elf: Add PT_GNU_PROPERTY segment type
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
56 size_t align) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset, size_t align);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 if (abfd->direction != read_direction)
248 {
249 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
250 if (o == NULL)
251 return FALSE;
252 elf_tdata (abfd)->o = o;
253 elf_program_header_size (abfd) = (bfd_size_type) -1;
254 }
255 return TRUE;
256 }
257
258
259 bfd_boolean
260 bfd_elf_make_object (bfd *abfd)
261 {
262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
263 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
264 bed->target_id);
265 }
266
267 bfd_boolean
268 bfd_elf_mkcorefile (bfd *abfd)
269 {
270 /* I think this can be done just like an object file. */
271 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
272 return FALSE;
273 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
274 return elf_tdata (abfd)->core != NULL;
275 }
276
277 static char *
278 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
279 {
280 Elf_Internal_Shdr **i_shdrp;
281 bfd_byte *shstrtab = NULL;
282 file_ptr offset;
283 bfd_size_type shstrtabsize;
284
285 i_shdrp = elf_elfsections (abfd);
286 if (i_shdrp == 0
287 || shindex >= elf_numsections (abfd)
288 || i_shdrp[shindex] == 0)
289 return NULL;
290
291 shstrtab = i_shdrp[shindex]->contents;
292 if (shstrtab == NULL)
293 {
294 /* No cached one, attempt to read, and cache what we read. */
295 offset = i_shdrp[shindex]->sh_offset;
296 shstrtabsize = i_shdrp[shindex]->sh_size;
297
298 /* Allocate and clear an extra byte at the end, to prevent crashes
299 in case the string table is not terminated. */
300 if (shstrtabsize + 1 <= 1
301 || shstrtabsize > bfd_get_file_size (abfd)
302 || bfd_seek (abfd, offset, SEEK_SET) != 0
303 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
304 shstrtab = NULL;
305 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
306 {
307 if (bfd_get_error () != bfd_error_system_call)
308 bfd_set_error (bfd_error_file_truncated);
309 bfd_release (abfd, shstrtab);
310 shstrtab = NULL;
311 /* Once we've failed to read it, make sure we don't keep
312 trying. Otherwise, we'll keep allocating space for
313 the string table over and over. */
314 i_shdrp[shindex]->sh_size = 0;
315 }
316 else
317 shstrtab[shstrtabsize] = '\0';
318 i_shdrp[shindex]->contents = shstrtab;
319 }
320 return (char *) shstrtab;
321 }
322
323 char *
324 bfd_elf_string_from_elf_section (bfd *abfd,
325 unsigned int shindex,
326 unsigned int strindex)
327 {
328 Elf_Internal_Shdr *hdr;
329
330 if (strindex == 0)
331 return "";
332
333 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
334 return NULL;
335
336 hdr = elf_elfsections (abfd)[shindex];
337
338 if (hdr->contents == NULL)
339 {
340 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
341 {
342 /* PR 17512: file: f057ec89. */
343 /* xgettext:c-format */
344 _bfd_error_handler (_("%pB: attempt to load strings from"
345 " a non-string section (number %d)"),
346 abfd, shindex);
347 return NULL;
348 }
349
350 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
351 return NULL;
352 }
353
354 if (strindex >= hdr->sh_size)
355 {
356 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
357 _bfd_error_handler
358 /* xgettext:c-format */
359 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
360 abfd, strindex, (uint64_t) hdr->sh_size,
361 (shindex == shstrndx && strindex == hdr->sh_name
362 ? ".shstrtab"
363 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
364 return NULL;
365 }
366
367 return ((char *) hdr->contents) + strindex;
368 }
369
370 /* Read and convert symbols to internal format.
371 SYMCOUNT specifies the number of symbols to read, starting from
372 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
373 are non-NULL, they are used to store the internal symbols, external
374 symbols, and symbol section index extensions, respectively.
375 Returns a pointer to the internal symbol buffer (malloced if necessary)
376 or NULL if there were no symbols or some kind of problem. */
377
378 Elf_Internal_Sym *
379 bfd_elf_get_elf_syms (bfd *ibfd,
380 Elf_Internal_Shdr *symtab_hdr,
381 size_t symcount,
382 size_t symoffset,
383 Elf_Internal_Sym *intsym_buf,
384 void *extsym_buf,
385 Elf_External_Sym_Shndx *extshndx_buf)
386 {
387 Elf_Internal_Shdr *shndx_hdr;
388 void *alloc_ext;
389 const bfd_byte *esym;
390 Elf_External_Sym_Shndx *alloc_extshndx;
391 Elf_External_Sym_Shndx *shndx;
392 Elf_Internal_Sym *alloc_intsym;
393 Elf_Internal_Sym *isym;
394 Elf_Internal_Sym *isymend;
395 const struct elf_backend_data *bed;
396 size_t extsym_size;
397 bfd_size_type amt;
398 file_ptr pos;
399
400 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
401 abort ();
402
403 if (symcount == 0)
404 return intsym_buf;
405
406 /* Normal syms might have section extension entries. */
407 shndx_hdr = NULL;
408 if (elf_symtab_shndx_list (ibfd) != NULL)
409 {
410 elf_section_list * entry;
411 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
412
413 /* Find an index section that is linked to this symtab section. */
414 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
415 {
416 /* PR 20063. */
417 if (entry->hdr.sh_link >= elf_numsections (ibfd))
418 continue;
419
420 if (sections[entry->hdr.sh_link] == symtab_hdr)
421 {
422 shndx_hdr = & entry->hdr;
423 break;
424 };
425 }
426
427 if (shndx_hdr == NULL)
428 {
429 if (symtab_hdr == & elf_symtab_hdr (ibfd))
430 /* Not really accurate, but this was how the old code used to work. */
431 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
432 /* Otherwise we do nothing. The assumption is that
433 the index table will not be needed. */
434 }
435 }
436
437 /* Read the symbols. */
438 alloc_ext = NULL;
439 alloc_extshndx = NULL;
440 alloc_intsym = NULL;
441 bed = get_elf_backend_data (ibfd);
442 extsym_size = bed->s->sizeof_sym;
443 amt = (bfd_size_type) symcount * extsym_size;
444 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
445 if (extsym_buf == NULL)
446 {
447 alloc_ext = bfd_malloc2 (symcount, extsym_size);
448 extsym_buf = alloc_ext;
449 }
450 if (extsym_buf == NULL
451 || bfd_seek (ibfd, pos, SEEK_SET) != 0
452 || bfd_bread (extsym_buf, amt, ibfd) != amt)
453 {
454 intsym_buf = NULL;
455 goto out;
456 }
457
458 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
459 extshndx_buf = NULL;
460 else
461 {
462 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
463 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
464 if (extshndx_buf == NULL)
465 {
466 alloc_extshndx = (Elf_External_Sym_Shndx *)
467 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
468 extshndx_buf = alloc_extshndx;
469 }
470 if (extshndx_buf == NULL
471 || bfd_seek (ibfd, pos, SEEK_SET) != 0
472 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
473 {
474 intsym_buf = NULL;
475 goto out;
476 }
477 }
478
479 if (intsym_buf == NULL)
480 {
481 alloc_intsym = (Elf_Internal_Sym *)
482 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
483 intsym_buf = alloc_intsym;
484 if (intsym_buf == NULL)
485 goto out;
486 }
487
488 /* Convert the symbols to internal form. */
489 isymend = intsym_buf + symcount;
490 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
491 shndx = extshndx_buf;
492 isym < isymend;
493 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
494 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
495 {
496 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
497 /* xgettext:c-format */
498 _bfd_error_handler (_("%pB symbol number %lu references"
499 " nonexistent SHT_SYMTAB_SHNDX section"),
500 ibfd, (unsigned long) symoffset);
501 if (alloc_intsym != NULL)
502 free (alloc_intsym);
503 intsym_buf = NULL;
504 goto out;
505 }
506
507 out:
508 if (alloc_ext != NULL)
509 free (alloc_ext);
510 if (alloc_extshndx != NULL)
511 free (alloc_extshndx);
512
513 return intsym_buf;
514 }
515
516 /* Look up a symbol name. */
517 const char *
518 bfd_elf_sym_name (bfd *abfd,
519 Elf_Internal_Shdr *symtab_hdr,
520 Elf_Internal_Sym *isym,
521 asection *sym_sec)
522 {
523 const char *name;
524 unsigned int iname = isym->st_name;
525 unsigned int shindex = symtab_hdr->sh_link;
526
527 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
528 /* Check for a bogus st_shndx to avoid crashing. */
529 && isym->st_shndx < elf_numsections (abfd))
530 {
531 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
532 shindex = elf_elfheader (abfd)->e_shstrndx;
533 }
534
535 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
536 if (name == NULL)
537 name = "(null)";
538 else if (sym_sec && *name == '\0')
539 name = bfd_section_name (abfd, sym_sec);
540
541 return name;
542 }
543
544 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
545 sections. The first element is the flags, the rest are section
546 pointers. */
547
548 typedef union elf_internal_group {
549 Elf_Internal_Shdr *shdr;
550 unsigned int flags;
551 } Elf_Internal_Group;
552
553 /* Return the name of the group signature symbol. Why isn't the
554 signature just a string? */
555
556 static const char *
557 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
558 {
559 Elf_Internal_Shdr *hdr;
560 unsigned char esym[sizeof (Elf64_External_Sym)];
561 Elf_External_Sym_Shndx eshndx;
562 Elf_Internal_Sym isym;
563
564 /* First we need to ensure the symbol table is available. Make sure
565 that it is a symbol table section. */
566 if (ghdr->sh_link >= elf_numsections (abfd))
567 return NULL;
568 hdr = elf_elfsections (abfd) [ghdr->sh_link];
569 if (hdr->sh_type != SHT_SYMTAB
570 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
571 return NULL;
572
573 /* Go read the symbol. */
574 hdr = &elf_tdata (abfd)->symtab_hdr;
575 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
576 &isym, esym, &eshndx) == NULL)
577 return NULL;
578
579 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
580 }
581
582 /* Set next_in_group list pointer, and group name for NEWSECT. */
583
584 static bfd_boolean
585 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
586 {
587 unsigned int num_group = elf_tdata (abfd)->num_group;
588
589 /* If num_group is zero, read in all SHT_GROUP sections. The count
590 is set to -1 if there are no SHT_GROUP sections. */
591 if (num_group == 0)
592 {
593 unsigned int i, shnum;
594
595 /* First count the number of groups. If we have a SHT_GROUP
596 section with just a flag word (ie. sh_size is 4), ignore it. */
597 shnum = elf_numsections (abfd);
598 num_group = 0;
599
600 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
601 ( (shdr)->sh_type == SHT_GROUP \
602 && (shdr)->sh_size >= minsize \
603 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
604 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
605
606 for (i = 0; i < shnum; i++)
607 {
608 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
609
610 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
611 num_group += 1;
612 }
613
614 if (num_group == 0)
615 {
616 num_group = (unsigned) -1;
617 elf_tdata (abfd)->num_group = num_group;
618 elf_tdata (abfd)->group_sect_ptr = NULL;
619 }
620 else
621 {
622 /* We keep a list of elf section headers for group sections,
623 so we can find them quickly. */
624 bfd_size_type amt;
625
626 elf_tdata (abfd)->num_group = num_group;
627 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
628 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
629 if (elf_tdata (abfd)->group_sect_ptr == NULL)
630 return FALSE;
631 memset (elf_tdata (abfd)->group_sect_ptr, 0,
632 num_group * sizeof (Elf_Internal_Shdr *));
633 num_group = 0;
634
635 for (i = 0; i < shnum; i++)
636 {
637 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
638
639 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
640 {
641 unsigned char *src;
642 Elf_Internal_Group *dest;
643
644 /* Make sure the group section has a BFD section
645 attached to it. */
646 if (!bfd_section_from_shdr (abfd, i))
647 return FALSE;
648
649 /* Add to list of sections. */
650 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
651 num_group += 1;
652
653 /* Read the raw contents. */
654 BFD_ASSERT (sizeof (*dest) >= 4);
655 amt = shdr->sh_size * sizeof (*dest) / 4;
656 shdr->contents = (unsigned char *)
657 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
658 /* PR binutils/4110: Handle corrupt group headers. */
659 if (shdr->contents == NULL)
660 {
661 _bfd_error_handler
662 /* xgettext:c-format */
663 (_("%pB: corrupt size field in group section"
664 " header: %#" PRIx64),
665 abfd, (uint64_t) shdr->sh_size);
666 bfd_set_error (bfd_error_bad_value);
667 -- num_group;
668 continue;
669 }
670
671 memset (shdr->contents, 0, amt);
672
673 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
674 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
675 != shdr->sh_size))
676 {
677 _bfd_error_handler
678 /* xgettext:c-format */
679 (_("%pB: invalid size field in group section"
680 " header: %#" PRIx64 ""),
681 abfd, (uint64_t) shdr->sh_size);
682 bfd_set_error (bfd_error_bad_value);
683 -- num_group;
684 /* PR 17510: If the group contents are even
685 partially corrupt, do not allow any of the
686 contents to be used. */
687 memset (shdr->contents, 0, amt);
688 continue;
689 }
690
691 /* Translate raw contents, a flag word followed by an
692 array of elf section indices all in target byte order,
693 to the flag word followed by an array of elf section
694 pointers. */
695 src = shdr->contents + shdr->sh_size;
696 dest = (Elf_Internal_Group *) (shdr->contents + amt);
697
698 while (1)
699 {
700 unsigned int idx;
701
702 src -= 4;
703 --dest;
704 idx = H_GET_32 (abfd, src);
705 if (src == shdr->contents)
706 {
707 dest->flags = idx;
708 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
709 shdr->bfd_section->flags
710 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
711 break;
712 }
713 if (idx < shnum)
714 {
715 dest->shdr = elf_elfsections (abfd)[idx];
716 /* PR binutils/23199: All sections in a
717 section group should be marked with
718 SHF_GROUP. But some tools generate
719 broken objects without SHF_GROUP. Fix
720 them up here. */
721 dest->shdr->sh_flags |= SHF_GROUP;
722 }
723 if (idx >= shnum
724 || dest->shdr->sh_type == SHT_GROUP)
725 {
726 _bfd_error_handler
727 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
728 abfd, i);
729 dest->shdr = NULL;
730 }
731 }
732 }
733 }
734
735 /* PR 17510: Corrupt binaries might contain invalid groups. */
736 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
737 {
738 elf_tdata (abfd)->num_group = num_group;
739
740 /* If all groups are invalid then fail. */
741 if (num_group == 0)
742 {
743 elf_tdata (abfd)->group_sect_ptr = NULL;
744 elf_tdata (abfd)->num_group = num_group = -1;
745 _bfd_error_handler
746 (_("%pB: no valid group sections found"), abfd);
747 bfd_set_error (bfd_error_bad_value);
748 }
749 }
750 }
751 }
752
753 if (num_group != (unsigned) -1)
754 {
755 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
756 unsigned int j;
757
758 for (j = 0; j < num_group; j++)
759 {
760 /* Begin search from previous found group. */
761 unsigned i = (j + search_offset) % num_group;
762
763 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
764 Elf_Internal_Group *idx;
765 bfd_size_type n_elt;
766
767 if (shdr == NULL)
768 continue;
769
770 idx = (Elf_Internal_Group *) shdr->contents;
771 if (idx == NULL || shdr->sh_size < 4)
772 {
773 /* See PR 21957 for a reproducer. */
774 /* xgettext:c-format */
775 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
776 abfd, shdr->bfd_section);
777 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
778 bfd_set_error (bfd_error_bad_value);
779 return FALSE;
780 }
781 n_elt = shdr->sh_size / 4;
782
783 /* Look through this group's sections to see if current
784 section is a member. */
785 while (--n_elt != 0)
786 if ((++idx)->shdr == hdr)
787 {
788 asection *s = NULL;
789
790 /* We are a member of this group. Go looking through
791 other members to see if any others are linked via
792 next_in_group. */
793 idx = (Elf_Internal_Group *) shdr->contents;
794 n_elt = shdr->sh_size / 4;
795 while (--n_elt != 0)
796 if ((++idx)->shdr != NULL
797 && (s = idx->shdr->bfd_section) != NULL
798 && elf_next_in_group (s) != NULL)
799 break;
800 if (n_elt != 0)
801 {
802 /* Snarf the group name from other member, and
803 insert current section in circular list. */
804 elf_group_name (newsect) = elf_group_name (s);
805 elf_next_in_group (newsect) = elf_next_in_group (s);
806 elf_next_in_group (s) = newsect;
807 }
808 else
809 {
810 const char *gname;
811
812 gname = group_signature (abfd, shdr);
813 if (gname == NULL)
814 return FALSE;
815 elf_group_name (newsect) = gname;
816
817 /* Start a circular list with one element. */
818 elf_next_in_group (newsect) = newsect;
819 }
820
821 /* If the group section has been created, point to the
822 new member. */
823 if (shdr->bfd_section != NULL)
824 elf_next_in_group (shdr->bfd_section) = newsect;
825
826 elf_tdata (abfd)->group_search_offset = i;
827 j = num_group - 1;
828 break;
829 }
830 }
831 }
832
833 if (elf_group_name (newsect) == NULL)
834 {
835 /* xgettext:c-format */
836 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
837 abfd, newsect);
838 return FALSE;
839 }
840 return TRUE;
841 }
842
843 bfd_boolean
844 _bfd_elf_setup_sections (bfd *abfd)
845 {
846 unsigned int i;
847 unsigned int num_group = elf_tdata (abfd)->num_group;
848 bfd_boolean result = TRUE;
849 asection *s;
850
851 /* Process SHF_LINK_ORDER. */
852 for (s = abfd->sections; s != NULL; s = s->next)
853 {
854 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
855 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
856 {
857 unsigned int elfsec = this_hdr->sh_link;
858 /* FIXME: The old Intel compiler and old strip/objcopy may
859 not set the sh_link or sh_info fields. Hence we could
860 get the situation where elfsec is 0. */
861 if (elfsec == 0)
862 {
863 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
864 if (bed->link_order_error_handler)
865 bed->link_order_error_handler
866 /* xgettext:c-format */
867 (_("%pB: warning: sh_link not set for section `%pA'"),
868 abfd, s);
869 }
870 else
871 {
872 asection *linksec = NULL;
873
874 if (elfsec < elf_numsections (abfd))
875 {
876 this_hdr = elf_elfsections (abfd)[elfsec];
877 linksec = this_hdr->bfd_section;
878 }
879
880 /* PR 1991, 2008:
881 Some strip/objcopy may leave an incorrect value in
882 sh_link. We don't want to proceed. */
883 if (linksec == NULL)
884 {
885 _bfd_error_handler
886 /* xgettext:c-format */
887 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
888 s->owner, elfsec, s);
889 result = FALSE;
890 }
891
892 elf_linked_to_section (s) = linksec;
893 }
894 }
895 else if (this_hdr->sh_type == SHT_GROUP
896 && elf_next_in_group (s) == NULL)
897 {
898 _bfd_error_handler
899 /* xgettext:c-format */
900 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
901 abfd, elf_section_data (s)->this_idx);
902 result = FALSE;
903 }
904 }
905
906 /* Process section groups. */
907 if (num_group == (unsigned) -1)
908 return result;
909
910 for (i = 0; i < num_group; i++)
911 {
912 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
913 Elf_Internal_Group *idx;
914 unsigned int n_elt;
915
916 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
917 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
918 {
919 _bfd_error_handler
920 /* xgettext:c-format */
921 (_("%pB: section group entry number %u is corrupt"),
922 abfd, i);
923 result = FALSE;
924 continue;
925 }
926
927 idx = (Elf_Internal_Group *) shdr->contents;
928 n_elt = shdr->sh_size / 4;
929
930 while (--n_elt != 0)
931 {
932 ++ idx;
933
934 if (idx->shdr == NULL)
935 continue;
936 else if (idx->shdr->bfd_section)
937 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
938 else if (idx->shdr->sh_type != SHT_RELA
939 && idx->shdr->sh_type != SHT_REL)
940 {
941 /* There are some unknown sections in the group. */
942 _bfd_error_handler
943 /* xgettext:c-format */
944 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
945 abfd,
946 idx->shdr->sh_type,
947 bfd_elf_string_from_elf_section (abfd,
948 (elf_elfheader (abfd)
949 ->e_shstrndx),
950 idx->shdr->sh_name),
951 shdr->bfd_section);
952 result = FALSE;
953 }
954 }
955 }
956
957 return result;
958 }
959
960 bfd_boolean
961 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
962 {
963 return elf_next_in_group (sec) != NULL;
964 }
965
966 static char *
967 convert_debug_to_zdebug (bfd *abfd, const char *name)
968 {
969 unsigned int len = strlen (name);
970 char *new_name = bfd_alloc (abfd, len + 2);
971 if (new_name == NULL)
972 return NULL;
973 new_name[0] = '.';
974 new_name[1] = 'z';
975 memcpy (new_name + 2, name + 1, len);
976 return new_name;
977 }
978
979 static char *
980 convert_zdebug_to_debug (bfd *abfd, const char *name)
981 {
982 unsigned int len = strlen (name);
983 char *new_name = bfd_alloc (abfd, len);
984 if (new_name == NULL)
985 return NULL;
986 new_name[0] = '.';
987 memcpy (new_name + 1, name + 2, len - 1);
988 return new_name;
989 }
990
991 /* Make a BFD section from an ELF section. We store a pointer to the
992 BFD section in the bfd_section field of the header. */
993
994 bfd_boolean
995 _bfd_elf_make_section_from_shdr (bfd *abfd,
996 Elf_Internal_Shdr *hdr,
997 const char *name,
998 int shindex)
999 {
1000 asection *newsect;
1001 flagword flags;
1002 const struct elf_backend_data *bed;
1003
1004 if (hdr->bfd_section != NULL)
1005 return TRUE;
1006
1007 newsect = bfd_make_section_anyway (abfd, name);
1008 if (newsect == NULL)
1009 return FALSE;
1010
1011 hdr->bfd_section = newsect;
1012 elf_section_data (newsect)->this_hdr = *hdr;
1013 elf_section_data (newsect)->this_idx = shindex;
1014
1015 /* Always use the real type/flags. */
1016 elf_section_type (newsect) = hdr->sh_type;
1017 elf_section_flags (newsect) = hdr->sh_flags;
1018
1019 newsect->filepos = hdr->sh_offset;
1020
1021 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1022 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1023 || ! bfd_set_section_alignment (abfd, newsect,
1024 bfd_log2 (hdr->sh_addralign)))
1025 return FALSE;
1026
1027 flags = SEC_NO_FLAGS;
1028 if (hdr->sh_type != SHT_NOBITS)
1029 flags |= SEC_HAS_CONTENTS;
1030 if (hdr->sh_type == SHT_GROUP)
1031 flags |= SEC_GROUP;
1032 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1033 {
1034 flags |= SEC_ALLOC;
1035 if (hdr->sh_type != SHT_NOBITS)
1036 flags |= SEC_LOAD;
1037 }
1038 if ((hdr->sh_flags & SHF_WRITE) == 0)
1039 flags |= SEC_READONLY;
1040 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1041 flags |= SEC_CODE;
1042 else if ((flags & SEC_LOAD) != 0)
1043 flags |= SEC_DATA;
1044 if ((hdr->sh_flags & SHF_MERGE) != 0)
1045 {
1046 flags |= SEC_MERGE;
1047 newsect->entsize = hdr->sh_entsize;
1048 }
1049 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1050 flags |= SEC_STRINGS;
1051 if (hdr->sh_flags & SHF_GROUP)
1052 if (!setup_group (abfd, hdr, newsect))
1053 return FALSE;
1054 if ((hdr->sh_flags & SHF_TLS) != 0)
1055 flags |= SEC_THREAD_LOCAL;
1056 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1057 flags |= SEC_EXCLUDE;
1058
1059 if ((flags & SEC_ALLOC) == 0)
1060 {
1061 /* The debugging sections appear to be recognized only by name,
1062 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1063 if (name [0] == '.')
1064 {
1065 const char *p;
1066 int n;
1067 if (name[1] == 'd')
1068 p = ".debug", n = 6;
1069 else if (name[1] == 'g' && name[2] == 'n')
1070 p = ".gnu.linkonce.wi.", n = 17;
1071 else if (name[1] == 'g' && name[2] == 'd')
1072 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1073 else if (name[1] == 'l')
1074 p = ".line", n = 5;
1075 else if (name[1] == 's')
1076 p = ".stab", n = 5;
1077 else if (name[1] == 'z')
1078 p = ".zdebug", n = 7;
1079 else
1080 p = NULL, n = 0;
1081 if (p != NULL && strncmp (name, p, n) == 0)
1082 flags |= SEC_DEBUGGING;
1083 }
1084 }
1085
1086 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1087 only link a single copy of the section. This is used to support
1088 g++. g++ will emit each template expansion in its own section.
1089 The symbols will be defined as weak, so that multiple definitions
1090 are permitted. The GNU linker extension is to actually discard
1091 all but one of the sections. */
1092 if (CONST_STRNEQ (name, ".gnu.linkonce")
1093 && elf_next_in_group (newsect) == NULL)
1094 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1095
1096 bed = get_elf_backend_data (abfd);
1097 if (bed->elf_backend_section_flags)
1098 if (! bed->elf_backend_section_flags (&flags, hdr))
1099 return FALSE;
1100
1101 if (! bfd_set_section_flags (abfd, newsect, flags))
1102 return FALSE;
1103
1104 /* We do not parse the PT_NOTE segments as we are interested even in the
1105 separate debug info files which may have the segments offsets corrupted.
1106 PT_NOTEs from the core files are currently not parsed using BFD. */
1107 if (hdr->sh_type == SHT_NOTE)
1108 {
1109 bfd_byte *contents;
1110
1111 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1112 return FALSE;
1113
1114 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1115 hdr->sh_offset, hdr->sh_addralign);
1116 free (contents);
1117 }
1118
1119 if ((flags & SEC_ALLOC) != 0)
1120 {
1121 Elf_Internal_Phdr *phdr;
1122 unsigned int i, nload;
1123
1124 /* Some ELF linkers produce binaries with all the program header
1125 p_paddr fields zero. If we have such a binary with more than
1126 one PT_LOAD header, then leave the section lma equal to vma
1127 so that we don't create sections with overlapping lma. */
1128 phdr = elf_tdata (abfd)->phdr;
1129 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1130 if (phdr->p_paddr != 0)
1131 break;
1132 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1133 ++nload;
1134 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1135 return TRUE;
1136
1137 phdr = elf_tdata (abfd)->phdr;
1138 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1139 {
1140 if (((phdr->p_type == PT_LOAD
1141 && (hdr->sh_flags & SHF_TLS) == 0)
1142 || phdr->p_type == PT_TLS)
1143 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1144 {
1145 if ((flags & SEC_LOAD) == 0)
1146 newsect->lma = (phdr->p_paddr
1147 + hdr->sh_addr - phdr->p_vaddr);
1148 else
1149 /* We used to use the same adjustment for SEC_LOAD
1150 sections, but that doesn't work if the segment
1151 is packed with code from multiple VMAs.
1152 Instead we calculate the section LMA based on
1153 the segment LMA. It is assumed that the
1154 segment will contain sections with contiguous
1155 LMAs, even if the VMAs are not. */
1156 newsect->lma = (phdr->p_paddr
1157 + hdr->sh_offset - phdr->p_offset);
1158
1159 /* With contiguous segments, we can't tell from file
1160 offsets whether a section with zero size should
1161 be placed at the end of one segment or the
1162 beginning of the next. Decide based on vaddr. */
1163 if (hdr->sh_addr >= phdr->p_vaddr
1164 && (hdr->sh_addr + hdr->sh_size
1165 <= phdr->p_vaddr + phdr->p_memsz))
1166 break;
1167 }
1168 }
1169 }
1170
1171 /* Compress/decompress DWARF debug sections with names: .debug_* and
1172 .zdebug_*, after the section flags is set. */
1173 if ((flags & SEC_DEBUGGING)
1174 && ((name[1] == 'd' && name[6] == '_')
1175 || (name[1] == 'z' && name[7] == '_')))
1176 {
1177 enum { nothing, compress, decompress } action = nothing;
1178 int compression_header_size;
1179 bfd_size_type uncompressed_size;
1180 unsigned int uncompressed_align_power;
1181 bfd_boolean compressed
1182 = bfd_is_section_compressed_with_header (abfd, newsect,
1183 &compression_header_size,
1184 &uncompressed_size,
1185 &uncompressed_align_power);
1186 if (compressed)
1187 {
1188 /* Compressed section. Check if we should decompress. */
1189 if ((abfd->flags & BFD_DECOMPRESS))
1190 action = decompress;
1191 }
1192
1193 /* Compress the uncompressed section or convert from/to .zdebug*
1194 section. Check if we should compress. */
1195 if (action == nothing)
1196 {
1197 if (newsect->size != 0
1198 && (abfd->flags & BFD_COMPRESS)
1199 && compression_header_size >= 0
1200 && uncompressed_size > 0
1201 && (!compressed
1202 || ((compression_header_size > 0)
1203 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1204 action = compress;
1205 else
1206 return TRUE;
1207 }
1208
1209 if (action == compress)
1210 {
1211 if (!bfd_init_section_compress_status (abfd, newsect))
1212 {
1213 _bfd_error_handler
1214 /* xgettext:c-format */
1215 (_("%pB: unable to initialize compress status for section %s"),
1216 abfd, name);
1217 return FALSE;
1218 }
1219 }
1220 else
1221 {
1222 if (!bfd_init_section_decompress_status (abfd, newsect))
1223 {
1224 _bfd_error_handler
1225 /* xgettext:c-format */
1226 (_("%pB: unable to initialize decompress status for section %s"),
1227 abfd, name);
1228 return FALSE;
1229 }
1230 }
1231
1232 if (abfd->is_linker_input)
1233 {
1234 if (name[1] == 'z'
1235 && (action == decompress
1236 || (action == compress
1237 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1238 {
1239 /* Convert section name from .zdebug_* to .debug_* so
1240 that linker will consider this section as a debug
1241 section. */
1242 char *new_name = convert_zdebug_to_debug (abfd, name);
1243 if (new_name == NULL)
1244 return FALSE;
1245 bfd_rename_section (abfd, newsect, new_name);
1246 }
1247 }
1248 else
1249 /* For objdump, don't rename the section. For objcopy, delay
1250 section rename to elf_fake_sections. */
1251 newsect->flags |= SEC_ELF_RENAME;
1252 }
1253
1254 return TRUE;
1255 }
1256
1257 const char *const bfd_elf_section_type_names[] =
1258 {
1259 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1260 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1261 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1262 };
1263
1264 /* ELF relocs are against symbols. If we are producing relocatable
1265 output, and the reloc is against an external symbol, and nothing
1266 has given us any additional addend, the resulting reloc will also
1267 be against the same symbol. In such a case, we don't want to
1268 change anything about the way the reloc is handled, since it will
1269 all be done at final link time. Rather than put special case code
1270 into bfd_perform_relocation, all the reloc types use this howto
1271 function. It just short circuits the reloc if producing
1272 relocatable output against an external symbol. */
1273
1274 bfd_reloc_status_type
1275 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1276 arelent *reloc_entry,
1277 asymbol *symbol,
1278 void *data ATTRIBUTE_UNUSED,
1279 asection *input_section,
1280 bfd *output_bfd,
1281 char **error_message ATTRIBUTE_UNUSED)
1282 {
1283 if (output_bfd != NULL
1284 && (symbol->flags & BSF_SECTION_SYM) == 0
1285 && (! reloc_entry->howto->partial_inplace
1286 || reloc_entry->addend == 0))
1287 {
1288 reloc_entry->address += input_section->output_offset;
1289 return bfd_reloc_ok;
1290 }
1291
1292 return bfd_reloc_continue;
1293 }
1294 \f
1295 /* Returns TRUE if section A matches section B.
1296 Names, addresses and links may be different, but everything else
1297 should be the same. */
1298
1299 static bfd_boolean
1300 section_match (const Elf_Internal_Shdr * a,
1301 const Elf_Internal_Shdr * b)
1302 {
1303 if (a->sh_type != b->sh_type
1304 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1305 || a->sh_addralign != b->sh_addralign
1306 || a->sh_entsize != b->sh_entsize)
1307 return FALSE;
1308 if (a->sh_type == SHT_SYMTAB
1309 || a->sh_type == SHT_STRTAB)
1310 return TRUE;
1311 return a->sh_size == b->sh_size;
1312 }
1313
1314 /* Find a section in OBFD that has the same characteristics
1315 as IHEADER. Return the index of this section or SHN_UNDEF if
1316 none can be found. Check's section HINT first, as this is likely
1317 to be the correct section. */
1318
1319 static unsigned int
1320 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1321 const unsigned int hint)
1322 {
1323 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1324 unsigned int i;
1325
1326 BFD_ASSERT (iheader != NULL);
1327
1328 /* See PR 20922 for a reproducer of the NULL test. */
1329 if (hint < elf_numsections (obfd)
1330 && oheaders[hint] != NULL
1331 && section_match (oheaders[hint], iheader))
1332 return hint;
1333
1334 for (i = 1; i < elf_numsections (obfd); i++)
1335 {
1336 Elf_Internal_Shdr * oheader = oheaders[i];
1337
1338 if (oheader == NULL)
1339 continue;
1340 if (section_match (oheader, iheader))
1341 /* FIXME: Do we care if there is a potential for
1342 multiple matches ? */
1343 return i;
1344 }
1345
1346 return SHN_UNDEF;
1347 }
1348
1349 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1350 Processor specific section, based upon a matching input section.
1351 Returns TRUE upon success, FALSE otherwise. */
1352
1353 static bfd_boolean
1354 copy_special_section_fields (const bfd *ibfd,
1355 bfd *obfd,
1356 const Elf_Internal_Shdr *iheader,
1357 Elf_Internal_Shdr *oheader,
1358 const unsigned int secnum)
1359 {
1360 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1361 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1362 bfd_boolean changed = FALSE;
1363 unsigned int sh_link;
1364
1365 if (oheader->sh_type == SHT_NOBITS)
1366 {
1367 /* This is a feature for objcopy --only-keep-debug:
1368 When a section's type is changed to NOBITS, we preserve
1369 the sh_link and sh_info fields so that they can be
1370 matched up with the original.
1371
1372 Note: Strictly speaking these assignments are wrong.
1373 The sh_link and sh_info fields should point to the
1374 relevent sections in the output BFD, which may not be in
1375 the same location as they were in the input BFD. But
1376 the whole point of this action is to preserve the
1377 original values of the sh_link and sh_info fields, so
1378 that they can be matched up with the section headers in
1379 the original file. So strictly speaking we may be
1380 creating an invalid ELF file, but it is only for a file
1381 that just contains debug info and only for sections
1382 without any contents. */
1383 if (oheader->sh_link == 0)
1384 oheader->sh_link = iheader->sh_link;
1385 if (oheader->sh_info == 0)
1386 oheader->sh_info = iheader->sh_info;
1387 return TRUE;
1388 }
1389
1390 /* Allow the target a chance to decide how these fields should be set. */
1391 if (bed->elf_backend_copy_special_section_fields != NULL
1392 && bed->elf_backend_copy_special_section_fields
1393 (ibfd, obfd, iheader, oheader))
1394 return TRUE;
1395
1396 /* We have an iheader which might match oheader, and which has non-zero
1397 sh_info and/or sh_link fields. Attempt to follow those links and find
1398 the section in the output bfd which corresponds to the linked section
1399 in the input bfd. */
1400 if (iheader->sh_link != SHN_UNDEF)
1401 {
1402 /* See PR 20931 for a reproducer. */
1403 if (iheader->sh_link >= elf_numsections (ibfd))
1404 {
1405 _bfd_error_handler
1406 /* xgettext:c-format */
1407 (_("%pB: invalid sh_link field (%d) in section number %d"),
1408 ibfd, iheader->sh_link, secnum);
1409 return FALSE;
1410 }
1411
1412 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1413 if (sh_link != SHN_UNDEF)
1414 {
1415 oheader->sh_link = sh_link;
1416 changed = TRUE;
1417 }
1418 else
1419 /* FIXME: Should we install iheader->sh_link
1420 if we could not find a match ? */
1421 _bfd_error_handler
1422 /* xgettext:c-format */
1423 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1424 }
1425
1426 if (iheader->sh_info)
1427 {
1428 /* The sh_info field can hold arbitrary information, but if the
1429 SHF_LINK_INFO flag is set then it should be interpreted as a
1430 section index. */
1431 if (iheader->sh_flags & SHF_INFO_LINK)
1432 {
1433 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1434 iheader->sh_info);
1435 if (sh_link != SHN_UNDEF)
1436 oheader->sh_flags |= SHF_INFO_LINK;
1437 }
1438 else
1439 /* No idea what it means - just copy it. */
1440 sh_link = iheader->sh_info;
1441
1442 if (sh_link != SHN_UNDEF)
1443 {
1444 oheader->sh_info = sh_link;
1445 changed = TRUE;
1446 }
1447 else
1448 _bfd_error_handler
1449 /* xgettext:c-format */
1450 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1451 }
1452
1453 return changed;
1454 }
1455
1456 /* Copy the program header and other data from one object module to
1457 another. */
1458
1459 bfd_boolean
1460 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1461 {
1462 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1463 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1464 const struct elf_backend_data *bed;
1465 unsigned int i;
1466
1467 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1468 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1469 return TRUE;
1470
1471 if (!elf_flags_init (obfd))
1472 {
1473 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1474 elf_flags_init (obfd) = TRUE;
1475 }
1476
1477 elf_gp (obfd) = elf_gp (ibfd);
1478
1479 /* Also copy the EI_OSABI field. */
1480 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1481 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1482
1483 /* If set, copy the EI_ABIVERSION field. */
1484 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1485 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1486 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1487
1488 /* Copy object attributes. */
1489 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1490
1491 if (iheaders == NULL || oheaders == NULL)
1492 return TRUE;
1493
1494 bed = get_elf_backend_data (obfd);
1495
1496 /* Possibly copy other fields in the section header. */
1497 for (i = 1; i < elf_numsections (obfd); i++)
1498 {
1499 unsigned int j;
1500 Elf_Internal_Shdr * oheader = oheaders[i];
1501
1502 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1503 because of a special case need for generating separate debug info
1504 files. See below for more details. */
1505 if (oheader == NULL
1506 || (oheader->sh_type != SHT_NOBITS
1507 && oheader->sh_type < SHT_LOOS))
1508 continue;
1509
1510 /* Ignore empty sections, and sections whose
1511 fields have already been initialised. */
1512 if (oheader->sh_size == 0
1513 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1514 continue;
1515
1516 /* Scan for the matching section in the input bfd.
1517 First we try for a direct mapping between the input and output sections. */
1518 for (j = 1; j < elf_numsections (ibfd); j++)
1519 {
1520 const Elf_Internal_Shdr * iheader = iheaders[j];
1521
1522 if (iheader == NULL)
1523 continue;
1524
1525 if (oheader->bfd_section != NULL
1526 && iheader->bfd_section != NULL
1527 && iheader->bfd_section->output_section != NULL
1528 && iheader->bfd_section->output_section == oheader->bfd_section)
1529 {
1530 /* We have found a connection from the input section to the
1531 output section. Attempt to copy the header fields. If
1532 this fails then do not try any further sections - there
1533 should only be a one-to-one mapping between input and output. */
1534 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1535 j = elf_numsections (ibfd);
1536 break;
1537 }
1538 }
1539
1540 if (j < elf_numsections (ibfd))
1541 continue;
1542
1543 /* That failed. So try to deduce the corresponding input section.
1544 Unfortunately we cannot compare names as the output string table
1545 is empty, so instead we check size, address and type. */
1546 for (j = 1; j < elf_numsections (ibfd); j++)
1547 {
1548 const Elf_Internal_Shdr * iheader = iheaders[j];
1549
1550 if (iheader == NULL)
1551 continue;
1552
1553 /* Try matching fields in the input section's header.
