2005-03-31 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static bfd_byte *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 bfd_byte *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 bfd_byte *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return NULL;
263
264 shstrtab = i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return (char *) shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
295 (*_bfd_error_handler)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd, strindex, (unsigned long) hdr->sh_size,
298 (shindex == shstrndx && strindex == hdr->sh_name
299 ? ".shstrtab"
300 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_sym_name (bfd *abfd,
409 Elf_Internal_Shdr *symtab_hdr,
410 Elf_Internal_Sym *isym)
411 {
412 unsigned int iname = isym->st_name;
413 unsigned int shindex = symtab_hdr->sh_link;
414 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
415 /* Check for a bogus st_shndx to avoid crashing. */
416 && isym->st_shndx < elf_numsections (abfd)
417 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
418 {
419 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
420 shindex = elf_elfheader (abfd)->e_shstrndx;
421 }
422
423 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
424 }
425
426 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
427 sections. The first element is the flags, the rest are section
428 pointers. */
429
430 typedef union elf_internal_group {
431 Elf_Internal_Shdr *shdr;
432 unsigned int flags;
433 } Elf_Internal_Group;
434
435 /* Return the name of the group signature symbol. Why isn't the
436 signature just a string? */
437
438 static const char *
439 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
440 {
441 Elf_Internal_Shdr *hdr;
442 unsigned char esym[sizeof (Elf64_External_Sym)];
443 Elf_External_Sym_Shndx eshndx;
444 Elf_Internal_Sym isym;
445
446 /* First we need to ensure the symbol table is available. */
447 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
448 return NULL;
449
450 /* Go read the symbol. */
451 hdr = &elf_tdata (abfd)->symtab_hdr;
452 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
453 &isym, esym, &eshndx) == NULL)
454 return NULL;
455
456 return bfd_elf_sym_name (abfd, hdr, &isym);
457 }
458
459 /* Set next_in_group list pointer, and group name for NEWSECT. */
460
461 static bfd_boolean
462 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
463 {
464 unsigned int num_group = elf_tdata (abfd)->num_group;
465
466 /* If num_group is zero, read in all SHT_GROUP sections. The count
467 is set to -1 if there are no SHT_GROUP sections. */
468 if (num_group == 0)
469 {
470 unsigned int i, shnum;
471
472 /* First count the number of groups. If we have a SHT_GROUP
473 section with just a flag word (ie. sh_size is 4), ignore it. */
474 shnum = elf_numsections (abfd);
475 num_group = 0;
476 for (i = 0; i < shnum; i++)
477 {
478 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
479 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
480 num_group += 1;
481 }
482
483 if (num_group == 0)
484 num_group = (unsigned) -1;
485 elf_tdata (abfd)->num_group = num_group;
486
487 if (num_group > 0)
488 {
489 /* We keep a list of elf section headers for group sections,
490 so we can find them quickly. */
491 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
492 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
493 if (elf_tdata (abfd)->group_sect_ptr == NULL)
494 return FALSE;
495
496 num_group = 0;
497 for (i = 0; i < shnum; i++)
498 {
499 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
500 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
501 {
502 unsigned char *src;
503 Elf_Internal_Group *dest;
504
505 /* Add to list of sections. */
506 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
507 num_group += 1;
508
509 /* Read the raw contents. */
510 BFD_ASSERT (sizeof (*dest) >= 4);
511 amt = shdr->sh_size * sizeof (*dest) / 4;
512 shdr->contents = bfd_alloc (abfd, amt);
513 if (shdr->contents == NULL
514 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
515 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
516 != shdr->sh_size))
517 return FALSE;
518
519 /* Translate raw contents, a flag word followed by an
520 array of elf section indices all in target byte order,
521 to the flag word followed by an array of elf section
522 pointers. */
523 src = shdr->contents + shdr->sh_size;
524 dest = (Elf_Internal_Group *) (shdr->contents + amt);
525 while (1)
526 {
527 unsigned int idx;
528
529 src -= 4;
530 --dest;
531 idx = H_GET_32 (abfd, src);
532 if (src == shdr->contents)
533 {
534 dest->flags = idx;
535 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
536 shdr->bfd_section->flags
537 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
538 break;
539 }
540 if (idx >= shnum)
541 {
542 ((*_bfd_error_handler)
543 (_("%B: invalid SHT_GROUP entry"), abfd));
544 idx = 0;
545 }
546 dest->shdr = elf_elfsections (abfd)[idx];
547 }
548 }
549 }
550 }
551 }
552
553 if (num_group != (unsigned) -1)
554 {
555 unsigned int i;
556
557 for (i = 0; i < num_group; i++)
558 {
559 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
560 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
561 unsigned int n_elt = shdr->sh_size / 4;
562
563 /* Look through this group's sections to see if current
564 section is a member. */
565 while (--n_elt != 0)
566 if ((++idx)->shdr == hdr)
567 {
568 asection *s = NULL;
569
570 /* We are a member of this group. Go looking through
571 other members to see if any others are linked via
572 next_in_group. */
573 idx = (Elf_Internal_Group *) shdr->contents;
574 n_elt = shdr->sh_size / 4;
575 while (--n_elt != 0)
576 if ((s = (++idx)->shdr->bfd_section) != NULL
577 && elf_next_in_group (s) != NULL)
578 break;
579 if (n_elt != 0)
580 {
581 /* Snarf the group name from other member, and
582 insert current section in circular list. */
583 elf_group_name (newsect) = elf_group_name (s);
584 elf_next_in_group (newsect) = elf_next_in_group (s);
585 elf_next_in_group (s) = newsect;
586 }
587 else
588 {
589 const char *gname;
590
591 gname = group_signature (abfd, shdr);
592 if (gname == NULL)
593 return FALSE;
594 elf_group_name (newsect) = gname;
595
596 /* Start a circular list with one element. */
597 elf_next_in_group (newsect) = newsect;
598 }
599
600 /* If the group section has been created, point to the
601 new member. */
602 if (shdr->bfd_section != NULL)
603 elf_next_in_group (shdr->bfd_section) = newsect;
604
605 i = num_group - 1;
606 break;
607 }
608 }
609 }
610
611 if (elf_group_name (newsect) == NULL)
612 {
613 (*_bfd_error_handler) (_("%B: no group info for section %A"),
614 abfd, newsect);
615 }
616 return TRUE;
617 }
618
619 bfd_boolean
620 _bfd_elf_setup_group_pointers (bfd *abfd)
621 {
622 unsigned int i;
623 unsigned int num_group = elf_tdata (abfd)->num_group;
624 bfd_boolean result = TRUE;
625
626 if (num_group == (unsigned) -1)
627 return result;
628
629 for (i = 0; i < num_group; i++)
630 {
631 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
632 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
633 unsigned int n_elt = shdr->sh_size / 4;
634
635 while (--n_elt != 0)
636 if ((++idx)->shdr->bfd_section)
637 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
638 else if (idx->shdr->sh_type == SHT_RELA
639 || idx->shdr->sh_type == SHT_REL)
640 /* We won't include relocation sections in section groups in
641 output object files. We adjust the group section size here
642 so that relocatable link will work correctly when
643 relocation sections are in section group in input object
644 files. */
645 shdr->bfd_section->size -= 4;
646 else
647 {
648 /* There are some unknown sections in the group. */
649 (*_bfd_error_handler)
650 (_("%B: unknown [%d] section `%s' in group [%s]"),
651 abfd,
652 (unsigned int) idx->shdr->sh_type,
653 bfd_elf_string_from_elf_section (abfd,
654 (elf_elfheader (abfd)
655 ->e_shstrndx),
656 idx->shdr->sh_name),
657 shdr->bfd_section->name);
658 result = FALSE;
659 }
660 }
661 return result;
662 }
663
664 bfd_boolean
665 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
666 {
667 return elf_next_in_group (sec) != NULL;
668 }
669
670 /* Make a BFD section from an ELF section. We store a pointer to the
671 BFD section in the bfd_section field of the header. */
672
673 bfd_boolean
674 _bfd_elf_make_section_from_shdr (bfd *abfd,
675 Elf_Internal_Shdr *hdr,
676 const char *name,
677 int shindex)
678 {
679 asection *newsect;
680 flagword flags;
681 const struct elf_backend_data *bed;
682
683 if (hdr->bfd_section != NULL)
684 {
685 BFD_ASSERT (strcmp (name,
686 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
687 return TRUE;
688 }
689
690 newsect = bfd_make_section_anyway (abfd, name);
691 if (newsect == NULL)
692 return FALSE;
693
694 hdr->bfd_section = newsect;
695 elf_section_data (newsect)->this_hdr = *hdr;
696 elf_section_data (newsect)->this_idx = shindex;
697
698 /* Always use the real type/flags. */
699 elf_section_type (newsect) = hdr->sh_type;
700 elf_section_flags (newsect) = hdr->sh_flags;
701
702 newsect->filepos = hdr->sh_offset;
703
704 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
705 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
706 || ! bfd_set_section_alignment (abfd, newsect,
707 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
708 return FALSE;
709
710 flags = SEC_NO_FLAGS;
711 if (hdr->sh_type != SHT_NOBITS)
712 flags |= SEC_HAS_CONTENTS;
713 if (hdr->sh_type == SHT_GROUP)
714 flags |= SEC_GROUP | SEC_EXCLUDE;
715 if ((hdr->sh_flags & SHF_ALLOC) != 0)
716 {
717 flags |= SEC_ALLOC;
718 if (hdr->sh_type != SHT_NOBITS)
719 flags |= SEC_LOAD;
720 }
721 if ((hdr->sh_flags & SHF_WRITE) == 0)
722 flags |= SEC_READONLY;
723 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
724 flags |= SEC_CODE;
725 else if ((flags & SEC_LOAD) != 0)
726 flags |= SEC_DATA;
727 if ((hdr->sh_flags & SHF_MERGE) != 0)
728 {
729 flags |= SEC_MERGE;
730 newsect->entsize = hdr->sh_entsize;
731 if ((hdr->sh_flags & SHF_STRINGS) != 0)
732 flags |= SEC_STRINGS;
733 }
734 if (hdr->sh_flags & SHF_GROUP)
735 if (!setup_group (abfd, hdr, newsect))
736 return FALSE;
737 if ((hdr->sh_flags & SHF_TLS) != 0)
738 flags |= SEC_THREAD_LOCAL;
739
740 /* The debugging sections appear to be recognized only by name, not
741 any sort of flag. */
742 {
743 static const char *debug_sec_names [] =
744 {
745 ".debug",
746 ".gnu.linkonce.wi.",
747 ".line",
748 ".stab"
749 };
750 int i;
751
752 for (i = ARRAY_SIZE (debug_sec_names); i--;)
753 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
754 break;
755
756 if (i >= 0)
757 flags |= SEC_DEBUGGING;
758 }
759
760 /* As a GNU extension, if the name begins with .gnu.linkonce, we
761 only link a single copy of the section. This is used to support
762 g++. g++ will emit each template expansion in its own section.
763 The symbols will be defined as weak, so that multiple definitions
764 are permitted. The GNU linker extension is to actually discard
765 all but one of the sections. */
766 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
767 && elf_next_in_group (newsect) == NULL)
768 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
769
770 bed = get_elf_backend_data (abfd);
771 if (bed->elf_backend_section_flags)
772 if (! bed->elf_backend_section_flags (&flags, hdr))
773 return FALSE;
774
775 if (! bfd_set_section_flags (abfd, newsect, flags))
776 return FALSE;
777
778 if ((flags & SEC_ALLOC) != 0)
779 {
780 Elf_Internal_Phdr *phdr;
781 unsigned int i;
782
783 /* Look through the phdrs to see if we need to adjust the lma.
784 If all the p_paddr fields are zero, we ignore them, since
785 some ELF linkers produce such output. */
786 phdr = elf_tdata (abfd)->phdr;
787 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
788 {
789 if (phdr->p_paddr != 0)
790 break;
791 }
792 if (i < elf_elfheader (abfd)->e_phnum)
793 {
794 phdr = elf_tdata (abfd)->phdr;
795 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
796 {
797 /* This section is part of this segment if its file
798 offset plus size lies within the segment's memory
799 span and, if the section is loaded, the extent of the
800 loaded data lies within the extent of the segment.
801
802 Note - we used to check the p_paddr field as well, and
803 refuse to set the LMA if it was 0. This is wrong
804 though, as a perfectly valid initialised segment can
805 have a p_paddr of zero. Some architectures, eg ARM,
806 place special significance on the address 0 and
807 executables need to be able to have a segment which
808 covers this address. */
809 if (phdr->p_type == PT_LOAD
810 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
811 && (hdr->sh_offset + hdr->sh_size
812 <= phdr->p_offset + phdr->p_memsz)
813 && ((flags & SEC_LOAD) == 0
814 || (hdr->sh_offset + hdr->sh_size
815 <= phdr->p_offset + phdr->p_filesz)))
816 {
817 if ((flags & SEC_LOAD) == 0)
818 newsect->lma = (phdr->p_paddr
819 + hdr->sh_addr - phdr->p_vaddr);
820 else
821 /* We used to use the same adjustment for SEC_LOAD
822 sections, but that doesn't work if the segment
823 is packed with code from multiple VMAs.
824 Instead we calculate the section LMA based on
825 the segment LMA. It is assumed that the
826 segment will contain sections with contiguous
827 LMAs, even if the VMAs are not. */
828 newsect->lma = (phdr->p_paddr
829 + hdr->sh_offset - phdr->p_offset);
830
831 /* With contiguous segments, we can't tell from file
832 offsets whether a section with zero size should
833 be placed at the end of one segment or the
834 beginning of the next. Decide based on vaddr. */
835 if (hdr->sh_addr >= phdr->p_vaddr
836 && (hdr->sh_addr + hdr->sh_size
837 <= phdr->p_vaddr + phdr->p_memsz))
838 break;
839 }
840 }
841 }
842 }
843
844 return TRUE;
845 }
846
847 /*
848 INTERNAL_FUNCTION
849 bfd_elf_find_section
850
851 SYNOPSIS
852 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
853
854 DESCRIPTION
855 Helper functions for GDB to locate the string tables.
856 Since BFD hides string tables from callers, GDB needs to use an
857 internal hook to find them. Sun's .stabstr, in particular,
858 isn't even pointed to by the .stab section, so ordinary
859 mechanisms wouldn't work to find it, even if we had some.
860 */
861
862 struct elf_internal_shdr *
863 bfd_elf_find_section (bfd *abfd, char *name)
864 {
865 Elf_Internal_Shdr **i_shdrp;
866 char *shstrtab;
867 unsigned int max;
868 unsigned int i;
869
870 i_shdrp = elf_elfsections (abfd);
871 if (i_shdrp != NULL)
872 {
873 shstrtab = bfd_elf_get_str_section (abfd,
874 elf_elfheader (abfd)->e_shstrndx);
875 if (shstrtab != NULL)
876 {
877 max = elf_numsections (abfd);
878 for (i = 1; i < max; i++)
879 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
880 return i_shdrp[i];
881 }
882 }
883 return 0;
884 }
885
886 const char *const bfd_elf_section_type_names[] = {
887 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
888 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
889 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
890 };
891
892 /* ELF relocs are against symbols. If we are producing relocatable
893 output, and the reloc is against an external symbol, and nothing
894 has given us any additional addend, the resulting reloc will also
895 be against the same symbol. In such a case, we don't want to
896 change anything about the way the reloc is handled, since it will
897 all be done at final link time. Rather than put special case code
898 into bfd_perform_relocation, all the reloc types use this howto
899 function. It just short circuits the reloc if producing
900 relocatable output against an external symbol. */
901
902 bfd_reloc_status_type
903 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
904 arelent *reloc_entry,
905 asymbol *symbol,
906 void *data ATTRIBUTE_UNUSED,
907 asection *input_section,
908 bfd *output_bfd,
909 char **error_message ATTRIBUTE_UNUSED)
910 {
911 if (output_bfd != NULL
912 && (symbol->flags & BSF_SECTION_SYM) == 0
913 && (! reloc_entry->howto->partial_inplace
914 || reloc_entry->addend == 0))
915 {
916 reloc_entry->address += input_section->output_offset;
917 return bfd_reloc_ok;
918 }
919
920 return bfd_reloc_continue;
921 }
922 \f
923 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
924
925 static void
926 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
927 asection *sec)
928 {
929 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
930 sec->sec_info_type = ELF_INFO_TYPE_NONE;
931 }
932
933 /* Finish SHF_MERGE section merging. */
934
935 bfd_boolean
936 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
937 {
938 bfd *ibfd;
939 asection *sec;
940
941 if (!is_elf_hash_table (info->hash))
942 return FALSE;
943
944 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
945 if ((ibfd->flags & DYNAMIC) == 0)
946 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
947 if ((sec->flags & SEC_MERGE) != 0
948 && !bfd_is_abs_section (sec->output_section))
949 {
950 struct bfd_elf_section_data *secdata;
951
952 secdata = elf_section_data (sec);
953 if (! _bfd_add_merge_section (abfd,
954 &elf_hash_table (info)->merge_info,
955 sec, &secdata->sec_info))
956 return FALSE;
957 else if (secdata->sec_info)
958 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
959 }
960
961 if (elf_hash_table (info)->merge_info != NULL)
962 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
963 merge_sections_remove_hook);
964 return TRUE;
965 }
966
967 void
968 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
969 {
970 sec->output_section = bfd_abs_section_ptr;
971 sec->output_offset = sec->vma;
972 if (!is_elf_hash_table (info->hash))
973 return;
974
975 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
976 }
977 \f
978 /* Copy the program header and other data from one object module to
979 another. */
980
981 bfd_boolean
982 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
983 {
984 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
985 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
986 return TRUE;
987
988 BFD_ASSERT (!elf_flags_init (obfd)
989 || (elf_elfheader (obfd)->e_flags
990 == elf_elfheader (ibfd)->e_flags));
991
992 elf_gp (obfd) = elf_gp (ibfd);
993 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
994 elf_flags_init (obfd) = TRUE;
995 return TRUE;
996 }
997
998 /* Print out the program headers. */
999
1000 bfd_boolean
1001 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1002 {
1003 FILE *f = farg;
1004 Elf_Internal_Phdr *p;
1005 asection *s;
1006 bfd_byte *dynbuf = NULL;
1007
1008 p = elf_tdata (abfd)->phdr;
1009 if (p != NULL)
1010 {
1011 unsigned int i, c;
1012
1013 fprintf (f, _("\nProgram Header:\n"));
1014 c = elf_elfheader (abfd)->e_phnum;
1015 for (i = 0; i < c; i++, p++)
1016 {
1017 const char *pt;
1018 char buf[20];
1019
1020 switch (p->p_type)
1021 {
1022 case PT_NULL: pt = "NULL"; break;
1023 case PT_LOAD: pt = "LOAD"; break;
1024 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1025 case PT_INTERP: pt = "INTERP"; break;
1026 case PT_NOTE: pt = "NOTE"; break;
1027 case PT_SHLIB: pt = "SHLIB"; break;
1028 case PT_PHDR: pt = "PHDR"; break;
1029 case PT_TLS: pt = "TLS"; break;
1030 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1031 case PT_GNU_STACK: pt = "STACK"; break;
1032 case PT_GNU_RELRO: pt = "RELRO"; break;
1033 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1034 }
1035 fprintf (f, "%8s off 0x", pt);
1036 bfd_fprintf_vma (abfd, f, p->p_offset);
1037 fprintf (f, " vaddr 0x");
1038 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1039 fprintf (f, " paddr 0x");
1040 bfd_fprintf_vma (abfd, f, p->p_paddr);
1041 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1042 fprintf (f, " filesz 0x");
1043 bfd_fprintf_vma (abfd, f, p->p_filesz);
1044 fprintf (f, " memsz 0x");
1045 bfd_fprintf_vma (abfd, f, p->p_memsz);
1046 fprintf (f, " flags %c%c%c",
1047 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1048 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1049 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1050 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1051 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1052 fprintf (f, "\n");
1053 }
1054 }
1055
1056 s = bfd_get_section_by_name (abfd, ".dynamic");
1057 if (s != NULL)
1058 {
1059 int elfsec;
1060 unsigned long shlink;
1061 bfd_byte *extdyn, *extdynend;
1062 size_t extdynsize;
1063 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1064
1065 fprintf (f, _("\nDynamic Section:\n"));
1066
1067 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1068 goto error_return;
1069
1070 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1071 if (elfsec == -1)
1072 goto error_return;
1073 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1074
1075 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1076 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1077
1078 extdyn = dynbuf;
1079 extdynend = extdyn + s->size;
1080 for (; extdyn < extdynend; extdyn += extdynsize)
1081 {
1082 Elf_Internal_Dyn dyn;
1083 const char *name;
1084 char ab[20];
1085 bfd_boolean stringp;
1086
1087 (*swap_dyn_in) (abfd, extdyn, &dyn);
1088
1089 if (dyn.d_tag == DT_NULL)
1090 break;
1091
1092 stringp = FALSE;
1093 switch (dyn.d_tag)
1094 {
1095 default:
1096 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1097 name = ab;
1098 break;
1099
1100 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1101 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1102 case DT_PLTGOT: name = "PLTGOT"; break;
1103 case DT_HASH: name = "HASH"; break;
1104 case DT_STRTAB: name = "STRTAB"; break;
1105 case DT_SYMTAB: name = "SYMTAB"; break;
1106 case DT_RELA: name = "RELA"; break;
1107 case DT_RELASZ: name = "RELASZ"; break;
1108 case DT_RELAENT: name = "RELAENT"; break;
1109 case DT_STRSZ: name = "STRSZ"; break;
1110 case DT_SYMENT: name = "SYMENT"; break;
1111 case DT_INIT: name = "INIT"; break;
1112 case DT_FINI: name = "FINI"; break;
1113 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1114 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1115 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1116 case DT_REL: name = "REL"; break;
1117 case DT_RELSZ: name = "RELSZ"; break;
1118 case DT_RELENT: name = "RELENT"; break;
1119 case DT_PLTREL: name = "PLTREL"; break;
1120 case DT_DEBUG: name = "DEBUG"; break;
1121 case DT_TEXTREL: name = "TEXTREL"; break;
1122 case DT_JMPREL: name = "JMPREL"; break;
1123 case DT_BIND_NOW: name = "BIND_NOW"; break;
1124 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1125 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1126 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1127 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1128 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1129 case DT_FLAGS: name = "FLAGS"; break;
1130 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1131 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1132 case DT_CHECKSUM: name = "CHECKSUM"; break;
1133 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1134 case DT_MOVEENT: name = "MOVEENT"; break;
1135 case DT_MOVESZ: name = "MOVESZ"; break;
1136 case DT_FEATURE: name = "FEATURE"; break;
1137 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1138 case DT_SYMINSZ: name = "SYMINSZ"; break;
1139 case DT_SYMINENT: name = "SYMINENT"; break;
1140 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1141 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1142 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1143 case DT_PLTPAD: name = "PLTPAD"; break;
1144 case DT_MOVETAB: name = "MOVETAB"; break;
1145 case DT_SYMINFO: name = "SYMINFO"; break;
1146 case DT_RELACOUNT: name = "RELACOUNT"; break;
1147 case DT_RELCOUNT: name = "RELCOUNT"; break;
1148 case DT_FLAGS_1: name = "FLAGS_1"; break;
1149 case DT_VERSYM: name = "VERSYM"; break;
1150 case DT_VERDEF: name = "VERDEF"; break;
1151 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1152 case DT_VERNEED: name = "VERNEED"; break;
1153 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1154 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1155 case DT_USED: name = "USED"; break;
1156 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1157 }
1158
1159 fprintf (f, " %-11s ", name);
1160 if (! stringp)
1161 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1162 else
1163 {
1164 const char *string;
1165 unsigned int tagv = dyn.d_un.d_val;
1166
1167 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1168 if (string == NULL)
1169 goto error_return;
1170 fprintf (f, "%s", string);
1171 }
1172 fprintf (f, "\n");
1173 }
1174
1175 free (dynbuf);
1176 dynbuf = NULL;
1177 }
1178
1179 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1180 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1181 {
1182 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1183 return FALSE;
1184 }
1185
1186 if (elf_dynverdef (abfd) != 0)
1187 {
1188 Elf_Internal_Verdef *t;
1189
1190 fprintf (f, _("\nVersion definitions:\n"));
1191 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1192 {
1193 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1194 t->vd_flags, t->vd_hash, t->vd_nodename);
1195 if (t->vd_auxptr->vda_nextptr != NULL)
1196 {
1197 Elf_Internal_Verdaux *a;
1198
1199 fprintf (f, "\t");
1200 for (a = t->vd_auxptr->vda_nextptr;
1201 a != NULL;
1202 a = a->vda_nextptr)
1203 fprintf (f, "%s ", a->vda_nodename);
1204 fprintf (f, "\n");
1205 }
1206 }
1207 }
1208
1209 if (elf_dynverref (abfd) != 0)
1210 {
1211 Elf_Internal_Verneed *t;
1212
1213 fprintf (f, _("\nVersion References:\n"));
1214 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1215 {
1216 Elf_Internal_Vernaux *a;
1217
1218 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1219 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1220 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1221 a->vna_flags, a->vna_other, a->vna_nodename);
1222 }
1223 }
1224
1225 return TRUE;
1226
1227 error_return:
1228 if (dynbuf != NULL)
1229 free (dynbuf);
1230 return FALSE;
1231 }
1232
1233 /* Display ELF-specific fields of a symbol. */
1234
1235 void
1236 bfd_elf_print_symbol (bfd *abfd,
1237 void *filep,
1238 asymbol *symbol,
1239 bfd_print_symbol_type how)
1240 {
1241 FILE *file = filep;
1242 switch (how)
1243 {
1244 case bfd_print_symbol_name:
1245 fprintf (file, "%s", symbol->name);
1246 break;
1247 case bfd_print_symbol_more:
1248 fprintf (file, "elf ");
1249 bfd_fprintf_vma (abfd, file, symbol->value);
1250 fprintf (file, " %lx", (long) symbol->flags);
1251 break;
1252 case bfd_print_symbol_all:
1253 {
1254 const char *section_name;
1255 const char *name = NULL;
1256 const struct elf_backend_data *bed;
1257 unsigned char st_other;
1258 bfd_vma val;
1259
1260 section_name = symbol->section ? symbol->section->name : "(*none*)";
1261
1262 bed = get_elf_backend_data (abfd);
1263 if (bed->elf_backend_print_symbol_all)
1264 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1265
1266 if (name == NULL)
1267 {
1268 name = symbol->name;
1269 bfd_print_symbol_vandf (abfd, file, symbol);
1270 }
1271
1272 fprintf (file, " %s\t", section_name);
1273 /* Print the "other" value for a symbol. For common symbols,
1274 we've already printed the size; now print the alignment.
1275 For other symbols, we have no specified alignment, and
1276 we've printed the address; now print the size. */
1277 if (bfd_is_com_section (symbol->section))
1278 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1279 else
1280 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1281 bfd_fprintf_vma (abfd, file, val);
1282
1283 /* If we have version information, print it. */
1284 if (elf_tdata (abfd)->dynversym_section != 0
1285 && (elf_tdata (abfd)->dynverdef_section != 0
1286 || elf_tdata (abfd)->dynverref_section != 0))
1287 {
1288 unsigned int vernum;
1289 const char *version_string;
1290
1291 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1292
1293 if (vernum == 0)
1294 version_string = "";
1295 else if (vernum == 1)
1296 version_string = "Base";
1297 else if (vernum <= elf_tdata (abfd)->cverdefs)
1298 version_string =
1299 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1300 else
1301 {
1302 Elf_Internal_Verneed *t;
1303
1304 version_string = "";
1305 for (t = elf_tdata (abfd)->verref;
1306 t != NULL;
1307 t = t->vn_nextref)
1308 {
1309 Elf_Internal_Vernaux *a;
1310
1311 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1312 {
1313 if (a->vna_other == vernum)
1314 {
1315 version_string = a->vna_nodename;
1316 break;
1317 }
1318 }
1319 }
1320 }
1321
1322 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1323 fprintf (file, " %-11s", version_string);
1324 else
1325 {
1326 int i;
1327
1328 fprintf (file, " (%s)", version_string);
1329 for (i = 10 - strlen (version_string); i > 0; --i)
1330 putc (' ', file);
1331 }
1332 }
1333
1334 /* If the st_other field is not zero, print it. */
1335 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1336
1337 switch (st_other)
1338 {
1339 case 0: break;
1340 case STV_INTERNAL: fprintf (file, " .internal"); break;
1341 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1342 case STV_PROTECTED: fprintf (file, " .protected"); break;
1343 default:
1344 /* Some other non-defined flags are also present, so print
1345 everything hex. */
1346 fprintf (file, " 0x%02x", (unsigned int) st_other);
1347 }
1348
1349 fprintf (file, " %s", name);
1350 }
1351 break;
1352 }
1353 }
1354 \f
1355 /* Create an entry in an ELF linker hash table. */
1356
1357 struct bfd_hash_entry *
1358 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1359 struct bfd_hash_table *table,
1360 const char *string)
1361 {
1362 /* Allocate the structure if it has not already been allocated by a
1363 subclass. */
1364 if (entry == NULL)
1365 {
1366 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1367 if (entry == NULL)
1368 return entry;
1369 }
1370
1371 /* Call the allocation method of the superclass. */
1372 entry = _bfd_link_hash_newfunc (entry, table, string);
1373 if (entry != NULL)
1374 {
1375 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1376 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1377
1378 /* Set local fields. */
1379 ret->indx = -1;
1380 ret->dynindx = -1;
1381 ret->got = ret->plt = htab->init_refcount;
1382 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1383 - offsetof (struct elf_link_hash_entry, size)));
1384 /* Assume that we have been called by a non-ELF symbol reader.
