2004-04-30 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static char *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 char *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 char *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return 0;
263
264 shstrtab = (char *) i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 (*_bfd_error_handler)
295 (_("%s: invalid string offset %u >= %lu for section `%s'"),
296 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
297 ((shindex == elf_elfheader(abfd)->e_shstrndx
298 && strindex == hdr->sh_name)
299 ? ".shstrtab"
300 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
409 {
410 unsigned int iname = isym->st_name;
411 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
412 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 }
420
421 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
423 pointers. */
424
425 typedef union elf_internal_group {
426 Elf_Internal_Shdr *shdr;
427 unsigned int flags;
428 } Elf_Internal_Group;
429
430 /* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
432
433 static const char *
434 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
435 {
436 Elf_Internal_Shdr *hdr;
437 unsigned char esym[sizeof (Elf64_External_Sym)];
438 Elf_External_Sym_Shndx eshndx;
439 Elf_Internal_Sym isym;
440
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
443 return NULL;
444
445 /* Go read the symbol. */
446 hdr = &elf_tdata (abfd)->symtab_hdr;
447 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
448 &isym, esym, &eshndx) == NULL)
449 return NULL;
450
451 return bfd_elf_local_sym_name (abfd, &isym);
452 }
453
454 /* Set next_in_group list pointer, and group name for NEWSECT. */
455
456 static bfd_boolean
457 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
458 {
459 unsigned int num_group = elf_tdata (abfd)->num_group;
460
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
463 if (num_group == 0)
464 {
465 unsigned int i, shnum;
466
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum = elf_numsections (abfd);
470 num_group = 0;
471 for (i = 0; i < shnum; i++)
472 {
473 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
474 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
475 num_group += 1;
476 }
477
478 if (num_group == 0)
479 num_group = (unsigned) -1;
480 elf_tdata (abfd)->num_group = num_group;
481
482 if (num_group > 0)
483 {
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
487 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
488 if (elf_tdata (abfd)->group_sect_ptr == NULL)
489 return FALSE;
490
491 num_group = 0;
492 for (i = 0; i < shnum; i++)
493 {
494 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
495 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
496 {
497 unsigned char *src;
498 Elf_Internal_Group *dest;
499
500 /* Add to list of sections. */
501 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
502 num_group += 1;
503
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest) >= 4);
506 amt = shdr->sh_size * sizeof (*dest) / 4;
507 shdr->contents = bfd_alloc (abfd, amt);
508 if (shdr->contents == NULL
509 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
510 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
511 != shdr->sh_size))
512 return FALSE;
513
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
517 pointers. */
518 src = shdr->contents + shdr->sh_size;
519 dest = (Elf_Internal_Group *) (shdr->contents + amt);
520 while (1)
521 {
522 unsigned int idx;
523
524 src -= 4;
525 --dest;
526 idx = H_GET_32 (abfd, src);
527 if (src == shdr->contents)
528 {
529 dest->flags = idx;
530 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
531 shdr->bfd_section->flags
532 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
533 break;
534 }
535 if (idx >= shnum)
536 {
537 ((*_bfd_error_handler)
538 (_("%s: invalid SHT_GROUP entry"),
539 bfd_archive_filename (abfd)));
540 idx = 0;
541 }
542 dest->shdr = elf_elfsections (abfd)[idx];
543 }
544 }
545 }
546 }
547 }
548
549 if (num_group != (unsigned) -1)
550 {
551 unsigned int i;
552
553 for (i = 0; i < num_group; i++)
554 {
555 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
556 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
557 unsigned int n_elt = shdr->sh_size / 4;
558
559 /* Look through this group's sections to see if current
560 section is a member. */
561 while (--n_elt != 0)
562 if ((++idx)->shdr == hdr)
563 {
564 asection *s = NULL;
565
566 /* We are a member of this group. Go looking through
567 other members to see if any others are linked via
568 next_in_group. */
569 idx = (Elf_Internal_Group *) shdr->contents;
570 n_elt = shdr->sh_size / 4;
571 while (--n_elt != 0)
572 if ((s = (++idx)->shdr->bfd_section) != NULL
573 && elf_next_in_group (s) != NULL)
574 break;
575 if (n_elt != 0)
576 {
577 /* Snarf the group name from other member, and
578 insert current section in circular list. */
579 elf_group_name (newsect) = elf_group_name (s);
580 elf_next_in_group (newsect) = elf_next_in_group (s);
581 elf_next_in_group (s) = newsect;
582 }
583 else
584 {
585 const char *gname;
586
587 gname = group_signature (abfd, shdr);
588 if (gname == NULL)
589 return FALSE;
590 elf_group_name (newsect) = gname;
591
592 /* Start a circular list with one element. */
593 elf_next_in_group (newsect) = newsect;
594 }
595
596 /* If the group section has been created, point to the
597 new member. */
598 if (shdr->bfd_section != NULL)
599 elf_next_in_group (shdr->bfd_section) = newsect;
600
601 i = num_group - 1;
602 break;
603 }
604 }
605 }
606
607 if (elf_group_name (newsect) == NULL)
608 {
609 (*_bfd_error_handler) (_("%s: no group info for section %s"),
610 bfd_archive_filename (abfd), newsect->name);
611 }
612 return TRUE;
613 }
614
615 bfd_boolean
616 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
617 {
618 return elf_next_in_group (sec) != NULL;
619 }
620
621 bfd_boolean
622 bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED, asection *group)
623 {
624 asection *first = elf_next_in_group (group);
625 asection *s = first;
626
627 while (s != NULL)
628 {
629 s->output_section = bfd_abs_section_ptr;
630 s = elf_next_in_group (s);
631 /* These lists are circular. */
632 if (s == first)
633 break;
634 }
635 return TRUE;
636 }
637
638 /* Make a BFD section from an ELF section. We store a pointer to the
639 BFD section in the bfd_section field of the header. */
640
641 bfd_boolean
642 _bfd_elf_make_section_from_shdr (bfd *abfd,
643 Elf_Internal_Shdr *hdr,
644 const char *name)
645 {
646 asection *newsect;
647 flagword flags;
648 const struct elf_backend_data *bed;
649
650 if (hdr->bfd_section != NULL)
651 {
652 BFD_ASSERT (strcmp (name,
653 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
654 return TRUE;
655 }
656
657 newsect = bfd_make_section_anyway (abfd, name);
658 if (newsect == NULL)
659 return FALSE;
660
661 hdr->bfd_section = newsect;
662 elf_section_data (newsect)->this_hdr = *hdr;
663
664 /* Always use the real type/flags. */
665 elf_section_type (newsect) = hdr->sh_type;
666 elf_section_flags (newsect) = hdr->sh_flags;
667
668 newsect->filepos = hdr->sh_offset;
669
670 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
671 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
672 || ! bfd_set_section_alignment (abfd, newsect,
673 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
674 return FALSE;
675
676 flags = SEC_NO_FLAGS;
677 if (hdr->sh_type != SHT_NOBITS)
678 flags |= SEC_HAS_CONTENTS;
679 if (hdr->sh_type == SHT_GROUP)
680 flags |= SEC_GROUP | SEC_EXCLUDE;
681 if ((hdr->sh_flags & SHF_ALLOC) != 0)
682 {
683 flags |= SEC_ALLOC;
684 if (hdr->sh_type != SHT_NOBITS)
685 flags |= SEC_LOAD;
686 }
687 if ((hdr->sh_flags & SHF_WRITE) == 0)
688 flags |= SEC_READONLY;
689 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
690 flags |= SEC_CODE;
691 else if ((flags & SEC_LOAD) != 0)
692 flags |= SEC_DATA;
693 if ((hdr->sh_flags & SHF_MERGE) != 0)
694 {
695 flags |= SEC_MERGE;
696 newsect->entsize = hdr->sh_entsize;
697 if ((hdr->sh_flags & SHF_STRINGS) != 0)
698 flags |= SEC_STRINGS;
699 }
700 if (hdr->sh_flags & SHF_GROUP)
701 if (!setup_group (abfd, hdr, newsect))
702 return FALSE;
703 if ((hdr->sh_flags & SHF_TLS) != 0)
704 flags |= SEC_THREAD_LOCAL;
705
706 /* The debugging sections appear to be recognized only by name, not
707 any sort of flag. */
708 {
709 static const char *debug_sec_names [] =
710 {
711 ".debug",
712 ".gnu.linkonce.wi.",
713 ".line",
714 ".stab"
715 };
716 int i;
717
718 for (i = ARRAY_SIZE (debug_sec_names); i--;)
719 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
720 break;
721
722 if (i >= 0)
723 flags |= SEC_DEBUGGING;
724 }
725
726 /* As a GNU extension, if the name begins with .gnu.linkonce, we
727 only link a single copy of the section. This is used to support
728 g++. g++ will emit each template expansion in its own section.
729 The symbols will be defined as weak, so that multiple definitions
730 are permitted. The GNU linker extension is to actually discard
731 all but one of the sections. */
732 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
733 && elf_next_in_group (newsect) == NULL)
734 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
735
736 bed = get_elf_backend_data (abfd);
737 if (bed->elf_backend_section_flags)
738 if (! bed->elf_backend_section_flags (&flags, hdr))
739 return FALSE;
740
741 if (! bfd_set_section_flags (abfd, newsect, flags))
742 return FALSE;
743
744 if ((flags & SEC_ALLOC) != 0)
745 {
746 Elf_Internal_Phdr *phdr;
747 unsigned int i;
748
749 /* Look through the phdrs to see if we need to adjust the lma.
750 If all the p_paddr fields are zero, we ignore them, since
751 some ELF linkers produce such output. */
752 phdr = elf_tdata (abfd)->phdr;
753 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
754 {
755 if (phdr->p_paddr != 0)
756 break;
757 }
758 if (i < elf_elfheader (abfd)->e_phnum)
759 {
760 phdr = elf_tdata (abfd)->phdr;
761 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
762 {
763 /* This section is part of this segment if its file
764 offset plus size lies within the segment's memory
765 span and, if the section is loaded, the extent of the
766 loaded data lies within the extent of the segment.
767
768 Note - we used to check the p_paddr field as well, and
769 refuse to set the LMA if it was 0. This is wrong
770 though, as a perfectly valid initialised segment can
771 have a p_paddr of zero. Some architectures, eg ARM,
772 place special significance on the address 0 and
773 executables need to be able to have a segment which
774 covers this address. */
775 if (phdr->p_type == PT_LOAD
776 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
777 && (hdr->sh_offset + hdr->sh_size
778 <= phdr->p_offset + phdr->p_memsz)
779 && ((flags & SEC_LOAD) == 0
780 || (hdr->sh_offset + hdr->sh_size
781 <= phdr->p_offset + phdr->p_filesz)))
782 {
783 if ((flags & SEC_LOAD) == 0)
784 newsect->lma = (phdr->p_paddr
785 + hdr->sh_addr - phdr->p_vaddr);
786 else
787 /* We used to use the same adjustment for SEC_LOAD
788 sections, but that doesn't work if the segment
789 is packed with code from multiple VMAs.
790 Instead we calculate the section LMA based on
791 the segment LMA. It is assumed that the
792 segment will contain sections with contiguous
793 LMAs, even if the VMAs are not. */
794 newsect->lma = (phdr->p_paddr
795 + hdr->sh_offset - phdr->p_offset);
796
797 /* With contiguous segments, we can't tell from file
798 offsets whether a section with zero size should
799 be placed at the end of one segment or the
800 beginning of the next. Decide based on vaddr. */
801 if (hdr->sh_addr >= phdr->p_vaddr
802 && (hdr->sh_addr + hdr->sh_size
803 <= phdr->p_vaddr + phdr->p_memsz))
804 break;
805 }
806 }
807 }
808 }
809
810 return TRUE;
811 }
812
813 /*
814 INTERNAL_FUNCTION
815 bfd_elf_find_section
816
817 SYNOPSIS
818 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
819
820 DESCRIPTION
821 Helper functions for GDB to locate the string tables.
822 Since BFD hides string tables from callers, GDB needs to use an
823 internal hook to find them. Sun's .stabstr, in particular,
824 isn't even pointed to by the .stab section, so ordinary
825 mechanisms wouldn't work to find it, even if we had some.
826 */
827
828 struct elf_internal_shdr *
829 bfd_elf_find_section (bfd *abfd, char *name)
830 {
831 Elf_Internal_Shdr **i_shdrp;
832 char *shstrtab;
833 unsigned int max;
834 unsigned int i;
835
836 i_shdrp = elf_elfsections (abfd);
837 if (i_shdrp != NULL)
838 {
839 shstrtab = bfd_elf_get_str_section (abfd,
840 elf_elfheader (abfd)->e_shstrndx);
841 if (shstrtab != NULL)
842 {
843 max = elf_numsections (abfd);
844 for (i = 1; i < max; i++)
845 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
846 return i_shdrp[i];
847 }
848 }
849 return 0;
850 }
851
852 const char *const bfd_elf_section_type_names[] = {
853 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
854 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
855 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
856 };
857
858 /* ELF relocs are against symbols. If we are producing relocatable
859 output, and the reloc is against an external symbol, and nothing
860 has given us any additional addend, the resulting reloc will also
861 be against the same symbol. In such a case, we don't want to
862 change anything about the way the reloc is handled, since it will
863 all be done at final link time. Rather than put special case code
864 into bfd_perform_relocation, all the reloc types use this howto
865 function. It just short circuits the reloc if producing
866 relocatable output against an external symbol. */
867
868 bfd_reloc_status_type
869 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
870 arelent *reloc_entry,
871 asymbol *symbol,
872 void *data ATTRIBUTE_UNUSED,
873 asection *input_section,
874 bfd *output_bfd,
875 char **error_message ATTRIBUTE_UNUSED)
876 {
877 if (output_bfd != NULL
878 && (symbol->flags & BSF_SECTION_SYM) == 0
879 && (! reloc_entry->howto->partial_inplace
880 || reloc_entry->addend == 0))
881 {
882 reloc_entry->address += input_section->output_offset;
883 return bfd_reloc_ok;
884 }
885
886 return bfd_reloc_continue;
887 }
888 \f
889 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
890
891 static void
892 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
893 asection *sec)
894 {
895 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
896 sec->sec_info_type = ELF_INFO_TYPE_NONE;
897 }
898
899 /* Finish SHF_MERGE section merging. */
900
901 bfd_boolean
902 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
903 {
904 if (!is_elf_hash_table (info->hash))
905 return FALSE;
906 if (elf_hash_table (info)->merge_info)
907 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
908 merge_sections_remove_hook);
909 return TRUE;
910 }
911
912 void
913 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
914 {
915 sec->output_section = bfd_abs_section_ptr;
916 sec->output_offset = sec->vma;
917 if (!is_elf_hash_table (info->hash))
918 return;
919
920 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
921 }
922 \f
923 /* Copy the program header and other data from one object module to
924 another. */
925
926 bfd_boolean
927 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
928 {
929 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
930 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
931 return TRUE;
932
933 BFD_ASSERT (!elf_flags_init (obfd)
934 || (elf_elfheader (obfd)->e_flags
935 == elf_elfheader (ibfd)->e_flags));
936
937 elf_gp (obfd) = elf_gp (ibfd);
938 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
939 elf_flags_init (obfd) = TRUE;
940 return TRUE;
941 }
942
943 /* Print out the program headers. */
944
945 bfd_boolean
946 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
947 {
948 FILE *f = farg;
949 Elf_Internal_Phdr *p;
950 asection *s;
951 bfd_byte *dynbuf = NULL;
952
953 p = elf_tdata (abfd)->phdr;
954 if (p != NULL)
955 {
956 unsigned int i, c;
957
958 fprintf (f, _("\nProgram Header:\n"));
959 c = elf_elfheader (abfd)->e_phnum;
960 for (i = 0; i < c; i++, p++)
961 {
962 const char *pt;
963 char buf[20];
964
965 switch (p->p_type)
966 {
967 case PT_NULL: pt = "NULL"; break;
968 case PT_LOAD: pt = "LOAD"; break;
969 case PT_DYNAMIC: pt = "DYNAMIC"; break;
970 case PT_INTERP: pt = "INTERP"; break;
971 case PT_NOTE: pt = "NOTE"; break;
972 case PT_SHLIB: pt = "SHLIB"; break;
973 case PT_PHDR: pt = "PHDR"; break;
974 case PT_TLS: pt = "TLS"; break;
975 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
976 case PT_GNU_STACK: pt = "STACK"; break;
977 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
978 }
979 fprintf (f, "%8s off 0x", pt);
980 bfd_fprintf_vma (abfd, f, p->p_offset);
981 fprintf (f, " vaddr 0x");
982 bfd_fprintf_vma (abfd, f, p->p_vaddr);
983 fprintf (f, " paddr 0x");
984 bfd_fprintf_vma (abfd, f, p->p_paddr);
985 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
986 fprintf (f, " filesz 0x");
987 bfd_fprintf_vma (abfd, f, p->p_filesz);
988 fprintf (f, " memsz 0x");
989 bfd_fprintf_vma (abfd, f, p->p_memsz);
990 fprintf (f, " flags %c%c%c",
991 (p->p_flags & PF_R) != 0 ? 'r' : '-',
992 (p->p_flags & PF_W) != 0 ? 'w' : '-',
993 (p->p_flags & PF_X) != 0 ? 'x' : '-');
994 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
995 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
996 fprintf (f, "\n");
997 }
998 }
999
1000 s = bfd_get_section_by_name (abfd, ".dynamic");
1001 if (s != NULL)
1002 {
1003 int elfsec;
1004 unsigned long shlink;
1005 bfd_byte *extdyn, *extdynend;
1006 size_t extdynsize;
1007 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1008
1009 fprintf (f, _("\nDynamic Section:\n"));
1010
1011 dynbuf = bfd_malloc (s->_raw_size);
1012 if (dynbuf == NULL)
1013 goto error_return;
1014 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1015 goto error_return;
1016
1017 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1018 if (elfsec == -1)
1019 goto error_return;
1020 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1021
1022 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1023 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1024
1025 extdyn = dynbuf;
1026 extdynend = extdyn + s->_raw_size;
1027 for (; extdyn < extdynend; extdyn += extdynsize)
1028 {
1029 Elf_Internal_Dyn dyn;
1030 const char *name;
1031 char ab[20];
1032 bfd_boolean stringp;
1033
1034 (*swap_dyn_in) (abfd, extdyn, &dyn);
1035
1036 if (dyn.d_tag == DT_NULL)
1037 break;
1038
1039 stringp = FALSE;
1040 switch (dyn.d_tag)
1041 {
1042 default:
1043 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1044 name = ab;
1045 break;
1046
1047 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1048 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1049 case DT_PLTGOT: name = "PLTGOT"; break;
1050 case DT_HASH: name = "HASH"; break;
1051 case DT_STRTAB: name = "STRTAB"; break;
1052 case DT_SYMTAB: name = "SYMTAB"; break;
1053 case DT_RELA: name = "RELA"; break;
1054 case DT_RELASZ: name = "RELASZ"; break;
1055 case DT_RELAENT: name = "RELAENT"; break;
1056 case DT_STRSZ: name = "STRSZ"; break;
1057 case DT_SYMENT: name = "SYMENT"; break;
1058 case DT_INIT: name = "INIT"; break;
1059 case DT_FINI: name = "FINI"; break;
1060 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1061 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1062 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1063 case DT_REL: name = "REL"; break;
1064 case DT_RELSZ: name = "RELSZ"; break;
1065 case DT_RELENT: name = "RELENT"; break;
1066 case DT_PLTREL: name = "PLTREL"; break;
1067 case DT_DEBUG: name = "DEBUG"; break;
1068 case DT_TEXTREL: name = "TEXTREL"; break;
1069 case DT_JMPREL: name = "JMPREL"; break;
1070 case DT_BIND_NOW: name = "BIND_NOW"; break;
1071 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1072 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1073 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1074 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1075 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1076 case DT_FLAGS: name = "FLAGS"; break;
1077 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1078 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1079 case DT_CHECKSUM: name = "CHECKSUM"; break;
1080 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1081 case DT_MOVEENT: name = "MOVEENT"; break;
1082 case DT_MOVESZ: name = "MOVESZ"; break;
1083 case DT_FEATURE: name = "FEATURE"; break;
1084 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1085 case DT_SYMINSZ: name = "SYMINSZ"; break;
1086 case DT_SYMINENT: name = "SYMINENT"; break;
1087 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1088 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1089 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1090 case DT_PLTPAD: name = "PLTPAD"; break;
1091 case DT_MOVETAB: name = "MOVETAB"; break;
1092 case DT_SYMINFO: name = "SYMINFO"; break;
1093 case DT_RELACOUNT: name = "RELACOUNT"; break;
1094 case DT_RELCOUNT: name = "RELCOUNT"; break;
1095 case DT_FLAGS_1: name = "FLAGS_1"; break;
1096 case DT_VERSYM: name = "VERSYM"; break;
1097 case DT_VERDEF: name = "VERDEF"; break;
1098 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1099 case DT_VERNEED: name = "VERNEED"; break;
1100 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1101 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1102 case DT_USED: name = "USED"; break;
1103 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1104 }
1105
1106 fprintf (f, " %-11s ", name);
1107 if (! stringp)
1108 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1109 else
1110 {
1111 const char *string;
1112 unsigned int tagv = dyn.d_un.d_val;
1113
1114 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1115 if (string == NULL)
1116 goto error_return;
1117 fprintf (f, "%s", string);
1118 }
1119 fprintf (f, "\n");
1120 }
1121
1122 free (dynbuf);
1123 dynbuf = NULL;
1124 }
1125
1126 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1127 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1128 {
1129 if (! _bfd_elf_slurp_version_tables (abfd))
1130 return FALSE;
1131 }
1132
1133 if (elf_dynverdef (abfd) != 0)
1134 {
1135 Elf_Internal_Verdef *t;
1136
1137 fprintf (f, _("\nVersion definitions:\n"));
1138 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1139 {
1140 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1141 t->vd_flags, t->vd_hash, t->vd_nodename);
1142 if (t->vd_auxptr->vda_nextptr != NULL)
1143 {
1144 Elf_Internal_Verdaux *a;
1145
1146 fprintf (f, "\t");
1147 for (a = t->vd_auxptr->vda_nextptr;
1148 a != NULL;
1149 a = a->vda_nextptr)
1150 fprintf (f, "%s ", a->vda_nodename);
1151 fprintf (f, "\n");
1152 }
1153 }
1154 }
1155
1156 if (elf_dynverref (abfd) != 0)
1157 {
1158 Elf_Internal_Verneed *t;
1159
1160 fprintf (f, _("\nVersion References:\n"));
1161 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1162 {
1163 Elf_Internal_Vernaux *a;
1164
1165 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1166 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1167 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1168 a->vna_flags, a->vna_other, a->vna_nodename);
1169 }
1170 }
1171
1172 return TRUE;
1173
1174 error_return:
1175 if (dynbuf != NULL)
1176 free (dynbuf);
1177 return FALSE;
1178 }
1179
1180 /* Display ELF-specific fields of a symbol. */
1181
1182 void
1183 bfd_elf_print_symbol (bfd *abfd,
1184 void *filep,
1185 asymbol *symbol,
1186 bfd_print_symbol_type how)
1187 {
1188 FILE *file = filep;
1189 switch (how)
1190 {
1191 case bfd_print_symbol_name:
1192 fprintf (file, "%s", symbol->name);
1193 break;
1194 case bfd_print_symbol_more:
1195 fprintf (file, "elf ");
1196 bfd_fprintf_vma (abfd, file, symbol->value);
1197 fprintf (file, " %lx", (long) symbol->flags);
1198 break;
1199 case bfd_print_symbol_all:
1200 {
1201 const char *section_name;
1202 const char *name = NULL;
1203 const struct elf_backend_data *bed;
1204 unsigned char st_other;
1205 bfd_vma val;
1206
1207 section_name = symbol->section ? symbol->section->name : "(*none*)";
1208
1209 bed = get_elf_backend_data (abfd);
1210 if (bed->elf_backend_print_symbol_all)
1211 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1212
1213 if (name == NULL)
1214 {
1215 name = symbol->name;
1216 bfd_print_symbol_vandf (abfd, file, symbol);
1217 }
1218
1219 fprintf (file, " %s\t", section_name);
1220 /* Print the "other" value for a symbol. For common symbols,
1221 we've already printed the size; now print the alignment.
1222 For other symbols, we have no specified alignment, and
1223 we've printed the address; now print the size. */
1224 if (bfd_is_com_section (symbol->section))
1225 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1226 else
1227 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1228 bfd_fprintf_vma (abfd, file, val);
1229
1230 /* If we have version information, print it. */
1231 if (elf_tdata (abfd)->dynversym_section != 0
1232 && (elf_tdata (abfd)->dynverdef_section != 0
1233 || elf_tdata (abfd)->dynverref_section != 0))
1234 {
1235 unsigned int vernum;
1236 const char *version_string;
1237
1238 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1239
1240 if (vernum == 0)
1241 version_string = "";
1242 else if (vernum == 1)
1243 version_string = "Base";
1244 else if (vernum <= elf_tdata (abfd)->cverdefs)
1245 version_string =
1246 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1247 else
1248 {
1249 Elf_Internal_Verneed *t;
1250
1251 version_string = "";
1252 for (t = elf_tdata (abfd)->verref;
1253 t != NULL;
1254 t = t->vn_nextref)
1255 {
1256 Elf_Internal_Vernaux *a;
1257
1258 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1259 {
1260 if (a->vna_other == vernum)
1261 {
1262 version_string = a->vna_nodename;
1263 break;
1264 }
1265 }
1266 }
1267 }
1268
1269 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1270 fprintf (file, " %-11s", version_string);
1271 else
1272 {
1273 int i;
1274
1275 fprintf (file, " (%s)", version_string);
1276 for (i = 10 - strlen (version_string); i > 0; --i)
1277 putc (' ', file);
1278 }
1279 }
1280
1281 /* If the st_other field is not zero, print it. */
1282 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1283
1284 switch (st_other)
1285 {
1286 case 0: break;
1287 case STV_INTERNAL: fprintf (file, " .internal"); break;
1288 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1289 case STV_PROTECTED: fprintf (file, " .protected"); break;
1290 default:
1291 /* Some other non-defined flags are also present, so print
1292 everything hex. */
1293 fprintf (file, " 0x%02x", (unsigned int) st_other);
1294 }
1295
1296 fprintf (file, " %s", name);
1297 }
1298 break;
1299 }
1300 }
1301 \f
1302 /* Create an entry in an ELF linker hash table. */
1303
1304 struct bfd_hash_entry *
1305 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1306 struct bfd_hash_table *table,
1307 const char *string)
1308 {
1309 /* Allocate the structure if it has not already been allocated by a
1310 subclass. */
1311 if (entry == NULL)
1312 {
1313 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1314 if (entry == NULL)
1315 return entry;
1316 }
1317
1318 /* Call the allocation method of the superclass. */
1319 entry = _bfd_link_hash_newfunc (entry, table, string);
1320 if (entry != NULL)
1321 {
1322 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1323 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1324
1325 /* Set local fields. */
1326 ret->indx = -1;
1327 ret->dynindx = -1;
1328 ret->dynstr_index = 0;
1329 ret->elf_hash_value = 0;
1330 ret->weakdef = NULL;
1331 ret->verinfo.verdef = NULL;
1332 ret->vtable_entries_size = 0;
1333 ret->vtable_entries_used = NULL;
1334 ret->vtable_parent = NULL;
1335 ret->got = htab->init_refcount;
1336 ret->plt = htab->init_refcount;
1337 ret->size = 0;
1338 ret->type = STT_NOTYPE;
1339 ret->other = 0;
1340 /* Assume that we have been called by a non-ELF symbol reader.
