ELF final_write_processing
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
57 size_t align) ;
58 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
59 file_ptr offset, size_t align);
60
61 /* Swap version information in and out. The version information is
62 currently size independent. If that ever changes, this code will
63 need to move into elfcode.h. */
64
65 /* Swap in a Verdef structure. */
66
67 void
68 _bfd_elf_swap_verdef_in (bfd *abfd,
69 const Elf_External_Verdef *src,
70 Elf_Internal_Verdef *dst)
71 {
72 dst->vd_version = H_GET_16 (abfd, src->vd_version);
73 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
74 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
75 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
76 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
77 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
78 dst->vd_next = H_GET_32 (abfd, src->vd_next);
79 }
80
81 /* Swap out a Verdef structure. */
82
83 void
84 _bfd_elf_swap_verdef_out (bfd *abfd,
85 const Elf_Internal_Verdef *src,
86 Elf_External_Verdef *dst)
87 {
88 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
89 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
90 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
91 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
92 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
93 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
94 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
95 }
96
97 /* Swap in a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_in (bfd *abfd,
101 const Elf_External_Verdaux *src,
102 Elf_Internal_Verdaux *dst)
103 {
104 dst->vda_name = H_GET_32 (abfd, src->vda_name);
105 dst->vda_next = H_GET_32 (abfd, src->vda_next);
106 }
107
108 /* Swap out a Verdaux structure. */
109
110 void
111 _bfd_elf_swap_verdaux_out (bfd *abfd,
112 const Elf_Internal_Verdaux *src,
113 Elf_External_Verdaux *dst)
114 {
115 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
116 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
117 }
118
119 /* Swap in a Verneed structure. */
120
121 void
122 _bfd_elf_swap_verneed_in (bfd *abfd,
123 const Elf_External_Verneed *src,
124 Elf_Internal_Verneed *dst)
125 {
126 dst->vn_version = H_GET_16 (abfd, src->vn_version);
127 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
128 dst->vn_file = H_GET_32 (abfd, src->vn_file);
129 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
130 dst->vn_next = H_GET_32 (abfd, src->vn_next);
131 }
132
133 /* Swap out a Verneed structure. */
134
135 void
136 _bfd_elf_swap_verneed_out (bfd *abfd,
137 const Elf_Internal_Verneed *src,
138 Elf_External_Verneed *dst)
139 {
140 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
141 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
142 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
143 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
144 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
145 }
146
147 /* Swap in a Vernaux structure. */
148
149 void
150 _bfd_elf_swap_vernaux_in (bfd *abfd,
151 const Elf_External_Vernaux *src,
152 Elf_Internal_Vernaux *dst)
153 {
154 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
155 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
156 dst->vna_other = H_GET_16 (abfd, src->vna_other);
157 dst->vna_name = H_GET_32 (abfd, src->vna_name);
158 dst->vna_next = H_GET_32 (abfd, src->vna_next);
159 }
160
161 /* Swap out a Vernaux structure. */
162
163 void
164 _bfd_elf_swap_vernaux_out (bfd *abfd,
165 const Elf_Internal_Vernaux *src,
166 Elf_External_Vernaux *dst)
167 {
168 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
169 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
170 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
171 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
172 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
173 }
174
175 /* Swap in a Versym structure. */
176
177 void
178 _bfd_elf_swap_versym_in (bfd *abfd,
179 const Elf_External_Versym *src,
180 Elf_Internal_Versym *dst)
181 {
182 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
183 }
184
185 /* Swap out a Versym structure. */
186
187 void
188 _bfd_elf_swap_versym_out (bfd *abfd,
189 const Elf_Internal_Versym *src,
190 Elf_External_Versym *dst)
191 {
192 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
193 }
194
195 /* Standard ELF hash function. Do not change this function; you will
196 cause invalid hash tables to be generated. */
197
198 unsigned long
199 bfd_elf_hash (const char *namearg)
200 {
201 const unsigned char *name = (const unsigned char *) namearg;
202 unsigned long h = 0;
203 unsigned long g;
204 int ch;
205
206 while ((ch = *name++) != '\0')
207 {
208 h = (h << 4) + ch;
209 if ((g = (h & 0xf0000000)) != 0)
210 {
211 h ^= g >> 24;
212 /* The ELF ABI says `h &= ~g', but this is equivalent in
213 this case and on some machines one insn instead of two. */
214 h ^= g;
215 }
216 }
217 return h & 0xffffffff;
218 }
219
220 /* DT_GNU_HASH hash function. Do not change this function; you will
221 cause invalid hash tables to be generated. */
222
223 unsigned long
224 bfd_elf_gnu_hash (const char *namearg)
225 {
226 const unsigned char *name = (const unsigned char *) namearg;
227 unsigned long h = 5381;
228 unsigned char ch;
229
230 while ((ch = *name++) != '\0')
231 h = (h << 5) + h + ch;
232 return h & 0xffffffff;
233 }
234
235 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
236 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
237 bfd_boolean
238 bfd_elf_allocate_object (bfd *abfd,
239 size_t object_size,
240 enum elf_target_id object_id)
241 {
242 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
243 abfd->tdata.any = bfd_zalloc (abfd, object_size);
244 if (abfd->tdata.any == NULL)
245 return FALSE;
246
247 elf_object_id (abfd) = object_id;
248 if (abfd->direction != read_direction)
249 {
250 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
251 if (o == NULL)
252 return FALSE;
253 elf_tdata (abfd)->o = o;
254 elf_program_header_size (abfd) = (bfd_size_type) -1;
255 }
256 return TRUE;
257 }
258
259
260 bfd_boolean
261 bfd_elf_make_object (bfd *abfd)
262 {
263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
264 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
265 bed->target_id);
266 }
267
268 bfd_boolean
269 bfd_elf_mkcorefile (bfd *abfd)
270 {
271 /* I think this can be done just like an object file. */
272 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
273 return FALSE;
274 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
275 return elf_tdata (abfd)->core != NULL;
276 }
277
278 static char *
279 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
280 {
281 Elf_Internal_Shdr **i_shdrp;
282 bfd_byte *shstrtab = NULL;
283 file_ptr offset;
284 bfd_size_type shstrtabsize;
285
286 i_shdrp = elf_elfsections (abfd);
287 if (i_shdrp == 0
288 || shindex >= elf_numsections (abfd)
289 || i_shdrp[shindex] == 0)
290 return NULL;
291
292 shstrtab = i_shdrp[shindex]->contents;
293 if (shstrtab == NULL)
294 {
295 /* No cached one, attempt to read, and cache what we read. */
296 offset = i_shdrp[shindex]->sh_offset;
297 shstrtabsize = i_shdrp[shindex]->sh_size;
298
299 /* Allocate and clear an extra byte at the end, to prevent crashes
300 in case the string table is not terminated. */
301 if (shstrtabsize + 1 <= 1
302 || shstrtabsize > bfd_get_file_size (abfd)
303 || bfd_seek (abfd, offset, SEEK_SET) != 0
304 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
305 shstrtab = NULL;
306 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
307 {
308 if (bfd_get_error () != bfd_error_system_call)
309 bfd_set_error (bfd_error_file_truncated);
310 bfd_release (abfd, shstrtab);
311 shstrtab = NULL;
312 /* Once we've failed to read it, make sure we don't keep
313 trying. Otherwise, we'll keep allocating space for
314 the string table over and over. */
315 i_shdrp[shindex]->sh_size = 0;
316 }
317 else
318 shstrtab[shstrtabsize] = '\0';
319 i_shdrp[shindex]->contents = shstrtab;
320 }
321 return (char *) shstrtab;
322 }
323
324 char *
325 bfd_elf_string_from_elf_section (bfd *abfd,
326 unsigned int shindex,
327 unsigned int strindex)
328 {
329 Elf_Internal_Shdr *hdr;
330
331 if (strindex == 0)
332 return "";
333
334 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
335 return NULL;
336
337 hdr = elf_elfsections (abfd)[shindex];
338
339 if (hdr->contents == NULL)
340 {
341 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
342 {
343 /* PR 17512: file: f057ec89. */
344 /* xgettext:c-format */
345 _bfd_error_handler (_("%pB: attempt to load strings from"
346 " a non-string section (number %d)"),
347 abfd, shindex);
348 return NULL;
349 }
350
351 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
352 return NULL;
353 }
354 else
355 {
356 /* PR 24273: The string section's contents may have already
357 been loaded elsewhere, eg because a corrupt file has the
358 string section index in the ELF header pointing at a group
359 section. So be paranoid, and test that the last byte of
360 the section is zero. */
361 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
362 return NULL;
363 }
364
365 if (strindex >= hdr->sh_size)
366 {
367 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
368 _bfd_error_handler
369 /* xgettext:c-format */
370 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
371 abfd, strindex, (uint64_t) hdr->sh_size,
372 (shindex == shstrndx && strindex == hdr->sh_name
373 ? ".shstrtab"
374 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
375 return NULL;
376 }
377
378 return ((char *) hdr->contents) + strindex;
379 }
380
381 /* Read and convert symbols to internal format.
382 SYMCOUNT specifies the number of symbols to read, starting from
383 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
384 are non-NULL, they are used to store the internal symbols, external
385 symbols, and symbol section index extensions, respectively.
386 Returns a pointer to the internal symbol buffer (malloced if necessary)
387 or NULL if there were no symbols or some kind of problem. */
388
389 Elf_Internal_Sym *
390 bfd_elf_get_elf_syms (bfd *ibfd,
391 Elf_Internal_Shdr *symtab_hdr,
392 size_t symcount,
393 size_t symoffset,
394 Elf_Internal_Sym *intsym_buf,
395 void *extsym_buf,
396 Elf_External_Sym_Shndx *extshndx_buf)
397 {
398 Elf_Internal_Shdr *shndx_hdr;
399 void *alloc_ext;
400 const bfd_byte *esym;
401 Elf_External_Sym_Shndx *alloc_extshndx;
402 Elf_External_Sym_Shndx *shndx;
403 Elf_Internal_Sym *alloc_intsym;
404 Elf_Internal_Sym *isym;
405 Elf_Internal_Sym *isymend;
406 const struct elf_backend_data *bed;
407 size_t extsym_size;
408 bfd_size_type amt;
409 file_ptr pos;
410
411 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
412 abort ();
413
414 if (symcount == 0)
415 return intsym_buf;
416
417 /* Normal syms might have section extension entries. */
418 shndx_hdr = NULL;
419 if (elf_symtab_shndx_list (ibfd) != NULL)
420 {
421 elf_section_list * entry;
422 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
423
424 /* Find an index section that is linked to this symtab section. */
425 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
426 {
427 /* PR 20063. */
428 if (entry->hdr.sh_link >= elf_numsections (ibfd))
429 continue;
430
431 if (sections[entry->hdr.sh_link] == symtab_hdr)
432 {
433 shndx_hdr = & entry->hdr;
434 break;
435 };
436 }
437
438 if (shndx_hdr == NULL)
439 {
440 if (symtab_hdr == & elf_symtab_hdr (ibfd))
441 /* Not really accurate, but this was how the old code used to work. */
442 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
443 /* Otherwise we do nothing. The assumption is that
444 the index table will not be needed. */
445 }
446 }
447
448 /* Read the symbols. */
449 alloc_ext = NULL;
450 alloc_extshndx = NULL;
451 alloc_intsym = NULL;
452 bed = get_elf_backend_data (ibfd);
453 extsym_size = bed->s->sizeof_sym;
454 amt = (bfd_size_type) symcount * extsym_size;
455 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
456 if (extsym_buf == NULL)
457 {
458 alloc_ext = bfd_malloc2 (symcount, extsym_size);
459 extsym_buf = alloc_ext;
460 }
461 if (extsym_buf == NULL
462 || bfd_seek (ibfd, pos, SEEK_SET) != 0
463 || bfd_bread (extsym_buf, amt, ibfd) != amt)
464 {
465 intsym_buf = NULL;
466 goto out;
467 }
468
469 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
470 extshndx_buf = NULL;
471 else
472 {
473 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
474 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
475 if (extshndx_buf == NULL)
476 {
477 alloc_extshndx = (Elf_External_Sym_Shndx *)
478 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
479 extshndx_buf = alloc_extshndx;
480 }
481 if (extshndx_buf == NULL
482 || bfd_seek (ibfd, pos, SEEK_SET) != 0
483 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
484 {
485 intsym_buf = NULL;
486 goto out;
487 }
488 }
489
490 if (intsym_buf == NULL)
491 {
492 alloc_intsym = (Elf_Internal_Sym *)
493 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
494 intsym_buf = alloc_intsym;
495 if (intsym_buf == NULL)
496 goto out;
497 }
498
499 /* Convert the symbols to internal form. */
500 isymend = intsym_buf + symcount;
501 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
502 shndx = extshndx_buf;
503 isym < isymend;
504 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
505 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
506 {
507 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
508 /* xgettext:c-format */
509 _bfd_error_handler (_("%pB symbol number %lu references"
510 " nonexistent SHT_SYMTAB_SHNDX section"),
511 ibfd, (unsigned long) symoffset);
512 if (alloc_intsym != NULL)
513 free (alloc_intsym);
514 intsym_buf = NULL;
515 goto out;
516 }
517
518 out:
519 if (alloc_ext != NULL)
520 free (alloc_ext);
521 if (alloc_extshndx != NULL)
522 free (alloc_extshndx);
523
524 return intsym_buf;
525 }
526
527 /* Look up a symbol name. */
528 const char *
529 bfd_elf_sym_name (bfd *abfd,
530 Elf_Internal_Shdr *symtab_hdr,
531 Elf_Internal_Sym *isym,
532 asection *sym_sec)
533 {
534 const char *name;
535 unsigned int iname = isym->st_name;
536 unsigned int shindex = symtab_hdr->sh_link;
537
538 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
539 /* Check for a bogus st_shndx to avoid crashing. */
540 && isym->st_shndx < elf_numsections (abfd))
541 {
542 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
543 shindex = elf_elfheader (abfd)->e_shstrndx;
544 }
545
546 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
547 if (name == NULL)
548 name = "(null)";
549 else if (sym_sec && *name == '\0')
550 name = bfd_section_name (abfd, sym_sec);
551
552 return name;
553 }
554
555 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
556 sections. The first element is the flags, the rest are section
557 pointers. */
558
559 typedef union elf_internal_group {
560 Elf_Internal_Shdr *shdr;
561 unsigned int flags;
562 } Elf_Internal_Group;
563
564 /* Return the name of the group signature symbol. Why isn't the
565 signature just a string? */
566
567 static const char *
568 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
569 {
570 Elf_Internal_Shdr *hdr;
571 unsigned char esym[sizeof (Elf64_External_Sym)];
572 Elf_External_Sym_Shndx eshndx;
573 Elf_Internal_Sym isym;
574
575 /* First we need to ensure the symbol table is available. Make sure
576 that it is a symbol table section. */
577 if (ghdr->sh_link >= elf_numsections (abfd))
578 return NULL;
579 hdr = elf_elfsections (abfd) [ghdr->sh_link];
580 if (hdr->sh_type != SHT_SYMTAB
581 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
582 return NULL;
583
584 /* Go read the symbol. */
585 hdr = &elf_tdata (abfd)->symtab_hdr;
586 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
587 &isym, esym, &eshndx) == NULL)
588 return NULL;
589
590 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
591 }
592
593 /* Set next_in_group list pointer, and group name for NEWSECT. */
594
595 static bfd_boolean
596 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
597 {
598 unsigned int num_group = elf_tdata (abfd)->num_group;
599
600 /* If num_group is zero, read in all SHT_GROUP sections. The count
601 is set to -1 if there are no SHT_GROUP sections. */
602 if (num_group == 0)
603 {
604 unsigned int i, shnum;
605
606 /* First count the number of groups. If we have a SHT_GROUP
607 section with just a flag word (ie. sh_size is 4), ignore it. */
608 shnum = elf_numsections (abfd);
609 num_group = 0;
610
611 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
612 ( (shdr)->sh_type == SHT_GROUP \
613 && (shdr)->sh_size >= minsize \
614 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
615 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
616
617 for (i = 0; i < shnum; i++)
618 {
619 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
620
621 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
622 num_group += 1;
623 }
624
625 if (num_group == 0)
626 {
627 num_group = (unsigned) -1;
628 elf_tdata (abfd)->num_group = num_group;
629 elf_tdata (abfd)->group_sect_ptr = NULL;
630 }
631 else
632 {
633 /* We keep a list of elf section headers for group sections,
634 so we can find them quickly. */
635 bfd_size_type amt;
636
637 elf_tdata (abfd)->num_group = num_group;
638 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
639 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
640 if (elf_tdata (abfd)->group_sect_ptr == NULL)
641 return FALSE;
642 memset (elf_tdata (abfd)->group_sect_ptr, 0,
643 num_group * sizeof (Elf_Internal_Shdr *));
644 num_group = 0;
645
646 for (i = 0; i < shnum; i++)
647 {
648 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
649
650 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
651 {
652 unsigned char *src;
653 Elf_Internal_Group *dest;
654
655 /* Make sure the group section has a BFD section
656 attached to it. */
657 if (!bfd_section_from_shdr (abfd, i))
658 return FALSE;
659
660 /* Add to list of sections. */
661 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
662 num_group += 1;
663
664 /* Read the raw contents. */
665 BFD_ASSERT (sizeof (*dest) >= 4);
666 amt = shdr->sh_size * sizeof (*dest) / 4;
667 shdr->contents = (unsigned char *)
668 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
669 /* PR binutils/4110: Handle corrupt group headers. */
670 if (shdr->contents == NULL)
671 {
672 _bfd_error_handler
673 /* xgettext:c-format */
674 (_("%pB: corrupt size field in group section"
675 " header: %#" PRIx64),
676 abfd, (uint64_t) shdr->sh_size);
677 bfd_set_error (bfd_error_bad_value);
678 -- num_group;
679 continue;
680 }
681
682 memset (shdr->contents, 0, amt);
683
684 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
685 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
686 != shdr->sh_size))
687 {
688 _bfd_error_handler
689 /* xgettext:c-format */
690 (_("%pB: invalid size field in group section"
691 " header: %#" PRIx64 ""),
692 abfd, (uint64_t) shdr->sh_size);
693 bfd_set_error (bfd_error_bad_value);
694 -- num_group;
695 /* PR 17510: If the group contents are even
696 partially corrupt, do not allow any of the
697 contents to be used. */
698 memset (shdr->contents, 0, amt);
699 continue;
700 }
701
702 /* Translate raw contents, a flag word followed by an
703 array of elf section indices all in target byte order,
704 to the flag word followed by an array of elf section
705 pointers. */
706 src = shdr->contents + shdr->sh_size;
707 dest = (Elf_Internal_Group *) (shdr->contents + amt);
708
709 while (1)
710 {
711 unsigned int idx;
712
713 src -= 4;
714 --dest;
715 idx = H_GET_32 (abfd, src);
716 if (src == shdr->contents)
717 {
718 dest->flags = idx;
719 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
720 shdr->bfd_section->flags
721 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
722 break;
723 }
724 if (idx < shnum)
725 {
726 dest->shdr = elf_elfsections (abfd)[idx];
727 /* PR binutils/23199: All sections in a
728 section group should be marked with
729 SHF_GROUP. But some tools generate
730 broken objects without SHF_GROUP. Fix
731 them up here. */
732 dest->shdr->sh_flags |= SHF_GROUP;
733 }
734 if (idx >= shnum
735 || dest->shdr->sh_type == SHT_GROUP)
736 {
737 _bfd_error_handler
738 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
739 abfd, i);
740 dest->shdr = NULL;
741 }
742 }
743 }
744 }
745
746 /* PR 17510: Corrupt binaries might contain invalid groups. */
747 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
748 {
749 elf_tdata (abfd)->num_group = num_group;
750
751 /* If all groups are invalid then fail. */
752 if (num_group == 0)
753 {
754 elf_tdata (abfd)->group_sect_ptr = NULL;
755 elf_tdata (abfd)->num_group = num_group = -1;
756 _bfd_error_handler
757 (_("%pB: no valid group sections found"), abfd);
758 bfd_set_error (bfd_error_bad_value);
759 }
760 }
761 }
762 }
763
764 if (num_group != (unsigned) -1)
765 {
766 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
767 unsigned int j;
768
769 for (j = 0; j < num_group; j++)
770 {
771 /* Begin search from previous found group. */
772 unsigned i = (j + search_offset) % num_group;
773
774 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
775 Elf_Internal_Group *idx;
776 bfd_size_type n_elt;
777
778 if (shdr == NULL)
779 continue;
780
781 idx = (Elf_Internal_Group *) shdr->contents;
782 if (idx == NULL || shdr->sh_size < 4)
783 {
784 /* See PR 21957 for a reproducer. */
785 /* xgettext:c-format */
786 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
787 abfd, shdr->bfd_section);
788 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
789 bfd_set_error (bfd_error_bad_value);
790 return FALSE;
791 }
792 n_elt = shdr->sh_size / 4;
793
794 /* Look through this group's sections to see if current
795 section is a member. */
796 while (--n_elt != 0)
797 if ((++idx)->shdr == hdr)
798 {
799 asection *s = NULL;
800
801 /* We are a member of this group. Go looking through
802 other members to see if any others are linked via
803 next_in_group. */
804 idx = (Elf_Internal_Group *) shdr->contents;
805 n_elt = shdr->sh_size / 4;
806 while (--n_elt != 0)
807 if ((++idx)->shdr != NULL
808 && (s = idx->shdr->bfd_section) != NULL
809 && elf_next_in_group (s) != NULL)
810 break;
811 if (n_elt != 0)
812 {
813 /* Snarf the group name from other member, and
814 insert current section in circular list. */
815 elf_group_name (newsect) = elf_group_name (s);
816 elf_next_in_group (newsect) = elf_next_in_group (s);
817 elf_next_in_group (s) = newsect;
818 }
819 else
820 {
821 const char *gname;
822
823 gname = group_signature (abfd, shdr);
824 if (gname == NULL)
825 return FALSE;
826 elf_group_name (newsect) = gname;
827
828 /* Start a circular list with one element. */
829 elf_next_in_group (newsect) = newsect;
830 }
831
832 /* If the group section has been created, point to the
833 new member. */
834 if (shdr->bfd_section != NULL)
835 elf_next_in_group (shdr->bfd_section) = newsect;
836
837 elf_tdata (abfd)->group_search_offset = i;
838 j = num_group - 1;
839 break;
840 }
841 }
842 }
843
844 if (elf_group_name (newsect) == NULL)
845 {
846 /* xgettext:c-format */
847 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
848 abfd, newsect);
849 return FALSE;
850 }
851 return TRUE;
852 }
853
854 bfd_boolean
855 _bfd_elf_setup_sections (bfd *abfd)
856 {
857 unsigned int i;
858 unsigned int num_group = elf_tdata (abfd)->num_group;
859 bfd_boolean result = TRUE;
860 asection *s;
861
862 /* Process SHF_LINK_ORDER. */
863 for (s = abfd->sections; s != NULL; s = s->next)
864 {
865 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
866 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
867 {
868 unsigned int elfsec = this_hdr->sh_link;
869 /* FIXME: The old Intel compiler and old strip/objcopy may
870 not set the sh_link or sh_info fields. Hence we could
871 get the situation where elfsec is 0. */
872 if (elfsec == 0)
873 {
874 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
875 if (bed->link_order_error_handler)
876 bed->link_order_error_handler
877 /* xgettext:c-format */
878 (_("%pB: warning: sh_link not set for section `%pA'"),
879 abfd, s);
880 }
881 else
882 {
883 asection *linksec = NULL;
884
885 if (elfsec < elf_numsections (abfd))
886 {
887 this_hdr = elf_elfsections (abfd)[elfsec];
888 linksec = this_hdr->bfd_section;
889 }
890
891 /* PR 1991, 2008:
892 Some strip/objcopy may leave an incorrect value in
893 sh_link. We don't want to proceed. */
894 if (linksec == NULL)
895 {
896 _bfd_error_handler
897 /* xgettext:c-format */
898 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
899 s->owner, elfsec, s);
900 result = FALSE;
901 }
902
903 elf_linked_to_section (s) = linksec;
904 }
905 }
906 else if (this_hdr->sh_type == SHT_GROUP
907 && elf_next_in_group (s) == NULL)
908 {
909 _bfd_error_handler
910 /* xgettext:c-format */
911 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
912 abfd, elf_section_data (s)->this_idx);
913 result = FALSE;
914 }
915 }
916
917 /* Process section groups. */
918 if (num_group == (unsigned) -1)
919 return result;
920
921 for (i = 0; i < num_group; i++)
922 {
923 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
924 Elf_Internal_Group *idx;
925 unsigned int n_elt;
926
927 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
928 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
929 {
930 _bfd_error_handler
931 /* xgettext:c-format */
932 (_("%pB: section group entry number %u is corrupt"),
933 abfd, i);
934 result = FALSE;
935 continue;
936 }
937
938 idx = (Elf_Internal_Group *) shdr->contents;
939 n_elt = shdr->sh_size / 4;
940
941 while (--n_elt != 0)
942 {
943 ++ idx;
944
945 if (idx->shdr == NULL)
946 continue;
947 else if (idx->shdr->bfd_section)
948 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
949 else if (idx->shdr->sh_type != SHT_RELA
950 && idx->shdr->sh_type != SHT_REL)
951 {
952 /* There are some unknown sections in the group. */
953 _bfd_error_handler
954 /* xgettext:c-format */
955 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
956 abfd,
957 idx->shdr->sh_type,
958 bfd_elf_string_from_elf_section (abfd,
959 (elf_elfheader (abfd)
960 ->e_shstrndx),
961 idx->shdr->sh_name),
962 shdr->bfd_section);
963 result = FALSE;
964 }
965 }
966 }
967
968 return result;
969 }
970
971 bfd_boolean
972 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
973 {
974 return elf_next_in_group (sec) != NULL;
975 }
976
977 static char *
978 convert_debug_to_zdebug (bfd *abfd, const char *name)
979 {
980 unsigned int len = strlen (name);
981 char *new_name = bfd_alloc (abfd, len + 2);
982 if (new_name == NULL)
983 return NULL;
984 new_name[0] = '.';
985 new_name[1] = 'z';
986 memcpy (new_name + 2, name + 1, len);
987 return new_name;
988 }
989
990 static char *
991 convert_zdebug_to_debug (bfd *abfd, const char *name)
992 {
993 unsigned int len = strlen (name);
994 char *new_name = bfd_alloc (abfd, len);
995 if (new_name == NULL)
996 return NULL;
997 new_name[0] = '.';
998 memcpy (new_name + 1, name + 2, len - 1);
999 return new_name;
1000 }
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bfd_boolean
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014
1015 if (hdr->bfd_section != NULL)
1016 return TRUE;
1017
1018 newsect = bfd_make_section_anyway (abfd, name);
1019 if (newsect == NULL)
1020 return FALSE;
1021
1022 hdr->bfd_section = newsect;
1023 elf_section_data (newsect)->this_hdr = *hdr;
1024 elf_section_data (newsect)->this_idx = shindex;
1025
1026 /* Always use the real type/flags. */
1027 elf_section_type (newsect) = hdr->sh_type;
1028 elf_section_flags (newsect) = hdr->sh_flags;
1029
1030 newsect->filepos = hdr->sh_offset;
1031
1032 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1033 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1034 || ! bfd_set_section_alignment (abfd, newsect,
1035 bfd_log2 (hdr->sh_addralign)))
1036 return FALSE;
1037
1038 flags = SEC_NO_FLAGS;
1039 if (hdr->sh_type != SHT_NOBITS)
1040 flags |= SEC_HAS_CONTENTS;
1041 if (hdr->sh_type == SHT_GROUP)
1042 flags |= SEC_GROUP;
1043 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1044 {
1045 flags |= SEC_ALLOC;
1046 if (hdr->sh_type != SHT_NOBITS)
1047 flags |= SEC_LOAD;
1048 }
1049 if ((hdr->sh_flags & SHF_WRITE) == 0)
1050 flags |= SEC_READONLY;
1051 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1052 flags |= SEC_CODE;
1053 else if ((flags & SEC_LOAD) != 0)
1054 flags |= SEC_DATA;
1055 if ((hdr->sh_flags & SHF_MERGE) != 0)
1056 {
1057 flags |= SEC_MERGE;
1058 newsect->entsize = hdr->sh_entsize;
1059 }
1060 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1061 flags |= SEC_STRINGS;
1062 if (hdr->sh_flags & SHF_GROUP)
1063 if (!setup_group (abfd, hdr, newsect))
1064 return FALSE;
1065 if ((hdr->sh_flags & SHF_TLS) != 0)
1066 flags |= SEC_THREAD_LOCAL;
1067 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1068 flags |= SEC_EXCLUDE;
1069
1070 if ((flags & SEC_ALLOC) == 0)
1071 {
1072 /* The debugging sections appear to be recognized only by name,
1073 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1074 if (name [0] == '.')
1075 {
1076 const char *p;
1077 int n;
1078 if (name[1] == 'd')
1079 p = ".debug", n = 6;
1080 else if (name[1] == 'g' && name[2] == 'n')
1081 p = ".gnu.linkonce.wi.", n = 17;
1082 else if (name[1] == 'g' && name[2] == 'd')
1083 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1084 else if (name[1] == 'l')
1085 p = ".line", n = 5;
1086 else if (name[1] == 's')
1087 p = ".stab", n = 5;
1088 else if (name[1] == 'z')
1089 p = ".zdebug", n = 7;
1090 else
1091 p = NULL, n = 0;
1092 if (p != NULL && strncmp (name, p, n) == 0)
1093 flags |= SEC_DEBUGGING;
1094 }
1095 }
1096
1097 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1098 only link a single copy of the section. This is used to support
1099 g++. g++ will emit each template expansion in its own section.
1100 The symbols will be defined as weak, so that multiple definitions
1101 are permitted. The GNU linker extension is to actually discard
1102 all but one of the sections. */
1103 if (CONST_STRNEQ (name, ".gnu.linkonce")
1104 && elf_next_in_group (newsect) == NULL)
1105 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1106
1107 bed = get_elf_backend_data (abfd);
1108 if (bed->elf_backend_section_flags)
1109 if (! bed->elf_backend_section_flags (&flags, hdr))
1110 return FALSE;
1111
1112 if (! bfd_set_section_flags (abfd, newsect, flags))
1113 return FALSE;
1114
1115 /* We do not parse the PT_NOTE segments as we are interested even in the
1116 separate debug info files which may have the segments offsets corrupted.
1117 PT_NOTEs from the core files are currently not parsed using BFD. */
1118 if (hdr->sh_type == SHT_NOTE)
1119 {
1120 bfd_byte *contents;
1121
1122 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1123 return FALSE;
1124
1125 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1126 hdr->sh_offset, hdr->sh_addralign);
1127 free (contents);
1128 }
1129
1130 if ((flags & SEC_ALLOC) != 0)
1131 {
1132 Elf_Internal_Phdr *phdr;
1133 unsigned int i, nload;
1134
1135 /* Some ELF linkers produce binaries with all the program header
1136 p_paddr fields zero. If we have such a binary with more than
1137 one PT_LOAD header, then leave the section lma equal to vma
1138 so that we don't create sections with overlapping lma. */
1139 phdr = elf_tdata (abfd)->phdr;
1140 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1141 if (phdr->p_paddr != 0)
1142 break;
1143 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1144 ++nload;
1145 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1146 return TRUE;
1147
1148 phdr = elf_tdata (abfd)->phdr;
1149 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1150 {
1151 if (((phdr->p_type == PT_LOAD
1152 && (hdr->sh_flags & SHF_TLS) == 0)
1153 || phdr->p_type == PT_TLS)
1154 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1155 {
1156 if ((flags & SEC_LOAD) == 0)
1157 newsect->lma = (phdr->p_paddr
1158 + hdr->sh_addr - phdr->p_vaddr);
1159 else
1160 /* We used to use the same adjustment for SEC_LOAD
1161 sections, but that doesn't work if the segment
1162 is packed with code from multiple VMAs.
1163 Instead we calculate the section LMA based on
1164 the segment LMA. It is assumed that the
1165 segment will contain sections with contiguous
1166 LMAs, even if the VMAs are not. */
1167 newsect->lma = (phdr->p_paddr
1168 + hdr->sh_offset - phdr->p_offset);
1169
1170 /* With contiguous segments, we can't tell from file
1171 offsets whether a section with zero size should
1172 be placed at the end of one segment or the
1173 beginning of the next. Decide based on vaddr. */
1174 if (hdr->sh_addr >= phdr->p_vaddr
1175 && (hdr->sh_addr + hdr->sh_size
1176 <= phdr->p_vaddr + phdr->p_memsz))
1177 break;
1178 }
1179 }
1180 }
1181
1182 /* Compress/decompress DWARF debug sections with names: .debug_* and
1183 .zdebug_*, after the section flags is set. */
1184 if ((flags & SEC_DEBUGGING)
1185 && ((name[1] == 'd' && name[6] == '_')
1186 || (name[1] == 'z' && name[7] == '_')))
1187 {
1188 enum { nothing, compress, decompress } action = nothing;
1189 int compression_header_size;
1190 bfd_size_type uncompressed_size;
1191 unsigned int uncompressed_align_power;
1192 bfd_boolean compressed
1193 = bfd_is_section_compressed_with_header (abfd, newsect,
1194 &compression_header_size,
1195 &uncompressed_size,
1196 &uncompressed_align_power);
1197 if (compressed)
1198 {
1199 /* Compressed section. Check if we should decompress. */
1200 if ((abfd->flags & BFD_DECOMPRESS))
1201 action = decompress;
1202 }
1203
1204 /* Compress the uncompressed section or convert from/to .zdebug*
1205 section. Check if we should compress. */
1206 if (action == nothing)
1207 {
1208 if (newsect->size != 0
1209 && (abfd->flags & BFD_COMPRESS)
1210 && compression_header_size >= 0
1211 && uncompressed_size > 0
1212 && (!compressed
1213 || ((compression_header_size > 0)
1214 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1215 action = compress;
1216 else
1217 return TRUE;
1218 }
1219
1220 if (action == compress)
1221 {
1222 if (!bfd_init_section_compress_status (abfd, newsect))
1223 {
1224 _bfd_error_handler
1225 /* xgettext:c-format */
1226 (_("%pB: unable to initialize compress status for section %s"),
1227 abfd, name);
1228 return FALSE;
1229 }
1230 }
1231 else
1232 {
1233 if (!bfd_init_section_decompress_status (abfd, newsect))
1234 {
1235 _bfd_error_handler
1236 /* xgettext:c-format */
1237 (_("%pB: unable to initialize decompress status for section %s"),
1238 abfd, name);
1239 return FALSE;
1240 }
1241 }
1242
1243 if (abfd->is_linker_input)
1244 {
1245 if (name[1] == 'z'
1246 && (action == decompress
1247 || (action == compress
1248 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1249 {
1250 /* Convert section name from .zdebug_* to .debug_* so
1251 that linker will consider this section as a debug
1252 section. */
1253 char *new_name = convert_zdebug_to_debug (abfd, name);
1254 if (new_name == NULL)
1255 return FALSE;
1256 bfd_rename_section (abfd, newsect, new_name);
1257 }
1258 }
1259 else
1260 /* For objdump, don't rename the section. For objcopy, delay
1261 section rename to elf_fake_sections. */
1262 newsect->flags |= SEC_ELF_RENAME;
1263 }
1264
1265 return TRUE;
1266 }
1267
1268 const char *const bfd_elf_section_type_names[] =
1269 {
1270 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1271 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1272 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1273 };
1274
1275 /* ELF relocs are against symbols. If we are producing relocatable
1276 output, and the reloc is against an external symbol, and nothing
1277 has given us any additional addend, the resulting reloc will also
1278 be against the same symbol. In such a case, we don't want to
1279 change anything about the way the reloc is handled, since it will
1280 all be done at final link time. Rather than put special case code
1281 into bfd_perform_relocation, all the reloc types use this howto
1282 function. It just short circuits the reloc if producing
1283 relocatable output against an external symbol. */
1284
1285 bfd_reloc_status_type
1286 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1287 arelent *reloc_entry,
1288 asymbol *symbol,
1289 void *data ATTRIBUTE_UNUSED,
1290 asection *input_section,
1291 bfd *output_bfd,
1292 char **error_message ATTRIBUTE_UNUSED)
1293 {
1294 if (output_bfd != NULL
1295 && (symbol->flags & BSF_SECTION_SYM) == 0
1296 && (! reloc_entry->howto->partial_inplace
1297 || reloc_entry->addend == 0))
1298 {
1299 reloc_entry->address += input_section->output_offset;
1300 return bfd_reloc_ok;
1301 }
1302
1303 return bfd_reloc_continue;
1304 }
1305 \f
1306 /* Returns TRUE if section A matches section B.
1307 Names, addresses and links may be different, but everything else
1308 should be the same. */
1309
1310 static bfd_boolean
1311 section_match (const Elf_Internal_Shdr * a,
1312 const Elf_Internal_Shdr * b)
1313 {
1314 if (a->sh_type != b->sh_type
1315 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1316 || a->sh_addralign != b->sh_addralign
1317 || a->sh_entsize != b->sh_entsize)
1318 return FALSE;
1319 if (a->sh_type == SHT_SYMTAB
1320 || a->sh_type == SHT_STRTAB)
1321 return TRUE;
1322 return a->sh_size == b->sh_size;
1323 }
1324
1325 /* Find a section in OBFD that has the same characteristics
1326 as IHEADER. Return the index of this section or SHN_UNDEF if
1327 none can be found. Check's section HINT first, as this is likely
1328 to be the correct section. */
1329
1330 static unsigned int
1331 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1332 const unsigned int hint)
1333 {
1334 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1335 unsigned int i;
1336
1337 BFD_ASSERT (iheader != NULL);
1338
1339 /* See PR 20922 for a reproducer of the NULL test. */
1340 if (hint < elf_numsections (obfd)
1341 && oheaders[hint] != NULL
1342 && section_match (oheaders[hint], iheader))
1343 return hint;
1344
1345 for (i = 1; i < elf_numsections (obfd); i++)
1346 {
1347 Elf_Internal_Shdr * oheader = oheaders[i];
1348
1349 if (oheader == NULL)
1350 continue;
1351 if (section_match (oheader, iheader))
1352 /* FIXME: Do we care if there is a potential for
1353 multiple matches ? */
1354 return i;
1355 }
1356
1357 return SHN_UNDEF;
1358 }
1359
1360 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1361 Processor specific section, based upon a matching input section.
1362 Returns TRUE upon success, FALSE otherwise. */
1363
1364 static bfd_boolean
1365 copy_special_section_fields (const bfd *ibfd,
1366 bfd *obfd,
1367 const Elf_Internal_Shdr *iheader,
1368 Elf_Internal_Shdr *oheader,
1369 const unsigned int secnum)
1370 {
1371 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1372 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1373 bfd_boolean changed = FALSE;
1374 unsigned int sh_link;
1375
1376 if (oheader->sh_type == SHT_NOBITS)
1377 {
1378 /* This is a feature for objcopy --only-keep-debug:
1379 When a section's type is changed to NOBITS, we preserve
1380 the sh_link and sh_info fields so that they can be
1381 matched up with the original.
1382
1383 Note: Strictly speaking these assignments are wrong.
1384 The sh_link and sh_info fields should point to the
1385 relevent sections in the output BFD, which may not be in
1386 the same location as they were in the input BFD. But
1387 the whole point of this action is to preserve the
1388 original values of the sh_link and sh_info fields, so
1389 that they can be matched up with the section headers in
1390 the original file. So strictly speaking we may be
1391 creating an invalid ELF file, but it is only for a file
1392 that just contains debug info and only for sections
1393 without any contents. */
1394 if (oheader->sh_link == 0)
1395 oheader->sh_link = iheader->sh_link;
1396 if (oheader->sh_info == 0)
1397 oheader->sh_info = iheader->sh_info;
1398 return TRUE;
1399 }
1400
1401 /* Allow the target a chance to decide how these fields should be set. */
1402 if (bed->elf_backend_copy_special_section_fields != NULL
1403 && bed->elf_backend_copy_special_section_fields
1404 (ibfd, obfd, iheader, oheader))
1405 return TRUE;
1406
1407 /* We have an iheader which might match oheader, and which has non-zero
1408 sh_info and/or sh_link fields. Attempt to follow those links and find
1409 the section in the output bfd which corresponds to the linked section
1410 in the input bfd. */
1411 if (iheader->sh_link != SHN_UNDEF)
1412 {
1413 /* See PR 20931 for a reproducer. */
1414 if (iheader->sh_link >= elf_numsections (ibfd))
1415 {
1416 _bfd_error_handler
1417 /* xgettext:c-format */
1418 (_("%pB: invalid sh_link field (%d) in section number %d"),
1419 ibfd, iheader->sh_link, secnum);
1420 return FALSE;
1421 }
1422
1423 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1424 if (sh_link != SHN_UNDEF)
1425 {
1426 oheader->sh_link = sh_link;
1427 changed = TRUE;
1428 }
1429 else
1430 /* FIXME: Should we install iheader->sh_link
1431 if we could not find a match ? */
1432 _bfd_error_handler
1433 /* xgettext:c-format */
1434 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1435 }
1436
1437 if (iheader->sh_info)
1438 {
1439 /* The sh_info field can hold arbitrary information, but if the
1440 SHF_LINK_INFO flag is set then it should be interpreted as a
1441 section index. */
1442 if (iheader->sh_flags & SHF_INFO_LINK)
1443 {
1444 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1445 iheader->sh_info);
1446 if (sh_link != SHN_UNDEF)
1447 oheader->sh_flags |= SHF_INFO_LINK;
1448 }
1449 else
1450 /* No idea what it means - just copy it. */
1451 sh_link = iheader->sh_info;
1452
1453 if (sh_link != SHN_UNDEF)
1454 {
1455 oheader->sh_info = sh_link;
1456 changed = TRUE;
1457 }
1458 else
1459 _bfd_error_handler
1460 /* xgettext:c-format */
1461 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1462 }
1463
1464 return changed;
1465 }
1466
1467 /* Copy the program header and other data from one object module to
1468 another. */
1469
1470 bfd_boolean
1471 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1472 {
1473 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1474 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1475 const struct elf_backend_data *bed;
1476 unsigned int i;
1477
1478 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1479 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1480 return TRUE;
1481
1482 if (!elf_flags_init (obfd))
1483 {
1484 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1485 elf_flags_init (obfd) = TRUE;
1486 }
1487
1488 elf_gp (obfd) = elf_gp (ibfd);
1489
1490 /* Also copy the EI_OSABI field. */
1491 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1492 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1493
1494 /* If set, copy the EI_ABIVERSION field. */
1495 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1496 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1497 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1498
1499 /* Copy object attributes. */
1500 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1501
1502 if (iheaders == NULL || oheaders == NULL)
1503 return TRUE;
1504
1505 bed = get_elf_backend_data (obfd);
1506
1507 /* Possibly copy other fields in the section header. */
1508 for (i = 1; i < elf_numsections (obfd); i++)
1509 {
1510 unsigned int j;
1511 Elf_Internal_Shdr * oheader = oheaders[i];
1512
1513 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1514 because of a special case need for generating separate debug info
1515 files. See below for more details. */
1516 if (oheader == NULL
1517 || (oheader->sh_type != SHT_NOBITS
1518 && oheader->sh_type < SHT_LOOS))
1519 continue;
1520
1521 /* Ignore empty sections, and sections whose
1522 fields have already been initialised. */
1523 if (oheader->sh_size == 0
1524 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1525 continue;
1526
1527 /* Scan for the matching section in the input bfd.
1528 First we try for a direct mapping between the input and output sections. */
1529 for (j = 1; j < elf_numsections (ibfd); j++)
1530 {
1531 const Elf_Internal_Shdr * iheader = iheaders[j];
1532
1533 if (iheader == NULL)
1534 continue;
1535
1536 if (oheader->bfd_section != NULL
1537 && iheader->bfd_section != NULL
1538 && iheader->bfd_section->output_section != NULL
1539 && iheader->bfd_section->output_section == oheader->bfd_section)
1540 {
1541 /* We have found a connection from the input section to the
1542 output section. Attempt to copy the header fields. If
1543 this fails then do not try any further sections - there
1544 should only be a one-to-one mapping between input and output. */
1545 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1546 j = elf_numsections (ibfd);
1547 break;
1548 }
1549 }
1550
1551 if (j < elf_numsections (ibfd))
1552 continue;
1553
1554 /* That failed. So try to deduce the corresponding input section.
1555 Unfortunately we cannot compare names as the output string table
1556 is empty, so instead we check size, address and type. */
1557 for (j = 1; j < elf_numsections (ibfd); j++)
1558 {
1559 const Elf_Internal_Shdr * iheader = iheaders[j];
1560
1561 if (iheader == NULL)
1562 continue;
1563
1564 /* Try matching fields in the input section's header.
