bfd, ld: add CTF section linking
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
57 size_t align) ;
58 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
59 file_ptr offset, size_t align);
60
61 /* Swap version information in and out. The version information is
62 currently size independent. If that ever changes, this code will
63 need to move into elfcode.h. */
64
65 /* Swap in a Verdef structure. */
66
67 void
68 _bfd_elf_swap_verdef_in (bfd *abfd,
69 const Elf_External_Verdef *src,
70 Elf_Internal_Verdef *dst)
71 {
72 dst->vd_version = H_GET_16 (abfd, src->vd_version);
73 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
74 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
75 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
76 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
77 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
78 dst->vd_next = H_GET_32 (abfd, src->vd_next);
79 }
80
81 /* Swap out a Verdef structure. */
82
83 void
84 _bfd_elf_swap_verdef_out (bfd *abfd,
85 const Elf_Internal_Verdef *src,
86 Elf_External_Verdef *dst)
87 {
88 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
89 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
90 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
91 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
92 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
93 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
94 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
95 }
96
97 /* Swap in a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_in (bfd *abfd,
101 const Elf_External_Verdaux *src,
102 Elf_Internal_Verdaux *dst)
103 {
104 dst->vda_name = H_GET_32 (abfd, src->vda_name);
105 dst->vda_next = H_GET_32 (abfd, src->vda_next);
106 }
107
108 /* Swap out a Verdaux structure. */
109
110 void
111 _bfd_elf_swap_verdaux_out (bfd *abfd,
112 const Elf_Internal_Verdaux *src,
113 Elf_External_Verdaux *dst)
114 {
115 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
116 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
117 }
118
119 /* Swap in a Verneed structure. */
120
121 void
122 _bfd_elf_swap_verneed_in (bfd *abfd,
123 const Elf_External_Verneed *src,
124 Elf_Internal_Verneed *dst)
125 {
126 dst->vn_version = H_GET_16 (abfd, src->vn_version);
127 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
128 dst->vn_file = H_GET_32 (abfd, src->vn_file);
129 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
130 dst->vn_next = H_GET_32 (abfd, src->vn_next);
131 }
132
133 /* Swap out a Verneed structure. */
134
135 void
136 _bfd_elf_swap_verneed_out (bfd *abfd,
137 const Elf_Internal_Verneed *src,
138 Elf_External_Verneed *dst)
139 {
140 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
141 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
142 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
143 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
144 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
145 }
146
147 /* Swap in a Vernaux structure. */
148
149 void
150 _bfd_elf_swap_vernaux_in (bfd *abfd,
151 const Elf_External_Vernaux *src,
152 Elf_Internal_Vernaux *dst)
153 {
154 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
155 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
156 dst->vna_other = H_GET_16 (abfd, src->vna_other);
157 dst->vna_name = H_GET_32 (abfd, src->vna_name);
158 dst->vna_next = H_GET_32 (abfd, src->vna_next);
159 }
160
161 /* Swap out a Vernaux structure. */
162
163 void
164 _bfd_elf_swap_vernaux_out (bfd *abfd,
165 const Elf_Internal_Vernaux *src,
166 Elf_External_Vernaux *dst)
167 {
168 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
169 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
170 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
171 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
172 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
173 }
174
175 /* Swap in a Versym structure. */
176
177 void
178 _bfd_elf_swap_versym_in (bfd *abfd,
179 const Elf_External_Versym *src,
180 Elf_Internal_Versym *dst)
181 {
182 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
183 }
184
185 /* Swap out a Versym structure. */
186
187 void
188 _bfd_elf_swap_versym_out (bfd *abfd,
189 const Elf_Internal_Versym *src,
190 Elf_External_Versym *dst)
191 {
192 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
193 }
194
195 /* Standard ELF hash function. Do not change this function; you will
196 cause invalid hash tables to be generated. */
197
198 unsigned long
199 bfd_elf_hash (const char *namearg)
200 {
201 const unsigned char *name = (const unsigned char *) namearg;
202 unsigned long h = 0;
203 unsigned long g;
204 int ch;
205
206 while ((ch = *name++) != '\0')
207 {
208 h = (h << 4) + ch;
209 if ((g = (h & 0xf0000000)) != 0)
210 {
211 h ^= g >> 24;
212 /* The ELF ABI says `h &= ~g', but this is equivalent in
213 this case and on some machines one insn instead of two. */
214 h ^= g;
215 }
216 }
217 return h & 0xffffffff;
218 }
219
220 /* DT_GNU_HASH hash function. Do not change this function; you will
221 cause invalid hash tables to be generated. */
222
223 unsigned long
224 bfd_elf_gnu_hash (const char *namearg)
225 {
226 const unsigned char *name = (const unsigned char *) namearg;
227 unsigned long h = 5381;
228 unsigned char ch;
229
230 while ((ch = *name++) != '\0')
231 h = (h << 5) + h + ch;
232 return h & 0xffffffff;
233 }
234
235 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
236 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
237 bfd_boolean
238 bfd_elf_allocate_object (bfd *abfd,
239 size_t object_size,
240 enum elf_target_id object_id)
241 {
242 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
243 abfd->tdata.any = bfd_zalloc (abfd, object_size);
244 if (abfd->tdata.any == NULL)
245 return FALSE;
246
247 elf_object_id (abfd) = object_id;
248 if (abfd->direction != read_direction)
249 {
250 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
251 if (o == NULL)
252 return FALSE;
253 elf_tdata (abfd)->o = o;
254 elf_program_header_size (abfd) = (bfd_size_type) -1;
255 }
256 return TRUE;
257 }
258
259
260 bfd_boolean
261 bfd_elf_make_object (bfd *abfd)
262 {
263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
264 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
265 bed->target_id);
266 }
267
268 bfd_boolean
269 bfd_elf_mkcorefile (bfd *abfd)
270 {
271 /* I think this can be done just like an object file. */
272 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
273 return FALSE;
274 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
275 return elf_tdata (abfd)->core != NULL;
276 }
277
278 char *
279 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
280 {
281 Elf_Internal_Shdr **i_shdrp;
282 bfd_byte *shstrtab = NULL;
283 file_ptr offset;
284 bfd_size_type shstrtabsize;
285
286 i_shdrp = elf_elfsections (abfd);
287 if (i_shdrp == 0
288 || shindex >= elf_numsections (abfd)
289 || i_shdrp[shindex] == 0)
290 return NULL;
291
292 shstrtab = i_shdrp[shindex]->contents;
293 if (shstrtab == NULL)
294 {
295 /* No cached one, attempt to read, and cache what we read. */
296 offset = i_shdrp[shindex]->sh_offset;
297 shstrtabsize = i_shdrp[shindex]->sh_size;
298
299 /* Allocate and clear an extra byte at the end, to prevent crashes
300 in case the string table is not terminated. */
301 if (shstrtabsize + 1 <= 1
302 || shstrtabsize > bfd_get_file_size (abfd)
303 || bfd_seek (abfd, offset, SEEK_SET) != 0
304 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
305 shstrtab = NULL;
306 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
307 {
308 if (bfd_get_error () != bfd_error_system_call)
309 bfd_set_error (bfd_error_file_truncated);
310 bfd_release (abfd, shstrtab);
311 shstrtab = NULL;
312 /* Once we've failed to read it, make sure we don't keep
313 trying. Otherwise, we'll keep allocating space for
314 the string table over and over. */
315 i_shdrp[shindex]->sh_size = 0;
316 }
317 else
318 shstrtab[shstrtabsize] = '\0';
319 i_shdrp[shindex]->contents = shstrtab;
320 }
321 return (char *) shstrtab;
322 }
323
324 char *
325 bfd_elf_string_from_elf_section (bfd *abfd,
326 unsigned int shindex,
327 unsigned int strindex)
328 {
329 Elf_Internal_Shdr *hdr;
330
331 if (strindex == 0)
332 return "";
333
334 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
335 return NULL;
336
337 hdr = elf_elfsections (abfd)[shindex];
338
339 if (hdr->contents == NULL)
340 {
341 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
342 {
343 /* PR 17512: file: f057ec89. */
344 /* xgettext:c-format */
345 _bfd_error_handler (_("%pB: attempt to load strings from"
346 " a non-string section (number %d)"),
347 abfd, shindex);
348 return NULL;
349 }
350
351 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
352 return NULL;
353 }
354 else
355 {
356 /* PR 24273: The string section's contents may have already
357 been loaded elsewhere, eg because a corrupt file has the
358 string section index in the ELF header pointing at a group
359 section. So be paranoid, and test that the last byte of
360 the section is zero. */
361 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
362 return NULL;
363 }
364
365 if (strindex >= hdr->sh_size)
366 {
367 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
368 _bfd_error_handler
369 /* xgettext:c-format */
370 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
371 abfd, strindex, (uint64_t) hdr->sh_size,
372 (shindex == shstrndx && strindex == hdr->sh_name
373 ? ".shstrtab"
374 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
375 return NULL;
376 }
377
378 return ((char *) hdr->contents) + strindex;
379 }
380
381 /* Read and convert symbols to internal format.
382 SYMCOUNT specifies the number of symbols to read, starting from
383 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
384 are non-NULL, they are used to store the internal symbols, external
385 symbols, and symbol section index extensions, respectively.
386 Returns a pointer to the internal symbol buffer (malloced if necessary)
387 or NULL if there were no symbols or some kind of problem. */
388
389 Elf_Internal_Sym *
390 bfd_elf_get_elf_syms (bfd *ibfd,
391 Elf_Internal_Shdr *symtab_hdr,
392 size_t symcount,
393 size_t symoffset,
394 Elf_Internal_Sym *intsym_buf,
395 void *extsym_buf,
396 Elf_External_Sym_Shndx *extshndx_buf)
397 {
398 Elf_Internal_Shdr *shndx_hdr;
399 void *alloc_ext;
400 const bfd_byte *esym;
401 Elf_External_Sym_Shndx *alloc_extshndx;
402 Elf_External_Sym_Shndx *shndx;
403 Elf_Internal_Sym *alloc_intsym;
404 Elf_Internal_Sym *isym;
405 Elf_Internal_Sym *isymend;
406 const struct elf_backend_data *bed;
407 size_t extsym_size;
408 bfd_size_type amt;
409 file_ptr pos;
410
411 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
412 abort ();
413
414 if (symcount == 0)
415 return intsym_buf;
416
417 /* Normal syms might have section extension entries. */
418 shndx_hdr = NULL;
419 if (elf_symtab_shndx_list (ibfd) != NULL)
420 {
421 elf_section_list * entry;
422 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
423
424 /* Find an index section that is linked to this symtab section. */
425 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
426 {
427 /* PR 20063. */
428 if (entry->hdr.sh_link >= elf_numsections (ibfd))
429 continue;
430
431 if (sections[entry->hdr.sh_link] == symtab_hdr)
432 {
433 shndx_hdr = & entry->hdr;
434 break;
435 };
436 }
437
438 if (shndx_hdr == NULL)
439 {
440 if (symtab_hdr == & elf_symtab_hdr (ibfd))
441 /* Not really accurate, but this was how the old code used to work. */
442 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
443 /* Otherwise we do nothing. The assumption is that
444 the index table will not be needed. */
445 }
446 }
447
448 /* Read the symbols. */
449 alloc_ext = NULL;
450 alloc_extshndx = NULL;
451 alloc_intsym = NULL;
452 bed = get_elf_backend_data (ibfd);
453 extsym_size = bed->s->sizeof_sym;
454 amt = (bfd_size_type) symcount * extsym_size;
455 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
456 if (extsym_buf == NULL)
457 {
458 alloc_ext = bfd_malloc2 (symcount, extsym_size);
459 extsym_buf = alloc_ext;
460 }
461 if (extsym_buf == NULL
462 || bfd_seek (ibfd, pos, SEEK_SET) != 0
463 || bfd_bread (extsym_buf, amt, ibfd) != amt)
464 {
465 intsym_buf = NULL;
466 goto out;
467 }
468
469 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
470 extshndx_buf = NULL;
471 else
472 {
473 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
474 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
475 if (extshndx_buf == NULL)
476 {
477 alloc_extshndx = (Elf_External_Sym_Shndx *)
478 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
479 extshndx_buf = alloc_extshndx;
480 }
481 if (extshndx_buf == NULL
482 || bfd_seek (ibfd, pos, SEEK_SET) != 0
483 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
484 {
485 intsym_buf = NULL;
486 goto out;
487 }
488 }
489
490 if (intsym_buf == NULL)
491 {
492 alloc_intsym = (Elf_Internal_Sym *)
493 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
494 intsym_buf = alloc_intsym;
495 if (intsym_buf == NULL)
496 goto out;
497 }
498
499 /* Convert the symbols to internal form. */
500 isymend = intsym_buf + symcount;
501 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
502 shndx = extshndx_buf;
503 isym < isymend;
504 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
505 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
506 {
507 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
508 /* xgettext:c-format */
509 _bfd_error_handler (_("%pB symbol number %lu references"
510 " nonexistent SHT_SYMTAB_SHNDX section"),
511 ibfd, (unsigned long) symoffset);
512 if (alloc_intsym != NULL)
513 free (alloc_intsym);
514 intsym_buf = NULL;
515 goto out;
516 }
517
518 out:
519 if (alloc_ext != NULL)
520 free (alloc_ext);
521 if (alloc_extshndx != NULL)
522 free (alloc_extshndx);
523
524 return intsym_buf;
525 }
526
527 /* Look up a symbol name. */
528 const char *
529 bfd_elf_sym_name (bfd *abfd,
530 Elf_Internal_Shdr *symtab_hdr,
531 Elf_Internal_Sym *isym,
532 asection *sym_sec)
533 {
534 const char *name;
535 unsigned int iname = isym->st_name;
536 unsigned int shindex = symtab_hdr->sh_link;
537
538 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
539 /* Check for a bogus st_shndx to avoid crashing. */
540 && isym->st_shndx < elf_numsections (abfd))
541 {
542 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
543 shindex = elf_elfheader (abfd)->e_shstrndx;
544 }
545
546 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
547 if (name == NULL)
548 name = "(null)";
549 else if (sym_sec && *name == '\0')
550 name = bfd_section_name (sym_sec);
551
552 return name;
553 }
554
555 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
556 sections. The first element is the flags, the rest are section
557 pointers. */
558
559 typedef union elf_internal_group {
560 Elf_Internal_Shdr *shdr;
561 unsigned int flags;
562 } Elf_Internal_Group;
563
564 /* Return the name of the group signature symbol. Why isn't the
565 signature just a string? */
566
567 static const char *
568 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
569 {
570 Elf_Internal_Shdr *hdr;
571 unsigned char esym[sizeof (Elf64_External_Sym)];
572 Elf_External_Sym_Shndx eshndx;
573 Elf_Internal_Sym isym;
574
575 /* First we need to ensure the symbol table is available. Make sure
576 that it is a symbol table section. */
577 if (ghdr->sh_link >= elf_numsections (abfd))
578 return NULL;
579 hdr = elf_elfsections (abfd) [ghdr->sh_link];
580 if (hdr->sh_type != SHT_SYMTAB
581 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
582 return NULL;
583
584 /* Go read the symbol. */
585 hdr = &elf_tdata (abfd)->symtab_hdr;
586 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
587 &isym, esym, &eshndx) == NULL)
588 return NULL;
589
590 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
591 }
592
593 /* Set next_in_group list pointer, and group name for NEWSECT. */
594
595 static bfd_boolean
596 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
597 {
598 unsigned int num_group = elf_tdata (abfd)->num_group;
599
600 /* If num_group is zero, read in all SHT_GROUP sections. The count
601 is set to -1 if there are no SHT_GROUP sections. */
602 if (num_group == 0)
603 {
604 unsigned int i, shnum;
605
606 /* First count the number of groups. If we have a SHT_GROUP
607 section with just a flag word (ie. sh_size is 4), ignore it. */
608 shnum = elf_numsections (abfd);
609 num_group = 0;
610
611 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
612 ( (shdr)->sh_type == SHT_GROUP \
613 && (shdr)->sh_size >= minsize \
614 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
615 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
616
617 for (i = 0; i < shnum; i++)
618 {
619 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
620
621 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
622 num_group += 1;
623 }
624
625 if (num_group == 0)
626 {
627 num_group = (unsigned) -1;
628 elf_tdata (abfd)->num_group = num_group;
629 elf_tdata (abfd)->group_sect_ptr = NULL;
630 }
631 else
632 {
633 /* We keep a list of elf section headers for group sections,
634 so we can find them quickly. */
635 bfd_size_type amt;
636
637 elf_tdata (abfd)->num_group = num_group;
638 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
639 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
640 if (elf_tdata (abfd)->group_sect_ptr == NULL)
641 return FALSE;
642 memset (elf_tdata (abfd)->group_sect_ptr, 0,
643 num_group * sizeof (Elf_Internal_Shdr *));
644 num_group = 0;
645
646 for (i = 0; i < shnum; i++)
647 {
648 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
649
650 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
651 {
652 unsigned char *src;
653 Elf_Internal_Group *dest;
654
655 /* Make sure the group section has a BFD section
656 attached to it. */
657 if (!bfd_section_from_shdr (abfd, i))
658 return FALSE;
659
660 /* Add to list of sections. */
661 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
662 num_group += 1;
663
664 /* Read the raw contents. */
665 BFD_ASSERT (sizeof (*dest) >= 4);
666 amt = shdr->sh_size * sizeof (*dest) / 4;
667 shdr->contents = (unsigned char *)
668 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
669 /* PR binutils/4110: Handle corrupt group headers. */
670 if (shdr->contents == NULL)
671 {
672 _bfd_error_handler
673 /* xgettext:c-format */
674 (_("%pB: corrupt size field in group section"
675 " header: %#" PRIx64),
676 abfd, (uint64_t) shdr->sh_size);
677 bfd_set_error (bfd_error_bad_value);
678 -- num_group;
679 continue;
680 }
681
682 memset (shdr->contents, 0, amt);
683
684 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
685 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
686 != shdr->sh_size))
687 {
688 _bfd_error_handler
689 /* xgettext:c-format */
690 (_("%pB: invalid size field in group section"
691 " header: %#" PRIx64 ""),
692 abfd, (uint64_t) shdr->sh_size);
693 bfd_set_error (bfd_error_bad_value);
694 -- num_group;
695 /* PR 17510: If the group contents are even
696 partially corrupt, do not allow any of the
697 contents to be used. */
698 memset (shdr->contents, 0, amt);
699 continue;
700 }
701
702 /* Translate raw contents, a flag word followed by an
703 array of elf section indices all in target byte order,
704 to the flag word followed by an array of elf section
705 pointers. */
706 src = shdr->contents + shdr->sh_size;
707 dest = (Elf_Internal_Group *) (shdr->contents + amt);
708
709 while (1)
710 {
711 unsigned int idx;
712
713 src -= 4;
714 --dest;
715 idx = H_GET_32 (abfd, src);
716 if (src == shdr->contents)
717 {
718 dest->flags = idx;
719 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
720 shdr->bfd_section->flags
721 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
722 break;
723 }
724 if (idx < shnum)
725 {
726 dest->shdr = elf_elfsections (abfd)[idx];
727 /* PR binutils/23199: All sections in a
728 section group should be marked with
729 SHF_GROUP. But some tools generate
730 broken objects without SHF_GROUP. Fix
731 them up here. */
732 dest->shdr->sh_flags |= SHF_GROUP;
733 }
734 if (idx >= shnum
735 || dest->shdr->sh_type == SHT_GROUP)
736 {
737 _bfd_error_handler
738 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
739 abfd, i);
740 dest->shdr = NULL;
741 }
742 }
743 }
744 }
745
746 /* PR 17510: Corrupt binaries might contain invalid groups. */
747 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
748 {
749 elf_tdata (abfd)->num_group = num_group;
750
751 /* If all groups are invalid then fail. */
752 if (num_group == 0)
753 {
754 elf_tdata (abfd)->group_sect_ptr = NULL;
755 elf_tdata (abfd)->num_group = num_group = -1;
756 _bfd_error_handler
757 (_("%pB: no valid group sections found"), abfd);
758 bfd_set_error (bfd_error_bad_value);
759 }
760 }
761 }
762 }
763
764 if (num_group != (unsigned) -1)
765 {
766 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
767 unsigned int j;
768
769 for (j = 0; j < num_group; j++)
770 {
771 /* Begin search from previous found group. */
772 unsigned i = (j + search_offset) % num_group;
773
774 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
775 Elf_Internal_Group *idx;
776 bfd_size_type n_elt;
777
778 if (shdr == NULL)
779 continue;
780
781 idx = (Elf_Internal_Group *) shdr->contents;
782 if (idx == NULL || shdr->sh_size < 4)
783 {
784 /* See PR 21957 for a reproducer. */
785 /* xgettext:c-format */
786 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
787 abfd, shdr->bfd_section);
788 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
789 bfd_set_error (bfd_error_bad_value);
790 return FALSE;
791 }
792 n_elt = shdr->sh_size / 4;
793
794 /* Look through this group's sections to see if current
795 section is a member. */
796 while (--n_elt != 0)
797 if ((++idx)->shdr == hdr)
798 {
799 asection *s = NULL;
800
801 /* We are a member of this group. Go looking through
802 other members to see if any others are linked via
803 next_in_group. */
804 idx = (Elf_Internal_Group *) shdr->contents;
805 n_elt = shdr->sh_size / 4;
806 while (--n_elt != 0)
807 if ((++idx)->shdr != NULL
808 && (s = idx->shdr->bfd_section) != NULL
809 && elf_next_in_group (s) != NULL)
810 break;
811 if (n_elt != 0)
812 {
813 /* Snarf the group name from other member, and
814 insert current section in circular list. */
815 elf_group_name (newsect) = elf_group_name (s);
816 elf_next_in_group (newsect) = elf_next_in_group (s);
817 elf_next_in_group (s) = newsect;
818 }
819 else
820 {
821 const char *gname;
822
823 gname = group_signature (abfd, shdr);
824 if (gname == NULL)
825 return FALSE;
826 elf_group_name (newsect) = gname;
827
828 /* Start a circular list with one element. */
829 elf_next_in_group (newsect) = newsect;
830 }
831
832 /* If the group section has been created, point to the
833 new member. */
834 if (shdr->bfd_section != NULL)
835 elf_next_in_group (shdr->bfd_section) = newsect;
836
837 elf_tdata (abfd)->group_search_offset = i;
838 j = num_group - 1;
839 break;
840 }
841 }
842 }
843
844 if (elf_group_name (newsect) == NULL)
845 {
846 /* xgettext:c-format */
847 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
848 abfd, newsect);
849 return FALSE;
850 }
851 return TRUE;
852 }
853
854 bfd_boolean
855 _bfd_elf_setup_sections (bfd *abfd)
856 {
857 unsigned int i;
858 unsigned int num_group = elf_tdata (abfd)->num_group;
859 bfd_boolean result = TRUE;
860 asection *s;
861
862 /* Process SHF_LINK_ORDER. */
863 for (s = abfd->sections; s != NULL; s = s->next)
864 {
865 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
866 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
867 {
868 unsigned int elfsec = this_hdr->sh_link;
869 /* FIXME: The old Intel compiler and old strip/objcopy may
870 not set the sh_link or sh_info fields. Hence we could
871 get the situation where elfsec is 0. */
872 if (elfsec == 0)
873 {
874 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
875 if (bed->link_order_error_handler)
876 bed->link_order_error_handler
877 /* xgettext:c-format */
878 (_("%pB: warning: sh_link not set for section `%pA'"),
879 abfd, s);
880 }
881 else
882 {
883 asection *linksec = NULL;
884
885 if (elfsec < elf_numsections (abfd))
886 {
887 this_hdr = elf_elfsections (abfd)[elfsec];
888 linksec = this_hdr->bfd_section;
889 }
890
891 /* PR 1991, 2008:
892 Some strip/objcopy may leave an incorrect value in
893 sh_link. We don't want to proceed. */
894 if (linksec == NULL)
895 {
896 _bfd_error_handler
897 /* xgettext:c-format */
898 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
899 s->owner, elfsec, s);
900 result = FALSE;
901 }
902
903 elf_linked_to_section (s) = linksec;
904 }
905 }
906 else if (this_hdr->sh_type == SHT_GROUP
907 && elf_next_in_group (s) == NULL)
908 {
909 _bfd_error_handler
910 /* xgettext:c-format */
911 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
912 abfd, elf_section_data (s)->this_idx);
913 result = FALSE;
914 }
915 }
916
917 /* Process section groups. */
918 if (num_group == (unsigned) -1)
919 return result;
920
921 for (i = 0; i < num_group; i++)
922 {
923 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
924 Elf_Internal_Group *idx;
925 unsigned int n_elt;
926
927 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
928 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
929 {
930 _bfd_error_handler
931 /* xgettext:c-format */
932 (_("%pB: section group entry number %u is corrupt"),
933 abfd, i);
934 result = FALSE;
935 continue;
936 }
937
938 idx = (Elf_Internal_Group *) shdr->contents;
939 n_elt = shdr->sh_size / 4;
940
941 while (--n_elt != 0)
942 {
943 ++ idx;
944
945 if (idx->shdr == NULL)
946 continue;
947 else if (idx->shdr->bfd_section)
948 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
949 else if (idx->shdr->sh_type != SHT_RELA
950 && idx->shdr->sh_type != SHT_REL)
951 {
952 /* There are some unknown sections in the group. */
953 _bfd_error_handler
954 /* xgettext:c-format */
955 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
956 abfd,
957 idx->shdr->sh_type,
958 bfd_elf_string_from_elf_section (abfd,
959 (elf_elfheader (abfd)
960 ->e_shstrndx),
961 idx->shdr->sh_name),
962 shdr->bfd_section);
963 result = FALSE;
964 }
965 }
966 }
967
968 return result;
969 }
970
971 bfd_boolean
972 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
973 {
974 return elf_next_in_group (sec) != NULL;
975 }
976
977 const char *
978 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
979 {
980 if (elf_sec_group (sec) != NULL)
981 return elf_group_name (sec);
982 return NULL;
983 }
984
985 static char *
986 convert_debug_to_zdebug (bfd *abfd, const char *name)
987 {
988 unsigned int len = strlen (name);
989 char *new_name = bfd_alloc (abfd, len + 2);
990 if (new_name == NULL)
991 return NULL;
992 new_name[0] = '.';
993 new_name[1] = 'z';
994 memcpy (new_name + 2, name + 1, len);
995 return new_name;
996 }
997
998 static char *
999 convert_zdebug_to_debug (bfd *abfd, const char *name)
1000 {
1001 unsigned int len = strlen (name);
1002 char *new_name = bfd_alloc (abfd, len);
1003 if (new_name == NULL)
1004 return NULL;
1005 new_name[0] = '.';
1006 memcpy (new_name + 1, name + 2, len - 1);
1007 return new_name;
1008 }
1009
1010 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
1011
1012 struct lto_section
1013 {
1014 int16_t major_version;
1015 int16_t minor_version;
1016 unsigned char slim_object;
1017
1018 /* Flags is a private field that is not defined publicly. */
1019 uint16_t flags;
1020 };
1021
1022 /* Make a BFD section from an ELF section. We store a pointer to the
1023 BFD section in the bfd_section field of the header. */
1024
1025 bfd_boolean
1026 _bfd_elf_make_section_from_shdr (bfd *abfd,
1027 Elf_Internal_Shdr *hdr,
1028 const char *name,
1029 int shindex)
1030 {
1031 asection *newsect;
1032 flagword flags;
1033 const struct elf_backend_data *bed;
1034
1035 if (hdr->bfd_section != NULL)
1036 return TRUE;
1037
1038 newsect = bfd_make_section_anyway (abfd, name);
1039 if (newsect == NULL)
1040 return FALSE;
1041
1042 hdr->bfd_section = newsect;
1043 elf_section_data (newsect)->this_hdr = *hdr;
1044 elf_section_data (newsect)->this_idx = shindex;
1045
1046 /* Always use the real type/flags. */
1047 elf_section_type (newsect) = hdr->sh_type;
1048 elf_section_flags (newsect) = hdr->sh_flags;
1049
1050 newsect->filepos = hdr->sh_offset;
1051
1052 if (!bfd_set_section_vma (newsect, hdr->sh_addr)
1053 || !bfd_set_section_size (newsect, hdr->sh_size)
1054 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1055 return FALSE;
1056
1057 flags = SEC_NO_FLAGS;
1058 if (hdr->sh_type != SHT_NOBITS)
1059 flags |= SEC_HAS_CONTENTS;
1060 if (hdr->sh_type == SHT_GROUP)
1061 flags |= SEC_GROUP;
1062 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1063 {
1064 flags |= SEC_ALLOC;
1065 if (hdr->sh_type != SHT_NOBITS)
1066 flags |= SEC_LOAD;
1067 }
1068 if ((hdr->sh_flags & SHF_WRITE) == 0)
1069 flags |= SEC_READONLY;
1070 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1071 flags |= SEC_CODE;
1072 else if ((flags & SEC_LOAD) != 0)
1073 flags |= SEC_DATA;
1074 if ((hdr->sh_flags & SHF_MERGE) != 0)
1075 {
1076 flags |= SEC_MERGE;
1077 newsect->entsize = hdr->sh_entsize;
1078 }
1079 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1080 flags |= SEC_STRINGS;
1081 if (hdr->sh_flags & SHF_GROUP)
1082 if (!setup_group (abfd, hdr, newsect))
1083 return FALSE;
1084 if ((hdr->sh_flags & SHF_TLS) != 0)
1085 flags |= SEC_THREAD_LOCAL;
1086 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1087 flags |= SEC_EXCLUDE;
1088
1089 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1090 {
1091 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1092 but binutils as of 2019-07-23 did not set the EI_OSABI header
1093 byte. */
1094 case ELFOSABI_NONE:
1095 case ELFOSABI_GNU:
1096 case ELFOSABI_FREEBSD:
1097 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1098 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1099 break;
1100 }
1101
1102 if ((flags & SEC_ALLOC) == 0)
1103 {
1104 /* The debugging sections appear to be recognized only by name,
1105 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1106 if (name [0] == '.')
1107 {
1108 const char *p;
1109 int n;
1110 if (name[1] == 'd')
1111 p = ".debug", n = 6;
1112 else if (name[1] == 'g' && name[2] == 'n')
1113 p = ".gnu.linkonce.wi.", n = 17;
1114 else if (name[1] == 'g' && name[2] == 'd')
1115 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1116 else if (name[1] == 'l')
1117 p = ".line", n = 5;
1118 else if (name[1] == 's')
1119 p = ".stab", n = 5;
1120 else if (name[1] == 'z')
1121 p = ".zdebug", n = 7;
1122 else
1123 p = NULL, n = 0;
1124 if (p != NULL && strncmp (name, p, n) == 0)
1125 flags |= SEC_DEBUGGING;
1126 }
1127 }
1128
1129 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1130 only link a single copy of the section. This is used to support
1131 g++. g++ will emit each template expansion in its own section.
1132 The symbols will be defined as weak, so that multiple definitions
1133 are permitted. The GNU linker extension is to actually discard
1134 all but one of the sections. */
1135 if (CONST_STRNEQ (name, ".gnu.linkonce")
1136 && elf_next_in_group (newsect) == NULL)
1137 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1138
1139 bed = get_elf_backend_data (abfd);
1140 if (bed->elf_backend_section_flags)
1141 if (! bed->elf_backend_section_flags (&flags, hdr))
1142 return FALSE;
1143
1144 if (!bfd_set_section_flags (newsect, flags))
1145 return FALSE;
1146
1147 /* We do not parse the PT_NOTE segments as we are interested even in the
1148 separate debug info files which may have the segments offsets corrupted.
1149 PT_NOTEs from the core files are currently not parsed using BFD. */
1150 if (hdr->sh_type == SHT_NOTE)
1151 {
1152 bfd_byte *contents;
1153
1154 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1155 return FALSE;
1156
1157 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1158 hdr->sh_offset, hdr->sh_addralign);
1159 free (contents);
1160 }
1161
1162 if ((flags & SEC_ALLOC) != 0)
1163 {
1164 Elf_Internal_Phdr *phdr;
1165 unsigned int i, nload;
1166
1167 /* Some ELF linkers produce binaries with all the program header
1168 p_paddr fields zero. If we have such a binary with more than
1169 one PT_LOAD header, then leave the section lma equal to vma
1170 so that we don't create sections with overlapping lma. */
1171 phdr = elf_tdata (abfd)->phdr;
1172 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1173 if (phdr->p_paddr != 0)
1174 break;
1175 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1176 ++nload;
1177 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1178 return TRUE;
1179
1180 phdr = elf_tdata (abfd)->phdr;
1181 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1182 {
1183 if (((phdr->p_type == PT_LOAD
1184 && (hdr->sh_flags & SHF_TLS) == 0)
1185 || phdr->p_type == PT_TLS)
1186 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1187 {
1188 if ((flags & SEC_LOAD) == 0)
1189 newsect->lma = (phdr->p_paddr
1190 + hdr->sh_addr - phdr->p_vaddr);
1191 else
1192 /* We used to use the same adjustment for SEC_LOAD
1193 sections, but that doesn't work if the segment
1194 is packed with code from multiple VMAs.
1195 Instead we calculate the section LMA based on
1196 the segment LMA. It is assumed that the
1197 segment will contain sections with contiguous
1198 LMAs, even if the VMAs are not. */
1199 newsect->lma = (phdr->p_paddr
1200 + hdr->sh_offset - phdr->p_offset);
1201
1202 /* With contiguous segments, we can't tell from file
1203 offsets whether a section with zero size should
1204 be placed at the end of one segment or the
1205 beginning of the next. Decide based on vaddr. */
1206 if (hdr->sh_addr >= phdr->p_vaddr
1207 && (hdr->sh_addr + hdr->sh_size
1208 <= phdr->p_vaddr + phdr->p_memsz))
1209 break;
1210 }
1211 }
1212 }
1213
1214 /* Compress/decompress DWARF debug sections with names: .debug_* and
1215 .zdebug_*, after the section flags is set. */
1216 if ((flags & SEC_DEBUGGING)
1217 && ((name[1] == 'd' && name[6] == '_')
1218 || (name[1] == 'z' && name[7] == '_')))
1219 {
1220 enum { nothing, compress, decompress } action = nothing;
1221 int compression_header_size;
1222 bfd_size_type uncompressed_size;
1223 unsigned int uncompressed_align_power;
1224 bfd_boolean compressed
1225 = bfd_is_section_compressed_with_header (abfd, newsect,
1226 &compression_header_size,
1227 &uncompressed_size,
1228 &uncompressed_align_power);
1229 if (compressed)
1230 {
1231 /* Compressed section. Check if we should decompress. */
1232 if ((abfd->flags & BFD_DECOMPRESS))
1233 action = decompress;
1234 }
1235
1236 /* Compress the uncompressed section or convert from/to .zdebug*
1237 section. Check if we should compress. */
1238 if (action == nothing)
1239 {
1240 if (newsect->size != 0
1241 && (abfd->flags & BFD_COMPRESS)
1242 && compression_header_size >= 0
1243 && uncompressed_size > 0
1244 && (!compressed
1245 || ((compression_header_size > 0)
1246 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1247 action = compress;
1248 else
1249 return TRUE;
1250 }
1251
1252 if (action == compress)
1253 {
1254 if (!bfd_init_section_compress_status (abfd, newsect))
1255 {
1256 _bfd_error_handler
1257 /* xgettext:c-format */
1258 (_("%pB: unable to initialize compress status for section %s"),
1259 abfd, name);
1260 return FALSE;
1261 }
1262 }
1263 else
1264 {
1265 if (!bfd_init_section_decompress_status (abfd, newsect))
1266 {
1267 _bfd_error_handler
1268 /* xgettext:c-format */
1269 (_("%pB: unable to initialize decompress status for section %s"),
1270 abfd, name);
1271 return FALSE;
1272 }
1273 }
1274
1275 if (abfd->is_linker_input)
1276 {
1277 if (name[1] == 'z'
1278 && (action == decompress
1279 || (action == compress
1280 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1281 {
1282 /* Convert section name from .zdebug_* to .debug_* so
1283 that linker will consider this section as a debug
1284 section. */
1285 char *new_name = convert_zdebug_to_debug (abfd, name);
1286 if (new_name == NULL)
1287 return FALSE;
1288 bfd_rename_section (newsect, new_name);
1289 }
1290 }
1291 else
1292 /* For objdump, don't rename the section. For objcopy, delay
1293 section rename to elf_fake_sections. */
1294 newsect->flags |= SEC_ELF_RENAME;
1295 }
1296
1297 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1298 section. */
1299 const char *lto_section_name = ".gnu.lto_.lto.";
1300 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1301 {
1302 struct lto_section lsection;
1303 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1304 sizeof (struct lto_section)))
1305 abfd->lto_slim_object = lsection.slim_object;
1306 }
1307
1308 return TRUE;
1309 }
1310
1311 const char *const bfd_elf_section_type_names[] =
1312 {
1313 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1314 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1315 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1316 };
1317
1318 /* ELF relocs are against symbols. If we are producing relocatable
1319 output, and the reloc is against an external symbol, and nothing
1320 has given us any additional addend, the resulting reloc will also
1321 be against the same symbol. In such a case, we don't want to
1322 change anything about the way the reloc is handled, since it will
1323 all be done at final link time. Rather than put special case code
1324 into bfd_perform_relocation, all the reloc types use this howto
1325 function. It just short circuits the reloc if producing
1326 relocatable output against an external symbol. */
1327
1328 bfd_reloc_status_type
1329 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1330 arelent *reloc_entry,
1331 asymbol *symbol,
1332 void *data ATTRIBUTE_UNUSED,
1333 asection *input_section,
1334 bfd *output_bfd,
1335 char **error_message ATTRIBUTE_UNUSED)
1336 {
1337 if (output_bfd != NULL
1338 && (symbol->flags & BSF_SECTION_SYM) == 0
1339 && (! reloc_entry->howto->partial_inplace
1340 || reloc_entry->addend == 0))
1341 {
1342 reloc_entry->address += input_section->output_offset;
1343 return bfd_reloc_ok;
1344 }
1345
1346 return bfd_reloc_continue;
1347 }
1348 \f
1349 /* Returns TRUE if section A matches section B.
1350 Names, addresses and links may be different, but everything else
1351 should be the same. */
1352
1353 static bfd_boolean
1354 section_match (const Elf_Internal_Shdr * a,
1355 const Elf_Internal_Shdr * b)
1356 {
1357 if (a->sh_type != b->sh_type
1358 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1359 || a->sh_addralign != b->sh_addralign
1360 || a->sh_entsize != b->sh_entsize)
1361 return FALSE;
1362 if (a->sh_type == SHT_SYMTAB
1363 || a->sh_type == SHT_STRTAB)
1364 return TRUE;
1365 return a->sh_size == b->sh_size;
1366 }
1367
1368 /* Find a section in OBFD that has the same characteristics
1369 as IHEADER. Return the index of this section or SHN_UNDEF if
1370 none can be found. Check's section HINT first, as this is likely
1371 to be the correct section. */
1372
1373 static unsigned int
1374 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1375 const unsigned int hint)
1376 {
1377 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1378 unsigned int i;
1379
1380 BFD_ASSERT (iheader != NULL);
1381
1382 /* See PR 20922 for a reproducer of the NULL test. */
1383 if (hint < elf_numsections (obfd)
1384 && oheaders[hint] != NULL
1385 && section_match (oheaders[hint], iheader))
1386 return hint;
1387
1388 for (i = 1; i < elf_numsections (obfd); i++)
1389 {
1390 Elf_Internal_Shdr * oheader = oheaders[i];
1391
1392 if (oheader == NULL)
1393 continue;
1394 if (section_match (oheader, iheader))
1395 /* FIXME: Do we care if there is a potential for
1396 multiple matches ? */
1397 return i;
1398 }
1399
1400 return SHN_UNDEF;
1401 }
1402
1403 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1404 Processor specific section, based upon a matching input section.
1405 Returns TRUE upon success, FALSE otherwise. */
1406
1407 static bfd_boolean
1408 copy_special_section_fields (const bfd *ibfd,
1409 bfd *obfd,
1410 const Elf_Internal_Shdr *iheader,
1411 Elf_Internal_Shdr *oheader,
1412 const unsigned int secnum)
1413 {
1414 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1415 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1416 bfd_boolean changed = FALSE;
1417 unsigned int sh_link;
1418
1419 if (oheader->sh_type == SHT_NOBITS)
1420 {
1421 /* This is a feature for objcopy --only-keep-debug:
1422 When a section's type is changed to NOBITS, we preserve
1423 the sh_link and sh_info fields so that they can be
1424 matched up with the original.
1425
1426 Note: Strictly speaking these assignments are wrong.
1427 The sh_link and sh_info fields should point to the
1428 relevent sections in the output BFD, which may not be in
1429 the same location as they were in the input BFD. But
1430 the whole point of this action is to preserve the
1431 original values of the sh_link and sh_info fields, so
1432 that they can be matched up with the section headers in
1433 the original file. So strictly speaking we may be
1434 creating an invalid ELF file, but it is only for a file
1435 that just contains debug info and only for sections
1436 without any contents. */
1437 if (oheader->sh_link == 0)
1438 oheader->sh_link = iheader->sh_link;
1439 if (oheader->sh_info == 0)
1440 oheader->sh_info = iheader->sh_info;
1441 return TRUE;
1442 }
1443
1444 /* Allow the target a chance to decide how these fields should be set. */
1445 if (bed->elf_backend_copy_special_section_fields != NULL
1446 && bed->elf_backend_copy_special_section_fields
1447 (ibfd, obfd, iheader, oheader))
1448 return TRUE;
1449
1450 /* We have an iheader which might match oheader, and which has non-zero
1451 sh_info and/or sh_link fields. Attempt to follow those links and find
1452 the section in the output bfd which corresponds to the linked section
1453 in the input bfd. */
1454 if (iheader->sh_link != SHN_UNDEF)
1455 {
1456 /* See PR 20931 for a reproducer. */
1457 if (iheader->sh_link >= elf_numsections (ibfd))
1458 {
1459 _bfd_error_handler
1460 /* xgettext:c-format */
1461 (_("%pB: invalid sh_link field (%d) in section number %d"),
1462 ibfd, iheader->sh_link, secnum);
1463 return FALSE;
1464 }
1465
1466 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1467 if (sh_link != SHN_UNDEF)
1468 {
1469 oheader->sh_link = sh_link;
1470 changed = TRUE;
1471 }
1472 else
1473 /* FIXME: Should we install iheader->sh_link
1474 if we could not find a match ? */
1475 _bfd_error_handler
1476 /* xgettext:c-format */
1477 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1478 }
1479
1480 if (iheader->sh_info)
1481 {
1482 /* The sh_info field can hold arbitrary information, but if the
1483 SHF_LINK_INFO flag is set then it should be interpreted as a
1484 section index. */
1485 if (iheader->sh_flags & SHF_INFO_LINK)
1486 {
1487 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1488 iheader->sh_info);
1489 if (sh_link != SHN_UNDEF)
1490 oheader->sh_flags |= SHF_INFO_LINK;
1491 }
1492 else
1493 /* No idea what it means - just copy it. */
1494 sh_link = iheader->sh_info;
1495
1496 if (sh_link != SHN_UNDEF)
1497 {
1498 oheader->sh_info = sh_link;
1499 changed = TRUE;
1500 }
1501 else
1502 _bfd_error_handler
1503 /* xgettext:c-format */
1504 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1505 }
1506
1507 return changed;
1508 }
1509
1510 /* Copy the program header and other data from one object module to
1511 another. */
1512
1513 bfd_boolean
1514 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1515 {
1516 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1517 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1518 const struct elf_backend_data *bed;
1519 unsigned int i;
1520
1521 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1522 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1523 return TRUE;
1524
1525 if (!elf_flags_init (obfd))
1526 {
1527 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1528 elf_flags_init (obfd) = TRUE;
1529 }
1530
1531 elf_gp (obfd) = elf_gp (ibfd);
1532
1533 /* Also copy the EI_OSABI field. */
1534 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1535 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1536
1537 /* If set, copy the EI_ABIVERSION field. */
1538 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1539 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1540 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1541
1542 /* Copy object attributes. */
1543 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1544
1545 if (iheaders == NULL || oheaders == NULL)
1546 return TRUE;
1547
1548 bed = get_elf_backend_data (obfd);
1549
1550 /* Possibly copy other fields in the section header. */
1551 for (i = 1; i < elf_numsections (obfd); i++)
1552 {
1553 unsigned int j;
1554 Elf_Internal_Shdr * oheader = oheaders[i];
1555
1556 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1557 because of a special case need for generating separate debug info
1558 files. See below for more details. */
1559 if (oheader == NULL
1560 || (oheader->sh_type != SHT_NOBITS
1561 && oheader->sh_type < SHT_LOOS))
1562 continue;
1563
1564 /* Ignore empty sections, and sections whose
1565 fields have already been initialised. */
1566 if (oheader->sh_size == 0
1567 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1568 continue;
1569
1570 /* Scan for the matching section in the input bfd.
