merge from gcc
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static bfd_byte *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 bfd_byte *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 bfd_byte *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return NULL;
263
264 shstrtab = i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return (char *) shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
295 (*_bfd_error_handler)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd, strindex, (unsigned long) hdr->sh_size,
298 (shindex == shstrndx && strindex == hdr->sh_name
299 ? ".shstrtab"
300 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_sym_name (bfd *abfd,
409 Elf_Internal_Shdr *symtab_hdr,
410 Elf_Internal_Sym *isym,
411 asection *sym_sec)
412 {
413 const char *name;
414 unsigned int iname = isym->st_name;
415 unsigned int shindex = symtab_hdr->sh_link;
416
417 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
418 /* Check for a bogus st_shndx to avoid crashing. */
419 && isym->st_shndx < elf_numsections (abfd)
420 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
421 {
422 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
423 shindex = elf_elfheader (abfd)->e_shstrndx;
424 }
425
426 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
427 if (name == NULL)
428 name = "(null)";
429 else if (sym_sec && *name == '\0')
430 name = bfd_section_name (abfd, sym_sec);
431
432 return name;
433 }
434
435 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
436 sections. The first element is the flags, the rest are section
437 pointers. */
438
439 typedef union elf_internal_group {
440 Elf_Internal_Shdr *shdr;
441 unsigned int flags;
442 } Elf_Internal_Group;
443
444 /* Return the name of the group signature symbol. Why isn't the
445 signature just a string? */
446
447 static const char *
448 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
449 {
450 Elf_Internal_Shdr *hdr;
451 unsigned char esym[sizeof (Elf64_External_Sym)];
452 Elf_External_Sym_Shndx eshndx;
453 Elf_Internal_Sym isym;
454
455 /* First we need to ensure the symbol table is available. */
456 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
457 return NULL;
458
459 /* Go read the symbol. */
460 hdr = &elf_tdata (abfd)->symtab_hdr;
461 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
462 &isym, esym, &eshndx) == NULL)
463 return NULL;
464
465 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
466 }
467
468 /* Set next_in_group list pointer, and group name for NEWSECT. */
469
470 static bfd_boolean
471 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
472 {
473 unsigned int num_group = elf_tdata (abfd)->num_group;
474
475 /* If num_group is zero, read in all SHT_GROUP sections. The count
476 is set to -1 if there are no SHT_GROUP sections. */
477 if (num_group == 0)
478 {
479 unsigned int i, shnum;
480
481 /* First count the number of groups. If we have a SHT_GROUP
482 section with just a flag word (ie. sh_size is 4), ignore it. */
483 shnum = elf_numsections (abfd);
484 num_group = 0;
485 for (i = 0; i < shnum; i++)
486 {
487 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
488 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
489 num_group += 1;
490 }
491
492 if (num_group == 0)
493 {
494 num_group = (unsigned) -1;
495 elf_tdata (abfd)->num_group = num_group;
496 }
497 else
498 {
499 /* We keep a list of elf section headers for group sections,
500 so we can find them quickly. */
501 bfd_size_type amt;
502
503 elf_tdata (abfd)->num_group = num_group;
504 amt = num_group * sizeof (Elf_Internal_Shdr *);
505 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
506 if (elf_tdata (abfd)->group_sect_ptr == NULL)
507 return FALSE;
508
509 num_group = 0;
510 for (i = 0; i < shnum; i++)
511 {
512 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
513 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
514 {
515 unsigned char *src;
516 Elf_Internal_Group *dest;
517
518 /* Add to list of sections. */
519 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
520 num_group += 1;
521
522 /* Read the raw contents. */
523 BFD_ASSERT (sizeof (*dest) >= 4);
524 amt = shdr->sh_size * sizeof (*dest) / 4;
525 shdr->contents = bfd_alloc (abfd, amt);
526 if (shdr->contents == NULL
527 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
528 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
529 != shdr->sh_size))
530 return FALSE;
531
532 /* Translate raw contents, a flag word followed by an
533 array of elf section indices all in target byte order,
534 to the flag word followed by an array of elf section
535 pointers. */
536 src = shdr->contents + shdr->sh_size;
537 dest = (Elf_Internal_Group *) (shdr->contents + amt);
538 while (1)
539 {
540 unsigned int idx;
541
542 src -= 4;
543 --dest;
544 idx = H_GET_32 (abfd, src);
545 if (src == shdr->contents)
546 {
547 dest->flags = idx;
548 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
549 shdr->bfd_section->flags
550 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
551 break;
552 }
553 if (idx >= shnum)
554 {
555 ((*_bfd_error_handler)
556 (_("%B: invalid SHT_GROUP entry"), abfd));
557 idx = 0;
558 }
559 dest->shdr = elf_elfsections (abfd)[idx];
560 }
561 }
562 }
563 }
564 }
565
566 if (num_group != (unsigned) -1)
567 {
568 unsigned int i;
569
570 for (i = 0; i < num_group; i++)
571 {
572 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
573 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
574 unsigned int n_elt = shdr->sh_size / 4;
575
576 /* Look through this group's sections to see if current
577 section is a member. */
578 while (--n_elt != 0)
579 if ((++idx)->shdr == hdr)
580 {
581 asection *s = NULL;
582
583 /* We are a member of this group. Go looking through
584 other members to see if any others are linked via
585 next_in_group. */
586 idx = (Elf_Internal_Group *) shdr->contents;
587 n_elt = shdr->sh_size / 4;
588 while (--n_elt != 0)
589 if ((s = (++idx)->shdr->bfd_section) != NULL
590 && elf_next_in_group (s) != NULL)
591 break;
592 if (n_elt != 0)
593 {
594 /* Snarf the group name from other member, and
595 insert current section in circular list. */
596 elf_group_name (newsect) = elf_group_name (s);
597 elf_next_in_group (newsect) = elf_next_in_group (s);
598 elf_next_in_group (s) = newsect;
599 }
600 else
601 {
602 const char *gname;
603
604 gname = group_signature (abfd, shdr);
605 if (gname == NULL)
606 return FALSE;
607 elf_group_name (newsect) = gname;
608
609 /* Start a circular list with one element. */
610 elf_next_in_group (newsect) = newsect;
611 }
612
613 /* If the group section has been created, point to the
614 new member. */
615 if (shdr->bfd_section != NULL)
616 elf_next_in_group (shdr->bfd_section) = newsect;
617
618 i = num_group - 1;
619 break;
620 }
621 }
622 }
623
624 if (elf_group_name (newsect) == NULL)
625 {
626 (*_bfd_error_handler) (_("%B: no group info for section %A"),
627 abfd, newsect);
628 }
629 return TRUE;
630 }
631
632 bfd_boolean
633 _bfd_elf_setup_group_pointers (bfd *abfd)
634 {
635 unsigned int i;
636 unsigned int num_group = elf_tdata (abfd)->num_group;
637 bfd_boolean result = TRUE;
638
639 if (num_group == (unsigned) -1)
640 return result;
641
642 for (i = 0; i < num_group; i++)
643 {
644 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
645 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
646 unsigned int n_elt = shdr->sh_size / 4;
647
648 while (--n_elt != 0)
649 if ((++idx)->shdr->bfd_section)
650 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
651 else if (idx->shdr->sh_type == SHT_RELA
652 || idx->shdr->sh_type == SHT_REL)
653 /* We won't include relocation sections in section groups in
654 output object files. We adjust the group section size here
655 so that relocatable link will work correctly when
656 relocation sections are in section group in input object
657 files. */
658 shdr->bfd_section->size -= 4;
659 else
660 {
661 /* There are some unknown sections in the group. */
662 (*_bfd_error_handler)
663 (_("%B: unknown [%d] section `%s' in group [%s]"),
664 abfd,
665 (unsigned int) idx->shdr->sh_type,
666 bfd_elf_string_from_elf_section (abfd,
667 (elf_elfheader (abfd)
668 ->e_shstrndx),
669 idx->shdr->sh_name),
670 shdr->bfd_section->name);
671 result = FALSE;
672 }
673 }
674 return result;
675 }
676
677 bfd_boolean
678 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
679 {
680 return elf_next_in_group (sec) != NULL;
681 }
682
683 /* Make a BFD section from an ELF section. We store a pointer to the
684 BFD section in the bfd_section field of the header. */
685
686 bfd_boolean
687 _bfd_elf_make_section_from_shdr (bfd *abfd,
688 Elf_Internal_Shdr *hdr,
689 const char *name,
690 int shindex)
691 {
692 asection *newsect;
693 flagword flags;
694 const struct elf_backend_data *bed;
695
696 if (hdr->bfd_section != NULL)
697 {
698 BFD_ASSERT (strcmp (name,
699 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
700 return TRUE;
701 }
702
703 newsect = bfd_make_section_anyway (abfd, name);
704 if (newsect == NULL)
705 return FALSE;
706
707 hdr->bfd_section = newsect;
708 elf_section_data (newsect)->this_hdr = *hdr;
709 elf_section_data (newsect)->this_idx = shindex;
710
711 /* Always use the real type/flags. */
712 elf_section_type (newsect) = hdr->sh_type;
713 elf_section_flags (newsect) = hdr->sh_flags;
714
715 newsect->filepos = hdr->sh_offset;
716
717 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
718 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
719 || ! bfd_set_section_alignment (abfd, newsect,
720 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
721 return FALSE;
722
723 flags = SEC_NO_FLAGS;
724 if (hdr->sh_type != SHT_NOBITS)
725 flags |= SEC_HAS_CONTENTS;
726 if (hdr->sh_type == SHT_GROUP)
727 flags |= SEC_GROUP | SEC_EXCLUDE;
728 if ((hdr->sh_flags & SHF_ALLOC) != 0)
729 {
730 flags |= SEC_ALLOC;
731 if (hdr->sh_type != SHT_NOBITS)
732 flags |= SEC_LOAD;
733 }
734 if ((hdr->sh_flags & SHF_WRITE) == 0)
735 flags |= SEC_READONLY;
736 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
737 flags |= SEC_CODE;
738 else if ((flags & SEC_LOAD) != 0)
739 flags |= SEC_DATA;
740 if ((hdr->sh_flags & SHF_MERGE) != 0)
741 {
742 flags |= SEC_MERGE;
743 newsect->entsize = hdr->sh_entsize;
744 if ((hdr->sh_flags & SHF_STRINGS) != 0)
745 flags |= SEC_STRINGS;
746 }
747 if (hdr->sh_flags & SHF_GROUP)
748 if (!setup_group (abfd, hdr, newsect))
749 return FALSE;
750 if ((hdr->sh_flags & SHF_TLS) != 0)
751 flags |= SEC_THREAD_LOCAL;
752
753 /* The debugging sections appear to be recognized only by name, not
754 any sort of flag. */
755 {
756 static const char *debug_sec_names [] =
757 {
758 ".debug",
759 ".gnu.linkonce.wi.",
760 ".line",
761 ".stab"
762 };
763 int i;
764
765 for (i = ARRAY_SIZE (debug_sec_names); i--;)
766 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
767 break;
768
769 if (i >= 0)
770 flags |= SEC_DEBUGGING;
771 }
772
773 /* As a GNU extension, if the name begins with .gnu.linkonce, we
774 only link a single copy of the section. This is used to support
775 g++. g++ will emit each template expansion in its own section.
776 The symbols will be defined as weak, so that multiple definitions
777 are permitted. The GNU linker extension is to actually discard
778 all but one of the sections. */
779 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
780 && elf_next_in_group (newsect) == NULL)
781 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
782
783 bed = get_elf_backend_data (abfd);
784 if (bed->elf_backend_section_flags)
785 if (! bed->elf_backend_section_flags (&flags, hdr))
786 return FALSE;
787
788 if (! bfd_set_section_flags (abfd, newsect, flags))
789 return FALSE;
790
791 if ((flags & SEC_ALLOC) != 0)
792 {
793 Elf_Internal_Phdr *phdr;
794 unsigned int i;
795
796 /* Look through the phdrs to see if we need to adjust the lma.
797 If all the p_paddr fields are zero, we ignore them, since
798 some ELF linkers produce such output. */
799 phdr = elf_tdata (abfd)->phdr;
800 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
801 {
802 if (phdr->p_paddr != 0)
803 break;
804 }
805 if (i < elf_elfheader (abfd)->e_phnum)
806 {
807 phdr = elf_tdata (abfd)->phdr;
808 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
809 {
810 /* This section is part of this segment if its file
811 offset plus size lies within the segment's memory
812 span and, if the section is loaded, the extent of the
813 loaded data lies within the extent of the segment.
814
815 Note - we used to check the p_paddr field as well, and
816 refuse to set the LMA if it was 0. This is wrong
817 though, as a perfectly valid initialised segment can
818 have a p_paddr of zero. Some architectures, eg ARM,
819 place special significance on the address 0 and
820 executables need to be able to have a segment which
821 covers this address. */
822 if (phdr->p_type == PT_LOAD
823 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
824 && (hdr->sh_offset + hdr->sh_size
825 <= phdr->p_offset + phdr->p_memsz)
826 && ((flags & SEC_LOAD) == 0
827 || (hdr->sh_offset + hdr->sh_size
828 <= phdr->p_offset + phdr->p_filesz)))
829 {
830 if ((flags & SEC_LOAD) == 0)
831 newsect->lma = (phdr->p_paddr
832 + hdr->sh_addr - phdr->p_vaddr);
833 else
834 /* We used to use the same adjustment for SEC_LOAD
835 sections, but that doesn't work if the segment
836 is packed with code from multiple VMAs.
837 Instead we calculate the section LMA based on
838 the segment LMA. It is assumed that the
839 segment will contain sections with contiguous
840 LMAs, even if the VMAs are not. */
841 newsect->lma = (phdr->p_paddr
842 + hdr->sh_offset - phdr->p_offset);
843
844 /* With contiguous segments, we can't tell from file
845 offsets whether a section with zero size should
846 be placed at the end of one segment or the
847 beginning of the next. Decide based on vaddr. */
848 if (hdr->sh_addr >= phdr->p_vaddr
849 && (hdr->sh_addr + hdr->sh_size
850 <= phdr->p_vaddr + phdr->p_memsz))
851 break;
852 }
853 }
854 }
855 }
856
857 return TRUE;
858 }
859
860 /*
861 INTERNAL_FUNCTION
862 bfd_elf_find_section
863
864 SYNOPSIS
865 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
866
867 DESCRIPTION
868 Helper functions for GDB to locate the string tables.
869 Since BFD hides string tables from callers, GDB needs to use an
870 internal hook to find them. Sun's .stabstr, in particular,
871 isn't even pointed to by the .stab section, so ordinary
872 mechanisms wouldn't work to find it, even if we had some.
873 */
874
875 struct elf_internal_shdr *
876 bfd_elf_find_section (bfd *abfd, char *name)
877 {
878 Elf_Internal_Shdr **i_shdrp;
879 char *shstrtab;
880 unsigned int max;
881 unsigned int i;
882
883 i_shdrp = elf_elfsections (abfd);
884 if (i_shdrp != NULL)
885 {
886 shstrtab = bfd_elf_get_str_section (abfd,
887 elf_elfheader (abfd)->e_shstrndx);
888 if (shstrtab != NULL)
889 {
890 max = elf_numsections (abfd);
891 for (i = 1; i < max; i++)
892 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
893 return i_shdrp[i];
894 }
895 }
896 return 0;
897 }
898
899 const char *const bfd_elf_section_type_names[] = {
900 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
901 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
902 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
903 };
904
905 /* ELF relocs are against symbols. If we are producing relocatable
906 output, and the reloc is against an external symbol, and nothing
907 has given us any additional addend, the resulting reloc will also
908 be against the same symbol. In such a case, we don't want to
909 change anything about the way the reloc is handled, since it will
910 all be done at final link time. Rather than put special case code
911 into bfd_perform_relocation, all the reloc types use this howto
912 function. It just short circuits the reloc if producing
913 relocatable output against an external symbol. */
914
915 bfd_reloc_status_type
916 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
917 arelent *reloc_entry,
918 asymbol *symbol,
919 void *data ATTRIBUTE_UNUSED,
920 asection *input_section,
921 bfd *output_bfd,
922 char **error_message ATTRIBUTE_UNUSED)
923 {
924 if (output_bfd != NULL
925 && (symbol->flags & BSF_SECTION_SYM) == 0
926 && (! reloc_entry->howto->partial_inplace
927 || reloc_entry->addend == 0))
928 {
929 reloc_entry->address += input_section->output_offset;
930 return bfd_reloc_ok;
931 }
932
933 return bfd_reloc_continue;
934 }
935 \f
936 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
937
938 static void
939 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
940 asection *sec)
941 {
942 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
943 sec->sec_info_type = ELF_INFO_TYPE_NONE;
944 }
945
946 /* Finish SHF_MERGE section merging. */
947
948 bfd_boolean
949 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
950 {
951 bfd *ibfd;
952 asection *sec;
953
954 if (!is_elf_hash_table (info->hash))
955 return FALSE;
956
957 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
958 if ((ibfd->flags & DYNAMIC) == 0)
959 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
960 if ((sec->flags & SEC_MERGE) != 0
961 && !bfd_is_abs_section (sec->output_section))
962 {
963 struct bfd_elf_section_data *secdata;
964
965 secdata = elf_section_data (sec);
966 if (! _bfd_add_merge_section (abfd,
967 &elf_hash_table (info)->merge_info,
968 sec, &secdata->sec_info))
969 return FALSE;
970 else if (secdata->sec_info)
971 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
972 }
973
974 if (elf_hash_table (info)->merge_info != NULL)
975 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
976 merge_sections_remove_hook);
977 return TRUE;
978 }
979
980 void
981 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
982 {
983 sec->output_section = bfd_abs_section_ptr;
984 sec->output_offset = sec->vma;
985 if (!is_elf_hash_table (info->hash))
986 return;
987
988 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
989 }
990 \f
991 /* Copy the program header and other data from one object module to
992 another. */
993
994 bfd_boolean
995 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
996 {
997 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
998 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
999 return TRUE;
1000
1001 BFD_ASSERT (!elf_flags_init (obfd)
1002 || (elf_elfheader (obfd)->e_flags
1003 == elf_elfheader (ibfd)->e_flags));
1004
1005 elf_gp (obfd) = elf_gp (ibfd);
1006 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1007 elf_flags_init (obfd) = TRUE;
1008 return TRUE;
1009 }
1010
1011 /* Print out the program headers. */
1012
1013 bfd_boolean
1014 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1015 {
1016 FILE *f = farg;
1017 Elf_Internal_Phdr *p;
1018 asection *s;
1019 bfd_byte *dynbuf = NULL;
1020
1021 p = elf_tdata (abfd)->phdr;
1022 if (p != NULL)
1023 {
1024 unsigned int i, c;
1025
1026 fprintf (f, _("\nProgram Header:\n"));
1027 c = elf_elfheader (abfd)->e_phnum;
1028 for (i = 0; i < c; i++, p++)
1029 {
1030 const char *pt;
1031 char buf[20];
1032
1033 switch (p->p_type)
1034 {
1035 case PT_NULL: pt = "NULL"; break;
1036 case PT_LOAD: pt = "LOAD"; break;
1037 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1038 case PT_INTERP: pt = "INTERP"; break;
1039 case PT_NOTE: pt = "NOTE"; break;
1040 case PT_SHLIB: pt = "SHLIB"; break;
1041 case PT_PHDR: pt = "PHDR"; break;
1042 case PT_TLS: pt = "TLS"; break;
1043 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1044 case PT_GNU_STACK: pt = "STACK"; break;
1045 case PT_GNU_RELRO: pt = "RELRO"; break;
1046 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1047 }
1048 fprintf (f, "%8s off 0x", pt);
1049 bfd_fprintf_vma (abfd, f, p->p_offset);
1050 fprintf (f, " vaddr 0x");
1051 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1052 fprintf (f, " paddr 0x");
1053 bfd_fprintf_vma (abfd, f, p->p_paddr);
1054 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1055 fprintf (f, " filesz 0x");
1056 bfd_fprintf_vma (abfd, f, p->p_filesz);
1057 fprintf (f, " memsz 0x");
1058 bfd_fprintf_vma (abfd, f, p->p_memsz);
1059 fprintf (f, " flags %c%c%c",
1060 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1061 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1062 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1063 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1064 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1065 fprintf (f, "\n");
1066 }
1067 }
1068
1069 s = bfd_get_section_by_name (abfd, ".dynamic");
1070 if (s != NULL)
1071 {
1072 int elfsec;
1073 unsigned long shlink;
1074 bfd_byte *extdyn, *extdynend;
1075 size_t extdynsize;
1076 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1077
1078 fprintf (f, _("\nDynamic Section:\n"));
1079
1080 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1081 goto error_return;
1082
1083 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1084 if (elfsec == -1)
1085 goto error_return;
1086 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1087
1088 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1089 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1090
1091 extdyn = dynbuf;
1092 extdynend = extdyn + s->size;
1093 for (; extdyn < extdynend; extdyn += extdynsize)
1094 {
1095 Elf_Internal_Dyn dyn;
1096 const char *name;
1097 char ab[20];
1098 bfd_boolean stringp;
1099
1100 (*swap_dyn_in) (abfd, extdyn, &dyn);
1101
1102 if (dyn.d_tag == DT_NULL)
1103 break;
1104
1105 stringp = FALSE;
1106 switch (dyn.d_tag)
1107 {
1108 default:
1109 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1110 name = ab;
1111 break;
1112
1113 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1114 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1115 case DT_PLTGOT: name = "PLTGOT"; break;
1116 case DT_HASH: name = "HASH"; break;
1117 case DT_STRTAB: name = "STRTAB"; break;
1118 case DT_SYMTAB: name = "SYMTAB"; break;
1119 case DT_RELA: name = "RELA"; break;
1120 case DT_RELASZ: name = "RELASZ"; break;
1121 case DT_RELAENT: name = "RELAENT"; break;
1122 case DT_STRSZ: name = "STRSZ"; break;
1123 case DT_SYMENT: name = "SYMENT"; break;
1124 case DT_INIT: name = "INIT"; break;
1125 case DT_FINI: name = "FINI"; break;
1126 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1127 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1128 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1129 case DT_REL: name = "REL"; break;
1130 case DT_RELSZ: name = "RELSZ"; break;
1131 case DT_RELENT: name = "RELENT"; break;
1132 case DT_PLTREL: name = "PLTREL"; break;
1133 case DT_DEBUG: name = "DEBUG"; break;
1134 case DT_TEXTREL: name = "TEXTREL"; break;
1135 case DT_JMPREL: name = "JMPREL"; break;
1136 case DT_BIND_NOW: name = "BIND_NOW"; break;
1137 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1138 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1139 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1140 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1141 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1142 case DT_FLAGS: name = "FLAGS"; break;
1143 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1144 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1145 case DT_CHECKSUM: name = "CHECKSUM"; break;
1146 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1147 case DT_MOVEENT: name = "MOVEENT"; break;
1148 case DT_MOVESZ: name = "MOVESZ"; break;
1149 case DT_FEATURE: name = "FEATURE"; break;
1150 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1151 case DT_SYMINSZ: name = "SYMINSZ"; break;
1152 case DT_SYMINENT: name = "SYMINENT"; break;
1153 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1154 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1155 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1156 case DT_PLTPAD: name = "PLTPAD"; break;
1157 case DT_MOVETAB: name = "MOVETAB"; break;
1158 case DT_SYMINFO: name = "SYMINFO"; break;
1159 case DT_RELACOUNT: name = "RELACOUNT"; break;
1160 case DT_RELCOUNT: name = "RELCOUNT"; break;
1161 case DT_FLAGS_1: name = "FLAGS_1"; break;
1162 case DT_VERSYM: name = "VERSYM"; break;
1163 case DT_VERDEF: name = "VERDEF"; break;
1164 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1165 case DT_VERNEED: name = "VERNEED"; break;
1166 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1167 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1168 case DT_USED: name = "USED"; break;
1169 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1170 }
1171
1172 fprintf (f, " %-11s ", name);
1173 if (! stringp)
1174 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1175 else
1176 {
1177 const char *string;
1178 unsigned int tagv = dyn.d_un.d_val;
1179
1180 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1181 if (string == NULL)
1182 goto error_return;
1183 fprintf (f, "%s", string);
1184 }
1185 fprintf (f, "\n");
1186 }
1187
1188 free (dynbuf);
1189 dynbuf = NULL;
1190 }
1191
1192 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1193 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1194 {
1195 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1196 return FALSE;
1197 }
1198
1199 if (elf_dynverdef (abfd) != 0)
1200 {
1201 Elf_Internal_Verdef *t;
1202
1203 fprintf (f, _("\nVersion definitions:\n"));
1204 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1205 {
1206 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1207 t->vd_flags, t->vd_hash, t->vd_nodename);
1208 if (t->vd_auxptr->vda_nextptr != NULL)
1209 {
1210 Elf_Internal_Verdaux *a;
1211
1212 fprintf (f, "\t");
1213 for (a = t->vd_auxptr->vda_nextptr;
1214 a != NULL;
1215 a = a->vda_nextptr)
1216 fprintf (f, "%s ", a->vda_nodename);
1217 fprintf (f, "\n");
1218 }
1219 }
1220 }
1221
1222 if (elf_dynverref (abfd) != 0)
1223 {
1224 Elf_Internal_Verneed *t;
1225
1226 fprintf (f, _("\nVersion References:\n"));
1227 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1228 {
1229 Elf_Internal_Vernaux *a;
1230
1231 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1232 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1233 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1234 a->vna_flags, a->vna_other, a->vna_nodename);
1235 }
1236 }
1237
1238 return TRUE;
1239
1240 error_return:
1241 if (dynbuf != NULL)
1242 free (dynbuf);
1243 return FALSE;
1244 }
1245
1246 /* Display ELF-specific fields of a symbol. */
1247
1248 void
1249 bfd_elf_print_symbol (bfd *abfd,
1250 void *filep,
1251 asymbol *symbol,
1252 bfd_print_symbol_type how)
1253 {
1254 FILE *file = filep;
1255 switch (how)
1256 {
1257 case bfd_print_symbol_name:
1258 fprintf (file, "%s", symbol->name);
1259 break;
1260 case bfd_print_symbol_more:
1261 fprintf (file, "elf ");
1262 bfd_fprintf_vma (abfd, file, symbol->value);
1263 fprintf (file, " %lx", (long) symbol->flags);
1264 break;
1265 case bfd_print_symbol_all:
1266 {
1267 const char *section_name;
1268 const char *name = NULL;
1269 const struct elf_backend_data *bed;
1270 unsigned char st_other;
1271 bfd_vma val;
1272
1273 section_name = symbol->section ? symbol->section->name : "(*none*)";
1274
1275 bed = get_elf_backend_data (abfd);
1276 if (bed->elf_backend_print_symbol_all)
1277 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1278
1279 if (name == NULL)
1280 {
1281 name = symbol->name;
1282 bfd_print_symbol_vandf (abfd, file, symbol);
1283 }
1284
1285 fprintf (file, " %s\t", section_name);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol->section))
1291 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1292 else
1293 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1294 bfd_fprintf_vma (abfd, file, val);
1295
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd)->dynversym_section != 0
1298 && (elf_tdata (abfd)->dynverdef_section != 0
1299 || elf_tdata (abfd)->dynverref_section != 0))
1300 {
1301 unsigned int vernum;
1302 const char *version_string;
1303
1304 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1305
1306 if (vernum == 0)
1307 version_string = "";
1308 else if (vernum == 1)
1309 version_string = "Base";
1310 else if (vernum <= elf_tdata (abfd)->cverdefs)
1311 version_string =
1312 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1313 else
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 version_string = "";
1318 for (t = elf_tdata (abfd)->verref;
1319 t != NULL;
1320 t = t->vn_nextref)
1321 {
1322 Elf_Internal_Vernaux *a;
1323
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 {
1326 if (a->vna_other == vernum)
1327 {
1328 version_string = a->vna_nodename;
1329 break;
1330 }
1331 }
1332 }
1333 }
1334
1335 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1336 fprintf (file, " %-11s", version_string);
1337 else
1338 {
1339 int i;
1340
1341 fprintf (file, " (%s)", version_string);
1342 for (i = 10 - strlen (version_string); i > 0; --i)
1343 putc (' ', file);
1344 }
1345 }
1346
1347 /* If the st_other field is not zero, print it. */
1348 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1349
1350 switch (st_other)
1351 {
1352 case 0: break;
1353 case STV_INTERNAL: fprintf (file, " .internal"); break;
1354 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1355 case STV_PROTECTED: fprintf (file, " .protected"); break;
1356 default:
1357 /* Some other non-defined flags are also present, so print
1358 everything hex. */
1359 fprintf (file, " 0x%02x", (unsigned int) st_other);
1360 }
1361
1362 fprintf (file, " %s", name);
1363 }
1364 break;
1365 }
1366 }
1367 \f
1368 /* Create an entry in an ELF linker hash table. */
1369
1370 struct bfd_hash_entry *
1371 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1372 struct bfd_hash_table *table,
1373 const char *string)
1374 {
1375 /* Allocate the structure if it has not already been allocated by a
1376 subclass. */
1377 if (entry == NULL)
1378 {
1379 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1380 if (entry == NULL)
1381 return entry;
1382 }
1383
1384 /* Call the allocation method of the superclass. */
1385 entry = _bfd_link_hash_newfunc (entry, table, string);
1386 if (entry != NULL)
1387 {
1388 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1389 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1390
1391 /* Set local fields. */
1392 ret->indx = -1;
1393 ret->dynindx = -1;
1394 ret->got = ret->plt = htab->init_refcount;
1395 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1396 - offsetof (struct elf_link_hash_entry, size)));
1397 /* Assume that we have been called by a non-ELF symbol reader.
