED */
10442 }
10443
10444 static bfd_boolean
10445 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10446 {
10447 if (note->descsz <= 0x48 + 31)
10448 return FALSE;
10449
10450 /* Signal number at offset 0x08. */
10451 elf_tdata (abfd)->core->signal
10452 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10453
10454 /* Process ID at offset 0x20. */
10455 elf_tdata (abfd)->core->pid
10456 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10457
10458 /* Command name at 0x48 (max 32 bytes, including nul). */
10459 elf_tdata (abfd)->core->command
10460 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10461
10462 return TRUE;
10463 }
10464
10465 static bfd_boolean
10466 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10467 {
10468 if (note->type == NT_OPENBSD_PROCINFO)
10469 return elfcore_grok_openbsd_procinfo (abfd, note);
10470
10471 if (note->type == NT_OPENBSD_REGS)
10472 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10473
10474 if (note->type == NT_OPENBSD_FPREGS)
10475 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10476
10477 if (note->type == NT_OPENBSD_XFPREGS)
10478 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10479
10480 if (note->type == NT_OPENBSD_AUXV)
10481 {
10482 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10483 SEC_HAS_CONTENTS);
10484
10485 if (sect == NULL)
10486 return FALSE;
10487 sect->size = note->descsz;
10488 sect->filepos = note->descpos;
10489 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10490
10491 return TRUE;
10492 }
10493
10494 if (note->type == NT_OPENBSD_WCOOKIE)
10495 {
10496 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10497 SEC_HAS_CONTENTS);
10498
10499 if (sect == NULL)
10500 return FALSE;
10501 sect->size = note->descsz;
10502 sect->filepos = note->descpos;
10503 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10504
10505 return TRUE;
10506 }
10507
10508 return TRUE;
10509 }
10510
10511 static bfd_boolean
10512 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10513 {
10514 void *ddata = note->descdata;
10515 char buf[100];
10516 char *name;
10517 asection *sect;
10518 short sig;
10519 unsigned flags;
10520
10521 if (note->descsz < 16)
10522 return FALSE;
10523
10524 /* nto_procfs_status 'pid' field is at offset 0. */
10525 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10526
10527 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10528 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10529
10530 /* nto_procfs_status 'flags' field is at offset 8. */
10531 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10532
10533 /* nto_procfs_status 'what' field is at offset 14. */
10534 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10535 {
10536 elf_tdata (abfd)->core->signal = sig;
10537 elf_tdata (abfd)->core->lwpid = *tid;
10538 }
10539
10540 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10541 do not come from signals so we make sure we set the current
10542 thread just in case. */
10543 if (flags & 0x00000080)
10544 elf_tdata (abfd)->core->lwpid = *tid;
10545
10546 /* Make a ".qnx_core_status/%d" section. */
10547 sprintf (buf, ".qnx_core_status/%ld", *tid);
10548
10549 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10550 if (name == NULL)
10551 return FALSE;
10552 strcpy (name, buf);
10553
10554 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10555 if (sect == NULL)
10556 return FALSE;
10557
10558 sect->size = note->descsz;
10559 sect->filepos = note->descpos;
10560 sect->alignment_power = 2;
10561
10562 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10563 }
10564
10565 static bfd_boolean
10566 elfcore_grok_nto_regs (bfd *abfd,
10567 Elf_Internal_Note *note,
10568 long tid,
10569 char *base)
10570 {
10571 char buf[100];
10572 char *name;
10573 asection *sect;
10574
10575 /* Make a "(base)/%d" section. */
10576 sprintf (buf, "%s/%ld", base, tid);
10577
10578 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10579 if (name == NULL)
10580 return FALSE;
10581 strcpy (name, buf);
10582
10583 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10584 if (sect == NULL)
10585 return FALSE;
10586
10587 sect->size = note->descsz;
10588 sect->filepos = note->descpos;
10589 sect->alignment_power = 2;
10590
10591 /* This is the current thread. */
10592 if (elf_tdata (abfd)->core->lwpid == tid)
10593 return elfcore_maybe_make_sect (abfd, base, sect);
10594
10595 return TRUE;
10596 }
10597
10598 #define BFD_QNT_CORE_INFO 7
10599 #define BFD_QNT_CORE_STATUS 8
10600 #define BFD_QNT_CORE_GREG 9
10601 #define BFD_QNT_CORE_FPREG 10
10602
10603 static bfd_boolean
10604 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10605 {
10606 /* Every GREG section has a STATUS section before it. Store the
10607 tid from the previous call to pass down to the next gregs
10608 function. */
10609 static long tid = 1;
10610
10611 switch (note->type)
10612 {
10613 case BFD_QNT_CORE_INFO:
10614 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10615 case BFD_QNT_CORE_STATUS:
10616 return elfcore_grok_nto_status (abfd, note, &tid);
10617 case BFD_QNT_CORE_GREG:
10618 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10619 case BFD_QNT_CORE_FPREG:
10620 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10621 default:
10622 return TRUE;
10623 }
10624 }
10625
10626 static bfd_boolean
10627 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10628 {
10629 char *name;
10630 asection *sect;
10631 size_t len;
10632
10633 /* Use note name as section name. */
10634 len = note->namesz;