1571 First we try for a direct mapping between the input and output sections. */
1572 for (j = 1; j < elf_numsections (ibfd); j++)
1573 {
1574 const Elf_Internal_Shdr * iheader = iheaders[j];
1575
1576 if (iheader == NULL)
1577 continue;
1578
1579 if (oheader->bfd_section != NULL
1580 && iheader->bfd_section != NULL
1581 && iheader->bfd_section->output_section != NULL
1582 && iheader->bfd_section->output_section == oheader->bfd_section)
1583 {
1584 /* We have found a connection from the input section to the
1585 output section. Attempt to copy the header fields. If
1586 this fails then do not try any further sections - there
1587 should only be a one-to-one mapping between input and output. */
1588 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1589 j = elf_numsections (ibfd);
1590 break;
1591 }
1592 }
1593
1594 if (j < elf_numsections (ibfd))
1595 continue;
1596
1597 /* That failed. So try to deduce the corresponding input section.
1598 Unfortunately we cannot compare names as the output string table
1599 is empty, so instead we check size, address and type. */
1600 for (j = 1; j < elf_numsections (ibfd); j++)
1601 {
1602 const Elf_Internal_Shdr * iheader = iheaders[j];
1603
1604 if (iheader == NULL)
1605 continue;
1606
1607 /* Try matching fields in the input section's header.
1608 Since --only-keep-debug turns all non-debug sections into
1609 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1610 input type. */
1611 if ((oheader->sh_type == SHT_NOBITS
1612 || iheader->sh_type == oheader->sh_type)
1613 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1614 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1615 && iheader->sh_addralign == oheader->sh_addralign
1616 && iheader->sh_entsize == oheader->sh_entsize
1617 && iheader->sh_size == oheader->sh_size
1618 && iheader->sh_addr == oheader->sh_addr
1619 && (iheader->sh_info != oheader->sh_info
1620 || iheader->sh_link != oheader->sh_link))
1621 {
1622 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1623 break;
1624 }
1625 }
1626
1627 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1628 {
1629 /* Final attempt. Call the backend copy function
1630 with a NULL input section. */
1631 if (bed->elf_backend_copy_special_section_fields != NULL)
1632 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1633 }
1634 }
1635
1636 return TRUE;
1637 }
1638
1639 static const char *
1640 get_segment_type (unsigned int p_type)
1641 {
1642 const char *pt;
1643 switch (p_type)
1644 {
1645 case PT_NULL: pt = "NULL"; break;
1646 case PT_LOAD: pt = "LOAD"; break;
1647 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1648 case PT_INTERP: pt = "INTERP"; break;
1649 case PT_NOTE: pt = "NOTE"; break;
1650 case PT_SHLIB: pt = "SHLIB"; break;
1651 case PT_PHDR: pt = "PHDR"; break;
1652 case PT_TLS: pt = "TLS"; break;
1653 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1654 case PT_GNU_STACK: pt = "STACK"; break;
1655 case PT_GNU_RELRO: pt = "RELRO"; break;
1656 default: pt = NULL; break;
1657 }
1658 return pt;
1659 }
1660
1661 /* Print out the program headers. */
1662
1663 bfd_boolean
1664 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1665 {
1666 FILE *f = (FILE *) farg;
1667 Elf_Internal_Phdr *p;
1668 asection *s;
1669 bfd_byte *dynbuf = NULL;
1670
1671 p = elf_tdata (abfd)->phdr;
1672 if (p != NULL)
1673 {
1674 unsigned int i, c;
1675
1676 fprintf (f, _("\nProgram Header:\n"));
1677 c = elf_elfheader (abfd)->e_phnum;
1678 for (i = 0; i < c; i++, p++)
1679 {
1680 const char *pt = get_segment_type (p->p_type);
1681 char buf[20];
1682
1683 if (pt == NULL)
1684 {
1685 sprintf (buf, "0x%lx", p->p_type);
1686 pt = buf;
1687 }
1688 fprintf (f, "%8s off 0x", pt);
1689 bfd_fprintf_vma (abfd, f, p->p_offset);
1690 fprintf (f, " vaddr 0x");
1691 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1692 fprintf (f, " paddr 0x");
1693 bfd_fprintf_vma (abfd, f, p->p_paddr);
1694 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1695 fprintf (f, " filesz 0x");
1696 bfd_fprintf_vma (abfd, f, p->p_filesz);
1697 fprintf (f, " memsz 0x");
1698 bfd_fprintf_vma (abfd, f, p->p_memsz);
1699 fprintf (f, " flags %c%c%c",
1700 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1701 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1702 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1703 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1704 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1705 fprintf (f, "\n");
1706 }
1707 }
1708
1709 s = bfd_get_section_by_name (abfd, ".dynamic");
1710 if (s != NULL)
1711 {
1712 unsigned int elfsec;
1713 unsigned long shlink;
1714 bfd_byte *extdyn, *extdynend;
1715 size_t extdynsize;
1716 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1717
1718 fprintf (f, _("\nDynamic Section:\n"));
1719
1720 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1721 goto error_return;
1722
1723 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1724 if (elfsec == SHN_BAD)
1725 goto error_return;
1726 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1727
1728 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1729 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1730
1731 extdyn = dynbuf;
1732 /* PR 17512: file: 6f427532. */
1733 if (s->size < extdynsize)
1734 goto error_return;
1735 extdynend = extdyn + s->size;
1736 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1737 Fix range check. */
1738 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1739 {
1740 Elf_Internal_Dyn dyn;
1741 const char *name = "";
1742 char ab[20];
1743 bfd_boolean stringp;
1744 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1745
1746 (*swap_dyn_in) (abfd, extdyn, &dyn);
1747
1748 if (dyn.d_tag == DT_NULL)
1749 break;
1750
1751 stringp = FALSE;
1752 switch (dyn.d_tag)
1753 {
1754 default:
1755 if (bed->elf_backend_get_target_dtag)
1756 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1757
1758 if (!strcmp (name, ""))
1759 {
1760 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1761 name = ab;
1762 }
1763 break;
1764
1765 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1766 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1767 case DT_PLTGOT: name = "PLTGOT"; break;
1768 case DT_HASH: name = "HASH"; break;
1769 case DT_STRTAB: name = "STRTAB"; break;
1770 case DT_SYMTAB: name = "SYMTAB"; break;
1771 case DT_RELA: name = "RELA"; break;
1772 case DT_RELASZ: name = "RELASZ"; break;
1773 case DT_RELAENT: name = "RELAENT"; break;
1774 case DT_STRSZ: name = "STRSZ"; break;
1775 case DT_SYMENT: name = "SYMENT"; break;
1776 case DT_INIT: name = "INIT"; break;
1777 case DT_FINI: name = "FINI"; break;
1778 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1779 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1780 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1781 case DT_REL: name = "REL"; break;
1782 case DT_RELSZ: name = "RELSZ"; break;
1783 case DT_RELENT: name = "RELENT"; break;
1784 case DT_PLTREL: name = "PLTREL"; break;
1785 case DT_DEBUG: name = "DEBUG"; break;
1786 case DT_TEXTREL: name = "TEXTREL"; break;
1787 case DT_JMPREL: name = "JMPREL"; break;
1788 case DT_BIND_NOW: name = "BIND_NOW"; break;
1789 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1790 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1791 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1792 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1793 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1794 case DT_FLAGS: name = "FLAGS"; break;
1795 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1796 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1797 case DT_CHECKSUM: name = "CHECKSUM"; break;
1798 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1799 case DT_MOVEENT: name = "MOVEENT"; break;
1800 case DT_MOVESZ: name = "MOVESZ"; break;
1801 case DT_FEATURE: name = "FEATURE"; break;
1802 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1803 case DT_SYMINSZ: name = "SYMINSZ"; break;
1804 case DT_SYMINENT: name = "SYMINENT"; break;
1805 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1806 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1807 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1808 case DT_PLTPAD: name = "PLTPAD"; break;
1809 case DT_MOVETAB: name = "MOVETAB"; break;
1810 case DT_SYMINFO: name = "SYMINFO"; break;
1811 case DT_RELACOUNT: name = "RELACOUNT"; break;
1812 case DT_RELCOUNT: name = "RELCOUNT"; break;
1813 case DT_FLAGS_1: name = "FLAGS_1"; break;
1814 case DT_VERSYM: name = "VERSYM"; break;
1815 case DT_VERDEF: name = "VERDEF"; break;
1816 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1817 case DT_VERNEED: name = "VERNEED"; break;
1818 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1819 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1820 case DT_USED: name = "USED"; break;
1821 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1822 case DT_GNU_HASH: name = "GNU_HASH"; break;
1823 }
1824
1825 fprintf (f, " %-20s ", name);
1826 if (! stringp)
1827 {
1828 fprintf (f, "0x");
1829 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1830 }
1831 else
1832 {
1833 const char *string;
1834 unsigned int tagv = dyn.d_un.d_val;
1835
1836 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1837 if (string == NULL)
1838 goto error_return;
1839 fprintf (f, "%s", string);
1840 }
1841 fprintf (f, "\n");
1842 }
1843
1844 free (dynbuf);
1845 dynbuf = NULL;
1846 }
1847
1848 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1849 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1850 {
1851 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1852 return FALSE;
1853 }
1854
1855 if (elf_dynverdef (abfd) != 0)
1856 {
1857 Elf_Internal_Verdef *t;
1858
1859 fprintf (f, _("\nVersion definitions:\n"));
1860 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1861 {
1862 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1863 t->vd_flags, t->vd_hash,
1864 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1865 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1866 {
1867 Elf_Internal_Verdaux *a;
1868
1869 fprintf (f, "\t");
1870 for (a = t->vd_auxptr->vda_nextptr;
1871 a != NULL;
1872 a = a->vda_nextptr)
1873 fprintf (f, "%s ",
1874 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1875 fprintf (f, "\n");
1876 }
1877 }
1878 }
1879
1880 if (elf_dynverref (abfd) != 0)
1881 {
1882 Elf_Internal_Verneed *t;
1883
1884 fprintf (f, _("\nVersion References:\n"));
1885 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1886 {
1887 Elf_Internal_Vernaux *a;
1888
1889 fprintf (f, _(" required from %s:\n"),
1890 t->vn_filename ? t->vn_filename : "<corrupt>");
1891 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1892 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1893 a->vna_flags, a->vna_other,
1894 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1895 }
1896 }
1897
1898 return TRUE;
1899
1900 error_return:
1901 if (dynbuf != NULL)
1902 free (dynbuf);
1903 return FALSE;
1904 }
1905
1906 /* Get version string. */
1907
1908 const char *
1909 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1910 bfd_boolean *hidden)
1911 {
1912 const char *version_string = NULL;
1913 if (elf_dynversym (abfd) != 0
1914 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1915 {
1916 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1917
1918 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1919 vernum &= VERSYM_VERSION;
1920
1921 if (vernum == 0)
1922 version_string = "";
1923 else if (vernum == 1
1924 && (vernum > elf_tdata (abfd)->cverdefs
1925 || (elf_tdata (abfd)->verdef[0].vd_flags
1926 == VER_FLG_BASE)))
1927 version_string = "Base";
1928 else if (vernum <= elf_tdata (abfd)->cverdefs)
1929 version_string =
1930 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1931 else
1932 {
1933 Elf_Internal_Verneed *t;
1934
1935 version_string = _("<corrupt>");
1936 for (t = elf_tdata (abfd)->verref;
1937 t != NULL;
1938 t = t->vn_nextref)
1939 {
1940 Elf_Internal_Vernaux *a;
1941
1942 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1943 {
1944 if (a->vna_other == vernum)
1945 {
1946 version_string = a->vna_nodename;
1947 break;
1948 }
1949 }
1950 }
1951 }
1952 }
1953 return version_string;
1954 }
1955
1956 /* Display ELF-specific fields of a symbol. */
1957
1958 void
1959 bfd_elf_print_symbol (bfd *abfd,
1960 void *filep,
1961 asymbol *symbol,
1962 bfd_print_symbol_type how)
1963 {
1964 FILE *file = (FILE *) filep;
1965 switch (how)
1966 {
1967 case bfd_print_symbol_name:
1968 fprintf (file, "%s", symbol->name);
1969 break;
1970 case bfd_print_symbol_more:
1971 fprintf (file, "elf ");
1972 bfd_fprintf_vma (abfd, file, symbol->value);
1973 fprintf (file, " %x", symbol->flags);
1974 break;
1975 case bfd_print_symbol_all:
1976 {
1977 const char *section_name;
1978 const char *name = NULL;
1979 const struct elf_backend_data *bed;
1980 unsigned char st_other;
1981 bfd_vma val;
1982 const char *version_string;
1983 bfd_boolean hidden;
1984
1985 section_name = symbol->section ? symbol->section->name : "(*none*)";
1986
1987 bed = get_elf_backend_data (abfd);
1988 if (bed->elf_backend_print_symbol_all)
1989 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1990
1991 if (name == NULL)
1992 {
1993 name = symbol->name;
1994 bfd_print_symbol_vandf (abfd, file, symbol);
1995 }
1996
1997 fprintf (file, " %s\t", section_name);
1998 /* Print the "other" value for a symbol. For common symbols,
1999 we've already printed the size; now print the alignment.
2000 For other symbols, we have no specified alignment, and
2001 we've printed the address; now print the size. */
2002 if (symbol->section && bfd_is_com_section (symbol->section))
2003 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2004 else
2005 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
2006 bfd_fprintf_vma (abfd, file, val);
2007
2008 /* If we have version information, print it. */
2009 version_string = _bfd_elf_get_symbol_version_string (abfd,
2010 symbol,
2011 &hidden);
2012 if (version_string)
2013 {
2014 if (!hidden)
2015 fprintf (file, " %-11s", version_string);
2016 else
2017 {
2018 int i;
2019
2020 fprintf (file, " (%s)", version_string);
2021 for (i = 10 - strlen (version_string); i > 0; --i)
2022 putc (' ', file);
2023 }
2024 }
2025
2026 /* If the st_other field is not zero, print it. */
2027 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2028
2029 switch (st_other)
2030 {
2031 case 0: break;
2032 case STV_INTERNAL: fprintf (file, " .internal"); break;
2033 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2034 case STV_PROTECTED: fprintf (file, " .protected"); break;
2035 default:
2036 /* Some other non-defined flags are also present, so print
2037 everything hex. */
2038 fprintf (file, " 0x%02x", (unsigned int) st_other);
2039 }
2040
2041 fprintf (file, " %s", name);
2042 }
2043 break;
2044 }
2045 }
2046 \f
2047 /* ELF .o/exec file reading */
2048
2049 /* Create a new bfd section from an ELF section header. */
2050
2051 bfd_boolean
2052 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2053 {
2054 Elf_Internal_Shdr *hdr;
2055 Elf_Internal_Ehdr *ehdr;
2056 const struct elf_backend_data *bed;
2057 const char *name;
2058 bfd_boolean ret = TRUE;
2059 static bfd_boolean * sections_being_created = NULL;
2060 static bfd * sections_being_created_abfd = NULL;
2061 static unsigned int nesting = 0;
2062
2063 if (shindex >= elf_numsections (abfd))
2064 return FALSE;
2065
2066 if (++ nesting > 3)
2067 {
2068 /* PR17512: A corrupt ELF binary might contain a recursive group of
2069 sections, with each the string indices pointing to the next in the
2070 loop. Detect this here, by refusing to load a section that we are
2071 already in the process of loading. We only trigger this test if
2072 we have nested at least three sections deep as normal ELF binaries
2073 can expect to recurse at least once.
2074
2075 FIXME: It would be better if this array was attached to the bfd,
2076 rather than being held in a static pointer. */
2077
2078 if (sections_being_created_abfd != abfd)
2079 sections_being_created = NULL;
2080 if (sections_being_created == NULL)
2081 {
2082 sections_being_created = (bfd_boolean *)
2083 bfd_zalloc2 (abfd, elf_numsections (abfd), sizeof (bfd_boolean));
2084 sections_being_created_abfd = abfd;
2085 }
2086 if (sections_being_created [shindex])
2087 {
2088 _bfd_error_handler
2089 (_("%pB: warning: loop in section dependencies detected"), abfd);
2090 return FALSE;
2091 }
2092 sections_being_created [shindex] = TRUE;
2093 }
2094
2095 hdr = elf_elfsections (abfd)[shindex];
2096 ehdr = elf_elfheader (abfd);
2097 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2098 hdr->sh_name);
2099 if (name == NULL)
2100 goto fail;
2101
2102 bed = get_elf_backend_data (abfd);
2103 switch (hdr->sh_type)
2104 {
2105 case SHT_NULL:
2106 /* Inactive section. Throw it away. */
2107 goto success;
2108
2109 case SHT_PROGBITS: /* Normal section with contents. */
2110 case SHT_NOBITS: /* .bss section. */
2111 case SHT_HASH: /* .hash section. */
2112 case SHT_NOTE: /* .note section. */
2113 case SHT_INIT_ARRAY: /* .init_array section. */
2114 case SHT_FINI_ARRAY: /* .fini_array section. */
2115 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2116 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2117 case SHT_GNU_HASH: /* .gnu.hash section. */
2118 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2119 goto success;
2120
2121 case SHT_DYNAMIC: /* Dynamic linking information. */
2122 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2123 goto fail;
2124
2125 if (hdr->sh_link > elf_numsections (abfd))
2126 {
2127 /* PR 10478: Accept Solaris binaries with a sh_link
2128 field set to SHN_BEFORE or SHN_AFTER. */
2129 switch (bfd_get_arch (abfd))
2130 {
2131 case bfd_arch_i386:
2132 case bfd_arch_sparc:
2133 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2134 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2135 break;
2136 /* Otherwise fall through. */
2137 default:
2138 goto fail;
2139 }
2140 }
2141 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2142 goto fail;
2143 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2144 {
2145 Elf_Internal_Shdr *dynsymhdr;
2146
2147 /* The shared libraries distributed with hpux11 have a bogus
2148 sh_link field for the ".dynamic" section. Find the
2149 string table for the ".dynsym" section instead. */
2150 if (elf_dynsymtab (abfd) != 0)
2151 {
2152 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2153 hdr->sh_link = dynsymhdr->sh_link;
2154 }
2155 else
2156 {
2157 unsigned int i, num_sec;
2158
2159 num_sec = elf_numsections (abfd);
2160 for (i = 1; i < num_sec; i++)
2161 {
2162 dynsymhdr = elf_elfsections (abfd)[i];
2163 if (dynsymhdr->sh_type == SHT_DYNSYM)
2164 {
2165 hdr->sh_link = dynsymhdr->sh_link;
2166 break;
2167 }
2168 }
2169 }
2170 }
2171 goto success;
2172
2173 case SHT_SYMTAB: /* A symbol table. */
2174 if (elf_onesymtab (abfd) == shindex)
2175 goto success;
2176
2177 if (hdr->sh_entsize != bed->s->sizeof_sym)
2178 goto fail;
2179
2180 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2181 {
2182 if (hdr->sh_size != 0)
2183 goto fail;
2184 /* Some assemblers erroneously set sh_info to one with a
2185 zero sh_size. ld sees this as a global symbol count
2186 of (unsigned) -1. Fix it here. */
2187 hdr->sh_info = 0;
2188 goto success;
2189 }
2190
2191 /* PR 18854: A binary might contain more than one symbol table.
2192 Unusual, but possible. Warn, but continue. */
2193 if (elf_onesymtab (abfd) != 0)
2194 {
2195 _bfd_error_handler
2196 /* xgettext:c-format */
2197 (_("%pB: warning: multiple symbol tables detected"
2198 " - ignoring the table in section %u"),
2199 abfd, shindex);
2200 goto success;
2201 }
2202 elf_onesymtab (abfd) = shindex;
2203 elf_symtab_hdr (abfd) = *hdr;
2204 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2205 abfd->flags |= HAS_SYMS;
2206
2207 /* Sometimes a shared object will map in the symbol table. If
2208 SHF_ALLOC is set, and this is a shared object, then we also
2209 treat this section as a BFD section. We can not base the
2210 decision purely on SHF_ALLOC, because that flag is sometimes
2211 set in a relocatable object file, which would confuse the
2212 linker. */
2213 if ((hdr->sh_flags & SHF_ALLOC) != 0
2214 && (abfd->flags & DYNAMIC) != 0
2215 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2216 shindex))
2217 goto fail;
2218
2219 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2220 can't read symbols without that section loaded as well. It
2221 is most likely specified by the next section header. */
2222 {
2223 elf_section_list * entry;
2224 unsigned int i, num_sec;
2225
2226 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2227 if (entry->hdr.sh_link == shindex)
2228 goto success;
2229
2230 num_sec = elf_numsections (abfd);
2231 for (i = shindex + 1; i < num_sec; i++)
2232 {
2233 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2234
2235 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2236 && hdr2->sh_link == shindex)
2237 break;
2238 }
2239
2240 if (i == num_sec)
2241 for (i = 1; i < shindex; i++)
2242 {
2243 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2244
2245 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2246 && hdr2->sh_link == shindex)
2247 break;
2248 }
2249
2250 if (i != shindex)
2251 ret = bfd_section_from_shdr (abfd, i);
2252 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2253 goto success;
2254 }
2255
2256 case SHT_DYNSYM: /* A dynamic symbol table. */
2257 if (elf_dynsymtab (abfd) == shindex)
2258 goto success;
2259
2260 if (hdr->sh_entsize != bed->s->sizeof_sym)
2261 goto fail;
2262
2263 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2264 {
2265 if (hdr->sh_size != 0)
2266 goto fail;
2267
2268 /* Some linkers erroneously set sh_info to one with a
2269 zero sh_size. ld sees this as a global symbol count
2270 of (unsigned) -1. Fix it here. */
2271 hdr->sh_info = 0;
2272 goto success;
2273 }
2274
2275 /* PR 18854: A binary might contain more than one dynamic symbol table.
2276 Unusual, but possible. Warn, but continue. */
2277 if (elf_dynsymtab (abfd) != 0)
2278 {
2279 _bfd_error_handler
2280 /* xgettext:c-format */
2281 (_("%pB: warning: multiple dynamic symbol tables detected"
2282 " - ignoring the table in section %u"),
2283 abfd, shindex);
2284 goto success;
2285 }
2286 elf_dynsymtab (abfd) = shindex;
2287 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2288 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2289 abfd->flags |= HAS_SYMS;
2290
2291 /* Besides being a symbol table, we also treat this as a regular
2292 section, so that objcopy can handle it. */
2293 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2294 goto success;
2295
2296 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2297 {
2298 elf_section_list * entry;
2299
2300 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2301 if (entry->ndx == shindex)
2302 goto success;
2303
2304 entry = bfd_alloc (abfd, sizeof (*entry));
2305 if (entry == NULL)
2306 goto fail;
2307 entry->ndx = shindex;
2308 entry->hdr = * hdr;
2309 entry->next = elf_symtab_shndx_list (abfd);
2310 elf_symtab_shndx_list (abfd) = entry;
2311 elf_elfsections (abfd)[shindex] = & entry->hdr;
2312 goto success;
2313 }
2314
2315 case SHT_STRTAB: /* A string table. */
2316 if (hdr->bfd_section != NULL)
2317 goto success;
2318
2319 if (ehdr->e_shstrndx == shindex)
2320 {
2321 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2322 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2323 goto success;
2324 }
2325
2326 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2327 {
2328 symtab_strtab:
2329 elf_tdata (abfd)->strtab_hdr = *hdr;
2330 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2331 goto success;
2332 }
2333
2334 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2335 {
2336 dynsymtab_strtab:
2337 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2338 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2339 elf_elfsections (abfd)[shindex] = hdr;
2340 /* We also treat this as a regular section, so that objcopy
2341 can handle it. */
2342 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2343 shindex);
2344 goto success;
2345 }
2346
2347 /* If the string table isn't one of the above, then treat it as a
2348 regular section. We need to scan all the headers to be sure,
2349 just in case this strtab section appeared before the above. */
2350 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2351 {
2352 unsigned int i, num_sec;
2353
2354 num_sec = elf_numsections (abfd);
2355 for (i = 1; i < num_sec; i++)
2356 {
2357 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2358 if (hdr2->sh_link == shindex)
2359 {
2360 /* Prevent endless recursion on broken objects. */
2361 if (i == shindex)
2362 goto fail;
2363 if (! bfd_section_from_shdr (abfd, i))
2364 goto fail;
2365 if (elf_onesymtab (abfd) == i)
2366 goto symtab_strtab;
2367 if (elf_dynsymtab (abfd) == i)
2368 goto dynsymtab_strtab;
2369 }
2370 }
2371 }
2372 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2373 goto success;
2374
2375 case SHT_REL:
2376 case SHT_RELA:
2377 /* *These* do a lot of work -- but build no sections! */
2378 {
2379 asection *target_sect;
2380 Elf_Internal_Shdr *hdr2, **p_hdr;
2381 unsigned int num_sec = elf_numsections (abfd);
2382 struct bfd_elf_section_data *esdt;
2383
2384 if (hdr->sh_entsize
2385 != (bfd_size_type) (hdr->sh_type == SHT_REL
2386 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2387 goto fail;
2388
2389 /* Check for a bogus link to avoid crashing. */
2390 if (hdr->sh_link >= num_sec)
2391 {
2392 _bfd_error_handler
2393 /* xgettext:c-format */
2394 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2395 abfd, hdr->sh_link, name, shindex);
2396 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2397 shindex);
2398 goto success;
2399 }
2400
2401 /* For some incomprehensible reason Oracle distributes
2402 libraries for Solaris in which some of the objects have
2403 bogus sh_link fields. It would be nice if we could just
2404 reject them, but, unfortunately, some people need to use
2405 them. We scan through the section headers; if we find only
2406 one suitable symbol table, we clobber the sh_link to point
2407 to it. I hope this doesn't break anything.
2408
2409 Don't do it on executable nor shared library. */
2410 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2411 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2412 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2413 {
2414 unsigned int scan;
2415 int found;
2416
2417 found = 0;
2418 for (scan = 1; scan < num_sec; scan++)
2419 {
2420 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2421 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2422 {
2423 if (found != 0)
2424 {
2425 found = 0;
2426 break;
2427 }
2428 found = scan;
2429 }
2430 }
2431 if (found != 0)
2432 hdr->sh_link = found;
2433 }
2434
2435 /* Get the symbol table. */
2436 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2437 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2438 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2439 goto fail;
2440
2441 /* If this is an alloc section in an executable or shared
2442 library, or the reloc section does not use the main symbol
2443 table we don't treat it as a reloc section. BFD can't
2444 adequately represent such a section, so at least for now,
2445 we don't try. We just present it as a normal section. We
2446 also can't use it as a reloc section if it points to the
2447 null section, an invalid section, another reloc section, or
2448 its sh_link points to the null section. */
2449 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2450 && (hdr->sh_flags & SHF_ALLOC) != 0)
2451 || hdr->sh_link == SHN_UNDEF
2452 || hdr->sh_link != elf_onesymtab (abfd)
2453 || hdr->sh_info == SHN_UNDEF
2454 || hdr->sh_info >= num_sec
2455 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2456 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2457 {
2458 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2459 shindex);
2460 goto success;
2461 }
2462
2463 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2464 goto fail;
2465
2466 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2467 if (target_sect == NULL)
2468 goto fail;
2469
2470 esdt = elf_section_data (target_sect);
2471 if (hdr->sh_type == SHT_RELA)
2472 p_hdr = &esdt->rela.hdr;
2473 else
2474 p_hdr = &esdt->rel.hdr;
2475
2476 /* PR 17512: file: 0b4f81b7.
2477 Also see PR 24456, for a file which deliberately has two reloc
2478 sections. */
2479 if (*p_hdr != NULL)
2480 {
2481 _bfd_error_handler
2482 /* xgettext:c-format */
2483 (_("%pB: warning: multiple relocation sections for section %pA \
2484 found - ignoring all but the first"),
2485 abfd, target_sect);
2486 goto success;
2487 }
2488 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2489 if (hdr2 == NULL)
2490 goto fail;
2491 *hdr2 = *hdr;
2492 *p_hdr = hdr2;
2493 elf_elfsections (abfd)[shindex] = hdr2;
2494 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2495 * bed->s->int_rels_per_ext_rel);
2496 target_sect->flags |= SEC_RELOC;
2497 target_sect->relocation = NULL;
2498 target_sect->rel_filepos = hdr->sh_offset;
2499 /* In the section to which the relocations apply, mark whether
2500 its relocations are of the REL or RELA variety. */
2501 if (hdr->sh_size != 0)
2502 {
2503 if (hdr->sh_type == SHT_RELA)
2504 target_sect->use_rela_p = 1;
2505 }
2506 abfd->flags |= HAS_RELOC;
2507 goto success;
2508 }
2509
2510 case SHT_GNU_verdef:
2511 elf_dynverdef (abfd) = shindex;
2512 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2513 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2514 goto success;
2515
2516 case SHT_GNU_versym:
2517 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2518 goto fail;
2519
2520 elf_dynversym (abfd) = shindex;
2521 elf_tdata (abfd)->dynversym_hdr = *hdr;
2522 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2523 goto success;
2524
2525 case SHT_GNU_verneed:
2526 elf_dynverref (abfd) = shindex;
2527 elf_tdata (abfd)->dynverref_hdr = *hdr;
2528 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2529 goto success;
2530
2531 case SHT_SHLIB:
2532 goto success;
2533
2534 case SHT_GROUP:
2535 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2536 goto fail;
2537
2538 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2539 goto fail;
2540
2541 goto success;
2542
2543 default:
2544 /* Possibly an attributes section. */
2545 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2546 || hdr->sh_type == bed->obj_attrs_section_type)
2547 {
2548 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2549 goto fail;
2550 _bfd_elf_parse_attributes (abfd, hdr);
2551 goto success;
2552 }
2553
2554 /* Check for any processor-specific section types. */
2555 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2556 goto success;
2557
2558 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2559 {
2560 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2561 /* FIXME: How to properly handle allocated section reserved
2562 for applications? */
2563 _bfd_error_handler
2564 /* xgettext:c-format */
2565 (_("%pB: unknown type [%#x] section `%s'"),
2566 abfd, hdr->sh_type, name);
2567 else
2568 {
2569 /* Allow sections reserved for applications. */
2570 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2571 shindex);
2572 goto success;
2573 }
2574 }
2575 else if (hdr->sh_type >= SHT_LOPROC
2576 && hdr->sh_type <= SHT_HIPROC)
2577 /* FIXME: We should handle this section. */
2578 _bfd_error_handler
2579 /* xgettext:c-format */
2580 (_("%pB: unknown type [%#x] section `%s'"),
2581 abfd, hdr->sh_type, name);
2582 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2583 {
2584 /* Unrecognised OS-specific sections. */
2585 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2586 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2587 required to correctly process the section and the file should
2588 be rejected with an error message. */
2589 _bfd_error_handler
2590 /* xgettext:c-format */
2591 (_("%pB: unknown type [%#x] section `%s'"),
2592 abfd, hdr->sh_type, name);
2593 else
2594 {
2595 /* Otherwise it should be processed. */
2596 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2597 goto success;
2598 }
2599 }
2600 else
2601 /* FIXME: We should handle this section. */
2602 _bfd_error_handler
2603 /* xgettext:c-format */
2604 (_("%pB: unknown type [%#x] section `%s'"),
2605 abfd, hdr->sh_type, name);
2606
2607 goto fail;
2608 }
2609
2610 fail:
2611 ret = FALSE;
2612 success:
2613 if (sections_being_created && sections_being_created_abfd == abfd)
2614 sections_being_created [shindex] = FALSE;
2615 if (-- nesting == 0)
2616 {
2617 sections_being_created = NULL;
2618 sections_being_created_abfd = abfd;
2619 }
2620 return ret;
2621 }
2622
2623 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2624
2625 Elf_Internal_Sym *
2626 bfd_sym_from_r_symndx (struct sym_cache *cache,
2627 bfd *abfd,
2628 unsigned long r_symndx)
2629 {
2630 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2631
2632 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2633 {
2634 Elf_Internal_Shdr *symtab_hdr;
2635 unsigned char esym[sizeof (Elf64_External_Sym)];
2636 Elf_External_Sym_Shndx eshndx;
2637
2638 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2639 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2640 &cache->sym[ent], esym, &eshndx) == NULL)
2641 return NULL;
2642
2643 if (cache->abfd != abfd)
2644 {
2645 memset (cache->indx, -1, sizeof (cache->indx));
2646 cache->abfd = abfd;
2647 }
2648 cache->indx[ent] = r_symndx;
2649 }
2650
2651 return &cache->sym[ent];
2652 }
2653
2654 /* Given an ELF section number, retrieve the corresponding BFD
2655 section. */
2656
2657 asection *
2658 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2659 {
2660 if (sec_index >= elf_numsections (abfd))
2661 return NULL;
2662 return elf_elfsections (abfd)[sec_index]->bfd_section;
2663 }
2664
2665 static const struct bfd_elf_special_section special_sections_b[] =
2666 {
2667 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2668 { NULL, 0, 0, 0, 0 }
2669 };
2670
2671 static const struct bfd_elf_special_section special_sections_c[] =
2672 {
2673 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2674 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2675 { NULL, 0, 0, 0, 0 }
2676 };
2677
2678 static const struct bfd_elf_special_section special_sections_d[] =
2679 {
2680 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2681 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2682 /* There are more DWARF sections than these, but they needn't be added here
2683 unless you have to cope with broken compilers that don't emit section
2684 attributes or you want to help the user writing assembler. */
2685 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2686 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2687 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2688 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2689 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2690 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2691 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2692 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2693 { NULL, 0, 0, 0, 0 }
2694 };
2695
2696 static const struct bfd_elf_special_section special_sections_f[] =
2697 {
2698 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2699 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2700 { NULL, 0 , 0, 0, 0 }
2701 };
2702
2703 static const struct bfd_elf_special_section special_sections_g[] =
2704 {
2705 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2706 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2707 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2708 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2709 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2710 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2711 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2712 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2713 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2714 { NULL, 0, 0, 0, 0 }
2715 };
2716
2717 static const struct bfd_elf_special_section special_sections_h[] =
2718 {
2719 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2720 { NULL, 0, 0, 0, 0 }
2721 };
2722
2723 static const struct bfd_elf_special_section special_sections_i[] =
2724 {
2725 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2726 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2727 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2728 { NULL, 0, 0, 0, 0 }
2729 };
2730
2731 static const struct bfd_elf_special_section special_sections_l[] =
2732 {
2733 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2734 { NULL, 0, 0, 0, 0 }
2735 };
2736
2737 static const struct bfd_elf_special_section special_sections_n[] =
2738 {
2739 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2740 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2741 { NULL, 0, 0, 0, 0 }
2742 };
2743
2744 static const struct bfd_elf_special_section special_sections_p[] =
2745 {
2746 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2747 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2748 { NULL, 0, 0, 0, 0 }
2749 };
2750
2751 static const struct bfd_elf_special_section special_sections_r[] =
2752 {
2753 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2754 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2755 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2756 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2757 { NULL, 0, 0, 0, 0 }
2758 };
2759
2760 static const struct bfd_elf_special_section special_sections_s[] =
2761 {
2762 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2763 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2764 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2765 /* See struct bfd_elf_special_section declaration for the semantics of
2766 this special case where .prefix_length != strlen (.prefix). */
2767 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2768 { NULL, 0, 0, 0, 0 }
2769 };
2770
2771 static const struct bfd_elf_special_section special_sections_t[] =
2772 {
2773 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2774 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2775 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2776 { NULL, 0, 0, 0, 0 }
2777 };
2778
2779 static const struct bfd_elf_special_section special_sections_z[] =
2780 {
2781 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2782 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2783 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2784 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2785 { NULL, 0, 0, 0, 0 }
2786 };
2787
2788 static const struct bfd_elf_special_section * const special_sections[] =
2789 {
2790 special_sections_b, /* 'b' */
2791 special_sections_c, /* 'c' */
2792 special_sections_d, /* 'd' */
2793 NULL, /* 'e' */
2794 special_sections_f, /* 'f' */
2795 special_sections_g, /* 'g' */
2796 special_sections_h, /* 'h' */
2797 special_sections_i, /* 'i' */
2798 NULL, /* 'j' */
2799 NULL, /* 'k' */
2800 special_sections_l, /* 'l' */
2801 NULL, /* 'm' */
2802 special_sections_n, /* 'n' */
2803 NULL, /* 'o' */
2804 special_sections_p, /* 'p' */
2805 NULL, /* 'q' */
2806 special_sections_r, /* 'r' */
2807 special_sections_s, /* 's' */
2808 special_sections_t, /* 't' */
2809 NULL, /* 'u' */
2810 NULL, /* 'v' */
2811 NULL, /* 'w' */
2812 NULL, /* 'x' */
2813 NULL, /* 'y' */
2814 special_sections_z /* 'z' */
2815 };
2816
2817 const struct bfd_elf_special_section *
2818 _bfd_elf_get_special_section (const char *name,
2819 const struct bfd_elf_special_section *spec,
2820 unsigned int rela)
2821 {
2822 int i;
2823 int len;
2824
2825 len = strlen (name);
2826
2827 for (i = 0; spec[i].prefix != NULL; i++)
2828 {
2829 int suffix_len;
2830 int prefix_len = spec[i].prefix_length;
2831
2832 if (len < prefix_len)
2833 continue;
2834 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2835 continue;
2836
2837 suffix_len = spec[i].suffix_length;
2838 if (suffix_len <= 0)
2839 {
2840 if (name[prefix_len] != 0)
2841 {
2842 if (suffix_len == 0)
2843 continue;
2844 if (name[prefix_len] != '.'
2845 && (suffix_len == -2
2846 || (rela && spec[i].type == SHT_REL)))
2847 continue;
2848 }
2849 }
2850 else
2851 {
2852 if (len < prefix_len + suffix_len)
2853 continue;
2854 if (memcmp (name + len - suffix_len,
2855 spec[i].prefix + prefix_len,
2856 suffix_len) != 0)
2857 continue;
2858 }
2859 return &spec[i];
2860 }
2861
2862 return NULL;
2863 }
2864
2865 const struct bfd_elf_special_section *
2866 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2867 {
2868 int i;
2869 const struct bfd_elf_special_section *spec;
2870 const struct elf_backend_data *bed;
2871
2872 /* See if this is one of the special sections. */
2873 if (sec->name == NULL)
2874 return NULL;
2875
2876 bed = get_elf_backend_data (abfd);
2877 spec = bed->special_sections;
2878 if (spec)
2879 {
2880 spec = _bfd_elf_get_special_section (sec->name,
2881 bed->special_sections,
2882 sec->use_rela_p);
2883 if (spec != NULL)
2884 return spec;
2885 }
2886
2887 if (sec->name[0] != '.')
2888 return NULL;
2889
2890 i = sec->name[1] - 'b';
2891 if (i < 0 || i > 'z' - 'b')
2892 return NULL;
2893
2894 spec = special_sections[i];
2895
2896 if (spec == NULL)
2897 return NULL;
2898
2899 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2900 }
2901
2902 bfd_boolean
2903 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2904 {
2905 struct bfd_elf_section_data *sdata;
2906 const struct elf_backend_data *bed;
2907 const struct bfd_elf_special_section *ssect;
2908
2909 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2910 if (sdata == NULL)
2911 {
2912 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2913 sizeof (*sdata));
2914 if (sdata == NULL)
2915 return FALSE;
2916 sec->used_by_bfd = sdata;
2917 }
2918
2919 /* Indicate whether or not this section should use RELA relocations. */
2920 bed = get_elf_backend_data (abfd);
2921 sec->use_rela_p = bed->default_use_rela_p;
2922
2923 /* When we read a file, we don't need to set ELF section type and
2924 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2925 anyway. We will set ELF section type and flags for all linker
2926 created sections. If user specifies BFD section flags, we will
2927 set ELF section type and flags based on BFD section flags in
2928 elf_fake_sections. Special handling for .init_array/.fini_array
2929 output sections since they may contain .ctors/.dtors input
2930 sections. We don't want _bfd_elf_init_private_section_data to
2931 copy ELF section type from .ctors/.dtors input sections. */
2932 if (abfd->direction != read_direction
2933 || (sec->flags & SEC_LINKER_CREATED) != 0)
2934 {
2935 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2936 if (ssect != NULL
2937 && (!sec->flags
2938 || (sec->flags & SEC_LINKER_CREATED) != 0
2939 || ssect->type == SHT_INIT_ARRAY
2940 || ssect->type == SHT_FINI_ARRAY))
2941 {
2942 elf_section_type (sec) = ssect->type;
2943 elf_section_flags (sec) = ssect->attr;
2944 }
2945 }
2946
2947 return _bfd_generic_new_section_hook (abfd, sec);
2948 }
2949
2950 /* Create a new bfd section from an ELF program header.
2951
2952 Since program segments have no names, we generate a synthetic name
2953 of the form segment<NUM>, where NUM is generally the index in the
2954 program header table. For segments that are split (see below) we
2955 generate the names segment<NUM>a and segment<NUM>b.
2956
2957 Note that some program segments may have a file size that is different than
2958 (less than) the memory size. All this means is that at execution the
2959 system must allocate the amount of memory specified by the memory size,
2960 but only initialize it with the first "file size" bytes read from the
2961 file. This would occur for example, with program segments consisting
2962 of combined data+bss.
2963
2964 To handle the above situation, this routine generates TWO bfd sections
2965 for the single program segment. The first has the length specified by
2966 the file size of the segment, and the second has the length specified
2967 by the difference between the two sizes. In effect, the segment is split
2968 into its initialized and uninitialized parts.