1341 This flag is then reset by the code which reads an ELF input
1342 file. This ensures that a symbol created by a non-ELF symbol
1343 reader will have the flag set correctly. */
1344 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1345 }
1346
1347 return entry;
1348 }
1349
1350 /* Copy data from an indirect symbol to its direct symbol, hiding the
1351 old indirect symbol. Also used for copying flags to a weakdef. */
1352
1353 void
1354 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1355 struct elf_link_hash_entry *dir,
1356 struct elf_link_hash_entry *ind)
1357 {
1358 bfd_signed_vma tmp;
1359 bfd_signed_vma lowest_valid = bed->can_refcount;
1360
1361 /* Copy down any references that we may have already seen to the
1362 symbol which just became indirect. */
1363
1364 dir->elf_link_hash_flags
1365 |= ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1366 | ELF_LINK_HASH_REF_REGULAR
1367 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1368 | ELF_LINK_NON_GOT_REF
1369 | ELF_LINK_HASH_NEEDS_PLT
1370 | ELF_LINK_POINTER_EQUALITY_NEEDED);
1371
1372 if (ind->root.type != bfd_link_hash_indirect)
1373 return;
1374
1375 /* Copy over the global and procedure linkage table refcount entries.
1376 These may have been already set up by a check_relocs routine. */
1377 tmp = dir->got.refcount;
1378 if (tmp < lowest_valid)
1379 {
1380 dir->got.refcount = ind->got.refcount;
1381 ind->got.refcount = tmp;
1382 }
1383 else
1384 BFD_ASSERT (ind->got.refcount < lowest_valid);
1385
1386 tmp = dir->plt.refcount;
1387 if (tmp < lowest_valid)
1388 {
1389 dir->plt.refcount = ind->plt.refcount;
1390 ind->plt.refcount = tmp;
1391 }
1392 else
1393 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1394
1395 if (dir->dynindx == -1)
1396 {
1397 dir->dynindx = ind->dynindx;
1398 dir->dynstr_index = ind->dynstr_index;
1399 ind->dynindx = -1;
1400 ind->dynstr_index = 0;
1401 }
1402 else
1403 BFD_ASSERT (ind->dynindx == -1);
1404 }
1405
1406 void
1407 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1408 struct elf_link_hash_entry *h,
1409 bfd_boolean force_local)
1410 {
1411 h->plt = elf_hash_table (info)->init_offset;
1412 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1413 if (force_local)
1414 {
1415 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1416 if (h->dynindx != -1)
1417 {
1418 h->dynindx = -1;
1419 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1420 h->dynstr_index);
1421 }
1422 }
1423 }
1424
1425 /* Initialize an ELF linker hash table. */
1426
1427 bfd_boolean
1428 _bfd_elf_link_hash_table_init
1429 (struct elf_link_hash_table *table,
1430 bfd *abfd,
1431 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1432 struct bfd_hash_table *,
1433 const char *))
1434 {
1435 bfd_boolean ret;
1436
1437 table->dynamic_sections_created = FALSE;
1438 table->dynobj = NULL;
1439 /* Make sure can_refcount is extended to the width and signedness of
1440 init_refcount before we subtract one from it. */
1441 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1442 table->init_refcount.refcount -= 1;
1443 table->init_offset.offset = -(bfd_vma) 1;
1444 /* The first dynamic symbol is a dummy. */
1445 table->dynsymcount = 1;
1446 table->dynstr = NULL;
1447 table->bucketcount = 0;
1448 table->needed = NULL;
1449 table->hgot = NULL;
1450 table->stab_info = NULL;
1451 table->merge_info = NULL;
1452 memset (&table->eh_info, 0, sizeof (table->eh_info));
1453 table->dynlocal = NULL;
1454 table->runpath = NULL;
1455 table->tls_sec = NULL;
1456 table->tls_size = 0;
1457 table->loaded = NULL;
1458
1459 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1460 table->root.type = bfd_link_elf_hash_table;
1461
1462 return ret;
1463 }
1464
1465 /* Create an ELF linker hash table. */
1466
1467 struct bfd_link_hash_table *
1468 _bfd_elf_link_hash_table_create (bfd *abfd)
1469 {
1470 struct elf_link_hash_table *ret;
1471 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1472
1473 ret = bfd_malloc (amt);
1474 if (ret == NULL)
1475 return NULL;
1476
1477 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1478 {
1479 free (ret);
1480 return NULL;
1481 }
1482
1483 return &ret->root;
1484 }
1485
1486 /* This is a hook for the ELF emulation code in the generic linker to
1487 tell the backend linker what file name to use for the DT_NEEDED
1488 entry for a dynamic object. */
1489
1490 void
1491 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1492 {
1493 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1494 && bfd_get_format (abfd) == bfd_object)
1495 elf_dt_name (abfd) = name;
1496 }
1497
1498 void
1499 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1500 {
1501 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1502 && bfd_get_format (abfd) == bfd_object)
1503 elf_dyn_lib_class (abfd) = lib_class;
1504 }
1505
1506 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1507 the linker ELF emulation code. */
1508
1509 struct bfd_link_needed_list *
1510 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1511 struct bfd_link_info *info)
1512 {
1513 if (! is_elf_hash_table (info->hash))
1514 return NULL;
1515 return elf_hash_table (info)->needed;
1516 }
1517
1518 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1519 hook for the linker ELF emulation code. */
1520
1521 struct bfd_link_needed_list *
1522 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1523 struct bfd_link_info *info)
1524 {
1525 if (! is_elf_hash_table (info->hash))
1526 return NULL;
1527 return elf_hash_table (info)->runpath;
1528 }
1529
1530 /* Get the name actually used for a dynamic object for a link. This
1531 is the SONAME entry if there is one. Otherwise, it is the string
1532 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1533
1534 const char *
1535 bfd_elf_get_dt_soname (bfd *abfd)
1536 {
1537 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1538 && bfd_get_format (abfd) == bfd_object)
1539 return elf_dt_name (abfd);
1540 return NULL;
1541 }
1542
1543 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1544 the ELF linker emulation code. */
1545
1546 bfd_boolean
1547 bfd_elf_get_bfd_needed_list (bfd *abfd,
1548 struct bfd_link_needed_list **pneeded)
1549 {
1550 asection *s;
1551 bfd_byte *dynbuf = NULL;
1552 int elfsec;
1553 unsigned long shlink;
1554 bfd_byte *extdyn, *extdynend;
1555 size_t extdynsize;
1556 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1557
1558 *pneeded = NULL;
1559
1560 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1561 || bfd_get_format (abfd) != bfd_object)
1562 return TRUE;
1563
1564 s = bfd_get_section_by_name (abfd, ".dynamic");
1565 if (s == NULL || s->_raw_size == 0)
1566 return TRUE;
1567
1568 dynbuf = bfd_malloc (s->_raw_size);
1569 if (dynbuf == NULL)
1570 goto error_return;
1571
1572 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1573 goto error_return;
1574
1575 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1576 if (elfsec == -1)
1577 goto error_return;
1578
1579 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1580
1581 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1582 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1583
1584 extdyn = dynbuf;
1585 extdynend = extdyn + s->_raw_size;
1586 for (; extdyn < extdynend; extdyn += extdynsize)
1587 {
1588 Elf_Internal_Dyn dyn;
1589
1590 (*swap_dyn_in) (abfd, extdyn, &dyn);
1591
1592 if (dyn.d_tag == DT_NULL)
1593 break;
1594
1595 if (dyn.d_tag == DT_NEEDED)
1596 {
1597 const char *string;
1598 struct bfd_link_needed_list *l;
1599 unsigned int tagv = dyn.d_un.d_val;
1600 bfd_size_type amt;
1601
1602 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1603 if (string == NULL)
1604 goto error_return;
1605
1606 amt = sizeof *l;
1607 l = bfd_alloc (abfd, amt);
1608 if (l == NULL)
1609 goto error_return;
1610
1611 l->by = abfd;
1612 l->name = string;
1613 l->next = *pneeded;
1614 *pneeded = l;
1615 }
1616 }
1617
1618 free (dynbuf);
1619
1620 return TRUE;
1621
1622 error_return:
1623 if (dynbuf != NULL)
1624 free (dynbuf);
1625 return FALSE;
1626 }
1627 \f
1628 /* Allocate an ELF string table--force the first byte to be zero. */
1629
1630 struct bfd_strtab_hash *
1631 _bfd_elf_stringtab_init (void)
1632 {
1633 struct bfd_strtab_hash *ret;
1634
1635 ret = _bfd_stringtab_init ();
1636 if (ret != NULL)
1637 {
1638 bfd_size_type loc;
1639
1640 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1641 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1642 if (loc == (bfd_size_type) -1)
1643 {
1644 _bfd_stringtab_free (ret);
1645 ret = NULL;
1646 }
1647 }
1648 return ret;
1649 }
1650 \f
1651 /* ELF .o/exec file reading */
1652
1653 /* Create a new bfd section from an ELF section header. */
1654
1655 bfd_boolean
1656 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1657 {
1658 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1659 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1660 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1661 const char *name;
1662
1663 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1664
1665 switch (hdr->sh_type)
1666 {
1667 case SHT_NULL:
1668 /* Inactive section. Throw it away. */
1669 return TRUE;
1670
1671 case SHT_PROGBITS: /* Normal section with contents. */
1672 case SHT_NOBITS: /* .bss section. */
1673 case SHT_HASH: /* .hash section. */
1674 case SHT_NOTE: /* .note section. */
1675 case SHT_INIT_ARRAY: /* .init_array section. */
1676 case SHT_FINI_ARRAY: /* .fini_array section. */
1677 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1678 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1679
1680 case SHT_DYNAMIC: /* Dynamic linking information. */
1681 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1682 return FALSE;
1683 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1684 {
1685 Elf_Internal_Shdr *dynsymhdr;
1686
1687 /* The shared libraries distributed with hpux11 have a bogus
1688 sh_link field for the ".dynamic" section. Find the
1689 string table for the ".dynsym" section instead. */
1690 if (elf_dynsymtab (abfd) != 0)
1691 {
1692 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1693 hdr->sh_link = dynsymhdr->sh_link;
1694 }
1695 else
1696 {
1697 unsigned int i, num_sec;
1698
1699 num_sec = elf_numsections (abfd);
1700 for (i = 1; i < num_sec; i++)
1701 {
1702 dynsymhdr = elf_elfsections (abfd)[i];
1703 if (dynsymhdr->sh_type == SHT_DYNSYM)
1704 {
1705 hdr->sh_link = dynsymhdr->sh_link;
1706 break;
1707 }
1708 }
1709 }
1710 }
1711 break;
1712
1713 case SHT_SYMTAB: /* A symbol table */
1714 if (elf_onesymtab (abfd) == shindex)
1715 return TRUE;
1716
1717 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1718 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1719 elf_onesymtab (abfd) = shindex;
1720 elf_tdata (abfd)->symtab_hdr = *hdr;
1721 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1722 abfd->flags |= HAS_SYMS;
1723
1724 /* Sometimes a shared object will map in the symbol table. If
1725 SHF_ALLOC is set, and this is a shared object, then we also
1726 treat this section as a BFD section. We can not base the
1727 decision purely on SHF_ALLOC, because that flag is sometimes
1728 set in a relocatable object file, which would confuse the
1729 linker. */
1730 if ((hdr->sh_flags & SHF_ALLOC) != 0
1731 && (abfd->flags & DYNAMIC) != 0
1732 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1733 return FALSE;
1734
1735 return TRUE;
1736
1737 case SHT_DYNSYM: /* A dynamic symbol table */
1738 if (elf_dynsymtab (abfd) == shindex)
1739 return TRUE;
1740
1741 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1742 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1743 elf_dynsymtab (abfd) = shindex;
1744 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1745 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1746 abfd->flags |= HAS_SYMS;
1747
1748 /* Besides being a symbol table, we also treat this as a regular
1749 section, so that objcopy can handle it. */
1750 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1751
1752 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1753 if (elf_symtab_shndx (abfd) == shindex)
1754 return TRUE;
1755
1756 /* Get the associated symbol table. */
1757 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1758 || hdr->sh_link != elf_onesymtab (abfd))
1759 return FALSE;
1760
1761 elf_symtab_shndx (abfd) = shindex;
1762 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1763 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1764 return TRUE;
1765
1766 case SHT_STRTAB: /* A string table */
1767 if (hdr->bfd_section != NULL)
1768 return TRUE;
1769 if (ehdr->e_shstrndx == shindex)
1770 {
1771 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1772 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1773 return TRUE;
1774 }
1775 {
1776 unsigned int i, num_sec;
1777
1778 num_sec = elf_numsections (abfd);
1779 for (i = 1; i < num_sec; i++)
1780 {
1781 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1782 if (hdr2->sh_link == shindex)
1783 {
1784 if (! bfd_section_from_shdr (abfd, i))
1785 return FALSE;
1786 if (elf_onesymtab (abfd) == i)
1787 {
1788 elf_tdata (abfd)->strtab_hdr = *hdr;
1789 elf_elfsections (abfd)[shindex] =
1790 &elf_tdata (abfd)->strtab_hdr;
1791 return TRUE;
1792 }
1793 if (elf_dynsymtab (abfd) == i)
1794 {
1795 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1796 elf_elfsections (abfd)[shindex] = hdr =
1797 &elf_tdata (abfd)->dynstrtab_hdr;
1798 /* We also treat this as a regular section, so
1799 that objcopy can handle it. */
1800 break;
1801 }
1802 #if 0 /* Not handling other string tables specially right now. */
1803 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1804 /* We have a strtab for some random other section. */
1805 newsect = (asection *) hdr2->bfd_section;
1806 if (!newsect)
1807 break;
1808 hdr->bfd_section = newsect;
1809 hdr2 = &elf_section_data (newsect)->str_hdr;
1810 *hdr2 = *hdr;
1811 elf_elfsections (abfd)[shindex] = hdr2;
1812 #endif
1813 }
1814 }
1815 }
1816
1817 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1818
1819 case SHT_REL:
1820 case SHT_RELA:
1821 /* *These* do a lot of work -- but build no sections! */
1822 {
1823 asection *target_sect;
1824 Elf_Internal_Shdr *hdr2;
1825 unsigned int num_sec = elf_numsections (abfd);
1826
1827 /* Check for a bogus link to avoid crashing. */
1828 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1829 || hdr->sh_link >= num_sec)
1830 {
1831 ((*_bfd_error_handler)
1832 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1833 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1834 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1835 }
1836
1837 /* For some incomprehensible reason Oracle distributes
1838 libraries for Solaris in which some of the objects have
1839 bogus sh_link fields. It would be nice if we could just
1840 reject them, but, unfortunately, some people need to use
1841 them. We scan through the section headers; if we find only
1842 one suitable symbol table, we clobber the sh_link to point
1843 to it. I hope this doesn't break anything. */
1844 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1845 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1846 {
1847 unsigned int scan;
1848 int found;
1849
1850 found = 0;
1851 for (scan = 1; scan < num_sec; scan++)
1852 {
1853 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1854 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1855 {
1856 if (found != 0)
1857 {
1858 found = 0;
1859 break;
1860 }
1861 found = scan;
1862 }
1863 }
1864 if (found != 0)
1865 hdr->sh_link = found;
1866 }
1867
1868 /* Get the symbol table. */
1869 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1870 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1871 return FALSE;
1872
1873 /* If this reloc section does not use the main symbol table we
1874 don't treat it as a reloc section. BFD can't adequately
1875 represent such a section, so at least for now, we don't
1876 try. We just present it as a normal section. We also
1877 can't use it as a reloc section if it points to the null
1878 section. */
1879 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1880 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1881
1882 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1883 return FALSE;
1884 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1885 if (target_sect == NULL)
1886 return FALSE;
1887
1888 if ((target_sect->flags & SEC_RELOC) == 0
1889 || target_sect->reloc_count == 0)
1890 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1891 else
1892 {
1893 bfd_size_type amt;
1894 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1895 amt = sizeof (*hdr2);
1896 hdr2 = bfd_alloc (abfd, amt);
1897 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1898 }
1899 *hdr2 = *hdr;
1900 elf_elfsections (abfd)[shindex] = hdr2;
1901 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1902 target_sect->flags |= SEC_RELOC;
1903 target_sect->relocation = NULL;
1904 target_sect->rel_filepos = hdr->sh_offset;
1905 /* In the section to which the relocations apply, mark whether
1906 its relocations are of the REL or RELA variety. */
1907 if (hdr->sh_size != 0)
1908 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1909 abfd->flags |= HAS_RELOC;
1910 return TRUE;
1911 }
1912 break;
1913
1914 case SHT_GNU_verdef:
1915 elf_dynverdef (abfd) = shindex;
1916 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1917 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1918 break;
1919
1920 case SHT_GNU_versym:
1921 elf_dynversym (abfd) = shindex;
1922 elf_tdata (abfd)->dynversym_hdr = *hdr;
1923 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1924 break;
1925
1926 case SHT_GNU_verneed:
1927 elf_dynverref (abfd) = shindex;
1928 elf_tdata (abfd)->dynverref_hdr = *hdr;
1929 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1930 break;
1931
1932 case SHT_SHLIB:
1933 return TRUE;
1934
1935 case SHT_GROUP:
1936 /* We need a BFD section for objcopy and relocatable linking,
1937 and it's handy to have the signature available as the section
1938 name. */
1939 name = group_signature (abfd, hdr);
1940 if (name == NULL)
1941 return FALSE;
1942 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
1943 return FALSE;
1944 if (hdr->contents != NULL)
1945 {
1946 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1947 unsigned int n_elt = hdr->sh_size / 4;
1948 asection *s;
1949
1950 if (idx->flags & GRP_COMDAT)
1951 hdr->bfd_section->flags
1952 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1953
1954 /* We try to keep the same section order as it comes in. */
1955 idx += n_elt;
1956 while (--n_elt != 0)
1957 if ((s = (--idx)->shdr->bfd_section) != NULL
1958 && elf_next_in_group (s) != NULL)
1959 {
1960 elf_next_in_group (hdr->bfd_section) = s;
1961 break;
1962 }
1963 }
1964 break;
1965
1966 default:
1967 /* Check for any processor-specific section types. */
1968 {
1969 if (bed->elf_backend_section_from_shdr)
1970 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1971 }
1972 break;
1973 }
1974
1975 return TRUE;
1976 }
1977
1978 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1979 Return SEC for sections that have no elf section, and NULL on error. */
1980
1981 asection *
1982 bfd_section_from_r_symndx (bfd *abfd,
1983 struct sym_sec_cache *cache,
1984 asection *sec,
1985 unsigned long r_symndx)
1986 {
1987 Elf_Internal_Shdr *symtab_hdr;
1988 unsigned char esym[sizeof (Elf64_External_Sym)];
1989 Elf_External_Sym_Shndx eshndx;
1990 Elf_Internal_Sym isym;
1991 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1992
1993 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
1994 return cache->sec[ent];
1995
1996 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1997 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1998 &isym, esym, &eshndx) == NULL)
1999 return NULL;
2000
2001 if (cache->abfd != abfd)
2002 {
2003 memset (cache->indx, -1, sizeof (cache->indx));
2004 cache->abfd = abfd;
2005 }
2006 cache->indx[ent] = r_symndx;
2007 cache->sec[ent] = sec;
2008 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2009 || isym.st_shndx > SHN_HIRESERVE)
2010 {
2011 asection *s;
2012 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2013 if (s != NULL)
2014 cache->sec[ent] = s;
2015 }
2016 return cache->sec[ent];
2017 }
2018
2019 /* Given an ELF section number, retrieve the corresponding BFD
2020 section. */
2021
2022 asection *
2023 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2024 {
2025 if (index >= elf_numsections (abfd))
2026 return NULL;
2027 return elf_elfsections (abfd)[index]->bfd_section;
2028 }
2029
2030 static struct bfd_elf_special_section const special_sections[] =
2031 {
2032 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2033 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2034 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2035 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2036 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2037 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2038 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2039 { ".line", 5, 0, SHT_PROGBITS, 0 },
2040 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2041 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2042 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2043 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2044 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2045 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2046 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2047 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2048 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2049 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2050 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2051 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2052 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2053 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2054 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2055 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2056 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2057 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2058 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2059 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2060 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2061 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2062 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2063 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2064 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2065 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2066 { ".note", 5, -1, SHT_NOTE, 0 },
2067 { ".rela", 5, -1, SHT_RELA, 0 },
2068 { ".rel", 4, -1, SHT_REL, 0 },
2069 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2070 { NULL, 0, 0, 0, 0 }
2071 };
2072
2073 static const struct bfd_elf_special_section *
2074 get_special_section (const char *name,
2075 const struct bfd_elf_special_section *special_sections,
2076 unsigned int rela)
2077 {
2078 int i;
2079 int len = strlen (name);
2080
2081 for (i = 0; special_sections[i].prefix != NULL; i++)
2082 {
2083 int suffix_len;
2084 int prefix_len = special_sections[i].prefix_length;
2085
2086 if (len < prefix_len)
2087 continue;
2088 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2089 continue;
2090
2091 suffix_len = special_sections[i].suffix_length;
2092 if (suffix_len <= 0)
2093 {
2094 if (name[prefix_len] != 0)
2095 {
2096 if (suffix_len == 0)
2097 continue;
2098 if (name[prefix_len] != '.'
2099 && (suffix_len == -2
2100 || (rela && special_sections[i].type == SHT_REL)))
2101 continue;
2102 }
2103 }
2104 else
2105 {
2106 if (len < prefix_len + suffix_len)
2107 continue;
2108 if (memcmp (name + len - suffix_len,
2109 special_sections[i].prefix + prefix_len,
2110 suffix_len) != 0)
2111 continue;
2112 }
2113 return &special_sections[i];
2114 }
2115
2116 return NULL;
2117 }
2118
2119 const struct bfd_elf_special_section *
2120 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2121 {
2122 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2123 const struct bfd_elf_special_section *ssect = NULL;
2124
2125 /* See if this is one of the special sections. */
2126 if (name)
2127 {
2128 unsigned int rela = bed->default_use_rela_p;
2129
2130 if (bed->special_sections)
2131 ssect = get_special_section (name, bed->special_sections, rela);
2132
2133 if (! ssect)
2134 ssect = get_special_section (name, special_sections, rela);
2135 }
2136
2137 return ssect;
2138 }
2139
2140 bfd_boolean
2141 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2142 {
2143 struct bfd_elf_section_data *sdata;
2144 const struct bfd_elf_special_section *ssect;
2145
2146 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2147 if (sdata == NULL)
2148 {
2149 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2150 if (sdata == NULL)
2151 return FALSE;
2152 sec->used_by_bfd = sdata;
2153 }
2154
2155 elf_section_type (sec) = SHT_NULL;
2156 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2157 if (ssect != NULL)
2158 {
2159 elf_section_type (sec) = ssect->type;
2160 elf_section_flags (sec) = ssect->attr;
2161 }
2162
2163 /* Indicate whether or not this section should use RELA relocations. */
2164 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2165
2166 return TRUE;
2167 }
2168
2169 /* Create a new bfd section from an ELF program header.
2170
2171 Since program segments have no names, we generate a synthetic name
2172 of the form segment<NUM>, where NUM is generally the index in the
2173 program header table. For segments that are split (see below) we
2174 generate the names segment<NUM>a and segment<NUM>b.
2175
2176 Note that some program segments may have a file size that is different than
2177 (less than) the memory size. All this means is that at execution the
2178 system must allocate the amount of memory specified by the memory size,
2179 but only initialize it with the first "file size" bytes read from the
2180 file. This would occur for example, with program segments consisting
2181 of combined data+bss.
2182
2183 To handle the above situation, this routine generates TWO bfd sections
2184 for the single program segment. The first has the length specified by
2185 the file size of the segment, and the second has the length specified
2186 by the difference between the two sizes. In effect, the segment is split
2187 into it's initialized and uninitialized parts.