10635 name = (char *) bfd_alloc (abfd, len);
10636 if (name == NULL)
10637 return FALSE;
10638 memcpy (name, note->namedata, len);
10639 name[len - 1] = '\0';
10640
10641 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10642 if (sect == NULL)
10643 return FALSE;
10644
10645 sect->size = note->descsz;
10646 sect->filepos = note->descpos;
10647 sect->alignment_power = 1;
10648
10649 return TRUE;
10650 }
10651
10652 /* Function: elfcore_write_note
10653
10654 Inputs:
10655 buffer to hold note, and current size of buffer
10656 name of note
10657 type of note
10658 data for note
10659 size of data for note
10660
10661 Writes note to end of buffer. ELF64 notes are written exactly as
10662 for ELF32, despite the current (as of 2006) ELF gabi specifying
10663 that they ought to have 8-byte namesz and descsz field, and have
10664 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10665
10666 Return:
10667 Pointer to realloc'd buffer, *BUFSIZ updated. */
10668
10669 char *
10670 elfcore_write_note (bfd *abfd,
10671 char *buf,
10672 int *bufsiz,
10673 const char *name,
10674 int type,
10675 const void *input,
10676 int size)
10677 {
10678 Elf_External_Note *xnp;
10679 size_t namesz;
10680 size_t newspace;
10681 char *dest;
10682
10683 namesz = 0;
10684 if (name != NULL)
10685 namesz = strlen (name) + 1;
10686
10687 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10688
10689 buf = (char *) realloc (buf, *bufsiz + newspace);
10690 if (buf == NULL)
10691 return buf;
10692 dest = buf + *bufsiz;
10693 *bufsiz += newspace;
10694 xnp = (Elf_External_Note *) dest;
10695 H_PUT_32 (abfd, namesz, xnp->namesz);
10696 H_PUT_32 (abfd, size, xnp->descsz);
10697 H_PUT_32 (abfd, type, xnp->type);
10698 dest = xnp->name;
10699 if (name != NULL)
10700 {
10701 memcpy (dest, name, namesz);
10702 dest += namesz;
10703 while (namesz & 3)
10704 {
10705 *dest++ = '\0';
10706 ++namesz;
10707 }
10708 }
10709 memcpy (dest, input, size);
10710 dest += size;
10711 while (size & 3)
10712 {
10713 *dest++ = '\0';
10714 ++size;
10715 }
10716 return buf;
10717 }
10718
10719 /* gcc-8 warns (*) on all the strncpy calls in this function about
10720 possible string truncation. The "truncation" is not a bug. We
10721 have an external representation of structs with fields that are not
10722 necessarily NULL terminated and corresponding internal
10723 representation fields that are one larger so that they can always
10724 be NULL terminated.
10725 gcc versions between 4.2 and 4.6 do not allow pragma control of
10726 diagnostics inside functions, giving a hard error if you try to use
10727 the finer control available with later versions.
10728 gcc prior to 4.2 warns about diagnostic push and pop.
10729 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
10730 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
10731 (*) Depending on your system header files! */
10732 #if GCC_VERSION >= 8000
10733 # pragma GCC diagnostic push
10734 # pragma GCC diagnostic ignored "-Wstringop-truncation"
10735 #endif
10736 char *
10737 elfcore_write_prpsinfo (bfd *abfd,
10738 char *buf,
10739 int *bufsiz,
10740 const char *fname,
10741 const char *psargs)
10742 {
10743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10744
10745 if (bed->elf_backend_write_core_note != NULL)
10746 {
10747 char *ret;
10748 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10749 NT_PRPSINFO, fname, psargs);
10750 if (ret != NULL)
10751 return ret;
10752 }
10753
10754 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10755 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10756 if (bed->s->elfclass == ELFCLASS32)
10757 {
10758 # if defined (HAVE_PSINFO32_T)
10759 psinfo32_t data;
10760 int note_type = NT_PSINFO;
10761 # else
10762 prpsinfo32_t data;
10763 int note_type = NT_PRPSINFO;
10764 # endif
10765
10766 memset (&data, 0, sizeof (data));
10767 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10768 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10769 return elfcore_write_note (abfd, buf, bufsiz,
10770 "CORE", note_type, &data, sizeof (data));
10771 }
10772 else
10773 # endif
10774 {
10775 # if defined (HAVE_PSINFO_T)
10776 psinfo_t data;
10777 int note_type = NT_PSINFO;
10778 # else
10779 prpsinfo_t data;
10780 int note_type = NT_PRPSINFO;
10781 # endif
10782
10783 memset (&data, 0, sizeof (data));
10784 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10785 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10786 return elfcore_write_note (abfd, buf, bufsiz,
10787 "CORE", note_type, &data, sizeof (data));
10788 }
10789 #endif /* PSINFO_T or PRPSINFO_T */
10790
10791 free (buf);
10792 return NULL;
10793 }
10794 #if GCC_VERSION >= 8000
10795 # pragma GCC diagnostic pop
10796 #endif
10797
10798 char *
10799 elfcore_write_linux_prpsinfo32
10800 (bfd *abfd, char *buf, int *bufsiz,
10801 const struct elf_internal_linux_prpsinfo *prpsinfo)
10802 {
10803 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10804 {
10805 struct elf_external_linux_prpsinfo32_ugid16 data;
10806
10807 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10808 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10809 &data, sizeof (data));
10810 }
10811 else
10812 {
10813 struct elf_external_linux_prpsinfo32_ugid32 data;
10814
10815 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10816 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10817 &data, sizeof (data));
10818 }
10819 }
10820
10821 char *
10822 elfcore_write_linux_prpsinfo64
10823 (bfd *abfd, char *buf, int *bufsiz,