2969
2970 */
2971
2972 bfd_boolean
2973 _bfd_elf_make_section_from_phdr (bfd *abfd,
2974 Elf_Internal_Phdr *hdr,
2975 int hdr_index,
2976 const char *type_name)
2977 {
2978 asection *newsect;
2979 char *name;
2980 char namebuf[64];
2981 size_t len;
2982 int split;
2983
2984 split = ((hdr->p_memsz > 0)
2985 && (hdr->p_filesz > 0)
2986 && (hdr->p_memsz > hdr->p_filesz));
2987
2988 if (hdr->p_filesz > 0)
2989 {
2990 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2991 len = strlen (namebuf) + 1;
2992 name = (char *) bfd_alloc (abfd, len);
2993 if (!name)
2994 return FALSE;
2995 memcpy (name, namebuf, len);
2996 newsect = bfd_make_section (abfd, name);
2997 if (newsect == NULL)
2998 return FALSE;
2999 newsect->vma = hdr->p_vaddr;
3000 newsect->lma = hdr->p_paddr;
3001 newsect->size = hdr->p_filesz;
3002 newsect->filepos = hdr->p_offset;
3003 newsect->flags |= SEC_HAS_CONTENTS;
3004 newsect->alignment_power = bfd_log2 (hdr->p_align);
3005 if (hdr->p_type == PT_LOAD)
3006 {
3007 newsect->flags |= SEC_ALLOC;
3008 newsect->flags |= SEC_LOAD;
3009 if (hdr->p_flags & PF_X)
3010 {
3011 /* FIXME: all we known is that it has execute PERMISSION,
3012 may be data. */
3013 newsect->flags |= SEC_CODE;
3014 }
3015 }
3016 if (!(hdr->p_flags & PF_W))
3017 {
3018 newsect->flags |= SEC_READONLY;
3019 }
3020 }
3021
3022 if (hdr->p_memsz > hdr->p_filesz)
3023 {
3024 bfd_vma align;
3025
3026 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3027 len = strlen (namebuf) + 1;
3028 name = (char *) bfd_alloc (abfd, len);
3029 if (!name)
3030 return FALSE;
3031 memcpy (name, namebuf, len);
3032 newsect = bfd_make_section (abfd, name);
3033 if (newsect == NULL)
3034 return FALSE;
3035 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
3036 newsect->lma = hdr->p_paddr + hdr->p_filesz;
3037 newsect->size = hdr->p_memsz - hdr->p_filesz;
3038 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3039 align = newsect->vma & -newsect->vma;
3040 if (align == 0 || align > hdr->p_align)
3041 align = hdr->p_align;
3042 newsect->alignment_power = bfd_log2 (align);
3043 if (hdr->p_type == PT_LOAD)
3044 {
3045 /* Hack for gdb. Segments that have not been modified do
3046 not have their contents written to a core file, on the
3047 assumption that a debugger can find the contents in the
3048 executable. We flag this case by setting the fake
3049 section size to zero. Note that "real" bss sections will
3050 always have their contents dumped to the core file. */
3051 if (bfd_get_format (abfd) == bfd_core)
3052 newsect->size = 0;
3053 newsect->flags |= SEC_ALLOC;
3054 if (hdr->p_flags & PF_X)
3055 newsect->flags |= SEC_CODE;
3056 }
3057 if (!(hdr->p_flags & PF_W))
3058 newsect->flags |= SEC_READONLY;
3059 }
3060
3061 return TRUE;
3062 }
3063
3064 bfd_boolean
3065 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3066 {
3067 const struct elf_backend_data *bed;
3068
3069 switch (hdr->p_type)
3070 {
3071 case PT_NULL:
3072 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3073
3074 case PT_LOAD:
3075 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
3076
3077 case PT_DYNAMIC:
3078 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3079
3080 case PT_INTERP:
3081 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3082
3083 case PT_NOTE:
3084 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3085 return FALSE;
3086 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3087 hdr->p_align))
3088 return FALSE;
3089 return TRUE;
3090
3091 case PT_SHLIB:
3092 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3093
3094 case PT_PHDR:
3095 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3096
3097 case PT_GNU_EH_FRAME:
3098 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3099 "eh_frame_hdr");
3100
3101 case PT_GNU_STACK:
3102 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3103
3104 case PT_GNU_RELRO:
3105 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3106
3107 default:
3108 /* Check for any processor-specific program segment types. */
3109 bed = get_elf_backend_data (abfd);
3110 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3111 }
3112 }
3113
3114 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3115 REL or RELA. */
3116
3117 Elf_Internal_Shdr *
3118 _bfd_elf_single_rel_hdr (asection *sec)
3119 {
3120 if (elf_section_data (sec)->rel.hdr)
3121 {
3122 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3123 return elf_section_data (sec)->rel.hdr;
3124 }
3125 else
3126 return elf_section_data (sec)->rela.hdr;
3127 }
3128
3129 static bfd_boolean
3130 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3131 Elf_Internal_Shdr *rel_hdr,
3132 const char *sec_name,
3133 bfd_boolean use_rela_p)
3134 {
3135 char *name = (char *) bfd_alloc (abfd,
3136 sizeof ".rela" + strlen (sec_name));
3137 if (name == NULL)
3138 return FALSE;
3139
3140 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3141 rel_hdr->sh_name =
3142 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3143 FALSE);
3144 if (rel_hdr->sh_name == (unsigned int) -1)
3145 return FALSE;
3146
3147 return TRUE;
3148 }
3149
3150 /* Allocate and initialize a section-header for a new reloc section,
3151 containing relocations against ASECT. It is stored in RELDATA. If
3152 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3153 relocations. */
3154
3155 static bfd_boolean
3156 _bfd_elf_init_reloc_shdr (bfd *abfd,
3157 struct bfd_elf_section_reloc_data *reldata,
3158 const char *sec_name,
3159 bfd_boolean use_rela_p,
3160 bfd_boolean delay_st_name_p)
3161 {
3162 Elf_Internal_Shdr *rel_hdr;
3163 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3164
3165 BFD_ASSERT (reldata->hdr == NULL);
3166 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3167 reldata->hdr = rel_hdr;
3168
3169 if (delay_st_name_p)
3170 rel_hdr->sh_name = (unsigned int) -1;
3171 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3172 use_rela_p))
3173 return FALSE;
3174 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3175 rel_hdr->sh_entsize = (use_rela_p
3176 ? bed->s->sizeof_rela
3177 : bed->s->sizeof_rel);
3178 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3179 rel_hdr->sh_flags = 0;
3180 rel_hdr->sh_addr = 0;
3181 rel_hdr->sh_size = 0;
3182 rel_hdr->sh_offset = 0;
3183
3184 return TRUE;
3185 }
3186
3187 /* Return the default section type based on the passed in section flags. */
3188
3189 int
3190 bfd_elf_get_default_section_type (flagword flags)
3191 {
3192 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3193 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3194 return SHT_NOBITS;
3195 return SHT_PROGBITS;
3196 }
3197
3198 struct fake_section_arg
3199 {
3200 struct bfd_link_info *link_info;
3201 bfd_boolean failed;
3202 };
3203
3204 /* Set up an ELF internal section header for a section. */
3205
3206 static void
3207 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3208 {
3209 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3211 struct bfd_elf_section_data *esd = elf_section_data (asect);
3212 Elf_Internal_Shdr *this_hdr;
3213 unsigned int sh_type;
3214 const char *name = asect->name;
3215 bfd_boolean delay_st_name_p = FALSE;
3216
3217 if (arg->failed)
3218 {
3219 /* We already failed; just get out of the bfd_map_over_sections
3220 loop. */
3221 return;
3222 }
3223
3224 this_hdr = &esd->this_hdr;
3225
3226 if (arg->link_info)
3227 {
3228 /* ld: compress DWARF debug sections with names: .debug_*. */
3229 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3230 && (asect->flags & SEC_DEBUGGING)
3231 && name[1] == 'd'
3232 && name[6] == '_')
3233 {
3234 /* Set SEC_ELF_COMPRESS to indicate this section should be
3235 compressed. */
3236 asect->flags |= SEC_ELF_COMPRESS;
3237
3238 /* If this section will be compressed, delay adding section
3239 name to section name section after it is compressed in
3240 _bfd_elf_assign_file_positions_for_non_load. */
3241 delay_st_name_p = TRUE;
3242 }
3243 }
3244 else if ((asect->flags & SEC_ELF_RENAME))
3245 {
3246 /* objcopy: rename output DWARF debug section. */
3247 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3248 {
3249 /* When we decompress or compress with SHF_COMPRESSED,
3250 convert section name from .zdebug_* to .debug_* if
3251 needed. */
3252 if (name[1] == 'z')
3253 {
3254 char *new_name = convert_zdebug_to_debug (abfd, name);
3255 if (new_name == NULL)
3256 {
3257 arg->failed = TRUE;
3258 return;
3259 }
3260 name = new_name;
3261 }
3262 }
3263 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3264 {
3265 /* PR binutils/18087: Compression does not always make a
3266 section smaller. So only rename the section when
3267 compression has actually taken place. If input section
3268 name is .zdebug_*, we should never compress it again. */
3269 char *new_name = convert_debug_to_zdebug (abfd, name);
3270 if (new_name == NULL)
3271 {
3272 arg->failed = TRUE;
3273 return;
3274 }
3275 BFD_ASSERT (name[1] != 'z');
3276 name = new_name;
3277 }
3278 }
3279
3280 if (delay_st_name_p)
3281 this_hdr->sh_name = (unsigned int) -1;
3282 else
3283 {
3284 this_hdr->sh_name
3285 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3286 name, FALSE);
3287 if (this_hdr->sh_name == (unsigned int) -1)
3288 {
3289 arg->failed = TRUE;
3290 return;
3291 }
3292 }
3293
3294 /* Don't clear sh_flags. Assembler may set additional bits. */
3295
3296 if ((asect->flags & SEC_ALLOC) != 0
3297 || asect->user_set_vma)
3298 this_hdr->sh_addr = asect->vma;
3299 else
3300 this_hdr->sh_addr = 0;
3301
3302 this_hdr->sh_offset = 0;
3303 this_hdr->sh_size = asect->size;
3304 this_hdr->sh_link = 0;
3305 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3306 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3307 {
3308 _bfd_error_handler
3309 /* xgettext:c-format */
3310 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3311 abfd, asect->alignment_power, asect);
3312 arg->failed = TRUE;
3313 return;
3314 }
3315 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3316 /* The sh_entsize and sh_info fields may have been set already by
3317 copy_private_section_data. */
3318
3319 this_hdr->bfd_section = asect;
3320 this_hdr->contents = NULL;
3321
3322 /* If the section type is unspecified, we set it based on
3323 asect->flags. */
3324 if ((asect->flags & SEC_GROUP) != 0)
3325 sh_type = SHT_GROUP;
3326 else
3327 sh_type = bfd_elf_get_default_section_type (asect->flags);
3328
3329 if (this_hdr->sh_type == SHT_NULL)
3330 this_hdr->sh_type = sh_type;
3331 else if (this_hdr->sh_type == SHT_NOBITS
3332 && sh_type == SHT_PROGBITS
3333 && (asect->flags & SEC_ALLOC) != 0)
3334 {
3335 /* Warn if we are changing a NOBITS section to PROGBITS, but
3336 allow the link to proceed. This can happen when users link
3337 non-bss input sections to bss output sections, or emit data
3338 to a bss output section via a linker script. */
3339 _bfd_error_handler
3340 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3341 this_hdr->sh_type = sh_type;
3342 }
3343
3344 switch (this_hdr->sh_type)
3345 {
3346 default:
3347 break;
3348
3349 case SHT_STRTAB:
3350 case SHT_NOTE:
3351 case SHT_NOBITS:
3352 case SHT_PROGBITS:
3353 break;
3354
3355 case SHT_INIT_ARRAY:
3356 case SHT_FINI_ARRAY:
3357 case SHT_PREINIT_ARRAY:
3358 this_hdr->sh_entsize = bed->s->arch_size / 8;
3359 break;
3360
3361 case SHT_HASH:
3362 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3363 break;
3364
3365 case SHT_DYNSYM:
3366 this_hdr->sh_entsize = bed->s->sizeof_sym;
3367 break;
3368
3369 case SHT_DYNAMIC:
3370 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3371 break;
3372
3373 case SHT_RELA:
3374 if (get_elf_backend_data (abfd)->may_use_rela_p)
3375 this_hdr->sh_entsize = bed->s->sizeof_rela;
3376 break;
3377
3378 case SHT_REL:
3379 if (get_elf_backend_data (abfd)->may_use_rel_p)
3380 this_hdr->sh_entsize = bed->s->sizeof_rel;
3381 break;
3382
3383 case SHT_GNU_versym:
3384 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3385 break;
3386
3387 case SHT_GNU_verdef:
3388 this_hdr->sh_entsize = 0;
3389 /* objcopy or strip will copy over sh_info, but may not set
3390 cverdefs. The linker will set cverdefs, but sh_info will be
3391 zero. */
3392 if (this_hdr->sh_info == 0)
3393 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3394 else
3395 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3396 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3397 break;
3398
3399 case SHT_GNU_verneed:
3400 this_hdr->sh_entsize = 0;
3401 /* objcopy or strip will copy over sh_info, but may not set
3402 cverrefs. The linker will set cverrefs, but sh_info will be
3403 zero. */
3404 if (this_hdr->sh_info == 0)
3405 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3406 else
3407 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3408 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3409 break;
3410
3411 case SHT_GROUP:
3412 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3413 break;
3414
3415 case SHT_GNU_HASH:
3416 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3417 break;
3418 }
3419
3420 if ((asect->flags & SEC_ALLOC) != 0)
3421 this_hdr->sh_flags |= SHF_ALLOC;
3422 if ((asect->flags & SEC_READONLY) == 0)
3423 this_hdr->sh_flags |= SHF_WRITE;
3424 if ((asect->flags & SEC_CODE) != 0)
3425 this_hdr->sh_flags |= SHF_EXECINSTR;
3426 if ((asect->flags & SEC_MERGE) != 0)
3427 {
3428 this_hdr->sh_flags |= SHF_MERGE;
3429 this_hdr->sh_entsize = asect->entsize;
3430 }
3431 if ((asect->flags & SEC_STRINGS) != 0)
3432 this_hdr->sh_flags |= SHF_STRINGS;
3433 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3434 this_hdr->sh_flags |= SHF_GROUP;
3435 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3436 {
3437 this_hdr->sh_flags |= SHF_TLS;
3438 if (asect->size == 0
3439 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3440 {
3441 struct bfd_link_order *o = asect->map_tail.link_order;
3442
3443 this_hdr->sh_size = 0;
3444 if (o != NULL)
3445 {
3446 this_hdr->sh_size = o->offset + o->size;
3447 if (this_hdr->sh_size != 0)
3448 this_hdr->sh_type = SHT_NOBITS;
3449 }
3450 }
3451 }
3452 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3453 this_hdr->sh_flags |= SHF_EXCLUDE;
3454
3455 /* If the section has relocs, set up a section header for the
3456 SHT_REL[A] section. If two relocation sections are required for
3457 this section, it is up to the processor-specific back-end to
3458 create the other. */
3459 if ((asect->flags & SEC_RELOC) != 0)
3460 {
3461 /* When doing a relocatable link, create both REL and RELA sections if
3462 needed. */
3463 if (arg->link_info
3464 /* Do the normal setup if we wouldn't create any sections here. */
3465 && esd->rel.count + esd->rela.count > 0
3466 && (bfd_link_relocatable (arg->link_info)
3467 || arg->link_info->emitrelocations))
3468 {
3469 if (esd->rel.count && esd->rel.hdr == NULL
3470 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3471 FALSE, delay_st_name_p))
3472 {
3473 arg->failed = TRUE;
3474 return;
3475 }
3476 if (esd->rela.count && esd->rela.hdr == NULL
3477 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3478 TRUE, delay_st_name_p))
3479 {
3480 arg->failed = TRUE;
3481 return;
3482 }
3483 }
3484 else if (!_bfd_elf_init_reloc_shdr (abfd,
3485 (asect->use_rela_p
3486 ? &esd->rela : &esd->rel),
3487 name,
3488 asect->use_rela_p,
3489 delay_st_name_p))
3490 {
3491 arg->failed = TRUE;
3492 return;
3493 }
3494 }
3495
3496 /* Check for processor-specific section types. */
3497 sh_type = this_hdr->sh_type;
3498 if (bed->elf_backend_fake_sections
3499 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3500 {
3501 arg->failed = TRUE;
3502 return;
3503 }
3504
3505 if (sh_type == SHT_NOBITS && asect->size != 0)
3506 {
3507 /* Don't change the header type from NOBITS if we are being
3508 called for objcopy --only-keep-debug. */
3509 this_hdr->sh_type = sh_type;
3510 }
3511 }
3512
3513 /* Fill in the contents of a SHT_GROUP section. Called from
3514 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3515 when ELF targets use the generic linker, ld. Called for ld -r
3516 from bfd_elf_final_link. */
3517
3518 void
3519 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3520 {
3521 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3522 asection *elt, *first;
3523 unsigned char *loc;
3524 bfd_boolean gas;
3525
3526 /* Ignore linker created group section. See elfNN_ia64_object_p in
3527 elfxx-ia64.c. */
3528 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3529 || sec->size == 0
3530 || *failedptr)
3531 return;
3532
3533 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3534 {
3535 unsigned long symindx = 0;
3536
3537 /* elf_group_id will have been set up by objcopy and the
3538 generic linker. */
3539 if (elf_group_id (sec) != NULL)
3540 symindx = elf_group_id (sec)->udata.i;
3541
3542 if (symindx == 0)
3543 {
3544 /* If called from the assembler, swap_out_syms will have set up
3545 elf_section_syms. */
3546 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3547 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3548 }
3549 elf_section_data (sec)->this_hdr.sh_info = symindx;
3550 }
3551 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3552 {
3553 /* The ELF backend linker sets sh_info to -2 when the group
3554 signature symbol is global, and thus the index can't be
3555 set until all local symbols are output. */
3556 asection *igroup;
3557 struct bfd_elf_section_data *sec_data;
3558 unsigned long symndx;
3559 unsigned long extsymoff;
3560 struct elf_link_hash_entry *h;
3561
3562 /* The point of this little dance to the first SHF_GROUP section
3563 then back to the SHT_GROUP section is that this gets us to
3564 the SHT_GROUP in the input object. */
3565 igroup = elf_sec_group (elf_next_in_group (sec));
3566 sec_data = elf_section_data (igroup);
3567 symndx = sec_data->this_hdr.sh_info;
3568 extsymoff = 0;
3569 if (!elf_bad_symtab (igroup->owner))
3570 {
3571 Elf_Internal_Shdr *symtab_hdr;
3572
3573 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3574 extsymoff = symtab_hdr->sh_info;
3575 }
3576 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3577 while (h->root.type == bfd_link_hash_indirect
3578 || h->root.type == bfd_link_hash_warning)
3579 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3580
3581 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3582 }
3583
3584 /* The contents won't be allocated for "ld -r" or objcopy. */
3585 gas = TRUE;
3586 if (sec->contents == NULL)
3587 {
3588 gas = FALSE;
3589 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3590
3591 /* Arrange for the section to be written out. */
3592 elf_section_data (sec)->this_hdr.contents = sec->contents;
3593 if (sec->contents == NULL)
3594 {
3595 *failedptr = TRUE;
3596 return;
3597 }
3598 }
3599
3600 loc = sec->contents + sec->size;
3601
3602 /* Get the pointer to the first section in the group that gas
3603 squirreled away here. objcopy arranges for this to be set to the
3604 start of the input section group. */
3605 first = elt = elf_next_in_group (sec);
3606
3607 /* First element is a flag word. Rest of section is elf section
3608 indices for all the sections of the group. Write them backwards
3609 just to keep the group in the same order as given in .section
3610 directives, not that it matters. */
3611 while (elt != NULL)
3612 {
3613 asection *s;
3614
3615 s = elt;
3616 if (!gas)
3617 s = s->output_section;
3618 if (s != NULL
3619 && !bfd_is_abs_section (s))
3620 {
3621 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3622 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3623
3624 if (elf_sec->rel.hdr != NULL
3625 && (gas
3626 || (input_elf_sec->rel.hdr != NULL
3627 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3628 {
3629 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3630 loc -= 4;
3631 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3632 }
3633 if (elf_sec->rela.hdr != NULL
3634 && (gas
3635 || (input_elf_sec->rela.hdr != NULL
3636 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3637 {
3638 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3639 loc -= 4;
3640 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3641 }
3642 loc -= 4;
3643 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3644 }
3645 elt = elf_next_in_group (elt);
3646 if (elt == first)
3647 break;
3648 }
3649
3650 loc -= 4;
3651 BFD_ASSERT (loc == sec->contents);
3652
3653 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3654 }
3655
3656 /* Given NAME, the name of a relocation section stripped of its
3657 .rel/.rela prefix, return the section in ABFD to which the
3658 relocations apply. */
3659
3660 asection *
3661 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3662 {
3663 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3664 section likely apply to .got.plt or .got section. */
3665 if (get_elf_backend_data (abfd)->want_got_plt
3666 && strcmp (name, ".plt") == 0)
3667 {
3668 asection *sec;
3669
3670 name = ".got.plt";
3671 sec = bfd_get_section_by_name (abfd, name);
3672 if (sec != NULL)
3673 return sec;
3674 name = ".got";
3675 }
3676
3677 return bfd_get_section_by_name (abfd, name);
3678 }
3679
3680 /* Return the section to which RELOC_SEC applies. */
3681
3682 static asection *
3683 elf_get_reloc_section (asection *reloc_sec)
3684 {
3685 const char *name;
3686 unsigned int type;
3687 bfd *abfd;
3688 const struct elf_backend_data *bed;
3689
3690 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3691 if (type != SHT_REL && type != SHT_RELA)
3692 return NULL;
3693
3694 /* We look up the section the relocs apply to by name. */
3695 name = reloc_sec->name;
3696 if (strncmp (name, ".rel", 4) != 0)
3697 return NULL;
3698 name += 4;
3699 if (type == SHT_RELA && *name++ != 'a')
3700 return NULL;
3701
3702 abfd = reloc_sec->owner;
3703 bed = get_elf_backend_data (abfd);
3704 return bed->get_reloc_section (abfd, name);
3705 }
3706
3707 /* Assign all ELF section numbers. The dummy first section is handled here
3708 too. The link/info pointers for the standard section types are filled
3709 in here too, while we're at it. */
3710
3711 static bfd_boolean
3712 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3713 {
3714 struct elf_obj_tdata *t = elf_tdata (abfd);
3715 asection *sec;
3716 unsigned int section_number;
3717 Elf_Internal_Shdr **i_shdrp;
3718 struct bfd_elf_section_data *d;
3719 bfd_boolean need_symtab;
3720
3721 section_number = 1;
3722
3723 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3724
3725 /* SHT_GROUP sections are in relocatable files only. */
3726 if (link_info == NULL || !link_info->resolve_section_groups)
3727 {
3728 size_t reloc_count = 0;
3729
3730 /* Put SHT_GROUP sections first. */
3731 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3732 {
3733 d = elf_section_data (sec);
3734
3735 if (d->this_hdr.sh_type == SHT_GROUP)
3736 {
3737 if (sec->flags & SEC_LINKER_CREATED)
3738 {
3739 /* Remove the linker created SHT_GROUP sections. */
3740 bfd_section_list_remove (abfd, sec);
3741 abfd->section_count--;
3742 }
3743 else
3744 d->this_idx = section_number++;
3745 }
3746
3747 /* Count relocations. */
3748 reloc_count += sec->reloc_count;
3749 }
3750
3751 /* Clear HAS_RELOC if there are no relocations. */
3752 if (reloc_count == 0)
3753 abfd->flags &= ~HAS_RELOC;
3754 }
3755
3756 for (sec = abfd->sections; sec; sec = sec->next)
3757 {
3758 d = elf_section_data (sec);
3759
3760 if (d->this_hdr.sh_type != SHT_GROUP)
3761 d->this_idx = section_number++;
3762 if (d->this_hdr.sh_name != (unsigned int) -1)
3763 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3764 if (d->rel.hdr)
3765 {
3766 d->rel.idx = section_number++;
3767 if (d->rel.hdr->sh_name != (unsigned int) -1)
3768 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3769 }
3770 else
3771 d->rel.idx = 0;
3772
3773 if (d->rela.hdr)
3774 {
3775 d->rela.idx = section_number++;
3776 if (d->rela.hdr->sh_name != (unsigned int) -1)
3777 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3778 }
3779 else
3780 d->rela.idx = 0;
3781 }
3782
3783 need_symtab = (bfd_get_symcount (abfd) > 0
3784 || (link_info == NULL
3785 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3786 == HAS_RELOC)));
3787 if (need_symtab)
3788 {
3789 elf_onesymtab (abfd) = section_number++;
3790 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3791 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3792 {
3793 elf_section_list *entry;
3794
3795 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3796
3797 entry = bfd_zalloc (abfd, sizeof (*entry));
3798 entry->ndx = section_number++;
3799 elf_symtab_shndx_list (abfd) = entry;
3800 entry->hdr.sh_name
3801 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3802 ".symtab_shndx", FALSE);
3803 if (entry->hdr.sh_name == (unsigned int) -1)
3804 return FALSE;
3805 }
3806 elf_strtab_sec (abfd) = section_number++;
3807 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3808 }
3809
3810 elf_shstrtab_sec (abfd) = section_number++;
3811 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3812 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3813
3814 if (section_number >= SHN_LORESERVE)
3815 {
3816 /* xgettext:c-format */
3817 _bfd_error_handler (_("%pB: too many sections: %u"),
3818 abfd, section_number);
3819 return FALSE;
3820 }
3821
3822 elf_numsections (abfd) = section_number;
3823 elf_elfheader (abfd)->e_shnum = section_number;
3824
3825 /* Set up the list of section header pointers, in agreement with the
3826 indices. */
3827 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3828 sizeof (Elf_Internal_Shdr *));
3829 if (i_shdrp == NULL)
3830 return FALSE;
3831
3832 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3833 sizeof (Elf_Internal_Shdr));
3834 if (i_shdrp[0] == NULL)
3835 {
3836 bfd_release (abfd, i_shdrp);
3837 return FALSE;
3838 }
3839
3840 elf_elfsections (abfd) = i_shdrp;
3841
3842 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3843 if (need_symtab)
3844 {
3845 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3846 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3847 {
3848 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3849 BFD_ASSERT (entry != NULL);
3850 i_shdrp[entry->ndx] = & entry->hdr;
3851 entry->hdr.sh_link = elf_onesymtab (abfd);
3852 }
3853 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3854 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3855 }
3856
3857 for (sec = abfd->sections; sec; sec = sec->next)
3858 {
3859 asection *s;
3860
3861 d = elf_section_data (sec);
3862
3863 i_shdrp[d->this_idx] = &d->this_hdr;
3864 if (d->rel.idx != 0)
3865 i_shdrp[d->rel.idx] = d->rel.hdr;
3866 if (d->rela.idx != 0)
3867 i_shdrp[d->rela.idx] = d->rela.hdr;
3868
3869 /* Fill in the sh_link and sh_info fields while we're at it. */
3870
3871 /* sh_link of a reloc section is the section index of the symbol
3872 table. sh_info is the section index of the section to which
3873 the relocation entries apply. */
3874 if (d->rel.idx != 0)
3875 {
3876 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3877 d->rel.hdr->sh_info = d->this_idx;
3878 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3879 }
3880 if (d->rela.idx != 0)
3881 {
3882 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3883 d->rela.hdr->sh_info = d->this_idx;
3884 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3885 }
3886
3887 /* We need to set up sh_link for SHF_LINK_ORDER. */
3888 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3889 {
3890 s = elf_linked_to_section (sec);
3891 if (s)
3892 {
3893 /* elf_linked_to_section points to the input section. */
3894 if (link_info != NULL)
3895 {
3896 /* Check discarded linkonce section. */
3897 if (discarded_section (s))
3898 {
3899 asection *kept;
3900 _bfd_error_handler
3901 /* xgettext:c-format */
3902 (_("%pB: sh_link of section `%pA' points to"
3903 " discarded section `%pA' of `%pB'"),
3904 abfd, d->this_hdr.bfd_section,
3905 s, s->owner);
3906 /* Point to the kept section if it has the same
3907 size as the discarded one. */
3908 kept = _bfd_elf_check_kept_section (s, link_info);
3909 if (kept == NULL)
3910 {
3911 bfd_set_error (bfd_error_bad_value);
3912 return FALSE;
3913 }
3914 s = kept;
3915 }
3916
3917 s = s->output_section;
3918 BFD_ASSERT (s != NULL);
3919 }
3920 else
3921 {
3922 /* Handle objcopy. */
3923 if (s->output_section == NULL)
3924 {
3925 _bfd_error_handler
3926 /* xgettext:c-format */
3927 (_("%pB: sh_link of section `%pA' points to"
3928 " removed section `%pA' of `%pB'"),
3929 abfd, d->this_hdr.bfd_section, s, s->owner);
3930 bfd_set_error (bfd_error_bad_value);
3931 return FALSE;
3932 }
3933 s = s->output_section;
3934 }
3935 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3936 }
3937 else
3938 {
3939 /* PR 290:
3940 The Intel C compiler generates SHT_IA_64_UNWIND with
3941 SHF_LINK_ORDER. But it doesn't set the sh_link or
3942 sh_info fields. Hence we could get the situation
3943 where s is NULL. */
3944 const struct elf_backend_data *bed
3945 = get_elf_backend_data (abfd);
3946 if (bed->link_order_error_handler)
3947 bed->link_order_error_handler
3948 /* xgettext:c-format */
3949 (_("%pB: warning: sh_link not set for section `%pA'"),
3950 abfd, sec);
3951 }
3952 }
3953
3954 switch (d->this_hdr.sh_type)
3955 {
3956 case SHT_REL:
3957 case SHT_RELA:
3958 /* A reloc section which we are treating as a normal BFD
3959 section. sh_link is the section index of the symbol
3960 table. sh_info is the section index of the section to
3961 which the relocation entries apply. We assume that an
3962 allocated reloc section uses the dynamic symbol table.
3963 FIXME: How can we be sure? */
3964 s = bfd_get_section_by_name (abfd, ".dynsym");
3965 if (s != NULL)
3966 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3967
3968 s = elf_get_reloc_section (sec);
3969 if (s != NULL)
3970 {
3971 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3972 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3973 }
3974 break;
3975
3976 case SHT_STRTAB:
3977 /* We assume that a section named .stab*str is a stabs
3978 string section. We look for a section with the same name
3979 but without the trailing ``str'', and set its sh_link
3980 field to point to this section. */
3981 if (CONST_STRNEQ (sec->name, ".stab")
3982 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3983 {
3984 size_t len;
3985 char *alc;
3986
3987 len = strlen (sec->name);
3988 alc = (char *) bfd_malloc (len - 2);
3989 if (alc == NULL)
3990 return FALSE;
3991 memcpy (alc, sec->name, len - 3);
3992 alc[len - 3] = '\0';
3993 s = bfd_get_section_by_name (abfd, alc);
3994 free (alc);
3995 if (s != NULL)
3996 {
3997 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3998
3999 /* This is a .stab section. */
4000 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
4001 elf_section_data (s)->this_hdr.sh_entsize
4002 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
4003 }
4004 }
4005 break;
4006
4007 case SHT_DYNAMIC:
4008 case SHT_DYNSYM:
4009 case SHT_GNU_verneed:
4010 case SHT_GNU_verdef:
4011 /* sh_link is the section header index of the string table
4012 used for the dynamic entries, or the symbol table, or the
4013 version strings. */
4014 s = bfd_get_section_by_name (abfd, ".dynstr");
4015 if (s != NULL)
4016 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4017 break;
4018
4019 case SHT_GNU_LIBLIST:
4020 /* sh_link is the section header index of the prelink library
4021 list used for the dynamic entries, or the symbol table, or
4022 the version strings. */
4023 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4024 ? ".dynstr" : ".gnu.libstr");
4025 if (s != NULL)
4026 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4027 break;
4028
4029 case SHT_HASH:
4030 case SHT_GNU_HASH:
4031 case SHT_GNU_versym:
4032 /* sh_link is the section header index of the symbol table
4033 this hash table or version table is for. */
4034 s = bfd_get_section_by_name (abfd, ".dynsym");
4035 if (s != NULL)
4036 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4037 break;
4038
4039 case SHT_GROUP:
4040 d->this_hdr.sh_link = elf_onesymtab (abfd);
4041 }
4042 }
4043
4044 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4045 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4046 debug section name from .debug_* to .zdebug_* if needed. */
4047
4048 return TRUE;
4049 }
4050
4051 static bfd_boolean
4052 sym_is_global (bfd *abfd, asymbol *sym)
4053 {
4054 /* If the backend has a special mapping, use it. */
4055 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4056 if (bed->elf_backend_sym_is_global)
4057 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4058
4059 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4060 || bfd_is_und_section (bfd_asymbol_section (sym))
4061 || bfd_is_com_section (bfd_asymbol_section (sym)));
4062 }
4063
4064 /* Filter global symbols of ABFD to include in the import library. All
4065 SYMCOUNT symbols of ABFD can be examined from their pointers in
4066 SYMS. Pointers of symbols to keep should be stored contiguously at
4067 the beginning of that array.
4068
4069 Returns the number of symbols to keep. */
4070
4071 unsigned int
4072 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4073 asymbol **syms, long symcount)
4074 {
4075 long src_count, dst_count = 0;
4076
4077 for (src_count = 0; src_count < symcount; src_count++)
4078 {
4079 asymbol *sym = syms[src_count];
4080 char *name = (char *) bfd_asymbol_name (sym);
4081 struct bfd_link_hash_entry *h;
4082
4083 if (!sym_is_global (abfd, sym))
4084 continue;
4085
4086 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4087 if (h == NULL)
4088 continue;
4089 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4090 continue;
4091 if (h->linker_def || h->ldscript_def)
4092 continue;
4093
4094 syms[dst_count++] = sym;
4095 }
4096
4097 syms[dst_count] = NULL;
4098
4099 return dst_count;
4100 }
4101
4102 /* Don't output section symbols for sections that are not going to be
4103 output, that are duplicates or there is no BFD section. */
4104
4105 static bfd_boolean
4106 ignore_section_sym (bfd *abfd, asymbol *sym)
4107 {
4108 elf_symbol_type *type_ptr;
4109
4110 if (sym == NULL)
4111 return FALSE;
4112
4113 if ((sym->flags & BSF_SECTION_SYM) == 0)
4114 return FALSE;
4115
4116 if (sym->section == NULL)
4117 return TRUE;
4118
4119 type_ptr = elf_symbol_from (abfd, sym);
4120 return ((type_ptr != NULL
4121 && type_ptr->internal_elf_sym.st_shndx != 0
4122 && bfd_is_abs_section (sym->section))
4123 || !(sym->section->owner == abfd
4124 || (sym->section->output_section != NULL
4125 && sym->section->output_section->owner == abfd
4126 && sym->section->output_offset == 0)
4127 || bfd_is_abs_section (sym->section)));
4128 }
4129
4130 /* Map symbol from it's internal number to the external number, moving
4131 all local symbols to be at the head of the list. */
4132
4133 static bfd_boolean
4134 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4135 {
4136 unsigned int symcount = bfd_get_symcount (abfd);
4137 asymbol **syms = bfd_get_outsymbols (abfd);
4138 asymbol **sect_syms;
4139 unsigned int num_locals = 0;
4140 unsigned int num_globals = 0;
4141 unsigned int num_locals2 = 0;
4142 unsigned int num_globals2 = 0;
4143 unsigned int max_index = 0;
4144 unsigned int idx;
4145 asection *asect;
4146 asymbol **new_syms;
4147
4148 #ifdef DEBUG
4149 fprintf (stderr, "elf_map_symbols\n");
4150 fflush (stderr);
4151 #endif
4152
4153 for (asect = abfd->sections; asect; asect = asect->next)
4154 {
4155 if (max_index < asect->index)
4156 max_index = asect->index;
4157 }
4158
4159 max_index++;
4160 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4161 if (sect_syms == NULL)
4162 return FALSE;
4163 elf_section_syms (abfd) = sect_syms;
4164 elf_num_section_syms (abfd) = max_index;
4165
4166 /* Init sect_syms entries for any section symbols we have already
4167 decided to output. */
4168 for (idx = 0; idx < symcount; idx++)
4169 {
4170 asymbol *sym = syms[idx];
4171
4172 if ((sym->flags & BSF_SECTION_SYM) != 0
4173 && sym->value == 0
4174 && !ignore_section_sym (abfd, sym)
4175 && !bfd_is_abs_section (sym->section))
4176 {
4177 asection *sec = sym->section;
4178
4179 if (sec->owner != abfd)
4180 sec = sec->output_section;
4181
4182 sect_syms[sec->index] = syms[idx];
4183 }
4184 }
4185
4186 /* Classify all of the symbols. */
4187 for (idx = 0; idx < symcount; idx++)
4188 {
4189 if (sym_is_global (abfd, syms[idx]))
4190 num_globals++;
4191 else if (!ignore_section_sym (abfd, syms[idx]))
4192 num_locals++;
4193 }
4194
4195 /* We will be adding a section symbol for each normal BFD section. Most
4196 sections will already have a section symbol in outsymbols, but
4197 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4198 at least in that case. */
4199 for (asect = abfd->sections; asect; asect = asect->next)
4200 {
4201 if (sect_syms[asect->index] == NULL)
4202 {
4203 if (!sym_is_global (abfd, asect->symbol))
4204 num_locals++;
4205 else
4206 num_globals++;
4207 }
4208 }
4209
4210 /* Now sort the symbols so the local symbols are first. */
4211 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4212 sizeof (asymbol *));
4213
4214 if (new_syms == NULL)
4215 return FALSE;
4216
4217 for (idx = 0; idx < symcount; idx++)
4218 {
4219 asymbol *sym = syms[idx];
4220 unsigned int i;
4221
4222 if (sym_is_global (abfd, sym))
4223 i = num_locals + num_globals2++;
4224 else if (!ignore_section_sym (abfd, sym))
4225 i = num_locals2++;
4226 else
4227 continue;
4228 new_syms[i] = sym;
4229 sym->udata.i = i + 1;
4230 }
4231 for (asect = abfd->sections; asect; asect = asect->next)
4232 {
4233 if (sect_syms[asect->index] == NULL)
4234 {
4235 asymbol *sym = asect->symbol;
4236 unsigned int i;
4237
4238 sect_syms[asect->index] = sym;
4239 if (!sym_is_global (abfd, sym))
4240 i = num_locals2++;
4241 else
4242 i = num_locals + num_globals2++;
4243 new_syms[i] = sym;
4244 sym->udata.i = i + 1;
4245 }
4246 }
4247
4248 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4249
4250 *pnum_locals = num_locals;
4251 return TRUE;
4252 }
4253
4254 /* Align to the maximum file alignment that could be required for any
4255 ELF data structure. */
4256
4257 static inline file_ptr
4258 align_file_position (file_ptr off, int align)
4259 {
4260 return (off + align - 1) & ~(align - 1);
4261 }
4262
4263 /* Assign a file position to a section, optionally aligning to the
4264 required section alignment. */
4265
4266 file_ptr
4267 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4268 file_ptr offset,
4269 bfd_boolean align)
4270 {
4271 if (align && i_shdrp->sh_addralign > 1)
4272 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4273 i_shdrp->sh_offset = offset;
4274 if (i_shdrp->bfd_section != NULL)
4275 i_shdrp->bfd_section->filepos = offset;
4276 if (i_shdrp->sh_type != SHT_NOBITS)
4277 offset += i_shdrp->sh_size;
4278 return offset;
4279 }
4280
4281 /* Compute the file positions we are going to put the sections at, and
4282 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4283 is not NULL, this is being called by the ELF backend linker. */
4284
4285 bfd_boolean
4286 _bfd_elf_compute_section_file_positions (bfd *abfd,
4287 struct bfd_link_info *link_info)
4288 {
4289 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4290 struct fake_section_arg fsargs;
4291 bfd_boolean failed;
4292 struct elf_strtab_hash *strtab = NULL;
4293 Elf_Internal_Shdr *shstrtab_hdr;
4294 bfd_boolean need_symtab;
4295
4296 if (abfd->output_has_begun)
4297 return TRUE;
4298
4299 /* Do any elf backend specific processing first. */
4300 if (bed->elf_backend_begin_write_processing)
4301 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4302
4303 if (! prep_headers (abfd))
4304 return FALSE;
4305
4306 /* Post process the headers if necessary. */
4307 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4308
4309 fsargs.failed = FALSE;
4310 fsargs.link_info = link_info;
4311 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4312 if (fsargs.failed)
4313 return FALSE;
4314
4315 if (!assign_section_numbers (abfd, link_info))
4316 return FALSE;
4317
4318 /* The backend linker builds symbol table information itself. */
4319 need_symtab = (link_info == NULL
4320 && (bfd_get_symcount (abfd) > 0
4321 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4322 == HAS_RELOC)));
4323 if (need_symtab)
4324 {
4325 /* Non-zero if doing a relocatable link. */
4326 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4327
4328 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4329 return FALSE;
4330 }
4331
4332 failed = FALSE;
4333 if (link_info == NULL)
4334 {
4335 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4336 if (failed)
4337 return FALSE;
4338 }
4339
4340 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4341 /* sh_name was set in prep_headers. */
4342 shstrtab_hdr->sh_type = SHT_STRTAB;
4343 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4344 shstrtab_hdr->sh_addr = 0;
4345 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4346 shstrtab_hdr->sh_entsize = 0;
4347 shstrtab_hdr->sh_link = 0;
4348 shstrtab_hdr->sh_info = 0;
4349 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4350 shstrtab_hdr->sh_addralign = 1;
4351
4352 if (!assign_file_positions_except_relocs (abfd, link_info))
4353 return FALSE;
4354
4355 if (need_symtab)
4356 {
4357 file_ptr off;
4358 Elf_Internal_Shdr *hdr;
4359
4360 off = elf_next_file_pos (abfd);
4361
4362 hdr = & elf_symtab_hdr (abfd);
4363 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4364
4365 if (elf_symtab_shndx_list (abfd) != NULL)
4366 {
4367 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4368 if (hdr->sh_size != 0)
4369 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4370 /* FIXME: What about other symtab_shndx sections in the list ? */
4371 }
4372
4373 hdr = &elf_tdata (abfd)->strtab_hdr;
4374 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4375
4376 elf_next_file_pos (abfd) = off;
4377
4378 /* Now that we know where the .strtab section goes, write it
4379 out. */
4380 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4381 || ! _bfd_elf_strtab_emit (abfd, strtab))
4382 return FALSE;
4383 _bfd_elf_strtab_free (strtab);
4384 }
4385
4386 abfd->output_has_begun = TRUE;
4387
4388 return TRUE;
4389 }
4390
4391 /* Make an initial estimate of the size of the program header. If we
4392 get the number wrong here, we'll redo section placement. */
4393
4394 static bfd_size_type
4395 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4396 {
4397 size_t segs;
4398 asection *s;
4399 const struct elf_backend_data *bed;
4400
4401 /* Assume we will need exactly two PT_LOAD segments: one for text
4402 and one for data. */
4403 segs = 2;
4404
4405 s = bfd_get_section_by_name (abfd, ".interp");
4406 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4407 {
4408 /* If we have a loadable interpreter section, we need a
4409 PT_INTERP segment. In this case, assume we also need a
4410 PT_PHDR segment, although that may not be true for all
4411 targets. */
4412 segs += 2;
4413 }
4414
4415 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4416 {
4417 /* We need a PT_DYNAMIC segment. */
4418 ++segs;
4419 }
4420
4421 if (info != NULL && info->relro)
4422 {
4423 /* We need a PT_GNU_RELRO segment. */
4424 ++segs;
4425 }
4426
4427 if (elf_eh_frame_hdr (abfd))
4428 {
4429 /* We need a PT_GNU_EH_FRAME segment. */
4430 ++segs;
4431 }
4432
4433 if (elf_stack_flags (abfd))
4434 {
4435 /* We need a PT_GNU_STACK segment. */
4436 ++segs;
4437 }
4438
4439 s = bfd_get_section_by_name (abfd,
4440 NOTE_GNU_PROPERTY_SECTION_NAME);
4441 if (s != NULL && s->size != 0)
4442 {
4443 /* We need a PT_GNU_PROPERTY segment. */
4444 ++segs;
4445 }
4446
4447 for (s = abfd->sections; s != NULL; s = s->next)
4448 {
4449 if ((s->flags & SEC_LOAD) != 0
4450 && elf_section_type (s) == SHT_NOTE)
4451 {
4452 unsigned int alignment_power;
4453 /* We need a PT_NOTE segment. */
4454 ++segs;
4455 /* Try to create just one PT_NOTE segment for all adjacent
4456 loadable SHT_NOTE sections. gABI requires that within a
4457 PT_NOTE segment (and also inside of each SHT_NOTE section)
4458 each note should have the same alignment. So we check
4459 whether the sections are correctly aligned. */
4460 alignment_power = s->alignment_power;
4461 while (s->next != NULL
4462 && s->next->alignment_power == alignment_power
4463 && (s->next->flags & SEC_LOAD) != 0
4464 && elf_section_type (s->next) == SHT_NOTE)
4465 s = s->next;
4466 }
4467 }
4468
4469 for (s = abfd->sections; s != NULL; s = s->next)
4470 {
4471 if (s->flags & SEC_THREAD_LOCAL)
4472 {
4473 /* We need a PT_TLS segment. */
4474 ++segs;
4475 break;
4476 }
4477 }
4478
4479 bed = get_elf_backend_data (abfd);
4480
4481 if ((abfd->flags & D_PAGED) != 0
4482 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4483 {
4484 /* Add a PT_GNU_MBIND segment for each mbind section. */
4485 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4486 for (s = abfd->sections; s != NULL; s = s->next)
4487 if (elf_section_flags (s) & SHF_GNU_MBIND)
4488 {
4489 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4490 {
4491 _bfd_error_handler
4492 /* xgettext:c-format */
4493 (_("%pB: GNU_MBIND section `%pA' has invalid "
4494 "sh_info field: %d"),
4495 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4496 continue;
4497 }
4498 /* Align mbind section to page size. */
4499 if (s->alignment_power < page_align_power)
4500 s->alignment_power = page_align_power;
4501 segs ++;
4502 }
4503 }
4504
4505 /* Let the backend count up any program headers it might need. */
4506 if (bed->elf_backend_additional_program_headers)
4507 {
4508 int a;
4509
4510 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4511 if (a == -1)
4512 abort ();
4513 segs += a;
4514 }
4515
4516 return segs * bed->s->sizeof_phdr;
4517 }
4518
4519 /* Find the segment that contains the output_section of section. */
4520
4521 Elf_Internal_Phdr *
4522 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4523 {
4524 struct elf_segment_map *m;
4525 Elf_Internal_Phdr *p;
4526
4527 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4528 m != NULL;
4529 m = m->next, p++)
4530 {
4531 int i;
4532
4533 for (i = m->count - 1; i >= 0; i--)
4534 if (m->sections[i] == section)
4535 return p;
4536 }
4537
4538 return NULL;
4539 }
4540
4541 /* Create a mapping from a set of sections to a program segment. */
4542
4543 static struct elf_segment_map *
4544 make_mapping (bfd *abfd,
4545 asection **sections,
4546 unsigned int from,
4547 unsigned int to,
4548 bfd_boolean phdr)
4549 {
4550 struct elf_segment_map *m;
4551 unsigned int i;
4552 asection **hdrpp;
4553 bfd_size_type amt;
4554
4555 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4556 amt += (to - from) * sizeof (asection *);
4557 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4558 if (m == NULL)
4559 return NULL;
4560 m->next = NULL;
4561 m->p_type = PT_LOAD;
4562 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4563 m->sections[i - from] = *hdrpp;
4564 m->count = to - from;
4565
4566 if (from == 0 && phdr)
4567 {
4568 /* Include the headers in the first PT_LOAD segment. */
4569 m->includes_filehdr = 1;
4570 m->includes_phdrs = 1;
4571 }
4572
4573 return m;
4574 }
4575
4576 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4577 on failure. */
4578
4579 struct elf_segment_map *
4580 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4581 {
4582 struct elf_segment_map *m;
4583
4584 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4585 sizeof (struct elf_segment_map));
4586 if (m == NULL)
4587 return NULL;
4588 m->next = NULL;
4589 m->p_type = PT_DYNAMIC;
4590 m->count = 1;
4591 m->sections[0] = dynsec;
4592
4593 return m;
4594 }
4595
4596 /* Possibly add or remove segments from the segment map. */
4597
4598 static bfd_boolean
4599 elf_modify_segment_map (bfd *abfd,
4600 struct bfd_link_info *info,
4601 bfd_boolean remove_empty_load)
4602 {
4603 struct elf_segment_map **m;
4604 const struct elf_backend_data *bed;
4605
4606 /* The placement algorithm assumes that non allocated sections are
4607 not in PT_LOAD segments. We ensure this here by removing such
4608 sections from the segment map. We also remove excluded
4609 sections. Finally, any PT_LOAD segment without sections is
4610 removed. */
4611 m = &elf_seg_map (abfd);
4612 while (*m)
4613 {
4614 unsigned int i, new_count;
4615
4616 for (new_count = 0, i = 0; i < (*m)->count; i++)
4617 {
4618 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4619 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4620 || (*m)->p_type != PT_LOAD))
4621 {
4622 (*m)->sections[new_count] = (*m)->sections[i];
4623 new_count++;
4624 }
4625 }
4626 (*m)->count = new_count;
4627
4628 if (remove_empty_load
4629 && (*m)->p_type == PT_LOAD
4630 && (*m)->count == 0
4631 && !(*m)->includes_phdrs)
4632 *m = (*m)->next;
4633 else
4634 m = &(*m)->next;
4635 }
4636
4637 bed = get_elf_backend_data (abfd);
4638 if (bed->elf_backend_modify_segment_map != NULL)
4639 {
4640 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4641 return FALSE;
4642 }
4643
4644 return TRUE;
4645 }
4646
4647 #define IS_TBSS(s) \
4648 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4649
4650 /* Set up a mapping from BFD sections to program segments. */
4651
4652 bfd_boolean
4653 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4654 {
4655 unsigned int count;
4656 struct elf_segment_map *m;
4657 asection **sections = NULL;
4658 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4659 bfd_boolean no_user_phdrs;
4660
4661 no_user_phdrs = elf_seg_map (abfd) == NULL;
4662
4663 if (info != NULL)
4664 info->user_phdrs = !no_user_phdrs;
4665
4666 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4667 {
4668 asection *s;
4669 unsigned int i;
4670 struct elf_segment_map *mfirst;
4671 struct elf_segment_map **pm;
4672 asection *last_hdr;
4673 bfd_vma last_size;
4674 unsigned int hdr_index;
4675 bfd_vma maxpagesize;
4676 asection **hdrpp;
4677 bfd_boolean phdr_in_segment;
4678 bfd_boolean writable;
4679 bfd_boolean executable;
4680 int tls_count = 0;
4681 asection *first_tls = NULL;
4682 asection *first_mbind = NULL;
4683 asection *dynsec, *eh_frame_hdr;
4684 bfd_size_type amt;
4685 bfd_vma addr_mask, wrap_to = 0;
4686 bfd_size_type phdr_size;
4687
4688 /* Select the allocated sections, and sort them. */
4689
4690 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4691 sizeof (asection *));
4692 if (sections == NULL)
4693 goto error_return;
4694
4695 /* Calculate top address, avoiding undefined behaviour of shift
4696 left operator when shift count is equal to size of type
4697 being shifted. */
4698 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4699 addr_mask = (addr_mask << 1) + 1;
4700
4701 i = 0;
4702 for (s = abfd->sections; s != NULL; s = s->next)
4703 {
4704 if ((s->flags & SEC_ALLOC) != 0)
4705 {
4706 sections[i] = s;
4707 ++i;
4708 /* A wrapping section potentially clashes with header. */
4709 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4710 wrap_to = (s->lma + s->size) & addr_mask;
4711 }
4712 }
4713 BFD_ASSERT (i <= bfd_count_sections (abfd));
4714 count = i;
4715
4716 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4717
4718 phdr_size = elf_program_header_size (abfd);
4719 if (phdr_size == (bfd_size_type) -1)
4720 phdr_size = get_program_header_size (abfd, info);
4721 phdr_size += bed->s->sizeof_ehdr;
4722 maxpagesize = bed->maxpagesize;
4723 if (maxpagesize == 0)
4724 maxpagesize = 1;
4725 phdr_in_segment = info != NULL && info->load_phdrs;
4726 if (count != 0
4727 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4728 >= (phdr_size & (maxpagesize - 1))))
4729 /* For compatibility with old scripts that may not be using
4730 SIZEOF_HEADERS, add headers when it looks like space has
4731 been left for them. */
4732 phdr_in_segment = TRUE;
4733
4734 /* Build the mapping. */
4735 mfirst = NULL;
4736 pm = &mfirst;
4737
4738 /* If we have a .interp section, then create a PT_PHDR segment for
4739 the program headers and a PT_INTERP segment for the .interp
4740 section. */
4741 s = bfd_get_section_by_name (abfd, ".interp");
4742 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4743 {
4744 amt = sizeof (struct elf_segment_map);
4745 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4746 if (m == NULL)
4747 goto error_return;
4748 m->next = NULL;
4749 m->p_type = PT_PHDR;
4750 m->p_flags = PF_R;
4751 m->p_flags_valid = 1;
4752 m->includes_phdrs = 1;
4753 phdr_in_segment = TRUE;
4754 *pm = m;
4755 pm = &m->next;
4756
4757 amt = sizeof (struct elf_segment_map);
4758 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4759 if (m == NULL)
4760 goto error_return;
4761 m->next = NULL;
4762 m->p_type = PT_INTERP;
4763 m->count = 1;
4764 m->sections[0] = s;
4765
4766 *pm = m;
4767 pm = &m->next;
4768 }
4769
4770 /* Look through the sections. We put sections in the same program
4771 segment when the start of the second section can be placed within
4772 a few bytes of the end of the first section. */
4773 last_hdr = NULL;
4774 last_size = 0;
4775 hdr_index = 0;
4776 writable = FALSE;
4777 executable = FALSE;
4778 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4779 if (dynsec != NULL
4780 && (dynsec->flags & SEC_LOAD) == 0)
4781 dynsec = NULL;
4782
4783 if ((abfd->flags & D_PAGED) == 0)
4784 phdr_in_segment = FALSE;
4785
4786 /* Deal with -Ttext or something similar such that the first section
4787 is not adjacent to the program headers. This is an
4788 approximation, since at this point we don't know exactly how many
4789 program headers we will need. */
4790 if (phdr_in_segment && count > 0)
4791 {
4792 bfd_vma phdr_lma;
4793 bfd_boolean separate_phdr = FALSE;
4794
4795 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4796 if (info != NULL
4797 && info->separate_code
4798 && (sections[0]->flags & SEC_CODE) != 0)
4799 {
4800 /* If data sections should be separate from code and
4801 thus not executable, and the first section is
4802 executable then put the file and program headers in
4803 their own PT_LOAD. */
4804 separate_phdr = TRUE;
4805 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4806 == (sections[0]->lma & addr_mask & -maxpagesize)))
4807 {
4808 /* The file and program headers are currently on the
4809 same page as the first section. Put them on the
4810 previous page if we can. */
4811 if (phdr_lma >= maxpagesize)
4812 phdr_lma -= maxpagesize;
4813 else
4814 separate_phdr = FALSE;
4815 }
4816 }
4817 if ((sections[0]->lma & addr_mask) < phdr_lma
4818 || (sections[0]->lma & addr_mask) < phdr_size)
4819 /* If file and program headers would be placed at the end
4820 of memory then it's probably better to omit them. */
4821 phdr_in_segment = FALSE;
4822 else if (phdr_lma < wrap_to)
4823 /* If a section wraps around to where we'll be placing
4824 file and program headers, then the headers will be
4825 overwritten. */
4826 phdr_in_segment = FALSE;
4827 else if (separate_phdr)
4828 {
4829 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4830 if (m == NULL)
4831 goto error_return;
4832 m->p_paddr = phdr_lma;
4833 m->p_vaddr_offset
4834 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4835 m->p_paddr_valid = 1;
4836 *pm = m;
4837 pm = &m->next;
4838 phdr_in_segment = FALSE;
4839 }
4840 }
4841
4842 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4843 {
4844 asection *hdr;
4845 bfd_boolean new_segment;
4846
4847 hdr = *hdrpp;
4848
4849 /* See if this section and the last one will fit in the same
4850 segment. */
4851
4852 if (last_hdr == NULL)
4853 {
4854 /* If we don't have a segment yet, then we don't need a new
4855 one (we build the last one after this loop). */
4856 new_segment = FALSE;
4857 }
4858 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4859 {
4860 /* If this section has a different relation between the
4861 virtual address and the load address, then we need a new
4862 segment. */
4863 new_segment = TRUE;
4864 }
4865 else if (hdr->lma < last_hdr->lma + last_size
4866 || last_hdr->lma + last_size < last_hdr->lma)
4867 {
4868 /* If this section has a load address that makes it overlap
4869 the previous section, then we need a new segment. */
4870 new_segment = TRUE;
4871 }
4872 else if ((abfd->flags & D_PAGED) != 0
4873 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4874 == (hdr->lma & -maxpagesize)))
4875 {
4876 /* If we are demand paged then we can't map two disk
4877 pages onto the same memory page. */
4878 new_segment = FALSE;
4879 }
4880 /* In the next test we have to be careful when last_hdr->lma is close
4881 to the end of the address space. If the aligned address wraps
4882 around to the start of the address space, then there are no more
4883 pages left in memory and it is OK to assume that the current
4884 section can be included in the current segment. */
4885 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4886 + maxpagesize > last_hdr->lma)
4887 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4888 + maxpagesize <= hdr->lma))
4889 {
4890 /* If putting this section in this segment would force us to
4891 skip a page in the segment, then we need a new segment. */
4892 new_segment = TRUE;
4893 }
4894 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4895 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4896 {
4897 /* We don't want to put a loaded section after a
4898 nonloaded (ie. bss style) section in the same segment
4899 as that will force the non-loaded section to be loaded.