1398 This flag is then reset by the code which reads an ELF input
1399 file. This ensures that a symbol created by a non-ELF symbol
1400 reader will have the flag set correctly. */
1401 ret->non_elf = 1;
1402 }
1403
1404 return entry;
1405 }
1406
1407 /* Copy data from an indirect symbol to its direct symbol, hiding the
1408 old indirect symbol. Also used for copying flags to a weakdef. */
1409
1410 void
1411 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1412 struct elf_link_hash_entry *dir,
1413 struct elf_link_hash_entry *ind)
1414 {
1415 bfd_signed_vma tmp;
1416 bfd_signed_vma lowest_valid = bed->can_refcount;
1417
1418 /* Copy down any references that we may have already seen to the
1419 symbol which just became indirect. */
1420
1421 dir->ref_dynamic |= ind->ref_dynamic;
1422 dir->ref_regular |= ind->ref_regular;
1423 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1424 dir->non_got_ref |= ind->non_got_ref;
1425 dir->needs_plt |= ind->needs_plt;
1426 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1427
1428 if (ind->root.type != bfd_link_hash_indirect)
1429 return;
1430
1431 /* Copy over the global and procedure linkage table refcount entries.
1432 These may have been already set up by a check_relocs routine. */
1433 tmp = dir->got.refcount;
1434 if (tmp < lowest_valid)
1435 {
1436 dir->got.refcount = ind->got.refcount;
1437 ind->got.refcount = tmp;
1438 }
1439 else
1440 BFD_ASSERT (ind->got.refcount < lowest_valid);
1441
1442 tmp = dir->plt.refcount;
1443 if (tmp < lowest_valid)
1444 {
1445 dir->plt.refcount = ind->plt.refcount;
1446 ind->plt.refcount = tmp;
1447 }
1448 else
1449 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1450
1451 if (dir->dynindx == -1)
1452 {
1453 dir->dynindx = ind->dynindx;
1454 dir->dynstr_index = ind->dynstr_index;
1455 ind->dynindx = -1;
1456 ind->dynstr_index = 0;
1457 }
1458 else
1459 BFD_ASSERT (ind->dynindx == -1);
1460 }
1461
1462 void
1463 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1464 struct elf_link_hash_entry *h,
1465 bfd_boolean force_local)
1466 {
1467 h->plt = elf_hash_table (info)->init_offset;
1468 h->needs_plt = 0;
1469 if (force_local)
1470 {
1471 h->forced_local = 1;
1472 if (h->dynindx != -1)
1473 {
1474 h->dynindx = -1;
1475 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1476 h->dynstr_index);
1477 }
1478 }
1479 }
1480
1481 /* Initialize an ELF linker hash table. */
1482
1483 bfd_boolean
1484 _bfd_elf_link_hash_table_init
1485 (struct elf_link_hash_table *table,
1486 bfd *abfd,
1487 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1488 struct bfd_hash_table *,
1489 const char *))
1490 {
1491 bfd_boolean ret;
1492
1493 table->dynamic_sections_created = FALSE;
1494 table->dynobj = NULL;
1495 /* Make sure can_refcount is extended to the width and signedness of
1496 init_refcount before we subtract one from it. */
1497 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1498 table->init_refcount.refcount -= 1;
1499 table->init_offset.offset = -(bfd_vma) 1;
1500 /* The first dynamic symbol is a dummy. */
1501 table->dynsymcount = 1;
1502 table->dynstr = NULL;
1503 table->bucketcount = 0;
1504 table->needed = NULL;
1505 table->hgot = NULL;
1506 table->merge_info = NULL;
1507 memset (&table->stab_info, 0, sizeof (table->stab_info));
1508 memset (&table->eh_info, 0, sizeof (table->eh_info));
1509 table->dynlocal = NULL;
1510 table->runpath = NULL;
1511 table->tls_sec = NULL;
1512 table->tls_size = 0;
1513 table->loaded = NULL;
1514 table->is_relocatable_executable = FALSE;
1515
1516 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1517 table->root.type = bfd_link_elf_hash_table;
1518
1519 return ret;
1520 }
1521
1522 /* Create an ELF linker hash table. */
1523
1524 struct bfd_link_hash_table *
1525 _bfd_elf_link_hash_table_create (bfd *abfd)
1526 {
1527 struct elf_link_hash_table *ret;
1528 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1529
1530 ret = bfd_malloc (amt);
1531 if (ret == NULL)
1532 return NULL;
1533
1534 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1535 {
1536 free (ret);
1537 return NULL;
1538 }
1539
1540 return &ret->root;
1541 }
1542
1543 /* This is a hook for the ELF emulation code in the generic linker to
1544 tell the backend linker what file name to use for the DT_NEEDED
1545 entry for a dynamic object. */
1546
1547 void
1548 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1549 {
1550 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1551 && bfd_get_format (abfd) == bfd_object)
1552 elf_dt_name (abfd) = name;
1553 }
1554
1555 int
1556 bfd_elf_get_dyn_lib_class (bfd *abfd)
1557 {
1558 int lib_class;
1559 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1560 && bfd_get_format (abfd) == bfd_object)
1561 lib_class = elf_dyn_lib_class (abfd);
1562 else
1563 lib_class = 0;
1564 return lib_class;
1565 }
1566
1567 void
1568 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1569 {
1570 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1571 && bfd_get_format (abfd) == bfd_object)
1572 elf_dyn_lib_class (abfd) = lib_class;
1573 }
1574
1575 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1576 the linker ELF emulation code. */
1577
1578 struct bfd_link_needed_list *
1579 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1580 struct bfd_link_info *info)
1581 {
1582 if (! is_elf_hash_table (info->hash))
1583 return NULL;
1584 return elf_hash_table (info)->needed;
1585 }
1586
1587 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1588 hook for the linker ELF emulation code. */
1589
1590 struct bfd_link_needed_list *
1591 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1592 struct bfd_link_info *info)
1593 {
1594 if (! is_elf_hash_table (info->hash))
1595 return NULL;
1596 return elf_hash_table (info)->runpath;
1597 }
1598
1599 /* Get the name actually used for a dynamic object for a link. This
1600 is the SONAME entry if there is one. Otherwise, it is the string
1601 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1602
1603 const char *
1604 bfd_elf_get_dt_soname (bfd *abfd)
1605 {
1606 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1607 && bfd_get_format (abfd) == bfd_object)
1608 return elf_dt_name (abfd);
1609 return NULL;
1610 }
1611
1612 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1613 the ELF linker emulation code. */
1614
1615 bfd_boolean
1616 bfd_elf_get_bfd_needed_list (bfd *abfd,
1617 struct bfd_link_needed_list **pneeded)
1618 {
1619 asection *s;
1620 bfd_byte *dynbuf = NULL;
1621 int elfsec;
1622 unsigned long shlink;
1623 bfd_byte *extdyn, *extdynend;
1624 size_t extdynsize;
1625 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1626
1627 *pneeded = NULL;
1628
1629 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1630 || bfd_get_format (abfd) != bfd_object)
1631 return TRUE;
1632
1633 s = bfd_get_section_by_name (abfd, ".dynamic");
1634 if (s == NULL || s->size == 0)
1635 return TRUE;
1636
1637 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1638 goto error_return;
1639
1640 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1641 if (elfsec == -1)
1642 goto error_return;
1643
1644 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1645
1646 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1647 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1648
1649 extdyn = dynbuf;
1650 extdynend = extdyn + s->size;
1651 for (; extdyn < extdynend; extdyn += extdynsize)
1652 {
1653 Elf_Internal_Dyn dyn;
1654
1655 (*swap_dyn_in) (abfd, extdyn, &dyn);
1656
1657 if (dyn.d_tag == DT_NULL)
1658 break;
1659
1660 if (dyn.d_tag == DT_NEEDED)
1661 {
1662 const char *string;
1663 struct bfd_link_needed_list *l;
1664 unsigned int tagv = dyn.d_un.d_val;
1665 bfd_size_type amt;
1666
1667 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1668 if (string == NULL)
1669 goto error_return;
1670
1671 amt = sizeof *l;
1672 l = bfd_alloc (abfd, amt);
1673 if (l == NULL)
1674 goto error_return;
1675
1676 l->by = abfd;
1677 l->name = string;
1678 l->next = *pneeded;
1679 *pneeded = l;
1680 }
1681 }
1682
1683 free (dynbuf);
1684
1685 return TRUE;
1686
1687 error_return:
1688 if (dynbuf != NULL)
1689 free (dynbuf);
1690 return FALSE;
1691 }
1692 \f
1693 /* Allocate an ELF string table--force the first byte to be zero. */
1694
1695 struct bfd_strtab_hash *
1696 _bfd_elf_stringtab_init (void)
1697 {
1698 struct bfd_strtab_hash *ret;
1699
1700 ret = _bfd_stringtab_init ();
1701 if (ret != NULL)
1702 {
1703 bfd_size_type loc;
1704
1705 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1706 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1707 if (loc == (bfd_size_type) -1)
1708 {
1709 _bfd_stringtab_free (ret);
1710 ret = NULL;
1711 }
1712 }
1713 return ret;
1714 }
1715 \f
1716 /* ELF .o/exec file reading */
1717
1718 /* Create a new bfd section from an ELF section header. */
1719
1720 bfd_boolean
1721 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1722 {
1723 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1724 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1725 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1726 const char *name;
1727
1728 name = bfd_elf_string_from_elf_section (abfd,
1729 elf_elfheader (abfd)->e_shstrndx,
1730 hdr->sh_name);
1731
1732 switch (hdr->sh_type)
1733 {
1734 case SHT_NULL:
1735 /* Inactive section. Throw it away. */
1736 return TRUE;
1737
1738 case SHT_PROGBITS: /* Normal section with contents. */
1739 case SHT_NOBITS: /* .bss section. */
1740 case SHT_HASH: /* .hash section. */
1741 case SHT_NOTE: /* .note section. */
1742 case SHT_INIT_ARRAY: /* .init_array section. */
1743 case SHT_FINI_ARRAY: /* .fini_array section. */
1744 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1745 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1746 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1747
1748 case SHT_DYNAMIC: /* Dynamic linking information. */
1749 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1750 return FALSE;
1751 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1752 {
1753 Elf_Internal_Shdr *dynsymhdr;
1754
1755 /* The shared libraries distributed with hpux11 have a bogus
1756 sh_link field for the ".dynamic" section. Find the
1757 string table for the ".dynsym" section instead. */
1758 if (elf_dynsymtab (abfd) != 0)
1759 {
1760 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1761 hdr->sh_link = dynsymhdr->sh_link;
1762 }
1763 else
1764 {
1765 unsigned int i, num_sec;
1766
1767 num_sec = elf_numsections (abfd);
1768 for (i = 1; i < num_sec; i++)
1769 {
1770 dynsymhdr = elf_elfsections (abfd)[i];
1771 if (dynsymhdr->sh_type == SHT_DYNSYM)
1772 {
1773 hdr->sh_link = dynsymhdr->sh_link;
1774 break;
1775 }
1776 }
1777 }
1778 }
1779 break;
1780
1781 case SHT_SYMTAB: /* A symbol table */
1782 if (elf_onesymtab (abfd) == shindex)
1783 return TRUE;
1784
1785 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1786 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1787 elf_onesymtab (abfd) = shindex;
1788 elf_tdata (abfd)->symtab_hdr = *hdr;
1789 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1790 abfd->flags |= HAS_SYMS;
1791
1792 /* Sometimes a shared object will map in the symbol table. If
1793 SHF_ALLOC is set, and this is a shared object, then we also
1794 treat this section as a BFD section. We can not base the
1795 decision purely on SHF_ALLOC, because that flag is sometimes
1796 set in a relocatable object file, which would confuse the
1797 linker. */
1798 if ((hdr->sh_flags & SHF_ALLOC) != 0
1799 && (abfd->flags & DYNAMIC) != 0
1800 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1801 shindex))
1802 return FALSE;
1803
1804 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1805 can't read symbols without that section loaded as well. It
1806 is most likely specified by the next section header. */
1807 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1808 {
1809 unsigned int i, num_sec;
1810
1811 num_sec = elf_numsections (abfd);
1812 for (i = shindex + 1; i < num_sec; i++)
1813 {
1814 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1815 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1816 && hdr2->sh_link == shindex)
1817 break;
1818 }
1819 if (i == num_sec)
1820 for (i = 1; i < shindex; i++)
1821 {
1822 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1823 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1824 && hdr2->sh_link == shindex)
1825 break;
1826 }
1827 if (i != shindex)
1828 return bfd_section_from_shdr (abfd, i);
1829 }
1830 return TRUE;
1831
1832 case SHT_DYNSYM: /* A dynamic symbol table */
1833 if (elf_dynsymtab (abfd) == shindex)
1834 return TRUE;
1835
1836 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1837 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1838 elf_dynsymtab (abfd) = shindex;
1839 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1840 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1841 abfd->flags |= HAS_SYMS;
1842
1843 /* Besides being a symbol table, we also treat this as a regular
1844 section, so that objcopy can handle it. */
1845 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1846
1847 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1848 if (elf_symtab_shndx (abfd) == shindex)
1849 return TRUE;
1850
1851 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1852 elf_symtab_shndx (abfd) = shindex;
1853 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1854 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1855 return TRUE;
1856
1857 case SHT_STRTAB: /* A string table */
1858 if (hdr->bfd_section != NULL)
1859 return TRUE;
1860 if (ehdr->e_shstrndx == shindex)
1861 {
1862 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1863 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1864 return TRUE;
1865 }
1866 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1867 {
1868 symtab_strtab:
1869 elf_tdata (abfd)->strtab_hdr = *hdr;
1870 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1871 return TRUE;
1872 }
1873 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1874 {
1875 dynsymtab_strtab:
1876 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1877 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1878 elf_elfsections (abfd)[shindex] = hdr;
1879 /* We also treat this as a regular section, so that objcopy
1880 can handle it. */
1881 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1882 shindex);
1883 }
1884
1885 /* If the string table isn't one of the above, then treat it as a
1886 regular section. We need to scan all the headers to be sure,
1887 just in case this strtab section appeared before the above. */
1888 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1889 {
1890 unsigned int i, num_sec;
1891
1892 num_sec = elf_numsections (abfd);
1893 for (i = 1; i < num_sec; i++)
1894 {
1895 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1896 if (hdr2->sh_link == shindex)
1897 {
1898 if (! bfd_section_from_shdr (abfd, i))
1899 return FALSE;
1900 if (elf_onesymtab (abfd) == i)
1901 goto symtab_strtab;
1902 if (elf_dynsymtab (abfd) == i)
1903 goto dynsymtab_strtab;
1904 }
1905 }
1906 }
1907 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1908
1909 case SHT_REL:
1910 case SHT_RELA:
1911 /* *These* do a lot of work -- but build no sections! */
1912 {
1913 asection *target_sect;
1914 Elf_Internal_Shdr *hdr2;
1915 unsigned int num_sec = elf_numsections (abfd);
1916
1917 /* Check for a bogus link to avoid crashing. */
1918 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1919 || hdr->sh_link >= num_sec)
1920 {
1921 ((*_bfd_error_handler)
1922 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1923 abfd, hdr->sh_link, name, shindex));
1924 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1925 shindex);
1926 }
1927
1928 /* For some incomprehensible reason Oracle distributes
1929 libraries for Solaris in which some of the objects have
1930 bogus sh_link fields. It would be nice if we could just
1931 reject them, but, unfortunately, some people need to use
1932 them. We scan through the section headers; if we find only
1933 one suitable symbol table, we clobber the sh_link to point
1934 to it. I hope this doesn't break anything. */
1935 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1936 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1937 {
1938 unsigned int scan;
1939 int found;
1940
1941 found = 0;
1942 for (scan = 1; scan < num_sec; scan++)
1943 {
1944 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1945 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1946 {
1947 if (found != 0)
1948 {
1949 found = 0;
1950 break;
1951 }
1952 found = scan;
1953 }
1954 }
1955 if (found != 0)
1956 hdr->sh_link = found;
1957 }
1958
1959 /* Get the symbol table. */
1960 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1961 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1962 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1963 return FALSE;
1964
1965 /* If this reloc section does not use the main symbol table we
1966 don't treat it as a reloc section. BFD can't adequately
1967 represent such a section, so at least for now, we don't
1968 try. We just present it as a normal section. We also
1969 can't use it as a reloc section if it points to the null
1970 section. */
1971 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1972 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1973 shindex);
1974
1975 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1976 return FALSE;
1977 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1978 if (target_sect == NULL)
1979 return FALSE;
1980
1981 if ((target_sect->flags & SEC_RELOC) == 0
1982 || target_sect->reloc_count == 0)
1983 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1984 else
1985 {
1986 bfd_size_type amt;
1987 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1988 amt = sizeof (*hdr2);
1989 hdr2 = bfd_alloc (abfd, amt);
1990 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1991 }
1992 *hdr2 = *hdr;
1993 elf_elfsections (abfd)[shindex] = hdr2;
1994 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1995 target_sect->flags |= SEC_RELOC;
1996 target_sect->relocation = NULL;
1997 target_sect->rel_filepos = hdr->sh_offset;
1998 /* In the section to which the relocations apply, mark whether
1999 its relocations are of the REL or RELA variety. */
2000 if (hdr->sh_size != 0)
2001 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2002 abfd->flags |= HAS_RELOC;
2003 return TRUE;
2004 }
2005 break;
2006
2007 case SHT_GNU_verdef:
2008 elf_dynverdef (abfd) = shindex;
2009 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2010 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2011 break;
2012
2013 case SHT_GNU_versym:
2014 elf_dynversym (abfd) = shindex;
2015 elf_tdata (abfd)->dynversym_hdr = *hdr;
2016 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2017 break;
2018
2019 case SHT_GNU_verneed:
2020 elf_dynverref (abfd) = shindex;
2021 elf_tdata (abfd)->dynverref_hdr = *hdr;
2022 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2023 break;
2024
2025 case SHT_SHLIB:
2026 return TRUE;
2027
2028 case SHT_GROUP:
2029 /* We need a BFD section for objcopy and relocatable linking,
2030 and it's handy to have the signature available as the section
2031 name. */
2032 name = group_signature (abfd, hdr);
2033 if (name == NULL)
2034 return FALSE;
2035 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2036 return FALSE;
2037 if (hdr->contents != NULL)
2038 {
2039 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2040 unsigned int n_elt = hdr->sh_size / 4;
2041 asection *s;
2042
2043 if (idx->flags & GRP_COMDAT)
2044 hdr->bfd_section->flags
2045 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2046
2047 /* We try to keep the same section order as it comes in. */
2048 idx += n_elt;
2049 while (--n_elt != 0)
2050 if ((s = (--idx)->shdr->bfd_section) != NULL
2051 && elf_next_in_group (s) != NULL)
2052 {
2053 elf_next_in_group (hdr->bfd_section) = s;
2054 break;
2055 }
2056 }
2057 break;
2058
2059 default:
2060 /* Check for any processor-specific section types. */
2061 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2062 shindex);
2063 }
2064
2065 return TRUE;
2066 }
2067
2068 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2069 Return SEC for sections that have no elf section, and NULL on error. */
2070
2071 asection *
2072 bfd_section_from_r_symndx (bfd *abfd,
2073 struct sym_sec_cache *cache,
2074 asection *sec,
2075 unsigned long r_symndx)
2076 {
2077 Elf_Internal_Shdr *symtab_hdr;
2078 unsigned char esym[sizeof (Elf64_External_Sym)];
2079 Elf_External_Sym_Shndx eshndx;
2080 Elf_Internal_Sym isym;
2081 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2082
2083 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2084 return cache->sec[ent];
2085
2086 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2087 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2088 &isym, esym, &eshndx) == NULL)
2089 return NULL;
2090
2091 if (cache->abfd != abfd)
2092 {
2093 memset (cache->indx, -1, sizeof (cache->indx));
2094 cache->abfd = abfd;
2095 }
2096 cache->indx[ent] = r_symndx;
2097 cache->sec[ent] = sec;
2098 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2099 || isym.st_shndx > SHN_HIRESERVE)
2100 {
2101 asection *s;
2102 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2103 if (s != NULL)
2104 cache->sec[ent] = s;
2105 }
2106 return cache->sec[ent];
2107 }
2108
2109 /* Given an ELF section number, retrieve the corresponding BFD
2110 section. */
2111
2112 asection *
2113 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2114 {
2115 if (index >= elf_numsections (abfd))
2116 return NULL;
2117 return elf_elfsections (abfd)[index]->bfd_section;
2118 }
2119
2120 static struct bfd_elf_special_section const special_sections_b[] =
2121 {
2122 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2123 { NULL, 0, 0, 0, 0 }
2124 };
2125
2126 static struct bfd_elf_special_section const special_sections_c[] =
2127 {
2128 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2129 { NULL, 0, 0, 0, 0 }
2130 };
2131
2132 static struct bfd_elf_special_section const special_sections_d[] =
2133 {
2134 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2135 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2136 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2137 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2138 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2139 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2140 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2141 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2142 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2143 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2144 { NULL, 0, 0, 0, 0 }
2145 };
2146
2147 static struct bfd_elf_special_section const special_sections_f[] =
2148 {
2149 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2150 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2151 { NULL, 0, 0, 0, 0 }
2152 };
2153
2154 static struct bfd_elf_special_section const special_sections_g[] =
2155 {
2156 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2157 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2158 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2159 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2160 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2161 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2162 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2163 { NULL, 0, 0, 0, 0 }
2164 };
2165
2166 static struct bfd_elf_special_section const special_sections_h[] =
2167 {
2168 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2169 { NULL, 0, 0, 0, 0 }
2170 };
2171
2172 static struct bfd_elf_special_section const special_sections_i[] =
2173 {
2174 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2175 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2176 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2177 { NULL, 0, 0, 0, 0 }
2178 };
2179
2180 static struct bfd_elf_special_section const special_sections_l[] =
2181 {
2182 { ".line", 5, 0, SHT_PROGBITS, 0 },
2183 { NULL, 0, 0, 0, 0 }
2184 };
2185
2186 static struct bfd_elf_special_section const special_sections_n[] =
2187 {
2188 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2189 { ".note", 5, -1, SHT_NOTE, 0 },
2190 { NULL, 0, 0, 0, 0 }
2191 };
2192
2193 static struct bfd_elf_special_section const special_sections_p[] =
2194 {
2195 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2196 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2197 { NULL, 0, 0, 0, 0 }
2198 };
2199
2200 static struct bfd_elf_special_section const special_sections_r[] =
2201 {
2202 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2203 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2204 { ".rela", 5, -1, SHT_RELA, 0 },
2205 { ".rel", 4, -1, SHT_REL, 0 },
2206 { NULL, 0, 0, 0, 0 }
2207 };
2208
2209 static struct bfd_elf_special_section const special_sections_s[] =
2210 {
2211 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2212 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2213 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2214 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2215 { NULL, 0, 0, 0, 0 }
2216 };
2217
2218 static struct bfd_elf_special_section const special_sections_t[] =
2219 {
2220 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2221 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2222 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2223 { NULL, 0, 0, 0, 0 }
2224 };
2225
2226 static struct bfd_elf_special_section const *special_sections [27] =
2227 {
2228 NULL, /* 'a' */
2229 special_sections_b, /* 'b' */
2230 special_sections_c, /* 'b' */
2231 special_sections_d, /* 'd' */
2232 NULL, /* 'e' */
2233 special_sections_f, /* 'f' */
2234 special_sections_g, /* 'g' */
2235 special_sections_h, /* 'h' */
2236 special_sections_i, /* 'i' */
2237 NULL, /* 'j' */
2238 NULL, /* 'k' */
2239 special_sections_l, /* 'l' */
2240 NULL, /* 'm' */
2241 special_sections_n, /* 'n' */
2242 NULL, /* 'o' */
2243 special_sections_p, /* 'p' */
2244 NULL, /* 'q' */
2245 special_sections_r, /* 'r' */
2246 special_sections_s, /* 's' */
2247 special_sections_t, /* 't' */
2248 NULL, /* 'u' */
2249 NULL, /* 'v' */
2250 NULL, /* 'w' */
2251 NULL, /* 'x' */
2252 NULL, /* 'y' */
2253 NULL, /* 'z' */
2254 NULL /* other */
2255 };
2256
2257 static const struct bfd_elf_special_section *
2258 get_special_section (const char *name,
2259 const struct bfd_elf_special_section **special_sections_p,
2260 unsigned int rela)
2261 {
2262 int i;
2263 int len;
2264 const struct bfd_elf_special_section *special_sections;
2265
2266 if (name [0] == '.')
2267 {
2268 i = name [1] - 'a';
2269 if (i < 0 || i > 25)
2270 i = 26;
2271 }
2272 else
2273 i = 26;
2274
2275 special_sections = special_sections_p [i];
2276
2277 if (!special_sections)
2278 return special_sections;
2279
2280 len= strlen (name);
2281
2282 for (i = 0; special_sections[i].prefix != NULL; i++)
2283 {
2284 int suffix_len;
2285 int prefix_len = special_sections[i].prefix_length;
2286
2287 if (len < prefix_len)
2288 continue;
2289 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2290 continue;
2291
2292 suffix_len = special_sections[i].suffix_length;
2293 if (suffix_len <= 0)
2294 {
2295 if (name[prefix_len] != 0)
2296 {
2297 if (suffix_len == 0)
2298 continue;
2299 if (name[prefix_len] != '.'
2300 && (suffix_len == -2
2301 || (rela && special_sections[i].type == SHT_REL)))
2302 continue;
2303 }
2304 }
2305 else
2306 {
2307 if (len < prefix_len + suffix_len)
2308 continue;
2309 if (memcmp (name + len - suffix_len,
2310 special_sections[i].prefix + prefix_len,
2311 suffix_len) != 0)
2312 continue;
2313 }
2314 return &special_sections[i];
2315 }
2316
2317 return NULL;
2318 }
2319
2320 const struct bfd_elf_special_section *
2321 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2322 {
2323 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2324 const struct bfd_elf_special_section *ssect = NULL;
2325
2326 /* See if this is one of the special sections. */
2327 if (name)
2328 {
2329 unsigned int rela = bed->default_use_rela_p;
2330
2331 if (bed->special_sections)
2332 ssect = get_special_section (name, bed->special_sections, rela);
2333
2334 if (! ssect)
2335 ssect = get_special_section (name, special_sections, rela);
2336 }
2337
2338 return ssect;
2339 }
2340
2341 bfd_boolean
2342 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2343 {
2344 struct bfd_elf_section_data *sdata;
2345 const struct bfd_elf_special_section *ssect;
2346
2347 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2348 if (sdata == NULL)
2349 {
2350 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2351 if (sdata == NULL)
2352 return FALSE;
2353 sec->used_by_bfd = sdata;
2354 }
2355
2356 /* When we read a file, we don't need section type and flags unless
2357 it is a linker created section. They will be overridden in
2358 _bfd_elf_make_section_from_shdr anyway. */
2359 if (abfd->direction != read_direction
2360 || (sec->flags & SEC_LINKER_CREATED) != 0)
2361 {
2362 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2363 if (ssect != NULL)
2364 {
2365 elf_section_type (sec) = ssect->type;
2366 elf_section_flags (sec) = ssect->attr;
2367 }
2368 }
2369
2370 /* Indicate whether or not this section should use RELA relocations. */
2371 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2372
2373 return TRUE;
2374 }
2375
2376 /* Create a new bfd section from an ELF program header.
2377
2378 Since program segments have no names, we generate a synthetic name
2379 of the form segment<NUM>, where NUM is generally the index in the
2380 program header table. For segments that are split (see below) we
2381 generate the names segment<NUM>a and segment<NUM>b.
2382
2383 Note that some program segments may have a file size that is different than
2384 (less than) the memory size. All this means is that at execution the
2385 system must allocate the amount of memory specified by the memory size,
2386 but only initialize it with the first "file size" bytes read from the
2387 file. This would occur for example, with program segments consisting
2388 of combined data+bss.
2389
2390 To handle the above situation, this routine generates TWO bfd sections
2391 for the single program segment. The first has the length specified by
2392 the file size of the segment, and the second has the length specified
2393 by the difference between the two sizes. In effect, the segment is split
2394 into it's initialized and uninitialized parts.
