* ui-out.h: Remove #if 0 declarations.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 static const struct
884 {
885 const char *name;
886 int len;
887 } debug_sections [] =
888 {
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL, 0 }, /* 'e' */
891 { NULL, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL, 0 }, /* 'h' */
894 { NULL, 0 }, /* 'i' */
895 { NULL, 0 }, /* 'j' */
896 { NULL, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL, 0 }, /* 'm' */
899 { NULL, 0 }, /* 'n' */
900 { NULL, 0 }, /* 'o' */
901 { NULL, 0 }, /* 'p' */
902 { NULL, 0 }, /* 'q' */
903 { NULL, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL, 0 }, /* 't' */
906 { NULL, 0 }, /* 'u' */
907 { NULL, 0 }, /* 'v' */
908 { NULL, 0 }, /* 'w' */
909 { NULL, 0 }, /* 'x' */
910 { NULL, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
912 };
913
914 if (name [0] == '.')
915 {
916 int i = name [1] - 'd';
917 if (i >= 0
918 && i < (int) ARRAY_SIZE (debug_sections)
919 && debug_sections [i].name != NULL
920 && strncmp (&name [1], debug_sections [i].name,
921 debug_sections [i].len) == 0)
922 flags |= SEC_DEBUGGING;
923 }
924 }
925
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name, ".gnu.linkonce")
933 && elf_next_in_group (newsect) == NULL)
934 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
935
936 bed = get_elf_backend_data (abfd);
937 if (bed->elf_backend_section_flags)
938 if (! bed->elf_backend_section_flags (&flags, hdr))
939 return FALSE;
940
941 if (! bfd_set_section_flags (abfd, newsect, flags))
942 return FALSE;
943
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr->sh_type == SHT_NOTE)
948 {
949 bfd_byte *contents;
950
951 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
952 return FALSE;
953
954 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
955 free (contents);
956 }
957
958 if ((flags & SEC_ALLOC) != 0)
959 {
960 Elf_Internal_Phdr *phdr;
961 unsigned int i, nload;
962
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr = elf_tdata (abfd)->phdr;
968 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
969 if (phdr->p_paddr != 0)
970 break;
971 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
972 ++nload;
973 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
974 return TRUE;
975
976 phdr = elf_tdata (abfd)->phdr;
977 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
978 {
979 if (((phdr->p_type == PT_LOAD
980 && (hdr->sh_flags & SHF_TLS) == 0)
981 || phdr->p_type == PT_TLS)
982 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
983 {
984 if ((flags & SEC_LOAD) == 0)
985 newsect->lma = (phdr->p_paddr
986 + hdr->sh_addr - phdr->p_vaddr);
987 else
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_offset - phdr->p_offset);
997
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr->sh_addr >= phdr->p_vaddr
1003 && (hdr->sh_addr + hdr->sh_size
1004 <= phdr->p_vaddr + phdr->p_memsz))
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags & SEC_DEBUGGING)
1013 && ((name[1] == 'd' && name[6] == '_')
1014 || (name[1] == 'z' && name[7] == '_')))
1015 {
1016 enum { nothing, compress, decompress } action = nothing;
1017 char *new_name;
1018
1019 if (bfd_is_section_compressed (abfd, newsect))
1020 {
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd->flags & BFD_DECOMPRESS))
1023 action = decompress;
1024 }
1025 else
1026 {
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd->flags & BFD_COMPRESS))
1029 action = compress;
1030 }
1031
1032 new_name = NULL;
1033 switch (action)
1034 {
1035 case nothing:
1036 break;
1037 case compress:
1038 if (!bfd_init_section_compress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize commpress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] != 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len + 2);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 new_name[1] = 'z';
1054 memcpy (new_name + 2, name + 1, len);
1055 }
1056 break;
1057 case decompress:
1058 if (!bfd_init_section_decompress_status (abfd, newsect))
1059 {
1060 (*_bfd_error_handler)
1061 (_("%B: unable to initialize decommpress status for section %s"),
1062 abfd, name);
1063 return FALSE;
1064 }
1065 if (name[1] == 'z')
1066 {
1067 unsigned int len = strlen (name);
1068
1069 new_name = bfd_alloc (abfd, len);
1070 if (new_name == NULL)
1071 return FALSE;
1072 new_name[0] = '.';
1073 memcpy (new_name + 1, name + 2, len - 1);
1074 }
1075 break;
1076 }
1077 if (new_name != NULL)
1078 bfd_rename_section (abfd, newsect, new_name);
1079 }
1080
1081 return TRUE;
1082 }
1083
1084 const char *const bfd_elf_section_type_names[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088 };
1089
1090 /* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1099
1100 bfd_reloc_status_type
1101 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1102 arelent *reloc_entry,
1103 asymbol *symbol,
1104 void *data ATTRIBUTE_UNUSED,
1105 asection *input_section,
1106 bfd *output_bfd,
1107 char **error_message ATTRIBUTE_UNUSED)
1108 {
1109 if (output_bfd != NULL
1110 && (symbol->flags & BSF_SECTION_SYM) == 0
1111 && (! reloc_entry->howto->partial_inplace
1112 || reloc_entry->addend == 0))
1113 {
1114 reloc_entry->address += input_section->output_offset;
1115 return bfd_reloc_ok;
1116 }
1117
1118 return bfd_reloc_continue;
1119 }
1120 \f
1121 /* Copy the program header and other data from one object module to
1122 another. */
1123
1124 bfd_boolean
1125 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1126 {
1127 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1129 return TRUE;
1130
1131 BFD_ASSERT (!elf_flags_init (obfd)
1132 || (elf_elfheader (obfd)->e_flags
1133 == elf_elfheader (ibfd)->e_flags));
1134
1135 elf_gp (obfd) = elf_gp (ibfd);
1136 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1137 elf_flags_init (obfd) = TRUE;
1138
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1141 return TRUE;
1142 }
1143
1144 static const char *
1145 get_segment_type (unsigned int p_type)
1146 {
1147 const char *pt;
1148 switch (p_type)
1149 {
1150 case PT_NULL: pt = "NULL"; break;
1151 case PT_LOAD: pt = "LOAD"; break;
1152 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1153 case PT_INTERP: pt = "INTERP"; break;
1154 case PT_NOTE: pt = "NOTE"; break;
1155 case PT_SHLIB: pt = "SHLIB"; break;
1156 case PT_PHDR: pt = "PHDR"; break;
1157 case PT_TLS: pt = "TLS"; break;
1158 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1159 case PT_GNU_STACK: pt = "STACK"; break;
1160 case PT_GNU_RELRO: pt = "RELRO"; break;
1161 default: pt = NULL; break;
1162 }
1163 return pt;
1164 }
1165
1166 /* Print out the program headers. */
1167
1168 bfd_boolean
1169 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1170 {
1171 FILE *f = (FILE *) farg;
1172 Elf_Internal_Phdr *p;
1173 asection *s;
1174 bfd_byte *dynbuf = NULL;
1175
1176 p = elf_tdata (abfd)->phdr;
1177 if (p != NULL)
1178 {
1179 unsigned int i, c;
1180
1181 fprintf (f, _("\nProgram Header:\n"));
1182 c = elf_elfheader (abfd)->e_phnum;
1183 for (i = 0; i < c; i++, p++)
1184 {
1185 const char *pt = get_segment_type (p->p_type);
1186 char buf[20];
1187
1188 if (pt == NULL)
1189 {
1190 sprintf (buf, "0x%lx", p->p_type);
1191 pt = buf;
1192 }
1193 fprintf (f, "%8s off 0x", pt);
1194 bfd_fprintf_vma (abfd, f, p->p_offset);
1195 fprintf (f, " vaddr 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1197 fprintf (f, " paddr 0x");
1198 bfd_fprintf_vma (abfd, f, p->p_paddr);
1199 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1200 fprintf (f, " filesz 0x");
1201 bfd_fprintf_vma (abfd, f, p->p_filesz);
1202 fprintf (f, " memsz 0x");
1203 bfd_fprintf_vma (abfd, f, p->p_memsz);
1204 fprintf (f, " flags %c%c%c",
1205 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1206 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1207 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1208 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1209 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1210 fprintf (f, "\n");
1211 }
1212 }
1213
1214 s = bfd_get_section_by_name (abfd, ".dynamic");
1215 if (s != NULL)
1216 {
1217 unsigned int elfsec;
1218 unsigned long shlink;
1219 bfd_byte *extdyn, *extdynend;
1220 size_t extdynsize;
1221 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1222
1223 fprintf (f, _("\nDynamic Section:\n"));
1224
1225 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1226 goto error_return;
1227
1228 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1229 if (elfsec == SHN_BAD)
1230 goto error_return;
1231 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1232
1233 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1234 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1235
1236 extdyn = dynbuf;
1237 extdynend = extdyn + s->size;
1238 for (; extdyn < extdynend; extdyn += extdynsize)
1239 {
1240 Elf_Internal_Dyn dyn;
1241 const char *name = "";
1242 char ab[20];
1243 bfd_boolean stringp;
1244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1245
1246 (*swap_dyn_in) (abfd, extdyn, &dyn);
1247
1248 if (dyn.d_tag == DT_NULL)
1249 break;
1250
1251 stringp = FALSE;
1252 switch (dyn.d_tag)
1253 {
1254 default:
1255 if (bed->elf_backend_get_target_dtag)
1256 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1257
1258 if (!strcmp (name, ""))
1259 {
1260 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1261 name = ab;
1262 }
1263 break;
1264
1265 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1266 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1267 case DT_PLTGOT: name = "PLTGOT"; break;
1268 case DT_HASH: name = "HASH"; break;
1269 case DT_STRTAB: name = "STRTAB"; break;
1270 case DT_SYMTAB: name = "SYMTAB"; break;
1271 case DT_RELA: name = "RELA"; break;
1272 case DT_RELASZ: name = "RELASZ"; break;
1273 case DT_RELAENT: name = "RELAENT"; break;
1274 case DT_STRSZ: name = "STRSZ"; break;
1275 case DT_SYMENT: name = "SYMENT"; break;
1276 case DT_INIT: name = "INIT"; break;
1277 case DT_FINI: name = "FINI"; break;
1278 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1279 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1280 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1281 case DT_REL: name = "REL"; break;
1282 case DT_RELSZ: name = "RELSZ"; break;
1283 case DT_RELENT: name = "RELENT"; break;
1284 case DT_PLTREL: name = "PLTREL"; break;
1285 case DT_DEBUG: name = "DEBUG"; break;
1286 case DT_TEXTREL: name = "TEXTREL"; break;
1287 case DT_JMPREL: name = "JMPREL"; break;
1288 case DT_BIND_NOW: name = "BIND_NOW"; break;
1289 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1294 case DT_FLAGS: name = "FLAGS"; break;
1295 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM: name = "CHECKSUM"; break;
1298 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1299 case DT_MOVEENT: name = "MOVEENT"; break;
1300 case DT_MOVESZ: name = "MOVESZ"; break;
1301 case DT_FEATURE: name = "FEATURE"; break;
1302 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1303 case DT_SYMINSZ: name = "SYMINSZ"; break;
1304 case DT_SYMINENT: name = "SYMINENT"; break;
1305 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1306 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1307 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1308 case DT_PLTPAD: name = "PLTPAD"; break;
1309 case DT_MOVETAB: name = "MOVETAB"; break;
1310 case DT_SYMINFO: name = "SYMINFO"; break;
1311 case DT_RELACOUNT: name = "RELACOUNT"; break;
1312 case DT_RELCOUNT: name = "RELCOUNT"; break;
1313 case DT_FLAGS_1: name = "FLAGS_1"; break;
1314 case DT_VERSYM: name = "VERSYM"; break;
1315 case DT_VERDEF: name = "VERDEF"; break;
1316 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1317 case DT_VERNEED: name = "VERNEED"; break;
1318 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1319 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1320 case DT_USED: name = "USED"; break;
1321 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1322 case DT_GNU_HASH: name = "GNU_HASH"; break;
1323 }
1324
1325 fprintf (f, " %-20s ", name);
1326 if (! stringp)
1327 {
1328 fprintf (f, "0x");
1329 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1330 }
1331 else
1332 {
1333 const char *string;
1334 unsigned int tagv = dyn.d_un.d_val;
1335
1336 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1337 if (string == NULL)
1338 goto error_return;
1339 fprintf (f, "%s", string);
1340 }
1341 fprintf (f, "\n");
1342 }
1343
1344 free (dynbuf);
1345 dynbuf = NULL;
1346 }
1347
1348 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1349 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1350 {
1351 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1352 return FALSE;
1353 }
1354
1355 if (elf_dynverdef (abfd) != 0)
1356 {
1357 Elf_Internal_Verdef *t;
1358
1359 fprintf (f, _("\nVersion definitions:\n"));
1360 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1361 {
1362 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1363 t->vd_flags, t->vd_hash,
1364 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1365 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1366 {
1367 Elf_Internal_Verdaux *a;
1368
1369 fprintf (f, "\t");
1370 for (a = t->vd_auxptr->vda_nextptr;
1371 a != NULL;
1372 a = a->vda_nextptr)
1373 fprintf (f, "%s ",
1374 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1375 fprintf (f, "\n");
1376 }
1377 }
1378 }
1379
1380 if (elf_dynverref (abfd) != 0)
1381 {
1382 Elf_Internal_Verneed *t;
1383
1384 fprintf (f, _("\nVersion References:\n"));
1385 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1386 {
1387 Elf_Internal_Vernaux *a;
1388
1389 fprintf (f, _(" required from %s:\n"),
1390 t->vn_filename ? t->vn_filename : "<corrupt>");
1391 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1392 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1393 a->vna_flags, a->vna_other,
1394 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1395 }
1396 }
1397
1398 return TRUE;
1399
1400 error_return:
1401 if (dynbuf != NULL)
1402 free (dynbuf);
1403 return FALSE;
1404 }
1405
1406 /* Display ELF-specific fields of a symbol. */
1407
1408 void
1409 bfd_elf_print_symbol (bfd *abfd,
1410 void *filep,
1411 asymbol *symbol,
1412 bfd_print_symbol_type how)
1413 {
1414 FILE *file = (FILE *) filep;
1415 switch (how)
1416 {
1417 case bfd_print_symbol_name:
1418 fprintf (file, "%s", symbol->name);
1419 break;
1420 case bfd_print_symbol_more:
1421 fprintf (file, "elf ");
1422 bfd_fprintf_vma (abfd, file, symbol->value);
1423 fprintf (file, " %lx", (unsigned long) symbol->flags);
1424 break;
1425 case bfd_print_symbol_all:
1426 {
1427 const char *section_name;
1428 const char *name = NULL;
1429 const struct elf_backend_data *bed;
1430 unsigned char st_other;
1431 bfd_vma val;
1432
1433 section_name = symbol->section ? symbol->section->name : "(*none*)";
1434
1435 bed = get_elf_backend_data (abfd);
1436 if (bed->elf_backend_print_symbol_all)
1437 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1438
1439 if (name == NULL)
1440 {
1441 name = symbol->name;
1442 bfd_print_symbol_vandf (abfd, file, symbol);
1443 }
1444
1445 fprintf (file, " %s\t", section_name);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol->section && bfd_is_com_section (symbol->section))
1451 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1452 else
1453 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1454 bfd_fprintf_vma (abfd, file, val);
1455
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd)->dynversym_section != 0
1458 && (elf_tdata (abfd)->dynverdef_section != 0
1459 || elf_tdata (abfd)->dynverref_section != 0))
1460 {
1461 unsigned int vernum;
1462 const char *version_string;
1463
1464 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1465
1466 if (vernum == 0)
1467 version_string = "";
1468 else if (vernum == 1)
1469 version_string = "Base";
1470 else if (vernum <= elf_tdata (abfd)->cverdefs)
1471 version_string =
1472 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1473 else
1474 {
1475 Elf_Internal_Verneed *t;
1476
1477 version_string = "";
1478 for (t = elf_tdata (abfd)->verref;
1479 t != NULL;
1480 t = t->vn_nextref)
1481 {
1482 Elf_Internal_Vernaux *a;
1483
1484 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1485 {
1486 if (a->vna_other == vernum)
1487 {
1488 version_string = a->vna_nodename;
1489 break;
1490 }
1491 }
1492 }
1493 }
1494
1495 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1496 fprintf (file, " %-11s", version_string);
1497 else
1498 {
1499 int i;
1500
1501 fprintf (file, " (%s)", version_string);
1502 for (i = 10 - strlen (version_string); i > 0; --i)
1503 putc (' ', file);
1504 }
1505 }
1506
1507 /* If the st_other field is not zero, print it. */
1508 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1509
1510 switch (st_other)
1511 {
1512 case 0: break;
1513 case STV_INTERNAL: fprintf (file, " .internal"); break;
1514 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1515 case STV_PROTECTED: fprintf (file, " .protected"); break;
1516 default:
1517 /* Some other non-defined flags are also present, so print
1518 everything hex. */
1519 fprintf (file, " 0x%02x", (unsigned int) st_other);
1520 }
1521
1522 fprintf (file, " %s", name);
1523 }
1524 break;
1525 }
1526 }
1527
1528 /* Allocate an ELF string table--force the first byte to be zero. */
1529
1530 struct bfd_strtab_hash *
1531 _bfd_elf_stringtab_init (void)
1532 {
1533 struct bfd_strtab_hash *ret;
1534
1535 ret = _bfd_stringtab_init ();
1536 if (ret != NULL)
1537 {
1538 bfd_size_type loc;
1539
1540 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1541 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1542 if (loc == (bfd_size_type) -1)
1543 {
1544 _bfd_stringtab_free (ret);
1545 ret = NULL;
1546 }
1547 }
1548 return ret;
1549 }
1550 \f
1551 /* ELF .o/exec file reading */
1552
1553 /* Create a new bfd section from an ELF section header. */
1554
1555 bfd_boolean
1556 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1557 {
1558 Elf_Internal_Shdr *hdr;
1559 Elf_Internal_Ehdr *ehdr;
1560 const struct elf_backend_data *bed;
1561 const char *name;
1562
1563 if (shindex >= elf_numsections (abfd))
1564 return FALSE;
1565
1566 hdr = elf_elfsections (abfd)[shindex];
1567 ehdr = elf_elfheader (abfd);
1568 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1569 hdr->sh_name);
1570 if (name == NULL)
1571 return FALSE;
1572
1573 bed = get_elf_backend_data (abfd);
1574 switch (hdr->sh_type)
1575 {
1576 case SHT_NULL:
1577 /* Inactive section. Throw it away. */
1578 return TRUE;
1579
1580 case SHT_PROGBITS: /* Normal section with contents. */
1581 case SHT_NOBITS: /* .bss section. */
1582 case SHT_HASH: /* .hash section. */
1583 case SHT_NOTE: /* .note section. */
1584 case SHT_INIT_ARRAY: /* .init_array section. */
1585 case SHT_FINI_ARRAY: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1590
1591 case SHT_DYNAMIC: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1593 return FALSE;
1594 if (hdr->sh_link > elf_numsections (abfd))
1595 {
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd))
1599 {
1600 case bfd_arch_i386:
1601 case bfd_arch_sparc:
1602 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1603 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1604 break;
1605 /* Otherwise fall through. */
1606 default:
1607 return FALSE;
1608 }
1609 }
1610 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1611 return FALSE;
1612 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1613 {
1614 Elf_Internal_Shdr *dynsymhdr;
1615
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd) != 0)
1620 {
1621 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1622 hdr->sh_link = dynsymhdr->sh_link;
1623 }
1624 else
1625 {
1626 unsigned int i, num_sec;
1627
1628 num_sec = elf_numsections (abfd);
1629 for (i = 1; i < num_sec; i++)
1630 {
1631 dynsymhdr = elf_elfsections (abfd)[i];
1632 if (dynsymhdr->sh_type == SHT_DYNSYM)
1633 {
1634 hdr->sh_link = dynsymhdr->sh_link;
1635 break;
1636 }
1637 }
1638 }
1639 }
1640 break;
1641
1642 case SHT_SYMTAB: /* A symbol table */
1643 if (elf_onesymtab (abfd) == shindex)
1644 return TRUE;
1645
1646 if (hdr->sh_entsize != bed->s->sizeof_sym)
1647 return FALSE;
1648 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1649 {
1650 if (hdr->sh_size != 0)
1651 return FALSE;
1652 /* Some assemblers erroneously set sh_info to one with a
1653 zero sh_size. ld sees this as a global symbol count
1654 of (unsigned) -1. Fix it here. */
1655 hdr->sh_info = 0;
1656 return TRUE;
1657 }
1658 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1659 elf_onesymtab (abfd) = shindex;
1660 elf_tdata (abfd)->symtab_hdr = *hdr;
1661 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1662 abfd->flags |= HAS_SYMS;
1663
1664 /* Sometimes a shared object will map in the symbol table. If
1665 SHF_ALLOC is set, and this is a shared object, then we also
1666 treat this section as a BFD section. We can not base the
1667 decision purely on SHF_ALLOC, because that flag is sometimes
1668 set in a relocatable object file, which would confuse the
1669 linker. */
1670 if ((hdr->sh_flags & SHF_ALLOC) != 0
1671 && (abfd->flags & DYNAMIC) != 0
1672 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1673 shindex))
1674 return FALSE;
1675
1676 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1677 can't read symbols without that section loaded as well. It
1678 is most likely specified by the next section header. */
1679 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1680 {
1681 unsigned int i, num_sec;
1682
1683 num_sec = elf_numsections (abfd);
1684 for (i = shindex + 1; i < num_sec; i++)
1685 {
1686 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1687 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1688 && hdr2->sh_link == shindex)
1689 break;
1690 }
1691 if (i == num_sec)
1692 for (i = 1; i < shindex; i++)
1693 {
1694 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1695 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1696 && hdr2->sh_link == shindex)
1697 break;
1698 }
1699 if (i != shindex)
1700 return bfd_section_from_shdr (abfd, i);
1701 }
1702 return TRUE;
1703
1704 case SHT_DYNSYM: /* A dynamic symbol table */
1705 if (elf_dynsymtab (abfd) == shindex)
1706 return TRUE;
1707
1708 if (hdr->sh_entsize != bed->s->sizeof_sym)
1709 return FALSE;
1710 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1711 {
1712 if (hdr->sh_size != 0)
1713 return FALSE;
1714 /* Some linkers erroneously set sh_info to one with a
1715 zero sh_size. ld sees this as a global symbol count
1716 of (unsigned) -1. Fix it here. */
1717 hdr->sh_info = 0;
1718 return TRUE;
1719 }
1720 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1721 elf_dynsymtab (abfd) = shindex;
1722 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1723 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1724 abfd->flags |= HAS_SYMS;
1725
1726 /* Besides being a symbol table, we also treat this as a regular
1727 section, so that objcopy can handle it. */
1728 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1729
1730 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1731 if (elf_symtab_shndx (abfd) == shindex)
1732 return TRUE;
1733
1734 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1735 elf_symtab_shndx (abfd) = shindex;
1736 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1737 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1738 return TRUE;
1739
1740 case SHT_STRTAB: /* A string table */
1741 if (hdr->bfd_section != NULL)
1742 return TRUE;
1743 if (ehdr->e_shstrndx == shindex)
1744 {
1745 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1747 return TRUE;
1748 }
1749 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1750 {
1751 symtab_strtab:
1752 elf_tdata (abfd)->strtab_hdr = *hdr;
1753 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1754 return TRUE;
1755 }
1756 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1757 {
1758 dynsymtab_strtab:
1759 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1760 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1761 elf_elfsections (abfd)[shindex] = hdr;
1762 /* We also treat this as a regular section, so that objcopy
1763 can handle it. */
1764 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1765 shindex);
1766 }
1767
1768 /* If the string table isn't one of the above, then treat it as a
1769 regular section. We need to scan all the headers to be sure,
1770 just in case this strtab section appeared before the above. */
1771 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1772 {
1773 unsigned int i, num_sec;
1774
1775 num_sec = elf_numsections (abfd);
1776 for (i = 1; i < num_sec; i++)
1777 {
1778 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1779 if (hdr2->sh_link == shindex)
1780 {
1781 /* Prevent endless recursion on broken objects. */
1782 if (i == shindex)
1783 return FALSE;
1784 if (! bfd_section_from_shdr (abfd, i))
1785 return FALSE;
1786 if (elf_onesymtab (abfd) == i)
1787 goto symtab_strtab;
1788 if (elf_dynsymtab (abfd) == i)
1789 goto dynsymtab_strtab;
1790 }
1791 }
1792 }
1793 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1794
1795 case SHT_REL:
1796 case SHT_RELA:
1797 /* *These* do a lot of work -- but build no sections! */
1798 {
1799 asection *target_sect;
1800 Elf_Internal_Shdr *hdr2, **p_hdr;
1801 unsigned int num_sec = elf_numsections (abfd);
1802 struct bfd_elf_section_data *esdt;
1803 bfd_size_type amt;
1804
1805 if (hdr->sh_entsize
1806 != (bfd_size_type) (hdr->sh_type == SHT_REL
1807 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1808 return FALSE;
1809
1810 /* Check for a bogus link to avoid crashing. */
1811 if (hdr->sh_link >= num_sec)
1812 {
1813 ((*_bfd_error_handler)
1814 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1815 abfd, hdr->sh_link, name, shindex));
1816 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1817 shindex);
1818 }
1819
1820 /* For some incomprehensible reason Oracle distributes
1821 libraries for Solaris in which some of the objects have
1822 bogus sh_link fields. It would be nice if we could just
1823 reject them, but, unfortunately, some people need to use
1824 them. We scan through the section headers; if we find only
1825 one suitable symbol table, we clobber the sh_link to point
1826 to it. I hope this doesn't break anything.
1827
1828 Don't do it on executable nor shared library. */
1829 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1830 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1831 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1832 {
1833 unsigned int scan;
1834 int found;
1835
1836 found = 0;
1837 for (scan = 1; scan < num_sec; scan++)
1838 {
1839 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1840 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1841 {
1842 if (found != 0)
1843 {
1844 found = 0;
1845 break;
1846 }
1847 found = scan;
1848 }
1849 }
1850 if (found != 0)
1851 hdr->sh_link = found;
1852 }
1853
1854 /* Get the symbol table. */
1855 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1856 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1857 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1858 return FALSE;
1859
1860 /* If this reloc section does not use the main symbol table we
1861 don't treat it as a reloc section. BFD can't adequately
1862 represent such a section, so at least for now, we don't
1863 try. We just present it as a normal section. We also
1864 can't use it as a reloc section if it points to the null
1865 section, an invalid section, another reloc section, or its
1866 sh_link points to the null section. */
1867 if (hdr->sh_link != elf_onesymtab (abfd)
1868 || hdr->sh_link == SHN_UNDEF
1869 || hdr->sh_info == SHN_UNDEF
1870 || hdr->sh_info >= num_sec
1871 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1872 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1873 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1874 shindex);
1875
1876 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1877 return FALSE;
1878 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1879 if (target_sect == NULL)
1880 return FALSE;
1881
1882 esdt = elf_section_data (target_sect);
1883 if (hdr->sh_type == SHT_RELA)
1884 p_hdr = &esdt->rela.hdr;
1885 else
1886 p_hdr = &esdt->rel.hdr;
1887
1888 BFD_ASSERT (*p_hdr == NULL);
1889 amt = sizeof (*hdr2);
1890 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1891 if (hdr2 == NULL)
1892 return FALSE;
1893 *hdr2 = *hdr;
1894 *p_hdr = hdr2;
1895 elf_elfsections (abfd)[shindex] = hdr2;
1896 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1897 target_sect->flags |= SEC_RELOC;
1898 target_sect->relocation = NULL;
1899 target_sect->rel_filepos = hdr->sh_offset;
1900 /* In the section to which the relocations apply, mark whether
1901 its relocations are of the REL or RELA variety. */
1902 if (hdr->sh_size != 0)
1903 {
1904 if (hdr->sh_type == SHT_RELA)
1905 target_sect->use_rela_p = 1;
1906 }
1907 abfd->flags |= HAS_RELOC;
1908 return TRUE;
1909 }
1910
1911 case SHT_GNU_verdef:
1912 elf_dynverdef (abfd) = shindex;
1913 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915
1916 case SHT_GNU_versym:
1917 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1918 return FALSE;
1919 elf_dynversym (abfd) = shindex;
1920 elf_tdata (abfd)->dynversym_hdr = *hdr;
1921 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1922
1923 case SHT_GNU_verneed:
1924 elf_dynverref (abfd) = shindex;
1925 elf_tdata (abfd)->dynverref_hdr = *hdr;
1926 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1927
1928 case SHT_SHLIB:
1929 return TRUE;
1930
1931 case SHT_GROUP:
1932 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1933 return FALSE;
1934 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1935 return FALSE;
1936 if (hdr->contents != NULL)
1937 {
1938 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1939 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1940 asection *s;
1941
1942 if (idx->flags & GRP_COMDAT)
1943 hdr->bfd_section->flags
1944 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1945
1946 /* We try to keep the same section order as it comes in. */
1947 idx += n_elt;
1948 while (--n_elt != 0)
1949 {
1950 --idx;
1951
1952 if (idx->shdr != NULL
1953 && (s = idx->shdr->bfd_section) != NULL
1954 && elf_next_in_group (s) != NULL)
1955 {
1956 elf_next_in_group (hdr->bfd_section) = s;
1957 break;
1958 }
1959 }
1960 }
1961 break;
1962
1963 default:
1964 /* Possibly an attributes section. */
1965 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1966 || hdr->sh_type == bed->obj_attrs_section_type)
1967 {
1968 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1969 return FALSE;
1970 _bfd_elf_parse_attributes (abfd, hdr);
1971 return TRUE;
1972 }
1973
1974 /* Check for any processor-specific section types. */
1975 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1976 return TRUE;
1977
1978 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1979 {
1980 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1981 /* FIXME: How to properly handle allocated section reserved
1982 for applications? */
1983 (*_bfd_error_handler)
1984 (_("%B: don't know how to handle allocated, application "
1985 "specific section `%s' [0x%8x]"),
1986 abfd, name, hdr->sh_type);
1987 else
1988 /* Allow sections reserved for applications. */
1989 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1990 shindex);
1991 }
1992 else if (hdr->sh_type >= SHT_LOPROC
1993 && hdr->sh_type <= SHT_HIPROC)
1994 /* FIXME: We should handle this section. */
1995 (*_bfd_error_handler)
1996 (_("%B: don't know how to handle processor specific section "
1997 "`%s' [0x%8x]"),
1998 abfd, name, hdr->sh_type);
1999 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2000 {
2001 /* Unrecognised OS-specific sections. */
2002 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2003 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2004 required to correctly process the section and the file should
2005 be rejected with an error message. */
2006 (*_bfd_error_handler)
2007 (_("%B: don't know how to handle OS specific section "
2008 "`%s' [0x%8x]"),
2009 abfd, name, hdr->sh_type);
2010 else
2011 /* Otherwise it should be processed. */
2012 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2013 }
2014 else
2015 /* FIXME: We should handle this section. */
2016 (*_bfd_error_handler)
2017 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2018 abfd, name, hdr->sh_type);
2019
2020 return FALSE;
2021 }
2022
2023 return TRUE;
2024 }
2025
2026 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2027
2028 Elf_Internal_Sym *
2029 bfd_sym_from_r_symndx (struct sym_cache *cache,
2030 bfd *abfd,
2031 unsigned long r_symndx)
2032 {
2033 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2034
2035 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2036 {
2037 Elf_Internal_Shdr *symtab_hdr;
2038 unsigned char esym[sizeof (Elf64_External_Sym)];
2039 Elf_External_Sym_Shndx eshndx;
2040
2041 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2042 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2043 &cache->sym[ent], esym, &eshndx) == NULL)
2044 return NULL;
2045
2046 if (cache->abfd != abfd)
2047 {
2048 memset (cache->indx, -1, sizeof (cache->indx));
2049 cache->abfd = abfd;
2050 }
2051 cache->indx[ent] = r_symndx;
2052 }
2053
2054 return &cache->sym[ent];
2055 }
2056
2057 /* Given an ELF section number, retrieve the corresponding BFD
2058 section. */
2059
2060 asection *
2061 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2062 {
2063 if (sec_index >= elf_numsections (abfd))
2064 return NULL;
2065 return elf_elfsections (abfd)[sec_index]->bfd_section;
2066 }
2067
2068 static const struct bfd_elf_special_section special_sections_b[] =
2069 {
2070 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2071 { NULL, 0, 0, 0, 0 }
2072 };
2073
2074 static const struct bfd_elf_special_section special_sections_c[] =
2075 {
2076 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2077 { NULL, 0, 0, 0, 0 }
2078 };
2079
2080 static const struct bfd_elf_special_section special_sections_d[] =
2081 {
2082 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2083 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2084 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2086 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2087 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2088 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2089 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2090 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2091 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2092 { NULL, 0, 0, 0, 0 }
2093 };
2094
2095 static const struct bfd_elf_special_section special_sections_f[] =
2096 {
2097 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2098 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2099 { NULL, 0, 0, 0, 0 }
2100 };
2101
2102 static const struct bfd_elf_special_section special_sections_g[] =
2103 {
2104 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2105 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2106 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2107 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2108 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2109 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2110 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2111 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2112 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2113 { NULL, 0, 0, 0, 0 }
2114 };
2115
2116 static const struct bfd_elf_special_section special_sections_h[] =
2117 {
2118 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2119 { NULL, 0, 0, 0, 0 }
2120 };
2121
2122 static const struct bfd_elf_special_section special_sections_i[] =
2123 {
2124 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2125 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2126 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2127 { NULL, 0, 0, 0, 0 }
2128 };
2129
2130 static const struct bfd_elf_special_section special_sections_l[] =
2131 {
2132 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2133 { NULL, 0, 0, 0, 0 }
2134 };
2135
2136 static const struct bfd_elf_special_section special_sections_n[] =
2137 {
2138 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2139 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2140 { NULL, 0, 0, 0, 0 }
2141 };
2142
2143 static const struct bfd_elf_special_section special_sections_p[] =
2144 {
2145 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2146 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2147 { NULL, 0, 0, 0, 0 }
2148 };
2149
2150 static const struct bfd_elf_special_section special_sections_r[] =
2151 {
2152 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2153 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2154 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2155 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2156 { NULL, 0, 0, 0, 0 }
2157 };
2158
2159 static const struct bfd_elf_special_section special_sections_s[] =
2160 {
2161 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2162 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2163 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2164 /* See struct bfd_elf_special_section declaration for the semantics of
2165 this special case where .prefix_length != strlen (.prefix). */
2166 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2167 { NULL, 0, 0, 0, 0 }
2168 };
2169
2170 static const struct bfd_elf_special_section special_sections_t[] =
2171 {
2172 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2173 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2174 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2175 { NULL, 0, 0, 0, 0 }
2176 };
2177
2178 static const struct bfd_elf_special_section special_sections_z[] =
2179 {
2180 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2181 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2182 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2183 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2184 { NULL, 0, 0, 0, 0 }
2185 };
2186
2187 static const struct bfd_elf_special_section * const special_sections[] =
2188 {
2189 special_sections_b, /* 'b' */
2190 special_sections_c, /* 'c' */
2191 special_sections_d, /* 'd' */
2192 NULL, /* 'e' */
2193 special_sections_f, /* 'f' */
2194 special_sections_g, /* 'g' */
2195 special_sections_h, /* 'h' */
2196 special_sections_i, /* 'i' */
2197 NULL, /* 'j' */
2198 NULL, /* 'k' */
2199 special_sections_l, /* 'l' */
2200 NULL, /* 'm' */
2201 special_sections_n, /* 'n' */
2202 NULL, /* 'o' */
2203 special_sections_p, /* 'p' */
2204 NULL, /* 'q' */
2205 special_sections_r, /* 'r' */
2206 special_sections_s, /* 's' */
2207 special_sections_t, /* 't' */
2208 NULL, /* 'u' */
2209 NULL, /* 'v' */
2210 NULL, /* 'w' */
2211 NULL, /* 'x' */
2212 NULL, /* 'y' */
2213 special_sections_z /* 'z' */
2214 };
2215
2216 const struct bfd_elf_special_section *
2217 _bfd_elf_get_special_section (const char *name,
2218 const struct bfd_elf_special_section *spec,
2219 unsigned int rela)
2220 {
2221 int i;
2222 int len;
2223
2224 len = strlen (name);
2225
2226 for (i = 0; spec[i].prefix != NULL; i++)
2227 {
2228 int suffix_len;
2229 int prefix_len = spec[i].prefix_length;
2230
2231 if (len < prefix_len)
2232 continue;
2233 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2234 continue;
2235
2236 suffix_len = spec[i].suffix_length;
2237 if (suffix_len <= 0)
2238 {
2239 if (name[prefix_len] != 0)
2240 {
2241 if (suffix_len == 0)
2242 continue;
2243 if (name[prefix_len] != '.'