4900 Consider .tbss sections as loaded for this purpose. */
4901 new_segment = TRUE;
4902 }
4903 else if ((abfd->flags & D_PAGED) == 0)
4904 {
4905 /* If the file is not demand paged, which means that we
4906 don't require the sections to be correctly aligned in the
4907 file, then there is no other reason for a new segment. */
4908 new_segment = FALSE;
4909 }
4910 else if (info != NULL
4911 && info->separate_code
4912 && executable != ((hdr->flags & SEC_CODE) != 0))
4913 {
4914 new_segment = TRUE;
4915 }
4916 else if (! writable
4917 && (hdr->flags & SEC_READONLY) == 0)
4918 {
4919 /* We don't want to put a writable section in a read only
4920 segment. */
4921 new_segment = TRUE;
4922 }
4923 else
4924 {
4925 /* Otherwise, we can use the same segment. */
4926 new_segment = FALSE;
4927 }
4928
4929 /* Allow interested parties a chance to override our decision. */
4930 if (last_hdr != NULL
4931 && info != NULL
4932 && info->callbacks->override_segment_assignment != NULL)
4933 new_segment
4934 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4935 last_hdr,
4936 new_segment);
4937
4938 if (! new_segment)
4939 {
4940 if ((hdr->flags & SEC_READONLY) == 0)
4941 writable = TRUE;
4942 if ((hdr->flags & SEC_CODE) != 0)
4943 executable = TRUE;
4944 last_hdr = hdr;
4945 /* .tbss sections effectively have zero size. */
4946 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4947 continue;
4948 }
4949
4950 /* We need a new program segment. We must create a new program
4951 header holding all the sections from hdr_index until hdr. */
4952
4953 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4954 if (m == NULL)
4955 goto error_return;
4956
4957 *pm = m;
4958 pm = &m->next;
4959
4960 if ((hdr->flags & SEC_READONLY) == 0)
4961 writable = TRUE;
4962 else
4963 writable = FALSE;
4964
4965 if ((hdr->flags & SEC_CODE) == 0)
4966 executable = FALSE;
4967 else
4968 executable = TRUE;
4969
4970 last_hdr = hdr;
4971 /* .tbss sections effectively have zero size. */
4972 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4973 hdr_index = i;
4974 phdr_in_segment = FALSE;
4975 }
4976
4977 /* Create a final PT_LOAD program segment, but not if it's just
4978 for .tbss. */
4979 if (last_hdr != NULL
4980 && (i - hdr_index != 1
4981 || !IS_TBSS (last_hdr)))
4982 {
4983 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4984 if (m == NULL)
4985 goto error_return;
4986
4987 *pm = m;
4988 pm = &m->next;
4989 }
4990
4991 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4992 if (dynsec != NULL)
4993 {
4994 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4995 if (m == NULL)
4996 goto error_return;
4997 *pm = m;
4998 pm = &m->next;
4999 }
5000
5001 /* For each batch of consecutive loadable SHT_NOTE sections,
5002 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5003 because if we link together nonloadable .note sections and
5004 loadable .note sections, we will generate two .note sections
5005 in the output file. */
5006 for (s = abfd->sections; s != NULL; s = s->next)
5007 {
5008 if ((s->flags & SEC_LOAD) != 0
5009 && elf_section_type (s) == SHT_NOTE)
5010 {
5011 asection *s2;
5012 unsigned int alignment_power = s->alignment_power;
5013
5014 count = 1;
5015 for (s2 = s; s2->next != NULL; s2 = s2->next)
5016 {
5017 if (s2->next->alignment_power == alignment_power
5018 && (s2->next->flags & SEC_LOAD) != 0
5019 && elf_section_type (s2->next) == SHT_NOTE
5020 && align_power (s2->lma + s2->size,
5021 alignment_power)
5022 == s2->next->lma)
5023 count++;
5024 else
5025 break;
5026 }
5027 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5028 amt += count * sizeof (asection *);
5029 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5030 if (m == NULL)
5031 goto error_return;
5032 m->next = NULL;
5033 m->p_type = PT_NOTE;
5034 m->count = count;
5035 while (count > 1)
5036 {
5037 m->sections[m->count - count--] = s;
5038 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5039 s = s->next;
5040 }
5041 m->sections[m->count - 1] = s;
5042 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5043 *pm = m;
5044 pm = &m->next;
5045 }
5046 if (s->flags & SEC_THREAD_LOCAL)
5047 {
5048 if (! tls_count)
5049 first_tls = s;
5050 tls_count++;
5051 }
5052 if (first_mbind == NULL
5053 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5054 first_mbind = s;
5055 }
5056
5057 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5058 if (tls_count > 0)
5059 {
5060 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5061 amt += tls_count * sizeof (asection *);
5062 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5063 if (m == NULL)
5064 goto error_return;
5065 m->next = NULL;
5066 m->p_type = PT_TLS;
5067 m->count = tls_count;
5068 /* Mandated PF_R. */
5069 m->p_flags = PF_R;
5070 m->p_flags_valid = 1;
5071 s = first_tls;
5072 for (i = 0; i < (unsigned int) tls_count; ++i)
5073 {
5074 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5075 {
5076 _bfd_error_handler
5077 (_("%pB: TLS sections are not adjacent:"), abfd);
5078 s = first_tls;
5079 i = 0;
5080 while (i < (unsigned int) tls_count)
5081 {
5082 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5083 {
5084 _bfd_error_handler (_(" TLS: %pA"), s);
5085 i++;
5086 }
5087 else
5088 _bfd_error_handler (_(" non-TLS: %pA"), s);
5089 s = s->next;
5090 }
5091 bfd_set_error (bfd_error_bad_value);
5092 goto error_return;
5093 }
5094 m->sections[i] = s;
5095 s = s->next;
5096 }
5097
5098 *pm = m;
5099 pm = &m->next;
5100 }
5101
5102 if (first_mbind
5103 && (abfd->flags & D_PAGED) != 0
5104 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5105 for (s = first_mbind; s != NULL; s = s->next)
5106 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5107 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5108 {
5109 /* Mandated PF_R. */
5110 unsigned long p_flags = PF_R;
5111 if ((s->flags & SEC_READONLY) == 0)
5112 p_flags |= PF_W;
5113 if ((s->flags & SEC_CODE) != 0)
5114 p_flags |= PF_X;
5115
5116 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5117 m = bfd_zalloc (abfd, amt);
5118 if (m == NULL)
5119 goto error_return;
5120 m->next = NULL;
5121 m->p_type = (PT_GNU_MBIND_LO
5122 + elf_section_data (s)->this_hdr.sh_info);
5123 m->count = 1;
5124 m->p_flags_valid = 1;
5125 m->sections[0] = s;
5126 m->p_flags = p_flags;
5127
5128 *pm = m;
5129 pm = &m->next;
5130 }
5131
5132 s = bfd_get_section_by_name (abfd,
5133 NOTE_GNU_PROPERTY_SECTION_NAME);
5134 if (s != NULL && s->size != 0)
5135 {
5136 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5137 m = bfd_zalloc (abfd, amt);
5138 if (m == NULL)
5139 goto error_return;
5140 m->next = NULL;
5141 m->p_type = PT_GNU_PROPERTY;
5142 m->count = 1;
5143 m->p_flags_valid = 1;
5144 m->sections[0] = s;
5145 m->p_flags = PF_R;
5146 *pm = m;
5147 pm = &m->next;
5148 }
5149
5150 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5151 segment. */
5152 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5153 if (eh_frame_hdr != NULL
5154 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5155 {
5156 amt = sizeof (struct elf_segment_map);
5157 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5158 if (m == NULL)
5159 goto error_return;
5160 m->next = NULL;
5161 m->p_type = PT_GNU_EH_FRAME;
5162 m->count = 1;
5163 m->sections[0] = eh_frame_hdr->output_section;
5164
5165 *pm = m;
5166 pm = &m->next;
5167 }
5168
5169 if (elf_stack_flags (abfd))
5170 {
5171 amt = sizeof (struct elf_segment_map);
5172 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5173 if (m == NULL)
5174 goto error_return;
5175 m->next = NULL;
5176 m->p_type = PT_GNU_STACK;
5177 m->p_flags = elf_stack_flags (abfd);
5178 m->p_align = bed->stack_align;
5179 m->p_flags_valid = 1;
5180 m->p_align_valid = m->p_align != 0;
5181 if (info->stacksize > 0)
5182 {
5183 m->p_size = info->stacksize;
5184 m->p_size_valid = 1;
5185 }
5186
5187 *pm = m;
5188 pm = &m->next;
5189 }
5190
5191 if (info != NULL && info->relro)
5192 {
5193 for (m = mfirst; m != NULL; m = m->next)
5194 {
5195 if (m->p_type == PT_LOAD
5196 && m->count != 0
5197 && m->sections[0]->vma >= info->relro_start
5198 && m->sections[0]->vma < info->relro_end)
5199 {
5200 i = m->count;
5201 while (--i != (unsigned) -1)
5202 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5203 == (SEC_LOAD | SEC_HAS_CONTENTS))
5204 break;
5205
5206 if (i != (unsigned) -1)
5207 break;
5208 }
5209 }
5210
5211 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5212 if (m != NULL)
5213 {
5214 amt = sizeof (struct elf_segment_map);
5215 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5216 if (m == NULL)
5217 goto error_return;
5218 m->next = NULL;
5219 m->p_type = PT_GNU_RELRO;
5220 *pm = m;
5221 pm = &m->next;
5222 }
5223 }
5224
5225 free (sections);
5226 elf_seg_map (abfd) = mfirst;
5227 }
5228
5229 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5230 return FALSE;
5231
5232 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5233 ++count;
5234 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5235
5236 return TRUE;
5237
5238 error_return:
5239 if (sections != NULL)
5240 free (sections);
5241 return FALSE;
5242 }
5243
5244 /* Sort sections by address. */
5245
5246 static int
5247 elf_sort_sections (const void *arg1, const void *arg2)
5248 {
5249 const asection *sec1 = *(const asection **) arg1;
5250 const asection *sec2 = *(const asection **) arg2;
5251 bfd_size_type size1, size2;
5252
5253 /* Sort by LMA first, since this is the address used to
5254 place the section into a segment. */
5255 if (sec1->lma < sec2->lma)
5256 return -1;
5257 else if (sec1->lma > sec2->lma)
5258 return 1;
5259
5260 /* Then sort by VMA. Normally the LMA and the VMA will be
5261 the same, and this will do nothing. */
5262 if (sec1->vma < sec2->vma)
5263 return -1;
5264 else if (sec1->vma > sec2->vma)
5265 return 1;
5266
5267 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5268
5269 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5270
5271 if (TOEND (sec1))
5272 {
5273 if (TOEND (sec2))
5274 {
5275 /* If the indices are the same, do not return 0
5276 here, but continue to try the next comparison. */
5277 if (sec1->target_index - sec2->target_index != 0)
5278 return sec1->target_index - sec2->target_index;
5279 }
5280 else
5281 return 1;
5282 }
5283 else if (TOEND (sec2))
5284 return -1;
5285
5286 #undef TOEND
5287
5288 /* Sort by size, to put zero sized sections
5289 before others at the same address. */
5290
5291 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5292 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5293
5294 if (size1 < size2)
5295 return -1;
5296 if (size1 > size2)
5297 return 1;
5298
5299 return sec1->target_index - sec2->target_index;
5300 }
5301
5302 /* Ian Lance Taylor writes:
5303
5304 We shouldn't be using % with a negative signed number. That's just
5305 not good. We have to make sure either that the number is not
5306 negative, or that the number has an unsigned type. When the types
5307 are all the same size they wind up as unsigned. When file_ptr is a
5308 larger signed type, the arithmetic winds up as signed long long,
5309 which is wrong.
5310
5311 What we're trying to say here is something like ``increase OFF by
5312 the least amount that will cause it to be equal to the VMA modulo
5313 the page size.'' */
5314 /* In other words, something like:
5315
5316 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5317 off_offset = off % bed->maxpagesize;
5318 if (vma_offset < off_offset)
5319 adjustment = vma_offset + bed->maxpagesize - off_offset;
5320 else
5321 adjustment = vma_offset - off_offset;
5322
5323 which can be collapsed into the expression below. */
5324
5325 static file_ptr
5326 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5327 {
5328 /* PR binutils/16199: Handle an alignment of zero. */
5329 if (maxpagesize == 0)
5330 maxpagesize = 1;
5331 return ((vma - off) % maxpagesize);
5332 }
5333
5334 static void
5335 print_segment_map (const struct elf_segment_map *m)
5336 {
5337 unsigned int j;
5338 const char *pt = get_segment_type (m->p_type);
5339 char buf[32];
5340
5341 if (pt == NULL)
5342 {
5343 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5344 sprintf (buf, "LOPROC+%7.7x",
5345 (unsigned int) (m->p_type - PT_LOPROC));
5346 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5347 sprintf (buf, "LOOS+%7.7x",
5348 (unsigned int) (m->p_type - PT_LOOS));
5349 else
5350 snprintf (buf, sizeof (buf), "%8.8x",
5351 (unsigned int) m->p_type);
5352 pt = buf;
5353 }
5354 fflush (stdout);
5355 fprintf (stderr, "%s:", pt);
5356 for (j = 0; j < m->count; j++)
5357 fprintf (stderr, " %s", m->sections [j]->name);
5358 putc ('\n',stderr);
5359 fflush (stderr);
5360 }
5361
5362 static bfd_boolean
5363 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5364 {
5365 void *buf;
5366 bfd_boolean ret;
5367
5368 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5369 return FALSE;
5370 buf = bfd_zmalloc (len);
5371 if (buf == NULL)
5372 return FALSE;
5373 ret = bfd_bwrite (buf, len, abfd) == len;
5374 free (buf);
5375 return ret;
5376 }
5377
5378 /* Assign file positions to the sections based on the mapping from
5379 sections to segments. This function also sets up some fields in
5380 the file header. */
5381
5382 static bfd_boolean
5383 assign_file_positions_for_load_sections (bfd *abfd,
5384 struct bfd_link_info *link_info)
5385 {
5386 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5387 struct elf_segment_map *m;
5388 Elf_Internal_Phdr *phdrs;
5389 Elf_Internal_Phdr *p;
5390 file_ptr off;
5391 bfd_size_type maxpagesize;
5392 unsigned int pt_load_count = 0;
5393 unsigned int alloc;
5394 unsigned int i, j;
5395 bfd_vma header_pad = 0;
5396
5397 if (link_info == NULL
5398 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5399 return FALSE;
5400
5401 alloc = 0;
5402 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5403 {
5404 ++alloc;
5405 if (m->header_size)
5406 header_pad = m->header_size;
5407 }
5408
5409 if (alloc)
5410 {
5411 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5412 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5413 }
5414 else
5415 {
5416 /* PR binutils/12467. */
5417 elf_elfheader (abfd)->e_phoff = 0;
5418 elf_elfheader (abfd)->e_phentsize = 0;
5419 }
5420
5421 elf_elfheader (abfd)->e_phnum = alloc;
5422
5423 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5424 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5425 else
5426 BFD_ASSERT (elf_program_header_size (abfd)
5427 >= alloc * bed->s->sizeof_phdr);
5428
5429 if (alloc == 0)
5430 {
5431 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5432 return TRUE;
5433 }
5434
5435 /* We're writing the size in elf_program_header_size (abfd),
5436 see assign_file_positions_except_relocs, so make sure we have
5437 that amount allocated, with trailing space cleared.
5438 The variable alloc contains the computed need, while
5439 elf_program_header_size (abfd) contains the size used for the
5440 layout.
5441 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5442 where the layout is forced to according to a larger size in the
5443 last iterations for the testcase ld-elf/header. */
5444 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5445 == 0);
5446 phdrs = (Elf_Internal_Phdr *)
5447 bfd_zalloc2 (abfd,
5448 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5449 sizeof (Elf_Internal_Phdr));
5450 elf_tdata (abfd)->phdr = phdrs;
5451 if (phdrs == NULL)
5452 return FALSE;
5453
5454 maxpagesize = 1;
5455 if ((abfd->flags & D_PAGED) != 0)
5456 maxpagesize = bed->maxpagesize;
5457
5458 off = bed->s->sizeof_ehdr;
5459 off += alloc * bed->s->sizeof_phdr;
5460 if (header_pad < (bfd_vma) off)
5461 header_pad = 0;
5462 else
5463 header_pad -= off;
5464 off += header_pad;
5465
5466 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5467 m != NULL;
5468 m = m->next, p++, j++)
5469 {
5470 asection **secpp;
5471 bfd_vma off_adjust;
5472 bfd_boolean no_contents;
5473
5474 /* If elf_segment_map is not from map_sections_to_segments, the
5475 sections may not be correctly ordered. NOTE: sorting should
5476 not be done to the PT_NOTE section of a corefile, which may
5477 contain several pseudo-sections artificially created by bfd.
5478 Sorting these pseudo-sections breaks things badly. */
5479 if (m->count > 1
5480 && !(elf_elfheader (abfd)->e_type == ET_CORE
5481 && m->p_type == PT_NOTE))
5482 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5483 elf_sort_sections);
5484
5485 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5486 number of sections with contents contributing to both p_filesz
5487 and p_memsz, followed by a number of sections with no contents
5488 that just contribute to p_memsz. In this loop, OFF tracks next
5489 available file offset for PT_LOAD and PT_NOTE segments. */
5490 p->p_type = m->p_type;
5491 p->p_flags = m->p_flags;
5492
5493 if (m->count == 0)
5494 p->p_vaddr = m->p_vaddr_offset;
5495 else
5496 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5497
5498 if (m->p_paddr_valid)
5499 p->p_paddr = m->p_paddr;
5500 else if (m->count == 0)
5501 p->p_paddr = 0;
5502 else
5503 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5504
5505 if (p->p_type == PT_LOAD
5506 && (abfd->flags & D_PAGED) != 0)
5507 {
5508 /* p_align in demand paged PT_LOAD segments effectively stores
5509 the maximum page size. When copying an executable with
5510 objcopy, we set m->p_align from the input file. Use this
5511 value for maxpagesize rather than bed->maxpagesize, which
5512 may be different. Note that we use maxpagesize for PT_TLS
5513 segment alignment later in this function, so we are relying
5514 on at least one PT_LOAD segment appearing before a PT_TLS
5515 segment. */
5516 if (m->p_align_valid)
5517 maxpagesize = m->p_align;
5518
5519 p->p_align = maxpagesize;
5520 pt_load_count += 1;
5521 }
5522 else if (m->p_align_valid)
5523 p->p_align = m->p_align;
5524 else if (m->count == 0)
5525 p->p_align = 1 << bed->s->log_file_align;
5526 else
5527 p->p_align = 0;
5528
5529 no_contents = FALSE;
5530 off_adjust = 0;
5531 if (p->p_type == PT_LOAD
5532 && m->count > 0)
5533 {
5534 bfd_size_type align;
5535 unsigned int align_power = 0;
5536
5537 if (m->p_align_valid)
5538 align = p->p_align;
5539 else
5540 {
5541 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5542 {
5543 unsigned int secalign;
5544
5545 secalign = bfd_section_alignment (*secpp);
5546 if (secalign > align_power)
5547 align_power = secalign;
5548 }
5549 align = (bfd_size_type) 1 << align_power;
5550 if (align < maxpagesize)
5551 align = maxpagesize;
5552 }
5553
5554 for (i = 0; i < m->count; i++)
5555 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5556 /* If we aren't making room for this section, then
5557 it must be SHT_NOBITS regardless of what we've
5558 set via struct bfd_elf_special_section. */
5559 elf_section_type (m->sections[i]) = SHT_NOBITS;
5560
5561 /* Find out whether this segment contains any loadable
5562 sections. */
5563 no_contents = TRUE;
5564 for (i = 0; i < m->count; i++)
5565 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5566 {
5567 no_contents = FALSE;
5568 break;
5569 }
5570
5571 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5572
5573 /* Broken hardware and/or kernel require that files do not
5574 map the same page with different permissions on some hppa
5575 processors. */
5576 if (pt_load_count > 1
5577 && bed->no_page_alias
5578 && (off & (maxpagesize - 1)) != 0
5579 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5580 off_adjust += maxpagesize;
5581 off += off_adjust;
5582 if (no_contents)
5583 {
5584 /* We shouldn't need to align the segment on disk since
5585 the segment doesn't need file space, but the gABI
5586 arguably requires the alignment and glibc ld.so
5587 checks it. So to comply with the alignment
5588 requirement but not waste file space, we adjust
5589 p_offset for just this segment. (OFF_ADJUST is
5590 subtracted from OFF later.) This may put p_offset
5591 past the end of file, but that shouldn't matter. */
5592 }
5593 else
5594 off_adjust = 0;
5595 }
5596 /* Make sure the .dynamic section is the first section in the
5597 PT_DYNAMIC segment. */
5598 else if (p->p_type == PT_DYNAMIC
5599 && m->count > 1
5600 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5601 {
5602 _bfd_error_handler
5603 (_("%pB: The first section in the PT_DYNAMIC segment"
5604 " is not the .dynamic section"),
5605 abfd);
5606 bfd_set_error (bfd_error_bad_value);
5607 return FALSE;
5608 }
5609 /* Set the note section type to SHT_NOTE. */
5610 else if (p->p_type == PT_NOTE)
5611 for (i = 0; i < m->count; i++)
5612 elf_section_type (m->sections[i]) = SHT_NOTE;
5613
5614 p->p_offset = 0;
5615 p->p_filesz = 0;
5616 p->p_memsz = 0;
5617
5618 if (m->includes_filehdr)
5619 {
5620 if (!m->p_flags_valid)
5621 p->p_flags |= PF_R;
5622 p->p_filesz = bed->s->sizeof_ehdr;
5623 p->p_memsz = bed->s->sizeof_ehdr;
5624 if (m->count > 0)
5625 {
5626 if (p->p_vaddr < (bfd_vma) off
5627 || (!m->p_paddr_valid
5628 && p->p_paddr < (bfd_vma) off))
5629 {
5630 _bfd_error_handler
5631 (_("%pB: not enough room for program headers,"
5632 " try linking with -N"),
5633 abfd);
5634 bfd_set_error (bfd_error_bad_value);
5635 return FALSE;
5636 }
5637
5638 p->p_vaddr -= off;
5639 if (!m->p_paddr_valid)
5640 p->p_paddr -= off;
5641 }
5642 }
5643
5644 if (m->includes_phdrs)
5645 {
5646 if (!m->p_flags_valid)
5647 p->p_flags |= PF_R;
5648
5649 if (!m->includes_filehdr)
5650 {
5651 p->p_offset = bed->s->sizeof_ehdr;
5652
5653 if (m->count > 0)
5654 {
5655 p->p_vaddr -= off - p->p_offset;
5656 if (!m->p_paddr_valid)
5657 p->p_paddr -= off - p->p_offset;
5658 }
5659 }
5660
5661 p->p_filesz += alloc * bed->s->sizeof_phdr;
5662 p->p_memsz += alloc * bed->s->sizeof_phdr;
5663 if (m->count)
5664 {
5665 p->p_filesz += header_pad;
5666 p->p_memsz += header_pad;
5667 }
5668 }
5669
5670 if (p->p_type == PT_LOAD
5671 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5672 {
5673 if (!m->includes_filehdr && !m->includes_phdrs)
5674 p->p_offset = off;
5675 else
5676 {
5677 file_ptr adjust;
5678
5679 adjust = off - (p->p_offset + p->p_filesz);
5680 if (!no_contents)
5681 p->p_filesz += adjust;
5682 p->p_memsz += adjust;
5683 }
5684 }
5685
5686 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5687 maps. Set filepos for sections in PT_LOAD segments, and in
5688 core files, for sections in PT_NOTE segments.
5689 assign_file_positions_for_non_load_sections will set filepos
5690 for other sections and update p_filesz for other segments. */
5691 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5692 {
5693 asection *sec;
5694 bfd_size_type align;
5695 Elf_Internal_Shdr *this_hdr;
5696
5697 sec = *secpp;
5698 this_hdr = &elf_section_data (sec)->this_hdr;
5699 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5700
5701 if ((p->p_type == PT_LOAD
5702 || p->p_type == PT_TLS)
5703 && (this_hdr->sh_type != SHT_NOBITS
5704 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5705 && ((this_hdr->sh_flags & SHF_TLS) == 0
5706 || p->p_type == PT_TLS))))
5707 {
5708 bfd_vma p_start = p->p_paddr;
5709 bfd_vma p_end = p_start + p->p_memsz;
5710 bfd_vma s_start = sec->lma;
5711 bfd_vma adjust = s_start - p_end;
5712
5713 if (adjust != 0
5714 && (s_start < p_end
5715 || p_end < p_start))
5716 {
5717 _bfd_error_handler
5718 /* xgettext:c-format */
5719 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5720 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5721 adjust = 0;
5722 sec->lma = p_end;
5723 }
5724 p->p_memsz += adjust;
5725
5726 if (this_hdr->sh_type != SHT_NOBITS)
5727 {
5728 if (p->p_filesz + adjust < p->p_memsz)
5729 {
5730 /* We have a PROGBITS section following NOBITS ones.
5731 Allocate file space for the NOBITS section(s) and
5732 zero it. */
5733 adjust = p->p_memsz - p->p_filesz;
5734 if (!write_zeros (abfd, off, adjust))
5735 return FALSE;
5736 }
5737 off += adjust;
5738 p->p_filesz += adjust;
5739 }
5740 }
5741
5742 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5743 {
5744 /* The section at i == 0 is the one that actually contains
5745 everything. */
5746 if (i == 0)
5747 {
5748 this_hdr->sh_offset = sec->filepos = off;
5749 off += this_hdr->sh_size;
5750 p->p_filesz = this_hdr->sh_size;
5751 p->p_memsz = 0;
5752 p->p_align = 1;
5753 }
5754 else
5755 {
5756 /* The rest are fake sections that shouldn't be written. */
5757 sec->filepos = 0;
5758 sec->size = 0;
5759 sec->flags = 0;
5760 continue;
5761 }
5762 }
5763 else
5764 {
5765 if (p->p_type == PT_LOAD)
5766 {
5767 this_hdr->sh_offset = sec->filepos = off;
5768 if (this_hdr->sh_type != SHT_NOBITS)
5769 off += this_hdr->sh_size;
5770 }
5771 else if (this_hdr->sh_type == SHT_NOBITS
5772 && (this_hdr->sh_flags & SHF_TLS) != 0
5773 && this_hdr->sh_offset == 0)
5774 {
5775 /* This is a .tbss section that didn't get a PT_LOAD.
5776 (See _bfd_elf_map_sections_to_segments "Create a
5777 final PT_LOAD".) Set sh_offset to the value it
5778 would have if we had created a zero p_filesz and
5779 p_memsz PT_LOAD header for the section. This
5780 also makes the PT_TLS header have the same
5781 p_offset value. */
5782 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5783 off, align);
5784 this_hdr->sh_offset = sec->filepos = off + adjust;
5785 }
5786
5787 if (this_hdr->sh_type != SHT_NOBITS)
5788 {
5789 p->p_filesz += this_hdr->sh_size;
5790 /* A load section without SHF_ALLOC is something like
5791 a note section in a PT_NOTE segment. These take
5792 file space but are not loaded into memory. */
5793 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5794 p->p_memsz += this_hdr->sh_size;
5795 }
5796 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5797 {
5798 if (p->p_type == PT_TLS)
5799 p->p_memsz += this_hdr->sh_size;
5800
5801 /* .tbss is special. It doesn't contribute to p_memsz of
5802 normal segments. */
5803 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5804 p->p_memsz += this_hdr->sh_size;
5805 }
5806
5807 if (align > p->p_align
5808 && !m->p_align_valid
5809 && (p->p_type != PT_LOAD
5810 || (abfd->flags & D_PAGED) == 0))
5811 p->p_align = align;
5812 }
5813
5814 if (!m->p_flags_valid)
5815 {
5816 p->p_flags |= PF_R;
5817 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5818 p->p_flags |= PF_X;
5819 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5820 p->p_flags |= PF_W;
5821 }
5822 }
5823
5824 off -= off_adjust;
5825
5826 /* Check that all sections are in a PT_LOAD segment.
5827 Don't check funky gdb generated core files. */
5828 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5829 {
5830 bfd_boolean check_vma = TRUE;
5831
5832 for (i = 1; i < m->count; i++)
5833 if (m->sections[i]->vma == m->sections[i - 1]->vma
5834 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5835 ->this_hdr), p) != 0
5836 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5837 ->this_hdr), p) != 0)
5838 {
5839 /* Looks like we have overlays packed into the segment. */
5840 check_vma = FALSE;
5841 break;
5842 }
5843
5844 for (i = 0; i < m->count; i++)
5845 {
5846 Elf_Internal_Shdr *this_hdr;
5847 asection *sec;
5848
5849 sec = m->sections[i];
5850 this_hdr = &(elf_section_data(sec)->this_hdr);
5851 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5852 && !ELF_TBSS_SPECIAL (this_hdr, p))
5853 {
5854 _bfd_error_handler
5855 /* xgettext:c-format */
5856 (_("%pB: section `%pA' can't be allocated in segment %d"),
5857 abfd, sec, j);
5858 print_segment_map (m);
5859 }
5860 }
5861 }
5862 }
5863
5864 elf_next_file_pos (abfd) = off;
5865 return TRUE;
5866 }
5867
5868 /* Determine if a bfd is a debuginfo file. Unfortunately there
5869 is no defined method for detecting such files, so we have to
5870 use heuristics instead. */
5871
5872 bfd_boolean
5873 is_debuginfo_file (bfd *abfd)
5874 {
5875 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5876 return FALSE;
5877
5878 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
5879 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
5880 Elf_Internal_Shdr **headerp;
5881
5882 for (headerp = start_headers; headerp < end_headers; headerp ++)
5883 {
5884 Elf_Internal_Shdr *header = * headerp;
5885
5886 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
5887 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
5888 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
5889 && header->sh_type != SHT_NOBITS
5890 && header->sh_type != SHT_NOTE)
5891 return FALSE;
5892 }
5893
5894 return TRUE;
5895 }
5896
5897 /* Assign file positions for the other sections, except for compressed debugging
5898 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
5899
5900 static bfd_boolean
5901 assign_file_positions_for_non_load_sections (bfd *abfd,
5902 struct bfd_link_info *link_info)
5903 {
5904 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5905 Elf_Internal_Shdr **i_shdrpp;
5906 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5907 Elf_Internal_Phdr *phdrs;
5908 Elf_Internal_Phdr *p;
5909 struct elf_segment_map *m;
5910 struct elf_segment_map *hdrs_segment;
5911 bfd_vma filehdr_vaddr, filehdr_paddr;
5912 bfd_vma phdrs_vaddr, phdrs_paddr;
5913 file_ptr off;
5914 unsigned int count;
5915
5916 i_shdrpp = elf_elfsections (abfd);
5917 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5918 off = elf_next_file_pos (abfd);
5919 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5920 {
5921 Elf_Internal_Shdr *hdr;
5922
5923 hdr = *hdrpp;
5924 if (hdr->bfd_section != NULL
5925 && (hdr->bfd_section->filepos != 0
5926 || (hdr->sh_type == SHT_NOBITS
5927 && hdr->contents == NULL)))
5928 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5929 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5930 {
5931 if (hdr->sh_size != 0
5932 /* PR 24717 - debuginfo files are known to be not strictly
5933 compliant with the ELF standard. In particular they often
5934 have .note.gnu.property sections that are outside of any
5935 loadable segment. This is not a problem for such files,
5936 so do not warn about them. */
5937 && ! is_debuginfo_file (abfd))
5938 _bfd_error_handler
5939 /* xgettext:c-format */
5940 (_("%pB: warning: allocated section `%s' not in segment"),
5941 abfd,
5942 (hdr->bfd_section == NULL
5943 ? "*unknown*"
5944 : hdr->bfd_section->name));
5945 /* We don't need to page align empty sections. */
5946 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5947 off += vma_page_aligned_bias (hdr->sh_addr, off,
5948 bed->maxpagesize);
5949 else
5950 off += vma_page_aligned_bias (hdr->sh_addr, off,
5951 hdr->sh_addralign);
5952 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5953 FALSE);
5954 }
5955 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5956 && hdr->bfd_section == NULL)
5957 /* We don't know the offset of these sections yet: their size has
5958 not been decided. */
5959 || (hdr->bfd_section != NULL
5960 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
5961 || (bfd_section_is_ctf (hdr->bfd_section)
5962 && abfd->is_linker_output)))
5963 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5964 || (elf_symtab_shndx_list (abfd) != NULL
5965 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5966 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5967 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5968 hdr->sh_offset = -1;
5969 else
5970 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5971 }
5972
5973 /* Now that we have set the section file positions, we can set up
5974 the file positions for the non PT_LOAD segments. */
5975 count = 0;
5976 filehdr_vaddr = 0;
5977 filehdr_paddr = 0;
5978 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5979 phdrs_paddr = 0;
5980 hdrs_segment = NULL;
5981 phdrs = elf_tdata (abfd)->phdr;
5982 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5983 {
5984 ++count;
5985 if (p->p_type != PT_LOAD)
5986 continue;
5987
5988 if (m->includes_filehdr)
5989 {
5990 filehdr_vaddr = p->p_vaddr;
5991 filehdr_paddr = p->p_paddr;
5992 }
5993 if (m->includes_phdrs)
5994 {
5995 phdrs_vaddr = p->p_vaddr;
5996 phdrs_paddr = p->p_paddr;
5997 if (m->includes_filehdr)
5998 {
5999 hdrs_segment = m;
6000 phdrs_vaddr += bed->s->sizeof_ehdr;
6001 phdrs_paddr += bed->s->sizeof_ehdr;
6002 }
6003 }
6004 }
6005
6006 if (hdrs_segment != NULL && link_info != NULL)
6007 {
6008 /* There is a segment that contains both the file headers and the
6009 program headers, so provide a symbol __ehdr_start pointing there.
