* elf.c (_bfd_elf_write_object_contents): Check for non-NULL
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static bfd_byte *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 bfd_byte *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 bfd_byte *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return NULL;
263
264 shstrtab = i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return (char *) shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
295 (*_bfd_error_handler)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd, strindex, (unsigned long) hdr->sh_size,
298 (shindex == shstrndx && strindex == hdr->sh_name
299 ? ".shstrtab"
300 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_sym_name (bfd *abfd,
409 Elf_Internal_Shdr *symtab_hdr,
410 Elf_Internal_Sym *isym,
411 asection *sym_sec)
412 {
413 const char *name;
414 unsigned int iname = isym->st_name;
415 unsigned int shindex = symtab_hdr->sh_link;
416
417 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
418 /* Check for a bogus st_shndx to avoid crashing. */
419 && isym->st_shndx < elf_numsections (abfd)
420 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
421 {
422 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
423 shindex = elf_elfheader (abfd)->e_shstrndx;
424 }
425
426 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
427 if (name == NULL)
428 name = "(null)";
429 else if (sym_sec && *name == '\0')
430 name = bfd_section_name (abfd, sym_sec);
431
432 return name;
433 }
434
435 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
436 sections. The first element is the flags, the rest are section
437 pointers. */
438
439 typedef union elf_internal_group {
440 Elf_Internal_Shdr *shdr;
441 unsigned int flags;
442 } Elf_Internal_Group;
443
444 /* Return the name of the group signature symbol. Why isn't the
445 signature just a string? */
446
447 static const char *
448 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
449 {
450 Elf_Internal_Shdr *hdr;
451 unsigned char esym[sizeof (Elf64_External_Sym)];
452 Elf_External_Sym_Shndx eshndx;
453 Elf_Internal_Sym isym;
454 unsigned int i;
455
456 if (ghdr == NULL)
457 return NULL;
458
459 /* If this section is linked to by other sections then it is a symbol or
460 string section which is masquerading as a group. This is a bad thing,
461 and if we carry on to the call to bfd_section_from_shdr below we will
462 enter an infinite loop. So check now and break out if we detect this
463 case. See:
464 http://sources.redhat.com/ml/binutils/2005-05/msg00421.html
465 for a report of a case that tirggers this code. */
466 for (i = elf_numsections (abfd); i--;)
467 if (elf_elfsections (abfd) [elf_elfsections (abfd) [i]->sh_link] == ghdr)
468 return NULL;
469
470 /* Next we need to ensure the symbol table is available. */
471 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
472 return NULL;
473
474 /* Go read the symbol. */
475 hdr = &elf_tdata (abfd)->symtab_hdr;
476 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
477 &isym, esym, &eshndx) == NULL)
478 return NULL;
479
480 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
481 }
482
483 /* Set next_in_group list pointer, and group name for NEWSECT. */
484
485 static bfd_boolean
486 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
487 {
488 unsigned int num_group = elf_tdata (abfd)->num_group;
489
490 /* If num_group is zero, read in all SHT_GROUP sections. The count
491 is set to -1 if there are no SHT_GROUP sections. */
492 if (num_group == 0)
493 {
494 unsigned int i, shnum;
495
496 /* First count the number of groups. If we have a SHT_GROUP
497 section with just a flag word (ie. sh_size is 4), ignore it. */
498 shnum = elf_numsections (abfd);
499 num_group = 0;
500 for (i = 0; i < shnum; i++)
501 {
502 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
503 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
504 num_group += 1;
505 }
506
507 if (num_group == 0)
508 {
509 num_group = (unsigned) -1;
510 elf_tdata (abfd)->num_group = num_group;
511 }
512 else
513 {
514 /* We keep a list of elf section headers for group sections,
515 so we can find them quickly. */
516 bfd_size_type amt;
517
518 elf_tdata (abfd)->num_group = num_group;
519 amt = num_group * sizeof (Elf_Internal_Shdr *);
520 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
521 if (elf_tdata (abfd)->group_sect_ptr == NULL)
522 return FALSE;
523
524 num_group = 0;
525 for (i = 0; i < shnum; i++)
526 {
527 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
528 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
529 {
530 unsigned char *src;
531 Elf_Internal_Group *dest;
532
533 /* Add to list of sections. */
534 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
535 num_group += 1;
536
537 /* Read the raw contents. */
538 BFD_ASSERT (sizeof (*dest) >= 4);
539 amt = shdr->sh_size * sizeof (*dest) / 4;
540 shdr->contents = bfd_alloc (abfd, amt);
541 if (shdr->contents == NULL
542 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
543 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
544 != shdr->sh_size))
545 return FALSE;
546
547 /* Translate raw contents, a flag word followed by an
548 array of elf section indices all in target byte order,
549 to the flag word followed by an array of elf section
550 pointers. */
551 src = shdr->contents + shdr->sh_size;
552 dest = (Elf_Internal_Group *) (shdr->contents + amt);
553 while (1)
554 {
555 unsigned int idx;
556
557 src -= 4;
558 --dest;
559 idx = H_GET_32 (abfd, src);
560 if (src == shdr->contents)
561 {
562 dest->flags = idx;
563 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
564 shdr->bfd_section->flags
565 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
566 break;
567 }
568 if (idx >= shnum)
569 {
570 ((*_bfd_error_handler)
571 (_("%B: invalid SHT_GROUP entry"), abfd));
572 idx = 0;
573 }
574 dest->shdr = elf_elfsections (abfd)[idx];
575 }
576 }
577 }
578 }
579 }
580
581 if (num_group != (unsigned) -1)
582 {
583 unsigned int i;
584
585 for (i = 0; i < num_group; i++)
586 {
587 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
588 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
589 unsigned int n_elt = shdr->sh_size / 4;
590
591 /* Look through this group's sections to see if current
592 section is a member. */
593 while (--n_elt != 0)
594 if ((++idx)->shdr == hdr)
595 {
596 asection *s = NULL;
597
598 /* We are a member of this group. Go looking through
599 other members to see if any others are linked via
600 next_in_group. */
601 idx = (Elf_Internal_Group *) shdr->contents;
602 n_elt = shdr->sh_size / 4;
603 while (--n_elt != 0)
604 if ((s = (++idx)->shdr->bfd_section) != NULL
605 && elf_next_in_group (s) != NULL)
606 break;
607 if (n_elt != 0)
608 {
609 /* Snarf the group name from other member, and
610 insert current section in circular list. */
611 elf_group_name (newsect) = elf_group_name (s);
612 elf_next_in_group (newsect) = elf_next_in_group (s);
613 elf_next_in_group (s) = newsect;
614 }
615 else
616 {
617 const char *gname;
618
619 gname = group_signature (abfd, shdr);
620 if (gname == NULL)
621 return FALSE;
622 elf_group_name (newsect) = gname;
623
624 /* Start a circular list with one element. */
625 elf_next_in_group (newsect) = newsect;
626 }
627
628 /* If the group section has been created, point to the
629 new member. */
630 if (shdr->bfd_section != NULL)
631 elf_next_in_group (shdr->bfd_section) = newsect;
632
633 i = num_group - 1;
634 break;
635 }
636 }
637 }
638
639 if (elf_group_name (newsect) == NULL)
640 {
641 (*_bfd_error_handler) (_("%B: no group info for section %A"),
642 abfd, newsect);
643 }
644 return TRUE;
645 }
646
647 bfd_boolean
648 _bfd_elf_setup_group_pointers (bfd *abfd)
649 {
650 unsigned int i;
651 unsigned int num_group = elf_tdata (abfd)->num_group;
652 bfd_boolean result = TRUE;
653
654 if (num_group == (unsigned) -1)
655 return result;
656
657 for (i = 0; i < num_group; i++)
658 {
659 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
660 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
661 unsigned int n_elt = shdr->sh_size / 4;
662
663 while (--n_elt != 0)
664 if ((++idx)->shdr->bfd_section)
665 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
666 else if (idx->shdr->sh_type == SHT_RELA
667 || idx->shdr->sh_type == SHT_REL)
668 /* We won't include relocation sections in section groups in
669 output object files. We adjust the group section size here
670 so that relocatable link will work correctly when
671 relocation sections are in section group in input object
672 files. */
673 shdr->bfd_section->size -= 4;
674 else
675 {
676 /* There are some unknown sections in the group. */
677 (*_bfd_error_handler)
678 (_("%B: unknown [%d] section `%s' in group [%s]"),
679 abfd,
680 (unsigned int) idx->shdr->sh_type,
681 bfd_elf_string_from_elf_section (abfd,
682 (elf_elfheader (abfd)
683 ->e_shstrndx),
684 idx->shdr->sh_name),
685 shdr->bfd_section->name);
686 result = FALSE;
687 }
688 }
689 return result;
690 }
691
692 bfd_boolean
693 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
694 {
695 return elf_next_in_group (sec) != NULL;
696 }
697
698 /* Make a BFD section from an ELF section. We store a pointer to the
699 BFD section in the bfd_section field of the header. */
700
701 bfd_boolean
702 _bfd_elf_make_section_from_shdr (bfd *abfd,
703 Elf_Internal_Shdr *hdr,
704 const char *name,
705 int shindex)
706 {
707 asection *newsect;
708 flagword flags;
709 const struct elf_backend_data *bed;
710
711 if (hdr->bfd_section != NULL)
712 {
713 BFD_ASSERT (strcmp (name,
714 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
715 return TRUE;
716 }
717
718 newsect = bfd_make_section_anyway (abfd, name);
719 if (newsect == NULL)
720 return FALSE;
721
722 hdr->bfd_section = newsect;
723 elf_section_data (newsect)->this_hdr = *hdr;
724 elf_section_data (newsect)->this_idx = shindex;
725
726 /* Always use the real type/flags. */
727 elf_section_type (newsect) = hdr->sh_type;
728 elf_section_flags (newsect) = hdr->sh_flags;
729
730 newsect->filepos = hdr->sh_offset;
731
732 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
733 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
734 || ! bfd_set_section_alignment (abfd, newsect,
735 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
736 return FALSE;
737
738 flags = SEC_NO_FLAGS;
739 if (hdr->sh_type != SHT_NOBITS)
740 flags |= SEC_HAS_CONTENTS;
741 if (hdr->sh_type == SHT_GROUP)
742 flags |= SEC_GROUP | SEC_EXCLUDE;
743 if ((hdr->sh_flags & SHF_ALLOC) != 0)
744 {
745 flags |= SEC_ALLOC;
746 if (hdr->sh_type != SHT_NOBITS)
747 flags |= SEC_LOAD;
748 }
749 if ((hdr->sh_flags & SHF_WRITE) == 0)
750 flags |= SEC_READONLY;
751 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
752 flags |= SEC_CODE;
753 else if ((flags & SEC_LOAD) != 0)
754 flags |= SEC_DATA;
755 if ((hdr->sh_flags & SHF_MERGE) != 0)
756 {
757 flags |= SEC_MERGE;
758 newsect->entsize = hdr->sh_entsize;
759 if ((hdr->sh_flags & SHF_STRINGS) != 0)
760 flags |= SEC_STRINGS;
761 }
762 if (hdr->sh_flags & SHF_GROUP)
763 if (!setup_group (abfd, hdr, newsect))
764 return FALSE;
765 if ((hdr->sh_flags & SHF_TLS) != 0)
766 flags |= SEC_THREAD_LOCAL;
767
768 if ((flags & SEC_ALLOC) == 0)
769 {
770 /* The debugging sections appear to be recognized only by name,
771 not any sort of flag. Their SEC_ALLOC bits are cleared. */
772 static const struct
773 {
774 const char *name;
775 int len;
776 } debug_sections [] =
777 {
778 { "debug", 5 }, /* 'd' */
779 { NULL, 0 }, /* 'e' */
780 { NULL, 0 }, /* 'f' */
781 { "gnu.linkonce.wi.", 17 }, /* 'g' */
782 { NULL, 0 }, /* 'h' */
783 { NULL, 0 }, /* 'i' */
784 { NULL, 0 }, /* 'j' */
785 { NULL, 0 }, /* 'k' */
786 { "line", 4 }, /* 'l' */
787 { NULL, 0 }, /* 'm' */
788 { NULL, 0 }, /* 'n' */
789 { NULL, 0 }, /* 'o' */
790 { NULL, 0 }, /* 'p' */
791 { NULL, 0 }, /* 'q' */
792 { NULL, 0 }, /* 'r' */
793 { "stab", 4 } /* 's' */
794 };
795
796 if (name [0] == '.')
797 {
798 int i = name [1] - 'd';
799 if (i >= 0
800 && i < (int) ARRAY_SIZE (debug_sections)
801 && debug_sections [i].name != NULL
802 && strncmp (&name [1], debug_sections [i].name,
803 debug_sections [i].len) == 0)
804 flags |= SEC_DEBUGGING;
805 }
806 }
807
808 /* As a GNU extension, if the name begins with .gnu.linkonce, we
809 only link a single copy of the section. This is used to support
810 g++. g++ will emit each template expansion in its own section.
811 The symbols will be defined as weak, so that multiple definitions
812 are permitted. The GNU linker extension is to actually discard
813 all but one of the sections. */
814 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
815 && elf_next_in_group (newsect) == NULL)
816 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
817
818 bed = get_elf_backend_data (abfd);
819 if (bed->elf_backend_section_flags)
820 if (! bed->elf_backend_section_flags (&flags, hdr))
821 return FALSE;
822
823 if (! bfd_set_section_flags (abfd, newsect, flags))
824 return FALSE;
825
826 if ((flags & SEC_ALLOC) != 0)
827 {
828 Elf_Internal_Phdr *phdr;
829 unsigned int i;
830
831 /* Look through the phdrs to see if we need to adjust the lma.
832 If all the p_paddr fields are zero, we ignore them, since
833 some ELF linkers produce such output. */
834 phdr = elf_tdata (abfd)->phdr;
835 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
836 {
837 if (phdr->p_paddr != 0)
838 break;
839 }
840 if (i < elf_elfheader (abfd)->e_phnum)
841 {
842 phdr = elf_tdata (abfd)->phdr;
843 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
844 {
845 /* This section is part of this segment if its file
846 offset plus size lies within the segment's memory
847 span and, if the section is loaded, the extent of the
848 loaded data lies within the extent of the segment.
849
850 Note - we used to check the p_paddr field as well, and
851 refuse to set the LMA if it was 0. This is wrong
852 though, as a perfectly valid initialised segment can
853 have a p_paddr of zero. Some architectures, eg ARM,
854 place special significance on the address 0 and
855 executables need to be able to have a segment which
856 covers this address. */
857 if (phdr->p_type == PT_LOAD
858 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
859 && (hdr->sh_offset + hdr->sh_size
860 <= phdr->p_offset + phdr->p_memsz)
861 && ((flags & SEC_LOAD) == 0
862 || (hdr->sh_offset + hdr->sh_size
863 <= phdr->p_offset + phdr->p_filesz)))
864 {
865 if ((flags & SEC_LOAD) == 0)
866 newsect->lma = (phdr->p_paddr
867 + hdr->sh_addr - phdr->p_vaddr);
868 else
869 /* We used to use the same adjustment for SEC_LOAD
870 sections, but that doesn't work if the segment
871 is packed with code from multiple VMAs.
872 Instead we calculate the section LMA based on
873 the segment LMA. It is assumed that the
874 segment will contain sections with contiguous
875 LMAs, even if the VMAs are not. */
876 newsect->lma = (phdr->p_paddr
877 + hdr->sh_offset - phdr->p_offset);
878
879 /* With contiguous segments, we can't tell from file
880 offsets whether a section with zero size should
881 be placed at the end of one segment or the
882 beginning of the next. Decide based on vaddr. */
883 if (hdr->sh_addr >= phdr->p_vaddr
884 && (hdr->sh_addr + hdr->sh_size
885 <= phdr->p_vaddr + phdr->p_memsz))
886 break;
887 }
888 }
889 }
890 }
891
892 return TRUE;
893 }
894
895 /*
896 INTERNAL_FUNCTION
897 bfd_elf_find_section
898
899 SYNOPSIS
900 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
901
902 DESCRIPTION
903 Helper functions for GDB to locate the string tables.
904 Since BFD hides string tables from callers, GDB needs to use an
905 internal hook to find them. Sun's .stabstr, in particular,
906 isn't even pointed to by the .stab section, so ordinary
907 mechanisms wouldn't work to find it, even if we had some.
908 */
909
910 struct elf_internal_shdr *
911 bfd_elf_find_section (bfd *abfd, char *name)
912 {
913 Elf_Internal_Shdr **i_shdrp;
914 char *shstrtab;
915 unsigned int max;
916 unsigned int i;
917
918 i_shdrp = elf_elfsections (abfd);
919 if (i_shdrp != NULL)
920 {
921 shstrtab = bfd_elf_get_str_section (abfd,
922 elf_elfheader (abfd)->e_shstrndx);
923 if (shstrtab != NULL)
924 {
925 max = elf_numsections (abfd);
926 for (i = 1; i < max; i++)
927 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
928 return i_shdrp[i];
929 }
930 }
931 return 0;
932 }
933
934 const char *const bfd_elf_section_type_names[] = {
935 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
936 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
937 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
938 };
939
940 /* ELF relocs are against symbols. If we are producing relocatable
941 output, and the reloc is against an external symbol, and nothing
942 has given us any additional addend, the resulting reloc will also
943 be against the same symbol. In such a case, we don't want to
944 change anything about the way the reloc is handled, since it will
945 all be done at final link time. Rather than put special case code
946 into bfd_perform_relocation, all the reloc types use this howto
947 function. It just short circuits the reloc if producing
948 relocatable output against an external symbol. */
949
950 bfd_reloc_status_type
951 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
952 arelent *reloc_entry,
953 asymbol *symbol,
954 void *data ATTRIBUTE_UNUSED,
955 asection *input_section,
956 bfd *output_bfd,
957 char **error_message ATTRIBUTE_UNUSED)
958 {
959 if (output_bfd != NULL
960 && (symbol->flags & BSF_SECTION_SYM) == 0
961 && (! reloc_entry->howto->partial_inplace
962 || reloc_entry->addend == 0))
963 {
964 reloc_entry->address += input_section->output_offset;
965 return bfd_reloc_ok;
966 }
967
968 return bfd_reloc_continue;
969 }
970 \f
971 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
972
973 static void
974 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
975 asection *sec)
976 {
977 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
978 sec->sec_info_type = ELF_INFO_TYPE_NONE;
979 }
980
981 /* Finish SHF_MERGE section merging. */
982
983 bfd_boolean
984 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
985 {
986 bfd *ibfd;
987 asection *sec;
988
989 if (!is_elf_hash_table (info->hash))
990 return FALSE;
991
992 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
993 if ((ibfd->flags & DYNAMIC) == 0)
994 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
995 if ((sec->flags & SEC_MERGE) != 0
996 && !bfd_is_abs_section (sec->output_section))
997 {
998 struct bfd_elf_section_data *secdata;
999
1000 secdata = elf_section_data (sec);
1001 if (! _bfd_add_merge_section (abfd,
1002 &elf_hash_table (info)->merge_info,
1003 sec, &secdata->sec_info))
1004 return FALSE;
1005 else if (secdata->sec_info)
1006 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1007 }
1008
1009 if (elf_hash_table (info)->merge_info != NULL)
1010 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1011 merge_sections_remove_hook);
1012 return TRUE;
1013 }
1014
1015 void
1016 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1017 {
1018 sec->output_section = bfd_abs_section_ptr;
1019 sec->output_offset = sec->vma;
1020 if (!is_elf_hash_table (info->hash))
1021 return;
1022
1023 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1024 }
1025 \f
1026 /* Copy the program header and other data from one object module to
1027 another. */
1028
1029 bfd_boolean
1030 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1031 {
1032 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1033 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1034 return TRUE;
1035
1036 BFD_ASSERT (!elf_flags_init (obfd)
1037 || (elf_elfheader (obfd)->e_flags
1038 == elf_elfheader (ibfd)->e_flags));
1039
1040 elf_gp (obfd) = elf_gp (ibfd);
1041 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1042 elf_flags_init (obfd) = TRUE;
1043 return TRUE;
1044 }
1045
1046 /* Print out the program headers. */
1047
1048 bfd_boolean
1049 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1050 {
1051 FILE *f = farg;
1052 Elf_Internal_Phdr *p;
1053 asection *s;
1054 bfd_byte *dynbuf = NULL;
1055
1056 p = elf_tdata (abfd)->phdr;
1057 if (p != NULL)
1058 {
1059 unsigned int i, c;
1060
1061 fprintf (f, _("\nProgram Header:\n"));
1062 c = elf_elfheader (abfd)->e_phnum;
1063 for (i = 0; i < c; i++, p++)
1064 {
1065 const char *pt;
1066 char buf[20];
1067
1068 switch (p->p_type)
1069 {
1070 case PT_NULL: pt = "NULL"; break;
1071 case PT_LOAD: pt = "LOAD"; break;
1072 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1073 case PT_INTERP: pt = "INTERP"; break;
1074 case PT_NOTE: pt = "NOTE"; break;
1075 case PT_SHLIB: pt = "SHLIB"; break;
1076 case PT_PHDR: pt = "PHDR"; break;
1077 case PT_TLS: pt = "TLS"; break;
1078 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1079 case PT_GNU_STACK: pt = "STACK"; break;
1080 case PT_GNU_RELRO: pt = "RELRO"; break;
1081 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1082 }
1083 fprintf (f, "%8s off 0x", pt);
1084 bfd_fprintf_vma (abfd, f, p->p_offset);
1085 fprintf (f, " vaddr 0x");
1086 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1087 fprintf (f, " paddr 0x");
1088 bfd_fprintf_vma (abfd, f, p->p_paddr);
1089 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1090 fprintf (f, " filesz 0x");
1091 bfd_fprintf_vma (abfd, f, p->p_filesz);
1092 fprintf (f, " memsz 0x");
1093 bfd_fprintf_vma (abfd, f, p->p_memsz);
1094 fprintf (f, " flags %c%c%c",
1095 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1096 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1097 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1098 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1099 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1100 fprintf (f, "\n");
1101 }
1102 }
1103
1104 s = bfd_get_section_by_name (abfd, ".dynamic");
1105 if (s != NULL)
1106 {
1107 int elfsec;
1108 unsigned long shlink;
1109 bfd_byte *extdyn, *extdynend;
1110 size_t extdynsize;
1111 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1112
1113 fprintf (f, _("\nDynamic Section:\n"));
1114
1115 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1116 goto error_return;
1117
1118 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1119 if (elfsec == -1)
1120 goto error_return;
1121 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1122
1123 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1124 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1125
1126 extdyn = dynbuf;
1127 extdynend = extdyn + s->size;
1128 for (; extdyn < extdynend; extdyn += extdynsize)
1129 {
1130 Elf_Internal_Dyn dyn;
1131 const char *name;
1132 char ab[20];
1133 bfd_boolean stringp;
1134
1135 (*swap_dyn_in) (abfd, extdyn, &dyn);
1136
1137 if (dyn.d_tag == DT_NULL)
1138 break;
1139
1140 stringp = FALSE;
1141 switch (dyn.d_tag)
1142 {
1143 default:
1144 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1145 name = ab;
1146 break;
1147
1148 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1149 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1150 case DT_PLTGOT: name = "PLTGOT"; break;
1151 case DT_HASH: name = "HASH"; break;
1152 case DT_STRTAB: name = "STRTAB"; break;
1153 case DT_SYMTAB: name = "SYMTAB"; break;
1154 case DT_RELA: name = "RELA"; break;
1155 case DT_RELASZ: name = "RELASZ"; break;
1156 case DT_RELAENT: name = "RELAENT"; break;
1157 case DT_STRSZ: name = "STRSZ"; break;
1158 case DT_SYMENT: name = "SYMENT"; break;
1159 case DT_INIT: name = "INIT"; break;
1160 case DT_FINI: name = "FINI"; break;
1161 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1162 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1163 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1164 case DT_REL: name = "REL"; break;
1165 case DT_RELSZ: name = "RELSZ"; break;
1166 case DT_RELENT: name = "RELENT"; break;
1167 case DT_PLTREL: name = "PLTREL"; break;
1168 case DT_DEBUG: name = "DEBUG"; break;
1169 case DT_TEXTREL: name = "TEXTREL"; break;
1170 case DT_JMPREL: name = "JMPREL"; break;
1171 case DT_BIND_NOW: name = "BIND_NOW"; break;
1172 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1173 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1174 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1175 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1176 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1177 case DT_FLAGS: name = "FLAGS"; break;
1178 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1179 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1180 case DT_CHECKSUM: name = "CHECKSUM"; break;
1181 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1182 case DT_MOVEENT: name = "MOVEENT"; break;
1183 case DT_MOVESZ: name = "MOVESZ"; break;
1184 case DT_FEATURE: name = "FEATURE"; break;
1185 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1186 case DT_SYMINSZ: name = "SYMINSZ"; break;
1187 case DT_SYMINENT: name = "SYMINENT"; break;
1188 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1189 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1190 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1191 case DT_PLTPAD: name = "PLTPAD"; break;
1192 case DT_MOVETAB: name = "MOVETAB"; break;
1193 case DT_SYMINFO: name = "SYMINFO"; break;
1194 case DT_RELACOUNT: name = "RELACOUNT"; break;
1195 case DT_RELCOUNT: name = "RELCOUNT"; break;
1196 case DT_FLAGS_1: name = "FLAGS_1"; break;
1197 case DT_VERSYM: name = "VERSYM"; break;
1198 case DT_VERDEF: name = "VERDEF"; break;
1199 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1200 case DT_VERNEED: name = "VERNEED"; break;
1201 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1202 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1203 case DT_USED: name = "USED"; break;
1204 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1205 }
1206
1207 fprintf (f, " %-11s ", name);
1208 if (! stringp)
1209 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1210 else
1211 {
1212 const char *string;
1213 unsigned int tagv = dyn.d_un.d_val;
1214
1215 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1216 if (string == NULL)
1217 goto error_return;
1218 fprintf (f, "%s", string);
1219 }
1220 fprintf (f, "\n");
1221 }
1222
1223 free (dynbuf);
1224 dynbuf = NULL;
1225 }
1226
1227 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1228 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1229 {
1230 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1231 return FALSE;
1232 }
1233
1234 if (elf_dynverdef (abfd) != 0)
1235 {
1236 Elf_Internal_Verdef *t;
1237
1238 fprintf (f, _("\nVersion definitions:\n"));
1239 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1240 {
1241 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1242 t->vd_flags, t->vd_hash, t->vd_nodename);
1243 if (t->vd_auxptr->vda_nextptr != NULL)
1244 {
1245 Elf_Internal_Verdaux *a;
1246
1247 fprintf (f, "\t");
1248 for (a = t->vd_auxptr->vda_nextptr;
1249 a != NULL;
1250 a = a->vda_nextptr)
1251 fprintf (f, "%s ", a->vda_nodename);
1252 fprintf (f, "\n");
1253 }
1254 }
1255 }
1256
1257 if (elf_dynverref (abfd) != 0)
1258 {
1259 Elf_Internal_Verneed *t;
1260
1261 fprintf (f, _("\nVersion References:\n"));
1262 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1263 {
1264 Elf_Internal_Vernaux *a;
1265
1266 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1267 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1268 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1269 a->vna_flags, a->vna_other, a->vna_nodename);
1270 }
1271 }
1272
1273 return TRUE;
1274
1275 error_return:
1276 if (dynbuf != NULL)
1277 free (dynbuf);
1278 return FALSE;
1279 }
1280
1281 /* Display ELF-specific fields of a symbol. */
1282
1283 void
1284 bfd_elf_print_symbol (bfd *abfd,
1285 void *filep,
1286 asymbol *symbol,
1287 bfd_print_symbol_type how)
1288 {
1289 FILE *file = filep;
1290 switch (how)
1291 {
1292 case bfd_print_symbol_name:
1293 fprintf (file, "%s", symbol->name);
1294 break;
1295 case bfd_print_symbol_more:
1296 fprintf (file, "elf ");
1297 bfd_fprintf_vma (abfd, file, symbol->value);
1298 fprintf (file, " %lx", (long) symbol->flags);
1299 break;
1300 case bfd_print_symbol_all:
1301 {
1302 const char *section_name;
1303 const char *name = NULL;
1304 const struct elf_backend_data *bed;
1305 unsigned char st_other;
1306 bfd_vma val;
1307
1308 section_name = symbol->section ? symbol->section->name : "(*none*)";
1309
1310 bed = get_elf_backend_data (abfd);
1311 if (bed->elf_backend_print_symbol_all)
1312 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1313
1314 if (name == NULL)
1315 {
1316 name = symbol->name;
1317 bfd_print_symbol_vandf (abfd, file, symbol);
1318 }
1319
1320 fprintf (file, " %s\t", section_name);
1321 /* Print the "other" value for a symbol. For common symbols,
1322 we've already printed the size; now print the alignment.