10824 const struct elf_internal_linux_prpsinfo *prpsinfo)
10825 {
10826 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
10827 {
10828 struct elf_external_linux_prpsinfo64_ugid16 data;
10829
10830 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
10831 return elfcore_write_note (abfd, buf, bufsiz,
10832 "CORE", NT_PRPSINFO, &data, sizeof (data));
10833 }
10834 else
10835 {
10836 struct elf_external_linux_prpsinfo64_ugid32 data;
10837
10838 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
10839 return elfcore_write_note (abfd, buf, bufsiz,
10840 "CORE", NT_PRPSINFO, &data, sizeof (data));
10841 }
10842 }
10843
10844 char *
10845 elfcore_write_prstatus (bfd *abfd,
10846 char *buf,
10847 int *bufsiz,
10848 long pid,
10849 int cursig,
10850 const void *gregs)
10851 {
10852 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10853
10854 if (bed->elf_backend_write_core_note != NULL)
10855 {
10856 char *ret;
10857 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10858 NT_PRSTATUS,
10859 pid, cursig, gregs);
10860 if (ret != NULL)
10861 return ret;
10862 }
10863
10864 #if defined (HAVE_PRSTATUS_T)
10865 #if defined (HAVE_PRSTATUS32_T)
10866 if (bed->s->elfclass == ELFCLASS32)
10867 {
10868 prstatus32_t prstat;
10869
10870 memset (&prstat, 0, sizeof (prstat));
10871 prstat.pr_pid = pid;
10872 prstat.pr_cursig = cursig;
10873 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10874 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10875 NT_PRSTATUS, &prstat, sizeof (prstat));
10876 }
10877 else
10878 #endif
10879 {
10880 prstatus_t prstat;
10881
10882 memset (&prstat, 0, sizeof (prstat));
10883 prstat.pr_pid = pid;
10884 prstat.pr_cursig = cursig;
10885 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10886 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10887 NT_PRSTATUS, &prstat, sizeof (prstat));
10888 }
10889 #endif /* HAVE_PRSTATUS_T */
10890
10891 free (buf);
10892 return NULL;
10893 }
10894
10895 #if defined (HAVE_LWPSTATUS_T)
10896 char *
10897 elfcore_write_lwpstatus (bfd *abfd,
10898 char *buf,
10899 int *bufsiz,
10900 long pid,
10901 int cursig,
10902 const void *gregs)
10903 {
10904 lwpstatus_t lwpstat;
10905 const char *note_name = "CORE";
10906
10907 memset (&lwpstat, 0, sizeof (lwpstat));
10908 lwpstat.pr_lwpid = pid >> 16;
10909 lwpstat.pr_cursig = cursig;
10910 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10911 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10912 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10913 #if !defined(gregs)
10914 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10915 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10916 #else
10917 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10918 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10919 #endif
10920 #endif
10921 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10922 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10923 }
10924 #endif /* HAVE_LWPSTATUS_T */
10925
10926 #if defined (HAVE_PSTATUS_T)
10927 char *
10928 elfcore_write_pstatus (bfd *abfd,
10929 char *buf,
10930 int *bufsiz,
10931 long pid,
10932 int cursig ATTRIBUTE_UNUSED,
10933 const void *gregs ATTRIBUTE_UNUSED)
10934 {
10935 const char *note_name = "CORE";
10936 #if defined (HAVE_PSTATUS32_T)
10937 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10938
10939 if (bed->s->elfclass == ELFCLASS32)
10940 {
10941 pstatus32_t pstat;
10942
10943 memset (&pstat, 0, sizeof (pstat));
10944 pstat.pr_pid = pid & 0xffff;
10945 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10946 NT_PSTATUS, &pstat, sizeof (pstat));
10947 return buf;
10948 }
10949 else
10950 #endif
10951 {
10952 pstatus_t pstat;
10953
10954 memset (&pstat, 0, sizeof (pstat));
10955 pstat.pr_pid = pid & 0xffff;
10956 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10957 NT_PSTATUS, &pstat, sizeof (pstat));
10958 return buf;
10959 }
10960 }
10961 #endif /* HAVE_PSTATUS_T */
10962
10963 char *
10964 elfcore_write_prfpreg (bfd *abfd,
10965 char *buf,
10966 int *bufsiz,
10967 const void *fpregs,
10968 int size)
10969 {
10970 const char *note_name = "CORE";
10971 return elfcore_write_note (abfd, buf, bufsiz,
10972 note_name, NT_FPREGSET, fpregs, size);
10973 }
10974
10975 char *
10976 elfcore_write_prxfpreg (bfd *abfd,
10977 char *buf,
10978 int *bufsiz,
10979 const void *xfpregs,
10980 int size)
10981 {
10982 char *note_name = "LINUX";
10983 return elfcore_write_note (abfd, buf, bufsiz,
10984 note_name, NT_PRXFPREG, xfpregs, size);
10985 }
10986
10987 char *
10988 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10989 const void *xfpregs, int size)
10990 {
10991 char *note_name;
10992 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10993 note_name = "FreeBSD";
10994 else
10995 note_name = "LINUX";
10996 return elfcore_write_note (abfd, buf, bufsiz,
10997 note_name, NT_X86_XSTATE, xfpregs, size);
10998 }
10999
11000 char *
11001 elfcore_write_ppc_vmx (bfd *abfd,
11002 char *buf,
11003 int *bufsiz,
11004 const void *ppc_vmx,
11005 int size)
11006 {
11007 char *note_name = "LINUX";
11008 return elfcore_write_note (abfd, buf, bufsiz,
11009 note_name, NT_PPC_VMX, ppc_vmx, size);
11010 }
11011
11012 char *
11013 elfcore_write_ppc_vsx (bfd *abfd,
11014 char *buf,
11015 int *bufsiz,
11016 const void *ppc_vsx,
11017 int size)
11018 {
11019 char *note_name = "LINUX";
11020 return elfcore_write_note (abfd, buf, bufsiz,
11021 note_name, NT_PPC_VSX, ppc_vsx, size);
11022 }
11023
11024 char *
11025 elfcore_write_ppc_tar (bfd *abfd,
11026 char *buf,