1565 Since --only-keep-debug turns all non-debug sections into
1566 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1567 input type. */
1568 if ((oheader->sh_type == SHT_NOBITS
1569 || iheader->sh_type == oheader->sh_type)
1570 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1571 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1572 && iheader->sh_addralign == oheader->sh_addralign
1573 && iheader->sh_entsize == oheader->sh_entsize
1574 && iheader->sh_size == oheader->sh_size
1575 && iheader->sh_addr == oheader->sh_addr
1576 && (iheader->sh_info != oheader->sh_info
1577 || iheader->sh_link != oheader->sh_link))
1578 {
1579 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1580 break;
1581 }
1582 }
1583
1584 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1585 {
1586 /* Final attempt. Call the backend copy function
1587 with a NULL input section. */
1588 if (bed->elf_backend_copy_special_section_fields != NULL)
1589 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1590 }
1591 }
1592
1593 return TRUE;
1594 }
1595
1596 static const char *
1597 get_segment_type (unsigned int p_type)
1598 {
1599 const char *pt;
1600 switch (p_type)
1601 {
1602 case PT_NULL: pt = "NULL"; break;
1603 case PT_LOAD: pt = "LOAD"; break;
1604 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1605 case PT_INTERP: pt = "INTERP"; break;
1606 case PT_NOTE: pt = "NOTE"; break;
1607 case PT_SHLIB: pt = "SHLIB"; break;
1608 case PT_PHDR: pt = "PHDR"; break;
1609 case PT_TLS: pt = "TLS"; break;
1610 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1611 case PT_GNU_STACK: pt = "STACK"; break;
1612 case PT_GNU_RELRO: pt = "RELRO"; break;
1613 default: pt = NULL; break;
1614 }
1615 return pt;
1616 }
1617
1618 /* Print out the program headers. */
1619
1620 bfd_boolean
1621 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1622 {
1623 FILE *f = (FILE *) farg;
1624 Elf_Internal_Phdr *p;
1625 asection *s;
1626 bfd_byte *dynbuf = NULL;
1627
1628 p = elf_tdata (abfd)->phdr;
1629 if (p != NULL)
1630 {
1631 unsigned int i, c;
1632
1633 fprintf (f, _("\nProgram Header:\n"));
1634 c = elf_elfheader (abfd)->e_phnum;
1635 for (i = 0; i < c; i++, p++)
1636 {
1637 const char *pt = get_segment_type (p->p_type);
1638 char buf[20];
1639
1640 if (pt == NULL)
1641 {
1642 sprintf (buf, "0x%lx", p->p_type);
1643 pt = buf;
1644 }
1645 fprintf (f, "%8s off 0x", pt);
1646 bfd_fprintf_vma (abfd, f, p->p_offset);
1647 fprintf (f, " vaddr 0x");
1648 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1649 fprintf (f, " paddr 0x");
1650 bfd_fprintf_vma (abfd, f, p->p_paddr);
1651 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1652 fprintf (f, " filesz 0x");
1653 bfd_fprintf_vma (abfd, f, p->p_filesz);
1654 fprintf (f, " memsz 0x");
1655 bfd_fprintf_vma (abfd, f, p->p_memsz);
1656 fprintf (f, " flags %c%c%c",
1657 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1658 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1659 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1660 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1661 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1662 fprintf (f, "\n");
1663 }
1664 }
1665
1666 s = bfd_get_section_by_name (abfd, ".dynamic");
1667 if (s != NULL)
1668 {
1669 unsigned int elfsec;
1670 unsigned long shlink;
1671 bfd_byte *extdyn, *extdynend;
1672 size_t extdynsize;
1673 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1674
1675 fprintf (f, _("\nDynamic Section:\n"));
1676
1677 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1678 goto error_return;
1679
1680 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1681 if (elfsec == SHN_BAD)
1682 goto error_return;
1683 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1684
1685 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1686 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1687
1688 extdyn = dynbuf;
1689 /* PR 17512: file: 6f427532. */
1690 if (s->size < extdynsize)
1691 goto error_return;
1692 extdynend = extdyn + s->size;
1693 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1694 Fix range check. */
1695 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1696 {
1697 Elf_Internal_Dyn dyn;
1698 const char *name = "";
1699 char ab[20];
1700 bfd_boolean stringp;
1701 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1702
1703 (*swap_dyn_in) (abfd, extdyn, &dyn);
1704
1705 if (dyn.d_tag == DT_NULL)
1706 break;
1707
1708 stringp = FALSE;
1709 switch (dyn.d_tag)
1710 {
1711 default:
1712 if (bed->elf_backend_get_target_dtag)
1713 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1714
1715 if (!strcmp (name, ""))
1716 {
1717 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1718 name = ab;
1719 }
1720 break;
1721
1722 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1723 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1724 case DT_PLTGOT: name = "PLTGOT"; break;
1725 case DT_HASH: name = "HASH"; break;
1726 case DT_STRTAB: name = "STRTAB"; break;
1727 case DT_SYMTAB: name = "SYMTAB"; break;
1728 case DT_RELA: name = "RELA"; break;
1729 case DT_RELASZ: name = "RELASZ"; break;
1730 case DT_RELAENT: name = "RELAENT"; break;
1731 case DT_STRSZ: name = "STRSZ"; break;
1732 case DT_SYMENT: name = "SYMENT"; break;
1733 case DT_INIT: name = "INIT"; break;
1734 case DT_FINI: name = "FINI"; break;
1735 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1736 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1737 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1738 case DT_REL: name = "REL"; break;
1739 case DT_RELSZ: name = "RELSZ"; break;
1740 case DT_RELENT: name = "RELENT"; break;
1741 case DT_PLTREL: name = "PLTREL"; break;
1742 case DT_DEBUG: name = "DEBUG"; break;
1743 case DT_TEXTREL: name = "TEXTREL"; break;
1744 case DT_JMPREL: name = "JMPREL"; break;
1745 case DT_BIND_NOW: name = "BIND_NOW"; break;
1746 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1747 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1748 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1749 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1750 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1751 case DT_FLAGS: name = "FLAGS"; break;
1752 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1753 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1754 case DT_CHECKSUM: name = "CHECKSUM"; break;
1755 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1756 case DT_MOVEENT: name = "MOVEENT"; break;
1757 case DT_MOVESZ: name = "MOVESZ"; break;
1758 case DT_FEATURE: name = "FEATURE"; break;
1759 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1760 case DT_SYMINSZ: name = "SYMINSZ"; break;
1761 case DT_SYMINENT: name = "SYMINENT"; break;
1762 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1763 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1764 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1765 case DT_PLTPAD: name = "PLTPAD"; break;
1766 case DT_MOVETAB: name = "MOVETAB"; break;
1767 case DT_SYMINFO: name = "SYMINFO"; break;
1768 case DT_RELACOUNT: name = "RELACOUNT"; break;
1769 case DT_RELCOUNT: name = "RELCOUNT"; break;
1770 case DT_FLAGS_1: name = "FLAGS_1"; break;
1771 case DT_VERSYM: name = "VERSYM"; break;
1772 case DT_VERDEF: name = "VERDEF"; break;
1773 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1774 case DT_VERNEED: name = "VERNEED"; break;
1775 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1776 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1777 case DT_USED: name = "USED"; break;
1778 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1779 case DT_GNU_HASH: name = "GNU_HASH"; break;
1780 }
1781
1782 fprintf (f, " %-20s ", name);
1783 if (! stringp)
1784 {
1785 fprintf (f, "0x");
1786 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1787 }
1788 else
1789 {
1790 const char *string;
1791 unsigned int tagv = dyn.d_un.d_val;
1792
1793 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1794 if (string == NULL)
1795 goto error_return;
1796 fprintf (f, "%s", string);
1797 }
1798 fprintf (f, "\n");
1799 }
1800
1801 free (dynbuf);
1802 dynbuf = NULL;
1803 }
1804
1805 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1806 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1807 {
1808 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1809 return FALSE;
1810 }
1811
1812 if (elf_dynverdef (abfd) != 0)
1813 {
1814 Elf_Internal_Verdef *t;
1815
1816 fprintf (f, _("\nVersion definitions:\n"));
1817 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1818 {
1819 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1820 t->vd_flags, t->vd_hash,
1821 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1822 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1823 {
1824 Elf_Internal_Verdaux *a;
1825
1826 fprintf (f, "\t");
1827 for (a = t->vd_auxptr->vda_nextptr;
1828 a != NULL;
1829 a = a->vda_nextptr)
1830 fprintf (f, "%s ",
1831 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1832 fprintf (f, "\n");
1833 }
1834 }
1835 }
1836
1837 if (elf_dynverref (abfd) != 0)
1838 {
1839 Elf_Internal_Verneed *t;
1840
1841 fprintf (f, _("\nVersion References:\n"));
1842 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1843 {
1844 Elf_Internal_Vernaux *a;
1845
1846 fprintf (f, _(" required from %s:\n"),
1847 t->vn_filename ? t->vn_filename : "<corrupt>");
1848 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1849 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1850 a->vna_flags, a->vna_other,
1851 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1852 }
1853 }
1854
1855 return TRUE;
1856
1857 error_return:
1858 if (dynbuf != NULL)
1859 free (dynbuf);
1860 return FALSE;
1861 }
1862
1863 /* Get version string. */
1864
1865 const char *
1866 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1867 bfd_boolean *hidden)
1868 {
1869 const char *version_string = NULL;
1870 if (elf_dynversym (abfd) != 0
1871 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1872 {
1873 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1874
1875 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1876 vernum &= VERSYM_VERSION;
1877
1878 if (vernum == 0)
1879 version_string = "";
1880 else if (vernum == 1
1881 && (vernum > elf_tdata (abfd)->cverdefs
1882 || (elf_tdata (abfd)->verdef[0].vd_flags
1883 == VER_FLG_BASE)))
1884 version_string = "Base";
1885 else if (vernum <= elf_tdata (abfd)->cverdefs)
1886 version_string =
1887 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1888 else
1889 {
1890 Elf_Internal_Verneed *t;
1891
1892 version_string = _("<corrupt>");
1893 for (t = elf_tdata (abfd)->verref;
1894 t != NULL;
1895 t = t->vn_nextref)
1896 {
1897 Elf_Internal_Vernaux *a;
1898
1899 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1900 {
1901 if (a->vna_other == vernum)
1902 {
1903 version_string = a->vna_nodename;
1904 break;
1905 }
1906 }
1907 }
1908 }
1909 }
1910 return version_string;
1911 }
1912
1913 /* Display ELF-specific fields of a symbol. */
1914
1915 void
1916 bfd_elf_print_symbol (bfd *abfd,
1917 void *filep,
1918 asymbol *symbol,
1919 bfd_print_symbol_type how)
1920 {
1921 FILE *file = (FILE *) filep;
1922 switch (how)
1923 {
1924 case bfd_print_symbol_name:
1925 fprintf (file, "%s", symbol->name);
1926 break;
1927 case bfd_print_symbol_more:
1928 fprintf (file, "elf ");
1929 bfd_fprintf_vma (abfd, file, symbol->value);
1930 fprintf (file, " %x", symbol->flags);
1931 break;
1932 case bfd_print_symbol_all:
1933 {
1934 const char *section_name;
1935 const char *name = NULL;
1936 const struct elf_backend_data *bed;
1937 unsigned char st_other;
1938 bfd_vma val;
1939 const char *version_string;
1940 bfd_boolean hidden;
1941
1942 section_name = symbol->section ? symbol->section->name : "(*none*)";
1943
1944 bed = get_elf_backend_data (abfd);
1945 if (bed->elf_backend_print_symbol_all)
1946 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1947
1948 if (name == NULL)
1949 {
1950 name = symbol->name;
1951 bfd_print_symbol_vandf (abfd, file, symbol);
1952 }
1953
1954 fprintf (file, " %s\t", section_name);
1955 /* Print the "other" value for a symbol. For common symbols,
1956 we've already printed the size; now print the alignment.
1957 For other symbols, we have no specified alignment, and
1958 we've printed the address; now print the size. */
1959 if (symbol->section && bfd_is_com_section (symbol->section))
1960 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1961 else
1962 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1963 bfd_fprintf_vma (abfd, file, val);
1964
1965 /* If we have version information, print it. */
1966 version_string = _bfd_elf_get_symbol_version_string (abfd,
1967 symbol,
1968 &hidden);
1969 if (version_string)
1970 {
1971 if (!hidden)
1972 fprintf (file, " %-11s", version_string);
1973 else
1974 {
1975 int i;
1976
1977 fprintf (file, " (%s)", version_string);
1978 for (i = 10 - strlen (version_string); i > 0; --i)
1979 putc (' ', file);
1980 }
1981 }
1982
1983 /* If the st_other field is not zero, print it. */
1984 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1985
1986 switch (st_other)
1987 {
1988 case 0: break;
1989 case STV_INTERNAL: fprintf (file, " .internal"); break;
1990 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1991 case STV_PROTECTED: fprintf (file, " .protected"); break;
1992 default:
1993 /* Some other non-defined flags are also present, so print
1994 everything hex. */
1995 fprintf (file, " 0x%02x", (unsigned int) st_other);
1996 }
1997
1998 fprintf (file, " %s", name);
1999 }
2000 break;
2001 }
2002 }
2003 \f
2004 /* ELF .o/exec file reading */
2005
2006 /* Create a new bfd section from an ELF section header. */
2007
2008 bfd_boolean
2009 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2010 {
2011 Elf_Internal_Shdr *hdr;
2012 Elf_Internal_Ehdr *ehdr;
2013 const struct elf_backend_data *bed;
2014 const char *name;
2015 bfd_boolean ret = TRUE;
2016 static bfd_boolean * sections_being_created = NULL;
2017 static bfd * sections_being_created_abfd = NULL;
2018 static unsigned int nesting = 0;
2019
2020 if (shindex >= elf_numsections (abfd))
2021 return FALSE;
2022
2023 if (++ nesting > 3)
2024 {
2025 /* PR17512: A corrupt ELF binary might contain a recursive group of
2026 sections, with each the string indices pointing to the next in the
2027 loop. Detect this here, by refusing to load a section that we are
2028 already in the process of loading. We only trigger this test if
2029 we have nested at least three sections deep as normal ELF binaries
2030 can expect to recurse at least once.
2031
2032 FIXME: It would be better if this array was attached to the bfd,
2033 rather than being held in a static pointer. */
2034
2035 if (sections_being_created_abfd != abfd)
2036 sections_being_created = NULL;
2037 if (sections_being_created == NULL)
2038 {
2039 sections_being_created = (bfd_boolean *)
2040 bfd_zalloc2 (abfd, elf_numsections (abfd), sizeof (bfd_boolean));
2041 sections_being_created_abfd = abfd;
2042 }
2043 if (sections_being_created [shindex])
2044 {
2045 _bfd_error_handler
2046 (_("%pB: warning: loop in section dependencies detected"), abfd);
2047 return FALSE;
2048 }
2049 sections_being_created [shindex] = TRUE;
2050 }
2051
2052 hdr = elf_elfsections (abfd)[shindex];
2053 ehdr = elf_elfheader (abfd);
2054 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2055 hdr->sh_name);
2056 if (name == NULL)
2057 goto fail;
2058
2059 bed = get_elf_backend_data (abfd);
2060 switch (hdr->sh_type)
2061 {
2062 case SHT_NULL:
2063 /* Inactive section. Throw it away. */
2064 goto success;
2065
2066 case SHT_PROGBITS: /* Normal section with contents. */
2067 case SHT_NOBITS: /* .bss section. */
2068 case SHT_HASH: /* .hash section. */
2069 case SHT_NOTE: /* .note section. */
2070 case SHT_INIT_ARRAY: /* .init_array section. */
2071 case SHT_FINI_ARRAY: /* .fini_array section. */
2072 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2073 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2074 case SHT_GNU_HASH: /* .gnu.hash section. */
2075 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2076 goto success;
2077
2078 case SHT_DYNAMIC: /* Dynamic linking information. */
2079 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2080 goto fail;
2081
2082 if (hdr->sh_link > elf_numsections (abfd))
2083 {
2084 /* PR 10478: Accept Solaris binaries with a sh_link
2085 field set to SHN_BEFORE or SHN_AFTER. */
2086 switch (bfd_get_arch (abfd))
2087 {
2088 case bfd_arch_i386:
2089 case bfd_arch_sparc:
2090 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2091 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2092 break;
2093 /* Otherwise fall through. */
2094 default:
2095 goto fail;
2096 }
2097 }
2098 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2099 goto fail;
2100 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2101 {
2102 Elf_Internal_Shdr *dynsymhdr;
2103
2104 /* The shared libraries distributed with hpux11 have a bogus
2105 sh_link field for the ".dynamic" section. Find the
2106 string table for the ".dynsym" section instead. */
2107 if (elf_dynsymtab (abfd) != 0)
2108 {
2109 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2110 hdr->sh_link = dynsymhdr->sh_link;
2111 }
2112 else
2113 {
2114 unsigned int i, num_sec;
2115
2116 num_sec = elf_numsections (abfd);
2117 for (i = 1; i < num_sec; i++)
2118 {
2119 dynsymhdr = elf_elfsections (abfd)[i];
2120 if (dynsymhdr->sh_type == SHT_DYNSYM)
2121 {
2122 hdr->sh_link = dynsymhdr->sh_link;
2123 break;
2124 }
2125 }
2126 }
2127 }
2128 goto success;
2129
2130 case SHT_SYMTAB: /* A symbol table. */
2131 if (elf_onesymtab (abfd) == shindex)
2132 goto success;
2133
2134 if (hdr->sh_entsize != bed->s->sizeof_sym)
2135 goto fail;
2136
2137 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2138 {
2139 if (hdr->sh_size != 0)
2140 goto fail;
2141 /* Some assemblers erroneously set sh_info to one with a
2142 zero sh_size. ld sees this as a global symbol count
2143 of (unsigned) -1. Fix it here. */
2144 hdr->sh_info = 0;
2145 goto success;
2146 }
2147
2148 /* PR 18854: A binary might contain more than one symbol table.
2149 Unusual, but possible. Warn, but continue. */
2150 if (elf_onesymtab (abfd) != 0)
2151 {
2152 _bfd_error_handler
2153 /* xgettext:c-format */
2154 (_("%pB: warning: multiple symbol tables detected"
2155 " - ignoring the table in section %u"),
2156 abfd, shindex);
2157 goto success;
2158 }
2159 elf_onesymtab (abfd) = shindex;
2160 elf_symtab_hdr (abfd) = *hdr;
2161 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2162 abfd->flags |= HAS_SYMS;
2163
2164 /* Sometimes a shared object will map in the symbol table. If
2165 SHF_ALLOC is set, and this is a shared object, then we also
2166 treat this section as a BFD section. We can not base the
2167 decision purely on SHF_ALLOC, because that flag is sometimes
2168 set in a relocatable object file, which would confuse the
2169 linker. */
2170 if ((hdr->sh_flags & SHF_ALLOC) != 0
2171 && (abfd->flags & DYNAMIC) != 0
2172 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2173 shindex))
2174 goto fail;
2175
2176 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2177 can't read symbols without that section loaded as well. It
2178 is most likely specified by the next section header. */
2179 {
2180 elf_section_list * entry;
2181 unsigned int i, num_sec;
2182
2183 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2184 if (entry->hdr.sh_link == shindex)
2185 goto success;
2186
2187 num_sec = elf_numsections (abfd);
2188 for (i = shindex + 1; i < num_sec; i++)
2189 {
2190 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2191
2192 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2193 && hdr2->sh_link == shindex)
2194 break;
2195 }
2196
2197 if (i == num_sec)
2198 for (i = 1; i < shindex; i++)
2199 {
2200 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2201
2202 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2203 && hdr2->sh_link == shindex)
2204 break;
2205 }
2206
2207 if (i != shindex)
2208 ret = bfd_section_from_shdr (abfd, i);
2209 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2210 goto success;
2211 }
2212
2213 case SHT_DYNSYM: /* A dynamic symbol table. */
2214 if (elf_dynsymtab (abfd) == shindex)
2215 goto success;
2216
2217 if (hdr->sh_entsize != bed->s->sizeof_sym)
2218 goto fail;
2219
2220 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2221 {
2222 if (hdr->sh_size != 0)
2223 goto fail;
2224
2225 /* Some linkers erroneously set sh_info to one with a
2226 zero sh_size. ld sees this as a global symbol count
2227 of (unsigned) -1. Fix it here. */
2228 hdr->sh_info = 0;
2229 goto success;
2230 }
2231
2232 /* PR 18854: A binary might contain more than one dynamic symbol table.
2233 Unusual, but possible. Warn, but continue. */
2234 if (elf_dynsymtab (abfd) != 0)
2235 {
2236 _bfd_error_handler
2237 /* xgettext:c-format */
2238 (_("%pB: warning: multiple dynamic symbol tables detected"
2239 " - ignoring the table in section %u"),
2240 abfd, shindex);
2241 goto success;
2242 }
2243 elf_dynsymtab (abfd) = shindex;
2244 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2245 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2246 abfd->flags |= HAS_SYMS;
2247
2248 /* Besides being a symbol table, we also treat this as a regular
2249 section, so that objcopy can handle it. */
2250 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2251 goto success;
2252
2253 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2254 {
2255 elf_section_list * entry;
2256
2257 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2258 if (entry->ndx == shindex)
2259 goto success;
2260
2261 entry = bfd_alloc (abfd, sizeof (*entry));
2262 if (entry == NULL)
2263 goto fail;
2264 entry->ndx = shindex;
2265 entry->hdr = * hdr;
2266 entry->next = elf_symtab_shndx_list (abfd);
2267 elf_symtab_shndx_list (abfd) = entry;
2268 elf_elfsections (abfd)[shindex] = & entry->hdr;
2269 goto success;
2270 }
2271
2272 case SHT_STRTAB: /* A string table. */
2273 if (hdr->bfd_section != NULL)
2274 goto success;
2275
2276 if (ehdr->e_shstrndx == shindex)
2277 {
2278 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2279 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2280 goto success;
2281 }
2282
2283 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2284 {
2285 symtab_strtab:
2286 elf_tdata (abfd)->strtab_hdr = *hdr;
2287 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2288 goto success;
2289 }
2290
2291 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2292 {
2293 dynsymtab_strtab:
2294 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2295 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2296 elf_elfsections (abfd)[shindex] = hdr;
2297 /* We also treat this as a regular section, so that objcopy
2298 can handle it. */
2299 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2300 shindex);
2301 goto success;
2302 }
2303
2304 /* If the string table isn't one of the above, then treat it as a
2305 regular section. We need to scan all the headers to be sure,
2306 just in case this strtab section appeared before the above. */
2307 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2308 {
2309 unsigned int i, num_sec;
2310
2311 num_sec = elf_numsections (abfd);
2312 for (i = 1; i < num_sec; i++)
2313 {
2314 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2315 if (hdr2->sh_link == shindex)
2316 {
2317 /* Prevent endless recursion on broken objects. */
2318 if (i == shindex)
2319 goto fail;
2320 if (! bfd_section_from_shdr (abfd, i))
2321 goto fail;
2322 if (elf_onesymtab (abfd) == i)
2323 goto symtab_strtab;
2324 if (elf_dynsymtab (abfd) == i)
2325 goto dynsymtab_strtab;
2326 }
2327 }
2328 }
2329 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2330 goto success;
2331
2332 case SHT_REL:
2333 case SHT_RELA:
2334 /* *These* do a lot of work -- but build no sections! */
2335 {
2336 asection *target_sect;
2337 Elf_Internal_Shdr *hdr2, **p_hdr;
2338 unsigned int num_sec = elf_numsections (abfd);
2339 struct bfd_elf_section_data *esdt;
2340
2341 if (hdr->sh_entsize
2342 != (bfd_size_type) (hdr->sh_type == SHT_REL
2343 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2344 goto fail;
2345
2346 /* Check for a bogus link to avoid crashing. */
2347 if (hdr->sh_link >= num_sec)
2348 {
2349 _bfd_error_handler
2350 /* xgettext:c-format */
2351 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2352 abfd, hdr->sh_link, name, shindex);
2353 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2354 shindex);
2355 goto success;
2356 }
2357
2358 /* For some incomprehensible reason Oracle distributes
2359 libraries for Solaris in which some of the objects have
2360 bogus sh_link fields. It would be nice if we could just
2361 reject them, but, unfortunately, some people need to use
2362 them. We scan through the section headers; if we find only
2363 one suitable symbol table, we clobber the sh_link to point
2364 to it. I hope this doesn't break anything.
2365
2366 Don't do it on executable nor shared library. */
2367 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2368 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2369 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2370 {
2371 unsigned int scan;
2372 int found;
2373
2374 found = 0;
2375 for (scan = 1; scan < num_sec; scan++)
2376 {
2377 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2378 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2379 {
2380 if (found != 0)
2381 {
2382 found = 0;
2383 break;
2384 }
2385 found = scan;
2386 }
2387 }
2388 if (found != 0)
2389 hdr->sh_link = found;
2390 }
2391
2392 /* Get the symbol table. */
2393 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2394 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2395 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2396 goto fail;
2397
2398 /* If this is an alloc section in an executable or shared
2399 library, or the reloc section does not use the main symbol
2400 table we don't treat it as a reloc section. BFD can't
2401 adequately represent such a section, so at least for now,
2402 we don't try. We just present it as a normal section. We
2403 also can't use it as a reloc section if it points to the
2404 null section, an invalid section, another reloc section, or
2405 its sh_link points to the null section. */
2406 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2407 && (hdr->sh_flags & SHF_ALLOC) != 0)
2408 || hdr->sh_link == SHN_UNDEF
2409 || hdr->sh_link != elf_onesymtab (abfd)
2410 || hdr->sh_info == SHN_UNDEF
2411 || hdr->sh_info >= num_sec
2412 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2413 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2414 {
2415 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2416 shindex);
2417 goto success;
2418 }
2419
2420 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2421 goto fail;
2422
2423 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2424 if (target_sect == NULL)
2425 goto fail;
2426
2427 esdt = elf_section_data (target_sect);
2428 if (hdr->sh_type == SHT_RELA)
2429 p_hdr = &esdt->rela.hdr;
2430 else
2431 p_hdr = &esdt->rel.hdr;
2432
2433 /* PR 17512: file: 0b4f81b7. */
2434 if (*p_hdr != NULL)
2435 goto fail;
2436 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2437 if (hdr2 == NULL)
2438 goto fail;
2439 *hdr2 = *hdr;
2440 *p_hdr = hdr2;
2441 elf_elfsections (abfd)[shindex] = hdr2;
2442 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2443 * bed->s->int_rels_per_ext_rel);
2444 target_sect->flags |= SEC_RELOC;
2445 target_sect->relocation = NULL;
2446 target_sect->rel_filepos = hdr->sh_offset;
2447 /* In the section to which the relocations apply, mark whether
2448 its relocations are of the REL or RELA variety. */
2449 if (hdr->sh_size != 0)
2450 {
2451 if (hdr->sh_type == SHT_RELA)
2452 target_sect->use_rela_p = 1;
2453 }
2454 abfd->flags |= HAS_RELOC;
2455 goto success;
2456 }
2457
2458 case SHT_GNU_verdef:
2459 elf_dynverdef (abfd) = shindex;
2460 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2461 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2462 goto success;
2463
2464 case SHT_GNU_versym:
2465 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2466 goto fail;
2467
2468 elf_dynversym (abfd) = shindex;
2469 elf_tdata (abfd)->dynversym_hdr = *hdr;
2470 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2471 goto success;
2472
2473 case SHT_GNU_verneed:
2474 elf_dynverref (abfd) = shindex;
2475 elf_tdata (abfd)->dynverref_hdr = *hdr;
2476 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2477 goto success;
2478
2479 case SHT_SHLIB:
2480 goto success;
2481
2482 case SHT_GROUP:
2483 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2484 goto fail;
2485
2486 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2487 goto fail;
2488
2489 goto success;
2490
2491 default:
2492 /* Possibly an attributes section. */
2493 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2494 || hdr->sh_type == bed->obj_attrs_section_type)
2495 {
2496 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2497 goto fail;
2498 _bfd_elf_parse_attributes (abfd, hdr);
2499 goto success;
2500 }
2501
2502 /* Check for any processor-specific section types. */
2503 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2504 goto success;
2505
2506 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2507 {
2508 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2509 /* FIXME: How to properly handle allocated section reserved
2510 for applications? */
2511 _bfd_error_handler
2512 /* xgettext:c-format */
2513 (_("%pB: unknown type [%#x] section `%s'"),
2514 abfd, hdr->sh_type, name);
2515 else
2516 {
2517 /* Allow sections reserved for applications. */
2518 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2519 shindex);
2520 goto success;
2521 }
2522 }
2523 else if (hdr->sh_type >= SHT_LOPROC
2524 && hdr->sh_type <= SHT_HIPROC)
2525 /* FIXME: We should handle this section. */
2526 _bfd_error_handler
2527 /* xgettext:c-format */
2528 (_("%pB: unknown type [%#x] section `%s'"),
2529 abfd, hdr->sh_type, name);
2530 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2531 {
2532 /* Unrecognised OS-specific sections. */
2533 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2534 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2535 required to correctly process the section and the file should
2536 be rejected with an error message. */
2537 _bfd_error_handler
2538 /* xgettext:c-format */
2539 (_("%pB: unknown type [%#x] section `%s'"),
2540 abfd, hdr->sh_type, name);
2541 else
2542 {
2543 /* Otherwise it should be processed. */
2544 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2545 goto success;
2546 }
2547 }
2548 else
2549 /* FIXME: We should handle this section. */
2550 _bfd_error_handler
2551 /* xgettext:c-format */
2552 (_("%pB: unknown type [%#x] section `%s'"),
2553 abfd, hdr->sh_type, name);
2554
2555 goto fail;
2556 }
2557
2558 fail:
2559 ret = FALSE;
2560 success:
2561 if (sections_being_created && sections_being_created_abfd == abfd)
2562 sections_being_created [shindex] = FALSE;
2563 if (-- nesting == 0)
2564 {
2565 sections_being_created = NULL;
2566 sections_being_created_abfd = abfd;
2567 }
2568 return ret;
2569 }
2570
2571 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2572
2573 Elf_Internal_Sym *
2574 bfd_sym_from_r_symndx (struct sym_cache *cache,
2575 bfd *abfd,
2576 unsigned long r_symndx)
2577 {
2578 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2579
2580 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2581 {
2582 Elf_Internal_Shdr *symtab_hdr;
2583 unsigned char esym[sizeof (Elf64_External_Sym)];
2584 Elf_External_Sym_Shndx eshndx;
2585
2586 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2587 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2588 &cache->sym[ent], esym, &eshndx) == NULL)
2589 return NULL;
2590
2591 if (cache->abfd != abfd)
2592 {
2593 memset (cache->indx, -1, sizeof (cache->indx));
2594 cache->abfd = abfd;
2595 }
2596 cache->indx[ent] = r_symndx;
2597 }
2598
2599 return &cache->sym[ent];
2600 }
2601
2602 /* Given an ELF section number, retrieve the corresponding BFD
2603 section. */
2604
2605 asection *
2606 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2607 {
2608 if (sec_index >= elf_numsections (abfd))
2609 return NULL;
2610 return elf_elfsections (abfd)[sec_index]->bfd_section;
2611 }
2612
2613 static const struct bfd_elf_special_section special_sections_b[] =
2614 {
2615 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2616 { NULL, 0, 0, 0, 0 }
2617 };
2618
2619 static const struct bfd_elf_special_section special_sections_c[] =
2620 {
2621 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2622 { NULL, 0, 0, 0, 0 }
2623 };
2624
2625 static const struct bfd_elf_special_section special_sections_d[] =
2626 {
2627 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2628 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2629 /* There are more DWARF sections than these, but they needn't be added here
2630 unless you have to cope with broken compilers that don't emit section
2631 attributes or you want to help the user writing assembler. */
2632 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2633 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2634 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2635 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2636 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2637 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2638 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2639 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2640 { NULL, 0, 0, 0, 0 }
2641 };
2642
2643 static const struct bfd_elf_special_section special_sections_f[] =
2644 {
2645 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2646 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2647 { NULL, 0 , 0, 0, 0 }
2648 };
2649
2650 static const struct bfd_elf_special_section special_sections_g[] =
2651 {
2652 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2653 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2654 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2655 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2656 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2657 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2658 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2659 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2660 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2661 { NULL, 0, 0, 0, 0 }
2662 };
2663
2664 static const struct bfd_elf_special_section special_sections_h[] =
2665 {
2666 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2667 { NULL, 0, 0, 0, 0 }
2668 };
2669
2670 static const struct bfd_elf_special_section special_sections_i[] =
2671 {
2672 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2673 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2674 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2675 { NULL, 0, 0, 0, 0 }
2676 };
2677
2678 static const struct bfd_elf_special_section special_sections_l[] =
2679 {
2680 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2681 { NULL, 0, 0, 0, 0 }
2682 };
2683
2684 static const struct bfd_elf_special_section special_sections_n[] =
2685 {
2686 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2687 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2688 { NULL, 0, 0, 0, 0 }
2689 };
2690
2691 static const struct bfd_elf_special_section special_sections_p[] =
2692 {
2693 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2694 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2695 { NULL, 0, 0, 0, 0 }
2696 };
2697
2698 static const struct bfd_elf_special_section special_sections_r[] =
2699 {
2700 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2701 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2702 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2703 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2704 { NULL, 0, 0, 0, 0 }
2705 };
2706
2707 static const struct bfd_elf_special_section special_sections_s[] =
2708 {
2709 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2710 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2711 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2712 /* See struct bfd_elf_special_section declaration for the semantics of
2713 this special case where .prefix_length != strlen (.prefix). */
2714 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2715 { NULL, 0, 0, 0, 0 }
2716 };
2717
2718 static const struct bfd_elf_special_section special_sections_t[] =
2719 {
2720 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2721 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2722 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2723 { NULL, 0, 0, 0, 0 }
2724 };
2725
2726 static const struct bfd_elf_special_section special_sections_z[] =
2727 {
2728 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2729 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2730 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2731 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2732 { NULL, 0, 0, 0, 0 }
2733 };
2734
2735 static const struct bfd_elf_special_section * const special_sections[] =
2736 {
2737 special_sections_b, /* 'b' */
2738 special_sections_c, /* 'c' */
2739 special_sections_d, /* 'd' */
2740 NULL, /* 'e' */
2741 special_sections_f, /* 'f' */
2742 special_sections_g, /* 'g' */
2743 special_sections_h, /* 'h' */
2744 special_sections_i, /* 'i' */
2745 NULL, /* 'j' */
2746 NULL, /* 'k' */
2747 special_sections_l, /* 'l' */
2748 NULL, /* 'm' */
2749 special_sections_n, /* 'n' */
2750 NULL, /* 'o' */
2751 special_sections_p, /* 'p' */
2752 NULL, /* 'q' */
2753 special_sections_r, /* 'r' */
2754 special_sections_s, /* 's' */
2755 special_sections_t, /* 't' */
2756 NULL, /* 'u' */
2757 NULL, /* 'v' */
2758 NULL, /* 'w' */
2759 NULL, /* 'x' */
2760 NULL, /* 'y' */
2761 special_sections_z /* 'z' */
2762 };
2763
2764 const struct bfd_elf_special_section *
2765 _bfd_elf_get_special_section (const char *name,
2766 const struct bfd_elf_special_section *spec,
2767 unsigned int rela)
2768 {
2769 int i;
2770 int len;
2771
2772 len = strlen (name);
2773
2774 for (i = 0; spec[i].prefix != NULL; i++)
2775 {
2776 int suffix_len;
2777 int prefix_len = spec[i].prefix_length;
2778
2779 if (len < prefix_len)
2780 continue;
2781 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2782 continue;
2783
2784 suffix_len = spec[i].suffix_length;
2785 if (suffix_len <= 0)
2786 {
2787 if (name[prefix_len] != 0)
2788 {
2789 if (suffix_len == 0)
2790 continue;
2791 if (name[prefix_len] != '.'
2792 && (suffix_len == -2
2793 || (rela && spec[i].type == SHT_REL)))
2794 continue;
2795 }
2796 }
2797 else
2798 {
2799 if (len < prefix_len + suffix_len)
2800 continue;
2801 if (memcmp (name + len - suffix_len,
2802 spec[i].prefix + prefix_len,
2803 suffix_len) != 0)
2804 continue;
2805 }
2806 return &spec[i];
2807 }
2808
2809 return NULL;
2810 }
2811
2812 const struct bfd_elf_special_section *
2813 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2814 {
2815 int i;
2816 const struct bfd_elf_special_section *spec;
2817 const struct elf_backend_data *bed;
2818
2819 /* See if this is one of the special sections. */
2820 if (sec->name == NULL)
2821 return NULL;
2822
2823 bed = get_elf_backend_data (abfd);
2824 spec = bed->special_sections;
2825 if (spec)
2826 {
2827 spec = _bfd_elf_get_special_section (sec->name,
2828 bed->special_sections,
2829 sec->use_rela_p);
2830 if (spec != NULL)
2831 return spec;
2832 }
2833
2834 if (sec->name[0] != '.')
2835 return NULL;
2836
2837 i = sec->name[1] - 'b';
2838 if (i < 0 || i > 'z' - 'b')
2839 return NULL;
2840
2841 spec = special_sections[i];
2842
2843 if (spec == NULL)
2844 return NULL;
2845
2846 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2847 }
2848
2849 bfd_boolean
2850 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2851 {
2852 struct bfd_elf_section_data *sdata;
2853 const struct elf_backend_data *bed;
2854 const struct bfd_elf_special_section *ssect;
2855
2856 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2857 if (sdata == NULL)
2858 {
2859 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2860 sizeof (*sdata));
2861 if (sdata == NULL)
2862 return FALSE;
2863 sec->used_by_bfd = sdata;
2864 }
2865
2866 /* Indicate whether or not this section should use RELA relocations. */
2867 bed = get_elf_backend_data (abfd);
2868 sec->use_rela_p = bed->default_use_rela_p;
2869
2870 /* When we read a file, we don't need to set ELF section type and
2871 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2872 anyway. We will set ELF section type and flags for all linker
2873 created sections. If user specifies BFD section flags, we will
2874 set ELF section type and flags based on BFD section flags in
2875 elf_fake_sections. Special handling for .init_array/.fini_array
2876 output sections since they may contain .ctors/.dtors input
2877 sections. We don't want _bfd_elf_init_private_section_data to
2878 copy ELF section type from .ctors/.dtors input sections. */
2879 if (abfd->direction != read_direction
2880 || (sec->flags & SEC_LINKER_CREATED) != 0)
2881 {
2882 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2883 if (ssect != NULL
2884 && (!sec->flags
2885 || (sec->flags & SEC_LINKER_CREATED) != 0
2886 || ssect->type == SHT_INIT_ARRAY
2887 || ssect->type == SHT_FINI_ARRAY))
2888 {
2889 elf_section_type (sec) = ssect->type;
2890 elf_section_flags (sec) = ssect->attr;
2891 }
2892 }
2893
2894 return _bfd_generic_new_section_hook (abfd, sec);
2895 }
2896
2897 /* Create a new bfd section from an ELF program header.
2898
2899 Since program segments have no names, we generate a synthetic name
2900 of the form segment<NUM>, where NUM is generally the index in the
2901 program header table. For segments that are split (see below) we
2902 generate the names segment<NUM>a and segment<NUM>b.
2903
2904 Note that some program segments may have a file size that is different than
2905 (less than) the memory size. All this means is that at execution the
2906 system must allocate the amount of memory specified by the memory size,
2907 but only initialize it with the first "file size" bytes read from the
2908 file. This would occur for example, with program segments consisting
2909 of combined data+bss.
2910
2911 To handle the above situation, this routine generates TWO bfd sections
2912 for the single program segment. The first has the length specified by
2913 the file size of the segment, and the second has the length specified
2914 by the difference between the two sizes. In effect, the segment is split
2915 into its initialized and uninitialized parts.