6010 A program can use this to examine itself robustly. */
6011
6012 struct elf_link_hash_entry *hash
6013 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
6014 FALSE, FALSE, TRUE);
6015 /* If the symbol was referenced and not defined, define it. */
6016 if (hash != NULL
6017 && (hash->root.type == bfd_link_hash_new
6018 || hash->root.type == bfd_link_hash_undefined
6019 || hash->root.type == bfd_link_hash_undefweak
6020 || hash->root.type == bfd_link_hash_common))
6021 {
6022 asection *s = NULL;
6023 if (hdrs_segment->count != 0)
6024 /* The segment contains sections, so use the first one. */
6025 s = hdrs_segment->sections[0];
6026 else
6027 /* Use the first (i.e. lowest-addressed) section in any segment. */
6028 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6029 if (m->count != 0)
6030 {
6031 s = m->sections[0];
6032 break;
6033 }
6034
6035 if (s != NULL)
6036 {
6037 hash->root.u.def.value = filehdr_vaddr - s->vma;
6038 hash->root.u.def.section = s;
6039 }
6040 else
6041 {
6042 hash->root.u.def.value = filehdr_vaddr;
6043 hash->root.u.def.section = bfd_abs_section_ptr;
6044 }
6045
6046 hash->root.type = bfd_link_hash_defined;
6047 hash->def_regular = 1;
6048 hash->non_elf = 0;
6049 }
6050 }
6051
6052 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6053 {
6054 if (p->p_type == PT_GNU_RELRO)
6055 {
6056 bfd_vma start, end;
6057 bfd_boolean ok;
6058
6059 if (link_info != NULL)
6060 {
6061 /* During linking the range of the RELRO segment is passed
6062 in link_info. Note that there may be padding between
6063 relro_start and the first RELRO section. */
6064 start = link_info->relro_start;
6065 end = link_info->relro_end;
6066 }
6067 else if (m->count != 0)
6068 {
6069 if (!m->p_size_valid)
6070 abort ();
6071 start = m->sections[0]->vma;
6072 end = start + m->p_size;
6073 }
6074 else
6075 {
6076 start = 0;
6077 end = 0;
6078 }
6079
6080 ok = FALSE;
6081 if (start < end)
6082 {
6083 struct elf_segment_map *lm;
6084 const Elf_Internal_Phdr *lp;
6085 unsigned int i;
6086
6087 /* Find a LOAD segment containing a section in the RELRO
6088 segment. */
6089 for (lm = elf_seg_map (abfd), lp = phdrs;
6090 lm != NULL;
6091 lm = lm->next, lp++)
6092 {
6093 if (lp->p_type == PT_LOAD
6094 && lm->count != 0
6095 && (lm->sections[lm->count - 1]->vma
6096 + (!IS_TBSS (lm->sections[lm->count - 1])
6097 ? lm->sections[lm->count - 1]->size
6098 : 0)) > start
6099 && lm->sections[0]->vma < end)
6100 break;
6101 }
6102
6103 if (lm != NULL)
6104 {
6105 /* Find the section starting the RELRO segment. */
6106 for (i = 0; i < lm->count; i++)
6107 {
6108 asection *s = lm->sections[i];
6109 if (s->vma >= start
6110 && s->vma < end
6111 && s->size != 0)
6112 break;
6113 }
6114
6115 if (i < lm->count)
6116 {
6117 p->p_vaddr = lm->sections[i]->vma;
6118 p->p_paddr = lm->sections[i]->lma;
6119 p->p_offset = lm->sections[i]->filepos;
6120 p->p_memsz = end - p->p_vaddr;
6121 p->p_filesz = p->p_memsz;
6122
6123 /* The RELRO segment typically ends a few bytes
6124 into .got.plt but other layouts are possible.
6125 In cases where the end does not match any
6126 loaded section (for instance is in file
6127 padding), trim p_filesz back to correspond to
6128 the end of loaded section contents. */
6129 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6130 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6131
6132 /* Preserve the alignment and flags if they are
6133 valid. The gold linker generates RW/4 for
6134 the PT_GNU_RELRO section. It is better for
6135 objcopy/strip to honor these attributes
6136 otherwise gdb will choke when using separate
6137 debug files. */
6138 if (!m->p_align_valid)
6139 p->p_align = 1;
6140 if (!m->p_flags_valid)
6141 p->p_flags = PF_R;
6142 ok = TRUE;
6143 }
6144 }
6145 }
6146 if (link_info != NULL)
6147 BFD_ASSERT (ok);
6148 if (!ok)
6149 memset (p, 0, sizeof *p);
6150 }
6151 else if (p->p_type == PT_GNU_STACK)
6152 {
6153 if (m->p_size_valid)
6154 p->p_memsz = m->p_size;
6155 }
6156 else if (m->count != 0)
6157 {
6158 unsigned int i;
6159
6160 if (p->p_type != PT_LOAD
6161 && (p->p_type != PT_NOTE
6162 || bfd_get_format (abfd) != bfd_core))
6163 {
6164 /* A user specified segment layout may include a PHDR
6165 segment that overlaps with a LOAD segment... */
6166 if (p->p_type == PT_PHDR)
6167 {
6168 m->count = 0;
6169 continue;
6170 }
6171
6172 if (m->includes_filehdr || m->includes_phdrs)
6173 {
6174 /* PR 17512: file: 2195325e. */
6175 _bfd_error_handler
6176 (_("%pB: error: non-load segment %d includes file header "
6177 "and/or program header"),
6178 abfd, (int) (p - phdrs));
6179 return FALSE;
6180 }
6181
6182 p->p_filesz = 0;
6183 p->p_offset = m->sections[0]->filepos;
6184 for (i = m->count; i-- != 0;)
6185 {
6186 asection *sect = m->sections[i];
6187 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6188 if (hdr->sh_type != SHT_NOBITS)
6189 {
6190 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6191 + hdr->sh_size);
6192 break;
6193 }
6194 }
6195 }
6196 }
6197 else if (m->includes_filehdr)
6198 {
6199 p->p_vaddr = filehdr_vaddr;
6200 if (! m->p_paddr_valid)
6201 p->p_paddr = filehdr_paddr;
6202 }
6203 else if (m->includes_phdrs)
6204 {
6205 p->p_vaddr = phdrs_vaddr;
6206 if (! m->p_paddr_valid)
6207 p->p_paddr = phdrs_paddr;
6208 }
6209 }
6210
6211 elf_next_file_pos (abfd) = off;
6212
6213 return TRUE;
6214 }
6215
6216 static elf_section_list *
6217 find_section_in_list (unsigned int i, elf_section_list * list)
6218 {
6219 for (;list != NULL; list = list->next)
6220 if (list->ndx == i)
6221 break;
6222 return list;
6223 }
6224
6225 /* Work out the file positions of all the sections. This is called by
6226 _bfd_elf_compute_section_file_positions. All the section sizes and
6227 VMAs must be known before this is called.
6228
6229 Reloc sections come in two flavours: Those processed specially as
6230 "side-channel" data attached to a section to which they apply, and those that
6231 bfd doesn't process as relocations. The latter sort are stored in a normal
6232 bfd section by bfd_section_from_shdr. We don't consider the former sort
6233 here, unless they form part of the loadable image. Reloc sections not
6234 assigned here (and compressed debugging sections and CTF sections which
6235 nothing else in the file can rely upon) will be handled later by
6236 assign_file_positions_for_relocs.
6237
6238 We also don't set the positions of the .symtab and .strtab here. */
6239
6240 static bfd_boolean
6241 assign_file_positions_except_relocs (bfd *abfd,
6242 struct bfd_link_info *link_info)
6243 {
6244 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6245 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6246 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6247
6248 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6249 && bfd_get_format (abfd) != bfd_core)
6250 {
6251 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6252 unsigned int num_sec = elf_numsections (abfd);
6253 Elf_Internal_Shdr **hdrpp;
6254 unsigned int i;
6255 file_ptr off;
6256
6257 /* Start after the ELF header. */
6258 off = i_ehdrp->e_ehsize;
6259
6260 /* We are not creating an executable, which means that we are
6261 not creating a program header, and that the actual order of
6262 the sections in the file is unimportant. */
6263 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6264 {
6265 Elf_Internal_Shdr *hdr;
6266
6267 hdr = *hdrpp;
6268 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6269 && hdr->bfd_section == NULL)
6270 /* Do not assign offsets for these sections yet: we don't know
6271 their sizes. */
6272 || (hdr->bfd_section != NULL
6273 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6274 || (bfd_section_is_ctf (hdr->bfd_section)
6275 && abfd->is_linker_output)))
6276 || i == elf_onesymtab (abfd)
6277 || (elf_symtab_shndx_list (abfd) != NULL
6278 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6279 || i == elf_strtab_sec (abfd)
6280 || i == elf_shstrtab_sec (abfd))
6281 {
6282 hdr->sh_offset = -1;
6283 }
6284 else
6285 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6286 }
6287
6288 elf_next_file_pos (abfd) = off;
6289 }
6290 else
6291 {
6292 unsigned int alloc;
6293
6294 /* Assign file positions for the loaded sections based on the
6295 assignment of sections to segments. */
6296 if (!assign_file_positions_for_load_sections (abfd, link_info))
6297 return FALSE;
6298
6299 /* And for non-load sections. */
6300 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6301 return FALSE;
6302
6303 if (bed->elf_backend_modify_program_headers != NULL)
6304 {
6305 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6306 return FALSE;
6307 }
6308
6309 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6310 if (link_info != NULL && bfd_link_pie (link_info))
6311 {
6312 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6313 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6314 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6315
6316 /* Find the lowest p_vaddr in PT_LOAD segments. */
6317 bfd_vma p_vaddr = (bfd_vma) -1;
6318 for (; segment < end_segment; segment++)
6319 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6320 p_vaddr = segment->p_vaddr;
6321
6322 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6323 segments is non-zero. */
6324 if (p_vaddr)
6325 i_ehdrp->e_type = ET_EXEC;
6326 }
6327
6328 /* Write out the program headers. */
6329 alloc = elf_elfheader (abfd)->e_phnum;
6330 if (alloc == 0)
6331 return TRUE;
6332
6333 /* PR ld/20815 - Check that the program header segment, if present, will
6334 be loaded into memory. FIXME: The check below is not sufficient as
6335 really all PT_LOAD segments should be checked before issuing an error
6336 message. Plus the PHDR segment does not have to be the first segment
6337 in the program header table. But this version of the check should
6338 catch all real world use cases.
6339
6340 FIXME: We used to have code here to sort the PT_LOAD segments into
6341 ascending order, as per the ELF spec. But this breaks some programs,
6342 including the Linux kernel. But really either the spec should be
6343 changed or the programs updated. */
6344 if (alloc > 1
6345 && tdata->phdr[0].p_type == PT_PHDR
6346 && (bed->elf_backend_allow_non_load_phdr == NULL
6347 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6348 alloc))
6349 && tdata->phdr[1].p_type == PT_LOAD
6350 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6351 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz
6352 < tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6353 {
6354 /* The fix for this error is usually to edit the linker script being
6355 used and set up the program headers manually. Either that or
6356 leave room for the headers at the start of the SECTIONS. */
6357 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
6358 " by LOAD segment"),
6359 abfd);
6360 return FALSE;
6361 }
6362
6363 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6364 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6365 return FALSE;
6366 }
6367
6368 return TRUE;
6369 }
6370
6371 static bfd_boolean
6372 prep_headers (bfd *abfd)
6373 {
6374 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6375 struct elf_strtab_hash *shstrtab;
6376 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6377
6378 i_ehdrp = elf_elfheader (abfd);
6379
6380 shstrtab = _bfd_elf_strtab_init ();
6381 if (shstrtab == NULL)
6382 return FALSE;
6383
6384 elf_shstrtab (abfd) = shstrtab;
6385
6386 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6387 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6388 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6389 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6390
6391 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6392 i_ehdrp->e_ident[EI_DATA] =
6393 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6394 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6395
6396 if ((abfd->flags & DYNAMIC) != 0)
6397 i_ehdrp->e_type = ET_DYN;
6398 else if ((abfd->flags & EXEC_P) != 0)
6399 i_ehdrp->e_type = ET_EXEC;
6400 else if (bfd_get_format (abfd) == bfd_core)
6401 i_ehdrp->e_type = ET_CORE;
6402 else
6403 i_ehdrp->e_type = ET_REL;
6404
6405 switch (bfd_get_arch (abfd))
6406 {
6407 case bfd_arch_unknown:
6408 i_ehdrp->e_machine = EM_NONE;
6409 break;
6410
6411 /* There used to be a long list of cases here, each one setting
6412 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6413 in the corresponding bfd definition. To avoid duplication,
6414 the switch was removed. Machines that need special handling
6415 can generally do it in elf_backend_final_write_processing(),
6416 unless they need the information earlier than the final write.
6417 Such need can generally be supplied by replacing the tests for
6418 e_machine with the conditions used to determine it. */
6419 default:
6420 i_ehdrp->e_machine = bed->elf_machine_code;
6421 }
6422
6423 i_ehdrp->e_version = bed->s->ev_current;
6424 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6425
6426 /* No program header, for now. */
6427 i_ehdrp->e_phoff = 0;
6428 i_ehdrp->e_phentsize = 0;
6429 i_ehdrp->e_phnum = 0;
6430
6431 /* Each bfd section is section header entry. */
6432 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6433 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6434
6435 /* If we're building an executable, we'll need a program header table. */
6436 if (abfd->flags & EXEC_P)
6437 /* It all happens later. */
6438 ;
6439 else
6440 {
6441 i_ehdrp->e_phentsize = 0;
6442 i_ehdrp->e_phoff = 0;
6443 }
6444
6445 elf_tdata (abfd)->symtab_hdr.sh_name =
6446 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6447 elf_tdata (abfd)->strtab_hdr.sh_name =
6448 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6449 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6450 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6451 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6452 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6453 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6454 return FALSE;
6455
6456 return TRUE;
6457 }
6458
6459 /* Assign file positions for all the reloc sections which are not part
6460 of the loadable file image, and the file position of section headers. */
6461
6462 static bfd_boolean
6463 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6464 {
6465 file_ptr off;
6466 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6467 Elf_Internal_Shdr *shdrp;
6468 Elf_Internal_Ehdr *i_ehdrp;
6469 const struct elf_backend_data *bed;
6470
6471 off = elf_next_file_pos (abfd);
6472
6473 shdrpp = elf_elfsections (abfd);
6474 end_shdrpp = shdrpp + elf_numsections (abfd);
6475 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6476 {
6477 shdrp = *shdrpp;
6478 if (shdrp->sh_offset == -1)
6479 {
6480 asection *sec = shdrp->bfd_section;
6481 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6482 || shdrp->sh_type == SHT_RELA);
6483 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6484 if (is_rel
6485 || is_ctf
6486 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6487 {
6488 if (!is_rel && !is_ctf)
6489 {
6490 const char *name = sec->name;
6491 struct bfd_elf_section_data *d;
6492
6493 /* Compress DWARF debug sections. */
6494 if (!bfd_compress_section (abfd, sec,
6495 shdrp->contents))
6496 return FALSE;
6497
6498 if (sec->compress_status == COMPRESS_SECTION_DONE
6499 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6500 {
6501 /* If section is compressed with zlib-gnu, convert
6502 section name from .debug_* to .zdebug_*. */
6503 char *new_name
6504 = convert_debug_to_zdebug (abfd, name);
6505 if (new_name == NULL)
6506 return FALSE;
6507 name = new_name;
6508 }
6509 /* Add section name to section name section. */
6510 if (shdrp->sh_name != (unsigned int) -1)
6511 abort ();
6512 shdrp->sh_name
6513 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6514 name, FALSE);
6515 d = elf_section_data (sec);
6516
6517 /* Add reloc section name to section name section. */
6518 if (d->rel.hdr
6519 && !_bfd_elf_set_reloc_sh_name (abfd,
6520 d->rel.hdr,
6521 name, FALSE))
6522 return FALSE;
6523 if (d->rela.hdr
6524 && !_bfd_elf_set_reloc_sh_name (abfd,
6525 d->rela.hdr,
6526 name, TRUE))
6527 return FALSE;
6528
6529 /* Update section size and contents. */
6530 shdrp->sh_size = sec->size;
6531 shdrp->contents = sec->contents;
6532 shdrp->bfd_section->contents = NULL;
6533 }
6534 else if (is_ctf)
6535 {
6536 /* Update section size and contents. */
6537 shdrp->sh_size = sec->size;
6538 shdrp->contents = sec->contents;
6539 }
6540
6541 off = _bfd_elf_assign_file_position_for_section (shdrp,
6542 off,
6543 TRUE);
6544 }
6545 }
6546 }
6547
6548 /* Place section name section after DWARF debug sections have been
6549 compressed. */
6550 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6551 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6552 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6553 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6554
6555 /* Place the section headers. */
6556 i_ehdrp = elf_elfheader (abfd);
6557 bed = get_elf_backend_data (abfd);
6558 off = align_file_position (off, 1 << bed->s->log_file_align);
6559 i_ehdrp->e_shoff = off;
6560 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6561 elf_next_file_pos (abfd) = off;
6562
6563 return TRUE;
6564 }
6565
6566 bfd_boolean
6567 _bfd_elf_write_object_contents (bfd *abfd)
6568 {
6569 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6570 Elf_Internal_Shdr **i_shdrp;
6571 bfd_boolean failed;
6572 unsigned int count, num_sec;
6573 struct elf_obj_tdata *t;
6574
6575 if (! abfd->output_has_begun
6576 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6577 return FALSE;
6578 /* Do not rewrite ELF data when the BFD has been opened for update.
6579 abfd->output_has_begun was set to TRUE on opening, so creation of new
6580 sections, and modification of existing section sizes was restricted.
6581 This means the ELF header, program headers and section headers can't have
6582 changed.
6583 If the contents of any sections has been modified, then those changes have
6584 already been written to the BFD. */
6585 else if (abfd->direction == both_direction)
6586 {
6587 BFD_ASSERT (abfd->output_has_begun);
6588 return TRUE;
6589 }
6590
6591 i_shdrp = elf_elfsections (abfd);
6592
6593 failed = FALSE;
6594 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6595 if (failed)
6596 return FALSE;
6597
6598 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6599 return FALSE;
6600
6601 /* After writing the headers, we need to write the sections too... */
6602 num_sec = elf_numsections (abfd);
6603 for (count = 1; count < num_sec; count++)
6604 {
6605 i_shdrp[count]->sh_name
6606 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6607 i_shdrp[count]->sh_name);
6608 if (bed->elf_backend_section_processing)
6609 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6610 return FALSE;
6611 if (i_shdrp[count]->contents)
6612 {
6613 bfd_size_type amt = i_shdrp[count]->sh_size;
6614
6615 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6616 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6617 return FALSE;
6618 }
6619 }
6620
6621 /* Write out the section header names. */
6622 t = elf_tdata (abfd);
6623 if (elf_shstrtab (abfd) != NULL
6624 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6625 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6626 return FALSE;
6627
6628 if (!(*bed->elf_backend_final_write_processing) (abfd))
6629 return FALSE;
6630
6631 if (!bed->s->write_shdrs_and_ehdr (abfd))
6632 return FALSE;
6633
6634 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6635 if (t->o->build_id.after_write_object_contents != NULL)
6636 return (*t->o->build_id.after_write_object_contents) (abfd);
6637
6638 return TRUE;
6639 }
6640
6641 bfd_boolean
6642 _bfd_elf_write_corefile_contents (bfd *abfd)
6643 {
6644 /* Hopefully this can be done just like an object file. */
6645 return _bfd_elf_write_object_contents (abfd);
6646 }
6647
6648 /* Given a section, search the header to find them. */
6649
6650 unsigned int
6651 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6652 {
6653 const struct elf_backend_data *bed;
6654 unsigned int sec_index;
6655
6656 if (elf_section_data (asect) != NULL
6657 && elf_section_data (asect)->this_idx != 0)
6658 return elf_section_data (asect)->this_idx;
6659
6660 if (bfd_is_abs_section (asect))
6661 sec_index = SHN_ABS;
6662 else if (bfd_is_com_section (asect))
6663 sec_index = SHN_COMMON;
6664 else if (bfd_is_und_section (asect))
6665 sec_index = SHN_UNDEF;
6666 else
6667 sec_index = SHN_BAD;
6668
6669 bed = get_elf_backend_data (abfd);
6670 if (bed->elf_backend_section_from_bfd_section)
6671 {
6672 int retval = sec_index;
6673
6674 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6675 return retval;
6676 }
6677
6678 if (sec_index == SHN_BAD)
6679 bfd_set_error (bfd_error_nonrepresentable_section);
6680
6681 return sec_index;
6682 }
6683
6684 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6685 on error. */
6686
6687 int
6688 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6689 {
6690 asymbol *asym_ptr = *asym_ptr_ptr;
6691 int idx;
6692 flagword flags = asym_ptr->flags;
6693
6694 /* When gas creates relocations against local labels, it creates its
6695 own symbol for the section, but does put the symbol into the
6696 symbol chain, so udata is 0. When the linker is generating
6697 relocatable output, this section symbol may be for one of the
6698 input sections rather than the output section. */
6699 if (asym_ptr->udata.i == 0
6700 && (flags & BSF_SECTION_SYM)
6701 && asym_ptr->section)
6702 {
6703 asection *sec;
6704 int indx;
6705
6706 sec = asym_ptr->section;
6707 if (sec->owner != abfd && sec->output_section != NULL)
6708 sec = sec->output_section;
6709 if (sec->owner == abfd
6710 && (indx = sec->index) < elf_num_section_syms (abfd)
6711 && elf_section_syms (abfd)[indx] != NULL)
6712 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6713 }
6714
6715 idx = asym_ptr->udata.i;
6716
6717 if (idx == 0)
6718 {
6719 /* This case can occur when using --strip-symbol on a symbol
6720 which is used in a relocation entry. */
6721 _bfd_error_handler
6722 /* xgettext:c-format */
6723 (_("%pB: symbol `%s' required but not present"),
6724 abfd, bfd_asymbol_name (asym_ptr));
6725 bfd_set_error (bfd_error_no_symbols);
6726 return -1;
6727 }
6728
6729 #if DEBUG & 4
6730 {
6731 fprintf (stderr,
6732 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6733 (long) asym_ptr, asym_ptr->name, idx, flags);
6734 fflush (stderr);
6735 }
6736 #endif
6737
6738 return idx;
6739 }
6740
6741 /* Rewrite program header information. */
6742
6743 static bfd_boolean
6744 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6745 {
6746 Elf_Internal_Ehdr *iehdr;
6747 struct elf_segment_map *map;
6748 struct elf_segment_map *map_first;
6749 struct elf_segment_map **pointer_to_map;
6750 Elf_Internal_Phdr *segment;
6751 asection *section;
6752 unsigned int i;
6753 unsigned int num_segments;
6754 bfd_boolean phdr_included = FALSE;
6755 bfd_boolean p_paddr_valid;
6756 bfd_vma maxpagesize;
6757 struct elf_segment_map *phdr_adjust_seg = NULL;
6758 unsigned int phdr_adjust_num = 0;
6759 const struct elf_backend_data *bed;
6760
6761 bed = get_elf_backend_data (ibfd);
6762 iehdr = elf_elfheader (ibfd);
6763
6764 map_first = NULL;
6765 pointer_to_map = &map_first;
6766
6767 num_segments = elf_elfheader (ibfd)->e_phnum;
6768 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6769
6770 /* Returns the end address of the segment + 1. */
6771 #define SEGMENT_END(segment, start) \
6772 (start + (segment->p_memsz > segment->p_filesz \
6773 ? segment->p_memsz : segment->p_filesz))
6774
6775 #define SECTION_SIZE(section, segment) \
6776 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6777 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6778 ? section->size : 0)
6779
6780 /* Returns TRUE if the given section is contained within
6781 the given segment. VMA addresses are compared. */
6782 #define IS_CONTAINED_BY_VMA(section, segment) \
6783 (section->vma >= segment->p_vaddr \
6784 && (section->vma + SECTION_SIZE (section, segment) \
6785 <= (SEGMENT_END (segment, segment->p_vaddr))))
6786
6787 /* Returns TRUE if the given section is contained within
6788 the given segment. LMA addresses are compared. */
6789 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6790 (section->lma >= base \
6791 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6792 && (section->lma + SECTION_SIZE (section, segment) \
6793 <= SEGMENT_END (segment, base)))
6794
6795 /* Handle PT_NOTE segment. */
6796 #define IS_NOTE(p, s) \
6797 (p->p_type == PT_NOTE \
6798 && elf_section_type (s) == SHT_NOTE \
6799 && (bfd_vma) s->filepos >= p->p_offset \
6800 && ((bfd_vma) s->filepos + s->size \
6801 <= p->p_offset + p->p_filesz))
6802
6803 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6804 etc. */
6805 #define IS_COREFILE_NOTE(p, s) \
6806 (IS_NOTE (p, s) \
6807 && bfd_get_format (ibfd) == bfd_core \
6808 && s->vma == 0 \
6809 && s->lma == 0)
6810
6811 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6812 linker, which generates a PT_INTERP section with p_vaddr and
6813 p_memsz set to 0. */
6814 #define IS_SOLARIS_PT_INTERP(p, s) \
6815 (p->p_vaddr == 0 \
6816 && p->p_paddr == 0 \
6817 && p->p_memsz == 0 \
6818 && p->p_filesz > 0 \
6819 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6820 && s->size > 0 \
6821 && (bfd_vma) s->filepos >= p->p_offset \
6822 && ((bfd_vma) s->filepos + s->size \
6823 <= p->p_offset + p->p_filesz))
6824
6825 /* Decide if the given section should be included in the given segment.
6826 A section will be included if:
6827 1. It is within the address space of the segment -- we use the LMA
6828 if that is set for the segment and the VMA otherwise,
6829 2. It is an allocated section or a NOTE section in a PT_NOTE
6830 segment.
6831 3. There is an output section associated with it,
6832 4. The section has not already been allocated to a previous segment.
6833 5. PT_GNU_STACK segments do not include any sections.
6834 6. PT_TLS segment includes only SHF_TLS sections.
6835 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6836 8. PT_DYNAMIC should not contain empty sections at the beginning
6837 (with the possible exception of .dynamic). */
6838 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6839 ((((segment->p_paddr \
6840 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6841 : IS_CONTAINED_BY_VMA (section, segment)) \
6842 && (section->flags & SEC_ALLOC) != 0) \
6843 || IS_NOTE (segment, section)) \
6844 && segment->p_type != PT_GNU_STACK \
6845 && (segment->p_type != PT_TLS \
6846 || (section->flags & SEC_THREAD_LOCAL)) \
6847 && (segment->p_type == PT_LOAD \
6848 || segment->p_type == PT_TLS \
6849 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6850 && (segment->p_type != PT_DYNAMIC \
6851 || SECTION_SIZE (section, segment) > 0 \
6852 || (segment->p_paddr \
6853 ? segment->p_paddr != section->lma \
6854 : segment->p_vaddr != section->vma) \
6855 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6856 && (segment->p_type != PT_LOAD || !section->segment_mark))
6857
6858 /* If the output section of a section in the input segment is NULL,
6859 it is removed from the corresponding output segment. */
6860 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6861 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6862 && section->output_section != NULL)
6863
6864 /* Returns TRUE iff seg1 starts after the end of seg2. */
6865 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6866 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6867
6868 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6869 their VMA address ranges and their LMA address ranges overlap.
6870 It is possible to have overlapping VMA ranges without overlapping LMA
6871 ranges. RedBoot images for example can have both .data and .bss mapped
6872 to the same VMA range, but with the .data section mapped to a different
6873 LMA. */
6874 #define SEGMENT_OVERLAPS(seg1, seg2) \
6875 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6876 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6877 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6878 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6879
6880 /* Initialise the segment mark field. */
6881 for (section = ibfd->sections; section != NULL; section = section->next)
6882 section->segment_mark = FALSE;
6883
6884 /* The Solaris linker creates program headers in which all the
6885 p_paddr fields are zero. When we try to objcopy or strip such a
6886 file, we get confused. Check for this case, and if we find it
6887 don't set the p_paddr_valid fields. */
6888 p_paddr_valid = FALSE;
6889 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6890 i < num_segments;
6891 i++, segment++)
6892 if (segment->p_paddr != 0)
6893 {
6894 p_paddr_valid = TRUE;
6895 break;
6896 }
6897
6898 /* Scan through the segments specified in the program header
6899 of the input BFD. For this first scan we look for overlaps
6900 in the loadable segments. These can be created by weird
6901 parameters to objcopy. Also, fix some solaris weirdness. */
6902 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6903 i < num_segments;
6904 i++, segment++)
6905 {
6906 unsigned int j;
6907 Elf_Internal_Phdr *segment2;
6908
6909 if (segment->p_type == PT_INTERP)
6910 for (section = ibfd->sections; section; section = section->next)
6911 if (IS_SOLARIS_PT_INTERP (segment, section))
6912 {
6913 /* Mininal change so that the normal section to segment
6914 assignment code will work. */
6915 segment->p_vaddr = section->vma;
6916 break;
6917 }
6918
6919 if (segment->p_type != PT_LOAD)
6920 {
6921 /* Remove PT_GNU_RELRO segment. */
6922 if (segment->p_type == PT_GNU_RELRO)
6923 segment->p_type = PT_NULL;
6924 continue;
6925 }
6926
6927 /* Determine if this segment overlaps any previous segments. */
6928 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6929 {
6930 bfd_signed_vma extra_length;
6931
6932 if (segment2->p_type != PT_LOAD
6933 || !SEGMENT_OVERLAPS (segment, segment2))
6934 continue;
6935
6936 /* Merge the two segments together. */
6937 if (segment2->p_vaddr < segment->p_vaddr)
6938 {
6939 /* Extend SEGMENT2 to include SEGMENT and then delete
6940 SEGMENT. */
6941 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6942 - SEGMENT_END (segment2, segment2->p_vaddr));
6943
6944 if (extra_length > 0)
6945 {
6946 segment2->p_memsz += extra_length;
6947 segment2->p_filesz += extra_length;
6948 }
6949
6950 segment->p_type = PT_NULL;
6951
6952 /* Since we have deleted P we must restart the outer loop. */
6953 i = 0;
6954 segment = elf_tdata (ibfd)->phdr;
6955 break;
6956 }
6957 else
6958 {
6959 /* Extend SEGMENT to include SEGMENT2 and then delete
6960 SEGMENT2. */
6961 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6962 - SEGMENT_END (segment, segment->p_vaddr));
6963
6964 if (extra_length > 0)
6965 {
6966 segment->p_memsz += extra_length;
6967 segment->p_filesz += extra_length;
6968 }
6969
6970 segment2->p_type = PT_NULL;
6971 }
6972 }
6973 }
6974
6975 /* The second scan attempts to assign sections to segments. */
6976 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6977 i < num_segments;
6978 i++, segment++)
6979 {
6980 unsigned int section_count;
6981 asection **sections;
6982 asection *output_section;
6983 unsigned int isec;
6984 asection *matching_lma;
6985 asection *suggested_lma;
6986 unsigned int j;
6987 bfd_size_type amt;
6988 asection *first_section;
6989
6990 if (segment->p_type == PT_NULL)
6991 continue;
6992
6993 first_section = NULL;
6994 /* Compute how many sections might be placed into this segment. */
6995 for (section = ibfd->sections, section_count = 0;
6996 section != NULL;
6997 section = section->next)
6998 {
6999 /* Find the first section in the input segment, which may be
7000 removed from the corresponding output segment. */
7001 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
7002 {
7003 if (first_section == NULL)
7004 first_section = section;
7005 if (section->output_section != NULL)
7006 ++section_count;
7007 }
7008 }
7009
7010 /* Allocate a segment map big enough to contain
7011 all of the sections we have selected. */
7012 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7013 amt += (bfd_size_type) section_count * sizeof (asection *);
7014 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7015 if (map == NULL)
7016 return FALSE;
7017
7018 /* Initialise the fields of the segment map. Default to
7019 using the physical address of the segment in the input BFD. */
7020 map->next = NULL;
7021 map->p_type = segment->p_type;
7022 map->p_flags = segment->p_flags;
7023 map->p_flags_valid = 1;
7024
7025 /* If the first section in the input segment is removed, there is
7026 no need to preserve segment physical address in the corresponding
7027 output segment. */
7028 if (!first_section || first_section->output_section != NULL)
7029 {
7030 map->p_paddr = segment->p_paddr;
7031 map->p_paddr_valid = p_paddr_valid;
7032 }
7033
7034 /* Determine if this segment contains the ELF file header
7035 and if it contains the program headers themselves. */
7036 map->includes_filehdr = (segment->p_offset == 0
7037 && segment->p_filesz >= iehdr->e_ehsize);
7038 map->includes_phdrs = 0;
7039
7040 if (!phdr_included || segment->p_type != PT_LOAD)
7041 {
7042 map->includes_phdrs =
7043 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7044 && (segment->p_offset + segment->p_filesz
7045 >= ((bfd_vma) iehdr->e_phoff
7046 + iehdr->e_phnum * iehdr->e_phentsize)));
7047
7048 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7049 phdr_included = TRUE;
7050 }
7051
7052 if (section_count == 0)
7053 {
7054 /* Special segments, such as the PT_PHDR segment, may contain
7055 no sections, but ordinary, loadable segments should contain
7056 something. They are allowed by the ELF spec however, so only
7057 a warning is produced.
7058 There is however the valid use case of embedded systems which
7059 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7060 flash memory with zeros. No warning is shown for that case. */
7061 if (segment->p_type == PT_LOAD
7062 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7063 /* xgettext:c-format */
7064 _bfd_error_handler
7065 (_("%pB: warning: empty loadable segment detected"
7066 " at vaddr=%#" PRIx64 ", is this intentional?"),
7067 ibfd, (uint64_t) segment->p_vaddr);
7068
7069 map->p_vaddr_offset = segment->p_vaddr;
7070 map->count = 0;
7071 *pointer_to_map = map;
7072 pointer_to_map = &map->next;
7073
7074 continue;
7075 }
7076
7077 /* Now scan the sections in the input BFD again and attempt
7078 to add their corresponding output sections to the segment map.
7079 The problem here is how to handle an output section which has
7080 been moved (ie had its LMA changed). There are four possibilities:
7081
7082 1. None of the sections have been moved.
7083 In this case we can continue to use the segment LMA from the
7084 input BFD.
7085
7086 2. All of the sections have been moved by the same amount.
7087 In this case we can change the segment's LMA to match the LMA
7088 of the first section.
7089
7090 3. Some of the sections have been moved, others have not.
7091 In this case those sections which have not been moved can be
7092 placed in the current segment which will have to have its size,
7093 and possibly its LMA changed, and a new segment or segments will
7094 have to be created to contain the other sections.
7095
7096 4. The sections have been moved, but not by the same amount.
7097 In this case we can change the segment's LMA to match the LMA
7098 of the first section and we will have to create a new segment
7099 or segments to contain the other sections.
7100
7101 In order to save time, we allocate an array to hold the section
7102 pointers that we are interested in. As these sections get assigned
7103 to a segment, they are removed from this array. */
7104
7105 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
7106 if (sections == NULL)
7107 return FALSE;
7108
7109 /* Step One: Scan for segment vs section LMA conflicts.
7110 Also add the sections to the section array allocated above.
7111 Also add the sections to the current segment. In the common
7112 case, where the sections have not been moved, this means that
7113 we have completely filled the segment, and there is nothing
7114 more to do. */
7115 isec = 0;
7116 matching_lma = NULL;
7117 suggested_lma = NULL;
7118
7119 for (section = first_section, j = 0;
7120 section != NULL;
7121 section = section->next)
7122 {
7123 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7124 {
7125 output_section = section->output_section;
7126
7127 sections[j++] = section;
7128
7129 /* The Solaris native linker always sets p_paddr to 0.
7130 We try to catch that case here, and set it to the
7131 correct value. Note - some backends require that
7132 p_paddr be left as zero. */
7133 if (!p_paddr_valid
7134 && segment->p_vaddr != 0
7135 && !bed->want_p_paddr_set_to_zero
7136 && isec == 0
7137 && output_section->lma != 0
7138 && (align_power (segment->p_vaddr
7139 + (map->includes_filehdr
7140 ? iehdr->e_ehsize : 0)
7141 + (map->includes_phdrs
7142 ? iehdr->e_phnum * iehdr->e_phentsize
7143 : 0),
7144 output_section->alignment_power)
7145 == output_section->vma))
7146 map->p_paddr = segment->p_vaddr;
7147
7148 /* Match up the physical address of the segment with the
7149 LMA address of the output section. */
7150 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7151 || IS_COREFILE_NOTE (segment, section)
7152 || (bed->want_p_paddr_set_to_zero
7153 && IS_CONTAINED_BY_VMA (output_section, segment)))
7154 {
7155 if (matching_lma == NULL
7156 || output_section->lma < matching_lma->lma)
7157 matching_lma = output_section;
7158
7159 /* We assume that if the section fits within the segment
7160 then it does not overlap any other section within that
7161 segment. */
7162 map->sections[isec++] = output_section;
7163 }
7164 else if (suggested_lma == NULL)
7165 suggested_lma = output_section;
7166
7167 if (j == section_count)
7168 break;
7169 }
7170 }
7171
7172 BFD_ASSERT (j == section_count);
7173
7174 /* Step Two: Adjust the physical address of the current segment,
7175 if necessary. */
7176 if (isec == section_count)
7177 {
7178 /* All of the sections fitted within the segment as currently
7179 specified. This is the default case. Add the segment to
7180 the list of built segments and carry on to process the next
7181 program header in the input BFD. */
7182 map->count = section_count;
7183 *pointer_to_map = map;
7184 pointer_to_map = &map->next;
7185
7186 if (p_paddr_valid
7187 && !bed->want_p_paddr_set_to_zero
7188 && matching_lma->lma != map->p_paddr
7189 && !map->includes_filehdr
7190 && !map->includes_phdrs)
7191 /* There is some padding before the first section in the
7192 segment. So, we must account for that in the output
7193 segment's vma. */
7194 map->p_vaddr_offset = map->p_paddr - matching_lma->lma;
7195
7196 free (sections);
7197 continue;
7198 }
7199 else
7200 {
7201 /* Change the current segment's physical address to match
7202 the LMA of the first section that fitted, or if no
7203 section fitted, the first section. */
7204 if (matching_lma == NULL)
7205 matching_lma = suggested_lma;
7206
7207 map->p_paddr = matching_lma->lma;
7208
7209 /* Offset the segment physical address from the lma
7210 to allow for space taken up by elf headers. */
7211 if (map->includes_phdrs)
7212 {
7213 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7214
7215 /* iehdr->e_phnum is just an estimate of the number
7216 of program headers that we will need. Make a note
7217 here of the number we used and the segment we chose
7218 to hold these headers, so that we can adjust the
7219 offset when we know the correct value. */
7220 phdr_adjust_num = iehdr->e_phnum;
7221 phdr_adjust_seg = map;
7222 }
7223
7224 if (map->includes_filehdr)
7225 {
7226 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7227 map->p_paddr -= iehdr->e_ehsize;
7228 /* We've subtracted off the size of headers from the
7229 first section lma, but there may have been some
7230 alignment padding before that section too. Try to
7231 account for that by adjusting the segment lma down to
7232 the same alignment. */
7233 if (segment->p_align != 0 && segment->p_align < align)
7234 align = segment->p_align;
7235 map->p_paddr &= -align;
7236 }
7237 }
7238
7239 /* Step Three: Loop over the sections again, this time assigning
7240 those that fit to the current segment and removing them from the
7241 sections array; but making sure not to leave large gaps. Once all
7242 possible sections have been assigned to the current segment it is
7243 added to the list of built segments and if sections still remain
7244 to be assigned, a new segment is constructed before repeating
7245 the loop. */
7246 isec = 0;
7247 do
7248 {
7249 map->count = 0;
7250 suggested_lma = NULL;
7251
7252 /* Fill the current segment with sections that fit. */
7253 for (j = 0; j < section_count; j++)
7254 {
7255 section = sections[j];
7256
7257 if (section == NULL)
7258 continue;
7259
7260 output_section = section->output_section;
7261
7262 BFD_ASSERT (output_section != NULL);
7263
7264 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7265 || IS_COREFILE_NOTE (segment, section))
7266 {
7267 if (map->count == 0)
7268 {
7269 /* If the first section in a segment does not start at
7270 the beginning of the segment, then something is
7271 wrong. */
7272 if (align_power (map->p_paddr
7273 + (map->includes_filehdr
7274 ? iehdr->e_ehsize : 0)
7275 + (map->includes_phdrs
7276 ? iehdr->e_phnum * iehdr->e_phentsize
7277 : 0),
7278 output_section->alignment_power)
7279 != output_section->lma)
7280 abort ();
7281 }
7282 else
7283 {
7284 asection *prev_sec;
7285
7286 prev_sec = map->sections[map->count - 1];
7287
7288 /* If the gap between the end of the previous section
7289 and the start of this section is more than
7290 maxpagesize then we need to start a new segment. */
7291 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7292 maxpagesize)
7293 < BFD_ALIGN (output_section->lma, maxpagesize))
7294 || (prev_sec->lma + prev_sec->size
7295 > output_section->lma))
7296 {
7297 if (suggested_lma == NULL)
7298 suggested_lma = output_section;
7299
7300 continue;
7301 }
7302 }
7303
7304 map->sections[map->count++] = output_section;
7305 ++isec;
7306 sections[j] = NULL;
7307 if (segment->p_type == PT_LOAD)
7308 section->segment_mark = TRUE;
7309 }
7310 else if (suggested_lma == NULL)
7311 suggested_lma = output_section;
7312 }
7313
7314 /* PR 23932. A corrupt input file may contain sections that cannot
7315 be assigned to any segment - because for example they have a
7316 negative size - or segments that do not contain any sections. */
7317 if (map->count == 0)
7318 {
7319 bfd_set_error (bfd_error_bad_value);
7320 free (sections);
7321 return FALSE;
7322 }
7323
7324 /* Add the current segment to the list of built segments. */
7325 *pointer_to_map = map;
7326 pointer_to_map = &map->next;
7327
7328 if (isec < section_count)
7329 {
7330 /* We still have not allocated all of the sections to
7331 segments. Create a new segment here, initialise it
7332 and carry on looping. */
7333 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7334 amt += (bfd_size_type) section_count * sizeof (asection *);
7335 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7336 if (map == NULL)
7337 {
7338 free (sections);
7339 return FALSE;
7340 }
7341
7342 /* Initialise the fields of the segment map. Set the physical
7343 physical address to the LMA of the first section that has
7344 not yet been assigned. */
7345 map->next = NULL;
7346 map->p_type = segment->p_type;
7347 map->p_flags = segment->p_flags;
7348 map->p_flags_valid = 1;
7349 map->p_paddr = suggested_lma->lma;
7350 map->p_paddr_valid = p_paddr_valid;
7351 map->includes_filehdr = 0;
7352 map->includes_phdrs = 0;
7353 }
7354 }
7355 while (isec < section_count);
7356
7357 free (sections);
7358 }
7359
7360 elf_seg_map (obfd) = map_first;
7361
7362 /* If we had to estimate the number of program headers that were
7363 going to be needed, then check our estimate now and adjust
7364 the offset if necessary. */
7365 if (phdr_adjust_seg != NULL)
7366 {
7367 unsigned int count;
7368
7369 for (count = 0, map = map_first; map != NULL; map = map->next)
7370 count++;
7371
7372 if (count > phdr_adjust_num)
7373 phdr_adjust_seg->p_paddr
7374 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7375
7376 for (map = map_first; map != NULL; map = map->next)
7377 if (map->p_type == PT_PHDR)
7378 {
7379 bfd_vma adjust
7380 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7381 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7382 break;
7383 }
7384 }
7385
7386 #undef SEGMENT_END
7387 #undef SECTION_SIZE
7388 #undef IS_CONTAINED_BY_VMA
7389 #undef IS_CONTAINED_BY_LMA
7390 #undef IS_NOTE
7391 #undef IS_COREFILE_NOTE
7392 #undef IS_SOLARIS_PT_INTERP
7393 #undef IS_SECTION_IN_INPUT_SEGMENT
7394 #undef INCLUDE_SECTION_IN_SEGMENT
7395 #undef SEGMENT_AFTER_SEGMENT
7396 #undef SEGMENT_OVERLAPS
7397 return TRUE;
7398 }
7399
7400 /* Copy ELF program header information. */
7401
7402 static bfd_boolean
7403 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7404 {
7405 Elf_Internal_Ehdr *iehdr;
7406 struct elf_segment_map *map;
7407 struct elf_segment_map *map_first;
7408 struct elf_segment_map **pointer_to_map;
7409 Elf_Internal_Phdr *segment;
7410 unsigned int i;
7411 unsigned int num_segments;
7412 bfd_boolean phdr_included = FALSE;
7413 bfd_boolean p_paddr_valid;
7414
7415 iehdr = elf_elfheader (ibfd);
7416
7417 map_first = NULL;
7418 pointer_to_map = &map_first;
7419
7420 /* If all the segment p_paddr fields are zero, don't set
7421 map->p_paddr_valid. */
7422 p_paddr_valid = FALSE;
7423 num_segments = elf_elfheader (ibfd)->e_phnum;
7424 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7425 i < num_segments;
7426 i++, segment++)
7427 if (segment->p_paddr != 0)
7428 {
7429 p_paddr_valid = TRUE;
7430 break;
7431 }
7432
7433 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7434 i < num_segments;
7435 i++, segment++)
7436 {
7437 asection *section;
7438 unsigned int section_count;
7439 bfd_size_type amt;
7440 Elf_Internal_Shdr *this_hdr;
7441 asection *first_section = NULL;
7442 asection *lowest_section;
7443 bfd_boolean no_contents = TRUE;
7444
7445 /* Compute how many sections are in this segment. */
7446 for (section = ibfd->sections, section_count = 0;
7447 section != NULL;
7448 section = section->next)
7449 {
7450 this_hdr = &(elf_section_data(section)->this_hdr);
7451 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7452 {
7453 if (first_section == NULL)
7454 first_section = section;
7455 if (elf_section_type (section) != SHT_NOBITS)
7456 no_contents = FALSE;
7457 section_count++;
7458 }
7459 }
7460
7461 /* Allocate a segment map big enough to contain
7462 all of the sections we have selected. */
7463 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7464 amt += (bfd_size_type) section_count * sizeof (asection *);
7465 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7466 if (map == NULL)
7467 return FALSE;
7468
7469 /* Initialize the fields of the output segment map with the
7470 input segment. */
7471 map->next = NULL;
7472 map->p_type = segment->p_type;
7473 map->p_flags = segment->p_flags;
7474 map->p_flags_valid = 1;
7475 map->p_paddr = segment->p_paddr;
7476 map->p_paddr_valid = p_paddr_valid;
7477 map->p_align = segment->p_align;
7478 map->p_align_valid = 1;
7479 map->p_vaddr_offset = 0;
7480
7481 if (map->p_type == PT_GNU_RELRO
7482 || map->p_type == PT_GNU_STACK)
7483 {
7484 /* The PT_GNU_RELRO segment may contain the first a few
7485 bytes in the .got.plt section even if the whole .got.plt
7486 section isn't in the PT_GNU_RELRO segment. We won't
7487 change the size of the PT_GNU_RELRO segment.