1323 For other symbols, we have no specified alignment, and
1324 we've printed the address; now print the size. */
1325 if (bfd_is_com_section (symbol->section))
1326 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1327 else
1328 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1329 bfd_fprintf_vma (abfd, file, val);
1330
1331 /* If we have version information, print it. */
1332 if (elf_tdata (abfd)->dynversym_section != 0
1333 && (elf_tdata (abfd)->dynverdef_section != 0
1334 || elf_tdata (abfd)->dynverref_section != 0))
1335 {
1336 unsigned int vernum;
1337 const char *version_string;
1338
1339 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1340
1341 if (vernum == 0)
1342 version_string = "";
1343 else if (vernum == 1)
1344 version_string = "Base";
1345 else if (vernum <= elf_tdata (abfd)->cverdefs)
1346 version_string =
1347 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1348 else
1349 {
1350 Elf_Internal_Verneed *t;
1351
1352 version_string = "";
1353 for (t = elf_tdata (abfd)->verref;
1354 t != NULL;
1355 t = t->vn_nextref)
1356 {
1357 Elf_Internal_Vernaux *a;
1358
1359 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1360 {
1361 if (a->vna_other == vernum)
1362 {
1363 version_string = a->vna_nodename;
1364 break;
1365 }
1366 }
1367 }
1368 }
1369
1370 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1371 fprintf (file, " %-11s", version_string);
1372 else
1373 {
1374 int i;
1375
1376 fprintf (file, " (%s)", version_string);
1377 for (i = 10 - strlen (version_string); i > 0; --i)
1378 putc (' ', file);
1379 }
1380 }
1381
1382 /* If the st_other field is not zero, print it. */
1383 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1384
1385 switch (st_other)
1386 {
1387 case 0: break;
1388 case STV_INTERNAL: fprintf (file, " .internal"); break;
1389 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1390 case STV_PROTECTED: fprintf (file, " .protected"); break;
1391 default:
1392 /* Some other non-defined flags are also present, so print
1393 everything hex. */
1394 fprintf (file, " 0x%02x", (unsigned int) st_other);
1395 }
1396
1397 fprintf (file, " %s", name);
1398 }
1399 break;
1400 }
1401 }
1402 \f
1403 /* Create an entry in an ELF linker hash table. */
1404
1405 struct bfd_hash_entry *
1406 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1407 struct bfd_hash_table *table,
1408 const char *string)
1409 {
1410 /* Allocate the structure if it has not already been allocated by a
1411 subclass. */
1412 if (entry == NULL)
1413 {
1414 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1415 if (entry == NULL)
1416 return entry;
1417 }
1418
1419 /* Call the allocation method of the superclass. */
1420 entry = _bfd_link_hash_newfunc (entry, table, string);
1421 if (entry != NULL)
1422 {
1423 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1424 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1425
1426 /* Set local fields. */
1427 ret->indx = -1;
1428 ret->dynindx = -1;
1429 ret->got = ret->plt = htab->init_refcount;
1430 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1431 - offsetof (struct elf_link_hash_entry, size)));
1432 /* Assume that we have been called by a non-ELF symbol reader.
1433 This flag is then reset by the code which reads an ELF input
1434 file. This ensures that a symbol created by a non-ELF symbol
1435 reader will have the flag set correctly. */
1436 ret->non_elf = 1;
1437 }
1438
1439 return entry;
1440 }
1441
1442 /* Copy data from an indirect symbol to its direct symbol, hiding the
1443 old indirect symbol. Also used for copying flags to a weakdef. */
1444
1445 void
1446 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1447 struct elf_link_hash_entry *dir,
1448 struct elf_link_hash_entry *ind)
1449 {
1450 bfd_signed_vma tmp;
1451 bfd_signed_vma lowest_valid = bed->can_refcount;
1452
1453 /* Copy down any references that we may have already seen to the
1454 symbol which just became indirect. */
1455
1456 dir->ref_dynamic |= ind->ref_dynamic;
1457 dir->ref_regular |= ind->ref_regular;
1458 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1459 dir->non_got_ref |= ind->non_got_ref;
1460 dir->needs_plt |= ind->needs_plt;
1461 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1462
1463 if (ind->root.type != bfd_link_hash_indirect)
1464 return;
1465
1466 /* Copy over the global and procedure linkage table refcount entries.
1467 These may have been already set up by a check_relocs routine. */
1468 tmp = dir->got.refcount;
1469 if (tmp < lowest_valid)
1470 {
1471 dir->got.refcount = ind->got.refcount;
1472 ind->got.refcount = tmp;
1473 }
1474 else
1475 BFD_ASSERT (ind->got.refcount < lowest_valid);
1476
1477 tmp = dir->plt.refcount;
1478 if (tmp < lowest_valid)
1479 {
1480 dir->plt.refcount = ind->plt.refcount;
1481 ind->plt.refcount = tmp;
1482 }
1483 else
1484 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1485
1486 if (dir->dynindx == -1)
1487 {
1488 dir->dynindx = ind->dynindx;
1489 dir->dynstr_index = ind->dynstr_index;
1490 ind->dynindx = -1;
1491 ind->dynstr_index = 0;
1492 }
1493 else
1494 BFD_ASSERT (ind->dynindx == -1);
1495 }
1496
1497 void
1498 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1499 struct elf_link_hash_entry *h,
1500 bfd_boolean force_local)
1501 {
1502 h->plt = elf_hash_table (info)->init_offset;
1503 h->needs_plt = 0;
1504 if (force_local)
1505 {
1506 h->forced_local = 1;
1507 if (h->dynindx != -1)
1508 {
1509 h->dynindx = -1;
1510 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1511 h->dynstr_index);
1512 }
1513 }
1514 }
1515
1516 /* Initialize an ELF linker hash table. */
1517
1518 bfd_boolean
1519 _bfd_elf_link_hash_table_init
1520 (struct elf_link_hash_table *table,
1521 bfd *abfd,
1522 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1523 struct bfd_hash_table *,
1524 const char *))
1525 {
1526 bfd_boolean ret;
1527
1528 table->dynamic_sections_created = FALSE;
1529 table->dynobj = NULL;
1530 /* Make sure can_refcount is extended to the width and signedness of
1531 init_refcount before we subtract one from it. */
1532 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1533 table->init_refcount.refcount -= 1;
1534 table->init_offset.offset = -(bfd_vma) 1;
1535 /* The first dynamic symbol is a dummy. */
1536 table->dynsymcount = 1;
1537 table->dynstr = NULL;
1538 table->bucketcount = 0;
1539 table->needed = NULL;
1540 table->hgot = NULL;
1541 table->merge_info = NULL;
1542 memset (&table->stab_info, 0, sizeof (table->stab_info));
1543 memset (&table->eh_info, 0, sizeof (table->eh_info));
1544 table->dynlocal = NULL;
1545 table->runpath = NULL;
1546 table->tls_sec = NULL;
1547 table->tls_size = 0;
1548 table->loaded = NULL;
1549 table->is_relocatable_executable = FALSE;
1550
1551 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1552 table->root.type = bfd_link_elf_hash_table;
1553
1554 return ret;
1555 }
1556
1557 /* Create an ELF linker hash table. */
1558
1559 struct bfd_link_hash_table *
1560 _bfd_elf_link_hash_table_create (bfd *abfd)
1561 {
1562 struct elf_link_hash_table *ret;
1563 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1564
1565 ret = bfd_malloc (amt);
1566 if (ret == NULL)
1567 return NULL;
1568
1569 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1570 {
1571 free (ret);
1572 return NULL;
1573 }
1574
1575 return &ret->root;
1576 }
1577
1578 /* This is a hook for the ELF emulation code in the generic linker to
1579 tell the backend linker what file name to use for the DT_NEEDED
1580 entry for a dynamic object. */
1581
1582 void
1583 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1584 {
1585 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1586 && bfd_get_format (abfd) == bfd_object)
1587 elf_dt_name (abfd) = name;
1588 }
1589
1590 int
1591 bfd_elf_get_dyn_lib_class (bfd *abfd)
1592 {
1593 int lib_class;
1594 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1595 && bfd_get_format (abfd) == bfd_object)
1596 lib_class = elf_dyn_lib_class (abfd);
1597 else
1598 lib_class = 0;
1599 return lib_class;
1600 }
1601
1602 void
1603 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1604 {
1605 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1606 && bfd_get_format (abfd) == bfd_object)
1607 elf_dyn_lib_class (abfd) = lib_class;
1608 }
1609
1610 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1611 the linker ELF emulation code. */
1612
1613 struct bfd_link_needed_list *
1614 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1615 struct bfd_link_info *info)
1616 {
1617 if (! is_elf_hash_table (info->hash))
1618 return NULL;
1619 return elf_hash_table (info)->needed;
1620 }
1621
1622 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1623 hook for the linker ELF emulation code. */
1624
1625 struct bfd_link_needed_list *
1626 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1627 struct bfd_link_info *info)
1628 {
1629 if (! is_elf_hash_table (info->hash))
1630 return NULL;
1631 return elf_hash_table (info)->runpath;
1632 }
1633
1634 /* Get the name actually used for a dynamic object for a link. This
1635 is the SONAME entry if there is one. Otherwise, it is the string
1636 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1637
1638 const char *
1639 bfd_elf_get_dt_soname (bfd *abfd)
1640 {
1641 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1642 && bfd_get_format (abfd) == bfd_object)
1643 return elf_dt_name (abfd);
1644 return NULL;
1645 }
1646
1647 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1648 the ELF linker emulation code. */
1649
1650 bfd_boolean
1651 bfd_elf_get_bfd_needed_list (bfd *abfd,
1652 struct bfd_link_needed_list **pneeded)
1653 {
1654 asection *s;
1655 bfd_byte *dynbuf = NULL;
1656 int elfsec;
1657 unsigned long shlink;
1658 bfd_byte *extdyn, *extdynend;
1659 size_t extdynsize;
1660 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1661
1662 *pneeded = NULL;
1663
1664 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1665 || bfd_get_format (abfd) != bfd_object)
1666 return TRUE;
1667
1668 s = bfd_get_section_by_name (abfd, ".dynamic");
1669 if (s == NULL || s->size == 0)
1670 return TRUE;
1671
1672 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1673 goto error_return;
1674
1675 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1676 if (elfsec == -1)
1677 goto error_return;
1678
1679 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1680
1681 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1682 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1683
1684 extdyn = dynbuf;
1685 extdynend = extdyn + s->size;
1686 for (; extdyn < extdynend; extdyn += extdynsize)
1687 {
1688 Elf_Internal_Dyn dyn;
1689
1690 (*swap_dyn_in) (abfd, extdyn, &dyn);
1691
1692 if (dyn.d_tag == DT_NULL)
1693 break;
1694
1695 if (dyn.d_tag == DT_NEEDED)
1696 {
1697 const char *string;
1698 struct bfd_link_needed_list *l;
1699 unsigned int tagv = dyn.d_un.d_val;
1700 bfd_size_type amt;
1701
1702 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1703 if (string == NULL)
1704 goto error_return;
1705
1706 amt = sizeof *l;
1707 l = bfd_alloc (abfd, amt);
1708 if (l == NULL)
1709 goto error_return;
1710
1711 l->by = abfd;
1712 l->name = string;
1713 l->next = *pneeded;
1714 *pneeded = l;
1715 }
1716 }
1717
1718 free (dynbuf);
1719
1720 return TRUE;
1721
1722 error_return:
1723 if (dynbuf != NULL)
1724 free (dynbuf);
1725 return FALSE;
1726 }
1727 \f
1728 /* Allocate an ELF string table--force the first byte to be zero. */
1729
1730 struct bfd_strtab_hash *
1731 _bfd_elf_stringtab_init (void)
1732 {
1733 struct bfd_strtab_hash *ret;
1734
1735 ret = _bfd_stringtab_init ();
1736 if (ret != NULL)
1737 {
1738 bfd_size_type loc;
1739
1740 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1741 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1742 if (loc == (bfd_size_type) -1)
1743 {
1744 _bfd_stringtab_free (ret);
1745 ret = NULL;
1746 }
1747 }
1748 return ret;
1749 }
1750 \f
1751 /* ELF .o/exec file reading */
1752
1753 /* Create a new bfd section from an ELF section header. */
1754
1755 bfd_boolean
1756 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1757 {
1758 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1759 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1760 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1761 const char *name;
1762
1763 name = bfd_elf_string_from_elf_section (abfd,
1764 elf_elfheader (abfd)->e_shstrndx,
1765 hdr->sh_name);
1766
1767 switch (hdr->sh_type)
1768 {
1769 case SHT_NULL:
1770 /* Inactive section. Throw it away. */
1771 return TRUE;
1772
1773 case SHT_PROGBITS: /* Normal section with contents. */
1774 case SHT_NOBITS: /* .bss section. */
1775 case SHT_HASH: /* .hash section. */
1776 case SHT_NOTE: /* .note section. */
1777 case SHT_INIT_ARRAY: /* .init_array section. */
1778 case SHT_FINI_ARRAY: /* .fini_array section. */
1779 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1780 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1781 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1782
1783 case SHT_DYNAMIC: /* Dynamic linking information. */
1784 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1785 return FALSE;
1786 if (hdr->sh_link > elf_numsections (abfd)
1787 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1788 return FALSE;
1789 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1790 {
1791 Elf_Internal_Shdr *dynsymhdr;
1792
1793 /* The shared libraries distributed with hpux11 have a bogus
1794 sh_link field for the ".dynamic" section. Find the
1795 string table for the ".dynsym" section instead. */
1796 if (elf_dynsymtab (abfd) != 0)
1797 {
1798 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1799 hdr->sh_link = dynsymhdr->sh_link;
1800 }
1801 else
1802 {
1803 unsigned int i, num_sec;
1804
1805 num_sec = elf_numsections (abfd);
1806 for (i = 1; i < num_sec; i++)
1807 {
1808 dynsymhdr = elf_elfsections (abfd)[i];
1809 if (dynsymhdr->sh_type == SHT_DYNSYM)
1810 {
1811 hdr->sh_link = dynsymhdr->sh_link;
1812 break;
1813 }
1814 }
1815 }
1816 }
1817 break;
1818
1819 case SHT_SYMTAB: /* A symbol table */
1820 if (elf_onesymtab (abfd) == shindex)
1821 return TRUE;
1822
1823 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1824 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1825 elf_onesymtab (abfd) = shindex;
1826 elf_tdata (abfd)->symtab_hdr = *hdr;
1827 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1828 abfd->flags |= HAS_SYMS;
1829
1830 /* Sometimes a shared object will map in the symbol table. If
1831 SHF_ALLOC is set, and this is a shared object, then we also
1832 treat this section as a BFD section. We can not base the
1833 decision purely on SHF_ALLOC, because that flag is sometimes
1834 set in a relocatable object file, which would confuse the
1835 linker. */
1836 if ((hdr->sh_flags & SHF_ALLOC) != 0
1837 && (abfd->flags & DYNAMIC) != 0
1838 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1839 shindex))
1840 return FALSE;
1841
1842 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1843 can't read symbols without that section loaded as well. It
1844 is most likely specified by the next section header. */
1845 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1846 {
1847 unsigned int i, num_sec;
1848
1849 num_sec = elf_numsections (abfd);
1850 for (i = shindex + 1; i < num_sec; i++)
1851 {
1852 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1853 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1854 && hdr2->sh_link == shindex)
1855 break;
1856 }
1857 if (i == num_sec)
1858 for (i = 1; i < shindex; i++)
1859 {
1860 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1861 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1862 && hdr2->sh_link == shindex)
1863 break;
1864 }
1865 if (i != shindex)
1866 return bfd_section_from_shdr (abfd, i);
1867 }
1868 return TRUE;
1869
1870 case SHT_DYNSYM: /* A dynamic symbol table */
1871 if (elf_dynsymtab (abfd) == shindex)
1872 return TRUE;
1873
1874 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1875 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1876 elf_dynsymtab (abfd) = shindex;
1877 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1878 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1879 abfd->flags |= HAS_SYMS;
1880
1881 /* Besides being a symbol table, we also treat this as a regular
1882 section, so that objcopy can handle it. */
1883 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1884
1885 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1886 if (elf_symtab_shndx (abfd) == shindex)
1887 return TRUE;
1888
1889 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1890 elf_symtab_shndx (abfd) = shindex;
1891 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1892 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1893 return TRUE;
1894
1895 case SHT_STRTAB: /* A string table */
1896 if (hdr->bfd_section != NULL)
1897 return TRUE;
1898 if (ehdr->e_shstrndx == shindex)
1899 {
1900 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1901 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1902 return TRUE;
1903 }
1904 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1905 {
1906 symtab_strtab:
1907 elf_tdata (abfd)->strtab_hdr = *hdr;
1908 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1909 return TRUE;
1910 }
1911 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1912 {
1913 dynsymtab_strtab:
1914 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1915 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1916 elf_elfsections (abfd)[shindex] = hdr;
1917 /* We also treat this as a regular section, so that objcopy
1918 can handle it. */
1919 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1920 shindex);
1921 }
1922
1923 /* If the string table isn't one of the above, then treat it as a
1924 regular section. We need to scan all the headers to be sure,
1925 just in case this strtab section appeared before the above. */
1926 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1927 {
1928 unsigned int i, num_sec;
1929
1930 num_sec = elf_numsections (abfd);
1931 for (i = 1; i < num_sec; i++)
1932 {
1933 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1934 if (hdr2->sh_link == shindex)
1935 {
1936 if (! bfd_section_from_shdr (abfd, i))
1937 return FALSE;
1938 if (elf_onesymtab (abfd) == i)
1939 goto symtab_strtab;
1940 if (elf_dynsymtab (abfd) == i)
1941 goto dynsymtab_strtab;
1942 }
1943 }
1944 }
1945 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1946
1947 case SHT_REL:
1948 case SHT_RELA:
1949 /* *These* do a lot of work -- but build no sections! */
1950 {
1951 asection *target_sect;
1952 Elf_Internal_Shdr *hdr2;
1953 unsigned int num_sec = elf_numsections (abfd);
1954
1955 /* Check for a bogus link to avoid crashing. */
1956 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1957 || hdr->sh_link >= num_sec)
1958 {
1959 ((*_bfd_error_handler)
1960 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1961 abfd, hdr->sh_link, name, shindex));
1962 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1963 shindex);
1964 }
1965
1966 /* For some incomprehensible reason Oracle distributes
1967 libraries for Solaris in which some of the objects have
1968 bogus sh_link fields. It would be nice if we could just
1969 reject them, but, unfortunately, some people need to use
1970 them. We scan through the section headers; if we find only
1971 one suitable symbol table, we clobber the sh_link to point
1972 to it. I hope this doesn't break anything. */
1973 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1974 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1975 {
1976 unsigned int scan;
1977 int found;
1978
1979 found = 0;
1980 for (scan = 1; scan < num_sec; scan++)
1981 {
1982 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1983 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1984 {
1985 if (found != 0)
1986 {
1987 found = 0;
1988 break;
1989 }
1990 found = scan;
1991 }
1992 }
1993 if (found != 0)
1994 hdr->sh_link = found;
1995 }
1996
1997 /* Get the symbol table. */
1998 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1999 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2000 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2001 return FALSE;
2002
2003 /* If this reloc section does not use the main symbol table we
2004 don't treat it as a reloc section. BFD can't adequately
2005 represent such a section, so at least for now, we don't
2006 try. We just present it as a normal section. We also
2007 can't use it as a reloc section if it points to the null
2008 section. */
2009 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
2010 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2011 shindex);
2012
2013 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2014 return FALSE;
2015 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2016 if (target_sect == NULL)
2017 return FALSE;
2018
2019 if ((target_sect->flags & SEC_RELOC) == 0
2020 || target_sect->reloc_count == 0)
2021 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2022 else
2023 {
2024 bfd_size_type amt;
2025 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2026 amt = sizeof (*hdr2);
2027 hdr2 = bfd_alloc (abfd, amt);
2028 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2029 }
2030 *hdr2 = *hdr;
2031 elf_elfsections (abfd)[shindex] = hdr2;
2032 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2033 target_sect->flags |= SEC_RELOC;
2034 target_sect->relocation = NULL;
2035 target_sect->rel_filepos = hdr->sh_offset;
2036 /* In the section to which the relocations apply, mark whether
2037 its relocations are of the REL or RELA variety. */
2038 if (hdr->sh_size != 0)
2039 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2040 abfd->flags |= HAS_RELOC;
2041 return TRUE;
2042 }
2043 break;
2044
2045 case SHT_GNU_verdef:
2046 elf_dynverdef (abfd) = shindex;
2047 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2048 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2049 break;
2050
2051 case SHT_GNU_versym:
2052 elf_dynversym (abfd) = shindex;
2053 elf_tdata (abfd)->dynversym_hdr = *hdr;
2054 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2055 break;
2056
2057 case SHT_GNU_verneed:
2058 elf_dynverref (abfd) = shindex;
2059 elf_tdata (abfd)->dynverref_hdr = *hdr;
2060 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2061 break;
2062
2063 case SHT_SHLIB:
2064 return TRUE;
2065
2066 case SHT_GROUP:
2067 /* We need a BFD section for objcopy and relocatable linking,
2068 and it's handy to have the signature available as the section
2069 name. */
2070 name = group_signature (abfd, hdr);
2071 if (name == NULL)
2072 return FALSE;
2073 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2074 return FALSE;
2075 if (hdr->contents != NULL)
2076 {
2077 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2078 unsigned int n_elt = hdr->sh_size / 4;
2079 asection *s;
2080
2081 if (idx->flags & GRP_COMDAT)
2082 hdr->bfd_section->flags
2083 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2084
2085 /* We try to keep the same section order as it comes in. */
2086 idx += n_elt;
2087 while (--n_elt != 0)
2088 if ((s = (--idx)->shdr->bfd_section) != NULL
2089 && elf_next_in_group (s) != NULL)
2090 {
2091 elf_next_in_group (hdr->bfd_section) = s;
2092 break;
2093 }
2094 }
2095 break;
2096
2097 default:
2098 /* Check for any processor-specific section types. */
2099 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2100 shindex);
2101 }
2102
2103 return TRUE;
2104 }
2105
2106 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2107 Return SEC for sections that have no elf section, and NULL on error. */
2108
2109 asection *
2110 bfd_section_from_r_symndx (bfd *abfd,
2111 struct sym_sec_cache *cache,
2112 asection *sec,
2113 unsigned long r_symndx)
2114 {
2115 Elf_Internal_Shdr *symtab_hdr;
2116 unsigned char esym[sizeof (Elf64_External_Sym)];
2117 Elf_External_Sym_Shndx eshndx;
2118 Elf_Internal_Sym isym;
2119 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2120
2121 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2122 return cache->sec[ent];
2123
2124 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2125 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2126 &isym, esym, &eshndx) == NULL)
2127 return NULL;
2128
2129 if (cache->abfd != abfd)
2130 {
2131 memset (cache->indx, -1, sizeof (cache->indx));
2132 cache->abfd = abfd;
2133 }
2134 cache->indx[ent] = r_symndx;
2135 cache->sec[ent] = sec;
2136 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2137 || isym.st_shndx > SHN_HIRESERVE)
2138 {
2139 asection *s;
2140 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2141 if (s != NULL)
2142 cache->sec[ent] = s;
2143 }
2144 return cache->sec[ent];
2145 }
2146
2147 /* Given an ELF section number, retrieve the corresponding BFD
2148 section. */
2149
2150 asection *
2151 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2152 {
2153 if (index >= elf_numsections (abfd))
2154 return NULL;
2155 return elf_elfsections (abfd)[index]->bfd_section;
2156 }
2157
2158 static struct bfd_elf_special_section const special_sections_b[] =
2159 {
2160 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2161 { NULL, 0, 0, 0, 0 }
2162 };
2163
2164 static struct bfd_elf_special_section const special_sections_c[] =
2165 {
2166 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2167 { NULL, 0, 0, 0, 0 }
2168 };
2169
2170 static struct bfd_elf_special_section const special_sections_d[] =
2171 {
2172 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2173 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2174 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2175 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2176 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2177 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2178 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2179 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2180 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2181 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2182 { NULL, 0, 0, 0, 0 }
2183 };
2184
2185 static struct bfd_elf_special_section const special_sections_f[] =
2186 {
2187 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2188 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2189 { NULL, 0, 0, 0, 0 }
2190 };
2191
2192 static struct bfd_elf_special_section const special_sections_g[] =
2193 {
2194 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2195 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2196 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2197 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2198 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2199 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2200 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2201 { NULL, 0, 0, 0, 0 }
2202 };
2203
2204 static struct bfd_elf_special_section const special_sections_h[] =
2205 {
2206 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2207 { NULL, 0, 0, 0, 0 }
2208 };
2209
2210 static struct bfd_elf_special_section const special_sections_i[] =
2211 {
2212 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2213 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2214 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2215 { NULL, 0, 0, 0, 0 }
2216 };
2217
2218 static struct bfd_elf_special_section const special_sections_l[] =
2219 {
2220 { ".line", 5, 0, SHT_PROGBITS, 0 },
2221 { NULL, 0, 0, 0, 0 }
2222 };
2223
2224 static struct bfd_elf_special_section const special_sections_n[] =
2225 {
2226 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2227 { ".note", 5, -1, SHT_NOTE, 0 },
2228 { NULL, 0, 0, 0, 0 }
2229 };
2230
2231 static struct bfd_elf_special_section const special_sections_p[] =
2232 {
2233 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2234 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2235 { NULL, 0, 0, 0, 0 }
2236 };
2237
2238 static struct bfd_elf_special_section const special_sections_r[] =
2239 {
2240 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2241 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2242 { ".rela", 5, -1, SHT_RELA, 0 },
2243 { ".rel", 4, -1, SHT_REL, 0 },
2244 { NULL, 0, 0, 0, 0 }
2245 };
2246
2247 static struct bfd_elf_special_section const special_sections_s[] =
2248 {
2249 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2250 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2251 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2252 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2253 { NULL, 0, 0, 0, 0 }
2254 };
2255
2256 static struct bfd_elf_special_section const special_sections_t[] =
2257 {
2258 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2259 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2260 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2261 { NULL, 0, 0, 0, 0 }
2262 };
2263
2264 static struct bfd_elf_special_section const *special_sections [27] =
2265 {
2266 NULL, /* 'a' */
2267 special_sections_b, /* 'b' */
2268 special_sections_c, /* 'b' */
2269 special_sections_d, /* 'd' */
2270 NULL, /* 'e' */
2271 special_sections_f, /* 'f' */
2272 special_sections_g, /* 'g' */
2273 special_sections_h, /* 'h' */
2274 special_sections_i, /* 'i' */
2275 NULL, /* 'j' */
2276 NULL, /* 'k' */
2277 special_sections_l, /* 'l' */
2278 NULL, /* 'm' */
2279 special_sections_n, /* 'n' */
2280 NULL, /* 'o' */
2281 special_sections_p, /* 'p' */
2282 NULL, /* 'q' */
2283 special_sections_r, /* 'r' */
2284 special_sections_s, /* 's' */
2285 special_sections_t, /* 't' */
2286 NULL, /* 'u' */
2287 NULL, /* 'v' */
2288 NULL, /* 'w' */
2289 NULL, /* 'x' */
2290 NULL, /* 'y' */
2291 NULL, /* 'z' */
2292 NULL /* other */
2293 };
2294
2295 static const struct bfd_elf_special_section *
2296 get_special_section (const char *name,
2297 const struct bfd_elf_special_section **special_sections_p,
2298 unsigned int rela)
2299 {
2300 int i;
2301 int len;
2302 const struct bfd_elf_special_section *special_sections;
2303
2304 if (name [0] == '.')
2305 {
2306 i = name [1] - 'a';
2307 if (i < 0 || i > 25)
2308 i = 26;
2309 }
2310 else
2311 i = 26;
2312
2313 special_sections = special_sections_p [i];
2314
2315 if (!special_sections)
2316 return special_sections;
2317
2318 len= strlen (name);
2319
2320 for (i = 0; special_sections[i].prefix != NULL; i++)
2321 {
2322 int suffix_len;
2323 int prefix_len = special_sections[i].prefix_length;
2324
2325 if (len < prefix_len)
2326 continue;
2327 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2328 continue;
2329
2330 suffix_len = special_sections[i].suffix_length;
2331 if (suffix_len <= 0)
2332 {
2333 if (name[prefix_len] != 0)
2334 {
2335 if (suffix_len == 0)
2336 continue;
2337 if (name[prefix_len] != '.'
2338 && (suffix_len == -2
2339 || (rela && special_sections[i].type == SHT_REL)))
2340 continue;
2341 }
2342 }
2343 else
2344 {
2345 if (len < prefix_len + suffix_len)
2346 continue;
2347 if (memcmp (name + len - suffix_len,
2348 special_sections[i].prefix + prefix_len,
2349 suffix_len) != 0)
2350 continue;
2351 }
2352 return &special_sections[i];
2353 }
2354
2355 return NULL;
2356 }
2357
2358 const struct bfd_elf_special_section *
2359 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2360 {
2361 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2362 const struct bfd_elf_special_section *ssect = NULL;
2363
2364 /* See if this is one of the special sections. */
2365 if (name)
2366 {
2367 unsigned int rela = bed->default_use_rela_p;
2368
2369 if (bed->special_sections)
2370 ssect = get_special_section (name, bed->special_sections, rela);
2371
2372 if (! ssect)
2373 ssect = get_special_section (name, special_sections, rela);
2374 }
2375
2376 return ssect;
2377 }
2378
2379 bfd_boolean
2380 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2381 {
2382 struct bfd_elf_section_data *sdata;
2383 const struct bfd_elf_special_section *ssect;
2384
2385 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2386 if (sdata == NULL)
2387 {
2388 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2389 if (sdata == NULL)
2390 return FALSE;
2391 sec->used_by_bfd = sdata;
2392 }
2393
2394 /* When we read a file, we don't need section type and flags unless
2395 it is a linker created section. They will be overridden in
2396 _bfd_elf_make_section_from_shdr anyway. */
2397 if (abfd->direction != read_direction
2398 || (sec->flags & SEC_LINKER_CREATED) != 0)
2399 {
2400 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2401 if (ssect != NULL)
2402 {
2403 elf_section_type (sec) = ssect->type;
2404 elf_section_flags (sec) = ssect->attr;
2405 }
2406 }
2407
2408 /* Indicate whether or not this section should use RELA relocations. */
2409 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2410
2411 return TRUE;
2412 }
2413
2414 /* Create a new bfd section from an ELF program header.