1554 Since --only-keep-debug turns all non-debug sections into
1555 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1556 input type. */
1557 if ((oheader->sh_type == SHT_NOBITS
1558 || iheader->sh_type == oheader->sh_type)
1559 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1560 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1561 && iheader->sh_addralign == oheader->sh_addralign
1562 && iheader->sh_entsize == oheader->sh_entsize
1563 && iheader->sh_size == oheader->sh_size
1564 && iheader->sh_addr == oheader->sh_addr
1565 && (iheader->sh_info != oheader->sh_info
1566 || iheader->sh_link != oheader->sh_link))
1567 {
1568 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1569 break;
1570 }
1571 }
1572
1573 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1574 {
1575 /* Final attempt. Call the backend copy function
1576 with a NULL input section. */
1577 if (bed->elf_backend_copy_special_section_fields != NULL)
1578 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1579 }
1580 }
1581
1582 return TRUE;
1583 }
1584
1585 static const char *
1586 get_segment_type (unsigned int p_type)
1587 {
1588 const char *pt;
1589 switch (p_type)
1590 {
1591 case PT_NULL: pt = "NULL"; break;
1592 case PT_LOAD: pt = "LOAD"; break;
1593 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1594 case PT_INTERP: pt = "INTERP"; break;
1595 case PT_NOTE: pt = "NOTE"; break;
1596 case PT_SHLIB: pt = "SHLIB"; break;
1597 case PT_PHDR: pt = "PHDR"; break;
1598 case PT_TLS: pt = "TLS"; break;
1599 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1600 case PT_GNU_STACK: pt = "STACK"; break;
1601 case PT_GNU_RELRO: pt = "RELRO"; break;
1602 default: pt = NULL; break;
1603 }
1604 return pt;
1605 }
1606
1607 /* Print out the program headers. */
1608
1609 bfd_boolean
1610 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1611 {
1612 FILE *f = (FILE *) farg;
1613 Elf_Internal_Phdr *p;
1614 asection *s;
1615 bfd_byte *dynbuf = NULL;
1616
1617 p = elf_tdata (abfd)->phdr;
1618 if (p != NULL)
1619 {
1620 unsigned int i, c;
1621
1622 fprintf (f, _("\nProgram Header:\n"));
1623 c = elf_elfheader (abfd)->e_phnum;
1624 for (i = 0; i < c; i++, p++)
1625 {
1626 const char *pt = get_segment_type (p->p_type);
1627 char buf[20];
1628
1629 if (pt == NULL)
1630 {
1631 sprintf (buf, "0x%lx", p->p_type);
1632 pt = buf;
1633 }
1634 fprintf (f, "%8s off 0x", pt);
1635 bfd_fprintf_vma (abfd, f, p->p_offset);
1636 fprintf (f, " vaddr 0x");
1637 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1638 fprintf (f, " paddr 0x");
1639 bfd_fprintf_vma (abfd, f, p->p_paddr);
1640 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1641 fprintf (f, " filesz 0x");
1642 bfd_fprintf_vma (abfd, f, p->p_filesz);
1643 fprintf (f, " memsz 0x");
1644 bfd_fprintf_vma (abfd, f, p->p_memsz);
1645 fprintf (f, " flags %c%c%c",
1646 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1647 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1648 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1649 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1650 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1651 fprintf (f, "\n");
1652 }
1653 }
1654
1655 s = bfd_get_section_by_name (abfd, ".dynamic");
1656 if (s != NULL)
1657 {
1658 unsigned int elfsec;
1659 unsigned long shlink;
1660 bfd_byte *extdyn, *extdynend;
1661 size_t extdynsize;
1662 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1663
1664 fprintf (f, _("\nDynamic Section:\n"));
1665
1666 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1667 goto error_return;
1668
1669 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1670 if (elfsec == SHN_BAD)
1671 goto error_return;
1672 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1673
1674 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1675 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1676
1677 extdyn = dynbuf;
1678 /* PR 17512: file: 6f427532. */
1679 if (s->size < extdynsize)
1680 goto error_return;
1681 extdynend = extdyn + s->size;
1682 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1683 Fix range check. */
1684 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1685 {
1686 Elf_Internal_Dyn dyn;
1687 const char *name = "";
1688 char ab[20];
1689 bfd_boolean stringp;
1690 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1691
1692 (*swap_dyn_in) (abfd, extdyn, &dyn);
1693
1694 if (dyn.d_tag == DT_NULL)
1695 break;
1696
1697 stringp = FALSE;
1698 switch (dyn.d_tag)
1699 {
1700 default:
1701 if (bed->elf_backend_get_target_dtag)
1702 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1703
1704 if (!strcmp (name, ""))
1705 {
1706 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1707 name = ab;
1708 }
1709 break;
1710
1711 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1712 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1713 case DT_PLTGOT: name = "PLTGOT"; break;
1714 case DT_HASH: name = "HASH"; break;
1715 case DT_STRTAB: name = "STRTAB"; break;
1716 case DT_SYMTAB: name = "SYMTAB"; break;
1717 case DT_RELA: name = "RELA"; break;
1718 case DT_RELASZ: name = "RELASZ"; break;
1719 case DT_RELAENT: name = "RELAENT"; break;
1720 case DT_STRSZ: name = "STRSZ"; break;
1721 case DT_SYMENT: name = "SYMENT"; break;
1722 case DT_INIT: name = "INIT"; break;
1723 case DT_FINI: name = "FINI"; break;
1724 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1725 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1726 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1727 case DT_REL: name = "REL"; break;
1728 case DT_RELSZ: name = "RELSZ"; break;
1729 case DT_RELENT: name = "RELENT"; break;
1730 case DT_PLTREL: name = "PLTREL"; break;
1731 case DT_DEBUG: name = "DEBUG"; break;
1732 case DT_TEXTREL: name = "TEXTREL"; break;
1733 case DT_JMPREL: name = "JMPREL"; break;
1734 case DT_BIND_NOW: name = "BIND_NOW"; break;
1735 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1736 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1737 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1738 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1739 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1740 case DT_FLAGS: name = "FLAGS"; break;
1741 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1742 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1743 case DT_CHECKSUM: name = "CHECKSUM"; break;
1744 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1745 case DT_MOVEENT: name = "MOVEENT"; break;
1746 case DT_MOVESZ: name = "MOVESZ"; break;
1747 case DT_FEATURE: name = "FEATURE"; break;
1748 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1749 case DT_SYMINSZ: name = "SYMINSZ"; break;
1750 case DT_SYMINENT: name = "SYMINENT"; break;
1751 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1752 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1753 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1754 case DT_PLTPAD: name = "PLTPAD"; break;
1755 case DT_MOVETAB: name = "MOVETAB"; break;
1756 case DT_SYMINFO: name = "SYMINFO"; break;
1757 case DT_RELACOUNT: name = "RELACOUNT"; break;
1758 case DT_RELCOUNT: name = "RELCOUNT"; break;
1759 case DT_FLAGS_1: name = "FLAGS_1"; break;
1760 case DT_VERSYM: name = "VERSYM"; break;
1761 case DT_VERDEF: name = "VERDEF"; break;
1762 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1763 case DT_VERNEED: name = "VERNEED"; break;
1764 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1765 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1766 case DT_USED: name = "USED"; break;
1767 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1768 case DT_GNU_HASH: name = "GNU_HASH"; break;
1769 }
1770
1771 fprintf (f, " %-20s ", name);
1772 if (! stringp)
1773 {
1774 fprintf (f, "0x");
1775 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1776 }
1777 else
1778 {
1779 const char *string;
1780 unsigned int tagv = dyn.d_un.d_val;
1781
1782 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1783 if (string == NULL)
1784 goto error_return;
1785 fprintf (f, "%s", string);
1786 }
1787 fprintf (f, "\n");
1788 }
1789
1790 free (dynbuf);
1791 dynbuf = NULL;
1792 }
1793
1794 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1795 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1796 {
1797 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1798 return FALSE;
1799 }
1800
1801 if (elf_dynverdef (abfd) != 0)
1802 {
1803 Elf_Internal_Verdef *t;
1804
1805 fprintf (f, _("\nVersion definitions:\n"));
1806 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1807 {
1808 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1809 t->vd_flags, t->vd_hash,
1810 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1811 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1812 {
1813 Elf_Internal_Verdaux *a;
1814
1815 fprintf (f, "\t");
1816 for (a = t->vd_auxptr->vda_nextptr;
1817 a != NULL;
1818 a = a->vda_nextptr)
1819 fprintf (f, "%s ",
1820 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1821 fprintf (f, "\n");
1822 }
1823 }
1824 }
1825
1826 if (elf_dynverref (abfd) != 0)
1827 {
1828 Elf_Internal_Verneed *t;
1829
1830 fprintf (f, _("\nVersion References:\n"));
1831 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1832 {
1833 Elf_Internal_Vernaux *a;
1834
1835 fprintf (f, _(" required from %s:\n"),
1836 t->vn_filename ? t->vn_filename : "<corrupt>");
1837 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1838 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1839 a->vna_flags, a->vna_other,
1840 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1841 }
1842 }
1843
1844 return TRUE;
1845
1846 error_return:
1847 if (dynbuf != NULL)
1848 free (dynbuf);
1849 return FALSE;
1850 }
1851
1852 /* Get version string. */
1853
1854 const char *
1855 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1856 bfd_boolean *hidden)
1857 {
1858 const char *version_string = NULL;
1859 if (elf_dynversym (abfd) != 0
1860 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1861 {
1862 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1863
1864 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1865 vernum &= VERSYM_VERSION;
1866
1867 if (vernum == 0)
1868 version_string = "";
1869 else if (vernum == 1
1870 && (vernum > elf_tdata (abfd)->cverdefs
1871 || (elf_tdata (abfd)->verdef[0].vd_flags
1872 == VER_FLG_BASE)))
1873 version_string = "Base";
1874 else if (vernum <= elf_tdata (abfd)->cverdefs)
1875 version_string =
1876 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1877 else
1878 {
1879 Elf_Internal_Verneed *t;
1880
1881 version_string = _("<corrupt>");
1882 for (t = elf_tdata (abfd)->verref;
1883 t != NULL;
1884 t = t->vn_nextref)
1885 {
1886 Elf_Internal_Vernaux *a;
1887
1888 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1889 {
1890 if (a->vna_other == vernum)
1891 {
1892 version_string = a->vna_nodename;
1893 break;
1894 }
1895 }
1896 }
1897 }
1898 }
1899 return version_string;
1900 }
1901
1902 /* Display ELF-specific fields of a symbol. */
1903
1904 void
1905 bfd_elf_print_symbol (bfd *abfd,
1906 void *filep,
1907 asymbol *symbol,
1908 bfd_print_symbol_type how)
1909 {
1910 FILE *file = (FILE *) filep;
1911 switch (how)
1912 {
1913 case bfd_print_symbol_name:
1914 fprintf (file, "%s", symbol->name);
1915 break;
1916 case bfd_print_symbol_more:
1917 fprintf (file, "elf ");
1918 bfd_fprintf_vma (abfd, file, symbol->value);
1919 fprintf (file, " %x", symbol->flags);
1920 break;
1921 case bfd_print_symbol_all:
1922 {
1923 const char *section_name;
1924 const char *name = NULL;
1925 const struct elf_backend_data *bed;
1926 unsigned char st_other;
1927 bfd_vma val;
1928 const char *version_string;
1929 bfd_boolean hidden;
1930
1931 section_name = symbol->section ? symbol->section->name : "(*none*)";
1932
1933 bed = get_elf_backend_data (abfd);
1934 if (bed->elf_backend_print_symbol_all)
1935 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1936
1937 if (name == NULL)
1938 {
1939 name = symbol->name;
1940 bfd_print_symbol_vandf (abfd, file, symbol);
1941 }
1942
1943 fprintf (file, " %s\t", section_name);
1944 /* Print the "other" value for a symbol. For common symbols,
1945 we've already printed the size; now print the alignment.
1946 For other symbols, we have no specified alignment, and
1947 we've printed the address; now print the size. */
1948 if (symbol->section && bfd_is_com_section (symbol->section))
1949 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1950 else
1951 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1952 bfd_fprintf_vma (abfd, file, val);
1953
1954 /* If we have version information, print it. */
1955 version_string = _bfd_elf_get_symbol_version_string (abfd,
1956 symbol,
1957 &hidden);
1958 if (version_string)
1959 {
1960 if (!hidden)
1961 fprintf (file, " %-11s", version_string);
1962 else
1963 {
1964 int i;
1965
1966 fprintf (file, " (%s)", version_string);
1967 for (i = 10 - strlen (version_string); i > 0; --i)
1968 putc (' ', file);
1969 }
1970 }
1971
1972 /* If the st_other field is not zero, print it. */
1973 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1974
1975 switch (st_other)
1976 {
1977 case 0: break;
1978 case STV_INTERNAL: fprintf (file, " .internal"); break;
1979 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1980 case STV_PROTECTED: fprintf (file, " .protected"); break;
1981 default:
1982 /* Some other non-defined flags are also present, so print
1983 everything hex. */
1984 fprintf (file, " 0x%02x", (unsigned int) st_other);
1985 }
1986
1987 fprintf (file, " %s", name);
1988 }
1989 break;
1990 }
1991 }
1992 \f
1993 /* ELF .o/exec file reading */
1994
1995 /* Create a new bfd section from an ELF section header. */
1996
1997 bfd_boolean
1998 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1999 {
2000 Elf_Internal_Shdr *hdr;
2001 Elf_Internal_Ehdr *ehdr;
2002 const struct elf_backend_data *bed;
2003 const char *name;
2004 bfd_boolean ret = TRUE;
2005 static bfd_boolean * sections_being_created = NULL;
2006 static bfd * sections_being_created_abfd = NULL;
2007 static unsigned int nesting = 0;
2008
2009 if (shindex >= elf_numsections (abfd))
2010 return FALSE;
2011
2012 if (++ nesting > 3)
2013 {
2014 /* PR17512: A corrupt ELF binary might contain a recursive group of
2015 sections, with each the string indices pointing to the next in the
2016 loop. Detect this here, by refusing to load a section that we are
2017 already in the process of loading. We only trigger this test if
2018 we have nested at least three sections deep as normal ELF binaries
2019 can expect to recurse at least once.
2020
2021 FIXME: It would be better if this array was attached to the bfd,
2022 rather than being held in a static pointer. */
2023
2024 if (sections_being_created_abfd != abfd)
2025 sections_being_created = NULL;
2026 if (sections_being_created == NULL)
2027 {
2028 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
2029 sections_being_created = (bfd_boolean *)
2030 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
2031 sections_being_created_abfd = abfd;
2032 }
2033 if (sections_being_created [shindex])
2034 {
2035 _bfd_error_handler
2036 (_("%pB: warning: loop in section dependencies detected"), abfd);
2037 return FALSE;
2038 }
2039 sections_being_created [shindex] = TRUE;
2040 }
2041
2042 hdr = elf_elfsections (abfd)[shindex];
2043 ehdr = elf_elfheader (abfd);
2044 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2045 hdr->sh_name);
2046 if (name == NULL)
2047 goto fail;
2048
2049 bed = get_elf_backend_data (abfd);
2050 switch (hdr->sh_type)
2051 {
2052 case SHT_NULL:
2053 /* Inactive section. Throw it away. */
2054 goto success;
2055
2056 case SHT_PROGBITS: /* Normal section with contents. */
2057 case SHT_NOBITS: /* .bss section. */
2058 case SHT_HASH: /* .hash section. */
2059 case SHT_NOTE: /* .note section. */
2060 case SHT_INIT_ARRAY: /* .init_array section. */
2061 case SHT_FINI_ARRAY: /* .fini_array section. */
2062 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2063 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2064 case SHT_GNU_HASH: /* .gnu.hash section. */
2065 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2066 goto success;
2067
2068 case SHT_DYNAMIC: /* Dynamic linking information. */
2069 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2070 goto fail;
2071
2072 if (hdr->sh_link > elf_numsections (abfd))
2073 {
2074 /* PR 10478: Accept Solaris binaries with a sh_link
2075 field set to SHN_BEFORE or SHN_AFTER. */
2076 switch (bfd_get_arch (abfd))
2077 {
2078 case bfd_arch_i386:
2079 case bfd_arch_sparc:
2080 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2081 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2082 break;
2083 /* Otherwise fall through. */
2084 default:
2085 goto fail;
2086 }
2087 }
2088 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2089 goto fail;
2090 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2091 {
2092 Elf_Internal_Shdr *dynsymhdr;
2093
2094 /* The shared libraries distributed with hpux11 have a bogus
2095 sh_link field for the ".dynamic" section. Find the
2096 string table for the ".dynsym" section instead. */
2097 if (elf_dynsymtab (abfd) != 0)
2098 {
2099 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2100 hdr->sh_link = dynsymhdr->sh_link;
2101 }
2102 else
2103 {
2104 unsigned int i, num_sec;
2105
2106 num_sec = elf_numsections (abfd);
2107 for (i = 1; i < num_sec; i++)
2108 {
2109 dynsymhdr = elf_elfsections (abfd)[i];
2110 if (dynsymhdr->sh_type == SHT_DYNSYM)
2111 {
2112 hdr->sh_link = dynsymhdr->sh_link;
2113 break;
2114 }
2115 }
2116 }
2117 }
2118 goto success;
2119
2120 case SHT_SYMTAB: /* A symbol table. */
2121 if (elf_onesymtab (abfd) == shindex)
2122 goto success;
2123
2124 if (hdr->sh_entsize != bed->s->sizeof_sym)
2125 goto fail;
2126
2127 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2128 {
2129 if (hdr->sh_size != 0)
2130 goto fail;
2131 /* Some assemblers erroneously set sh_info to one with a
2132 zero sh_size. ld sees this as a global symbol count
2133 of (unsigned) -1. Fix it here. */
2134 hdr->sh_info = 0;
2135 goto success;
2136 }
2137
2138 /* PR 18854: A binary might contain more than one symbol table.
2139 Unusual, but possible. Warn, but continue. */
2140 if (elf_onesymtab (abfd) != 0)
2141 {
2142 _bfd_error_handler
2143 /* xgettext:c-format */
2144 (_("%pB: warning: multiple symbol tables detected"
2145 " - ignoring the table in section %u"),
2146 abfd, shindex);
2147 goto success;
2148 }
2149 elf_onesymtab (abfd) = shindex;
2150 elf_symtab_hdr (abfd) = *hdr;
2151 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2152 abfd->flags |= HAS_SYMS;
2153
2154 /* Sometimes a shared object will map in the symbol table. If
2155 SHF_ALLOC is set, and this is a shared object, then we also
2156 treat this section as a BFD section. We can not base the
2157 decision purely on SHF_ALLOC, because that flag is sometimes
2158 set in a relocatable object file, which would confuse the
2159 linker. */
2160 if ((hdr->sh_flags & SHF_ALLOC) != 0
2161 && (abfd->flags & DYNAMIC) != 0
2162 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2163 shindex))
2164 goto fail;
2165
2166 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2167 can't read symbols without that section loaded as well. It
2168 is most likely specified by the next section header. */
2169 {
2170 elf_section_list * entry;
2171 unsigned int i, num_sec;
2172
2173 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2174 if (entry->hdr.sh_link == shindex)
2175 goto success;
2176
2177 num_sec = elf_numsections (abfd);
2178 for (i = shindex + 1; i < num_sec; i++)
2179 {
2180 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2181
2182 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2183 && hdr2->sh_link == shindex)
2184 break;
2185 }
2186
2187 if (i == num_sec)
2188 for (i = 1; i < shindex; i++)
2189 {
2190 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2191
2192 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2193 && hdr2->sh_link == shindex)
2194 break;
2195 }
2196
2197 if (i != shindex)
2198 ret = bfd_section_from_shdr (abfd, i);
2199 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2200 goto success;
2201 }
2202
2203 case SHT_DYNSYM: /* A dynamic symbol table. */
2204 if (elf_dynsymtab (abfd) == shindex)
2205 goto success;
2206
2207 if (hdr->sh_entsize != bed->s->sizeof_sym)
2208 goto fail;
2209
2210 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2211 {
2212 if (hdr->sh_size != 0)
2213 goto fail;
2214
2215 /* Some linkers erroneously set sh_info to one with a
2216 zero sh_size. ld sees this as a global symbol count
2217 of (unsigned) -1. Fix it here. */
2218 hdr->sh_info = 0;
2219 goto success;
2220 }
2221
2222 /* PR 18854: A binary might contain more than one dynamic symbol table.
2223 Unusual, but possible. Warn, but continue. */
2224 if (elf_dynsymtab (abfd) != 0)
2225 {
2226 _bfd_error_handler
2227 /* xgettext:c-format */
2228 (_("%pB: warning: multiple dynamic symbol tables detected"
2229 " - ignoring the table in section %u"),
2230 abfd, shindex);
2231 goto success;
2232 }
2233 elf_dynsymtab (abfd) = shindex;
2234 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2235 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2236 abfd->flags |= HAS_SYMS;
2237
2238 /* Besides being a symbol table, we also treat this as a regular
2239 section, so that objcopy can handle it. */
2240 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2241 goto success;
2242
2243 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2244 {
2245 elf_section_list * entry;
2246
2247 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2248 if (entry->ndx == shindex)
2249 goto success;
2250
2251 entry = bfd_alloc (abfd, sizeof * entry);
2252 if (entry == NULL)
2253 goto fail;
2254 entry->ndx = shindex;
2255 entry->hdr = * hdr;
2256 entry->next = elf_symtab_shndx_list (abfd);
2257 elf_symtab_shndx_list (abfd) = entry;
2258 elf_elfsections (abfd)[shindex] = & entry->hdr;
2259 goto success;
2260 }
2261
2262 case SHT_STRTAB: /* A string table. */
2263 if (hdr->bfd_section != NULL)
2264 goto success;
2265
2266 if (ehdr->e_shstrndx == shindex)
2267 {
2268 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2269 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2270 goto success;
2271 }
2272
2273 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2274 {
2275 symtab_strtab:
2276 elf_tdata (abfd)->strtab_hdr = *hdr;
2277 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2278 goto success;
2279 }
2280
2281 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2282 {
2283 dynsymtab_strtab:
2284 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2285 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2286 elf_elfsections (abfd)[shindex] = hdr;
2287 /* We also treat this as a regular section, so that objcopy
2288 can handle it. */
2289 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2290 shindex);
2291 goto success;
2292 }
2293
2294 /* If the string table isn't one of the above, then treat it as a
2295 regular section. We need to scan all the headers to be sure,
2296 just in case this strtab section appeared before the above. */
2297 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2298 {
2299 unsigned int i, num_sec;
2300
2301 num_sec = elf_numsections (abfd);
2302 for (i = 1; i < num_sec; i++)
2303 {
2304 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2305 if (hdr2->sh_link == shindex)
2306 {
2307 /* Prevent endless recursion on broken objects. */
2308 if (i == shindex)
2309 goto fail;
2310 if (! bfd_section_from_shdr (abfd, i))
2311 goto fail;
2312 if (elf_onesymtab (abfd) == i)
2313 goto symtab_strtab;
2314 if (elf_dynsymtab (abfd) == i)
2315 goto dynsymtab_strtab;
2316 }
2317 }
2318 }
2319 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2320 goto success;
2321
2322 case SHT_REL:
2323 case SHT_RELA:
2324 /* *These* do a lot of work -- but build no sections! */
2325 {
2326 asection *target_sect;
2327 Elf_Internal_Shdr *hdr2, **p_hdr;
2328 unsigned int num_sec = elf_numsections (abfd);
2329 struct bfd_elf_section_data *esdt;
2330
2331 if (hdr->sh_entsize
2332 != (bfd_size_type) (hdr->sh_type == SHT_REL
2333 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2334 goto fail;
2335
2336 /* Check for a bogus link to avoid crashing. */
2337 if (hdr->sh_link >= num_sec)
2338 {
2339 _bfd_error_handler
2340 /* xgettext:c-format */
2341 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2342 abfd, hdr->sh_link, name, shindex);
2343 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2344 shindex);
2345 goto success;
2346 }
2347
2348 /* For some incomprehensible reason Oracle distributes
2349 libraries for Solaris in which some of the objects have
2350 bogus sh_link fields. It would be nice if we could just
2351 reject them, but, unfortunately, some people need to use
2352 them. We scan through the section headers; if we find only
2353 one suitable symbol table, we clobber the sh_link to point
2354 to it. I hope this doesn't break anything.
2355
2356 Don't do it on executable nor shared library. */
2357 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2358 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2359 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2360 {
2361 unsigned int scan;
2362 int found;
2363
2364 found = 0;
2365 for (scan = 1; scan < num_sec; scan++)
2366 {
2367 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2368 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2369 {
2370 if (found != 0)
2371 {
2372 found = 0;
2373 break;
2374 }
2375 found = scan;
2376 }
2377 }
2378 if (found != 0)
2379 hdr->sh_link = found;
2380 }
2381
2382 /* Get the symbol table. */
2383 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2384 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2385 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2386 goto fail;
2387
2388 /* If this is an alloc section in an executable or shared
2389 library, or the reloc section does not use the main symbol
2390 table we don't treat it as a reloc section. BFD can't
2391 adequately represent such a section, so at least for now,
2392 we don't try. We just present it as a normal section. We
2393 also can't use it as a reloc section if it points to the
2394 null section, an invalid section, another reloc section, or
2395 its sh_link points to the null section. */
2396 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2397 && (hdr->sh_flags & SHF_ALLOC) != 0)
2398 || hdr->sh_link == SHN_UNDEF
2399 || hdr->sh_link != elf_onesymtab (abfd)
2400 || hdr->sh_info == SHN_UNDEF
2401 || hdr->sh_info >= num_sec
2402 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2403 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2404 {
2405 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2406 shindex);
2407 goto success;
2408 }
2409
2410 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2411 goto fail;
2412
2413 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2414 if (target_sect == NULL)
2415 goto fail;
2416
2417 esdt = elf_section_data (target_sect);
2418 if (hdr->sh_type == SHT_RELA)
2419 p_hdr = &esdt->rela.hdr;
2420 else
2421 p_hdr = &esdt->rel.hdr;
2422
2423 /* PR 17512: file: 0b4f81b7. */
2424 if (*p_hdr != NULL)
2425 goto fail;
2426 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2427 if (hdr2 == NULL)
2428 goto fail;
2429 *hdr2 = *hdr;
2430 *p_hdr = hdr2;
2431 elf_elfsections (abfd)[shindex] = hdr2;
2432 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2433 * bed->s->int_rels_per_ext_rel);
2434 target_sect->flags |= SEC_RELOC;
2435 target_sect->relocation = NULL;
2436 target_sect->rel_filepos = hdr->sh_offset;
2437 /* In the section to which the relocations apply, mark whether
2438 its relocations are of the REL or RELA variety. */
2439 if (hdr->sh_size != 0)
2440 {
2441 if (hdr->sh_type == SHT_RELA)
2442 target_sect->use_rela_p = 1;
2443 }
2444 abfd->flags |= HAS_RELOC;
2445 goto success;
2446 }
2447
2448 case SHT_GNU_verdef:
2449 elf_dynverdef (abfd) = shindex;
2450 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2451 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2452 goto success;
2453
2454 case SHT_GNU_versym:
2455 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2456 goto fail;
2457
2458 elf_dynversym (abfd) = shindex;
2459 elf_tdata (abfd)->dynversym_hdr = *hdr;
2460 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2461 goto success;
2462
2463 case SHT_GNU_verneed:
2464 elf_dynverref (abfd) = shindex;
2465 elf_tdata (abfd)->dynverref_hdr = *hdr;
2466 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2467 goto success;
2468
2469 case SHT_SHLIB:
2470 goto success;
2471
2472 case SHT_GROUP:
2473 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2474 goto fail;
2475
2476 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2477 goto fail;
2478
2479 goto success;
2480
2481 default:
2482 /* Possibly an attributes section. */
2483 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2484 || hdr->sh_type == bed->obj_attrs_section_type)
2485 {
2486 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2487 goto fail;
2488 _bfd_elf_parse_attributes (abfd, hdr);
2489 goto success;
2490 }
2491
2492 /* Check for any processor-specific section types. */
2493 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2494 goto success;
2495
2496 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2497 {
2498 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2499 /* FIXME: How to properly handle allocated section reserved
2500 for applications? */
2501 _bfd_error_handler
2502 /* xgettext:c-format */
2503 (_("%pB: unknown type [%#x] section `%s'"),
2504 abfd, hdr->sh_type, name);
2505 else
2506 {
2507 /* Allow sections reserved for applications. */
2508 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2509 shindex);
2510 goto success;
2511 }
2512 }
2513 else if (hdr->sh_type >= SHT_LOPROC
2514 && hdr->sh_type <= SHT_HIPROC)
2515 /* FIXME: We should handle this section. */
2516 _bfd_error_handler
2517 /* xgettext:c-format */
2518 (_("%pB: unknown type [%#x] section `%s'"),
2519 abfd, hdr->sh_type, name);
2520 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2521 {
2522 /* Unrecognised OS-specific sections. */
2523 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2524 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2525 required to correctly process the section and the file should
2526 be rejected with an error message. */
2527 _bfd_error_handler
2528 /* xgettext:c-format */
2529 (_("%pB: unknown type [%#x] section `%s'"),
2530 abfd, hdr->sh_type, name);
2531 else
2532 {
2533 /* Otherwise it should be processed. */
2534 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2535 goto success;
2536 }
2537 }
2538 else
2539 /* FIXME: We should handle this section. */
2540 _bfd_error_handler
2541 /* xgettext:c-format */
2542 (_("%pB: unknown type [%#x] section `%s'"),
2543 abfd, hdr->sh_type, name);
2544
2545 goto fail;
2546 }
2547
2548 fail:
2549 ret = FALSE;
2550 success:
2551 if (sections_being_created && sections_being_created_abfd == abfd)
2552 sections_being_created [shindex] = FALSE;
2553 if (-- nesting == 0)
2554 {
2555 sections_being_created = NULL;
2556 sections_being_created_abfd = abfd;
2557 }
2558 return ret;
2559 }
2560
2561 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2562
2563 Elf_Internal_Sym *
2564 bfd_sym_from_r_symndx (struct sym_cache *cache,
2565 bfd *abfd,
2566 unsigned long r_symndx)
2567 {
2568 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2569
2570 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2571 {
2572 Elf_Internal_Shdr *symtab_hdr;
2573 unsigned char esym[sizeof (Elf64_External_Sym)];
2574 Elf_External_Sym_Shndx eshndx;
2575
2576 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2577 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2578 &cache->sym[ent], esym, &eshndx) == NULL)
2579 return NULL;
2580
2581 if (cache->abfd != abfd)
2582 {
2583 memset (cache->indx, -1, sizeof (cache->indx));
2584 cache->abfd = abfd;
2585 }
2586 cache->indx[ent] = r_symndx;
2587 }
2588
2589 return &cache->sym[ent];
2590 }
2591
2592 /* Given an ELF section number, retrieve the corresponding BFD
2593 section. */
2594
2595 asection *
2596 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2597 {
2598 if (sec_index >= elf_numsections (abfd))
2599 return NULL;
2600 return elf_elfsections (abfd)[sec_index]->bfd_section;
2601 }
2602
2603 static const struct bfd_elf_special_section special_sections_b[] =
2604 {
2605 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2606 { NULL, 0, 0, 0, 0 }
2607 };
2608
2609 static const struct bfd_elf_special_section special_sections_c[] =
2610 {
2611 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2612 { NULL, 0, 0, 0, 0 }
2613 };
2614
2615 static const struct bfd_elf_special_section special_sections_d[] =
2616 {
2617 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2618 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2619 /* There are more DWARF sections than these, but they needn't be added here
2620 unless you have to cope with broken compilers that don't emit section
2621 attributes or you want to help the user writing assembler. */
2622 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2623 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2624 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2625 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2626 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2627 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2628 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2629 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2630 { NULL, 0, 0, 0, 0 }
2631 };
2632
2633 static const struct bfd_elf_special_section special_sections_f[] =
2634 {
2635 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2636 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2637 { NULL, 0 , 0, 0, 0 }
2638 };
2639
2640 static const struct bfd_elf_special_section special_sections_g[] =
2641 {
2642 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2643 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2644 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2645 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2646 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2647 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2648 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2649 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2650 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2651 { NULL, 0, 0, 0, 0 }
2652 };
2653
2654 static const struct bfd_elf_special_section special_sections_h[] =
2655 {
2656 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2657 { NULL, 0, 0, 0, 0 }
2658 };
2659
2660 static const struct bfd_elf_special_section special_sections_i[] =
2661 {
2662 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2663 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2664 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2665 { NULL, 0, 0, 0, 0 }
2666 };
2667
2668 static const struct bfd_elf_special_section special_sections_l[] =
2669 {
2670 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2671 { NULL, 0, 0, 0, 0 }
2672 };
2673
2674 static const struct bfd_elf_special_section special_sections_n[] =
2675 {
2676 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2677 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2678 { NULL, 0, 0, 0, 0 }
2679 };
2680
2681 static const struct bfd_elf_special_section special_sections_p[] =
2682 {
2683 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2684 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2685 { NULL, 0, 0, 0, 0 }
2686 };
2687
2688 static const struct bfd_elf_special_section special_sections_r[] =
2689 {
2690 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2691 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2692 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2693 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2694 { NULL, 0, 0, 0, 0 }
2695 };
2696
2697 static const struct bfd_elf_special_section special_sections_s[] =
2698 {
2699 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2700 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2701 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2702 /* See struct bfd_elf_special_section declaration for the semantics of
2703 this special case where .prefix_length != strlen (.prefix). */
2704 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2705 { NULL, 0, 0, 0, 0 }
2706 };
2707
2708 static const struct bfd_elf_special_section special_sections_t[] =
2709 {
2710 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2711 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2712 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2713 { NULL, 0, 0, 0, 0 }
2714 };
2715
2716 static const struct bfd_elf_special_section special_sections_z[] =
2717 {
2718 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2719 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2720 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2721 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2722 { NULL, 0, 0, 0, 0 }
2723 };
2724
2725 static const struct bfd_elf_special_section * const special_sections[] =
2726 {
2727 special_sections_b, /* 'b' */
2728 special_sections_c, /* 'c' */
2729 special_sections_d, /* 'd' */
2730 NULL, /* 'e' */
2731 special_sections_f, /* 'f' */
2732 special_sections_g, /* 'g' */
2733 special_sections_h, /* 'h' */
2734 special_sections_i, /* 'i' */
2735 NULL, /* 'j' */
2736 NULL, /* 'k' */
2737 special_sections_l, /* 'l' */
2738 NULL, /* 'm' */
2739 special_sections_n, /* 'n' */
2740 NULL, /* 'o' */
2741 special_sections_p, /* 'p' */
2742 NULL, /* 'q' */
2743 special_sections_r, /* 'r' */
2744 special_sections_s, /* 's' */
2745 special_sections_t, /* 't' */
2746 NULL, /* 'u' */
2747 NULL, /* 'v' */
2748 NULL, /* 'w' */
2749 NULL, /* 'x' */
2750 NULL, /* 'y' */
2751 special_sections_z /* 'z' */
2752 };
2753
2754 const struct bfd_elf_special_section *
2755 _bfd_elf_get_special_section (const char *name,
2756 const struct bfd_elf_special_section *spec,
2757 unsigned int rela)
2758 {
2759 int i;
2760 int len;
2761
2762 len = strlen (name);
2763
2764 for (i = 0; spec[i].prefix != NULL; i++)
2765 {
2766 int suffix_len;
2767 int prefix_len = spec[i].prefix_length;
2768
2769 if (len < prefix_len)
2770 continue;
2771 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2772 continue;
2773
2774 suffix_len = spec[i].suffix_length;
2775 if (suffix_len <= 0)
2776 {
2777 if (name[prefix_len] != 0)
2778 {
2779 if (suffix_len == 0)
2780 continue;
2781 if (name[prefix_len] != '.'
2782 && (suffix_len == -2
2783 || (rela && spec[i].type == SHT_REL)))
2784 continue;
2785 }
2786 }
2787 else
2788 {
2789 if (len < prefix_len + suffix_len)
2790 continue;
2791 if (memcmp (name + len - suffix_len,
2792 spec[i].prefix + prefix_len,
2793 suffix_len) != 0)
2794 continue;
2795 }
2796 return &spec[i];
2797 }
2798
2799 return NULL;
2800 }
2801
2802 const struct bfd_elf_special_section *
2803 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2804 {
2805 int i;
2806 const struct bfd_elf_special_section *spec;
2807 const struct elf_backend_data *bed;
2808
2809 /* See if this is one of the special sections. */
2810 if (sec->name == NULL)
2811 return NULL;
2812
2813 bed = get_elf_backend_data (abfd);
2814 spec = bed->special_sections;
2815 if (spec)
2816 {
2817 spec = _bfd_elf_get_special_section (sec->name,
2818 bed->special_sections,
2819 sec->use_rela_p);
2820 if (spec != NULL)
2821 return spec;
2822 }
2823
2824 if (sec->name[0] != '.')
2825 return NULL;
2826
2827 i = sec->name[1] - 'b';
2828 if (i < 0 || i > 'z' - 'b')
2829 return NULL;
2830
2831 spec = special_sections[i];
2832
2833 if (spec == NULL)
2834 return NULL;
2835
2836 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2837 }
2838
2839 bfd_boolean
2840 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2841 {
2842 struct bfd_elf_section_data *sdata;
2843 const struct elf_backend_data *bed;
2844 const struct bfd_elf_special_section *ssect;
2845
2846 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2847 if (sdata == NULL)
2848 {
2849 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2850 sizeof (*sdata));
2851 if (sdata == NULL)
2852 return FALSE;
2853 sec->used_by_bfd = sdata;
2854 }
2855
2856 /* Indicate whether or not this section should use RELA relocations. */
2857 bed = get_elf_backend_data (abfd);
2858 sec->use_rela_p = bed->default_use_rela_p;
2859
2860 /* When we read a file, we don't need to set ELF section type and
2861 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2862 anyway. We will set ELF section type and flags for all linker
2863 created sections. If user specifies BFD section flags, we will
2864 set ELF section type and flags based on BFD section flags in
2865 elf_fake_sections. Special handling for .init_array/.fini_array
2866 output sections since they may contain .ctors/.dtors input
2867 sections. We don't want _bfd_elf_init_private_section_data to
2868 copy ELF section type from .ctors/.dtors input sections. */
2869 if (abfd->direction != read_direction
2870 || (sec->flags & SEC_LINKER_CREATED) != 0)
2871 {
2872 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2873 if (ssect != NULL
2874 && (!sec->flags
2875 || (sec->flags & SEC_LINKER_CREATED) != 0
2876 || ssect->type == SHT_INIT_ARRAY
2877 || ssect->type == SHT_FINI_ARRAY))
2878 {
2879 elf_section_type (sec) = ssect->type;
2880 elf_section_flags (sec) = ssect->attr;
2881 }
2882 }
2883
2884 return _bfd_generic_new_section_hook (abfd, sec);
2885 }
2886
2887 /* Create a new bfd section from an ELF program header.
2888
2889 Since program segments have no names, we generate a synthetic name
2890 of the form segment<NUM>, where NUM is generally the index in the
2891 program header table. For segments that are split (see below) we
2892 generate the names segment<NUM>a and segment<NUM>b.
2893
2894 Note that some program segments may have a file size that is different than
2895 (less than) the memory size. All this means is that at execution the
2896 system must allocate the amount of memory specified by the memory size,
2897 but only initialize it with the first "file size" bytes read from the
2898 file. This would occur for example, with program segments consisting
2899 of combined data+bss.
2900
2901 To handle the above situation, this routine generates TWO bfd sections
2902 for the single program segment. The first has the length specified by
2903 the file size of the segment, and the second has the length specified
2904 by the difference between the two sizes. In effect, the segment is split
2905 into its initialized and uninitialized parts.