2188
2189 */
2190
2191 bfd_boolean
2192 _bfd_elf_make_section_from_phdr (bfd *abfd,
2193 Elf_Internal_Phdr *hdr,
2194 int index,
2195 const char *typename)
2196 {
2197 asection *newsect;
2198 char *name;
2199 char namebuf[64];
2200 size_t len;
2201 int split;
2202
2203 split = ((hdr->p_memsz > 0)
2204 && (hdr->p_filesz > 0)
2205 && (hdr->p_memsz > hdr->p_filesz));
2206 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2207 len = strlen (namebuf) + 1;
2208 name = bfd_alloc (abfd, len);
2209 if (!name)
2210 return FALSE;
2211 memcpy (name, namebuf, len);
2212 newsect = bfd_make_section (abfd, name);
2213 if (newsect == NULL)
2214 return FALSE;
2215 newsect->vma = hdr->p_vaddr;
2216 newsect->lma = hdr->p_paddr;
2217 newsect->_raw_size = hdr->p_filesz;
2218 newsect->filepos = hdr->p_offset;
2219 newsect->flags |= SEC_HAS_CONTENTS;
2220 newsect->alignment_power = bfd_log2 (hdr->p_align);
2221 if (hdr->p_type == PT_LOAD)
2222 {
2223 newsect->flags |= SEC_ALLOC;
2224 newsect->flags |= SEC_LOAD;
2225 if (hdr->p_flags & PF_X)
2226 {
2227 /* FIXME: all we known is that it has execute PERMISSION,
2228 may be data. */
2229 newsect->flags |= SEC_CODE;
2230 }
2231 }
2232 if (!(hdr->p_flags & PF_W))
2233 {
2234 newsect->flags |= SEC_READONLY;
2235 }
2236
2237 if (split)
2238 {
2239 sprintf (namebuf, "%s%db", typename, index);
2240 len = strlen (namebuf) + 1;
2241 name = bfd_alloc (abfd, len);
2242 if (!name)
2243 return FALSE;
2244 memcpy (name, namebuf, len);
2245 newsect = bfd_make_section (abfd, name);
2246 if (newsect == NULL)
2247 return FALSE;
2248 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2249 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2250 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2251 if (hdr->p_type == PT_LOAD)
2252 {
2253 newsect->flags |= SEC_ALLOC;
2254 if (hdr->p_flags & PF_X)
2255 newsect->flags |= SEC_CODE;
2256 }
2257 if (!(hdr->p_flags & PF_W))
2258 newsect->flags |= SEC_READONLY;
2259 }
2260
2261 return TRUE;
2262 }
2263
2264 bfd_boolean
2265 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2266 {
2267 const struct elf_backend_data *bed;
2268
2269 switch (hdr->p_type)
2270 {
2271 case PT_NULL:
2272 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2273
2274 case PT_LOAD:
2275 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2276
2277 case PT_DYNAMIC:
2278 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2279
2280 case PT_INTERP:
2281 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2282
2283 case PT_NOTE:
2284 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2285 return FALSE;
2286 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2287 return FALSE;
2288 return TRUE;
2289
2290 case PT_SHLIB:
2291 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2292
2293 case PT_PHDR:
2294 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2295
2296 case PT_GNU_EH_FRAME:
2297 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2298 "eh_frame_hdr");
2299
2300 case PT_GNU_STACK:
2301 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2302
2303 default:
2304 /* Check for any processor-specific program segment types.
2305 If no handler for them, default to making "segment" sections. */
2306 bed = get_elf_backend_data (abfd);
2307 if (bed->elf_backend_section_from_phdr)
2308 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2309 else
2310 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2311 }
2312 }
2313
2314 /* Initialize REL_HDR, the section-header for new section, containing
2315 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2316 relocations; otherwise, we use REL relocations. */
2317
2318 bfd_boolean
2319 _bfd_elf_init_reloc_shdr (bfd *abfd,
2320 Elf_Internal_Shdr *rel_hdr,
2321 asection *asect,
2322 bfd_boolean use_rela_p)
2323 {
2324 char *name;
2325 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2326 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2327
2328 name = bfd_alloc (abfd, amt);
2329 if (name == NULL)
2330 return FALSE;
2331 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2332 rel_hdr->sh_name =
2333 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2334 FALSE);
2335 if (rel_hdr->sh_name == (unsigned int) -1)
2336 return FALSE;
2337 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2338 rel_hdr->sh_entsize = (use_rela_p
2339 ? bed->s->sizeof_rela
2340 : bed->s->sizeof_rel);
2341 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2342 rel_hdr->sh_flags = 0;
2343 rel_hdr->sh_addr = 0;
2344 rel_hdr->sh_size = 0;
2345 rel_hdr->sh_offset = 0;
2346
2347 return TRUE;
2348 }
2349
2350 /* Set up an ELF internal section header for a section. */
2351
2352 static void
2353 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2354 {
2355 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2356 bfd_boolean *failedptr = failedptrarg;
2357 Elf_Internal_Shdr *this_hdr;
2358
2359 if (*failedptr)
2360 {
2361 /* We already failed; just get out of the bfd_map_over_sections
2362 loop. */
2363 return;
2364 }
2365
2366 this_hdr = &elf_section_data (asect)->this_hdr;
2367
2368 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2369 asect->name, FALSE);
2370 if (this_hdr->sh_name == (unsigned int) -1)
2371 {
2372 *failedptr = TRUE;
2373 return;
2374 }
2375
2376 this_hdr->sh_flags = 0;
2377
2378 if ((asect->flags & SEC_ALLOC) != 0
2379 || asect->user_set_vma)
2380 this_hdr->sh_addr = asect->vma;
2381 else
2382 this_hdr->sh_addr = 0;
2383
2384 this_hdr->sh_offset = 0;
2385 this_hdr->sh_size = asect->_raw_size;
2386 this_hdr->sh_link = 0;
2387 this_hdr->sh_addralign = 1 << asect->alignment_power;
2388 /* The sh_entsize and sh_info fields may have been set already by
2389 copy_private_section_data. */
2390
2391 this_hdr->bfd_section = asect;
2392 this_hdr->contents = NULL;
2393
2394 /* If the section type is unspecified, we set it based on
2395 asect->flags. */
2396 if (this_hdr->sh_type == SHT_NULL)
2397 {
2398 if ((asect->flags & SEC_GROUP) != 0)
2399 {
2400 /* We also need to mark SHF_GROUP here for relocatable
2401 link. */
2402 struct bfd_link_order *l;
2403 asection *elt;
2404
2405 for (l = asect->link_order_head; l != NULL; l = l->next)
2406 if (l->type == bfd_indirect_link_order
2407 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2408 do
2409 {
2410 /* The name is not important. Anything will do. */
2411 elf_group_name (elt->output_section) = "G";
2412 elf_section_flags (elt->output_section) |= SHF_GROUP;
2413
2414 elt = elf_next_in_group (elt);
2415 /* During a relocatable link, the lists are
2416 circular. */
2417 }
2418 while (elt != elf_next_in_group (l->u.indirect.section));
2419
2420 this_hdr->sh_type = SHT_GROUP;
2421 }
2422 else if ((asect->flags & SEC_ALLOC) != 0
2423 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2424 || (asect->flags & SEC_NEVER_LOAD) != 0))
2425 this_hdr->sh_type = SHT_NOBITS;
2426 else
2427 this_hdr->sh_type = SHT_PROGBITS;
2428 }
2429
2430 switch (this_hdr->sh_type)
2431 {
2432 default:
2433 break;
2434
2435 case SHT_STRTAB:
2436 case SHT_INIT_ARRAY:
2437 case SHT_FINI_ARRAY:
2438 case SHT_PREINIT_ARRAY:
2439 case SHT_NOTE:
2440 case SHT_NOBITS:
2441 case SHT_PROGBITS:
2442 break;
2443
2444 case SHT_HASH:
2445 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2446 break;
2447
2448 case SHT_DYNSYM:
2449 this_hdr->sh_entsize = bed->s->sizeof_sym;
2450 break;
2451
2452 case SHT_DYNAMIC:
2453 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2454 break;
2455
2456 case SHT_RELA:
2457 if (get_elf_backend_data (abfd)->may_use_rela_p)
2458 this_hdr->sh_entsize = bed->s->sizeof_rela;
2459 break;
2460
2461 case SHT_REL:
2462 if (get_elf_backend_data (abfd)->may_use_rel_p)
2463 this_hdr->sh_entsize = bed->s->sizeof_rel;
2464 break;
2465
2466 case SHT_GNU_versym:
2467 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2468 break;
2469
2470 case SHT_GNU_verdef:
2471 this_hdr->sh_entsize = 0;
2472 /* objcopy or strip will copy over sh_info, but may not set
2473 cverdefs. The linker will set cverdefs, but sh_info will be
2474 zero. */
2475 if (this_hdr->sh_info == 0)
2476 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2477 else
2478 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2479 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2480 break;
2481
2482 case SHT_GNU_verneed:
2483 this_hdr->sh_entsize = 0;
2484 /* objcopy or strip will copy over sh_info, but may not set
2485 cverrefs. The linker will set cverrefs, but sh_info will be
2486 zero. */
2487 if (this_hdr->sh_info == 0)
2488 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2489 else
2490 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2491 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2492 break;
2493
2494 case SHT_GROUP:
2495 this_hdr->sh_entsize = 4;
2496 break;
2497 }
2498
2499 if ((asect->flags & SEC_ALLOC) != 0)
2500 this_hdr->sh_flags |= SHF_ALLOC;
2501 if ((asect->flags & SEC_READONLY) == 0)
2502 this_hdr->sh_flags |= SHF_WRITE;
2503 if ((asect->flags & SEC_CODE) != 0)
2504 this_hdr->sh_flags |= SHF_EXECINSTR;
2505 if ((asect->flags & SEC_MERGE) != 0)
2506 {
2507 this_hdr->sh_flags |= SHF_MERGE;
2508 this_hdr->sh_entsize = asect->entsize;
2509 if ((asect->flags & SEC_STRINGS) != 0)
2510 this_hdr->sh_flags |= SHF_STRINGS;
2511 }
2512 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2513 this_hdr->sh_flags |= SHF_GROUP;
2514 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2515 {
2516 this_hdr->sh_flags |= SHF_TLS;
2517 if (asect->_raw_size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2518 {
2519 struct bfd_link_order *o;
2520
2521 this_hdr->sh_size = 0;
2522 for (o = asect->link_order_head; o != NULL; o = o->next)
2523 if (this_hdr->sh_size < o->offset + o->size)
2524 this_hdr->sh_size = o->offset + o->size;
2525 if (this_hdr->sh_size)
2526 this_hdr->sh_type = SHT_NOBITS;
2527 }
2528 }
2529
2530 /* Check for processor-specific section types. */
2531 if (bed->elf_backend_fake_sections
2532 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2533 *failedptr = TRUE;
2534
2535 /* If the section has relocs, set up a section header for the
2536 SHT_REL[A] section. If two relocation sections are required for
2537 this section, it is up to the processor-specific back-end to
2538 create the other. */
2539 if ((asect->flags & SEC_RELOC) != 0
2540 && !_bfd_elf_init_reloc_shdr (abfd,
2541 &elf_section_data (asect)->rel_hdr,
2542 asect,
2543 asect->use_rela_p))
2544 *failedptr = TRUE;
2545 }
2546
2547 /* Fill in the contents of a SHT_GROUP section. */
2548
2549 void
2550 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2551 {
2552 bfd_boolean *failedptr = failedptrarg;
2553 unsigned long symindx;
2554 asection *elt, *first;
2555 unsigned char *loc;
2556 struct bfd_link_order *l;
2557 bfd_boolean gas;
2558
2559 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2560 || *failedptr)
2561 return;
2562
2563 symindx = 0;
2564 if (elf_group_id (sec) != NULL)
2565 symindx = elf_group_id (sec)->udata.i;
2566
2567 if (symindx == 0)
2568 {
2569 /* If called from the assembler, swap_out_syms will have set up
2570 elf_section_syms; If called for "ld -r", use target_index. */
2571 if (elf_section_syms (abfd) != NULL)
2572 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2573 else
2574 symindx = sec->target_index;
2575 }
2576 elf_section_data (sec)->this_hdr.sh_info = symindx;
2577
2578 /* The contents won't be allocated for "ld -r" or objcopy. */
2579 gas = TRUE;
2580 if (sec->contents == NULL)
2581 {
2582 gas = FALSE;
2583 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2584
2585 /* Arrange for the section to be written out. */
2586 elf_section_data (sec)->this_hdr.contents = sec->contents;
2587 if (sec->contents == NULL)
2588 {
2589 *failedptr = TRUE;
2590 return;
2591 }
2592 }
2593
2594 loc = sec->contents + sec->_raw_size;
2595
2596 /* Get the pointer to the first section in the group that gas
2597 squirreled away here. objcopy arranges for this to be set to the
2598 start of the input section group. */
2599 first = elt = elf_next_in_group (sec);
2600
2601 /* First element is a flag word. Rest of section is elf section
2602 indices for all the sections of the group. Write them backwards
2603 just to keep the group in the same order as given in .section
2604 directives, not that it matters. */
2605 while (elt != NULL)
2606 {
2607 asection *s;
2608 unsigned int idx;
2609
2610 loc -= 4;
2611 s = elt;
2612 if (!gas)
2613 s = s->output_section;
2614 idx = 0;
2615 if (s != NULL)
2616 idx = elf_section_data (s)->this_idx;
2617 H_PUT_32 (abfd, idx, loc);
2618 elt = elf_next_in_group (elt);
2619 if (elt == first)
2620 break;
2621 }
2622
2623 /* If this is a relocatable link, then the above did nothing because
2624 SEC is the output section. Look through the input sections
2625 instead. */
2626 for (l = sec->link_order_head; l != NULL; l = l->next)
2627 if (l->type == bfd_indirect_link_order
2628 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2629 do
2630 {
2631 loc -= 4;
2632 H_PUT_32 (abfd,
2633 elf_section_data (elt->output_section)->this_idx, loc);
2634 elt = elf_next_in_group (elt);
2635 /* During a relocatable link, the lists are circular. */
2636 }
2637 while (elt != elf_next_in_group (l->u.indirect.section));
2638
2639 /* With ld -r, merging SHT_GROUP sections results in wasted space
2640 due to allowing for the flag word on each input. We may well
2641 duplicate entries too. */
2642 while ((loc -= 4) > sec->contents)
2643 H_PUT_32 (abfd, 0, loc);
2644
2645 if (loc != sec->contents)
2646 abort ();
2647
2648 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2649 }
2650
2651 /* Assign all ELF section numbers. The dummy first section is handled here
2652 too. The link/info pointers for the standard section types are filled
2653 in here too, while we're at it. */
2654
2655 static bfd_boolean
2656 assign_section_numbers (bfd *abfd)
2657 {
2658 struct elf_obj_tdata *t = elf_tdata (abfd);
2659 asection *sec;
2660 unsigned int section_number, secn;
2661 Elf_Internal_Shdr **i_shdrp;
2662 bfd_size_type amt;
2663
2664 section_number = 1;
2665
2666 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2667
2668 for (sec = abfd->sections; sec; sec = sec->next)
2669 {
2670 struct bfd_elf_section_data *d = elf_section_data (sec);
2671
2672 if (section_number == SHN_LORESERVE)
2673 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2674 d->this_idx = section_number++;
2675 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2676 if ((sec->flags & SEC_RELOC) == 0)
2677 d->rel_idx = 0;
2678 else
2679 {
2680 if (section_number == SHN_LORESERVE)
2681 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2682 d->rel_idx = section_number++;
2683 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2684 }
2685
2686 if (d->rel_hdr2)
2687 {
2688 if (section_number == SHN_LORESERVE)
2689 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2690 d->rel_idx2 = section_number++;
2691 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2692 }
2693 else
2694 d->rel_idx2 = 0;
2695 }
2696
2697 if (section_number == SHN_LORESERVE)
2698 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2699 t->shstrtab_section = section_number++;
2700 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2701 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2702
2703 if (bfd_get_symcount (abfd) > 0)
2704 {
2705 if (section_number == SHN_LORESERVE)
2706 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2707 t->symtab_section = section_number++;
2708 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2709 if (section_number > SHN_LORESERVE - 2)
2710 {
2711 if (section_number == SHN_LORESERVE)
2712 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2713 t->symtab_shndx_section = section_number++;
2714 t->symtab_shndx_hdr.sh_name
2715 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2716 ".symtab_shndx", FALSE);
2717 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2718 return FALSE;
2719 }
2720 if (section_number == SHN_LORESERVE)
2721 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2722 t->strtab_section = section_number++;
2723 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2724 }
2725
2726 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2727 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2728
2729 elf_numsections (abfd) = section_number;
2730 elf_elfheader (abfd)->e_shnum = section_number;
2731 if (section_number > SHN_LORESERVE)
2732 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2733
2734 /* Set up the list of section header pointers, in agreement with the
2735 indices. */
2736 amt = section_number * sizeof (Elf_Internal_Shdr *);
2737 i_shdrp = bfd_zalloc (abfd, amt);
2738 if (i_shdrp == NULL)
2739 return FALSE;
2740
2741 amt = sizeof (Elf_Internal_Shdr);
2742 i_shdrp[0] = bfd_zalloc (abfd, amt);
2743 if (i_shdrp[0] == NULL)
2744 {
2745 bfd_release (abfd, i_shdrp);
2746 return FALSE;
2747 }
2748
2749 elf_elfsections (abfd) = i_shdrp;
2750
2751 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2752 if (bfd_get_symcount (abfd) > 0)
2753 {
2754 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2755 if (elf_numsections (abfd) > SHN_LORESERVE)
2756 {
2757 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2758 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2759 }
2760 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2761 t->symtab_hdr.sh_link = t->strtab_section;
2762 }
2763 for (sec = abfd->sections; sec; sec = sec->next)
2764 {
2765 struct bfd_elf_section_data *d = elf_section_data (sec);
2766 asection *s;
2767 const char *name;
2768
2769 i_shdrp[d->this_idx] = &d->this_hdr;
2770 if (d->rel_idx != 0)
2771 i_shdrp[d->rel_idx] = &d->rel_hdr;
2772 if (d->rel_idx2 != 0)
2773 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2774
2775 /* Fill in the sh_link and sh_info fields while we're at it. */
2776
2777 /* sh_link of a reloc section is the section index of the symbol
2778 table. sh_info is the section index of the section to which
2779 the relocation entries apply. */
2780 if (d->rel_idx != 0)
2781 {
2782 d->rel_hdr.sh_link = t->symtab_section;
2783 d->rel_hdr.sh_info = d->this_idx;
2784 }
2785 if (d->rel_idx2 != 0)
2786 {
2787 d->rel_hdr2->sh_link = t->symtab_section;
2788 d->rel_hdr2->sh_info = d->this_idx;
2789 }
2790
2791 switch (d->this_hdr.sh_type)
2792 {
2793 case SHT_REL:
2794 case SHT_RELA:
2795 /* A reloc section which we are treating as a normal BFD
2796 section. sh_link is the section index of the symbol
2797 table. sh_info is the section index of the section to
2798 which the relocation entries apply. We assume that an
2799 allocated reloc section uses the dynamic symbol table.
2800 FIXME: How can we be sure? */
2801 s = bfd_get_section_by_name (abfd, ".dynsym");
2802 if (s != NULL)
2803 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2804
2805 /* We look up the section the relocs apply to by name. */
2806 name = sec->name;
2807 if (d->this_hdr.sh_type == SHT_REL)
2808 name += 4;
2809 else
2810 name += 5;
2811 s = bfd_get_section_by_name (abfd, name);
2812 if (s != NULL)
2813 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2814 break;
2815
2816 case SHT_STRTAB:
2817 /* We assume that a section named .stab*str is a stabs
2818 string section. We look for a section with the same name
2819 but without the trailing ``str'', and set its sh_link
2820 field to point to this section. */
2821 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2822 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2823 {
2824 size_t len;
2825 char *alc;
2826
2827 len = strlen (sec->name);
2828 alc = bfd_malloc (len - 2);
2829 if (alc == NULL)
2830 return FALSE;
2831 memcpy (alc, sec->name, len - 3);
2832 alc[len - 3] = '\0';
2833 s = bfd_get_section_by_name (abfd, alc);
2834 free (alc);
2835 if (s != NULL)
2836 {
2837 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2838
2839 /* This is a .stab section. */
2840 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2841 elf_section_data (s)->this_hdr.sh_entsize
2842 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2843 }
2844 }
2845 break;
2846
2847 case SHT_DYNAMIC:
2848 case SHT_DYNSYM:
2849 case SHT_GNU_verneed:
2850 case SHT_GNU_verdef:
2851 /* sh_link is the section header index of the string table
2852 used for the dynamic entries, or the symbol table, or the
2853 version strings. */
2854 s = bfd_get_section_by_name (abfd, ".dynstr");
2855 if (s != NULL)
2856 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2857 break;
2858
2859 case SHT_HASH:
2860 case SHT_GNU_versym:
2861 /* sh_link is the section header index of the symbol table
2862 this hash table or version table is for. */
2863 s = bfd_get_section_by_name (abfd, ".dynsym");
2864 if (s != NULL)
2865 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2866 break;
2867
2868 case SHT_GROUP:
2869 d->this_hdr.sh_link = t->symtab_section;
2870 }
2871 }
2872
2873 for (secn = 1; secn < section_number; ++secn)
2874 if (i_shdrp[secn] == NULL)
2875 i_shdrp[secn] = i_shdrp[0];
2876 else
2877 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2878 i_shdrp[secn]->sh_name);
2879 return TRUE;
2880 }
2881
2882 /* Map symbol from it's internal number to the external number, moving
2883 all local symbols to be at the head of the list. */
2884
2885 static int
2886 sym_is_global (bfd *abfd, asymbol *sym)
2887 {
2888 /* If the backend has a special mapping, use it. */
2889 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2890 if (bed->elf_backend_sym_is_global)
2891 return (*bed->elf_backend_sym_is_global) (abfd, sym);
2892
2893 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2894 || bfd_is_und_section (bfd_get_section (sym))
2895 || bfd_is_com_section (bfd_get_section (sym)));
2896 }
2897
2898 static bfd_boolean
2899 elf_map_symbols (bfd *abfd)
2900 {
2901 unsigned int symcount = bfd_get_symcount (abfd);
2902 asymbol **syms = bfd_get_outsymbols (abfd);
2903 asymbol **sect_syms;
2904 unsigned int num_locals = 0;
2905 unsigned int num_globals = 0;
2906 unsigned int num_locals2 = 0;
2907 unsigned int num_globals2 = 0;
2908 int max_index = 0;
2909 unsigned int idx;
2910 asection *asect;
2911 asymbol **new_syms;
2912 bfd_size_type amt;
2913
2914 #ifdef DEBUG
2915 fprintf (stderr, "elf_map_symbols\n");
2916 fflush (stderr);
2917 #endif
2918
2919 for (asect = abfd->sections; asect; asect = asect->next)
2920 {
2921 if (max_index < asect->index)
2922 max_index = asect->index;
2923 }
2924
2925 max_index++;
2926 amt = max_index * sizeof (asymbol *);
2927 sect_syms = bfd_zalloc (abfd, amt);
2928 if (sect_syms == NULL)
2929 return FALSE;
2930 elf_section_syms (abfd) = sect_syms;
2931 elf_num_section_syms (abfd) = max_index;
2932
2933 /* Init sect_syms entries for any section symbols we have already
2934 decided to output. */
2935 for (idx = 0; idx < symcount; idx++)
2936 {
2937 asymbol *sym = syms[idx];
2938
2939 if ((sym->flags & BSF_SECTION_SYM) != 0
2940 && sym->value == 0)
2941 {
2942 asection *sec;
2943
2944 sec = sym->section;
2945
2946 if (sec->owner != NULL)
2947 {
2948 if (sec->owner != abfd)
2949 {
2950 if (sec->output_offset != 0)
2951 continue;
2952
2953 sec = sec->output_section;
2954
2955 /* Empty sections in the input files may have had a
2956 section symbol created for them. (See the comment
2957 near the end of _bfd_generic_link_output_symbols in
2958 linker.c). If the linker script discards such
2959 sections then we will reach this point. Since we know
2960 that we cannot avoid this case, we detect it and skip
2961 the abort and the assignment to the sect_syms array.
