* elf-bfd.h (struct elf_backend_data): Add struct elf_backend_data
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* SECTION
22
23 ELF backends
24
25 BFD support for ELF formats is being worked on.
26 Currently, the best supported back ends are for sparc and i386
27 (running svr4 or Solaris 2).
28
29 Documentation of the internals of the support code still needs
30 to be written. The code is changing quickly enough that we
31 haven't bothered yet. */
32
33 /* For sparc64-cross-sparc32. */
34 #define _SYSCALL32
35 #include "bfd.h"
36 #include "sysdep.h"
37 #include "bfdlink.h"
38 #include "libbfd.h"
39 #define ARCH_SIZE 0
40 #include "elf-bfd.h"
41 #include "libiberty.h"
42
43 static INLINE struct elf_segment_map *make_mapping
44 PARAMS ((bfd *, asection **, unsigned int, unsigned int, boolean));
45 static boolean map_sections_to_segments PARAMS ((bfd *));
46 static int elf_sort_sections PARAMS ((const PTR, const PTR));
47 static boolean assign_file_positions_for_segments PARAMS ((bfd *));
48 static boolean assign_file_positions_except_relocs PARAMS ((bfd *));
49 static boolean prep_headers PARAMS ((bfd *));
50 static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **, int));
51 static boolean copy_private_bfd_data PARAMS ((bfd *, bfd *));
52 static char *elf_read PARAMS ((bfd *, file_ptr, bfd_size_type));
53 static const char *group_signature PARAMS ((bfd *, Elf_Internal_Shdr *));
54 static boolean setup_group PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
55 static void merge_sections_remove_hook PARAMS ((bfd *, asection *));
56 static void elf_fake_sections PARAMS ((bfd *, asection *, PTR));
57 static boolean assign_section_numbers PARAMS ((bfd *));
58 static INLINE int sym_is_global PARAMS ((bfd *, asymbol *));
59 static boolean elf_map_symbols PARAMS ((bfd *));
60 static bfd_size_type get_program_header_size PARAMS ((bfd *));
61 static boolean elfcore_read_notes PARAMS ((bfd *, file_ptr, bfd_size_type));
62 static boolean elf_find_function PARAMS ((bfd *, asection *, asymbol **,
63 bfd_vma, const char **,
64 const char **));
65 static int elfcore_make_pid PARAMS ((bfd *));
66 static boolean elfcore_maybe_make_sect PARAMS ((bfd *, char *, asection *));
67 static boolean elfcore_make_note_pseudosection PARAMS ((bfd *, char *,
68 Elf_Internal_Note *));
69 static boolean elfcore_grok_prfpreg PARAMS ((bfd *, Elf_Internal_Note *));
70 static boolean elfcore_grok_prxfpreg PARAMS ((bfd *, Elf_Internal_Note *));
71 static boolean elfcore_grok_note PARAMS ((bfd *, Elf_Internal_Note *));
72
73 static boolean elfcore_netbsd_get_lwpid PARAMS ((Elf_Internal_Note *, int *));
74 static boolean elfcore_grok_netbsd_procinfo PARAMS ((bfd *,
75 Elf_Internal_Note *));
76 static boolean elfcore_grok_netbsd_note PARAMS ((bfd *, Elf_Internal_Note *));
77
78 /* Swap version information in and out. The version information is
79 currently size independent. If that ever changes, this code will
80 need to move into elfcode.h. */
81
82 /* Swap in a Verdef structure. */
83
84 void
85 _bfd_elf_swap_verdef_in (abfd, src, dst)
86 bfd *abfd;
87 const Elf_External_Verdef *src;
88 Elf_Internal_Verdef *dst;
89 {
90 dst->vd_version = H_GET_16 (abfd, src->vd_version);
91 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
92 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
93 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
94 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
95 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
96 dst->vd_next = H_GET_32 (abfd, src->vd_next);
97 }
98
99 /* Swap out a Verdef structure. */
100
101 void
102 _bfd_elf_swap_verdef_out (abfd, src, dst)
103 bfd *abfd;
104 const Elf_Internal_Verdef *src;
105 Elf_External_Verdef *dst;
106 {
107 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
108 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
109 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
110 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
111 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
112 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
113 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
114 }
115
116 /* Swap in a Verdaux structure. */
117
118 void
119 _bfd_elf_swap_verdaux_in (abfd, src, dst)
120 bfd *abfd;
121 const Elf_External_Verdaux *src;
122 Elf_Internal_Verdaux *dst;
123 {
124 dst->vda_name = H_GET_32 (abfd, src->vda_name);
125 dst->vda_next = H_GET_32 (abfd, src->vda_next);
126 }
127
128 /* Swap out a Verdaux structure. */
129
130 void
131 _bfd_elf_swap_verdaux_out (abfd, src, dst)
132 bfd *abfd;
133 const Elf_Internal_Verdaux *src;
134 Elf_External_Verdaux *dst;
135 {
136 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
137 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
138 }
139
140 /* Swap in a Verneed structure. */
141
142 void
143 _bfd_elf_swap_verneed_in (abfd, src, dst)
144 bfd *abfd;
145 const Elf_External_Verneed *src;
146 Elf_Internal_Verneed *dst;
147 {
148 dst->vn_version = H_GET_16 (abfd, src->vn_version);
149 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
150 dst->vn_file = H_GET_32 (abfd, src->vn_file);
151 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
152 dst->vn_next = H_GET_32 (abfd, src->vn_next);
153 }
154
155 /* Swap out a Verneed structure. */
156
157 void
158 _bfd_elf_swap_verneed_out (abfd, src, dst)
159 bfd *abfd;
160 const Elf_Internal_Verneed *src;
161 Elf_External_Verneed *dst;
162 {
163 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
164 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
165 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
166 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
167 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
168 }
169
170 /* Swap in a Vernaux structure. */
171
172 void
173 _bfd_elf_swap_vernaux_in (abfd, src, dst)
174 bfd *abfd;
175 const Elf_External_Vernaux *src;
176 Elf_Internal_Vernaux *dst;
177 {
178 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
179 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
180 dst->vna_other = H_GET_16 (abfd, src->vna_other);
181 dst->vna_name = H_GET_32 (abfd, src->vna_name);
182 dst->vna_next = H_GET_32 (abfd, src->vna_next);
183 }
184
185 /* Swap out a Vernaux structure. */
186
187 void
188 _bfd_elf_swap_vernaux_out (abfd, src, dst)
189 bfd *abfd;
190 const Elf_Internal_Vernaux *src;
191 Elf_External_Vernaux *dst;
192 {
193 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
194 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
195 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
196 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
197 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
198 }
199
200 /* Swap in a Versym structure. */
201
202 void
203 _bfd_elf_swap_versym_in (abfd, src, dst)
204 bfd *abfd;
205 const Elf_External_Versym *src;
206 Elf_Internal_Versym *dst;
207 {
208 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
209 }
210
211 /* Swap out a Versym structure. */
212
213 void
214 _bfd_elf_swap_versym_out (abfd, src, dst)
215 bfd *abfd;
216 const Elf_Internal_Versym *src;
217 Elf_External_Versym *dst;
218 {
219 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
220 }
221
222 /* Standard ELF hash function. Do not change this function; you will
223 cause invalid hash tables to be generated. */
224
225 unsigned long
226 bfd_elf_hash (namearg)
227 const char *namearg;
228 {
229 const unsigned char *name = (const unsigned char *) namearg;
230 unsigned long h = 0;
231 unsigned long g;
232 int ch;
233
234 while ((ch = *name++) != '\0')
235 {
236 h = (h << 4) + ch;
237 if ((g = (h & 0xf0000000)) != 0)
238 {
239 h ^= g >> 24;
240 /* The ELF ABI says `h &= ~g', but this is equivalent in
241 this case and on some machines one insn instead of two. */
242 h ^= g;
243 }
244 }
245 return h;
246 }
247
248 /* Read a specified number of bytes at a specified offset in an ELF
249 file, into a newly allocated buffer, and return a pointer to the
250 buffer. */
251
252 static char *
253 elf_read (abfd, offset, size)
254 bfd *abfd;
255 file_ptr offset;
256 bfd_size_type size;
257 {
258 char *buf;
259
260 if ((buf = bfd_alloc (abfd, size)) == NULL)
261 return NULL;
262 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
263 return NULL;
264 if (bfd_bread ((PTR) buf, size, abfd) != size)
265 {
266 if (bfd_get_error () != bfd_error_system_call)
267 bfd_set_error (bfd_error_file_truncated);
268 return NULL;
269 }
270 return buf;
271 }
272
273 boolean
274 bfd_elf_mkobject (abfd)
275 bfd *abfd;
276 {
277 /* This just does initialization. */
278 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
279 bfd_size_type amt = sizeof (struct elf_obj_tdata);
280 elf_tdata (abfd) = (struct elf_obj_tdata *) bfd_zalloc (abfd, amt);
281 if (elf_tdata (abfd) == 0)
282 return false;
283 /* Since everything is done at close time, do we need any
284 initialization? */
285
286 return true;
287 }
288
289 boolean
290 bfd_elf_mkcorefile (abfd)
291 bfd *abfd;
292 {
293 /* I think this can be done just like an object file. */
294 return bfd_elf_mkobject (abfd);
295 }
296
297 char *
298 bfd_elf_get_str_section (abfd, shindex)
299 bfd *abfd;
300 unsigned int shindex;
301 {
302 Elf_Internal_Shdr **i_shdrp;
303 char *shstrtab = NULL;
304 file_ptr offset;
305 bfd_size_type shstrtabsize;
306
307 i_shdrp = elf_elfsections (abfd);
308 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
309 return 0;
310
311 shstrtab = (char *) i_shdrp[shindex]->contents;
312 if (shstrtab == NULL)
313 {
314 /* No cached one, attempt to read, and cache what we read. */
315 offset = i_shdrp[shindex]->sh_offset;
316 shstrtabsize = i_shdrp[shindex]->sh_size;
317 shstrtab = elf_read (abfd, offset, shstrtabsize);
318 i_shdrp[shindex]->contents = (PTR) shstrtab;
319 }
320 return shstrtab;
321 }
322
323 char *
324 bfd_elf_string_from_elf_section (abfd, shindex, strindex)
325 bfd *abfd;
326 unsigned int shindex;
327 unsigned int strindex;
328 {
329 Elf_Internal_Shdr *hdr;
330
331 if (strindex == 0)
332 return "";
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL
337 && bfd_elf_get_str_section (abfd, shindex) == NULL)
338 return NULL;
339
340 if (strindex >= hdr->sh_size)
341 {
342 (*_bfd_error_handler)
343 (_("%s: invalid string offset %u >= %lu for section `%s'"),
344 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
345 ((shindex == elf_elfheader(abfd)->e_shstrndx
346 && strindex == hdr->sh_name)
347 ? ".shstrtab"
348 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
349 return "";
350 }
351
352 return ((char *) hdr->contents) + strindex;
353 }
354
355 /* Read and convert symbols to internal format.
