1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
214 elf_read (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
218 if ((buf
= bfd_alloc (abfd
, size
)) == NULL
)
220 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
222 if (bfd_bread (buf
, size
, abfd
) != size
)
224 if (bfd_get_error () != bfd_error_system_call
)
225 bfd_set_error (bfd_error_file_truncated
);
232 bfd_elf_mkobject (bfd
*abfd
)
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd
) = bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
237 if (elf_tdata (abfd
) == 0)
239 /* Since everything is done at close time, do we need any
246 bfd_elf_mkcorefile (bfd
*abfd
)
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd
);
253 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
255 Elf_Internal_Shdr
**i_shdrp
;
256 bfd_byte
*shstrtab
= NULL
;
258 bfd_size_type shstrtabsize
;
260 i_shdrp
= elf_elfsections (abfd
);
261 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
264 shstrtab
= i_shdrp
[shindex
]->contents
;
265 if (shstrtab
== NULL
)
267 /* No cached one, attempt to read, and cache what we read. */
268 offset
= i_shdrp
[shindex
]->sh_offset
;
269 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
270 shstrtab
= elf_read (abfd
, offset
, shstrtabsize
);
271 i_shdrp
[shindex
]->contents
= shstrtab
;
273 return (char *) shstrtab
;
277 bfd_elf_string_from_elf_section (bfd
*abfd
,
278 unsigned int shindex
,
279 unsigned int strindex
)
281 Elf_Internal_Shdr
*hdr
;
286 hdr
= elf_elfsections (abfd
)[shindex
];
288 if (hdr
->contents
== NULL
289 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
292 if (strindex
>= hdr
->sh_size
)
294 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
295 (*_bfd_error_handler
)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
298 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
300 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
304 return ((char *) hdr
->contents
) + strindex
;
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
314 bfd_elf_get_elf_syms (bfd
*ibfd
,
315 Elf_Internal_Shdr
*symtab_hdr
,
318 Elf_Internal_Sym
*intsym_buf
,
320 Elf_External_Sym_Shndx
*extshndx_buf
)
322 Elf_Internal_Shdr
*shndx_hdr
;
324 const bfd_byte
*esym
;
325 Elf_External_Sym_Shndx
*alloc_extshndx
;
326 Elf_External_Sym_Shndx
*shndx
;
327 Elf_Internal_Sym
*isym
;
328 Elf_Internal_Sym
*isymend
;
329 const struct elf_backend_data
*bed
;
337 /* Normal syms might have section extension entries. */
339 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
340 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
342 /* Read the symbols. */
344 alloc_extshndx
= NULL
;
345 bed
= get_elf_backend_data (ibfd
);
346 extsym_size
= bed
->s
->sizeof_sym
;
347 amt
= symcount
* extsym_size
;
348 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
349 if (extsym_buf
== NULL
)
351 alloc_ext
= bfd_malloc (amt
);
352 extsym_buf
= alloc_ext
;
354 if (extsym_buf
== NULL
355 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
356 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
362 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
366 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
367 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
368 if (extshndx_buf
== NULL
)
370 alloc_extshndx
= bfd_malloc (amt
);
371 extshndx_buf
= alloc_extshndx
;
373 if (extshndx_buf
== NULL
374 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
375 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
382 if (intsym_buf
== NULL
)
384 bfd_size_type amt
= symcount
* sizeof (Elf_Internal_Sym
);
385 intsym_buf
= bfd_malloc (amt
);
386 if (intsym_buf
== NULL
)
390 /* Convert the symbols to internal form. */
391 isymend
= intsym_buf
+ symcount
;
392 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
394 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
395 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
398 if (alloc_ext
!= NULL
)
400 if (alloc_extshndx
!= NULL
)
401 free (alloc_extshndx
);
406 /* Look up a symbol name. */
408 bfd_elf_sym_name (bfd
*abfd
,
409 Elf_Internal_Shdr
*symtab_hdr
,
410 Elf_Internal_Sym
*isym
)
412 unsigned int iname
= isym
->st_name
;
413 unsigned int shindex
= symtab_hdr
->sh_link
;
414 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
415 /* Check for a bogus st_shndx to avoid crashing. */
416 && isym
->st_shndx
< elf_numsections (abfd
)
417 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
419 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
420 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
423 return bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
426 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
427 sections. The first element is the flags, the rest are section
430 typedef union elf_internal_group
{
431 Elf_Internal_Shdr
*shdr
;
433 } Elf_Internal_Group
;
435 /* Return the name of the group signature symbol. Why isn't the
436 signature just a string? */
439 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
441 Elf_Internal_Shdr
*hdr
;
442 unsigned char esym
[sizeof (Elf64_External_Sym
)];
443 Elf_External_Sym_Shndx eshndx
;
444 Elf_Internal_Sym isym
;
446 /* First we need to ensure the symbol table is available. */
447 if (! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
450 /* Go read the symbol. */
451 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
452 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
453 &isym
, esym
, &eshndx
) == NULL
)
456 return bfd_elf_sym_name (abfd
, hdr
, &isym
);
459 /* Set next_in_group list pointer, and group name for NEWSECT. */
462 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
464 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
466 /* If num_group is zero, read in all SHT_GROUP sections. The count
467 is set to -1 if there are no SHT_GROUP sections. */
470 unsigned int i
, shnum
;
472 /* First count the number of groups. If we have a SHT_GROUP
473 section with just a flag word (ie. sh_size is 4), ignore it. */
474 shnum
= elf_numsections (abfd
);
476 for (i
= 0; i
< shnum
; i
++)
478 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
479 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
484 num_group
= (unsigned) -1;
485 elf_tdata (abfd
)->num_group
= num_group
;
489 /* We keep a list of elf section headers for group sections,
490 so we can find them quickly. */
491 bfd_size_type amt
= num_group
* sizeof (Elf_Internal_Shdr
*);
492 elf_tdata (abfd
)->group_sect_ptr
= bfd_alloc (abfd
, amt
);
493 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
497 for (i
= 0; i
< shnum
; i
++)
499 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
500 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
503 Elf_Internal_Group
*dest
;
505 /* Add to list of sections. */
506 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
509 /* Read the raw contents. */
510 BFD_ASSERT (sizeof (*dest
) >= 4);
511 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
512 shdr
->contents
= bfd_alloc (abfd
, amt
);
513 if (shdr
->contents
== NULL
514 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
515 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
519 /* Translate raw contents, a flag word followed by an
520 array of elf section indices all in target byte order,
521 to the flag word followed by an array of elf section
523 src
= shdr
->contents
+ shdr
->sh_size
;
524 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
531 idx
= H_GET_32 (abfd
, src
);
532 if (src
== shdr
->contents
)
535 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
536 shdr
->bfd_section
->flags
537 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
542 ((*_bfd_error_handler
)
543 (_("%B: invalid SHT_GROUP entry"), abfd
));
546 dest
->shdr
= elf_elfsections (abfd
)[idx
];
553 if (num_group
!= (unsigned) -1)
557 for (i
= 0; i
< num_group
; i
++)
559 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
560 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
561 unsigned int n_elt
= shdr
->sh_size
/ 4;
563 /* Look through this group's sections to see if current
564 section is a member. */
566 if ((++idx
)->shdr
== hdr
)
570 /* We are a member of this group. Go looking through
571 other members to see if any others are linked via
573 idx
= (Elf_Internal_Group
*) shdr
->contents
;
574 n_elt
= shdr
->sh_size
/ 4;
576 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
577 && elf_next_in_group (s
) != NULL
)
581 /* Snarf the group name from other member, and
582 insert current section in circular list. */
583 elf_group_name (newsect
) = elf_group_name (s
);
584 elf_next_in_group (newsect
) = elf_next_in_group (s
);
585 elf_next_in_group (s
) = newsect
;
591 gname
= group_signature (abfd
, shdr
);
594 elf_group_name (newsect
) = gname
;
596 /* Start a circular list with one element. */
597 elf_next_in_group (newsect
) = newsect
;
600 /* If the group section has been created, point to the
602 if (shdr
->bfd_section
!= NULL
)
603 elf_next_in_group (shdr
->bfd_section
) = newsect
;
611 if (elf_group_name (newsect
) == NULL
)
613 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
620 _bfd_elf_setup_group_pointers (bfd
*abfd
)
623 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
624 bfd_boolean result
= TRUE
;
626 if (num_group
== (unsigned) -1)
629 for (i
= 0; i
< num_group
; i
++)
631 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
632 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
633 unsigned int n_elt
= shdr
->sh_size
/ 4;
636 if ((++idx
)->shdr
->bfd_section
)
637 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
638 else if (idx
->shdr
->sh_type
== SHT_RELA
639 || idx
->shdr
->sh_type
== SHT_REL
)
640 /* We won't include relocation sections in section groups in
641 output object files. We adjust the group section size here
642 so that relocatable link will work correctly when
643 relocation sections are in section group in input object
645 shdr
->bfd_section
->size
-= 4;
648 /* There are some unknown sections in the group. */
649 (*_bfd_error_handler
)
650 (_("%B: unknown [%d] section `%s' in group [%s]"),
652 (unsigned int) idx
->shdr
->sh_type
,
653 bfd_elf_string_from_elf_section (abfd
,
654 (elf_elfheader (abfd
)
657 shdr
->bfd_section
->name
);
665 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
667 return elf_next_in_group (sec
) != NULL
;
670 /* Make a BFD section from an ELF section. We store a pointer to the
671 BFD section in the bfd_section field of the header. */
674 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
675 Elf_Internal_Shdr
*hdr
,
681 const struct elf_backend_data
*bed
;
683 if (hdr
->bfd_section
!= NULL
)
685 BFD_ASSERT (strcmp (name
,
686 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
690 newsect
= bfd_make_section_anyway (abfd
, name
);
694 hdr
->bfd_section
= newsect
;
695 elf_section_data (newsect
)->this_hdr
= *hdr
;
696 elf_section_data (newsect
)->this_idx
= shindex
;
698 /* Always use the real type/flags. */
699 elf_section_type (newsect
) = hdr
->sh_type
;
700 elf_section_flags (newsect
) = hdr
->sh_flags
;
702 newsect
->filepos
= hdr
->sh_offset
;
704 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
705 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
706 || ! bfd_set_section_alignment (abfd
, newsect
,
707 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
710 flags
= SEC_NO_FLAGS
;
711 if (hdr
->sh_type
!= SHT_NOBITS
)
712 flags
|= SEC_HAS_CONTENTS
;
713 if (hdr
->sh_type
== SHT_GROUP
)
714 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
715 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
718 if (hdr
->sh_type
!= SHT_NOBITS
)
721 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
722 flags
|= SEC_READONLY
;
723 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
725 else if ((flags
& SEC_LOAD
) != 0)
727 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
730 newsect
->entsize
= hdr
->sh_entsize
;
731 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
732 flags
|= SEC_STRINGS
;
734 if (hdr
->sh_flags
& SHF_GROUP
)
735 if (!setup_group (abfd
, hdr
, newsect
))
737 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
738 flags
|= SEC_THREAD_LOCAL
;
740 /* The debugging sections appear to be recognized only by name, not
743 static const char *debug_sec_names
[] =
752 for (i
= ARRAY_SIZE (debug_sec_names
); i
--;)
753 if (strncmp (name
, debug_sec_names
[i
], strlen (debug_sec_names
[i
])) == 0)
757 flags
|= SEC_DEBUGGING
;
760 /* As a GNU extension, if the name begins with .gnu.linkonce, we
761 only link a single copy of the section. This is used to support
762 g++. g++ will emit each template expansion in its own section.
763 The symbols will be defined as weak, so that multiple definitions
764 are permitted. The GNU linker extension is to actually discard
765 all but one of the sections. */
766 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
767 && elf_next_in_group (newsect
) == NULL
)
768 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
770 bed
= get_elf_backend_data (abfd
);
771 if (bed
->elf_backend_section_flags
)
772 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
775 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
778 if ((flags
& SEC_ALLOC
) != 0)
780 Elf_Internal_Phdr
*phdr
;
783 /* Look through the phdrs to see if we need to adjust the lma.
784 If all the p_paddr fields are zero, we ignore them, since
785 some ELF linkers produce such output. */
786 phdr
= elf_tdata (abfd
)->phdr
;
787 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
789 if (phdr
->p_paddr
!= 0)
792 if (i
< elf_elfheader (abfd
)->e_phnum
)
794 phdr
= elf_tdata (abfd
)->phdr
;
795 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
797 /* This section is part of this segment if its file
798 offset plus size lies within the segment's memory
799 span and, if the section is loaded, the extent of the
800 loaded data lies within the extent of the segment.
802 Note - we used to check the p_paddr field as well, and
803 refuse to set the LMA if it was 0. This is wrong
804 though, as a perfectly valid initialised segment can
805 have a p_paddr of zero. Some architectures, eg ARM,
806 place special significance on the address 0 and
807 executables need to be able to have a segment which
808 covers this address. */
809 if (phdr
->p_type
== PT_LOAD
810 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
811 && (hdr
->sh_offset
+ hdr
->sh_size
812 <= phdr
->p_offset
+ phdr
->p_memsz
)
813 && ((flags
& SEC_LOAD
) == 0
814 || (hdr
->sh_offset
+ hdr
->sh_size
815 <= phdr
->p_offset
+ phdr
->p_filesz
)))
817 if ((flags
& SEC_LOAD
) == 0)
818 newsect
->lma
= (phdr
->p_paddr
819 + hdr
->sh_addr
- phdr
->p_vaddr
);
821 /* We used to use the same adjustment for SEC_LOAD
822 sections, but that doesn't work if the segment
823 is packed with code from multiple VMAs.
824 Instead we calculate the section LMA based on
825 the segment LMA. It is assumed that the
826 segment will contain sections with contiguous
827 LMAs, even if the VMAs are not. */
828 newsect
->lma
= (phdr
->p_paddr
829 + hdr
->sh_offset
- phdr
->p_offset
);
831 /* With contiguous segments, we can't tell from file
832 offsets whether a section with zero size should
833 be placed at the end of one segment or the
834 beginning of the next. Decide based on vaddr. */
835 if (hdr
->sh_addr
>= phdr
->p_vaddr
836 && (hdr
->sh_addr
+ hdr
->sh_size
837 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
852 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
855 Helper functions for GDB to locate the string tables.
856 Since BFD hides string tables from callers, GDB needs to use an
857 internal hook to find them. Sun's .stabstr, in particular,
858 isn't even pointed to by the .stab section, so ordinary
859 mechanisms wouldn't work to find it, even if we had some.
862 struct elf_internal_shdr
*
863 bfd_elf_find_section (bfd
*abfd
, char *name
)
865 Elf_Internal_Shdr
**i_shdrp
;
870 i_shdrp
= elf_elfsections (abfd
);
873 shstrtab
= bfd_elf_get_str_section (abfd
,
874 elf_elfheader (abfd
)->e_shstrndx
);
875 if (shstrtab
!= NULL
)
877 max
= elf_numsections (abfd
);
878 for (i
= 1; i
< max
; i
++)
879 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
886 const char *const bfd_elf_section_type_names
[] = {
887 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
888 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
889 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
892 /* ELF relocs are against symbols. If we are producing relocatable
893 output, and the reloc is against an external symbol, and nothing
894 has given us any additional addend, the resulting reloc will also
895 be against the same symbol. In such a case, we don't want to
896 change anything about the way the reloc is handled, since it will
897 all be done at final link time. Rather than put special case code
898 into bfd_perform_relocation, all the reloc types use this howto
899 function. It just short circuits the reloc if producing
900 relocatable output against an external symbol. */
902 bfd_reloc_status_type
903 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
904 arelent
*reloc_entry
,
906 void *data ATTRIBUTE_UNUSED
,
907 asection
*input_section
,
909 char **error_message ATTRIBUTE_UNUSED
)
911 if (output_bfd
!= NULL
912 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
913 && (! reloc_entry
->howto
->partial_inplace
914 || reloc_entry
->addend
== 0))
916 reloc_entry
->address
+= input_section
->output_offset
;
920 return bfd_reloc_continue
;
923 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
926 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
929 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
930 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
933 /* Finish SHF_MERGE section merging. */
936 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
941 if (!is_elf_hash_table (info
->hash
))
944 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
945 if ((ibfd
->flags
& DYNAMIC
) == 0)
946 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
947 if ((sec
->flags
& SEC_MERGE
) != 0
948 && !bfd_is_abs_section (sec
->output_section
))
950 struct bfd_elf_section_data
*secdata
;
952 secdata
= elf_section_data (sec
);
953 if (! _bfd_add_merge_section (abfd
,
954 &elf_hash_table (info
)->merge_info
,
955 sec
, &secdata
->sec_info
))
957 else if (secdata
->sec_info
)
958 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
961 if (elf_hash_table (info
)->merge_info
!= NULL
)
962 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
963 merge_sections_remove_hook
);
968 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
970 sec
->output_section
= bfd_abs_section_ptr
;
971 sec
->output_offset
= sec
->vma
;
972 if (!is_elf_hash_table (info
->hash
))
975 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
978 /* Copy the program header and other data from one object module to
982 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
984 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
985 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
988 BFD_ASSERT (!elf_flags_init (obfd
)
989 || (elf_elfheader (obfd
)->e_flags
990 == elf_elfheader (ibfd
)->e_flags
));
992 elf_gp (obfd
) = elf_gp (ibfd
);
993 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
994 elf_flags_init (obfd
) = TRUE
;
998 /* Print out the program headers. */
1001 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1004 Elf_Internal_Phdr
*p
;
1006 bfd_byte
*dynbuf
= NULL
;
1008 p
= elf_tdata (abfd
)->phdr
;
1013 fprintf (f
, _("\nProgram Header:\n"));
1014 c
= elf_elfheader (abfd
)->e_phnum
;
1015 for (i
= 0; i
< c
; i
++, p
++)
1022 case PT_NULL
: pt
= "NULL"; break;
1023 case PT_LOAD
: pt
= "LOAD"; break;
1024 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1025 case PT_INTERP
: pt
= "INTERP"; break;
1026 case PT_NOTE
: pt
= "NOTE"; break;
1027 case PT_SHLIB
: pt
= "SHLIB"; break;
1028 case PT_PHDR
: pt
= "PHDR"; break;
1029 case PT_TLS
: pt
= "TLS"; break;
1030 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1031 case PT_GNU_STACK
: pt
= "STACK"; break;
1032 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1033 default: sprintf (buf
, "0x%lx", p
->p_type
); pt
= buf
; break;
1035 fprintf (f
, "%8s off 0x", pt
);
1036 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1037 fprintf (f
, " vaddr 0x");
1038 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1039 fprintf (f
, " paddr 0x");
1040 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1041 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1042 fprintf (f
, " filesz 0x");
1043 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1044 fprintf (f
, " memsz 0x");
1045 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1046 fprintf (f
, " flags %c%c%c",
1047 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1048 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1049 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1050 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1051 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1056 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1060 unsigned long shlink
;
1061 bfd_byte
*extdyn
, *extdynend
;
1063 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1065 fprintf (f
, _("\nDynamic Section:\n"));
1067 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1070 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1073 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1075 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1076 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1079 extdynend
= extdyn
+ s
->size
;
1080 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1082 Elf_Internal_Dyn dyn
;
1085 bfd_boolean stringp
;
1087 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1089 if (dyn
.d_tag
== DT_NULL
)
1096 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1100 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1101 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1102 case DT_PLTGOT
: name
= "PLTGOT"; break;
1103 case DT_HASH
: name
= "HASH"; break;
1104 case DT_STRTAB
: name
= "STRTAB"; break;
1105 case DT_SYMTAB
: name
= "SYMTAB"; break;
1106 case DT_RELA
: name
= "RELA"; break;
1107 case DT_RELASZ
: name
= "RELASZ"; break;
1108 case DT_RELAENT
: name
= "RELAENT"; break;
1109 case DT_STRSZ
: name
= "STRSZ"; break;
1110 case DT_SYMENT
: name
= "SYMENT"; break;
1111 case DT_INIT
: name
= "INIT"; break;
1112 case DT_FINI
: name
= "FINI"; break;
1113 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1114 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1115 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1116 case DT_REL
: name
= "REL"; break;
1117 case DT_RELSZ
: name
= "RELSZ"; break;
1118 case DT_RELENT
: name
= "RELENT"; break;
1119 case DT_PLTREL
: name
= "PLTREL"; break;
1120 case DT_DEBUG
: name
= "DEBUG"; break;
1121 case DT_TEXTREL
: name
= "TEXTREL"; break;
1122 case DT_JMPREL
: name
= "JMPREL"; break;
1123 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1124 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1125 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1126 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1127 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1128 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1129 case DT_FLAGS
: name
= "FLAGS"; break;
1130 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1131 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1132 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1133 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1134 case DT_MOVEENT
: name
= "MOVEENT"; break;
1135 case DT_MOVESZ
: name
= "MOVESZ"; break;
1136 case DT_FEATURE
: name
= "FEATURE"; break;
1137 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1138 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1139 case DT_SYMINENT
: name
= "SYMINENT"; break;
1140 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1141 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1142 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1143 case DT_PLTPAD
: name
= "PLTPAD"; break;
1144 case DT_MOVETAB
: name
= "MOVETAB"; break;
1145 case DT_SYMINFO
: name
= "SYMINFO"; break;
1146 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1147 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1148 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1149 case DT_VERSYM
: name
= "VERSYM"; break;
1150 case DT_VERDEF
: name
= "VERDEF"; break;
1151 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1152 case DT_VERNEED
: name
= "VERNEED"; break;
1153 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1154 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1155 case DT_USED
: name
= "USED"; break;
1156 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1159 fprintf (f
, " %-11s ", name
);
1161 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1165 unsigned int tagv
= dyn
.d_un
.d_val
;
1167 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1170 fprintf (f
, "%s", string
);
1179 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1180 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1182 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1186 if (elf_dynverdef (abfd
) != 0)
1188 Elf_Internal_Verdef
*t
;
1190 fprintf (f
, _("\nVersion definitions:\n"));
1191 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1193 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1194 t
->vd_flags
, t
->vd_hash
, t
->vd_nodename
);
1195 if (t
->vd_auxptr
->vda_nextptr
!= NULL
)
1197 Elf_Internal_Verdaux
*a
;
1200 for (a
= t
->vd_auxptr
->vda_nextptr
;
1203 fprintf (f
, "%s ", a
->vda_nodename
);
1209 if (elf_dynverref (abfd
) != 0)
1211 Elf_Internal_Verneed
*t
;
1213 fprintf (f
, _("\nVersion References:\n"));
1214 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1216 Elf_Internal_Vernaux
*a
;
1218 fprintf (f
, _(" required from %s:\n"), t
->vn_filename
);
1219 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1220 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1221 a
->vna_flags
, a
->vna_other
, a
->vna_nodename
);
1233 /* Display ELF-specific fields of a symbol. */
1236 bfd_elf_print_symbol (bfd
*abfd
,
1239 bfd_print_symbol_type how
)
1244 case bfd_print_symbol_name
:
1245 fprintf (file
, "%s", symbol
->name
);
1247 case bfd_print_symbol_more
:
1248 fprintf (file
, "elf ");
1249 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1250 fprintf (file
, " %lx", (long) symbol
->flags
);
1252 case bfd_print_symbol_all
:
1254 const char *section_name
;
1255 const char *name
= NULL
;
1256 const struct elf_backend_data
*bed
;
1257 unsigned char st_other
;
1260 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1262 bed
= get_elf_backend_data (abfd
);
1263 if (bed
->elf_backend_print_symbol_all
)
1264 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1268 name
= symbol
->name
;
1269 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1272 fprintf (file
, " %s\t", section_name
);
1273 /* Print the "other" value for a symbol. For common symbols,
1274 we've already printed the size; now print the alignment.