2906
2907 */
2908
2909 bfd_boolean
2910 _bfd_elf_make_section_from_phdr (bfd *abfd,
2911 Elf_Internal_Phdr *hdr,
2912 int hdr_index,
2913 const char *type_name)
2914 {
2915 asection *newsect;
2916 char *name;
2917 char namebuf[64];
2918 size_t len;
2919 int split;
2920
2921 split = ((hdr->p_memsz > 0)
2922 && (hdr->p_filesz > 0)
2923 && (hdr->p_memsz > hdr->p_filesz));
2924
2925 if (hdr->p_filesz > 0)
2926 {
2927 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2928 len = strlen (namebuf) + 1;
2929 name = (char *) bfd_alloc (abfd, len);
2930 if (!name)
2931 return FALSE;
2932 memcpy (name, namebuf, len);
2933 newsect = bfd_make_section (abfd, name);
2934 if (newsect == NULL)
2935 return FALSE;
2936 newsect->vma = hdr->p_vaddr;
2937 newsect->lma = hdr->p_paddr;
2938 newsect->size = hdr->p_filesz;
2939 newsect->filepos = hdr->p_offset;
2940 newsect->flags |= SEC_HAS_CONTENTS;
2941 newsect->alignment_power = bfd_log2 (hdr->p_align);
2942 if (hdr->p_type == PT_LOAD)
2943 {
2944 newsect->flags |= SEC_ALLOC;
2945 newsect->flags |= SEC_LOAD;
2946 if (hdr->p_flags & PF_X)
2947 {
2948 /* FIXME: all we known is that it has execute PERMISSION,
2949 may be data. */
2950 newsect->flags |= SEC_CODE;
2951 }
2952 }
2953 if (!(hdr->p_flags & PF_W))
2954 {
2955 newsect->flags |= SEC_READONLY;
2956 }
2957 }
2958
2959 if (hdr->p_memsz > hdr->p_filesz)
2960 {
2961 bfd_vma align;
2962
2963 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2964 len = strlen (namebuf) + 1;
2965 name = (char *) bfd_alloc (abfd, len);
2966 if (!name)
2967 return FALSE;
2968 memcpy (name, namebuf, len);
2969 newsect = bfd_make_section (abfd, name);
2970 if (newsect == NULL)
2971 return FALSE;
2972 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2973 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2974 newsect->size = hdr->p_memsz - hdr->p_filesz;
2975 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2976 align = newsect->vma & -newsect->vma;
2977 if (align == 0 || align > hdr->p_align)
2978 align = hdr->p_align;
2979 newsect->alignment_power = bfd_log2 (align);
2980 if (hdr->p_type == PT_LOAD)
2981 {
2982 /* Hack for gdb. Segments that have not been modified do
2983 not have their contents written to a core file, on the
2984 assumption that a debugger can find the contents in the
2985 executable. We flag this case by setting the fake
2986 section size to zero. Note that "real" bss sections will
2987 always have their contents dumped to the core file. */
2988 if (bfd_get_format (abfd) == bfd_core)
2989 newsect->size = 0;
2990 newsect->flags |= SEC_ALLOC;
2991 if (hdr->p_flags & PF_X)
2992 newsect->flags |= SEC_CODE;
2993 }
2994 if (!(hdr->p_flags & PF_W))
2995 newsect->flags |= SEC_READONLY;
2996 }
2997
2998 return TRUE;
2999 }
3000
3001 bfd_boolean
3002 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3003 {
3004 const struct elf_backend_data *bed;
3005
3006 switch (hdr->p_type)
3007 {
3008 case PT_NULL:
3009 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3010
3011 case PT_LOAD:
3012 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
3013
3014 case PT_DYNAMIC:
3015 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3016
3017 case PT_INTERP:
3018 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3019
3020 case PT_NOTE:
3021 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3022 return FALSE;
3023 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3024 hdr->p_align))
3025 return FALSE;
3026 return TRUE;
3027
3028 case PT_SHLIB:
3029 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3030
3031 case PT_PHDR:
3032 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3033
3034 case PT_GNU_EH_FRAME:
3035 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3036 "eh_frame_hdr");
3037
3038 case PT_GNU_STACK:
3039 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3040
3041 case PT_GNU_RELRO:
3042 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3043
3044 default:
3045 /* Check for any processor-specific program segment types. */
3046 bed = get_elf_backend_data (abfd);
3047 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3048 }
3049 }
3050
3051 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3052 REL or RELA. */
3053
3054 Elf_Internal_Shdr *
3055 _bfd_elf_single_rel_hdr (asection *sec)
3056 {
3057 if (elf_section_data (sec)->rel.hdr)
3058 {
3059 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3060 return elf_section_data (sec)->rel.hdr;
3061 }
3062 else
3063 return elf_section_data (sec)->rela.hdr;
3064 }
3065
3066 static bfd_boolean
3067 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3068 Elf_Internal_Shdr *rel_hdr,
3069 const char *sec_name,
3070 bfd_boolean use_rela_p)
3071 {
3072 char *name = (char *) bfd_alloc (abfd,
3073 sizeof ".rela" + strlen (sec_name));
3074 if (name == NULL)
3075 return FALSE;
3076
3077 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3078 rel_hdr->sh_name =
3079 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3080 FALSE);
3081 if (rel_hdr->sh_name == (unsigned int) -1)
3082 return FALSE;
3083
3084 return TRUE;
3085 }
3086
3087 /* Allocate and initialize a section-header for a new reloc section,
3088 containing relocations against ASECT. It is stored in RELDATA. If
3089 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3090 relocations. */
3091
3092 static bfd_boolean
3093 _bfd_elf_init_reloc_shdr (bfd *abfd,
3094 struct bfd_elf_section_reloc_data *reldata,
3095 const char *sec_name,
3096 bfd_boolean use_rela_p,
3097 bfd_boolean delay_st_name_p)
3098 {
3099 Elf_Internal_Shdr *rel_hdr;
3100 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3101
3102 BFD_ASSERT (reldata->hdr == NULL);
3103 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3104 reldata->hdr = rel_hdr;
3105
3106 if (delay_st_name_p)
3107 rel_hdr->sh_name = (unsigned int) -1;
3108 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3109 use_rela_p))
3110 return FALSE;
3111 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3112 rel_hdr->sh_entsize = (use_rela_p
3113 ? bed->s->sizeof_rela
3114 : bed->s->sizeof_rel);
3115 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3116 rel_hdr->sh_flags = 0;
3117 rel_hdr->sh_addr = 0;
3118 rel_hdr->sh_size = 0;
3119 rel_hdr->sh_offset = 0;
3120
3121 return TRUE;
3122 }
3123
3124 /* Return the default section type based on the passed in section flags. */
3125
3126 int
3127 bfd_elf_get_default_section_type (flagword flags)
3128 {
3129 if ((flags & SEC_ALLOC) != 0
3130 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3131 return SHT_NOBITS;
3132 return SHT_PROGBITS;
3133 }
3134
3135 struct fake_section_arg
3136 {
3137 struct bfd_link_info *link_info;
3138 bfd_boolean failed;
3139 };
3140
3141 /* Set up an ELF internal section header for a section. */
3142
3143 static void
3144 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3145 {
3146 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3147 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3148 struct bfd_elf_section_data *esd = elf_section_data (asect);
3149 Elf_Internal_Shdr *this_hdr;
3150 unsigned int sh_type;
3151 const char *name = asect->name;
3152 bfd_boolean delay_st_name_p = FALSE;
3153
3154 if (arg->failed)
3155 {
3156 /* We already failed; just get out of the bfd_map_over_sections
3157 loop. */
3158 return;
3159 }
3160
3161 this_hdr = &esd->this_hdr;
3162
3163 if (arg->link_info)
3164 {
3165 /* ld: compress DWARF debug sections with names: .debug_*. */
3166 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3167 && (asect->flags & SEC_DEBUGGING)
3168 && name[1] == 'd'
3169 && name[6] == '_')
3170 {
3171 /* Set SEC_ELF_COMPRESS to indicate this section should be
3172 compressed. */
3173 asect->flags |= SEC_ELF_COMPRESS;
3174
3175 /* If this section will be compressed, delay adding section
3176 name to section name section after it is compressed in
3177 _bfd_elf_assign_file_positions_for_non_load. */
3178 delay_st_name_p = TRUE;
3179 }
3180 }
3181 else if ((asect->flags & SEC_ELF_RENAME))
3182 {
3183 /* objcopy: rename output DWARF debug section. */
3184 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3185 {
3186 /* When we decompress or compress with SHF_COMPRESSED,
3187 convert section name from .zdebug_* to .debug_* if
3188 needed. */
3189 if (name[1] == 'z')
3190 {
3191 char *new_name = convert_zdebug_to_debug (abfd, name);
3192 if (new_name == NULL)
3193 {
3194 arg->failed = TRUE;
3195 return;
3196 }
3197 name = new_name;
3198 }
3199 }
3200 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3201 {
3202 /* PR binutils/18087: Compression does not always make a
3203 section smaller. So only rename the section when
3204 compression has actually taken place. If input section
3205 name is .zdebug_*, we should never compress it again. */
3206 char *new_name = convert_debug_to_zdebug (abfd, name);
3207 if (new_name == NULL)
3208 {
3209 arg->failed = TRUE;
3210 return;
3211 }
3212 BFD_ASSERT (name[1] != 'z');
3213 name = new_name;
3214 }
3215 }
3216
3217 if (delay_st_name_p)
3218 this_hdr->sh_name = (unsigned int) -1;
3219 else
3220 {
3221 this_hdr->sh_name
3222 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3223 name, FALSE);
3224 if (this_hdr->sh_name == (unsigned int) -1)
3225 {
3226 arg->failed = TRUE;
3227 return;
3228 }
3229 }
3230
3231 /* Don't clear sh_flags. Assembler may set additional bits. */
3232
3233 if ((asect->flags & SEC_ALLOC) != 0
3234 || asect->user_set_vma)
3235 this_hdr->sh_addr = asect->vma;
3236 else
3237 this_hdr->sh_addr = 0;
3238
3239 this_hdr->sh_offset = 0;
3240 this_hdr->sh_size = asect->size;
3241 this_hdr->sh_link = 0;
3242 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3243 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3244 {
3245 _bfd_error_handler
3246 /* xgettext:c-format */
3247 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3248 abfd, asect->alignment_power, asect);
3249 arg->failed = TRUE;
3250 return;
3251 }
3252 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3253 /* The sh_entsize and sh_info fields may have been set already by
3254 copy_private_section_data. */
3255
3256 this_hdr->bfd_section = asect;
3257 this_hdr->contents = NULL;
3258
3259 /* If the section type is unspecified, we set it based on
3260 asect->flags. */
3261 if ((asect->flags & SEC_GROUP) != 0)
3262 sh_type = SHT_GROUP;
3263 else
3264 sh_type = bfd_elf_get_default_section_type (asect->flags);
3265
3266 if (this_hdr->sh_type == SHT_NULL)
3267 this_hdr->sh_type = sh_type;
3268 else if (this_hdr->sh_type == SHT_NOBITS
3269 && sh_type == SHT_PROGBITS
3270 && (asect->flags & SEC_ALLOC) != 0)
3271 {
3272 /* Warn if we are changing a NOBITS section to PROGBITS, but
3273 allow the link to proceed. This can happen when users link
3274 non-bss input sections to bss output sections, or emit data
3275 to a bss output section via a linker script. */
3276 _bfd_error_handler
3277 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3278 this_hdr->sh_type = sh_type;
3279 }
3280
3281 switch (this_hdr->sh_type)
3282 {
3283 default:
3284 break;
3285
3286 case SHT_STRTAB:
3287 case SHT_NOTE:
3288 case SHT_NOBITS:
3289 case SHT_PROGBITS:
3290 break;
3291
3292 case SHT_INIT_ARRAY:
3293 case SHT_FINI_ARRAY:
3294 case SHT_PREINIT_ARRAY:
3295 this_hdr->sh_entsize = bed->s->arch_size / 8;
3296 break;
3297
3298 case SHT_HASH:
3299 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3300 break;
3301
3302 case SHT_DYNSYM:
3303 this_hdr->sh_entsize = bed->s->sizeof_sym;
3304 break;
3305
3306 case SHT_DYNAMIC:
3307 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3308 break;
3309
3310 case SHT_RELA:
3311 if (get_elf_backend_data (abfd)->may_use_rela_p)
3312 this_hdr->sh_entsize = bed->s->sizeof_rela;
3313 break;
3314
3315 case SHT_REL:
3316 if (get_elf_backend_data (abfd)->may_use_rel_p)
3317 this_hdr->sh_entsize = bed->s->sizeof_rel;
3318 break;
3319
3320 case SHT_GNU_versym:
3321 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3322 break;
3323
3324 case SHT_GNU_verdef:
3325 this_hdr->sh_entsize = 0;
3326 /* objcopy or strip will copy over sh_info, but may not set
3327 cverdefs. The linker will set cverdefs, but sh_info will be
3328 zero. */
3329 if (this_hdr->sh_info == 0)
3330 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3331 else
3332 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3333 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3334 break;
3335
3336 case SHT_GNU_verneed:
3337 this_hdr->sh_entsize = 0;
3338 /* objcopy or strip will copy over sh_info, but may not set
3339 cverrefs. The linker will set cverrefs, but sh_info will be
3340 zero. */
3341 if (this_hdr->sh_info == 0)
3342 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3343 else
3344 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3345 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3346 break;
3347
3348 case SHT_GROUP:
3349 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3350 break;
3351
3352 case SHT_GNU_HASH:
3353 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3354 break;
3355 }
3356
3357 if ((asect->flags & SEC_ALLOC) != 0)
3358 this_hdr->sh_flags |= SHF_ALLOC;
3359 if ((asect->flags & SEC_READONLY) == 0)
3360 this_hdr->sh_flags |= SHF_WRITE;
3361 if ((asect->flags & SEC_CODE) != 0)
3362 this_hdr->sh_flags |= SHF_EXECINSTR;
3363 if ((asect->flags & SEC_MERGE) != 0)
3364 {
3365 this_hdr->sh_flags |= SHF_MERGE;
3366 this_hdr->sh_entsize = asect->entsize;
3367 }
3368 if ((asect->flags & SEC_STRINGS) != 0)
3369 this_hdr->sh_flags |= SHF_STRINGS;
3370 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3371 this_hdr->sh_flags |= SHF_GROUP;
3372 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3373 {
3374 this_hdr->sh_flags |= SHF_TLS;
3375 if (asect->size == 0
3376 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3377 {
3378 struct bfd_link_order *o = asect->map_tail.link_order;
3379
3380 this_hdr->sh_size = 0;
3381 if (o != NULL)
3382 {
3383 this_hdr->sh_size = o->offset + o->size;
3384 if (this_hdr->sh_size != 0)
3385 this_hdr->sh_type = SHT_NOBITS;
3386 }
3387 }
3388 }
3389 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3390 this_hdr->sh_flags |= SHF_EXCLUDE;
3391
3392 /* If the section has relocs, set up a section header for the
3393 SHT_REL[A] section. If two relocation sections are required for
3394 this section, it is up to the processor-specific back-end to
3395 create the other. */
3396 if ((asect->flags & SEC_RELOC) != 0)
3397 {
3398 /* When doing a relocatable link, create both REL and RELA sections if
3399 needed. */
3400 if (arg->link_info
3401 /* Do the normal setup if we wouldn't create any sections here. */
3402 && esd->rel.count + esd->rela.count > 0
3403 && (bfd_link_relocatable (arg->link_info)
3404 || arg->link_info->emitrelocations))
3405 {
3406 if (esd->rel.count && esd->rel.hdr == NULL
3407 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3408 FALSE, delay_st_name_p))
3409 {
3410 arg->failed = TRUE;
3411 return;
3412 }
3413 if (esd->rela.count && esd->rela.hdr == NULL
3414 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3415 TRUE, delay_st_name_p))
3416 {
3417 arg->failed = TRUE;
3418 return;
3419 }
3420 }
3421 else if (!_bfd_elf_init_reloc_shdr (abfd,
3422 (asect->use_rela_p
3423 ? &esd->rela : &esd->rel),
3424 name,
3425 asect->use_rela_p,
3426 delay_st_name_p))
3427 {
3428 arg->failed = TRUE;
3429 return;
3430 }
3431 }
3432
3433 /* Check for processor-specific section types. */
3434 sh_type = this_hdr->sh_type;
3435 if (bed->elf_backend_fake_sections
3436 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3437 {
3438 arg->failed = TRUE;
3439 return;
3440 }
3441
3442 if (sh_type == SHT_NOBITS && asect->size != 0)
3443 {
3444 /* Don't change the header type from NOBITS if we are being
3445 called for objcopy --only-keep-debug. */
3446 this_hdr->sh_type = sh_type;
3447 }
3448 }
3449
3450 /* Fill in the contents of a SHT_GROUP section. Called from
3451 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3452 when ELF targets use the generic linker, ld. Called for ld -r
3453 from bfd_elf_final_link. */
3454
3455 void
3456 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3457 {
3458 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3459 asection *elt, *first;
3460 unsigned char *loc;
3461 bfd_boolean gas;
3462
3463 /* Ignore linker created group section. See elfNN_ia64_object_p in
3464 elfxx-ia64.c. */
3465 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3466 || *failedptr)
3467 return;
3468
3469 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3470 {
3471 unsigned long symindx = 0;
3472
3473 /* elf_group_id will have been set up by objcopy and the
3474 generic linker. */
3475 if (elf_group_id (sec) != NULL)
3476 symindx = elf_group_id (sec)->udata.i;
3477
3478 if (symindx == 0)
3479 {
3480 /* If called from the assembler, swap_out_syms will have set up
3481 elf_section_syms. */
3482 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3483 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3484 }
3485 elf_section_data (sec)->this_hdr.sh_info = symindx;
3486 }
3487 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3488 {
3489 /* The ELF backend linker sets sh_info to -2 when the group
3490 signature symbol is global, and thus the index can't be
3491 set until all local symbols are output. */
3492 asection *igroup;
3493 struct bfd_elf_section_data *sec_data;
3494 unsigned long symndx;
3495 unsigned long extsymoff;
3496 struct elf_link_hash_entry *h;
3497
3498 /* The point of this little dance to the first SHF_GROUP section
3499 then back to the SHT_GROUP section is that this gets us to
3500 the SHT_GROUP in the input object. */
3501 igroup = elf_sec_group (elf_next_in_group (sec));
3502 sec_data = elf_section_data (igroup);
3503 symndx = sec_data->this_hdr.sh_info;
3504 extsymoff = 0;
3505 if (!elf_bad_symtab (igroup->owner))
3506 {
3507 Elf_Internal_Shdr *symtab_hdr;
3508
3509 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3510 extsymoff = symtab_hdr->sh_info;
3511 }
3512 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3513 while (h->root.type == bfd_link_hash_indirect
3514 || h->root.type == bfd_link_hash_warning)
3515 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3516
3517 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3518 }
3519
3520 /* The contents won't be allocated for "ld -r" or objcopy. */
3521 gas = TRUE;
3522 if (sec->contents == NULL)
3523 {
3524 gas = FALSE;
3525 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3526
3527 /* Arrange for the section to be written out. */
3528 elf_section_data (sec)->this_hdr.contents = sec->contents;
3529 if (sec->contents == NULL)
3530 {
3531 *failedptr = TRUE;
3532 return;
3533 }
3534 }
3535
3536 loc = sec->contents + sec->size;
3537
3538 /* Get the pointer to the first section in the group that gas
3539 squirreled away here. objcopy arranges for this to be set to the
3540 start of the input section group. */
3541 first = elt = elf_next_in_group (sec);
3542
3543 /* First element is a flag word. Rest of section is elf section
3544 indices for all the sections of the group. Write them backwards
3545 just to keep the group in the same order as given in .section
3546 directives, not that it matters. */
3547 while (elt != NULL)
3548 {
3549 asection *s;
3550
3551 s = elt;
3552 if (!gas)
3553 s = s->output_section;
3554 if (s != NULL
3555 && !bfd_is_abs_section (s))
3556 {
3557 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3558 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3559
3560 if (elf_sec->rel.hdr != NULL
3561 && (gas
3562 || (input_elf_sec->rel.hdr != NULL
3563 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3564 {
3565 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3566 loc -= 4;
3567 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3568 }
3569 if (elf_sec->rela.hdr != NULL
3570 && (gas
3571 || (input_elf_sec->rela.hdr != NULL
3572 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3573 {
3574 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3575 loc -= 4;
3576 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3577 }
3578 loc -= 4;
3579 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3580 }
3581 elt = elf_next_in_group (elt);
3582 if (elt == first)
3583 break;
3584 }
3585
3586 loc -= 4;
3587 BFD_ASSERT (loc == sec->contents);
3588
3589 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3590 }
3591
3592 /* Given NAME, the name of a relocation section stripped of its
3593 .rel/.rela prefix, return the section in ABFD to which the
3594 relocations apply. */
3595
3596 asection *
3597 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3598 {
3599 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3600 section likely apply to .got.plt or .got section. */
3601 if (get_elf_backend_data (abfd)->want_got_plt
3602 && strcmp (name, ".plt") == 0)
3603 {
3604 asection *sec;
3605
3606 name = ".got.plt";
3607 sec = bfd_get_section_by_name (abfd, name);
3608 if (sec != NULL)
3609 return sec;
3610 name = ".got";
3611 }
3612
3613 return bfd_get_section_by_name (abfd, name);
3614 }
3615
3616 /* Return the section to which RELOC_SEC applies. */
3617
3618 static asection *
3619 elf_get_reloc_section (asection *reloc_sec)
3620 {
3621 const char *name;
3622 unsigned int type;
3623 bfd *abfd;
3624 const struct elf_backend_data *bed;
3625
3626 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3627 if (type != SHT_REL && type != SHT_RELA)
3628 return NULL;
3629
3630 /* We look up the section the relocs apply to by name. */
3631 name = reloc_sec->name;
3632 if (strncmp (name, ".rel", 4) != 0)
3633 return NULL;
3634 name += 4;
3635 if (type == SHT_RELA && *name++ != 'a')
3636 return NULL;
3637
3638 abfd = reloc_sec->owner;
3639 bed = get_elf_backend_data (abfd);
3640 return bed->get_reloc_section (abfd, name);
3641 }
3642
3643 /* Assign all ELF section numbers. The dummy first section is handled here
3644 too. The link/info pointers for the standard section types are filled
3645 in here too, while we're at it. */
3646
3647 static bfd_boolean
3648 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3649 {
3650 struct elf_obj_tdata *t = elf_tdata (abfd);
3651 asection *sec;
3652 unsigned int section_number;
3653 Elf_Internal_Shdr **i_shdrp;
3654 struct bfd_elf_section_data *d;
3655 bfd_boolean need_symtab;
3656
3657 section_number = 1;
3658
3659 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3660
3661 /* SHT_GROUP sections are in relocatable files only. */
3662 if (link_info == NULL || !link_info->resolve_section_groups)
3663 {
3664 size_t reloc_count = 0;
3665
3666 /* Put SHT_GROUP sections first. */
3667 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3668 {
3669 d = elf_section_data (sec);
3670
3671 if (d->this_hdr.sh_type == SHT_GROUP)
3672 {
3673 if (sec->flags & SEC_LINKER_CREATED)
3674 {
3675 /* Remove the linker created SHT_GROUP sections. */
3676 bfd_section_list_remove (abfd, sec);
3677 abfd->section_count--;
3678 }
3679 else
3680 d->this_idx = section_number++;
3681 }
3682
3683 /* Count relocations. */
3684 reloc_count += sec->reloc_count;
3685 }
3686
3687 /* Clear HAS_RELOC if there are no relocations. */
3688 if (reloc_count == 0)
3689 abfd->flags &= ~HAS_RELOC;
3690 }
3691
3692 for (sec = abfd->sections; sec; sec = sec->next)
3693 {
3694 d = elf_section_data (sec);
3695
3696 if (d->this_hdr.sh_type != SHT_GROUP)
3697 d->this_idx = section_number++;
3698 if (d->this_hdr.sh_name != (unsigned int) -1)
3699 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3700 if (d->rel.hdr)
3701 {
3702 d->rel.idx = section_number++;
3703 if (d->rel.hdr->sh_name != (unsigned int) -1)
3704 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3705 }
3706 else
3707 d->rel.idx = 0;
3708
3709 if (d->rela.hdr)
3710 {
3711 d->rela.idx = section_number++;
3712 if (d->rela.hdr->sh_name != (unsigned int) -1)
3713 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3714 }
3715 else
3716 d->rela.idx = 0;
3717 }
3718
3719 need_symtab = (bfd_get_symcount (abfd) > 0
3720 || (link_info == NULL
3721 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3722 == HAS_RELOC)));
3723 if (need_symtab)
3724 {
3725 elf_onesymtab (abfd) = section_number++;
3726 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3727 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3728 {
3729 elf_section_list * entry;
3730
3731 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3732
3733 entry = bfd_zalloc (abfd, sizeof * entry);
3734 entry->ndx = section_number++;
3735 elf_symtab_shndx_list (abfd) = entry;
3736 entry->hdr.sh_name
3737 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3738 ".symtab_shndx", FALSE);
3739 if (entry->hdr.sh_name == (unsigned int) -1)
3740 return FALSE;
3741 }
3742 elf_strtab_sec (abfd) = section_number++;
3743 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3744 }
3745
3746 elf_shstrtab_sec (abfd) = section_number++;
3747 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3748 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3749
3750 if (section_number >= SHN_LORESERVE)
3751 {
3752 /* xgettext:c-format */
3753 _bfd_error_handler (_("%pB: too many sections: %u"),
3754 abfd, section_number);
3755 return FALSE;
3756 }
3757
3758 elf_numsections (abfd) = section_number;
3759 elf_elfheader (abfd)->e_shnum = section_number;
3760
3761 /* Set up the list of section header pointers, in agreement with the
3762 indices. */
3763 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3764 sizeof (Elf_Internal_Shdr *));
3765 if (i_shdrp == NULL)
3766 return FALSE;
3767
3768 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3769 sizeof (Elf_Internal_Shdr));
3770 if (i_shdrp[0] == NULL)
3771 {
3772 bfd_release (abfd, i_shdrp);
3773 return FALSE;
3774 }
3775
3776 elf_elfsections (abfd) = i_shdrp;
3777
3778 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3779 if (need_symtab)
3780 {
3781 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3782 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3783 {
3784 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3785 BFD_ASSERT (entry != NULL);
3786 i_shdrp[entry->ndx] = & entry->hdr;
3787 entry->hdr.sh_link = elf_onesymtab (abfd);
3788 }
3789 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3790 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3791 }
3792
3793 for (sec = abfd->sections; sec; sec = sec->next)
3794 {
3795 asection *s;
3796
3797 d = elf_section_data (sec);
3798
3799 i_shdrp[d->this_idx] = &d->this_hdr;
3800 if (d->rel.idx != 0)
3801 i_shdrp[d->rel.idx] = d->rel.hdr;
3802 if (d->rela.idx != 0)
3803 i_shdrp[d->rela.idx] = d->rela.hdr;
3804
3805 /* Fill in the sh_link and sh_info fields while we're at it. */
3806
3807 /* sh_link of a reloc section is the section index of the symbol
3808 table. sh_info is the section index of the section to which
3809 the relocation entries apply. */
3810 if (d->rel.idx != 0)
3811 {
3812 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3813 d->rel.hdr->sh_info = d->this_idx;
3814 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3815 }
3816 if (d->rela.idx != 0)
3817 {
3818 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3819 d->rela.hdr->sh_info = d->this_idx;
3820 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3821 }
3822
3823 /* We need to set up sh_link for SHF_LINK_ORDER. */
3824 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3825 {
3826 s = elf_linked_to_section (sec);
3827 if (s)
3828 {
3829 /* elf_linked_to_section points to the input section. */
3830 if (link_info != NULL)
3831 {
3832 /* Check discarded linkonce section. */
3833 if (discarded_section (s))
3834 {
3835 asection *kept;
3836 _bfd_error_handler
3837 /* xgettext:c-format */
3838 (_("%pB: sh_link of section `%pA' points to"
3839 " discarded section `%pA' of `%pB'"),
3840 abfd, d->this_hdr.bfd_section,
3841 s, s->owner);
3842 /* Point to the kept section if it has the same
3843 size as the discarded one. */
3844 kept = _bfd_elf_check_kept_section (s, link_info);
3845 if (kept == NULL)
3846 {
3847 bfd_set_error (bfd_error_bad_value);
3848 return FALSE;
3849 }
3850 s = kept;
3851 }
3852
3853 s = s->output_section;
3854 BFD_ASSERT (s != NULL);
3855 }
3856 else
3857 {
3858 /* Handle objcopy. */
3859 if (s->output_section == NULL)
3860 {
3861 _bfd_error_handler
3862 /* xgettext:c-format */
3863 (_("%pB: sh_link of section `%pA' points to"
3864 " removed section `%pA' of `%pB'"),
3865 abfd, d->this_hdr.bfd_section, s, s->owner);
3866 bfd_set_error (bfd_error_bad_value);
3867 return FALSE;
3868 }
3869 s = s->output_section;
3870 }
3871 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3872 }
3873 else
3874 {
3875 /* PR 290:
3876 The Intel C compiler generates SHT_IA_64_UNWIND with
3877 SHF_LINK_ORDER. But it doesn't set the sh_link or
3878 sh_info fields. Hence we could get the situation
3879 where s is NULL. */
3880 const struct elf_backend_data *bed
3881 = get_elf_backend_data (abfd);
3882 if (bed->link_order_error_handler)
3883 bed->link_order_error_handler
3884 /* xgettext:c-format */
3885 (_("%pB: warning: sh_link not set for section `%pA'"),
3886 abfd, sec);
3887 }
3888 }
3889
3890 switch (d->this_hdr.sh_type)
3891 {
3892 case SHT_REL:
3893 case SHT_RELA:
3894 /* A reloc section which we are treating as a normal BFD
3895 section. sh_link is the section index of the symbol
3896 table. sh_info is the section index of the section to
3897 which the relocation entries apply. We assume that an
3898 allocated reloc section uses the dynamic symbol table.
3899 FIXME: How can we be sure? */
3900 s = bfd_get_section_by_name (abfd, ".dynsym");
3901 if (s != NULL)
3902 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3903
3904 s = elf_get_reloc_section (sec);
3905 if (s != NULL)
3906 {
3907 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3908 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3909 }
3910 break;
3911
3912 case SHT_STRTAB:
3913 /* We assume that a section named .stab*str is a stabs
3914 string section. We look for a section with the same name
3915 but without the trailing ``str'', and set its sh_link
3916 field to point to this section. */
3917 if (CONST_STRNEQ (sec->name, ".stab")
3918 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3919 {
3920 size_t len;
3921 char *alc;
3922
3923 len = strlen (sec->name);
3924 alc = (char *) bfd_malloc (len - 2);
3925 if (alc == NULL)
3926 return FALSE;
3927 memcpy (alc, sec->name, len - 3);
3928 alc[len - 3] = '\0';
3929 s = bfd_get_section_by_name (abfd, alc);
3930 free (alc);
3931 if (s != NULL)
3932 {
3933 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3934
3935 /* This is a .stab section. */
3936 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3937 elf_section_data (s)->this_hdr.sh_entsize
3938 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3939 }
3940 }
3941 break;
3942
3943 case SHT_DYNAMIC:
3944 case SHT_DYNSYM:
3945 case SHT_GNU_verneed:
3946 case SHT_GNU_verdef:
3947 /* sh_link is the section header index of the string table
3948 used for the dynamic entries, or the symbol table, or the
3949 version strings. */
3950 s = bfd_get_section_by_name (abfd, ".dynstr");
3951 if (s != NULL)
3952 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3953 break;
3954
3955 case SHT_GNU_LIBLIST:
3956 /* sh_link is the section header index of the prelink library
3957 list used for the dynamic entries, or the symbol table, or
3958 the version strings. */
3959 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3960 ? ".dynstr" : ".gnu.libstr");
3961 if (s != NULL)
3962 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3963 break;
3964
3965 case SHT_HASH:
3966 case SHT_GNU_HASH:
3967 case SHT_GNU_versym:
3968 /* sh_link is the section header index of the symbol table
3969 this hash table or version table is for. */
3970 s = bfd_get_section_by_name (abfd, ".dynsym");
3971 if (s != NULL)
3972 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3973 break;
3974
3975 case SHT_GROUP:
3976 d->this_hdr.sh_link = elf_onesymtab (abfd);
3977 }
3978 }
3979
3980 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3981 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3982 debug section name from .debug_* to .zdebug_* if needed. */
3983
3984 return TRUE;
3985 }
3986
3987 static bfd_boolean
3988 sym_is_global (bfd *abfd, asymbol *sym)
3989 {
3990 /* If the backend has a special mapping, use it. */
3991 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3992 if (bed->elf_backend_sym_is_global)
3993 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3994
3995 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3996 || bfd_is_und_section (bfd_get_section (sym))
3997 || bfd_is_com_section (bfd_get_section (sym)));
3998 }
3999
4000 /* Filter global symbols of ABFD to include in the import library. All
4001 SYMCOUNT symbols of ABFD can be examined from their pointers in
4002 SYMS. Pointers of symbols to keep should be stored contiguously at
4003 the beginning of that array.
4004
4005 Returns the number of symbols to keep. */
4006
4007 unsigned int
4008 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4009 asymbol **syms, long symcount)
4010 {
4011 long src_count, dst_count = 0;
4012
4013 for (src_count = 0; src_count < symcount; src_count++)
4014 {
4015 asymbol *sym = syms[src_count];
4016 char *name = (char *) bfd_asymbol_name (sym);
4017 struct bfd_link_hash_entry *h;
4018
4019 if (!sym_is_global (abfd, sym))
4020 continue;
4021
4022 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4023 if (h == NULL)
4024 continue;
4025 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4026 continue;
4027 if (h->linker_def || h->ldscript_def)
4028 continue;
4029
4030 syms[dst_count++] = sym;
4031 }
4032
4033 syms[dst_count] = NULL;
4034
4035 return dst_count;
4036 }
4037
4038 /* Don't output section symbols for sections that are not going to be
4039 output, that are duplicates or there is no BFD section. */
4040
4041 static bfd_boolean
4042 ignore_section_sym (bfd *abfd, asymbol *sym)
4043 {
4044 elf_symbol_type *type_ptr;
4045
4046 if (sym == NULL)
4047 return FALSE;
4048
4049 if ((sym->flags & BSF_SECTION_SYM) == 0)
4050 return FALSE;
4051
4052 if (sym->section == NULL)
4053 return TRUE;
4054
4055 type_ptr = elf_symbol_from (abfd, sym);
4056 return ((type_ptr != NULL
4057 && type_ptr->internal_elf_sym.st_shndx != 0
4058 && bfd_is_abs_section (sym->section))
4059 || !(sym->section->owner == abfd
4060 || (sym->section->output_section != NULL
4061 && sym->section->output_section->owner == abfd
4062 && sym->section->output_offset == 0)
4063 || bfd_is_abs_section (sym->section)));
4064 }
4065
4066 /* Map symbol from it's internal number to the external number, moving
4067 all local symbols to be at the head of the list. */
4068
4069 static bfd_boolean
4070 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4071 {
4072 unsigned int symcount = bfd_get_symcount (abfd);
4073 asymbol **syms = bfd_get_outsymbols (abfd);
4074 asymbol **sect_syms;
4075 unsigned int num_locals = 0;
4076 unsigned int num_globals = 0;
4077 unsigned int num_locals2 = 0;
4078 unsigned int num_globals2 = 0;
4079 unsigned int max_index = 0;
4080 unsigned int idx;
4081 asection *asect;
4082 asymbol **new_syms;
4083
4084 #ifdef DEBUG
4085 fprintf (stderr, "elf_map_symbols\n");
4086 fflush (stderr);
4087 #endif
4088
4089 for (asect = abfd->sections; asect; asect = asect->next)
4090 {
4091 if (max_index < asect->index)
4092 max_index = asect->index;
4093 }
4094
4095 max_index++;
4096 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4097 if (sect_syms == NULL)
4098 return FALSE;
4099 elf_section_syms (abfd) = sect_syms;
4100 elf_num_section_syms (abfd) = max_index;
4101
4102 /* Init sect_syms entries for any section symbols we have already
4103 decided to output. */
4104 for (idx = 0; idx < symcount; idx++)
4105 {
4106 asymbol *sym = syms[idx];
4107
4108 if ((sym->flags & BSF_SECTION_SYM) != 0
4109 && sym->value == 0
4110 && !ignore_section_sym (abfd, sym)
4111 && !bfd_is_abs_section (sym->section))
4112 {
4113 asection *sec = sym->section;
4114
4115 if (sec->owner != abfd)
4116 sec = sec->output_section;
4117
4118 sect_syms[sec->index] = syms[idx];
4119 }
4120 }
4121
4122 /* Classify all of the symbols. */
4123 for (idx = 0; idx < symcount; idx++)
4124 {
4125 if (sym_is_global (abfd, syms[idx]))
4126 num_globals++;
4127 else if (!ignore_section_sym (abfd, syms[idx]))
4128 num_locals++;
4129 }
4130
4131 /* We will be adding a section symbol for each normal BFD section. Most
4132 sections will already have a section symbol in outsymbols, but
4133 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4134 at least in that case. */
4135 for (asect = abfd->sections; asect; asect = asect->next)
4136 {
4137 if (sect_syms[asect->index] == NULL)
4138 {
4139 if (!sym_is_global (abfd, asect->symbol))
4140 num_locals++;
4141 else
4142 num_globals++;
4143 }
4144 }
4145
4146 /* Now sort the symbols so the local symbols are first. */
4147 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4148 sizeof (asymbol *));
4149
4150 if (new_syms == NULL)
4151 return FALSE;
4152
4153 for (idx = 0; idx < symcount; idx++)
4154 {
4155 asymbol *sym = syms[idx];
4156 unsigned int i;
4157
4158 if (sym_is_global (abfd, sym))
4159 i = num_locals + num_globals2++;
4160 else if (!ignore_section_sym (abfd, sym))
4161 i = num_locals2++;
4162 else
4163 continue;
4164 new_syms[i] = sym;
4165 sym->udata.i = i + 1;
4166 }
4167 for (asect = abfd->sections; asect; asect = asect->next)
4168 {
4169 if (sect_syms[asect->index] == NULL)
4170 {
4171 asymbol *sym = asect->symbol;
4172 unsigned int i;
4173
4174 sect_syms[asect->index] = sym;
4175 if (!sym_is_global (abfd, sym))
4176 i = num_locals2++;
4177 else
4178 i = num_locals + num_globals2++;
4179 new_syms[i] = sym;
4180 sym->udata.i = i + 1;
4181 }
4182 }
4183
4184 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4185
4186 *pnum_locals = num_locals;
4187 return TRUE;
4188 }
4189
4190 /* Align to the maximum file alignment that could be required for any
4191 ELF data structure. */
4192
4193 static inline file_ptr
4194 align_file_position (file_ptr off, int align)
4195 {
4196 return (off + align - 1) & ~(align - 1);
4197 }
4198
4199 /* Assign a file position to a section, optionally aligning to the
4200 required section alignment. */
4201
4202 file_ptr
4203 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4204 file_ptr offset,
4205 bfd_boolean align)
4206 {
4207 if (align && i_shdrp->sh_addralign > 1)
4208 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4209 i_shdrp->sh_offset = offset;
4210 if (i_shdrp->bfd_section != NULL)
4211 i_shdrp->bfd_section->filepos = offset;
4212 if (i_shdrp->sh_type != SHT_NOBITS)
4213 offset += i_shdrp->sh_size;
4214 return offset;
4215 }
4216
4217 /* Compute the file positions we are going to put the sections at, and
4218 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4219 is not NULL, this is being called by the ELF backend linker. */
4220
4221 bfd_boolean
4222 _bfd_elf_compute_section_file_positions (bfd *abfd,
4223 struct bfd_link_info *link_info)
4224 {
4225 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4226 struct fake_section_arg fsargs;
4227 bfd_boolean failed;
4228 struct elf_strtab_hash *strtab = NULL;
4229 Elf_Internal_Shdr *shstrtab_hdr;
4230 bfd_boolean need_symtab;
4231
4232 if (abfd->output_has_begun)
4233 return TRUE;
4234
4235 /* Do any elf backend specific processing first. */
4236 if (bed->elf_backend_begin_write_processing)
4237 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4238
4239 if (! prep_headers (abfd))
4240 return FALSE;
4241
4242 /* Post process the headers if necessary. */
4243 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4244
4245 fsargs.failed = FALSE;
4246 fsargs.link_info = link_info;
4247 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4248 if (fsargs.failed)
4249 return FALSE;
4250
4251 if (!assign_section_numbers (abfd, link_info))
4252 return FALSE;
4253
4254 /* The backend linker builds symbol table information itself. */
4255 need_symtab = (link_info == NULL
4256 && (bfd_get_symcount (abfd) > 0
4257 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4258 == HAS_RELOC)));
4259 if (need_symtab)
4260 {
4261 /* Non-zero if doing a relocatable link. */
4262 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4263
4264 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4265 return FALSE;
4266 }
4267
4268 failed = FALSE;
4269 if (link_info == NULL)
4270 {
4271 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4272 if (failed)
4273 return FALSE;
4274 }
4275
4276 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4277 /* sh_name was set in prep_headers. */
4278 shstrtab_hdr->sh_type = SHT_STRTAB;
4279 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4280 shstrtab_hdr->sh_addr = 0;
4281 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4282 shstrtab_hdr->sh_entsize = 0;
4283 shstrtab_hdr->sh_link = 0;
4284 shstrtab_hdr->sh_info = 0;
4285 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4286 shstrtab_hdr->sh_addralign = 1;
4287
4288 if (!assign_file_positions_except_relocs (abfd, link_info))
4289 return FALSE;
4290
4291 if (need_symtab)
4292 {
4293 file_ptr off;
4294 Elf_Internal_Shdr *hdr;
4295
4296 off = elf_next_file_pos (abfd);
4297
4298 hdr = & elf_symtab_hdr (abfd);
4299 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4300
4301 if (elf_symtab_shndx_list (abfd) != NULL)
4302 {
4303 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4304 if (hdr->sh_size != 0)
4305 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4306 /* FIXME: What about other symtab_shndx sections in the list ? */
4307 }
4308
4309 hdr = &elf_tdata (abfd)->strtab_hdr;
4310 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4311
4312 elf_next_file_pos (abfd) = off;
4313
4314 /* Now that we know where the .strtab section goes, write it
4315 out. */
4316 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4317 || ! _bfd_elf_strtab_emit (abfd, strtab))
4318 return FALSE;
4319 _bfd_elf_strtab_free (strtab);
4320 }
4321
4322 abfd->output_has_begun = TRUE;
4323
4324 return TRUE;
4325 }
4326
4327 /* Make an initial estimate of the size of the program header. If we
4328 get the number wrong here, we'll redo section placement. */
4329
4330 static bfd_size_type
4331 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4332 {
4333 size_t segs;
4334 asection *s;
4335 const struct elf_backend_data *bed;
4336
4337 /* Assume we will need exactly two PT_LOAD segments: one for text
4338 and one for data. */
4339 segs = 2;
4340
4341 s = bfd_get_section_by_name (abfd, ".interp");
4342 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4343 {
4344 /* If we have a loadable interpreter section, we need a
4345 PT_INTERP segment. In this case, assume we also need a
4346 PT_PHDR segment, although that may not be true for all
4347 targets. */
4348 segs += 2;
4349 }
4350
4351 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4352 {
4353 /* We need a PT_DYNAMIC segment. */
4354 ++segs;
4355 }
4356
4357 if (info != NULL && info->relro)
4358 {
4359 /* We need a PT_GNU_RELRO segment. */
4360 ++segs;
4361 }
4362
4363 if (elf_eh_frame_hdr (abfd))
4364 {
4365 /* We need a PT_GNU_EH_FRAME segment. */
4366 ++segs;
4367 }
4368
4369 if (elf_stack_flags (abfd))
4370 {
4371 /* We need a PT_GNU_STACK segment. */
4372 ++segs;
4373 }
4374
4375 s = bfd_get_section_by_name (abfd,
4376 NOTE_GNU_PROPERTY_SECTION_NAME);
4377 if (s != NULL && s->size != 0)
4378 {
4379 /* We need a PT_GNU_PROPERTY segment. */
4380 ++segs;
4381 }
4382
4383 for (s = abfd->sections; s != NULL; s = s->next)
4384 {
4385 if ((s->flags & SEC_LOAD) != 0
4386 && elf_section_type (s) == SHT_NOTE)
4387 {
4388 unsigned int alignment_power;
4389 /* We need a PT_NOTE segment. */
4390 ++segs;
4391 /* Try to create just one PT_NOTE segment for all adjacent
4392 loadable SHT_NOTE sections. gABI requires that within a
4393 PT_NOTE segment (and also inside of each SHT_NOTE section)
4394 each note should have the same alignment. So we check
4395 whether the sections are correctly aligned. */
4396 alignment_power = s->alignment_power;
4397 while (s->next != NULL
4398 && s->next->alignment_power == alignment_power
4399 && (s->next->flags & SEC_LOAD) != 0
4400 && elf_section_type (s->next) == SHT_NOTE)
4401 s = s->next;
4402 }
4403 }
4404
4405 for (s = abfd->sections; s != NULL; s = s->next)
4406 {
4407 if (s->flags & SEC_THREAD_LOCAL)
4408 {
4409 /* We need a PT_TLS segment. */
4410 ++segs;
4411 break;
4412 }
4413 }
4414
4415 bed = get_elf_backend_data (abfd);
4416
4417 if ((abfd->flags & D_PAGED) != 0)
4418 {
4419 /* Add a PT_GNU_MBIND segment for each mbind section. */
4420 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4421 for (s = abfd->sections; s != NULL; s = s->next)
4422 if (elf_section_flags (s) & SHF_GNU_MBIND)
4423 {
4424 if (elf_section_data (s)->this_hdr.sh_info
4425 > PT_GNU_MBIND_NUM)
4426 {
4427 _bfd_error_handler
4428 /* xgettext:c-format */
4429 (_("%pB: GNU_MBIN section `%pA' has invalid sh_info field: %d"),
4430 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4431 continue;
4432 }
4433 /* Align mbind section to page size. */
4434 if (s->alignment_power < page_align_power)
4435 s->alignment_power = page_align_power;
4436 segs ++;
4437 }
4438 }
4439
4440 /* Let the backend count up any program headers it might need. */
4441 if (bed->elf_backend_additional_program_headers)
4442 {
4443 int a;
4444
4445 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4446 if (a == -1)
4447 abort ();
4448 segs += a;
4449 }
4450
4451 return segs * bed->s->sizeof_phdr;
4452 }
4453
4454 /* Find the segment that contains the output_section of section. */
4455
4456 Elf_Internal_Phdr *
4457 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4458 {
4459 struct elf_segment_map *m;
4460 Elf_Internal_Phdr *p;
4461
4462 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4463 m != NULL;
4464 m = m->next, p++)
4465 {
4466 int i;
4467
4468 for (i = m->count - 1; i >= 0; i--)
4469 if (m->sections[i] == section)
4470 return p;
4471 }
4472
4473 return NULL;
4474 }
4475
4476 /* Create a mapping from a set of sections to a program segment. */
4477
4478 static struct elf_segment_map *
4479 make_mapping (bfd *abfd,
4480 asection **sections,
4481 unsigned int from,
4482 unsigned int to,
4483 bfd_boolean phdr)
4484 {
4485 struct elf_segment_map *m;
4486 unsigned int i;
4487 asection **hdrpp;
4488 bfd_size_type amt;
4489
4490 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4491 amt += (to - from) * sizeof (asection *);
4492 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4493 if (m == NULL)
4494 return NULL;
4495 m->next = NULL;
4496 m->p_type = PT_LOAD;
4497 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4498 m->sections[i - from] = *hdrpp;
4499 m->count = to - from;
4500
4501 if (from == 0 && phdr)
4502 {
4503 /* Include the headers in the first PT_LOAD segment. */
4504 m->includes_filehdr = 1;
4505 m->includes_phdrs = 1;
4506 }
4507
4508 return m;
4509 }
4510
4511 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4512 on failure. */
4513
4514 struct elf_segment_map *
4515 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4516 {
4517 struct elf_segment_map *m;
4518
4519 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4520 sizeof (struct elf_segment_map));
4521 if (m == NULL)
4522 return NULL;
4523 m->next = NULL;
4524 m->p_type = PT_DYNAMIC;
4525 m->count = 1;
4526 m->sections[0] = dynsec;
4527
4528 return m;
4529 }
4530
4531 /* Possibly add or remove segments from the segment map. */
4532
4533 static bfd_boolean
4534 elf_modify_segment_map (bfd *abfd,
4535 struct bfd_link_info *info,
4536 bfd_boolean remove_empty_load)
4537 {
4538 struct elf_segment_map **m;
4539 const struct elf_backend_data *bed;
4540
4541 /* The placement algorithm assumes that non allocated sections are
4542 not in PT_LOAD segments. We ensure this here by removing such
4543 sections from the segment map. We also remove excluded
4544 sections. Finally, any PT_LOAD segment without sections is
4545 removed. */
4546 m = &elf_seg_map (abfd);
4547 while (*m)
4548 {
4549 unsigned int i, new_count;
4550
4551 for (new_count = 0, i = 0; i < (*m)->count; i++)
4552 {
4553 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4554 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4555 || (*m)->p_type != PT_LOAD))
4556 {
4557 (*m)->sections[new_count] = (*m)->sections[i];
4558 new_count++;
4559 }
4560 }
4561 (*m)->count = new_count;
4562
4563 if (remove_empty_load
4564 && (*m)->p_type == PT_LOAD
4565 && (*m)->count == 0
4566 && !(*m)->includes_phdrs)
4567 *m = (*m)->next;
4568 else
4569 m = &(*m)->next;
4570 }
4571
4572 bed = get_elf_backend_data (abfd);
4573 if (bed->elf_backend_modify_segment_map != NULL)
4574 {
4575 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4576 return FALSE;
4577 }
4578
4579 return TRUE;
4580 }
4581
4582 #define IS_TBSS(s) \
4583 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4584
4585 /* Set up a mapping from BFD sections to program segments. */
4586
4587 bfd_boolean
4588 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4589 {
4590 unsigned int count;
4591 struct elf_segment_map *m;
4592 asection **sections = NULL;
4593 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4594 bfd_boolean no_user_phdrs;
4595
4596 no_user_phdrs = elf_seg_map (abfd) == NULL;
4597
4598 if (info != NULL)
4599 info->user_phdrs = !no_user_phdrs;
4600
4601 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4602 {
4603 asection *s;
4604 unsigned int i;
4605 struct elf_segment_map *mfirst;
4606 struct elf_segment_map **pm;
4607 asection *last_hdr;
4608 bfd_vma last_size;
4609 unsigned int hdr_index;
4610 bfd_vma maxpagesize;
4611 asection **hdrpp;
4612 bfd_boolean phdr_in_segment;
4613 bfd_boolean writable;
4614 bfd_boolean executable;
4615 int tls_count = 0;
4616 asection *first_tls = NULL;
4617 asection *first_mbind = NULL;
4618 asection *dynsec, *eh_frame_hdr;
4619 bfd_size_type amt;
4620 bfd_vma addr_mask, wrap_to = 0;
4621 bfd_size_type phdr_size;
4622
4623 /* Select the allocated sections, and sort them. */
4624
4625 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4626 sizeof (asection *));
4627 if (sections == NULL)
4628 goto error_return;
4629
4630 /* Calculate top address, avoiding undefined behaviour of shift
4631 left operator when shift count is equal to size of type
4632 being shifted. */
4633 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4634 addr_mask = (addr_mask << 1) + 1;
4635
4636 i = 0;
4637 for (s = abfd->sections; s != NULL; s = s->next)
4638 {
4639 if ((s->flags & SEC_ALLOC) != 0)
4640 {
4641 sections[i] = s;
4642 ++i;
4643 /* A wrapping section potentially clashes with header. */
4644 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4645 wrap_to = (s->lma + s->size) & addr_mask;
4646 }
4647 }
4648 BFD_ASSERT (i <= bfd_count_sections (abfd));
4649 count = i;
4650
4651 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4652
4653 phdr_size = elf_program_header_size (abfd);
4654 if (phdr_size == (bfd_size_type) -1)
4655 phdr_size = get_program_header_size (abfd, info);
4656 phdr_size += bed->s->sizeof_ehdr;
4657 maxpagesize = bed->maxpagesize;
4658 if (maxpagesize == 0)
4659 maxpagesize = 1;
4660 phdr_in_segment = info != NULL && info->load_phdrs;
4661 if (count != 0
4662 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4663 >= (phdr_size & (maxpagesize - 1))))
4664 /* For compatibility with old scripts that may not be using
4665 SIZEOF_HEADERS, add headers when it looks like space has
4666 been left for them. */
4667 phdr_in_segment = TRUE;
4668
4669 /* Build the mapping. */
4670 mfirst = NULL;
4671 pm = &mfirst;
4672
4673 /* If we have a .interp section, then create a PT_PHDR segment for
4674 the program headers and a PT_INTERP segment for the .interp
4675 section. */
4676 s = bfd_get_section_by_name (abfd, ".interp");
4677 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4678 {
4679 amt = sizeof (struct elf_segment_map);
4680 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4681 if (m == NULL)
4682 goto error_return;
4683 m->next = NULL;
4684 m->p_type = PT_PHDR;
4685 m->p_flags = PF_R;
4686 m->p_flags_valid = 1;
4687 m->includes_phdrs = 1;
4688 phdr_in_segment = TRUE;
4689 *pm = m;
4690 pm = &m->next;
4691
4692 amt = sizeof (struct elf_segment_map);
4693 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4694 if (m == NULL)
4695 goto error_return;
4696 m->next = NULL;
4697 m->p_type = PT_INTERP;
4698 m->count = 1;
4699 m->sections[0] = s;
4700
4701 *pm = m;
4702 pm = &m->next;
4703 }
4704
4705 /* Look through the sections. We put sections in the same program
4706 segment when the start of the second section can be placed within
4707 a few bytes of the end of the first section. */
4708 last_hdr = NULL;
4709 last_size = 0;
4710 hdr_index = 0;
4711 writable = FALSE;
4712 executable = FALSE;
4713 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4714 if (dynsec != NULL
4715 && (dynsec->flags & SEC_LOAD) == 0)
4716 dynsec = NULL;
4717
4718 if ((abfd->flags & D_PAGED) == 0)
4719 phdr_in_segment = FALSE;
4720
4721 /* Deal with -Ttext or something similar such that the first section
4722 is not adjacent to the program headers. This is an
4723 approximation, since at this point we don't know exactly how many
4724 program headers we will need. */
4725 if (phdr_in_segment && count > 0)
4726 {
4727 bfd_vma phdr_lma;
4728 bfd_boolean separate_phdr = FALSE;
4729
4730 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4731 if (info != NULL
4732 && info->separate_code
4733 && (sections[0]->flags & SEC_CODE) != 0)
4734 {
4735 /* If data sections should be separate from code and
4736 thus not executable, and the first section is
4737 executable then put the file and program headers in
4738 their own PT_LOAD. */
4739 separate_phdr = TRUE;
4740 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4741 == (sections[0]->lma & addr_mask & -maxpagesize)))
4742 {
4743 /* The file and program headers are currently on the
4744 same page as the first section. Put them on the
4745 previous page if we can. */
4746 if (phdr_lma >= maxpagesize)
4747 phdr_lma -= maxpagesize;
4748 else
4749 separate_phdr = FALSE;
4750 }
4751 }
4752 if ((sections[0]->lma & addr_mask) < phdr_lma
4753 || (sections[0]->lma & addr_mask) < phdr_size)
4754 /* If file and program headers would be placed at the end
4755 of memory then it's probably better to omit them. */
4756 phdr_in_segment = FALSE;
4757 else if (phdr_lma < wrap_to)
4758 /* If a section wraps around to where we'll be placing
4759 file and program headers, then the headers will be
4760 overwritten. */
4761 phdr_in_segment = FALSE;
4762 else if (separate_phdr)
4763 {
4764 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4765 if (m == NULL)
4766 goto error_return;
4767 m->p_paddr = phdr_lma;
4768 m->p_vaddr_offset
4769 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4770 m->p_paddr_valid = 1;
4771 *pm = m;
4772 pm = &m->next;
4773 phdr_in_segment = FALSE;
4774 }
4775 }
4776
4777 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4778 {
4779 asection *hdr;
4780 bfd_boolean new_segment;
4781
4782 hdr = *hdrpp;
4783
4784 /* See if this section and the last one will fit in the same
4785 segment. */
4786
4787 if (last_hdr == NULL)
4788 {
4789 /* If we don't have a segment yet, then we don't need a new
4790 one (we build the last one after this loop). */
4791 new_segment = FALSE;
4792 }
4793 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4794 {
4795 /* If this section has a different relation between the
4796 virtual address and the load address, then we need a new
4797 segment. */
4798 new_segment = TRUE;
4799 }
4800 else if (hdr->lma < last_hdr->lma + last_size
4801 || last_hdr->lma + last_size < last_hdr->lma)
4802 {
4803 /* If this section has a load address that makes it overlap
4804 the previous section, then we need a new segment. */
4805 new_segment = TRUE;
4806 }
4807 else if ((abfd->flags & D_PAGED) != 0
4808 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4809 == (hdr->lma & -maxpagesize)))
4810 {
4811 /* If we are demand paged then we can't map two disk
4812 pages onto the same memory page. */
4813 new_segment = FALSE;
4814 }
4815 /* In the next test we have to be careful when last_hdr->lma is close
4816 to the end of the address space. If the aligned address wraps
4817 around to the start of the address space, then there are no more
4818 pages left in memory and it is OK to assume that the current
4819 section can be included in the current segment. */
4820 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4821 + maxpagesize > last_hdr->lma)
4822 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4823 + maxpagesize <= hdr->lma))
4824 {
4825 /* If putting this section in this segment would force us to
4826 skip a page in the segment, then we need a new segment. */
4827 new_segment = TRUE;
4828 }
4829 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4830 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4831 {
4832 /* We don't want to put a loaded section after a
4833 nonloaded (ie. bss style) section in the same segment
4834 as that will force the non-loaded section to be loaded.