356 SYMCOUNT specifies the number of symbols to read, starting from
357 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
358 are non-NULL, they are used to store the internal symbols, external
359 symbols, and symbol section index extensions, respectively. */
360
361 Elf_Internal_Sym *
362 bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, symoffset,
363 intsym_buf, extsym_buf, extshndx_buf)
364 bfd *ibfd;
365 Elf_Internal_Shdr *symtab_hdr;
366 size_t symcount;
367 size_t symoffset;
368 Elf_Internal_Sym *intsym_buf;
369 PTR extsym_buf;
370 Elf_External_Sym_Shndx *extshndx_buf;
371 {
372 Elf_Internal_Shdr *shndx_hdr;
373 PTR alloc_ext;
374 const bfd_byte *esym;
375 Elf_External_Sym_Shndx *alloc_extshndx;
376 Elf_External_Sym_Shndx *shndx;
377 Elf_Internal_Sym *isym;
378 Elf_Internal_Sym *isymend;
379 struct elf_backend_data *bed;
380 size_t extsym_size;
381 bfd_size_type amt;
382 file_ptr pos;
383
384 if (symcount == 0)
385 return intsym_buf;
386
387 /* Normal syms might have section extension entries. */
388 shndx_hdr = NULL;
389 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
390 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
391
392 /* Read the symbols. */
393 alloc_ext = NULL;
394 alloc_extshndx = NULL;
395 bed = get_elf_backend_data (ibfd);
396 extsym_size = bed->s->sizeof_sym;
397 amt = symcount * extsym_size;
398 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
399 if (extsym_buf == NULL)
400 {
401 alloc_ext = bfd_malloc (amt);
402 extsym_buf = alloc_ext;
403 }
404 if (extsym_buf == NULL
405 || bfd_seek (ibfd, pos, SEEK_SET) != 0
406 || bfd_bread (extsym_buf, amt, ibfd) != amt)
407 {
408 intsym_buf = NULL;
409 goto out;
410 }
411
412 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
413 extshndx_buf = NULL;
414 else
415 {
416 amt = symcount * sizeof (Elf_External_Sym_Shndx);
417 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
418 if (extshndx_buf == NULL)
419 {
420 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
421 extshndx_buf = alloc_extshndx;
422 }
423 if (extshndx_buf == NULL
424 || bfd_seek (ibfd, pos, SEEK_SET) != 0
425 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
426 {
427 intsym_buf = NULL;
428 goto out;
429 }
430 }
431
432 if (intsym_buf == NULL)
433 {
434 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
435 intsym_buf = (Elf_Internal_Sym *) bfd_malloc (amt);
436 if (intsym_buf == NULL)
437 goto out;
438 }
439
440 /* Convert the symbols to internal form. */
441 isymend = intsym_buf + symcount;
442 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
443 isym < isymend;
444 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
445 (*bed->s->swap_symbol_in) (ibfd, esym, (const PTR) shndx, isym);
446
447 out:
448 if (alloc_ext != NULL)
449 free (alloc_ext);
450 if (alloc_extshndx != NULL)
451 free (alloc_extshndx);
452
453 return intsym_buf;
454 }
455
456 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
457 sections. The first element is the flags, the rest are section
458 pointers. */
459
460 typedef union elf_internal_group {
461 Elf_Internal_Shdr *shdr;
462 unsigned int flags;
463 } Elf_Internal_Group;
464
465 /* Return the name of the group signature symbol. Why isn't the
466 signature just a string? */
467
468 static const char *
469 group_signature (abfd, ghdr)
470 bfd *abfd;
471 Elf_Internal_Shdr *ghdr;
472 {
473 Elf_Internal_Shdr *hdr;
474 unsigned char esym[sizeof (Elf64_External_Sym)];
475 Elf_External_Sym_Shndx eshndx;
476 Elf_Internal_Sym isym;
477 unsigned int iname;
478 unsigned int shindex;
479
480 /* First we need to ensure the symbol table is available. */
481 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
482 return NULL;
483
484 /* Go read the symbol. */
485 hdr = &elf_tdata (abfd)->symtab_hdr;
486 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
487 &isym, esym, &eshndx) == NULL)
488 return NULL;
489
490 /* Look up the symbol name. */
491 iname = isym.st_name;
492 shindex = hdr->sh_link;
493 if (iname == 0 && ELF_ST_TYPE (isym.st_info) == STT_SECTION)
494 {
495 iname = elf_elfsections (abfd)[isym.st_shndx]->sh_name;
496 shindex = elf_elfheader (abfd)->e_shstrndx;
497 }
498
499 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
500 }
501
502 /* Set next_in_group list pointer, and group name for NEWSECT. */
503
504 static boolean
505 setup_group (abfd, hdr, newsect)
506 bfd *abfd;
507 Elf_Internal_Shdr *hdr;
508 asection *newsect;
509 {
510 unsigned int num_group = elf_tdata (abfd)->num_group;
511
512 /* If num_group is zero, read in all SHT_GROUP sections. The count
513 is set to -1 if there are no SHT_GROUP sections. */
514 if (num_group == 0)
515 {
516 unsigned int i, shnum;
517
518 /* First count the number of groups. If we have a SHT_GROUP
519 section with just a flag word (ie. sh_size is 4), ignore it. */
520 shnum = elf_numsections (abfd);
521 num_group = 0;
522 for (i = 0; i < shnum; i++)
523 {
524 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
525 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
526 num_group += 1;
527 }
528
529 if (num_group == 0)
530 num_group = (unsigned) -1;
531 elf_tdata (abfd)->num_group = num_group;
532
533 if (num_group > 0)
534 {
535 /* We keep a list of elf section headers for group sections,
536 so we can find them quickly. */
537 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
538 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
539 if (elf_tdata (abfd)->group_sect_ptr == NULL)
540 return false;
541
542 num_group = 0;
543 for (i = 0; i < shnum; i++)
544 {
545 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
546 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
547 {
548 unsigned char *src;
549 Elf_Internal_Group *dest;
550
551 /* Add to list of sections. */
552 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
553 num_group += 1;
554
555 /* Read the raw contents. */
556 BFD_ASSERT (sizeof (*dest) >= 4);
557 amt = shdr->sh_size * sizeof (*dest) / 4;
558 shdr->contents = bfd_alloc (abfd, amt);
559 if (shdr->contents == NULL
560 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
561 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
562 != shdr->sh_size))
563 return false;
564
565 /* Translate raw contents, a flag word followed by an
566 array of elf section indices all in target byte order,
567 to the flag word followed by an array of elf section
568 pointers. */
569 src = shdr->contents + shdr->sh_size;
570 dest = (Elf_Internal_Group *) (shdr->contents + amt);
571 while (1)
572 {
573 unsigned int idx;
574
575 src -= 4;
576 --dest;
577 idx = H_GET_32 (abfd, src);
578 if (src == shdr->contents)
579 {
580 dest->flags = idx;
581 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
582 shdr->bfd_section->flags
583 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
584 break;
585 }
586 if (idx >= shnum)
587 {
588 ((*_bfd_error_handler)
589 (_("%s: invalid SHT_GROUP entry"),
590 bfd_archive_filename (abfd)));