1275 For other symbols, we have no specified alignment, and
1276 we've printed the address; now print the size. */
1277 if (bfd_is_com_section (symbol
->section
))
1278 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1280 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1281 bfd_fprintf_vma (abfd
, file
, val
);
1283 /* If we have version information, print it. */
1284 if (elf_tdata (abfd
)->dynversym_section
!= 0
1285 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1286 || elf_tdata (abfd
)->dynverref_section
!= 0))
1288 unsigned int vernum
;
1289 const char *version_string
;
1291 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1294 version_string
= "";
1295 else if (vernum
== 1)
1296 version_string
= "Base";
1297 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1299 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1302 Elf_Internal_Verneed
*t
;
1304 version_string
= "";
1305 for (t
= elf_tdata (abfd
)->verref
;
1309 Elf_Internal_Vernaux
*a
;
1311 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1313 if (a
->vna_other
== vernum
)
1315 version_string
= a
->vna_nodename
;
1322 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1323 fprintf (file
, " %-11s", version_string
);
1328 fprintf (file
, " (%s)", version_string
);
1329 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1334 /* If the st_other field is not zero, print it. */
1335 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1340 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1341 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1342 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1344 /* Some other non-defined flags are also present, so print
1346 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1349 fprintf (file
, " %s", name
);
1355 /* Create an entry in an ELF linker hash table. */
1357 struct bfd_hash_entry
*
1358 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1359 struct bfd_hash_table
*table
,
1362 /* Allocate the structure if it has not already been allocated by a
1366 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1371 /* Call the allocation method of the superclass. */
1372 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1375 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1376 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1378 /* Set local fields. */
1381 ret
->got
= ret
->plt
= htab
->init_refcount
;
1382 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1383 - offsetof (struct elf_link_hash_entry
, size
)));
1384 /* Assume that we have been called by a non-ELF symbol reader.
1385 This flag is then reset by the code which reads an ELF input
1386 file. This ensures that a symbol created by a non-ELF symbol
1387 reader will have the flag set correctly. */
1394 /* Copy data from an indirect symbol to its direct symbol, hiding the
1395 old indirect symbol. Also used for copying flags to a weakdef. */
1398 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data
*bed
,
1399 struct elf_link_hash_entry
*dir
,
1400 struct elf_link_hash_entry
*ind
)
1403 bfd_signed_vma lowest_valid
= bed
->can_refcount
;
1405 /* Copy down any references that we may have already seen to the
1406 symbol which just became indirect. */
1408 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1409 dir
->ref_regular
|= ind
->ref_regular
;
1410 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1411 dir
->non_got_ref
|= ind
->non_got_ref
;
1412 dir
->needs_plt
|= ind
->needs_plt
;
1413 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1415 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1418 /* Copy over the global and procedure linkage table refcount entries.
1419 These may have been already set up by a check_relocs routine. */
1420 tmp
= dir
->got
.refcount
;
1421 if (tmp
< lowest_valid
)
1423 dir
->got
.refcount
= ind
->got
.refcount
;
1424 ind
->got
.refcount
= tmp
;
1427 BFD_ASSERT (ind
->got
.refcount
< lowest_valid
);
1429 tmp
= dir
->plt
.refcount
;
1430 if (tmp
< lowest_valid
)
1432 dir
->plt
.refcount
= ind
->plt
.refcount
;
1433 ind
->plt
.refcount
= tmp
;
1436 BFD_ASSERT (ind
->plt
.refcount
< lowest_valid
);
1438 if (dir
->dynindx
== -1)
1440 dir
->dynindx
= ind
->dynindx
;
1441 dir
->dynstr_index
= ind
->dynstr_index
;
1443 ind
->dynstr_index
= 0;
1446 BFD_ASSERT (ind
->dynindx
== -1);
1450 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1451 struct elf_link_hash_entry
*h
,
1452 bfd_boolean force_local
)
1454 h
->plt
= elf_hash_table (info
)->init_offset
;
1458 h
->forced_local
= 1;
1459 if (h
->dynindx
!= -1)
1462 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1468 /* Initialize an ELF linker hash table. */
1471 _bfd_elf_link_hash_table_init
1472 (struct elf_link_hash_table
*table
,
1474 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1475 struct bfd_hash_table
*,
1480 table
->dynamic_sections_created
= FALSE
;
1481 table
->dynobj
= NULL
;
1482 /* Make sure can_refcount is extended to the width and signedness of
1483 init_refcount before we subtract one from it. */
1484 table
->init_refcount
.refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1485 table
->init_refcount
.refcount
-= 1;
1486 table
->init_offset
.offset
= -(bfd_vma
) 1;
1487 /* The first dynamic symbol is a dummy. */
1488 table
->dynsymcount
= 1;
1489 table
->dynstr
= NULL
;
1490 table
->bucketcount
= 0;
1491 table
->needed
= NULL
;
1493 table
->merge_info
= NULL
;
1494 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1495 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1496 table
->dynlocal
= NULL
;
1497 table
->runpath
= NULL
;
1498 table
->tls_sec
= NULL
;
1499 table
->tls_size
= 0;
1500 table
->loaded
= NULL
;
1501 table
->is_relocatable_executable
= FALSE
;
1503 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
);
1504 table
->root
.type
= bfd_link_elf_hash_table
;
1509 /* Create an ELF linker hash table. */
1511 struct bfd_link_hash_table
*
1512 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1514 struct elf_link_hash_table
*ret
;
1515 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1517 ret
= bfd_malloc (amt
);
1521 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
))
1530 /* This is a hook for the ELF emulation code in the generic linker to
1531 tell the backend linker what file name to use for the DT_NEEDED
1532 entry for a dynamic object. */
1535 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1537 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1538 && bfd_get_format (abfd
) == bfd_object
)
1539 elf_dt_name (abfd
) = name
;
1543 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1546 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1547 && bfd_get_format (abfd
) == bfd_object
)
1548 lib_class
= elf_dyn_lib_class (abfd
);
1555 bfd_elf_set_dyn_lib_class (bfd
*abfd
, int lib_class
)
1557 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1558 && bfd_get_format (abfd
) == bfd_object
)
1559 elf_dyn_lib_class (abfd
) = lib_class
;
1562 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1563 the linker ELF emulation code. */
1565 struct bfd_link_needed_list
*
1566 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1567 struct bfd_link_info
*info
)
1569 if (! is_elf_hash_table (info
->hash
))
1571 return elf_hash_table (info
)->needed
;
1574 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1575 hook for the linker ELF emulation code. */
1577 struct bfd_link_needed_list
*
1578 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1579 struct bfd_link_info
*info
)
1581 if (! is_elf_hash_table (info
->hash
))
1583 return elf_hash_table (info
)->runpath
;
1586 /* Get the name actually used for a dynamic object for a link. This
1587 is the SONAME entry if there is one. Otherwise, it is the string
1588 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1591 bfd_elf_get_dt_soname (bfd
*abfd
)
1593 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1594 && bfd_get_format (abfd
) == bfd_object
)
1595 return elf_dt_name (abfd
);
1599 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1600 the ELF linker emulation code. */
1603 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1604 struct bfd_link_needed_list
**pneeded
)
1607 bfd_byte
*dynbuf
= NULL
;
1609 unsigned long shlink
;
1610 bfd_byte
*extdyn
, *extdynend
;
1612 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1616 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1617 || bfd_get_format (abfd
) != bfd_object
)
1620 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1621 if (s
== NULL
|| s
->size
== 0)
1624 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1627 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1631 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1633 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1634 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1637 extdynend
= extdyn
+ s
->size
;
1638 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1640 Elf_Internal_Dyn dyn
;
1642 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1644 if (dyn
.d_tag
== DT_NULL
)
1647 if (dyn
.d_tag
== DT_NEEDED
)
1650 struct bfd_link_needed_list
*l
;
1651 unsigned int tagv
= dyn
.d_un
.d_val
;
1654 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1659 l
= bfd_alloc (abfd
, amt
);
1680 /* Allocate an ELF string table--force the first byte to be zero. */
1682 struct bfd_strtab_hash
*
1683 _bfd_elf_stringtab_init (void)
1685 struct bfd_strtab_hash
*ret
;
1687 ret
= _bfd_stringtab_init ();
1692 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1693 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1694 if (loc
== (bfd_size_type
) -1)
1696 _bfd_stringtab_free (ret
);
1703 /* ELF .o/exec file reading */
1705 /* Create a new bfd section from an ELF section header. */
1708 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1710 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1711 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1712 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1715 name
= bfd_elf_string_from_elf_section (abfd
,
1716 elf_elfheader (abfd
)->e_shstrndx
,
1719 switch (hdr
->sh_type
)
1722 /* Inactive section. Throw it away. */
1725 case SHT_PROGBITS
: /* Normal section with contents. */
1726 case SHT_NOBITS
: /* .bss section. */
1727 case SHT_HASH
: /* .hash section. */
1728 case SHT_NOTE
: /* .note section. */
1729 case SHT_INIT_ARRAY
: /* .init_array section. */
1730 case SHT_FINI_ARRAY
: /* .fini_array section. */
1731 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1732 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1733 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1735 case SHT_DYNAMIC
: /* Dynamic linking information. */
1736 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1738 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1740 Elf_Internal_Shdr
*dynsymhdr
;
1742 /* The shared libraries distributed with hpux11 have a bogus
1743 sh_link field for the ".dynamic" section. Find the
1744 string table for the ".dynsym" section instead. */
1745 if (elf_dynsymtab (abfd
) != 0)
1747 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1748 hdr
->sh_link
= dynsymhdr
->sh_link
;
1752 unsigned int i
, num_sec
;
1754 num_sec
= elf_numsections (abfd
);
1755 for (i
= 1; i
< num_sec
; i
++)
1757 dynsymhdr
= elf_elfsections (abfd
)[i
];
1758 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1760 hdr
->sh_link
= dynsymhdr
->sh_link
;
1768 case SHT_SYMTAB
: /* A symbol table */
1769 if (elf_onesymtab (abfd
) == shindex
)
1772 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1773 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1774 elf_onesymtab (abfd
) = shindex
;
1775 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1776 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1777 abfd
->flags
|= HAS_SYMS
;
1779 /* Sometimes a shared object will map in the symbol table. If
1780 SHF_ALLOC is set, and this is a shared object, then we also
1781 treat this section as a BFD section. We can not base the
1782 decision purely on SHF_ALLOC, because that flag is sometimes
1783 set in a relocatable object file, which would confuse the
1785 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1786 && (abfd
->flags
& DYNAMIC
) != 0
1787 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1791 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1792 can't read symbols without that section loaded as well. It
1793 is most likely specified by the next section header. */
1794 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1796 unsigned int i
, num_sec
;
1798 num_sec
= elf_numsections (abfd
);
1799 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1801 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1802 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1803 && hdr2
->sh_link
== shindex
)
1807 for (i
= 1; i
< shindex
; i
++)
1809 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1810 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1811 && hdr2
->sh_link
== shindex
)
1815 return bfd_section_from_shdr (abfd
, i
);
1819 case SHT_DYNSYM
: /* A dynamic symbol table */
1820 if (elf_dynsymtab (abfd
) == shindex
)
1823 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1824 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1825 elf_dynsymtab (abfd
) = shindex
;
1826 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1827 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1828 abfd
->flags
|= HAS_SYMS
;
1830 /* Besides being a symbol table, we also treat this as a regular
1831 section, so that objcopy can handle it. */
1832 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1834 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1835 if (elf_symtab_shndx (abfd
) == shindex
)
1838 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1839 elf_symtab_shndx (abfd
) = shindex
;
1840 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1841 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1844 case SHT_STRTAB
: /* A string table */
1845 if (hdr
->bfd_section
!= NULL
)
1847 if (ehdr
->e_shstrndx
== shindex
)
1849 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1850 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1853 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1856 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1857 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1860 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1863 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1864 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1865 elf_elfsections (abfd
)[shindex
] = hdr
;
1866 /* We also treat this as a regular section, so that objcopy
1868 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1872 /* If the string table isn't one of the above, then treat it as a
1873 regular section. We need to scan all the headers to be sure,
1874 just in case this strtab section appeared before the above. */
1875 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1877 unsigned int i
, num_sec
;
1879 num_sec
= elf_numsections (abfd
);
1880 for (i
= 1; i
< num_sec
; i
++)
1882 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1883 if (hdr2
->sh_link
== shindex
)
1885 if (! bfd_section_from_shdr (abfd
, i
))
1887 if (elf_onesymtab (abfd
) == i
)
1889 if (elf_dynsymtab (abfd
) == i
)
1890 goto dynsymtab_strtab
;
1894 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1898 /* *These* do a lot of work -- but build no sections! */
1900 asection
*target_sect
;
1901 Elf_Internal_Shdr
*hdr2
;
1902 unsigned int num_sec
= elf_numsections (abfd
);
1904 /* Check for a bogus link to avoid crashing. */
1905 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
1906 || hdr
->sh_link
>= num_sec
)
1908 ((*_bfd_error_handler
)
1909 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1910 abfd
, hdr
->sh_link
, name
, shindex
));
1911 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1915 /* For some incomprehensible reason Oracle distributes
1916 libraries for Solaris in which some of the objects have
1917 bogus sh_link fields. It would be nice if we could just
1918 reject them, but, unfortunately, some people need to use
1919 them. We scan through the section headers; if we find only
1920 one suitable symbol table, we clobber the sh_link to point
1921 to it. I hope this doesn't break anything. */
1922 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1923 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1929 for (scan
= 1; scan
< num_sec
; scan
++)
1931 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1932 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1943 hdr
->sh_link
= found
;
1946 /* Get the symbol table. */
1947 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1948 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1949 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1952 /* If this reloc section does not use the main symbol table we
1953 don't treat it as a reloc section. BFD can't adequately
1954 represent such a section, so at least for now, we don't
1955 try. We just present it as a normal section. We also
1956 can't use it as a reloc section if it points to the null
1958 if (hdr
->sh_link
!= elf_onesymtab (abfd
) || hdr
->sh_info
== SHN_UNDEF
)
1959 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1962 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1964 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1965 if (target_sect
== NULL
)
1968 if ((target_sect
->flags
& SEC_RELOC
) == 0
1969 || target_sect
->reloc_count
== 0)
1970 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1974 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1975 amt
= sizeof (*hdr2
);
1976 hdr2
= bfd_alloc (abfd
, amt
);
1977 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1980 elf_elfsections (abfd
)[shindex
] = hdr2
;
1981 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1982 target_sect
->flags
|= SEC_RELOC
;
1983 target_sect
->relocation
= NULL
;
1984 target_sect
->rel_filepos
= hdr
->sh_offset
;
1985 /* In the section to which the relocations apply, mark whether
1986 its relocations are of the REL or RELA variety. */
1987 if (hdr
->sh_size
!= 0)
1988 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
1989 abfd
->flags
|= HAS_RELOC
;
1994 case SHT_GNU_verdef
:
1995 elf_dynverdef (abfd
) = shindex
;
1996 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1997 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2000 case SHT_GNU_versym
:
2001 elf_dynversym (abfd
) = shindex
;
2002 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2003 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2006 case SHT_GNU_verneed
:
2007 elf_dynverref (abfd
) = shindex
;
2008 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2009 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2016 /* We need a BFD section for objcopy and relocatable linking,
2017 and it's handy to have the signature available as the section
2019 name
= group_signature (abfd
, hdr
);
2022 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2024 if (hdr
->contents
!= NULL
)
2026 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2027 unsigned int n_elt
= hdr
->sh_size
/ 4;
2030 if (idx
->flags
& GRP_COMDAT
)
2031 hdr
->bfd_section
->flags
2032 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2034 /* We try to keep the same section order as it comes in. */
2036 while (--n_elt
!= 0)
2037 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2038 && elf_next_in_group (s
) != NULL
)
2040 elf_next_in_group (hdr
->bfd_section
) = s
;
2047 /* Check for any processor-specific section types. */
2048 return bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
,
2055 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2056 Return SEC for sections that have no elf section, and NULL on error. */
2059 bfd_section_from_r_symndx (bfd
*abfd
,
2060 struct sym_sec_cache
*cache
,
2062 unsigned long r_symndx
)
2064 Elf_Internal_Shdr
*symtab_hdr
;
2065 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2066 Elf_External_Sym_Shndx eshndx
;
2067 Elf_Internal_Sym isym
;
2068 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2070 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2071 return cache
->sec
[ent
];
2073 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2074 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2075 &isym
, esym
, &eshndx
) == NULL
)
2078 if (cache
->abfd
!= abfd
)
2080 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2083 cache
->indx
[ent
] = r_symndx
;
2084 cache
->sec
[ent
] = sec
;
2085 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2086 || isym
.st_shndx
> SHN_HIRESERVE
)
2089 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2091 cache
->sec
[ent
] = s
;
2093 return cache
->sec
[ent
];
2096 /* Given an ELF section number, retrieve the corresponding BFD
2100 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2102 if (index
>= elf_numsections (abfd
))
2104 return elf_elfsections (abfd
)[index
]->bfd_section
;
2107 static struct bfd_elf_special_section
const special_sections
[] =
2109 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2110 { ".gnu.linkonce.b",15, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2111 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2112 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2113 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2114 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2115 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2116 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2117 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2118 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2119 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2120 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2121 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2122 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2123 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2124 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2125 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2126 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2127 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2128 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2129 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2130 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2131 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2132 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2133 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2134 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2135 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2136 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2137 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2138 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2139 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2140 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2141 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2142 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2143 { ".note.GNU-stack",15, 0, SHT_PROGBITS
, 0 },
2144 { ".note", 5, -1, SHT_NOTE
, 0 },
2145 { ".rela", 5, -1, SHT_RELA
, 0 },
2146 { ".rel", 4, -1, SHT_REL
, 0 },
2147 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2148 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2149 { ".gnu.conflict", 13, 0, SHT_RELA
, SHF_ALLOC
},
2150 { NULL
, 0, 0, 0, 0 }
2153 static const struct bfd_elf_special_section
*
2154 get_special_section (const char *name
,
2155 const struct bfd_elf_special_section
*special_sections
,
2159 int len
= strlen (name
);
2161 for (i
= 0; special_sections
[i
].prefix
!= NULL
; i
++)
2164 int prefix_len
= special_sections
[i
].prefix_length
;
2166 if (len
< prefix_len
)
2168 if (memcmp (name
, special_sections
[i
].prefix
, prefix_len
) != 0)
2171 suffix_len
= special_sections
[i
].suffix_length
;
2172 if (suffix_len
<= 0)
2174 if (name
[prefix_len
] != 0)
2176 if (suffix_len
== 0)
2178 if (name
[prefix_len
] != '.'