2244 && (suffix_len == -2
2245 || (rela && spec[i].type == SHT_REL)))
2246 continue;
2247 }
2248 }
2249 else
2250 {
2251 if (len < prefix_len + suffix_len)
2252 continue;
2253 if (memcmp (name + len - suffix_len,
2254 spec[i].prefix + prefix_len,
2255 suffix_len) != 0)
2256 continue;
2257 }
2258 return &spec[i];
2259 }
2260
2261 return NULL;
2262 }
2263
2264 const struct bfd_elf_special_section *
2265 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2266 {
2267 int i;
2268 const struct bfd_elf_special_section *spec;
2269 const struct elf_backend_data *bed;
2270
2271 /* See if this is one of the special sections. */
2272 if (sec->name == NULL)
2273 return NULL;
2274
2275 bed = get_elf_backend_data (abfd);
2276 spec = bed->special_sections;
2277 if (spec)
2278 {
2279 spec = _bfd_elf_get_special_section (sec->name,
2280 bed->special_sections,
2281 sec->use_rela_p);
2282 if (spec != NULL)
2283 return spec;
2284 }
2285
2286 if (sec->name[0] != '.')
2287 return NULL;
2288
2289 i = sec->name[1] - 'b';
2290 if (i < 0 || i > 'z' - 'b')
2291 return NULL;
2292
2293 spec = special_sections[i];
2294
2295 if (spec == NULL)
2296 return NULL;
2297
2298 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2299 }
2300
2301 bfd_boolean
2302 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2303 {
2304 struct bfd_elf_section_data *sdata;
2305 const struct elf_backend_data *bed;
2306 const struct bfd_elf_special_section *ssect;
2307
2308 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2309 if (sdata == NULL)
2310 {
2311 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2312 sizeof (*sdata));
2313 if (sdata == NULL)
2314 return FALSE;
2315 sec->used_by_bfd = sdata;
2316 }
2317
2318 /* Indicate whether or not this section should use RELA relocations. */
2319 bed = get_elf_backend_data (abfd);
2320 sec->use_rela_p = bed->default_use_rela_p;
2321
2322 /* When we read a file, we don't need to set ELF section type and
2323 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2324 anyway. We will set ELF section type and flags for all linker
2325 created sections. If user specifies BFD section flags, we will
2326 set ELF section type and flags based on BFD section flags in
2327 elf_fake_sections. Special handling for .init_array/.fini_array
2328 output sections since they may contain .ctors/.dtors input
2329 sections. We don't want _bfd_elf_init_private_section_data to
2330 copy ELF section type from .ctors/.dtors input sections. */
2331 if (abfd->direction != read_direction
2332 || (sec->flags & SEC_LINKER_CREATED) != 0)
2333 {
2334 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2335 if (ssect != NULL
2336 && (!sec->flags
2337 || (sec->flags & SEC_LINKER_CREATED) != 0
2338 || ssect->type == SHT_INIT_ARRAY
2339 || ssect->type == SHT_FINI_ARRAY))
2340 {
2341 elf_section_type (sec) = ssect->type;
2342 elf_section_flags (sec) = ssect->attr;
2343 }
2344 }
2345
2346 return _bfd_generic_new_section_hook (abfd, sec);
2347 }
2348
2349 /* Create a new bfd section from an ELF program header.
2350
2351 Since program segments have no names, we generate a synthetic name
2352 of the form segment<NUM>, where NUM is generally the index in the
2353 program header table. For segments that are split (see below) we
2354 generate the names segment<NUM>a and segment<NUM>b.
2355
2356 Note that some program segments may have a file size that is different than
2357 (less than) the memory size. All this means is that at execution the
2358 system must allocate the amount of memory specified by the memory size,
2359 but only initialize it with the first "file size" bytes read from the
2360 file. This would occur for example, with program segments consisting
2361 of combined data+bss.
2362
2363 To handle the above situation, this routine generates TWO bfd sections
2364 for the single program segment. The first has the length specified by
2365 the file size of the segment, and the second has the length specified
2366 by the difference between the two sizes. In effect, the segment is split
2367 into its initialized and uninitialized parts.
2368
2369 */
2370
2371 bfd_boolean
2372 _bfd_elf_make_section_from_phdr (bfd *abfd,
2373 Elf_Internal_Phdr *hdr,
2374 int hdr_index,
2375 const char *type_name)
2376 {
2377 asection *newsect;
2378 char *name;
2379 char namebuf[64];
2380 size_t len;
2381 int split;
2382
2383 split = ((hdr->p_memsz > 0)
2384 && (hdr->p_filesz > 0)
2385 && (hdr->p_memsz > hdr->p_filesz));
2386
2387 if (hdr->p_filesz > 0)
2388 {
2389 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2390 len = strlen (namebuf) + 1;
2391 name = (char *) bfd_alloc (abfd, len);
2392 if (!name)
2393 return FALSE;
2394 memcpy (name, namebuf, len);
2395 newsect = bfd_make_section (abfd, name);
2396 if (newsect == NULL)
2397 return FALSE;
2398 newsect->vma = hdr->p_vaddr;
2399 newsect->lma = hdr->p_paddr;
2400 newsect->size = hdr->p_filesz;
2401 newsect->filepos = hdr->p_offset;
2402 newsect->flags |= SEC_HAS_CONTENTS;
2403 newsect->alignment_power = bfd_log2 (hdr->p_align);
2404 if (hdr->p_type == PT_LOAD)
2405 {
2406 newsect->flags |= SEC_ALLOC;
2407 newsect->flags |= SEC_LOAD;
2408 if (hdr->p_flags & PF_X)
2409 {
2410 /* FIXME: all we known is that it has execute PERMISSION,
2411 may be data. */
2412 newsect->flags |= SEC_CODE;
2413 }
2414 }
2415 if (!(hdr->p_flags & PF_W))
2416 {
2417 newsect->flags |= SEC_READONLY;
2418 }
2419 }
2420
2421 if (hdr->p_memsz > hdr->p_filesz)
2422 {
2423 bfd_vma align;
2424
2425 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2426 len = strlen (namebuf) + 1;
2427 name = (char *) bfd_alloc (abfd, len);
2428 if (!name)
2429 return FALSE;
2430 memcpy (name, namebuf, len);
2431 newsect = bfd_make_section (abfd, name);
2432 if (newsect == NULL)
2433 return FALSE;
2434 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2435 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2436 newsect->size = hdr->p_memsz - hdr->p_filesz;
2437 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2438 align = newsect->vma & -newsect->vma;
2439 if (align == 0 || align > hdr->p_align)
2440 align = hdr->p_align;
2441 newsect->alignment_power = bfd_log2 (align);
2442 if (hdr->p_type == PT_LOAD)
2443 {
2444 /* Hack for gdb. Segments that have not been modified do
2445 not have their contents written to a core file, on the
2446 assumption that a debugger can find the contents in the
2447 executable. We flag this case by setting the fake
2448 section size to zero. Note that "real" bss sections will
2449 always have their contents dumped to the core file. */
2450 if (bfd_get_format (abfd) == bfd_core)
2451 newsect->size = 0;
2452 newsect->flags |= SEC_ALLOC;
2453 if (hdr->p_flags & PF_X)
2454 newsect->flags |= SEC_CODE;
2455 }
2456 if (!(hdr->p_flags & PF_W))
2457 newsect->flags |= SEC_READONLY;
2458 }
2459
2460 return TRUE;
2461 }
2462
2463 bfd_boolean
2464 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2465 {
2466 const struct elf_backend_data *bed;
2467
2468 switch (hdr->p_type)
2469 {
2470 case PT_NULL:
2471 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2472
2473 case PT_LOAD:
2474 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2475
2476 case PT_DYNAMIC:
2477 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2478
2479 case PT_INTERP:
2480 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2481
2482 case PT_NOTE:
2483 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2484 return FALSE;
2485 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2486 return FALSE;
2487 return TRUE;
2488
2489 case PT_SHLIB:
2490 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2491
2492 case PT_PHDR:
2493 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2494
2495 case PT_GNU_EH_FRAME:
2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2497 "eh_frame_hdr");
2498
2499 case PT_GNU_STACK:
2500 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2501
2502 case PT_GNU_RELRO:
2503 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2504
2505 default:
2506 /* Check for any processor-specific program segment types. */
2507 bed = get_elf_backend_data (abfd);
2508 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2509 }
2510 }
2511
2512 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2513 REL or RELA. */
2514
2515 Elf_Internal_Shdr *
2516 _bfd_elf_single_rel_hdr (asection *sec)
2517 {
2518 if (elf_section_data (sec)->rel.hdr)
2519 {
2520 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2521 return elf_section_data (sec)->rel.hdr;
2522 }
2523 else
2524 return elf_section_data (sec)->rela.hdr;
2525 }
2526
2527 /* Allocate and initialize a section-header for a new reloc section,
2528 containing relocations against ASECT. It is stored in RELDATA. If
2529 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2530 relocations. */
2531
2532 bfd_boolean
2533 _bfd_elf_init_reloc_shdr (bfd *abfd,
2534 struct bfd_elf_section_reloc_data *reldata,
2535 asection *asect,
2536 bfd_boolean use_rela_p)
2537 {
2538 Elf_Internal_Shdr *rel_hdr;
2539 char *name;
2540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2541 bfd_size_type amt;
2542
2543 amt = sizeof (Elf_Internal_Shdr);
2544 BFD_ASSERT (reldata->hdr == NULL);
2545 rel_hdr = bfd_zalloc (abfd, amt);
2546 reldata->hdr = rel_hdr;
2547
2548 amt = sizeof ".rela" + strlen (asect->name);
2549 name = (char *) bfd_alloc (abfd, amt);
2550 if (name == NULL)
2551 return FALSE;
2552 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2553 rel_hdr->sh_name =
2554 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2555 FALSE);
2556 if (rel_hdr->sh_name == (unsigned int) -1)
2557 return FALSE;
2558 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2559 rel_hdr->sh_entsize = (use_rela_p
2560 ? bed->s->sizeof_rela
2561 : bed->s->sizeof_rel);
2562 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2563 rel_hdr->sh_flags = 0;
2564 rel_hdr->sh_addr = 0;
2565 rel_hdr->sh_size = 0;
2566 rel_hdr->sh_offset = 0;
2567
2568 return TRUE;
2569 }
2570
2571 /* Return the default section type based on the passed in section flags. */
2572
2573 int
2574 bfd_elf_get_default_section_type (flagword flags)
2575 {
2576 if ((flags & SEC_ALLOC) != 0
2577 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2578 return SHT_NOBITS;
2579 return SHT_PROGBITS;
2580 }
2581
2582 struct fake_section_arg
2583 {
2584 struct bfd_link_info *link_info;
2585 bfd_boolean failed;
2586 };
2587
2588 /* Set up an ELF internal section header for a section. */
2589
2590 static void
2591 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2592 {
2593 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2595 struct bfd_elf_section_data *esd = elf_section_data (asect);
2596 Elf_Internal_Shdr *this_hdr;
2597 unsigned int sh_type;
2598
2599 if (arg->failed)
2600 {
2601 /* We already failed; just get out of the bfd_map_over_sections
2602 loop. */
2603 return;
2604 }
2605
2606 this_hdr = &esd->this_hdr;
2607
2608 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2609 asect->name, FALSE);
2610 if (this_hdr->sh_name == (unsigned int) -1)
2611 {
2612 arg->failed = TRUE;
2613 return;
2614 }
2615
2616 /* Don't clear sh_flags. Assembler may set additional bits. */
2617
2618 if ((asect->flags & SEC_ALLOC) != 0
2619 || asect->user_set_vma)
2620 this_hdr->sh_addr = asect->vma;
2621 else
2622 this_hdr->sh_addr = 0;
2623
2624 this_hdr->sh_offset = 0;
2625 this_hdr->sh_size = asect->size;
2626 this_hdr->sh_link = 0;
2627 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2628 /* The sh_entsize and sh_info fields may have been set already by
2629 copy_private_section_data. */
2630
2631 this_hdr->bfd_section = asect;
2632 this_hdr->contents = NULL;
2633
2634 /* If the section type is unspecified, we set it based on
2635 asect->flags. */
2636 if ((asect->flags & SEC_GROUP) != 0)
2637 sh_type = SHT_GROUP;
2638 else
2639 sh_type = bfd_elf_get_default_section_type (asect->flags);
2640
2641 if (this_hdr->sh_type == SHT_NULL)
2642 this_hdr->sh_type = sh_type;
2643 else if (this_hdr->sh_type == SHT_NOBITS
2644 && sh_type == SHT_PROGBITS
2645 && (asect->flags & SEC_ALLOC) != 0)
2646 {
2647 /* Warn if we are changing a NOBITS section to PROGBITS, but
2648 allow the link to proceed. This can happen when users link
2649 non-bss input sections to bss output sections, or emit data
2650 to a bss output section via a linker script. */
2651 (*_bfd_error_handler)
2652 (_("warning: section `%A' type changed to PROGBITS"), asect);
2653 this_hdr->sh_type = sh_type;
2654 }
2655
2656 switch (this_hdr->sh_type)
2657 {
2658 default:
2659 break;
2660
2661 case SHT_STRTAB:
2662 case SHT_INIT_ARRAY:
2663 case SHT_FINI_ARRAY:
2664 case SHT_PREINIT_ARRAY:
2665 case SHT_NOTE:
2666 case SHT_NOBITS:
2667 case SHT_PROGBITS:
2668 break;
2669
2670 case SHT_HASH:
2671 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2672 break;
2673
2674 case SHT_DYNSYM:
2675 this_hdr->sh_entsize = bed->s->sizeof_sym;
2676 break;
2677
2678 case SHT_DYNAMIC:
2679 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2680 break;
2681
2682 case SHT_RELA:
2683 if (get_elf_backend_data (abfd)->may_use_rela_p)
2684 this_hdr->sh_entsize = bed->s->sizeof_rela;
2685 break;
2686
2687 case SHT_REL:
2688 if (get_elf_backend_data (abfd)->may_use_rel_p)
2689 this_hdr->sh_entsize = bed->s->sizeof_rel;
2690 break;
2691
2692 case SHT_GNU_versym:
2693 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2694 break;
2695
2696 case SHT_GNU_verdef:
2697 this_hdr->sh_entsize = 0;
2698 /* objcopy or strip will copy over sh_info, but may not set
2699 cverdefs. The linker will set cverdefs, but sh_info will be
2700 zero. */
2701 if (this_hdr->sh_info == 0)
2702 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2703 else
2704 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2705 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2706 break;
2707
2708 case SHT_GNU_verneed:
2709 this_hdr->sh_entsize = 0;
2710 /* objcopy or strip will copy over sh_info, but may not set
2711 cverrefs. The linker will set cverrefs, but sh_info will be
2712 zero. */
2713 if (this_hdr->sh_info == 0)
2714 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2715 else
2716 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2717 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2718 break;
2719
2720 case SHT_GROUP:
2721 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2722 break;
2723
2724 case SHT_GNU_HASH:
2725 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2726 break;
2727 }
2728
2729 if ((asect->flags & SEC_ALLOC) != 0)
2730 this_hdr->sh_flags |= SHF_ALLOC;
2731 if ((asect->flags & SEC_READONLY) == 0)
2732 this_hdr->sh_flags |= SHF_WRITE;
2733 if ((asect->flags & SEC_CODE) != 0)
2734 this_hdr->sh_flags |= SHF_EXECINSTR;
2735 if ((asect->flags & SEC_MERGE) != 0)
2736 {
2737 this_hdr->sh_flags |= SHF_MERGE;
2738 this_hdr->sh_entsize = asect->entsize;
2739 if ((asect->flags & SEC_STRINGS) != 0)
2740 this_hdr->sh_flags |= SHF_STRINGS;
2741 }
2742 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2743 this_hdr->sh_flags |= SHF_GROUP;
2744 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2745 {
2746 this_hdr->sh_flags |= SHF_TLS;
2747 if (asect->size == 0
2748 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2749 {
2750 struct bfd_link_order *o = asect->map_tail.link_order;
2751
2752 this_hdr->sh_size = 0;
2753 if (o != NULL)
2754 {
2755 this_hdr->sh_size = o->offset + o->size;
2756 if (this_hdr->sh_size != 0)
2757 this_hdr->sh_type = SHT_NOBITS;
2758 }
2759 }
2760 }
2761 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2762 this_hdr->sh_flags |= SHF_EXCLUDE;
2763
2764 /* If the section has relocs, set up a section header for the
2765 SHT_REL[A] section. If two relocation sections are required for
2766 this section, it is up to the processor-specific back-end to
2767 create the other. */
2768 if ((asect->flags & SEC_RELOC) != 0)
2769 {
2770 /* When doing a relocatable link, create both REL and RELA sections if
2771 needed. */
2772 if (arg->link_info
2773 /* Do the normal setup if we wouldn't create any sections here. */
2774 && esd->rel.count + esd->rela.count > 0
2775 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2776 {
2777 if (esd->rel.count && esd->rel.hdr == NULL
2778 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2779 {
2780 arg->failed = TRUE;
2781 return;
2782 }
2783 if (esd->rela.count && esd->rela.hdr == NULL
2784 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2785 {
2786 arg->failed = TRUE;
2787 return;
2788 }
2789 }
2790 else if (!_bfd_elf_init_reloc_shdr (abfd,
2791 (asect->use_rela_p
2792 ? &esd->rela : &esd->rel),
2793 asect,
2794 asect->use_rela_p))
2795 arg->failed = TRUE;
2796 }
2797
2798 /* Check for processor-specific section types. */
2799 sh_type = this_hdr->sh_type;
2800 if (bed->elf_backend_fake_sections
2801 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2802 arg->failed = TRUE;
2803
2804 if (sh_type == SHT_NOBITS && asect->size != 0)
2805 {
2806 /* Don't change the header type from NOBITS if we are being
2807 called for objcopy --only-keep-debug. */
2808 this_hdr->sh_type = sh_type;
2809 }
2810 }
2811
2812 /* Fill in the contents of a SHT_GROUP section. Called from
2813 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2814 when ELF targets use the generic linker, ld. Called for ld -r
2815 from bfd_elf_final_link. */
2816
2817 void
2818 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2819 {
2820 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2821 asection *elt, *first;
2822 unsigned char *loc;
2823 bfd_boolean gas;
2824
2825 /* Ignore linker created group section. See elfNN_ia64_object_p in
2826 elfxx-ia64.c. */
2827 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2828 || *failedptr)
2829 return;
2830
2831 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2832 {
2833 unsigned long symindx = 0;
2834
2835 /* elf_group_id will have been set up by objcopy and the
2836 generic linker. */
2837 if (elf_group_id (sec) != NULL)
2838 symindx = elf_group_id (sec)->udata.i;
2839
2840 if (symindx == 0)
2841 {
2842 /* If called from the assembler, swap_out_syms will have set up
2843 elf_section_syms. */
2844 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2845 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2846 }
2847 elf_section_data (sec)->this_hdr.sh_info = symindx;
2848 }
2849 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2850 {
2851 /* The ELF backend linker sets sh_info to -2 when the group
2852 signature symbol is global, and thus the index can't be
2853 set until all local symbols are output. */
2854 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2855 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2856 unsigned long symndx = sec_data->this_hdr.sh_info;
2857 unsigned long extsymoff = 0;
2858 struct elf_link_hash_entry *h;
2859
2860 if (!elf_bad_symtab (igroup->owner))
2861 {
2862 Elf_Internal_Shdr *symtab_hdr;
2863
2864 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2865 extsymoff = symtab_hdr->sh_info;
2866 }
2867 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2868 while (h->root.type == bfd_link_hash_indirect
2869 || h->root.type == bfd_link_hash_warning)
2870 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2871
2872 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2873 }
2874
2875 /* The contents won't be allocated for "ld -r" or objcopy. */
2876 gas = TRUE;
2877 if (sec->contents == NULL)
2878 {
2879 gas = FALSE;
2880 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2881
2882 /* Arrange for the section to be written out. */
2883 elf_section_data (sec)->this_hdr.contents = sec->contents;
2884 if (sec->contents == NULL)
2885 {
2886 *failedptr = TRUE;
2887 return;
2888 }
2889 }
2890
2891 loc = sec->contents + sec->size;
2892
2893 /* Get the pointer to the first section in the group that gas
2894 squirreled away here. objcopy arranges for this to be set to the
2895 start of the input section group. */
2896 first = elt = elf_next_in_group (sec);
2897
2898 /* First element is a flag word. Rest of section is elf section
2899 indices for all the sections of the group. Write them backwards
2900 just to keep the group in the same order as given in .section
2901 directives, not that it matters. */
2902 while (elt != NULL)
2903 {
2904 asection *s;
2905
2906 s = elt;
2907 if (!gas)
2908 s = s->output_section;
2909 if (s != NULL
2910 && !bfd_is_abs_section (s))
2911 {
2912 unsigned int idx = elf_section_data (s)->this_idx;
2913
2914 loc -= 4;
2915 H_PUT_32 (abfd, idx, loc);
2916 }
2917 elt = elf_next_in_group (elt);
2918 if (elt == first)
2919 break;
2920 }
2921
2922 if ((loc -= 4) != sec->contents)
2923 abort ();
2924
2925 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2926 }
2927
2928 /* Assign all ELF section numbers. The dummy first section is handled here
2929 too. The link/info pointers for the standard section types are filled
2930 in here too, while we're at it. */
2931
2932 static bfd_boolean
2933 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2934 {
2935 struct elf_obj_tdata *t = elf_tdata (abfd);
2936 asection *sec;
2937 unsigned int section_number, secn;
2938 Elf_Internal_Shdr **i_shdrp;
2939 struct bfd_elf_section_data *d;
2940 bfd_boolean need_symtab;
2941
2942 section_number = 1;
2943
2944 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2945
2946 /* SHT_GROUP sections are in relocatable files only. */
2947 if (link_info == NULL || link_info->relocatable)
2948 {
2949 /* Put SHT_GROUP sections first. */
2950 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2951 {
2952 d = elf_section_data (sec);
2953
2954 if (d->this_hdr.sh_type == SHT_GROUP)
2955 {
2956 if (sec->flags & SEC_LINKER_CREATED)
2957 {
2958 /* Remove the linker created SHT_GROUP sections. */
2959 bfd_section_list_remove (abfd, sec);
2960 abfd->section_count--;
2961 }
2962 else
2963 d->this_idx = section_number++;
2964 }
2965 }
2966 }
2967
2968 for (sec = abfd->sections; sec; sec = sec->next)
2969 {
2970 d = elf_section_data (sec);
2971
2972 if (d->this_hdr.sh_type != SHT_GROUP)
2973 d->this_idx = section_number++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2975 if (d->rel.hdr)
2976 {
2977 d->rel.idx = section_number++;
2978 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2979 }
2980 else
2981 d->rel.idx = 0;
2982
2983 if (d->rela.hdr)
2984 {
2985 d->rela.idx = section_number++;
2986 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2987 }
2988 else
2989 d->rela.idx = 0;
2990 }
2991
2992 t->shstrtab_section = section_number++;
2993 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2994 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2995
2996 need_symtab = (bfd_get_symcount (abfd) > 0
2997 || (link_info == NULL
2998 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2999 == HAS_RELOC)));
3000 if (need_symtab)
3001 {
3002 t->symtab_section = section_number++;
3003 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3004 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3005 {
3006 t->symtab_shndx_section = section_number++;
3007 t->symtab_shndx_hdr.sh_name
3008 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3009 ".symtab_shndx", FALSE);
3010 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3011 return FALSE;
3012 }
3013 t->strtab_section = section_number++;
3014 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3015 }
3016
3017 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3018 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3019
3020 elf_numsections (abfd) = section_number;
3021 elf_elfheader (abfd)->e_shnum = section_number;
3022
3023 /* Set up the list of section header pointers, in agreement with the
3024 indices. */
3025 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3026 sizeof (Elf_Internal_Shdr *));
3027 if (i_shdrp == NULL)
3028 return FALSE;
3029
3030 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3031 sizeof (Elf_Internal_Shdr));
3032 if (i_shdrp[0] == NULL)
3033 {
3034 bfd_release (abfd, i_shdrp);
3035 return FALSE;
3036 }
3037
3038 elf_elfsections (abfd) = i_shdrp;
3039
3040 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3041 if (need_symtab)
3042 {
3043 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3044 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3045 {
3046 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3047 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3048 }
3049 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3050 t->symtab_hdr.sh_link = t->strtab_section;
3051 }
3052
3053 for (sec = abfd->sections; sec; sec = sec->next)
3054 {
3055 asection *s;
3056 const char *name;
3057
3058 d = elf_section_data (sec);
3059
3060 i_shdrp[d->this_idx] = &d->this_hdr;
3061 if (d->rel.idx != 0)
3062 i_shdrp[d->rel.idx] = d->rel.hdr;
3063 if (d->rela.idx != 0)
3064 i_shdrp[d->rela.idx] = d->rela.hdr;
3065
3066 /* Fill in the sh_link and sh_info fields while we're at it. */
3067
3068 /* sh_link of a reloc section is the section index of the symbol
3069 table. sh_info is the section index of the section to which
3070 the relocation entries apply. */
3071 if (d->rel.idx != 0)
3072 {
3073 d->rel.hdr->sh_link = t->symtab_section;
3074 d->rel.hdr->sh_info = d->this_idx;
3075 }
3076 if (d->rela.idx != 0)
3077 {
3078 d->rela.hdr->sh_link = t->symtab_section;
3079 d->rela.hdr->sh_info = d->this_idx;
3080 }
3081
3082 /* We need to set up sh_link for SHF_LINK_ORDER. */
3083 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3084 {
3085 s = elf_linked_to_section (sec);
3086 if (s)
3087 {
3088 /* elf_linked_to_section points to the input section. */
3089 if (link_info != NULL)
3090 {
3091 /* Check discarded linkonce section. */
3092 if (discarded_section (s))
3093 {
3094 asection *kept;
3095 (*_bfd_error_handler)
3096 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3097 abfd, d->this_hdr.bfd_section,
3098 s, s->owner);
3099 /* Point to the kept section if it has the same
3100 size as the discarded one. */
3101 kept = _bfd_elf_check_kept_section (s, link_info);
3102 if (kept == NULL)
3103 {
3104 bfd_set_error (bfd_error_bad_value);
3105 return FALSE;
3106 }
3107 s = kept;
3108 }
3109
3110 s = s->output_section;
3111 BFD_ASSERT (s != NULL);
3112 }
3113 else
3114 {
3115 /* Handle objcopy. */
3116 if (s->output_section == NULL)
3117 {
3118 (*_bfd_error_handler)
3119 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3120 abfd, d->this_hdr.bfd_section, s, s->owner);
3121 bfd_set_error (bfd_error_bad_value);
3122 return FALSE;
3123 }
3124 s = s->output_section;
3125 }
3126 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3127 }
3128 else
3129 {
3130 /* PR 290:
3131 The Intel C compiler generates SHT_IA_64_UNWIND with
3132 SHF_LINK_ORDER. But it doesn't set the sh_link or
3133 sh_info fields. Hence we could get the situation
3134 where s is NULL. */
3135 const struct elf_backend_data *bed
3136 = get_elf_backend_data (abfd);
3137 if (bed->link_order_error_handler)
3138 bed->link_order_error_handler
3139 (_("%B: warning: sh_link not set for section `%A'"),
3140 abfd, sec);
3141 }
3142 }
3143
3144 switch (d->this_hdr.sh_type)
3145 {
3146 case SHT_REL:
3147 case SHT_RELA:
3148 /* A reloc section which we are treating as a normal BFD
3149 section. sh_link is the section index of the symbol
3150 table. sh_info is the section index of the section to
3151 which the relocation entries apply. We assume that an
3152 allocated reloc section uses the dynamic symbol table.