1385 This flag is then reset by the code which reads an ELF input
1386 file. This ensures that a symbol created by a non-ELF symbol
1387 reader will have the flag set correctly. */
1388 ret->non_elf = 1;
1389 }
1390
1391 return entry;
1392 }
1393
1394 /* Copy data from an indirect symbol to its direct symbol, hiding the
1395 old indirect symbol. Also used for copying flags to a weakdef. */
1396
1397 void
1398 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1399 struct elf_link_hash_entry *dir,
1400 struct elf_link_hash_entry *ind)
1401 {
1402 bfd_signed_vma tmp;
1403 bfd_signed_vma lowest_valid = bed->can_refcount;
1404
1405 /* Copy down any references that we may have already seen to the
1406 symbol which just became indirect. */
1407
1408 dir->ref_dynamic |= ind->ref_dynamic;
1409 dir->ref_regular |= ind->ref_regular;
1410 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1411 dir->non_got_ref |= ind->non_got_ref;
1412 dir->needs_plt |= ind->needs_plt;
1413 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1414
1415 if (ind->root.type != bfd_link_hash_indirect)
1416 return;
1417
1418 /* Copy over the global and procedure linkage table refcount entries.
1419 These may have been already set up by a check_relocs routine. */
1420 tmp = dir->got.refcount;
1421 if (tmp < lowest_valid)
1422 {
1423 dir->got.refcount = ind->got.refcount;
1424 ind->got.refcount = tmp;
1425 }
1426 else
1427 BFD_ASSERT (ind->got.refcount < lowest_valid);
1428
1429 tmp = dir->plt.refcount;
1430 if (tmp < lowest_valid)
1431 {
1432 dir->plt.refcount = ind->plt.refcount;
1433 ind->plt.refcount = tmp;
1434 }
1435 else
1436 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1437
1438 if (dir->dynindx == -1)
1439 {
1440 dir->dynindx = ind->dynindx;
1441 dir->dynstr_index = ind->dynstr_index;
1442 ind->dynindx = -1;
1443 ind->dynstr_index = 0;
1444 }
1445 else
1446 BFD_ASSERT (ind->dynindx == -1);
1447 }
1448
1449 void
1450 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1451 struct elf_link_hash_entry *h,
1452 bfd_boolean force_local)
1453 {
1454 h->plt = elf_hash_table (info)->init_offset;
1455 h->needs_plt = 0;
1456 if (force_local)
1457 {
1458 h->forced_local = 1;
1459 if (h->dynindx != -1)
1460 {
1461 h->dynindx = -1;
1462 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1463 h->dynstr_index);
1464 }
1465 }
1466 }
1467
1468 /* Initialize an ELF linker hash table. */
1469
1470 bfd_boolean
1471 _bfd_elf_link_hash_table_init
1472 (struct elf_link_hash_table *table,
1473 bfd *abfd,
1474 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1475 struct bfd_hash_table *,
1476 const char *))
1477 {
1478 bfd_boolean ret;
1479
1480 table->dynamic_sections_created = FALSE;
1481 table->dynobj = NULL;
1482 /* Make sure can_refcount is extended to the width and signedness of
1483 init_refcount before we subtract one from it. */
1484 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1485 table->init_refcount.refcount -= 1;
1486 table->init_offset.offset = -(bfd_vma) 1;
1487 /* The first dynamic symbol is a dummy. */
1488 table->dynsymcount = 1;
1489 table->dynstr = NULL;
1490 table->bucketcount = 0;
1491 table->needed = NULL;
1492 table->hgot = NULL;
1493 table->merge_info = NULL;
1494 memset (&table->stab_info, 0, sizeof (table->stab_info));
1495 memset (&table->eh_info, 0, sizeof (table->eh_info));
1496 table->dynlocal = NULL;
1497 table->runpath = NULL;
1498 table->tls_sec = NULL;
1499 table->tls_size = 0;
1500 table->loaded = NULL;
1501 table->is_relocatable_executable = FALSE;
1502
1503 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1504 table->root.type = bfd_link_elf_hash_table;
1505
1506 return ret;
1507 }
1508
1509 /* Create an ELF linker hash table. */
1510
1511 struct bfd_link_hash_table *
1512 _bfd_elf_link_hash_table_create (bfd *abfd)
1513 {
1514 struct elf_link_hash_table *ret;
1515 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1516
1517 ret = bfd_malloc (amt);
1518 if (ret == NULL)
1519 return NULL;
1520
1521 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1522 {
1523 free (ret);
1524 return NULL;
1525 }
1526
1527 return &ret->root;
1528 }
1529
1530 /* This is a hook for the ELF emulation code in the generic linker to
1531 tell the backend linker what file name to use for the DT_NEEDED
1532 entry for a dynamic object. */
1533
1534 void
1535 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1536 {
1537 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1538 && bfd_get_format (abfd) == bfd_object)
1539 elf_dt_name (abfd) = name;
1540 }
1541
1542 int
1543 bfd_elf_get_dyn_lib_class (bfd *abfd)
1544 {
1545 int lib_class;
1546 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1547 && bfd_get_format (abfd) == bfd_object)
1548 lib_class = elf_dyn_lib_class (abfd);
1549 else
1550 lib_class = 0;
1551 return lib_class;
1552 }
1553
1554 void
1555 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1556 {
1557 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1558 && bfd_get_format (abfd) == bfd_object)
1559 elf_dyn_lib_class (abfd) = lib_class;
1560 }
1561
1562 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1563 the linker ELF emulation code. */
1564
1565 struct bfd_link_needed_list *
1566 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1567 struct bfd_link_info *info)
1568 {
1569 if (! is_elf_hash_table (info->hash))
1570 return NULL;
1571 return elf_hash_table (info)->needed;
1572 }
1573
1574 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1575 hook for the linker ELF emulation code. */
1576
1577 struct bfd_link_needed_list *
1578 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1579 struct bfd_link_info *info)
1580 {
1581 if (! is_elf_hash_table (info->hash))
1582 return NULL;
1583 return elf_hash_table (info)->runpath;
1584 }
1585
1586 /* Get the name actually used for a dynamic object for a link. This
1587 is the SONAME entry if there is one. Otherwise, it is the string
1588 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1589
1590 const char *
1591 bfd_elf_get_dt_soname (bfd *abfd)
1592 {
1593 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1594 && bfd_get_format (abfd) == bfd_object)
1595 return elf_dt_name (abfd);
1596 return NULL;
1597 }
1598
1599 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1600 the ELF linker emulation code. */
1601
1602 bfd_boolean
1603 bfd_elf_get_bfd_needed_list (bfd *abfd,
1604 struct bfd_link_needed_list **pneeded)
1605 {
1606 asection *s;
1607 bfd_byte *dynbuf = NULL;
1608 int elfsec;
1609 unsigned long shlink;
1610 bfd_byte *extdyn, *extdynend;
1611 size_t extdynsize;
1612 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1613
1614 *pneeded = NULL;
1615
1616 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1617 || bfd_get_format (abfd) != bfd_object)
1618 return TRUE;
1619
1620 s = bfd_get_section_by_name (abfd, ".dynamic");
1621 if (s == NULL || s->size == 0)
1622 return TRUE;
1623
1624 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1625 goto error_return;
1626
1627 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1628 if (elfsec == -1)
1629 goto error_return;
1630
1631 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1632
1633 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1634 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1635
1636 extdyn = dynbuf;
1637 extdynend = extdyn + s->size;
1638 for (; extdyn < extdynend; extdyn += extdynsize)
1639 {
1640 Elf_Internal_Dyn dyn;
1641
1642 (*swap_dyn_in) (abfd, extdyn, &dyn);
1643
1644 if (dyn.d_tag == DT_NULL)
1645 break;
1646
1647 if (dyn.d_tag == DT_NEEDED)
1648 {
1649 const char *string;
1650 struct bfd_link_needed_list *l;
1651 unsigned int tagv = dyn.d_un.d_val;
1652 bfd_size_type amt;
1653
1654 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1655 if (string == NULL)
1656 goto error_return;
1657
1658 amt = sizeof *l;
1659 l = bfd_alloc (abfd, amt);
1660 if (l == NULL)
1661 goto error_return;
1662
1663 l->by = abfd;
1664 l->name = string;
1665 l->next = *pneeded;
1666 *pneeded = l;
1667 }
1668 }
1669
1670 free (dynbuf);
1671
1672 return TRUE;
1673
1674 error_return:
1675 if (dynbuf != NULL)
1676 free (dynbuf);
1677 return FALSE;
1678 }
1679 \f
1680 /* Allocate an ELF string table--force the first byte to be zero. */
1681
1682 struct bfd_strtab_hash *
1683 _bfd_elf_stringtab_init (void)
1684 {
1685 struct bfd_strtab_hash *ret;
1686
1687 ret = _bfd_stringtab_init ();
1688 if (ret != NULL)
1689 {
1690 bfd_size_type loc;
1691
1692 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1693 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1694 if (loc == (bfd_size_type) -1)
1695 {
1696 _bfd_stringtab_free (ret);
1697 ret = NULL;
1698 }
1699 }
1700 return ret;
1701 }
1702 \f
1703 /* ELF .o/exec file reading */
1704
1705 /* Create a new bfd section from an ELF section header. */
1706
1707 bfd_boolean
1708 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1709 {
1710 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1711 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1712 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1713 const char *name;
1714
1715 name = bfd_elf_string_from_elf_section (abfd,
1716 elf_elfheader (abfd)->e_shstrndx,
1717 hdr->sh_name);
1718
1719 switch (hdr->sh_type)
1720 {
1721 case SHT_NULL:
1722 /* Inactive section. Throw it away. */
1723 return TRUE;
1724
1725 case SHT_PROGBITS: /* Normal section with contents. */
1726 case SHT_NOBITS: /* .bss section. */
1727 case SHT_HASH: /* .hash section. */
1728 case SHT_NOTE: /* .note section. */
1729 case SHT_INIT_ARRAY: /* .init_array section. */
1730 case SHT_FINI_ARRAY: /* .fini_array section. */
1731 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1732 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1733 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1734
1735 case SHT_DYNAMIC: /* Dynamic linking information. */
1736 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1737 return FALSE;
1738 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1739 {
1740 Elf_Internal_Shdr *dynsymhdr;
1741
1742 /* The shared libraries distributed with hpux11 have a bogus
1743 sh_link field for the ".dynamic" section. Find the
1744 string table for the ".dynsym" section instead. */
1745 if (elf_dynsymtab (abfd) != 0)
1746 {
1747 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1748 hdr->sh_link = dynsymhdr->sh_link;
1749 }
1750 else
1751 {
1752 unsigned int i, num_sec;
1753
1754 num_sec = elf_numsections (abfd);
1755 for (i = 1; i < num_sec; i++)
1756 {
1757 dynsymhdr = elf_elfsections (abfd)[i];
1758 if (dynsymhdr->sh_type == SHT_DYNSYM)
1759 {
1760 hdr->sh_link = dynsymhdr->sh_link;
1761 break;
1762 }
1763 }
1764 }
1765 }
1766 break;
1767
1768 case SHT_SYMTAB: /* A symbol table */
1769 if (elf_onesymtab (abfd) == shindex)
1770 return TRUE;
1771
1772 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1773 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1774 elf_onesymtab (abfd) = shindex;
1775 elf_tdata (abfd)->symtab_hdr = *hdr;
1776 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1777 abfd->flags |= HAS_SYMS;
1778
1779 /* Sometimes a shared object will map in the symbol table. If
1780 SHF_ALLOC is set, and this is a shared object, then we also
1781 treat this section as a BFD section. We can not base the
1782 decision purely on SHF_ALLOC, because that flag is sometimes
1783 set in a relocatable object file, which would confuse the
1784 linker. */
1785 if ((hdr->sh_flags & SHF_ALLOC) != 0
1786 && (abfd->flags & DYNAMIC) != 0
1787 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1788 shindex))
1789 return FALSE;
1790
1791 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1792 can't read symbols without that section loaded as well. It
1793 is most likely specified by the next section header. */
1794 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1795 {
1796 unsigned int i, num_sec;
1797
1798 num_sec = elf_numsections (abfd);
1799 for (i = shindex + 1; i < num_sec; i++)
1800 {
1801 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1802 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1803 && hdr2->sh_link == shindex)
1804 break;
1805 }
1806 if (i == num_sec)
1807 for (i = 1; i < shindex; i++)
1808 {
1809 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1810 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1811 && hdr2->sh_link == shindex)
1812 break;
1813 }
1814 if (i != shindex)
1815 return bfd_section_from_shdr (abfd, i);
1816 }
1817 return TRUE;
1818
1819 case SHT_DYNSYM: /* A dynamic symbol table */
1820 if (elf_dynsymtab (abfd) == shindex)
1821 return TRUE;
1822
1823 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1824 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1825 elf_dynsymtab (abfd) = shindex;
1826 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1827 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1828 abfd->flags |= HAS_SYMS;
1829
1830 /* Besides being a symbol table, we also treat this as a regular
1831 section, so that objcopy can handle it. */
1832 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1833
1834 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1835 if (elf_symtab_shndx (abfd) == shindex)
1836 return TRUE;
1837
1838 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1839 elf_symtab_shndx (abfd) = shindex;
1840 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1841 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1842 return TRUE;
1843
1844 case SHT_STRTAB: /* A string table */
1845 if (hdr->bfd_section != NULL)
1846 return TRUE;
1847 if (ehdr->e_shstrndx == shindex)
1848 {
1849 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1850 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1851 return TRUE;
1852 }
1853 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1854 {
1855 symtab_strtab:
1856 elf_tdata (abfd)->strtab_hdr = *hdr;
1857 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1858 return TRUE;
1859 }
1860 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1861 {
1862 dynsymtab_strtab:
1863 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1864 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1865 elf_elfsections (abfd)[shindex] = hdr;
1866 /* We also treat this as a regular section, so that objcopy
1867 can handle it. */
1868 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1869 shindex);
1870 }
1871
1872 /* If the string table isn't one of the above, then treat it as a
1873 regular section. We need to scan all the headers to be sure,
1874 just in case this strtab section appeared before the above. */
1875 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1876 {
1877 unsigned int i, num_sec;
1878
1879 num_sec = elf_numsections (abfd);
1880 for (i = 1; i < num_sec; i++)
1881 {
1882 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1883 if (hdr2->sh_link == shindex)
1884 {
1885 if (! bfd_section_from_shdr (abfd, i))
1886 return FALSE;
1887 if (elf_onesymtab (abfd) == i)
1888 goto symtab_strtab;
1889 if (elf_dynsymtab (abfd) == i)
1890 goto dynsymtab_strtab;
1891 }
1892 }
1893 }
1894 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1895
1896 case SHT_REL:
1897 case SHT_RELA:
1898 /* *These* do a lot of work -- but build no sections! */
1899 {
1900 asection *target_sect;
1901 Elf_Internal_Shdr *hdr2;
1902 unsigned int num_sec = elf_numsections (abfd);
1903
1904 /* Check for a bogus link to avoid crashing. */
1905 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1906 || hdr->sh_link >= num_sec)
1907 {
1908 ((*_bfd_error_handler)
1909 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1910 abfd, hdr->sh_link, name, shindex));
1911 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1912 shindex);
1913 }
1914
1915 /* For some incomprehensible reason Oracle distributes
1916 libraries for Solaris in which some of the objects have
1917 bogus sh_link fields. It would be nice if we could just
1918 reject them, but, unfortunately, some people need to use
1919 them. We scan through the section headers; if we find only
1920 one suitable symbol table, we clobber the sh_link to point
1921 to it. I hope this doesn't break anything. */
1922 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1923 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1924 {
1925 unsigned int scan;
1926 int found;
1927
1928 found = 0;
1929 for (scan = 1; scan < num_sec; scan++)
1930 {
1931 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1932 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1933 {
1934 if (found != 0)
1935 {
1936 found = 0;
1937 break;
1938 }
1939 found = scan;
1940 }
1941 }
1942 if (found != 0)
1943 hdr->sh_link = found;
1944 }
1945
1946 /* Get the symbol table. */
1947 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1948 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1949 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1950 return FALSE;
1951
1952 /* If this reloc section does not use the main symbol table we
1953 don't treat it as a reloc section. BFD can't adequately
1954 represent such a section, so at least for now, we don't
1955 try. We just present it as a normal section. We also
1956 can't use it as a reloc section if it points to the null
1957 section. */
1958 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1959 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1960 shindex);
1961
1962 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1963 return FALSE;
1964 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1965 if (target_sect == NULL)
1966 return FALSE;
1967
1968 if ((target_sect->flags & SEC_RELOC) == 0
1969 || target_sect->reloc_count == 0)
1970 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1971 else
1972 {
1973 bfd_size_type amt;
1974 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1975 amt = sizeof (*hdr2);
1976 hdr2 = bfd_alloc (abfd, amt);
1977 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1978 }
1979 *hdr2 = *hdr;
1980 elf_elfsections (abfd)[shindex] = hdr2;
1981 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1982 target_sect->flags |= SEC_RELOC;
1983 target_sect->relocation = NULL;
1984 target_sect->rel_filepos = hdr->sh_offset;
1985 /* In the section to which the relocations apply, mark whether
1986 its relocations are of the REL or RELA variety. */
1987 if (hdr->sh_size != 0)
1988 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1989 abfd->flags |= HAS_RELOC;
1990 return TRUE;
1991 }
1992 break;
1993
1994 case SHT_GNU_verdef:
1995 elf_dynverdef (abfd) = shindex;
1996 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1997 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1998 break;
1999
2000 case SHT_GNU_versym:
2001 elf_dynversym (abfd) = shindex;
2002 elf_tdata (abfd)->dynversym_hdr = *hdr;
2003 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2004 break;
2005
2006 case SHT_GNU_verneed:
2007 elf_dynverref (abfd) = shindex;
2008 elf_tdata (abfd)->dynverref_hdr = *hdr;
2009 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2010 break;
2011
2012 case SHT_SHLIB:
2013 return TRUE;
2014
2015 case SHT_GROUP:
2016 /* We need a BFD section for objcopy and relocatable linking,
2017 and it's handy to have the signature available as the section
2018 name. */
2019 name = group_signature (abfd, hdr);
2020 if (name == NULL)
2021 return FALSE;
2022 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2023 return FALSE;
2024 if (hdr->contents != NULL)
2025 {
2026 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2027 unsigned int n_elt = hdr->sh_size / 4;
2028 asection *s;
2029
2030 if (idx->flags & GRP_COMDAT)
2031 hdr->bfd_section->flags
2032 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2033
2034 /* We try to keep the same section order as it comes in. */
2035 idx += n_elt;
2036 while (--n_elt != 0)
2037 if ((s = (--idx)->shdr->bfd_section) != NULL
2038 && elf_next_in_group (s) != NULL)
2039 {
2040 elf_next_in_group (hdr->bfd_section) = s;
2041 break;
2042 }
2043 }
2044 break;
2045
2046 default:
2047 /* Check for any processor-specific section types. */
2048 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2049 shindex);
2050 }
2051
2052 return TRUE;
2053 }
2054
2055 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2056 Return SEC for sections that have no elf section, and NULL on error. */
2057
2058 asection *
2059 bfd_section_from_r_symndx (bfd *abfd,
2060 struct sym_sec_cache *cache,
2061 asection *sec,
2062 unsigned long r_symndx)
2063 {
2064 Elf_Internal_Shdr *symtab_hdr;
2065 unsigned char esym[sizeof (Elf64_External_Sym)];
2066 Elf_External_Sym_Shndx eshndx;
2067 Elf_Internal_Sym isym;
2068 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2069
2070 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2071 return cache->sec[ent];
2072
2073 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2074 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2075 &isym, esym, &eshndx) == NULL)
2076 return NULL;
2077
2078 if (cache->abfd != abfd)
2079 {
2080 memset (cache->indx, -1, sizeof (cache->indx));
2081 cache->abfd = abfd;
2082 }
2083 cache->indx[ent] = r_symndx;
2084 cache->sec[ent] = sec;
2085 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2086 || isym.st_shndx > SHN_HIRESERVE)
2087 {
2088 asection *s;
2089 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2090 if (s != NULL)
2091 cache->sec[ent] = s;
2092 }
2093 return cache->sec[ent];
2094 }
2095
2096 /* Given an ELF section number, retrieve the corresponding BFD
2097 section. */
2098
2099 asection *
2100 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2101 {
2102 if (index >= elf_numsections (abfd))
2103 return NULL;
2104 return elf_elfsections (abfd)[index]->bfd_section;
2105 }
2106
2107 static struct bfd_elf_special_section const special_sections[] =
2108 {
2109 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2110 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2111 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2112 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2113 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2114 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2115 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2116 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2117 { ".line", 5, 0, SHT_PROGBITS, 0 },
2118 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2119 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2120 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2121 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2122 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2123 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2124 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2125 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2126 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2127 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2128 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2129 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2130 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2131 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2132 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2133 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2134 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2135 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2136 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2137 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2138 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2139 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2140 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2141 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2142 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2143 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2144 { ".note", 5, -1, SHT_NOTE, 0 },
2145 { ".rela", 5, -1, SHT_RELA, 0 },
2146 { ".rel", 4, -1, SHT_REL, 0 },
2147 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2148 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2149 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2150 { NULL, 0, 0, 0, 0 }
2151 };
2152
2153 static const struct bfd_elf_special_section *
2154 get_special_section (const char *name,
2155 const struct bfd_elf_special_section *special_sections,
2156 unsigned int rela)
2157 {
2158 int i;
2159 int len = strlen (name);
2160
2161 for (i = 0; special_sections[i].prefix != NULL; i++)
2162 {
2163 int suffix_len;
2164 int prefix_len = special_sections[i].prefix_length;
2165
2166 if (len < prefix_len)
2167 continue;
2168 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2169 continue;
2170
2171 suffix_len = special_sections[i].suffix_length;
2172 if (suffix_len <= 0)
2173 {
2174 if (name[prefix_len] != 0)
2175 {
2176 if (suffix_len == 0)
2177 continue;
2178 if (name[prefix_len] != '.'
2179 && (suffix_len == -2
2180 || (rela && special_sections[i].type == SHT_REL)))
2181 continue;
2182 }
2183 }
2184 else
2185 {
2186 if (len < prefix_len + suffix_len)
2187 continue;
2188 if (memcmp (name + len - suffix_len,
2189 special_sections[i].prefix + prefix_len,
2190 suffix_len) != 0)
2191 continue;
2192 }
2193 return &special_sections[i];
2194 }
2195
2196 return NULL;
2197 }
2198
2199 const struct bfd_elf_special_section *
2200 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2201 {
2202 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2203 const struct bfd_elf_special_section *ssect = NULL;
2204
2205 /* See if this is one of the special sections. */
2206 if (name)
2207 {
2208 unsigned int rela = bed->default_use_rela_p;
2209
2210 if (bed->special_sections)
2211 ssect = get_special_section (name, bed->special_sections, rela);
2212
2213 if (! ssect)
2214 ssect = get_special_section (name, special_sections, rela);
2215 }
2216
2217 return ssect;
2218 }
2219
2220 bfd_boolean
2221 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2222 {
2223 struct bfd_elf_section_data *sdata;
2224 const struct bfd_elf_special_section *ssect;
2225
2226 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2227 if (sdata == NULL)
2228 {
2229 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2230 if (sdata == NULL)
2231 return FALSE;
2232 sec->used_by_bfd = sdata;
2233 }
2234
2235 elf_section_type (sec) = SHT_NULL;
2236 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2237 if (ssect != NULL)
2238 {
2239 elf_section_type (sec) = ssect->type;
2240 elf_section_flags (sec) = ssect->attr;
2241 }
2242
2243 /* Indicate whether or not this section should use RELA relocations. */
2244 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2245
2246 return TRUE;
2247 }
2248
2249 /* Create a new bfd section from an ELF program header.
2250
2251 Since program segments have no names, we generate a synthetic name
2252 of the form segment<NUM>, where NUM is generally the index in the
2253 program header table. For segments that are split (see below) we
2254 generate the names segment<NUM>a and segment<NUM>b.
2255
2256 Note that some program segments may have a file size that is different than
2257 (less than) the memory size. All this means is that at execution the
2258 system must allocate the amount of memory specified by the memory size,
2259 but only initialize it with the first "file size" bytes read from the
2260 file. This would occur for example, with program segments consisting
2261 of combined data+bss.
2262
2263 To handle the above situation, this routine generates TWO bfd sections
2264 for the single program segment. The first has the length specified by
2265 the file size of the segment, and the second has the length specified
2266 by the difference between the two sizes. In effect, the segment is split
2267 into it's initialized and uninitialized parts.