2179 && (suffix_len
== -2
2180 || (rela
&& special_sections
[i
].type
== SHT_REL
)))
2186 if (len
< prefix_len
+ suffix_len
)
2188 if (memcmp (name
+ len
- suffix_len
,
2189 special_sections
[i
].prefix
+ prefix_len
,
2193 return &special_sections
[i
];
2199 const struct bfd_elf_special_section
*
2200 _bfd_elf_get_sec_type_attr (bfd
*abfd
, const char *name
)
2202 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2203 const struct bfd_elf_special_section
*ssect
= NULL
;
2205 /* See if this is one of the special sections. */
2208 unsigned int rela
= bed
->default_use_rela_p
;
2210 if (bed
->special_sections
)
2211 ssect
= get_special_section (name
, bed
->special_sections
, rela
);
2214 ssect
= get_special_section (name
, special_sections
, rela
);
2221 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2223 struct bfd_elf_section_data
*sdata
;
2224 const struct bfd_elf_special_section
*ssect
;
2226 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2229 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2232 sec
->used_by_bfd
= sdata
;
2235 elf_section_type (sec
) = SHT_NULL
;
2236 ssect
= _bfd_elf_get_sec_type_attr (abfd
, sec
->name
);
2239 elf_section_type (sec
) = ssect
->type
;
2240 elf_section_flags (sec
) = ssect
->attr
;
2243 /* Indicate whether or not this section should use RELA relocations. */
2244 sec
->use_rela_p
= get_elf_backend_data (abfd
)->default_use_rela_p
;
2249 /* Create a new bfd section from an ELF program header.
2251 Since program segments have no names, we generate a synthetic name
2252 of the form segment<NUM>, where NUM is generally the index in the
2253 program header table. For segments that are split (see below) we
2254 generate the names segment<NUM>a and segment<NUM>b.
2256 Note that some program segments may have a file size that is different than
2257 (less than) the memory size. All this means is that at execution the
2258 system must allocate the amount of memory specified by the memory size,
2259 but only initialize it with the first "file size" bytes read from the
2260 file. This would occur for example, with program segments consisting
2261 of combined data+bss.
2263 To handle the above situation, this routine generates TWO bfd sections
2264 for the single program segment. The first has the length specified by
2265 the file size of the segment, and the second has the length specified
2266 by the difference between the two sizes. In effect, the segment is split
2267 into it's initialized and uninitialized parts.
2272 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2273 Elf_Internal_Phdr
*hdr
,
2275 const char *typename
)
2283 split
= ((hdr
->p_memsz
> 0)
2284 && (hdr
->p_filesz
> 0)
2285 && (hdr
->p_memsz
> hdr
->p_filesz
));
2286 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2287 len
= strlen (namebuf
) + 1;
2288 name
= bfd_alloc (abfd
, len
);
2291 memcpy (name
, namebuf
, len
);
2292 newsect
= bfd_make_section (abfd
, name
);
2293 if (newsect
== NULL
)
2295 newsect
->vma
= hdr
->p_vaddr
;
2296 newsect
->lma
= hdr
->p_paddr
;
2297 newsect
->size
= hdr
->p_filesz
;
2298 newsect
->filepos
= hdr
->p_offset
;
2299 newsect
->flags
|= SEC_HAS_CONTENTS
;
2300 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2301 if (hdr
->p_type
== PT_LOAD
)
2303 newsect
->flags
|= SEC_ALLOC
;
2304 newsect
->flags
|= SEC_LOAD
;
2305 if (hdr
->p_flags
& PF_X
)
2307 /* FIXME: all we known is that it has execute PERMISSION,
2309 newsect
->flags
|= SEC_CODE
;
2312 if (!(hdr
->p_flags
& PF_W
))
2314 newsect
->flags
|= SEC_READONLY
;
2319 sprintf (namebuf
, "%s%db", typename
, index
);
2320 len
= strlen (namebuf
) + 1;
2321 name
= bfd_alloc (abfd
, len
);
2324 memcpy (name
, namebuf
, len
);
2325 newsect
= bfd_make_section (abfd
, name
);
2326 if (newsect
== NULL
)
2328 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2329 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2330 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2331 if (hdr
->p_type
== PT_LOAD
)
2333 newsect
->flags
|= SEC_ALLOC
;
2334 if (hdr
->p_flags
& PF_X
)
2335 newsect
->flags
|= SEC_CODE
;
2337 if (!(hdr
->p_flags
& PF_W
))
2338 newsect
->flags
|= SEC_READONLY
;
2345 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2347 const struct elf_backend_data
*bed
;
2349 switch (hdr
->p_type
)
2352 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2355 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2358 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2361 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2364 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2366 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2371 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2374 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2376 case PT_GNU_EH_FRAME
:
2377 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2381 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2384 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2387 /* Check for any processor-specific program segment types. */
2388 bed
= get_elf_backend_data (abfd
);
2389 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2393 /* Initialize REL_HDR, the section-header for new section, containing
2394 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2395 relocations; otherwise, we use REL relocations. */
2398 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2399 Elf_Internal_Shdr
*rel_hdr
,
2401 bfd_boolean use_rela_p
)
2404 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2405 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2407 name
= bfd_alloc (abfd
, amt
);
2410 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2412 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2414 if (rel_hdr
->sh_name
== (unsigned int) -1)
2416 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2417 rel_hdr
->sh_entsize
= (use_rela_p
2418 ? bed
->s
->sizeof_rela
2419 : bed
->s
->sizeof_rel
);
2420 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2421 rel_hdr
->sh_flags
= 0;
2422 rel_hdr
->sh_addr
= 0;
2423 rel_hdr
->sh_size
= 0;
2424 rel_hdr
->sh_offset
= 0;
2429 /* Set up an ELF internal section header for a section. */
2432 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2434 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2435 bfd_boolean
*failedptr
= failedptrarg
;
2436 Elf_Internal_Shdr
*this_hdr
;
2440 /* We already failed; just get out of the bfd_map_over_sections
2445 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2447 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2448 asect
->name
, FALSE
);
2449 if (this_hdr
->sh_name
== (unsigned int) -1)
2455 this_hdr
->sh_flags
= 0;
2457 if ((asect
->flags
& SEC_ALLOC
) != 0
2458 || asect
->user_set_vma
)
2459 this_hdr
->sh_addr
= asect
->vma
;
2461 this_hdr
->sh_addr
= 0;
2463 this_hdr
->sh_offset
= 0;
2464 this_hdr
->sh_size
= asect
->size
;
2465 this_hdr
->sh_link
= 0;
2466 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2467 /* The sh_entsize and sh_info fields may have been set already by
2468 copy_private_section_data. */
2470 this_hdr
->bfd_section
= asect
;
2471 this_hdr
->contents
= NULL
;
2473 /* If the section type is unspecified, we set it based on
2475 if (this_hdr
->sh_type
== SHT_NULL
)
2477 if ((asect
->flags
& SEC_GROUP
) != 0)
2479 /* We also need to mark SHF_GROUP here for relocatable
2481 struct bfd_link_order
*l
;
2484 for (l
= asect
->link_order_head
; l
!= NULL
; l
= l
->next
)
2485 if (l
->type
== bfd_indirect_link_order
2486 && (elt
= elf_next_in_group (l
->u
.indirect
.section
)) != NULL
)
2489 /* The name is not important. Anything will do. */
2490 elf_group_name (elt
->output_section
) = "G";
2491 elf_section_flags (elt
->output_section
) |= SHF_GROUP
;
2493 elt
= elf_next_in_group (elt
);
2494 /* During a relocatable link, the lists are
2497 while (elt
!= elf_next_in_group (l
->u
.indirect
.section
));
2499 this_hdr
->sh_type
= SHT_GROUP
;
2501 else if ((asect
->flags
& SEC_ALLOC
) != 0
2502 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2503 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2504 this_hdr
->sh_type
= SHT_NOBITS
;
2506 this_hdr
->sh_type
= SHT_PROGBITS
;
2509 switch (this_hdr
->sh_type
)
2515 case SHT_INIT_ARRAY
:
2516 case SHT_FINI_ARRAY
:
2517 case SHT_PREINIT_ARRAY
:
2524 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2528 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2532 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2536 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2537 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2541 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2542 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2545 case SHT_GNU_versym
:
2546 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2549 case SHT_GNU_verdef
:
2550 this_hdr
->sh_entsize
= 0;
2551 /* objcopy or strip will copy over sh_info, but may not set
2552 cverdefs. The linker will set cverdefs, but sh_info will be
2554 if (this_hdr
->sh_info
== 0)
2555 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2557 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2558 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2561 case SHT_GNU_verneed
:
2562 this_hdr
->sh_entsize
= 0;
2563 /* objcopy or strip will copy over sh_info, but may not set
2564 cverrefs. The linker will set cverrefs, but sh_info will be
2566 if (this_hdr
->sh_info
== 0)
2567 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2569 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2570 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2574 this_hdr
->sh_entsize
= 4;
2578 if ((asect
->flags
& SEC_ALLOC
) != 0)
2579 this_hdr
->sh_flags
|= SHF_ALLOC
;
2580 if ((asect
->flags
& SEC_READONLY
) == 0)
2581 this_hdr
->sh_flags
|= SHF_WRITE
;
2582 if ((asect
->flags
& SEC_CODE
) != 0)
2583 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2584 if ((asect
->flags
& SEC_MERGE
) != 0)
2586 this_hdr
->sh_flags
|= SHF_MERGE
;
2587 this_hdr
->sh_entsize
= asect
->entsize
;
2588 if ((asect
->flags
& SEC_STRINGS
) != 0)
2589 this_hdr
->sh_flags
|= SHF_STRINGS
;
2591 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2592 this_hdr
->sh_flags
|= SHF_GROUP
;
2593 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2595 this_hdr
->sh_flags
|= SHF_TLS
;
2596 if (asect
->size
== 0 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2598 struct bfd_link_order
*o
;
2600 this_hdr
->sh_size
= 0;
2601 for (o
= asect
->link_order_head
; o
!= NULL
; o
= o
->next
)
2602 if (this_hdr
->sh_size
< o
->offset
+ o
->size
)
2603 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2604 if (this_hdr
->sh_size
)
2605 this_hdr
->sh_type
= SHT_NOBITS
;
2609 /* Check for processor-specific section types. */
2610 if (bed
->elf_backend_fake_sections
2611 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2614 /* If the section has relocs, set up a section header for the
2615 SHT_REL[A] section. If two relocation sections are required for
2616 this section, it is up to the processor-specific back-end to
2617 create the other. */
2618 if ((asect
->flags
& SEC_RELOC
) != 0
2619 && !_bfd_elf_init_reloc_shdr (abfd
,
2620 &elf_section_data (asect
)->rel_hdr
,
2626 /* Fill in the contents of a SHT_GROUP section. */
2629 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2631 bfd_boolean
*failedptr
= failedptrarg
;
2632 unsigned long symindx
;
2633 asection
*elt
, *first
;
2635 struct bfd_link_order
*l
;
2638 if (elf_section_data (sec
)->this_hdr
.sh_type
!= SHT_GROUP
2643 if (elf_group_id (sec
) != NULL
)
2644 symindx
= elf_group_id (sec
)->udata
.i
;
2648 /* If called from the assembler, swap_out_syms will have set up
2649 elf_section_syms; If called for "ld -r", use target_index. */
2650 if (elf_section_syms (abfd
) != NULL
)
2651 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2653 symindx
= sec
->target_index
;
2655 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2657 /* The contents won't be allocated for "ld -r" or objcopy. */
2659 if (sec
->contents
== NULL
)
2662 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2664 /* Arrange for the section to be written out. */
2665 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2666 if (sec
->contents
== NULL
)
2673 loc
= sec
->contents
+ sec
->size
;
2675 /* Get the pointer to the first section in the group that gas
2676 squirreled away here. objcopy arranges for this to be set to the
2677 start of the input section group. */
2678 first
= elt
= elf_next_in_group (sec
);
2680 /* First element is a flag word. Rest of section is elf section
2681 indices for all the sections of the group. Write them backwards
2682 just to keep the group in the same order as given in .section
2683 directives, not that it matters. */
2692 s
= s
->output_section
;
2695 idx
= elf_section_data (s
)->this_idx
;
2696 H_PUT_32 (abfd
, idx
, loc
);
2697 elt
= elf_next_in_group (elt
);
2702 /* If this is a relocatable link, then the above did nothing because
2703 SEC is the output section. Look through the input sections
2705 for (l
= sec
->link_order_head
; l
!= NULL
; l
= l
->next
)
2706 if (l
->type
== bfd_indirect_link_order
2707 && (elt
= elf_next_in_group (l
->u
.indirect
.section
)) != NULL
)
2712 elf_section_data (elt
->output_section
)->this_idx
, loc
);
2713 elt
= elf_next_in_group (elt
);
2714 /* During a relocatable link, the lists are circular. */
2716 while (elt
!= elf_next_in_group (l
->u
.indirect
.section
));
2718 if ((loc
-= 4) != sec
->contents
)
2721 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2724 /* Assign all ELF section numbers. The dummy first section is handled here
2725 too. The link/info pointers for the standard section types are filled
2726 in here too, while we're at it. */
2729 assign_section_numbers (bfd
*abfd
)
2731 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2733 unsigned int section_number
, secn
;
2734 Elf_Internal_Shdr
**i_shdrp
;
2736 struct bfd_elf_section_data
*d
;
2740 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2742 /* Put SHT_GROUP sections first. */
2743 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2745 d
= elf_section_data (sec
);
2747 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2749 if (section_number
== SHN_LORESERVE
)
2750 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2751 d
->this_idx
= section_number
++;
2755 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2757 d
= elf_section_data (sec
);
2759 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2761 if (section_number
== SHN_LORESERVE
)
2762 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2763 d
->this_idx
= section_number
++;
2765 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2766 if ((sec
->flags
& SEC_RELOC
) == 0)
2770 if (section_number
== SHN_LORESERVE
)
2771 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2772 d
->rel_idx
= section_number
++;
2773 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2778 if (section_number
== SHN_LORESERVE
)
2779 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2780 d
->rel_idx2
= section_number
++;
2781 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2787 if (section_number
== SHN_LORESERVE
)
2788 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2789 t
->shstrtab_section
= section_number
++;
2790 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2791 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2793 if (bfd_get_symcount (abfd
) > 0)
2795 if (section_number
== SHN_LORESERVE
)
2796 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2797 t
->symtab_section
= section_number
++;
2798 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2799 if (section_number
> SHN_LORESERVE
- 2)
2801 if (section_number
== SHN_LORESERVE
)
2802 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2803 t
->symtab_shndx_section
= section_number
++;
2804 t
->symtab_shndx_hdr
.sh_name
2805 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2806 ".symtab_shndx", FALSE
);
2807 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2810 if (section_number
== SHN_LORESERVE
)
2811 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2812 t
->strtab_section
= section_number
++;
2813 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2816 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2817 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2819 elf_numsections (abfd
) = section_number
;
2820 elf_elfheader (abfd
)->e_shnum
= section_number
;
2821 if (section_number
> SHN_LORESERVE
)
2822 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2824 /* Set up the list of section header pointers, in agreement with the
2826 amt
= section_number
* sizeof (Elf_Internal_Shdr
*);
2827 i_shdrp
= bfd_zalloc (abfd
, amt
);
2828 if (i_shdrp
== NULL
)
2831 amt
= sizeof (Elf_Internal_Shdr
);
2832 i_shdrp
[0] = bfd_zalloc (abfd
, amt
);
2833 if (i_shdrp
[0] == NULL
)
2835 bfd_release (abfd
, i_shdrp
);
2839 elf_elfsections (abfd
) = i_shdrp
;
2841 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2842 if (bfd_get_symcount (abfd
) > 0)
2844 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2845 if (elf_numsections (abfd
) > SHN_LORESERVE
)
2847 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2848 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2850 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2851 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2854 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2856 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2860 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2861 if (d
->rel_idx
!= 0)
2862 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2863 if (d
->rel_idx2
!= 0)
2864 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2866 /* Fill in the sh_link and sh_info fields while we're at it. */
2868 /* sh_link of a reloc section is the section index of the symbol
2869 table. sh_info is the section index of the section to which
2870 the relocation entries apply. */
2871 if (d
->rel_idx
!= 0)
2873 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2874 d
->rel_hdr
.sh_info
= d
->this_idx
;
2876 if (d
->rel_idx2
!= 0)
2878 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2879 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2882 /* We need to set up sh_link for SHF_LINK_ORDER. */
2883 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
2885 s
= elf_linked_to_section (sec
);
2887 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2890 struct bfd_link_order
*p
;
2892 /* Find out what the corresponding section in output
2894 for (p
= sec
->link_order_head
; p
!= NULL
; p
= p
->next
)
2896 s
= p
->u
.indirect
.section
;
2897 if (p
->type
== bfd_indirect_link_order
2898 && (bfd_get_flavour (s
->owner
)
2899 == bfd_target_elf_flavour
))
2901 Elf_Internal_Shdr
** const elf_shdrp
2902 = elf_elfsections (s
->owner
);
2904 = _bfd_elf_section_from_bfd_section (s
->owner
, s
);
2905 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
2907 The Intel C compiler generates SHT_IA_64_UNWIND with
2908 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2909 sh_info fields. Hence we could get the situation
2910 where elfsec is 0. */
2913 const struct elf_backend_data
*bed
2914 = get_elf_backend_data (abfd
);
2915 if (bed
->link_order_error_handler
)
2916 bed
->link_order_error_handler
2917 (_("%B: warning: sh_link not set for section `%A'"),
2922 s
= elf_shdrp
[elfsec
]->bfd_section
;
2923 if (elf_discarded_section (s
))
2926 (*_bfd_error_handler
)
2927 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2928 abfd
, d
->this_hdr
.bfd_section
,
2930 /* Point to the kept section if it has
2931 the same size as the discarded
2933 kept
= _bfd_elf_check_kept_section (s
);
2936 bfd_set_error (bfd_error_bad_value
);
2940 s
= s
->output_section
;
2941 BFD_ASSERT (s
!= NULL
);
2942 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2950 switch (d
->this_hdr
.sh_type
)
2954 /* A reloc section which we are treating as a normal BFD
2955 section. sh_link is the section index of the symbol
2956 table. sh_info is the section index of the section to
2957 which the relocation entries apply. We assume that an
2958 allocated reloc section uses the dynamic symbol table.
2959 FIXME: How can we be sure? */
2960 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2962 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2964 /* We look up the section the relocs apply to by name. */
2966 if (d
->this_hdr
.sh_type
== SHT_REL
)
2970 s
= bfd_get_section_by_name (abfd
, name
);
2972 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
2976 /* We assume that a section named .stab*str is a stabs
2977 string section. We look for a section with the same name
2978 but without the trailing ``str'', and set its sh_link
2979 field to point to this section. */
2980 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
2981 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
2986 len
= strlen (sec
->name
);
2987 alc
= bfd_malloc (len
- 2);
2990 memcpy (alc
, sec
->name
, len
- 3);
2991 alc
[len
- 3] = '\0';
2992 s
= bfd_get_section_by_name (abfd
, alc
);
2996 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
2998 /* This is a .stab section. */
2999 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3000 elf_section_data (s
)->this_hdr
.sh_entsize
3001 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3008 case SHT_GNU_verneed
:
3009 case SHT_GNU_verdef
:
3010 /* sh_link is the section header index of the string table
3011 used for the dynamic entries, or the symbol table, or the
3013 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3015 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3018 case SHT_GNU_LIBLIST
:
3019 /* sh_link is the section header index of the prelink library
3021 used for the dynamic entries, or the symbol table, or the
3023 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3024 ? ".dynstr" : ".gnu.libstr");
3026 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3030 case SHT_GNU_versym
:
3031 /* sh_link is the section header index of the symbol table
3032 this hash table or version table is for. */
3033 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3035 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3039 d
->this_hdr
.sh_link
= t
->symtab_section
;
3043 for (secn
= 1; secn
< section_number
; ++secn
)
3044 if (i_shdrp
[secn
] == NULL
)
3045 i_shdrp
[secn
] = i_shdrp
[0];
3047 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3048 i_shdrp
[secn
]->sh_name
);
3052 /* Map symbol from it's internal number to the external number, moving
3053 all local symbols to be at the head of the list. */
3056 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3058 /* If the backend has a special mapping, use it. */
3059 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3060 if (bed
->elf_backend_sym_is_global
)
3061 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3063 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3064 || bfd_is_und_section (bfd_get_section (sym
))
3065 || bfd_is_com_section (bfd_get_section (sym
)));
3069 elf_map_symbols (bfd
*abfd
)
3071 unsigned int symcount
= bfd_get_symcount (abfd
);
3072 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3073 asymbol
**sect_syms
;
3074 unsigned int num_locals
= 0;
3075 unsigned int num_globals
= 0;
3076 unsigned int num_locals2
= 0;
3077 unsigned int num_globals2
= 0;
3085 fprintf (stderr
, "elf_map_symbols\n");
3089 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3091 if (max_index
< asect
->index
)
3092 max_index
= asect
->index
;
3096 amt
= max_index
* sizeof (asymbol
*);
3097 sect_syms
= bfd_zalloc (abfd
, amt
);
3098 if (sect_syms
== NULL
)
3100 elf_section_syms (abfd
) = sect_syms
;
3101 elf_num_section_syms (abfd
) = max_index
;
3103 /* Init sect_syms entries for any section symbols we have already
3104 decided to output. */
3105 for (idx
= 0; idx
< symcount
; idx
++)
3107 asymbol
*sym
= syms
[idx
];
3109 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3116 if (sec
->owner
!= NULL
)
3118 if (sec
->owner
!= abfd
)
3120 if (sec
->output_offset
!= 0)
3123 sec
= sec
->output_section
;
3125 /* Empty sections in the input files may have had a
3126 section symbol created for them. (See the comment
3127 near the end of _bfd_generic_link_output_symbols in
3128 linker.c). If the linker script discards such
3129 sections then we will reach this point. Since we know
3130 that we cannot avoid this case, we detect it and skip
3131 the abort and the assignment to the sect_syms array.
