ELF linker messages
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
56 size_t align) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset, size_t align);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 if (abfd->direction != read_direction)
248 {
249 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
250 if (o == NULL)
251 return FALSE;
252 elf_tdata (abfd)->o = o;
253 elf_program_header_size (abfd) = (bfd_size_type) -1;
254 }
255 return TRUE;
256 }
257
258
259 bfd_boolean
260 bfd_elf_make_object (bfd *abfd)
261 {
262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
263 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
264 bed->target_id);
265 }
266
267 bfd_boolean
268 bfd_elf_mkcorefile (bfd *abfd)
269 {
270 /* I think this can be done just like an object file. */
271 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
272 return FALSE;
273 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
274 return elf_tdata (abfd)->core != NULL;
275 }
276
277 static char *
278 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
279 {
280 Elf_Internal_Shdr **i_shdrp;
281 bfd_byte *shstrtab = NULL;
282 file_ptr offset;
283 bfd_size_type shstrtabsize;
284
285 i_shdrp = elf_elfsections (abfd);
286 if (i_shdrp == 0
287 || shindex >= elf_numsections (abfd)
288 || i_shdrp[shindex] == 0)
289 return NULL;
290
291 shstrtab = i_shdrp[shindex]->contents;
292 if (shstrtab == NULL)
293 {
294 /* No cached one, attempt to read, and cache what we read. */
295 offset = i_shdrp[shindex]->sh_offset;
296 shstrtabsize = i_shdrp[shindex]->sh_size;
297
298 /* Allocate and clear an extra byte at the end, to prevent crashes
299 in case the string table is not terminated. */
300 if (shstrtabsize + 1 <= 1
301 || bfd_seek (abfd, offset, SEEK_SET) != 0
302 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
303 shstrtab = NULL;
304 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
305 {
306 if (bfd_get_error () != bfd_error_system_call)
307 bfd_set_error (bfd_error_file_truncated);
308 bfd_release (abfd, shstrtab);
309 shstrtab = NULL;
310 /* Once we've failed to read it, make sure we don't keep
311 trying. Otherwise, we'll keep allocating space for
312 the string table over and over. */
313 i_shdrp[shindex]->sh_size = 0;
314 }
315 else
316 shstrtab[shstrtabsize] = '\0';
317 i_shdrp[shindex]->contents = shstrtab;
318 }
319 return (char *) shstrtab;
320 }
321
322 char *
323 bfd_elf_string_from_elf_section (bfd *abfd,
324 unsigned int shindex,
325 unsigned int strindex)
326 {
327 Elf_Internal_Shdr *hdr;
328
329 if (strindex == 0)
330 return "";
331
332 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
333 return NULL;
334
335 hdr = elf_elfsections (abfd)[shindex];
336
337 if (hdr->contents == NULL)
338 {
339 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
340 {
341 /* PR 17512: file: f057ec89. */
342 /* xgettext:c-format */
343 _bfd_error_handler (_("%pB: attempt to load strings from"
344 " a non-string section (number %d)"),
345 abfd, shindex);
346 return NULL;
347 }
348
349 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
350 return NULL;
351 }
352
353 if (strindex >= hdr->sh_size)
354 {
355 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
356 _bfd_error_handler
357 /* xgettext:c-format */
358 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
359 abfd, strindex, (uint64_t) hdr->sh_size,
360 (shindex == shstrndx && strindex == hdr->sh_name
361 ? ".shstrtab"
362 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
363 return NULL;
364 }
365
366 return ((char *) hdr->contents) + strindex;
367 }
368
369 /* Read and convert symbols to internal format.
370 SYMCOUNT specifies the number of symbols to read, starting from
371 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
372 are non-NULL, they are used to store the internal symbols, external
373 symbols, and symbol section index extensions, respectively.
374 Returns a pointer to the internal symbol buffer (malloced if necessary)
375 or NULL if there were no symbols or some kind of problem. */
376
377 Elf_Internal_Sym *
378 bfd_elf_get_elf_syms (bfd *ibfd,
379 Elf_Internal_Shdr *symtab_hdr,
380 size_t symcount,
381 size_t symoffset,
382 Elf_Internal_Sym *intsym_buf,
383 void *extsym_buf,
384 Elf_External_Sym_Shndx *extshndx_buf)
385 {
386 Elf_Internal_Shdr *shndx_hdr;
387 void *alloc_ext;
388 const bfd_byte *esym;
389 Elf_External_Sym_Shndx *alloc_extshndx;
390 Elf_External_Sym_Shndx *shndx;
391 Elf_Internal_Sym *alloc_intsym;
392 Elf_Internal_Sym *isym;
393 Elf_Internal_Sym *isymend;
394 const struct elf_backend_data *bed;
395 size_t extsym_size;
396 bfd_size_type amt;
397 file_ptr pos;
398
399 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
400 abort ();
401
402 if (symcount == 0)
403 return intsym_buf;
404
405 /* Normal syms might have section extension entries. */
406 shndx_hdr = NULL;
407 if (elf_symtab_shndx_list (ibfd) != NULL)
408 {
409 elf_section_list * entry;
410 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
411
412 /* Find an index section that is linked to this symtab section. */
413 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
414 {
415 /* PR 20063. */
416 if (entry->hdr.sh_link >= elf_numsections (ibfd))
417 continue;
418
419 if (sections[entry->hdr.sh_link] == symtab_hdr)
420 {
421 shndx_hdr = & entry->hdr;
422 break;
423 };
424 }
425
426 if (shndx_hdr == NULL)
427 {
428 if (symtab_hdr == & elf_symtab_hdr (ibfd))
429 /* Not really accurate, but this was how the old code used to work. */
430 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
431 /* Otherwise we do nothing. The assumption is that
432 the index table will not be needed. */
433 }
434 }
435
436 /* Read the symbols. */
437 alloc_ext = NULL;
438 alloc_extshndx = NULL;
439 alloc_intsym = NULL;
440 bed = get_elf_backend_data (ibfd);
441 extsym_size = bed->s->sizeof_sym;
442 amt = (bfd_size_type) symcount * extsym_size;
443 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
444 if (extsym_buf == NULL)
445 {
446 alloc_ext = bfd_malloc2 (symcount, extsym_size);
447 extsym_buf = alloc_ext;
448 }
449 if (extsym_buf == NULL
450 || bfd_seek (ibfd, pos, SEEK_SET) != 0
451 || bfd_bread (extsym_buf, amt, ibfd) != amt)
452 {
453 intsym_buf = NULL;
454 goto out;
455 }
456
457 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
458 extshndx_buf = NULL;
459 else
460 {
461 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
462 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
463 if (extshndx_buf == NULL)
464 {
465 alloc_extshndx = (Elf_External_Sym_Shndx *)
466 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
467 extshndx_buf = alloc_extshndx;
468 }
469 if (extshndx_buf == NULL
470 || bfd_seek (ibfd, pos, SEEK_SET) != 0
471 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
472 {
473 intsym_buf = NULL;
474 goto out;
475 }
476 }
477
478 if (intsym_buf == NULL)
479 {
480 alloc_intsym = (Elf_Internal_Sym *)
481 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
482 intsym_buf = alloc_intsym;
483 if (intsym_buf == NULL)
484 goto out;
485 }
486
487 /* Convert the symbols to internal form. */
488 isymend = intsym_buf + symcount;
489 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
490 shndx = extshndx_buf;
491 isym < isymend;
492 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
493 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
494 {
495 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
496 /* xgettext:c-format */
497 _bfd_error_handler (_("%pB symbol number %lu references"
498 " nonexistent SHT_SYMTAB_SHNDX section"),
499 ibfd, (unsigned long) symoffset);
500 if (alloc_intsym != NULL)
501 free (alloc_intsym);
502 intsym_buf = NULL;
503 goto out;
504 }
505
506 out:
507 if (alloc_ext != NULL)
508 free (alloc_ext);
509 if (alloc_extshndx != NULL)
510 free (alloc_extshndx);
511
512 return intsym_buf;
513 }
514
515 /* Look up a symbol name. */
516 const char *
517 bfd_elf_sym_name (bfd *abfd,
518 Elf_Internal_Shdr *symtab_hdr,
519 Elf_Internal_Sym *isym,
520 asection *sym_sec)
521 {
522 const char *name;
523 unsigned int iname = isym->st_name;
524 unsigned int shindex = symtab_hdr->sh_link;
525
526 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
527 /* Check for a bogus st_shndx to avoid crashing. */
528 && isym->st_shndx < elf_numsections (abfd))
529 {
530 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
531 shindex = elf_elfheader (abfd)->e_shstrndx;
532 }
533
534 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
535 if (name == NULL)
536 name = "(null)";
537 else if (sym_sec && *name == '\0')
538 name = bfd_section_name (abfd, sym_sec);
539
540 return name;
541 }
542
543 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
544 sections. The first element is the flags, the rest are section
545 pointers. */
546
547 typedef union elf_internal_group {
548 Elf_Internal_Shdr *shdr;
549 unsigned int flags;
550 } Elf_Internal_Group;
551
552 /* Return the name of the group signature symbol. Why isn't the
553 signature just a string? */
554
555 static const char *
556 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
557 {
558 Elf_Internal_Shdr *hdr;
559 unsigned char esym[sizeof (Elf64_External_Sym)];
560 Elf_External_Sym_Shndx eshndx;
561 Elf_Internal_Sym isym;
562
563 /* First we need to ensure the symbol table is available. Make sure
564 that it is a symbol table section. */
565 if (ghdr->sh_link >= elf_numsections (abfd))
566 return NULL;
567 hdr = elf_elfsections (abfd) [ghdr->sh_link];
568 if (hdr->sh_type != SHT_SYMTAB
569 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
570 return NULL;
571
572 /* Go read the symbol. */
573 hdr = &elf_tdata (abfd)->symtab_hdr;
574 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
575 &isym, esym, &eshndx) == NULL)
576 return NULL;
577
578 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
579 }
580
581 /* Set next_in_group list pointer, and group name for NEWSECT. */
582
583 static bfd_boolean
584 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
585 {
586 unsigned int num_group = elf_tdata (abfd)->num_group;
587
588 /* If num_group is zero, read in all SHT_GROUP sections. The count
589 is set to -1 if there are no SHT_GROUP sections. */
590 if (num_group == 0)
591 {
592 unsigned int i, shnum;
593
594 /* First count the number of groups. If we have a SHT_GROUP
595 section with just a flag word (ie. sh_size is 4), ignore it. */
596 shnum = elf_numsections (abfd);
597 num_group = 0;
598
599 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
600 ( (shdr)->sh_type == SHT_GROUP \
601 && (shdr)->sh_size >= minsize \
602 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
603 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
604
605 for (i = 0; i < shnum; i++)
606 {
607 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
608
609 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
610 num_group += 1;
611 }
612
613 if (num_group == 0)
614 {
615 num_group = (unsigned) -1;
616 elf_tdata (abfd)->num_group = num_group;
617 elf_tdata (abfd)->group_sect_ptr = NULL;
618 }
619 else
620 {
621 /* We keep a list of elf section headers for group sections,
622 so we can find them quickly. */
623 bfd_size_type amt;
624
625 elf_tdata (abfd)->num_group = num_group;
626 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
627 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
628 if (elf_tdata (abfd)->group_sect_ptr == NULL)
629 return FALSE;
630 memset (elf_tdata (abfd)->group_sect_ptr, 0, num_group * sizeof (Elf_Internal_Shdr *));
631 num_group = 0;
632
633 for (i = 0; i < shnum; i++)
634 {
635 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
636
637 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
638 {
639 unsigned char *src;
640 Elf_Internal_Group *dest;
641
642 /* Make sure the group section has a BFD section
643 attached to it. */
644 if (!bfd_section_from_shdr (abfd, i))
645 return FALSE;
646
647 /* Add to list of sections. */
648 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
649 num_group += 1;
650
651 /* Read the raw contents. */
652 BFD_ASSERT (sizeof (*dest) >= 4);
653 amt = shdr->sh_size * sizeof (*dest) / 4;
654 shdr->contents = (unsigned char *)
655 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
656 /* PR binutils/4110: Handle corrupt group headers. */
657 if (shdr->contents == NULL)
658 {
659 _bfd_error_handler
660 /* xgettext:c-format */
661 (_("%pB: corrupt size field in group section"
662 " header: %#" PRIx64),
663 abfd, (uint64_t) shdr->sh_size);
664 bfd_set_error (bfd_error_bad_value);
665 -- num_group;
666 continue;
667 }
668
669 memset (shdr->contents, 0, amt);
670
671 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
672 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
673 != shdr->sh_size))
674 {
675 _bfd_error_handler
676 /* xgettext:c-format */
677 (_("%pB: invalid size field in group section"
678 " header: %#" PRIx64 ""),
679 abfd, (uint64_t) shdr->sh_size);
680 bfd_set_error (bfd_error_bad_value);
681 -- num_group;
682 /* PR 17510: If the group contents are even
683 partially corrupt, do not allow any of the
684 contents to be used. */
685 memset (shdr->contents, 0, amt);
686 continue;
687 }
688
689 /* Translate raw contents, a flag word followed by an
690 array of elf section indices all in target byte order,
691 to the flag word followed by an array of elf section
692 pointers. */
693 src = shdr->contents + shdr->sh_size;
694 dest = (Elf_Internal_Group *) (shdr->contents + amt);
695
696 while (1)
697 {
698 unsigned int idx;
699
700 src -= 4;
701 --dest;
702 idx = H_GET_32 (abfd, src);
703 if (src == shdr->contents)
704 {
705 dest->flags = idx;
706 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
707 shdr->bfd_section->flags
708 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
709 break;
710 }
711 if (idx >= shnum)
712 {
713 _bfd_error_handler
714 (_("%pB: invalid SHT_GROUP entry"), abfd);
715 idx = 0;
716 }
717 dest->shdr = elf_elfsections (abfd)[idx];
718 }
719 }
720 }
721
722 /* PR 17510: Corrupt binaries might contain invalid groups. */
723 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
724 {
725 elf_tdata (abfd)->num_group = num_group;
726
727 /* If all groups are invalid then fail. */
728 if (num_group == 0)
729 {
730 elf_tdata (abfd)->group_sect_ptr = NULL;
731 elf_tdata (abfd)->num_group = num_group = -1;
732 _bfd_error_handler
733 (_("%pB: no valid group sections found"), abfd);
734 bfd_set_error (bfd_error_bad_value);
735 }
736 }
737 }
738 }
739
740 if (num_group != (unsigned) -1)
741 {
742 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
743 unsigned int j;
744
745 for (j = 0; j < num_group; j++)
746 {
747 /* Begin search from previous found group. */
748 unsigned i = (j + search_offset) % num_group;
749
750 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
751 Elf_Internal_Group *idx;
752 bfd_size_type n_elt;
753
754 if (shdr == NULL)
755 continue;
756
757 idx = (Elf_Internal_Group *) shdr->contents;
758 if (idx == NULL || shdr->sh_size < 4)
759 {
760 /* See PR 21957 for a reproducer. */
761 /* xgettext:c-format */
762 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
763 abfd, shdr->bfd_section);
764 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
765 bfd_set_error (bfd_error_bad_value);
766 return FALSE;
767 }
768 n_elt = shdr->sh_size / 4;
769
770 /* Look through this group's sections to see if current
771 section is a member. */
772 while (--n_elt != 0)
773 if ((++idx)->shdr == hdr)
774 {
775 asection *s = NULL;
776
777 /* We are a member of this group. Go looking through
778 other members to see if any others are linked via
779 next_in_group. */
780 idx = (Elf_Internal_Group *) shdr->contents;
781 n_elt = shdr->sh_size / 4;
782 while (--n_elt != 0)
783 if ((s = (++idx)->shdr->bfd_section) != NULL
784 && elf_next_in_group (s) != NULL)
785 break;
786 if (n_elt != 0)
787 {
788 /* Snarf the group name from other member, and
789 insert current section in circular list. */
790 elf_group_name (newsect) = elf_group_name (s);
791 elf_next_in_group (newsect) = elf_next_in_group (s);
792 elf_next_in_group (s) = newsect;
793 }
794 else
795 {
796 const char *gname;
797
798 gname = group_signature (abfd, shdr);
799 if (gname == NULL)
800 return FALSE;
801 elf_group_name (newsect) = gname;
802
803 /* Start a circular list with one element. */
804 elf_next_in_group (newsect) = newsect;
805 }
806
807 /* If the group section has been created, point to the
808 new member. */
809 if (shdr->bfd_section != NULL)
810 elf_next_in_group (shdr->bfd_section) = newsect;
811
812 elf_tdata (abfd)->group_search_offset = i;
813 j = num_group - 1;
814 break;
815 }
816 }
817 }
818
819 if (elf_group_name (newsect) == NULL)
820 {
821 /* xgettext:c-format */
822 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
823 abfd, newsect);
824 return FALSE;
825 }
826 return TRUE;
827 }
828
829 bfd_boolean
830 _bfd_elf_setup_sections (bfd *abfd)
831 {
832 unsigned int i;
833 unsigned int num_group = elf_tdata (abfd)->num_group;
834 bfd_boolean result = TRUE;
835 asection *s;
836
837 /* Process SHF_LINK_ORDER. */
838 for (s = abfd->sections; s != NULL; s = s->next)
839 {
840 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
841 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
842 {
843 unsigned int elfsec = this_hdr->sh_link;
844 /* FIXME: The old Intel compiler and old strip/objcopy may
845 not set the sh_link or sh_info fields. Hence we could
846 get the situation where elfsec is 0. */
847 if (elfsec == 0)
848 {
849 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
850 if (bed->link_order_error_handler)
851 bed->link_order_error_handler
852 /* xgettext:c-format */
853 (_("%pB: warning: sh_link not set for section `%pA'"),
854 abfd, s);
855 }
856 else
857 {
858 asection *linksec = NULL;
859
860 if (elfsec < elf_numsections (abfd))
861 {
862 this_hdr = elf_elfsections (abfd)[elfsec];
863 linksec = this_hdr->bfd_section;
864 }
865
866 /* PR 1991, 2008:
867 Some strip/objcopy may leave an incorrect value in
868 sh_link. We don't want to proceed. */
869 if (linksec == NULL)
870 {
871 _bfd_error_handler
872 /* xgettext:c-format */
873 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
874 s->owner, elfsec, s);
875 result = FALSE;
876 }
877
878 elf_linked_to_section (s) = linksec;
879 }
880 }
881 else if (this_hdr->sh_type == SHT_GROUP
882 && elf_next_in_group (s) == NULL)
883 {
884 _bfd_error_handler
885 /* xgettext:c-format */
886 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
887 abfd, elf_section_data (s)->this_idx);
888 result = FALSE;
889 }
890 }
891
892 /* Process section groups. */
893 if (num_group == (unsigned) -1)
894 return result;
895
896 for (i = 0; i < num_group; i++)
897 {
898 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
899 Elf_Internal_Group *idx;
900 unsigned int n_elt;
901
902 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
903 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
904 {
905 _bfd_error_handler
906 /* xgettext:c-format */
907 (_("%pB: section group entry number %u is corrupt"),
908 abfd, i);
909 result = FALSE;
910 continue;
911 }
912
913 idx = (Elf_Internal_Group *) shdr->contents;
914 n_elt = shdr->sh_size / 4;
915
916 while (--n_elt != 0)
917 {
918 ++ idx;
919
920 if (idx->shdr == NULL)
921 continue;
922 else if (idx->shdr->bfd_section)
923 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
924 else if (idx->shdr->sh_type != SHT_RELA
925 && idx->shdr->sh_type != SHT_REL)
926 {
927 /* There are some unknown sections in the group. */
928 _bfd_error_handler
929 /* xgettext:c-format */
930 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
931 abfd,
932 idx->shdr->sh_type,
933 bfd_elf_string_from_elf_section (abfd,
934 (elf_elfheader (abfd)
935 ->e_shstrndx),
936 idx->shdr->sh_name),
937 shdr->bfd_section);
938 result = FALSE;
939 }
940 }
941 }
942
943 return result;
944 }
945
946 bfd_boolean
947 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
948 {
949 return elf_next_in_group (sec) != NULL;
950 }
951
952 static char *
953 convert_debug_to_zdebug (bfd *abfd, const char *name)
954 {
955 unsigned int len = strlen (name);
956 char *new_name = bfd_alloc (abfd, len + 2);
957 if (new_name == NULL)
958 return NULL;
959 new_name[0] = '.';
960 new_name[1] = 'z';
961 memcpy (new_name + 2, name + 1, len);
962 return new_name;
963 }
964
965 static char *
966 convert_zdebug_to_debug (bfd *abfd, const char *name)
967 {
968 unsigned int len = strlen (name);
969 char *new_name = bfd_alloc (abfd, len);
970 if (new_name == NULL)
971 return NULL;
972 new_name[0] = '.';
973 memcpy (new_name + 1, name + 2, len - 1);
974 return new_name;
975 }
976
977 /* Make a BFD section from an ELF section. We store a pointer to the
978 BFD section in the bfd_section field of the header. */
979
980 bfd_boolean
981 _bfd_elf_make_section_from_shdr (bfd *abfd,
982 Elf_Internal_Shdr *hdr,
983 const char *name,
984 int shindex)
985 {
986 asection *newsect;
987 flagword flags;
988 const struct elf_backend_data *bed;
989
990 if (hdr->bfd_section != NULL)
991 return TRUE;
992
993 newsect = bfd_make_section_anyway (abfd, name);
994 if (newsect == NULL)
995 return FALSE;
996
997 hdr->bfd_section = newsect;
998 elf_section_data (newsect)->this_hdr = *hdr;
999 elf_section_data (newsect)->this_idx = shindex;
1000
1001 /* Always use the real type/flags. */
1002 elf_section_type (newsect) = hdr->sh_type;
1003 elf_section_flags (newsect) = hdr->sh_flags;
1004
1005 newsect->filepos = hdr->sh_offset;
1006
1007 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1008 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1009 || ! bfd_set_section_alignment (abfd, newsect,
1010 bfd_log2 (hdr->sh_addralign)))
1011 return FALSE;
1012
1013 flags = SEC_NO_FLAGS;
1014 if (hdr->sh_type != SHT_NOBITS)
1015 flags |= SEC_HAS_CONTENTS;
1016 if (hdr->sh_type == SHT_GROUP)
1017 flags |= SEC_GROUP;
1018 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1019 {
1020 flags |= SEC_ALLOC;
1021 if (hdr->sh_type != SHT_NOBITS)
1022 flags |= SEC_LOAD;
1023 }
1024 if ((hdr->sh_flags & SHF_WRITE) == 0)
1025 flags |= SEC_READONLY;
1026 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1027 flags |= SEC_CODE;
1028 else if ((flags & SEC_LOAD) != 0)
1029 flags |= SEC_DATA;
1030 if ((hdr->sh_flags & SHF_MERGE) != 0)
1031 {
1032 flags |= SEC_MERGE;
1033 newsect->entsize = hdr->sh_entsize;
1034 }
1035 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1036 flags |= SEC_STRINGS;
1037 if (hdr->sh_flags & SHF_GROUP)
1038 if (!setup_group (abfd, hdr, newsect))
1039 return FALSE;
1040 if ((hdr->sh_flags & SHF_TLS) != 0)
1041 flags |= SEC_THREAD_LOCAL;
1042 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1043 flags |= SEC_EXCLUDE;
1044
1045 if ((flags & SEC_ALLOC) == 0)
1046 {
1047 /* The debugging sections appear to be recognized only by name,
1048 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1049 if (name [0] == '.')
1050 {
1051 const char *p;
1052 int n;
1053 if (name[1] == 'd')
1054 p = ".debug", n = 6;
1055 else if (name[1] == 'g' && name[2] == 'n')
1056 p = ".gnu.linkonce.wi.", n = 17;
1057 else if (name[1] == 'g' && name[2] == 'd')
1058 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1059 else if (name[1] == 'l')
1060 p = ".line", n = 5;
1061 else if (name[1] == 's')
1062 p = ".stab", n = 5;
1063 else if (name[1] == 'z')
1064 p = ".zdebug", n = 7;
1065 else
1066 p = NULL, n = 0;
1067 if (p != NULL && strncmp (name, p, n) == 0)
1068 flags |= SEC_DEBUGGING;
1069 }
1070 }
1071
1072 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1073 only link a single copy of the section. This is used to support
1074 g++. g++ will emit each template expansion in its own section.
1075 The symbols will be defined as weak, so that multiple definitions
1076 are permitted. The GNU linker extension is to actually discard
1077 all but one of the sections. */
1078 if (CONST_STRNEQ (name, ".gnu.linkonce")
1079 && elf_next_in_group (newsect) == NULL)
1080 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1081
1082 bed = get_elf_backend_data (abfd);
1083 if (bed->elf_backend_section_flags)
1084 if (! bed->elf_backend_section_flags (&flags, hdr))
1085 return FALSE;
1086
1087 if (! bfd_set_section_flags (abfd, newsect, flags))
1088 return FALSE;
1089
1090 /* We do not parse the PT_NOTE segments as we are interested even in the
1091 separate debug info files which may have the segments offsets corrupted.
1092 PT_NOTEs from the core files are currently not parsed using BFD. */
1093 if (hdr->sh_type == SHT_NOTE)
1094 {
1095 bfd_byte *contents;
1096
1097 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1098 return FALSE;
1099
1100 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1101 hdr->sh_offset, hdr->sh_addralign);
1102 free (contents);
1103 }
1104
1105 if ((flags & SEC_ALLOC) != 0)
1106 {
1107 Elf_Internal_Phdr *phdr;
1108 unsigned int i, nload;
1109
1110 /* Some ELF linkers produce binaries with all the program header
1111 p_paddr fields zero. If we have such a binary with more than
1112 one PT_LOAD header, then leave the section lma equal to vma
1113 so that we don't create sections with overlapping lma. */
1114 phdr = elf_tdata (abfd)->phdr;
1115 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1116 if (phdr->p_paddr != 0)
1117 break;
1118 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1119 ++nload;
1120 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1121 return TRUE;
1122
1123 phdr = elf_tdata (abfd)->phdr;
1124 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1125 {
1126 if (((phdr->p_type == PT_LOAD
1127 && (hdr->sh_flags & SHF_TLS) == 0)
1128 || phdr->p_type == PT_TLS)
1129 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1130 {
1131 if ((flags & SEC_LOAD) == 0)
1132 newsect->lma = (phdr->p_paddr
1133 + hdr->sh_addr - phdr->p_vaddr);
1134 else
1135 /* We used to use the same adjustment for SEC_LOAD
1136 sections, but that doesn't work if the segment
1137 is packed with code from multiple VMAs.
1138 Instead we calculate the section LMA based on
1139 the segment LMA. It is assumed that the
1140 segment will contain sections with contiguous
1141 LMAs, even if the VMAs are not. */
1142 newsect->lma = (phdr->p_paddr
1143 + hdr->sh_offset - phdr->p_offset);
1144
1145 /* With contiguous segments, we can't tell from file
1146 offsets whether a section with zero size should
1147 be placed at the end of one segment or the
1148 beginning of the next. Decide based on vaddr. */
1149 if (hdr->sh_addr >= phdr->p_vaddr
1150 && (hdr->sh_addr + hdr->sh_size
1151 <= phdr->p_vaddr + phdr->p_memsz))
1152 break;
1153 }
1154 }
1155 }
1156
1157 /* Compress/decompress DWARF debug sections with names: .debug_* and
1158 .zdebug_*, after the section flags is set. */
1159 if ((flags & SEC_DEBUGGING)
1160 && ((name[1] == 'd' && name[6] == '_')
1161 || (name[1] == 'z' && name[7] == '_')))
1162 {
1163 enum { nothing, compress, decompress } action = nothing;
1164 int compression_header_size;
1165 bfd_size_type uncompressed_size;
1166 bfd_boolean compressed
1167 = bfd_is_section_compressed_with_header (abfd, newsect,
1168 &compression_header_size,
1169 &uncompressed_size);
1170
1171 if (compressed)
1172 {
1173 /* Compressed section. Check if we should decompress. */
1174 if ((abfd->flags & BFD_DECOMPRESS))
1175 action = decompress;
1176 }
1177
1178 /* Compress the uncompressed section or convert from/to .zdebug*
1179 section. Check if we should compress. */
1180 if (action == nothing)
1181 {
1182 if (newsect->size != 0
1183 && (abfd->flags & BFD_COMPRESS)
1184 && compression_header_size >= 0
1185 && uncompressed_size > 0
1186 && (!compressed
1187 || ((compression_header_size > 0)
1188 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1189 action = compress;
1190 else
1191 return TRUE;
1192 }
1193
1194 if (action == compress)
1195 {
1196 if (!bfd_init_section_compress_status (abfd, newsect))
1197 {
1198 _bfd_error_handler
1199 /* xgettext:c-format */
1200 (_("%pB: unable to initialize compress status for section %s"),
1201 abfd, name);
1202 return FALSE;
1203 }
1204 }
1205 else
1206 {
1207 if (!bfd_init_section_decompress_status (abfd, newsect))
1208 {
1209 _bfd_error_handler
1210 /* xgettext:c-format */
1211 (_("%pB: unable to initialize decompress status for section %s"),
1212 abfd, name);
1213 return FALSE;
1214 }
1215 }
1216
1217 if (abfd->is_linker_input)
1218 {
1219 if (name[1] == 'z'
1220 && (action == decompress
1221 || (action == compress
1222 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1223 {
1224 /* Convert section name from .zdebug_* to .debug_* so
1225 that linker will consider this section as a debug
1226 section. */
1227 char *new_name = convert_zdebug_to_debug (abfd, name);
1228 if (new_name == NULL)
1229 return FALSE;
1230 bfd_rename_section (abfd, newsect, new_name);
1231 }
1232 }
1233 else
1234 /* For objdump, don't rename the section. For objcopy, delay
1235 section rename to elf_fake_sections. */
1236 newsect->flags |= SEC_ELF_RENAME;
1237 }
1238
1239 return TRUE;
1240 }
1241
1242 const char *const bfd_elf_section_type_names[] =
1243 {
1244 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1245 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1246 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1247 };
1248
1249 /* ELF relocs are against symbols. If we are producing relocatable
1250 output, and the reloc is against an external symbol, and nothing
1251 has given us any additional addend, the resulting reloc will also
1252 be against the same symbol. In such a case, we don't want to
1253 change anything about the way the reloc is handled, since it will
1254 all be done at final link time. Rather than put special case code
1255 into bfd_perform_relocation, all the reloc types use this howto
1256 function. It just short circuits the reloc if producing
1257 relocatable output against an external symbol. */
1258
1259 bfd_reloc_status_type
1260 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1261 arelent *reloc_entry,
1262 asymbol *symbol,
1263 void *data ATTRIBUTE_UNUSED,
1264 asection *input_section,
1265 bfd *output_bfd,
1266 char **error_message ATTRIBUTE_UNUSED)
1267 {
1268 if (output_bfd != NULL
1269 && (symbol->flags & BSF_SECTION_SYM) == 0
1270 && (! reloc_entry->howto->partial_inplace
1271 || reloc_entry->addend == 0))
1272 {
1273 reloc_entry->address += input_section->output_offset;
1274 return bfd_reloc_ok;
1275 }
1276
1277 return bfd_reloc_continue;
1278 }
1279 \f
1280 /* Returns TRUE if section A matches section B.
1281 Names, addresses and links may be different, but everything else
1282 should be the same. */
1283
1284 static bfd_boolean
1285 section_match (const Elf_Internal_Shdr * a,
1286 const Elf_Internal_Shdr * b)
1287 {
1288 return
1289 a->sh_type == b->sh_type
1290 && (a->sh_flags & ~ SHF_INFO_LINK)
1291 == (b->sh_flags & ~ SHF_INFO_LINK)
1292 && a->sh_addralign == b->sh_addralign
1293 && a->sh_size == b->sh_size
1294 && a->sh_entsize == b->sh_entsize
1295 /* FIXME: Check sh_addr ? */
1296 ;
1297 }
1298
1299 /* Find a section in OBFD that has the same characteristics
1300 as IHEADER. Return the index of this section or SHN_UNDEF if
1301 none can be found. Check's section HINT first, as this is likely
1302 to be the correct section. */
1303
1304 static unsigned int
1305 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1306 const unsigned int hint)
1307 {
1308 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1309 unsigned int i;
1310
1311 BFD_ASSERT (iheader != NULL);
1312
1313 /* See PR 20922 for a reproducer of the NULL test. */
1314 if (hint < elf_numsections (obfd)
1315 && oheaders[hint] != NULL
1316 && section_match (oheaders[hint], iheader))
1317 return hint;
1318
1319 for (i = 1; i < elf_numsections (obfd); i++)
1320 {
1321 Elf_Internal_Shdr * oheader = oheaders[i];
1322
1323 if (oheader == NULL)
1324 continue;
1325 if (section_match (oheader, iheader))
1326 /* FIXME: Do we care if there is a potential for
1327 multiple matches ? */
1328 return i;
1329 }
1330
1331 return SHN_UNDEF;
1332 }
1333
1334 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1335 Processor specific section, based upon a matching input section.
1336 Returns TRUE upon success, FALSE otherwise. */
1337
1338 static bfd_boolean
1339 copy_special_section_fields (const bfd *ibfd,
1340 bfd *obfd,
1341 const Elf_Internal_Shdr *iheader,
1342 Elf_Internal_Shdr *oheader,
1343 const unsigned int secnum)
1344 {
1345 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1346 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1347 bfd_boolean changed = FALSE;
1348 unsigned int sh_link;
1349
1350 if (oheader->sh_type == SHT_NOBITS)
1351 {
1352 /* This is a feature for objcopy --only-keep-debug:
1353 When a section's type is changed to NOBITS, we preserve
1354 the sh_link and sh_info fields so that they can be
1355 matched up with the original.
1356
1357 Note: Strictly speaking these assignments are wrong.
1358 The sh_link and sh_info fields should point to the
1359 relevent sections in the output BFD, which may not be in
1360 the same location as they were in the input BFD. But
1361 the whole point of this action is to preserve the
1362 original values of the sh_link and sh_info fields, so
1363 that they can be matched up with the section headers in
1364 the original file. So strictly speaking we may be
1365 creating an invalid ELF file, but it is only for a file
1366 that just contains debug info and only for sections
1367 without any contents. */
1368 if (oheader->sh_link == 0)
1369 oheader->sh_link = iheader->sh_link;
1370 if (oheader->sh_info == 0)
1371 oheader->sh_info = iheader->sh_info;
1372 return TRUE;
1373 }
1374
1375 /* Allow the target a chance to decide how these fields should be set. */
1376 if (bed->elf_backend_copy_special_section_fields != NULL
1377 && bed->elf_backend_copy_special_section_fields
1378 (ibfd, obfd, iheader, oheader))
1379 return TRUE;
1380
1381 /* We have an iheader which might match oheader, and which has non-zero
1382 sh_info and/or sh_link fields. Attempt to follow those links and find
1383 the section in the output bfd which corresponds to the linked section
1384 in the input bfd. */
1385 if (iheader->sh_link != SHN_UNDEF)
1386 {
1387 /* See PR 20931 for a reproducer. */
1388 if (iheader->sh_link >= elf_numsections (ibfd))
1389 {
1390 _bfd_error_handler
1391 /* xgettext:c-format */
1392 (_("%pB: invalid sh_link field (%d) in section number %d"),
1393 ibfd, iheader->sh_link, secnum);
1394 return FALSE;
1395 }
1396
1397 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1398 if (sh_link != SHN_UNDEF)
1399 {
1400 oheader->sh_link = sh_link;
1401 changed = TRUE;
1402 }
1403 else
1404 /* FIXME: Should we install iheader->sh_link
1405 if we could not find a match ? */
1406 _bfd_error_handler
1407 /* xgettext:c-format */
1408 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1409 }
1410
1411 if (iheader->sh_info)
1412 {
1413 /* The sh_info field can hold arbitrary information, but if the
1414 SHF_LINK_INFO flag is set then it should be interpreted as a
1415 section index. */
1416 if (iheader->sh_flags & SHF_INFO_LINK)
1417 {
1418 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1419 iheader->sh_info);
1420 if (sh_link != SHN_UNDEF)
1421 oheader->sh_flags |= SHF_INFO_LINK;
1422 }
1423 else
1424 /* No idea what it means - just copy it. */
1425 sh_link = iheader->sh_info;
1426
1427 if (sh_link != SHN_UNDEF)
1428 {
1429 oheader->sh_info = sh_link;
1430 changed = TRUE;
1431 }
1432 else
1433 _bfd_error_handler
1434 /* xgettext:c-format */
1435 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1436 }
1437
1438 return changed;
1439 }
1440
1441 /* Copy the program header and other data from one object module to
1442 another. */
1443
1444 bfd_boolean
1445 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1446 {
1447 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1448 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1449 const struct elf_backend_data *bed;
1450 unsigned int i;
1451
1452 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1453 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1454 return TRUE;
1455
1456 if (!elf_flags_init (obfd))
1457 {
1458 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1459 elf_flags_init (obfd) = TRUE;
1460 }
1461
1462 elf_gp (obfd) = elf_gp (ibfd);
1463
1464 /* Also copy the EI_OSABI field. */
1465 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1466 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1467
1468 /* If set, copy the EI_ABIVERSION field. */
1469 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1470 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1471 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1472
1473 /* Copy object attributes. */
1474 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1475
1476 if (iheaders == NULL || oheaders == NULL)
1477 return TRUE;
1478
1479 bed = get_elf_backend_data (obfd);
1480
1481 /* Possibly copy other fields in the section header. */
1482 for (i = 1; i < elf_numsections (obfd); i++)
1483 {
1484 unsigned int j;
1485 Elf_Internal_Shdr * oheader = oheaders[i];
1486
1487 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1488 because of a special case need for generating separate debug info
1489 files. See below for more details. */
1490 if (oheader == NULL
1491 || (oheader->sh_type != SHT_NOBITS
1492 && oheader->sh_type < SHT_LOOS))
1493 continue;
1494
1495 /* Ignore empty sections, and sections whose
1496 fields have already been initialised. */
1497 if (oheader->sh_size == 0
1498 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1499 continue;
1500
1501 /* Scan for the matching section in the input bfd.
1502 First we try for a direct mapping between the input and output sections. */
1503 for (j = 1; j < elf_numsections (ibfd); j++)
1504 {
1505 const Elf_Internal_Shdr * iheader = iheaders[j];
1506
1507 if (iheader == NULL)
1508 continue;
1509
1510 if (oheader->bfd_section != NULL
1511 && iheader->bfd_section != NULL
1512 && iheader->bfd_section->output_section != NULL
1513 && iheader->bfd_section->output_section == oheader->bfd_section)
1514 {
1515 /* We have found a connection from the input section to the
1516 output section. Attempt to copy the header fields. If
1517 this fails then do not try any further sections - there
1518 should only be a one-to-one mapping between input and output. */
1519 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1520 j = elf_numsections (ibfd);
1521 break;
1522 }
1523 }
1524
1525 if (j < elf_numsections (ibfd))
1526 continue;
1527
1528 /* That failed. So try to deduce the corresponding input section.
1529 Unfortunately we cannot compare names as the output string table
1530 is empty, so instead we check size, address and type. */
1531 for (j = 1; j < elf_numsections (ibfd); j++)
1532 {
1533 const Elf_Internal_Shdr * iheader = iheaders[j];
1534
1535 if (iheader == NULL)
1536 continue;
1537
1538 /* Try matching fields in the input section's header.