2395
2396 */
2397
2398 bfd_boolean
2399 _bfd_elf_make_section_from_phdr (bfd *abfd,
2400 Elf_Internal_Phdr *hdr,
2401 int index,
2402 const char *typename)
2403 {
2404 asection *newsect;
2405 char *name;
2406 char namebuf[64];
2407 size_t len;
2408 int split;
2409
2410 split = ((hdr->p_memsz > 0)
2411 && (hdr->p_filesz > 0)
2412 && (hdr->p_memsz > hdr->p_filesz));
2413 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2414 len = strlen (namebuf) + 1;
2415 name = bfd_alloc (abfd, len);
2416 if (!name)
2417 return FALSE;
2418 memcpy (name, namebuf, len);
2419 newsect = bfd_make_section (abfd, name);
2420 if (newsect == NULL)
2421 return FALSE;
2422 newsect->vma = hdr->p_vaddr;
2423 newsect->lma = hdr->p_paddr;
2424 newsect->size = hdr->p_filesz;
2425 newsect->filepos = hdr->p_offset;
2426 newsect->flags |= SEC_HAS_CONTENTS;
2427 newsect->alignment_power = bfd_log2 (hdr->p_align);
2428 if (hdr->p_type == PT_LOAD)
2429 {
2430 newsect->flags |= SEC_ALLOC;
2431 newsect->flags |= SEC_LOAD;
2432 if (hdr->p_flags & PF_X)
2433 {
2434 /* FIXME: all we known is that it has execute PERMISSION,
2435 may be data. */
2436 newsect->flags |= SEC_CODE;
2437 }
2438 }
2439 if (!(hdr->p_flags & PF_W))
2440 {
2441 newsect->flags |= SEC_READONLY;
2442 }
2443
2444 if (split)
2445 {
2446 sprintf (namebuf, "%s%db", typename, index);
2447 len = strlen (namebuf) + 1;
2448 name = bfd_alloc (abfd, len);
2449 if (!name)
2450 return FALSE;
2451 memcpy (name, namebuf, len);
2452 newsect = bfd_make_section (abfd, name);
2453 if (newsect == NULL)
2454 return FALSE;
2455 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2456 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2457 newsect->size = hdr->p_memsz - hdr->p_filesz;
2458 if (hdr->p_type == PT_LOAD)
2459 {
2460 newsect->flags |= SEC_ALLOC;
2461 if (hdr->p_flags & PF_X)
2462 newsect->flags |= SEC_CODE;
2463 }
2464 if (!(hdr->p_flags & PF_W))
2465 newsect->flags |= SEC_READONLY;
2466 }
2467
2468 return TRUE;
2469 }
2470
2471 bfd_boolean
2472 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2473 {
2474 const struct elf_backend_data *bed;
2475
2476 switch (hdr->p_type)
2477 {
2478 case PT_NULL:
2479 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2480
2481 case PT_LOAD:
2482 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2483
2484 case PT_DYNAMIC:
2485 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2486
2487 case PT_INTERP:
2488 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2489
2490 case PT_NOTE:
2491 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2492 return FALSE;
2493 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2494 return FALSE;
2495 return TRUE;
2496
2497 case PT_SHLIB:
2498 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2499
2500 case PT_PHDR:
2501 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2502
2503 case PT_GNU_EH_FRAME:
2504 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2505 "eh_frame_hdr");
2506
2507 case PT_GNU_STACK:
2508 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2509
2510 case PT_GNU_RELRO:
2511 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2512
2513 default:
2514 /* Check for any processor-specific program segment types. */
2515 bed = get_elf_backend_data (abfd);
2516 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2517 }
2518 }
2519
2520 /* Initialize REL_HDR, the section-header for new section, containing
2521 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2522 relocations; otherwise, we use REL relocations. */
2523
2524 bfd_boolean
2525 _bfd_elf_init_reloc_shdr (bfd *abfd,
2526 Elf_Internal_Shdr *rel_hdr,
2527 asection *asect,
2528 bfd_boolean use_rela_p)
2529 {
2530 char *name;
2531 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2532 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2533
2534 name = bfd_alloc (abfd, amt);
2535 if (name == NULL)
2536 return FALSE;
2537 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2538 rel_hdr->sh_name =
2539 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2540 FALSE);
2541 if (rel_hdr->sh_name == (unsigned int) -1)
2542 return FALSE;
2543 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2544 rel_hdr->sh_entsize = (use_rela_p
2545 ? bed->s->sizeof_rela
2546 : bed->s->sizeof_rel);
2547 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2548 rel_hdr->sh_flags = 0;
2549 rel_hdr->sh_addr = 0;
2550 rel_hdr->sh_size = 0;
2551 rel_hdr->sh_offset = 0;
2552
2553 return TRUE;
2554 }
2555
2556 /* Set up an ELF internal section header for a section. */
2557
2558 static void
2559 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2560 {
2561 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2562 bfd_boolean *failedptr = failedptrarg;
2563 Elf_Internal_Shdr *this_hdr;
2564
2565 if (*failedptr)
2566 {
2567 /* We already failed; just get out of the bfd_map_over_sections
2568 loop. */
2569 return;
2570 }
2571
2572 this_hdr = &elf_section_data (asect)->this_hdr;
2573
2574 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2575 asect->name, FALSE);
2576 if (this_hdr->sh_name == (unsigned int) -1)
2577 {
2578 *failedptr = TRUE;
2579 return;
2580 }
2581
2582 this_hdr->sh_flags = 0;
2583
2584 if ((asect->flags & SEC_ALLOC) != 0
2585 || asect->user_set_vma)
2586 this_hdr->sh_addr = asect->vma;
2587 else
2588 this_hdr->sh_addr = 0;
2589
2590 this_hdr->sh_offset = 0;
2591 this_hdr->sh_size = asect->size;
2592 this_hdr->sh_link = 0;
2593 this_hdr->sh_addralign = 1 << asect->alignment_power;
2594 /* The sh_entsize and sh_info fields may have been set already by
2595 copy_private_section_data. */
2596
2597 this_hdr->bfd_section = asect;
2598 this_hdr->contents = NULL;
2599
2600 /* If the section type is unspecified, we set it based on
2601 asect->flags. */
2602 if (this_hdr->sh_type == SHT_NULL)
2603 {
2604 if ((asect->flags & SEC_GROUP) != 0)
2605 {
2606 /* We also need to mark SHF_GROUP here for relocatable
2607 link. */
2608 struct bfd_link_order *l;
2609 asection *elt;
2610
2611 for (l = asect->map_head.link_order; l != NULL; l = l->next)
2612 if (l->type == bfd_indirect_link_order
2613 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2614 do
2615 {
2616 /* The name is not important. Anything will do. */
2617 elf_group_name (elt->output_section) = "G";
2618 elf_section_flags (elt->output_section) |= SHF_GROUP;
2619
2620 elt = elf_next_in_group (elt);
2621 /* During a relocatable link, the lists are
2622 circular. */
2623 }
2624 while (elt != elf_next_in_group (l->u.indirect.section));
2625
2626 this_hdr->sh_type = SHT_GROUP;
2627 }
2628 else if ((asect->flags & SEC_ALLOC) != 0
2629 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2630 || (asect->flags & SEC_NEVER_LOAD) != 0))
2631 this_hdr->sh_type = SHT_NOBITS;
2632 else
2633 this_hdr->sh_type = SHT_PROGBITS;
2634 }
2635
2636 switch (this_hdr->sh_type)
2637 {
2638 default:
2639 break;
2640
2641 case SHT_STRTAB:
2642 case SHT_INIT_ARRAY:
2643 case SHT_FINI_ARRAY:
2644 case SHT_PREINIT_ARRAY:
2645 case SHT_NOTE:
2646 case SHT_NOBITS:
2647 case SHT_PROGBITS:
2648 break;
2649
2650 case SHT_HASH:
2651 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2652 break;
2653
2654 case SHT_DYNSYM:
2655 this_hdr->sh_entsize = bed->s->sizeof_sym;
2656 break;
2657
2658 case SHT_DYNAMIC:
2659 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2660 break;
2661
2662 case SHT_RELA:
2663 if (get_elf_backend_data (abfd)->may_use_rela_p)
2664 this_hdr->sh_entsize = bed->s->sizeof_rela;
2665 break;
2666
2667 case SHT_REL:
2668 if (get_elf_backend_data (abfd)->may_use_rel_p)
2669 this_hdr->sh_entsize = bed->s->sizeof_rel;
2670 break;
2671
2672 case SHT_GNU_versym:
2673 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2674 break;
2675
2676 case SHT_GNU_verdef:
2677 this_hdr->sh_entsize = 0;
2678 /* objcopy or strip will copy over sh_info, but may not set
2679 cverdefs. The linker will set cverdefs, but sh_info will be
2680 zero. */
2681 if (this_hdr->sh_info == 0)
2682 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2683 else
2684 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2685 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2686 break;
2687
2688 case SHT_GNU_verneed:
2689 this_hdr->sh_entsize = 0;
2690 /* objcopy or strip will copy over sh_info, but may not set
2691 cverrefs. The linker will set cverrefs, but sh_info will be
2692 zero. */
2693 if (this_hdr->sh_info == 0)
2694 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2695 else
2696 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2697 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2698 break;
2699
2700 case SHT_GROUP:
2701 this_hdr->sh_entsize = 4;
2702 break;
2703 }
2704
2705 if ((asect->flags & SEC_ALLOC) != 0)
2706 this_hdr->sh_flags |= SHF_ALLOC;
2707 if ((asect->flags & SEC_READONLY) == 0)
2708 this_hdr->sh_flags |= SHF_WRITE;
2709 if ((asect->flags & SEC_CODE) != 0)
2710 this_hdr->sh_flags |= SHF_EXECINSTR;
2711 if ((asect->flags & SEC_MERGE) != 0)
2712 {
2713 this_hdr->sh_flags |= SHF_MERGE;
2714 this_hdr->sh_entsize = asect->entsize;
2715 if ((asect->flags & SEC_STRINGS) != 0)
2716 this_hdr->sh_flags |= SHF_STRINGS;
2717 }
2718 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2719 this_hdr->sh_flags |= SHF_GROUP;
2720 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2721 {
2722 this_hdr->sh_flags |= SHF_TLS;
2723 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2724 {
2725 struct bfd_link_order *o;
2726
2727 this_hdr->sh_size = 0;
2728 for (o = asect->map_head.link_order; o != NULL; o = o->next)
2729 if (this_hdr->sh_size < o->offset + o->size)
2730 this_hdr->sh_size = o->offset + o->size;
2731 if (this_hdr->sh_size)
2732 this_hdr->sh_type = SHT_NOBITS;
2733 }
2734 }
2735
2736 /* Check for processor-specific section types. */
2737 if (bed->elf_backend_fake_sections
2738 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2739 *failedptr = TRUE;
2740
2741 /* If the section has relocs, set up a section header for the
2742 SHT_REL[A] section. If two relocation sections are required for
2743 this section, it is up to the processor-specific back-end to
2744 create the other. */
2745 if ((asect->flags & SEC_RELOC) != 0
2746 && !_bfd_elf_init_reloc_shdr (abfd,
2747 &elf_section_data (asect)->rel_hdr,
2748 asect,
2749 asect->use_rela_p))
2750 *failedptr = TRUE;
2751 }
2752
2753 /* Fill in the contents of a SHT_GROUP section. */
2754
2755 void
2756 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2757 {
2758 bfd_boolean *failedptr = failedptrarg;
2759 unsigned long symindx;
2760 asection *elt, *first;
2761 unsigned char *loc;
2762 struct bfd_link_order *l;
2763 bfd_boolean gas;
2764
2765 /* Ignore linker created group section. See elfNN_ia64_object_p in
2766 elfxx-ia64.c. */
2767 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2768 || *failedptr)
2769 return;
2770
2771 symindx = 0;
2772 if (elf_group_id (sec) != NULL)
2773 symindx = elf_group_id (sec)->udata.i;
2774
2775 if (symindx == 0)
2776 {
2777 /* If called from the assembler, swap_out_syms will have set up
2778 elf_section_syms; If called for "ld -r", use target_index. */
2779 if (elf_section_syms (abfd) != NULL)
2780 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2781 else
2782 symindx = sec->target_index;
2783 }
2784 elf_section_data (sec)->this_hdr.sh_info = symindx;
2785
2786 /* The contents won't be allocated for "ld -r" or objcopy. */
2787 gas = TRUE;
2788 if (sec->contents == NULL)
2789 {
2790 gas = FALSE;
2791 sec->contents = bfd_alloc (abfd, sec->size);
2792
2793 /* Arrange for the section to be written out. */
2794 elf_section_data (sec)->this_hdr.contents = sec->contents;
2795 if (sec->contents == NULL)
2796 {
2797 *failedptr = TRUE;
2798 return;
2799 }
2800 }
2801
2802 loc = sec->contents + sec->size;
2803
2804 /* Get the pointer to the first section in the group that gas
2805 squirreled away here. objcopy arranges for this to be set to the
2806 start of the input section group. */
2807 first = elt = elf_next_in_group (sec);
2808
2809 /* First element is a flag word. Rest of section is elf section
2810 indices for all the sections of the group. Write them backwards
2811 just to keep the group in the same order as given in .section
2812 directives, not that it matters. */
2813 while (elt != NULL)
2814 {
2815 asection *s;
2816 unsigned int idx;
2817
2818 loc -= 4;
2819 s = elt;
2820 if (!gas)
2821 s = s->output_section;
2822 idx = 0;
2823 if (s != NULL)
2824 idx = elf_section_data (s)->this_idx;
2825 H_PUT_32 (abfd, idx, loc);
2826 elt = elf_next_in_group (elt);
2827 if (elt == first)
2828 break;
2829 }
2830
2831 /* If this is a relocatable link, then the above did nothing because
2832 SEC is the output section. Look through the input sections
2833 instead. */
2834 for (l = sec->map_head.link_order; l != NULL; l = l->next)
2835 if (l->type == bfd_indirect_link_order
2836 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2837 do
2838 {
2839 loc -= 4;
2840 H_PUT_32 (abfd,
2841 elf_section_data (elt->output_section)->this_idx, loc);
2842 elt = elf_next_in_group (elt);
2843 /* During a relocatable link, the lists are circular. */
2844 }
2845 while (elt != elf_next_in_group (l->u.indirect.section));
2846
2847 if ((loc -= 4) != sec->contents)
2848 abort ();
2849
2850 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2851 }
2852
2853 /* Assign all ELF section numbers. The dummy first section is handled here
2854 too. The link/info pointers for the standard section types are filled
2855 in here too, while we're at it. */
2856
2857 static bfd_boolean
2858 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2859 {
2860 struct elf_obj_tdata *t = elf_tdata (abfd);
2861 asection *sec;
2862 unsigned int section_number, secn;
2863 Elf_Internal_Shdr **i_shdrp;
2864 bfd_size_type amt;
2865 struct bfd_elf_section_data *d;
2866
2867 section_number = 1;
2868
2869 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2870
2871 /* SHT_GROUP sections are in relocatable files only. */
2872 if (link_info == NULL || link_info->relocatable)
2873 {
2874 /* Put SHT_GROUP sections first. */
2875 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2876 {
2877 d = elf_section_data (sec);
2878
2879 if (d->this_hdr.sh_type == SHT_GROUP)
2880 {
2881 if (sec->flags & SEC_LINKER_CREATED)
2882 {
2883 /* Remove the linker created SHT_GROUP sections. */
2884 bfd_section_list_remove (abfd, sec);
2885 abfd->section_count--;
2886 }
2887 else
2888 {
2889 if (section_number == SHN_LORESERVE)
2890 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2891 d->this_idx = section_number++;
2892 }
2893 }
2894 }
2895 }
2896
2897 for (sec = abfd->sections; sec; sec = sec->next)
2898 {
2899 d = elf_section_data (sec);
2900
2901 if (d->this_hdr.sh_type != SHT_GROUP)
2902 {
2903 if (section_number == SHN_LORESERVE)
2904 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2905 d->this_idx = section_number++;
2906 }
2907 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2908 if ((sec->flags & SEC_RELOC) == 0)
2909 d->rel_idx = 0;
2910 else
2911 {
2912 if (section_number == SHN_LORESERVE)
2913 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2914 d->rel_idx = section_number++;
2915 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2916 }
2917
2918 if (d->rel_hdr2)
2919 {
2920 if (section_number == SHN_LORESERVE)
2921 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2922 d->rel_idx2 = section_number++;
2923 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2924 }
2925 else
2926 d->rel_idx2 = 0;
2927 }
2928
2929 if (section_number == SHN_LORESERVE)
2930 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2931 t->shstrtab_section = section_number++;
2932 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2933 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2934
2935 if (bfd_get_symcount (abfd) > 0)
2936 {
2937 if (section_number == SHN_LORESERVE)
2938 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2939 t->symtab_section = section_number++;
2940 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2941 if (section_number > SHN_LORESERVE - 2)
2942 {
2943 if (section_number == SHN_LORESERVE)
2944 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2945 t->symtab_shndx_section = section_number++;
2946 t->symtab_shndx_hdr.sh_name
2947 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2948 ".symtab_shndx", FALSE);
2949 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2950 return FALSE;
2951 }
2952 if (section_number == SHN_LORESERVE)
2953 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2954 t->strtab_section = section_number++;
2955 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2956 }
2957
2958 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2959 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2960
2961 elf_numsections (abfd) = section_number;
2962 elf_elfheader (abfd)->e_shnum = section_number;
2963 if (section_number > SHN_LORESERVE)
2964 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2965
2966 /* Set up the list of section header pointers, in agreement with the
2967 indices. */
2968 amt = section_number * sizeof (Elf_Internal_Shdr *);
2969 i_shdrp = bfd_zalloc (abfd, amt);
2970 if (i_shdrp == NULL)
2971 return FALSE;
2972
2973 amt = sizeof (Elf_Internal_Shdr);
2974 i_shdrp[0] = bfd_zalloc (abfd, amt);
2975 if (i_shdrp[0] == NULL)
2976 {
2977 bfd_release (abfd, i_shdrp);
2978 return FALSE;
2979 }
2980
2981 elf_elfsections (abfd) = i_shdrp;
2982
2983 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2984 if (bfd_get_symcount (abfd) > 0)
2985 {
2986 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2987 if (elf_numsections (abfd) > SHN_LORESERVE)
2988 {
2989 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2990 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2991 }
2992 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2993 t->symtab_hdr.sh_link = t->strtab_section;
2994 }
2995
2996 for (sec = abfd->sections; sec; sec = sec->next)
2997 {
2998 struct bfd_elf_section_data *d = elf_section_data (sec);
2999 asection *s;
3000 const char *name;
3001
3002 i_shdrp[d->this_idx] = &d->this_hdr;
3003 if (d->rel_idx != 0)
3004 i_shdrp[d->rel_idx] = &d->rel_hdr;
3005 if (d->rel_idx2 != 0)
3006 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3007
3008 /* Fill in the sh_link and sh_info fields while we're at it. */
3009
3010 /* sh_link of a reloc section is the section index of the symbol
3011 table. sh_info is the section index of the section to which
3012 the relocation entries apply. */
3013 if (d->rel_idx != 0)
3014 {
3015 d->rel_hdr.sh_link = t->symtab_section;
3016 d->rel_hdr.sh_info = d->this_idx;
3017 }
3018 if (d->rel_idx2 != 0)
3019 {
3020 d->rel_hdr2->sh_link = t->symtab_section;
3021 d->rel_hdr2->sh_info = d->this_idx;
3022 }
3023
3024 /* We need to set up sh_link for SHF_LINK_ORDER. */
3025 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3026 {
3027 s = elf_linked_to_section (sec);
3028 if (s)
3029 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3030 else
3031 {
3032 struct bfd_link_order *p;
3033
3034 /* Find out what the corresponding section in output
3035 is. */
3036 for (p = sec->map_head.link_order; p != NULL; p = p->next)
3037 {
3038 s = p->u.indirect.section;
3039 if (p->type == bfd_indirect_link_order
3040 && (bfd_get_flavour (s->owner)
3041 == bfd_target_elf_flavour))
3042 {
3043 Elf_Internal_Shdr ** const elf_shdrp
3044 = elf_elfsections (s->owner);
3045 int elfsec
3046 = _bfd_elf_section_from_bfd_section (s->owner, s);
3047 elfsec = elf_shdrp[elfsec]->sh_link;
3048 /* PR 290:
3049 The Intel C compiler generates SHT_IA_64_UNWIND with
3050 SHF_LINK_ORDER. But it doesn't set the sh_link or
3051 sh_info fields. Hence we could get the situation
3052 where elfsec is 0. */
3053 if (elfsec == 0)
3054 {
3055 const struct elf_backend_data *bed
3056 = get_elf_backend_data (abfd);
3057 if (bed->link_order_error_handler)
3058 bed->link_order_error_handler
3059 (_("%B: warning: sh_link not set for section `%A'"),
3060 abfd, s);
3061 }
3062 else
3063 {
3064 s = elf_shdrp[elfsec]->bfd_section;
3065 if (elf_discarded_section (s))
3066 {
3067 asection *kept;
3068 (*_bfd_error_handler)
3069 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3070 abfd, d->this_hdr.bfd_section,
3071 s, s->owner);
3072 /* Point to the kept section if it has
3073 the same size as the discarded
3074 one. */
3075 kept = _bfd_elf_check_kept_section (s);
3076 if (kept == NULL)
3077 {
3078 bfd_set_error (bfd_error_bad_value);
3079 return FALSE;
3080 }
3081 s = kept;
3082 }
3083 s = s->output_section;
3084 BFD_ASSERT (s != NULL);
3085 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3086 }
3087 break;
3088 }
3089 }
3090 }
3091 }
3092
3093 switch (d->this_hdr.sh_type)
3094 {
3095 case SHT_REL:
3096 case SHT_RELA:
3097 /* A reloc section which we are treating as a normal BFD
3098 section. sh_link is the section index of the symbol
3099 table. sh_info is the section index of the section to
3100 which the relocation entries apply. We assume that an
3101 allocated reloc section uses the dynamic symbol table.
3102 FIXME: How can we be sure? */
3103 s = bfd_get_section_by_name (abfd, ".dynsym");
3104 if (s != NULL)
3105 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3106
3107 /* We look up the section the relocs apply to by name. */
3108 name = sec->name;
3109 if (d->this_hdr.sh_type == SHT_REL)
3110 name += 4;
3111 else
3112 name += 5;
3113 s = bfd_get_section_by_name (abfd, name);
3114 if (s != NULL)
3115 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3116 break;
3117
3118 case SHT_STRTAB:
3119 /* We assume that a section named .stab*str is a stabs
3120 string section. We look for a section with the same name
3121 but without the trailing ``str'', and set its sh_link
3122 field to point to this section. */
3123 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3124 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3125 {
3126 size_t len;
3127 char *alc;
3128
3129 len = strlen (sec->name);
3130 alc = bfd_malloc (len - 2);
3131 if (alc == NULL)
3132 return FALSE;
3133 memcpy (alc, sec->name, len - 3);
3134 alc[len - 3] = '\0';
3135 s = bfd_get_section_by_name (abfd, alc);
3136 free (alc);
3137 if (s != NULL)
3138 {
3139 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3140
3141 /* This is a .stab section. */
3142 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3143 elf_section_data (s)->this_hdr.sh_entsize
3144 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3145 }
3146 }
3147 break;
3148
3149 case SHT_DYNAMIC:
3150 case SHT_DYNSYM:
3151 case SHT_GNU_verneed:
3152 case SHT_GNU_verdef:
3153 /* sh_link is the section header index of the string table
3154 used for the dynamic entries, or the symbol table, or the
3155 version strings. */
3156 s = bfd_get_section_by_name (abfd, ".dynstr");
3157 if (s != NULL)
3158 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3159 break;
3160
3161 case SHT_GNU_LIBLIST:
3162 /* sh_link is the section header index of the prelink library
3163 list
3164 used for the dynamic entries, or the symbol table, or the
3165 version strings. */
3166 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3167 ? ".dynstr" : ".gnu.libstr");
3168 if (s != NULL)
3169 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3170 break;
3171
3172 case SHT_HASH:
3173 case SHT_GNU_versym:
3174 /* sh_link is the section header index of the symbol table
3175 this hash table or version table is for. */
3176 s = bfd_get_section_by_name (abfd, ".dynsym");
3177 if (s != NULL)
3178 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3179 break;
3180
3181 case SHT_GROUP:
3182 d->this_hdr.sh_link = t->symtab_section;
3183 }
3184 }
3185
3186 for (secn = 1; secn < section_number; ++secn)
3187 if (i_shdrp[secn] == NULL)
3188 i_shdrp[secn] = i_shdrp[0];
3189 else
3190 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3191 i_shdrp[secn]->sh_name);
3192 return TRUE;
3193 }
3194
3195 /* Map symbol from it's internal number to the external number, moving
3196 all local symbols to be at the head of the list. */
3197
3198 static int
3199 sym_is_global (bfd *abfd, asymbol *sym)
3200 {
3201 /* If the backend has a special mapping, use it. */
3202 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3203 if (bed->elf_backend_sym_is_global)
3204 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3205
3206 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3207 || bfd_is_und_section (bfd_get_section (sym))
3208 || bfd_is_com_section (bfd_get_section (sym)));
3209 }
3210
3211 static bfd_boolean
3212 elf_map_symbols (bfd *abfd)
3213 {
3214 unsigned int symcount = bfd_get_symcount (abfd);
3215 asymbol **syms = bfd_get_outsymbols (abfd);
3216 asymbol **sect_syms;
3217 unsigned int num_locals = 0;
3218 unsigned int num_globals = 0;
3219 unsigned int num_locals2 = 0;
3220 unsigned int num_globals2 = 0;
3221 int max_index = 0;
3222 unsigned int idx;
3223 asection *asect;
3224 asymbol **new_syms;
3225 bfd_size_type amt;
3226
3227 #ifdef DEBUG
3228 fprintf (stderr, "elf_map_symbols\n");
3229 fflush (stderr);
3230 #endif
3231
3232 for (asect = abfd->sections; asect; asect = asect->next)
3233 {
3234 if (max_index < asect->index)
3235 max_index = asect->index;
3236 }
3237
3238 max_index++;
3239 amt = max_index * sizeof (asymbol *);
3240 sect_syms = bfd_zalloc (abfd, amt);
3241 if (sect_syms == NULL)
3242 return FALSE;
3243 elf_section_syms (abfd) = sect_syms;
3244 elf_num_section_syms (abfd) = max_index;
3245
3246 /* Init sect_syms entries for any section symbols we have already
3247 decided to output. */
3248 for (idx = 0; idx < symcount; idx++)
3249 {
3250 asymbol *sym = syms[idx];
3251
3252 if ((sym->flags & BSF_SECTION_SYM) != 0
3253 && sym->value == 0)
3254 {
3255 asection *sec;
3256
3257 sec = sym->section;
3258
3259 if (sec->owner != NULL)
3260 {
3261 if (sec->owner != abfd)
3262 {
3263 if (sec->output_offset != 0)
3264 continue;
3265
3266 sec = sec->output_section;
3267
3268 /* Empty sections in the input files may have had a
3269 section symbol created for them. (See the comment
3270 near the end of _bfd_generic_link_output_symbols in
3271 linker.c). If the linker script discards such
3272 sections then we will reach this point. Since we know
3273 that we cannot avoid this case, we detect it and skip
3274 the abort and the assignment to the sect_syms array.