4835 Consider .tbss sections as loaded for this purpose. */
4836 new_segment = TRUE;
4837 }
4838 else if ((abfd->flags & D_PAGED) == 0)
4839 {
4840 /* If the file is not demand paged, which means that we
4841 don't require the sections to be correctly aligned in the
4842 file, then there is no other reason for a new segment. */
4843 new_segment = FALSE;
4844 }
4845 else if (info != NULL
4846 && info->separate_code
4847 && executable != ((hdr->flags & SEC_CODE) != 0))
4848 {
4849 new_segment = TRUE;
4850 }
4851 else if (! writable
4852 && (hdr->flags & SEC_READONLY) == 0)
4853 {
4854 /* We don't want to put a writable section in a read only
4855 segment. */
4856 new_segment = TRUE;
4857 }
4858 else
4859 {
4860 /* Otherwise, we can use the same segment. */
4861 new_segment = FALSE;
4862 }
4863
4864 /* Allow interested parties a chance to override our decision. */
4865 if (last_hdr != NULL
4866 && info != NULL
4867 && info->callbacks->override_segment_assignment != NULL)
4868 new_segment
4869 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4870 last_hdr,
4871 new_segment);
4872
4873 if (! new_segment)
4874 {
4875 if ((hdr->flags & SEC_READONLY) == 0)
4876 writable = TRUE;
4877 if ((hdr->flags & SEC_CODE) != 0)
4878 executable = TRUE;
4879 last_hdr = hdr;
4880 /* .tbss sections effectively have zero size. */
4881 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4882 continue;
4883 }
4884
4885 /* We need a new program segment. We must create a new program
4886 header holding all the sections from hdr_index until hdr. */
4887
4888 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4889 if (m == NULL)
4890 goto error_return;
4891
4892 *pm = m;
4893 pm = &m->next;
4894
4895 if ((hdr->flags & SEC_READONLY) == 0)
4896 writable = TRUE;
4897 else
4898 writable = FALSE;
4899
4900 if ((hdr->flags & SEC_CODE) == 0)
4901 executable = FALSE;
4902 else
4903 executable = TRUE;
4904
4905 last_hdr = hdr;
4906 /* .tbss sections effectively have zero size. */
4907 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4908 hdr_index = i;
4909 phdr_in_segment = FALSE;
4910 }
4911
4912 /* Create a final PT_LOAD program segment, but not if it's just
4913 for .tbss. */
4914 if (last_hdr != NULL
4915 && (i - hdr_index != 1
4916 || !IS_TBSS (last_hdr)))
4917 {
4918 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4919 if (m == NULL)
4920 goto error_return;
4921
4922 *pm = m;
4923 pm = &m->next;
4924 }
4925
4926 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4927 if (dynsec != NULL)
4928 {
4929 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4930 if (m == NULL)
4931 goto error_return;
4932 *pm = m;
4933 pm = &m->next;
4934 }
4935
4936 /* For each batch of consecutive loadable SHT_NOTE sections,
4937 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4938 because if we link together nonloadable .note sections and
4939 loadable .note sections, we will generate two .note sections
4940 in the output file. */
4941 for (s = abfd->sections; s != NULL; s = s->next)
4942 {
4943 if ((s->flags & SEC_LOAD) != 0
4944 && elf_section_type (s) == SHT_NOTE)
4945 {
4946 asection *s2;
4947 unsigned int alignment_power = s->alignment_power;
4948
4949 count = 1;
4950 for (s2 = s; s2->next != NULL; s2 = s2->next)
4951 {
4952 if (s2->next->alignment_power == alignment_power
4953 && (s2->next->flags & SEC_LOAD) != 0
4954 && elf_section_type (s2->next) == SHT_NOTE
4955 && align_power (s2->lma + s2->size,
4956 alignment_power)
4957 == s2->next->lma)
4958 count++;
4959 else
4960 break;
4961 }
4962 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4963 amt += count * sizeof (asection *);
4964 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4965 if (m == NULL)
4966 goto error_return;
4967 m->next = NULL;
4968 m->p_type = PT_NOTE;
4969 m->count = count;
4970 while (count > 1)
4971 {
4972 m->sections[m->count - count--] = s;
4973 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4974 s = s->next;
4975 }
4976 m->sections[m->count - 1] = s;
4977 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4978 *pm = m;
4979 pm = &m->next;
4980 }
4981 if (s->flags & SEC_THREAD_LOCAL)
4982 {
4983 if (! tls_count)
4984 first_tls = s;
4985 tls_count++;
4986 }
4987 if (first_mbind == NULL
4988 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
4989 first_mbind = s;
4990 }
4991
4992 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4993 if (tls_count > 0)
4994 {
4995 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4996 amt += tls_count * sizeof (asection *);
4997 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4998 if (m == NULL)
4999 goto error_return;
5000 m->next = NULL;
5001 m->p_type = PT_TLS;
5002 m->count = tls_count;
5003 /* Mandated PF_R. */
5004 m->p_flags = PF_R;
5005 m->p_flags_valid = 1;
5006 s = first_tls;
5007 for (i = 0; i < (unsigned int) tls_count; ++i)
5008 {
5009 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5010 {
5011 _bfd_error_handler
5012 (_("%pB: TLS sections are not adjacent:"), abfd);
5013 s = first_tls;
5014 i = 0;
5015 while (i < (unsigned int) tls_count)
5016 {
5017 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5018 {
5019 _bfd_error_handler (_(" TLS: %pA"), s);
5020 i++;
5021 }
5022 else
5023 _bfd_error_handler (_(" non-TLS: %pA"), s);
5024 s = s->next;
5025 }
5026 bfd_set_error (bfd_error_bad_value);
5027 goto error_return;
5028 }
5029 m->sections[i] = s;
5030 s = s->next;
5031 }
5032
5033 *pm = m;
5034 pm = &m->next;
5035 }
5036
5037 if (first_mbind && (abfd->flags & D_PAGED) != 0)
5038 for (s = first_mbind; s != NULL; s = s->next)
5039 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5040 && (elf_section_data (s)->this_hdr.sh_info
5041 <= PT_GNU_MBIND_NUM))
5042 {
5043 /* Mandated PF_R. */
5044 unsigned long p_flags = PF_R;
5045 if ((s->flags & SEC_READONLY) == 0)
5046 p_flags |= PF_W;
5047 if ((s->flags & SEC_CODE) != 0)
5048 p_flags |= PF_X;
5049
5050 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5051 m = bfd_zalloc (abfd, amt);
5052 if (m == NULL)
5053 goto error_return;
5054 m->next = NULL;
5055 m->p_type = (PT_GNU_MBIND_LO
5056 + elf_section_data (s)->this_hdr.sh_info);
5057 m->count = 1;
5058 m->p_flags_valid = 1;
5059 m->sections[0] = s;
5060 m->p_flags = p_flags;
5061
5062 *pm = m;
5063 pm = &m->next;
5064 }
5065
5066 s = bfd_get_section_by_name (abfd,
5067 NOTE_GNU_PROPERTY_SECTION_NAME);
5068 if (s != NULL && s->size != 0)
5069 {
5070 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5071 m = bfd_zalloc (abfd, amt);
5072 if (m == NULL)
5073 goto error_return;
5074 m->next = NULL;
5075 m->p_type = PT_GNU_PROPERTY;
5076 m->count = 1;
5077 m->p_flags_valid = 1;
5078 m->sections[0] = s;
5079 m->p_flags = PF_R;
5080 *pm = m;
5081 pm = &m->next;
5082 }
5083
5084 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5085 segment. */
5086 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5087 if (eh_frame_hdr != NULL
5088 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5089 {
5090 amt = sizeof (struct elf_segment_map);
5091 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5092 if (m == NULL)
5093 goto error_return;
5094 m->next = NULL;
5095 m->p_type = PT_GNU_EH_FRAME;
5096 m->count = 1;
5097 m->sections[0] = eh_frame_hdr->output_section;
5098
5099 *pm = m;
5100 pm = &m->next;
5101 }
5102
5103 if (elf_stack_flags (abfd))
5104 {
5105 amt = sizeof (struct elf_segment_map);
5106 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5107 if (m == NULL)
5108 goto error_return;
5109 m->next = NULL;
5110 m->p_type = PT_GNU_STACK;
5111 m->p_flags = elf_stack_flags (abfd);
5112 m->p_align = bed->stack_align;
5113 m->p_flags_valid = 1;
5114 m->p_align_valid = m->p_align != 0;
5115 if (info->stacksize > 0)
5116 {
5117 m->p_size = info->stacksize;
5118 m->p_size_valid = 1;
5119 }
5120
5121 *pm = m;
5122 pm = &m->next;
5123 }
5124
5125 if (info != NULL && info->relro)
5126 {
5127 for (m = mfirst; m != NULL; m = m->next)
5128 {
5129 if (m->p_type == PT_LOAD
5130 && m->count != 0
5131 && m->sections[0]->vma >= info->relro_start
5132 && m->sections[0]->vma < info->relro_end)
5133 {
5134 i = m->count;
5135 while (--i != (unsigned) -1)
5136 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5137 == (SEC_LOAD | SEC_HAS_CONTENTS))
5138 break;
5139
5140 if (i != (unsigned) -1)
5141 break;
5142 }
5143 }
5144
5145 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5146 if (m != NULL)
5147 {
5148 amt = sizeof (struct elf_segment_map);
5149 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5150 if (m == NULL)
5151 goto error_return;
5152 m->next = NULL;
5153 m->p_type = PT_GNU_RELRO;
5154 *pm = m;
5155 pm = &m->next;
5156 }
5157 }
5158
5159 free (sections);
5160 elf_seg_map (abfd) = mfirst;
5161 }
5162
5163 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5164 return FALSE;
5165
5166 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5167 ++count;
5168 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5169
5170 return TRUE;
5171
5172 error_return:
5173 if (sections != NULL)
5174 free (sections);
5175 return FALSE;
5176 }
5177
5178 /* Sort sections by address. */
5179
5180 static int
5181 elf_sort_sections (const void *arg1, const void *arg2)
5182 {
5183 const asection *sec1 = *(const asection **) arg1;
5184 const asection *sec2 = *(const asection **) arg2;
5185 bfd_size_type size1, size2;
5186
5187 /* Sort by LMA first, since this is the address used to
5188 place the section into a segment. */
5189 if (sec1->lma < sec2->lma)
5190 return -1;
5191 else if (sec1->lma > sec2->lma)
5192 return 1;
5193
5194 /* Then sort by VMA. Normally the LMA and the VMA will be
5195 the same, and this will do nothing. */
5196 if (sec1->vma < sec2->vma)
5197 return -1;
5198 else if (sec1->vma > sec2->vma)
5199 return 1;
5200
5201 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5202
5203 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5204
5205 if (TOEND (sec1))
5206 {
5207 if (TOEND (sec2))
5208 {
5209 /* If the indices are the same, do not return 0
5210 here, but continue to try the next comparison. */
5211 if (sec1->target_index - sec2->target_index != 0)
5212 return sec1->target_index - sec2->target_index;
5213 }
5214 else
5215 return 1;
5216 }
5217 else if (TOEND (sec2))
5218 return -1;
5219
5220 #undef TOEND
5221
5222 /* Sort by size, to put zero sized sections
5223 before others at the same address. */
5224
5225 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5226 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5227
5228 if (size1 < size2)
5229 return -1;
5230 if (size1 > size2)
5231 return 1;
5232
5233 return sec1->target_index - sec2->target_index;
5234 }
5235
5236 /* Ian Lance Taylor writes:
5237
5238 We shouldn't be using % with a negative signed number. That's just
5239 not good. We have to make sure either that the number is not
5240 negative, or that the number has an unsigned type. When the types
5241 are all the same size they wind up as unsigned. When file_ptr is a
5242 larger signed type, the arithmetic winds up as signed long long,
5243 which is wrong.
5244
5245 What we're trying to say here is something like ``increase OFF by
5246 the least amount that will cause it to be equal to the VMA modulo
5247 the page size.'' */
5248 /* In other words, something like:
5249
5250 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5251 off_offset = off % bed->maxpagesize;
5252 if (vma_offset < off_offset)
5253 adjustment = vma_offset + bed->maxpagesize - off_offset;
5254 else
5255 adjustment = vma_offset - off_offset;
5256
5257 which can be collapsed into the expression below. */
5258
5259 static file_ptr
5260 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5261 {
5262 /* PR binutils/16199: Handle an alignment of zero. */
5263 if (maxpagesize == 0)
5264 maxpagesize = 1;
5265 return ((vma - off) % maxpagesize);
5266 }
5267
5268 static void
5269 print_segment_map (const struct elf_segment_map *m)
5270 {
5271 unsigned int j;
5272 const char *pt = get_segment_type (m->p_type);
5273 char buf[32];
5274
5275 if (pt == NULL)
5276 {
5277 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5278 sprintf (buf, "LOPROC+%7.7x",
5279 (unsigned int) (m->p_type - PT_LOPROC));
5280 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5281 sprintf (buf, "LOOS+%7.7x",
5282 (unsigned int) (m->p_type - PT_LOOS));
5283 else
5284 snprintf (buf, sizeof (buf), "%8.8x",
5285 (unsigned int) m->p_type);
5286 pt = buf;
5287 }
5288 fflush (stdout);
5289 fprintf (stderr, "%s:", pt);
5290 for (j = 0; j < m->count; j++)
5291 fprintf (stderr, " %s", m->sections [j]->name);
5292 putc ('\n',stderr);
5293 fflush (stderr);
5294 }
5295
5296 static bfd_boolean
5297 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5298 {
5299 void *buf;
5300 bfd_boolean ret;
5301
5302 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5303 return FALSE;
5304 buf = bfd_zmalloc (len);
5305 if (buf == NULL)
5306 return FALSE;
5307 ret = bfd_bwrite (buf, len, abfd) == len;
5308 free (buf);
5309 return ret;
5310 }
5311
5312 /* Assign file positions to the sections based on the mapping from
5313 sections to segments. This function also sets up some fields in
5314 the file header. */
5315
5316 static bfd_boolean
5317 assign_file_positions_for_load_sections (bfd *abfd,
5318 struct bfd_link_info *link_info)
5319 {
5320 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5321 struct elf_segment_map *m;
5322 Elf_Internal_Phdr *phdrs;
5323 Elf_Internal_Phdr *p;
5324 file_ptr off;
5325 bfd_size_type maxpagesize;
5326 unsigned int pt_load_count = 0;
5327 unsigned int alloc;
5328 unsigned int i, j;
5329 bfd_vma header_pad = 0;
5330
5331 if (link_info == NULL
5332 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5333 return FALSE;
5334
5335 alloc = 0;
5336 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5337 {
5338 ++alloc;
5339 if (m->header_size)
5340 header_pad = m->header_size;
5341 }
5342
5343 if (alloc)
5344 {
5345 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5346 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5347 }
5348 else
5349 {
5350 /* PR binutils/12467. */
5351 elf_elfheader (abfd)->e_phoff = 0;
5352 elf_elfheader (abfd)->e_phentsize = 0;
5353 }
5354
5355 elf_elfheader (abfd)->e_phnum = alloc;
5356
5357 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5358 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5359 else
5360 BFD_ASSERT (elf_program_header_size (abfd)
5361 >= alloc * bed->s->sizeof_phdr);
5362
5363 if (alloc == 0)
5364 {
5365 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5366 return TRUE;
5367 }
5368
5369 /* We're writing the size in elf_program_header_size (abfd),
5370 see assign_file_positions_except_relocs, so make sure we have
5371 that amount allocated, with trailing space cleared.
5372 The variable alloc contains the computed need, while
5373 elf_program_header_size (abfd) contains the size used for the
5374 layout.
5375 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5376 where the layout is forced to according to a larger size in the
5377 last iterations for the testcase ld-elf/header. */
5378 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5379 == 0);
5380 phdrs = (Elf_Internal_Phdr *)
5381 bfd_zalloc2 (abfd,
5382 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5383 sizeof (Elf_Internal_Phdr));
5384 elf_tdata (abfd)->phdr = phdrs;
5385 if (phdrs == NULL)
5386 return FALSE;
5387
5388 maxpagesize = 1;
5389 if ((abfd->flags & D_PAGED) != 0)
5390 maxpagesize = bed->maxpagesize;
5391
5392 off = bed->s->sizeof_ehdr;
5393 off += alloc * bed->s->sizeof_phdr;
5394 if (header_pad < (bfd_vma) off)
5395 header_pad = 0;
5396 else
5397 header_pad -= off;
5398 off += header_pad;
5399
5400 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5401 m != NULL;
5402 m = m->next, p++, j++)
5403 {
5404 asection **secpp;
5405 bfd_vma off_adjust;
5406 bfd_boolean no_contents;
5407
5408 /* If elf_segment_map is not from map_sections_to_segments, the
5409 sections may not be correctly ordered. NOTE: sorting should
5410 not be done to the PT_NOTE section of a corefile, which may
5411 contain several pseudo-sections artificially created by bfd.
5412 Sorting these pseudo-sections breaks things badly. */
5413 if (m->count > 1
5414 && !(elf_elfheader (abfd)->e_type == ET_CORE
5415 && m->p_type == PT_NOTE))
5416 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5417 elf_sort_sections);
5418
5419 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5420 number of sections with contents contributing to both p_filesz
5421 and p_memsz, followed by a number of sections with no contents
5422 that just contribute to p_memsz. In this loop, OFF tracks next
5423 available file offset for PT_LOAD and PT_NOTE segments. */
5424 p->p_type = m->p_type;
5425 p->p_flags = m->p_flags;
5426
5427 if (m->count == 0)
5428 p->p_vaddr = m->p_vaddr_offset;
5429 else
5430 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5431
5432 if (m->p_paddr_valid)
5433 p->p_paddr = m->p_paddr;
5434 else if (m->count == 0)
5435 p->p_paddr = 0;
5436 else
5437 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5438
5439 if (p->p_type == PT_LOAD
5440 && (abfd->flags & D_PAGED) != 0)
5441 {
5442 /* p_align in demand paged PT_LOAD segments effectively stores
5443 the maximum page size. When copying an executable with
5444 objcopy, we set m->p_align from the input file. Use this
5445 value for maxpagesize rather than bed->maxpagesize, which
5446 may be different. Note that we use maxpagesize for PT_TLS
5447 segment alignment later in this function, so we are relying
5448 on at least one PT_LOAD segment appearing before a PT_TLS
5449 segment. */
5450 if (m->p_align_valid)
5451 maxpagesize = m->p_align;
5452
5453 p->p_align = maxpagesize;
5454 pt_load_count += 1;
5455 }
5456 else if (m->p_align_valid)
5457 p->p_align = m->p_align;
5458 else if (m->count == 0)
5459 p->p_align = 1 << bed->s->log_file_align;
5460 else
5461 p->p_align = 0;
5462
5463 no_contents = FALSE;
5464 off_adjust = 0;
5465 if (p->p_type == PT_LOAD
5466 && m->count > 0)
5467 {
5468 bfd_size_type align;
5469 unsigned int align_power = 0;
5470
5471 if (m->p_align_valid)
5472 align = p->p_align;
5473 else
5474 {
5475 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5476 {
5477 unsigned int secalign;
5478
5479 secalign = bfd_get_section_alignment (abfd, *secpp);
5480 if (secalign > align_power)
5481 align_power = secalign;
5482 }
5483 align = (bfd_size_type) 1 << align_power;
5484 if (align < maxpagesize)
5485 align = maxpagesize;
5486 }
5487
5488 for (i = 0; i < m->count; i++)
5489 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5490 /* If we aren't making room for this section, then
5491 it must be SHT_NOBITS regardless of what we've
5492 set via struct bfd_elf_special_section. */
5493 elf_section_type (m->sections[i]) = SHT_NOBITS;
5494
5495 /* Find out whether this segment contains any loadable
5496 sections. */
5497 no_contents = TRUE;
5498 for (i = 0; i < m->count; i++)
5499 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5500 {
5501 no_contents = FALSE;
5502 break;
5503 }
5504
5505 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5506
5507 /* Broken hardware and/or kernel require that files do not
5508 map the same page with different permissions on some hppa
5509 processors. */
5510 if (pt_load_count > 1
5511 && bed->no_page_alias
5512 && (off & (maxpagesize - 1)) != 0
5513 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5514 off_adjust += maxpagesize;
5515 off += off_adjust;
5516 if (no_contents)
5517 {
5518 /* We shouldn't need to align the segment on disk since
5519 the segment doesn't need file space, but the gABI
5520 arguably requires the alignment and glibc ld.so
5521 checks it. So to comply with the alignment
5522 requirement but not waste file space, we adjust
5523 p_offset for just this segment. (OFF_ADJUST is
5524 subtracted from OFF later.) This may put p_offset
5525 past the end of file, but that shouldn't matter. */
5526 }
5527 else
5528 off_adjust = 0;
5529 }
5530 /* Make sure the .dynamic section is the first section in the
5531 PT_DYNAMIC segment. */
5532 else if (p->p_type == PT_DYNAMIC
5533 && m->count > 1
5534 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5535 {
5536 _bfd_error_handler
5537 (_("%pB: The first section in the PT_DYNAMIC segment"
5538 " is not the .dynamic section"),
5539 abfd);
5540 bfd_set_error (bfd_error_bad_value);
5541 return FALSE;
5542 }
5543 /* Set the note section type to SHT_NOTE. */
5544 else if (p->p_type == PT_NOTE)
5545 for (i = 0; i < m->count; i++)
5546 elf_section_type (m->sections[i]) = SHT_NOTE;
5547
5548 p->p_offset = 0;
5549 p->p_filesz = 0;
5550 p->p_memsz = 0;
5551
5552 if (m->includes_filehdr)
5553 {
5554 if (!m->p_flags_valid)
5555 p->p_flags |= PF_R;
5556 p->p_filesz = bed->s->sizeof_ehdr;
5557 p->p_memsz = bed->s->sizeof_ehdr;
5558 if (m->count > 0)
5559 {
5560 if (p->p_vaddr < (bfd_vma) off
5561 || (!m->p_paddr_valid
5562 && p->p_paddr < (bfd_vma) off))
5563 {
5564 _bfd_error_handler
5565 (_("%pB: not enough room for program headers,"
5566 " try linking with -N"),
5567 abfd);
5568 bfd_set_error (bfd_error_bad_value);
5569 return FALSE;
5570 }
5571
5572 p->p_vaddr -= off;
5573 if (!m->p_paddr_valid)
5574 p->p_paddr -= off;
5575 }
5576 }
5577
5578 if (m->includes_phdrs)
5579 {
5580 if (!m->p_flags_valid)
5581 p->p_flags |= PF_R;
5582
5583 if (!m->includes_filehdr)
5584 {
5585 p->p_offset = bed->s->sizeof_ehdr;
5586
5587 if (m->count > 0)
5588 {
5589 p->p_vaddr -= off - p->p_offset;
5590 if (!m->p_paddr_valid)
5591 p->p_paddr -= off - p->p_offset;
5592 }
5593 }
5594
5595 p->p_filesz += alloc * bed->s->sizeof_phdr;
5596 p->p_memsz += alloc * bed->s->sizeof_phdr;
5597 if (m->count)
5598 {
5599 p->p_filesz += header_pad;
5600 p->p_memsz += header_pad;
5601 }
5602 }
5603
5604 if (p->p_type == PT_LOAD
5605 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5606 {
5607 if (!m->includes_filehdr && !m->includes_phdrs)
5608 p->p_offset = off;
5609 else
5610 {
5611 file_ptr adjust;
5612
5613 adjust = off - (p->p_offset + p->p_filesz);
5614 if (!no_contents)
5615 p->p_filesz += adjust;
5616 p->p_memsz += adjust;
5617 }
5618 }
5619
5620 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5621 maps. Set filepos for sections in PT_LOAD segments, and in
5622 core files, for sections in PT_NOTE segments.
5623 assign_file_positions_for_non_load_sections will set filepos
5624 for other sections and update p_filesz for other segments. */
5625 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5626 {
5627 asection *sec;
5628 bfd_size_type align;
5629 Elf_Internal_Shdr *this_hdr;
5630
5631 sec = *secpp;
5632 this_hdr = &elf_section_data (sec)->this_hdr;
5633 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5634
5635 if ((p->p_type == PT_LOAD
5636 || p->p_type == PT_TLS)
5637 && (this_hdr->sh_type != SHT_NOBITS
5638 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5639 && ((this_hdr->sh_flags & SHF_TLS) == 0
5640 || p->p_type == PT_TLS))))
5641 {
5642 bfd_vma p_start = p->p_paddr;
5643 bfd_vma p_end = p_start + p->p_memsz;
5644 bfd_vma s_start = sec->lma;
5645 bfd_vma adjust = s_start - p_end;
5646
5647 if (adjust != 0
5648 && (s_start < p_end
5649 || p_end < p_start))
5650 {
5651 _bfd_error_handler
5652 /* xgettext:c-format */
5653 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5654 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5655 adjust = 0;
5656 sec->lma = p_end;
5657 }
5658 p->p_memsz += adjust;
5659
5660 if (this_hdr->sh_type != SHT_NOBITS)
5661 {
5662 if (p->p_filesz + adjust < p->p_memsz)
5663 {
5664 /* We have a PROGBITS section following NOBITS ones.
5665 Allocate file space for the NOBITS section(s) and
5666 zero it. */
5667 adjust = p->p_memsz - p->p_filesz;
5668 if (!write_zeros (abfd, off, adjust))
5669 return FALSE;
5670 }
5671 off += adjust;
5672 p->p_filesz += adjust;
5673 }
5674 }
5675
5676 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5677 {
5678 /* The section at i == 0 is the one that actually contains
5679 everything. */
5680 if (i == 0)
5681 {
5682 this_hdr->sh_offset = sec->filepos = off;
5683 off += this_hdr->sh_size;
5684 p->p_filesz = this_hdr->sh_size;
5685 p->p_memsz = 0;
5686 p->p_align = 1;
5687 }
5688 else
5689 {
5690 /* The rest are fake sections that shouldn't be written. */
5691 sec->filepos = 0;
5692 sec->size = 0;
5693 sec->flags = 0;
5694 continue;
5695 }
5696 }
5697 else
5698 {
5699 if (p->p_type == PT_LOAD)
5700 {
5701 this_hdr->sh_offset = sec->filepos = off;
5702 if (this_hdr->sh_type != SHT_NOBITS)
5703 off += this_hdr->sh_size;
5704 }
5705 else if (this_hdr->sh_type == SHT_NOBITS
5706 && (this_hdr->sh_flags & SHF_TLS) != 0
5707 && this_hdr->sh_offset == 0)
5708 {
5709 /* This is a .tbss section that didn't get a PT_LOAD.
5710 (See _bfd_elf_map_sections_to_segments "Create a
5711 final PT_LOAD".) Set sh_offset to the value it
5712 would have if we had created a zero p_filesz and
5713 p_memsz PT_LOAD header for the section. This
5714 also makes the PT_TLS header have the same
5715 p_offset value. */
5716 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5717 off, align);
5718 this_hdr->sh_offset = sec->filepos = off + adjust;
5719 }
5720
5721 if (this_hdr->sh_type != SHT_NOBITS)
5722 {
5723 p->p_filesz += this_hdr->sh_size;
5724 /* A load section without SHF_ALLOC is something like
5725 a note section in a PT_NOTE segment. These take
5726 file space but are not loaded into memory. */
5727 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5728 p->p_memsz += this_hdr->sh_size;
5729 }
5730 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5731 {
5732 if (p->p_type == PT_TLS)
5733 p->p_memsz += this_hdr->sh_size;
5734
5735 /* .tbss is special. It doesn't contribute to p_memsz of
5736 normal segments. */
5737 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5738 p->p_memsz += this_hdr->sh_size;
5739 }
5740
5741 if (align > p->p_align
5742 && !m->p_align_valid
5743 && (p->p_type != PT_LOAD
5744 || (abfd->flags & D_PAGED) == 0))
5745 p->p_align = align;
5746 }
5747
5748 if (!m->p_flags_valid)
5749 {
5750 p->p_flags |= PF_R;
5751 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5752 p->p_flags |= PF_X;
5753 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5754 p->p_flags |= PF_W;
5755 }
5756 }
5757
5758 off -= off_adjust;
5759
5760 /* Check that all sections are in a PT_LOAD segment.
5761 Don't check funky gdb generated core files. */
5762 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5763 {
5764 bfd_boolean check_vma = TRUE;
5765
5766 for (i = 1; i < m->count; i++)
5767 if (m->sections[i]->vma == m->sections[i - 1]->vma
5768 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5769 ->this_hdr), p) != 0
5770 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5771 ->this_hdr), p) != 0)
5772 {
5773 /* Looks like we have overlays packed into the segment. */
5774 check_vma = FALSE;
5775 break;
5776 }
5777
5778 for (i = 0; i < m->count; i++)
5779 {
5780 Elf_Internal_Shdr *this_hdr;
5781 asection *sec;
5782
5783 sec = m->sections[i];
5784 this_hdr = &(elf_section_data(sec)->this_hdr);
5785 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5786 && !ELF_TBSS_SPECIAL (this_hdr, p))
5787 {
5788 _bfd_error_handler
5789 /* xgettext:c-format */
5790 (_("%pB: section `%pA' can't be allocated in segment %d"),
5791 abfd, sec, j);
5792 print_segment_map (m);
5793 }
5794 }
5795 }
5796 }
5797
5798 elf_next_file_pos (abfd) = off;
5799 return TRUE;
5800 }
5801
5802 /* Assign file positions for the other sections. */
5803
5804 static bfd_boolean
5805 assign_file_positions_for_non_load_sections (bfd *abfd,
5806 struct bfd_link_info *link_info)
5807 {
5808 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5809 Elf_Internal_Shdr **i_shdrpp;
5810 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5811 Elf_Internal_Phdr *phdrs;
5812 Elf_Internal_Phdr *p;
5813 struct elf_segment_map *m;
5814 struct elf_segment_map *hdrs_segment;
5815 bfd_vma filehdr_vaddr, filehdr_paddr;
5816 bfd_vma phdrs_vaddr, phdrs_paddr;
5817 file_ptr off;
5818 unsigned int count;
5819
5820 i_shdrpp = elf_elfsections (abfd);
5821 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5822 off = elf_next_file_pos (abfd);
5823 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5824 {
5825 Elf_Internal_Shdr *hdr;
5826
5827 hdr = *hdrpp;
5828 if (hdr->bfd_section != NULL
5829 && (hdr->bfd_section->filepos != 0
5830 || (hdr->sh_type == SHT_NOBITS
5831 && hdr->contents == NULL)))
5832 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5833 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5834 {
5835 if (hdr->sh_size != 0)
5836 _bfd_error_handler
5837 /* xgettext:c-format */
5838 (_("%pB: warning: allocated section `%s' not in segment"),
5839 abfd,
5840 (hdr->bfd_section == NULL
5841 ? "*unknown*"
5842 : hdr->bfd_section->name));
5843 /* We don't need to page align empty sections. */
5844 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5845 off += vma_page_aligned_bias (hdr->sh_addr, off,
5846 bed->maxpagesize);
5847 else
5848 off += vma_page_aligned_bias (hdr->sh_addr, off,
5849 hdr->sh_addralign);
5850 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5851 FALSE);
5852 }
5853 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5854 && hdr->bfd_section == NULL)
5855 || (hdr->bfd_section != NULL
5856 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5857 /* Compress DWARF debug sections. */
5858 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5859 || (elf_symtab_shndx_list (abfd) != NULL
5860 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5861 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5862 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5863 hdr->sh_offset = -1;
5864 else
5865 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5866 }
5867
5868 /* Now that we have set the section file positions, we can set up
5869 the file positions for the non PT_LOAD segments. */
5870 count = 0;
5871 filehdr_vaddr = 0;
5872 filehdr_paddr = 0;
5873 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5874 phdrs_paddr = 0;
5875 hdrs_segment = NULL;
5876 phdrs = elf_tdata (abfd)->phdr;
5877 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5878 {
5879 ++count;
5880 if (p->p_type != PT_LOAD)
5881 continue;
5882
5883 if (m->includes_filehdr)
5884 {
5885 filehdr_vaddr = p->p_vaddr;
5886 filehdr_paddr = p->p_paddr;
5887 }
5888 if (m->includes_phdrs)
5889 {
5890 phdrs_vaddr = p->p_vaddr;
5891 phdrs_paddr = p->p_paddr;
5892 if (m->includes_filehdr)
5893 {
5894 hdrs_segment = m;
5895 phdrs_vaddr += bed->s->sizeof_ehdr;
5896 phdrs_paddr += bed->s->sizeof_ehdr;
5897 }
5898 }
5899 }
5900
5901 if (hdrs_segment != NULL && link_info != NULL)
5902 {
5903 /* There is a segment that contains both the file headers and the
5904 program headers, so provide a symbol __ehdr_start pointing there.
5905 A program can use this to examine itself robustly. */
5906
5907 struct elf_link_hash_entry *hash
5908 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5909 FALSE, FALSE, TRUE);
5910 /* If the symbol was referenced and not defined, define it. */
5911 if (hash != NULL
5912 && (hash->root.type == bfd_link_hash_new
5913 || hash->root.type == bfd_link_hash_undefined
5914 || hash->root.type == bfd_link_hash_undefweak
5915 || hash->root.type == bfd_link_hash_common))
5916 {
5917 asection *s = NULL;
5918 if (hdrs_segment->count != 0)
5919 /* The segment contains sections, so use the first one. */
5920 s = hdrs_segment->sections[0];
5921 else
5922 /* Use the first (i.e. lowest-addressed) section in any segment. */
5923 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5924 if (m->count != 0)
5925 {
5926 s = m->sections[0];
5927 break;
5928 }
5929
5930 if (s != NULL)
5931 {
5932 hash->root.u.def.value = filehdr_vaddr - s->vma;
5933 hash->root.u.def.section = s;
5934 }
5935 else
5936 {
5937 hash->root.u.def.value = filehdr_vaddr;
5938 hash->root.u.def.section = bfd_abs_section_ptr;
5939 }
5940
5941 hash->root.type = bfd_link_hash_defined;
5942 hash->def_regular = 1;
5943 hash->non_elf = 0;
5944 }
5945 }
5946
5947 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5948 {
5949 if (p->p_type == PT_GNU_RELRO)
5950 {
5951 bfd_vma start, end;
5952 bfd_boolean ok;
5953
5954 if (link_info != NULL)
5955 {
5956 /* During linking the range of the RELRO segment is passed
5957 in link_info. Note that there may be padding between
5958 relro_start and the first RELRO section. */
5959 start = link_info->relro_start;
5960 end = link_info->relro_end;
5961 }
5962 else if (m->count != 0)
5963 {
5964 if (!m->p_size_valid)
5965 abort ();
5966 start = m->sections[0]->vma;
5967 end = start + m->p_size;
5968 }
5969 else
5970 {
5971 start = 0;
5972 end = 0;
5973 }
5974
5975 ok = FALSE;
5976 if (start < end)
5977 {
5978 struct elf_segment_map *lm;
5979 const Elf_Internal_Phdr *lp;
5980 unsigned int i;
5981
5982 /* Find a LOAD segment containing a section in the RELRO
5983 segment. */
5984 for (lm = elf_seg_map (abfd), lp = phdrs;
5985 lm != NULL;
5986 lm = lm->next, lp++)
5987 {
5988 if (lp->p_type == PT_LOAD
5989 && lm->count != 0
5990 && (lm->sections[lm->count - 1]->vma
5991 + (!IS_TBSS (lm->sections[lm->count - 1])
5992 ? lm->sections[lm->count - 1]->size
5993 : 0)) > start
5994 && lm->sections[0]->vma < end)
5995 break;
5996 }
5997
5998 if (lm != NULL)
5999 {
6000 /* Find the section starting the RELRO segment. */
6001 for (i = 0; i < lm->count; i++)
6002 {
6003 asection *s = lm->sections[i];
6004 if (s->vma >= start
6005 && s->vma < end
6006 && s->size != 0)
6007 break;
6008 }
6009
6010 if (i < lm->count)
6011 {
6012 p->p_vaddr = lm->sections[i]->vma;
6013 p->p_paddr = lm->sections[i]->lma;
6014 p->p_offset = lm->sections[i]->filepos;
6015 p->p_memsz = end - p->p_vaddr;
6016 p->p_filesz = p->p_memsz;
6017
6018 /* The RELRO segment typically ends a few bytes
6019 into .got.plt but other layouts are possible.