1539 Since --only-keep-debug turns all non-debug sections into
1540 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1541 input type. */
1542 if ((oheader->sh_type == SHT_NOBITS
1543 || iheader->sh_type == oheader->sh_type)
1544 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1545 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1546 && iheader->sh_addralign == oheader->sh_addralign
1547 && iheader->sh_entsize == oheader->sh_entsize
1548 && iheader->sh_size == oheader->sh_size
1549 && iheader->sh_addr == oheader->sh_addr
1550 && (iheader->sh_info != oheader->sh_info
1551 || iheader->sh_link != oheader->sh_link))
1552 {
1553 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1554 break;
1555 }
1556 }
1557
1558 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1559 {
1560 /* Final attempt. Call the backend copy function
1561 with a NULL input section. */
1562 if (bed->elf_backend_copy_special_section_fields != NULL)
1563 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1564 }
1565 }
1566
1567 return TRUE;
1568 }
1569
1570 static const char *
1571 get_segment_type (unsigned int p_type)
1572 {
1573 const char *pt;
1574 switch (p_type)
1575 {
1576 case PT_NULL: pt = "NULL"; break;
1577 case PT_LOAD: pt = "LOAD"; break;
1578 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1579 case PT_INTERP: pt = "INTERP"; break;
1580 case PT_NOTE: pt = "NOTE"; break;
1581 case PT_SHLIB: pt = "SHLIB"; break;
1582 case PT_PHDR: pt = "PHDR"; break;
1583 case PT_TLS: pt = "TLS"; break;
1584 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1585 case PT_GNU_STACK: pt = "STACK"; break;
1586 case PT_GNU_RELRO: pt = "RELRO"; break;
1587 default: pt = NULL; break;
1588 }
1589 return pt;
1590 }
1591
1592 /* Print out the program headers. */
1593
1594 bfd_boolean
1595 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1596 {
1597 FILE *f = (FILE *) farg;
1598 Elf_Internal_Phdr *p;
1599 asection *s;
1600 bfd_byte *dynbuf = NULL;
1601
1602 p = elf_tdata (abfd)->phdr;
1603 if (p != NULL)
1604 {
1605 unsigned int i, c;
1606
1607 fprintf (f, _("\nProgram Header:\n"));
1608 c = elf_elfheader (abfd)->e_phnum;
1609 for (i = 0; i < c; i++, p++)
1610 {
1611 const char *pt = get_segment_type (p->p_type);
1612 char buf[20];
1613
1614 if (pt == NULL)
1615 {
1616 sprintf (buf, "0x%lx", p->p_type);
1617 pt = buf;
1618 }
1619 fprintf (f, "%8s off 0x", pt);
1620 bfd_fprintf_vma (abfd, f, p->p_offset);
1621 fprintf (f, " vaddr 0x");
1622 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1623 fprintf (f, " paddr 0x");
1624 bfd_fprintf_vma (abfd, f, p->p_paddr);
1625 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1626 fprintf (f, " filesz 0x");
1627 bfd_fprintf_vma (abfd, f, p->p_filesz);
1628 fprintf (f, " memsz 0x");
1629 bfd_fprintf_vma (abfd, f, p->p_memsz);
1630 fprintf (f, " flags %c%c%c",
1631 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1632 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1633 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1634 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1635 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1636 fprintf (f, "\n");
1637 }
1638 }
1639
1640 s = bfd_get_section_by_name (abfd, ".dynamic");
1641 if (s != NULL)
1642 {
1643 unsigned int elfsec;
1644 unsigned long shlink;
1645 bfd_byte *extdyn, *extdynend;
1646 size_t extdynsize;
1647 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1648
1649 fprintf (f, _("\nDynamic Section:\n"));
1650
1651 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1652 goto error_return;
1653
1654 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1655 if (elfsec == SHN_BAD)
1656 goto error_return;
1657 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1658
1659 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1660 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1661
1662 extdyn = dynbuf;
1663 /* PR 17512: file: 6f427532. */
1664 if (s->size < extdynsize)
1665 goto error_return;
1666 extdynend = extdyn + s->size;
1667 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1668 Fix range check. */
1669 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1670 {
1671 Elf_Internal_Dyn dyn;
1672 const char *name = "";
1673 char ab[20];
1674 bfd_boolean stringp;
1675 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1676
1677 (*swap_dyn_in) (abfd, extdyn, &dyn);
1678
1679 if (dyn.d_tag == DT_NULL)
1680 break;
1681
1682 stringp = FALSE;
1683 switch (dyn.d_tag)
1684 {
1685 default:
1686 if (bed->elf_backend_get_target_dtag)
1687 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1688
1689 if (!strcmp (name, ""))
1690 {
1691 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1692 name = ab;
1693 }
1694 break;
1695
1696 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1697 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1698 case DT_PLTGOT: name = "PLTGOT"; break;
1699 case DT_HASH: name = "HASH"; break;
1700 case DT_STRTAB: name = "STRTAB"; break;
1701 case DT_SYMTAB: name = "SYMTAB"; break;
1702 case DT_RELA: name = "RELA"; break;
1703 case DT_RELASZ: name = "RELASZ"; break;
1704 case DT_RELAENT: name = "RELAENT"; break;
1705 case DT_STRSZ: name = "STRSZ"; break;
1706 case DT_SYMENT: name = "SYMENT"; break;
1707 case DT_INIT: name = "INIT"; break;
1708 case DT_FINI: name = "FINI"; break;
1709 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1710 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1711 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1712 case DT_REL: name = "REL"; break;
1713 case DT_RELSZ: name = "RELSZ"; break;
1714 case DT_RELENT: name = "RELENT"; break;
1715 case DT_PLTREL: name = "PLTREL"; break;
1716 case DT_DEBUG: name = "DEBUG"; break;
1717 case DT_TEXTREL: name = "TEXTREL"; break;
1718 case DT_JMPREL: name = "JMPREL"; break;
1719 case DT_BIND_NOW: name = "BIND_NOW"; break;
1720 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1721 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1722 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1723 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1724 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1725 case DT_FLAGS: name = "FLAGS"; break;
1726 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1727 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1728 case DT_CHECKSUM: name = "CHECKSUM"; break;
1729 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1730 case DT_MOVEENT: name = "MOVEENT"; break;
1731 case DT_MOVESZ: name = "MOVESZ"; break;
1732 case DT_FEATURE: name = "FEATURE"; break;
1733 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1734 case DT_SYMINSZ: name = "SYMINSZ"; break;
1735 case DT_SYMINENT: name = "SYMINENT"; break;
1736 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1737 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1738 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1739 case DT_PLTPAD: name = "PLTPAD"; break;
1740 case DT_MOVETAB: name = "MOVETAB"; break;
1741 case DT_SYMINFO: name = "SYMINFO"; break;
1742 case DT_RELACOUNT: name = "RELACOUNT"; break;
1743 case DT_RELCOUNT: name = "RELCOUNT"; break;
1744 case DT_FLAGS_1: name = "FLAGS_1"; break;
1745 case DT_VERSYM: name = "VERSYM"; break;
1746 case DT_VERDEF: name = "VERDEF"; break;
1747 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1748 case DT_VERNEED: name = "VERNEED"; break;
1749 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1750 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1751 case DT_USED: name = "USED"; break;
1752 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1753 case DT_GNU_HASH: name = "GNU_HASH"; break;
1754 }
1755
1756 fprintf (f, " %-20s ", name);
1757 if (! stringp)
1758 {
1759 fprintf (f, "0x");
1760 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1761 }
1762 else
1763 {
1764 const char *string;
1765 unsigned int tagv = dyn.d_un.d_val;
1766
1767 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1768 if (string == NULL)
1769 goto error_return;
1770 fprintf (f, "%s", string);
1771 }
1772 fprintf (f, "\n");
1773 }
1774
1775 free (dynbuf);
1776 dynbuf = NULL;
1777 }
1778
1779 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1780 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1781 {
1782 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1783 return FALSE;
1784 }
1785
1786 if (elf_dynverdef (abfd) != 0)
1787 {
1788 Elf_Internal_Verdef *t;
1789
1790 fprintf (f, _("\nVersion definitions:\n"));
1791 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1792 {
1793 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1794 t->vd_flags, t->vd_hash,
1795 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1796 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1797 {
1798 Elf_Internal_Verdaux *a;
1799
1800 fprintf (f, "\t");
1801 for (a = t->vd_auxptr->vda_nextptr;
1802 a != NULL;
1803 a = a->vda_nextptr)
1804 fprintf (f, "%s ",
1805 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1806 fprintf (f, "\n");
1807 }
1808 }
1809 }
1810
1811 if (elf_dynverref (abfd) != 0)
1812 {
1813 Elf_Internal_Verneed *t;
1814
1815 fprintf (f, _("\nVersion References:\n"));
1816 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1817 {
1818 Elf_Internal_Vernaux *a;
1819
1820 fprintf (f, _(" required from %s:\n"),
1821 t->vn_filename ? t->vn_filename : "<corrupt>");
1822 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1823 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1824 a->vna_flags, a->vna_other,
1825 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1826 }
1827 }
1828
1829 return TRUE;
1830
1831 error_return:
1832 if (dynbuf != NULL)
1833 free (dynbuf);
1834 return FALSE;
1835 }
1836
1837 /* Get version string. */
1838
1839 const char *
1840 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1841 bfd_boolean *hidden)
1842 {
1843 const char *version_string = NULL;
1844 if (elf_dynversym (abfd) != 0
1845 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1846 {
1847 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1848
1849 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1850 vernum &= VERSYM_VERSION;
1851
1852 if (vernum == 0)
1853 version_string = "";
1854 else if (vernum == 1)
1855 version_string = "Base";
1856 else if (vernum <= elf_tdata (abfd)->cverdefs)
1857 version_string =
1858 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1859 else
1860 {
1861 Elf_Internal_Verneed *t;
1862
1863 version_string = "";
1864 for (t = elf_tdata (abfd)->verref;
1865 t != NULL;
1866 t = t->vn_nextref)
1867 {
1868 Elf_Internal_Vernaux *a;
1869
1870 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1871 {
1872 if (a->vna_other == vernum)
1873 {
1874 version_string = a->vna_nodename;
1875 break;
1876 }
1877 }
1878 }
1879 }
1880 }
1881 return version_string;
1882 }
1883
1884 /* Display ELF-specific fields of a symbol. */
1885
1886 void
1887 bfd_elf_print_symbol (bfd *abfd,
1888 void *filep,
1889 asymbol *symbol,
1890 bfd_print_symbol_type how)
1891 {
1892 FILE *file = (FILE *) filep;
1893 switch (how)
1894 {
1895 case bfd_print_symbol_name:
1896 fprintf (file, "%s", symbol->name);
1897 break;
1898 case bfd_print_symbol_more:
1899 fprintf (file, "elf ");
1900 bfd_fprintf_vma (abfd, file, symbol->value);
1901 fprintf (file, " %x", symbol->flags);
1902 break;
1903 case bfd_print_symbol_all:
1904 {
1905 const char *section_name;
1906 const char *name = NULL;
1907 const struct elf_backend_data *bed;
1908 unsigned char st_other;
1909 bfd_vma val;
1910 const char *version_string;
1911 bfd_boolean hidden;
1912
1913 section_name = symbol->section ? symbol->section->name : "(*none*)";
1914
1915 bed = get_elf_backend_data (abfd);
1916 if (bed->elf_backend_print_symbol_all)
1917 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1918
1919 if (name == NULL)
1920 {
1921 name = symbol->name;
1922 bfd_print_symbol_vandf (abfd, file, symbol);
1923 }
1924
1925 fprintf (file, " %s\t", section_name);
1926 /* Print the "other" value for a symbol. For common symbols,
1927 we've already printed the size; now print the alignment.
1928 For other symbols, we have no specified alignment, and
1929 we've printed the address; now print the size. */
1930 if (symbol->section && bfd_is_com_section (symbol->section))
1931 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1932 else
1933 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1934 bfd_fprintf_vma (abfd, file, val);
1935
1936 /* If we have version information, print it. */
1937 version_string = _bfd_elf_get_symbol_version_string (abfd,
1938 symbol,
1939 &hidden);
1940 if (version_string)
1941 {
1942 if (!hidden)
1943 fprintf (file, " %-11s", version_string);
1944 else
1945 {
1946 int i;
1947
1948 fprintf (file, " (%s)", version_string);
1949 for (i = 10 - strlen (version_string); i > 0; --i)
1950 putc (' ', file);
1951 }
1952 }
1953
1954 /* If the st_other field is not zero, print it. */
1955 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1956
1957 switch (st_other)
1958 {
1959 case 0: break;
1960 case STV_INTERNAL: fprintf (file, " .internal"); break;
1961 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1962 case STV_PROTECTED: fprintf (file, " .protected"); break;
1963 default:
1964 /* Some other non-defined flags are also present, so print
1965 everything hex. */
1966 fprintf (file, " 0x%02x", (unsigned int) st_other);
1967 }
1968
1969 fprintf (file, " %s", name);
1970 }
1971 break;
1972 }
1973 }
1974 \f
1975 /* ELF .o/exec file reading */
1976
1977 /* Create a new bfd section from an ELF section header. */
1978
1979 bfd_boolean
1980 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1981 {
1982 Elf_Internal_Shdr *hdr;
1983 Elf_Internal_Ehdr *ehdr;
1984 const struct elf_backend_data *bed;
1985 const char *name;
1986 bfd_boolean ret = TRUE;
1987 static bfd_boolean * sections_being_created = NULL;
1988 static bfd * sections_being_created_abfd = NULL;
1989 static unsigned int nesting = 0;
1990
1991 if (shindex >= elf_numsections (abfd))
1992 return FALSE;
1993
1994 if (++ nesting > 3)
1995 {
1996 /* PR17512: A corrupt ELF binary might contain a recursive group of
1997 sections, with each the string indicies pointing to the next in the
1998 loop. Detect this here, by refusing to load a section that we are
1999 already in the process of loading. We only trigger this test if
2000 we have nested at least three sections deep as normal ELF binaries
2001 can expect to recurse at least once.
2002
2003 FIXME: It would be better if this array was attached to the bfd,
2004 rather than being held in a static pointer. */
2005
2006 if (sections_being_created_abfd != abfd)
2007 sections_being_created = NULL;
2008 if (sections_being_created == NULL)
2009 {
2010 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
2011 sections_being_created = (bfd_boolean *)
2012 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
2013 sections_being_created_abfd = abfd;
2014 }
2015 if (sections_being_created [shindex])
2016 {
2017 _bfd_error_handler
2018 (_("%pB: warning: loop in section dependencies detected"), abfd);
2019 return FALSE;
2020 }
2021 sections_being_created [shindex] = TRUE;
2022 }
2023
2024 hdr = elf_elfsections (abfd)[shindex];
2025 ehdr = elf_elfheader (abfd);
2026 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2027 hdr->sh_name);
2028 if (name == NULL)
2029 goto fail;
2030
2031 bed = get_elf_backend_data (abfd);
2032 switch (hdr->sh_type)
2033 {
2034 case SHT_NULL:
2035 /* Inactive section. Throw it away. */
2036 goto success;
2037
2038 case SHT_PROGBITS: /* Normal section with contents. */
2039 case SHT_NOBITS: /* .bss section. */
2040 case SHT_HASH: /* .hash section. */
2041 case SHT_NOTE: /* .note section. */
2042 case SHT_INIT_ARRAY: /* .init_array section. */
2043 case SHT_FINI_ARRAY: /* .fini_array section. */
2044 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2045 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2046 case SHT_GNU_HASH: /* .gnu.hash section. */
2047 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2048 goto success;
2049
2050 case SHT_DYNAMIC: /* Dynamic linking information. */
2051 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2052 goto fail;
2053
2054 if (hdr->sh_link > elf_numsections (abfd))
2055 {
2056 /* PR 10478: Accept Solaris binaries with a sh_link
2057 field set to SHN_BEFORE or SHN_AFTER. */
2058 switch (bfd_get_arch (abfd))
2059 {
2060 case bfd_arch_i386:
2061 case bfd_arch_sparc:
2062 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2063 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2064 break;
2065 /* Otherwise fall through. */
2066 default:
2067 goto fail;
2068 }
2069 }
2070 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2071 goto fail;
2072 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2073 {
2074 Elf_Internal_Shdr *dynsymhdr;
2075
2076 /* The shared libraries distributed with hpux11 have a bogus
2077 sh_link field for the ".dynamic" section. Find the
2078 string table for the ".dynsym" section instead. */
2079 if (elf_dynsymtab (abfd) != 0)
2080 {
2081 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2082 hdr->sh_link = dynsymhdr->sh_link;
2083 }
2084 else
2085 {
2086 unsigned int i, num_sec;
2087
2088 num_sec = elf_numsections (abfd);
2089 for (i = 1; i < num_sec; i++)
2090 {
2091 dynsymhdr = elf_elfsections (abfd)[i];
2092 if (dynsymhdr->sh_type == SHT_DYNSYM)
2093 {
2094 hdr->sh_link = dynsymhdr->sh_link;
2095 break;
2096 }
2097 }
2098 }
2099 }
2100 goto success;
2101
2102 case SHT_SYMTAB: /* A symbol table. */
2103 if (elf_onesymtab (abfd) == shindex)
2104 goto success;
2105
2106 if (hdr->sh_entsize != bed->s->sizeof_sym)
2107 goto fail;
2108
2109 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2110 {
2111 if (hdr->sh_size != 0)
2112 goto fail;
2113 /* Some assemblers erroneously set sh_info to one with a
2114 zero sh_size. ld sees this as a global symbol count
2115 of (unsigned) -1. Fix it here. */
2116 hdr->sh_info = 0;
2117 goto success;
2118 }
2119
2120 /* PR 18854: A binary might contain more than one symbol table.
2121 Unusual, but possible. Warn, but continue. */
2122 if (elf_onesymtab (abfd) != 0)
2123 {
2124 _bfd_error_handler
2125 /* xgettext:c-format */
2126 (_("%pB: warning: multiple symbol tables detected"
2127 " - ignoring the table in section %u"),
2128 abfd, shindex);
2129 goto success;
2130 }
2131 elf_onesymtab (abfd) = shindex;
2132 elf_symtab_hdr (abfd) = *hdr;
2133 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2134 abfd->flags |= HAS_SYMS;
2135
2136 /* Sometimes a shared object will map in the symbol table. If
2137 SHF_ALLOC is set, and this is a shared object, then we also
2138 treat this section as a BFD section. We can not base the
2139 decision purely on SHF_ALLOC, because that flag is sometimes
2140 set in a relocatable object file, which would confuse the
2141 linker. */
2142 if ((hdr->sh_flags & SHF_ALLOC) != 0
2143 && (abfd->flags & DYNAMIC) != 0
2144 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2145 shindex))
2146 goto fail;
2147
2148 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2149 can't read symbols without that section loaded as well. It
2150 is most likely specified by the next section header. */
2151 {
2152 elf_section_list * entry;
2153 unsigned int i, num_sec;
2154
2155 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2156 if (entry->hdr.sh_link == shindex)
2157 goto success;
2158
2159 num_sec = elf_numsections (abfd);
2160 for (i = shindex + 1; i < num_sec; i++)
2161 {
2162 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2163
2164 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2165 && hdr2->sh_link == shindex)
2166 break;
2167 }
2168
2169 if (i == num_sec)
2170 for (i = 1; i < shindex; i++)
2171 {
2172 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2173
2174 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2175 && hdr2->sh_link == shindex)
2176 break;
2177 }
2178
2179 if (i != shindex)
2180 ret = bfd_section_from_shdr (abfd, i);
2181 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2182 goto success;
2183 }
2184
2185 case SHT_DYNSYM: /* A dynamic symbol table. */
2186 if (elf_dynsymtab (abfd) == shindex)
2187 goto success;
2188
2189 if (hdr->sh_entsize != bed->s->sizeof_sym)
2190 goto fail;
2191
2192 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2193 {
2194 if (hdr->sh_size != 0)
2195 goto fail;
2196
2197 /* Some linkers erroneously set sh_info to one with a
2198 zero sh_size. ld sees this as a global symbol count
2199 of (unsigned) -1. Fix it here. */
2200 hdr->sh_info = 0;
2201 goto success;
2202 }
2203
2204 /* PR 18854: A binary might contain more than one dynamic symbol table.
2205 Unusual, but possible. Warn, but continue. */
2206 if (elf_dynsymtab (abfd) != 0)
2207 {
2208 _bfd_error_handler
2209 /* xgettext:c-format */
2210 (_("%pB: warning: multiple dynamic symbol tables detected"
2211 " - ignoring the table in section %u"),
2212 abfd, shindex);
2213 goto success;
2214 }
2215 elf_dynsymtab (abfd) = shindex;
2216 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2217 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2218 abfd->flags |= HAS_SYMS;
2219
2220 /* Besides being a symbol table, we also treat this as a regular
2221 section, so that objcopy can handle it. */
2222 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2223 goto success;
2224
2225 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2226 {
2227 elf_section_list * entry;
2228
2229 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2230 if (entry->ndx == shindex)
2231 goto success;
2232
2233 entry = bfd_alloc (abfd, sizeof * entry);
2234 if (entry == NULL)
2235 goto fail;
2236 entry->ndx = shindex;
2237 entry->hdr = * hdr;
2238 entry->next = elf_symtab_shndx_list (abfd);
2239 elf_symtab_shndx_list (abfd) = entry;
2240 elf_elfsections (abfd)[shindex] = & entry->hdr;
2241 goto success;
2242 }
2243
2244 case SHT_STRTAB: /* A string table. */
2245 if (hdr->bfd_section != NULL)
2246 goto success;
2247
2248 if (ehdr->e_shstrndx == shindex)
2249 {
2250 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2251 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2252 goto success;
2253 }
2254
2255 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2256 {
2257 symtab_strtab:
2258 elf_tdata (abfd)->strtab_hdr = *hdr;
2259 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2260 goto success;
2261 }
2262
2263 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2264 {
2265 dynsymtab_strtab:
2266 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2267 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2268 elf_elfsections (abfd)[shindex] = hdr;
2269 /* We also treat this as a regular section, so that objcopy
2270 can handle it. */
2271 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2272 shindex);
2273 goto success;
2274 }
2275
2276 /* If the string table isn't one of the above, then treat it as a
2277 regular section. We need to scan all the headers to be sure,
2278 just in case this strtab section appeared before the above. */
2279 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2280 {
2281 unsigned int i, num_sec;
2282
2283 num_sec = elf_numsections (abfd);
2284 for (i = 1; i < num_sec; i++)
2285 {
2286 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2287 if (hdr2->sh_link == shindex)
2288 {
2289 /* Prevent endless recursion on broken objects. */
2290 if (i == shindex)
2291 goto fail;
2292 if (! bfd_section_from_shdr (abfd, i))
2293 goto fail;
2294 if (elf_onesymtab (abfd) == i)
2295 goto symtab_strtab;
2296 if (elf_dynsymtab (abfd) == i)
2297 goto dynsymtab_strtab;
2298 }
2299 }
2300 }
2301 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2302 goto success;
2303
2304 case SHT_REL:
2305 case SHT_RELA:
2306 /* *These* do a lot of work -- but build no sections! */
2307 {
2308 asection *target_sect;
2309 Elf_Internal_Shdr *hdr2, **p_hdr;
2310 unsigned int num_sec = elf_numsections (abfd);
2311 struct bfd_elf_section_data *esdt;
2312
2313 if (hdr->sh_entsize
2314 != (bfd_size_type) (hdr->sh_type == SHT_REL
2315 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2316 goto fail;
2317
2318 /* Check for a bogus link to avoid crashing. */
2319 if (hdr->sh_link >= num_sec)
2320 {
2321 _bfd_error_handler
2322 /* xgettext:c-format */
2323 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2324 abfd, hdr->sh_link, name, shindex);
2325 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2326 shindex);
2327 goto success;
2328 }
2329
2330 /* For some incomprehensible reason Oracle distributes
2331 libraries for Solaris in which some of the objects have
2332 bogus sh_link fields. It would be nice if we could just
2333 reject them, but, unfortunately, some people need to use
2334 them. We scan through the section headers; if we find only
2335 one suitable symbol table, we clobber the sh_link to point
2336 to it. I hope this doesn't break anything.
2337
2338 Don't do it on executable nor shared library. */
2339 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2340 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2341 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2342 {
2343 unsigned int scan;
2344 int found;
2345
2346 found = 0;
2347 for (scan = 1; scan < num_sec; scan++)
2348 {
2349 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2350 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2351 {
2352 if (found != 0)
2353 {
2354 found = 0;
2355 break;
2356 }
2357 found = scan;
2358 }
2359 }
2360 if (found != 0)
2361 hdr->sh_link = found;
2362 }
2363
2364 /* Get the symbol table. */
2365 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2366 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2367 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2368 goto fail;
2369
2370 /* If this reloc section does not use the main symbol table we
2371 don't treat it as a reloc section. BFD can't adequately
2372 represent such a section, so at least for now, we don't
2373 try. We just present it as a normal section. We also
2374 can't use it as a reloc section if it points to the null
2375 section, an invalid section, another reloc section, or its
2376 sh_link points to the null section. */
2377 if (hdr->sh_link != elf_onesymtab (abfd)
2378 || hdr->sh_link == SHN_UNDEF
2379 || hdr->sh_info == SHN_UNDEF
2380 || hdr->sh_info >= num_sec
2381 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2382 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2383 {
2384 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2385 shindex);
2386 goto success;
2387 }
2388
2389 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2390 goto fail;
2391
2392 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2393 if (target_sect == NULL)
2394 goto fail;
2395
2396 esdt = elf_section_data (target_sect);
2397 if (hdr->sh_type == SHT_RELA)
2398 p_hdr = &esdt->rela.hdr;
2399 else
2400 p_hdr = &esdt->rel.hdr;
2401
2402 /* PR 17512: file: 0b4f81b7. */
2403 if (*p_hdr != NULL)
2404 goto fail;
2405 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2406 if (hdr2 == NULL)
2407 goto fail;
2408 *hdr2 = *hdr;
2409 *p_hdr = hdr2;
2410 elf_elfsections (abfd)[shindex] = hdr2;
2411 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2412 * bed->s->int_rels_per_ext_rel);
2413 target_sect->flags |= SEC_RELOC;
2414 target_sect->relocation = NULL;
2415 target_sect->rel_filepos = hdr->sh_offset;
2416 /* In the section to which the relocations apply, mark whether
2417 its relocations are of the REL or RELA variety. */
2418 if (hdr->sh_size != 0)
2419 {
2420 if (hdr->sh_type == SHT_RELA)
2421 target_sect->use_rela_p = 1;
2422 }
2423 abfd->flags |= HAS_RELOC;
2424 goto success;
2425 }
2426
2427 case SHT_GNU_verdef:
2428 elf_dynverdef (abfd) = shindex;
2429 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2430 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2431 goto success;
2432
2433 case SHT_GNU_versym:
2434 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2435 goto fail;
2436
2437 elf_dynversym (abfd) = shindex;
2438 elf_tdata (abfd)->dynversym_hdr = *hdr;
2439 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2440 goto success;
2441
2442 case SHT_GNU_verneed:
2443 elf_dynverref (abfd) = shindex;
2444 elf_tdata (abfd)->dynverref_hdr = *hdr;
2445 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2446 goto success;
2447
2448 case SHT_SHLIB:
2449 goto success;
2450
2451 case SHT_GROUP:
2452 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2453 goto fail;
2454
2455 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2456 goto fail;
2457
2458 goto success;
2459
2460 default:
2461 /* Possibly an attributes section. */
2462 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2463 || hdr->sh_type == bed->obj_attrs_section_type)
2464 {
2465 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2466 goto fail;
2467 _bfd_elf_parse_attributes (abfd, hdr);
2468 goto success;
2469 }
2470
2471 /* Check for any processor-specific section types. */
2472 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2473 goto success;
2474
2475 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2476 {
2477 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2478 /* FIXME: How to properly handle allocated section reserved
2479 for applications? */
2480 _bfd_error_handler
2481 /* xgettext:c-format */
2482 (_("%pB: unknown type [%#x] section `%s'"),
2483 abfd, hdr->sh_type, name);
2484 else
2485 {
2486 /* Allow sections reserved for applications. */
2487 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2488 shindex);
2489 goto success;
2490 }
2491 }
2492 else if (hdr->sh_type >= SHT_LOPROC
2493 && hdr->sh_type <= SHT_HIPROC)
2494 /* FIXME: We should handle this section. */
2495 _bfd_error_handler
2496 /* xgettext:c-format */
2497 (_("%pB: unknown type [%#x] section `%s'"),
2498 abfd, hdr->sh_type, name);
2499 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2500 {
2501 /* Unrecognised OS-specific sections. */
2502 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2503 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2504 required to correctly process the section and the file should
2505 be rejected with an error message. */
2506 _bfd_error_handler
2507 /* xgettext:c-format */
2508 (_("%pB: unknown type [%#x] section `%s'"),
2509 abfd, hdr->sh_type, name);
2510 else
2511 {
2512 /* Otherwise it should be processed. */
2513 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2514 goto success;
2515 }
2516 }
2517 else
2518 /* FIXME: We should handle this section. */
2519 _bfd_error_handler
2520 /* xgettext:c-format */
2521 (_("%pB: unknown type [%#x] section `%s'"),
2522 abfd, hdr->sh_type, name);
2523
2524 goto fail;
2525 }
2526
2527 fail:
2528 ret = FALSE;
2529 success:
2530 if (sections_being_created && sections_being_created_abfd == abfd)
2531 sections_being_created [shindex] = FALSE;
2532 if (-- nesting == 0)
2533 {
2534 sections_being_created = NULL;
2535 sections_being_created_abfd = abfd;
2536 }
2537 return ret;
2538 }
2539
2540 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2541
2542 Elf_Internal_Sym *
2543 bfd_sym_from_r_symndx (struct sym_cache *cache,
2544 bfd *abfd,
2545 unsigned long r_symndx)
2546 {
2547 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2548
2549 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2550 {
2551 Elf_Internal_Shdr *symtab_hdr;
2552 unsigned char esym[sizeof (Elf64_External_Sym)];
2553 Elf_External_Sym_Shndx eshndx;
2554
2555 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2556 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2557 &cache->sym[ent], esym, &eshndx) == NULL)
2558 return NULL;
2559
2560 if (cache->abfd != abfd)
2561 {
2562 memset (cache->indx, -1, sizeof (cache->indx));
2563 cache->abfd = abfd;
2564 }
2565 cache->indx[ent] = r_symndx;
2566 }
2567
2568 return &cache->sym[ent];
2569 }
2570
2571 /* Given an ELF section number, retrieve the corresponding BFD
2572 section. */
2573
2574 asection *
2575 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2576 {
2577 if (sec_index >= elf_numsections (abfd))
2578 return NULL;
2579 return elf_elfsections (abfd)[sec_index]->bfd_section;
2580 }
2581
2582 static const struct bfd_elf_special_section special_sections_b[] =
2583 {
2584 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2585 { NULL, 0, 0, 0, 0 }
2586 };
2587
2588 static const struct bfd_elf_special_section special_sections_c[] =
2589 {
2590 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2591 { NULL, 0, 0, 0, 0 }
2592 };
2593
2594 static const struct bfd_elf_special_section special_sections_d[] =
2595 {
2596 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2597 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2598 /* There are more DWARF sections than these, but they needn't be added here
2599 unless you have to cope with broken compilers that don't emit section
2600 attributes or you want to help the user writing assembler. */
2601 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2602 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2603 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2604 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2605 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2606 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2607 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2608 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2609 { NULL, 0, 0, 0, 0 }
2610 };
2611
2612 static const struct bfd_elf_special_section special_sections_f[] =
2613 {
2614 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2615 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2616 { NULL, 0 , 0, 0, 0 }
2617 };
2618
2619 static const struct bfd_elf_special_section special_sections_g[] =
2620 {
2621 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2622 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2623 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2624 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2625 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2626 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2627 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2628 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2629 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2630 { NULL, 0, 0, 0, 0 }
2631 };
2632
2633 static const struct bfd_elf_special_section special_sections_h[] =
2634 {
2635 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2636 { NULL, 0, 0, 0, 0 }
2637 };
2638
2639 static const struct bfd_elf_special_section special_sections_i[] =
2640 {
2641 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2642 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2643 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2644 { NULL, 0, 0, 0, 0 }
2645 };
2646
2647 static const struct bfd_elf_special_section special_sections_l[] =
2648 {
2649 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2650 { NULL, 0, 0, 0, 0 }
2651 };
2652
2653 static const struct bfd_elf_special_section special_sections_n[] =
2654 {
2655 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2656 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2657 { NULL, 0, 0, 0, 0 }
2658 };
2659
2660 static const struct bfd_elf_special_section special_sections_p[] =
2661 {
2662 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2663 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2664 { NULL, 0, 0, 0, 0 }
2665 };
2666
2667 static const struct bfd_elf_special_section special_sections_r[] =
2668 {
2669 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2670 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2671 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2672 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2673 { NULL, 0, 0, 0, 0 }
2674 };
2675
2676 static const struct bfd_elf_special_section special_sections_s[] =
2677 {
2678 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2679 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2680 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2681 /* See struct bfd_elf_special_section declaration for the semantics of
2682 this special case where .prefix_length != strlen (.prefix). */
2683 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2684 { NULL, 0, 0, 0, 0 }
2685 };
2686
2687 static const struct bfd_elf_special_section special_sections_t[] =
2688 {
2689 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2690 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2691 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2692 { NULL, 0, 0, 0, 0 }
2693 };
2694
2695 static const struct bfd_elf_special_section special_sections_z[] =
2696 {
2697 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2698 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2699 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2700 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2701 { NULL, 0, 0, 0, 0 }
2702 };
2703
2704 static const struct bfd_elf_special_section * const special_sections[] =
2705 {
2706 special_sections_b, /* 'b' */
2707 special_sections_c, /* 'c' */
2708 special_sections_d, /* 'd' */
2709 NULL, /* 'e' */
2710 special_sections_f, /* 'f' */
2711 special_sections_g, /* 'g' */
2712 special_sections_h, /* 'h' */
2713 special_sections_i, /* 'i' */
2714 NULL, /* 'j' */
2715 NULL, /* 'k' */
2716 special_sections_l, /* 'l' */
2717 NULL, /* 'm' */
2718 special_sections_n, /* 'n' */
2719 NULL, /* 'o' */
2720 special_sections_p, /* 'p' */
2721 NULL, /* 'q' */
2722 special_sections_r, /* 'r' */
2723 special_sections_s, /* 's' */
2724 special_sections_t, /* 't' */
2725 NULL, /* 'u' */
2726 NULL, /* 'v' */
2727 NULL, /* 'w' */
2728 NULL, /* 'x' */
2729 NULL, /* 'y' */
2730 special_sections_z /* 'z' */
2731 };
2732
2733 const struct bfd_elf_special_section *
2734 _bfd_elf_get_special_section (const char *name,
2735 const struct bfd_elf_special_section *spec,
2736 unsigned int rela)
2737 {
2738 int i;
2739 int len;
2740
2741 len = strlen (name);
2742
2743 for (i = 0; spec[i].prefix != NULL; i++)
2744 {
2745 int suffix_len;
2746 int prefix_len = spec[i].prefix_length;
2747
2748 if (len < prefix_len)
2749 continue;
2750 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2751 continue;
2752
2753 suffix_len = spec[i].suffix_length;
2754 if (suffix_len <= 0)
2755 {
2756 if (name[prefix_len] != 0)
2757 {
2758 if (suffix_len == 0)
2759 continue;
2760 if (name[prefix_len] != '.'
2761 && (suffix_len == -2
2762 || (rela && spec[i].type == SHT_REL)))
2763 continue;
2764 }
2765 }
2766 else
2767 {
2768 if (len < prefix_len + suffix_len)
2769 continue;
2770 if (memcmp (name + len - suffix_len,
2771 spec[i].prefix + prefix_len,
2772 suffix_len) != 0)
2773 continue;
2774 }
2775 return &spec[i];
2776 }
2777
2778 return NULL;
2779 }
2780
2781 const struct bfd_elf_special_section *
2782 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2783 {
2784 int i;
2785 const struct bfd_elf_special_section *spec;
2786 const struct elf_backend_data *bed;
2787
2788 /* See if this is one of the special sections. */
2789 if (sec->name == NULL)
2790 return NULL;
2791
2792 bed = get_elf_backend_data (abfd);
2793 spec = bed->special_sections;
2794 if (spec)
2795 {
2796 spec = _bfd_elf_get_special_section (sec->name,
2797 bed->special_sections,
2798 sec->use_rela_p);
2799 if (spec != NULL)
2800 return spec;
2801 }
2802
2803 if (sec->name[0] != '.')
2804 return NULL;
2805
2806 i = sec->name[1] - 'b';
2807 if (i < 0 || i > 'z' - 'b')
2808 return NULL;
2809
2810 spec = special_sections[i];
2811
2812 if (spec == NULL)
2813 return NULL;
2814
2815 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2816 }
2817
2818 bfd_boolean
2819 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2820 {
2821 struct bfd_elf_section_data *sdata;
2822 const struct elf_backend_data *bed;
2823 const struct bfd_elf_special_section *ssect;
2824
2825 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2826 if (sdata == NULL)
2827 {
2828 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2829 sizeof (*sdata));
2830 if (sdata == NULL)
2831 return FALSE;
2832 sec->used_by_bfd = sdata;
2833 }
2834
2835 /* Indicate whether or not this section should use RELA relocations. */
2836 bed = get_elf_backend_data (abfd);
2837 sec->use_rela_p = bed->default_use_rela_p;
2838
2839 /* When we read a file, we don't need to set ELF section type and
2840 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2841 anyway. We will set ELF section type and flags for all linker
2842 created sections. If user specifies BFD section flags, we will
2843 set ELF section type and flags based on BFD section flags in
2844 elf_fake_sections. Special handling for .init_array/.fini_array
2845 output sections since they may contain .ctors/.dtors input
2846 sections. We don't want _bfd_elf_init_private_section_data to
2847 copy ELF section type from .ctors/.dtors input sections. */
2848 if (abfd->direction != read_direction
2849 || (sec->flags & SEC_LINKER_CREATED) != 0)
2850 {
2851 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2852 if (ssect != NULL
2853 && (!sec->flags
2854 || (sec->flags & SEC_LINKER_CREATED) != 0
2855 || ssect->type == SHT_INIT_ARRAY
2856 || ssect->type == SHT_FINI_ARRAY))
2857 {
2858 elf_section_type (sec) = ssect->type;
2859 elf_section_flags (sec) = ssect->attr;
2860 }
2861 }
2862
2863 return _bfd_generic_new_section_hook (abfd, sec);
2864 }
2865
2866 /* Create a new bfd section from an ELF program header.
2867
2868 Since program segments have no names, we generate a synthetic name
2869 of the form segment<NUM>, where NUM is generally the index in the
2870 program header table. For segments that are split (see below) we
2871 generate the names segment<NUM>a and segment<NUM>b.
2872
2873 Note that some program segments may have a file size that is different than
2874 (less than) the memory size. All this means is that at execution the
2875 system must allocate the amount of memory specified by the memory size,
2876 but only initialize it with the first "file size" bytes read from the
2877 file. This would occur for example, with program segments consisting
2878 of combined data+bss.
2879
2880 To handle the above situation, this routine generates TWO bfd sections
2881 for the single program segment. The first has the length specified by
2882 the file size of the segment, and the second has the length specified
2883 by the difference between the two sizes. In effect, the segment is split
2884 into its initialized and uninitialized parts.