2916
2917 */
2918
2919 bfd_boolean
2920 _bfd_elf_make_section_from_phdr (bfd *abfd,
2921 Elf_Internal_Phdr *hdr,
2922 int hdr_index,
2923 const char *type_name)
2924 {
2925 asection *newsect;
2926 char *name;
2927 char namebuf[64];
2928 size_t len;
2929 int split;
2930
2931 split = ((hdr->p_memsz > 0)
2932 && (hdr->p_filesz > 0)
2933 && (hdr->p_memsz > hdr->p_filesz));
2934
2935 if (hdr->p_filesz > 0)
2936 {
2937 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2938 len = strlen (namebuf) + 1;
2939 name = (char *) bfd_alloc (abfd, len);
2940 if (!name)
2941 return FALSE;
2942 memcpy (name, namebuf, len);
2943 newsect = bfd_make_section (abfd, name);
2944 if (newsect == NULL)
2945 return FALSE;
2946 newsect->vma = hdr->p_vaddr;
2947 newsect->lma = hdr->p_paddr;
2948 newsect->size = hdr->p_filesz;
2949 newsect->filepos = hdr->p_offset;
2950 newsect->flags |= SEC_HAS_CONTENTS;
2951 newsect->alignment_power = bfd_log2 (hdr->p_align);
2952 if (hdr->p_type == PT_LOAD)
2953 {
2954 newsect->flags |= SEC_ALLOC;
2955 newsect->flags |= SEC_LOAD;
2956 if (hdr->p_flags & PF_X)
2957 {
2958 /* FIXME: all we known is that it has execute PERMISSION,
2959 may be data. */
2960 newsect->flags |= SEC_CODE;
2961 }
2962 }
2963 if (!(hdr->p_flags & PF_W))
2964 {
2965 newsect->flags |= SEC_READONLY;
2966 }
2967 }
2968
2969 if (hdr->p_memsz > hdr->p_filesz)
2970 {
2971 bfd_vma align;
2972
2973 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2974 len = strlen (namebuf) + 1;
2975 name = (char *) bfd_alloc (abfd, len);
2976 if (!name)
2977 return FALSE;
2978 memcpy (name, namebuf, len);
2979 newsect = bfd_make_section (abfd, name);
2980 if (newsect == NULL)
2981 return FALSE;
2982 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2983 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2984 newsect->size = hdr->p_memsz - hdr->p_filesz;
2985 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2986 align = newsect->vma & -newsect->vma;
2987 if (align == 0 || align > hdr->p_align)
2988 align = hdr->p_align;
2989 newsect->alignment_power = bfd_log2 (align);
2990 if (hdr->p_type == PT_LOAD)
2991 {
2992 /* Hack for gdb. Segments that have not been modified do
2993 not have their contents written to a core file, on the
2994 assumption that a debugger can find the contents in the
2995 executable. We flag this case by setting the fake
2996 section size to zero. Note that "real" bss sections will
2997 always have their contents dumped to the core file. */
2998 if (bfd_get_format (abfd) == bfd_core)
2999 newsect->size = 0;
3000 newsect->flags |= SEC_ALLOC;
3001 if (hdr->p_flags & PF_X)
3002 newsect->flags |= SEC_CODE;
3003 }
3004 if (!(hdr->p_flags & PF_W))
3005 newsect->flags |= SEC_READONLY;
3006 }
3007
3008 return TRUE;
3009 }
3010
3011 bfd_boolean
3012 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3013 {
3014 const struct elf_backend_data *bed;
3015
3016 switch (hdr->p_type)
3017 {
3018 case PT_NULL:
3019 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3020
3021 case PT_LOAD:
3022 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
3023
3024 case PT_DYNAMIC:
3025 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3026
3027 case PT_INTERP:
3028 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3029
3030 case PT_NOTE:
3031 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3032 return FALSE;
3033 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3034 hdr->p_align))
3035 return FALSE;
3036 return TRUE;
3037
3038 case PT_SHLIB:
3039 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3040
3041 case PT_PHDR:
3042 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3043
3044 case PT_GNU_EH_FRAME:
3045 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3046 "eh_frame_hdr");
3047
3048 case PT_GNU_STACK:
3049 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3050
3051 case PT_GNU_RELRO:
3052 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3053
3054 default:
3055 /* Check for any processor-specific program segment types. */
3056 bed = get_elf_backend_data (abfd);
3057 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3058 }
3059 }
3060
3061 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3062 REL or RELA. */
3063
3064 Elf_Internal_Shdr *
3065 _bfd_elf_single_rel_hdr (asection *sec)
3066 {
3067 if (elf_section_data (sec)->rel.hdr)
3068 {
3069 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3070 return elf_section_data (sec)->rel.hdr;
3071 }
3072 else
3073 return elf_section_data (sec)->rela.hdr;
3074 }
3075
3076 static bfd_boolean
3077 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3078 Elf_Internal_Shdr *rel_hdr,
3079 const char *sec_name,
3080 bfd_boolean use_rela_p)
3081 {
3082 char *name = (char *) bfd_alloc (abfd,
3083 sizeof ".rela" + strlen (sec_name));
3084 if (name == NULL)
3085 return FALSE;
3086
3087 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3088 rel_hdr->sh_name =
3089 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3090 FALSE);
3091 if (rel_hdr->sh_name == (unsigned int) -1)
3092 return FALSE;
3093
3094 return TRUE;
3095 }
3096
3097 /* Allocate and initialize a section-header for a new reloc section,
3098 containing relocations against ASECT. It is stored in RELDATA. If
3099 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3100 relocations. */
3101
3102 static bfd_boolean
3103 _bfd_elf_init_reloc_shdr (bfd *abfd,
3104 struct bfd_elf_section_reloc_data *reldata,
3105 const char *sec_name,
3106 bfd_boolean use_rela_p,
3107 bfd_boolean delay_st_name_p)
3108 {
3109 Elf_Internal_Shdr *rel_hdr;
3110 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3111
3112 BFD_ASSERT (reldata->hdr == NULL);
3113 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3114 reldata->hdr = rel_hdr;
3115
3116 if (delay_st_name_p)
3117 rel_hdr->sh_name = (unsigned int) -1;
3118 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3119 use_rela_p))
3120 return FALSE;
3121 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3122 rel_hdr->sh_entsize = (use_rela_p
3123 ? bed->s->sizeof_rela
3124 : bed->s->sizeof_rel);
3125 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3126 rel_hdr->sh_flags = 0;
3127 rel_hdr->sh_addr = 0;
3128 rel_hdr->sh_size = 0;
3129 rel_hdr->sh_offset = 0;
3130
3131 return TRUE;
3132 }
3133
3134 /* Return the default section type based on the passed in section flags. */
3135
3136 int
3137 bfd_elf_get_default_section_type (flagword flags)
3138 {
3139 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3140 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3141 return SHT_NOBITS;
3142 return SHT_PROGBITS;
3143 }
3144
3145 struct fake_section_arg
3146 {
3147 struct bfd_link_info *link_info;
3148 bfd_boolean failed;
3149 };
3150
3151 /* Set up an ELF internal section header for a section. */
3152
3153 static void
3154 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3155 {
3156 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3157 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3158 struct bfd_elf_section_data *esd = elf_section_data (asect);
3159 Elf_Internal_Shdr *this_hdr;
3160 unsigned int sh_type;
3161 const char *name = asect->name;
3162 bfd_boolean delay_st_name_p = FALSE;
3163
3164 if (arg->failed)
3165 {
3166 /* We already failed; just get out of the bfd_map_over_sections
3167 loop. */
3168 return;
3169 }
3170
3171 this_hdr = &esd->this_hdr;
3172
3173 if (arg->link_info)
3174 {
3175 /* ld: compress DWARF debug sections with names: .debug_*. */
3176 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3177 && (asect->flags & SEC_DEBUGGING)
3178 && name[1] == 'd'
3179 && name[6] == '_')
3180 {
3181 /* Set SEC_ELF_COMPRESS to indicate this section should be
3182 compressed. */
3183 asect->flags |= SEC_ELF_COMPRESS;
3184
3185 /* If this section will be compressed, delay adding section
3186 name to section name section after it is compressed in
3187 _bfd_elf_assign_file_positions_for_non_load. */
3188 delay_st_name_p = TRUE;
3189 }
3190 }
3191 else if ((asect->flags & SEC_ELF_RENAME))
3192 {
3193 /* objcopy: rename output DWARF debug section. */
3194 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3195 {
3196 /* When we decompress or compress with SHF_COMPRESSED,
3197 convert section name from .zdebug_* to .debug_* if
3198 needed. */
3199 if (name[1] == 'z')
3200 {
3201 char *new_name = convert_zdebug_to_debug (abfd, name);
3202 if (new_name == NULL)
3203 {
3204 arg->failed = TRUE;
3205 return;
3206 }
3207 name = new_name;
3208 }
3209 }
3210 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3211 {
3212 /* PR binutils/18087: Compression does not always make a
3213 section smaller. So only rename the section when
3214 compression has actually taken place. If input section
3215 name is .zdebug_*, we should never compress it again. */
3216 char *new_name = convert_debug_to_zdebug (abfd, name);
3217 if (new_name == NULL)
3218 {
3219 arg->failed = TRUE;
3220 return;
3221 }
3222 BFD_ASSERT (name[1] != 'z');
3223 name = new_name;
3224 }
3225 }
3226
3227 if (delay_st_name_p)
3228 this_hdr->sh_name = (unsigned int) -1;
3229 else
3230 {
3231 this_hdr->sh_name
3232 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3233 name, FALSE);
3234 if (this_hdr->sh_name == (unsigned int) -1)
3235 {
3236 arg->failed = TRUE;
3237 return;
3238 }
3239 }
3240
3241 /* Don't clear sh_flags. Assembler may set additional bits. */
3242
3243 if ((asect->flags & SEC_ALLOC) != 0
3244 || asect->user_set_vma)
3245 this_hdr->sh_addr = asect->vma;
3246 else
3247 this_hdr->sh_addr = 0;
3248
3249 this_hdr->sh_offset = 0;
3250 this_hdr->sh_size = asect->size;
3251 this_hdr->sh_link = 0;
3252 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3253 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3254 {
3255 _bfd_error_handler
3256 /* xgettext:c-format */
3257 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3258 abfd, asect->alignment_power, asect);
3259 arg->failed = TRUE;
3260 return;
3261 }
3262 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3263 /* The sh_entsize and sh_info fields may have been set already by
3264 copy_private_section_data. */
3265
3266 this_hdr->bfd_section = asect;
3267 this_hdr->contents = NULL;
3268
3269 /* If the section type is unspecified, we set it based on
3270 asect->flags. */
3271 if ((asect->flags & SEC_GROUP) != 0)
3272 sh_type = SHT_GROUP;
3273 else
3274 sh_type = bfd_elf_get_default_section_type (asect->flags);
3275
3276 if (this_hdr->sh_type == SHT_NULL)
3277 this_hdr->sh_type = sh_type;
3278 else if (this_hdr->sh_type == SHT_NOBITS
3279 && sh_type == SHT_PROGBITS
3280 && (asect->flags & SEC_ALLOC) != 0)
3281 {
3282 /* Warn if we are changing a NOBITS section to PROGBITS, but
3283 allow the link to proceed. This can happen when users link
3284 non-bss input sections to bss output sections, or emit data
3285 to a bss output section via a linker script. */
3286 _bfd_error_handler
3287 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3288 this_hdr->sh_type = sh_type;
3289 }
3290
3291 switch (this_hdr->sh_type)
3292 {
3293 default:
3294 break;
3295
3296 case SHT_STRTAB:
3297 case SHT_NOTE:
3298 case SHT_NOBITS:
3299 case SHT_PROGBITS:
3300 break;
3301
3302 case SHT_INIT_ARRAY:
3303 case SHT_FINI_ARRAY:
3304 case SHT_PREINIT_ARRAY:
3305 this_hdr->sh_entsize = bed->s->arch_size / 8;
3306 break;
3307
3308 case SHT_HASH:
3309 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3310 break;
3311
3312 case SHT_DYNSYM:
3313 this_hdr->sh_entsize = bed->s->sizeof_sym;
3314 break;
3315
3316 case SHT_DYNAMIC:
3317 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3318 break;
3319
3320 case SHT_RELA:
3321 if (get_elf_backend_data (abfd)->may_use_rela_p)
3322 this_hdr->sh_entsize = bed->s->sizeof_rela;
3323 break;
3324
3325 case SHT_REL:
3326 if (get_elf_backend_data (abfd)->may_use_rel_p)
3327 this_hdr->sh_entsize = bed->s->sizeof_rel;
3328 break;
3329
3330 case SHT_GNU_versym:
3331 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3332 break;
3333
3334 case SHT_GNU_verdef:
3335 this_hdr->sh_entsize = 0;
3336 /* objcopy or strip will copy over sh_info, but may not set
3337 cverdefs. The linker will set cverdefs, but sh_info will be
3338 zero. */
3339 if (this_hdr->sh_info == 0)
3340 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3341 else
3342 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3343 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3344 break;
3345
3346 case SHT_GNU_verneed:
3347 this_hdr->sh_entsize = 0;
3348 /* objcopy or strip will copy over sh_info, but may not set
3349 cverrefs. The linker will set cverrefs, but sh_info will be
3350 zero. */
3351 if (this_hdr->sh_info == 0)
3352 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3353 else
3354 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3355 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3356 break;
3357
3358 case SHT_GROUP:
3359 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3360 break;
3361
3362 case SHT_GNU_HASH:
3363 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3364 break;
3365 }
3366
3367 if ((asect->flags & SEC_ALLOC) != 0)
3368 this_hdr->sh_flags |= SHF_ALLOC;
3369 if ((asect->flags & SEC_READONLY) == 0)
3370 this_hdr->sh_flags |= SHF_WRITE;
3371 if ((asect->flags & SEC_CODE) != 0)
3372 this_hdr->sh_flags |= SHF_EXECINSTR;
3373 if ((asect->flags & SEC_MERGE) != 0)
3374 {
3375 this_hdr->sh_flags |= SHF_MERGE;
3376 this_hdr->sh_entsize = asect->entsize;
3377 }
3378 if ((asect->flags & SEC_STRINGS) != 0)
3379 this_hdr->sh_flags |= SHF_STRINGS;
3380 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3381 this_hdr->sh_flags |= SHF_GROUP;
3382 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3383 {
3384 this_hdr->sh_flags |= SHF_TLS;
3385 if (asect->size == 0
3386 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3387 {
3388 struct bfd_link_order *o = asect->map_tail.link_order;
3389
3390 this_hdr->sh_size = 0;
3391 if (o != NULL)
3392 {
3393 this_hdr->sh_size = o->offset + o->size;
3394 if (this_hdr->sh_size != 0)
3395 this_hdr->sh_type = SHT_NOBITS;
3396 }
3397 }
3398 }
3399 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3400 this_hdr->sh_flags |= SHF_EXCLUDE;
3401
3402 /* If the section has relocs, set up a section header for the
3403 SHT_REL[A] section. If two relocation sections are required for
3404 this section, it is up to the processor-specific back-end to
3405 create the other. */
3406 if ((asect->flags & SEC_RELOC) != 0)
3407 {
3408 /* When doing a relocatable link, create both REL and RELA sections if
3409 needed. */
3410 if (arg->link_info
3411 /* Do the normal setup if we wouldn't create any sections here. */
3412 && esd->rel.count + esd->rela.count > 0
3413 && (bfd_link_relocatable (arg->link_info)
3414 || arg->link_info->emitrelocations))
3415 {
3416 if (esd->rel.count && esd->rel.hdr == NULL
3417 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3418 FALSE, delay_st_name_p))
3419 {
3420 arg->failed = TRUE;
3421 return;
3422 }
3423 if (esd->rela.count && esd->rela.hdr == NULL
3424 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3425 TRUE, delay_st_name_p))
3426 {
3427 arg->failed = TRUE;
3428 return;
3429 }
3430 }
3431 else if (!_bfd_elf_init_reloc_shdr (abfd,
3432 (asect->use_rela_p
3433 ? &esd->rela : &esd->rel),
3434 name,
3435 asect->use_rela_p,
3436 delay_st_name_p))
3437 {
3438 arg->failed = TRUE;
3439 return;
3440 }
3441 }
3442
3443 /* Check for processor-specific section types. */
3444 sh_type = this_hdr->sh_type;
3445 if (bed->elf_backend_fake_sections
3446 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3447 {
3448 arg->failed = TRUE;
3449 return;
3450 }
3451
3452 if (sh_type == SHT_NOBITS && asect->size != 0)
3453 {
3454 /* Don't change the header type from NOBITS if we are being
3455 called for objcopy --only-keep-debug. */
3456 this_hdr->sh_type = sh_type;
3457 }
3458 }
3459
3460 /* Fill in the contents of a SHT_GROUP section. Called from
3461 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3462 when ELF targets use the generic linker, ld. Called for ld -r
3463 from bfd_elf_final_link. */
3464
3465 void
3466 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3467 {
3468 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3469 asection *elt, *first;
3470 unsigned char *loc;
3471 bfd_boolean gas;
3472
3473 /* Ignore linker created group section. See elfNN_ia64_object_p in
3474 elfxx-ia64.c. */
3475 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3476 || sec->size == 0
3477 || *failedptr)
3478 return;
3479
3480 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3481 {
3482 unsigned long symindx = 0;
3483
3484 /* elf_group_id will have been set up by objcopy and the
3485 generic linker. */
3486 if (elf_group_id (sec) != NULL)
3487 symindx = elf_group_id (sec)->udata.i;
3488
3489 if (symindx == 0)
3490 {
3491 /* If called from the assembler, swap_out_syms will have set up
3492 elf_section_syms. */
3493 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3494 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3495 }
3496 elf_section_data (sec)->this_hdr.sh_info = symindx;
3497 }
3498 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3499 {
3500 /* The ELF backend linker sets sh_info to -2 when the group
3501 signature symbol is global, and thus the index can't be
3502 set until all local symbols are output. */
3503 asection *igroup;
3504 struct bfd_elf_section_data *sec_data;
3505 unsigned long symndx;
3506 unsigned long extsymoff;
3507 struct elf_link_hash_entry *h;
3508
3509 /* The point of this little dance to the first SHF_GROUP section
3510 then back to the SHT_GROUP section is that this gets us to
3511 the SHT_GROUP in the input object. */
3512 igroup = elf_sec_group (elf_next_in_group (sec));
3513 sec_data = elf_section_data (igroup);
3514 symndx = sec_data->this_hdr.sh_info;
3515 extsymoff = 0;
3516 if (!elf_bad_symtab (igroup->owner))
3517 {
3518 Elf_Internal_Shdr *symtab_hdr;
3519
3520 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3521 extsymoff = symtab_hdr->sh_info;
3522 }
3523 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3524 while (h->root.type == bfd_link_hash_indirect
3525 || h->root.type == bfd_link_hash_warning)
3526 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3527
3528 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3529 }
3530
3531 /* The contents won't be allocated for "ld -r" or objcopy. */
3532 gas = TRUE;
3533 if (sec->contents == NULL)
3534 {
3535 gas = FALSE;
3536 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3537
3538 /* Arrange for the section to be written out. */
3539 elf_section_data (sec)->this_hdr.contents = sec->contents;
3540 if (sec->contents == NULL)
3541 {
3542 *failedptr = TRUE;
3543 return;
3544 }
3545 }
3546
3547 loc = sec->contents + sec->size;
3548
3549 /* Get the pointer to the first section in the group that gas
3550 squirreled away here. objcopy arranges for this to be set to the
3551 start of the input section group. */
3552 first = elt = elf_next_in_group (sec);
3553
3554 /* First element is a flag word. Rest of section is elf section
3555 indices for all the sections of the group. Write them backwards
3556 just to keep the group in the same order as given in .section
3557 directives, not that it matters. */
3558 while (elt != NULL)
3559 {
3560 asection *s;
3561
3562 s = elt;
3563 if (!gas)
3564 s = s->output_section;
3565 if (s != NULL
3566 && !bfd_is_abs_section (s))
3567 {
3568 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3569 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3570
3571 if (elf_sec->rel.hdr != NULL
3572 && (gas
3573 || (input_elf_sec->rel.hdr != NULL
3574 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3575 {
3576 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3577 loc -= 4;
3578 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3579 }
3580 if (elf_sec->rela.hdr != NULL
3581 && (gas
3582 || (input_elf_sec->rela.hdr != NULL
3583 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3584 {
3585 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3586 loc -= 4;
3587 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3588 }
3589 loc -= 4;
3590 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3591 }
3592 elt = elf_next_in_group (elt);
3593 if (elt == first)
3594 break;
3595 }
3596
3597 loc -= 4;
3598 BFD_ASSERT (loc == sec->contents);
3599
3600 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3601 }
3602
3603 /* Given NAME, the name of a relocation section stripped of its
3604 .rel/.rela prefix, return the section in ABFD to which the
3605 relocations apply. */
3606
3607 asection *
3608 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3609 {
3610 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3611 section likely apply to .got.plt or .got section. */
3612 if (get_elf_backend_data (abfd)->want_got_plt
3613 && strcmp (name, ".plt") == 0)
3614 {
3615 asection *sec;
3616
3617 name = ".got.plt";
3618 sec = bfd_get_section_by_name (abfd, name);
3619 if (sec != NULL)
3620 return sec;
3621 name = ".got";
3622 }
3623
3624 return bfd_get_section_by_name (abfd, name);
3625 }
3626
3627 /* Return the section to which RELOC_SEC applies. */
3628
3629 static asection *
3630 elf_get_reloc_section (asection *reloc_sec)
3631 {
3632 const char *name;
3633 unsigned int type;
3634 bfd *abfd;
3635 const struct elf_backend_data *bed;
3636
3637 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3638 if (type != SHT_REL && type != SHT_RELA)
3639 return NULL;
3640
3641 /* We look up the section the relocs apply to by name. */
3642 name = reloc_sec->name;
3643 if (strncmp (name, ".rel", 4) != 0)
3644 return NULL;
3645 name += 4;
3646 if (type == SHT_RELA && *name++ != 'a')
3647 return NULL;
3648
3649 abfd = reloc_sec->owner;
3650 bed = get_elf_backend_data (abfd);
3651 return bed->get_reloc_section (abfd, name);
3652 }
3653
3654 /* Assign all ELF section numbers. The dummy first section is handled here
3655 too. The link/info pointers for the standard section types are filled
3656 in here too, while we're at it. */
3657
3658 static bfd_boolean
3659 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3660 {
3661 struct elf_obj_tdata *t = elf_tdata (abfd);
3662 asection *sec;
3663 unsigned int section_number;
3664 Elf_Internal_Shdr **i_shdrp;
3665 struct bfd_elf_section_data *d;
3666 bfd_boolean need_symtab;
3667
3668 section_number = 1;
3669
3670 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3671
3672 /* SHT_GROUP sections are in relocatable files only. */
3673 if (link_info == NULL || !link_info->resolve_section_groups)
3674 {
3675 size_t reloc_count = 0;
3676
3677 /* Put SHT_GROUP sections first. */
3678 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3679 {
3680 d = elf_section_data (sec);
3681
3682 if (d->this_hdr.sh_type == SHT_GROUP)
3683 {
3684 if (sec->flags & SEC_LINKER_CREATED)
3685 {
3686 /* Remove the linker created SHT_GROUP sections. */
3687 bfd_section_list_remove (abfd, sec);
3688 abfd->section_count--;
3689 }
3690 else
3691 d->this_idx = section_number++;
3692 }
3693
3694 /* Count relocations. */
3695 reloc_count += sec->reloc_count;
3696 }
3697
3698 /* Clear HAS_RELOC if there are no relocations. */
3699 if (reloc_count == 0)
3700 abfd->flags &= ~HAS_RELOC;
3701 }
3702
3703 for (sec = abfd->sections; sec; sec = sec->next)
3704 {
3705 d = elf_section_data (sec);
3706
3707 if (d->this_hdr.sh_type != SHT_GROUP)
3708 d->this_idx = section_number++;
3709 if (d->this_hdr.sh_name != (unsigned int) -1)
3710 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3711 if (d->rel.hdr)
3712 {
3713 d->rel.idx = section_number++;
3714 if (d->rel.hdr->sh_name != (unsigned int) -1)
3715 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3716 }
3717 else
3718 d->rel.idx = 0;
3719
3720 if (d->rela.hdr)
3721 {
3722 d->rela.idx = section_number++;
3723 if (d->rela.hdr->sh_name != (unsigned int) -1)
3724 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3725 }
3726 else
3727 d->rela.idx = 0;
3728 }
3729
3730 need_symtab = (bfd_get_symcount (abfd) > 0
3731 || (link_info == NULL
3732 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3733 == HAS_RELOC)));
3734 if (need_symtab)
3735 {
3736 elf_onesymtab (abfd) = section_number++;
3737 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3738 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3739 {
3740 elf_section_list *entry;
3741
3742 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3743
3744 entry = bfd_zalloc (abfd, sizeof (*entry));
3745 entry->ndx = section_number++;
3746 elf_symtab_shndx_list (abfd) = entry;
3747 entry->hdr.sh_name
3748 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3749 ".symtab_shndx", FALSE);
3750 if (entry->hdr.sh_name == (unsigned int) -1)
3751 return FALSE;
3752 }
3753 elf_strtab_sec (abfd) = section_number++;
3754 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3755 }
3756
3757 elf_shstrtab_sec (abfd) = section_number++;
3758 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3759 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3760
3761 if (section_number >= SHN_LORESERVE)
3762 {
3763 /* xgettext:c-format */
3764 _bfd_error_handler (_("%pB: too many sections: %u"),
3765 abfd, section_number);
3766 return FALSE;
3767 }
3768
3769 elf_numsections (abfd) = section_number;
3770 elf_elfheader (abfd)->e_shnum = section_number;
3771
3772 /* Set up the list of section header pointers, in agreement with the
3773 indices. */
3774 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3775 sizeof (Elf_Internal_Shdr *));
3776 if (i_shdrp == NULL)
3777 return FALSE;
3778
3779 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3780 sizeof (Elf_Internal_Shdr));
3781 if (i_shdrp[0] == NULL)
3782 {
3783 bfd_release (abfd, i_shdrp);
3784 return FALSE;
3785 }
3786
3787 elf_elfsections (abfd) = i_shdrp;
3788
3789 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3790 if (need_symtab)
3791 {
3792 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3793 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3794 {
3795 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3796 BFD_ASSERT (entry != NULL);
3797 i_shdrp[entry->ndx] = & entry->hdr;
3798 entry->hdr.sh_link = elf_onesymtab (abfd);
3799 }
3800 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3801 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3802 }
3803
3804 for (sec = abfd->sections; sec; sec = sec->next)
3805 {
3806 asection *s;
3807
3808 d = elf_section_data (sec);
3809
3810 i_shdrp[d->this_idx] = &d->this_hdr;
3811 if (d->rel.idx != 0)
3812 i_shdrp[d->rel.idx] = d->rel.hdr;
3813 if (d->rela.idx != 0)
3814 i_shdrp[d->rela.idx] = d->rela.hdr;
3815
3816 /* Fill in the sh_link and sh_info fields while we're at it. */
3817
3818 /* sh_link of a reloc section is the section index of the symbol
3819 table. sh_info is the section index of the section to which
3820 the relocation entries apply. */
3821 if (d->rel.idx != 0)
3822 {
3823 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3824 d->rel.hdr->sh_info = d->this_idx;
3825 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3826 }
3827 if (d->rela.idx != 0)
3828 {
3829 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3830 d->rela.hdr->sh_info = d->this_idx;
3831 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3832 }
3833
3834 /* We need to set up sh_link for SHF_LINK_ORDER. */
3835 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3836 {
3837 s = elf_linked_to_section (sec);
3838 if (s)
3839 {
3840 /* elf_linked_to_section points to the input section. */
3841 if (link_info != NULL)
3842 {
3843 /* Check discarded linkonce section. */
3844 if (discarded_section (s))
3845 {
3846 asection *kept;
3847 _bfd_error_handler
3848 /* xgettext:c-format */
3849 (_("%pB: sh_link of section `%pA' points to"
3850 " discarded section `%pA' of `%pB'"),
3851 abfd, d->this_hdr.bfd_section,
3852 s, s->owner);
3853 /* Point to the kept section if it has the same
3854 size as the discarded one. */
3855 kept = _bfd_elf_check_kept_section (s, link_info);
3856 if (kept == NULL)
3857 {
3858 bfd_set_error (bfd_error_bad_value);
3859 return FALSE;
3860 }
3861 s = kept;
3862 }
3863
3864 s = s->output_section;
3865 BFD_ASSERT (s != NULL);
3866 }
3867 else
3868 {
3869 /* Handle objcopy. */
3870 if (s->output_section == NULL)
3871 {
3872 _bfd_error_handler
3873 /* xgettext:c-format */
3874 (_("%pB: sh_link of section `%pA' points to"
3875 " removed section `%pA' of `%pB'"),
3876 abfd, d->this_hdr.bfd_section, s, s->owner);
3877 bfd_set_error (bfd_error_bad_value);
3878 return FALSE;
3879 }
3880 s = s->output_section;
3881 }
3882 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3883 }
3884 else
3885 {
3886 /* PR 290:
3887 The Intel C compiler generates SHT_IA_64_UNWIND with
3888 SHF_LINK_ORDER. But it doesn't set the sh_link or
3889 sh_info fields. Hence we could get the situation
3890 where s is NULL. */
3891 const struct elf_backend_data *bed
3892 = get_elf_backend_data (abfd);
3893 if (bed->link_order_error_handler)
3894 bed->link_order_error_handler
3895 /* xgettext:c-format */
3896 (_("%pB: warning: sh_link not set for section `%pA'"),
3897 abfd, sec);
3898 }
3899 }
3900
3901 switch (d->this_hdr.sh_type)
3902 {
3903 case SHT_REL:
3904 case SHT_RELA:
3905 /* A reloc section which we are treating as a normal BFD
3906 section. sh_link is the section index of the symbol
3907 table. sh_info is the section index of the section to
3908 which the relocation entries apply. We assume that an
3909 allocated reloc section uses the dynamic symbol table.
3910 FIXME: How can we be sure? */
3911 s = bfd_get_section_by_name (abfd, ".dynsym");
3912 if (s != NULL)
3913 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3914
3915 s = elf_get_reloc_section (sec);
3916 if (s != NULL)
3917 {
3918 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3919 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3920 }
3921 break;
3922
3923 case SHT_STRTAB:
3924 /* We assume that a section named .stab*str is a stabs
3925 string section. We look for a section with the same name
3926 but without the trailing ``str'', and set its sh_link
3927 field to point to this section. */
3928 if (CONST_STRNEQ (sec->name, ".stab")
3929 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3930 {
3931 size_t len;
3932 char *alc;
3933
3934 len = strlen (sec->name);
3935 alc = (char *) bfd_malloc (len - 2);
3936 if (alc == NULL)
3937 return FALSE;
3938 memcpy (alc, sec->name, len - 3);
3939 alc[len - 3] = '\0';
3940 s = bfd_get_section_by_name (abfd, alc);
3941 free (alc);
3942 if (s != NULL)
3943 {
3944 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3945
3946 /* This is a .stab section. */
3947 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3948 elf_section_data (s)->this_hdr.sh_entsize
3949 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3950 }
3951 }
3952 break;
3953
3954 case SHT_DYNAMIC:
3955 case SHT_DYNSYM:
3956 case SHT_GNU_verneed:
3957 case SHT_GNU_verdef:
3958 /* sh_link is the section header index of the string table
3959 used for the dynamic entries, or the symbol table, or the
3960 version strings. */
3961 s = bfd_get_section_by_name (abfd, ".dynstr");
3962 if (s != NULL)
3963 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3964 break;
3965
3966 case SHT_GNU_LIBLIST:
3967 /* sh_link is the section header index of the prelink library
3968 list used for the dynamic entries, or the symbol table, or
3969 the version strings. */
3970 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3971 ? ".dynstr" : ".gnu.libstr");
3972 if (s != NULL)
3973 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3974 break;
3975
3976 case SHT_HASH:
3977 case SHT_GNU_HASH:
3978 case SHT_GNU_versym:
3979 /* sh_link is the section header index of the symbol table
3980 this hash table or version table is for. */
3981 s = bfd_get_section_by_name (abfd, ".dynsym");
3982 if (s != NULL)
3983 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3984 break;
3985
3986 case SHT_GROUP:
3987 d->this_hdr.sh_link = elf_onesymtab (abfd);
3988 }
3989 }
3990
3991 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3992 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3993 debug section name from .debug_* to .zdebug_* if needed. */
3994
3995 return TRUE;
3996 }
3997
3998 static bfd_boolean
3999 sym_is_global (bfd *abfd, asymbol *sym)
4000 {
4001 /* If the backend has a special mapping, use it. */
4002 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4003 if (bed->elf_backend_sym_is_global)
4004 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4005
4006 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4007 || bfd_is_und_section (bfd_get_section (sym))
4008 || bfd_is_com_section (bfd_get_section (sym)));
4009 }
4010
4011 /* Filter global symbols of ABFD to include in the import library. All
4012 SYMCOUNT symbols of ABFD can be examined from their pointers in
4013 SYMS. Pointers of symbols to keep should be stored contiguously at
4014 the beginning of that array.
4015
4016 Returns the number of symbols to keep. */
4017
4018 unsigned int
4019 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4020 asymbol **syms, long symcount)
4021 {
4022 long src_count, dst_count = 0;
4023
4024 for (src_count = 0; src_count < symcount; src_count++)
4025 {
4026 asymbol *sym = syms[src_count];
4027 char *name = (char *) bfd_asymbol_name (sym);
4028 struct bfd_link_hash_entry *h;
4029
4030 if (!sym_is_global (abfd, sym))
4031 continue;
4032
4033 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4034 if (h == NULL)
4035 continue;
4036 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4037 continue;
4038 if (h->linker_def || h->ldscript_def)
4039 continue;
4040
4041 syms[dst_count++] = sym;
4042 }
4043
4044 syms[dst_count] = NULL;
4045
4046 return dst_count;
4047 }
4048
4049 /* Don't output section symbols for sections that are not going to be
4050 output, that are duplicates or there is no BFD section. */
4051
4052 static bfd_boolean
4053 ignore_section_sym (bfd *abfd, asymbol *sym)
4054 {
4055 elf_symbol_type *type_ptr;
4056
4057 if (sym == NULL)
4058 return FALSE;
4059
4060 if ((sym->flags & BSF_SECTION_SYM) == 0)
4061 return FALSE;
4062
4063 if (sym->section == NULL)
4064 return TRUE;
4065
4066 type_ptr = elf_symbol_from (abfd, sym);
4067 return ((type_ptr != NULL
4068 && type_ptr->internal_elf_sym.st_shndx != 0
4069 && bfd_is_abs_section (sym->section))
4070 || !(sym->section->owner == abfd
4071 || (sym->section->output_section != NULL
4072 && sym->section->output_section->owner == abfd
4073 && sym->section->output_offset == 0)
4074 || bfd_is_abs_section (sym->section)));
4075 }
4076
4077 /* Map symbol from it's internal number to the external number, moving
4078 all local symbols to be at the head of the list. */
4079
4080 static bfd_boolean
4081 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4082 {
4083 unsigned int symcount = bfd_get_symcount (abfd);
4084 asymbol **syms = bfd_get_outsymbols (abfd);
4085 asymbol **sect_syms;
4086 unsigned int num_locals = 0;
4087 unsigned int num_globals = 0;
4088 unsigned int num_locals2 = 0;
4089 unsigned int num_globals2 = 0;
4090 unsigned int max_index = 0;
4091 unsigned int idx;
4092 asection *asect;
4093 asymbol **new_syms;
4094
4095 #ifdef DEBUG
4096 fprintf (stderr, "elf_map_symbols\n");
4097 fflush (stderr);
4098 #endif
4099
4100 for (asect = abfd->sections; asect; asect = asect->next)
4101 {
4102 if (max_index < asect->index)
4103 max_index = asect->index;
4104 }
4105
4106 max_index++;
4107 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4108 if (sect_syms == NULL)
4109 return FALSE;
4110 elf_section_syms (abfd) = sect_syms;
4111 elf_num_section_syms (abfd) = max_index;
4112
4113 /* Init sect_syms entries for any section symbols we have already
4114 decided to output. */
4115 for (idx = 0; idx < symcount; idx++)
4116 {
4117 asymbol *sym = syms[idx];
4118
4119 if ((sym->flags & BSF_SECTION_SYM) != 0
4120 && sym->value == 0
4121 && !ignore_section_sym (abfd, sym)
4122 && !bfd_is_abs_section (sym->section))
4123 {
4124 asection *sec = sym->section;
4125
4126 if (sec->owner != abfd)
4127 sec = sec->output_section;
4128
4129 sect_syms[sec->index] = syms[idx];
4130 }
4131 }
4132
4133 /* Classify all of the symbols. */
4134 for (idx = 0; idx < symcount; idx++)
4135 {
4136 if (sym_is_global (abfd, syms[idx]))
4137 num_globals++;
4138 else if (!ignore_section_sym (abfd, syms[idx]))
4139 num_locals++;
4140 }
4141
4142 /* We will be adding a section symbol for each normal BFD section. Most
4143 sections will already have a section symbol in outsymbols, but
4144 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4145 at least in that case. */
4146 for (asect = abfd->sections; asect; asect = asect->next)
4147 {
4148 if (sect_syms[asect->index] == NULL)
4149 {
4150 if (!sym_is_global (abfd, asect->symbol))
4151 num_locals++;
4152 else
4153 num_globals++;
4154 }
4155 }
4156
4157 /* Now sort the symbols so the local symbols are first. */
4158 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4159 sizeof (asymbol *));
4160
4161 if (new_syms == NULL)
4162 return FALSE;
4163
4164 for (idx = 0; idx < symcount; idx++)
4165 {
4166 asymbol *sym = syms[idx];
4167 unsigned int i;
4168
4169 if (sym_is_global (abfd, sym))
4170 i = num_locals + num_globals2++;
4171 else if (!ignore_section_sym (abfd, sym))
4172 i = num_locals2++;
4173 else
4174 continue;
4175 new_syms[i] = sym;
4176 sym->udata.i = i + 1;
4177 }
4178 for (asect = abfd->sections; asect; asect = asect->next)
4179 {
4180 if (sect_syms[asect->index] == NULL)
4181 {
4182 asymbol *sym = asect->symbol;
4183 unsigned int i;
4184
4185 sect_syms[asect->index] = sym;
4186 if (!sym_is_global (abfd, sym))
4187 i = num_locals2++;
4188 else
4189 i = num_locals + num_globals2++;
4190 new_syms[i] = sym;
4191 sym->udata.i = i + 1;
4192 }
4193 }
4194
4195 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4196
4197 *pnum_locals = num_locals;
4198 return TRUE;
4199 }
4200
4201 /* Align to the maximum file alignment that could be required for any
4202 ELF data structure. */
4203
4204 static inline file_ptr
4205 align_file_position (file_ptr off, int align)
4206 {
4207 return (off + align - 1) & ~(align - 1);
4208 }
4209
4210 /* Assign a file position to a section, optionally aligning to the
4211 required section alignment. */
4212
4213 file_ptr
4214 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4215 file_ptr offset,
4216 bfd_boolean align)
4217 {
4218 if (align && i_shdrp->sh_addralign > 1)
4219 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4220 i_shdrp->sh_offset = offset;
4221 if (i_shdrp->bfd_section != NULL)
4222 i_shdrp->bfd_section->filepos = offset;
4223 if (i_shdrp->sh_type != SHT_NOBITS)
4224 offset += i_shdrp->sh_size;
4225 return offset;
4226 }
4227
4228 /* Compute the file positions we are going to put the sections at, and
4229 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4230 is not NULL, this is being called by the ELF backend linker. */
4231
4232 bfd_boolean
4233 _bfd_elf_compute_section_file_positions (bfd *abfd,
4234 struct bfd_link_info *link_info)
4235 {
4236 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4237 struct fake_section_arg fsargs;
4238 bfd_boolean failed;
4239 struct elf_strtab_hash *strtab = NULL;
4240 Elf_Internal_Shdr *shstrtab_hdr;
4241 bfd_boolean need_symtab;
4242
4243 if (abfd->output_has_begun)
4244 return TRUE;
4245
4246 /* Do any elf backend specific processing first. */
4247 if (bed->elf_backend_begin_write_processing)
4248 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4249
4250 if (! prep_headers (abfd))
4251 return FALSE;
4252
4253 /* Post process the headers if necessary. */
4254 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4255
4256 fsargs.failed = FALSE;
4257 fsargs.link_info = link_info;
4258 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4259 if (fsargs.failed)
4260 return FALSE;
4261
4262 if (!assign_section_numbers (abfd, link_info))
4263 return FALSE;
4264
4265 /* The backend linker builds symbol table information itself. */
4266 need_symtab = (link_info == NULL
4267 && (bfd_get_symcount (abfd) > 0
4268 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4269 == HAS_RELOC)));
4270 if (need_symtab)
4271 {
4272 /* Non-zero if doing a relocatable link. */
4273 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4274
4275 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4276 return FALSE;
4277 }
4278
4279 failed = FALSE;
4280 if (link_info == NULL)
4281 {
4282 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4283 if (failed)
4284 return FALSE;
4285 }
4286
4287 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4288 /* sh_name was set in prep_headers. */
4289 shstrtab_hdr->sh_type = SHT_STRTAB;
4290 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4291 shstrtab_hdr->sh_addr = 0;
4292 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4293 shstrtab_hdr->sh_entsize = 0;
4294 shstrtab_hdr->sh_link = 0;
4295 shstrtab_hdr->sh_info = 0;
4296 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4297 shstrtab_hdr->sh_addralign = 1;
4298
4299 if (!assign_file_positions_except_relocs (abfd, link_info))
4300 return FALSE;
4301
4302 if (need_symtab)
4303 {
4304 file_ptr off;
4305 Elf_Internal_Shdr *hdr;
4306
4307 off = elf_next_file_pos (abfd);
4308
4309 hdr = & elf_symtab_hdr (abfd);
4310 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4311
4312 if (elf_symtab_shndx_list (abfd) != NULL)
4313 {
4314 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4315 if (hdr->sh_size != 0)
4316 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4317 /* FIXME: What about other symtab_shndx sections in the list ? */
4318 }
4319
4320 hdr = &elf_tdata (abfd)->strtab_hdr;
4321 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4322
4323 elf_next_file_pos (abfd) = off;
4324
4325 /* Now that we know where the .strtab section goes, write it
4326 out. */
4327 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4328 || ! _bfd_elf_strtab_emit (abfd, strtab))
4329 return FALSE;
4330 _bfd_elf_strtab_free (strtab);
4331 }
4332
4333 abfd->output_has_begun = TRUE;
4334
4335 return TRUE;
4336 }
4337
4338 /* Make an initial estimate of the size of the program header. If we
4339 get the number wrong here, we'll redo section placement. */
4340
4341 static bfd_size_type
4342 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4343 {
4344 size_t segs;
4345 asection *s;
4346 const struct elf_backend_data *bed;
4347
4348 /* Assume we will need exactly two PT_LOAD segments: one for text
4349 and one for data. */
4350 segs = 2;
4351
4352 s = bfd_get_section_by_name (abfd, ".interp");
4353 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4354 {
4355 /* If we have a loadable interpreter section, we need a
4356 PT_INTERP segment. In this case, assume we also need a
4357 PT_PHDR segment, although that may not be true for all
4358 targets. */
4359 segs += 2;
4360 }
4361
4362 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4363 {
4364 /* We need a PT_DYNAMIC segment. */
4365 ++segs;
4366 }
4367
4368 if (info != NULL && info->relro)
4369 {
4370 /* We need a PT_GNU_RELRO segment. */
4371 ++segs;
4372 }
4373
4374 if (elf_eh_frame_hdr (abfd))
4375 {
4376 /* We need a PT_GNU_EH_FRAME segment. */
4377 ++segs;
4378 }
4379
4380 if (elf_stack_flags (abfd))
4381 {
4382 /* We need a PT_GNU_STACK segment. */
4383 ++segs;
4384 }
4385
4386 s = bfd_get_section_by_name (abfd,
4387 NOTE_GNU_PROPERTY_SECTION_NAME);
4388 if (s != NULL && s->size != 0)
4389 {
4390 /* We need a PT_GNU_PROPERTY segment. */
4391 ++segs;
4392 }
4393
4394 for (s = abfd->sections; s != NULL; s = s->next)
4395 {
4396 if ((s->flags & SEC_LOAD) != 0
4397 && elf_section_type (s) == SHT_NOTE)
4398 {
4399 unsigned int alignment_power;
4400 /* We need a PT_NOTE segment. */
4401 ++segs;
4402 /* Try to create just one PT_NOTE segment for all adjacent
4403 loadable SHT_NOTE sections. gABI requires that within a
4404 PT_NOTE segment (and also inside of each SHT_NOTE section)
4405 each note should have the same alignment. So we check
4406 whether the sections are correctly aligned. */
4407 alignment_power = s->alignment_power;
4408 while (s->next != NULL
4409 && s->next->alignment_power == alignment_power
4410 && (s->next->flags & SEC_LOAD) != 0
4411 && elf_section_type (s->next) == SHT_NOTE)
4412 s = s->next;
4413 }
4414 }
4415
4416 for (s = abfd->sections; s != NULL; s = s->next)
4417 {
4418 if (s->flags & SEC_THREAD_LOCAL)
4419 {
4420 /* We need a PT_TLS segment. */
4421 ++segs;
4422 break;
4423 }
4424 }
4425
4426 bed = get_elf_backend_data (abfd);
4427
4428 if ((abfd->flags & D_PAGED) != 0)
4429 {
4430 /* Add a PT_GNU_MBIND segment for each mbind section. */
4431 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4432 for (s = abfd->sections; s != NULL; s = s->next)
4433 if (elf_section_flags (s) & SHF_GNU_MBIND)
4434 {
4435 if (elf_section_data (s)->this_hdr.sh_info
4436 > PT_GNU_MBIND_NUM)
4437 {
4438 _bfd_error_handler
4439 /* xgettext:c-format */
4440 (_("%pB: GNU_MBIN section `%pA' has invalid sh_info field: %d"),
4441 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4442 continue;
4443 }
4444 /* Align mbind section to page size. */
4445 if (s->alignment_power < page_align_power)
4446 s->alignment_power = page_align_power;
4447 segs ++;
4448 }
4449 }
4450
4451 /* Let the backend count up any program headers it might need. */
4452 if (bed->elf_backend_additional_program_headers)
4453 {
4454 int a;
4455
4456 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4457 if (a == -1)
4458 abort ();
4459 segs += a;
4460 }
4461
4462 return segs * bed->s->sizeof_phdr;
4463 }
4464
4465 /* Find the segment that contains the output_section of section. */
4466
4467 Elf_Internal_Phdr *
4468 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4469 {
4470 struct elf_segment_map *m;
4471 Elf_Internal_Phdr *p;
4472
4473 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4474 m != NULL;
4475 m = m->next, p++)
4476 {
4477 int i;
4478
4479 for (i = m->count - 1; i >= 0; i--)
4480 if (m->sections[i] == section)
4481 return p;
4482 }
4483
4484 return NULL;
4485 }
4486
4487 /* Create a mapping from a set of sections to a program segment. */
4488
4489 static struct elf_segment_map *
4490 make_mapping (bfd *abfd,
4491 asection **sections,
4492 unsigned int from,
4493 unsigned int to,
4494 bfd_boolean phdr)
4495 {
4496 struct elf_segment_map *m;
4497 unsigned int i;
4498 asection **hdrpp;
4499 bfd_size_type amt;
4500
4501 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4502 amt += (to - from) * sizeof (asection *);
4503 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4504 if (m == NULL)
4505 return NULL;
4506 m->next = NULL;
4507 m->p_type = PT_LOAD;
4508 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4509 m->sections[i - from] = *hdrpp;
4510 m->count = to - from;
4511
4512 if (from == 0 && phdr)
4513 {
4514 /* Include the headers in the first PT_LOAD segment. */
4515 m->includes_filehdr = 1;
4516 m->includes_phdrs = 1;
4517 }
4518
4519 return m;
4520 }
4521
4522 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4523 on failure. */
4524
4525 struct elf_segment_map *
4526 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4527 {
4528 struct elf_segment_map *m;
4529
4530 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4531 sizeof (struct elf_segment_map));
4532 if (m == NULL)
4533 return NULL;
4534 m->next = NULL;
4535 m->p_type = PT_DYNAMIC;
4536 m->count = 1;
4537 m->sections[0] = dynsec;
4538
4539 return m;
4540 }
4541
4542 /* Possibly add or remove segments from the segment map. */
4543
4544 static bfd_boolean
4545 elf_modify_segment_map (bfd *abfd,
4546 struct bfd_link_info *info,
4547 bfd_boolean remove_empty_load)
4548 {
4549 struct elf_segment_map **m;
4550 const struct elf_backend_data *bed;
4551
4552 /* The placement algorithm assumes that non allocated sections are
4553 not in PT_LOAD segments. We ensure this here by removing such
4554 sections from the segment map. We also remove excluded
4555 sections. Finally, any PT_LOAD segment without sections is
4556 removed. */
4557 m = &elf_seg_map (abfd);
4558 while (*m)
4559 {
4560 unsigned int i, new_count;
4561
4562 for (new_count = 0, i = 0; i < (*m)->count; i++)
4563 {
4564 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4565 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4566 || (*m)->p_type != PT_LOAD))
4567 {
4568 (*m)->sections[new_count] = (*m)->sections[i];
4569 new_count++;
4570 }
4571 }
4572 (*m)->count = new_count;
4573
4574 if (remove_empty_load
4575 && (*m)->p_type == PT_LOAD
4576 && (*m)->count == 0
4577 && !(*m)->includes_phdrs)
4578 *m = (*m)->next;
4579 else
4580 m = &(*m)->next;
4581 }
4582
4583 bed = get_elf_backend_data (abfd);
4584 if (bed->elf_backend_modify_segment_map != NULL)
4585 {
4586 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4587 return FALSE;
4588 }
4589
4590 return TRUE;
4591 }
4592
4593 #define IS_TBSS(s) \
4594 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4595
4596 /* Set up a mapping from BFD sections to program segments. */
4597
4598 bfd_boolean
4599 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4600 {
4601 unsigned int count;
4602 struct elf_segment_map *m;
4603 asection **sections = NULL;
4604 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4605 bfd_boolean no_user_phdrs;
4606
4607 no_user_phdrs = elf_seg_map (abfd) == NULL;
4608
4609 if (info != NULL)
4610 info->user_phdrs = !no_user_phdrs;
4611
4612 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4613 {
4614 asection *s;
4615 unsigned int i;
4616 struct elf_segment_map *mfirst;
4617 struct elf_segment_map **pm;
4618 asection *last_hdr;
4619 bfd_vma last_size;
4620 unsigned int hdr_index;
4621 bfd_vma maxpagesize;
4622 asection **hdrpp;
4623 bfd_boolean phdr_in_segment;
4624 bfd_boolean writable;
4625 bfd_boolean executable;
4626 int tls_count = 0;
4627 asection *first_tls = NULL;
4628 asection *first_mbind = NULL;
4629 asection *dynsec, *eh_frame_hdr;
4630 bfd_size_type amt;
4631 bfd_vma addr_mask, wrap_to = 0;
4632 bfd_size_type phdr_size;
4633
4634 /* Select the allocated sections, and sort them. */
4635
4636 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4637 sizeof (asection *));
4638 if (sections == NULL)
4639 goto error_return;
4640
4641 /* Calculate top address, avoiding undefined behaviour of shift
4642 left operator when shift count is equal to size of type
4643 being shifted. */
4644 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4645 addr_mask = (addr_mask << 1) + 1;
4646
4647 i = 0;
4648 for (s = abfd->sections; s != NULL; s = s->next)
4649 {
4650 if ((s->flags & SEC_ALLOC) != 0)
4651 {
4652 sections[i] = s;
4653 ++i;
4654 /* A wrapping section potentially clashes with header. */
4655 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4656 wrap_to = (s->lma + s->size) & addr_mask;
4657 }
4658 }
4659 BFD_ASSERT (i <= bfd_count_sections (abfd));
4660 count = i;
4661
4662 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4663
4664 phdr_size = elf_program_header_size (abfd);
4665 if (phdr_size == (bfd_size_type) -1)
4666 phdr_size = get_program_header_size (abfd, info);
4667 phdr_size += bed->s->sizeof_ehdr;
4668 maxpagesize = bed->maxpagesize;
4669 if (maxpagesize == 0)
4670 maxpagesize = 1;
4671 phdr_in_segment = info != NULL && info->load_phdrs;
4672 if (count != 0
4673 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4674 >= (phdr_size & (maxpagesize - 1))))
4675 /* For compatibility with old scripts that may not be using
4676 SIZEOF_HEADERS, add headers when it looks like space has
4677 been left for them. */
4678 phdr_in_segment = TRUE;
4679
4680 /* Build the mapping. */
4681 mfirst = NULL;
4682 pm = &mfirst;
4683
4684 /* If we have a .interp section, then create a PT_PHDR segment for
4685 the program headers and a PT_INTERP segment for the .interp
4686 section. */
4687 s = bfd_get_section_by_name (abfd, ".interp");
4688 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4689 {
4690 amt = sizeof (struct elf_segment_map);
4691 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4692 if (m == NULL)
4693 goto error_return;
4694 m->next = NULL;
4695 m->p_type = PT_PHDR;
4696 m->p_flags = PF_R;
4697 m->p_flags_valid = 1;
4698 m->includes_phdrs = 1;
4699 phdr_in_segment = TRUE;
4700 *pm = m;
4701 pm = &m->next;
4702
4703 amt = sizeof (struct elf_segment_map);
4704 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4705 if (m == NULL)
4706 goto error_return;
4707 m->next = NULL;
4708 m->p_type = PT_INTERP;
4709 m->count = 1;
4710 m->sections[0] = s;
4711
4712 *pm = m;
4713 pm = &m->next;
4714 }
4715
4716 /* Look through the sections. We put sections in the same program
4717 segment when the start of the second section can be placed within
4718 a few bytes of the end of the first section. */
4719 last_hdr = NULL;
4720 last_size = 0;
4721 hdr_index = 0;
4722 writable = FALSE;
4723 executable = FALSE;
4724 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4725 if (dynsec != NULL
4726 && (dynsec->flags & SEC_LOAD) == 0)
4727 dynsec = NULL;
4728
4729 if ((abfd->flags & D_PAGED) == 0)
4730 phdr_in_segment = FALSE;
4731
4732 /* Deal with -Ttext or something similar such that the first section
4733 is not adjacent to the program headers. This is an
4734 approximation, since at this point we don't know exactly how many
4735 program headers we will need. */
4736 if (phdr_in_segment && count > 0)
4737 {
4738 bfd_vma phdr_lma;
4739 bfd_boolean separate_phdr = FALSE;
4740
4741 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4742 if (info != NULL
4743 && info->separate_code
4744 && (sections[0]->flags & SEC_CODE) != 0)
4745 {
4746 /* If data sections should be separate from code and
4747 thus not executable, and the first section is
4748 executable then put the file and program headers in
4749 their own PT_LOAD. */
4750 separate_phdr = TRUE;
4751 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4752 == (sections[0]->lma & addr_mask & -maxpagesize)))
4753 {
4754 /* The file and program headers are currently on the
4755 same page as the first section. Put them on the
4756 previous page if we can. */
4757 if (phdr_lma >= maxpagesize)
4758 phdr_lma -= maxpagesize;
4759 else
4760 separate_phdr = FALSE;
4761 }
4762 }
4763 if ((sections[0]->lma & addr_mask) < phdr_lma
4764 || (sections[0]->lma & addr_mask) < phdr_size)
4765 /* If file and program headers would be placed at the end
4766 of memory then it's probably better to omit them. */
4767 phdr_in_segment = FALSE;
4768 else if (phdr_lma < wrap_to)
4769 /* If a section wraps around to where we'll be placing
4770 file and program headers, then the headers will be
4771 overwritten. */
4772 phdr_in_segment = FALSE;
4773 else if (separate_phdr)
4774 {
4775 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4776 if (m == NULL)
4777 goto error_return;
4778 m->p_paddr = phdr_lma;
4779 m->p_vaddr_offset
4780 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4781 m->p_paddr_valid = 1;
4782 *pm = m;
4783 pm = &m->next;
4784 phdr_in_segment = FALSE;
4785 }
4786 }
4787
4788 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4789 {
4790 asection *hdr;
4791 bfd_boolean new_segment;
4792
4793 hdr = *hdrpp;
4794
4795 /* See if this section and the last one will fit in the same
4796 segment. */
4797
4798 if (last_hdr == NULL)
4799 {
4800 /* If we don't have a segment yet, then we don't need a new
4801 one (we build the last one after this loop). */
4802 new_segment = FALSE;
4803 }
4804 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4805 {
4806 /* If this section has a different relation between the
4807 virtual address and the load address, then we need a new
4808 segment. */
4809 new_segment = TRUE;
4810 }
4811 else if (hdr->lma < last_hdr->lma + last_size
4812 || last_hdr->lma + last_size < last_hdr->lma)
4813 {
4814 /* If this section has a load address that makes it overlap
4815 the previous section, then we need a new segment. */
4816 new_segment = TRUE;
4817 }
4818 else if ((abfd->flags & D_PAGED) != 0
4819 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4820 == (hdr->lma & -maxpagesize)))
4821 {
4822 /* If we are demand paged then we can't map two disk
4823 pages onto the same memory page. */
4824 new_segment = FALSE;
4825 }
4826 /* In the next test we have to be careful when last_hdr->lma is close
4827 to the end of the address space. If the aligned address wraps
4828 around to the start of the address space, then there are no more
4829 pages left in memory and it is OK to assume that the current
4830 section can be included in the current segment. */
4831 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4832 + maxpagesize > last_hdr->lma)
4833 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4834 + maxpagesize <= hdr->lma))
4835 {
4836 /* If putting this section in this segment would force us to
4837 skip a page in the segment, then we need a new segment. */
4838 new_segment = TRUE;
4839 }
4840 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4841 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4842 {
4843 /* We don't want to put a loaded section after a
4844 nonloaded (ie. bss style) section in the same segment
4845 as that will force the non-loaded section to be loaded.