3153 FIXME: How can we be sure? */
3154 s = bfd_get_section_by_name (abfd, ".dynsym");
3155 if (s != NULL)
3156 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3157
3158 /* We look up the section the relocs apply to by name. */
3159 name = sec->name;
3160 if (d->this_hdr.sh_type == SHT_REL)
3161 name += 4;
3162 else
3163 name += 5;
3164 s = bfd_get_section_by_name (abfd, name);
3165 if (s != NULL)
3166 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3167 break;
3168
3169 case SHT_STRTAB:
3170 /* We assume that a section named .stab*str is a stabs
3171 string section. We look for a section with the same name
3172 but without the trailing ``str'', and set its sh_link
3173 field to point to this section. */
3174 if (CONST_STRNEQ (sec->name, ".stab")
3175 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3176 {
3177 size_t len;
3178 char *alc;
3179
3180 len = strlen (sec->name);
3181 alc = (char *) bfd_malloc (len - 2);
3182 if (alc == NULL)
3183 return FALSE;
3184 memcpy (alc, sec->name, len - 3);
3185 alc[len - 3] = '\0';
3186 s = bfd_get_section_by_name (abfd, alc);
3187 free (alc);
3188 if (s != NULL)
3189 {
3190 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3191
3192 /* This is a .stab section. */
3193 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3194 elf_section_data (s)->this_hdr.sh_entsize
3195 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3196 }
3197 }
3198 break;
3199
3200 case SHT_DYNAMIC:
3201 case SHT_DYNSYM:
3202 case SHT_GNU_verneed:
3203 case SHT_GNU_verdef:
3204 /* sh_link is the section header index of the string table
3205 used for the dynamic entries, or the symbol table, or the
3206 version strings. */
3207 s = bfd_get_section_by_name (abfd, ".dynstr");
3208 if (s != NULL)
3209 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3210 break;
3211
3212 case SHT_GNU_LIBLIST:
3213 /* sh_link is the section header index of the prelink library
3214 list used for the dynamic entries, or the symbol table, or
3215 the version strings. */
3216 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3217 ? ".dynstr" : ".gnu.libstr");
3218 if (s != NULL)
3219 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3220 break;
3221
3222 case SHT_HASH:
3223 case SHT_GNU_HASH:
3224 case SHT_GNU_versym:
3225 /* sh_link is the section header index of the symbol table
3226 this hash table or version table is for. */
3227 s = bfd_get_section_by_name (abfd, ".dynsym");
3228 if (s != NULL)
3229 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3230 break;
3231
3232 case SHT_GROUP:
3233 d->this_hdr.sh_link = t->symtab_section;
3234 }
3235 }
3236
3237 for (secn = 1; secn < section_number; ++secn)
3238 if (i_shdrp[secn] == NULL)
3239 i_shdrp[secn] = i_shdrp[0];
3240 else
3241 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3242 i_shdrp[secn]->sh_name);
3243 return TRUE;
3244 }
3245
3246 static bfd_boolean
3247 sym_is_global (bfd *abfd, asymbol *sym)
3248 {
3249 /* If the backend has a special mapping, use it. */
3250 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3251 if (bed->elf_backend_sym_is_global)
3252 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3253
3254 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3255 || bfd_is_und_section (bfd_get_section (sym))
3256 || bfd_is_com_section (bfd_get_section (sym)));
3257 }
3258
3259 /* Don't output section symbols for sections that are not going to be
3260 output, or that are duplicates. */
3261
3262 static bfd_boolean
3263 ignore_section_sym (bfd *abfd, asymbol *sym)
3264 {
3265 return ((sym->flags & BSF_SECTION_SYM) != 0
3266 && !(sym->section->owner == abfd
3267 || (sym->section->output_section->owner == abfd
3268 && sym->section->output_offset == 0)
3269 || bfd_is_abs_section (sym->section)));
3270 }
3271
3272 /* Map symbol from it's internal number to the external number, moving
3273 all local symbols to be at the head of the list. */
3274
3275 static bfd_boolean
3276 elf_map_symbols (bfd *abfd)
3277 {
3278 unsigned int symcount = bfd_get_symcount (abfd);
3279 asymbol **syms = bfd_get_outsymbols (abfd);
3280 asymbol **sect_syms;
3281 unsigned int num_locals = 0;
3282 unsigned int num_globals = 0;
3283 unsigned int num_locals2 = 0;
3284 unsigned int num_globals2 = 0;
3285 int max_index = 0;
3286 unsigned int idx;
3287 asection *asect;
3288 asymbol **new_syms;
3289
3290 #ifdef DEBUG
3291 fprintf (stderr, "elf_map_symbols\n");
3292 fflush (stderr);
3293 #endif
3294
3295 for (asect = abfd->sections; asect; asect = asect->next)
3296 {
3297 if (max_index < asect->index)
3298 max_index = asect->index;
3299 }
3300
3301 max_index++;
3302 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3303 if (sect_syms == NULL)
3304 return FALSE;
3305 elf_section_syms (abfd) = sect_syms;
3306 elf_num_section_syms (abfd) = max_index;
3307
3308 /* Init sect_syms entries for any section symbols we have already
3309 decided to output. */
3310 for (idx = 0; idx < symcount; idx++)
3311 {
3312 asymbol *sym = syms[idx];
3313
3314 if ((sym->flags & BSF_SECTION_SYM) != 0
3315 && sym->value == 0
3316 && !ignore_section_sym (abfd, sym)
3317 && !bfd_is_abs_section (sym->section))
3318 {
3319 asection *sec = sym->section;
3320
3321 if (sec->owner != abfd)
3322 sec = sec->output_section;
3323
3324 sect_syms[sec->index] = syms[idx];
3325 }
3326 }
3327
3328 /* Classify all of the symbols. */
3329 for (idx = 0; idx < symcount; idx++)
3330 {
3331 if (sym_is_global (abfd, syms[idx]))
3332 num_globals++;
3333 else if (!ignore_section_sym (abfd, syms[idx]))
3334 num_locals++;
3335 }
3336
3337 /* We will be adding a section symbol for each normal BFD section. Most
3338 sections will already have a section symbol in outsymbols, but
3339 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3340 at least in that case. */
3341 for (asect = abfd->sections; asect; asect = asect->next)
3342 {
3343 if (sect_syms[asect->index] == NULL)
3344 {
3345 if (!sym_is_global (abfd, asect->symbol))
3346 num_locals++;
3347 else
3348 num_globals++;
3349 }
3350 }
3351
3352 /* Now sort the symbols so the local symbols are first. */
3353 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3354 sizeof (asymbol *));
3355
3356 if (new_syms == NULL)
3357 return FALSE;
3358
3359 for (idx = 0; idx < symcount; idx++)
3360 {
3361 asymbol *sym = syms[idx];
3362 unsigned int i;
3363
3364 if (sym_is_global (abfd, sym))
3365 i = num_locals + num_globals2++;
3366 else if (!ignore_section_sym (abfd, sym))
3367 i = num_locals2++;
3368 else
3369 continue;
3370 new_syms[i] = sym;
3371 sym->udata.i = i + 1;
3372 }
3373 for (asect = abfd->sections; asect; asect = asect->next)
3374 {
3375 if (sect_syms[asect->index] == NULL)
3376 {
3377 asymbol *sym = asect->symbol;
3378 unsigned int i;
3379
3380 sect_syms[asect->index] = sym;
3381 if (!sym_is_global (abfd, sym))
3382 i = num_locals2++;
3383 else
3384 i = num_locals + num_globals2++;
3385 new_syms[i] = sym;
3386 sym->udata.i = i + 1;
3387 }
3388 }
3389
3390 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3391
3392 elf_num_locals (abfd) = num_locals;
3393 elf_num_globals (abfd) = num_globals;
3394 return TRUE;
3395 }
3396
3397 /* Align to the maximum file alignment that could be required for any
3398 ELF data structure. */
3399
3400 static inline file_ptr
3401 align_file_position (file_ptr off, int align)
3402 {
3403 return (off + align - 1) & ~(align - 1);
3404 }
3405
3406 /* Assign a file position to a section, optionally aligning to the
3407 required section alignment. */
3408
3409 file_ptr
3410 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3411 file_ptr offset,
3412 bfd_boolean align)
3413 {
3414 if (align && i_shdrp->sh_addralign > 1)
3415 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3416 i_shdrp->sh_offset = offset;
3417 if (i_shdrp->bfd_section != NULL)
3418 i_shdrp->bfd_section->filepos = offset;
3419 if (i_shdrp->sh_type != SHT_NOBITS)
3420 offset += i_shdrp->sh_size;
3421 return offset;
3422 }
3423
3424 /* Compute the file positions we are going to put the sections at, and
3425 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3426 is not NULL, this is being called by the ELF backend linker. */
3427
3428 bfd_boolean
3429 _bfd_elf_compute_section_file_positions (bfd *abfd,
3430 struct bfd_link_info *link_info)
3431 {
3432 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3433 struct fake_section_arg fsargs;
3434 bfd_boolean failed;
3435 struct bfd_strtab_hash *strtab = NULL;
3436 Elf_Internal_Shdr *shstrtab_hdr;
3437 bfd_boolean need_symtab;
3438
3439 if (abfd->output_has_begun)
3440 return TRUE;
3441
3442 /* Do any elf backend specific processing first. */
3443 if (bed->elf_backend_begin_write_processing)
3444 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3445
3446 if (! prep_headers (abfd))
3447 return FALSE;
3448
3449 /* Post process the headers if necessary. */
3450 if (bed->elf_backend_post_process_headers)
3451 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3452
3453 fsargs.failed = FALSE;
3454 fsargs.link_info = link_info;
3455 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3456 if (fsargs.failed)
3457 return FALSE;
3458
3459 if (!assign_section_numbers (abfd, link_info))
3460 return FALSE;
3461
3462 /* The backend linker builds symbol table information itself. */
3463 need_symtab = (link_info == NULL
3464 && (bfd_get_symcount (abfd) > 0
3465 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3466 == HAS_RELOC)));
3467 if (need_symtab)
3468 {
3469 /* Non-zero if doing a relocatable link. */
3470 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3471
3472 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3473 return FALSE;
3474 }
3475
3476 failed = FALSE;
3477 if (link_info == NULL)
3478 {
3479 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3480 if (failed)
3481 return FALSE;
3482 }
3483
3484 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3485 /* sh_name was set in prep_headers. */
3486 shstrtab_hdr->sh_type = SHT_STRTAB;
3487 shstrtab_hdr->sh_flags = 0;
3488 shstrtab_hdr->sh_addr = 0;
3489 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3490 shstrtab_hdr->sh_entsize = 0;
3491 shstrtab_hdr->sh_link = 0;
3492 shstrtab_hdr->sh_info = 0;
3493 /* sh_offset is set in assign_file_positions_except_relocs. */
3494 shstrtab_hdr->sh_addralign = 1;
3495
3496 if (!assign_file_positions_except_relocs (abfd, link_info))
3497 return FALSE;
3498
3499 if (need_symtab)
3500 {
3501 file_ptr off;
3502 Elf_Internal_Shdr *hdr;
3503
3504 off = elf_tdata (abfd)->next_file_pos;
3505
3506 hdr = &elf_tdata (abfd)->symtab_hdr;
3507 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3508
3509 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3510 if (hdr->sh_size != 0)
3511 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3512
3513 hdr = &elf_tdata (abfd)->strtab_hdr;
3514 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3515
3516 elf_tdata (abfd)->next_file_pos = off;
3517
3518 /* Now that we know where the .strtab section goes, write it
3519 out. */
3520 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3521 || ! _bfd_stringtab_emit (abfd, strtab))
3522 return FALSE;
3523 _bfd_stringtab_free (strtab);
3524 }
3525
3526 abfd->output_has_begun = TRUE;
3527
3528 return TRUE;
3529 }
3530
3531 /* Make an initial estimate of the size of the program header. If we
3532 get the number wrong here, we'll redo section placement. */
3533
3534 static bfd_size_type
3535 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3536 {
3537 size_t segs;
3538 asection *s;
3539 const struct elf_backend_data *bed;
3540
3541 /* Assume we will need exactly two PT_LOAD segments: one for text
3542 and one for data. */
3543 segs = 2;
3544
3545 s = bfd_get_section_by_name (abfd, ".interp");
3546 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3547 {
3548 /* If we have a loadable interpreter section, we need a
3549 PT_INTERP segment. In this case, assume we also need a
3550 PT_PHDR segment, although that may not be true for all
3551 targets. */
3552 segs += 2;
3553 }
3554
3555 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3556 {
3557 /* We need a PT_DYNAMIC segment. */
3558 ++segs;
3559 }
3560
3561 if (info != NULL && info->relro)
3562 {
3563 /* We need a PT_GNU_RELRO segment. */
3564 ++segs;
3565 }
3566
3567 if (elf_tdata (abfd)->eh_frame_hdr)
3568 {
3569 /* We need a PT_GNU_EH_FRAME segment. */
3570 ++segs;
3571 }
3572
3573 if (elf_tdata (abfd)->stack_flags)
3574 {
3575 /* We need a PT_GNU_STACK segment. */
3576 ++segs;
3577 }
3578
3579 for (s = abfd->sections; s != NULL; s = s->next)
3580 {
3581 if ((s->flags & SEC_LOAD) != 0
3582 && CONST_STRNEQ (s->name, ".note"))
3583 {
3584 /* We need a PT_NOTE segment. */
3585 ++segs;
3586 /* Try to create just one PT_NOTE segment
3587 for all adjacent loadable .note* sections.
3588 gABI requires that within a PT_NOTE segment
3589 (and also inside of each SHT_NOTE section)
3590 each note is padded to a multiple of 4 size,
3591 so we check whether the sections are correctly
3592 aligned. */
3593 if (s->alignment_power == 2)
3594 while (s->next != NULL
3595 && s->next->alignment_power == 2
3596 && (s->next->flags & SEC_LOAD) != 0
3597 && CONST_STRNEQ (s->next->name, ".note"))
3598 s = s->next;
3599 }
3600 }
3601
3602 for (s = abfd->sections; s != NULL; s = s->next)
3603 {
3604 if (s->flags & SEC_THREAD_LOCAL)
3605 {
3606 /* We need a PT_TLS segment. */
3607 ++segs;
3608 break;
3609 }
3610 }
3611
3612 /* Let the backend count up any program headers it might need. */
3613 bed = get_elf_backend_data (abfd);
3614 if (bed->elf_backend_additional_program_headers)
3615 {
3616 int a;
3617
3618 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3619 if (a == -1)
3620 abort ();
3621 segs += a;
3622 }
3623
3624 return segs * bed->s->sizeof_phdr;
3625 }
3626
3627 /* Find the segment that contains the output_section of section. */
3628
3629 Elf_Internal_Phdr *
3630 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3631 {
3632 struct elf_segment_map *m;
3633 Elf_Internal_Phdr *p;
3634
3635 for (m = elf_tdata (abfd)->segment_map,
3636 p = elf_tdata (abfd)->phdr;
3637 m != NULL;
3638 m = m->next, p++)
3639 {
3640 int i;
3641
3642 for (i = m->count - 1; i >= 0; i--)
3643 if (m->sections[i] == section)
3644 return p;
3645 }
3646
3647 return NULL;
3648 }
3649
3650 /* Create a mapping from a set of sections to a program segment. */
3651
3652 static struct elf_segment_map *
3653 make_mapping (bfd *abfd,
3654 asection **sections,
3655 unsigned int from,
3656 unsigned int to,
3657 bfd_boolean phdr)
3658 {
3659 struct elf_segment_map *m;
3660 unsigned int i;
3661 asection **hdrpp;
3662 bfd_size_type amt;
3663
3664 amt = sizeof (struct elf_segment_map);
3665 amt += (to - from - 1) * sizeof (asection *);
3666 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3667 if (m == NULL)
3668 return NULL;
3669 m->next = NULL;
3670 m->p_type = PT_LOAD;
3671 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3672 m->sections[i - from] = *hdrpp;
3673 m->count = to - from;
3674
3675 if (from == 0 && phdr)
3676 {
3677 /* Include the headers in the first PT_LOAD segment. */
3678 m->includes_filehdr = 1;
3679 m->includes_phdrs = 1;
3680 }
3681
3682 return m;
3683 }
3684
3685 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3686 on failure. */
3687
3688 struct elf_segment_map *
3689 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3690 {
3691 struct elf_segment_map *m;
3692
3693 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3694 sizeof (struct elf_segment_map));
3695 if (m == NULL)
3696 return NULL;
3697 m->next = NULL;
3698 m->p_type = PT_DYNAMIC;
3699 m->count = 1;
3700 m->sections[0] = dynsec;
3701
3702 return m;
3703 }
3704
3705 /* Possibly add or remove segments from the segment map. */
3706
3707 static bfd_boolean
3708 elf_modify_segment_map (bfd *abfd,
3709 struct bfd_link_info *info,
3710 bfd_boolean remove_empty_load)
3711 {
3712 struct elf_segment_map **m;
3713 const struct elf_backend_data *bed;
3714
3715 /* The placement algorithm assumes that non allocated sections are
3716 not in PT_LOAD segments. We ensure this here by removing such
3717 sections from the segment map. We also remove excluded
3718 sections. Finally, any PT_LOAD segment without sections is
3719 removed. */
3720 m = &elf_tdata (abfd)->segment_map;
3721 while (*m)
3722 {
3723 unsigned int i, new_count;
3724
3725 for (new_count = 0, i = 0; i < (*m)->count; i++)
3726 {
3727 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3728 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3729 || (*m)->p_type != PT_LOAD))
3730 {
3731 (*m)->sections[new_count] = (*m)->sections[i];
3732 new_count++;
3733 }
3734 }
3735 (*m)->count = new_count;
3736
3737 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3738 *m = (*m)->next;
3739 else
3740 m = &(*m)->next;
3741 }
3742
3743 bed = get_elf_backend_data (abfd);
3744 if (bed->elf_backend_modify_segment_map != NULL)
3745 {
3746 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3747 return FALSE;
3748 }
3749
3750 return TRUE;
3751 }
3752
3753 /* Set up a mapping from BFD sections to program segments. */
3754
3755 bfd_boolean
3756 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3757 {
3758 unsigned int count;
3759 struct elf_segment_map *m;
3760 asection **sections = NULL;
3761 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3762 bfd_boolean no_user_phdrs;
3763
3764 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3765
3766 if (info != NULL)
3767 info->user_phdrs = !no_user_phdrs;
3768
3769 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3770 {
3771 asection *s;
3772 unsigned int i;
3773 struct elf_segment_map *mfirst;
3774 struct elf_segment_map **pm;
3775 asection *last_hdr;
3776 bfd_vma last_size;
3777 unsigned int phdr_index;
3778 bfd_vma maxpagesize;
3779 asection **hdrpp;
3780 bfd_boolean phdr_in_segment = TRUE;
3781 bfd_boolean writable;
3782 int tls_count = 0;
3783 asection *first_tls = NULL;
3784 asection *dynsec, *eh_frame_hdr;
3785 bfd_size_type amt;
3786 bfd_vma addr_mask, wrap_to = 0;
3787
3788 /* Select the allocated sections, and sort them. */
3789
3790 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3791 sizeof (asection *));
3792 if (sections == NULL)
3793 goto error_return;
3794
3795 /* Calculate top address, avoiding undefined behaviour of shift
3796 left operator when shift count is equal to size of type
3797 being shifted. */
3798 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3799 addr_mask = (addr_mask << 1) + 1;
3800
3801 i = 0;
3802 for (s = abfd->sections; s != NULL; s = s->next)
3803 {
3804 if ((s->flags & SEC_ALLOC) != 0)
3805 {
3806 sections[i] = s;
3807 ++i;
3808 /* A wrapping section potentially clashes with header. */
3809 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3810 wrap_to = (s->lma + s->size) & addr_mask;
3811 }
3812 }
3813 BFD_ASSERT (i <= bfd_count_sections (abfd));
3814 count = i;
3815
3816 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3817
3818 /* Build the mapping. */
3819
3820 mfirst = NULL;
3821 pm = &mfirst;
3822
3823 /* If we have a .interp section, then create a PT_PHDR segment for
3824 the program headers and a PT_INTERP segment for the .interp
3825 section. */
3826 s = bfd_get_section_by_name (abfd, ".interp");
3827 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3828 {
3829 amt = sizeof (struct elf_segment_map);
3830 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3831 if (m == NULL)
3832 goto error_return;
3833 m->next = NULL;
3834 m->p_type = PT_PHDR;
3835 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3836 m->p_flags = PF_R | PF_X;
3837 m->p_flags_valid = 1;
3838 m->includes_phdrs = 1;
3839
3840 *pm = m;
3841 pm = &m->next;
3842
3843 amt = sizeof (struct elf_segment_map);
3844 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3845 if (m == NULL)
3846 goto error_return;
3847 m->next = NULL;
3848 m->p_type = PT_INTERP;
3849 m->count = 1;
3850 m->sections[0] = s;
3851
3852 *pm = m;
3853 pm = &m->next;
3854 }
3855
3856 /* Look through the sections. We put sections in the same program
3857 segment when the start of the second section can be placed within
3858 a few bytes of the end of the first section. */
3859 last_hdr = NULL;
3860 last_size = 0;
3861 phdr_index = 0;
3862 maxpagesize = bed->maxpagesize;
3863 writable = FALSE;
3864 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3865 if (dynsec != NULL
3866 && (dynsec->flags & SEC_LOAD) == 0)
3867 dynsec = NULL;
3868
3869 /* Deal with -Ttext or something similar such that the first section
3870 is not adjacent to the program headers. This is an
3871 approximation, since at this point we don't know exactly how many
3872 program headers we will need. */
3873 if (count > 0)
3874 {
3875 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3876
3877 if (phdr_size == (bfd_size_type) -1)
3878 phdr_size = get_program_header_size (abfd, info);
3879 if ((abfd->flags & D_PAGED) == 0
3880 || (sections[0]->lma & addr_mask) < phdr_size
3881 || ((sections[0]->lma & addr_mask) % maxpagesize
3882 < phdr_size % maxpagesize)
3883 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3884 phdr_in_segment = FALSE;
3885 }
3886
3887 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3888 {
3889 asection *hdr;
3890 bfd_boolean new_segment;
3891
3892 hdr = *hdrpp;
3893
3894 /* See if this section and the last one will fit in the same
3895 segment. */
3896
3897 if (last_hdr == NULL)
3898 {
3899 /* If we don't have a segment yet, then we don't need a new
3900 one (we build the last one after this loop). */
3901 new_segment = FALSE;
3902 }
3903 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3904 {
3905 /* If this section has a different relation between the
3906 virtual address and the load address, then we need a new
3907 segment. */
3908 new_segment = TRUE;
3909 }
3910 else if (hdr->lma < last_hdr->lma + last_size
3911 || last_hdr->lma + last_size < last_hdr->lma)
3912 {
3913 /* If this section has a load address that makes it overlap
3914 the previous section, then we need a new segment. */
3915 new_segment = TRUE;
3916 }
3917 /* In the next test we have to be careful when last_hdr->lma is close
3918 to the end of the address space. If the aligned address wraps
3919 around to the start of the address space, then there are no more
3920 pages left in memory and it is OK to assume that the current
3921 section can be included in the current segment. */
3922 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3923 > last_hdr->lma)
3924 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3925 <= hdr->lma))
3926 {
3927 /* If putting this section in this segment would force us to
3928 skip a page in the segment, then we need a new segment. */
3929 new_segment = TRUE;
3930 }
3931 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3932 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3933 {
3934 /* We don't want to put a loadable section after a
3935 nonloadable section in the same segment.
3936 Consider .tbss sections as loadable for this purpose. */
3937 new_segment = TRUE;
3938 }
3939 else if ((abfd->flags & D_PAGED) == 0)
3940 {
3941 /* If the file is not demand paged, which means that we
3942 don't require the sections to be correctly aligned in the
3943 file, then there is no other reason for a new segment. */
3944 new_segment = FALSE;
3945 }
3946 else if (! writable
3947 && (hdr->flags & SEC_READONLY) == 0
3948 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3949 != (hdr->lma & -maxpagesize)))
3950 {
3951 /* We don't want to put a writable section in a read only
3952 segment, unless they are on the same page in memory
3953 anyhow. We already know that the last section does not
3954 bring us past the current section on the page, so the
3955 only case in which the new section is not on the same
3956 page as the previous section is when the previous section
3957 ends precisely on a page boundary. */
3958 new_segment = TRUE;
3959 }
3960 else
3961 {
3962 /* Otherwise, we can use the same segment. */
3963 new_segment = FALSE;
3964 }
3965
3966 /* Allow interested parties a chance to override our decision. */
3967 if (last_hdr != NULL
3968 && info != NULL
3969 && info->callbacks->override_segment_assignment != NULL)
3970 new_segment
3971 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3972 last_hdr,
3973 new_segment);
3974
3975 if (! new_segment)
3976 {
3977 if ((hdr->flags & SEC_READONLY) == 0)
3978 writable = TRUE;
3979 last_hdr = hdr;
3980 /* .tbss sections effectively have zero size. */
3981 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3982 != SEC_THREAD_LOCAL)
3983 last_size = hdr->size;
3984 else
3985 last_size = 0;
3986 continue;
3987 }
3988
3989 /* We need a new program segment. We must create a new program
3990 header holding all the sections from phdr_index until hdr. */
3991
3992 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3993 if (m == NULL)
3994 goto error_return;
3995
3996 *pm = m;
3997 pm = &m->next;
3998
3999 if ((hdr->flags & SEC_READONLY) == 0)
4000 writable = TRUE;
4001 else
4002 writable = FALSE;
4003
4004 last_hdr = hdr;
4005 /* .tbss sections effectively have zero size. */
4006 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4007 last_size = hdr->size;
4008 else
4009 last_size = 0;
4010 phdr_index = i;
4011 phdr_in_segment = FALSE;
4012 }
4013
4014 /* Create a final PT_LOAD program segment, but not if it's just
4015 for .tbss. */
4016 if (last_hdr != NULL
4017 && (i - phdr_index != 1
4018 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4019 != SEC_THREAD_LOCAL)))
4020 {
4021 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4022 if (m == NULL)
4023 goto error_return;
4024
4025 *pm = m;
4026 pm = &m->next;
4027 }
4028
4029 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4030 if (dynsec != NULL)
4031 {
4032 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4033 if (m == NULL)
4034 goto error_return;
4035 *pm = m;
4036 pm = &m->next;
4037 }
4038
4039 /* For each batch of consecutive loadable .note sections,
4040 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4041 because if we link together nonloadable .note sections and
4042 loadable .note sections, we will generate two .note sections
4043 in the output file. FIXME: Using names for section types is
4044 bogus anyhow. */
4045 for (s = abfd->sections; s != NULL; s = s->next)
4046 {
4047 if ((s->flags & SEC_LOAD) != 0
4048 && CONST_STRNEQ (s->name, ".note"))
4049 {
4050 asection *s2;
4051
4052 count = 1;
4053 amt = sizeof (struct elf_segment_map);
4054 if (s->alignment_power == 2)
4055 for (s2 = s; s2->next != NULL; s2 = s2->next)
4056 {
4057 if (s2->next->alignment_power == 2
4058 && (s2->next->flags & SEC_LOAD) != 0
4059 && CONST_STRNEQ (s2->next->name, ".note")
4060 && align_power (s2->lma + s2->size, 2)
4061 == s2->next->lma)
4062 count++;
4063 else
4064 break;
4065 }
4066 amt += (count - 1) * sizeof (asection *);
4067 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4068 if (m == NULL)
4069 goto error_return;
4070 m->next = NULL;
4071 m->p_type = PT_NOTE;
4072 m->count = count;
4073 while (count > 1)
4074 {
4075 m->sections[m->count - count--] = s;
4076 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4077 s = s->next;
4078 }
4079 m->sections[m->count - 1] = s;
4080 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4081 *pm = m;
4082 pm = &m->next;
4083 }
4084 if (s->flags & SEC_THREAD_LOCAL)
4085 {
4086 if (! tls_count)
4087 first_tls = s;
4088 tls_count++;
4089 }
4090 }
4091
4092 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4093 if (tls_count > 0)
4094 {
4095 amt = sizeof (struct elf_segment_map);
4096 amt += (tls_count - 1) * sizeof (asection *);
4097 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4098 if (m == NULL)
4099 goto error_return;
4100 m->next = NULL;
4101 m->p_type = PT_TLS;
4102 m->count = tls_count;
4103 /* Mandated PF_R. */
4104 m->p_flags = PF_R;
4105 m->p_flags_valid = 1;
4106 for (i = 0; i < (unsigned int) tls_count; ++i)
4107 {
4108 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4109 m->sections[i] = first_tls;
4110 first_tls = first_tls->next;
4111 }
4112
4113 *pm = m;
4114 pm = &m->next;
4115 }
4116
4117 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4118 segment. */
4119 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4120 if (eh_frame_hdr != NULL
4121 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4122 {
4123 amt = sizeof (struct elf_segment_map);
4124 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4125 if (m == NULL)
4126 goto error_return;
4127 m->next = NULL;
4128 m->p_type = PT_GNU_EH_FRAME;
4129 m->count = 1;
4130 m->sections[0] = eh_frame_hdr->output_section;
4131
4132 *pm = m;
4133 pm = &m->next;
4134 }
4135
4136 if (elf_tdata (abfd)->stack_flags)
4137 {
4138 amt = sizeof (struct elf_segment_map);
4139 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4140 if (m == NULL)
4141 goto error_return;
4142 m->next = NULL;
4143 m->p_type = PT_GNU_STACK;
4144 m->p_flags = elf_tdata (abfd)->stack_flags;
4145 m->p_flags_valid = 1;
4146
4147 *pm = m;
4148 pm = &m->next;
4149 }
4150
4151 if (info != NULL && info->relro)
4152 {
4153 for (m = mfirst; m != NULL; m = m->next)
4154 {
4155 if (m->p_type == PT_LOAD)
4156 {
4157 asection *last = m->sections[m->count - 1];
4158 bfd_vma vaddr = m->sections[0]->vma;
4159 bfd_vma filesz = last->vma - vaddr + last->size;
4160
4161 if (vaddr < info->relro_end
4162 && vaddr >= info->relro_start
4163 && (vaddr + filesz) >= info->relro_end)
4164 break;
4165 }
4166 }
4167
4168 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4169 if (m != NULL)
4170 {
4171 amt = sizeof (struct elf_segment_map);
4172 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4173 if (m == NULL)
4174 goto error_return;
4175 m->next = NULL;
4176 m->p_type = PT_GNU_RELRO;
4177 m->p_flags = PF_R;
4178 m->p_flags_valid = 1;
4179
4180 *pm = m;
4181 pm = &m->next;
4182 }
4183 }
4184
4185 free (sections);
4186 elf_tdata (abfd)->segment_map = mfirst;
4187 }
4188
4189 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4190 return FALSE;
4191
4192 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4193 ++count;
4194 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4195
4196 return TRUE;
4197
4198 error_return:
4199 if (sections != NULL)
4200 free (sections);
4201 return FALSE;
4202 }
4203
4204 /* Sort sections by address. */
4205
4206 static int
4207 elf_sort_sections (const void *arg1, const void *arg2)
4208 {
4209 const asection *sec1 = *(const asection **) arg1;
4210 const asection *sec2 = *(const asection **) arg2;
4211 bfd_size_type size1, size2;
4212
4213 /* Sort by LMA first, since this is the address used to
4214 place the section into a segment. */
4215 if (sec1->lma < sec2->lma)
4216 return -1;
4217 else if (sec1->lma > sec2->lma)
4218 return 1;
4219
4220 /* Then sort by VMA. Normally the LMA and the VMA will be
4221 the same, and this will do nothing. */
4222 if (sec1->vma < sec2->vma)
4223 return -1;
4224 else if (sec1->vma > sec2->vma)
4225 return 1;
4226
4227 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4228
4229 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4230
4231 if (TOEND (sec1))
4232 {
4233 if (TOEND (sec2))
4234 {
4235 /* If the indicies are the same, do not return 0
4236 here, but continue to try the next comparison. */
4237 if (sec1->target_index - sec2->target_index != 0)
4238 return sec1->target_index - sec2->target_index;
4239 }
4240 else
4241 return 1;
4242 }
4243 else if (TOEND (sec2))
4244 return -1;
4245
4246 #undef TOEND
4247
4248 /* Sort by size, to put zero sized sections
4249 before others at the same address. */
4250
4251 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4252 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4253
4254 if (size1 < size2)
4255 return -1;
4256 if (size1 > size2)
4257 return 1;
4258
4259 return sec1->target_index - sec2->target_index;
4260 }
4261
4262 /* Ian Lance Taylor writes:
4263
4264 We shouldn't be using % with a negative signed number. That's just
4265 not good. We have to make sure either that the number is not
4266 negative, or that the number has an unsigned type. When the types
4267 are all the same size they wind up as unsigned. When file_ptr is a
4268 larger signed type, the arithmetic winds up as signed long long,
4269 which is wrong.