2268
2269 */
2270
2271 bfd_boolean
2272 _bfd_elf_make_section_from_phdr (bfd *abfd,
2273 Elf_Internal_Phdr *hdr,
2274 int index,
2275 const char *typename)
2276 {
2277 asection *newsect;
2278 char *name;
2279 char namebuf[64];
2280 size_t len;
2281 int split;
2282
2283 split = ((hdr->p_memsz > 0)
2284 && (hdr->p_filesz > 0)
2285 && (hdr->p_memsz > hdr->p_filesz));
2286 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2287 len = strlen (namebuf) + 1;
2288 name = bfd_alloc (abfd, len);
2289 if (!name)
2290 return FALSE;
2291 memcpy (name, namebuf, len);
2292 newsect = bfd_make_section (abfd, name);
2293 if (newsect == NULL)
2294 return FALSE;
2295 newsect->vma = hdr->p_vaddr;
2296 newsect->lma = hdr->p_paddr;
2297 newsect->size = hdr->p_filesz;
2298 newsect->filepos = hdr->p_offset;
2299 newsect->flags |= SEC_HAS_CONTENTS;
2300 newsect->alignment_power = bfd_log2 (hdr->p_align);
2301 if (hdr->p_type == PT_LOAD)
2302 {
2303 newsect->flags |= SEC_ALLOC;
2304 newsect->flags |= SEC_LOAD;
2305 if (hdr->p_flags & PF_X)
2306 {
2307 /* FIXME: all we known is that it has execute PERMISSION,
2308 may be data. */
2309 newsect->flags |= SEC_CODE;
2310 }
2311 }
2312 if (!(hdr->p_flags & PF_W))
2313 {
2314 newsect->flags |= SEC_READONLY;
2315 }
2316
2317 if (split)
2318 {
2319 sprintf (namebuf, "%s%db", typename, index);
2320 len = strlen (namebuf) + 1;
2321 name = bfd_alloc (abfd, len);
2322 if (!name)
2323 return FALSE;
2324 memcpy (name, namebuf, len);
2325 newsect = bfd_make_section (abfd, name);
2326 if (newsect == NULL)
2327 return FALSE;
2328 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2329 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2330 newsect->size = hdr->p_memsz - hdr->p_filesz;
2331 if (hdr->p_type == PT_LOAD)
2332 {
2333 newsect->flags |= SEC_ALLOC;
2334 if (hdr->p_flags & PF_X)
2335 newsect->flags |= SEC_CODE;
2336 }
2337 if (!(hdr->p_flags & PF_W))
2338 newsect->flags |= SEC_READONLY;
2339 }
2340
2341 return TRUE;
2342 }
2343
2344 bfd_boolean
2345 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2346 {
2347 const struct elf_backend_data *bed;
2348
2349 switch (hdr->p_type)
2350 {
2351 case PT_NULL:
2352 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2353
2354 case PT_LOAD:
2355 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2356
2357 case PT_DYNAMIC:
2358 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2359
2360 case PT_INTERP:
2361 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2362
2363 case PT_NOTE:
2364 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2365 return FALSE;
2366 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2367 return FALSE;
2368 return TRUE;
2369
2370 case PT_SHLIB:
2371 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2372
2373 case PT_PHDR:
2374 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2375
2376 case PT_GNU_EH_FRAME:
2377 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2378 "eh_frame_hdr");
2379
2380 case PT_GNU_STACK:
2381 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2382
2383 case PT_GNU_RELRO:
2384 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2385
2386 default:
2387 /* Check for any processor-specific program segment types. */
2388 bed = get_elf_backend_data (abfd);
2389 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2390 }
2391 }
2392
2393 /* Initialize REL_HDR, the section-header for new section, containing
2394 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2395 relocations; otherwise, we use REL relocations. */
2396
2397 bfd_boolean
2398 _bfd_elf_init_reloc_shdr (bfd *abfd,
2399 Elf_Internal_Shdr *rel_hdr,
2400 asection *asect,
2401 bfd_boolean use_rela_p)
2402 {
2403 char *name;
2404 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2405 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2406
2407 name = bfd_alloc (abfd, amt);
2408 if (name == NULL)
2409 return FALSE;
2410 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2411 rel_hdr->sh_name =
2412 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2413 FALSE);
2414 if (rel_hdr->sh_name == (unsigned int) -1)
2415 return FALSE;
2416 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2417 rel_hdr->sh_entsize = (use_rela_p
2418 ? bed->s->sizeof_rela
2419 : bed->s->sizeof_rel);
2420 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2421 rel_hdr->sh_flags = 0;
2422 rel_hdr->sh_addr = 0;
2423 rel_hdr->sh_size = 0;
2424 rel_hdr->sh_offset = 0;
2425
2426 return TRUE;
2427 }
2428
2429 /* Set up an ELF internal section header for a section. */
2430
2431 static void
2432 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2433 {
2434 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2435 bfd_boolean *failedptr = failedptrarg;
2436 Elf_Internal_Shdr *this_hdr;
2437
2438 if (*failedptr)
2439 {
2440 /* We already failed; just get out of the bfd_map_over_sections
2441 loop. */
2442 return;
2443 }
2444
2445 this_hdr = &elf_section_data (asect)->this_hdr;
2446
2447 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2448 asect->name, FALSE);
2449 if (this_hdr->sh_name == (unsigned int) -1)
2450 {
2451 *failedptr = TRUE;
2452 return;
2453 }
2454
2455 this_hdr->sh_flags = 0;
2456
2457 if ((asect->flags & SEC_ALLOC) != 0
2458 || asect->user_set_vma)
2459 this_hdr->sh_addr = asect->vma;
2460 else
2461 this_hdr->sh_addr = 0;
2462
2463 this_hdr->sh_offset = 0;
2464 this_hdr->sh_size = asect->size;
2465 this_hdr->sh_link = 0;
2466 this_hdr->sh_addralign = 1 << asect->alignment_power;
2467 /* The sh_entsize and sh_info fields may have been set already by
2468 copy_private_section_data. */
2469
2470 this_hdr->bfd_section = asect;
2471 this_hdr->contents = NULL;
2472
2473 /* If the section type is unspecified, we set it based on
2474 asect->flags. */
2475 if (this_hdr->sh_type == SHT_NULL)
2476 {
2477 if ((asect->flags & SEC_GROUP) != 0)
2478 {
2479 /* We also need to mark SHF_GROUP here for relocatable
2480 link. */
2481 struct bfd_link_order *l;
2482 asection *elt;
2483
2484 for (l = asect->link_order_head; l != NULL; l = l->next)
2485 if (l->type == bfd_indirect_link_order
2486 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2487 do
2488 {
2489 /* The name is not important. Anything will do. */
2490 elf_group_name (elt->output_section) = "G";
2491 elf_section_flags (elt->output_section) |= SHF_GROUP;
2492
2493 elt = elf_next_in_group (elt);
2494 /* During a relocatable link, the lists are
2495 circular. */
2496 }
2497 while (elt != elf_next_in_group (l->u.indirect.section));
2498
2499 this_hdr->sh_type = SHT_GROUP;
2500 }
2501 else if ((asect->flags & SEC_ALLOC) != 0
2502 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2503 || (asect->flags & SEC_NEVER_LOAD) != 0))
2504 this_hdr->sh_type = SHT_NOBITS;
2505 else
2506 this_hdr->sh_type = SHT_PROGBITS;
2507 }
2508
2509 switch (this_hdr->sh_type)
2510 {
2511 default:
2512 break;
2513
2514 case SHT_STRTAB:
2515 case SHT_INIT_ARRAY:
2516 case SHT_FINI_ARRAY:
2517 case SHT_PREINIT_ARRAY:
2518 case SHT_NOTE:
2519 case SHT_NOBITS:
2520 case SHT_PROGBITS:
2521 break;
2522
2523 case SHT_HASH:
2524 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2525 break;
2526
2527 case SHT_DYNSYM:
2528 this_hdr->sh_entsize = bed->s->sizeof_sym;
2529 break;
2530
2531 case SHT_DYNAMIC:
2532 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2533 break;
2534
2535 case SHT_RELA:
2536 if (get_elf_backend_data (abfd)->may_use_rela_p)
2537 this_hdr->sh_entsize = bed->s->sizeof_rela;
2538 break;
2539
2540 case SHT_REL:
2541 if (get_elf_backend_data (abfd)->may_use_rel_p)
2542 this_hdr->sh_entsize = bed->s->sizeof_rel;
2543 break;
2544
2545 case SHT_GNU_versym:
2546 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2547 break;
2548
2549 case SHT_GNU_verdef:
2550 this_hdr->sh_entsize = 0;
2551 /* objcopy or strip will copy over sh_info, but may not set
2552 cverdefs. The linker will set cverdefs, but sh_info will be
2553 zero. */
2554 if (this_hdr->sh_info == 0)
2555 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2556 else
2557 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2558 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2559 break;
2560
2561 case SHT_GNU_verneed:
2562 this_hdr->sh_entsize = 0;
2563 /* objcopy or strip will copy over sh_info, but may not set
2564 cverrefs. The linker will set cverrefs, but sh_info will be
2565 zero. */
2566 if (this_hdr->sh_info == 0)
2567 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2568 else
2569 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2570 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2571 break;
2572
2573 case SHT_GROUP:
2574 this_hdr->sh_entsize = 4;
2575 break;
2576 }
2577
2578 if ((asect->flags & SEC_ALLOC) != 0)
2579 this_hdr->sh_flags |= SHF_ALLOC;
2580 if ((asect->flags & SEC_READONLY) == 0)
2581 this_hdr->sh_flags |= SHF_WRITE;
2582 if ((asect->flags & SEC_CODE) != 0)
2583 this_hdr->sh_flags |= SHF_EXECINSTR;
2584 if ((asect->flags & SEC_MERGE) != 0)
2585 {
2586 this_hdr->sh_flags |= SHF_MERGE;
2587 this_hdr->sh_entsize = asect->entsize;
2588 if ((asect->flags & SEC_STRINGS) != 0)
2589 this_hdr->sh_flags |= SHF_STRINGS;
2590 }
2591 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2592 this_hdr->sh_flags |= SHF_GROUP;
2593 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2594 {
2595 this_hdr->sh_flags |= SHF_TLS;
2596 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2597 {
2598 struct bfd_link_order *o;
2599
2600 this_hdr->sh_size = 0;
2601 for (o = asect->link_order_head; o != NULL; o = o->next)
2602 if (this_hdr->sh_size < o->offset + o->size)
2603 this_hdr->sh_size = o->offset + o->size;
2604 if (this_hdr->sh_size)
2605 this_hdr->sh_type = SHT_NOBITS;
2606 }
2607 }
2608
2609 /* Check for processor-specific section types. */
2610 if (bed->elf_backend_fake_sections
2611 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2612 *failedptr = TRUE;
2613
2614 /* If the section has relocs, set up a section header for the
2615 SHT_REL[A] section. If two relocation sections are required for
2616 this section, it is up to the processor-specific back-end to
2617 create the other. */
2618 if ((asect->flags & SEC_RELOC) != 0
2619 && !_bfd_elf_init_reloc_shdr (abfd,
2620 &elf_section_data (asect)->rel_hdr,
2621 asect,
2622 asect->use_rela_p))
2623 *failedptr = TRUE;
2624 }
2625
2626 /* Fill in the contents of a SHT_GROUP section. */
2627
2628 void
2629 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2630 {
2631 bfd_boolean *failedptr = failedptrarg;
2632 unsigned long symindx;
2633 asection *elt, *first;
2634 unsigned char *loc;
2635 struct bfd_link_order *l;
2636 bfd_boolean gas;
2637
2638 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2639 || *failedptr)
2640 return;
2641
2642 symindx = 0;
2643 if (elf_group_id (sec) != NULL)
2644 symindx = elf_group_id (sec)->udata.i;
2645
2646 if (symindx == 0)
2647 {
2648 /* If called from the assembler, swap_out_syms will have set up
2649 elf_section_syms; If called for "ld -r", use target_index. */
2650 if (elf_section_syms (abfd) != NULL)
2651 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2652 else
2653 symindx = sec->target_index;
2654 }
2655 elf_section_data (sec)->this_hdr.sh_info = symindx;
2656
2657 /* The contents won't be allocated for "ld -r" or objcopy. */
2658 gas = TRUE;
2659 if (sec->contents == NULL)
2660 {
2661 gas = FALSE;
2662 sec->contents = bfd_alloc (abfd, sec->size);
2663
2664 /* Arrange for the section to be written out. */
2665 elf_section_data (sec)->this_hdr.contents = sec->contents;
2666 if (sec->contents == NULL)
2667 {
2668 *failedptr = TRUE;
2669 return;
2670 }
2671 }
2672
2673 loc = sec->contents + sec->size;
2674
2675 /* Get the pointer to the first section in the group that gas
2676 squirreled away here. objcopy arranges for this to be set to the
2677 start of the input section group. */
2678 first = elt = elf_next_in_group (sec);
2679
2680 /* First element is a flag word. Rest of section is elf section
2681 indices for all the sections of the group. Write them backwards
2682 just to keep the group in the same order as given in .section
2683 directives, not that it matters. */
2684 while (elt != NULL)
2685 {
2686 asection *s;
2687 unsigned int idx;
2688
2689 loc -= 4;
2690 s = elt;
2691 if (!gas)
2692 s = s->output_section;
2693 idx = 0;
2694 if (s != NULL)
2695 idx = elf_section_data (s)->this_idx;
2696 H_PUT_32 (abfd, idx, loc);
2697 elt = elf_next_in_group (elt);
2698 if (elt == first)
2699 break;
2700 }
2701
2702 /* If this is a relocatable link, then the above did nothing because
2703 SEC is the output section. Look through the input sections
2704 instead. */
2705 for (l = sec->link_order_head; l != NULL; l = l->next)
2706 if (l->type == bfd_indirect_link_order
2707 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2708 do
2709 {
2710 loc -= 4;
2711 H_PUT_32 (abfd,
2712 elf_section_data (elt->output_section)->this_idx, loc);
2713 elt = elf_next_in_group (elt);
2714 /* During a relocatable link, the lists are circular. */
2715 }
2716 while (elt != elf_next_in_group (l->u.indirect.section));
2717
2718 if ((loc -= 4) != sec->contents)
2719 abort ();
2720
2721 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2722 }
2723
2724 /* Assign all ELF section numbers. The dummy first section is handled here
2725 too. The link/info pointers for the standard section types are filled
2726 in here too, while we're at it. */
2727
2728 static bfd_boolean
2729 assign_section_numbers (bfd *abfd)
2730 {
2731 struct elf_obj_tdata *t = elf_tdata (abfd);
2732 asection *sec;
2733 unsigned int section_number, secn;
2734 Elf_Internal_Shdr **i_shdrp;
2735 bfd_size_type amt;
2736 struct bfd_elf_section_data *d;
2737
2738 section_number = 1;
2739
2740 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2741
2742 /* Put SHT_GROUP sections first. */
2743 for (sec = abfd->sections; sec; sec = sec->next)
2744 {
2745 d = elf_section_data (sec);
2746
2747 if (d->this_hdr.sh_type == SHT_GROUP)
2748 {
2749 if (section_number == SHN_LORESERVE)
2750 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2751 d->this_idx = section_number++;
2752 }
2753 }
2754
2755 for (sec = abfd->sections; sec; sec = sec->next)
2756 {
2757 d = elf_section_data (sec);
2758
2759 if (d->this_hdr.sh_type != SHT_GROUP)
2760 {
2761 if (section_number == SHN_LORESERVE)
2762 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2763 d->this_idx = section_number++;
2764 }
2765 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2766 if ((sec->flags & SEC_RELOC) == 0)
2767 d->rel_idx = 0;
2768 else
2769 {
2770 if (section_number == SHN_LORESERVE)
2771 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2772 d->rel_idx = section_number++;
2773 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2774 }
2775
2776 if (d->rel_hdr2)
2777 {
2778 if (section_number == SHN_LORESERVE)
2779 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2780 d->rel_idx2 = section_number++;
2781 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2782 }
2783 else
2784 d->rel_idx2 = 0;
2785 }
2786
2787 if (section_number == SHN_LORESERVE)
2788 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2789 t->shstrtab_section = section_number++;
2790 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2791 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2792
2793 if (bfd_get_symcount (abfd) > 0)
2794 {
2795 if (section_number == SHN_LORESERVE)
2796 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2797 t->symtab_section = section_number++;
2798 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2799 if (section_number > SHN_LORESERVE - 2)
2800 {
2801 if (section_number == SHN_LORESERVE)
2802 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2803 t->symtab_shndx_section = section_number++;
2804 t->symtab_shndx_hdr.sh_name
2805 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2806 ".symtab_shndx", FALSE);
2807 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2808 return FALSE;
2809 }
2810 if (section_number == SHN_LORESERVE)
2811 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2812 t->strtab_section = section_number++;
2813 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2814 }
2815
2816 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2817 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2818
2819 elf_numsections (abfd) = section_number;
2820 elf_elfheader (abfd)->e_shnum = section_number;
2821 if (section_number > SHN_LORESERVE)
2822 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2823
2824 /* Set up the list of section header pointers, in agreement with the
2825 indices. */
2826 amt = section_number * sizeof (Elf_Internal_Shdr *);
2827 i_shdrp = bfd_zalloc (abfd, amt);
2828 if (i_shdrp == NULL)
2829 return FALSE;
2830
2831 amt = sizeof (Elf_Internal_Shdr);
2832 i_shdrp[0] = bfd_zalloc (abfd, amt);
2833 if (i_shdrp[0] == NULL)
2834 {
2835 bfd_release (abfd, i_shdrp);
2836 return FALSE;
2837 }
2838
2839 elf_elfsections (abfd) = i_shdrp;
2840
2841 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2842 if (bfd_get_symcount (abfd) > 0)
2843 {
2844 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2845 if (elf_numsections (abfd) > SHN_LORESERVE)
2846 {
2847 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2848 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2849 }
2850 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2851 t->symtab_hdr.sh_link = t->strtab_section;
2852 }
2853
2854 for (sec = abfd->sections; sec; sec = sec->next)
2855 {
2856 struct bfd_elf_section_data *d = elf_section_data (sec);
2857 asection *s;
2858 const char *name;
2859
2860 i_shdrp[d->this_idx] = &d->this_hdr;
2861 if (d->rel_idx != 0)
2862 i_shdrp[d->rel_idx] = &d->rel_hdr;
2863 if (d->rel_idx2 != 0)
2864 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2865
2866 /* Fill in the sh_link and sh_info fields while we're at it. */
2867
2868 /* sh_link of a reloc section is the section index of the symbol
2869 table. sh_info is the section index of the section to which
2870 the relocation entries apply. */
2871 if (d->rel_idx != 0)
2872 {
2873 d->rel_hdr.sh_link = t->symtab_section;
2874 d->rel_hdr.sh_info = d->this_idx;
2875 }
2876 if (d->rel_idx2 != 0)
2877 {
2878 d->rel_hdr2->sh_link = t->symtab_section;
2879 d->rel_hdr2->sh_info = d->this_idx;
2880 }
2881
2882 /* We need to set up sh_link for SHF_LINK_ORDER. */
2883 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2884 {
2885 s = elf_linked_to_section (sec);
2886 if (s)
2887 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2888 else
2889 {
2890 struct bfd_link_order *p;
2891
2892 /* Find out what the corresponding section in output
2893 is. */
2894 for (p = sec->link_order_head; p != NULL; p = p->next)
2895 {
2896 s = p->u.indirect.section;
2897 if (p->type == bfd_indirect_link_order
2898 && (bfd_get_flavour (s->owner)
2899 == bfd_target_elf_flavour))
2900 {
2901 Elf_Internal_Shdr ** const elf_shdrp
2902 = elf_elfsections (s->owner);
2903 int elfsec
2904 = _bfd_elf_section_from_bfd_section (s->owner, s);
2905 elfsec = elf_shdrp[elfsec]->sh_link;
2906 /* PR 290:
2907 The Intel C compiler generates SHT_IA_64_UNWIND with
2908 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2909 sh_info fields. Hence we could get the situation
2910 where elfsec is 0. */
2911 if (elfsec == 0)
2912 {
2913 const struct elf_backend_data *bed
2914 = get_elf_backend_data (abfd);
2915 if (bed->link_order_error_handler)
2916 bed->link_order_error_handler
2917 (_("%B: warning: sh_link not set for section `%A'"),
2918 abfd, s);
2919 }
2920 else
2921 {
2922 s = elf_shdrp[elfsec]->bfd_section;
2923 if (elf_discarded_section (s))
2924 {
2925 asection *kept;
2926 (*_bfd_error_handler)
2927 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2928 abfd, d->this_hdr.bfd_section,
2929 s, s->owner);
2930 /* Point to the kept section if it has
2931 the same size as the discarded
2932 one. */
2933 kept = _bfd_elf_check_kept_section (s);
2934 if (kept == NULL)
2935 {
2936 bfd_set_error (bfd_error_bad_value);
2937 return FALSE;
2938 }
2939 }
2940 s = s->output_section;
2941 BFD_ASSERT (s != NULL);
2942 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2943 }
2944 break;
2945 }
2946 }
2947 }
2948 }
2949
2950 switch (d->this_hdr.sh_type)
2951 {
2952 case SHT_REL:
2953 case SHT_RELA:
2954 /* A reloc section which we are treating as a normal BFD
2955 section. sh_link is the section index of the symbol
2956 table. sh_info is the section index of the section to
2957 which the relocation entries apply. We assume that an
2958 allocated reloc section uses the dynamic symbol table.
2959 FIXME: How can we be sure? */
2960 s = bfd_get_section_by_name (abfd, ".dynsym");
2961 if (s != NULL)
2962 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2963
2964 /* We look up the section the relocs apply to by name. */
2965 name = sec->name;
2966 if (d->this_hdr.sh_type == SHT_REL)
2967 name += 4;
2968 else
2969 name += 5;
2970 s = bfd_get_section_by_name (abfd, name);
2971 if (s != NULL)
2972 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2973 break;
2974
2975 case SHT_STRTAB:
2976 /* We assume that a section named .stab*str is a stabs
2977 string section. We look for a section with the same name
2978 but without the trailing ``str'', and set its sh_link
2979 field to point to this section. */
2980 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2981 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2982 {
2983 size_t len;
2984 char *alc;
2985
2986 len = strlen (sec->name);
2987 alc = bfd_malloc (len - 2);
2988 if (alc == NULL)
2989 return FALSE;
2990 memcpy (alc, sec->name, len - 3);
2991 alc[len - 3] = '\0';
2992 s = bfd_get_section_by_name (abfd, alc);
2993 free (alc);
2994 if (s != NULL)
2995 {
2996 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2997
2998 /* This is a .stab section. */
2999 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3000 elf_section_data (s)->this_hdr.sh_entsize
3001 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3002 }
3003 }
3004 break;
3005
3006 case SHT_DYNAMIC:
3007 case SHT_DYNSYM:
3008 case SHT_GNU_verneed:
3009 case SHT_GNU_verdef:
3010 /* sh_link is the section header index of the string table
3011 used for the dynamic entries, or the symbol table, or the
3012 version strings. */
3013 s = bfd_get_section_by_name (abfd, ".dynstr");
3014 if (s != NULL)
3015 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3016 break;
3017
3018 case SHT_GNU_LIBLIST:
3019 /* sh_link is the section header index of the prelink library
3020 list
3021 used for the dynamic entries, or the symbol table, or the
3022 version strings. */
3023 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3024 ? ".dynstr" : ".gnu.libstr");
3025 if (s != NULL)
3026 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3027 break;
3028
3029 case SHT_HASH:
3030 case SHT_GNU_versym:
3031 /* sh_link is the section header index of the symbol table
3032 this hash table or version table is for. */
3033 s = bfd_get_section_by_name (abfd, ".dynsym");
3034 if (s != NULL)
3035 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3036 break;
3037
3038 case SHT_GROUP:
3039 d->this_hdr.sh_link = t->symtab_section;
3040 }
3041 }
3042
3043 for (secn = 1; secn < section_number; ++secn)
3044 if (i_shdrp[secn] == NULL)
3045 i_shdrp[secn] = i_shdrp[0];
3046 else
3047 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3048 i_shdrp[secn]->sh_name);
3049 return TRUE;
3050 }
3051
3052 /* Map symbol from it's internal number to the external number, moving
3053 all local symbols to be at the head of the list. */
3054
3055 static int
3056 sym_is_global (bfd *abfd, asymbol *sym)
3057 {
3058 /* If the backend has a special mapping, use it. */
3059 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3060 if (bed->elf_backend_sym_is_global)
3061 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3062
3063 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3064 || bfd_is_und_section (bfd_get_section (sym))
3065 || bfd_is_com_section (bfd_get_section (sym)));
3066 }
3067
3068 static bfd_boolean
3069 elf_map_symbols (bfd *abfd)
3070 {
3071 unsigned int symcount = bfd_get_symcount (abfd);
3072 asymbol **syms = bfd_get_outsymbols (abfd);
3073 asymbol **sect_syms;
3074 unsigned int num_locals = 0;
3075 unsigned int num_globals = 0;
3076 unsigned int num_locals2 = 0;
3077 unsigned int num_globals2 = 0;
3078 int max_index = 0;
3079 unsigned int idx;
3080 asection *asect;
3081 asymbol **new_syms;
3082 bfd_size_type amt;
3083
3084 #ifdef DEBUG
3085 fprintf (stderr, "elf_map_symbols\n");
3086 fflush (stderr);
3087 #endif
3088
3089 for (asect = abfd->sections; asect; asect = asect->next)
3090 {
3091 if (max_index < asect->index)
3092 max_index = asect->index;
3093 }
3094
3095 max_index++;
3096 amt = max_index * sizeof (asymbol *);
3097 sect_syms = bfd_zalloc (abfd, amt);
3098 if (sect_syms == NULL)
3099 return FALSE;
3100 elf_section_syms (abfd) = sect_syms;
3101 elf_num_section_syms (abfd) = max_index;
3102
3103 /* Init sect_syms entries for any section symbols we have already
3104 decided to output. */
3105 for (idx = 0; idx < symcount; idx++)
3106 {
3107 asymbol *sym = syms[idx];
3108
3109 if ((sym->flags & BSF_SECTION_SYM) != 0
3110 && sym->value == 0)
3111 {
3112 asection *sec;
3113
3114 sec = sym->section;
3115
3116 if (sec->owner != NULL)
3117 {
3118 if (sec->owner != abfd)
3119 {
3120 if (sec->output_offset != 0)
3121 continue;
3122
3123 sec = sec->output_section;
3124
3125 /* Empty sections in the input files may have had a
3126 section symbol created for them. (See the comment
3127 near the end of _bfd_generic_link_output_symbols in
3128 linker.c). If the linker script discards such
3129 sections then we will reach this point. Since we know
3130 that we cannot avoid this case, we detect it and skip
3131 the abort and the assignment to the sect_syms array.