2415
2416 Since program segments have no names, we generate a synthetic name
2417 of the form segment<NUM>, where NUM is generally the index in the
2418 program header table. For segments that are split (see below) we
2419 generate the names segment<NUM>a and segment<NUM>b.
2420
2421 Note that some program segments may have a file size that is different than
2422 (less than) the memory size. All this means is that at execution the
2423 system must allocate the amount of memory specified by the memory size,
2424 but only initialize it with the first "file size" bytes read from the
2425 file. This would occur for example, with program segments consisting
2426 of combined data+bss.
2427
2428 To handle the above situation, this routine generates TWO bfd sections
2429 for the single program segment. The first has the length specified by
2430 the file size of the segment, and the second has the length specified
2431 by the difference between the two sizes. In effect, the segment is split
2432 into it's initialized and uninitialized parts.
2433
2434 */
2435
2436 bfd_boolean
2437 _bfd_elf_make_section_from_phdr (bfd *abfd,
2438 Elf_Internal_Phdr *hdr,
2439 int index,
2440 const char *typename)
2441 {
2442 asection *newsect;
2443 char *name;
2444 char namebuf[64];
2445 size_t len;
2446 int split;
2447
2448 split = ((hdr->p_memsz > 0)
2449 && (hdr->p_filesz > 0)
2450 && (hdr->p_memsz > hdr->p_filesz));
2451 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2452 len = strlen (namebuf) + 1;
2453 name = bfd_alloc (abfd, len);
2454 if (!name)
2455 return FALSE;
2456 memcpy (name, namebuf, len);
2457 newsect = bfd_make_section (abfd, name);
2458 if (newsect == NULL)
2459 return FALSE;
2460 newsect->vma = hdr->p_vaddr;
2461 newsect->lma = hdr->p_paddr;
2462 newsect->size = hdr->p_filesz;
2463 newsect->filepos = hdr->p_offset;
2464 newsect->flags |= SEC_HAS_CONTENTS;
2465 newsect->alignment_power = bfd_log2 (hdr->p_align);
2466 if (hdr->p_type == PT_LOAD)
2467 {
2468 newsect->flags |= SEC_ALLOC;
2469 newsect->flags |= SEC_LOAD;
2470 if (hdr->p_flags & PF_X)
2471 {
2472 /* FIXME: all we known is that it has execute PERMISSION,
2473 may be data. */
2474 newsect->flags |= SEC_CODE;
2475 }
2476 }
2477 if (!(hdr->p_flags & PF_W))
2478 {
2479 newsect->flags |= SEC_READONLY;
2480 }
2481
2482 if (split)
2483 {
2484 sprintf (namebuf, "%s%db", typename, index);
2485 len = strlen (namebuf) + 1;
2486 name = bfd_alloc (abfd, len);
2487 if (!name)
2488 return FALSE;
2489 memcpy (name, namebuf, len);
2490 newsect = bfd_make_section (abfd, name);
2491 if (newsect == NULL)
2492 return FALSE;
2493 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2494 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2495 newsect->size = hdr->p_memsz - hdr->p_filesz;
2496 if (hdr->p_type == PT_LOAD)
2497 {
2498 newsect->flags |= SEC_ALLOC;
2499 if (hdr->p_flags & PF_X)
2500 newsect->flags |= SEC_CODE;
2501 }
2502 if (!(hdr->p_flags & PF_W))
2503 newsect->flags |= SEC_READONLY;
2504 }
2505
2506 return TRUE;
2507 }
2508
2509 bfd_boolean
2510 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2511 {
2512 const struct elf_backend_data *bed;
2513
2514 switch (hdr->p_type)
2515 {
2516 case PT_NULL:
2517 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2518
2519 case PT_LOAD:
2520 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2521
2522 case PT_DYNAMIC:
2523 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2524
2525 case PT_INTERP:
2526 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2527
2528 case PT_NOTE:
2529 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2530 return FALSE;
2531 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2532 return FALSE;
2533 return TRUE;
2534
2535 case PT_SHLIB:
2536 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2537
2538 case PT_PHDR:
2539 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2540
2541 case PT_GNU_EH_FRAME:
2542 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2543 "eh_frame_hdr");
2544
2545 case PT_GNU_STACK:
2546 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2547
2548 case PT_GNU_RELRO:
2549 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2550
2551 default:
2552 /* Check for any processor-specific program segment types. */
2553 bed = get_elf_backend_data (abfd);
2554 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2555 }
2556 }
2557
2558 /* Initialize REL_HDR, the section-header for new section, containing
2559 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2560 relocations; otherwise, we use REL relocations. */
2561
2562 bfd_boolean
2563 _bfd_elf_init_reloc_shdr (bfd *abfd,
2564 Elf_Internal_Shdr *rel_hdr,
2565 asection *asect,
2566 bfd_boolean use_rela_p)
2567 {
2568 char *name;
2569 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2570 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2571
2572 name = bfd_alloc (abfd, amt);
2573 if (name == NULL)
2574 return FALSE;
2575 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2576 rel_hdr->sh_name =
2577 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2578 FALSE);
2579 if (rel_hdr->sh_name == (unsigned int) -1)
2580 return FALSE;
2581 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2582 rel_hdr->sh_entsize = (use_rela_p
2583 ? bed->s->sizeof_rela
2584 : bed->s->sizeof_rel);
2585 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2586 rel_hdr->sh_flags = 0;
2587 rel_hdr->sh_addr = 0;
2588 rel_hdr->sh_size = 0;
2589 rel_hdr->sh_offset = 0;
2590
2591 return TRUE;
2592 }
2593
2594 /* Set up an ELF internal section header for a section. */
2595
2596 static void
2597 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2598 {
2599 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2600 bfd_boolean *failedptr = failedptrarg;
2601 Elf_Internal_Shdr *this_hdr;
2602
2603 if (*failedptr)
2604 {
2605 /* We already failed; just get out of the bfd_map_over_sections
2606 loop. */
2607 return;
2608 }
2609
2610 this_hdr = &elf_section_data (asect)->this_hdr;
2611
2612 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2613 asect->name, FALSE);
2614 if (this_hdr->sh_name == (unsigned int) -1)
2615 {
2616 *failedptr = TRUE;
2617 return;
2618 }
2619
2620 this_hdr->sh_flags = 0;
2621
2622 if ((asect->flags & SEC_ALLOC) != 0
2623 || asect->user_set_vma)
2624 this_hdr->sh_addr = asect->vma;
2625 else
2626 this_hdr->sh_addr = 0;
2627
2628 this_hdr->sh_offset = 0;
2629 this_hdr->sh_size = asect->size;
2630 this_hdr->sh_link = 0;
2631 this_hdr->sh_addralign = 1 << asect->alignment_power;
2632 /* The sh_entsize and sh_info fields may have been set already by
2633 copy_private_section_data. */
2634
2635 this_hdr->bfd_section = asect;
2636 this_hdr->contents = NULL;
2637
2638 /* If the section type is unspecified, we set it based on
2639 asect->flags. */
2640 if (this_hdr->sh_type == SHT_NULL)
2641 {
2642 if ((asect->flags & SEC_GROUP) != 0)
2643 {
2644 /* We also need to mark SHF_GROUP here for relocatable
2645 link. */
2646 struct bfd_link_order *l;
2647 asection *elt;
2648
2649 for (l = asect->map_head.link_order; l != NULL; l = l->next)
2650 if (l->type == bfd_indirect_link_order
2651 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2652 do
2653 {
2654 /* The name is not important. Anything will do. */
2655 elf_group_name (elt->output_section) = "G";
2656 elf_section_flags (elt->output_section) |= SHF_GROUP;
2657
2658 elt = elf_next_in_group (elt);
2659 /* During a relocatable link, the lists are
2660 circular. */
2661 }
2662 while (elt != elf_next_in_group (l->u.indirect.section));
2663
2664 this_hdr->sh_type = SHT_GROUP;
2665 }
2666 else if ((asect->flags & SEC_ALLOC) != 0
2667 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2668 || (asect->flags & SEC_NEVER_LOAD) != 0))
2669 this_hdr->sh_type = SHT_NOBITS;
2670 else
2671 this_hdr->sh_type = SHT_PROGBITS;
2672 }
2673
2674 switch (this_hdr->sh_type)
2675 {
2676 default:
2677 break;
2678
2679 case SHT_STRTAB:
2680 case SHT_INIT_ARRAY:
2681 case SHT_FINI_ARRAY:
2682 case SHT_PREINIT_ARRAY:
2683 case SHT_NOTE:
2684 case SHT_NOBITS:
2685 case SHT_PROGBITS:
2686 break;
2687
2688 case SHT_HASH:
2689 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2690 break;
2691
2692 case SHT_DYNSYM:
2693 this_hdr->sh_entsize = bed->s->sizeof_sym;
2694 break;
2695
2696 case SHT_DYNAMIC:
2697 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2698 break;
2699
2700 case SHT_RELA:
2701 if (get_elf_backend_data (abfd)->may_use_rela_p)
2702 this_hdr->sh_entsize = bed->s->sizeof_rela;
2703 break;
2704
2705 case SHT_REL:
2706 if (get_elf_backend_data (abfd)->may_use_rel_p)
2707 this_hdr->sh_entsize = bed->s->sizeof_rel;
2708 break;
2709
2710 case SHT_GNU_versym:
2711 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2712 break;
2713
2714 case SHT_GNU_verdef:
2715 this_hdr->sh_entsize = 0;
2716 /* objcopy or strip will copy over sh_info, but may not set
2717 cverdefs. The linker will set cverdefs, but sh_info will be
2718 zero. */
2719 if (this_hdr->sh_info == 0)
2720 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2721 else
2722 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2723 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2724 break;
2725
2726 case SHT_GNU_verneed:
2727 this_hdr->sh_entsize = 0;
2728 /* objcopy or strip will copy over sh_info, but may not set
2729 cverrefs. The linker will set cverrefs, but sh_info will be
2730 zero. */
2731 if (this_hdr->sh_info == 0)
2732 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2733 else
2734 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2735 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2736 break;
2737
2738 case SHT_GROUP:
2739 this_hdr->sh_entsize = 4;
2740 break;
2741 }
2742
2743 if ((asect->flags & SEC_ALLOC) != 0)
2744 this_hdr->sh_flags |= SHF_ALLOC;
2745 if ((asect->flags & SEC_READONLY) == 0)
2746 this_hdr->sh_flags |= SHF_WRITE;
2747 if ((asect->flags & SEC_CODE) != 0)
2748 this_hdr->sh_flags |= SHF_EXECINSTR;
2749 if ((asect->flags & SEC_MERGE) != 0)
2750 {
2751 this_hdr->sh_flags |= SHF_MERGE;
2752 this_hdr->sh_entsize = asect->entsize;
2753 if ((asect->flags & SEC_STRINGS) != 0)
2754 this_hdr->sh_flags |= SHF_STRINGS;
2755 }
2756 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2757 this_hdr->sh_flags |= SHF_GROUP;
2758 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2759 {
2760 this_hdr->sh_flags |= SHF_TLS;
2761 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2762 {
2763 struct bfd_link_order *o;
2764
2765 this_hdr->sh_size = 0;
2766 for (o = asect->map_head.link_order; o != NULL; o = o->next)
2767 if (this_hdr->sh_size < o->offset + o->size)
2768 this_hdr->sh_size = o->offset + o->size;
2769 if (this_hdr->sh_size)
2770 this_hdr->sh_type = SHT_NOBITS;
2771 }
2772 }
2773
2774 /* Check for processor-specific section types. */
2775 if (bed->elf_backend_fake_sections
2776 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2777 *failedptr = TRUE;
2778
2779 /* If the section has relocs, set up a section header for the
2780 SHT_REL[A] section. If two relocation sections are required for
2781 this section, it is up to the processor-specific back-end to
2782 create the other. */
2783 if ((asect->flags & SEC_RELOC) != 0
2784 && !_bfd_elf_init_reloc_shdr (abfd,
2785 &elf_section_data (asect)->rel_hdr,
2786 asect,
2787 asect->use_rela_p))
2788 *failedptr = TRUE;
2789 }
2790
2791 /* Fill in the contents of a SHT_GROUP section. */
2792
2793 void
2794 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2795 {
2796 bfd_boolean *failedptr = failedptrarg;
2797 unsigned long symindx;
2798 asection *elt, *first;
2799 unsigned char *loc;
2800 struct bfd_link_order *l;
2801 bfd_boolean gas;
2802
2803 /* Ignore linker created group section. See elfNN_ia64_object_p in
2804 elfxx-ia64.c. */
2805 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2806 || *failedptr)
2807 return;
2808
2809 symindx = 0;
2810 if (elf_group_id (sec) != NULL)
2811 symindx = elf_group_id (sec)->udata.i;
2812
2813 if (symindx == 0)
2814 {
2815 /* If called from the assembler, swap_out_syms will have set up
2816 elf_section_syms; If called for "ld -r", use target_index. */
2817 if (elf_section_syms (abfd) != NULL)
2818 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2819 else
2820 symindx = sec->target_index;
2821 }
2822 elf_section_data (sec)->this_hdr.sh_info = symindx;
2823
2824 /* The contents won't be allocated for "ld -r" or objcopy. */
2825 gas = TRUE;
2826 if (sec->contents == NULL)
2827 {
2828 gas = FALSE;
2829 sec->contents = bfd_alloc (abfd, sec->size);
2830
2831 /* Arrange for the section to be written out. */
2832 elf_section_data (sec)->this_hdr.contents = sec->contents;
2833 if (sec->contents == NULL)
2834 {
2835 *failedptr = TRUE;
2836 return;
2837 }
2838 }
2839
2840 loc = sec->contents + sec->size;
2841
2842 /* Get the pointer to the first section in the group that gas
2843 squirreled away here. objcopy arranges for this to be set to the
2844 start of the input section group. */
2845 first = elt = elf_next_in_group (sec);
2846
2847 /* First element is a flag word. Rest of section is elf section
2848 indices for all the sections of the group. Write them backwards
2849 just to keep the group in the same order as given in .section
2850 directives, not that it matters. */
2851 while (elt != NULL)
2852 {
2853 asection *s;
2854 unsigned int idx;
2855
2856 loc -= 4;
2857 s = elt;
2858 if (!gas)
2859 s = s->output_section;
2860 idx = 0;
2861 if (s != NULL)
2862 idx = elf_section_data (s)->this_idx;
2863 H_PUT_32 (abfd, idx, loc);
2864 elt = elf_next_in_group (elt);
2865 if (elt == first)
2866 break;
2867 }
2868
2869 /* If this is a relocatable link, then the above did nothing because
2870 SEC is the output section. Look through the input sections
2871 instead. */
2872 for (l = sec->map_head.link_order; l != NULL; l = l->next)
2873 if (l->type == bfd_indirect_link_order
2874 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2875 do
2876 {
2877 loc -= 4;
2878 H_PUT_32 (abfd,
2879 elf_section_data (elt->output_section)->this_idx, loc);
2880 elt = elf_next_in_group (elt);
2881 /* During a relocatable link, the lists are circular. */
2882 }
2883 while (elt != elf_next_in_group (l->u.indirect.section));
2884
2885 if ((loc -= 4) != sec->contents)
2886 abort ();
2887
2888 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2889 }
2890
2891 /* Assign all ELF section numbers. The dummy first section is handled here
2892 too. The link/info pointers for the standard section types are filled
2893 in here too, while we're at it. */
2894
2895 static bfd_boolean
2896 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2897 {
2898 struct elf_obj_tdata *t = elf_tdata (abfd);
2899 asection *sec;
2900 unsigned int section_number, secn;
2901 Elf_Internal_Shdr **i_shdrp;
2902 bfd_size_type amt;
2903 struct bfd_elf_section_data *d;
2904
2905 section_number = 1;
2906
2907 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2908
2909 /* SHT_GROUP sections are in relocatable files only. */
2910 if (link_info == NULL || link_info->relocatable)
2911 {
2912 /* Put SHT_GROUP sections first. */
2913 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2914 {
2915 d = elf_section_data (sec);
2916
2917 if (d->this_hdr.sh_type == SHT_GROUP)
2918 {
2919 if (sec->flags & SEC_LINKER_CREATED)
2920 {
2921 /* Remove the linker created SHT_GROUP sections. */
2922 bfd_section_list_remove (abfd, sec);
2923 abfd->section_count--;
2924 }
2925 else
2926 {
2927 if (section_number == SHN_LORESERVE)
2928 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2929 d->this_idx = section_number++;
2930 }
2931 }
2932 }
2933 }
2934
2935 for (sec = abfd->sections; sec; sec = sec->next)
2936 {
2937 d = elf_section_data (sec);
2938
2939 if (d->this_hdr.sh_type != SHT_GROUP)
2940 {
2941 if (section_number == SHN_LORESERVE)
2942 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2943 d->this_idx = section_number++;
2944 }
2945 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2946 if ((sec->flags & SEC_RELOC) == 0)
2947 d->rel_idx = 0;
2948 else
2949 {
2950 if (section_number == SHN_LORESERVE)
2951 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2952 d->rel_idx = section_number++;
2953 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2954 }
2955
2956 if (d->rel_hdr2)
2957 {
2958 if (section_number == SHN_LORESERVE)
2959 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2960 d->rel_idx2 = section_number++;
2961 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2962 }
2963 else
2964 d->rel_idx2 = 0;
2965 }
2966
2967 if (section_number == SHN_LORESERVE)
2968 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2969 t->shstrtab_section = section_number++;
2970 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2971 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2972
2973 if (bfd_get_symcount (abfd) > 0)
2974 {
2975 if (section_number == SHN_LORESERVE)
2976 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2977 t->symtab_section = section_number++;
2978 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2979 if (section_number > SHN_LORESERVE - 2)
2980 {
2981 if (section_number == SHN_LORESERVE)
2982 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2983 t->symtab_shndx_section = section_number++;
2984 t->symtab_shndx_hdr.sh_name
2985 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2986 ".symtab_shndx", FALSE);
2987 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2988 return FALSE;
2989 }
2990 if (section_number == SHN_LORESERVE)
2991 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2992 t->strtab_section = section_number++;
2993 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2994 }
2995
2996 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2997 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2998
2999 elf_numsections (abfd) = section_number;
3000 elf_elfheader (abfd)->e_shnum = section_number;
3001 if (section_number > SHN_LORESERVE)
3002 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3003
3004 /* Set up the list of section header pointers, in agreement with the
3005 indices. */
3006 amt = section_number * sizeof (Elf_Internal_Shdr *);
3007 i_shdrp = bfd_zalloc (abfd, amt);
3008 if (i_shdrp == NULL)
3009 return FALSE;
3010
3011 amt = sizeof (Elf_Internal_Shdr);
3012 i_shdrp[0] = bfd_zalloc (abfd, amt);
3013 if (i_shdrp[0] == NULL)
3014 {
3015 bfd_release (abfd, i_shdrp);
3016 return FALSE;
3017 }
3018
3019 elf_elfsections (abfd) = i_shdrp;
3020
3021 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3022 if (bfd_get_symcount (abfd) > 0)
3023 {
3024 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3025 if (elf_numsections (abfd) > SHN_LORESERVE)
3026 {
3027 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3028 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3029 }
3030 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3031 t->symtab_hdr.sh_link = t->strtab_section;
3032 }
3033
3034 for (sec = abfd->sections; sec; sec = sec->next)
3035 {
3036 struct bfd_elf_section_data *d = elf_section_data (sec);
3037 asection *s;
3038 const char *name;
3039
3040 i_shdrp[d->this_idx] = &d->this_hdr;
3041 if (d->rel_idx != 0)
3042 i_shdrp[d->rel_idx] = &d->rel_hdr;
3043 if (d->rel_idx2 != 0)
3044 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3045
3046 /* Fill in the sh_link and sh_info fields while we're at it. */
3047
3048 /* sh_link of a reloc section is the section index of the symbol
3049 table. sh_info is the section index of the section to which
3050 the relocation entries apply. */
3051 if (d->rel_idx != 0)
3052 {
3053 d->rel_hdr.sh_link = t->symtab_section;
3054 d->rel_hdr.sh_info = d->this_idx;
3055 }
3056 if (d->rel_idx2 != 0)
3057 {
3058 d->rel_hdr2->sh_link = t->symtab_section;
3059 d->rel_hdr2->sh_info = d->this_idx;
3060 }
3061
3062 /* We need to set up sh_link for SHF_LINK_ORDER. */
3063 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3064 {
3065 s = elf_linked_to_section (sec);
3066 if (s)
3067 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3068 else
3069 {
3070 struct bfd_link_order *p;
3071
3072 /* Find out what the corresponding section in output
3073 is. */
3074 for (p = sec->map_head.link_order; p != NULL; p = p->next)
3075 {
3076 s = p->u.indirect.section;
3077 if (p->type == bfd_indirect_link_order
3078 && (bfd_get_flavour (s->owner)
3079 == bfd_target_elf_flavour))
3080 {
3081 Elf_Internal_Shdr ** const elf_shdrp
3082 = elf_elfsections (s->owner);
3083 int elfsec
3084 = _bfd_elf_section_from_bfd_section (s->owner, s);
3085 elfsec = elf_shdrp[elfsec]->sh_link;
3086 /* PR 290:
3087 The Intel C compiler generates SHT_IA_64_UNWIND with
3088 SHF_LINK_ORDER. But it doesn't set the sh_link or
3089 sh_info fields. Hence we could get the situation
3090 where elfsec is 0. */
3091 if (elfsec == 0)
3092 {
3093 const struct elf_backend_data *bed
3094 = get_elf_backend_data (abfd);
3095 if (bed->link_order_error_handler)
3096 bed->link_order_error_handler
3097 (_("%B: warning: sh_link not set for section `%A'"),
3098 abfd, s);
3099 }
3100 else
3101 {
3102 s = elf_shdrp[elfsec]->bfd_section;
3103 if (elf_discarded_section (s))
3104 {
3105 asection *kept;
3106 (*_bfd_error_handler)
3107 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3108 abfd, d->this_hdr.bfd_section,
3109 s, s->owner);
3110 /* Point to the kept section if it has
3111 the same size as the discarded
3112 one. */
3113 kept = _bfd_elf_check_kept_section (s);
3114 if (kept == NULL)
3115 {
3116 bfd_set_error (bfd_error_bad_value);
3117 return FALSE;
3118 }
3119 s = kept;
3120 }
3121 s = s->output_section;
3122 BFD_ASSERT (s != NULL);
3123 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3124 }
3125 break;
3126 }
3127 }
3128 }
3129 }
3130
3131 switch (d->this_hdr.sh_type)
3132 {
3133 case SHT_REL:
3134 case SHT_RELA:
3135 /* A reloc section which we are treating as a normal BFD
3136 section. sh_link is the section index of the symbol
3137 table. sh_info is the section index of the section to
3138 which the relocation entries apply. We assume that an
3139 allocated reloc section uses the dynamic symbol table.
3140 FIXME: How can we be sure? */
3141 s = bfd_get_section_by_name (abfd, ".dynsym");
3142 if (s != NULL)
3143 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3144
3145 /* We look up the section the relocs apply to by name. */
3146 name = sec->name;
3147 if (d->this_hdr.sh_type == SHT_REL)
3148 name += 4;
3149 else
3150 name += 5;
3151 s = bfd_get_section_by_name (abfd, name);
3152 if (s != NULL)
3153 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3154 break;
3155
3156 case SHT_STRTAB:
3157 /* We assume that a section named .stab*str is a stabs
3158 string section. We look for a section with the same name
3159 but without the trailing ``str'', and set its sh_link
3160 field to point to this section. */
3161 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3162 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3163 {
3164 size_t len;
3165 char *alc;
3166
3167 len = strlen (sec->name);
3168 alc = bfd_malloc (len - 2);
3169 if (alc == NULL)
3170 return FALSE;
3171 memcpy (alc, sec->name, len - 3);
3172 alc[len - 3] = '\0';
3173 s = bfd_get_section_by_name (abfd, alc);
3174 free (alc);
3175 if (s != NULL)
3176 {
3177 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3178
3179 /* This is a .stab section. */
3180 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3181 elf_section_data (s)->this_hdr.sh_entsize
3182 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3183 }
3184 }
3185 break;
3186
3187 case SHT_DYNAMIC:
3188 case SHT_DYNSYM:
3189 case SHT_GNU_verneed:
3190 case SHT_GNU_verdef:
3191 /* sh_link is the section header index of the string table
3192 used for the dynamic entries, or the symbol table, or the
3193 version strings. */
3194 s = bfd_get_section_by_name (abfd, ".dynstr");
3195 if (s != NULL)
3196 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3197 break;
3198
3199 case SHT_GNU_LIBLIST:
3200 /* sh_link is the section header index of the prelink library
3201 list
3202 used for the dynamic entries, or the symbol table, or the
3203 version strings. */
3204 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3205 ? ".dynstr" : ".gnu.libstr");
3206 if (s != NULL)
3207 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3208 break;
3209
3210 case SHT_HASH:
3211 case SHT_GNU_versym:
3212 /* sh_link is the section header index of the symbol table
3213 this hash table or version table is for. */
3214 s = bfd_get_section_by_name (abfd, ".dynsym");
3215 if (s != NULL)
3216 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3217 break;
3218
3219 case SHT_GROUP:
3220 d->this_hdr.sh_link = t->symtab_section;
3221 }
3222 }
3223
3224 for (secn = 1; secn < section_number; ++secn)
3225 if (i_shdrp[secn] == NULL)
3226 i_shdrp[secn] = i_shdrp[0];
3227 else
3228 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3229 i_shdrp[secn]->sh_name);
3230 return TRUE;
3231 }
3232
3233 /* Map symbol from it's internal number to the external number, moving
3234 all local symbols to be at the head of the list. */
3235
3236 static int
3237 sym_is_global (bfd *abfd, asymbol *sym)
3238 {
3239 /* If the backend has a special mapping, use it. */
3240 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3241 if (bed->elf_backend_sym_is_global)
3242 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3243
3244 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3245 || bfd_is_und_section (bfd_get_section (sym))
3246 || bfd_is_com_section (bfd_get_section (sym)));
3247 }
3248
3249 static bfd_boolean
3250 elf_map_symbols (bfd *abfd)
3251 {
3252 unsigned int symcount = bfd_get_symcount (abfd);
3253 asymbol **syms = bfd_get_outsymbols (abfd);
3254 asymbol **sect_syms;
3255 unsigned int num_locals = 0;
3256 unsigned int num_globals = 0;
3257 unsigned int num_locals2 = 0;
3258 unsigned int num_globals2 = 0;
3259 int max_index = 0;
3260 unsigned int idx;
3261 asection *asect;
3262 asymbol **new_syms;
3263 bfd_size_type amt;
3264
3265 #ifdef DEBUG
3266 fprintf (stderr, "elf_map_symbols\n");
3267 fflush (stderr);
3268 #endif
3269
3270 for (asect = abfd->sections; asect; asect = asect->next)
3271 {
3272 if (max_index < asect->index)
3273 max_index = asect->index;
3274 }
3275
3276 max_index++;
3277 amt = max_index * sizeof (asymbol *);
3278 sect_syms = bfd_zalloc (abfd, amt);
3279 if (sect_syms == NULL)
3280 return FALSE;
3281 elf_section_syms (abfd) = sect_syms;
3282 elf_num_section_syms (abfd) = max_index;
3283
3284 /* Init sect_syms entries for any section symbols we have already
3285 decided to output. */
3286 for (idx = 0; idx < symcount; idx++)
3287 {
3288 asymbol *sym = syms[idx];
3289
3290 if ((sym->flags & BSF_SECTION_SYM) != 0
3291 && sym->value == 0)
3292 {
3293 asection *sec;
3294
3295 sec = sym->section;
3296
3297 if (sec->owner != NULL)
3298 {
3299 if (sec->owner != abfd)
3300 {
3301 if (sec->output_offset != 0)
3302 continue;
3303
3304 sec = sec->output_section;
3305
3306 /* Empty sections in the input files may have had a
3307 section symbol created for them. (See the comment
3308 near the end of _bfd_generic_link_output_symbols in
3309 linker.c). If the linker script discards such
3310 sections then we will reach this point. Since we know
3311 that we cannot avoid this case, we detect it and skip
3312 the abort and the assignment to the sect_syms array.