4270
4271 What we're trying to say here is something like ``increase OFF by
4272 the least amount that will cause it to be equal to the VMA modulo
4273 the page size.'' */
4274 /* In other words, something like:
4275
4276 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4277 off_offset = off % bed->maxpagesize;
4278 if (vma_offset < off_offset)
4279 adjustment = vma_offset + bed->maxpagesize - off_offset;
4280 else
4281 adjustment = vma_offset - off_offset;
4282
4283 which can can be collapsed into the expression below. */
4284
4285 static file_ptr
4286 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4287 {
4288 return ((vma - off) % maxpagesize);
4289 }
4290
4291 static void
4292 print_segment_map (const struct elf_segment_map *m)
4293 {
4294 unsigned int j;
4295 const char *pt = get_segment_type (m->p_type);
4296 char buf[32];
4297
4298 if (pt == NULL)
4299 {
4300 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4301 sprintf (buf, "LOPROC+%7.7x",
4302 (unsigned int) (m->p_type - PT_LOPROC));
4303 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4304 sprintf (buf, "LOOS+%7.7x",
4305 (unsigned int) (m->p_type - PT_LOOS));
4306 else
4307 snprintf (buf, sizeof (buf), "%8.8x",
4308 (unsigned int) m->p_type);
4309 pt = buf;
4310 }
4311 fflush (stdout);
4312 fprintf (stderr, "%s:", pt);
4313 for (j = 0; j < m->count; j++)
4314 fprintf (stderr, " %s", m->sections [j]->name);
4315 putc ('\n',stderr);
4316 fflush (stderr);
4317 }
4318
4319 static bfd_boolean
4320 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4321 {
4322 void *buf;
4323 bfd_boolean ret;
4324
4325 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4326 return FALSE;
4327 buf = bfd_zmalloc (len);
4328 if (buf == NULL)
4329 return FALSE;
4330 ret = bfd_bwrite (buf, len, abfd) == len;
4331 free (buf);
4332 return ret;
4333 }
4334
4335 /* Assign file positions to the sections based on the mapping from
4336 sections to segments. This function also sets up some fields in
4337 the file header. */
4338
4339 static bfd_boolean
4340 assign_file_positions_for_load_sections (bfd *abfd,
4341 struct bfd_link_info *link_info)
4342 {
4343 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4344 struct elf_segment_map *m;
4345 Elf_Internal_Phdr *phdrs;
4346 Elf_Internal_Phdr *p;
4347 file_ptr off;
4348 bfd_size_type maxpagesize;
4349 unsigned int alloc;
4350 unsigned int i, j;
4351 bfd_vma header_pad = 0;
4352
4353 if (link_info == NULL
4354 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4355 return FALSE;
4356
4357 alloc = 0;
4358 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4359 {
4360 ++alloc;
4361 if (m->header_size)
4362 header_pad = m->header_size;
4363 }
4364
4365 if (alloc)
4366 {
4367 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4368 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4369 }
4370 else
4371 {
4372 /* PR binutils/12467. */
4373 elf_elfheader (abfd)->e_phoff = 0;
4374 elf_elfheader (abfd)->e_phentsize = 0;
4375 }
4376
4377 elf_elfheader (abfd)->e_phnum = alloc;
4378
4379 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4380 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4381 else
4382 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4383 >= alloc * bed->s->sizeof_phdr);
4384
4385 if (alloc == 0)
4386 {
4387 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4388 return TRUE;
4389 }
4390
4391 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4392 see assign_file_positions_except_relocs, so make sure we have
4393 that amount allocated, with trailing space cleared.
4394 The variable alloc contains the computed need, while elf_tdata
4395 (abfd)->program_header_size contains the size used for the
4396 layout.
4397 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4398 where the layout is forced to according to a larger size in the
4399 last iterations for the testcase ld-elf/header. */
4400 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4401 == 0);
4402 phdrs = (Elf_Internal_Phdr *)
4403 bfd_zalloc2 (abfd,
4404 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4405 sizeof (Elf_Internal_Phdr));
4406 elf_tdata (abfd)->phdr = phdrs;
4407 if (phdrs == NULL)
4408 return FALSE;
4409
4410 maxpagesize = 1;
4411 if ((abfd->flags & D_PAGED) != 0)
4412 maxpagesize = bed->maxpagesize;
4413
4414 off = bed->s->sizeof_ehdr;
4415 off += alloc * bed->s->sizeof_phdr;
4416 if (header_pad < (bfd_vma) off)
4417 header_pad = 0;
4418 else
4419 header_pad -= off;
4420 off += header_pad;
4421
4422 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4423 m != NULL;
4424 m = m->next, p++, j++)
4425 {
4426 asection **secpp;
4427 bfd_vma off_adjust;
4428 bfd_boolean no_contents;
4429
4430 /* If elf_segment_map is not from map_sections_to_segments, the
4431 sections may not be correctly ordered. NOTE: sorting should
4432 not be done to the PT_NOTE section of a corefile, which may
4433 contain several pseudo-sections artificially created by bfd.
4434 Sorting these pseudo-sections breaks things badly. */
4435 if (m->count > 1
4436 && !(elf_elfheader (abfd)->e_type == ET_CORE
4437 && m->p_type == PT_NOTE))
4438 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4439 elf_sort_sections);
4440
4441 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4442 number of sections with contents contributing to both p_filesz
4443 and p_memsz, followed by a number of sections with no contents
4444 that just contribute to p_memsz. In this loop, OFF tracks next
4445 available file offset for PT_LOAD and PT_NOTE segments. */
4446 p->p_type = m->p_type;
4447 p->p_flags = m->p_flags;
4448
4449 if (m->count == 0)
4450 p->p_vaddr = 0;
4451 else
4452 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4453
4454 if (m->p_paddr_valid)
4455 p->p_paddr = m->p_paddr;
4456 else if (m->count == 0)
4457 p->p_paddr = 0;
4458 else
4459 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4460
4461 if (p->p_type == PT_LOAD
4462 && (abfd->flags & D_PAGED) != 0)
4463 {
4464 /* p_align in demand paged PT_LOAD segments effectively stores
4465 the maximum page size. When copying an executable with
4466 objcopy, we set m->p_align from the input file. Use this
4467 value for maxpagesize rather than bed->maxpagesize, which
4468 may be different. Note that we use maxpagesize for PT_TLS
4469 segment alignment later in this function, so we are relying
4470 on at least one PT_LOAD segment appearing before a PT_TLS
4471 segment. */
4472 if (m->p_align_valid)
4473 maxpagesize = m->p_align;
4474
4475 p->p_align = maxpagesize;
4476 }
4477 else if (m->p_align_valid)
4478 p->p_align = m->p_align;
4479 else if (m->count == 0)
4480 p->p_align = 1 << bed->s->log_file_align;
4481 else
4482 p->p_align = 0;
4483
4484 no_contents = FALSE;
4485 off_adjust = 0;
4486 if (p->p_type == PT_LOAD
4487 && m->count > 0)
4488 {
4489 bfd_size_type align;
4490 unsigned int align_power = 0;
4491
4492 if (m->p_align_valid)
4493 align = p->p_align;
4494 else
4495 {
4496 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4497 {
4498 unsigned int secalign;
4499
4500 secalign = bfd_get_section_alignment (abfd, *secpp);
4501 if (secalign > align_power)
4502 align_power = secalign;
4503 }
4504 align = (bfd_size_type) 1 << align_power;
4505 if (align < maxpagesize)
4506 align = maxpagesize;
4507 }
4508
4509 for (i = 0; i < m->count; i++)
4510 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4511 /* If we aren't making room for this section, then
4512 it must be SHT_NOBITS regardless of what we've
4513 set via struct bfd_elf_special_section. */
4514 elf_section_type (m->sections[i]) = SHT_NOBITS;
4515
4516 /* Find out whether this segment contains any loadable
4517 sections. */
4518 no_contents = TRUE;
4519 for (i = 0; i < m->count; i++)
4520 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4521 {
4522 no_contents = FALSE;
4523 break;
4524 }
4525
4526 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4527 off += off_adjust;
4528 if (no_contents)
4529 {
4530 /* We shouldn't need to align the segment on disk since
4531 the segment doesn't need file space, but the gABI
4532 arguably requires the alignment and glibc ld.so
4533 checks it. So to comply with the alignment
4534 requirement but not waste file space, we adjust
4535 p_offset for just this segment. (OFF_ADJUST is
4536 subtracted from OFF later.) This may put p_offset
4537 past the end of file, but that shouldn't matter. */
4538 }
4539 else
4540 off_adjust = 0;
4541 }
4542 /* Make sure the .dynamic section is the first section in the
4543 PT_DYNAMIC segment. */
4544 else if (p->p_type == PT_DYNAMIC
4545 && m->count > 1
4546 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4547 {
4548 _bfd_error_handler
4549 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4550 abfd);
4551 bfd_set_error (bfd_error_bad_value);
4552 return FALSE;
4553 }
4554 /* Set the note section type to SHT_NOTE. */
4555 else if (p->p_type == PT_NOTE)
4556 for (i = 0; i < m->count; i++)
4557 elf_section_type (m->sections[i]) = SHT_NOTE;
4558
4559 p->p_offset = 0;
4560 p->p_filesz = 0;
4561 p->p_memsz = 0;
4562
4563 if (m->includes_filehdr)
4564 {
4565 if (!m->p_flags_valid)
4566 p->p_flags |= PF_R;
4567 p->p_filesz = bed->s->sizeof_ehdr;
4568 p->p_memsz = bed->s->sizeof_ehdr;
4569 if (m->count > 0)
4570 {
4571 BFD_ASSERT (p->p_type == PT_LOAD);
4572
4573 if (p->p_vaddr < (bfd_vma) off)
4574 {
4575 (*_bfd_error_handler)
4576 (_("%B: Not enough room for program headers, try linking with -N"),
4577 abfd);
4578 bfd_set_error (bfd_error_bad_value);
4579 return FALSE;
4580 }
4581
4582 p->p_vaddr -= off;
4583 if (!m->p_paddr_valid)
4584 p->p_paddr -= off;
4585 }
4586 }
4587
4588 if (m->includes_phdrs)
4589 {
4590 if (!m->p_flags_valid)
4591 p->p_flags |= PF_R;
4592
4593 if (!m->includes_filehdr)
4594 {
4595 p->p_offset = bed->s->sizeof_ehdr;
4596
4597 if (m->count > 0)
4598 {
4599 BFD_ASSERT (p->p_type == PT_LOAD);
4600 p->p_vaddr -= off - p->p_offset;
4601 if (!m->p_paddr_valid)
4602 p->p_paddr -= off - p->p_offset;
4603 }
4604 }
4605
4606 p->p_filesz += alloc * bed->s->sizeof_phdr;
4607 p->p_memsz += alloc * bed->s->sizeof_phdr;
4608 if (m->count)
4609 {
4610 p->p_filesz += header_pad;
4611 p->p_memsz += header_pad;
4612 }
4613 }
4614
4615 if (p->p_type == PT_LOAD
4616 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4617 {
4618 if (!m->includes_filehdr && !m->includes_phdrs)
4619 p->p_offset = off;
4620 else
4621 {
4622 file_ptr adjust;
4623
4624 adjust = off - (p->p_offset + p->p_filesz);
4625 if (!no_contents)
4626 p->p_filesz += adjust;
4627 p->p_memsz += adjust;
4628 }
4629 }
4630
4631 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4632 maps. Set filepos for sections in PT_LOAD segments, and in
4633 core files, for sections in PT_NOTE segments.
4634 assign_file_positions_for_non_load_sections will set filepos
4635 for other sections and update p_filesz for other segments. */
4636 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4637 {
4638 asection *sec;
4639 bfd_size_type align;
4640 Elf_Internal_Shdr *this_hdr;
4641
4642 sec = *secpp;
4643 this_hdr = &elf_section_data (sec)->this_hdr;
4644 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4645
4646 if ((p->p_type == PT_LOAD
4647 || p->p_type == PT_TLS)
4648 && (this_hdr->sh_type != SHT_NOBITS
4649 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4650 && ((this_hdr->sh_flags & SHF_TLS) == 0
4651 || p->p_type == PT_TLS))))
4652 {
4653 bfd_vma p_start = p->p_paddr;
4654 bfd_vma p_end = p_start + p->p_memsz;
4655 bfd_vma s_start = sec->lma;
4656 bfd_vma adjust = s_start - p_end;
4657
4658 if (adjust != 0
4659 && (s_start < p_end
4660 || p_end < p_start))
4661 {
4662 (*_bfd_error_handler)
4663 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4664 (unsigned long) s_start, (unsigned long) p_end);
4665 adjust = 0;
4666 sec->lma = p_end;
4667 }
4668 p->p_memsz += adjust;
4669
4670 if (this_hdr->sh_type != SHT_NOBITS)
4671 {
4672 if (p->p_filesz + adjust < p->p_memsz)
4673 {
4674 /* We have a PROGBITS section following NOBITS ones.
4675 Allocate file space for the NOBITS section(s) and
4676 zero it. */
4677 adjust = p->p_memsz - p->p_filesz;
4678 if (!write_zeros (abfd, off, adjust))
4679 return FALSE;
4680 }
4681 off += adjust;
4682 p->p_filesz += adjust;
4683 }
4684 }
4685
4686 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4687 {
4688 /* The section at i == 0 is the one that actually contains
4689 everything. */
4690 if (i == 0)
4691 {
4692 this_hdr->sh_offset = sec->filepos = off;
4693 off += this_hdr->sh_size;
4694 p->p_filesz = this_hdr->sh_size;
4695 p->p_memsz = 0;
4696 p->p_align = 1;
4697 }
4698 else
4699 {
4700 /* The rest are fake sections that shouldn't be written. */
4701 sec->filepos = 0;
4702 sec->size = 0;
4703 sec->flags = 0;
4704 continue;
4705 }
4706 }
4707 else
4708 {
4709 if (p->p_type == PT_LOAD)
4710 {
4711 this_hdr->sh_offset = sec->filepos = off;
4712 if (this_hdr->sh_type != SHT_NOBITS)
4713 off += this_hdr->sh_size;
4714 }
4715 else if (this_hdr->sh_type == SHT_NOBITS
4716 && (this_hdr->sh_flags & SHF_TLS) != 0
4717 && this_hdr->sh_offset == 0)
4718 {
4719 /* This is a .tbss section that didn't get a PT_LOAD.
4720 (See _bfd_elf_map_sections_to_segments "Create a
4721 final PT_LOAD".) Set sh_offset to the value it
4722 would have if we had created a zero p_filesz and
4723 p_memsz PT_LOAD header for the section. This
4724 also makes the PT_TLS header have the same
4725 p_offset value. */
4726 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4727 off, align);
4728 this_hdr->sh_offset = sec->filepos = off + adjust;
4729 }
4730
4731 if (this_hdr->sh_type != SHT_NOBITS)
4732 {
4733 p->p_filesz += this_hdr->sh_size;
4734 /* A load section without SHF_ALLOC is something like
4735 a note section in a PT_NOTE segment. These take
4736 file space but are not loaded into memory. */
4737 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4738 p->p_memsz += this_hdr->sh_size;
4739 }
4740 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4741 {
4742 if (p->p_type == PT_TLS)
4743 p->p_memsz += this_hdr->sh_size;
4744
4745 /* .tbss is special. It doesn't contribute to p_memsz of
4746 normal segments. */
4747 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4748 p->p_memsz += this_hdr->sh_size;
4749 }
4750
4751 if (align > p->p_align
4752 && !m->p_align_valid
4753 && (p->p_type != PT_LOAD
4754 || (abfd->flags & D_PAGED) == 0))
4755 p->p_align = align;
4756 }
4757
4758 if (!m->p_flags_valid)
4759 {
4760 p->p_flags |= PF_R;
4761 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4762 p->p_flags |= PF_X;
4763 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4764 p->p_flags |= PF_W;
4765 }
4766 }
4767 off -= off_adjust;
4768
4769 /* Check that all sections are in a PT_LOAD segment.
4770 Don't check funky gdb generated core files. */
4771 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4772 {
4773 bfd_boolean check_vma = TRUE;
4774
4775 for (i = 1; i < m->count; i++)
4776 if (m->sections[i]->vma == m->sections[i - 1]->vma
4777 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4778 ->this_hdr), p) != 0
4779 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4780 ->this_hdr), p) != 0)
4781 {
4782 /* Looks like we have overlays packed into the segment. */
4783 check_vma = FALSE;
4784 break;
4785 }
4786
4787 for (i = 0; i < m->count; i++)
4788 {
4789 Elf_Internal_Shdr *this_hdr;
4790 asection *sec;
4791
4792 sec = m->sections[i];
4793 this_hdr = &(elf_section_data(sec)->this_hdr);
4794 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4795 && !ELF_TBSS_SPECIAL (this_hdr, p))
4796 {
4797 (*_bfd_error_handler)
4798 (_("%B: section `%A' can't be allocated in segment %d"),
4799 abfd, sec, j);
4800 print_segment_map (m);
4801 }
4802 }
4803 }
4804 }
4805
4806 elf_tdata (abfd)->next_file_pos = off;
4807 return TRUE;
4808 }
4809
4810 /* Assign file positions for the other sections. */
4811
4812 static bfd_boolean
4813 assign_file_positions_for_non_load_sections (bfd *abfd,
4814 struct bfd_link_info *link_info)
4815 {
4816 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4817 Elf_Internal_Shdr **i_shdrpp;
4818 Elf_Internal_Shdr **hdrpp;
4819 Elf_Internal_Phdr *phdrs;
4820 Elf_Internal_Phdr *p;
4821 struct elf_segment_map *m;
4822 bfd_vma filehdr_vaddr, filehdr_paddr;
4823 bfd_vma phdrs_vaddr, phdrs_paddr;
4824 file_ptr off;
4825 unsigned int num_sec;
4826 unsigned int i;
4827 unsigned int count;
4828
4829 i_shdrpp = elf_elfsections (abfd);
4830 num_sec = elf_numsections (abfd);
4831 off = elf_tdata (abfd)->next_file_pos;
4832 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4833 {
4834 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4835 Elf_Internal_Shdr *hdr;
4836
4837 hdr = *hdrpp;
4838 if (hdr->bfd_section != NULL
4839 && (hdr->bfd_section->filepos != 0
4840 || (hdr->sh_type == SHT_NOBITS
4841 && hdr->contents == NULL)))
4842 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4843 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4844 {
4845 if (hdr->sh_size != 0)
4846 (*_bfd_error_handler)
4847 (_("%B: warning: allocated section `%s' not in segment"),
4848 abfd,
4849 (hdr->bfd_section == NULL
4850 ? "*unknown*"
4851 : hdr->bfd_section->name));
4852 /* We don't need to page align empty sections. */
4853 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4854 off += vma_page_aligned_bias (hdr->sh_addr, off,
4855 bed->maxpagesize);
4856 else
4857 off += vma_page_aligned_bias (hdr->sh_addr, off,
4858 hdr->sh_addralign);
4859 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4860 FALSE);
4861 }
4862 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4863 && hdr->bfd_section == NULL)
4864 || hdr == i_shdrpp[tdata->symtab_section]
4865 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4866 || hdr == i_shdrpp[tdata->strtab_section])
4867 hdr->sh_offset = -1;
4868 else
4869 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4870 }
4871
4872 /* Now that we have set the section file positions, we can set up
4873 the file positions for the non PT_LOAD segments. */
4874 count = 0;
4875 filehdr_vaddr = 0;
4876 filehdr_paddr = 0;
4877 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4878 phdrs_paddr = 0;
4879 phdrs = elf_tdata (abfd)->phdr;
4880 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4881 m != NULL;
4882 m = m->next, p++)
4883 {
4884 ++count;
4885 if (p->p_type != PT_LOAD)
4886 continue;
4887
4888 if (m->includes_filehdr)
4889 {
4890 filehdr_vaddr = p->p_vaddr;
4891 filehdr_paddr = p->p_paddr;
4892 }
4893 if (m->includes_phdrs)
4894 {
4895 phdrs_vaddr = p->p_vaddr;
4896 phdrs_paddr = p->p_paddr;
4897 if (m->includes_filehdr)
4898 {
4899 phdrs_vaddr += bed->s->sizeof_ehdr;
4900 phdrs_paddr += bed->s->sizeof_ehdr;
4901 }
4902 }
4903 }
4904
4905 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4906 m != NULL;
4907 m = m->next, p++)
4908 {
4909 if (p->p_type == PT_GNU_RELRO)
4910 {
4911 const Elf_Internal_Phdr *lp;
4912
4913 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4914
4915 if (link_info != NULL)
4916 {
4917 /* During linking the range of the RELRO segment is passed
4918 in link_info. */
4919 for (lp = phdrs; lp < phdrs + count; ++lp)
4920 {
4921 if (lp->p_type == PT_LOAD
4922 && lp->p_vaddr >= link_info->relro_start
4923 && lp->p_vaddr < link_info->relro_end
4924 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4925 break;
4926 }
4927 }
4928 else
4929 {
4930 /* Otherwise we are copying an executable or shared
4931 library, but we need to use the same linker logic. */
4932 for (lp = phdrs; lp < phdrs + count; ++lp)
4933 {
4934 if (lp->p_type == PT_LOAD
4935 && lp->p_paddr == p->p_paddr)
4936 break;
4937 }
4938 }
4939
4940 if (lp < phdrs + count)
4941 {
4942 p->p_vaddr = lp->p_vaddr;
4943 p->p_paddr = lp->p_paddr;
4944 p->p_offset = lp->p_offset;
4945 if (link_info != NULL)
4946 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4947 else if (m->p_size_valid)
4948 p->p_filesz = m->p_size;
4949 else
4950 abort ();
4951 p->p_memsz = p->p_filesz;
4952 /* Preserve the alignment and flags if they are valid. The
4953 gold linker generates RW/4 for the PT_GNU_RELRO section.
4954 It is better for objcopy/strip to honor these attributes
4955 otherwise gdb will choke when using separate debug files.
4956 */
4957 if (!m->p_align_valid)
4958 p->p_align = 1;
4959 if (!m->p_flags_valid)
4960 p->p_flags = (lp->p_flags & ~PF_W);
4961 }
4962 else
4963 {
4964 memset (p, 0, sizeof *p);
4965 p->p_type = PT_NULL;
4966 }
4967 }
4968 else if (m->count != 0)
4969 {
4970 if (p->p_type != PT_LOAD
4971 && (p->p_type != PT_NOTE
4972 || bfd_get_format (abfd) != bfd_core))
4973 {
4974 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4975
4976 p->p_filesz = 0;
4977 p->p_offset = m->sections[0]->filepos;
4978 for (i = m->count; i-- != 0;)
4979 {
4980 asection *sect = m->sections[i];
4981 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
4982 if (hdr->sh_type != SHT_NOBITS)
4983 {
4984 p->p_filesz = (sect->filepos - m->sections[0]->filepos
4985 + hdr->sh_size);
4986 break;
4987 }
4988 }
4989 }
4990 }
4991 else if (m->includes_filehdr)
4992 {
4993 p->p_vaddr = filehdr_vaddr;
4994 if (! m->p_paddr_valid)
4995 p->p_paddr = filehdr_paddr;
4996 }
4997 else if (m->includes_phdrs)
4998 {
4999 p->p_vaddr = phdrs_vaddr;
5000 if (! m->p_paddr_valid)
5001 p->p_paddr = phdrs_paddr;
5002 }
5003 }
5004
5005 elf_tdata (abfd)->next_file_pos = off;
5006
5007 return TRUE;
5008 }
5009
5010 /* Work out the file positions of all the sections. This is called by
5011 _bfd_elf_compute_section_file_positions. All the section sizes and
5012 VMAs must be known before this is called.
5013
5014 Reloc sections come in two flavours: Those processed specially as
5015 "side-channel" data attached to a section to which they apply, and
5016 those that bfd doesn't process as relocations. The latter sort are
5017 stored in a normal bfd section by bfd_section_from_shdr. We don't
5018 consider the former sort here, unless they form part of the loadable
5019 image. Reloc sections not assigned here will be handled later by
5020 assign_file_positions_for_relocs.
5021
5022 We also don't set the positions of the .symtab and .strtab here. */
5023
5024 static bfd_boolean
5025 assign_file_positions_except_relocs (bfd *abfd,
5026 struct bfd_link_info *link_info)
5027 {
5028 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5029 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5030 file_ptr off;
5031 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5032
5033 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5034 && bfd_get_format (abfd) != bfd_core)
5035 {
5036 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5037 unsigned int num_sec = elf_numsections (abfd);
5038 Elf_Internal_Shdr **hdrpp;
5039 unsigned int i;
5040
5041 /* Start after the ELF header. */
5042 off = i_ehdrp->e_ehsize;
5043
5044 /* We are not creating an executable, which means that we are
5045 not creating a program header, and that the actual order of
5046 the sections in the file is unimportant. */
5047 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5048 {
5049 Elf_Internal_Shdr *hdr;
5050
5051 hdr = *hdrpp;
5052 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5053 && hdr->bfd_section == NULL)
5054 || i == tdata->symtab_section
5055 || i == tdata->symtab_shndx_section
5056 || i == tdata->strtab_section)
5057 {
5058 hdr->sh_offset = -1;
5059 }
5060 else
5061 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5062 }
5063 }
5064 else
5065 {
5066 unsigned int alloc;
5067
5068 /* Assign file positions for the loaded sections based on the
5069 assignment of sections to segments. */
5070 if (!assign_file_positions_for_load_sections (abfd, link_info))
5071 return FALSE;
5072
5073 /* And for non-load sections. */
5074 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5075 return FALSE;
5076
5077 if (bed->elf_backend_modify_program_headers != NULL)
5078 {
5079 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5080 return FALSE;
5081 }
5082
5083 /* Write out the program headers. */
5084 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5085 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5086 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5087 return FALSE;
5088
5089 off = tdata->next_file_pos;
5090 }
5091
5092 /* Place the section headers. */
5093 off = align_file_position (off, 1 << bed->s->log_file_align);
5094 i_ehdrp->e_shoff = off;
5095 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5096
5097 tdata->next_file_pos = off;
5098
5099 return TRUE;
5100 }
5101
5102 static bfd_boolean
5103 prep_headers (bfd *abfd)
5104 {
5105 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5106 struct elf_strtab_hash *shstrtab;
5107 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5108
5109 i_ehdrp = elf_elfheader (abfd);
5110
5111 shstrtab = _bfd_elf_strtab_init ();
5112 if (shstrtab == NULL)
5113 return FALSE;
5114
5115 elf_shstrtab (abfd) = shstrtab;
5116
5117 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5118 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5119 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5120 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5121
5122 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5123 i_ehdrp->e_ident[EI_DATA] =
5124 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5125 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5126
5127 if ((abfd->flags & DYNAMIC) != 0)
5128 i_ehdrp->e_type = ET_DYN;
5129 else if ((abfd->flags & EXEC_P) != 0)
5130 i_ehdrp->e_type = ET_EXEC;
5131 else if (bfd_get_format (abfd) == bfd_core)
5132 i_ehdrp->e_type = ET_CORE;
5133 else
5134 i_ehdrp->e_type = ET_REL;
5135
5136 switch (bfd_get_arch (abfd))
5137 {
5138 case bfd_arch_unknown:
5139 i_ehdrp->e_machine = EM_NONE;
5140 break;
5141
5142 /* There used to be a long list of cases here, each one setting
5143 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5144 in the corresponding bfd definition. To avoid duplication,
5145 the switch was removed. Machines that need special handling
5146 can generally do it in elf_backend_final_write_processing(),
5147 unless they need the information earlier than the final write.