11027 int *bufsiz,
11028 const void *ppc_tar,
11029 int size)
11030 {
11031 char *note_name = "LINUX";
11032 return elfcore_write_note (abfd, buf, bufsiz,
11033 note_name, NT_PPC_TAR, ppc_tar, size);
11034 }
11035
11036 char *
11037 elfcore_write_ppc_ppr (bfd *abfd,
11038 char *buf,
11039 int *bufsiz,
11040 const void *ppc_ppr,
11041 int size)
11042 {
11043 char *note_name = "LINUX";
11044 return elfcore_write_note (abfd, buf, bufsiz,
11045 note_name, NT_PPC_PPR, ppc_ppr, size);
11046 }
11047
11048 char *
11049 elfcore_write_ppc_dscr (bfd *abfd,
11050 char *buf,
11051 int *bufsiz,
11052 const void *ppc_dscr,
11053 int size)
11054 {
11055 char *note_name = "LINUX";
11056 return elfcore_write_note (abfd, buf, bufsiz,
11057 note_name, NT_PPC_DSCR, ppc_dscr, size);
11058 }
11059
11060 char *
11061 elfcore_write_ppc_ebb (bfd *abfd,
11062 char *buf,
11063 int *bufsiz,
11064 const void *ppc_ebb,
11065 int size)
11066 {
11067 char *note_name = "LINUX";
11068 return elfcore_write_note (abfd, buf, bufsiz,
11069 note_name, NT_PPC_EBB, ppc_ebb, size);
11070 }
11071
11072 char *
11073 elfcore_write_ppc_pmu (bfd *abfd,
11074 char *buf,
11075 int *bufsiz,
11076 const void *ppc_pmu,
11077 int size)
11078 {
11079 char *note_name = "LINUX";
11080 return elfcore_write_note (abfd, buf, bufsiz,
11081 note_name, NT_PPC_PMU, ppc_pmu, size);
11082 }
11083
11084 char *
11085 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11086 char *buf,
11087 int *bufsiz,
11088 const void *ppc_tm_cgpr,
11089 int size)
11090 {
11091 char *note_name = "LINUX";
11092 return elfcore_write_note (abfd, buf, bufsiz,
11093 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11094 }
11095
11096 char *
11097 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11098 char *buf,
11099 int *bufsiz,
11100 const void *ppc_tm_cfpr,
11101 int size)
11102 {
11103 char *note_name = "LINUX";
11104 return elfcore_write_note (abfd, buf, bufsiz,
11105 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11106 }
11107
11108 char *
11109 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11110 char *buf,
11111 int *bufsiz,
11112 const void *ppc_tm_cvmx,
11113 int size)
11114 {
11115 char *note_name = "LINUX";
11116 return elfcore_write_note (abfd, buf, bufsiz,
11117 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11118 }
11119
11120 char *
11121 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11122 char *buf,
11123 int *bufsiz,
11124 const void *ppc_tm_cvsx,
11125 int size)
11126 {
11127 char *note_name = "LINUX";
11128 return elfcore_write_note (abfd, buf, bufsiz,
11129 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11130 }
11131
11132 char *
11133 elfcore_write_ppc_tm_spr (bfd *abfd,
11134 char *buf,
11135 int *bufsiz,
11136 const void *ppc_tm_spr,
11137 int size)
11138 {
11139 char *note_name = "LINUX";
11140 return elfcore_write_note (abfd, buf, bufsiz,
11141 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11142 }
11143
11144 char *
11145 elfcore_write_ppc_tm_ctar (bfd *abfd,
11146 char *buf,
11147 int *bufsiz,
11148 const void *ppc_tm_ctar,
11149 int size)
11150 {
11151 char *note_name = "LINUX";
11152 return elfcore_write_note (abfd, buf, bufsiz,
11153 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11154 }
11155
11156 char *
11157 elfcore_write_ppc_tm_cppr (bfd *abfd,
11158 char *buf,
11159 int *bufsiz,
11160 const void *ppc_tm_cppr,
11161 int size)
11162 {
11163 char *note_name = "LINUX";
11164 return elfcore_write_note (abfd, buf, bufsiz,
11165 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11166 }
11167
11168 char *
11169 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11170 char *buf,
11171 int *bufsiz,
11172 const void *ppc_tm_cdscr,
11173 int size)
11174 {
11175 char *note_name = "LINUX";
11176 return elfcore_write_note (abfd, buf, bufsiz,
11177 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11178 }
11179
11180 static char *
11181 elfcore_write_s390_high_gprs (bfd *abfd,
11182 char *buf,
11183 int *bufsiz,
11184 const void *s390_high_gprs,
11185 int size)
11186 {
11187 char *note_name = "LINUX";
11188 return elfcore_write_note (abfd, buf, bufsiz,
11189 note_name, NT_S390_HIGH_GPRS,
11190 s390_high_gprs, size);
11191 }
11192
11193 char *
11194 elfcore_write_s390_timer (bfd *abfd,
11195 char *buf,
11196 int *bufsiz,
11197 const void *s390_timer,
11198 int size)
11199 {
11200 char *note_name = "LINUX";
11201 return elfcore_write_note (abfd, buf, bufsiz,
11202 note_name, NT_S390_TIMER, s390_timer, size);
11203 }
11204
11205 char *
11206 elfcore_write_s390_todcmp (bfd *abfd,
11207 char *buf,
11208 int *bufsiz,
11209 const void *s390_todcmp,
11210 int size)
11211 {
11212 char *note_name = "LINUX";
11213 return elfcore_write_note (abfd, buf, bufsiz,
11214 note_name, NT_S390_TODCMP, s390_todcmp, size);
11215 }
11216
11217 char *
11218 elfcore_write_s390_todpreg (bfd *abfd,
11219 char *buf,
11220 int *bufsiz,
11221 const void *s390_todpreg,
11222 int size)
11223 {
11224 char *note_name = "LINUX";
11225 return elfcore_write_note (abfd, buf, bufsiz,
11226 note_name, NT_S390_TODPREG, s390_todpreg, size);
11227 }
11228
11229 char *
11230 elfcore_write_s390_ctrs (bfd *abfd,
11231 char *buf,
11232 int *bufsiz,
11233 const void *s390_ctrs,
11234 int size)
11235 {
11236 char *note_name = "LINUX";
11237 return elfcore_write_note (abfd, buf, bufsiz,
11238 note_name, NT_S390_CTRS, s390_ctrs, size);
11239 }
11240
11241 char *
11242 elfcore_write_s390_prefix (bfd *abfd,
11243 char *buf,
11244 int *bufsiz,
11245 const void *s390_prefix,
11246 int size)