3132 To reproduce this particular case try running the
3133 linker testsuite test ld-scripts/weak.exp for an ELF
3134 port that uses the generic linker. */
3135 if (sec
->owner
== NULL
)
3138 BFD_ASSERT (sec
->owner
== abfd
);
3140 sect_syms
[sec
->index
] = syms
[idx
];
3145 /* Classify all of the symbols. */
3146 for (idx
= 0; idx
< symcount
; idx
++)
3148 if (!sym_is_global (abfd
, syms
[idx
]))
3154 /* We will be adding a section symbol for each BFD section. Most normal
3155 sections will already have a section symbol in outsymbols, but
3156 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3157 at least in that case. */
3158 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3160 if (sect_syms
[asect
->index
] == NULL
)
3162 if (!sym_is_global (abfd
, asect
->symbol
))
3169 /* Now sort the symbols so the local symbols are first. */
3170 amt
= (num_locals
+ num_globals
) * sizeof (asymbol
*);
3171 new_syms
= bfd_alloc (abfd
, amt
);
3173 if (new_syms
== NULL
)
3176 for (idx
= 0; idx
< symcount
; idx
++)
3178 asymbol
*sym
= syms
[idx
];
3181 if (!sym_is_global (abfd
, sym
))
3184 i
= num_locals
+ num_globals2
++;
3186 sym
->udata
.i
= i
+ 1;
3188 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3190 if (sect_syms
[asect
->index
] == NULL
)
3192 asymbol
*sym
= asect
->symbol
;
3195 sect_syms
[asect
->index
] = sym
;
3196 if (!sym_is_global (abfd
, sym
))
3199 i
= num_locals
+ num_globals2
++;
3201 sym
->udata
.i
= i
+ 1;
3205 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3207 elf_num_locals (abfd
) = num_locals
;
3208 elf_num_globals (abfd
) = num_globals
;
3212 /* Align to the maximum file alignment that could be required for any
3213 ELF data structure. */
3215 static inline file_ptr
3216 align_file_position (file_ptr off
, int align
)
3218 return (off
+ align
- 1) & ~(align
- 1);
3221 /* Assign a file position to a section, optionally aligning to the
3222 required section alignment. */
3225 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3233 al
= i_shdrp
->sh_addralign
;
3235 offset
= BFD_ALIGN (offset
, al
);
3237 i_shdrp
->sh_offset
= offset
;
3238 if (i_shdrp
->bfd_section
!= NULL
)
3239 i_shdrp
->bfd_section
->filepos
= offset
;
3240 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3241 offset
+= i_shdrp
->sh_size
;
3245 /* Compute the file positions we are going to put the sections at, and
3246 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3247 is not NULL, this is being called by the ELF backend linker. */
3250 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3251 struct bfd_link_info
*link_info
)
3253 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3255 struct bfd_strtab_hash
*strtab
= NULL
;
3256 Elf_Internal_Shdr
*shstrtab_hdr
;
3258 if (abfd
->output_has_begun
)
3261 /* Do any elf backend specific processing first. */
3262 if (bed
->elf_backend_begin_write_processing
)
3263 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3265 if (! prep_headers (abfd
))
3268 /* Post process the headers if necessary. */
3269 if (bed
->elf_backend_post_process_headers
)
3270 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3273 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3277 if (!assign_section_numbers (abfd
))
3280 /* The backend linker builds symbol table information itself. */
3281 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3283 /* Non-zero if doing a relocatable link. */
3284 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3286 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3290 if (link_info
== NULL
)
3292 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3297 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3298 /* sh_name was set in prep_headers. */
3299 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3300 shstrtab_hdr
->sh_flags
= 0;
3301 shstrtab_hdr
->sh_addr
= 0;
3302 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3303 shstrtab_hdr
->sh_entsize
= 0;
3304 shstrtab_hdr
->sh_link
= 0;
3305 shstrtab_hdr
->sh_info
= 0;
3306 /* sh_offset is set in assign_file_positions_except_relocs. */
3307 shstrtab_hdr
->sh_addralign
= 1;
3309 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3312 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3315 Elf_Internal_Shdr
*hdr
;
3317 off
= elf_tdata (abfd
)->next_file_pos
;
3319 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3320 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3322 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3323 if (hdr
->sh_size
!= 0)
3324 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3326 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3327 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3329 elf_tdata (abfd
)->next_file_pos
= off
;
3331 /* Now that we know where the .strtab section goes, write it
3333 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3334 || ! _bfd_stringtab_emit (abfd
, strtab
))
3336 _bfd_stringtab_free (strtab
);
3339 abfd
->output_has_begun
= TRUE
;
3344 /* Create a mapping from a set of sections to a program segment. */
3346 static struct elf_segment_map
*
3347 make_mapping (bfd
*abfd
,
3348 asection
**sections
,
3353 struct elf_segment_map
*m
;
3358 amt
= sizeof (struct elf_segment_map
);
3359 amt
+= (to
- from
- 1) * sizeof (asection
*);
3360 m
= bfd_zalloc (abfd
, amt
);
3364 m
->p_type
= PT_LOAD
;
3365 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3366 m
->sections
[i
- from
] = *hdrpp
;
3367 m
->count
= to
- from
;
3369 if (from
== 0 && phdr
)
3371 /* Include the headers in the first PT_LOAD segment. */
3372 m
->includes_filehdr
= 1;
3373 m
->includes_phdrs
= 1;
3379 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3382 struct elf_segment_map
*
3383 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3385 struct elf_segment_map
*m
;
3387 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3391 m
->p_type
= PT_DYNAMIC
;
3393 m
->sections
[0] = dynsec
;
3398 /* Set up a mapping from BFD sections to program segments. */
3401 map_sections_to_segments (bfd
*abfd
)
3403 asection
**sections
= NULL
;
3407 struct elf_segment_map
*mfirst
;
3408 struct elf_segment_map
**pm
;
3409 struct elf_segment_map
*m
;
3412 unsigned int phdr_index
;
3413 bfd_vma maxpagesize
;
3415 bfd_boolean phdr_in_segment
= TRUE
;
3416 bfd_boolean writable
;
3418 asection
*first_tls
= NULL
;
3419 asection
*dynsec
, *eh_frame_hdr
;
3422 if (elf_tdata (abfd
)->segment_map
!= NULL
)
3425 if (bfd_count_sections (abfd
) == 0)
3428 /* Select the allocated sections, and sort them. */
3430 amt
= bfd_count_sections (abfd
) * sizeof (asection
*);
3431 sections
= bfd_malloc (amt
);
3432 if (sections
== NULL
)
3436 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3438 if ((s
->flags
& SEC_ALLOC
) != 0)
3444 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3447 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3449 /* Build the mapping. */
3454 /* If we have a .interp section, then create a PT_PHDR segment for
3455 the program headers and a PT_INTERP segment for the .interp
3457 s
= bfd_get_section_by_name (abfd
, ".interp");
3458 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3460 amt
= sizeof (struct elf_segment_map
);
3461 m
= bfd_zalloc (abfd
, amt
);
3465 m
->p_type
= PT_PHDR
;
3466 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3467 m
->p_flags
= PF_R
| PF_X
;
3468 m
->p_flags_valid
= 1;
3469 m
->includes_phdrs
= 1;
3474 amt
= sizeof (struct elf_segment_map
);
3475 m
= bfd_zalloc (abfd
, amt
);
3479 m
->p_type
= PT_INTERP
;
3487 /* Look through the sections. We put sections in the same program
3488 segment when the start of the second section can be placed within
3489 a few bytes of the end of the first section. */
3493 maxpagesize
= get_elf_backend_data (abfd
)->maxpagesize
;
3495 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3497 && (dynsec
->flags
& SEC_LOAD
) == 0)
3500 /* Deal with -Ttext or something similar such that the first section
3501 is not adjacent to the program headers. This is an
3502 approximation, since at this point we don't know exactly how many
3503 program headers we will need. */
3506 bfd_size_type phdr_size
;
3508 phdr_size
= elf_tdata (abfd
)->program_header_size
;
3510 phdr_size
= get_elf_backend_data (abfd
)->s
->sizeof_phdr
;
3511 if ((abfd
->flags
& D_PAGED
) == 0
3512 || sections
[0]->lma
< phdr_size
3513 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3514 phdr_in_segment
= FALSE
;
3517 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3520 bfd_boolean new_segment
;
3524 /* See if this section and the last one will fit in the same
3527 if (last_hdr
== NULL
)
3529 /* If we don't have a segment yet, then we don't need a new
3530 one (we build the last one after this loop). */
3531 new_segment
= FALSE
;
3533 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3535 /* If this section has a different relation between the
3536 virtual address and the load address, then we need a new
3540 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3541 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3543 /* If putting this section in this segment would force us to
3544 skip a page in the segment, then we need a new segment. */
3547 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3548 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3550 /* We don't want to put a loadable section after a
3551 nonloadable section in the same segment.
3552 Consider .tbss sections as loadable for this purpose. */
3555 else if ((abfd
->flags
& D_PAGED
) == 0)
3557 /* If the file is not demand paged, which means that we
3558 don't require the sections to be correctly aligned in the
3559 file, then there is no other reason for a new segment. */
3560 new_segment
= FALSE
;
3563 && (hdr
->flags
& SEC_READONLY
) == 0
3564 && (((last_hdr
->lma
+ last_size
- 1)
3565 & ~(maxpagesize
- 1))
3566 != (hdr
->lma
& ~(maxpagesize
- 1))))
3568 /* We don't want to put a writable section in a read only
3569 segment, unless they are on the same page in memory
3570 anyhow. We already know that the last section does not
3571 bring us past the current section on the page, so the
3572 only case in which the new section is not on the same
3573 page as the previous section is when the previous section
3574 ends precisely on a page boundary. */
3579 /* Otherwise, we can use the same segment. */
3580 new_segment
= FALSE
;
3585 if ((hdr
->flags
& SEC_READONLY
) == 0)
3588 /* .tbss sections effectively have zero size. */
3589 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3590 last_size
= hdr
->size
;
3596 /* We need a new program segment. We must create a new program
3597 header holding all the sections from phdr_index until hdr. */
3599 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3606 if ((hdr
->flags
& SEC_READONLY
) == 0)
3612 /* .tbss sections effectively have zero size. */
3613 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3614 last_size
= hdr
->size
;
3618 phdr_in_segment
= FALSE
;
3621 /* Create a final PT_LOAD program segment. */
3622 if (last_hdr
!= NULL
)
3624 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3632 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3635 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3642 /* For each loadable .note section, add a PT_NOTE segment. We don't
3643 use bfd_get_section_by_name, because if we link together
3644 nonloadable .note sections and loadable .note sections, we will
3645 generate two .note sections in the output file. FIXME: Using
3646 names for section types is bogus anyhow. */
3647 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3649 if ((s
->flags
& SEC_LOAD
) != 0
3650 && strncmp (s
->name
, ".note", 5) == 0)
3652 amt
= sizeof (struct elf_segment_map
);
3653 m
= bfd_zalloc (abfd
, amt
);
3657 m
->p_type
= PT_NOTE
;
3664 if (s
->flags
& SEC_THREAD_LOCAL
)
3672 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3677 amt
= sizeof (struct elf_segment_map
);
3678 amt
+= (tls_count
- 1) * sizeof (asection
*);
3679 m
= bfd_zalloc (abfd
, amt
);
3684 m
->count
= tls_count
;
3685 /* Mandated PF_R. */
3687 m
->p_flags_valid
= 1;
3688 for (i
= 0; i
< tls_count
; ++i
)
3690 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3691 m
->sections
[i
] = first_tls
;
3692 first_tls
= first_tls
->next
;
3699 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3701 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3702 if (eh_frame_hdr
!= NULL
3703 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3705 amt
= sizeof (struct elf_segment_map
);
3706 m
= bfd_zalloc (abfd
, amt
);
3710 m
->p_type
= PT_GNU_EH_FRAME
;
3712 m
->sections
[0] = eh_frame_hdr
->output_section
;
3718 if (elf_tdata (abfd
)->stack_flags
)
3720 amt
= sizeof (struct elf_segment_map
);
3721 m
= bfd_zalloc (abfd
, amt
);
3725 m
->p_type
= PT_GNU_STACK
;
3726 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3727 m
->p_flags_valid
= 1;
3733 if (elf_tdata (abfd
)->relro
)
3735 amt
= sizeof (struct elf_segment_map
);
3736 m
= bfd_zalloc (abfd
, amt
);
3740 m
->p_type
= PT_GNU_RELRO
;
3742 m
->p_flags_valid
= 1;
3751 elf_tdata (abfd
)->segment_map
= mfirst
;
3755 if (sections
!= NULL
)
3760 /* Sort sections by address. */
3763 elf_sort_sections (const void *arg1
, const void *arg2
)
3765 const asection
*sec1
= *(const asection
**) arg1
;
3766 const asection
*sec2
= *(const asection
**) arg2
;
3767 bfd_size_type size1
, size2
;
3769 /* Sort by LMA first, since this is the address used to
3770 place the section into a segment. */
3771 if (sec1
->lma
< sec2
->lma
)
3773 else if (sec1
->lma
> sec2
->lma
)
3776 /* Then sort by VMA. Normally the LMA and the VMA will be
3777 the same, and this will do nothing. */
3778 if (sec1
->vma
< sec2
->vma
)
3780 else if (sec1
->vma
> sec2
->vma
)
3783 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3785 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3791 /* If the indicies are the same, do not return 0
3792 here, but continue to try the next comparison. */
3793 if (sec1
->target_index
- sec2
->target_index
!= 0)
3794 return sec1
->target_index
- sec2
->target_index
;
3799 else if (TOEND (sec2
))
3804 /* Sort by size, to put zero sized sections
3805 before others at the same address. */
3807 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
3808 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
3815 return sec1
->target_index
- sec2
->target_index
;
3818 /* Ian Lance Taylor writes:
3820 We shouldn't be using % with a negative signed number. That's just
3821 not good. We have to make sure either that the number is not
3822 negative, or that the number has an unsigned type. When the types
3823 are all the same size they wind up as unsigned. When file_ptr is a
3824 larger signed type, the arithmetic winds up as signed long long,
3827 What we're trying to say here is something like ``increase OFF by
3828 the least amount that will cause it to be equal to the VMA modulo
3830 /* In other words, something like:
3832 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3833 off_offset = off % bed->maxpagesize;
3834 if (vma_offset < off_offset)
3835 adjustment = vma_offset + bed->maxpagesize - off_offset;
3837 adjustment = vma_offset - off_offset;
3839 which can can be collapsed into the expression below. */
3842 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
3844 return ((vma
- off
) % maxpagesize
);
3847 /* Assign file positions to the sections based on the mapping from
3848 sections to segments. This function also sets up some fields in
3849 the file header, and writes out the program headers. */
3852 assign_file_positions_for_segments (bfd
*abfd
, struct bfd_link_info
*link_info
)
3854 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3856 struct elf_segment_map
*m
;
3858 Elf_Internal_Phdr
*phdrs
;
3860 bfd_vma filehdr_vaddr
, filehdr_paddr
;
3861 bfd_vma phdrs_vaddr
, phdrs_paddr
;
3862 Elf_Internal_Phdr
*p
;
3865 if (elf_tdata (abfd
)->segment_map
== NULL
)
3867 if (! map_sections_to_segments (abfd
))
3872 /* The placement algorithm assumes that non allocated sections are
3873 not in PT_LOAD segments. We ensure this here by removing such
3874 sections from the segment map. */
3875 for (m
= elf_tdata (abfd
)->segment_map
;
3879 unsigned int new_count
;
3882 if (m
->p_type
!= PT_LOAD
)
3886 for (i
= 0; i
< m
->count
; i
++)
3888 if ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0)
3891 m
->sections
[new_count
] = m
->sections
[i
];
3897 if (new_count
!= m
->count
)
3898 m
->count
= new_count
;
3902 if (bed
->elf_backend_modify_segment_map
)
3904 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
, link_info
))
3909 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3912 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
3913 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
3914 elf_elfheader (abfd
)->e_phnum
= count
;
3918 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
3922 /* If we already counted the number of program segments, make sure
3923 that we allocated enough space. This happens when SIZEOF_HEADERS
3924 is used in a linker script. */
3925 alloc
= elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
;
3926 if (alloc
!= 0 && count
> alloc
)
3928 ((*_bfd_error_handler
)
3929 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
3930 abfd
, alloc
, count
));
3931 bfd_set_error (bfd_error_bad_value
);
3938 amt
= alloc
* sizeof (Elf_Internal_Phdr
);
3939 phdrs
= bfd_alloc (abfd
, amt
);
3943 off
= bed
->s
->sizeof_ehdr
;
3944 off
+= alloc
* bed
->s
->sizeof_phdr
;
3951 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
3958 /* If elf_segment_map is not from map_sections_to_segments, the
3959 sections may not be correctly ordered. NOTE: sorting should
3960 not be done to the PT_NOTE section of a corefile, which may
3961 contain several pseudo-sections artificially created by bfd.
3962 Sorting these pseudo-sections breaks things badly. */
3964 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
3965 && m
->p_type
== PT_NOTE
))
3966 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
3969 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
3970 number of sections with contents contributing to both p_filesz
3971 and p_memsz, followed by a number of sections with no contents
3972 that just contribute to p_memsz. In this loop, OFF tracks next
3973 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
3974 an adjustment we use for segments that have no file contents
3975 but need zero filled memory allocation. */
3977 p
->p_type
= m
->p_type
;
3978 p
->p_flags
= m
->p_flags
;
3980 if (p
->p_type
== PT_LOAD
3983 bfd_size_type align
;
3986 if ((abfd
->flags
& D_PAGED
) != 0)
3987 align
= bed
->maxpagesize
;
3990 unsigned int align_power
= 0;
3991 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
3993 unsigned int secalign
;
3995 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
3996 if (secalign
> align_power
)
3997 align_power
= secalign
;
3999 align
= (bfd_size_type
) 1 << align_power
;
4002 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4005 && !m
->includes_filehdr
4006 && !m
->includes_phdrs
4007 && (ufile_ptr
) off
>= align
)
4009 /* If the first section isn't loadable, the same holds for
4010 any other sections. Since the segment won't need file
4011 space, we can make p_offset overlap some prior segment.