4846 Consider .tbss sections as loaded for this purpose. */
4847 new_segment = TRUE;
4848 }
4849 else if ((abfd->flags & D_PAGED) == 0)
4850 {
4851 /* If the file is not demand paged, which means that we
4852 don't require the sections to be correctly aligned in the
4853 file, then there is no other reason for a new segment. */
4854 new_segment = FALSE;
4855 }
4856 else if (info != NULL
4857 && info->separate_code
4858 && executable != ((hdr->flags & SEC_CODE) != 0))
4859 {
4860 new_segment = TRUE;
4861 }
4862 else if (! writable
4863 && (hdr->flags & SEC_READONLY) == 0)
4864 {
4865 /* We don't want to put a writable section in a read only
4866 segment. */
4867 new_segment = TRUE;
4868 }
4869 else
4870 {
4871 /* Otherwise, we can use the same segment. */
4872 new_segment = FALSE;
4873 }
4874
4875 /* Allow interested parties a chance to override our decision. */
4876 if (last_hdr != NULL
4877 && info != NULL
4878 && info->callbacks->override_segment_assignment != NULL)
4879 new_segment
4880 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4881 last_hdr,
4882 new_segment);
4883
4884 if (! new_segment)
4885 {
4886 if ((hdr->flags & SEC_READONLY) == 0)
4887 writable = TRUE;
4888 if ((hdr->flags & SEC_CODE) != 0)
4889 executable = TRUE;
4890 last_hdr = hdr;
4891 /* .tbss sections effectively have zero size. */
4892 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4893 continue;
4894 }
4895
4896 /* We need a new program segment. We must create a new program
4897 header holding all the sections from hdr_index until hdr. */
4898
4899 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4900 if (m == NULL)
4901 goto error_return;
4902
4903 *pm = m;
4904 pm = &m->next;
4905
4906 if ((hdr->flags & SEC_READONLY) == 0)
4907 writable = TRUE;
4908 else
4909 writable = FALSE;
4910
4911 if ((hdr->flags & SEC_CODE) == 0)
4912 executable = FALSE;
4913 else
4914 executable = TRUE;
4915
4916 last_hdr = hdr;
4917 /* .tbss sections effectively have zero size. */
4918 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4919 hdr_index = i;
4920 phdr_in_segment = FALSE;
4921 }
4922
4923 /* Create a final PT_LOAD program segment, but not if it's just
4924 for .tbss. */
4925 if (last_hdr != NULL
4926 && (i - hdr_index != 1
4927 || !IS_TBSS (last_hdr)))
4928 {
4929 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4930 if (m == NULL)
4931 goto error_return;
4932
4933 *pm = m;
4934 pm = &m->next;
4935 }
4936
4937 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4938 if (dynsec != NULL)
4939 {
4940 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4941 if (m == NULL)
4942 goto error_return;
4943 *pm = m;
4944 pm = &m->next;
4945 }
4946
4947 /* For each batch of consecutive loadable SHT_NOTE sections,
4948 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4949 because if we link together nonloadable .note sections and
4950 loadable .note sections, we will generate two .note sections
4951 in the output file. */
4952 for (s = abfd->sections; s != NULL; s = s->next)
4953 {
4954 if ((s->flags & SEC_LOAD) != 0
4955 && elf_section_type (s) == SHT_NOTE)
4956 {
4957 asection *s2;
4958 unsigned int alignment_power = s->alignment_power;
4959
4960 count = 1;
4961 for (s2 = s; s2->next != NULL; s2 = s2->next)
4962 {
4963 if (s2->next->alignment_power == alignment_power
4964 && (s2->next->flags & SEC_LOAD) != 0
4965 && elf_section_type (s2->next) == SHT_NOTE
4966 && align_power (s2->lma + s2->size,
4967 alignment_power)
4968 == s2->next->lma)
4969 count++;
4970 else
4971 break;
4972 }
4973 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4974 amt += count * sizeof (asection *);
4975 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4976 if (m == NULL)
4977 goto error_return;
4978 m->next = NULL;
4979 m->p_type = PT_NOTE;
4980 m->count = count;
4981 while (count > 1)
4982 {
4983 m->sections[m->count - count--] = s;
4984 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4985 s = s->next;
4986 }
4987 m->sections[m->count - 1] = s;
4988 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4989 *pm = m;
4990 pm = &m->next;
4991 }
4992 if (s->flags & SEC_THREAD_LOCAL)
4993 {
4994 if (! tls_count)
4995 first_tls = s;
4996 tls_count++;
4997 }
4998 if (first_mbind == NULL
4999 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5000 first_mbind = s;
5001 }
5002
5003 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5004 if (tls_count > 0)
5005 {
5006 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5007 amt += tls_count * sizeof (asection *);
5008 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5009 if (m == NULL)
5010 goto error_return;
5011 m->next = NULL;
5012 m->p_type = PT_TLS;
5013 m->count = tls_count;
5014 /* Mandated PF_R. */
5015 m->p_flags = PF_R;
5016 m->p_flags_valid = 1;
5017 s = first_tls;
5018 for (i = 0; i < (unsigned int) tls_count; ++i)
5019 {
5020 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5021 {
5022 _bfd_error_handler
5023 (_("%pB: TLS sections are not adjacent:"), abfd);
5024 s = first_tls;
5025 i = 0;
5026 while (i < (unsigned int) tls_count)
5027 {
5028 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5029 {
5030 _bfd_error_handler (_(" TLS: %pA"), s);
5031 i++;
5032 }
5033 else
5034 _bfd_error_handler (_(" non-TLS: %pA"), s);
5035 s = s->next;
5036 }
5037 bfd_set_error (bfd_error_bad_value);
5038 goto error_return;
5039 }
5040 m->sections[i] = s;
5041 s = s->next;
5042 }
5043
5044 *pm = m;
5045 pm = &m->next;
5046 }
5047
5048 if (first_mbind && (abfd->flags & D_PAGED) != 0)
5049 for (s = first_mbind; s != NULL; s = s->next)
5050 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5051 && (elf_section_data (s)->this_hdr.sh_info
5052 <= PT_GNU_MBIND_NUM))
5053 {
5054 /* Mandated PF_R. */
5055 unsigned long p_flags = PF_R;
5056 if ((s->flags & SEC_READONLY) == 0)
5057 p_flags |= PF_W;
5058 if ((s->flags & SEC_CODE) != 0)
5059 p_flags |= PF_X;
5060
5061 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5062 m = bfd_zalloc (abfd, amt);
5063 if (m == NULL)
5064 goto error_return;
5065 m->next = NULL;
5066 m->p_type = (PT_GNU_MBIND_LO
5067 + elf_section_data (s)->this_hdr.sh_info);
5068 m->count = 1;
5069 m->p_flags_valid = 1;
5070 m->sections[0] = s;
5071 m->p_flags = p_flags;
5072
5073 *pm = m;
5074 pm = &m->next;
5075 }
5076
5077 s = bfd_get_section_by_name (abfd,
5078 NOTE_GNU_PROPERTY_SECTION_NAME);
5079 if (s != NULL && s->size != 0)
5080 {
5081 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5082 m = bfd_zalloc (abfd, amt);
5083 if (m == NULL)
5084 goto error_return;
5085 m->next = NULL;
5086 m->p_type = PT_GNU_PROPERTY;
5087 m->count = 1;
5088 m->p_flags_valid = 1;
5089 m->sections[0] = s;
5090 m->p_flags = PF_R;
5091 *pm = m;
5092 pm = &m->next;
5093 }
5094
5095 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5096 segment. */
5097 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5098 if (eh_frame_hdr != NULL
5099 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5100 {
5101 amt = sizeof (struct elf_segment_map);
5102 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5103 if (m == NULL)
5104 goto error_return;
5105 m->next = NULL;
5106 m->p_type = PT_GNU_EH_FRAME;
5107 m->count = 1;
5108 m->sections[0] = eh_frame_hdr->output_section;
5109
5110 *pm = m;
5111 pm = &m->next;
5112 }
5113
5114 if (elf_stack_flags (abfd))
5115 {
5116 amt = sizeof (struct elf_segment_map);
5117 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5118 if (m == NULL)
5119 goto error_return;
5120 m->next = NULL;
5121 m->p_type = PT_GNU_STACK;
5122 m->p_flags = elf_stack_flags (abfd);
5123 m->p_align = bed->stack_align;
5124 m->p_flags_valid = 1;
5125 m->p_align_valid = m->p_align != 0;
5126 if (info->stacksize > 0)
5127 {
5128 m->p_size = info->stacksize;
5129 m->p_size_valid = 1;
5130 }
5131
5132 *pm = m;
5133 pm = &m->next;
5134 }
5135
5136 if (info != NULL && info->relro)
5137 {
5138 for (m = mfirst; m != NULL; m = m->next)
5139 {
5140 if (m->p_type == PT_LOAD
5141 && m->count != 0
5142 && m->sections[0]->vma >= info->relro_start
5143 && m->sections[0]->vma < info->relro_end)
5144 {
5145 i = m->count;
5146 while (--i != (unsigned) -1)
5147 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5148 == (SEC_LOAD | SEC_HAS_CONTENTS))
5149 break;
5150
5151 if (i != (unsigned) -1)
5152 break;
5153 }
5154 }
5155
5156 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5157 if (m != NULL)
5158 {
5159 amt = sizeof (struct elf_segment_map);
5160 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5161 if (m == NULL)
5162 goto error_return;
5163 m->next = NULL;
5164 m->p_type = PT_GNU_RELRO;
5165 *pm = m;
5166 pm = &m->next;
5167 }
5168 }
5169
5170 free (sections);
5171 elf_seg_map (abfd) = mfirst;
5172 }
5173
5174 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5175 return FALSE;
5176
5177 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5178 ++count;
5179 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5180
5181 return TRUE;
5182
5183 error_return:
5184 if (sections != NULL)
5185 free (sections);
5186 return FALSE;
5187 }
5188
5189 /* Sort sections by address. */
5190
5191 static int
5192 elf_sort_sections (const void *arg1, const void *arg2)
5193 {
5194 const asection *sec1 = *(const asection **) arg1;
5195 const asection *sec2 = *(const asection **) arg2;
5196 bfd_size_type size1, size2;
5197
5198 /* Sort by LMA first, since this is the address used to
5199 place the section into a segment. */
5200 if (sec1->lma < sec2->lma)
5201 return -1;
5202 else if (sec1->lma > sec2->lma)
5203 return 1;
5204
5205 /* Then sort by VMA. Normally the LMA and the VMA will be
5206 the same, and this will do nothing. */
5207 if (sec1->vma < sec2->vma)
5208 return -1;
5209 else if (sec1->vma > sec2->vma)
5210 return 1;
5211
5212 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5213
5214 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5215
5216 if (TOEND (sec1))
5217 {
5218 if (TOEND (sec2))
5219 {
5220 /* If the indices are the same, do not return 0
5221 here, but continue to try the next comparison. */
5222 if (sec1->target_index - sec2->target_index != 0)
5223 return sec1->target_index - sec2->target_index;
5224 }
5225 else
5226 return 1;
5227 }
5228 else if (TOEND (sec2))
5229 return -1;
5230
5231 #undef TOEND
5232
5233 /* Sort by size, to put zero sized sections
5234 before others at the same address. */
5235
5236 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5237 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5238
5239 if (size1 < size2)
5240 return -1;
5241 if (size1 > size2)
5242 return 1;
5243
5244 return sec1->target_index - sec2->target_index;
5245 }
5246
5247 /* Ian Lance Taylor writes:
5248
5249 We shouldn't be using % with a negative signed number. That's just
5250 not good. We have to make sure either that the number is not
5251 negative, or that the number has an unsigned type. When the types
5252 are all the same size they wind up as unsigned. When file_ptr is a
5253 larger signed type, the arithmetic winds up as signed long long,
5254 which is wrong.
5255
5256 What we're trying to say here is something like ``increase OFF by
5257 the least amount that will cause it to be equal to the VMA modulo
5258 the page size.'' */
5259 /* In other words, something like:
5260
5261 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5262 off_offset = off % bed->maxpagesize;
5263 if (vma_offset < off_offset)
5264 adjustment = vma_offset + bed->maxpagesize - off_offset;
5265 else
5266 adjustment = vma_offset - off_offset;
5267
5268 which can be collapsed into the expression below. */
5269
5270 static file_ptr
5271 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5272 {
5273 /* PR binutils/16199: Handle an alignment of zero. */
5274 if (maxpagesize == 0)
5275 maxpagesize = 1;
5276 return ((vma - off) % maxpagesize);
5277 }
5278
5279 static void
5280 print_segment_map (const struct elf_segment_map *m)
5281 {
5282 unsigned int j;
5283 const char *pt = get_segment_type (m->p_type);
5284 char buf[32];
5285
5286 if (pt == NULL)
5287 {
5288 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5289 sprintf (buf, "LOPROC+%7.7x",
5290 (unsigned int) (m->p_type - PT_LOPROC));
5291 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5292 sprintf (buf, "LOOS+%7.7x",
5293 (unsigned int) (m->p_type - PT_LOOS));
5294 else
5295 snprintf (buf, sizeof (buf), "%8.8x",
5296 (unsigned int) m->p_type);
5297 pt = buf;
5298 }
5299 fflush (stdout);
5300 fprintf (stderr, "%s:", pt);
5301 for (j = 0; j < m->count; j++)
5302 fprintf (stderr, " %s", m->sections [j]->name);
5303 putc ('\n',stderr);
5304 fflush (stderr);
5305 }
5306
5307 static bfd_boolean
5308 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5309 {
5310 void *buf;
5311 bfd_boolean ret;
5312
5313 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5314 return FALSE;
5315 buf = bfd_zmalloc (len);
5316 if (buf == NULL)
5317 return FALSE;
5318 ret = bfd_bwrite (buf, len, abfd) == len;
5319 free (buf);
5320 return ret;
5321 }
5322
5323 /* Assign file positions to the sections based on the mapping from
5324 sections to segments. This function also sets up some fields in
5325 the file header. */
5326
5327 static bfd_boolean
5328 assign_file_positions_for_load_sections (bfd *abfd,
5329 struct bfd_link_info *link_info)
5330 {
5331 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5332 struct elf_segment_map *m;
5333 Elf_Internal_Phdr *phdrs;
5334 Elf_Internal_Phdr *p;
5335 file_ptr off;
5336 bfd_size_type maxpagesize;
5337 unsigned int pt_load_count = 0;
5338 unsigned int alloc;
5339 unsigned int i, j;
5340 bfd_vma header_pad = 0;
5341
5342 if (link_info == NULL
5343 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5344 return FALSE;
5345
5346 alloc = 0;
5347 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5348 {
5349 ++alloc;
5350 if (m->header_size)
5351 header_pad = m->header_size;
5352 }
5353
5354 if (alloc)
5355 {
5356 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5357 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5358 }
5359 else
5360 {
5361 /* PR binutils/12467. */
5362 elf_elfheader (abfd)->e_phoff = 0;
5363 elf_elfheader (abfd)->e_phentsize = 0;
5364 }
5365
5366 elf_elfheader (abfd)->e_phnum = alloc;
5367
5368 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5369 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5370 else
5371 BFD_ASSERT (elf_program_header_size (abfd)
5372 >= alloc * bed->s->sizeof_phdr);
5373
5374 if (alloc == 0)
5375 {
5376 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5377 return TRUE;
5378 }
5379
5380 /* We're writing the size in elf_program_header_size (abfd),
5381 see assign_file_positions_except_relocs, so make sure we have
5382 that amount allocated, with trailing space cleared.
5383 The variable alloc contains the computed need, while
5384 elf_program_header_size (abfd) contains the size used for the
5385 layout.
5386 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5387 where the layout is forced to according to a larger size in the
5388 last iterations for the testcase ld-elf/header. */
5389 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5390 == 0);
5391 phdrs = (Elf_Internal_Phdr *)
5392 bfd_zalloc2 (abfd,
5393 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5394 sizeof (Elf_Internal_Phdr));
5395 elf_tdata (abfd)->phdr = phdrs;
5396 if (phdrs == NULL)
5397 return FALSE;
5398
5399 maxpagesize = 1;
5400 if ((abfd->flags & D_PAGED) != 0)
5401 maxpagesize = bed->maxpagesize;
5402
5403 off = bed->s->sizeof_ehdr;
5404 off += alloc * bed->s->sizeof_phdr;
5405 if (header_pad < (bfd_vma) off)
5406 header_pad = 0;
5407 else
5408 header_pad -= off;
5409 off += header_pad;
5410
5411 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5412 m != NULL;
5413 m = m->next, p++, j++)
5414 {
5415 asection **secpp;
5416 bfd_vma off_adjust;
5417 bfd_boolean no_contents;
5418
5419 /* If elf_segment_map is not from map_sections_to_segments, the
5420 sections may not be correctly ordered. NOTE: sorting should
5421 not be done to the PT_NOTE section of a corefile, which may
5422 contain several pseudo-sections artificially created by bfd.
5423 Sorting these pseudo-sections breaks things badly. */
5424 if (m->count > 1
5425 && !(elf_elfheader (abfd)->e_type == ET_CORE
5426 && m->p_type == PT_NOTE))
5427 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5428 elf_sort_sections);
5429
5430 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5431 number of sections with contents contributing to both p_filesz
5432 and p_memsz, followed by a number of sections with no contents
5433 that just contribute to p_memsz. In this loop, OFF tracks next
5434 available file offset for PT_LOAD and PT_NOTE segments. */
5435 p->p_type = m->p_type;
5436 p->p_flags = m->p_flags;
5437
5438 if (m->count == 0)
5439 p->p_vaddr = m->p_vaddr_offset;
5440 else
5441 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5442
5443 if (m->p_paddr_valid)
5444 p->p_paddr = m->p_paddr;
5445 else if (m->count == 0)
5446 p->p_paddr = 0;
5447 else
5448 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5449
5450 if (p->p_type == PT_LOAD
5451 && (abfd->flags & D_PAGED) != 0)
5452 {
5453 /* p_align in demand paged PT_LOAD segments effectively stores
5454 the maximum page size. When copying an executable with
5455 objcopy, we set m->p_align from the input file. Use this
5456 value for maxpagesize rather than bed->maxpagesize, which
5457 may be different. Note that we use maxpagesize for PT_TLS
5458 segment alignment later in this function, so we are relying
5459 on at least one PT_LOAD segment appearing before a PT_TLS
5460 segment. */
5461 if (m->p_align_valid)
5462 maxpagesize = m->p_align;
5463
5464 p->p_align = maxpagesize;
5465 pt_load_count += 1;
5466 }
5467 else if (m->p_align_valid)
5468 p->p_align = m->p_align;
5469 else if (m->count == 0)
5470 p->p_align = 1 << bed->s->log_file_align;
5471 else
5472 p->p_align = 0;
5473
5474 no_contents = FALSE;
5475 off_adjust = 0;
5476 if (p->p_type == PT_LOAD
5477 && m->count > 0)
5478 {
5479 bfd_size_type align;
5480 unsigned int align_power = 0;
5481
5482 if (m->p_align_valid)
5483 align = p->p_align;
5484 else
5485 {
5486 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5487 {
5488 unsigned int secalign;
5489
5490 secalign = bfd_get_section_alignment (abfd, *secpp);
5491 if (secalign > align_power)
5492 align_power = secalign;
5493 }
5494 align = (bfd_size_type) 1 << align_power;
5495 if (align < maxpagesize)
5496 align = maxpagesize;
5497 }
5498
5499 for (i = 0; i < m->count; i++)
5500 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5501 /* If we aren't making room for this section, then
5502 it must be SHT_NOBITS regardless of what we've
5503 set via struct bfd_elf_special_section. */
5504 elf_section_type (m->sections[i]) = SHT_NOBITS;
5505
5506 /* Find out whether this segment contains any loadable
5507 sections. */
5508 no_contents = TRUE;
5509 for (i = 0; i < m->count; i++)
5510 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5511 {
5512 no_contents = FALSE;
5513 break;
5514 }
5515
5516 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5517
5518 /* Broken hardware and/or kernel require that files do not
5519 map the same page with different permissions on some hppa
5520 processors. */
5521 if (pt_load_count > 1
5522 && bed->no_page_alias
5523 && (off & (maxpagesize - 1)) != 0
5524 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5525 off_adjust += maxpagesize;
5526 off += off_adjust;
5527 if (no_contents)
5528 {
5529 /* We shouldn't need to align the segment on disk since
5530 the segment doesn't need file space, but the gABI
5531 arguably requires the alignment and glibc ld.so
5532 checks it. So to comply with the alignment
5533 requirement but not waste file space, we adjust
5534 p_offset for just this segment. (OFF_ADJUST is
5535 subtracted from OFF later.) This may put p_offset
5536 past the end of file, but that shouldn't matter. */
5537 }
5538 else
5539 off_adjust = 0;
5540 }
5541 /* Make sure the .dynamic section is the first section in the
5542 PT_DYNAMIC segment. */
5543 else if (p->p_type == PT_DYNAMIC
5544 && m->count > 1
5545 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5546 {
5547 _bfd_error_handler
5548 (_("%pB: The first section in the PT_DYNAMIC segment"
5549 " is not the .dynamic section"),
5550 abfd);
5551 bfd_set_error (bfd_error_bad_value);
5552 return FALSE;
5553 }
5554 /* Set the note section type to SHT_NOTE. */
5555 else if (p->p_type == PT_NOTE)
5556 for (i = 0; i < m->count; i++)
5557 elf_section_type (m->sections[i]) = SHT_NOTE;
5558
5559 p->p_offset = 0;
5560 p->p_filesz = 0;
5561 p->p_memsz = 0;
5562
5563 if (m->includes_filehdr)
5564 {
5565 if (!m->p_flags_valid)
5566 p->p_flags |= PF_R;
5567 p->p_filesz = bed->s->sizeof_ehdr;
5568 p->p_memsz = bed->s->sizeof_ehdr;
5569 if (m->count > 0)
5570 {
5571 if (p->p_vaddr < (bfd_vma) off
5572 || (!m->p_paddr_valid
5573 && p->p_paddr < (bfd_vma) off))
5574 {
5575 _bfd_error_handler
5576 (_("%pB: not enough room for program headers,"
5577 " try linking with -N"),
5578 abfd);
5579 bfd_set_error (bfd_error_bad_value);
5580 return FALSE;
5581 }
5582
5583 p->p_vaddr -= off;
5584 if (!m->p_paddr_valid)
5585 p->p_paddr -= off;
5586 }
5587 }
5588
5589 if (m->includes_phdrs)
5590 {
5591 if (!m->p_flags_valid)
5592 p->p_flags |= PF_R;
5593
5594 if (!m->includes_filehdr)
5595 {
5596 p->p_offset = bed->s->sizeof_ehdr;
5597
5598 if (m->count > 0)
5599 {
5600 p->p_vaddr -= off - p->p_offset;
5601 if (!m->p_paddr_valid)
5602 p->p_paddr -= off - p->p_offset;
5603 }
5604 }
5605
5606 p->p_filesz += alloc * bed->s->sizeof_phdr;
5607 p->p_memsz += alloc * bed->s->sizeof_phdr;
5608 if (m->count)
5609 {
5610 p->p_filesz += header_pad;
5611 p->p_memsz += header_pad;
5612 }
5613 }
5614
5615 if (p->p_type == PT_LOAD
5616 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5617 {
5618 if (!m->includes_filehdr && !m->includes_phdrs)
5619 p->p_offset = off;
5620 else
5621 {
5622 file_ptr adjust;
5623
5624 adjust = off - (p->p_offset + p->p_filesz);
5625 if (!no_contents)
5626 p->p_filesz += adjust;
5627 p->p_memsz += adjust;
5628 }
5629 }
5630
5631 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5632 maps. Set filepos for sections in PT_LOAD segments, and in
5633 core files, for sections in PT_NOTE segments.
5634 assign_file_positions_for_non_load_sections will set filepos
5635 for other sections and update p_filesz for other segments. */
5636 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5637 {
5638 asection *sec;
5639 bfd_size_type align;
5640 Elf_Internal_Shdr *this_hdr;
5641
5642 sec = *secpp;
5643 this_hdr = &elf_section_data (sec)->this_hdr;
5644 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5645
5646 if ((p->p_type == PT_LOAD
5647 || p->p_type == PT_TLS)
5648 && (this_hdr->sh_type != SHT_NOBITS
5649 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5650 && ((this_hdr->sh_flags & SHF_TLS) == 0
5651 || p->p_type == PT_TLS))))
5652 {
5653 bfd_vma p_start = p->p_paddr;
5654 bfd_vma p_end = p_start + p->p_memsz;
5655 bfd_vma s_start = sec->lma;
5656 bfd_vma adjust = s_start - p_end;
5657
5658 if (adjust != 0
5659 && (s_start < p_end
5660 || p_end < p_start))
5661 {
5662 _bfd_error_handler
5663 /* xgettext:c-format */
5664 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5665 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5666 adjust = 0;
5667 sec->lma = p_end;
5668 }
5669 p->p_memsz += adjust;
5670
5671 if (this_hdr->sh_type != SHT_NOBITS)
5672 {
5673 if (p->p_filesz + adjust < p->p_memsz)
5674 {
5675 /* We have a PROGBITS section following NOBITS ones.
5676 Allocate file space for the NOBITS section(s) and
5677 zero it. */
5678 adjust = p->p_memsz - p->p_filesz;
5679 if (!write_zeros (abfd, off, adjust))
5680 return FALSE;
5681 }
5682 off += adjust;
5683 p->p_filesz += adjust;
5684 }
5685 }
5686
5687 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5688 {
5689 /* The section at i == 0 is the one that actually contains
5690 everything. */
5691 if (i == 0)
5692 {
5693 this_hdr->sh_offset = sec->filepos = off;
5694 off += this_hdr->sh_size;
5695 p->p_filesz = this_hdr->sh_size;
5696 p->p_memsz = 0;
5697 p->p_align = 1;
5698 }
5699 else
5700 {
5701 /* The rest are fake sections that shouldn't be written. */
5702 sec->filepos = 0;
5703 sec->size = 0;
5704 sec->flags = 0;
5705 continue;
5706 }
5707 }
5708 else
5709 {
5710 if (p->p_type == PT_LOAD)
5711 {
5712 this_hdr->sh_offset = sec->filepos = off;
5713 if (this_hdr->sh_type != SHT_NOBITS)
5714 off += this_hdr->sh_size;
5715 }
5716 else if (this_hdr->sh_type == SHT_NOBITS
5717 && (this_hdr->sh_flags & SHF_TLS) != 0
5718 && this_hdr->sh_offset == 0)
5719 {
5720 /* This is a .tbss section that didn't get a PT_LOAD.
5721 (See _bfd_elf_map_sections_to_segments "Create a
5722 final PT_LOAD".) Set sh_offset to the value it
5723 would have if we had created a zero p_filesz and
5724 p_memsz PT_LOAD header for the section. This
5725 also makes the PT_TLS header have the same
5726 p_offset value. */
5727 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5728 off, align);
5729 this_hdr->sh_offset = sec->filepos = off + adjust;
5730 }
5731
5732 if (this_hdr->sh_type != SHT_NOBITS)
5733 {
5734 p->p_filesz += this_hdr->sh_size;
5735 /* A load section without SHF_ALLOC is something like
5736 a note section in a PT_NOTE segment. These take
5737 file space but are not loaded into memory. */
5738 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5739 p->p_memsz += this_hdr->sh_size;
5740 }
5741 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5742 {
5743 if (p->p_type == PT_TLS)
5744 p->p_memsz += this_hdr->sh_size;
5745
5746 /* .tbss is special. It doesn't contribute to p_memsz of
5747 normal segments. */
5748 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5749 p->p_memsz += this_hdr->sh_size;
5750 }
5751
5752 if (align > p->p_align
5753 && !m->p_align_valid
5754 && (p->p_type != PT_LOAD
5755 || (abfd->flags & D_PAGED) == 0))
5756 p->p_align = align;
5757 }
5758
5759 if (!m->p_flags_valid)
5760 {
5761 p->p_flags |= PF_R;
5762 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5763 p->p_flags |= PF_X;
5764 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5765 p->p_flags |= PF_W;
5766 }
5767 }
5768
5769 off -= off_adjust;
5770
5771 /* Check that all sections are in a PT_LOAD segment.
5772 Don't check funky gdb generated core files. */
5773 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5774 {
5775 bfd_boolean check_vma = TRUE;
5776
5777 for (i = 1; i < m->count; i++)
5778 if (m->sections[i]->vma == m->sections[i - 1]->vma
5779 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5780 ->this_hdr), p) != 0
5781 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5782 ->this_hdr), p) != 0)
5783 {
5784 /* Looks like we have overlays packed into the segment. */
5785 check_vma = FALSE;
5786 break;
5787 }
5788
5789 for (i = 0; i < m->count; i++)
5790 {
5791 Elf_Internal_Shdr *this_hdr;
5792 asection *sec;
5793
5794 sec = m->sections[i];
5795 this_hdr = &(elf_section_data(sec)->this_hdr);
5796 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5797 && !ELF_TBSS_SPECIAL (this_hdr, p))
5798 {
5799 _bfd_error_handler
5800 /* xgettext:c-format */
5801 (_("%pB: section `%pA' can't be allocated in segment %d"),
5802 abfd, sec, j);
5803 print_segment_map (m);
5804 }
5805 }
5806 }
5807 }
5808
5809 elf_next_file_pos (abfd) = off;
5810 return TRUE;
5811 }
5812
5813 /* Determine if a bfd is a debuginfo file. Unfortunately there
5814 is no defined method for detecting such files, so we have to
5815 use heuristics instead. */
5816
5817 bfd_boolean
5818 is_debuginfo_file (bfd *abfd)
5819 {
5820 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5821 return FALSE;
5822
5823 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
5824 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
5825 Elf_Internal_Shdr **headerp;
5826
5827 for (headerp = start_headers; headerp < end_headers; headerp ++)
5828 {
5829 Elf_Internal_Shdr *header = * headerp;
5830
5831 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
5832 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
5833 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
5834 && header->sh_type != SHT_NOBITS
5835 && header->sh_type != SHT_NOTE)
5836 return FALSE;
5837 }
5838
5839 return TRUE;
5840 }
5841
5842 /* Assign file positions for the other sections. */
5843
5844 static bfd_boolean
5845 assign_file_positions_for_non_load_sections (bfd *abfd,
5846 struct bfd_link_info *link_info)
5847 {
5848 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5849 Elf_Internal_Shdr **i_shdrpp;
5850 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5851 Elf_Internal_Phdr *phdrs;
5852 Elf_Internal_Phdr *p;
5853 struct elf_segment_map *m;
5854 struct elf_segment_map *hdrs_segment;
5855 bfd_vma filehdr_vaddr, filehdr_paddr;
5856 bfd_vma phdrs_vaddr, phdrs_paddr;
5857 file_ptr off;
5858 unsigned int count;
5859
5860 i_shdrpp = elf_elfsections (abfd);
5861 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5862 off = elf_next_file_pos (abfd);
5863 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5864 {
5865 Elf_Internal_Shdr *hdr;
5866
5867 hdr = *hdrpp;
5868 if (hdr->bfd_section != NULL
5869 && (hdr->bfd_section->filepos != 0
5870 || (hdr->sh_type == SHT_NOBITS
5871 && hdr->contents == NULL)))
5872 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5873 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5874 {
5875 if (hdr->sh_size != 0
5876 /* PR 24717 - debuginfo files are known to be not strictly
5877 compliant with the ELF standard. In particular they often
5878 have .note.gnu.property sections that are outside of any
5879 loadable segment. This is not a problem for such files,
5880 so do not warn about them. */
5881 && ! is_debuginfo_file (abfd))
5882 _bfd_error_handler
5883 /* xgettext:c-format */
5884 (_("%pB: warning: allocated section `%s' not in segment"),
5885 abfd,
5886 (hdr->bfd_section == NULL
5887 ? "*unknown*"
5888 : hdr->bfd_section->name));
5889 /* We don't need to page align empty sections. */
5890 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5891 off += vma_page_aligned_bias (hdr->sh_addr, off,
5892 bed->maxpagesize);
5893 else
5894 off += vma_page_aligned_bias (hdr->sh_addr, off,
5895 hdr->sh_addralign);
5896 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5897 FALSE);
5898 }
5899 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5900 && hdr->bfd_section == NULL)
5901 || (hdr->bfd_section != NULL
5902 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5903 /* Compress DWARF debug sections. */
5904 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5905 || (elf_symtab_shndx_list (abfd) != NULL
5906 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5907 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5908 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5909 hdr->sh_offset = -1;
5910 else
5911 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5912 }
5913
5914 /* Now that we have set the section file positions, we can set up
5915 the file positions for the non PT_LOAD segments. */
5916 count = 0;
5917 filehdr_vaddr = 0;
5918 filehdr_paddr = 0;
5919 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5920 phdrs_paddr = 0;
5921 hdrs_segment = NULL;
5922 phdrs = elf_tdata (abfd)->phdr;
5923 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5924 {
5925 ++count;
5926 if (p->p_type != PT_LOAD)
5927 continue;
5928
5929 if (m->includes_filehdr)
5930 {
5931 filehdr_vaddr = p->p_vaddr;
5932 filehdr_paddr = p->p_paddr;
5933 }
5934 if (m->includes_phdrs)
5935 {
5936 phdrs_vaddr = p->p_vaddr;
5937 phdrs_paddr = p->p_paddr;
5938 if (m->includes_filehdr)
5939 {
5940 hdrs_segment = m;
5941 phdrs_vaddr += bed->s->sizeof_ehdr;
5942 phdrs_paddr += bed->s->sizeof_ehdr;
5943 }
5944 }
5945 }
5946
5947 if (hdrs_segment != NULL && link_info != NULL)
5948 {
5949 /* There is a segment that contains both the file headers and the
5950 program headers, so provide a symbol __ehdr_start pointing there.
5951 A program can use this to examine itself robustly. */
5952
5953 struct elf_link_hash_entry *hash
5954 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5955 FALSE, FALSE, TRUE);
5956 /* If the symbol was referenced and not defined, define it. */
5957 if (hash != NULL
5958 && (hash->root.type == bfd_link_hash_new
5959 || hash->root.type == bfd_link_hash_undefined
5960 || hash->root.type == bfd_link_hash_undefweak
5961 || hash->root.type == bfd_link_hash_common))
5962 {
5963 asection *s = NULL;
5964 if (hdrs_segment->count != 0)
5965 /* The segment contains sections, so use the first one. */
5966 s = hdrs_segment->sections[0];
5967 else
5968 /* Use the first (i.e. lowest-addressed) section in any segment. */
5969 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5970 if (m->count != 0)
5971 {
5972 s = m->sections[0];
5973 break;
5974 }
5975
5976 if (s != NULL)
5977 {
5978 hash->root.u.def.value = filehdr_vaddr - s->vma;
5979 hash->root.u.def.section = s;
5980 }
5981 else
5982 {
5983 hash->root.u.def.value = filehdr_vaddr;
5984 hash->root.u.def.section = bfd_abs_section_ptr;
5985 }
5986
5987 hash->root.type = bfd_link_hash_defined;
5988 hash->def_regular = 1;
5989 hash->non_elf = 0;
5990 }
5991 }
5992
5993 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5994 {
5995 if (p->p_type == PT_GNU_RELRO)
5996 {
5997 bfd_vma start, end;
5998 bfd_boolean ok;
5999
6000 if (link_info != NULL)
6001 {
6002 /* During linking the range of the RELRO segment is passed
6003 in link_info. Note that there may be padding between
6004 relro_start and the first RELRO section. */
6005 start = link_info->relro_start;
6006 end = link_info->relro_end;
6007 }
6008 else if (m->count != 0)
6009 {
6010 if (!m->p_size_valid)
6011 abort ();
6012 start = m->sections[0]->vma;
6013 end = start + m->p_size;
6014 }
6015 else
6016 {
6017 start = 0;
6018 end = 0;
6019 }
6020
6021 ok = FALSE;
6022 if (start < end)
6023 {
6024 struct elf_segment_map *lm;
6025 const Elf_Internal_Phdr *lp;
6026 unsigned int i;
6027
6028 /* Find a LOAD segment containing a section in the RELRO
6029 segment. */
6030 for (lm = elf_seg_map (abfd), lp = phdrs;
6031 lm != NULL;
6032 lm = lm->next, lp++)
6033 {
6034 if (lp->p_type == PT_LOAD
6035 && lm->count != 0
6036 && (lm->sections[lm->count - 1]->vma
6037 + (!IS_TBSS (lm->sections[lm->count - 1])
6038 ? lm->sections[lm->count - 1]->size
6039 : 0)) > start
6040 && lm->sections[0]->vma < end)
6041 break;
6042 }
6043
6044 if (lm != NULL)
6045 {
6046 /* Find the section starting the RELRO segment. */
6047 for (i = 0; i < lm->count; i++)
6048 {
6049 asection *s = lm->sections[i];
6050 if (s->vma >= start
6051 && s->vma < end
6052 && s->size != 0)
6053 break;
6054 }
6055
6056 if (i < lm->count)
6057 {
6058 p->p_vaddr = lm->sections[i]->vma;
6059 p->p_paddr = lm->sections[i]->lma;
6060 p->p_offset = lm->sections[i]->filepos;
6061 p->p_memsz = end - p->p_vaddr;
6062 p->p_filesz = p->p_memsz;
6063
6064 /* The RELRO segment typically ends a few bytes
6065 into .got.plt but other layouts are possible.