2885
2886 */
2887
2888 bfd_boolean
2889 _bfd_elf_make_section_from_phdr (bfd *abfd,
2890 Elf_Internal_Phdr *hdr,
2891 int hdr_index,
2892 const char *type_name)
2893 {
2894 asection *newsect;
2895 char *name;
2896 char namebuf[64];
2897 size_t len;
2898 int split;
2899
2900 split = ((hdr->p_memsz > 0)
2901 && (hdr->p_filesz > 0)
2902 && (hdr->p_memsz > hdr->p_filesz));
2903
2904 if (hdr->p_filesz > 0)
2905 {
2906 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2907 len = strlen (namebuf) + 1;
2908 name = (char *) bfd_alloc (abfd, len);
2909 if (!name)
2910 return FALSE;
2911 memcpy (name, namebuf, len);
2912 newsect = bfd_make_section (abfd, name);
2913 if (newsect == NULL)
2914 return FALSE;
2915 newsect->vma = hdr->p_vaddr;
2916 newsect->lma = hdr->p_paddr;
2917 newsect->size = hdr->p_filesz;
2918 newsect->filepos = hdr->p_offset;
2919 newsect->flags |= SEC_HAS_CONTENTS;
2920 newsect->alignment_power = bfd_log2 (hdr->p_align);
2921 if (hdr->p_type == PT_LOAD)
2922 {
2923 newsect->flags |= SEC_ALLOC;
2924 newsect->flags |= SEC_LOAD;
2925 if (hdr->p_flags & PF_X)
2926 {
2927 /* FIXME: all we known is that it has execute PERMISSION,
2928 may be data. */
2929 newsect->flags |= SEC_CODE;
2930 }
2931 }
2932 if (!(hdr->p_flags & PF_W))
2933 {
2934 newsect->flags |= SEC_READONLY;
2935 }
2936 }
2937
2938 if (hdr->p_memsz > hdr->p_filesz)
2939 {
2940 bfd_vma align;
2941
2942 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2943 len = strlen (namebuf) + 1;
2944 name = (char *) bfd_alloc (abfd, len);
2945 if (!name)
2946 return FALSE;
2947 memcpy (name, namebuf, len);
2948 newsect = bfd_make_section (abfd, name);
2949 if (newsect == NULL)
2950 return FALSE;
2951 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2952 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2953 newsect->size = hdr->p_memsz - hdr->p_filesz;
2954 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2955 align = newsect->vma & -newsect->vma;
2956 if (align == 0 || align > hdr->p_align)
2957 align = hdr->p_align;
2958 newsect->alignment_power = bfd_log2 (align);
2959 if (hdr->p_type == PT_LOAD)
2960 {
2961 /* Hack for gdb. Segments that have not been modified do
2962 not have their contents written to a core file, on the
2963 assumption that a debugger can find the contents in the
2964 executable. We flag this case by setting the fake
2965 section size to zero. Note that "real" bss sections will
2966 always have their contents dumped to the core file. */
2967 if (bfd_get_format (abfd) == bfd_core)
2968 newsect->size = 0;
2969 newsect->flags |= SEC_ALLOC;
2970 if (hdr->p_flags & PF_X)
2971 newsect->flags |= SEC_CODE;
2972 }
2973 if (!(hdr->p_flags & PF_W))
2974 newsect->flags |= SEC_READONLY;
2975 }
2976
2977 return TRUE;
2978 }
2979
2980 bfd_boolean
2981 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2982 {
2983 const struct elf_backend_data *bed;
2984
2985 switch (hdr->p_type)
2986 {
2987 case PT_NULL:
2988 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2989
2990 case PT_LOAD:
2991 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2992
2993 case PT_DYNAMIC:
2994 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2995
2996 case PT_INTERP:
2997 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2998
2999 case PT_NOTE:
3000 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3001 return FALSE;
3002 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3003 hdr->p_align))
3004 return FALSE;
3005 return TRUE;
3006
3007 case PT_SHLIB:
3008 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3009
3010 case PT_PHDR:
3011 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3012
3013 case PT_GNU_EH_FRAME:
3014 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3015 "eh_frame_hdr");
3016
3017 case PT_GNU_STACK:
3018 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3019
3020 case PT_GNU_RELRO:
3021 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3022
3023 default:
3024 /* Check for any processor-specific program segment types. */
3025 bed = get_elf_backend_data (abfd);
3026 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3027 }
3028 }
3029
3030 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3031 REL or RELA. */
3032
3033 Elf_Internal_Shdr *
3034 _bfd_elf_single_rel_hdr (asection *sec)
3035 {
3036 if (elf_section_data (sec)->rel.hdr)
3037 {
3038 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3039 return elf_section_data (sec)->rel.hdr;
3040 }
3041 else
3042 return elf_section_data (sec)->rela.hdr;
3043 }
3044
3045 static bfd_boolean
3046 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3047 Elf_Internal_Shdr *rel_hdr,
3048 const char *sec_name,
3049 bfd_boolean use_rela_p)
3050 {
3051 char *name = (char *) bfd_alloc (abfd,
3052 sizeof ".rela" + strlen (sec_name));
3053 if (name == NULL)
3054 return FALSE;
3055
3056 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3057 rel_hdr->sh_name =
3058 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3059 FALSE);
3060 if (rel_hdr->sh_name == (unsigned int) -1)
3061 return FALSE;
3062
3063 return TRUE;
3064 }
3065
3066 /* Allocate and initialize a section-header for a new reloc section,
3067 containing relocations against ASECT. It is stored in RELDATA. If
3068 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3069 relocations. */
3070
3071 static bfd_boolean
3072 _bfd_elf_init_reloc_shdr (bfd *abfd,
3073 struct bfd_elf_section_reloc_data *reldata,
3074 const char *sec_name,
3075 bfd_boolean use_rela_p,
3076 bfd_boolean delay_st_name_p)
3077 {
3078 Elf_Internal_Shdr *rel_hdr;
3079 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3080
3081 BFD_ASSERT (reldata->hdr == NULL);
3082 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3083 reldata->hdr = rel_hdr;
3084
3085 if (delay_st_name_p)
3086 rel_hdr->sh_name = (unsigned int) -1;
3087 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3088 use_rela_p))
3089 return FALSE;
3090 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3091 rel_hdr->sh_entsize = (use_rela_p
3092 ? bed->s->sizeof_rela
3093 : bed->s->sizeof_rel);
3094 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3095 rel_hdr->sh_flags = 0;
3096 rel_hdr->sh_addr = 0;
3097 rel_hdr->sh_size = 0;
3098 rel_hdr->sh_offset = 0;
3099
3100 return TRUE;
3101 }
3102
3103 /* Return the default section type based on the passed in section flags. */
3104
3105 int
3106 bfd_elf_get_default_section_type (flagword flags)
3107 {
3108 if ((flags & SEC_ALLOC) != 0
3109 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3110 return SHT_NOBITS;
3111 return SHT_PROGBITS;
3112 }
3113
3114 struct fake_section_arg
3115 {
3116 struct bfd_link_info *link_info;
3117 bfd_boolean failed;
3118 };
3119
3120 /* Set up an ELF internal section header for a section. */
3121
3122 static void
3123 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3124 {
3125 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3126 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3127 struct bfd_elf_section_data *esd = elf_section_data (asect);
3128 Elf_Internal_Shdr *this_hdr;
3129 unsigned int sh_type;
3130 const char *name = asect->name;
3131 bfd_boolean delay_st_name_p = FALSE;
3132
3133 if (arg->failed)
3134 {
3135 /* We already failed; just get out of the bfd_map_over_sections
3136 loop. */
3137 return;
3138 }
3139
3140 this_hdr = &esd->this_hdr;
3141
3142 if (arg->link_info)
3143 {
3144 /* ld: compress DWARF debug sections with names: .debug_*. */
3145 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3146 && (asect->flags & SEC_DEBUGGING)
3147 && name[1] == 'd'
3148 && name[6] == '_')
3149 {
3150 /* Set SEC_ELF_COMPRESS to indicate this section should be
3151 compressed. */
3152 asect->flags |= SEC_ELF_COMPRESS;
3153
3154 /* If this section will be compressed, delay adding section
3155 name to section name section after it is compressed in
3156 _bfd_elf_assign_file_positions_for_non_load. */
3157 delay_st_name_p = TRUE;
3158 }
3159 }
3160 else if ((asect->flags & SEC_ELF_RENAME))
3161 {
3162 /* objcopy: rename output DWARF debug section. */
3163 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3164 {
3165 /* When we decompress or compress with SHF_COMPRESSED,
3166 convert section name from .zdebug_* to .debug_* if
3167 needed. */
3168 if (name[1] == 'z')
3169 {
3170 char *new_name = convert_zdebug_to_debug (abfd, name);
3171 if (new_name == NULL)
3172 {
3173 arg->failed = TRUE;
3174 return;
3175 }
3176 name = new_name;
3177 }
3178 }
3179 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3180 {
3181 /* PR binutils/18087: Compression does not always make a
3182 section smaller. So only rename the section when
3183 compression has actually taken place. If input section
3184 name is .zdebug_*, we should never compress it again. */
3185 char *new_name = convert_debug_to_zdebug (abfd, name);
3186 if (new_name == NULL)
3187 {
3188 arg->failed = TRUE;
3189 return;
3190 }
3191 BFD_ASSERT (name[1] != 'z');
3192 name = new_name;
3193 }
3194 }
3195
3196 if (delay_st_name_p)
3197 this_hdr->sh_name = (unsigned int) -1;
3198 else
3199 {
3200 this_hdr->sh_name
3201 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3202 name, FALSE);
3203 if (this_hdr->sh_name == (unsigned int) -1)
3204 {
3205 arg->failed = TRUE;
3206 return;
3207 }
3208 }
3209
3210 /* Don't clear sh_flags. Assembler may set additional bits. */
3211
3212 if ((asect->flags & SEC_ALLOC) != 0
3213 || asect->user_set_vma)
3214 this_hdr->sh_addr = asect->vma;
3215 else
3216 this_hdr->sh_addr = 0;
3217
3218 this_hdr->sh_offset = 0;
3219 this_hdr->sh_size = asect->size;
3220 this_hdr->sh_link = 0;
3221 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3222 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3223 {
3224 _bfd_error_handler
3225 /* xgettext:c-format */
3226 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3227 abfd, asect->alignment_power, asect);
3228 arg->failed = TRUE;
3229 return;
3230 }
3231 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3232 /* The sh_entsize and sh_info fields may have been set already by
3233 copy_private_section_data. */
3234
3235 this_hdr->bfd_section = asect;
3236 this_hdr->contents = NULL;
3237
3238 /* If the section type is unspecified, we set it based on
3239 asect->flags. */
3240 if ((asect->flags & SEC_GROUP) != 0)
3241 sh_type = SHT_GROUP;
3242 else
3243 sh_type = bfd_elf_get_default_section_type (asect->flags);
3244
3245 if (this_hdr->sh_type == SHT_NULL)
3246 this_hdr->sh_type = sh_type;
3247 else if (this_hdr->sh_type == SHT_NOBITS
3248 && sh_type == SHT_PROGBITS
3249 && (asect->flags & SEC_ALLOC) != 0)
3250 {
3251 /* Warn if we are changing a NOBITS section to PROGBITS, but
3252 allow the link to proceed. This can happen when users link
3253 non-bss input sections to bss output sections, or emit data
3254 to a bss output section via a linker script. */
3255 _bfd_error_handler
3256 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3257 this_hdr->sh_type = sh_type;
3258 }
3259
3260 switch (this_hdr->sh_type)
3261 {
3262 default:
3263 break;
3264
3265 case SHT_STRTAB:
3266 case SHT_NOTE:
3267 case SHT_NOBITS:
3268 case SHT_PROGBITS:
3269 break;
3270
3271 case SHT_INIT_ARRAY:
3272 case SHT_FINI_ARRAY:
3273 case SHT_PREINIT_ARRAY:
3274 this_hdr->sh_entsize = bed->s->arch_size / 8;
3275 break;
3276
3277 case SHT_HASH:
3278 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3279 break;
3280
3281 case SHT_DYNSYM:
3282 this_hdr->sh_entsize = bed->s->sizeof_sym;
3283 break;
3284
3285 case SHT_DYNAMIC:
3286 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3287 break;
3288
3289 case SHT_RELA:
3290 if (get_elf_backend_data (abfd)->may_use_rela_p)
3291 this_hdr->sh_entsize = bed->s->sizeof_rela;
3292 break;
3293
3294 case SHT_REL:
3295 if (get_elf_backend_data (abfd)->may_use_rel_p)
3296 this_hdr->sh_entsize = bed->s->sizeof_rel;
3297 break;
3298
3299 case SHT_GNU_versym:
3300 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3301 break;
3302
3303 case SHT_GNU_verdef:
3304 this_hdr->sh_entsize = 0;
3305 /* objcopy or strip will copy over sh_info, but may not set
3306 cverdefs. The linker will set cverdefs, but sh_info will be
3307 zero. */
3308 if (this_hdr->sh_info == 0)
3309 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3310 else
3311 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3312 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3313 break;
3314
3315 case SHT_GNU_verneed:
3316 this_hdr->sh_entsize = 0;
3317 /* objcopy or strip will copy over sh_info, but may not set
3318 cverrefs. The linker will set cverrefs, but sh_info will be
3319 zero. */
3320 if (this_hdr->sh_info == 0)
3321 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3322 else
3323 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3324 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3325 break;
3326
3327 case SHT_GROUP:
3328 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3329 break;
3330
3331 case SHT_GNU_HASH:
3332 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3333 break;
3334 }
3335
3336 if ((asect->flags & SEC_ALLOC) != 0)
3337 this_hdr->sh_flags |= SHF_ALLOC;
3338 if ((asect->flags & SEC_READONLY) == 0)
3339 this_hdr->sh_flags |= SHF_WRITE;
3340 if ((asect->flags & SEC_CODE) != 0)
3341 this_hdr->sh_flags |= SHF_EXECINSTR;
3342 if ((asect->flags & SEC_MERGE) != 0)
3343 {
3344 this_hdr->sh_flags |= SHF_MERGE;
3345 this_hdr->sh_entsize = asect->entsize;
3346 }
3347 if ((asect->flags & SEC_STRINGS) != 0)
3348 this_hdr->sh_flags |= SHF_STRINGS;
3349 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3350 this_hdr->sh_flags |= SHF_GROUP;
3351 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3352 {
3353 this_hdr->sh_flags |= SHF_TLS;
3354 if (asect->size == 0
3355 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3356 {
3357 struct bfd_link_order *o = asect->map_tail.link_order;
3358
3359 this_hdr->sh_size = 0;
3360 if (o != NULL)
3361 {
3362 this_hdr->sh_size = o->offset + o->size;
3363 if (this_hdr->sh_size != 0)
3364 this_hdr->sh_type = SHT_NOBITS;
3365 }
3366 }
3367 }
3368 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3369 this_hdr->sh_flags |= SHF_EXCLUDE;
3370
3371 /* If the section has relocs, set up a section header for the
3372 SHT_REL[A] section. If two relocation sections are required for
3373 this section, it is up to the processor-specific back-end to
3374 create the other. */
3375 if ((asect->flags & SEC_RELOC) != 0)
3376 {
3377 /* When doing a relocatable link, create both REL and RELA sections if
3378 needed. */
3379 if (arg->link_info
3380 /* Do the normal setup if we wouldn't create any sections here. */
3381 && esd->rel.count + esd->rela.count > 0
3382 && (bfd_link_relocatable (arg->link_info)
3383 || arg->link_info->emitrelocations))
3384 {
3385 if (esd->rel.count && esd->rel.hdr == NULL
3386 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3387 FALSE, delay_st_name_p))
3388 {
3389 arg->failed = TRUE;
3390 return;
3391 }
3392 if (esd->rela.count && esd->rela.hdr == NULL
3393 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3394 TRUE, delay_st_name_p))
3395 {
3396 arg->failed = TRUE;
3397 return;
3398 }
3399 }
3400 else if (!_bfd_elf_init_reloc_shdr (abfd,
3401 (asect->use_rela_p
3402 ? &esd->rela : &esd->rel),
3403 name,
3404 asect->use_rela_p,
3405 delay_st_name_p))
3406 {
3407 arg->failed = TRUE;
3408 return;
3409 }
3410 }
3411
3412 /* Check for processor-specific section types. */
3413 sh_type = this_hdr->sh_type;
3414 if (bed->elf_backend_fake_sections
3415 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3416 {
3417 arg->failed = TRUE;
3418 return;
3419 }
3420
3421 if (sh_type == SHT_NOBITS && asect->size != 0)
3422 {
3423 /* Don't change the header type from NOBITS if we are being
3424 called for objcopy --only-keep-debug. */
3425 this_hdr->sh_type = sh_type;
3426 }
3427 }
3428
3429 /* Fill in the contents of a SHT_GROUP section. Called from
3430 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3431 when ELF targets use the generic linker, ld. Called for ld -r
3432 from bfd_elf_final_link. */
3433
3434 void
3435 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3436 {
3437 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3438 asection *elt, *first;
3439 unsigned char *loc;
3440 bfd_boolean gas;
3441
3442 /* Ignore linker created group section. See elfNN_ia64_object_p in
3443 elfxx-ia64.c. */
3444 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3445 || *failedptr)
3446 return;
3447
3448 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3449 {
3450 unsigned long symindx = 0;
3451
3452 /* elf_group_id will have been set up by objcopy and the
3453 generic linker. */
3454 if (elf_group_id (sec) != NULL)
3455 symindx = elf_group_id (sec)->udata.i;
3456
3457 if (symindx == 0)
3458 {
3459 /* If called from the assembler, swap_out_syms will have set up
3460 elf_section_syms. */
3461 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3462 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3463 }
3464 elf_section_data (sec)->this_hdr.sh_info = symindx;
3465 }
3466 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3467 {
3468 /* The ELF backend linker sets sh_info to -2 when the group
3469 signature symbol is global, and thus the index can't be
3470 set until all local symbols are output. */
3471 asection *igroup;
3472 struct bfd_elf_section_data *sec_data;
3473 unsigned long symndx;
3474 unsigned long extsymoff;
3475 struct elf_link_hash_entry *h;
3476
3477 /* The point of this little dance to the first SHF_GROUP section
3478 then back to the SHT_GROUP section is that this gets us to
3479 the SHT_GROUP in the input object. */
3480 igroup = elf_sec_group (elf_next_in_group (sec));
3481 sec_data = elf_section_data (igroup);
3482 symndx = sec_data->this_hdr.sh_info;
3483 extsymoff = 0;
3484 if (!elf_bad_symtab (igroup->owner))
3485 {
3486 Elf_Internal_Shdr *symtab_hdr;
3487
3488 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3489 extsymoff = symtab_hdr->sh_info;
3490 }
3491 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3492 while (h->root.type == bfd_link_hash_indirect
3493 || h->root.type == bfd_link_hash_warning)
3494 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3495
3496 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3497 }
3498
3499 /* The contents won't be allocated for "ld -r" or objcopy. */
3500 gas = TRUE;
3501 if (sec->contents == NULL)
3502 {
3503 gas = FALSE;
3504 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3505
3506 /* Arrange for the section to be written out. */
3507 elf_section_data (sec)->this_hdr.contents = sec->contents;
3508 if (sec->contents == NULL)
3509 {
3510 *failedptr = TRUE;
3511 return;
3512 }
3513 }
3514
3515 loc = sec->contents + sec->size;
3516
3517 /* Get the pointer to the first section in the group that gas
3518 squirreled away here. objcopy arranges for this to be set to the
3519 start of the input section group. */
3520 first = elt = elf_next_in_group (sec);
3521
3522 /* First element is a flag word. Rest of section is elf section
3523 indices for all the sections of the group. Write them backwards
3524 just to keep the group in the same order as given in .section
3525 directives, not that it matters. */
3526 while (elt != NULL)
3527 {
3528 asection *s;
3529
3530 s = elt;
3531 if (!gas)
3532 s = s->output_section;
3533 if (s != NULL
3534 && !bfd_is_abs_section (s))
3535 {
3536 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3537 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3538
3539 if (elf_sec->rel.hdr != NULL
3540 && (gas
3541 || (input_elf_sec->rel.hdr != NULL
3542 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3543 {
3544 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3545 loc -= 4;
3546 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3547 }
3548 if (elf_sec->rela.hdr != NULL
3549 && (gas
3550 || (input_elf_sec->rela.hdr != NULL
3551 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3552 {
3553 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3554 loc -= 4;
3555 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3556 }
3557 loc -= 4;
3558 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3559 }
3560 elt = elf_next_in_group (elt);
3561 if (elt == first)
3562 break;
3563 }
3564
3565 loc -= 4;
3566 BFD_ASSERT (loc == sec->contents);
3567
3568 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3569 }
3570
3571 /* Given NAME, the name of a relocation section stripped of its
3572 .rel/.rela prefix, return the section in ABFD to which the
3573 relocations apply. */
3574
3575 asection *
3576 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3577 {
3578 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3579 section likely apply to .got.plt or .got section. */
3580 if (get_elf_backend_data (abfd)->want_got_plt
3581 && strcmp (name, ".plt") == 0)
3582 {
3583 asection *sec;
3584
3585 name = ".got.plt";
3586 sec = bfd_get_section_by_name (abfd, name);
3587 if (sec != NULL)
3588 return sec;
3589 name = ".got";
3590 }
3591
3592 return bfd_get_section_by_name (abfd, name);
3593 }
3594
3595 /* Return the section to which RELOC_SEC applies. */
3596
3597 static asection *
3598 elf_get_reloc_section (asection *reloc_sec)
3599 {
3600 const char *name;
3601 unsigned int type;
3602 bfd *abfd;
3603 const struct elf_backend_data *bed;
3604
3605 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3606 if (type != SHT_REL && type != SHT_RELA)
3607 return NULL;
3608
3609 /* We look up the section the relocs apply to by name. */
3610 name = reloc_sec->name;
3611 if (strncmp (name, ".rel", 4) != 0)
3612 return NULL;
3613 name += 4;
3614 if (type == SHT_RELA && *name++ != 'a')
3615 return NULL;
3616
3617 abfd = reloc_sec->owner;
3618 bed = get_elf_backend_data (abfd);
3619 return bed->get_reloc_section (abfd, name);
3620 }
3621
3622 /* Assign all ELF section numbers. The dummy first section is handled here
3623 too. The link/info pointers for the standard section types are filled
3624 in here too, while we're at it. */
3625
3626 static bfd_boolean
3627 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3628 {
3629 struct elf_obj_tdata *t = elf_tdata (abfd);
3630 asection *sec;
3631 unsigned int section_number;
3632 Elf_Internal_Shdr **i_shdrp;
3633 struct bfd_elf_section_data *d;
3634 bfd_boolean need_symtab;
3635
3636 section_number = 1;
3637
3638 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3639
3640 /* SHT_GROUP sections are in relocatable files only. */
3641 if (link_info == NULL || !link_info->resolve_section_groups)
3642 {
3643 size_t reloc_count = 0;
3644
3645 /* Put SHT_GROUP sections first. */
3646 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3647 {
3648 d = elf_section_data (sec);
3649
3650 if (d->this_hdr.sh_type == SHT_GROUP)
3651 {
3652 if (sec->flags & SEC_LINKER_CREATED)
3653 {
3654 /* Remove the linker created SHT_GROUP sections. */
3655 bfd_section_list_remove (abfd, sec);
3656 abfd->section_count--;
3657 }
3658 else
3659 d->this_idx = section_number++;
3660 }
3661
3662 /* Count relocations. */
3663 reloc_count += sec->reloc_count;
3664 }
3665
3666 /* Clear HAS_RELOC if there are no relocations. */
3667 if (reloc_count == 0)
3668 abfd->flags &= ~HAS_RELOC;
3669 }
3670
3671 for (sec = abfd->sections; sec; sec = sec->next)
3672 {
3673 d = elf_section_data (sec);
3674
3675 if (d->this_hdr.sh_type != SHT_GROUP)
3676 d->this_idx = section_number++;
3677 if (d->this_hdr.sh_name != (unsigned int) -1)
3678 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3679 if (d->rel.hdr)
3680 {
3681 d->rel.idx = section_number++;
3682 if (d->rel.hdr->sh_name != (unsigned int) -1)
3683 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3684 }
3685 else
3686 d->rel.idx = 0;
3687
3688 if (d->rela.hdr)
3689 {
3690 d->rela.idx = section_number++;
3691 if (d->rela.hdr->sh_name != (unsigned int) -1)
3692 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3693 }
3694 else
3695 d->rela.idx = 0;
3696 }
3697
3698 need_symtab = (bfd_get_symcount (abfd) > 0
3699 || (link_info == NULL
3700 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3701 == HAS_RELOC)));
3702 if (need_symtab)
3703 {
3704 elf_onesymtab (abfd) = section_number++;
3705 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3706 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3707 {
3708 elf_section_list * entry;
3709
3710 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3711
3712 entry = bfd_zalloc (abfd, sizeof * entry);
3713 entry->ndx = section_number++;
3714 elf_symtab_shndx_list (abfd) = entry;
3715 entry->hdr.sh_name
3716 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3717 ".symtab_shndx", FALSE);
3718 if (entry->hdr.sh_name == (unsigned int) -1)
3719 return FALSE;
3720 }
3721 elf_strtab_sec (abfd) = section_number++;
3722 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3723 }
3724
3725 elf_shstrtab_sec (abfd) = section_number++;
3726 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3727 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3728
3729 if (section_number >= SHN_LORESERVE)
3730 {
3731 /* xgettext:c-format */
3732 _bfd_error_handler (_("%pB: too many sections: %u"),
3733 abfd, section_number);
3734 return FALSE;
3735 }
3736
3737 elf_numsections (abfd) = section_number;
3738 elf_elfheader (abfd)->e_shnum = section_number;
3739
3740 /* Set up the list of section header pointers, in agreement with the
3741 indices. */
3742 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3743 sizeof (Elf_Internal_Shdr *));
3744 if (i_shdrp == NULL)
3745 return FALSE;
3746
3747 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3748 sizeof (Elf_Internal_Shdr));
3749 if (i_shdrp[0] == NULL)
3750 {
3751 bfd_release (abfd, i_shdrp);
3752 return FALSE;
3753 }
3754
3755 elf_elfsections (abfd) = i_shdrp;
3756
3757 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3758 if (need_symtab)
3759 {
3760 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3761 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3762 {
3763 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3764 BFD_ASSERT (entry != NULL);
3765 i_shdrp[entry->ndx] = & entry->hdr;
3766 entry->hdr.sh_link = elf_onesymtab (abfd);
3767 }
3768 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3769 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3770 }
3771
3772 for (sec = abfd->sections; sec; sec = sec->next)
3773 {
3774 asection *s;
3775
3776 d = elf_section_data (sec);
3777
3778 i_shdrp[d->this_idx] = &d->this_hdr;
3779 if (d->rel.idx != 0)
3780 i_shdrp[d->rel.idx] = d->rel.hdr;
3781 if (d->rela.idx != 0)
3782 i_shdrp[d->rela.idx] = d->rela.hdr;
3783
3784 /* Fill in the sh_link and sh_info fields while we're at it. */
3785
3786 /* sh_link of a reloc section is the section index of the symbol
3787 table. sh_info is the section index of the section to which
3788 the relocation entries apply. */
3789 if (d->rel.idx != 0)
3790 {
3791 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3792 d->rel.hdr->sh_info = d->this_idx;
3793 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3794 }
3795 if (d->rela.idx != 0)
3796 {
3797 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3798 d->rela.hdr->sh_info = d->this_idx;
3799 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3800 }
3801
3802 /* We need to set up sh_link for SHF_LINK_ORDER. */
3803 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3804 {
3805 s = elf_linked_to_section (sec);
3806 if (s)
3807 {
3808 /* elf_linked_to_section points to the input section. */
3809 if (link_info != NULL)
3810 {
3811 /* Check discarded linkonce section. */
3812 if (discarded_section (s))
3813 {
3814 asection *kept;
3815 _bfd_error_handler
3816 /* xgettext:c-format */
3817 (_("%pB: sh_link of section `%pA' points to"
3818 " discarded section `%pA' of `%pB'"),
3819 abfd, d->this_hdr.bfd_section,
3820 s, s->owner);
3821 /* Point to the kept section if it has the same
3822 size as the discarded one. */
3823 kept = _bfd_elf_check_kept_section (s, link_info);
3824 if (kept == NULL)
3825 {
3826 bfd_set_error (bfd_error_bad_value);
3827 return FALSE;
3828 }
3829 s = kept;
3830 }
3831
3832 s = s->output_section;
3833 BFD_ASSERT (s != NULL);
3834 }
3835 else
3836 {
3837 /* Handle objcopy. */
3838 if (s->output_section == NULL)
3839 {
3840 _bfd_error_handler
3841 /* xgettext:c-format */
3842 (_("%pB: sh_link of section `%pA' points to"
3843 " removed section `%pA' of `%pB'"),
3844 abfd, d->this_hdr.bfd_section, s, s->owner);
3845 bfd_set_error (bfd_error_bad_value);
3846 return FALSE;
3847 }
3848 s = s->output_section;
3849 }
3850 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3851 }
3852 else
3853 {
3854 /* PR 290:
3855 The Intel C compiler generates SHT_IA_64_UNWIND with
3856 SHF_LINK_ORDER. But it doesn't set the sh_link or
3857 sh_info fields. Hence we could get the situation
3858 where s is NULL. */
3859 const struct elf_backend_data *bed
3860 = get_elf_backend_data (abfd);
3861 if (bed->link_order_error_handler)
3862 bed->link_order_error_handler
3863 /* xgettext:c-format */
3864 (_("%pB: warning: sh_link not set for section `%pA'"),
3865 abfd, sec);
3866 }
3867 }
3868
3869 switch (d->this_hdr.sh_type)
3870 {
3871 case SHT_REL:
3872 case SHT_RELA:
3873 /* A reloc section which we are treating as a normal BFD
3874 section. sh_link is the section index of the symbol
3875 table. sh_info is the section index of the section to
3876 which the relocation entries apply. We assume that an
3877 allocated reloc section uses the dynamic symbol table.
3878 FIXME: How can we be sure? */
3879 s = bfd_get_section_by_name (abfd, ".dynsym");
3880 if (s != NULL)
3881 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3882
3883 s = elf_get_reloc_section (sec);
3884 if (s != NULL)
3885 {
3886 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3887 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3888 }
3889 break;
3890
3891 case SHT_STRTAB:
3892 /* We assume that a section named .stab*str is a stabs
3893 string section. We look for a section with the same name
3894 but without the trailing ``str'', and set its sh_link
3895 field to point to this section. */
3896 if (CONST_STRNEQ (sec->name, ".stab")
3897 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3898 {
3899 size_t len;
3900 char *alc;
3901
3902 len = strlen (sec->name);
3903 alc = (char *) bfd_malloc (len - 2);
3904 if (alc == NULL)
3905 return FALSE;
3906 memcpy (alc, sec->name, len - 3);
3907 alc[len - 3] = '\0';
3908 s = bfd_get_section_by_name (abfd, alc);
3909 free (alc);
3910 if (s != NULL)
3911 {
3912 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3913
3914 /* This is a .stab section. */
3915 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3916 elf_section_data (s)->this_hdr.sh_entsize
3917 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3918 }
3919 }
3920 break;
3921
3922 case SHT_DYNAMIC:
3923 case SHT_DYNSYM:
3924 case SHT_GNU_verneed:
3925 case SHT_GNU_verdef:
3926 /* sh_link is the section header index of the string table
3927 used for the dynamic entries, or the symbol table, or the
3928 version strings. */
3929 s = bfd_get_section_by_name (abfd, ".dynstr");
3930 if (s != NULL)
3931 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3932 break;
3933
3934 case SHT_GNU_LIBLIST:
3935 /* sh_link is the section header index of the prelink library
3936 list used for the dynamic entries, or the symbol table, or
3937 the version strings. */
3938 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3939 ? ".dynstr" : ".gnu.libstr");
3940 if (s != NULL)
3941 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3942 break;
3943
3944 case SHT_HASH:
3945 case SHT_GNU_HASH:
3946 case SHT_GNU_versym:
3947 /* sh_link is the section header index of the symbol table
3948 this hash table or version table is for. */
3949 s = bfd_get_section_by_name (abfd, ".dynsym");
3950 if (s != NULL)
3951 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3952 break;
3953
3954 case SHT_GROUP:
3955 d->this_hdr.sh_link = elf_onesymtab (abfd);
3956 }
3957 }
3958
3959 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3960 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3961 debug section name from .debug_* to .zdebug_* if needed. */
3962
3963 return TRUE;
3964 }
3965
3966 static bfd_boolean
3967 sym_is_global (bfd *abfd, asymbol *sym)
3968 {
3969 /* If the backend has a special mapping, use it. */
3970 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3971 if (bed->elf_backend_sym_is_global)
3972 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3973
3974 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3975 || bfd_is_und_section (bfd_get_section (sym))
3976 || bfd_is_com_section (bfd_get_section (sym)));
3977 }
3978
3979 /* Filter global symbols of ABFD to include in the import library. All
3980 SYMCOUNT symbols of ABFD can be examined from their pointers in
3981 SYMS. Pointers of symbols to keep should be stored contiguously at
3982 the beginning of that array.
3983
3984 Returns the number of symbols to keep. */
3985
3986 unsigned int
3987 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3988 asymbol **syms, long symcount)
3989 {
3990 long src_count, dst_count = 0;
3991
3992 for (src_count = 0; src_count < symcount; src_count++)
3993 {
3994 asymbol *sym = syms[src_count];
3995 char *name = (char *) bfd_asymbol_name (sym);
3996 struct bfd_link_hash_entry *h;
3997
3998 if (!sym_is_global (abfd, sym))
3999 continue;
4000
4001 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4002 if (h == NULL)
4003 continue;
4004 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4005 continue;
4006 if (h->linker_def || h->ldscript_def)
4007 continue;
4008
4009 syms[dst_count++] = sym;
4010 }
4011
4012 syms[dst_count] = NULL;
4013
4014 return dst_count;
4015 }
4016
4017 /* Don't output section symbols for sections that are not going to be
4018 output, that are duplicates or there is no BFD section. */
4019
4020 static bfd_boolean
4021 ignore_section_sym (bfd *abfd, asymbol *sym)
4022 {
4023 elf_symbol_type *type_ptr;
4024
4025 if ((sym->flags & BSF_SECTION_SYM) == 0)
4026 return FALSE;
4027
4028 type_ptr = elf_symbol_from (abfd, sym);
4029 return ((type_ptr != NULL
4030 && type_ptr->internal_elf_sym.st_shndx != 0
4031 && bfd_is_abs_section (sym->section))
4032 || !(sym->section->owner == abfd
4033 || (sym->section->output_section->owner == abfd
4034 && sym->section->output_offset == 0)
4035 || bfd_is_abs_section (sym->section)));
4036 }
4037
4038 /* Map symbol from it's internal number to the external number, moving
4039 all local symbols to be at the head of the list. */
4040
4041 static bfd_boolean
4042 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4043 {
4044 unsigned int symcount = bfd_get_symcount (abfd);
4045 asymbol **syms = bfd_get_outsymbols (abfd);
4046 asymbol **sect_syms;
4047 unsigned int num_locals = 0;
4048 unsigned int num_globals = 0;
4049 unsigned int num_locals2 = 0;
4050 unsigned int num_globals2 = 0;
4051 unsigned int max_index = 0;
4052 unsigned int idx;
4053 asection *asect;
4054 asymbol **new_syms;
4055
4056 #ifdef DEBUG
4057 fprintf (stderr, "elf_map_symbols\n");
4058 fflush (stderr);
4059 #endif
4060
4061 for (asect = abfd->sections; asect; asect = asect->next)
4062 {
4063 if (max_index < asect->index)
4064 max_index = asect->index;
4065 }
4066
4067 max_index++;
4068 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4069 if (sect_syms == NULL)
4070 return FALSE;
4071 elf_section_syms (abfd) = sect_syms;
4072 elf_num_section_syms (abfd) = max_index;
4073
4074 /* Init sect_syms entries for any section symbols we have already
4075 decided to output. */
4076 for (idx = 0; idx < symcount; idx++)
4077 {
4078 asymbol *sym = syms[idx];
4079
4080 if ((sym->flags & BSF_SECTION_SYM) != 0
4081 && sym->value == 0
4082 && !ignore_section_sym (abfd, sym)
4083 && !bfd_is_abs_section (sym->section))
4084 {
4085 asection *sec = sym->section;
4086
4087 if (sec->owner != abfd)
4088 sec = sec->output_section;
4089
4090 sect_syms[sec->index] = syms[idx];
4091 }
4092 }
4093
4094 /* Classify all of the symbols. */
4095 for (idx = 0; idx < symcount; idx++)
4096 {
4097 if (sym_is_global (abfd, syms[idx]))
4098 num_globals++;
4099 else if (!ignore_section_sym (abfd, syms[idx]))
4100 num_locals++;
4101 }
4102
4103 /* We will be adding a section symbol for each normal BFD section. Most
4104 sections will already have a section symbol in outsymbols, but
4105 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4106 at least in that case. */
4107 for (asect = abfd->sections; asect; asect = asect->next)
4108 {
4109 if (sect_syms[asect->index] == NULL)
4110 {
4111 if (!sym_is_global (abfd, asect->symbol))
4112 num_locals++;
4113 else
4114 num_globals++;
4115 }
4116 }
4117
4118 /* Now sort the symbols so the local symbols are first. */
4119 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4120 sizeof (asymbol *));
4121
4122 if (new_syms == NULL)
4123 return FALSE;
4124
4125 for (idx = 0; idx < symcount; idx++)
4126 {
4127 asymbol *sym = syms[idx];
4128 unsigned int i;
4129
4130 if (sym_is_global (abfd, sym))
4131 i = num_locals + num_globals2++;
4132 else if (!ignore_section_sym (abfd, sym))
4133 i = num_locals2++;
4134 else
4135 continue;
4136 new_syms[i] = sym;
4137 sym->udata.i = i + 1;
4138 }
4139 for (asect = abfd->sections; asect; asect = asect->next)
4140 {
4141 if (sect_syms[asect->index] == NULL)
4142 {
4143 asymbol *sym = asect->symbol;
4144 unsigned int i;
4145
4146 sect_syms[asect->index] = sym;
4147 if (!sym_is_global (abfd, sym))
4148 i = num_locals2++;
4149 else
4150 i = num_locals + num_globals2++;
4151 new_syms[i] = sym;
4152 sym->udata.i = i + 1;
4153 }
4154 }
4155
4156 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4157
4158 *pnum_locals = num_locals;
4159 return TRUE;
4160 }
4161
4162 /* Align to the maximum file alignment that could be required for any
4163 ELF data structure. */
4164
4165 static inline file_ptr
4166 align_file_position (file_ptr off, int align)
4167 {
4168 return (off + align - 1) & ~(align - 1);
4169 }
4170
4171 /* Assign a file position to a section, optionally aligning to the
4172 required section alignment. */
4173
4174 file_ptr
4175 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4176 file_ptr offset,
4177 bfd_boolean align)
4178 {
4179 if (align && i_shdrp->sh_addralign > 1)
4180 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4181 i_shdrp->sh_offset = offset;
4182 if (i_shdrp->bfd_section != NULL)
4183 i_shdrp->bfd_section->filepos = offset;
4184 if (i_shdrp->sh_type != SHT_NOBITS)
4185 offset += i_shdrp->sh_size;
4186 return offset;
4187 }
4188
4189 /* Compute the file positions we are going to put the sections at, and
4190 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4191 is not NULL, this is being called by the ELF backend linker. */
4192
4193 bfd_boolean
4194 _bfd_elf_compute_section_file_positions (bfd *abfd,
4195 struct bfd_link_info *link_info)
4196 {
4197 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4198 struct fake_section_arg fsargs;
4199 bfd_boolean failed;
4200 struct elf_strtab_hash *strtab = NULL;
4201 Elf_Internal_Shdr *shstrtab_hdr;
4202 bfd_boolean need_symtab;
4203
4204 if (abfd->output_has_begun)
4205 return TRUE;
4206
4207 /* Do any elf backend specific processing first. */
4208 if (bed->elf_backend_begin_write_processing)
4209 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4210
4211 if (! prep_headers (abfd))
4212 return FALSE;
4213
4214 /* Post process the headers if necessary. */
4215 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4216
4217 fsargs.failed = FALSE;
4218 fsargs.link_info = link_info;
4219 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4220 if (fsargs.failed)
4221 return FALSE;
4222
4223 if (!assign_section_numbers (abfd, link_info))
4224 return FALSE;
4225
4226 /* The backend linker builds symbol table information itself. */
4227 need_symtab = (link_info == NULL
4228 && (bfd_get_symcount (abfd) > 0
4229 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4230 == HAS_RELOC)));
4231 if (need_symtab)
4232 {
4233 /* Non-zero if doing a relocatable link. */
4234 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4235
4236 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4237 return FALSE;
4238 }
4239
4240 failed = FALSE;
4241 if (link_info == NULL)
4242 {
4243 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4244 if (failed)
4245 return FALSE;
4246 }
4247
4248 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4249 /* sh_name was set in prep_headers. */
4250 shstrtab_hdr->sh_type = SHT_STRTAB;
4251 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4252 shstrtab_hdr->sh_addr = 0;
4253 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4254 shstrtab_hdr->sh_entsize = 0;
4255 shstrtab_hdr->sh_link = 0;
4256 shstrtab_hdr->sh_info = 0;
4257 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4258 shstrtab_hdr->sh_addralign = 1;
4259
4260 if (!assign_file_positions_except_relocs (abfd, link_info))
4261 return FALSE;
4262
4263 if (need_symtab)
4264 {
4265 file_ptr off;
4266 Elf_Internal_Shdr *hdr;
4267
4268 off = elf_next_file_pos (abfd);
4269
4270 hdr = & elf_symtab_hdr (abfd);
4271 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4272
4273 if (elf_symtab_shndx_list (abfd) != NULL)
4274 {
4275 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4276 if (hdr->sh_size != 0)
4277 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4278 /* FIXME: What about other symtab_shndx sections in the list ? */
4279 }
4280
4281 hdr = &elf_tdata (abfd)->strtab_hdr;
4282 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4283
4284 elf_next_file_pos (abfd) = off;
4285
4286 /* Now that we know where the .strtab section goes, write it
4287 out. */
4288 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4289 || ! _bfd_elf_strtab_emit (abfd, strtab))
4290 return FALSE;
4291 _bfd_elf_strtab_free (strtab);
4292 }
4293
4294 abfd->output_has_begun = TRUE;
4295
4296 return TRUE;
4297 }
4298
4299 /* Make an initial estimate of the size of the program header. If we
4300 get the number wrong here, we'll redo section placement. */
4301
4302 static bfd_size_type
4303 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4304 {
4305 size_t segs;
4306 asection *s;
4307 const struct elf_backend_data *bed;
4308
4309 /* Assume we will need exactly two PT_LOAD segments: one for text
4310 and one for data. */
4311 segs = 2;
4312
4313 s = bfd_get_section_by_name (abfd, ".interp");
4314 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4315 {
4316 /* If we have a loadable interpreter section, we need a
4317 PT_INTERP segment. In this case, assume we also need a
4318 PT_PHDR segment, although that may not be true for all
4319 targets. */
4320 segs += 2;
4321 }
4322
4323 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4324 {
4325 /* We need a PT_DYNAMIC segment. */
4326 ++segs;
4327 }
4328
4329 if (info != NULL && info->relro)
4330 {
4331 /* We need a PT_GNU_RELRO segment. */
4332 ++segs;
4333 }
4334
4335 if (elf_eh_frame_hdr (abfd))
4336 {
4337 /* We need a PT_GNU_EH_FRAME segment. */
4338 ++segs;
4339 }
4340
4341 if (elf_stack_flags (abfd))
4342 {
4343 /* We need a PT_GNU_STACK segment. */
4344 ++segs;
4345 }
4346
4347 for (s = abfd->sections; s != NULL; s = s->next)
4348 {
4349 if ((s->flags & SEC_LOAD) != 0
4350 && CONST_STRNEQ (s->name, ".note"))
4351 {
4352 /* We need a PT_NOTE segment. */
4353 ++segs;
4354 /* Try to create just one PT_NOTE segment
4355 for all adjacent loadable .note* sections.