3275 To reproduce this particular case try running the
3276 linker testsuite test ld-scripts/weak.exp for an ELF
3277 port that uses the generic linker. */
3278 if (sec->owner == NULL)
3279 continue;
3280
3281 BFD_ASSERT (sec->owner == abfd);
3282 }
3283 sect_syms[sec->index] = syms[idx];
3284 }
3285 }
3286 }
3287
3288 /* Classify all of the symbols. */
3289 for (idx = 0; idx < symcount; idx++)
3290 {
3291 if (!sym_is_global (abfd, syms[idx]))
3292 num_locals++;
3293 else
3294 num_globals++;
3295 }
3296
3297 /* We will be adding a section symbol for each BFD section. Most normal
3298 sections will already have a section symbol in outsymbols, but
3299 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3300 at least in that case. */
3301 for (asect = abfd->sections; asect; asect = asect->next)
3302 {
3303 if (sect_syms[asect->index] == NULL)
3304 {
3305 if (!sym_is_global (abfd, asect->symbol))
3306 num_locals++;
3307 else
3308 num_globals++;
3309 }
3310 }
3311
3312 /* Now sort the symbols so the local symbols are first. */
3313 amt = (num_locals + num_globals) * sizeof (asymbol *);
3314 new_syms = bfd_alloc (abfd, amt);
3315
3316 if (new_syms == NULL)
3317 return FALSE;
3318
3319 for (idx = 0; idx < symcount; idx++)
3320 {
3321 asymbol *sym = syms[idx];
3322 unsigned int i;
3323
3324 if (!sym_is_global (abfd, sym))
3325 i = num_locals2++;
3326 else
3327 i = num_locals + num_globals2++;
3328 new_syms[i] = sym;
3329 sym->udata.i = i + 1;
3330 }
3331 for (asect = abfd->sections; asect; asect = asect->next)
3332 {
3333 if (sect_syms[asect->index] == NULL)
3334 {
3335 asymbol *sym = asect->symbol;
3336 unsigned int i;
3337
3338 sect_syms[asect->index] = sym;
3339 if (!sym_is_global (abfd, sym))
3340 i = num_locals2++;
3341 else
3342 i = num_locals + num_globals2++;
3343 new_syms[i] = sym;
3344 sym->udata.i = i + 1;
3345 }
3346 }
3347
3348 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3349
3350 elf_num_locals (abfd) = num_locals;
3351 elf_num_globals (abfd) = num_globals;
3352 return TRUE;
3353 }
3354
3355 /* Align to the maximum file alignment that could be required for any
3356 ELF data structure. */
3357
3358 static inline file_ptr
3359 align_file_position (file_ptr off, int align)
3360 {
3361 return (off + align - 1) & ~(align - 1);
3362 }
3363
3364 /* Assign a file position to a section, optionally aligning to the
3365 required section alignment. */
3366
3367 file_ptr
3368 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3369 file_ptr offset,
3370 bfd_boolean align)
3371 {
3372 if (align)
3373 {
3374 unsigned int al;
3375
3376 al = i_shdrp->sh_addralign;
3377 if (al > 1)
3378 offset = BFD_ALIGN (offset, al);
3379 }
3380 i_shdrp->sh_offset = offset;
3381 if (i_shdrp->bfd_section != NULL)
3382 i_shdrp->bfd_section->filepos = offset;
3383 if (i_shdrp->sh_type != SHT_NOBITS)
3384 offset += i_shdrp->sh_size;
3385 return offset;
3386 }
3387
3388 /* Compute the file positions we are going to put the sections at, and
3389 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3390 is not NULL, this is being called by the ELF backend linker. */
3391
3392 bfd_boolean
3393 _bfd_elf_compute_section_file_positions (bfd *abfd,
3394 struct bfd_link_info *link_info)
3395 {
3396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3397 bfd_boolean failed;
3398 struct bfd_strtab_hash *strtab = NULL;
3399 Elf_Internal_Shdr *shstrtab_hdr;
3400
3401 if (abfd->output_has_begun)
3402 return TRUE;
3403
3404 /* Do any elf backend specific processing first. */
3405 if (bed->elf_backend_begin_write_processing)
3406 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3407
3408 if (! prep_headers (abfd))
3409 return FALSE;
3410
3411 /* Post process the headers if necessary. */
3412 if (bed->elf_backend_post_process_headers)
3413 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3414
3415 failed = FALSE;
3416 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3417 if (failed)
3418 return FALSE;
3419
3420 if (!assign_section_numbers (abfd, link_info))
3421 return FALSE;
3422
3423 /* The backend linker builds symbol table information itself. */
3424 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3425 {
3426 /* Non-zero if doing a relocatable link. */
3427 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3428
3429 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3430 return FALSE;
3431 }
3432
3433 if (link_info == NULL)
3434 {
3435 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3436 if (failed)
3437 return FALSE;
3438 }
3439
3440 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3441 /* sh_name was set in prep_headers. */
3442 shstrtab_hdr->sh_type = SHT_STRTAB;
3443 shstrtab_hdr->sh_flags = 0;
3444 shstrtab_hdr->sh_addr = 0;
3445 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3446 shstrtab_hdr->sh_entsize = 0;
3447 shstrtab_hdr->sh_link = 0;
3448 shstrtab_hdr->sh_info = 0;
3449 /* sh_offset is set in assign_file_positions_except_relocs. */
3450 shstrtab_hdr->sh_addralign = 1;
3451
3452 if (!assign_file_positions_except_relocs (abfd, link_info))
3453 return FALSE;
3454
3455 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3456 {
3457 file_ptr off;
3458 Elf_Internal_Shdr *hdr;
3459
3460 off = elf_tdata (abfd)->next_file_pos;
3461
3462 hdr = &elf_tdata (abfd)->symtab_hdr;
3463 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3464
3465 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3466 if (hdr->sh_size != 0)
3467 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3468
3469 hdr = &elf_tdata (abfd)->strtab_hdr;
3470 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3471
3472 elf_tdata (abfd)->next_file_pos = off;
3473
3474 /* Now that we know where the .strtab section goes, write it
3475 out. */
3476 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3477 || ! _bfd_stringtab_emit (abfd, strtab))
3478 return FALSE;
3479 _bfd_stringtab_free (strtab);
3480 }
3481
3482 abfd->output_has_begun = TRUE;
3483
3484 return TRUE;
3485 }
3486
3487 /* Create a mapping from a set of sections to a program segment. */
3488
3489 static struct elf_segment_map *
3490 make_mapping (bfd *abfd,
3491 asection **sections,
3492 unsigned int from,
3493 unsigned int to,
3494 bfd_boolean phdr)
3495 {
3496 struct elf_segment_map *m;
3497 unsigned int i;
3498 asection **hdrpp;
3499 bfd_size_type amt;
3500
3501 amt = sizeof (struct elf_segment_map);
3502 amt += (to - from - 1) * sizeof (asection *);
3503 m = bfd_zalloc (abfd, amt);
3504 if (m == NULL)
3505 return NULL;
3506 m->next = NULL;
3507 m->p_type = PT_LOAD;
3508 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3509 m->sections[i - from] = *hdrpp;
3510 m->count = to - from;
3511
3512 if (from == 0 && phdr)
3513 {
3514 /* Include the headers in the first PT_LOAD segment. */
3515 m->includes_filehdr = 1;
3516 m->includes_phdrs = 1;
3517 }
3518
3519 return m;
3520 }
3521
3522 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3523 on failure. */
3524
3525 struct elf_segment_map *
3526 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3527 {
3528 struct elf_segment_map *m;
3529
3530 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3531 if (m == NULL)
3532 return NULL;
3533 m->next = NULL;
3534 m->p_type = PT_DYNAMIC;
3535 m->count = 1;
3536 m->sections[0] = dynsec;
3537
3538 return m;
3539 }
3540
3541 /* Set up a mapping from BFD sections to program segments. */
3542
3543 static bfd_boolean
3544 map_sections_to_segments (bfd *abfd)
3545 {
3546 asection **sections = NULL;
3547 asection *s;
3548 unsigned int i;
3549 unsigned int count;
3550 struct elf_segment_map *mfirst;
3551 struct elf_segment_map **pm;
3552 struct elf_segment_map *m;
3553 asection *last_hdr;
3554 bfd_vma last_size;
3555 unsigned int phdr_index;
3556 bfd_vma maxpagesize;
3557 asection **hdrpp;
3558 bfd_boolean phdr_in_segment = TRUE;
3559 bfd_boolean writable;
3560 int tls_count = 0;
3561 asection *first_tls = NULL;
3562 asection *dynsec, *eh_frame_hdr;
3563 bfd_size_type amt;
3564
3565 if (elf_tdata (abfd)->segment_map != NULL)
3566 return TRUE;
3567
3568 if (bfd_count_sections (abfd) == 0)
3569 return TRUE;
3570
3571 /* Select the allocated sections, and sort them. */
3572
3573 amt = bfd_count_sections (abfd) * sizeof (asection *);
3574 sections = bfd_malloc (amt);
3575 if (sections == NULL)
3576 goto error_return;
3577
3578 i = 0;
3579 for (s = abfd->sections; s != NULL; s = s->next)
3580 {
3581 if ((s->flags & SEC_ALLOC) != 0)
3582 {
3583 sections[i] = s;
3584 ++i;
3585 }
3586 }
3587 BFD_ASSERT (i <= bfd_count_sections (abfd));
3588 count = i;
3589
3590 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3591
3592 /* Build the mapping. */
3593
3594 mfirst = NULL;
3595 pm = &mfirst;
3596
3597 /* If we have a .interp section, then create a PT_PHDR segment for
3598 the program headers and a PT_INTERP segment for the .interp
3599 section. */
3600 s = bfd_get_section_by_name (abfd, ".interp");
3601 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3602 {
3603 amt = sizeof (struct elf_segment_map);
3604 m = bfd_zalloc (abfd, amt);
3605 if (m == NULL)
3606 goto error_return;
3607 m->next = NULL;
3608 m->p_type = PT_PHDR;
3609 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3610 m->p_flags = PF_R | PF_X;
3611 m->p_flags_valid = 1;
3612 m->includes_phdrs = 1;
3613
3614 *pm = m;
3615 pm = &m->next;
3616
3617 amt = sizeof (struct elf_segment_map);
3618 m = bfd_zalloc (abfd, amt);
3619 if (m == NULL)
3620 goto error_return;
3621 m->next = NULL;
3622 m->p_type = PT_INTERP;
3623 m->count = 1;
3624 m->sections[0] = s;
3625
3626 *pm = m;
3627 pm = &m->next;
3628 }
3629
3630 /* Look through the sections. We put sections in the same program
3631 segment when the start of the second section can be placed within
3632 a few bytes of the end of the first section. */
3633 last_hdr = NULL;
3634 last_size = 0;
3635 phdr_index = 0;
3636 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3637 writable = FALSE;
3638 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3639 if (dynsec != NULL
3640 && (dynsec->flags & SEC_LOAD) == 0)
3641 dynsec = NULL;
3642
3643 /* Deal with -Ttext or something similar such that the first section
3644 is not adjacent to the program headers. This is an
3645 approximation, since at this point we don't know exactly how many
3646 program headers we will need. */
3647 if (count > 0)
3648 {
3649 bfd_size_type phdr_size;
3650
3651 phdr_size = elf_tdata (abfd)->program_header_size;
3652 if (phdr_size == 0)
3653 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3654 if ((abfd->flags & D_PAGED) == 0
3655 || sections[0]->lma < phdr_size
3656 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3657 phdr_in_segment = FALSE;
3658 }
3659
3660 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3661 {
3662 asection *hdr;
3663 bfd_boolean new_segment;
3664
3665 hdr = *hdrpp;
3666
3667 /* See if this section and the last one will fit in the same
3668 segment. */
3669
3670 if (last_hdr == NULL)
3671 {
3672 /* If we don't have a segment yet, then we don't need a new
3673 one (we build the last one after this loop). */
3674 new_segment = FALSE;
3675 }
3676 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3677 {
3678 /* If this section has a different relation between the
3679 virtual address and the load address, then we need a new
3680 segment. */
3681 new_segment = TRUE;
3682 }
3683 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3684 < BFD_ALIGN (hdr->lma, maxpagesize))
3685 {
3686 /* If putting this section in this segment would force us to
3687 skip a page in the segment, then we need a new segment. */
3688 new_segment = TRUE;
3689 }
3690 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3691 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3692 {
3693 /* We don't want to put a loadable section after a
3694 nonloadable section in the same segment.
3695 Consider .tbss sections as loadable for this purpose. */
3696 new_segment = TRUE;
3697 }
3698 else if ((abfd->flags & D_PAGED) == 0)
3699 {
3700 /* If the file is not demand paged, which means that we
3701 don't require the sections to be correctly aligned in the
3702 file, then there is no other reason for a new segment. */
3703 new_segment = FALSE;
3704 }
3705 else if (! writable
3706 && (hdr->flags & SEC_READONLY) == 0
3707 && (((last_hdr->lma + last_size - 1)
3708 & ~(maxpagesize - 1))
3709 != (hdr->lma & ~(maxpagesize - 1))))
3710 {
3711 /* We don't want to put a writable section in a read only
3712 segment, unless they are on the same page in memory
3713 anyhow. We already know that the last section does not
3714 bring us past the current section on the page, so the
3715 only case in which the new section is not on the same
3716 page as the previous section is when the previous section
3717 ends precisely on a page boundary. */
3718 new_segment = TRUE;
3719 }
3720 else
3721 {
3722 /* Otherwise, we can use the same segment. */
3723 new_segment = FALSE;
3724 }
3725
3726 if (! new_segment)
3727 {
3728 if ((hdr->flags & SEC_READONLY) == 0)
3729 writable = TRUE;
3730 last_hdr = hdr;
3731 /* .tbss sections effectively have zero size. */
3732 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3733 last_size = hdr->size;
3734 else
3735 last_size = 0;
3736 continue;
3737 }
3738
3739 /* We need a new program segment. We must create a new program
3740 header holding all the sections from phdr_index until hdr. */
3741
3742 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3743 if (m == NULL)
3744 goto error_return;
3745
3746 *pm = m;
3747 pm = &m->next;
3748
3749 if ((hdr->flags & SEC_READONLY) == 0)
3750 writable = TRUE;
3751 else
3752 writable = FALSE;
3753
3754 last_hdr = hdr;
3755 /* .tbss sections effectively have zero size. */
3756 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3757 last_size = hdr->size;
3758 else
3759 last_size = 0;
3760 phdr_index = i;
3761 phdr_in_segment = FALSE;
3762 }
3763
3764 /* Create a final PT_LOAD program segment. */
3765 if (last_hdr != NULL)
3766 {
3767 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3768 if (m == NULL)
3769 goto error_return;
3770
3771 *pm = m;
3772 pm = &m->next;
3773 }
3774
3775 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3776 if (dynsec != NULL)
3777 {
3778 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3779 if (m == NULL)
3780 goto error_return;
3781 *pm = m;
3782 pm = &m->next;
3783 }
3784
3785 /* For each loadable .note section, add a PT_NOTE segment. We don't
3786 use bfd_get_section_by_name, because if we link together
3787 nonloadable .note sections and loadable .note sections, we will
3788 generate two .note sections in the output file. FIXME: Using
3789 names for section types is bogus anyhow. */
3790 for (s = abfd->sections; s != NULL; s = s->next)
3791 {
3792 if ((s->flags & SEC_LOAD) != 0
3793 && strncmp (s->name, ".note", 5) == 0)
3794 {
3795 amt = sizeof (struct elf_segment_map);
3796 m = bfd_zalloc (abfd, amt);
3797 if (m == NULL)
3798 goto error_return;
3799 m->next = NULL;
3800 m->p_type = PT_NOTE;
3801 m->count = 1;
3802 m->sections[0] = s;
3803
3804 *pm = m;
3805 pm = &m->next;
3806 }
3807 if (s->flags & SEC_THREAD_LOCAL)
3808 {
3809 if (! tls_count)
3810 first_tls = s;
3811 tls_count++;
3812 }
3813 }
3814
3815 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3816 if (tls_count > 0)
3817 {
3818 int i;
3819
3820 amt = sizeof (struct elf_segment_map);
3821 amt += (tls_count - 1) * sizeof (asection *);
3822 m = bfd_zalloc (abfd, amt);
3823 if (m == NULL)
3824 goto error_return;
3825 m->next = NULL;
3826 m->p_type = PT_TLS;
3827 m->count = tls_count;
3828 /* Mandated PF_R. */
3829 m->p_flags = PF_R;
3830 m->p_flags_valid = 1;
3831 for (i = 0; i < tls_count; ++i)
3832 {
3833 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3834 m->sections[i] = first_tls;
3835 first_tls = first_tls->next;
3836 }
3837
3838 *pm = m;
3839 pm = &m->next;
3840 }
3841
3842 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3843 segment. */
3844 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3845 if (eh_frame_hdr != NULL
3846 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3847 {
3848 amt = sizeof (struct elf_segment_map);
3849 m = bfd_zalloc (abfd, amt);
3850 if (m == NULL)
3851 goto error_return;
3852 m->next = NULL;
3853 m->p_type = PT_GNU_EH_FRAME;
3854 m->count = 1;
3855 m->sections[0] = eh_frame_hdr->output_section;
3856
3857 *pm = m;
3858 pm = &m->next;
3859 }
3860
3861 if (elf_tdata (abfd)->stack_flags)
3862 {
3863 amt = sizeof (struct elf_segment_map);
3864 m = bfd_zalloc (abfd, amt);
3865 if (m == NULL)
3866 goto error_return;
3867 m->next = NULL;
3868 m->p_type = PT_GNU_STACK;
3869 m->p_flags = elf_tdata (abfd)->stack_flags;
3870 m->p_flags_valid = 1;
3871
3872 *pm = m;
3873 pm = &m->next;
3874 }
3875
3876 if (elf_tdata (abfd)->relro)
3877 {
3878 amt = sizeof (struct elf_segment_map);
3879 m = bfd_zalloc (abfd, amt);
3880 if (m == NULL)
3881 goto error_return;
3882 m->next = NULL;
3883 m->p_type = PT_GNU_RELRO;
3884 m->p_flags = PF_R;
3885 m->p_flags_valid = 1;
3886
3887 *pm = m;
3888 pm = &m->next;
3889 }
3890
3891 free (sections);
3892 sections = NULL;
3893
3894 elf_tdata (abfd)->segment_map = mfirst;
3895 return TRUE;
3896
3897 error_return:
3898 if (sections != NULL)
3899 free (sections);
3900 return FALSE;
3901 }
3902
3903 /* Sort sections by address. */
3904
3905 static int
3906 elf_sort_sections (const void *arg1, const void *arg2)
3907 {
3908 const asection *sec1 = *(const asection **) arg1;
3909 const asection *sec2 = *(const asection **) arg2;
3910 bfd_size_type size1, size2;
3911
3912 /* Sort by LMA first, since this is the address used to
3913 place the section into a segment. */
3914 if (sec1->lma < sec2->lma)
3915 return -1;
3916 else if (sec1->lma > sec2->lma)
3917 return 1;
3918
3919 /* Then sort by VMA. Normally the LMA and the VMA will be
3920 the same, and this will do nothing. */
3921 if (sec1->vma < sec2->vma)
3922 return -1;
3923 else if (sec1->vma > sec2->vma)
3924 return 1;
3925
3926 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3927
3928 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3929
3930 if (TOEND (sec1))
3931 {
3932 if (TOEND (sec2))
3933 {
3934 /* If the indicies are the same, do not return 0
3935 here, but continue to try the next comparison. */
3936 if (sec1->target_index - sec2->target_index != 0)
3937 return sec1->target_index - sec2->target_index;
3938 }
3939 else
3940 return 1;
3941 }
3942 else if (TOEND (sec2))
3943 return -1;
3944
3945 #undef TOEND
3946
3947 /* Sort by size, to put zero sized sections
3948 before others at the same address. */
3949
3950 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3951 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3952
3953 if (size1 < size2)
3954 return -1;
3955 if (size1 > size2)
3956 return 1;
3957
3958 return sec1->target_index - sec2->target_index;
3959 }
3960
3961 /* Ian Lance Taylor writes:
3962
3963 We shouldn't be using % with a negative signed number. That's just
3964 not good. We have to make sure either that the number is not
3965 negative, or that the number has an unsigned type. When the types
3966 are all the same size they wind up as unsigned. When file_ptr is a
3967 larger signed type, the arithmetic winds up as signed long long,
3968 which is wrong.
3969
3970 What we're trying to say here is something like ``increase OFF by
3971 the least amount that will cause it to be equal to the VMA modulo
3972 the page size.'' */
3973 /* In other words, something like:
3974
3975 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3976 off_offset = off % bed->maxpagesize;
3977 if (vma_offset < off_offset)
3978 adjustment = vma_offset + bed->maxpagesize - off_offset;
3979 else
3980 adjustment = vma_offset - off_offset;
3981
3982 which can can be collapsed into the expression below. */
3983
3984 static file_ptr
3985 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3986 {
3987 return ((vma - off) % maxpagesize);
3988 }
3989
3990 /* Assign file positions to the sections based on the mapping from
3991 sections to segments. This function also sets up some fields in
3992 the file header, and writes out the program headers. */
3993
3994 static bfd_boolean
3995 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3996 {
3997 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3998 unsigned int count;
3999 struct elf_segment_map *m;
4000 unsigned int alloc;
4001 Elf_Internal_Phdr *phdrs;
4002 file_ptr off, voff;
4003 bfd_vma filehdr_vaddr, filehdr_paddr;
4004 bfd_vma phdrs_vaddr, phdrs_paddr;
4005 Elf_Internal_Phdr *p;
4006 bfd_size_type amt;
4007
4008 if (elf_tdata (abfd)->segment_map == NULL)
4009 {
4010 if (! map_sections_to_segments (abfd))
4011 return FALSE;
4012 }
4013 else
4014 {
4015 /* The placement algorithm assumes that non allocated sections are
4016 not in PT_LOAD segments. We ensure this here by removing such
4017 sections from the segment map. */
4018 for (m = elf_tdata (abfd)->segment_map;
4019 m != NULL;
4020 m = m->next)
4021 {
4022 unsigned int new_count;
4023 unsigned int i;
4024
4025 if (m->p_type != PT_LOAD)
4026 continue;
4027
4028 new_count = 0;
4029 for (i = 0; i < m->count; i ++)
4030 {
4031 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
4032 {
4033 if (i != new_count)
4034 m->sections[new_count] = m->sections[i];
4035
4036 new_count ++;
4037 }
4038 }
4039
4040 if (new_count != m->count)
4041 m->count = new_count;
4042 }
4043 }
4044
4045 if (bed->elf_backend_modify_segment_map)
4046 {
4047 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4048 return FALSE;
4049 }
4050
4051 count = 0;
4052 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4053 ++count;
4054
4055 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4056 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4057 elf_elfheader (abfd)->e_phnum = count;
4058
4059 if (count == 0)
4060 {
4061 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4062 return TRUE;
4063 }
4064
4065 /* If we already counted the number of program segments, make sure
4066 that we allocated enough space. This happens when SIZEOF_HEADERS
4067 is used in a linker script. */
4068 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4069 if (alloc != 0 && count > alloc)
4070 {
4071 ((*_bfd_error_handler)
4072 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4073 abfd, alloc, count));
4074 bfd_set_error (bfd_error_bad_value);
4075 return FALSE;
4076 }
4077
4078 if (alloc == 0)
4079 alloc = count;
4080
4081 amt = alloc * sizeof (Elf_Internal_Phdr);
4082 phdrs = bfd_alloc (abfd, amt);
4083 if (phdrs == NULL)
4084 return FALSE;
4085
4086 off = bed->s->sizeof_ehdr;
4087 off += alloc * bed->s->sizeof_phdr;
4088
4089 filehdr_vaddr = 0;
4090 filehdr_paddr = 0;
4091 phdrs_vaddr = 0;
4092 phdrs_paddr = 0;
4093
4094 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4095 m != NULL;
4096 m = m->next, p++)
4097 {
4098 unsigned int i;
4099 asection **secpp;
4100
4101 /* If elf_segment_map is not from map_sections_to_segments, the
4102 sections may not be correctly ordered. NOTE: sorting should
4103 not be done to the PT_NOTE section of a corefile, which may
4104 contain several pseudo-sections artificially created by bfd.
4105 Sorting these pseudo-sections breaks things badly. */
4106 if (m->count > 1
4107 && !(elf_elfheader (abfd)->e_type == ET_CORE
4108 && m->p_type == PT_NOTE))
4109 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4110 elf_sort_sections);
4111
4112 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4113 number of sections with contents contributing to both p_filesz
4114 and p_memsz, followed by a number of sections with no contents
4115 that just contribute to p_memsz. In this loop, OFF tracks next
4116 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4117 an adjustment we use for segments that have no file contents
4118 but need zero filled memory allocation. */
4119 voff = 0;
4120 p->p_type = m->p_type;
4121 p->p_flags = m->p_flags;
4122
4123 if (p->p_type == PT_LOAD
4124 && m->count > 0)
4125 {
4126 bfd_size_type align;
4127 bfd_vma adjust;
4128
4129 if ((abfd->flags & D_PAGED) != 0)
4130 align = bed->maxpagesize;
4131 else
4132 {
4133 unsigned int align_power = 0;
4134 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4135 {
4136 unsigned int secalign;
4137
4138 secalign = bfd_get_section_alignment (abfd, *secpp);
4139 if (secalign > align_power)
4140 align_power = secalign;
4141 }
4142 align = (bfd_size_type) 1 << align_power;
4143 }
4144
4145 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4146 off += adjust;
4147 if (adjust != 0
4148 && !m->includes_filehdr
4149 && !m->includes_phdrs
4150 && (ufile_ptr) off >= align)
4151 {
4152 /* If the first section isn't loadable, the same holds for
4153 any other sections. Since the segment won't need file
4154 space, we can make p_offset overlap some prior segment.