3313 To reproduce this particular case try running the
3314 linker testsuite test ld-scripts/weak.exp for an ELF
3315 port that uses the generic linker. */
3316 if (sec->owner == NULL)
3317 continue;
3318
3319 BFD_ASSERT (sec->owner == abfd);
3320 }
3321 sect_syms[sec->index] = syms[idx];
3322 }
3323 }
3324 }
3325
3326 /* Classify all of the symbols. */
3327 for (idx = 0; idx < symcount; idx++)
3328 {
3329 if (!sym_is_global (abfd, syms[idx]))
3330 num_locals++;
3331 else
3332 num_globals++;
3333 }
3334
3335 /* We will be adding a section symbol for each BFD section. Most normal
3336 sections will already have a section symbol in outsymbols, but
3337 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3338 at least in that case. */
3339 for (asect = abfd->sections; asect; asect = asect->next)
3340 {
3341 if (sect_syms[asect->index] == NULL)
3342 {
3343 if (!sym_is_global (abfd, asect->symbol))
3344 num_locals++;
3345 else
3346 num_globals++;
3347 }
3348 }
3349
3350 /* Now sort the symbols so the local symbols are first. */
3351 amt = (num_locals + num_globals) * sizeof (asymbol *);
3352 new_syms = bfd_alloc (abfd, amt);
3353
3354 if (new_syms == NULL)
3355 return FALSE;
3356
3357 for (idx = 0; idx < symcount; idx++)
3358 {
3359 asymbol *sym = syms[idx];
3360 unsigned int i;
3361
3362 if (!sym_is_global (abfd, sym))
3363 i = num_locals2++;
3364 else
3365 i = num_locals + num_globals2++;
3366 new_syms[i] = sym;
3367 sym->udata.i = i + 1;
3368 }
3369 for (asect = abfd->sections; asect; asect = asect->next)
3370 {
3371 if (sect_syms[asect->index] == NULL)
3372 {
3373 asymbol *sym = asect->symbol;
3374 unsigned int i;
3375
3376 sect_syms[asect->index] = sym;
3377 if (!sym_is_global (abfd, sym))
3378 i = num_locals2++;
3379 else
3380 i = num_locals + num_globals2++;
3381 new_syms[i] = sym;
3382 sym->udata.i = i + 1;
3383 }
3384 }
3385
3386 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3387
3388 elf_num_locals (abfd) = num_locals;
3389 elf_num_globals (abfd) = num_globals;
3390 return TRUE;
3391 }
3392
3393 /* Align to the maximum file alignment that could be required for any
3394 ELF data structure. */
3395
3396 static inline file_ptr
3397 align_file_position (file_ptr off, int align)
3398 {
3399 return (off + align - 1) & ~(align - 1);
3400 }
3401
3402 /* Assign a file position to a section, optionally aligning to the
3403 required section alignment. */
3404
3405 file_ptr
3406 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3407 file_ptr offset,
3408 bfd_boolean align)
3409 {
3410 if (align)
3411 {
3412 unsigned int al;
3413
3414 al = i_shdrp->sh_addralign;
3415 if (al > 1)
3416 offset = BFD_ALIGN (offset, al);
3417 }
3418 i_shdrp->sh_offset = offset;
3419 if (i_shdrp->bfd_section != NULL)
3420 i_shdrp->bfd_section->filepos = offset;
3421 if (i_shdrp->sh_type != SHT_NOBITS)
3422 offset += i_shdrp->sh_size;
3423 return offset;
3424 }
3425
3426 /* Compute the file positions we are going to put the sections at, and
3427 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3428 is not NULL, this is being called by the ELF backend linker. */
3429
3430 bfd_boolean
3431 _bfd_elf_compute_section_file_positions (bfd *abfd,
3432 struct bfd_link_info *link_info)
3433 {
3434 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3435 bfd_boolean failed;
3436 struct bfd_strtab_hash *strtab = NULL;
3437 Elf_Internal_Shdr *shstrtab_hdr;
3438
3439 if (abfd->output_has_begun)
3440 return TRUE;
3441
3442 /* Do any elf backend specific processing first. */
3443 if (bed->elf_backend_begin_write_processing)
3444 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3445
3446 if (! prep_headers (abfd))
3447 return FALSE;
3448
3449 /* Post process the headers if necessary. */
3450 if (bed->elf_backend_post_process_headers)
3451 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3452
3453 failed = FALSE;
3454 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3455 if (failed)
3456 return FALSE;
3457
3458 if (!assign_section_numbers (abfd, link_info))
3459 return FALSE;
3460
3461 /* The backend linker builds symbol table information itself. */
3462 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3463 {
3464 /* Non-zero if doing a relocatable link. */
3465 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3466
3467 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3468 return FALSE;
3469 }
3470
3471 if (link_info == NULL)
3472 {
3473 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3474 if (failed)
3475 return FALSE;
3476 }
3477
3478 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3479 /* sh_name was set in prep_headers. */
3480 shstrtab_hdr->sh_type = SHT_STRTAB;
3481 shstrtab_hdr->sh_flags = 0;
3482 shstrtab_hdr->sh_addr = 0;
3483 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3484 shstrtab_hdr->sh_entsize = 0;
3485 shstrtab_hdr->sh_link = 0;
3486 shstrtab_hdr->sh_info = 0;
3487 /* sh_offset is set in assign_file_positions_except_relocs. */
3488 shstrtab_hdr->sh_addralign = 1;
3489
3490 if (!assign_file_positions_except_relocs (abfd, link_info))
3491 return FALSE;
3492
3493 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3494 {
3495 file_ptr off;
3496 Elf_Internal_Shdr *hdr;
3497
3498 off = elf_tdata (abfd)->next_file_pos;
3499
3500 hdr = &elf_tdata (abfd)->symtab_hdr;
3501 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3502
3503 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3504 if (hdr->sh_size != 0)
3505 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3506
3507 hdr = &elf_tdata (abfd)->strtab_hdr;
3508 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3509
3510 elf_tdata (abfd)->next_file_pos = off;
3511
3512 /* Now that we know where the .strtab section goes, write it
3513 out. */
3514 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3515 || ! _bfd_stringtab_emit (abfd, strtab))
3516 return FALSE;
3517 _bfd_stringtab_free (strtab);
3518 }
3519
3520 abfd->output_has_begun = TRUE;
3521
3522 return TRUE;
3523 }
3524
3525 /* Create a mapping from a set of sections to a program segment. */
3526
3527 static struct elf_segment_map *
3528 make_mapping (bfd *abfd,
3529 asection **sections,
3530 unsigned int from,
3531 unsigned int to,
3532 bfd_boolean phdr)
3533 {
3534 struct elf_segment_map *m;
3535 unsigned int i;
3536 asection **hdrpp;
3537 bfd_size_type amt;
3538
3539 amt = sizeof (struct elf_segment_map);
3540 amt += (to - from - 1) * sizeof (asection *);
3541 m = bfd_zalloc (abfd, amt);
3542 if (m == NULL)
3543 return NULL;
3544 m->next = NULL;
3545 m->p_type = PT_LOAD;
3546 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3547 m->sections[i - from] = *hdrpp;
3548 m->count = to - from;
3549
3550 if (from == 0 && phdr)
3551 {
3552 /* Include the headers in the first PT_LOAD segment. */
3553 m->includes_filehdr = 1;
3554 m->includes_phdrs = 1;
3555 }
3556
3557 return m;
3558 }
3559
3560 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3561 on failure. */
3562
3563 struct elf_segment_map *
3564 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3565 {
3566 struct elf_segment_map *m;
3567
3568 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3569 if (m == NULL)
3570 return NULL;
3571 m->next = NULL;
3572 m->p_type = PT_DYNAMIC;
3573 m->count = 1;
3574 m->sections[0] = dynsec;
3575
3576 return m;
3577 }
3578
3579 /* Set up a mapping from BFD sections to program segments. */
3580
3581 static bfd_boolean
3582 map_sections_to_segments (bfd *abfd)
3583 {
3584 asection **sections = NULL;
3585 asection *s;
3586 unsigned int i;
3587 unsigned int count;
3588 struct elf_segment_map *mfirst;
3589 struct elf_segment_map **pm;
3590 struct elf_segment_map *m;
3591 asection *last_hdr;
3592 bfd_vma last_size;
3593 unsigned int phdr_index;
3594 bfd_vma maxpagesize;
3595 asection **hdrpp;
3596 bfd_boolean phdr_in_segment = TRUE;
3597 bfd_boolean writable;
3598 int tls_count = 0;
3599 asection *first_tls = NULL;
3600 asection *dynsec, *eh_frame_hdr;
3601 bfd_size_type amt;
3602
3603 if (elf_tdata (abfd)->segment_map != NULL)
3604 return TRUE;
3605
3606 if (bfd_count_sections (abfd) == 0)
3607 return TRUE;
3608
3609 /* Select the allocated sections, and sort them. */
3610
3611 amt = bfd_count_sections (abfd) * sizeof (asection *);
3612 sections = bfd_malloc (amt);
3613 if (sections == NULL)
3614 goto error_return;
3615
3616 i = 0;
3617 for (s = abfd->sections; s != NULL; s = s->next)
3618 {
3619 if ((s->flags & SEC_ALLOC) != 0)
3620 {
3621 sections[i] = s;
3622 ++i;
3623 }
3624 }
3625 BFD_ASSERT (i <= bfd_count_sections (abfd));
3626 count = i;
3627
3628 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3629
3630 /* Build the mapping. */
3631
3632 mfirst = NULL;
3633 pm = &mfirst;
3634
3635 /* If we have a .interp section, then create a PT_PHDR segment for
3636 the program headers and a PT_INTERP segment for the .interp
3637 section. */
3638 s = bfd_get_section_by_name (abfd, ".interp");
3639 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3640 {
3641 amt = sizeof (struct elf_segment_map);
3642 m = bfd_zalloc (abfd, amt);
3643 if (m == NULL)
3644 goto error_return;
3645 m->next = NULL;
3646 m->p_type = PT_PHDR;
3647 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3648 m->p_flags = PF_R | PF_X;
3649 m->p_flags_valid = 1;
3650 m->includes_phdrs = 1;
3651
3652 *pm = m;
3653 pm = &m->next;
3654
3655 amt = sizeof (struct elf_segment_map);
3656 m = bfd_zalloc (abfd, amt);
3657 if (m == NULL)
3658 goto error_return;
3659 m->next = NULL;
3660 m->p_type = PT_INTERP;
3661 m->count = 1;
3662 m->sections[0] = s;
3663
3664 *pm = m;
3665 pm = &m->next;
3666 }
3667
3668 /* Look through the sections. We put sections in the same program
3669 segment when the start of the second section can be placed within
3670 a few bytes of the end of the first section. */
3671 last_hdr = NULL;
3672 last_size = 0;
3673 phdr_index = 0;
3674 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3675 writable = FALSE;
3676 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3677 if (dynsec != NULL
3678 && (dynsec->flags & SEC_LOAD) == 0)
3679 dynsec = NULL;
3680
3681 /* Deal with -Ttext or something similar such that the first section
3682 is not adjacent to the program headers. This is an
3683 approximation, since at this point we don't know exactly how many
3684 program headers we will need. */
3685 if (count > 0)
3686 {
3687 bfd_size_type phdr_size;
3688
3689 phdr_size = elf_tdata (abfd)->program_header_size;
3690 if (phdr_size == 0)
3691 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3692 if ((abfd->flags & D_PAGED) == 0
3693 || sections[0]->lma < phdr_size
3694 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3695 phdr_in_segment = FALSE;
3696 }
3697
3698 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3699 {
3700 asection *hdr;
3701 bfd_boolean new_segment;
3702
3703 hdr = *hdrpp;
3704
3705 /* See if this section and the last one will fit in the same
3706 segment. */
3707
3708 if (last_hdr == NULL)
3709 {
3710 /* If we don't have a segment yet, then we don't need a new
3711 one (we build the last one after this loop). */
3712 new_segment = FALSE;
3713 }
3714 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3715 {
3716 /* If this section has a different relation between the
3717 virtual address and the load address, then we need a new
3718 segment. */
3719 new_segment = TRUE;
3720 }
3721 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3722 < BFD_ALIGN (hdr->lma, maxpagesize))
3723 {
3724 /* If putting this section in this segment would force us to
3725 skip a page in the segment, then we need a new segment. */
3726 new_segment = TRUE;
3727 }
3728 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3729 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3730 {
3731 /* We don't want to put a loadable section after a
3732 nonloadable section in the same segment.
3733 Consider .tbss sections as loadable for this purpose. */
3734 new_segment = TRUE;
3735 }
3736 else if ((abfd->flags & D_PAGED) == 0)
3737 {
3738 /* If the file is not demand paged, which means that we
3739 don't require the sections to be correctly aligned in the
3740 file, then there is no other reason for a new segment. */
3741 new_segment = FALSE;
3742 }
3743 else if (! writable
3744 && (hdr->flags & SEC_READONLY) == 0
3745 && (((last_hdr->lma + last_size - 1)
3746 & ~(maxpagesize - 1))
3747 != (hdr->lma & ~(maxpagesize - 1))))
3748 {
3749 /* We don't want to put a writable section in a read only
3750 segment, unless they are on the same page in memory
3751 anyhow. We already know that the last section does not
3752 bring us past the current section on the page, so the
3753 only case in which the new section is not on the same
3754 page as the previous section is when the previous section
3755 ends precisely on a page boundary. */
3756 new_segment = TRUE;
3757 }
3758 else
3759 {
3760 /* Otherwise, we can use the same segment. */
3761 new_segment = FALSE;
3762 }
3763
3764 if (! new_segment)
3765 {
3766 if ((hdr->flags & SEC_READONLY) == 0)
3767 writable = TRUE;
3768 last_hdr = hdr;
3769 /* .tbss sections effectively have zero size. */
3770 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3771 last_size = hdr->size;
3772 else
3773 last_size = 0;
3774 continue;
3775 }
3776
3777 /* We need a new program segment. We must create a new program
3778 header holding all the sections from phdr_index until hdr. */
3779
3780 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3781 if (m == NULL)
3782 goto error_return;
3783
3784 *pm = m;
3785 pm = &m->next;
3786
3787 if ((hdr->flags & SEC_READONLY) == 0)
3788 writable = TRUE;
3789 else
3790 writable = FALSE;
3791
3792 last_hdr = hdr;
3793 /* .tbss sections effectively have zero size. */
3794 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3795 last_size = hdr->size;
3796 else
3797 last_size = 0;
3798 phdr_index = i;
3799 phdr_in_segment = FALSE;
3800 }
3801
3802 /* Create a final PT_LOAD program segment. */
3803 if (last_hdr != NULL)
3804 {
3805 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3806 if (m == NULL)
3807 goto error_return;
3808
3809 *pm = m;
3810 pm = &m->next;
3811 }
3812
3813 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3814 if (dynsec != NULL)
3815 {
3816 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3817 if (m == NULL)
3818 goto error_return;
3819 *pm = m;
3820 pm = &m->next;
3821 }
3822
3823 /* For each loadable .note section, add a PT_NOTE segment. We don't
3824 use bfd_get_section_by_name, because if we link together
3825 nonloadable .note sections and loadable .note sections, we will
3826 generate two .note sections in the output file. FIXME: Using
3827 names for section types is bogus anyhow. */
3828 for (s = abfd->sections; s != NULL; s = s->next)
3829 {
3830 if ((s->flags & SEC_LOAD) != 0
3831 && strncmp (s->name, ".note", 5) == 0)
3832 {
3833 amt = sizeof (struct elf_segment_map);
3834 m = bfd_zalloc (abfd, amt);
3835 if (m == NULL)
3836 goto error_return;
3837 m->next = NULL;
3838 m->p_type = PT_NOTE;
3839 m->count = 1;
3840 m->sections[0] = s;
3841
3842 *pm = m;
3843 pm = &m->next;
3844 }
3845 if (s->flags & SEC_THREAD_LOCAL)
3846 {
3847 if (! tls_count)
3848 first_tls = s;
3849 tls_count++;
3850 }
3851 }
3852
3853 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3854 if (tls_count > 0)
3855 {
3856 int i;
3857
3858 amt = sizeof (struct elf_segment_map);
3859 amt += (tls_count - 1) * sizeof (asection *);
3860 m = bfd_zalloc (abfd, amt);
3861 if (m == NULL)
3862 goto error_return;
3863 m->next = NULL;
3864 m->p_type = PT_TLS;
3865 m->count = tls_count;
3866 /* Mandated PF_R. */
3867 m->p_flags = PF_R;
3868 m->p_flags_valid = 1;
3869 for (i = 0; i < tls_count; ++i)
3870 {
3871 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3872 m->sections[i] = first_tls;
3873 first_tls = first_tls->next;
3874 }
3875
3876 *pm = m;
3877 pm = &m->next;
3878 }
3879
3880 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3881 segment. */
3882 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3883 if (eh_frame_hdr != NULL
3884 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3885 {
3886 amt = sizeof (struct elf_segment_map);
3887 m = bfd_zalloc (abfd, amt);
3888 if (m == NULL)
3889 goto error_return;
3890 m->next = NULL;
3891 m->p_type = PT_GNU_EH_FRAME;
3892 m->count = 1;
3893 m->sections[0] = eh_frame_hdr->output_section;
3894
3895 *pm = m;
3896 pm = &m->next;
3897 }
3898
3899 if (elf_tdata (abfd)->stack_flags)
3900 {
3901 amt = sizeof (struct elf_segment_map);
3902 m = bfd_zalloc (abfd, amt);
3903 if (m == NULL)
3904 goto error_return;
3905 m->next = NULL;
3906 m->p_type = PT_GNU_STACK;
3907 m->p_flags = elf_tdata (abfd)->stack_flags;
3908 m->p_flags_valid = 1;
3909
3910 *pm = m;
3911 pm = &m->next;
3912 }
3913
3914 if (elf_tdata (abfd)->relro)
3915 {
3916 amt = sizeof (struct elf_segment_map);
3917 m = bfd_zalloc (abfd, amt);
3918 if (m == NULL)
3919 goto error_return;
3920 m->next = NULL;
3921 m->p_type = PT_GNU_RELRO;
3922 m->p_flags = PF_R;
3923 m->p_flags_valid = 1;
3924
3925 *pm = m;
3926 pm = &m->next;
3927 }
3928
3929 free (sections);
3930 sections = NULL;
3931
3932 elf_tdata (abfd)->segment_map = mfirst;
3933 return TRUE;
3934
3935 error_return:
3936 if (sections != NULL)
3937 free (sections);
3938 return FALSE;
3939 }
3940
3941 /* Sort sections by address. */
3942
3943 static int
3944 elf_sort_sections (const void *arg1, const void *arg2)
3945 {
3946 const asection *sec1 = *(const asection **) arg1;
3947 const asection *sec2 = *(const asection **) arg2;
3948 bfd_size_type size1, size2;
3949
3950 /* Sort by LMA first, since this is the address used to
3951 place the section into a segment. */
3952 if (sec1->lma < sec2->lma)
3953 return -1;
3954 else if (sec1->lma > sec2->lma)
3955 return 1;
3956
3957 /* Then sort by VMA. Normally the LMA and the VMA will be
3958 the same, and this will do nothing. */
3959 if (sec1->vma < sec2->vma)
3960 return -1;
3961 else if (sec1->vma > sec2->vma)
3962 return 1;
3963
3964 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3965
3966 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3967
3968 if (TOEND (sec1))
3969 {
3970 if (TOEND (sec2))
3971 {
3972 /* If the indicies are the same, do not return 0
3973 here, but continue to try the next comparison. */
3974 if (sec1->target_index - sec2->target_index != 0)
3975 return sec1->target_index - sec2->target_index;
3976 }
3977 else
3978 return 1;
3979 }
3980 else if (TOEND (sec2))
3981 return -1;
3982
3983 #undef TOEND
3984
3985 /* Sort by size, to put zero sized sections
3986 before others at the same address. */
3987
3988 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3989 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3990
3991 if (size1 < size2)
3992 return -1;
3993 if (size1 > size2)
3994 return 1;
3995
3996 return sec1->target_index - sec2->target_index;
3997 }
3998
3999 /* Ian Lance Taylor writes:
4000
4001 We shouldn't be using % with a negative signed number. That's just
4002 not good. We have to make sure either that the number is not
4003 negative, or that the number has an unsigned type. When the types
4004 are all the same size they wind up as unsigned. When file_ptr is a
4005 larger signed type, the arithmetic winds up as signed long long,
4006 which is wrong.
4007
4008 What we're trying to say here is something like ``increase OFF by
4009 the least amount that will cause it to be equal to the VMA modulo
4010 the page size.'' */
4011 /* In other words, something like:
4012
4013 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4014 off_offset = off % bed->maxpagesize;
4015 if (vma_offset < off_offset)
4016 adjustment = vma_offset + bed->maxpagesize - off_offset;
4017 else
4018 adjustment = vma_offset - off_offset;
4019
4020 which can can be collapsed into the expression below. */
4021
4022 static file_ptr
4023 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4024 {
4025 return ((vma - off) % maxpagesize);
4026 }
4027
4028 /* Assign file positions to the sections based on the mapping from
4029 sections to segments. This function also sets up some fields in
4030 the file header, and writes out the program headers. */
4031
4032 static bfd_boolean
4033 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
4034 {
4035 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4036 unsigned int count;
4037 struct elf_segment_map *m;
4038 unsigned int alloc;
4039 Elf_Internal_Phdr *phdrs;
4040 file_ptr off, voff;
4041 bfd_vma filehdr_vaddr, filehdr_paddr;
4042 bfd_vma phdrs_vaddr, phdrs_paddr;
4043 Elf_Internal_Phdr *p;
4044 bfd_size_type amt;
4045
4046 if (elf_tdata (abfd)->segment_map == NULL)
4047 {
4048 if (! map_sections_to_segments (abfd))
4049 return FALSE;
4050 }
4051 else
4052 {
4053 /* The placement algorithm assumes that non allocated sections are
4054 not in PT_LOAD segments. We ensure this here by removing such
4055 sections from the segment map. */
4056 for (m = elf_tdata (abfd)->segment_map;
4057 m != NULL;
4058 m = m->next)
4059 {
4060 unsigned int new_count;
4061 unsigned int i;
4062
4063 if (m->p_type != PT_LOAD)
4064 continue;
4065
4066 new_count = 0;
4067 for (i = 0; i < m->count; i ++)
4068 {
4069 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
4070 {
4071 if (i != new_count)
4072 m->sections[new_count] = m->sections[i];
4073
4074 new_count ++;
4075 }
4076 }
4077
4078 if (new_count != m->count)
4079 m->count = new_count;
4080 }
4081 }
4082
4083 if (bed->elf_backend_modify_segment_map)
4084 {
4085 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4086 return FALSE;
4087 }
4088
4089 count = 0;
4090 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4091 ++count;
4092
4093 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4094 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4095 elf_elfheader (abfd)->e_phnum = count;
4096
4097 if (count == 0)
4098 {
4099 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4100 return TRUE;
4101 }
4102
4103 /* If we already counted the number of program segments, make sure
4104 that we allocated enough space. This happens when SIZEOF_HEADERS
4105 is used in a linker script. */
4106 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4107 if (alloc != 0 && count > alloc)
4108 {
4109 ((*_bfd_error_handler)
4110 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4111 abfd, alloc, count));
4112 bfd_set_error (bfd_error_bad_value);
4113 return FALSE;
4114 }
4115
4116 if (alloc == 0)
4117 alloc = count;
4118
4119 amt = alloc * sizeof (Elf_Internal_Phdr);
4120 phdrs = bfd_alloc (abfd, amt);
4121 if (phdrs == NULL)
4122 return FALSE;
4123
4124 off = bed->s->sizeof_ehdr;
4125 off += alloc * bed->s->sizeof_phdr;
4126
4127 filehdr_vaddr = 0;
4128 filehdr_paddr = 0;
4129 phdrs_vaddr = 0;
4130 phdrs_paddr = 0;
4131
4132 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4133 m != NULL;
4134 m = m->next, p++)
4135 {
4136 unsigned int i;
4137 asection **secpp;
4138
4139 /* If elf_segment_map is not from map_sections_to_segments, the
4140 sections may not be correctly ordered. NOTE: sorting should
4141 not be done to the PT_NOTE section of a corefile, which may
4142 contain several pseudo-sections artificially created by bfd.
4143 Sorting these pseudo-sections breaks things badly. */
4144 if (m->count > 1
4145 && !(elf_elfheader (abfd)->e_type == ET_CORE
4146 && m->p_type == PT_NOTE))
4147 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4148 elf_sort_sections);
4149
4150 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4151 number of sections with contents contributing to both p_filesz
4152 and p_memsz, followed by a number of sections with no contents
4153 that just contribute to p_memsz. In this loop, OFF tracks next
4154 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4155 an adjustment we use for segments that have no file contents
4156 but need zero filled memory allocation. */
4157 voff = 0;
4158 p->p_type = m->p_type;
4159 p->p_flags = m->p_flags;
4160
4161 if (p->p_type == PT_LOAD
4162 && m->count > 0)
4163 {
4164 bfd_size_type align;
4165 bfd_vma adjust;
4166
4167 if ((abfd->flags & D_PAGED) != 0)
4168 align = bed->maxpagesize;
4169 else
4170 {
4171 unsigned int align_power = 0;
4172 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4173 {
4174 unsigned int secalign;
4175
4176 secalign = bfd_get_section_alignment (abfd, *secpp);
4177 if (secalign > align_power)
4178 align_power = secalign;
4179 }
4180 align = (bfd_size_type) 1 << align_power;
4181 }
4182
4183 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4184 off += adjust;
4185 if (adjust != 0
4186 && !m->includes_filehdr
4187 && !m->includes_phdrs
4188 && (ufile_ptr) off >= align)
4189 {
4190 /* If the first section isn't loadable, the same holds for
4191 any other sections. Since the segment won't need file
4192 space, we can make p_offset overlap some prior segment.