4356 gABI requires that within a PT_NOTE segment
4357 (and also inside of each SHT_NOTE section)
4358 each note is padded to a multiple of 4 size,
4359 so we check whether the sections are correctly
4360 aligned. */
4361 if (s->alignment_power == 2)
4362 while (s->next != NULL
4363 && s->next->alignment_power == 2
4364 && (s->next->flags & SEC_LOAD) != 0
4365 && CONST_STRNEQ (s->next->name, ".note"))
4366 s = s->next;
4367 }
4368 }
4369
4370 for (s = abfd->sections; s != NULL; s = s->next)
4371 {
4372 if (s->flags & SEC_THREAD_LOCAL)
4373 {
4374 /* We need a PT_TLS segment. */
4375 ++segs;
4376 break;
4377 }
4378 }
4379
4380 bed = get_elf_backend_data (abfd);
4381
4382 if ((abfd->flags & D_PAGED) != 0)
4383 {
4384 /* Add a PT_GNU_MBIND segment for each mbind section. */
4385 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4386 for (s = abfd->sections; s != NULL; s = s->next)
4387 if (elf_section_flags (s) & SHF_GNU_MBIND)
4388 {
4389 if (elf_section_data (s)->this_hdr.sh_info
4390 > PT_GNU_MBIND_NUM)
4391 {
4392 _bfd_error_handler
4393 /* xgettext:c-format */
4394 (_("%pB: GNU_MBIN section `%pA' has invalid sh_info field: %d"),
4395 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4396 continue;
4397 }
4398 /* Align mbind section to page size. */
4399 if (s->alignment_power < page_align_power)
4400 s->alignment_power = page_align_power;
4401 segs ++;
4402 }
4403 }
4404
4405 /* Let the backend count up any program headers it might need. */
4406 if (bed->elf_backend_additional_program_headers)
4407 {
4408 int a;
4409
4410 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4411 if (a == -1)
4412 abort ();
4413 segs += a;
4414 }
4415
4416 return segs * bed->s->sizeof_phdr;
4417 }
4418
4419 /* Find the segment that contains the output_section of section. */
4420
4421 Elf_Internal_Phdr *
4422 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4423 {
4424 struct elf_segment_map *m;
4425 Elf_Internal_Phdr *p;
4426
4427 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4428 m != NULL;
4429 m = m->next, p++)
4430 {
4431 int i;
4432
4433 for (i = m->count - 1; i >= 0; i--)
4434 if (m->sections[i] == section)
4435 return p;
4436 }
4437
4438 return NULL;
4439 }
4440
4441 /* Create a mapping from a set of sections to a program segment. */
4442
4443 static struct elf_segment_map *
4444 make_mapping (bfd *abfd,
4445 asection **sections,
4446 unsigned int from,
4447 unsigned int to,
4448 bfd_boolean phdr)
4449 {
4450 struct elf_segment_map *m;
4451 unsigned int i;
4452 asection **hdrpp;
4453 bfd_size_type amt;
4454
4455 amt = sizeof (struct elf_segment_map);
4456 amt += (to - from - 1) * sizeof (asection *);
4457 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4458 if (m == NULL)
4459 return NULL;
4460 m->next = NULL;
4461 m->p_type = PT_LOAD;
4462 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4463 m->sections[i - from] = *hdrpp;
4464 m->count = to - from;
4465
4466 if (from == 0 && phdr)
4467 {
4468 /* Include the headers in the first PT_LOAD segment. */
4469 m->includes_filehdr = 1;
4470 m->includes_phdrs = 1;
4471 }
4472
4473 return m;
4474 }
4475
4476 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4477 on failure. */
4478
4479 struct elf_segment_map *
4480 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4481 {
4482 struct elf_segment_map *m;
4483
4484 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4485 sizeof (struct elf_segment_map));
4486 if (m == NULL)
4487 return NULL;
4488 m->next = NULL;
4489 m->p_type = PT_DYNAMIC;
4490 m->count = 1;
4491 m->sections[0] = dynsec;
4492
4493 return m;
4494 }
4495
4496 /* Possibly add or remove segments from the segment map. */
4497
4498 static bfd_boolean
4499 elf_modify_segment_map (bfd *abfd,
4500 struct bfd_link_info *info,
4501 bfd_boolean remove_empty_load)
4502 {
4503 struct elf_segment_map **m;
4504 const struct elf_backend_data *bed;
4505
4506 /* The placement algorithm assumes that non allocated sections are
4507 not in PT_LOAD segments. We ensure this here by removing such
4508 sections from the segment map. We also remove excluded
4509 sections. Finally, any PT_LOAD segment without sections is
4510 removed. */
4511 m = &elf_seg_map (abfd);
4512 while (*m)
4513 {
4514 unsigned int i, new_count;
4515
4516 for (new_count = 0, i = 0; i < (*m)->count; i++)
4517 {
4518 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4519 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4520 || (*m)->p_type != PT_LOAD))
4521 {
4522 (*m)->sections[new_count] = (*m)->sections[i];
4523 new_count++;
4524 }
4525 }
4526 (*m)->count = new_count;
4527
4528 if (remove_empty_load
4529 && (*m)->p_type == PT_LOAD
4530 && (*m)->count == 0
4531 && !(*m)->includes_phdrs)
4532 *m = (*m)->next;
4533 else
4534 m = &(*m)->next;
4535 }
4536
4537 bed = get_elf_backend_data (abfd);
4538 if (bed->elf_backend_modify_segment_map != NULL)
4539 {
4540 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4541 return FALSE;
4542 }
4543
4544 return TRUE;
4545 }
4546
4547 #define IS_TBSS(s) \
4548 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4549
4550 /* Set up a mapping from BFD sections to program segments. */
4551
4552 bfd_boolean
4553 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4554 {
4555 unsigned int count;
4556 struct elf_segment_map *m;
4557 asection **sections = NULL;
4558 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4559 bfd_boolean no_user_phdrs;
4560
4561 no_user_phdrs = elf_seg_map (abfd) == NULL;
4562
4563 if (info != NULL)
4564 info->user_phdrs = !no_user_phdrs;
4565
4566 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4567 {
4568 asection *s;
4569 unsigned int i;
4570 struct elf_segment_map *mfirst;
4571 struct elf_segment_map **pm;
4572 asection *last_hdr;
4573 bfd_vma last_size;
4574 unsigned int phdr_index;
4575 bfd_vma maxpagesize;
4576 asection **hdrpp;
4577 bfd_boolean phdr_in_segment = TRUE;
4578 bfd_boolean writable;
4579 bfd_boolean executable;
4580 int tls_count = 0;
4581 asection *first_tls = NULL;
4582 asection *first_mbind = NULL;
4583 asection *dynsec, *eh_frame_hdr;
4584 bfd_size_type amt;
4585 bfd_vma addr_mask, wrap_to = 0;
4586 bfd_boolean linker_created_pt_phdr_segment = FALSE;
4587
4588 /* Select the allocated sections, and sort them. */
4589
4590 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4591 sizeof (asection *));
4592 if (sections == NULL)
4593 goto error_return;
4594
4595 /* Calculate top address, avoiding undefined behaviour of shift
4596 left operator when shift count is equal to size of type
4597 being shifted. */
4598 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4599 addr_mask = (addr_mask << 1) + 1;
4600
4601 i = 0;
4602 for (s = abfd->sections; s != NULL; s = s->next)
4603 {
4604 if ((s->flags & SEC_ALLOC) != 0)
4605 {
4606 sections[i] = s;
4607 ++i;
4608 /* A wrapping section potentially clashes with header. */
4609 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4610 wrap_to = (s->lma + s->size) & addr_mask;
4611 }
4612 }
4613 BFD_ASSERT (i <= bfd_count_sections (abfd));
4614 count = i;
4615
4616 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4617
4618 /* Build the mapping. */
4619
4620 mfirst = NULL;
4621 pm = &mfirst;
4622
4623 /* If we have a .interp section, then create a PT_PHDR segment for
4624 the program headers and a PT_INTERP segment for the .interp
4625 section. */
4626 s = bfd_get_section_by_name (abfd, ".interp");
4627 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4628 {
4629 amt = sizeof (struct elf_segment_map);
4630 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4631 if (m == NULL)
4632 goto error_return;
4633 m->next = NULL;
4634 m->p_type = PT_PHDR;
4635 m->p_flags = PF_R;
4636 m->p_flags_valid = 1;
4637 m->includes_phdrs = 1;
4638 linker_created_pt_phdr_segment = TRUE;
4639 *pm = m;
4640 pm = &m->next;
4641
4642 amt = sizeof (struct elf_segment_map);
4643 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4644 if (m == NULL)
4645 goto error_return;
4646 m->next = NULL;
4647 m->p_type = PT_INTERP;
4648 m->count = 1;
4649 m->sections[0] = s;
4650
4651 *pm = m;
4652 pm = &m->next;
4653 }
4654
4655 /* Look through the sections. We put sections in the same program
4656 segment when the start of the second section can be placed within
4657 a few bytes of the end of the first section. */
4658 last_hdr = NULL;
4659 last_size = 0;
4660 phdr_index = 0;
4661 maxpagesize = bed->maxpagesize;
4662 /* PR 17512: file: c8455299.
4663 Avoid divide-by-zero errors later on.
4664 FIXME: Should we abort if the maxpagesize is zero ? */
4665 if (maxpagesize == 0)
4666 maxpagesize = 1;
4667 writable = FALSE;
4668 executable = FALSE;
4669 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4670 if (dynsec != NULL
4671 && (dynsec->flags & SEC_LOAD) == 0)
4672 dynsec = NULL;
4673
4674 /* Deal with -Ttext or something similar such that the first section
4675 is not adjacent to the program headers. This is an
4676 approximation, since at this point we don't know exactly how many
4677 program headers we will need. */
4678 if (count > 0)
4679 {
4680 bfd_size_type phdr_size = elf_program_header_size (abfd);
4681
4682 if (phdr_size == (bfd_size_type) -1)
4683 phdr_size = get_program_header_size (abfd, info);
4684 phdr_size += bed->s->sizeof_ehdr;
4685 if ((abfd->flags & D_PAGED) == 0
4686 || (sections[0]->lma & addr_mask) < phdr_size
4687 || ((sections[0]->lma & addr_mask) % maxpagesize
4688 < phdr_size % maxpagesize)
4689 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4690 {
4691 /* PR 20815: The ELF standard says that a PT_PHDR segment, if
4692 present, must be included as part of the memory image of the
4693 program. Ie it must be part of a PT_LOAD segment as well.
4694 If we have had to create our own PT_PHDR segment, but it is
4695 not going to be covered by the first PT_LOAD segment, then
4696 force the inclusion if we can... */
4697 if ((abfd->flags & D_PAGED) != 0
4698 && linker_created_pt_phdr_segment)
4699 phdr_in_segment = TRUE;
4700 else
4701 phdr_in_segment = FALSE;
4702 }
4703 }
4704
4705 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4706 {
4707 asection *hdr;
4708 bfd_boolean new_segment;
4709
4710 hdr = *hdrpp;
4711
4712 /* See if this section and the last one will fit in the same
4713 segment. */
4714
4715 if (last_hdr == NULL)
4716 {
4717 /* If we don't have a segment yet, then we don't need a new
4718 one (we build the last one after this loop). */
4719 new_segment = FALSE;
4720 }
4721 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4722 {
4723 /* If this section has a different relation between the
4724 virtual address and the load address, then we need a new
4725 segment. */
4726 new_segment = TRUE;
4727 }
4728 else if (hdr->lma < last_hdr->lma + last_size
4729 || last_hdr->lma + last_size < last_hdr->lma)
4730 {
4731 /* If this section has a load address that makes it overlap
4732 the previous section, then we need a new segment. */
4733 new_segment = TRUE;
4734 }
4735 else if ((abfd->flags & D_PAGED) != 0
4736 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4737 == (hdr->lma & -maxpagesize)))
4738 {
4739 /* If we are demand paged then we can't map two disk
4740 pages onto the same memory page. */
4741 new_segment = FALSE;
4742 }
4743 /* In the next test we have to be careful when last_hdr->lma is close
4744 to the end of the address space. If the aligned address wraps
4745 around to the start of the address space, then there are no more
4746 pages left in memory and it is OK to assume that the current
4747 section can be included in the current segment. */
4748 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4749 + maxpagesize > last_hdr->lma)
4750 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4751 + maxpagesize <= hdr->lma))
4752 {
4753 /* If putting this section in this segment would force us to
4754 skip a page in the segment, then we need a new segment. */
4755 new_segment = TRUE;
4756 }
4757 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4758 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4759 {
4760 /* We don't want to put a loaded section after a
4761 nonloaded (ie. bss style) section in the same segment
4762 as that will force the non-loaded section to be loaded.
4763 Consider .tbss sections as loaded for this purpose. */
4764 new_segment = TRUE;
4765 }
4766 else if ((abfd->flags & D_PAGED) == 0)
4767 {
4768 /* If the file is not demand paged, which means that we
4769 don't require the sections to be correctly aligned in the
4770 file, then there is no other reason for a new segment. */
4771 new_segment = FALSE;
4772 }
4773 else if (info != NULL
4774 && info->separate_code
4775 && executable != ((hdr->flags & SEC_CODE) != 0))
4776 {
4777 new_segment = TRUE;
4778 }
4779 else if (! writable
4780 && (hdr->flags & SEC_READONLY) == 0)
4781 {
4782 /* We don't want to put a writable section in a read only
4783 segment. */
4784 new_segment = TRUE;
4785 }
4786 else
4787 {
4788 /* Otherwise, we can use the same segment. */
4789 new_segment = FALSE;
4790 }
4791
4792 /* Allow interested parties a chance to override our decision. */
4793 if (last_hdr != NULL
4794 && info != NULL
4795 && info->callbacks->override_segment_assignment != NULL)
4796 new_segment
4797 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4798 last_hdr,
4799 new_segment);
4800
4801 if (! new_segment)
4802 {
4803 if ((hdr->flags & SEC_READONLY) == 0)
4804 writable = TRUE;
4805 if ((hdr->flags & SEC_CODE) != 0)
4806 executable = TRUE;
4807 last_hdr = hdr;
4808 /* .tbss sections effectively have zero size. */
4809 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4810 continue;
4811 }
4812
4813 /* We need a new program segment. We must create a new program
4814 header holding all the sections from phdr_index until hdr. */
4815
4816 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4817 if (m == NULL)
4818 goto error_return;
4819
4820 *pm = m;
4821 pm = &m->next;
4822
4823 if ((hdr->flags & SEC_READONLY) == 0)
4824 writable = TRUE;
4825 else
4826 writable = FALSE;
4827
4828 if ((hdr->flags & SEC_CODE) == 0)
4829 executable = FALSE;
4830 else
4831 executable = TRUE;
4832
4833 last_hdr = hdr;
4834 /* .tbss sections effectively have zero size. */
4835 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4836 phdr_index = i;
4837 phdr_in_segment = FALSE;
4838 }
4839
4840 /* Create a final PT_LOAD program segment, but not if it's just
4841 for .tbss. */
4842 if (last_hdr != NULL
4843 && (i - phdr_index != 1
4844 || !IS_TBSS (last_hdr)))
4845 {
4846 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4847 if (m == NULL)
4848 goto error_return;
4849
4850 *pm = m;
4851 pm = &m->next;
4852 }
4853
4854 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4855 if (dynsec != NULL)
4856 {
4857 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4858 if (m == NULL)
4859 goto error_return;
4860 *pm = m;
4861 pm = &m->next;
4862 }
4863
4864 /* For each batch of consecutive loadable .note sections,
4865 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4866 because if we link together nonloadable .note sections and
4867 loadable .note sections, we will generate two .note sections
4868 in the output file. FIXME: Using names for section types is
4869 bogus anyhow. */
4870 for (s = abfd->sections; s != NULL; s = s->next)
4871 {
4872 if ((s->flags & SEC_LOAD) != 0
4873 && CONST_STRNEQ (s->name, ".note"))
4874 {
4875 asection *s2;
4876
4877 count = 1;
4878 amt = sizeof (struct elf_segment_map);
4879 if (s->alignment_power == 2)
4880 for (s2 = s; s2->next != NULL; s2 = s2->next)
4881 {
4882 if (s2->next->alignment_power == 2
4883 && (s2->next->flags & SEC_LOAD) != 0
4884 && CONST_STRNEQ (s2->next->name, ".note")
4885 && align_power (s2->lma + s2->size, 2)
4886 == s2->next->lma)
4887 count++;
4888 else
4889 break;
4890 }
4891 amt += (count - 1) * sizeof (asection *);
4892 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4893 if (m == NULL)
4894 goto error_return;
4895 m->next = NULL;
4896 m->p_type = PT_NOTE;
4897 m->count = count;
4898 while (count > 1)
4899 {
4900 m->sections[m->count - count--] = s;
4901 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4902 s = s->next;
4903 }
4904 m->sections[m->count - 1] = s;
4905 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4906 *pm = m;
4907 pm = &m->next;
4908 }
4909 if (s->flags & SEC_THREAD_LOCAL)
4910 {
4911 if (! tls_count)
4912 first_tls = s;
4913 tls_count++;
4914 }
4915 if (first_mbind == NULL
4916 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
4917 first_mbind = s;
4918 }
4919
4920 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4921 if (tls_count > 0)
4922 {
4923 amt = sizeof (struct elf_segment_map);
4924 amt += (tls_count - 1) * sizeof (asection *);
4925 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4926 if (m == NULL)
4927 goto error_return;
4928 m->next = NULL;
4929 m->p_type = PT_TLS;
4930 m->count = tls_count;
4931 /* Mandated PF_R. */
4932 m->p_flags = PF_R;
4933 m->p_flags_valid = 1;
4934 s = first_tls;
4935 for (i = 0; i < (unsigned int) tls_count; ++i)
4936 {
4937 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4938 {
4939 _bfd_error_handler
4940 (_("%pB: TLS sections are not adjacent:"), abfd);
4941 s = first_tls;
4942 i = 0;
4943 while (i < (unsigned int) tls_count)
4944 {
4945 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4946 {
4947 _bfd_error_handler (_(" TLS: %pA"), s);
4948 i++;
4949 }
4950 else
4951 _bfd_error_handler (_(" non-TLS: %pA"), s);
4952 s = s->next;
4953 }
4954 bfd_set_error (bfd_error_bad_value);
4955 goto error_return;
4956 }
4957 m->sections[i] = s;
4958 s = s->next;
4959 }
4960
4961 *pm = m;
4962 pm = &m->next;
4963 }
4964
4965 if (first_mbind && (abfd->flags & D_PAGED) != 0)
4966 for (s = first_mbind; s != NULL; s = s->next)
4967 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
4968 && (elf_section_data (s)->this_hdr.sh_info
4969 <= PT_GNU_MBIND_NUM))
4970 {
4971 /* Mandated PF_R. */
4972 unsigned long p_flags = PF_R;
4973 if ((s->flags & SEC_READONLY) == 0)
4974 p_flags |= PF_W;
4975 if ((s->flags & SEC_CODE) != 0)
4976 p_flags |= PF_X;
4977
4978 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
4979 m = bfd_zalloc (abfd, amt);
4980 if (m == NULL)
4981 goto error_return;
4982 m->next = NULL;
4983 m->p_type = (PT_GNU_MBIND_LO
4984 + elf_section_data (s)->this_hdr.sh_info);
4985 m->count = 1;
4986 m->p_flags_valid = 1;
4987 m->sections[0] = s;
4988 m->p_flags = p_flags;
4989
4990 *pm = m;
4991 pm = &m->next;
4992 }
4993
4994 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4995 segment. */
4996 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4997 if (eh_frame_hdr != NULL
4998 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4999 {
5000 amt = sizeof (struct elf_segment_map);
5001 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5002 if (m == NULL)
5003 goto error_return;
5004 m->next = NULL;
5005 m->p_type = PT_GNU_EH_FRAME;
5006 m->count = 1;
5007 m->sections[0] = eh_frame_hdr->output_section;
5008
5009 *pm = m;
5010 pm = &m->next;
5011 }
5012
5013 if (elf_stack_flags (abfd))
5014 {
5015 amt = sizeof (struct elf_segment_map);
5016 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5017 if (m == NULL)
5018 goto error_return;
5019 m->next = NULL;
5020 m->p_type = PT_GNU_STACK;
5021 m->p_flags = elf_stack_flags (abfd);
5022 m->p_align = bed->stack_align;
5023 m->p_flags_valid = 1;
5024 m->p_align_valid = m->p_align != 0;
5025 if (info->stacksize > 0)
5026 {
5027 m->p_size = info->stacksize;
5028 m->p_size_valid = 1;
5029 }
5030
5031 *pm = m;
5032 pm = &m->next;
5033 }
5034
5035 if (info != NULL && info->relro)
5036 {
5037 for (m = mfirst; m != NULL; m = m->next)
5038 {
5039 if (m->p_type == PT_LOAD
5040 && m->count != 0
5041 && m->sections[0]->vma >= info->relro_start
5042 && m->sections[0]->vma < info->relro_end)
5043 {
5044 i = m->count;
5045 while (--i != (unsigned) -1)
5046 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5047 == (SEC_LOAD | SEC_HAS_CONTENTS))
5048 break;
5049
5050 if (i != (unsigned) -1)
5051 break;
5052 }
5053 }
5054
5055 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5056 if (m != NULL)
5057 {
5058 amt = sizeof (struct elf_segment_map);
5059 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5060 if (m == NULL)
5061 goto error_return;
5062 m->next = NULL;
5063 m->p_type = PT_GNU_RELRO;
5064 *pm = m;
5065 pm = &m->next;
5066 }
5067 }
5068
5069 free (sections);
5070 elf_seg_map (abfd) = mfirst;
5071 }
5072
5073 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5074 return FALSE;
5075
5076 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5077 ++count;
5078 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5079
5080 return TRUE;
5081
5082 error_return:
5083 if (sections != NULL)
5084 free (sections);
5085 return FALSE;
5086 }
5087
5088 /* Sort sections by address. */
5089
5090 static int
5091 elf_sort_sections (const void *arg1, const void *arg2)
5092 {
5093 const asection *sec1 = *(const asection **) arg1;
5094 const asection *sec2 = *(const asection **) arg2;
5095 bfd_size_type size1, size2;
5096
5097 /* Sort by LMA first, since this is the address used to
5098 place the section into a segment. */
5099 if (sec1->lma < sec2->lma)
5100 return -1;
5101 else if (sec1->lma > sec2->lma)
5102 return 1;
5103
5104 /* Then sort by VMA. Normally the LMA and the VMA will be
5105 the same, and this will do nothing. */
5106 if (sec1->vma < sec2->vma)
5107 return -1;
5108 else if (sec1->vma > sec2->vma)
5109 return 1;
5110
5111 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5112
5113 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5114
5115 if (TOEND (sec1))
5116 {
5117 if (TOEND (sec2))
5118 {
5119 /* If the indicies are the same, do not return 0
5120 here, but continue to try the next comparison. */
5121 if (sec1->target_index - sec2->target_index != 0)
5122 return sec1->target_index - sec2->target_index;
5123 }
5124 else
5125 return 1;
5126 }
5127 else if (TOEND (sec2))
5128 return -1;
5129
5130 #undef TOEND
5131
5132 /* Sort by size, to put zero sized sections
5133 before others at the same address. */
5134
5135 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5136 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5137
5138 if (size1 < size2)
5139 return -1;
5140 if (size1 > size2)
5141 return 1;
5142
5143 return sec1->target_index - sec2->target_index;
5144 }
5145
5146 /* Ian Lance Taylor writes:
5147
5148 We shouldn't be using % with a negative signed number. That's just
5149 not good. We have to make sure either that the number is not
5150 negative, or that the number has an unsigned type. When the types
5151 are all the same size they wind up as unsigned. When file_ptr is a
5152 larger signed type, the arithmetic winds up as signed long long,
5153 which is wrong.
5154
5155 What we're trying to say here is something like ``increase OFF by
5156 the least amount that will cause it to be equal to the VMA modulo
5157 the page size.'' */
5158 /* In other words, something like:
5159
5160 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5161 off_offset = off % bed->maxpagesize;
5162 if (vma_offset < off_offset)
5163 adjustment = vma_offset + bed->maxpagesize - off_offset;
5164 else
5165 adjustment = vma_offset - off_offset;
5166
5167 which can be collapsed into the expression below. */
5168
5169 static file_ptr
5170 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5171 {
5172 /* PR binutils/16199: Handle an alignment of zero. */
5173 if (maxpagesize == 0)
5174 maxpagesize = 1;
5175 return ((vma - off) % maxpagesize);
5176 }
5177
5178 static void
5179 print_segment_map (const struct elf_segment_map *m)
5180 {
5181 unsigned int j;
5182 const char *pt = get_segment_type (m->p_type);
5183 char buf[32];
5184
5185 if (pt == NULL)
5186 {
5187 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5188 sprintf (buf, "LOPROC+%7.7x",
5189 (unsigned int) (m->p_type - PT_LOPROC));
5190 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5191 sprintf (buf, "LOOS+%7.7x",
5192 (unsigned int) (m->p_type - PT_LOOS));
5193 else
5194 snprintf (buf, sizeof (buf), "%8.8x",
5195 (unsigned int) m->p_type);
5196 pt = buf;
5197 }
5198 fflush (stdout);
5199 fprintf (stderr, "%s:", pt);
5200 for (j = 0; j < m->count; j++)
5201 fprintf (stderr, " %s", m->sections [j]->name);
5202 putc ('\n',stderr);
5203 fflush (stderr);
5204 }
5205
5206 static bfd_boolean
5207 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5208 {
5209 void *buf;
5210 bfd_boolean ret;
5211
5212 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5213 return FALSE;
5214 buf = bfd_zmalloc (len);
5215 if (buf == NULL)
5216 return FALSE;
5217 ret = bfd_bwrite (buf, len, abfd) == len;
5218 free (buf);
5219 return ret;
5220 }
5221
5222 /* Assign file positions to the sections based on the mapping from
5223 sections to segments. This function also sets up some fields in
5224 the file header. */
5225
5226 static bfd_boolean
5227 assign_file_positions_for_load_sections (bfd *abfd,
5228 struct bfd_link_info *link_info)
5229 {
5230 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5231 struct elf_segment_map *m;
5232 Elf_Internal_Phdr *phdrs;
5233 Elf_Internal_Phdr *p;
5234 file_ptr off;
5235 bfd_size_type maxpagesize;
5236 unsigned int pt_load_count = 0;
5237 unsigned int alloc;
5238 unsigned int i, j;
5239 bfd_vma header_pad = 0;
5240
5241 if (link_info == NULL
5242 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5243 return FALSE;
5244
5245 alloc = 0;
5246 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5247 {
5248 ++alloc;
5249 if (m->header_size)
5250 header_pad = m->header_size;
5251 }
5252
5253 if (alloc)
5254 {
5255 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5256 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5257 }
5258 else
5259 {
5260 /* PR binutils/12467. */
5261 elf_elfheader (abfd)->e_phoff = 0;
5262 elf_elfheader (abfd)->e_phentsize = 0;
5263 }
5264
5265 elf_elfheader (abfd)->e_phnum = alloc;
5266
5267 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5268 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5269 else
5270 BFD_ASSERT (elf_program_header_size (abfd)
5271 >= alloc * bed->s->sizeof_phdr);
5272
5273 if (alloc == 0)
5274 {
5275 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5276 return TRUE;
5277 }
5278
5279 /* We're writing the size in elf_program_header_size (abfd),
5280 see assign_file_positions_except_relocs, so make sure we have
5281 that amount allocated, with trailing space cleared.
5282 The variable alloc contains the computed need, while
5283 elf_program_header_size (abfd) contains the size used for the
5284 layout.
5285 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5286 where the layout is forced to according to a larger size in the
5287 last iterations for the testcase ld-elf/header. */
5288 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5289 == 0);
5290 phdrs = (Elf_Internal_Phdr *)
5291 bfd_zalloc2 (abfd,
5292 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5293 sizeof (Elf_Internal_Phdr));
5294 elf_tdata (abfd)->phdr = phdrs;
5295 if (phdrs == NULL)
5296 return FALSE;
5297
5298 maxpagesize = 1;
5299 if ((abfd->flags & D_PAGED) != 0)
5300 maxpagesize = bed->maxpagesize;
5301
5302 off = bed->s->sizeof_ehdr;
5303 off += alloc * bed->s->sizeof_phdr;
5304 if (header_pad < (bfd_vma) off)
5305 header_pad = 0;
5306 else
5307 header_pad -= off;
5308 off += header_pad;
5309
5310 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5311 m != NULL;
5312 m = m->next, p++, j++)
5313 {
5314 asection **secpp;
5315 bfd_vma off_adjust;
5316 bfd_boolean no_contents;
5317
5318 /* If elf_segment_map is not from map_sections_to_segments, the
5319 sections may not be correctly ordered. NOTE: sorting should
5320 not be done to the PT_NOTE section of a corefile, which may
5321 contain several pseudo-sections artificially created by bfd.
5322 Sorting these pseudo-sections breaks things badly. */
5323 if (m->count > 1
5324 && !(elf_elfheader (abfd)->e_type == ET_CORE
5325 && m->p_type == PT_NOTE))
5326 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5327 elf_sort_sections);
5328
5329 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5330 number of sections with contents contributing to both p_filesz
5331 and p_memsz, followed by a number of sections with no contents
5332 that just contribute to p_memsz. In this loop, OFF tracks next
5333 available file offset for PT_LOAD and PT_NOTE segments. */
5334 p->p_type = m->p_type;
5335 p->p_flags = m->p_flags;
5336
5337 if (m->count == 0)
5338 p->p_vaddr = 0;
5339 else
5340 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5341
5342 if (m->p_paddr_valid)
5343 p->p_paddr = m->p_paddr;
5344 else if (m->count == 0)
5345 p->p_paddr = 0;
5346 else
5347 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5348
5349 if (p->p_type == PT_LOAD
5350 && (abfd->flags & D_PAGED) != 0)
5351 {
5352 /* p_align in demand paged PT_LOAD segments effectively stores
5353 the maximum page size. When copying an executable with
5354 objcopy, we set m->p_align from the input file. Use this
5355 value for maxpagesize rather than bed->maxpagesize, which
5356 may be different. Note that we use maxpagesize for PT_TLS
5357 segment alignment later in this function, so we are relying
5358 on at least one PT_LOAD segment appearing before a PT_TLS
5359 segment. */
5360 if (m->p_align_valid)
5361 maxpagesize = m->p_align;
5362
5363 p->p_align = maxpagesize;
5364 pt_load_count += 1;
5365 }
5366 else if (m->p_align_valid)
5367 p->p_align = m->p_align;
5368 else if (m->count == 0)
5369 p->p_align = 1 << bed->s->log_file_align;
5370 else
5371 p->p_align = 0;
5372
5373 no_contents = FALSE;
5374 off_adjust = 0;
5375 if (p->p_type == PT_LOAD
5376 && m->count > 0)
5377 {
5378 bfd_size_type align;
5379 unsigned int align_power = 0;
5380
5381 if (m->p_align_valid)
5382 align = p->p_align;
5383 else
5384 {
5385 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5386 {
5387 unsigned int secalign;
5388
5389 secalign = bfd_get_section_alignment (abfd, *secpp);
5390 if (secalign > align_power)
5391 align_power = secalign;
5392 }
5393 align = (bfd_size_type) 1 << align_power;
5394 if (align < maxpagesize)
5395 align = maxpagesize;
5396 }
5397
5398 for (i = 0; i < m->count; i++)
5399 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5400 /* If we aren't making room for this section, then
5401 it must be SHT_NOBITS regardless of what we've
5402 set via struct bfd_elf_special_section. */
5403 elf_section_type (m->sections[i]) = SHT_NOBITS;
5404
5405 /* Find out whether this segment contains any loadable
5406 sections. */
5407 no_contents = TRUE;
5408 for (i = 0; i < m->count; i++)
5409 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5410 {
5411 no_contents = FALSE;
5412 break;
5413 }
5414
5415 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5416
5417 /* Broken hardware and/or kernel require that files do not
5418 map the same page with different permissions on some hppa
5419 processors. */
5420 if (pt_load_count > 1
5421 && bed->no_page_alias
5422 && (off & (maxpagesize - 1)) != 0
5423 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5424 off_adjust += maxpagesize;
5425 off += off_adjust;
5426 if (no_contents)
5427 {
5428 /* We shouldn't need to align the segment on disk since
5429 the segment doesn't need file space, but the gABI
5430 arguably requires the alignment and glibc ld.so
5431 checks it. So to comply with the alignment
5432 requirement but not waste file space, we adjust
5433 p_offset for just this segment. (OFF_ADJUST is
5434 subtracted from OFF later.) This may put p_offset
5435 past the end of file, but that shouldn't matter. */
5436 }
5437 else
5438 off_adjust = 0;
5439 }
5440 /* Make sure the .dynamic section is the first section in the
5441 PT_DYNAMIC segment. */
5442 else if (p->p_type == PT_DYNAMIC
5443 && m->count > 1
5444 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5445 {
5446 _bfd_error_handler
5447 (_("%pB: The first section in the PT_DYNAMIC segment"
5448 " is not the .dynamic section"),
5449 abfd);
5450 bfd_set_error (bfd_error_bad_value);
5451 return FALSE;
5452 }
5453 /* Set the note section type to SHT_NOTE. */
5454 else if (p->p_type == PT_NOTE)
5455 for (i = 0; i < m->count; i++)
5456 elf_section_type (m->sections[i]) = SHT_NOTE;
5457
5458 p->p_offset = 0;
5459 p->p_filesz = 0;
5460 p->p_memsz = 0;
5461
5462 if (m->includes_filehdr)
5463 {
5464 if (!m->p_flags_valid)
5465 p->p_flags |= PF_R;
5466 p->p_filesz = bed->s->sizeof_ehdr;
5467 p->p_memsz = bed->s->sizeof_ehdr;
5468 if (m->count > 0)
5469 {
5470 if (p->p_vaddr < (bfd_vma) off
5471 || (!m->p_paddr_valid
5472 && p->p_paddr < (bfd_vma) off))
5473 {
5474 _bfd_error_handler
5475 (_("%pB: not enough room for program headers,"
5476 " try linking with -N"),
5477 abfd);
5478 bfd_set_error (bfd_error_bad_value);
5479 return FALSE;
5480 }
5481
5482 p->p_vaddr -= off;
5483 if (!m->p_paddr_valid)
5484 p->p_paddr -= off;
5485 }
5486 }
5487
5488 if (m->includes_phdrs)
5489 {
5490 if (!m->p_flags_valid)
5491 p->p_flags |= PF_R;
5492
5493 if (!m->includes_filehdr)
5494 {
5495 p->p_offset = bed->s->sizeof_ehdr;
5496
5497 if (m->count > 0)
5498 {
5499 p->p_vaddr -= off - p->p_offset;
5500 if (!m->p_paddr_valid)
5501 p->p_paddr -= off - p->p_offset;
5502 }
5503 }
5504
5505 p->p_filesz += alloc * bed->s->sizeof_phdr;
5506 p->p_memsz += alloc * bed->s->sizeof_phdr;
5507 if (m->count)
5508 {
5509 p->p_filesz += header_pad;
5510 p->p_memsz += header_pad;
5511 }
5512 }
5513
5514 if (p->p_type == PT_LOAD
5515 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5516 {
5517 if (!m->includes_filehdr && !m->includes_phdrs)
5518 p->p_offset = off;
5519 else
5520 {
5521 file_ptr adjust;
5522
5523 adjust = off - (p->p_offset + p->p_filesz);
5524 if (!no_contents)
5525 p->p_filesz += adjust;
5526 p->p_memsz += adjust;
5527 }
5528 }
5529
5530 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5531 maps. Set filepos for sections in PT_LOAD segments, and in
5532 core files, for sections in PT_NOTE segments.
5533 assign_file_positions_for_non_load_sections will set filepos
5534 for other sections and update p_filesz for other segments. */
5535 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5536 {
5537 asection *sec;
5538 bfd_size_type align;
5539 Elf_Internal_Shdr *this_hdr;
5540
5541 sec = *secpp;
5542 this_hdr = &elf_section_data (sec)->this_hdr;
5543 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5544
5545 if ((p->p_type == PT_LOAD
5546 || p->p_type == PT_TLS)
5547 && (this_hdr->sh_type != SHT_NOBITS
5548 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5549 && ((this_hdr->sh_flags & SHF_TLS) == 0
5550 || p->p_type == PT_TLS))))
5551 {
5552 bfd_vma p_start = p->p_paddr;
5553 bfd_vma p_end = p_start + p->p_memsz;
5554 bfd_vma s_start = sec->lma;
5555 bfd_vma adjust = s_start - p_end;
5556
5557 if (adjust != 0
5558 && (s_start < p_end
5559 || p_end < p_start))
5560 {
5561 _bfd_error_handler
5562 /* xgettext:c-format */
5563 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5564 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5565 adjust = 0;
5566 sec->lma = p_end;
5567 }
5568 p->p_memsz += adjust;
5569
5570 if (this_hdr->sh_type != SHT_NOBITS)
5571 {
5572 if (p->p_filesz + adjust < p->p_memsz)
5573 {
5574 /* We have a PROGBITS section following NOBITS ones.
5575 Allocate file space for the NOBITS section(s) and
5576 zero it. */
5577 adjust = p->p_memsz - p->p_filesz;
5578 if (!write_zeros (abfd, off, adjust))
5579 return FALSE;
5580 }
5581 off += adjust;
5582 p->p_filesz += adjust;
5583 }
5584 }
5585
5586 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5587 {
5588 /* The section at i == 0 is the one that actually contains
5589 everything. */
5590 if (i == 0)
5591 {
5592 this_hdr->sh_offset = sec->filepos = off;
5593 off += this_hdr->sh_size;
5594 p->p_filesz = this_hdr->sh_size;
5595 p->p_memsz = 0;
5596 p->p_align = 1;
5597 }
5598 else
5599 {
5600 /* The rest are fake sections that shouldn't be written. */
5601 sec->filepos = 0;
5602 sec->size = 0;
5603 sec->flags = 0;
5604 continue;
5605 }
5606 }
5607 else
5608 {
5609 if (p->p_type == PT_LOAD)
5610 {
5611 this_hdr->sh_offset = sec->filepos = off;
5612 if (this_hdr->sh_type != SHT_NOBITS)
5613 off += this_hdr->sh_size;
5614 }
5615 else if (this_hdr->sh_type == SHT_NOBITS
5616 && (this_hdr->sh_flags & SHF_TLS) != 0
5617 && this_hdr->sh_offset == 0)
5618 {
5619 /* This is a .tbss section that didn't get a PT_LOAD.
5620 (See _bfd_elf_map_sections_to_segments "Create a
5621 final PT_LOAD".) Set sh_offset to the value it
5622 would have if we had created a zero p_filesz and
5623 p_memsz PT_LOAD header for the section. This
5624 also makes the PT_TLS header have the same
5625 p_offset value. */
5626 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5627 off, align);
5628 this_hdr->sh_offset = sec->filepos = off + adjust;
5629 }
5630
5631 if (this_hdr->sh_type != SHT_NOBITS)
5632 {
5633 p->p_filesz += this_hdr->sh_size;
5634 /* A load section without SHF_ALLOC is something like
5635 a note section in a PT_NOTE segment. These take
5636 file space but are not loaded into memory. */
5637 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5638 p->p_memsz += this_hdr->sh_size;
5639 }
5640 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5641 {
5642 if (p->p_type == PT_TLS)
5643 p->p_memsz += this_hdr->sh_size;
5644
5645 /* .tbss is special. It doesn't contribute to p_memsz of
5646 normal segments. */
5647 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5648 p->p_memsz += this_hdr->sh_size;
5649 }
5650
5651 if (align > p->p_align
5652 && !m->p_align_valid
5653 && (p->p_type != PT_LOAD
5654 || (abfd->flags & D_PAGED) == 0))
5655 p->p_align = align;
5656 }
5657
5658 if (!m->p_flags_valid)
5659 {
5660 p->p_flags |= PF_R;
5661 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5662 p->p_flags |= PF_X;
5663 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5664 p->p_flags |= PF_W;
5665 }
5666 }
5667
5668 off -= off_adjust;
5669
5670 /* Check that all sections are in a PT_LOAD segment.
5671 Don't check funky gdb generated core files. */
5672 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5673 {
5674 bfd_boolean check_vma = TRUE;
5675
5676 for (i = 1; i < m->count; i++)
5677 if (m->sections[i]->vma == m->sections[i - 1]->vma
5678 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5679 ->this_hdr), p) != 0
5680 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5681 ->this_hdr), p) != 0)
5682 {
5683 /* Looks like we have overlays packed into the segment. */
5684 check_vma = FALSE;
5685 break;
5686 }
5687
5688 for (i = 0; i < m->count; i++)
5689 {
5690 Elf_Internal_Shdr *this_hdr;
5691 asection *sec;
5692
5693 sec = m->sections[i];
5694 this_hdr = &(elf_section_data(sec)->this_hdr);
5695 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5696 && !ELF_TBSS_SPECIAL (this_hdr, p))
5697 {
5698 _bfd_error_handler
5699 /* xgettext:c-format */
5700 (_("%pB: section `%pA' can't be allocated in segment %d"),
5701 abfd, sec, j);
5702 print_segment_map (m);
5703 }
5704 }
5705 }
5706 }
5707
5708 elf_next_file_pos (abfd) = off;
5709 return TRUE;
5710 }
5711
5712 /* Assign file positions for the other sections. */
5713
5714 static bfd_boolean
5715 assign_file_positions_for_non_load_sections (bfd *abfd,
5716 struct bfd_link_info *link_info)
5717 {
5718 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5719 Elf_Internal_Shdr **i_shdrpp;
5720 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5721 Elf_Internal_Phdr *phdrs;
5722 Elf_Internal_Phdr *p;
5723 struct elf_segment_map *m;
5724 struct elf_segment_map *hdrs_segment;
5725 bfd_vma filehdr_vaddr, filehdr_paddr;
5726 bfd_vma phdrs_vaddr, phdrs_paddr;
5727 file_ptr off;
5728 unsigned int count;
5729
5730 i_shdrpp = elf_elfsections (abfd);
5731 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5732 off = elf_next_file_pos (abfd);
5733 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5734 {
5735 Elf_Internal_Shdr *hdr;
5736
5737 hdr = *hdrpp;
5738 if (hdr->bfd_section != NULL
5739 && (hdr->bfd_section->filepos != 0
5740 || (hdr->sh_type == SHT_NOBITS
5741 && hdr->contents == NULL)))
5742 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5743 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5744 {
5745 if (hdr->sh_size != 0)
5746 _bfd_error_handler
5747 /* xgettext:c-format */
5748 (_("%pB: warning: allocated section `%s' not in segment"),
5749 abfd,
5750 (hdr->bfd_section == NULL
5751 ? "*unknown*"
5752 : hdr->bfd_section->name));
5753 /* We don't need to page align empty sections. */
5754 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5755 off += vma_page_aligned_bias (hdr->sh_addr, off,
5756 bed->maxpagesize);
5757 else
5758 off += vma_page_aligned_bias (hdr->sh_addr, off,
5759 hdr->sh_addralign);
5760 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5761 FALSE);
5762 }
5763 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5764 && hdr->bfd_section == NULL)
5765 || (hdr->bfd_section != NULL
5766 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5767 /* Compress DWARF debug sections. */
5768 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5769 || (elf_symtab_shndx_list (abfd) != NULL
5770 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5771 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5772 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5773 hdr->sh_offset = -1;
5774 else
5775 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5776 }
5777
5778 /* Now that we have set the section file positions, we can set up
5779 the file positions for the non PT_LOAD segments. */
5780 count = 0;
5781 filehdr_vaddr = 0;
5782 filehdr_paddr = 0;
5783 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5784 phdrs_paddr = 0;
5785 hdrs_segment = NULL;
5786 phdrs = elf_tdata (abfd)->phdr;
5787 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5788 {
5789 ++count;
5790 if (p->p_type != PT_LOAD)
5791 continue;
5792
5793 if (m->includes_filehdr)
5794 {
5795 filehdr_vaddr = p->p_vaddr;
5796 filehdr_paddr = p->p_paddr;
5797 }
5798 if (m->includes_phdrs)
5799 {
5800 phdrs_vaddr = p->p_vaddr;
5801 phdrs_paddr = p->p_paddr;
5802 if (m->includes_filehdr)
5803 {
5804 hdrs_segment = m;
5805 phdrs_vaddr += bed->s->sizeof_ehdr;
5806 phdrs_paddr += bed->s->sizeof_ehdr;
5807 }
5808 }
5809 }
5810
5811 if (hdrs_segment != NULL && link_info != NULL)
5812 {
5813 /* There is a segment that contains both the file headers and the
5814 program headers, so provide a symbol __ehdr_start pointing there.