5148 Such need can generally be supplied by replacing the tests for
5149 e_machine with the conditions used to determine it. */
5150 default:
5151 i_ehdrp->e_machine = bed->elf_machine_code;
5152 }
5153
5154 i_ehdrp->e_version = bed->s->ev_current;
5155 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5156
5157 /* No program header, for now. */
5158 i_ehdrp->e_phoff = 0;
5159 i_ehdrp->e_phentsize = 0;
5160 i_ehdrp->e_phnum = 0;
5161
5162 /* Each bfd section is section header entry. */
5163 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5164 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5165
5166 /* If we're building an executable, we'll need a program header table. */
5167 if (abfd->flags & EXEC_P)
5168 /* It all happens later. */
5169 ;
5170 else
5171 {
5172 i_ehdrp->e_phentsize = 0;
5173 i_ehdrp->e_phoff = 0;
5174 }
5175
5176 elf_tdata (abfd)->symtab_hdr.sh_name =
5177 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5178 elf_tdata (abfd)->strtab_hdr.sh_name =
5179 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5180 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5181 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5182 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5183 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5184 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5185 return FALSE;
5186
5187 return TRUE;
5188 }
5189
5190 /* Assign file positions for all the reloc sections which are not part
5191 of the loadable file image. */
5192
5193 void
5194 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5195 {
5196 file_ptr off;
5197 unsigned int i, num_sec;
5198 Elf_Internal_Shdr **shdrpp;
5199
5200 off = elf_tdata (abfd)->next_file_pos;
5201
5202 num_sec = elf_numsections (abfd);
5203 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5204 {
5205 Elf_Internal_Shdr *shdrp;
5206
5207 shdrp = *shdrpp;
5208 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5209 && shdrp->sh_offset == -1)
5210 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5211 }
5212
5213 elf_tdata (abfd)->next_file_pos = off;
5214 }
5215
5216 bfd_boolean
5217 _bfd_elf_write_object_contents (bfd *abfd)
5218 {
5219 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5220 Elf_Internal_Shdr **i_shdrp;
5221 bfd_boolean failed;
5222 unsigned int count, num_sec;
5223
5224 if (! abfd->output_has_begun
5225 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5226 return FALSE;
5227
5228 i_shdrp = elf_elfsections (abfd);
5229
5230 failed = FALSE;
5231 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5232 if (failed)
5233 return FALSE;
5234
5235 _bfd_elf_assign_file_positions_for_relocs (abfd);
5236
5237 /* After writing the headers, we need to write the sections too... */
5238 num_sec = elf_numsections (abfd);
5239 for (count = 1; count < num_sec; count++)
5240 {
5241 if (bed->elf_backend_section_processing)
5242 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5243 if (i_shdrp[count]->contents)
5244 {
5245 bfd_size_type amt = i_shdrp[count]->sh_size;
5246
5247 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5248 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5249 return FALSE;
5250 }
5251 }
5252
5253 /* Write out the section header names. */
5254 if (elf_shstrtab (abfd) != NULL
5255 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5256 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5257 return FALSE;
5258
5259 if (bed->elf_backend_final_write_processing)
5260 (*bed->elf_backend_final_write_processing) (abfd,
5261 elf_tdata (abfd)->linker);
5262
5263 if (!bed->s->write_shdrs_and_ehdr (abfd))
5264 return FALSE;
5265
5266 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5267 if (elf_tdata (abfd)->after_write_object_contents)
5268 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5269
5270 return TRUE;
5271 }
5272
5273 bfd_boolean
5274 _bfd_elf_write_corefile_contents (bfd *abfd)
5275 {
5276 /* Hopefully this can be done just like an object file. */
5277 return _bfd_elf_write_object_contents (abfd);
5278 }
5279
5280 /* Given a section, search the header to find them. */
5281
5282 unsigned int
5283 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5284 {
5285 const struct elf_backend_data *bed;
5286 unsigned int sec_index;
5287
5288 if (elf_section_data (asect) != NULL
5289 && elf_section_data (asect)->this_idx != 0)
5290 return elf_section_data (asect)->this_idx;
5291
5292 if (bfd_is_abs_section (asect))
5293 sec_index = SHN_ABS;
5294 else if (bfd_is_com_section (asect))
5295 sec_index = SHN_COMMON;
5296 else if (bfd_is_und_section (asect))
5297 sec_index = SHN_UNDEF;
5298 else
5299 sec_index = SHN_BAD;
5300
5301 bed = get_elf_backend_data (abfd);
5302 if (bed->elf_backend_section_from_bfd_section)
5303 {
5304 int retval = sec_index;
5305
5306 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5307 return retval;
5308 }
5309
5310 if (sec_index == SHN_BAD)
5311 bfd_set_error (bfd_error_nonrepresentable_section);
5312
5313 return sec_index;
5314 }
5315
5316 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5317 on error. */
5318
5319 int
5320 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5321 {
5322 asymbol *asym_ptr = *asym_ptr_ptr;
5323 int idx;
5324 flagword flags = asym_ptr->flags;
5325
5326 /* When gas creates relocations against local labels, it creates its
5327 own symbol for the section, but does put the symbol into the
5328 symbol chain, so udata is 0. When the linker is generating
5329 relocatable output, this section symbol may be for one of the
5330 input sections rather than the output section. */
5331 if (asym_ptr->udata.i == 0
5332 && (flags & BSF_SECTION_SYM)
5333 && asym_ptr->section)
5334 {
5335 asection *sec;
5336 int indx;
5337
5338 sec = asym_ptr->section;
5339 if (sec->owner != abfd && sec->output_section != NULL)
5340 sec = sec->output_section;
5341 if (sec->owner == abfd
5342 && (indx = sec->index) < elf_num_section_syms (abfd)
5343 && elf_section_syms (abfd)[indx] != NULL)
5344 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5345 }
5346
5347 idx = asym_ptr->udata.i;
5348
5349 if (idx == 0)
5350 {
5351 /* This case can occur when using --strip-symbol on a symbol
5352 which is used in a relocation entry. */
5353 (*_bfd_error_handler)
5354 (_("%B: symbol `%s' required but not present"),
5355 abfd, bfd_asymbol_name (asym_ptr));
5356 bfd_set_error (bfd_error_no_symbols);
5357 return -1;
5358 }
5359
5360 #if DEBUG & 4
5361 {
5362 fprintf (stderr,
5363 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5364 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5365 fflush (stderr);
5366 }
5367 #endif
5368
5369 return idx;
5370 }
5371
5372 /* Rewrite program header information. */
5373
5374 static bfd_boolean
5375 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5376 {
5377 Elf_Internal_Ehdr *iehdr;
5378 struct elf_segment_map *map;
5379 struct elf_segment_map *map_first;
5380 struct elf_segment_map **pointer_to_map;
5381 Elf_Internal_Phdr *segment;
5382 asection *section;
5383 unsigned int i;
5384 unsigned int num_segments;
5385 bfd_boolean phdr_included = FALSE;
5386 bfd_boolean p_paddr_valid;
5387 bfd_vma maxpagesize;
5388 struct elf_segment_map *phdr_adjust_seg = NULL;
5389 unsigned int phdr_adjust_num = 0;
5390 const struct elf_backend_data *bed;
5391
5392 bed = get_elf_backend_data (ibfd);
5393 iehdr = elf_elfheader (ibfd);
5394
5395 map_first = NULL;
5396 pointer_to_map = &map_first;
5397
5398 num_segments = elf_elfheader (ibfd)->e_phnum;
5399 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5400
5401 /* Returns the end address of the segment + 1. */
5402 #define SEGMENT_END(segment, start) \
5403 (start + (segment->p_memsz > segment->p_filesz \
5404 ? segment->p_memsz : segment->p_filesz))
5405
5406 #define SECTION_SIZE(section, segment) \
5407 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5408 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5409 ? section->size : 0)
5410
5411 /* Returns TRUE if the given section is contained within
5412 the given segment. VMA addresses are compared. */
5413 #define IS_CONTAINED_BY_VMA(section, segment) \
5414 (section->vma >= segment->p_vaddr \
5415 && (section->vma + SECTION_SIZE (section, segment) \
5416 <= (SEGMENT_END (segment, segment->p_vaddr))))
5417
5418 /* Returns TRUE if the given section is contained within
5419 the given segment. LMA addresses are compared. */
5420 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5421 (section->lma >= base \
5422 && (section->lma + SECTION_SIZE (section, segment) \
5423 <= SEGMENT_END (segment, base)))
5424
5425 /* Handle PT_NOTE segment. */
5426 #define IS_NOTE(p, s) \
5427 (p->p_type == PT_NOTE \
5428 && elf_section_type (s) == SHT_NOTE \
5429 && (bfd_vma) s->filepos >= p->p_offset \
5430 && ((bfd_vma) s->filepos + s->size \
5431 <= p->p_offset + p->p_filesz))
5432
5433 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5434 etc. */
5435 #define IS_COREFILE_NOTE(p, s) \
5436 (IS_NOTE (p, s) \
5437 && bfd_get_format (ibfd) == bfd_core \
5438 && s->vma == 0 \
5439 && s->lma == 0)
5440
5441 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5442 linker, which generates a PT_INTERP section with p_vaddr and
5443 p_memsz set to 0. */
5444 #define IS_SOLARIS_PT_INTERP(p, s) \
5445 (p->p_vaddr == 0 \
5446 && p->p_paddr == 0 \
5447 && p->p_memsz == 0 \
5448 && p->p_filesz > 0 \
5449 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5450 && s->size > 0 \
5451 && (bfd_vma) s->filepos >= p->p_offset \
5452 && ((bfd_vma) s->filepos + s->size \
5453 <= p->p_offset + p->p_filesz))
5454
5455 /* Decide if the given section should be included in the given segment.
5456 A section will be included if:
5457 1. It is within the address space of the segment -- we use the LMA
5458 if that is set for the segment and the VMA otherwise,
5459 2. It is an allocated section or a NOTE section in a PT_NOTE
5460 segment.
5461 3. There is an output section associated with it,
5462 4. The section has not already been allocated to a previous segment.
5463 5. PT_GNU_STACK segments do not include any sections.
5464 6. PT_TLS segment includes only SHF_TLS sections.
5465 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5466 8. PT_DYNAMIC should not contain empty sections at the beginning
5467 (with the possible exception of .dynamic). */
5468 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5469 ((((segment->p_paddr \
5470 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5471 : IS_CONTAINED_BY_VMA (section, segment)) \
5472 && (section->flags & SEC_ALLOC) != 0) \
5473 || IS_NOTE (segment, section)) \
5474 && segment->p_type != PT_GNU_STACK \
5475 && (segment->p_type != PT_TLS \
5476 || (section->flags & SEC_THREAD_LOCAL)) \
5477 && (segment->p_type == PT_LOAD \
5478 || segment->p_type == PT_TLS \
5479 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5480 && (segment->p_type != PT_DYNAMIC \
5481 || SECTION_SIZE (section, segment) > 0 \
5482 || (segment->p_paddr \
5483 ? segment->p_paddr != section->lma \
5484 : segment->p_vaddr != section->vma) \
5485 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5486 == 0)) \
5487 && !section->segment_mark)
5488
5489 /* If the output section of a section in the input segment is NULL,
5490 it is removed from the corresponding output segment. */
5491 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5492 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5493 && section->output_section != NULL)
5494
5495 /* Returns TRUE iff seg1 starts after the end of seg2. */
5496 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5497 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5498
5499 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5500 their VMA address ranges and their LMA address ranges overlap.
5501 It is possible to have overlapping VMA ranges without overlapping LMA
5502 ranges. RedBoot images for example can have both .data and .bss mapped
5503 to the same VMA range, but with the .data section mapped to a different
5504 LMA. */
5505 #define SEGMENT_OVERLAPS(seg1, seg2) \
5506 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5507 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5508 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5509 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5510
5511 /* Initialise the segment mark field. */
5512 for (section = ibfd->sections; section != NULL; section = section->next)
5513 section->segment_mark = FALSE;
5514
5515 /* The Solaris linker creates program headers in which all the
5516 p_paddr fields are zero. When we try to objcopy or strip such a
5517 file, we get confused. Check for this case, and if we find it
5518 don't set the p_paddr_valid fields. */
5519 p_paddr_valid = FALSE;
5520 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5521 i < num_segments;
5522 i++, segment++)
5523 if (segment->p_paddr != 0)
5524 {
5525 p_paddr_valid = TRUE;
5526 break;
5527 }
5528
5529 /* Scan through the segments specified in the program header
5530 of the input BFD. For this first scan we look for overlaps
5531 in the loadable segments. These can be created by weird
5532 parameters to objcopy. Also, fix some solaris weirdness. */
5533 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5534 i < num_segments;
5535 i++, segment++)
5536 {
5537 unsigned int j;
5538 Elf_Internal_Phdr *segment2;
5539
5540 if (segment->p_type == PT_INTERP)
5541 for (section = ibfd->sections; section; section = section->next)
5542 if (IS_SOLARIS_PT_INTERP (segment, section))
5543 {
5544 /* Mininal change so that the normal section to segment
5545 assignment code will work. */
5546 segment->p_vaddr = section->vma;
5547 break;
5548 }
5549
5550 if (segment->p_type != PT_LOAD)
5551 {
5552 /* Remove PT_GNU_RELRO segment. */
5553 if (segment->p_type == PT_GNU_RELRO)
5554 segment->p_type = PT_NULL;
5555 continue;
5556 }
5557
5558 /* Determine if this segment overlaps any previous segments. */
5559 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5560 {
5561 bfd_signed_vma extra_length;
5562
5563 if (segment2->p_type != PT_LOAD
5564 || !SEGMENT_OVERLAPS (segment, segment2))
5565 continue;
5566
5567 /* Merge the two segments together. */
5568 if (segment2->p_vaddr < segment->p_vaddr)
5569 {
5570 /* Extend SEGMENT2 to include SEGMENT and then delete
5571 SEGMENT. */
5572 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5573 - SEGMENT_END (segment2, segment2->p_vaddr));
5574
5575 if (extra_length > 0)
5576 {
5577 segment2->p_memsz += extra_length;
5578 segment2->p_filesz += extra_length;
5579 }
5580
5581 segment->p_type = PT_NULL;
5582
5583 /* Since we have deleted P we must restart the outer loop. */
5584 i = 0;
5585 segment = elf_tdata (ibfd)->phdr;
5586 break;
5587 }
5588 else
5589 {
5590 /* Extend SEGMENT to include SEGMENT2 and then delete
5591 SEGMENT2. */
5592 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5593 - SEGMENT_END (segment, segment->p_vaddr));
5594
5595 if (extra_length > 0)
5596 {
5597 segment->p_memsz += extra_length;
5598 segment->p_filesz += extra_length;
5599 }
5600
5601 segment2->p_type = PT_NULL;
5602 }
5603 }
5604 }
5605
5606 /* The second scan attempts to assign sections to segments. */
5607 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5608 i < num_segments;
5609 i++, segment++)
5610 {
5611 unsigned int section_count;
5612 asection **sections;
5613 asection *output_section;
5614 unsigned int isec;
5615 bfd_vma matching_lma;
5616 bfd_vma suggested_lma;
5617 unsigned int j;
5618 bfd_size_type amt;
5619 asection *first_section;
5620 bfd_boolean first_matching_lma;
5621 bfd_boolean first_suggested_lma;
5622
5623 if (segment->p_type == PT_NULL)
5624 continue;
5625
5626 first_section = NULL;
5627 /* Compute how many sections might be placed into this segment. */
5628 for (section = ibfd->sections, section_count = 0;
5629 section != NULL;
5630 section = section->next)
5631 {
5632 /* Find the first section in the input segment, which may be
5633 removed from the corresponding output segment. */
5634 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5635 {
5636 if (first_section == NULL)
5637 first_section = section;
5638 if (section->output_section != NULL)
5639 ++section_count;
5640 }
5641 }
5642
5643 /* Allocate a segment map big enough to contain
5644 all of the sections we have selected. */
5645 amt = sizeof (struct elf_segment_map);
5646 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5647 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5648 if (map == NULL)
5649 return FALSE;
5650
5651 /* Initialise the fields of the segment map. Default to
5652 using the physical address of the segment in the input BFD. */
5653 map->next = NULL;
5654 map->p_type = segment->p_type;
5655 map->p_flags = segment->p_flags;
5656 map->p_flags_valid = 1;
5657
5658 /* If the first section in the input segment is removed, there is
5659 no need to preserve segment physical address in the corresponding
5660 output segment. */
5661 if (!first_section || first_section->output_section != NULL)
5662 {
5663 map->p_paddr = segment->p_paddr;
5664 map->p_paddr_valid = p_paddr_valid;
5665 }
5666
5667 /* Determine if this segment contains the ELF file header
5668 and if it contains the program headers themselves. */
5669 map->includes_filehdr = (segment->p_offset == 0
5670 && segment->p_filesz >= iehdr->e_ehsize);
5671 map->includes_phdrs = 0;
5672
5673 if (!phdr_included || segment->p_type != PT_LOAD)
5674 {
5675 map->includes_phdrs =
5676 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5677 && (segment->p_offset + segment->p_filesz
5678 >= ((bfd_vma) iehdr->e_phoff
5679 + iehdr->e_phnum * iehdr->e_phentsize)));
5680
5681 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5682 phdr_included = TRUE;
5683 }
5684
5685 if (section_count == 0)
5686 {
5687 /* Special segments, such as the PT_PHDR segment, may contain
5688 no sections, but ordinary, loadable segments should contain
5689 something. They are allowed by the ELF spec however, so only
5690 a warning is produced. */
5691 if (segment->p_type == PT_LOAD)
5692 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5693 " detected, is this intentional ?\n"),
5694 ibfd);
5695
5696 map->count = 0;
5697 *pointer_to_map = map;
5698 pointer_to_map = &map->next;
5699
5700 continue;
5701 }
5702
5703 /* Now scan the sections in the input BFD again and attempt
5704 to add their corresponding output sections to the segment map.
5705 The problem here is how to handle an output section which has
5706 been moved (ie had its LMA changed). There are four possibilities:
5707
5708 1. None of the sections have been moved.
5709 In this case we can continue to use the segment LMA from the
5710 input BFD.
5711
5712 2. All of the sections have been moved by the same amount.
5713 In this case we can change the segment's LMA to match the LMA
5714 of the first section.
5715
5716 3. Some of the sections have been moved, others have not.
5717 In this case those sections which have not been moved can be
5718 placed in the current segment which will have to have its size,
5719 and possibly its LMA changed, and a new segment or segments will
5720 have to be created to contain the other sections.
5721
5722 4. The sections have been moved, but not by the same amount.
5723 In this case we can change the segment's LMA to match the LMA
5724 of the first section and we will have to create a new segment
5725 or segments to contain the other sections.
5726
5727 In order to save time, we allocate an array to hold the section
5728 pointers that we are interested in. As these sections get assigned
5729 to a segment, they are removed from this array. */
5730
5731 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5732 if (sections == NULL)
5733 return FALSE;
5734
5735 /* Step One: Scan for segment vs section LMA conflicts.
5736 Also add the sections to the section array allocated above.
5737 Also add the sections to the current segment. In the common
5738 case, where the sections have not been moved, this means that
5739 we have completely filled the segment, and there is nothing
5740 more to do. */
5741 isec = 0;
5742 matching_lma = 0;
5743 suggested_lma = 0;
5744 first_matching_lma = TRUE;
5745 first_suggested_lma = TRUE;
5746
5747 for (section = ibfd->sections;
5748 section != NULL;
5749 section = section->next)
5750 if (section == first_section)
5751 break;
5752
5753 for (j = 0; section != NULL; section = section->next)
5754 {
5755 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5756 {
5757 output_section = section->output_section;
5758
5759 sections[j++] = section;
5760
5761 /* The Solaris native linker always sets p_paddr to 0.
5762 We try to catch that case here, and set it to the
5763 correct value. Note - some backends require that
5764 p_paddr be left as zero. */
5765 if (!p_paddr_valid
5766 && segment->p_vaddr != 0
5767 && !bed->want_p_paddr_set_to_zero
5768 && isec == 0
5769 && output_section->lma != 0
5770 && output_section->vma == (segment->p_vaddr
5771 + (map->includes_filehdr
5772 ? iehdr->e_ehsize
5773 : 0)
5774 + (map->includes_phdrs
5775 ? (iehdr->e_phnum
5776 * iehdr->e_phentsize)
5777 : 0)))
5778 map->p_paddr = segment->p_vaddr;
5779
5780 /* Match up the physical address of the segment with the
5781 LMA address of the output section. */
5782 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5783 || IS_COREFILE_NOTE (segment, section)
5784 || (bed->want_p_paddr_set_to_zero
5785 && IS_CONTAINED_BY_VMA (output_section, segment)))
5786 {
5787 if (first_matching_lma || output_section->lma < matching_lma)
5788 {
5789 matching_lma = output_section->lma;
5790 first_matching_lma = FALSE;
5791 }
5792
5793 /* We assume that if the section fits within the segment
5794 then it does not overlap any other section within that
5795 segment. */
5796 map->sections[isec++] = output_section;
5797 }
5798 else if (first_suggested_lma)
5799 {
5800 suggested_lma = output_section->lma;
5801 first_suggested_lma = FALSE;
5802 }
5803
5804 if (j == section_count)
5805 break;
5806 }
5807 }
5808
5809 BFD_ASSERT (j == section_count);
5810
5811 /* Step Two: Adjust the physical address of the current segment,
5812 if necessary. */
5813 if (isec == section_count)
5814 {
5815 /* All of the sections fitted within the segment as currently
5816 specified. This is the default case. Add the segment to
5817 the list of built segments and carry on to process the next
5818 program header in the input BFD. */
5819 map->count = section_count;
5820 *pointer_to_map = map;
5821 pointer_to_map = &map->next;
5822
5823 if (p_paddr_valid
5824 && !bed->want_p_paddr_set_to_zero
5825 && matching_lma != map->p_paddr
5826 && !map->includes_filehdr
5827 && !map->includes_phdrs)
5828 /* There is some padding before the first section in the
5829 segment. So, we must account for that in the output
5830 segment's vma. */
5831 map->p_vaddr_offset = matching_lma - map->p_paddr;
5832
5833 free (sections);
5834 continue;
5835 }
5836 else
5837 {
5838 if (!first_matching_lma)
5839 {
5840 /* At least one section fits inside the current segment.
5841 Keep it, but modify its physical address to match the
5842 LMA of the first section that fitted. */
5843 map->p_paddr = matching_lma;
5844 }
5845 else
5846 {
5847 /* None of the sections fitted inside the current segment.
5848 Change the current segment's physical address to match
5849 the LMA of the first section. */
5850 map->p_paddr = suggested_lma;
5851 }
5852
5853 /* Offset the segment physical address from the lma
5854 to allow for space taken up by elf headers. */
5855 if (map->includes_filehdr)
5856 {
5857 if (map->p_paddr >= iehdr->e_ehsize)
5858 map->p_paddr -= iehdr->e_ehsize;
5859 else
5860 {
5861 map->includes_filehdr = FALSE;
5862 map->includes_phdrs = FALSE;
5863 }
5864 }
5865
5866 if (map->includes_phdrs)
5867 {
5868 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5869 {
5870 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5871
5872 /* iehdr->e_phnum is just an estimate of the number
5873 of program headers that we will need. Make a note
5874 here of the number we used and the segment we chose
5875 to hold these headers, so that we can adjust the
5876 offset when we know the correct value. */
5877 phdr_adjust_num = iehdr->e_phnum;
5878 phdr_adjust_seg = map;
5879 }
5880 else
5881 map->includes_phdrs = FALSE;
5882 }
5883 }
5884
5885 /* Step Three: Loop over the sections again, this time assigning
5886 those that fit to the current segment and removing them from the
5887 sections array; but making sure not to leave large gaps. Once all
5888 possible sections have been assigned to the current segment it is
5889 added to the list of built segments and if sections still remain
5890 to be assigned, a new segment is constructed before repeating
5891 the loop. */
5892 isec = 0;
5893 do
5894 {
5895 map->count = 0;
5896 suggested_lma = 0;
5897 first_suggested_lma = TRUE;
5898
5899 /* Fill the current segment with sections that fit. */
5900 for (j = 0; j < section_count; j++)
5901 {
5902 section = sections[j];
5903
5904 if (section == NULL)
5905 continue;
5906
5907 output_section = section->output_section;
5908
5909 BFD_ASSERT (output_section != NULL);
5910
5911 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5912 || IS_COREFILE_NOTE (segment, section))
5913 {
5914 if (map->count == 0)
5915 {
5916 /* If the first section in a segment does not start at
5917 the beginning of the segment, then something is
5918 wrong. */
5919 if (output_section->lma
5920 != (map->p_paddr
5921 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5922 + (map->includes_phdrs
5923 ? iehdr->e_phnum * iehdr->e_phentsize
5924 : 0)))
5925 abort ();
5926 }
5927 else
5928 {
5929 asection *prev_sec;
5930
5931 prev_sec = map->sections[map->count - 1];
5932
5933 /* If the gap between the end of the previous section
5934 and the start of this section is more than
5935 maxpagesize then we need to start a new segment. */
5936 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5937 maxpagesize)
5938 < BFD_ALIGN (output_section->lma, maxpagesize))
5939 || (prev_sec->lma + prev_sec->size
5940 > output_section->lma))
5941 {
5942 if (first_suggested_lma)
5943 {
5944 suggested_lma = output_section->lma;
5945 first_suggested_lma = FALSE;
5946 }
5947
5948 continue;
5949 }
5950 }
5951
5952 map->sections[map->count++] = output_section;
5953 ++isec;
5954 sections[j] = NULL;
5955 section->segment_mark = TRUE;
5956 }
5957 else if (first_suggested_lma)
5958 {
5959 suggested_lma = output_section->lma;
5960 first_suggested_lma = FALSE;
5961 }
5962 }
5963
5964 BFD_ASSERT (map->count > 0);
5965
5966 /* Add the current segment to the list of built segments. */
5967 *pointer_to_map = map;
5968 pointer_to_map = &map->next;
5969
5970 if (isec < section_count)
5971 {
5972 /* We still have not allocated all of the sections to
5973 segments. Create a new segment here, initialise it
5974 and carry on looping. */
5975 amt = sizeof (struct elf_segment_map);
5976 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5977 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5978 if (map == NULL)
5979 {
5980 free (sections);
5981 return FALSE;
5982 }
5983
5984 /* Initialise the fields of the segment map. Set the physical
5985 physical address to the LMA of the first section that has
5986 not yet been assigned. */
5987 map->next = NULL;
5988 map->p_type = segment->p_type;
5989 map->p_flags = segment->p_flags;
5990 map->p_flags_valid = 1;
5991 map->p_paddr = suggested_lma;
5992 map->p_paddr_valid = p_paddr_valid;
5993 map->includes_filehdr = 0;
5994 map->includes_phdrs = 0;
5995 }
5996 }
5997 while (isec < section_count);
5998
5999 free (sections);
6000 }
6001
6002 elf_tdata (obfd)->segment_map = map_first;
6003
6004 /* If we had to estimate the number of program headers that were
6005 going to be needed, then check our estimate now and adjust
6006 the offset if necessary. */
6007 if (phdr_adjust_seg != NULL)
6008 {
6009 unsigned int count;
6010
6011 for (count = 0, map = map_first; map != NULL; map = map->next)
6012 count++;
6013
6014 if (count > phdr_adjust_num)
6015 phdr_adjust_seg->p_paddr
6016 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6017 }
6018
6019 #undef SEGMENT_END
6020 #undef SECTION_SIZE
6021 #undef IS_CONTAINED_BY_VMA
6022 #undef IS_CONTAINED_BY_LMA
6023 #undef IS_NOTE
6024 #undef IS_COREFILE_NOTE
6025 #undef IS_SOLARIS_PT_INTERP
6026 #undef IS_SECTION_IN_INPUT_SEGMENT
6027 #undef INCLUDE_SECTION_IN_SEGMENT
6028 #undef SEGMENT_AFTER_SEGMENT
6029 #undef SEGMENT_OVERLAPS
6030 return TRUE;
6031 }
6032
6033 /* Copy ELF program header information. */
6034
6035 static bfd_boolean
6036 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6037 {
6038 Elf_Internal_Ehdr *iehdr;
6039 struct elf_segment_map *map;
6040 struct elf_segment_map *map_first;
6041 struct elf_segment_map **pointer_to_map;
6042 Elf_Internal_Phdr *segment;
6043 unsigned int i;
6044 unsigned int num_segments;
6045 bfd_boolean phdr_included = FALSE;
6046 bfd_boolean p_paddr_valid;
6047
6048 iehdr = elf_elfheader (ibfd);
6049
6050 map_first = NULL;
6051 pointer_to_map = &map_first;
6052
6053 /* If all the segment p_paddr fields are zero, don't set
6054 map->p_paddr_valid. */
6055 p_paddr_valid = FALSE;
6056 num_segments = elf_elfheader (ibfd)->e_phnum;
6057 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6058 i < num_segments;
6059 i++, segment++)
6060 if (segment->p_paddr != 0)
6061 {
6062 p_paddr_valid = TRUE;
6063 break;
6064 }
6065
6066 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6067 i < num_segments;
6068 i++, segment++)
6069 {
6070 asection *section;
6071 unsigned int section_count;
6072 bfd_size_type amt;
6073 Elf_Internal_Shdr *this_hdr;
6074 asection *first_section = NULL;
6075 asection *lowest_section;
6076
6077 /* Compute how many sections are in this segment. */
6078 for (section = ibfd->sections, section_count = 0;
6079 section != NULL;
6080 section = section->next)
6081 {
6082 this_hdr = &(elf_section_data(section)->this_hdr);
6083 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6084 {
6085 if (first_section == NULL)
6086 first_section = section;
6087 section_count++;
6088 }
6089 }
6090
6091 /* Allocate a segment map big enough to contain
6092 all of the sections we have selected. */
6093 amt = sizeof (struct elf_segment_map);
6094 if (section_count != 0)
6095 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6096 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6097 if (map == NULL)
6098 return FALSE;
6099
6100 /* Initialize the fields of the output segment map with the
6101 input segment. */
6102 map->next = NULL;
6103 map->p_type = segment->p_type;
6104 map->p_flags = segment->p_flags;
6105 map->p_flags_valid = 1;
6106 map->p_paddr = segment->p_paddr;
6107 map->p_paddr_valid = p_paddr_valid;
6108 map->p_align = segment->p_align;
6109 map->p_align_valid = 1;
6110 map->p_vaddr_offset = 0;
6111
6112 if (map->p_type == PT_GNU_RELRO)
6113 {
6114 /* The PT_GNU_RELRO segment may contain the first a few
6115 bytes in the .got.plt section even if the whole .got.plt
6116 section isn't in the PT_GNU_RELRO segment. We won't
6117 change the size of the PT_GNU_RELRO segment. */
6118 map->p_size = segment->p_memsz;
6119 map->p_size_valid = 1;
6120 }
6121
6122 /* Determine if this segment contains the ELF file header
6123 and if it contains the program headers themselves. */
6124 map->includes_filehdr = (segment->p_offset == 0
6125 && segment->p_filesz >= iehdr->e_ehsize);
6126
6127 map->includes_phdrs = 0;
6128 if (! phdr_included || segment->p_type != PT_LOAD)
6129 {
6130 map->includes_phdrs =
6131 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6132 && (segment->p_offset + segment->p_filesz
6133 >= ((bfd_vma) iehdr->e_phoff
6134 + iehdr->e_phnum * iehdr->e_phentsize)));
6135
6136 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6137 phdr_included = TRUE;
6138 }
6139
6140 lowest_section = first_section;
6141 if (section_count != 0)
6142 {
6143 unsigned int isec = 0;
6144
6145 for (section = first_section;
6146 section != NULL;
6147 section = section->next)
6148 {
6149 this_hdr = &(elf_section_data(section)->this_hdr);
6150 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6151 {
6152 map->sections[isec++] = section->output_section;
6153 if (section->lma < lowest_section->lma)
6154 lowest_section = section;
6155 if ((section->flags & SEC_ALLOC) != 0)
6156 {
6157 bfd_vma seg_off;
6158
6159 /* Section lmas are set up from PT_LOAD header
6160 p_paddr in _bfd_elf_make_section_from_shdr.
6161 If this header has a p_paddr that disagrees
6162 with the section lma, flag the p_paddr as
6163 invalid. */
6164 if ((section->flags & SEC_LOAD) != 0)
6165 seg_off = this_hdr->sh_offset - segment->p_offset;
6166 else
6167 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6168 if (section->lma - segment->p_paddr != seg_off)
6169 map->p_paddr_valid = FALSE;
6170 }
6171 if (isec == section_count)
6172 break;
6173 }
6174 }
6175 }
6176
6177 if (map->includes_filehdr && lowest_section != NULL)
6178 /* We need to keep the space used by the headers fixed. */
6179 map->header_size = lowest_section->vma - segment->p_vaddr;
6180
6181 if (!map->includes_phdrs
6182 && !map->includes_filehdr
6183 && map->p_paddr_valid)
6184 /* There is some other padding before the first section. */
6185 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6186 - segment->p_paddr);
6187
6188 map->count = section_count;
6189 *pointer_to_map = map;
6190 pointer_to_map = &map->next;
6191 }
6192
6193 elf_tdata (obfd)->segment_map = map_first;
6194 return TRUE;
6195 }
6196
6197 /* Copy private BFD data. This copies or rewrites ELF program header
6198 information. */
6199
6200 static bfd_boolean
6201 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6202 {
6203 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6204 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6205 return TRUE;
6206
6207 if (elf_tdata (ibfd)->phdr == NULL)
6208 return TRUE;
6209
6210 if (ibfd->xvec == obfd->xvec)
6211 {
6212 /* Check to see if any sections in the input BFD
6213 covered by ELF program header have changed. */
6214 Elf_Internal_Phdr *segment;
6215 asection *section, *osec;
6216 unsigned int i, num_segments;
6217 Elf_Internal_Shdr *this_hdr;
6218 const struct elf_backend_data *bed;
6219
6220 bed = get_elf_backend_data (ibfd);
6221
6222 /* Regenerate the segment map if p_paddr is set to 0. */
6223 if (bed->want_p_paddr_set_to_zero)
6224 goto rewrite;
6225
6226 /* Initialize the segment mark field. */
6227 for (section = obfd->sections; section != NULL;
6228 section = section->next)
6229 section->segment_mark = FALSE;
6230
6231 num_segments = elf_elfheader (ibfd)->e_phnum;
6232 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6233 i < num_segments;
6234 i++, segment++)
6235 {
6236 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6237 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6238 which severly confuses things, so always regenerate the segment
6239 map in this case. */
6240 if (segment->p_paddr == 0
6241 && segment->p_memsz == 0
6242 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6243 goto rewrite;
6244
6245 for (section = ibfd->sections;
6246 section != NULL; section = section->next)
6247 {
6248 /* We mark the output section so that we know it comes
6249 from the input BFD. */
6250 osec = section->output_section;
6251 if (osec)
6252 osec->segment_mark = TRUE;
6253
6254 /* Check if this section is covered by the segment. */
6255 this_hdr = &(elf_section_data(section)->this_hdr);
6256 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6257 {
6258 /* FIXME: Check if its output section is changed or
6259 removed. What else do we need to check? */
6260 if (osec == NULL
6261 || section->flags != osec->flags
6262 || section->lma != osec->lma
6263 || section->vma != osec->vma
6264 || section->size != osec->size
6265 || section->rawsize != osec->rawsize
6266 || section->alignment_power != osec->alignment_power)
6267 goto rewrite;
6268 }
6269 }
6270 }
6271
6272 /* Check to see if any output section do not come from the
6273 input BFD. */
6274 for (section = obfd->sections; section != NULL;
6275 section = section->next)
6276 {
6277 if (section->segment_mark == FALSE)
6278 goto rewrite;
6279 else
6280 section->segment_mark = FALSE;
6281 }
6282
6283 return copy_elf_program_header (ibfd, obfd);
6284 }
6285
6286 rewrite:
6287 return rewrite_elf_program_header (ibfd, obfd);
6288 }
6289
6290 /* Initialize private output section information from input section. */
6291
6292 bfd_boolean
6293 _bfd_elf_init_private_section_data (bfd *ibfd,
6294 asection *isec,
6295 bfd *obfd,
6296 asection *osec,
6297 struct bfd_link_info *link_info)
6298
6299 {
6300 Elf_Internal_Shdr *ihdr, *ohdr;
6301 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6302
6303 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6304 || obfd->xvec->flavour != bfd_target_elf_flavour)
6305 return TRUE;
6306
6307 BFD_ASSERT (elf_section_data (osec) != NULL);
6308
6309 /* For objcopy and relocatable link, don't copy the output ELF
6310 section type from input if the output BFD section flags have been
6311 set to something different. For a final link allow some flags
6312 that the linker clears to differ. */
6313 if (elf_section_type (osec) == SHT_NULL
6314 && (osec->flags == isec->flags
6315 || (final_link
6316 && ((osec->flags ^ isec->flags)
6317 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6318 elf_section_type (osec) = elf_section_type (isec);
6319
6320 /* FIXME: Is this correct for all OS/PROC specific flags? */
6321 elf_section_flags (osec) |= (elf_section_flags (isec)
6322 & (SHF_MASKOS | SHF_MASKPROC));
6323
6324 /* Set things up for objcopy and relocatable link. The output
6325 SHT_GROUP section will have its elf_next_in_group pointing back
6326 to the input group members. Ignore linker created group section.