2962 To reproduce this particular case try running the
2963 linker testsuite test ld-scripts/weak.exp for an ELF
2964 port that uses the generic linker. */
2965 if (sec->owner == NULL)
2966 continue;
2967
2968 BFD_ASSERT (sec->owner == abfd);
2969 }
2970 sect_syms[sec->index] = syms[idx];
2971 }
2972 }
2973 }
2974
2975 /* Classify all of the symbols. */
2976 for (idx = 0; idx < symcount; idx++)
2977 {
2978 if (!sym_is_global (abfd, syms[idx]))
2979 num_locals++;
2980 else
2981 num_globals++;
2982 }
2983
2984 /* We will be adding a section symbol for each BFD section. Most normal
2985 sections will already have a section symbol in outsymbols, but
2986 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2987 at least in that case. */
2988 for (asect = abfd->sections; asect; asect = asect->next)
2989 {
2990 if (sect_syms[asect->index] == NULL)
2991 {
2992 if (!sym_is_global (abfd, asect->symbol))
2993 num_locals++;
2994 else
2995 num_globals++;
2996 }
2997 }
2998
2999 /* Now sort the symbols so the local symbols are first. */
3000 amt = (num_locals + num_globals) * sizeof (asymbol *);
3001 new_syms = bfd_alloc (abfd, amt);
3002
3003 if (new_syms == NULL)
3004 return FALSE;
3005
3006 for (idx = 0; idx < symcount; idx++)
3007 {
3008 asymbol *sym = syms[idx];
3009 unsigned int i;
3010
3011 if (!sym_is_global (abfd, sym))
3012 i = num_locals2++;
3013 else
3014 i = num_locals + num_globals2++;
3015 new_syms[i] = sym;
3016 sym->udata.i = i + 1;
3017 }
3018 for (asect = abfd->sections; asect; asect = asect->next)
3019 {
3020 if (sect_syms[asect->index] == NULL)
3021 {
3022 asymbol *sym = asect->symbol;
3023 unsigned int i;
3024
3025 sect_syms[asect->index] = sym;
3026 if (!sym_is_global (abfd, sym))
3027 i = num_locals2++;
3028 else
3029 i = num_locals + num_globals2++;
3030 new_syms[i] = sym;
3031 sym->udata.i = i + 1;
3032 }
3033 }
3034
3035 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3036
3037 elf_num_locals (abfd) = num_locals;
3038 elf_num_globals (abfd) = num_globals;
3039 return TRUE;
3040 }
3041
3042 /* Align to the maximum file alignment that could be required for any
3043 ELF data structure. */
3044
3045 static inline file_ptr
3046 align_file_position (file_ptr off, int align)
3047 {
3048 return (off + align - 1) & ~(align - 1);
3049 }
3050
3051 /* Assign a file position to a section, optionally aligning to the
3052 required section alignment. */
3053
3054 file_ptr
3055 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3056 file_ptr offset,
3057 bfd_boolean align)
3058 {
3059 if (align)
3060 {
3061 unsigned int al;
3062
3063 al = i_shdrp->sh_addralign;
3064 if (al > 1)
3065 offset = BFD_ALIGN (offset, al);
3066 }
3067 i_shdrp->sh_offset = offset;
3068 if (i_shdrp->bfd_section != NULL)
3069 i_shdrp->bfd_section->filepos = offset;
3070 if (i_shdrp->sh_type != SHT_NOBITS)
3071 offset += i_shdrp->sh_size;
3072 return offset;
3073 }
3074
3075 /* Compute the file positions we are going to put the sections at, and
3076 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3077 is not NULL, this is being called by the ELF backend linker. */
3078
3079 bfd_boolean
3080 _bfd_elf_compute_section_file_positions (bfd *abfd,
3081 struct bfd_link_info *link_info)
3082 {
3083 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3084 bfd_boolean failed;
3085 struct bfd_strtab_hash *strtab;
3086 Elf_Internal_Shdr *shstrtab_hdr;
3087
3088 if (abfd->output_has_begun)
3089 return TRUE;
3090
3091 /* Do any elf backend specific processing first. */
3092 if (bed->elf_backend_begin_write_processing)
3093 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3094
3095 if (! prep_headers (abfd))
3096 return FALSE;
3097
3098 /* Post process the headers if necessary. */
3099 if (bed->elf_backend_post_process_headers)
3100 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3101
3102 failed = FALSE;
3103 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3104 if (failed)
3105 return FALSE;
3106
3107 if (!assign_section_numbers (abfd))
3108 return FALSE;
3109
3110 /* The backend linker builds symbol table information itself. */
3111 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3112 {
3113 /* Non-zero if doing a relocatable link. */
3114 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3115
3116 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3117 return FALSE;
3118 }
3119
3120 if (link_info == NULL)
3121 {
3122 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3123 if (failed)
3124 return FALSE;
3125 }
3126
3127 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3128 /* sh_name was set in prep_headers. */
3129 shstrtab_hdr->sh_type = SHT_STRTAB;
3130 shstrtab_hdr->sh_flags = 0;
3131 shstrtab_hdr->sh_addr = 0;
3132 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3133 shstrtab_hdr->sh_entsize = 0;
3134 shstrtab_hdr->sh_link = 0;
3135 shstrtab_hdr->sh_info = 0;
3136 /* sh_offset is set in assign_file_positions_except_relocs. */
3137 shstrtab_hdr->sh_addralign = 1;
3138
3139 if (!assign_file_positions_except_relocs (abfd, link_info))
3140 return FALSE;
3141
3142 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3143 {
3144 file_ptr off;
3145 Elf_Internal_Shdr *hdr;
3146
3147 off = elf_tdata (abfd)->next_file_pos;
3148
3149 hdr = &elf_tdata (abfd)->symtab_hdr;
3150 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3151
3152 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3153 if (hdr->sh_size != 0)
3154 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3155
3156 hdr = &elf_tdata (abfd)->strtab_hdr;
3157 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3158
3159 elf_tdata (abfd)->next_file_pos = off;
3160
3161 /* Now that we know where the .strtab section goes, write it
3162 out. */
3163 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3164 || ! _bfd_stringtab_emit (abfd, strtab))
3165 return FALSE;
3166 _bfd_stringtab_free (strtab);
3167 }
3168
3169 abfd->output_has_begun = TRUE;
3170
3171 return TRUE;
3172 }
3173
3174 /* Create a mapping from a set of sections to a program segment. */
3175
3176 static struct elf_segment_map *
3177 make_mapping (bfd *abfd,
3178 asection **sections,
3179 unsigned int from,
3180 unsigned int to,
3181 bfd_boolean phdr)
3182 {
3183 struct elf_segment_map *m;
3184 unsigned int i;
3185 asection **hdrpp;
3186 bfd_size_type amt;
3187
3188 amt = sizeof (struct elf_segment_map);
3189 amt += (to - from - 1) * sizeof (asection *);
3190 m = bfd_zalloc (abfd, amt);
3191 if (m == NULL)
3192 return NULL;
3193 m->next = NULL;
3194 m->p_type = PT_LOAD;
3195 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3196 m->sections[i - from] = *hdrpp;
3197 m->count = to - from;
3198
3199 if (from == 0 && phdr)
3200 {
3201 /* Include the headers in the first PT_LOAD segment. */
3202 m->includes_filehdr = 1;
3203 m->includes_phdrs = 1;
3204 }
3205
3206 return m;
3207 }
3208
3209 /* Set up a mapping from BFD sections to program segments. */
3210
3211 static bfd_boolean
3212 map_sections_to_segments (bfd *abfd)
3213 {
3214 asection **sections = NULL;
3215 asection *s;
3216 unsigned int i;
3217 unsigned int count;
3218 struct elf_segment_map *mfirst;
3219 struct elf_segment_map **pm;
3220 struct elf_segment_map *m;
3221 asection *last_hdr;
3222 bfd_vma last_size;
3223 unsigned int phdr_index;
3224 bfd_vma maxpagesize;
3225 asection **hdrpp;
3226 bfd_boolean phdr_in_segment = TRUE;
3227 bfd_boolean writable;
3228 int tls_count = 0;
3229 asection *first_tls = NULL;
3230 asection *dynsec, *eh_frame_hdr;
3231 bfd_size_type amt;
3232
3233 if (elf_tdata (abfd)->segment_map != NULL)
3234 return TRUE;
3235
3236 if (bfd_count_sections (abfd) == 0)
3237 return TRUE;
3238
3239 /* Select the allocated sections, and sort them. */
3240
3241 amt = bfd_count_sections (abfd) * sizeof (asection *);
3242 sections = bfd_malloc (amt);
3243 if (sections == NULL)
3244 goto error_return;
3245
3246 i = 0;
3247 for (s = abfd->sections; s != NULL; s = s->next)
3248 {
3249 if ((s->flags & SEC_ALLOC) != 0)
3250 {
3251 sections[i] = s;
3252 ++i;
3253 }
3254 }
3255 BFD_ASSERT (i <= bfd_count_sections (abfd));
3256 count = i;
3257
3258 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3259
3260 /* Build the mapping. */
3261
3262 mfirst = NULL;
3263 pm = &mfirst;
3264
3265 /* If we have a .interp section, then create a PT_PHDR segment for
3266 the program headers and a PT_INTERP segment for the .interp
3267 section. */
3268 s = bfd_get_section_by_name (abfd, ".interp");
3269 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3270 {
3271 amt = sizeof (struct elf_segment_map);
3272 m = bfd_zalloc (abfd, amt);
3273 if (m == NULL)
3274 goto error_return;
3275 m->next = NULL;
3276 m->p_type = PT_PHDR;
3277 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3278 m->p_flags = PF_R | PF_X;
3279 m->p_flags_valid = 1;
3280 m->includes_phdrs = 1;
3281
3282 *pm = m;
3283 pm = &m->next;
3284
3285 amt = sizeof (struct elf_segment_map);
3286 m = bfd_zalloc (abfd, amt);
3287 if (m == NULL)
3288 goto error_return;
3289 m->next = NULL;
3290 m->p_type = PT_INTERP;
3291 m->count = 1;
3292 m->sections[0] = s;
3293
3294 *pm = m;
3295 pm = &m->next;
3296 }
3297
3298 /* Look through the sections. We put sections in the same program
3299 segment when the start of the second section can be placed within
3300 a few bytes of the end of the first section. */
3301 last_hdr = NULL;
3302 last_size = 0;
3303 phdr_index = 0;
3304 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3305 writable = FALSE;
3306 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3307 if (dynsec != NULL
3308 && (dynsec->flags & SEC_LOAD) == 0)
3309 dynsec = NULL;
3310
3311 /* Deal with -Ttext or something similar such that the first section
3312 is not adjacent to the program headers. This is an
3313 approximation, since at this point we don't know exactly how many
3314 program headers we will need. */
3315 if (count > 0)
3316 {
3317 bfd_size_type phdr_size;
3318
3319 phdr_size = elf_tdata (abfd)->program_header_size;
3320 if (phdr_size == 0)
3321 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3322 if ((abfd->flags & D_PAGED) == 0
3323 || sections[0]->lma < phdr_size
3324 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3325 phdr_in_segment = FALSE;
3326 }
3327
3328 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3329 {
3330 asection *hdr;
3331 bfd_boolean new_segment;
3332
3333 hdr = *hdrpp;
3334
3335 /* See if this section and the last one will fit in the same
3336 segment. */
3337
3338 if (last_hdr == NULL)
3339 {
3340 /* If we don't have a segment yet, then we don't need a new
3341 one (we build the last one after this loop). */
3342 new_segment = FALSE;
3343 }
3344 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3345 {
3346 /* If this section has a different relation between the
3347 virtual address and the load address, then we need a new
3348 segment. */
3349 new_segment = TRUE;
3350 }
3351 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3352 < BFD_ALIGN (hdr->lma, maxpagesize))
3353 {
3354 /* If putting this section in this segment would force us to
3355 skip a page in the segment, then we need a new segment. */
3356 new_segment = TRUE;
3357 }
3358 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3359 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3360 {
3361 /* We don't want to put a loadable section after a
3362 nonloadable section in the same segment.
3363 Consider .tbss sections as loadable for this purpose. */
3364 new_segment = TRUE;
3365 }
3366 else if ((abfd->flags & D_PAGED) == 0)
3367 {
3368 /* If the file is not demand paged, which means that we
3369 don't require the sections to be correctly aligned in the
3370 file, then there is no other reason for a new segment. */
3371 new_segment = FALSE;
3372 }
3373 else if (! writable
3374 && (hdr->flags & SEC_READONLY) == 0
3375 && (((last_hdr->lma + last_size - 1)
3376 & ~(maxpagesize - 1))
3377 != (hdr->lma & ~(maxpagesize - 1))))
3378 {
3379 /* We don't want to put a writable section in a read only
3380 segment, unless they are on the same page in memory
3381 anyhow. We already know that the last section does not
3382 bring us past the current section on the page, so the
3383 only case in which the new section is not on the same
3384 page as the previous section is when the previous section
3385 ends precisely on a page boundary. */
3386 new_segment = TRUE;
3387 }
3388 else
3389 {
3390 /* Otherwise, we can use the same segment. */
3391 new_segment = FALSE;
3392 }
3393
3394 if (! new_segment)
3395 {
3396 if ((hdr->flags & SEC_READONLY) == 0)
3397 writable = TRUE;
3398 last_hdr = hdr;
3399 /* .tbss sections effectively have zero size. */
3400 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3401 last_size = hdr->_raw_size;
3402 else
3403 last_size = 0;
3404 continue;
3405 }
3406
3407 /* We need a new program segment. We must create a new program
3408 header holding all the sections from phdr_index until hdr. */
3409
3410 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3411 if (m == NULL)
3412 goto error_return;
3413
3414 *pm = m;
3415 pm = &m->next;
3416
3417 if ((hdr->flags & SEC_READONLY) == 0)
3418 writable = TRUE;
3419 else
3420 writable = FALSE;
3421
3422 last_hdr = hdr;
3423 /* .tbss sections effectively have zero size. */
3424 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3425 last_size = hdr->_raw_size;
3426 else
3427 last_size = 0;
3428 phdr_index = i;
3429 phdr_in_segment = FALSE;
3430 }
3431
3432 /* Create a final PT_LOAD program segment. */
3433 if (last_hdr != NULL)
3434 {
3435 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3436 if (m == NULL)
3437 goto error_return;
3438
3439 *pm = m;
3440 pm = &m->next;
3441 }
3442
3443 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3444 if (dynsec != NULL)
3445 {
3446 amt = sizeof (struct elf_segment_map);
3447 m = bfd_zalloc (abfd, amt);
3448 if (m == NULL)
3449 goto error_return;
3450 m->next = NULL;
3451 m->p_type = PT_DYNAMIC;
3452 m->count = 1;
3453 m->sections[0] = dynsec;
3454
3455 *pm = m;
3456 pm = &m->next;
3457 }
3458
3459 /* For each loadable .note section, add a PT_NOTE segment. We don't
3460 use bfd_get_section_by_name, because if we link together
3461 nonloadable .note sections and loadable .note sections, we will
3462 generate two .note sections in the output file. FIXME: Using
3463 names for section types is bogus anyhow. */
3464 for (s = abfd->sections; s != NULL; s = s->next)
3465 {
3466 if ((s->flags & SEC_LOAD) != 0
3467 && strncmp (s->name, ".note", 5) == 0)
3468 {
3469 amt = sizeof (struct elf_segment_map);
3470 m = bfd_zalloc (abfd, amt);
3471 if (m == NULL)
3472 goto error_return;
3473 m->next = NULL;
3474 m->p_type = PT_NOTE;
3475 m->count = 1;
3476 m->sections[0] = s;
3477
3478 *pm = m;
3479 pm = &m->next;
3480 }
3481 if (s->flags & SEC_THREAD_LOCAL)
3482 {
3483 if (! tls_count)
3484 first_tls = s;
3485 tls_count++;
3486 }
3487 }
3488
3489 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3490 if (tls_count > 0)
3491 {
3492 int i;
3493
3494 amt = sizeof (struct elf_segment_map);
3495 amt += (tls_count - 1) * sizeof (asection *);
3496 m = bfd_zalloc (abfd, amt);
3497 if (m == NULL)
3498 goto error_return;
3499 m->next = NULL;
3500 m->p_type = PT_TLS;
3501 m->count = tls_count;
3502 /* Mandated PF_R. */
3503 m->p_flags = PF_R;
3504 m->p_flags_valid = 1;
3505 for (i = 0; i < tls_count; ++i)
3506 {
3507 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3508 m->sections[i] = first_tls;
3509 first_tls = first_tls->next;
3510 }
3511
3512 *pm = m;
3513 pm = &m->next;
3514 }
3515
3516 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3517 segment. */
3518 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3519 if (eh_frame_hdr != NULL
3520 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3521 {
3522 amt = sizeof (struct elf_segment_map);
3523 m = bfd_zalloc (abfd, amt);
3524 if (m == NULL)
3525 goto error_return;
3526 m->next = NULL;
3527 m->p_type = PT_GNU_EH_FRAME;
3528 m->count = 1;
3529 m->sections[0] = eh_frame_hdr->output_section;
3530
3531 *pm = m;
3532 pm = &m->next;
3533 }
3534
3535 if (elf_tdata (abfd)->stack_flags)
3536 {
3537 amt = sizeof (struct elf_segment_map);
3538 m = bfd_zalloc (abfd, amt);
3539 if (m == NULL)
3540 goto error_return;
3541 m->next = NULL;
3542 m->p_type = PT_GNU_STACK;
3543 m->p_flags = elf_tdata (abfd)->stack_flags;
3544 m->p_flags_valid = 1;
3545
3546 *pm = m;
3547 pm = &m->next;
3548 }
3549
3550 free (sections);
3551 sections = NULL;
3552
3553 elf_tdata (abfd)->segment_map = mfirst;
3554 return TRUE;
3555
3556 error_return:
3557 if (sections != NULL)
3558 free (sections);
3559 return FALSE;
3560 }
3561
3562 /* Sort sections by address. */
3563
3564 static int
3565 elf_sort_sections (const void *arg1, const void *arg2)
3566 {
3567 const asection *sec1 = *(const asection **) arg1;
3568 const asection *sec2 = *(const asection **) arg2;
3569 bfd_size_type size1, size2;
3570
3571 /* Sort by LMA first, since this is the address used to
3572 place the section into a segment. */
3573 if (sec1->lma < sec2->lma)
3574 return -1;
3575 else if (sec1->lma > sec2->lma)
3576 return 1;
3577
3578 /* Then sort by VMA. Normally the LMA and the VMA will be
3579 the same, and this will do nothing. */
3580 if (sec1->vma < sec2->vma)
3581 return -1;
3582 else if (sec1->vma > sec2->vma)
3583 return 1;
3584
3585 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3586
3587 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3588
3589 if (TOEND (sec1))
3590 {
3591 if (TOEND (sec2))
3592 {
3593 /* If the indicies are the same, do not return 0
3594 here, but continue to try the next comparison. */
3595 if (sec1->target_index - sec2->target_index != 0)
3596 return sec1->target_index - sec2->target_index;
3597 }
3598 else
3599 return 1;
3600 }
3601 else if (TOEND (sec2))
3602 return -1;
3603
3604 #undef TOEND
3605
3606 /* Sort by size, to put zero sized sections
3607 before others at the same address. */
3608
3609 size1 = (sec1->flags & SEC_LOAD) ? sec1->_raw_size : 0;
3610 size2 = (sec2->flags & SEC_LOAD) ? sec2->_raw_size : 0;
3611
3612 if (size1 < size2)
3613 return -1;
3614 if (size1 > size2)
3615 return 1;
3616
3617 return sec1->target_index - sec2->target_index;
3618 }
3619
3620 /* Ian Lance Taylor writes:
3621
3622 We shouldn't be using % with a negative signed number. That's just
3623 not good. We have to make sure either that the number is not
3624 negative, or that the number has an unsigned type. When the types
3625 are all the same size they wind up as unsigned. When file_ptr is a
3626 larger signed type, the arithmetic winds up as signed long long,
3627 which is wrong.
3628
3629 What we're trying to say here is something like ``increase OFF by
3630 the least amount that will cause it to be equal to the VMA modulo
3631 the page size.'' */
3632 /* In other words, something like:
3633
3634 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3635 off_offset = off % bed->maxpagesize;
3636 if (vma_offset < off_offset)
3637 adjustment = vma_offset + bed->maxpagesize - off_offset;
3638 else
3639 adjustment = vma_offset - off_offset;
3640
3641 which can can be collapsed into the expression below. */
3642
3643 static file_ptr
3644 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3645 {
3646 return ((vma - off) % maxpagesize);
3647 }
3648
3649 /* Assign file positions to the sections based on the mapping from
3650 sections to segments. This function also sets up some fields in
3651 the file header, and writes out the program headers. */
3652
3653 static bfd_boolean
3654 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3655 {
3656 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3657 unsigned int count;
3658 struct elf_segment_map *m;
3659 unsigned int alloc;
3660 Elf_Internal_Phdr *phdrs;
3661 file_ptr off, voff;
3662 bfd_vma filehdr_vaddr, filehdr_paddr;
3663 bfd_vma phdrs_vaddr, phdrs_paddr;
3664 Elf_Internal_Phdr *p;
3665 bfd_size_type amt;
3666
3667 if (elf_tdata (abfd)->segment_map == NULL)
3668 {
3669 if (! map_sections_to_segments (abfd))
3670 return FALSE;
3671 }
3672 else
3673 {
3674 /* The placement algorithm assumes that non allocated sections are
3675 not in PT_LOAD segments. We ensure this here by removing such
3676 sections from the segment map. */
3677 for (m = elf_tdata (abfd)->segment_map;
3678 m != NULL;
3679 m = m->next)
3680 {
3681 unsigned int new_count;
3682 unsigned int i;
3683
3684 if (m->p_type != PT_LOAD)
3685 continue;
3686
3687 new_count = 0;
3688 for (i = 0; i < m->count; i ++)
3689 {
3690 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3691 {
3692 if (i != new_count)
3693 m->sections[new_count] = m->sections[i];
3694
3695 new_count ++;
3696 }
3697 }
3698
3699 if (new_count != m->count)
3700 m->count = new_count;
3701 }
3702 }
3703
3704 if (bed->elf_backend_modify_segment_map)
3705 {
3706 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3707 return FALSE;
3708 }
3709
3710 count = 0;
3711 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3712 ++count;
3713
3714 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3715 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3716 elf_elfheader (abfd)->e_phnum = count;
3717
3718 if (count == 0)
3719 return TRUE;
3720
3721 /* If we already counted the number of program segments, make sure
3722 that we allocated enough space. This happens when SIZEOF_HEADERS
3723 is used in a linker script. */
3724 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3725 if (alloc != 0 && count > alloc)
3726 {
3727 ((*_bfd_error_handler)
3728 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3729 bfd_get_filename (abfd), alloc, count));
3730 bfd_set_error (bfd_error_bad_value);
3731 return FALSE;
3732 }
3733
3734 if (alloc == 0)
3735 alloc = count;
3736
3737 amt = alloc * sizeof (Elf_Internal_Phdr);
3738 phdrs = bfd_alloc (abfd, amt);
3739 if (phdrs == NULL)
3740 return FALSE;
3741
3742 off = bed->s->sizeof_ehdr;
3743 off += alloc * bed->s->sizeof_phdr;
3744
3745 filehdr_vaddr = 0;
3746 filehdr_paddr = 0;
3747 phdrs_vaddr = 0;
3748 phdrs_paddr = 0;
3749
3750 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3751 m != NULL;
3752 m = m->next, p++)
3753 {
3754 unsigned int i;
3755 asection **secpp;
3756
3757 /* If elf_segment_map is not from map_sections_to_segments, the
3758 sections may not be correctly ordered. NOTE: sorting should
3759 not be done to the PT_NOTE section of a corefile, which may
3760 contain several pseudo-sections artificially created by bfd.
3761 Sorting these pseudo-sections breaks things badly. */
3762 if (m->count > 1
3763 && !(elf_elfheader (abfd)->e_type == ET_CORE
3764 && m->p_type == PT_NOTE))
3765 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3766 elf_sort_sections);
3767
3768 p->p_type = m->p_type;
3769 p->p_flags = m->p_flags;
3770
3771 if (p->p_type == PT_LOAD
3772 && m->count > 0
3773 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3774 {
3775 if ((abfd->flags & D_PAGED) != 0)
3776 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3777 bed->maxpagesize);
3778 else
3779 {
3780 bfd_size_type align;
3781
3782 align = 0;
3783 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3784 {
3785 bfd_size_type secalign;
3786
3787 secalign = bfd_get_section_alignment (abfd, *secpp);
3788 if (secalign > align)
3789 align = secalign;
3790 }
3791
3792 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3793 1 << align);
3794 }
3795 }
3796
3797 if (m->count == 0)
3798 p->p_vaddr = 0;
3799 else
3800 p->p_vaddr = m->sections[0]->vma;
3801
3802 if (m->p_paddr_valid)
3803 p->p_paddr = m->p_paddr;
3804 else if (m->count == 0)
3805 p->p_paddr = 0;
3806 else
3807 p->p_paddr = m->sections[0]->lma;
3808
3809 if (p->p_type == PT_LOAD
3810 && (abfd->flags & D_PAGED) != 0)
3811 p->p_align = bed->maxpagesize;
3812 else if (m->count == 0)
3813 p->p_align = 1 << bed->s->log_file_align;
3814 else
3815 p->p_align = 0;
3816
3817 p->p_offset = 0;
3818 p->p_filesz = 0;
3819 p->p_memsz = 0;
3820
3821 if (m->includes_filehdr)
3822 {
3823 if (! m->p_flags_valid)
3824 p->p_flags |= PF_R;
3825 p->p_offset = 0;
3826 p->p_filesz = bed->s->sizeof_ehdr;
3827 p->p_memsz = bed->s->sizeof_ehdr;
3828 if (m->count > 0)
3829 {
3830 BFD_ASSERT (p->p_type == PT_LOAD);
3831
3832 if (p->p_vaddr < (bfd_vma) off)
3833 {
3834 (*_bfd_error_handler)
3835 (_("%s: Not enough room for program headers, try linking with -N"),
3836 bfd_get_filename (abfd));
3837 bfd_set_error (bfd_error_bad_value);
3838 return FALSE;
3839 }
3840
3841 p->p_vaddr -= off;
3842 if (! m->p_paddr_valid)
3843 p->p_paddr -= off;
3844 }
3845 if (p->p_type == PT_LOAD)
3846 {
3847 filehdr_vaddr = p->p_vaddr;
3848 filehdr_paddr = p->p_paddr;
3849 }
3850 }
3851
3852 if (m->includes_phdrs)
3853 {
3854 if (! m->p_flags_valid)
3855 p->p_flags |= PF_R;
3856
3857 if (m->includes_filehdr)
3858 {
3859 if (p->p_type == PT_LOAD)
3860 {
3861 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3862 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3863 }
3864 }
3865 else
3866 {
3867 p->p_offset = bed->s->sizeof_ehdr;
3868
3869 if (m->count > 0)
3870 {
3871 BFD_ASSERT (p->p_type == PT_LOAD);
3872 p->p_vaddr -= off - p->p_offset;
3873 if (! m->p_paddr_valid)
3874 p->p_paddr -= off - p->p_offset;
3875 }
3876
3877 if (p->p_type == PT_LOAD)
3878 {
3879 phdrs_vaddr = p->p_vaddr;
3880 phdrs_paddr = p->p_paddr;
3881 }
3882 else
3883 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3884 }
3885
3886 p->p_filesz += alloc * bed->s->sizeof_phdr;
3887 p->p_memsz += alloc * bed->s->sizeof_phdr;
3888 }
3889
3890 if (p->p_type == PT_LOAD
3891 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3892 {
3893 if (! m->includes_filehdr && ! m->includes_phdrs)
3894 p->p_offset = off;
3895 else
3896 {
3897 file_ptr adjust;
3898
3899 adjust = off - (p->p_offset + p->p_filesz);
3900 p->p_filesz += adjust;
3901 p->p_memsz += adjust;
3902 }
3903 }
3904
3905 voff = off;
3906
3907 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3908 {
3909 asection *sec;
3910 flagword flags;
3911 bfd_size_type align;
3912
3913 sec = *secpp;
3914 flags = sec->flags;
3915 align = 1 << bfd_get_section_alignment (abfd, sec);
3916
3917 /* The section may have artificial alignment forced by a
3918 link script. Notice this case by the gap between the
3919 cumulative phdr lma and the section's lma. */
3920 if (p->p_paddr + p->p_memsz < sec->lma)
3921 {
3922 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3923
3924 p->p_memsz += adjust;
3925 if (p->p_type == PT_LOAD
3926 || (p->p_type == PT_NOTE
3927 && bfd_get_format (abfd) == bfd_core))
3928 {
3929 off += adjust;
3930 voff += adjust;
3931 }
3932 if ((flags & SEC_LOAD) != 0
3933 || (flags & SEC_THREAD_LOCAL) != 0)
3934 p->p_filesz += adjust;
3935 }
3936
3937 if (p->p_type == PT_LOAD)
3938 {
3939 bfd_signed_vma adjust;
3940
3941 if ((flags & SEC_LOAD) != 0)
3942 {
3943 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3944 if (adjust < 0)
3945 adjust = 0;
3946 }
3947 else if ((flags & SEC_ALLOC) != 0)
3948 {
3949 /* The section VMA must equal the file position
3950 modulo the page size. FIXME: I'm not sure if
3951 this adjustment is really necessary. We used to
3952 not have the SEC_LOAD case just above, and then
3953 this was necessary, but now I'm not sure. */
3954 if ((abfd->flags & D_PAGED) != 0)
3955 adjust = vma_page_aligned_bias (sec->vma, voff,
3956 bed->maxpagesize);
3957 else
3958 adjust = vma_page_aligned_bias (sec->vma, voff,
3959 align);
3960 }
3961 else
3962 adjust = 0;
3963
3964 if (adjust != 0)
3965 {
3966 if (i == 0)
3967 {
3968 (* _bfd_error_handler) (_("\
3969 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3970 bfd_section_name (abfd, sec),
3971 sec->lma,
3972 p->p_paddr);
3973 return FALSE;
3974 }
3975 p->p_memsz += adjust;
3976 off += adjust;
3977 voff += adjust;
3978 if ((flags & SEC_LOAD) != 0)
3979 p->p_filesz += adjust;
3980 }
3981
3982 sec->filepos = off;
3983
3984 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3985 used in a linker script we may have a section with
3986 SEC_LOAD clear but which is supposed to have
3987 contents. */
3988 if ((flags & SEC_LOAD) != 0
3989 || (flags & SEC_HAS_CONTENTS) != 0)
3990 off += sec->_raw_size;
3991
3992 if ((flags & SEC_ALLOC) != 0
3993 && ((flags & SEC_LOAD) != 0
3994 || (flags & SEC_THREAD_LOCAL) == 0))
3995 voff += sec->_raw_size;
3996 }
3997
3998 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3999 {
4000 /* The actual "note" segment has i == 0.