6066 In cases where the end does not match any
6067 loaded section (for instance is in file
6068 padding), trim p_filesz back to correspond to
6069 the end of loaded section contents. */
6070 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6071 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6072
6073 /* Preserve the alignment and flags if they are
6074 valid. The gold linker generates RW/4 for
6075 the PT_GNU_RELRO section. It is better for
6076 objcopy/strip to honor these attributes
6077 otherwise gdb will choke when using separate
6078 debug files. */
6079 if (!m->p_align_valid)
6080 p->p_align = 1;
6081 if (!m->p_flags_valid)
6082 p->p_flags = PF_R;
6083 ok = TRUE;
6084 }
6085 }
6086 }
6087 if (link_info != NULL)
6088 BFD_ASSERT (ok);
6089 if (!ok)
6090 memset (p, 0, sizeof *p);
6091 }
6092 else if (p->p_type == PT_GNU_STACK)
6093 {
6094 if (m->p_size_valid)
6095 p->p_memsz = m->p_size;
6096 }
6097 else if (m->count != 0)
6098 {
6099 unsigned int i;
6100
6101 if (p->p_type != PT_LOAD
6102 && (p->p_type != PT_NOTE
6103 || bfd_get_format (abfd) != bfd_core))
6104 {
6105 /* A user specified segment layout may include a PHDR
6106 segment that overlaps with a LOAD segment... */
6107 if (p->p_type == PT_PHDR)
6108 {
6109 m->count = 0;
6110 continue;
6111 }
6112
6113 if (m->includes_filehdr || m->includes_phdrs)
6114 {
6115 /* PR 17512: file: 2195325e. */
6116 _bfd_error_handler
6117 (_("%pB: error: non-load segment %d includes file header "
6118 "and/or program header"),
6119 abfd, (int) (p - phdrs));
6120 return FALSE;
6121 }
6122
6123 p->p_filesz = 0;
6124 p->p_offset = m->sections[0]->filepos;
6125 for (i = m->count; i-- != 0;)
6126 {
6127 asection *sect = m->sections[i];
6128 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6129 if (hdr->sh_type != SHT_NOBITS)
6130 {
6131 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6132 + hdr->sh_size);
6133 break;
6134 }
6135 }
6136 }
6137 }
6138 else if (m->includes_filehdr)
6139 {
6140 p->p_vaddr = filehdr_vaddr;
6141 if (! m->p_paddr_valid)
6142 p->p_paddr = filehdr_paddr;
6143 }
6144 else if (m->includes_phdrs)
6145 {
6146 p->p_vaddr = phdrs_vaddr;
6147 if (! m->p_paddr_valid)
6148 p->p_paddr = phdrs_paddr;
6149 }
6150 }
6151
6152 elf_next_file_pos (abfd) = off;
6153
6154 return TRUE;
6155 }
6156
6157 static elf_section_list *
6158 find_section_in_list (unsigned int i, elf_section_list * list)
6159 {
6160 for (;list != NULL; list = list->next)
6161 if (list->ndx == i)
6162 break;
6163 return list;
6164 }
6165
6166 /* Work out the file positions of all the sections. This is called by
6167 _bfd_elf_compute_section_file_positions. All the section sizes and
6168 VMAs must be known before this is called.
6169
6170 Reloc sections come in two flavours: Those processed specially as
6171 "side-channel" data attached to a section to which they apply, and
6172 those that bfd doesn't process as relocations. The latter sort are
6173 stored in a normal bfd section by bfd_section_from_shdr. We don't
6174 consider the former sort here, unless they form part of the loadable
6175 image. Reloc sections not assigned here will be handled later by
6176 assign_file_positions_for_relocs.
6177
6178 We also don't set the positions of the .symtab and .strtab here. */
6179
6180 static bfd_boolean
6181 assign_file_positions_except_relocs (bfd *abfd,
6182 struct bfd_link_info *link_info)
6183 {
6184 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6185 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6186 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6187
6188 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6189 && bfd_get_format (abfd) != bfd_core)
6190 {
6191 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6192 unsigned int num_sec = elf_numsections (abfd);
6193 Elf_Internal_Shdr **hdrpp;
6194 unsigned int i;
6195 file_ptr off;
6196
6197 /* Start after the ELF header. */
6198 off = i_ehdrp->e_ehsize;
6199
6200 /* We are not creating an executable, which means that we are
6201 not creating a program header, and that the actual order of
6202 the sections in the file is unimportant. */
6203 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6204 {
6205 Elf_Internal_Shdr *hdr;
6206
6207 hdr = *hdrpp;
6208 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6209 && hdr->bfd_section == NULL)
6210 || (hdr->bfd_section != NULL
6211 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6212 /* Compress DWARF debug sections. */
6213 || i == elf_onesymtab (abfd)
6214 || (elf_symtab_shndx_list (abfd) != NULL
6215 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6216 || i == elf_strtab_sec (abfd)
6217 || i == elf_shstrtab_sec (abfd))
6218 {
6219 hdr->sh_offset = -1;
6220 }
6221 else
6222 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6223 }
6224
6225 elf_next_file_pos (abfd) = off;
6226 }
6227 else
6228 {
6229 unsigned int alloc;
6230
6231 /* Assign file positions for the loaded sections based on the
6232 assignment of sections to segments. */
6233 if (!assign_file_positions_for_load_sections (abfd, link_info))
6234 return FALSE;
6235
6236 /* And for non-load sections. */
6237 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6238 return FALSE;
6239
6240 if (bed->elf_backend_modify_program_headers != NULL)
6241 {
6242 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6243 return FALSE;
6244 }
6245
6246 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6247 if (link_info != NULL && bfd_link_pie (link_info))
6248 {
6249 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6250 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6251 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6252
6253 /* Find the lowest p_vaddr in PT_LOAD segments. */
6254 bfd_vma p_vaddr = (bfd_vma) -1;
6255 for (; segment < end_segment; segment++)
6256 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6257 p_vaddr = segment->p_vaddr;
6258
6259 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6260 segments is non-zero. */
6261 if (p_vaddr)
6262 i_ehdrp->e_type = ET_EXEC;
6263 }
6264
6265 /* Write out the program headers. */
6266 alloc = elf_elfheader (abfd)->e_phnum;
6267 if (alloc == 0)
6268 return TRUE;
6269
6270 /* PR ld/20815 - Check that the program header segment, if present, will
6271 be loaded into memory. FIXME: The check below is not sufficient as
6272 really all PT_LOAD segments should be checked before issuing an error
6273 message. Plus the PHDR segment does not have to be the first segment
6274 in the program header table. But this version of the check should
6275 catch all real world use cases.
6276
6277 FIXME: We used to have code here to sort the PT_LOAD segments into
6278 ascending order, as per the ELF spec. But this breaks some programs,
6279 including the Linux kernel. But really either the spec should be
6280 changed or the programs updated. */
6281 if (alloc > 1
6282 && tdata->phdr[0].p_type == PT_PHDR
6283 && (bed->elf_backend_allow_non_load_phdr == NULL
6284 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6285 alloc))
6286 && tdata->phdr[1].p_type == PT_LOAD
6287 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6288 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz
6289 < tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6290 {
6291 /* The fix for this error is usually to edit the linker script being
6292 used and set up the program headers manually. Either that or
6293 leave room for the headers at the start of the SECTIONS. */
6294 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
6295 " by LOAD segment"),
6296 abfd);
6297 return FALSE;
6298 }
6299
6300 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6301 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6302 return FALSE;
6303 }
6304
6305 return TRUE;
6306 }
6307
6308 static bfd_boolean
6309 prep_headers (bfd *abfd)
6310 {
6311 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6312 struct elf_strtab_hash *shstrtab;
6313 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6314
6315 i_ehdrp = elf_elfheader (abfd);
6316
6317 shstrtab = _bfd_elf_strtab_init ();
6318 if (shstrtab == NULL)
6319 return FALSE;
6320
6321 elf_shstrtab (abfd) = shstrtab;
6322
6323 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6324 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6325 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6326 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6327
6328 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6329 i_ehdrp->e_ident[EI_DATA] =
6330 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6331 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6332
6333 if ((abfd->flags & DYNAMIC) != 0)
6334 i_ehdrp->e_type = ET_DYN;
6335 else if ((abfd->flags & EXEC_P) != 0)
6336 i_ehdrp->e_type = ET_EXEC;
6337 else if (bfd_get_format (abfd) == bfd_core)
6338 i_ehdrp->e_type = ET_CORE;
6339 else
6340 i_ehdrp->e_type = ET_REL;
6341
6342 switch (bfd_get_arch (abfd))
6343 {
6344 case bfd_arch_unknown:
6345 i_ehdrp->e_machine = EM_NONE;
6346 break;
6347
6348 /* There used to be a long list of cases here, each one setting
6349 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6350 in the corresponding bfd definition. To avoid duplication,
6351 the switch was removed. Machines that need special handling
6352 can generally do it in elf_backend_final_write_processing(),
6353 unless they need the information earlier than the final write.
6354 Such need can generally be supplied by replacing the tests for
6355 e_machine with the conditions used to determine it. */
6356 default:
6357 i_ehdrp->e_machine = bed->elf_machine_code;
6358 }
6359
6360 i_ehdrp->e_version = bed->s->ev_current;
6361 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6362
6363 /* No program header, for now. */
6364 i_ehdrp->e_phoff = 0;
6365 i_ehdrp->e_phentsize = 0;
6366 i_ehdrp->e_phnum = 0;
6367
6368 /* Each bfd section is section header entry. */
6369 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6370 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6371
6372 /* If we're building an executable, we'll need a program header table. */
6373 if (abfd->flags & EXEC_P)
6374 /* It all happens later. */
6375 ;
6376 else
6377 {
6378 i_ehdrp->e_phentsize = 0;
6379 i_ehdrp->e_phoff = 0;
6380 }
6381
6382 elf_tdata (abfd)->symtab_hdr.sh_name =
6383 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6384 elf_tdata (abfd)->strtab_hdr.sh_name =
6385 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6386 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6387 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6388 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6389 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6390 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6391 return FALSE;
6392
6393 return TRUE;
6394 }
6395
6396 /* Assign file positions for all the reloc sections which are not part
6397 of the loadable file image, and the file position of section headers. */
6398
6399 static bfd_boolean
6400 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6401 {
6402 file_ptr off;
6403 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6404 Elf_Internal_Shdr *shdrp;
6405 Elf_Internal_Ehdr *i_ehdrp;
6406 const struct elf_backend_data *bed;
6407
6408 off = elf_next_file_pos (abfd);
6409
6410 shdrpp = elf_elfsections (abfd);
6411 end_shdrpp = shdrpp + elf_numsections (abfd);
6412 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6413 {
6414 shdrp = *shdrpp;
6415 if (shdrp->sh_offset == -1)
6416 {
6417 asection *sec = shdrp->bfd_section;
6418 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6419 || shdrp->sh_type == SHT_RELA);
6420 if (is_rel
6421 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6422 {
6423 if (!is_rel)
6424 {
6425 const char *name = sec->name;
6426 struct bfd_elf_section_data *d;
6427
6428 /* Compress DWARF debug sections. */
6429 if (!bfd_compress_section (abfd, sec,
6430 shdrp->contents))
6431 return FALSE;
6432
6433 if (sec->compress_status == COMPRESS_SECTION_DONE
6434 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6435 {
6436 /* If section is compressed with zlib-gnu, convert
6437 section name from .debug_* to .zdebug_*. */
6438 char *new_name
6439 = convert_debug_to_zdebug (abfd, name);
6440 if (new_name == NULL)
6441 return FALSE;
6442 name = new_name;
6443 }
6444 /* Add section name to section name section. */
6445 if (shdrp->sh_name != (unsigned int) -1)
6446 abort ();
6447 shdrp->sh_name
6448 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6449 name, FALSE);
6450 d = elf_section_data (sec);
6451
6452 /* Add reloc section name to section name section. */
6453 if (d->rel.hdr
6454 && !_bfd_elf_set_reloc_sh_name (abfd,
6455 d->rel.hdr,
6456 name, FALSE))
6457 return FALSE;
6458 if (d->rela.hdr
6459 && !_bfd_elf_set_reloc_sh_name (abfd,
6460 d->rela.hdr,
6461 name, TRUE))
6462 return FALSE;
6463
6464 /* Update section size and contents. */
6465 shdrp->sh_size = sec->size;
6466 shdrp->contents = sec->contents;
6467 shdrp->bfd_section->contents = NULL;
6468 }
6469 off = _bfd_elf_assign_file_position_for_section (shdrp,
6470 off,
6471 TRUE);
6472 }
6473 }
6474 }
6475
6476 /* Place section name section after DWARF debug sections have been
6477 compressed. */
6478 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6479 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6480 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6481 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6482
6483 /* Place the section headers. */
6484 i_ehdrp = elf_elfheader (abfd);
6485 bed = get_elf_backend_data (abfd);
6486 off = align_file_position (off, 1 << bed->s->log_file_align);
6487 i_ehdrp->e_shoff = off;
6488 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6489 elf_next_file_pos (abfd) = off;
6490
6491 return TRUE;
6492 }
6493
6494 bfd_boolean
6495 _bfd_elf_write_object_contents (bfd *abfd)
6496 {
6497 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6498 Elf_Internal_Shdr **i_shdrp;
6499 bfd_boolean failed;
6500 unsigned int count, num_sec;
6501 struct elf_obj_tdata *t;
6502
6503 if (! abfd->output_has_begun
6504 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6505 return FALSE;
6506 /* Do not rewrite ELF data when the BFD has been opened for update.
6507 abfd->output_has_begun was set to TRUE on opening, so creation of new
6508 sections, and modification of existing section sizes was restricted.
6509 This means the ELF header, program headers and section headers can't have
6510 changed.
6511 If the contents of any sections has been modified, then those changes have
6512 already been written to the BFD. */
6513 else if (abfd->direction == both_direction)
6514 {
6515 BFD_ASSERT (abfd->output_has_begun);
6516 return TRUE;
6517 }
6518
6519 i_shdrp = elf_elfsections (abfd);
6520
6521 failed = FALSE;
6522 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6523 if (failed)
6524 return FALSE;
6525
6526 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6527 return FALSE;
6528
6529 /* After writing the headers, we need to write the sections too... */
6530 num_sec = elf_numsections (abfd);
6531 for (count = 1; count < num_sec; count++)
6532 {
6533 i_shdrp[count]->sh_name
6534 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6535 i_shdrp[count]->sh_name);
6536 if (bed->elf_backend_section_processing)
6537 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6538 return FALSE;
6539 if (i_shdrp[count]->contents)
6540 {
6541 bfd_size_type amt = i_shdrp[count]->sh_size;
6542
6543 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6544 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6545 return FALSE;
6546 }
6547 }
6548
6549 /* Write out the section header names. */
6550 t = elf_tdata (abfd);
6551 if (elf_shstrtab (abfd) != NULL
6552 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6553 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6554 return FALSE;
6555
6556 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6557
6558 if (!bed->s->write_shdrs_and_ehdr (abfd))
6559 return FALSE;
6560
6561 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6562 if (t->o->build_id.after_write_object_contents != NULL)
6563 return (*t->o->build_id.after_write_object_contents) (abfd);
6564
6565 return TRUE;
6566 }
6567
6568 bfd_boolean
6569 _bfd_elf_write_corefile_contents (bfd *abfd)
6570 {
6571 /* Hopefully this can be done just like an object file. */
6572 return _bfd_elf_write_object_contents (abfd);
6573 }
6574
6575 /* Given a section, search the header to find them. */
6576
6577 unsigned int
6578 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6579 {
6580 const struct elf_backend_data *bed;
6581 unsigned int sec_index;
6582
6583 if (elf_section_data (asect) != NULL
6584 && elf_section_data (asect)->this_idx != 0)
6585 return elf_section_data (asect)->this_idx;
6586
6587 if (bfd_is_abs_section (asect))
6588 sec_index = SHN_ABS;
6589 else if (bfd_is_com_section (asect))
6590 sec_index = SHN_COMMON;
6591 else if (bfd_is_und_section (asect))
6592 sec_index = SHN_UNDEF;
6593 else
6594 sec_index = SHN_BAD;
6595
6596 bed = get_elf_backend_data (abfd);
6597 if (bed->elf_backend_section_from_bfd_section)
6598 {
6599 int retval = sec_index;
6600
6601 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6602 return retval;
6603 }
6604
6605 if (sec_index == SHN_BAD)
6606 bfd_set_error (bfd_error_nonrepresentable_section);
6607
6608 return sec_index;
6609 }
6610
6611 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6612 on error. */
6613
6614 int
6615 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6616 {
6617 asymbol *asym_ptr = *asym_ptr_ptr;
6618 int idx;
6619 flagword flags = asym_ptr->flags;
6620
6621 /* When gas creates relocations against local labels, it creates its
6622 own symbol for the section, but does put the symbol into the
6623 symbol chain, so udata is 0. When the linker is generating
6624 relocatable output, this section symbol may be for one of the
6625 input sections rather than the output section. */
6626 if (asym_ptr->udata.i == 0
6627 && (flags & BSF_SECTION_SYM)
6628 && asym_ptr->section)
6629 {
6630 asection *sec;
6631 int indx;
6632
6633 sec = asym_ptr->section;
6634 if (sec->owner != abfd && sec->output_section != NULL)
6635 sec = sec->output_section;
6636 if (sec->owner == abfd
6637 && (indx = sec->index) < elf_num_section_syms (abfd)
6638 && elf_section_syms (abfd)[indx] != NULL)
6639 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6640 }
6641
6642 idx = asym_ptr->udata.i;
6643
6644 if (idx == 0)
6645 {
6646 /* This case can occur when using --strip-symbol on a symbol
6647 which is used in a relocation entry. */
6648 _bfd_error_handler
6649 /* xgettext:c-format */
6650 (_("%pB: symbol `%s' required but not present"),
6651 abfd, bfd_asymbol_name (asym_ptr));
6652 bfd_set_error (bfd_error_no_symbols);
6653 return -1;
6654 }
6655
6656 #if DEBUG & 4
6657 {
6658 fprintf (stderr,
6659 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6660 (long) asym_ptr, asym_ptr->name, idx, flags);
6661 fflush (stderr);
6662 }
6663 #endif
6664
6665 return idx;
6666 }
6667
6668 /* Rewrite program header information. */
6669
6670 static bfd_boolean
6671 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6672 {
6673 Elf_Internal_Ehdr *iehdr;
6674 struct elf_segment_map *map;
6675 struct elf_segment_map *map_first;
6676 struct elf_segment_map **pointer_to_map;
6677 Elf_Internal_Phdr *segment;
6678 asection *section;
6679 unsigned int i;
6680 unsigned int num_segments;
6681 bfd_boolean phdr_included = FALSE;
6682 bfd_boolean p_paddr_valid;
6683 bfd_vma maxpagesize;
6684 struct elf_segment_map *phdr_adjust_seg = NULL;
6685 unsigned int phdr_adjust_num = 0;
6686 const struct elf_backend_data *bed;
6687
6688 bed = get_elf_backend_data (ibfd);
6689 iehdr = elf_elfheader (ibfd);
6690
6691 map_first = NULL;
6692 pointer_to_map = &map_first;
6693
6694 num_segments = elf_elfheader (ibfd)->e_phnum;
6695 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6696
6697 /* Returns the end address of the segment + 1. */
6698 #define SEGMENT_END(segment, start) \
6699 (start + (segment->p_memsz > segment->p_filesz \
6700 ? segment->p_memsz : segment->p_filesz))
6701
6702 #define SECTION_SIZE(section, segment) \
6703 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6704 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6705 ? section->size : 0)
6706
6707 /* Returns TRUE if the given section is contained within
6708 the given segment. VMA addresses are compared. */
6709 #define IS_CONTAINED_BY_VMA(section, segment) \
6710 (section->vma >= segment->p_vaddr \
6711 && (section->vma + SECTION_SIZE (section, segment) \
6712 <= (SEGMENT_END (segment, segment->p_vaddr))))
6713
6714 /* Returns TRUE if the given section is contained within
6715 the given segment. LMA addresses are compared. */
6716 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6717 (section->lma >= base \
6718 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6719 && (section->lma + SECTION_SIZE (section, segment) \
6720 <= SEGMENT_END (segment, base)))
6721
6722 /* Handle PT_NOTE segment. */
6723 #define IS_NOTE(p, s) \
6724 (p->p_type == PT_NOTE \
6725 && elf_section_type (s) == SHT_NOTE \
6726 && (bfd_vma) s->filepos >= p->p_offset \
6727 && ((bfd_vma) s->filepos + s->size \
6728 <= p->p_offset + p->p_filesz))
6729
6730 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6731 etc. */
6732 #define IS_COREFILE_NOTE(p, s) \
6733 (IS_NOTE (p, s) \
6734 && bfd_get_format (ibfd) == bfd_core \
6735 && s->vma == 0 \
6736 && s->lma == 0)
6737
6738 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6739 linker, which generates a PT_INTERP section with p_vaddr and
6740 p_memsz set to 0. */
6741 #define IS_SOLARIS_PT_INTERP(p, s) \
6742 (p->p_vaddr == 0 \
6743 && p->p_paddr == 0 \
6744 && p->p_memsz == 0 \
6745 && p->p_filesz > 0 \
6746 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6747 && s->size > 0 \
6748 && (bfd_vma) s->filepos >= p->p_offset \
6749 && ((bfd_vma) s->filepos + s->size \
6750 <= p->p_offset + p->p_filesz))
6751
6752 /* Decide if the given section should be included in the given segment.
6753 A section will be included if:
6754 1. It is within the address space of the segment -- we use the LMA
6755 if that is set for the segment and the VMA otherwise,
6756 2. It is an allocated section or a NOTE section in a PT_NOTE
6757 segment.
6758 3. There is an output section associated with it,
6759 4. The section has not already been allocated to a previous segment.
6760 5. PT_GNU_STACK segments do not include any sections.
6761 6. PT_TLS segment includes only SHF_TLS sections.
6762 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6763 8. PT_DYNAMIC should not contain empty sections at the beginning
6764 (with the possible exception of .dynamic). */
6765 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6766 ((((segment->p_paddr \
6767 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6768 : IS_CONTAINED_BY_VMA (section, segment)) \
6769 && (section->flags & SEC_ALLOC) != 0) \
6770 || IS_NOTE (segment, section)) \
6771 && segment->p_type != PT_GNU_STACK \
6772 && (segment->p_type != PT_TLS \
6773 || (section->flags & SEC_THREAD_LOCAL)) \
6774 && (segment->p_type == PT_LOAD \
6775 || segment->p_type == PT_TLS \
6776 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6777 && (segment->p_type != PT_DYNAMIC \
6778 || SECTION_SIZE (section, segment) > 0 \
6779 || (segment->p_paddr \
6780 ? segment->p_paddr != section->lma \
6781 : segment->p_vaddr != section->vma) \
6782 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6783 == 0)) \
6784 && (segment->p_type != PT_LOAD || !section->segment_mark))
6785
6786 /* If the output section of a section in the input segment is NULL,
6787 it is removed from the corresponding output segment. */
6788 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6789 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6790 && section->output_section != NULL)
6791
6792 /* Returns TRUE iff seg1 starts after the end of seg2. */
6793 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6794 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6795
6796 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6797 their VMA address ranges and their LMA address ranges overlap.
6798 It is possible to have overlapping VMA ranges without overlapping LMA
6799 ranges. RedBoot images for example can have both .data and .bss mapped
6800 to the same VMA range, but with the .data section mapped to a different
6801 LMA. */
6802 #define SEGMENT_OVERLAPS(seg1, seg2) \
6803 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6804 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6805 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6806 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6807
6808 /* Initialise the segment mark field. */
6809 for (section = ibfd->sections; section != NULL; section = section->next)
6810 section->segment_mark = FALSE;
6811
6812 /* The Solaris linker creates program headers in which all the
6813 p_paddr fields are zero. When we try to objcopy or strip such a
6814 file, we get confused. Check for this case, and if we find it
6815 don't set the p_paddr_valid fields. */
6816 p_paddr_valid = FALSE;
6817 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6818 i < num_segments;
6819 i++, segment++)
6820 if (segment->p_paddr != 0)
6821 {
6822 p_paddr_valid = TRUE;
6823 break;
6824 }
6825
6826 /* Scan through the segments specified in the program header
6827 of the input BFD. For this first scan we look for overlaps
6828 in the loadable segments. These can be created by weird
6829 parameters to objcopy. Also, fix some solaris weirdness. */
6830 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6831 i < num_segments;
6832 i++, segment++)
6833 {
6834 unsigned int j;
6835 Elf_Internal_Phdr *segment2;
6836
6837 if (segment->p_type == PT_INTERP)
6838 for (section = ibfd->sections; section; section = section->next)
6839 if (IS_SOLARIS_PT_INTERP (segment, section))
6840 {
6841 /* Mininal change so that the normal section to segment
6842 assignment code will work. */
6843 segment->p_vaddr = section->vma;
6844 break;
6845 }
6846
6847 if (segment->p_type != PT_LOAD)
6848 {
6849 /* Remove PT_GNU_RELRO segment. */
6850 if (segment->p_type == PT_GNU_RELRO)
6851 segment->p_type = PT_NULL;
6852 continue;
6853 }
6854
6855 /* Determine if this segment overlaps any previous segments. */
6856 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6857 {
6858 bfd_signed_vma extra_length;
6859
6860 if (segment2->p_type != PT_LOAD
6861 || !SEGMENT_OVERLAPS (segment, segment2))
6862 continue;
6863
6864 /* Merge the two segments together. */
6865 if (segment2->p_vaddr < segment->p_vaddr)
6866 {
6867 /* Extend SEGMENT2 to include SEGMENT and then delete
6868 SEGMENT. */
6869 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6870 - SEGMENT_END (segment2, segment2->p_vaddr));
6871
6872 if (extra_length > 0)
6873 {
6874 segment2->p_memsz += extra_length;
6875 segment2->p_filesz += extra_length;
6876 }
6877
6878 segment->p_type = PT_NULL;
6879
6880 /* Since we have deleted P we must restart the outer loop. */
6881 i = 0;
6882 segment = elf_tdata (ibfd)->phdr;
6883 break;
6884 }
6885 else
6886 {
6887 /* Extend SEGMENT to include SEGMENT2 and then delete
6888 SEGMENT2. */
6889 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6890 - SEGMENT_END (segment, segment->p_vaddr));
6891
6892 if (extra_length > 0)
6893 {
6894 segment->p_memsz += extra_length;
6895 segment->p_filesz += extra_length;
6896 }
6897
6898 segment2->p_type = PT_NULL;
6899 }
6900 }
6901 }
6902
6903 /* The second scan attempts to assign sections to segments. */
6904 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6905 i < num_segments;
6906 i++, segment++)
6907 {
6908 unsigned int section_count;
6909 asection **sections;
6910 asection *output_section;
6911 unsigned int isec;
6912 asection *matching_lma;
6913 asection *suggested_lma;
6914 unsigned int j;
6915 bfd_size_type amt;
6916 asection *first_section;
6917
6918 if (segment->p_type == PT_NULL)
6919 continue;
6920
6921 first_section = NULL;
6922 /* Compute how many sections might be placed into this segment. */
6923 for (section = ibfd->sections, section_count = 0;
6924 section != NULL;
6925 section = section->next)
6926 {
6927 /* Find the first section in the input segment, which may be
6928 removed from the corresponding output segment. */
6929 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6930 {
6931 if (first_section == NULL)
6932 first_section = section;
6933 if (section->output_section != NULL)
6934 ++section_count;
6935 }
6936 }
6937
6938 /* Allocate a segment map big enough to contain
6939 all of the sections we have selected. */
6940 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
6941 amt += (bfd_size_type) section_count * sizeof (asection *);
6942 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6943 if (map == NULL)
6944 return FALSE;
6945
6946 /* Initialise the fields of the segment map. Default to
6947 using the physical address of the segment in the input BFD. */
6948 map->next = NULL;
6949 map->p_type = segment->p_type;
6950 map->p_flags = segment->p_flags;
6951 map->p_flags_valid = 1;
6952
6953 /* If the first section in the input segment is removed, there is
6954 no need to preserve segment physical address in the corresponding
6955 output segment. */
6956 if (!first_section || first_section->output_section != NULL)
6957 {
6958 map->p_paddr = segment->p_paddr;
6959 map->p_paddr_valid = p_paddr_valid;
6960 }
6961
6962 /* Determine if this segment contains the ELF file header
6963 and if it contains the program headers themselves. */
6964 map->includes_filehdr = (segment->p_offset == 0
6965 && segment->p_filesz >= iehdr->e_ehsize);
6966 map->includes_phdrs = 0;
6967
6968 if (!phdr_included || segment->p_type != PT_LOAD)
6969 {
6970 map->includes_phdrs =
6971 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6972 && (segment->p_offset + segment->p_filesz
6973 >= ((bfd_vma) iehdr->e_phoff
6974 + iehdr->e_phnum * iehdr->e_phentsize)));
6975
6976 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6977 phdr_included = TRUE;
6978 }
6979
6980 if (section_count == 0)
6981 {
6982 /* Special segments, such as the PT_PHDR segment, may contain
6983 no sections, but ordinary, loadable segments should contain
6984 something. They are allowed by the ELF spec however, so only
6985 a warning is produced.
6986 There is however the valid use case of embedded systems which
6987 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6988 flash memory with zeros. No warning is shown for that case. */
6989 if (segment->p_type == PT_LOAD
6990 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6991 /* xgettext:c-format */
6992 _bfd_error_handler
6993 (_("%pB: warning: empty loadable segment detected"
6994 " at vaddr=%#" PRIx64 ", is this intentional?"),
6995 ibfd, (uint64_t) segment->p_vaddr);
6996
6997 map->p_vaddr_offset = segment->p_vaddr;
6998 map->count = 0;
6999 *pointer_to_map = map;
7000 pointer_to_map = &map->next;
7001
7002 continue;
7003 }
7004
7005 /* Now scan the sections in the input BFD again and attempt
7006 to add their corresponding output sections to the segment map.
7007 The problem here is how to handle an output section which has
7008 been moved (ie had its LMA changed). There are four possibilities:
7009
7010 1. None of the sections have been moved.
7011 In this case we can continue to use the segment LMA from the
7012 input BFD.
7013
7014 2. All of the sections have been moved by the same amount.
7015 In this case we can change the segment's LMA to match the LMA
7016 of the first section.
7017
7018 3. Some of the sections have been moved, others have not.
7019 In this case those sections which have not been moved can be
7020 placed in the current segment which will have to have its size,
7021 and possibly its LMA changed, and a new segment or segments will
7022 have to be created to contain the other sections.
7023
7024 4. The sections have been moved, but not by the same amount.
7025 In this case we can change the segment's LMA to match the LMA
7026 of the first section and we will have to create a new segment
7027 or segments to contain the other sections.
7028
7029 In order to save time, we allocate an array to hold the section
7030 pointers that we are interested in. As these sections get assigned
7031 to a segment, they are removed from this array. */
7032
7033 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
7034 if (sections == NULL)
7035 return FALSE;
7036
7037 /* Step One: Scan for segment vs section LMA conflicts.
7038 Also add the sections to the section array allocated above.
7039 Also add the sections to the current segment. In the common
7040 case, where the sections have not been moved, this means that
7041 we have completely filled the segment, and there is nothing
7042 more to do. */
7043 isec = 0;
7044 matching_lma = NULL;
7045 suggested_lma = NULL;
7046
7047 for (section = first_section, j = 0;
7048 section != NULL;
7049 section = section->next)
7050 {
7051 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7052 {
7053 output_section = section->output_section;
7054
7055 sections[j++] = section;
7056
7057 /* The Solaris native linker always sets p_paddr to 0.
7058 We try to catch that case here, and set it to the
7059 correct value. Note - some backends require that
7060 p_paddr be left as zero. */
7061 if (!p_paddr_valid
7062 && segment->p_vaddr != 0
7063 && !bed->want_p_paddr_set_to_zero
7064 && isec == 0
7065 && output_section->lma != 0
7066 && (align_power (segment->p_vaddr
7067 + (map->includes_filehdr
7068 ? iehdr->e_ehsize : 0)
7069 + (map->includes_phdrs
7070 ? iehdr->e_phnum * iehdr->e_phentsize
7071 : 0),
7072 output_section->alignment_power)
7073 == output_section->vma))
7074 map->p_paddr = segment->p_vaddr;
7075
7076 /* Match up the physical address of the segment with the
7077 LMA address of the output section. */
7078 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7079 || IS_COREFILE_NOTE (segment, section)
7080 || (bed->want_p_paddr_set_to_zero
7081 && IS_CONTAINED_BY_VMA (output_section, segment)))
7082 {
7083 if (matching_lma == NULL
7084 || output_section->lma < matching_lma->lma)
7085 matching_lma = output_section;
7086
7087 /* We assume that if the section fits within the segment
7088 then it does not overlap any other section within that
7089 segment. */
7090 map->sections[isec++] = output_section;
7091 }
7092 else if (suggested_lma == NULL)
7093 suggested_lma = output_section;
7094
7095 if (j == section_count)
7096 break;
7097 }
7098 }
7099
7100 BFD_ASSERT (j == section_count);
7101
7102 /* Step Two: Adjust the physical address of the current segment,
7103 if necessary. */
7104 if (isec == section_count)
7105 {
7106 /* All of the sections fitted within the segment as currently
7107 specified. This is the default case. Add the segment to
7108 the list of built segments and carry on to process the next
7109 program header in the input BFD. */
7110 map->count = section_count;
7111 *pointer_to_map = map;
7112 pointer_to_map = &map->next;
7113
7114 if (p_paddr_valid
7115 && !bed->want_p_paddr_set_to_zero
7116 && matching_lma->lma != map->p_paddr
7117 && !map->includes_filehdr
7118 && !map->includes_phdrs)
7119 /* There is some padding before the first section in the
7120 segment. So, we must account for that in the output
7121 segment's vma. */
7122 map->p_vaddr_offset = map->p_paddr - matching_lma->lma;
7123
7124 free (sections);
7125 continue;
7126 }
7127 else
7128 {
7129 /* Change the current segment's physical address to match
7130 the LMA of the first section that fitted, or if no
7131 section fitted, the first section. */
7132 if (matching_lma == NULL)
7133 matching_lma = suggested_lma;
7134
7135 map->p_paddr = matching_lma->lma;
7136
7137 /* Offset the segment physical address from the lma
7138 to allow for space taken up by elf headers. */
7139 if (map->includes_phdrs)
7140 {
7141 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7142
7143 /* iehdr->e_phnum is just an estimate of the number
7144 of program headers that we will need. Make a note
7145 here of the number we used and the segment we chose
7146 to hold these headers, so that we can adjust the
7147 offset when we know the correct value. */
7148 phdr_adjust_num = iehdr->e_phnum;
7149 phdr_adjust_seg = map;
7150 }
7151
7152 if (map->includes_filehdr)
7153 {
7154 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7155 map->p_paddr -= iehdr->e_ehsize;
7156 /* We've subtracted off the size of headers from the
7157 first section lma, but there may have been some
7158 alignment padding before that section too. Try to
7159 account for that by adjusting the segment lma down to
7160 the same alignment. */
7161 if (segment->p_align != 0 && segment->p_align < align)
7162 align = segment->p_align;
7163 map->p_paddr &= -align;
7164 }
7165 }
7166
7167 /* Step Three: Loop over the sections again, this time assigning
7168 those that fit to the current segment and removing them from the
7169 sections array; but making sure not to leave large gaps. Once all
7170 possible sections have been assigned to the current segment it is
7171 added to the list of built segments and if sections still remain
7172 to be assigned, a new segment is constructed before repeating
7173 the loop. */
7174 isec = 0;
7175 do
7176 {
7177 map->count = 0;
7178 suggested_lma = NULL;
7179
7180 /* Fill the current segment with sections that fit. */
7181 for (j = 0; j < section_count; j++)
7182 {
7183 section = sections[j];
7184
7185 if (section == NULL)
7186 continue;
7187
7188 output_section = section->output_section;
7189
7190 BFD_ASSERT (output_section != NULL);
7191
7192 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7193 || IS_COREFILE_NOTE (segment, section))
7194 {
7195 if (map->count == 0)
7196 {
7197 /* If the first section in a segment does not start at
7198 the beginning of the segment, then something is
7199 wrong. */
7200 if (align_power (map->p_paddr
7201 + (map->includes_filehdr
7202 ? iehdr->e_ehsize : 0)
7203 + (map->includes_phdrs
7204 ? iehdr->e_phnum * iehdr->e_phentsize
7205 : 0),
7206 output_section->alignment_power)
7207 != output_section->lma)
7208 abort ();
7209 }
7210 else
7211 {
7212 asection *prev_sec;
7213
7214 prev_sec = map->sections[map->count - 1];
7215
7216 /* If the gap between the end of the previous section
7217 and the start of this section is more than
7218 maxpagesize then we need to start a new segment. */
7219 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7220 maxpagesize)
7221 < BFD_ALIGN (output_section->lma, maxpagesize))
7222 || (prev_sec->lma + prev_sec->size
7223 > output_section->lma))
7224 {
7225 if (suggested_lma == NULL)
7226 suggested_lma = output_section;
7227
7228 continue;
7229 }
7230 }
7231
7232 map->sections[map->count++] = output_section;
7233 ++isec;
7234 sections[j] = NULL;
7235 if (segment->p_type == PT_LOAD)
7236 section->segment_mark = TRUE;
7237 }
7238 else if (suggested_lma == NULL)
7239 suggested_lma = output_section;
7240 }
7241
7242 /* PR 23932. A corrupt input file may contain sections that cannot
7243 be assigned to any segment - because for example they have a
7244 negative size - or segments that do not contain any sections. */
7245 if (map->count == 0)
7246 {
7247 bfd_set_error (bfd_error_bad_value);
7248 free (sections);
7249 return FALSE;
7250 }
7251
7252 /* Add the current segment to the list of built segments. */
7253 *pointer_to_map = map;
7254 pointer_to_map = &map->next;
7255
7256 if (isec < section_count)
7257 {
7258 /* We still have not allocated all of the sections to
7259 segments. Create a new segment here, initialise it
7260 and carry on looping. */
7261 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7262 amt += (bfd_size_type) section_count * sizeof (asection *);
7263 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7264 if (map == NULL)
7265 {
7266 free (sections);
7267 return FALSE;
7268 }
7269
7270 /* Initialise the fields of the segment map. Set the physical
7271 physical address to the LMA of the first section that has
7272 not yet been assigned. */
7273 map->next = NULL;
7274 map->p_type = segment->p_type;
7275 map->p_flags = segment->p_flags;
7276 map->p_flags_valid = 1;
7277 map->p_paddr = suggested_lma->lma;
7278 map->p_paddr_valid = p_paddr_valid;
7279 map->includes_filehdr = 0;
7280 map->includes_phdrs = 0;
7281 }
7282 }
7283 while (isec < section_count);
7284
7285 free (sections);
7286 }
7287
7288 elf_seg_map (obfd) = map_first;
7289
7290 /* If we had to estimate the number of program headers that were
7291 going to be needed, then check our estimate now and adjust
7292 the offset if necessary. */
7293 if (phdr_adjust_seg != NULL)
7294 {
7295 unsigned int count;
7296
7297 for (count = 0, map = map_first; map != NULL; map = map->next)
7298 count++;
7299
7300 if (count > phdr_adjust_num)
7301 phdr_adjust_seg->p_paddr
7302 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7303
7304 for (map = map_first; map != NULL; map = map->next)
7305 if (map->p_type == PT_PHDR)
7306 {
7307 bfd_vma adjust
7308 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7309 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7310 break;
7311 }
7312 }
7313
7314 #undef SEGMENT_END
7315 #undef SECTION_SIZE
7316 #undef IS_CONTAINED_BY_VMA
7317 #undef IS_CONTAINED_BY_LMA
7318 #undef IS_NOTE
7319 #undef IS_COREFILE_NOTE
7320 #undef IS_SOLARIS_PT_INTERP
7321 #undef IS_SECTION_IN_INPUT_SEGMENT
7322 #undef INCLUDE_SECTION_IN_SEGMENT
7323 #undef SEGMENT_AFTER_SEGMENT
7324 #undef SEGMENT_OVERLAPS
7325 return TRUE;
7326 }
7327
7328 /* Copy ELF program header information. */
7329
7330 static bfd_boolean
7331 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7332 {
7333 Elf_Internal_Ehdr *iehdr;
7334 struct elf_segment_map *map;
7335 struct elf_segment_map *map_first;
7336 struct elf_segment_map **pointer_to_map;
7337 Elf_Internal_Phdr *segment;
7338 unsigned int i;
7339 unsigned int num_segments;
7340 bfd_boolean phdr_included = FALSE;
7341 bfd_boolean p_paddr_valid;
7342
7343 iehdr = elf_elfheader (ibfd);
7344
7345 map_first = NULL;
7346 pointer_to_map = &map_first;
7347
7348 /* If all the segment p_paddr fields are zero, don't set
7349 map->p_paddr_valid. */
7350 p_paddr_valid = FALSE;
7351 num_segments = elf_elfheader (ibfd)->e_phnum;
7352 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7353 i < num_segments;
7354 i++, segment++)
7355 if (segment->p_paddr != 0)
7356 {
7357 p_paddr_valid = TRUE;
7358 break;
7359 }
7360
7361 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7362 i < num_segments;
7363 i++, segment++)
7364 {
7365 asection *section;
7366 unsigned int section_count;
7367 bfd_size_type amt;
7368 Elf_Internal_Shdr *this_hdr;
7369 asection *first_section = NULL;
7370 asection *lowest_section;
7371 bfd_boolean no_contents = TRUE;
7372
7373 /* Compute how many sections are in this segment. */
7374 for (section = ibfd->sections, section_count = 0;
7375 section != NULL;
7376 section = section->next)
7377 {
7378 this_hdr = &(elf_section_data(section)->this_hdr);
7379 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7380 {
7381 if (first_section == NULL)
7382 first_section = section;
7383 if (elf_section_type (section) != SHT_NOBITS)
7384 no_contents = FALSE;
7385 section_count++;
7386 }
7387 }
7388
7389 /* Allocate a segment map big enough to contain
7390 all of the sections we have selected. */
7391 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7392 amt += (bfd_size_type) section_count * sizeof (asection *);
7393 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7394 if (map == NULL)
7395 return FALSE;
7396
7397 /* Initialize the fields of the output segment map with the
7398 input segment. */
7399 map->next = NULL;
7400 map->p_type = segment->p_type;
7401 map->p_flags = segment->p_flags;
7402 map->p_flags_valid = 1;
7403 map->p_paddr = segment->p_paddr;
7404 map->p_paddr_valid = p_paddr_valid;
7405 map->p_align = segment->p_align;
7406 map->p_align_valid = 1;
7407 map->p_vaddr_offset = 0;
7408
7409 if (map->p_type == PT_GNU_RELRO
7410 || map->p_type == PT_GNU_STACK)
7411 {
7412 /* The PT_GNU_RELRO segment may contain the first a few
7413 bytes in the .got.plt section even if the whole .got.plt
7414 section isn't in the PT_GNU_RELRO segment. We won't
7415 change the size of the PT_GNU_RELRO segment.