6020 In cases where the end does not match any
6021 loaded section (for instance is in file
6022 padding), trim p_filesz back to correspond to
6023 the end of loaded section contents. */
6024 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6025 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6026
6027 /* Preserve the alignment and flags if they are
6028 valid. The gold linker generates RW/4 for
6029 the PT_GNU_RELRO section. It is better for
6030 objcopy/strip to honor these attributes
6031 otherwise gdb will choke when using separate
6032 debug files. */
6033 if (!m->p_align_valid)
6034 p->p_align = 1;
6035 if (!m->p_flags_valid)
6036 p->p_flags = PF_R;
6037 ok = TRUE;
6038 }
6039 }
6040 }
6041 if (link_info != NULL)
6042 BFD_ASSERT (ok);
6043 if (!ok)
6044 memset (p, 0, sizeof *p);
6045 }
6046 else if (p->p_type == PT_GNU_STACK)
6047 {
6048 if (m->p_size_valid)
6049 p->p_memsz = m->p_size;
6050 }
6051 else if (m->count != 0)
6052 {
6053 unsigned int i;
6054
6055 if (p->p_type != PT_LOAD
6056 && (p->p_type != PT_NOTE
6057 || bfd_get_format (abfd) != bfd_core))
6058 {
6059 /* A user specified segment layout may include a PHDR
6060 segment that overlaps with a LOAD segment... */
6061 if (p->p_type == PT_PHDR)
6062 {
6063 m->count = 0;
6064 continue;
6065 }
6066
6067 if (m->includes_filehdr || m->includes_phdrs)
6068 {
6069 /* PR 17512: file: 2195325e. */
6070 _bfd_error_handler
6071 (_("%pB: error: non-load segment %d includes file header "
6072 "and/or program header"),
6073 abfd, (int) (p - phdrs));
6074 return FALSE;
6075 }
6076
6077 p->p_filesz = 0;
6078 p->p_offset = m->sections[0]->filepos;
6079 for (i = m->count; i-- != 0;)
6080 {
6081 asection *sect = m->sections[i];
6082 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6083 if (hdr->sh_type != SHT_NOBITS)
6084 {
6085 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6086 + hdr->sh_size);
6087 break;
6088 }
6089 }
6090 }
6091 }
6092 else if (m->includes_filehdr)
6093 {
6094 p->p_vaddr = filehdr_vaddr;
6095 if (! m->p_paddr_valid)
6096 p->p_paddr = filehdr_paddr;
6097 }
6098 else if (m->includes_phdrs)
6099 {
6100 p->p_vaddr = phdrs_vaddr;
6101 if (! m->p_paddr_valid)
6102 p->p_paddr = phdrs_paddr;
6103 }
6104 }
6105
6106 elf_next_file_pos (abfd) = off;
6107
6108 return TRUE;
6109 }
6110
6111 static elf_section_list *
6112 find_section_in_list (unsigned int i, elf_section_list * list)
6113 {
6114 for (;list != NULL; list = list->next)
6115 if (list->ndx == i)
6116 break;
6117 return list;
6118 }
6119
6120 /* Work out the file positions of all the sections. This is called by
6121 _bfd_elf_compute_section_file_positions. All the section sizes and
6122 VMAs must be known before this is called.
6123
6124 Reloc sections come in two flavours: Those processed specially as
6125 "side-channel" data attached to a section to which they apply, and
6126 those that bfd doesn't process as relocations. The latter sort are
6127 stored in a normal bfd section by bfd_section_from_shdr. We don't
6128 consider the former sort here, unless they form part of the loadable
6129 image. Reloc sections not assigned here will be handled later by
6130 assign_file_positions_for_relocs.
6131
6132 We also don't set the positions of the .symtab and .strtab here. */
6133
6134 static bfd_boolean
6135 assign_file_positions_except_relocs (bfd *abfd,
6136 struct bfd_link_info *link_info)
6137 {
6138 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6139 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6140 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6141
6142 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6143 && bfd_get_format (abfd) != bfd_core)
6144 {
6145 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6146 unsigned int num_sec = elf_numsections (abfd);
6147 Elf_Internal_Shdr **hdrpp;
6148 unsigned int i;
6149 file_ptr off;
6150
6151 /* Start after the ELF header. */
6152 off = i_ehdrp->e_ehsize;
6153
6154 /* We are not creating an executable, which means that we are
6155 not creating a program header, and that the actual order of
6156 the sections in the file is unimportant. */
6157 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6158 {
6159 Elf_Internal_Shdr *hdr;
6160
6161 hdr = *hdrpp;
6162 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6163 && hdr->bfd_section == NULL)
6164 || (hdr->bfd_section != NULL
6165 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6166 /* Compress DWARF debug sections. */
6167 || i == elf_onesymtab (abfd)
6168 || (elf_symtab_shndx_list (abfd) != NULL
6169 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6170 || i == elf_strtab_sec (abfd)
6171 || i == elf_shstrtab_sec (abfd))
6172 {
6173 hdr->sh_offset = -1;
6174 }
6175 else
6176 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6177 }
6178
6179 elf_next_file_pos (abfd) = off;
6180 }
6181 else
6182 {
6183 unsigned int alloc;
6184
6185 /* Assign file positions for the loaded sections based on the
6186 assignment of sections to segments. */
6187 if (!assign_file_positions_for_load_sections (abfd, link_info))
6188 return FALSE;
6189
6190 /* And for non-load sections. */
6191 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6192 return FALSE;
6193
6194 if (bed->elf_backend_modify_program_headers != NULL)
6195 {
6196 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6197 return FALSE;
6198 }
6199
6200 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6201 if (link_info != NULL && bfd_link_pie (link_info))
6202 {
6203 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6204 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6205 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6206
6207 /* Find the lowest p_vaddr in PT_LOAD segments. */
6208 bfd_vma p_vaddr = (bfd_vma) -1;
6209 for (; segment < end_segment; segment++)
6210 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6211 p_vaddr = segment->p_vaddr;
6212
6213 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6214 segments is non-zero. */
6215 if (p_vaddr)
6216 i_ehdrp->e_type = ET_EXEC;
6217 }
6218
6219 /* Write out the program headers. */
6220 alloc = elf_elfheader (abfd)->e_phnum;
6221 if (alloc == 0)
6222 return TRUE;
6223
6224 /* PR ld/20815 - Check that the program header segment, if present, will
6225 be loaded into memory. FIXME: The check below is not sufficient as
6226 really all PT_LOAD segments should be checked before issuing an error
6227 message. Plus the PHDR segment does not have to be the first segment
6228 in the program header table. But this version of the check should
6229 catch all real world use cases.
6230
6231 FIXME: We used to have code here to sort the PT_LOAD segments into
6232 ascending order, as per the ELF spec. But this breaks some programs,
6233 including the Linux kernel. But really either the spec should be
6234 changed or the programs updated. */
6235 if (alloc > 1
6236 && tdata->phdr[0].p_type == PT_PHDR
6237 && (bed->elf_backend_allow_non_load_phdr == NULL
6238 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6239 alloc))
6240 && tdata->phdr[1].p_type == PT_LOAD
6241 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6242 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz
6243 < tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6244 {
6245 /* The fix for this error is usually to edit the linker script being
6246 used and set up the program headers manually. Either that or
6247 leave room for the headers at the start of the SECTIONS. */
6248 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
6249 " by LOAD segment"),
6250 abfd);
6251 return FALSE;
6252 }
6253
6254 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6255 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6256 return FALSE;
6257 }
6258
6259 return TRUE;
6260 }
6261
6262 static bfd_boolean
6263 prep_headers (bfd *abfd)
6264 {
6265 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6266 struct elf_strtab_hash *shstrtab;
6267 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6268
6269 i_ehdrp = elf_elfheader (abfd);
6270
6271 shstrtab = _bfd_elf_strtab_init ();
6272 if (shstrtab == NULL)
6273 return FALSE;
6274
6275 elf_shstrtab (abfd) = shstrtab;
6276
6277 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6278 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6279 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6280 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6281
6282 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6283 i_ehdrp->e_ident[EI_DATA] =
6284 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6285 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6286
6287 if ((abfd->flags & DYNAMIC) != 0)
6288 i_ehdrp->e_type = ET_DYN;
6289 else if ((abfd->flags & EXEC_P) != 0)
6290 i_ehdrp->e_type = ET_EXEC;
6291 else if (bfd_get_format (abfd) == bfd_core)
6292 i_ehdrp->e_type = ET_CORE;
6293 else
6294 i_ehdrp->e_type = ET_REL;
6295
6296 switch (bfd_get_arch (abfd))
6297 {
6298 case bfd_arch_unknown:
6299 i_ehdrp->e_machine = EM_NONE;
6300 break;
6301
6302 /* There used to be a long list of cases here, each one setting
6303 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6304 in the corresponding bfd definition. To avoid duplication,
6305 the switch was removed. Machines that need special handling
6306 can generally do it in elf_backend_final_write_processing(),
6307 unless they need the information earlier than the final write.
6308 Such need can generally be supplied by replacing the tests for
6309 e_machine with the conditions used to determine it. */
6310 default:
6311 i_ehdrp->e_machine = bed->elf_machine_code;
6312 }
6313
6314 i_ehdrp->e_version = bed->s->ev_current;
6315 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6316
6317 /* No program header, for now. */
6318 i_ehdrp->e_phoff = 0;
6319 i_ehdrp->e_phentsize = 0;
6320 i_ehdrp->e_phnum = 0;
6321
6322 /* Each bfd section is section header entry. */
6323 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6324 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6325
6326 /* If we're building an executable, we'll need a program header table. */
6327 if (abfd->flags & EXEC_P)
6328 /* It all happens later. */
6329 ;
6330 else
6331 {
6332 i_ehdrp->e_phentsize = 0;
6333 i_ehdrp->e_phoff = 0;
6334 }
6335
6336 elf_tdata (abfd)->symtab_hdr.sh_name =
6337 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6338 elf_tdata (abfd)->strtab_hdr.sh_name =
6339 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6340 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6341 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6342 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6343 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6344 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6345 return FALSE;
6346
6347 return TRUE;
6348 }
6349
6350 /* Assign file positions for all the reloc sections which are not part
6351 of the loadable file image, and the file position of section headers. */
6352
6353 static bfd_boolean
6354 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6355 {
6356 file_ptr off;
6357 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6358 Elf_Internal_Shdr *shdrp;
6359 Elf_Internal_Ehdr *i_ehdrp;
6360 const struct elf_backend_data *bed;
6361
6362 off = elf_next_file_pos (abfd);
6363
6364 shdrpp = elf_elfsections (abfd);
6365 end_shdrpp = shdrpp + elf_numsections (abfd);
6366 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6367 {
6368 shdrp = *shdrpp;
6369 if (shdrp->sh_offset == -1)
6370 {
6371 asection *sec = shdrp->bfd_section;
6372 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6373 || shdrp->sh_type == SHT_RELA);
6374 if (is_rel
6375 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6376 {
6377 if (!is_rel)
6378 {
6379 const char *name = sec->name;
6380 struct bfd_elf_section_data *d;
6381
6382 /* Compress DWARF debug sections. */
6383 if (!bfd_compress_section (abfd, sec,
6384 shdrp->contents))
6385 return FALSE;
6386
6387 if (sec->compress_status == COMPRESS_SECTION_DONE
6388 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6389 {
6390 /* If section is compressed with zlib-gnu, convert
6391 section name from .debug_* to .zdebug_*. */
6392 char *new_name
6393 = convert_debug_to_zdebug (abfd, name);
6394 if (new_name == NULL)
6395 return FALSE;
6396 name = new_name;
6397 }
6398 /* Add section name to section name section. */
6399 if (shdrp->sh_name != (unsigned int) -1)
6400 abort ();
6401 shdrp->sh_name
6402 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6403 name, FALSE);
6404 d = elf_section_data (sec);
6405
6406 /* Add reloc section name to section name section. */
6407 if (d->rel.hdr
6408 && !_bfd_elf_set_reloc_sh_name (abfd,
6409 d->rel.hdr,
6410 name, FALSE))
6411 return FALSE;
6412 if (d->rela.hdr
6413 && !_bfd_elf_set_reloc_sh_name (abfd,
6414 d->rela.hdr,
6415 name, TRUE))
6416 return FALSE;
6417
6418 /* Update section size and contents. */
6419 shdrp->sh_size = sec->size;
6420 shdrp->contents = sec->contents;
6421 shdrp->bfd_section->contents = NULL;
6422 }
6423 off = _bfd_elf_assign_file_position_for_section (shdrp,
6424 off,
6425 TRUE);
6426 }
6427 }
6428 }
6429
6430 /* Place section name section after DWARF debug sections have been
6431 compressed. */
6432 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6433 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6434 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6435 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6436
6437 /* Place the section headers. */
6438 i_ehdrp = elf_elfheader (abfd);
6439 bed = get_elf_backend_data (abfd);
6440 off = align_file_position (off, 1 << bed->s->log_file_align);
6441 i_ehdrp->e_shoff = off;
6442 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6443 elf_next_file_pos (abfd) = off;
6444
6445 return TRUE;
6446 }
6447
6448 bfd_boolean
6449 _bfd_elf_write_object_contents (bfd *abfd)
6450 {
6451 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6452 Elf_Internal_Shdr **i_shdrp;
6453 bfd_boolean failed;
6454 unsigned int count, num_sec;
6455 struct elf_obj_tdata *t;
6456
6457 if (! abfd->output_has_begun
6458 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6459 return FALSE;
6460 /* Do not rewrite ELF data when the BFD has been opened for update.
6461 abfd->output_has_begun was set to TRUE on opening, so creation of new
6462 sections, and modification of existing section sizes was restricted.
6463 This means the ELF header, program headers and section headers can't have
6464 changed.
6465 If the contents of any sections has been modified, then those changes have
6466 already been written to the BFD. */
6467 else if (abfd->direction == both_direction)
6468 {
6469 BFD_ASSERT (abfd->output_has_begun);
6470 return TRUE;
6471 }
6472
6473 i_shdrp = elf_elfsections (abfd);
6474
6475 failed = FALSE;
6476 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6477 if (failed)
6478 return FALSE;
6479
6480 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6481 return FALSE;
6482
6483 /* After writing the headers, we need to write the sections too... */
6484 num_sec = elf_numsections (abfd);
6485 for (count = 1; count < num_sec; count++)
6486 {
6487 i_shdrp[count]->sh_name
6488 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6489 i_shdrp[count]->sh_name);
6490 if (bed->elf_backend_section_processing)
6491 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6492 return FALSE;
6493 if (i_shdrp[count]->contents)
6494 {
6495 bfd_size_type amt = i_shdrp[count]->sh_size;
6496
6497 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6498 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6499 return FALSE;
6500 }
6501 }
6502
6503 /* Write out the section header names. */
6504 t = elf_tdata (abfd);
6505 if (elf_shstrtab (abfd) != NULL
6506 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6507 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6508 return FALSE;
6509
6510 if (bed->elf_backend_final_write_processing)
6511 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6512
6513 if (!bed->s->write_shdrs_and_ehdr (abfd))
6514 return FALSE;
6515
6516 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6517 if (t->o->build_id.after_write_object_contents != NULL)
6518 return (*t->o->build_id.after_write_object_contents) (abfd);
6519
6520 return TRUE;
6521 }
6522
6523 bfd_boolean
6524 _bfd_elf_write_corefile_contents (bfd *abfd)
6525 {
6526 /* Hopefully this can be done just like an object file. */
6527 return _bfd_elf_write_object_contents (abfd);
6528 }
6529
6530 /* Given a section, search the header to find them. */
6531
6532 unsigned int
6533 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6534 {
6535 const struct elf_backend_data *bed;
6536 unsigned int sec_index;
6537
6538 if (elf_section_data (asect) != NULL
6539 && elf_section_data (asect)->this_idx != 0)
6540 return elf_section_data (asect)->this_idx;
6541
6542 if (bfd_is_abs_section (asect))
6543 sec_index = SHN_ABS;
6544 else if (bfd_is_com_section (asect))
6545 sec_index = SHN_COMMON;
6546 else if (bfd_is_und_section (asect))
6547 sec_index = SHN_UNDEF;
6548 else
6549 sec_index = SHN_BAD;
6550
6551 bed = get_elf_backend_data (abfd);
6552 if (bed->elf_backend_section_from_bfd_section)
6553 {
6554 int retval = sec_index;
6555
6556 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6557 return retval;
6558 }
6559
6560 if (sec_index == SHN_BAD)
6561 bfd_set_error (bfd_error_nonrepresentable_section);
6562
6563 return sec_index;
6564 }
6565
6566 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6567 on error. */
6568
6569 int
6570 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6571 {
6572 asymbol *asym_ptr = *asym_ptr_ptr;
6573 int idx;
6574 flagword flags = asym_ptr->flags;
6575
6576 /* When gas creates relocations against local labels, it creates its
6577 own symbol for the section, but does put the symbol into the
6578 symbol chain, so udata is 0. When the linker is generating
6579 relocatable output, this section symbol may be for one of the
6580 input sections rather than the output section. */
6581 if (asym_ptr->udata.i == 0
6582 && (flags & BSF_SECTION_SYM)
6583 && asym_ptr->section)
6584 {
6585 asection *sec;
6586 int indx;
6587
6588 sec = asym_ptr->section;
6589 if (sec->owner != abfd && sec->output_section != NULL)
6590 sec = sec->output_section;
6591 if (sec->owner == abfd
6592 && (indx = sec->index) < elf_num_section_syms (abfd)
6593 && elf_section_syms (abfd)[indx] != NULL)
6594 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6595 }
6596
6597 idx = asym_ptr->udata.i;
6598
6599 if (idx == 0)
6600 {
6601 /* This case can occur when using --strip-symbol on a symbol
6602 which is used in a relocation entry. */
6603 _bfd_error_handler
6604 /* xgettext:c-format */
6605 (_("%pB: symbol `%s' required but not present"),
6606 abfd, bfd_asymbol_name (asym_ptr));
6607 bfd_set_error (bfd_error_no_symbols);
6608 return -1;
6609 }
6610
6611 #if DEBUG & 4
6612 {
6613 fprintf (stderr,
6614 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6615 (long) asym_ptr, asym_ptr->name, idx, flags);
6616 fflush (stderr);
6617 }
6618 #endif
6619
6620 return idx;
6621 }
6622
6623 /* Rewrite program header information. */
6624
6625 static bfd_boolean
6626 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6627 {
6628 Elf_Internal_Ehdr *iehdr;
6629 struct elf_segment_map *map;
6630 struct elf_segment_map *map_first;
6631 struct elf_segment_map **pointer_to_map;
6632 Elf_Internal_Phdr *segment;
6633 asection *section;
6634 unsigned int i;
6635 unsigned int num_segments;
6636 bfd_boolean phdr_included = FALSE;
6637 bfd_boolean p_paddr_valid;
6638 bfd_vma maxpagesize;
6639 struct elf_segment_map *phdr_adjust_seg = NULL;
6640 unsigned int phdr_adjust_num = 0;
6641 const struct elf_backend_data *bed;
6642
6643 bed = get_elf_backend_data (ibfd);
6644 iehdr = elf_elfheader (ibfd);
6645
6646 map_first = NULL;
6647 pointer_to_map = &map_first;
6648
6649 num_segments = elf_elfheader (ibfd)->e_phnum;
6650 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6651
6652 /* Returns the end address of the segment + 1. */
6653 #define SEGMENT_END(segment, start) \
6654 (start + (segment->p_memsz > segment->p_filesz \
6655 ? segment->p_memsz : segment->p_filesz))
6656
6657 #define SECTION_SIZE(section, segment) \
6658 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6659 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6660 ? section->size : 0)
6661
6662 /* Returns TRUE if the given section is contained within
6663 the given segment. VMA addresses are compared. */
6664 #define IS_CONTAINED_BY_VMA(section, segment) \
6665 (section->vma >= segment->p_vaddr \
6666 && (section->vma + SECTION_SIZE (section, segment) \
6667 <= (SEGMENT_END (segment, segment->p_vaddr))))
6668
6669 /* Returns TRUE if the given section is contained within
6670 the given segment. LMA addresses are compared. */
6671 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6672 (section->lma >= base \
6673 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6674 && (section->lma + SECTION_SIZE (section, segment) \
6675 <= SEGMENT_END (segment, base)))
6676
6677 /* Handle PT_NOTE segment. */
6678 #define IS_NOTE(p, s) \
6679 (p->p_type == PT_NOTE \
6680 && elf_section_type (s) == SHT_NOTE \
6681 && (bfd_vma) s->filepos >= p->p_offset \
6682 && ((bfd_vma) s->filepos + s->size \
6683 <= p->p_offset + p->p_filesz))
6684
6685 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6686 etc. */
6687 #define IS_COREFILE_NOTE(p, s) \
6688 (IS_NOTE (p, s) \
6689 && bfd_get_format (ibfd) == bfd_core \
6690 && s->vma == 0 \
6691 && s->lma == 0)
6692
6693 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6694 linker, which generates a PT_INTERP section with p_vaddr and
6695 p_memsz set to 0. */
6696 #define IS_SOLARIS_PT_INTERP(p, s) \
6697 (p->p_vaddr == 0 \
6698 && p->p_paddr == 0 \
6699 && p->p_memsz == 0 \
6700 && p->p_filesz > 0 \
6701 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6702 && s->size > 0 \
6703 && (bfd_vma) s->filepos >= p->p_offset \
6704 && ((bfd_vma) s->filepos + s->size \
6705 <= p->p_offset + p->p_filesz))
6706
6707 /* Decide if the given section should be included in the given segment.
6708 A section will be included if:
6709 1. It is within the address space of the segment -- we use the LMA
6710 if that is set for the segment and the VMA otherwise,
6711 2. It is an allocated section or a NOTE section in a PT_NOTE
6712 segment.
6713 3. There is an output section associated with it,
6714 4. The section has not already been allocated to a previous segment.
6715 5. PT_GNU_STACK segments do not include any sections.
6716 6. PT_TLS segment includes only SHF_TLS sections.
6717 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6718 8. PT_DYNAMIC should not contain empty sections at the beginning
6719 (with the possible exception of .dynamic). */
6720 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6721 ((((segment->p_paddr \
6722 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6723 : IS_CONTAINED_BY_VMA (section, segment)) \
6724 && (section->flags & SEC_ALLOC) != 0) \
6725 || IS_NOTE (segment, section)) \
6726 && segment->p_type != PT_GNU_STACK \
6727 && (segment->p_type != PT_TLS \
6728 || (section->flags & SEC_THREAD_LOCAL)) \
6729 && (segment->p_type == PT_LOAD \
6730 || segment->p_type == PT_TLS \
6731 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6732 && (segment->p_type != PT_DYNAMIC \
6733 || SECTION_SIZE (section, segment) > 0 \
6734 || (segment->p_paddr \
6735 ? segment->p_paddr != section->lma \
6736 : segment->p_vaddr != section->vma) \
6737 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6738 == 0)) \
6739 && (segment->p_type != PT_LOAD || !section->segment_mark))
6740
6741 /* If the output section of a section in the input segment is NULL,
6742 it is removed from the corresponding output segment. */
6743 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6744 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6745 && section->output_section != NULL)
6746
6747 /* Returns TRUE iff seg1 starts after the end of seg2. */
6748 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6749 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6750
6751 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6752 their VMA address ranges and their LMA address ranges overlap.
6753 It is possible to have overlapping VMA ranges without overlapping LMA
6754 ranges. RedBoot images for example can have both .data and .bss mapped
6755 to the same VMA range, but with the .data section mapped to a different
6756 LMA. */
6757 #define SEGMENT_OVERLAPS(seg1, seg2) \
6758 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6759 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6760 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6761 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6762
6763 /* Initialise the segment mark field. */
6764 for (section = ibfd->sections; section != NULL; section = section->next)
6765 section->segment_mark = FALSE;
6766
6767 /* The Solaris linker creates program headers in which all the
6768 p_paddr fields are zero. When we try to objcopy or strip such a
6769 file, we get confused. Check for this case, and if we find it
6770 don't set the p_paddr_valid fields. */
6771 p_paddr_valid = FALSE;
6772 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6773 i < num_segments;
6774 i++, segment++)
6775 if (segment->p_paddr != 0)
6776 {
6777 p_paddr_valid = TRUE;
6778 break;
6779 }
6780
6781 /* Scan through the segments specified in the program header
6782 of the input BFD. For this first scan we look for overlaps
6783 in the loadable segments. These can be created by weird
6784 parameters to objcopy. Also, fix some solaris weirdness. */
6785 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6786 i < num_segments;
6787 i++, segment++)
6788 {
6789 unsigned int j;
6790 Elf_Internal_Phdr *segment2;
6791
6792 if (segment->p_type == PT_INTERP)
6793 for (section = ibfd->sections; section; section = section->next)
6794 if (IS_SOLARIS_PT_INTERP (segment, section))
6795 {
6796 /* Mininal change so that the normal section to segment
6797 assignment code will work. */
6798 segment->p_vaddr = section->vma;
6799 break;
6800 }
6801
6802 if (segment->p_type != PT_LOAD)
6803 {
6804 /* Remove PT_GNU_RELRO segment. */
6805 if (segment->p_type == PT_GNU_RELRO)
6806 segment->p_type = PT_NULL;
6807 continue;
6808 }
6809
6810 /* Determine if this segment overlaps any previous segments. */
6811 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6812 {
6813 bfd_signed_vma extra_length;
6814
6815 if (segment2->p_type != PT_LOAD
6816 || !SEGMENT_OVERLAPS (segment, segment2))
6817 continue;
6818
6819 /* Merge the two segments together. */
6820 if (segment2->p_vaddr < segment->p_vaddr)
6821 {
6822 /* Extend SEGMENT2 to include SEGMENT and then delete
6823 SEGMENT. */
6824 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6825 - SEGMENT_END (segment2, segment2->p_vaddr));
6826
6827 if (extra_length > 0)
6828 {
6829 segment2->p_memsz += extra_length;
6830 segment2->p_filesz += extra_length;
6831 }
6832
6833 segment->p_type = PT_NULL;
6834
6835 /* Since we have deleted P we must restart the outer loop. */
6836 i = 0;
6837 segment = elf_tdata (ibfd)->phdr;
6838 break;
6839 }
6840 else
6841 {
6842 /* Extend SEGMENT to include SEGMENT2 and then delete
6843 SEGMENT2. */
6844 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6845 - SEGMENT_END (segment, segment->p_vaddr));
6846
6847 if (extra_length > 0)
6848 {
6849 segment->p_memsz += extra_length;
6850 segment->p_filesz += extra_length;
6851 }
6852
6853 segment2->p_type = PT_NULL;
6854 }
6855 }
6856 }
6857
6858 /* The second scan attempts to assign sections to segments. */
6859 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6860 i < num_segments;
6861 i++, segment++)
6862 {
6863 unsigned int section_count;
6864 asection **sections;
6865 asection *output_section;
6866 unsigned int isec;
6867 asection *matching_lma;
6868 asection *suggested_lma;
6869 unsigned int j;
6870 bfd_size_type amt;
6871 asection *first_section;
6872
6873 if (segment->p_type == PT_NULL)
6874 continue;
6875
6876 first_section = NULL;
6877 /* Compute how many sections might be placed into this segment. */
6878 for (section = ibfd->sections, section_count = 0;
6879 section != NULL;
6880 section = section->next)
6881 {
6882 /* Find the first section in the input segment, which may be
6883 removed from the corresponding output segment. */
6884 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6885 {
6886 if (first_section == NULL)
6887 first_section = section;
6888 if (section->output_section != NULL)
6889 ++section_count;
6890 }
6891 }
6892
6893 /* Allocate a segment map big enough to contain
6894 all of the sections we have selected. */
6895 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
6896 amt += (bfd_size_type) section_count * sizeof (asection *);
6897 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6898 if (map == NULL)
6899 return FALSE;
6900
6901 /* Initialise the fields of the segment map. Default to
6902 using the physical address of the segment in the input BFD. */
6903 map->next = NULL;
6904 map->p_type = segment->p_type;
6905 map->p_flags = segment->p_flags;
6906 map->p_flags_valid = 1;
6907
6908 /* If the first section in the input segment is removed, there is
6909 no need to preserve segment physical address in the corresponding
6910 output segment. */
6911 if (!first_section || first_section->output_section != NULL)
6912 {
6913 map->p_paddr = segment->p_paddr;
6914 map->p_paddr_valid = p_paddr_valid;
6915 }
6916
6917 /* Determine if this segment contains the ELF file header
6918 and if it contains the program headers themselves. */
6919 map->includes_filehdr = (segment->p_offset == 0
6920 && segment->p_filesz >= iehdr->e_ehsize);
6921 map->includes_phdrs = 0;
6922
6923 if (!phdr_included || segment->p_type != PT_LOAD)
6924 {
6925 map->includes_phdrs =
6926 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6927 && (segment->p_offset + segment->p_filesz
6928 >= ((bfd_vma) iehdr->e_phoff
6929 + iehdr->e_phnum * iehdr->e_phentsize)));
6930
6931 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6932 phdr_included = TRUE;
6933 }
6934
6935 if (section_count == 0)
6936 {
6937 /* Special segments, such as the PT_PHDR segment, may contain
6938 no sections, but ordinary, loadable segments should contain
6939 something. They are allowed by the ELF spec however, so only
6940 a warning is produced.
6941 There is however the valid use case of embedded systems which
6942 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6943 flash memory with zeros. No warning is shown for that case. */
6944 if (segment->p_type == PT_LOAD
6945 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6946 /* xgettext:c-format */
6947 _bfd_error_handler
6948 (_("%pB: warning: empty loadable segment detected"
6949 " at vaddr=%#" PRIx64 ", is this intentional?"),
6950 ibfd, (uint64_t) segment->p_vaddr);
6951
6952 map->p_vaddr_offset = segment->p_vaddr;
6953 map->count = 0;
6954 *pointer_to_map = map;
6955 pointer_to_map = &map->next;
6956
6957 continue;
6958 }
6959
6960 /* Now scan the sections in the input BFD again and attempt
6961 to add their corresponding output sections to the segment map.
6962 The problem here is how to handle an output section which has
6963 been moved (ie had its LMA changed). There are four possibilities:
6964
6965 1. None of the sections have been moved.
6966 In this case we can continue to use the segment LMA from the
6967 input BFD.
6968
6969 2. All of the sections have been moved by the same amount.
6970 In this case we can change the segment's LMA to match the LMA
6971 of the first section.
6972
6973 3. Some of the sections have been moved, others have not.
6974 In this case those sections which have not been moved can be
6975 placed in the current segment which will have to have its size,
6976 and possibly its LMA changed, and a new segment or segments will
6977 have to be created to contain the other sections.
6978
6979 4. The sections have been moved, but not by the same amount.
6980 In this case we can change the segment's LMA to match the LMA
6981 of the first section and we will have to create a new segment
6982 or segments to contain the other sections.
6983
6984 In order to save time, we allocate an array to hold the section
6985 pointers that we are interested in. As these sections get assigned
6986 to a segment, they are removed from this array. */
6987
6988 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6989 if (sections == NULL)
6990 return FALSE;
6991
6992 /* Step One: Scan for segment vs section LMA conflicts.
6993 Also add the sections to the section array allocated above.
6994 Also add the sections to the current segment. In the common
6995 case, where the sections have not been moved, this means that
6996 we have completely filled the segment, and there is nothing
6997 more to do. */
6998 isec = 0;
6999 matching_lma = NULL;
7000 suggested_lma = NULL;
7001
7002 for (section = first_section, j = 0;
7003 section != NULL;
7004 section = section->next)
7005 {
7006 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7007 {
7008 output_section = section->output_section;
7009
7010 sections[j++] = section;
7011
7012 /* The Solaris native linker always sets p_paddr to 0.
7013 We try to catch that case here, and set it to the
7014 correct value. Note - some backends require that
7015 p_paddr be left as zero. */
7016 if (!p_paddr_valid
7017 && segment->p_vaddr != 0
7018 && !bed->want_p_paddr_set_to_zero
7019 && isec == 0
7020 && output_section->lma != 0
7021 && (align_power (segment->p_vaddr
7022 + (map->includes_filehdr
7023 ? iehdr->e_ehsize : 0)
7024 + (map->includes_phdrs
7025 ? iehdr->e_phnum * iehdr->e_phentsize
7026 : 0),
7027 output_section->alignment_power)
7028 == output_section->vma))
7029 map->p_paddr = segment->p_vaddr;
7030
7031 /* Match up the physical address of the segment with the
7032 LMA address of the output section. */
7033 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7034 || IS_COREFILE_NOTE (segment, section)
7035 || (bed->want_p_paddr_set_to_zero
7036 && IS_CONTAINED_BY_VMA (output_section, segment)))
7037 {
7038 if (matching_lma == NULL
7039 || output_section->lma < matching_lma->lma)
7040 matching_lma = output_section;
7041
7042 /* We assume that if the section fits within the segment
7043 then it does not overlap any other section within that
7044 segment. */
7045 map->sections[isec++] = output_section;
7046 }
7047 else if (suggested_lma == NULL)
7048 suggested_lma = output_section;
7049
7050 if (j == section_count)
7051 break;
7052 }
7053 }
7054
7055 BFD_ASSERT (j == section_count);
7056
7057 /* Step Two: Adjust the physical address of the current segment,
7058 if necessary. */
7059 if (isec == section_count)
7060 {
7061 /* All of the sections fitted within the segment as currently
7062 specified. This is the default case. Add the segment to
7063 the list of built segments and carry on to process the next
7064 program header in the input BFD. */
7065 map->count = section_count;
7066 *pointer_to_map = map;
7067 pointer_to_map = &map->next;
7068
7069 if (p_paddr_valid
7070 && !bed->want_p_paddr_set_to_zero
7071 && matching_lma->lma != map->p_paddr
7072 && !map->includes_filehdr
7073 && !map->includes_phdrs)
7074 /* There is some padding before the first section in the
7075 segment. So, we must account for that in the output
7076 segment's vma. */
7077 map->p_vaddr_offset = map->p_paddr - matching_lma->lma;
7078
7079 free (sections);
7080 continue;
7081 }
7082 else
7083 {
7084 /* Change the current segment's physical address to match
7085 the LMA of the first section that fitted, or if no
7086 section fitted, the first section. */
7087 if (matching_lma == NULL)
7088 matching_lma = suggested_lma;
7089
7090 map->p_paddr = matching_lma->lma;
7091
7092 /* Offset the segment physical address from the lma
7093 to allow for space taken up by elf headers. */
7094 if (map->includes_phdrs)
7095 {
7096 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7097
7098 /* iehdr->e_phnum is just an estimate of the number
7099 of program headers that we will need. Make a note
7100 here of the number we used and the segment we chose
7101 to hold these headers, so that we can adjust the
7102 offset when we know the correct value. */
7103 phdr_adjust_num = iehdr->e_phnum;
7104 phdr_adjust_seg = map;
7105 }
7106
7107 if (map->includes_filehdr)
7108 {
7109 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7110 map->p_paddr -= iehdr->e_ehsize;
7111 /* We've subtracted off the size of headers from the
7112 first section lma, but there may have been some
7113 alignment padding before that section too. Try to
7114 account for that by adjusting the segment lma down to
7115 the same alignment. */
7116 if (segment->p_align != 0 && segment->p_align < align)
7117 align = segment->p_align;
7118 map->p_paddr &= -align;
7119 }
7120 }
7121
7122 /* Step Three: Loop over the sections again, this time assigning
7123 those that fit to the current segment and removing them from the
7124 sections array; but making sure not to leave large gaps. Once all
7125 possible sections have been assigned to the current segment it is
7126 added to the list of built segments and if sections still remain
7127 to be assigned, a new segment is constructed before repeating
7128 the loop. */
7129 isec = 0;
7130 do
7131 {
7132 map->count = 0;
7133 suggested_lma = NULL;
7134
7135 /* Fill the current segment with sections that fit. */
7136 for (j = 0; j < section_count; j++)
7137 {
7138 section = sections[j];
7139
7140 if (section == NULL)
7141 continue;
7142
7143 output_section = section->output_section;
7144
7145 BFD_ASSERT (output_section != NULL);
7146
7147 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7148 || IS_COREFILE_NOTE (segment, section))
7149 {
7150 if (map->count == 0)
7151 {
7152 /* If the first section in a segment does not start at
7153 the beginning of the segment, then something is
7154 wrong. */
7155 if (align_power (map->p_paddr
7156 + (map->includes_filehdr
7157 ? iehdr->e_ehsize : 0)
7158 + (map->includes_phdrs
7159 ? iehdr->e_phnum * iehdr->e_phentsize
7160 : 0),
7161 output_section->alignment_power)
7162 != output_section->lma)
7163 abort ();
7164 }
7165 else
7166 {
7167 asection *prev_sec;
7168
7169 prev_sec = map->sections[map->count - 1];
7170
7171 /* If the gap between the end of the previous section
7172 and the start of this section is more than
7173 maxpagesize then we need to start a new segment. */
7174 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7175 maxpagesize)
7176 < BFD_ALIGN (output_section->lma, maxpagesize))
7177 || (prev_sec->lma + prev_sec->size
7178 > output_section->lma))
7179 {
7180 if (suggested_lma == NULL)
7181 suggested_lma = output_section;
7182
7183 continue;
7184 }
7185 }
7186
7187 map->sections[map->count++] = output_section;
7188 ++isec;
7189 sections[j] = NULL;
7190 if (segment->p_type == PT_LOAD)
7191 section->segment_mark = TRUE;
7192 }
7193 else if (suggested_lma == NULL)
7194 suggested_lma = output_section;
7195 }
7196
7197 /* PR 23932. A corrupt input file may contain sections that cannot
7198 be assigned to any segment - because for example they have a
7199 negative size - or segments that do not contain any sections. */
7200 if (map->count == 0)
7201 {
7202 bfd_set_error (bfd_error_bad_value);
7203 free (sections);
7204 return FALSE;
7205 }
7206
7207 /* Add the current segment to the list of built segments. */
7208 *pointer_to_map = map;
7209 pointer_to_map = &map->next;
7210
7211 if (isec < section_count)
7212 {
7213 /* We still have not allocated all of the sections to
7214 segments. Create a new segment here, initialise it
7215 and carry on looping. */
7216 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7217 amt += (bfd_size_type) section_count * sizeof (asection *);
7218 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7219 if (map == NULL)
7220 {
7221 free (sections);
7222 return FALSE;
7223 }
7224
7225 /* Initialise the fields of the segment map. Set the physical
7226 physical address to the LMA of the first section that has
7227 not yet been assigned. */
7228 map->next = NULL;
7229 map->p_type = segment->p_type;
7230 map->p_flags = segment->p_flags;
7231 map->p_flags_valid = 1;
7232 map->p_paddr = suggested_lma->lma;
7233 map->p_paddr_valid = p_paddr_valid;
7234 map->includes_filehdr = 0;
7235 map->includes_phdrs = 0;
7236 }
7237 }
7238 while (isec < section_count);
7239
7240 free (sections);
7241 }
7242
7243 elf_seg_map (obfd) = map_first;
7244
7245 /* If we had to estimate the number of program headers that were
7246 going to be needed, then check our estimate now and adjust
7247 the offset if necessary. */
7248 if (phdr_adjust_seg != NULL)
7249 {
7250 unsigned int count;
7251
7252 for (count = 0, map = map_first; map != NULL; map = map->next)
7253 count++;
7254
7255 if (count > phdr_adjust_num)
7256 phdr_adjust_seg->p_paddr
7257 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7258
7259 for (map = map_first; map != NULL; map = map->next)
7260 if (map->p_type == PT_PHDR)
7261 {
7262 bfd_vma adjust
7263 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7264 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7265 break;
7266 }
7267 }
7268
7269 #undef SEGMENT_END
7270 #undef SECTION_SIZE
7271 #undef IS_CONTAINED_BY_VMA
7272 #undef IS_CONTAINED_BY_LMA
7273 #undef IS_NOTE
7274 #undef IS_COREFILE_NOTE
7275 #undef IS_SOLARIS_PT_INTERP
7276 #undef IS_SECTION_IN_INPUT_SEGMENT
7277 #undef INCLUDE_SECTION_IN_SEGMENT
7278 #undef SEGMENT_AFTER_SEGMENT
7279 #undef SEGMENT_OVERLAPS
7280 return TRUE;
7281 }
7282
7283 /* Copy ELF program header information. */
7284
7285 static bfd_boolean
7286 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7287 {
7288 Elf_Internal_Ehdr *iehdr;
7289 struct elf_segment_map *map;
7290 struct elf_segment_map *map_first;
7291 struct elf_segment_map **pointer_to_map;
7292 Elf_Internal_Phdr *segment;
7293 unsigned int i;
7294 unsigned int num_segments;
7295 bfd_boolean phdr_included = FALSE;
7296 bfd_boolean p_paddr_valid;
7297
7298 iehdr = elf_elfheader (ibfd);
7299
7300 map_first = NULL;
7301 pointer_to_map = &map_first;
7302
7303 /* If all the segment p_paddr fields are zero, don't set
7304 map->p_paddr_valid. */
7305 p_paddr_valid = FALSE;
7306 num_segments = elf_elfheader (ibfd)->e_phnum;
7307 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7308 i < num_segments;
7309 i++, segment++)
7310 if (segment->p_paddr != 0)
7311 {
7312 p_paddr_valid = TRUE;
7313 break;
7314 }
7315
7316 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7317 i < num_segments;
7318 i++, segment++)
7319 {
7320 asection *section;
7321 unsigned int section_count;
7322 bfd_size_type amt;
7323 Elf_Internal_Shdr *this_hdr;
7324 asection *first_section = NULL;
7325 asection *lowest_section;
7326 bfd_boolean no_contents = TRUE;
7327
7328 /* Compute how many sections are in this segment. */
7329 for (section = ibfd->sections, section_count = 0;
7330 section != NULL;
7331 section = section->next)
7332 {
7333 this_hdr = &(elf_section_data(section)->this_hdr);
7334 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7335 {
7336 if (first_section == NULL)
7337 first_section = section;
7338 if (elf_section_type (section) != SHT_NOBITS)
7339 no_contents = FALSE;
7340 section_count++;
7341 }
7342 }
7343
7344 /* Allocate a segment map big enough to contain
7345 all of the sections we have selected. */
7346 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7347 amt += (bfd_size_type) section_count * sizeof (asection *);
7348 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7349 if (map == NULL)
7350 return FALSE;
7351
7352 /* Initialize the fields of the output segment map with the
7353 input segment. */
7354 map->next = NULL;
7355 map->p_type = segment->p_type;
7356 map->p_flags = segment->p_flags;
7357 map->p_flags_valid = 1;
7358 map->p_paddr = segment->p_paddr;
7359 map->p_paddr_valid = p_paddr_valid;
7360 map->p_align = segment->p_align;
7361 map->p_align_valid = 1;
7362 map->p_vaddr_offset = 0;
7363
7364 if (map->p_type == PT_GNU_RELRO
7365 || map->p_type == PT_GNU_STACK)
7366 {
7367 /* The PT_GNU_RELRO segment may contain the first a few
7368 bytes in the .got.plt section even if the whole .got.plt
7369 section isn't in the PT_GNU_RELRO segment. We won't
7370 change the size of the PT_GNU_RELRO segment.