4155 However, .tbss is special. If a segment starts with
4156 .tbss, we need to look at the next section to decide
4157 whether the segment has any loadable sections. */
4158 i = 0;
4159 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4160 {
4161 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4162 || ++i >= m->count)
4163 {
4164 off -= adjust;
4165 voff = adjust - align;
4166 break;
4167 }
4168 }
4169 }
4170 }
4171 /* Make sure the .dynamic section is the first section in the
4172 PT_DYNAMIC segment. */
4173 else if (p->p_type == PT_DYNAMIC
4174 && m->count > 1
4175 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4176 {
4177 _bfd_error_handler
4178 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4179 abfd);
4180 bfd_set_error (bfd_error_bad_value);
4181 return FALSE;
4182 }
4183
4184 if (m->count == 0)
4185 p->p_vaddr = 0;
4186 else
4187 p->p_vaddr = m->sections[0]->vma;
4188
4189 if (m->p_paddr_valid)
4190 p->p_paddr = m->p_paddr;
4191 else if (m->count == 0)
4192 p->p_paddr = 0;
4193 else
4194 p->p_paddr = m->sections[0]->lma;
4195
4196 if (p->p_type == PT_LOAD
4197 && (abfd->flags & D_PAGED) != 0)
4198 p->p_align = bed->maxpagesize;
4199 else if (m->count == 0)
4200 p->p_align = 1 << bed->s->log_file_align;
4201 else
4202 p->p_align = 0;
4203
4204 p->p_offset = 0;
4205 p->p_filesz = 0;
4206 p->p_memsz = 0;
4207
4208 if (m->includes_filehdr)
4209 {
4210 if (! m->p_flags_valid)
4211 p->p_flags |= PF_R;
4212 p->p_offset = 0;
4213 p->p_filesz = bed->s->sizeof_ehdr;
4214 p->p_memsz = bed->s->sizeof_ehdr;
4215 if (m->count > 0)
4216 {
4217 BFD_ASSERT (p->p_type == PT_LOAD);
4218
4219 if (p->p_vaddr < (bfd_vma) off)
4220 {
4221 (*_bfd_error_handler)
4222 (_("%B: Not enough room for program headers, try linking with -N"),
4223 abfd);
4224 bfd_set_error (bfd_error_bad_value);
4225 return FALSE;
4226 }
4227
4228 p->p_vaddr -= off;
4229 if (! m->p_paddr_valid)
4230 p->p_paddr -= off;
4231 }
4232 if (p->p_type == PT_LOAD)
4233 {
4234 filehdr_vaddr = p->p_vaddr;
4235 filehdr_paddr = p->p_paddr;
4236 }
4237 }
4238
4239 if (m->includes_phdrs)
4240 {
4241 if (! m->p_flags_valid)
4242 p->p_flags |= PF_R;
4243
4244 if (m->includes_filehdr)
4245 {
4246 if (p->p_type == PT_LOAD)
4247 {
4248 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4249 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4250 }
4251 }
4252 else
4253 {
4254 p->p_offset = bed->s->sizeof_ehdr;
4255
4256 if (m->count > 0)
4257 {
4258 BFD_ASSERT (p->p_type == PT_LOAD);
4259 p->p_vaddr -= off - p->p_offset;
4260 if (! m->p_paddr_valid)
4261 p->p_paddr -= off - p->p_offset;
4262 }
4263
4264 if (p->p_type == PT_LOAD)
4265 {
4266 phdrs_vaddr = p->p_vaddr;
4267 phdrs_paddr = p->p_paddr;
4268 }
4269 else
4270 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4271 }
4272
4273 p->p_filesz += alloc * bed->s->sizeof_phdr;
4274 p->p_memsz += alloc * bed->s->sizeof_phdr;
4275 }
4276
4277 if (p->p_type == PT_LOAD
4278 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4279 {
4280 if (! m->includes_filehdr && ! m->includes_phdrs)
4281 p->p_offset = off + voff;
4282 else
4283 {
4284 file_ptr adjust;
4285
4286 adjust = off - (p->p_offset + p->p_filesz);
4287 p->p_filesz += adjust;
4288 p->p_memsz += adjust;
4289 }
4290 }
4291
4292 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4293 {
4294 asection *sec;
4295 flagword flags;
4296 bfd_size_type align;
4297
4298 sec = *secpp;
4299 flags = sec->flags;
4300 align = 1 << bfd_get_section_alignment (abfd, sec);
4301
4302 if (p->p_type == PT_LOAD
4303 || p->p_type == PT_TLS)
4304 {
4305 bfd_signed_vma adjust;
4306
4307 if ((flags & SEC_LOAD) != 0)
4308 {
4309 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4310 if (adjust < 0)
4311 {
4312 (*_bfd_error_handler)
4313 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4314 abfd, sec, (unsigned long) sec->lma);
4315 adjust = 0;
4316 }
4317 off += adjust;
4318 p->p_filesz += adjust;
4319 p->p_memsz += adjust;
4320 }
4321 /* .tbss is special. It doesn't contribute to p_memsz of
4322 normal segments. */
4323 else if ((flags & SEC_THREAD_LOCAL) == 0
4324 || p->p_type == PT_TLS)
4325 {
4326 /* The section VMA must equal the file position
4327 modulo the page size. */
4328 bfd_size_type page = align;
4329 if ((abfd->flags & D_PAGED) != 0)
4330 page = bed->maxpagesize;
4331 adjust = vma_page_aligned_bias (sec->vma,
4332 p->p_vaddr + p->p_memsz,
4333 page);
4334 p->p_memsz += adjust;
4335 }
4336 }
4337
4338 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4339 {
4340 /* The section at i == 0 is the one that actually contains
4341 everything. */
4342 if (i == 0)
4343 {
4344 sec->filepos = off;
4345 off += sec->size;
4346 p->p_filesz = sec->size;
4347 p->p_memsz = 0;
4348 p->p_align = 1;
4349 }
4350 else
4351 {
4352 /* The rest are fake sections that shouldn't be written. */
4353 sec->filepos = 0;
4354 sec->size = 0;
4355 sec->flags = 0;
4356 continue;
4357 }
4358 }
4359 else
4360 {
4361 if (p->p_type == PT_LOAD)
4362 {
4363 sec->filepos = off;
4364 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4365 1997, and the exact reason for it isn't clear. One
4366 plausible explanation is that it is to work around
4367 a problem we have with linker scripts using data
4368 statements in NOLOAD sections. I don't think it
4369 makes a great deal of sense to have such a section
4370 assigned to a PT_LOAD segment, but apparently
4371 people do this. The data statement results in a
4372 bfd_data_link_order being built, and these need
4373 section contents to write into. Eventually, we get
4374 to _bfd_elf_write_object_contents which writes any
4375 section with contents to the output. Make room
4376 here for the write, so that following segments are
4377 not trashed. */
4378 if ((flags & SEC_LOAD) != 0
4379 || (flags & SEC_HAS_CONTENTS) != 0)
4380 off += sec->size;
4381 }
4382
4383 if ((flags & SEC_LOAD) != 0)
4384 {
4385 p->p_filesz += sec->size;
4386 p->p_memsz += sec->size;
4387 }
4388 /* PR ld/594: Sections in note segments which are not loaded
4389 contribute to the file size but not the in-memory size. */
4390 else if (p->p_type == PT_NOTE
4391 && (flags & SEC_HAS_CONTENTS) != 0)
4392 p->p_filesz += sec->size;
4393
4394 /* .tbss is special. It doesn't contribute to p_memsz of
4395 normal segments. */
4396 else if ((flags & SEC_THREAD_LOCAL) == 0
4397 || p->p_type == PT_TLS)
4398 p->p_memsz += sec->size;
4399
4400 if (p->p_type == PT_TLS
4401 && sec->size == 0
4402 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4403 {
4404 struct bfd_link_order *o;
4405 bfd_vma tbss_size = 0;
4406
4407 for (o = sec->map_head.link_order; o != NULL; o = o->next)
4408 if (tbss_size < o->offset + o->size)
4409 tbss_size = o->offset + o->size;
4410
4411 p->p_memsz += tbss_size;
4412 }
4413
4414 if (align > p->p_align
4415 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4416 p->p_align = align;
4417 }
4418
4419 if (! m->p_flags_valid)
4420 {
4421 p->p_flags |= PF_R;
4422 if ((flags & SEC_CODE) != 0)
4423 p->p_flags |= PF_X;
4424 if ((flags & SEC_READONLY) == 0)
4425 p->p_flags |= PF_W;
4426 }
4427 }
4428 }
4429
4430 /* Now that we have set the section file positions, we can set up
4431 the file positions for the non PT_LOAD segments. */
4432 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4433 m != NULL;
4434 m = m->next, p++)
4435 {
4436 if (p->p_type != PT_LOAD && m->count > 0)
4437 {
4438 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4439 /* If the section has not yet been assigned a file position,
4440 do so now. The ARM BPABI requires that .dynamic section
4441 not be marked SEC_ALLOC because it is not part of any
4442 PT_LOAD segment, so it will not be processed above. */
4443 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4444 {
4445 unsigned int i;
4446 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4447
4448 i = 1;
4449 while (i_shdrpp[i]->bfd_section != m->sections[0])
4450 ++i;
4451 off = (_bfd_elf_assign_file_position_for_section
4452 (i_shdrpp[i], off, TRUE));
4453 p->p_filesz = m->sections[0]->size;
4454 }
4455 p->p_offset = m->sections[0]->filepos;
4456 }
4457 if (m->count == 0)
4458 {
4459 if (m->includes_filehdr)
4460 {
4461 p->p_vaddr = filehdr_vaddr;
4462 if (! m->p_paddr_valid)
4463 p->p_paddr = filehdr_paddr;
4464 }
4465 else if (m->includes_phdrs)
4466 {
4467 p->p_vaddr = phdrs_vaddr;
4468 if (! m->p_paddr_valid)
4469 p->p_paddr = phdrs_paddr;
4470 }
4471 else if (p->p_type == PT_GNU_RELRO)
4472 {
4473 Elf_Internal_Phdr *lp;
4474
4475 for (lp = phdrs; lp < phdrs + count; ++lp)
4476 {
4477 if (lp->p_type == PT_LOAD
4478 && lp->p_vaddr <= link_info->relro_end
4479 && lp->p_vaddr >= link_info->relro_start
4480 && lp->p_vaddr + lp->p_filesz
4481 >= link_info->relro_end)
4482 break;
4483 }
4484
4485 if (lp < phdrs + count
4486 && link_info->relro_end > lp->p_vaddr)
4487 {
4488 p->p_vaddr = lp->p_vaddr;
4489 p->p_paddr = lp->p_paddr;
4490 p->p_offset = lp->p_offset;
4491 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4492 p->p_memsz = p->p_filesz;
4493 p->p_align = 1;
4494 p->p_flags = (lp->p_flags & ~PF_W);
4495 }
4496 else
4497 {
4498 memset (p, 0, sizeof *p);
4499 p->p_type = PT_NULL;
4500 }
4501 }
4502 }
4503 }
4504
4505 /* Clear out any program headers we allocated but did not use. */
4506 for (; count < alloc; count++, p++)
4507 {
4508 memset (p, 0, sizeof *p);
4509 p->p_type = PT_NULL;
4510 }
4511
4512 elf_tdata (abfd)->phdr = phdrs;
4513
4514 elf_tdata (abfd)->next_file_pos = off;
4515
4516 /* Write out the program headers. */
4517 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4518 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4519 return FALSE;
4520
4521 return TRUE;
4522 }
4523
4524 /* Get the size of the program header.
4525
4526 If this is called by the linker before any of the section VMA's are set, it
4527 can't calculate the correct value for a strange memory layout. This only
4528 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4529 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4530 data segment (exclusive of .interp and .dynamic).
4531
4532 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4533 will be two segments. */
4534
4535 static bfd_size_type
4536 get_program_header_size (bfd *abfd)
4537 {
4538 size_t segs;
4539 asection *s;
4540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4541
4542 /* We can't return a different result each time we're called. */
4543 if (elf_tdata (abfd)->program_header_size != 0)
4544 return elf_tdata (abfd)->program_header_size;
4545
4546 if (elf_tdata (abfd)->segment_map != NULL)
4547 {
4548 struct elf_segment_map *m;
4549
4550 segs = 0;
4551 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4552 ++segs;
4553 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4554 return elf_tdata (abfd)->program_header_size;
4555 }
4556
4557 /* Assume we will need exactly two PT_LOAD segments: one for text
4558 and one for data. */
4559 segs = 2;
4560
4561 s = bfd_get_section_by_name (abfd, ".interp");
4562 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4563 {
4564 /* If we have a loadable interpreter section, we need a
4565 PT_INTERP segment. In this case, assume we also need a
4566 PT_PHDR segment, although that may not be true for all
4567 targets. */
4568 segs += 2;
4569 }
4570
4571 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4572 {
4573 /* We need a PT_DYNAMIC segment. */
4574 ++segs;
4575 }
4576
4577 if (elf_tdata (abfd)->eh_frame_hdr)
4578 {
4579 /* We need a PT_GNU_EH_FRAME segment. */
4580 ++segs;
4581 }
4582
4583 if (elf_tdata (abfd)->stack_flags)
4584 {
4585 /* We need a PT_GNU_STACK segment. */
4586 ++segs;
4587 }
4588
4589 if (elf_tdata (abfd)->relro)
4590 {
4591 /* We need a PT_GNU_RELRO segment. */
4592 ++segs;
4593 }
4594
4595 for (s = abfd->sections; s != NULL; s = s->next)
4596 {
4597 if ((s->flags & SEC_LOAD) != 0
4598 && strncmp (s->name, ".note", 5) == 0)
4599 {
4600 /* We need a PT_NOTE segment. */
4601 ++segs;
4602 }
4603 }
4604
4605 for (s = abfd->sections; s != NULL; s = s->next)
4606 {
4607 if (s->flags & SEC_THREAD_LOCAL)
4608 {
4609 /* We need a PT_TLS segment. */
4610 ++segs;
4611 break;
4612 }
4613 }
4614
4615 /* Let the backend count up any program headers it might need. */
4616 if (bed->elf_backend_additional_program_headers)
4617 {
4618 int a;
4619
4620 a = (*bed->elf_backend_additional_program_headers) (abfd);
4621 if (a == -1)
4622 abort ();
4623 segs += a;
4624 }
4625
4626 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4627 return elf_tdata (abfd)->program_header_size;
4628 }
4629
4630 /* Work out the file positions of all the sections. This is called by
4631 _bfd_elf_compute_section_file_positions. All the section sizes and
4632 VMAs must be known before this is called.
4633
4634 Reloc sections come in two flavours: Those processed specially as
4635 "side-channel" data attached to a section to which they apply, and
4636 those that bfd doesn't process as relocations. The latter sort are
4637 stored in a normal bfd section by bfd_section_from_shdr. We don't
4638 consider the former sort here, unless they form part of the loadable
4639 image. Reloc sections not assigned here will be handled later by
4640 assign_file_positions_for_relocs.
4641
4642 We also don't set the positions of the .symtab and .strtab here. */
4643
4644 static bfd_boolean
4645 assign_file_positions_except_relocs (bfd *abfd,
4646 struct bfd_link_info *link_info)
4647 {
4648 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4649 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4650 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4651 unsigned int num_sec = elf_numsections (abfd);
4652 file_ptr off;
4653 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4654
4655 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4656 && bfd_get_format (abfd) != bfd_core)
4657 {
4658 Elf_Internal_Shdr **hdrpp;
4659 unsigned int i;
4660
4661 /* Start after the ELF header. */
4662 off = i_ehdrp->e_ehsize;
4663
4664 /* We are not creating an executable, which means that we are
4665 not creating a program header, and that the actual order of
4666 the sections in the file is unimportant. */
4667 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4668 {
4669 Elf_Internal_Shdr *hdr;
4670
4671 hdr = *hdrpp;
4672 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4673 && hdr->bfd_section == NULL)
4674 || i == tdata->symtab_section
4675 || i == tdata->symtab_shndx_section
4676 || i == tdata->strtab_section)
4677 {
4678 hdr->sh_offset = -1;
4679 }
4680 else
4681 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4682
4683 if (i == SHN_LORESERVE - 1)
4684 {
4685 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4686 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4687 }
4688 }
4689 }
4690 else
4691 {
4692 unsigned int i;
4693 Elf_Internal_Shdr **hdrpp;
4694
4695 /* Assign file positions for the loaded sections based on the
4696 assignment of sections to segments. */
4697 if (! assign_file_positions_for_segments (abfd, link_info))
4698 return FALSE;
4699
4700 /* Assign file positions for the other sections. */
4701
4702 off = elf_tdata (abfd)->next_file_pos;
4703 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4704 {
4705 Elf_Internal_Shdr *hdr;
4706
4707 hdr = *hdrpp;
4708 if (hdr->bfd_section != NULL
4709 && hdr->bfd_section->filepos != 0)
4710 hdr->sh_offset = hdr->bfd_section->filepos;
4711 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4712 {
4713 ((*_bfd_error_handler)
4714 (_("%B: warning: allocated section `%s' not in segment"),
4715 abfd,
4716 (hdr->bfd_section == NULL
4717 ? "*unknown*"
4718 : hdr->bfd_section->name)));
4719 if ((abfd->flags & D_PAGED) != 0)
4720 off += vma_page_aligned_bias (hdr->sh_addr, off,
4721 bed->maxpagesize);
4722 else
4723 off += vma_page_aligned_bias (hdr->sh_addr, off,
4724 hdr->sh_addralign);
4725 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4726 FALSE);
4727 }
4728 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4729 && hdr->bfd_section == NULL)
4730 || hdr == i_shdrpp[tdata->symtab_section]
4731 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4732 || hdr == i_shdrpp[tdata->strtab_section])
4733 hdr->sh_offset = -1;
4734 else
4735 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4736
4737 if (i == SHN_LORESERVE - 1)
4738 {
4739 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4740 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4741 }
4742 }
4743 }
4744
4745 /* Place the section headers. */
4746 off = align_file_position (off, 1 << bed->s->log_file_align);
4747 i_ehdrp->e_shoff = off;
4748 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4749
4750 elf_tdata (abfd)->next_file_pos = off;
4751
4752 return TRUE;
4753 }
4754
4755 static bfd_boolean
4756 prep_headers (bfd *abfd)
4757 {
4758 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4759 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4760 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4761 struct elf_strtab_hash *shstrtab;
4762 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4763
4764 i_ehdrp = elf_elfheader (abfd);
4765 i_shdrp = elf_elfsections (abfd);
4766
4767 shstrtab = _bfd_elf_strtab_init ();
4768 if (shstrtab == NULL)
4769 return FALSE;
4770
4771 elf_shstrtab (abfd) = shstrtab;
4772
4773 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4774 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4775 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4776 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4777
4778 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4779 i_ehdrp->e_ident[EI_DATA] =
4780 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4781 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4782
4783 if ((abfd->flags & DYNAMIC) != 0)
4784 i_ehdrp->e_type = ET_DYN;
4785 else if ((abfd->flags & EXEC_P) != 0)
4786 i_ehdrp->e_type = ET_EXEC;
4787 else if (bfd_get_format (abfd) == bfd_core)
4788 i_ehdrp->e_type = ET_CORE;
4789 else
4790 i_ehdrp->e_type = ET_REL;
4791
4792 switch (bfd_get_arch (abfd))
4793 {
4794 case bfd_arch_unknown:
4795 i_ehdrp->e_machine = EM_NONE;
4796 break;
4797
4798 /* There used to be a long list of cases here, each one setting
4799 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4800 in the corresponding bfd definition. To avoid duplication,
4801 the switch was removed. Machines that need special handling
4802 can generally do it in elf_backend_final_write_processing(),
4803 unless they need the information earlier than the final write.
4804 Such need can generally be supplied by replacing the tests for
4805 e_machine with the conditions used to determine it. */
4806 default:
4807 i_ehdrp->e_machine = bed->elf_machine_code;
4808 }
4809
4810 i_ehdrp->e_version = bed->s->ev_current;
4811 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4812
4813 /* No program header, for now. */
4814 i_ehdrp->e_phoff = 0;
4815 i_ehdrp->e_phentsize = 0;
4816 i_ehdrp->e_phnum = 0;
4817
4818 /* Each bfd section is section header entry. */
4819 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4820 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4821
4822 /* If we're building an executable, we'll need a program header table. */
4823 if (abfd->flags & EXEC_P)
4824 /* It all happens later. */
4825 ;
4826 else
4827 {
4828 i_ehdrp->e_phentsize = 0;
4829 i_phdrp = 0;
4830 i_ehdrp->e_phoff = 0;
4831 }
4832
4833 elf_tdata (abfd)->symtab_hdr.sh_name =
4834 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4835 elf_tdata (abfd)->strtab_hdr.sh_name =
4836 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4837 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4838 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4839 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4840 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4841 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4842 return FALSE;
4843
4844 return TRUE;
4845 }
4846
4847 /* Assign file positions for all the reloc sections which are not part
4848 of the loadable file image. */
4849
4850 void
4851 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4852 {
4853 file_ptr off;
4854 unsigned int i, num_sec;
4855 Elf_Internal_Shdr **shdrpp;
4856
4857 off = elf_tdata (abfd)->next_file_pos;
4858
4859 num_sec = elf_numsections (abfd);
4860 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4861 {
4862 Elf_Internal_Shdr *shdrp;
4863
4864 shdrp = *shdrpp;
4865 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4866 && shdrp->sh_offset == -1)
4867 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4868 }
4869
4870 elf_tdata (abfd)->next_file_pos = off;
4871 }
4872
4873 bfd_boolean
4874 _bfd_elf_write_object_contents (bfd *abfd)
4875 {
4876 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4877 Elf_Internal_Ehdr *i_ehdrp;
4878 Elf_Internal_Shdr **i_shdrp;
4879 bfd_boolean failed;
4880 unsigned int count, num_sec;
4881
4882 if (! abfd->output_has_begun
4883 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4884 return FALSE;
4885
4886 i_shdrp = elf_elfsections (abfd);
4887 i_ehdrp = elf_elfheader (abfd);
4888
4889 failed = FALSE;
4890 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4891 if (failed)
4892 return FALSE;
4893
4894 _bfd_elf_assign_file_positions_for_relocs (abfd);
4895
4896 /* After writing the headers, we need to write the sections too... */
4897 num_sec = elf_numsections (abfd);
4898 for (count = 1; count < num_sec; count++)
4899 {
4900 if (bed->elf_backend_section_processing)
4901 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4902 if (i_shdrp[count]->contents)
4903 {
4904 bfd_size_type amt = i_shdrp[count]->sh_size;
4905
4906 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4907 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4908 return FALSE;
4909 }
4910 if (count == SHN_LORESERVE - 1)
4911 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4912 }
4913
4914 /* Write out the section header names. */
4915 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4916 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4917 return FALSE;
4918
4919 if (bed->elf_backend_final_write_processing)
4920 (*bed->elf_backend_final_write_processing) (abfd,
4921 elf_tdata (abfd)->linker);
4922
4923 return bed->s->write_shdrs_and_ehdr (abfd);
4924 }
4925
4926 bfd_boolean
4927 _bfd_elf_write_corefile_contents (bfd *abfd)
4928 {
4929 /* Hopefully this can be done just like an object file. */
4930 return _bfd_elf_write_object_contents (abfd);
4931 }
4932
4933 /* Given a section, search the header to find them. */
4934
4935 int
4936 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4937 {
4938 const struct elf_backend_data *bed;
4939 int index;
4940
4941 if (elf_section_data (asect) != NULL
4942 && elf_section_data (asect)->this_idx != 0)
4943 return elf_section_data (asect)->this_idx;
4944
4945 if (bfd_is_abs_section (asect))
4946 index = SHN_ABS;
4947 else if (bfd_is_com_section (asect))
4948 index = SHN_COMMON;
4949 else if (bfd_is_und_section (asect))
4950 index = SHN_UNDEF;
4951 else
4952 index = -1;
4953
4954 bed = get_elf_backend_data (abfd);
4955 if (bed->elf_backend_section_from_bfd_section)
4956 {
4957 int retval = index;
4958
4959 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4960 return retval;
4961 }
4962
4963 if (index == -1)
4964 bfd_set_error (bfd_error_nonrepresentable_section);
4965
4966 return index;
4967 }
4968
4969 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4970 on error. */
4971
4972 int
4973 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4974 {
4975 asymbol *asym_ptr = *asym_ptr_ptr;
4976 int idx;
4977 flagword flags = asym_ptr->flags;
4978
4979 /* When gas creates relocations against local labels, it creates its
4980 own symbol for the section, but does put the symbol into the
4981 symbol chain, so udata is 0. When the linker is generating
4982 relocatable output, this section symbol may be for one of the
4983 input sections rather than the output section. */
4984 if (asym_ptr->udata.i == 0
4985 && (flags & BSF_SECTION_SYM)
4986 && asym_ptr->section)
4987 {
4988 int indx;
4989
4990 if (asym_ptr->section->output_section != NULL)
4991 indx = asym_ptr->section->output_section->index;
4992 else
4993 indx = asym_ptr->section->index;
4994 if (indx < elf_num_section_syms (abfd)
4995 && elf_section_syms (abfd)[indx] != NULL)
4996 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4997 }
4998
4999 idx = asym_ptr->udata.i;
5000
5001 if (idx == 0)
5002 {
5003 /* This case can occur when using --strip-symbol on a symbol
5004 which is used in a relocation entry. */
5005 (*_bfd_error_handler)
5006 (_("%B: symbol `%s' required but not present"),
5007 abfd, bfd_asymbol_name (asym_ptr));
5008 bfd_set_error (bfd_error_no_symbols);
5009 return -1;
5010 }
5011
5012 #if DEBUG & 4
5013 {
5014 fprintf (stderr,
5015 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5016 (long) asym_ptr, asym_ptr->name, idx, flags,
5017 elf_symbol_flags (flags));
5018 fflush (stderr);
5019 }
5020 #endif
5021
5022 return idx;
5023 }
5024
5025 /* Copy private BFD data. This copies any program header information. */
5026
5027 static bfd_boolean
5028 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5029 {
5030 Elf_Internal_Ehdr *iehdr;
5031 struct elf_segment_map *map;
5032 struct elf_segment_map *map_first;
5033 struct elf_segment_map **pointer_to_map;
5034 Elf_Internal_Phdr *segment;
5035 asection *section;
5036 unsigned int i;
5037 unsigned int num_segments;
5038 bfd_boolean phdr_included = FALSE;
5039 bfd_vma maxpagesize;
5040 struct elf_segment_map *phdr_adjust_seg = NULL;
5041 unsigned int phdr_adjust_num = 0;
5042 const struct elf_backend_data *bed;
5043
5044 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5045 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5046 return TRUE;
5047
5048 if (elf_tdata (ibfd)->phdr == NULL)
5049 return TRUE;
5050
5051 bed = get_elf_backend_data (ibfd);
5052 iehdr = elf_elfheader (ibfd);
5053
5054 map_first = NULL;
5055 pointer_to_map = &map_first;
5056
5057 num_segments = elf_elfheader (ibfd)->e_phnum;
5058 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5059
5060 /* Returns the end address of the segment + 1. */
5061 #define SEGMENT_END(segment, start) \
5062 (start + (segment->p_memsz > segment->p_filesz \
5063 ? segment->p_memsz : segment->p_filesz))
5064
5065 #define SECTION_SIZE(section, segment) \
5066 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5067 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5068 ? section->size : 0)
5069
5070 /* Returns TRUE if the given section is contained within
5071 the given segment. VMA addresses are compared. */
5072 #define IS_CONTAINED_BY_VMA(section, segment) \
5073 (section->vma >= segment->p_vaddr \
5074 && (section->vma + SECTION_SIZE (section, segment) \
5075 <= (SEGMENT_END (segment, segment->p_vaddr))))
5076
5077 /* Returns TRUE if the given section is contained within
5078 the given segment. LMA addresses are compared. */
5079 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5080 (section->lma >= base \
5081 && (section->lma + SECTION_SIZE (section, segment) \
5082 <= SEGMENT_END (segment, base)))
5083
5084 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5085 #define IS_COREFILE_NOTE(p, s) \
5086 (p->p_type == PT_NOTE \
5087 && bfd_get_format (ibfd) == bfd_core \
5088 && s->vma == 0 && s->lma == 0 \
5089 && (bfd_vma) s->filepos >= p->p_offset \
5090 && ((bfd_vma) s->filepos + s->size \
5091 <= p->p_offset + p->p_filesz))
5092
5093 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5094 linker, which generates a PT_INTERP section with p_vaddr and
5095 p_memsz set to 0. */
5096 #define IS_SOLARIS_PT_INTERP(p, s) \
5097 (p->p_vaddr == 0 \
5098 && p->p_paddr == 0 \
5099 && p->p_memsz == 0 \
5100 && p->p_filesz > 0 \
5101 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5102 && s->size > 0 \
5103 && (bfd_vma) s->filepos >= p->p_offset \
5104 && ((bfd_vma) s->filepos + s->size \
5105 <= p->p_offset + p->p_filesz))
5106
5107 /* Decide if the given section should be included in the given segment.
5108 A section will be included if:
5109 1. It is within the address space of the segment -- we use the LMA
5110 if that is set for the segment and the VMA otherwise,
5111 2. It is an allocated segment,
5112 3. There is an output section associated with it,
5113 4. The section has not already been allocated to a previous segment.
5114 5. PT_GNU_STACK segments do not include any sections.
5115 6. PT_TLS segment includes only SHF_TLS sections.
5116 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5117 8. PT_DYNAMIC should not contain empty sections at the beginning
5118 (with the possible exception of .dynamic). */
5119 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5120 ((((segment->p_paddr \
5121 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5122 : IS_CONTAINED_BY_VMA (section, segment)) \
5123 && (section->flags & SEC_ALLOC) != 0) \
5124 || IS_COREFILE_NOTE (segment, section)) \
5125 && section->output_section != NULL \
5126 && segment->p_type != PT_GNU_STACK \
5127 && (segment->p_type != PT_TLS \
5128 || (section->flags & SEC_THREAD_LOCAL)) \
5129 && (segment->p_type == PT_LOAD \
5130 || segment->p_type == PT_TLS \
5131 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5132 && (segment->p_type != PT_DYNAMIC \
5133 || SECTION_SIZE (section, segment) > 0 \
5134 || (segment->p_paddr \
5135 ? segment->p_paddr != section->lma \
5136 : segment->p_vaddr != section->vma) \
5137 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5138 == 0)) \
5139 && ! section->segment_mark)
5140
5141 /* Returns TRUE iff seg1 starts after the end of seg2. */
5142 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5143 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5144
5145 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5146 their VMA address ranges and their LMA address ranges overlap.
5147 It is possible to have overlapping VMA ranges without overlapping LMA
5148 ranges. RedBoot images for example can have both .data and .bss mapped
5149 to the same VMA range, but with the .data section mapped to a different
5150 LMA. */
5151 #define SEGMENT_OVERLAPS(seg1, seg2) \
5152 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5153 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5154 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5155 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5156
5157 /* Initialise the segment mark field. */
5158 for (section = ibfd->sections; section != NULL; section = section->next)
5159 section->segment_mark = FALSE;
5160
5161 /* Scan through the segments specified in the program header
5162 of the input BFD. For this first scan we look for overlaps
5163 in the loadable segments. These can be created by weird
5164 parameters to objcopy. Also, fix some solaris weirdness. */
5165 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5166 i < num_segments;
5167 i++, segment++)
5168 {
5169 unsigned int j;
5170 Elf_Internal_Phdr *segment2;
5171
5172 if (segment->p_type == PT_INTERP)
5173 for (section = ibfd->sections; section; section = section->next)
5174 if (IS_SOLARIS_PT_INTERP (segment, section))
5175 {
5176 /* Mininal change so that the normal section to segment
5177 assignment code will work. */
5178 segment->p_vaddr = section->vma;
5179 break;
5180 }
5181
5182 if (segment->p_type != PT_LOAD)
5183 continue;
5184
5185 /* Determine if this segment overlaps any previous segments. */
5186 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5187 {
5188 bfd_signed_vma extra_length;
5189
5190 if (segment2->p_type != PT_LOAD
5191 || ! SEGMENT_OVERLAPS (segment, segment2))
5192 continue;
5193
5194 /* Merge the two segments together. */
5195 if (segment2->p_vaddr < segment->p_vaddr)
5196 {
5197 /* Extend SEGMENT2 to include SEGMENT and then delete
5198 SEGMENT. */
5199 extra_length =
5200 SEGMENT_END (segment, segment->p_vaddr)
5201 - SEGMENT_END (segment2, segment2->p_vaddr);
5202
5203 if (extra_length > 0)
5204 {
5205 segment2->p_memsz += extra_length;
5206 segment2->p_filesz += extra_length;
5207 }
5208
5209 segment->p_type = PT_NULL;
5210
5211 /* Since we have deleted P we must restart the outer loop. */
5212 i = 0;
5213 segment = elf_tdata (ibfd)->phdr;
5214 break;
5215 }
5216 else
5217 {
5218 /* Extend SEGMENT to include SEGMENT2 and then delete
5219 SEGMENT2. */
5220 extra_length =
5221 SEGMENT_END (segment2, segment2->p_vaddr)
5222 - SEGMENT_END (segment, segment->p_vaddr);
5223
5224 if (extra_length > 0)
5225 {
5226 segment->p_memsz += extra_length;
5227 segment->p_filesz += extra_length;
5228 }
5229
5230 segment2->p_type = PT_NULL;
5231 }
5232 }
5233 }
5234
5235 /* The second scan attempts to assign sections to segments. */
5236 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5237 i < num_segments;
5238 i ++, segment ++)
5239 {
5240 unsigned int section_count;
5241 asection ** sections;
5242 asection * output_section;
5243 unsigned int isec;
5244 bfd_vma matching_lma;
5245 bfd_vma suggested_lma;
5246 unsigned int j;
5247 bfd_size_type amt;
5248
5249 if (segment->p_type == PT_NULL)
5250 continue;
5251
5252 /* Compute how many sections might be placed into this segment. */
5253 for (section = ibfd->sections, section_count = 0;
5254 section != NULL;
5255 section = section->next)
5256 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5257 ++section_count;
5258
5259 /* Allocate a segment map big enough to contain
5260 all of the sections we have selected. */
5261 amt = sizeof (struct elf_segment_map);
5262 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5263 map = bfd_alloc (obfd, amt);
5264 if (map == NULL)
5265 return FALSE;
5266
5267 /* Initialise the fields of the segment map. Default to
5268 using the physical address of the segment in the input BFD. */
5269 map->next = NULL;
5270 map->p_type = segment->p_type;
5271 map->p_flags = segment->p_flags;
5272 map->p_flags_valid = 1;
5273 map->p_paddr = segment->p_paddr;
5274 map->p_paddr_valid = 1;
5275
5276 /* Determine if this segment contains the ELF file header
5277 and if it contains the program headers themselves. */
5278 map->includes_filehdr = (segment->p_offset == 0
5279 && segment->p_filesz >= iehdr->e_ehsize);
5280
5281 map->includes_phdrs = 0;
5282
5283 if (! phdr_included || segment->p_type != PT_LOAD)
5284 {
5285 map->includes_phdrs =
5286 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5287 && (segment->p_offset + segment->p_filesz
5288 >= ((bfd_vma) iehdr->e_phoff
5289 + iehdr->e_phnum * iehdr->e_phentsize)));
5290
5291 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5292 phdr_included = TRUE;
5293 }
5294
5295 if (section_count == 0)
5296 {
5297 /* Special segments, such as the PT_PHDR segment, may contain
5298 no sections, but ordinary, loadable segments should contain
5299 something. They are allowed by the ELF spec however, so only
5300 a warning is produced. */
5301 if (segment->p_type == PT_LOAD)
5302 (*_bfd_error_handler)
5303 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5304 ibfd);
5305
5306 map->count = 0;
5307 *pointer_to_map = map;
5308 pointer_to_map = &map->next;
5309
5310 continue;
5311 }
5312
5313 /* Now scan the sections in the input BFD again and attempt
5314 to add their corresponding output sections to the segment map.