11247 {
11248 char *note_name = "LINUX";
11249 return elfcore_write_note (abfd, buf, bufsiz,
11250 note_name, NT_S390_PREFIX, s390_prefix, size);
11251 }
11252
11253 char *
11254 elfcore_write_s390_last_break (bfd *abfd,
11255 char *buf,
11256 int *bufsiz,
11257 const void *s390_last_break,
11258 int size)
11259 {
11260 char *note_name = "LINUX";
11261 return elfcore_write_note (abfd, buf, bufsiz,
11262 note_name, NT_S390_LAST_BREAK,
11263 s390_last_break, size);
11264 }
11265
11266 char *
11267 elfcore_write_s390_system_call (bfd *abfd,
11268 char *buf,
11269 int *bufsiz,
11270 const void *s390_system_call,
11271 int size)
11272 {
11273 char *note_name = "LINUX";
11274 return elfcore_write_note (abfd, buf, bufsiz,
11275 note_name, NT_S390_SYSTEM_CALL,
11276 s390_system_call, size);
11277 }
11278
11279 char *
11280 elfcore_write_s390_tdb (bfd *abfd,
11281 char *buf,
11282 int *bufsiz,
11283 const void *s390_tdb,
11284 int size)
11285 {
11286 char *note_name = "LINUX";
11287 return elfcore_write_note (abfd, buf, bufsiz,
11288 note_name, NT_S390_TDB, s390_tdb, size);
11289 }
11290
11291 char *
11292 elfcore_write_s390_vxrs_low (bfd *abfd,
11293 char *buf,
11294 int *bufsiz,
11295 const void *s390_vxrs_low,
11296 int size)
11297 {
11298 char *note_name = "LINUX";
11299 return elfcore_write_note (abfd, buf, bufsiz,
11300 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11301 }
11302
11303 char *
11304 elfcore_write_s390_vxrs_high (bfd *abfd,
11305 char *buf,
11306 int *bufsiz,
11307 const void *s390_vxrs_high,
11308 int size)
11309 {
11310 char *note_name = "LINUX";
11311 return elfcore_write_note (abfd, buf, bufsiz,
11312 note_name, NT_S390_VXRS_HIGH,
11313 s390_vxrs_high, size);
11314 }
11315
11316 char *
11317 elfcore_write_s390_gs_cb (bfd *abfd,
11318 char *buf,
11319 int *bufsiz,
11320 const void *s390_gs_cb,
11321 int size)
11322 {
11323 char *note_name = "LINUX";
11324 return elfcore_write_note (abfd, buf, bufsiz,
11325 note_name, NT_S390_GS_CB,
11326 s390_gs_cb, size);
11327 }
11328
11329 char *
11330 elfcore_write_s390_gs_bc (bfd *abfd,
11331 char *buf,
11332 int *bufsiz,
11333 const void *s390_gs_bc,
11334 int size)
11335 {
11336 char *note_name = "LINUX";
11337 return elfcore_write_note (abfd, buf, bufsiz,
11338 note_name, NT_S390_GS_BC,
11339 s390_gs_bc, size);
11340 }
11341
11342 char *
11343 elfcore_write_arm_vfp (bfd *abfd,
11344 char *buf,
11345 int *bufsiz,
11346 const void *arm_vfp,
11347 int size)
11348 {
11349 char *note_name = "LINUX";
11350 return elfcore_write_note (abfd, buf, bufsiz,
11351 note_name, NT_ARM_VFP, arm_vfp, size);
11352 }
11353
11354 char *
11355 elfcore_write_aarch_tls (bfd *abfd,
11356 char *buf,
11357 int *bufsiz,
11358 const void *aarch_tls,
11359 int size)
11360 {
11361 char *note_name = "LINUX";
11362 return elfcore_write_note (abfd, buf, bufsiz,
11363 note_name, NT_ARM_TLS, aarch_tls, size);
11364 }
11365
11366 char *
11367 elfcore_write_aarch_hw_break (bfd *abfd,
11368 char *buf,
11369 int *bufsiz,
11370 const void *aarch_hw_break,
11371 int size)
11372 {
11373 char *note_name = "LINUX";
11374 return elfcore_write_note (abfd, buf, bufsiz,
11375 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11376 }
11377
11378 char *
11379 elfcore_write_aarch_hw_watch (bfd *abfd,
11380 char *buf,
11381 int *bufsiz,
11382 const void *aarch_hw_watch,
11383 int size)
11384 {
11385 char *note_name = "LINUX";
11386 return elfcore_write_note (abfd, buf, bufsiz,
11387 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11388 }
11389
11390 char *
11391 elfcore_write_aarch_sve (bfd *abfd,
11392 char *buf,
11393 int *bufsiz,
11394 const void *aarch_sve,
11395 int size)
11396 {
11397 char *note_name = "LINUX";
11398 return elfcore_write_note (abfd, buf, bufsiz,
11399 note_name, NT_ARM_SVE, aarch_sve, size);
11400 }
11401
11402 char *
11403 elfcore_write_register_note (bfd *abfd,
11404 char *buf,
11405 int *bufsiz,
11406 const char *section,
11407 const void *data,
11408 int size)
11409 {
11410 if (strcmp (section, ".reg2") == 0)
11411 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11412 if (strcmp (section, ".reg-xfp") == 0)
11413 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11414 if (strcmp (section, ".reg-xstate") == 0)
11415 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11416 if (strcmp (section, ".reg-ppc-vmx") == 0)
11417 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11418 if (strcmp (section, ".reg-ppc-vsx") == 0)
11419 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11420 if (strcmp (section, ".reg-ppc-tar") == 0)
11421 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11422 if (strcmp (section, ".reg-ppc-ppr") == 0)
11423 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11424 if (strcmp (section, ".reg-ppc-dscr") == 0)
11425 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11426 if (strcmp (section, ".reg-ppc-ebb") == 0)
11427 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11428 if (strcmp (section, ".reg-ppc-pmu") == 0)