7416 Similarly, PT_GNU_STACK size is significant on uclinux
7417 systems. */
7418 map->p_size = segment->p_memsz;
7419 map->p_size_valid = 1;
7420 }
7421
7422 /* Determine if this segment contains the ELF file header
7423 and if it contains the program headers themselves. */
7424 map->includes_filehdr = (segment->p_offset == 0
7425 && segment->p_filesz >= iehdr->e_ehsize);
7426
7427 map->includes_phdrs = 0;
7428 if (! phdr_included || segment->p_type != PT_LOAD)
7429 {
7430 map->includes_phdrs =
7431 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7432 && (segment->p_offset + segment->p_filesz
7433 >= ((bfd_vma) iehdr->e_phoff
7434 + iehdr->e_phnum * iehdr->e_phentsize)));
7435
7436 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7437 phdr_included = TRUE;
7438 }
7439
7440 lowest_section = NULL;
7441 if (section_count != 0)
7442 {
7443 unsigned int isec = 0;
7444
7445 for (section = first_section;
7446 section != NULL;
7447 section = section->next)
7448 {
7449 this_hdr = &(elf_section_data(section)->this_hdr);
7450 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7451 {
7452 map->sections[isec++] = section->output_section;
7453 if ((section->flags & SEC_ALLOC) != 0)
7454 {
7455 bfd_vma seg_off;
7456
7457 if (lowest_section == NULL
7458 || section->lma < lowest_section->lma)
7459 lowest_section = section;
7460
7461 /* Section lmas are set up from PT_LOAD header
7462 p_paddr in _bfd_elf_make_section_from_shdr.
7463 If this header has a p_paddr that disagrees
7464 with the section lma, flag the p_paddr as
7465 invalid. */
7466 if ((section->flags & SEC_LOAD) != 0)
7467 seg_off = this_hdr->sh_offset - segment->p_offset;
7468 else
7469 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7470 if (section->lma - segment->p_paddr != seg_off)
7471 map->p_paddr_valid = FALSE;
7472 }
7473 if (isec == section_count)
7474 break;
7475 }
7476 }
7477 }
7478
7479 if (map->includes_filehdr && lowest_section != NULL)
7480 {
7481 /* Try to keep the space used by the headers plus any
7482 padding fixed. If there are sections with file contents
7483 in this segment then the lowest sh_offset is the best
7484 guess. Otherwise the segment only has file contents for
7485 the headers, and p_filesz is the best guess. */
7486 if (no_contents)
7487 map->header_size = segment->p_filesz;
7488 else
7489 map->header_size = lowest_section->filepos;
7490 }
7491
7492 if (section_count == 0)
7493 map->p_vaddr_offset = segment->p_vaddr;
7494 else if (!map->includes_phdrs
7495 && !map->includes_filehdr
7496 && map->p_paddr_valid)
7497 /* Account for padding before the first section. */
7498 map->p_vaddr_offset = (segment->p_paddr
7499 - (lowest_section ? lowest_section->lma : 0));
7500
7501 map->count = section_count;
7502 *pointer_to_map = map;
7503 pointer_to_map = &map->next;
7504 }
7505
7506 elf_seg_map (obfd) = map_first;
7507 return TRUE;
7508 }
7509
7510 /* Copy private BFD data. This copies or rewrites ELF program header
7511 information. */
7512
7513 static bfd_boolean
7514 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7515 {
7516 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7517 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7518 return TRUE;
7519
7520 if (elf_tdata (ibfd)->phdr == NULL)
7521 return TRUE;
7522
7523 if (ibfd->xvec == obfd->xvec)
7524 {
7525 /* Check to see if any sections in the input BFD
7526 covered by ELF program header have changed. */
7527 Elf_Internal_Phdr *segment;
7528 asection *section, *osec;
7529 unsigned int i, num_segments;
7530 Elf_Internal_Shdr *this_hdr;
7531 const struct elf_backend_data *bed;
7532
7533 bed = get_elf_backend_data (ibfd);
7534
7535 /* Regenerate the segment map if p_paddr is set to 0. */
7536 if (bed->want_p_paddr_set_to_zero)
7537 goto rewrite;
7538
7539 /* Initialize the segment mark field. */
7540 for (section = obfd->sections; section != NULL;
7541 section = section->next)
7542 section->segment_mark = FALSE;
7543
7544 num_segments = elf_elfheader (ibfd)->e_phnum;
7545 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7546 i < num_segments;
7547 i++, segment++)
7548 {
7549 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7550 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7551 which severly confuses things, so always regenerate the segment
7552 map in this case. */
7553 if (segment->p_paddr == 0
7554 && segment->p_memsz == 0
7555 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7556 goto rewrite;
7557
7558 for (section = ibfd->sections;
7559 section != NULL; section = section->next)
7560 {
7561 /* We mark the output section so that we know it comes
7562 from the input BFD. */
7563 osec = section->output_section;
7564 if (osec)
7565 osec->segment_mark = TRUE;
7566
7567 /* Check if this section is covered by the segment. */
7568 this_hdr = &(elf_section_data(section)->this_hdr);
7569 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7570 {
7571 /* FIXME: Check if its output section is changed or
7572 removed. What else do we need to check? */
7573 if (osec == NULL
7574 || section->flags != osec->flags
7575 || section->lma != osec->lma
7576 || section->vma != osec->vma
7577 || section->size != osec->size
7578 || section->rawsize != osec->rawsize
7579 || section->alignment_power != osec->alignment_power)
7580 goto rewrite;
7581 }
7582 }
7583 }
7584
7585 /* Check to see if any output section do not come from the
7586 input BFD. */
7587 for (section = obfd->sections; section != NULL;
7588 section = section->next)
7589 {
7590 if (!section->segment_mark)
7591 goto rewrite;
7592 else
7593 section->segment_mark = FALSE;
7594 }
7595
7596 return copy_elf_program_header (ibfd, obfd);
7597 }
7598
7599 rewrite:
7600 if (ibfd->xvec == obfd->xvec)
7601 {
7602 /* When rewriting program header, set the output maxpagesize to
7603 the maximum alignment of input PT_LOAD segments. */
7604 Elf_Internal_Phdr *segment;
7605 unsigned int i;
7606 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7607 bfd_vma maxpagesize = 0;
7608
7609 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7610 i < num_segments;
7611 i++, segment++)
7612 if (segment->p_type == PT_LOAD
7613 && maxpagesize < segment->p_align)
7614 {
7615 /* PR 17512: file: f17299af. */
7616 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7617 /* xgettext:c-format */
7618 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7619 PRIx64 " is too large"),
7620 ibfd, (uint64_t) segment->p_align);
7621 else
7622 maxpagesize = segment->p_align;
7623 }
7624
7625 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7626 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7627 }
7628
7629 return rewrite_elf_program_header (ibfd, obfd);
7630 }
7631
7632 /* Initialize private output section information from input section. */
7633
7634 bfd_boolean
7635 _bfd_elf_init_private_section_data (bfd *ibfd,
7636 asection *isec,
7637 bfd *obfd,
7638 asection *osec,
7639 struct bfd_link_info *link_info)
7640
7641 {
7642 Elf_Internal_Shdr *ihdr, *ohdr;
7643 bfd_boolean final_link = (link_info != NULL
7644 && !bfd_link_relocatable (link_info));
7645
7646 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7647 || obfd->xvec->flavour != bfd_target_elf_flavour)
7648 return TRUE;
7649
7650 BFD_ASSERT (elf_section_data (osec) != NULL);
7651
7652 /* For objcopy and relocatable link, don't copy the output ELF
7653 section type from input if the output BFD section flags have been
7654 set to something different. For a final link allow some flags
7655 that the linker clears to differ. */
7656 if (elf_section_type (osec) == SHT_NULL
7657 && (osec->flags == isec->flags
7658 || (final_link
7659 && ((osec->flags ^ isec->flags)
7660 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7661 elf_section_type (osec) = elf_section_type (isec);
7662
7663 /* FIXME: Is this correct for all OS/PROC specific flags? */
7664 elf_section_flags (osec) |= (elf_section_flags (isec)
7665 & (SHF_MASKOS | SHF_MASKPROC));
7666
7667 /* Copy sh_info from input for mbind section. */
7668 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7669 elf_section_data (osec)->this_hdr.sh_info
7670 = elf_section_data (isec)->this_hdr.sh_info;
7671
7672 /* Set things up for objcopy and relocatable link. The output
7673 SHT_GROUP section will have its elf_next_in_group pointing back
7674 to the input group members. Ignore linker created group section.
7675 See elfNN_ia64_object_p in elfxx-ia64.c. */
7676 if ((link_info == NULL
7677 || !link_info->resolve_section_groups)
7678 && (elf_sec_group (isec) == NULL
7679 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7680 {
7681 if (elf_section_flags (isec) & SHF_GROUP)
7682 elf_section_flags (osec) |= SHF_GROUP;
7683 elf_next_in_group (osec) = elf_next_in_group (isec);
7684 elf_section_data (osec)->group = elf_section_data (isec)->group;
7685 }
7686
7687 /* If not decompress, preserve SHF_COMPRESSED. */
7688 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7689 elf_section_flags (osec) |= (elf_section_flags (isec)
7690 & SHF_COMPRESSED);
7691
7692 ihdr = &elf_section_data (isec)->this_hdr;
7693
7694 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7695 don't use the output section of the linked-to section since it
7696 may be NULL at this point. */
7697 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7698 {
7699 ohdr = &elf_section_data (osec)->this_hdr;
7700 ohdr->sh_flags |= SHF_LINK_ORDER;
7701 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7702 }
7703
7704 osec->use_rela_p = isec->use_rela_p;
7705
7706 return TRUE;
7707 }
7708
7709 /* Copy private section information. This copies over the entsize
7710 field, and sometimes the info field. */
7711
7712 bfd_boolean
7713 _bfd_elf_copy_private_section_data (bfd *ibfd,
7714 asection *isec,
7715 bfd *obfd,
7716 asection *osec)
7717 {
7718 Elf_Internal_Shdr *ihdr, *ohdr;
7719
7720 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7721 || obfd->xvec->flavour != bfd_target_elf_flavour)
7722 return TRUE;
7723
7724 ihdr = &elf_section_data (isec)->this_hdr;
7725 ohdr = &elf_section_data (osec)->this_hdr;
7726
7727 ohdr->sh_entsize = ihdr->sh_entsize;
7728
7729 if (ihdr->sh_type == SHT_SYMTAB
7730 || ihdr->sh_type == SHT_DYNSYM
7731 || ihdr->sh_type == SHT_GNU_verneed
7732 || ihdr->sh_type == SHT_GNU_verdef)
7733 ohdr->sh_info = ihdr->sh_info;
7734
7735 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7736 NULL);
7737 }
7738
7739 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7740 necessary if we are removing either the SHT_GROUP section or any of
7741 the group member sections. DISCARDED is the value that a section's
7742 output_section has if the section will be discarded, NULL when this
7743 function is called from objcopy, bfd_abs_section_ptr when called
7744 from the linker. */
7745
7746 bfd_boolean
7747 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7748 {
7749 asection *isec;
7750
7751 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7752 if (elf_section_type (isec) == SHT_GROUP)
7753 {
7754 asection *first = elf_next_in_group (isec);
7755 asection *s = first;
7756 bfd_size_type removed = 0;
7757
7758 while (s != NULL)
7759 {
7760 /* If this member section is being output but the
7761 SHT_GROUP section is not, then clear the group info
7762 set up by _bfd_elf_copy_private_section_data. */
7763 if (s->output_section != discarded
7764 && isec->output_section == discarded)
7765 {
7766 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7767 elf_group_name (s->output_section) = NULL;
7768 }
7769 /* Conversely, if the member section is not being output
7770 but the SHT_GROUP section is, then adjust its size. */
7771 else if (s->output_section == discarded
7772 && isec->output_section != discarded)
7773 {
7774 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7775 removed += 4;
7776 if (elf_sec->rel.hdr != NULL
7777 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7778 removed += 4;
7779 if (elf_sec->rela.hdr != NULL
7780 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7781 removed += 4;
7782 }
7783 s = elf_next_in_group (s);
7784 if (s == first)
7785 break;
7786 }
7787 if (removed != 0)
7788 {
7789 if (discarded != NULL)
7790 {
7791 /* If we've been called for ld -r, then we need to
7792 adjust the input section size. */
7793 if (isec->rawsize == 0)
7794 isec->rawsize = isec->size;
7795 isec->size = isec->rawsize - removed;
7796 if (isec->size <= 4)
7797 {
7798 isec->size = 0;
7799 isec->flags |= SEC_EXCLUDE;
7800 }
7801 }
7802 else
7803 {
7804 /* Adjust the output section size when called from
7805 objcopy. */
7806 isec->output_section->size -= removed;
7807 if (isec->output_section->size <= 4)
7808 {
7809 isec->output_section->size = 0;
7810 isec->output_section->flags |= SEC_EXCLUDE;
7811 }
7812 }
7813 }
7814 }
7815
7816 return TRUE;
7817 }
7818
7819 /* Copy private header information. */
7820
7821 bfd_boolean
7822 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7823 {
7824 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7825 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7826 return TRUE;
7827
7828 /* Copy over private BFD data if it has not already been copied.
7829 This must be done here, rather than in the copy_private_bfd_data
7830 entry point, because the latter is called after the section
7831 contents have been set, which means that the program headers have
7832 already been worked out. */
7833 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7834 {
7835 if (! copy_private_bfd_data (ibfd, obfd))
7836 return FALSE;
7837 }
7838
7839 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7840 }
7841
7842 /* Copy private symbol information. If this symbol is in a section
7843 which we did not map into a BFD section, try to map the section
7844 index correctly. We use special macro definitions for the mapped
7845 section indices; these definitions are interpreted by the
7846 swap_out_syms function. */
7847
7848 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7849 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7850 #define MAP_STRTAB (SHN_HIOS + 3)
7851 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7852 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7853
7854 bfd_boolean
7855 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7856 asymbol *isymarg,
7857 bfd *obfd,
7858 asymbol *osymarg)
7859 {
7860 elf_symbol_type *isym, *osym;
7861
7862 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7863 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7864 return TRUE;
7865
7866 isym = elf_symbol_from (ibfd, isymarg);
7867 osym = elf_symbol_from (obfd, osymarg);
7868
7869 if (isym != NULL
7870 && isym->internal_elf_sym.st_shndx != 0
7871 && osym != NULL
7872 && bfd_is_abs_section (isym->symbol.section))
7873 {
7874 unsigned int shndx;
7875
7876 shndx = isym->internal_elf_sym.st_shndx;
7877 if (shndx == elf_onesymtab (ibfd))
7878 shndx = MAP_ONESYMTAB;
7879 else if (shndx == elf_dynsymtab (ibfd))
7880 shndx = MAP_DYNSYMTAB;
7881 else if (shndx == elf_strtab_sec (ibfd))
7882 shndx = MAP_STRTAB;
7883 else if (shndx == elf_shstrtab_sec (ibfd))
7884 shndx = MAP_SHSTRTAB;
7885 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7886 shndx = MAP_SYM_SHNDX;
7887 osym->internal_elf_sym.st_shndx = shndx;
7888 }
7889
7890 return TRUE;
7891 }
7892
7893 /* Swap out the symbols. */
7894
7895 static bfd_boolean
7896 swap_out_syms (bfd *abfd,
7897 struct elf_strtab_hash **sttp,
7898 int relocatable_p)
7899 {
7900 const struct elf_backend_data *bed;
7901 int symcount;
7902 asymbol **syms;
7903 struct elf_strtab_hash *stt;
7904 Elf_Internal_Shdr *symtab_hdr;
7905 Elf_Internal_Shdr *symtab_shndx_hdr;
7906 Elf_Internal_Shdr *symstrtab_hdr;
7907 struct elf_sym_strtab *symstrtab;
7908 bfd_byte *outbound_syms;
7909 bfd_byte *outbound_shndx;
7910 unsigned long outbound_syms_index;
7911 unsigned long outbound_shndx_index;
7912 int idx;
7913 unsigned int num_locals;
7914 bfd_size_type amt;
7915 bfd_boolean name_local_sections;
7916
7917 if (!elf_map_symbols (abfd, &num_locals))
7918 return FALSE;
7919
7920 /* Dump out the symtabs. */
7921 stt = _bfd_elf_strtab_init ();
7922 if (stt == NULL)
7923 return FALSE;
7924
7925 bed = get_elf_backend_data (abfd);
7926 symcount = bfd_get_symcount (abfd);
7927 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7928 symtab_hdr->sh_type = SHT_SYMTAB;
7929 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7930 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7931 symtab_hdr->sh_info = num_locals + 1;
7932 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7933
7934 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7935 symstrtab_hdr->sh_type = SHT_STRTAB;
7936
7937 /* Allocate buffer to swap out the .strtab section. */
7938 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
7939 sizeof (*symstrtab));
7940 if (symstrtab == NULL)
7941 {
7942 _bfd_elf_strtab_free (stt);
7943 return FALSE;
7944 }
7945
7946 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7947 bed->s->sizeof_sym);
7948 if (outbound_syms == NULL)
7949 {
7950 error_return:
7951 _bfd_elf_strtab_free (stt);
7952 free (symstrtab);
7953 return FALSE;
7954 }
7955 symtab_hdr->contents = outbound_syms;
7956 outbound_syms_index = 0;
7957
7958 outbound_shndx = NULL;
7959 outbound_shndx_index = 0;
7960
7961 if (elf_symtab_shndx_list (abfd))
7962 {
7963 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7964 if (symtab_shndx_hdr->sh_name != 0)
7965 {
7966 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7967 outbound_shndx = (bfd_byte *)
7968 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7969 if (outbound_shndx == NULL)
7970 goto error_return;
7971
7972 symtab_shndx_hdr->contents = outbound_shndx;
7973 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7974 symtab_shndx_hdr->sh_size = amt;
7975 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7976 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7977 }
7978 /* FIXME: What about any other headers in the list ? */
7979 }
7980
7981 /* Now generate the data (for "contents"). */
7982 {
7983 /* Fill in zeroth symbol and swap it out. */
7984 Elf_Internal_Sym sym;
7985 sym.st_name = 0;
7986 sym.st_value = 0;
7987 sym.st_size = 0;
7988 sym.st_info = 0;
7989 sym.st_other = 0;
7990 sym.st_shndx = SHN_UNDEF;
7991 sym.st_target_internal = 0;
7992 symstrtab[0].sym = sym;
7993 symstrtab[0].dest_index = outbound_syms_index;
7994 symstrtab[0].destshndx_index = outbound_shndx_index;
7995 outbound_syms_index++;
7996 if (outbound_shndx != NULL)
7997 outbound_shndx_index++;
7998 }
7999
8000 name_local_sections
8001 = (bed->elf_backend_name_local_section_symbols
8002 && bed->elf_backend_name_local_section_symbols (abfd));
8003
8004 syms = bfd_get_outsymbols (abfd);
8005 for (idx = 0; idx < symcount;)
8006 {
8007 Elf_Internal_Sym sym;
8008 bfd_vma value = syms[idx]->value;
8009 elf_symbol_type *type_ptr;
8010 flagword flags = syms[idx]->flags;
8011 int type;
8012
8013 if (!name_local_sections
8014 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8015 {
8016 /* Local section symbols have no name. */
8017 sym.st_name = (unsigned long) -1;
8018 }
8019 else
8020 {
8021 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8022 to get the final offset for st_name. */
8023 sym.st_name
8024 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8025 FALSE);
8026 if (sym.st_name == (unsigned long) -1)
8027 goto error_return;
8028 }
8029
8030 type_ptr = elf_symbol_from (abfd, syms[idx]);
8031
8032 if ((flags & BSF_SECTION_SYM) == 0
8033 && bfd_is_com_section (syms[idx]->section))
8034 {
8035 /* ELF common symbols put the alignment into the `value' field,
8036 and the size into the `size' field. This is backwards from
8037 how BFD handles it, so reverse it here. */
8038 sym.st_size = value;
8039 if (type_ptr == NULL
8040 || type_ptr->internal_elf_sym.st_value == 0)
8041 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8042 else
8043 sym.st_value = type_ptr->internal_elf_sym.st_value;
8044 sym.st_shndx = _bfd_elf_section_from_bfd_section
8045 (abfd, syms[idx]->section);
8046 }
8047 else
8048 {
8049 asection *sec = syms[idx]->section;
8050 unsigned int shndx;
8051
8052 if (sec->output_section)
8053 {
8054 value += sec->output_offset;
8055 sec = sec->output_section;
8056 }
8057
8058 /* Don't add in the section vma for relocatable output. */
8059 if (! relocatable_p)
8060 value += sec->vma;
8061 sym.st_value = value;
8062 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8063
8064 if (bfd_is_abs_section (sec)
8065 && type_ptr != NULL
8066 && type_ptr->internal_elf_sym.st_shndx != 0)
8067 {
8068 /* This symbol is in a real ELF section which we did
8069 not create as a BFD section. Undo the mapping done
8070 by copy_private_symbol_data. */
8071 shndx = type_ptr->internal_elf_sym.st_shndx;
8072 switch (shndx)
8073 {
8074 case MAP_ONESYMTAB:
8075 shndx = elf_onesymtab (abfd);
8076 break;
8077 case MAP_DYNSYMTAB:
8078 shndx = elf_dynsymtab (abfd);
8079 break;
8080 case MAP_STRTAB:
8081 shndx = elf_strtab_sec (abfd);
8082 break;
8083 case MAP_SHSTRTAB:
8084 shndx = elf_shstrtab_sec (abfd);
8085 break;
8086 case MAP_SYM_SHNDX:
8087 if (elf_symtab_shndx_list (abfd))
8088 shndx = elf_symtab_shndx_list (abfd)->ndx;
8089 break;
8090 default:
8091 shndx = SHN_ABS;
8092 break;
8093 }
8094 }
8095 else
8096 {
8097 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8098
8099 if (shndx == SHN_BAD)
8100 {
8101 asection *sec2;
8102
8103 /* Writing this would be a hell of a lot easier if
8104 we had some decent documentation on bfd, and
8105 knew what to expect of the library, and what to
8106 demand of applications. For example, it
8107 appears that `objcopy' might not set the
8108 section of a symbol to be a section that is
8109 actually in the output file. */
8110 sec2 = bfd_get_section_by_name (abfd, sec->name);
8111 if (sec2 != NULL)
8112 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8113 if (shndx == SHN_BAD)
8114 {
8115 /* xgettext:c-format */
8116 _bfd_error_handler
8117 (_("unable to find equivalent output section"
8118 " for symbol '%s' from section '%s'"),
8119 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8120 sec->name);
8121 bfd_set_error (bfd_error_invalid_operation);
8122 goto error_return;
8123 }
8124 }
8125 }
8126
8127 sym.st_shndx = shndx;
8128 }
8129
8130 if ((flags & BSF_THREAD_LOCAL) != 0)
8131 type = STT_TLS;
8132 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8133 type = STT_GNU_IFUNC;
8134 else if ((flags & BSF_FUNCTION) != 0)
8135 type = STT_FUNC;
8136 else if ((flags & BSF_OBJECT) != 0)
8137 type = STT_OBJECT;
8138 else if ((flags & BSF_RELC) != 0)
8139 type = STT_RELC;
8140 else if ((flags & BSF_SRELC) != 0)
8141 type = STT_SRELC;
8142 else
8143 type = STT_NOTYPE;
8144
8145 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8146 type = STT_TLS;
8147
8148 /* Processor-specific types. */
8149 if (type_ptr != NULL
8150 && bed->elf_backend_get_symbol_type)
8151 type = ((*bed->elf_backend_get_symbol_type)
8152 (&type_ptr->internal_elf_sym, type));
8153
8154 if (flags & BSF_SECTION_SYM)
8155 {
8156 if (flags & BSF_GLOBAL)
8157 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8158 else
8159 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8160 }
8161 else if (bfd_is_com_section (syms[idx]->section))
8162 {
8163 if (type != STT_TLS)
8164 {
8165 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8166 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8167 ? STT_COMMON : STT_OBJECT);
8168 else
8169 type = ((flags & BSF_ELF_COMMON) != 0
8170 ? STT_COMMON : STT_OBJECT);
8171 }
8172 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8173 }
8174 else if (bfd_is_und_section (syms[idx]->section))
8175 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8176 ? STB_WEAK
8177 : STB_GLOBAL),
8178 type);
8179 else if (flags & BSF_FILE)
8180 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8181 else
8182 {
8183 int bind = STB_LOCAL;
8184
8185 if (flags & BSF_LOCAL)
8186 bind = STB_LOCAL;
8187 else if (flags & BSF_GNU_UNIQUE)
8188 bind = STB_GNU_UNIQUE;
8189 else if (flags & BSF_WEAK)
8190 bind = STB_WEAK;
8191 else if (flags & BSF_GLOBAL)
8192 bind = STB_GLOBAL;
8193
8194 sym.st_info = ELF_ST_INFO (bind, type);
8195 }
8196
8197 if (type_ptr != NULL)
8198 {
8199 sym.st_other = type_ptr->internal_elf_sym.st_other;
8200 sym.st_target_internal
8201 = type_ptr->internal_elf_sym.st_target_internal;
8202 }
8203 else
8204 {
8205 sym.st_other = 0;
8206 sym.st_target_internal = 0;
8207 }
8208
8209 idx++;
8210 symstrtab[idx].sym = sym;
8211 symstrtab[idx].dest_index = outbound_syms_index;
8212 symstrtab[idx].destshndx_index = outbound_shndx_index;
8213
8214 outbound_syms_index++;
8215 if (outbound_shndx != NULL)
8216 outbound_shndx_index++;
8217 }
8218
8219 /* Finalize the .strtab section. */
8220 _bfd_elf_strtab_finalize (stt);
8221
8222 /* Swap out the .strtab section. */
8223 for (idx = 0; idx <= symcount; idx++)
8224 {
8225 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8226 if (elfsym->sym.st_name == (unsigned long) -1)
8227 elfsym->sym.st_name = 0;
8228 else
8229 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8230 elfsym->sym.st_name);
8231 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8232 (outbound_syms
8233 + (elfsym->dest_index
8234 * bed->s->sizeof_sym)),
8235 (outbound_shndx
8236 + (elfsym->destshndx_index
8237 * sizeof (Elf_External_Sym_Shndx))));
8238 }
8239 free (symstrtab);
8240
8241 *sttp = stt;
8242 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8243 symstrtab_hdr->sh_type = SHT_STRTAB;
8244 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8245 symstrtab_hdr->sh_addr = 0;
8246 symstrtab_hdr->sh_entsize = 0;
8247 symstrtab_hdr->sh_link = 0;
8248 symstrtab_hdr->sh_info = 0;
8249 symstrtab_hdr->sh_addralign = 1;
8250
8251 return TRUE;
8252 }
8253
8254 /* Return the number of bytes required to hold the symtab vector.
8255
8256 Note that we base it on the count plus 1, since we will null terminate
8257 the vector allocated based on this size. However, the ELF symbol table
8258 always has a dummy entry as symbol #0, so it ends up even. */
8259
8260 long
8261 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8262 {
8263 bfd_size_type symcount;
8264 long symtab_size;
8265 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8266
8267 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8268 if (symcount >= LONG_MAX / sizeof (asymbol *))
8269 {
8270 bfd_set_error (bfd_error_file_too_big);
8271 return -1;
8272 }
8273 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8274 if (symcount > 0)
8275 symtab_size -= sizeof (asymbol *);
8276
8277 return symtab_size;
8278 }
8279
8280 long
8281 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8282 {
8283 bfd_size_type symcount;
8284 long symtab_size;
8285 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8286
8287 if (elf_dynsymtab (abfd) == 0)
8288 {
8289 bfd_set_error (bfd_error_invalid_operation);
8290 return -1;
8291 }
8292
8293 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8294 if (symcount >= LONG_MAX / sizeof (asymbol *))
8295 {
8296 bfd_set_error (bfd_error_file_too_big);
8297 return -1;
8298 }
8299 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8300 if (symcount > 0)
8301 symtab_size -= sizeof (asymbol *);
8302
8303 return symtab_size;
8304 }
8305
8306 long
8307 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8308 sec_ptr asect)
8309 {
8310 #if SIZEOF_LONG == SIZEOF_INT
8311 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8312 {
8313 bfd_set_error (bfd_error_file_too_big);
8314 return -1;
8315 }
8316 #endif
8317 return (asect->reloc_count + 1) * sizeof (arelent *);
8318 }
8319
8320 /* Canonicalize the relocs. */
8321
8322 long
8323 _bfd_elf_canonicalize_reloc (bfd *abfd,
8324 sec_ptr section,
8325 arelent **relptr,
8326 asymbol **symbols)
8327 {
8328 arelent *tblptr;
8329 unsigned int i;
8330 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8331
8332 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8333 return -1;
8334
8335 tblptr = section->relocation;
8336 for (i = 0; i < section->reloc_count; i++)
8337 *relptr++ = tblptr++;
8338
8339 *relptr = NULL;
8340
8341 return section->reloc_count;
8342 }
8343
8344 long
8345 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8346 {
8347 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8348 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8349
8350 if (symcount >= 0)
8351 bfd_get_symcount (abfd) = symcount;
8352 return symcount;
8353 }
8354
8355 long
8356 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8357 asymbol **allocation)
8358 {
8359 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8360 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8361
8362 if (symcount >= 0)
8363 bfd_get_dynamic_symcount (abfd) = symcount;
8364 return symcount;
8365 }
8366
8367 /* Return the size required for the dynamic reloc entries. Any loadable
8368 section that was actually installed in the BFD, and has type SHT_REL
8369 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8370 dynamic reloc section. */
8371
8372 long
8373 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8374 {
8375 bfd_size_type count;
8376 asection *s;
8377
8378 if (elf_dynsymtab (abfd) == 0)
8379 {
8380 bfd_set_error (bfd_error_invalid_operation);
8381 return -1;
8382 }
8383
8384 count = 1;
8385 for (s = abfd->sections; s != NULL; s = s->next)
8386 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8387 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8388 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8389 {
8390 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8391 if (count > LONG_MAX / sizeof (arelent *))
8392 {
8393 bfd_set_error (bfd_error_file_too_big);
8394 return -1;
8395 }
8396 }
8397 return count * sizeof (arelent *);
8398 }
8399
8400 /* Canonicalize the dynamic relocation entries. Note that we return the
8401 dynamic relocations as a single block, although they are actually
8402 associated with particular sections; the interface, which was
8403 designed for SunOS style shared libraries, expects that there is only
8404 one set of dynamic relocs. Any loadable section that was actually
8405 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8406 dynamic symbol table, is considered to be a dynamic reloc section. */
8407
8408 long
8409 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8410 arelent **storage,
8411 asymbol **syms)
8412 {
8413 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8414 asection *s;
8415 long ret;
8416
8417 if (elf_dynsymtab (abfd) == 0)
8418 {
8419 bfd_set_error (bfd_error_invalid_operation);
8420 return -1;
8421 }
8422
8423 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8424 ret = 0;
8425 for (s = abfd->sections; s != NULL; s = s->next)
8426 {
8427 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8428 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8429 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8430 {
8431 arelent *p;
8432 long count, i;
8433
8434 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8435 return -1;
8436 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8437 p = s->relocation;
8438 for (i = 0; i < count; i++)
8439 *storage++ = p++;
8440 ret += count;
8441 }
8442 }
8443
8444 *storage = NULL;
8445
8446 return ret;
8447 }
8448 \f
8449 /* Read in the version information. */
8450
8451 bfd_boolean
8452 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8453 {
8454 bfd_byte *contents = NULL;
8455 unsigned int freeidx = 0;
8456
8457 if (elf_dynverref (abfd) != 0)
8458 {
8459 Elf_Internal_Shdr *hdr;
8460 Elf_External_Verneed *everneed;
8461 Elf_Internal_Verneed *iverneed;
8462 unsigned int i;
8463 bfd_byte *contents_end;
8464
8465 hdr = &elf_tdata (abfd)->dynverref_hdr;
8466
8467 if (hdr->sh_info == 0
8468 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8469 {
8470 error_return_bad_verref:
8471 _bfd_error_handler
8472 (_("%pB: .gnu.version_r invalid entry"), abfd);
8473 bfd_set_error (bfd_error_bad_value);
8474 error_return_verref:
8475 elf_tdata (abfd)->verref = NULL;
8476 elf_tdata (abfd)->cverrefs = 0;
8477 goto error_return;
8478 }
8479
8480 ufile_ptr filesize = bfd_get_file_size (abfd);
8481 if (filesize > 0 && filesize < hdr->sh_size)
8482 {
8483 /* PR 24708: Avoid attempts to allocate a ridiculous amount
8484 of memory. */
8485 bfd_set_error (bfd_error_no_memory);
8486 _bfd_error_handler
8487 /* xgettext:c-format */
8488 (_("error: %pB version reference section is too large (%#" PRIx64 " bytes)"),
8489 abfd, (uint64_t) hdr->sh_size);
8490 goto error_return_verref;
8491 }
8492 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8493 if (contents == NULL)
8494 goto error_return_verref;
8495
8496 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8497 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8498 goto error_return_verref;
8499
8500 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8501 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8502
8503 if (elf_tdata (abfd)->verref == NULL)
8504 goto error_return_verref;
8505
8506 BFD_ASSERT (sizeof (Elf_External_Verneed)
8507 == sizeof (Elf_External_Vernaux));
8508 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8509 everneed = (Elf_External_Verneed *) contents;
8510 iverneed = elf_tdata (abfd)->verref;
8511 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8512 {
8513 Elf_External_Vernaux *evernaux;
8514 Elf_Internal_Vernaux *ivernaux;
8515 unsigned int j;
8516
8517 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8518
8519 iverneed->vn_bfd = abfd;
8520
8521 iverneed->vn_filename =
8522 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8523 iverneed->vn_file);
8524 if (iverneed->vn_filename == NULL)
8525 goto error_return_bad_verref;
8526
8527 if (iverneed->vn_cnt == 0)
8528 iverneed->vn_auxptr = NULL;
8529 else
8530 {
8531 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8532 bfd_alloc2 (abfd, iverneed->vn_cnt,
8533 sizeof (Elf_Internal_Vernaux));
8534 if (iverneed->vn_auxptr == NULL)
8535 goto error_return_verref;
8536 }
8537
8538 if (iverneed->vn_aux
8539 > (size_t) (contents_end - (bfd_byte *) everneed))
8540 goto error_return_bad_verref;
8541
8542 evernaux = ((Elf_External_Vernaux *)
8543 ((bfd_byte *) everneed + iverneed->vn_aux));
8544 ivernaux = iverneed->vn_auxptr;
8545 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8546 {
8547 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8548
8549 ivernaux->vna_nodename =
8550 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8551 ivernaux->vna_name);
8552 if (ivernaux->vna_nodename == NULL)
8553 goto error_return_bad_verref;
8554
8555 if (ivernaux->vna_other > freeidx)
8556 freeidx = ivernaux->vna_other;
8557
8558 ivernaux->vna_nextptr = NULL;
8559 if (ivernaux->vna_next == 0)
8560 {
8561 iverneed->vn_cnt = j + 1;
8562 break;
8563 }
8564 if (j + 1 < iverneed->vn_cnt)
8565 ivernaux->vna_nextptr = ivernaux + 1;
8566
8567 if (ivernaux->vna_next
8568 > (size_t) (contents_end - (bfd_byte *) evernaux))
8569 goto error_return_bad_verref;
8570
8571 evernaux = ((Elf_External_Vernaux *)
8572 ((bfd_byte *) evernaux + ivernaux->vna_next));
8573 }
8574
8575 iverneed->vn_nextref = NULL;
8576 if (iverneed->vn_next == 0)
8577 break;
8578 if (i + 1 < hdr->sh_info)
8579 iverneed->vn_nextref = iverneed + 1;
8580
8581 if (iverneed->vn_next
8582 > (size_t) (contents_end - (bfd_byte *) everneed))
8583 goto error_return_bad_verref;
8584
8585 everneed = ((Elf_External_Verneed *)
8586 ((bfd_byte *) everneed + iverneed->vn_next));
8587 }
8588 elf_tdata (abfd)->cverrefs = i;
8589
8590 free (contents);
8591 contents = NULL;
8592 }
8593
8594 if (elf_dynverdef (abfd) != 0)
8595 {
8596 Elf_Internal_Shdr *hdr;
8597 Elf_External_Verdef *everdef;
8598 Elf_Internal_Verdef *iverdef;
8599 Elf_Internal_Verdef *iverdefarr;
8600 Elf_Internal_Verdef iverdefmem;
8601 unsigned int i;
8602 unsigned int maxidx;
8603 bfd_byte *contents_end_def, *contents_end_aux;
8604
8605 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8606
8607 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8608 {
8609 error_return_bad_verdef:
8610 _bfd_error_handler
8611 (_("%pB: .gnu.version_d invalid entry"), abfd);
8612 bfd_set_error (bfd_error_bad_value);
8613 error_return_verdef:
8614 elf_tdata (abfd)->verdef = NULL;
8615 elf_tdata (abfd)->cverdefs = 0;
8616 goto error_return;
8617 }
8618
8619 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8620 if (contents == NULL)
8621 goto error_return_verdef;
8622 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8623 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8624 goto error_return_verdef;
8625
8626 BFD_ASSERT (sizeof (Elf_External_Verdef)
8627 >= sizeof (Elf_External_Verdaux));
8628 contents_end_def = contents + hdr->sh_size
8629 - sizeof (Elf_External_Verdef);
8630 contents_end_aux = contents + hdr->sh_size
8631 - sizeof (Elf_External_Verdaux);
8632
8633 /* We know the number of entries in the section but not the maximum
8634 index. Therefore we have to run through all entries and find
8635 the maximum. */
8636 everdef = (Elf_External_Verdef *) contents;
8637 maxidx = 0;
8638 for (i = 0; i < hdr->sh_info; ++i)
8639 {
8640 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8641
8642 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8643 goto error_return_bad_verdef;
8644 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8645 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8646
8647 if (iverdefmem.vd_next == 0)
8648 break;
8649
8650 if (iverdefmem.vd_next
8651 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8652 goto error_return_bad_verdef;
8653
8654 everdef = ((Elf_External_Verdef *)
8655 ((bfd_byte *) everdef + iverdefmem.vd_next));
8656 }
8657
8658 if (default_imported_symver)
8659 {
8660 if (freeidx > maxidx)
8661 maxidx = ++freeidx;
8662 else
8663 freeidx = ++maxidx;
8664 }
8665
8666 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8667 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8668 if (elf_tdata (abfd)->verdef == NULL)
8669 goto error_return_verdef;
8670
8671 elf_tdata (abfd)->cverdefs = maxidx;
8672
8673 everdef = (Elf_External_Verdef *) contents;
8674 iverdefarr = elf_tdata (abfd)->verdef;
8675 for (i = 0; i < hdr->sh_info; i++)
8676 {
8677 Elf_External_Verdaux *everdaux;
8678 Elf_Internal_Verdaux *iverdaux;
8679 unsigned int j;
8680
8681 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8682
8683 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8684 goto error_return_bad_verdef;
8685
8686 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8687 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8688
8689 iverdef->vd_bfd = abfd;
8690
8691 if (iverdef->vd_cnt == 0)
8692 iverdef->vd_auxptr = NULL;
8693 else
8694 {
8695 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8696 bfd_alloc2 (abfd, iverdef->vd_cnt,
8697 sizeof (Elf_Internal_Verdaux));
8698 if (iverdef->vd_auxptr == NULL)
8699 goto error_return_verdef;
8700 }
8701
8702 if (iverdef->vd_aux
8703 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8704 goto error_return_bad_verdef;
8705
8706 everdaux = ((Elf_External_Verdaux *)
8707 ((bfd_byte *) everdef + iverdef->vd_aux));
8708 iverdaux = iverdef->vd_auxptr;
8709 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8710 {
8711 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8712
8713 iverdaux->vda_nodename =
8714 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8715 iverdaux->vda_name);
8716 if (iverdaux->vda_nodename == NULL)
8717 goto error_return_bad_verdef;
8718
8719 iverdaux->vda_nextptr = NULL;
8720 if (iverdaux->vda_next == 0)
8721 {
8722 iverdef->vd_cnt = j + 1;
8723 break;
8724 }
8725 if (j + 1 < iverdef->vd_cnt)
8726 iverdaux->vda_nextptr = iverdaux + 1;
8727
8728 if (iverdaux->vda_next
8729 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8730 goto error_return_bad_verdef;
8731
8732 everdaux = ((Elf_External_Verdaux *)
8733 ((bfd_byte *) everdaux + iverdaux->vda_next));
8734 }
8735
8736 iverdef->vd_nodename = NULL;
8737 if (iverdef->vd_cnt)
8738 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8739
8740 iverdef->vd_nextdef = NULL;
8741 if (iverdef->vd_next == 0)
8742 break;
8743 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8744 iverdef->vd_nextdef = iverdef + 1;
8745
8746 everdef = ((Elf_External_Verdef *)
8747 ((bfd_byte *) everdef + iverdef->vd_next));
8748 }
8749
8750 free (contents);
8751 contents = NULL;
8752 }
8753 else if (default_imported_symver)
8754 {
8755 if (freeidx < 3)
8756 freeidx = 3;
8757 else
8758 freeidx++;
8759
8760 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8761 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8762 if (elf_tdata (abfd)->verdef == NULL)
8763 goto error_return;
8764
8765 elf_tdata (abfd)->cverdefs = freeidx;
8766 }
8767
8768 /* Create a default version based on the soname. */
8769 if (default_imported_symver)
8770 {
8771 Elf_Internal_Verdef *iverdef;
8772 Elf_Internal_Verdaux *iverdaux;
8773
8774 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8775
8776 iverdef->vd_version = VER_DEF_CURRENT;
8777 iverdef->vd_flags = 0;
8778 iverdef->vd_ndx = freeidx;
8779 iverdef->vd_cnt = 1;
8780
8781 iverdef->vd_bfd = abfd;
8782
8783 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8784 if (iverdef->vd_nodename == NULL)
8785 goto error_return_verdef;
8786 iverdef->vd_nextdef = NULL;
8787 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8788 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8789 if (iverdef->vd_auxptr == NULL)
8790 goto error_return_verdef;
8791
8792 iverdaux = iverdef->vd_auxptr;
8793 iverdaux->vda_nodename = iverdef->vd_nodename;
8794 }
8795
8796 return TRUE;
8797
8798 error_return:
8799 if (contents != NULL)
8800 free (contents);
8801 return FALSE;
8802 }
8803 \f
8804 asymbol *
8805 _bfd_elf_make_empty_symbol (bfd *abfd)
8806 {
8807 elf_symbol_type *newsym;
8808
8809 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8810 if (!newsym)
8811 return NULL;
8812 newsym->symbol.the_bfd = abfd;
8813 return &newsym->symbol;
8814 }
8815
8816 void
8817 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8818 asymbol *symbol,
8819 symbol_info *ret)
8820 {
8821 bfd_symbol_info (symbol, ret);
8822 }
8823
8824 /* Return whether a symbol name implies a local symbol. Most targets
8825 use this function for the is_local_label_name entry point, but some
8826 override it. */
8827
8828 bfd_boolean
8829 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8830 const char *name)
8831 {
8832 /* Normal local symbols start with ``.L''. */
8833 if (name[0] == '.' && name[1] == 'L')
8834 return TRUE;
8835
8836 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8837 DWARF debugging symbols starting with ``..''. */
8838 if (name[0] == '.' && name[1] == '.')
8839 return TRUE;
8840
8841 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8842 emitting DWARF debugging output. I suspect this is actually a
8843 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8844 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8845 underscore to be emitted on some ELF targets). For ease of use,
8846 we treat such symbols as local. */
8847 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8848 return TRUE;
8849
8850 /* Treat assembler generated fake symbols, dollar local labels and
8851 forward-backward labels (aka local labels) as locals.