4193 However, .tbss is special. If a segment starts with
4194 .tbss, we need to look at the next section to decide
4195 whether the segment has any loadable sections. */
4196 i = 0;
4197 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4198 {
4199 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4200 || ++i >= m->count)
4201 {
4202 off -= adjust;
4203 voff = adjust - align;
4204 break;
4205 }
4206 }
4207 }
4208 }
4209 /* Make sure the .dynamic section is the first section in the
4210 PT_DYNAMIC segment. */
4211 else if (p->p_type == PT_DYNAMIC
4212 && m->count > 1
4213 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4214 {
4215 _bfd_error_handler
4216 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4217 abfd);
4218 bfd_set_error (bfd_error_bad_value);
4219 return FALSE;
4220 }
4221
4222 if (m->count == 0)
4223 p->p_vaddr = 0;
4224 else
4225 p->p_vaddr = m->sections[0]->vma;
4226
4227 if (m->p_paddr_valid)
4228 p->p_paddr = m->p_paddr;
4229 else if (m->count == 0)
4230 p->p_paddr = 0;
4231 else
4232 p->p_paddr = m->sections[0]->lma;
4233
4234 if (p->p_type == PT_LOAD
4235 && (abfd->flags & D_PAGED) != 0)
4236 p->p_align = bed->maxpagesize;
4237 else if (m->count == 0)
4238 p->p_align = 1 << bed->s->log_file_align;
4239 else
4240 p->p_align = 0;
4241
4242 p->p_offset = 0;
4243 p->p_filesz = 0;
4244 p->p_memsz = 0;
4245
4246 if (m->includes_filehdr)
4247 {
4248 if (! m->p_flags_valid)
4249 p->p_flags |= PF_R;
4250 p->p_offset = 0;
4251 p->p_filesz = bed->s->sizeof_ehdr;
4252 p->p_memsz = bed->s->sizeof_ehdr;
4253 if (m->count > 0)
4254 {
4255 BFD_ASSERT (p->p_type == PT_LOAD);
4256
4257 if (p->p_vaddr < (bfd_vma) off)
4258 {
4259 (*_bfd_error_handler)
4260 (_("%B: Not enough room for program headers, try linking with -N"),
4261 abfd);
4262 bfd_set_error (bfd_error_bad_value);
4263 return FALSE;
4264 }
4265
4266 p->p_vaddr -= off;
4267 if (! m->p_paddr_valid)
4268 p->p_paddr -= off;
4269 }
4270 if (p->p_type == PT_LOAD)
4271 {
4272 filehdr_vaddr = p->p_vaddr;
4273 filehdr_paddr = p->p_paddr;
4274 }
4275 }
4276
4277 if (m->includes_phdrs)
4278 {
4279 if (! m->p_flags_valid)
4280 p->p_flags |= PF_R;
4281
4282 if (m->includes_filehdr)
4283 {
4284 if (p->p_type == PT_LOAD)
4285 {
4286 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4287 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4288 }
4289 }
4290 else
4291 {
4292 p->p_offset = bed->s->sizeof_ehdr;
4293
4294 if (m->count > 0)
4295 {
4296 BFD_ASSERT (p->p_type == PT_LOAD);
4297 p->p_vaddr -= off - p->p_offset;
4298 if (! m->p_paddr_valid)
4299 p->p_paddr -= off - p->p_offset;
4300 }
4301
4302 if (p->p_type == PT_LOAD)
4303 {
4304 phdrs_vaddr = p->p_vaddr;
4305 phdrs_paddr = p->p_paddr;
4306 }
4307 else
4308 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4309 }
4310
4311 p->p_filesz += alloc * bed->s->sizeof_phdr;
4312 p->p_memsz += alloc * bed->s->sizeof_phdr;
4313 }
4314
4315 if (p->p_type == PT_LOAD
4316 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4317 {
4318 if (! m->includes_filehdr && ! m->includes_phdrs)
4319 p->p_offset = off + voff;
4320 else
4321 {
4322 file_ptr adjust;
4323
4324 adjust = off - (p->p_offset + p->p_filesz);
4325 p->p_filesz += adjust;
4326 p->p_memsz += adjust;
4327 }
4328 }
4329
4330 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4331 {
4332 asection *sec;
4333 flagword flags;
4334 bfd_size_type align;
4335
4336 sec = *secpp;
4337 flags = sec->flags;
4338 align = 1 << bfd_get_section_alignment (abfd, sec);
4339
4340 if (p->p_type == PT_LOAD
4341 || p->p_type == PT_TLS)
4342 {
4343 bfd_signed_vma adjust;
4344
4345 if ((flags & SEC_LOAD) != 0)
4346 {
4347 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4348 if (adjust < 0)
4349 {
4350 (*_bfd_error_handler)
4351 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4352 abfd, sec, (unsigned long) sec->lma);
4353 adjust = 0;
4354 }
4355 off += adjust;
4356 p->p_filesz += adjust;
4357 p->p_memsz += adjust;
4358 }
4359 /* .tbss is special. It doesn't contribute to p_memsz of
4360 normal segments. */
4361 else if ((flags & SEC_THREAD_LOCAL) == 0
4362 || p->p_type == PT_TLS)
4363 {
4364 /* The section VMA must equal the file position
4365 modulo the page size. */
4366 bfd_size_type page = align;
4367 if ((abfd->flags & D_PAGED) != 0)
4368 page = bed->maxpagesize;
4369 adjust = vma_page_aligned_bias (sec->vma,
4370 p->p_vaddr + p->p_memsz,
4371 page);
4372 p->p_memsz += adjust;
4373 }
4374 }
4375
4376 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4377 {
4378 /* The section at i == 0 is the one that actually contains
4379 everything. */
4380 if (i == 0)
4381 {
4382 sec->filepos = off;
4383 off += sec->size;
4384 p->p_filesz = sec->size;
4385 p->p_memsz = 0;
4386 p->p_align = 1;
4387 }
4388 else
4389 {
4390 /* The rest are fake sections that shouldn't be written. */
4391 sec->filepos = 0;
4392 sec->size = 0;
4393 sec->flags = 0;
4394 continue;
4395 }
4396 }
4397 else
4398 {
4399 if (p->p_type == PT_LOAD)
4400 {
4401 sec->filepos = off;
4402 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4403 1997, and the exact reason for it isn't clear. One
4404 plausible explanation is that it is to work around
4405 a problem we have with linker scripts using data
4406 statements in NOLOAD sections. I don't think it
4407 makes a great deal of sense to have such a section
4408 assigned to a PT_LOAD segment, but apparently
4409 people do this. The data statement results in a
4410 bfd_data_link_order being built, and these need
4411 section contents to write into. Eventually, we get
4412 to _bfd_elf_write_object_contents which writes any
4413 section with contents to the output. Make room
4414 here for the write, so that following segments are
4415 not trashed. */
4416 if ((flags & SEC_LOAD) != 0
4417 || (flags & SEC_HAS_CONTENTS) != 0)
4418 off += sec->size;
4419 }
4420
4421 if ((flags & SEC_LOAD) != 0)
4422 {
4423 p->p_filesz += sec->size;
4424 p->p_memsz += sec->size;
4425 }
4426 /* PR ld/594: Sections in note segments which are not loaded
4427 contribute to the file size but not the in-memory size. */
4428 else if (p->p_type == PT_NOTE
4429 && (flags & SEC_HAS_CONTENTS) != 0)
4430 p->p_filesz += sec->size;
4431
4432 /* .tbss is special. It doesn't contribute to p_memsz of
4433 normal segments. */
4434 else if ((flags & SEC_THREAD_LOCAL) == 0
4435 || p->p_type == PT_TLS)
4436 p->p_memsz += sec->size;
4437
4438 if (p->p_type == PT_TLS
4439 && sec->size == 0
4440 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4441 {
4442 struct bfd_link_order *o;
4443 bfd_vma tbss_size = 0;
4444
4445 for (o = sec->map_head.link_order; o != NULL; o = o->next)
4446 if (tbss_size < o->offset + o->size)
4447 tbss_size = o->offset + o->size;
4448
4449 p->p_memsz += tbss_size;
4450 }
4451
4452 if (align > p->p_align
4453 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4454 p->p_align = align;
4455 }
4456
4457 if (! m->p_flags_valid)
4458 {
4459 p->p_flags |= PF_R;
4460 if ((flags & SEC_CODE) != 0)
4461 p->p_flags |= PF_X;
4462 if ((flags & SEC_READONLY) == 0)
4463 p->p_flags |= PF_W;
4464 }
4465 }
4466 }
4467
4468 /* Now that we have set the section file positions, we can set up
4469 the file positions for the non PT_LOAD segments. */
4470 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4471 m != NULL;
4472 m = m->next, p++)
4473 {
4474 if (p->p_type != PT_LOAD && m->count > 0)
4475 {
4476 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4477 /* If the section has not yet been assigned a file position,
4478 do so now. The ARM BPABI requires that .dynamic section
4479 not be marked SEC_ALLOC because it is not part of any
4480 PT_LOAD segment, so it will not be processed above. */
4481 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4482 {
4483 unsigned int i;
4484 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4485
4486 i = 1;
4487 while (i_shdrpp[i]->bfd_section != m->sections[0])
4488 ++i;
4489 off = (_bfd_elf_assign_file_position_for_section
4490 (i_shdrpp[i], off, TRUE));
4491 p->p_filesz = m->sections[0]->size;
4492 }
4493 p->p_offset = m->sections[0]->filepos;
4494 }
4495 if (m->count == 0)
4496 {
4497 if (m->includes_filehdr)
4498 {
4499 p->p_vaddr = filehdr_vaddr;
4500 if (! m->p_paddr_valid)
4501 p->p_paddr = filehdr_paddr;
4502 }
4503 else if (m->includes_phdrs)
4504 {
4505 p->p_vaddr = phdrs_vaddr;
4506 if (! m->p_paddr_valid)
4507 p->p_paddr = phdrs_paddr;
4508 }
4509 else if (p->p_type == PT_GNU_RELRO)
4510 {
4511 Elf_Internal_Phdr *lp;
4512
4513 for (lp = phdrs; lp < phdrs + count; ++lp)
4514 {
4515 if (lp->p_type == PT_LOAD
4516 && lp->p_vaddr <= link_info->relro_end
4517 && lp->p_vaddr >= link_info->relro_start
4518 && lp->p_vaddr + lp->p_filesz
4519 >= link_info->relro_end)
4520 break;
4521 }
4522
4523 if (lp < phdrs + count
4524 && link_info->relro_end > lp->p_vaddr)
4525 {
4526 p->p_vaddr = lp->p_vaddr;
4527 p->p_paddr = lp->p_paddr;
4528 p->p_offset = lp->p_offset;
4529 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4530 p->p_memsz = p->p_filesz;
4531 p->p_align = 1;
4532 p->p_flags = (lp->p_flags & ~PF_W);
4533 }
4534 else
4535 {
4536 memset (p, 0, sizeof *p);
4537 p->p_type = PT_NULL;
4538 }
4539 }
4540 }
4541 }
4542
4543 /* Clear out any program headers we allocated but did not use. */
4544 for (; count < alloc; count++, p++)
4545 {
4546 memset (p, 0, sizeof *p);
4547 p->p_type = PT_NULL;
4548 }
4549
4550 elf_tdata (abfd)->phdr = phdrs;
4551
4552 elf_tdata (abfd)->next_file_pos = off;
4553
4554 /* Write out the program headers. */
4555 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4556 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4557 return FALSE;
4558
4559 return TRUE;
4560 }
4561
4562 /* Get the size of the program header.
4563
4564 If this is called by the linker before any of the section VMA's are set, it
4565 can't calculate the correct value for a strange memory layout. This only
4566 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4567 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4568 data segment (exclusive of .interp and .dynamic).
4569
4570 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4571 will be two segments. */
4572
4573 static bfd_size_type
4574 get_program_header_size (bfd *abfd)
4575 {
4576 size_t segs;
4577 asection *s;
4578 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4579
4580 /* We can't return a different result each time we're called. */
4581 if (elf_tdata (abfd)->program_header_size != 0)
4582 return elf_tdata (abfd)->program_header_size;
4583
4584 if (elf_tdata (abfd)->segment_map != NULL)
4585 {
4586 struct elf_segment_map *m;
4587
4588 segs = 0;
4589 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4590 ++segs;
4591 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4592 return elf_tdata (abfd)->program_header_size;
4593 }
4594
4595 /* Assume we will need exactly two PT_LOAD segments: one for text
4596 and one for data. */
4597 segs = 2;
4598
4599 s = bfd_get_section_by_name (abfd, ".interp");
4600 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4601 {
4602 /* If we have a loadable interpreter section, we need a
4603 PT_INTERP segment. In this case, assume we also need a
4604 PT_PHDR segment, although that may not be true for all
4605 targets. */
4606 segs += 2;
4607 }
4608
4609 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4610 {
4611 /* We need a PT_DYNAMIC segment. */
4612 ++segs;
4613 }
4614
4615 if (elf_tdata (abfd)->eh_frame_hdr)
4616 {
4617 /* We need a PT_GNU_EH_FRAME segment. */
4618 ++segs;
4619 }
4620
4621 if (elf_tdata (abfd)->stack_flags)
4622 {
4623 /* We need a PT_GNU_STACK segment. */
4624 ++segs;
4625 }
4626
4627 if (elf_tdata (abfd)->relro)
4628 {
4629 /* We need a PT_GNU_RELRO segment. */
4630 ++segs;
4631 }
4632
4633 for (s = abfd->sections; s != NULL; s = s->next)
4634 {
4635 if ((s->flags & SEC_LOAD) != 0
4636 && strncmp (s->name, ".note", 5) == 0)
4637 {
4638 /* We need a PT_NOTE segment. */
4639 ++segs;
4640 }
4641 }
4642
4643 for (s = abfd->sections; s != NULL; s = s->next)
4644 {
4645 if (s->flags & SEC_THREAD_LOCAL)
4646 {
4647 /* We need a PT_TLS segment. */
4648 ++segs;
4649 break;
4650 }
4651 }
4652
4653 /* Let the backend count up any program headers it might need. */
4654 if (bed->elf_backend_additional_program_headers)
4655 {
4656 int a;
4657
4658 a = (*bed->elf_backend_additional_program_headers) (abfd);
4659 if (a == -1)
4660 abort ();
4661 segs += a;
4662 }
4663
4664 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4665 return elf_tdata (abfd)->program_header_size;
4666 }
4667
4668 /* Work out the file positions of all the sections. This is called by
4669 _bfd_elf_compute_section_file_positions. All the section sizes and
4670 VMAs must be known before this is called.
4671
4672 Reloc sections come in two flavours: Those processed specially as
4673 "side-channel" data attached to a section to which they apply, and
4674 those that bfd doesn't process as relocations. The latter sort are
4675 stored in a normal bfd section by bfd_section_from_shdr. We don't
4676 consider the former sort here, unless they form part of the loadable
4677 image. Reloc sections not assigned here will be handled later by
4678 assign_file_positions_for_relocs.
4679
4680 We also don't set the positions of the .symtab and .strtab here. */
4681
4682 static bfd_boolean
4683 assign_file_positions_except_relocs (bfd *abfd,
4684 struct bfd_link_info *link_info)
4685 {
4686 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4687 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4688 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4689 unsigned int num_sec = elf_numsections (abfd);
4690 file_ptr off;
4691 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4692
4693 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4694 && bfd_get_format (abfd) != bfd_core)
4695 {
4696 Elf_Internal_Shdr **hdrpp;
4697 unsigned int i;
4698
4699 /* Start after the ELF header. */
4700 off = i_ehdrp->e_ehsize;
4701
4702 /* We are not creating an executable, which means that we are
4703 not creating a program header, and that the actual order of
4704 the sections in the file is unimportant. */
4705 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4706 {
4707 Elf_Internal_Shdr *hdr;
4708
4709 hdr = *hdrpp;
4710 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4711 && hdr->bfd_section == NULL)
4712 || i == tdata->symtab_section
4713 || i == tdata->symtab_shndx_section
4714 || i == tdata->strtab_section)
4715 {
4716 hdr->sh_offset = -1;
4717 }
4718 else
4719 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4720
4721 if (i == SHN_LORESERVE - 1)
4722 {
4723 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4724 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4725 }
4726 }
4727 }
4728 else
4729 {
4730 unsigned int i;
4731 Elf_Internal_Shdr **hdrpp;
4732
4733 /* Assign file positions for the loaded sections based on the
4734 assignment of sections to segments. */
4735 if (! assign_file_positions_for_segments (abfd, link_info))
4736 return FALSE;
4737
4738 /* Assign file positions for the other sections. */
4739
4740 off = elf_tdata (abfd)->next_file_pos;
4741 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4742 {
4743 Elf_Internal_Shdr *hdr;
4744
4745 hdr = *hdrpp;
4746 if (hdr->bfd_section != NULL
4747 && hdr->bfd_section->filepos != 0)
4748 hdr->sh_offset = hdr->bfd_section->filepos;
4749 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4750 {
4751 ((*_bfd_error_handler)
4752 (_("%B: warning: allocated section `%s' not in segment"),
4753 abfd,
4754 (hdr->bfd_section == NULL
4755 ? "*unknown*"
4756 : hdr->bfd_section->name)));
4757 if ((abfd->flags & D_PAGED) != 0)
4758 off += vma_page_aligned_bias (hdr->sh_addr, off,
4759 bed->maxpagesize);
4760 else
4761 off += vma_page_aligned_bias (hdr->sh_addr, off,
4762 hdr->sh_addralign);
4763 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4764 FALSE);
4765 }
4766 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4767 && hdr->bfd_section == NULL)
4768 || hdr == i_shdrpp[tdata->symtab_section]
4769 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4770 || hdr == i_shdrpp[tdata->strtab_section])
4771 hdr->sh_offset = -1;
4772 else
4773 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4774
4775 if (i == SHN_LORESERVE - 1)
4776 {
4777 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4778 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4779 }
4780 }
4781 }
4782
4783 /* Place the section headers. */
4784 off = align_file_position (off, 1 << bed->s->log_file_align);
4785 i_ehdrp->e_shoff = off;
4786 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4787
4788 elf_tdata (abfd)->next_file_pos = off;
4789
4790 return TRUE;
4791 }
4792
4793 static bfd_boolean
4794 prep_headers (bfd *abfd)
4795 {
4796 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4797 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4798 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4799 struct elf_strtab_hash *shstrtab;
4800 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4801
4802 i_ehdrp = elf_elfheader (abfd);
4803 i_shdrp = elf_elfsections (abfd);
4804
4805 shstrtab = _bfd_elf_strtab_init ();
4806 if (shstrtab == NULL)
4807 return FALSE;
4808
4809 elf_shstrtab (abfd) = shstrtab;
4810
4811 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4812 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4813 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4814 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4815
4816 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4817 i_ehdrp->e_ident[EI_DATA] =
4818 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4819 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4820
4821 if ((abfd->flags & DYNAMIC) != 0)
4822 i_ehdrp->e_type = ET_DYN;
4823 else if ((abfd->flags & EXEC_P) != 0)
4824 i_ehdrp->e_type = ET_EXEC;
4825 else if (bfd_get_format (abfd) == bfd_core)
4826 i_ehdrp->e_type = ET_CORE;
4827 else
4828 i_ehdrp->e_type = ET_REL;
4829
4830 switch (bfd_get_arch (abfd))
4831 {
4832 case bfd_arch_unknown:
4833 i_ehdrp->e_machine = EM_NONE;
4834 break;
4835
4836 /* There used to be a long list of cases here, each one setting
4837 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4838 in the corresponding bfd definition. To avoid duplication,
4839 the switch was removed. Machines that need special handling
4840 can generally do it in elf_backend_final_write_processing(),
4841 unless they need the information earlier than the final write.
4842 Such need can generally be supplied by replacing the tests for
4843 e_machine with the conditions used to determine it. */
4844 default:
4845 i_ehdrp->e_machine = bed->elf_machine_code;
4846 }
4847
4848 i_ehdrp->e_version = bed->s->ev_current;
4849 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4850
4851 /* No program header, for now. */
4852 i_ehdrp->e_phoff = 0;
4853 i_ehdrp->e_phentsize = 0;
4854 i_ehdrp->e_phnum = 0;
4855
4856 /* Each bfd section is section header entry. */
4857 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4858 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4859
4860 /* If we're building an executable, we'll need a program header table. */
4861 if (abfd->flags & EXEC_P)
4862 /* It all happens later. */
4863 ;
4864 else
4865 {
4866 i_ehdrp->e_phentsize = 0;
4867 i_phdrp = 0;
4868 i_ehdrp->e_phoff = 0;
4869 }
4870
4871 elf_tdata (abfd)->symtab_hdr.sh_name =
4872 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4873 elf_tdata (abfd)->strtab_hdr.sh_name =
4874 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4875 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4876 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4877 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4878 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4879 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4880 return FALSE;
4881
4882 return TRUE;
4883 }
4884
4885 /* Assign file positions for all the reloc sections which are not part
4886 of the loadable file image. */
4887
4888 void
4889 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4890 {
4891 file_ptr off;
4892 unsigned int i, num_sec;
4893 Elf_Internal_Shdr **shdrpp;
4894
4895 off = elf_tdata (abfd)->next_file_pos;
4896
4897 num_sec = elf_numsections (abfd);
4898 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4899 {
4900 Elf_Internal_Shdr *shdrp;
4901
4902 shdrp = *shdrpp;
4903 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4904 && shdrp->sh_offset == -1)
4905 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4906 }
4907
4908 elf_tdata (abfd)->next_file_pos = off;
4909 }
4910
4911 bfd_boolean
4912 _bfd_elf_write_object_contents (bfd *abfd)
4913 {
4914 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4915 Elf_Internal_Ehdr *i_ehdrp;
4916 Elf_Internal_Shdr **i_shdrp;
4917 bfd_boolean failed;
4918 unsigned int count, num_sec;
4919
4920 if (! abfd->output_has_begun
4921 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4922 return FALSE;
4923
4924 i_shdrp = elf_elfsections (abfd);
4925 i_ehdrp = elf_elfheader (abfd);
4926
4927 failed = FALSE;
4928 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4929 if (failed)
4930 return FALSE;
4931
4932 _bfd_elf_assign_file_positions_for_relocs (abfd);
4933
4934 /* After writing the headers, we need to write the sections too... */
4935 num_sec = elf_numsections (abfd);
4936 for (count = 1; count < num_sec; count++)
4937 {
4938 if (bed->elf_backend_section_processing)
4939 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4940 if (i_shdrp[count]->contents)
4941 {
4942 bfd_size_type amt = i_shdrp[count]->sh_size;
4943
4944 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4945 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4946 return FALSE;
4947 }
4948 if (count == SHN_LORESERVE - 1)
4949 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4950 }
4951
4952 /* Write out the section header names. */
4953 if (elf_shstrtab (abfd) != NULL
4954 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4955 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4956 return FALSE;
4957
4958 if (bed->elf_backend_final_write_processing)
4959 (*bed->elf_backend_final_write_processing) (abfd,
4960 elf_tdata (abfd)->linker);
4961
4962 return bed->s->write_shdrs_and_ehdr (abfd);
4963 }
4964
4965 bfd_boolean
4966 _bfd_elf_write_corefile_contents (bfd *abfd)
4967 {
4968 /* Hopefully this can be done just like an object file. */
4969 return _bfd_elf_write_object_contents (abfd);
4970 }
4971
4972 /* Given a section, search the header to find them. */
4973
4974 int
4975 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4976 {
4977 const struct elf_backend_data *bed;
4978 int index;
4979
4980 if (elf_section_data (asect) != NULL
4981 && elf_section_data (asect)->this_idx != 0)
4982 return elf_section_data (asect)->this_idx;
4983
4984 if (bfd_is_abs_section (asect))
4985 index = SHN_ABS;
4986 else if (bfd_is_com_section (asect))
4987 index = SHN_COMMON;
4988 else if (bfd_is_und_section (asect))
4989 index = SHN_UNDEF;
4990 else
4991 index = -1;
4992
4993 bed = get_elf_backend_data (abfd);
4994 if (bed->elf_backend_section_from_bfd_section)
4995 {
4996 int retval = index;
4997
4998 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4999 return retval;
5000 }
5001
5002 if (index == -1)
5003 bfd_set_error (bfd_error_nonrepresentable_section);
5004
5005 return index;
5006 }
5007
5008 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5009 on error. */
5010
5011 int
5012 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5013 {
5014 asymbol *asym_ptr = *asym_ptr_ptr;
5015 int idx;
5016 flagword flags = asym_ptr->flags;
5017
5018 /* When gas creates relocations against local labels, it creates its
5019 own symbol for the section, but does put the symbol into the
5020 symbol chain, so udata is 0. When the linker is generating
5021 relocatable output, this section symbol may be for one of the
5022 input sections rather than the output section. */
5023 if (asym_ptr->udata.i == 0
5024 && (flags & BSF_SECTION_SYM)
5025 && asym_ptr->section)
5026 {
5027 int indx;
5028
5029 if (asym_ptr->section->output_section != NULL)
5030 indx = asym_ptr->section->output_section->index;
5031 else
5032 indx = asym_ptr->section->index;
5033 if (indx < elf_num_section_syms (abfd)
5034 && elf_section_syms (abfd)[indx] != NULL)
5035 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5036 }
5037
5038 idx = asym_ptr->udata.i;
5039
5040 if (idx == 0)
5041 {
5042 /* This case can occur when using --strip-symbol on a symbol
5043 which is used in a relocation entry. */
5044 (*_bfd_error_handler)
5045 (_("%B: symbol `%s' required but not present"),
5046 abfd, bfd_asymbol_name (asym_ptr));
5047 bfd_set_error (bfd_error_no_symbols);
5048 return -1;
5049 }
5050
5051 #if DEBUG & 4
5052 {
5053 fprintf (stderr,
5054 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5055 (long) asym_ptr, asym_ptr->name, idx, flags,
5056 elf_symbol_flags (flags));
5057 fflush (stderr);
5058 }
5059 #endif
5060
5061 return idx;
5062 }
5063
5064 /* Copy private BFD data. This copies any program header information. */
5065
5066 static bfd_boolean
5067 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5068 {
5069 Elf_Internal_Ehdr *iehdr;
5070 struct elf_segment_map *map;
5071 struct elf_segment_map *map_first;
5072 struct elf_segment_map **pointer_to_map;
5073 Elf_Internal_Phdr *segment;
5074 asection *section;
5075 unsigned int i;
5076 unsigned int num_segments;
5077 bfd_boolean phdr_included = FALSE;
5078 bfd_vma maxpagesize;
5079 struct elf_segment_map *phdr_adjust_seg = NULL;
5080 unsigned int phdr_adjust_num = 0;
5081 const struct elf_backend_data *bed;
5082
5083 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5084 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5085 return TRUE;
5086
5087 if (elf_tdata (ibfd)->phdr == NULL)
5088 return TRUE;
5089
5090 bed = get_elf_backend_data (ibfd);
5091 iehdr = elf_elfheader (ibfd);
5092
5093 map_first = NULL;
5094 pointer_to_map = &map_first;
5095
5096 num_segments = elf_elfheader (ibfd)->e_phnum;
5097 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5098
5099 /* Returns the end address of the segment + 1. */
5100 #define SEGMENT_END(segment, start) \
5101 (start + (segment->p_memsz > segment->p_filesz \
5102 ? segment->p_memsz : segment->p_filesz))
5103
5104 #define SECTION_SIZE(section, segment) \
5105 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5106 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5107 ? section->size : 0)
5108
5109 /* Returns TRUE if the given section is contained within
5110 the given segment. VMA addresses are compared. */
5111 #define IS_CONTAINED_BY_VMA(section, segment) \
5112 (section->vma >= segment->p_vaddr \
5113 && (section->vma + SECTION_SIZE (section, segment) \
5114 <= (SEGMENT_END (segment, segment->p_vaddr))))
5115
5116 /* Returns TRUE if the given section is contained within
5117 the given segment. LMA addresses are compared. */
5118 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5119 (section->lma >= base \
5120 && (section->lma + SECTION_SIZE (section, segment) \
5121 <= SEGMENT_END (segment, base)))
5122
5123 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5124 #define IS_COREFILE_NOTE(p, s) \
5125 (p->p_type == PT_NOTE \
5126 && bfd_get_format (ibfd) == bfd_core \
5127 && s->vma == 0 && s->lma == 0 \
5128 && (bfd_vma) s->filepos >= p->p_offset \
5129 && ((bfd_vma) s->filepos + s->size \
5130 <= p->p_offset + p->p_filesz))
5131
5132 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5133 linker, which generates a PT_INTERP section with p_vaddr and
5134 p_memsz set to 0. */
5135 #define IS_SOLARIS_PT_INTERP(p, s) \
5136 (p->p_vaddr == 0 \
5137 && p->p_paddr == 0 \
5138 && p->p_memsz == 0 \
5139 && p->p_filesz > 0 \
5140 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5141 && s->size > 0 \
5142 && (bfd_vma) s->filepos >= p->p_offset \
5143 && ((bfd_vma) s->filepos + s->size \
5144 <= p->p_offset + p->p_filesz))
5145
5146 /* Decide if the given section should be included in the given segment.
5147 A section will be included if:
5148 1. It is within the address space of the segment -- we use the LMA
5149 if that is set for the segment and the VMA otherwise,
5150 2. It is an allocated segment,
5151 3. There is an output section associated with it,
5152 4. The section has not already been allocated to a previous segment.
5153 5. PT_GNU_STACK segments do not include any sections.
5154 6. PT_TLS segment includes only SHF_TLS sections.
5155 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5156 8. PT_DYNAMIC should not contain empty sections at the beginning
5157 (with the possible exception of .dynamic). */
5158 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5159 ((((segment->p_paddr \
5160 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5161 : IS_CONTAINED_BY_VMA (section, segment)) \
5162 && (section->flags & SEC_ALLOC) != 0) \
5163 || IS_COREFILE_NOTE (segment, section)) \
5164 && section->output_section != NULL \
5165 && segment->p_type != PT_GNU_STACK \
5166 && (segment->p_type != PT_TLS \
5167 || (section->flags & SEC_THREAD_LOCAL)) \
5168 && (segment->p_type == PT_LOAD \
5169 || segment->p_type == PT_TLS \
5170 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5171 && (segment->p_type != PT_DYNAMIC \
5172 || SECTION_SIZE (section, segment) > 0 \
5173 || (segment->p_paddr \
5174 ? segment->p_paddr != section->lma \
5175 : segment->p_vaddr != section->vma) \
5176 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5177 == 0)) \
5178 && ! section->segment_mark)
5179
5180 /* Returns TRUE iff seg1 starts after the end of seg2. */
5181 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5182 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5183
5184 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5185 their VMA address ranges and their LMA address ranges overlap.
5186 It is possible to have overlapping VMA ranges without overlapping LMA
5187 ranges. RedBoot images for example can have both .data and .bss mapped
5188 to the same VMA range, but with the .data section mapped to a different
5189 LMA. */
5190 #define SEGMENT_OVERLAPS(seg1, seg2) \
5191 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5192 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5193 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5194 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5195
5196 /* Initialise the segment mark field. */
5197 for (section = ibfd->sections; section != NULL; section = section->next)
5198 section->segment_mark = FALSE;
5199
5200 /* Scan through the segments specified in the program header
5201 of the input BFD. For this first scan we look for overlaps
5202 in the loadable segments. These can be created by weird
5203 parameters to objcopy. Also, fix some solaris weirdness. */
5204 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5205 i < num_segments;
5206 i++, segment++)
5207 {
5208 unsigned int j;
5209 Elf_Internal_Phdr *segment2;
5210
5211 if (segment->p_type == PT_INTERP)
5212 for (section = ibfd->sections; section; section = section->next)
5213 if (IS_SOLARIS_PT_INTERP (segment, section))
5214 {
5215 /* Mininal change so that the normal section to segment
5216 assignment code will work. */
5217 segment->p_vaddr = section->vma;
5218 break;
5219 }
5220
5221 if (segment->p_type != PT_LOAD)
5222 continue;
5223
5224 /* Determine if this segment overlaps any previous segments. */
5225 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5226 {
5227 bfd_signed_vma extra_length;
5228
5229 if (segment2->p_type != PT_LOAD
5230 || ! SEGMENT_OVERLAPS (segment, segment2))
5231 continue;
5232
5233 /* Merge the two segments together. */
5234 if (segment2->p_vaddr < segment->p_vaddr)
5235 {
5236 /* Extend SEGMENT2 to include SEGMENT and then delete
5237 SEGMENT. */
5238 extra_length =
5239 SEGMENT_END (segment, segment->p_vaddr)
5240 - SEGMENT_END (segment2, segment2->p_vaddr);
5241
5242 if (extra_length > 0)
5243 {
5244 segment2->p_memsz += extra_length;
5245 segment2->p_filesz += extra_length;
5246 }
5247
5248 segment->p_type = PT_NULL;
5249
5250 /* Since we have deleted P we must restart the outer loop. */
5251 i = 0;
5252 segment = elf_tdata (ibfd)->phdr;
5253 break;
5254 }
5255 else
5256 {
5257 /* Extend SEGMENT to include SEGMENT2 and then delete
5258 SEGMENT2. */
5259 extra_length =
5260 SEGMENT_END (segment2, segment2->p_vaddr)
5261 - SEGMENT_END (segment, segment->p_vaddr);
5262
5263 if (extra_length > 0)
5264 {
5265 segment->p_memsz += extra_length;
5266 segment->p_filesz += extra_length;
5267 }
5268
5269 segment2->p_type = PT_NULL;
5270 }
5271 }
5272 }
5273
5274 /* The second scan attempts to assign sections to segments. */
5275 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5276 i < num_segments;
5277 i ++, segment ++)
5278 {
5279 unsigned int section_count;
5280 asection ** sections;
5281 asection * output_section;
5282 unsigned int isec;
5283 bfd_vma matching_lma;
5284 bfd_vma suggested_lma;
5285 unsigned int j;
5286 bfd_size_type amt;
5287
5288 if (segment->p_type == PT_NULL)
5289 continue;
5290
5291 /* Compute how many sections might be placed into this segment. */
5292 for (section = ibfd->sections, section_count = 0;
5293 section != NULL;
5294 section = section->next)
5295 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5296 ++section_count;
5297
5298 /* Allocate a segment map big enough to contain
5299 all of the sections we have selected. */
5300 amt = sizeof (struct elf_segment_map);
5301 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5302 map = bfd_alloc (obfd, amt);
5303 if (map == NULL)
5304 return FALSE;
5305
5306 /* Initialise the fields of the segment map. Default to
5307 using the physical address of the segment in the input BFD. */
5308 map->next = NULL;
5309 map->p_type = segment->p_type;
5310 map->p_flags = segment->p_flags;
5311 map->p_flags_valid = 1;
5312 map->p_paddr = segment->p_paddr;
5313 map->p_paddr_valid = 1;
5314
5315 /* Determine if this segment contains the ELF file header
5316 and if it contains the program headers themselves. */
5317 map->includes_filehdr = (segment->p_offset == 0
5318 && segment->p_filesz >= iehdr->e_ehsize);
5319
5320 map->includes_phdrs = 0;
5321
5322 if (! phdr_included || segment->p_type != PT_LOAD)
5323 {
5324 map->includes_phdrs =
5325 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5326 && (segment->p_offset + segment->p_filesz
5327 >= ((bfd_vma) iehdr->e_phoff
5328 + iehdr->e_phnum * iehdr->e_phentsize)));
5329
5330 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5331 phdr_included = TRUE;
5332 }
5333
5334 if (section_count == 0)
5335 {
5336 /* Special segments, such as the PT_PHDR segment, may contain
5337 no sections, but ordinary, loadable segments should contain
5338 something. They are allowed by the ELF spec however, so only
5339 a warning is produced. */
5340 if (segment->p_type == PT_LOAD)
5341 (*_bfd_error_handler)
5342 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5343 ibfd);
5344
5345 map->count = 0;
5346 *pointer_to_map = map;
5347 pointer_to_map = &map->next;
5348
5349 continue;
5350 }
5351
5352 /* Now scan the sections in the input BFD again and attempt
5353 to add their corresponding output sections to the segment map.