3132 To reproduce this particular case try running the
3133 linker testsuite test ld-scripts/weak.exp for an ELF
3134 port that uses the generic linker. */
3135 if (sec->owner == NULL)
3136 continue;
3137
3138 BFD_ASSERT (sec->owner == abfd);
3139 }
3140 sect_syms[sec->index] = syms[idx];
3141 }
3142 }
3143 }
3144
3145 /* Classify all of the symbols. */
3146 for (idx = 0; idx < symcount; idx++)
3147 {
3148 if (!sym_is_global (abfd, syms[idx]))
3149 num_locals++;
3150 else
3151 num_globals++;
3152 }
3153
3154 /* We will be adding a section symbol for each BFD section. Most normal
3155 sections will already have a section symbol in outsymbols, but
3156 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3157 at least in that case. */
3158 for (asect = abfd->sections; asect; asect = asect->next)
3159 {
3160 if (sect_syms[asect->index] == NULL)
3161 {
3162 if (!sym_is_global (abfd, asect->symbol))
3163 num_locals++;
3164 else
3165 num_globals++;
3166 }
3167 }
3168
3169 /* Now sort the symbols so the local symbols are first. */
3170 amt = (num_locals + num_globals) * sizeof (asymbol *);
3171 new_syms = bfd_alloc (abfd, amt);
3172
3173 if (new_syms == NULL)
3174 return FALSE;
3175
3176 for (idx = 0; idx < symcount; idx++)
3177 {
3178 asymbol *sym = syms[idx];
3179 unsigned int i;
3180
3181 if (!sym_is_global (abfd, sym))
3182 i = num_locals2++;
3183 else
3184 i = num_locals + num_globals2++;
3185 new_syms[i] = sym;
3186 sym->udata.i = i + 1;
3187 }
3188 for (asect = abfd->sections; asect; asect = asect->next)
3189 {
3190 if (sect_syms[asect->index] == NULL)
3191 {
3192 asymbol *sym = asect->symbol;
3193 unsigned int i;
3194
3195 sect_syms[asect->index] = sym;
3196 if (!sym_is_global (abfd, sym))
3197 i = num_locals2++;
3198 else
3199 i = num_locals + num_globals2++;
3200 new_syms[i] = sym;
3201 sym->udata.i = i + 1;
3202 }
3203 }
3204
3205 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3206
3207 elf_num_locals (abfd) = num_locals;
3208 elf_num_globals (abfd) = num_globals;
3209 return TRUE;
3210 }
3211
3212 /* Align to the maximum file alignment that could be required for any
3213 ELF data structure. */
3214
3215 static inline file_ptr
3216 align_file_position (file_ptr off, int align)
3217 {
3218 return (off + align - 1) & ~(align - 1);
3219 }
3220
3221 /* Assign a file position to a section, optionally aligning to the
3222 required section alignment. */
3223
3224 file_ptr
3225 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3226 file_ptr offset,
3227 bfd_boolean align)
3228 {
3229 if (align)
3230 {
3231 unsigned int al;
3232
3233 al = i_shdrp->sh_addralign;
3234 if (al > 1)
3235 offset = BFD_ALIGN (offset, al);
3236 }
3237 i_shdrp->sh_offset = offset;
3238 if (i_shdrp->bfd_section != NULL)
3239 i_shdrp->bfd_section->filepos = offset;
3240 if (i_shdrp->sh_type != SHT_NOBITS)
3241 offset += i_shdrp->sh_size;
3242 return offset;
3243 }
3244
3245 /* Compute the file positions we are going to put the sections at, and
3246 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3247 is not NULL, this is being called by the ELF backend linker. */
3248
3249 bfd_boolean
3250 _bfd_elf_compute_section_file_positions (bfd *abfd,
3251 struct bfd_link_info *link_info)
3252 {
3253 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3254 bfd_boolean failed;
3255 struct bfd_strtab_hash *strtab = NULL;
3256 Elf_Internal_Shdr *shstrtab_hdr;
3257
3258 if (abfd->output_has_begun)
3259 return TRUE;
3260
3261 /* Do any elf backend specific processing first. */
3262 if (bed->elf_backend_begin_write_processing)
3263 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3264
3265 if (! prep_headers (abfd))
3266 return FALSE;
3267
3268 /* Post process the headers if necessary. */
3269 if (bed->elf_backend_post_process_headers)
3270 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3271
3272 failed = FALSE;
3273 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3274 if (failed)
3275 return FALSE;
3276
3277 if (!assign_section_numbers (abfd))
3278 return FALSE;
3279
3280 /* The backend linker builds symbol table information itself. */
3281 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3282 {
3283 /* Non-zero if doing a relocatable link. */
3284 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3285
3286 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3287 return FALSE;
3288 }
3289
3290 if (link_info == NULL)
3291 {
3292 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3293 if (failed)
3294 return FALSE;
3295 }
3296
3297 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3298 /* sh_name was set in prep_headers. */
3299 shstrtab_hdr->sh_type = SHT_STRTAB;
3300 shstrtab_hdr->sh_flags = 0;
3301 shstrtab_hdr->sh_addr = 0;
3302 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3303 shstrtab_hdr->sh_entsize = 0;
3304 shstrtab_hdr->sh_link = 0;
3305 shstrtab_hdr->sh_info = 0;
3306 /* sh_offset is set in assign_file_positions_except_relocs. */
3307 shstrtab_hdr->sh_addralign = 1;
3308
3309 if (!assign_file_positions_except_relocs (abfd, link_info))
3310 return FALSE;
3311
3312 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3313 {
3314 file_ptr off;
3315 Elf_Internal_Shdr *hdr;
3316
3317 off = elf_tdata (abfd)->next_file_pos;
3318
3319 hdr = &elf_tdata (abfd)->symtab_hdr;
3320 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3321
3322 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3323 if (hdr->sh_size != 0)
3324 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3325
3326 hdr = &elf_tdata (abfd)->strtab_hdr;
3327 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3328
3329 elf_tdata (abfd)->next_file_pos = off;
3330
3331 /* Now that we know where the .strtab section goes, write it
3332 out. */
3333 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3334 || ! _bfd_stringtab_emit (abfd, strtab))
3335 return FALSE;
3336 _bfd_stringtab_free (strtab);
3337 }
3338
3339 abfd->output_has_begun = TRUE;
3340
3341 return TRUE;
3342 }
3343
3344 /* Create a mapping from a set of sections to a program segment. */
3345
3346 static struct elf_segment_map *
3347 make_mapping (bfd *abfd,
3348 asection **sections,
3349 unsigned int from,
3350 unsigned int to,
3351 bfd_boolean phdr)
3352 {
3353 struct elf_segment_map *m;
3354 unsigned int i;
3355 asection **hdrpp;
3356 bfd_size_type amt;
3357
3358 amt = sizeof (struct elf_segment_map);
3359 amt += (to - from - 1) * sizeof (asection *);
3360 m = bfd_zalloc (abfd, amt);
3361 if (m == NULL)
3362 return NULL;
3363 m->next = NULL;
3364 m->p_type = PT_LOAD;
3365 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3366 m->sections[i - from] = *hdrpp;
3367 m->count = to - from;
3368
3369 if (from == 0 && phdr)
3370 {
3371 /* Include the headers in the first PT_LOAD segment. */
3372 m->includes_filehdr = 1;
3373 m->includes_phdrs = 1;
3374 }
3375
3376 return m;
3377 }
3378
3379 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3380 on failure. */
3381
3382 struct elf_segment_map *
3383 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3384 {
3385 struct elf_segment_map *m;
3386
3387 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3388 if (m == NULL)
3389 return NULL;
3390 m->next = NULL;
3391 m->p_type = PT_DYNAMIC;
3392 m->count = 1;
3393 m->sections[0] = dynsec;
3394
3395 return m;
3396 }
3397
3398 /* Set up a mapping from BFD sections to program segments. */
3399
3400 static bfd_boolean
3401 map_sections_to_segments (bfd *abfd)
3402 {
3403 asection **sections = NULL;
3404 asection *s;
3405 unsigned int i;
3406 unsigned int count;
3407 struct elf_segment_map *mfirst;
3408 struct elf_segment_map **pm;
3409 struct elf_segment_map *m;
3410 asection *last_hdr;
3411 bfd_vma last_size;
3412 unsigned int phdr_index;
3413 bfd_vma maxpagesize;
3414 asection **hdrpp;
3415 bfd_boolean phdr_in_segment = TRUE;
3416 bfd_boolean writable;
3417 int tls_count = 0;
3418 asection *first_tls = NULL;
3419 asection *dynsec, *eh_frame_hdr;
3420 bfd_size_type amt;
3421
3422 if (elf_tdata (abfd)->segment_map != NULL)
3423 return TRUE;
3424
3425 if (bfd_count_sections (abfd) == 0)
3426 return TRUE;
3427
3428 /* Select the allocated sections, and sort them. */
3429
3430 amt = bfd_count_sections (abfd) * sizeof (asection *);
3431 sections = bfd_malloc (amt);
3432 if (sections == NULL)
3433 goto error_return;
3434
3435 i = 0;
3436 for (s = abfd->sections; s != NULL; s = s->next)
3437 {
3438 if ((s->flags & SEC_ALLOC) != 0)
3439 {
3440 sections[i] = s;
3441 ++i;
3442 }
3443 }
3444 BFD_ASSERT (i <= bfd_count_sections (abfd));
3445 count = i;
3446
3447 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3448
3449 /* Build the mapping. */
3450
3451 mfirst = NULL;
3452 pm = &mfirst;
3453
3454 /* If we have a .interp section, then create a PT_PHDR segment for
3455 the program headers and a PT_INTERP segment for the .interp
3456 section. */
3457 s = bfd_get_section_by_name (abfd, ".interp");
3458 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3459 {
3460 amt = sizeof (struct elf_segment_map);
3461 m = bfd_zalloc (abfd, amt);
3462 if (m == NULL)
3463 goto error_return;
3464 m->next = NULL;
3465 m->p_type = PT_PHDR;
3466 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3467 m->p_flags = PF_R | PF_X;
3468 m->p_flags_valid = 1;
3469 m->includes_phdrs = 1;
3470
3471 *pm = m;
3472 pm = &m->next;
3473
3474 amt = sizeof (struct elf_segment_map);
3475 m = bfd_zalloc (abfd, amt);
3476 if (m == NULL)
3477 goto error_return;
3478 m->next = NULL;
3479 m->p_type = PT_INTERP;
3480 m->count = 1;
3481 m->sections[0] = s;
3482
3483 *pm = m;
3484 pm = &m->next;
3485 }
3486
3487 /* Look through the sections. We put sections in the same program
3488 segment when the start of the second section can be placed within
3489 a few bytes of the end of the first section. */
3490 last_hdr = NULL;
3491 last_size = 0;
3492 phdr_index = 0;
3493 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3494 writable = FALSE;
3495 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3496 if (dynsec != NULL
3497 && (dynsec->flags & SEC_LOAD) == 0)
3498 dynsec = NULL;
3499
3500 /* Deal with -Ttext or something similar such that the first section
3501 is not adjacent to the program headers. This is an
3502 approximation, since at this point we don't know exactly how many
3503 program headers we will need. */
3504 if (count > 0)
3505 {
3506 bfd_size_type phdr_size;
3507
3508 phdr_size = elf_tdata (abfd)->program_header_size;
3509 if (phdr_size == 0)
3510 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3511 if ((abfd->flags & D_PAGED) == 0
3512 || sections[0]->lma < phdr_size
3513 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3514 phdr_in_segment = FALSE;
3515 }
3516
3517 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3518 {
3519 asection *hdr;
3520 bfd_boolean new_segment;
3521
3522 hdr = *hdrpp;
3523
3524 /* See if this section and the last one will fit in the same
3525 segment. */
3526
3527 if (last_hdr == NULL)
3528 {
3529 /* If we don't have a segment yet, then we don't need a new
3530 one (we build the last one after this loop). */
3531 new_segment = FALSE;
3532 }
3533 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3534 {
3535 /* If this section has a different relation between the
3536 virtual address and the load address, then we need a new
3537 segment. */
3538 new_segment = TRUE;
3539 }
3540 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3541 < BFD_ALIGN (hdr->lma, maxpagesize))
3542 {
3543 /* If putting this section in this segment would force us to
3544 skip a page in the segment, then we need a new segment. */
3545 new_segment = TRUE;
3546 }
3547 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3548 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3549 {
3550 /* We don't want to put a loadable section after a
3551 nonloadable section in the same segment.
3552 Consider .tbss sections as loadable for this purpose. */
3553 new_segment = TRUE;
3554 }
3555 else if ((abfd->flags & D_PAGED) == 0)
3556 {
3557 /* If the file is not demand paged, which means that we
3558 don't require the sections to be correctly aligned in the
3559 file, then there is no other reason for a new segment. */
3560 new_segment = FALSE;
3561 }
3562 else if (! writable
3563 && (hdr->flags & SEC_READONLY) == 0
3564 && (((last_hdr->lma + last_size - 1)
3565 & ~(maxpagesize - 1))
3566 != (hdr->lma & ~(maxpagesize - 1))))
3567 {
3568 /* We don't want to put a writable section in a read only
3569 segment, unless they are on the same page in memory
3570 anyhow. We already know that the last section does not
3571 bring us past the current section on the page, so the
3572 only case in which the new section is not on the same
3573 page as the previous section is when the previous section
3574 ends precisely on a page boundary. */
3575 new_segment = TRUE;
3576 }
3577 else
3578 {
3579 /* Otherwise, we can use the same segment. */
3580 new_segment = FALSE;
3581 }
3582
3583 if (! new_segment)
3584 {
3585 if ((hdr->flags & SEC_READONLY) == 0)
3586 writable = TRUE;
3587 last_hdr = hdr;
3588 /* .tbss sections effectively have zero size. */
3589 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3590 last_size = hdr->size;
3591 else
3592 last_size = 0;
3593 continue;
3594 }
3595
3596 /* We need a new program segment. We must create a new program
3597 header holding all the sections from phdr_index until hdr. */
3598
3599 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3600 if (m == NULL)
3601 goto error_return;
3602
3603 *pm = m;
3604 pm = &m->next;
3605
3606 if ((hdr->flags & SEC_READONLY) == 0)
3607 writable = TRUE;
3608 else
3609 writable = FALSE;
3610
3611 last_hdr = hdr;
3612 /* .tbss sections effectively have zero size. */
3613 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3614 last_size = hdr->size;
3615 else
3616 last_size = 0;
3617 phdr_index = i;
3618 phdr_in_segment = FALSE;
3619 }
3620
3621 /* Create a final PT_LOAD program segment. */
3622 if (last_hdr != NULL)
3623 {
3624 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3625 if (m == NULL)
3626 goto error_return;
3627
3628 *pm = m;
3629 pm = &m->next;
3630 }
3631
3632 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3633 if (dynsec != NULL)
3634 {
3635 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3636 if (m == NULL)
3637 goto error_return;
3638 *pm = m;
3639 pm = &m->next;
3640 }
3641
3642 /* For each loadable .note section, add a PT_NOTE segment. We don't
3643 use bfd_get_section_by_name, because if we link together
3644 nonloadable .note sections and loadable .note sections, we will
3645 generate two .note sections in the output file. FIXME: Using
3646 names for section types is bogus anyhow. */
3647 for (s = abfd->sections; s != NULL; s = s->next)
3648 {
3649 if ((s->flags & SEC_LOAD) != 0
3650 && strncmp (s->name, ".note", 5) == 0)
3651 {
3652 amt = sizeof (struct elf_segment_map);
3653 m = bfd_zalloc (abfd, amt);
3654 if (m == NULL)
3655 goto error_return;
3656 m->next = NULL;
3657 m->p_type = PT_NOTE;
3658 m->count = 1;
3659 m->sections[0] = s;
3660
3661 *pm = m;
3662 pm = &m->next;
3663 }
3664 if (s->flags & SEC_THREAD_LOCAL)
3665 {
3666 if (! tls_count)
3667 first_tls = s;
3668 tls_count++;
3669 }
3670 }
3671
3672 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3673 if (tls_count > 0)
3674 {
3675 int i;
3676
3677 amt = sizeof (struct elf_segment_map);
3678 amt += (tls_count - 1) * sizeof (asection *);
3679 m = bfd_zalloc (abfd, amt);
3680 if (m == NULL)
3681 goto error_return;
3682 m->next = NULL;
3683 m->p_type = PT_TLS;
3684 m->count = tls_count;
3685 /* Mandated PF_R. */
3686 m->p_flags = PF_R;
3687 m->p_flags_valid = 1;
3688 for (i = 0; i < tls_count; ++i)
3689 {
3690 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3691 m->sections[i] = first_tls;
3692 first_tls = first_tls->next;
3693 }
3694
3695 *pm = m;
3696 pm = &m->next;
3697 }
3698
3699 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3700 segment. */
3701 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3702 if (eh_frame_hdr != NULL
3703 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3704 {
3705 amt = sizeof (struct elf_segment_map);
3706 m = bfd_zalloc (abfd, amt);
3707 if (m == NULL)
3708 goto error_return;
3709 m->next = NULL;
3710 m->p_type = PT_GNU_EH_FRAME;
3711 m->count = 1;
3712 m->sections[0] = eh_frame_hdr->output_section;
3713
3714 *pm = m;
3715 pm = &m->next;
3716 }
3717
3718 if (elf_tdata (abfd)->stack_flags)
3719 {
3720 amt = sizeof (struct elf_segment_map);
3721 m = bfd_zalloc (abfd, amt);
3722 if (m == NULL)
3723 goto error_return;
3724 m->next = NULL;
3725 m->p_type = PT_GNU_STACK;
3726 m->p_flags = elf_tdata (abfd)->stack_flags;
3727 m->p_flags_valid = 1;
3728
3729 *pm = m;
3730 pm = &m->next;
3731 }
3732
3733 if (elf_tdata (abfd)->relro)
3734 {
3735 amt = sizeof (struct elf_segment_map);
3736 m = bfd_zalloc (abfd, amt);
3737 if (m == NULL)
3738 goto error_return;
3739 m->next = NULL;
3740 m->p_type = PT_GNU_RELRO;
3741 m->p_flags = PF_R;
3742 m->p_flags_valid = 1;
3743
3744 *pm = m;
3745 pm = &m->next;
3746 }
3747
3748 free (sections);
3749 sections = NULL;
3750
3751 elf_tdata (abfd)->segment_map = mfirst;
3752 return TRUE;
3753
3754 error_return:
3755 if (sections != NULL)
3756 free (sections);
3757 return FALSE;
3758 }
3759
3760 /* Sort sections by address. */
3761
3762 static int
3763 elf_sort_sections (const void *arg1, const void *arg2)
3764 {
3765 const asection *sec1 = *(const asection **) arg1;
3766 const asection *sec2 = *(const asection **) arg2;
3767 bfd_size_type size1, size2;
3768
3769 /* Sort by LMA first, since this is the address used to
3770 place the section into a segment. */
3771 if (sec1->lma < sec2->lma)
3772 return -1;
3773 else if (sec1->lma > sec2->lma)
3774 return 1;
3775
3776 /* Then sort by VMA. Normally the LMA and the VMA will be
3777 the same, and this will do nothing. */
3778 if (sec1->vma < sec2->vma)
3779 return -1;
3780 else if (sec1->vma > sec2->vma)
3781 return 1;
3782
3783 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3784
3785 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3786
3787 if (TOEND (sec1))
3788 {
3789 if (TOEND (sec2))
3790 {
3791 /* If the indicies are the same, do not return 0
3792 here, but continue to try the next comparison. */
3793 if (sec1->target_index - sec2->target_index != 0)
3794 return sec1->target_index - sec2->target_index;
3795 }
3796 else
3797 return 1;
3798 }
3799 else if (TOEND (sec2))
3800 return -1;
3801
3802 #undef TOEND
3803
3804 /* Sort by size, to put zero sized sections
3805 before others at the same address. */
3806
3807 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3808 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3809
3810 if (size1 < size2)
3811 return -1;
3812 if (size1 > size2)
3813 return 1;
3814
3815 return sec1->target_index - sec2->target_index;
3816 }
3817
3818 /* Ian Lance Taylor writes:
3819
3820 We shouldn't be using % with a negative signed number. That's just
3821 not good. We have to make sure either that the number is not
3822 negative, or that the number has an unsigned type. When the types
3823 are all the same size they wind up as unsigned. When file_ptr is a
3824 larger signed type, the arithmetic winds up as signed long long,
3825 which is wrong.
3826
3827 What we're trying to say here is something like ``increase OFF by
3828 the least amount that will cause it to be equal to the VMA modulo
3829 the page size.'' */
3830 /* In other words, something like:
3831
3832 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3833 off_offset = off % bed->maxpagesize;
3834 if (vma_offset < off_offset)
3835 adjustment = vma_offset + bed->maxpagesize - off_offset;
3836 else
3837 adjustment = vma_offset - off_offset;
3838
3839 which can can be collapsed into the expression below. */
3840
3841 static file_ptr
3842 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3843 {
3844 return ((vma - off) % maxpagesize);
3845 }
3846
3847 /* Assign file positions to the sections based on the mapping from
3848 sections to segments. This function also sets up some fields in
3849 the file header, and writes out the program headers. */
3850
3851 static bfd_boolean
3852 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3853 {
3854 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3855 unsigned int count;
3856 struct elf_segment_map *m;
3857 unsigned int alloc;
3858 Elf_Internal_Phdr *phdrs;
3859 file_ptr off, voff;
3860 bfd_vma filehdr_vaddr, filehdr_paddr;
3861 bfd_vma phdrs_vaddr, phdrs_paddr;
3862 Elf_Internal_Phdr *p;
3863 bfd_size_type amt;
3864
3865 if (elf_tdata (abfd)->segment_map == NULL)
3866 {
3867 if (! map_sections_to_segments (abfd))
3868 return FALSE;
3869 }
3870 else
3871 {
3872 /* The placement algorithm assumes that non allocated sections are
3873 not in PT_LOAD segments. We ensure this here by removing such
3874 sections from the segment map. */
3875 for (m = elf_tdata (abfd)->segment_map;
3876 m != NULL;
3877 m = m->next)
3878 {
3879 unsigned int new_count;
3880 unsigned int i;
3881
3882 if (m->p_type != PT_LOAD)
3883 continue;
3884
3885 new_count = 0;
3886 for (i = 0; i < m->count; i ++)
3887 {
3888 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3889 {
3890 if (i != new_count)
3891 m->sections[new_count] = m->sections[i];
3892
3893 new_count ++;
3894 }
3895 }
3896
3897 if (new_count != m->count)
3898 m->count = new_count;
3899 }
3900 }
3901
3902 if (bed->elf_backend_modify_segment_map)
3903 {
3904 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3905 return FALSE;
3906 }
3907
3908 count = 0;
3909 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3910 ++count;
3911
3912 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3913 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3914 elf_elfheader (abfd)->e_phnum = count;
3915
3916 if (count == 0)
3917 {
3918 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
3919 return TRUE;
3920 }
3921
3922 /* If we already counted the number of program segments, make sure
3923 that we allocated enough space. This happens when SIZEOF_HEADERS
3924 is used in a linker script. */
3925 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3926 if (alloc != 0 && count > alloc)
3927 {
3928 ((*_bfd_error_handler)
3929 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
3930 abfd, alloc, count));
3931 bfd_set_error (bfd_error_bad_value);
3932 return FALSE;
3933 }
3934
3935 if (alloc == 0)
3936 alloc = count;
3937
3938 amt = alloc * sizeof (Elf_Internal_Phdr);
3939 phdrs = bfd_alloc (abfd, amt);
3940 if (phdrs == NULL)
3941 return FALSE;
3942
3943 off = bed->s->sizeof_ehdr;
3944 off += alloc * bed->s->sizeof_phdr;
3945
3946 filehdr_vaddr = 0;
3947 filehdr_paddr = 0;
3948 phdrs_vaddr = 0;
3949 phdrs_paddr = 0;
3950
3951 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3952 m != NULL;
3953 m = m->next, p++)
3954 {
3955 unsigned int i;
3956 asection **secpp;
3957
3958 /* If elf_segment_map is not from map_sections_to_segments, the
3959 sections may not be correctly ordered. NOTE: sorting should
3960 not be done to the PT_NOTE section of a corefile, which may
3961 contain several pseudo-sections artificially created by bfd.
3962 Sorting these pseudo-sections breaks things badly. */
3963 if (m->count > 1
3964 && !(elf_elfheader (abfd)->e_type == ET_CORE
3965 && m->p_type == PT_NOTE))
3966 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3967 elf_sort_sections);
3968
3969 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
3970 number of sections with contents contributing to both p_filesz
3971 and p_memsz, followed by a number of sections with no contents
3972 that just contribute to p_memsz. In this loop, OFF tracks next
3973 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
3974 an adjustment we use for segments that have no file contents
3975 but need zero filled memory allocation. */
3976 voff = 0;
3977 p->p_type = m->p_type;
3978 p->p_flags = m->p_flags;
3979
3980 if (p->p_type == PT_LOAD
3981 && m->count > 0)
3982 {
3983 bfd_size_type align;
3984 bfd_vma adjust;
3985
3986 if ((abfd->flags & D_PAGED) != 0)
3987 align = bed->maxpagesize;
3988 else
3989 {
3990 unsigned int align_power = 0;
3991 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3992 {
3993 unsigned int secalign;
3994
3995 secalign = bfd_get_section_alignment (abfd, *secpp);
3996 if (secalign > align_power)
3997 align_power = secalign;
3998 }
3999 align = (bfd_size_type) 1 << align_power;
4000 }
4001
4002 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4003 off += adjust;
4004 if (adjust != 0
4005 && !m->includes_filehdr
4006 && !m->includes_phdrs
4007 && (ufile_ptr) off >= align)
4008 {
4009 /* If the first section isn't loadable, the same holds for
4010 any other sections. Since the segment won't need file
4011 space, we can make p_offset overlap some prior segment.
4012 However, .tbss is special. If a segment starts with
4013 .tbss, we need to look at the next section to decide
4014 whether the segment has any loadable sections. */
4015 i = 0;
4016 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4017 {
4018 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4019 || ++i >= m->count)
4020 {
4021 off -= adjust;
4022 voff = adjust - align;
4023 break;
4024 }
4025 }
4026 }
4027 }
4028 /* Make sure the .dynamic section is the first section in the
4029 PT_DYNAMIC segment. */
4030 else if (p->p_type == PT_DYNAMIC
4031 && m->count > 1
4032 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4033 {
4034 _bfd_error_handler
4035 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4036 abfd);
4037 bfd_set_error (bfd_error_bad_value);
4038 return FALSE;
4039 }
4040
4041 if (m->count == 0)
4042 p->p_vaddr = 0;
4043 else
4044 p->p_vaddr = m->sections[0]->vma;
4045
4046 if (m->p_paddr_valid)
4047 p->p_paddr = m->p_paddr;
4048 else if (m->count == 0)
4049 p->p_paddr = 0;
4050 else
4051 p->p_paddr = m->sections[0]->lma;
4052
4053 if (p->p_type == PT_LOAD
4054 && (abfd->flags & D_PAGED) != 0)
4055 p->p_align = bed->maxpagesize;
4056 else if (m->count == 0)
4057 p->p_align = 1 << bed->s->log_file_align;
4058 else
4059 p->p_align = 0;
4060
4061 p->p_offset = 0;
4062 p->p_filesz = 0;
4063 p->p_memsz = 0;
4064
4065 if (m->includes_filehdr)
4066 {
4067 if (! m->p_flags_valid)
4068 p->p_flags |= PF_R;
4069 p->p_offset = 0;
4070 p->p_filesz = bed->s->sizeof_ehdr;
4071 p->p_memsz = bed->s->sizeof_ehdr;
4072 if (m->count > 0)
4073 {
4074 BFD_ASSERT (p->p_type == PT_LOAD);
4075
4076 if (p->p_vaddr < (bfd_vma) off)
4077 {
4078 (*_bfd_error_handler)
4079 (_("%B: Not enough room for program headers, try linking with -N"),
4080 abfd);
4081 bfd_set_error (bfd_error_bad_value);
4082 return FALSE;
4083 }
4084
4085 p->p_vaddr -= off;
4086 if (! m->p_paddr_valid)
4087 p->p_paddr -= off;
4088 }
4089 if (p->p_type == PT_LOAD)
4090 {
4091 filehdr_vaddr = p->p_vaddr;
4092 filehdr_paddr = p->p_paddr;
4093 }
4094 }
4095
4096 if (m->includes_phdrs)
4097 {
4098 if (! m->p_flags_valid)
4099 p->p_flags |= PF_R;
4100
4101 if (m->includes_filehdr)
4102 {
4103 if (p->p_type == PT_LOAD)
4104 {
4105 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4106 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4107 }
4108 }
4109 else
4110 {
4111 p->p_offset = bed->s->sizeof_ehdr;
4112
4113 if (m->count > 0)
4114 {
4115 BFD_ASSERT (p->p_type == PT_LOAD);
4116 p->p_vaddr -= off - p->p_offset;
4117 if (! m->p_paddr_valid)
4118 p->p_paddr -= off - p->p_offset;
4119 }
4120
4121 if (p->p_type == PT_LOAD)
4122 {
4123 phdrs_vaddr = p->p_vaddr;
4124 phdrs_paddr = p->p_paddr;
4125 }
4126 else
4127 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4128 }
4129
4130 p->p_filesz += alloc * bed->s->sizeof_phdr;
4131 p->p_memsz += alloc * bed->s->sizeof_phdr;
4132 }
4133
4134 if (p->p_type == PT_LOAD
4135 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4136 {
4137 if (! m->includes_filehdr && ! m->includes_phdrs)
4138 p->p_offset = off + voff;
4139 else
4140 {
4141 file_ptr adjust;
4142
4143 adjust = off - (p->p_offset + p->p_filesz);
4144 p->p_filesz += adjust;
4145 p->p_memsz += adjust;
4146 }
4147 }
4148
4149 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4150 {
4151 asection *sec;
4152 flagword flags;
4153 bfd_size_type align;
4154
4155 sec = *secpp;
4156 flags = sec->flags;
4157 align = 1 << bfd_get_section_alignment (abfd, sec);
4158
4159 if (p->p_type == PT_LOAD
4160 || p->p_type == PT_TLS)
4161 {
4162 bfd_signed_vma adjust;
4163
4164 if ((flags & SEC_LOAD) != 0)
4165 {
4166 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4167 if (adjust < 0)
4168 {
4169 (*_bfd_error_handler)
4170 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4171 abfd, sec, (unsigned long) sec->lma);
4172 adjust = 0;
4173 }
4174 off += adjust;
4175 p->p_filesz += adjust;
4176 p->p_memsz += adjust;
4177 }
4178 /* .tbss is special. It doesn't contribute to p_memsz of
4179 normal segments. */
4180 else if ((flags & SEC_THREAD_LOCAL) == 0
4181 || p->p_type == PT_TLS)
4182 {
4183 /* The section VMA must equal the file position
4184 modulo the page size. */
4185 bfd_size_type page = align;
4186 if ((abfd->flags & D_PAGED) != 0)
4187 page = bed->maxpagesize;
4188 adjust = vma_page_aligned_bias (sec->vma,
4189 p->p_vaddr + p->p_memsz,
4190 page);
4191 p->p_memsz += adjust;
4192 }
4193 }
4194
4195 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4196 {
4197 /* The section at i == 0 is the one that actually contains
4198 everything. */
4199 if (i == 0)
4200 {
4201 sec->filepos = off;
4202 off += sec->size;
4203 p->p_filesz = sec->size;
4204 p->p_memsz = 0;
4205 p->p_align = 1;
4206 }
4207 else
4208 {
4209 /* The rest are fake sections that shouldn't be written. */
4210 sec->filepos = 0;
4211 sec->size = 0;
4212 sec->flags = 0;
4213 continue;
4214 }
4215 }
4216 else
4217 {
4218 if (p->p_type == PT_LOAD)
4219 {
4220 sec->filepos = off;
4221 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4222 1997, and the exact reason for it isn't clear. One
4223 plausible explanation is that it is to work around
4224 a problem we have with linker scripts using data
4225 statements in NOLOAD sections. I don't think it
4226 makes a great deal of sense to have such a section
4227 assigned to a PT_LOAD segment, but apparently
4228 people do this. The data statement results in a
4229 bfd_data_link_order being built, and these need
4230 section contents to write into. Eventually, we get
4231 to _bfd_elf_write_object_contents which writes any
4232 section with contents to the output. Make room
4233 here for the write, so that following segments are
4234 not trashed. */
4235 if ((flags & SEC_LOAD) != 0
4236 || (flags & SEC_HAS_CONTENTS) != 0)
4237 off += sec->size;
4238 }
4239
4240 if ((flags & SEC_LOAD) != 0)
4241 {
4242 p->p_filesz += sec->size;
4243 p->p_memsz += sec->size;
4244 }
4245 /* PR ld/594: Sections in note segments which are not loaded
4246 contribute to the file size but not the in-memory size. */
4247 else if (p->p_type == PT_NOTE
4248 && (flags & SEC_HAS_CONTENTS) != 0)
4249 p->p_filesz += sec->size;
4250
4251 /* .tbss is special. It doesn't contribute to p_memsz of
4252 normal segments. */
4253 else if ((flags & SEC_THREAD_LOCAL) == 0
4254 || p->p_type == PT_TLS)
4255 p->p_memsz += sec->size;
4256
4257 if (p->p_type == PT_TLS
4258 && sec->size == 0
4259 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4260 {
4261 struct bfd_link_order *o;
4262 bfd_vma tbss_size = 0;
4263
4264 for (o = sec->link_order_head; o != NULL; o = o->next)
4265 if (tbss_size < o->offset + o->size)
4266 tbss_size = o->offset + o->size;
4267
4268 p->p_memsz += tbss_size;
4269 }
4270
4271 if (align > p->p_align
4272 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4273 p->p_align = align;
4274 }
4275
4276 if (! m->p_flags_valid)
4277 {
4278 p->p_flags |= PF_R;
4279 if ((flags & SEC_CODE) != 0)
4280 p->p_flags |= PF_X;
4281 if ((flags & SEC_READONLY) == 0)
4282 p->p_flags |= PF_W;
4283 }
4284 }
4285 }
4286
4287 /* Now that we have set the section file positions, we can set up
4288 the file positions for the non PT_LOAD segments. */
4289 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4290 m != NULL;
4291 m = m->next, p++)
4292 {
4293 if (p->p_type != PT_LOAD && m->count > 0)
4294 {
4295 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4296 /* If the section has not yet been assigned a file position,
4297 do so now. The ARM BPABI requires that .dynamic section
4298 not be marked SEC_ALLOC because it is not part of any
4299 PT_LOAD segment, so it will not be processed above. */
4300 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4301 {
4302 unsigned int i;
4303 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4304
4305 i = 1;
4306 while (i_shdrpp[i]->bfd_section != m->sections[0])
4307 ++i;
4308 off = (_bfd_elf_assign_file_position_for_section
4309 (i_shdrpp[i], off, TRUE));
4310 p->p_filesz = m->sections[0]->size;
4311 }
4312 p->p_offset = m->sections[0]->filepos;
4313 }
4314 if (m->count == 0)
4315 {
4316 if (m->includes_filehdr)
4317 {
4318 p->p_vaddr = filehdr_vaddr;
4319 if (! m->p_paddr_valid)
4320 p->p_paddr = filehdr_paddr;
4321 }
4322 else if (m->includes_phdrs)
4323 {
4324 p->p_vaddr = phdrs_vaddr;
4325 if (! m->p_paddr_valid)
4326 p->p_paddr = phdrs_paddr;
4327 }
4328 else if (p->p_type == PT_GNU_RELRO)
4329 {
4330 Elf_Internal_Phdr *lp;
4331
4332 for (lp = phdrs; lp < phdrs + count; ++lp)
4333 {
4334 if (lp->p_type == PT_LOAD
4335 && lp->p_vaddr <= link_info->relro_end
4336 && lp->p_vaddr >= link_info->relro_start
4337 && lp->p_vaddr + lp->p_filesz
4338 >= link_info->relro_end)
4339 break;
4340 }
4341
4342 if (lp < phdrs + count
4343 && link_info->relro_end > lp->p_vaddr)
4344 {
4345 p->p_vaddr = lp->p_vaddr;
4346 p->p_paddr = lp->p_paddr;
4347 p->p_offset = lp->p_offset;
4348 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4349 p->p_memsz = p->p_filesz;
4350 p->p_align = 1;
4351 p->p_flags = (lp->p_flags & ~PF_W);
4352 }
4353 else
4354 {
4355 memset (p, 0, sizeof *p);
4356 p->p_type = PT_NULL;
4357 }
4358 }
4359 }
4360 }
4361
4362 /* Clear out any program headers we allocated but did not use. */
4363 for (; count < alloc; count++, p++)
4364 {
4365 memset (p, 0, sizeof *p);
4366 p->p_type = PT_NULL;
4367 }
4368
4369 elf_tdata (abfd)->phdr = phdrs;
4370
4371 elf_tdata (abfd)->next_file_pos = off;
4372
4373 /* Write out the program headers. */
4374 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4375 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4376 return FALSE;
4377
4378 return TRUE;
4379 }
4380
4381 /* Get the size of the program header.