5815 A program can use this to examine itself robustly. */
5816
5817 struct elf_link_hash_entry *hash
5818 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5819 FALSE, FALSE, TRUE);
5820 /* If the symbol was referenced and not defined, define it. */
5821 if (hash != NULL
5822 && (hash->root.type == bfd_link_hash_new
5823 || hash->root.type == bfd_link_hash_undefined
5824 || hash->root.type == bfd_link_hash_undefweak
5825 || hash->root.type == bfd_link_hash_common))
5826 {
5827 asection *s = NULL;
5828 if (hdrs_segment->count != 0)
5829 /* The segment contains sections, so use the first one. */
5830 s = hdrs_segment->sections[0];
5831 else
5832 /* Use the first (i.e. lowest-addressed) section in any segment. */
5833 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5834 if (m->count != 0)
5835 {
5836 s = m->sections[0];
5837 break;
5838 }
5839
5840 if (s != NULL)
5841 {
5842 hash->root.u.def.value = filehdr_vaddr - s->vma;
5843 hash->root.u.def.section = s;
5844 }
5845 else
5846 {
5847 hash->root.u.def.value = filehdr_vaddr;
5848 hash->root.u.def.section = bfd_abs_section_ptr;
5849 }
5850
5851 hash->root.type = bfd_link_hash_defined;
5852 hash->def_regular = 1;
5853 hash->non_elf = 0;
5854 }
5855 }
5856
5857 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5858 {
5859 if (p->p_type == PT_GNU_RELRO)
5860 {
5861 bfd_vma start, end;
5862 bfd_boolean ok;
5863
5864 if (link_info != NULL)
5865 {
5866 /* During linking the range of the RELRO segment is passed
5867 in link_info. Note that there may be padding between
5868 relro_start and the first RELRO section. */
5869 start = link_info->relro_start;
5870 end = link_info->relro_end;
5871 }
5872 else if (m->count != 0)
5873 {
5874 if (!m->p_size_valid)
5875 abort ();
5876 start = m->sections[0]->vma;
5877 end = start + m->p_size;
5878 }
5879 else
5880 {
5881 start = 0;
5882 end = 0;
5883 }
5884
5885 ok = FALSE;
5886 if (start < end)
5887 {
5888 struct elf_segment_map *lm;
5889 const Elf_Internal_Phdr *lp;
5890 unsigned int i;
5891
5892 /* Find a LOAD segment containing a section in the RELRO
5893 segment. */
5894 for (lm = elf_seg_map (abfd), lp = phdrs;
5895 lm != NULL;
5896 lm = lm->next, lp++)
5897 {
5898 if (lp->p_type == PT_LOAD
5899 && lm->count != 0
5900 && (lm->sections[lm->count - 1]->vma
5901 + (!IS_TBSS (lm->sections[lm->count - 1])
5902 ? lm->sections[lm->count - 1]->size
5903 : 0)) > start
5904 && lm->sections[0]->vma < end)
5905 break;
5906 }
5907
5908 if (lm != NULL)
5909 {
5910 /* Find the section starting the RELRO segment. */
5911 for (i = 0; i < lm->count; i++)
5912 {
5913 asection *s = lm->sections[i];
5914 if (s->vma >= start
5915 && s->vma < end
5916 && s->size != 0)
5917 break;
5918 }
5919
5920 if (i < lm->count)
5921 {
5922 p->p_vaddr = lm->sections[i]->vma;
5923 p->p_paddr = lm->sections[i]->lma;
5924 p->p_offset = lm->sections[i]->filepos;
5925 p->p_memsz = end - p->p_vaddr;
5926 p->p_filesz = p->p_memsz;
5927
5928 /* The RELRO segment typically ends a few bytes
5929 into .got.plt but other layouts are possible.
5930 In cases where the end does not match any
5931 loaded section (for instance is in file
5932 padding), trim p_filesz back to correspond to
5933 the end of loaded section contents. */
5934 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
5935 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
5936
5937 /* Preserve the alignment and flags if they are
5938 valid. The gold linker generates RW/4 for
5939 the PT_GNU_RELRO section. It is better for
5940 objcopy/strip to honor these attributes
5941 otherwise gdb will choke when using separate
5942 debug files. */
5943 if (!m->p_align_valid)
5944 p->p_align = 1;
5945 if (!m->p_flags_valid)
5946 p->p_flags = PF_R;
5947 ok = TRUE;
5948 }
5949 }
5950 }
5951 if (link_info != NULL)
5952 BFD_ASSERT (ok);
5953 if (!ok)
5954 memset (p, 0, sizeof *p);
5955 }
5956 else if (p->p_type == PT_GNU_STACK)
5957 {
5958 if (m->p_size_valid)
5959 p->p_memsz = m->p_size;
5960 }
5961 else if (m->count != 0)
5962 {
5963 unsigned int i;
5964
5965 if (p->p_type != PT_LOAD
5966 && (p->p_type != PT_NOTE
5967 || bfd_get_format (abfd) != bfd_core))
5968 {
5969 /* A user specified segment layout may include a PHDR
5970 segment that overlaps with a LOAD segment... */
5971 if (p->p_type == PT_PHDR)
5972 {
5973 m->count = 0;
5974 continue;
5975 }
5976
5977 if (m->includes_filehdr || m->includes_phdrs)
5978 {
5979 /* PR 17512: file: 2195325e. */
5980 _bfd_error_handler
5981 (_("%pB: error: non-load segment %d includes file header "
5982 "and/or program header"),
5983 abfd, (int) (p - phdrs));
5984 return FALSE;
5985 }
5986
5987 p->p_filesz = 0;
5988 p->p_offset = m->sections[0]->filepos;
5989 for (i = m->count; i-- != 0;)
5990 {
5991 asection *sect = m->sections[i];
5992 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5993 if (hdr->sh_type != SHT_NOBITS)
5994 {
5995 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5996 + hdr->sh_size);
5997 break;
5998 }
5999 }
6000 }
6001 }
6002 else if (m->includes_filehdr)
6003 {
6004 p->p_vaddr = filehdr_vaddr;
6005 if (! m->p_paddr_valid)
6006 p->p_paddr = filehdr_paddr;
6007 }
6008 else if (m->includes_phdrs)
6009 {
6010 p->p_vaddr = phdrs_vaddr;
6011 if (! m->p_paddr_valid)
6012 p->p_paddr = phdrs_paddr;
6013 }
6014 }
6015
6016 elf_next_file_pos (abfd) = off;
6017
6018 return TRUE;
6019 }
6020
6021 static elf_section_list *
6022 find_section_in_list (unsigned int i, elf_section_list * list)
6023 {
6024 for (;list != NULL; list = list->next)
6025 if (list->ndx == i)
6026 break;
6027 return list;
6028 }
6029
6030 /* Work out the file positions of all the sections. This is called by
6031 _bfd_elf_compute_section_file_positions. All the section sizes and
6032 VMAs must be known before this is called.
6033
6034 Reloc sections come in two flavours: Those processed specially as
6035 "side-channel" data attached to a section to which they apply, and
6036 those that bfd doesn't process as relocations. The latter sort are
6037 stored in a normal bfd section by bfd_section_from_shdr. We don't
6038 consider the former sort here, unless they form part of the loadable
6039 image. Reloc sections not assigned here will be handled later by
6040 assign_file_positions_for_relocs.
6041
6042 We also don't set the positions of the .symtab and .strtab here. */
6043
6044 static bfd_boolean
6045 assign_file_positions_except_relocs (bfd *abfd,
6046 struct bfd_link_info *link_info)
6047 {
6048 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6049 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6050 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6051
6052 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6053 && bfd_get_format (abfd) != bfd_core)
6054 {
6055 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6056 unsigned int num_sec = elf_numsections (abfd);
6057 Elf_Internal_Shdr **hdrpp;
6058 unsigned int i;
6059 file_ptr off;
6060
6061 /* Start after the ELF header. */
6062 off = i_ehdrp->e_ehsize;
6063
6064 /* We are not creating an executable, which means that we are
6065 not creating a program header, and that the actual order of
6066 the sections in the file is unimportant. */
6067 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6068 {
6069 Elf_Internal_Shdr *hdr;
6070
6071 hdr = *hdrpp;
6072 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6073 && hdr->bfd_section == NULL)
6074 || (hdr->bfd_section != NULL
6075 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6076 /* Compress DWARF debug sections. */
6077 || i == elf_onesymtab (abfd)
6078 || (elf_symtab_shndx_list (abfd) != NULL
6079 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6080 || i == elf_strtab_sec (abfd)
6081 || i == elf_shstrtab_sec (abfd))
6082 {
6083 hdr->sh_offset = -1;
6084 }
6085 else
6086 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6087 }
6088
6089 elf_next_file_pos (abfd) = off;
6090 }
6091 else
6092 {
6093 unsigned int alloc;
6094
6095 /* Assign file positions for the loaded sections based on the
6096 assignment of sections to segments. */
6097 if (!assign_file_positions_for_load_sections (abfd, link_info))
6098 return FALSE;
6099
6100 /* And for non-load sections. */
6101 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6102 return FALSE;
6103
6104 if (bed->elf_backend_modify_program_headers != NULL)
6105 {
6106 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6107 return FALSE;
6108 }
6109
6110 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6111 if (link_info != NULL && bfd_link_pie (link_info))
6112 {
6113 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6114 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6115 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6116
6117 /* Find the lowest p_vaddr in PT_LOAD segments. */
6118 bfd_vma p_vaddr = (bfd_vma) -1;
6119 for (; segment < end_segment; segment++)
6120 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6121 p_vaddr = segment->p_vaddr;
6122
6123 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6124 segments is non-zero. */
6125 if (p_vaddr)
6126 i_ehdrp->e_type = ET_EXEC;
6127 }
6128
6129 /* Write out the program headers. */
6130 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
6131
6132 /* Sort the program headers into the ordering required by the ELF standard. */
6133 if (alloc == 0)
6134 return TRUE;
6135
6136 /* PR ld/20815 - Check that the program header segment, if present, will
6137 be loaded into memory. FIXME: The check below is not sufficient as
6138 really all PT_LOAD segments should be checked before issuing an error
6139 message. Plus the PHDR segment does not have to be the first segment
6140 in the program header table. But this version of the check should
6141 catch all real world use cases.
6142
6143 FIXME: We used to have code here to sort the PT_LOAD segments into
6144 ascending order, as per the ELF spec. But this breaks some programs,
6145 including the Linux kernel. But really either the spec should be
6146 changed or the programs updated. */
6147 if (alloc > 1
6148 && tdata->phdr[0].p_type == PT_PHDR
6149 && (bed->elf_backend_allow_non_load_phdr == NULL
6150 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6151 alloc))
6152 && tdata->phdr[1].p_type == PT_LOAD
6153 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6154 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz)
6155 < (tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6156 {
6157 /* The fix for this error is usually to edit the linker script being
6158 used and set up the program headers manually. Either that or
6159 leave room for the headers at the start of the SECTIONS. */
6160 _bfd_error_handler (_("\
6161 %pB: error: PHDR segment not covered by LOAD segment"),
6162 abfd);
6163 return FALSE;
6164 }
6165
6166 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6167 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6168 return FALSE;
6169 }
6170
6171 return TRUE;
6172 }
6173
6174 static bfd_boolean
6175 prep_headers (bfd *abfd)
6176 {
6177 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6178 struct elf_strtab_hash *shstrtab;
6179 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6180
6181 i_ehdrp = elf_elfheader (abfd);
6182
6183 shstrtab = _bfd_elf_strtab_init ();
6184 if (shstrtab == NULL)
6185 return FALSE;
6186
6187 elf_shstrtab (abfd) = shstrtab;
6188
6189 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6190 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6191 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6192 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6193
6194 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6195 i_ehdrp->e_ident[EI_DATA] =
6196 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6197 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6198
6199 if ((abfd->flags & DYNAMIC) != 0)
6200 i_ehdrp->e_type = ET_DYN;
6201 else if ((abfd->flags & EXEC_P) != 0)
6202 i_ehdrp->e_type = ET_EXEC;
6203 else if (bfd_get_format (abfd) == bfd_core)
6204 i_ehdrp->e_type = ET_CORE;
6205 else
6206 i_ehdrp->e_type = ET_REL;
6207
6208 switch (bfd_get_arch (abfd))
6209 {
6210 case bfd_arch_unknown:
6211 i_ehdrp->e_machine = EM_NONE;
6212 break;
6213
6214 /* There used to be a long list of cases here, each one setting
6215 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6216 in the corresponding bfd definition. To avoid duplication,
6217 the switch was removed. Machines that need special handling
6218 can generally do it in elf_backend_final_write_processing(),
6219 unless they need the information earlier than the final write.
6220 Such need can generally be supplied by replacing the tests for
6221 e_machine with the conditions used to determine it. */
6222 default:
6223 i_ehdrp->e_machine = bed->elf_machine_code;
6224 }
6225
6226 i_ehdrp->e_version = bed->s->ev_current;
6227 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6228
6229 /* No program header, for now. */
6230 i_ehdrp->e_phoff = 0;
6231 i_ehdrp->e_phentsize = 0;
6232 i_ehdrp->e_phnum = 0;
6233
6234 /* Each bfd section is section header entry. */
6235 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6236 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6237
6238 /* If we're building an executable, we'll need a program header table. */
6239 if (abfd->flags & EXEC_P)
6240 /* It all happens later. */
6241 ;
6242 else
6243 {
6244 i_ehdrp->e_phentsize = 0;
6245 i_ehdrp->e_phoff = 0;
6246 }
6247
6248 elf_tdata (abfd)->symtab_hdr.sh_name =
6249 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6250 elf_tdata (abfd)->strtab_hdr.sh_name =
6251 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6252 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6253 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6254 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6255 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6256 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6257 return FALSE;
6258
6259 return TRUE;
6260 }
6261
6262 /* Assign file positions for all the reloc sections which are not part
6263 of the loadable file image, and the file position of section headers. */
6264
6265 static bfd_boolean
6266 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6267 {
6268 file_ptr off;
6269 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6270 Elf_Internal_Shdr *shdrp;
6271 Elf_Internal_Ehdr *i_ehdrp;
6272 const struct elf_backend_data *bed;
6273
6274 off = elf_next_file_pos (abfd);
6275
6276 shdrpp = elf_elfsections (abfd);
6277 end_shdrpp = shdrpp + elf_numsections (abfd);
6278 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6279 {
6280 shdrp = *shdrpp;
6281 if (shdrp->sh_offset == -1)
6282 {
6283 asection *sec = shdrp->bfd_section;
6284 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6285 || shdrp->sh_type == SHT_RELA);
6286 if (is_rel
6287 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6288 {
6289 if (!is_rel)
6290 {
6291 const char *name = sec->name;
6292 struct bfd_elf_section_data *d;
6293
6294 /* Compress DWARF debug sections. */
6295 if (!bfd_compress_section (abfd, sec,
6296 shdrp->contents))
6297 return FALSE;
6298
6299 if (sec->compress_status == COMPRESS_SECTION_DONE
6300 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6301 {
6302 /* If section is compressed with zlib-gnu, convert
6303 section name from .debug_* to .zdebug_*. */
6304 char *new_name
6305 = convert_debug_to_zdebug (abfd, name);
6306 if (new_name == NULL)
6307 return FALSE;
6308 name = new_name;
6309 }
6310 /* Add section name to section name section. */
6311 if (shdrp->sh_name != (unsigned int) -1)
6312 abort ();
6313 shdrp->sh_name
6314 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6315 name, FALSE);
6316 d = elf_section_data (sec);
6317
6318 /* Add reloc section name to section name section. */
6319 if (d->rel.hdr
6320 && !_bfd_elf_set_reloc_sh_name (abfd,
6321 d->rel.hdr,
6322 name, FALSE))
6323 return FALSE;
6324 if (d->rela.hdr
6325 && !_bfd_elf_set_reloc_sh_name (abfd,
6326 d->rela.hdr,
6327 name, TRUE))
6328 return FALSE;
6329
6330 /* Update section size and contents. */
6331 shdrp->sh_size = sec->size;
6332 shdrp->contents = sec->contents;
6333 shdrp->bfd_section->contents = NULL;
6334 }
6335 off = _bfd_elf_assign_file_position_for_section (shdrp,
6336 off,
6337 TRUE);
6338 }
6339 }
6340 }
6341
6342 /* Place section name section after DWARF debug sections have been
6343 compressed. */
6344 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6345 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6346 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6347 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6348
6349 /* Place the section headers. */
6350 i_ehdrp = elf_elfheader (abfd);
6351 bed = get_elf_backend_data (abfd);
6352 off = align_file_position (off, 1 << bed->s->log_file_align);
6353 i_ehdrp->e_shoff = off;
6354 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6355 elf_next_file_pos (abfd) = off;
6356
6357 return TRUE;
6358 }
6359
6360 bfd_boolean
6361 _bfd_elf_write_object_contents (bfd *abfd)
6362 {
6363 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6364 Elf_Internal_Shdr **i_shdrp;
6365 bfd_boolean failed;
6366 unsigned int count, num_sec;
6367 struct elf_obj_tdata *t;
6368
6369 if (! abfd->output_has_begun
6370 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6371 return FALSE;
6372
6373 i_shdrp = elf_elfsections (abfd);
6374
6375 failed = FALSE;
6376 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6377 if (failed)
6378 return FALSE;
6379
6380 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6381 return FALSE;
6382
6383 /* After writing the headers, we need to write the sections too... */
6384 num_sec = elf_numsections (abfd);
6385 for (count = 1; count < num_sec; count++)
6386 {
6387 i_shdrp[count]->sh_name
6388 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6389 i_shdrp[count]->sh_name);
6390 if (bed->elf_backend_section_processing)
6391 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6392 return FALSE;
6393 if (i_shdrp[count]->contents)
6394 {
6395 bfd_size_type amt = i_shdrp[count]->sh_size;
6396
6397 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6398 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6399 return FALSE;
6400 }
6401 }
6402
6403 /* Write out the section header names. */
6404 t = elf_tdata (abfd);
6405 if (elf_shstrtab (abfd) != NULL
6406 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6407 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6408 return FALSE;
6409
6410 if (bed->elf_backend_final_write_processing)
6411 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6412
6413 if (!bed->s->write_shdrs_and_ehdr (abfd))
6414 return FALSE;
6415
6416 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6417 if (t->o->build_id.after_write_object_contents != NULL)
6418 return (*t->o->build_id.after_write_object_contents) (abfd);
6419
6420 return TRUE;
6421 }
6422
6423 bfd_boolean
6424 _bfd_elf_write_corefile_contents (bfd *abfd)
6425 {
6426 /* Hopefully this can be done just like an object file. */
6427 return _bfd_elf_write_object_contents (abfd);
6428 }
6429
6430 /* Given a section, search the header to find them. */
6431
6432 unsigned int
6433 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6434 {
6435 const struct elf_backend_data *bed;
6436 unsigned int sec_index;
6437
6438 if (elf_section_data (asect) != NULL
6439 && elf_section_data (asect)->this_idx != 0)
6440 return elf_section_data (asect)->this_idx;
6441
6442 if (bfd_is_abs_section (asect))
6443 sec_index = SHN_ABS;
6444 else if (bfd_is_com_section (asect))
6445 sec_index = SHN_COMMON;
6446 else if (bfd_is_und_section (asect))
6447 sec_index = SHN_UNDEF;
6448 else
6449 sec_index = SHN_BAD;
6450
6451 bed = get_elf_backend_data (abfd);
6452 if (bed->elf_backend_section_from_bfd_section)
6453 {
6454 int retval = sec_index;
6455
6456 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6457 return retval;
6458 }
6459
6460 if (sec_index == SHN_BAD)
6461 bfd_set_error (bfd_error_nonrepresentable_section);
6462
6463 return sec_index;
6464 }
6465
6466 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6467 on error. */
6468
6469 int
6470 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6471 {
6472 asymbol *asym_ptr = *asym_ptr_ptr;
6473 int idx;
6474 flagword flags = asym_ptr->flags;
6475
6476 /* When gas creates relocations against local labels, it creates its
6477 own symbol for the section, but does put the symbol into the
6478 symbol chain, so udata is 0. When the linker is generating
6479 relocatable output, this section symbol may be for one of the
6480 input sections rather than the output section. */
6481 if (asym_ptr->udata.i == 0
6482 && (flags & BSF_SECTION_SYM)
6483 && asym_ptr->section)
6484 {
6485 asection *sec;
6486 int indx;
6487
6488 sec = asym_ptr->section;
6489 if (sec->owner != abfd && sec->output_section != NULL)
6490 sec = sec->output_section;
6491 if (sec->owner == abfd
6492 && (indx = sec->index) < elf_num_section_syms (abfd)
6493 && elf_section_syms (abfd)[indx] != NULL)
6494 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6495 }
6496
6497 idx = asym_ptr->udata.i;
6498
6499 if (idx == 0)
6500 {
6501 /* This case can occur when using --strip-symbol on a symbol
6502 which is used in a relocation entry. */
6503 _bfd_error_handler
6504 /* xgettext:c-format */
6505 (_("%pB: symbol `%s' required but not present"),
6506 abfd, bfd_asymbol_name (asym_ptr));
6507 bfd_set_error (bfd_error_no_symbols);
6508 return -1;
6509 }
6510
6511 #if DEBUG & 4
6512 {
6513 fprintf (stderr,
6514 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6515 (long) asym_ptr, asym_ptr->name, idx, flags);
6516 fflush (stderr);
6517 }
6518 #endif
6519
6520 return idx;
6521 }
6522
6523 /* Rewrite program header information. */
6524
6525 static bfd_boolean
6526 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6527 {
6528 Elf_Internal_Ehdr *iehdr;
6529 struct elf_segment_map *map;
6530 struct elf_segment_map *map_first;
6531 struct elf_segment_map **pointer_to_map;
6532 Elf_Internal_Phdr *segment;
6533 asection *section;
6534 unsigned int i;
6535 unsigned int num_segments;
6536 bfd_boolean phdr_included = FALSE;
6537 bfd_boolean p_paddr_valid;
6538 bfd_vma maxpagesize;
6539 struct elf_segment_map *phdr_adjust_seg = NULL;
6540 unsigned int phdr_adjust_num = 0;
6541 const struct elf_backend_data *bed;
6542
6543 bed = get_elf_backend_data (ibfd);
6544 iehdr = elf_elfheader (ibfd);
6545
6546 map_first = NULL;
6547 pointer_to_map = &map_first;
6548
6549 num_segments = elf_elfheader (ibfd)->e_phnum;
6550 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6551
6552 /* Returns the end address of the segment + 1. */
6553 #define SEGMENT_END(segment, start) \
6554 (start + (segment->p_memsz > segment->p_filesz \
6555 ? segment->p_memsz : segment->p_filesz))
6556
6557 #define SECTION_SIZE(section, segment) \
6558 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6559 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6560 ? section->size : 0)
6561
6562 /* Returns TRUE if the given section is contained within
6563 the given segment. VMA addresses are compared. */
6564 #define IS_CONTAINED_BY_VMA(section, segment) \
6565 (section->vma >= segment->p_vaddr \
6566 && (section->vma + SECTION_SIZE (section, segment) \
6567 <= (SEGMENT_END (segment, segment->p_vaddr))))
6568
6569 /* Returns TRUE if the given section is contained within
6570 the given segment. LMA addresses are compared. */
6571 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6572 (section->lma >= base \
6573 && (section->lma + SECTION_SIZE (section, segment) \
6574 <= SEGMENT_END (segment, base)))
6575
6576 /* Handle PT_NOTE segment. */
6577 #define IS_NOTE(p, s) \
6578 (p->p_type == PT_NOTE \
6579 && elf_section_type (s) == SHT_NOTE \
6580 && (bfd_vma) s->filepos >= p->p_offset \
6581 && ((bfd_vma) s->filepos + s->size \
6582 <= p->p_offset + p->p_filesz))
6583
6584 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6585 etc. */
6586 #define IS_COREFILE_NOTE(p, s) \
6587 (IS_NOTE (p, s) \
6588 && bfd_get_format (ibfd) == bfd_core \
6589 && s->vma == 0 \
6590 && s->lma == 0)
6591
6592 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6593 linker, which generates a PT_INTERP section with p_vaddr and
6594 p_memsz set to 0. */
6595 #define IS_SOLARIS_PT_INTERP(p, s) \
6596 (p->p_vaddr == 0 \
6597 && p->p_paddr == 0 \
6598 && p->p_memsz == 0 \
6599 && p->p_filesz > 0 \
6600 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6601 && s->size > 0 \
6602 && (bfd_vma) s->filepos >= p->p_offset \
6603 && ((bfd_vma) s->filepos + s->size \
6604 <= p->p_offset + p->p_filesz))
6605
6606 /* Decide if the given section should be included in the given segment.
6607 A section will be included if:
6608 1. It is within the address space of the segment -- we use the LMA
6609 if that is set for the segment and the VMA otherwise,
6610 2. It is an allocated section or a NOTE section in a PT_NOTE
6611 segment.
6612 3. There is an output section associated with it,
6613 4. The section has not already been allocated to a previous segment.
6614 5. PT_GNU_STACK segments do not include any sections.
6615 6. PT_TLS segment includes only SHF_TLS sections.
6616 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6617 8. PT_DYNAMIC should not contain empty sections at the beginning
6618 (with the possible exception of .dynamic). */
6619 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6620 ((((segment->p_paddr \
6621 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6622 : IS_CONTAINED_BY_VMA (section, segment)) \
6623 && (section->flags & SEC_ALLOC) != 0) \
6624 || IS_NOTE (segment, section)) \
6625 && segment->p_type != PT_GNU_STACK \
6626 && (segment->p_type != PT_TLS \
6627 || (section->flags & SEC_THREAD_LOCAL)) \
6628 && (segment->p_type == PT_LOAD \
6629 || segment->p_type == PT_TLS \
6630 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6631 && (segment->p_type != PT_DYNAMIC \
6632 || SECTION_SIZE (section, segment) > 0 \
6633 || (segment->p_paddr \
6634 ? segment->p_paddr != section->lma \
6635 : segment->p_vaddr != section->vma) \
6636 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6637 == 0)) \
6638 && !section->segment_mark)
6639
6640 /* If the output section of a section in the input segment is NULL,
6641 it is removed from the corresponding output segment. */
6642 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6643 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6644 && section->output_section != NULL)
6645
6646 /* Returns TRUE iff seg1 starts after the end of seg2. */
6647 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6648 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6649
6650 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6651 their VMA address ranges and their LMA address ranges overlap.
6652 It is possible to have overlapping VMA ranges without overlapping LMA
6653 ranges. RedBoot images for example can have both .data and .bss mapped
6654 to the same VMA range, but with the .data section mapped to a different
6655 LMA. */
6656 #define SEGMENT_OVERLAPS(seg1, seg2) \
6657 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6658 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6659 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6660 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6661
6662 /* Initialise the segment mark field. */
6663 for (section = ibfd->sections; section != NULL; section = section->next)
6664 section->segment_mark = FALSE;
6665
6666 /* The Solaris linker creates program headers in which all the
6667 p_paddr fields are zero. When we try to objcopy or strip such a
6668 file, we get confused. Check for this case, and if we find it
6669 don't set the p_paddr_valid fields. */
6670 p_paddr_valid = FALSE;
6671 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6672 i < num_segments;
6673 i++, segment++)
6674 if (segment->p_paddr != 0)
6675 {
6676 p_paddr_valid = TRUE;
6677 break;
6678 }
6679
6680 /* Scan through the segments specified in the program header
6681 of the input BFD. For this first scan we look for overlaps
6682 in the loadable segments. These can be created by weird
6683 parameters to objcopy. Also, fix some solaris weirdness. */
6684 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6685 i < num_segments;
6686 i++, segment++)
6687 {
6688 unsigned int j;
6689 Elf_Internal_Phdr *segment2;
6690
6691 if (segment->p_type == PT_INTERP)
6692 for (section = ibfd->sections; section; section = section->next)
6693 if (IS_SOLARIS_PT_INTERP (segment, section))
6694 {
6695 /* Mininal change so that the normal section to segment
6696 assignment code will work. */
6697 segment->p_vaddr = section->vma;
6698 break;
6699 }
6700
6701 if (segment->p_type != PT_LOAD)
6702 {
6703 /* Remove PT_GNU_RELRO segment. */
6704 if (segment->p_type == PT_GNU_RELRO)
6705 segment->p_type = PT_NULL;
6706 continue;
6707 }
6708
6709 /* Determine if this segment overlaps any previous segments. */
6710 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6711 {
6712 bfd_signed_vma extra_length;
6713
6714 if (segment2->p_type != PT_LOAD
6715 || !SEGMENT_OVERLAPS (segment, segment2))
6716 continue;
6717
6718 /* Merge the two segments together. */
6719 if (segment2->p_vaddr < segment->p_vaddr)
6720 {
6721 /* Extend SEGMENT2 to include SEGMENT and then delete
6722 SEGMENT. */
6723 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6724 - SEGMENT_END (segment2, segment2->p_vaddr));
6725
6726 if (extra_length > 0)
6727 {
6728 segment2->p_memsz += extra_length;
6729 segment2->p_filesz += extra_length;
6730 }
6731
6732 segment->p_type = PT_NULL;
6733
6734 /* Since we have deleted P we must restart the outer loop. */
6735 i = 0;
6736 segment = elf_tdata (ibfd)->phdr;
6737 break;
6738 }
6739 else
6740 {
6741 /* Extend SEGMENT to include SEGMENT2 and then delete
6742 SEGMENT2. */
6743 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6744 - SEGMENT_END (segment, segment->p_vaddr));
6745
6746 if (extra_length > 0)
6747 {
6748 segment->p_memsz += extra_length;
6749 segment->p_filesz += extra_length;
6750 }
6751
6752 segment2->p_type = PT_NULL;
6753 }
6754 }
6755 }
6756
6757 /* The second scan attempts to assign sections to segments. */
6758 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6759 i < num_segments;
6760 i++, segment++)
6761 {
6762 unsigned int section_count;
6763 asection **sections;
6764 asection *output_section;
6765 unsigned int isec;
6766 bfd_vma matching_lma;
6767 bfd_vma suggested_lma;
6768 unsigned int j;
6769 bfd_size_type amt;
6770 asection *first_section;
6771 bfd_boolean first_matching_lma;
6772 bfd_boolean first_suggested_lma;
6773
6774 if (segment->p_type == PT_NULL)
6775 continue;
6776
6777 first_section = NULL;
6778 /* Compute how many sections might be placed into this segment. */
6779 for (section = ibfd->sections, section_count = 0;
6780 section != NULL;
6781 section = section->next)
6782 {
6783 /* Find the first section in the input segment, which may be
6784 removed from the corresponding output segment. */
6785 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6786 {
6787 if (first_section == NULL)
6788 first_section = section;
6789 if (section->output_section != NULL)
6790 ++section_count;
6791 }
6792 }
6793
6794 /* Allocate a segment map big enough to contain
6795 all of the sections we have selected. */
6796 amt = sizeof (struct elf_segment_map);
6797 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6798 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6799 if (map == NULL)
6800 return FALSE;
6801
6802 /* Initialise the fields of the segment map. Default to
6803 using the physical address of the segment in the input BFD. */
6804 map->next = NULL;
6805 map->p_type = segment->p_type;
6806 map->p_flags = segment->p_flags;
6807 map->p_flags_valid = 1;
6808
6809 /* If the first section in the input segment is removed, there is
6810 no need to preserve segment physical address in the corresponding
6811 output segment. */
6812 if (!first_section || first_section->output_section != NULL)
6813 {
6814 map->p_paddr = segment->p_paddr;
6815 map->p_paddr_valid = p_paddr_valid;
6816 }
6817
6818 /* Determine if this segment contains the ELF file header
6819 and if it contains the program headers themselves. */
6820 map->includes_filehdr = (segment->p_offset == 0
6821 && segment->p_filesz >= iehdr->e_ehsize);
6822 map->includes_phdrs = 0;
6823
6824 if (!phdr_included || segment->p_type != PT_LOAD)
6825 {
6826 map->includes_phdrs =
6827 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6828 && (segment->p_offset + segment->p_filesz
6829 >= ((bfd_vma) iehdr->e_phoff
6830 + iehdr->e_phnum * iehdr->e_phentsize)));
6831
6832 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6833 phdr_included = TRUE;
6834 }
6835
6836 if (section_count == 0)
6837 {
6838 /* Special segments, such as the PT_PHDR segment, may contain
6839 no sections, but ordinary, loadable segments should contain
6840 something. They are allowed by the ELF spec however, so only
6841 a warning is produced.
6842 There is however the valid use case of embedded systems which
6843 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6844 flash memory with zeros. No warning is shown for that case. */
6845 if (segment->p_type == PT_LOAD
6846 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6847 /* xgettext:c-format */
6848 _bfd_error_handler
6849 (_("%pB: warning: empty loadable segment detected"
6850 " at vaddr=%#" PRIx64 ", is this intentional?"),
6851 ibfd, (uint64_t) segment->p_vaddr);
6852
6853 map->count = 0;
6854 *pointer_to_map = map;
6855 pointer_to_map = &map->next;
6856
6857 continue;
6858 }
6859
6860 /* Now scan the sections in the input BFD again and attempt
6861 to add their corresponding output sections to the segment map.
6862 The problem here is how to handle an output section which has
6863 been moved (ie had its LMA changed). There are four possibilities:
6864
6865 1. None of the sections have been moved.
6866 In this case we can continue to use the segment LMA from the
6867 input BFD.
6868
6869 2. All of the sections have been moved by the same amount.
6870 In this case we can change the segment's LMA to match the LMA
6871 of the first section.
6872
6873 3. Some of the sections have been moved, others have not.
6874 In this case those sections which have not been moved can be
6875 placed in the current segment which will have to have its size,
6876 and possibly its LMA changed, and a new segment or segments will
6877 have to be created to contain the other sections.
6878
6879 4. The sections have been moved, but not by the same amount.
6880 In this case we can change the segment's LMA to match the LMA
6881 of the first section and we will have to create a new segment
6882 or segments to contain the other sections.
6883
6884 In order to save time, we allocate an array to hold the section
6885 pointers that we are interested in. As these sections get assigned
6886 to a segment, they are removed from this array. */
6887
6888 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6889 if (sections == NULL)
6890 return FALSE;
6891
6892 /* Step One: Scan for segment vs section LMA conflicts.
6893 Also add the sections to the section array allocated above.
6894 Also add the sections to the current segment. In the common
6895 case, where the sections have not been moved, this means that
6896 we have completely filled the segment, and there is nothing
6897 more to do. */
6898 isec = 0;
6899 matching_lma = 0;
6900 suggested_lma = 0;
6901 first_matching_lma = TRUE;
6902 first_suggested_lma = TRUE;
6903
6904 for (section = first_section, j = 0;
6905 section != NULL;
6906 section = section->next)
6907 {
6908 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6909 {
6910 output_section = section->output_section;
6911
6912 sections[j++] = section;
6913
6914 /* The Solaris native linker always sets p_paddr to 0.
6915 We try to catch that case here, and set it to the
6916 correct value. Note - some backends require that
6917 p_paddr be left as zero. */
6918 if (!p_paddr_valid
6919 && segment->p_vaddr != 0
6920 && !bed->want_p_paddr_set_to_zero
6921 && isec == 0
6922 && output_section->lma != 0
6923 && output_section->vma == (segment->p_vaddr
6924 + (map->includes_filehdr
6925 ? iehdr->e_ehsize
6926 : 0)
6927 + (map->includes_phdrs
6928 ? (iehdr->e_phnum
6929 * iehdr->e_phentsize)
6930 : 0)))
6931 map->p_paddr = segment->p_vaddr;
6932
6933 /* Match up the physical address of the segment with the
6934 LMA address of the output section. */
6935 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6936 || IS_COREFILE_NOTE (segment, section)
6937 || (bed->want_p_paddr_set_to_zero
6938 && IS_CONTAINED_BY_VMA (output_section, segment)))
6939 {
6940 if (first_matching_lma || output_section->lma < matching_lma)
6941 {
6942 matching_lma = output_section->lma;
6943 first_matching_lma = FALSE;
6944 }
6945
6946 /* We assume that if the section fits within the segment
6947 then it does not overlap any other section within that
6948 segment. */
6949 map->sections[isec++] = output_section;
6950 }
6951 else if (first_suggested_lma)
6952 {
6953 suggested_lma = output_section->lma;
6954 first_suggested_lma = FALSE;
6955 }
6956
6957 if (j == section_count)
6958 break;
6959 }
6960 }
6961
6962 BFD_ASSERT (j == section_count);
6963
6964 /* Step Two: Adjust the physical address of the current segment,
6965 if necessary. */
6966 if (isec == section_count)
6967 {
6968 /* All of the sections fitted within the segment as currently
6969 specified. This is the default case. Add the segment to
6970 the list of built segments and carry on to process the next
6971 program header in the input BFD. */
6972 map->count = section_count;
6973 *pointer_to_map = map;
6974 pointer_to_map = &map->next;
6975
6976 if (p_paddr_valid
6977 && !bed->want_p_paddr_set_to_zero
6978 && matching_lma != map->p_paddr
6979 && !map->includes_filehdr
6980 && !map->includes_phdrs)
6981 /* There is some padding before the first section in the
6982 segment. So, we must account for that in the output
6983 segment's vma. */
6984 map->p_vaddr_offset = matching_lma - map->p_paddr;
6985
6986 free (sections);
6987 continue;
6988 }
6989 else
6990 {
6991 if (!first_matching_lma)
6992 {
6993 /* At least one section fits inside the current segment.
6994 Keep it, but modify its physical address to match the
6995 LMA of the first section that fitted. */
6996 map->p_paddr = matching_lma;
6997 }
6998 else
6999 {
7000 /* None of the sections fitted inside the current segment.