591 idx = 0;
592 }
593 dest->shdr = elf_elfsections (abfd)[idx];
594 }
595 }
596 }
597 }
598 }
599
600 if (num_group != (unsigned) -1)
601 {
602 unsigned int i;
603
604 for (i = 0; i < num_group; i++)
605 {
606 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
607 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
608 unsigned int n_elt = shdr->sh_size / 4;
609
610 /* Look through this group's sections to see if current
611 section is a member. */
612 while (--n_elt != 0)
613 if ((++idx)->shdr == hdr)
614 {
615 asection *s = NULL;
616
617 /* We are a member of this group. Go looking through
618 other members to see if any others are linked via
619 next_in_group. */
620 idx = (Elf_Internal_Group *) shdr->contents;
621 n_elt = shdr->sh_size / 4;
622 while (--n_elt != 0)
623 if ((s = (++idx)->shdr->bfd_section) != NULL
624 && elf_next_in_group (s) != NULL)
625 break;
626 if (n_elt != 0)
627 {
628 /* Snarf the group name from other member, and
629 insert current section in circular list. */
630 elf_group_name (newsect) = elf_group_name (s);
631 elf_next_in_group (newsect) = elf_next_in_group (s);
632 elf_next_in_group (s) = newsect;
633 }
634 else
635 {
636 const char *gname;
637
638 gname = group_signature (abfd, shdr);
639 if (gname == NULL)
640 return false;
641 elf_group_name (newsect) = gname;
642
643 /* Start a circular list with one element. */
644 elf_next_in_group (newsect) = newsect;
645 }
646
647 /* If the group section has been created, point to the
648 new member. */
649 if (shdr->bfd_section != NULL)
650 elf_next_in_group (shdr->bfd_section) = newsect;
651
652 i = num_group - 1;
653 break;
654 }
655 }
656 }
657
658 if (elf_group_name (newsect) == NULL)
659 {
660 (*_bfd_error_handler) (_("%s: no group info for section %s"),
661 bfd_archive_filename (abfd), newsect->name);
662 }
663 return true;
664 }
665
666 boolean
667 bfd_elf_discard_group (abfd, group)
668 bfd *abfd ATTRIBUTE_UNUSED;
669 asection *group;
670 {
671 asection *first = elf_next_in_group (group);
672 asection *s = first;
673
674 while (s != NULL)
675 {
676 s->output_section = bfd_abs_section_ptr;
677 s = elf_next_in_group (s);
678 /* These lists are circular. */
679 if (s == first)
680 break;
681 }
682 return true;
683 }
684
685 /* Make a BFD section from an ELF section. We store a pointer to the
686 BFD section in the bfd_section field of the header. */
687
688 boolean
689 _bfd_elf_make_section_from_shdr (abfd, hdr, name)
690 bfd *abfd;
691 Elf_Internal_Shdr *hdr;
692 const char *name;
693 {
694 asection *newsect;
695 flagword flags;
696 struct elf_backend_data *bed;
697
698 if (hdr->bfd_section != NULL)
699 {
700 BFD_ASSERT (strcmp (name,
701 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
702 return true;
703 }
704
705 newsect = bfd_make_section_anyway (abfd, name);
706 if (newsect == NULL)
707 return false;
708
709 newsect->filepos = hdr->sh_offset;
710
711 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
712 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
713 || ! bfd_set_section_alignment (abfd, newsect,
714 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
715 return false;
716
717 flags = SEC_NO_FLAGS;
718 if (hdr->sh_type != SHT_NOBITS)
719 flags |= SEC_HAS_CONTENTS;
720 if (hdr->sh_type == SHT_GROUP)
721 flags |= SEC_GROUP | SEC_EXCLUDE;
722 if ((hdr->sh_flags & SHF_ALLOC) != 0)
723 {
724 flags |= SEC_ALLOC;
725 if (hdr->sh_type != SHT_NOBITS)
726 flags |= SEC_LOAD;
727 }
728 if ((hdr->sh_flags & SHF_WRITE) == 0)
729 flags |= SEC_READONLY;
730 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
731 flags |= SEC_CODE;
732 else if ((flags & SEC_LOAD) != 0)
733 flags |= SEC_DATA;
734 if ((hdr->sh_flags & SHF_MERGE) != 0)
735 {
736 flags |= SEC_MERGE;
737 newsect->entsize = hdr->sh_entsize;
738 if ((hdr->sh_flags & SHF_STRINGS) != 0)
739 flags |= SEC_STRINGS;
740 }
741 if (hdr->sh_flags & SHF_GROUP)
742 if (!setup_group (abfd, hdr, newsect))
743 return false;
744 if ((hdr->sh_flags & SHF_TLS) != 0)
745 flags |= SEC_THREAD_LOCAL;
746
747 /* The debugging sections appear to be recognized only by name, not
748 any sort of flag. */
749 {
750 static const char *debug_sec_names [] =
751 {
752 ".debug",
753 ".gnu.linkonce.wi.",
754 ".line",
755 ".stab"
756 };
757 int i;
758
759 for (i = ARRAY_SIZE (debug_sec_names); i--;)
760 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
761 break;
762
763 if (i >= 0)
764 flags |= SEC_DEBUGGING;
765 }
766
767 /* As a GNU extension, if the name begins with .gnu.linkonce, we
768 only link a single copy of the section. This is used to support
769 g++. g++ will emit each template expansion in its own section.
770 The symbols will be defined as weak, so that multiple definitions
771 are permitted. The GNU linker extension is to actually discard
772 all but one of the sections. */
773 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
774 && elf_next_in_group (newsect) == NULL)
775 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
776
777 bed = get_elf_backend_data (abfd);
778 if (bed->elf_backend_section_flags)
779 if (! bed->elf_backend_section_flags (&flags, hdr))
780 return false;
781
782 if (! bfd_set_section_flags (abfd, newsect, flags))
783 return false;
784
785 if ((flags & SEC_ALLOC) != 0)
786 {
787 Elf_Internal_Phdr *phdr;
788 unsigned int i;
789
790 /* Look through the phdrs to see if we need to adjust the lma.
791 If all the p_paddr fields are zero, we ignore them, since
792 some ELF linkers produce such output. */
793 phdr = elf_tdata (abfd)->phdr;
794 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
795 {
796 if (phdr->p_paddr != 0)
797 break;
798 }
799 if (i < elf_elfheader (abfd)->e_phnum)
800 {
801 phdr = elf_tdata (abfd)->phdr;
802 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
803 {
804 /* This section is part of this segment if its file
805 offset plus size lies within the segment's memory
806 span and, if the section is loaded, the extent of the
807 loaded data lies within the extent of the segment.
808
809 Note - we used to check the p_paddr field as well, and
810 refuse to set the LMA if it was 0. This is wrong
811 though, as a perfectly valid initialised segment can
812 have a p_paddr of zero. Some architectures, eg ARM,
813 place special significance on the address 0 and
814 executables need to be able to have a segment which
815 covers this address. */
816 if (phdr->p_type == PT_LOAD
817 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
818 && (hdr->sh_offset + hdr->sh_size
819 <= phdr->p_offset + phdr->p_memsz)
820 && ((flags & SEC_LOAD) == 0
821 || (hdr->sh_offset + hdr->sh_size
822 <= phdr->p_offset + phdr->p_filesz)))
823 {
824 if ((flags & SEC_LOAD) == 0)
825 newsect->lma = (phdr->p_paddr
826 + hdr->sh_addr - phdr->p_vaddr);
827 else
828 /* We used to use the same adjustment for SEC_LOAD
829 sections, but that doesn't work if the segment
830 is packed with code from multiple VMAs.