11429 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11430 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11431 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11432 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11433 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11434 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11435 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11436 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11437 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11438 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11439 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11440 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11441 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11442 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11443 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11444 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11445 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11446 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11447 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11448 if (strcmp (section, ".reg-s390-timer") == 0)
11449 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11450 if (strcmp (section, ".reg-s390-todcmp") == 0)
11451 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11452 if (strcmp (section, ".reg-s390-todpreg") == 0)
11453 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11454 if (strcmp (section, ".reg-s390-ctrs") == 0)
11455 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11456 if (strcmp (section, ".reg-s390-prefix") == 0)
11457 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11458 if (strcmp (section, ".reg-s390-last-break") == 0)
11459 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11460 if (strcmp (section, ".reg-s390-system-call") == 0)
11461 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11462 if (strcmp (section, ".reg-s390-tdb") == 0)
11463 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11464 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11465 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11466 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11467 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11468 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11469 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11470 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11471 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11472 if (strcmp (section, ".reg-arm-vfp") == 0)
11473 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11474 if (strcmp (section, ".reg-aarch-tls") == 0)
11475 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11476 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11477 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11478 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11479 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11480 if (strcmp (section, ".reg-aarch-sve") == 0)
11481 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11482 return NULL;
11483 }
11484
11485 static bfd_boolean
11486 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11487 size_t align)
11488 {
11489 char *p;
11490
11491 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11492 gABI specifies that PT_NOTE alignment should be aligned to 4
11493 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11494 align is less than 4, we use 4 byte alignment. */
11495 if (align < 4)
11496 align = 4;
11497 if (align != 4 && align != 8)
11498 return FALSE;
11499
11500 p = buf;
11501 while (p < buf + size)
11502 {
11503 Elf_External_Note *xnp = (Elf_External_Note *) p;
11504 Elf_Internal_Note in;
11505
11506 if (offsetof (Elf_External_Note, name) > buf - p + size)
11507 return FALSE;
11508
11509 in.type = H_GET_32 (abfd, xnp->type);
11510
11511 in.namesz = H_GET_32 (abfd, xnp->namesz);
11512 in.namedata = xnp->name;
11513 if (in.namesz > buf - in.namedata + size)
11514 return FALSE;
11515
11516 in.descsz = H_GET_32 (abfd, xnp->descsz);
11517 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11518 in.descpos = offset + (in.descdata - buf);
11519 if (in.descsz != 0
11520 && (in.descdata >= buf + size
11521 || in.descsz > buf - in.descdata + size))
11522 return FALSE;
11523
11524 switch (bfd_get_format (abfd))
11525 {
11526 default:
11527 return TRUE;
11528
11529 case bfd_core:
11530 {
11531 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11532 struct
11533 {
11534 const char * string;
11535 size_t len;
11536 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11537 }
11538 grokers[] =
11539 {
11540 GROKER_ELEMENT ("", elfcore_grok_note),
11541 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11542 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11543 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11544 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11545 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11546 };
11547 #undef GROKER_ELEMENT
11548 int i;
11549
11550 for (i = ARRAY_SIZE (grokers); i--;)
11551 {
11552 if (in.namesz >= grokers[i].len
11553 && strncmp (in.namedata, grokers[i].string,
11554 grokers[i].len) == 0)
11555 {
11556 if (! grokers[i].func (abfd, & in))
11557 return FALSE;
11558 break;
11559 }
11560 }
11561 break;
11562 }
11563
11564 case bfd_object:
11565 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11566 {
11567 if (! elfobj_grok_gnu_note (abfd, &in))
11568 return FALSE;
11569 }
11570 else if (in.namesz == sizeof "stapsdt"
11571 && strcmp (in.namedata, "stapsdt") == 0)
11572 {
11573 if (! elfobj_grok_stapsdt_note (abfd, &in))
11574 return FALSE;
11575 }
11576 break;
11577 }
11578
11579 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11580 }
11581
11582 return TRUE;
11583 }
11584
11585 static bfd_boolean
11586 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11587 size_t align)
11588 {
11589 char *buf;
11590
11591 if (size == 0 || (size + 1) == 0)
11592 return TRUE;
11593
11594 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11595 return FALSE;