5315 The problem here is how to handle an output section which has
5316 been moved (ie had its LMA changed). There are four possibilities:
5317
5318 1. None of the sections have been moved.
5319 In this case we can continue to use the segment LMA from the
5320 input BFD.
5321
5322 2. All of the sections have been moved by the same amount.
5323 In this case we can change the segment's LMA to match the LMA
5324 of the first section.
5325
5326 3. Some of the sections have been moved, others have not.
5327 In this case those sections which have not been moved can be
5328 placed in the current segment which will have to have its size,
5329 and possibly its LMA changed, and a new segment or segments will
5330 have to be created to contain the other sections.
5331
5332 4. The sections have been moved, but not by the same amount.
5333 In this case we can change the segment's LMA to match the LMA
5334 of the first section and we will have to create a new segment
5335 or segments to contain the other sections.
5336
5337 In order to save time, we allocate an array to hold the section
5338 pointers that we are interested in. As these sections get assigned
5339 to a segment, they are removed from this array. */
5340
5341 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5342 to work around this long long bug. */
5343 amt = section_count * sizeof (asection *);
5344 sections = bfd_malloc (amt);
5345 if (sections == NULL)
5346 return FALSE;
5347
5348 /* Step One: Scan for segment vs section LMA conflicts.
5349 Also add the sections to the section array allocated above.
5350 Also add the sections to the current segment. In the common
5351 case, where the sections have not been moved, this means that
5352 we have completely filled the segment, and there is nothing
5353 more to do. */
5354 isec = 0;
5355 matching_lma = 0;
5356 suggested_lma = 0;
5357
5358 for (j = 0, section = ibfd->sections;
5359 section != NULL;
5360 section = section->next)
5361 {
5362 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5363 {
5364 output_section = section->output_section;
5365
5366 sections[j ++] = section;
5367
5368 /* The Solaris native linker always sets p_paddr to 0.
5369 We try to catch that case here, and set it to the
5370 correct value. Note - some backends require that
5371 p_paddr be left as zero. */
5372 if (segment->p_paddr == 0
5373 && segment->p_vaddr != 0
5374 && (! bed->want_p_paddr_set_to_zero)
5375 && isec == 0
5376 && output_section->lma != 0
5377 && (output_section->vma == (segment->p_vaddr
5378 + (map->includes_filehdr
5379 ? iehdr->e_ehsize
5380 : 0)
5381 + (map->includes_phdrs
5382 ? (iehdr->e_phnum
5383 * iehdr->e_phentsize)
5384 : 0))))
5385 map->p_paddr = segment->p_vaddr;
5386
5387 /* Match up the physical address of the segment with the
5388 LMA address of the output section. */
5389 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5390 || IS_COREFILE_NOTE (segment, section)
5391 || (bed->want_p_paddr_set_to_zero &&
5392 IS_CONTAINED_BY_VMA (output_section, segment))
5393 )
5394 {
5395 if (matching_lma == 0)
5396 matching_lma = output_section->lma;
5397
5398 /* We assume that if the section fits within the segment
5399 then it does not overlap any other section within that
5400 segment. */
5401 map->sections[isec ++] = output_section;
5402 }
5403 else if (suggested_lma == 0)
5404 suggested_lma = output_section->lma;
5405 }
5406 }
5407
5408 BFD_ASSERT (j == section_count);
5409
5410 /* Step Two: Adjust the physical address of the current segment,
5411 if necessary. */
5412 if (isec == section_count)
5413 {
5414 /* All of the sections fitted within the segment as currently
5415 specified. This is the default case. Add the segment to
5416 the list of built segments and carry on to process the next
5417 program header in the input BFD. */
5418 map->count = section_count;
5419 *pointer_to_map = map;
5420 pointer_to_map = &map->next;
5421
5422 free (sections);
5423 continue;
5424 }
5425 else
5426 {
5427 if (matching_lma != 0)
5428 {
5429 /* At least one section fits inside the current segment.
5430 Keep it, but modify its physical address to match the
5431 LMA of the first section that fitted. */
5432 map->p_paddr = matching_lma;
5433 }
5434 else
5435 {
5436 /* None of the sections fitted inside the current segment.
5437 Change the current segment's physical address to match
5438 the LMA of the first section. */
5439 map->p_paddr = suggested_lma;
5440 }
5441
5442 /* Offset the segment physical address from the lma
5443 to allow for space taken up by elf headers. */
5444 if (map->includes_filehdr)
5445 map->p_paddr -= iehdr->e_ehsize;
5446
5447 if (map->includes_phdrs)
5448 {
5449 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5450
5451 /* iehdr->e_phnum is just an estimate of the number
5452 of program headers that we will need. Make a note
5453 here of the number we used and the segment we chose
5454 to hold these headers, so that we can adjust the
5455 offset when we know the correct value. */
5456 phdr_adjust_num = iehdr->e_phnum;
5457 phdr_adjust_seg = map;
5458 }
5459 }
5460
5461 /* Step Three: Loop over the sections again, this time assigning
5462 those that fit to the current segment and removing them from the
5463 sections array; but making sure not to leave large gaps. Once all
5464 possible sections have been assigned to the current segment it is
5465 added to the list of built segments and if sections still remain
5466 to be assigned, a new segment is constructed before repeating
5467 the loop. */
5468 isec = 0;
5469 do
5470 {
5471 map->count = 0;
5472 suggested_lma = 0;
5473
5474 /* Fill the current segment with sections that fit. */
5475 for (j = 0; j < section_count; j++)
5476 {
5477 section = sections[j];
5478
5479 if (section == NULL)
5480 continue;
5481
5482 output_section = section->output_section;
5483
5484 BFD_ASSERT (output_section != NULL);
5485
5486 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5487 || IS_COREFILE_NOTE (segment, section))
5488 {
5489 if (map->count == 0)
5490 {
5491 /* If the first section in a segment does not start at
5492 the beginning of the segment, then something is
5493 wrong. */
5494 if (output_section->lma !=
5495 (map->p_paddr
5496 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5497 + (map->includes_phdrs
5498 ? iehdr->e_phnum * iehdr->e_phentsize
5499 : 0)))
5500 abort ();
5501 }
5502 else
5503 {
5504 asection * prev_sec;
5505
5506 prev_sec = map->sections[map->count - 1];
5507
5508 /* If the gap between the end of the previous section
5509 and the start of this section is more than
5510 maxpagesize then we need to start a new segment. */
5511 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5512 maxpagesize)
5513 < BFD_ALIGN (output_section->lma, maxpagesize))
5514 || ((prev_sec->lma + prev_sec->size)
5515 > output_section->lma))
5516 {
5517 if (suggested_lma == 0)
5518 suggested_lma = output_section->lma;
5519
5520 continue;
5521 }
5522 }
5523
5524 map->sections[map->count++] = output_section;
5525 ++isec;
5526 sections[j] = NULL;
5527 section->segment_mark = TRUE;
5528 }
5529 else if (suggested_lma == 0)
5530 suggested_lma = output_section->lma;
5531 }
5532
5533 BFD_ASSERT (map->count > 0);
5534
5535 /* Add the current segment to the list of built segments. */
5536 *pointer_to_map = map;
5537 pointer_to_map = &map->next;
5538
5539 if (isec < section_count)
5540 {
5541 /* We still have not allocated all of the sections to
5542 segments. Create a new segment here, initialise it
5543 and carry on looping. */
5544 amt = sizeof (struct elf_segment_map);
5545 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5546 map = bfd_alloc (obfd, amt);
5547 if (map == NULL)
5548 {
5549 free (sections);
5550 return FALSE;
5551 }
5552
5553 /* Initialise the fields of the segment map. Set the physical
5554 physical address to the LMA of the first section that has
5555 not yet been assigned. */
5556 map->next = NULL;
5557 map->p_type = segment->p_type;
5558 map->p_flags = segment->p_flags;
5559 map->p_flags_valid = 1;
5560 map->p_paddr = suggested_lma;
5561 map->p_paddr_valid = 1;
5562 map->includes_filehdr = 0;
5563 map->includes_phdrs = 0;
5564 }
5565 }
5566 while (isec < section_count);
5567
5568 free (sections);
5569 }
5570
5571 /* The Solaris linker creates program headers in which all the
5572 p_paddr fields are zero. When we try to objcopy or strip such a
5573 file, we get confused. Check for this case, and if we find it
5574 reset the p_paddr_valid fields. */
5575 for (map = map_first; map != NULL; map = map->next)
5576 if (map->p_paddr != 0)
5577 break;
5578 if (map == NULL)
5579 for (map = map_first; map != NULL; map = map->next)
5580 map->p_paddr_valid = 0;
5581
5582 elf_tdata (obfd)->segment_map = map_first;
5583
5584 /* If we had to estimate the number of program headers that were
5585 going to be needed, then check our estimate now and adjust
5586 the offset if necessary. */
5587 if (phdr_adjust_seg != NULL)
5588 {
5589 unsigned int count;
5590
5591 for (count = 0, map = map_first; map != NULL; map = map->next)
5592 count++;
5593
5594 if (count > phdr_adjust_num)
5595 phdr_adjust_seg->p_paddr
5596 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5597 }
5598
5599 #undef SEGMENT_END
5600 #undef SECTION_SIZE
5601 #undef IS_CONTAINED_BY_VMA
5602 #undef IS_CONTAINED_BY_LMA
5603 #undef IS_COREFILE_NOTE
5604 #undef IS_SOLARIS_PT_INTERP
5605 #undef INCLUDE_SECTION_IN_SEGMENT
5606 #undef SEGMENT_AFTER_SEGMENT
5607 #undef SEGMENT_OVERLAPS
5608 return TRUE;
5609 }
5610
5611 /* Copy private section information. This copies over the entsize
5612 field, and sometimes the info field. */
5613
5614 bfd_boolean
5615 _bfd_elf_copy_private_section_data (bfd *ibfd,
5616 asection *isec,
5617 bfd *obfd,
5618 asection *osec)
5619 {
5620 Elf_Internal_Shdr *ihdr, *ohdr;
5621
5622 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5623 || obfd->xvec->flavour != bfd_target_elf_flavour)
5624 return TRUE;
5625
5626 ihdr = &elf_section_data (isec)->this_hdr;
5627 ohdr = &elf_section_data (osec)->this_hdr;
5628
5629 ohdr->sh_entsize = ihdr->sh_entsize;
5630
5631 if (ihdr->sh_type == SHT_SYMTAB
5632 || ihdr->sh_type == SHT_DYNSYM
5633 || ihdr->sh_type == SHT_GNU_verneed
5634 || ihdr->sh_type == SHT_GNU_verdef)
5635 ohdr->sh_info = ihdr->sh_info;
5636
5637 /* Set things up for objcopy. The output SHT_GROUP section will
5638 have its elf_next_in_group pointing back to the input group
5639 members. Ignore linker created group section. See
5640 elfNN_ia64_object_p in elfxx-ia64.c. */
5641 if (elf_sec_group (isec) == NULL
5642 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5643 {
5644 elf_next_in_group (osec) = elf_next_in_group (isec);
5645 elf_group_name (osec) = elf_group_name (isec);
5646 }
5647
5648 osec->use_rela_p = isec->use_rela_p;
5649
5650 return TRUE;
5651 }
5652
5653 /* Copy private header information. */
5654
5655 bfd_boolean
5656 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5657 {
5658 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5659 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5660 return TRUE;
5661
5662 /* Copy over private BFD data if it has not already been copied.
5663 This must be done here, rather than in the copy_private_bfd_data
5664 entry point, because the latter is called after the section
5665 contents have been set, which means that the program headers have
5666 already been worked out. */
5667 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5668 {
5669 if (! copy_private_bfd_data (ibfd, obfd))
5670 return FALSE;
5671 }
5672
5673 return TRUE;
5674 }
5675
5676 /* Copy private symbol information. If this symbol is in a section
5677 which we did not map into a BFD section, try to map the section
5678 index correctly. We use special macro definitions for the mapped
5679 section indices; these definitions are interpreted by the
5680 swap_out_syms function. */
5681
5682 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5683 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5684 #define MAP_STRTAB (SHN_HIOS + 3)
5685 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5686 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5687
5688 bfd_boolean
5689 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5690 asymbol *isymarg,
5691 bfd *obfd,
5692 asymbol *osymarg)
5693 {
5694 elf_symbol_type *isym, *osym;
5695
5696 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5697 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5698 return TRUE;
5699
5700 isym = elf_symbol_from (ibfd, isymarg);
5701 osym = elf_symbol_from (obfd, osymarg);
5702
5703 if (isym != NULL
5704 && osym != NULL
5705 && bfd_is_abs_section (isym->symbol.section))
5706 {
5707 unsigned int shndx;
5708
5709 shndx = isym->internal_elf_sym.st_shndx;
5710 if (shndx == elf_onesymtab (ibfd))
5711 shndx = MAP_ONESYMTAB;
5712 else if (shndx == elf_dynsymtab (ibfd))
5713 shndx = MAP_DYNSYMTAB;
5714 else if (shndx == elf_tdata (ibfd)->strtab_section)
5715 shndx = MAP_STRTAB;
5716 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5717 shndx = MAP_SHSTRTAB;
5718 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5719 shndx = MAP_SYM_SHNDX;
5720 osym->internal_elf_sym.st_shndx = shndx;
5721 }
5722
5723 return TRUE;
5724 }
5725
5726 /* Swap out the symbols. */
5727
5728 static bfd_boolean
5729 swap_out_syms (bfd *abfd,
5730 struct bfd_strtab_hash **sttp,
5731 int relocatable_p)
5732 {
5733 const struct elf_backend_data *bed;
5734 int symcount;
5735 asymbol **syms;
5736 struct bfd_strtab_hash *stt;
5737 Elf_Internal_Shdr *symtab_hdr;
5738 Elf_Internal_Shdr *symtab_shndx_hdr;
5739 Elf_Internal_Shdr *symstrtab_hdr;
5740 bfd_byte *outbound_syms;
5741 bfd_byte *outbound_shndx;
5742 int idx;
5743 bfd_size_type amt;
5744 bfd_boolean name_local_sections;
5745
5746 if (!elf_map_symbols (abfd))
5747 return FALSE;
5748
5749 /* Dump out the symtabs. */
5750 stt = _bfd_elf_stringtab_init ();
5751 if (stt == NULL)
5752 return FALSE;
5753
5754 bed = get_elf_backend_data (abfd);
5755 symcount = bfd_get_symcount (abfd);
5756 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5757 symtab_hdr->sh_type = SHT_SYMTAB;
5758 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5759 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5760 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5761 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5762
5763 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5764 symstrtab_hdr->sh_type = SHT_STRTAB;
5765
5766 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5767 outbound_syms = bfd_alloc (abfd, amt);
5768 if (outbound_syms == NULL)
5769 {
5770 _bfd_stringtab_free (stt);
5771 return FALSE;
5772 }
5773 symtab_hdr->contents = outbound_syms;
5774
5775 outbound_shndx = NULL;
5776 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5777 if (symtab_shndx_hdr->sh_name != 0)
5778 {
5779 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5780 outbound_shndx = bfd_zalloc (abfd, amt);
5781 if (outbound_shndx == NULL)
5782 {
5783 _bfd_stringtab_free (stt);
5784 return FALSE;
5785 }
5786
5787 symtab_shndx_hdr->contents = outbound_shndx;
5788 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5789 symtab_shndx_hdr->sh_size = amt;
5790 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5791 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5792 }
5793
5794 /* Now generate the data (for "contents"). */
5795 {
5796 /* Fill in zeroth symbol and swap it out. */
5797 Elf_Internal_Sym sym;
5798 sym.st_name = 0;
5799 sym.st_value = 0;
5800 sym.st_size = 0;
5801 sym.st_info = 0;
5802 sym.st_other = 0;
5803 sym.st_shndx = SHN_UNDEF;
5804 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5805 outbound_syms += bed->s->sizeof_sym;
5806 if (outbound_shndx != NULL)
5807 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5808 }
5809
5810 name_local_sections
5811 = (bed->elf_backend_name_local_section_symbols
5812 && bed->elf_backend_name_local_section_symbols (abfd));
5813
5814 syms = bfd_get_outsymbols (abfd);
5815 for (idx = 0; idx < symcount; idx++)
5816 {
5817 Elf_Internal_Sym sym;
5818 bfd_vma value = syms[idx]->value;
5819 elf_symbol_type *type_ptr;
5820 flagword flags = syms[idx]->flags;
5821 int type;
5822
5823 if (!name_local_sections
5824 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5825 {
5826 /* Local section symbols have no name. */
5827 sym.st_name = 0;
5828 }
5829 else
5830 {
5831 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5832 syms[idx]->name,
5833 TRUE, FALSE);
5834 if (sym.st_name == (unsigned long) -1)
5835 {
5836 _bfd_stringtab_free (stt);
5837 return FALSE;
5838 }
5839 }
5840
5841 type_ptr = elf_symbol_from (abfd, syms[idx]);
5842
5843 if ((flags & BSF_SECTION_SYM) == 0
5844 && bfd_is_com_section (syms[idx]->section))
5845 {
5846 /* ELF common symbols put the alignment into the `value' field,
5847 and the size into the `size' field. This is backwards from
5848 how BFD handles it, so reverse it here. */
5849 sym.st_size = value;
5850 if (type_ptr == NULL
5851 || type_ptr->internal_elf_sym.st_value == 0)
5852 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5853 else
5854 sym.st_value = type_ptr->internal_elf_sym.st_value;
5855 sym.st_shndx = _bfd_elf_section_from_bfd_section
5856 (abfd, syms[idx]->section);
5857 }
5858 else
5859 {
5860 asection *sec = syms[idx]->section;
5861 int shndx;
5862
5863 if (sec->output_section)
5864 {
5865 value += sec->output_offset;
5866 sec = sec->output_section;
5867 }
5868
5869 /* Don't add in the section vma for relocatable output. */
5870 if (! relocatable_p)
5871 value += sec->vma;
5872 sym.st_value = value;
5873 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5874
5875 if (bfd_is_abs_section (sec)
5876 && type_ptr != NULL
5877 && type_ptr->internal_elf_sym.st_shndx != 0)
5878 {
5879 /* This symbol is in a real ELF section which we did
5880 not create as a BFD section. Undo the mapping done
5881 by copy_private_symbol_data. */
5882 shndx = type_ptr->internal_elf_sym.st_shndx;
5883 switch (shndx)
5884 {
5885 case MAP_ONESYMTAB:
5886 shndx = elf_onesymtab (abfd);
5887 break;
5888 case MAP_DYNSYMTAB:
5889 shndx = elf_dynsymtab (abfd);
5890 break;
5891 case MAP_STRTAB:
5892 shndx = elf_tdata (abfd)->strtab_section;
5893 break;
5894 case MAP_SHSTRTAB:
5895 shndx = elf_tdata (abfd)->shstrtab_section;
5896 break;
5897 case MAP_SYM_SHNDX:
5898 shndx = elf_tdata (abfd)->symtab_shndx_section;
5899 break;
5900 default:
5901 break;
5902 }
5903 }
5904 else
5905 {
5906 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5907
5908 if (shndx == -1)
5909 {
5910 asection *sec2;
5911
5912 /* Writing this would be a hell of a lot easier if
5913 we had some decent documentation on bfd, and
5914 knew what to expect of the library, and what to
5915 demand of applications. For example, it
5916 appears that `objcopy' might not set the
5917 section of a symbol to be a section that is
5918 actually in the output file. */
5919 sec2 = bfd_get_section_by_name (abfd, sec->name);
5920 if (sec2 == NULL)
5921 {
5922 _bfd_error_handler (_("\
5923 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5924 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5925 sec->name);
5926 bfd_set_error (bfd_error_invalid_operation);
5927 _bfd_stringtab_free (stt);
5928 return FALSE;
5929 }
5930
5931 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5932 BFD_ASSERT (shndx != -1);
5933 }
5934 }
5935
5936 sym.st_shndx = shndx;
5937 }
5938
5939 if ((flags & BSF_THREAD_LOCAL) != 0)
5940 type = STT_TLS;
5941 else if ((flags & BSF_FUNCTION) != 0)
5942 type = STT_FUNC;
5943 else if ((flags & BSF_OBJECT) != 0)
5944 type = STT_OBJECT;
5945 else
5946 type = STT_NOTYPE;
5947
5948 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5949 type = STT_TLS;
5950
5951 /* Processor-specific types. */
5952 if (type_ptr != NULL
5953 && bed->elf_backend_get_symbol_type)
5954 type = ((*bed->elf_backend_get_symbol_type)
5955 (&type_ptr->internal_elf_sym, type));
5956
5957 if (flags & BSF_SECTION_SYM)
5958 {
5959 if (flags & BSF_GLOBAL)
5960 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5961 else
5962 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5963 }
5964 else if (bfd_is_com_section (syms[idx]->section))
5965 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5966 else if (bfd_is_und_section (syms[idx]->section))
5967 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5968 ? STB_WEAK
5969 : STB_GLOBAL),
5970 type);
5971 else if (flags & BSF_FILE)
5972 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5973 else
5974 {
5975 int bind = STB_LOCAL;
5976
5977 if (flags & BSF_LOCAL)
5978 bind = STB_LOCAL;
5979 else if (flags & BSF_WEAK)
5980 bind = STB_WEAK;
5981 else if (flags & BSF_GLOBAL)
5982 bind = STB_GLOBAL;
5983
5984 sym.st_info = ELF_ST_INFO (bind, type);
5985 }
5986
5987 if (type_ptr != NULL)
5988 sym.st_other = type_ptr->internal_elf_sym.st_other;
5989 else
5990 sym.st_other = 0;
5991
5992 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5993 outbound_syms += bed->s->sizeof_sym;
5994 if (outbound_shndx != NULL)
5995 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5996 }
5997
5998 *sttp = stt;
5999 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6000 symstrtab_hdr->sh_type = SHT_STRTAB;
6001
6002 symstrtab_hdr->sh_flags = 0;
6003 symstrtab_hdr->sh_addr = 0;
6004 symstrtab_hdr->sh_entsize = 0;
6005 symstrtab_hdr->sh_link = 0;
6006 symstrtab_hdr->sh_info = 0;
6007 symstrtab_hdr->sh_addralign = 1;
6008
6009 return TRUE;
6010 }
6011
6012 /* Return the number of bytes required to hold the symtab vector.