831 Instead we calculate the section LMA based on
832 the segment LMA. It is assumed that the
833 segment will contain sections with contiguous
834 LMAs, even if the VMAs are not. */
835 newsect->lma = (phdr->p_paddr
836 + hdr->sh_offset - phdr->p_offset);
837
838 /* With contiguous segments, we can't tell from file
839 offsets whether a section with zero size should
840 be placed at the end of one segment or the
841 beginning of the next. Decide based on vaddr. */
842 if (hdr->sh_addr >= phdr->p_vaddr
843 && (hdr->sh_addr + hdr->sh_size
844 <= phdr->p_vaddr + phdr->p_memsz))
845 break;
846 }
847 }
848 }
849 }
850
851 hdr->bfd_section = newsect;
852 elf_section_data (newsect)->this_hdr = *hdr;
853
854 return true;
855 }
856
857 /*
858 INTERNAL_FUNCTION
859 bfd_elf_find_section
860
861 SYNOPSIS
862 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
863
864 DESCRIPTION
865 Helper functions for GDB to locate the string tables.
866 Since BFD hides string tables from callers, GDB needs to use an
867 internal hook to find them. Sun's .stabstr, in particular,
868 isn't even pointed to by the .stab section, so ordinary
869 mechanisms wouldn't work to find it, even if we had some.
870 */
871
872 struct elf_internal_shdr *
873 bfd_elf_find_section (abfd, name)
874 bfd *abfd;
875 char *name;
876 {
877 Elf_Internal_Shdr **i_shdrp;
878 char *shstrtab;
879 unsigned int max;
880 unsigned int i;
881
882 i_shdrp = elf_elfsections (abfd);
883 if (i_shdrp != NULL)
884 {
885 shstrtab = bfd_elf_get_str_section (abfd,
886 elf_elfheader (abfd)->e_shstrndx);
887 if (shstrtab != NULL)
888 {
889 max = elf_numsections (abfd);
890 for (i = 1; i < max; i++)
891 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
892 return i_shdrp[i];
893 }
894 }
895 return 0;
896 }
897
898 const char *const bfd_elf_section_type_names[] = {
899 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
900 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
901 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
902 };
903
904 /* ELF relocs are against symbols. If we are producing relocateable
905 output, and the reloc is against an external symbol, and nothing
906 has given us any additional addend, the resulting reloc will also
907 be against the same symbol. In such a case, we don't want to
908 change anything about the way the reloc is handled, since it will
909 all be done at final link time. Rather than put special case code
910 into bfd_perform_relocation, all the reloc types use this howto
911 function. It just short circuits the reloc if producing
912 relocateable output against an external symbol. */
913
914 bfd_reloc_status_type
915 bfd_elf_generic_reloc (abfd,
916 reloc_entry,
917 symbol,
918 data,
919 input_section,
920 output_bfd,
921 error_message)
922 bfd *abfd ATTRIBUTE_UNUSED;
923 arelent *reloc_entry;
924 asymbol *symbol;
925 PTR data ATTRIBUTE_UNUSED;
926 asection *input_section;
927 bfd *output_bfd;
928 char **error_message ATTRIBUTE_UNUSED;
929 {
930 if (output_bfd != (bfd *) NULL
931 && (symbol->flags & BSF_SECTION_SYM) == 0
932 && (! reloc_entry->howto->partial_inplace
933 || reloc_entry->addend == 0))
934 {
935 reloc_entry->address += input_section->output_offset;
936 return bfd_reloc_ok;
937 }
938
939 return bfd_reloc_continue;
940 }
941 \f
942 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
943
944 static void
945 merge_sections_remove_hook (abfd, sec)
946 bfd *abfd ATTRIBUTE_UNUSED;
947 asection *sec;
948 {
949 struct bfd_elf_section_data *sec_data;
950
951 sec_data = elf_section_data (sec);
952 BFD_ASSERT (sec_data->sec_info_type == ELF_INFO_TYPE_MERGE);
953 sec_data->sec_info_type = ELF_INFO_TYPE_NONE;
954 }
955
956 /* Finish SHF_MERGE section merging. */
957
958 boolean
959 _bfd_elf_merge_sections (abfd, info)
960 bfd *abfd;
961 struct bfd_link_info *info;
962 {
963 if (!is_elf_hash_table (info))
964 return false;
965 if (elf_hash_table (info)->merge_info)
966 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
967 merge_sections_remove_hook);
968 return true;
969 }
970
971 void
972 _bfd_elf_link_just_syms (sec, info)
973 asection *sec;
974 struct bfd_link_info *info;
975 {
976 sec->output_section = bfd_abs_section_ptr;
977 sec->output_offset = sec->vma;
978 if (!is_elf_hash_table (info))
979 return;
980
981 elf_section_data (sec)->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
982 }
983 \f
984 /* Copy the program header and other data from one object module to
985 another. */
986
987 boolean
988 _bfd_elf_copy_private_bfd_data (ibfd, obfd)
989 bfd *ibfd;
990 bfd *obfd;
991 {
992 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
993 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
994 return true;
995
996 BFD_ASSERT (!elf_flags_init (obfd)
997 || (elf_elfheader (obfd)->e_flags
998 == elf_elfheader (ibfd)->e_flags));
999
1000 elf_gp (obfd) = elf_gp (ibfd);
1001 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1002 elf_flags_init (obfd) = true;
1003 return true;
1004 }
1005
1006 /* Print out the program headers. */
1007
1008 boolean
1009 _bfd_elf_print_private_bfd_data (abfd, farg)
1010 bfd *abfd;
1011 PTR farg;
1012 {
1013 FILE *f = (FILE *) farg;
1014 Elf_Internal_Phdr *p;
1015 asection *s;
1016 bfd_byte *dynbuf = NULL;
1017
1018 p = elf_tdata (abfd)->phdr;
1019 if (p != NULL)
1020 {
1021 unsigned int i, c;
1022
1023 fprintf (f, _("\nProgram Header:\n"));
1024 c = elf_elfheader (abfd)->e_phnum;
1025 for (i = 0; i < c; i++, p++)
1026 {
1027 const char *pt;
1028 char buf[20];
1029
1030 switch (p->p_type)
1031 {
1032 case PT_NULL: pt = "NULL"; break;
1033 case PT_LOAD: pt = "LOAD"; break;
1034 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1035 case PT_INTERP: pt = "INTERP"; break;
1036 case PT_NOTE: pt = "NOTE"; break;
1037 case PT_SHLIB: pt = "SHLIB"; break;
1038 case PT_PHDR: pt = "PHDR"; break;
1039 case PT_TLS: pt = "TLS"; break;
1040 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1041 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1042 }
1043 fprintf (f, "%8s off 0x", pt);
1044 bfd_fprintf_vma (abfd, f, p->p_offset);
1045 fprintf (f, " vaddr 0x");
1046 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1047 fprintf (f, " paddr 0x");
1048 bfd_fprintf_vma (abfd, f, p->p_paddr);
1049 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1050 fprintf (f, " filesz 0x");
1051 bfd_fprintf_vma (abfd, f, p->p_filesz);
1052 fprintf (f, " memsz 0x");
1053 bfd_fprintf_vma (abfd, f, p->p_memsz);
1054 fprintf (f, " flags %c%c%c",
1055 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1056 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1057 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1058 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1059 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1060 fprintf (f, "\n");
1061 }
1062 }
1063
1064 s = bfd_get_section_by_name (abfd, ".dynamic");
1065 if (s != NULL)
1066 {
1067 int elfsec;
1068 unsigned long shlink;
1069 bfd_byte *extdyn, *extdynend;
1070 size_t extdynsize;
1071 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
1072
1073 fprintf (f, _("\nDynamic Section:\n"));
1074
1075 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
1076 if (dynbuf == NULL)
1077 goto error_return;
1078 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
1079 s->_raw_size))
1080 goto error_return;
1081
1082 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1083 if (elfsec == -1)
1084 goto error_return;
1085 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1086
1087 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1088 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1089
1090 extdyn = dynbuf;
1091 extdynend = extdyn + s->_raw_size;
1092 for (; extdyn < extdynend; extdyn += extdynsize)
1093 {
1094 Elf_Internal_Dyn dyn;
1095 const char *name;
1096 char ab[20];
1097 boolean stringp;
1098
1099 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
1100
1101 if (dyn.d_tag == DT_NULL)
1102 break;
1103
1104 stringp = false;
1105 switch (dyn.d_tag)
1106 {
1107 default:
1108 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1109 name = ab;
1110 break;
1111
1112 case DT_NEEDED: name = "NEEDED"; stringp = true; break;
1113 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1114 case DT_PLTGOT: name = "PLTGOT"; break;
1115 case DT_HASH: name = "HASH"; break;
1116 case DT_STRTAB: name = "STRTAB"; break;
1117 case DT_SYMTAB: name = "SYMTAB"; break;
1118 case DT_RELA: name = "RELA"; break;
1119 case DT_RELASZ: name = "RELASZ"; break;
1120 case DT_RELAENT: name = "RELAENT"; break;
1121 case DT_STRSZ: name = "STRSZ"; break;
1122 case DT_SYMENT: name = "SYMENT"; break;