11596
11597 buf = (char *) bfd_malloc (size + 1);
11598 if (buf == NULL)
11599 return FALSE;
11600
11601 /* PR 17512: file: ec08f814
11602 0-termintate the buffer so that string searches will not overflow. */
11603 buf[size] = 0;
11604
11605 if (bfd_bread (buf, size, abfd) != size
11606 || !elf_parse_notes (abfd, buf, size, offset, align))
11607 {
11608 free (buf);
11609 return FALSE;
11610 }
11611
11612 free (buf);
11613 return TRUE;
11614 }
11615 \f
11616 /* Providing external access to the ELF program header table. */
11617
11618 /* Return an upper bound on the number of bytes required to store a
11619 copy of ABFD's program header table entries. Return -1 if an error
11620 occurs; bfd_get_error will return an appropriate code. */
11621
11622 long
11623 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11624 {
11625 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11626 {
11627 bfd_set_error (bfd_error_wrong_format);
11628 return -1;
11629 }
11630
11631 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11632 }
11633
11634 /* Copy ABFD's program header table entries to *PHDRS. The entries
11635 will be stored as an array of Elf_Internal_Phdr structures, as
11636 defined in include/elf/internal.h. To find out how large the
11637 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11638
11639 Return the number of program header table entries read, or -1 if an
11640 error occurs; bfd_get_error will return an appropriate code. */
11641
11642 int
11643 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11644 {
11645 int num_phdrs;
11646
11647 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11648 {
11649 bfd_set_error (bfd_error_wrong_format);
11650 return -1;
11651 }
11652
11653 num_phdrs = elf_elfheader (abfd)->e_phnum;
11654 if (num_phdrs != 0)
11655 memcpy (phdrs, elf_tdata (abfd)->phdr,
11656 num_phdrs * sizeof (Elf_Internal_Phdr));
11657
11658 return num_phdrs;
11659 }
11660
11661 enum elf_reloc_type_class
11662 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11663 const asection *rel_sec ATTRIBUTE_UNUSED,
11664 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11665 {
11666 return reloc_class_normal;
11667 }
11668
11669 /* For RELA architectures, return the relocation value for a
11670 relocation against a local symbol. */
11671
11672 bfd_vma
11673 _bfd_elf_rela_local_sym (bfd *abfd,
11674 Elf_Internal_Sym *sym,
11675 asection **psec,
11676 Elf_Internal_Rela *rel)
11677 {
11678 asection *sec = *psec;
11679 bfd_vma relocation;
11680
11681 relocation = (sec->output_section->vma
11682 + sec->output_offset
11683 + sym->st_value);
11684 if ((sec->flags & SEC_MERGE)
11685 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11686 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11687 {
11688 rel->r_addend =
11689 _bfd_merged_section_offset (abfd, psec,
11690 elf_section_data (sec)->sec_info,
11691 sym->st_value + rel->r_addend);
11692 if (sec != *psec)
11693 {
11694 /* If we have changed the section, and our original section is
11695 marked with SEC_EXCLUDE, it means that the original
11696 SEC_MERGE section has been completely subsumed in some
11697 other SEC_MERGE section. In this case, we need to leave
11698 some info around for --emit-relocs. */
11699 if ((sec->flags & SEC_EXCLUDE) != 0)
11700 sec->kept_section = *psec;
11701 sec = *psec;
11702 }
11703 rel->r_addend -= relocation;
11704 rel->r_addend += sec->output_section->vma + sec->output_offset;
11705 }
11706 return relocation;
11707 }
11708
11709 bfd_vma
11710 _bfd_elf_rel_local_sym (bfd *abfd,
11711 Elf_Internal_Sym *sym,
11712 asection **psec,
11713 bfd_vma addend)
11714 {
11715 asection *sec = *psec;
11716
11717 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11718 return sym->st_value + addend;
11719
11720 return _bfd_merged_section_offset (abfd, psec,
11721 elf_section_data (sec)->sec_info,
11722 sym->st_value + addend);
11723 }
11724
11725 /* Adjust an address within a section. Given OFFSET within SEC, return
11726 the new offset within the section, based upon changes made to the
11727 section. Returns -1 if the offset is now invalid.
11728 The offset (in abnd out) is in target sized bytes, however big a
11729 byte may be. */
11730
11731 bfd_vma
11732 _bfd_elf_section_offset (bfd *abfd,
11733 struct bfd_link_info *info,
11734 asection *sec,
11735 bfd_vma offset)
11736 {
11737 switch (sec->sec_info_type)
11738 {
11739 case SEC_INFO_TYPE_STABS:
11740 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11741 offset);
11742 case SEC_INFO_TYPE_EH_FRAME:
11743 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11744
11745 default:
11746 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11747 {
11748 /* Reverse the offset. */
11749 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11750 bfd_size_type address_size = bed->s->arch_size / 8;
11751
11752 /* address_size and sec->size are in octets. Convert
11753 to bytes before subtracting the original offset. */
11754 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11755 }
11756 return offset;
11757 }
11758 }
11759 \f
11760 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11761 reconstruct an ELF file by reading the segments out of remote memory
11762 based on the ELF file header at EHDR_VMA and the ELF program headers it
11763 points to. If not null, *LOADBASEP is filled in with the difference
11764 between the VMAs from which the segments were read, and the VMAs the
11765 file headers (and hence BFD's idea of each section's VMA) put them at.