4012 However, .tbss is special. If a segment starts with
4013 .tbss, we need to look at the next section to decide
4014 whether the segment has any loadable sections. */
4016 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0)
4018 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4022 voff
= adjust
- align
;
4028 /* Make sure the .dynamic section is the first section in the
4029 PT_DYNAMIC segment. */
4030 else if (p
->p_type
== PT_DYNAMIC
4032 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4035 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4037 bfd_set_error (bfd_error_bad_value
);
4044 p
->p_vaddr
= m
->sections
[0]->vma
;
4046 if (m
->p_paddr_valid
)
4047 p
->p_paddr
= m
->p_paddr
;
4048 else if (m
->count
== 0)
4051 p
->p_paddr
= m
->sections
[0]->lma
;
4053 if (p
->p_type
== PT_LOAD
4054 && (abfd
->flags
& D_PAGED
) != 0)
4055 p
->p_align
= bed
->maxpagesize
;
4056 else if (m
->count
== 0)
4057 p
->p_align
= 1 << bed
->s
->log_file_align
;
4065 if (m
->includes_filehdr
)
4067 if (! m
->p_flags_valid
)
4070 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4071 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4074 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4076 if (p
->p_vaddr
< (bfd_vma
) off
)
4078 (*_bfd_error_handler
)
4079 (_("%B: Not enough room for program headers, try linking with -N"),
4081 bfd_set_error (bfd_error_bad_value
);
4086 if (! m
->p_paddr_valid
)
4089 if (p
->p_type
== PT_LOAD
)
4091 filehdr_vaddr
= p
->p_vaddr
;
4092 filehdr_paddr
= p
->p_paddr
;
4096 if (m
->includes_phdrs
)
4098 if (! m
->p_flags_valid
)
4101 if (m
->includes_filehdr
)
4103 if (p
->p_type
== PT_LOAD
)
4105 phdrs_vaddr
= p
->p_vaddr
+ bed
->s
->sizeof_ehdr
;
4106 phdrs_paddr
= p
->p_paddr
+ bed
->s
->sizeof_ehdr
;
4111 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4115 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4116 p
->p_vaddr
-= off
- p
->p_offset
;
4117 if (! m
->p_paddr_valid
)
4118 p
->p_paddr
-= off
- p
->p_offset
;
4121 if (p
->p_type
== PT_LOAD
)
4123 phdrs_vaddr
= p
->p_vaddr
;
4124 phdrs_paddr
= p
->p_paddr
;
4127 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4130 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4131 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4134 if (p
->p_type
== PT_LOAD
4135 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4137 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4138 p
->p_offset
= off
+ voff
;
4143 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4144 p
->p_filesz
+= adjust
;
4145 p
->p_memsz
+= adjust
;
4149 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4153 bfd_size_type align
;
4157 align
= 1 << bfd_get_section_alignment (abfd
, sec
);
4159 if (p
->p_type
== PT_LOAD
4160 || p
->p_type
== PT_TLS
)
4162 bfd_signed_vma adjust
;
4164 if ((flags
& SEC_LOAD
) != 0)
4166 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4169 (*_bfd_error_handler
)
4170 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4171 abfd
, sec
, (unsigned long) sec
->lma
);
4175 p
->p_filesz
+= adjust
;
4176 p
->p_memsz
+= adjust
;
4178 /* .tbss is special. It doesn't contribute to p_memsz of
4180 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4181 || p
->p_type
== PT_TLS
)
4183 /* The section VMA must equal the file position
4184 modulo the page size. */
4185 bfd_size_type page
= align
;
4186 if ((abfd
->flags
& D_PAGED
) != 0)
4187 page
= bed
->maxpagesize
;
4188 adjust
= vma_page_aligned_bias (sec
->vma
,
4189 p
->p_vaddr
+ p
->p_memsz
,
4191 p
->p_memsz
+= adjust
;
4195 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4197 /* The section at i == 0 is the one that actually contains
4203 p
->p_filesz
= sec
->size
;
4209 /* The rest are fake sections that shouldn't be written. */
4218 if (p
->p_type
== PT_LOAD
)
4221 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4222 1997, and the exact reason for it isn't clear. One
4223 plausible explanation is that it is to work around
4224 a problem we have with linker scripts using data
4225 statements in NOLOAD sections. I don't think it
4226 makes a great deal of sense to have such a section
4227 assigned to a PT_LOAD segment, but apparently
4228 people do this. The data statement results in a
4229 bfd_data_link_order being built, and these need
4230 section contents to write into. Eventually, we get
4231 to _bfd_elf_write_object_contents which writes any
4232 section with contents to the output. Make room
4233 here for the write, so that following segments are
4235 if ((flags
& SEC_LOAD
) != 0
4236 || (flags
& SEC_HAS_CONTENTS
) != 0)
4240 if ((flags
& SEC_LOAD
) != 0)
4242 p
->p_filesz
+= sec
->size
;
4243 p
->p_memsz
+= sec
->size
;
4245 /* PR ld/594: Sections in note segments which are not loaded
4246 contribute to the file size but not the in-memory size. */
4247 else if (p
->p_type
== PT_NOTE
4248 && (flags
& SEC_HAS_CONTENTS
) != 0)
4249 p
->p_filesz
+= sec
->size
;
4251 /* .tbss is special. It doesn't contribute to p_memsz of
4253 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4254 || p
->p_type
== PT_TLS
)
4255 p
->p_memsz
+= sec
->size
;
4257 if (p
->p_type
== PT_TLS
4259 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4261 struct bfd_link_order
*o
;
4262 bfd_vma tbss_size
= 0;
4264 for (o
= sec
->link_order_head
; o
!= NULL
; o
= o
->next
)
4265 if (tbss_size
< o
->offset
+ o
->size
)
4266 tbss_size
= o
->offset
+ o
->size
;
4268 p
->p_memsz
+= tbss_size
;
4271 if (align
> p
->p_align
4272 && (p
->p_type
!= PT_LOAD
|| (abfd
->flags
& D_PAGED
) == 0))
4276 if (! m
->p_flags_valid
)
4279 if ((flags
& SEC_CODE
) != 0)
4281 if ((flags
& SEC_READONLY
) == 0)
4287 /* Now that we have set the section file positions, we can set up
4288 the file positions for the non PT_LOAD segments. */
4289 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4293 if (p
->p_type
!= PT_LOAD
&& m
->count
> 0)
4295 BFD_ASSERT (! m
->includes_filehdr
&& ! m
->includes_phdrs
);
4296 /* If the section has not yet been assigned a file position,
4297 do so now. The ARM BPABI requires that .dynamic section
4298 not be marked SEC_ALLOC because it is not part of any
4299 PT_LOAD segment, so it will not be processed above. */
4300 if (p
->p_type
== PT_DYNAMIC
&& m
->sections
[0]->filepos
== 0)
4303 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4306 while (i_shdrpp
[i
]->bfd_section
!= m
->sections
[0])
4308 off
= (_bfd_elf_assign_file_position_for_section
4309 (i_shdrpp
[i
], off
, TRUE
));
4310 p
->p_filesz
= m
->sections
[0]->size
;
4312 p
->p_offset
= m
->sections
[0]->filepos
;
4316 if (m
->includes_filehdr
)
4318 p
->p_vaddr
= filehdr_vaddr
;
4319 if (! m
->p_paddr_valid
)
4320 p
->p_paddr
= filehdr_paddr
;
4322 else if (m
->includes_phdrs
)
4324 p
->p_vaddr
= phdrs_vaddr
;
4325 if (! m
->p_paddr_valid
)
4326 p
->p_paddr
= phdrs_paddr
;
4328 else if (p
->p_type
== PT_GNU_RELRO
)
4330 Elf_Internal_Phdr
*lp
;
4332 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4334 if (lp
->p_type
== PT_LOAD
4335 && lp
->p_vaddr
<= link_info
->relro_end
4336 && lp
->p_vaddr
>= link_info
->relro_start
4337 && lp
->p_vaddr
+ lp
->p_filesz
4338 >= link_info
->relro_end
)
4342 if (lp
< phdrs
+ count
4343 && link_info
->relro_end
> lp
->p_vaddr
)
4345 p
->p_vaddr
= lp
->p_vaddr
;
4346 p
->p_paddr
= lp
->p_paddr
;
4347 p
->p_offset
= lp
->p_offset
;
4348 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4349 p
->p_memsz
= p
->p_filesz
;
4351 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4355 memset (p
, 0, sizeof *p
);
4356 p
->p_type
= PT_NULL
;
4362 /* Clear out any program headers we allocated but did not use. */
4363 for (; count
< alloc
; count
++, p
++)
4365 memset (p
, 0, sizeof *p
);
4366 p
->p_type
= PT_NULL
;
4369 elf_tdata (abfd
)->phdr
= phdrs
;
4371 elf_tdata (abfd
)->next_file_pos
= off
;
4373 /* Write out the program headers. */
4374 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4375 || bed
->s
->write_out_phdrs (abfd
, phdrs
, alloc
) != 0)
4381 /* Get the size of the program header.
4383 If this is called by the linker before any of the section VMA's are set, it
4384 can't calculate the correct value for a strange memory layout. This only
4385 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4386 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4387 data segment (exclusive of .interp and .dynamic).
4389 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4390 will be two segments. */
4392 static bfd_size_type
4393 get_program_header_size (bfd
*abfd
)
4397 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4399 /* We can't return a different result each time we're called. */
4400 if (elf_tdata (abfd
)->program_header_size
!= 0)
4401 return elf_tdata (abfd
)->program_header_size
;
4403 if (elf_tdata (abfd
)->segment_map
!= NULL
)
4405 struct elf_segment_map
*m
;
4408 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4410 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4411 return elf_tdata (abfd
)->program_header_size
;
4414 /* Assume we will need exactly two PT_LOAD segments: one for text
4415 and one for data. */
4418 s
= bfd_get_section_by_name (abfd
, ".interp");
4419 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4421 /* If we have a loadable interpreter section, we need a
4422 PT_INTERP segment. In this case, assume we also need a
4423 PT_PHDR segment, although that may not be true for all
4428 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4430 /* We need a PT_DYNAMIC segment. */
4434 if (elf_tdata (abfd
)->eh_frame_hdr
)
4436 /* We need a PT_GNU_EH_FRAME segment. */
4440 if (elf_tdata (abfd
)->stack_flags
)
4442 /* We need a PT_GNU_STACK segment. */
4446 if (elf_tdata (abfd
)->relro
)
4448 /* We need a PT_GNU_RELRO segment. */
4452 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4454 if ((s
->flags
& SEC_LOAD
) != 0
4455 && strncmp (s
->name
, ".note", 5) == 0)
4457 /* We need a PT_NOTE segment. */
4462 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4464 if (s
->flags
& SEC_THREAD_LOCAL
)
4466 /* We need a PT_TLS segment. */
4472 /* Let the backend count up any program headers it might need. */
4473 if (bed
->elf_backend_additional_program_headers
)
4477 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
);
4483 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4484 return elf_tdata (abfd
)->program_header_size
;
4487 /* Work out the file positions of all the sections. This is called by
4488 _bfd_elf_compute_section_file_positions. All the section sizes and
4489 VMAs must be known before this is called.
4491 Reloc sections come in two flavours: Those processed specially as
4492 "side-channel" data attached to a section to which they apply, and
4493 those that bfd doesn't process as relocations. The latter sort are
4494 stored in a normal bfd section by bfd_section_from_shdr. We don't
4495 consider the former sort here, unless they form part of the loadable
4496 image. Reloc sections not assigned here will be handled later by
4497 assign_file_positions_for_relocs.
4499 We also don't set the positions of the .symtab and .strtab here. */
4502 assign_file_positions_except_relocs (bfd
*abfd
,
4503 struct bfd_link_info
*link_info
)
4505 struct elf_obj_tdata
* const tdata
= elf_tdata (abfd
);
4506 Elf_Internal_Ehdr
* const i_ehdrp
= elf_elfheader (abfd
);
4507 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4508 unsigned int num_sec
= elf_numsections (abfd
);
4510 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4512 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4513 && bfd_get_format (abfd
) != bfd_core
)
4515 Elf_Internal_Shdr
**hdrpp
;
4518 /* Start after the ELF header. */
4519 off
= i_ehdrp
->e_ehsize
;
4521 /* We are not creating an executable, which means that we are
4522 not creating a program header, and that the actual order of
4523 the sections in the file is unimportant. */
4524 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4526 Elf_Internal_Shdr
*hdr
;
4529 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4530 && hdr
->bfd_section
== NULL
)
4531 || i
== tdata
->symtab_section
4532 || i
== tdata
->symtab_shndx_section
4533 || i
== tdata
->strtab_section
)
4535 hdr
->sh_offset
= -1;
4538 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4540 if (i
== SHN_LORESERVE
- 1)
4542 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4543 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4550 Elf_Internal_Shdr
**hdrpp
;
4552 /* Assign file positions for the loaded sections based on the
4553 assignment of sections to segments. */
4554 if (! assign_file_positions_for_segments (abfd
, link_info
))
4557 /* Assign file positions for the other sections. */
4559 off
= elf_tdata (abfd
)->next_file_pos
;
4560 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4562 Elf_Internal_Shdr
*hdr
;
4565 if (hdr
->bfd_section
!= NULL
4566 && hdr
->bfd_section
->filepos
!= 0)
4567 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4568 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4570 ((*_bfd_error_handler
)
4571 (_("%B: warning: allocated section `%s' not in segment"),
4573 (hdr
->bfd_section
== NULL
4575 : hdr
->bfd_section
->name
)));
4576 if ((abfd
->flags
& D_PAGED
) != 0)
4577 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4580 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4582 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4585 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4586 && hdr
->bfd_section
== NULL
)
4587 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4588 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4589 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4590 hdr
->sh_offset
= -1;
4592 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4594 if (i
== SHN_LORESERVE
- 1)
4596 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4597 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4602 /* Place the section headers. */
4603 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4604 i_ehdrp
->e_shoff
= off
;
4605 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4607 elf_tdata (abfd
)->next_file_pos
= off
;
4613 prep_headers (bfd
*abfd
)
4615 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4616 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4617 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4618 struct elf_strtab_hash
*shstrtab
;
4619 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4621 i_ehdrp
= elf_elfheader (abfd
);
4622 i_shdrp
= elf_elfsections (abfd
);
4624 shstrtab
= _bfd_elf_strtab_init ();
4625 if (shstrtab
== NULL
)
4628 elf_shstrtab (abfd
) = shstrtab
;
4630 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4631 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4632 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4633 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4635 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4636 i_ehdrp
->e_ident
[EI_DATA
] =
4637 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4638 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4640 if ((abfd
->flags
& DYNAMIC
) != 0)
4641 i_ehdrp
->e_type
= ET_DYN
;
4642 else if ((abfd
->flags
& EXEC_P
) != 0)
4643 i_ehdrp
->e_type
= ET_EXEC
;
4644 else if (bfd_get_format (abfd
) == bfd_core
)
4645 i_ehdrp
->e_type
= ET_CORE
;
4647 i_ehdrp
->e_type
= ET_REL
;
4649 switch (bfd_get_arch (abfd
))
4651 case bfd_arch_unknown
:
4652 i_ehdrp
->e_machine
= EM_NONE
;
4655 /* There used to be a long list of cases here, each one setting
4656 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4657 in the corresponding bfd definition. To avoid duplication,
4658 the switch was removed. Machines that need special handling
4659 can generally do it in elf_backend_final_write_processing(),
4660 unless they need the information earlier than the final write.
4661 Such need can generally be supplied by replacing the tests for
4662 e_machine with the conditions used to determine it. */
4664 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4667 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4668 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4670 /* No program header, for now. */
4671 i_ehdrp
->e_phoff
= 0;
4672 i_ehdrp
->e_phentsize
= 0;
4673 i_ehdrp
->e_phnum
= 0;
4675 /* Each bfd section is section header entry. */
4676 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4677 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4679 /* If we're building an executable, we'll need a program header table. */
4680 if (abfd
->flags
& EXEC_P
)
4681 /* It all happens later. */
4685 i_ehdrp
->e_phentsize
= 0;
4687 i_ehdrp
->e_phoff
= 0;
4690 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4691 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4692 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4693 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4694 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4695 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4696 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4697 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4698 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4704 /* Assign file positions for all the reloc sections which are not part
4705 of the loadable file image. */
4708 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4711 unsigned int i
, num_sec
;
4712 Elf_Internal_Shdr
**shdrpp
;
4714 off
= elf_tdata (abfd
)->next_file_pos
;
4716 num_sec
= elf_numsections (abfd
);
4717 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4719 Elf_Internal_Shdr
*shdrp
;
4722 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4723 && shdrp
->sh_offset
== -1)
4724 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4727 elf_tdata (abfd
)->next_file_pos
= off
;
4731 _bfd_elf_write_object_contents (bfd
*abfd
)
4733 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4734 Elf_Internal_Ehdr
*i_ehdrp
;
4735 Elf_Internal_Shdr
**i_shdrp
;
4737 unsigned int count
, num_sec
;
4739 if (! abfd
->output_has_begun
4740 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4743 i_shdrp
= elf_elfsections (abfd
);
4744 i_ehdrp
= elf_elfheader (abfd
);
4747 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4751 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4753 /* After writing the headers, we need to write the sections too... */
4754 num_sec
= elf_numsections (abfd
);
4755 for (count
= 1; count
< num_sec
; count
++)
4757 if (bed
->elf_backend_section_processing
)
4758 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4759 if (i_shdrp
[count
]->contents
)
4761 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4763 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4764 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4767 if (count
== SHN_LORESERVE
- 1)
4768 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4771 /* Write out the section header names. */
4772 if (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4773 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
)))
4776 if (bed
->elf_backend_final_write_processing
)
4777 (*bed
->elf_backend_final_write_processing
) (abfd
,
4778 elf_tdata (abfd
)->linker
);
4780 return bed
->s
->write_shdrs_and_ehdr (abfd
);
4784 _bfd_elf_write_corefile_contents (bfd
*abfd
)
4786 /* Hopefully this can be done just like an object file. */
4787 return _bfd_elf_write_object_contents (abfd
);
4790 /* Given a section, search the header to find them. */
4793 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
4795 const struct elf_backend_data
*bed
;
4798 if (elf_section_data (asect
) != NULL
4799 && elf_section_data (asect
)->this_idx
!= 0)
4800 return elf_section_data (asect
)->this_idx
;
4802 if (bfd_is_abs_section (asect
))
4804 else if (bfd_is_com_section (asect
))
4806 else if (bfd_is_und_section (asect
))
4811 bed
= get_elf_backend_data (abfd
);
4812 if (bed
->elf_backend_section_from_bfd_section
)
4816 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
4821 bfd_set_error (bfd_error_nonrepresentable_section
);
4826 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4830 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
4832 asymbol
*asym_ptr
= *asym_ptr_ptr
;
4834 flagword flags
= asym_ptr
->flags
;
4836 /* When gas creates relocations against local labels, it creates its
4837 own symbol for the section, but does put the symbol into the
4838 symbol chain, so udata is 0. When the linker is generating
4839 relocatable output, this section symbol may be for one of the
4840 input sections rather than the output section. */
4841 if (asym_ptr
->udata
.i
== 0
4842 && (flags
& BSF_SECTION_SYM
)
4843 && asym_ptr
->section
)
4847 if (asym_ptr
->section
->output_section
!= NULL
)
4848 indx
= asym_ptr
->section
->output_section
->index
;
4850 indx
= asym_ptr
->section
->index
;
4851 if (indx
< elf_num_section_syms (abfd
)
4852 && elf_section_syms (abfd
)[indx
] != NULL
)
4853 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
4856 idx
= asym_ptr
->udata
.i
;
4860 /* This case can occur when using --strip-symbol on a symbol
4861 which is used in a relocation entry. */
4862 (*_bfd_error_handler
)
4863 (_("%B: symbol `%s' required but not present"),
4864 abfd
, bfd_asymbol_name (asym_ptr
));
4865 bfd_set_error (bfd_error_no_symbols
);
4872 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4873 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
4874 elf_symbol_flags (flags
));
4882 /* Copy private BFD data. This copies any program header information. */
4885 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
4887 Elf_Internal_Ehdr
*iehdr
;
4888 struct elf_segment_map
*map
;
4889 struct elf_segment_map
*map_first
;
4890 struct elf_segment_map
**pointer_to_map
;
4891 Elf_Internal_Phdr
*segment
;
4894 unsigned int num_segments
;
4895 bfd_boolean phdr_included
= FALSE
;
4896 bfd_vma maxpagesize
;
4897 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
4898 unsigned int phdr_adjust_num
= 0;
4899 const struct elf_backend_data
*bed
;
4901 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
4902 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
4905 if (elf_tdata (ibfd
)->phdr
== NULL
)
4908 bed
= get_elf_backend_data (ibfd
);
4909 iehdr
= elf_elfheader (ibfd
);
4912 pointer_to_map
= &map_first
;
4914 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
4915 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
4917 /* Returns the end address of the segment + 1. */
4918 #define SEGMENT_END(segment, start) \
4919 (start + (segment->p_memsz > segment->p_filesz \
4920 ? segment->p_memsz : segment->p_filesz))
4922 #define SECTION_SIZE(section, segment) \
4923 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4924 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4925 ? section->size : 0)
4927 /* Returns TRUE if the given section is contained within
4928 the given segment. VMA addresses are compared. */
4929 #define IS_CONTAINED_BY_VMA(section, segment) \
4930 (section->vma >= segment->p_vaddr \
4931 && (section->vma + SECTION_SIZE (section, segment) \
4932 <= (SEGMENT_END (segment, segment->p_vaddr))))
4934 /* Returns TRUE if the given section is contained within
4935 the given segment. LMA addresses are compared. */
4936 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4937 (section->lma >= base \
4938 && (section->lma + SECTION_SIZE (section, segment) \
4939 <= SEGMENT_END (segment, base)))
4941 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4942 #define IS_COREFILE_NOTE(p, s) \
4943 (p->p_type == PT_NOTE \
4944 && bfd_get_format (ibfd) == bfd_core \
4945 && s->vma == 0 && s->lma == 0 \
4946 && (bfd_vma) s->filepos >= p->p_offset \
4947 && ((bfd_vma) s->filepos + s->size \
4948 <= p->p_offset + p->p_filesz))
4950 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4951 linker, which generates a PT_INTERP section with p_vaddr and
4952 p_memsz set to 0. */
4953 #define IS_SOLARIS_PT_INTERP(p, s) \
4955 && p->p_paddr == 0 \
4956 && p->p_memsz == 0 \
4957 && p->p_filesz > 0 \
4958 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4960 && (bfd_vma) s->filepos >= p->p_offset \
4961 && ((bfd_vma) s->filepos + s->size \
4962 <= p->p_offset + p->p_filesz))
4964 /* Decide if the given section should be included in the given segment.
4965 A section will be included if:
4966 1. It is within the address space of the segment -- we use the LMA
4967 if that is set for the segment and the VMA otherwise,
4968 2. It is an allocated segment,
4969 3. There is an output section associated with it,
4970 4. The section has not already been allocated to a previous segment.
4971 5. PT_GNU_STACK segments do not include any sections.
4972 6. PT_TLS segment includes only SHF_TLS sections.
4973 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
4974 8. PT_DYNAMIC should not contain empty sections at the beginning
4975 (with the possible exception of .dynamic). */
4976 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4977 ((((segment->p_paddr \
4978 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4979 : IS_CONTAINED_BY_VMA (section, segment)) \
4980 && (section->flags & SEC_ALLOC) != 0) \
4981 || IS_COREFILE_NOTE (segment, section)) \
4982 && section->output_section != NULL \
4983 && segment->p_type != PT_GNU_STACK \
4984 && (segment->p_type != PT_TLS \
4985 || (section->flags & SEC_THREAD_LOCAL)) \
4986 && (segment->p_type == PT_LOAD \
4987 || segment->p_type == PT_TLS \
4988 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4989 && (segment->p_type != PT_DYNAMIC \
4990 || SECTION_SIZE (section, segment) > 0 \
4991 || (segment->p_paddr \
4992 ? segment->p_paddr != section->lma \
4993 : segment->p_vaddr != section->vma) \
4994 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
4996 && ! section->segment_mark)
4998 /* Returns TRUE iff seg1 starts after the end of seg2. */
4999 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5000 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5002 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5003 their VMA address ranges and their LMA address ranges overlap.