7371 Similarly, PT_GNU_STACK size is significant on uclinux
7372 systems. */
7373 map->p_size = segment->p_memsz;
7374 map->p_size_valid = 1;
7375 }
7376
7377 /* Determine if this segment contains the ELF file header
7378 and if it contains the program headers themselves. */
7379 map->includes_filehdr = (segment->p_offset == 0
7380 && segment->p_filesz >= iehdr->e_ehsize);
7381
7382 map->includes_phdrs = 0;
7383 if (! phdr_included || segment->p_type != PT_LOAD)
7384 {
7385 map->includes_phdrs =
7386 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7387 && (segment->p_offset + segment->p_filesz
7388 >= ((bfd_vma) iehdr->e_phoff
7389 + iehdr->e_phnum * iehdr->e_phentsize)));
7390
7391 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7392 phdr_included = TRUE;
7393 }
7394
7395 lowest_section = NULL;
7396 if (section_count != 0)
7397 {
7398 unsigned int isec = 0;
7399
7400 for (section = first_section;
7401 section != NULL;
7402 section = section->next)
7403 {
7404 this_hdr = &(elf_section_data(section)->this_hdr);
7405 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7406 {
7407 map->sections[isec++] = section->output_section;
7408 if ((section->flags & SEC_ALLOC) != 0)
7409 {
7410 bfd_vma seg_off;
7411
7412 if (lowest_section == NULL
7413 || section->lma < lowest_section->lma)
7414 lowest_section = section;
7415
7416 /* Section lmas are set up from PT_LOAD header
7417 p_paddr in _bfd_elf_make_section_from_shdr.
7418 If this header has a p_paddr that disagrees
7419 with the section lma, flag the p_paddr as
7420 invalid. */
7421 if ((section->flags & SEC_LOAD) != 0)
7422 seg_off = this_hdr->sh_offset - segment->p_offset;
7423 else
7424 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7425 if (section->lma - segment->p_paddr != seg_off)
7426 map->p_paddr_valid = FALSE;
7427 }
7428 if (isec == section_count)
7429 break;
7430 }
7431 }
7432 }
7433
7434 if (map->includes_filehdr && lowest_section != NULL)
7435 {
7436 /* Try to keep the space used by the headers plus any
7437 padding fixed. If there are sections with file contents
7438 in this segment then the lowest sh_offset is the best
7439 guess. Otherwise the segment only has file contents for
7440 the headers, and p_filesz is the best guess. */
7441 if (no_contents)
7442 map->header_size = segment->p_filesz;
7443 else
7444 map->header_size = lowest_section->filepos;
7445 }
7446
7447 if (section_count == 0)
7448 map->p_vaddr_offset = segment->p_vaddr;
7449 else if (!map->includes_phdrs
7450 && !map->includes_filehdr
7451 && map->p_paddr_valid)
7452 /* Account for padding before the first section. */
7453 map->p_vaddr_offset = (segment->p_paddr
7454 - (lowest_section ? lowest_section->lma : 0));
7455
7456 map->count = section_count;
7457 *pointer_to_map = map;
7458 pointer_to_map = &map->next;
7459 }
7460
7461 elf_seg_map (obfd) = map_first;
7462 return TRUE;
7463 }
7464
7465 /* Copy private BFD data. This copies or rewrites ELF program header
7466 information. */
7467
7468 static bfd_boolean
7469 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7470 {
7471 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7472 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7473 return TRUE;
7474
7475 if (elf_tdata (ibfd)->phdr == NULL)
7476 return TRUE;
7477
7478 if (ibfd->xvec == obfd->xvec)
7479 {
7480 /* Check to see if any sections in the input BFD
7481 covered by ELF program header have changed. */
7482 Elf_Internal_Phdr *segment;
7483 asection *section, *osec;
7484 unsigned int i, num_segments;
7485 Elf_Internal_Shdr *this_hdr;
7486 const struct elf_backend_data *bed;
7487
7488 bed = get_elf_backend_data (ibfd);
7489
7490 /* Regenerate the segment map if p_paddr is set to 0. */
7491 if (bed->want_p_paddr_set_to_zero)
7492 goto rewrite;
7493
7494 /* Initialize the segment mark field. */
7495 for (section = obfd->sections; section != NULL;
7496 section = section->next)
7497 section->segment_mark = FALSE;
7498
7499 num_segments = elf_elfheader (ibfd)->e_phnum;
7500 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7501 i < num_segments;
7502 i++, segment++)
7503 {
7504 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7505 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7506 which severly confuses things, so always regenerate the segment
7507 map in this case. */
7508 if (segment->p_paddr == 0
7509 && segment->p_memsz == 0
7510 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7511 goto rewrite;
7512
7513 for (section = ibfd->sections;
7514 section != NULL; section = section->next)
7515 {
7516 /* We mark the output section so that we know it comes
7517 from the input BFD. */
7518 osec = section->output_section;
7519 if (osec)
7520 osec->segment_mark = TRUE;
7521
7522 /* Check if this section is covered by the segment. */
7523 this_hdr = &(elf_section_data(section)->this_hdr);
7524 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7525 {
7526 /* FIXME: Check if its output section is changed or
7527 removed. What else do we need to check? */
7528 if (osec == NULL
7529 || section->flags != osec->flags
7530 || section->lma != osec->lma
7531 || section->vma != osec->vma
7532 || section->size != osec->size
7533 || section->rawsize != osec->rawsize
7534 || section->alignment_power != osec->alignment_power)
7535 goto rewrite;
7536 }
7537 }
7538 }
7539
7540 /* Check to see if any output section do not come from the
7541 input BFD. */
7542 for (section = obfd->sections; section != NULL;
7543 section = section->next)
7544 {
7545 if (!section->segment_mark)
7546 goto rewrite;
7547 else
7548 section->segment_mark = FALSE;
7549 }
7550
7551 return copy_elf_program_header (ibfd, obfd);
7552 }
7553
7554 rewrite:
7555 if (ibfd->xvec == obfd->xvec)
7556 {
7557 /* When rewriting program header, set the output maxpagesize to
7558 the maximum alignment of input PT_LOAD segments. */
7559 Elf_Internal_Phdr *segment;
7560 unsigned int i;
7561 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7562 bfd_vma maxpagesize = 0;
7563
7564 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7565 i < num_segments;
7566 i++, segment++)
7567 if (segment->p_type == PT_LOAD
7568 && maxpagesize < segment->p_align)
7569 {
7570 /* PR 17512: file: f17299af. */
7571 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7572 /* xgettext:c-format */
7573 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7574 PRIx64 " is too large"),
7575 ibfd, (uint64_t) segment->p_align);
7576 else
7577 maxpagesize = segment->p_align;
7578 }
7579
7580 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7581 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7582 }
7583
7584 return rewrite_elf_program_header (ibfd, obfd);
7585 }
7586
7587 /* Initialize private output section information from input section. */
7588
7589 bfd_boolean
7590 _bfd_elf_init_private_section_data (bfd *ibfd,
7591 asection *isec,
7592 bfd *obfd,
7593 asection *osec,
7594 struct bfd_link_info *link_info)
7595
7596 {
7597 Elf_Internal_Shdr *ihdr, *ohdr;
7598 bfd_boolean final_link = (link_info != NULL
7599 && !bfd_link_relocatable (link_info));
7600
7601 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7602 || obfd->xvec->flavour != bfd_target_elf_flavour)
7603 return TRUE;
7604
7605 BFD_ASSERT (elf_section_data (osec) != NULL);
7606
7607 /* For objcopy and relocatable link, don't copy the output ELF
7608 section type from input if the output BFD section flags have been
7609 set to something different. For a final link allow some flags
7610 that the linker clears to differ. */
7611 if (elf_section_type (osec) == SHT_NULL
7612 && (osec->flags == isec->flags
7613 || (final_link
7614 && ((osec->flags ^ isec->flags)
7615 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7616 elf_section_type (osec) = elf_section_type (isec);
7617
7618 /* FIXME: Is this correct for all OS/PROC specific flags? */
7619 elf_section_flags (osec) |= (elf_section_flags (isec)
7620 & (SHF_MASKOS | SHF_MASKPROC));
7621
7622 /* Copy sh_info from input for mbind section. */
7623 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7624 elf_section_data (osec)->this_hdr.sh_info
7625 = elf_section_data (isec)->this_hdr.sh_info;
7626
7627 /* Set things up for objcopy and relocatable link. The output
7628 SHT_GROUP section will have its elf_next_in_group pointing back
7629 to the input group members. Ignore linker created group section.
7630 See elfNN_ia64_object_p in elfxx-ia64.c. */
7631 if ((link_info == NULL
7632 || !link_info->resolve_section_groups)
7633 && (elf_sec_group (isec) == NULL
7634 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7635 {
7636 if (elf_section_flags (isec) & SHF_GROUP)
7637 elf_section_flags (osec) |= SHF_GROUP;
7638 elf_next_in_group (osec) = elf_next_in_group (isec);
7639 elf_section_data (osec)->group = elf_section_data (isec)->group;
7640 }
7641
7642 /* If not decompress, preserve SHF_COMPRESSED. */
7643 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7644 elf_section_flags (osec) |= (elf_section_flags (isec)
7645 & SHF_COMPRESSED);
7646
7647 ihdr = &elf_section_data (isec)->this_hdr;
7648
7649 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7650 don't use the output section of the linked-to section since it
7651 may be NULL at this point. */
7652 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7653 {
7654 ohdr = &elf_section_data (osec)->this_hdr;
7655 ohdr->sh_flags |= SHF_LINK_ORDER;
7656 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7657 }
7658
7659 osec->use_rela_p = isec->use_rela_p;
7660
7661 return TRUE;
7662 }
7663
7664 /* Copy private section information. This copies over the entsize
7665 field, and sometimes the info field. */
7666
7667 bfd_boolean
7668 _bfd_elf_copy_private_section_data (bfd *ibfd,
7669 asection *isec,
7670 bfd *obfd,
7671 asection *osec)
7672 {
7673 Elf_Internal_Shdr *ihdr, *ohdr;
7674
7675 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7676 || obfd->xvec->flavour != bfd_target_elf_flavour)
7677 return TRUE;
7678
7679 ihdr = &elf_section_data (isec)->this_hdr;
7680 ohdr = &elf_section_data (osec)->this_hdr;
7681
7682 ohdr->sh_entsize = ihdr->sh_entsize;
7683
7684 if (ihdr->sh_type == SHT_SYMTAB
7685 || ihdr->sh_type == SHT_DYNSYM
7686 || ihdr->sh_type == SHT_GNU_verneed
7687 || ihdr->sh_type == SHT_GNU_verdef)
7688 ohdr->sh_info = ihdr->sh_info;
7689
7690 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7691 NULL);
7692 }
7693
7694 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7695 necessary if we are removing either the SHT_GROUP section or any of
7696 the group member sections. DISCARDED is the value that a section's
7697 output_section has if the section will be discarded, NULL when this
7698 function is called from objcopy, bfd_abs_section_ptr when called
7699 from the linker. */
7700
7701 bfd_boolean
7702 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7703 {
7704 asection *isec;
7705
7706 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7707 if (elf_section_type (isec) == SHT_GROUP)
7708 {
7709 asection *first = elf_next_in_group (isec);
7710 asection *s = first;
7711 bfd_size_type removed = 0;
7712
7713 while (s != NULL)
7714 {
7715 /* If this member section is being output but the
7716 SHT_GROUP section is not, then clear the group info
7717 set up by _bfd_elf_copy_private_section_data. */
7718 if (s->output_section != discarded
7719 && isec->output_section == discarded)
7720 {
7721 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7722 elf_group_name (s->output_section) = NULL;
7723 }
7724 /* Conversely, if the member section is not being output
7725 but the SHT_GROUP section is, then adjust its size. */
7726 else if (s->output_section == discarded
7727 && isec->output_section != discarded)
7728 {
7729 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7730 removed += 4;
7731 if (elf_sec->rel.hdr != NULL
7732 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7733 removed += 4;
7734 if (elf_sec->rela.hdr != NULL
7735 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7736 removed += 4;
7737 }
7738 s = elf_next_in_group (s);
7739 if (s == first)
7740 break;
7741 }
7742 if (removed != 0)
7743 {
7744 if (discarded != NULL)
7745 {
7746 /* If we've been called for ld -r, then we need to
7747 adjust the input section size. */
7748 if (isec->rawsize == 0)
7749 isec->rawsize = isec->size;
7750 isec->size = isec->rawsize - removed;
7751 if (isec->size <= 4)
7752 {
7753 isec->size = 0;
7754 isec->flags |= SEC_EXCLUDE;
7755 }
7756 }
7757 else
7758 {
7759 /* Adjust the output section size when called from
7760 objcopy. */
7761 isec->output_section->size -= removed;
7762 if (isec->output_section->size <= 4)
7763 {
7764 isec->output_section->size = 0;
7765 isec->output_section->flags |= SEC_EXCLUDE;
7766 }
7767 }
7768 }
7769 }
7770
7771 return TRUE;
7772 }
7773
7774 /* Copy private header information. */
7775
7776 bfd_boolean
7777 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7778 {
7779 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7780 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7781 return TRUE;
7782
7783 /* Copy over private BFD data if it has not already been copied.
7784 This must be done here, rather than in the copy_private_bfd_data
7785 entry point, because the latter is called after the section
7786 contents have been set, which means that the program headers have
7787 already been worked out. */
7788 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7789 {
7790 if (! copy_private_bfd_data (ibfd, obfd))
7791 return FALSE;
7792 }
7793
7794 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7795 }
7796
7797 /* Copy private symbol information. If this symbol is in a section
7798 which we did not map into a BFD section, try to map the section
7799 index correctly. We use special macro definitions for the mapped
7800 section indices; these definitions are interpreted by the
7801 swap_out_syms function. */
7802
7803 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7804 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7805 #define MAP_STRTAB (SHN_HIOS + 3)
7806 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7807 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7808
7809 bfd_boolean
7810 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7811 asymbol *isymarg,
7812 bfd *obfd,
7813 asymbol *osymarg)
7814 {
7815 elf_symbol_type *isym, *osym;
7816
7817 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7818 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7819 return TRUE;
7820
7821 isym = elf_symbol_from (ibfd, isymarg);
7822 osym = elf_symbol_from (obfd, osymarg);
7823
7824 if (isym != NULL
7825 && isym->internal_elf_sym.st_shndx != 0
7826 && osym != NULL
7827 && bfd_is_abs_section (isym->symbol.section))
7828 {
7829 unsigned int shndx;
7830
7831 shndx = isym->internal_elf_sym.st_shndx;
7832 if (shndx == elf_onesymtab (ibfd))
7833 shndx = MAP_ONESYMTAB;
7834 else if (shndx == elf_dynsymtab (ibfd))
7835 shndx = MAP_DYNSYMTAB;
7836 else if (shndx == elf_strtab_sec (ibfd))
7837 shndx = MAP_STRTAB;
7838 else if (shndx == elf_shstrtab_sec (ibfd))
7839 shndx = MAP_SHSTRTAB;
7840 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7841 shndx = MAP_SYM_SHNDX;
7842 osym->internal_elf_sym.st_shndx = shndx;
7843 }
7844
7845 return TRUE;
7846 }
7847
7848 /* Swap out the symbols. */
7849
7850 static bfd_boolean
7851 swap_out_syms (bfd *abfd,
7852 struct elf_strtab_hash **sttp,
7853 int relocatable_p)
7854 {
7855 const struct elf_backend_data *bed;
7856 int symcount;
7857 asymbol **syms;
7858 struct elf_strtab_hash *stt;
7859 Elf_Internal_Shdr *symtab_hdr;
7860 Elf_Internal_Shdr *symtab_shndx_hdr;
7861 Elf_Internal_Shdr *symstrtab_hdr;
7862 struct elf_sym_strtab *symstrtab;
7863 bfd_byte *outbound_syms;
7864 bfd_byte *outbound_shndx;
7865 unsigned long outbound_syms_index;
7866 unsigned long outbound_shndx_index;
7867 int idx;
7868 unsigned int num_locals;
7869 bfd_size_type amt;
7870 bfd_boolean name_local_sections;
7871
7872 if (!elf_map_symbols (abfd, &num_locals))
7873 return FALSE;
7874
7875 /* Dump out the symtabs. */
7876 stt = _bfd_elf_strtab_init ();
7877 if (stt == NULL)
7878 return FALSE;
7879
7880 bed = get_elf_backend_data (abfd);
7881 symcount = bfd_get_symcount (abfd);
7882 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7883 symtab_hdr->sh_type = SHT_SYMTAB;
7884 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7885 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7886 symtab_hdr->sh_info = num_locals + 1;
7887 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7888
7889 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7890 symstrtab_hdr->sh_type = SHT_STRTAB;
7891
7892 /* Allocate buffer to swap out the .strtab section. */
7893 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7894 * sizeof (*symstrtab));
7895 if (symstrtab == NULL)
7896 {
7897 _bfd_elf_strtab_free (stt);
7898 return FALSE;
7899 }
7900
7901 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7902 bed->s->sizeof_sym);
7903 if (outbound_syms == NULL)
7904 {
7905 error_return:
7906 _bfd_elf_strtab_free (stt);
7907 free (symstrtab);
7908 return FALSE;
7909 }
7910 symtab_hdr->contents = outbound_syms;
7911 outbound_syms_index = 0;
7912
7913 outbound_shndx = NULL;
7914 outbound_shndx_index = 0;
7915
7916 if (elf_symtab_shndx_list (abfd))
7917 {
7918 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7919 if (symtab_shndx_hdr->sh_name != 0)
7920 {
7921 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7922 outbound_shndx = (bfd_byte *)
7923 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7924 if (outbound_shndx == NULL)
7925 goto error_return;
7926
7927 symtab_shndx_hdr->contents = outbound_shndx;
7928 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7929 symtab_shndx_hdr->sh_size = amt;
7930 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7931 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7932 }
7933 /* FIXME: What about any other headers in the list ? */
7934 }
7935
7936 /* Now generate the data (for "contents"). */
7937 {
7938 /* Fill in zeroth symbol and swap it out. */
7939 Elf_Internal_Sym sym;
7940 sym.st_name = 0;
7941 sym.st_value = 0;
7942 sym.st_size = 0;
7943 sym.st_info = 0;
7944 sym.st_other = 0;
7945 sym.st_shndx = SHN_UNDEF;
7946 sym.st_target_internal = 0;
7947 symstrtab[0].sym = sym;
7948 symstrtab[0].dest_index = outbound_syms_index;
7949 symstrtab[0].destshndx_index = outbound_shndx_index;
7950 outbound_syms_index++;
7951 if (outbound_shndx != NULL)
7952 outbound_shndx_index++;
7953 }
7954
7955 name_local_sections
7956 = (bed->elf_backend_name_local_section_symbols
7957 && bed->elf_backend_name_local_section_symbols (abfd));
7958
7959 syms = bfd_get_outsymbols (abfd);
7960 for (idx = 0; idx < symcount;)
7961 {
7962 Elf_Internal_Sym sym;
7963 bfd_vma value = syms[idx]->value;
7964 elf_symbol_type *type_ptr;
7965 flagword flags = syms[idx]->flags;
7966 int type;
7967
7968 if (!name_local_sections
7969 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7970 {
7971 /* Local section symbols have no name. */
7972 sym.st_name = (unsigned long) -1;
7973 }
7974 else
7975 {
7976 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7977 to get the final offset for st_name. */
7978 sym.st_name
7979 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7980 FALSE);
7981 if (sym.st_name == (unsigned long) -1)
7982 goto error_return;
7983 }
7984
7985 type_ptr = elf_symbol_from (abfd, syms[idx]);
7986
7987 if ((flags & BSF_SECTION_SYM) == 0
7988 && bfd_is_com_section (syms[idx]->section))
7989 {
7990 /* ELF common symbols put the alignment into the `value' field,
7991 and the size into the `size' field. This is backwards from
7992 how BFD handles it, so reverse it here. */
7993 sym.st_size = value;
7994 if (type_ptr == NULL
7995 || type_ptr->internal_elf_sym.st_value == 0)
7996 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7997 else
7998 sym.st_value = type_ptr->internal_elf_sym.st_value;
7999 sym.st_shndx = _bfd_elf_section_from_bfd_section
8000 (abfd, syms[idx]->section);
8001 }
8002 else
8003 {
8004 asection *sec = syms[idx]->section;
8005 unsigned int shndx;
8006
8007 if (sec->output_section)
8008 {
8009 value += sec->output_offset;
8010 sec = sec->output_section;
8011 }
8012
8013 /* Don't add in the section vma for relocatable output. */
8014 if (! relocatable_p)
8015 value += sec->vma;
8016 sym.st_value = value;
8017 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8018
8019 if (bfd_is_abs_section (sec)
8020 && type_ptr != NULL
8021 && type_ptr->internal_elf_sym.st_shndx != 0)
8022 {
8023 /* This symbol is in a real ELF section which we did
8024 not create as a BFD section. Undo the mapping done
8025 by copy_private_symbol_data. */
8026 shndx = type_ptr->internal_elf_sym.st_shndx;
8027 switch (shndx)
8028 {
8029 case MAP_ONESYMTAB:
8030 shndx = elf_onesymtab (abfd);
8031 break;
8032 case MAP_DYNSYMTAB:
8033 shndx = elf_dynsymtab (abfd);
8034 break;
8035 case MAP_STRTAB:
8036 shndx = elf_strtab_sec (abfd);
8037 break;
8038 case MAP_SHSTRTAB:
8039 shndx = elf_shstrtab_sec (abfd);
8040 break;
8041 case MAP_SYM_SHNDX:
8042 if (elf_symtab_shndx_list (abfd))
8043 shndx = elf_symtab_shndx_list (abfd)->ndx;
8044 break;
8045 default:
8046 shndx = SHN_ABS;
8047 break;
8048 }
8049 }
8050 else
8051 {
8052 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8053
8054 if (shndx == SHN_BAD)
8055 {
8056 asection *sec2;
8057
8058 /* Writing this would be a hell of a lot easier if
8059 we had some decent documentation on bfd, and
8060 knew what to expect of the library, and what to
8061 demand of applications. For example, it
8062 appears that `objcopy' might not set the
8063 section of a symbol to be a section that is
8064 actually in the output file. */
8065 sec2 = bfd_get_section_by_name (abfd, sec->name);
8066 if (sec2 != NULL)
8067 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8068 if (shndx == SHN_BAD)
8069 {
8070 /* xgettext:c-format */
8071 _bfd_error_handler
8072 (_("unable to find equivalent output section"
8073 " for symbol '%s' from section '%s'"),
8074 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8075 sec->name);
8076 bfd_set_error (bfd_error_invalid_operation);
8077 goto error_return;
8078 }
8079 }
8080 }
8081
8082 sym.st_shndx = shndx;
8083 }
8084
8085 if ((flags & BSF_THREAD_LOCAL) != 0)
8086 type = STT_TLS;
8087 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8088 type = STT_GNU_IFUNC;
8089 else if ((flags & BSF_FUNCTION) != 0)
8090 type = STT_FUNC;
8091 else if ((flags & BSF_OBJECT) != 0)
8092 type = STT_OBJECT;
8093 else if ((flags & BSF_RELC) != 0)
8094 type = STT_RELC;
8095 else if ((flags & BSF_SRELC) != 0)
8096 type = STT_SRELC;
8097 else
8098 type = STT_NOTYPE;
8099
8100 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8101 type = STT_TLS;
8102
8103 /* Processor-specific types. */
8104 if (type_ptr != NULL
8105 && bed->elf_backend_get_symbol_type)
8106 type = ((*bed->elf_backend_get_symbol_type)
8107 (&type_ptr->internal_elf_sym, type));
8108
8109 if (flags & BSF_SECTION_SYM)
8110 {
8111 if (flags & BSF_GLOBAL)
8112 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8113 else
8114 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8115 }
8116 else if (bfd_is_com_section (syms[idx]->section))
8117 {
8118 if (type != STT_TLS)
8119 {
8120 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8121 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8122 ? STT_COMMON : STT_OBJECT);
8123 else
8124 type = ((flags & BSF_ELF_COMMON) != 0
8125 ? STT_COMMON : STT_OBJECT);
8126 }
8127 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8128 }
8129 else if (bfd_is_und_section (syms[idx]->section))
8130 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8131 ? STB_WEAK
8132 : STB_GLOBAL),
8133 type);
8134 else if (flags & BSF_FILE)
8135 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8136 else
8137 {
8138 int bind = STB_LOCAL;
8139
8140 if (flags & BSF_LOCAL)
8141 bind = STB_LOCAL;
8142 else if (flags & BSF_GNU_UNIQUE)
8143 bind = STB_GNU_UNIQUE;
8144 else if (flags & BSF_WEAK)
8145 bind = STB_WEAK;
8146 else if (flags & BSF_GLOBAL)
8147 bind = STB_GLOBAL;
8148
8149 sym.st_info = ELF_ST_INFO (bind, type);
8150 }
8151
8152 if (type_ptr != NULL)
8153 {
8154 sym.st_other = type_ptr->internal_elf_sym.st_other;
8155 sym.st_target_internal
8156 = type_ptr->internal_elf_sym.st_target_internal;
8157 }
8158 else
8159 {
8160 sym.st_other = 0;
8161 sym.st_target_internal = 0;
8162 }
8163
8164 idx++;
8165 symstrtab[idx].sym = sym;
8166 symstrtab[idx].dest_index = outbound_syms_index;
8167 symstrtab[idx].destshndx_index = outbound_shndx_index;
8168
8169 outbound_syms_index++;
8170 if (outbound_shndx != NULL)
8171 outbound_shndx_index++;
8172 }
8173
8174 /* Finalize the .strtab section. */
8175 _bfd_elf_strtab_finalize (stt);
8176
8177 /* Swap out the .strtab section. */
8178 for (idx = 0; idx <= symcount; idx++)
8179 {
8180 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8181 if (elfsym->sym.st_name == (unsigned long) -1)
8182 elfsym->sym.st_name = 0;
8183 else
8184 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8185 elfsym->sym.st_name);
8186 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8187 (outbound_syms
8188 + (elfsym->dest_index
8189 * bed->s->sizeof_sym)),
8190 (outbound_shndx
8191 + (elfsym->destshndx_index
8192 * sizeof (Elf_External_Sym_Shndx))));
8193 }
8194 free (symstrtab);
8195
8196 *sttp = stt;
8197 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8198 symstrtab_hdr->sh_type = SHT_STRTAB;
8199 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8200 symstrtab_hdr->sh_addr = 0;
8201 symstrtab_hdr->sh_entsize = 0;
8202 symstrtab_hdr->sh_link = 0;
8203 symstrtab_hdr->sh_info = 0;
8204 symstrtab_hdr->sh_addralign = 1;
8205
8206 return TRUE;
8207 }
8208
8209 /* Return the number of bytes required to hold the symtab vector.
8210
8211 Note that we base it on the count plus 1, since we will null terminate
8212 the vector allocated based on this size. However, the ELF symbol table
8213 always has a dummy entry as symbol #0, so it ends up even. */
8214
8215 long
8216 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8217 {
8218 long symcount;
8219 long symtab_size;
8220 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8221
8222 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8223 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8224 if (symcount > 0)
8225 symtab_size -= sizeof (asymbol *);
8226
8227 return symtab_size;
8228 }
8229
8230 long
8231 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8232 {
8233 long symcount;
8234 long symtab_size;
8235 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8236
8237 if (elf_dynsymtab (abfd) == 0)
8238 {
8239 bfd_set_error (bfd_error_invalid_operation);
8240 return -1;
8241 }
8242
8243 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8244 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8245 if (symcount > 0)
8246 symtab_size -= sizeof (asymbol *);
8247
8248 return symtab_size;
8249 }
8250
8251 long
8252 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8253 sec_ptr asect)
8254 {
8255 return (asect->reloc_count + 1) * sizeof (arelent *);
8256 }
8257
8258 /* Canonicalize the relocs. */
8259
8260 long
8261 _bfd_elf_canonicalize_reloc (bfd *abfd,
8262 sec_ptr section,
8263 arelent **relptr,
8264 asymbol **symbols)
8265 {
8266 arelent *tblptr;
8267 unsigned int i;
8268 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8269
8270 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8271 return -1;
8272
8273 tblptr = section->relocation;
8274 for (i = 0; i < section->reloc_count; i++)
8275 *relptr++ = tblptr++;
8276
8277 *relptr = NULL;
8278
8279 return section->reloc_count;
8280 }
8281
8282 long
8283 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8284 {
8285 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8286 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8287
8288 if (symcount >= 0)
8289 bfd_get_symcount (abfd) = symcount;
8290 return symcount;
8291 }
8292
8293 long
8294 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8295 asymbol **allocation)
8296 {
8297 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8298 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8299
8300 if (symcount >= 0)
8301 bfd_get_dynamic_symcount (abfd) = symcount;
8302 return symcount;
8303 }
8304
8305 /* Return the size required for the dynamic reloc entries. Any loadable
8306 section that was actually installed in the BFD, and has type SHT_REL
8307 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8308 dynamic reloc section. */
8309
8310 long
8311 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8312 {
8313 long ret;
8314 asection *s;
8315
8316 if (elf_dynsymtab (abfd) == 0)
8317 {
8318 bfd_set_error (bfd_error_invalid_operation);
8319 return -1;
8320 }
8321
8322 ret = sizeof (arelent *);
8323 for (s = abfd->sections; s != NULL; s = s->next)
8324 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8325 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8326 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8327 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8328 * sizeof (arelent *));
8329
8330 return ret;
8331 }
8332
8333 /* Canonicalize the dynamic relocation entries. Note that we return the
8334 dynamic relocations as a single block, although they are actually
8335 associated with particular sections; the interface, which was
8336 designed for SunOS style shared libraries, expects that there is only
8337 one set of dynamic relocs. Any loadable section that was actually
8338 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8339 dynamic symbol table, is considered to be a dynamic reloc section. */
8340
8341 long
8342 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8343 arelent **storage,
8344 asymbol **syms)
8345 {
8346 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8347 asection *s;
8348 long ret;
8349
8350 if (elf_dynsymtab (abfd) == 0)
8351 {
8352 bfd_set_error (bfd_error_invalid_operation);
8353 return -1;
8354 }
8355
8356 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8357 ret = 0;
8358 for (s = abfd->sections; s != NULL; s = s->next)
8359 {
8360 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8361 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8362 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8363 {
8364 arelent *p;
8365 long count, i;
8366
8367 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8368 return -1;
8369 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8370 p = s->relocation;
8371 for (i = 0; i < count; i++)
8372 *storage++ = p++;
8373 ret += count;
8374 }
8375 }
8376
8377 *storage = NULL;
8378
8379 return ret;
8380 }
8381 \f
8382 /* Read in the version information. */
8383
8384 bfd_boolean
8385 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8386 {
8387 bfd_byte *contents = NULL;
8388 unsigned int freeidx = 0;
8389
8390 if (elf_dynverref (abfd) != 0)
8391 {
8392 Elf_Internal_Shdr *hdr;
8393 Elf_External_Verneed *everneed;
8394 Elf_Internal_Verneed *iverneed;
8395 unsigned int i;
8396 bfd_byte *contents_end;
8397
8398 hdr = &elf_tdata (abfd)->dynverref_hdr;
8399
8400 if (hdr->sh_info == 0
8401 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8402 {
8403 error_return_bad_verref:
8404 _bfd_error_handler
8405 (_("%pB: .gnu.version_r invalid entry"), abfd);
8406 bfd_set_error (bfd_error_bad_value);
8407 error_return_verref:
8408 elf_tdata (abfd)->verref = NULL;
8409 elf_tdata (abfd)->cverrefs = 0;
8410 goto error_return;
8411 }
8412
8413 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8414 if (contents == NULL)
8415 goto error_return_verref;
8416
8417 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8418 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8419 goto error_return_verref;
8420
8421 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8422 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8423
8424 if (elf_tdata (abfd)->verref == NULL)
8425 goto error_return_verref;
8426
8427 BFD_ASSERT (sizeof (Elf_External_Verneed)
8428 == sizeof (Elf_External_Vernaux));
8429 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8430 everneed = (Elf_External_Verneed *) contents;
8431 iverneed = elf_tdata (abfd)->verref;
8432 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8433 {
8434 Elf_External_Vernaux *evernaux;
8435 Elf_Internal_Vernaux *ivernaux;
8436 unsigned int j;
8437
8438 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8439
8440 iverneed->vn_bfd = abfd;
8441
8442 iverneed->vn_filename =
8443 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8444 iverneed->vn_file);
8445 if (iverneed->vn_filename == NULL)
8446 goto error_return_bad_verref;
8447
8448 if (iverneed->vn_cnt == 0)
8449 iverneed->vn_auxptr = NULL;
8450 else
8451 {
8452 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8453 bfd_alloc2 (abfd, iverneed->vn_cnt,
8454 sizeof (Elf_Internal_Vernaux));
8455 if (iverneed->vn_auxptr == NULL)
8456 goto error_return_verref;
8457 }
8458
8459 if (iverneed->vn_aux
8460 > (size_t) (contents_end - (bfd_byte *) everneed))
8461 goto error_return_bad_verref;
8462
8463 evernaux = ((Elf_External_Vernaux *)
8464 ((bfd_byte *) everneed + iverneed->vn_aux));
8465 ivernaux = iverneed->vn_auxptr;
8466 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8467 {
8468 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8469
8470 ivernaux->vna_nodename =
8471 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8472 ivernaux->vna_name);
8473 if (ivernaux->vna_nodename == NULL)
8474 goto error_return_bad_verref;
8475
8476 if (ivernaux->vna_other > freeidx)
8477 freeidx = ivernaux->vna_other;
8478
8479 ivernaux->vna_nextptr = NULL;
8480 if (ivernaux->vna_next == 0)
8481 {
8482 iverneed->vn_cnt = j + 1;
8483 break;
8484 }
8485 if (j + 1 < iverneed->vn_cnt)
8486 ivernaux->vna_nextptr = ivernaux + 1;
8487
8488 if (ivernaux->vna_next
8489 > (size_t) (contents_end - (bfd_byte *) evernaux))
8490 goto error_return_bad_verref;
8491
8492 evernaux = ((Elf_External_Vernaux *)
8493 ((bfd_byte *) evernaux + ivernaux->vna_next));
8494 }
8495
8496 iverneed->vn_nextref = NULL;
8497 if (iverneed->vn_next == 0)
8498 break;
8499 if (i + 1 < hdr->sh_info)
8500 iverneed->vn_nextref = iverneed + 1;
8501
8502 if (iverneed->vn_next
8503 > (size_t) (contents_end - (bfd_byte *) everneed))
8504 goto error_return_bad_verref;
8505
8506 everneed = ((Elf_External_Verneed *)
8507 ((bfd_byte *) everneed + iverneed->vn_next));
8508 }
8509 elf_tdata (abfd)->cverrefs = i;
8510
8511 free (contents);
8512 contents = NULL;
8513 }
8514
8515 if (elf_dynverdef (abfd) != 0)
8516 {
8517 Elf_Internal_Shdr *hdr;
8518 Elf_External_Verdef *everdef;
8519 Elf_Internal_Verdef *iverdef;
8520 Elf_Internal_Verdef *iverdefarr;
8521 Elf_Internal_Verdef iverdefmem;
8522 unsigned int i;
8523 unsigned int maxidx;
8524 bfd_byte *contents_end_def, *contents_end_aux;
8525
8526 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8527
8528 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8529 {
8530 error_return_bad_verdef:
8531 _bfd_error_handler
8532 (_("%pB: .gnu.version_d invalid entry"), abfd);
8533 bfd_set_error (bfd_error_bad_value);
8534 error_return_verdef:
8535 elf_tdata (abfd)->verdef = NULL;
8536 elf_tdata (abfd)->cverdefs = 0;
8537 goto error_return;
8538 }
8539
8540 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8541 if (contents == NULL)
8542 goto error_return_verdef;
8543 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8544 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8545 goto error_return_verdef;
8546
8547 BFD_ASSERT (sizeof (Elf_External_Verdef)
8548 >= sizeof (Elf_External_Verdaux));
8549 contents_end_def = contents + hdr->sh_size
8550 - sizeof (Elf_External_Verdef);
8551 contents_end_aux = contents + hdr->sh_size
8552 - sizeof (Elf_External_Verdaux);
8553
8554 /* We know the number of entries in the section but not the maximum
8555 index. Therefore we have to run through all entries and find
8556 the maximum. */
8557 everdef = (Elf_External_Verdef *) contents;
8558 maxidx = 0;
8559 for (i = 0; i < hdr->sh_info; ++i)
8560 {
8561 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8562
8563 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8564 goto error_return_bad_verdef;
8565 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8566 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8567
8568 if (iverdefmem.vd_next == 0)
8569 break;
8570
8571 if (iverdefmem.vd_next
8572 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8573 goto error_return_bad_verdef;
8574
8575 everdef = ((Elf_External_Verdef *)
8576 ((bfd_byte *) everdef + iverdefmem.vd_next));
8577 }
8578
8579 if (default_imported_symver)
8580 {
8581 if (freeidx > maxidx)
8582 maxidx = ++freeidx;
8583 else
8584 freeidx = ++maxidx;
8585 }
8586
8587 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8588 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8589 if (elf_tdata (abfd)->verdef == NULL)
8590 goto error_return_verdef;
8591
8592 elf_tdata (abfd)->cverdefs = maxidx;
8593
8594 everdef = (Elf_External_Verdef *) contents;
8595 iverdefarr = elf_tdata (abfd)->verdef;
8596 for (i = 0; i < hdr->sh_info; i++)
8597 {
8598 Elf_External_Verdaux *everdaux;
8599 Elf_Internal_Verdaux *iverdaux;
8600 unsigned int j;
8601
8602 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8603
8604 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8605 goto error_return_bad_verdef;
8606
8607 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8608 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8609
8610 iverdef->vd_bfd = abfd;
8611
8612 if (iverdef->vd_cnt == 0)
8613 iverdef->vd_auxptr = NULL;
8614 else
8615 {
8616 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8617 bfd_alloc2 (abfd, iverdef->vd_cnt,
8618 sizeof (Elf_Internal_Verdaux));
8619 if (iverdef->vd_auxptr == NULL)
8620 goto error_return_verdef;
8621 }
8622
8623 if (iverdef->vd_aux
8624 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8625 goto error_return_bad_verdef;
8626
8627 everdaux = ((Elf_External_Verdaux *)
8628 ((bfd_byte *) everdef + iverdef->vd_aux));
8629 iverdaux = iverdef->vd_auxptr;
8630 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8631 {
8632 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8633
8634 iverdaux->vda_nodename =
8635 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8636 iverdaux->vda_name);
8637 if (iverdaux->vda_nodename == NULL)
8638 goto error_return_bad_verdef;
8639
8640 iverdaux->vda_nextptr = NULL;
8641 if (iverdaux->vda_next == 0)
8642 {
8643 iverdef->vd_cnt = j + 1;
8644 break;
8645 }
8646 if (j + 1 < iverdef->vd_cnt)
8647 iverdaux->vda_nextptr = iverdaux + 1;
8648
8649 if (iverdaux->vda_next
8650 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8651 goto error_return_bad_verdef;
8652
8653 everdaux = ((Elf_External_Verdaux *)
8654 ((bfd_byte *) everdaux + iverdaux->vda_next));
8655 }
8656
8657 iverdef->vd_nodename = NULL;
8658 if (iverdef->vd_cnt)
8659 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8660
8661 iverdef->vd_nextdef = NULL;
8662 if (iverdef->vd_next == 0)
8663 break;
8664 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8665 iverdef->vd_nextdef = iverdef + 1;
8666
8667 everdef = ((Elf_External_Verdef *)
8668 ((bfd_byte *) everdef + iverdef->vd_next));
8669 }
8670
8671 free (contents);
8672 contents = NULL;
8673 }
8674 else if (default_imported_symver)
8675 {
8676 if (freeidx < 3)
8677 freeidx = 3;
8678 else
8679 freeidx++;
8680
8681 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8682 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8683 if (elf_tdata (abfd)->verdef == NULL)
8684 goto error_return;
8685
8686 elf_tdata (abfd)->cverdefs = freeidx;
8687 }
8688
8689 /* Create a default version based on the soname. */
8690 if (default_imported_symver)
8691 {
8692 Elf_Internal_Verdef *iverdef;
8693 Elf_Internal_Verdaux *iverdaux;
8694
8695 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8696
8697 iverdef->vd_version = VER_DEF_CURRENT;
8698 iverdef->vd_flags = 0;
8699 iverdef->vd_ndx = freeidx;
8700 iverdef->vd_cnt = 1;
8701
8702 iverdef->vd_bfd = abfd;
8703
8704 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8705 if (iverdef->vd_nodename == NULL)
8706 goto error_return_verdef;
8707 iverdef->vd_nextdef = NULL;
8708 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8709 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8710 if (iverdef->vd_auxptr == NULL)
8711 goto error_return_verdef;
8712
8713 iverdaux = iverdef->vd_auxptr;
8714 iverdaux->vda_nodename = iverdef->vd_nodename;
8715 }
8716
8717 return TRUE;
8718
8719 error_return:
8720 if (contents != NULL)
8721 free (contents);
8722 return FALSE;
8723 }
8724 \f
8725 asymbol *
8726 _bfd_elf_make_empty_symbol (bfd *abfd)
8727 {
8728 elf_symbol_type *newsym;
8729
8730 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8731 if (!newsym)
8732 return NULL;
8733 newsym->symbol.the_bfd = abfd;
8734 return &newsym->symbol;
8735 }
8736
8737 void
8738 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8739 asymbol *symbol,
8740 symbol_info *ret)
8741 {
8742 bfd_symbol_info (symbol, ret);
8743 }
8744
8745 /* Return whether a symbol name implies a local symbol. Most targets
8746 use this function for the is_local_label_name entry point, but some
8747 override it. */
8748
8749 bfd_boolean
8750 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8751 const char *name)
8752 {
8753 /* Normal local symbols start with ``.L''. */
8754 if (name[0] == '.' && name[1] == 'L')
8755 return TRUE;
8756
8757 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8758 DWARF debugging symbols starting with ``..''. */
8759 if (name[0] == '.' && name[1] == '.')
8760 return TRUE;
8761
8762 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8763 emitting DWARF debugging output. I suspect this is actually a
8764 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8765 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8766 underscore to be emitted on some ELF targets). For ease of use,
8767 we treat such symbols as local. */
8768 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8769 return TRUE;
8770
8771 /* Treat assembler generated fake symbols, dollar local labels and
8772 forward-backward labels (aka local labels) as locals.