6013
6014 Note that we base it on the count plus 1, since we will null terminate
6015 the vector allocated based on this size. However, the ELF symbol table
6016 always has a dummy entry as symbol #0, so it ends up even. */
6017
6018 long
6019 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6020 {
6021 long symcount;
6022 long symtab_size;
6023 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6024
6025 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6026 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6027 if (symcount > 0)
6028 symtab_size -= sizeof (asymbol *);
6029
6030 return symtab_size;
6031 }
6032
6033 long
6034 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6035 {
6036 long symcount;
6037 long symtab_size;
6038 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6039
6040 if (elf_dynsymtab (abfd) == 0)
6041 {
6042 bfd_set_error (bfd_error_invalid_operation);
6043 return -1;
6044 }
6045
6046 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6047 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6048 if (symcount > 0)
6049 symtab_size -= sizeof (asymbol *);
6050
6051 return symtab_size;
6052 }
6053
6054 long
6055 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6056 sec_ptr asect)
6057 {
6058 return (asect->reloc_count + 1) * sizeof (arelent *);
6059 }
6060
6061 /* Canonicalize the relocs. */
6062
6063 long
6064 _bfd_elf_canonicalize_reloc (bfd *abfd,
6065 sec_ptr section,
6066 arelent **relptr,
6067 asymbol **symbols)
6068 {
6069 arelent *tblptr;
6070 unsigned int i;
6071 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6072
6073 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6074 return -1;
6075
6076 tblptr = section->relocation;
6077 for (i = 0; i < section->reloc_count; i++)
6078 *relptr++ = tblptr++;
6079
6080 *relptr = NULL;
6081
6082 return section->reloc_count;
6083 }
6084
6085 long
6086 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6087 {
6088 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6089 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6090
6091 if (symcount >= 0)
6092 bfd_get_symcount (abfd) = symcount;
6093 return symcount;
6094 }
6095
6096 long
6097 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6098 asymbol **allocation)
6099 {
6100 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6101 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6102
6103 if (symcount >= 0)
6104 bfd_get_dynamic_symcount (abfd) = symcount;
6105 return symcount;
6106 }
6107
6108 /* Return the size required for the dynamic reloc entries. Any loadable
6109 section that was actually installed in the BFD, and has type SHT_REL
6110 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6111 dynamic reloc section. */
6112
6113 long
6114 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6115 {
6116 long ret;
6117 asection *s;
6118
6119 if (elf_dynsymtab (abfd) == 0)
6120 {
6121 bfd_set_error (bfd_error_invalid_operation);
6122 return -1;
6123 }
6124
6125 ret = sizeof (arelent *);
6126 for (s = abfd->sections; s != NULL; s = s->next)
6127 if ((s->flags & SEC_LOAD) != 0
6128 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6129 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6130 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6131 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6132 * sizeof (arelent *));
6133
6134 return ret;
6135 }
6136
6137 /* Canonicalize the dynamic relocation entries. Note that we return the
6138 dynamic relocations as a single block, although they are actually
6139 associated with particular sections; the interface, which was
6140 designed for SunOS style shared libraries, expects that there is only
6141 one set of dynamic relocs. Any loadable section that was actually
6142 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6143 dynamic symbol table, is considered to be a dynamic reloc section. */
6144
6145 long
6146 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6147 arelent **storage,
6148 asymbol **syms)
6149 {
6150 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6151 asection *s;
6152 long ret;
6153
6154 if (elf_dynsymtab (abfd) == 0)
6155 {
6156 bfd_set_error (bfd_error_invalid_operation);
6157 return -1;
6158 }
6159
6160 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6161 ret = 0;
6162 for (s = abfd->sections; s != NULL; s = s->next)
6163 {
6164 if ((s->flags & SEC_LOAD) != 0
6165 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6166 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6167 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6168 {
6169 arelent *p;
6170 long count, i;
6171
6172 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6173 return -1;
6174 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6175 p = s->relocation;
6176 for (i = 0; i < count; i++)
6177 *storage++ = p++;
6178 ret += count;
6179 }
6180 }
6181
6182 *storage = NULL;
6183
6184 return ret;
6185 }
6186 \f
6187 /* Read in the version information. */
6188
6189 bfd_boolean
6190 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6191 {
6192 bfd_byte *contents = NULL;
6193 bfd_size_type amt;
6194 unsigned int freeidx = 0;
6195
6196 if (elf_dynverref (abfd) != 0)
6197 {
6198 Elf_Internal_Shdr *hdr;
6199 Elf_External_Verneed *everneed;
6200 Elf_Internal_Verneed *iverneed;
6201 unsigned int i;
6202
6203 hdr = &elf_tdata (abfd)->dynverref_hdr;
6204
6205 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6206 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6207 if (elf_tdata (abfd)->verref == NULL)
6208 goto error_return;
6209
6210 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6211
6212 contents = bfd_malloc (hdr->sh_size);
6213 if (contents == NULL)
6214 goto error_return;
6215 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6216 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6217 goto error_return;
6218
6219 everneed = (Elf_External_Verneed *) contents;
6220 iverneed = elf_tdata (abfd)->verref;
6221 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6222 {
6223 Elf_External_Vernaux *evernaux;
6224 Elf_Internal_Vernaux *ivernaux;
6225 unsigned int j;
6226
6227 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6228
6229 iverneed->vn_bfd = abfd;
6230
6231 iverneed->vn_filename =
6232 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6233 iverneed->vn_file);
6234 if (iverneed->vn_filename == NULL)
6235 goto error_return;
6236
6237 amt = iverneed->vn_cnt;
6238 amt *= sizeof (Elf_Internal_Vernaux);
6239 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6240
6241 evernaux = ((Elf_External_Vernaux *)
6242 ((bfd_byte *) everneed + iverneed->vn_aux));
6243 ivernaux = iverneed->vn_auxptr;
6244 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6245 {
6246 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6247
6248 ivernaux->vna_nodename =
6249 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6250 ivernaux->vna_name);
6251 if (ivernaux->vna_nodename == NULL)
6252 goto error_return;
6253
6254 if (j + 1 < iverneed->vn_cnt)
6255 ivernaux->vna_nextptr = ivernaux + 1;
6256 else
6257 ivernaux->vna_nextptr = NULL;
6258
6259 evernaux = ((Elf_External_Vernaux *)
6260 ((bfd_byte *) evernaux + ivernaux->vna_next));
6261
6262 if (ivernaux->vna_other > freeidx)
6263 freeidx = ivernaux->vna_other;
6264 }
6265
6266 if (i + 1 < hdr->sh_info)
6267 iverneed->vn_nextref = iverneed + 1;
6268 else
6269 iverneed->vn_nextref = NULL;
6270
6271 everneed = ((Elf_External_Verneed *)
6272 ((bfd_byte *) everneed + iverneed->vn_next));
6273 }
6274
6275 free (contents);
6276 contents = NULL;
6277 }
6278
6279 if (elf_dynverdef (abfd) != 0)
6280 {
6281 Elf_Internal_Shdr *hdr;
6282 Elf_External_Verdef *everdef;
6283 Elf_Internal_Verdef *iverdef;
6284 Elf_Internal_Verdef *iverdefarr;
6285 Elf_Internal_Verdef iverdefmem;
6286 unsigned int i;
6287 unsigned int maxidx;
6288
6289 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6290
6291 contents = bfd_malloc (hdr->sh_size);
6292 if (contents == NULL)
6293 goto error_return;
6294 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6295 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6296 goto error_return;
6297
6298 /* We know the number of entries in the section but not the maximum
6299 index. Therefore we have to run through all entries and find
6300 the maximum. */
6301 everdef = (Elf_External_Verdef *) contents;
6302 maxidx = 0;
6303 for (i = 0; i < hdr->sh_info; ++i)
6304 {
6305 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6306
6307 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6308 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6309
6310 everdef = ((Elf_External_Verdef *)
6311 ((bfd_byte *) everdef + iverdefmem.vd_next));
6312 }
6313
6314 if (default_imported_symver)
6315 {
6316 if (freeidx > maxidx)
6317 maxidx = ++freeidx;
6318 else
6319 freeidx = ++maxidx;
6320 }
6321 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6322 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6323 if (elf_tdata (abfd)->verdef == NULL)
6324 goto error_return;
6325
6326 elf_tdata (abfd)->cverdefs = maxidx;
6327
6328 everdef = (Elf_External_Verdef *) contents;
6329 iverdefarr = elf_tdata (abfd)->verdef;
6330 for (i = 0; i < hdr->sh_info; i++)
6331 {
6332 Elf_External_Verdaux *everdaux;
6333 Elf_Internal_Verdaux *iverdaux;
6334 unsigned int j;
6335
6336 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6337
6338 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6339 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6340
6341 iverdef->vd_bfd = abfd;
6342
6343 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6344 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6345 if (iverdef->vd_auxptr == NULL)
6346 goto error_return;
6347
6348 everdaux = ((Elf_External_Verdaux *)
6349 ((bfd_byte *) everdef + iverdef->vd_aux));
6350 iverdaux = iverdef->vd_auxptr;
6351 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6352 {
6353 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6354
6355 iverdaux->vda_nodename =
6356 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6357 iverdaux->vda_name);
6358 if (iverdaux->vda_nodename == NULL)
6359 goto error_return;
6360
6361 if (j + 1 < iverdef->vd_cnt)
6362 iverdaux->vda_nextptr = iverdaux + 1;
6363 else
6364 iverdaux->vda_nextptr = NULL;
6365
6366 everdaux = ((Elf_External_Verdaux *)
6367 ((bfd_byte *) everdaux + iverdaux->vda_next));
6368 }
6369
6370 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6371
6372 if (i + 1 < hdr->sh_info)
6373 iverdef->vd_nextdef = iverdef + 1;
6374 else
6375 iverdef->vd_nextdef = NULL;
6376
6377 everdef = ((Elf_External_Verdef *)
6378 ((bfd_byte *) everdef + iverdef->vd_next));
6379 }
6380
6381 free (contents);
6382 contents = NULL;
6383 }
6384 else if (default_imported_symver)
6385 {
6386 if (freeidx < 3)
6387 freeidx = 3;
6388 else
6389 freeidx++;
6390
6391 amt = (bfd_size_type) freeidx * sizeof (Elf_Internal_Verdef);
6392 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6393 if (elf_tdata (abfd)->verdef == NULL)
6394 goto error_return;
6395
6396 elf_tdata (abfd)->cverdefs = freeidx;
6397 }
6398
6399 /* Create a default version based on the soname. */
6400 if (default_imported_symver)
6401 {
6402 Elf_Internal_Verdef *iverdef;
6403 Elf_Internal_Verdaux *iverdaux;
6404
6405 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6406
6407 iverdef->vd_version = VER_DEF_CURRENT;
6408 iverdef->vd_flags = 0;
6409 iverdef->vd_ndx = freeidx;
6410 iverdef->vd_cnt = 1;
6411
6412 iverdef->vd_bfd = abfd;
6413
6414 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6415 if (iverdef->vd_nodename == NULL)
6416 goto error_return;
6417 iverdef->vd_nextdef = NULL;
6418 amt = (bfd_size_type) sizeof (Elf_Internal_Verdaux);
6419 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6420
6421 iverdaux = iverdef->vd_auxptr;
6422 iverdaux->vda_nodename = iverdef->vd_nodename;
6423 iverdaux->vda_nextptr = NULL;
6424 }
6425
6426 return TRUE;
6427
6428 error_return:
6429 if (contents != NULL)
6430 free (contents);
6431 return FALSE;
6432 }
6433 \f
6434 asymbol *
6435 _bfd_elf_make_empty_symbol (bfd *abfd)
6436 {
6437 elf_symbol_type *newsym;
6438 bfd_size_type amt = sizeof (elf_symbol_type);
6439
6440 newsym = bfd_zalloc (abfd, amt);
6441 if (!newsym)
6442 return NULL;
6443 else
6444 {
6445 newsym->symbol.the_bfd = abfd;
6446 return &newsym->symbol;
6447 }
6448 }
6449
6450 void
6451 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6452 asymbol *symbol,
6453 symbol_info *ret)
6454 {
6455 bfd_symbol_info (symbol, ret);
6456 }
6457
6458 /* Return whether a symbol name implies a local symbol. Most targets
6459 use this function for the is_local_label_name entry point, but some
6460 override it. */
6461
6462 bfd_boolean
6463 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6464 const char *name)
6465 {
6466 /* Normal local symbols start with ``.L''. */
6467 if (name[0] == '.' && name[1] == 'L')
6468 return TRUE;
6469
6470 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6471 DWARF debugging symbols starting with ``..''. */
6472 if (name[0] == '.' && name[1] == '.')
6473 return TRUE;
6474
6475 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6476 emitting DWARF debugging output. I suspect this is actually a
6477 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6478 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6479 underscore to be emitted on some ELF targets). For ease of use,
6480 we treat such symbols as local. */
6481 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6482 return TRUE;
6483
6484 return FALSE;
6485 }
6486
6487 alent *
6488 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6489 asymbol *symbol ATTRIBUTE_UNUSED)
6490 {
6491 abort ();
6492 return NULL;
6493 }
6494
6495 bfd_boolean
6496 _bfd_elf_set_arch_mach (bfd *abfd,
6497 enum bfd_architecture arch,
6498 unsigned long machine)
6499 {
6500 /* If this isn't the right architecture for this backend, and this
6501 isn't the generic backend, fail. */
6502 if (arch != get_elf_backend_data (abfd)->arch
6503 && arch != bfd_arch_unknown
6504 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6505 return FALSE;
6506
6507 return bfd_default_set_arch_mach (abfd, arch, machine);
6508 }
6509
6510 /* Find the function to a particular section and offset,
6511 for error reporting. */
6512
6513 static bfd_boolean
6514 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6515 asection *section,
6516 asymbol **symbols,
6517 bfd_vma offset,
6518 const char **filename_ptr,
6519 const char **functionname_ptr)
6520 {
6521 const char *filename;
6522 asymbol *func, *file;
6523 bfd_vma low_func;
6524 asymbol **p;
6525 /* ??? Given multiple file symbols, it is impossible to reliably
6526 choose the right file name for global symbols. File symbols are
6527 local symbols, and thus all file symbols must sort before any
6528 global symbols. The ELF spec may be interpreted to say that a
6529 file symbol must sort before other local symbols, but currently
6530 ld -r doesn't do this. So, for ld -r output, it is possible to
6531 make a better choice of file name for local symbols by ignoring
6532 file symbols appearing after a given local symbol. */
6533 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6534
6535 filename = NULL;
6536 func = NULL;
6537 file = NULL;
6538 low_func = 0;
6539 state = nothing_seen;
6540
6541 for (p = symbols; *p != NULL; p++)
6542 {
6543 elf_symbol_type *q;
6544
6545 q = (elf_symbol_type *) *p;
6546
6547 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6548 {
6549 default:
6550 break;
6551 case STT_FILE:
6552 file = &q->symbol;
6553 if (state == symbol_seen)
6554 state = file_after_symbol_seen;
6555 continue;
6556 case STT_SECTION:
6557 continue;
6558 case STT_NOTYPE:
6559 case STT_FUNC:
6560 if (bfd_get_section (&q->symbol) == section
6561 && q->symbol.value >= low_func
6562 && q->symbol.value <= offset)
6563 {
6564 func = (asymbol *) q;
6565 low_func = q->symbol.value;
6566 if (file == NULL)
6567 filename = NULL;
6568 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6569 && state == file_after_symbol_seen)
6570 filename = NULL;
6571 else
6572 filename = bfd_asymbol_name (file);
6573 }
6574 break;
6575 }
6576 if (state == nothing_seen)
6577 state = symbol_seen;
6578 }
6579
6580 if (func == NULL)
6581 return FALSE;
6582
6583 if (filename_ptr)
6584 *filename_ptr = filename;
6585 if (functionname_ptr)
6586 *functionname_ptr = bfd_asymbol_name (func);
6587
6588 return TRUE;
6589 }
6590
6591 /* Find the nearest line to a particular section and offset,
6592 for error reporting. */
6593
6594 bfd_boolean
6595 _bfd_elf_find_nearest_line (bfd *abfd,
6596 asection *section,
6597 asymbol **symbols,
6598 bfd_vma offset,
6599 const char **filename_ptr,
6600 const char **functionname_ptr,
6601 unsigned int *line_ptr)
6602 {
6603 bfd_boolean found;
6604
6605 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6606 filename_ptr, functionname_ptr,
6607 line_ptr))
6608 {
6609 if (!*functionname_ptr)
6610 elf_find_function (abfd, section, symbols, offset,
6611 *filename_ptr ? NULL : filename_ptr,
6612 functionname_ptr);
6613
6614 return TRUE;
6615 }
6616
6617 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6618 filename_ptr, functionname_ptr,
6619 line_ptr, 0,
6620 &elf_tdata (abfd)->dwarf2_find_line_info))
6621 {
6622 if (!*functionname_ptr)
6623 elf_find_function (abfd, section, symbols, offset,
6624 *filename_ptr ? NULL : filename_ptr,
6625 functionname_ptr);
6626
6627 return TRUE;
6628 }
6629
6630 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6631 &found, filename_ptr,
6632 functionname_ptr, line_ptr,
6633 &elf_tdata (abfd)->line_info))
6634 return FALSE;
6635 if (found && (*functionname_ptr || *line_ptr))
6636 return TRUE;
6637
6638 if (symbols == NULL)
6639 return FALSE;
6640
6641 if (! elf_find_function (abfd, section, symbols, offset,
6642 filename_ptr, functionname_ptr))
6643 return FALSE;
6644
6645 *line_ptr = 0;
6646 return TRUE;
6647 }
6648
6649 int
6650 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6651 {
6652 int ret;
6653
6654 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6655 if (! reloc)
6656 ret += get_program_header_size (abfd);
6657 return ret;
6658 }
6659
6660 bfd_boolean
6661 _bfd_elf_set_section_contents (bfd *abfd,
6662 sec_ptr section,
6663 const void *location,
6664 file_ptr offset,
6665 bfd_size_type count)
6666 {
6667 Elf_Internal_Shdr *hdr;
6668 bfd_signed_vma pos;
6669
6670 if (! abfd->output_has_begun
6671 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6672 return FALSE;
6673
6674 hdr = &elf_section_data (section)->this_hdr;
6675 pos = hdr->sh_offset + offset;
6676 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6677 || bfd_bwrite (location, count, abfd) != count)
6678 return FALSE;
6679
6680 return TRUE;
6681 }
6682
6683 void
6684 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6685 arelent *cache_ptr ATTRIBUTE_UNUSED,
6686 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6687 {
6688 abort ();
6689 }
6690
6691 /* Try to convert a non-ELF reloc into an ELF one. */
6692
6693 bfd_boolean
6694 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6695 {
6696 /* Check whether we really have an ELF howto. */
6697
6698 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6699 {
6700 bfd_reloc_code_real_type code;
6701 reloc_howto_type *howto;
6702
6703 /* Alien reloc: Try to determine its type to replace it with an
6704 equivalent ELF reloc. */
6705
6706 if (areloc->howto->pc_relative)
6707 {
6708 switch (areloc->howto->bitsize)
6709 {
6710 case 8:
6711 code = BFD_RELOC_8_PCREL;
6712 break;
6713 case 12:
6714 code = BFD_RELOC_12_PCREL;
6715 break;
6716 case 16:
6717 code = BFD_RELOC_16_PCREL;
6718 break;
6719 case 24:
6720 code = BFD_RELOC_24_PCREL;
6721 break;
6722 case 32:
6723 code = BFD_RELOC_32_PCREL;
6724 break;
6725 case 64:
6726 code = BFD_RELOC_64_PCREL;
6727 break;
6728 default:
6729 goto fail;
6730 }
6731
6732 howto = bfd_reloc_type_lookup (abfd, code);
6733
6734 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6735 {
6736 if (howto->pcrel_offset)
6737 areloc->addend += areloc->address;
6738 else
6739 areloc->addend -= areloc->address; /* addend is unsigned!! */
6740 }
6741 }
6742 else
6743 {
6744 switch (areloc->howto->bitsize)
6745 {
6746 case 8:
6747 code = BFD_RELOC_8;
6748 break;
6749 case 14:
6750 code = BFD_RELOC_14;
6751 break;
6752 case 16:
6753 code = BFD_RELOC_16;
6754 break;
6755 case 26:
6756 code = BFD_RELOC_26;
6757 break;
6758 case 32:
6759 code = BFD_RELOC_32;
6760 break;
6761 case 64:
6762 code = BFD_RELOC_64;
6763 break;
6764 default:
6765 goto fail;
6766 }
6767
6768 howto = bfd_reloc_type_lookup (abfd, code);
6769 }
6770
6771 if (howto)
6772 areloc->howto = howto;
6773 else
6774 goto fail;
6775 }
6776
6777 return TRUE;
6778
6779 fail:
6780 (*_bfd_error_handler)
6781 (_("%B: unsupported relocation type %s"),
6782 abfd, areloc->howto->name);
6783 bfd_set_error (bfd_error_bad_value);
6784 return FALSE;
6785 }
6786
6787 bfd_boolean
6788 _bfd_elf_close_and_cleanup (bfd *abfd)
6789 {
6790 if (bfd_get_format (abfd) == bfd_object)
6791 {
6792 if (elf_shstrtab (abfd) != NULL)
6793 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6794 _bfd_dwarf2_cleanup_debug_info (abfd);
6795 }
6796
6797 return _bfd_generic_close_and_cleanup (abfd);
6798 }
6799
6800 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6801 in the relocation's offset. Thus we cannot allow any sort of sanity
6802 range-checking to interfere. There is nothing else to do in processing
6803 this reloc. */
6804
6805 bfd_reloc_status_type
6806 _bfd_elf_rel_vtable_reloc_fn
6807 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6808 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6809 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6810 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6811 {
6812 return bfd_reloc_ok;
6813 }
6814 \f
6815 /* Elf core file support. Much of this only works on native
6816 toolchains, since we rely on knowing the
6817 machine-dependent procfs structure in order to pick
6818 out details about the corefile. */
6819
6820 #ifdef HAVE_SYS_PROCFS_H
6821 # include <sys/procfs.h>
6822 #endif
6823
6824 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6825
6826 static int
6827 elfcore_make_pid (bfd *abfd)
6828 {
6829 return ((elf_tdata (abfd)->core_lwpid << 16)
6830 + (elf_tdata (abfd)->core_pid));
6831 }
6832
6833 /* If there isn't a section called NAME, make one, using
6834 data from SECT. Note, this function will generate a
6835 reference to NAME, so you shouldn't deallocate or
6836 overwrite it. */
6837
6838 static bfd_boolean
6839 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6840 {
6841 asection *sect2;
6842
6843 if (bfd_get_section_by_name (abfd, name) != NULL)
6844 return TRUE;
6845
6846 sect2 = bfd_make_section (abfd, name);
6847 if (sect2 == NULL)
6848 return FALSE;
6849
6850 sect2->size = sect->size;
6851 sect2->filepos = sect->filepos;
6852 sect2->flags = sect->flags;
6853 sect2->alignment_power = sect->alignment_power;
6854 return TRUE;
6855 }
6856
6857 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6858 actually creates up to two pseudosections:
6859 - For the single-threaded case, a section named NAME, unless
6860 such a section already exists.
6861 - For the multi-threaded case, a section named "NAME/PID", where
6862 PID is elfcore_make_pid (abfd).
6863 Both pseudosections have identical contents. */
6864 bfd_boolean
6865 _bfd_elfcore_make_pseudosection (bfd *abfd,
6866 char *name,
6867 size_t size,
6868 ufile_ptr filepos)
6869 {
6870 char buf[100];
6871 char *threaded_name;
6872 size_t len;
6873 asection *sect;
6874
6875 /* Build the section name. */
6876
6877 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6878 len = strlen (buf) + 1;
6879 threaded_name = bfd_alloc (abfd, len);
6880 if (threaded_name == NULL)
6881 return FALSE;
6882 memcpy (threaded_name, buf, len);
6883
6884 sect = bfd_make_section_anyway (abfd, threaded_name);
6885 if (sect == NULL)
6886 return FALSE;
6887 sect->size = size;
6888 sect->filepos = filepos;
6889 sect->flags = SEC_HAS_CONTENTS;
6890 sect->alignment_power = 2;
6891
6892 return elfcore_maybe_make_sect (abfd, name, sect);
6893 }
6894
6895 /* prstatus_t exists on:
6896 solaris 2.5+
6897 linux 2.[01] + glibc
6898 unixware 4.2
6899 */
6900
6901 #if defined (HAVE_PRSTATUS_T)
6902
6903 static bfd_boolean
6904 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6905 {
6906 size_t size;
6907 int offset;
6908
6909 if (note->descsz == sizeof (prstatus_t))
6910 {
6911 prstatus_t prstat;
6912
6913 size = sizeof (prstat.pr_reg);
6914 offset = offsetof (prstatus_t, pr_reg);
6915 memcpy (&prstat, note->descdata, sizeof (prstat));
6916
6917 /* Do not overwrite the core signal if it
6918 has already been set by another thread. */
6919 if (elf_tdata (abfd)->core_signal == 0)
6920 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6921 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6922
6923 /* pr_who exists on:
6924 solaris 2.5+
6925 unixware 4.2
6926 pr_who doesn't exist on:
6927 linux 2.[01]
6928 */
6929 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6930 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6931 #endif
6932 }
6933 #if defined (HAVE_PRSTATUS32_T)
6934 else if (note->descsz == sizeof (prstatus32_t))
6935 {
6936 /* 64-bit host, 32-bit corefile */
6937 prstatus32_t prstat;
6938
6939 size = sizeof (prstat.pr_reg);
6940 offset = offsetof (prstatus32_t, pr_reg);
6941 memcpy (&prstat, note->descdata, sizeof (prstat));
6942
6943 /* Do not overwrite the core signal if it
6944 has already been set by another thread. */
6945 if (elf_tdata (abfd)->core_signal == 0)
6946 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6947 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6948
6949 /* pr_who exists on:
6950 solaris 2.5+
6951 unixware 4.2
6952 pr_who doesn't exist on:
6953 linux 2.[01]
6954 */
6955 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6956 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6957 #endif
6958 }
6959 #endif /* HAVE_PRSTATUS32_T */
6960 else
6961 {
6962 /* Fail - we don't know how to handle any other
6963 note size (ie. data object type). */
6964 return TRUE;
6965 }
6966
6967 /* Make a ".reg/999" section and a ".reg" section. */
6968 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6969 size, note->descpos + offset);
6970 }
6971 #endif /* defined (HAVE_PRSTATUS_T) */
6972
6973 /* Create a pseudosection containing the exact contents of NOTE. */
6974 static bfd_boolean
6975 elfcore_make_note_pseudosection (bfd *abfd,
6976 char *name,
6977 Elf_Internal_Note *note)
6978 {
6979 return _bfd_elfcore_make_pseudosection (abfd, name,
6980 note->descsz, note->descpos);
6981 }
6982
6983 /* There isn't a consistent prfpregset_t across platforms,
6984 but it doesn't matter, because we don't have to pick this
6985 data structure apart. */
6986
6987 static bfd_boolean
6988 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6989 {
6990 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6991 }
6992
6993 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6994 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6995 literally. */
6996
6997 static bfd_boolean
6998 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6999 {
7000 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7001 }
7002
7003 #if defined (HAVE_PRPSINFO_T)
7004 typedef prpsinfo_t elfcore_psinfo_t;
7005 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7006 typedef prpsinfo32_t elfcore_psinfo32_t;
7007 #endif
7008 #endif
7009
7010 #if defined (HAVE_PSINFO_T)
7011 typedef psinfo_t elfcore_psinfo_t;
7012 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7013 typedef psinfo32_t elfcore_psinfo32_t;
7014 #endif
7015 #endif
7016
7017 /* return a malloc'ed copy of a string at START which is at
7018 most MAX bytes long, possibly without a terminating '\0'.