6327 See elfNN_ia64_object_p in elfxx-ia64.c. */
6328 if (!final_link)
6329 {
6330 if (elf_sec_group (isec) == NULL
6331 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6332 {
6333 if (elf_section_flags (isec) & SHF_GROUP)
6334 elf_section_flags (osec) |= SHF_GROUP;
6335 elf_next_in_group (osec) = elf_next_in_group (isec);
6336 elf_section_data (osec)->group = elf_section_data (isec)->group;
6337 }
6338 }
6339
6340 ihdr = &elf_section_data (isec)->this_hdr;
6341
6342 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6343 don't use the output section of the linked-to section since it
6344 may be NULL at this point. */
6345 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6346 {
6347 ohdr = &elf_section_data (osec)->this_hdr;
6348 ohdr->sh_flags |= SHF_LINK_ORDER;
6349 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6350 }
6351
6352 osec->use_rela_p = isec->use_rela_p;
6353
6354 return TRUE;
6355 }
6356
6357 /* Copy private section information. This copies over the entsize
6358 field, and sometimes the info field. */
6359
6360 bfd_boolean
6361 _bfd_elf_copy_private_section_data (bfd *ibfd,
6362 asection *isec,
6363 bfd *obfd,
6364 asection *osec)
6365 {
6366 Elf_Internal_Shdr *ihdr, *ohdr;
6367
6368 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6369 || obfd->xvec->flavour != bfd_target_elf_flavour)
6370 return TRUE;
6371
6372 ihdr = &elf_section_data (isec)->this_hdr;
6373 ohdr = &elf_section_data (osec)->this_hdr;
6374
6375 ohdr->sh_entsize = ihdr->sh_entsize;
6376
6377 if (ihdr->sh_type == SHT_SYMTAB
6378 || ihdr->sh_type == SHT_DYNSYM
6379 || ihdr->sh_type == SHT_GNU_verneed
6380 || ihdr->sh_type == SHT_GNU_verdef)
6381 ohdr->sh_info = ihdr->sh_info;
6382
6383 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6384 NULL);
6385 }
6386
6387 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6388 necessary if we are removing either the SHT_GROUP section or any of
6389 the group member sections. DISCARDED is the value that a section's
6390 output_section has if the section will be discarded, NULL when this
6391 function is called from objcopy, bfd_abs_section_ptr when called
6392 from the linker. */
6393
6394 bfd_boolean
6395 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6396 {
6397 asection *isec;
6398
6399 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6400 if (elf_section_type (isec) == SHT_GROUP)
6401 {
6402 asection *first = elf_next_in_group (isec);
6403 asection *s = first;
6404 bfd_size_type removed = 0;
6405
6406 while (s != NULL)
6407 {
6408 /* If this member section is being output but the
6409 SHT_GROUP section is not, then clear the group info
6410 set up by _bfd_elf_copy_private_section_data. */
6411 if (s->output_section != discarded
6412 && isec->output_section == discarded)
6413 {
6414 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6415 elf_group_name (s->output_section) = NULL;
6416 }
6417 /* Conversely, if the member section is not being output
6418 but the SHT_GROUP section is, then adjust its size. */
6419 else if (s->output_section == discarded
6420 && isec->output_section != discarded)
6421 removed += 4;
6422 s = elf_next_in_group (s);
6423 if (s == first)
6424 break;
6425 }
6426 if (removed != 0)
6427 {
6428 if (discarded != NULL)
6429 {
6430 /* If we've been called for ld -r, then we need to
6431 adjust the input section size. This function may
6432 be called multiple times, so save the original
6433 size. */
6434 if (isec->rawsize == 0)
6435 isec->rawsize = isec->size;
6436 isec->size = isec->rawsize - removed;
6437 }
6438 else
6439 {
6440 /* Adjust the output section size when called from
6441 objcopy. */
6442 isec->output_section->size -= removed;
6443 }
6444 }
6445 }
6446
6447 return TRUE;
6448 }
6449
6450 /* Copy private header information. */
6451
6452 bfd_boolean
6453 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6454 {
6455 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6456 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6457 return TRUE;
6458
6459 /* Copy over private BFD data if it has not already been copied.
6460 This must be done here, rather than in the copy_private_bfd_data
6461 entry point, because the latter is called after the section
6462 contents have been set, which means that the program headers have
6463 already been worked out. */
6464 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6465 {
6466 if (! copy_private_bfd_data (ibfd, obfd))
6467 return FALSE;
6468 }
6469
6470 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6471 }
6472
6473 /* Copy private symbol information. If this symbol is in a section
6474 which we did not map into a BFD section, try to map the section
6475 index correctly. We use special macro definitions for the mapped
6476 section indices; these definitions are interpreted by the
6477 swap_out_syms function. */
6478
6479 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6480 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6481 #define MAP_STRTAB (SHN_HIOS + 3)
6482 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6483 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6484
6485 bfd_boolean
6486 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6487 asymbol *isymarg,
6488 bfd *obfd,
6489 asymbol *osymarg)
6490 {
6491 elf_symbol_type *isym, *osym;
6492
6493 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6494 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6495 return TRUE;
6496
6497 isym = elf_symbol_from (ibfd, isymarg);
6498 osym = elf_symbol_from (obfd, osymarg);
6499
6500 if (isym != NULL
6501 && isym->internal_elf_sym.st_shndx != 0
6502 && osym != NULL
6503 && bfd_is_abs_section (isym->symbol.section))
6504 {
6505 unsigned int shndx;
6506
6507 shndx = isym->internal_elf_sym.st_shndx;
6508 if (shndx == elf_onesymtab (ibfd))
6509 shndx = MAP_ONESYMTAB;
6510 else if (shndx == elf_dynsymtab (ibfd))
6511 shndx = MAP_DYNSYMTAB;
6512 else if (shndx == elf_tdata (ibfd)->strtab_section)
6513 shndx = MAP_STRTAB;
6514 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6515 shndx = MAP_SHSTRTAB;
6516 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6517 shndx = MAP_SYM_SHNDX;
6518 osym->internal_elf_sym.st_shndx = shndx;
6519 }
6520
6521 return TRUE;
6522 }
6523
6524 /* Swap out the symbols. */
6525
6526 static bfd_boolean
6527 swap_out_syms (bfd *abfd,
6528 struct bfd_strtab_hash **sttp,
6529 int relocatable_p)
6530 {
6531 const struct elf_backend_data *bed;
6532 int symcount;
6533 asymbol **syms;
6534 struct bfd_strtab_hash *stt;
6535 Elf_Internal_Shdr *symtab_hdr;
6536 Elf_Internal_Shdr *symtab_shndx_hdr;
6537 Elf_Internal_Shdr *symstrtab_hdr;
6538 bfd_byte *outbound_syms;
6539 bfd_byte *outbound_shndx;
6540 int idx;
6541 bfd_size_type amt;
6542 bfd_boolean name_local_sections;
6543
6544 if (!elf_map_symbols (abfd))
6545 return FALSE;
6546
6547 /* Dump out the symtabs. */
6548 stt = _bfd_elf_stringtab_init ();
6549 if (stt == NULL)
6550 return FALSE;
6551
6552 bed = get_elf_backend_data (abfd);
6553 symcount = bfd_get_symcount (abfd);
6554 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6555 symtab_hdr->sh_type = SHT_SYMTAB;
6556 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6557 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6558 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6559 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6560
6561 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6562 symstrtab_hdr->sh_type = SHT_STRTAB;
6563
6564 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6565 bed->s->sizeof_sym);
6566 if (outbound_syms == NULL)
6567 {
6568 _bfd_stringtab_free (stt);
6569 return FALSE;
6570 }
6571 symtab_hdr->contents = outbound_syms;
6572
6573 outbound_shndx = NULL;
6574 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6575 if (symtab_shndx_hdr->sh_name != 0)
6576 {
6577 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6578 outbound_shndx = (bfd_byte *)
6579 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6580 if (outbound_shndx == NULL)
6581 {
6582 _bfd_stringtab_free (stt);
6583 return FALSE;
6584 }
6585
6586 symtab_shndx_hdr->contents = outbound_shndx;
6587 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6588 symtab_shndx_hdr->sh_size = amt;
6589 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6590 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6591 }
6592
6593 /* Now generate the data (for "contents"). */
6594 {
6595 /* Fill in zeroth symbol and swap it out. */
6596 Elf_Internal_Sym sym;
6597 sym.st_name = 0;
6598 sym.st_value = 0;
6599 sym.st_size = 0;
6600 sym.st_info = 0;
6601 sym.st_other = 0;
6602 sym.st_shndx = SHN_UNDEF;
6603 sym.st_target_internal = 0;
6604 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6605 outbound_syms += bed->s->sizeof_sym;
6606 if (outbound_shndx != NULL)
6607 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6608 }
6609
6610 name_local_sections
6611 = (bed->elf_backend_name_local_section_symbols
6612 && bed->elf_backend_name_local_section_symbols (abfd));
6613
6614 syms = bfd_get_outsymbols (abfd);
6615 for (idx = 0; idx < symcount; idx++)
6616 {
6617 Elf_Internal_Sym sym;
6618 bfd_vma value = syms[idx]->value;
6619 elf_symbol_type *type_ptr;
6620 flagword flags = syms[idx]->flags;
6621 int type;
6622
6623 if (!name_local_sections
6624 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6625 {
6626 /* Local section symbols have no name. */
6627 sym.st_name = 0;
6628 }
6629 else
6630 {
6631 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6632 syms[idx]->name,
6633 TRUE, FALSE);
6634 if (sym.st_name == (unsigned long) -1)
6635 {
6636 _bfd_stringtab_free (stt);
6637 return FALSE;
6638 }
6639 }
6640
6641 type_ptr = elf_symbol_from (abfd, syms[idx]);
6642
6643 if ((flags & BSF_SECTION_SYM) == 0
6644 && bfd_is_com_section (syms[idx]->section))
6645 {
6646 /* ELF common symbols put the alignment into the `value' field,
6647 and the size into the `size' field. This is backwards from
6648 how BFD handles it, so reverse it here. */
6649 sym.st_size = value;
6650 if (type_ptr == NULL
6651 || type_ptr->internal_elf_sym.st_value == 0)
6652 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6653 else
6654 sym.st_value = type_ptr->internal_elf_sym.st_value;
6655 sym.st_shndx = _bfd_elf_section_from_bfd_section
6656 (abfd, syms[idx]->section);
6657 }
6658 else
6659 {
6660 asection *sec = syms[idx]->section;
6661 unsigned int shndx;
6662
6663 if (sec->output_section)
6664 {
6665 value += sec->output_offset;
6666 sec = sec->output_section;
6667 }
6668
6669 /* Don't add in the section vma for relocatable output. */
6670 if (! relocatable_p)
6671 value += sec->vma;
6672 sym.st_value = value;
6673 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6674
6675 if (bfd_is_abs_section (sec)
6676 && type_ptr != NULL
6677 && type_ptr->internal_elf_sym.st_shndx != 0)
6678 {
6679 /* This symbol is in a real ELF section which we did
6680 not create as a BFD section. Undo the mapping done
6681 by copy_private_symbol_data. */
6682 shndx = type_ptr->internal_elf_sym.st_shndx;
6683 switch (shndx)
6684 {
6685 case MAP_ONESYMTAB:
6686 shndx = elf_onesymtab (abfd);
6687 break;
6688 case MAP_DYNSYMTAB:
6689 shndx = elf_dynsymtab (abfd);
6690 break;
6691 case MAP_STRTAB:
6692 shndx = elf_tdata (abfd)->strtab_section;
6693 break;
6694 case MAP_SHSTRTAB:
6695 shndx = elf_tdata (abfd)->shstrtab_section;
6696 break;
6697 case MAP_SYM_SHNDX:
6698 shndx = elf_tdata (abfd)->symtab_shndx_section;
6699 break;
6700 default:
6701 break;
6702 }
6703 }
6704 else
6705 {
6706 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6707
6708 if (shndx == SHN_BAD)
6709 {
6710 asection *sec2;
6711
6712 /* Writing this would be a hell of a lot easier if
6713 we had some decent documentation on bfd, and
6714 knew what to expect of the library, and what to
6715 demand of applications. For example, it
6716 appears that `objcopy' might not set the
6717 section of a symbol to be a section that is
6718 actually in the output file. */
6719 sec2 = bfd_get_section_by_name (abfd, sec->name);
6720 if (sec2 == NULL)
6721 {
6722 _bfd_error_handler (_("\
6723 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6724 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6725 sec->name);
6726 bfd_set_error (bfd_error_invalid_operation);
6727 _bfd_stringtab_free (stt);
6728 return FALSE;
6729 }
6730
6731 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6732 BFD_ASSERT (shndx != SHN_BAD);
6733 }
6734 }
6735
6736 sym.st_shndx = shndx;
6737 }
6738
6739 if ((flags & BSF_THREAD_LOCAL) != 0)
6740 type = STT_TLS;
6741 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6742 type = STT_GNU_IFUNC;
6743 else if ((flags & BSF_FUNCTION) != 0)
6744 type = STT_FUNC;
6745 else if ((flags & BSF_OBJECT) != 0)
6746 type = STT_OBJECT;
6747 else if ((flags & BSF_RELC) != 0)
6748 type = STT_RELC;
6749 else if ((flags & BSF_SRELC) != 0)
6750 type = STT_SRELC;
6751 else
6752 type = STT_NOTYPE;
6753
6754 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6755 type = STT_TLS;
6756
6757 /* Processor-specific types. */
6758 if (type_ptr != NULL
6759 && bed->elf_backend_get_symbol_type)
6760 type = ((*bed->elf_backend_get_symbol_type)
6761 (&type_ptr->internal_elf_sym, type));
6762
6763 if (flags & BSF_SECTION_SYM)
6764 {
6765 if (flags & BSF_GLOBAL)
6766 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6767 else
6768 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6769 }
6770 else if (bfd_is_com_section (syms[idx]->section))
6771 {
6772 #ifdef USE_STT_COMMON
6773 if (type == STT_OBJECT)
6774 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6775 else
6776 #endif
6777 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6778 }
6779 else if (bfd_is_und_section (syms[idx]->section))
6780 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6781 ? STB_WEAK
6782 : STB_GLOBAL),
6783 type);
6784 else if (flags & BSF_FILE)
6785 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6786 else
6787 {
6788 int bind = STB_LOCAL;
6789
6790 if (flags & BSF_LOCAL)
6791 bind = STB_LOCAL;
6792 else if (flags & BSF_GNU_UNIQUE)
6793 bind = STB_GNU_UNIQUE;
6794 else if (flags & BSF_WEAK)
6795 bind = STB_WEAK;
6796 else if (flags & BSF_GLOBAL)
6797 bind = STB_GLOBAL;
6798
6799 sym.st_info = ELF_ST_INFO (bind, type);
6800 }
6801
6802 if (type_ptr != NULL)
6803 {
6804 sym.st_other = type_ptr->internal_elf_sym.st_other;
6805 sym.st_target_internal
6806 = type_ptr->internal_elf_sym.st_target_internal;
6807 }
6808 else
6809 {
6810 sym.st_other = 0;
6811 sym.st_target_internal = 0;
6812 }
6813
6814 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6815 outbound_syms += bed->s->sizeof_sym;
6816 if (outbound_shndx != NULL)
6817 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6818 }
6819
6820 *sttp = stt;
6821 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6822 symstrtab_hdr->sh_type = SHT_STRTAB;
6823
6824 symstrtab_hdr->sh_flags = 0;
6825 symstrtab_hdr->sh_addr = 0;
6826 symstrtab_hdr->sh_entsize = 0;
6827 symstrtab_hdr->sh_link = 0;
6828 symstrtab_hdr->sh_info = 0;
6829 symstrtab_hdr->sh_addralign = 1;
6830
6831 return TRUE;
6832 }
6833
6834 /* Return the number of bytes required to hold the symtab vector.
6835
6836 Note that we base it on the count plus 1, since we will null terminate
6837 the vector allocated based on this size. However, the ELF symbol table
6838 always has a dummy entry as symbol #0, so it ends up even. */
6839
6840 long
6841 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6842 {
6843 long symcount;
6844 long symtab_size;
6845 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6846
6847 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6848 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6849 if (symcount > 0)
6850 symtab_size -= sizeof (asymbol *);
6851
6852 return symtab_size;
6853 }
6854
6855 long
6856 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6857 {
6858 long symcount;
6859 long symtab_size;
6860 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6861
6862 if (elf_dynsymtab (abfd) == 0)
6863 {
6864 bfd_set_error (bfd_error_invalid_operation);
6865 return -1;
6866 }
6867
6868 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6869 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6870 if (symcount > 0)
6871 symtab_size -= sizeof (asymbol *);
6872
6873 return symtab_size;
6874 }
6875
6876 long
6877 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6878 sec_ptr asect)
6879 {
6880 return (asect->reloc_count + 1) * sizeof (arelent *);
6881 }
6882
6883 /* Canonicalize the relocs. */
6884
6885 long
6886 _bfd_elf_canonicalize_reloc (bfd *abfd,
6887 sec_ptr section,
6888 arelent **relptr,
6889 asymbol **symbols)
6890 {
6891 arelent *tblptr;
6892 unsigned int i;
6893 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6894
6895 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6896 return -1;
6897
6898 tblptr = section->relocation;
6899 for (i = 0; i < section->reloc_count; i++)
6900 *relptr++ = tblptr++;
6901
6902 *relptr = NULL;
6903
6904 return section->reloc_count;
6905 }
6906
6907 long
6908 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6909 {
6910 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6911 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6912
6913 if (symcount >= 0)
6914 bfd_get_symcount (abfd) = symcount;
6915 return symcount;
6916 }
6917
6918 long
6919 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6920 asymbol **allocation)
6921 {
6922 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6923 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6924
6925 if (symcount >= 0)
6926 bfd_get_dynamic_symcount (abfd) = symcount;
6927 return symcount;
6928 }
6929
6930 /* Return the size required for the dynamic reloc entries. Any loadable
6931 section that was actually installed in the BFD, and has type SHT_REL
6932 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6933 dynamic reloc section. */
6934
6935 long
6936 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6937 {
6938 long ret;
6939 asection *s;
6940
6941 if (elf_dynsymtab (abfd) == 0)
6942 {
6943 bfd_set_error (bfd_error_invalid_operation);
6944 return -1;
6945 }
6946
6947 ret = sizeof (arelent *);
6948 for (s = abfd->sections; s != NULL; s = s->next)
6949 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6950 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6951 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6952 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6953 * sizeof (arelent *));
6954
6955 return ret;
6956 }
6957
6958 /* Canonicalize the dynamic relocation entries. Note that we return the
6959 dynamic relocations as a single block, although they are actually
6960 associated with particular sections; the interface, which was
6961 designed for SunOS style shared libraries, expects that there is only
6962 one set of dynamic relocs. Any loadable section that was actually
6963 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6964 dynamic symbol table, is considered to be a dynamic reloc section. */
6965
6966 long
6967 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6968 arelent **storage,
6969 asymbol **syms)
6970 {
6971 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6972 asection *s;
6973 long ret;
6974
6975 if (elf_dynsymtab (abfd) == 0)
6976 {
6977 bfd_set_error (bfd_error_invalid_operation);
6978 return -1;
6979 }
6980
6981 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6982 ret = 0;
6983 for (s = abfd->sections; s != NULL; s = s->next)
6984 {
6985 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6986 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6987 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6988 {
6989 arelent *p;
6990 long count, i;
6991
6992 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6993 return -1;
6994 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6995 p = s->relocation;
6996 for (i = 0; i < count; i++)
6997 *storage++ = p++;
6998 ret += count;
6999 }
7000 }
7001
7002 *storage = NULL;
7003
7004 return ret;
7005 }
7006 \f
7007 /* Read in the version information. */
7008
7009 bfd_boolean
7010 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7011 {
7012 bfd_byte *contents = NULL;
7013 unsigned int freeidx = 0;
7014
7015 if (elf_dynverref (abfd) != 0)
7016 {
7017 Elf_Internal_Shdr *hdr;
7018 Elf_External_Verneed *everneed;
7019 Elf_Internal_Verneed *iverneed;
7020 unsigned int i;
7021 bfd_byte *contents_end;
7022
7023 hdr = &elf_tdata (abfd)->dynverref_hdr;
7024
7025 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7026 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7027 if (elf_tdata (abfd)->verref == NULL)
7028 goto error_return;
7029
7030 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7031
7032 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7033 if (contents == NULL)
7034 {
7035 error_return_verref:
7036 elf_tdata (abfd)->verref = NULL;
7037 elf_tdata (abfd)->cverrefs = 0;
7038 goto error_return;
7039 }
7040 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7041 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7042 goto error_return_verref;
7043
7044 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7045 goto error_return_verref;
7046
7047 BFD_ASSERT (sizeof (Elf_External_Verneed)
7048 == sizeof (Elf_External_Vernaux));
7049 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7050 everneed = (Elf_External_Verneed *) contents;
7051 iverneed = elf_tdata (abfd)->verref;
7052 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7053 {
7054 Elf_External_Vernaux *evernaux;
7055 Elf_Internal_Vernaux *ivernaux;
7056 unsigned int j;
7057
7058 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7059
7060 iverneed->vn_bfd = abfd;
7061
7062 iverneed->vn_filename =
7063 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7064 iverneed->vn_file);
7065 if (iverneed->vn_filename == NULL)
7066 goto error_return_verref;
7067
7068 if (iverneed->vn_cnt == 0)
7069 iverneed->vn_auxptr = NULL;
7070 else
7071 {
7072 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7073 bfd_alloc2 (abfd, iverneed->vn_cnt,
7074 sizeof (Elf_Internal_Vernaux));
7075 if (iverneed->vn_auxptr == NULL)
7076 goto error_return_verref;
7077 }
7078
7079 if (iverneed->vn_aux
7080 > (size_t) (contents_end - (bfd_byte *) everneed))
7081 goto error_return_verref;
7082
7083 evernaux = ((Elf_External_Vernaux *)
7084 ((bfd_byte *) everneed + iverneed->vn_aux));
7085 ivernaux = iverneed->vn_auxptr;
7086 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7087 {
7088 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7089
7090 ivernaux->vna_nodename =
7091 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7092 ivernaux->vna_name);
7093 if (ivernaux->vna_nodename == NULL)
7094 goto error_return_verref;
7095
7096 if (j + 1 < iverneed->vn_cnt)
7097 ivernaux->vna_nextptr = ivernaux + 1;
7098 else
7099 ivernaux->vna_nextptr = NULL;
7100
7101 if (ivernaux->vna_next
7102 > (size_t) (contents_end - (bfd_byte *) evernaux))
7103 goto error_return_verref;
7104
7105 evernaux = ((Elf_External_Vernaux *)
7106 ((bfd_byte *) evernaux + ivernaux->vna_next));
7107
7108 if (ivernaux->vna_other > freeidx)
7109 freeidx = ivernaux->vna_other;
7110 }
7111
7112 if (i + 1 < hdr->sh_info)
7113 iverneed->vn_nextref = iverneed + 1;
7114 else
7115 iverneed->vn_nextref = NULL;
7116
7117 if (iverneed->vn_next
7118 > (size_t) (contents_end - (bfd_byte *) everneed))
7119 goto error_return_verref;
7120
7121 everneed = ((Elf_External_Verneed *)
7122 ((bfd_byte *) everneed + iverneed->vn_next));
7123 }
7124
7125 free (contents);
7126 contents = NULL;
7127 }
7128
7129 if (elf_dynverdef (abfd) != 0)
7130 {
7131 Elf_Internal_Shdr *hdr;
7132 Elf_External_Verdef *everdef;
7133 Elf_Internal_Verdef *iverdef;
7134 Elf_Internal_Verdef *iverdefarr;
7135 Elf_Internal_Verdef iverdefmem;
7136 unsigned int i;
7137 unsigned int maxidx;
7138 bfd_byte *contents_end_def, *contents_end_aux;
7139
7140 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7141
7142 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7143 if (contents == NULL)
7144 goto error_return;
7145 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7146 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7147 goto error_return;
7148
7149 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7150 goto error_return;
7151
7152 BFD_ASSERT (sizeof (Elf_External_Verdef)
7153 >= sizeof (Elf_External_Verdaux));
7154 contents_end_def = contents + hdr->sh_size
7155 - sizeof (Elf_External_Verdef);
7156 contents_end_aux = contents + hdr->sh_size
7157 - sizeof (Elf_External_Verdaux);
7158
7159 /* We know the number of entries in the section but not the maximum
7160 index. Therefore we have to run through all entries and find
7161 the maximum. */
7162 everdef = (Elf_External_Verdef *) contents;
7163 maxidx = 0;
7164 for (i = 0; i < hdr->sh_info; ++i)
7165 {
7166 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7167
7168 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7169 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7170
7171 if (iverdefmem.vd_next
7172 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7173 goto error_return;
7174
7175 everdef = ((Elf_External_Verdef *)
7176 ((bfd_byte *) everdef + iverdefmem.vd_next));
7177 }
7178
7179 if (default_imported_symver)
7180 {
7181 if (freeidx > maxidx)
7182 maxidx = ++freeidx;
7183 else
7184 freeidx = ++maxidx;
7185 }
7186 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7187 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7188 if (elf_tdata (abfd)->verdef == NULL)
7189 goto error_return;
7190
7191 elf_tdata (abfd)->cverdefs = maxidx;
7192
7193 everdef = (Elf_External_Verdef *) contents;
7194 iverdefarr = elf_tdata (abfd)->verdef;
7195 for (i = 0; i < hdr->sh_info; i++)
7196 {
7197 Elf_External_Verdaux *everdaux;
7198 Elf_Internal_Verdaux *iverdaux;
7199 unsigned int j;
7200
7201 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7202
7203 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7204 {
7205 error_return_verdef:
7206 elf_tdata (abfd)->verdef = NULL;
7207 elf_tdata (abfd)->cverdefs = 0;
7208 goto error_return;
7209 }
7210
7211 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7212 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7213
7214 iverdef->vd_bfd = abfd;
7215
7216 if (iverdef->vd_cnt == 0)
7217 iverdef->vd_auxptr = NULL;
7218 else
7219 {
7220 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7221 bfd_alloc2 (abfd, iverdef->vd_cnt,
7222 sizeof (Elf_Internal_Verdaux));
7223 if (iverdef->vd_auxptr == NULL)
7224 goto error_return_verdef;
7225 }
7226
7227 if (iverdef->vd_aux
7228 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7229 goto error_return_verdef;
7230
7231 everdaux = ((Elf_External_Verdaux *)
7232 ((bfd_byte *) everdef + iverdef->vd_aux));
7233 iverdaux = iverdef->vd_auxptr;
7234 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7235 {
7236 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7237
7238 iverdaux->vda_nodename =
7239 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7240 iverdaux->vda_name);
7241 if (iverdaux->vda_nodename == NULL)
7242 goto error_return_verdef;
7243
7244 if (j + 1 < iverdef->vd_cnt)
7245 iverdaux->vda_nextptr = iverdaux + 1;
7246 else
7247 iverdaux->vda_nextptr = NULL;
7248
7249 if (iverdaux->vda_next
7250 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7251 goto error_return_verdef;
7252
7253 everdaux = ((Elf_External_Verdaux *)
7254 ((bfd_byte *) everdaux + iverdaux->vda_next));
7255 }
7256
7257 if (iverdef->vd_cnt)
7258 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7259
7260 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7261 iverdef->vd_nextdef = iverdef + 1;
7262 else
7263 iverdef->vd_nextdef = NULL;
7264
7265 everdef = ((Elf_External_Verdef *)
7266 ((bfd_byte *) everdef + iverdef->vd_next));
7267 }
7268
7269 free (contents);
7270 contents = NULL;
7271 }
7272 else if (default_imported_symver)
7273 {
7274 if (freeidx < 3)
7275 freeidx = 3;
7276 else
7277 freeidx++;
7278
7279 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7280 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7281 if (elf_tdata (abfd)->verdef == NULL)
7282 goto error_return;
7283
7284 elf_tdata (abfd)->cverdefs = freeidx;
7285 }
7286
7287 /* Create a default version based on the soname. */
7288 if (default_imported_symver)
7289 {
7290 Elf_Internal_Verdef *iverdef;
7291 Elf_Internal_Verdaux *iverdaux;
7292
7293 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7294
7295 iverdef->vd_version = VER_DEF_CURRENT;
7296 iverdef->vd_flags = 0;
7297 iverdef->vd_ndx = freeidx;
7298 iverdef->vd_cnt = 1;
7299
7300 iverdef->vd_bfd = abfd;
7301
7302 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7303 if (iverdef->vd_nodename == NULL)
7304 goto error_return_verdef;
7305 iverdef->vd_nextdef = NULL;
7306 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7307 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7308 if (iverdef->vd_auxptr == NULL)
7309 goto error_return_verdef;
7310
7311 iverdaux = iverdef->vd_auxptr;
7312 iverdaux->vda_nodename = iverdef->vd_nodename;
7313 iverdaux->vda_nextptr = NULL;
7314 }
7315
7316 return TRUE;
7317
7318 error_return:
7319 if (contents != NULL)
7320 free (contents);
7321 return FALSE;
7322 }
7323 \f
7324 asymbol *
7325 _bfd_elf_make_empty_symbol (bfd *abfd)
7326 {
7327 elf_symbol_type *newsym;
7328 bfd_size_type amt = sizeof (elf_symbol_type);
7329
7330 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7331 if (!newsym)
7332 return NULL;
7333 else
7334 {
7335 newsym->symbol.the_bfd = abfd;
7336 return &newsym->symbol;
7337 }
7338 }
7339
7340 void
7341 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7342 asymbol *symbol,
7343 symbol_info *ret)
7344 {
7345 bfd_symbol_info (symbol, ret);
7346 }
7347
7348 /* Return whether a symbol name implies a local symbol. Most targets
7349 use this function for the is_local_label_name entry point, but some
7350 override it. */
7351
7352 bfd_boolean
7353 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7354 const char *name)
7355 {
7356 /* Normal local symbols start with ``.L''. */
7357 if (name[0] == '.' && name[1] == 'L')
7358 return TRUE;
7359
7360 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7361 DWARF debugging symbols starting with ``..''. */
7362 if (name[0] == '.' && name[1] == '.')