5354 The problem here is how to handle an output section which has
5355 been moved (ie had its LMA changed). There are four possibilities:
5356
5357 1. None of the sections have been moved.
5358 In this case we can continue to use the segment LMA from the
5359 input BFD.
5360
5361 2. All of the sections have been moved by the same amount.
5362 In this case we can change the segment's LMA to match the LMA
5363 of the first section.
5364
5365 3. Some of the sections have been moved, others have not.
5366 In this case those sections which have not been moved can be
5367 placed in the current segment which will have to have its size,
5368 and possibly its LMA changed, and a new segment or segments will
5369 have to be created to contain the other sections.
5370
5371 4. The sections have been moved, but not by the same amount.
5372 In this case we can change the segment's LMA to match the LMA
5373 of the first section and we will have to create a new segment
5374 or segments to contain the other sections.
5375
5376 In order to save time, we allocate an array to hold the section
5377 pointers that we are interested in. As these sections get assigned
5378 to a segment, they are removed from this array. */
5379
5380 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5381 to work around this long long bug. */
5382 amt = section_count * sizeof (asection *);
5383 sections = bfd_malloc (amt);
5384 if (sections == NULL)
5385 return FALSE;
5386
5387 /* Step One: Scan for segment vs section LMA conflicts.
5388 Also add the sections to the section array allocated above.
5389 Also add the sections to the current segment. In the common
5390 case, where the sections have not been moved, this means that
5391 we have completely filled the segment, and there is nothing
5392 more to do. */
5393 isec = 0;
5394 matching_lma = 0;
5395 suggested_lma = 0;
5396
5397 for (j = 0, section = ibfd->sections;
5398 section != NULL;
5399 section = section->next)
5400 {
5401 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5402 {
5403 output_section = section->output_section;
5404
5405 sections[j ++] = section;
5406
5407 /* The Solaris native linker always sets p_paddr to 0.
5408 We try to catch that case here, and set it to the
5409 correct value. Note - some backends require that
5410 p_paddr be left as zero. */
5411 if (segment->p_paddr == 0
5412 && segment->p_vaddr != 0
5413 && (! bed->want_p_paddr_set_to_zero)
5414 && isec == 0
5415 && output_section->lma != 0
5416 && (output_section->vma == (segment->p_vaddr
5417 + (map->includes_filehdr
5418 ? iehdr->e_ehsize
5419 : 0)
5420 + (map->includes_phdrs
5421 ? (iehdr->e_phnum
5422 * iehdr->e_phentsize)
5423 : 0))))
5424 map->p_paddr = segment->p_vaddr;
5425
5426 /* Match up the physical address of the segment with the
5427 LMA address of the output section. */
5428 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5429 || IS_COREFILE_NOTE (segment, section)
5430 || (bed->want_p_paddr_set_to_zero &&
5431 IS_CONTAINED_BY_VMA (output_section, segment))
5432 )
5433 {
5434 if (matching_lma == 0)
5435 matching_lma = output_section->lma;
5436
5437 /* We assume that if the section fits within the segment
5438 then it does not overlap any other section within that
5439 segment. */
5440 map->sections[isec ++] = output_section;
5441 }
5442 else if (suggested_lma == 0)
5443 suggested_lma = output_section->lma;
5444 }
5445 }
5446
5447 BFD_ASSERT (j == section_count);
5448
5449 /* Step Two: Adjust the physical address of the current segment,
5450 if necessary. */
5451 if (isec == section_count)
5452 {
5453 /* All of the sections fitted within the segment as currently
5454 specified. This is the default case. Add the segment to
5455 the list of built segments and carry on to process the next
5456 program header in the input BFD. */
5457 map->count = section_count;
5458 *pointer_to_map = map;
5459 pointer_to_map = &map->next;
5460
5461 free (sections);
5462 continue;
5463 }
5464 else
5465 {
5466 if (matching_lma != 0)
5467 {
5468 /* At least one section fits inside the current segment.
5469 Keep it, but modify its physical address to match the
5470 LMA of the first section that fitted. */
5471 map->p_paddr = matching_lma;
5472 }
5473 else
5474 {
5475 /* None of the sections fitted inside the current segment.
5476 Change the current segment's physical address to match
5477 the LMA of the first section. */
5478 map->p_paddr = suggested_lma;
5479 }
5480
5481 /* Offset the segment physical address from the lma
5482 to allow for space taken up by elf headers. */
5483 if (map->includes_filehdr)
5484 map->p_paddr -= iehdr->e_ehsize;
5485
5486 if (map->includes_phdrs)
5487 {
5488 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5489
5490 /* iehdr->e_phnum is just an estimate of the number
5491 of program headers that we will need. Make a note
5492 here of the number we used and the segment we chose
5493 to hold these headers, so that we can adjust the
5494 offset when we know the correct value. */
5495 phdr_adjust_num = iehdr->e_phnum;
5496 phdr_adjust_seg = map;
5497 }
5498 }
5499
5500 /* Step Three: Loop over the sections again, this time assigning
5501 those that fit to the current segment and removing them from the
5502 sections array; but making sure not to leave large gaps. Once all
5503 possible sections have been assigned to the current segment it is
5504 added to the list of built segments and if sections still remain
5505 to be assigned, a new segment is constructed before repeating
5506 the loop. */
5507 isec = 0;
5508 do
5509 {
5510 map->count = 0;
5511 suggested_lma = 0;
5512
5513 /* Fill the current segment with sections that fit. */
5514 for (j = 0; j < section_count; j++)
5515 {
5516 section = sections[j];
5517
5518 if (section == NULL)
5519 continue;
5520
5521 output_section = section->output_section;
5522
5523 BFD_ASSERT (output_section != NULL);
5524
5525 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5526 || IS_COREFILE_NOTE (segment, section))
5527 {
5528 if (map->count == 0)
5529 {
5530 /* If the first section in a segment does not start at
5531 the beginning of the segment, then something is
5532 wrong. */
5533 if (output_section->lma !=
5534 (map->p_paddr
5535 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5536 + (map->includes_phdrs
5537 ? iehdr->e_phnum * iehdr->e_phentsize
5538 : 0)))
5539 abort ();
5540 }
5541 else
5542 {
5543 asection * prev_sec;
5544
5545 prev_sec = map->sections[map->count - 1];
5546
5547 /* If the gap between the end of the previous section
5548 and the start of this section is more than
5549 maxpagesize then we need to start a new segment. */
5550 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5551 maxpagesize)
5552 < BFD_ALIGN (output_section->lma, maxpagesize))
5553 || ((prev_sec->lma + prev_sec->size)
5554 > output_section->lma))
5555 {
5556 if (suggested_lma == 0)
5557 suggested_lma = output_section->lma;
5558
5559 continue;
5560 }
5561 }
5562
5563 map->sections[map->count++] = output_section;
5564 ++isec;
5565 sections[j] = NULL;
5566 section->segment_mark = TRUE;
5567 }
5568 else if (suggested_lma == 0)
5569 suggested_lma = output_section->lma;
5570 }
5571
5572 BFD_ASSERT (map->count > 0);
5573
5574 /* Add the current segment to the list of built segments. */
5575 *pointer_to_map = map;
5576 pointer_to_map = &map->next;
5577
5578 if (isec < section_count)
5579 {
5580 /* We still have not allocated all of the sections to
5581 segments. Create a new segment here, initialise it
5582 and carry on looping. */
5583 amt = sizeof (struct elf_segment_map);
5584 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5585 map = bfd_alloc (obfd, amt);
5586 if (map == NULL)
5587 {
5588 free (sections);
5589 return FALSE;
5590 }
5591
5592 /* Initialise the fields of the segment map. Set the physical
5593 physical address to the LMA of the first section that has
5594 not yet been assigned. */
5595 map->next = NULL;
5596 map->p_type = segment->p_type;
5597 map->p_flags = segment->p_flags;
5598 map->p_flags_valid = 1;
5599 map->p_paddr = suggested_lma;
5600 map->p_paddr_valid = 1;
5601 map->includes_filehdr = 0;
5602 map->includes_phdrs = 0;
5603 }
5604 }
5605 while (isec < section_count);
5606
5607 free (sections);
5608 }
5609
5610 /* The Solaris linker creates program headers in which all the
5611 p_paddr fields are zero. When we try to objcopy or strip such a
5612 file, we get confused. Check for this case, and if we find it
5613 reset the p_paddr_valid fields. */
5614 for (map = map_first; map != NULL; map = map->next)
5615 if (map->p_paddr != 0)
5616 break;
5617 if (map == NULL)
5618 for (map = map_first; map != NULL; map = map->next)
5619 map->p_paddr_valid = 0;
5620
5621 elf_tdata (obfd)->segment_map = map_first;
5622
5623 /* If we had to estimate the number of program headers that were
5624 going to be needed, then check our estimate now and adjust
5625 the offset if necessary. */
5626 if (phdr_adjust_seg != NULL)
5627 {
5628 unsigned int count;
5629
5630 for (count = 0, map = map_first; map != NULL; map = map->next)
5631 count++;
5632
5633 if (count > phdr_adjust_num)
5634 phdr_adjust_seg->p_paddr
5635 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5636 }
5637
5638 #undef SEGMENT_END
5639 #undef SECTION_SIZE
5640 #undef IS_CONTAINED_BY_VMA
5641 #undef IS_CONTAINED_BY_LMA
5642 #undef IS_COREFILE_NOTE
5643 #undef IS_SOLARIS_PT_INTERP
5644 #undef INCLUDE_SECTION_IN_SEGMENT
5645 #undef SEGMENT_AFTER_SEGMENT
5646 #undef SEGMENT_OVERLAPS
5647 return TRUE;
5648 }
5649
5650 /* Copy private section information. This copies over the entsize
5651 field, and sometimes the info field. */
5652
5653 bfd_boolean
5654 _bfd_elf_copy_private_section_data (bfd *ibfd,
5655 asection *isec,
5656 bfd *obfd,
5657 asection *osec)
5658 {
5659 Elf_Internal_Shdr *ihdr, *ohdr;
5660
5661 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5662 || obfd->xvec->flavour != bfd_target_elf_flavour)
5663 return TRUE;
5664
5665 ihdr = &elf_section_data (isec)->this_hdr;
5666 ohdr = &elf_section_data (osec)->this_hdr;
5667
5668 ohdr->sh_entsize = ihdr->sh_entsize;
5669
5670 if (ihdr->sh_type == SHT_SYMTAB
5671 || ihdr->sh_type == SHT_DYNSYM
5672 || ihdr->sh_type == SHT_GNU_verneed
5673 || ihdr->sh_type == SHT_GNU_verdef)
5674 ohdr->sh_info = ihdr->sh_info;
5675
5676 /* Set things up for objcopy. The output SHT_GROUP section will
5677 have its elf_next_in_group pointing back to the input group
5678 members. Ignore linker created group section. See
5679 elfNN_ia64_object_p in elfxx-ia64.c. */
5680 if (elf_sec_group (isec) == NULL
5681 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5682 {
5683 elf_next_in_group (osec) = elf_next_in_group (isec);
5684 elf_group_name (osec) = elf_group_name (isec);
5685 }
5686
5687 osec->use_rela_p = isec->use_rela_p;
5688
5689 return TRUE;
5690 }
5691
5692 /* Copy private header information. */
5693
5694 bfd_boolean
5695 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5696 {
5697 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5698 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5699 return TRUE;
5700
5701 /* Copy over private BFD data if it has not already been copied.
5702 This must be done here, rather than in the copy_private_bfd_data
5703 entry point, because the latter is called after the section
5704 contents have been set, which means that the program headers have
5705 already been worked out. */
5706 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5707 {
5708 if (! copy_private_bfd_data (ibfd, obfd))
5709 return FALSE;
5710 }
5711
5712 return TRUE;
5713 }
5714
5715 /* Copy private symbol information. If this symbol is in a section
5716 which we did not map into a BFD section, try to map the section
5717 index correctly. We use special macro definitions for the mapped
5718 section indices; these definitions are interpreted by the
5719 swap_out_syms function. */
5720
5721 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5722 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5723 #define MAP_STRTAB (SHN_HIOS + 3)
5724 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5725 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5726
5727 bfd_boolean
5728 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5729 asymbol *isymarg,
5730 bfd *obfd,
5731 asymbol *osymarg)
5732 {
5733 elf_symbol_type *isym, *osym;
5734
5735 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5736 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5737 return TRUE;
5738
5739 isym = elf_symbol_from (ibfd, isymarg);
5740 osym = elf_symbol_from (obfd, osymarg);
5741
5742 if (isym != NULL
5743 && osym != NULL
5744 && bfd_is_abs_section (isym->symbol.section))
5745 {
5746 unsigned int shndx;
5747
5748 shndx = isym->internal_elf_sym.st_shndx;
5749 if (shndx == elf_onesymtab (ibfd))
5750 shndx = MAP_ONESYMTAB;
5751 else if (shndx == elf_dynsymtab (ibfd))
5752 shndx = MAP_DYNSYMTAB;
5753 else if (shndx == elf_tdata (ibfd)->strtab_section)
5754 shndx = MAP_STRTAB;
5755 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5756 shndx = MAP_SHSTRTAB;
5757 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5758 shndx = MAP_SYM_SHNDX;
5759 osym->internal_elf_sym.st_shndx = shndx;
5760 }
5761
5762 return TRUE;
5763 }
5764
5765 /* Swap out the symbols. */
5766
5767 static bfd_boolean
5768 swap_out_syms (bfd *abfd,
5769 struct bfd_strtab_hash **sttp,
5770 int relocatable_p)
5771 {
5772 const struct elf_backend_data *bed;
5773 int symcount;
5774 asymbol **syms;
5775 struct bfd_strtab_hash *stt;
5776 Elf_Internal_Shdr *symtab_hdr;
5777 Elf_Internal_Shdr *symtab_shndx_hdr;
5778 Elf_Internal_Shdr *symstrtab_hdr;
5779 bfd_byte *outbound_syms;
5780 bfd_byte *outbound_shndx;
5781 int idx;
5782 bfd_size_type amt;
5783 bfd_boolean name_local_sections;
5784
5785 if (!elf_map_symbols (abfd))
5786 return FALSE;
5787
5788 /* Dump out the symtabs. */
5789 stt = _bfd_elf_stringtab_init ();
5790 if (stt == NULL)
5791 return FALSE;
5792
5793 bed = get_elf_backend_data (abfd);
5794 symcount = bfd_get_symcount (abfd);
5795 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5796 symtab_hdr->sh_type = SHT_SYMTAB;
5797 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5798 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5799 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5800 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5801
5802 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5803 symstrtab_hdr->sh_type = SHT_STRTAB;
5804
5805 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5806 outbound_syms = bfd_alloc (abfd, amt);
5807 if (outbound_syms == NULL)
5808 {
5809 _bfd_stringtab_free (stt);
5810 return FALSE;
5811 }
5812 symtab_hdr->contents = outbound_syms;
5813
5814 outbound_shndx = NULL;
5815 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5816 if (symtab_shndx_hdr->sh_name != 0)
5817 {
5818 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5819 outbound_shndx = bfd_zalloc (abfd, amt);
5820 if (outbound_shndx == NULL)
5821 {
5822 _bfd_stringtab_free (stt);
5823 return FALSE;
5824 }
5825
5826 symtab_shndx_hdr->contents = outbound_shndx;
5827 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5828 symtab_shndx_hdr->sh_size = amt;
5829 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5830 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5831 }
5832
5833 /* Now generate the data (for "contents"). */
5834 {
5835 /* Fill in zeroth symbol and swap it out. */
5836 Elf_Internal_Sym sym;
5837 sym.st_name = 0;
5838 sym.st_value = 0;
5839 sym.st_size = 0;
5840 sym.st_info = 0;
5841 sym.st_other = 0;
5842 sym.st_shndx = SHN_UNDEF;
5843 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5844 outbound_syms += bed->s->sizeof_sym;
5845 if (outbound_shndx != NULL)
5846 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5847 }
5848
5849 name_local_sections
5850 = (bed->elf_backend_name_local_section_symbols
5851 && bed->elf_backend_name_local_section_symbols (abfd));
5852
5853 syms = bfd_get_outsymbols (abfd);
5854 for (idx = 0; idx < symcount; idx++)
5855 {
5856 Elf_Internal_Sym sym;
5857 bfd_vma value = syms[idx]->value;
5858 elf_symbol_type *type_ptr;
5859 flagword flags = syms[idx]->flags;
5860 int type;
5861
5862 if (!name_local_sections
5863 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5864 {
5865 /* Local section symbols have no name. */
5866 sym.st_name = 0;
5867 }
5868 else
5869 {
5870 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5871 syms[idx]->name,
5872 TRUE, FALSE);
5873 if (sym.st_name == (unsigned long) -1)
5874 {
5875 _bfd_stringtab_free (stt);
5876 return FALSE;
5877 }
5878 }
5879
5880 type_ptr = elf_symbol_from (abfd, syms[idx]);
5881
5882 if ((flags & BSF_SECTION_SYM) == 0
5883 && bfd_is_com_section (syms[idx]->section))
5884 {
5885 /* ELF common symbols put the alignment into the `value' field,
5886 and the size into the `size' field. This is backwards from
5887 how BFD handles it, so reverse it here. */
5888 sym.st_size = value;
5889 if (type_ptr == NULL
5890 || type_ptr->internal_elf_sym.st_value == 0)
5891 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5892 else
5893 sym.st_value = type_ptr->internal_elf_sym.st_value;
5894 sym.st_shndx = _bfd_elf_section_from_bfd_section
5895 (abfd, syms[idx]->section);
5896 }
5897 else
5898 {
5899 asection *sec = syms[idx]->section;
5900 int shndx;
5901
5902 if (sec->output_section)
5903 {
5904 value += sec->output_offset;
5905 sec = sec->output_section;
5906 }
5907
5908 /* Don't add in the section vma for relocatable output. */
5909 if (! relocatable_p)
5910 value += sec->vma;
5911 sym.st_value = value;
5912 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5913
5914 if (bfd_is_abs_section (sec)
5915 && type_ptr != NULL
5916 && type_ptr->internal_elf_sym.st_shndx != 0)
5917 {
5918 /* This symbol is in a real ELF section which we did
5919 not create as a BFD section. Undo the mapping done
5920 by copy_private_symbol_data. */
5921 shndx = type_ptr->internal_elf_sym.st_shndx;
5922 switch (shndx)
5923 {
5924 case MAP_ONESYMTAB:
5925 shndx = elf_onesymtab (abfd);
5926 break;
5927 case MAP_DYNSYMTAB:
5928 shndx = elf_dynsymtab (abfd);
5929 break;
5930 case MAP_STRTAB:
5931 shndx = elf_tdata (abfd)->strtab_section;
5932 break;
5933 case MAP_SHSTRTAB:
5934 shndx = elf_tdata (abfd)->shstrtab_section;
5935 break;
5936 case MAP_SYM_SHNDX:
5937 shndx = elf_tdata (abfd)->symtab_shndx_section;
5938 break;
5939 default:
5940 break;
5941 }
5942 }
5943 else
5944 {
5945 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5946
5947 if (shndx == -1)
5948 {
5949 asection *sec2;
5950
5951 /* Writing this would be a hell of a lot easier if
5952 we had some decent documentation on bfd, and
5953 knew what to expect of the library, and what to
5954 demand of applications. For example, it
5955 appears that `objcopy' might not set the
5956 section of a symbol to be a section that is
5957 actually in the output file. */
5958 sec2 = bfd_get_section_by_name (abfd, sec->name);
5959 if (sec2 == NULL)
5960 {
5961 _bfd_error_handler (_("\
5962 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5963 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5964 sec->name);
5965 bfd_set_error (bfd_error_invalid_operation);
5966 _bfd_stringtab_free (stt);
5967 return FALSE;
5968 }
5969
5970 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5971 BFD_ASSERT (shndx != -1);
5972 }
5973 }
5974
5975 sym.st_shndx = shndx;
5976 }
5977
5978 if ((flags & BSF_THREAD_LOCAL) != 0)
5979 type = STT_TLS;
5980 else if ((flags & BSF_FUNCTION) != 0)
5981 type = STT_FUNC;
5982 else if ((flags & BSF_OBJECT) != 0)
5983 type = STT_OBJECT;
5984 else
5985 type = STT_NOTYPE;
5986
5987 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5988 type = STT_TLS;
5989
5990 /* Processor-specific types. */
5991 if (type_ptr != NULL
5992 && bed->elf_backend_get_symbol_type)
5993 type = ((*bed->elf_backend_get_symbol_type)
5994 (&type_ptr->internal_elf_sym, type));
5995
5996 if (flags & BSF_SECTION_SYM)
5997 {
5998 if (flags & BSF_GLOBAL)
5999 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6000 else
6001 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6002 }
6003 else if (bfd_is_com_section (syms[idx]->section))
6004 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6005 else if (bfd_is_und_section (syms[idx]->section))
6006 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6007 ? STB_WEAK
6008 : STB_GLOBAL),
6009 type);
6010 else if (flags & BSF_FILE)
6011 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6012 else
6013 {
6014 int bind = STB_LOCAL;
6015
6016 if (flags & BSF_LOCAL)
6017 bind = STB_LOCAL;
6018 else if (flags & BSF_WEAK)
6019 bind = STB_WEAK;
6020 else if (flags & BSF_GLOBAL)
6021 bind = STB_GLOBAL;
6022
6023 sym.st_info = ELF_ST_INFO (bind, type);
6024 }
6025
6026 if (type_ptr != NULL)
6027 sym.st_other = type_ptr->internal_elf_sym.st_other;
6028 else
6029 sym.st_other = 0;
6030
6031 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6032 outbound_syms += bed->s->sizeof_sym;
6033 if (outbound_shndx != NULL)
6034 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6035 }
6036
6037 *sttp = stt;
6038 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6039 symstrtab_hdr->sh_type = SHT_STRTAB;
6040
6041 symstrtab_hdr->sh_flags = 0;
6042 symstrtab_hdr->sh_addr = 0;
6043 symstrtab_hdr->sh_entsize = 0;
6044 symstrtab_hdr->sh_link = 0;
6045 symstrtab_hdr->sh_info = 0;
6046 symstrtab_hdr->sh_addralign = 1;
6047
6048 return TRUE;
6049 }
6050
6051 /* Return the number of bytes required to hold the symtab vector.