4382
4383 If this is called by the linker before any of the section VMA's are set, it
4384 can't calculate the correct value for a strange memory layout. This only
4385 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4386 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4387 data segment (exclusive of .interp and .dynamic).
4388
4389 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4390 will be two segments. */
4391
4392 static bfd_size_type
4393 get_program_header_size (bfd *abfd)
4394 {
4395 size_t segs;
4396 asection *s;
4397 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4398
4399 /* We can't return a different result each time we're called. */
4400 if (elf_tdata (abfd)->program_header_size != 0)
4401 return elf_tdata (abfd)->program_header_size;
4402
4403 if (elf_tdata (abfd)->segment_map != NULL)
4404 {
4405 struct elf_segment_map *m;
4406
4407 segs = 0;
4408 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4409 ++segs;
4410 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4411 return elf_tdata (abfd)->program_header_size;
4412 }
4413
4414 /* Assume we will need exactly two PT_LOAD segments: one for text
4415 and one for data. */
4416 segs = 2;
4417
4418 s = bfd_get_section_by_name (abfd, ".interp");
4419 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4420 {
4421 /* If we have a loadable interpreter section, we need a
4422 PT_INTERP segment. In this case, assume we also need a
4423 PT_PHDR segment, although that may not be true for all
4424 targets. */
4425 segs += 2;
4426 }
4427
4428 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4429 {
4430 /* We need a PT_DYNAMIC segment. */
4431 ++segs;
4432 }
4433
4434 if (elf_tdata (abfd)->eh_frame_hdr)
4435 {
4436 /* We need a PT_GNU_EH_FRAME segment. */
4437 ++segs;
4438 }
4439
4440 if (elf_tdata (abfd)->stack_flags)
4441 {
4442 /* We need a PT_GNU_STACK segment. */
4443 ++segs;
4444 }
4445
4446 if (elf_tdata (abfd)->relro)
4447 {
4448 /* We need a PT_GNU_RELRO segment. */
4449 ++segs;
4450 }
4451
4452 for (s = abfd->sections; s != NULL; s = s->next)
4453 {
4454 if ((s->flags & SEC_LOAD) != 0
4455 && strncmp (s->name, ".note", 5) == 0)
4456 {
4457 /* We need a PT_NOTE segment. */
4458 ++segs;
4459 }
4460 }
4461
4462 for (s = abfd->sections; s != NULL; s = s->next)
4463 {
4464 if (s->flags & SEC_THREAD_LOCAL)
4465 {
4466 /* We need a PT_TLS segment. */
4467 ++segs;
4468 break;
4469 }
4470 }
4471
4472 /* Let the backend count up any program headers it might need. */
4473 if (bed->elf_backend_additional_program_headers)
4474 {
4475 int a;
4476
4477 a = (*bed->elf_backend_additional_program_headers) (abfd);
4478 if (a == -1)
4479 abort ();
4480 segs += a;
4481 }
4482
4483 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4484 return elf_tdata (abfd)->program_header_size;
4485 }
4486
4487 /* Work out the file positions of all the sections. This is called by
4488 _bfd_elf_compute_section_file_positions. All the section sizes and
4489 VMAs must be known before this is called.
4490
4491 Reloc sections come in two flavours: Those processed specially as
4492 "side-channel" data attached to a section to which they apply, and
4493 those that bfd doesn't process as relocations. The latter sort are
4494 stored in a normal bfd section by bfd_section_from_shdr. We don't
4495 consider the former sort here, unless they form part of the loadable
4496 image. Reloc sections not assigned here will be handled later by
4497 assign_file_positions_for_relocs.
4498
4499 We also don't set the positions of the .symtab and .strtab here. */
4500
4501 static bfd_boolean
4502 assign_file_positions_except_relocs (bfd *abfd,
4503 struct bfd_link_info *link_info)
4504 {
4505 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4506 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4507 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4508 unsigned int num_sec = elf_numsections (abfd);
4509 file_ptr off;
4510 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4511
4512 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4513 && bfd_get_format (abfd) != bfd_core)
4514 {
4515 Elf_Internal_Shdr **hdrpp;
4516 unsigned int i;
4517
4518 /* Start after the ELF header. */
4519 off = i_ehdrp->e_ehsize;
4520
4521 /* We are not creating an executable, which means that we are
4522 not creating a program header, and that the actual order of
4523 the sections in the file is unimportant. */
4524 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4525 {
4526 Elf_Internal_Shdr *hdr;
4527
4528 hdr = *hdrpp;
4529 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4530 && hdr->bfd_section == NULL)
4531 || i == tdata->symtab_section
4532 || i == tdata->symtab_shndx_section
4533 || i == tdata->strtab_section)
4534 {
4535 hdr->sh_offset = -1;
4536 }
4537 else
4538 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4539
4540 if (i == SHN_LORESERVE - 1)
4541 {
4542 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4543 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4544 }
4545 }
4546 }
4547 else
4548 {
4549 unsigned int i;
4550 Elf_Internal_Shdr **hdrpp;
4551
4552 /* Assign file positions for the loaded sections based on the
4553 assignment of sections to segments. */
4554 if (! assign_file_positions_for_segments (abfd, link_info))
4555 return FALSE;
4556
4557 /* Assign file positions for the other sections. */
4558
4559 off = elf_tdata (abfd)->next_file_pos;
4560 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4561 {
4562 Elf_Internal_Shdr *hdr;
4563
4564 hdr = *hdrpp;
4565 if (hdr->bfd_section != NULL
4566 && hdr->bfd_section->filepos != 0)
4567 hdr->sh_offset = hdr->bfd_section->filepos;
4568 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4569 {
4570 ((*_bfd_error_handler)
4571 (_("%B: warning: allocated section `%s' not in segment"),
4572 abfd,
4573 (hdr->bfd_section == NULL
4574 ? "*unknown*"
4575 : hdr->bfd_section->name)));
4576 if ((abfd->flags & D_PAGED) != 0)
4577 off += vma_page_aligned_bias (hdr->sh_addr, off,
4578 bed->maxpagesize);
4579 else
4580 off += vma_page_aligned_bias (hdr->sh_addr, off,
4581 hdr->sh_addralign);
4582 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4583 FALSE);
4584 }
4585 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4586 && hdr->bfd_section == NULL)
4587 || hdr == i_shdrpp[tdata->symtab_section]
4588 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4589 || hdr == i_shdrpp[tdata->strtab_section])
4590 hdr->sh_offset = -1;
4591 else
4592 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4593
4594 if (i == SHN_LORESERVE - 1)
4595 {
4596 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4597 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4598 }
4599 }
4600 }
4601
4602 /* Place the section headers. */
4603 off = align_file_position (off, 1 << bed->s->log_file_align);
4604 i_ehdrp->e_shoff = off;
4605 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4606
4607 elf_tdata (abfd)->next_file_pos = off;
4608
4609 return TRUE;
4610 }
4611
4612 static bfd_boolean
4613 prep_headers (bfd *abfd)
4614 {
4615 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4616 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4617 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4618 struct elf_strtab_hash *shstrtab;
4619 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4620
4621 i_ehdrp = elf_elfheader (abfd);
4622 i_shdrp = elf_elfsections (abfd);
4623
4624 shstrtab = _bfd_elf_strtab_init ();
4625 if (shstrtab == NULL)
4626 return FALSE;
4627
4628 elf_shstrtab (abfd) = shstrtab;
4629
4630 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4631 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4632 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4633 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4634
4635 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4636 i_ehdrp->e_ident[EI_DATA] =
4637 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4638 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4639
4640 if ((abfd->flags & DYNAMIC) != 0)
4641 i_ehdrp->e_type = ET_DYN;
4642 else if ((abfd->flags & EXEC_P) != 0)
4643 i_ehdrp->e_type = ET_EXEC;
4644 else if (bfd_get_format (abfd) == bfd_core)
4645 i_ehdrp->e_type = ET_CORE;
4646 else
4647 i_ehdrp->e_type = ET_REL;
4648
4649 switch (bfd_get_arch (abfd))
4650 {
4651 case bfd_arch_unknown:
4652 i_ehdrp->e_machine = EM_NONE;
4653 break;
4654
4655 /* There used to be a long list of cases here, each one setting
4656 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4657 in the corresponding bfd definition. To avoid duplication,
4658 the switch was removed. Machines that need special handling
4659 can generally do it in elf_backend_final_write_processing(),
4660 unless they need the information earlier than the final write.
4661 Such need can generally be supplied by replacing the tests for
4662 e_machine with the conditions used to determine it. */
4663 default:
4664 i_ehdrp->e_machine = bed->elf_machine_code;
4665 }
4666
4667 i_ehdrp->e_version = bed->s->ev_current;
4668 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4669
4670 /* No program header, for now. */
4671 i_ehdrp->e_phoff = 0;
4672 i_ehdrp->e_phentsize = 0;
4673 i_ehdrp->e_phnum = 0;
4674
4675 /* Each bfd section is section header entry. */
4676 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4677 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4678
4679 /* If we're building an executable, we'll need a program header table. */
4680 if (abfd->flags & EXEC_P)
4681 /* It all happens later. */
4682 ;
4683 else
4684 {
4685 i_ehdrp->e_phentsize = 0;
4686 i_phdrp = 0;
4687 i_ehdrp->e_phoff = 0;
4688 }
4689
4690 elf_tdata (abfd)->symtab_hdr.sh_name =
4691 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4692 elf_tdata (abfd)->strtab_hdr.sh_name =
4693 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4694 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4695 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4696 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4697 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4698 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4699 return FALSE;
4700
4701 return TRUE;
4702 }
4703
4704 /* Assign file positions for all the reloc sections which are not part
4705 of the loadable file image. */
4706
4707 void
4708 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4709 {
4710 file_ptr off;
4711 unsigned int i, num_sec;
4712 Elf_Internal_Shdr **shdrpp;
4713
4714 off = elf_tdata (abfd)->next_file_pos;
4715
4716 num_sec = elf_numsections (abfd);
4717 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4718 {
4719 Elf_Internal_Shdr *shdrp;
4720
4721 shdrp = *shdrpp;
4722 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4723 && shdrp->sh_offset == -1)
4724 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4725 }
4726
4727 elf_tdata (abfd)->next_file_pos = off;
4728 }
4729
4730 bfd_boolean
4731 _bfd_elf_write_object_contents (bfd *abfd)
4732 {
4733 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4734 Elf_Internal_Ehdr *i_ehdrp;
4735 Elf_Internal_Shdr **i_shdrp;
4736 bfd_boolean failed;
4737 unsigned int count, num_sec;
4738
4739 if (! abfd->output_has_begun
4740 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4741 return FALSE;
4742
4743 i_shdrp = elf_elfsections (abfd);
4744 i_ehdrp = elf_elfheader (abfd);
4745
4746 failed = FALSE;
4747 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4748 if (failed)
4749 return FALSE;
4750
4751 _bfd_elf_assign_file_positions_for_relocs (abfd);
4752
4753 /* After writing the headers, we need to write the sections too... */
4754 num_sec = elf_numsections (abfd);
4755 for (count = 1; count < num_sec; count++)
4756 {
4757 if (bed->elf_backend_section_processing)
4758 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4759 if (i_shdrp[count]->contents)
4760 {
4761 bfd_size_type amt = i_shdrp[count]->sh_size;
4762
4763 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4764 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4765 return FALSE;
4766 }
4767 if (count == SHN_LORESERVE - 1)
4768 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4769 }
4770
4771 /* Write out the section header names. */
4772 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4773 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4774 return FALSE;
4775
4776 if (bed->elf_backend_final_write_processing)
4777 (*bed->elf_backend_final_write_processing) (abfd,
4778 elf_tdata (abfd)->linker);
4779
4780 return bed->s->write_shdrs_and_ehdr (abfd);
4781 }
4782
4783 bfd_boolean
4784 _bfd_elf_write_corefile_contents (bfd *abfd)
4785 {
4786 /* Hopefully this can be done just like an object file. */
4787 return _bfd_elf_write_object_contents (abfd);
4788 }
4789
4790 /* Given a section, search the header to find them. */
4791
4792 int
4793 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4794 {
4795 const struct elf_backend_data *bed;
4796 int index;
4797
4798 if (elf_section_data (asect) != NULL
4799 && elf_section_data (asect)->this_idx != 0)
4800 return elf_section_data (asect)->this_idx;
4801
4802 if (bfd_is_abs_section (asect))
4803 index = SHN_ABS;
4804 else if (bfd_is_com_section (asect))
4805 index = SHN_COMMON;
4806 else if (bfd_is_und_section (asect))
4807 index = SHN_UNDEF;
4808 else
4809 index = -1;
4810
4811 bed = get_elf_backend_data (abfd);
4812 if (bed->elf_backend_section_from_bfd_section)
4813 {
4814 int retval = index;
4815
4816 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4817 return retval;
4818 }
4819
4820 if (index == -1)
4821 bfd_set_error (bfd_error_nonrepresentable_section);
4822
4823 return index;
4824 }
4825
4826 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4827 on error. */
4828
4829 int
4830 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4831 {
4832 asymbol *asym_ptr = *asym_ptr_ptr;
4833 int idx;
4834 flagword flags = asym_ptr->flags;
4835
4836 /* When gas creates relocations against local labels, it creates its
4837 own symbol for the section, but does put the symbol into the
4838 symbol chain, so udata is 0. When the linker is generating
4839 relocatable output, this section symbol may be for one of the
4840 input sections rather than the output section. */
4841 if (asym_ptr->udata.i == 0
4842 && (flags & BSF_SECTION_SYM)
4843 && asym_ptr->section)
4844 {
4845 int indx;
4846
4847 if (asym_ptr->section->output_section != NULL)
4848 indx = asym_ptr->section->output_section->index;
4849 else
4850 indx = asym_ptr->section->index;
4851 if (indx < elf_num_section_syms (abfd)
4852 && elf_section_syms (abfd)[indx] != NULL)
4853 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4854 }
4855
4856 idx = asym_ptr->udata.i;
4857
4858 if (idx == 0)
4859 {
4860 /* This case can occur when using --strip-symbol on a symbol
4861 which is used in a relocation entry. */
4862 (*_bfd_error_handler)
4863 (_("%B: symbol `%s' required but not present"),
4864 abfd, bfd_asymbol_name (asym_ptr));
4865 bfd_set_error (bfd_error_no_symbols);
4866 return -1;
4867 }
4868
4869 #if DEBUG & 4
4870 {
4871 fprintf (stderr,
4872 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4873 (long) asym_ptr, asym_ptr->name, idx, flags,
4874 elf_symbol_flags (flags));
4875 fflush (stderr);
4876 }
4877 #endif
4878
4879 return idx;
4880 }
4881
4882 /* Copy private BFD data. This copies any program header information. */
4883
4884 static bfd_boolean
4885 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4886 {
4887 Elf_Internal_Ehdr *iehdr;
4888 struct elf_segment_map *map;
4889 struct elf_segment_map *map_first;
4890 struct elf_segment_map **pointer_to_map;
4891 Elf_Internal_Phdr *segment;
4892 asection *section;
4893 unsigned int i;
4894 unsigned int num_segments;
4895 bfd_boolean phdr_included = FALSE;
4896 bfd_vma maxpagesize;
4897 struct elf_segment_map *phdr_adjust_seg = NULL;
4898 unsigned int phdr_adjust_num = 0;
4899 const struct elf_backend_data *bed;
4900
4901 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4902 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4903 return TRUE;
4904
4905 if (elf_tdata (ibfd)->phdr == NULL)
4906 return TRUE;
4907
4908 bed = get_elf_backend_data (ibfd);
4909 iehdr = elf_elfheader (ibfd);
4910
4911 map_first = NULL;
4912 pointer_to_map = &map_first;
4913
4914 num_segments = elf_elfheader (ibfd)->e_phnum;
4915 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4916
4917 /* Returns the end address of the segment + 1. */
4918 #define SEGMENT_END(segment, start) \
4919 (start + (segment->p_memsz > segment->p_filesz \
4920 ? segment->p_memsz : segment->p_filesz))
4921
4922 #define SECTION_SIZE(section, segment) \
4923 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4924 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4925 ? section->size : 0)
4926
4927 /* Returns TRUE if the given section is contained within
4928 the given segment. VMA addresses are compared. */
4929 #define IS_CONTAINED_BY_VMA(section, segment) \
4930 (section->vma >= segment->p_vaddr \
4931 && (section->vma + SECTION_SIZE (section, segment) \
4932 <= (SEGMENT_END (segment, segment->p_vaddr))))
4933
4934 /* Returns TRUE if the given section is contained within
4935 the given segment. LMA addresses are compared. */
4936 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4937 (section->lma >= base \
4938 && (section->lma + SECTION_SIZE (section, segment) \
4939 <= SEGMENT_END (segment, base)))
4940
4941 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4942 #define IS_COREFILE_NOTE(p, s) \
4943 (p->p_type == PT_NOTE \
4944 && bfd_get_format (ibfd) == bfd_core \
4945 && s->vma == 0 && s->lma == 0 \
4946 && (bfd_vma) s->filepos >= p->p_offset \
4947 && ((bfd_vma) s->filepos + s->size \
4948 <= p->p_offset + p->p_filesz))
4949
4950 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4951 linker, which generates a PT_INTERP section with p_vaddr and
4952 p_memsz set to 0. */
4953 #define IS_SOLARIS_PT_INTERP(p, s) \
4954 (p->p_vaddr == 0 \
4955 && p->p_paddr == 0 \
4956 && p->p_memsz == 0 \
4957 && p->p_filesz > 0 \
4958 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4959 && s->size > 0 \
4960 && (bfd_vma) s->filepos >= p->p_offset \
4961 && ((bfd_vma) s->filepos + s->size \
4962 <= p->p_offset + p->p_filesz))
4963
4964 /* Decide if the given section should be included in the given segment.
4965 A section will be included if:
4966 1. It is within the address space of the segment -- we use the LMA
4967 if that is set for the segment and the VMA otherwise,
4968 2. It is an allocated segment,
4969 3. There is an output section associated with it,
4970 4. The section has not already been allocated to a previous segment.
4971 5. PT_GNU_STACK segments do not include any sections.
4972 6. PT_TLS segment includes only SHF_TLS sections.
4973 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
4974 8. PT_DYNAMIC should not contain empty sections at the beginning
4975 (with the possible exception of .dynamic). */
4976 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4977 ((((segment->p_paddr \
4978 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4979 : IS_CONTAINED_BY_VMA (section, segment)) \
4980 && (section->flags & SEC_ALLOC) != 0) \
4981 || IS_COREFILE_NOTE (segment, section)) \
4982 && section->output_section != NULL \
4983 && segment->p_type != PT_GNU_STACK \
4984 && (segment->p_type != PT_TLS \
4985 || (section->flags & SEC_THREAD_LOCAL)) \
4986 && (segment->p_type == PT_LOAD \
4987 || segment->p_type == PT_TLS \
4988 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4989 && (segment->p_type != PT_DYNAMIC \
4990 || SECTION_SIZE (section, segment) > 0 \
4991 || (segment->p_paddr \
4992 ? segment->p_paddr != section->lma \
4993 : segment->p_vaddr != section->vma) \
4994 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
4995 == 0)) \
4996 && ! section->segment_mark)
4997
4998 /* Returns TRUE iff seg1 starts after the end of seg2. */
4999 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5000 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5001
5002 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5003 their VMA address ranges and their LMA address ranges overlap.
5004 It is possible to have overlapping VMA ranges without overlapping LMA
5005 ranges. RedBoot images for example can have both .data and .bss mapped
5006 to the same VMA range, but with the .data section mapped to a different
5007 LMA. */
5008 #define SEGMENT_OVERLAPS(seg1, seg2) \
5009 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5010 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5011 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5012 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5013
5014 /* Initialise the segment mark field. */
5015 for (section = ibfd->sections; section != NULL; section = section->next)
5016 section->segment_mark = FALSE;
5017
5018 /* Scan through the segments specified in the program header
5019 of the input BFD. For this first scan we look for overlaps
5020 in the loadable segments. These can be created by weird
5021 parameters to objcopy. Also, fix some solaris weirdness. */
5022 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5023 i < num_segments;
5024 i++, segment++)
5025 {
5026 unsigned int j;
5027 Elf_Internal_Phdr *segment2;
5028
5029 if (segment->p_type == PT_INTERP)
5030 for (section = ibfd->sections; section; section = section->next)
5031 if (IS_SOLARIS_PT_INTERP (segment, section))
5032 {
5033 /* Mininal change so that the normal section to segment
5034 assignment code will work. */
5035 segment->p_vaddr = section->vma;
5036 break;
5037 }
5038
5039 if (segment->p_type != PT_LOAD)
5040 continue;
5041
5042 /* Determine if this segment overlaps any previous segments. */
5043 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5044 {
5045 bfd_signed_vma extra_length;
5046
5047 if (segment2->p_type != PT_LOAD
5048 || ! SEGMENT_OVERLAPS (segment, segment2))
5049 continue;
5050
5051 /* Merge the two segments together. */
5052 if (segment2->p_vaddr < segment->p_vaddr)
5053 {
5054 /* Extend SEGMENT2 to include SEGMENT and then delete
5055 SEGMENT. */
5056 extra_length =
5057 SEGMENT_END (segment, segment->p_vaddr)
5058 - SEGMENT_END (segment2, segment2->p_vaddr);
5059
5060 if (extra_length > 0)
5061 {
5062 segment2->p_memsz += extra_length;
5063 segment2->p_filesz += extra_length;
5064 }
5065
5066 segment->p_type = PT_NULL;
5067
5068 /* Since we have deleted P we must restart the outer loop. */
5069 i = 0;
5070 segment = elf_tdata (ibfd)->phdr;
5071 break;
5072 }
5073 else
5074 {
5075 /* Extend SEGMENT to include SEGMENT2 and then delete
5076 SEGMENT2. */
5077 extra_length =
5078 SEGMENT_END (segment2, segment2->p_vaddr)
5079 - SEGMENT_END (segment, segment->p_vaddr);
5080
5081 if (extra_length > 0)
5082 {
5083 segment->p_memsz += extra_length;
5084 segment->p_filesz += extra_length;
5085 }
5086
5087 segment2->p_type = PT_NULL;
5088 }
5089 }
5090 }
5091
5092 /* The second scan attempts to assign sections to segments. */
5093 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5094 i < num_segments;
5095 i ++, segment ++)
5096 {
5097 unsigned int section_count;
5098 asection ** sections;
5099 asection * output_section;
5100 unsigned int isec;
5101 bfd_vma matching_lma;
5102 bfd_vma suggested_lma;
5103 unsigned int j;
5104 bfd_size_type amt;
5105
5106 if (segment->p_type == PT_NULL)
5107 continue;
5108
5109 /* Compute how many sections might be placed into this segment. */
5110 for (section = ibfd->sections, section_count = 0;
5111 section != NULL;
5112 section = section->next)
5113 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5114 ++section_count;
5115
5116 /* Allocate a segment map big enough to contain
5117 all of the sections we have selected. */
5118 amt = sizeof (struct elf_segment_map);
5119 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5120 map = bfd_alloc (obfd, amt);
5121 if (map == NULL)
5122 return FALSE;
5123
5124 /* Initialise the fields of the segment map. Default to
5125 using the physical address of the segment in the input BFD. */
5126 map->next = NULL;
5127 map->p_type = segment->p_type;
5128 map->p_flags = segment->p_flags;
5129 map->p_flags_valid = 1;
5130 map->p_paddr = segment->p_paddr;
5131 map->p_paddr_valid = 1;
5132
5133 /* Determine if this segment contains the ELF file header
5134 and if it contains the program headers themselves. */
5135 map->includes_filehdr = (segment->p_offset == 0
5136 && segment->p_filesz >= iehdr->e_ehsize);
5137
5138 map->includes_phdrs = 0;
5139
5140 if (! phdr_included || segment->p_type != PT_LOAD)
5141 {
5142 map->includes_phdrs =
5143 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5144 && (segment->p_offset + segment->p_filesz
5145 >= ((bfd_vma) iehdr->e_phoff
5146 + iehdr->e_phnum * iehdr->e_phentsize)));
5147
5148 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5149 phdr_included = TRUE;
5150 }
5151
5152 if (section_count == 0)
5153 {
5154 /* Special segments, such as the PT_PHDR segment, may contain
5155 no sections, but ordinary, loadable segments should contain
5156 something. They are allowed by the ELF spec however, so only
5157 a warning is produced. */
5158 if (segment->p_type == PT_LOAD)
5159 (*_bfd_error_handler)
5160 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5161 ibfd);
5162
5163 map->count = 0;
5164 *pointer_to_map = map;
5165 pointer_to_map = &map->next;
5166
5167 continue;
5168 }
5169
5170 /* Now scan the sections in the input BFD again and attempt
5171 to add their corresponding output sections to the segment map.
5172 The problem here is how to handle an output section which has
5173 been moved (ie had its LMA changed). There are four possibilities:
5174
5175 1. None of the sections have been moved.
5176 In this case we can continue to use the segment LMA from the
5177 input BFD.