7363 return TRUE;
7364
7365 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7366 emitting DWARF debugging output. I suspect this is actually a
7367 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7368 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7369 underscore to be emitted on some ELF targets). For ease of use,
7370 we treat such symbols as local. */
7371 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7372 return TRUE;
7373
7374 return FALSE;
7375 }
7376
7377 alent *
7378 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7379 asymbol *symbol ATTRIBUTE_UNUSED)
7380 {
7381 abort ();
7382 return NULL;
7383 }
7384
7385 bfd_boolean
7386 _bfd_elf_set_arch_mach (bfd *abfd,
7387 enum bfd_architecture arch,
7388 unsigned long machine)
7389 {
7390 /* If this isn't the right architecture for this backend, and this
7391 isn't the generic backend, fail. */
7392 if (arch != get_elf_backend_data (abfd)->arch
7393 && arch != bfd_arch_unknown
7394 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7395 return FALSE;
7396
7397 return bfd_default_set_arch_mach (abfd, arch, machine);
7398 }
7399
7400 /* Find the function to a particular section and offset,
7401 for error reporting. */
7402
7403 static bfd_boolean
7404 elf_find_function (bfd *abfd,
7405 asection *section,
7406 asymbol **symbols,
7407 bfd_vma offset,
7408 const char **filename_ptr,
7409 const char **functionname_ptr)
7410 {
7411 static asection *last_section;
7412 static asymbol *func;
7413 static const char *filename;
7414 static bfd_size_type func_size;
7415
7416 if (symbols == NULL)
7417 return FALSE;
7418
7419 if (last_section != section
7420 || func == NULL
7421 || offset < func->value
7422 || offset >= func->value + func_size)
7423 {
7424 asymbol *file;
7425 bfd_vma low_func;
7426 asymbol **p;
7427 /* ??? Given multiple file symbols, it is impossible to reliably
7428 choose the right file name for global symbols. File symbols are
7429 local symbols, and thus all file symbols must sort before any
7430 global symbols. The ELF spec may be interpreted to say that a
7431 file symbol must sort before other local symbols, but currently
7432 ld -r doesn't do this. So, for ld -r output, it is possible to
7433 make a better choice of file name for local symbols by ignoring
7434 file symbols appearing after a given local symbol. */
7435 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7437
7438 filename = NULL;
7439 func = NULL;
7440 file = NULL;
7441 low_func = 0;
7442 state = nothing_seen;
7443 func_size = 0;
7444 last_section = section;
7445
7446 for (p = symbols; *p != NULL; p++)
7447 {
7448 asymbol *sym = *p;
7449 bfd_vma code_off;
7450 bfd_size_type size;
7451
7452 if ((sym->flags & BSF_FILE) != 0)
7453 {
7454 file = sym;
7455 if (state == symbol_seen)
7456 state = file_after_symbol_seen;
7457 continue;
7458 }
7459
7460 size = bed->maybe_function_sym (sym, section, &code_off);
7461 if (size != 0
7462 && code_off <= offset
7463 && (code_off > low_func
7464 || (code_off == low_func
7465 && size > func_size)))
7466 {
7467 func = sym;
7468 func_size = size;
7469 low_func = code_off;
7470 filename = NULL;
7471 if (file != NULL
7472 && ((sym->flags & BSF_LOCAL) != 0
7473 || state != file_after_symbol_seen))
7474 filename = bfd_asymbol_name (file);
7475 }
7476 if (state == nothing_seen)
7477 state = symbol_seen;
7478 }
7479 }
7480
7481 if (func == NULL)
7482 return FALSE;
7483
7484 if (filename_ptr)
7485 *filename_ptr = filename;
7486 if (functionname_ptr)
7487 *functionname_ptr = bfd_asymbol_name (func);
7488
7489 return TRUE;
7490 }
7491
7492 /* Find the nearest line to a particular section and offset,
7493 for error reporting. */
7494
7495 bfd_boolean
7496 _bfd_elf_find_nearest_line (bfd *abfd,
7497 asection *section,
7498 asymbol **symbols,
7499 bfd_vma offset,
7500 const char **filename_ptr,
7501 const char **functionname_ptr,
7502 unsigned int *line_ptr)
7503 {
7504 bfd_boolean found;
7505
7506 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7507 filename_ptr, functionname_ptr,
7508 line_ptr))
7509 {
7510 if (!*functionname_ptr)
7511 elf_find_function (abfd, section, symbols, offset,
7512 *filename_ptr ? NULL : filename_ptr,
7513 functionname_ptr);
7514
7515 return TRUE;
7516 }
7517
7518 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7519 section, symbols, offset,
7520 filename_ptr, functionname_ptr,
7521 line_ptr, 0,
7522 &elf_tdata (abfd)->dwarf2_find_line_info))
7523 {
7524 if (!*functionname_ptr)
7525 elf_find_function (abfd, section, symbols, offset,
7526 *filename_ptr ? NULL : filename_ptr,
7527 functionname_ptr);
7528
7529 return TRUE;
7530 }
7531
7532 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7533 &found, filename_ptr,
7534 functionname_ptr, line_ptr,
7535 &elf_tdata (abfd)->line_info))
7536 return FALSE;
7537 if (found && (*functionname_ptr || *line_ptr))
7538 return TRUE;
7539
7540 if (symbols == NULL)
7541 return FALSE;
7542
7543 if (! elf_find_function (abfd, section, symbols, offset,
7544 filename_ptr, functionname_ptr))
7545 return FALSE;
7546
7547 *line_ptr = 0;
7548 return TRUE;
7549 }
7550
7551 /* Find the line for a symbol. */
7552
7553 bfd_boolean
7554 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7555 const char **filename_ptr, unsigned int *line_ptr)
7556 {
7557 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7558 filename_ptr, line_ptr, 0,
7559 &elf_tdata (abfd)->dwarf2_find_line_info);
7560 }
7561
7562 /* After a call to bfd_find_nearest_line, successive calls to
7563 bfd_find_inliner_info can be used to get source information about
7564 each level of function inlining that terminated at the address
7565 passed to bfd_find_nearest_line. Currently this is only supported
7566 for DWARF2 with appropriate DWARF3 extensions. */
7567
7568 bfd_boolean
7569 _bfd_elf_find_inliner_info (bfd *abfd,
7570 const char **filename_ptr,
7571 const char **functionname_ptr,
7572 unsigned int *line_ptr)
7573 {
7574 bfd_boolean found;
7575 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7576 functionname_ptr, line_ptr,
7577 & elf_tdata (abfd)->dwarf2_find_line_info);
7578 return found;
7579 }
7580
7581 int
7582 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7583 {
7584 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7585 int ret = bed->s->sizeof_ehdr;
7586
7587 if (!info->relocatable)
7588 {
7589 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7590
7591 if (phdr_size == (bfd_size_type) -1)
7592 {
7593 struct elf_segment_map *m;
7594
7595 phdr_size = 0;
7596 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7597 phdr_size += bed->s->sizeof_phdr;
7598
7599 if (phdr_size == 0)
7600 phdr_size = get_program_header_size (abfd, info);
7601 }
7602
7603 elf_tdata (abfd)->program_header_size = phdr_size;
7604 ret += phdr_size;
7605 }
7606
7607 return ret;
7608 }
7609
7610 bfd_boolean
7611 _bfd_elf_set_section_contents (bfd *abfd,
7612 sec_ptr section,
7613 const void *location,
7614 file_ptr offset,
7615 bfd_size_type count)
7616 {
7617 Elf_Internal_Shdr *hdr;
7618 bfd_signed_vma pos;
7619
7620 if (! abfd->output_has_begun
7621 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7622 return FALSE;
7623
7624 hdr = &elf_section_data (section)->this_hdr;
7625 pos = hdr->sh_offset + offset;
7626 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7627 || bfd_bwrite (location, count, abfd) != count)
7628 return FALSE;
7629
7630 return TRUE;
7631 }
7632
7633 void
7634 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7635 arelent *cache_ptr ATTRIBUTE_UNUSED,
7636 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7637 {
7638 abort ();
7639 }
7640
7641 /* Try to convert a non-ELF reloc into an ELF one. */
7642
7643 bfd_boolean
7644 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7645 {
7646 /* Check whether we really have an ELF howto. */
7647
7648 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7649 {
7650 bfd_reloc_code_real_type code;
7651 reloc_howto_type *howto;
7652
7653 /* Alien reloc: Try to determine its type to replace it with an
7654 equivalent ELF reloc. */
7655
7656 if (areloc->howto->pc_relative)
7657 {
7658 switch (areloc->howto->bitsize)
7659 {
7660 case 8:
7661 code = BFD_RELOC_8_PCREL;
7662 break;
7663 case 12:
7664 code = BFD_RELOC_12_PCREL;
7665 break;
7666 case 16:
7667 code = BFD_RELOC_16_PCREL;
7668 break;
7669 case 24:
7670 code = BFD_RELOC_24_PCREL;
7671 break;
7672 case 32:
7673 code = BFD_RELOC_32_PCREL;
7674 break;
7675 case 64:
7676 code = BFD_RELOC_64_PCREL;
7677 break;
7678 default:
7679 goto fail;
7680 }
7681
7682 howto = bfd_reloc_type_lookup (abfd, code);
7683
7684 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7685 {
7686 if (howto->pcrel_offset)
7687 areloc->addend += areloc->address;
7688 else
7689 areloc->addend -= areloc->address; /* addend is unsigned!! */
7690 }
7691 }
7692 else
7693 {
7694 switch (areloc->howto->bitsize)
7695 {
7696 case 8:
7697 code = BFD_RELOC_8;
7698 break;
7699 case 14:
7700 code = BFD_RELOC_14;
7701 break;
7702 case 16:
7703 code = BFD_RELOC_16;
7704 break;
7705 case 26:
7706 code = BFD_RELOC_26;
7707 break;
7708 case 32:
7709 code = BFD_RELOC_32;
7710 break;
7711 case 64:
7712 code = BFD_RELOC_64;
7713 break;
7714 default:
7715 goto fail;
7716 }
7717
7718 howto = bfd_reloc_type_lookup (abfd, code);
7719 }
7720
7721 if (howto)
7722 areloc->howto = howto;
7723 else
7724 goto fail;
7725 }
7726
7727 return TRUE;
7728
7729 fail:
7730 (*_bfd_error_handler)
7731 (_("%B: unsupported relocation type %s"),
7732 abfd, areloc->howto->name);
7733 bfd_set_error (bfd_error_bad_value);
7734 return FALSE;
7735 }
7736
7737 bfd_boolean
7738 _bfd_elf_close_and_cleanup (bfd *abfd)
7739 {
7740 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7741 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7742 {
7743 if (elf_shstrtab (abfd) != NULL)
7744 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7745 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7746 }
7747
7748 return _bfd_generic_close_and_cleanup (abfd);
7749 }
7750
7751 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7752 in the relocation's offset. Thus we cannot allow any sort of sanity
7753 range-checking to interfere. There is nothing else to do in processing
7754 this reloc. */
7755
7756 bfd_reloc_status_type
7757 _bfd_elf_rel_vtable_reloc_fn
7758 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7759 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7760 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7761 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7762 {
7763 return bfd_reloc_ok;
7764 }
7765 \f
7766 /* Elf core file support. Much of this only works on native
7767 toolchains, since we rely on knowing the
7768 machine-dependent procfs structure in order to pick
7769 out details about the corefile. */
7770
7771 #ifdef HAVE_SYS_PROCFS_H
7772 /* Needed for new procfs interface on sparc-solaris. */
7773 # define _STRUCTURED_PROC 1
7774 # include <sys/procfs.h>
7775 #endif
7776
7777 /* Return a PID that identifies a "thread" for threaded cores, or the
7778 PID of the main process for non-threaded cores. */
7779
7780 static int
7781 elfcore_make_pid (bfd *abfd)
7782 {
7783 int pid;
7784
7785 pid = elf_tdata (abfd)->core_lwpid;
7786 if (pid == 0)
7787 pid = elf_tdata (abfd)->core_pid;
7788
7789 return pid;
7790 }
7791
7792 /* If there isn't a section called NAME, make one, using
7793 data from SECT. Note, this function will generate a
7794 reference to NAME, so you shouldn't deallocate or
7795 overwrite it. */
7796
7797 static bfd_boolean
7798 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7799 {
7800 asection *sect2;
7801
7802 if (bfd_get_section_by_name (abfd, name) != NULL)
7803 return TRUE;
7804
7805 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7806 if (sect2 == NULL)
7807 return FALSE;
7808
7809 sect2->size = sect->size;
7810 sect2->filepos = sect->filepos;
7811 sect2->alignment_power = sect->alignment_power;
7812 return TRUE;
7813 }
7814
7815 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7816 actually creates up to two pseudosections:
7817 - For the single-threaded case, a section named NAME, unless
7818 such a section already exists.
7819 - For the multi-threaded case, a section named "NAME/PID", where
7820 PID is elfcore_make_pid (abfd).
7821 Both pseudosections have identical contents. */
7822 bfd_boolean
7823 _bfd_elfcore_make_pseudosection (bfd *abfd,
7824 char *name,
7825 size_t size,
7826 ufile_ptr filepos)
7827 {
7828 char buf[100];
7829 char *threaded_name;
7830 size_t len;
7831 asection *sect;
7832
7833 /* Build the section name. */
7834
7835 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7836 len = strlen (buf) + 1;
7837 threaded_name = (char *) bfd_alloc (abfd, len);
7838 if (threaded_name == NULL)
7839 return FALSE;
7840 memcpy (threaded_name, buf, len);
7841
7842 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7843 SEC_HAS_CONTENTS);
7844 if (sect == NULL)
7845 return FALSE;
7846 sect->size = size;
7847 sect->filepos = filepos;
7848 sect->alignment_power = 2;
7849
7850 return elfcore_maybe_make_sect (abfd, name, sect);
7851 }
7852
7853 /* prstatus_t exists on:
7854 solaris 2.5+
7855 linux 2.[01] + glibc
7856 unixware 4.2
7857 */
7858
7859 #if defined (HAVE_PRSTATUS_T)
7860
7861 static bfd_boolean
7862 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7863 {
7864 size_t size;
7865 int offset;
7866
7867 if (note->descsz == sizeof (prstatus_t))
7868 {
7869 prstatus_t prstat;
7870
7871 size = sizeof (prstat.pr_reg);
7872 offset = offsetof (prstatus_t, pr_reg);
7873 memcpy (&prstat, note->descdata, sizeof (prstat));
7874
7875 /* Do not overwrite the core signal if it
7876 has already been set by another thread. */
7877 if (elf_tdata (abfd)->core_signal == 0)
7878 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7879 if (elf_tdata (abfd)->core_pid == 0)
7880 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7881
7882 /* pr_who exists on:
7883 solaris 2.5+
7884 unixware 4.2
7885 pr_who doesn't exist on:
7886 linux 2.[01]
7887 */
7888 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7889 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7890 #else
7891 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7892 #endif
7893 }
7894 #if defined (HAVE_PRSTATUS32_T)
7895 else if (note->descsz == sizeof (prstatus32_t))
7896 {
7897 /* 64-bit host, 32-bit corefile */
7898 prstatus32_t prstat;
7899
7900 size = sizeof (prstat.pr_reg);
7901 offset = offsetof (prstatus32_t, pr_reg);
7902 memcpy (&prstat, note->descdata, sizeof (prstat));
7903
7904 /* Do not overwrite the core signal if it
7905 has already been set by another thread. */
7906 if (elf_tdata (abfd)->core_signal == 0)
7907 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7908 if (elf_tdata (abfd)->core_pid == 0)
7909 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7910
7911 /* pr_who exists on:
7912 solaris 2.5+
7913 unixware 4.2
7914 pr_who doesn't exist on:
7915 linux 2.[01]
7916 */
7917 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7918 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7919 #else
7920 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7921 #endif
7922 }
7923 #endif /* HAVE_PRSTATUS32_T */
7924 else
7925 {
7926 /* Fail - we don't know how to handle any other
7927 note size (ie. data object type). */
7928 return TRUE;
7929 }
7930
7931 /* Make a ".reg/999" section and a ".reg" section. */
7932 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7933 size, note->descpos + offset);
7934 }
7935 #endif /* defined (HAVE_PRSTATUS_T) */
7936
7937 /* Create a pseudosection containing the exact contents of NOTE. */
7938 static bfd_boolean
7939 elfcore_make_note_pseudosection (bfd *abfd,
7940 char *name,
7941 Elf_Internal_Note *note)
7942 {
7943 return _bfd_elfcore_make_pseudosection (abfd, name,
7944 note->descsz, note->descpos);
7945 }
7946
7947 /* There isn't a consistent prfpregset_t across platforms,
7948 but it doesn't matter, because we don't have to pick this
7949 data structure apart. */
7950
7951 static bfd_boolean
7952 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7953 {
7954 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7955 }
7956
7957 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7958 type of NT_PRXFPREG. Just include the whole note's contents
7959 literally. */
7960
7961 static bfd_boolean
7962 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7963 {
7964 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7965 }
7966
7967 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7968 with a note type of NT_X86_XSTATE. Just include the whole note's
7969 contents literally. */
7970
7971 static bfd_boolean
7972 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7973 {
7974 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7975 }
7976
7977 static bfd_boolean
7978 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7979 {
7980 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7981 }
7982
7983 static bfd_boolean
7984 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7985 {
7986 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7987 }
7988
7989 static bfd_boolean
7990 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
7991 {
7992 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
7993 }
7994
7995 static bfd_boolean
7996 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
7997 {
7998 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
7999 }
8000
8001 static bfd_boolean
8002 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8003 {
8004 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8005 }
8006
8007 static bfd_boolean
8008 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8009 {
8010 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8011 }
8012
8013 static bfd_boolean
8014 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8015 {
8016 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8017 }
8018
8019 static bfd_boolean
8020 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8021 {
8022 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8023 }
8024
8025 static bfd_boolean
8026 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8027 {
8028 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8029 }
8030
8031 static bfd_boolean
8032 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8033 {
8034 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8035 }
8036
8037 static bfd_boolean
8038 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8039 {
8040 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8041 }
8042
8043 #if defined (HAVE_PRPSINFO_T)
8044 typedef prpsinfo_t elfcore_psinfo_t;
8045 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8046 typedef prpsinfo32_t elfcore_psinfo32_t;
8047 #endif
8048 #endif
8049
8050 #if defined (HAVE_PSINFO_T)
8051 typedef psinfo_t elfcore_psinfo_t;
8052 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8053 typedef psinfo32_t elfcore_psinfo32_t;
8054 #endif
8055 #endif
8056
8057 /* return a malloc'ed copy of a string at START which is at
8058 most MAX bytes long, possibly without a terminating '\0'.
8059 the copy will always have a terminating '\0'. */
8060
8061 char *
8062 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8063 {
8064 char *dups;
8065 char *end = (char *) memchr (start, '\0', max);
8066 size_t len;
8067
8068 if (end == NULL)
8069 len = max;
8070 else
8071 len = end - start;
8072
8073 dups = (char *) bfd_alloc (abfd, len + 1);
8074 if (dups == NULL)
8075 return NULL;
8076
8077 memcpy (dups, start, len);
8078 dups[len] = '\0';
8079
8080 return dups;
8081 }
8082
8083 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8084 static bfd_boolean
8085 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8086 {
8087 if (note->descsz == sizeof (elfcore_psinfo_t))
8088 {
8089 elfcore_psinfo_t psinfo;
8090
8091 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8092
8093 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8094 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8095 #endif
8096 elf_tdata (abfd)->core_program
8097 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8098 sizeof (psinfo.pr_fname));
8099
8100 elf_tdata (abfd)->core_command
8101 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8102 sizeof (psinfo.pr_psargs));
8103 }
8104 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8105 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8106 {
8107 /* 64-bit host, 32-bit corefile */
8108 elfcore_psinfo32_t psinfo;
8109
8110 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8111
8112 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8113 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8114 #endif
8115 elf_tdata (abfd)->core_program
8116 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8117 sizeof (psinfo.pr_fname));
8118
8119 elf_tdata (abfd)->core_command
8120 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8121 sizeof (psinfo.pr_psargs));
8122 }
8123 #endif
8124
8125 else
8126 {
8127 /* Fail - we don't know how to handle any other
8128 note size (ie. data object type). */
8129 return TRUE;
8130 }
8131
8132 /* Note that for some reason, a spurious space is tacked
8133 onto the end of the args in some (at least one anyway)
8134 implementations, so strip it off if it exists. */
8135
8136 {
8137 char *command = elf_tdata (abfd)->core_command;
8138 int n = strlen (command);
8139
8140 if (0 < n && command[n - 1] == ' ')
8141 command[n - 1] = '\0';
8142 }
8143
8144 return TRUE;
8145 }
8146 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8147
8148 #if defined (HAVE_PSTATUS_T)
8149 static bfd_boolean
8150 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8151 {
8152 if (note->descsz == sizeof (pstatus_t)
8153 #if defined (HAVE_PXSTATUS_T)
8154 || note->descsz == sizeof (pxstatus_t)
8155 #endif
8156 )
8157 {
8158 pstatus_t pstat;
8159
8160 memcpy (&pstat, note->descdata, sizeof (pstat));
8161
8162 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8163 }
8164 #if defined (HAVE_PSTATUS32_T)
8165 else if (note->descsz == sizeof (pstatus32_t))
8166 {
8167 /* 64-bit host, 32-bit corefile */
8168 pstatus32_t pstat;
8169
8170 memcpy (&pstat, note->descdata, sizeof (pstat));
8171
8172 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8173 }
8174 #endif
8175 /* Could grab some more details from the "representative"
8176 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8177 NT_LWPSTATUS note, presumably. */
8178
8179 return TRUE;
8180 }
8181 #endif /* defined (HAVE_PSTATUS_T) */
8182
8183 #if defined (HAVE_LWPSTATUS_T)
8184 static bfd_boolean
8185 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8186 {
8187 lwpstatus_t lwpstat;
8188 char buf[100];
8189 char *name;
8190 size_t len;
8191 asection *sect;
8192
8193 if (note->descsz != sizeof (lwpstat)
8194 #if defined (HAVE_LWPXSTATUS_T)
8195 && note->descsz != sizeof (lwpxstatus_t)
8196 #endif
8197 )
8198 return TRUE;
8199
8200 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8201
8202 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8203 /* Do not overwrite the core signal if it has already been set by
8204 another thread. */
8205 if (elf_tdata (abfd)->core_signal == 0)
8206 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8207
8208 /* Make a ".reg/999" section. */
8209
8210 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8211 len = strlen (buf) + 1;
8212 name = bfd_alloc (abfd, len);
8213 if (name == NULL)
8214 return FALSE;
8215 memcpy (name, buf, len);
8216
8217 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8218 if (sect == NULL)
8219 return FALSE;
8220
8221 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8222 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8223 sect->filepos = note->descpos
8224 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8225 #endif
8226
8227 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8228 sect->size = sizeof (lwpstat.pr_reg);
8229 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8230 #endif
8231
8232 sect->alignment_power = 2;
8233
8234 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8235 return FALSE;
8236
8237 /* Make a ".reg2/999" section */
8238
8239 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8240 len = strlen (buf) + 1;
8241 name = bfd_alloc (abfd, len);
8242 if (name == NULL)
8243 return FALSE;
8244 memcpy (name, buf, len);
8245
8246 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8247 if (sect == NULL)
8248 return FALSE;
8249
8250 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8251 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8252 sect->filepos = note->descpos
8253 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8254 #endif
8255
8256 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8257 sect->size = sizeof (lwpstat.pr_fpreg);
8258 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8259 #endif
8260
8261 sect->alignment_power = 2;
8262
8263 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8264 }
8265 #endif /* defined (HAVE_LWPSTATUS_T) */
8266
8267 static bfd_boolean
8268 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8269 {
8270 char buf[30];
8271 char *name;
8272 size_t len;
8273 asection *sect;
8274 int type;
8275 int is_active_thread;
8276 bfd_vma base_addr;
8277
8278 if (note->descsz < 728)
8279 return TRUE;
8280
8281 if (! CONST_STRNEQ (note->namedata, "win32"))
8282 return TRUE;
8283
8284 type = bfd_get_32 (abfd, note->descdata);
8285
8286 switch (type)
8287 {
8288 case 1 /* NOTE_INFO_PROCESS */:
8289 /* FIXME: need to add ->core_command. */
8290 /* process_info.pid */
8291 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8292 /* process_info.signal */
8293 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8294 break;
8295
8296 case 2 /* NOTE_INFO_THREAD */:
8297 /* Make a ".reg/999" section. */
8298 /* thread_info.tid */
8299 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8300
8301 len = strlen (buf) + 1;
8302 name = (char *) bfd_alloc (abfd, len);
8303 if (name == NULL)
8304 return FALSE;
8305
8306 memcpy (name, buf, len);
8307
8308 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8309 if (sect == NULL)
8310 return FALSE;
8311
8312 /* sizeof (thread_info.thread_context) */
8313 sect->size = 716;
8314 /* offsetof (thread_info.thread_context) */
8315 sect->filepos = note->descpos + 12;
8316 sect->alignment_power = 2;
8317
8318 /* thread_info.is_active_thread */
8319 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8320
8321 if (is_active_thread)
8322 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8323 return FALSE;
8324 break;
8325
8326 case 3 /* NOTE_INFO_MODULE */:
8327 /* Make a ".module/xxxxxxxx" section. */
8328 /* module_info.base_address */
8329 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8330 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8331
8332 len = strlen (buf) + 1;
8333 name = (char *) bfd_alloc (abfd, len);
8334 if (name == NULL)
8335 return FALSE;
8336
8337 memcpy (name, buf, len);
8338
8339 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8340
8341 if (sect == NULL)
8342 return FALSE;
8343
8344 sect->size = note->descsz;
8345 sect->filepos = note->descpos;
8346 sect->alignment_power = 2;
8347 break;
8348
8349 default:
8350 return TRUE;
8351 }
8352
8353 return TRUE;
8354 }
8355
8356 static bfd_boolean
8357 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8358 {
8359 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8360
8361 switch (note->type)
8362 {
8363 default:
8364 return TRUE;
8365
8366 case NT_PRSTATUS:
8367 if (bed->elf_backend_grok_prstatus)
8368 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8369 return TRUE;
8370 #if defined (HAVE_PRSTATUS_T)
8371 return elfcore_grok_prstatus (abfd, note);
8372 #else
8373 return TRUE;
8374 #endif
8375
8376 #if defined (HAVE_PSTATUS_T)
8377 case NT_PSTATUS:
8378 return elfcore_grok_pstatus (abfd, note);
8379 #endif
8380
8381 #if defined (HAVE_LWPSTATUS_T)
8382 case NT_LWPSTATUS:
8383 return elfcore_grok_lwpstatus (abfd, note);
8384 #endif
8385
8386 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8387 return elfcore_grok_prfpreg (abfd, note);
8388
8389 case NT_WIN32PSTATUS:
8390 return elfcore_grok_win32pstatus (abfd, note);
8391
8392 case NT_PRXFPREG: /* Linux SSE extension */
8393 if (note->namesz == 6
8394 && strcmp (note->namedata, "LINUX") == 0)
8395 return elfcore_grok_prxfpreg (abfd, note);
8396 else
8397 return TRUE;
8398
8399 case NT_X86_XSTATE: /* Linux XSAVE extension */
8400 if (note->namesz == 6
8401 && strcmp (note->namedata, "LINUX") == 0)
8402 return elfcore_grok_xstatereg (abfd, note);
8403 else
8404 return TRUE;
8405
8406 case NT_PPC_VMX:
8407 if (note->namesz == 6
8408 && strcmp (note->namedata, "LINUX") == 0)
8409 return elfcore_grok_ppc_vmx (abfd, note);
8410 else
8411 return TRUE;
8412
8413 case NT_PPC_VSX:
8414 if (note->namesz == 6
8415 && strcmp (note->namedata, "LINUX") == 0)
8416 return elfcore_grok_ppc_vsx (abfd, note);
8417 else
8418 return TRUE;
8419
8420 case NT_S390_HIGH_GPRS:
8421 if (note->namesz == 6
8422 && strcmp (note->namedata, "LINUX") == 0)
8423 return elfcore_grok_s390_high_gprs (abfd, note);
8424 else
8425 return TRUE;
8426
8427 case NT_S390_TIMER:
8428 if (note->namesz == 6
8429 && strcmp (note->namedata, "LINUX") == 0)
8430 return elfcore_grok_s390_timer (abfd, note);
8431 else
8432 return TRUE;
8433
8434 case NT_S390_TODCMP:
8435 if (note->namesz == 6
8436 && strcmp (note->namedata, "LINUX") == 0)
8437 return elfcore_grok_s390_todcmp (abfd, note);
8438 else
8439 return TRUE;
8440
8441 case NT_S390_TODPREG:
8442 if (note->namesz == 6
8443 && strcmp (note->namedata, "LINUX") == 0)
8444 return elfcore_grok_s390_todpreg (abfd, note);
8445 else
8446 return TRUE;
8447
8448 case NT_S390_CTRS:
8449 if (note->namesz == 6
8450 && strcmp (note->namedata, "LINUX") == 0)
8451 return elfcore_grok_s390_ctrs (abfd, note);
8452 else
8453 return TRUE;
8454
8455 case NT_S390_PREFIX:
8456 if (note->namesz == 6
8457 && strcmp (note->namedata, "LINUX") == 0)
8458 return elfcore_grok_s390_prefix (abfd, note);
8459 else
8460 return TRUE;
8461
8462 case NT_S390_LAST_BREAK:
8463 if (note->namesz == 6
8464 && strcmp (note->namedata, "LINUX") == 0)
8465 return elfcore_grok_s390_last_break (abfd, note);
8466 else
8467 return TRUE;
8468
8469 case NT_S390_SYSTEM_CALL:
8470 if (note->namesz == 6
8471 && strcmp (note->namedata, "LINUX") == 0)
8472 return elfcore_grok_s390_system_call (abfd, note);
8473 else
8474 return TRUE;
8475
8476 case NT_ARM_VFP:
8477 if (note->namesz == 6
8478 && strcmp (note->namedata, "LINUX") == 0)
8479 return elfcore_grok_arm_vfp (abfd, note);
8480 else
8481 return TRUE;
8482
8483 case NT_PRPSINFO:
8484 case NT_PSINFO:
8485 if (bed->elf_backend_grok_psinfo)
8486 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8487 return TRUE;
8488 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8489 return elfcore_grok_psinfo (abfd, note);
8490 #else
8491 return TRUE;
8492 #endif
8493
8494 case NT_AUXV:
8495 {
8496 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8497 SEC_HAS_CONTENTS);
8498
8499 if (sect == NULL)
8500 return FALSE;
8501 sect->size = note->descsz;
8502 sect->filepos = note->descpos;
8503 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8504
8505 return TRUE;
8506 }
8507 }
8508 }
8509
8510 static bfd_boolean
8511 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8512 {
8513 elf_tdata (abfd)->build_id_size = note->descsz;
8514 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8515 if (elf_tdata (abfd)->build_id == NULL)
8516 return FALSE;
8517
8518 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8519
8520 return TRUE;
8521 }
8522
8523 static bfd_boolean
8524 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8525 {
8526 switch (note->type)
8527 {
8528 default:
8529 return TRUE;
8530
8531 case NT_GNU_BUILD_ID:
8532 return elfobj_grok_gnu_build_id (abfd, note);
8533 }
8534 }
8535
8536 static bfd_boolean
8537 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8538 {
8539 struct sdt_note *cur =
8540 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8541 + note->descsz);
8542
8543 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8544 cur->size = (bfd_size_type) note->descsz;
8545 memcpy (cur->data, note->descdata, note->descsz);
8546
8547 elf_tdata (abfd)->sdt_note_head = cur;
8548
8549 return TRUE;
8550 }
8551
8552 static bfd_boolean
8553 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8554 {
8555 switch (note->type)
8556 {
8557 case NT_STAPSDT:
8558 return elfobj_grok_stapsdt_note_1 (abfd, note);
8559
8560 default:
8561 return TRUE;
8562 }
8563 }
8564
8565 static bfd_boolean
8566 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8567 {