7488 Similarly, PT_GNU_STACK size is significant on uclinux
7489 systems. */
7490 map->p_size = segment->p_memsz;
7491 map->p_size_valid = 1;
7492 }
7493
7494 /* Determine if this segment contains the ELF file header
7495 and if it contains the program headers themselves. */
7496 map->includes_filehdr = (segment->p_offset == 0
7497 && segment->p_filesz >= iehdr->e_ehsize);
7498
7499 map->includes_phdrs = 0;
7500 if (! phdr_included || segment->p_type != PT_LOAD)
7501 {
7502 map->includes_phdrs =
7503 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7504 && (segment->p_offset + segment->p_filesz
7505 >= ((bfd_vma) iehdr->e_phoff
7506 + iehdr->e_phnum * iehdr->e_phentsize)));
7507
7508 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7509 phdr_included = TRUE;
7510 }
7511
7512 lowest_section = NULL;
7513 if (section_count != 0)
7514 {
7515 unsigned int isec = 0;
7516
7517 for (section = first_section;
7518 section != NULL;
7519 section = section->next)
7520 {
7521 this_hdr = &(elf_section_data(section)->this_hdr);
7522 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7523 {
7524 map->sections[isec++] = section->output_section;
7525 if ((section->flags & SEC_ALLOC) != 0)
7526 {
7527 bfd_vma seg_off;
7528
7529 if (lowest_section == NULL
7530 || section->lma < lowest_section->lma)
7531 lowest_section = section;
7532
7533 /* Section lmas are set up from PT_LOAD header
7534 p_paddr in _bfd_elf_make_section_from_shdr.
7535 If this header has a p_paddr that disagrees
7536 with the section lma, flag the p_paddr as
7537 invalid. */
7538 if ((section->flags & SEC_LOAD) != 0)
7539 seg_off = this_hdr->sh_offset - segment->p_offset;
7540 else
7541 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7542 if (section->lma - segment->p_paddr != seg_off)
7543 map->p_paddr_valid = FALSE;
7544 }
7545 if (isec == section_count)
7546 break;
7547 }
7548 }
7549 }
7550
7551 if (map->includes_filehdr && lowest_section != NULL)
7552 {
7553 /* Try to keep the space used by the headers plus any
7554 padding fixed. If there are sections with file contents
7555 in this segment then the lowest sh_offset is the best
7556 guess. Otherwise the segment only has file contents for
7557 the headers, and p_filesz is the best guess. */
7558 if (no_contents)
7559 map->header_size = segment->p_filesz;
7560 else
7561 map->header_size = lowest_section->filepos;
7562 }
7563
7564 if (section_count == 0)
7565 map->p_vaddr_offset = segment->p_vaddr;
7566 else if (!map->includes_phdrs
7567 && !map->includes_filehdr
7568 && map->p_paddr_valid)
7569 /* Account for padding before the first section. */
7570 map->p_vaddr_offset = (segment->p_paddr
7571 - (lowest_section ? lowest_section->lma : 0));
7572
7573 map->count = section_count;
7574 *pointer_to_map = map;
7575 pointer_to_map = &map->next;
7576 }
7577
7578 elf_seg_map (obfd) = map_first;
7579 return TRUE;
7580 }
7581
7582 /* Copy private BFD data. This copies or rewrites ELF program header
7583 information. */
7584
7585 static bfd_boolean
7586 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7587 {
7588 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7589 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7590 return TRUE;
7591
7592 if (elf_tdata (ibfd)->phdr == NULL)
7593 return TRUE;
7594
7595 if (ibfd->xvec == obfd->xvec)
7596 {
7597 /* Check to see if any sections in the input BFD
7598 covered by ELF program header have changed. */
7599 Elf_Internal_Phdr *segment;
7600 asection *section, *osec;
7601 unsigned int i, num_segments;
7602 Elf_Internal_Shdr *this_hdr;
7603 const struct elf_backend_data *bed;
7604
7605 bed = get_elf_backend_data (ibfd);
7606
7607 /* Regenerate the segment map if p_paddr is set to 0. */
7608 if (bed->want_p_paddr_set_to_zero)
7609 goto rewrite;
7610
7611 /* Initialize the segment mark field. */
7612 for (section = obfd->sections; section != NULL;
7613 section = section->next)
7614 section->segment_mark = FALSE;
7615
7616 num_segments = elf_elfheader (ibfd)->e_phnum;
7617 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7618 i < num_segments;
7619 i++, segment++)
7620 {
7621 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7622 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7623 which severly confuses things, so always regenerate the segment
7624 map in this case. */
7625 if (segment->p_paddr == 0
7626 && segment->p_memsz == 0
7627 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7628 goto rewrite;
7629
7630 for (section = ibfd->sections;
7631 section != NULL; section = section->next)
7632 {
7633 /* We mark the output section so that we know it comes
7634 from the input BFD. */
7635 osec = section->output_section;
7636 if (osec)
7637 osec->segment_mark = TRUE;
7638
7639 /* Check if this section is covered by the segment. */
7640 this_hdr = &(elf_section_data(section)->this_hdr);
7641 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7642 {
7643 /* FIXME: Check if its output section is changed or
7644 removed. What else do we need to check? */
7645 if (osec == NULL
7646 || section->flags != osec->flags
7647 || section->lma != osec->lma
7648 || section->vma != osec->vma
7649 || section->size != osec->size
7650 || section->rawsize != osec->rawsize
7651 || section->alignment_power != osec->alignment_power)
7652 goto rewrite;
7653 }
7654 }
7655 }
7656
7657 /* Check to see if any output section do not come from the
7658 input BFD. */
7659 for (section = obfd->sections; section != NULL;
7660 section = section->next)
7661 {
7662 if (!section->segment_mark)
7663 goto rewrite;
7664 else
7665 section->segment_mark = FALSE;
7666 }
7667
7668 return copy_elf_program_header (ibfd, obfd);
7669 }
7670
7671 rewrite:
7672 if (ibfd->xvec == obfd->xvec)
7673 {
7674 /* When rewriting program header, set the output maxpagesize to
7675 the maximum alignment of input PT_LOAD segments. */
7676 Elf_Internal_Phdr *segment;
7677 unsigned int i;
7678 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7679 bfd_vma maxpagesize = 0;
7680
7681 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7682 i < num_segments;
7683 i++, segment++)
7684 if (segment->p_type == PT_LOAD
7685 && maxpagesize < segment->p_align)
7686 {
7687 /* PR 17512: file: f17299af. */
7688 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7689 /* xgettext:c-format */
7690 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7691 PRIx64 " is too large"),
7692 ibfd, (uint64_t) segment->p_align);
7693 else
7694 maxpagesize = segment->p_align;
7695 }
7696
7697 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7698 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7699 }
7700
7701 return rewrite_elf_program_header (ibfd, obfd);
7702 }
7703
7704 /* Initialize private output section information from input section. */
7705
7706 bfd_boolean
7707 _bfd_elf_init_private_section_data (bfd *ibfd,
7708 asection *isec,
7709 bfd *obfd,
7710 asection *osec,
7711 struct bfd_link_info *link_info)
7712
7713 {
7714 Elf_Internal_Shdr *ihdr, *ohdr;
7715 bfd_boolean final_link = (link_info != NULL
7716 && !bfd_link_relocatable (link_info));
7717
7718 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7719 || obfd->xvec->flavour != bfd_target_elf_flavour)
7720 return TRUE;
7721
7722 BFD_ASSERT (elf_section_data (osec) != NULL);
7723
7724 /* For objcopy and relocatable link, don't copy the output ELF
7725 section type from input if the output BFD section flags have been
7726 set to something different. For a final link allow some flags
7727 that the linker clears to differ. */
7728 if (elf_section_type (osec) == SHT_NULL
7729 && (osec->flags == isec->flags
7730 || (final_link
7731 && ((osec->flags ^ isec->flags)
7732 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7733 elf_section_type (osec) = elf_section_type (isec);
7734
7735 /* FIXME: Is this correct for all OS/PROC specific flags? */
7736 elf_section_flags (osec) |= (elf_section_flags (isec)
7737 & (SHF_MASKOS | SHF_MASKPROC));
7738
7739 /* Copy sh_info from input for mbind section. */
7740 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7741 && elf_section_flags (isec) & SHF_GNU_MBIND)
7742 elf_section_data (osec)->this_hdr.sh_info
7743 = elf_section_data (isec)->this_hdr.sh_info;
7744
7745 /* Set things up for objcopy and relocatable link. The output
7746 SHT_GROUP section will have its elf_next_in_group pointing back
7747 to the input group members. Ignore linker created group section.
7748 See elfNN_ia64_object_p in elfxx-ia64.c. */
7749 if ((link_info == NULL
7750 || !link_info->resolve_section_groups)
7751 && (elf_sec_group (isec) == NULL
7752 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7753 {
7754 if (elf_section_flags (isec) & SHF_GROUP)
7755 elf_section_flags (osec) |= SHF_GROUP;
7756 elf_next_in_group (osec) = elf_next_in_group (isec);
7757 elf_section_data (osec)->group = elf_section_data (isec)->group;
7758 }
7759
7760 /* If not decompress, preserve SHF_COMPRESSED. */
7761 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7762 elf_section_flags (osec) |= (elf_section_flags (isec)
7763 & SHF_COMPRESSED);
7764
7765 ihdr = &elf_section_data (isec)->this_hdr;
7766
7767 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7768 don't use the output section of the linked-to section since it
7769 may be NULL at this point. */
7770 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7771 {
7772 ohdr = &elf_section_data (osec)->this_hdr;
7773 ohdr->sh_flags |= SHF_LINK_ORDER;
7774 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7775 }
7776
7777 osec->use_rela_p = isec->use_rela_p;
7778
7779 return TRUE;
7780 }
7781
7782 /* Copy private section information. This copies over the entsize
7783 field, and sometimes the info field. */
7784
7785 bfd_boolean
7786 _bfd_elf_copy_private_section_data (bfd *ibfd,
7787 asection *isec,
7788 bfd *obfd,
7789 asection *osec)
7790 {
7791 Elf_Internal_Shdr *ihdr, *ohdr;
7792
7793 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7794 || obfd->xvec->flavour != bfd_target_elf_flavour)
7795 return TRUE;
7796
7797 ihdr = &elf_section_data (isec)->this_hdr;
7798 ohdr = &elf_section_data (osec)->this_hdr;
7799
7800 ohdr->sh_entsize = ihdr->sh_entsize;
7801
7802 if (ihdr->sh_type == SHT_SYMTAB
7803 || ihdr->sh_type == SHT_DYNSYM
7804 || ihdr->sh_type == SHT_GNU_verneed
7805 || ihdr->sh_type == SHT_GNU_verdef)
7806 ohdr->sh_info = ihdr->sh_info;
7807
7808 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7809 NULL);
7810 }
7811
7812 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7813 necessary if we are removing either the SHT_GROUP section or any of
7814 the group member sections. DISCARDED is the value that a section's
7815 output_section has if the section will be discarded, NULL when this
7816 function is called from objcopy, bfd_abs_section_ptr when called
7817 from the linker. */
7818
7819 bfd_boolean
7820 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7821 {
7822 asection *isec;
7823
7824 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7825 if (elf_section_type (isec) == SHT_GROUP)
7826 {
7827 asection *first = elf_next_in_group (isec);
7828 asection *s = first;
7829 bfd_size_type removed = 0;
7830
7831 while (s != NULL)
7832 {
7833 /* If this member section is being output but the
7834 SHT_GROUP section is not, then clear the group info
7835 set up by _bfd_elf_copy_private_section_data. */
7836 if (s->output_section != discarded
7837 && isec->output_section == discarded)
7838 {
7839 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7840 elf_group_name (s->output_section) = NULL;
7841 }
7842 /* Conversely, if the member section is not being output
7843 but the SHT_GROUP section is, then adjust its size. */
7844 else if (s->output_section == discarded
7845 && isec->output_section != discarded)
7846 {
7847 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7848 removed += 4;
7849 if (elf_sec->rel.hdr != NULL
7850 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7851 removed += 4;
7852 if (elf_sec->rela.hdr != NULL
7853 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7854 removed += 4;
7855 }
7856 s = elf_next_in_group (s);
7857 if (s == first)
7858 break;
7859 }
7860 if (removed != 0)
7861 {
7862 if (discarded != NULL)
7863 {
7864 /* If we've been called for ld -r, then we need to
7865 adjust the input section size. */
7866 if (isec->rawsize == 0)
7867 isec->rawsize = isec->size;
7868 isec->size = isec->rawsize - removed;
7869 if (isec->size <= 4)
7870 {
7871 isec->size = 0;
7872 isec->flags |= SEC_EXCLUDE;
7873 }
7874 }
7875 else
7876 {
7877 /* Adjust the output section size when called from
7878 objcopy. */
7879 isec->output_section->size -= removed;
7880 if (isec->output_section->size <= 4)
7881 {
7882 isec->output_section->size = 0;
7883 isec->output_section->flags |= SEC_EXCLUDE;
7884 }
7885 }
7886 }
7887 }
7888
7889 return TRUE;
7890 }
7891
7892 /* Copy private header information. */
7893
7894 bfd_boolean
7895 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7896 {
7897 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7898 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7899 return TRUE;
7900
7901 /* Copy over private BFD data if it has not already been copied.
7902 This must be done here, rather than in the copy_private_bfd_data
7903 entry point, because the latter is called after the section
7904 contents have been set, which means that the program headers have
7905 already been worked out. */
7906 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7907 {
7908 if (! copy_private_bfd_data (ibfd, obfd))
7909 return FALSE;
7910 }
7911
7912 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7913 }
7914
7915 /* Copy private symbol information. If this symbol is in a section
7916 which we did not map into a BFD section, try to map the section
7917 index correctly. We use special macro definitions for the mapped
7918 section indices; these definitions are interpreted by the
7919 swap_out_syms function. */
7920
7921 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7922 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7923 #define MAP_STRTAB (SHN_HIOS + 3)
7924 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7925 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7926
7927 bfd_boolean
7928 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7929 asymbol *isymarg,
7930 bfd *obfd,
7931 asymbol *osymarg)
7932 {
7933 elf_symbol_type *isym, *osym;
7934
7935 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7936 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7937 return TRUE;
7938
7939 isym = elf_symbol_from (ibfd, isymarg);
7940 osym = elf_symbol_from (obfd, osymarg);
7941
7942 if (isym != NULL
7943 && isym->internal_elf_sym.st_shndx != 0
7944 && osym != NULL
7945 && bfd_is_abs_section (isym->symbol.section))
7946 {
7947 unsigned int shndx;
7948
7949 shndx = isym->internal_elf_sym.st_shndx;
7950 if (shndx == elf_onesymtab (ibfd))
7951 shndx = MAP_ONESYMTAB;
7952 else if (shndx == elf_dynsymtab (ibfd))
7953 shndx = MAP_DYNSYMTAB;
7954 else if (shndx == elf_strtab_sec (ibfd))
7955 shndx = MAP_STRTAB;
7956 else if (shndx == elf_shstrtab_sec (ibfd))
7957 shndx = MAP_SHSTRTAB;
7958 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7959 shndx = MAP_SYM_SHNDX;
7960 osym->internal_elf_sym.st_shndx = shndx;
7961 }
7962
7963 return TRUE;
7964 }
7965
7966 /* Swap out the symbols. */
7967
7968 static bfd_boolean
7969 swap_out_syms (bfd *abfd,
7970 struct elf_strtab_hash **sttp,
7971 int relocatable_p)
7972 {
7973 const struct elf_backend_data *bed;
7974 int symcount;
7975 asymbol **syms;
7976 struct elf_strtab_hash *stt;
7977 Elf_Internal_Shdr *symtab_hdr;
7978 Elf_Internal_Shdr *symtab_shndx_hdr;
7979 Elf_Internal_Shdr *symstrtab_hdr;
7980 struct elf_sym_strtab *symstrtab;
7981 bfd_byte *outbound_syms;
7982 bfd_byte *outbound_shndx;
7983 unsigned long outbound_syms_index;
7984 unsigned long outbound_shndx_index;
7985 int idx;
7986 unsigned int num_locals;
7987 bfd_size_type amt;
7988 bfd_boolean name_local_sections;
7989
7990 if (!elf_map_symbols (abfd, &num_locals))
7991 return FALSE;
7992
7993 /* Dump out the symtabs. */
7994 stt = _bfd_elf_strtab_init ();
7995 if (stt == NULL)
7996 return FALSE;
7997
7998 bed = get_elf_backend_data (abfd);
7999 symcount = bfd_get_symcount (abfd);
8000 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8001 symtab_hdr->sh_type = SHT_SYMTAB;
8002 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8003 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8004 symtab_hdr->sh_info = num_locals + 1;
8005 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8006
8007 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8008 symstrtab_hdr->sh_type = SHT_STRTAB;
8009
8010 /* Allocate buffer to swap out the .strtab section. */
8011 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
8012 sizeof (*symstrtab));
8013 if (symstrtab == NULL)
8014 {
8015 _bfd_elf_strtab_free (stt);
8016 return FALSE;
8017 }
8018
8019 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
8020 bed->s->sizeof_sym);
8021 if (outbound_syms == NULL)
8022 {
8023 error_return:
8024 _bfd_elf_strtab_free (stt);
8025 free (symstrtab);
8026 return FALSE;
8027 }
8028 symtab_hdr->contents = outbound_syms;
8029 outbound_syms_index = 0;
8030
8031 outbound_shndx = NULL;
8032 outbound_shndx_index = 0;
8033
8034 if (elf_symtab_shndx_list (abfd))
8035 {
8036 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8037 if (symtab_shndx_hdr->sh_name != 0)
8038 {
8039 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
8040 outbound_shndx = (bfd_byte *)
8041 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
8042 if (outbound_shndx == NULL)
8043 goto error_return;
8044
8045 symtab_shndx_hdr->contents = outbound_shndx;
8046 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8047 symtab_shndx_hdr->sh_size = amt;
8048 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8049 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8050 }
8051 /* FIXME: What about any other headers in the list ? */
8052 }
8053
8054 /* Now generate the data (for "contents"). */
8055 {
8056 /* Fill in zeroth symbol and swap it out. */
8057 Elf_Internal_Sym sym;
8058 sym.st_name = 0;
8059 sym.st_value = 0;
8060 sym.st_size = 0;
8061 sym.st_info = 0;
8062 sym.st_other = 0;
8063 sym.st_shndx = SHN_UNDEF;
8064 sym.st_target_internal = 0;
8065 symstrtab[0].sym = sym;
8066 symstrtab[0].dest_index = outbound_syms_index;
8067 symstrtab[0].destshndx_index = outbound_shndx_index;
8068 outbound_syms_index++;
8069 if (outbound_shndx != NULL)
8070 outbound_shndx_index++;
8071 }
8072
8073 name_local_sections
8074 = (bed->elf_backend_name_local_section_symbols
8075 && bed->elf_backend_name_local_section_symbols (abfd));
8076
8077 syms = bfd_get_outsymbols (abfd);
8078 for (idx = 0; idx < symcount;)
8079 {
8080 Elf_Internal_Sym sym;
8081 bfd_vma value = syms[idx]->value;
8082 elf_symbol_type *type_ptr;
8083 flagword flags = syms[idx]->flags;
8084 int type;
8085
8086 if (!name_local_sections
8087 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8088 {
8089 /* Local section symbols have no name. */
8090 sym.st_name = (unsigned long) -1;
8091 }
8092 else
8093 {
8094 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8095 to get the final offset for st_name. */
8096 sym.st_name
8097 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8098 FALSE);
8099 if (sym.st_name == (unsigned long) -1)
8100 goto error_return;
8101 }
8102
8103 type_ptr = elf_symbol_from (abfd, syms[idx]);
8104
8105 if ((flags & BSF_SECTION_SYM) == 0
8106 && bfd_is_com_section (syms[idx]->section))
8107 {
8108 /* ELF common symbols put the alignment into the `value' field,
8109 and the size into the `size' field. This is backwards from
8110 how BFD handles it, so reverse it here. */
8111 sym.st_size = value;
8112 if (type_ptr == NULL
8113 || type_ptr->internal_elf_sym.st_value == 0)
8114 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8115 else
8116 sym.st_value = type_ptr->internal_elf_sym.st_value;
8117 sym.st_shndx = _bfd_elf_section_from_bfd_section
8118 (abfd, syms[idx]->section);
8119 }
8120 else
8121 {
8122 asection *sec = syms[idx]->section;
8123 unsigned int shndx;
8124
8125 if (sec->output_section)
8126 {
8127 value += sec->output_offset;
8128 sec = sec->output_section;
8129 }
8130
8131 /* Don't add in the section vma for relocatable output. */
8132 if (! relocatable_p)
8133 value += sec->vma;
8134 sym.st_value = value;
8135 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8136
8137 if (bfd_is_abs_section (sec)
8138 && type_ptr != NULL
8139 && type_ptr->internal_elf_sym.st_shndx != 0)
8140 {
8141 /* This symbol is in a real ELF section which we did
8142 not create as a BFD section. Undo the mapping done
8143 by copy_private_symbol_data. */
8144 shndx = type_ptr->internal_elf_sym.st_shndx;
8145 switch (shndx)
8146 {
8147 case MAP_ONESYMTAB:
8148 shndx = elf_onesymtab (abfd);
8149 break;
8150 case MAP_DYNSYMTAB:
8151 shndx = elf_dynsymtab (abfd);
8152 break;
8153 case MAP_STRTAB:
8154 shndx = elf_strtab_sec (abfd);
8155 break;
8156 case MAP_SHSTRTAB:
8157 shndx = elf_shstrtab_sec (abfd);
8158 break;
8159 case MAP_SYM_SHNDX:
8160 if (elf_symtab_shndx_list (abfd))
8161 shndx = elf_symtab_shndx_list (abfd)->ndx;
8162 break;
8163 default:
8164 shndx = SHN_ABS;
8165 break;
8166 }
8167 }
8168 else
8169 {
8170 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8171
8172 if (shndx == SHN_BAD)
8173 {
8174 asection *sec2;
8175
8176 /* Writing this would be a hell of a lot easier if
8177 we had some decent documentation on bfd, and
8178 knew what to expect of the library, and what to
8179 demand of applications. For example, it
8180 appears that `objcopy' might not set the
8181 section of a symbol to be a section that is
8182 actually in the output file. */
8183 sec2 = bfd_get_section_by_name (abfd, sec->name);
8184 if (sec2 != NULL)
8185 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8186 if (shndx == SHN_BAD)
8187 {
8188 /* xgettext:c-format */
8189 _bfd_error_handler
8190 (_("unable to find equivalent output section"
8191 " for symbol '%s' from section '%s'"),
8192 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8193 sec->name);
8194 bfd_set_error (bfd_error_invalid_operation);
8195 goto error_return;
8196 }
8197 }
8198 }
8199
8200 sym.st_shndx = shndx;
8201 }
8202
8203 if ((flags & BSF_THREAD_LOCAL) != 0)
8204 type = STT_TLS;
8205 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8206 type = STT_GNU_IFUNC;
8207 else if ((flags & BSF_FUNCTION) != 0)
8208 type = STT_FUNC;
8209 else if ((flags & BSF_OBJECT) != 0)
8210 type = STT_OBJECT;
8211 else if ((flags & BSF_RELC) != 0)
8212 type = STT_RELC;
8213 else if ((flags & BSF_SRELC) != 0)
8214 type = STT_SRELC;
8215 else
8216 type = STT_NOTYPE;
8217
8218 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8219 type = STT_TLS;
8220
8221 /* Processor-specific types. */
8222 if (type_ptr != NULL
8223 && bed->elf_backend_get_symbol_type)
8224 type = ((*bed->elf_backend_get_symbol_type)
8225 (&type_ptr->internal_elf_sym, type));
8226
8227 if (flags & BSF_SECTION_SYM)
8228 {
8229 if (flags & BSF_GLOBAL)
8230 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8231 else
8232 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8233 }
8234 else if (bfd_is_com_section (syms[idx]->section))
8235 {
8236 if (type != STT_TLS)
8237 {
8238 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8239 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8240 ? STT_COMMON : STT_OBJECT);
8241 else
8242 type = ((flags & BSF_ELF_COMMON) != 0
8243 ? STT_COMMON : STT_OBJECT);
8244 }
8245 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8246 }
8247 else if (bfd_is_und_section (syms[idx]->section))
8248 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8249 ? STB_WEAK
8250 : STB_GLOBAL),
8251 type);
8252 else if (flags & BSF_FILE)
8253 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8254 else
8255 {
8256 int bind = STB_LOCAL;
8257
8258 if (flags & BSF_LOCAL)
8259 bind = STB_LOCAL;
8260 else if (flags & BSF_GNU_UNIQUE)
8261 bind = STB_GNU_UNIQUE;
8262 else if (flags & BSF_WEAK)
8263 bind = STB_WEAK;
8264 else if (flags & BSF_GLOBAL)
8265 bind = STB_GLOBAL;
8266
8267 sym.st_info = ELF_ST_INFO (bind, type);
8268 }
8269
8270 if (type_ptr != NULL)
8271 {
8272 sym.st_other = type_ptr->internal_elf_sym.st_other;
8273 sym.st_target_internal
8274 = type_ptr->internal_elf_sym.st_target_internal;
8275 }
8276 else
8277 {
8278 sym.st_other = 0;
8279 sym.st_target_internal = 0;
8280 }
8281
8282 idx++;
8283 symstrtab[idx].sym = sym;
8284 symstrtab[idx].dest_index = outbound_syms_index;
8285 symstrtab[idx].destshndx_index = outbound_shndx_index;
8286
8287 outbound_syms_index++;
8288 if (outbound_shndx != NULL)
8289 outbound_shndx_index++;
8290 }
8291
8292 /* Finalize the .strtab section. */
8293 _bfd_elf_strtab_finalize (stt);
8294
8295 /* Swap out the .strtab section. */
8296 for (idx = 0; idx <= symcount; idx++)
8297 {
8298 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8299 if (elfsym->sym.st_name == (unsigned long) -1)
8300 elfsym->sym.st_name = 0;
8301 else
8302 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8303 elfsym->sym.st_name);
8304 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8305 (outbound_syms
8306 + (elfsym->dest_index
8307 * bed->s->sizeof_sym)),
8308 (outbound_shndx
8309 + (elfsym->destshndx_index
8310 * sizeof (Elf_External_Sym_Shndx))));
8311 }
8312 free (symstrtab);
8313
8314 *sttp = stt;
8315 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8316 symstrtab_hdr->sh_type = SHT_STRTAB;
8317 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8318 symstrtab_hdr->sh_addr = 0;
8319 symstrtab_hdr->sh_entsize = 0;
8320 symstrtab_hdr->sh_link = 0;
8321 symstrtab_hdr->sh_info = 0;
8322 symstrtab_hdr->sh_addralign = 1;
8323
8324 return TRUE;
8325 }
8326
8327 /* Return the number of bytes required to hold the symtab vector.
8328
8329 Note that we base it on the count plus 1, since we will null terminate
8330 the vector allocated based on this size. However, the ELF symbol table
8331 always has a dummy entry as symbol #0, so it ends up even. */
8332
8333 long
8334 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8335 {
8336 bfd_size_type symcount;
8337 long symtab_size;
8338 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8339
8340 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8341 if (symcount >= LONG_MAX / sizeof (asymbol *))
8342 {
8343 bfd_set_error (bfd_error_file_too_big);
8344 return -1;
8345 }
8346 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8347 if (symcount > 0)
8348 symtab_size -= sizeof (asymbol *);
8349
8350 return symtab_size;
8351 }
8352
8353 long
8354 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8355 {
8356 bfd_size_type symcount;
8357 long symtab_size;
8358 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8359
8360 if (elf_dynsymtab (abfd) == 0)
8361 {
8362 bfd_set_error (bfd_error_invalid_operation);
8363 return -1;
8364 }
8365
8366 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8367 if (symcount >= LONG_MAX / sizeof (asymbol *))
8368 {
8369 bfd_set_error (bfd_error_file_too_big);
8370 return -1;
8371 }
8372 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8373 if (symcount > 0)
8374 symtab_size -= sizeof (asymbol *);
8375
8376 return symtab_size;
8377 }
8378
8379 long
8380 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8381 sec_ptr asect)
8382 {
8383 #if SIZEOF_LONG == SIZEOF_INT
8384 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8385 {
8386 bfd_set_error (bfd_error_file_too_big);
8387 return -1;
8388 }
8389 #endif
8390 return (asect->reloc_count + 1) * sizeof (arelent *);
8391 }
8392
8393 /* Canonicalize the relocs. */
8394
8395 long
8396 _bfd_elf_canonicalize_reloc (bfd *abfd,
8397 sec_ptr section,
8398 arelent **relptr,
8399 asymbol **symbols)
8400 {
8401 arelent *tblptr;
8402 unsigned int i;
8403 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8404
8405 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8406 return -1;
8407
8408 tblptr = section->relocation;
8409 for (i = 0; i < section->reloc_count; i++)
8410 *relptr++ = tblptr++;
8411
8412 *relptr = NULL;
8413
8414 return section->reloc_count;
8415 }
8416
8417 long
8418 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8419 {
8420 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8421 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8422
8423 if (symcount >= 0)
8424 abfd->symcount = symcount;
8425 return symcount;
8426 }
8427
8428 long
8429 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8430 asymbol **allocation)
8431 {
8432 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8433 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8434
8435 if (symcount >= 0)
8436 abfd->dynsymcount = symcount;
8437 return symcount;
8438 }
8439
8440 /* Return the size required for the dynamic reloc entries. Any loadable
8441 section that was actually installed in the BFD, and has type SHT_REL
8442 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8443 dynamic reloc section. */
8444
8445 long
8446 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8447 {
8448 bfd_size_type count;
8449 asection *s;
8450
8451 if (elf_dynsymtab (abfd) == 0)
8452 {
8453 bfd_set_error (bfd_error_invalid_operation);
8454 return -1;
8455 }
8456
8457 count = 1;
8458 for (s = abfd->sections; s != NULL; s = s->next)
8459 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8460 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8461 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8462 {
8463 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8464 if (count > LONG_MAX / sizeof (arelent *))
8465 {
8466 bfd_set_error (bfd_error_file_too_big);
8467 return -1;
8468 }
8469 }
8470 return count * sizeof (arelent *);
8471 }
8472
8473 /* Canonicalize the dynamic relocation entries. Note that we return the
8474 dynamic relocations as a single block, although they are actually
8475 associated with particular sections; the interface, which was
8476 designed for SunOS style shared libraries, expects that there is only
8477 one set of dynamic relocs. Any loadable section that was actually
8478 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8479 dynamic symbol table, is considered to be a dynamic reloc section. */
8480
8481 long
8482 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8483 arelent **storage,
8484 asymbol **syms)
8485 {
8486 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8487 asection *s;
8488 long ret;
8489
8490 if (elf_dynsymtab (abfd) == 0)
8491 {
8492 bfd_set_error (bfd_error_invalid_operation);
8493 return -1;
8494 }
8495
8496 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8497 ret = 0;
8498 for (s = abfd->sections; s != NULL; s = s->next)
8499 {
8500 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8501 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8502 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8503 {
8504 arelent *p;
8505 long count, i;
8506
8507 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8508 return -1;
8509 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8510 p = s->relocation;
8511 for (i = 0; i < count; i++)
8512 *storage++ = p++;
8513 ret += count;
8514 }
8515 }
8516
8517 *storage = NULL;
8518
8519 return ret;
8520 }
8521 \f
8522 /* Read in the version information. */
8523
8524 bfd_boolean
8525 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8526 {
8527 bfd_byte *contents = NULL;
8528 unsigned int freeidx = 0;
8529
8530 if (elf_dynverref (abfd) != 0)
8531 {
8532 Elf_Internal_Shdr *hdr;
8533 Elf_External_Verneed *everneed;
8534 Elf_Internal_Verneed *iverneed;
8535 unsigned int i;
8536 bfd_byte *contents_end;
8537
8538 hdr = &elf_tdata (abfd)->dynverref_hdr;
8539
8540 if (hdr->sh_info == 0
8541 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8542 {
8543 error_return_bad_verref:
8544 _bfd_error_handler
8545 (_("%pB: .gnu.version_r invalid entry"), abfd);
8546 bfd_set_error (bfd_error_bad_value);
8547 error_return_verref:
8548 elf_tdata (abfd)->verref = NULL;
8549 elf_tdata (abfd)->cverrefs = 0;
8550 goto error_return;
8551 }
8552
8553 ufile_ptr filesize = bfd_get_file_size (abfd);
8554 if (filesize > 0 && filesize < hdr->sh_size)
8555 {
8556 /* PR 24708: Avoid attempts to allocate a ridiculous amount
8557 of memory. */
8558 bfd_set_error (bfd_error_no_memory);
8559 _bfd_error_handler
8560 /* xgettext:c-format */
8561 (_("error: %pB version reference section is too large (%#" PRIx64 " bytes)"),
8562 abfd, (uint64_t) hdr->sh_size);
8563 goto error_return_verref;
8564 }
8565 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8566 if (contents == NULL)
8567 goto error_return_verref;
8568
8569 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8570 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8571 goto error_return_verref;
8572
8573 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8574 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8575
8576 if (elf_tdata (abfd)->verref == NULL)
8577 goto error_return_verref;
8578
8579 BFD_ASSERT (sizeof (Elf_External_Verneed)
8580 == sizeof (Elf_External_Vernaux));
8581 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8582 everneed = (Elf_External_Verneed *) contents;
8583 iverneed = elf_tdata (abfd)->verref;
8584 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8585 {
8586 Elf_External_Vernaux *evernaux;
8587 Elf_Internal_Vernaux *ivernaux;
8588 unsigned int j;
8589
8590 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8591
8592 iverneed->vn_bfd = abfd;
8593
8594 iverneed->vn_filename =
8595 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8596 iverneed->vn_file);
8597 if (iverneed->vn_filename == NULL)
8598 goto error_return_bad_verref;
8599
8600 if (iverneed->vn_cnt == 0)
8601 iverneed->vn_auxptr = NULL;
8602 else
8603 {
8604 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8605 bfd_alloc2 (abfd, iverneed->vn_cnt,
8606 sizeof (Elf_Internal_Vernaux));
8607 if (iverneed->vn_auxptr == NULL)
8608 goto error_return_verref;
8609 }
8610
8611 if (iverneed->vn_aux
8612 > (size_t) (contents_end - (bfd_byte *) everneed))
8613 goto error_return_bad_verref;
8614
8615 evernaux = ((Elf_External_Vernaux *)
8616 ((bfd_byte *) everneed + iverneed->vn_aux));
8617 ivernaux = iverneed->vn_auxptr;
8618 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8619 {
8620 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8621
8622 ivernaux->vna_nodename =
8623 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8624 ivernaux->vna_name);
8625 if (ivernaux->vna_nodename == NULL)
8626 goto error_return_bad_verref;
8627
8628 if (ivernaux->vna_other > freeidx)
8629 freeidx = ivernaux->vna_other;
8630
8631 ivernaux->vna_nextptr = NULL;
8632 if (ivernaux->vna_next == 0)
8633 {
8634 iverneed->vn_cnt = j + 1;
8635 break;
8636 }
8637 if (j + 1 < iverneed->vn_cnt)
8638 ivernaux->vna_nextptr = ivernaux + 1;
8639
8640 if (ivernaux->vna_next
8641 > (size_t) (contents_end - (bfd_byte *) evernaux))
8642 goto error_return_bad_verref;
8643
8644 evernaux = ((Elf_External_Vernaux *)
8645 ((bfd_byte *) evernaux + ivernaux->vna_next));
8646 }
8647
8648 iverneed->vn_nextref = NULL;
8649 if (iverneed->vn_next == 0)
8650 break;
8651 if (i + 1 < hdr->sh_info)
8652 iverneed->vn_nextref = iverneed + 1;
8653
8654 if (iverneed->vn_next
8655 > (size_t) (contents_end - (bfd_byte *) everneed))
8656 goto error_return_bad_verref;
8657
8658 everneed = ((Elf_External_Verneed *)
8659 ((bfd_byte *) everneed + iverneed->vn_next));
8660 }
8661 elf_tdata (abfd)->cverrefs = i;
8662
8663 free (contents);
8664 contents = NULL;
8665 }
8666
8667 if (elf_dynverdef (abfd) != 0)
8668 {
8669 Elf_Internal_Shdr *hdr;
8670 Elf_External_Verdef *everdef;
8671 Elf_Internal_Verdef *iverdef;
8672 Elf_Internal_Verdef *iverdefarr;
8673 Elf_Internal_Verdef iverdefmem;
8674 unsigned int i;
8675 unsigned int maxidx;
8676 bfd_byte *contents_end_def, *contents_end_aux;
8677
8678 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8679
8680 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8681 {
8682 error_return_bad_verdef:
8683 _bfd_error_handler
8684 (_("%pB: .gnu.version_d invalid entry"), abfd);
8685 bfd_set_error (bfd_error_bad_value);
8686 error_return_verdef:
8687 elf_tdata (abfd)->verdef = NULL;
8688 elf_tdata (abfd)->cverdefs = 0;
8689 goto error_return;
8690 }
8691
8692 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8693 if (contents == NULL)
8694 goto error_return_verdef;
8695 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8696 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8697 goto error_return_verdef;
8698
8699 BFD_ASSERT (sizeof (Elf_External_Verdef)
8700 >= sizeof (Elf_External_Verdaux));
8701 contents_end_def = contents + hdr->sh_size
8702 - sizeof (Elf_External_Verdef);
8703 contents_end_aux = contents + hdr->sh_size
8704 - sizeof (Elf_External_Verdaux);
8705
8706 /* We know the number of entries in the section but not the maximum
8707 index. Therefore we have to run through all entries and find
8708 the maximum. */
8709 everdef = (Elf_External_Verdef *) contents;
8710 maxidx = 0;
8711 for (i = 0; i < hdr->sh_info; ++i)
8712 {
8713 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8714
8715 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8716 goto error_return_bad_verdef;
8717 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8718 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8719
8720 if (iverdefmem.vd_next == 0)
8721 break;
8722
8723 if (iverdefmem.vd_next
8724 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8725 goto error_return_bad_verdef;
8726
8727 everdef = ((Elf_External_Verdef *)
8728 ((bfd_byte *) everdef + iverdefmem.vd_next));
8729 }
8730
8731 if (default_imported_symver)
8732 {
8733 if (freeidx > maxidx)
8734 maxidx = ++freeidx;
8735 else
8736 freeidx = ++maxidx;
8737 }
8738
8739 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8740 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8741 if (elf_tdata (abfd)->verdef == NULL)
8742 goto error_return_verdef;
8743
8744 elf_tdata (abfd)->cverdefs = maxidx;
8745
8746 everdef = (Elf_External_Verdef *) contents;
8747 iverdefarr = elf_tdata (abfd)->verdef;
8748 for (i = 0; i < hdr->sh_info; i++)
8749 {
8750 Elf_External_Verdaux *everdaux;
8751 Elf_Internal_Verdaux *iverdaux;
8752 unsigned int j;
8753
8754 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8755
8756 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8757 goto error_return_bad_verdef;
8758
8759 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8760 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8761
8762 iverdef->vd_bfd = abfd;
8763
8764 if (iverdef->vd_cnt == 0)
8765 iverdef->vd_auxptr = NULL;
8766 else
8767 {
8768 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8769 bfd_alloc2 (abfd, iverdef->vd_cnt,
8770 sizeof (Elf_Internal_Verdaux));
8771 if (iverdef->vd_auxptr == NULL)
8772 goto error_return_verdef;
8773 }
8774
8775 if (iverdef->vd_aux
8776 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8777 goto error_return_bad_verdef;
8778
8779 everdaux = ((Elf_External_Verdaux *)
8780 ((bfd_byte *) everdef + iverdef->vd_aux));
8781 iverdaux = iverdef->vd_auxptr;
8782 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8783 {
8784 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8785
8786 iverdaux->vda_nodename =
8787 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8788 iverdaux->vda_name);
8789 if (iverdaux->vda_nodename == NULL)
8790 goto error_return_bad_verdef;
8791
8792 iverdaux->vda_nextptr = NULL;
8793 if (iverdaux->vda_next == 0)
8794 {
8795 iverdef->vd_cnt = j + 1;
8796 break;
8797 }
8798 if (j + 1 < iverdef->vd_cnt)
8799 iverdaux->vda_nextptr = iverdaux + 1;
8800
8801 if (iverdaux->vda_next
8802 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8803 goto error_return_bad_verdef;
8804
8805 everdaux = ((Elf_External_Verdaux *)
8806 ((bfd_byte *) everdaux + iverdaux->vda_next));
8807 }
8808
8809 iverdef->vd_nodename = NULL;
8810 if (iverdef->vd_cnt)
8811 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8812
8813 iverdef->vd_nextdef = NULL;
8814 if (iverdef->vd_next == 0)
8815 break;
8816 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8817 iverdef->vd_nextdef = iverdef + 1;
8818
8819 everdef = ((Elf_External_Verdef *)
8820 ((bfd_byte *) everdef + iverdef->vd_next));
8821 }
8822
8823 free (contents);
8824 contents = NULL;
8825 }
8826 else if (default_imported_symver)
8827 {
8828 if (freeidx < 3)
8829 freeidx = 3;
8830 else
8831 freeidx++;
8832
8833 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8834 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8835 if (elf_tdata (abfd)->verdef == NULL)
8836 goto error_return;
8837
8838 elf_tdata (abfd)->cverdefs = freeidx;
8839 }
8840
8841 /* Create a default version based on the soname. */
8842 if (default_imported_symver)
8843 {
8844 Elf_Internal_Verdef *iverdef;
8845 Elf_Internal_Verdaux *iverdaux;
8846
8847 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8848
8849 iverdef->vd_version = VER_DEF_CURRENT;
8850 iverdef->vd_flags = 0;
8851 iverdef->vd_ndx = freeidx;
8852 iverdef->vd_cnt = 1;
8853
8854 iverdef->vd_bfd = abfd;
8855
8856 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8857 if (iverdef->vd_nodename == NULL)
8858 goto error_return_verdef;
8859 iverdef->vd_nextdef = NULL;
8860 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8861 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8862 if (iverdef->vd_auxptr == NULL)
8863 goto error_return_verdef;
8864
8865 iverdaux = iverdef->vd_auxptr;
8866 iverdaux->vda_nodename = iverdef->vd_nodename;
8867 }
8868
8869 return TRUE;
8870
8871 error_return:
8872 if (contents != NULL)
8873 free (contents);
8874 return FALSE;
8875 }
8876 \f
8877 asymbol *
8878 _bfd_elf_make_empty_symbol (bfd *abfd)
8879 {
8880 elf_symbol_type *newsym;
8881
8882 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8883 if (!newsym)
8884 return NULL;
8885 newsym->symbol.the_bfd = abfd;
8886 return &newsym->symbol;
8887 }
8888
8889 void
8890 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8891 asymbol *symbol,
8892 symbol_info *ret)
8893 {
8894 bfd_symbol_info (symbol, ret);
8895 }
8896
8897 /* Return whether a symbol name implies a local symbol. Most targets
8898 use this function for the is_local_label_name entry point, but some
8899 override it. */
8900
8901 bfd_boolean
8902 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8903 const char *name)
8904 {
8905 /* Normal local symbols start with ``.L''. */
8906 if (name[0] == '.' && name[1] == 'L')
8907 return TRUE;
8908
8909 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8910 DWARF debugging symbols starting with ``..''. */
8911 if (name[0] == '.' && name[1] == '.')
8912 return TRUE;
8913
8914 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8915 emitting DWARF debugging output. I suspect this is actually a
8916 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8917 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8918 underscore to be emitted on some ELF targets). For ease of use,
8919 we treat such symbols as local. */
8920 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8921 return TRUE;
8922
8923 /* Treat assembler generated fake symbols, dollar local labels and
8924 forward-backward labels (aka local labels) as locals.