7001 Change the current segment's physical address to match
7002 the LMA of the first section. */
7003 map->p_paddr = suggested_lma;
7004 }
7005
7006 /* Offset the segment physical address from the lma
7007 to allow for space taken up by elf headers. */
7008 if (map->includes_filehdr)
7009 {
7010 if (map->p_paddr >= iehdr->e_ehsize)
7011 map->p_paddr -= iehdr->e_ehsize;
7012 else
7013 {
7014 map->includes_filehdr = FALSE;
7015 map->includes_phdrs = FALSE;
7016 }
7017 }
7018
7019 if (map->includes_phdrs)
7020 {
7021 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
7022 {
7023 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7024
7025 /* iehdr->e_phnum is just an estimate of the number
7026 of program headers that we will need. Make a note
7027 here of the number we used and the segment we chose
7028 to hold these headers, so that we can adjust the
7029 offset when we know the correct value. */
7030 phdr_adjust_num = iehdr->e_phnum;
7031 phdr_adjust_seg = map;
7032 }
7033 else
7034 map->includes_phdrs = FALSE;
7035 }
7036 }
7037
7038 /* Step Three: Loop over the sections again, this time assigning
7039 those that fit to the current segment and removing them from the
7040 sections array; but making sure not to leave large gaps. Once all
7041 possible sections have been assigned to the current segment it is
7042 added to the list of built segments and if sections still remain
7043 to be assigned, a new segment is constructed before repeating
7044 the loop. */
7045 isec = 0;
7046 do
7047 {
7048 map->count = 0;
7049 suggested_lma = 0;
7050 first_suggested_lma = TRUE;
7051
7052 /* Fill the current segment with sections that fit. */
7053 for (j = 0; j < section_count; j++)
7054 {
7055 section = sections[j];
7056
7057 if (section == NULL)
7058 continue;
7059
7060 output_section = section->output_section;
7061
7062 BFD_ASSERT (output_section != NULL);
7063
7064 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7065 || IS_COREFILE_NOTE (segment, section))
7066 {
7067 if (map->count == 0)
7068 {
7069 /* If the first section in a segment does not start at
7070 the beginning of the segment, then something is
7071 wrong. */
7072 if (output_section->lma
7073 != (map->p_paddr
7074 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
7075 + (map->includes_phdrs
7076 ? iehdr->e_phnum * iehdr->e_phentsize
7077 : 0)))
7078 abort ();
7079 }
7080 else
7081 {
7082 asection *prev_sec;
7083
7084 prev_sec = map->sections[map->count - 1];
7085
7086 /* If the gap between the end of the previous section
7087 and the start of this section is more than
7088 maxpagesize then we need to start a new segment. */
7089 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7090 maxpagesize)
7091 < BFD_ALIGN (output_section->lma, maxpagesize))
7092 || (prev_sec->lma + prev_sec->size
7093 > output_section->lma))
7094 {
7095 if (first_suggested_lma)
7096 {
7097 suggested_lma = output_section->lma;
7098 first_suggested_lma = FALSE;
7099 }
7100
7101 continue;
7102 }
7103 }
7104
7105 map->sections[map->count++] = output_section;
7106 ++isec;
7107 sections[j] = NULL;
7108 section->segment_mark = TRUE;
7109 }
7110 else if (first_suggested_lma)
7111 {
7112 suggested_lma = output_section->lma;
7113 first_suggested_lma = FALSE;
7114 }
7115 }
7116
7117 BFD_ASSERT (map->count > 0);
7118
7119 /* Add the current segment to the list of built segments. */
7120 *pointer_to_map = map;
7121 pointer_to_map = &map->next;
7122
7123 if (isec < section_count)
7124 {
7125 /* We still have not allocated all of the sections to
7126 segments. Create a new segment here, initialise it
7127 and carry on looping. */
7128 amt = sizeof (struct elf_segment_map);
7129 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7130 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7131 if (map == NULL)
7132 {
7133 free (sections);
7134 return FALSE;
7135 }
7136
7137 /* Initialise the fields of the segment map. Set the physical
7138 physical address to the LMA of the first section that has
7139 not yet been assigned. */
7140 map->next = NULL;
7141 map->p_type = segment->p_type;
7142 map->p_flags = segment->p_flags;
7143 map->p_flags_valid = 1;
7144 map->p_paddr = suggested_lma;
7145 map->p_paddr_valid = p_paddr_valid;
7146 map->includes_filehdr = 0;
7147 map->includes_phdrs = 0;
7148 }
7149 }
7150 while (isec < section_count);
7151
7152 free (sections);
7153 }
7154
7155 elf_seg_map (obfd) = map_first;
7156
7157 /* If we had to estimate the number of program headers that were
7158 going to be needed, then check our estimate now and adjust
7159 the offset if necessary. */
7160 if (phdr_adjust_seg != NULL)
7161 {
7162 unsigned int count;
7163
7164 for (count = 0, map = map_first; map != NULL; map = map->next)
7165 count++;
7166
7167 if (count > phdr_adjust_num)
7168 phdr_adjust_seg->p_paddr
7169 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7170 }
7171
7172 #undef SEGMENT_END
7173 #undef SECTION_SIZE
7174 #undef IS_CONTAINED_BY_VMA
7175 #undef IS_CONTAINED_BY_LMA
7176 #undef IS_NOTE
7177 #undef IS_COREFILE_NOTE
7178 #undef IS_SOLARIS_PT_INTERP
7179 #undef IS_SECTION_IN_INPUT_SEGMENT
7180 #undef INCLUDE_SECTION_IN_SEGMENT
7181 #undef SEGMENT_AFTER_SEGMENT
7182 #undef SEGMENT_OVERLAPS
7183 return TRUE;
7184 }
7185
7186 /* Copy ELF program header information. */
7187
7188 static bfd_boolean
7189 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7190 {
7191 Elf_Internal_Ehdr *iehdr;
7192 struct elf_segment_map *map;
7193 struct elf_segment_map *map_first;
7194 struct elf_segment_map **pointer_to_map;
7195 Elf_Internal_Phdr *segment;
7196 unsigned int i;
7197 unsigned int num_segments;
7198 bfd_boolean phdr_included = FALSE;
7199 bfd_boolean p_paddr_valid;
7200
7201 iehdr = elf_elfheader (ibfd);
7202
7203 map_first = NULL;
7204 pointer_to_map = &map_first;
7205
7206 /* If all the segment p_paddr fields are zero, don't set
7207 map->p_paddr_valid. */
7208 p_paddr_valid = FALSE;
7209 num_segments = elf_elfheader (ibfd)->e_phnum;
7210 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7211 i < num_segments;
7212 i++, segment++)
7213 if (segment->p_paddr != 0)
7214 {
7215 p_paddr_valid = TRUE;
7216 break;
7217 }
7218
7219 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7220 i < num_segments;
7221 i++, segment++)
7222 {
7223 asection *section;
7224 unsigned int section_count;
7225 bfd_size_type amt;
7226 Elf_Internal_Shdr *this_hdr;
7227 asection *first_section = NULL;
7228 asection *lowest_section;
7229
7230 /* Compute how many sections are in this segment. */
7231 for (section = ibfd->sections, section_count = 0;
7232 section != NULL;
7233 section = section->next)
7234 {
7235 this_hdr = &(elf_section_data(section)->this_hdr);
7236 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7237 {
7238 if (first_section == NULL)
7239 first_section = section;
7240 section_count++;
7241 }
7242 }
7243
7244 /* Allocate a segment map big enough to contain
7245 all of the sections we have selected. */
7246 amt = sizeof (struct elf_segment_map);
7247 if (section_count != 0)
7248 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7249 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7250 if (map == NULL)
7251 return FALSE;
7252
7253 /* Initialize the fields of the output segment map with the
7254 input segment. */
7255 map->next = NULL;
7256 map->p_type = segment->p_type;
7257 map->p_flags = segment->p_flags;
7258 map->p_flags_valid = 1;
7259 map->p_paddr = segment->p_paddr;
7260 map->p_paddr_valid = p_paddr_valid;
7261 map->p_align = segment->p_align;
7262 map->p_align_valid = 1;
7263 map->p_vaddr_offset = 0;
7264
7265 if (map->p_type == PT_GNU_RELRO
7266 || map->p_type == PT_GNU_STACK)
7267 {
7268 /* The PT_GNU_RELRO segment may contain the first a few
7269 bytes in the .got.plt section even if the whole .got.plt
7270 section isn't in the PT_GNU_RELRO segment. We won't
7271 change the size of the PT_GNU_RELRO segment.
7272 Similarly, PT_GNU_STACK size is significant on uclinux
7273 systems. */
7274 map->p_size = segment->p_memsz;
7275 map->p_size_valid = 1;
7276 }
7277
7278 /* Determine if this segment contains the ELF file header
7279 and if it contains the program headers themselves. */
7280 map->includes_filehdr = (segment->p_offset == 0
7281 && segment->p_filesz >= iehdr->e_ehsize);
7282
7283 map->includes_phdrs = 0;
7284 if (! phdr_included || segment->p_type != PT_LOAD)
7285 {
7286 map->includes_phdrs =
7287 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7288 && (segment->p_offset + segment->p_filesz
7289 >= ((bfd_vma) iehdr->e_phoff
7290 + iehdr->e_phnum * iehdr->e_phentsize)));
7291
7292 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7293 phdr_included = TRUE;
7294 }
7295
7296 lowest_section = NULL;
7297 if (section_count != 0)
7298 {
7299 unsigned int isec = 0;
7300
7301 for (section = first_section;
7302 section != NULL;
7303 section = section->next)
7304 {
7305 this_hdr = &(elf_section_data(section)->this_hdr);
7306 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7307 {
7308 map->sections[isec++] = section->output_section;
7309 if ((section->flags & SEC_ALLOC) != 0)
7310 {
7311 bfd_vma seg_off;
7312
7313 if (lowest_section == NULL
7314 || section->lma < lowest_section->lma)
7315 lowest_section = section;
7316
7317 /* Section lmas are set up from PT_LOAD header
7318 p_paddr in _bfd_elf_make_section_from_shdr.
7319 If this header has a p_paddr that disagrees
7320 with the section lma, flag the p_paddr as
7321 invalid. */
7322 if ((section->flags & SEC_LOAD) != 0)
7323 seg_off = this_hdr->sh_offset - segment->p_offset;
7324 else
7325 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7326 if (section->lma - segment->p_paddr != seg_off)
7327 map->p_paddr_valid = FALSE;
7328 }
7329 if (isec == section_count)
7330 break;
7331 }
7332 }
7333 }
7334
7335 if (map->includes_filehdr && lowest_section != NULL)
7336 /* We need to keep the space used by the headers fixed. */
7337 map->header_size = lowest_section->vma - segment->p_vaddr;
7338
7339 if (!map->includes_phdrs
7340 && !map->includes_filehdr
7341 && map->p_paddr_valid)
7342 /* There is some other padding before the first section. */
7343 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7344 - segment->p_paddr);
7345
7346 map->count = section_count;
7347 *pointer_to_map = map;
7348 pointer_to_map = &map->next;
7349 }
7350
7351 elf_seg_map (obfd) = map_first;
7352 return TRUE;
7353 }
7354
7355 /* Copy private BFD data. This copies or rewrites ELF program header
7356 information. */
7357
7358 static bfd_boolean
7359 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7360 {
7361 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7362 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7363 return TRUE;
7364
7365 if (elf_tdata (ibfd)->phdr == NULL)
7366 return TRUE;
7367
7368 if (ibfd->xvec == obfd->xvec)
7369 {
7370 /* Check to see if any sections in the input BFD
7371 covered by ELF program header have changed. */
7372 Elf_Internal_Phdr *segment;
7373 asection *section, *osec;
7374 unsigned int i, num_segments;
7375 Elf_Internal_Shdr *this_hdr;
7376 const struct elf_backend_data *bed;
7377
7378 bed = get_elf_backend_data (ibfd);
7379
7380 /* Regenerate the segment map if p_paddr is set to 0. */
7381 if (bed->want_p_paddr_set_to_zero)
7382 goto rewrite;
7383
7384 /* Initialize the segment mark field. */
7385 for (section = obfd->sections; section != NULL;
7386 section = section->next)
7387 section->segment_mark = FALSE;
7388
7389 num_segments = elf_elfheader (ibfd)->e_phnum;
7390 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7391 i < num_segments;
7392 i++, segment++)
7393 {
7394 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7395 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7396 which severly confuses things, so always regenerate the segment
7397 map in this case. */
7398 if (segment->p_paddr == 0
7399 && segment->p_memsz == 0
7400 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7401 goto rewrite;
7402
7403 for (section = ibfd->sections;
7404 section != NULL; section = section->next)
7405 {
7406 /* We mark the output section so that we know it comes
7407 from the input BFD. */
7408 osec = section->output_section;
7409 if (osec)
7410 osec->segment_mark = TRUE;
7411
7412 /* Check if this section is covered by the segment. */
7413 this_hdr = &(elf_section_data(section)->this_hdr);
7414 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7415 {
7416 /* FIXME: Check if its output section is changed or
7417 removed. What else do we need to check? */
7418 if (osec == NULL
7419 || section->flags != osec->flags
7420 || section->lma != osec->lma
7421 || section->vma != osec->vma
7422 || section->size != osec->size
7423 || section->rawsize != osec->rawsize
7424 || section->alignment_power != osec->alignment_power)
7425 goto rewrite;
7426 }
7427 }
7428 }
7429
7430 /* Check to see if any output section do not come from the
7431 input BFD. */
7432 for (section = obfd->sections; section != NULL;
7433 section = section->next)
7434 {
7435 if (!section->segment_mark)
7436 goto rewrite;
7437 else
7438 section->segment_mark = FALSE;
7439 }
7440
7441 return copy_elf_program_header (ibfd, obfd);
7442 }
7443
7444 rewrite:
7445 if (ibfd->xvec == obfd->xvec)
7446 {
7447 /* When rewriting program header, set the output maxpagesize to
7448 the maximum alignment of input PT_LOAD segments. */
7449 Elf_Internal_Phdr *segment;
7450 unsigned int i;
7451 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7452 bfd_vma maxpagesize = 0;
7453
7454 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7455 i < num_segments;
7456 i++, segment++)
7457 if (segment->p_type == PT_LOAD
7458 && maxpagesize < segment->p_align)
7459 {
7460 /* PR 17512: file: f17299af. */
7461 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7462 /* xgettext:c-format */
7463 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7464 PRIx64 " is too large"),
7465 ibfd, (uint64_t) segment->p_align);
7466 else
7467 maxpagesize = segment->p_align;
7468 }
7469
7470 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7471 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7472 }
7473
7474 return rewrite_elf_program_header (ibfd, obfd);
7475 }
7476
7477 /* Initialize private output section information from input section. */
7478
7479 bfd_boolean
7480 _bfd_elf_init_private_section_data (bfd *ibfd,
7481 asection *isec,
7482 bfd *obfd,
7483 asection *osec,
7484 struct bfd_link_info *link_info)
7485
7486 {
7487 Elf_Internal_Shdr *ihdr, *ohdr;
7488 bfd_boolean final_link = (link_info != NULL
7489 && !bfd_link_relocatable (link_info));
7490
7491 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7492 || obfd->xvec->flavour != bfd_target_elf_flavour)
7493 return TRUE;
7494
7495 BFD_ASSERT (elf_section_data (osec) != NULL);
7496
7497 /* For objcopy and relocatable link, don't copy the output ELF
7498 section type from input if the output BFD section flags have been
7499 set to something different. For a final link allow some flags
7500 that the linker clears to differ. */
7501 if (elf_section_type (osec) == SHT_NULL
7502 && (osec->flags == isec->flags
7503 || (final_link
7504 && ((osec->flags ^ isec->flags)
7505 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7506 elf_section_type (osec) = elf_section_type (isec);
7507
7508 /* FIXME: Is this correct for all OS/PROC specific flags? */
7509 elf_section_flags (osec) |= (elf_section_flags (isec)
7510 & (SHF_MASKOS | SHF_MASKPROC));
7511
7512 /* Copy sh_info from input for mbind section. */
7513 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7514 elf_section_data (osec)->this_hdr.sh_info
7515 = elf_section_data (isec)->this_hdr.sh_info;
7516
7517 /* Set things up for objcopy and relocatable link. The output
7518 SHT_GROUP section will have its elf_next_in_group pointing back
7519 to the input group members. Ignore linker created group section.
7520 See elfNN_ia64_object_p in elfxx-ia64.c. */
7521 if ((link_info == NULL
7522 || !link_info->resolve_section_groups)
7523 && (elf_sec_group (isec) == NULL
7524 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7525 {
7526 if (elf_section_flags (isec) & SHF_GROUP)
7527 elf_section_flags (osec) |= SHF_GROUP;
7528 elf_next_in_group (osec) = elf_next_in_group (isec);
7529 elf_section_data (osec)->group = elf_section_data (isec)->group;
7530 }
7531
7532 /* If not decompress, preserve SHF_COMPRESSED. */
7533 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7534 elf_section_flags (osec) |= (elf_section_flags (isec)
7535 & SHF_COMPRESSED);
7536
7537 ihdr = &elf_section_data (isec)->this_hdr;
7538
7539 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7540 don't use the output section of the linked-to section since it
7541 may be NULL at this point. */
7542 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7543 {
7544 ohdr = &elf_section_data (osec)->this_hdr;
7545 ohdr->sh_flags |= SHF_LINK_ORDER;
7546 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7547 }
7548
7549 osec->use_rela_p = isec->use_rela_p;
7550
7551 return TRUE;
7552 }
7553
7554 /* Copy private section information. This copies over the entsize
7555 field, and sometimes the info field. */
7556
7557 bfd_boolean
7558 _bfd_elf_copy_private_section_data (bfd *ibfd,
7559 asection *isec,
7560 bfd *obfd,
7561 asection *osec)
7562 {
7563 Elf_Internal_Shdr *ihdr, *ohdr;
7564
7565 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7566 || obfd->xvec->flavour != bfd_target_elf_flavour)
7567 return TRUE;
7568
7569 ihdr = &elf_section_data (isec)->this_hdr;
7570 ohdr = &elf_section_data (osec)->this_hdr;
7571
7572 ohdr->sh_entsize = ihdr->sh_entsize;
7573
7574 if (ihdr->sh_type == SHT_SYMTAB
7575 || ihdr->sh_type == SHT_DYNSYM
7576 || ihdr->sh_type == SHT_GNU_verneed
7577 || ihdr->sh_type == SHT_GNU_verdef)
7578 ohdr->sh_info = ihdr->sh_info;
7579
7580 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7581 NULL);
7582 }
7583
7584 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7585 necessary if we are removing either the SHT_GROUP section or any of
7586 the group member sections. DISCARDED is the value that a section's
7587 output_section has if the section will be discarded, NULL when this
7588 function is called from objcopy, bfd_abs_section_ptr when called
7589 from the linker. */
7590
7591 bfd_boolean
7592 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7593 {
7594 asection *isec;
7595
7596 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7597 if (elf_section_type (isec) == SHT_GROUP)
7598 {
7599 asection *first = elf_next_in_group (isec);
7600 asection *s = first;
7601 bfd_size_type removed = 0;
7602
7603 while (s != NULL)
7604 {
7605 /* If this member section is being output but the
7606 SHT_GROUP section is not, then clear the group info
7607 set up by _bfd_elf_copy_private_section_data. */
7608 if (s->output_section != discarded
7609 && isec->output_section == discarded)
7610 {
7611 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7612 elf_group_name (s->output_section) = NULL;
7613 }
7614 /* Conversely, if the member section is not being output
7615 but the SHT_GROUP section is, then adjust its size. */
7616 else if (s->output_section == discarded
7617 && isec->output_section != discarded)
7618 {
7619 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7620 removed += 4;
7621 if (elf_sec->rel.hdr != NULL
7622 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7623 removed += 4;
7624 if (elf_sec->rela.hdr != NULL
7625 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7626 removed += 4;
7627 }
7628 s = elf_next_in_group (s);
7629 if (s == first)
7630 break;
7631 }
7632 if (removed != 0)
7633 {
7634 if (discarded != NULL)
7635 {
7636 /* If we've been called for ld -r, then we need to
7637 adjust the input section size. */
7638 if (isec->rawsize == 0)
7639 isec->rawsize = isec->size;
7640 isec->size = isec->rawsize - removed;
7641 if (isec->size <= 4)
7642 {
7643 isec->size = 0;
7644 isec->flags |= SEC_EXCLUDE;
7645 }
7646 }
7647 else
7648 {
7649 /* Adjust the output section size when called from
7650 objcopy. */
7651 isec->output_section->size -= removed;
7652 if (isec->output_section->size <= 4)
7653 {
7654 isec->output_section->size = 0;
7655 isec->output_section->flags |= SEC_EXCLUDE;
7656 }
7657 }
7658 }
7659 }
7660
7661 return TRUE;
7662 }
7663
7664 /* Copy private header information. */
7665
7666 bfd_boolean
7667 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7668 {
7669 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7670 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7671 return TRUE;
7672
7673 /* Copy over private BFD data if it has not already been copied.
7674 This must be done here, rather than in the copy_private_bfd_data
7675 entry point, because the latter is called after the section
7676 contents have been set, which means that the program headers have
7677 already been worked out. */
7678 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7679 {
7680 if (! copy_private_bfd_data (ibfd, obfd))
7681 return FALSE;
7682 }
7683
7684 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7685 }
7686
7687 /* Copy private symbol information. If this symbol is in a section
7688 which we did not map into a BFD section, try to map the section
7689 index correctly. We use special macro definitions for the mapped
7690 section indices; these definitions are interpreted by the
7691 swap_out_syms function. */
7692
7693 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7694 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7695 #define MAP_STRTAB (SHN_HIOS + 3)
7696 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7697 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7698
7699 bfd_boolean
7700 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7701 asymbol *isymarg,
7702 bfd *obfd,
7703 asymbol *osymarg)
7704 {
7705 elf_symbol_type *isym, *osym;
7706
7707 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7708 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7709 return TRUE;
7710
7711 isym = elf_symbol_from (ibfd, isymarg);
7712 osym = elf_symbol_from (obfd, osymarg);
7713
7714 if (isym != NULL
7715 && isym->internal_elf_sym.st_shndx != 0
7716 && osym != NULL
7717 && bfd_is_abs_section (isym->symbol.section))
7718 {
7719 unsigned int shndx;
7720
7721 shndx = isym->internal_elf_sym.st_shndx;
7722 if (shndx == elf_onesymtab (ibfd))
7723 shndx = MAP_ONESYMTAB;
7724 else if (shndx == elf_dynsymtab (ibfd))
7725 shndx = MAP_DYNSYMTAB;
7726 else if (shndx == elf_strtab_sec (ibfd))
7727 shndx = MAP_STRTAB;
7728 else if (shndx == elf_shstrtab_sec (ibfd))
7729 shndx = MAP_SHSTRTAB;
7730 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7731 shndx = MAP_SYM_SHNDX;
7732 osym->internal_elf_sym.st_shndx = shndx;
7733 }
7734
7735 return TRUE;
7736 }
7737
7738 /* Swap out the symbols. */
7739
7740 static bfd_boolean
7741 swap_out_syms (bfd *abfd,
7742 struct elf_strtab_hash **sttp,
7743 int relocatable_p)
7744 {
7745 const struct elf_backend_data *bed;
7746 int symcount;
7747 asymbol **syms;
7748 struct elf_strtab_hash *stt;
7749 Elf_Internal_Shdr *symtab_hdr;
7750 Elf_Internal_Shdr *symtab_shndx_hdr;
7751 Elf_Internal_Shdr *symstrtab_hdr;
7752 struct elf_sym_strtab *symstrtab;
7753 bfd_byte *outbound_syms;
7754 bfd_byte *outbound_shndx;
7755 unsigned long outbound_syms_index;
7756 unsigned long outbound_shndx_index;
7757 int idx;
7758 unsigned int num_locals;
7759 bfd_size_type amt;
7760 bfd_boolean name_local_sections;
7761
7762 if (!elf_map_symbols (abfd, &num_locals))
7763 return FALSE;
7764
7765 /* Dump out the symtabs. */
7766 stt = _bfd_elf_strtab_init ();
7767 if (stt == NULL)
7768 return FALSE;
7769
7770 bed = get_elf_backend_data (abfd);
7771 symcount = bfd_get_symcount (abfd);
7772 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7773 symtab_hdr->sh_type = SHT_SYMTAB;
7774 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7775 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7776 symtab_hdr->sh_info = num_locals + 1;
7777 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7778
7779 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7780 symstrtab_hdr->sh_type = SHT_STRTAB;
7781
7782 /* Allocate buffer to swap out the .strtab section. */
7783 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7784 * sizeof (*symstrtab));
7785 if (symstrtab == NULL)
7786 {
7787 _bfd_elf_strtab_free (stt);
7788 return FALSE;
7789 }
7790
7791 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7792 bed->s->sizeof_sym);
7793 if (outbound_syms == NULL)
7794 {
7795 error_return:
7796 _bfd_elf_strtab_free (stt);
7797 free (symstrtab);
7798 return FALSE;
7799 }
7800 symtab_hdr->contents = outbound_syms;
7801 outbound_syms_index = 0;
7802
7803 outbound_shndx = NULL;
7804 outbound_shndx_index = 0;
7805
7806 if (elf_symtab_shndx_list (abfd))
7807 {
7808 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7809 if (symtab_shndx_hdr->sh_name != 0)
7810 {
7811 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7812 outbound_shndx = (bfd_byte *)
7813 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7814 if (outbound_shndx == NULL)
7815 goto error_return;
7816
7817 symtab_shndx_hdr->contents = outbound_shndx;
7818 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7819 symtab_shndx_hdr->sh_size = amt;
7820 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7821 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7822 }
7823 /* FIXME: What about any other headers in the list ? */
7824 }
7825
7826 /* Now generate the data (for "contents"). */
7827 {
7828 /* Fill in zeroth symbol and swap it out. */
7829 Elf_Internal_Sym sym;
7830 sym.st_name = 0;
7831 sym.st_value = 0;
7832 sym.st_size = 0;
7833 sym.st_info = 0;
7834 sym.st_other = 0;
7835 sym.st_shndx = SHN_UNDEF;
7836 sym.st_target_internal = 0;
7837 symstrtab[0].sym = sym;
7838 symstrtab[0].dest_index = outbound_syms_index;
7839 symstrtab[0].destshndx_index = outbound_shndx_index;
7840 outbound_syms_index++;
7841 if (outbound_shndx != NULL)
7842 outbound_shndx_index++;
7843 }
7844
7845 name_local_sections
7846 = (bed->elf_backend_name_local_section_symbols
7847 && bed->elf_backend_name_local_section_symbols (abfd));
7848
7849 syms = bfd_get_outsymbols (abfd);
7850 for (idx = 0; idx < symcount;)
7851 {
7852 Elf_Internal_Sym sym;
7853 bfd_vma value = syms[idx]->value;
7854 elf_symbol_type *type_ptr;
7855 flagword flags = syms[idx]->flags;
7856 int type;
7857
7858 if (!name_local_sections
7859 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7860 {
7861 /* Local section symbols have no name. */
7862 sym.st_name = (unsigned long) -1;
7863 }
7864 else
7865 {
7866 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7867 to get the final offset for st_name. */
7868 sym.st_name
7869 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7870 FALSE);
7871 if (sym.st_name == (unsigned long) -1)
7872 goto error_return;
7873 }
7874
7875 type_ptr = elf_symbol_from (abfd, syms[idx]);
7876
7877 if ((flags & BSF_SECTION_SYM) == 0
7878 && bfd_is_com_section (syms[idx]->section))
7879 {
7880 /* ELF common symbols put the alignment into the `value' field,
7881 and the size into the `size' field. This is backwards from
7882 how BFD handles it, so reverse it here. */
7883 sym.st_size = value;
7884 if (type_ptr == NULL
7885 || type_ptr->internal_elf_sym.st_value == 0)
7886 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7887 else
7888 sym.st_value = type_ptr->internal_elf_sym.st_value;
7889 sym.st_shndx = _bfd_elf_section_from_bfd_section
7890 (abfd, syms[idx]->section);
7891 }
7892 else
7893 {
7894 asection *sec = syms[idx]->section;
7895 unsigned int shndx;
7896
7897 if (sec->output_section)
7898 {
7899 value += sec->output_offset;
7900 sec = sec->output_section;
7901 }
7902
7903 /* Don't add in the section vma for relocatable output. */
7904 if (! relocatable_p)
7905 value += sec->vma;
7906 sym.st_value = value;
7907 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7908
7909 if (bfd_is_abs_section (sec)
7910 && type_ptr != NULL
7911 && type_ptr->internal_elf_sym.st_shndx != 0)
7912 {
7913 /* This symbol is in a real ELF section which we did
7914 not create as a BFD section. Undo the mapping done
7915 by copy_private_symbol_data. */
7916 shndx = type_ptr->internal_elf_sym.st_shndx;
7917 switch (shndx)
7918 {
7919 case MAP_ONESYMTAB:
7920 shndx = elf_onesymtab (abfd);
7921 break;
7922 case MAP_DYNSYMTAB:
7923 shndx = elf_dynsymtab (abfd);
7924 break;
7925 case MAP_STRTAB:
7926 shndx = elf_strtab_sec (abfd);
7927 break;
7928 case MAP_SHSTRTAB:
7929 shndx = elf_shstrtab_sec (abfd);
7930 break;
7931 case MAP_SYM_SHNDX:
7932 if (elf_symtab_shndx_list (abfd))
7933 shndx = elf_symtab_shndx_list (abfd)->ndx;
7934 break;
7935 default:
7936 shndx = SHN_ABS;
7937 break;
7938 }
7939 }
7940 else
7941 {
7942 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7943
7944 if (shndx == SHN_BAD)
7945 {
7946 asection *sec2;
7947
7948 /* Writing this would be a hell of a lot easier if
7949 we had some decent documentation on bfd, and
7950 knew what to expect of the library, and what to
7951 demand of applications. For example, it
7952 appears that `objcopy' might not set the
7953 section of a symbol to be a section that is
7954 actually in the output file. */
7955 sec2 = bfd_get_section_by_name (abfd, sec->name);
7956 if (sec2 != NULL)
7957 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7958 if (shndx == SHN_BAD)
7959 {
7960 /* xgettext:c-format */
7961 _bfd_error_handler
7962 (_("unable to find equivalent output section"
7963 " for symbol '%s' from section '%s'"),
7964 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7965 sec->name);
7966 bfd_set_error (bfd_error_invalid_operation);
7967 goto error_return;
7968 }
7969 }
7970 }
7971
7972 sym.st_shndx = shndx;
7973 }
7974
7975 if ((flags & BSF_THREAD_LOCAL) != 0)
7976 type = STT_TLS;
7977 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7978 type = STT_GNU_IFUNC;
7979 else if ((flags & BSF_FUNCTION) != 0)
7980 type = STT_FUNC;
7981 else if ((flags & BSF_OBJECT) != 0)
7982 type = STT_OBJECT;
7983 else if ((flags & BSF_RELC) != 0)
7984 type = STT_RELC;
7985 else if ((flags & BSF_SRELC) != 0)
7986 type = STT_SRELC;
7987 else
7988 type = STT_NOTYPE;
7989
7990 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7991 type = STT_TLS;
7992
7993 /* Processor-specific types. */
7994 if (type_ptr != NULL
7995 && bed->elf_backend_get_symbol_type)
7996 type = ((*bed->elf_backend_get_symbol_type)
7997 (&type_ptr->internal_elf_sym, type));
7998
7999 if (flags & BSF_SECTION_SYM)
8000 {
8001 if (flags & BSF_GLOBAL)
8002 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8003 else
8004 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8005 }
8006 else if (bfd_is_com_section (syms[idx]->section))
8007 {
8008 if (type != STT_TLS)
8009 {
8010 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8011 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8012 ? STT_COMMON : STT_OBJECT);
8013 else
8014 type = ((flags & BSF_ELF_COMMON) != 0
8015 ? STT_COMMON : STT_OBJECT);
8016 }
8017 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8018 }
8019 else if (bfd_is_und_section (syms[idx]->section))
8020 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8021 ? STB_WEAK
8022 : STB_GLOBAL),
8023 type);
8024 else if (flags & BSF_FILE)
8025 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8026 else
8027 {
8028 int bind = STB_LOCAL;
8029
8030 if (flags & BSF_LOCAL)
8031 bind = STB_LOCAL;
8032 else if (flags & BSF_GNU_UNIQUE)
8033 bind = STB_GNU_UNIQUE;
8034 else if (flags & BSF_WEAK)
8035 bind = STB_WEAK;
8036 else if (flags & BSF_GLOBAL)
8037 bind = STB_GLOBAL;
8038
8039 sym.st_info = ELF_ST_INFO (bind, type);
8040 }
8041
8042 if (type_ptr != NULL)
8043 {
8044 sym.st_other = type_ptr->internal_elf_sym.st_other;
8045 sym.st_target_internal
8046 = type_ptr->internal_elf_sym.st_target_internal;
8047 }
8048 else
8049 {
8050 sym.st_other = 0;
8051 sym.st_target_internal = 0;
8052 }
8053
8054 idx++;
8055 symstrtab[idx].sym = sym;
8056 symstrtab[idx].dest_index = outbound_syms_index;
8057 symstrtab[idx].destshndx_index = outbound_shndx_index;
8058
8059 outbound_syms_index++;
8060 if (outbound_shndx != NULL)
8061 outbound_shndx_index++;
8062 }
8063
8064 /* Finalize the .strtab section. */
8065 _bfd_elf_strtab_finalize (stt);
8066
8067 /* Swap out the .strtab section. */
8068 for (idx = 0; idx <= symcount; idx++)
8069 {
8070 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8071 if (elfsym->sym.st_name == (unsigned long) -1)
8072 elfsym->sym.st_name = 0;
8073 else
8074 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8075 elfsym->sym.st_name);
8076 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8077 (outbound_syms
8078 + (elfsym->dest_index
8079 * bed->s->sizeof_sym)),
8080 (outbound_shndx
8081 + (elfsym->destshndx_index
8082 * sizeof (Elf_External_Sym_Shndx))));
8083 }
8084 free (symstrtab);
8085
8086 *sttp = stt;
8087 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8088 symstrtab_hdr->sh_type = SHT_STRTAB;
8089 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8090 symstrtab_hdr->sh_addr = 0;
8091 symstrtab_hdr->sh_entsize = 0;
8092 symstrtab_hdr->sh_link = 0;
8093 symstrtab_hdr->sh_info = 0;
8094 symstrtab_hdr->sh_addralign = 1;
8095
8096 return TRUE;
8097 }
8098
8099 /* Return the number of bytes required to hold the symtab vector.
8100
8101 Note that we base it on the count plus 1, since we will null terminate
8102 the vector allocated based on this size. However, the ELF symbol table
8103 always has a dummy entry as symbol #0, so it ends up even. */
8104
8105 long
8106 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8107 {
8108 long symcount;
8109 long symtab_size;
8110 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8111
8112 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8113 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8114 if (symcount > 0)
8115 symtab_size -= sizeof (asymbol *);
8116
8117 return symtab_size;
8118 }
8119
8120 long
8121 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8122 {
8123 long symcount;
8124 long symtab_size;
8125 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8126
8127 if (elf_dynsymtab (abfd) == 0)
8128 {
8129 bfd_set_error (bfd_error_invalid_operation);
8130 return -1;
8131 }
8132
8133 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8134 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8135 if (symcount > 0)
8136 symtab_size -= sizeof (asymbol *);
8137
8138 return symtab_size;
8139 }
8140
8141 long
8142 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8143 sec_ptr asect)
8144 {
8145 return (asect->reloc_count + 1) * sizeof (arelent *);
8146 }
8147
8148 /* Canonicalize the relocs. */
8149
8150 long
8151 _bfd_elf_canonicalize_reloc (bfd *abfd,
8152 sec_ptr section,
8153 arelent **relptr,
8154 asymbol **symbols)
8155 {
8156 arelent *tblptr;
8157 unsigned int i;
8158 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8159
8160 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8161 return -1;
8162
8163 tblptr = section->relocation;
8164 for (i = 0; i < section->reloc_count; i++)
8165 *relptr++ = tblptr++;
8166
8167 *relptr = NULL;
8168
8169 return section->reloc_count;
8170 }
8171
8172 long
8173 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8174 {
8175 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8176 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8177
8178 if (symcount >= 0)
8179 bfd_get_symcount (abfd) = symcount;
8180 return symcount;
8181 }
8182
8183 long
8184 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8185 asymbol **allocation)
8186 {
8187 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8188 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8189
8190 if (symcount >= 0)
8191 bfd_get_dynamic_symcount (abfd) = symcount;
8192 return symcount;
8193 }
8194
8195 /* Return the size required for the dynamic reloc entries. Any loadable
8196 section that was actually installed in the BFD, and has type SHT_REL
8197 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8198 dynamic reloc section. */
8199
8200 long
8201 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8202 {
8203 long ret;
8204 asection *s;
8205
8206 if (elf_dynsymtab (abfd) == 0)
8207 {
8208 bfd_set_error (bfd_error_invalid_operation);
8209 return -1;
8210 }
8211
8212 ret = sizeof (arelent *);
8213 for (s = abfd->sections; s != NULL; s = s->next)
8214 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8215 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8216 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8217 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8218 * sizeof (arelent *));
8219
8220 return ret;
8221 }
8222
8223 /* Canonicalize the dynamic relocation entries. Note that we return the
8224 dynamic relocations as a single block, although they are actually
8225 associated with particular sections; the interface, which was
8226 designed for SunOS style shared libraries, expects that there is only
8227 one set of dynamic relocs. Any loadable section that was actually
8228 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8229 dynamic symbol table, is considered to be a dynamic reloc section. */
8230
8231 long
8232 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8233 arelent **storage,
8234 asymbol **syms)
8235 {
8236 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8237 asection *s;
8238 long ret;
8239
8240 if (elf_dynsymtab (abfd) == 0)
8241 {
8242 bfd_set_error (bfd_error_invalid_operation);
8243 return -1;
8244 }
8245
8246 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8247 ret = 0;
8248 for (s = abfd->sections; s != NULL; s = s->next)
8249 {
8250 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8251 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8252 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8253 {
8254 arelent *p;
8255 long count, i;
8256
8257 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8258 return -1;
8259 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8260 p = s->relocation;
8261 for (i = 0; i < count; i++)
8262 *storage++ = p++;
8263 ret += count;
8264 }
8265 }
8266
8267 *storage = NULL;
8268
8269 return ret;
8270 }
8271 \f
8272 /* Read in the version information. */
8273
8274 bfd_boolean
8275 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8276 {
8277 bfd_byte *contents = NULL;
8278 unsigned int freeidx = 0;
8279
8280 if (elf_dynverref (abfd) != 0)
8281 {
8282 Elf_Internal_Shdr *hdr;
8283 Elf_External_Verneed *everneed;
8284 Elf_Internal_Verneed *iverneed;
8285 unsigned int i;
8286 bfd_byte *contents_end;
8287
8288 hdr = &elf_tdata (abfd)->dynverref_hdr;
8289
8290 if (hdr->sh_info == 0
8291 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8292 {
8293 error_return_bad_verref:
8294 _bfd_error_handler
8295 (_("%pB: .gnu.version_r invalid entry"), abfd);
8296 bfd_set_error (bfd_error_bad_value);
8297 error_return_verref:
8298 elf_tdata (abfd)->verref = NULL;
8299 elf_tdata (abfd)->cverrefs = 0;
8300 goto error_return;
8301 }
8302
8303 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8304 if (contents == NULL)
8305 goto error_return_verref;
8306
8307 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8308 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8309 goto error_return_verref;
8310
8311 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8312 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8313
8314 if (elf_tdata (abfd)->verref == NULL)
8315 goto error_return_verref;
8316
8317 BFD_ASSERT (sizeof (Elf_External_Verneed)
8318 == sizeof (Elf_External_Vernaux));
8319 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8320 everneed = (Elf_External_Verneed *) contents;
8321 iverneed = elf_tdata (abfd)->verref;
8322 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8323 {
8324 Elf_External_Vernaux *evernaux;
8325 Elf_Internal_Vernaux *ivernaux;
8326 unsigned int j;
8327
8328 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8329
8330 iverneed->vn_bfd = abfd;
8331
8332 iverneed->vn_filename =
8333 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8334 iverneed->vn_file);
8335 if (iverneed->vn_filename == NULL)
8336 goto error_return_bad_verref;
8337
8338 if (iverneed->vn_cnt == 0)
8339 iverneed->vn_auxptr = NULL;
8340 else
8341 {
8342 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8343 bfd_alloc2 (abfd, iverneed->vn_cnt,
8344 sizeof (Elf_Internal_Vernaux));
8345 if (iverneed->vn_auxptr == NULL)
8346 goto error_return_verref;
8347 }
8348
8349 if (iverneed->vn_aux
8350 > (size_t) (contents_end - (bfd_byte *) everneed))
8351 goto error_return_bad_verref;
8352
8353 evernaux = ((Elf_External_Vernaux *)
8354 ((bfd_byte *) everneed + iverneed->vn_aux));
8355 ivernaux = iverneed->vn_auxptr;
8356 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8357 {
8358 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8359
8360 ivernaux->vna_nodename =
8361 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8362 ivernaux->vna_name);
8363 if (ivernaux->vna_nodename == NULL)
8364 goto error_return_bad_verref;
8365
8366 if (ivernaux->vna_other > freeidx)
8367 freeidx = ivernaux->vna_other;
8368
8369 ivernaux->vna_nextptr = NULL;
8370 if (ivernaux->vna_next == 0)
8371 {
8372 iverneed->vn_cnt = j + 1;
8373 break;
8374 }
8375 if (j + 1 < iverneed->vn_cnt)
8376 ivernaux->vna_nextptr = ivernaux + 1;
8377
8378 if (ivernaux->vna_next
8379 > (size_t) (contents_end - (bfd_byte *) evernaux))
8380 goto error_return_bad_verref;
8381
8382 evernaux = ((Elf_External_Vernaux *)
8383 ((bfd_byte *) evernaux + ivernaux->vna_next));
8384 }
8385
8386 iverneed->vn_nextref = NULL;
8387 if (iverneed->vn_next == 0)
8388 break;
8389 if (i + 1 < hdr->sh_info)
8390 iverneed->vn_nextref = iverneed + 1;
8391
8392 if (iverneed->vn_next
8393 > (size_t) (contents_end - (bfd_byte *) everneed))
8394 goto error_return_bad_verref;
8395
8396 everneed = ((Elf_External_Verneed *)
8397 ((bfd_byte *) everneed + iverneed->vn_next));
8398 }
8399 elf_tdata (abfd)->cverrefs = i;
8400
8401 free (contents);
8402 contents = NULL;
8403 }
8404
8405 if (elf_dynverdef (abfd) != 0)
8406 {
8407 Elf_Internal_Shdr *hdr;
8408 Elf_External_Verdef *everdef;
8409 Elf_Internal_Verdef *iverdef;
8410 Elf_Internal_Verdef *iverdefarr;
8411 Elf_Internal_Verdef iverdefmem;
8412 unsigned int i;
8413 unsigned int maxidx;
8414 bfd_byte *contents_end_def, *contents_end_aux;
8415
8416 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8417
8418 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8419 {
8420 error_return_bad_verdef:
8421 _bfd_error_handler
8422 (_("%pB: .gnu.version_d invalid entry"), abfd);
8423 bfd_set_error (bfd_error_bad_value);
8424 error_return_verdef:
8425 elf_tdata (abfd)->verdef = NULL;
8426 elf_tdata (abfd)->cverdefs = 0;
8427 goto error_return;
8428 }
8429
8430 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8431 if (contents == NULL)
8432 goto error_return_verdef;
8433 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8434 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8435 goto error_return_verdef;
8436
8437 BFD_ASSERT (sizeof (Elf_External_Verdef)
8438 >= sizeof (Elf_External_Verdaux));
8439 contents_end_def = contents + hdr->sh_size
8440 - sizeof (Elf_External_Verdef);
8441 contents_end_aux = contents + hdr->sh_size
8442 - sizeof (Elf_External_Verdaux);
8443
8444 /* We know the number of entries in the section but not the maximum
8445 index. Therefore we have to run through all entries and find
8446 the maximum. */
8447 everdef = (Elf_External_Verdef *) contents;
8448 maxidx = 0;
8449 for (i = 0; i < hdr->sh_info; ++i)
8450 {
8451 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8452
8453 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8454 goto error_return_bad_verdef;
8455 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8456 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8457
8458 if (iverdefmem.vd_next == 0)
8459 break;
8460
8461 if (iverdefmem.vd_next
8462 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8463 goto error_return_bad_verdef;
8464
8465 everdef = ((Elf_External_Verdef *)
8466 ((bfd_byte *) everdef + iverdefmem.vd_next));
8467 }
8468
8469 if (default_imported_symver)
8470 {
8471 if (freeidx > maxidx)
8472 maxidx = ++freeidx;
8473 else
8474 freeidx = ++maxidx;
8475 }
8476
8477 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8478 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8479 if (elf_tdata (abfd)->verdef == NULL)
8480 goto error_return_verdef;
8481
8482 elf_tdata (abfd)->cverdefs = maxidx;
8483
8484 everdef = (Elf_External_Verdef *) contents;
8485 iverdefarr = elf_tdata (abfd)->verdef;
8486 for (i = 0; i < hdr->sh_info; i++)
8487 {
8488 Elf_External_Verdaux *everdaux;
8489 Elf_Internal_Verdaux *iverdaux;
8490 unsigned int j;
8491
8492 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8493
8494 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8495 goto error_return_bad_verdef;
8496
8497 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8498 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8499
8500 iverdef->vd_bfd = abfd;
8501
8502 if (iverdef->vd_cnt == 0)
8503 iverdef->vd_auxptr = NULL;
8504 else
8505 {
8506 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8507 bfd_alloc2 (abfd, iverdef->vd_cnt,
8508 sizeof (Elf_Internal_Verdaux));
8509 if (iverdef->vd_auxptr == NULL)
8510 goto error_return_verdef;
8511 }
8512
8513 if (iverdef->vd_aux
8514 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8515 goto error_return_bad_verdef;
8516
8517 everdaux = ((Elf_External_Verdaux *)
8518 ((bfd_byte *) everdef + iverdef->vd_aux));
8519 iverdaux = iverdef->vd_auxptr;
8520 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8521 {
8522 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8523
8524 iverdaux->vda_nodename =
8525 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8526 iverdaux->vda_name);
8527 if (iverdaux->vda_nodename == NULL)
8528 goto error_return_bad_verdef;
8529
8530 iverdaux->vda_nextptr = NULL;
8531 if (iverdaux->vda_next == 0)
8532 {
8533 iverdef->vd_cnt = j + 1;
8534 break;
8535 }
8536 if (j + 1 < iverdef->vd_cnt)
8537 iverdaux->vda_nextptr = iverdaux + 1;
8538
8539 if (iverdaux->vda_next
8540 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8541 goto error_return_bad_verdef;
8542
8543 everdaux = ((Elf_External_Verdaux *)
8544 ((bfd_byte *) everdaux + iverdaux->vda_next));
8545 }
8546
8547 iverdef->vd_nodename = NULL;
8548 if (iverdef->vd_cnt)
8549 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8550
8551 iverdef->vd_nextdef = NULL;
8552 if (iverdef->vd_next == 0)
8553 break;
8554 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8555 iverdef->vd_nextdef = iverdef + 1;
8556
8557 everdef = ((Elf_External_Verdef *)
8558 ((bfd_byte *) everdef + iverdef->vd_next));
8559 }
8560
8561 free (contents);
8562 contents = NULL;
8563 }
8564 else if (default_imported_symver)
8565 {
8566 if (freeidx < 3)
8567 freeidx = 3;
8568 else
8569 freeidx++;
8570
8571 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8572 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8573 if (elf_tdata (abfd)->verdef == NULL)
8574 goto error_return;
8575
8576 elf_tdata (abfd)->cverdefs = freeidx;
8577 }
8578
8579 /* Create a default version based on the soname. */
8580 if (default_imported_symver)
8581 {
8582 Elf_Internal_Verdef *iverdef;
8583 Elf_Internal_Verdaux *iverdaux;
8584
8585 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8586
8587 iverdef->vd_version = VER_DEF_CURRENT;
8588 iverdef->vd_flags = 0;
8589 iverdef->vd_ndx = freeidx;
8590 iverdef->vd_cnt = 1;
8591
8592 iverdef->vd_bfd = abfd;
8593
8594 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8595 if (iverdef->vd_nodename == NULL)
8596 goto error_return_verdef;
8597 iverdef->vd_nextdef = NULL;
8598 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8599 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8600 if (iverdef->vd_auxptr == NULL)
8601 goto error_return_verdef;
8602
8603 iverdaux = iverdef->vd_auxptr;
8604 iverdaux->vda_nodename = iverdef->vd_nodename;
8605 }
8606
8607 return TRUE;
8608
8609 error_return:
8610 if (contents != NULL)
8611 free (contents);
8612 return FALSE;
8613 }
8614 \f
8615 asymbol *
8616 _bfd_elf_make_empty_symbol (bfd *abfd)
8617 {
8618 elf_symbol_type *newsym;
8619
8620 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8621 if (!newsym)
8622 return NULL;
8623 newsym->symbol.the_bfd = abfd;
8624 return &newsym->symbol;
8625 }
8626
8627 void
8628 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8629 asymbol *symbol,
8630 symbol_info *ret)
8631 {
8632 bfd_symbol_info (symbol, ret);
8633 }
8634
8635 /* Return whether a symbol name implies a local symbol. Most targets
8636 use this function for the is_local_label_name entry point, but some
8637 override it. */
8638
8639 bfd_boolean
8640 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8641 const char *name)
8642 {
8643 /* Normal local symbols start with ``.L''. */
8644 if (name[0] == '.' && name[1] == 'L')
8645 return TRUE;
8646
8647 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8648 DWARF debugging symbols starting with ``..''. */
8649 if (name[0] == '.' && name[1] == '.')