5178
5179 2. All of the sections have been moved by the same amount.
5180 In this case we can change the segment's LMA to match the LMA
5181 of the first section.
5182
5183 3. Some of the sections have been moved, others have not.
5184 In this case those sections which have not been moved can be
5185 placed in the current segment which will have to have its size,
5186 and possibly its LMA changed, and a new segment or segments will
5187 have to be created to contain the other sections.
5188
5189 4. The sections have been moved, but not by the same amount.
5190 In this case we can change the segment's LMA to match the LMA
5191 of the first section and we will have to create a new segment
5192 or segments to contain the other sections.
5193
5194 In order to save time, we allocate an array to hold the section
5195 pointers that we are interested in. As these sections get assigned
5196 to a segment, they are removed from this array. */
5197
5198 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5199 to work around this long long bug. */
5200 amt = section_count * sizeof (asection *);
5201 sections = bfd_malloc (amt);
5202 if (sections == NULL)
5203 return FALSE;
5204
5205 /* Step One: Scan for segment vs section LMA conflicts.
5206 Also add the sections to the section array allocated above.
5207 Also add the sections to the current segment. In the common
5208 case, where the sections have not been moved, this means that
5209 we have completely filled the segment, and there is nothing
5210 more to do. */
5211 isec = 0;
5212 matching_lma = 0;
5213 suggested_lma = 0;
5214
5215 for (j = 0, section = ibfd->sections;
5216 section != NULL;
5217 section = section->next)
5218 {
5219 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5220 {
5221 output_section = section->output_section;
5222
5223 sections[j ++] = section;
5224
5225 /* The Solaris native linker always sets p_paddr to 0.
5226 We try to catch that case here, and set it to the
5227 correct value. Note - some backends require that
5228 p_paddr be left as zero. */
5229 if (segment->p_paddr == 0
5230 && segment->p_vaddr != 0
5231 && (! bed->want_p_paddr_set_to_zero)
5232 && isec == 0
5233 && output_section->lma != 0
5234 && (output_section->vma == (segment->p_vaddr
5235 + (map->includes_filehdr
5236 ? iehdr->e_ehsize
5237 : 0)
5238 + (map->includes_phdrs
5239 ? (iehdr->e_phnum
5240 * iehdr->e_phentsize)
5241 : 0))))
5242 map->p_paddr = segment->p_vaddr;
5243
5244 /* Match up the physical address of the segment with the
5245 LMA address of the output section. */
5246 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5247 || IS_COREFILE_NOTE (segment, section)
5248 || (bed->want_p_paddr_set_to_zero &&
5249 IS_CONTAINED_BY_VMA (output_section, segment))
5250 )
5251 {
5252 if (matching_lma == 0)
5253 matching_lma = output_section->lma;
5254
5255 /* We assume that if the section fits within the segment
5256 then it does not overlap any other section within that
5257 segment. */
5258 map->sections[isec ++] = output_section;
5259 }
5260 else if (suggested_lma == 0)
5261 suggested_lma = output_section->lma;
5262 }
5263 }
5264
5265 BFD_ASSERT (j == section_count);
5266
5267 /* Step Two: Adjust the physical address of the current segment,
5268 if necessary. */
5269 if (isec == section_count)
5270 {
5271 /* All of the sections fitted within the segment as currently
5272 specified. This is the default case. Add the segment to
5273 the list of built segments and carry on to process the next
5274 program header in the input BFD. */
5275 map->count = section_count;
5276 *pointer_to_map = map;
5277 pointer_to_map = &map->next;
5278
5279 free (sections);
5280 continue;
5281 }
5282 else
5283 {
5284 if (matching_lma != 0)
5285 {
5286 /* At least one section fits inside the current segment.
5287 Keep it, but modify its physical address to match the
5288 LMA of the first section that fitted. */
5289 map->p_paddr = matching_lma;
5290 }
5291 else
5292 {
5293 /* None of the sections fitted inside the current segment.
5294 Change the current segment's physical address to match
5295 the LMA of the first section. */
5296 map->p_paddr = suggested_lma;
5297 }
5298
5299 /* Offset the segment physical address from the lma
5300 to allow for space taken up by elf headers. */
5301 if (map->includes_filehdr)
5302 map->p_paddr -= iehdr->e_ehsize;
5303
5304 if (map->includes_phdrs)
5305 {
5306 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5307
5308 /* iehdr->e_phnum is just an estimate of the number
5309 of program headers that we will need. Make a note
5310 here of the number we used and the segment we chose
5311 to hold these headers, so that we can adjust the
5312 offset when we know the correct value. */
5313 phdr_adjust_num = iehdr->e_phnum;
5314 phdr_adjust_seg = map;
5315 }
5316 }
5317
5318 /* Step Three: Loop over the sections again, this time assigning
5319 those that fit to the current segment and removing them from the
5320 sections array; but making sure not to leave large gaps. Once all
5321 possible sections have been assigned to the current segment it is
5322 added to the list of built segments and if sections still remain
5323 to be assigned, a new segment is constructed before repeating
5324 the loop. */
5325 isec = 0;
5326 do
5327 {
5328 map->count = 0;
5329 suggested_lma = 0;
5330
5331 /* Fill the current segment with sections that fit. */
5332 for (j = 0; j < section_count; j++)
5333 {
5334 section = sections[j];
5335
5336 if (section == NULL)
5337 continue;
5338
5339 output_section = section->output_section;
5340
5341 BFD_ASSERT (output_section != NULL);
5342
5343 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5344 || IS_COREFILE_NOTE (segment, section))
5345 {
5346 if (map->count == 0)
5347 {
5348 /* If the first section in a segment does not start at
5349 the beginning of the segment, then something is
5350 wrong. */
5351 if (output_section->lma !=
5352 (map->p_paddr
5353 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5354 + (map->includes_phdrs
5355 ? iehdr->e_phnum * iehdr->e_phentsize
5356 : 0)))
5357 abort ();
5358 }
5359 else
5360 {
5361 asection * prev_sec;
5362
5363 prev_sec = map->sections[map->count - 1];
5364
5365 /* If the gap between the end of the previous section
5366 and the start of this section is more than
5367 maxpagesize then we need to start a new segment. */
5368 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5369 maxpagesize)
5370 < BFD_ALIGN (output_section->lma, maxpagesize))
5371 || ((prev_sec->lma + prev_sec->size)
5372 > output_section->lma))
5373 {
5374 if (suggested_lma == 0)
5375 suggested_lma = output_section->lma;
5376
5377 continue;
5378 }
5379 }
5380
5381 map->sections[map->count++] = output_section;
5382 ++isec;
5383 sections[j] = NULL;
5384 section->segment_mark = TRUE;
5385 }
5386 else if (suggested_lma == 0)
5387 suggested_lma = output_section->lma;
5388 }
5389
5390 BFD_ASSERT (map->count > 0);
5391
5392 /* Add the current segment to the list of built segments. */
5393 *pointer_to_map = map;
5394 pointer_to_map = &map->next;
5395
5396 if (isec < section_count)
5397 {
5398 /* We still have not allocated all of the sections to
5399 segments. Create a new segment here, initialise it
5400 and carry on looping. */
5401 amt = sizeof (struct elf_segment_map);
5402 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5403 map = bfd_alloc (obfd, amt);
5404 if (map == NULL)
5405 {
5406 free (sections);
5407 return FALSE;
5408 }
5409
5410 /* Initialise the fields of the segment map. Set the physical
5411 physical address to the LMA of the first section that has
5412 not yet been assigned. */
5413 map->next = NULL;
5414 map->p_type = segment->p_type;
5415 map->p_flags = segment->p_flags;
5416 map->p_flags_valid = 1;
5417 map->p_paddr = suggested_lma;
5418 map->p_paddr_valid = 1;
5419 map->includes_filehdr = 0;
5420 map->includes_phdrs = 0;
5421 }
5422 }
5423 while (isec < section_count);
5424
5425 free (sections);
5426 }
5427
5428 /* The Solaris linker creates program headers in which all the
5429 p_paddr fields are zero. When we try to objcopy or strip such a
5430 file, we get confused. Check for this case, and if we find it
5431 reset the p_paddr_valid fields. */
5432 for (map = map_first; map != NULL; map = map->next)
5433 if (map->p_paddr != 0)
5434 break;
5435 if (map == NULL)
5436 for (map = map_first; map != NULL; map = map->next)
5437 map->p_paddr_valid = 0;
5438
5439 elf_tdata (obfd)->segment_map = map_first;
5440
5441 /* If we had to estimate the number of program headers that were
5442 going to be needed, then check our estimate now and adjust
5443 the offset if necessary. */
5444 if (phdr_adjust_seg != NULL)
5445 {
5446 unsigned int count;
5447
5448 for (count = 0, map = map_first; map != NULL; map = map->next)
5449 count++;
5450
5451 if (count > phdr_adjust_num)
5452 phdr_adjust_seg->p_paddr
5453 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5454 }
5455
5456 #undef SEGMENT_END
5457 #undef SECTION_SIZE
5458 #undef IS_CONTAINED_BY_VMA
5459 #undef IS_CONTAINED_BY_LMA
5460 #undef IS_COREFILE_NOTE
5461 #undef IS_SOLARIS_PT_INTERP
5462 #undef INCLUDE_SECTION_IN_SEGMENT
5463 #undef SEGMENT_AFTER_SEGMENT
5464 #undef SEGMENT_OVERLAPS
5465 return TRUE;
5466 }
5467
5468 /* Copy private section information. This copies over the entsize
5469 field, and sometimes the info field. */
5470
5471 bfd_boolean
5472 _bfd_elf_copy_private_section_data (bfd *ibfd,
5473 asection *isec,
5474 bfd *obfd,
5475 asection *osec)
5476 {
5477 Elf_Internal_Shdr *ihdr, *ohdr;
5478
5479 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5480 || obfd->xvec->flavour != bfd_target_elf_flavour)
5481 return TRUE;
5482
5483 ihdr = &elf_section_data (isec)->this_hdr;
5484 ohdr = &elf_section_data (osec)->this_hdr;
5485
5486 ohdr->sh_entsize = ihdr->sh_entsize;
5487
5488 if (ihdr->sh_type == SHT_SYMTAB
5489 || ihdr->sh_type == SHT_DYNSYM
5490 || ihdr->sh_type == SHT_GNU_verneed
5491 || ihdr->sh_type == SHT_GNU_verdef)
5492 ohdr->sh_info = ihdr->sh_info;
5493
5494 /* Set things up for objcopy. The output SHT_GROUP section will
5495 have its elf_next_in_group pointing back to the input group
5496 members. */
5497 elf_next_in_group (osec) = elf_next_in_group (isec);
5498 elf_group_name (osec) = elf_group_name (isec);
5499
5500 osec->use_rela_p = isec->use_rela_p;
5501
5502 return TRUE;
5503 }
5504
5505 /* Copy private header information. */
5506
5507 bfd_boolean
5508 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5509 {
5510 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5511 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5512 return TRUE;
5513
5514 /* Copy over private BFD data if it has not already been copied.
5515 This must be done here, rather than in the copy_private_bfd_data
5516 entry point, because the latter is called after the section
5517 contents have been set, which means that the program headers have
5518 already been worked out. */
5519 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5520 {
5521 if (! copy_private_bfd_data (ibfd, obfd))
5522 return FALSE;
5523 }
5524
5525 return TRUE;
5526 }
5527
5528 /* Copy private symbol information. If this symbol is in a section
5529 which we did not map into a BFD section, try to map the section
5530 index correctly. We use special macro definitions for the mapped
5531 section indices; these definitions are interpreted by the
5532 swap_out_syms function. */
5533
5534 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5535 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5536 #define MAP_STRTAB (SHN_HIOS + 3)
5537 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5538 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5539
5540 bfd_boolean
5541 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5542 asymbol *isymarg,
5543 bfd *obfd,
5544 asymbol *osymarg)
5545 {
5546 elf_symbol_type *isym, *osym;
5547
5548 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5549 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5550 return TRUE;
5551
5552 isym = elf_symbol_from (ibfd, isymarg);
5553 osym = elf_symbol_from (obfd, osymarg);
5554
5555 if (isym != NULL
5556 && osym != NULL
5557 && bfd_is_abs_section (isym->symbol.section))
5558 {
5559 unsigned int shndx;
5560
5561 shndx = isym->internal_elf_sym.st_shndx;
5562 if (shndx == elf_onesymtab (ibfd))
5563 shndx = MAP_ONESYMTAB;
5564 else if (shndx == elf_dynsymtab (ibfd))
5565 shndx = MAP_DYNSYMTAB;
5566 else if (shndx == elf_tdata (ibfd)->strtab_section)
5567 shndx = MAP_STRTAB;
5568 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5569 shndx = MAP_SHSTRTAB;
5570 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5571 shndx = MAP_SYM_SHNDX;
5572 osym->internal_elf_sym.st_shndx = shndx;
5573 }
5574
5575 return TRUE;
5576 }
5577
5578 /* Swap out the symbols. */
5579
5580 static bfd_boolean
5581 swap_out_syms (bfd *abfd,
5582 struct bfd_strtab_hash **sttp,
5583 int relocatable_p)
5584 {
5585 const struct elf_backend_data *bed;
5586 int symcount;
5587 asymbol **syms;
5588 struct bfd_strtab_hash *stt;
5589 Elf_Internal_Shdr *symtab_hdr;
5590 Elf_Internal_Shdr *symtab_shndx_hdr;
5591 Elf_Internal_Shdr *symstrtab_hdr;
5592 bfd_byte *outbound_syms;
5593 bfd_byte *outbound_shndx;
5594 int idx;
5595 bfd_size_type amt;
5596 bfd_boolean name_local_sections;
5597
5598 if (!elf_map_symbols (abfd))
5599 return FALSE;
5600
5601 /* Dump out the symtabs. */
5602 stt = _bfd_elf_stringtab_init ();
5603 if (stt == NULL)
5604 return FALSE;
5605
5606 bed = get_elf_backend_data (abfd);
5607 symcount = bfd_get_symcount (abfd);
5608 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5609 symtab_hdr->sh_type = SHT_SYMTAB;
5610 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5611 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5612 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5613 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5614
5615 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5616 symstrtab_hdr->sh_type = SHT_STRTAB;
5617
5618 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5619 outbound_syms = bfd_alloc (abfd, amt);
5620 if (outbound_syms == NULL)
5621 {
5622 _bfd_stringtab_free (stt);
5623 return FALSE;
5624 }
5625 symtab_hdr->contents = outbound_syms;
5626
5627 outbound_shndx = NULL;
5628 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5629 if (symtab_shndx_hdr->sh_name != 0)
5630 {
5631 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5632 outbound_shndx = bfd_zalloc (abfd, amt);
5633 if (outbound_shndx == NULL)
5634 {
5635 _bfd_stringtab_free (stt);
5636 return FALSE;
5637 }
5638
5639 symtab_shndx_hdr->contents = outbound_shndx;
5640 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5641 symtab_shndx_hdr->sh_size = amt;
5642 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5643 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5644 }
5645
5646 /* Now generate the data (for "contents"). */
5647 {
5648 /* Fill in zeroth symbol and swap it out. */
5649 Elf_Internal_Sym sym;
5650 sym.st_name = 0;
5651 sym.st_value = 0;
5652 sym.st_size = 0;
5653 sym.st_info = 0;
5654 sym.st_other = 0;
5655 sym.st_shndx = SHN_UNDEF;
5656 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5657 outbound_syms += bed->s->sizeof_sym;
5658 if (outbound_shndx != NULL)
5659 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5660 }
5661
5662 name_local_sections
5663 = (bed->elf_backend_name_local_section_symbols
5664 && bed->elf_backend_name_local_section_symbols (abfd));
5665
5666 syms = bfd_get_outsymbols (abfd);
5667 for (idx = 0; idx < symcount; idx++)
5668 {
5669 Elf_Internal_Sym sym;
5670 bfd_vma value = syms[idx]->value;
5671 elf_symbol_type *type_ptr;
5672 flagword flags = syms[idx]->flags;
5673 int type;
5674
5675 if (!name_local_sections
5676 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5677 {
5678 /* Local section symbols have no name. */
5679 sym.st_name = 0;
5680 }
5681 else
5682 {
5683 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5684 syms[idx]->name,
5685 TRUE, FALSE);
5686 if (sym.st_name == (unsigned long) -1)
5687 {
5688 _bfd_stringtab_free (stt);
5689 return FALSE;
5690 }
5691 }
5692
5693 type_ptr = elf_symbol_from (abfd, syms[idx]);
5694
5695 if ((flags & BSF_SECTION_SYM) == 0
5696 && bfd_is_com_section (syms[idx]->section))
5697 {
5698 /* ELF common symbols put the alignment into the `value' field,
5699 and the size into the `size' field. This is backwards from
5700 how BFD handles it, so reverse it here. */
5701 sym.st_size = value;
5702 if (type_ptr == NULL
5703 || type_ptr->internal_elf_sym.st_value == 0)
5704 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5705 else
5706 sym.st_value = type_ptr->internal_elf_sym.st_value;
5707 sym.st_shndx = _bfd_elf_section_from_bfd_section
5708 (abfd, syms[idx]->section);
5709 }
5710 else
5711 {
5712 asection *sec = syms[idx]->section;
5713 int shndx;
5714
5715 if (sec->output_section)
5716 {
5717 value += sec->output_offset;
5718 sec = sec->output_section;
5719 }
5720
5721 /* Don't add in the section vma for relocatable output. */
5722 if (! relocatable_p)
5723 value += sec->vma;
5724 sym.st_value = value;
5725 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5726
5727 if (bfd_is_abs_section (sec)
5728 && type_ptr != NULL
5729 && type_ptr->internal_elf_sym.st_shndx != 0)
5730 {
5731 /* This symbol is in a real ELF section which we did
5732 not create as a BFD section. Undo the mapping done
5733 by copy_private_symbol_data. */
5734 shndx = type_ptr->internal_elf_sym.st_shndx;
5735 switch (shndx)
5736 {
5737 case MAP_ONESYMTAB:
5738 shndx = elf_onesymtab (abfd);
5739 break;
5740 case MAP_DYNSYMTAB:
5741 shndx = elf_dynsymtab (abfd);
5742 break;
5743 case MAP_STRTAB:
5744 shndx = elf_tdata (abfd)->strtab_section;
5745 break;
5746 case MAP_SHSTRTAB:
5747 shndx = elf_tdata (abfd)->shstrtab_section;
5748 break;
5749 case MAP_SYM_SHNDX:
5750 shndx = elf_tdata (abfd)->symtab_shndx_section;
5751 break;
5752 default:
5753 break;
5754 }
5755 }
5756 else
5757 {
5758 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5759
5760 if (shndx == -1)
5761 {
5762 asection *sec2;
5763
5764 /* Writing this would be a hell of a lot easier if
5765 we had some decent documentation on bfd, and
5766 knew what to expect of the library, and what to
5767 demand of applications. For example, it
5768 appears that `objcopy' might not set the
5769 section of a symbol to be a section that is
5770 actually in the output file. */
5771 sec2 = bfd_get_section_by_name (abfd, sec->name);
5772 if (sec2 == NULL)
5773 {
5774 _bfd_error_handler (_("\
5775 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5776 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5777 sec->name);
5778 bfd_set_error (bfd_error_invalid_operation);
5779 _bfd_stringtab_free (stt);
5780 return FALSE;
5781 }
5782
5783 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5784 BFD_ASSERT (shndx != -1);
5785 }
5786 }
5787
5788 sym.st_shndx = shndx;
5789 }
5790
5791 if ((flags & BSF_THREAD_LOCAL) != 0)
5792 type = STT_TLS;
5793 else if ((flags & BSF_FUNCTION) != 0)
5794 type = STT_FUNC;
5795 else if ((flags & BSF_OBJECT) != 0)
5796 type = STT_OBJECT;
5797 else
5798 type = STT_NOTYPE;
5799
5800 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5801 type = STT_TLS;
5802
5803 /* Processor-specific types. */
5804 if (type_ptr != NULL
5805 && bed->elf_backend_get_symbol_type)
5806 type = ((*bed->elf_backend_get_symbol_type)
5807 (&type_ptr->internal_elf_sym, type));
5808
5809 if (flags & BSF_SECTION_SYM)
5810 {
5811 if (flags & BSF_GLOBAL)
5812 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5813 else
5814 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5815 }
5816 else if (bfd_is_com_section (syms[idx]->section))
5817 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5818 else if (bfd_is_und_section (syms[idx]->section))
5819 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5820 ? STB_WEAK
5821 : STB_GLOBAL),
5822 type);
5823 else if (flags & BSF_FILE)
5824 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5825 else
5826 {
5827 int bind = STB_LOCAL;
5828
5829 if (flags & BSF_LOCAL)
5830 bind = STB_LOCAL;
5831 else if (flags & BSF_WEAK)
5832 bind = STB_WEAK;
5833 else if (flags & BSF_GLOBAL)
5834 bind = STB_GLOBAL;
5835
5836 sym.st_info = ELF_ST_INFO (bind, type);
5837 }
5838
5839 if (type_ptr != NULL)
5840 sym.st_other = type_ptr->internal_elf_sym.st_other;
5841 else
5842 sym.st_other = 0;
5843
5844 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5845 outbound_syms += bed->s->sizeof_sym;
5846 if (outbound_shndx != NULL)
5847 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5848 }
5849
5850 *sttp = stt;
5851 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5852 symstrtab_hdr->sh_type = SHT_STRTAB;
5853
5854 symstrtab_hdr->sh_flags = 0;
5855 symstrtab_hdr->sh_addr = 0;
5856 symstrtab_hdr->sh_entsize = 0;
5857 symstrtab_hdr->sh_link = 0;
5858 symstrtab_hdr->sh_info = 0;
5859 symstrtab_hdr->sh_addralign = 1;
5860
5861 return TRUE;
5862 }
5863
5864 /* Return the number of bytes required to hold the symtab vector.
5865
5866 Note that we base it on the count plus 1, since we will null terminate
5867 the vector allocated based on this size. However, the ELF symbol table
5868 always has a dummy entry as symbol #0, so it ends up even. */
5869
5870 long
5871 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5872 {
5873 long symcount;
5874 long symtab_size;
5875 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5876
5877 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5878 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5879 if (symcount > 0)
5880 symtab_size -= sizeof (asymbol *);
5881
5882 return symtab_size;
5883 }
5884
5885 long
5886 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5887 {
5888 long symcount;
5889 long symtab_size;
5890 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5891
5892 if (elf_dynsymtab (abfd) == 0)
5893 {
5894 bfd_set_error (bfd_error_invalid_operation);
5895 return -1;
5896 }
5897
5898 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5899 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5900 if (symcount > 0)
5901 symtab_size -= sizeof (asymbol *);
5902
5903 return symtab_size;
5904 }
5905
5906 long
5907 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5908 sec_ptr asect)
5909 {
5910 return (asect->reloc_count + 1) * sizeof (arelent *);
5911 }
5912
5913 /* Canonicalize the relocs. */
5914
5915 long
5916 _bfd_elf_canonicalize_reloc (bfd *abfd,
5917 sec_ptr section,
5918 arelent **relptr,
5919 asymbol **symbols)
5920 {
5921 arelent *tblptr;
5922 unsigned int i;
5923 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5924
5925 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5926 return -1;
5927
5928 tblptr = section->relocation;
5929 for (i = 0; i < section->reloc_count; i++)
5930 *relptr++ = tblptr++;
5931
5932 *relptr = NULL;
5933
5934 return section->reloc_count;
5935 }
5936
5937 long
5938 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5939 {
5940 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5941 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5942
5943 if (symcount >= 0)
5944 bfd_get_symcount (abfd) = symcount;
5945 return symcount;
5946 }
5947
5948 long
5949 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5950 asymbol **allocation)
5951 {
5952 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5953 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5954
5955 if (symcount >= 0)
5956 bfd_get_dynamic_symcount (abfd) = symcount;
5957 return symcount;
5958 }
5959
5960 /* Return the size required for the dynamic reloc entries. Any loadable
5961 section that was actually installed in the BFD, and has type SHT_REL
5962 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
5963 dynamic reloc section. */
5964
5965 long
5966 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5967 {
5968 long ret;
5969 asection *s;
5970
5971 if (elf_dynsymtab (abfd) == 0)
5972 {
5973 bfd_set_error (bfd_error_invalid_operation);
5974 return -1;
5975 }
5976
5977 ret = sizeof (arelent *);
5978 for (s = abfd->sections; s != NULL; s = s->next)
5979 if ((s->flags & SEC_LOAD) != 0
5980 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5981 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5982 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5983 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
5984 * sizeof (arelent *));
5985
5986 return ret;
5987 }
5988
5989 /* Canonicalize the dynamic relocation entries. Note that we return the
5990 dynamic relocations as a single block, although they are actually
5991 associated with particular sections; the interface, which was
5992 designed for SunOS style shared libraries, expects that there is only
5993 one set of dynamic relocs. Any loadable section that was actually
5994 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
5995 dynamic symbol table, is considered to be a dynamic reloc section. */
5996
5997 long
5998 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5999 arelent **storage,
6000 asymbol **syms)
6001 {
6002 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6003 asection *s;
6004 long ret;
6005
6006 if (elf_dynsymtab (abfd) == 0)
6007 {
6008 bfd_set_error (bfd_error_invalid_operation);
6009 return -1;
6010 }
6011
6012 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6013 ret = 0;
6014 for (s = abfd->sections; s != NULL; s = s->next)
6015 {
6016 if ((s->flags & SEC_LOAD) != 0
6017 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6018 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6019 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6020 {
6021 arelent *p;
6022 long count, i;
6023
6024 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6025 return -1;
6026 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6027 p = s->relocation;
6028 for (i = 0; i < count; i++)
6029 *storage++ = p++;
6030 ret += count;
6031 }
6032 }
6033
6034 *storage = NULL;
6035
6036 return ret;
6037 }
6038 \f
6039 /* Read in the version information. */
6040
6041 bfd_boolean
6042 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6043 {
6044 bfd_byte *contents = NULL;
6045 bfd_size_type amt;
6046 unsigned int freeidx = 0;
6047
6048 if (elf_dynverref (abfd) != 0)
6049 {
6050 Elf_Internal_Shdr *hdr;
6051 Elf_External_Verneed *everneed;
6052 Elf_Internal_Verneed *iverneed;
6053 unsigned int i;
6054
6055 hdr = &elf_tdata (abfd)->dynverref_hdr;
6056
6057 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6058 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6059 if (elf_tdata (abfd)->verref == NULL)
6060 goto error_return;
6061
6062 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6063
6064 contents = bfd_malloc (hdr->sh_size);
6065 if (contents == NULL)
6066 goto error_return;
6067 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6068 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6069 goto error_return;
6070
6071 everneed = (Elf_External_Verneed *) contents;
6072 iverneed = elf_tdata (abfd)->verref;
6073 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6074 {
6075 Elf_External_Vernaux *evernaux;
6076 Elf_Internal_Vernaux *ivernaux;
6077 unsigned int j;
6078
6079 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6080
6081 iverneed->vn_bfd = abfd;
6082
6083 iverneed->vn_filename =
6084 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6085 iverneed->vn_file);
6086 if (iverneed->vn_filename == NULL)
6087 goto error_return;
6088
6089 amt = iverneed->vn_cnt;
6090 amt *= sizeof (Elf_Internal_Vernaux);
6091 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6092
6093 evernaux = ((Elf_External_Vernaux *)
6094 ((bfd_byte *) everneed + iverneed->vn_aux));
6095 ivernaux = iverneed->vn_auxptr;
6096 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6097 {
6098 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6099
6100 ivernaux->vna_nodename =
6101 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6102 ivernaux->vna_name);
6103 if (ivernaux->vna_nodename == NULL)
6104 goto error_return;
6105
6106 if (j + 1 < iverneed->vn_cnt)
6107 ivernaux->vna_nextptr = ivernaux + 1;
6108 else
6109 ivernaux->vna_nextptr = NULL;
6110
6111 evernaux = ((Elf_External_Vernaux *)
6112 ((bfd_byte *) evernaux + ivernaux->vna_next));
6113
6114 if (ivernaux->vna_other > freeidx)
6115 freeidx = ivernaux->vna_other;
6116 }
6117
6118 if (i + 1 < hdr->sh_info)
6119 iverneed->vn_nextref = iverneed + 1;
6120 else
6121 iverneed->vn_nextref = NULL;
6122
6123 everneed = ((Elf_External_Verneed *)
6124 ((bfd_byte *) everneed + iverneed->vn_next));
6125 }
6126
6127 free (contents);
6128 contents = NULL;
6129 }
6130
6131 if (elf_dynverdef (abfd) != 0)
6132 {
6133 Elf_Internal_Shdr *hdr;
6134 Elf_External_Verdef *everdef;
6135 Elf_Internal_Verdef *iverdef;
6136 Elf_Internal_Verdef *iverdefarr;
6137 Elf_Internal_Verdef iverdefmem;
6138 unsigned int i;
6139 unsigned int maxidx;
6140
6141 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6142
6143 contents = bfd_malloc (hdr->sh_size);
6144 if (contents == NULL)
6145 goto error_return;
6146 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6147 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6148 goto error_return;
6149
6150 /* We know the number of entries in the section but not the maximum
6151 index. Therefore we have to run through all entries and find
6152 the maximum. */
6153 everdef = (Elf_External_Verdef *) contents;
6154 maxidx = 0;
6155 for (i = 0; i < hdr->sh_info; ++i)
6156 {
6157 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6158
6159 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6160 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6161
6162 everdef = ((Elf_External_Verdef *)
6163 ((bfd_byte *) everdef + iverdefmem.vd_next));
6164 }
6165
6166 if (default_imported_symver)
6167 {
6168 if (freeidx > maxidx)
6169 maxidx = ++freeidx;
6170 else
6171 freeidx = ++maxidx;
6172 }
6173 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6174 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6175 if (elf_tdata (abfd)->verdef == NULL)
6176 goto error_return;
6177
6178 elf_tdata (abfd)->cverdefs = maxidx;
6179
6180 everdef = (Elf_External_Verdef *) contents;
6181 iverdefarr = elf_tdata (abfd)->verdef;
6182 for (i = 0; i < hdr->sh_info; i++)
6183 {
6184 Elf_External_Verdaux *everdaux;
6185 Elf_Internal_Verdaux *iverdaux;
6186 unsigned int j;
6187
6188 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6189
6190 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6191 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6192
6193 iverdef->vd_bfd = abfd;
6194
6195 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6196 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6197 if (iverdef->vd_auxptr == NULL)
6198 goto error_return;
6199
6200 everdaux = ((Elf_External_Verdaux *)
6201 ((bfd_byte *) everdef + iverdef->vd_aux));
6202 iverdaux = iverdef->vd_auxptr;
6203 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6204 {
6205 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6206
6207 iverdaux->vda_nodename =
6208 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6209 iverdaux->vda_name);
6210 if (iverdaux->vda_nodename == NULL)
6211 goto error_return;
6212
6213 if (j + 1 < iverdef->vd_cnt)
6214 iverdaux->vda_nextptr = iverdaux + 1;
6215 else
6216 iverdaux->vda_nextptr = NULL;
6217
6218 everdaux = ((Elf_External_Verdaux *)
6219 ((bfd_byte *) everdaux + iverdaux->vda_next));
6220 }
6221
6222 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6223
6224 if (i + 1 < hdr->sh_info)
6225 iverdef->vd_nextdef = iverdef + 1;
6226 else
6227 iverdef->vd_nextdef = NULL;
6228
6229 everdef = ((Elf_External_Verdef *)
6230 ((bfd_byte *) everdef + iverdef->vd_next));
6231 }
6232
6233 free (contents);
6234 contents = NULL;
6235 }
6236 else if (default_imported_symver)
6237 {
6238 if (freeidx < 3)
6239 freeidx = 3;
6240 else
6241 freeidx++;
6242
6243 amt = (bfd_size_type) freeidx * sizeof (Elf_Internal_Verdef);
6244 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6245 if (elf_tdata (abfd)->verdef == NULL)
6246 goto error_return;
6247
6248 elf_tdata (abfd)->cverdefs = freeidx;
6249 }
6250
6251 /* Create a default version based on the soname. */
6252 if (default_imported_symver)
6253 {
6254 Elf_Internal_Verdef *iverdef;
6255 Elf_Internal_Verdaux *iverdaux;
6256
6257 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6258
6259 iverdef->vd_version = VER_DEF_CURRENT;
6260 iverdef->vd_flags = 0;
6261 iverdef->vd_ndx = freeidx;
6262 iverdef->vd_cnt = 1;
6263
6264 iverdef->vd_bfd = abfd;
6265
6266 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6267 if (iverdef->vd_nodename == NULL)
6268 goto error_return;
6269 iverdef->vd_nextdef = NULL;
6270 amt = (bfd_size_type) sizeof (Elf_Internal_Verdaux);
6271 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6272
6273 iverdaux = iverdef->vd_auxptr;
6274 iverdaux->vda_nodename = iverdef->vd_nodename;
6275 iverdaux->vda_nextptr = NULL;
6276 }
6277
6278 return TRUE;
6279
6280 error_return:
6281 if (contents != NULL)
6282 free (contents);
6283 return FALSE;
6284 }
6285 \f
6286 asymbol *
6287 _bfd_elf_make_empty_symbol (bfd *abfd)
6288 {
6289 elf_symbol_type *newsym;
6290 bfd_size_type amt = sizeof (elf_symbol_type);
6291
6292 newsym = bfd_zalloc (abfd, amt);
6293 if (!newsym)
6294 return NULL;
6295 else
6296 {
6297 newsym->symbol.the_bfd = abfd;
6298 return &newsym->symbol;
6299 }
6300 }
6301
6302 void
6303 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6304 asymbol *symbol,
6305 symbol_info *ret)
6306 {
6307 bfd_symbol_info (symbol, ret);
6308 }
6309
6310 /* Return whether a symbol name implies a local symbol. Most targets
6311 use this function for the is_local_label_name entry point, but some
6312 override it. */
6313
6314 bfd_boolean
6315 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6316 const char *name)
6317 {
6318 /* Normal local symbols start with ``.L''. */
6319 if (name[0] == '.' && name[1] == 'L')
6320 return TRUE;
6321
6322 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6323 DWARF debugging symbols starting with ``..''. */
6324 if (name[0] == '.' && name[1] == '.')