1123 case DT_INIT: name = "INIT"; break;
1124 case DT_FINI: name = "FINI"; break;
1125 case DT_SONAME: name = "SONAME"; stringp = true; break;
1126 case DT_RPATH: name = "RPATH"; stringp = true; break;
1127 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1128 case DT_REL: name = "REL"; break;
1129 case DT_RELSZ: name = "RELSZ"; break;
1130 case DT_RELENT: name = "RELENT"; break;
1131 case DT_PLTREL: name = "PLTREL"; break;
1132 case DT_DEBUG: name = "DEBUG"; break;
1133 case DT_TEXTREL: name = "TEXTREL"; break;
1134 case DT_JMPREL: name = "JMPREL"; break;
1135 case DT_BIND_NOW: name = "BIND_NOW"; break;
1136 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1137 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1138 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1139 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1140 case DT_RUNPATH: name = "RUNPATH"; stringp = true; break;
1141 case DT_FLAGS: name = "FLAGS"; break;
1142 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1143 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1144 case DT_CHECKSUM: name = "CHECKSUM"; break;
1145 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1146 case DT_MOVEENT: name = "MOVEENT"; break;
1147 case DT_MOVESZ: name = "MOVESZ"; break;
1148 case DT_FEATURE: name = "FEATURE"; break;
1149 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1150 case DT_SYMINSZ: name = "SYMINSZ"; break;
1151 case DT_SYMINENT: name = "SYMINENT"; break;
1152 case DT_CONFIG: name = "CONFIG"; stringp = true; break;
1153 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break;
1154 case DT_AUDIT: name = "AUDIT"; stringp = true; break;
1155 case DT_PLTPAD: name = "PLTPAD"; break;
1156 case DT_MOVETAB: name = "MOVETAB"; break;
1157 case DT_SYMINFO: name = "SYMINFO"; break;
1158 case DT_RELACOUNT: name = "RELACOUNT"; break;
1159 case DT_RELCOUNT: name = "RELCOUNT"; break;
1160 case DT_FLAGS_1: name = "FLAGS_1"; break;
1161 case DT_VERSYM: name = "VERSYM"; break;
1162 case DT_VERDEF: name = "VERDEF"; break;
1163 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1164 case DT_VERNEED: name = "VERNEED"; break;
1165 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1166 case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break;
1167 case DT_USED: name = "USED"; break;
1168 case DT_FILTER: name = "FILTER"; stringp = true; break;
1169 }
1170
1171 fprintf (f, " %-11s ", name);
1172 if (! stringp)
1173 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1174 else
1175 {
1176 const char *string;
1177 unsigned int tagv = dyn.d_un.d_val;
1178
1179 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1180 if (string == NULL)
1181 goto error_return;
1182 fprintf (f, "%s", string);
1183 }
1184 fprintf (f, "\n");
1185 }
1186
1187 free (dynbuf);
1188 dynbuf = NULL;
1189 }
1190
1191 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1192 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1193 {
1194 if (! _bfd_elf_slurp_version_tables (abfd))
1195 return false;
1196 }
1197
1198 if (elf_dynverdef (abfd) != 0)
1199 {
1200 Elf_Internal_Verdef *t;
1201
1202 fprintf (f, _("\nVersion definitions:\n"));
1203 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1204 {
1205 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1206 t->vd_flags, t->vd_hash, t->vd_nodename);
1207 if (t->vd_auxptr->vda_nextptr != NULL)
1208 {
1209 Elf_Internal_Verdaux *a;
1210
1211 fprintf (f, "\t");
1212 for (a = t->vd_auxptr->vda_nextptr;
1213 a != NULL;
1214 a = a->vda_nextptr)
1215 fprintf (f, "%s ", a->vda_nodename);
1216 fprintf (f, "\n");
1217 }
1218 }
1219 }
1220
1221 if (elf_dynverref (abfd) != 0)
1222 {
1223 Elf_Internal_Verneed *t;
1224
1225 fprintf (f, _("\nVersion References:\n"));
1226 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1227 {
1228 Elf_Internal_Vernaux *a;
1229
1230 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1231 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1232 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1233 a->vna_flags, a->vna_other, a->vna_nodename);
1234 }
1235 }
1236
1237 return true;
1238
1239 error_return:
1240 if (dynbuf != NULL)
1241 free (dynbuf);
1242 return false;
1243 }
1244
1245 /* Display ELF-specific fields of a symbol. */
1246
1247 void
1248 bfd_elf_print_symbol (abfd, filep, symbol, how)
1249 bfd *abfd;
1250 PTR filep;
1251 asymbol *symbol;
1252 bfd_print_symbol_type how;
1253 {
1254 FILE *file = (FILE *) filep;
1255 switch (how)
1256 {
1257 case bfd_print_symbol_name:
1258 fprintf (file, "%s", symbol->name);
1259 break;
1260 case bfd_print_symbol_more:
1261 fprintf (file, "elf ");
1262 bfd_fprintf_vma (abfd, file, symbol->value);
1263 fprintf (file, " %lx", (long) symbol->flags);
1264 break;
1265 case bfd_print_symbol_all:
1266 {
1267 const char *section_name;
1268 const char *name = NULL;
1269 struct elf_backend_data *bed;
1270 unsigned char st_other;
1271 bfd_vma val;
1272
1273 section_name = symbol->section ? symbol->section->name : "(*none*)";
1274
1275 bed = get_elf_backend_data (abfd);
1276 if (bed->elf_backend_print_symbol_all)
1277 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1278
1279 if (name == NULL)
1280 {
1281 name = symbol->name;
1282 bfd_print_symbol_vandf (abfd, (PTR) file, symbol);
1283 }
1284
1285 fprintf (file, " %s\t", section_name);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol->section))
1291 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1292 else
1293 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1294 bfd_fprintf_vma (abfd, file, val);
1295
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd)->dynversym_section != 0
1298 && (elf_tdata (abfd)->dynverdef_section != 0
1299 || elf_tdata (abfd)->dynverref_section != 0))
1300 {
1301 unsigned int vernum;
1302 const char *version_string;
1303
1304 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1305
1306 if (vernum == 0)
1307 version_string = "";
1308 else if (vernum == 1)
1309 version_string = "Base";
1310 else if (vernum <= elf_tdata (abfd)->cverdefs)
1311 version_string =
1312 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1313 else
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 version_string = "";
1318 for (t = elf_tdata (abfd)->verref;
1319 t != NULL;
1320 t = t->vn_nextref)
1321 {
1322 Elf_Internal_Vernaux *a;
1323
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 {
1326 if (a->vna_other == vernum)
1327 {
1328 version_string = a->vna_nodename;
1329 break;
1330 }
1331 }
1332 }
1333 }
1334
1335 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1336 fprintf (file, " %-11s", version_string);
1337 else
1338 {
1339 int i;
1340
1341 fprintf (file, " (%s)", version_string);
1342 for (i = 10 - strlen (version_string); i > 0; --i)
1343 putc (' ', file);
1344 }
1345 }
1346
1347 /* If the st_other field is not zero, print it. */
1348 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1349
1350 switch (st_other)
1351 {
1352 case 0: break;
1353 case STV_INTERNAL: fprintf (file, " .internal"); break;
1354 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1355 case STV_PROTECTED: fprintf (file, " .protected"); break;
1356 default:
1357 /* Some other non-defined flags are also present, so print
1358 everything hex. */
1359 fprintf (file, " 0x%02x", (unsigned int) st_other);
1360 }
1361
1362 fprintf (file, " %s", name);
1363 }
1364 break;
1365 }
1366 }
1367 \f
1368 /* Create an entry in an ELF linker hash table. */
1369
1370 struct bfd_hash_entry *
1371 _bfd_elf_link_hash_newfunc (entry, table, string)
1372 struct bfd_hash_entry *entry;
1373 struct bfd_hash_table *table;
1374 const char *string;
1375 {
1376 /* Allocate the structure if it has not already been allocated by a
1377 subclass. */
1378 if (entry == NULL)
1379 {
1380 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1381 if (entry == NULL)
1382 return entry;
1383 }
1384
1385 /* Call the allocation method of the superclass. */
1386 entry = _bfd_link_hash_newfunc (entry, table, string);
1387 if (entry != NULL)
1388 {
1389 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1390 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1391
1392 /* Set local fields. */
1393 ret->indx = -1;
1394 ret->size = 0;
1395 ret->dynindx = -1;
1396 ret->dynstr_index = 0;
1397 ret->weakdef = NULL;
1398 ret->got.refcount = htab->init_refcount;
1399 ret->plt.refcount = htab->init_refcount;
1400 ret->linker_section_pointer = NULL;
1401 ret->verinfo.verdef = NULL;
1402 ret->vtable_entries_used = NULL;
1403 ret->vtable_entries_size = 0;
1404 ret->vtable_parent = NULL;
1405 ret->type = STT_NOTYPE;
1406 ret->other = 0;
1407 /* Assume that we have been called by a non-ELF symbol reader.