7019 the copy will always have a terminating '\0'. */
7020
7021 char *
7022 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7023 {
7024 char *dups;
7025 char *end = memchr (start, '\0', max);
7026 size_t len;
7027
7028 if (end == NULL)
7029 len = max;
7030 else
7031 len = end - start;
7032
7033 dups = bfd_alloc (abfd, len + 1);
7034 if (dups == NULL)
7035 return NULL;
7036
7037 memcpy (dups, start, len);
7038 dups[len] = '\0';
7039
7040 return dups;
7041 }
7042
7043 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7044 static bfd_boolean
7045 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7046 {
7047 if (note->descsz == sizeof (elfcore_psinfo_t))
7048 {
7049 elfcore_psinfo_t psinfo;
7050
7051 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7052
7053 elf_tdata (abfd)->core_program
7054 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7055 sizeof (psinfo.pr_fname));
7056
7057 elf_tdata (abfd)->core_command
7058 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7059 sizeof (psinfo.pr_psargs));
7060 }
7061 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7062 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7063 {
7064 /* 64-bit host, 32-bit corefile */
7065 elfcore_psinfo32_t psinfo;
7066
7067 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7068
7069 elf_tdata (abfd)->core_program
7070 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7071 sizeof (psinfo.pr_fname));
7072
7073 elf_tdata (abfd)->core_command
7074 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7075 sizeof (psinfo.pr_psargs));
7076 }
7077 #endif
7078
7079 else
7080 {
7081 /* Fail - we don't know how to handle any other
7082 note size (ie. data object type). */
7083 return TRUE;
7084 }
7085
7086 /* Note that for some reason, a spurious space is tacked
7087 onto the end of the args in some (at least one anyway)
7088 implementations, so strip it off if it exists. */
7089
7090 {
7091 char *command = elf_tdata (abfd)->core_command;
7092 int n = strlen (command);
7093
7094 if (0 < n && command[n - 1] == ' ')
7095 command[n - 1] = '\0';
7096 }
7097
7098 return TRUE;
7099 }
7100 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7101
7102 #if defined (HAVE_PSTATUS_T)
7103 static bfd_boolean
7104 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7105 {
7106 if (note->descsz == sizeof (pstatus_t)
7107 #if defined (HAVE_PXSTATUS_T)
7108 || note->descsz == sizeof (pxstatus_t)
7109 #endif
7110 )
7111 {
7112 pstatus_t pstat;
7113
7114 memcpy (&pstat, note->descdata, sizeof (pstat));
7115
7116 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7117 }
7118 #if defined (HAVE_PSTATUS32_T)
7119 else if (note->descsz == sizeof (pstatus32_t))
7120 {
7121 /* 64-bit host, 32-bit corefile */
7122 pstatus32_t pstat;
7123
7124 memcpy (&pstat, note->descdata, sizeof (pstat));
7125
7126 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7127 }
7128 #endif
7129 /* Could grab some more details from the "representative"
7130 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7131 NT_LWPSTATUS note, presumably. */
7132
7133 return TRUE;
7134 }
7135 #endif /* defined (HAVE_PSTATUS_T) */
7136
7137 #if defined (HAVE_LWPSTATUS_T)
7138 static bfd_boolean
7139 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7140 {
7141 lwpstatus_t lwpstat;
7142 char buf[100];
7143 char *name;
7144 size_t len;
7145 asection *sect;
7146
7147 if (note->descsz != sizeof (lwpstat)
7148 #if defined (HAVE_LWPXSTATUS_T)
7149 && note->descsz != sizeof (lwpxstatus_t)
7150 #endif
7151 )
7152 return TRUE;
7153
7154 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7155
7156 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7157 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7158
7159 /* Make a ".reg/999" section. */
7160
7161 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7162 len = strlen (buf) + 1;
7163 name = bfd_alloc (abfd, len);
7164 if (name == NULL)
7165 return FALSE;
7166 memcpy (name, buf, len);
7167
7168 sect = bfd_make_section_anyway (abfd, name);
7169 if (sect == NULL)
7170 return FALSE;
7171
7172 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7173 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7174 sect->filepos = note->descpos
7175 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7176 #endif
7177
7178 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7179 sect->size = sizeof (lwpstat.pr_reg);
7180 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7181 #endif
7182
7183 sect->flags = SEC_HAS_CONTENTS;
7184 sect->alignment_power = 2;
7185
7186 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7187 return FALSE;
7188
7189 /* Make a ".reg2/999" section */
7190
7191 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7192 len = strlen (buf) + 1;
7193 name = bfd_alloc (abfd, len);
7194 if (name == NULL)
7195 return FALSE;
7196 memcpy (name, buf, len);
7197
7198 sect = bfd_make_section_anyway (abfd, name);
7199 if (sect == NULL)
7200 return FALSE;
7201
7202 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7203 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7204 sect->filepos = note->descpos
7205 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7206 #endif
7207
7208 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7209 sect->size = sizeof (lwpstat.pr_fpreg);
7210 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7211 #endif
7212
7213 sect->flags = SEC_HAS_CONTENTS;
7214 sect->alignment_power = 2;
7215
7216 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7217 }
7218 #endif /* defined (HAVE_LWPSTATUS_T) */
7219
7220 #if defined (HAVE_WIN32_PSTATUS_T)
7221 static bfd_boolean
7222 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7223 {
7224 char buf[30];
7225 char *name;
7226 size_t len;
7227 asection *sect;
7228 win32_pstatus_t pstatus;
7229
7230 if (note->descsz < sizeof (pstatus))
7231 return TRUE;
7232
7233 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7234
7235 switch (pstatus.data_type)
7236 {
7237 case NOTE_INFO_PROCESS:
7238 /* FIXME: need to add ->core_command. */
7239 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7240 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7241 break;
7242
7243 case NOTE_INFO_THREAD:
7244 /* Make a ".reg/999" section. */
7245 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7246
7247 len = strlen (buf) + 1;
7248 name = bfd_alloc (abfd, len);
7249 if (name == NULL)
7250 return FALSE;
7251
7252 memcpy (name, buf, len);
7253
7254 sect = bfd_make_section_anyway (abfd, name);
7255 if (sect == NULL)
7256 return FALSE;
7257
7258 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7259 sect->filepos = (note->descpos
7260 + offsetof (struct win32_pstatus,
7261 data.thread_info.thread_context));
7262 sect->flags = SEC_HAS_CONTENTS;
7263 sect->alignment_power = 2;
7264
7265 if (pstatus.data.thread_info.is_active_thread)
7266 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7267 return FALSE;
7268 break;
7269
7270 case NOTE_INFO_MODULE:
7271 /* Make a ".module/xxxxxxxx" section. */
7272 sprintf (buf, ".module/%08lx",
7273 (long) pstatus.data.module_info.base_address);
7274
7275 len = strlen (buf) + 1;
7276 name = bfd_alloc (abfd, len);
7277 if (name == NULL)
7278 return FALSE;
7279
7280 memcpy (name, buf, len);
7281
7282 sect = bfd_make_section_anyway (abfd, name);
7283
7284 if (sect == NULL)
7285 return FALSE;
7286
7287 sect->size = note->descsz;
7288 sect->filepos = note->descpos;
7289 sect->flags = SEC_HAS_CONTENTS;
7290 sect->alignment_power = 2;
7291 break;
7292
7293 default:
7294 return TRUE;
7295 }
7296
7297 return TRUE;
7298 }
7299 #endif /* HAVE_WIN32_PSTATUS_T */
7300
7301 static bfd_boolean
7302 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7303 {
7304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7305
7306 switch (note->type)
7307 {
7308 default:
7309 return TRUE;
7310
7311 case NT_PRSTATUS:
7312 if (bed->elf_backend_grok_prstatus)
7313 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7314 return TRUE;
7315 #if defined (HAVE_PRSTATUS_T)
7316 return elfcore_grok_prstatus (abfd, note);
7317 #else
7318 return TRUE;
7319 #endif
7320
7321 #if defined (HAVE_PSTATUS_T)
7322 case NT_PSTATUS:
7323 return elfcore_grok_pstatus (abfd, note);
7324 #endif
7325
7326 #if defined (HAVE_LWPSTATUS_T)
7327 case NT_LWPSTATUS:
7328 return elfcore_grok_lwpstatus (abfd, note);
7329 #endif
7330
7331 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7332 return elfcore_grok_prfpreg (abfd, note);
7333
7334 #if defined (HAVE_WIN32_PSTATUS_T)
7335 case NT_WIN32PSTATUS:
7336 return elfcore_grok_win32pstatus (abfd, note);
7337 #endif
7338
7339 case NT_PRXFPREG: /* Linux SSE extension */
7340 if (note->namesz == 6
7341 && strcmp (note->namedata, "LINUX") == 0)
7342 return elfcore_grok_prxfpreg (abfd, note);
7343 else
7344 return TRUE;
7345
7346 case NT_PRPSINFO:
7347 case NT_PSINFO:
7348 if (bed->elf_backend_grok_psinfo)
7349 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7350 return TRUE;
7351 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7352 return elfcore_grok_psinfo (abfd, note);
7353 #else
7354 return TRUE;
7355 #endif
7356
7357 case NT_AUXV:
7358 {
7359 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7360
7361 if (sect == NULL)
7362 return FALSE;
7363 sect->size = note->descsz;
7364 sect->filepos = note->descpos;
7365 sect->flags = SEC_HAS_CONTENTS;
7366 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7367
7368 return TRUE;
7369 }
7370 }
7371 }
7372
7373 static bfd_boolean
7374 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7375 {
7376 char *cp;
7377
7378 cp = strchr (note->namedata, '@');
7379 if (cp != NULL)
7380 {
7381 *lwpidp = atoi(cp + 1);
7382 return TRUE;
7383 }
7384 return FALSE;
7385 }
7386
7387 static bfd_boolean
7388 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7389 {
7390
7391 /* Signal number at offset 0x08. */
7392 elf_tdata (abfd)->core_signal
7393 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7394
7395 /* Process ID at offset 0x50. */
7396 elf_tdata (abfd)->core_pid
7397 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7398
7399 /* Command name at 0x7c (max 32 bytes, including nul). */
7400 elf_tdata (abfd)->core_command
7401 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7402
7403 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7404 note);
7405 }
7406
7407 static bfd_boolean
7408 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7409 {
7410 int lwp;
7411
7412 if (elfcore_netbsd_get_lwpid (note, &lwp))
7413 elf_tdata (abfd)->core_lwpid = lwp;
7414
7415 if (note->type == NT_NETBSDCORE_PROCINFO)
7416 {
7417 /* NetBSD-specific core "procinfo". Note that we expect to
7418 find this note before any of the others, which is fine,
7419 since the kernel writes this note out first when it
7420 creates a core file. */
7421
7422 return elfcore_grok_netbsd_procinfo (abfd, note);
7423 }
7424
7425 /* As of Jan 2002 there are no other machine-independent notes
7426 defined for NetBSD core files. If the note type is less
7427 than the start of the machine-dependent note types, we don't
7428 understand it. */
7429
7430 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7431 return TRUE;
7432
7433
7434 switch (bfd_get_arch (abfd))
7435 {
7436 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7437 PT_GETFPREGS == mach+2. */
7438
7439 case bfd_arch_alpha:
7440 case bfd_arch_sparc:
7441 switch (note->type)
7442 {
7443 case NT_NETBSDCORE_FIRSTMACH+0:
7444 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7445
7446 case NT_NETBSDCORE_FIRSTMACH+2:
7447 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7448
7449 default:
7450 return TRUE;
7451 }
7452
7453 /* On all other arch's, PT_GETREGS == mach+1 and
7454 PT_GETFPREGS == mach+3. */
7455
7456 default:
7457 switch (note->type)
7458 {
7459 case NT_NETBSDCORE_FIRSTMACH+1:
7460 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7461
7462 case NT_NETBSDCORE_FIRSTMACH+3:
7463 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7464
7465 default:
7466 return TRUE;
7467 }
7468 }
7469 /* NOTREACHED */
7470 }
7471
7472 static bfd_boolean
7473 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7474 {
7475 void *ddata = note->descdata;
7476 char buf[100];
7477 char *name;
7478 asection *sect;
7479 short sig;
7480 unsigned flags;
7481
7482 /* nto_procfs_status 'pid' field is at offset 0. */
7483 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7484
7485 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7486 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7487
7488 /* nto_procfs_status 'flags' field is at offset 8. */
7489 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7490
7491 /* nto_procfs_status 'what' field is at offset 14. */
7492 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7493 {
7494 elf_tdata (abfd)->core_signal = sig;
7495 elf_tdata (abfd)->core_lwpid = *tid;
7496 }
7497
7498 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7499 do not come from signals so we make sure we set the current
7500 thread just in case. */
7501 if (flags & 0x00000080)
7502 elf_tdata (abfd)->core_lwpid = *tid;
7503
7504 /* Make a ".qnx_core_status/%d" section. */
7505 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7506
7507 name = bfd_alloc (abfd, strlen (buf) + 1);
7508 if (name == NULL)
7509 return FALSE;
7510 strcpy (name, buf);
7511
7512 sect = bfd_make_section_anyway (abfd, name);
7513 if (sect == NULL)
7514 return FALSE;
7515
7516 sect->size = note->descsz;
7517 sect->filepos = note->descpos;
7518 sect->flags = SEC_HAS_CONTENTS;
7519 sect->alignment_power = 2;
7520
7521 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7522 }
7523
7524 static bfd_boolean
7525 elfcore_grok_nto_regs (bfd *abfd,
7526 Elf_Internal_Note *note,
7527 pid_t tid,
7528 char *base)
7529 {
7530 char buf[100];
7531 char *name;
7532 asection *sect;
7533
7534 /* Make a "(base)/%d" section. */
7535 sprintf (buf, "%s/%ld", base, (long) tid);
7536
7537 name = bfd_alloc (abfd, strlen (buf) + 1);
7538 if (name == NULL)
7539 return FALSE;
7540 strcpy (name, buf);
7541
7542 sect = bfd_make_section_anyway (abfd, name);
7543 if (sect == NULL)
7544 return FALSE;
7545
7546 sect->size = note->descsz;
7547 sect->filepos = note->descpos;
7548 sect->flags = SEC_HAS_CONTENTS;
7549 sect->alignment_power = 2;
7550
7551 /* This is the current thread. */
7552 if (elf_tdata (abfd)->core_lwpid == tid)
7553 return elfcore_maybe_make_sect (abfd, base, sect);
7554
7555 return TRUE;
7556 }
7557
7558 #define BFD_QNT_CORE_INFO 7
7559 #define BFD_QNT_CORE_STATUS 8
7560 #define BFD_QNT_CORE_GREG 9
7561 #define BFD_QNT_CORE_FPREG 10
7562
7563 static bfd_boolean
7564 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7565 {
7566 /* Every GREG section has a STATUS section before it. Store the
7567 tid from the previous call to pass down to the next gregs
7568 function. */
7569 static pid_t tid = 1;
7570
7571 switch (note->type)
7572 {
7573 case BFD_QNT_CORE_INFO:
7574 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7575 case BFD_QNT_CORE_STATUS:
7576 return elfcore_grok_nto_status (abfd, note, &tid);
7577 case BFD_QNT_CORE_GREG:
7578 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7579 case BFD_QNT_CORE_FPREG:
7580 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7581 default:
7582 return TRUE;
7583 }
7584 }
7585
7586 /* Function: elfcore_write_note
7587
7588 Inputs:
7589 buffer to hold note
7590 name of note
7591 type of note
7592 data for note
7593 size of data for note
7594
7595 Return:
7596 End of buffer containing note. */
7597
7598 char *
7599 elfcore_write_note (bfd *abfd,
7600 char *buf,
7601 int *bufsiz,
7602 const char *name,
7603 int type,
7604 const void *input,
7605 int size)
7606 {
7607 Elf_External_Note *xnp;
7608 size_t namesz;
7609 size_t pad;
7610 size_t newspace;
7611 char *p, *dest;
7612
7613 namesz = 0;
7614 pad = 0;
7615 if (name != NULL)
7616 {
7617 const struct elf_backend_data *bed;
7618
7619 namesz = strlen (name) + 1;
7620 bed = get_elf_backend_data (abfd);
7621 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7622 }
7623
7624 newspace = 12 + namesz + pad + size;
7625
7626 p = realloc (buf, *bufsiz + newspace);
7627 dest = p + *bufsiz;
7628 *bufsiz += newspace;
7629 xnp = (Elf_External_Note *) dest;
7630 H_PUT_32 (abfd, namesz, xnp->namesz);
7631 H_PUT_32 (abfd, size, xnp->descsz);
7632 H_PUT_32 (abfd, type, xnp->type);
7633 dest = xnp->name;
7634 if (name != NULL)
7635 {
7636 memcpy (dest, name, namesz);
7637 dest += namesz;
7638 while (pad != 0)
7639 {
7640 *dest++ = '\0';
7641 --pad;
7642 }
7643 }
7644 memcpy (dest, input, size);
7645 return p;
7646 }
7647
7648 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7649 char *
7650 elfcore_write_prpsinfo (bfd *abfd,
7651 char *buf,
7652 int *bufsiz,
7653 const char *fname,
7654 const char *psargs)
7655 {
7656 int note_type;
7657 char *note_name = "CORE";
7658
7659 #if defined (HAVE_PSINFO_T)
7660 psinfo_t data;
7661 note_type = NT_PSINFO;
7662 #else
7663 prpsinfo_t data;
7664 note_type = NT_PRPSINFO;
7665 #endif
7666
7667 memset (&data, 0, sizeof (data));
7668 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7669 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7670 return elfcore_write_note (abfd, buf, bufsiz,
7671 note_name, note_type, &data, sizeof (data));
7672 }
7673 #endif /* PSINFO_T or PRPSINFO_T */
7674
7675 #if defined (HAVE_PRSTATUS_T)
7676 char *
7677 elfcore_write_prstatus (bfd *abfd,
7678 char *buf,
7679 int *bufsiz,
7680 long pid,
7681 int cursig,
7682 const void *gregs)
7683 {
7684 prstatus_t prstat;
7685 char *note_name = "CORE";
7686
7687 memset (&prstat, 0, sizeof (prstat));
7688 prstat.pr_pid = pid;
7689 prstat.pr_cursig = cursig;
7690 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7691 return elfcore_write_note (abfd, buf, bufsiz,
7692 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7693 }
7694 #endif /* HAVE_PRSTATUS_T */
7695
7696 #if defined (HAVE_LWPSTATUS_T)
7697 char *
7698 elfcore_write_lwpstatus (bfd *abfd,
7699 char *buf,
7700 int *bufsiz,
7701 long pid,
7702 int cursig,
7703 const void *gregs)
7704 {
7705 lwpstatus_t lwpstat;
7706 char *note_name = "CORE";
7707
7708 memset (&lwpstat, 0, sizeof (lwpstat));
7709 lwpstat.pr_lwpid = pid >> 16;
7710 lwpstat.pr_cursig = cursig;
7711 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7712 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7713 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7714 #if !defined(gregs)
7715 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7716 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7717 #else
7718 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7719 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7720 #endif
7721 #endif
7722 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7723 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7724 }
7725 #endif /* HAVE_LWPSTATUS_T */
7726
7727 #if defined (HAVE_PSTATUS_T)
7728 char *
7729 elfcore_write_pstatus (bfd *abfd,
7730 char *buf,
7731 int *bufsiz,
7732 long pid,
7733 int cursig,
7734 const void *gregs)
7735 {
7736 pstatus_t pstat;
7737 char *note_name = "CORE";
7738
7739 memset (&pstat, 0, sizeof (pstat));
7740 pstat.pr_pid = pid & 0xffff;
7741 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7742 NT_PSTATUS, &pstat, sizeof (pstat));
7743 return buf;
7744 }
7745 #endif /* HAVE_PSTATUS_T */
7746
7747 char *
7748 elfcore_write_prfpreg (bfd *abfd,
7749 char *buf,
7750 int *bufsiz,
7751 const void *fpregs,
7752 int size)
7753 {
7754 char *note_name = "CORE";
7755 return elfcore_write_note (abfd, buf, bufsiz,
7756 note_name, NT_FPREGSET, fpregs, size);
7757 }
7758
7759 char *
7760 elfcore_write_prxfpreg (bfd *abfd,
7761 char *buf,
7762 int *bufsiz,
7763 const void *xfpregs,
7764 int size)
7765 {
7766 char *note_name = "LINUX";
7767 return elfcore_write_note (abfd, buf, bufsiz,
7768 note_name, NT_PRXFPREG, xfpregs, size);
7769 }
7770
7771 static bfd_boolean
7772 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7773 {
7774 char *buf;
7775 char *p;
7776
7777 if (size <= 0)
7778 return TRUE;
7779
7780 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7781 return FALSE;
7782
7783 buf = bfd_malloc (size);
7784 if (buf == NULL)
7785 return FALSE;
7786
7787 if (bfd_bread (buf, size, abfd) != size)
7788 {
7789 error:
7790 free (buf);
7791 return FALSE;
7792 }
7793
7794 p = buf;
7795 while (p < buf + size)
7796 {
7797 /* FIXME: bad alignment assumption. */
7798 Elf_External_Note *xnp = (Elf_External_Note *) p;
7799 Elf_Internal_Note in;
7800
7801 in.type = H_GET_32 (abfd, xnp->type);
7802
7803 in.namesz = H_GET_32 (abfd, xnp->namesz);
7804 in.namedata = xnp->name;
7805
7806 in.descsz = H_GET_32 (abfd, xnp->descsz);
7807 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7808 in.descpos = offset + (in.descdata - buf);
7809
7810 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7811 {
7812 if (! elfcore_grok_netbsd_note (abfd, &in))
7813 goto error;
7814 }
7815 else if (strncmp (in.namedata, "QNX", 3) == 0)
7816 {
7817 if (! elfcore_grok_nto_note (abfd, &in))
7818 goto error;
7819 }
7820 else
7821 {
7822 if (! elfcore_grok_note (abfd, &in))
7823 goto error;
7824 }
7825
7826 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7827 }
7828
7829 free (buf);
7830 return TRUE;
7831 }
7832 \f
7833 /* Providing external access to the ELF program header table. */
7834
7835 /* Return an upper bound on the number of bytes required to store a
7836 copy of ABFD's program header table entries. Return -1 if an error
7837 occurs; bfd_get_error will return an appropriate code. */
7838
7839 long
7840 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7841 {
7842 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7843 {
7844 bfd_set_error (bfd_error_wrong_format);
7845 return -1;
7846 }
7847
7848 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7849 }
7850
7851 /* Copy ABFD's program header table entries to *PHDRS. The entries
7852 will be stored as an array of Elf_Internal_Phdr structures, as
7853 defined in include/elf/internal.h. To find out how large the
7854 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7855
7856 Return the number of program header table entries read, or -1 if an
7857 error occurs; bfd_get_error will return an appropriate code. */
7858
7859 int
7860 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7861 {
7862 int num_phdrs;
7863
7864 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7865 {
7866 bfd_set_error (bfd_error_wrong_format);
7867 return -1;
7868 }
7869
7870 num_phdrs = elf_elfheader (abfd)->e_phnum;
7871 memcpy (phdrs, elf_tdata (abfd)->phdr,
7872 num_phdrs * sizeof (Elf_Internal_Phdr));
7873
7874 return num_phdrs;
7875 }
7876
7877 void
7878 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7879 {
7880 #ifdef BFD64
7881 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7882
7883 i_ehdrp = elf_elfheader (abfd);
7884 if (i_ehdrp == NULL)
7885 sprintf_vma (buf, value);
7886 else
7887 {
7888 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7889 {
7890 #if BFD_HOST_64BIT_LONG
7891 sprintf (buf, "%016lx", value);
7892 #else
7893 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7894 _bfd_int64_low (value));
7895 #endif
7896 }
7897 else
7898 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7899 }
7900 #else
7901 sprintf_vma (buf, value);
7902 #endif
7903 }
7904
7905 void
7906 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7907 {
7908 #ifdef BFD64
7909 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7910
7911 i_ehdrp = elf_elfheader (abfd);
7912 if (i_ehdrp == NULL)
7913 fprintf_vma ((FILE *) stream, value);
7914 else
7915 {
7916 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7917 {
7918 #if BFD_HOST_64BIT_LONG
7919 fprintf ((FILE *) stream, "%016lx", value);
7920 #else
7921 fprintf ((FILE *) stream, "%08lx%08lx",
7922 _bfd_int64_high (value), _bfd_int64_low (value));
7923 #endif
7924 }
7925 else
7926 fprintf ((FILE *) stream, "%08lx",
7927 (unsigned long) (value & 0xffffffff));
7928 }
7929 #else
7930 fprintf_vma ((FILE *) stream, value);
7931 #endif
7932 }
7933
7934 enum elf_reloc_type_class
7935 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7936 {
7937 return reloc_class_normal;
7938 }
7939
7940 /* For RELA architectures, return the relocation value for a
7941 relocation against a local symbol. */
7942
7943 bfd_vma
7944 _bfd_elf_rela_local_sym (bfd *abfd,
7945 Elf_Internal_Sym *sym,
7946 asection **psec,
7947 Elf_Internal_Rela *rel)
7948 {
7949 asection *sec = *psec;
7950 bfd_vma relocation;
7951
7952 relocation = (sec->output_section->vma
7953 + sec->output_offset
7954 + sym->st_value);
7955 if ((sec->flags & SEC_MERGE)
7956 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7957 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7958 {
7959 rel->r_addend =
7960 _bfd_merged_section_offset (abfd, psec,
7961 elf_section_data (sec)->sec_info,
7962 sym->st_value + rel->r_addend);
7963 if (sec != *psec)
7964 {
7965 /* If we have changed the section, and our original section is
7966 marked with SEC_EXCLUDE, it means that the original
7967 SEC_MERGE section has been completely subsumed in some
7968 other SEC_MERGE section. In this case, we need to leave
7969 some info around for --emit-relocs. */
7970 if ((sec->flags & SEC_EXCLUDE) != 0)
7971 sec->kept_section = *psec;
7972 sec = *psec;
7973 }
7974 rel->r_addend -= relocation;
7975 rel->r_addend += sec->output_section->vma + sec->output_offset;
7976 }
7977 return relocation;
7978 }
7979
7980 bfd_vma
7981 _bfd_elf_rel_local_sym (bfd *abfd,
7982 Elf_Internal_Sym *sym,
7983 asection **psec,
7984 bfd_vma addend)
7985 {
7986 asection *sec = *psec;
7987
7988 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7989 return sym->st_value + addend;
7990
7991 return _bfd_merged_section_offset (abfd, psec,
7992 elf_section_data (sec)->sec_info,
7993 sym->st_value + addend);
7994 }
7995
7996 bfd_vma
7997 _bfd_elf_section_offset (bfd *abfd,
7998 struct bfd_link_info *info,
7999 asection *sec,
8000 bfd_vma offset)
8001 {
8002 switch (sec->sec_info_type)
8003 {
8004 case ELF_INFO_TYPE_STABS:
8005 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8006 offset);
8007 case ELF_INFO_TYPE_EH_FRAME:
8008 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8009 default:
8010 return offset;
8011 }
8012 }
8013 \f
8014 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8015 reconstruct an ELF file by reading the segments out of remote memory
8016 based on the ELF file header at EHDR_VMA and the ELF program headers it
8017 points to. If not null, *LOADBASEP is filled in with the difference
8018 between the VMAs from which the segments were read, and the VMAs the
8019 file headers (and hence BFD's idea of each section's VMA) put them at.
8020
8021 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8022 remote memory at target address VMA into the local buffer at MYADDR; it
8023 should return zero on success or an `errno' code on failure. TEMPL must
8024 be a BFD for an ELF target with the word size and byte order found in
8025 the remote memory. */
8026
8027 bfd *
8028 bfd_elf_bfd_from_remote_memory
8029 (bfd *templ,
8030 bfd_vma ehdr_vma,
8031 bfd_vma *loadbasep,
8032 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8033 {
8034 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8035 (templ, ehdr_vma, loadbasep, target_read_memory);
8036 }
8037 \f
8038 long
8039 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8040 long symcount ATTRIBUTE_UNUSED,
8041 asymbol **syms ATTRIBUTE_UNUSED,
8042 long dynsymcount,
8043 asymbol **dynsyms,
8044 asymbol **ret)
8045 {
8046 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8047 asection *relplt;
8048 asymbol *s;
8049 const char *relplt_name;
8050 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8051 arelent *p;
8052 long count, i, n;
8053 size_t size;
8054 Elf_Internal_Shdr *hdr;
8055 char *names;
8056 asection *plt;
8057
8058 *ret = NULL;
8059
8060 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8061 return 0;
8062
8063 if (dynsymcount <= 0)
8064 return 0;
8065
8066 if (!bed->plt_sym_val)
8067 return 0;
8068
8069 relplt_name = bed->relplt_name;
8070 if (relplt_name == NULL)
8071 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8072 relplt = bfd_get_section_by_name (abfd, relplt_name);
8073 if (relplt == NULL)
8074 return 0;
8075
8076 hdr = &elf_section_data (relplt)->this_hdr;
8077 if (hdr->sh_link != elf_dynsymtab (abfd)
8078 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8079 return 0;
8080
8081 plt = bfd_get_section_by_name (abfd, ".plt");
8082 if (plt == NULL)
8083 return 0;
8084
8085 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8086 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8087 return -1;
8088
8089 count = relplt->size / hdr->sh_entsize;
8090 size = count * sizeof (asymbol);
8091 p = relplt->relocation;
8092 for (i = 0; i < count; i++, s++, p++)
8093 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8094
8095 s = *ret = bfd_malloc (size);
8096 if (s == NULL)
8097 return -1;
8098
8099 names = (char *) (s + count);
8100 p = relplt->relocation;
8101 n = 0;
8102 for (i = 0; i < count; i++, s++, p++)
8103 {
8104 size_t len;
8105 bfd_vma addr;
8106
8107 addr = bed->plt_sym_val (i, plt, p);
8108 if (addr == (bfd_vma) -1)
8109 continue;
8110
8111 *s = **p->sym_ptr_ptr;
8112 s->section = plt;
8113 s->value = addr - plt->vma;
8114 s->name = names;
8115 len = strlen ((*p->sym_ptr_ptr)->name);
8116 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8117 names += len;
8118 memcpy (names, "@plt", sizeof ("@plt"));
8119 names += sizeof ("@plt");
8120 ++n;
8121 }
8122
8123 return n;
8124 }
8125
8126 /* Sort symbol by binding and section. We want to put definitions
8127 sorted by section at the beginning. */
8128
8129 static int
8130 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8131 {
8132 const Elf_Internal_Sym *s1;
8133 const Elf_Internal_Sym *s2;
8134 int shndx;
8135
8136 /* Make sure that undefined symbols are at the end. */
8137 s1 = (const Elf_Internal_Sym *) arg1;
8138 if (s1->st_shndx == SHN_UNDEF)
8139 return 1;
8140 s2 = (const Elf_Internal_Sym *) arg2;
8141 if (s2->st_shndx == SHN_UNDEF)
8142 return -1;
8143
8144 /* Sorted by section index. */
8145 shndx = s1->st_shndx - s2->st_shndx;
8146 if (shndx != 0)
8147 return shndx;
8148
8149 /* Sorted by binding. */
8150 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8151 }
8152
8153 struct elf_symbol
8154 {
8155 Elf_Internal_Sym *sym;
8156 const char *name;
8157 };
8158
8159 static int
8160 elf_sym_name_compare (const void *arg1, const void *arg2)
8161 {
8162 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8163 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8164 return strcmp (s1->name, s2->name);
8165 }
8166
8167 /* Check if 2 sections define the same set of local and global
8168 symbols. */
8169
8170 bfd_boolean
8171 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8172 {
8173 bfd *bfd1, *bfd2;
8174 const struct elf_backend_data *bed1, *bed2;
8175 Elf_Internal_Shdr *hdr1, *hdr2;
8176 bfd_size_type symcount1, symcount2;
8177 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8178 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8179 Elf_Internal_Sym *isymend;
8180 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8181 bfd_size_type count1, count2, i;
8182 int shndx1, shndx2;
8183 bfd_boolean result;
8184
8185 bfd1 = sec1->owner;
8186 bfd2 = sec2->owner;
8187
8188 /* If both are .gnu.linkonce sections, they have to have the same
8189 section name. */
8190 if (strncmp (sec1->name, ".gnu.linkonce",
8191 sizeof ".gnu.linkonce" - 1) == 0
8192 && strncmp (sec2->name, ".gnu.linkonce",
8193 sizeof ".gnu.linkonce" - 1) == 0)
8194 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8195 sec2->name + sizeof ".gnu.linkonce") == 0;
8196
8197 /* Both sections have to be in ELF. */
8198 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8199 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8200 return FALSE;
8201
8202 if (elf_section_type (sec1) != elf_section_type (sec2))
8203 return FALSE;
8204
8205 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8206 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8207 {
8208 /* If both are members of section groups, they have to have the
8209 same group name. */
8210 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8211 return FALSE;
8212 }
8213
8214 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8215 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8216 if (shndx1 == -1 || shndx2 == -1)
8217 return FALSE;
8218
8219 bed1 = get_elf_backend_data (bfd1);
8220 bed2 = get_elf_backend_data (bfd2);
8221 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8222 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8223 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8224 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8225
8226 if (symcount1 == 0 || symcount2 == 0)
8227 return FALSE;
8228
8229 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8230 NULL, NULL, NULL);
8231 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8232 NULL, NULL, NULL);
8233
8234 result = FALSE;
8235 if (isymbuf1 == NULL || isymbuf2 == NULL)
8236 goto done;
8237
8238 /* Sort symbols by binding and section. Global definitions are at
8239 the beginning. */
8240 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8241 elf_sort_elf_symbol);
8242 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8243 elf_sort_elf_symbol);
8244
8245 /* Count definitions in the section. */
8246 count1 = 0;
8247 for (isym = isymbuf1, isymend = isym + symcount1;
8248 isym < isymend; isym++)
8249 {
8250 if (isym->st_shndx == (unsigned int) shndx1)
8251 {
8252 if (count1 == 0)
8253 isymstart1 = isym;
8254 count1++;
8255 }
8256
8257 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8258 break;
8259 }
8260
8261 count2 = 0;
8262 for (isym = isymbuf2, isymend = isym + symcount2;
8263 isym < isymend; isym++)
8264 {
8265 if (isym->st_shndx == (unsigned int) shndx2)
8266 {
8267 if (count2 == 0)
8268 isymstart2 = isym;
8269 count2++;
8270 }
8271
8272 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8273 break;
8274 }
8275
8276 if (count1 == 0 || count2 == 0 || count1 != count2)
8277 goto done;
8278
8279 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8280 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8281
8282 if (symtable1 == NULL || symtable2 == NULL)
8283 goto done;
8284
8285 symp = symtable1;
8286 for (isym = isymstart1, isymend = isym + count1;
8287 isym < isymend; isym++)
8288 {
8289 symp->sym = isym;
8290 symp->name = bfd_elf_string_from_elf_section (bfd1,
8291 hdr1->sh_link,
8292 isym->st_name);
8293 symp++;
8294 }
8295
8296 symp = symtable2;
8297 for (isym = isymstart2, isymend = isym + count1;
8298 isym < isymend; isym++)
8299 {
8300 symp->sym = isym;
8301 symp->name = bfd_elf_string_from_elf_section (bfd2,
8302 hdr2->sh_link,
8303 isym->st_name);
8304 symp++;
8305 }
8306
8307 /* Sort symbol by name. */
8308 qsort (symtable1, count1, sizeof (struct elf_symbol),
8309 elf_sym_name_compare);
8310 qsort (symtable2, count1, sizeof (struct elf_symbol),
8311 elf_sym_name_compare);
8312
8313 for (i = 0; i < count1; i++)
8314 /* Two symbols must have the same binding, type and name. */
8315 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8316 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8317 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8318 goto done;
8319
8320 result = TRUE;
8321
8322 done:
8323 if (symtable1)
8324 free (symtable1);
8325 if (symtable2)
8326 free (symtable2);
8327 if (isymbuf1)
8328 free (isymbuf1);
8329 if (isymbuf2)
8330 free (isymbuf2);
8331
8332 return result;
8333 }
This page took 0.186178 seconds and 5 git commands to generate.