4001 This is the one that actually contains everything. */
4002 if (i == 0)
4003 {
4004 sec->filepos = off;
4005 p->p_filesz = sec->_raw_size;
4006 off += sec->_raw_size;
4007 voff = off;
4008 }
4009 else
4010 {
4011 /* Fake sections -- don't need to be written. */
4012 sec->filepos = 0;
4013 sec->_raw_size = 0;
4014 flags = sec->flags = 0;
4015 }
4016 p->p_memsz = 0;
4017 p->p_align = 1;
4018 }
4019 else
4020 {
4021 if ((sec->flags & SEC_LOAD) != 0
4022 || (sec->flags & SEC_THREAD_LOCAL) == 0
4023 || p->p_type == PT_TLS)
4024 p->p_memsz += sec->_raw_size;
4025
4026 if ((flags & SEC_LOAD) != 0)
4027 p->p_filesz += sec->_raw_size;
4028
4029 if (p->p_type == PT_TLS
4030 && sec->_raw_size == 0
4031 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4032 {
4033 struct bfd_link_order *o;
4034 bfd_vma tbss_size = 0;
4035
4036 for (o = sec->link_order_head; o != NULL; o = o->next)
4037 if (tbss_size < o->offset + o->size)
4038 tbss_size = o->offset + o->size;
4039
4040 p->p_memsz += tbss_size;
4041 }
4042
4043 if (align > p->p_align
4044 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4045 p->p_align = align;
4046 }
4047
4048 if (! m->p_flags_valid)
4049 {
4050 p->p_flags |= PF_R;
4051 if ((flags & SEC_CODE) != 0)
4052 p->p_flags |= PF_X;
4053 if ((flags & SEC_READONLY) == 0)
4054 p->p_flags |= PF_W;
4055 }
4056 }
4057 }
4058
4059 /* Now that we have set the section file positions, we can set up
4060 the file positions for the non PT_LOAD segments. */
4061 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4062 m != NULL;
4063 m = m->next, p++)
4064 {
4065 if (p->p_type != PT_LOAD && m->count > 0)
4066 {
4067 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4068 p->p_offset = m->sections[0]->filepos;
4069 }
4070 if (m->count == 0)
4071 {
4072 if (m->includes_filehdr)
4073 {
4074 p->p_vaddr = filehdr_vaddr;
4075 if (! m->p_paddr_valid)
4076 p->p_paddr = filehdr_paddr;
4077 }
4078 else if (m->includes_phdrs)
4079 {
4080 p->p_vaddr = phdrs_vaddr;
4081 if (! m->p_paddr_valid)
4082 p->p_paddr = phdrs_paddr;
4083 }
4084 }
4085 }
4086
4087 /* Clear out any program headers we allocated but did not use. */
4088 for (; count < alloc; count++, p++)
4089 {
4090 memset (p, 0, sizeof *p);
4091 p->p_type = PT_NULL;
4092 }
4093
4094 elf_tdata (abfd)->phdr = phdrs;
4095
4096 elf_tdata (abfd)->next_file_pos = off;
4097
4098 /* Write out the program headers. */
4099 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4100 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4101 return FALSE;
4102
4103 return TRUE;
4104 }
4105
4106 /* Get the size of the program header.
4107
4108 If this is called by the linker before any of the section VMA's are set, it
4109 can't calculate the correct value for a strange memory layout. This only
4110 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4111 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4112 data segment (exclusive of .interp and .dynamic).
4113
4114 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4115 will be two segments. */
4116
4117 static bfd_size_type
4118 get_program_header_size (bfd *abfd)
4119 {
4120 size_t segs;
4121 asection *s;
4122 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4123
4124 /* We can't return a different result each time we're called. */
4125 if (elf_tdata (abfd)->program_header_size != 0)
4126 return elf_tdata (abfd)->program_header_size;
4127
4128 if (elf_tdata (abfd)->segment_map != NULL)
4129 {
4130 struct elf_segment_map *m;
4131
4132 segs = 0;
4133 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4134 ++segs;
4135 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4136 return elf_tdata (abfd)->program_header_size;
4137 }
4138
4139 /* Assume we will need exactly two PT_LOAD segments: one for text
4140 and one for data. */
4141 segs = 2;
4142
4143 s = bfd_get_section_by_name (abfd, ".interp");
4144 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4145 {
4146 /* If we have a loadable interpreter section, we need a
4147 PT_INTERP segment. In this case, assume we also need a
4148 PT_PHDR segment, although that may not be true for all
4149 targets. */
4150 segs += 2;
4151 }
4152
4153 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4154 {
4155 /* We need a PT_DYNAMIC segment. */
4156 ++segs;
4157 }
4158
4159 if (elf_tdata (abfd)->eh_frame_hdr)
4160 {
4161 /* We need a PT_GNU_EH_FRAME segment. */
4162 ++segs;
4163 }
4164
4165 if (elf_tdata (abfd)->stack_flags)
4166 {
4167 /* We need a PT_GNU_STACK segment. */
4168 ++segs;
4169 }
4170
4171 for (s = abfd->sections; s != NULL; s = s->next)
4172 {
4173 if ((s->flags & SEC_LOAD) != 0
4174 && strncmp (s->name, ".note", 5) == 0)
4175 {
4176 /* We need a PT_NOTE segment. */
4177 ++segs;
4178 }
4179 }
4180
4181 for (s = abfd->sections; s != NULL; s = s->next)
4182 {
4183 if (s->flags & SEC_THREAD_LOCAL)
4184 {
4185 /* We need a PT_TLS segment. */
4186 ++segs;
4187 break;
4188 }
4189 }
4190
4191 /* Let the backend count up any program headers it might need. */
4192 if (bed->elf_backend_additional_program_headers)
4193 {
4194 int a;
4195
4196 a = (*bed->elf_backend_additional_program_headers) (abfd);
4197 if (a == -1)
4198 abort ();
4199 segs += a;
4200 }
4201
4202 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4203 return elf_tdata (abfd)->program_header_size;
4204 }
4205
4206 /* Work out the file positions of all the sections. This is called by
4207 _bfd_elf_compute_section_file_positions. All the section sizes and
4208 VMAs must be known before this is called.
4209
4210 We do not consider reloc sections at this point, unless they form
4211 part of the loadable image. Reloc sections are assigned file
4212 positions in assign_file_positions_for_relocs, which is called by
4213 write_object_contents and final_link.
4214
4215 We also don't set the positions of the .symtab and .strtab here. */
4216
4217 static bfd_boolean
4218 assign_file_positions_except_relocs (bfd *abfd,
4219 struct bfd_link_info *link_info)
4220 {
4221 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4222 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4223 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4224 unsigned int num_sec = elf_numsections (abfd);
4225 file_ptr off;
4226 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4227
4228 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4229 && bfd_get_format (abfd) != bfd_core)
4230 {
4231 Elf_Internal_Shdr **hdrpp;
4232 unsigned int i;
4233
4234 /* Start after the ELF header. */
4235 off = i_ehdrp->e_ehsize;
4236
4237 /* We are not creating an executable, which means that we are
4238 not creating a program header, and that the actual order of
4239 the sections in the file is unimportant. */
4240 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4241 {
4242 Elf_Internal_Shdr *hdr;
4243
4244 hdr = *hdrpp;
4245 if (hdr->sh_type == SHT_REL
4246 || hdr->sh_type == SHT_RELA
4247 || i == tdata->symtab_section
4248 || i == tdata->symtab_shndx_section
4249 || i == tdata->strtab_section)
4250 {
4251 hdr->sh_offset = -1;
4252 }
4253 else
4254 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4255
4256 if (i == SHN_LORESERVE - 1)
4257 {
4258 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4259 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4260 }
4261 }
4262 }
4263 else
4264 {
4265 unsigned int i;
4266 Elf_Internal_Shdr **hdrpp;
4267
4268 /* Assign file positions for the loaded sections based on the
4269 assignment of sections to segments. */
4270 if (! assign_file_positions_for_segments (abfd, link_info))
4271 return FALSE;
4272
4273 /* Assign file positions for the other sections. */
4274
4275 off = elf_tdata (abfd)->next_file_pos;
4276 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4277 {
4278 Elf_Internal_Shdr *hdr;
4279
4280 hdr = *hdrpp;
4281 if (hdr->bfd_section != NULL
4282 && hdr->bfd_section->filepos != 0)
4283 hdr->sh_offset = hdr->bfd_section->filepos;
4284 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4285 {
4286 ((*_bfd_error_handler)
4287 (_("%s: warning: allocated section `%s' not in segment"),
4288 bfd_get_filename (abfd),
4289 (hdr->bfd_section == NULL
4290 ? "*unknown*"
4291 : hdr->bfd_section->name)));
4292 if ((abfd->flags & D_PAGED) != 0)
4293 off += vma_page_aligned_bias (hdr->sh_addr, off,
4294 bed->maxpagesize);
4295 else
4296 off += vma_page_aligned_bias (hdr->sh_addr, off,
4297 hdr->sh_addralign);
4298 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4299 FALSE);
4300 }
4301 else if (hdr->sh_type == SHT_REL
4302 || hdr->sh_type == SHT_RELA
4303 || hdr == i_shdrpp[tdata->symtab_section]
4304 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4305 || hdr == i_shdrpp[tdata->strtab_section])
4306 hdr->sh_offset = -1;
4307 else
4308 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4309
4310 if (i == SHN_LORESERVE - 1)
4311 {
4312 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4313 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4314 }
4315 }
4316 }
4317
4318 /* Place the section headers. */
4319 off = align_file_position (off, 1 << bed->s->log_file_align);
4320 i_ehdrp->e_shoff = off;
4321 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4322
4323 elf_tdata (abfd)->next_file_pos = off;
4324
4325 return TRUE;
4326 }
4327
4328 static bfd_boolean
4329 prep_headers (bfd *abfd)
4330 {
4331 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4332 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4333 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4334 struct elf_strtab_hash *shstrtab;
4335 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4336
4337 i_ehdrp = elf_elfheader (abfd);
4338 i_shdrp = elf_elfsections (abfd);
4339
4340 shstrtab = _bfd_elf_strtab_init ();
4341 if (shstrtab == NULL)
4342 return FALSE;
4343
4344 elf_shstrtab (abfd) = shstrtab;
4345
4346 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4347 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4348 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4349 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4350
4351 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4352 i_ehdrp->e_ident[EI_DATA] =
4353 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4354 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4355
4356 if ((abfd->flags & DYNAMIC) != 0)
4357 i_ehdrp->e_type = ET_DYN;
4358 else if ((abfd->flags & EXEC_P) != 0)
4359 i_ehdrp->e_type = ET_EXEC;
4360 else if (bfd_get_format (abfd) == bfd_core)
4361 i_ehdrp->e_type = ET_CORE;
4362 else
4363 i_ehdrp->e_type = ET_REL;
4364
4365 switch (bfd_get_arch (abfd))
4366 {
4367 case bfd_arch_unknown:
4368 i_ehdrp->e_machine = EM_NONE;
4369 break;
4370
4371 /* There used to be a long list of cases here, each one setting
4372 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4373 in the corresponding bfd definition. To avoid duplication,
4374 the switch was removed. Machines that need special handling
4375 can generally do it in elf_backend_final_write_processing(),
4376 unless they need the information earlier than the final write.
4377 Such need can generally be supplied by replacing the tests for
4378 e_machine with the conditions used to determine it. */
4379 default:
4380 i_ehdrp->e_machine = bed->elf_machine_code;
4381 }
4382
4383 i_ehdrp->e_version = bed->s->ev_current;
4384 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4385
4386 /* No program header, for now. */
4387 i_ehdrp->e_phoff = 0;
4388 i_ehdrp->e_phentsize = 0;
4389 i_ehdrp->e_phnum = 0;
4390
4391 /* Each bfd section is section header entry. */
4392 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4393 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4394
4395 /* If we're building an executable, we'll need a program header table. */
4396 if (abfd->flags & EXEC_P)
4397 {
4398 /* It all happens later. */
4399 #if 0
4400 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4401
4402 /* elf_build_phdrs() returns a (NULL-terminated) array of
4403 Elf_Internal_Phdrs. */
4404 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4405 i_ehdrp->e_phoff = outbase;
4406 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4407 #endif
4408 }
4409 else
4410 {
4411 i_ehdrp->e_phentsize = 0;
4412 i_phdrp = 0;
4413 i_ehdrp->e_phoff = 0;
4414 }
4415
4416 elf_tdata (abfd)->symtab_hdr.sh_name =
4417 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4418 elf_tdata (abfd)->strtab_hdr.sh_name =
4419 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4420 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4421 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4422 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4423 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4424 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4425 return FALSE;
4426
4427 return TRUE;
4428 }
4429
4430 /* Assign file positions for all the reloc sections which are not part
4431 of the loadable file image. */
4432
4433 void
4434 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4435 {
4436 file_ptr off;
4437 unsigned int i, num_sec;
4438 Elf_Internal_Shdr **shdrpp;
4439
4440 off = elf_tdata (abfd)->next_file_pos;
4441
4442 num_sec = elf_numsections (abfd);
4443 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4444 {
4445 Elf_Internal_Shdr *shdrp;
4446
4447 shdrp = *shdrpp;
4448 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4449 && shdrp->sh_offset == -1)
4450 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4451 }
4452
4453 elf_tdata (abfd)->next_file_pos = off;
4454 }
4455
4456 bfd_boolean
4457 _bfd_elf_write_object_contents (bfd *abfd)
4458 {
4459 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4460 Elf_Internal_Ehdr *i_ehdrp;
4461 Elf_Internal_Shdr **i_shdrp;
4462 bfd_boolean failed;
4463 unsigned int count, num_sec;
4464
4465 if (! abfd->output_has_begun
4466 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4467 return FALSE;
4468
4469 i_shdrp = elf_elfsections (abfd);
4470 i_ehdrp = elf_elfheader (abfd);
4471
4472 failed = FALSE;
4473 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4474 if (failed)
4475 return FALSE;
4476
4477 _bfd_elf_assign_file_positions_for_relocs (abfd);
4478
4479 /* After writing the headers, we need to write the sections too... */
4480 num_sec = elf_numsections (abfd);
4481 for (count = 1; count < num_sec; count++)
4482 {
4483 if (bed->elf_backend_section_processing)
4484 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4485 if (i_shdrp[count]->contents)
4486 {
4487 bfd_size_type amt = i_shdrp[count]->sh_size;
4488
4489 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4490 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4491 return FALSE;
4492 }
4493 if (count == SHN_LORESERVE - 1)
4494 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4495 }
4496
4497 /* Write out the section header names. */
4498 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4499 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4500 return FALSE;
4501
4502 if (bed->elf_backend_final_write_processing)
4503 (*bed->elf_backend_final_write_processing) (abfd,
4504 elf_tdata (abfd)->linker);
4505
4506 return bed->s->write_shdrs_and_ehdr (abfd);
4507 }
4508
4509 bfd_boolean
4510 _bfd_elf_write_corefile_contents (bfd *abfd)
4511 {
4512 /* Hopefully this can be done just like an object file. */
4513 return _bfd_elf_write_object_contents (abfd);
4514 }
4515
4516 /* Given a section, search the header to find them. */
4517
4518 int
4519 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4520 {
4521 const struct elf_backend_data *bed;
4522 int index;
4523
4524 if (elf_section_data (asect) != NULL
4525 && elf_section_data (asect)->this_idx != 0)
4526 return elf_section_data (asect)->this_idx;
4527
4528 if (bfd_is_abs_section (asect))
4529 index = SHN_ABS;
4530 else if (bfd_is_com_section (asect))
4531 index = SHN_COMMON;
4532 else if (bfd_is_und_section (asect))
4533 index = SHN_UNDEF;
4534 else
4535 {
4536 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4537 int maxindex = elf_numsections (abfd);
4538
4539 for (index = 1; index < maxindex; index++)
4540 {
4541 Elf_Internal_Shdr *hdr = i_shdrp[index];
4542
4543 if (hdr != NULL && hdr->bfd_section == asect)
4544 return index;
4545 }
4546 index = -1;
4547 }
4548
4549 bed = get_elf_backend_data (abfd);
4550 if (bed->elf_backend_section_from_bfd_section)
4551 {
4552 int retval = index;
4553
4554 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4555 return retval;
4556 }
4557
4558 if (index == -1)
4559 bfd_set_error (bfd_error_nonrepresentable_section);
4560
4561 return index;
4562 }
4563
4564 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4565 on error. */
4566
4567 int
4568 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4569 {
4570 asymbol *asym_ptr = *asym_ptr_ptr;
4571 int idx;
4572 flagword flags = asym_ptr->flags;
4573
4574 /* When gas creates relocations against local labels, it creates its
4575 own symbol for the section, but does put the symbol into the
4576 symbol chain, so udata is 0. When the linker is generating
4577 relocatable output, this section symbol may be for one of the
4578 input sections rather than the output section. */
4579 if (asym_ptr->udata.i == 0
4580 && (flags & BSF_SECTION_SYM)
4581 && asym_ptr->section)
4582 {
4583 int indx;
4584
4585 if (asym_ptr->section->output_section != NULL)
4586 indx = asym_ptr->section->output_section->index;
4587 else
4588 indx = asym_ptr->section->index;
4589 if (indx < elf_num_section_syms (abfd)
4590 && elf_section_syms (abfd)[indx] != NULL)
4591 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4592 }
4593
4594 idx = asym_ptr->udata.i;
4595
4596 if (idx == 0)
4597 {
4598 /* This case can occur when using --strip-symbol on a symbol
4599 which is used in a relocation entry. */
4600 (*_bfd_error_handler)
4601 (_("%s: symbol `%s' required but not present"),
4602 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4603 bfd_set_error (bfd_error_no_symbols);
4604 return -1;
4605 }
4606
4607 #if DEBUG & 4
4608 {
4609 fprintf (stderr,
4610 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4611 (long) asym_ptr, asym_ptr->name, idx, flags,
4612 elf_symbol_flags (flags));
4613 fflush (stderr);
4614 }
4615 #endif
4616
4617 return idx;
4618 }
4619
4620 /* Copy private BFD data. This copies any program header information. */
4621
4622 static bfd_boolean
4623 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4624 {
4625 Elf_Internal_Ehdr *iehdr;
4626 struct elf_segment_map *map;
4627 struct elf_segment_map *map_first;
4628 struct elf_segment_map **pointer_to_map;
4629 Elf_Internal_Phdr *segment;
4630 asection *section;
4631 unsigned int i;
4632 unsigned int num_segments;
4633 bfd_boolean phdr_included = FALSE;
4634 bfd_vma maxpagesize;
4635 struct elf_segment_map *phdr_adjust_seg = NULL;
4636 unsigned int phdr_adjust_num = 0;
4637 const struct elf_backend_data *bed;
4638
4639 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4640 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4641 return TRUE;
4642
4643 if (elf_tdata (ibfd)->phdr == NULL)
4644 return TRUE;
4645
4646 bed = get_elf_backend_data (ibfd);
4647 iehdr = elf_elfheader (ibfd);
4648
4649 map_first = NULL;
4650 pointer_to_map = &map_first;
4651
4652 num_segments = elf_elfheader (ibfd)->e_phnum;
4653 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4654
4655 /* Returns the end address of the segment + 1. */
4656 #define SEGMENT_END(segment, start) \
4657 (start + (segment->p_memsz > segment->p_filesz \
4658 ? segment->p_memsz : segment->p_filesz))
4659
4660 #define SECTION_SIZE(section, segment) \
4661 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4662 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4663 ? section->_raw_size : 0)
4664
4665 /* Returns TRUE if the given section is contained within
4666 the given segment. VMA addresses are compared. */
4667 #define IS_CONTAINED_BY_VMA(section, segment) \
4668 (section->vma >= segment->p_vaddr \
4669 && (section->vma + SECTION_SIZE (section, segment) \
4670 <= (SEGMENT_END (segment, segment->p_vaddr))))
4671
4672 /* Returns TRUE if the given section is contained within
4673 the given segment. LMA addresses are compared. */
4674 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4675 (section->lma >= base \
4676 && (section->lma + SECTION_SIZE (section, segment) \
4677 <= SEGMENT_END (segment, base)))
4678
4679 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4680 #define IS_COREFILE_NOTE(p, s) \
4681 (p->p_type == PT_NOTE \
4682 && bfd_get_format (ibfd) == bfd_core \
4683 && s->vma == 0 && s->lma == 0 \
4684 && (bfd_vma) s->filepos >= p->p_offset \
4685 && ((bfd_vma) s->filepos + s->_raw_size \
4686 <= p->p_offset + p->p_filesz))
4687
4688 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4689 linker, which generates a PT_INTERP section with p_vaddr and
4690 p_memsz set to 0. */
4691 #define IS_SOLARIS_PT_INTERP(p, s) \
4692 (p->p_vaddr == 0 \
4693 && p->p_paddr == 0 \
4694 && p->p_memsz == 0 \
4695 && p->p_filesz > 0 \
4696 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4697 && s->_raw_size > 0 \
4698 && (bfd_vma) s->filepos >= p->p_offset \
4699 && ((bfd_vma) s->filepos + s->_raw_size \
4700 <= p->p_offset + p->p_filesz))
4701
4702 /* Decide if the given section should be included in the given segment.
4703 A section will be included if:
4704 1. It is within the address space of the segment -- we use the LMA
4705 if that is set for the segment and the VMA otherwise,
4706 2. It is an allocated segment,
4707 3. There is an output section associated with it,
4708 4. The section has not already been allocated to a previous segment.
4709 5. PT_GNU_STACK segments do not include any sections.
4710 6. PT_TLS segment includes only SHF_TLS sections.
4711 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4712 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4713 ((((segment->p_paddr \
4714 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4715 : IS_CONTAINED_BY_VMA (section, segment)) \
4716 && (section->flags & SEC_ALLOC) != 0) \
4717 || IS_COREFILE_NOTE (segment, section)) \
4718 && section->output_section != NULL \
4719 && segment->p_type != PT_GNU_STACK \
4720 && (segment->p_type != PT_TLS \
4721 || (section->flags & SEC_THREAD_LOCAL)) \
4722 && (segment->p_type == PT_LOAD \
4723 || segment->p_type == PT_TLS \
4724 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4725 && ! section->segment_mark)
4726
4727 /* Returns TRUE iff seg1 starts after the end of seg2. */
4728 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4729 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4730
4731 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4732 their VMA address ranges and their LMA address ranges overlap.
4733 It is possible to have overlapping VMA ranges without overlapping LMA
4734 ranges. RedBoot images for example can have both .data and .bss mapped
4735 to the same VMA range, but with the .data section mapped to a different
4736 LMA. */
4737 #define SEGMENT_OVERLAPS(seg1, seg2) \
4738 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4739 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4740 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4741 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4742
4743 /* Initialise the segment mark field. */
4744 for (section = ibfd->sections; section != NULL; section = section->next)
4745 section->segment_mark = FALSE;
4746
4747 /* Scan through the segments specified in the program header
4748 of the input BFD. For this first scan we look for overlaps
4749 in the loadable segments. These can be created by weird
4750 parameters to objcopy. Also, fix some solaris weirdness. */
4751 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4752 i < num_segments;
4753 i++, segment++)
4754 {
4755 unsigned int j;
4756 Elf_Internal_Phdr *segment2;
4757
4758 if (segment->p_type == PT_INTERP)
4759 for (section = ibfd->sections; section; section = section->next)
4760 if (IS_SOLARIS_PT_INTERP (segment, section))
4761 {
4762 /* Mininal change so that the normal section to segment
4763 assignment code will work. */
4764 segment->p_vaddr = section->vma;
4765 break;
4766 }
4767
4768 if (segment->p_type != PT_LOAD)
4769 continue;
4770
4771 /* Determine if this segment overlaps any previous segments. */
4772 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4773 {
4774 bfd_signed_vma extra_length;
4775
4776 if (segment2->p_type != PT_LOAD
4777 || ! SEGMENT_OVERLAPS (segment, segment2))
4778 continue;
4779
4780 /* Merge the two segments together. */
4781 if (segment2->p_vaddr < segment->p_vaddr)
4782 {
4783 /* Extend SEGMENT2 to include SEGMENT and then delete
4784 SEGMENT. */
4785 extra_length =
4786 SEGMENT_END (segment, segment->p_vaddr)
4787 - SEGMENT_END (segment2, segment2->p_vaddr);
4788
4789 if (extra_length > 0)
4790 {
4791 segment2->p_memsz += extra_length;
4792 segment2->p_filesz += extra_length;
4793 }
4794
4795 segment->p_type = PT_NULL;
4796
4797 /* Since we have deleted P we must restart the outer loop. */
4798 i = 0;
4799 segment = elf_tdata (ibfd)->phdr;
4800 break;
4801 }
4802 else
4803 {
4804 /* Extend SEGMENT to include SEGMENT2 and then delete
4805 SEGMENT2. */
4806 extra_length =
4807 SEGMENT_END (segment2, segment2->p_vaddr)
4808 - SEGMENT_END (segment, segment->p_vaddr);
4809
4810 if (extra_length > 0)
4811 {
4812 segment->p_memsz += extra_length;
4813 segment->p_filesz += extra_length;
4814 }
4815
4816 segment2->p_type = PT_NULL;
4817 }
4818 }
4819 }
4820
4821 /* The second scan attempts to assign sections to segments. */
4822 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4823 i < num_segments;
4824 i ++, segment ++)
4825 {
4826 unsigned int section_count;
4827 asection ** sections;
4828 asection * output_section;
4829 unsigned int isec;
4830 bfd_vma matching_lma;
4831 bfd_vma suggested_lma;
4832 unsigned int j;
4833 bfd_size_type amt;
4834
4835 if (segment->p_type == PT_NULL)
4836 continue;
4837
4838 /* Compute how many sections might be placed into this segment. */
4839 for (section = ibfd->sections, section_count = 0;
4840 section != NULL;
4841 section = section->next)
4842 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4843 ++section_count;
4844
4845 /* Allocate a segment map big enough to contain
4846 all of the sections we have selected. */
4847 amt = sizeof (struct elf_segment_map);
4848 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4849 map = bfd_alloc (obfd, amt);
4850 if (map == NULL)
4851 return FALSE;
4852
4853 /* Initialise the fields of the segment map. Default to
4854 using the physical address of the segment in the input BFD. */
4855 map->next = NULL;
4856 map->p_type = segment->p_type;
4857 map->p_flags = segment->p_flags;
4858 map->p_flags_valid = 1;
4859 map->p_paddr = segment->p_paddr;
4860 map->p_paddr_valid = 1;
4861
4862 /* Determine if this segment contains the ELF file header
4863 and if it contains the program headers themselves. */
4864 map->includes_filehdr = (segment->p_offset == 0
4865 && segment->p_filesz >= iehdr->e_ehsize);
4866
4867 map->includes_phdrs = 0;
4868
4869 if (! phdr_included || segment->p_type != PT_LOAD)
4870 {
4871 map->includes_phdrs =
4872 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4873 && (segment->p_offset + segment->p_filesz
4874 >= ((bfd_vma) iehdr->e_phoff
4875 + iehdr->e_phnum * iehdr->e_phentsize)));
4876
4877 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4878 phdr_included = TRUE;
4879 }
4880
4881 if (section_count == 0)
4882 {
4883 /* Special segments, such as the PT_PHDR segment, may contain
4884 no sections, but ordinary, loadable segments should contain
4885 something. They are allowed by the ELF spec however, so only
4886 a warning is produced. */
4887 if (segment->p_type == PT_LOAD)
4888 (*_bfd_error_handler)
4889 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4890 bfd_archive_filename (ibfd));
4891
4892 map->count = 0;
4893 *pointer_to_map = map;
4894 pointer_to_map = &map->next;
4895
4896 continue;
4897 }
4898
4899 /* Now scan the sections in the input BFD again and attempt
4900 to add their corresponding output sections to the segment map.