8568 char *cp;
8569
8570 cp = strchr (note->namedata, '@');
8571 if (cp != NULL)
8572 {
8573 *lwpidp = atoi(cp + 1);
8574 return TRUE;
8575 }
8576 return FALSE;
8577 }
8578
8579 static bfd_boolean
8580 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8581 {
8582 /* Signal number at offset 0x08. */
8583 elf_tdata (abfd)->core_signal
8584 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8585
8586 /* Process ID at offset 0x50. */
8587 elf_tdata (abfd)->core_pid
8588 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8589
8590 /* Command name at 0x7c (max 32 bytes, including nul). */
8591 elf_tdata (abfd)->core_command
8592 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8593
8594 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8595 note);
8596 }
8597
8598 static bfd_boolean
8599 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8600 {
8601 int lwp;
8602
8603 if (elfcore_netbsd_get_lwpid (note, &lwp))
8604 elf_tdata (abfd)->core_lwpid = lwp;
8605
8606 if (note->type == NT_NETBSDCORE_PROCINFO)
8607 {
8608 /* NetBSD-specific core "procinfo". Note that we expect to
8609 find this note before any of the others, which is fine,
8610 since the kernel writes this note out first when it
8611 creates a core file. */
8612
8613 return elfcore_grok_netbsd_procinfo (abfd, note);
8614 }
8615
8616 /* As of Jan 2002 there are no other machine-independent notes
8617 defined for NetBSD core files. If the note type is less
8618 than the start of the machine-dependent note types, we don't
8619 understand it. */
8620
8621 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8622 return TRUE;
8623
8624
8625 switch (bfd_get_arch (abfd))
8626 {
8627 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8628 PT_GETFPREGS == mach+2. */
8629
8630 case bfd_arch_alpha:
8631 case bfd_arch_sparc:
8632 switch (note->type)
8633 {
8634 case NT_NETBSDCORE_FIRSTMACH+0:
8635 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8636
8637 case NT_NETBSDCORE_FIRSTMACH+2:
8638 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8639
8640 default:
8641 return TRUE;
8642 }
8643
8644 /* On all other arch's, PT_GETREGS == mach+1 and
8645 PT_GETFPREGS == mach+3. */
8646
8647 default:
8648 switch (note->type)
8649 {
8650 case NT_NETBSDCORE_FIRSTMACH+1:
8651 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8652
8653 case NT_NETBSDCORE_FIRSTMACH+3:
8654 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8655
8656 default:
8657 return TRUE;
8658 }
8659 }
8660 /* NOTREACHED */
8661 }
8662
8663 static bfd_boolean
8664 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8665 {
8666 /* Signal number at offset 0x08. */
8667 elf_tdata (abfd)->core_signal
8668 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8669
8670 /* Process ID at offset 0x20. */
8671 elf_tdata (abfd)->core_pid
8672 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8673
8674 /* Command name at 0x48 (max 32 bytes, including nul). */
8675 elf_tdata (abfd)->core_command
8676 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8677
8678 return TRUE;
8679 }
8680
8681 static bfd_boolean
8682 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8683 {
8684 if (note->type == NT_OPENBSD_PROCINFO)
8685 return elfcore_grok_openbsd_procinfo (abfd, note);
8686
8687 if (note->type == NT_OPENBSD_REGS)
8688 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8689
8690 if (note->type == NT_OPENBSD_FPREGS)
8691 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8692
8693 if (note->type == NT_OPENBSD_XFPREGS)
8694 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8695
8696 if (note->type == NT_OPENBSD_AUXV)
8697 {
8698 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8699 SEC_HAS_CONTENTS);
8700
8701 if (sect == NULL)
8702 return FALSE;
8703 sect->size = note->descsz;
8704 sect->filepos = note->descpos;
8705 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8706
8707 return TRUE;
8708 }
8709
8710 if (note->type == NT_OPENBSD_WCOOKIE)
8711 {
8712 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8713 SEC_HAS_CONTENTS);
8714
8715 if (sect == NULL)
8716 return FALSE;
8717 sect->size = note->descsz;
8718 sect->filepos = note->descpos;
8719 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8720
8721 return TRUE;
8722 }
8723
8724 return TRUE;
8725 }
8726
8727 static bfd_boolean
8728 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8729 {
8730 void *ddata = note->descdata;
8731 char buf[100];
8732 char *name;
8733 asection *sect;
8734 short sig;
8735 unsigned flags;
8736
8737 /* nto_procfs_status 'pid' field is at offset 0. */
8738 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8739
8740 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8741 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8742
8743 /* nto_procfs_status 'flags' field is at offset 8. */
8744 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8745
8746 /* nto_procfs_status 'what' field is at offset 14. */
8747 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8748 {
8749 elf_tdata (abfd)->core_signal = sig;
8750 elf_tdata (abfd)->core_lwpid = *tid;
8751 }
8752
8753 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8754 do not come from signals so we make sure we set the current
8755 thread just in case. */
8756 if (flags & 0x00000080)
8757 elf_tdata (abfd)->core_lwpid = *tid;
8758
8759 /* Make a ".qnx_core_status/%d" section. */
8760 sprintf (buf, ".qnx_core_status/%ld", *tid);
8761
8762 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8763 if (name == NULL)
8764 return FALSE;
8765 strcpy (name, buf);
8766
8767 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8768 if (sect == NULL)
8769 return FALSE;
8770
8771 sect->size = note->descsz;
8772 sect->filepos = note->descpos;
8773 sect->alignment_power = 2;
8774
8775 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8776 }
8777
8778 static bfd_boolean
8779 elfcore_grok_nto_regs (bfd *abfd,
8780 Elf_Internal_Note *note,
8781 long tid,
8782 char *base)
8783 {
8784 char buf[100];
8785 char *name;
8786 asection *sect;
8787
8788 /* Make a "(base)/%d" section. */
8789 sprintf (buf, "%s/%ld", base, tid);
8790
8791 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8792 if (name == NULL)
8793 return FALSE;
8794 strcpy (name, buf);
8795
8796 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8797 if (sect == NULL)
8798 return FALSE;
8799
8800 sect->size = note->descsz;
8801 sect->filepos = note->descpos;
8802 sect->alignment_power = 2;
8803
8804 /* This is the current thread. */
8805 if (elf_tdata (abfd)->core_lwpid == tid)
8806 return elfcore_maybe_make_sect (abfd, base, sect);
8807
8808 return TRUE;
8809 }
8810
8811 #define BFD_QNT_CORE_INFO 7
8812 #define BFD_QNT_CORE_STATUS 8
8813 #define BFD_QNT_CORE_GREG 9
8814 #define BFD_QNT_CORE_FPREG 10
8815
8816 static bfd_boolean
8817 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8818 {
8819 /* Every GREG section has a STATUS section before it. Store the
8820 tid from the previous call to pass down to the next gregs
8821 function. */
8822 static long tid = 1;
8823
8824 switch (note->type)
8825 {
8826 case BFD_QNT_CORE_INFO:
8827 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8828 case BFD_QNT_CORE_STATUS:
8829 return elfcore_grok_nto_status (abfd, note, &tid);
8830 case BFD_QNT_CORE_GREG:
8831 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8832 case BFD_QNT_CORE_FPREG:
8833 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8834 default:
8835 return TRUE;
8836 }
8837 }
8838
8839 static bfd_boolean
8840 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8841 {
8842 char *name;
8843 asection *sect;
8844 size_t len;
8845
8846 /* Use note name as section name. */
8847 len = note->namesz;
8848 name = (char *) bfd_alloc (abfd, len);
8849 if (name == NULL)
8850 return FALSE;
8851 memcpy (name, note->namedata, len);
8852 name[len - 1] = '\0';
8853
8854 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8855 if (sect == NULL)
8856 return FALSE;
8857
8858 sect->size = note->descsz;
8859 sect->filepos = note->descpos;
8860 sect->alignment_power = 1;
8861
8862 return TRUE;
8863 }
8864
8865 /* Function: elfcore_write_note
8866
8867 Inputs:
8868 buffer to hold note, and current size of buffer
8869 name of note
8870 type of note
8871 data for note
8872 size of data for note
8873
8874 Writes note to end of buffer. ELF64 notes are written exactly as
8875 for ELF32, despite the current (as of 2006) ELF gabi specifying
8876 that they ought to have 8-byte namesz and descsz field, and have
8877 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8878
8879 Return:
8880 Pointer to realloc'd buffer, *BUFSIZ updated. */
8881
8882 char *
8883 elfcore_write_note (bfd *abfd,
8884 char *buf,
8885 int *bufsiz,
8886 const char *name,
8887 int type,
8888 const void *input,
8889 int size)
8890 {
8891 Elf_External_Note *xnp;
8892 size_t namesz;
8893 size_t newspace;
8894 char *dest;
8895
8896 namesz = 0;
8897 if (name != NULL)
8898 namesz = strlen (name) + 1;
8899
8900 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8901
8902 buf = (char *) realloc (buf, *bufsiz + newspace);
8903 if (buf == NULL)
8904 return buf;
8905 dest = buf + *bufsiz;
8906 *bufsiz += newspace;
8907 xnp = (Elf_External_Note *) dest;
8908 H_PUT_32 (abfd, namesz, xnp->namesz);
8909 H_PUT_32 (abfd, size, xnp->descsz);
8910 H_PUT_32 (abfd, type, xnp->type);
8911 dest = xnp->name;
8912 if (name != NULL)
8913 {
8914 memcpy (dest, name, namesz);
8915 dest += namesz;
8916 while (namesz & 3)
8917 {
8918 *dest++ = '\0';
8919 ++namesz;
8920 }
8921 }
8922 memcpy (dest, input, size);
8923 dest += size;
8924 while (size & 3)
8925 {
8926 *dest++ = '\0';
8927 ++size;
8928 }
8929 return buf;
8930 }
8931
8932 char *
8933 elfcore_write_prpsinfo (bfd *abfd,
8934 char *buf,
8935 int *bufsiz,
8936 const char *fname,
8937 const char *psargs)
8938 {
8939 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8940
8941 if (bed->elf_backend_write_core_note != NULL)
8942 {
8943 char *ret;
8944 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8945 NT_PRPSINFO, fname, psargs);
8946 if (ret != NULL)
8947 return ret;
8948 }
8949
8950 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8951 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8952 if (bed->s->elfclass == ELFCLASS32)
8953 {
8954 #if defined (HAVE_PSINFO32_T)
8955 psinfo32_t data;
8956 int note_type = NT_PSINFO;
8957 #else
8958 prpsinfo32_t data;
8959 int note_type = NT_PRPSINFO;
8960 #endif
8961
8962 memset (&data, 0, sizeof (data));
8963 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8964 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8965 return elfcore_write_note (abfd, buf, bufsiz,
8966 "CORE", note_type, &data, sizeof (data));
8967 }
8968 else
8969 #endif
8970 {
8971 #if defined (HAVE_PSINFO_T)
8972 psinfo_t data;
8973 int note_type = NT_PSINFO;
8974 #else
8975 prpsinfo_t data;
8976 int note_type = NT_PRPSINFO;
8977 #endif
8978
8979 memset (&data, 0, sizeof (data));
8980 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8981 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8982 return elfcore_write_note (abfd, buf, bufsiz,
8983 "CORE", note_type, &data, sizeof (data));
8984 }
8985 #endif /* PSINFO_T or PRPSINFO_T */
8986
8987 free (buf);
8988 return NULL;
8989 }
8990
8991 char *
8992 elfcore_write_prstatus (bfd *abfd,
8993 char *buf,
8994 int *bufsiz,
8995 long pid,
8996 int cursig,
8997 const void *gregs)
8998 {
8999 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9000
9001 if (bed->elf_backend_write_core_note != NULL)
9002 {
9003 char *ret;
9004 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9005 NT_PRSTATUS,
9006 pid, cursig, gregs);
9007 if (ret != NULL)
9008 return ret;
9009 }
9010
9011 #if defined (HAVE_PRSTATUS_T)
9012 #if defined (HAVE_PRSTATUS32_T)
9013 if (bed->s->elfclass == ELFCLASS32)
9014 {
9015 prstatus32_t prstat;
9016
9017 memset (&prstat, 0, sizeof (prstat));
9018 prstat.pr_pid = pid;
9019 prstat.pr_cursig = cursig;
9020 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9021 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9022 NT_PRSTATUS, &prstat, sizeof (prstat));
9023 }
9024 else
9025 #endif
9026 {
9027 prstatus_t prstat;
9028
9029 memset (&prstat, 0, sizeof (prstat));
9030 prstat.pr_pid = pid;
9031 prstat.pr_cursig = cursig;
9032 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9033 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9034 NT_PRSTATUS, &prstat, sizeof (prstat));
9035 }
9036 #endif /* HAVE_PRSTATUS_T */
9037
9038 free (buf);
9039 return NULL;
9040 }
9041
9042 #if defined (HAVE_LWPSTATUS_T)
9043 char *
9044 elfcore_write_lwpstatus (bfd *abfd,
9045 char *buf,
9046 int *bufsiz,
9047 long pid,
9048 int cursig,
9049 const void *gregs)
9050 {
9051 lwpstatus_t lwpstat;
9052 const char *note_name = "CORE";
9053
9054 memset (&lwpstat, 0, sizeof (lwpstat));
9055 lwpstat.pr_lwpid = pid >> 16;
9056 lwpstat.pr_cursig = cursig;
9057 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9058 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9059 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9060 #if !defined(gregs)
9061 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9062 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9063 #else
9064 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9065 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9066 #endif
9067 #endif
9068 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9069 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9070 }
9071 #endif /* HAVE_LWPSTATUS_T */
9072
9073 #if defined (HAVE_PSTATUS_T)
9074 char *
9075 elfcore_write_pstatus (bfd *abfd,
9076 char *buf,
9077 int *bufsiz,
9078 long pid,
9079 int cursig ATTRIBUTE_UNUSED,
9080 const void *gregs ATTRIBUTE_UNUSED)
9081 {
9082 const char *note_name = "CORE";
9083 #if defined (HAVE_PSTATUS32_T)
9084 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9085
9086 if (bed->s->elfclass == ELFCLASS32)
9087 {
9088 pstatus32_t pstat;
9089
9090 memset (&pstat, 0, sizeof (pstat));
9091 pstat.pr_pid = pid & 0xffff;
9092 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9093 NT_PSTATUS, &pstat, sizeof (pstat));
9094 return buf;
9095 }
9096 else
9097 #endif
9098 {
9099 pstatus_t pstat;
9100
9101 memset (&pstat, 0, sizeof (pstat));
9102 pstat.pr_pid = pid & 0xffff;
9103 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9104 NT_PSTATUS, &pstat, sizeof (pstat));
9105 return buf;
9106 }
9107 }
9108 #endif /* HAVE_PSTATUS_T */
9109
9110 char *
9111 elfcore_write_prfpreg (bfd *abfd,
9112 char *buf,
9113 int *bufsiz,
9114 const void *fpregs,
9115 int size)
9116 {
9117 const char *note_name = "CORE";
9118 return elfcore_write_note (abfd, buf, bufsiz,
9119 note_name, NT_FPREGSET, fpregs, size);
9120 }
9121
9122 char *
9123 elfcore_write_prxfpreg (bfd *abfd,
9124 char *buf,
9125 int *bufsiz,
9126 const void *xfpregs,
9127 int size)
9128 {
9129 char *note_name = "LINUX";
9130 return elfcore_write_note (abfd, buf, bufsiz,
9131 note_name, NT_PRXFPREG, xfpregs, size);
9132 }
9133
9134 char *
9135 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9136 const void *xfpregs, int size)
9137 {
9138 char *note_name = "LINUX";
9139 return elfcore_write_note (abfd, buf, bufsiz,
9140 note_name, NT_X86_XSTATE, xfpregs, size);
9141 }
9142
9143 char *
9144 elfcore_write_ppc_vmx (bfd *abfd,
9145 char *buf,
9146 int *bufsiz,
9147 const void *ppc_vmx,
9148 int size)
9149 {
9150 char *note_name = "LINUX";
9151 return elfcore_write_note (abfd, buf, bufsiz,
9152 note_name, NT_PPC_VMX, ppc_vmx, size);
9153 }
9154
9155 char *
9156 elfcore_write_ppc_vsx (bfd *abfd,
9157 char *buf,
9158 int *bufsiz,
9159 const void *ppc_vsx,
9160 int size)
9161 {
9162 char *note_name = "LINUX";
9163 return elfcore_write_note (abfd, buf, bufsiz,
9164 note_name, NT_PPC_VSX, ppc_vsx, size);
9165 }
9166
9167 static char *
9168 elfcore_write_s390_high_gprs (bfd *abfd,
9169 char *buf,
9170 int *bufsiz,
9171 const void *s390_high_gprs,
9172 int size)
9173 {
9174 char *note_name = "LINUX";
9175 return elfcore_write_note (abfd, buf, bufsiz,
9176 note_name, NT_S390_HIGH_GPRS,
9177 s390_high_gprs, size);
9178 }
9179
9180 char *
9181 elfcore_write_s390_timer (bfd *abfd,
9182 char *buf,
9183 int *bufsiz,
9184 const void *s390_timer,
9185 int size)
9186 {
9187 char *note_name = "LINUX";
9188 return elfcore_write_note (abfd, buf, bufsiz,
9189 note_name, NT_S390_TIMER, s390_timer, size);
9190 }
9191
9192 char *
9193 elfcore_write_s390_todcmp (bfd *abfd,
9194 char *buf,
9195 int *bufsiz,
9196 const void *s390_todcmp,
9197 int size)
9198 {
9199 char *note_name = "LINUX";
9200 return elfcore_write_note (abfd, buf, bufsiz,
9201 note_name, NT_S390_TODCMP, s390_todcmp, size);
9202 }
9203
9204 char *
9205 elfcore_write_s390_todpreg (bfd *abfd,
9206 char *buf,
9207 int *bufsiz,
9208 const void *s390_todpreg,
9209 int size)
9210 {
9211 char *note_name = "LINUX";
9212 return elfcore_write_note (abfd, buf, bufsiz,
9213 note_name, NT_S390_TODPREG, s390_todpreg, size);
9214 }
9215
9216 char *
9217 elfcore_write_s390_ctrs (bfd *abfd,
9218 char *buf,
9219 int *bufsiz,
9220 const void *s390_ctrs,
9221 int size)
9222 {
9223 char *note_name = "LINUX";
9224 return elfcore_write_note (abfd, buf, bufsiz,
9225 note_name, NT_S390_CTRS, s390_ctrs, size);
9226 }
9227
9228 char *
9229 elfcore_write_s390_prefix (bfd *abfd,
9230 char *buf,
9231 int *bufsiz,
9232 const void *s390_prefix,
9233 int size)
9234 {
9235 char *note_name = "LINUX";
9236 return elfcore_write_note (abfd, buf, bufsiz,
9237 note_name, NT_S390_PREFIX, s390_prefix, size);
9238 }
9239
9240 char *
9241 elfcore_write_s390_last_break (bfd *abfd,
9242 char *buf,
9243 int *bufsiz,
9244 const void *s390_last_break,
9245 int size)
9246 {
9247 char *note_name = "LINUX";
9248 return elfcore_write_note (abfd, buf, bufsiz,
9249 note_name, NT_S390_LAST_BREAK,
9250 s390_last_break, size);
9251 }
9252
9253 char *
9254 elfcore_write_s390_system_call (bfd *abfd,
9255 char *buf,
9256 int *bufsiz,
9257 const void *s390_system_call,
9258 int size)
9259 {
9260 char *note_name = "LINUX";
9261 return elfcore_write_note (abfd, buf, bufsiz,
9262 note_name, NT_S390_SYSTEM_CALL,
9263 s390_system_call, size);
9264 }
9265
9266 char *
9267 elfcore_write_arm_vfp (bfd *abfd,
9268 char *buf,
9269 int *bufsiz,
9270 const void *arm_vfp,
9271 int size)
9272 {
9273 char *note_name = "LINUX";
9274 return elfcore_write_note (abfd, buf, bufsiz,
9275 note_name, NT_ARM_VFP, arm_vfp, size);
9276 }
9277
9278 char *
9279 elfcore_write_register_note (bfd *abfd,
9280 char *buf,
9281 int *bufsiz,
9282 const char *section,
9283 const void *data,
9284 int size)
9285 {
9286 if (strcmp (section, ".reg2") == 0)
9287 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9288 if (strcmp (section, ".reg-xfp") == 0)
9289 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9290 if (strcmp (section, ".reg-xstate") == 0)
9291 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9292 if (strcmp (section, ".reg-ppc-vmx") == 0)
9293 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9294 if (strcmp (section, ".reg-ppc-vsx") == 0)
9295 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9296 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9297 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9298 if (strcmp (section, ".reg-s390-timer") == 0)
9299 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9300 if (strcmp (section, ".reg-s390-todcmp") == 0)
9301 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9302 if (strcmp (section, ".reg-s390-todpreg") == 0)
9303 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9304 if (strcmp (section, ".reg-s390-ctrs") == 0)
9305 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9306 if (strcmp (section, ".reg-s390-prefix") == 0)
9307 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9308 if (strcmp (section, ".reg-s390-last-break") == 0)
9309 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9310 if (strcmp (section, ".reg-s390-system-call") == 0)
9311 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9312 if (strcmp (section, ".reg-arm-vfp") == 0)
9313 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9314 return NULL;
9315 }
9316
9317 static bfd_boolean
9318 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9319 {
9320 char *p;
9321
9322 p = buf;
9323 while (p < buf + size)
9324 {
9325 /* FIXME: bad alignment assumption. */
9326 Elf_External_Note *xnp = (Elf_External_Note *) p;
9327 Elf_Internal_Note in;
9328
9329 if (offsetof (Elf_External_Note, name) > buf - p + size)
9330 return FALSE;
9331
9332 in.type = H_GET_32 (abfd, xnp->type);
9333
9334 in.namesz = H_GET_32 (abfd, xnp->namesz);
9335 in.namedata = xnp->name;
9336 if (in.namesz > buf - in.namedata + size)
9337 return FALSE;
9338
9339 in.descsz = H_GET_32 (abfd, xnp->descsz);
9340 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9341 in.descpos = offset + (in.descdata - buf);
9342 if (in.descsz != 0
9343 && (in.descdata >= buf + size
9344 || in.descsz > buf - in.descdata + size))
9345 return FALSE;
9346
9347 switch (bfd_get_format (abfd))
9348 {
9349 default:
9350 return TRUE;
9351
9352 case bfd_core:
9353 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9354 {
9355 if (! elfcore_grok_netbsd_note (abfd, &in))
9356 return FALSE;
9357 }
9358 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9359 {
9360 if (! elfcore_grok_openbsd_note (abfd, &in))
9361 return FALSE;
9362 }
9363 else if (CONST_STRNEQ (in.namedata, "QNX"))
9364 {
9365 if (! elfcore_grok_nto_note (abfd, &in))
9366 return FALSE;
9367 }
9368 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9369 {
9370 if (! elfcore_grok_spu_note (abfd, &in))
9371 return FALSE;
9372 }
9373 else
9374 {
9375 if (! elfcore_grok_note (abfd, &in))
9376 return FALSE;
9377 }
9378 break;
9379
9380 case bfd_object:
9381 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9382 {
9383 if (! elfobj_grok_gnu_note (abfd, &in))
9384 return FALSE;
9385 }
9386 else if (in.namesz == sizeof "stapsdt"
9387 && strcmp (in.namedata, "stapsdt") == 0)
9388 {
9389 if (! elfobj_grok_stapsdt_note (abfd, &in))
9390 return FALSE;
9391 }
9392 break;
9393 }
9394
9395 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9396 }
9397
9398 return TRUE;
9399 }
9400
9401 static bfd_boolean
9402 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9403 {
9404 char *buf;
9405
9406 if (size <= 0)
9407 return TRUE;
9408
9409 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9410 return FALSE;
9411
9412 buf = (char *) bfd_malloc (size);
9413 if (buf == NULL)
9414 return FALSE;
9415
9416 if (bfd_bread (buf, size, abfd) != size
9417 || !elf_parse_notes (abfd, buf, size, offset))
9418 {
9419 free (buf);
9420 return FALSE;
9421 }
9422
9423 free (buf);
9424 return TRUE;
9425 }
9426 \f
9427 /* Providing external access to the ELF program header table. */
9428
9429 /* Return an upper bound on the number of bytes required to store a
9430 copy of ABFD's program header table entries. Return -1 if an error
9431 occurs; bfd_get_error will return an appropriate code. */
9432
9433 long
9434 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9435 {
9436 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9437 {
9438 bfd_set_error (bfd_error_wrong_format);
9439 return -1;
9440 }
9441
9442 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9443 }
9444
9445 /* Copy ABFD's program header table entries to *PHDRS. The entries
9446 will be stored as an array of Elf_Internal_Phdr structures, as
9447 defined in include/elf/internal.h. To find out how large the
9448 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9449
9450 Return the number of program header table entries read, or -1 if an
9451 error occurs; bfd_get_error will return an appropriate code. */
9452
9453 int
9454 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9455 {
9456 int num_phdrs;
9457
9458 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9459 {
9460 bfd_set_error (bfd_error_wrong_format);
9461 return -1;
9462 }
9463
9464 num_phdrs = elf_elfheader (abfd)->e_phnum;
9465 memcpy (phdrs, elf_tdata (abfd)->phdr,
9466 num_phdrs * sizeof (Elf_Internal_Phdr));
9467
9468 return num_phdrs;
9469 }
9470
9471 enum elf_reloc_type_class
9472 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9473 {
9474 return reloc_class_normal;
9475 }
9476
9477 /* For RELA architectures, return the relocation value for a
9478 relocation against a local symbol. */
9479
9480 bfd_vma
9481 _bfd_elf_rela_local_sym (bfd *abfd,
9482 Elf_Internal_Sym *sym,
9483 asection **psec,
9484 Elf_Internal_Rela *rel)
9485 {
9486 asection *sec = *psec;
9487 bfd_vma relocation;
9488
9489 relocation = (sec->output_section->vma
9490 + sec->output_offset
9491 + sym->st_value);
9492 if ((sec->flags & SEC_MERGE)
9493 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9494 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9495 {
9496 rel->r_addend =
9497 _bfd_merged_section_offset (abfd, psec,
9498 elf_section_data (sec)->sec_info,
9499 sym->st_value + rel->r_addend);
9500 if (sec != *psec)
9501 {
9502 /* If we have changed the section, and our original section is
9503 marked with SEC_EXCLUDE, it means that the original
9504 SEC_MERGE section has been completely subsumed in some
9505 other SEC_MERGE section. In this case, we need to leave
9506 some info around for --emit-relocs. */
9507 if ((sec->flags & SEC_EXCLUDE) != 0)
9508 sec->kept_section = *psec;
9509 sec = *psec;
9510 }
9511 rel->r_addend -= relocation;
9512 rel->r_addend += sec->output_section->vma + sec->output_offset;
9513 }
9514 return relocation;
9515 }
9516
9517 bfd_vma
9518 _bfd_elf_rel_local_sym (bfd *abfd,
9519 Elf_Internal_Sym *sym,
9520 asection **psec,
9521 bfd_vma addend)
9522 {
9523 asection *sec = *psec;
9524
9525 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9526 return sym->st_value + addend;
9527
9528 return _bfd_merged_section_offset (abfd, psec,
9529 elf_section_data (sec)->sec_info,
9530 sym->st_value + addend);
9531 }
9532
9533 bfd_vma
9534 _bfd_elf_section_offset (bfd *abfd,
9535 struct bfd_link_info *info,
9536 asection *sec,
9537 bfd_vma offset)
9538 {
9539 switch (sec->sec_info_type)
9540 {
9541 case SEC_INFO_TYPE_STABS:
9542 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9543 offset);
9544 case SEC_INFO_TYPE_EH_FRAME:
9545 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9546 default:
9547 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9548 {
9549 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9550 bfd_size_type address_size = bed->s->arch_size / 8;
9551 offset = sec->size - offset - address_size;
9552 }
9553 return offset;
9554 }
9555 }
9556 \f
9557 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9558 reconstruct an ELF file by reading the segments out of remote memory
9559 based on the ELF file header at EHDR_VMA and the ELF program headers it
9560 points to. If not null, *LOADBASEP is filled in with the difference
9561 between the VMAs from which the segments were read, and the VMAs the
9562 file headers (and hence BFD's idea of each section's VMA) put them at.
9563
9564 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9565 remote memory at target address VMA into the local buffer at MYADDR; it
9566 should return zero on success or an `errno' code on failure. TEMPL must
9567 be a BFD for an ELF target with the word size and byte order found in
9568 the remote memory. */
9569
9570 bfd *
9571 bfd_elf_bfd_from_remote_memory
9572 (bfd *templ,
9573 bfd_vma ehdr_vma,
9574 bfd_vma *loadbasep,
9575 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9576 {
9577 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9578 (templ, ehdr_vma, loadbasep, target_read_memory);
9579 }
9580 \f
9581 long
9582 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9583 long symcount ATTRIBUTE_UNUSED,
9584 asymbol **syms ATTRIBUTE_UNUSED,
9585 long dynsymcount,
9586 asymbol **dynsyms,
9587 asymbol **ret)
9588 {
9589 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9590 asection *relplt;
9591 asymbol *s;
9592 const char *relplt_name;
9593 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9594 arelent *p;
9595 long count, i, n;
9596 size_t size;
9597 Elf_Internal_Shdr *hdr;
9598 char *names;
9599 asection *plt;
9600
9601 *ret = NULL;
9602
9603 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9604 return 0;
9605
9606 if (dynsymcount <= 0)
9607 return 0;
9608
9609 if (!bed->plt_sym_val)
9610 return 0;
9611
9612 relplt_name = bed->relplt_name;
9613 if (relplt_name == NULL)
9614 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9615 relplt = bfd_get_section_by_name (abfd, relplt_name);
9616 if (relplt == NULL)
9617 return 0;
9618
9619 hdr = &elf_section_data (relplt)->this_hdr;
9620 if (hdr->sh_link != elf_dynsymtab (abfd)
9621 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9622 return 0;
9623
9624 plt = bfd_get_section_by_name (abfd, ".plt");
9625 if (plt == NULL)
9626 return 0;
9627
9628 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9629 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9630 return -1;
9631
9632 count = relplt->size / hdr->sh_entsize;
9633 size = count * sizeof (asymbol);
9634 p = relplt->relocation;
9635 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9636 {
9637 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9638 if (p->addend != 0)
9639 {
9640 #ifdef BFD64
9641 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9642 #else
9643 size += sizeof ("+0x") - 1 + 8;
9644 #endif
9645 }
9646 }
9647
9648 s = *ret = (asymbol *) bfd_malloc (size);
9649 if (s == NULL)
9650 return -1;
9651
9652 names = (char *) (s + count);
9653 p = relplt->relocation;
9654 n = 0;
9655 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9656 {
9657 size_t len;
9658 bfd_vma addr;
9659
9660 addr = bed->plt_sym_val (i, plt, p);
9661 if (addr == (bfd_vma) -1)
9662 continue;
9663
9664 *s = **p->sym_ptr_ptr;
9665 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9666 we are defining a symbol, ensure one of them is set. */
9667 if ((s->flags & BSF_LOCAL) == 0)
9668 s->flags |= BSF_GLOBAL;
9669 s->flags |= BSF_SYNTHETIC;
9670 s->section = plt;
9671 s->value = addr - plt->vma;
9672 s->name = names;
9673 s->udata.p = NULL;
9674 len = strlen ((*p->sym_ptr_ptr)->name);
9675 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9676 names += len;
9677 if (p->addend != 0)
9678 {
9679 char buf[30], *a;
9680
9681 memcpy (names, "+0x", sizeof ("+0x") - 1);
9682 names += sizeof ("+0x") - 1;
9683 bfd_sprintf_vma (abfd, buf, p->addend);
9684 for (a = buf; *a == '0'; ++a)
9685 ;
9686 len = strlen (a);
9687 memcpy (names, a, len);
9688 names += len;
9689 }
9690 memcpy (names, "@plt", sizeof ("@plt"));
9691 names += sizeof ("@plt");
9692 ++s, ++n;
9693 }
9694
9695 return n;
9696 }
9697
9698 /* It is only used by x86-64 so far. */
9699 asection _bfd_elf_large_com_section
9700 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9701 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9702
9703 void
9704 _bfd_elf_set_osabi (bfd * abfd,
9705 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9706 {
9707 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9708
9709 i_ehdrp = elf_elfheader (abfd);
9710
9711 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9712
9713 /* To make things simpler for the loader on Linux systems we set the
9714 osabi field to ELFOSABI_GNU if the binary contains symbols of
9715 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9716 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9717 && elf_tdata (abfd)->has_gnu_symbols)
9718 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9719 }
9720
9721
9722 /* Return TRUE for ELF symbol types that represent functions.
9723 This is the default version of this function, which is sufficient for
9724 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9725
9726 bfd_boolean
9727 _bfd_elf_is_function_type (unsigned int type)
9728 {
9729 return (type == STT_FUNC
9730 || type == STT_GNU_IFUNC);
9731 }
9732
9733 /* If the ELF symbol SYM might be a function in SEC, return the
9734 function size and set *CODE_OFF to the function's entry point,
9735 otherwise return zero. */
9736
9737 bfd_size_type
9738 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
9739 bfd_vma *code_off)
9740 {
9741 bfd_size_type size;
9742
9743 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9744 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
9745 || sym->section != sec)
9746 return 0;
9747
9748 *code_off = sym->value;
9749 size = 0;
9750 if (!(sym->flags & BSF_SYNTHETIC))
9751 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
9752 if (size == 0)
9753 size = 1;
9754 return size;
9755 }
This page took 0.220918 seconds and 5 git commands to generate.