8650 return TRUE;
8651
8652 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8653 emitting DWARF debugging output. I suspect this is actually a
8654 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8655 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8656 underscore to be emitted on some ELF targets). For ease of use,
8657 we treat such symbols as local. */
8658 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8659 return TRUE;
8660
8661 /* Treat assembler generated fake symbols, dollar local labels and
8662 forward-backward labels (aka local labels) as locals.
8663 These labels have the form:
8664
8665 L0^A.* (fake symbols)
8666
8667 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8668
8669 Versions which start with .L will have already been matched above,
8670 so we only need to match the rest. */
8671 if (name[0] == 'L' && ISDIGIT (name[1]))
8672 {
8673 bfd_boolean ret = FALSE;
8674 const char * p;
8675 char c;
8676
8677 for (p = name + 2; (c = *p); p++)
8678 {
8679 if (c == 1 || c == 2)
8680 {
8681 if (c == 1 && p == name + 2)
8682 /* A fake symbol. */
8683 return TRUE;
8684
8685 /* FIXME: We are being paranoid here and treating symbols like
8686 L0^Bfoo as if there were non-local, on the grounds that the
8687 assembler will never generate them. But can any symbol
8688 containing an ASCII value in the range 1-31 ever be anything
8689 other than some kind of local ? */
8690 ret = TRUE;
8691 }
8692
8693 if (! ISDIGIT (c))
8694 {
8695 ret = FALSE;
8696 break;
8697 }
8698 }
8699 return ret;
8700 }
8701
8702 return FALSE;
8703 }
8704
8705 alent *
8706 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8707 asymbol *symbol ATTRIBUTE_UNUSED)
8708 {
8709 abort ();
8710 return NULL;
8711 }
8712
8713 bfd_boolean
8714 _bfd_elf_set_arch_mach (bfd *abfd,
8715 enum bfd_architecture arch,
8716 unsigned long machine)
8717 {
8718 /* If this isn't the right architecture for this backend, and this
8719 isn't the generic backend, fail. */
8720 if (arch != get_elf_backend_data (abfd)->arch
8721 && arch != bfd_arch_unknown
8722 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8723 return FALSE;
8724
8725 return bfd_default_set_arch_mach (abfd, arch, machine);
8726 }
8727
8728 /* Find the nearest line to a particular section and offset,
8729 for error reporting. */
8730
8731 bfd_boolean
8732 _bfd_elf_find_nearest_line (bfd *abfd,
8733 asymbol **symbols,
8734 asection *section,
8735 bfd_vma offset,
8736 const char **filename_ptr,
8737 const char **functionname_ptr,
8738 unsigned int *line_ptr,
8739 unsigned int *discriminator_ptr)
8740 {
8741 bfd_boolean found;
8742
8743 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8744 filename_ptr, functionname_ptr,
8745 line_ptr, discriminator_ptr,
8746 dwarf_debug_sections, 0,
8747 &elf_tdata (abfd)->dwarf2_find_line_info)
8748 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8749 filename_ptr, functionname_ptr,
8750 line_ptr))
8751 {
8752 if (!*functionname_ptr)
8753 _bfd_elf_find_function (abfd, symbols, section, offset,
8754 *filename_ptr ? NULL : filename_ptr,
8755 functionname_ptr);
8756 return TRUE;
8757 }
8758
8759 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8760 &found, filename_ptr,
8761 functionname_ptr, line_ptr,
8762 &elf_tdata (abfd)->line_info))
8763 return FALSE;
8764 if (found && (*functionname_ptr || *line_ptr))
8765 return TRUE;
8766
8767 if (symbols == NULL)
8768 return FALSE;
8769
8770 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8771 filename_ptr, functionname_ptr))
8772 return FALSE;
8773
8774 *line_ptr = 0;
8775 return TRUE;
8776 }
8777
8778 /* Find the line for a symbol. */
8779
8780 bfd_boolean
8781 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8782 const char **filename_ptr, unsigned int *line_ptr)
8783 {
8784 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8785 filename_ptr, NULL, line_ptr, NULL,
8786 dwarf_debug_sections, 0,
8787 &elf_tdata (abfd)->dwarf2_find_line_info);
8788 }
8789
8790 /* After a call to bfd_find_nearest_line, successive calls to
8791 bfd_find_inliner_info can be used to get source information about
8792 each level of function inlining that terminated at the address
8793 passed to bfd_find_nearest_line. Currently this is only supported
8794 for DWARF2 with appropriate DWARF3 extensions. */
8795
8796 bfd_boolean
8797 _bfd_elf_find_inliner_info (bfd *abfd,
8798 const char **filename_ptr,
8799 const char **functionname_ptr,
8800 unsigned int *line_ptr)
8801 {
8802 bfd_boolean found;
8803 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8804 functionname_ptr, line_ptr,
8805 & elf_tdata (abfd)->dwarf2_find_line_info);
8806 return found;
8807 }
8808
8809 int
8810 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8811 {
8812 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8813 int ret = bed->s->sizeof_ehdr;
8814
8815 if (!bfd_link_relocatable (info))
8816 {
8817 bfd_size_type phdr_size = elf_program_header_size (abfd);
8818
8819 if (phdr_size == (bfd_size_type) -1)
8820 {
8821 struct elf_segment_map *m;
8822
8823 phdr_size = 0;
8824 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8825 phdr_size += bed->s->sizeof_phdr;
8826
8827 if (phdr_size == 0)
8828 phdr_size = get_program_header_size (abfd, info);
8829 }
8830
8831 elf_program_header_size (abfd) = phdr_size;
8832 ret += phdr_size;
8833 }
8834
8835 return ret;
8836 }
8837
8838 bfd_boolean
8839 _bfd_elf_set_section_contents (bfd *abfd,
8840 sec_ptr section,
8841 const void *location,
8842 file_ptr offset,
8843 bfd_size_type count)
8844 {
8845 Elf_Internal_Shdr *hdr;
8846 file_ptr pos;
8847
8848 if (! abfd->output_has_begun
8849 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8850 return FALSE;
8851
8852 if (!count)
8853 return TRUE;
8854
8855 hdr = &elf_section_data (section)->this_hdr;
8856 if (hdr->sh_offset == (file_ptr) -1)
8857 {
8858 /* We must compress this section. Write output to the buffer. */
8859 unsigned char *contents = hdr->contents;
8860 if ((offset + count) > hdr->sh_size
8861 || (section->flags & SEC_ELF_COMPRESS) == 0
8862 || contents == NULL)
8863 abort ();
8864 memcpy (contents + offset, location, count);
8865 return TRUE;
8866 }
8867 pos = hdr->sh_offset + offset;
8868 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8869 || bfd_bwrite (location, count, abfd) != count)
8870 return FALSE;
8871
8872 return TRUE;
8873 }
8874
8875 void
8876 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8877 arelent *cache_ptr ATTRIBUTE_UNUSED,
8878 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8879 {
8880 abort ();
8881 }
8882
8883 /* Try to convert a non-ELF reloc into an ELF one. */
8884
8885 bfd_boolean
8886 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8887 {
8888 /* Check whether we really have an ELF howto. */
8889
8890 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8891 {
8892 bfd_reloc_code_real_type code;
8893 reloc_howto_type *howto;
8894
8895 /* Alien reloc: Try to determine its type to replace it with an
8896 equivalent ELF reloc. */
8897
8898 if (areloc->howto->pc_relative)
8899 {
8900 switch (areloc->howto->bitsize)
8901 {
8902 case 8:
8903 code = BFD_RELOC_8_PCREL;
8904 break;
8905 case 12:
8906 code = BFD_RELOC_12_PCREL;
8907 break;
8908 case 16:
8909 code = BFD_RELOC_16_PCREL;
8910 break;
8911 case 24:
8912 code = BFD_RELOC_24_PCREL;
8913 break;
8914 case 32:
8915 code = BFD_RELOC_32_PCREL;
8916 break;
8917 case 64:
8918 code = BFD_RELOC_64_PCREL;
8919 break;
8920 default:
8921 goto fail;
8922 }
8923
8924 howto = bfd_reloc_type_lookup (abfd, code);
8925
8926 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8927 {
8928 if (howto->pcrel_offset)
8929 areloc->addend += areloc->address;
8930 else
8931 areloc->addend -= areloc->address; /* addend is unsigned!! */
8932 }
8933 }
8934 else
8935 {
8936 switch (areloc->howto->bitsize)
8937 {
8938 case 8:
8939 code = BFD_RELOC_8;
8940 break;
8941 case 14:
8942 code = BFD_RELOC_14;
8943 break;
8944 case 16:
8945 code = BFD_RELOC_16;
8946 break;
8947 case 26:
8948 code = BFD_RELOC_26;
8949 break;
8950 case 32:
8951 code = BFD_RELOC_32;
8952 break;
8953 case 64:
8954 code = BFD_RELOC_64;
8955 break;
8956 default:
8957 goto fail;
8958 }
8959
8960 howto = bfd_reloc_type_lookup (abfd, code);
8961 }
8962
8963 if (howto)
8964 areloc->howto = howto;
8965 else
8966 goto fail;
8967 }
8968
8969 return TRUE;
8970
8971 fail:
8972 /* xgettext:c-format */
8973 _bfd_error_handler (_("%pB: %s unsupported"),
8974 abfd, areloc->howto->name);
8975 bfd_set_error (bfd_error_bad_value);
8976 return FALSE;
8977 }
8978
8979 bfd_boolean
8980 _bfd_elf_close_and_cleanup (bfd *abfd)
8981 {
8982 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8983 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8984 {
8985 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8986 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8987 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8988 }
8989
8990 return _bfd_generic_close_and_cleanup (abfd);
8991 }
8992
8993 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8994 in the relocation's offset. Thus we cannot allow any sort of sanity
8995 range-checking to interfere. There is nothing else to do in processing
8996 this reloc. */
8997
8998 bfd_reloc_status_type
8999 _bfd_elf_rel_vtable_reloc_fn
9000 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9001 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9002 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9003 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9004 {
9005 return bfd_reloc_ok;
9006 }
9007 \f
9008 /* Elf core file support. Much of this only works on native
9009 toolchains, since we rely on knowing the
9010 machine-dependent procfs structure in order to pick
9011 out details about the corefile. */
9012
9013 #ifdef HAVE_SYS_PROCFS_H
9014 /* Needed for new procfs interface on sparc-solaris. */
9015 # define _STRUCTURED_PROC 1
9016 # include <sys/procfs.h>
9017 #endif
9018
9019 /* Return a PID that identifies a "thread" for threaded cores, or the
9020 PID of the main process for non-threaded cores. */
9021
9022 static int
9023 elfcore_make_pid (bfd *abfd)
9024 {
9025 int pid;
9026
9027 pid = elf_tdata (abfd)->core->lwpid;
9028 if (pid == 0)
9029 pid = elf_tdata (abfd)->core->pid;
9030
9031 return pid;
9032 }
9033
9034 /* If there isn't a section called NAME, make one, using
9035 data from SECT. Note, this function will generate a
9036 reference to NAME, so you shouldn't deallocate or
9037 overwrite it. */
9038
9039 static bfd_boolean
9040 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9041 {
9042 asection *sect2;
9043
9044 if (bfd_get_section_by_name (abfd, name) != NULL)
9045 return TRUE;
9046
9047 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9048 if (sect2 == NULL)
9049 return FALSE;
9050
9051 sect2->size = sect->size;
9052 sect2->filepos = sect->filepos;
9053 sect2->alignment_power = sect->alignment_power;
9054 return TRUE;
9055 }
9056
9057 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9058 actually creates up to two pseudosections:
9059 - For the single-threaded case, a section named NAME, unless
9060 such a section already exists.
9061 - For the multi-threaded case, a section named "NAME/PID", where
9062 PID is elfcore_make_pid (abfd).
9063 Both pseudosections have identical contents. */
9064 bfd_boolean
9065 _bfd_elfcore_make_pseudosection (bfd *abfd,
9066 char *name,
9067 size_t size,
9068 ufile_ptr filepos)
9069 {
9070 char buf[100];
9071 char *threaded_name;
9072 size_t len;
9073 asection *sect;
9074
9075 /* Build the section name. */
9076
9077 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9078 len = strlen (buf) + 1;
9079 threaded_name = (char *) bfd_alloc (abfd, len);
9080 if (threaded_name == NULL)
9081 return FALSE;
9082 memcpy (threaded_name, buf, len);
9083
9084 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9085 SEC_HAS_CONTENTS);
9086 if (sect == NULL)
9087 return FALSE;
9088 sect->size = size;
9089 sect->filepos = filepos;
9090 sect->alignment_power = 2;
9091
9092 return elfcore_maybe_make_sect (abfd, name, sect);
9093 }
9094
9095 /* prstatus_t exists on:
9096 solaris 2.5+
9097 linux 2.[01] + glibc
9098 unixware 4.2
9099 */
9100
9101 #if defined (HAVE_PRSTATUS_T)
9102
9103 static bfd_boolean
9104 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9105 {
9106 size_t size;
9107 int offset;
9108
9109 if (note->descsz == sizeof (prstatus_t))
9110 {
9111 prstatus_t prstat;
9112
9113 size = sizeof (prstat.pr_reg);
9114 offset = offsetof (prstatus_t, pr_reg);
9115 memcpy (&prstat, note->descdata, sizeof (prstat));
9116
9117 /* Do not overwrite the core signal if it
9118 has already been set by another thread. */
9119 if (elf_tdata (abfd)->core->signal == 0)
9120 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9121 if (elf_tdata (abfd)->core->pid == 0)
9122 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9123
9124 /* pr_who exists on:
9125 solaris 2.5+
9126 unixware 4.2
9127 pr_who doesn't exist on:
9128 linux 2.[01]
9129 */
9130 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9131 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9132 #else
9133 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9134 #endif
9135 }
9136 #if defined (HAVE_PRSTATUS32_T)
9137 else if (note->descsz == sizeof (prstatus32_t))
9138 {
9139 /* 64-bit host, 32-bit corefile */
9140 prstatus32_t prstat;
9141
9142 size = sizeof (prstat.pr_reg);
9143 offset = offsetof (prstatus32_t, pr_reg);
9144 memcpy (&prstat, note->descdata, sizeof (prstat));
9145
9146 /* Do not overwrite the core signal if it
9147 has already been set by another thread. */
9148 if (elf_tdata (abfd)->core->signal == 0)
9149 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9150 if (elf_tdata (abfd)->core->pid == 0)
9151 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9152
9153 /* pr_who exists on:
9154 solaris 2.5+
9155 unixware 4.2
9156 pr_who doesn't exist on:
9157 linux 2.[01]
9158 */
9159 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9160 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9161 #else
9162 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9163 #endif
9164 }
9165 #endif /* HAVE_PRSTATUS32_T */
9166 else
9167 {
9168 /* Fail - we don't know how to handle any other
9169 note size (ie. data object type). */
9170 return TRUE;
9171 }
9172
9173 /* Make a ".reg/999" section and a ".reg" section. */
9174 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9175 size, note->descpos + offset);
9176 }
9177 #endif /* defined (HAVE_PRSTATUS_T) */
9178
9179 /* Create a pseudosection containing the exact contents of NOTE. */
9180 static bfd_boolean
9181 elfcore_make_note_pseudosection (bfd *abfd,
9182 char *name,
9183 Elf_Internal_Note *note)
9184 {
9185 return _bfd_elfcore_make_pseudosection (abfd, name,
9186 note->descsz, note->descpos);
9187 }
9188
9189 /* There isn't a consistent prfpregset_t across platforms,
9190 but it doesn't matter, because we don't have to pick this
9191 data structure apart. */
9192
9193 static bfd_boolean
9194 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9195 {
9196 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9197 }
9198
9199 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9200 type of NT_PRXFPREG. Just include the whole note's contents
9201 literally. */
9202
9203 static bfd_boolean
9204 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9205 {
9206 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9207 }
9208
9209 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9210 with a note type of NT_X86_XSTATE. Just include the whole note's
9211 contents literally. */
9212
9213 static bfd_boolean
9214 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9215 {
9216 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9217 }
9218
9219 static bfd_boolean
9220 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9221 {
9222 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9223 }
9224
9225 static bfd_boolean
9226 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9227 {
9228 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9229 }
9230
9231 static bfd_boolean
9232 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9233 {
9234 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9235 }
9236
9237 static bfd_boolean
9238 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9239 {
9240 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9241 }
9242
9243 static bfd_boolean
9244 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9245 {
9246 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9247 }
9248
9249 static bfd_boolean
9250 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9251 {
9252 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9253 }
9254
9255 static bfd_boolean
9256 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9257 {
9258 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9259 }
9260
9261 static bfd_boolean
9262 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9263 {
9264 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9265 }
9266
9267 static bfd_boolean
9268 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9269 {
9270 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9271 }
9272
9273 static bfd_boolean
9274 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9275 {
9276 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9277 }
9278
9279 static bfd_boolean
9280 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9281 {
9282 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9283 }
9284
9285 static bfd_boolean
9286 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9287 {
9288 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9289 }
9290
9291 static bfd_boolean
9292 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9293 {
9294 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9295 }
9296
9297 static bfd_boolean
9298 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9299 {
9300 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9301 }
9302
9303 static bfd_boolean
9304 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9305 {
9306 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9307 }
9308
9309 static bfd_boolean
9310 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9311 {
9312 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9313 }
9314
9315 static bfd_boolean
9316 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9317 {
9318 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9319 }
9320
9321 static bfd_boolean
9322 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9323 {
9324 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9325 }
9326
9327 static bfd_boolean
9328 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9329 {
9330 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9331 }
9332
9333 #if defined (HAVE_PRPSINFO_T)
9334 typedef prpsinfo_t elfcore_psinfo_t;
9335 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9336 typedef prpsinfo32_t elfcore_psinfo32_t;
9337 #endif
9338 #endif
9339
9340 #if defined (HAVE_PSINFO_T)
9341 typedef psinfo_t elfcore_psinfo_t;
9342 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9343 typedef psinfo32_t elfcore_psinfo32_t;
9344 #endif
9345 #endif
9346
9347 /* return a malloc'ed copy of a string at START which is at
9348 most MAX bytes long, possibly without a terminating '\0'.
9349 the copy will always have a terminating '\0'. */
9350
9351 char *
9352 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9353 {
9354 char *dups;
9355 char *end = (char *) memchr (start, '\0', max);
9356 size_t len;
9357
9358 if (end == NULL)
9359 len = max;
9360 else
9361 len = end - start;
9362
9363 dups = (char *) bfd_alloc (abfd, len + 1);
9364 if (dups == NULL)
9365 return NULL;
9366
9367 memcpy (dups, start, len);
9368 dups[len] = '\0';
9369
9370 return dups;
9371 }
9372
9373 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9374 static bfd_boolean
9375 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9376 {
9377 if (note->descsz == sizeof (elfcore_psinfo_t))
9378 {
9379 elfcore_psinfo_t psinfo;
9380
9381 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9382
9383 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9384 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9385 #endif
9386 elf_tdata (abfd)->core->program
9387 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9388 sizeof (psinfo.pr_fname));
9389
9390 elf_tdata (abfd)->core->command
9391 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9392 sizeof (psinfo.pr_psargs));
9393 }
9394 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9395 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9396 {
9397 /* 64-bit host, 32-bit corefile */
9398 elfcore_psinfo32_t psinfo;
9399
9400 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9401
9402 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9403 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9404 #endif
9405 elf_tdata (abfd)->core->program
9406 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9407 sizeof (psinfo.pr_fname));
9408
9409 elf_tdata (abfd)->core->command
9410 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9411 sizeof (psinfo.pr_psargs));
9412 }
9413 #endif
9414
9415 else
9416 {
9417 /* Fail - we don't know how to handle any other
9418 note size (ie. data object type). */
9419 return TRUE;
9420 }
9421
9422 /* Note that for some reason, a spurious space is tacked
9423 onto the end of the args in some (at least one anyway)
9424 implementations, so strip it off if it exists. */
9425
9426 {
9427 char *command = elf_tdata (abfd)->core->command;
9428 int n = strlen (command);
9429
9430 if (0 < n && command[n - 1] == ' ')
9431 command[n - 1] = '\0';
9432 }
9433
9434 return TRUE;
9435 }
9436 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9437
9438 #if defined (HAVE_PSTATUS_T)
9439 static bfd_boolean
9440 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9441 {
9442 if (note->descsz == sizeof (pstatus_t)
9443 #if defined (HAVE_PXSTATUS_T)
9444 || note->descsz == sizeof (pxstatus_t)
9445 #endif
9446 )
9447 {
9448 pstatus_t pstat;
9449
9450 memcpy (&pstat, note->descdata, sizeof (pstat));
9451
9452 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9453 }
9454 #if defined (HAVE_PSTATUS32_T)
9455 else if (note->descsz == sizeof (pstatus32_t))
9456 {
9457 /* 64-bit host, 32-bit corefile */
9458 pstatus32_t pstat;
9459
9460 memcpy (&pstat, note->descdata, sizeof (pstat));
9461
9462 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9463 }
9464 #endif
9465 /* Could grab some more details from the "representative"
9466 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9467 NT_LWPSTATUS note, presumably. */
9468
9469 return TRUE;
9470 }
9471 #endif /* defined (HAVE_PSTATUS_T) */
9472
9473 #if defined (HAVE_LWPSTATUS_T)
9474 static bfd_boolean
9475 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9476 {
9477 lwpstatus_t lwpstat;
9478 char buf[100];
9479 char *name;
9480 size_t len;
9481 asection *sect;
9482
9483 if (note->descsz != sizeof (lwpstat)
9484 #if defined (HAVE_LWPXSTATUS_T)
9485 && note->descsz != sizeof (lwpxstatus_t)
9486 #endif
9487 )
9488 return TRUE;
9489
9490 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9491
9492 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9493 /* Do not overwrite the core signal if it has already been set by
9494 another thread. */
9495 if (elf_tdata (abfd)->core->signal == 0)
9496 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9497
9498 /* Make a ".reg/999" section. */
9499
9500 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9501 len = strlen (buf) + 1;
9502 name = bfd_alloc (abfd, len);
9503 if (name == NULL)
9504 return FALSE;
9505 memcpy (name, buf, len);
9506
9507 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9508 if (sect == NULL)
9509 return FALSE;
9510
9511 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9512 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9513 sect->filepos = note->descpos
9514 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9515 #endif
9516
9517 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9518 sect->size = sizeof (lwpstat.pr_reg);
9519 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9520 #endif
9521
9522 sect->alignment_power = 2;
9523
9524 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9525 return FALSE;
9526
9527 /* Make a ".reg2/999" section */
9528
9529 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9530 len = strlen (buf) + 1;
9531 name = bfd_alloc (abfd, len);
9532 if (name == NULL)
9533 return FALSE;
9534 memcpy (name, buf, len);
9535
9536 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9537 if (sect == NULL)
9538 return FALSE;
9539
9540 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9541 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9542 sect->filepos = note->descpos
9543 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9544 #endif
9545
9546 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9547 sect->size = sizeof (lwpstat.pr_fpreg);
9548 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9549 #endif
9550
9551 sect->alignment_power = 2;
9552
9553 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9554 }
9555 #endif /* defined (HAVE_LWPSTATUS_T) */
9556
9557 static bfd_boolean
9558 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9559 {
9560 char buf[30];
9561 char *name;
9562 size_t len;
9563 asection *sect;
9564 int type;
9565 int is_active_thread;
9566 bfd_vma base_addr;
9567
9568 if (note->descsz < 728)
9569 return TRUE;
9570
9571 if (! CONST_STRNEQ (note->namedata, "win32"))
9572 return TRUE;
9573
9574 type = bfd_get_32 (abfd, note->descdata);
9575
9576 switch (type)
9577 {
9578 case 1 /* NOTE_INFO_PROCESS */:
9579 /* FIXME: need to add ->core->command. */
9580 /* process_info.pid */
9581 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9582 /* process_info.signal */
9583 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9584 break;
9585
9586 case 2 /* NOTE_INFO_THREAD */:
9587 /* Make a ".reg/999" section. */
9588 /* thread_info.tid */
9589 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9590
9591 len = strlen (buf) + 1;
9592 name = (char *) bfd_alloc (abfd, len);
9593 if (name == NULL)
9594 return FALSE;
9595
9596 memcpy (name, buf, len);
9597
9598 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9599 if (sect == NULL)
9600 return FALSE;
9601
9602 /* sizeof (thread_info.thread_context) */
9603 sect->size = 716;
9604 /* offsetof (thread_info.thread_context) */
9605 sect->filepos = note->descpos + 12;
9606 sect->alignment_power = 2;
9607
9608 /* thread_info.is_active_thread */
9609 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9610
9611 if (is_active_thread)
9612 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9613 return FALSE;
9614 break;
9615
9616 case 3 /* NOTE_INFO_MODULE */:
9617 /* Make a ".module/xxxxxxxx" section. */
9618 /* module_info.base_address */
9619 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9620 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9621
9622 len = strlen (buf) + 1;
9623 name = (char *) bfd_alloc (abfd, len);
9624 if (name == NULL)
9625 return FALSE;
9626
9627 memcpy (name, buf, len);
9628
9629 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9630
9631 if (sect == NULL)
9632 return FALSE;
9633
9634 sect->size = note->descsz;
9635 sect->filepos = note->descpos;
9636 sect->alignment_power = 2;
9637 break;
9638
9639 default:
9640 return TRUE;
9641 }
9642
9643 return TRUE;
9644 }
9645
9646 static bfd_boolean
9647 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9648 {
9649 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9650
9651 switch (note->type)
9652 {
9653 default:
9654 return TRUE;
9655
9656 case NT_PRSTATUS:
9657 if (bed->elf_backend_grok_prstatus)
9658 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9659 return TRUE;
9660 #if defined (HAVE_PRSTATUS_T)
9661 return elfcore_grok_prstatus (abfd, note);
9662 #else
9663 return TRUE;
9664 #endif
9665
9666 #if defined (HAVE_PSTATUS_T)
9667 case NT_PSTATUS:
9668 return elfcore_grok_pstatus (abfd, note);
9669 #endif
9670
9671 #if defined (HAVE_LWPSTATUS_T)
9672 case NT_LWPSTATUS:
9673 return elfcore_grok_lwpstatus (abfd, note);
9674 #endif
9675
9676 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9677 return elfcore_grok_prfpreg (abfd, note);
9678
9679 case NT_WIN32PSTATUS:
9680 return elfcore_grok_win32pstatus (abfd, note);
9681
9682 case NT_PRXFPREG: /* Linux SSE extension */
9683 if (note->namesz == 6
9684 && strcmp (note->namedata, "LINUX") == 0)
9685 return elfcore_grok_prxfpreg (abfd, note);
9686 else
9687 return TRUE;
9688
9689 case NT_X86_XSTATE: /* Linux XSAVE extension */
9690 if (note->namesz == 6
9691 && strcmp (note->namedata, "LINUX") == 0)
9692 return elfcore_grok_xstatereg (abfd, note);
9693 else
9694 return TRUE;
9695
9696 case NT_PPC_VMX:
9697 if (note->namesz == 6
9698 && strcmp (note->namedata, "LINUX") == 0)
9699 return elfcore_grok_ppc_vmx (abfd, note);
9700 else
9701 return TRUE;
9702
9703 case NT_PPC_VSX:
9704 if (note->namesz == 6
9705 && strcmp (note->namedata, "LINUX") == 0)
9706 return elfcore_grok_ppc_vsx (abfd, note);
9707 else
9708 return TRUE;
9709
9710 case NT_S390_HIGH_GPRS:
9711 if (note->namesz == 6
9712 && strcmp (note->namedata, "LINUX") == 0)
9713 return elfcore_grok_s390_high_gprs (abfd, note);
9714 else
9715 return TRUE;
9716
9717 case NT_S390_TIMER:
9718 if (note->namesz == 6
9719 && strcmp (note->namedata, "LINUX") == 0)
9720 return elfcore_grok_s390_timer (abfd, note);
9721 else
9722 return TRUE;
9723
9724 case NT_S390_TODCMP:
9725 if (note->namesz == 6
9726 && strcmp (note->namedata, "LINUX") == 0)
9727 return elfcore_grok_s390_todcmp (abfd, note);
9728 else
9729 return TRUE;
9730
9731 case NT_S390_TODPREG:
9732 if (note->namesz == 6
9733 && strcmp (note->namedata, "LINUX") == 0)
9734 return elfcore_grok_s390_todpreg (abfd, note);
9735 else
9736 return TRUE;
9737
9738 case NT_S390_CTRS:
9739 if (note->namesz == 6
9740 && strcmp (note->namedata, "LINUX") == 0)
9741 return elfcore_grok_s390_ctrs (abfd, note);
9742 else
9743 return TRUE;
9744
9745 case NT_S390_PREFIX:
9746 if (note->namesz == 6
9747 && strcmp (note->namedata, "LINUX") == 0)
9748 return elfcore_grok_s390_prefix (abfd, note);
9749 else
9750 return TRUE;
9751
9752 case NT_S390_LAST_BREAK:
9753 if (note->namesz == 6
9754 && strcmp (note->namedata, "LINUX") == 0)
9755 return elfcore_grok_s390_last_break (abfd, note);
9756 else
9757 return TRUE;
9758
9759 case NT_S390_SYSTEM_CALL:
9760 if (note->namesz == 6
9761 && strcmp (note->namedata, "LINUX") == 0)
9762 return elfcore_grok_s390_system_call (abfd, note);
9763 else
9764 return TRUE;
9765
9766 case NT_S390_TDB:
9767 if (note->namesz == 6
9768 && strcmp (note->namedata, "LINUX") == 0)
9769 return elfcore_grok_s390_tdb (abfd, note);
9770 else
9771 return TRUE;
9772
9773 case NT_S390_VXRS_LOW:
9774 if (note->namesz == 6
9775 && strcmp (note->namedata, "LINUX") == 0)
9776 return elfcore_grok_s390_vxrs_low (abfd, note);
9777 else
9778 return TRUE;
9779
9780 case NT_S390_VXRS_HIGH:
9781 if (note->namesz == 6
9782 && strcmp (note->namedata, "LINUX") == 0)
9783 return elfcore_grok_s390_vxrs_high (abfd, note);
9784 else
9785 return TRUE;
9786
9787 case NT_S390_GS_CB:
9788 if (note->namesz == 6
9789 && strcmp (note->namedata, "LINUX") == 0)
9790 return elfcore_grok_s390_gs_cb (abfd, note);
9791 else
9792 return TRUE;
9793
9794 case NT_S390_GS_BC:
9795 if (note->namesz == 6
9796 && strcmp (note->namedata, "LINUX") == 0)
9797 return elfcore_grok_s390_gs_bc (abfd, note);
9798 else
9799 return TRUE;
9800
9801 case NT_ARM_VFP:
9802 if (note->namesz == 6
9803 && strcmp (note->namedata, "LINUX") == 0)
9804 return elfcore_grok_arm_vfp (abfd, note);
9805 else
9806 return TRUE;
9807
9808 case NT_ARM_TLS:
9809 if (note->namesz == 6
9810 && strcmp (note->namedata, "LINUX") == 0)
9811 return elfcore_grok_aarch_tls (abfd, note);
9812 else
9813 return TRUE;
9814
9815 case NT_ARM_HW_BREAK:
9816 if (note->namesz == 6
9817 && strcmp (note->namedata, "LINUX") == 0)
9818 return elfcore_grok_aarch_hw_break (abfd, note);
9819 else
9820 return TRUE;
9821
9822 case NT_ARM_HW_WATCH:
9823 if (note->namesz == 6
9824 && strcmp (note->namedata, "LINUX") == 0)
9825 return elfcore_grok_aarch_hw_watch (abfd, note);
9826 else
9827 return TRUE;
9828
9829 case NT_PRPSINFO:
9830 case NT_PSINFO:
9831 if (bed->elf_backend_grok_psinfo)
9832 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9833 return TRUE;
9834 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9835 return elfcore_grok_psinfo (abfd, note);
9836 #else
9837 return TRUE;
9838 #endif
9839
9840 case NT_AUXV:
9841 {
9842 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9843 SEC_HAS_CONTENTS);
9844
9845 if (sect == NULL)
9846 return FALSE;
9847 sect->size = note->descsz;
9848 sect->filepos = note->descpos;
9849 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9850
9851 return TRUE;
9852 }
9853
9854 case NT_FILE:
9855 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9856 note);
9857
9858 case NT_SIGINFO:
9859 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9860 note);
9861
9862 }
9863 }
9864
9865 static bfd_boolean
9866 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9867 {
9868 struct bfd_build_id* build_id;
9869
9870 if (note->descsz == 0)
9871 return FALSE;
9872
9873 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9874 if (build_id == NULL)
9875 return FALSE;
9876
9877 build_id->size = note->descsz;
9878 memcpy (build_id->data, note->descdata, note->descsz);
9879 abfd->build_id = build_id;
9880
9881 return TRUE;
9882 }
9883
9884 static bfd_boolean
9885 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9886 {
9887 switch (note->type)
9888 {
9889 default:
9890 return TRUE;
9891
9892 case NT_GNU_PROPERTY_TYPE_0:
9893 return _bfd_elf_parse_gnu_properties (abfd, note);
9894
9895 case NT_GNU_BUILD_ID:
9896 return elfobj_grok_gnu_build_id (abfd, note);
9897 }
9898 }
9899
9900 static bfd_boolean
9901 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9902 {
9903 struct sdt_note *cur =
9904 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9905 + note->descsz);
9906
9907 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9908 cur->size = (bfd_size_type) note->descsz;
9909 memcpy (cur->data, note->descdata, note->descsz);
9910
9911 elf_tdata (abfd)->sdt_note_head = cur;
9912
9913 return TRUE;
9914 }
9915
9916 static bfd_boolean
9917 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9918 {
9919 switch (note->type)
9920 {
9921 case NT_STAPSDT:
9922 return elfobj_grok_stapsdt_note_1 (abfd, note);
9923
9924 default:
9925 return TRUE;
9926 }
9927 }
9928
9929 static bfd_boolean
9930 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9931 {
9932 size_t offset;
9933
9934 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9935 {
9936 case ELFCLASS32:
9937 if (note->descsz < 108)
9938 return FALSE;
9939 break;
9940
9941 case ELFCLASS64:
9942 if (note->descsz < 120)
9943 return FALSE;
9944 break;
9945
9946 default:
9947 return FALSE;
9948 }
9949
9950 /* Check for version 1 in pr_version. */
9951 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9952 return FALSE;
9953
9954 offset = 4;
9955
9956 /* Skip over pr_psinfosz. */
9957 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9958 offset += 4;
9959 else
9960 {
9961 offset += 4; /* Padding before pr_psinfosz. */
9962 offset += 8;
9963 }
9964
9965 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9966 elf_tdata (abfd)->core->program
9967 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9968 offset += 17;
9969
9970 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9971 elf_tdata (abfd)->core->command
9972 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9973 offset += 81;
9974
9975 /* Padding before pr_pid. */
9976 offset += 2;
9977
9978 /* The pr_pid field was added in version "1a". */
9979 if (note->descsz < offset + 4)
9980 return TRUE;
9981
9982 elf_tdata (abfd)->core->pid
9983 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9984
9985 return TRUE;
9986 }
9987
9988 static bfd_boolean
9989 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9990 {
9991 size_t offset;
9992 size_t size;
9993 size_t min_size;
9994
9995 /* Compute offset of pr_getregsz, skipping over pr_statussz.