8773 These labels have the form:
8774
8775 L0^A.* (fake symbols)
8776
8777 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8778
8779 Versions which start with .L will have already been matched above,
8780 so we only need to match the rest. */
8781 if (name[0] == 'L' && ISDIGIT (name[1]))
8782 {
8783 bfd_boolean ret = FALSE;
8784 const char * p;
8785 char c;
8786
8787 for (p = name + 2; (c = *p); p++)
8788 {
8789 if (c == 1 || c == 2)
8790 {
8791 if (c == 1 && p == name + 2)
8792 /* A fake symbol. */
8793 return TRUE;
8794
8795 /* FIXME: We are being paranoid here and treating symbols like
8796 L0^Bfoo as if there were non-local, on the grounds that the
8797 assembler will never generate them. But can any symbol
8798 containing an ASCII value in the range 1-31 ever be anything
8799 other than some kind of local ? */
8800 ret = TRUE;
8801 }
8802
8803 if (! ISDIGIT (c))
8804 {
8805 ret = FALSE;
8806 break;
8807 }
8808 }
8809 return ret;
8810 }
8811
8812 return FALSE;
8813 }
8814
8815 alent *
8816 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8817 asymbol *symbol ATTRIBUTE_UNUSED)
8818 {
8819 abort ();
8820 return NULL;
8821 }
8822
8823 bfd_boolean
8824 _bfd_elf_set_arch_mach (bfd *abfd,
8825 enum bfd_architecture arch,
8826 unsigned long machine)
8827 {
8828 /* If this isn't the right architecture for this backend, and this
8829 isn't the generic backend, fail. */
8830 if (arch != get_elf_backend_data (abfd)->arch
8831 && arch != bfd_arch_unknown
8832 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8833 return FALSE;
8834
8835 return bfd_default_set_arch_mach (abfd, arch, machine);
8836 }
8837
8838 /* Find the nearest line to a particular section and offset,
8839 for error reporting. */
8840
8841 bfd_boolean
8842 _bfd_elf_find_nearest_line (bfd *abfd,
8843 asymbol **symbols,
8844 asection *section,
8845 bfd_vma offset,
8846 const char **filename_ptr,
8847 const char **functionname_ptr,
8848 unsigned int *line_ptr,
8849 unsigned int *discriminator_ptr)
8850 {
8851 bfd_boolean found;
8852
8853 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8854 filename_ptr, functionname_ptr,
8855 line_ptr, discriminator_ptr,
8856 dwarf_debug_sections, 0,
8857 &elf_tdata (abfd)->dwarf2_find_line_info)
8858 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8859 filename_ptr, functionname_ptr,
8860 line_ptr))
8861 {
8862 if (!*functionname_ptr)
8863 _bfd_elf_find_function (abfd, symbols, section, offset,
8864 *filename_ptr ? NULL : filename_ptr,
8865 functionname_ptr);
8866 return TRUE;
8867 }
8868
8869 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8870 &found, filename_ptr,
8871 functionname_ptr, line_ptr,
8872 &elf_tdata (abfd)->line_info))
8873 return FALSE;
8874 if (found && (*functionname_ptr || *line_ptr))
8875 return TRUE;
8876
8877 if (symbols == NULL)
8878 return FALSE;
8879
8880 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8881 filename_ptr, functionname_ptr))
8882 return FALSE;
8883
8884 *line_ptr = 0;
8885 return TRUE;
8886 }
8887
8888 /* Find the line for a symbol. */
8889
8890 bfd_boolean
8891 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8892 const char **filename_ptr, unsigned int *line_ptr)
8893 {
8894 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8895 filename_ptr, NULL, line_ptr, NULL,
8896 dwarf_debug_sections, 0,
8897 &elf_tdata (abfd)->dwarf2_find_line_info);
8898 }
8899
8900 /* After a call to bfd_find_nearest_line, successive calls to
8901 bfd_find_inliner_info can be used to get source information about
8902 each level of function inlining that terminated at the address
8903 passed to bfd_find_nearest_line. Currently this is only supported
8904 for DWARF2 with appropriate DWARF3 extensions. */
8905
8906 bfd_boolean
8907 _bfd_elf_find_inliner_info (bfd *abfd,
8908 const char **filename_ptr,
8909 const char **functionname_ptr,
8910 unsigned int *line_ptr)
8911 {
8912 bfd_boolean found;
8913 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8914 functionname_ptr, line_ptr,
8915 & elf_tdata (abfd)->dwarf2_find_line_info);
8916 return found;
8917 }
8918
8919 int
8920 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8921 {
8922 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8923 int ret = bed->s->sizeof_ehdr;
8924
8925 if (!bfd_link_relocatable (info))
8926 {
8927 bfd_size_type phdr_size = elf_program_header_size (abfd);
8928
8929 if (phdr_size == (bfd_size_type) -1)
8930 {
8931 struct elf_segment_map *m;
8932
8933 phdr_size = 0;
8934 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8935 phdr_size += bed->s->sizeof_phdr;
8936
8937 if (phdr_size == 0)
8938 phdr_size = get_program_header_size (abfd, info);
8939 }
8940
8941 elf_program_header_size (abfd) = phdr_size;
8942 ret += phdr_size;
8943 }
8944
8945 return ret;
8946 }
8947
8948 bfd_boolean
8949 _bfd_elf_set_section_contents (bfd *abfd,
8950 sec_ptr section,
8951 const void *location,
8952 file_ptr offset,
8953 bfd_size_type count)
8954 {
8955 Elf_Internal_Shdr *hdr;
8956 file_ptr pos;
8957
8958 if (! abfd->output_has_begun
8959 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8960 return FALSE;
8961
8962 if (!count)
8963 return TRUE;
8964
8965 hdr = &elf_section_data (section)->this_hdr;
8966 if (hdr->sh_offset == (file_ptr) -1)
8967 {
8968 /* We must compress this section. Write output to the buffer. */
8969 unsigned char *contents = hdr->contents;
8970 if ((offset + count) > hdr->sh_size
8971 || (section->flags & SEC_ELF_COMPRESS) == 0
8972 || contents == NULL)
8973 abort ();
8974 memcpy (contents + offset, location, count);
8975 return TRUE;
8976 }
8977 pos = hdr->sh_offset + offset;
8978 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8979 || bfd_bwrite (location, count, abfd) != count)
8980 return FALSE;
8981
8982 return TRUE;
8983 }
8984
8985 bfd_boolean
8986 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8987 arelent *cache_ptr ATTRIBUTE_UNUSED,
8988 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8989 {
8990 abort ();
8991 return FALSE;
8992 }
8993
8994 /* Try to convert a non-ELF reloc into an ELF one. */
8995
8996 bfd_boolean
8997 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8998 {
8999 /* Check whether we really have an ELF howto. */
9000
9001 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9002 {
9003 bfd_reloc_code_real_type code;
9004 reloc_howto_type *howto;
9005
9006 /* Alien reloc: Try to determine its type to replace it with an
9007 equivalent ELF reloc. */
9008
9009 if (areloc->howto->pc_relative)
9010 {
9011 switch (areloc->howto->bitsize)
9012 {
9013 case 8:
9014 code = BFD_RELOC_8_PCREL;
9015 break;
9016 case 12:
9017 code = BFD_RELOC_12_PCREL;
9018 break;
9019 case 16:
9020 code = BFD_RELOC_16_PCREL;
9021 break;
9022 case 24:
9023 code = BFD_RELOC_24_PCREL;
9024 break;
9025 case 32:
9026 code = BFD_RELOC_32_PCREL;
9027 break;
9028 case 64:
9029 code = BFD_RELOC_64_PCREL;
9030 break;
9031 default:
9032 goto fail;
9033 }
9034
9035 howto = bfd_reloc_type_lookup (abfd, code);
9036
9037 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
9038 {
9039 if (howto->pcrel_offset)
9040 areloc->addend += areloc->address;
9041 else
9042 areloc->addend -= areloc->address; /* addend is unsigned!! */
9043 }
9044 }
9045 else
9046 {
9047 switch (areloc->howto->bitsize)
9048 {
9049 case 8:
9050 code = BFD_RELOC_8;
9051 break;
9052 case 14:
9053 code = BFD_RELOC_14;
9054 break;
9055 case 16:
9056 code = BFD_RELOC_16;
9057 break;
9058 case 26:
9059 code = BFD_RELOC_26;
9060 break;
9061 case 32:
9062 code = BFD_RELOC_32;
9063 break;
9064 case 64:
9065 code = BFD_RELOC_64;
9066 break;
9067 default:
9068 goto fail;
9069 }
9070
9071 howto = bfd_reloc_type_lookup (abfd, code);
9072 }
9073
9074 if (howto)
9075 areloc->howto = howto;
9076 else
9077 goto fail;
9078 }
9079
9080 return TRUE;
9081
9082 fail:
9083 /* xgettext:c-format */
9084 _bfd_error_handler (_("%pB: %s unsupported"),
9085 abfd, areloc->howto->name);
9086 bfd_set_error (bfd_error_bad_value);
9087 return FALSE;
9088 }
9089
9090 bfd_boolean
9091 _bfd_elf_close_and_cleanup (bfd *abfd)
9092 {
9093 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9094 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9095 {
9096 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9097 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9098 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9099 }
9100
9101 return _bfd_generic_close_and_cleanup (abfd);
9102 }
9103
9104 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9105 in the relocation's offset. Thus we cannot allow any sort of sanity
9106 range-checking to interfere. There is nothing else to do in processing
9107 this reloc. */
9108
9109 bfd_reloc_status_type
9110 _bfd_elf_rel_vtable_reloc_fn
9111 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9112 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9113 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9114 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9115 {
9116 return bfd_reloc_ok;
9117 }
9118 \f
9119 /* Elf core file support. Much of this only works on native
9120 toolchains, since we rely on knowing the
9121 machine-dependent procfs structure in order to pick
9122 out details about the corefile. */
9123
9124 #ifdef HAVE_SYS_PROCFS_H
9125 /* Needed for new procfs interface on sparc-solaris. */
9126 # define _STRUCTURED_PROC 1
9127 # include <sys/procfs.h>
9128 #endif
9129
9130 /* Return a PID that identifies a "thread" for threaded cores, or the
9131 PID of the main process for non-threaded cores. */
9132
9133 static int
9134 elfcore_make_pid (bfd *abfd)
9135 {
9136 int pid;
9137
9138 pid = elf_tdata (abfd)->core->lwpid;
9139 if (pid == 0)
9140 pid = elf_tdata (abfd)->core->pid;
9141
9142 return pid;
9143 }
9144
9145 /* If there isn't a section called NAME, make one, using
9146 data from SECT. Note, this function will generate a
9147 reference to NAME, so you shouldn't deallocate or
9148 overwrite it. */
9149
9150 static bfd_boolean
9151 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9152 {
9153 asection *sect2;
9154
9155 if (bfd_get_section_by_name (abfd, name) != NULL)
9156 return TRUE;
9157
9158 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9159 if (sect2 == NULL)
9160 return FALSE;
9161
9162 sect2->size = sect->size;
9163 sect2->filepos = sect->filepos;
9164 sect2->alignment_power = sect->alignment_power;
9165 return TRUE;
9166 }
9167
9168 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9169 actually creates up to two pseudosections:
9170 - For the single-threaded case, a section named NAME, unless
9171 such a section already exists.
9172 - For the multi-threaded case, a section named "NAME/PID", where
9173 PID is elfcore_make_pid (abfd).
9174 Both pseudosections have identical contents. */
9175 bfd_boolean
9176 _bfd_elfcore_make_pseudosection (bfd *abfd,
9177 char *name,
9178 size_t size,
9179 ufile_ptr filepos)
9180 {
9181 char buf[100];
9182 char *threaded_name;
9183 size_t len;
9184 asection *sect;
9185
9186 /* Build the section name. */
9187
9188 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9189 len = strlen (buf) + 1;
9190 threaded_name = (char *) bfd_alloc (abfd, len);
9191 if (threaded_name == NULL)
9192 return FALSE;
9193 memcpy (threaded_name, buf, len);
9194
9195 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9196 SEC_HAS_CONTENTS);
9197 if (sect == NULL)
9198 return FALSE;
9199 sect->size = size;
9200 sect->filepos = filepos;
9201 sect->alignment_power = 2;
9202
9203 return elfcore_maybe_make_sect (abfd, name, sect);
9204 }
9205
9206 /* prstatus_t exists on:
9207 solaris 2.5+
9208 linux 2.[01] + glibc
9209 unixware 4.2
9210 */
9211
9212 #if defined (HAVE_PRSTATUS_T)
9213
9214 static bfd_boolean
9215 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9216 {
9217 size_t size;
9218 int offset;
9219
9220 if (note->descsz == sizeof (prstatus_t))
9221 {
9222 prstatus_t prstat;
9223
9224 size = sizeof (prstat.pr_reg);
9225 offset = offsetof (prstatus_t, pr_reg);
9226 memcpy (&prstat, note->descdata, sizeof (prstat));
9227
9228 /* Do not overwrite the core signal if it
9229 has already been set by another thread. */
9230 if (elf_tdata (abfd)->core->signal == 0)
9231 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9232 if (elf_tdata (abfd)->core->pid == 0)
9233 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9234
9235 /* pr_who exists on:
9236 solaris 2.5+
9237 unixware 4.2
9238 pr_who doesn't exist on:
9239 linux 2.[01]
9240 */
9241 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9242 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9243 #else
9244 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9245 #endif
9246 }
9247 #if defined (HAVE_PRSTATUS32_T)
9248 else if (note->descsz == sizeof (prstatus32_t))
9249 {
9250 /* 64-bit host, 32-bit corefile */
9251 prstatus32_t prstat;
9252
9253 size = sizeof (prstat.pr_reg);
9254 offset = offsetof (prstatus32_t, pr_reg);
9255 memcpy (&prstat, note->descdata, sizeof (prstat));
9256
9257 /* Do not overwrite the core signal if it
9258 has already been set by another thread. */
9259 if (elf_tdata (abfd)->core->signal == 0)
9260 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9261 if (elf_tdata (abfd)->core->pid == 0)
9262 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9263
9264 /* pr_who exists on:
9265 solaris 2.5+
9266 unixware 4.2
9267 pr_who doesn't exist on:
9268 linux 2.[01]
9269 */
9270 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9271 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9272 #else
9273 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9274 #endif
9275 }
9276 #endif /* HAVE_PRSTATUS32_T */
9277 else
9278 {
9279 /* Fail - we don't know how to handle any other
9280 note size (ie. data object type). */
9281 return TRUE;
9282 }
9283
9284 /* Make a ".reg/999" section and a ".reg" section. */
9285 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9286 size, note->descpos + offset);
9287 }
9288 #endif /* defined (HAVE_PRSTATUS_T) */
9289
9290 /* Create a pseudosection containing the exact contents of NOTE. */
9291 static bfd_boolean
9292 elfcore_make_note_pseudosection (bfd *abfd,
9293 char *name,
9294 Elf_Internal_Note *note)
9295 {
9296 return _bfd_elfcore_make_pseudosection (abfd, name,
9297 note->descsz, note->descpos);
9298 }
9299
9300 /* There isn't a consistent prfpregset_t across platforms,
9301 but it doesn't matter, because we don't have to pick this
9302 data structure apart. */
9303
9304 static bfd_boolean
9305 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9306 {
9307 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9308 }
9309
9310 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9311 type of NT_PRXFPREG. Just include the whole note's contents
9312 literally. */
9313
9314 static bfd_boolean
9315 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9316 {
9317 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9318 }
9319
9320 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9321 with a note type of NT_X86_XSTATE. Just include the whole note's
9322 contents literally. */
9323
9324 static bfd_boolean
9325 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9326 {
9327 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9328 }
9329
9330 static bfd_boolean
9331 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9332 {
9333 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9334 }
9335
9336 static bfd_boolean
9337 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9338 {
9339 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9340 }
9341
9342 static bfd_boolean
9343 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9344 {
9345 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9346 }
9347
9348 static bfd_boolean
9349 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9350 {
9351 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9352 }
9353
9354 static bfd_boolean
9355 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9356 {
9357 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9358 }
9359
9360 static bfd_boolean
9361 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9362 {
9363 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9364 }
9365
9366 static bfd_boolean
9367 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9368 {
9369 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9370 }
9371
9372 static bfd_boolean
9373 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9374 {
9375 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9376 }
9377
9378 static bfd_boolean
9379 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9380 {
9381 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9382 }
9383
9384 static bfd_boolean
9385 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9386 {
9387 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9388 }
9389
9390 static bfd_boolean
9391 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9392 {
9393 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9394 }
9395
9396 static bfd_boolean
9397 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9398 {
9399 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9400 }
9401
9402 static bfd_boolean
9403 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9404 {
9405 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9406 }
9407
9408 static bfd_boolean
9409 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9410 {
9411 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9412 }
9413
9414 static bfd_boolean
9415 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9416 {
9417 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9418 }
9419
9420 static bfd_boolean
9421 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9422 {
9423 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9424 }
9425
9426 static bfd_boolean
9427 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9428 {
9429 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9430 }
9431
9432 static bfd_boolean
9433 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9434 {
9435 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9436 }
9437
9438 static bfd_boolean
9439 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9440 {
9441 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9442 }
9443
9444 static bfd_boolean
9445 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9446 {
9447 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9448 }
9449
9450 static bfd_boolean
9451 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9452 {
9453 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9454 }
9455
9456 static bfd_boolean
9457 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9458 {
9459 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9460 }
9461
9462 static bfd_boolean
9463 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9464 {
9465 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9466 }
9467
9468 static bfd_boolean
9469 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9470 {
9471 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9472 }
9473
9474 static bfd_boolean
9475 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9476 {
9477 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9478 }
9479
9480 static bfd_boolean
9481 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9482 {
9483 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9484 }
9485
9486 static bfd_boolean
9487 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9488 {
9489 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9490 }
9491
9492 static bfd_boolean
9493 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9494 {
9495 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9496 }
9497
9498 static bfd_boolean
9499 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9500 {
9501 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9502 }
9503
9504 static bfd_boolean
9505 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9506 {
9507 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9508 }
9509
9510 static bfd_boolean
9511 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9512 {
9513 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9514 }
9515
9516 static bfd_boolean
9517 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9518 {
9519 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9520 }
9521
9522 static bfd_boolean
9523 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9524 {
9525 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9526 }
9527
9528 #if defined (HAVE_PRPSINFO_T)
9529 typedef prpsinfo_t elfcore_psinfo_t;
9530 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9531 typedef prpsinfo32_t elfcore_psinfo32_t;
9532 #endif
9533 #endif
9534
9535 #if defined (HAVE_PSINFO_T)
9536 typedef psinfo_t elfcore_psinfo_t;
9537 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9538 typedef psinfo32_t elfcore_psinfo32_t;
9539 #endif
9540 #endif
9541
9542 /* return a malloc'ed copy of a string at START which is at
9543 most MAX bytes long, possibly without a terminating '\0'.
9544 the copy will always have a terminating '\0'. */
9545
9546 char *
9547 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9548 {
9549 char *dups;
9550 char *end = (char *) memchr (start, '\0', max);
9551 size_t len;
9552
9553 if (end == NULL)
9554 len = max;
9555 else
9556 len = end - start;
9557
9558 dups = (char *) bfd_alloc (abfd, len + 1);
9559 if (dups == NULL)
9560 return NULL;
9561
9562 memcpy (dups, start, len);
9563 dups[len] = '\0';
9564
9565 return dups;
9566 }
9567
9568 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9569 static bfd_boolean
9570 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9571 {
9572 if (note->descsz == sizeof (elfcore_psinfo_t))
9573 {
9574 elfcore_psinfo_t psinfo;
9575
9576 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9577
9578 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9579 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9580 #endif
9581 elf_tdata (abfd)->core->program
9582 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9583 sizeof (psinfo.pr_fname));
9584
9585 elf_tdata (abfd)->core->command
9586 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9587 sizeof (psinfo.pr_psargs));
9588 }
9589 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9590 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9591 {
9592 /* 64-bit host, 32-bit corefile */
9593 elfcore_psinfo32_t psinfo;
9594
9595 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9596
9597 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9598 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9599 #endif
9600 elf_tdata (abfd)->core->program
9601 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9602 sizeof (psinfo.pr_fname));
9603
9604 elf_tdata (abfd)->core->command
9605 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9606 sizeof (psinfo.pr_psargs));
9607 }
9608 #endif
9609
9610 else
9611 {
9612 /* Fail - we don't know how to handle any other
9613 note size (ie. data object type). */
9614 return TRUE;
9615 }
9616
9617 /* Note that for some reason, a spurious space is tacked
9618 onto the end of the args in some (at least one anyway)
9619 implementations, so strip it off if it exists. */
9620
9621 {
9622 char *command = elf_tdata (abfd)->core->command;
9623 int n = strlen (command);
9624
9625 if (0 < n && command[n - 1] == ' ')
9626 command[n - 1] = '\0';
9627 }
9628
9629 return TRUE;
9630 }
9631 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9632
9633 #if defined (HAVE_PSTATUS_T)
9634 static bfd_boolean
9635 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9636 {
9637 if (note->descsz == sizeof (pstatus_t)
9638 #if defined (HAVE_PXSTATUS_T)
9639 || note->descsz == sizeof (pxstatus_t)
9640 #endif
9641 )
9642 {
9643 pstatus_t pstat;
9644
9645 memcpy (&pstat, note->descdata, sizeof (pstat));
9646
9647 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9648 }
9649 #if defined (HAVE_PSTATUS32_T)
9650 else if (note->descsz == sizeof (pstatus32_t))
9651 {
9652 /* 64-bit host, 32-bit corefile */
9653 pstatus32_t pstat;
9654
9655 memcpy (&pstat, note->descdata, sizeof (pstat));
9656
9657 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9658 }
9659 #endif
9660 /* Could grab some more details from the "representative"
9661 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9662 NT_LWPSTATUS note, presumably. */
9663
9664 return TRUE;
9665 }
9666 #endif /* defined (HAVE_PSTATUS_T) */
9667
9668 #if defined (HAVE_LWPSTATUS_T)
9669 static bfd_boolean
9670 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9671 {
9672 lwpstatus_t lwpstat;
9673 char buf[100];
9674 char *name;
9675 size_t len;
9676 asection *sect;
9677
9678 if (note->descsz != sizeof (lwpstat)
9679 #if defined (HAVE_LWPXSTATUS_T)
9680 && note->descsz != sizeof (lwpxstatus_t)
9681 #endif
9682 )
9683 return TRUE;
9684
9685 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9686
9687 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9688 /* Do not overwrite the core signal if it has already been set by
9689 another thread. */
9690 if (elf_tdata (abfd)->core->signal == 0)
9691 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9692
9693 /* Make a ".reg/999" section. */
9694
9695 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9696 len = strlen (buf) + 1;
9697 name = bfd_alloc (abfd, len);
9698 if (name == NULL)
9699 return FALSE;
9700 memcpy (name, buf, len);
9701
9702 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9703 if (sect == NULL)
9704 return FALSE;
9705
9706 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9707 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9708 sect->filepos = note->descpos
9709 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9710 #endif
9711
9712 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9713 sect->size = sizeof (lwpstat.pr_reg);
9714 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9715 #endif
9716
9717 sect->alignment_power = 2;
9718
9719 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9720 return FALSE;
9721
9722 /* Make a ".reg2/999" section */
9723
9724 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9725 len = strlen (buf) + 1;
9726 name = bfd_alloc (abfd, len);
9727 if (name == NULL)
9728 return FALSE;
9729 memcpy (name, buf, len);
9730
9731 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9732 if (sect == NULL)
9733 return FALSE;
9734
9735 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9736 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9737 sect->filepos = note->descpos
9738 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9739 #endif
9740
9741 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9742 sect->size = sizeof (lwpstat.pr_fpreg);
9743 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9744 #endif
9745
9746 sect->alignment_power = 2;
9747
9748 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9749 }
9750 #endif /* defined (HAVE_LWPSTATUS_T) */
9751
9752 static bfd_boolean
9753 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9754 {
9755 char buf[30];
9756 char *name;
9757 size_t len;
9758 asection *sect;
9759 int type;
9760 int is_active_thread;
9761 bfd_vma base_addr;
9762
9763 if (note->descsz < 728)
9764 return TRUE;
9765
9766 if (! CONST_STRNEQ (note->namedata, "win32"))
9767 return TRUE;
9768
9769 type = bfd_get_32 (abfd, note->descdata);
9770
9771 switch (type)
9772 {
9773 case 1 /* NOTE_INFO_PROCESS */:
9774 /* FIXME: need to add ->core->command. */
9775 /* process_info.pid */
9776 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9777 /* process_info.signal */
9778 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9779 break;
9780
9781 case 2 /* NOTE_INFO_THREAD */:
9782 /* Make a ".reg/999" section. */
9783 /* thread_info.tid */
9784 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9785
9786 len = strlen (buf) + 1;
9787 name = (char *) bfd_alloc (abfd, len);
9788 if (name == NULL)
9789 return FALSE;
9790
9791 memcpy (name, buf, len);
9792
9793 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9794 if (sect == NULL)
9795 return FALSE;
9796
9797 /* sizeof (thread_info.thread_context) */
9798 sect->size = 716;
9799 /* offsetof (thread_info.thread_context) */
9800 sect->filepos = note->descpos + 12;
9801 sect->alignment_power = 2;
9802
9803 /* thread_info.is_active_thread */
9804 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9805
9806 if (is_active_thread)
9807 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9808 return FALSE;
9809 break;
9810
9811 case 3 /* NOTE_INFO_MODULE */:
9812 /* Make a ".module/xxxxxxxx" section. */
9813 /* module_info.base_address */
9814 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9815 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9816
9817 len = strlen (buf) + 1;
9818 name = (char *) bfd_alloc (abfd, len);
9819 if (name == NULL)
9820 return FALSE;
9821
9822 memcpy (name, buf, len);
9823
9824 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9825
9826 if (sect == NULL)
9827 return FALSE;
9828
9829 sect->size = note->descsz;
9830 sect->filepos = note->descpos;
9831 sect->alignment_power = 2;
9832 break;
9833
9834 default:
9835 return TRUE;
9836 }
9837
9838 return TRUE;
9839 }
9840
9841 static bfd_boolean
9842 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9843 {
9844 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9845
9846 switch (note->type)
9847 {
9848 default:
9849 return TRUE;
9850
9851 case NT_PRSTATUS:
9852 if (bed->elf_backend_grok_prstatus)
9853 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9854 return TRUE;
9855 #if defined (HAVE_PRSTATUS_T)
9856 return elfcore_grok_prstatus (abfd, note);
9857 #else
9858 return TRUE;
9859 #endif
9860
9861 #if defined (HAVE_PSTATUS_T)
9862 case NT_PSTATUS:
9863 return elfcore_grok_pstatus (abfd, note);
9864 #endif
9865
9866 #if defined (HAVE_LWPSTATUS_T)
9867 case NT_LWPSTATUS:
9868 return elfcore_grok_lwpstatus (abfd, note);
9869 #endif
9870
9871 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9872 return elfcore_grok_prfpreg (abfd, note);
9873
9874 case NT_WIN32PSTATUS:
9875 return elfcore_grok_win32pstatus (abfd, note);
9876
9877 case NT_PRXFPREG: /* Linux SSE extension */
9878 if (note->namesz == 6
9879 && strcmp (note->namedata, "LINUX") == 0)
9880 return elfcore_grok_prxfpreg (abfd, note);
9881 else
9882 return TRUE;
9883
9884 case NT_X86_XSTATE: /* Linux XSAVE extension */
9885 if (note->namesz == 6
9886 && strcmp (note->namedata, "LINUX") == 0)
9887 return elfcore_grok_xstatereg (abfd, note);
9888 else
9889 return TRUE;
9890
9891 case NT_PPC_VMX:
9892 if (note->namesz == 6
9893 && strcmp (note->namedata, "LINUX") == 0)
9894 return elfcore_grok_ppc_vmx (abfd, note);
9895 else
9896 return TRUE;
9897
9898 case NT_PPC_VSX:
9899 if (note->namesz == 6
9900 && strcmp (note->namedata, "LINUX") == 0)
9901 return elfcore_grok_ppc_vsx (abfd, note);
9902 else
9903 return TRUE;
9904
9905 case NT_PPC_TAR:
9906 if (note->namesz == 6
9907 && strcmp (note->namedata, "LINUX") == 0)
9908 return elfcore_grok_ppc_tar (abfd, note);
9909 else
9910 return TRUE;
9911
9912 case NT_PPC_PPR:
9913 if (note->namesz == 6
9914 && strcmp (note->namedata, "LINUX") == 0)
9915 return elfcore_grok_ppc_ppr (abfd, note);
9916 else
9917 return TRUE;
9918
9919 case NT_PPC_DSCR:
9920 if (note->namesz == 6
9921 && strcmp (note->namedata, "LINUX") == 0)
9922 return elfcore_grok_ppc_dscr (abfd, note);
9923 else
9924 return TRUE;
9925
9926 case NT_PPC_EBB:
9927 if (note->namesz == 6
9928 && strcmp (note->namedata, "LINUX") == 0)
9929 return elfcore_grok_ppc_ebb (abfd, note);
9930 else
9931 return TRUE;
9932
9933 case NT_PPC_PMU:
9934 if (note->namesz == 6
9935 && strcmp (note->namedata, "LINUX") == 0)
9936 return elfcore_grok_ppc_pmu (abfd, note);
9937 else
9938 return TRUE;
9939
9940 case NT_PPC_TM_CGPR:
9941 if (note->namesz == 6
9942 && strcmp (note->namedata, "LINUX") == 0)
9943 return elfcore_grok_ppc_tm_cgpr (abfd, note);
9944 else
9945 return TRUE;
9946
9947 case NT_PPC_TM_CFPR:
9948 if (note->namesz == 6
9949 && strcmp (note->namedata, "LINUX") == 0)
9950 return elfcore_grok_ppc_tm_cfpr (abfd, note);
9951 else
9952 return TRUE;
9953
9954 case NT_PPC_TM_CVMX:
9955 if (note->namesz == 6
9956 && strcmp (note->namedata, "LINUX") == 0)
9957 return elfcore_grok_ppc_tm_cvmx (abfd, note);
9958 else
9959 return TRUE;
9960
9961 case NT_PPC_TM_CVSX:
9962 if (note->namesz == 6
9963 && strcmp (note->namedata, "LINUX") == 0)
9964 return elfcore_grok_ppc_tm_cvsx (abfd, note);
9965 else
9966 return TRUE;
9967
9968 case NT_PPC_TM_SPR:
9969 if (note->namesz == 6
9970 && strcmp (note->namedata, "LINUX") == 0)
9971 return elfcore_grok_ppc_tm_spr (abfd, note);
9972 else
9973 return TRUE;
9974
9975 case NT_PPC_TM_CTAR:
9976 if (note->namesz == 6
9977 && strcmp (note->namedata, "LINUX") == 0)
9978 return elfcore_grok_ppc_tm_ctar (abfd, note);
9979 else
9980 return TRUE;
9981
9982 case NT_PPC_TM_CPPR:
9983 if (note->namesz == 6
9984 && strcmp (note->namedata, "LINUX") == 0)
9985 return elfcore_grok_ppc_tm_cppr (abfd, note);
9986 else
9987 return TRUE;
9988
9989 case NT_PPC_TM_CDSCR:
9990 if (note->namesz == 6
9991 && strcmp (note->namedata, "LINUX") == 0)
9992 return elfcore_grok_ppc_tm_cdscr (abfd, note);
9993 else
9994 return TRUE;
9995
9996 case NT_S390_HIGH_GPRS:
9997 if (note->namesz == 6
9998 && strcmp (note->namedata, "LINUX") == 0)
9999 return elfcore_grok_s390_high_gprs (abfd, note);
10000 else
10001 return TRUE;
10002
10003 case NT_S390_TIMER:
10004 if (note->namesz == 6
10005 && strcmp (note->namedata, "LINUX") == 0)
10006 return elfcore_grok_s390_timer (abfd, note);
10007 else
10008 return TRUE;
10009
10010 case NT_S390_TODCMP:
10011 if (note->namesz == 6
10012 && strcmp (note->namedata, "LINUX") == 0)
10013 return elfcore_grok_s390_todcmp (abfd, note);
10014 else
10015 return TRUE;
10016
10017 case NT_S390_TODPREG:
10018 if (note->namesz == 6
10019 && strcmp (note->namedata, "LINUX") == 0)
10020 return elfcore_grok_s390_todpreg (abfd, note);
10021 else
10022 return TRUE;
10023
10024 case NT_S390_CTRS:
10025 if (note->namesz == 6
10026 && strcmp (note->namedata, "LINUX") == 0)
10027 return elfcore_grok_s390_ctrs (abfd, note);
10028 else
10029 return TRUE;
10030
10031 case NT_S390_PREFIX:
10032 if (note->namesz == 6
10033 && strcmp (note->namedata, "LINUX") == 0)
10034 return elfcore_grok_s390_prefix (abfd, note);
10035 else
10036 return TRUE;
10037
10038 case NT_S390_LAST_BREAK:
10039 if (note->namesz == 6
10040 && strcmp (note->namedata, "LINUX") == 0)
10041 return elfcore_grok_s390_last_break (abfd, note);
10042 else
10043 return TRUE;
10044
10045 case NT_S390_SYSTEM_CALL:
10046 if (note->namesz == 6
10047 && strcmp (note->namedata, "LINUX") == 0)
10048 return elfcore_grok_s390_system_call (abfd, note);
10049 else
10050 return TRUE;
10051
10052 case NT_S390_TDB:
10053 if (note->namesz == 6
10054 && strcmp (note->namedata, "LINUX") == 0)
10055 return elfcore_grok_s390_tdb (abfd, note);
10056 else
10057 return TRUE;
10058
10059 case NT_S390_VXRS_LOW:
10060 if (note->namesz == 6
10061 && strcmp (note->namedata, "LINUX") == 0)
10062 return elfcore_grok_s390_vxrs_low (abfd, note);
10063 else
10064 return TRUE;
10065
10066 case NT_S390_VXRS_HIGH:
10067 if (note->namesz == 6
10068 && strcmp (note->namedata, "LINUX") == 0)
10069 return elfcore_grok_s390_vxrs_high (abfd, note);
10070 else
10071 return TRUE;
10072
10073 case NT_S390_GS_CB:
10074 if (note->namesz == 6
10075 && strcmp (note->namedata, "LINUX") == 0)
10076 return elfcore_grok_s390_gs_cb (abfd, note);
10077 else
10078 return TRUE;
10079
10080 case NT_S390_GS_BC:
10081 if (note->namesz == 6
10082 && strcmp (note->namedata, "LINUX") == 0)
10083 return elfcore_grok_s390_gs_bc (abfd, note);
10084 else
10085 return TRUE;
10086
10087 case NT_ARM_VFP:
10088 if (note->namesz == 6
10089 && strcmp (note->namedata, "LINUX") == 0)
10090 return elfcore_grok_arm_vfp (abfd, note);
10091 else
10092 return TRUE;
10093
10094 case NT_ARM_TLS:
10095 if (note->namesz == 6
10096 && strcmp (note->namedata, "LINUX") == 0)
10097 return elfcore_grok_aarch_tls (abfd, note);
10098 else
10099 return TRUE;
10100
10101 case NT_ARM_HW_BREAK:
10102 if (note->namesz == 6
10103 && strcmp (note->namedata, "LINUX") == 0)
10104 return elfcore_grok_aarch_hw_break (abfd, note);
10105 else
10106 return TRUE;
10107
10108 case NT_ARM_HW_WATCH:
10109 if (note->namesz == 6
10110 && strcmp (note->namedata, "LINUX") == 0)
10111 return elfcore_grok_aarch_hw_watch (abfd, note);
10112 else
10113 return TRUE;
10114
10115 case NT_ARM_SVE:
10116 if (note->namesz == 6
10117 && strcmp (note->namedata, "LINUX") == 0)
10118 return elfcore_grok_aarch_sve (abfd, note);
10119 else
10120 return TRUE;
10121
10122 case NT_PRPSINFO:
10123 case NT_PSINFO:
10124 if (bed->elf_backend_grok_psinfo)
10125 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10126 return TRUE;
10127 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10128 return elfcore_grok_psinfo (abfd, note);
10129 #else
10130 return TRUE;
10131 #endif
10132
10133 case NT_AUXV:
10134 {
10135 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10136 SEC_HAS_CONTENTS);
10137
10138 if (sect == NULL)
10139 return FALSE;
10140 sect->size = note->descsz;
10141 sect->filepos = note->descpos;
10142 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10143
10144 return TRUE;
10145 }
10146
10147 case NT_FILE:
10148 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10149 note);
10150
10151 case NT_SIGINFO:
10152 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10153 note);
10154
10155 }
10156 }
10157
10158 static bfd_boolean
10159 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10160 {
10161 struct bfd_build_id* build_id;
10162
10163 if (note->descsz == 0)
10164 return FALSE;
10165
10166 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10167 if (build_id == NULL)
10168 return FALSE;
10169
10170 build_id->size = note->descsz;
10171 memcpy (build_id->data, note->descdata, note->descsz);
10172 abfd->build_id = build_id;
10173
10174 return TRUE;
10175 }
10176
10177 static bfd_boolean
10178 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10179 {
10180 switch (note->type)
10181 {
10182 default:
10183 return TRUE;
10184
10185 case NT_GNU_PROPERTY_TYPE_0:
10186 return _bfd_elf_parse_gnu_properties (abfd, note);
10187
10188 case NT_GNU_BUILD_ID:
10189 return elfobj_grok_gnu_build_id (abfd, note);
10190 }
10191 }
10192
10193 static bfd_boolean
10194 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10195 {
10196 struct sdt_note *cur =
10197 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
10198 + note->descsz);
10199
10200 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10201 cur->size = (bfd_size_type) note->descsz;
10202 memcpy (cur->data, note->descdata, note->descsz);
10203
10204 elf_tdata (abfd)->sdt_note_head = cur;
10205
10206 return TRUE;
10207 }
10208
10209 static bfd_boolean
10210 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10211 {
10212 switch (note->type)
10213 {
10214 case NT_STAPSDT:
10215 return elfobj_grok_stapsdt_note_1 (abfd, note);
10216
10217 default:
10218 return TRUE;
10219 }
10220 }
10221
10222 static bfd_boolean
10223 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10224 {
10225 size_t offset;
10226
10227 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10228 {
10229 case ELFCLASS32:
10230 if (note->descsz < 108)
10231 return FALSE;
10232 break;
10233
10234 case ELFCLASS64:
10235 if (note->descsz < 120)
10236 return FALSE;
10237 break;
10238
10239 default:
10240 return FALSE;
10241 }
10242
10243 /* Check for version 1 in pr_version. */
10244 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10245 return FALSE;
10246
10247 offset = 4;
10248
10249 /* Skip over pr_psinfosz. */
10250 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10251 offset += 4;
10252 else
10253 {
10254 offset += 4; /* Padding before pr_psinfosz. */
10255 offset += 8;
10256 }
10257
10258 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10259 elf_tdata (abfd)->core->program
10260 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10261 offset += 17;
10262
10263 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10264 elf_tdata (abfd)->core->command
10265 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10266 offset += 81;
10267
10268 /* Padding before pr_pid. */
10269 offset += 2;
10270
10271 /* The pr_pid field was added in version "1a". */
10272 if (note->descsz < offset + 4)
10273 return TRUE;
10274
10275 elf_tdata (abfd)->core->pid
10276 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10277
10278 return TRUE;
10279 }
10280
10281 static bfd_boolean
10282 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10283 {
10284 size_t offset;
10285 size_t size;
10286 size_t min_size;
10287
10288 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10289 Also compute minimum size of this note. */
10290 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10291 {
10292 case ELFCLASS32:
10293 offset = 4 + 4;
10294 min_size = offset + (4 * 2) + 4 + 4 + 4;
10295 break;
10296
10297 case ELFCLASS64:
10298 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10299 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10300 break;
10301
10302 default:
10303 return FALSE;
10304 }
10305
10306 if (note->descsz < min_size)
10307 return FALSE;
10308
10309 /* Check for version 1 in pr_version. */
10310 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10311 return FALSE;
10312
10313 /* Extract size of pr_reg from pr_gregsetsz. */
10314 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10315 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10316 {
10317 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10318 offset += 4 * 2;
10319 }
10320 else
10321 {
10322 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10323 offset += 8 * 2;
10324 }
10325
10326 /* Skip over pr_osreldate. */
10327 offset += 4;
10328
10329 /* Read signal from pr_cursig. */
10330 if (elf_tdata (abfd)->core->signal == 0)
10331 elf_tdata (abfd)->core->signal
10332 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10333 offset += 4;
10334
10335 /* Read TID from pr_pid. */
10336 elf_tdata (abfd)->core->lwpid
10337 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10338 offset += 4;
10339
10340 /* Padding before pr_reg. */
10341 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10342 offset += 4;
10343
10344 /* Make sure that there is enough data remaining in the note. */
10345 if ((note->descsz - offset) < size)
10346 return FALSE;
10347
10348 /* Make a ".reg/999" section and a ".reg" section. */
10349 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10350 size, note->descpos + offset);
10351 }
10352
10353 static bfd_boolean
10354 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10355 {
10356 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10357
10358 switch (note->type)
10359 {
10360 case NT_PRSTATUS:
10361 if (bed->elf_backend_grok_freebsd_prstatus)
10362 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10363 return TRUE;
10364 return elfcore_grok_freebsd_prstatus (abfd, note);
10365
10366 case NT_FPREGSET:
10367 return elfcore_grok_prfpreg (abfd, note);
10368
10369 case NT_PRPSINFO:
10370 return elfcore_grok_freebsd_psinfo (abfd, note);
10371
10372 case NT_FREEBSD_THRMISC:
10373 if (note->namesz == 8)
10374 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10375 else
10376 return TRUE;
10377
10378 case NT_FREEBSD_PROCSTAT_PROC:
10379 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10380 note);
10381
10382 case NT_FREEBSD_PROCSTAT_FILES:
10383 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10384 note);
10385
10386 case NT_FREEBSD_PROCSTAT_VMMAP:
10387 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10388 note);
10389
10390 case NT_FREEBSD_PROCSTAT_AUXV:
10391 {
10392 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10393 SEC_HAS_CONTENTS);
10394
10395 if (sect == NULL)
10396 return FALSE;
10397 sect->size = note->descsz - 4;
10398 sect->filepos = note->descpos + 4;
10399 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10400
10401 return TRUE;
10402 }
10403
10404 case NT_X86_XSTATE:
10405 if (note->namesz == 8)
10406 return elfcore_grok_xstatereg (abfd, note);
10407 else
10408 return TRUE;
10409
10410 case NT_FREEBSD_PTLWPINFO:
10411 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10412 note);
10413
10414 case NT_ARM_VFP:
10415 return elfcore_grok_arm_vfp (abfd, note);
10416
10417 default:
10418 return TRUE;
10419 }
10420 }
10421
10422 static bfd_boolean
10423 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10424 {
10425 char *cp;
10426
10427 cp = strchr (note->namedata, '@');
10428 if (cp != NULL)
10429 {
10430 *lwpidp = atoi(cp + 1);
10431 return TRUE;
10432 }
10433 return FALSE;
10434 }
10435
10436 static bfd_boolean
10437 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10438 {
10439 if (note->descsz <= 0x7c + 31)
10440 return FALSE;
10441
10442 /* Signal number at offset 0x08. */
10443 elf_tdata (abfd)->core->signal
10444 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10445
10446 /* Process ID at offset 0x50. */
10447 elf_tdata (abfd)->core->pid
10448 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10449
10450 /* Command name at 0x7c (max 32 bytes, including nul). */
10451 elf_tdata (abfd)->core->command
10452 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10453
10454 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10455 note);
10456 }
10457
10458 static bfd_boolean
10459 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10460 {
10461 int lwp;
10462
10463 if (elfcore_netbsd_get_lwpid (note, &lwp))
10464 elf_tdata (abfd)->core->lwpid = lwp;
10465
10466 if (note->type == NT_NETBSDCORE_PROCINFO)
10467 {
10468 /* NetBSD-specific core "procinfo". Note that we expect to
10469 find this note before any of the others, which is fine,
10470 since the kernel writes this note out first when it
10471 creates a core file. */
10472
10473 return elfcore_grok_netbsd_procinfo (abfd, note);
10474 }
10475
10476 /* As of Jan 2002 there are no other machine-independent notes
10477 defined for NetBSD core files. If the note type is less
10478 than the start of the machine-dependent note types, we don't
10479 understand it. */
10480
10481 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10482 return TRUE;
10483
10484
10485 switch (bfd_get_arch (abfd))
10486 {
10487 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10488 PT_GETFPREGS == mach+2. */
10489
10490 case bfd_arch_alpha:
10491 case bfd_arch_sparc:
10492 switch (note->type)
10493 {
10494 case NT_NETBSDCORE_FIRSTMACH+0:
10495 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10496
10497 case NT_NETBSDCORE_FIRSTMACH+2:
10498 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10499
10500 default:
10501 return TRUE;
10502 }
10503
10504 /* On all other arch's, PT_GETREGS == mach+1 and
10505 PT_GETFPREGS == mach+3. */
10506
10507 default:
10508 switch (note->type)
10509 {
10510 case NT_NETBSDCORE_FIRSTMACH+1:
10511 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10512
10513 case NT_NETBSDCORE_FIRSTMACH+3:
10514 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10515
10516 default:
10517 return TRUE;
10518 }
10519 }
10520 /* NOTREACHED */
10521 }
10522
10523 static bfd_boolean
10524 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10525 {
10526 if (note->descsz <= 0x48 + 31)
10527 return FALSE;
10528
10529 /* Signal number at offset 0x08. */
10530 elf_tdata (abfd)->core->signal
10531 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10532
10533 /* Process ID at offset 0x20. */
10534 elf_tdata (abfd)->core->pid
10535 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10536
10537 /* Command name at 0x48 (max 32 bytes, including nul). */
10538 elf_tdata (abfd)->core->command
10539 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10540
10541 return TRUE;
10542 }
10543
10544 static bfd_boolean
10545 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10546 {
10547 if (note->type == NT_OPENBSD_PROCINFO)
10548 return elfcore_grok_openbsd_procinfo (abfd, note);
10549
10550 if (note->type == NT_OPENBSD_REGS)
10551 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10552
10553 if (note->type == NT_OPENBSD_FPREGS)
10554 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10555
10556 if (note->type == NT_OPENBSD_XFPREGS)
10557 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10558
10559 if (note->type == NT_OPENBSD_AUXV)
10560 {
10561 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10562 SEC_HAS_CONTENTS);
10563
10564 if (sect == NULL)
10565 return FALSE;
10566 sect->size = note->descsz;
10567 sect->filepos = note->descpos;
10568 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10569
10570 return TRUE;
10571 }
10572
10573 if (note->type == NT_OPENBSD_WCOOKIE)
10574 {
10575 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10576 SEC_HAS_CONTENTS);
10577
10578 if (sect == NULL)
10579 return FALSE;
10580 sect->size = note->descsz;
10581 sect->filepos = note->descpos;
10582 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10583
10584 return TRUE;
10585 }
10586
10587 return TRUE;
10588 }
10589
10590 static bfd_boolean
10591 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10592 {
10593 void *ddata = note->descdata;
10594 char buf[100];
10595 char *name;
10596 asection *sect;
10597 short sig;
10598 unsigned flags;
10599
10600 if (note->descsz < 16)
10601 return FALSE;
10602
10603 /* nto_procfs_status 'pid' field is at offset 0. */
10604 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10605
10606 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10607 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10608
10609 /* nto_procfs_status 'flags' field is at offset 8. */
10610 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10611
10612 /* nto_procfs_status 'what' field is at offset 14. */
10613 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10614 {
10615 elf_tdata (abfd)->core->signal = sig;
10616 elf_tdata (abfd)->core->lwpid = *tid;
10617 }
10618
10619 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10620 do not come from signals so we make sure we set the current
10621 thread just in case. */
10622 if (flags & 0x00000080)
10623 elf_tdata (abfd)->core->lwpid = *tid;
10624
10625 /* Make a ".qnx_core_status/%d" section. */
10626 sprintf (buf, ".qnx_core_status/%ld", *tid);
10627
10628 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10629 if (name == NULL)
10630 return FALSE;
10631 strcpy (name, buf);
10632
10633 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10634 if (sect == NULL)
10635 return FALSE;
10636
10637 sect->size = note->descsz;
10638 sect->filepos = note->descpos;
10639 sect->alignment_power = 2;
10640
10641 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10642 }
10643
10644 static bfd_boolean
10645 elfcore_grok_nto_regs (bfd *abfd,
10646 Elf_Internal_Note *note,
10647 long tid,
10648 char *base)
10649 {
10650 char buf[100];
10651 char *name;
10652 asection *sect;
10653
10654 /* Make a "(base)/%d" section. */
10655 sprintf (buf, "%s/%ld", base, tid);
10656
10657 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10658 if (name == NULL)
10659 return FALSE;
10660 strcpy (name, buf);
10661
10662 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10663 if (sect == NULL)
10664 return FALSE;
10665
10666 sect->size = note->descsz;
10667 sect->filepos = note->descpos;
10668 sect->alignment_power = 2;
10669
10670 /* This is the current thread. */
10671 if (elf_tdata (abfd)->core->lwpid == tid)
10672 return elfcore_maybe_make_sect (abfd, base, sect);
10673
10674 return TRUE;
10675 }
10676
10677 #define BFD_QNT_CORE_INFO 7
10678 #define BFD_QNT_CORE_STATUS 8
10679 #define BFD_QNT_CORE_GREG 9
10680 #define BFD_QNT_CORE_FPREG 10
10681
10682 static bfd_boolean
10683 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10684 {
10685 /* Every GREG section has a STATUS section before it. Store the
10686 tid from the previous call to pass down to the next gregs
10687 function. */
10688 static long tid = 1;
10689
10690 switch (note->type)
10691 {
10692 case BFD_QNT_CORE_INFO:
10693 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10694 case BFD_QNT_CORE_STATUS:
10695 return elfcore_grok_nto_status (abfd, note, &tid);
10696 case BFD_QNT_CORE_GREG:
10697 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10698 case BFD_QNT_CORE_FPREG:
10699 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10700 default:
10701 return TRUE;
10702 }
10703 }
10704
10705 static bfd_boolean
10706 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10707 {
10708 char *name;
10709 asection *sect;
10710 size_t len;
10711
10712 /* Use note name as section name. */
10713 len = note->namesz;
10714 name = (char *) bfd_alloc (abfd, len);
10715 if (name == NULL)
10716 return FALSE;
10717 memcpy (name, note->namedata, len);
10718 name[len - 1] = '\0';
10719
10720 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10721 if (sect == NULL)
10722 return FALSE;
10723
10724 sect->size = note->descsz;
10725 sect->filepos = note->descpos;
10726 sect->alignment_power = 1;
10727
10728 return TRUE;
10729 }
10730
10731 /* Function: elfcore_write_note
10732
10733 Inputs:
10734 buffer to hold note, and current size of buffer
10735 name of note
10736 type of note
10737 data for note
10738 size of data for note
10739
10740 Writes note to end of buffer. ELF64 notes are written exactly as
10741 for ELF32, despite the current (as of 2006) ELF gabi specifying
10742 that they ought to have 8-byte namesz and descsz field, and have
10743 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10744
10745 Return:
10746 Pointer to realloc'd buffer, *BUFSIZ updated. */
10747
10748 char *
10749 elfcore_write_note (bfd *abfd,
10750 char *buf,
10751 int *bufsiz,
10752 const char *name,
10753 int type,
10754 const void *input,
10755 int size)
10756 {
10757 Elf_External_Note *xnp;
10758 size_t namesz;
10759 size_t newspace;
10760 char *dest;
10761
10762 namesz = 0;
10763 if (name != NULL)
10764 namesz = strlen (name) + 1;
10765
10766 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10767
10768 buf = (char *) realloc (buf, *bufsiz + newspace);
10769 if (buf == NULL)
10770 return buf;
10771 dest = buf + *bufsiz;
10772 *bufsiz += newspace;
10773 xnp = (Elf_External_Note *) dest;
10774 H_PUT_32 (abfd, namesz, xnp->namesz);
10775 H_PUT_32 (abfd, size, xnp->descsz);
10776 H_PUT_32 (abfd, type, xnp->type);
10777 dest = xnp->name;
10778 if (name != NULL)
10779 {
10780 memcpy (dest, name, namesz);
10781 dest += namesz;
10782 while (namesz & 3)
10783 {
10784 *dest++ = '\0';
10785 ++namesz;
10786 }
10787 }
10788 memcpy (dest, input, size);
10789 dest += size;
10790 while (size & 3)
10791 {
10792 *dest++ = '\0';
10793 ++size;
10794 }
10795 return buf;
10796 }
10797
10798 /* gcc-8 warns (*) on all the strncpy calls in this function about
10799 possible string truncation. The "truncation" is not a bug. We
10800 have an external representation of structs with fields that are not
10801 necessarily NULL terminated and corresponding internal
10802 representation fields that are one larger so that they can always
10803 be NULL terminated.