1408 This flag is then reset by the code which reads an ELF input
1409 file. This ensures that a symbol created by a non-ELF symbol
1410 reader will have the flag set correctly. */
1411 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1412 }
1413
1414 return entry;
1415 }
1416
1417 /* Copy data from an indirect symbol to its direct symbol, hiding the
1418 old indirect symbol. Also used for copying flags to a weakdef. */
1419
1420 void
1421 _bfd_elf_link_hash_copy_indirect (bed, dir, ind)
1422 struct elf_backend_data *bed;
1423 struct elf_link_hash_entry *dir, *ind;
1424 {
1425 bfd_signed_vma tmp;
1426 bfd_signed_vma lowest_valid = bed->can_refcount;
1427
1428 /* Copy down any references that we may have already seen to the
1429 symbol which just became indirect. */
1430
1431 dir->elf_link_hash_flags |=
1432 (ind->elf_link_hash_flags
1433 & (ELF_LINK_HASH_REF_DYNAMIC
1434 | ELF_LINK_HASH_REF_REGULAR
1435 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1436 | ELF_LINK_NON_GOT_REF));
1437
1438 if (ind->root.type != bfd_link_hash_indirect)
1439 return;
1440
1441 /* Copy over the global and procedure linkage table refcount entries.
1442 These may have been already set up by a check_relocs routine. */
1443 tmp = dir->got.refcount;
1444 if (tmp < lowest_valid)
1445 {
1446 dir->got.refcount = ind->got.refcount;
1447 ind->got.refcount = tmp;
1448 }
1449 else
1450 BFD_ASSERT (ind->got.refcount < lowest_valid);
1451
1452 tmp = dir->plt.refcount;
1453 if (tmp < lowest_valid)
1454 {
1455 dir->plt.refcount = ind->plt.refcount;
1456 ind->plt.refcount = tmp;
1457 }
1458 else
1459 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1460
1461 if (dir->dynindx == -1)
1462 {
1463 dir->dynindx = ind->dynindx;
1464 dir->dynstr_index = ind->dynstr_index;
1465 ind->dynindx = -1;
1466 ind->dynstr_index = 0;
1467 }
1468 else
1469 BFD_ASSERT (ind->dynindx == -1);
1470 }
1471
1472 void
1473 _bfd_elf_link_hash_hide_symbol (info, h, force_local)
1474 struct bfd_link_info *info;
1475 struct elf_link_hash_entry *h;
1476 boolean force_local;
1477 {
1478 h->plt.offset = (bfd_vma) -1;
1479 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1480 if (force_local)
1481 {
1482 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1483 if (h->dynindx != -1)
1484 {
1485 h->dynindx = -1;
1486 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1487 h->dynstr_index);
1488 }
1489 }
1490 }
1491
1492 /* Initialize an ELF linker hash table. */
1493
1494 boolean
1495 _bfd_elf_link_hash_table_init (table, abfd, newfunc)
1496 struct elf_link_hash_table *table;
1497 bfd *abfd;
1498 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
1499 struct bfd_hash_table *,
1500 const char *));
1501 {
1502 boolean ret;
1503
1504 table->dynamic_sections_created = false;
1505 table->dynobj = NULL;
1506 table->init_refcount = get_elf_backend_data (abfd)->can_refcount - 1;
1507 /* The first dynamic symbol is a dummy. */
1508 table->dynsymcount = 1;
1509 table->dynstr = NULL;
1510 table->bucketcount = 0;
1511 table->needed = NULL;
1512 table->runpath = NULL;
1513 table->loaded = NULL;
1514 table->hgot = NULL;
1515 table->stab_info = NULL;
1516 table->merge_info = NULL;
1517 table->dynlocal = NULL;
1518 ret = _bfd_link_hash_table_init (& table->root, abfd, newfunc);
1519 table->root.type = bfd_link_elf_hash_table;
1520
1521 return ret;
1522 }
1523
1524 /* Create an ELF linker hash table. */
1525
1526 struct bfd_link_hash_table *
1527 _bfd_elf_link_hash_table_create (abfd)
1528 bfd *abfd;
1529 {
1530 struct elf_link_hash_table *ret;
1531 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1532
1533 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
1534 if (ret == (struct elf_link_hash_table *) NULL)
1535 return NULL;
1536
1537 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1538 {
1539 free (ret);
1540 return NULL;
1541 }
1542
1543 return &ret->root;
1544 }
1545
1546 /* This is a hook for the ELF emulation code in the generic linker to
1547 tell the backend linker what file name to use for the DT_NEEDED
1548 entry for a dynamic object. The generic linker passes name as an
1549 empty string to indicate that no DT_NEEDED entry should be made. */
1550
1551 void
1552 bfd_elf_set_dt_needed_name (abfd, name)
1553 bfd *abfd;
1554 const char *name;
1555 {
1556 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1557 && bfd_get_format (abfd) == bfd_object)
1558 elf_dt_name (abfd) = name;
1559 }
1560
1561 void
1562 bfd_elf_set_dt_needed_soname (abfd, name)
1563 bfd *abfd;
1564 const char *name;
1565 {
1566 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1567 && bfd_get_format (abfd) == bfd_object)
1568 elf_dt_soname (abfd) = name;
1569 }
1570
1571 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1572 the linker ELF emulation code. */
1573
1574 struct bfd_link_needed_list *
1575 bfd_elf_get_needed_list (abfd, info)
1576 bfd *abfd ATTRIBUTE_UNUSED;
1577 struct bfd_link_info *info;
1578 {
1579 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1580 return NULL;
1581 return elf_hash_table (info)->needed;
1582 }
1583
1584 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1585 hook for the linker ELF emulation code. */
1586
1587 struct bfd_link_needed_list *
1588 bfd_elf_get_runpath_list (abfd, info)
1589 bfd *abfd ATTRIBUTE_UNUSED;
1590 struct bfd_link_info *info;
1591 {
1592 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1593 return NULL;
1594 return elf_hash_table (info)->runpath;
1595 }
1596
1597 /* Get the name actually used for a dynamic object for a link. This
1598 is the SONAME entry if there is one. Otherwise, it is the string
1599 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1600
1601 const char *
1602 bfd_elf_get_dt_soname (abfd)
1603 bfd *abfd;
1604 {
1605 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1606 && bfd_get_format (abfd) == bfd_object)
1607 return elf_dt_name (abfd);
1608 return NULL;
1609 }
1610
1611 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1612 the ELF linker emulation code. */
1613
1614 boolean
1615 bfd_elf_get_bfd_needed_list (abfd, pneeded)
1616 bfd *abfd;
1617 struct bfd_link_needed_list **pneeded;
1618 {
1619 asection *s;
1620 bfd_byte *dynbuf = NULL;
1621 int elfsec;
1622 unsigned long shlink;
1623 bfd_byte *extdyn, *extdynend;
1624 size_t extdynsize;
1625 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
1626
1627 *pneeded = NULL;
1628
1629 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1630 || bfd_get_format (abfd) != bfd_object)
1631 return true;
1632
1633 s = bfd_get_section_by_name (abfd, ".dynamic");
1634 if (s == NULL || s->_raw_size == 0)
1635 return true;
1636
1637 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
1638 if (dynbuf == NULL)
1639 goto error_return;
1640
1641 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
1642 s->_raw_size))
1643 goto error_return;
1644
1645 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1646 if (elfsec == -1)
1647 goto error_return;
1648
1649 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1650
1651 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1652 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1653
1654 extdyn = dynbuf;
1655 extdynend = extdyn + s->_raw_size;
1656 for (; extdyn < extdynend; extdyn += extdynsize)
1657 {
1658 Elf_Internal_Dyn dyn;
1659
1660 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
1661
1662 if (dyn.d_tag == DT_NULL)
1663 break;
1664
1665 if (dyn.d_tag == DT_NEEDED)
1666 {
1667 const char *string;
1668 struct bfd_link_needed_list *l;
1669 unsigned int tagv = dyn.d_un.d_val;
1670 bfd_size_type amt;
1671
1672 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1673 if (string == NULL)
1674 goto error_return;
1675
1676 amt = sizeof *l;
1677 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1678 if (l == NULL)
1679 goto error_return;
1680
1681 l->by = abfd;
1682 l->name = string;
1683 l->next = *pneeded;
1684 *pneeded = l;
1685 }
1686 }
1687
1688 free (dynbuf);
1689
1690 return true;
1691
1692 error_return:
1693 if (dynbuf != NULL)
1694 free (dynbuf);
1695 return false;
1696 }
1697 \f
1698 /* Allocate an ELF string table--force the first byte to be zero. */