5004 It is possible to have overlapping VMA ranges without overlapping LMA
5005 ranges. RedBoot images for example can have both .data and .bss mapped
5006 to the same VMA range, but with the .data section mapped to a different
5008 #define SEGMENT_OVERLAPS(seg1, seg2) \
5009 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5010 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5011 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5012 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5014 /* Initialise the segment mark field. */
5015 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5016 section
->segment_mark
= FALSE
;
5018 /* Scan through the segments specified in the program header
5019 of the input BFD. For this first scan we look for overlaps
5020 in the loadable segments. These can be created by weird
5021 parameters to objcopy. Also, fix some solaris weirdness. */
5022 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5027 Elf_Internal_Phdr
*segment2
;
5029 if (segment
->p_type
== PT_INTERP
)
5030 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5031 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5033 /* Mininal change so that the normal section to segment
5034 assignment code will work. */
5035 segment
->p_vaddr
= section
->vma
;
5039 if (segment
->p_type
!= PT_LOAD
)
5042 /* Determine if this segment overlaps any previous segments. */
5043 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5045 bfd_signed_vma extra_length
;
5047 if (segment2
->p_type
!= PT_LOAD
5048 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5051 /* Merge the two segments together. */
5052 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5054 /* Extend SEGMENT2 to include SEGMENT and then delete
5057 SEGMENT_END (segment
, segment
->p_vaddr
)
5058 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5060 if (extra_length
> 0)
5062 segment2
->p_memsz
+= extra_length
;
5063 segment2
->p_filesz
+= extra_length
;
5066 segment
->p_type
= PT_NULL
;
5068 /* Since we have deleted P we must restart the outer loop. */
5070 segment
= elf_tdata (ibfd
)->phdr
;
5075 /* Extend SEGMENT to include SEGMENT2 and then delete
5078 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5079 - SEGMENT_END (segment
, segment
->p_vaddr
);
5081 if (extra_length
> 0)
5083 segment
->p_memsz
+= extra_length
;
5084 segment
->p_filesz
+= extra_length
;
5087 segment2
->p_type
= PT_NULL
;
5092 /* The second scan attempts to assign sections to segments. */
5093 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5097 unsigned int section_count
;
5098 asection
** sections
;
5099 asection
* output_section
;
5101 bfd_vma matching_lma
;
5102 bfd_vma suggested_lma
;
5106 if (segment
->p_type
== PT_NULL
)
5109 /* Compute how many sections might be placed into this segment. */
5110 for (section
= ibfd
->sections
, section_count
= 0;
5112 section
= section
->next
)
5113 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5116 /* Allocate a segment map big enough to contain
5117 all of the sections we have selected. */
5118 amt
= sizeof (struct elf_segment_map
);
5119 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5120 map
= bfd_alloc (obfd
, amt
);
5124 /* Initialise the fields of the segment map. Default to
5125 using the physical address of the segment in the input BFD. */
5127 map
->p_type
= segment
->p_type
;
5128 map
->p_flags
= segment
->p_flags
;
5129 map
->p_flags_valid
= 1;
5130 map
->p_paddr
= segment
->p_paddr
;
5131 map
->p_paddr_valid
= 1;
5133 /* Determine if this segment contains the ELF file header
5134 and if it contains the program headers themselves. */
5135 map
->includes_filehdr
= (segment
->p_offset
== 0
5136 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5138 map
->includes_phdrs
= 0;
5140 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5142 map
->includes_phdrs
=
5143 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5144 && (segment
->p_offset
+ segment
->p_filesz
5145 >= ((bfd_vma
) iehdr
->e_phoff
5146 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5148 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5149 phdr_included
= TRUE
;
5152 if (section_count
== 0)
5154 /* Special segments, such as the PT_PHDR segment, may contain
5155 no sections, but ordinary, loadable segments should contain
5156 something. They are allowed by the ELF spec however, so only
5157 a warning is produced. */
5158 if (segment
->p_type
== PT_LOAD
)
5159 (*_bfd_error_handler
)
5160 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5164 *pointer_to_map
= map
;
5165 pointer_to_map
= &map
->next
;
5170 /* Now scan the sections in the input BFD again and attempt
5171 to add their corresponding output sections to the segment map.
5172 The problem here is how to handle an output section which has
5173 been moved (ie had its LMA changed). There are four possibilities:
5175 1. None of the sections have been moved.
5176 In this case we can continue to use the segment LMA from the
5179 2. All of the sections have been moved by the same amount.
5180 In this case we can change the segment's LMA to match the LMA
5181 of the first section.
5183 3. Some of the sections have been moved, others have not.
5184 In this case those sections which have not been moved can be
5185 placed in the current segment which will have to have its size,
5186 and possibly its LMA changed, and a new segment or segments will
5187 have to be created to contain the other sections.
5189 4. The sections have been moved, but not by the same amount.
5190 In this case we can change the segment's LMA to match the LMA
5191 of the first section and we will have to create a new segment
5192 or segments to contain the other sections.
5194 In order to save time, we allocate an array to hold the section
5195 pointers that we are interested in. As these sections get assigned
5196 to a segment, they are removed from this array. */
5198 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5199 to work around this long long bug. */
5200 amt
= section_count
* sizeof (asection
*);
5201 sections
= bfd_malloc (amt
);
5202 if (sections
== NULL
)
5205 /* Step One: Scan for segment vs section LMA conflicts.
5206 Also add the sections to the section array allocated above.
5207 Also add the sections to the current segment. In the common
5208 case, where the sections have not been moved, this means that
5209 we have completely filled the segment, and there is nothing
5215 for (j
= 0, section
= ibfd
->sections
;
5217 section
= section
->next
)
5219 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5221 output_section
= section
->output_section
;
5223 sections
[j
++] = section
;
5225 /* The Solaris native linker always sets p_paddr to 0.
5226 We try to catch that case here, and set it to the
5227 correct value. Note - some backends require that
5228 p_paddr be left as zero. */
5229 if (segment
->p_paddr
== 0
5230 && segment
->p_vaddr
!= 0
5231 && (! bed
->want_p_paddr_set_to_zero
)
5233 && output_section
->lma
!= 0
5234 && (output_section
->vma
== (segment
->p_vaddr
5235 + (map
->includes_filehdr
5238 + (map
->includes_phdrs
5240 * iehdr
->e_phentsize
)
5242 map
->p_paddr
= segment
->p_vaddr
;
5244 /* Match up the physical address of the segment with the
5245 LMA address of the output section. */
5246 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5247 || IS_COREFILE_NOTE (segment
, section
)
5248 || (bed
->want_p_paddr_set_to_zero
&&
5249 IS_CONTAINED_BY_VMA (output_section
, segment
))
5252 if (matching_lma
== 0)
5253 matching_lma
= output_section
->lma
;
5255 /* We assume that if the section fits within the segment
5256 then it does not overlap any other section within that
5258 map
->sections
[isec
++] = output_section
;
5260 else if (suggested_lma
== 0)
5261 suggested_lma
= output_section
->lma
;
5265 BFD_ASSERT (j
== section_count
);
5267 /* Step Two: Adjust the physical address of the current segment,
5269 if (isec
== section_count
)
5271 /* All of the sections fitted within the segment as currently
5272 specified. This is the default case. Add the segment to
5273 the list of built segments and carry on to process the next
5274 program header in the input BFD. */
5275 map
->count
= section_count
;
5276 *pointer_to_map
= map
;
5277 pointer_to_map
= &map
->next
;
5284 if (matching_lma
!= 0)
5286 /* At least one section fits inside the current segment.
5287 Keep it, but modify its physical address to match the
5288 LMA of the first section that fitted. */
5289 map
->p_paddr
= matching_lma
;
5293 /* None of the sections fitted inside the current segment.
5294 Change the current segment's physical address to match
5295 the LMA of the first section. */
5296 map
->p_paddr
= suggested_lma
;
5299 /* Offset the segment physical address from the lma
5300 to allow for space taken up by elf headers. */
5301 if (map
->includes_filehdr
)
5302 map
->p_paddr
-= iehdr
->e_ehsize
;
5304 if (map
->includes_phdrs
)
5306 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5308 /* iehdr->e_phnum is just an estimate of the number
5309 of program headers that we will need. Make a note
5310 here of the number we used and the segment we chose
5311 to hold these headers, so that we can adjust the
5312 offset when we know the correct value. */
5313 phdr_adjust_num
= iehdr
->e_phnum
;
5314 phdr_adjust_seg
= map
;
5318 /* Step Three: Loop over the sections again, this time assigning
5319 those that fit to the current segment and removing them from the
5320 sections array; but making sure not to leave large gaps. Once all
5321 possible sections have been assigned to the current segment it is
5322 added to the list of built segments and if sections still remain
5323 to be assigned, a new segment is constructed before repeating
5331 /* Fill the current segment with sections that fit. */
5332 for (j
= 0; j
< section_count
; j
++)
5334 section
= sections
[j
];
5336 if (section
== NULL
)
5339 output_section
= section
->output_section
;
5341 BFD_ASSERT (output_section
!= NULL
);
5343 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5344 || IS_COREFILE_NOTE (segment
, section
))
5346 if (map
->count
== 0)
5348 /* If the first section in a segment does not start at
5349 the beginning of the segment, then something is
5351 if (output_section
->lma
!=
5353 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5354 + (map
->includes_phdrs
5355 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5361 asection
* prev_sec
;
5363 prev_sec
= map
->sections
[map
->count
- 1];
5365 /* If the gap between the end of the previous section
5366 and the start of this section is more than
5367 maxpagesize then we need to start a new segment. */
5368 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5370 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5371 || ((prev_sec
->lma
+ prev_sec
->size
)
5372 > output_section
->lma
))
5374 if (suggested_lma
== 0)
5375 suggested_lma
= output_section
->lma
;
5381 map
->sections
[map
->count
++] = output_section
;
5384 section
->segment_mark
= TRUE
;
5386 else if (suggested_lma
== 0)
5387 suggested_lma
= output_section
->lma
;
5390 BFD_ASSERT (map
->count
> 0);
5392 /* Add the current segment to the list of built segments. */
5393 *pointer_to_map
= map
;
5394 pointer_to_map
= &map
->next
;
5396 if (isec
< section_count
)
5398 /* We still have not allocated all of the sections to
5399 segments. Create a new segment here, initialise it
5400 and carry on looping. */
5401 amt
= sizeof (struct elf_segment_map
);
5402 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5403 map
= bfd_alloc (obfd
, amt
);
5410 /* Initialise the fields of the segment map. Set the physical
5411 physical address to the LMA of the first section that has
5412 not yet been assigned. */
5414 map
->p_type
= segment
->p_type
;
5415 map
->p_flags
= segment
->p_flags
;
5416 map
->p_flags_valid
= 1;
5417 map
->p_paddr
= suggested_lma
;
5418 map
->p_paddr_valid
= 1;
5419 map
->includes_filehdr
= 0;
5420 map
->includes_phdrs
= 0;
5423 while (isec
< section_count
);
5428 /* The Solaris linker creates program headers in which all the
5429 p_paddr fields are zero. When we try to objcopy or strip such a
5430 file, we get confused. Check for this case, and if we find it
5431 reset the p_paddr_valid fields. */
5432 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5433 if (map
->p_paddr
!= 0)
5436 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5437 map
->p_paddr_valid
= 0;
5439 elf_tdata (obfd
)->segment_map
= map_first
;
5441 /* If we had to estimate the number of program headers that were
5442 going to be needed, then check our estimate now and adjust
5443 the offset if necessary. */
5444 if (phdr_adjust_seg
!= NULL
)
5448 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5451 if (count
> phdr_adjust_num
)
5452 phdr_adjust_seg
->p_paddr
5453 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5458 #undef IS_CONTAINED_BY_VMA
5459 #undef IS_CONTAINED_BY_LMA
5460 #undef IS_COREFILE_NOTE
5461 #undef IS_SOLARIS_PT_INTERP
5462 #undef INCLUDE_SECTION_IN_SEGMENT
5463 #undef SEGMENT_AFTER_SEGMENT
5464 #undef SEGMENT_OVERLAPS
5468 /* Copy private section information. This copies over the entsize
5469 field, and sometimes the info field. */
5472 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5477 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5479 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5480 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5483 ihdr
= &elf_section_data (isec
)->this_hdr
;
5484 ohdr
= &elf_section_data (osec
)->this_hdr
;
5486 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
5488 if (ihdr
->sh_type
== SHT_SYMTAB
5489 || ihdr
->sh_type
== SHT_DYNSYM
5490 || ihdr
->sh_type
== SHT_GNU_verneed
5491 || ihdr
->sh_type
== SHT_GNU_verdef
)
5492 ohdr
->sh_info
= ihdr
->sh_info
;
5494 /* Set things up for objcopy. The output SHT_GROUP section will
5495 have its elf_next_in_group pointing back to the input group
5497 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5498 elf_group_name (osec
) = elf_group_name (isec
);
5500 osec
->use_rela_p
= isec
->use_rela_p
;
5505 /* Copy private header information. */
5508 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
5510 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5511 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5514 /* Copy over private BFD data if it has not already been copied.
5515 This must be done here, rather than in the copy_private_bfd_data
5516 entry point, because the latter is called after the section
5517 contents have been set, which means that the program headers have
5518 already been worked out. */
5519 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
5521 if (! copy_private_bfd_data (ibfd
, obfd
))
5528 /* Copy private symbol information. If this symbol is in a section
5529 which we did not map into a BFD section, try to map the section
5530 index correctly. We use special macro definitions for the mapped
5531 section indices; these definitions are interpreted by the
5532 swap_out_syms function. */
5534 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5535 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5536 #define MAP_STRTAB (SHN_HIOS + 3)
5537 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5538 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5541 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
5546 elf_symbol_type
*isym
, *osym
;
5548 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5549 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5552 isym
= elf_symbol_from (ibfd
, isymarg
);
5553 osym
= elf_symbol_from (obfd
, osymarg
);
5557 && bfd_is_abs_section (isym
->symbol
.section
))
5561 shndx
= isym
->internal_elf_sym
.st_shndx
;
5562 if (shndx
== elf_onesymtab (ibfd
))
5563 shndx
= MAP_ONESYMTAB
;
5564 else if (shndx
== elf_dynsymtab (ibfd
))
5565 shndx
= MAP_DYNSYMTAB
;
5566 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
5568 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
5569 shndx
= MAP_SHSTRTAB
;
5570 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
5571 shndx
= MAP_SYM_SHNDX
;
5572 osym
->internal_elf_sym
.st_shndx
= shndx
;
5578 /* Swap out the symbols. */
5581 swap_out_syms (bfd
*abfd
,
5582 struct bfd_strtab_hash
**sttp
,
5585 const struct elf_backend_data
*bed
;
5588 struct bfd_strtab_hash
*stt
;
5589 Elf_Internal_Shdr
*symtab_hdr
;
5590 Elf_Internal_Shdr
*symtab_shndx_hdr
;
5591 Elf_Internal_Shdr
*symstrtab_hdr
;
5592 bfd_byte
*outbound_syms
;
5593 bfd_byte
*outbound_shndx
;
5596 bfd_boolean name_local_sections
;
5598 if (!elf_map_symbols (abfd
))
5601 /* Dump out the symtabs. */
5602 stt
= _bfd_elf_stringtab_init ();
5606 bed
= get_elf_backend_data (abfd
);
5607 symcount
= bfd_get_symcount (abfd
);
5608 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5609 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5610 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
5611 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
5612 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
5613 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
5615 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
5616 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5618 amt
= (bfd_size_type
) (1 + symcount
) * bed
->s
->sizeof_sym
;
5619 outbound_syms
= bfd_alloc (abfd
, amt
);
5620 if (outbound_syms
== NULL
)
5622 _bfd_stringtab_free (stt
);
5625 symtab_hdr
->contents
= outbound_syms
;
5627 outbound_shndx
= NULL
;
5628 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
5629 if (symtab_shndx_hdr
->sh_name
!= 0)
5631 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
5632 outbound_shndx
= bfd_zalloc (abfd
, amt
);
5633 if (outbound_shndx
== NULL
)
5635 _bfd_stringtab_free (stt
);
5639 symtab_shndx_hdr
->contents
= outbound_shndx
;
5640 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
5641 symtab_shndx_hdr
->sh_size
= amt
;
5642 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
5643 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
5646 /* Now generate the data (for "contents"). */
5648 /* Fill in zeroth symbol and swap it out. */
5649 Elf_Internal_Sym sym
;
5655 sym
.st_shndx
= SHN_UNDEF
;
5656 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5657 outbound_syms
+= bed
->s
->sizeof_sym
;
5658 if (outbound_shndx
!= NULL
)
5659 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5663 = (bed
->elf_backend_name_local_section_symbols
5664 && bed
->elf_backend_name_local_section_symbols (abfd
));
5666 syms
= bfd_get_outsymbols (abfd
);
5667 for (idx
= 0; idx
< symcount
; idx
++)
5669 Elf_Internal_Sym sym
;
5670 bfd_vma value
= syms
[idx
]->value
;
5671 elf_symbol_type
*type_ptr
;
5672 flagword flags
= syms
[idx
]->flags
;
5675 if (!name_local_sections
5676 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
5678 /* Local section symbols have no name. */
5683 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
5686 if (sym
.st_name
== (unsigned long) -1)
5688 _bfd_stringtab_free (stt
);
5693 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
5695 if ((flags
& BSF_SECTION_SYM
) == 0
5696 && bfd_is_com_section (syms
[idx
]->section
))
5698 /* ELF common symbols put the alignment into the `value' field,
5699 and the size into the `size' field. This is backwards from
5700 how BFD handles it, so reverse it here. */
5701 sym
.st_size
= value
;
5702 if (type_ptr
== NULL
5703 || type_ptr
->internal_elf_sym
.st_value
== 0)
5704 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
5706 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
5707 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
5708 (abfd
, syms
[idx
]->section
);
5712 asection
*sec
= syms
[idx
]->section
;
5715 if (sec
->output_section
)
5717 value
+= sec
->output_offset
;
5718 sec
= sec
->output_section
;
5721 /* Don't add in the section vma for relocatable output. */
5722 if (! relocatable_p
)
5724 sym
.st_value
= value
;
5725 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
5727 if (bfd_is_abs_section (sec
)
5729 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
5731 /* This symbol is in a real ELF section which we did
5732 not create as a BFD section. Undo the mapping done
5733 by copy_private_symbol_data. */
5734 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
5738 shndx
= elf_onesymtab (abfd
);
5741 shndx
= elf_dynsymtab (abfd
);
5744 shndx
= elf_tdata (abfd
)->strtab_section
;
5747 shndx
= elf_tdata (abfd
)->shstrtab_section
;
5750 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
5758 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
5764 /* Writing this would be a hell of a lot easier if
5765 we had some decent documentation on bfd, and
5766 knew what to expect of the library, and what to
5767 demand of applications. For example, it
5768 appears that `objcopy' might not set the
5769 section of a symbol to be a section that is
5770 actually in the output file. */
5771 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
5774 _bfd_error_handler (_("\
5775 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5776 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
5778 bfd_set_error (bfd_error_invalid_operation
);
5779 _bfd_stringtab_free (stt
);
5783 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
5784 BFD_ASSERT (shndx
!= -1);
5788 sym
.st_shndx
= shndx
;
5791 if ((flags
& BSF_THREAD_LOCAL
) != 0)
5793 else if ((flags
& BSF_FUNCTION
) != 0)
5795 else if ((flags
& BSF_OBJECT
) != 0)
5800 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
5803 /* Processor-specific types. */
5804 if (type_ptr
!= NULL
5805 && bed
->elf_backend_get_symbol_type
)
5806 type
= ((*bed
->elf_backend_get_symbol_type
)
5807 (&type_ptr
->internal_elf_sym
, type
));
5809 if (flags
& BSF_SECTION_SYM
)
5811 if (flags
& BSF_GLOBAL
)
5812 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
5814 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5816 else if (bfd_is_com_section (syms
[idx
]->section
))
5817 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
5818 else if (bfd_is_und_section (syms
[idx
]->section
))
5819 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
5823 else if (flags
& BSF_FILE
)
5824 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
5827 int bind
= STB_LOCAL
;
5829 if (flags
& BSF_LOCAL
)
5831 else if (flags
& BSF_WEAK
)
5833 else if (flags
& BSF_GLOBAL
)
5836 sym
.st_info
= ELF_ST_INFO (bind
, type
);
5839 if (type_ptr
!= NULL
)
5840 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
5844 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5845 outbound_syms
+= bed
->s
->sizeof_sym
;
5846 if (outbound_shndx
!= NULL
)
5847 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5851 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
5852 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5854 symstrtab_hdr
->sh_flags
= 0;
5855 symstrtab_hdr
->sh_addr
= 0;
5856 symstrtab_hdr
->sh_entsize
= 0;
5857 symstrtab_hdr
->sh_link
= 0;
5858 symstrtab_hdr
->sh_info
= 0;
5859 symstrtab_hdr
->sh_addralign
= 1;
5864 /* Return the number of bytes required to hold the symtab vector.