9996 Also compute minimum size of this note. */
9997 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9998 {
9999 case ELFCLASS32:
10000 offset = 4 + 4;
10001 min_size = offset + (4 * 2) + 4 + 4 + 4;
10002 break;
10003
10004 case ELFCLASS64:
10005 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10006 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10007 break;
10008
10009 default:
10010 return FALSE;
10011 }
10012
10013 if (note->descsz < min_size)
10014 return FALSE;
10015
10016 /* Check for version 1 in pr_version. */
10017 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10018 return FALSE;
10019
10020 /* Extract size of pr_reg from pr_gregsetsz. */
10021 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10022 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10023 {
10024 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10025 offset += 4 * 2;
10026 }
10027 else
10028 {
10029 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10030 offset += 8 * 2;
10031 }
10032
10033 /* Skip over pr_osreldate. */
10034 offset += 4;
10035
10036 /* Read signal from pr_cursig. */
10037 if (elf_tdata (abfd)->core->signal == 0)
10038 elf_tdata (abfd)->core->signal
10039 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10040 offset += 4;
10041
10042 /* Read TID from pr_pid. */
10043 elf_tdata (abfd)->core->lwpid
10044 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10045 offset += 4;
10046
10047 /* Padding before pr_reg. */
10048 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10049 offset += 4;
10050
10051 /* Make sure that there is enough data remaining in the note. */
10052 if ((note->descsz - offset) < size)
10053 return FALSE;
10054
10055 /* Make a ".reg/999" section and a ".reg" section. */
10056 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10057 size, note->descpos + offset);
10058 }
10059
10060 static bfd_boolean
10061 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10062 {
10063 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10064
10065 switch (note->type)
10066 {
10067 case NT_PRSTATUS:
10068 if (bed->elf_backend_grok_freebsd_prstatus)
10069 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10070 return TRUE;
10071 return elfcore_grok_freebsd_prstatus (abfd, note);
10072
10073 case NT_FPREGSET:
10074 return elfcore_grok_prfpreg (abfd, note);
10075
10076 case NT_PRPSINFO:
10077 return elfcore_grok_freebsd_psinfo (abfd, note);
10078
10079 case NT_FREEBSD_THRMISC:
10080 if (note->namesz == 8)
10081 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10082 else
10083 return TRUE;
10084
10085 case NT_FREEBSD_PROCSTAT_PROC:
10086 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10087 note);
10088
10089 case NT_FREEBSD_PROCSTAT_FILES:
10090 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10091 note);
10092
10093 case NT_FREEBSD_PROCSTAT_VMMAP:
10094 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10095 note);
10096
10097 case NT_FREEBSD_PROCSTAT_AUXV:
10098 {
10099 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10100 SEC_HAS_CONTENTS);
10101
10102 if (sect == NULL)
10103 return FALSE;
10104 sect->size = note->descsz - 4;
10105 sect->filepos = note->descpos + 4;
10106 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10107
10108 return TRUE;
10109 }
10110
10111 case NT_X86_XSTATE:
10112 if (note->namesz == 8)
10113 return elfcore_grok_xstatereg (abfd, note);
10114 else
10115 return TRUE;
10116
10117 case NT_FREEBSD_PTLWPINFO:
10118 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10119 note);
10120
10121 case NT_ARM_VFP:
10122 return elfcore_grok_arm_vfp (abfd, note);
10123
10124 default:
10125 return TRUE;
10126 }
10127 }
10128
10129 static bfd_boolean
10130 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10131 {
10132 char *cp;
10133
10134 cp = strchr (note->namedata, '@');
10135 if (cp != NULL)
10136 {
10137 *lwpidp = atoi(cp + 1);
10138 return TRUE;
10139 }
10140 return FALSE;
10141 }
10142
10143 static bfd_boolean
10144 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10145 {
10146 if (note->descsz <= 0x7c + 31)
10147 return FALSE;
10148
10149 /* Signal number at offset 0x08. */
10150 elf_tdata (abfd)->core->signal
10151 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10152
10153 /* Process ID at offset 0x50. */
10154 elf_tdata (abfd)->core->pid
10155 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10156
10157 /* Command name at 0x7c (max 32 bytes, including nul). */
10158 elf_tdata (abfd)->core->command
10159 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10160
10161 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10162 note);
10163 }
10164
10165 static bfd_boolean
10166 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10167 {
10168 int lwp;
10169
10170 if (elfcore_netbsd_get_lwpid (note, &lwp))
10171 elf_tdata (abfd)->core->lwpid = lwp;
10172
10173 if (note->type == NT_NETBSDCORE_PROCINFO)
10174 {
10175 /* NetBSD-specific core "procinfo". Note that we expect to
10176 find this note before any of the others, which is fine,
10177 since the kernel writes this note out first when it
10178 creates a core file. */
10179
10180 return elfcore_grok_netbsd_procinfo (abfd, note);
10181 }
10182
10183 /* As of Jan 2002 there are no other machine-independent notes
10184 defined for NetBSD core files. If the note type is less
10185 than the start of the machine-dependent note types, we don't
10186 understand it. */
10187
10188 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10189 return TRUE;
10190
10191
10192 switch (bfd_get_arch (abfd))
10193 {
10194 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10195 PT_GETFPREGS == mach+2. */
10196
10197 case bfd_arch_alpha:
10198 case bfd_arch_sparc:
10199 switch (note->type)
10200 {
10201 case NT_NETBSDCORE_FIRSTMACH+0:
10202 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10203
10204 case NT_NETBSDCORE_FIRSTMACH+2:
10205 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10206
10207 default:
10208 return TRUE;
10209 }
10210
10211 /* On all other arch's, PT_GETREGS == mach+1 and
10212 PT_GETFPREGS == mach+3. */
10213
10214 default:
10215 switch (note->type)
10216 {
10217 case NT_NETBSDCORE_FIRSTMACH+1:
10218 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10219
10220 case NT_NETBSDCORE_FIRSTMACH+3:
10221 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10222
10223 default:
10224 return TRUE;
10225 }
10226 }
10227 /* NOTREACHED */
10228 }
10229
10230 static bfd_boolean
10231 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10232 {
10233 if (note->descsz <= 0x48 + 31)
10234 return FALSE;
10235
10236 /* Signal number at offset 0x08. */
10237 elf_tdata (abfd)->core->signal
10238 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10239
10240 /* Process ID at offset 0x20. */
10241 elf_tdata (abfd)->core->pid
10242 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10243
10244 /* Command name at 0x48 (max 32 bytes, including nul). */
10245 elf_tdata (abfd)->core->command
10246 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10247
10248 return TRUE;
10249 }
10250
10251 static bfd_boolean
10252 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10253 {
10254 if (note->type == NT_OPENBSD_PROCINFO)
10255 return elfcore_grok_openbsd_procinfo (abfd, note);
10256
10257 if (note->type == NT_OPENBSD_REGS)
10258 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10259
10260 if (note->type == NT_OPENBSD_FPREGS)
10261 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10262
10263 if (note->type == NT_OPENBSD_XFPREGS)
10264 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10265
10266 if (note->type == NT_OPENBSD_AUXV)
10267 {
10268 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10269 SEC_HAS_CONTENTS);
10270
10271 if (sect == NULL)
10272 return FALSE;
10273 sect->size = note->descsz;
10274 sect->filepos = note->descpos;
10275 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10276
10277 return TRUE;
10278 }
10279
10280 if (note->type == NT_OPENBSD_WCOOKIE)
10281 {
10282 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10283 SEC_HAS_CONTENTS);
10284
10285 if (sect == NULL)
10286 return FALSE;
10287 sect->size = note->descsz;
10288 sect->filepos = note->descpos;
10289 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10290
10291 return TRUE;
10292 }
10293
10294 return TRUE;
10295 }
10296
10297 static bfd_boolean
10298 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10299 {
10300 void *ddata = note->descdata;
10301 char buf[100];
10302 char *name;
10303 asection *sect;
10304 short sig;
10305 unsigned flags;
10306
10307 if (note->descsz < 16)
10308 return FALSE;
10309
10310 /* nto_procfs_status 'pid' field is at offset 0. */
10311 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10312
10313 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10314 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10315
10316 /* nto_procfs_status 'flags' field is at offset 8. */
10317 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10318
10319 /* nto_procfs_status 'what' field is at offset 14. */
10320 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10321 {
10322 elf_tdata (abfd)->core->signal = sig;
10323 elf_tdata (abfd)->core->lwpid = *tid;
10324 }
10325
10326 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10327 do not come from signals so we make sure we set the current
10328 thread just in case. */
10329 if (flags & 0x00000080)
10330 elf_tdata (abfd)->core->lwpid = *tid;
10331
10332 /* Make a ".qnx_core_status/%d" section. */
10333 sprintf (buf, ".qnx_core_status/%ld", *tid);
10334
10335 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10336 if (name == NULL)
10337 return FALSE;
10338 strcpy (name, buf);
10339
10340 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10341 if (sect == NULL)
10342 return FALSE;
10343
10344 sect->size = note->descsz;
10345 sect->filepos = note->descpos;
10346 sect->alignment_power = 2;
10347
10348 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10349 }
10350
10351 static bfd_boolean
10352 elfcore_grok_nto_regs (bfd *abfd,
10353 Elf_Internal_Note *note,
10354 long tid,
10355 char *base)
10356 {
10357 char buf[100];
10358 char *name;
10359 asection *sect;
10360
10361 /* Make a "(base)/%d" section. */
10362 sprintf (buf, "%s/%ld", base, tid);
10363
10364 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10365 if (name == NULL)
10366 return FALSE;
10367 strcpy (name, buf);
10368
10369 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10370 if (sect == NULL)
10371 return FALSE;
10372
10373 sect->size = note->descsz;
10374 sect->filepos = note->descpos;
10375 sect->alignment_power = 2;
10376
10377 /* This is the current thread. */
10378 if (elf_tdata (abfd)->core->lwpid == tid)
10379 return elfcore_maybe_make_sect (abfd, base, sect);
10380
10381 return TRUE;
10382 }
10383
10384 #define BFD_QNT_CORE_INFO 7
10385 #define BFD_QNT_CORE_STATUS 8
10386 #define BFD_QNT_CORE_GREG 9
10387 #define BFD_QNT_CORE_FPREG 10
10388
10389 static bfd_boolean
10390 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10391 {
10392 /* Every GREG section has a STATUS section before it. Store the
10393 tid from the previous call to pass down to the next gregs
10394 function. */
10395 static long tid = 1;
10396
10397 switch (note->type)
10398 {
10399 case BFD_QNT_CORE_INFO:
10400 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10401 case BFD_QNT_CORE_STATUS:
10402 return elfcore_grok_nto_status (abfd, note, &tid);
10403 case BFD_QNT_CORE_GREG:
10404 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10405 case BFD_QNT_CORE_FPREG:
10406 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10407 default:
10408 return TRUE;
10409 }
10410 }
10411
10412 static bfd_boolean
10413 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10414 {
10415 char *name;
10416 asection *sect;
10417 size_t len;
10418
10419 /* Use note name as section name. */
10420 len = note->namesz;
10421 name = (char *) bfd_alloc (abfd, len);
10422 if (name == NULL)
10423 return FALSE;
10424 memcpy (name, note->namedata, len);
10425 name[len - 1] = '\0';
10426
10427 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10428 if (sect == NULL)
10429 return FALSE;
10430
10431 sect->size = note->descsz;
10432 sect->filepos = note->descpos;
10433 sect->alignment_power = 1;
10434
10435 return TRUE;
10436 }
10437
10438 /* Function: elfcore_write_note
10439
10440 Inputs:
10441 buffer to hold note, and current size of buffer
10442 name of note
10443 type of note
10444 data for note
10445 size of data for note
10446
10447 Writes note to end of buffer. ELF64 notes are written exactly as
10448 for ELF32, despite the current (as of 2006) ELF gabi specifying
10449 that they ought to have 8-byte namesz and descsz field, and have
10450 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10451
10452 Return:
10453 Pointer to realloc'd buffer, *BUFSIZ updated. */
10454
10455 char *
10456 elfcore_write_note (bfd *abfd,
10457 char *buf,
10458 int *bufsiz,
10459 const char *name,
10460 int type,
10461 const void *input,
10462 int size)
10463 {
10464 Elf_External_Note *xnp;
10465 size_t namesz;
10466 size_t newspace;
10467 char *dest;
10468
10469 namesz = 0;
10470 if (name != NULL)
10471 namesz = strlen (name) + 1;
10472
10473 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10474
10475 buf = (char *) realloc (buf, *bufsiz + newspace);
10476 if (buf == NULL)
10477 return buf;
10478 dest = buf + *bufsiz;
10479 *bufsiz += newspace;
10480 xnp = (Elf_External_Note *) dest;
10481 H_PUT_32 (abfd, namesz, xnp->namesz);
10482 H_PUT_32 (abfd, size, xnp->descsz);
10483 H_PUT_32 (abfd, type, xnp->type);
10484 dest = xnp->name;
10485 if (name != NULL)
10486 {
10487 memcpy (dest, name, namesz);
10488 dest += namesz;
10489 while (namesz & 3)
10490 {
10491 *dest++ = '\0';
10492 ++namesz;
10493 }
10494 }
10495 memcpy (dest, input, size);
10496 dest += size;
10497 while (size & 3)
10498 {
10499 *dest++ = '\0';
10500 ++size;
10501 }
10502 return buf;
10503 }
10504
10505 char *
10506 elfcore_write_prpsinfo (bfd *abfd,
10507 char *buf,
10508 int *bufsiz,
10509 const char *fname,
10510 const char *psargs)
10511 {
10512 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10513
10514 if (bed->elf_backend_write_core_note != NULL)
10515 {
10516 char *ret;
10517 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10518 NT_PRPSINFO, fname, psargs);
10519 if (ret != NULL)
10520 return ret;
10521 }
10522
10523 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10524 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10525 if (bed->s->elfclass == ELFCLASS32)
10526 {
10527 #if defined (HAVE_PSINFO32_T)
10528 psinfo32_t data;
10529 int note_type = NT_PSINFO;
10530 #else
10531 prpsinfo32_t data;
10532 int note_type = NT_PRPSINFO;
10533 #endif
10534
10535 memset (&data, 0, sizeof (data));
10536 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10537 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10538 return elfcore_write_note (abfd, buf, bufsiz,
10539 "CORE", note_type, &data, sizeof (data));
10540 }
10541 else
10542 #endif
10543 {
10544 #if defined (HAVE_PSINFO_T)
10545 psinfo_t data;
10546 int note_type = NT_PSINFO;
10547 #else
10548 prpsinfo_t data;
10549 int note_type = NT_PRPSINFO;
10550 #endif
10551
10552 memset (&data, 0, sizeof (data));
10553 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10554 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10555 return elfcore_write_note (abfd, buf, bufsiz,
10556 "CORE", note_type, &data, sizeof (data));
10557 }
10558 #endif /* PSINFO_T or PRPSINFO_T */
10559
10560 free (buf);
10561 return NULL;
10562 }
10563
10564 char *
10565 elfcore_write_linux_prpsinfo32
10566 (bfd *abfd, char *buf, int *bufsiz,
10567 const struct elf_internal_linux_prpsinfo *prpsinfo)
10568 {
10569 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10570 {
10571 struct elf_external_linux_prpsinfo32_ugid16 data;
10572
10573 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10574 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10575 &data, sizeof (data));
10576 }
10577 else
10578 {
10579 struct elf_external_linux_prpsinfo32_ugid32 data;
10580
10581 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10582 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10583 &data, sizeof (data));
10584 }
10585 }
10586
10587 char *
10588 elfcore_write_linux_prpsinfo64
10589 (bfd *abfd, char *buf, int *bufsiz,
10590 const struct elf_internal_linux_prpsinfo *prpsinfo)
10591 {
10592 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
10593 {
10594 struct elf_external_linux_prpsinfo64_ugid16 data;
10595
10596 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
10597 return elfcore_write_note (abfd, buf, bufsiz,
10598 "CORE", NT_PRPSINFO, &data, sizeof (data));
10599 }
10600 else
10601 {
10602 struct elf_external_linux_prpsinfo64_ugid32 data;
10603
10604 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
10605 return elfcore_write_note (abfd, buf, bufsiz,
10606 "CORE", NT_PRPSINFO, &data, sizeof (data));
10607 }
10608 }
10609
10610 char *
10611 elfcore_write_prstatus (bfd *abfd,
10612 char *buf,
10613 int *bufsiz,
10614 long pid,
10615 int cursig,
10616 const void *gregs)
10617 {
10618 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10619
10620 if (bed->elf_backend_write_core_note != NULL)
10621 {
10622 char *ret;
10623 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10624 NT_PRSTATUS,
10625 pid, cursig, gregs);
10626 if (ret != NULL)
10627 return ret;
10628 }
10629
10630 #if defined (HAVE_PRSTATUS_T)
10631 #if defined (HAVE_PRSTATUS32_T)
10632 if (bed->s->elfclass == ELFCLASS32)
10633 {
10634 prstatus32_t prstat;
10635
10636 memset (&prstat, 0, sizeof (prstat));
10637 prstat.pr_pid = pid;
10638 prstat.pr_cursig = cursig;
10639 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10640 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10641 NT_PRSTATUS, &prstat, sizeof (prstat));
10642 }
10643 else
10644 #endif
10645 {
10646 prstatus_t prstat;
10647
10648 memset (&prstat, 0, sizeof (prstat));
10649 prstat.pr_pid = pid;
10650 prstat.pr_cursig = cursig;
10651 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10652 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10653 NT_PRSTATUS, &prstat, sizeof (prstat));
10654 }
10655 #endif /* HAVE_PRSTATUS_T */
10656
10657 free (buf);
10658 return NULL;
10659 }
10660
10661 #if defined (HAVE_LWPSTATUS_T)
10662 char *
10663 elfcore_write_lwpstatus (bfd *abfd,
10664 char *buf,
10665 int *bufsiz,
10666 long pid,
10667 int cursig,
10668 const void *gregs)
10669 {
10670 lwpstatus_t lwpstat;
10671 const char *note_name = "CORE";
10672
10673 memset (&lwpstat, 0, sizeof (lwpstat));
10674 lwpstat.pr_lwpid = pid >> 16;
10675 lwpstat.pr_cursig = cursig;
10676 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10677 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10678 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10679 #if !defined(gregs)
10680 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10681 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10682 #else
10683 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10684 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10685 #endif
10686 #endif
10687 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10688 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10689 }
10690 #endif /* HAVE_LWPSTATUS_T */
10691
10692 #if defined (HAVE_PSTATUS_T)
10693 char *
10694 elfcore_write_pstatus (bfd *abfd,
10695 char *buf,
10696 int *bufsiz,
10697 long pid,
10698 int cursig ATTRIBUTE_UNUSED,
10699 const void *gregs ATTRIBUTE_UNUSED)
10700 {
10701 const char *note_name = "CORE";
10702 #if defined (HAVE_PSTATUS32_T)
10703 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10704
10705 if (bed->s->elfclass == ELFCLASS32)
10706 {
10707 pstatus32_t pstat;
10708
10709 memset (&pstat, 0, sizeof (pstat));
10710 pstat.pr_pid = pid & 0xffff;
10711 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10712 NT_PSTATUS, &pstat, sizeof (pstat));
10713 return buf;
10714 }
10715 else
10716 #endif
10717 {
10718 pstatus_t pstat;
10719
10720 memset (&pstat, 0, sizeof (pstat));
10721 pstat.pr_pid = pid & 0xffff;
10722 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10723 NT_PSTATUS, &pstat, sizeof (pstat));
10724 return buf;
10725 }
10726 }
10727 #endif /* HAVE_PSTATUS_T */
10728
10729 char *
10730 elfcore_write_prfpreg (bfd *abfd,
10731 char *buf,
10732 int *bufsiz,
10733 const void *fpregs,
10734 int size)
10735 {
10736 const char *note_name = "CORE";
10737 return elfcore_write_note (abfd, buf, bufsiz,
10738 note_name, NT_FPREGSET, fpregs, size);
10739 }
10740
10741 char *
10742 elfcore_write_prxfpreg (bfd *abfd,
10743 char *buf,
10744 int *bufsiz,
10745 const void *xfpregs,
10746 int size)
10747 {
10748 char *note_name = "LINUX";
10749 return elfcore_write_note (abfd, buf, bufsiz,
10750 note_name, NT_PRXFPREG, xfpregs, size);
10751 }
10752
10753 char *
10754 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10755 const void *xfpregs, int size)
10756 {
10757 char *note_name;
10758 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10759 note_name = "FreeBSD";
10760 else
10761 note_name = "LINUX";
10762 return elfcore_write_note (abfd, buf, bufsiz,
10763 note_name, NT_X86_XSTATE, xfpregs, size);
10764 }
10765
10766 char *
10767 elfcore_write_ppc_vmx (bfd *abfd,
10768 char *buf,
10769 int *bufsiz,
10770 const void *ppc_vmx,
10771 int size)
10772 {
10773 char *note_name = "LINUX";
10774 return elfcore_write_note (abfd, buf, bufsiz,
10775 note_name, NT_PPC_VMX, ppc_vmx, size);
10776 }
10777
10778 char *
10779 elfcore_write_ppc_vsx (bfd *abfd,
10780 char *buf,
10781 int *bufsiz,
10782 const void *ppc_vsx,
10783 int size)
10784 {
10785 char *note_name = "LINUX";
10786 return elfcore_write_note (abfd, buf, bufsiz,
10787 note_name, NT_PPC_VSX, ppc_vsx, size);
10788 }
10789
10790 static char *
10791 elfcore_write_s390_high_gprs (bfd *abfd,
10792 char *buf,
10793 int *bufsiz,
10794 const void *s390_high_gprs,
10795 int size)
10796 {
10797 char *note_name = "LINUX";
10798 return elfcore_write_note (abfd, buf, bufsiz,
10799 note_name, NT_S390_HIGH_GPRS,
10800 s390_high_gprs, size);
10801 }
10802
10803 char *
10804 elfcore_write_s390_timer (bfd *abfd,
10805 char *buf,
10806 int *bufsiz,
10807 const void *s390_timer,
10808 int size)
10809 {
10810 char *note_name = "LINUX";
10811 return elfcore_write_note (abfd, buf, bufsiz,
10812 note_name, NT_S390_TIMER, s390_timer, size);
10813 }
10814
10815 char *
10816 elfcore_write_s390_todcmp (bfd *abfd,
10817 char *buf,
10818 int *bufsiz,
10819 const void *s390_todcmp,
10820 int size)
10821 {
10822 char *note_name = "LINUX";
10823 return elfcore_write_note (abfd, buf, bufsiz,
10824 note_name, NT_S390_TODCMP, s390_todcmp, size);
10825 }
10826
10827 char *
10828 elfcore_write_s390_todpreg (bfd *abfd,
10829 char *buf,
10830 int *bufsiz,
10831 const void *s390_todpreg,
10832 int size)
10833 {
10834 char *note_name = "LINUX";
10835 return elfcore_write_note (abfd, buf, bufsiz,
10836 note_name, NT_S390_TODPREG, s390_todpreg, size);
10837 }
10838
10839 char *
10840 elfcore_write_s390_ctrs (bfd *abfd,
10841 char *buf,
10842 int *bufsiz,
10843 const void *s390_ctrs,
10844 int size)
10845 {
10846 char *note_name = "LINUX";
10847 return elfcore_write_note (abfd, buf, bufsiz,
10848 note_name, NT_S390_CTRS, s390_ctrs, size);
10849 }
10850
10851 char *
10852 elfcore_write_s390_prefix (bfd *abfd,
10853 char *buf,
10854 int *bufsiz,
10855 const void *s390_prefix,
10856 int size)
10857 {
10858 char *note_name = "LINUX";
10859 return elfcore_write_note (abfd, buf, bufsiz,
10860 note_name, NT_S390_PREFIX, s390_prefix, size);
10861 }
10862
10863 char *
10864 elfcore_write_s390_last_break (bfd *abfd,
10865 char *buf,
10866 int *bufsiz,
10867 const void *s390_last_break,
10868 int size)
10869 {
10870 char *note_name = "LINUX";
10871 return elfcore_write_note (abfd, buf, bufsiz,
10872 note_name, NT_S390_LAST_BREAK,
10873 s390_last_break, size);
10874 }
10875
10876 char *
10877 elfcore_write_s390_system_call (bfd *abfd,
10878 char *buf,
10879 int *bufsiz,
10880 const void *s390_system_call,
10881 int size)
10882 {
10883 char *note_name = "LINUX";
10884 return elfcore_write_note (abfd, buf, bufsiz,
10885 note_name, NT_S390_SYSTEM_CALL,
10886 s390_system_call, size);
10887 }
10888
10889 char *
10890 elfcore_write_s390_tdb (bfd *abfd,
10891 char *buf,
10892 int *bufsiz,
10893 const void *s390_tdb,
10894 int size)
10895 {
10896 char *note_name = "LINUX";
10897 return elfcore_write_note (abfd, buf, bufsiz,
10898 note_name, NT_S390_TDB, s390_tdb, size);
10899 }
10900
10901 char *
10902 elfcore_write_s390_vxrs_low (bfd *abfd,
10903 char *buf,
10904 int *bufsiz,
10905 const void *s390_vxrs_low,
10906 int size)
10907 {
10908 char *note_name = "LINUX";
10909 return elfcore_write_note (abfd, buf, bufsiz,
10910 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10911 }
10912
10913 char *
10914 elfcore_write_s390_vxrs_high (bfd *abfd,
10915 char *buf,
10916 int *bufsiz,
10917 const void *s390_vxrs_high,
10918 int size)
10919 {
10920 char *note_name = "LINUX";
10921 return elfcore_write_note (abfd, buf, bufsiz,
10922 note_name, NT_S390_VXRS_HIGH,
10923 s390_vxrs_high, size);
10924 }
10925
10926 char *
10927 elfcore_write_s390_gs_cb (bfd *abfd,
10928 char *buf,
10929 int *bufsiz,
10930 const void *s390_gs_cb,
10931 int size)
10932 {
10933 char *note_name = "LINUX";
10934 return elfcore_write_note (abfd, buf, bufsiz,
10935 note_name, NT_S390_GS_CB,
10936 s390_gs_cb, size);
10937 }
10938
10939 char *
10940 elfcore_write_s390_gs_bc (bfd *abfd,
10941 char *buf,
10942 int *bufsiz,
10943 const void *s390_gs_bc,
10944 int size)
10945 {
10946 char *note_name = "LINUX";
10947 return elfcore_write_note (abfd, buf, bufsiz,
10948 note_name, NT_S390_GS_BC,
10949 s390_gs_bc, size);
10950 }
10951
10952 char *
10953 elfcore_write_arm_vfp (bfd *abfd,
10954 char *buf,
10955 int *bufsiz,
10956 const void *arm_vfp,
10957 int size)
10958 {
10959 char *note_name = "LINUX";
10960 return elfcore_write_note (abfd, buf, bufsiz,
10961 note_name, NT_ARM_VFP, arm_vfp, size);
10962 }
10963
10964 char *
10965 elfcore_write_aarch_tls (bfd *abfd,
10966 char *buf,
10967 int *bufsiz,
10968 const void *aarch_tls,
10969 int size)
10970 {
10971 char *note_name = "LINUX";
10972 return elfcore_write_note (abfd, buf, bufsiz,
10973 note_name, NT_ARM_TLS, aarch_tls, size);
10974 }
10975
10976 char *
10977 elfcore_write_aarch_hw_break (bfd *abfd,
10978 char *buf,
10979 int *bufsiz,
10980 const void *aarch_hw_break,
10981 int size)
10982 {
10983 char *note_name = "LINUX";
10984 return elfcore_write_note (abfd, buf, bufsiz,
10985 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10986 }
10987
10988 char *
10989 elfcore_write_aarch_hw_watch (bfd *abfd,
10990 char *buf,
10991 int *bufsiz,
10992 const void *aarch_hw_watch,
10993 int size)
10994 {
10995 char *note_name = "LINUX";
10996 return elfcore_write_note (abfd, buf, bufsiz,
10997 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10998 }
10999
11000 char *
11001 elfcore_write_register_note (bfd *abfd,
11002 char *buf,
11003 int *bufsiz,
11004 const char *section,
11005 const void *data,
11006 int size)
11007 {
11008 if (strcmp (section, ".reg2") == 0)
11009 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11010 if (strcmp (section, ".reg-xfp") == 0)
11011 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11012 if (strcmp (section, ".reg-xstate") == 0)
11013 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11014 if (strcmp (section, ".reg-ppc-vmx") == 0)
11015 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11016 if (strcmp (section, ".reg-ppc-vsx") == 0)
11017 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11018 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11019 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11020 if (strcmp (section, ".reg-s390-timer") == 0)
11021 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11022 if (strcmp (section, ".reg-s390-todcmp") == 0)
11023 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11024 if (strcmp (section, ".reg-s390-todpreg") == 0)
11025 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11026 if (strcmp (section, ".reg-s390-ctrs") == 0)
11027 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11028 if (strcmp (section, ".reg-s390-prefix") == 0)
11029 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11030 if (strcmp (section, ".reg-s390-last-break") == 0)
11031 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11032 if (strcmp (section, ".reg-s390-system-call") == 0)
11033 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11034 if (strcmp (section, ".reg-s390-tdb") == 0)
11035 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11036 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11037 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11038 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11039 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11040 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11041 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11042 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11043 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11044 if (strcmp (section, ".reg-arm-vfp") == 0)
11045 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11046 if (strcmp (section, ".reg-aarch-tls") == 0)
11047 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11048 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11049 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11050 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11051 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11052 return NULL;
11053 }
11054
11055 static bfd_boolean
11056 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11057 size_t align)
11058 {
11059 char *p;
11060
11061 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11062 gABI specifies that PT_NOTE alignment should be aligned to 4
11063 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11064 align is less than 4, we use 4 byte alignment. */
11065 if (align < 4)
11066 align = 4;
11067 if (align != 4 && align != 8)
11068 return FALSE;
11069
11070 p = buf;
11071 while (p < buf + size)
11072 {
11073 Elf_External_Note *xnp = (Elf_External_Note *) p;
11074 Elf_Internal_Note in;
11075
11076 if (offsetof (Elf_External_Note, name) > buf - p + size)
11077 return FALSE;
11078
11079 in.type = H_GET_32 (abfd, xnp->type);
11080
11081 in.namesz = H_GET_32 (abfd, xnp->namesz);
11082 in.namedata = xnp->name;
11083 if (in.namesz > buf - in.namedata + size)
11084 return FALSE;
11085
11086 in.descsz = H_GET_32 (abfd, xnp->descsz);
11087 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11088 in.descpos = offset + (in.descdata - buf);
11089 if (in.descsz != 0
11090 && (in.descdata >= buf + size
11091 || in.descsz > buf - in.descdata + size))
11092 return FALSE;
11093
11094 switch (bfd_get_format (abfd))
11095 {
11096 default:
11097 return TRUE;
11098
11099 case bfd_core:
11100 {
11101 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11102 struct
11103 {
11104 const char * string;
11105 size_t len;
11106 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11107 }
11108 grokers[] =
11109 {
11110 GROKER_ELEMENT ("", elfcore_grok_note),
11111 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11112 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11113 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11114 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11115 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11116 };
11117 #undef GROKER_ELEMENT
11118 int i;
11119
11120 for (i = ARRAY_SIZE (grokers); i--;)
11121 {
11122 if (in.namesz >= grokers[i].len
11123 && strncmp (in.namedata, grokers[i].string,
11124 grokers[i].len) == 0)
11125 {
11126 if (! grokers[i].func (abfd, & in))
11127 return FALSE;
11128 break;
11129 }
11130 }
11131 break;
11132 }
11133
11134 case bfd_object:
11135 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11136 {
11137 if (! elfobj_grok_gnu_note (abfd, &in))
11138 return FALSE;
11139 }
11140 else if (in.namesz == sizeof "stapsdt"
11141 && strcmp (in.namedata, "stapsdt") == 0)
11142 {
11143 if (! elfobj_grok_stapsdt_note (abfd, &in))
11144 return FALSE;
11145 }
11146 break;
11147 }
11148
11149 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11150 }
11151
11152 return TRUE;
11153 }
11154
11155 static bfd_boolean
11156 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11157 size_t align)
11158 {
11159 char *buf;
11160
11161 if (size == 0 || (size + 1) == 0)
11162 return TRUE;
11163
11164 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11165 return FALSE;
11166
11167 buf = (char *) bfd_malloc (size + 1);
11168 if (buf == NULL)
11169 return FALSE;
11170
11171 /* PR 17512: file: ec08f814
11172 0-termintate the buffer so that string searches will not overflow. */
11173 buf[size] = 0;
11174
11175 if (bfd_bread (buf, size, abfd) != size
11176 || !elf_parse_notes (abfd, buf, size, offset, align))
11177 {
11178 free (buf);
11179 return FALSE;
11180 }
11181
11182 free (buf);
11183 return TRUE;
11184 }
11185 \f
11186 /* Providing external access to the ELF program header table. */
11187
11188 /* Return an upper bound on the number of bytes required to store a
11189 copy of ABFD's program header table entries. Return -1 if an error
11190 occurs; bfd_get_error will return an appropriate code. */
11191
11192 long
11193 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11194 {
11195 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11196 {
11197 bfd_set_error (bfd_error_wrong_format);
11198 return -1;
11199 }
11200
11201 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11202 }
11203
11204 /* Copy ABFD's program header table entries to *PHDRS. The entries
11205 will be stored as an array of Elf_Internal_Phdr structures, as
11206 defined in include/elf/internal.h. To find out how large the
11207 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11208
11209 Return the number of program header table entries read, or -1 if an
11210 error occurs; bfd_get_error will return an appropriate code. */
11211
11212 int
11213 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11214 {
11215 int num_phdrs;
11216
11217 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11218 {
11219 bfd_set_error (bfd_error_wrong_format);
11220 return -1;
11221 }
11222
11223 num_phdrs = elf_elfheader (abfd)->e_phnum;
11224 memcpy (phdrs, elf_tdata (abfd)->phdr,
11225 num_phdrs * sizeof (Elf_Internal_Phdr));
11226
11227 return num_phdrs;
11228 }
11229
11230 enum elf_reloc_type_class
11231 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11232 const asection *rel_sec ATTRIBUTE_UNUSED,
11233 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11234 {
11235 return reloc_class_normal;
11236 }
11237
11238 /* For RELA architectures, return the relocation value for a
11239 relocation against a local symbol. */
11240
11241 bfd_vma
11242 _bfd_elf_rela_local_sym (bfd *abfd,
11243 Elf_Internal_Sym *sym,
11244 asection **psec,
11245 Elf_Internal_Rela *rel)
11246 {
11247 asection *sec = *psec;
11248 bfd_vma relocation;
11249
11250 relocation = (sec->output_section->vma
11251 + sec->output_offset
11252 + sym->st_value);
11253 if ((sec->flags & SEC_MERGE)
11254 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11255 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11256 {
11257 rel->r_addend =
11258 _bfd_merged_section_offset (abfd, psec,
11259 elf_section_data (sec)->sec_info,
11260 sym->st_value + rel->r_addend);
11261 if (sec != *psec)
11262 {
11263 /* If we have changed the section, and our original section is
11264 marked with SEC_EXCLUDE, it means that the original
11265 SEC_MERGE section has been completely subsumed in some
11266 other SEC_MERGE section. In this case, we need to leave
11267 some info around for --emit-relocs. */
11268 if ((sec->flags & SEC_EXCLUDE) != 0)
11269 sec->kept_section = *psec;
11270 sec = *psec;
11271 }
11272 rel->r_addend -= relocation;
11273 rel->r_addend += sec->output_section->vma + sec->output_offset;
11274 }
11275 return relocation;
11276 }
11277
11278 bfd_vma
11279 _bfd_elf_rel_local_sym (bfd *abfd,
11280 Elf_Internal_Sym *sym,
11281 asection **psec,
11282 bfd_vma addend)
11283 {
11284 asection *sec = *psec;
11285
11286 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11287 return sym->st_value + addend;
11288
11289 return _bfd_merged_section_offset (abfd, psec,
11290 elf_section_data (sec)->sec_info,
11291 sym->st_value + addend);
11292 }
11293
11294 /* Adjust an address within a section. Given OFFSET within SEC, return
11295 the new offset within the section, based upon changes made to the
11296 section. Returns -1 if the offset is now invalid.
11297 The offset (in abnd out) is in target sized bytes, however big a
11298 byte may be. */
11299
11300 bfd_vma
11301 _bfd_elf_section_offset (bfd *abfd,
11302 struct bfd_link_info *info,
11303 asection *sec,
11304 bfd_vma offset)
11305 {
11306 switch (sec->sec_info_type)
11307 {
11308 case SEC_INFO_TYPE_STABS:
11309 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11310 offset);
11311 case SEC_INFO_TYPE_EH_FRAME:
11312 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11313
11314 default:
11315 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11316 {
11317 /* Reverse the offset. */
11318 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11319 bfd_size_type address_size = bed->s->arch_size / 8;
11320
11321 /* address_size and sec->size are in octets. Convert
11322 to bytes before subtracting the original offset. */
11323 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11324 }
11325 return offset;
11326 }
11327 }
11328 \f
11329 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11330 reconstruct an ELF file by reading the segments out of remote memory
11331 based on the ELF file header at EHDR_VMA and the ELF program headers it
11332 points to. If not null, *LOADBASEP is filled in with the difference
11333 between the VMAs from which the segments were read, and the VMAs the
11334 file headers (and hence BFD's idea of each section's VMA) put them at.
11335
11336 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11337 remote memory at target address VMA into the local buffer at MYADDR; it
11338 should return zero on success or an `errno' code on failure. TEMPL must
11339 be a BFD for an ELF target with the word size and byte order found in
11340 the remote memory. */
11341
11342 bfd *
11343 bfd_elf_bfd_from_remote_memory
11344 (bfd *templ,
11345 bfd_vma ehdr_vma,
11346 bfd_size_type size,
11347 bfd_vma *loadbasep,
11348 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11349 {
11350 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11351 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11352 }
11353 \f
11354 long
11355 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11356 long symcount ATTRIBUTE_UNUSED,
11357 asymbol **syms ATTRIBUTE_UNUSED,
11358 long dynsymcount,
11359 asymbol **dynsyms,
11360 asymbol **ret)
11361 {
11362 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11363 asection *relplt;
11364 asymbol *s;
11365 const char *relplt_name;
11366 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11367 arelent *p;
11368 long count, i, n;
11369 size_t size;
11370 Elf_Internal_Shdr *hdr;
11371 char *names;
11372 asection *plt;
11373
11374 *ret = NULL;
11375
11376 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11377 return 0;
11378
11379 if (dynsymcount <= 0)
11380 return 0;
11381
11382 if (!bed->plt_sym_val)
11383 return 0;
11384
11385 relplt_name = bed->relplt_name;
11386 if (relplt_name == NULL)
11387 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11388 relplt = bfd_get_section_by_name (abfd, relplt_name);
11389 if (relplt == NULL)
11390 return 0;
11391
11392 hdr = &elf_section_data (relplt)->this_hdr;
11393 if (hdr->sh_link != elf_dynsymtab (abfd)
11394 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11395 return 0;
11396
11397 plt = bfd_get_section_by_name (abfd, ".plt");
11398 if (plt == NULL)
11399 return 0;
11400
11401 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11402 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11403 return -1;
11404
11405 count = relplt->size / hdr->sh_entsize;
11406 size = count * sizeof (asymbol);
11407 p = relplt->relocation;
11408 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11409 {
11410 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11411 if (p->addend != 0)
11412 {
11413 #ifdef BFD64
11414 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11415 #else
11416 size += sizeof ("+0x") - 1 + 8;
11417 #endif
11418 }
11419 }
11420
11421 s = *ret = (asymbol *) bfd_malloc (size);
11422 if (s == NULL)
11423 return -1;
11424
11425 names = (char *) (s + count);
11426 p = relplt->relocation;
11427 n = 0;
11428 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11429 {
11430 size_t len;
11431 bfd_vma addr;
11432
11433 addr = bed->plt_sym_val (i, plt, p);
11434 if (addr == (bfd_vma) -1)
11435 continue;
11436
11437 *s = **p->sym_ptr_ptr;
11438 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11439 we are defining a symbol, ensure one of them is set. */
11440 if ((s->flags & BSF_LOCAL) == 0)
11441 s->flags |= BSF_GLOBAL;
11442 s->flags |= BSF_SYNTHETIC;
11443 s->section = plt;
11444 s->value = addr - plt->vma;
11445 s->name = names;
11446 s->udata.p = NULL;
11447 len = strlen ((*p->sym_ptr_ptr)->name);
11448 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11449 names += len;
11450 if (p->addend != 0)
11451 {
11452 char buf[30], *a;
11453
11454 memcpy (names, "+0x", sizeof ("+0x") - 1);
11455 names += sizeof ("+0x") - 1;
11456 bfd_sprintf_vma (abfd, buf, p->addend);
11457 for (a = buf; *a == '0'; ++a)
11458 ;
11459 len = strlen (a);
11460 memcpy (names, a, len);
11461 names += len;
11462 }
11463 memcpy (names, "@plt", sizeof ("@plt"));
11464 names += sizeof ("@plt");
11465 ++s, ++n;
11466 }
11467
11468 return n;
11469 }
11470
11471 /* It is only used by x86-64 so far.
11472 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11473 but current usage would allow all of _bfd_std_section to be zero. */
11474 static const asymbol lcomm_sym
11475 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
11476 asection _bfd_elf_large_com_section
11477 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
11478 "LARGE_COMMON", 0, SEC_IS_COMMON);
11479
11480 void
11481 _bfd_elf_post_process_headers (bfd * abfd,
11482 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11483 {
11484 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11485
11486 i_ehdrp = elf_elfheader (abfd);
11487
11488 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11489
11490 /* To make things simpler for the loader on Linux systems we set the
11491 osabi field to ELFOSABI_GNU if the binary contains symbols of
11492 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11493 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11494 && elf_tdata (abfd)->has_gnu_symbols)
11495 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11496 }
11497
11498
11499 /* Return TRUE for ELF symbol types that represent functions.
11500 This is the default version of this function, which is sufficient for
11501 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11502
11503 bfd_boolean
11504 _bfd_elf_is_function_type (unsigned int type)
11505 {
11506 return (type == STT_FUNC
11507 || type == STT_GNU_IFUNC);
11508 }
11509
11510 /* If the ELF symbol SYM might be a function in SEC, return the
11511 function size and set *CODE_OFF to the function's entry point,
11512 otherwise return zero. */
11513
11514 bfd_size_type
11515 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11516 bfd_vma *code_off)
11517 {
11518 bfd_size_type size;
11519
11520 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11521 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11522 || sym->section != sec)
11523 return 0;
11524
11525 *code_off = sym->value;
11526 size = 0;
11527 if (!(sym->flags & BSF_SYNTHETIC))
11528 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11529 if (size == 0)
11530 size = 1;
11531 return size;
11532 }
This page took 0.329499 seconds and 5 git commands to generate.