8925 These labels have the form:
8926
8927 L0^A.* (fake symbols)
8928
8929 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8930
8931 Versions which start with .L will have already been matched above,
8932 so we only need to match the rest. */
8933 if (name[0] == 'L' && ISDIGIT (name[1]))
8934 {
8935 bfd_boolean ret = FALSE;
8936 const char * p;
8937 char c;
8938
8939 for (p = name + 2; (c = *p); p++)
8940 {
8941 if (c == 1 || c == 2)
8942 {
8943 if (c == 1 && p == name + 2)
8944 /* A fake symbol. */
8945 return TRUE;
8946
8947 /* FIXME: We are being paranoid here and treating symbols like
8948 L0^Bfoo as if there were non-local, on the grounds that the
8949 assembler will never generate them. But can any symbol
8950 containing an ASCII value in the range 1-31 ever be anything
8951 other than some kind of local ? */
8952 ret = TRUE;
8953 }
8954
8955 if (! ISDIGIT (c))
8956 {
8957 ret = FALSE;
8958 break;
8959 }
8960 }
8961 return ret;
8962 }
8963
8964 return FALSE;
8965 }
8966
8967 alent *
8968 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8969 asymbol *symbol ATTRIBUTE_UNUSED)
8970 {
8971 abort ();
8972 return NULL;
8973 }
8974
8975 bfd_boolean
8976 _bfd_elf_set_arch_mach (bfd *abfd,
8977 enum bfd_architecture arch,
8978 unsigned long machine)
8979 {
8980 /* If this isn't the right architecture for this backend, and this
8981 isn't the generic backend, fail. */
8982 if (arch != get_elf_backend_data (abfd)->arch
8983 && arch != bfd_arch_unknown
8984 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8985 return FALSE;
8986
8987 return bfd_default_set_arch_mach (abfd, arch, machine);
8988 }
8989
8990 /* Find the nearest line to a particular section and offset,
8991 for error reporting. */
8992
8993 bfd_boolean
8994 _bfd_elf_find_nearest_line (bfd *abfd,
8995 asymbol **symbols,
8996 asection *section,
8997 bfd_vma offset,
8998 const char **filename_ptr,
8999 const char **functionname_ptr,
9000 unsigned int *line_ptr,
9001 unsigned int *discriminator_ptr)
9002 {
9003 bfd_boolean found;
9004
9005 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9006 filename_ptr, functionname_ptr,
9007 line_ptr, discriminator_ptr,
9008 dwarf_debug_sections,
9009 &elf_tdata (abfd)->dwarf2_find_line_info)
9010 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9011 filename_ptr, functionname_ptr,
9012 line_ptr))
9013 {
9014 if (!*functionname_ptr)
9015 _bfd_elf_find_function (abfd, symbols, section, offset,
9016 *filename_ptr ? NULL : filename_ptr,
9017 functionname_ptr);
9018 return TRUE;
9019 }
9020
9021 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9022 &found, filename_ptr,
9023 functionname_ptr, line_ptr,
9024 &elf_tdata (abfd)->line_info))
9025 return FALSE;
9026 if (found && (*functionname_ptr || *line_ptr))
9027 return TRUE;
9028
9029 if (symbols == NULL)
9030 return FALSE;
9031
9032 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9033 filename_ptr, functionname_ptr))
9034 return FALSE;
9035
9036 *line_ptr = 0;
9037 return TRUE;
9038 }
9039
9040 /* Find the line for a symbol. */
9041
9042 bfd_boolean
9043 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9044 const char **filename_ptr, unsigned int *line_ptr)
9045 {
9046 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9047 filename_ptr, NULL, line_ptr, NULL,
9048 dwarf_debug_sections,
9049 &elf_tdata (abfd)->dwarf2_find_line_info);
9050 }
9051
9052 /* After a call to bfd_find_nearest_line, successive calls to
9053 bfd_find_inliner_info can be used to get source information about
9054 each level of function inlining that terminated at the address
9055 passed to bfd_find_nearest_line. Currently this is only supported
9056 for DWARF2 with appropriate DWARF3 extensions. */
9057
9058 bfd_boolean
9059 _bfd_elf_find_inliner_info (bfd *abfd,
9060 const char **filename_ptr,
9061 const char **functionname_ptr,
9062 unsigned int *line_ptr)
9063 {
9064 bfd_boolean found;
9065 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9066 functionname_ptr, line_ptr,
9067 & elf_tdata (abfd)->dwarf2_find_line_info);
9068 return found;
9069 }
9070
9071 int
9072 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9073 {
9074 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9075 int ret = bed->s->sizeof_ehdr;
9076
9077 if (!bfd_link_relocatable (info))
9078 {
9079 bfd_size_type phdr_size = elf_program_header_size (abfd);
9080
9081 if (phdr_size == (bfd_size_type) -1)
9082 {
9083 struct elf_segment_map *m;
9084
9085 phdr_size = 0;
9086 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9087 phdr_size += bed->s->sizeof_phdr;
9088
9089 if (phdr_size == 0)
9090 phdr_size = get_program_header_size (abfd, info);
9091 }
9092
9093 elf_program_header_size (abfd) = phdr_size;
9094 ret += phdr_size;
9095 }
9096
9097 return ret;
9098 }
9099
9100 bfd_boolean
9101 _bfd_elf_set_section_contents (bfd *abfd,
9102 sec_ptr section,
9103 const void *location,
9104 file_ptr offset,
9105 bfd_size_type count)
9106 {
9107 Elf_Internal_Shdr *hdr;
9108 file_ptr pos;
9109
9110 if (! abfd->output_has_begun
9111 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9112 return FALSE;
9113
9114 if (!count)
9115 return TRUE;
9116
9117 hdr = &elf_section_data (section)->this_hdr;
9118 if (hdr->sh_offset == (file_ptr) -1)
9119 {
9120 if (bfd_section_is_ctf (section))
9121 /* Nothing to do with this section: the contents are generated
9122 later. */
9123 return TRUE;
9124
9125 /* We must compress this section. Write output to the buffer. */
9126 unsigned char *contents = hdr->contents;
9127 if ((offset + count) > hdr->sh_size
9128 || (section->flags & SEC_ELF_COMPRESS) == 0
9129 || contents == NULL)
9130 abort ();
9131 memcpy (contents + offset, location, count);
9132 return TRUE;
9133 }
9134 pos = hdr->sh_offset + offset;
9135 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9136 || bfd_bwrite (location, count, abfd) != count)
9137 return FALSE;
9138
9139 return TRUE;
9140 }
9141
9142 bfd_boolean
9143 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9144 arelent *cache_ptr ATTRIBUTE_UNUSED,
9145 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9146 {
9147 abort ();
9148 return FALSE;
9149 }
9150
9151 /* Try to convert a non-ELF reloc into an ELF one. */
9152
9153 bfd_boolean
9154 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9155 {
9156 /* Check whether we really have an ELF howto. */
9157
9158 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9159 {
9160 bfd_reloc_code_real_type code;
9161 reloc_howto_type *howto;
9162
9163 /* Alien reloc: Try to determine its type to replace it with an
9164 equivalent ELF reloc. */
9165
9166 if (areloc->howto->pc_relative)
9167 {
9168 switch (areloc->howto->bitsize)
9169 {
9170 case 8:
9171 code = BFD_RELOC_8_PCREL;
9172 break;
9173 case 12:
9174 code = BFD_RELOC_12_PCREL;
9175 break;
9176 case 16:
9177 code = BFD_RELOC_16_PCREL;
9178 break;
9179 case 24:
9180 code = BFD_RELOC_24_PCREL;
9181 break;
9182 case 32:
9183 code = BFD_RELOC_32_PCREL;
9184 break;
9185 case 64:
9186 code = BFD_RELOC_64_PCREL;
9187 break;
9188 default:
9189 goto fail;
9190 }
9191
9192 howto = bfd_reloc_type_lookup (abfd, code);
9193
9194 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
9195 {
9196 if (howto->pcrel_offset)
9197 areloc->addend += areloc->address;
9198 else
9199 areloc->addend -= areloc->address; /* addend is unsigned!! */
9200 }
9201 }
9202 else
9203 {
9204 switch (areloc->howto->bitsize)
9205 {
9206 case 8:
9207 code = BFD_RELOC_8;
9208 break;
9209 case 14:
9210 code = BFD_RELOC_14;
9211 break;
9212 case 16:
9213 code = BFD_RELOC_16;
9214 break;
9215 case 26:
9216 code = BFD_RELOC_26;
9217 break;
9218 case 32:
9219 code = BFD_RELOC_32;
9220 break;
9221 case 64:
9222 code = BFD_RELOC_64;
9223 break;
9224 default:
9225 goto fail;
9226 }
9227
9228 howto = bfd_reloc_type_lookup (abfd, code);
9229 }
9230
9231 if (howto)
9232 areloc->howto = howto;
9233 else
9234 goto fail;
9235 }
9236
9237 return TRUE;
9238
9239 fail:
9240 /* xgettext:c-format */
9241 _bfd_error_handler (_("%pB: %s unsupported"),
9242 abfd, areloc->howto->name);
9243 bfd_set_error (bfd_error_bad_value);
9244 return FALSE;
9245 }
9246
9247 bfd_boolean
9248 _bfd_elf_close_and_cleanup (bfd *abfd)
9249 {
9250 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9251 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9252 {
9253 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9254 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9255 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9256 }
9257
9258 return _bfd_generic_close_and_cleanup (abfd);
9259 }
9260
9261 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9262 in the relocation's offset. Thus we cannot allow any sort of sanity
9263 range-checking to interfere. There is nothing else to do in processing
9264 this reloc. */
9265
9266 bfd_reloc_status_type
9267 _bfd_elf_rel_vtable_reloc_fn
9268 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9269 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9270 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9271 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9272 {
9273 return bfd_reloc_ok;
9274 }
9275 \f
9276 /* Elf core file support. Much of this only works on native
9277 toolchains, since we rely on knowing the
9278 machine-dependent procfs structure in order to pick
9279 out details about the corefile. */
9280
9281 #ifdef HAVE_SYS_PROCFS_H
9282 /* Needed for new procfs interface on sparc-solaris. */
9283 # define _STRUCTURED_PROC 1
9284 # include <sys/procfs.h>
9285 #endif
9286
9287 /* Return a PID that identifies a "thread" for threaded cores, or the
9288 PID of the main process for non-threaded cores. */
9289
9290 static int
9291 elfcore_make_pid (bfd *abfd)
9292 {
9293 int pid;
9294
9295 pid = elf_tdata (abfd)->core->lwpid;
9296 if (pid == 0)
9297 pid = elf_tdata (abfd)->core->pid;
9298
9299 return pid;
9300 }
9301
9302 /* If there isn't a section called NAME, make one, using
9303 data from SECT. Note, this function will generate a
9304 reference to NAME, so you shouldn't deallocate or
9305 overwrite it. */
9306
9307 static bfd_boolean
9308 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9309 {
9310 asection *sect2;
9311
9312 if (bfd_get_section_by_name (abfd, name) != NULL)
9313 return TRUE;
9314
9315 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9316 if (sect2 == NULL)
9317 return FALSE;
9318
9319 sect2->size = sect->size;
9320 sect2->filepos = sect->filepos;
9321 sect2->alignment_power = sect->alignment_power;
9322 return TRUE;
9323 }
9324
9325 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9326 actually creates up to two pseudosections:
9327 - For the single-threaded case, a section named NAME, unless
9328 such a section already exists.
9329 - For the multi-threaded case, a section named "NAME/PID", where
9330 PID is elfcore_make_pid (abfd).
9331 Both pseudosections have identical contents. */
9332 bfd_boolean
9333 _bfd_elfcore_make_pseudosection (bfd *abfd,
9334 char *name,
9335 size_t size,
9336 ufile_ptr filepos)
9337 {
9338 char buf[100];
9339 char *threaded_name;
9340 size_t len;
9341 asection *sect;
9342
9343 /* Build the section name. */
9344
9345 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9346 len = strlen (buf) + 1;
9347 threaded_name = (char *) bfd_alloc (abfd, len);
9348 if (threaded_name == NULL)
9349 return FALSE;
9350 memcpy (threaded_name, buf, len);
9351
9352 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9353 SEC_HAS_CONTENTS);
9354 if (sect == NULL)
9355 return FALSE;
9356 sect->size = size;
9357 sect->filepos = filepos;
9358 sect->alignment_power = 2;
9359
9360 return elfcore_maybe_make_sect (abfd, name, sect);
9361 }
9362
9363 static bfd_boolean
9364 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9365 size_t offs)
9366 {
9367 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9368 SEC_HAS_CONTENTS);
9369
9370 if (sect == NULL)
9371 return FALSE;
9372
9373 sect->size = note->descsz - offs;
9374 sect->filepos = note->descpos + offs;
9375 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9376
9377 return TRUE;
9378 }
9379
9380 /* prstatus_t exists on:
9381 solaris 2.5+
9382 linux 2.[01] + glibc
9383 unixware 4.2
9384 */
9385
9386 #if defined (HAVE_PRSTATUS_T)
9387
9388 static bfd_boolean
9389 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9390 {
9391 size_t size;
9392 int offset;
9393
9394 if (note->descsz == sizeof (prstatus_t))
9395 {
9396 prstatus_t prstat;
9397
9398 size = sizeof (prstat.pr_reg);
9399 offset = offsetof (prstatus_t, pr_reg);
9400 memcpy (&prstat, note->descdata, sizeof (prstat));
9401
9402 /* Do not overwrite the core signal if it
9403 has already been set by another thread. */
9404 if (elf_tdata (abfd)->core->signal == 0)
9405 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9406 if (elf_tdata (abfd)->core->pid == 0)
9407 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9408
9409 /* pr_who exists on:
9410 solaris 2.5+
9411 unixware 4.2
9412 pr_who doesn't exist on:
9413 linux 2.[01]
9414 */
9415 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9416 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9417 #else
9418 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9419 #endif
9420 }
9421 #if defined (HAVE_PRSTATUS32_T)
9422 else if (note->descsz == sizeof (prstatus32_t))
9423 {
9424 /* 64-bit host, 32-bit corefile */
9425 prstatus32_t prstat;
9426
9427 size = sizeof (prstat.pr_reg);
9428 offset = offsetof (prstatus32_t, pr_reg);
9429 memcpy (&prstat, note->descdata, sizeof (prstat));
9430
9431 /* Do not overwrite the core signal if it
9432 has already been set by another thread. */
9433 if (elf_tdata (abfd)->core->signal == 0)
9434 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9435 if (elf_tdata (abfd)->core->pid == 0)
9436 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9437
9438 /* pr_who exists on:
9439 solaris 2.5+
9440 unixware 4.2
9441 pr_who doesn't exist on:
9442 linux 2.[01]
9443 */
9444 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9445 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9446 #else
9447 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9448 #endif
9449 }
9450 #endif /* HAVE_PRSTATUS32_T */
9451 else
9452 {
9453 /* Fail - we don't know how to handle any other
9454 note size (ie. data object type). */
9455 return TRUE;
9456 }
9457
9458 /* Make a ".reg/999" section and a ".reg" section. */
9459 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9460 size, note->descpos + offset);
9461 }
9462 #endif /* defined (HAVE_PRSTATUS_T) */
9463
9464 /* Create a pseudosection containing the exact contents of NOTE. */
9465 static bfd_boolean
9466 elfcore_make_note_pseudosection (bfd *abfd,
9467 char *name,
9468 Elf_Internal_Note *note)
9469 {
9470 return _bfd_elfcore_make_pseudosection (abfd, name,
9471 note->descsz, note->descpos);
9472 }
9473
9474 /* There isn't a consistent prfpregset_t across platforms,
9475 but it doesn't matter, because we don't have to pick this
9476 data structure apart. */
9477
9478 static bfd_boolean
9479 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9480 {
9481 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9482 }
9483
9484 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9485 type of NT_PRXFPREG. Just include the whole note's contents
9486 literally. */
9487
9488 static bfd_boolean
9489 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9490 {
9491 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9492 }
9493
9494 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9495 with a note type of NT_X86_XSTATE. Just include the whole note's
9496 contents literally. */
9497
9498 static bfd_boolean
9499 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9500 {
9501 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9502 }
9503
9504 static bfd_boolean
9505 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9506 {
9507 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9508 }
9509
9510 static bfd_boolean
9511 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9512 {
9513 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9514 }
9515
9516 static bfd_boolean
9517 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9518 {
9519 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9520 }
9521
9522 static bfd_boolean
9523 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9524 {
9525 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9526 }
9527
9528 static bfd_boolean
9529 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9530 {
9531 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9532 }
9533
9534 static bfd_boolean
9535 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9536 {
9537 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9538 }
9539
9540 static bfd_boolean
9541 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9542 {
9543 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9544 }
9545
9546 static bfd_boolean
9547 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9548 {
9549 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9550 }
9551
9552 static bfd_boolean
9553 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9554 {
9555 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9556 }
9557
9558 static bfd_boolean
9559 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9560 {
9561 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9562 }
9563
9564 static bfd_boolean
9565 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9566 {
9567 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9568 }
9569
9570 static bfd_boolean
9571 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9572 {
9573 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9574 }
9575
9576 static bfd_boolean
9577 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9578 {
9579 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9580 }
9581
9582 static bfd_boolean
9583 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9584 {
9585 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9586 }
9587
9588 static bfd_boolean
9589 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9590 {
9591 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9592 }
9593
9594 static bfd_boolean
9595 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9596 {
9597 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9598 }
9599
9600 static bfd_boolean
9601 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9602 {
9603 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9604 }
9605
9606 static bfd_boolean
9607 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9608 {
9609 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9610 }
9611
9612 static bfd_boolean
9613 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9614 {
9615 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9616 }
9617
9618 static bfd_boolean
9619 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9620 {
9621 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9622 }
9623
9624 static bfd_boolean
9625 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9626 {
9627 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9628 }
9629
9630 static bfd_boolean
9631 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9632 {
9633 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9634 }
9635
9636 static bfd_boolean
9637 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9638 {
9639 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9640 }
9641
9642 static bfd_boolean
9643 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9644 {
9645 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9646 }
9647
9648 static bfd_boolean
9649 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9650 {
9651 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9652 }
9653
9654 static bfd_boolean
9655 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9656 {
9657 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9658 }
9659
9660 static bfd_boolean
9661 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9662 {
9663 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9664 }
9665
9666 static bfd_boolean
9667 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9668 {
9669 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9670 }
9671
9672 static bfd_boolean
9673 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9674 {
9675 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9676 }
9677
9678 static bfd_boolean
9679 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9680 {
9681 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9682 }
9683
9684 static bfd_boolean
9685 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9686 {
9687 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9688 }
9689
9690 static bfd_boolean
9691 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9692 {
9693 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9694 }
9695
9696 static bfd_boolean
9697 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9698 {
9699 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9700 }
9701
9702 static bfd_boolean
9703 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9704 {
9705 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9706 }
9707
9708 #if defined (HAVE_PRPSINFO_T)
9709 typedef prpsinfo_t elfcore_psinfo_t;
9710 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9711 typedef prpsinfo32_t elfcore_psinfo32_t;
9712 #endif
9713 #endif
9714
9715 #if defined (HAVE_PSINFO_T)
9716 typedef psinfo_t elfcore_psinfo_t;
9717 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9718 typedef psinfo32_t elfcore_psinfo32_t;
9719 #endif
9720 #endif
9721
9722 /* return a malloc'ed copy of a string at START which is at
9723 most MAX bytes long, possibly without a terminating '\0'.
9724 the copy will always have a terminating '\0'. */
9725
9726 char *
9727 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9728 {
9729 char *dups;
9730 char *end = (char *) memchr (start, '\0', max);
9731 size_t len;
9732
9733 if (end == NULL)
9734 len = max;
9735 else
9736 len = end - start;
9737
9738 dups = (char *) bfd_alloc (abfd, len + 1);
9739 if (dups == NULL)
9740 return NULL;
9741
9742 memcpy (dups, start, len);
9743 dups[len] = '\0';
9744
9745 return dups;
9746 }
9747
9748 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9749 static bfd_boolean
9750 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9751 {
9752 if (note->descsz == sizeof (elfcore_psinfo_t))
9753 {
9754 elfcore_psinfo_t psinfo;
9755
9756 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9757
9758 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9759 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9760 #endif
9761 elf_tdata (abfd)->core->program
9762 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9763 sizeof (psinfo.pr_fname));
9764
9765 elf_tdata (abfd)->core->command
9766 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9767 sizeof (psinfo.pr_psargs));
9768 }
9769 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9770 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9771 {
9772 /* 64-bit host, 32-bit corefile */
9773 elfcore_psinfo32_t psinfo;
9774
9775 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9776
9777 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9778 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9779 #endif
9780 elf_tdata (abfd)->core->program
9781 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9782 sizeof (psinfo.pr_fname));
9783
9784 elf_tdata (abfd)->core->command
9785 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9786 sizeof (psinfo.pr_psargs));
9787 }
9788 #endif
9789
9790 else
9791 {
9792 /* Fail - we don't know how to handle any other
9793 note size (ie. data object type). */
9794 return TRUE;
9795 }
9796
9797 /* Note that for some reason, a spurious space is tacked
9798 onto the end of the args in some (at least one anyway)
9799 implementations, so strip it off if it exists. */
9800
9801 {
9802 char *command = elf_tdata (abfd)->core->command;
9803 int n = strlen (command);
9804
9805 if (0 < n && command[n - 1] == ' ')
9806 command[n - 1] = '\0';
9807 }
9808
9809 return TRUE;
9810 }
9811 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9812
9813 #if defined (HAVE_PSTATUS_T)
9814 static bfd_boolean
9815 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9816 {
9817 if (note->descsz == sizeof (pstatus_t)
9818 #if defined (HAVE_PXSTATUS_T)
9819 || note->descsz == sizeof (pxstatus_t)
9820 #endif
9821 )
9822 {
9823 pstatus_t pstat;
9824
9825 memcpy (&pstat, note->descdata, sizeof (pstat));
9826
9827 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9828 }
9829 #if defined (HAVE_PSTATUS32_T)
9830 else if (note->descsz == sizeof (pstatus32_t))
9831 {
9832 /* 64-bit host, 32-bit corefile */
9833 pstatus32_t pstat;
9834
9835 memcpy (&pstat, note->descdata, sizeof (pstat));
9836
9837 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9838 }
9839 #endif
9840 /* Could grab some more details from the "representative"
9841 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9842 NT_LWPSTATUS note, presumably. */
9843
9844 return TRUE;
9845 }
9846 #endif /* defined (HAVE_PSTATUS_T) */
9847
9848 #if defined (HAVE_LWPSTATUS_T)
9849 static bfd_boolean
9850 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9851 {
9852 lwpstatus_t lwpstat;
9853 char buf[100];
9854 char *name;
9855 size_t len;
9856 asection *sect;
9857
9858 if (note->descsz != sizeof (lwpstat)
9859 #if defined (HAVE_LWPXSTATUS_T)
9860 && note->descsz != sizeof (lwpxstatus_t)
9861 #endif
9862 )
9863 return TRUE;
9864
9865 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9866
9867 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9868 /* Do not overwrite the core signal if it has already been set by
9869 another thread. */
9870 if (elf_tdata (abfd)->core->signal == 0)
9871 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9872
9873 /* Make a ".reg/999" section. */
9874
9875 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9876 len = strlen (buf) + 1;
9877 name = bfd_alloc (abfd, len);
9878 if (name == NULL)
9879 return FALSE;
9880 memcpy (name, buf, len);
9881
9882 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9883 if (sect == NULL)
9884 return FALSE;
9885
9886 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9887 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9888 sect->filepos = note->descpos
9889 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9890 #endif
9891
9892 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9893 sect->size = sizeof (lwpstat.pr_reg);
9894 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9895 #endif
9896
9897 sect->alignment_power = 2;
9898
9899 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9900 return FALSE;
9901
9902 /* Make a ".reg2/999" section */
9903
9904 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9905 len = strlen (buf) + 1;
9906 name = bfd_alloc (abfd, len);
9907 if (name == NULL)
9908 return FALSE;
9909 memcpy (name, buf, len);
9910
9911 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9912 if (sect == NULL)
9913 return FALSE;
9914
9915 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9916 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9917 sect->filepos = note->descpos
9918 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9919 #endif
9920
9921 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9922 sect->size = sizeof (lwpstat.pr_fpreg);
9923 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9924 #endif
9925
9926 sect->alignment_power = 2;
9927
9928 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9929 }
9930 #endif /* defined (HAVE_LWPSTATUS_T) */
9931
9932 static bfd_boolean
9933 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9934 {
9935 char buf[30];
9936 char *name;
9937 size_t len;
9938 asection *sect;
9939 int type;
9940 int is_active_thread;
9941 bfd_vma base_addr;
9942
9943 if (note->descsz < 728)
9944 return TRUE;
9945
9946 if (! CONST_STRNEQ (note->namedata, "win32"))
9947 return TRUE;
9948
9949 type = bfd_get_32 (abfd, note->descdata);
9950
9951 switch (type)
9952 {
9953 case 1 /* NOTE_INFO_PROCESS */:
9954 /* FIXME: need to add ->core->command. */
9955 /* process_info.pid */
9956 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9957 /* process_info.signal */
9958 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9959 break;
9960
9961 case 2 /* NOTE_INFO_THREAD */:
9962 /* Make a ".reg/999" section. */
9963 /* thread_info.tid */
9964 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9965
9966 len = strlen (buf) + 1;
9967 name = (char *) bfd_alloc (abfd, len);
9968 if (name == NULL)
9969 return FALSE;
9970
9971 memcpy (name, buf, len);
9972
9973 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9974 if (sect == NULL)
9975 return FALSE;
9976
9977 /* sizeof (thread_info.thread_context) */
9978 sect->size = 716;
9979 /* offsetof (thread_info.thread_context) */
9980 sect->filepos = note->descpos + 12;
9981 sect->alignment_power = 2;
9982
9983 /* thread_info.is_active_thread */
9984 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9985
9986 if (is_active_thread)
9987 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9988 return FALSE;
9989 break;
9990
9991 case 3 /* NOTE_INFO_MODULE */:
9992 /* Make a ".module/xxxxxxxx" section. */
9993 /* module_info.base_address */
9994 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9995 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9996
9997 len = strlen (buf) + 1;
9998 name = (char *) bfd_alloc (abfd, len);
9999 if (name == NULL)
10000 return FALSE;
10001
10002 memcpy (name, buf, len);
10003
10004 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10005
10006 if (sect == NULL)
10007 return FALSE;
10008
10009 sect->size = note->descsz;
10010 sect->filepos = note->descpos;
10011 sect->alignment_power = 2;
10012 break;
10013
10014 default:
10015 return TRUE;
10016 }
10017
10018 return TRUE;
10019 }
10020
10021 static bfd_boolean
10022 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10023 {
10024 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10025
10026 switch (note->type)
10027 {
10028 default:
10029 return TRUE;
10030
10031 case NT_PRSTATUS:
10032 if (bed->elf_backend_grok_prstatus)
10033 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10034 return TRUE;
10035 #if defined (HAVE_PRSTATUS_T)
10036 return elfcore_grok_prstatus (abfd, note);
10037 #else
10038 return TRUE;
10039 #endif
10040
10041 #if defined (HAVE_PSTATUS_T)
10042 case NT_PSTATUS:
10043 return elfcore_grok_pstatus (abfd, note);
10044 #endif
10045
10046 #if defined (HAVE_LWPSTATUS_T)
10047 case NT_LWPSTATUS:
10048 return elfcore_grok_lwpstatus (abfd, note);
10049 #endif
10050
10051 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10052 return elfcore_grok_prfpreg (abfd, note);
10053
10054 case NT_WIN32PSTATUS:
10055 return elfcore_grok_win32pstatus (abfd, note);
10056
10057 case NT_PRXFPREG: /* Linux SSE extension */
10058 if (note->namesz == 6
10059 && strcmp (note->namedata, "LINUX") == 0)
10060 return elfcore_grok_prxfpreg (abfd, note);
10061 else
10062 return TRUE;
10063
10064 case NT_X86_XSTATE: /* Linux XSAVE extension */
10065 if (note->namesz == 6
10066 && strcmp (note->namedata, "LINUX") == 0)
10067 return elfcore_grok_xstatereg (abfd, note);
10068 else
10069 return TRUE;
10070
10071 case NT_PPC_VMX:
10072 if (note->namesz == 6
10073 && strcmp (note->namedata, "LINUX") == 0)
10074 return elfcore_grok_ppc_vmx (abfd, note);
10075 else
10076 return TRUE;
10077
10078 case NT_PPC_VSX:
10079 if (note->namesz == 6
10080 && strcmp (note->namedata, "LINUX") == 0)
10081 return elfcore_grok_ppc_vsx (abfd, note);
10082 else
10083 return TRUE;
10084
10085 case NT_PPC_TAR:
10086 if (note->namesz == 6
10087 && strcmp (note->namedata, "LINUX") == 0)
10088 return elfcore_grok_ppc_tar (abfd, note);
10089 else
10090 return TRUE;
10091
10092 case NT_PPC_PPR:
10093 if (note->namesz == 6
10094 && strcmp (note->namedata, "LINUX") == 0)
10095 return elfcore_grok_ppc_ppr (abfd, note);
10096 else
10097 return TRUE;
10098
10099 case NT_PPC_DSCR:
10100 if (note->namesz == 6
10101 && strcmp (note->namedata, "LINUX") == 0)
10102 return elfcore_grok_ppc_dscr (abfd, note);
10103 else
10104 return TRUE;
10105
10106 case NT_PPC_EBB:
10107 if (note->namesz == 6
10108 && strcmp (note->namedata, "LINUX") == 0)
10109 return elfcore_grok_ppc_ebb (abfd, note);
10110 else
10111 return TRUE;
10112
10113 case NT_PPC_PMU:
10114 if (note->namesz == 6
10115 && strcmp (note->namedata, "LINUX") == 0)
10116 return elfcore_grok_ppc_pmu (abfd, note);
10117 else
10118 return TRUE;
10119
10120 case NT_PPC_TM_CGPR:
10121 if (note->namesz == 6
10122 && strcmp (note->namedata, "LINUX") == 0)
10123 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10124 else
10125 return TRUE;
10126
10127 case NT_PPC_TM_CFPR:
10128 if (note->namesz == 6
10129 && strcmp (note->namedata, "LINUX") == 0)
10130 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10131 else
10132 return TRUE;
10133
10134 case NT_PPC_TM_CVMX:
10135 if (note->namesz == 6
10136 && strcmp (note->namedata, "LINUX") == 0)
10137 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10138 else
10139 return TRUE;
10140
10141 case NT_PPC_TM_CVSX:
10142 if (note->namesz == 6
10143 && strcmp (note->namedata, "LINUX") == 0)
10144 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10145 else
10146 return TRUE;
10147
10148 case NT_PPC_TM_SPR:
10149 if (note->namesz == 6
10150 && strcmp (note->namedata, "LINUX") == 0)
10151 return elfcore_grok_ppc_tm_spr (abfd, note);
10152 else
10153 return TRUE;
10154
10155 case NT_PPC_TM_CTAR:
10156 if (note->namesz == 6
10157 && strcmp (note->namedata, "LINUX") == 0)
10158 return elfcore_grok_ppc_tm_ctar (abfd, note);
10159 else
10160 return TRUE;
10161
10162 case NT_PPC_TM_CPPR:
10163 if (note->namesz == 6
10164 && strcmp (note->namedata, "LINUX") == 0)
10165 return elfcore_grok_ppc_tm_cppr (abfd, note);
10166 else
10167 return TRUE;
10168
10169 case NT_PPC_TM_CDSCR:
10170 if (note->namesz == 6
10171 && strcmp (note->namedata, "LINUX") == 0)
10172 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10173 else
10174 return TRUE;
10175
10176 case NT_S390_HIGH_GPRS:
10177 if (note->namesz == 6
10178 && strcmp (note->namedata, "LINUX") == 0)
10179 return elfcore_grok_s390_high_gprs (abfd, note);
10180 else
10181 return TRUE;
10182
10183 case NT_S390_TIMER:
10184 if (note->namesz == 6
10185 && strcmp (note->namedata, "LINUX") == 0)
10186 return elfcore_grok_s390_timer (abfd, note);
10187 else
10188 return TRUE;
10189
10190 case NT_S390_TODCMP:
10191 if (note->namesz == 6
10192 && strcmp (note->namedata, "LINUX") == 0)
10193 return elfcore_grok_s390_todcmp (abfd, note);
10194 else
10195 return TRUE;
10196
10197 case NT_S390_TODPREG:
10198 if (note->namesz == 6
10199 && strcmp (note->namedata, "LINUX") == 0)
10200 return elfcore_grok_s390_todpreg (abfd, note);
10201 else
10202 return TRUE;
10203
10204 case NT_S390_CTRS:
10205 if (note->namesz == 6
10206 && strcmp (note->namedata, "LINUX") == 0)
10207 return elfcore_grok_s390_ctrs (abfd, note);
10208 else
10209 return TRUE;
10210
10211 case NT_S390_PREFIX:
10212 if (note->namesz == 6
10213 && strcmp (note->namedata, "LINUX") == 0)
10214 return elfcore_grok_s390_prefix (abfd, note);
10215 else
10216 return TRUE;
10217
10218 case NT_S390_LAST_BREAK:
10219 if (note->namesz == 6
10220 && strcmp (note->namedata, "LINUX") == 0)
10221 return elfcore_grok_s390_last_break (abfd, note);
10222 else
10223 return TRUE;
10224
10225 case NT_S390_SYSTEM_CALL:
10226 if (note->namesz == 6
10227 && strcmp (note->namedata, "LINUX") == 0)
10228 return elfcore_grok_s390_system_call (abfd, note);
10229 else
10230 return TRUE;
10231
10232 case NT_S390_TDB:
10233 if (note->namesz == 6
10234 && strcmp (note->namedata, "LINUX") == 0)
10235 return elfcore_grok_s390_tdb (abfd, note);
10236 else
10237 return TRUE;
10238
10239 case NT_S390_VXRS_LOW:
10240 if (note->namesz == 6
10241 && strcmp (note->namedata, "LINUX") == 0)
10242 return elfcore_grok_s390_vxrs_low (abfd, note);
10243 else
10244 return TRUE;
10245
10246 case NT_S390_VXRS_HIGH:
10247 if (note->namesz == 6
10248 && strcmp (note->namedata, "LINUX") == 0)
10249 return elfcore_grok_s390_vxrs_high (abfd, note);
10250 else
10251 return TRUE;
10252
10253 case NT_S390_GS_CB:
10254 if (note->namesz == 6
10255 && strcmp (note->namedata, "LINUX") == 0)
10256 return elfcore_grok_s390_gs_cb (abfd, note);
10257 else
10258 return TRUE;
10259
10260 case NT_S390_GS_BC:
10261 if (note->namesz == 6
10262 && strcmp (note->namedata, "LINUX") == 0)
10263 return elfcore_grok_s390_gs_bc (abfd, note);
10264 else
10265 return TRUE;
10266
10267 case NT_ARM_VFP:
10268 if (note->namesz == 6
10269 && strcmp (note->namedata, "LINUX") == 0)
10270 return elfcore_grok_arm_vfp (abfd, note);
10271 else
10272 return TRUE;
10273
10274 case NT_ARM_TLS:
10275 if (note->namesz == 6
10276 && strcmp (note->namedata, "LINUX") == 0)
10277 return elfcore_grok_aarch_tls (abfd, note);
10278 else
10279 return TRUE;
10280
10281 case NT_ARM_HW_BREAK:
10282 if (note->namesz == 6
10283 && strcmp (note->namedata, "LINUX") == 0)
10284 return elfcore_grok_aarch_hw_break (abfd, note);
10285 else
10286 return TRUE;
10287
10288 case NT_ARM_HW_WATCH:
10289 if (note->namesz == 6
10290 && strcmp (note->namedata, "LINUX") == 0)
10291 return elfcore_grok_aarch_hw_watch (abfd, note);
10292 else
10293 return TRUE;
10294
10295 case NT_ARM_SVE:
10296 if (note->namesz == 6
10297 && strcmp (note->namedata, "LINUX") == 0)
10298 return elfcore_grok_aarch_sve (abfd, note);
10299 else
10300 return TRUE;
10301
10302 case NT_ARM_PAC_MASK:
10303 if (note->namesz == 6
10304 && strcmp (note->namedata, "LINUX") == 0)
10305 return elfcore_grok_aarch_pauth (abfd, note);
10306 else
10307 return TRUE;
10308
10309 case NT_PRPSINFO:
10310 case NT_PSINFO:
10311 if (bed->elf_backend_grok_psinfo)
10312 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10313 return TRUE;
10314 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10315 return elfcore_grok_psinfo (abfd, note);
10316 #else
10317 return TRUE;
10318 #endif
10319
10320 case NT_AUXV:
10321 return elfcore_make_auxv_note_section (abfd, note, 0);
10322
10323 case NT_FILE:
10324 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10325 note);
10326
10327 case NT_SIGINFO:
10328 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10329 note);
10330
10331 }
10332 }
10333
10334 static bfd_boolean
10335 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10336 {
10337 struct bfd_build_id* build_id;
10338
10339 if (note->descsz == 0)
10340 return FALSE;
10341
10342 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10343 if (build_id == NULL)
10344 return FALSE;
10345
10346 build_id->size = note->descsz;
10347 memcpy (build_id->data, note->descdata, note->descsz);
10348 abfd->build_id = build_id;
10349
10350 return TRUE;
10351 }
10352
10353 static bfd_boolean
10354 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10355 {
10356 switch (note->type)
10357 {
10358 default:
10359 return TRUE;
10360
10361 case NT_GNU_PROPERTY_TYPE_0:
10362 return _bfd_elf_parse_gnu_properties (abfd, note);
10363
10364 case NT_GNU_BUILD_ID:
10365 return elfobj_grok_gnu_build_id (abfd, note);
10366 }
10367 }
10368
10369 static bfd_boolean
10370 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10371 {
10372 struct sdt_note *cur =
10373 (struct sdt_note *) bfd_alloc (abfd,
10374 sizeof (struct sdt_note) + note->descsz);
10375
10376 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10377 cur->size = (bfd_size_type) note->descsz;
10378 memcpy (cur->data, note->descdata, note->descsz);
10379
10380 elf_tdata (abfd)->sdt_note_head = cur;
10381
10382 return TRUE;
10383 }
10384
10385 static bfd_boolean
10386 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10387 {
10388 switch (note->type)
10389 {
10390 case NT_STAPSDT:
10391 return elfobj_grok_stapsdt_note_1 (abfd, note);
10392
10393 default:
10394 return TRUE;
10395 }
10396 }
10397
10398 static bfd_boolean
10399 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10400 {
10401 size_t offset;
10402
10403 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10404 {
10405 case ELFCLASS32:
10406 if (note->descsz < 108)
10407 return FALSE;
10408 break;
10409
10410 case ELFCLASS64:
10411 if (note->descsz < 120)
10412 return FALSE;
10413 break;
10414
10415 default:
10416 return FALSE;
10417 }
10418
10419 /* Check for version 1 in pr_version. */
10420 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10421 return FALSE;
10422
10423 offset = 4;
10424
10425 /* Skip over pr_psinfosz. */
10426 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10427 offset += 4;
10428 else
10429 {
10430 offset += 4; /* Padding before pr_psinfosz. */
10431 offset += 8;
10432 }
10433
10434 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10435 elf_tdata (abfd)->core->program
10436 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10437 offset += 17;
10438
10439 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10440 elf_tdata (abfd)->core->command
10441 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10442 offset += 81;
10443
10444 /* Padding before pr_pid. */
10445 offset += 2;
10446
10447 /* The pr_pid field was added in version "1a". */
10448 if (note->descsz < offset + 4)
10449 return TRUE;
10450
10451 elf_tdata (abfd)->core->pid
10452 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10453
10454 return TRUE;
10455 }
10456
10457 static bfd_boolean
10458 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10459 {
10460 size_t offset;
10461 size_t size;
10462 size_t min_size;
10463
10464 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10465 Also compute minimum size of this note. */
10466 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10467 {
10468 case ELFCLASS32:
10469 offset = 4 + 4;
10470 min_size = offset + (4 * 2) + 4 + 4 + 4;
10471 break;
10472
10473 case ELFCLASS64:
10474 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10475 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10476 break;
10477
10478 default:
10479 return FALSE;
10480 }
10481
10482 if (note->descsz < min_size)
10483 return FALSE;
10484
10485 /* Check for version 1 in pr_version. */
10486 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10487 return FALSE;
10488
10489 /* Extract size of pr_reg from pr_gregsetsz. */
10490 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10491 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10492 {
10493 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10494 offset += 4 * 2;
10495 }
10496 else
10497 {
10498 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10499 offset += 8 * 2;
10500 }
10501
10502 /* Skip over pr_osreldate. */
10503 offset += 4;
10504
10505 /* Read signal from pr_cursig. */
10506 if (elf_tdata (abfd)->core->signal == 0)
10507 elf_tdata (abfd)->core->signal
10508 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10509 offset += 4;
10510
10511 /* Read TID from pr_pid. */
10512 elf_tdata (abfd)->core->lwpid
10513 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10514 offset += 4;
10515
10516 /* Padding before pr_reg. */
10517 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10518 offset += 4;
10519
10520 /* Make sure that there is enough data remaining in the note. */
10521 if ((note->descsz - offset) < size)
10522 return FALSE;
10523
10524 /* Make a ".reg/999" section and a ".reg" section. */
10525 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10526 size, note->descpos + offset);
10527 }
10528
10529 static bfd_boolean
10530 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10531 {
10532 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10533
10534 switch (note->type)
10535 {
10536 case NT_PRSTATUS:
10537 if (bed->elf_backend_grok_freebsd_prstatus)
10538 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10539 return TRUE;
10540 return elfcore_grok_freebsd_prstatus (abfd, note);
10541
10542 case NT_FPREGSET:
10543 return elfcore_grok_prfpreg (abfd, note);
10544
10545 case NT_PRPSINFO:
10546 return elfcore_grok_freebsd_psinfo (abfd, note);
10547
10548 case NT_FREEBSD_THRMISC:
10549 if (note->namesz == 8)
10550 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10551 else
10552 return TRUE;
10553
10554 case NT_FREEBSD_PROCSTAT_PROC:
10555 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10556 note);
10557
10558 case NT_FREEBSD_PROCSTAT_FILES:
10559 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10560 note);
10561
10562 case NT_FREEBSD_PROCSTAT_VMMAP:
10563 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10564 note);
10565
10566 case NT_FREEBSD_PROCSTAT_AUXV:
10567 return elfcore_make_auxv_note_section (abfd, note, 4);
10568
10569 case NT_X86_XSTATE:
10570 if (note->namesz == 8)
10571 return elfcore_grok_xstatereg (abfd, note);
10572 else
10573 return TRUE;
10574
10575 case NT_FREEBSD_PTLWPINFO:
10576 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10577 note);
10578
10579 case NT_ARM_VFP:
10580 return elfcore_grok_arm_vfp (abfd, note);
10581
10582 default:
10583 return TRUE;
10584 }
10585 }
10586
10587 static bfd_boolean
10588 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10589 {
10590 char *cp;
10591
10592 cp = strchr (note->namedata, '@');
10593 if (cp != NULL)
10594 {
10595 *lwpidp = atoi(cp + 1);
10596 return TRUE;
10597 }
10598 return FALSE;
10599 }
10600
10601 static bfd_boolean
10602 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10603 {
10604 if (note->descsz <= 0x7c + 31)
10605 return FALSE;
10606
10607 /* Signal number at offset 0x08. */
10608 elf_tdata (abfd)->core->signal
10609 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10610
10611 /* Process ID at offset 0x50. */
10612 elf_tdata (abfd)->core->pid
10613 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10614
10615 /* Command name at 0x7c (max 32 bytes, including nul). */
10616 elf_tdata (abfd)->core->command
10617 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10618
10619 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10620 note);
10621 }
10622
10623 static bfd_boolean
10624 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10625 {
10626 int lwp;
10627
10628 if (elfcore_netbsd_get_lwpid (note, &lwp))
10629 elf_tdata (abfd)->core->lwpid = lwp;
10630
10631 switch (note->type)
10632 {
10633 case NT_NETBSDCORE_PROCINFO:
10634 /* NetBSD-specific core "procinfo". Note that we expect to
10635 find this note before any of the others, which is fine,
10636 since the kernel writes this note out first when it
10637 creates a core file. */
10638 return elfcore_grok_netbsd_procinfo (abfd, note);
10639 #ifdef NT_NETBSDCORE_AUXV
10640 case NT_NETBSDCORE_AUXV:
10641 /* NetBSD-specific Elf Auxiliary Vector data. */
10642 return elfcore_make_auxv_note_section (abfd, note, 4);
10643 #endif
10644 default:
10645 break;
10646 }
10647
10648 /* As of March 2017 there are no other machine-independent notes
10649 defined for NetBSD core files. If the note type is less
10650 than the start of the machine-dependent note types, we don't
10651 understand it. */
10652
10653 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10654 return TRUE;
10655
10656
10657 switch (bfd_get_arch (abfd))
10658 {
10659 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10660 PT_GETFPREGS == mach+2. */
10661
10662 case bfd_arch_alpha:
10663 case bfd_arch_sparc:
10664 switch (note->type)
10665 {
10666 case NT_NETBSDCORE_FIRSTMACH+0:
10667 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10668
10669 case NT_NETBSDCORE_FIRSTMACH+2:
10670 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10671
10672 default:
10673 return TRUE;
10674 }
10675
10676 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10677 There's also old PT___GETREGS40 == mach + 1 for old reg
10678 structure which lacks GBR. */
10679
10680 case bfd_arch_sh:
10681 switch (note->type)
10682 {
10683 case NT_NETBSDCORE_FIRSTMACH+3:
10684 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10685
10686 case NT_NETBSDCORE_FIRSTMACH+5:
10687 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10688
10689 default:
10690 return TRUE;
10691 }
10692
10693 /* On all other arch's, PT_GETREGS == mach+1 and
10694 PT_GETFPREGS == mach+3. */
10695
10696 default:
10697 switch (note->type)
10698 {
10699 case NT_NETBSDCORE_FIRSTMACH+1:
10700 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10701
10702 case NT_NETBSDCORE_FIRSTMACH+3:
10703 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10704
10705 default:
10706 return TRUE;
10707 }
10708 }
10709 /* NOTREACHED */
10710 }
10711
10712 static bfd_boolean
10713 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10714 {
10715 if (note->descsz <= 0x48 + 31)
10716 return FALSE;
10717
10718 /* Signal number at offset 0x08. */
10719 elf_tdata (abfd)->core->signal
10720 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10721
10722 /* Process ID at offset 0x20. */
10723 elf_tdata (abfd)->core->pid
10724 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10725
10726 /* Command name at 0x48 (max 32 bytes, including nul). */
10727 elf_tdata (abfd)->core->command
10728 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10729
10730 return TRUE;
10731 }
10732
10733 static bfd_boolean
10734 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10735 {
10736 if (note->type == NT_OPENBSD_PROCINFO)
10737 return elfcore_grok_openbsd_procinfo (abfd, note);
10738
10739 if (note->type == NT_OPENBSD_REGS)
10740 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10741
10742 if (note->type == NT_OPENBSD_FPREGS)
10743 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10744
10745 if (note->type == NT_OPENBSD_XFPREGS)
10746 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10747
10748 if (note->type == NT_OPENBSD_AUXV)
10749 return elfcore_make_auxv_note_section (abfd, note, 0);
10750
10751 if (note->type == NT_OPENBSD_WCOOKIE)
10752 {
10753 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10754 SEC_HAS_CONTENTS);
10755
10756 if (sect == NULL)
10757 return FALSE;
10758 sect->size = note->descsz;
10759 sect->filepos = note->descpos;
10760 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10761
10762 return TRUE;
10763 }
10764
10765 return TRUE;
10766 }
10767
10768 static bfd_boolean
10769 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10770 {
10771 void *ddata = note->descdata;
10772 char buf[100];
10773 char *name;
10774 asection *sect;
10775 short sig;
10776 unsigned flags;
10777
10778 if (note->descsz < 16)
10779 return FALSE;
10780
10781 /* nto_procfs_status 'pid' field is at offset 0. */
10782 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10783
10784 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10785 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10786
10787 /* nto_procfs_status 'flags' field is at offset 8. */
10788 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10789
10790 /* nto_procfs_status 'what' field is at offset 14. */
10791 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10792 {
10793 elf_tdata (abfd)->core->signal = sig;
10794 elf_tdata (abfd)->core->lwpid = *tid;
10795 }
10796
10797 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10798 do not come from signals so we make sure we set the current
10799 thread just in case. */
10800 if (flags & 0x00000080)
10801 elf_tdata (abfd)->core->lwpid = *tid;
10802
10803 /* Make a ".qnx_core_status/%d" section. */
10804 sprintf (buf, ".qnx_core_status/%ld", *tid);
10805
10806 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10807 if (name == NULL)
10808 return FALSE;
10809 strcpy (name, buf);
10810
10811 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10812 if (sect == NULL)
10813 return FALSE;
10814
10815 sect->size = note->descsz;
10816 sect->filepos = note->descpos;
10817 sect->alignment_power = 2;
10818
10819 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10820 }
10821
10822 static bfd_boolean
10823 elfcore_grok_nto_regs (bfd *abfd,
10824 Elf_Internal_Note *note,
10825 long tid,
10826 char *base)
10827 {
10828 char buf[100];
10829 char *name;
10830 asection *sect;
10831
10832 /* Make a "(base)/%d" section. */
10833 sprintf (buf, "%s/%ld", base, tid);
10834
10835 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10836 if (name == NULL)
10837 return FALSE;
10838 strcpy (name, buf);
10839
10840 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10841 if (sect == NULL)
10842 return FALSE;
10843
10844 sect->size = note->descsz;
10845 sect->filepos = note->descpos;
10846 sect->alignment_power = 2;
10847
10848 /* This is the current thread. */
10849 if (elf_tdata (abfd)->core->lwpid == tid)
10850 return elfcore_maybe_make_sect (abfd, base, sect);
10851
10852 return TRUE;
10853 }
10854
10855 #define BFD_QNT_CORE_INFO 7
10856 #define BFD_QNT_CORE_STATUS 8
10857 #define BFD_QNT_CORE_GREG 9
10858 #define BFD_QNT_CORE_FPREG 10
10859
10860 static bfd_boolean
10861 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10862 {
10863 /* Every GREG section has a STATUS section before it. Store the
10864 tid from the previous call to pass down to the next gregs
10865 function. */
10866 static long tid = 1;
10867
10868 switch (note->type)
10869 {
10870 case BFD_QNT_CORE_INFO:
10871 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10872 case BFD_QNT_CORE_STATUS:
10873 return elfcore_grok_nto_status (abfd, note, &tid);
10874 case BFD_QNT_CORE_GREG:
10875 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10876 case BFD_QNT_CORE_FPREG:
10877 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10878 default:
10879 return TRUE;
10880 }
10881 }
10882
10883 static bfd_boolean
10884 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10885 {
10886 char *name;
10887 asection *sect;
10888 size_t len;
10889
10890 /* Use note name as section name. */
10891 len = note->namesz;
10892 name = (char *) bfd_alloc (abfd, len);
10893 if (name == NULL)
10894 return FALSE;
10895 memcpy (name, note->namedata, len);
10896 name[len - 1] = '\0';
10897
10898 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10899 if (sect == NULL)
10900 return FALSE;
10901
10902 sect->size = note->descsz;
10903 sect->filepos = note->descpos;
10904 sect->alignment_power = 1;
10905
10906 return TRUE;
10907 }
10908
10909 /* Function: elfcore_write_note
10910
10911 Inputs:
10912 buffer to hold note, and current size of buffer
10913 name of note
10914 type of note
10915 data for note
10916 size of data for note
10917
10918 Writes note to end of buffer. ELF64 notes are written exactly as
10919 for ELF32, despite the current (as of 2006) ELF gabi specifying
10920 that they ought to have 8-byte namesz and descsz field, and have
10921 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10922
10923 Return:
10924 Pointer to realloc'd buffer, *BUFSIZ updated. */
10925
10926 char *
10927 elfcore_write_note (bfd *abfd,
10928 char *buf,
10929 int *bufsiz,
10930 const char *name,
10931 int type,
10932 const void *input,
10933 int size)
10934 {
10935 Elf_External_Note *xnp;
10936 size_t namesz;
10937 size_t newspace;
10938 char *dest;
10939
10940 namesz = 0;
10941 if (name != NULL)
10942 namesz = strlen (name) + 1;
10943
10944 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10945
10946 buf = (char *) realloc (buf, *bufsiz + newspace);
10947 if (buf == NULL)
10948 return buf;
10949 dest = buf + *bufsiz;
10950 *bufsiz += newspace;
10951 xnp = (Elf_External_Note *) dest;
10952 H_PUT_32 (abfd, namesz, xnp->namesz);
10953 H_PUT_32 (abfd, size, xnp->descsz);
10954 H_PUT_32 (abfd, type, xnp->type);
10955 dest = xnp->name;
10956 if (name != NULL)
10957 {
10958 memcpy (dest, name, namesz);
10959 dest += namesz;
10960 while (namesz & 3)
10961 {
10962 *dest++ = '\0';
10963 ++namesz;
10964 }
10965 }
10966 memcpy (dest, input, size);
10967 dest += size;
10968 while (size & 3)
10969 {
10970 *dest++ = '\0';
10971 ++size;
10972 }
10973 return buf;
10974 }
10975
10976 /* gcc-8 warns (*) on all the strncpy calls in this function about
10977 possible string truncation. The "truncation" is not a bug. We
10978 have an external representation of structs with fields that are not
10979 necessarily NULL terminated and corresponding internal
10980 representation fields that are one larger so that they can always
10981 be NULL terminated.