8852 These labels have the form:
8853
8854 L0^A.* (fake symbols)
8855
8856 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8857
8858 Versions which start with .L will have already been matched above,
8859 so we only need to match the rest. */
8860 if (name[0] == 'L' && ISDIGIT (name[1]))
8861 {
8862 bfd_boolean ret = FALSE;
8863 const char * p;
8864 char c;
8865
8866 for (p = name + 2; (c = *p); p++)
8867 {
8868 if (c == 1 || c == 2)
8869 {
8870 if (c == 1 && p == name + 2)
8871 /* A fake symbol. */
8872 return TRUE;
8873
8874 /* FIXME: We are being paranoid here and treating symbols like
8875 L0^Bfoo as if there were non-local, on the grounds that the
8876 assembler will never generate them. But can any symbol
8877 containing an ASCII value in the range 1-31 ever be anything
8878 other than some kind of local ? */
8879 ret = TRUE;
8880 }
8881
8882 if (! ISDIGIT (c))
8883 {
8884 ret = FALSE;
8885 break;
8886 }
8887 }
8888 return ret;
8889 }
8890
8891 return FALSE;
8892 }
8893
8894 alent *
8895 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8896 asymbol *symbol ATTRIBUTE_UNUSED)
8897 {
8898 abort ();
8899 return NULL;
8900 }
8901
8902 bfd_boolean
8903 _bfd_elf_set_arch_mach (bfd *abfd,
8904 enum bfd_architecture arch,
8905 unsigned long machine)
8906 {
8907 /* If this isn't the right architecture for this backend, and this
8908 isn't the generic backend, fail. */
8909 if (arch != get_elf_backend_data (abfd)->arch
8910 && arch != bfd_arch_unknown
8911 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8912 return FALSE;
8913
8914 return bfd_default_set_arch_mach (abfd, arch, machine);
8915 }
8916
8917 /* Find the nearest line to a particular section and offset,
8918 for error reporting. */
8919
8920 bfd_boolean
8921 _bfd_elf_find_nearest_line (bfd *abfd,
8922 asymbol **symbols,
8923 asection *section,
8924 bfd_vma offset,
8925 const char **filename_ptr,
8926 const char **functionname_ptr,
8927 unsigned int *line_ptr,
8928 unsigned int *discriminator_ptr)
8929 {
8930 bfd_boolean found;
8931
8932 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8933 filename_ptr, functionname_ptr,
8934 line_ptr, discriminator_ptr,
8935 dwarf_debug_sections, 0,
8936 &elf_tdata (abfd)->dwarf2_find_line_info)
8937 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8938 filename_ptr, functionname_ptr,
8939 line_ptr))
8940 {
8941 if (!*functionname_ptr)
8942 _bfd_elf_find_function (abfd, symbols, section, offset,
8943 *filename_ptr ? NULL : filename_ptr,
8944 functionname_ptr);
8945 return TRUE;
8946 }
8947
8948 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8949 &found, filename_ptr,
8950 functionname_ptr, line_ptr,
8951 &elf_tdata (abfd)->line_info))
8952 return FALSE;
8953 if (found && (*functionname_ptr || *line_ptr))
8954 return TRUE;
8955
8956 if (symbols == NULL)
8957 return FALSE;
8958
8959 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8960 filename_ptr, functionname_ptr))
8961 return FALSE;
8962
8963 *line_ptr = 0;
8964 return TRUE;
8965 }
8966
8967 /* Find the line for a symbol. */
8968
8969 bfd_boolean
8970 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8971 const char **filename_ptr, unsigned int *line_ptr)
8972 {
8973 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8974 filename_ptr, NULL, line_ptr, NULL,
8975 dwarf_debug_sections, 0,
8976 &elf_tdata (abfd)->dwarf2_find_line_info);
8977 }
8978
8979 /* After a call to bfd_find_nearest_line, successive calls to
8980 bfd_find_inliner_info can be used to get source information about
8981 each level of function inlining that terminated at the address
8982 passed to bfd_find_nearest_line. Currently this is only supported
8983 for DWARF2 with appropriate DWARF3 extensions. */
8984
8985 bfd_boolean
8986 _bfd_elf_find_inliner_info (bfd *abfd,
8987 const char **filename_ptr,
8988 const char **functionname_ptr,
8989 unsigned int *line_ptr)
8990 {
8991 bfd_boolean found;
8992 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8993 functionname_ptr, line_ptr,
8994 & elf_tdata (abfd)->dwarf2_find_line_info);
8995 return found;
8996 }
8997
8998 int
8999 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9000 {
9001 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9002 int ret = bed->s->sizeof_ehdr;
9003
9004 if (!bfd_link_relocatable (info))
9005 {
9006 bfd_size_type phdr_size = elf_program_header_size (abfd);
9007
9008 if (phdr_size == (bfd_size_type) -1)
9009 {
9010 struct elf_segment_map *m;
9011
9012 phdr_size = 0;
9013 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9014 phdr_size += bed->s->sizeof_phdr;
9015
9016 if (phdr_size == 0)
9017 phdr_size = get_program_header_size (abfd, info);
9018 }
9019
9020 elf_program_header_size (abfd) = phdr_size;
9021 ret += phdr_size;
9022 }
9023
9024 return ret;
9025 }
9026
9027 bfd_boolean
9028 _bfd_elf_set_section_contents (bfd *abfd,
9029 sec_ptr section,
9030 const void *location,
9031 file_ptr offset,
9032 bfd_size_type count)
9033 {
9034 Elf_Internal_Shdr *hdr;
9035 file_ptr pos;
9036
9037 if (! abfd->output_has_begun
9038 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9039 return FALSE;
9040
9041 if (!count)
9042 return TRUE;
9043
9044 hdr = &elf_section_data (section)->this_hdr;
9045 if (hdr->sh_offset == (file_ptr) -1)
9046 {
9047 /* We must compress this section. Write output to the buffer. */
9048 unsigned char *contents = hdr->contents;
9049 if ((offset + count) > hdr->sh_size
9050 || (section->flags & SEC_ELF_COMPRESS) == 0
9051 || contents == NULL)
9052 abort ();
9053 memcpy (contents + offset, location, count);
9054 return TRUE;
9055 }
9056 pos = hdr->sh_offset + offset;
9057 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9058 || bfd_bwrite (location, count, abfd) != count)
9059 return FALSE;
9060
9061 return TRUE;
9062 }
9063
9064 bfd_boolean
9065 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9066 arelent *cache_ptr ATTRIBUTE_UNUSED,
9067 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9068 {
9069 abort ();
9070 return FALSE;
9071 }
9072
9073 /* Try to convert a non-ELF reloc into an ELF one. */
9074
9075 bfd_boolean
9076 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9077 {
9078 /* Check whether we really have an ELF howto. */
9079
9080 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9081 {
9082 bfd_reloc_code_real_type code;
9083 reloc_howto_type *howto;
9084
9085 /* Alien reloc: Try to determine its type to replace it with an
9086 equivalent ELF reloc. */
9087
9088 if (areloc->howto->pc_relative)
9089 {
9090 switch (areloc->howto->bitsize)
9091 {
9092 case 8:
9093 code = BFD_RELOC_8_PCREL;
9094 break;
9095 case 12:
9096 code = BFD_RELOC_12_PCREL;
9097 break;
9098 case 16:
9099 code = BFD_RELOC_16_PCREL;
9100 break;
9101 case 24:
9102 code = BFD_RELOC_24_PCREL;
9103 break;
9104 case 32:
9105 code = BFD_RELOC_32_PCREL;
9106 break;
9107 case 64:
9108 code = BFD_RELOC_64_PCREL;
9109 break;
9110 default:
9111 goto fail;
9112 }
9113
9114 howto = bfd_reloc_type_lookup (abfd, code);
9115
9116 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
9117 {
9118 if (howto->pcrel_offset)
9119 areloc->addend += areloc->address;
9120 else
9121 areloc->addend -= areloc->address; /* addend is unsigned!! */
9122 }
9123 }
9124 else
9125 {
9126 switch (areloc->howto->bitsize)
9127 {
9128 case 8:
9129 code = BFD_RELOC_8;
9130 break;
9131 case 14:
9132 code = BFD_RELOC_14;
9133 break;
9134 case 16:
9135 code = BFD_RELOC_16;
9136 break;
9137 case 26:
9138 code = BFD_RELOC_26;
9139 break;
9140 case 32:
9141 code = BFD_RELOC_32;
9142 break;
9143 case 64:
9144 code = BFD_RELOC_64;
9145 break;
9146 default:
9147 goto fail;
9148 }
9149
9150 howto = bfd_reloc_type_lookup (abfd, code);
9151 }
9152
9153 if (howto)
9154 areloc->howto = howto;
9155 else
9156 goto fail;
9157 }
9158
9159 return TRUE;
9160
9161 fail:
9162 /* xgettext:c-format */
9163 _bfd_error_handler (_("%pB: %s unsupported"),
9164 abfd, areloc->howto->name);
9165 bfd_set_error (bfd_error_bad_value);
9166 return FALSE;
9167 }
9168
9169 bfd_boolean
9170 _bfd_elf_close_and_cleanup (bfd *abfd)
9171 {
9172 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9173 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9174 {
9175 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9176 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9177 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9178 }
9179
9180 return _bfd_generic_close_and_cleanup (abfd);
9181 }
9182
9183 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9184 in the relocation's offset. Thus we cannot allow any sort of sanity
9185 range-checking to interfere. There is nothing else to do in processing
9186 this reloc. */
9187
9188 bfd_reloc_status_type
9189 _bfd_elf_rel_vtable_reloc_fn
9190 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9191 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9192 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9193 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9194 {
9195 return bfd_reloc_ok;
9196 }
9197 \f
9198 /* Elf core file support. Much of this only works on native
9199 toolchains, since we rely on knowing the
9200 machine-dependent procfs structure in order to pick
9201 out details about the corefile. */
9202
9203 #ifdef HAVE_SYS_PROCFS_H
9204 /* Needed for new procfs interface on sparc-solaris. */
9205 # define _STRUCTURED_PROC 1
9206 # include <sys/procfs.h>
9207 #endif
9208
9209 /* Return a PID that identifies a "thread" for threaded cores, or the
9210 PID of the main process for non-threaded cores. */
9211
9212 static int
9213 elfcore_make_pid (bfd *abfd)
9214 {
9215 int pid;
9216
9217 pid = elf_tdata (abfd)->core->lwpid;
9218 if (pid == 0)
9219 pid = elf_tdata (abfd)->core->pid;
9220
9221 return pid;
9222 }
9223
9224 /* If there isn't a section called NAME, make one, using
9225 data from SECT. Note, this function will generate a
9226 reference to NAME, so you shouldn't deallocate or
9227 overwrite it. */
9228
9229 static bfd_boolean
9230 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9231 {
9232 asection *sect2;
9233
9234 if (bfd_get_section_by_name (abfd, name) != NULL)
9235 return TRUE;
9236
9237 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9238 if (sect2 == NULL)
9239 return FALSE;
9240
9241 sect2->size = sect->size;
9242 sect2->filepos = sect->filepos;
9243 sect2->alignment_power = sect->alignment_power;
9244 return TRUE;
9245 }
9246
9247 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9248 actually creates up to two pseudosections:
9249 - For the single-threaded case, a section named NAME, unless
9250 such a section already exists.
9251 - For the multi-threaded case, a section named "NAME/PID", where
9252 PID is elfcore_make_pid (abfd).
9253 Both pseudosections have identical contents. */
9254 bfd_boolean
9255 _bfd_elfcore_make_pseudosection (bfd *abfd,
9256 char *name,
9257 size_t size,
9258 ufile_ptr filepos)
9259 {
9260 char buf[100];
9261 char *threaded_name;
9262 size_t len;
9263 asection *sect;
9264
9265 /* Build the section name. */
9266
9267 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9268 len = strlen (buf) + 1;
9269 threaded_name = (char *) bfd_alloc (abfd, len);
9270 if (threaded_name == NULL)
9271 return FALSE;
9272 memcpy (threaded_name, buf, len);
9273
9274 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9275 SEC_HAS_CONTENTS);
9276 if (sect == NULL)
9277 return FALSE;
9278 sect->size = size;
9279 sect->filepos = filepos;
9280 sect->alignment_power = 2;
9281
9282 return elfcore_maybe_make_sect (abfd, name, sect);
9283 }
9284
9285 static bfd_boolean
9286 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9287 size_t offs)
9288 {
9289 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9290 SEC_HAS_CONTENTS);
9291
9292 if (sect == NULL)
9293 return FALSE;
9294
9295 sect->size = note->descsz - offs;
9296 sect->filepos = note->descpos + offs;
9297 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9298
9299 return TRUE;
9300 }
9301
9302 /* prstatus_t exists on:
9303 solaris 2.5+
9304 linux 2.[01] + glibc
9305 unixware 4.2
9306 */
9307
9308 #if defined (HAVE_PRSTATUS_T)
9309
9310 static bfd_boolean
9311 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9312 {
9313 size_t size;
9314 int offset;
9315
9316 if (note->descsz == sizeof (prstatus_t))
9317 {
9318 prstatus_t prstat;
9319
9320 size = sizeof (prstat.pr_reg);
9321 offset = offsetof (prstatus_t, pr_reg);
9322 memcpy (&prstat, note->descdata, sizeof (prstat));
9323
9324 /* Do not overwrite the core signal if it
9325 has already been set by another thread. */
9326 if (elf_tdata (abfd)->core->signal == 0)
9327 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9328 if (elf_tdata (abfd)->core->pid == 0)
9329 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9330
9331 /* pr_who exists on:
9332 solaris 2.5+
9333 unixware 4.2
9334 pr_who doesn't exist on:
9335 linux 2.[01]
9336 */
9337 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9338 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9339 #else
9340 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9341 #endif
9342 }
9343 #if defined (HAVE_PRSTATUS32_T)
9344 else if (note->descsz == sizeof (prstatus32_t))
9345 {
9346 /* 64-bit host, 32-bit corefile */
9347 prstatus32_t prstat;
9348
9349 size = sizeof (prstat.pr_reg);
9350 offset = offsetof (prstatus32_t, pr_reg);
9351 memcpy (&prstat, note->descdata, sizeof (prstat));
9352
9353 /* Do not overwrite the core signal if it
9354 has already been set by another thread. */
9355 if (elf_tdata (abfd)->core->signal == 0)
9356 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9357 if (elf_tdata (abfd)->core->pid == 0)
9358 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9359
9360 /* pr_who exists on:
9361 solaris 2.5+
9362 unixware 4.2
9363 pr_who doesn't exist on:
9364 linux 2.[01]
9365 */
9366 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9367 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9368 #else
9369 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9370 #endif
9371 }
9372 #endif /* HAVE_PRSTATUS32_T */
9373 else
9374 {
9375 /* Fail - we don't know how to handle any other
9376 note size (ie. data object type). */
9377 return TRUE;
9378 }
9379
9380 /* Make a ".reg/999" section and a ".reg" section. */
9381 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9382 size, note->descpos + offset);
9383 }
9384 #endif /* defined (HAVE_PRSTATUS_T) */
9385
9386 /* Create a pseudosection containing the exact contents of NOTE. */
9387 static bfd_boolean
9388 elfcore_make_note_pseudosection (bfd *abfd,
9389 char *name,
9390 Elf_Internal_Note *note)
9391 {
9392 return _bfd_elfcore_make_pseudosection (abfd, name,
9393 note->descsz, note->descpos);
9394 }
9395
9396 /* There isn't a consistent prfpregset_t across platforms,
9397 but it doesn't matter, because we don't have to pick this
9398 data structure apart. */
9399
9400 static bfd_boolean
9401 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9402 {
9403 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9404 }
9405
9406 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9407 type of NT_PRXFPREG. Just include the whole note's contents
9408 literally. */
9409
9410 static bfd_boolean
9411 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9412 {
9413 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9414 }
9415
9416 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9417 with a note type of NT_X86_XSTATE. Just include the whole note's
9418 contents literally. */
9419
9420 static bfd_boolean
9421 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9422 {
9423 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9424 }
9425
9426 static bfd_boolean
9427 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9428 {
9429 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9430 }
9431
9432 static bfd_boolean
9433 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9434 {
9435 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9436 }
9437
9438 static bfd_boolean
9439 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9440 {
9441 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9442 }
9443
9444 static bfd_boolean
9445 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9446 {
9447 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9448 }
9449
9450 static bfd_boolean
9451 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9452 {
9453 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9454 }
9455
9456 static bfd_boolean
9457 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9458 {
9459 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9460 }
9461
9462 static bfd_boolean
9463 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9464 {
9465 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9466 }
9467
9468 static bfd_boolean
9469 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9470 {
9471 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9472 }
9473
9474 static bfd_boolean
9475 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9476 {
9477 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9478 }
9479
9480 static bfd_boolean
9481 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9482 {
9483 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9484 }
9485
9486 static bfd_boolean
9487 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9488 {
9489 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9490 }
9491
9492 static bfd_boolean
9493 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9494 {
9495 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9496 }
9497
9498 static bfd_boolean
9499 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9500 {
9501 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9502 }
9503
9504 static bfd_boolean
9505 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9506 {
9507 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9508 }
9509
9510 static bfd_boolean
9511 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9512 {
9513 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9514 }
9515
9516 static bfd_boolean
9517 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9518 {
9519 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9520 }
9521
9522 static bfd_boolean
9523 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9524 {
9525 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9526 }
9527
9528 static bfd_boolean
9529 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9530 {
9531 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9532 }
9533
9534 static bfd_boolean
9535 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9536 {
9537 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9538 }
9539
9540 static bfd_boolean
9541 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9542 {
9543 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9544 }
9545
9546 static bfd_boolean
9547 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9548 {
9549 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9550 }
9551
9552 static bfd_boolean
9553 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9554 {
9555 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9556 }
9557
9558 static bfd_boolean
9559 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9560 {
9561 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9562 }
9563
9564 static bfd_boolean
9565 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9566 {
9567 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9568 }
9569
9570 static bfd_boolean
9571 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9572 {
9573 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9574 }
9575
9576 static bfd_boolean
9577 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9578 {
9579 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9580 }
9581
9582 static bfd_boolean
9583 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9584 {
9585 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9586 }
9587
9588 static bfd_boolean
9589 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9590 {
9591 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9592 }
9593
9594 static bfd_boolean
9595 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9596 {
9597 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9598 }
9599
9600 static bfd_boolean
9601 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9602 {
9603 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9604 }
9605
9606 static bfd_boolean
9607 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9608 {
9609 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9610 }
9611
9612 static bfd_boolean
9613 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9614 {
9615 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9616 }
9617
9618 static bfd_boolean
9619 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9620 {
9621 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9622 }
9623
9624 static bfd_boolean
9625 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9626 {
9627 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9628 }
9629
9630 #if defined (HAVE_PRPSINFO_T)
9631 typedef prpsinfo_t elfcore_psinfo_t;
9632 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9633 typedef prpsinfo32_t elfcore_psinfo32_t;
9634 #endif
9635 #endif
9636
9637 #if defined (HAVE_PSINFO_T)
9638 typedef psinfo_t elfcore_psinfo_t;
9639 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9640 typedef psinfo32_t elfcore_psinfo32_t;
9641 #endif
9642 #endif
9643
9644 /* return a malloc'ed copy of a string at START which is at
9645 most MAX bytes long, possibly without a terminating '\0'.
9646 the copy will always have a terminating '\0'. */
9647
9648 char *
9649 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9650 {
9651 char *dups;
9652 char *end = (char *) memchr (start, '\0', max);
9653 size_t len;
9654
9655 if (end == NULL)
9656 len = max;
9657 else
9658 len = end - start;
9659
9660 dups = (char *) bfd_alloc (abfd, len + 1);
9661 if (dups == NULL)
9662 return NULL;
9663
9664 memcpy (dups, start, len);
9665 dups[len] = '\0';
9666
9667 return dups;
9668 }
9669
9670 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9671 static bfd_boolean
9672 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9673 {
9674 if (note->descsz == sizeof (elfcore_psinfo_t))
9675 {
9676 elfcore_psinfo_t psinfo;
9677
9678 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9679
9680 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9681 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9682 #endif
9683 elf_tdata (abfd)->core->program
9684 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9685 sizeof (psinfo.pr_fname));
9686
9687 elf_tdata (abfd)->core->command
9688 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9689 sizeof (psinfo.pr_psargs));
9690 }
9691 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9692 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9693 {
9694 /* 64-bit host, 32-bit corefile */
9695 elfcore_psinfo32_t psinfo;
9696
9697 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9698
9699 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9700 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9701 #endif
9702 elf_tdata (abfd)->core->program
9703 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9704 sizeof (psinfo.pr_fname));
9705
9706 elf_tdata (abfd)->core->command
9707 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9708 sizeof (psinfo.pr_psargs));
9709 }
9710 #endif
9711
9712 else
9713 {
9714 /* Fail - we don't know how to handle any other
9715 note size (ie. data object type). */
9716 return TRUE;
9717 }
9718
9719 /* Note that for some reason, a spurious space is tacked
9720 onto the end of the args in some (at least one anyway)
9721 implementations, so strip it off if it exists. */
9722
9723 {
9724 char *command = elf_tdata (abfd)->core->command;
9725 int n = strlen (command);
9726
9727 if (0 < n && command[n - 1] == ' ')
9728 command[n - 1] = '\0';
9729 }
9730
9731 return TRUE;
9732 }
9733 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9734
9735 #if defined (HAVE_PSTATUS_T)
9736 static bfd_boolean
9737 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9738 {
9739 if (note->descsz == sizeof (pstatus_t)
9740 #if defined (HAVE_PXSTATUS_T)
9741 || note->descsz == sizeof (pxstatus_t)
9742 #endif
9743 )
9744 {
9745 pstatus_t pstat;
9746
9747 memcpy (&pstat, note->descdata, sizeof (pstat));
9748
9749 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9750 }
9751 #if defined (HAVE_PSTATUS32_T)
9752 else if (note->descsz == sizeof (pstatus32_t))
9753 {
9754 /* 64-bit host, 32-bit corefile */
9755 pstatus32_t pstat;
9756
9757 memcpy (&pstat, note->descdata, sizeof (pstat));
9758
9759 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9760 }
9761 #endif
9762 /* Could grab some more details from the "representative"
9763 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9764 NT_LWPSTATUS note, presumably. */
9765
9766 return TRUE;
9767 }
9768 #endif /* defined (HAVE_PSTATUS_T) */
9769
9770 #if defined (HAVE_LWPSTATUS_T)
9771 static bfd_boolean
9772 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9773 {
9774 lwpstatus_t lwpstat;
9775 char buf[100];
9776 char *name;
9777 size_t len;
9778 asection *sect;
9779
9780 if (note->descsz != sizeof (lwpstat)
9781 #if defined (HAVE_LWPXSTATUS_T)
9782 && note->descsz != sizeof (lwpxstatus_t)
9783 #endif
9784 )
9785 return TRUE;
9786
9787 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9788
9789 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9790 /* Do not overwrite the core signal if it has already been set by
9791 another thread. */
9792 if (elf_tdata (abfd)->core->signal == 0)
9793 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9794
9795 /* Make a ".reg/999" section. */
9796
9797 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9798 len = strlen (buf) + 1;
9799 name = bfd_alloc (abfd, len);
9800 if (name == NULL)
9801 return FALSE;
9802 memcpy (name, buf, len);
9803
9804 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9805 if (sect == NULL)
9806 return FALSE;
9807
9808 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9809 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9810 sect->filepos = note->descpos
9811 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9812 #endif
9813
9814 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9815 sect->size = sizeof (lwpstat.pr_reg);
9816 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9817 #endif
9818
9819 sect->alignment_power = 2;
9820
9821 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9822 return FALSE;
9823
9824 /* Make a ".reg2/999" section */
9825
9826 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9827 len = strlen (buf) + 1;
9828 name = bfd_alloc (abfd, len);
9829 if (name == NULL)
9830 return FALSE;
9831 memcpy (name, buf, len);
9832
9833 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9834 if (sect == NULL)
9835 return FALSE;
9836
9837 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9838 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9839 sect->filepos = note->descpos
9840 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9841 #endif
9842
9843 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9844 sect->size = sizeof (lwpstat.pr_fpreg);
9845 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9846 #endif
9847
9848 sect->alignment_power = 2;
9849
9850 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9851 }
9852 #endif /* defined (HAVE_LWPSTATUS_T) */
9853
9854 static bfd_boolean
9855 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9856 {
9857 char buf[30];
9858 char *name;
9859 size_t len;
9860 asection *sect;
9861 int type;
9862 int is_active_thread;
9863 bfd_vma base_addr;
9864
9865 if (note->descsz < 728)
9866 return TRUE;
9867
9868 if (! CONST_STRNEQ (note->namedata, "win32"))
9869 return TRUE;
9870
9871 type = bfd_get_32 (abfd, note->descdata);
9872
9873 switch (type)
9874 {
9875 case 1 /* NOTE_INFO_PROCESS */:
9876 /* FIXME: need to add ->core->command. */
9877 /* process_info.pid */
9878 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9879 /* process_info.signal */
9880 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9881 break;
9882
9883 case 2 /* NOTE_INFO_THREAD */:
9884 /* Make a ".reg/999" section. */
9885 /* thread_info.tid */
9886 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9887
9888 len = strlen (buf) + 1;
9889 name = (char *) bfd_alloc (abfd, len);
9890 if (name == NULL)
9891 return FALSE;
9892
9893 memcpy (name, buf, len);
9894
9895 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9896 if (sect == NULL)
9897 return FALSE;
9898
9899 /* sizeof (thread_info.thread_context) */
9900 sect->size = 716;
9901 /* offsetof (thread_info.thread_context) */
9902 sect->filepos = note->descpos + 12;
9903 sect->alignment_power = 2;
9904
9905 /* thread_info.is_active_thread */
9906 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9907
9908 if (is_active_thread)
9909 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9910 return FALSE;
9911 break;
9912
9913 case 3 /* NOTE_INFO_MODULE */:
9914 /* Make a ".module/xxxxxxxx" section. */
9915 /* module_info.base_address */
9916 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9917 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9918
9919 len = strlen (buf) + 1;
9920 name = (char *) bfd_alloc (abfd, len);
9921 if (name == NULL)
9922 return FALSE;
9923
9924 memcpy (name, buf, len);
9925
9926 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9927
9928 if (sect == NULL)
9929 return FALSE;
9930
9931 sect->size = note->descsz;
9932 sect->filepos = note->descpos;
9933 sect->alignment_power = 2;
9934 break;
9935
9936 default:
9937 return TRUE;
9938 }
9939
9940 return TRUE;
9941 }
9942
9943 static bfd_boolean
9944 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9945 {
9946 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9947
9948 switch (note->type)
9949 {
9950 default:
9951 return TRUE;
9952
9953 case NT_PRSTATUS:
9954 if (bed->elf_backend_grok_prstatus)
9955 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9956 return TRUE;
9957 #if defined (HAVE_PRSTATUS_T)
9958 return elfcore_grok_prstatus (abfd, note);
9959 #else
9960 return TRUE;
9961 #endif
9962
9963 #if defined (HAVE_PSTATUS_T)
9964 case NT_PSTATUS:
9965 return elfcore_grok_pstatus (abfd, note);
9966 #endif
9967
9968 #if defined (HAVE_LWPSTATUS_T)
9969 case NT_LWPSTATUS:
9970 return elfcore_grok_lwpstatus (abfd, note);
9971 #endif
9972
9973 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9974 return elfcore_grok_prfpreg (abfd, note);
9975
9976 case NT_WIN32PSTATUS:
9977 return elfcore_grok_win32pstatus (abfd, note);
9978
9979 case NT_PRXFPREG: /* Linux SSE extension */
9980 if (note->namesz == 6
9981 && strcmp (note->namedata, "LINUX") == 0)
9982 return elfcore_grok_prxfpreg (abfd, note);
9983 else
9984 return TRUE;
9985
9986 case NT_X86_XSTATE: /* Linux XSAVE extension */
9987 if (note->namesz == 6
9988 && strcmp (note->namedata, "LINUX") == 0)
9989 return elfcore_grok_xstatereg (abfd, note);
9990 else
9991 return TRUE;
9992
9993 case NT_PPC_VMX:
9994 if (note->namesz == 6
9995 && strcmp (note->namedata, "LINUX") == 0)
9996 return elfcore_grok_ppc_vmx (abfd, note);
9997 else
9998 return TRUE;
9999
10000 case NT_PPC_VSX:
10001 if (note->namesz == 6
10002 && strcmp (note->namedata, "LINUX") == 0)
10003 return elfcore_grok_ppc_vsx (abfd, note);
10004 else
10005 return TRUE;
10006
10007 case NT_PPC_TAR:
10008 if (note->namesz == 6
10009 && strcmp (note->namedata, "LINUX") == 0)
10010 return elfcore_grok_ppc_tar (abfd, note);
10011 else
10012 return TRUE;
10013
10014 case NT_PPC_PPR:
10015 if (note->namesz == 6
10016 && strcmp (note->namedata, "LINUX") == 0)
10017 return elfcore_grok_ppc_ppr (abfd, note);
10018 else
10019 return TRUE;
10020
10021 case NT_PPC_DSCR:
10022 if (note->namesz == 6
10023 && strcmp (note->namedata, "LINUX") == 0)
10024 return elfcore_grok_ppc_dscr (abfd, note);
10025 else
10026 return TRUE;
10027
10028 case NT_PPC_EBB:
10029 if (note->namesz == 6
10030 && strcmp (note->namedata, "LINUX") == 0)
10031 return elfcore_grok_ppc_ebb (abfd, note);
10032 else
10033 return TRUE;
10034
10035 case NT_PPC_PMU:
10036 if (note->namesz == 6
10037 && strcmp (note->namedata, "LINUX") == 0)
10038 return elfcore_grok_ppc_pmu (abfd, note);
10039 else
10040 return TRUE;
10041
10042 case NT_PPC_TM_CGPR:
10043 if (note->namesz == 6
10044 && strcmp (note->namedata, "LINUX") == 0)
10045 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10046 else
10047 return TRUE;
10048
10049 case NT_PPC_TM_CFPR:
10050 if (note->namesz == 6
10051 && strcmp (note->namedata, "LINUX") == 0)
10052 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10053 else
10054 return TRUE;
10055
10056 case NT_PPC_TM_CVMX:
10057 if (note->namesz == 6
10058 && strcmp (note->namedata, "LINUX") == 0)
10059 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10060 else
10061 return TRUE;
10062
10063 case NT_PPC_TM_CVSX:
10064 if (note->namesz == 6
10065 && strcmp (note->namedata, "LINUX") == 0)
10066 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10067 else
10068 return TRUE;
10069
10070 case NT_PPC_TM_SPR:
10071 if (note->namesz == 6
10072 && strcmp (note->namedata, "LINUX") == 0)
10073 return elfcore_grok_ppc_tm_spr (abfd, note);
10074 else
10075 return TRUE;
10076
10077 case NT_PPC_TM_CTAR:
10078 if (note->namesz == 6
10079 && strcmp (note->namedata, "LINUX") == 0)
10080 return elfcore_grok_ppc_tm_ctar (abfd, note);
10081 else
10082 return TRUE;
10083
10084 case NT_PPC_TM_CPPR:
10085 if (note->namesz == 6
10086 && strcmp (note->namedata, "LINUX") == 0)
10087 return elfcore_grok_ppc_tm_cppr (abfd, note);
10088 else
10089 return TRUE;
10090
10091 case NT_PPC_TM_CDSCR:
10092 if (note->namesz == 6
10093 && strcmp (note->namedata, "LINUX") == 0)
10094 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10095 else
10096 return TRUE;
10097
10098 case NT_S390_HIGH_GPRS:
10099 if (note->namesz == 6
10100 && strcmp (note->namedata, "LINUX") == 0)
10101 return elfcore_grok_s390_high_gprs (abfd, note);
10102 else
10103 return TRUE;
10104
10105 case NT_S390_TIMER:
10106 if (note->namesz == 6
10107 && strcmp (note->namedata, "LINUX") == 0)
10108 return elfcore_grok_s390_timer (abfd, note);
10109 else
10110 return TRUE;
10111
10112 case NT_S390_TODCMP:
10113 if (note->namesz == 6
10114 && strcmp (note->namedata, "LINUX") == 0)
10115 return elfcore_grok_s390_todcmp (abfd, note);
10116 else
10117 return TRUE;
10118
10119 case NT_S390_TODPREG:
10120 if (note->namesz == 6
10121 && strcmp (note->namedata, "LINUX") == 0)
10122 return elfcore_grok_s390_todpreg (abfd, note);
10123 else
10124 return TRUE;
10125
10126 case NT_S390_CTRS:
10127 if (note->namesz == 6
10128 && strcmp (note->namedata, "LINUX") == 0)
10129 return elfcore_grok_s390_ctrs (abfd, note);
10130 else
10131 return TRUE;
10132
10133 case NT_S390_PREFIX:
10134 if (note->namesz == 6
10135 && strcmp (note->namedata, "LINUX") == 0)
10136 return elfcore_grok_s390_prefix (abfd, note);
10137 else
10138 return TRUE;
10139
10140 case NT_S390_LAST_BREAK:
10141 if (note->namesz == 6
10142 && strcmp (note->namedata, "LINUX") == 0)
10143 return elfcore_grok_s390_last_break (abfd, note);
10144 else
10145 return TRUE;
10146
10147 case NT_S390_SYSTEM_CALL:
10148 if (note->namesz == 6
10149 && strcmp (note->namedata, "LINUX") == 0)
10150 return elfcore_grok_s390_system_call (abfd, note);
10151 else
10152 return TRUE;
10153
10154 case NT_S390_TDB:
10155 if (note->namesz == 6
10156 && strcmp (note->namedata, "LINUX") == 0)
10157 return elfcore_grok_s390_tdb (abfd, note);
10158 else
10159 return TRUE;
10160
10161 case NT_S390_VXRS_LOW:
10162 if (note->namesz == 6
10163 && strcmp (note->namedata, "LINUX") == 0)
10164 return elfcore_grok_s390_vxrs_low (abfd, note);
10165 else
10166 return TRUE;
10167
10168 case NT_S390_VXRS_HIGH:
10169 if (note->namesz == 6
10170 && strcmp (note->namedata, "LINUX") == 0)
10171 return elfcore_grok_s390_vxrs_high (abfd, note);
10172 else
10173 return TRUE;
10174
10175 case NT_S390_GS_CB:
10176 if (note->namesz == 6
10177 && strcmp (note->namedata, "LINUX") == 0)
10178 return elfcore_grok_s390_gs_cb (abfd, note);
10179 else
10180 return TRUE;
10181
10182 case NT_S390_GS_BC:
10183 if (note->namesz == 6
10184 && strcmp (note->namedata, "LINUX") == 0)
10185 return elfcore_grok_s390_gs_bc (abfd, note);
10186 else
10187 return TRUE;
10188
10189 case NT_ARM_VFP:
10190 if (note->namesz == 6
10191 && strcmp (note->namedata, "LINUX") == 0)
10192 return elfcore_grok_arm_vfp (abfd, note);
10193 else
10194 return TRUE;
10195
10196 case NT_ARM_TLS:
10197 if (note->namesz == 6
10198 && strcmp (note->namedata, "LINUX") == 0)
10199 return elfcore_grok_aarch_tls (abfd, note);
10200 else
10201 return TRUE;
10202
10203 case NT_ARM_HW_BREAK:
10204 if (note->namesz == 6
10205 && strcmp (note->namedata, "LINUX") == 0)
10206 return elfcore_grok_aarch_hw_break (abfd, note);
10207 else
10208 return TRUE;
10209
10210 case NT_ARM_HW_WATCH:
10211 if (note->namesz == 6
10212 && strcmp (note->namedata, "LINUX") == 0)
10213 return elfcore_grok_aarch_hw_watch (abfd, note);
10214 else
10215 return TRUE;
10216
10217 case NT_ARM_SVE:
10218 if (note->namesz == 6
10219 && strcmp (note->namedata, "LINUX") == 0)
10220 return elfcore_grok_aarch_sve (abfd, note);
10221 else
10222 return TRUE;
10223
10224 case NT_ARM_PAC_MASK:
10225 if (note->namesz == 6
10226 && strcmp (note->namedata, "LINUX") == 0)
10227 return elfcore_grok_aarch_pauth (abfd, note);
10228 else
10229 return TRUE;
10230
10231 case NT_PRPSINFO:
10232 case NT_PSINFO:
10233 if (bed->elf_backend_grok_psinfo)
10234 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10235 return TRUE;
10236 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10237 return elfcore_grok_psinfo (abfd, note);
10238 #else
10239 return TRUE;
10240 #endif
10241
10242 case NT_AUXV:
10243 return elfcore_make_auxv_note_section (abfd, note, 0);
10244
10245 case NT_FILE:
10246 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10247 note);
10248
10249 case NT_SIGINFO:
10250 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10251 note);
10252
10253 }
10254 }
10255
10256 static bfd_boolean
10257 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10258 {
10259 struct bfd_build_id* build_id;
10260
10261 if (note->descsz == 0)
10262 return FALSE;
10263
10264 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10265 if (build_id == NULL)
10266 return FALSE;
10267
10268 build_id->size = note->descsz;
10269 memcpy (build_id->data, note->descdata, note->descsz);
10270 abfd->build_id = build_id;
10271
10272 return TRUE;
10273 }
10274
10275 static bfd_boolean
10276 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10277 {
10278 switch (note->type)
10279 {
10280 default:
10281 return TRUE;
10282
10283 case NT_GNU_PROPERTY_TYPE_0:
10284 return _bfd_elf_parse_gnu_properties (abfd, note);
10285
10286 case NT_GNU_BUILD_ID:
10287 return elfobj_grok_gnu_build_id (abfd, note);
10288 }
10289 }
10290
10291 static bfd_boolean
10292 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10293 {
10294 struct sdt_note *cur =
10295 (struct sdt_note *) bfd_alloc (abfd,
10296 sizeof (struct sdt_note) + note->descsz);
10297
10298 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10299 cur->size = (bfd_size_type) note->descsz;
10300 memcpy (cur->data, note->descdata, note->descsz);
10301
10302 elf_tdata (abfd)->sdt_note_head = cur;
10303
10304 return TRUE;
10305 }
10306
10307 static bfd_boolean
10308 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10309 {
10310 switch (note->type)
10311 {
10312 case NT_STAPSDT:
10313 return elfobj_grok_stapsdt_note_1 (abfd, note);
10314
10315 default:
10316 return TRUE;
10317 }
10318 }
10319
10320 static bfd_boolean
10321 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10322 {
10323 size_t offset;
10324
10325 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10326 {
10327 case ELFCLASS32:
10328 if (note->descsz < 108)
10329 return FALSE;
10330 break;
10331
10332 case ELFCLASS64:
10333 if (note->descsz < 120)
10334 return FALSE;
10335 break;
10336
10337 default:
10338 return FALSE;
10339 }
10340
10341 /* Check for version 1 in pr_version. */
10342 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10343 return FALSE;
10344
10345 offset = 4;
10346
10347 /* Skip over pr_psinfosz. */
10348 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10349 offset += 4;
10350 else
10351 {
10352 offset += 4; /* Padding before pr_psinfosz. */
10353 offset += 8;
10354 }
10355
10356 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10357 elf_tdata (abfd)->core->program
10358 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10359 offset += 17;
10360
10361 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10362 elf_tdata (abfd)->core->command
10363 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10364 offset += 81;
10365
10366 /* Padding before pr_pid. */
10367 offset += 2;
10368
10369 /* The pr_pid field was added in version "1a". */
10370 if (note->descsz < offset + 4)
10371 return TRUE;
10372
10373 elf_tdata (abfd)->core->pid
10374 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10375
10376 return TRUE;
10377 }
10378
10379 static bfd_boolean
10380 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10381 {
10382 size_t offset;
10383 size_t size;
10384 size_t min_size;
10385
10386 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10387 Also compute minimum size of this note. */
10388 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10389 {
10390 case ELFCLASS32:
10391 offset = 4 + 4;
10392 min_size = offset + (4 * 2) + 4 + 4 + 4;
10393 break;
10394
10395 case ELFCLASS64:
10396 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10397 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10398 break;
10399
10400 default:
10401 return FALSE;
10402 }
10403
10404 if (note->descsz < min_size)
10405 return FALSE;
10406
10407 /* Check for version 1 in pr_version. */
10408 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10409 return FALSE;
10410
10411 /* Extract size of pr_reg from pr_gregsetsz. */
10412 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10413 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10414 {
10415 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10416 offset += 4 * 2;
10417 }
10418 else
10419 {
10420 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10421 offset += 8 * 2;
10422 }
10423
10424 /* Skip over pr_osreldate. */
10425 offset += 4;
10426
10427 /* Read signal from pr_cursig. */
10428 if (elf_tdata (abfd)->core->signal == 0)
10429 elf_tdata (abfd)->core->signal
10430 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10431 offset += 4;
10432
10433 /* Read TID from pr_pid. */
10434 elf_tdata (abfd)->core->lwpid
10435 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10436 offset += 4;
10437
10438 /* Padding before pr_reg. */
10439 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10440 offset += 4;
10441
10442 /* Make sure that there is enough data remaining in the note. */
10443 if ((note->descsz - offset) < size)
10444 return FALSE;
10445
10446 /* Make a ".reg/999" section and a ".reg" section. */
10447 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10448 size, note->descpos + offset);
10449 }
10450
10451 static bfd_boolean
10452 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10453 {
10454 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10455
10456 switch (note->type)
10457 {
10458 case NT_PRSTATUS:
10459 if (bed->elf_backend_grok_freebsd_prstatus)
10460 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10461 return TRUE;
10462 return elfcore_grok_freebsd_prstatus (abfd, note);
10463
10464 case NT_FPREGSET:
10465 return elfcore_grok_prfpreg (abfd, note);
10466
10467 case NT_PRPSINFO:
10468 return elfcore_grok_freebsd_psinfo (abfd, note);
10469
10470 case NT_FREEBSD_THRMISC:
10471 if (note->namesz == 8)
10472 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10473 else
10474 return TRUE;
10475
10476 case NT_FREEBSD_PROCSTAT_PROC:
10477 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10478 note);
10479
10480 case NT_FREEBSD_PROCSTAT_FILES:
10481 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10482 note);
10483
10484 case NT_FREEBSD_PROCSTAT_VMMAP:
10485 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10486 note);
10487
10488 case NT_FREEBSD_PROCSTAT_AUXV:
10489 return elfcore_make_auxv_note_section (abfd, note, 4);
10490
10491 case NT_X86_XSTATE:
10492 if (note->namesz == 8)
10493 return elfcore_grok_xstatereg (abfd, note);
10494 else
10495 return TRUE;
10496
10497 case NT_FREEBSD_PTLWPINFO:
10498 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10499 note);
10500
10501 case NT_ARM_VFP:
10502 return elfcore_grok_arm_vfp (abfd, note);
10503
10504 default:
10505 return TRUE;
10506 }
10507 }
10508
10509 static bfd_boolean
10510 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10511 {
10512 char *cp;
10513
10514 cp = strchr (note->namedata, '@');
10515 if (cp != NULL)
10516 {
10517 *lwpidp = atoi(cp + 1);
10518 return TRUE;
10519 }
10520 return FALSE;
10521 }
10522
10523 static bfd_boolean
10524 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10525 {
10526 if (note->descsz <= 0x7c + 31)
10527 return FALSE;
10528
10529 /* Signal number at offset 0x08. */
10530 elf_tdata (abfd)->core->signal
10531 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10532
10533 /* Process ID at offset 0x50. */
10534 elf_tdata (abfd)->core->pid
10535 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10536
10537 /* Command name at 0x7c (max 32 bytes, including nul). */
10538 elf_tdata (abfd)->core->command
10539 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10540
10541 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10542 note);
10543 }
10544
10545 static bfd_boolean
10546 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10547 {
10548 int lwp;
10549
10550 if (elfcore_netbsd_get_lwpid (note, &lwp))
10551 elf_tdata (abfd)->core->lwpid = lwp;
10552
10553 switch (note->type)
10554 {
10555 case NT_NETBSDCORE_PROCINFO:
10556 /* NetBSD-specific core "procinfo". Note that we expect to
10557 find this note before any of the others, which is fine,
10558 since the kernel writes this note out first when it
10559 creates a core file. */
10560 return elfcore_grok_netbsd_procinfo (abfd, note);
10561 #ifdef NT_NETBSDCORE_AUXV
10562 case NT_NETBSDCORE_AUXV:
10563 /* NetBSD-specific Elf Auxiliary Vector data. */
10564 return elfcore_make_auxv_note_section (abfd, note, 4);
10565 #endif
10566 default:
10567 break;
10568 }
10569
10570 /* As of March 2017 there are no other machine-independent notes
10571 defined for NetBSD core files. If the note type is less
10572 than the start of the machine-dependent note types, we don't
10573 understand it. */
10574
10575 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10576 return TRUE;
10577
10578
10579 switch (bfd_get_arch (abfd))
10580 {
10581 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10582 PT_GETFPREGS == mach+2. */
10583
10584 case bfd_arch_alpha:
10585 case bfd_arch_sparc:
10586 switch (note->type)
10587 {
10588 case NT_NETBSDCORE_FIRSTMACH+0:
10589 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10590
10591 case NT_NETBSDCORE_FIRSTMACH+2:
10592 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10593
10594 default:
10595 return TRUE;
10596 }
10597
10598 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10599 There's also old PT___GETREGS40 == mach + 1 for old reg
10600 structure which lacks GBR. */
10601
10602 case bfd_arch_sh:
10603 switch (note->type)
10604 {
10605 case NT_NETBSDCORE_FIRSTMACH+3:
10606 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10607
10608 case NT_NETBSDCORE_FIRSTMACH+5:
10609 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10610
10611 default:
10612 return TRUE;
10613 }
10614
10615 /* On all other arch's, PT_GETREGS == mach+1 and
10616 PT_GETFPREGS == mach+3. */
10617
10618 default:
10619 switch (note->type)
10620 {
10621 case NT_NETBSDCORE_FIRSTMACH+1:
10622 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10623
10624 case NT_NETBSDCORE_FIRSTMACH+3:
10625 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10626
10627 default:
10628 return TRUE;
10629 }
10630 }
10631 /* NOTREACHED */
10632 }
10633
10634 static bfd_boolean
10635 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10636 {
10637 if (note->descsz <= 0x48 + 31)
10638 return FALSE;
10639
10640 /* Signal number at offset 0x08. */
10641 elf_tdata (abfd)->core->signal
10642 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10643
10644 /* Process ID at offset 0x20. */
10645 elf_tdata (abfd)->core->pid
10646 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10647
10648 /* Command name at 0x48 (max 32 bytes, including nul). */
10649 elf_tdata (abfd)->core->command
10650 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10651
10652 return TRUE;
10653 }
10654
10655 static bfd_boolean
10656 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10657 {
10658 if (note->type == NT_OPENBSD_PROCINFO)
10659 return elfcore_grok_openbsd_procinfo (abfd, note);
10660
10661 if (note->type == NT_OPENBSD_REGS)
10662 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10663
10664 if (note->type == NT_OPENBSD_FPREGS)
10665 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10666
10667 if (note->type == NT_OPENBSD_XFPREGS)
10668 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10669
10670 if (note->type == NT_OPENBSD_AUXV)
10671 return elfcore_make_auxv_note_section (abfd, note, 0);
10672
10673 if (note->type == NT_OPENBSD_WCOOKIE)
10674 {
10675 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10676 SEC_HAS_CONTENTS);
10677
10678 if (sect == NULL)
10679 return FALSE;
10680 sect->size = note->descsz;
10681 sect->filepos = note->descpos;
10682 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10683
10684 return TRUE;
10685 }
10686
10687 return TRUE;
10688 }
10689
10690 static bfd_boolean
10691 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10692 {
10693 void *ddata = note->descdata;
10694 char buf[100];
10695 char *name;
10696 asection *sect;
10697 short sig;
10698 unsigned flags;
10699
10700 if (note->descsz < 16)
10701 return FALSE;
10702
10703 /* nto_procfs_status 'pid' field is at offset 0. */
10704 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10705
10706 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10707 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10708
10709 /* nto_procfs_status 'flags' field is at offset 8. */
10710 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10711
10712 /* nto_procfs_status 'what' field is at offset 14. */
10713 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10714 {
10715 elf_tdata (abfd)->core->signal = sig;
10716 elf_tdata (abfd)->core->lwpid = *tid;
10717 }
10718
10719 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10720 do not come from signals so we make sure we set the current
10721 thread just in case. */
10722 if (flags & 0x00000080)
10723 elf_tdata (abfd)->core->lwpid = *tid;
10724
10725 /* Make a ".qnx_core_status/%d" section. */
10726 sprintf (buf, ".qnx_core_status/%ld", *tid);
10727
10728 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10729 if (name == NULL)
10730 return FALSE;
10731 strcpy (name, buf);
10732
10733 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10734 if (sect == NULL)
10735 return FALSE;
10736
10737 sect->size = note->descsz;
10738 sect->filepos = note->descpos;
10739 sect->alignment_power = 2;
10740
10741 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10742 }
10743
10744 static bfd_boolean
10745 elfcore_grok_nto_regs (bfd *abfd,
10746 Elf_Internal_Note *note,
10747 long tid,
10748 char *base)
10749 {
10750 char buf[100];
10751 char *name;
10752 asection *sect;
10753
10754 /* Make a "(base)/%d" section. */
10755 sprintf (buf, "%s/%ld", base, tid);
10756
10757 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10758 if (name == NULL)
10759 return FALSE;
10760 strcpy (name, buf);
10761
10762 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10763 if (sect == NULL)
10764 return FALSE;
10765
10766 sect->size = note->descsz;
10767 sect->filepos = note->descpos;
10768 sect->alignment_power = 2;
10769
10770 /* This is the current thread. */
10771 if (elf_tdata (abfd)->core->lwpid == tid)
10772 return elfcore_maybe_make_sect (abfd, base, sect);
10773
10774 return TRUE;
10775 }
10776
10777 #define BFD_QNT_CORE_INFO 7
10778 #define BFD_QNT_CORE_STATUS 8
10779 #define BFD_QNT_CORE_GREG 9
10780 #define BFD_QNT_CORE_FPREG 10
10781
10782 static bfd_boolean
10783 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10784 {
10785 /* Every GREG section has a STATUS section before it. Store the
10786 tid from the previous call to pass down to the next gregs
10787 function. */
10788 static long tid = 1;
10789
10790 switch (note->type)
10791 {
10792 case BFD_QNT_CORE_INFO:
10793 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10794 case BFD_QNT_CORE_STATUS:
10795 return elfcore_grok_nto_status (abfd, note, &tid);
10796 case BFD_QNT_CORE_GREG:
10797 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10798 case BFD_QNT_CORE_FPREG:
10799 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10800 default:
10801 return TRUE;
10802 }
10803 }
10804
10805 static bfd_boolean
10806 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10807 {
10808 char *name;
10809 asection *sect;
10810 size_t len;
10811
10812 /* Use note name as section name. */
10813 len = note->namesz;
10814 name = (char *) bfd_alloc (abfd, len);
10815 if (name == NULL)
10816 return FALSE;
10817 memcpy (name, note->namedata, len);
10818 name[len - 1] = '\0';
10819
10820 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10821 if (sect == NULL)
10822 return FALSE;
10823
10824 sect->size = note->descsz;
10825 sect->filepos = note->descpos;
10826 sect->alignment_power = 1;
10827
10828 return TRUE;
10829 }
10830
10831 /* Function: elfcore_write_note
10832
10833 Inputs:
10834 buffer to hold note, and current size of buffer
10835 name of note
10836 type of note
10837 data for note
10838 size of data for note
10839
10840 Writes note to end of buffer. ELF64 notes are written exactly as
10841 for ELF32, despite the current (as of 2006) ELF gabi specifying
10842 that they ought to have 8-byte namesz and descsz field, and have
10843 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10844
10845 Return:
10846 Pointer to realloc'd buffer, *BUFSIZ updated. */
10847
10848 char *
10849 elfcore_write_note (bfd *abfd,
10850 char *buf,
10851 int *bufsiz,
10852 const char *name,
10853 int type,
10854 const void *input,
10855 int size)
10856 {
10857 Elf_External_Note *xnp;
10858 size_t namesz;
10859 size_t newspace;
10860 char *dest;
10861
10862 namesz = 0;
10863 if (name != NULL)
10864 namesz = strlen (name) + 1;
10865
10866 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10867
10868 buf = (char *) realloc (buf, *bufsiz + newspace);
10869 if (buf == NULL)
10870 return buf;
10871 dest = buf + *bufsiz;
10872 *bufsiz += newspace;
10873 xnp = (Elf_External_Note *) dest;
10874 H_PUT_32 (abfd, namesz, xnp->namesz);
10875 H_PUT_32 (abfd, size, xnp->descsz);
10876 H_PUT_32 (abfd, type, xnp->type);
10877 dest = xnp->name;
10878 if (name != NULL)
10879 {
10880 memcpy (dest, name, namesz);
10881 dest += namesz;
10882 while (namesz & 3)
10883 {
10884 *dest++ = '\0';
10885 ++namesz;
10886 }
10887 }
10888 memcpy (dest, input, size);
10889 dest += size;
10890 while (size & 3)
10891 {
10892 *dest++ = '\0';
10893 ++size;
10894 }
10895 return buf;
10896 }
10897
10898 /* gcc-8 warns (*) on all the strncpy calls in this function about
10899 possible string truncation. The "truncation" is not a bug. We
10900 have an external representation of structs with fields that are not
10901 necessarily NULL terminated and corresponding internal
10902 representation fields that are one larger so that they can always
10903 be NULL terminated.