6052
6053 Note that we base it on the count plus 1, since we will null terminate
6054 the vector allocated based on this size. However, the ELF symbol table
6055 always has a dummy entry as symbol #0, so it ends up even. */
6056
6057 long
6058 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6059 {
6060 long symcount;
6061 long symtab_size;
6062 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6063
6064 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6065 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6066 if (symcount > 0)
6067 symtab_size -= sizeof (asymbol *);
6068
6069 return symtab_size;
6070 }
6071
6072 long
6073 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6074 {
6075 long symcount;
6076 long symtab_size;
6077 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6078
6079 if (elf_dynsymtab (abfd) == 0)
6080 {
6081 bfd_set_error (bfd_error_invalid_operation);
6082 return -1;
6083 }
6084
6085 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6086 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6087 if (symcount > 0)
6088 symtab_size -= sizeof (asymbol *);
6089
6090 return symtab_size;
6091 }
6092
6093 long
6094 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6095 sec_ptr asect)
6096 {
6097 return (asect->reloc_count + 1) * sizeof (arelent *);
6098 }
6099
6100 /* Canonicalize the relocs. */
6101
6102 long
6103 _bfd_elf_canonicalize_reloc (bfd *abfd,
6104 sec_ptr section,
6105 arelent **relptr,
6106 asymbol **symbols)
6107 {
6108 arelent *tblptr;
6109 unsigned int i;
6110 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6111
6112 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6113 return -1;
6114
6115 tblptr = section->relocation;
6116 for (i = 0; i < section->reloc_count; i++)
6117 *relptr++ = tblptr++;
6118
6119 *relptr = NULL;
6120
6121 return section->reloc_count;
6122 }
6123
6124 long
6125 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6126 {
6127 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6128 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6129
6130 if (symcount >= 0)
6131 bfd_get_symcount (abfd) = symcount;
6132 return symcount;
6133 }
6134
6135 long
6136 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6137 asymbol **allocation)
6138 {
6139 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6140 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6141
6142 if (symcount >= 0)
6143 bfd_get_dynamic_symcount (abfd) = symcount;
6144 return symcount;
6145 }
6146
6147 /* Return the size required for the dynamic reloc entries. Any loadable
6148 section that was actually installed in the BFD, and has type SHT_REL
6149 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6150 dynamic reloc section. */
6151
6152 long
6153 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6154 {
6155 long ret;
6156 asection *s;
6157
6158 if (elf_dynsymtab (abfd) == 0)
6159 {
6160 bfd_set_error (bfd_error_invalid_operation);
6161 return -1;
6162 }
6163
6164 ret = sizeof (arelent *);
6165 for (s = abfd->sections; s != NULL; s = s->next)
6166 if ((s->flags & SEC_LOAD) != 0
6167 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6168 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6169 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6170 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6171 * sizeof (arelent *));
6172
6173 return ret;
6174 }
6175
6176 /* Canonicalize the dynamic relocation entries. Note that we return the
6177 dynamic relocations as a single block, although they are actually
6178 associated with particular sections; the interface, which was
6179 designed for SunOS style shared libraries, expects that there is only
6180 one set of dynamic relocs. Any loadable section that was actually
6181 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6182 dynamic symbol table, is considered to be a dynamic reloc section. */
6183
6184 long
6185 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6186 arelent **storage,
6187 asymbol **syms)
6188 {
6189 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6190 asection *s;
6191 long ret;
6192
6193 if (elf_dynsymtab (abfd) == 0)
6194 {
6195 bfd_set_error (bfd_error_invalid_operation);
6196 return -1;
6197 }
6198
6199 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6200 ret = 0;
6201 for (s = abfd->sections; s != NULL; s = s->next)
6202 {
6203 if ((s->flags & SEC_LOAD) != 0
6204 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6205 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6206 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6207 {
6208 arelent *p;
6209 long count, i;
6210
6211 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6212 return -1;
6213 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6214 p = s->relocation;
6215 for (i = 0; i < count; i++)
6216 *storage++ = p++;
6217 ret += count;
6218 }
6219 }
6220
6221 *storage = NULL;
6222
6223 return ret;
6224 }
6225 \f
6226 /* Read in the version information. */
6227
6228 bfd_boolean
6229 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6230 {
6231 bfd_byte *contents = NULL;
6232 bfd_size_type amt;
6233 unsigned int freeidx = 0;
6234
6235 if (elf_dynverref (abfd) != 0)
6236 {
6237 Elf_Internal_Shdr *hdr;
6238 Elf_External_Verneed *everneed;
6239 Elf_Internal_Verneed *iverneed;
6240 unsigned int i;
6241
6242 hdr = &elf_tdata (abfd)->dynverref_hdr;
6243
6244 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6245 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6246 if (elf_tdata (abfd)->verref == NULL)
6247 goto error_return;
6248
6249 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6250
6251 contents = bfd_malloc (hdr->sh_size);
6252 if (contents == NULL)
6253 goto error_return;
6254 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6255 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6256 goto error_return;
6257
6258 everneed = (Elf_External_Verneed *) contents;
6259 iverneed = elf_tdata (abfd)->verref;
6260 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6261 {
6262 Elf_External_Vernaux *evernaux;
6263 Elf_Internal_Vernaux *ivernaux;
6264 unsigned int j;
6265
6266 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6267
6268 iverneed->vn_bfd = abfd;
6269
6270 iverneed->vn_filename =
6271 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6272 iverneed->vn_file);
6273 if (iverneed->vn_filename == NULL)
6274 goto error_return;
6275
6276 amt = iverneed->vn_cnt;
6277 amt *= sizeof (Elf_Internal_Vernaux);
6278 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6279
6280 evernaux = ((Elf_External_Vernaux *)
6281 ((bfd_byte *) everneed + iverneed->vn_aux));
6282 ivernaux = iverneed->vn_auxptr;
6283 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6284 {
6285 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6286
6287 ivernaux->vna_nodename =
6288 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6289 ivernaux->vna_name);
6290 if (ivernaux->vna_nodename == NULL)
6291 goto error_return;
6292
6293 if (j + 1 < iverneed->vn_cnt)
6294 ivernaux->vna_nextptr = ivernaux + 1;
6295 else
6296 ivernaux->vna_nextptr = NULL;
6297
6298 evernaux = ((Elf_External_Vernaux *)
6299 ((bfd_byte *) evernaux + ivernaux->vna_next));
6300
6301 if (ivernaux->vna_other > freeidx)
6302 freeidx = ivernaux->vna_other;
6303 }
6304
6305 if (i + 1 < hdr->sh_info)
6306 iverneed->vn_nextref = iverneed + 1;
6307 else
6308 iverneed->vn_nextref = NULL;
6309
6310 everneed = ((Elf_External_Verneed *)
6311 ((bfd_byte *) everneed + iverneed->vn_next));
6312 }
6313
6314 free (contents);
6315 contents = NULL;
6316 }
6317
6318 if (elf_dynverdef (abfd) != 0)
6319 {
6320 Elf_Internal_Shdr *hdr;
6321 Elf_External_Verdef *everdef;
6322 Elf_Internal_Verdef *iverdef;
6323 Elf_Internal_Verdef *iverdefarr;
6324 Elf_Internal_Verdef iverdefmem;
6325 unsigned int i;
6326 unsigned int maxidx;
6327
6328 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6329
6330 contents = bfd_malloc (hdr->sh_size);
6331 if (contents == NULL)
6332 goto error_return;
6333 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6334 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6335 goto error_return;
6336
6337 /* We know the number of entries in the section but not the maximum
6338 index. Therefore we have to run through all entries and find
6339 the maximum. */
6340 everdef = (Elf_External_Verdef *) contents;
6341 maxidx = 0;
6342 for (i = 0; i < hdr->sh_info; ++i)
6343 {
6344 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6345
6346 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6347 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6348
6349 everdef = ((Elf_External_Verdef *)
6350 ((bfd_byte *) everdef + iverdefmem.vd_next));
6351 }
6352
6353 if (default_imported_symver)
6354 {
6355 if (freeidx > maxidx)
6356 maxidx = ++freeidx;
6357 else
6358 freeidx = ++maxidx;
6359 }
6360 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6361 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6362 if (elf_tdata (abfd)->verdef == NULL)
6363 goto error_return;
6364
6365 elf_tdata (abfd)->cverdefs = maxidx;
6366
6367 everdef = (Elf_External_Verdef *) contents;
6368 iverdefarr = elf_tdata (abfd)->verdef;
6369 for (i = 0; i < hdr->sh_info; i++)
6370 {
6371 Elf_External_Verdaux *everdaux;
6372 Elf_Internal_Verdaux *iverdaux;
6373 unsigned int j;
6374
6375 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6376
6377 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6378 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6379
6380 iverdef->vd_bfd = abfd;
6381
6382 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6383 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6384 if (iverdef->vd_auxptr == NULL)
6385 goto error_return;
6386
6387 everdaux = ((Elf_External_Verdaux *)
6388 ((bfd_byte *) everdef + iverdef->vd_aux));
6389 iverdaux = iverdef->vd_auxptr;
6390 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6391 {
6392 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6393
6394 iverdaux->vda_nodename =
6395 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6396 iverdaux->vda_name);
6397 if (iverdaux->vda_nodename == NULL)
6398 goto error_return;
6399
6400 if (j + 1 < iverdef->vd_cnt)
6401 iverdaux->vda_nextptr = iverdaux + 1;
6402 else
6403 iverdaux->vda_nextptr = NULL;
6404
6405 everdaux = ((Elf_External_Verdaux *)
6406 ((bfd_byte *) everdaux + iverdaux->vda_next));
6407 }
6408
6409 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6410
6411 if (i + 1 < hdr->sh_info)
6412 iverdef->vd_nextdef = iverdef + 1;
6413 else
6414 iverdef->vd_nextdef = NULL;
6415
6416 everdef = ((Elf_External_Verdef *)
6417 ((bfd_byte *) everdef + iverdef->vd_next));
6418 }
6419
6420 free (contents);
6421 contents = NULL;
6422 }
6423 else if (default_imported_symver)
6424 {
6425 if (freeidx < 3)
6426 freeidx = 3;
6427 else
6428 freeidx++;
6429
6430 amt = (bfd_size_type) freeidx * sizeof (Elf_Internal_Verdef);
6431 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6432 if (elf_tdata (abfd)->verdef == NULL)
6433 goto error_return;
6434
6435 elf_tdata (abfd)->cverdefs = freeidx;
6436 }
6437
6438 /* Create a default version based on the soname. */
6439 if (default_imported_symver)
6440 {
6441 Elf_Internal_Verdef *iverdef;
6442 Elf_Internal_Verdaux *iverdaux;
6443
6444 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6445
6446 iverdef->vd_version = VER_DEF_CURRENT;
6447 iverdef->vd_flags = 0;
6448 iverdef->vd_ndx = freeidx;
6449 iverdef->vd_cnt = 1;
6450
6451 iverdef->vd_bfd = abfd;
6452
6453 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6454 if (iverdef->vd_nodename == NULL)
6455 goto error_return;
6456 iverdef->vd_nextdef = NULL;
6457 amt = (bfd_size_type) sizeof (Elf_Internal_Verdaux);
6458 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6459
6460 iverdaux = iverdef->vd_auxptr;
6461 iverdaux->vda_nodename = iverdef->vd_nodename;
6462 iverdaux->vda_nextptr = NULL;
6463 }
6464
6465 return TRUE;
6466
6467 error_return:
6468 if (contents != NULL)
6469 free (contents);
6470 return FALSE;
6471 }
6472 \f
6473 asymbol *
6474 _bfd_elf_make_empty_symbol (bfd *abfd)
6475 {
6476 elf_symbol_type *newsym;
6477 bfd_size_type amt = sizeof (elf_symbol_type);
6478
6479 newsym = bfd_zalloc (abfd, amt);
6480 if (!newsym)
6481 return NULL;
6482 else
6483 {
6484 newsym->symbol.the_bfd = abfd;
6485 return &newsym->symbol;
6486 }
6487 }
6488
6489 void
6490 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6491 asymbol *symbol,
6492 symbol_info *ret)
6493 {
6494 bfd_symbol_info (symbol, ret);
6495 }
6496
6497 /* Return whether a symbol name implies a local symbol. Most targets
6498 use this function for the is_local_label_name entry point, but some
6499 override it. */
6500
6501 bfd_boolean
6502 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6503 const char *name)
6504 {
6505 /* Normal local symbols start with ``.L''. */
6506 if (name[0] == '.' && name[1] == 'L')
6507 return TRUE;
6508
6509 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6510 DWARF debugging symbols starting with ``..''. */
6511 if (name[0] == '.' && name[1] == '.')
6512 return TRUE;
6513
6514 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6515 emitting DWARF debugging output. I suspect this is actually a
6516 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6517 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6518 underscore to be emitted on some ELF targets). For ease of use,
6519 we treat such symbols as local. */
6520 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6521 return TRUE;
6522
6523 return FALSE;
6524 }
6525
6526 alent *
6527 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6528 asymbol *symbol ATTRIBUTE_UNUSED)
6529 {
6530 abort ();
6531 return NULL;
6532 }
6533
6534 bfd_boolean
6535 _bfd_elf_set_arch_mach (bfd *abfd,
6536 enum bfd_architecture arch,
6537 unsigned long machine)
6538 {
6539 /* If this isn't the right architecture for this backend, and this
6540 isn't the generic backend, fail. */
6541 if (arch != get_elf_backend_data (abfd)->arch
6542 && arch != bfd_arch_unknown
6543 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6544 return FALSE;
6545
6546 return bfd_default_set_arch_mach (abfd, arch, machine);
6547 }
6548
6549 /* Find the function to a particular section and offset,
6550 for error reporting. */
6551
6552 static bfd_boolean
6553 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6554 asection *section,
6555 asymbol **symbols,
6556 bfd_vma offset,
6557 const char **filename_ptr,
6558 const char **functionname_ptr)
6559 {
6560 const char *filename;
6561 asymbol *func, *file;
6562 bfd_vma low_func;
6563 asymbol **p;
6564 /* ??? Given multiple file symbols, it is impossible to reliably
6565 choose the right file name for global symbols. File symbols are
6566 local symbols, and thus all file symbols must sort before any
6567 global symbols. The ELF spec may be interpreted to say that a
6568 file symbol must sort before other local symbols, but currently
6569 ld -r doesn't do this. So, for ld -r output, it is possible to
6570 make a better choice of file name for local symbols by ignoring
6571 file symbols appearing after a given local symbol. */
6572 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6573
6574 filename = NULL;
6575 func = NULL;
6576 file = NULL;
6577 low_func = 0;
6578 state = nothing_seen;
6579
6580 for (p = symbols; *p != NULL; p++)
6581 {
6582 elf_symbol_type *q;
6583
6584 q = (elf_symbol_type *) *p;
6585
6586 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6587 {
6588 default:
6589 break;
6590 case STT_FILE:
6591 file = &q->symbol;
6592 if (state == symbol_seen)
6593 state = file_after_symbol_seen;
6594 continue;
6595 case STT_SECTION:
6596 continue;
6597 case STT_NOTYPE:
6598 case STT_FUNC:
6599 if (bfd_get_section (&q->symbol) == section
6600 && q->symbol.value >= low_func
6601 && q->symbol.value <= offset)
6602 {
6603 func = (asymbol *) q;
6604 low_func = q->symbol.value;
6605 if (file == NULL)
6606 filename = NULL;
6607 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6608 && state == file_after_symbol_seen)
6609 filename = NULL;
6610 else
6611 filename = bfd_asymbol_name (file);
6612 }
6613 break;
6614 }
6615 if (state == nothing_seen)
6616 state = symbol_seen;
6617 }
6618
6619 if (func == NULL)
6620 return FALSE;
6621
6622 if (filename_ptr)
6623 *filename_ptr = filename;
6624 if (functionname_ptr)
6625 *functionname_ptr = bfd_asymbol_name (func);
6626
6627 return TRUE;
6628 }
6629
6630 /* Find the nearest line to a particular section and offset,
6631 for error reporting. */
6632
6633 bfd_boolean
6634 _bfd_elf_find_nearest_line (bfd *abfd,
6635 asection *section,
6636 asymbol **symbols,
6637 bfd_vma offset,
6638 const char **filename_ptr,
6639 const char **functionname_ptr,
6640 unsigned int *line_ptr)
6641 {
6642 bfd_boolean found;
6643
6644 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6645 filename_ptr, functionname_ptr,
6646 line_ptr))
6647 {
6648 if (!*functionname_ptr)
6649 elf_find_function (abfd, section, symbols, offset,
6650 *filename_ptr ? NULL : filename_ptr,
6651 functionname_ptr);
6652
6653 return TRUE;
6654 }
6655
6656 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6657 filename_ptr, functionname_ptr,
6658 line_ptr, 0,
6659 &elf_tdata (abfd)->dwarf2_find_line_info))
6660 {
6661 if (!*functionname_ptr)
6662 elf_find_function (abfd, section, symbols, offset,
6663 *filename_ptr ? NULL : filename_ptr,
6664 functionname_ptr);
6665
6666 return TRUE;
6667 }
6668
6669 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6670 &found, filename_ptr,
6671 functionname_ptr, line_ptr,
6672 &elf_tdata (abfd)->line_info))
6673 return FALSE;
6674 if (found && (*functionname_ptr || *line_ptr))
6675 return TRUE;
6676
6677 if (symbols == NULL)
6678 return FALSE;
6679
6680 if (! elf_find_function (abfd, section, symbols, offset,
6681 filename_ptr, functionname_ptr))
6682 return FALSE;
6683
6684 *line_ptr = 0;
6685 return TRUE;
6686 }
6687
6688 int
6689 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6690 {
6691 int ret;
6692
6693 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6694 if (! reloc)
6695 ret += get_program_header_size (abfd);
6696 return ret;
6697 }
6698
6699 bfd_boolean
6700 _bfd_elf_set_section_contents (bfd *abfd,
6701 sec_ptr section,
6702 const void *location,
6703 file_ptr offset,
6704 bfd_size_type count)
6705 {
6706 Elf_Internal_Shdr *hdr;
6707 bfd_signed_vma pos;
6708
6709 if (! abfd->output_has_begun
6710 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6711 return FALSE;
6712
6713 hdr = &elf_section_data (section)->this_hdr;
6714 pos = hdr->sh_offset + offset;
6715 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6716 || bfd_bwrite (location, count, abfd) != count)
6717 return FALSE;
6718
6719 return TRUE;
6720 }
6721
6722 void
6723 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6724 arelent *cache_ptr ATTRIBUTE_UNUSED,
6725 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6726 {
6727 abort ();
6728 }
6729
6730 /* Try to convert a non-ELF reloc into an ELF one. */
6731
6732 bfd_boolean
6733 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6734 {
6735 /* Check whether we really have an ELF howto. */
6736
6737 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6738 {
6739 bfd_reloc_code_real_type code;
6740 reloc_howto_type *howto;
6741
6742 /* Alien reloc: Try to determine its type to replace it with an
6743 equivalent ELF reloc. */
6744
6745 if (areloc->howto->pc_relative)
6746 {
6747 switch (areloc->howto->bitsize)
6748 {
6749 case 8:
6750 code = BFD_RELOC_8_PCREL;
6751 break;
6752 case 12:
6753 code = BFD_RELOC_12_PCREL;
6754 break;
6755 case 16:
6756 code = BFD_RELOC_16_PCREL;
6757 break;
6758 case 24:
6759 code = BFD_RELOC_24_PCREL;
6760 break;
6761 case 32:
6762 code = BFD_RELOC_32_PCREL;
6763 break;
6764 case 64:
6765 code = BFD_RELOC_64_PCREL;
6766 break;
6767 default:
6768 goto fail;
6769 }
6770
6771 howto = bfd_reloc_type_lookup (abfd, code);
6772
6773 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6774 {
6775 if (howto->pcrel_offset)
6776 areloc->addend += areloc->address;
6777 else
6778 areloc->addend -= areloc->address; /* addend is unsigned!! */
6779 }
6780 }
6781 else
6782 {
6783 switch (areloc->howto->bitsize)
6784 {
6785 case 8:
6786 code = BFD_RELOC_8;
6787 break;
6788 case 14:
6789 code = BFD_RELOC_14;
6790 break;
6791 case 16:
6792 code = BFD_RELOC_16;
6793 break;
6794 case 26:
6795 code = BFD_RELOC_26;
6796 break;
6797 case 32:
6798 code = BFD_RELOC_32;
6799 break;
6800 case 64:
6801 code = BFD_RELOC_64;
6802 break;
6803 default:
6804 goto fail;
6805 }
6806
6807 howto = bfd_reloc_type_lookup (abfd, code);
6808 }
6809
6810 if (howto)
6811 areloc->howto = howto;
6812 else
6813 goto fail;
6814 }
6815
6816 return TRUE;
6817
6818 fail:
6819 (*_bfd_error_handler)
6820 (_("%B: unsupported relocation type %s"),
6821 abfd, areloc->howto->name);
6822 bfd_set_error (bfd_error_bad_value);
6823 return FALSE;
6824 }
6825
6826 bfd_boolean
6827 _bfd_elf_close_and_cleanup (bfd *abfd)
6828 {
6829 if (bfd_get_format (abfd) == bfd_object)
6830 {
6831 if (elf_shstrtab (abfd) != NULL)
6832 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6833 _bfd_dwarf2_cleanup_debug_info (abfd);
6834 }
6835
6836 return _bfd_generic_close_and_cleanup (abfd);
6837 }
6838
6839 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6840 in the relocation's offset. Thus we cannot allow any sort of sanity
6841 range-checking to interfere. There is nothing else to do in processing
6842 this reloc. */
6843
6844 bfd_reloc_status_type
6845 _bfd_elf_rel_vtable_reloc_fn
6846 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6847 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6848 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6849 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6850 {
6851 return bfd_reloc_ok;
6852 }
6853 \f
6854 /* Elf core file support. Much of this only works on native
6855 toolchains, since we rely on knowing the
6856 machine-dependent procfs structure in order to pick
6857 out details about the corefile. */
6858
6859 #ifdef HAVE_SYS_PROCFS_H
6860 # include <sys/procfs.h>
6861 #endif
6862
6863 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6864
6865 static int
6866 elfcore_make_pid (bfd *abfd)
6867 {
6868 return ((elf_tdata (abfd)->core_lwpid << 16)
6869 + (elf_tdata (abfd)->core_pid));
6870 }
6871
6872 /* If there isn't a section called NAME, make one, using
6873 data from SECT. Note, this function will generate a
6874 reference to NAME, so you shouldn't deallocate or
6875 overwrite it. */
6876
6877 static bfd_boolean
6878 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6879 {
6880 asection *sect2;
6881
6882 if (bfd_get_section_by_name (abfd, name) != NULL)
6883 return TRUE;
6884
6885 sect2 = bfd_make_section (abfd, name);
6886 if (sect2 == NULL)
6887 return FALSE;
6888
6889 sect2->size = sect->size;
6890 sect2->filepos = sect->filepos;
6891 sect2->flags = sect->flags;
6892 sect2->alignment_power = sect->alignment_power;
6893 return TRUE;
6894 }
6895
6896 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6897 actually creates up to two pseudosections:
6898 - For the single-threaded case, a section named NAME, unless
6899 such a section already exists.
6900 - For the multi-threaded case, a section named "NAME/PID", where
6901 PID is elfcore_make_pid (abfd).
6902 Both pseudosections have identical contents. */
6903 bfd_boolean
6904 _bfd_elfcore_make_pseudosection (bfd *abfd,
6905 char *name,
6906 size_t size,
6907 ufile_ptr filepos)
6908 {
6909 char buf[100];
6910 char *threaded_name;
6911 size_t len;
6912 asection *sect;
6913
6914 /* Build the section name. */
6915
6916 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6917 len = strlen (buf) + 1;
6918 threaded_name = bfd_alloc (abfd, len);
6919 if (threaded_name == NULL)
6920 return FALSE;
6921 memcpy (threaded_name, buf, len);
6922
6923 sect = bfd_make_section_anyway (abfd, threaded_name);
6924 if (sect == NULL)
6925 return FALSE;
6926 sect->size = size;
6927 sect->filepos = filepos;
6928 sect->flags = SEC_HAS_CONTENTS;
6929 sect->alignment_power = 2;
6930
6931 return elfcore_maybe_make_sect (abfd, name, sect);
6932 }
6933
6934 /* prstatus_t exists on:
6935 solaris 2.5+
6936 linux 2.[01] + glibc
6937 unixware 4.2
6938 */
6939
6940 #if defined (HAVE_PRSTATUS_T)
6941
6942 static bfd_boolean
6943 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6944 {
6945 size_t size;
6946 int offset;
6947
6948 if (note->descsz == sizeof (prstatus_t))
6949 {
6950 prstatus_t prstat;
6951
6952 size = sizeof (prstat.pr_reg);
6953 offset = offsetof (prstatus_t, pr_reg);
6954 memcpy (&prstat, note->descdata, sizeof (prstat));
6955
6956 /* Do not overwrite the core signal if it
6957 has already been set by another thread. */
6958 if (elf_tdata (abfd)->core_signal == 0)
6959 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6960 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6961
6962 /* pr_who exists on:
6963 solaris 2.5+
6964 unixware 4.2
6965 pr_who doesn't exist on:
6966 linux 2.[01]
6967 */
6968 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6969 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6970 #endif
6971 }
6972 #if defined (HAVE_PRSTATUS32_T)
6973 else if (note->descsz == sizeof (prstatus32_t))
6974 {
6975 /* 64-bit host, 32-bit corefile */
6976 prstatus32_t prstat;
6977
6978 size = sizeof (prstat.pr_reg);
6979 offset = offsetof (prstatus32_t, pr_reg);
6980 memcpy (&prstat, note->descdata, sizeof (prstat));
6981
6982 /* Do not overwrite the core signal if it
6983 has already been set by another thread. */
6984 if (elf_tdata (abfd)->core_signal == 0)
6985 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6986 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6987
6988 /* pr_who exists on:
6989 solaris 2.5+
6990 unixware 4.2
6991 pr_who doesn't exist on:
6992 linux 2.[01]
6993 */
6994 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6995 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6996 #endif
6997 }
6998 #endif /* HAVE_PRSTATUS32_T */
6999 else
7000 {
7001 /* Fail - we don't know how to handle any other
7002 note size (ie. data object type). */
7003 return TRUE;
7004 }
7005
7006 /* Make a ".reg/999" section and a ".reg" section. */
7007 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7008 size, note->descpos + offset);
7009 }
7010 #endif /* defined (HAVE_PRSTATUS_T) */
7011
7012 /* Create a pseudosection containing the exact contents of NOTE. */
7013 static bfd_boolean
7014 elfcore_make_note_pseudosection (bfd *abfd,
7015 char *name,
7016 Elf_Internal_Note *note)
7017 {
7018 return _bfd_elfcore_make_pseudosection (abfd, name,
7019 note->descsz, note->descpos);
7020 }
7021
7022 /* There isn't a consistent prfpregset_t across platforms,
7023 but it doesn't matter, because we don't have to pick this
7024 data structure apart. */
7025
7026 static bfd_boolean
7027 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7028 {
7029 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7030 }
7031
7032 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7033 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7034 literally. */
7035
7036 static bfd_boolean
7037 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7038 {
7039 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7040 }
7041
7042 #if defined (HAVE_PRPSINFO_T)
7043 typedef prpsinfo_t elfcore_psinfo_t;
7044 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7045 typedef prpsinfo32_t elfcore_psinfo32_t;
7046 #endif
7047 #endif
7048
7049 #if defined (HAVE_PSINFO_T)
7050 typedef psinfo_t elfcore_psinfo_t;
7051 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7052 typedef psinfo32_t elfcore_psinfo32_t;
7053 #endif
7054 #endif
7055
7056 /* return a malloc'ed copy of a string at START which is at
7057 most MAX bytes long, possibly without a terminating '\0'.