11766
11767 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11768 remote memory at target address VMA into the local buffer at MYADDR; it
11769 should return zero on success or an `errno' code on failure. TEMPL must
11770 be a BFD for an ELF target with the word size and byte order found in
11771 the remote memory. */
11772
11773 bfd *
11774 bfd_elf_bfd_from_remote_memory
11775 (bfd *templ,
11776 bfd_vma ehdr_vma,
11777 bfd_size_type size,
11778 bfd_vma *loadbasep,
11779 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11780 {
11781 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11782 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11783 }
11784 \f
11785 long
11786 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11787 long symcount ATTRIBUTE_UNUSED,
11788 asymbol **syms ATTRIBUTE_UNUSED,
11789 long dynsymcount,
11790 asymbol **dynsyms,
11791 asymbol **ret)
11792 {
11793 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11794 asection *relplt;
11795 asymbol *s;
11796 const char *relplt_name;
11797 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11798 arelent *p;
11799 long count, i, n;
11800 size_t size;
11801 Elf_Internal_Shdr *hdr;
11802 char *names;
11803 asection *plt;
11804
11805 *ret = NULL;
11806
11807 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11808 return 0;
11809
11810 if (dynsymcount <= 0)
11811 return 0;
11812
11813 if (!bed->plt_sym_val)
11814 return 0;
11815
11816 relplt_name = bed->relplt_name;
11817 if (relplt_name == NULL)
11818 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11819 relplt = bfd_get_section_by_name (abfd, relplt_name);
11820 if (relplt == NULL)
11821 return 0;
11822
11823 hdr = &elf_section_data (relplt)->this_hdr;
11824 if (hdr->sh_link != elf_dynsymtab (abfd)
11825 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11826 return 0;
11827
11828 plt = bfd_get_section_by_name (abfd, ".plt");
11829 if (plt == NULL)
11830 return 0;
11831
11832 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11833 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11834 return -1;
11835
11836 count = relplt->size / hdr->sh_entsize;
11837 size = count * sizeof (asymbol);
11838 p = relplt->relocation;
11839 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11840 {
11841 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11842 if (p->addend != 0)
11843 {
11844 #ifdef BFD64
11845 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11846 #else
11847 size += sizeof ("+0x") - 1 + 8;
11848 #endif
11849 }
11850 }
11851
11852 s = *ret = (asymbol *) bfd_malloc (size);
11853 if (s == NULL)
11854 return -1;
11855
11856 names = (char *) (s + count);
11857 p = relplt->relocation;
11858 n = 0;
11859 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11860 {
11861 size_t len;
11862 bfd_vma addr;
11863
11864 addr = bed->plt_sym_val (i, plt, p);
11865 if (addr == (bfd_vma) -1)
11866 continue;
11867
11868 *s = **p->sym_ptr_ptr;
11869 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11870 we are defining a symbol, ensure one of them is set. */
11871 if ((s->flags & BSF_LOCAL) == 0)
11872 s->flags |= BSF_GLOBAL;
11873 s->flags |= BSF_SYNTHETIC;
11874 s->section = plt;
11875 s->value = addr - plt->vma;
11876 s->name = names;
11877 s->udata.p = NULL;
11878 len = strlen ((*p->sym_ptr_ptr)->name);
11879 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11880 names += len;
11881 if (p->addend != 0)
11882 {
11883 char buf[30], *a;
11884
11885 memcpy (names, "+0x", sizeof ("+0x") - 1);
11886 names += sizeof ("+0x") - 1;
11887 bfd_sprintf_vma (abfd, buf, p->addend);
11888 for (a = buf; *a == '0'; ++a)
11889 ;
11890 len = strlen (a);
11891 memcpy (names, a, len);
11892 names += len;
11893 }
11894 memcpy (names, "@plt", sizeof ("@plt"));
11895 names += sizeof ("@plt");
11896 ++s, ++n;
11897 }
11898
11899 return n;
11900 }
11901
11902 /* It is only used by x86-64 so far.
11903 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11904 but current usage would allow all of _bfd_std_section to be zero. */
11905 static const asymbol lcomm_sym
11906 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
11907 asection _bfd_elf_large_com_section
11908 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
11909 "LARGE_COMMON", 0, SEC_IS_COMMON);
11910
11911 void
11912 _bfd_elf_post_process_headers (bfd * abfd,
11913 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11914 {
11915 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11916
11917 i_ehdrp = elf_elfheader (abfd);
11918
11919 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11920
11921 /* To make things simpler for the loader on Linux systems we set the
11922 osabi field to ELFOSABI_GNU if the binary contains symbols of
11923 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11924 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11925 && elf_tdata (abfd)->has_gnu_symbols)
11926 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11927 }
11928
11929
11930 /* Return TRUE for ELF symbol types that represent functions.
11931 This is the default version of this function, which is sufficient for
11932 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11933
11934 bfd_boolean
11935 _bfd_elf_is_function_type (unsigned int type)
11936 {
11937 return (type == STT_FUNC
11938 || type == STT_GNU_IFUNC);
11939 }
11940
11941 /* If the ELF symbol SYM might be a function in SEC, return the
11942 function size and set *CODE_OFF to the function's entry point,
11943 otherwise return zero. */
11944
11945 bfd_size_type
11946 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11947 bfd_vma *code_off)
11948 {
11949 bfd_size_type size;
11950
11951 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11952 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11953 || sym->section != sec)
11954 return 0;
11955
11956 *code_off = sym->value;
11957 size = 0;
11958 if (!(sym->flags & BSF_SYNTHETIC))
11959 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11960 if (size == 0)
11961 size = 1;
11962 return size;
11963 }
This page took 0.315985 seconds and 4 git commands to generate.