6325 return TRUE;
6326
6327 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6328 emitting DWARF debugging output. I suspect this is actually a
6329 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6330 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6331 underscore to be emitted on some ELF targets). For ease of use,
6332 we treat such symbols as local. */
6333 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6334 return TRUE;
6335
6336 return FALSE;
6337 }
6338
6339 alent *
6340 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6341 asymbol *symbol ATTRIBUTE_UNUSED)
6342 {
6343 abort ();
6344 return NULL;
6345 }
6346
6347 bfd_boolean
6348 _bfd_elf_set_arch_mach (bfd *abfd,
6349 enum bfd_architecture arch,
6350 unsigned long machine)
6351 {
6352 /* If this isn't the right architecture for this backend, and this
6353 isn't the generic backend, fail. */
6354 if (arch != get_elf_backend_data (abfd)->arch
6355 && arch != bfd_arch_unknown
6356 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6357 return FALSE;
6358
6359 return bfd_default_set_arch_mach (abfd, arch, machine);
6360 }
6361
6362 /* Find the function to a particular section and offset,
6363 for error reporting. */
6364
6365 static bfd_boolean
6366 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6367 asection *section,
6368 asymbol **symbols,
6369 bfd_vma offset,
6370 const char **filename_ptr,
6371 const char **functionname_ptr)
6372 {
6373 const char *filename;
6374 asymbol *func, *file;
6375 bfd_vma low_func;
6376 asymbol **p;
6377 /* ??? Given multiple file symbols, it is impossible to reliably
6378 choose the right file name for global symbols. File symbols are
6379 local symbols, and thus all file symbols must sort before any
6380 global symbols. The ELF spec may be interpreted to say that a
6381 file symbol must sort before other local symbols, but currently
6382 ld -r doesn't do this. So, for ld -r output, it is possible to
6383 make a better choice of file name for local symbols by ignoring
6384 file symbols appearing after a given local symbol. */
6385 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6386
6387 filename = NULL;
6388 func = NULL;
6389 file = NULL;
6390 low_func = 0;
6391 state = nothing_seen;
6392
6393 for (p = symbols; *p != NULL; p++)
6394 {
6395 elf_symbol_type *q;
6396
6397 q = (elf_symbol_type *) *p;
6398
6399 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6400 {
6401 default:
6402 break;
6403 case STT_FILE:
6404 file = &q->symbol;
6405 if (state == symbol_seen)
6406 state = file_after_symbol_seen;
6407 continue;
6408 case STT_SECTION:
6409 continue;
6410 case STT_NOTYPE:
6411 case STT_FUNC:
6412 if (bfd_get_section (&q->symbol) == section
6413 && q->symbol.value >= low_func
6414 && q->symbol.value <= offset)
6415 {
6416 func = (asymbol *) q;
6417 low_func = q->symbol.value;
6418 if (file == NULL)
6419 filename = NULL;
6420 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6421 && state == file_after_symbol_seen)
6422 filename = NULL;
6423 else
6424 filename = bfd_asymbol_name (file);
6425 }
6426 break;
6427 }
6428 if (state == nothing_seen)
6429 state = symbol_seen;
6430 }
6431
6432 if (func == NULL)
6433 return FALSE;
6434
6435 if (filename_ptr)
6436 *filename_ptr = filename;
6437 if (functionname_ptr)
6438 *functionname_ptr = bfd_asymbol_name (func);
6439
6440 return TRUE;
6441 }
6442
6443 /* Find the nearest line to a particular section and offset,
6444 for error reporting. */
6445
6446 bfd_boolean
6447 _bfd_elf_find_nearest_line (bfd *abfd,
6448 asection *section,
6449 asymbol **symbols,
6450 bfd_vma offset,
6451 const char **filename_ptr,
6452 const char **functionname_ptr,
6453 unsigned int *line_ptr)
6454 {
6455 bfd_boolean found;
6456
6457 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6458 filename_ptr, functionname_ptr,
6459 line_ptr))
6460 {
6461 if (!*functionname_ptr)
6462 elf_find_function (abfd, section, symbols, offset,
6463 *filename_ptr ? NULL : filename_ptr,
6464 functionname_ptr);
6465
6466 return TRUE;
6467 }
6468
6469 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6470 filename_ptr, functionname_ptr,
6471 line_ptr, 0,
6472 &elf_tdata (abfd)->dwarf2_find_line_info))
6473 {
6474 if (!*functionname_ptr)
6475 elf_find_function (abfd, section, symbols, offset,
6476 *filename_ptr ? NULL : filename_ptr,
6477 functionname_ptr);
6478
6479 return TRUE;
6480 }
6481
6482 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6483 &found, filename_ptr,
6484 functionname_ptr, line_ptr,
6485 &elf_tdata (abfd)->line_info))
6486 return FALSE;
6487 if (found && (*functionname_ptr || *line_ptr))
6488 return TRUE;
6489
6490 if (symbols == NULL)
6491 return FALSE;
6492
6493 if (! elf_find_function (abfd, section, symbols, offset,
6494 filename_ptr, functionname_ptr))
6495 return FALSE;
6496
6497 *line_ptr = 0;
6498 return TRUE;
6499 }
6500
6501 int
6502 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6503 {
6504 int ret;
6505
6506 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6507 if (! reloc)
6508 ret += get_program_header_size (abfd);
6509 return ret;
6510 }
6511
6512 bfd_boolean
6513 _bfd_elf_set_section_contents (bfd *abfd,
6514 sec_ptr section,
6515 const void *location,
6516 file_ptr offset,
6517 bfd_size_type count)
6518 {
6519 Elf_Internal_Shdr *hdr;
6520 bfd_signed_vma pos;
6521
6522 if (! abfd->output_has_begun
6523 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6524 return FALSE;
6525
6526 hdr = &elf_section_data (section)->this_hdr;
6527 pos = hdr->sh_offset + offset;
6528 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6529 || bfd_bwrite (location, count, abfd) != count)
6530 return FALSE;
6531
6532 return TRUE;
6533 }
6534
6535 void
6536 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6537 arelent *cache_ptr ATTRIBUTE_UNUSED,
6538 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6539 {
6540 abort ();
6541 }
6542
6543 /* Try to convert a non-ELF reloc into an ELF one. */
6544
6545 bfd_boolean
6546 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6547 {
6548 /* Check whether we really have an ELF howto. */
6549
6550 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6551 {
6552 bfd_reloc_code_real_type code;
6553 reloc_howto_type *howto;
6554
6555 /* Alien reloc: Try to determine its type to replace it with an
6556 equivalent ELF reloc. */
6557
6558 if (areloc->howto->pc_relative)
6559 {
6560 switch (areloc->howto->bitsize)
6561 {
6562 case 8:
6563 code = BFD_RELOC_8_PCREL;
6564 break;
6565 case 12:
6566 code = BFD_RELOC_12_PCREL;
6567 break;
6568 case 16:
6569 code = BFD_RELOC_16_PCREL;
6570 break;
6571 case 24:
6572 code = BFD_RELOC_24_PCREL;
6573 break;
6574 case 32:
6575 code = BFD_RELOC_32_PCREL;
6576 break;
6577 case 64:
6578 code = BFD_RELOC_64_PCREL;
6579 break;
6580 default:
6581 goto fail;
6582 }
6583
6584 howto = bfd_reloc_type_lookup (abfd, code);
6585
6586 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6587 {
6588 if (howto->pcrel_offset)
6589 areloc->addend += areloc->address;
6590 else
6591 areloc->addend -= areloc->address; /* addend is unsigned!! */
6592 }
6593 }
6594 else
6595 {
6596 switch (areloc->howto->bitsize)
6597 {
6598 case 8:
6599 code = BFD_RELOC_8;
6600 break;
6601 case 14:
6602 code = BFD_RELOC_14;
6603 break;
6604 case 16:
6605 code = BFD_RELOC_16;
6606 break;
6607 case 26:
6608 code = BFD_RELOC_26;
6609 break;
6610 case 32:
6611 code = BFD_RELOC_32;
6612 break;
6613 case 64:
6614 code = BFD_RELOC_64;
6615 break;
6616 default:
6617 goto fail;
6618 }
6619
6620 howto = bfd_reloc_type_lookup (abfd, code);
6621 }
6622
6623 if (howto)
6624 areloc->howto = howto;
6625 else
6626 goto fail;
6627 }
6628
6629 return TRUE;
6630
6631 fail:
6632 (*_bfd_error_handler)
6633 (_("%B: unsupported relocation type %s"),
6634 abfd, areloc->howto->name);
6635 bfd_set_error (bfd_error_bad_value);
6636 return FALSE;
6637 }
6638
6639 bfd_boolean
6640 _bfd_elf_close_and_cleanup (bfd *abfd)
6641 {
6642 if (bfd_get_format (abfd) == bfd_object)
6643 {
6644 if (elf_shstrtab (abfd) != NULL)
6645 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6646 }
6647
6648 return _bfd_generic_close_and_cleanup (abfd);
6649 }
6650
6651 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6652 in the relocation's offset. Thus we cannot allow any sort of sanity
6653 range-checking to interfere. There is nothing else to do in processing
6654 this reloc. */
6655
6656 bfd_reloc_status_type
6657 _bfd_elf_rel_vtable_reloc_fn
6658 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6659 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6660 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6661 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6662 {
6663 return bfd_reloc_ok;
6664 }
6665 \f
6666 /* Elf core file support. Much of this only works on native
6667 toolchains, since we rely on knowing the
6668 machine-dependent procfs structure in order to pick
6669 out details about the corefile. */
6670
6671 #ifdef HAVE_SYS_PROCFS_H
6672 # include <sys/procfs.h>
6673 #endif
6674
6675 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6676
6677 static int
6678 elfcore_make_pid (bfd *abfd)
6679 {
6680 return ((elf_tdata (abfd)->core_lwpid << 16)
6681 + (elf_tdata (abfd)->core_pid));
6682 }
6683
6684 /* If there isn't a section called NAME, make one, using
6685 data from SECT. Note, this function will generate a
6686 reference to NAME, so you shouldn't deallocate or
6687 overwrite it. */
6688
6689 static bfd_boolean
6690 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6691 {
6692 asection *sect2;
6693
6694 if (bfd_get_section_by_name (abfd, name) != NULL)
6695 return TRUE;
6696
6697 sect2 = bfd_make_section (abfd, name);
6698 if (sect2 == NULL)
6699 return FALSE;
6700
6701 sect2->size = sect->size;
6702 sect2->filepos = sect->filepos;
6703 sect2->flags = sect->flags;
6704 sect2->alignment_power = sect->alignment_power;
6705 return TRUE;
6706 }
6707
6708 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6709 actually creates up to two pseudosections:
6710 - For the single-threaded case, a section named NAME, unless
6711 such a section already exists.
6712 - For the multi-threaded case, a section named "NAME/PID", where
6713 PID is elfcore_make_pid (abfd).
6714 Both pseudosections have identical contents. */
6715 bfd_boolean
6716 _bfd_elfcore_make_pseudosection (bfd *abfd,
6717 char *name,
6718 size_t size,
6719 ufile_ptr filepos)
6720 {
6721 char buf[100];
6722 char *threaded_name;
6723 size_t len;
6724 asection *sect;
6725
6726 /* Build the section name. */
6727
6728 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6729 len = strlen (buf) + 1;
6730 threaded_name = bfd_alloc (abfd, len);
6731 if (threaded_name == NULL)
6732 return FALSE;
6733 memcpy (threaded_name, buf, len);
6734
6735 sect = bfd_make_section_anyway (abfd, threaded_name);
6736 if (sect == NULL)
6737 return FALSE;
6738 sect->size = size;
6739 sect->filepos = filepos;
6740 sect->flags = SEC_HAS_CONTENTS;
6741 sect->alignment_power = 2;
6742
6743 return elfcore_maybe_make_sect (abfd, name, sect);
6744 }
6745
6746 /* prstatus_t exists on:
6747 solaris 2.5+
6748 linux 2.[01] + glibc
6749 unixware 4.2
6750 */
6751
6752 #if defined (HAVE_PRSTATUS_T)
6753
6754 static bfd_boolean
6755 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6756 {
6757 size_t size;
6758 int offset;
6759
6760 if (note->descsz == sizeof (prstatus_t))
6761 {
6762 prstatus_t prstat;
6763
6764 size = sizeof (prstat.pr_reg);
6765 offset = offsetof (prstatus_t, pr_reg);
6766 memcpy (&prstat, note->descdata, sizeof (prstat));
6767
6768 /* Do not overwrite the core signal if it
6769 has already been set by another thread. */
6770 if (elf_tdata (abfd)->core_signal == 0)
6771 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6772 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6773
6774 /* pr_who exists on:
6775 solaris 2.5+
6776 unixware 4.2
6777 pr_who doesn't exist on:
6778 linux 2.[01]
6779 */
6780 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6781 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6782 #endif
6783 }
6784 #if defined (HAVE_PRSTATUS32_T)
6785 else if (note->descsz == sizeof (prstatus32_t))
6786 {
6787 /* 64-bit host, 32-bit corefile */
6788 prstatus32_t prstat;
6789
6790 size = sizeof (prstat.pr_reg);
6791 offset = offsetof (prstatus32_t, pr_reg);
6792 memcpy (&prstat, note->descdata, sizeof (prstat));
6793
6794 /* Do not overwrite the core signal if it
6795 has already been set by another thread. */
6796 if (elf_tdata (abfd)->core_signal == 0)
6797 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6798 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6799
6800 /* pr_who exists on:
6801 solaris 2.5+
6802 unixware 4.2
6803 pr_who doesn't exist on:
6804 linux 2.[01]
6805 */
6806 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6807 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6808 #endif
6809 }
6810 #endif /* HAVE_PRSTATUS32_T */
6811 else
6812 {
6813 /* Fail - we don't know how to handle any other
6814 note size (ie. data object type). */
6815 return TRUE;
6816 }
6817
6818 /* Make a ".reg/999" section and a ".reg" section. */
6819 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6820 size, note->descpos + offset);
6821 }
6822 #endif /* defined (HAVE_PRSTATUS_T) */
6823
6824 /* Create a pseudosection containing the exact contents of NOTE. */
6825 static bfd_boolean
6826 elfcore_make_note_pseudosection (bfd *abfd,
6827 char *name,
6828 Elf_Internal_Note *note)
6829 {
6830 return _bfd_elfcore_make_pseudosection (abfd, name,
6831 note->descsz, note->descpos);
6832 }
6833
6834 /* There isn't a consistent prfpregset_t across platforms,
6835 but it doesn't matter, because we don't have to pick this
6836 data structure apart. */
6837
6838 static bfd_boolean
6839 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6840 {
6841 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6842 }
6843
6844 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6845 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6846 literally. */
6847
6848 static bfd_boolean
6849 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6850 {
6851 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6852 }
6853
6854 #if defined (HAVE_PRPSINFO_T)
6855 typedef prpsinfo_t elfcore_psinfo_t;
6856 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6857 typedef prpsinfo32_t elfcore_psinfo32_t;
6858 #endif
6859 #endif
6860
6861 #if defined (HAVE_PSINFO_T)
6862 typedef psinfo_t elfcore_psinfo_t;
6863 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6864 typedef psinfo32_t elfcore_psinfo32_t;
6865 #endif
6866 #endif
6867
6868 /* return a malloc'ed copy of a string at START which is at
6869 most MAX bytes long, possibly without a terminating '\0'.