10904 gcc versions between 4.2 and 4.6 do not allow pragma control of
10905 diagnostics inside functions, giving a hard error if you try to use
10906 the finer control available with later versions.
10907 gcc prior to 4.2 warns about diagnostic push and pop.
10908 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
10909 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
10910 (*) Depending on your system header files! */
10911 #if GCC_VERSION >= 8000
10912 # pragma GCC diagnostic push
10913 # pragma GCC diagnostic ignored "-Wstringop-truncation"
10914 #endif
10915 char *
10916 elfcore_write_prpsinfo (bfd *abfd,
10917 char *buf,
10918 int *bufsiz,
10919 const char *fname,
10920 const char *psargs)
10921 {
10922 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10923
10924 if (bed->elf_backend_write_core_note != NULL)
10925 {
10926 char *ret;
10927 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10928 NT_PRPSINFO, fname, psargs);
10929 if (ret != NULL)
10930 return ret;
10931 }
10932
10933 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10934 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10935 if (bed->s->elfclass == ELFCLASS32)
10936 {
10937 # if defined (HAVE_PSINFO32_T)
10938 psinfo32_t data;
10939 int note_type = NT_PSINFO;
10940 # else
10941 prpsinfo32_t data;
10942 int note_type = NT_PRPSINFO;
10943 # endif
10944
10945 memset (&data, 0, sizeof (data));
10946 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10947 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10948 return elfcore_write_note (abfd, buf, bufsiz,
10949 "CORE", note_type, &data, sizeof (data));
10950 }
10951 else
10952 # endif
10953 {
10954 # if defined (HAVE_PSINFO_T)
10955 psinfo_t data;
10956 int note_type = NT_PSINFO;
10957 # else
10958 prpsinfo_t data;
10959 int note_type = NT_PRPSINFO;
10960 # endif
10961
10962 memset (&data, 0, sizeof (data));
10963 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10964 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10965 return elfcore_write_note (abfd, buf, bufsiz,
10966 "CORE", note_type, &data, sizeof (data));
10967 }
10968 #endif /* PSINFO_T or PRPSINFO_T */
10969
10970 free (buf);
10971 return NULL;
10972 }
10973 #if GCC_VERSION >= 8000
10974 # pragma GCC diagnostic pop
10975 #endif
10976
10977 char *
10978 elfcore_write_linux_prpsinfo32
10979 (bfd *abfd, char *buf, int *bufsiz,
10980 const struct elf_internal_linux_prpsinfo *prpsinfo)
10981 {
10982 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10983 {
10984 struct elf_external_linux_prpsinfo32_ugid16 data;
10985
10986 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10987 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10988 &data, sizeof (data));
10989 }
10990 else
10991 {
10992 struct elf_external_linux_prpsinfo32_ugid32 data;
10993
10994 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10995 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10996 &data, sizeof (data));
10997 }
10998 }
10999
11000 char *
11001 elfcore_write_linux_prpsinfo64
11002 (bfd *abfd, char *buf, int *bufsiz,
11003 const struct elf_internal_linux_prpsinfo *prpsinfo)
11004 {
11005 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11006 {
11007 struct elf_external_linux_prpsinfo64_ugid16 data;
11008
11009 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11010 return elfcore_write_note (abfd, buf, bufsiz,
11011 "CORE", NT_PRPSINFO, &data, sizeof (data));
11012 }
11013 else
11014 {
11015 struct elf_external_linux_prpsinfo64_ugid32 data;
11016
11017 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11018 return elfcore_write_note (abfd, buf, bufsiz,
11019 "CORE", NT_PRPSINFO, &data, sizeof (data));
11020 }
11021 }
11022
11023 char *
11024 elfcore_write_prstatus (bfd *abfd,
11025 char *buf,
11026 int *bufsiz,
11027 long pid,
11028 int cursig,
11029 const void *gregs)
11030 {
11031 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11032
11033 if (bed->elf_backend_write_core_note != NULL)
11034 {
11035 char *ret;
11036 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11037 NT_PRSTATUS,
11038 pid, cursig, gregs);
11039 if (ret != NULL)
11040 return ret;
11041 }
11042
11043 #if defined (HAVE_PRSTATUS_T)
11044 #if defined (HAVE_PRSTATUS32_T)
11045 if (bed->s->elfclass == ELFCLASS32)
11046 {
11047 prstatus32_t prstat;
11048
11049 memset (&prstat, 0, sizeof (prstat));
11050 prstat.pr_pid = pid;
11051 prstat.pr_cursig = cursig;
11052 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11053 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11054 NT_PRSTATUS, &prstat, sizeof (prstat));
11055 }
11056 else
11057 #endif
11058 {
11059 prstatus_t prstat;
11060
11061 memset (&prstat, 0, sizeof (prstat));
11062 prstat.pr_pid = pid;
11063 prstat.pr_cursig = cursig;
11064 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11065 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11066 NT_PRSTATUS, &prstat, sizeof (prstat));
11067 }
11068 #endif /* HAVE_PRSTATUS_T */
11069
11070 free (buf);
11071 return NULL;
11072 }
11073
11074 #if defined (HAVE_LWPSTATUS_T)
11075 char *
11076 elfcore_write_lwpstatus (bfd *abfd,
11077 char *buf,
11078 int *bufsiz,
11079 long pid,
11080 int cursig,
11081 const void *gregs)
11082 {
11083 lwpstatus_t lwpstat;
11084 const char *note_name = "CORE";
11085
11086 memset (&lwpstat, 0, sizeof (lwpstat));
11087 lwpstat.pr_lwpid = pid >> 16;
11088 lwpstat.pr_cursig = cursig;
11089 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11090 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11091 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11092 #if !defined(gregs)
11093 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11094 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11095 #else
11096 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11097 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11098 #endif
11099 #endif
11100 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11101 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11102 }
11103 #endif /* HAVE_LWPSTATUS_T */
11104
11105 #if defined (HAVE_PSTATUS_T)
11106 char *
11107 elfcore_write_pstatus (bfd *abfd,
11108 char *buf,
11109 int *bufsiz,
11110 long pid,
11111 int cursig ATTRIBUTE_UNUSED,
11112 const void *gregs ATTRIBUTE_UNUSED)
11113 {
11114 const char *note_name = "CORE";
11115 #if defined (HAVE_PSTATUS32_T)
11116 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11117
11118 if (bed->s->elfclass == ELFCLASS32)
11119 {
11120 pstatus32_t pstat;
11121
11122 memset (&pstat, 0, sizeof (pstat));
11123 pstat.pr_pid = pid & 0xffff;
11124 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11125 NT_PSTATUS, &pstat, sizeof (pstat));
11126 return buf;
11127 }
11128 else
11129 #endif
11130 {
11131 pstatus_t pstat;
11132
11133 memset (&pstat, 0, sizeof (pstat));
11134 pstat.pr_pid = pid & 0xffff;
11135 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11136 NT_PSTATUS, &pstat, sizeof (pstat));
11137 return buf;
11138 }
11139 }
11140 #endif /* HAVE_PSTATUS_T */
11141
11142 char *
11143 elfcore_write_prfpreg (bfd *abfd,
11144 char *buf,
11145 int *bufsiz,
11146 const void *fpregs,
11147 int size)
11148 {
11149 const char *note_name = "CORE";
11150 return elfcore_write_note (abfd, buf, bufsiz,
11151 note_name, NT_FPREGSET, fpregs, size);
11152 }
11153
11154 char *
11155 elfcore_write_prxfpreg (bfd *abfd,
11156 char *buf,
11157 int *bufsiz,
11158 const void *xfpregs,
11159 int size)
11160 {
11161 char *note_name = "LINUX";
11162 return elfcore_write_note (abfd, buf, bufsiz,
11163 note_name, NT_PRXFPREG, xfpregs, size);
11164 }
11165
11166 char *
11167 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11168 const void *xfpregs, int size)
11169 {
11170 char *note_name;
11171 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11172 note_name = "FreeBSD";
11173 else
11174 note_name = "LINUX";
11175 return elfcore_write_note (abfd, buf, bufsiz,
11176 note_name, NT_X86_XSTATE, xfpregs, size);
11177 }
11178
11179 char *
11180 elfcore_write_ppc_vmx (bfd *abfd,
11181 char *buf,
11182 int *bufsiz,
11183 const void *ppc_vmx,
11184 int size)
11185 {
11186 char *note_name = "LINUX";
11187 return elfcore_write_note (abfd, buf, bufsiz,
11188 note_name, NT_PPC_VMX, ppc_vmx, size);
11189 }
11190
11191 char *
11192 elfcore_write_ppc_vsx (bfd *abfd,
11193 char *buf,
11194 int *bufsiz,
11195 const void *ppc_vsx,
11196 int size)
11197 {
11198 char *note_name = "LINUX";
11199 return elfcore_write_note (abfd, buf, bufsiz,
11200 note_name, NT_PPC_VSX, ppc_vsx, size);
11201 }
11202
11203 char *
11204 elfcore_write_ppc_tar (bfd *abfd,
11205 char *buf,
11206 int *bufsiz,
11207 const void *ppc_tar,
11208 int size)
11209 {
11210 char *note_name = "LINUX";
11211 return elfcore_write_note (abfd, buf, bufsiz,
11212 note_name, NT_PPC_TAR, ppc_tar, size);
11213 }
11214
11215 char *
11216 elfcore_write_ppc_ppr (bfd *abfd,
11217 char *buf,
11218 int *bufsiz,
11219 const void *ppc_ppr,
11220 int size)
11221 {
11222 char *note_name = "LINUX";
11223 return elfcore_write_note (abfd, buf, bufsiz,
11224 note_name, NT_PPC_PPR, ppc_ppr, size);
11225 }
11226
11227 char *
11228 elfcore_write_ppc_dscr (bfd *abfd,
11229 char *buf,
11230 int *bufsiz,
11231 const void *ppc_dscr,
11232 int size)
11233 {
11234 char *note_name = "LINUX";
11235 return elfcore_write_note (abfd, buf, bufsiz,
11236 note_name, NT_PPC_DSCR, ppc_dscr, size);
11237 }
11238
11239 char *
11240 elfcore_write_ppc_ebb (bfd *abfd,
11241 char *buf,
11242 int *bufsiz,
11243 const void *ppc_ebb,
11244 int size)
11245 {
11246 char *note_name = "LINUX";
11247 return elfcore_write_note (abfd, buf, bufsiz,
11248 note_name, NT_PPC_EBB, ppc_ebb, size);
11249 }
11250
11251 char *
11252 elfcore_write_ppc_pmu (bfd *abfd,
11253 char *buf,
11254 int *bufsiz,
11255 const void *ppc_pmu,
11256 int size)
11257 {
11258 char *note_name = "LINUX";
11259 return elfcore_write_note (abfd, buf, bufsiz,
11260 note_name, NT_PPC_PMU, ppc_pmu, size);
11261 }
11262
11263 char *
11264 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11265 char *buf,
11266 int *bufsiz,
11267 const void *ppc_tm_cgpr,
11268 int size)
11269 {
11270 char *note_name = "LINUX";
11271 return elfcore_write_note (abfd, buf, bufsiz,
11272 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11273 }
11274
11275 char *
11276 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11277 char *buf,
11278 int *bufsiz,
11279 const void *ppc_tm_cfpr,
11280 int size)
11281 {
11282 char *note_name = "LINUX";
11283 return elfcore_write_note (abfd, buf, bufsiz,
11284 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11285 }
11286
11287 char *
11288 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11289 char *buf,
11290 int *bufsiz,
11291 const void *ppc_tm_cvmx,
11292 int size)
11293 {
11294 char *note_name = "LINUX";
11295 return elfcore_write_note (abfd, buf, bufsiz,
11296 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11297 }
11298
11299 char *
11300 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11301 char *buf,
11302 int *bufsiz,
11303 const void *ppc_tm_cvsx,
11304 int size)
11305 {
11306 char *note_name = "LINUX";
11307 return elfcore_write_note (abfd, buf, bufsiz,
11308 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11309 }
11310
11311 char *
11312 elfcore_write_ppc_tm_spr (bfd *abfd,
11313 char *buf,
11314 int *bufsiz,
11315 const void *ppc_tm_spr,
11316 int size)
11317 {
11318 char *note_name = "LINUX";
11319 return elfcore_write_note (abfd, buf, bufsiz,
11320 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11321 }
11322
11323 char *
11324 elfcore_write_ppc_tm_ctar (bfd *abfd,
11325 char *buf,
11326 int *bufsiz,
11327 const void *ppc_tm_ctar,
11328 int size)
11329 {
11330 char *note_name = "LINUX";
11331 return elfcore_write_note (abfd, buf, bufsiz,
11332 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11333 }
11334
11335 char *
11336 elfcore_write_ppc_tm_cppr (bfd *abfd,
11337 char *buf,
11338 int *bufsiz,
11339 const void *ppc_tm_cppr,
11340 int size)
11341 {
11342 char *note_name = "LINUX";
11343 return elfcore_write_note (abfd, buf, bufsiz,
11344 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11345 }
11346
11347 char *
11348 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11349 char *buf,
11350 int *bufsiz,
11351 const void *ppc_tm_cdscr,
11352 int size)
11353 {
11354 char *note_name = "LINUX";
11355 return elfcore_write_note (abfd, buf, bufsiz,
11356 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11357 }
11358
11359 static char *
11360 elfcore_write_s390_high_gprs (bfd *abfd,
11361 char *buf,
11362 int *bufsiz,
11363 const void *s390_high_gprs,
11364 int size)
11365 {
11366 char *note_name = "LINUX";
11367 return elfcore_write_note (abfd, buf, bufsiz,
11368 note_name, NT_S390_HIGH_GPRS,
11369 s390_high_gprs, size);
11370 }
11371
11372 char *
11373 elfcore_write_s390_timer (bfd *abfd,
11374 char *buf,
11375 int *bufsiz,
11376 const void *s390_timer,
11377 int size)
11378 {
11379 char *note_name = "LINUX";
11380 return elfcore_write_note (abfd, buf, bufsiz,
11381 note_name, NT_S390_TIMER, s390_timer, size);
11382 }
11383
11384 char *
11385 elfcore_write_s390_todcmp (bfd *abfd,
11386 char *buf,
11387 int *bufsiz,
11388 const void *s390_todcmp,
11389 int size)
11390 {
11391 char *note_name = "LINUX";
11392 return elfcore_write_note (abfd, buf, bufsiz,
11393 note_name, NT_S390_TODCMP, s390_todcmp, size);
11394 }
11395
11396 char *
11397 elfcore_write_s390_todpreg (bfd *abfd,
11398 char *buf,
11399 int *bufsiz,
11400 const void *s390_todpreg,
11401 int size)
11402 {
11403 char *note_name = "LINUX";
11404 return elfcore_write_note (abfd, buf, bufsiz,
11405 note_name, NT_S390_TODPREG, s390_todpreg, size);
11406 }
11407
11408 char *
11409 elfcore_write_s390_ctrs (bfd *abfd,
11410 char *buf,
11411 int *bufsiz,
11412 const void *s390_ctrs,
11413 int size)
11414 {
11415 char *note_name = "LINUX";
11416 return elfcore_write_note (abfd, buf, bufsiz,
11417 note_name, NT_S390_CTRS, s390_ctrs, size);
11418 }
11419
11420 char *
11421 elfcore_write_s390_prefix (bfd *abfd,
11422 char *buf,
11423 int *bufsiz,
11424 const void *s390_prefix,
11425 int size)
11426 {
11427 char *note_name = "LINUX";
11428 return elfcore_write_note (abfd, buf, bufsiz,
11429 note_name, NT_S390_PREFIX, s390_prefix, size);
11430 }
11431
11432 char *
11433 elfcore_write_s390_last_break (bfd *abfd,
11434 char *buf,
11435 int *bufsiz,
11436 const void *s390_last_break,
11437 int size)
11438 {
11439 char *note_name = "LINUX";
11440 return elfcore_write_note (abfd, buf, bufsiz,
11441 note_name, NT_S390_LAST_BREAK,
11442 s390_last_break, size);
11443 }
11444
11445 char *
11446 elfcore_write_s390_system_call (bfd *abfd,
11447 char *buf,
11448 int *bufsiz,
11449 const void *s390_system_call,
11450 int size)
11451 {
11452 char *note_name = "LINUX";
11453 return elfcore_write_note (abfd, buf, bufsiz,
11454 note_name, NT_S390_SYSTEM_CALL,
11455 s390_system_call, size);
11456 }
11457
11458 char *
11459 elfcore_write_s390_tdb (bfd *abfd,
11460 char *buf,
11461 int *bufsiz,
11462 const void *s390_tdb,
11463 int size)
11464 {
11465 char *note_name = "LINUX";
11466 return elfcore_write_note (abfd, buf, bufsiz,
11467 note_name, NT_S390_TDB, s390_tdb, size);
11468 }
11469
11470 char *
11471 elfcore_write_s390_vxrs_low (bfd *abfd,
11472 char *buf,
11473 int *bufsiz,
11474 const void *s390_vxrs_low,
11475 int size)
11476 {
11477 char *note_name = "LINUX";
11478 return elfcore_write_note (abfd, buf, bufsiz,
11479 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11480 }
11481
11482 char *
11483 elfcore_write_s390_vxrs_high (bfd *abfd,
11484 char *buf,
11485 int *bufsiz,
11486 const void *s390_vxrs_high,
11487 int size)
11488 {
11489 char *note_name = "LINUX";
11490 return elfcore_write_note (abfd, buf, bufsiz,
11491 note_name, NT_S390_VXRS_HIGH,
11492 s390_vxrs_high, size);
11493 }
11494
11495 char *
11496 elfcore_write_s390_gs_cb (bfd *abfd,
11497 char *buf,
11498 int *bufsiz,
11499 const void *s390_gs_cb,
11500 int size)
11501 {
11502 char *note_name = "LINUX";
11503 return elfcore_write_note (abfd, buf, bufsiz,
11504 note_name, NT_S390_GS_CB,
11505 s390_gs_cb, size);
11506 }
11507
11508 char *
11509 elfcore_write_s390_gs_bc (bfd *abfd,
11510 char *buf,
11511 int *bufsiz,
11512 const void *s390_gs_bc,
11513 int size)
11514 {
11515 char *note_name = "LINUX";
11516 return elfcore_write_note (abfd, buf, bufsiz,
11517 note_name, NT_S390_GS_BC,
11518 s390_gs_bc, size);
11519 }
11520
11521 char *
11522 elfcore_write_arm_vfp (bfd *abfd,
11523 char *buf,
11524 int *bufsiz,
11525 const void *arm_vfp,
11526 int size)
11527 {
11528 char *note_name = "LINUX";
11529 return elfcore_write_note (abfd, buf, bufsiz,
11530 note_name, NT_ARM_VFP, arm_vfp, size);
11531 }
11532
11533 char *
11534 elfcore_write_aarch_tls (bfd *abfd,
11535 char *buf,
11536 int *bufsiz,
11537 const void *aarch_tls,
11538 int size)
11539 {
11540 char *note_name = "LINUX";
11541 return elfcore_write_note (abfd, buf, bufsiz,
11542 note_name, NT_ARM_TLS, aarch_tls, size);
11543 }
11544
11545 char *
11546 elfcore_write_aarch_hw_break (bfd *abfd,
11547 char *buf,
11548 int *bufsiz,
11549 const void *aarch_hw_break,
11550 int size)
11551 {
11552 char *note_name = "LINUX";
11553 return elfcore_write_note (abfd, buf, bufsiz,
11554 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11555 }
11556
11557 char *
11558 elfcore_write_aarch_hw_watch (bfd *abfd,
11559 char *buf,
11560 int *bufsiz,
11561 const void *aarch_hw_watch,
11562 int size)
11563 {
11564 char *note_name = "LINUX";
11565 return elfcore_write_note (abfd, buf, bufsiz,
11566 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11567 }
11568
11569 char *
11570 elfcore_write_aarch_sve (bfd *abfd,
11571 char *buf,
11572 int *bufsiz,
11573 const void *aarch_sve,
11574 int size)
11575 {
11576 char *note_name = "LINUX";
11577 return elfcore_write_note (abfd, buf, bufsiz,
11578 note_name, NT_ARM_SVE, aarch_sve, size);
11579 }
11580
11581 char *
11582 elfcore_write_aarch_pauth (bfd *abfd,
11583 char *buf,
11584 int *bufsiz,
11585 const void *aarch_pauth,
11586 int size)
11587 {
11588 char *note_name = "LINUX";
11589 return elfcore_write_note (abfd, buf, bufsiz,
11590 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11591 }
11592
11593 char *
11594 elfcore_write_register_note (bfd *abfd,
11595 char *buf,
11596 int *bufsiz,
11597 const char *section,
11598 const void *data,
11599 int size)
11600 {
11601 if (strcmp (section, ".reg2") == 0)
11602 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11603 if (strcmp (section, ".reg-xfp") == 0)
11604 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11605 if (strcmp (section, ".reg-xstate") == 0)
11606 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11607 if (strcmp (section, ".reg-ppc-vmx") == 0)
11608 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11609 if (strcmp (section, ".reg-ppc-vsx") == 0)
11610 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11611 if (strcmp (section, ".reg-ppc-tar") == 0)
11612 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11613 if (strcmp (section, ".reg-ppc-ppr") == 0)
11614 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11615 if (strcmp (section, ".reg-ppc-dscr") == 0)
11616 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11617 if (strcmp (section, ".reg-ppc-ebb") == 0)
11618 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11619 if (strcmp (section, ".reg-ppc-pmu") == 0)
11620 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11621 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11622 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11623 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11624 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11625 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11626 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11627 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11628 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11629 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11630 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11631 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11632 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11633 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11634 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11635 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11636 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11637 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11638 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11639 if (strcmp (section, ".reg-s390-timer") == 0)
11640 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11641 if (strcmp (section, ".reg-s390-todcmp") == 0)
11642 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11643 if (strcmp (section, ".reg-s390-todpreg") == 0)
11644 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11645 if (strcmp (section, ".reg-s390-ctrs") == 0)
11646 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11647 if (strcmp (section, ".reg-s390-prefix") == 0)
11648 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11649 if (strcmp (section, ".reg-s390-last-break") == 0)
11650 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11651 if (strcmp (section, ".reg-s390-system-call") == 0)
11652 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11653 if (strcmp (section, ".reg-s390-tdb") == 0)
11654 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11655 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11656 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11657 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11658 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11659 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11660 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11661 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11662 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11663 if (strcmp (section, ".reg-arm-vfp") == 0)
11664 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11665 if (strcmp (section, ".reg-aarch-tls") == 0)
11666 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11667 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11668 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11669 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11670 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11671 if (strcmp (section, ".reg-aarch-sve") == 0)
11672 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11673 if (strcmp (section, ".reg-aarch-pauth") == 0)
11674 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11675 return NULL;
11676 }
11677
11678 static bfd_boolean
11679 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11680 size_t align)
11681 {
11682 char *p;
11683
11684 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11685 gABI specifies that PT_NOTE alignment should be aligned to 4
11686 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11687 align is less than 4, we use 4 byte alignment. */
11688 if (align < 4)
11689 align = 4;
11690 if (align != 4 && align != 8)
11691 return FALSE;
11692
11693 p = buf;
11694 while (p < buf + size)
11695 {
11696 Elf_External_Note *xnp = (Elf_External_Note *) p;
11697 Elf_Internal_Note in;
11698
11699 if (offsetof (Elf_External_Note, name) > buf - p + size)
11700 return FALSE;
11701
11702 in.type = H_GET_32 (abfd, xnp->type);
11703
11704 in.namesz = H_GET_32 (abfd, xnp->namesz);
11705 in.namedata = xnp->name;
11706 if (in.namesz > buf - in.namedata + size)
11707 return FALSE;
11708
11709 in.descsz = H_GET_32 (abfd, xnp->descsz);
11710 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11711 in.descpos = offset + (in.descdata - buf);
11712 if (in.descsz != 0
11713 && (in.descdata >= buf + size
11714 || in.descsz > buf - in.descdata + size))
11715 return FALSE;
11716
11717 switch (bfd_get_format (abfd))
11718 {
11719 default:
11720 return TRUE;
11721
11722 case bfd_core:
11723 {
11724 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11725 struct
11726 {
11727 const char * string;
11728 size_t len;
11729 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11730 }
11731 grokers[] =
11732 {
11733 GROKER_ELEMENT ("", elfcore_grok_note),
11734 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11735 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11736 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11737 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11738 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11739 };
11740 #undef GROKER_ELEMENT
11741 int i;
11742
11743 for (i = ARRAY_SIZE (grokers); i--;)
11744 {
11745 if (in.namesz >= grokers[i].len
11746 && strncmp (in.namedata, grokers[i].string,
11747 grokers[i].len) == 0)
11748 {
11749 if (! grokers[i].func (abfd, & in))
11750 return FALSE;
11751 break;
11752 }
11753 }
11754 break;
11755 }
11756
11757 case bfd_object:
11758 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11759 {
11760 if (! elfobj_grok_gnu_note (abfd, &in))
11761 return FALSE;
11762 }
11763 else if (in.namesz == sizeof "stapsdt"
11764 && strcmp (in.namedata, "stapsdt") == 0)
11765 {
11766 if (! elfobj_grok_stapsdt_note (abfd, &in))
11767 return FALSE;
11768 }
11769 break;
11770 }
11771
11772 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11773 }
11774
11775 return TRUE;
11776 }
11777
11778 static bfd_boolean
11779 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11780 size_t align)
11781 {
11782 char *buf;
11783
11784 if (size == 0 || (size + 1) == 0)
11785 return TRUE;
11786
11787 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11788 return FALSE;
11789
11790 buf = (char *) bfd_malloc (size + 1);
11791 if (buf == NULL)
11792 return FALSE;
11793
11794 /* PR 17512: file: ec08f814
11795 0-termintate the buffer so that string searches will not overflow. */
11796 buf[size] = 0;
11797
11798 if (bfd_bread (buf, size, abfd) != size
11799 || !elf_parse_notes (abfd, buf, size, offset, align))
11800 {
11801 free (buf);
11802 return FALSE;
11803 }
11804
11805 free (buf);
11806 return TRUE;
11807 }
11808 \f
11809 /* Providing external access to the ELF program header table. */
11810
11811 /* Return an upper bound on the number of bytes required to store a
11812 copy of ABFD's program header table entries. Return -1 if an error
11813 occurs; bfd_get_error will return an appropriate code. */
11814
11815 long
11816 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11817 {
11818 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11819 {
11820 bfd_set_error (bfd_error_wrong_format);
11821 return -1;
11822 }
11823
11824 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11825 }
11826
11827 /* Copy ABFD's program header table entries to *PHDRS. The entries
11828 will be stored as an array of Elf_Internal_Phdr structures, as
11829 defined in include/elf/internal.h. To find out how large the
11830 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11831
11832 Return the number of program header table entries read, or -1 if an
11833 error occurs; bfd_get_error will return an appropriate code. */
11834
11835 int
11836 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11837 {
11838 int num_phdrs;
11839
11840 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11841 {
11842 bfd_set_error (bfd_error_wrong_format);
11843 return -1;
11844 }
11845
11846 num_phdrs = elf_elfheader (abfd)->e_phnum;
11847 if (num_phdrs != 0)
11848 memcpy (phdrs, elf_tdata (abfd)->phdr,
11849 num_phdrs * sizeof (Elf_Internal_Phdr));
11850
11851 return num_phdrs;
11852 }
11853
11854 enum elf_reloc_type_class
11855 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11856 const asection *rel_sec ATTRIBUTE_UNUSED,
11857 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11858 {
11859 return reloc_class_normal;
11860 }
11861
11862 /* For RELA architectures, return the relocation value for a
11863 relocation against a local symbol. */
11864
11865 bfd_vma
11866 _bfd_elf_rela_local_sym (bfd *abfd,
11867 Elf_Internal_Sym *sym,
11868 asection **psec,
11869 Elf_Internal_Rela *rel)
11870 {
11871 asection *sec = *psec;
11872 bfd_vma relocation;
11873
11874 relocation = (sec->output_section->vma
11875 + sec->output_offset
11876 + sym->st_value);
11877 if ((sec->flags & SEC_MERGE)
11878 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11879 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11880 {
11881 rel->r_addend =
11882 _bfd_merged_section_offset (abfd, psec,
11883 elf_section_data (sec)->sec_info,
11884 sym->st_value + rel->r_addend);
11885 if (sec != *psec)
11886 {
11887 /* If we have changed the section, and our original section is
11888 marked with SEC_EXCLUDE, it means that the original
11889 SEC_MERGE section has been completely subsumed in some
11890 other SEC_MERGE section. In this case, we need to leave
11891 some info around for --emit-relocs. */
11892 if ((sec->flags & SEC_EXCLUDE) != 0)
11893 sec->kept_section = *psec;
11894 sec = *psec;
11895 }
11896 rel->r_addend -= relocation;
11897 rel->r_addend += sec->output_section->vma + sec->output_offset;
11898 }
11899 return relocation;
11900 }
11901
11902 bfd_vma
11903 _bfd_elf_rel_local_sym (bfd *abfd,
11904 Elf_Internal_Sym *sym,
11905 asection **psec,
11906 bfd_vma addend)
11907 {
11908 asection *sec = *psec;
11909
11910 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11911 return sym->st_value + addend;
11912
11913 return _bfd_merged_section_offset (abfd, psec,
11914 elf_section_data (sec)->sec_info,
11915 sym->st_value + addend);
11916 }
11917
11918 /* Adjust an address within a section. Given OFFSET within SEC, return
11919 the new offset within the section, based upon changes made to the
11920 section. Returns -1 if the offset is now invalid.
11921 The offset (in abnd out) is in target sized bytes, however big a
11922 byte may be. */
11923
11924 bfd_vma
11925 _bfd_elf_section_offset (bfd *abfd,
11926 struct bfd_link_info *info,
11927 asection *sec,
11928 bfd_vma offset)
11929 {
11930 switch (sec->sec_info_type)
11931 {
11932 case SEC_INFO_TYPE_STABS:
11933 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11934 offset);
11935 case SEC_INFO_TYPE_EH_FRAME:
11936 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11937
11938 default:
11939 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11940 {
11941 /* Reverse the offset. */
11942 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11943 bfd_size_type address_size = bed->s->arch_size / 8;
11944
11945 /* address_size and sec->size are in octets. Convert
11946 to bytes before subtracting the original offset. */
11947 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11948 }
11949 return offset;
11950 }
11951 }
11952 \f
11953 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11954 reconstruct an ELF file by reading the segments out of remote memory
11955 based on the ELF file header at EHDR_VMA and the ELF program headers it
11956 points to. If not null, *LOADBASEP is filled in with the difference
11957 between the VMAs from which the segments were read, and the VMAs the
11958 file headers (and hence BFD's idea of each section's VMA) put them at.
11959
11960 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11961 remote memory at target address VMA into the local buffer at MYADDR; it
11962 should return zero on success or an `errno' code on failure. TEMPL must
11963 be a BFD for an ELF target with the word size and byte order found in
11964 the remote memory. */
11965
11966 bfd *
11967 bfd_elf_bfd_from_remote_memory
11968 (bfd *templ,
11969 bfd_vma ehdr_vma,
11970 bfd_size_type size,
11971 bfd_vma *loadbasep,
11972 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11973 {
11974 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11975 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11976 }
11977 \f
11978 long
11979 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11980 long symcount ATTRIBUTE_UNUSED,
11981 asymbol **syms ATTRIBUTE_UNUSED,
11982 long dynsymcount,
11983 asymbol **dynsyms,
11984 asymbol **ret)
11985 {
11986 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11987 asection *relplt;
11988 asymbol *s;
11989 const char *relplt_name;
11990 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11991 arelent *p;
11992 long count, i, n;
11993 size_t size;
11994 Elf_Internal_Shdr *hdr;
11995 char *names;
11996 asection *plt;
11997
11998 *ret = NULL;
11999
12000 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12001 return 0;
12002
12003 if (dynsymcount <= 0)
12004 return 0;
12005
12006 if (!bed->plt_sym_val)
12007 return 0;
12008
12009 relplt_name = bed->relplt_name;
12010 if (relplt_name == NULL)
12011 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12012 relplt = bfd_get_section_by_name (abfd, relplt_name);
12013 if (relplt == NULL)
12014 return 0;
12015
12016 hdr = &elf_section_data (relplt)->this_hdr;
12017 if (hdr->sh_link != elf_dynsymtab (abfd)
12018 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12019 return 0;
12020
12021 plt = bfd_get_section_by_name (abfd, ".plt");
12022 if (plt == NULL)
12023 return 0;
12024
12025 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12026 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12027 return -1;
12028
12029 count = relplt->size / hdr->sh_entsize;
12030 size = count * sizeof (asymbol);
12031 p = relplt->relocation;
12032 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12033 {
12034 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12035 if (p->addend != 0)
12036 {
12037 #ifdef BFD64
12038 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12039 #else
12040 size += sizeof ("+0x") - 1 + 8;
12041 #endif
12042 }
12043 }
12044
12045 s = *ret = (asymbol *) bfd_malloc (size);
12046 if (s == NULL)
12047 return -1;
12048
12049 names = (char *) (s + count);
12050 p = relplt->relocation;
12051 n = 0;
12052 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12053 {
12054 size_t len;
12055 bfd_vma addr;
12056
12057 addr = bed->plt_sym_val (i, plt, p);
12058 if (addr == (bfd_vma) -1)
12059 continue;
12060
12061 *s = **p->sym_ptr_ptr;
12062 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12063 we are defining a symbol, ensure one of them is set. */
12064 if ((s->flags & BSF_LOCAL) == 0)
12065 s->flags |= BSF_GLOBAL;
12066 s->flags |= BSF_SYNTHETIC;
12067 s->section = plt;
12068 s->value = addr - plt->vma;
12069 s->name = names;
12070 s->udata.p = NULL;
12071 len = strlen ((*p->sym_ptr_ptr)->name);
12072 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12073 names += len;
12074 if (p->addend != 0)
12075 {
12076 char buf[30], *a;
12077
12078 memcpy (names, "+0x", sizeof ("+0x") - 1);
12079 names += sizeof ("+0x") - 1;
12080 bfd_sprintf_vma (abfd, buf, p->addend);
12081 for (a = buf; *a == '0'; ++a)
12082 ;
12083 len = strlen (a);
12084 memcpy (names, a, len);
12085 names += len;
12086 }
12087 memcpy (names, "@plt", sizeof ("@plt"));
12088 names += sizeof ("@plt");
12089 ++s, ++n;
12090 }
12091
12092 return n;
12093 }
12094
12095 /* It is only used by x86-64 so far.
12096 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12097 but current usage would allow all of _bfd_std_section to be zero. */
12098 static const asymbol lcomm_sym
12099 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12100 asection _bfd_elf_large_com_section
12101 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12102 "LARGE_COMMON", 0, SEC_IS_COMMON);
12103
12104 void
12105 _bfd_elf_post_process_headers (bfd *abfd ATTRIBUTE_UNUSED,
12106 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12107 {
12108 }
12109
12110 void
12111 _bfd_elf_final_write_processing (bfd *abfd,
12112 bfd_boolean linker ATTRIBUTE_UNUSED)
12113 {
12114 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12115
12116 i_ehdrp = elf_elfheader (abfd);
12117
12118 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12119 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12120
12121 /* To make things simpler for the loader on Linux systems we set the
12122 osabi field to ELFOSABI_GNU if the binary contains symbols of
12123 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
12124 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
12125 && elf_tdata (abfd)->has_gnu_osabi)
12126 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12127 }
12128
12129
12130 /* Return TRUE for ELF symbol types that represent functions.
12131 This is the default version of this function, which is sufficient for
12132 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12133
12134 bfd_boolean
12135 _bfd_elf_is_function_type (unsigned int type)
12136 {
12137 return (type == STT_FUNC
12138 || type == STT_GNU_IFUNC);
12139 }
12140
12141 /* If the ELF symbol SYM might be a function in SEC, return the
12142 function size and set *CODE_OFF to the function's entry point,
12143 otherwise return zero. */
12144
12145 bfd_size_type
12146 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12147 bfd_vma *code_off)
12148 {
12149 bfd_size_type size;
12150
12151 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12152 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12153 || sym->section != sec)
12154 return 0;
12155
12156 *code_off = sym->value;
12157 size = 0;
12158 if (!(sym->flags & BSF_SYNTHETIC))
12159 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12160 if (size == 0)
12161 size = 1;
12162 return size;
12163 }
This page took 0.278539 seconds and 5 git commands to generate.