5866 Note that we base it on the count plus 1, since we will null terminate
5867 the vector allocated based on this size. However, the ELF symbol table
5868 always has a dummy entry as symbol #0, so it ends up even. */
5871 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
5875 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5877 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
5878 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
5880 symtab_size
-= sizeof (asymbol
*);
5886 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
5890 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
5892 if (elf_dynsymtab (abfd
) == 0)
5894 bfd_set_error (bfd_error_invalid_operation
);
5898 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
5899 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
5901 symtab_size
-= sizeof (asymbol
*);
5907 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
5910 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
5913 /* Canonicalize the relocs. */
5916 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
5923 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5925 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
5928 tblptr
= section
->relocation
;
5929 for (i
= 0; i
< section
->reloc_count
; i
++)
5930 *relptr
++ = tblptr
++;
5934 return section
->reloc_count
;
5938 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
5940 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5941 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
5944 bfd_get_symcount (abfd
) = symcount
;
5949 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
5950 asymbol
**allocation
)
5952 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5953 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
5956 bfd_get_dynamic_symcount (abfd
) = symcount
;
5960 /* Return the size required for the dynamic reloc entries. Any loadable
5961 section that was actually installed in the BFD, and has type SHT_REL
5962 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
5963 dynamic reloc section. */
5966 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
5971 if (elf_dynsymtab (abfd
) == 0)
5973 bfd_set_error (bfd_error_invalid_operation
);
5977 ret
= sizeof (arelent
*);
5978 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5979 if ((s
->flags
& SEC_LOAD
) != 0
5980 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
5981 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
5982 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
5983 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
5984 * sizeof (arelent
*));
5989 /* Canonicalize the dynamic relocation entries. Note that we return the
5990 dynamic relocations as a single block, although they are actually
5991 associated with particular sections; the interface, which was
5992 designed for SunOS style shared libraries, expects that there is only
5993 one set of dynamic relocs. Any loadable section that was actually
5994 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
5995 dynamic symbol table, is considered to be a dynamic reloc section. */
5998 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6002 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6006 if (elf_dynsymtab (abfd
) == 0)
6008 bfd_set_error (bfd_error_invalid_operation
);
6012 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6014 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6016 if ((s
->flags
& SEC_LOAD
) != 0
6017 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6018 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6019 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6024 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6026 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6028 for (i
= 0; i
< count
; i
++)
6039 /* Read in the version information. */
6042 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6044 bfd_byte
*contents
= NULL
;
6046 unsigned int freeidx
= 0;
6048 if (elf_dynverref (abfd
) != 0)
6050 Elf_Internal_Shdr
*hdr
;
6051 Elf_External_Verneed
*everneed
;
6052 Elf_Internal_Verneed
*iverneed
;
6055 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6057 amt
= (bfd_size_type
) hdr
->sh_info
* sizeof (Elf_Internal_Verneed
);
6058 elf_tdata (abfd
)->verref
= bfd_zalloc (abfd
, amt
);
6059 if (elf_tdata (abfd
)->verref
== NULL
)
6062 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6064 contents
= bfd_malloc (hdr
->sh_size
);
6065 if (contents
== NULL
)
6067 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6068 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6071 everneed
= (Elf_External_Verneed
*) contents
;
6072 iverneed
= elf_tdata (abfd
)->verref
;
6073 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6075 Elf_External_Vernaux
*evernaux
;
6076 Elf_Internal_Vernaux
*ivernaux
;
6079 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6081 iverneed
->vn_bfd
= abfd
;
6083 iverneed
->vn_filename
=
6084 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6086 if (iverneed
->vn_filename
== NULL
)
6089 amt
= iverneed
->vn_cnt
;
6090 amt
*= sizeof (Elf_Internal_Vernaux
);
6091 iverneed
->vn_auxptr
= bfd_alloc (abfd
, amt
);
6093 evernaux
= ((Elf_External_Vernaux
*)
6094 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6095 ivernaux
= iverneed
->vn_auxptr
;
6096 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6098 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6100 ivernaux
->vna_nodename
=
6101 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6102 ivernaux
->vna_name
);
6103 if (ivernaux
->vna_nodename
== NULL
)
6106 if (j
+ 1 < iverneed
->vn_cnt
)
6107 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6109 ivernaux
->vna_nextptr
= NULL
;
6111 evernaux
= ((Elf_External_Vernaux
*)
6112 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6114 if (ivernaux
->vna_other
> freeidx
)
6115 freeidx
= ivernaux
->vna_other
;
6118 if (i
+ 1 < hdr
->sh_info
)
6119 iverneed
->vn_nextref
= iverneed
+ 1;
6121 iverneed
->vn_nextref
= NULL
;
6123 everneed
= ((Elf_External_Verneed
*)
6124 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6131 if (elf_dynverdef (abfd
) != 0)
6133 Elf_Internal_Shdr
*hdr
;
6134 Elf_External_Verdef
*everdef
;
6135 Elf_Internal_Verdef
*iverdef
;
6136 Elf_Internal_Verdef
*iverdefarr
;
6137 Elf_Internal_Verdef iverdefmem
;
6139 unsigned int maxidx
;
6141 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6143 contents
= bfd_malloc (hdr
->sh_size
);
6144 if (contents
== NULL
)
6146 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6147 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6150 /* We know the number of entries in the section but not the maximum
6151 index. Therefore we have to run through all entries and find
6153 everdef
= (Elf_External_Verdef
*) contents
;
6155 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6157 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6159 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6160 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6162 everdef
= ((Elf_External_Verdef
*)
6163 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6166 if (default_imported_symver
)
6168 if (freeidx
> maxidx
)
6173 amt
= (bfd_size_type
) maxidx
* sizeof (Elf_Internal_Verdef
);
6174 elf_tdata (abfd
)->verdef
= bfd_zalloc (abfd
, amt
);
6175 if (elf_tdata (abfd
)->verdef
== NULL
)
6178 elf_tdata (abfd
)->cverdefs
= maxidx
;
6180 everdef
= (Elf_External_Verdef
*) contents
;
6181 iverdefarr
= elf_tdata (abfd
)->verdef
;
6182 for (i
= 0; i
< hdr
->sh_info
; i
++)
6184 Elf_External_Verdaux
*everdaux
;
6185 Elf_Internal_Verdaux
*iverdaux
;
6188 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6190 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6191 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6193 iverdef
->vd_bfd
= abfd
;
6195 amt
= (bfd_size_type
) iverdef
->vd_cnt
* sizeof (Elf_Internal_Verdaux
);
6196 iverdef
->vd_auxptr
= bfd_alloc (abfd
, amt
);
6197 if (iverdef
->vd_auxptr
== NULL
)
6200 everdaux
= ((Elf_External_Verdaux
*)
6201 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6202 iverdaux
= iverdef
->vd_auxptr
;
6203 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6205 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6207 iverdaux
->vda_nodename
=
6208 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6209 iverdaux
->vda_name
);
6210 if (iverdaux
->vda_nodename
== NULL
)
6213 if (j
+ 1 < iverdef
->vd_cnt
)
6214 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6216 iverdaux
->vda_nextptr
= NULL
;
6218 everdaux
= ((Elf_External_Verdaux
*)
6219 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6222 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6224 if (i
+ 1 < hdr
->sh_info
)
6225 iverdef
->vd_nextdef
= iverdef
+ 1;
6227 iverdef
->vd_nextdef
= NULL
;
6229 everdef
= ((Elf_External_Verdef
*)
6230 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6236 else if (default_imported_symver
)
6243 amt
= (bfd_size_type
) freeidx
* sizeof (Elf_Internal_Verdef
);
6244 elf_tdata (abfd
)->verdef
= bfd_zalloc (abfd
, amt
);
6245 if (elf_tdata (abfd
)->verdef
== NULL
)
6248 elf_tdata (abfd
)->cverdefs
= freeidx
;
6251 /* Create a default version based on the soname. */
6252 if (default_imported_symver
)
6254 Elf_Internal_Verdef
*iverdef
;
6255 Elf_Internal_Verdaux
*iverdaux
;
6257 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6259 iverdef
->vd_version
= VER_DEF_CURRENT
;
6260 iverdef
->vd_flags
= 0;
6261 iverdef
->vd_ndx
= freeidx
;
6262 iverdef
->vd_cnt
= 1;
6264 iverdef
->vd_bfd
= abfd
;
6266 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6267 if (iverdef
->vd_nodename
== NULL
)
6269 iverdef
->vd_nextdef
= NULL
;
6270 amt
= (bfd_size_type
) sizeof (Elf_Internal_Verdaux
);
6271 iverdef
->vd_auxptr
= bfd_alloc (abfd
, amt
);
6273 iverdaux
= iverdef
->vd_auxptr
;
6274 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6275 iverdaux
->vda_nextptr
= NULL
;
6281 if (contents
!= NULL
)
6287 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6289 elf_symbol_type
*newsym
;
6290 bfd_size_type amt
= sizeof (elf_symbol_type
);
6292 newsym
= bfd_zalloc (abfd
, amt
);
6297 newsym
->symbol
.the_bfd
= abfd
;
6298 return &newsym
->symbol
;
6303 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6307 bfd_symbol_info (symbol
, ret
);
6310 /* Return whether a symbol name implies a local symbol. Most targets
6311 use this function for the is_local_label_name entry point, but some
6315 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6318 /* Normal local symbols start with ``.L''. */
6319 if (name
[0] == '.' && name
[1] == 'L')
6322 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6323 DWARF debugging symbols starting with ``..''. */
6324 if (name
[0] == '.' && name
[1] == '.')
6327 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6328 emitting DWARF debugging output. I suspect this is actually a
6329 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6330 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6331 underscore to be emitted on some ELF targets). For ease of use,
6332 we treat such symbols as local. */
6333 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6340 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6341 asymbol
*symbol ATTRIBUTE_UNUSED
)
6348 _bfd_elf_set_arch_mach (bfd
*abfd
,
6349 enum bfd_architecture arch
,
6350 unsigned long machine
)
6352 /* If this isn't the right architecture for this backend, and this
6353 isn't the generic backend, fail. */
6354 if (arch
!= get_elf_backend_data (abfd
)->arch
6355 && arch
!= bfd_arch_unknown
6356 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6359 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6362 /* Find the function to a particular section and offset,
6363 for error reporting. */
6366 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6370 const char **filename_ptr
,
6371 const char **functionname_ptr
)
6373 const char *filename
;
6374 asymbol
*func
, *file
;
6377 /* ??? Given multiple file symbols, it is impossible to reliably
6378 choose the right file name for global symbols. File symbols are
6379 local symbols, and thus all file symbols must sort before any
6380 global symbols. The ELF spec may be interpreted to say that a
6381 file symbol must sort before other local symbols, but currently
6382 ld -r doesn't do this. So, for ld -r output, it is possible to
6383 make a better choice of file name for local symbols by ignoring
6384 file symbols appearing after a given local symbol. */
6385 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
6391 state
= nothing_seen
;
6393 for (p
= symbols
; *p
!= NULL
; p
++)
6397 q
= (elf_symbol_type
*) *p
;
6399 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6405 if (state
== symbol_seen
)
6406 state
= file_after_symbol_seen
;
6412 if (bfd_get_section (&q
->symbol
) == section
6413 && q
->symbol
.value
>= low_func
6414 && q
->symbol
.value
<= offset
)
6416 func
= (asymbol
*) q
;
6417 low_func
= q
->symbol
.value
;
6420 else if (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) != STB_LOCAL
6421 && state
== file_after_symbol_seen
)
6424 filename
= bfd_asymbol_name (file
);
6428 if (state
== nothing_seen
)
6429 state
= symbol_seen
;
6436 *filename_ptr
= filename
;
6437 if (functionname_ptr
)
6438 *functionname_ptr
= bfd_asymbol_name (func
);
6443 /* Find the nearest line to a particular section and offset,
6444 for error reporting. */
6447 _bfd_elf_find_nearest_line (bfd
*abfd
,
6451 const char **filename_ptr
,
6452 const char **functionname_ptr
,
6453 unsigned int *line_ptr
)
6457 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
6458 filename_ptr
, functionname_ptr
,
6461 if (!*functionname_ptr
)
6462 elf_find_function (abfd
, section
, symbols
, offset
,
6463 *filename_ptr
? NULL
: filename_ptr
,
6469 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
6470 filename_ptr
, functionname_ptr
,
6472 &elf_tdata (abfd
)->dwarf2_find_line_info
))
6474 if (!*functionname_ptr
)
6475 elf_find_function (abfd
, section
, symbols
, offset
,
6476 *filename_ptr
? NULL
: filename_ptr
,
6482 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
6483 &found
, filename_ptr
,
6484 functionname_ptr
, line_ptr
,
6485 &elf_tdata (abfd
)->line_info
))
6487 if (found
&& (*functionname_ptr
|| *line_ptr
))
6490 if (symbols
== NULL
)
6493 if (! elf_find_function (abfd
, section
, symbols
, offset
,
6494 filename_ptr
, functionname_ptr
))
6502 _bfd_elf_sizeof_headers (bfd
*abfd
, bfd_boolean reloc
)
6506 ret
= get_elf_backend_data (abfd
)->s
->sizeof_ehdr
;
6508 ret
+= get_program_header_size (abfd
);
6513 _bfd_elf_set_section_contents (bfd
*abfd
,
6515 const void *location
,
6517 bfd_size_type count
)
6519 Elf_Internal_Shdr
*hdr
;
6522 if (! abfd
->output_has_begun
6523 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
6526 hdr
= &elf_section_data (section
)->this_hdr
;
6527 pos
= hdr
->sh_offset
+ offset
;
6528 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
6529 || bfd_bwrite (location
, count
, abfd
) != count
)
6536 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
6537 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
6538 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
6543 /* Try to convert a non-ELF reloc into an ELF one. */
6546 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
6548 /* Check whether we really have an ELF howto. */
6550 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
6552 bfd_reloc_code_real_type code
;
6553 reloc_howto_type
*howto
;
6555 /* Alien reloc: Try to determine its type to replace it with an
6556 equivalent ELF reloc. */
6558 if (areloc
->howto
->pc_relative
)
6560 switch (areloc
->howto
->bitsize
)
6563 code
= BFD_RELOC_8_PCREL
;
6566 code
= BFD_RELOC_12_PCREL
;
6569 code
= BFD_RELOC_16_PCREL
;
6572 code
= BFD_RELOC_24_PCREL
;
6575 code
= BFD_RELOC_32_PCREL
;
6578 code
= BFD_RELOC_64_PCREL
;
6584 howto
= bfd_reloc_type_lookup (abfd
, code
);
6586 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
6588 if (howto
->pcrel_offset
)
6589 areloc
->addend
+= areloc
->address
;
6591 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
6596 switch (areloc
->howto
->bitsize
)
6602 code
= BFD_RELOC_14
;
6605 code
= BFD_RELOC_16
;
6608 code
= BFD_RELOC_26
;
6611 code
= BFD_RELOC_32
;
6614 code
= BFD_RELOC_64
;
6620 howto
= bfd_reloc_type_lookup (abfd
, code
);
6624 areloc
->howto
= howto
;
6632 (*_bfd_error_handler
)
6633 (_("%B: unsupported relocation type %s"),
6634 abfd
, areloc
->howto
->name
);
6635 bfd_set_error (bfd_error_bad_value
);
6640 _bfd_elf_close_and_cleanup (bfd
*abfd
)
6642 if (bfd_get_format (abfd
) == bfd_object
)
6644 if (elf_shstrtab (abfd
) != NULL
)
6645 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
6648 return _bfd_generic_close_and_cleanup (abfd
);
6651 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6652 in the relocation's offset. Thus we cannot allow any sort of sanity
6653 range-checking to interfere. There is nothing else to do in processing
6656 bfd_reloc_status_type
6657 _bfd_elf_rel_vtable_reloc_fn
6658 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
6659 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
6660 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
6661 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
6663 return bfd_reloc_ok
;
6666 /* Elf core file support. Much of this only works on native
6667 toolchains, since we rely on knowing the
6668 machine-dependent procfs structure in order to pick
6669 out details about the corefile. */
6671 #ifdef HAVE_SYS_PROCFS_H
6672 # include <sys/procfs.h>
6675 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6678 elfcore_make_pid (bfd
*abfd
)
6680 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
6681 + (elf_tdata (abfd
)->core_pid
));
6684 /* If there isn't a section called NAME, make one, using
6685 data from SECT. Note, this function will generate a
6686 reference to NAME, so you shouldn't deallocate or
6690 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
6694 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
6697 sect2
= bfd_make_section (abfd
, name
);
6701 sect2
->size
= sect
->size
;
6702 sect2
->filepos
= sect
->filepos
;
6703 sect2
->flags
= sect
->flags
;
6704 sect2
->alignment_power
= sect
->alignment_power
;
6708 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6709 actually creates up to two pseudosections:
6710 - For the single-threaded case, a section named NAME, unless
6711 such a section already exists.
6712 - For the multi-threaded case, a section named "NAME/PID", where
6713 PID is elfcore_make_pid (abfd).
6714 Both pseudosections have identical contents. */
6716 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
6722 char *threaded_name
;
6726 /* Build the section name. */
6728 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
6729 len
= strlen (buf
) + 1;
6730 threaded_name
= bfd_alloc (abfd
, len
);
6731 if (threaded_name
== NULL
)
6733 memcpy (threaded_name
, buf
, len
);
6735 sect
= bfd_make_section_anyway (abfd
, threaded_name
);
6739 sect
->filepos
= filepos
;
6740 sect
->flags
= SEC_HAS_CONTENTS
;
6741 sect
->alignment_power
= 2;
6743 return elfcore_maybe_make_sect (abfd
, name
, sect
);
6746 /* prstatus_t exists on:
6748 linux 2.[01] + glibc
6752 #if defined (HAVE_PRSTATUS_T)
6755 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6760 if (note
->descsz
== sizeof (prstatus_t
))
6764 size
= sizeof (prstat
.pr_reg
);
6765 offset
= offsetof (prstatus_t
, pr_reg
);
6766 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6768 /* Do not overwrite the core signal if it
6769 has already been set by another thread. */
6770 if (elf_tdata (abfd
)->core_signal
== 0)
6771 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6772 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6774 /* pr_who exists on:
6777 pr_who doesn't exist on:
6780 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6781 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6784 #if defined (HAVE_PRSTATUS32_T)
6785 else if (note
->descsz
== sizeof (prstatus32_t
))
6787 /* 64-bit host, 32-bit corefile */
6788 prstatus32_t prstat
;
6790 size
= sizeof (prstat
.pr_reg
);
6791 offset
= offsetof (prstatus32_t
, pr_reg
);
6792 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6794 /* Do not overwrite the core signal if it
6795 has already been set by another thread. */
6796 if (elf_tdata (abfd
)->core_signal
== 0)
6797 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6798 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6800 /* pr_who exists on:
6803 pr_who doesn't exist on:
6806 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6807 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6810 #endif /* HAVE_PRSTATUS32_T */
6813 /* Fail - we don't know how to handle any other
6814 note size (ie. data object type). */
6818 /* Make a ".reg/999" section and a ".reg" section. */
6819 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
6820 size
, note
->descpos
+ offset
);
6822 #endif /* defined (HAVE_PRSTATUS_T) */
6824 /* Create a pseudosection containing the exact contents of NOTE. */
6826 elfcore_make_note_pseudosection (bfd
*abfd
,
6828 Elf_Internal_Note
*note
)
6830 return _bfd_elfcore_make_pseudosection (abfd
, name
,
6831 note
->descsz
, note
->descpos
);
6834 /* There isn't a consistent prfpregset_t across platforms,
6835 but it doesn't matter, because we don't have to pick this
6836 data structure apart. */
6839 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
6841 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
6844 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6845 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6849 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
6851 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
6854 #if defined (HAVE_PRPSINFO_T)
6855 typedef prpsinfo_t elfcore_psinfo_t
;
6856 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6857 typedef prpsinfo32_t elfcore_psinfo32_t
;
6861 #if defined (HAVE_PSINFO_T)
6862 typedef psinfo_t elfcore_psinfo_t
;
6863 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6864 typedef psinfo32_t elfcore_psinfo32_t
;
6868 /* return a malloc'ed copy of a string at START which is at
6869 most MAX bytes long, possibly without a terminating '\0'.