4901 The problem here is how to handle an output section which has
4902 been moved (ie had its LMA changed). There are four possibilities:
4903
4904 1. None of the sections have been moved.
4905 In this case we can continue to use the segment LMA from the
4906 input BFD.
4907
4908 2. All of the sections have been moved by the same amount.
4909 In this case we can change the segment's LMA to match the LMA
4910 of the first section.
4911
4912 3. Some of the sections have been moved, others have not.
4913 In this case those sections which have not been moved can be
4914 placed in the current segment which will have to have its size,
4915 and possibly its LMA changed, and a new segment or segments will
4916 have to be created to contain the other sections.
4917
4918 4. The sections have been moved, but not by the same amount.
4919 In this case we can change the segment's LMA to match the LMA
4920 of the first section and we will have to create a new segment
4921 or segments to contain the other sections.
4922
4923 In order to save time, we allocate an array to hold the section
4924 pointers that we are interested in. As these sections get assigned
4925 to a segment, they are removed from this array. */
4926
4927 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4928 to work around this long long bug. */
4929 amt = section_count * sizeof (asection *);
4930 sections = bfd_malloc (amt);
4931 if (sections == NULL)
4932 return FALSE;
4933
4934 /* Step One: Scan for segment vs section LMA conflicts.
4935 Also add the sections to the section array allocated above.
4936 Also add the sections to the current segment. In the common
4937 case, where the sections have not been moved, this means that
4938 we have completely filled the segment, and there is nothing
4939 more to do. */
4940 isec = 0;
4941 matching_lma = 0;
4942 suggested_lma = 0;
4943
4944 for (j = 0, section = ibfd->sections;
4945 section != NULL;
4946 section = section->next)
4947 {
4948 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4949 {
4950 output_section = section->output_section;
4951
4952 sections[j ++] = section;
4953
4954 /* The Solaris native linker always sets p_paddr to 0.
4955 We try to catch that case here, and set it to the
4956 correct value. Note - some backends require that
4957 p_paddr be left as zero. */
4958 if (segment->p_paddr == 0
4959 && segment->p_vaddr != 0
4960 && (! bed->want_p_paddr_set_to_zero)
4961 && isec == 0
4962 && output_section->lma != 0
4963 && (output_section->vma == (segment->p_vaddr
4964 + (map->includes_filehdr
4965 ? iehdr->e_ehsize
4966 : 0)
4967 + (map->includes_phdrs
4968 ? (iehdr->e_phnum
4969 * iehdr->e_phentsize)
4970 : 0))))
4971 map->p_paddr = segment->p_vaddr;
4972
4973 /* Match up the physical address of the segment with the
4974 LMA address of the output section. */
4975 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4976 || IS_COREFILE_NOTE (segment, section)
4977 || (bed->want_p_paddr_set_to_zero &&
4978 IS_CONTAINED_BY_VMA (output_section, segment))
4979 )
4980 {
4981 if (matching_lma == 0)
4982 matching_lma = output_section->lma;
4983
4984 /* We assume that if the section fits within the segment
4985 then it does not overlap any other section within that
4986 segment. */
4987 map->sections[isec ++] = output_section;
4988 }
4989 else if (suggested_lma == 0)
4990 suggested_lma = output_section->lma;
4991 }
4992 }
4993
4994 BFD_ASSERT (j == section_count);
4995
4996 /* Step Two: Adjust the physical address of the current segment,
4997 if necessary. */
4998 if (isec == section_count)
4999 {
5000 /* All of the sections fitted within the segment as currently
5001 specified. This is the default case. Add the segment to
5002 the list of built segments and carry on to process the next
5003 program header in the input BFD. */
5004 map->count = section_count;
5005 *pointer_to_map = map;
5006 pointer_to_map = &map->next;
5007
5008 free (sections);
5009 continue;
5010 }
5011 else
5012 {
5013 if (matching_lma != 0)
5014 {
5015 /* At least one section fits inside the current segment.
5016 Keep it, but modify its physical address to match the
5017 LMA of the first section that fitted. */
5018 map->p_paddr = matching_lma;
5019 }
5020 else
5021 {
5022 /* None of the sections fitted inside the current segment.
5023 Change the current segment's physical address to match
5024 the LMA of the first section. */
5025 map->p_paddr = suggested_lma;
5026 }
5027
5028 /* Offset the segment physical address from the lma
5029 to allow for space taken up by elf headers. */
5030 if (map->includes_filehdr)
5031 map->p_paddr -= iehdr->e_ehsize;
5032
5033 if (map->includes_phdrs)
5034 {
5035 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5036
5037 /* iehdr->e_phnum is just an estimate of the number
5038 of program headers that we will need. Make a note
5039 here of the number we used and the segment we chose
5040 to hold these headers, so that we can adjust the
5041 offset when we know the correct value. */
5042 phdr_adjust_num = iehdr->e_phnum;
5043 phdr_adjust_seg = map;
5044 }
5045 }
5046
5047 /* Step Three: Loop over the sections again, this time assigning
5048 those that fit to the current segment and removing them from the
5049 sections array; but making sure not to leave large gaps. Once all
5050 possible sections have been assigned to the current segment it is
5051 added to the list of built segments and if sections still remain
5052 to be assigned, a new segment is constructed before repeating
5053 the loop. */
5054 isec = 0;
5055 do
5056 {
5057 map->count = 0;
5058 suggested_lma = 0;
5059
5060 /* Fill the current segment with sections that fit. */
5061 for (j = 0; j < section_count; j++)
5062 {
5063 section = sections[j];
5064
5065 if (section == NULL)
5066 continue;
5067
5068 output_section = section->output_section;
5069
5070 BFD_ASSERT (output_section != NULL);
5071
5072 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5073 || IS_COREFILE_NOTE (segment, section))
5074 {
5075 if (map->count == 0)
5076 {
5077 /* If the first section in a segment does not start at
5078 the beginning of the segment, then something is
5079 wrong. */
5080 if (output_section->lma !=
5081 (map->p_paddr
5082 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5083 + (map->includes_phdrs
5084 ? iehdr->e_phnum * iehdr->e_phentsize
5085 : 0)))
5086 abort ();
5087 }
5088 else
5089 {
5090 asection * prev_sec;
5091
5092 prev_sec = map->sections[map->count - 1];
5093
5094 /* If the gap between the end of the previous section
5095 and the start of this section is more than
5096 maxpagesize then we need to start a new segment. */
5097 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
5098 maxpagesize)
5099 < BFD_ALIGN (output_section->lma, maxpagesize))
5100 || ((prev_sec->lma + prev_sec->_raw_size)
5101 > output_section->lma))
5102 {
5103 if (suggested_lma == 0)
5104 suggested_lma = output_section->lma;
5105
5106 continue;
5107 }
5108 }
5109
5110 map->sections[map->count++] = output_section;
5111 ++isec;
5112 sections[j] = NULL;
5113 section->segment_mark = TRUE;
5114 }
5115 else if (suggested_lma == 0)
5116 suggested_lma = output_section->lma;
5117 }
5118
5119 BFD_ASSERT (map->count > 0);
5120
5121 /* Add the current segment to the list of built segments. */
5122 *pointer_to_map = map;
5123 pointer_to_map = &map->next;
5124
5125 if (isec < section_count)
5126 {
5127 /* We still have not allocated all of the sections to
5128 segments. Create a new segment here, initialise it
5129 and carry on looping. */
5130 amt = sizeof (struct elf_segment_map);
5131 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5132 map = bfd_alloc (obfd, amt);
5133 if (map == NULL)
5134 {
5135 free (sections);
5136 return FALSE;
5137 }
5138
5139 /* Initialise the fields of the segment map. Set the physical
5140 physical address to the LMA of the first section that has
5141 not yet been assigned. */
5142 map->next = NULL;
5143 map->p_type = segment->p_type;
5144 map->p_flags = segment->p_flags;
5145 map->p_flags_valid = 1;
5146 map->p_paddr = suggested_lma;
5147 map->p_paddr_valid = 1;
5148 map->includes_filehdr = 0;
5149 map->includes_phdrs = 0;
5150 }
5151 }
5152 while (isec < section_count);
5153
5154 free (sections);
5155 }
5156
5157 /* The Solaris linker creates program headers in which all the
5158 p_paddr fields are zero. When we try to objcopy or strip such a
5159 file, we get confused. Check for this case, and if we find it
5160 reset the p_paddr_valid fields. */
5161 for (map = map_first; map != NULL; map = map->next)
5162 if (map->p_paddr != 0)
5163 break;
5164 if (map == NULL)
5165 for (map = map_first; map != NULL; map = map->next)
5166 map->p_paddr_valid = 0;
5167
5168 elf_tdata (obfd)->segment_map = map_first;
5169
5170 /* If we had to estimate the number of program headers that were
5171 going to be needed, then check our estimate now and adjust
5172 the offset if necessary. */
5173 if (phdr_adjust_seg != NULL)
5174 {
5175 unsigned int count;
5176
5177 for (count = 0, map = map_first; map != NULL; map = map->next)
5178 count++;
5179
5180 if (count > phdr_adjust_num)
5181 phdr_adjust_seg->p_paddr
5182 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5183 }
5184
5185 #if 0
5186 /* Final Step: Sort the segments into ascending order of physical
5187 address. */
5188 if (map_first != NULL)
5189 {
5190 struct elf_segment_map *prev;
5191
5192 prev = map_first;
5193 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5194 {
5195 /* Yes I know - its a bubble sort.... */
5196 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5197 {
5198 /* Swap map and map->next. */
5199 prev->next = map->next;
5200 map->next = map->next->next;
5201 prev->next->next = map;
5202
5203 /* Restart loop. */
5204 map = map_first;
5205 }
5206 }
5207 }
5208 #endif
5209
5210 #undef SEGMENT_END
5211 #undef SECTION_SIZE
5212 #undef IS_CONTAINED_BY_VMA
5213 #undef IS_CONTAINED_BY_LMA
5214 #undef IS_COREFILE_NOTE
5215 #undef IS_SOLARIS_PT_INTERP
5216 #undef INCLUDE_SECTION_IN_SEGMENT
5217 #undef SEGMENT_AFTER_SEGMENT
5218 #undef SEGMENT_OVERLAPS
5219 return TRUE;
5220 }
5221
5222 /* Copy private section information. This copies over the entsize
5223 field, and sometimes the info field. */
5224
5225 bfd_boolean
5226 _bfd_elf_copy_private_section_data (bfd *ibfd,
5227 asection *isec,
5228 bfd *obfd,
5229 asection *osec)
5230 {
5231 Elf_Internal_Shdr *ihdr, *ohdr;
5232
5233 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5234 || obfd->xvec->flavour != bfd_target_elf_flavour)
5235 return TRUE;
5236
5237 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5238 {
5239 asection *s;
5240
5241 /* Only set up the segments if there are no more SEC_ALLOC
5242 sections. FIXME: This won't do the right thing if objcopy is
5243 used to remove the last SEC_ALLOC section, since objcopy
5244 won't call this routine in that case. */
5245 for (s = isec->next; s != NULL; s = s->next)
5246 if ((s->flags & SEC_ALLOC) != 0)
5247 break;
5248 if (s == NULL)
5249 {
5250 if (! copy_private_bfd_data (ibfd, obfd))
5251 return FALSE;
5252 }
5253 }
5254
5255 ihdr = &elf_section_data (isec)->this_hdr;
5256 ohdr = &elf_section_data (osec)->this_hdr;
5257
5258 ohdr->sh_entsize = ihdr->sh_entsize;
5259
5260 if (ihdr->sh_type == SHT_SYMTAB
5261 || ihdr->sh_type == SHT_DYNSYM
5262 || ihdr->sh_type == SHT_GNU_verneed
5263 || ihdr->sh_type == SHT_GNU_verdef)
5264 ohdr->sh_info = ihdr->sh_info;
5265
5266 /* Set things up for objcopy. The output SHT_GROUP section will
5267 have its elf_next_in_group pointing back to the input group
5268 members. */
5269 elf_next_in_group (osec) = elf_next_in_group (isec);
5270 elf_group_name (osec) = elf_group_name (isec);
5271
5272 osec->use_rela_p = isec->use_rela_p;
5273
5274 return TRUE;
5275 }
5276
5277 /* Copy private symbol information. If this symbol is in a section
5278 which we did not map into a BFD section, try to map the section
5279 index correctly. We use special macro definitions for the mapped
5280 section indices; these definitions are interpreted by the
5281 swap_out_syms function. */
5282
5283 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5284 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5285 #define MAP_STRTAB (SHN_HIOS + 3)
5286 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5287 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5288
5289 bfd_boolean
5290 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5291 asymbol *isymarg,
5292 bfd *obfd,
5293 asymbol *osymarg)
5294 {
5295 elf_symbol_type *isym, *osym;
5296
5297 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5298 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5299 return TRUE;
5300
5301 isym = elf_symbol_from (ibfd, isymarg);
5302 osym = elf_symbol_from (obfd, osymarg);
5303
5304 if (isym != NULL
5305 && osym != NULL
5306 && bfd_is_abs_section (isym->symbol.section))
5307 {
5308 unsigned int shndx;
5309
5310 shndx = isym->internal_elf_sym.st_shndx;
5311 if (shndx == elf_onesymtab (ibfd))
5312 shndx = MAP_ONESYMTAB;
5313 else if (shndx == elf_dynsymtab (ibfd))
5314 shndx = MAP_DYNSYMTAB;
5315 else if (shndx == elf_tdata (ibfd)->strtab_section)
5316 shndx = MAP_STRTAB;
5317 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5318 shndx = MAP_SHSTRTAB;
5319 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5320 shndx = MAP_SYM_SHNDX;
5321 osym->internal_elf_sym.st_shndx = shndx;
5322 }
5323
5324 return TRUE;
5325 }
5326
5327 /* Swap out the symbols. */
5328
5329 static bfd_boolean
5330 swap_out_syms (bfd *abfd,
5331 struct bfd_strtab_hash **sttp,
5332 int relocatable_p)
5333 {
5334 const struct elf_backend_data *bed;
5335 int symcount;
5336 asymbol **syms;
5337 struct bfd_strtab_hash *stt;
5338 Elf_Internal_Shdr *symtab_hdr;
5339 Elf_Internal_Shdr *symtab_shndx_hdr;
5340 Elf_Internal_Shdr *symstrtab_hdr;
5341 char *outbound_syms;
5342 char *outbound_shndx;
5343 int idx;
5344 bfd_size_type amt;
5345 bfd_boolean name_local_sections;
5346
5347 if (!elf_map_symbols (abfd))
5348 return FALSE;
5349
5350 /* Dump out the symtabs. */
5351 stt = _bfd_elf_stringtab_init ();
5352 if (stt == NULL)
5353 return FALSE;
5354
5355 bed = get_elf_backend_data (abfd);
5356 symcount = bfd_get_symcount (abfd);
5357 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5358 symtab_hdr->sh_type = SHT_SYMTAB;
5359 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5360 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5361 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5362 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5363
5364 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5365 symstrtab_hdr->sh_type = SHT_STRTAB;
5366
5367 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5368 outbound_syms = bfd_alloc (abfd, amt);
5369 if (outbound_syms == NULL)
5370 {
5371 _bfd_stringtab_free (stt);
5372 return FALSE;
5373 }
5374 symtab_hdr->contents = outbound_syms;
5375
5376 outbound_shndx = NULL;
5377 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5378 if (symtab_shndx_hdr->sh_name != 0)
5379 {
5380 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5381 outbound_shndx = bfd_zalloc (abfd, amt);
5382 if (outbound_shndx == NULL)
5383 {
5384 _bfd_stringtab_free (stt);
5385 return FALSE;
5386 }
5387
5388 symtab_shndx_hdr->contents = outbound_shndx;
5389 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5390 symtab_shndx_hdr->sh_size = amt;
5391 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5392 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5393 }
5394
5395 /* Now generate the data (for "contents"). */
5396 {
5397 /* Fill in zeroth symbol and swap it out. */
5398 Elf_Internal_Sym sym;
5399 sym.st_name = 0;
5400 sym.st_value = 0;
5401 sym.st_size = 0;
5402 sym.st_info = 0;
5403 sym.st_other = 0;
5404 sym.st_shndx = SHN_UNDEF;
5405 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5406 outbound_syms += bed->s->sizeof_sym;
5407 if (outbound_shndx != NULL)
5408 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5409 }
5410
5411 name_local_sections
5412 = (bed->elf_backend_name_local_section_symbols
5413 && bed->elf_backend_name_local_section_symbols (abfd));
5414
5415 syms = bfd_get_outsymbols (abfd);
5416 for (idx = 0; idx < symcount; idx++)
5417 {
5418 Elf_Internal_Sym sym;
5419 bfd_vma value = syms[idx]->value;
5420 elf_symbol_type *type_ptr;
5421 flagword flags = syms[idx]->flags;
5422 int type;
5423
5424 if (!name_local_sections
5425 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5426 {
5427 /* Local section symbols have no name. */
5428 sym.st_name = 0;
5429 }
5430 else
5431 {
5432 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5433 syms[idx]->name,
5434 TRUE, FALSE);
5435 if (sym.st_name == (unsigned long) -1)
5436 {
5437 _bfd_stringtab_free (stt);
5438 return FALSE;
5439 }
5440 }
5441
5442 type_ptr = elf_symbol_from (abfd, syms[idx]);
5443
5444 if ((flags & BSF_SECTION_SYM) == 0
5445 && bfd_is_com_section (syms[idx]->section))
5446 {
5447 /* ELF common symbols put the alignment into the `value' field,
5448 and the size into the `size' field. This is backwards from
5449 how BFD handles it, so reverse it here. */
5450 sym.st_size = value;
5451 if (type_ptr == NULL
5452 || type_ptr->internal_elf_sym.st_value == 0)
5453 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5454 else
5455 sym.st_value = type_ptr->internal_elf_sym.st_value;
5456 sym.st_shndx = _bfd_elf_section_from_bfd_section
5457 (abfd, syms[idx]->section);
5458 }
5459 else
5460 {
5461 asection *sec = syms[idx]->section;
5462 int shndx;
5463
5464 if (sec->output_section)
5465 {
5466 value += sec->output_offset;
5467 sec = sec->output_section;
5468 }
5469
5470 /* Don't add in the section vma for relocatable output. */
5471 if (! relocatable_p)
5472 value += sec->vma;
5473 sym.st_value = value;
5474 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5475
5476 if (bfd_is_abs_section (sec)
5477 && type_ptr != NULL
5478 && type_ptr->internal_elf_sym.st_shndx != 0)
5479 {
5480 /* This symbol is in a real ELF section which we did
5481 not create as a BFD section. Undo the mapping done
5482 by copy_private_symbol_data. */
5483 shndx = type_ptr->internal_elf_sym.st_shndx;
5484 switch (shndx)
5485 {
5486 case MAP_ONESYMTAB:
5487 shndx = elf_onesymtab (abfd);
5488 break;
5489 case MAP_DYNSYMTAB:
5490 shndx = elf_dynsymtab (abfd);
5491 break;
5492 case MAP_STRTAB:
5493 shndx = elf_tdata (abfd)->strtab_section;
5494 break;
5495 case MAP_SHSTRTAB:
5496 shndx = elf_tdata (abfd)->shstrtab_section;
5497 break;
5498 case MAP_SYM_SHNDX:
5499 shndx = elf_tdata (abfd)->symtab_shndx_section;
5500 break;
5501 default:
5502 break;
5503 }
5504 }
5505 else
5506 {
5507 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5508
5509 if (shndx == -1)
5510 {
5511 asection *sec2;
5512
5513 /* Writing this would be a hell of a lot easier if
5514 we had some decent documentation on bfd, and
5515 knew what to expect of the library, and what to
5516 demand of applications. For example, it
5517 appears that `objcopy' might not set the
5518 section of a symbol to be a section that is
5519 actually in the output file. */
5520 sec2 = bfd_get_section_by_name (abfd, sec->name);
5521 if (sec2 == NULL)
5522 {
5523 _bfd_error_handler (_("\
5524 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5525 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5526 sec->name);
5527 bfd_set_error (bfd_error_invalid_operation);
5528 _bfd_stringtab_free (stt);
5529 return FALSE;
5530 }
5531
5532 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5533 BFD_ASSERT (shndx != -1);
5534 }
5535 }
5536
5537 sym.st_shndx = shndx;
5538 }
5539
5540 if ((flags & BSF_THREAD_LOCAL) != 0)
5541 type = STT_TLS;
5542 else if ((flags & BSF_FUNCTION) != 0)
5543 type = STT_FUNC;
5544 else if ((flags & BSF_OBJECT) != 0)
5545 type = STT_OBJECT;
5546 else
5547 type = STT_NOTYPE;
5548
5549 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5550 type = STT_TLS;
5551
5552 /* Processor-specific types. */
5553 if (type_ptr != NULL
5554 && bed->elf_backend_get_symbol_type)
5555 type = ((*bed->elf_backend_get_symbol_type)
5556 (&type_ptr->internal_elf_sym, type));
5557
5558 if (flags & BSF_SECTION_SYM)
5559 {
5560 if (flags & BSF_GLOBAL)
5561 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5562 else
5563 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5564 }
5565 else if (bfd_is_com_section (syms[idx]->section))
5566 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5567 else if (bfd_is_und_section (syms[idx]->section))
5568 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5569 ? STB_WEAK
5570 : STB_GLOBAL),
5571 type);
5572 else if (flags & BSF_FILE)
5573 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5574 else
5575 {
5576 int bind = STB_LOCAL;
5577
5578 if (flags & BSF_LOCAL)
5579 bind = STB_LOCAL;
5580 else if (flags & BSF_WEAK)
5581 bind = STB_WEAK;
5582 else if (flags & BSF_GLOBAL)
5583 bind = STB_GLOBAL;
5584
5585 sym.st_info = ELF_ST_INFO (bind, type);
5586 }
5587
5588 if (type_ptr != NULL)
5589 sym.st_other = type_ptr->internal_elf_sym.st_other;
5590 else
5591 sym.st_other = 0;
5592
5593 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5594 outbound_syms += bed->s->sizeof_sym;
5595 if (outbound_shndx != NULL)
5596 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5597 }
5598
5599 *sttp = stt;
5600 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5601 symstrtab_hdr->sh_type = SHT_STRTAB;
5602
5603 symstrtab_hdr->sh_flags = 0;
5604 symstrtab_hdr->sh_addr = 0;
5605 symstrtab_hdr->sh_entsize = 0;
5606 symstrtab_hdr->sh_link = 0;
5607 symstrtab_hdr->sh_info = 0;
5608 symstrtab_hdr->sh_addralign = 1;
5609
5610 return TRUE;
5611 }
5612
5613 /* Return the number of bytes required to hold the symtab vector.