10804 gcc versions between 4.2 and 4.6 do not allow pragma control of
10805 diagnostics inside functions, giving a hard error if you try to use
10806 the finer control available with later versions.
10807 gcc prior to 4.2 warns about diagnostic push and pop.
10808 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
10809 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
10810 (*) Depending on your system header files! */
10811 #if GCC_VERSION >= 8000
10812 # pragma GCC diagnostic push
10813 # pragma GCC diagnostic ignored "-Wstringop-truncation"
10814 #endif
10815 char *
10816 elfcore_write_prpsinfo (bfd *abfd,
10817 char *buf,
10818 int *bufsiz,
10819 const char *fname,
10820 const char *psargs)
10821 {
10822 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10823
10824 if (bed->elf_backend_write_core_note != NULL)
10825 {
10826 char *ret;
10827 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10828 NT_PRPSINFO, fname, psargs);
10829 if (ret != NULL)
10830 return ret;
10831 }
10832
10833 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10834 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10835 if (bed->s->elfclass == ELFCLASS32)
10836 {
10837 # if defined (HAVE_PSINFO32_T)
10838 psinfo32_t data;
10839 int note_type = NT_PSINFO;
10840 # else
10841 prpsinfo32_t data;
10842 int note_type = NT_PRPSINFO;
10843 # endif
10844
10845 memset (&data, 0, sizeof (data));
10846 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10847 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10848 return elfcore_write_note (abfd, buf, bufsiz,
10849 "CORE", note_type, &data, sizeof (data));
10850 }
10851 else
10852 # endif
10853 {
10854 # if defined (HAVE_PSINFO_T)
10855 psinfo_t data;
10856 int note_type = NT_PSINFO;
10857 # else
10858 prpsinfo_t data;
10859 int note_type = NT_PRPSINFO;
10860 # endif
10861
10862 memset (&data, 0, sizeof (data));
10863 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10864 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10865 return elfcore_write_note (abfd, buf, bufsiz,
10866 "CORE", note_type, &data, sizeof (data));
10867 }
10868 #endif /* PSINFO_T or PRPSINFO_T */
10869
10870 free (buf);
10871 return NULL;
10872 }
10873 #if GCC_VERSION >= 8000
10874 # pragma GCC diagnostic pop
10875 #endif
10876
10877 char *
10878 elfcore_write_linux_prpsinfo32
10879 (bfd *abfd, char *buf, int *bufsiz,
10880 const struct elf_internal_linux_prpsinfo *prpsinfo)
10881 {
10882 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10883 {
10884 struct elf_external_linux_prpsinfo32_ugid16 data;
10885
10886 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10887 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10888 &data, sizeof (data));
10889 }
10890 else
10891 {
10892 struct elf_external_linux_prpsinfo32_ugid32 data;
10893
10894 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10895 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10896 &data, sizeof (data));
10897 }
10898 }
10899
10900 char *
10901 elfcore_write_linux_prpsinfo64
10902 (bfd *abfd, char *buf, int *bufsiz,
10903 const struct elf_internal_linux_prpsinfo *prpsinfo)
10904 {
10905 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
10906 {
10907 struct elf_external_linux_prpsinfo64_ugid16 data;
10908
10909 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
10910 return elfcore_write_note (abfd, buf, bufsiz,
10911 "CORE", NT_PRPSINFO, &data, sizeof (data));
10912 }
10913 else
10914 {
10915 struct elf_external_linux_prpsinfo64_ugid32 data;
10916
10917 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
10918 return elfcore_write_note (abfd, buf, bufsiz,
10919 "CORE", NT_PRPSINFO, &data, sizeof (data));
10920 }
10921 }
10922
10923 char *
10924 elfcore_write_prstatus (bfd *abfd,
10925 char *buf,
10926 int *bufsiz,
10927 long pid,
10928 int cursig,
10929 const void *gregs)
10930 {
10931 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10932
10933 if (bed->elf_backend_write_core_note != NULL)
10934 {
10935 char *ret;
10936 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10937 NT_PRSTATUS,
10938 pid, cursig, gregs);
10939 if (ret != NULL)
10940 return ret;
10941 }
10942
10943 #if defined (HAVE_PRSTATUS_T)
10944 #if defined (HAVE_PRSTATUS32_T)
10945 if (bed->s->elfclass == ELFCLASS32)
10946 {
10947 prstatus32_t prstat;
10948
10949 memset (&prstat, 0, sizeof (prstat));
10950 prstat.pr_pid = pid;
10951 prstat.pr_cursig = cursig;
10952 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10953 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10954 NT_PRSTATUS, &prstat, sizeof (prstat));
10955 }
10956 else
10957 #endif
10958 {
10959 prstatus_t prstat;
10960
10961 memset (&prstat, 0, sizeof (prstat));
10962 prstat.pr_pid = pid;
10963 prstat.pr_cursig = cursig;
10964 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10965 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10966 NT_PRSTATUS, &prstat, sizeof (prstat));
10967 }
10968 #endif /* HAVE_PRSTATUS_T */
10969
10970 free (buf);
10971 return NULL;
10972 }
10973
10974 #if defined (HAVE_LWPSTATUS_T)
10975 char *
10976 elfcore_write_lwpstatus (bfd *abfd,
10977 char *buf,
10978 int *bufsiz,
10979 long pid,
10980 int cursig,
10981 const void *gregs)
10982 {
10983 lwpstatus_t lwpstat;
10984 const char *note_name = "CORE";
10985
10986 memset (&lwpstat, 0, sizeof (lwpstat));
10987 lwpstat.pr_lwpid = pid >> 16;
10988 lwpstat.pr_cursig = cursig;
10989 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10990 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10991 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10992 #if !defined(gregs)
10993 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10994 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10995 #else
10996 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10997 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10998 #endif
10999 #endif
11000 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11001 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11002 }
11003 #endif /* HAVE_LWPSTATUS_T */
11004
11005 #if defined (HAVE_PSTATUS_T)
11006 char *
11007 elfcore_write_pstatus (bfd *abfd,
11008 char *buf,
11009 int *bufsiz,
11010 long pid,
11011 int cursig ATTRIBUTE_UNUSED,
11012 const void *gregs ATTRIBUTE_UNUSED)
11013 {
11014 const char *note_name = "CORE";
11015 #if defined (HAVE_PSTATUS32_T)
11016 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11017
11018 if (bed->s->elfclass == ELFCLASS32)
11019 {
11020 pstatus32_t pstat;
11021
11022 memset (&pstat, 0, sizeof (pstat));
11023 pstat.pr_pid = pid & 0xffff;
11024 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11025 NT_PSTATUS, &pstat, sizeof (pstat));
11026 return buf;
11027 }
11028 else
11029 #endif
11030 {
11031 pstatus_t pstat;
11032
11033 memset (&pstat, 0, sizeof (pstat));
11034 pstat.pr_pid = pid & 0xffff;
11035 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11036 NT_PSTATUS, &pstat, sizeof (pstat));
11037 return buf;
11038 }
11039 }
11040 #endif /* HAVE_PSTATUS_T */
11041
11042 char *
11043 elfcore_write_prfpreg (bfd *abfd,
11044 char *buf,
11045 int *bufsiz,
11046 const void *fpregs,
11047 int size)
11048 {
11049 const char *note_name = "CORE";
11050 return elfcore_write_note (abfd, buf, bufsiz,
11051 note_name, NT_FPREGSET, fpregs, size);
11052 }
11053
11054 char *
11055 elfcore_write_prxfpreg (bfd *abfd,
11056 char *buf,
11057 int *bufsiz,
11058 const void *xfpregs,
11059 int size)
11060 {
11061 char *note_name = "LINUX";
11062 return elfcore_write_note (abfd, buf, bufsiz,
11063 note_name, NT_PRXFPREG, xfpregs, size);
11064 }
11065
11066 char *
11067 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11068 const void *xfpregs, int size)
11069 {
11070 char *note_name;
11071 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11072 note_name = "FreeBSD";
11073 else
11074 note_name = "LINUX";
11075 return elfcore_write_note (abfd, buf, bufsiz,
11076 note_name, NT_X86_XSTATE, xfpregs, size);
11077 }
11078
11079 char *
11080 elfcore_write_ppc_vmx (bfd *abfd,
11081 char *buf,
11082 int *bufsiz,
11083 const void *ppc_vmx,
11084 int size)
11085 {
11086 char *note_name = "LINUX";
11087 return elfcore_write_note (abfd, buf, bufsiz,
11088 note_name, NT_PPC_VMX, ppc_vmx, size);
11089 }
11090
11091 char *
11092 elfcore_write_ppc_vsx (bfd *abfd,
11093 char *buf,
11094 int *bufsiz,
11095 const void *ppc_vsx,
11096 int size)
11097 {
11098 char *note_name = "LINUX";
11099 return elfcore_write_note (abfd, buf, bufsiz,
11100 note_name, NT_PPC_VSX, ppc_vsx, size);
11101 }
11102
11103 char *
11104 elfcore_write_ppc_tar (bfd *abfd,
11105 char *buf,
11106 int *bufsiz,
11107 const void *ppc_tar,
11108 int size)
11109 {
11110 char *note_name = "LINUX";
11111 return elfcore_write_note (abfd, buf, bufsiz,
11112 note_name, NT_PPC_TAR, ppc_tar, size);
11113 }
11114
11115 char *
11116 elfcore_write_ppc_ppr (bfd *abfd,
11117 char *buf,
11118 int *bufsiz,
11119 const void *ppc_ppr,
11120 int size)
11121 {
11122 char *note_name = "LINUX";
11123 return elfcore_write_note (abfd, buf, bufsiz,
11124 note_name, NT_PPC_PPR, ppc_ppr, size);
11125 }
11126
11127 char *
11128 elfcore_write_ppc_dscr (bfd *abfd,
11129 char *buf,
11130 int *bufsiz,
11131 const void *ppc_dscr,
11132 int size)
11133 {
11134 char *note_name = "LINUX";
11135 return elfcore_write_note (abfd, buf, bufsiz,
11136 note_name, NT_PPC_DSCR, ppc_dscr, size);
11137 }
11138
11139 char *
11140 elfcore_write_ppc_ebb (bfd *abfd,
11141 char *buf,
11142 int *bufsiz,
11143 const void *ppc_ebb,
11144 int size)
11145 {
11146 char *note_name = "LINUX";
11147 return elfcore_write_note (abfd, buf, bufsiz,
11148 note_name, NT_PPC_EBB, ppc_ebb, size);
11149 }
11150
11151 char *
11152 elfcore_write_ppc_pmu (bfd *abfd,
11153 char *buf,
11154 int *bufsiz,
11155 const void *ppc_pmu,
11156 int size)
11157 {
11158 char *note_name = "LINUX";
11159 return elfcore_write_note (abfd, buf, bufsiz,
11160 note_name, NT_PPC_PMU, ppc_pmu, size);
11161 }
11162
11163 char *
11164 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11165 char *buf,
11166 int *bufsiz,
11167 const void *ppc_tm_cgpr,
11168 int size)
11169 {
11170 char *note_name = "LINUX";
11171 return elfcore_write_note (abfd, buf, bufsiz,
11172 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11173 }
11174
11175 char *
11176 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11177 char *buf,
11178 int *bufsiz,
11179 const void *ppc_tm_cfpr,
11180 int size)
11181 {
11182 char *note_name = "LINUX";
11183 return elfcore_write_note (abfd, buf, bufsiz,
11184 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11185 }
11186
11187 char *
11188 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11189 char *buf,
11190 int *bufsiz,
11191 const void *ppc_tm_cvmx,
11192 int size)
11193 {
11194 char *note_name = "LINUX";
11195 return elfcore_write_note (abfd, buf, bufsiz,
11196 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11197 }
11198
11199 char *
11200 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11201 char *buf,
11202 int *bufsiz,
11203 const void *ppc_tm_cvsx,
11204 int size)
11205 {
11206 char *note_name = "LINUX";
11207 return elfcore_write_note (abfd, buf, bufsiz,
11208 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11209 }
11210
11211 char *
11212 elfcore_write_ppc_tm_spr (bfd *abfd,
11213 char *buf,
11214 int *bufsiz,
11215 const void *ppc_tm_spr,
11216 int size)
11217 {
11218 char *note_name = "LINUX";
11219 return elfcore_write_note (abfd, buf, bufsiz,
11220 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11221 }
11222
11223 char *
11224 elfcore_write_ppc_tm_ctar (bfd *abfd,
11225 char *buf,
11226 int *bufsiz,
11227 const void *ppc_tm_ctar,
11228 int size)
11229 {
11230 char *note_name = "LINUX";
11231 return elfcore_write_note (abfd, buf, bufsiz,
11232 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11233 }
11234
11235 char *
11236 elfcore_write_ppc_tm_cppr (bfd *abfd,
11237 char *buf,
11238 int *bufsiz,
11239 const void *ppc_tm_cppr,
11240 int size)
11241 {
11242 char *note_name = "LINUX";
11243 return elfcore_write_note (abfd, buf, bufsiz,
11244 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11245 }
11246
11247 char *
11248 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11249 char *buf,
11250 int *bufsiz,
11251 const void *ppc_tm_cdscr,
11252 int size)
11253 {
11254 char *note_name = "LINUX";
11255 return elfcore_write_note (abfd, buf, bufsiz,
11256 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11257 }
11258
11259 static char *
11260 elfcore_write_s390_high_gprs (bfd *abfd,
11261 char *buf,
11262 int *bufsiz,
11263 const void *s390_high_gprs,
11264 int size)
11265 {
11266 char *note_name = "LINUX";
11267 return elfcore_write_note (abfd, buf, bufsiz,
11268 note_name, NT_S390_HIGH_GPRS,
11269 s390_high_gprs, size);
11270 }
11271
11272 char *
11273 elfcore_write_s390_timer (bfd *abfd,
11274 char *buf,
11275 int *bufsiz,
11276 const void *s390_timer,
11277 int size)
11278 {
11279 char *note_name = "LINUX";
11280 return elfcore_write_note (abfd, buf, bufsiz,
11281 note_name, NT_S390_TIMER, s390_timer, size);
11282 }
11283
11284 char *
11285 elfcore_write_s390_todcmp (bfd *abfd,
11286 char *buf,
11287 int *bufsiz,
11288 const void *s390_todcmp,
11289 int size)
11290 {
11291 char *note_name = "LINUX";
11292 return elfcore_write_note (abfd, buf, bufsiz,
11293 note_name, NT_S390_TODCMP, s390_todcmp, size);
11294 }
11295
11296 char *
11297 elfcore_write_s390_todpreg (bfd *abfd,
11298 char *buf,
11299 int *bufsiz,
11300 const void *s390_todpreg,
11301 int size)
11302 {
11303 char *note_name = "LINUX";
11304 return elfcore_write_note (abfd, buf, bufsiz,
11305 note_name, NT_S390_TODPREG, s390_todpreg, size);
11306 }
11307
11308 char *
11309 elfcore_write_s390_ctrs (bfd *abfd,
11310 char *buf,
11311 int *bufsiz,
11312 const void *s390_ctrs,
11313 int size)
11314 {
11315 char *note_name = "LINUX";
11316 return elfcore_write_note (abfd, buf, bufsiz,
11317 note_name, NT_S390_CTRS, s390_ctrs, size);
11318 }
11319
11320 char *
11321 elfcore_write_s390_prefix (bfd *abfd,
11322 char *buf,
11323 int *bufsiz,
11324 const void *s390_prefix,
11325 int size)
11326 {
11327 char *note_name = "LINUX";
11328 return elfcore_write_note (abfd, buf, bufsiz,
11329 note_name, NT_S390_PREFIX, s390_prefix, size);
11330 }
11331
11332 char *
11333 elfcore_write_s390_last_break (bfd *abfd,
11334 char *buf,
11335 int *bufsiz,
11336 const void *s390_last_break,
11337 int size)
11338 {
11339 char *note_name = "LINUX";
11340 return elfcore_write_note (abfd, buf, bufsiz,
11341 note_name, NT_S390_LAST_BREAK,
11342 s390_last_break, size);
11343 }
11344
11345 char *
11346 elfcore_write_s390_system_call (bfd *abfd,
11347 char *buf,
11348 int *bufsiz,
11349 const void *s390_system_call,
11350 int size)
11351 {
11352 char *note_name = "LINUX";
11353 return elfcore_write_note (abfd, buf, bufsiz,
11354 note_name, NT_S390_SYSTEM_CALL,
11355 s390_system_call, size);
11356 }
11357
11358 char *
11359 elfcore_write_s390_tdb (bfd *abfd,
11360 char *buf,
11361 int *bufsiz,
11362 const void *s390_tdb,
11363 int size)
11364 {
11365 char *note_name = "LINUX";
11366 return elfcore_write_note (abfd, buf, bufsiz,
11367 note_name, NT_S390_TDB, s390_tdb, size);
11368 }
11369
11370 char *
11371 elfcore_write_s390_vxrs_low (bfd *abfd,
11372 char *buf,
11373 int *bufsiz,
11374 const void *s390_vxrs_low,
11375 int size)
11376 {
11377 char *note_name = "LINUX";
11378 return elfcore_write_note (abfd, buf, bufsiz,
11379 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11380 }
11381
11382 char *
11383 elfcore_write_s390_vxrs_high (bfd *abfd,
11384 char *buf,
11385 int *bufsiz,
11386 const void *s390_vxrs_high,
11387 int size)
11388 {
11389 char *note_name = "LINUX";
11390 return elfcore_write_note (abfd, buf, bufsiz,
11391 note_name, NT_S390_VXRS_HIGH,
11392 s390_vxrs_high, size);
11393 }
11394
11395 char *
11396 elfcore_write_s390_gs_cb (bfd *abfd,
11397 char *buf,
11398 int *bufsiz,
11399 const void *s390_gs_cb,
11400 int size)
11401 {
11402 char *note_name = "LINUX";
11403 return elfcore_write_note (abfd, buf, bufsiz,
11404 note_name, NT_S390_GS_CB,
11405 s390_gs_cb, size);
11406 }
11407
11408 char *
11409 elfcore_write_s390_gs_bc (bfd *abfd,
11410 char *buf,
11411 int *bufsiz,
11412 const void *s390_gs_bc,
11413 int size)
11414 {
11415 char *note_name = "LINUX";
11416 return elfcore_write_note (abfd, buf, bufsiz,
11417 note_name, NT_S390_GS_BC,
11418 s390_gs_bc, size);
11419 }
11420
11421 char *
11422 elfcore_write_arm_vfp (bfd *abfd,
11423 char *buf,
11424 int *bufsiz,
11425 const void *arm_vfp,
11426 int size)
11427 {
11428 char *note_name = "LINUX";
11429 return elfcore_write_note (abfd, buf, bufsiz,
11430 note_name, NT_ARM_VFP, arm_vfp, size);
11431 }
11432
11433 char *
11434 elfcore_write_aarch_tls (bfd *abfd,
11435 char *buf,
11436 int *bufsiz,
11437 const void *aarch_tls,
11438 int size)
11439 {
11440 char *note_name = "LINUX";
11441 return elfcore_write_note (abfd, buf, bufsiz,
11442 note_name, NT_ARM_TLS, aarch_tls, size);
11443 }
11444
11445 char *
11446 elfcore_write_aarch_hw_break (bfd *abfd,
11447 char *buf,
11448 int *bufsiz,
11449 const void *aarch_hw_break,
11450 int size)
11451 {
11452 char *note_name = "LINUX";
11453 return elfcore_write_note (abfd, buf, bufsiz,
11454 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11455 }
11456
11457 char *
11458 elfcore_write_aarch_hw_watch (bfd *abfd,
11459 char *buf,
11460 int *bufsiz,
11461 const void *aarch_hw_watch,
11462 int size)
11463 {
11464 char *note_name = "LINUX";
11465 return elfcore_write_note (abfd, buf, bufsiz,
11466 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11467 }
11468
11469 char *
11470 elfcore_write_aarch_sve (bfd *abfd,
11471 char *buf,
11472 int *bufsiz,
11473 const void *aarch_sve,
11474 int size)
11475 {
11476 char *note_name = "LINUX";
11477 return elfcore_write_note (abfd, buf, bufsiz,
11478 note_name, NT_ARM_SVE, aarch_sve, size);
11479 }
11480
11481 char *
11482 elfcore_write_register_note (bfd *abfd,
11483 char *buf,
11484 int *bufsiz,
11485 const char *section,
11486 const void *data,
11487 int size)
11488 {
11489 if (strcmp (section, ".reg2") == 0)
11490 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11491 if (strcmp (section, ".reg-xfp") == 0)
11492 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11493 if (strcmp (section, ".reg-xstate") == 0)
11494 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11495 if (strcmp (section, ".reg-ppc-vmx") == 0)
11496 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11497 if (strcmp (section, ".reg-ppc-vsx") == 0)
11498 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11499 if (strcmp (section, ".reg-ppc-tar") == 0)
11500 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11501 if (strcmp (section, ".reg-ppc-ppr") == 0)
11502 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11503 if (strcmp (section, ".reg-ppc-dscr") == 0)
11504 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11505 if (strcmp (section, ".reg-ppc-ebb") == 0)
11506 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11507 if (strcmp (section, ".reg-ppc-pmu") == 0)
11508 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11509 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11510 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11511 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11512 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11513 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11514 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11515 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11516 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11517 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11518 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11519 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11520 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11521 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11522 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11523 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11524 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11525 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11526 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11527 if (strcmp (section, ".reg-s390-timer") == 0)
11528 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11529 if (strcmp (section, ".reg-s390-todcmp") == 0)
11530 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11531 if (strcmp (section, ".reg-s390-todpreg") == 0)
11532 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11533 if (strcmp (section, ".reg-s390-ctrs") == 0)
11534 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11535 if (strcmp (section, ".reg-s390-prefix") == 0)
11536 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11537 if (strcmp (section, ".reg-s390-last-break") == 0)
11538 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11539 if (strcmp (section, ".reg-s390-system-call") == 0)
11540 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11541 if (strcmp (section, ".reg-s390-tdb") == 0)
11542 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11543 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11544 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11545 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11546 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11547 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11548 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11549 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11550 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11551 if (strcmp (section, ".reg-arm-vfp") == 0)
11552 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11553 if (strcmp (section, ".reg-aarch-tls") == 0)
11554 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11555 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11556 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11557 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11558 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11559 if (strcmp (section, ".reg-aarch-sve") == 0)
11560 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11561 return NULL;
11562 }
11563
11564 static bfd_boolean
11565 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11566 size_t align)
11567 {
11568 char *p;
11569
11570 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11571 gABI specifies that PT_NOTE alignment should be aligned to 4
11572 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11573 align is less than 4, we use 4 byte alignment. */
11574 if (align < 4)
11575 align = 4;
11576 if (align != 4 && align != 8)
11577 return FALSE;
11578
11579 p = buf;
11580 while (p < buf + size)
11581 {
11582 Elf_External_Note *xnp = (Elf_External_Note *) p;
11583 Elf_Internal_Note in;
11584
11585 if (offsetof (Elf_External_Note, name) > buf - p + size)
11586 return FALSE;
11587
11588 in.type = H_GET_32 (abfd, xnp->type);
11589
11590 in.namesz = H_GET_32 (abfd, xnp->namesz);
11591 in.namedata = xnp->name;
11592 if (in.namesz > buf - in.namedata + size)
11593 return FALSE;
11594
11595 in.descsz = H_GET_32 (abfd, xnp->descsz);
11596 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11597 in.descpos = offset + (in.descdata - buf);
11598 if (in.descsz != 0
11599 && (in.descdata >= buf + size
11600 || in.descsz > buf - in.descdata + size))
11601 return FALSE;
11602
11603 switch (bfd_get_format (abfd))
11604 {
11605 default:
11606 return TRUE;
11607
11608 case bfd_core:
11609 {
11610 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11611 struct
11612 {
11613 const char * string;
11614 size_t len;
11615 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11616 }
11617 grokers[] =
11618 {
11619 GROKER_ELEMENT ("", elfcore_grok_note),
11620 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11621 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11622 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11623 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11624 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11625 };
11626 #undef GROKER_ELEMENT
11627 int i;
11628
11629 for (i = ARRAY_SIZE (grokers); i--;)
11630 {
11631 if (in.namesz >= grokers[i].len
11632 && strncmp (in.namedata, grokers[i].string,
11633 grokers[i].len) == 0)
11634 {
11635 if (! grokers[i].func (abfd, & in))
11636 return FALSE;
11637 break;
11638 }
11639 }
11640 break;
11641 }
11642
11643 case bfd_object:
11644 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11645 {
11646 if (! elfobj_grok_gnu_note (abfd, &in))
11647 return FALSE;
11648 }
11649 else if (in.namesz == sizeof "stapsdt"
11650 && strcmp (in.namedata, "stapsdt") == 0)
11651 {
11652 if (! elfobj_grok_stapsdt_note (abfd, &in))
11653 return FALSE;
11654 }
11655 break;
11656 }
11657
11658 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11659 }
11660
11661 return TRUE;
11662 }
11663
11664 static bfd_boolean
11665 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11666 size_t align)
11667 {
11668 char *buf;
11669
11670 if (size == 0 || (size + 1) == 0)
11671 return TRUE;
11672
11673 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11674 return FALSE;
11675
11676 buf = (char *) bfd_malloc (size + 1);
11677 if (buf == NULL)
11678 return FALSE;
11679
11680 /* PR 17512: file: ec08f814
11681 0-termintate the buffer so that string searches will not overflow. */
11682 buf[size] = 0;
11683
11684 if (bfd_bread (buf, size, abfd) != size
11685 || !elf_parse_notes (abfd, buf, size, offset, align))
11686 {
11687 free (buf);
11688 return FALSE;
11689 }
11690
11691 free (buf);
11692 return TRUE;
11693 }
11694 \f
11695 /* Providing external access to the ELF program header table. */
11696
11697 /* Return an upper bound on the number of bytes required to store a
11698 copy of ABFD's program header table entries. Return -1 if an error
11699 occurs; bfd_get_error will return an appropriate code. */
11700
11701 long
11702 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11703 {
11704 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11705 {
11706 bfd_set_error (bfd_error_wrong_format);
11707 return -1;
11708 }
11709
11710 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11711 }
11712
11713 /* Copy ABFD's program header table entries to *PHDRS. The entries
11714 will be stored as an array of Elf_Internal_Phdr structures, as
11715 defined in include/elf/internal.h. To find out how large the
11716 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11717
11718 Return the number of program header table entries read, or -1 if an
11719 error occurs; bfd_get_error will return an appropriate code. */
11720
11721 int
11722 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11723 {
11724 int num_phdrs;
11725
11726 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11727 {
11728 bfd_set_error (bfd_error_wrong_format);
11729 return -1;
11730 }
11731
11732 num_phdrs = elf_elfheader (abfd)->e_phnum;
11733 if (num_phdrs != 0)
11734 memcpy (phdrs, elf_tdata (abfd)->phdr,
11735 num_phdrs * sizeof (Elf_Internal_Phdr));
11736
11737 return num_phdrs;
11738 }
11739
11740 enum elf_reloc_type_class
11741 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11742 const asection *rel_sec ATTRIBUTE_UNUSED,
11743 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11744 {
11745 return reloc_class_normal;
11746 }
11747
11748 /* For RELA architectures, return the relocation value for a
11749 relocation against a local symbol. */
11750
11751 bfd_vma
11752 _bfd_elf_rela_local_sym (bfd *abfd,
11753 Elf_Internal_Sym *sym,
11754 asection **psec,
11755 Elf_Internal_Rela *rel)
11756 {
11757 asection *sec = *psec;
11758 bfd_vma relocation;
11759
11760 relocation = (sec->output_section->vma
11761 + sec->output_offset
11762 + sym->st_value);
11763 if ((sec->flags & SEC_MERGE)
11764 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11765 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11766 {
11767 rel->r_addend =
11768 _bfd_merged_section_offset (abfd, psec,
11769 elf_section_data (sec)->sec_info,
11770 sym->st_value + rel->r_addend);
11771 if (sec != *psec)
11772 {
11773 /* If we have changed the section, and our original section is
11774 marked with SEC_EXCLUDE, it means that the original
11775 SEC_MERGE section has been completely subsumed in some
11776 other SEC_MERGE section. In this case, we need to leave
11777 some info around for --emit-relocs. */
11778 if ((sec->flags & SEC_EXCLUDE) != 0)
11779 sec->kept_section = *psec;
11780 sec = *psec;
11781 }
11782 rel->r_addend -= relocation;
11783 rel->r_addend += sec->output_section->vma + sec->output_offset;
11784 }
11785 return relocation;
11786 }
11787
11788 bfd_vma
11789 _bfd_elf_rel_local_sym (bfd *abfd,
11790 Elf_Internal_Sym *sym,
11791 asection **psec,
11792 bfd_vma addend)
11793 {
11794 asection *sec = *psec;
11795
11796 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11797 return sym->st_value + addend;
11798
11799 return _bfd_merged_section_offset (abfd, psec,
11800 elf_section_data (sec)->sec_info,
11801 sym->st_value + addend);
11802 }
11803
11804 /* Adjust an address within a section. Given OFFSET within SEC, return
11805 the new offset within the section, based upon changes made to the
11806 section. Returns -1 if the offset is now invalid.
11807 The offset (in abnd out) is in target sized bytes, however big a
11808 byte may be. */
11809
11810 bfd_vma
11811 _bfd_elf_section_offset (bfd *abfd,
11812 struct bfd_link_info *info,
11813 asection *sec,
11814 bfd_vma offset)
11815 {
11816 switch (sec->sec_info_type)
11817 {
11818 case SEC_INFO_TYPE_STABS:
11819 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11820 offset);
11821 case SEC_INFO_TYPE_EH_FRAME:
11822 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11823
11824 default:
11825 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11826 {
11827 /* Reverse the offset. */
11828 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11829 bfd_size_type address_size = bed->s->arch_size / 8;
11830
11831 /* address_size and sec->size are in octets. Convert
11832 to bytes before subtracting the original offset. */
11833 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11834 }
11835 return offset;
11836 }
11837 }
11838 \f
11839 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11840 reconstruct an ELF file by reading the segments out of remote memory
11841 based on the ELF file header at EHDR_VMA and the ELF program headers it
11842 points to. If not null, *LOADBASEP is filled in with the difference
11843 between the VMAs from which the segments were read, and the VMAs the
11844 file headers (and hence BFD's idea of each section's VMA) put them at.
11845
11846 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11847 remote memory at target address VMA into the local buffer at MYADDR; it
11848 should return zero on success or an `errno' code on failure. TEMPL must
11849 be a BFD for an ELF target with the word size and byte order found in
11850 the remote memory. */
11851
11852 bfd *
11853 bfd_elf_bfd_from_remote_memory
11854 (bfd *templ,
11855 bfd_vma ehdr_vma,
11856 bfd_size_type size,
11857 bfd_vma *loadbasep,
11858 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11859 {
11860 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11861 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11862 }
11863 \f
11864 long
11865 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11866 long symcount ATTRIBUTE_UNUSED,
11867 asymbol **syms ATTRIBUTE_UNUSED,
11868 long dynsymcount,
11869 asymbol **dynsyms,
11870 asymbol **ret)
11871 {
11872 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11873 asection *relplt;
11874 asymbol *s;
11875 const char *relplt_name;
11876 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11877 arelent *p;
11878 long count, i, n;
11879 size_t size;
11880 Elf_Internal_Shdr *hdr;
11881 char *names;
11882 asection *plt;
11883
11884 *ret = NULL;
11885
11886 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11887 return 0;
11888
11889 if (dynsymcount <= 0)
11890 return 0;
11891
11892 if (!bed->plt_sym_val)
11893 return 0;
11894
11895 relplt_name = bed->relplt_name;
11896 if (relplt_name == NULL)
11897 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11898 relplt = bfd_get_section_by_name (abfd, relplt_name);
11899 if (relplt == NULL)
11900 return 0;
11901
11902 hdr = &elf_section_data (relplt)->this_hdr;
11903 if (hdr->sh_link != elf_dynsymtab (abfd)
11904 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11905 return 0;
11906
11907 plt = bfd_get_section_by_name (abfd, ".plt");
11908 if (plt == NULL)
11909 return 0;
11910
11911 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11912 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11913 return -1;
11914
11915 count = relplt->size / hdr->sh_entsize;
11916 size = count * sizeof (asymbol);
11917 p = relplt->relocation;
11918 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11919 {
11920 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11921 if (p->addend != 0)
11922 {
11923 #ifdef BFD64
11924 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11925 #else
11926 size += sizeof ("+0x") - 1 + 8;
11927 #endif
11928 }
11929 }
11930
11931 s = *ret = (asymbol *) bfd_malloc (size);
11932 if (s == NULL)
11933 return -1;
11934
11935 names = (char *) (s + count);
11936 p = relplt->relocation;
11937 n = 0;
11938 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11939 {
11940 size_t len;
11941 bfd_vma addr;
11942
11943 addr = bed->plt_sym_val (i, plt, p);
11944 if (addr == (bfd_vma) -1)
11945 continue;
11946
11947 *s = **p->sym_ptr_ptr;
11948 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11949 we are defining a symbol, ensure one of them is set. */
11950 if ((s->flags & BSF_LOCAL) == 0)
11951 s->flags |= BSF_GLOBAL;
11952 s->flags |= BSF_SYNTHETIC;
11953 s->section = plt;
11954 s->value = addr - plt->vma;
11955 s->name = names;
11956 s->udata.p = NULL;
11957 len = strlen ((*p->sym_ptr_ptr)->name);
11958 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11959 names += len;
11960 if (p->addend != 0)
11961 {
11962 char buf[30], *a;
11963
11964 memcpy (names, "+0x", sizeof ("+0x") - 1);
11965 names += sizeof ("+0x") - 1;
11966 bfd_sprintf_vma (abfd, buf, p->addend);
11967 for (a = buf; *a == '0'; ++a)
11968 ;
11969 len = strlen (a);
11970 memcpy (names, a, len);
11971 names += len;
11972 }
11973 memcpy (names, "@plt", sizeof ("@plt"));
11974 names += sizeof ("@plt");
11975 ++s, ++n;
11976 }
11977
11978 return n;
11979 }
11980
11981 /* It is only used by x86-64 so far.
11982 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11983 but current usage would allow all of _bfd_std_section to be zero. */
11984 static const asymbol lcomm_sym
11985 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
11986 asection _bfd_elf_large_com_section
11987 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
11988 "LARGE_COMMON", 0, SEC_IS_COMMON);
11989
11990 void
11991 _bfd_elf_post_process_headers (bfd * abfd,
11992 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11993 {
11994 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11995
11996 i_ehdrp = elf_elfheader (abfd);
11997
11998 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11999
12000 /* To make things simpler for the loader on Linux systems we set the
12001 osabi field to ELFOSABI_GNU if the binary contains symbols of
12002 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
12003 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
12004 && elf_tdata (abfd)->has_gnu_symbols)
12005 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12006 }
12007
12008
12009 /* Return TRUE for ELF symbol types that represent functions.
12010 This is the default version of this function, which is sufficient for
12011 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12012
12013 bfd_boolean
12014 _bfd_elf_is_function_type (unsigned int type)
12015 {
12016 return (type == STT_FUNC
12017 || type == STT_GNU_IFUNC);
12018 }
12019
12020 /* If the ELF symbol SYM might be a function in SEC, return the
12021 function size and set *CODE_OFF to the function's entry point,
12022 otherwise return zero. */
12023
12024 bfd_size_type
12025 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12026 bfd_vma *code_off)
12027 {
12028 bfd_size_type size;
12029
12030 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12031 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12032 || sym->section != sec)
12033 return 0;
12034
12035 *code_off = sym->value;
12036 size = 0;
12037 if (!(sym->flags & BSF_SYNTHETIC))
12038 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12039 if (size == 0)
12040 size = 1;
12041 return size;
12042 }
This page took 0.381271 seconds and 5 git commands to generate.