10982 gcc versions between 4.2 and 4.6 do not allow pragma control of
10983 diagnostics inside functions, giving a hard error if you try to use
10984 the finer control available with later versions.
10985 gcc prior to 4.2 warns about diagnostic push and pop.
10986 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
10987 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
10988 (*) Depending on your system header files! */
10989 #if GCC_VERSION >= 8000
10990 # pragma GCC diagnostic push
10991 # pragma GCC diagnostic ignored "-Wstringop-truncation"
10992 #endif
10993 char *
10994 elfcore_write_prpsinfo (bfd *abfd,
10995 char *buf,
10996 int *bufsiz,
10997 const char *fname,
10998 const char *psargs)
10999 {
11000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11001
11002 if (bed->elf_backend_write_core_note != NULL)
11003 {
11004 char *ret;
11005 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11006 NT_PRPSINFO, fname, psargs);
11007 if (ret != NULL)
11008 return ret;
11009 }
11010
11011 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11012 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11013 if (bed->s->elfclass == ELFCLASS32)
11014 {
11015 # if defined (HAVE_PSINFO32_T)
11016 psinfo32_t data;
11017 int note_type = NT_PSINFO;
11018 # else
11019 prpsinfo32_t data;
11020 int note_type = NT_PRPSINFO;
11021 # endif
11022
11023 memset (&data, 0, sizeof (data));
11024 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11025 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11026 return elfcore_write_note (abfd, buf, bufsiz,
11027 "CORE", note_type, &data, sizeof (data));
11028 }
11029 else
11030 # endif
11031 {
11032 # if defined (HAVE_PSINFO_T)
11033 psinfo_t data;
11034 int note_type = NT_PSINFO;
11035 # else
11036 prpsinfo_t data;
11037 int note_type = NT_PRPSINFO;
11038 # endif
11039
11040 memset (&data, 0, sizeof (data));
11041 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11042 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11043 return elfcore_write_note (abfd, buf, bufsiz,
11044 "CORE", note_type, &data, sizeof (data));
11045 }
11046 #endif /* PSINFO_T or PRPSINFO_T */
11047
11048 free (buf);
11049 return NULL;
11050 }
11051 #if GCC_VERSION >= 8000
11052 # pragma GCC diagnostic pop
11053 #endif
11054
11055 char *
11056 elfcore_write_linux_prpsinfo32
11057 (bfd *abfd, char *buf, int *bufsiz,
11058 const struct elf_internal_linux_prpsinfo *prpsinfo)
11059 {
11060 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11061 {
11062 struct elf_external_linux_prpsinfo32_ugid16 data;
11063
11064 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11065 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11066 &data, sizeof (data));
11067 }
11068 else
11069 {
11070 struct elf_external_linux_prpsinfo32_ugid32 data;
11071
11072 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11073 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11074 &data, sizeof (data));
11075 }
11076 }
11077
11078 char *
11079 elfcore_write_linux_prpsinfo64
11080 (bfd *abfd, char *buf, int *bufsiz,
11081 const struct elf_internal_linux_prpsinfo *prpsinfo)
11082 {
11083 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11084 {
11085 struct elf_external_linux_prpsinfo64_ugid16 data;
11086
11087 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11088 return elfcore_write_note (abfd, buf, bufsiz,
11089 "CORE", NT_PRPSINFO, &data, sizeof (data));
11090 }
11091 else
11092 {
11093 struct elf_external_linux_prpsinfo64_ugid32 data;
11094
11095 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11096 return elfcore_write_note (abfd, buf, bufsiz,
11097 "CORE", NT_PRPSINFO, &data, sizeof (data));
11098 }
11099 }
11100
11101 char *
11102 elfcore_write_prstatus (bfd *abfd,
11103 char *buf,
11104 int *bufsiz,
11105 long pid,
11106 int cursig,
11107 const void *gregs)
11108 {
11109 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11110
11111 if (bed->elf_backend_write_core_note != NULL)
11112 {
11113 char *ret;
11114 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11115 NT_PRSTATUS,
11116 pid, cursig, gregs);
11117 if (ret != NULL)
11118 return ret;
11119 }
11120
11121 #if defined (HAVE_PRSTATUS_T)
11122 #if defined (HAVE_PRSTATUS32_T)
11123 if (bed->s->elfclass == ELFCLASS32)
11124 {
11125 prstatus32_t prstat;
11126
11127 memset (&prstat, 0, sizeof (prstat));
11128 prstat.pr_pid = pid;
11129 prstat.pr_cursig = cursig;
11130 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11131 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11132 NT_PRSTATUS, &prstat, sizeof (prstat));
11133 }
11134 else
11135 #endif
11136 {
11137 prstatus_t prstat;
11138
11139 memset (&prstat, 0, sizeof (prstat));
11140 prstat.pr_pid = pid;
11141 prstat.pr_cursig = cursig;
11142 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11143 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11144 NT_PRSTATUS, &prstat, sizeof (prstat));
11145 }
11146 #endif /* HAVE_PRSTATUS_T */
11147
11148 free (buf);
11149 return NULL;
11150 }
11151
11152 #if defined (HAVE_LWPSTATUS_T)
11153 char *
11154 elfcore_write_lwpstatus (bfd *abfd,
11155 char *buf,
11156 int *bufsiz,
11157 long pid,
11158 int cursig,
11159 const void *gregs)
11160 {
11161 lwpstatus_t lwpstat;
11162 const char *note_name = "CORE";
11163
11164 memset (&lwpstat, 0, sizeof (lwpstat));
11165 lwpstat.pr_lwpid = pid >> 16;
11166 lwpstat.pr_cursig = cursig;
11167 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11168 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11169 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11170 #if !defined(gregs)
11171 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11172 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11173 #else
11174 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11175 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11176 #endif
11177 #endif
11178 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11179 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11180 }
11181 #endif /* HAVE_LWPSTATUS_T */
11182
11183 #if defined (HAVE_PSTATUS_T)
11184 char *
11185 elfcore_write_pstatus (bfd *abfd,
11186 char *buf,
11187 int *bufsiz,
11188 long pid,
11189 int cursig ATTRIBUTE_UNUSED,
11190 const void *gregs ATTRIBUTE_UNUSED)
11191 {
11192 const char *note_name = "CORE";
11193 #if defined (HAVE_PSTATUS32_T)
11194 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11195
11196 if (bed->s->elfclass == ELFCLASS32)
11197 {
11198 pstatus32_t pstat;
11199
11200 memset (&pstat, 0, sizeof (pstat));
11201 pstat.pr_pid = pid & 0xffff;
11202 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11203 NT_PSTATUS, &pstat, sizeof (pstat));
11204 return buf;
11205 }
11206 else
11207 #endif
11208 {
11209 pstatus_t pstat;
11210
11211 memset (&pstat, 0, sizeof (pstat));
11212 pstat.pr_pid = pid & 0xffff;
11213 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11214 NT_PSTATUS, &pstat, sizeof (pstat));
11215 return buf;
11216 }
11217 }
11218 #endif /* HAVE_PSTATUS_T */
11219
11220 char *
11221 elfcore_write_prfpreg (bfd *abfd,
11222 char *buf,
11223 int *bufsiz,
11224 const void *fpregs,
11225 int size)
11226 {
11227 const char *note_name = "CORE";
11228 return elfcore_write_note (abfd, buf, bufsiz,
11229 note_name, NT_FPREGSET, fpregs, size);
11230 }
11231
11232 char *
11233 elfcore_write_prxfpreg (bfd *abfd,
11234 char *buf,
11235 int *bufsiz,
11236 const void *xfpregs,
11237 int size)
11238 {
11239 char *note_name = "LINUX";
11240 return elfcore_write_note (abfd, buf, bufsiz,
11241 note_name, NT_PRXFPREG, xfpregs, size);
11242 }
11243
11244 char *
11245 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11246 const void *xfpregs, int size)
11247 {
11248 char *note_name;
11249 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11250 note_name = "FreeBSD";
11251 else
11252 note_name = "LINUX";
11253 return elfcore_write_note (abfd, buf, bufsiz,
11254 note_name, NT_X86_XSTATE, xfpregs, size);
11255 }
11256
11257 char *
11258 elfcore_write_ppc_vmx (bfd *abfd,
11259 char *buf,
11260 int *bufsiz,
11261 const void *ppc_vmx,
11262 int size)
11263 {
11264 char *note_name = "LINUX";
11265 return elfcore_write_note (abfd, buf, bufsiz,
11266 note_name, NT_PPC_VMX, ppc_vmx, size);
11267 }
11268
11269 char *
11270 elfcore_write_ppc_vsx (bfd *abfd,
11271 char *buf,
11272 int *bufsiz,
11273 const void *ppc_vsx,
11274 int size)
11275 {
11276 char *note_name = "LINUX";
11277 return elfcore_write_note (abfd, buf, bufsiz,
11278 note_name, NT_PPC_VSX, ppc_vsx, size);
11279 }
11280
11281 char *
11282 elfcore_write_ppc_tar (bfd *abfd,
11283 char *buf,
11284 int *bufsiz,
11285 const void *ppc_tar,
11286 int size)
11287 {
11288 char *note_name = "LINUX";
11289 return elfcore_write_note (abfd, buf, bufsiz,
11290 note_name, NT_PPC_TAR, ppc_tar, size);
11291 }
11292
11293 char *
11294 elfcore_write_ppc_ppr (bfd *abfd,
11295 char *buf,
11296 int *bufsiz,
11297 const void *ppc_ppr,
11298 int size)
11299 {
11300 char *note_name = "LINUX";
11301 return elfcore_write_note (abfd, buf, bufsiz,
11302 note_name, NT_PPC_PPR, ppc_ppr, size);
11303 }
11304
11305 char *
11306 elfcore_write_ppc_dscr (bfd *abfd,
11307 char *buf,
11308 int *bufsiz,
11309 const void *ppc_dscr,
11310 int size)
11311 {
11312 char *note_name = "LINUX";
11313 return elfcore_write_note (abfd, buf, bufsiz,
11314 note_name, NT_PPC_DSCR, ppc_dscr, size);
11315 }
11316
11317 char *
11318 elfcore_write_ppc_ebb (bfd *abfd,
11319 char *buf,
11320 int *bufsiz,
11321 const void *ppc_ebb,
11322 int size)
11323 {
11324 char *note_name = "LINUX";
11325 return elfcore_write_note (abfd, buf, bufsiz,
11326 note_name, NT_PPC_EBB, ppc_ebb, size);
11327 }
11328
11329 char *
11330 elfcore_write_ppc_pmu (bfd *abfd,
11331 char *buf,
11332 int *bufsiz,
11333 const void *ppc_pmu,
11334 int size)
11335 {
11336 char *note_name = "LINUX";
11337 return elfcore_write_note (abfd, buf, bufsiz,
11338 note_name, NT_PPC_PMU, ppc_pmu, size);
11339 }
11340
11341 char *
11342 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11343 char *buf,
11344 int *bufsiz,
11345 const void *ppc_tm_cgpr,
11346 int size)
11347 {
11348 char *note_name = "LINUX";
11349 return elfcore_write_note (abfd, buf, bufsiz,
11350 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11351 }
11352
11353 char *
11354 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11355 char *buf,
11356 int *bufsiz,
11357 const void *ppc_tm_cfpr,
11358 int size)
11359 {
11360 char *note_name = "LINUX";
11361 return elfcore_write_note (abfd, buf, bufsiz,
11362 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11363 }
11364
11365 char *
11366 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11367 char *buf,
11368 int *bufsiz,
11369 const void *ppc_tm_cvmx,
11370 int size)
11371 {
11372 char *note_name = "LINUX";
11373 return elfcore_write_note (abfd, buf, bufsiz,
11374 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11375 }
11376
11377 char *
11378 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11379 char *buf,
11380 int *bufsiz,
11381 const void *ppc_tm_cvsx,
11382 int size)
11383 {
11384 char *note_name = "LINUX";
11385 return elfcore_write_note (abfd, buf, bufsiz,
11386 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11387 }
11388
11389 char *
11390 elfcore_write_ppc_tm_spr (bfd *abfd,
11391 char *buf,
11392 int *bufsiz,
11393 const void *ppc_tm_spr,
11394 int size)
11395 {
11396 char *note_name = "LINUX";
11397 return elfcore_write_note (abfd, buf, bufsiz,
11398 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11399 }
11400
11401 char *
11402 elfcore_write_ppc_tm_ctar (bfd *abfd,
11403 char *buf,
11404 int *bufsiz,
11405 const void *ppc_tm_ctar,
11406 int size)
11407 {
11408 char *note_name = "LINUX";
11409 return elfcore_write_note (abfd, buf, bufsiz,
11410 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11411 }
11412
11413 char *
11414 elfcore_write_ppc_tm_cppr (bfd *abfd,
11415 char *buf,
11416 int *bufsiz,
11417 const void *ppc_tm_cppr,
11418 int size)
11419 {
11420 char *note_name = "LINUX";
11421 return elfcore_write_note (abfd, buf, bufsiz,
11422 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11423 }
11424
11425 char *
11426 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11427 char *buf,
11428 int *bufsiz,
11429 const void *ppc_tm_cdscr,
11430 int size)
11431 {
11432 char *note_name = "LINUX";
11433 return elfcore_write_note (abfd, buf, bufsiz,
11434 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11435 }
11436
11437 static char *
11438 elfcore_write_s390_high_gprs (bfd *abfd,
11439 char *buf,
11440 int *bufsiz,
11441 const void *s390_high_gprs,
11442 int size)
11443 {
11444 char *note_name = "LINUX";
11445 return elfcore_write_note (abfd, buf, bufsiz,
11446 note_name, NT_S390_HIGH_GPRS,
11447 s390_high_gprs, size);
11448 }
11449
11450 char *
11451 elfcore_write_s390_timer (bfd *abfd,
11452 char *buf,
11453 int *bufsiz,
11454 const void *s390_timer,
11455 int size)
11456 {
11457 char *note_name = "LINUX";
11458 return elfcore_write_note (abfd, buf, bufsiz,
11459 note_name, NT_S390_TIMER, s390_timer, size);
11460 }
11461
11462 char *
11463 elfcore_write_s390_todcmp (bfd *abfd,
11464 char *buf,
11465 int *bufsiz,
11466 const void *s390_todcmp,
11467 int size)
11468 {
11469 char *note_name = "LINUX";
11470 return elfcore_write_note (abfd, buf, bufsiz,
11471 note_name, NT_S390_TODCMP, s390_todcmp, size);
11472 }
11473
11474 char *
11475 elfcore_write_s390_todpreg (bfd *abfd,
11476 char *buf,
11477 int *bufsiz,
11478 const void *s390_todpreg,
11479 int size)
11480 {
11481 char *note_name = "LINUX";
11482 return elfcore_write_note (abfd, buf, bufsiz,
11483 note_name, NT_S390_TODPREG, s390_todpreg, size);
11484 }
11485
11486 char *
11487 elfcore_write_s390_ctrs (bfd *abfd,
11488 char *buf,
11489 int *bufsiz,
11490 const void *s390_ctrs,
11491 int size)
11492 {
11493 char *note_name = "LINUX";
11494 return elfcore_write_note (abfd, buf, bufsiz,
11495 note_name, NT_S390_CTRS, s390_ctrs, size);
11496 }
11497
11498 char *
11499 elfcore_write_s390_prefix (bfd *abfd,
11500 char *buf,
11501 int *bufsiz,
11502 const void *s390_prefix,
11503 int size)
11504 {
11505 char *note_name = "LINUX";
11506 return elfcore_write_note (abfd, buf, bufsiz,
11507 note_name, NT_S390_PREFIX, s390_prefix, size);
11508 }
11509
11510 char *
11511 elfcore_write_s390_last_break (bfd *abfd,
11512 char *buf,
11513 int *bufsiz,
11514 const void *s390_last_break,
11515 int size)
11516 {
11517 char *note_name = "LINUX";
11518 return elfcore_write_note (abfd, buf, bufsiz,
11519 note_name, NT_S390_LAST_BREAK,
11520 s390_last_break, size);
11521 }
11522
11523 char *
11524 elfcore_write_s390_system_call (bfd *abfd,
11525 char *buf,
11526 int *bufsiz,
11527 const void *s390_system_call,
11528 int size)
11529 {
11530 char *note_name = "LINUX";
11531 return elfcore_write_note (abfd, buf, bufsiz,
11532 note_name, NT_S390_SYSTEM_CALL,
11533 s390_system_call, size);
11534 }
11535
11536 char *
11537 elfcore_write_s390_tdb (bfd *abfd,
11538 char *buf,
11539 int *bufsiz,
11540 const void *s390_tdb,
11541 int size)
11542 {
11543 char *note_name = "LINUX";
11544 return elfcore_write_note (abfd, buf, bufsiz,
11545 note_name, NT_S390_TDB, s390_tdb, size);
11546 }
11547
11548 char *
11549 elfcore_write_s390_vxrs_low (bfd *abfd,
11550 char *buf,
11551 int *bufsiz,
11552 const void *s390_vxrs_low,
11553 int size)
11554 {
11555 char *note_name = "LINUX";
11556 return elfcore_write_note (abfd, buf, bufsiz,
11557 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11558 }
11559
11560 char *
11561 elfcore_write_s390_vxrs_high (bfd *abfd,
11562 char *buf,
11563 int *bufsiz,
11564 const void *s390_vxrs_high,
11565 int size)
11566 {
11567 char *note_name = "LINUX";
11568 return elfcore_write_note (abfd, buf, bufsiz,
11569 note_name, NT_S390_VXRS_HIGH,
11570 s390_vxrs_high, size);
11571 }
11572
11573 char *
11574 elfcore_write_s390_gs_cb (bfd *abfd,
11575 char *buf,
11576 int *bufsiz,
11577 const void *s390_gs_cb,
11578 int size)
11579 {
11580 char *note_name = "LINUX";
11581 return elfcore_write_note (abfd, buf, bufsiz,
11582 note_name, NT_S390_GS_CB,
11583 s390_gs_cb, size);
11584 }
11585
11586 char *
11587 elfcore_write_s390_gs_bc (bfd *abfd,
11588 char *buf,
11589 int *bufsiz,
11590 const void *s390_gs_bc,
11591 int size)
11592 {
11593 char *note_name = "LINUX";
11594 return elfcore_write_note (abfd, buf, bufsiz,
11595 note_name, NT_S390_GS_BC,
11596 s390_gs_bc, size);
11597 }
11598
11599 char *
11600 elfcore_write_arm_vfp (bfd *abfd,
11601 char *buf,
11602 int *bufsiz,
11603 const void *arm_vfp,
11604 int size)
11605 {
11606 char *note_name = "LINUX";
11607 return elfcore_write_note (abfd, buf, bufsiz,
11608 note_name, NT_ARM_VFP, arm_vfp, size);
11609 }
11610
11611 char *
11612 elfcore_write_aarch_tls (bfd *abfd,
11613 char *buf,
11614 int *bufsiz,
11615 const void *aarch_tls,
11616 int size)
11617 {
11618 char *note_name = "LINUX";
11619 return elfcore_write_note (abfd, buf, bufsiz,
11620 note_name, NT_ARM_TLS, aarch_tls, size);
11621 }
11622
11623 char *
11624 elfcore_write_aarch_hw_break (bfd *abfd,
11625 char *buf,
11626 int *bufsiz,
11627 const void *aarch_hw_break,
11628 int size)
11629 {
11630 char *note_name = "LINUX";
11631 return elfcore_write_note (abfd, buf, bufsiz,
11632 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11633 }
11634
11635 char *
11636 elfcore_write_aarch_hw_watch (bfd *abfd,
11637 char *buf,
11638 int *bufsiz,
11639 const void *aarch_hw_watch,
11640 int size)
11641 {
11642 char *note_name = "LINUX";
11643 return elfcore_write_note (abfd, buf, bufsiz,
11644 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11645 }
11646
11647 char *
11648 elfcore_write_aarch_sve (bfd *abfd,
11649 char *buf,
11650 int *bufsiz,
11651 const void *aarch_sve,
11652 int size)
11653 {
11654 char *note_name = "LINUX";
11655 return elfcore_write_note (abfd, buf, bufsiz,
11656 note_name, NT_ARM_SVE, aarch_sve, size);
11657 }
11658
11659 char *
11660 elfcore_write_aarch_pauth (bfd *abfd,
11661 char *buf,
11662 int *bufsiz,
11663 const void *aarch_pauth,
11664 int size)
11665 {
11666 char *note_name = "LINUX";
11667 return elfcore_write_note (abfd, buf, bufsiz,
11668 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11669 }
11670
11671 char *
11672 elfcore_write_register_note (bfd *abfd,
11673 char *buf,
11674 int *bufsiz,
11675 const char *section,
11676 const void *data,
11677 int size)
11678 {
11679 if (strcmp (section, ".reg2") == 0)
11680 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11681 if (strcmp (section, ".reg-xfp") == 0)
11682 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11683 if (strcmp (section, ".reg-xstate") == 0)
11684 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11685 if (strcmp (section, ".reg-ppc-vmx") == 0)
11686 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11687 if (strcmp (section, ".reg-ppc-vsx") == 0)
11688 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11689 if (strcmp (section, ".reg-ppc-tar") == 0)
11690 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11691 if (strcmp (section, ".reg-ppc-ppr") == 0)
11692 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11693 if (strcmp (section, ".reg-ppc-dscr") == 0)
11694 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11695 if (strcmp (section, ".reg-ppc-ebb") == 0)
11696 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11697 if (strcmp (section, ".reg-ppc-pmu") == 0)
11698 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11699 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11700 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11701 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11702 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11703 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11704 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11705 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11706 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11707 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11708 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11709 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11710 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11711 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11712 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11713 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11714 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11715 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11716 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11717 if (strcmp (section, ".reg-s390-timer") == 0)
11718 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11719 if (strcmp (section, ".reg-s390-todcmp") == 0)
11720 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11721 if (strcmp (section, ".reg-s390-todpreg") == 0)
11722 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11723 if (strcmp (section, ".reg-s390-ctrs") == 0)
11724 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11725 if (strcmp (section, ".reg-s390-prefix") == 0)
11726 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11727 if (strcmp (section, ".reg-s390-last-break") == 0)
11728 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11729 if (strcmp (section, ".reg-s390-system-call") == 0)
11730 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11731 if (strcmp (section, ".reg-s390-tdb") == 0)
11732 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11733 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11734 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11735 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11736 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11737 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11738 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11739 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11740 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11741 if (strcmp (section, ".reg-arm-vfp") == 0)
11742 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11743 if (strcmp (section, ".reg-aarch-tls") == 0)
11744 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11745 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11746 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11747 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11748 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11749 if (strcmp (section, ".reg-aarch-sve") == 0)
11750 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11751 if (strcmp (section, ".reg-aarch-pauth") == 0)
11752 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11753 return NULL;
11754 }
11755
11756 static bfd_boolean
11757 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11758 size_t align)
11759 {
11760 char *p;
11761
11762 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11763 gABI specifies that PT_NOTE alignment should be aligned to 4
11764 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11765 align is less than 4, we use 4 byte alignment. */
11766 if (align < 4)
11767 align = 4;
11768 if (align != 4 && align != 8)
11769 return FALSE;
11770
11771 p = buf;
11772 while (p < buf + size)
11773 {
11774 Elf_External_Note *xnp = (Elf_External_Note *) p;
11775 Elf_Internal_Note in;
11776
11777 if (offsetof (Elf_External_Note, name) > buf - p + size)
11778 return FALSE;
11779
11780 in.type = H_GET_32 (abfd, xnp->type);
11781
11782 in.namesz = H_GET_32 (abfd, xnp->namesz);
11783 in.namedata = xnp->name;
11784 if (in.namesz > buf - in.namedata + size)
11785 return FALSE;
11786
11787 in.descsz = H_GET_32 (abfd, xnp->descsz);
11788 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11789 in.descpos = offset + (in.descdata - buf);
11790 if (in.descsz != 0
11791 && (in.descdata >= buf + size
11792 || in.descsz > buf - in.descdata + size))
11793 return FALSE;
11794
11795 switch (bfd_get_format (abfd))
11796 {
11797 default:
11798 return TRUE;
11799
11800 case bfd_core:
11801 {
11802 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11803 struct
11804 {
11805 const char * string;
11806 size_t len;
11807 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11808 }
11809 grokers[] =
11810 {
11811 GROKER_ELEMENT ("", elfcore_grok_note),
11812 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11813 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11814 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11815 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11816 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11817 };
11818 #undef GROKER_ELEMENT
11819 int i;
11820
11821 for (i = ARRAY_SIZE (grokers); i--;)
11822 {
11823 if (in.namesz >= grokers[i].len
11824 && strncmp (in.namedata, grokers[i].string,
11825 grokers[i].len) == 0)
11826 {
11827 if (! grokers[i].func (abfd, & in))
11828 return FALSE;
11829 break;
11830 }
11831 }
11832 break;
11833 }
11834
11835 case bfd_object:
11836 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11837 {
11838 if (! elfobj_grok_gnu_note (abfd, &in))
11839 return FALSE;
11840 }
11841 else if (in.namesz == sizeof "stapsdt"
11842 && strcmp (in.namedata, "stapsdt") == 0)
11843 {
11844 if (! elfobj_grok_stapsdt_note (abfd, &in))
11845 return FALSE;
11846 }
11847 break;
11848 }
11849
11850 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11851 }
11852
11853 return TRUE;
11854 }
11855
11856 static bfd_boolean
11857 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11858 size_t align)
11859 {
11860 char *buf;
11861
11862 if (size == 0 || (size + 1) == 0)
11863 return TRUE;
11864
11865 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11866 return FALSE;
11867
11868 buf = (char *) bfd_malloc (size + 1);
11869 if (buf == NULL)
11870 return FALSE;
11871
11872 /* PR 17512: file: ec08f814
11873 0-termintate the buffer so that string searches will not overflow. */
11874 buf[size] = 0;
11875
11876 if (bfd_bread (buf, size, abfd) != size
11877 || !elf_parse_notes (abfd, buf, size, offset, align))
11878 {
11879 free (buf);
11880 return FALSE;
11881 }
11882
11883 free (buf);
11884 return TRUE;
11885 }
11886 \f
11887 /* Providing external access to the ELF program header table. */
11888
11889 /* Return an upper bound on the number of bytes required to store a
11890 copy of ABFD's program header table entries. Return -1 if an error
11891 occurs; bfd_get_error will return an appropriate code. */
11892
11893 long
11894 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11895 {
11896 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11897 {
11898 bfd_set_error (bfd_error_wrong_format);
11899 return -1;
11900 }
11901
11902 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11903 }
11904
11905 /* Copy ABFD's program header table entries to *PHDRS. The entries
11906 will be stored as an array of Elf_Internal_Phdr structures, as
11907 defined in include/elf/internal.h. To find out how large the
11908 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11909
11910 Return the number of program header table entries read, or -1 if an
11911 error occurs; bfd_get_error will return an appropriate code. */
11912
11913 int
11914 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11915 {
11916 int num_phdrs;
11917
11918 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11919 {
11920 bfd_set_error (bfd_error_wrong_format);
11921 return -1;
11922 }
11923
11924 num_phdrs = elf_elfheader (abfd)->e_phnum;
11925 if (num_phdrs != 0)
11926 memcpy (phdrs, elf_tdata (abfd)->phdr,
11927 num_phdrs * sizeof (Elf_Internal_Phdr));
11928
11929 return num_phdrs;
11930 }
11931
11932 enum elf_reloc_type_class
11933 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11934 const asection *rel_sec ATTRIBUTE_UNUSED,
11935 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11936 {
11937 return reloc_class_normal;
11938 }
11939
11940 /* For RELA architectures, return the relocation value for a
11941 relocation against a local symbol. */
11942
11943 bfd_vma
11944 _bfd_elf_rela_local_sym (bfd *abfd,
11945 Elf_Internal_Sym *sym,
11946 asection **psec,
11947 Elf_Internal_Rela *rel)
11948 {
11949 asection *sec = *psec;
11950 bfd_vma relocation;
11951
11952 relocation = (sec->output_section->vma
11953 + sec->output_offset
11954 + sym->st_value);
11955 if ((sec->flags & SEC_MERGE)
11956 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11957 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11958 {
11959 rel->r_addend =
11960 _bfd_merged_section_offset (abfd, psec,
11961 elf_section_data (sec)->sec_info,
11962 sym->st_value + rel->r_addend);
11963 if (sec != *psec)
11964 {
11965 /* If we have changed the section, and our original section is
11966 marked with SEC_EXCLUDE, it means that the original
11967 SEC_MERGE section has been completely subsumed in some
11968 other SEC_MERGE section. In this case, we need to leave
11969 some info around for --emit-relocs. */
11970 if ((sec->flags & SEC_EXCLUDE) != 0)
11971 sec->kept_section = *psec;
11972 sec = *psec;
11973 }
11974 rel->r_addend -= relocation;
11975 rel->r_addend += sec->output_section->vma + sec->output_offset;
11976 }
11977 return relocation;
11978 }
11979
11980 bfd_vma
11981 _bfd_elf_rel_local_sym (bfd *abfd,
11982 Elf_Internal_Sym *sym,
11983 asection **psec,
11984 bfd_vma addend)
11985 {
11986 asection *sec = *psec;
11987
11988 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11989 return sym->st_value + addend;
11990
11991 return _bfd_merged_section_offset (abfd, psec,
11992 elf_section_data (sec)->sec_info,
11993 sym->st_value + addend);
11994 }
11995
11996 /* Adjust an address within a section. Given OFFSET within SEC, return
11997 the new offset within the section, based upon changes made to the
11998 section. Returns -1 if the offset is now invalid.
11999 The offset (in abnd out) is in target sized bytes, however big a
12000 byte may be. */
12001
12002 bfd_vma
12003 _bfd_elf_section_offset (bfd *abfd,
12004 struct bfd_link_info *info,
12005 asection *sec,
12006 bfd_vma offset)
12007 {
12008 switch (sec->sec_info_type)
12009 {
12010 case SEC_INFO_TYPE_STABS:
12011 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12012 offset);
12013 case SEC_INFO_TYPE_EH_FRAME:
12014 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12015
12016 default:
12017 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12018 {
12019 /* Reverse the offset. */
12020 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12021 bfd_size_type address_size = bed->s->arch_size / 8;
12022
12023 /* address_size and sec->size are in octets. Convert
12024 to bytes before subtracting the original offset. */
12025 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
12026 }
12027 return offset;
12028 }
12029 }
12030 \f
12031 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12032 reconstruct an ELF file by reading the segments out of remote memory
12033 based on the ELF file header at EHDR_VMA and the ELF program headers it
12034 points to. If not null, *LOADBASEP is filled in with the difference
12035 between the VMAs from which the segments were read, and the VMAs the
12036 file headers (and hence BFD's idea of each section's VMA) put them at.
12037
12038 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12039 remote memory at target address VMA into the local buffer at MYADDR; it
12040 should return zero on success or an `errno' code on failure. TEMPL must
12041 be a BFD for an ELF target with the word size and byte order found in
12042 the remote memory. */
12043
12044 bfd *
12045 bfd_elf_bfd_from_remote_memory
12046 (bfd *templ,
12047 bfd_vma ehdr_vma,
12048 bfd_size_type size,
12049 bfd_vma *loadbasep,
12050 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12051 {
12052 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12053 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12054 }
12055 \f
12056 long
12057 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12058 long symcount ATTRIBUTE_UNUSED,
12059 asymbol **syms ATTRIBUTE_UNUSED,
12060 long dynsymcount,
12061 asymbol **dynsyms,
12062 asymbol **ret)
12063 {
12064 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12065 asection *relplt;
12066 asymbol *s;
12067 const char *relplt_name;
12068 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12069 arelent *p;
12070 long count, i, n;
12071 size_t size;
12072 Elf_Internal_Shdr *hdr;
12073 char *names;
12074 asection *plt;
12075
12076 *ret = NULL;
12077
12078 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12079 return 0;
12080
12081 if (dynsymcount <= 0)
12082 return 0;
12083
12084 if (!bed->plt_sym_val)
12085 return 0;
12086
12087 relplt_name = bed->relplt_name;
12088 if (relplt_name == NULL)
12089 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12090 relplt = bfd_get_section_by_name (abfd, relplt_name);
12091 if (relplt == NULL)
12092 return 0;
12093
12094 hdr = &elf_section_data (relplt)->this_hdr;
12095 if (hdr->sh_link != elf_dynsymtab (abfd)
12096 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12097 return 0;
12098
12099 plt = bfd_get_section_by_name (abfd, ".plt");
12100 if (plt == NULL)
12101 return 0;
12102
12103 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12104 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12105 return -1;
12106
12107 count = relplt->size / hdr->sh_entsize;
12108 size = count * sizeof (asymbol);
12109 p = relplt->relocation;
12110 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12111 {
12112 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12113 if (p->addend != 0)
12114 {
12115 #ifdef BFD64
12116 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12117 #else
12118 size += sizeof ("+0x") - 1 + 8;
12119 #endif
12120 }
12121 }
12122
12123 s = *ret = (asymbol *) bfd_malloc (size);
12124 if (s == NULL)
12125 return -1;
12126
12127 names = (char *) (s + count);
12128 p = relplt->relocation;
12129 n = 0;
12130 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12131 {
12132 size_t len;
12133 bfd_vma addr;
12134
12135 addr = bed->plt_sym_val (i, plt, p);
12136 if (addr == (bfd_vma) -1)
12137 continue;
12138
12139 *s = **p->sym_ptr_ptr;
12140 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12141 we are defining a symbol, ensure one of them is set. */
12142 if ((s->flags & BSF_LOCAL) == 0)
12143 s->flags |= BSF_GLOBAL;
12144 s->flags |= BSF_SYNTHETIC;
12145 s->section = plt;
12146 s->value = addr - plt->vma;
12147 s->name = names;
12148 s->udata.p = NULL;
12149 len = strlen ((*p->sym_ptr_ptr)->name);
12150 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12151 names += len;
12152 if (p->addend != 0)
12153 {
12154 char buf[30], *a;
12155
12156 memcpy (names, "+0x", sizeof ("+0x") - 1);
12157 names += sizeof ("+0x") - 1;
12158 bfd_sprintf_vma (abfd, buf, p->addend);
12159 for (a = buf; *a == '0'; ++a)
12160 ;
12161 len = strlen (a);
12162 memcpy (names, a, len);
12163 names += len;
12164 }
12165 memcpy (names, "@plt", sizeof ("@plt"));
12166 names += sizeof ("@plt");
12167 ++s, ++n;
12168 }
12169
12170 return n;
12171 }
12172
12173 /* It is only used by x86-64 so far.
12174 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12175 but current usage would allow all of _bfd_std_section to be zero. */
12176 static const asymbol lcomm_sym
12177 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12178 asection _bfd_elf_large_com_section
12179 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12180 "LARGE_COMMON", 0, SEC_IS_COMMON);
12181
12182 void
12183 _bfd_elf_post_process_headers (bfd *abfd ATTRIBUTE_UNUSED,
12184 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12185 {
12186 }
12187
12188 bfd_boolean
12189 _bfd_elf_final_write_processing (bfd *abfd)
12190 {
12191 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12192
12193 i_ehdrp = elf_elfheader (abfd);
12194
12195 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12196 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12197
12198 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12199 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12200 STB_GNU_UNIQUE binding. */
12201 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12202 {
12203 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12204 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12205 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12206 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12207 {
12208 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12209 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12210 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12211 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12212 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12213 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12214 bfd_set_error (bfd_error_bad_value);
12215 return FALSE;
12216 }
12217 }
12218 return TRUE;
12219 }
12220
12221
12222 /* Return TRUE for ELF symbol types that represent functions.
12223 This is the default version of this function, which is sufficient for
12224 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12225
12226 bfd_boolean
12227 _bfd_elf_is_function_type (unsigned int type)
12228 {
12229 return (type == STT_FUNC
12230 || type == STT_GNU_IFUNC);
12231 }
12232
12233 /* If the ELF symbol SYM might be a function in SEC, return the
12234 function size and set *CODE_OFF to the function's entry point,
12235 otherwise return zero. */
12236
12237 bfd_size_type
12238 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12239 bfd_vma *code_off)
12240 {
12241 bfd_size_type size;
12242
12243 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12244 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12245 || sym->section != sec)
12246 return 0;
12247
12248 *code_off = sym->value;
12249 size = 0;
12250 if (!(sym->flags & BSF_SYNTHETIC))
12251 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12252 if (size == 0)
12253 size = 1;
12254 return size;
12255 }
This page took 0.275466 seconds and 5 git commands to generate.