7058 the copy will always have a terminating '\0'. */
7059
7060 char *
7061 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7062 {
7063 char *dups;
7064 char *end = memchr (start, '\0', max);
7065 size_t len;
7066
7067 if (end == NULL)
7068 len = max;
7069 else
7070 len = end - start;
7071
7072 dups = bfd_alloc (abfd, len + 1);
7073 if (dups == NULL)
7074 return NULL;
7075
7076 memcpy (dups, start, len);
7077 dups[len] = '\0';
7078
7079 return dups;
7080 }
7081
7082 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7083 static bfd_boolean
7084 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7085 {
7086 if (note->descsz == sizeof (elfcore_psinfo_t))
7087 {
7088 elfcore_psinfo_t psinfo;
7089
7090 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7091
7092 elf_tdata (abfd)->core_program
7093 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7094 sizeof (psinfo.pr_fname));
7095
7096 elf_tdata (abfd)->core_command
7097 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7098 sizeof (psinfo.pr_psargs));
7099 }
7100 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7101 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7102 {
7103 /* 64-bit host, 32-bit corefile */
7104 elfcore_psinfo32_t psinfo;
7105
7106 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7107
7108 elf_tdata (abfd)->core_program
7109 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7110 sizeof (psinfo.pr_fname));
7111
7112 elf_tdata (abfd)->core_command
7113 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7114 sizeof (psinfo.pr_psargs));
7115 }
7116 #endif
7117
7118 else
7119 {
7120 /* Fail - we don't know how to handle any other
7121 note size (ie. data object type). */
7122 return TRUE;
7123 }
7124
7125 /* Note that for some reason, a spurious space is tacked
7126 onto the end of the args in some (at least one anyway)
7127 implementations, so strip it off if it exists. */
7128
7129 {
7130 char *command = elf_tdata (abfd)->core_command;
7131 int n = strlen (command);
7132
7133 if (0 < n && command[n - 1] == ' ')
7134 command[n - 1] = '\0';
7135 }
7136
7137 return TRUE;
7138 }
7139 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7140
7141 #if defined (HAVE_PSTATUS_T)
7142 static bfd_boolean
7143 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7144 {
7145 if (note->descsz == sizeof (pstatus_t)
7146 #if defined (HAVE_PXSTATUS_T)
7147 || note->descsz == sizeof (pxstatus_t)
7148 #endif
7149 )
7150 {
7151 pstatus_t pstat;
7152
7153 memcpy (&pstat, note->descdata, sizeof (pstat));
7154
7155 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7156 }
7157 #if defined (HAVE_PSTATUS32_T)
7158 else if (note->descsz == sizeof (pstatus32_t))
7159 {
7160 /* 64-bit host, 32-bit corefile */
7161 pstatus32_t pstat;
7162
7163 memcpy (&pstat, note->descdata, sizeof (pstat));
7164
7165 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7166 }
7167 #endif
7168 /* Could grab some more details from the "representative"
7169 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7170 NT_LWPSTATUS note, presumably. */
7171
7172 return TRUE;
7173 }
7174 #endif /* defined (HAVE_PSTATUS_T) */
7175
7176 #if defined (HAVE_LWPSTATUS_T)
7177 static bfd_boolean
7178 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7179 {
7180 lwpstatus_t lwpstat;
7181 char buf[100];
7182 char *name;
7183 size_t len;
7184 asection *sect;
7185
7186 if (note->descsz != sizeof (lwpstat)
7187 #if defined (HAVE_LWPXSTATUS_T)
7188 && note->descsz != sizeof (lwpxstatus_t)
7189 #endif
7190 )
7191 return TRUE;
7192
7193 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7194
7195 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7196 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7197
7198 /* Make a ".reg/999" section. */
7199
7200 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7201 len = strlen (buf) + 1;
7202 name = bfd_alloc (abfd, len);
7203 if (name == NULL)
7204 return FALSE;
7205 memcpy (name, buf, len);
7206
7207 sect = bfd_make_section_anyway (abfd, name);
7208 if (sect == NULL)
7209 return FALSE;
7210
7211 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7212 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7213 sect->filepos = note->descpos
7214 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7215 #endif
7216
7217 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7218 sect->size = sizeof (lwpstat.pr_reg);
7219 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7220 #endif
7221
7222 sect->flags = SEC_HAS_CONTENTS;
7223 sect->alignment_power = 2;
7224
7225 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7226 return FALSE;
7227
7228 /* Make a ".reg2/999" section */
7229
7230 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7231 len = strlen (buf) + 1;
7232 name = bfd_alloc (abfd, len);
7233 if (name == NULL)
7234 return FALSE;
7235 memcpy (name, buf, len);
7236
7237 sect = bfd_make_section_anyway (abfd, name);
7238 if (sect == NULL)
7239 return FALSE;
7240
7241 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7242 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7243 sect->filepos = note->descpos
7244 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7245 #endif
7246
7247 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7248 sect->size = sizeof (lwpstat.pr_fpreg);
7249 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7250 #endif
7251
7252 sect->flags = SEC_HAS_CONTENTS;
7253 sect->alignment_power = 2;
7254
7255 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7256 }
7257 #endif /* defined (HAVE_LWPSTATUS_T) */
7258
7259 #if defined (HAVE_WIN32_PSTATUS_T)
7260 static bfd_boolean
7261 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7262 {
7263 char buf[30];
7264 char *name;
7265 size_t len;
7266 asection *sect;
7267 win32_pstatus_t pstatus;
7268
7269 if (note->descsz < sizeof (pstatus))
7270 return TRUE;
7271
7272 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7273
7274 switch (pstatus.data_type)
7275 {
7276 case NOTE_INFO_PROCESS:
7277 /* FIXME: need to add ->core_command. */
7278 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7279 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7280 break;
7281
7282 case NOTE_INFO_THREAD:
7283 /* Make a ".reg/999" section. */
7284 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7285
7286 len = strlen (buf) + 1;
7287 name = bfd_alloc (abfd, len);
7288 if (name == NULL)
7289 return FALSE;
7290
7291 memcpy (name, buf, len);
7292
7293 sect = bfd_make_section_anyway (abfd, name);
7294 if (sect == NULL)
7295 return FALSE;
7296
7297 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7298 sect->filepos = (note->descpos
7299 + offsetof (struct win32_pstatus,
7300 data.thread_info.thread_context));
7301 sect->flags = SEC_HAS_CONTENTS;
7302 sect->alignment_power = 2;
7303
7304 if (pstatus.data.thread_info.is_active_thread)
7305 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7306 return FALSE;
7307 break;
7308
7309 case NOTE_INFO_MODULE:
7310 /* Make a ".module/xxxxxxxx" section. */
7311 sprintf (buf, ".module/%08lx",
7312 (long) pstatus.data.module_info.base_address);
7313
7314 len = strlen (buf) + 1;
7315 name = bfd_alloc (abfd, len);
7316 if (name == NULL)
7317 return FALSE;
7318
7319 memcpy (name, buf, len);
7320
7321 sect = bfd_make_section_anyway (abfd, name);
7322
7323 if (sect == NULL)
7324 return FALSE;
7325
7326 sect->size = note->descsz;
7327 sect->filepos = note->descpos;
7328 sect->flags = SEC_HAS_CONTENTS;
7329 sect->alignment_power = 2;
7330 break;
7331
7332 default:
7333 return TRUE;
7334 }
7335
7336 return TRUE;
7337 }
7338 #endif /* HAVE_WIN32_PSTATUS_T */
7339
7340 static bfd_boolean
7341 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7342 {
7343 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7344
7345 switch (note->type)
7346 {
7347 default:
7348 return TRUE;
7349
7350 case NT_PRSTATUS:
7351 if (bed->elf_backend_grok_prstatus)
7352 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7353 return TRUE;
7354 #if defined (HAVE_PRSTATUS_T)
7355 return elfcore_grok_prstatus (abfd, note);
7356 #else
7357 return TRUE;
7358 #endif
7359
7360 #if defined (HAVE_PSTATUS_T)
7361 case NT_PSTATUS:
7362 return elfcore_grok_pstatus (abfd, note);
7363 #endif
7364
7365 #if defined (HAVE_LWPSTATUS_T)
7366 case NT_LWPSTATUS:
7367 return elfcore_grok_lwpstatus (abfd, note);
7368 #endif
7369
7370 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7371 return elfcore_grok_prfpreg (abfd, note);
7372
7373 #if defined (HAVE_WIN32_PSTATUS_T)
7374 case NT_WIN32PSTATUS:
7375 return elfcore_grok_win32pstatus (abfd, note);
7376 #endif
7377
7378 case NT_PRXFPREG: /* Linux SSE extension */
7379 if (note->namesz == 6
7380 && strcmp (note->namedata, "LINUX") == 0)
7381 return elfcore_grok_prxfpreg (abfd, note);
7382 else
7383 return TRUE;
7384
7385 case NT_PRPSINFO:
7386 case NT_PSINFO:
7387 if (bed->elf_backend_grok_psinfo)
7388 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7389 return TRUE;
7390 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7391 return elfcore_grok_psinfo (abfd, note);
7392 #else
7393 return TRUE;
7394 #endif
7395
7396 case NT_AUXV:
7397 {
7398 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7399
7400 if (sect == NULL)
7401 return FALSE;
7402 sect->size = note->descsz;
7403 sect->filepos = note->descpos;
7404 sect->flags = SEC_HAS_CONTENTS;
7405 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7406
7407 return TRUE;
7408 }
7409 }
7410 }
7411
7412 static bfd_boolean
7413 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7414 {
7415 char *cp;
7416
7417 cp = strchr (note->namedata, '@');
7418 if (cp != NULL)
7419 {
7420 *lwpidp = atoi(cp + 1);
7421 return TRUE;
7422 }
7423 return FALSE;
7424 }
7425
7426 static bfd_boolean
7427 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7428 {
7429
7430 /* Signal number at offset 0x08. */
7431 elf_tdata (abfd)->core_signal
7432 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7433
7434 /* Process ID at offset 0x50. */
7435 elf_tdata (abfd)->core_pid
7436 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7437
7438 /* Command name at 0x7c (max 32 bytes, including nul). */
7439 elf_tdata (abfd)->core_command
7440 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7441
7442 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7443 note);
7444 }
7445
7446 static bfd_boolean
7447 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7448 {
7449 int lwp;
7450
7451 if (elfcore_netbsd_get_lwpid (note, &lwp))
7452 elf_tdata (abfd)->core_lwpid = lwp;
7453
7454 if (note->type == NT_NETBSDCORE_PROCINFO)
7455 {
7456 /* NetBSD-specific core "procinfo". Note that we expect to
7457 find this note before any of the others, which is fine,
7458 since the kernel writes this note out first when it
7459 creates a core file. */
7460
7461 return elfcore_grok_netbsd_procinfo (abfd, note);
7462 }
7463
7464 /* As of Jan 2002 there are no other machine-independent notes
7465 defined for NetBSD core files. If the note type is less
7466 than the start of the machine-dependent note types, we don't
7467 understand it. */
7468
7469 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7470 return TRUE;
7471
7472
7473 switch (bfd_get_arch (abfd))
7474 {
7475 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7476 PT_GETFPREGS == mach+2. */
7477
7478 case bfd_arch_alpha:
7479 case bfd_arch_sparc:
7480 switch (note->type)
7481 {
7482 case NT_NETBSDCORE_FIRSTMACH+0:
7483 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7484
7485 case NT_NETBSDCORE_FIRSTMACH+2:
7486 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7487
7488 default:
7489 return TRUE;
7490 }
7491
7492 /* On all other arch's, PT_GETREGS == mach+1 and
7493 PT_GETFPREGS == mach+3. */
7494
7495 default:
7496 switch (note->type)
7497 {
7498 case NT_NETBSDCORE_FIRSTMACH+1:
7499 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7500
7501 case NT_NETBSDCORE_FIRSTMACH+3:
7502 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7503
7504 default:
7505 return TRUE;
7506 }
7507 }
7508 /* NOTREACHED */
7509 }
7510
7511 static bfd_boolean
7512 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7513 {
7514 void *ddata = note->descdata;
7515 char buf[100];
7516 char *name;
7517 asection *sect;
7518 short sig;
7519 unsigned flags;
7520
7521 /* nto_procfs_status 'pid' field is at offset 0. */
7522 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7523
7524 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7525 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7526
7527 /* nto_procfs_status 'flags' field is at offset 8. */
7528 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7529
7530 /* nto_procfs_status 'what' field is at offset 14. */
7531 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7532 {
7533 elf_tdata (abfd)->core_signal = sig;
7534 elf_tdata (abfd)->core_lwpid = *tid;
7535 }
7536
7537 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7538 do not come from signals so we make sure we set the current
7539 thread just in case. */
7540 if (flags & 0x00000080)
7541 elf_tdata (abfd)->core_lwpid = *tid;
7542
7543 /* Make a ".qnx_core_status/%d" section. */
7544 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7545
7546 name = bfd_alloc (abfd, strlen (buf) + 1);
7547 if (name == NULL)
7548 return FALSE;
7549 strcpy (name, buf);
7550
7551 sect = bfd_make_section_anyway (abfd, name);
7552 if (sect == NULL)
7553 return FALSE;
7554
7555 sect->size = note->descsz;
7556 sect->filepos = note->descpos;
7557 sect->flags = SEC_HAS_CONTENTS;
7558 sect->alignment_power = 2;
7559
7560 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7561 }
7562
7563 static bfd_boolean
7564 elfcore_grok_nto_regs (bfd *abfd,
7565 Elf_Internal_Note *note,
7566 pid_t tid,
7567 char *base)
7568 {
7569 char buf[100];
7570 char *name;
7571 asection *sect;
7572
7573 /* Make a "(base)/%d" section. */
7574 sprintf (buf, "%s/%ld", base, (long) tid);
7575
7576 name = bfd_alloc (abfd, strlen (buf) + 1);
7577 if (name == NULL)
7578 return FALSE;
7579 strcpy (name, buf);
7580
7581 sect = bfd_make_section_anyway (abfd, name);
7582 if (sect == NULL)
7583 return FALSE;
7584
7585 sect->size = note->descsz;
7586 sect->filepos = note->descpos;
7587 sect->flags = SEC_HAS_CONTENTS;
7588 sect->alignment_power = 2;
7589
7590 /* This is the current thread. */
7591 if (elf_tdata (abfd)->core_lwpid == tid)
7592 return elfcore_maybe_make_sect (abfd, base, sect);
7593
7594 return TRUE;
7595 }
7596
7597 #define BFD_QNT_CORE_INFO 7
7598 #define BFD_QNT_CORE_STATUS 8
7599 #define BFD_QNT_CORE_GREG 9
7600 #define BFD_QNT_CORE_FPREG 10
7601
7602 static bfd_boolean
7603 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7604 {
7605 /* Every GREG section has a STATUS section before it. Store the
7606 tid from the previous call to pass down to the next gregs
7607 function. */
7608 static pid_t tid = 1;
7609
7610 switch (note->type)
7611 {
7612 case BFD_QNT_CORE_INFO:
7613 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7614 case BFD_QNT_CORE_STATUS:
7615 return elfcore_grok_nto_status (abfd, note, &tid);
7616 case BFD_QNT_CORE_GREG:
7617 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7618 case BFD_QNT_CORE_FPREG:
7619 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7620 default:
7621 return TRUE;
7622 }
7623 }
7624
7625 /* Function: elfcore_write_note
7626
7627 Inputs:
7628 buffer to hold note
7629 name of note
7630 type of note
7631 data for note
7632 size of data for note
7633
7634 Return:
7635 End of buffer containing note. */
7636
7637 char *
7638 elfcore_write_note (bfd *abfd,
7639 char *buf,
7640 int *bufsiz,
7641 const char *name,
7642 int type,
7643 const void *input,
7644 int size)
7645 {
7646 Elf_External_Note *xnp;
7647 size_t namesz;
7648 size_t pad;
7649 size_t newspace;
7650 char *p, *dest;
7651
7652 namesz = 0;
7653 pad = 0;
7654 if (name != NULL)
7655 {
7656 const struct elf_backend_data *bed;
7657
7658 namesz = strlen (name) + 1;
7659 bed = get_elf_backend_data (abfd);
7660 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7661 }
7662
7663 newspace = 12 + namesz + pad + size;
7664
7665 p = realloc (buf, *bufsiz + newspace);
7666 dest = p + *bufsiz;
7667 *bufsiz += newspace;
7668 xnp = (Elf_External_Note *) dest;
7669 H_PUT_32 (abfd, namesz, xnp->namesz);
7670 H_PUT_32 (abfd, size, xnp->descsz);
7671 H_PUT_32 (abfd, type, xnp->type);
7672 dest = xnp->name;
7673 if (name != NULL)
7674 {
7675 memcpy (dest, name, namesz);
7676 dest += namesz;
7677 while (pad != 0)
7678 {
7679 *dest++ = '\0';
7680 --pad;
7681 }
7682 }
7683 memcpy (dest, input, size);
7684 return p;
7685 }
7686
7687 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7688 char *
7689 elfcore_write_prpsinfo (bfd *abfd,
7690 char *buf,
7691 int *bufsiz,
7692 const char *fname,
7693 const char *psargs)
7694 {
7695 int note_type;
7696 char *note_name = "CORE";
7697
7698 #if defined (HAVE_PSINFO_T)
7699 psinfo_t data;
7700 note_type = NT_PSINFO;
7701 #else
7702 prpsinfo_t data;
7703 note_type = NT_PRPSINFO;
7704 #endif
7705
7706 memset (&data, 0, sizeof (data));
7707 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7708 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7709 return elfcore_write_note (abfd, buf, bufsiz,
7710 note_name, note_type, &data, sizeof (data));
7711 }
7712 #endif /* PSINFO_T or PRPSINFO_T */
7713
7714 #if defined (HAVE_PRSTATUS_T)
7715 char *
7716 elfcore_write_prstatus (bfd *abfd,
7717 char *buf,
7718 int *bufsiz,
7719 long pid,
7720 int cursig,
7721 const void *gregs)
7722 {
7723 prstatus_t prstat;
7724 char *note_name = "CORE";
7725
7726 memset (&prstat, 0, sizeof (prstat));
7727 prstat.pr_pid = pid;
7728 prstat.pr_cursig = cursig;
7729 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7730 return elfcore_write_note (abfd, buf, bufsiz,
7731 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7732 }
7733 #endif /* HAVE_PRSTATUS_T */
7734
7735 #if defined (HAVE_LWPSTATUS_T)
7736 char *
7737 elfcore_write_lwpstatus (bfd *abfd,
7738 char *buf,
7739 int *bufsiz,
7740 long pid,
7741 int cursig,
7742 const void *gregs)
7743 {
7744 lwpstatus_t lwpstat;
7745 char *note_name = "CORE";
7746
7747 memset (&lwpstat, 0, sizeof (lwpstat));
7748 lwpstat.pr_lwpid = pid >> 16;
7749 lwpstat.pr_cursig = cursig;
7750 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7751 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7752 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7753 #if !defined(gregs)
7754 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7755 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7756 #else
7757 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7758 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7759 #endif
7760 #endif
7761 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7762 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7763 }
7764 #endif /* HAVE_LWPSTATUS_T */
7765
7766 #if defined (HAVE_PSTATUS_T)
7767 char *
7768 elfcore_write_pstatus (bfd *abfd,
7769 char *buf,
7770 int *bufsiz,
7771 long pid,
7772 int cursig,
7773 const void *gregs)
7774 {
7775 pstatus_t pstat;
7776 char *note_name = "CORE";
7777
7778 memset (&pstat, 0, sizeof (pstat));
7779 pstat.pr_pid = pid & 0xffff;
7780 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7781 NT_PSTATUS, &pstat, sizeof (pstat));
7782 return buf;
7783 }
7784 #endif /* HAVE_PSTATUS_T */
7785
7786 char *
7787 elfcore_write_prfpreg (bfd *abfd,
7788 char *buf,
7789 int *bufsiz,
7790 const void *fpregs,
7791 int size)
7792 {
7793 char *note_name = "CORE";
7794 return elfcore_write_note (abfd, buf, bufsiz,
7795 note_name, NT_FPREGSET, fpregs, size);
7796 }
7797
7798 char *
7799 elfcore_write_prxfpreg (bfd *abfd,
7800 char *buf,
7801 int *bufsiz,
7802 const void *xfpregs,
7803 int size)
7804 {
7805 char *note_name = "LINUX";
7806 return elfcore_write_note (abfd, buf, bufsiz,
7807 note_name, NT_PRXFPREG, xfpregs, size);
7808 }
7809
7810 static bfd_boolean
7811 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7812 {
7813 char *buf;
7814 char *p;
7815
7816 if (size <= 0)
7817 return TRUE;
7818
7819 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7820 return FALSE;
7821
7822 buf = bfd_malloc (size);
7823 if (buf == NULL)
7824 return FALSE;
7825
7826 if (bfd_bread (buf, size, abfd) != size)
7827 {
7828 error:
7829 free (buf);
7830 return FALSE;
7831 }
7832
7833 p = buf;
7834 while (p < buf + size)
7835 {
7836 /* FIXME: bad alignment assumption. */
7837 Elf_External_Note *xnp = (Elf_External_Note *) p;
7838 Elf_Internal_Note in;
7839
7840 in.type = H_GET_32 (abfd, xnp->type);
7841
7842 in.namesz = H_GET_32 (abfd, xnp->namesz);
7843 in.namedata = xnp->name;
7844
7845 in.descsz = H_GET_32 (abfd, xnp->descsz);
7846 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7847 in.descpos = offset + (in.descdata - buf);
7848
7849 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7850 {
7851 if (! elfcore_grok_netbsd_note (abfd, &in))
7852 goto error;
7853 }
7854 else if (strncmp (in.namedata, "QNX", 3) == 0)
7855 {
7856 if (! elfcore_grok_nto_note (abfd, &in))
7857 goto error;
7858 }
7859 else
7860 {
7861 if (! elfcore_grok_note (abfd, &in))
7862 goto error;
7863 }
7864
7865 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7866 }
7867
7868 free (buf);
7869 return TRUE;
7870 }
7871 \f
7872 /* Providing external access to the ELF program header table. */
7873
7874 /* Return an upper bound on the number of bytes required to store a
7875 copy of ABFD's program header table entries. Return -1 if an error
7876 occurs; bfd_get_error will return an appropriate code. */
7877
7878 long
7879 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7880 {
7881 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7882 {
7883 bfd_set_error (bfd_error_wrong_format);
7884 return -1;
7885 }
7886
7887 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7888 }
7889
7890 /* Copy ABFD's program header table entries to *PHDRS. The entries
7891 will be stored as an array of Elf_Internal_Phdr structures, as
7892 defined in include/elf/internal.h. To find out how large the
7893 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7894
7895 Return the number of program header table entries read, or -1 if an
7896 error occurs; bfd_get_error will return an appropriate code. */
7897
7898 int
7899 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7900 {
7901 int num_phdrs;
7902
7903 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7904 {
7905 bfd_set_error (bfd_error_wrong_format);
7906 return -1;
7907 }
7908
7909 num_phdrs = elf_elfheader (abfd)->e_phnum;
7910 memcpy (phdrs, elf_tdata (abfd)->phdr,
7911 num_phdrs * sizeof (Elf_Internal_Phdr));
7912
7913 return num_phdrs;
7914 }
7915
7916 void
7917 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7918 {
7919 #ifdef BFD64
7920 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7921
7922 i_ehdrp = elf_elfheader (abfd);
7923 if (i_ehdrp == NULL)
7924 sprintf_vma (buf, value);
7925 else
7926 {
7927 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7928 {
7929 #if BFD_HOST_64BIT_LONG
7930 sprintf (buf, "%016lx", value);
7931 #else
7932 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7933 _bfd_int64_low (value));
7934 #endif
7935 }
7936 else
7937 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7938 }
7939 #else
7940 sprintf_vma (buf, value);
7941 #endif
7942 }
7943
7944 void
7945 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7946 {
7947 #ifdef BFD64
7948 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7949
7950 i_ehdrp = elf_elfheader (abfd);
7951 if (i_ehdrp == NULL)
7952 fprintf_vma ((FILE *) stream, value);
7953 else
7954 {
7955 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7956 {
7957 #if BFD_HOST_64BIT_LONG
7958 fprintf ((FILE *) stream, "%016lx", value);
7959 #else
7960 fprintf ((FILE *) stream, "%08lx%08lx",
7961 _bfd_int64_high (value), _bfd_int64_low (value));
7962 #endif
7963 }
7964 else
7965 fprintf ((FILE *) stream, "%08lx",
7966 (unsigned long) (value & 0xffffffff));
7967 }
7968 #else
7969 fprintf_vma ((FILE *) stream, value);
7970 #endif
7971 }
7972
7973 enum elf_reloc_type_class
7974 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7975 {
7976 return reloc_class_normal;
7977 }
7978
7979 /* For RELA architectures, return the relocation value for a
7980 relocation against a local symbol. */
7981
7982 bfd_vma
7983 _bfd_elf_rela_local_sym (bfd *abfd,
7984 Elf_Internal_Sym *sym,
7985 asection **psec,
7986 Elf_Internal_Rela *rel)
7987 {
7988 asection *sec = *psec;
7989 bfd_vma relocation;
7990
7991 relocation = (sec->output_section->vma
7992 + sec->output_offset
7993 + sym->st_value);
7994 if ((sec->flags & SEC_MERGE)
7995 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7996 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7997 {
7998 rel->r_addend =
7999 _bfd_merged_section_offset (abfd, psec,
8000 elf_section_data (sec)->sec_info,
8001 sym->st_value + rel->r_addend);
8002 if (sec != *psec)
8003 {
8004 /* If we have changed the section, and our original section is
8005 marked with SEC_EXCLUDE, it means that the original
8006 SEC_MERGE section has been completely subsumed in some
8007 other SEC_MERGE section. In this case, we need to leave
8008 some info around for --emit-relocs. */
8009 if ((sec->flags & SEC_EXCLUDE) != 0)
8010 sec->kept_section = *psec;
8011 sec = *psec;
8012 }
8013 rel->r_addend -= relocation;
8014 rel->r_addend += sec->output_section->vma + sec->output_offset;
8015 }
8016 return relocation;
8017 }
8018
8019 bfd_vma
8020 _bfd_elf_rel_local_sym (bfd *abfd,
8021 Elf_Internal_Sym *sym,
8022 asection **psec,
8023 bfd_vma addend)
8024 {
8025 asection *sec = *psec;
8026
8027 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8028 return sym->st_value + addend;
8029
8030 return _bfd_merged_section_offset (abfd, psec,
8031 elf_section_data (sec)->sec_info,
8032 sym->st_value + addend);
8033 }
8034
8035 bfd_vma
8036 _bfd_elf_section_offset (bfd *abfd,
8037 struct bfd_link_info *info,
8038 asection *sec,
8039 bfd_vma offset)
8040 {
8041 switch (sec->sec_info_type)
8042 {
8043 case ELF_INFO_TYPE_STABS:
8044 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8045 offset);
8046 case ELF_INFO_TYPE_EH_FRAME:
8047 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8048 default:
8049 return offset;
8050 }
8051 }
8052 \f
8053 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8054 reconstruct an ELF file by reading the segments out of remote memory
8055 based on the ELF file header at EHDR_VMA and the ELF program headers it
8056 points to. If not null, *LOADBASEP is filled in with the difference
8057 between the VMAs from which the segments were read, and the VMAs the
8058 file headers (and hence BFD's idea of each section's VMA) put them at.
8059
8060 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8061 remote memory at target address VMA into the local buffer at MYADDR; it
8062 should return zero on success or an `errno' code on failure. TEMPL must
8063 be a BFD for an ELF target with the word size and byte order found in
8064 the remote memory. */
8065
8066 bfd *
8067 bfd_elf_bfd_from_remote_memory
8068 (bfd *templ,
8069 bfd_vma ehdr_vma,
8070 bfd_vma *loadbasep,
8071 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8072 {
8073 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8074 (templ, ehdr_vma, loadbasep, target_read_memory);
8075 }
8076 \f
8077 long
8078 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8079 long symcount ATTRIBUTE_UNUSED,
8080 asymbol **syms ATTRIBUTE_UNUSED,
8081 long dynsymcount,
8082 asymbol **dynsyms,
8083 asymbol **ret)
8084 {
8085 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8086 asection *relplt;
8087 asymbol *s;
8088 const char *relplt_name;
8089 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8090 arelent *p;
8091 long count, i, n;
8092 size_t size;
8093 Elf_Internal_Shdr *hdr;
8094 char *names;
8095 asection *plt;
8096
8097 *ret = NULL;
8098
8099 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8100 return 0;
8101
8102 if (dynsymcount <= 0)
8103 return 0;
8104
8105 if (!bed->plt_sym_val)
8106 return 0;
8107
8108 relplt_name = bed->relplt_name;
8109 if (relplt_name == NULL)
8110 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8111 relplt = bfd_get_section_by_name (abfd, relplt_name);
8112 if (relplt == NULL)
8113 return 0;
8114
8115 hdr = &elf_section_data (relplt)->this_hdr;
8116 if (hdr->sh_link != elf_dynsymtab (abfd)
8117 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8118 return 0;
8119
8120 plt = bfd_get_section_by_name (abfd, ".plt");
8121 if (plt == NULL)
8122 return 0;
8123
8124 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8125 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8126 return -1;
8127
8128 count = relplt->size / hdr->sh_entsize;
8129 size = count * sizeof (asymbol);
8130 p = relplt->relocation;
8131 for (i = 0; i < count; i++, s++, p++)
8132 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8133
8134 s = *ret = bfd_malloc (size);
8135 if (s == NULL)
8136 return -1;
8137
8138 names = (char *) (s + count);
8139 p = relplt->relocation;
8140 n = 0;
8141 for (i = 0; i < count; i++, s++, p++)
8142 {
8143 size_t len;
8144 bfd_vma addr;
8145
8146 addr = bed->plt_sym_val (i, plt, p);
8147 if (addr == (bfd_vma) -1)
8148 continue;
8149
8150 *s = **p->sym_ptr_ptr;
8151 s->section = plt;
8152 s->value = addr - plt->vma;
8153 s->name = names;
8154 len = strlen ((*p->sym_ptr_ptr)->name);
8155 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8156 names += len;
8157 memcpy (names, "@plt", sizeof ("@plt"));
8158 names += sizeof ("@plt");
8159 ++n;
8160 }
8161
8162 return n;
8163 }
8164
8165 /* Sort symbol by binding and section. We want to put definitions
8166 sorted by section at the beginning. */
8167
8168 static int
8169 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8170 {
8171 const Elf_Internal_Sym *s1;
8172 const Elf_Internal_Sym *s2;
8173 int shndx;
8174
8175 /* Make sure that undefined symbols are at the end. */
8176 s1 = (const Elf_Internal_Sym *) arg1;
8177 if (s1->st_shndx == SHN_UNDEF)
8178 return 1;
8179 s2 = (const Elf_Internal_Sym *) arg2;
8180 if (s2->st_shndx == SHN_UNDEF)
8181 return -1;
8182
8183 /* Sorted by section index. */
8184 shndx = s1->st_shndx - s2->st_shndx;
8185 if (shndx != 0)
8186 return shndx;
8187
8188 /* Sorted by binding. */
8189 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8190 }
8191
8192 struct elf_symbol
8193 {
8194 Elf_Internal_Sym *sym;
8195 const char *name;
8196 };
8197
8198 static int
8199 elf_sym_name_compare (const void *arg1, const void *arg2)
8200 {
8201 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8202 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8203 return strcmp (s1->name, s2->name);
8204 }
8205
8206 /* Check if 2 sections define the same set of local and global
8207 symbols. */
8208
8209 bfd_boolean
8210 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8211 {
8212 bfd *bfd1, *bfd2;
8213 const struct elf_backend_data *bed1, *bed2;
8214 Elf_Internal_Shdr *hdr1, *hdr2;
8215 bfd_size_type symcount1, symcount2;
8216 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8217 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8218 Elf_Internal_Sym *isymend;
8219 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8220 bfd_size_type count1, count2, i;
8221 int shndx1, shndx2;
8222 bfd_boolean result;
8223
8224 bfd1 = sec1->owner;
8225 bfd2 = sec2->owner;
8226
8227 /* If both are .gnu.linkonce sections, they have to have the same
8228 section name. */
8229 if (strncmp (sec1->name, ".gnu.linkonce",
8230 sizeof ".gnu.linkonce" - 1) == 0
8231 && strncmp (sec2->name, ".gnu.linkonce",
8232 sizeof ".gnu.linkonce" - 1) == 0)
8233 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8234 sec2->name + sizeof ".gnu.linkonce") == 0;
8235
8236 /* Both sections have to be in ELF. */
8237 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8238 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8239 return FALSE;
8240
8241 if (elf_section_type (sec1) != elf_section_type (sec2))
8242 return FALSE;
8243
8244 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8245 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8246 {
8247 /* If both are members of section groups, they have to have the
8248 same group name. */
8249 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8250 return FALSE;
8251 }
8252
8253 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8254 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8255 if (shndx1 == -1 || shndx2 == -1)
8256 return FALSE;
8257
8258 bed1 = get_elf_backend_data (bfd1);
8259 bed2 = get_elf_backend_data (bfd2);
8260 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8261 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8262 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8263 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8264
8265 if (symcount1 == 0 || symcount2 == 0)
8266 return FALSE;
8267
8268 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8269 NULL, NULL, NULL);
8270 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8271 NULL, NULL, NULL);
8272
8273 result = FALSE;
8274 if (isymbuf1 == NULL || isymbuf2 == NULL)
8275 goto done;
8276
8277 /* Sort symbols by binding and section. Global definitions are at
8278 the beginning. */
8279 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8280 elf_sort_elf_symbol);
8281 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8282 elf_sort_elf_symbol);
8283
8284 /* Count definitions in the section. */
8285 count1 = 0;
8286 for (isym = isymbuf1, isymend = isym + symcount1;
8287 isym < isymend; isym++)
8288 {
8289 if (isym->st_shndx == (unsigned int) shndx1)
8290 {
8291 if (count1 == 0)
8292 isymstart1 = isym;
8293 count1++;
8294 }
8295
8296 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8297 break;
8298 }
8299
8300 count2 = 0;
8301 for (isym = isymbuf2, isymend = isym + symcount2;
8302 isym < isymend; isym++)
8303 {
8304 if (isym->st_shndx == (unsigned int) shndx2)
8305 {
8306 if (count2 == 0)
8307 isymstart2 = isym;
8308 count2++;
8309 }
8310
8311 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8312 break;
8313 }
8314
8315 if (count1 == 0 || count2 == 0 || count1 != count2)
8316 goto done;
8317
8318 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8319 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8320
8321 if (symtable1 == NULL || symtable2 == NULL)
8322 goto done;
8323
8324 symp = symtable1;
8325 for (isym = isymstart1, isymend = isym + count1;
8326 isym < isymend; isym++)
8327 {
8328 symp->sym = isym;
8329 symp->name = bfd_elf_string_from_elf_section (bfd1,
8330 hdr1->sh_link,
8331 isym->st_name);
8332 symp++;
8333 }
8334
8335 symp = symtable2;
8336 for (isym = isymstart2, isymend = isym + count1;
8337 isym < isymend; isym++)
8338 {
8339 symp->sym = isym;
8340 symp->name = bfd_elf_string_from_elf_section (bfd2,
8341 hdr2->sh_link,
8342 isym->st_name);
8343 symp++;
8344 }
8345
8346 /* Sort symbol by name. */
8347 qsort (symtable1, count1, sizeof (struct elf_symbol),
8348 elf_sym_name_compare);
8349 qsort (symtable2, count1, sizeof (struct elf_symbol),
8350 elf_sym_name_compare);
8351
8352 for (i = 0; i < count1; i++)
8353 /* Two symbols must have the same binding, type and name. */
8354 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8355 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8356 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8357 goto done;
8358
8359 result = TRUE;
8360
8361 done:
8362 if (symtable1)
8363 free (symtable1);
8364 if (symtable2)
8365 free (symtable2);
8366 if (isymbuf1)
8367 free (isymbuf1);
8368 if (isymbuf2)
8369 free (isymbuf2);
8370
8371 return result;
8372 }
This page took 0.219616 seconds and 5 git commands to generate.