1699
1700 struct bfd_strtab_hash *
1701 _bfd_elf_stringtab_init ()
1702 {
1703 struct bfd_strtab_hash *ret;
1704
1705 ret = _bfd_stringtab_init ();
1706 if (ret != NULL)
1707 {
1708 bfd_size_type loc;
1709
1710 loc = _bfd_stringtab_add (ret, "", true, false);
1711 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1712 if (loc == (bfd_size_type) -1)
1713 {
1714 _bfd_stringtab_free (ret);
1715 ret = NULL;
1716 }
1717 }
1718 return ret;
1719 }
1720 \f
1721 /* ELF .o/exec file reading */
1722
1723 /* Create a new bfd section from an ELF section header. */
1724
1725 boolean
1726 bfd_section_from_shdr (abfd, shindex)
1727 bfd *abfd;
1728 unsigned int shindex;
1729 {
1730 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1731 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1732 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1733 const char *name;
1734
1735 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1736
1737 switch (hdr->sh_type)
1738 {
1739 case SHT_NULL:
1740 /* Inactive section. Throw it away. */
1741 return true;
1742
1743 case SHT_PROGBITS: /* Normal section with contents. */
1744 case SHT_NOBITS: /* .bss section. */
1745 case SHT_HASH: /* .hash section. */
1746 case SHT_NOTE: /* .note section. */
1747 case SHT_INIT_ARRAY: /* .init_array section. */
1748 case SHT_FINI_ARRAY: /* .fini_array section. */
1749 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1750 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1751
1752 case SHT_DYNAMIC: /* Dynamic linking information. */
1753 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1754 return false;
1755 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1756 {
1757 Elf_Internal_Shdr *dynsymhdr;
1758
1759 /* The shared libraries distributed with hpux11 have a bogus
1760 sh_link field for the ".dynamic" section. Find the
1761 string table for the ".dynsym" section instead. */
1762 if (elf_dynsymtab (abfd) != 0)
1763 {
1764 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1765 hdr->sh_link = dynsymhdr->sh_link;
1766 }
1767 else
1768 {
1769 unsigned int i, num_sec;
1770
1771 num_sec = elf_numsections (abfd);
1772 for (i = 1; i < num_sec; i++)
1773 {
1774 dynsymhdr = elf_elfsections (abfd)[i];
1775 if (dynsymhdr->sh_type == SHT_DYNSYM)
1776 {
1777 hdr->sh_link = dynsymhdr->sh_link;
1778 break;
1779 }
1780 }
1781 }
1782 }
1783 break;
1784
1785 case SHT_SYMTAB: /* A symbol table */
1786 if (elf_onesymtab (abfd) == shindex)
1787 return true;
1788
1789 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1790 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1791 elf_onesymtab (abfd) = shindex;
1792 elf_tdata (abfd)->symtab_hdr = *hdr;
1793 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1794 abfd->flags |= HAS_SYMS;
1795
1796 /* Sometimes a shared object will map in the symbol table. If
1797 SHF_ALLOC is set, and this is a shared object, then we also
1798 treat this section as a BFD section. We can not base the
1799 decision purely on SHF_ALLOC, because that flag is sometimes
1800 set in a relocateable object file, which would confuse the
1801 linker. */
1802 if ((hdr->sh_flags & SHF_ALLOC) != 0
1803 && (abfd->flags & DYNAMIC) != 0
1804 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1805 return false;
1806
1807 return true;
1808
1809 case SHT_DYNSYM: /* A dynamic symbol table */
1810 if (elf_dynsymtab (abfd) == shindex)
1811 return true;
1812
1813 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1814 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1815 elf_dynsymtab (abfd) = shindex;
1816 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1817 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1818 abfd->flags |= HAS_SYMS;
1819
1820 /* Besides being a symbol table, we also treat this as a regular
1821 section, so that objcopy can handle it. */
1822 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1823
1824 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1825 if (elf_symtab_shndx (abfd) == shindex)
1826 return true;
1827
1828 /* Get the associated symbol table. */
1829 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1830 || hdr->sh_link != elf_onesymtab (abfd))
1831 return false;
1832
1833 elf_symtab_shndx (abfd) = shindex;
1834 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1835 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1836 return true;
1837
1838 case SHT_STRTAB: /* A string table */
1839 if (hdr->bfd_section != NULL)
1840 return true;
1841 if (ehdr->e_shstrndx == shindex)
1842 {
1843 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1844 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1845 return true;
1846 }
1847 {
1848 unsigned int i, num_sec;
1849
1850 num_sec = elf_numsections (abfd);
1851 for (i = 1; i < num_sec; i++)
1852 {
1853 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1854 if (hdr2->sh_link == shindex)
1855 {
1856 if (! bfd_section_from_shdr (abfd, i))
1857 return false;
1858 if (elf_onesymtab (abfd) == i)
1859 {
1860 elf_tdata (abfd)->strtab_hdr = *hdr;
1861 elf_elfsections (abfd)[shindex] =
1862 &elf_tdata (abfd)->strtab_hdr;
1863 return true;
1864 }
1865 if (elf_dynsymtab (abfd) == i)
1866 {
1867 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1868 elf_elfsections (abfd)[shindex] = hdr =
1869 &elf_tdata (abfd)->dynstrtab_hdr;
1870 /* We also treat this as a regular section, so
1871 that objcopy can handle it. */
1872 break;
1873 }
1874 #if 0 /* Not handling other string tables specially right now. */
1875 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1876 /* We have a strtab for some random other section. */
1877 newsect = (asection *) hdr2->bfd_section;
1878 if (!newsect)
1879 break;
1880 hdr->bfd_section = newsect;
1881 hdr2 = &elf_section_data (newsect)->str_hdr;
1882 *hdr2 = *hdr;
1883 elf_elfsections (abfd)[shindex] = hdr2;
1884 #endif
1885 }
1886 }
1887 }
1888
1889 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1890
1891 case SHT_REL:
1892 case SHT_RELA:
1893 /* *These* do a lot of work -- but build no sections! */
1894 {
1895 asection *target_sect;
1896 Elf_Internal_Shdr *hdr2;
1897 unsigned int num_sec = elf_numsections (abfd);
1898
1899 /* Check for a bogus link to avoid crashing. */
1900 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1901 || hdr->sh_link >= num_sec)
1902 {
1903 ((*_bfd_error_handler)
1904 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1905 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1906 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1907 }
1908
1909 /* For some incomprehensible reason Oracle distributes
1910 libraries for Solaris in which some of the objects have
1911 bogus sh_link fields. It would be nice if we could just
1912 reject them, but, unfortunately, some people need to use
1913 them. We scan through the section headers; if we find only
1914 one suitable symbol table, we clobber the sh_link to point
1915 to it. I hope this doesn't break anything. */
1916 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1917 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1918 {
1919 unsigned int scan;
1920 int found;
1921
1922 found = 0;
1923 for (scan = 1; scan < num_sec; scan++)
1924 {
1925 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1926 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1927 {
1928 if (found != 0)
1929 {
1930 found = 0;
1931 break;
1932 }
1933 found = scan;
1934 }
1935 }
1936 if (found != 0)
1937 hdr->sh_link = found;
1938 }
1939
1940 /* Get the symbol table. */
1941 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1942 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1943 return false;
1944
1945 /* If this reloc section does not use the main symbol table we
1946 don't treat it as a reloc section. BFD can't adequately
1947 represent such a section, so at least for now, we don't
1948 try. We just present it as a normal section. We also
1949 can't use it as a reloc section if it points to the null
1950 section. */
1951 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1952 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1953
1954 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1955 return false;