6870 the copy will always have a terminating '\0'. */
6871
6872 char *
6873 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6874 {
6875 char *dups;
6876 char *end = memchr (start, '\0', max);
6877 size_t len;
6878
6879 if (end == NULL)
6880 len = max;
6881 else
6882 len = end - start;
6883
6884 dups = bfd_alloc (abfd, len + 1);
6885 if (dups == NULL)
6886 return NULL;
6887
6888 memcpy (dups, start, len);
6889 dups[len] = '\0';
6890
6891 return dups;
6892 }
6893
6894 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6895 static bfd_boolean
6896 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6897 {
6898 if (note->descsz == sizeof (elfcore_psinfo_t))
6899 {
6900 elfcore_psinfo_t psinfo;
6901
6902 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6903
6904 elf_tdata (abfd)->core_program
6905 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6906 sizeof (psinfo.pr_fname));
6907
6908 elf_tdata (abfd)->core_command
6909 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6910 sizeof (psinfo.pr_psargs));
6911 }
6912 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6913 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6914 {
6915 /* 64-bit host, 32-bit corefile */
6916 elfcore_psinfo32_t psinfo;
6917
6918 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6919
6920 elf_tdata (abfd)->core_program
6921 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6922 sizeof (psinfo.pr_fname));
6923
6924 elf_tdata (abfd)->core_command
6925 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6926 sizeof (psinfo.pr_psargs));
6927 }
6928 #endif
6929
6930 else
6931 {
6932 /* Fail - we don't know how to handle any other
6933 note size (ie. data object type). */
6934 return TRUE;
6935 }
6936
6937 /* Note that for some reason, a spurious space is tacked
6938 onto the end of the args in some (at least one anyway)
6939 implementations, so strip it off if it exists. */
6940
6941 {
6942 char *command = elf_tdata (abfd)->core_command;
6943 int n = strlen (command);
6944
6945 if (0 < n && command[n - 1] == ' ')
6946 command[n - 1] = '\0';
6947 }
6948
6949 return TRUE;
6950 }
6951 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6952
6953 #if defined (HAVE_PSTATUS_T)
6954 static bfd_boolean
6955 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6956 {
6957 if (note->descsz == sizeof (pstatus_t)
6958 #if defined (HAVE_PXSTATUS_T)
6959 || note->descsz == sizeof (pxstatus_t)
6960 #endif
6961 )
6962 {
6963 pstatus_t pstat;
6964
6965 memcpy (&pstat, note->descdata, sizeof (pstat));
6966
6967 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6968 }
6969 #if defined (HAVE_PSTATUS32_T)
6970 else if (note->descsz == sizeof (pstatus32_t))
6971 {
6972 /* 64-bit host, 32-bit corefile */
6973 pstatus32_t pstat;
6974
6975 memcpy (&pstat, note->descdata, sizeof (pstat));
6976
6977 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6978 }
6979 #endif
6980 /* Could grab some more details from the "representative"
6981 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6982 NT_LWPSTATUS note, presumably. */
6983
6984 return TRUE;
6985 }
6986 #endif /* defined (HAVE_PSTATUS_T) */
6987
6988 #if defined (HAVE_LWPSTATUS_T)
6989 static bfd_boolean
6990 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6991 {
6992 lwpstatus_t lwpstat;
6993 char buf[100];
6994 char *name;
6995 size_t len;
6996 asection *sect;
6997
6998 if (note->descsz != sizeof (lwpstat)
6999 #if defined (HAVE_LWPXSTATUS_T)
7000 && note->descsz != sizeof (lwpxstatus_t)
7001 #endif
7002 )
7003 return TRUE;
7004
7005 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7006
7007 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7008 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7009
7010 /* Make a ".reg/999" section. */
7011
7012 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7013 len = strlen (buf) + 1;
7014 name = bfd_alloc (abfd, len);
7015 if (name == NULL)
7016 return FALSE;
7017 memcpy (name, buf, len);
7018
7019 sect = bfd_make_section_anyway (abfd, name);
7020 if (sect == NULL)
7021 return FALSE;
7022
7023 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7024 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7025 sect->filepos = note->descpos
7026 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7027 #endif
7028
7029 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7030 sect->size = sizeof (lwpstat.pr_reg);
7031 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7032 #endif
7033
7034 sect->flags = SEC_HAS_CONTENTS;
7035 sect->alignment_power = 2;
7036
7037 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7038 return FALSE;
7039
7040 /* Make a ".reg2/999" section */
7041
7042 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7043 len = strlen (buf) + 1;
7044 name = bfd_alloc (abfd, len);
7045 if (name == NULL)
7046 return FALSE;
7047 memcpy (name, buf, len);
7048
7049 sect = bfd_make_section_anyway (abfd, name);
7050 if (sect == NULL)
7051 return FALSE;
7052
7053 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7054 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7055 sect->filepos = note->descpos
7056 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7057 #endif
7058
7059 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7060 sect->size = sizeof (lwpstat.pr_fpreg);
7061 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7062 #endif
7063
7064 sect->flags = SEC_HAS_CONTENTS;
7065 sect->alignment_power = 2;
7066
7067 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7068 }
7069 #endif /* defined (HAVE_LWPSTATUS_T) */
7070
7071 #if defined (HAVE_WIN32_PSTATUS_T)
7072 static bfd_boolean
7073 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7074 {
7075 char buf[30];
7076 char *name;
7077 size_t len;
7078 asection *sect;
7079 win32_pstatus_t pstatus;
7080
7081 if (note->descsz < sizeof (pstatus))
7082 return TRUE;
7083
7084 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7085
7086 switch (pstatus.data_type)
7087 {
7088 case NOTE_INFO_PROCESS:
7089 /* FIXME: need to add ->core_command. */
7090 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7091 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7092 break;
7093
7094 case NOTE_INFO_THREAD:
7095 /* Make a ".reg/999" section. */
7096 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7097
7098 len = strlen (buf) + 1;
7099 name = bfd_alloc (abfd, len);
7100 if (name == NULL)
7101 return FALSE;
7102
7103 memcpy (name, buf, len);
7104
7105 sect = bfd_make_section_anyway (abfd, name);
7106 if (sect == NULL)
7107 return FALSE;
7108
7109 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7110 sect->filepos = (note->descpos
7111 + offsetof (struct win32_pstatus,
7112 data.thread_info.thread_context));
7113 sect->flags = SEC_HAS_CONTENTS;
7114 sect->alignment_power = 2;
7115
7116 if (pstatus.data.thread_info.is_active_thread)
7117 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7118 return FALSE;
7119 break;
7120
7121 case NOTE_INFO_MODULE:
7122 /* Make a ".module/xxxxxxxx" section. */
7123 sprintf (buf, ".module/%08lx",
7124 (long) pstatus.data.module_info.base_address);
7125
7126 len = strlen (buf) + 1;
7127 name = bfd_alloc (abfd, len);
7128 if (name == NULL)
7129 return FALSE;
7130
7131 memcpy (name, buf, len);
7132
7133 sect = bfd_make_section_anyway (abfd, name);
7134
7135 if (sect == NULL)
7136 return FALSE;
7137
7138 sect->size = note->descsz;
7139 sect->filepos = note->descpos;
7140 sect->flags = SEC_HAS_CONTENTS;
7141 sect->alignment_power = 2;
7142 break;
7143
7144 default:
7145 return TRUE;
7146 }
7147
7148 return TRUE;
7149 }
7150 #endif /* HAVE_WIN32_PSTATUS_T */
7151
7152 static bfd_boolean
7153 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7154 {
7155 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7156
7157 switch (note->type)
7158 {
7159 default:
7160 return TRUE;
7161
7162 case NT_PRSTATUS:
7163 if (bed->elf_backend_grok_prstatus)
7164 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7165 return TRUE;
7166 #if defined (HAVE_PRSTATUS_T)
7167 return elfcore_grok_prstatus (abfd, note);
7168 #else
7169 return TRUE;
7170 #endif
7171
7172 #if defined (HAVE_PSTATUS_T)
7173 case NT_PSTATUS:
7174 return elfcore_grok_pstatus (abfd, note);
7175 #endif
7176
7177 #if defined (HAVE_LWPSTATUS_T)
7178 case NT_LWPSTATUS:
7179 return elfcore_grok_lwpstatus (abfd, note);
7180 #endif
7181
7182 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7183 return elfcore_grok_prfpreg (abfd, note);
7184
7185 #if defined (HAVE_WIN32_PSTATUS_T)
7186 case NT_WIN32PSTATUS:
7187 return elfcore_grok_win32pstatus (abfd, note);
7188 #endif
7189
7190 case NT_PRXFPREG: /* Linux SSE extension */
7191 if (note->namesz == 6
7192 && strcmp (note->namedata, "LINUX") == 0)
7193 return elfcore_grok_prxfpreg (abfd, note);
7194 else
7195 return TRUE;
7196
7197 case NT_PRPSINFO:
7198 case NT_PSINFO:
7199 if (bed->elf_backend_grok_psinfo)
7200 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7201 return TRUE;
7202 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7203 return elfcore_grok_psinfo (abfd, note);
7204 #else
7205 return TRUE;
7206 #endif
7207
7208 case NT_AUXV:
7209 {
7210 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7211
7212 if (sect == NULL)
7213 return FALSE;
7214 sect->size = note->descsz;
7215 sect->filepos = note->descpos;
7216 sect->flags = SEC_HAS_CONTENTS;
7217 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7218
7219 return TRUE;
7220 }
7221 }
7222 }
7223
7224 static bfd_boolean
7225 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7226 {
7227 char *cp;
7228
7229 cp = strchr (note->namedata, '@');
7230 if (cp != NULL)
7231 {
7232 *lwpidp = atoi(cp + 1);
7233 return TRUE;
7234 }
7235 return FALSE;
7236 }
7237
7238 static bfd_boolean
7239 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7240 {
7241
7242 /* Signal number at offset 0x08. */
7243 elf_tdata (abfd)->core_signal
7244 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7245
7246 /* Process ID at offset 0x50. */
7247 elf_tdata (abfd)->core_pid
7248 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7249
7250 /* Command name at 0x7c (max 32 bytes, including nul). */
7251 elf_tdata (abfd)->core_command
7252 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7253
7254 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7255 note);
7256 }
7257
7258 static bfd_boolean
7259 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7260 {
7261 int lwp;
7262
7263 if (elfcore_netbsd_get_lwpid (note, &lwp))
7264 elf_tdata (abfd)->core_lwpid = lwp;
7265
7266 if (note->type == NT_NETBSDCORE_PROCINFO)
7267 {
7268 /* NetBSD-specific core "procinfo". Note that we expect to
7269 find this note before any of the others, which is fine,
7270 since the kernel writes this note out first when it
7271 creates a core file. */
7272
7273 return elfcore_grok_netbsd_procinfo (abfd, note);
7274 }
7275
7276 /* As of Jan 2002 there are no other machine-independent notes
7277 defined for NetBSD core files. If the note type is less
7278 than the start of the machine-dependent note types, we don't
7279 understand it. */
7280
7281 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7282 return TRUE;
7283
7284
7285 switch (bfd_get_arch (abfd))
7286 {
7287 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7288 PT_GETFPREGS == mach+2. */
7289
7290 case bfd_arch_alpha:
7291 case bfd_arch_sparc:
7292 switch (note->type)
7293 {
7294 case NT_NETBSDCORE_FIRSTMACH+0:
7295 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7296
7297 case NT_NETBSDCORE_FIRSTMACH+2:
7298 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7299
7300 default:
7301 return TRUE;
7302 }
7303
7304 /* On all other arch's, PT_GETREGS == mach+1 and
7305 PT_GETFPREGS == mach+3. */
7306
7307 default:
7308 switch (note->type)
7309 {
7310 case NT_NETBSDCORE_FIRSTMACH+1:
7311 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7312
7313 case NT_NETBSDCORE_FIRSTMACH+3:
7314 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7315
7316 default:
7317 return TRUE;
7318 }
7319 }
7320 /* NOTREACHED */
7321 }
7322
7323 static bfd_boolean
7324 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7325 {
7326 void *ddata = note->descdata;
7327 char buf[100];
7328 char *name;
7329 asection *sect;
7330 short sig;
7331 unsigned flags;
7332
7333 /* nto_procfs_status 'pid' field is at offset 0. */
7334 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7335
7336 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7337 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7338
7339 /* nto_procfs_status 'flags' field is at offset 8. */
7340 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7341
7342 /* nto_procfs_status 'what' field is at offset 14. */
7343 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7344 {
7345 elf_tdata (abfd)->core_signal = sig;
7346 elf_tdata (abfd)->core_lwpid = *tid;
7347 }
7348
7349 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7350 do not come from signals so we make sure we set the current
7351 thread just in case. */
7352 if (flags & 0x00000080)
7353 elf_tdata (abfd)->core_lwpid = *tid;
7354
7355 /* Make a ".qnx_core_status/%d" section. */
7356 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7357
7358 name = bfd_alloc (abfd, strlen (buf) + 1);
7359 if (name == NULL)
7360 return FALSE;
7361 strcpy (name, buf);
7362
7363 sect = bfd_make_section_anyway (abfd, name);
7364 if (sect == NULL)
7365 return FALSE;
7366
7367 sect->size = note->descsz;
7368 sect->filepos = note->descpos;
7369 sect->flags = SEC_HAS_CONTENTS;
7370 sect->alignment_power = 2;
7371
7372 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7373 }
7374
7375 static bfd_boolean
7376 elfcore_grok_nto_regs (bfd *abfd,
7377 Elf_Internal_Note *note,
7378 pid_t tid,
7379 char *base)
7380 {
7381 char buf[100];
7382 char *name;
7383 asection *sect;
7384
7385 /* Make a "(base)/%d" section. */
7386 sprintf (buf, "%s/%ld", base, (long) tid);
7387
7388 name = bfd_alloc (abfd, strlen (buf) + 1);
7389 if (name == NULL)
7390 return FALSE;
7391 strcpy (name, buf);
7392
7393 sect = bfd_make_section_anyway (abfd, name);
7394 if (sect == NULL)
7395 return FALSE;
7396
7397 sect->size = note->descsz;
7398 sect->filepos = note->descpos;
7399 sect->flags = SEC_HAS_CONTENTS;
7400 sect->alignment_power = 2;
7401
7402 /* This is the current thread. */
7403 if (elf_tdata (abfd)->core_lwpid == tid)
7404 return elfcore_maybe_make_sect (abfd, base, sect);
7405
7406 return TRUE;
7407 }
7408
7409 #define BFD_QNT_CORE_INFO 7
7410 #define BFD_QNT_CORE_STATUS 8
7411 #define BFD_QNT_CORE_GREG 9
7412 #define BFD_QNT_CORE_FPREG 10
7413
7414 static bfd_boolean
7415 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7416 {
7417 /* Every GREG section has a STATUS section before it. Store the
7418 tid from the previous call to pass down to the next gregs
7419 function. */
7420 static pid_t tid = 1;
7421
7422 switch (note->type)
7423 {
7424 case BFD_QNT_CORE_INFO:
7425 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7426 case BFD_QNT_CORE_STATUS:
7427 return elfcore_grok_nto_status (abfd, note, &tid);
7428 case BFD_QNT_CORE_GREG:
7429 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7430 case BFD_QNT_CORE_FPREG:
7431 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7432 default:
7433 return TRUE;
7434 }
7435 }
7436
7437 /* Function: elfcore_write_note
7438
7439 Inputs:
7440 buffer to hold note
7441 name of note
7442 type of note
7443 data for note
7444 size of data for note
7445
7446 Return:
7447 End of buffer containing note. */
7448
7449 char *
7450 elfcore_write_note (bfd *abfd,
7451 char *buf,
7452 int *bufsiz,
7453 const char *name,
7454 int type,
7455 const void *input,
7456 int size)
7457 {
7458 Elf_External_Note *xnp;
7459 size_t namesz;
7460 size_t pad;
7461 size_t newspace;
7462 char *p, *dest;
7463
7464 namesz = 0;
7465 pad = 0;
7466 if (name != NULL)
7467 {
7468 const struct elf_backend_data *bed;
7469
7470 namesz = strlen (name) + 1;
7471 bed = get_elf_backend_data (abfd);
7472 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7473 }
7474
7475 newspace = 12 + namesz + pad + size;
7476
7477 p = realloc (buf, *bufsiz + newspace);
7478 dest = p + *bufsiz;
7479 *bufsiz += newspace;
7480 xnp = (Elf_External_Note *) dest;
7481 H_PUT_32 (abfd, namesz, xnp->namesz);
7482 H_PUT_32 (abfd, size, xnp->descsz);
7483 H_PUT_32 (abfd, type, xnp->type);
7484 dest = xnp->name;
7485 if (name != NULL)
7486 {
7487 memcpy (dest, name, namesz);
7488 dest += namesz;
7489 while (pad != 0)
7490 {
7491 *dest++ = '\0';
7492 --pad;
7493 }
7494 }
7495 memcpy (dest, input, size);
7496 return p;
7497 }
7498
7499 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7500 char *
7501 elfcore_write_prpsinfo (bfd *abfd,
7502 char *buf,
7503 int *bufsiz,
7504 const char *fname,
7505 const char *psargs)
7506 {
7507 int note_type;
7508 char *note_name = "CORE";
7509
7510 #if defined (HAVE_PSINFO_T)
7511 psinfo_t data;
7512 note_type = NT_PSINFO;
7513 #else
7514 prpsinfo_t data;
7515 note_type = NT_PRPSINFO;
7516 #endif
7517
7518 memset (&data, 0, sizeof (data));
7519 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7520 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7521 return elfcore_write_note (abfd, buf, bufsiz,
7522 note_name, note_type, &data, sizeof (data));
7523 }
7524 #endif /* PSINFO_T or PRPSINFO_T */
7525
7526 #if defined (HAVE_PRSTATUS_T)
7527 char *
7528 elfcore_write_prstatus (bfd *abfd,
7529 char *buf,
7530 int *bufsiz,
7531 long pid,
7532 int cursig,
7533 const void *gregs)
7534 {
7535 prstatus_t prstat;
7536 char *note_name = "CORE";
7537
7538 memset (&prstat, 0, sizeof (prstat));
7539 prstat.pr_pid = pid;
7540 prstat.pr_cursig = cursig;
7541 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7542 return elfcore_write_note (abfd, buf, bufsiz,
7543 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7544 }
7545 #endif /* HAVE_PRSTATUS_T */
7546
7547 #if defined (HAVE_LWPSTATUS_T)
7548 char *
7549 elfcore_write_lwpstatus (bfd *abfd,
7550 char *buf,
7551 int *bufsiz,
7552 long pid,
7553 int cursig,
7554 const void *gregs)
7555 {
7556 lwpstatus_t lwpstat;
7557 char *note_name = "CORE";
7558
7559 memset (&lwpstat, 0, sizeof (lwpstat));
7560 lwpstat.pr_lwpid = pid >> 16;
7561 lwpstat.pr_cursig = cursig;
7562 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7563 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7564 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7565 #if !defined(gregs)
7566 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7567 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7568 #else
7569 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7570 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7571 #endif
7572 #endif
7573 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7574 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7575 }
7576 #endif /* HAVE_LWPSTATUS_T */
7577
7578 #if defined (HAVE_PSTATUS_T)
7579 char *
7580 elfcore_write_pstatus (bfd *abfd,
7581 char *buf,
7582 int *bufsiz,
7583 long pid,
7584 int cursig,
7585 const void *gregs)
7586 {
7587 pstatus_t pstat;
7588 char *note_name = "CORE";
7589
7590 memset (&pstat, 0, sizeof (pstat));
7591 pstat.pr_pid = pid & 0xffff;
7592 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7593 NT_PSTATUS, &pstat, sizeof (pstat));
7594 return buf;
7595 }
7596 #endif /* HAVE_PSTATUS_T */
7597
7598 char *
7599 elfcore_write_prfpreg (bfd *abfd,
7600 char *buf,
7601 int *bufsiz,
7602 const void *fpregs,
7603 int size)
7604 {
7605 char *note_name = "CORE";
7606 return elfcore_write_note (abfd, buf, bufsiz,
7607 note_name, NT_FPREGSET, fpregs, size);
7608 }
7609
7610 char *
7611 elfcore_write_prxfpreg (bfd *abfd,
7612 char *buf,
7613 int *bufsiz,
7614 const void *xfpregs,
7615 int size)
7616 {
7617 char *note_name = "LINUX";
7618 return elfcore_write_note (abfd, buf, bufsiz,
7619 note_name, NT_PRXFPREG, xfpregs, size);
7620 }
7621
7622 static bfd_boolean
7623 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7624 {
7625 char *buf;
7626 char *p;
7627
7628 if (size <= 0)
7629 return TRUE;
7630
7631 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7632 return FALSE;
7633
7634 buf = bfd_malloc (size);
7635 if (buf == NULL)
7636 return FALSE;
7637
7638 if (bfd_bread (buf, size, abfd) != size)
7639 {
7640 error:
7641 free (buf);
7642 return FALSE;
7643 }
7644
7645 p = buf;
7646 while (p < buf + size)
7647 {
7648 /* FIXME: bad alignment assumption. */
7649 Elf_External_Note *xnp = (Elf_External_Note *) p;
7650 Elf_Internal_Note in;
7651
7652 in.type = H_GET_32 (abfd, xnp->type);
7653
7654 in.namesz = H_GET_32 (abfd, xnp->namesz);
7655 in.namedata = xnp->name;
7656
7657 in.descsz = H_GET_32 (abfd, xnp->descsz);
7658 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7659 in.descpos = offset + (in.descdata - buf);
7660
7661 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7662 {
7663 if (! elfcore_grok_netbsd_note (abfd, &in))
7664 goto error;
7665 }
7666 else if (strncmp (in.namedata, "QNX", 3) == 0)
7667 {
7668 if (! elfcore_grok_nto_note (abfd, &in))
7669 goto error;
7670 }
7671 else
7672 {
7673 if (! elfcore_grok_note (abfd, &in))
7674 goto error;
7675 }
7676
7677 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7678 }
7679
7680 free (buf);
7681 return TRUE;
7682 }
7683 \f
7684 /* Providing external access to the ELF program header table. */
7685
7686 /* Return an upper bound on the number of bytes required to store a
7687 copy of ABFD's program header table entries. Return -1 if an error
7688 occurs; bfd_get_error will return an appropriate code. */
7689
7690 long
7691 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7692 {
7693 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7694 {
7695 bfd_set_error (bfd_error_wrong_format);
7696 return -1;
7697 }
7698
7699 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7700 }
7701
7702 /* Copy ABFD's program header table entries to *PHDRS. The entries
7703 will be stored as an array of Elf_Internal_Phdr structures, as
7704 defined in include/elf/internal.h. To find out how large the
7705 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7706
7707 Return the number of program header table entries read, or -1 if an
7708 error occurs; bfd_get_error will return an appropriate code. */
7709
7710 int
7711 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7712 {
7713 int num_phdrs;
7714
7715 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7716 {
7717 bfd_set_error (bfd_error_wrong_format);
7718 return -1;
7719 }
7720
7721 num_phdrs = elf_elfheader (abfd)->e_phnum;
7722 memcpy (phdrs, elf_tdata (abfd)->phdr,
7723 num_phdrs * sizeof (Elf_Internal_Phdr));
7724
7725 return num_phdrs;
7726 }
7727
7728 void
7729 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7730 {
7731 #ifdef BFD64
7732 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7733
7734 i_ehdrp = elf_elfheader (abfd);
7735 if (i_ehdrp == NULL)
7736 sprintf_vma (buf, value);
7737 else
7738 {
7739 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7740 {
7741 #if BFD_HOST_64BIT_LONG
7742 sprintf (buf, "%016lx", value);
7743 #else
7744 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7745 _bfd_int64_low (value));
7746 #endif
7747 }
7748 else
7749 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7750 }
7751 #else
7752 sprintf_vma (buf, value);
7753 #endif
7754 }
7755
7756 void
7757 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7758 {
7759 #ifdef BFD64
7760 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7761
7762 i_ehdrp = elf_elfheader (abfd);
7763 if (i_ehdrp == NULL)
7764 fprintf_vma ((FILE *) stream, value);
7765 else
7766 {
7767 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7768 {
7769 #if BFD_HOST_64BIT_LONG
7770 fprintf ((FILE *) stream, "%016lx", value);
7771 #else
7772 fprintf ((FILE *) stream, "%08lx%08lx",
7773 _bfd_int64_high (value), _bfd_int64_low (value));
7774 #endif
7775 }
7776 else
7777 fprintf ((FILE *) stream, "%08lx",
7778 (unsigned long) (value & 0xffffffff));
7779 }
7780 #else
7781 fprintf_vma ((FILE *) stream, value);
7782 #endif
7783 }
7784
7785 enum elf_reloc_type_class
7786 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7787 {
7788 return reloc_class_normal;
7789 }
7790
7791 /* For RELA architectures, return the relocation value for a
7792 relocation against a local symbol. */
7793
7794 bfd_vma
7795 _bfd_elf_rela_local_sym (bfd *abfd,
7796 Elf_Internal_Sym *sym,
7797 asection **psec,
7798 Elf_Internal_Rela *rel)
7799 {
7800 asection *sec = *psec;
7801 bfd_vma relocation;
7802
7803 relocation = (sec->output_section->vma
7804 + sec->output_offset
7805 + sym->st_value);
7806 if ((sec->flags & SEC_MERGE)
7807 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7808 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7809 {
7810 rel->r_addend =
7811 _bfd_merged_section_offset (abfd, psec,
7812 elf_section_data (sec)->sec_info,
7813 sym->st_value + rel->r_addend);
7814 if (sec != *psec)
7815 {
7816 /* If we have changed the section, and our original section is
7817 marked with SEC_EXCLUDE, it means that the original
7818 SEC_MERGE section has been completely subsumed in some
7819 other SEC_MERGE section. In this case, we need to leave
7820 some info around for --emit-relocs. */
7821 if ((sec->flags & SEC_EXCLUDE) != 0)
7822 sec->kept_section = *psec;
7823 sec = *psec;
7824 }
7825 rel->r_addend -= relocation;
7826 rel->r_addend += sec->output_section->vma + sec->output_offset;
7827 }
7828 return relocation;
7829 }
7830
7831 bfd_vma
7832 _bfd_elf_rel_local_sym (bfd *abfd,
7833 Elf_Internal_Sym *sym,
7834 asection **psec,
7835 bfd_vma addend)
7836 {
7837 asection *sec = *psec;
7838
7839 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7840 return sym->st_value + addend;
7841
7842 return _bfd_merged_section_offset (abfd, psec,
7843 elf_section_data (sec)->sec_info,
7844 sym->st_value + addend);
7845 }
7846
7847 bfd_vma
7848 _bfd_elf_section_offset (bfd *abfd,
7849 struct bfd_link_info *info,
7850 asection *sec,
7851 bfd_vma offset)
7852 {
7853 switch (sec->sec_info_type)
7854 {
7855 case ELF_INFO_TYPE_STABS:
7856 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
7857 offset);
7858 case ELF_INFO_TYPE_EH_FRAME:
7859 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
7860 default:
7861 return offset;
7862 }
7863 }
7864 \f
7865 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7866 reconstruct an ELF file by reading the segments out of remote memory
7867 based on the ELF file header at EHDR_VMA and the ELF program headers it
7868 points to. If not null, *LOADBASEP is filled in with the difference
7869 between the VMAs from which the segments were read, and the VMAs the
7870 file headers (and hence BFD's idea of each section's VMA) put them at.
7871
7872 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7873 remote memory at target address VMA into the local buffer at MYADDR; it
7874 should return zero on success or an `errno' code on failure. TEMPL must
7875 be a BFD for an ELF target with the word size and byte order found in
7876 the remote memory. */
7877
7878 bfd *
7879 bfd_elf_bfd_from_remote_memory
7880 (bfd *templ,
7881 bfd_vma ehdr_vma,
7882 bfd_vma *loadbasep,
7883 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
7884 {
7885 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7886 (templ, ehdr_vma, loadbasep, target_read_memory);
7887 }
7888 \f
7889 long
7890 _bfd_elf_get_synthetic_symtab (bfd *abfd,
7891 long symcount ATTRIBUTE_UNUSED,
7892 asymbol **syms ATTRIBUTE_UNUSED,
7893 long dynsymcount,
7894 asymbol **dynsyms,
7895 asymbol **ret)
7896 {
7897 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7898 asection *relplt;
7899 asymbol *s;
7900 const char *relplt_name;
7901 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7902 arelent *p;
7903 long count, i, n;
7904 size_t size;
7905 Elf_Internal_Shdr *hdr;
7906 char *names;
7907 asection *plt;
7908
7909 *ret = NULL;
7910
7911 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
7912 return 0;
7913
7914 if (dynsymcount <= 0)
7915 return 0;
7916
7917 if (!bed->plt_sym_val)
7918 return 0;
7919
7920 relplt_name = bed->relplt_name;
7921 if (relplt_name == NULL)
7922 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7923 relplt = bfd_get_section_by_name (abfd, relplt_name);
7924 if (relplt == NULL)
7925 return 0;
7926
7927 hdr = &elf_section_data (relplt)->this_hdr;
7928 if (hdr->sh_link != elf_dynsymtab (abfd)
7929 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7930 return 0;
7931
7932 plt = bfd_get_section_by_name (abfd, ".plt");
7933 if (plt == NULL)
7934 return 0;
7935
7936 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7937 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7938 return -1;
7939
7940 count = relplt->size / hdr->sh_entsize;
7941 size = count * sizeof (asymbol);
7942 p = relplt->relocation;
7943 for (i = 0; i < count; i++, s++, p++)
7944 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7945
7946 s = *ret = bfd_malloc (size);
7947 if (s == NULL)
7948 return -1;
7949
7950 names = (char *) (s + count);
7951 p = relplt->relocation;
7952 n = 0;
7953 for (i = 0; i < count; i++, s++, p++)
7954 {
7955 size_t len;
7956 bfd_vma addr;
7957
7958 addr = bed->plt_sym_val (i, plt, p);
7959 if (addr == (bfd_vma) -1)
7960 continue;
7961
7962 *s = **p->sym_ptr_ptr;
7963 s->section = plt;
7964 s->value = addr - plt->vma;
7965 s->name = names;
7966 len = strlen ((*p->sym_ptr_ptr)->name);
7967 memcpy (names, (*p->sym_ptr_ptr)->name, len);
7968 names += len;
7969 memcpy (names, "@plt", sizeof ("@plt"));
7970 names += sizeof ("@plt");
7971 ++n;
7972 }
7973
7974 return n;
7975 }
7976
7977 /* Sort symbol by binding and section. We want to put definitions
7978 sorted by section at the beginning. */
7979
7980 static int
7981 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7982 {
7983 const Elf_Internal_Sym *s1;
7984 const Elf_Internal_Sym *s2;
7985 int shndx;
7986
7987 /* Make sure that undefined symbols are at the end. */
7988 s1 = (const Elf_Internal_Sym *) arg1;
7989 if (s1->st_shndx == SHN_UNDEF)
7990 return 1;
7991 s2 = (const Elf_Internal_Sym *) arg2;
7992 if (s2->st_shndx == SHN_UNDEF)
7993 return -1;
7994
7995 /* Sorted by section index. */
7996 shndx = s1->st_shndx - s2->st_shndx;
7997 if (shndx != 0)
7998 return shndx;
7999
8000 /* Sorted by binding. */
8001 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8002 }
8003
8004 struct elf_symbol
8005 {
8006 Elf_Internal_Sym *sym;
8007 const char *name;
8008 };
8009
8010 static int
8011 elf_sym_name_compare (const void *arg1, const void *arg2)
8012 {
8013 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8014 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8015 return strcmp (s1->name, s2->name);
8016 }
8017
8018 /* Check if 2 sections define the same set of local and global
8019 symbols. */
8020
8021 bfd_boolean
8022 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8023 {
8024 bfd *bfd1, *bfd2;
8025 const struct elf_backend_data *bed1, *bed2;
8026 Elf_Internal_Shdr *hdr1, *hdr2;
8027 bfd_size_type symcount1, symcount2;
8028 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8029 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8030 Elf_Internal_Sym *isymend;
8031 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8032 bfd_size_type count1, count2, i;
8033 int shndx1, shndx2;
8034 bfd_boolean result;
8035
8036 bfd1 = sec1->owner;
8037 bfd2 = sec2->owner;
8038
8039 /* If both are .gnu.linkonce sections, they have to have the same
8040 section name. */
8041 if (strncmp (sec1->name, ".gnu.linkonce",
8042 sizeof ".gnu.linkonce" - 1) == 0
8043 && strncmp (sec2->name, ".gnu.linkonce",
8044 sizeof ".gnu.linkonce" - 1) == 0)
8045 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8046 sec2->name + sizeof ".gnu.linkonce") == 0;
8047
8048 /* Both sections have to be in ELF. */
8049 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8050 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8051 return FALSE;
8052
8053 if (elf_section_type (sec1) != elf_section_type (sec2))
8054 return FALSE;
8055
8056 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8057 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8058 {
8059 /* If both are members of section groups, they have to have the
8060 same group name. */
8061 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8062 return FALSE;
8063 }
8064
8065 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8066 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8067 if (shndx1 == -1 || shndx2 == -1)
8068 return FALSE;
8069
8070 bed1 = get_elf_backend_data (bfd1);
8071 bed2 = get_elf_backend_data (bfd2);
8072 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8073 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8074 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8075 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8076
8077 if (symcount1 == 0 || symcount2 == 0)
8078 return FALSE;
8079
8080 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8081 NULL, NULL, NULL);
8082 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8083 NULL, NULL, NULL);
8084
8085 result = FALSE;
8086 if (isymbuf1 == NULL || isymbuf2 == NULL)
8087 goto done;
8088
8089 /* Sort symbols by binding and section. Global definitions are at
8090 the beginning. */
8091 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8092 elf_sort_elf_symbol);
8093 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8094 elf_sort_elf_symbol);
8095
8096 /* Count definitions in the section. */
8097 count1 = 0;
8098 for (isym = isymbuf1, isymend = isym + symcount1;
8099 isym < isymend; isym++)
8100 {
8101 if (isym->st_shndx == (unsigned int) shndx1)
8102 {
8103 if (count1 == 0)
8104 isymstart1 = isym;
8105 count1++;
8106 }
8107
8108 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8109 break;
8110 }
8111
8112 count2 = 0;
8113 for (isym = isymbuf2, isymend = isym + symcount2;
8114 isym < isymend; isym++)
8115 {
8116 if (isym->st_shndx == (unsigned int) shndx2)
8117 {
8118 if (count2 == 0)
8119 isymstart2 = isym;
8120 count2++;
8121 }
8122
8123 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8124 break;
8125 }
8126
8127 if (count1 == 0 || count2 == 0 || count1 != count2)
8128 goto done;
8129
8130 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8131 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8132
8133 if (symtable1 == NULL || symtable2 == NULL)
8134 goto done;
8135
8136 symp = symtable1;
8137 for (isym = isymstart1, isymend = isym + count1;
8138 isym < isymend; isym++)
8139 {
8140 symp->sym = isym;
8141 symp->name = bfd_elf_string_from_elf_section (bfd1,
8142 hdr1->sh_link,
8143 isym->st_name);
8144 symp++;
8145 }
8146
8147 symp = symtable2;
8148 for (isym = isymstart2, isymend = isym + count1;
8149 isym < isymend; isym++)
8150 {
8151 symp->sym = isym;
8152 symp->name = bfd_elf_string_from_elf_section (bfd2,
8153 hdr2->sh_link,
8154 isym->st_name);
8155 symp++;
8156 }
8157
8158 /* Sort symbol by name. */
8159 qsort (symtable1, count1, sizeof (struct elf_symbol),
8160 elf_sym_name_compare);
8161 qsort (symtable2, count1, sizeof (struct elf_symbol),
8162 elf_sym_name_compare);
8163
8164 for (i = 0; i < count1; i++)
8165 /* Two symbols must have the same binding, type and name. */
8166 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8167 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8168 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8169 goto done;
8170
8171 result = TRUE;
8172
8173 done:
8174 if (symtable1)
8175 free (symtable1);
8176 if (symtable2)
8177 free (symtable2);
8178 if (isymbuf1)
8179 free (isymbuf1);
8180 if (isymbuf2)
8181 free (isymbuf2);
8182
8183 return result;
8184 }
This page took 0.293093 seconds and 5 git commands to generate.