6870 the copy will always have a terminating '\0'. */
6873 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
6876 char *end
= memchr (start
, '\0', max
);
6884 dups
= bfd_alloc (abfd
, len
+ 1);
6888 memcpy (dups
, start
, len
);
6894 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6896 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
6898 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
6900 elfcore_psinfo_t psinfo
;
6902 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
6904 elf_tdata (abfd
)->core_program
6905 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
6906 sizeof (psinfo
.pr_fname
));
6908 elf_tdata (abfd
)->core_command
6909 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
6910 sizeof (psinfo
.pr_psargs
));
6912 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6913 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
6915 /* 64-bit host, 32-bit corefile */
6916 elfcore_psinfo32_t psinfo
;
6918 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
6920 elf_tdata (abfd
)->core_program
6921 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
6922 sizeof (psinfo
.pr_fname
));
6924 elf_tdata (abfd
)->core_command
6925 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
6926 sizeof (psinfo
.pr_psargs
));
6932 /* Fail - we don't know how to handle any other
6933 note size (ie. data object type). */
6937 /* Note that for some reason, a spurious space is tacked
6938 onto the end of the args in some (at least one anyway)
6939 implementations, so strip it off if it exists. */
6942 char *command
= elf_tdata (abfd
)->core_command
;
6943 int n
= strlen (command
);
6945 if (0 < n
&& command
[n
- 1] == ' ')
6946 command
[n
- 1] = '\0';
6951 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6953 #if defined (HAVE_PSTATUS_T)
6955 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6957 if (note
->descsz
== sizeof (pstatus_t
)
6958 #if defined (HAVE_PXSTATUS_T)
6959 || note
->descsz
== sizeof (pxstatus_t
)
6965 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
6967 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
6969 #if defined (HAVE_PSTATUS32_T)
6970 else if (note
->descsz
== sizeof (pstatus32_t
))
6972 /* 64-bit host, 32-bit corefile */
6975 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
6977 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
6980 /* Could grab some more details from the "representative"
6981 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6982 NT_LWPSTATUS note, presumably. */
6986 #endif /* defined (HAVE_PSTATUS_T) */
6988 #if defined (HAVE_LWPSTATUS_T)
6990 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6992 lwpstatus_t lwpstat
;
6998 if (note
->descsz
!= sizeof (lwpstat
)
6999 #if defined (HAVE_LWPXSTATUS_T)
7000 && note
->descsz
!= sizeof (lwpxstatus_t
)
7005 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7007 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7008 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7010 /* Make a ".reg/999" section. */
7012 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7013 len
= strlen (buf
) + 1;
7014 name
= bfd_alloc (abfd
, len
);
7017 memcpy (name
, buf
, len
);
7019 sect
= bfd_make_section_anyway (abfd
, name
);
7023 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7024 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7025 sect
->filepos
= note
->descpos
7026 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7029 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7030 sect
->size
= sizeof (lwpstat
.pr_reg
);
7031 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7034 sect
->flags
= SEC_HAS_CONTENTS
;
7035 sect
->alignment_power
= 2;
7037 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7040 /* Make a ".reg2/999" section */
7042 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7043 len
= strlen (buf
) + 1;
7044 name
= bfd_alloc (abfd
, len
);
7047 memcpy (name
, buf
, len
);
7049 sect
= bfd_make_section_anyway (abfd
, name
);
7053 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7054 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7055 sect
->filepos
= note
->descpos
7056 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7059 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7060 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7061 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7064 sect
->flags
= SEC_HAS_CONTENTS
;
7065 sect
->alignment_power
= 2;
7067 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7069 #endif /* defined (HAVE_LWPSTATUS_T) */
7071 #if defined (HAVE_WIN32_PSTATUS_T)
7073 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7079 win32_pstatus_t pstatus
;
7081 if (note
->descsz
< sizeof (pstatus
))
7084 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7086 switch (pstatus
.data_type
)
7088 case NOTE_INFO_PROCESS
:
7089 /* FIXME: need to add ->core_command. */
7090 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7091 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7094 case NOTE_INFO_THREAD
:
7095 /* Make a ".reg/999" section. */
7096 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7098 len
= strlen (buf
) + 1;
7099 name
= bfd_alloc (abfd
, len
);
7103 memcpy (name
, buf
, len
);
7105 sect
= bfd_make_section_anyway (abfd
, name
);
7109 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7110 sect
->filepos
= (note
->descpos
7111 + offsetof (struct win32_pstatus
,
7112 data
.thread_info
.thread_context
));
7113 sect
->flags
= SEC_HAS_CONTENTS
;
7114 sect
->alignment_power
= 2;
7116 if (pstatus
.data
.thread_info
.is_active_thread
)
7117 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7121 case NOTE_INFO_MODULE
:
7122 /* Make a ".module/xxxxxxxx" section. */
7123 sprintf (buf
, ".module/%08lx",
7124 (long) pstatus
.data
.module_info
.base_address
);
7126 len
= strlen (buf
) + 1;
7127 name
= bfd_alloc (abfd
, len
);
7131 memcpy (name
, buf
, len
);
7133 sect
= bfd_make_section_anyway (abfd
, name
);
7138 sect
->size
= note
->descsz
;
7139 sect
->filepos
= note
->descpos
;
7140 sect
->flags
= SEC_HAS_CONTENTS
;
7141 sect
->alignment_power
= 2;
7150 #endif /* HAVE_WIN32_PSTATUS_T */
7153 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7155 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7163 if (bed
->elf_backend_grok_prstatus
)
7164 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7166 #if defined (HAVE_PRSTATUS_T)
7167 return elfcore_grok_prstatus (abfd
, note
);
7172 #if defined (HAVE_PSTATUS_T)
7174 return elfcore_grok_pstatus (abfd
, note
);
7177 #if defined (HAVE_LWPSTATUS_T)
7179 return elfcore_grok_lwpstatus (abfd
, note
);
7182 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7183 return elfcore_grok_prfpreg (abfd
, note
);
7185 #if defined (HAVE_WIN32_PSTATUS_T)
7186 case NT_WIN32PSTATUS
:
7187 return elfcore_grok_win32pstatus (abfd
, note
);
7190 case NT_PRXFPREG
: /* Linux SSE extension */
7191 if (note
->namesz
== 6
7192 && strcmp (note
->namedata
, "LINUX") == 0)
7193 return elfcore_grok_prxfpreg (abfd
, note
);
7199 if (bed
->elf_backend_grok_psinfo
)
7200 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7202 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7203 return elfcore_grok_psinfo (abfd
, note
);
7210 asection
*sect
= bfd_make_section_anyway (abfd
, ".auxv");
7214 sect
->size
= note
->descsz
;
7215 sect
->filepos
= note
->descpos
;
7216 sect
->flags
= SEC_HAS_CONTENTS
;
7217 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7225 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7229 cp
= strchr (note
->namedata
, '@');
7232 *lwpidp
= atoi(cp
+ 1);
7239 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7242 /* Signal number at offset 0x08. */
7243 elf_tdata (abfd
)->core_signal
7244 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7246 /* Process ID at offset 0x50. */
7247 elf_tdata (abfd
)->core_pid
7248 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7250 /* Command name at 0x7c (max 32 bytes, including nul). */
7251 elf_tdata (abfd
)->core_command
7252 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7254 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7259 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7263 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7264 elf_tdata (abfd
)->core_lwpid
= lwp
;
7266 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7268 /* NetBSD-specific core "procinfo". Note that we expect to
7269 find this note before any of the others, which is fine,
7270 since the kernel writes this note out first when it
7271 creates a core file. */
7273 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7276 /* As of Jan 2002 there are no other machine-independent notes
7277 defined for NetBSD core files. If the note type is less
7278 than the start of the machine-dependent note types, we don't
7281 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7285 switch (bfd_get_arch (abfd
))
7287 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7288 PT_GETFPREGS == mach+2. */
7290 case bfd_arch_alpha
:
7291 case bfd_arch_sparc
:
7294 case NT_NETBSDCORE_FIRSTMACH
+0:
7295 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7297 case NT_NETBSDCORE_FIRSTMACH
+2:
7298 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7304 /* On all other arch's, PT_GETREGS == mach+1 and
7305 PT_GETFPREGS == mach+3. */
7310 case NT_NETBSDCORE_FIRSTMACH
+1:
7311 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7313 case NT_NETBSDCORE_FIRSTMACH
+3:
7314 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7324 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t
*tid
)
7326 void *ddata
= note
->descdata
;
7333 /* nto_procfs_status 'pid' field is at offset 0. */
7334 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
7336 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7337 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
7339 /* nto_procfs_status 'flags' field is at offset 8. */
7340 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
7342 /* nto_procfs_status 'what' field is at offset 14. */
7343 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
7345 elf_tdata (abfd
)->core_signal
= sig
;
7346 elf_tdata (abfd
)->core_lwpid
= *tid
;
7349 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7350 do not come from signals so we make sure we set the current
7351 thread just in case. */
7352 if (flags
& 0x00000080)
7353 elf_tdata (abfd
)->core_lwpid
= *tid
;
7355 /* Make a ".qnx_core_status/%d" section. */
7356 sprintf (buf
, ".qnx_core_status/%ld", (long) *tid
);
7358 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7363 sect
= bfd_make_section_anyway (abfd
, name
);
7367 sect
->size
= note
->descsz
;
7368 sect
->filepos
= note
->descpos
;
7369 sect
->flags
= SEC_HAS_CONTENTS
;
7370 sect
->alignment_power
= 2;
7372 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
7376 elfcore_grok_nto_regs (bfd
*abfd
,
7377 Elf_Internal_Note
*note
,
7385 /* Make a "(base)/%d" section. */
7386 sprintf (buf
, "%s/%ld", base
, (long) tid
);
7388 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7393 sect
= bfd_make_section_anyway (abfd
, name
);
7397 sect
->size
= note
->descsz
;
7398 sect
->filepos
= note
->descpos
;
7399 sect
->flags
= SEC_HAS_CONTENTS
;
7400 sect
->alignment_power
= 2;
7402 /* This is the current thread. */
7403 if (elf_tdata (abfd
)->core_lwpid
== tid
)
7404 return elfcore_maybe_make_sect (abfd
, base
, sect
);
7409 #define BFD_QNT_CORE_INFO 7
7410 #define BFD_QNT_CORE_STATUS 8
7411 #define BFD_QNT_CORE_GREG 9
7412 #define BFD_QNT_CORE_FPREG 10
7415 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7417 /* Every GREG section has a STATUS section before it. Store the
7418 tid from the previous call to pass down to the next gregs
7420 static pid_t tid
= 1;
7424 case BFD_QNT_CORE_INFO
:
7425 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
7426 case BFD_QNT_CORE_STATUS
:
7427 return elfcore_grok_nto_status (abfd
, note
, &tid
);
7428 case BFD_QNT_CORE_GREG
:
7429 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
7430 case BFD_QNT_CORE_FPREG
:
7431 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
7437 /* Function: elfcore_write_note
7444 size of data for note
7447 End of buffer containing note. */
7450 elfcore_write_note (bfd
*abfd
,
7458 Elf_External_Note
*xnp
;
7468 const struct elf_backend_data
*bed
;
7470 namesz
= strlen (name
) + 1;
7471 bed
= get_elf_backend_data (abfd
);
7472 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
7475 newspace
= 12 + namesz
+ pad
+ size
;
7477 p
= realloc (buf
, *bufsiz
+ newspace
);
7479 *bufsiz
+= newspace
;
7480 xnp
= (Elf_External_Note
*) dest
;
7481 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
7482 H_PUT_32 (abfd
, size
, xnp
->descsz
);
7483 H_PUT_32 (abfd
, type
, xnp
->type
);
7487 memcpy (dest
, name
, namesz
);
7495 memcpy (dest
, input
, size
);
7499 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7501 elfcore_write_prpsinfo (bfd
*abfd
,
7508 char *note_name
= "CORE";
7510 #if defined (HAVE_PSINFO_T)
7512 note_type
= NT_PSINFO
;
7515 note_type
= NT_PRPSINFO
;
7518 memset (&data
, 0, sizeof (data
));
7519 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
7520 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
7521 return elfcore_write_note (abfd
, buf
, bufsiz
,
7522 note_name
, note_type
, &data
, sizeof (data
));
7524 #endif /* PSINFO_T or PRPSINFO_T */
7526 #if defined (HAVE_PRSTATUS_T)
7528 elfcore_write_prstatus (bfd
*abfd
,
7536 char *note_name
= "CORE";
7538 memset (&prstat
, 0, sizeof (prstat
));
7539 prstat
.pr_pid
= pid
;
7540 prstat
.pr_cursig
= cursig
;
7541 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
7542 return elfcore_write_note (abfd
, buf
, bufsiz
,
7543 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
7545 #endif /* HAVE_PRSTATUS_T */
7547 #if defined (HAVE_LWPSTATUS_T)
7549 elfcore_write_lwpstatus (bfd
*abfd
,
7556 lwpstatus_t lwpstat
;
7557 char *note_name
= "CORE";
7559 memset (&lwpstat
, 0, sizeof (lwpstat
));
7560 lwpstat
.pr_lwpid
= pid
>> 16;
7561 lwpstat
.pr_cursig
= cursig
;
7562 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7563 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
7564 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7566 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
7567 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
7569 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
7570 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
7573 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7574 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
7576 #endif /* HAVE_LWPSTATUS_T */
7578 #if defined (HAVE_PSTATUS_T)
7580 elfcore_write_pstatus (bfd
*abfd
,
7588 char *note_name
= "CORE";
7590 memset (&pstat
, 0, sizeof (pstat
));
7591 pstat
.pr_pid
= pid
& 0xffff;
7592 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7593 NT_PSTATUS
, &pstat
, sizeof (pstat
));
7596 #endif /* HAVE_PSTATUS_T */
7599 elfcore_write_prfpreg (bfd
*abfd
,
7605 char *note_name
= "CORE";
7606 return elfcore_write_note (abfd
, buf
, bufsiz
,
7607 note_name
, NT_FPREGSET
, fpregs
, size
);
7611 elfcore_write_prxfpreg (bfd
*abfd
,
7614 const void *xfpregs
,
7617 char *note_name
= "LINUX";
7618 return elfcore_write_note (abfd
, buf
, bufsiz
,
7619 note_name
, NT_PRXFPREG
, xfpregs
, size
);
7623 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
7631 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
7634 buf
= bfd_malloc (size
);
7638 if (bfd_bread (buf
, size
, abfd
) != size
)
7646 while (p
< buf
+ size
)
7648 /* FIXME: bad alignment assumption. */
7649 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
7650 Elf_Internal_Note in
;
7652 in
.type
= H_GET_32 (abfd
, xnp
->type
);
7654 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
7655 in
.namedata
= xnp
->name
;
7657 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
7658 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
7659 in
.descpos
= offset
+ (in
.descdata
- buf
);
7661 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
7663 if (! elfcore_grok_netbsd_note (abfd
, &in
))
7666 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
7668 if (! elfcore_grok_nto_note (abfd
, &in
))
7673 if (! elfcore_grok_note (abfd
, &in
))
7677 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
7684 /* Providing external access to the ELF program header table. */
7686 /* Return an upper bound on the number of bytes required to store a
7687 copy of ABFD's program header table entries. Return -1 if an error
7688 occurs; bfd_get_error will return an appropriate code. */
7691 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
7693 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7695 bfd_set_error (bfd_error_wrong_format
);
7699 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
7702 /* Copy ABFD's program header table entries to *PHDRS. The entries
7703 will be stored as an array of Elf_Internal_Phdr structures, as
7704 defined in include/elf/internal.h. To find out how large the
7705 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7707 Return the number of program header table entries read, or -1 if an
7708 error occurs; bfd_get_error will return an appropriate code. */
7711 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
7715 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7717 bfd_set_error (bfd_error_wrong_format
);
7721 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
7722 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
7723 num_phdrs
* sizeof (Elf_Internal_Phdr
));
7729 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
7732 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7734 i_ehdrp
= elf_elfheader (abfd
);
7735 if (i_ehdrp
== NULL
)
7736 sprintf_vma (buf
, value
);
7739 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7741 #if BFD_HOST_64BIT_LONG
7742 sprintf (buf
, "%016lx", value
);
7744 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
7745 _bfd_int64_low (value
));
7749 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
7752 sprintf_vma (buf
, value
);
7757 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
7760 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7762 i_ehdrp
= elf_elfheader (abfd
);
7763 if (i_ehdrp
== NULL
)
7764 fprintf_vma ((FILE *) stream
, value
);
7767 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7769 #if BFD_HOST_64BIT_LONG
7770 fprintf ((FILE *) stream
, "%016lx", value
);
7772 fprintf ((FILE *) stream
, "%08lx%08lx",
7773 _bfd_int64_high (value
), _bfd_int64_low (value
));
7777 fprintf ((FILE *) stream
, "%08lx",
7778 (unsigned long) (value
& 0xffffffff));
7781 fprintf_vma ((FILE *) stream
, value
);
7785 enum elf_reloc_type_class
7786 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
7788 return reloc_class_normal
;
7791 /* For RELA architectures, return the relocation value for a
7792 relocation against a local symbol. */
7795 _bfd_elf_rela_local_sym (bfd
*abfd
,
7796 Elf_Internal_Sym
*sym
,
7798 Elf_Internal_Rela
*rel
)
7800 asection
*sec
= *psec
;
7803 relocation
= (sec
->output_section
->vma
7804 + sec
->output_offset
7806 if ((sec
->flags
& SEC_MERGE
)
7807 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
7808 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
7811 _bfd_merged_section_offset (abfd
, psec
,
7812 elf_section_data (sec
)->sec_info
,
7813 sym
->st_value
+ rel
->r_addend
);
7816 /* If we have changed the section, and our original section is
7817 marked with SEC_EXCLUDE, it means that the original
7818 SEC_MERGE section has been completely subsumed in some
7819 other SEC_MERGE section. In this case, we need to leave
7820 some info around for --emit-relocs. */
7821 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
7822 sec
->kept_section
= *psec
;
7825 rel
->r_addend
-= relocation
;
7826 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
7832 _bfd_elf_rel_local_sym (bfd
*abfd
,
7833 Elf_Internal_Sym
*sym
,
7837 asection
*sec
= *psec
;
7839 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
7840 return sym
->st_value
+ addend
;
7842 return _bfd_merged_section_offset (abfd
, psec
,
7843 elf_section_data (sec
)->sec_info
,
7844 sym
->st_value
+ addend
);
7848 _bfd_elf_section_offset (bfd
*abfd
,
7849 struct bfd_link_info
*info
,
7853 switch (sec
->sec_info_type
)
7855 case ELF_INFO_TYPE_STABS
:
7856 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
7858 case ELF_INFO_TYPE_EH_FRAME
:
7859 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
7865 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7866 reconstruct an ELF file by reading the segments out of remote memory
7867 based on the ELF file header at EHDR_VMA and the ELF program headers it
7868 points to. If not null, *LOADBASEP is filled in with the difference
7869 between the VMAs from which the segments were read, and the VMAs the
7870 file headers (and hence BFD's idea of each section's VMA) put them at.
7872 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7873 remote memory at target address VMA into the local buffer at MYADDR; it
7874 should return zero on success or an `errno' code on failure. TEMPL must
7875 be a BFD for an ELF target with the word size and byte order found in
7876 the remote memory. */
7879 bfd_elf_bfd_from_remote_memory
7883 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
7885 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
7886 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
7890 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
7891 long symcount ATTRIBUTE_UNUSED
,
7892 asymbol
**syms ATTRIBUTE_UNUSED
,
7897 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7900 const char *relplt_name
;
7901 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
7905 Elf_Internal_Shdr
*hdr
;
7911 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
7914 if (dynsymcount
<= 0)
7917 if (!bed
->plt_sym_val
)
7920 relplt_name
= bed
->relplt_name
;
7921 if (relplt_name
== NULL
)
7922 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
7923 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
7927 hdr
= &elf_section_data (relplt
)->this_hdr
;
7928 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
7929 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
7932 plt
= bfd_get_section_by_name (abfd
, ".plt");
7936 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
7937 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
7940 count
= relplt
->size
/ hdr
->sh_entsize
;
7941 size
= count
* sizeof (asymbol
);
7942 p
= relplt
->relocation
;
7943 for (i
= 0; i
< count
; i
++, s
++, p
++)
7944 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
7946 s
= *ret
= bfd_malloc (size
);
7950 names
= (char *) (s
+ count
);
7951 p
= relplt
->relocation
;
7953 for (i
= 0; i
< count
; i
++, s
++, p
++)
7958 addr
= bed
->plt_sym_val (i
, plt
, p
);
7959 if (addr
== (bfd_vma
) -1)
7962 *s
= **p
->sym_ptr_ptr
;
7964 s
->value
= addr
- plt
->vma
;
7966 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
7967 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
7969 memcpy (names
, "@plt", sizeof ("@plt"));
7970 names
+= sizeof ("@plt");
7977 /* Sort symbol by binding and section. We want to put definitions
7978 sorted by section at the beginning. */
7981 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
7983 const Elf_Internal_Sym
*s1
;
7984 const Elf_Internal_Sym
*s2
;
7987 /* Make sure that undefined symbols are at the end. */
7988 s1
= (const Elf_Internal_Sym
*) arg1
;
7989 if (s1
->st_shndx
== SHN_UNDEF
)
7991 s2
= (const Elf_Internal_Sym
*) arg2
;
7992 if (s2
->st_shndx
== SHN_UNDEF
)
7995 /* Sorted by section index. */
7996 shndx
= s1
->st_shndx
- s2
->st_shndx
;
8000 /* Sorted by binding. */
8001 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
8006 Elf_Internal_Sym
*sym
;
8011 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8013 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8014 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8015 return strcmp (s1
->name
, s2
->name
);
8018 /* Check if 2 sections define the same set of local and global
8022 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
)
8025 const struct elf_backend_data
*bed1
, *bed2
;
8026 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8027 bfd_size_type symcount1
, symcount2
;
8028 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8029 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
8030 Elf_Internal_Sym
*isymend
;
8031 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
8032 bfd_size_type count1
, count2
, i
;
8039 /* If both are .gnu.linkonce sections, they have to have the same
8041 if (strncmp (sec1
->name
, ".gnu.linkonce",
8042 sizeof ".gnu.linkonce" - 1) == 0
8043 && strncmp (sec2
->name
, ".gnu.linkonce",
8044 sizeof ".gnu.linkonce" - 1) == 0)
8045 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8046 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8048 /* Both sections have to be in ELF. */
8049 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8050 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8053 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8056 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8057 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8059 /* If both are members of section groups, they have to have the
8061 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8065 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8066 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8067 if (shndx1
== -1 || shndx2
== -1)
8070 bed1
= get_elf_backend_data (bfd1
);
8071 bed2
= get_elf_backend_data (bfd2
);
8072 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8073 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8074 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8075 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8077 if (symcount1
== 0 || symcount2
== 0)
8080 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8082 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8086 if (isymbuf1
== NULL
|| isymbuf2
== NULL
)
8089 /* Sort symbols by binding and section. Global definitions are at
8091 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
8092 elf_sort_elf_symbol
);
8093 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
8094 elf_sort_elf_symbol
);
8096 /* Count definitions in the section. */
8098 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
8099 isym
< isymend
; isym
++)
8101 if (isym
->st_shndx
== (unsigned int) shndx1
)
8108 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
8113 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
8114 isym
< isymend
; isym
++)
8116 if (isym
->st_shndx
== (unsigned int) shndx2
)
8123 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
8127 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8130 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8131 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8133 if (symtable1
== NULL
|| symtable2
== NULL
)
8137 for (isym
= isymstart1
, isymend
= isym
+ count1
;
8138 isym
< isymend
; isym
++)
8141 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8148 for (isym
= isymstart2
, isymend
= isym
+ count1
;
8149 isym
< isymend
; isym
++)
8152 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8158 /* Sort symbol by name. */
8159 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8160 elf_sym_name_compare
);
8161 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8162 elf_sym_name_compare
);
8164 for (i
= 0; i
< count1
; i
++)
8165 /* Two symbols must have the same binding, type and name. */
8166 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8167 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8168 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)