5614
5615 Note that we base it on the count plus 1, since we will null terminate
5616 the vector allocated based on this size. However, the ELF symbol table
5617 always has a dummy entry as symbol #0, so it ends up even. */
5618
5619 long
5620 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5621 {
5622 long symcount;
5623 long symtab_size;
5624 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5625
5626 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5627 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5628 if (symcount > 0)
5629 symtab_size -= sizeof (asymbol *);
5630
5631 return symtab_size;
5632 }
5633
5634 long
5635 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5636 {
5637 long symcount;
5638 long symtab_size;
5639 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5640
5641 if (elf_dynsymtab (abfd) == 0)
5642 {
5643 bfd_set_error (bfd_error_invalid_operation);
5644 return -1;
5645 }
5646
5647 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5648 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5649 if (symcount > 0)
5650 symtab_size -= sizeof (asymbol *);
5651
5652 return symtab_size;
5653 }
5654
5655 long
5656 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5657 sec_ptr asect)
5658 {
5659 return (asect->reloc_count + 1) * sizeof (arelent *);
5660 }
5661
5662 /* Canonicalize the relocs. */
5663
5664 long
5665 _bfd_elf_canonicalize_reloc (bfd *abfd,
5666 sec_ptr section,
5667 arelent **relptr,
5668 asymbol **symbols)
5669 {
5670 arelent *tblptr;
5671 unsigned int i;
5672 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5673
5674 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5675 return -1;
5676
5677 tblptr = section->relocation;
5678 for (i = 0; i < section->reloc_count; i++)
5679 *relptr++ = tblptr++;
5680
5681 *relptr = NULL;
5682
5683 return section->reloc_count;
5684 }
5685
5686 long
5687 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5688 {
5689 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5690 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5691
5692 if (symcount >= 0)
5693 bfd_get_symcount (abfd) = symcount;
5694 return symcount;
5695 }
5696
5697 long
5698 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5699 asymbol **allocation)
5700 {
5701 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5702 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5703
5704 if (symcount >= 0)
5705 bfd_get_dynamic_symcount (abfd) = symcount;
5706 return symcount;
5707 }
5708
5709 /* Return the size required for the dynamic reloc entries. Any
5710 section that was actually installed in the BFD, and has type
5711 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5712 considered to be a dynamic reloc section. */
5713
5714 long
5715 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5716 {
5717 long ret;
5718 asection *s;
5719
5720 if (elf_dynsymtab (abfd) == 0)
5721 {
5722 bfd_set_error (bfd_error_invalid_operation);
5723 return -1;
5724 }
5725
5726 ret = sizeof (arelent *);
5727 for (s = abfd->sections; s != NULL; s = s->next)
5728 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5729 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5730 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5731 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5732 * sizeof (arelent *));
5733
5734 return ret;
5735 }
5736
5737 /* Canonicalize the dynamic relocation entries. Note that we return
5738 the dynamic relocations as a single block, although they are
5739 actually associated with particular sections; the interface, which
5740 was designed for SunOS style shared libraries, expects that there
5741 is only one set of dynamic relocs. Any section that was actually
5742 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5743 the dynamic symbol table, is considered to be a dynamic reloc
5744 section. */
5745
5746 long
5747 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5748 arelent **storage,
5749 asymbol **syms)
5750 {
5751 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5752 asection *s;
5753 long ret;
5754
5755 if (elf_dynsymtab (abfd) == 0)
5756 {
5757 bfd_set_error (bfd_error_invalid_operation);
5758 return -1;
5759 }
5760
5761 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5762 ret = 0;
5763 for (s = abfd->sections; s != NULL; s = s->next)
5764 {
5765 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5766 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5767 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5768 {
5769 arelent *p;
5770 long count, i;
5771
5772 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5773 return -1;
5774 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5775 p = s->relocation;
5776 for (i = 0; i < count; i++)
5777 *storage++ = p++;
5778 ret += count;
5779 }
5780 }
5781
5782 *storage = NULL;
5783
5784 return ret;
5785 }
5786 \f
5787 /* Read in the version information. */
5788
5789 bfd_boolean
5790 _bfd_elf_slurp_version_tables (bfd *abfd)
5791 {
5792 bfd_byte *contents = NULL;
5793 bfd_size_type amt;
5794
5795 if (elf_dynverdef (abfd) != 0)
5796 {
5797 Elf_Internal_Shdr *hdr;
5798 Elf_External_Verdef *everdef;
5799 Elf_Internal_Verdef *iverdef;
5800 Elf_Internal_Verdef *iverdefarr;
5801 Elf_Internal_Verdef iverdefmem;
5802 unsigned int i;
5803 unsigned int maxidx;
5804
5805 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5806
5807 contents = bfd_malloc (hdr->sh_size);
5808 if (contents == NULL)
5809 goto error_return;
5810 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5811 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5812 goto error_return;
5813
5814 /* We know the number of entries in the section but not the maximum
5815 index. Therefore we have to run through all entries and find
5816 the maximum. */
5817 everdef = (Elf_External_Verdef *) contents;
5818 maxidx = 0;
5819 for (i = 0; i < hdr->sh_info; ++i)
5820 {
5821 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5822
5823 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5824 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5825
5826 everdef = ((Elf_External_Verdef *)
5827 ((bfd_byte *) everdef + iverdefmem.vd_next));
5828 }
5829
5830 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5831 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
5832 if (elf_tdata (abfd)->verdef == NULL)
5833 goto error_return;
5834
5835 elf_tdata (abfd)->cverdefs = maxidx;
5836
5837 everdef = (Elf_External_Verdef *) contents;
5838 iverdefarr = elf_tdata (abfd)->verdef;
5839 for (i = 0; i < hdr->sh_info; i++)
5840 {
5841 Elf_External_Verdaux *everdaux;
5842 Elf_Internal_Verdaux *iverdaux;
5843 unsigned int j;
5844
5845 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5846
5847 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5848 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5849
5850 iverdef->vd_bfd = abfd;
5851
5852 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5853 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
5854 if (iverdef->vd_auxptr == NULL)
5855 goto error_return;
5856
5857 everdaux = ((Elf_External_Verdaux *)
5858 ((bfd_byte *) everdef + iverdef->vd_aux));
5859 iverdaux = iverdef->vd_auxptr;
5860 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5861 {
5862 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5863
5864 iverdaux->vda_nodename =
5865 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5866 iverdaux->vda_name);
5867 if (iverdaux->vda_nodename == NULL)
5868 goto error_return;
5869
5870 if (j + 1 < iverdef->vd_cnt)
5871 iverdaux->vda_nextptr = iverdaux + 1;
5872 else
5873 iverdaux->vda_nextptr = NULL;
5874
5875 everdaux = ((Elf_External_Verdaux *)
5876 ((bfd_byte *) everdaux + iverdaux->vda_next));
5877 }
5878
5879 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5880
5881 if (i + 1 < hdr->sh_info)
5882 iverdef->vd_nextdef = iverdef + 1;
5883 else
5884 iverdef->vd_nextdef = NULL;
5885
5886 everdef = ((Elf_External_Verdef *)
5887 ((bfd_byte *) everdef + iverdef->vd_next));
5888 }
5889
5890 free (contents);
5891 contents = NULL;
5892 }
5893
5894 if (elf_dynverref (abfd) != 0)
5895 {
5896 Elf_Internal_Shdr *hdr;
5897 Elf_External_Verneed *everneed;
5898 Elf_Internal_Verneed *iverneed;
5899 unsigned int i;
5900
5901 hdr = &elf_tdata (abfd)->dynverref_hdr;
5902
5903 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5904 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
5905 if (elf_tdata (abfd)->verref == NULL)
5906 goto error_return;
5907
5908 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5909
5910 contents = bfd_malloc (hdr->sh_size);
5911 if (contents == NULL)
5912 goto error_return;
5913 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5914 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5915 goto error_return;
5916
5917 everneed = (Elf_External_Verneed *) contents;
5918 iverneed = elf_tdata (abfd)->verref;
5919 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5920 {
5921 Elf_External_Vernaux *evernaux;
5922 Elf_Internal_Vernaux *ivernaux;
5923 unsigned int j;
5924
5925 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5926
5927 iverneed->vn_bfd = abfd;
5928
5929 iverneed->vn_filename =
5930 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5931 iverneed->vn_file);
5932 if (iverneed->vn_filename == NULL)
5933 goto error_return;
5934
5935 amt = iverneed->vn_cnt;
5936 amt *= sizeof (Elf_Internal_Vernaux);
5937 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
5938
5939 evernaux = ((Elf_External_Vernaux *)
5940 ((bfd_byte *) everneed + iverneed->vn_aux));
5941 ivernaux = iverneed->vn_auxptr;
5942 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5943 {
5944 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5945
5946 ivernaux->vna_nodename =
5947 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5948 ivernaux->vna_name);
5949 if (ivernaux->vna_nodename == NULL)
5950 goto error_return;
5951
5952 if (j + 1 < iverneed->vn_cnt)
5953 ivernaux->vna_nextptr = ivernaux + 1;
5954 else
5955 ivernaux->vna_nextptr = NULL;
5956
5957 evernaux = ((Elf_External_Vernaux *)
5958 ((bfd_byte *) evernaux + ivernaux->vna_next));
5959 }
5960
5961 if (i + 1 < hdr->sh_info)
5962 iverneed->vn_nextref = iverneed + 1;
5963 else
5964 iverneed->vn_nextref = NULL;
5965
5966 everneed = ((Elf_External_Verneed *)
5967 ((bfd_byte *) everneed + iverneed->vn_next));
5968 }
5969
5970 free (contents);
5971 contents = NULL;
5972 }
5973
5974 return TRUE;
5975
5976 error_return:
5977 if (contents != NULL)
5978 free (contents);
5979 return FALSE;
5980 }
5981 \f
5982 asymbol *
5983 _bfd_elf_make_empty_symbol (bfd *abfd)
5984 {
5985 elf_symbol_type *newsym;
5986 bfd_size_type amt = sizeof (elf_symbol_type);
5987
5988 newsym = bfd_zalloc (abfd, amt);
5989 if (!newsym)
5990 return NULL;
5991 else
5992 {
5993 newsym->symbol.the_bfd = abfd;
5994 return &newsym->symbol;
5995 }
5996 }
5997
5998 void
5999 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6000 asymbol *symbol,
6001 symbol_info *ret)
6002 {
6003 bfd_symbol_info (symbol, ret);
6004 }
6005
6006 /* Return whether a symbol name implies a local symbol. Most targets
6007 use this function for the is_local_label_name entry point, but some
6008 override it. */
6009
6010 bfd_boolean
6011 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6012 const char *name)
6013 {
6014 /* Normal local symbols start with ``.L''. */
6015 if (name[0] == '.' && name[1] == 'L')
6016 return TRUE;
6017
6018 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6019 DWARF debugging symbols starting with ``..''. */
6020 if (name[0] == '.' && name[1] == '.')
6021 return TRUE;
6022
6023 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6024 emitting DWARF debugging output. I suspect this is actually a
6025 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6026 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6027 underscore to be emitted on some ELF targets). For ease of use,
6028 we treat such symbols as local. */
6029 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6030 return TRUE;
6031
6032 return FALSE;
6033 }
6034
6035 alent *
6036 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6037 asymbol *symbol ATTRIBUTE_UNUSED)
6038 {
6039 abort ();
6040 return NULL;
6041 }
6042
6043 bfd_boolean
6044 _bfd_elf_set_arch_mach (bfd *abfd,
6045 enum bfd_architecture arch,
6046 unsigned long machine)
6047 {
6048 /* If this isn't the right architecture for this backend, and this
6049 isn't the generic backend, fail. */
6050 if (arch != get_elf_backend_data (abfd)->arch
6051 && arch != bfd_arch_unknown
6052 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6053 return FALSE;
6054
6055 return bfd_default_set_arch_mach (abfd, arch, machine);
6056 }
6057
6058 /* Find the function to a particular section and offset,
6059 for error reporting. */
6060
6061 static bfd_boolean
6062 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6063 asection *section,
6064 asymbol **symbols,
6065 bfd_vma offset,
6066 const char **filename_ptr,
6067 const char **functionname_ptr)
6068 {
6069 const char *filename;
6070 asymbol *func;
6071 bfd_vma low_func;
6072 asymbol **p;
6073
6074 filename = NULL;
6075 func = NULL;
6076 low_func = 0;
6077
6078 for (p = symbols; *p != NULL; p++)
6079 {
6080 elf_symbol_type *q;
6081
6082 q = (elf_symbol_type *) *p;
6083
6084 if (bfd_get_section (&q->symbol) != section)
6085 continue;
6086
6087 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6088 {
6089 default:
6090 break;
6091 case STT_FILE:
6092 filename = bfd_asymbol_name (&q->symbol);
6093 break;
6094 case STT_NOTYPE:
6095 case STT_FUNC:
6096 if (q->symbol.section == section
6097 && q->symbol.value >= low_func
6098 && q->symbol.value <= offset)
6099 {
6100 func = (asymbol *) q;
6101 low_func = q->symbol.value;
6102 }
6103 break;
6104 }
6105 }
6106
6107 if (func == NULL)
6108 return FALSE;
6109
6110 if (filename_ptr)
6111 *filename_ptr = filename;
6112 if (functionname_ptr)
6113 *functionname_ptr = bfd_asymbol_name (func);
6114
6115 return TRUE;
6116 }
6117
6118 /* Find the nearest line to a particular section and offset,
6119 for error reporting. */
6120
6121 bfd_boolean
6122 _bfd_elf_find_nearest_line (bfd *abfd,
6123 asection *section,
6124 asymbol **symbols,
6125 bfd_vma offset,
6126 const char **filename_ptr,
6127 const char **functionname_ptr,
6128 unsigned int *line_ptr)
6129 {
6130 bfd_boolean found;
6131
6132 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6133 filename_ptr, functionname_ptr,
6134 line_ptr))
6135 {
6136 if (!*functionname_ptr)
6137 elf_find_function (abfd, section, symbols, offset,
6138 *filename_ptr ? NULL : filename_ptr,
6139 functionname_ptr);
6140
6141 return TRUE;
6142 }
6143
6144 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6145 filename_ptr, functionname_ptr,
6146 line_ptr, 0,
6147 &elf_tdata (abfd)->dwarf2_find_line_info))
6148 {
6149 if (!*functionname_ptr)
6150 elf_find_function (abfd, section, symbols, offset,
6151 *filename_ptr ? NULL : filename_ptr,
6152 functionname_ptr);
6153
6154 return TRUE;
6155 }
6156
6157 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6158 &found, filename_ptr,
6159 functionname_ptr, line_ptr,
6160 &elf_tdata (abfd)->line_info))
6161 return FALSE;
6162 if (found && (*functionname_ptr || *line_ptr))
6163 return TRUE;
6164
6165 if (symbols == NULL)
6166 return FALSE;
6167
6168 if (! elf_find_function (abfd, section, symbols, offset,
6169 filename_ptr, functionname_ptr))
6170 return FALSE;
6171
6172 *line_ptr = 0;
6173 return TRUE;
6174 }
6175
6176 int
6177 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6178 {
6179 int ret;
6180
6181 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6182 if (! reloc)
6183 ret += get_program_header_size (abfd);
6184 return ret;
6185 }
6186
6187 bfd_boolean
6188 _bfd_elf_set_section_contents (bfd *abfd,
6189 sec_ptr section,
6190 const void *location,
6191 file_ptr offset,
6192 bfd_size_type count)
6193 {
6194 Elf_Internal_Shdr *hdr;
6195 bfd_signed_vma pos;
6196
6197 if (! abfd->output_has_begun
6198 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6199 return FALSE;
6200
6201 hdr = &elf_section_data (section)->this_hdr;
6202 pos = hdr->sh_offset + offset;
6203 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6204 || bfd_bwrite (location, count, abfd) != count)
6205 return FALSE;
6206
6207 return TRUE;
6208 }
6209
6210 void
6211 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6212 arelent *cache_ptr ATTRIBUTE_UNUSED,
6213 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6214 {
6215 abort ();
6216 }
6217
6218 /* Try to convert a non-ELF reloc into an ELF one. */
6219
6220 bfd_boolean
6221 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6222 {
6223 /* Check whether we really have an ELF howto. */
6224
6225 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6226 {
6227 bfd_reloc_code_real_type code;
6228 reloc_howto_type *howto;
6229
6230 /* Alien reloc: Try to determine its type to replace it with an
6231 equivalent ELF reloc. */
6232
6233 if (areloc->howto->pc_relative)
6234 {
6235 switch (areloc->howto->bitsize)
6236 {
6237 case 8:
6238 code = BFD_RELOC_8_PCREL;
6239 break;
6240 case 12:
6241 code = BFD_RELOC_12_PCREL;
6242 break;
6243 case 16:
6244 code = BFD_RELOC_16_PCREL;
6245 break;
6246 case 24:
6247 code = BFD_RELOC_24_PCREL;
6248 break;
6249 case 32:
6250 code = BFD_RELOC_32_PCREL;
6251 break;
6252 case 64:
6253 code = BFD_RELOC_64_PCREL;
6254 break;
6255 default:
6256 goto fail;
6257 }
6258
6259 howto = bfd_reloc_type_lookup (abfd, code);
6260
6261 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6262 {
6263 if (howto->pcrel_offset)
6264 areloc->addend += areloc->address;
6265 else
6266 areloc->addend -= areloc->address; /* addend is unsigned!! */
6267 }
6268 }
6269 else
6270 {
6271 switch (areloc->howto->bitsize)
6272 {
6273 case 8:
6274 code = BFD_RELOC_8;
6275 break;
6276 case 14:
6277 code = BFD_RELOC_14;
6278 break;
6279 case 16:
6280 code = BFD_RELOC_16;
6281 break;
6282 case 26:
6283 code = BFD_RELOC_26;
6284 break;
6285 case 32:
6286 code = BFD_RELOC_32;
6287 break;
6288 case 64:
6289 code = BFD_RELOC_64;
6290 break;
6291 default:
6292 goto fail;
6293 }
6294
6295 howto = bfd_reloc_type_lookup (abfd, code);
6296 }
6297
6298 if (howto)
6299 areloc->howto = howto;
6300 else
6301 goto fail;
6302 }
6303
6304 return TRUE;
6305
6306 fail:
6307 (*_bfd_error_handler)
6308 (_("%s: unsupported relocation type %s"),
6309 bfd_archive_filename (abfd), areloc->howto->name);
6310 bfd_set_error (bfd_error_bad_value);
6311 return FALSE;
6312 }
6313
6314 bfd_boolean
6315 _bfd_elf_close_and_cleanup (bfd *abfd)
6316 {
6317 if (bfd_get_format (abfd) == bfd_object)
6318 {
6319 if (elf_shstrtab (abfd) != NULL)
6320 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6321 }
6322
6323 return _bfd_generic_close_and_cleanup (abfd);
6324 }
6325
6326 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6327 in the relocation's offset. Thus we cannot allow any sort of sanity
6328 range-checking to interfere. There is nothing else to do in processing
6329 this reloc. */
6330
6331 bfd_reloc_status_type
6332 _bfd_elf_rel_vtable_reloc_fn
6333 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6334 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6335 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6336 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6337 {
6338 return bfd_reloc_ok;
6339 }
6340 \f
6341 /* Elf core file support. Much of this only works on native
6342 toolchains, since we rely on knowing the
6343 machine-dependent procfs structure in order to pick
6344 out details about the corefile. */
6345
6346 #ifdef HAVE_SYS_PROCFS_H
6347 # include <sys/procfs.h>
6348 #endif
6349
6350 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6351
6352 static int
6353 elfcore_make_pid (bfd *abfd)
6354 {
6355 return ((elf_tdata (abfd)->core_lwpid << 16)
6356 + (elf_tdata (abfd)->core_pid));
6357 }
6358
6359 /* If there isn't a section called NAME, make one, using
6360 data from SECT. Note, this function will generate a
6361 reference to NAME, so you shouldn't deallocate or
6362 overwrite it. */
6363
6364 static bfd_boolean
6365 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6366 {
6367 asection *sect2;
6368
6369 if (bfd_get_section_by_name (abfd, name) != NULL)
6370 return TRUE;
6371
6372 sect2 = bfd_make_section (abfd, name);
6373 if (sect2 == NULL)
6374 return FALSE;
6375
6376 sect2->_raw_size = sect->_raw_size;
6377 sect2->filepos = sect->filepos;
6378 sect2->flags = sect->flags;
6379 sect2->alignment_power = sect->alignment_power;
6380 return TRUE;
6381 }
6382
6383 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6384 actually creates up to two pseudosections:
6385 - For the single-threaded case, a section named NAME, unless
6386 such a section already exists.
6387 - For the multi-threaded case, a section named "NAME/PID", where
6388 PID is elfcore_make_pid (abfd).
6389 Both pseudosections have identical contents. */
6390 bfd_boolean
6391 _bfd_elfcore_make_pseudosection (bfd *abfd,
6392 char *name,
6393 size_t size,
6394 ufile_ptr filepos)
6395 {
6396 char buf[100];
6397 char *threaded_name;
6398 size_t len;
6399 asection *sect;
6400
6401 /* Build the section name. */
6402
6403 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6404 len = strlen (buf) + 1;
6405 threaded_name = bfd_alloc (abfd, len);
6406 if (threaded_name == NULL)
6407 return FALSE;
6408 memcpy (threaded_name, buf, len);
6409
6410 sect = bfd_make_section_anyway (abfd, threaded_name);
6411 if (sect == NULL)
6412 return FALSE;
6413 sect->_raw_size = size;
6414 sect->filepos = filepos;
6415 sect->flags = SEC_HAS_CONTENTS;
6416 sect->alignment_power = 2;
6417
6418 return elfcore_maybe_make_sect (abfd, name, sect);
6419 }
6420
6421 /* prstatus_t exists on:
6422 solaris 2.5+
6423 linux 2.[01] + glibc
6424 unixware 4.2
6425 */
6426
6427 #if defined (HAVE_PRSTATUS_T)
6428
6429 static bfd_boolean
6430 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6431 {
6432 size_t raw_size;
6433 int offset;
6434
6435 if (note->descsz == sizeof (prstatus_t))
6436 {
6437 prstatus_t prstat;
6438
6439 raw_size = sizeof (prstat.pr_reg);
6440 offset = offsetof (prstatus_t, pr_reg);
6441 memcpy (&prstat, note->descdata, sizeof (prstat));
6442
6443 /* Do not overwrite the core signal if it
6444 has already been set by another thread. */
6445 if (elf_tdata (abfd)->core_signal == 0)
6446 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6447 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6448
6449 /* pr_who exists on:
6450 solaris 2.5+
6451 unixware 4.2
6452 pr_who doesn't exist on:
6453 linux 2.[01]
6454 */
6455 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6456 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6457 #endif
6458 }
6459 #if defined (HAVE_PRSTATUS32_T)
6460 else if (note->descsz == sizeof (prstatus32_t))
6461 {
6462 /* 64-bit host, 32-bit corefile */
6463 prstatus32_t prstat;
6464
6465 raw_size = sizeof (prstat.pr_reg);
6466 offset = offsetof (prstatus32_t, pr_reg);
6467 memcpy (&prstat, note->descdata, sizeof (prstat));
6468
6469 /* Do not overwrite the core signal if it
6470 has already been set by another thread. */
6471 if (elf_tdata (abfd)->core_signal == 0)
6472 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6473 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6474
6475 /* pr_who exists on:
6476 solaris 2.5+
6477 unixware 4.2
6478 pr_who doesn't exist on:
6479 linux 2.[01]
6480 */
6481 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6482 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6483 #endif
6484 }
6485 #endif /* HAVE_PRSTATUS32_T */
6486 else
6487 {
6488 /* Fail - we don't know how to handle any other
6489 note size (ie. data object type). */
6490 return TRUE;
6491 }
6492
6493 /* Make a ".reg/999" section and a ".reg" section. */
6494 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6495 raw_size, note->descpos + offset);
6496 }
6497 #endif /* defined (HAVE_PRSTATUS_T) */
6498
6499 /* Create a pseudosection containing the exact contents of NOTE. */
6500 static bfd_boolean
6501 elfcore_make_note_pseudosection (bfd *abfd,
6502 char *name,
6503 Elf_Internal_Note *note)
6504 {
6505 return _bfd_elfcore_make_pseudosection (abfd, name,
6506 note->descsz, note->descpos);
6507 }
6508
6509 /* There isn't a consistent prfpregset_t across platforms,
6510 but it doesn't matter, because we don't have to pick this
6511 data structure apart. */
6512
6513 static bfd_boolean
6514 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6515 {
6516 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6517 }
6518
6519 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6520 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6521 literally. */
6522
6523 static bfd_boolean
6524 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6525 {
6526 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6527 }
6528
6529 #if defined (HAVE_PRPSINFO_T)
6530 typedef prpsinfo_t elfcore_psinfo_t;
6531 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6532 typedef prpsinfo32_t elfcore_psinfo32_t;
6533 #endif
6534 #endif
6535
6536 #if defined (HAVE_PSINFO_T)
6537 typedef psinfo_t elfcore_psinfo_t;
6538 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6539 typedef psinfo32_t elfcore_psinfo32_t;
6540 #endif
6541 #endif
6542
6543 /* return a malloc'ed copy of a string at START which is at
6544 most MAX bytes long, possibly without a terminating '\0'.
6545 the copy will always have a terminating '\0'. */
6546
6547 char *
6548 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6549 {
6550 char *dups;
6551 char *end = memchr (start, '\0', max);
6552 size_t len;
6553
6554 if (end == NULL)
6555 len = max;
6556 else
6557 len = end - start;
6558
6559 dups = bfd_alloc (abfd, len + 1);
6560 if (dups == NULL)
6561 return NULL;
6562
6563 memcpy (dups, start, len);
6564 dups[len] = '\0';
6565
6566 return dups;
6567 }
6568
6569 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6570 static bfd_boolean
6571 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6572 {
6573 if (note->descsz == sizeof (elfcore_psinfo_t))
6574 {
6575 elfcore_psinfo_t psinfo;
6576
6577 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6578
6579 elf_tdata (abfd)->core_program
6580 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6581 sizeof (psinfo.pr_fname));
6582
6583 elf_tdata (abfd)->core_command
6584 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6585 sizeof (psinfo.pr_psargs));
6586 }
6587 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6588 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6589 {
6590 /* 64-bit host, 32-bit corefile */
6591 elfcore_psinfo32_t psinfo;
6592
6593 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6594
6595 elf_tdata (abfd)->core_program
6596 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6597 sizeof (psinfo.pr_fname));
6598
6599 elf_tdata (abfd)->core_command
6600 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6601 sizeof (psinfo.pr_psargs));
6602 }
6603 #endif
6604
6605 else
6606 {
6607 /* Fail - we don't know how to handle any other
6608 note size (ie. data object type). */
6609 return TRUE;
6610 }
6611
6612 /* Note that for some reason, a spurious space is tacked
6613 onto the end of the args in some (at least one anyway)
6614 implementations, so strip it off if it exists. */
6615
6616 {
6617 char *command = elf_tdata (abfd)->core_command;
6618 int n = strlen (command);
6619
6620 if (0 < n && command[n - 1] == ' ')
6621 command[n - 1] = '\0';
6622 }
6623
6624 return TRUE;
6625 }
6626 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6627
6628 #if defined (HAVE_PSTATUS_T)
6629 static bfd_boolean
6630 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6631 {
6632 if (note->descsz == sizeof (pstatus_t)
6633 #if defined (HAVE_PXSTATUS_T)
6634 || note->descsz == sizeof (pxstatus_t)
6635 #endif
6636 )
6637 {
6638 pstatus_t pstat;
6639
6640 memcpy (&pstat, note->descdata, sizeof (pstat));
6641
6642 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6643 }
6644 #if defined (HAVE_PSTATUS32_T)
6645 else if (note->descsz == sizeof (pstatus32_t))
6646 {
6647 /* 64-bit host, 32-bit corefile */
6648 pstatus32_t pstat;
6649
6650 memcpy (&pstat, note->descdata, sizeof (pstat));
6651
6652 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6653 }
6654 #endif
6655 /* Could grab some more details from the "representative"
6656 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6657 NT_LWPSTATUS note, presumably. */
6658
6659 return TRUE;
6660 }
6661 #endif /* defined (HAVE_PSTATUS_T) */
6662
6663 #if defined (HAVE_LWPSTATUS_T)
6664 static bfd_boolean
6665 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6666 {
6667 lwpstatus_t lwpstat;
6668 char buf[100];
6669 char *name;
6670 size_t len;
6671 asection *sect;
6672
6673 if (note->descsz != sizeof (lwpstat)
6674 #if defined (HAVE_LWPXSTATUS_T)
6675 && note->descsz != sizeof (lwpxstatus_t)
6676 #endif
6677 )
6678 return TRUE;
6679
6680 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6681
6682 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6683 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6684
6685 /* Make a ".reg/999" section. */
6686
6687 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6688 len = strlen (buf) + 1;
6689 name = bfd_alloc (abfd, len);
6690 if (name == NULL)
6691 return FALSE;
6692 memcpy (name, buf, len);
6693
6694 sect = bfd_make_section_anyway (abfd, name);
6695 if (sect == NULL)
6696 return FALSE;
6697
6698 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6699 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6700 sect->filepos = note->descpos
6701 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6702 #endif
6703
6704 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6705 sect->_raw_size = sizeof (lwpstat.pr_reg);
6706 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6707 #endif
6708
6709 sect->flags = SEC_HAS_CONTENTS;
6710 sect->alignment_power = 2;
6711
6712 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6713 return FALSE;
6714
6715 /* Make a ".reg2/999" section */
6716
6717 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6718 len = strlen (buf) + 1;
6719 name = bfd_alloc (abfd, len);
6720 if (name == NULL)
6721 return FALSE;
6722 memcpy (name, buf, len);
6723
6724 sect = bfd_make_section_anyway (abfd, name);
6725 if (sect == NULL)
6726 return FALSE;
6727
6728 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6729 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6730 sect->filepos = note->descpos
6731 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6732 #endif
6733
6734 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6735 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6736 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6737 #endif
6738
6739 sect->flags = SEC_HAS_CONTENTS;
6740 sect->alignment_power = 2;
6741
6742 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6743 }
6744 #endif /* defined (HAVE_LWPSTATUS_T) */
6745
6746 #if defined (HAVE_WIN32_PSTATUS_T)
6747 static bfd_boolean
6748 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6749 {
6750 char buf[30];
6751 char *name;
6752 size_t len;
6753 asection *sect;
6754 win32_pstatus_t pstatus;
6755
6756 if (note->descsz < sizeof (pstatus))
6757 return TRUE;
6758
6759 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6760
6761 switch (pstatus.data_type)
6762 {
6763 case NOTE_INFO_PROCESS:
6764 /* FIXME: need to add ->core_command. */
6765 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6766 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6767 break;
6768
6769 case NOTE_INFO_THREAD:
6770 /* Make a ".reg/999" section. */
6771 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6772
6773 len = strlen (buf) + 1;
6774 name = bfd_alloc (abfd, len);
6775 if (name == NULL)
6776 return FALSE;
6777
6778 memcpy (name, buf, len);
6779
6780 sect = bfd_make_section_anyway (abfd, name);
6781 if (sect == NULL)
6782 return FALSE;
6783
6784 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6785 sect->filepos = (note->descpos
6786 + offsetof (struct win32_pstatus,
6787 data.thread_info.thread_context));
6788 sect->flags = SEC_HAS_CONTENTS;
6789 sect->alignment_power = 2;
6790
6791 if (pstatus.data.thread_info.is_active_thread)
6792 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6793 return FALSE;
6794 break;
6795
6796 case NOTE_INFO_MODULE:
6797 /* Make a ".module/xxxxxxxx" section. */
6798 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6799
6800 len = strlen (buf) + 1;
6801 name = bfd_alloc (abfd, len);
6802 if (name == NULL)
6803 return FALSE;
6804
6805 memcpy (name, buf, len);
6806
6807 sect = bfd_make_section_anyway (abfd, name);
6808
6809 if (sect == NULL)
6810 return FALSE;
6811
6812 sect->_raw_size = note->descsz;
6813 sect->filepos = note->descpos;
6814 sect->flags = SEC_HAS_CONTENTS;
6815 sect->alignment_power = 2;
6816 break;
6817
6818 default:
6819 return TRUE;
6820 }
6821
6822 return TRUE;
6823 }
6824 #endif /* HAVE_WIN32_PSTATUS_T */
6825
6826 static bfd_boolean
6827 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
6828 {
6829 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6830
6831 switch (note->type)
6832 {
6833 default:
6834 return TRUE;
6835
6836 case NT_PRSTATUS:
6837 if (bed->elf_backend_grok_prstatus)
6838 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6839 return TRUE;
6840 #if defined (HAVE_PRSTATUS_T)
6841 return elfcore_grok_prstatus (abfd, note);
6842 #else
6843 return TRUE;
6844 #endif
6845
6846 #if defined (HAVE_PSTATUS_T)
6847 case NT_PSTATUS:
6848 return elfcore_grok_pstatus (abfd, note);
6849 #endif
6850
6851 #if defined (HAVE_LWPSTATUS_T)
6852 case NT_LWPSTATUS:
6853 return elfcore_grok_lwpstatus (abfd, note);
6854 #endif
6855
6856 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6857 return elfcore_grok_prfpreg (abfd, note);
6858
6859 #if defined (HAVE_WIN32_PSTATUS_T)
6860 case NT_WIN32PSTATUS:
6861 return elfcore_grok_win32pstatus (abfd, note);
6862 #endif
6863
6864 case NT_PRXFPREG: /* Linux SSE extension */
6865 if (note->namesz == 6
6866 && strcmp (note->namedata, "LINUX") == 0)
6867 return elfcore_grok_prxfpreg (abfd, note);
6868 else
6869 return TRUE;
6870
6871 case NT_PRPSINFO:
6872 case NT_PSINFO:
6873 if (bed->elf_backend_grok_psinfo)
6874 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6875 return TRUE;
6876 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6877 return elfcore_grok_psinfo (abfd, note);
6878 #else
6879 return TRUE;
6880 #endif
6881
6882 case NT_AUXV:
6883 {
6884 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
6885
6886 if (sect == NULL)
6887 return FALSE;
6888 sect->_raw_size = note->descsz;
6889 sect->filepos = note->descpos;
6890 sect->flags = SEC_HAS_CONTENTS;
6891 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
6892
6893 return TRUE;
6894 }
6895 }
6896 }
6897
6898 static bfd_boolean
6899 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
6900 {
6901 char *cp;
6902
6903 cp = strchr (note->namedata, '@');
6904 if (cp != NULL)
6905 {
6906 *lwpidp = atoi(cp + 1);
6907 return TRUE;
6908 }
6909 return FALSE;
6910 }
6911
6912 static bfd_boolean
6913 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
6914 {
6915
6916 /* Signal number at offset 0x08. */
6917 elf_tdata (abfd)->core_signal
6918 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6919
6920 /* Process ID at offset 0x50. */
6921 elf_tdata (abfd)->core_pid
6922 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6923
6924 /* Command name at 0x7c (max 32 bytes, including nul). */
6925 elf_tdata (abfd)->core_command
6926 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6927
6928 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
6929 note);
6930 }
6931
6932 static bfd_boolean
6933 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
6934 {
6935 int lwp;
6936
6937 if (elfcore_netbsd_get_lwpid (note, &lwp))
6938 elf_tdata (abfd)->core_lwpid = lwp;
6939
6940 if (note->type == NT_NETBSDCORE_PROCINFO)
6941 {
6942 /* NetBSD-specific core "procinfo". Note that we expect to
6943 find this note before any of the others, which is fine,
6944 since the kernel writes this note out first when it
6945 creates a core file. */
6946
6947 return elfcore_grok_netbsd_procinfo (abfd, note);
6948 }
6949
6950 /* As of Jan 2002 there are no other machine-independent notes
6951 defined for NetBSD core files. If the note type is less
6952 than the start of the machine-dependent note types, we don't
6953 understand it. */
6954
6955 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6956 return TRUE;
6957
6958
6959 switch (bfd_get_arch (abfd))
6960 {
6961 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6962 PT_GETFPREGS == mach+2. */
6963
6964 case bfd_arch_alpha:
6965 case bfd_arch_sparc:
6966 switch (note->type)
6967 {
6968 case NT_NETBSDCORE_FIRSTMACH+0:
6969 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6970
6971 case NT_NETBSDCORE_FIRSTMACH+2:
6972 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6973
6974 default:
6975 return TRUE;
6976 }
6977
6978 /* On all other arch's, PT_GETREGS == mach+1 and
6979 PT_GETFPREGS == mach+3. */
6980
6981 default:
6982 switch (note->type)
6983 {
6984 case NT_NETBSDCORE_FIRSTMACH+1:
6985 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6986
6987 case NT_NETBSDCORE_FIRSTMACH+3:
6988 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6989
6990 default:
6991 return TRUE;
6992 }
6993 }
6994 /* NOTREACHED */
6995 }
6996
6997 static bfd_boolean
6998 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
6999 {
7000 void *ddata = note->descdata;
7001 char buf[100];
7002 char *name;
7003 asection *sect;
7004 short sig;
7005 unsigned flags;
7006
7007 /* nto_procfs_status 'pid' field is at offset 0. */
7008 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7009
7010 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7011 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7012
7013 /* nto_procfs_status 'flags' field is at offset 8. */
7014 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7015
7016 /* nto_procfs_status 'what' field is at offset 14. */
7017 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7018 {
7019 elf_tdata (abfd)->core_signal = sig;
7020 elf_tdata (abfd)->core_lwpid = *tid;
7021 }
7022
7023 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7024 do not come from signals so we make sure we set the current
7025 thread just in case. */
7026 if (flags & 0x00000080)
7027 elf_tdata (abfd)->core_lwpid = *tid;
7028
7029 /* Make a ".qnx_core_status/%d" section. */
7030 sprintf (buf, ".qnx_core_status/%d", *tid);
7031
7032 name = bfd_alloc (abfd, strlen (buf) + 1);
7033 if (name == NULL)
7034 return FALSE;
7035 strcpy (name, buf);
7036
7037 sect = bfd_make_section_anyway (abfd, name);
7038 if (sect == NULL)
7039 return FALSE;
7040
7041 sect->_raw_size = note->descsz;
7042 sect->filepos = note->descpos;
7043 sect->flags = SEC_HAS_CONTENTS;
7044 sect->alignment_power = 2;
7045
7046 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7047 }
7048
7049 static bfd_boolean
7050 elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
7051 {
7052 char buf[100];
7053 char *name;
7054 asection *sect;
7055
7056 /* Make a ".reg/%d" section. */
7057 sprintf (buf, ".reg/%d", tid);
7058
7059 name = bfd_alloc (abfd, strlen (buf) + 1);
7060 if (name == NULL)
7061 return FALSE;
7062 strcpy (name, buf);
7063
7064 sect = bfd_make_section_anyway (abfd, name);
7065 if (sect == NULL)
7066 return FALSE;
7067
7068 sect->_raw_size = note->descsz;
7069 sect->filepos = note->descpos;
7070 sect->flags = SEC_HAS_CONTENTS;
7071 sect->alignment_power = 2;
7072
7073 /* This is the current thread. */
7074 if (elf_tdata (abfd)->core_lwpid == tid)
7075 return elfcore_maybe_make_sect (abfd, ".reg", sect);
7076
7077 return TRUE;
7078 }
7079
7080 #define BFD_QNT_CORE_INFO 7
7081 #define BFD_QNT_CORE_STATUS 8
7082 #define BFD_QNT_CORE_GREG 9
7083 #define BFD_QNT_CORE_FPREG 10
7084
7085 static bfd_boolean
7086 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7087 {
7088 /* Every GREG section has a STATUS section before it. Store the
7089 tid from the previous call to pass down to the next gregs
7090 function. */
7091 static pid_t tid = 1;
7092
7093 switch (note->type)
7094 {
7095 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7096 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7097 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7098 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7099 default: return TRUE;
7100 }
7101 }
7102
7103 /* Function: elfcore_write_note
7104
7105 Inputs:
7106 buffer to hold note
7107 name of note
7108 type of note
7109 data for note
7110 size of data for note
7111
7112 Return:
7113 End of buffer containing note. */
7114
7115 char *
7116 elfcore_write_note (bfd *abfd,
7117 char *buf,
7118 int *bufsiz,
7119 const char *name,
7120 int type,
7121 const void *input,
7122 int size)
7123 {
7124 Elf_External_Note *xnp;
7125 size_t namesz;
7126 size_t pad;
7127 size_t newspace;
7128 char *p, *dest;
7129
7130 namesz = 0;
7131 pad = 0;
7132 if (name != NULL)
7133 {
7134 const struct elf_backend_data *bed;
7135
7136 namesz = strlen (name) + 1;
7137 bed = get_elf_backend_data (abfd);
7138 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7139 }
7140
7141 newspace = 12 + namesz + pad + size;
7142
7143 p = realloc (buf, *bufsiz + newspace);
7144 dest = p + *bufsiz;
7145 *bufsiz += newspace;
7146 xnp = (Elf_External_Note *) dest;
7147 H_PUT_32 (abfd, namesz, xnp->namesz);
7148 H_PUT_32 (abfd, size, xnp->descsz);
7149 H_PUT_32 (abfd, type, xnp->type);
7150 dest = xnp->name;
7151 if (name != NULL)
7152 {
7153 memcpy (dest, name, namesz);
7154 dest += namesz;
7155 while (pad != 0)
7156 {
7157 *dest++ = '\0';
7158 --pad;
7159 }
7160 }
7161 memcpy (dest, input, size);
7162 return p;
7163 }
7164
7165 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7166 char *
7167 elfcore_write_prpsinfo (bfd *abfd,
7168 char *buf,
7169 int *bufsiz,
7170 const char *fname,
7171 const char *psargs)
7172 {
7173 int note_type;
7174 char *note_name = "CORE";
7175
7176 #if defined (HAVE_PSINFO_T)
7177 psinfo_t data;
7178 note_type = NT_PSINFO;
7179 #else
7180 prpsinfo_t data;
7181 note_type = NT_PRPSINFO;
7182 #endif
7183
7184 memset (&data, 0, sizeof (data));
7185 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7186 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7187 return elfcore_write_note (abfd, buf, bufsiz,
7188 note_name, note_type, &data, sizeof (data));
7189 }
7190 #endif /* PSINFO_T or PRPSINFO_T */
7191
7192 #if defined (HAVE_PRSTATUS_T)
7193 char *
7194 elfcore_write_prstatus (bfd *abfd,
7195 char *buf,
7196 int *bufsiz,
7197 long pid,
7198 int cursig,
7199 const void *gregs)
7200 {
7201 prstatus_t prstat;
7202 char *note_name = "CORE";
7203
7204 memset (&prstat, 0, sizeof (prstat));
7205 prstat.pr_pid = pid;
7206 prstat.pr_cursig = cursig;
7207 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7208 return elfcore_write_note (abfd, buf, bufsiz,
7209 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7210 }
7211 #endif /* HAVE_PRSTATUS_T */
7212
7213 #if defined (HAVE_LWPSTATUS_T)
7214 char *
7215 elfcore_write_lwpstatus (bfd *abfd,
7216 char *buf,
7217 int *bufsiz,
7218 long pid,
7219 int cursig,
7220 const void *gregs)
7221 {
7222 lwpstatus_t lwpstat;
7223 char *note_name = "CORE";
7224
7225 memset (&lwpstat, 0, sizeof (lwpstat));
7226 lwpstat.pr_lwpid = pid >> 16;
7227 lwpstat.pr_cursig = cursig;
7228 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7229 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7230 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7231 #if !defined(gregs)
7232 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7233 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7234 #else
7235 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7236 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7237 #endif
7238 #endif
7239 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7240 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7241 }
7242 #endif /* HAVE_LWPSTATUS_T */
7243
7244 #if defined (HAVE_PSTATUS_T)
7245 char *
7246 elfcore_write_pstatus (bfd *abfd,
7247 char *buf,
7248 int *bufsiz,
7249 long pid,
7250 int cursig,
7251 const void *gregs)
7252 {
7253 pstatus_t pstat;
7254 char *note_name = "CORE";
7255
7256 memset (&pstat, 0, sizeof (pstat));
7257 pstat.pr_pid = pid & 0xffff;
7258 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7259 NT_PSTATUS, &pstat, sizeof (pstat));
7260 return buf;
7261 }
7262 #endif /* HAVE_PSTATUS_T */
7263
7264 char *
7265 elfcore_write_prfpreg (bfd *abfd,
7266 char *buf,
7267 int *bufsiz,
7268 const void *fpregs,
7269 int size)
7270 {
7271 char *note_name = "CORE";
7272 return elfcore_write_note (abfd, buf, bufsiz,
7273 note_name, NT_FPREGSET, fpregs, size);
7274 }
7275
7276 char *
7277 elfcore_write_prxfpreg (bfd *abfd,
7278 char *buf,
7279 int *bufsiz,
7280 const void *xfpregs,
7281 int size)
7282 {
7283 char *note_name = "LINUX";
7284 return elfcore_write_note (abfd, buf, bufsiz,
7285 note_name, NT_PRXFPREG, xfpregs, size);
7286 }
7287
7288 static bfd_boolean
7289 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7290 {
7291 char *buf;
7292 char *p;
7293
7294 if (size <= 0)
7295 return TRUE;
7296
7297 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7298 return FALSE;
7299
7300 buf = bfd_malloc (size);
7301 if (buf == NULL)
7302 return FALSE;
7303
7304 if (bfd_bread (buf, size, abfd) != size)
7305 {
7306 error:
7307 free (buf);
7308 return FALSE;
7309 }
7310
7311 p = buf;
7312 while (p < buf + size)
7313 {
7314 /* FIXME: bad alignment assumption. */
7315 Elf_External_Note *xnp = (Elf_External_Note *) p;
7316 Elf_Internal_Note in;
7317
7318 in.type = H_GET_32 (abfd, xnp->type);
7319
7320 in.namesz = H_GET_32 (abfd, xnp->namesz);
7321 in.namedata = xnp->name;
7322
7323 in.descsz = H_GET_32 (abfd, xnp->descsz);
7324 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7325 in.descpos = offset + (in.descdata - buf);
7326
7327 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7328 {
7329 if (! elfcore_grok_netbsd_note (abfd, &in))
7330 goto error;
7331 }
7332 else if (strncmp (in.namedata, "QNX", 3) == 0)
7333 {
7334 if (! elfcore_grok_nto_note (abfd, &in))
7335 goto error;
7336 }
7337 else
7338 {
7339 if (! elfcore_grok_note (abfd, &in))
7340 goto error;
7341 }
7342
7343 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7344 }
7345
7346 free (buf);
7347 return TRUE;
7348 }
7349 \f
7350 /* Providing external access to the ELF program header table. */
7351
7352 /* Return an upper bound on the number of bytes required to store a
7353 copy of ABFD's program header table entries. Return -1 if an error
7354 occurs; bfd_get_error will return an appropriate code. */
7355
7356 long
7357 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7358 {
7359 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7360 {
7361 bfd_set_error (bfd_error_wrong_format);
7362 return -1;
7363 }
7364
7365 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7366 }
7367
7368 /* Copy ABFD's program header table entries to *PHDRS. The entries
7369 will be stored as an array of Elf_Internal_Phdr structures, as
7370 defined in include/elf/internal.h. To find out how large the
7371 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7372
7373 Return the number of program header table entries read, or -1 if an
7374 error occurs; bfd_get_error will return an appropriate code. */
7375
7376 int
7377 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7378 {
7379 int num_phdrs;
7380
7381 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7382 {
7383 bfd_set_error (bfd_error_wrong_format);
7384 return -1;
7385 }
7386
7387 num_phdrs = elf_elfheader (abfd)->e_phnum;
7388 memcpy (phdrs, elf_tdata (abfd)->phdr,
7389 num_phdrs * sizeof (Elf_Internal_Phdr));
7390
7391 return num_phdrs;
7392 }
7393
7394 void
7395 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7396 {
7397 #ifdef BFD64
7398 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7399
7400 i_ehdrp = elf_elfheader (abfd);
7401 if (i_ehdrp == NULL)
7402 sprintf_vma (buf, value);
7403 else
7404 {
7405 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7406 {
7407 #if BFD_HOST_64BIT_LONG
7408 sprintf (buf, "%016lx", value);
7409 #else
7410 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7411 _bfd_int64_low (value));
7412 #endif
7413 }
7414 else
7415 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7416 }
7417 #else
7418 sprintf_vma (buf, value);
7419 #endif
7420 }
7421
7422 void
7423 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7424 {
7425 #ifdef BFD64
7426 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7427
7428 i_ehdrp = elf_elfheader (abfd);
7429 if (i_ehdrp == NULL)
7430 fprintf_vma ((FILE *) stream, value);
7431 else
7432 {
7433 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7434 {
7435 #if BFD_HOST_64BIT_LONG
7436 fprintf ((FILE *) stream, "%016lx", value);
7437 #else
7438 fprintf ((FILE *) stream, "%08lx%08lx",
7439 _bfd_int64_high (value), _bfd_int64_low (value));
7440 #endif
7441 }
7442 else
7443 fprintf ((FILE *) stream, "%08lx",
7444 (unsigned long) (value & 0xffffffff));
7445 }
7446 #else
7447 fprintf_vma ((FILE *) stream, value);
7448 #endif
7449 }
7450
7451 enum elf_reloc_type_class
7452 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7453 {
7454 return reloc_class_normal;
7455 }
7456
7457 /* For RELA architectures, return the relocation value for a
7458 relocation against a local symbol. */
7459
7460 bfd_vma
7461 _bfd_elf_rela_local_sym (bfd *abfd,
7462 Elf_Internal_Sym *sym,
7463 asection **psec,
7464 Elf_Internal_Rela *rel)
7465 {
7466 asection *sec = *psec;
7467 bfd_vma relocation;
7468
7469 relocation = (sec->output_section->vma
7470 + sec->output_offset
7471 + sym->st_value);
7472 if ((sec->flags & SEC_MERGE)
7473 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7474 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7475 {
7476 rel->r_addend =
7477 _bfd_merged_section_offset (abfd, psec,
7478 elf_section_data (sec)->sec_info,
7479 sym->st_value + rel->r_addend,
7480 0);
7481 sec = *psec;
7482 rel->r_addend -= relocation;
7483 rel->r_addend += sec->output_section->vma + sec->output_offset;
7484 }
7485 return relocation;
7486 }
7487
7488 bfd_vma
7489 _bfd_elf_rel_local_sym (bfd *abfd,
7490 Elf_Internal_Sym *sym,
7491 asection **psec,
7492 bfd_vma addend)
7493 {
7494 asection *sec = *psec;
7495
7496 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7497 return sym->st_value + addend;
7498
7499 return _bfd_merged_section_offset (abfd, psec,
7500 elf_section_data (sec)->sec_info,
7501 sym->st_value + addend, 0);
7502 }
7503
7504 bfd_vma
7505 _bfd_elf_section_offset (bfd *abfd,
7506 struct bfd_link_info *info,
7507 asection *sec,
7508 bfd_vma offset)
7509 {
7510 struct bfd_elf_section_data *sec_data;
7511
7512 sec_data = elf_section_data (sec);
7513 switch (sec->sec_info_type)
7514 {
7515 case ELF_INFO_TYPE_STABS:
7516 return _bfd_stab_section_offset (abfd,
7517 &elf_hash_table (info)->merge_info,
7518 sec, &sec_data->sec_info, offset);
7519 case ELF_INFO_TYPE_EH_FRAME:
7520 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7521 default:
7522 return offset;
7523 }
7524 }
7525 \f
7526 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7527 reconstruct an ELF file by reading the segments out of remote memory
7528 based on the ELF file header at EHDR_VMA and the ELF program headers it
7529 points to. If not null, *LOADBASEP is filled in with the difference
7530 between the VMAs from which the segments were read, and the VMAs the
7531 file headers (and hence BFD's idea of each section's VMA) put them at.
7532
7533 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7534 remote memory at target address VMA into the local buffer at MYADDR; it
7535 should return zero on success or an `errno' code on failure. TEMPL must
7536 be a BFD for an ELF target with the word size and byte order found in
7537 the remote memory. */
7538
7539 bfd *
7540 bfd_elf_bfd_from_remote_memory
7541 (bfd *templ,
7542 bfd_vma ehdr_vma,
7543 bfd_vma *loadbasep,
7544 int (*target_read_memory) (bfd_vma, char *, int))
7545 {
7546 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7547 (templ, ehdr_vma, loadbasep, target_read_memory);
7548 }
7549 \f
7550 long
7551 _bfd_elf_get_synthetic_symtab (bfd *abfd, asymbol **dynsyms, asymbol **ret)
7552 {
7553 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7554 asection *relplt;
7555 asymbol *s;
7556 const char *relplt_name;
7557 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7558 arelent *p;
7559 long count, i, n;
7560 size_t size;
7561 Elf_Internal_Shdr *hdr;
7562 char *names;
7563 asection *plt;
7564
7565 *ret = NULL;
7566 if (!bed->plt_sym_val)
7567 return 0;
7568
7569 relplt_name = bed->relplt_name;
7570 if (relplt_name == NULL)
7571 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7572 relplt = bfd_get_section_by_name (abfd, relplt_name);
7573 if (relplt == NULL)
7574 return 0;
7575
7576 hdr = &elf_section_data (relplt)->this_hdr;
7577 if (hdr->sh_link != elf_dynsymtab (abfd)
7578 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7579 return 0;
7580
7581 plt = bfd_get_section_by_name (abfd, ".plt");
7582 if (plt == NULL)
7583 return 0;
7584
7585 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7586 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7587 return -1;
7588
7589 count = relplt->_raw_size / hdr->sh_entsize;
7590 size = count * sizeof (asymbol);
7591 p = relplt->relocation;
7592 for (i = 0; i < count; i++, s++, p++)
7593 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7594
7595 s = *ret = bfd_malloc (size);
7596 if (s == NULL)
7597 return -1;
7598
7599 names = (char *) (s + count);
7600 p = relplt->relocation;
7601 n = 0;
7602 for (i = 0; i < count; i++, s++, p++)
7603 {
7604 size_t len;
7605 bfd_vma addr;
7606
7607 addr = bed->plt_sym_val (i, plt, p);
7608 if (addr == (bfd_vma) -1)
7609 continue;
7610
7611 *s = **p->sym_ptr_ptr;
7612 s->section = plt;
7613 s->value = addr - plt->vma;
7614 s->name = names;
7615 len = strlen ((*p->sym_ptr_ptr)->name);
7616 memcpy (names, (*p->sym_ptr_ptr)->name, len);
7617 names += len;
7618 memcpy (names, "@plt", sizeof ("@plt"));
7619 names += sizeof ("@plt");
7620 ++n;
7621 }
7622
7623 return n;
7624 }
This page took 0.173658 seconds and 5 git commands to generate.