1956 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1957 if (target_sect == NULL)
1958 return false;
1959
1960 if ((target_sect->flags & SEC_RELOC) == 0
1961 || target_sect->reloc_count == 0)
1962 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1963 else
1964 {
1965 bfd_size_type amt;
1966 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1967 amt = sizeof (*hdr2);
1968 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1969 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1970 }
1971 *hdr2 = *hdr;
1972 elf_elfsections (abfd)[shindex] = hdr2;
1973 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1974 target_sect->flags |= SEC_RELOC;
1975 target_sect->relocation = NULL;
1976 target_sect->rel_filepos = hdr->sh_offset;
1977 /* In the section to which the relocations apply, mark whether
1978 its relocations are of the REL or RELA variety. */
1979 if (hdr->sh_size != 0)
1980 elf_section_data (target_sect)->use_rela_p
1981 = (hdr->sh_type == SHT_RELA);
1982 abfd->flags |= HAS_RELOC;
1983 return true;
1984 }
1985 break;
1986
1987 case SHT_GNU_verdef:
1988 elf_dynverdef (abfd) = shindex;
1989 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1990 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1991 break;
1992
1993 case SHT_GNU_versym:
1994 elf_dynversym (abfd) = shindex;
1995 elf_tdata (abfd)->dynversym_hdr = *hdr;
1996 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1997 break;
1998
1999 case SHT_GNU_verneed:
2000 elf_dynverref (abfd) = shindex;
2001 elf_tdata (abfd)->dynverref_hdr = *hdr;
2002 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
2003 break;
2004
2005 case SHT_SHLIB:
2006 return true;
2007
2008 case SHT_GROUP:
2009 /* We need a BFD section for objcopy and relocatable linking,
2010 and it's handy to have the signature available as the section
2011 name. */
2012 name = group_signature (abfd, hdr);
2013 if (name == NULL)
2014 return false;
2015 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
2016 return false;
2017 if (hdr->contents != NULL)
2018 {
2019 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2020 unsigned int n_elt = hdr->sh_size / 4;
2021 asection *s;
2022
2023 if (idx->flags & GRP_COMDAT)
2024 hdr->bfd_section->flags
2025 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2026
2027 while (--n_elt != 0)
2028 if ((s = (++idx)->shdr->bfd_section) != NULL
2029 && elf_next_in_group (s) != NULL)
2030 {
2031 elf_next_in_group (hdr->bfd_section) = s;
2032 break;
2033 }
2034 }
2035 break;
2036
2037 default:
2038 /* Check for any processor-specific section types. */
2039 {
2040 if (bed->elf_backend_section_from_shdr)
2041 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
2042 }
2043 break;
2044 }
2045
2046 return true;
2047 }
2048
2049 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2050 Return SEC for sections that have no elf section, and NULL on error. */
2051
2052 asection *
2053 bfd_section_from_r_symndx (abfd, cache, sec, r_symndx)
2054 bfd *abfd;
2055 struct sym_sec_cache *cache;
2056 asection *sec;
2057 unsigned long r_symndx;
2058 {
2059 Elf_Internal_Shdr *symtab_hdr;
2060 unsigned char esym[sizeof (Elf64_External_Sym)];
2061 Elf_External_Sym_Shndx eshndx;
2062 Elf_Internal_Sym isym;
2063 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2064
2065 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2066 return cache->sec[ent];
2067
2068 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2069 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2070 &isym, esym, &eshndx) == NULL)
2071 return NULL;
2072
2073 if (cache->abfd != abfd)
2074 {
2075 memset (cache->indx, -1, sizeof (cache->indx));
2076 cache->abfd = abfd;
2077 }
2078 cache->indx[ent] = r_symndx;
2079 cache->sec[ent] = sec;
2080 if (isym.st_shndx < SHN_LORESERVE || isym.st_shndx > SHN_HIRESERVE)
2081 {
2082 asection *s;
2083 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2084 if (s != NULL)
2085 cache->sec[ent] = s;
2086 }
2087 return cache->sec[ent];
2088 }
2089
2090 /* Given an ELF section number, retrieve the corresponding BFD
2091 section. */
2092
2093 asection *
2094 bfd_section_from_elf_index (abfd, index)
2095 bfd *abfd;
2096 unsigned int index;
2097 {
2098 if (index >= elf_numsections (abfd))
2099 return NULL;
2100 return elf_elfsections (abfd)[index]->bfd_section;
2101 }
2102
2103 boolean
2104 _bfd_elf_new_section_hook (abfd, sec)
2105 bfd *abfd;
2106 asection *sec;
2107 {
2108 struct bfd_elf_section_data *sdata;
2109 bfd_size_type amt = sizeof (*sdata);
2110
2111 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, amt);
2112 if (!sdata)
2113 return false;
2114 sec->used_by_bfd = (PTR) sdata;
2115
2116 /* Indicate whether or not this section should use RELA relocations. */
2117 sdata->use_rela_p
2118 = get_elf_backend_data (abfd)->default_use_rela_p;
2119
2120 return true;
2121 }
2122
2123 /* Create a new bfd section from an ELF program header.
2124
2125 Since program segments have no names, we generate a synthetic name
2126 of the form segment<NUM>, where NUM is generally the index in the
2127 program header table. For segments that are split (see below) we
2128 generate the names segment<NUM>a and segment<NUM>b.
2129
2130 Note that some program segments may have a file size that is different than
2131 (less than) the memory size. All this means is that at execution the
2132 system must allocate the amount of memory specified by the memory size,
2133 but only initialize it with the first "file size" bytes read from the
2134 file. This would occur for example, with program segments consisting
2135 of combined data+bss.
2136
2137 To handle the above situation, this routine generates TWO bfd sections
2138 for the single program segment. The first has the length specified by
2139 the file size of the segment, and the second has the length specified
2140 by the difference between the two sizes. In effect, the segment is split
2141 into it's initialized and uninitialized parts.
2142
2143 */
2144
2145 boolean
2146 _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)
2147 bfd *abfd;
2148 Elf_Internal_Phdr *hdr;
2149 int index;
2150 const char *typename;
2151 {
2152 asection *newsect;
2153 char *name;
2154 char namebuf[64];
2155 size_t len;
2156 int split;
2157
2158 split = ((hdr->p_memsz > 0)
2159 && (hdr->p_filesz > 0)
2160 && (hdr->p_memsz > hdr->p_filesz));
2161 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2162 len = strlen (namebuf) + 1;
2163 name = bfd_alloc (abfd, (bfd_size_type) len);
2164 if (!name)
2165 return false;
2166 memcpy (name, namebuf, len);
2167 newsect = bfd_make_section (abfd, name);
2168 if (newsect == NULL)
2169 return false;
2170 newsect->vma = hdr->p_vaddr;
2171 newsect->lma = hdr->p_paddr;
2172 newsect->_raw_size = hdr->p_filesz;
2173 newsect->filepos = hdr->p_offset;
2174 newsect->flags |= SEC_HAS_CONTENTS;
2175 if (hdr->p_type == PT_LOAD)
2176 {
2177 newsect->flags |= SEC_ALLOC;
2178 newsect->flags |= SEC_LOAD;
2179 if (hdr->p_flags & PF_X)
2180 {
2181 /* FIXME: all we known is that it has execute PERMISSION,
2182 may be data. */
2183 newsect->flags |= SEC_CODE;
2184 }
2185 }
2186 if (!(hdr->p_flags & PF_W))
2187 {
2188 newsect->flags |= SEC_READONLY;
2189 }
2190
2191 if (split)
2192 {
2193 sprintf (namebuf, "%s%db", typename, index);
2194 len = strlen (namebuf) + 1;
2195 name = bfd_alloc (abfd, (bfd_size_type) len);
2196 if (!name)
2197 return false;
2198 memcpy (name, namebuf, len);
2199 newsect = bfd_make_section (abfd, name);
2200 if (newsect == NULL)
2201 return false;
2202 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2203 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2204 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2205 if (hdr->p_type == PT_LOAD)
2206 {
2207 newsect->flags |= SEC_ALLOC;
2208 if (hdr->p_flags & PF_X)
2209 newsect->flags |= SEC_CODE;
2210 }
2211 if (!(hdr->p_flags & PF_W))
2212 newsect->flags |= SEC_READONLY;
2213 }
2214
2215 return true;
2216 }
2217
2218 boolean
2219 bfd_section_from_phdr (abfd, hdr, index)
2220 bfd *abfd;
2221 Elf_Internal_Phdr *hdr;
2222 int index;
2223 {
2224 struct elf_backend_data *bed;
2225
2226 switch (hdr->p_type)
2227 {
2228 case PT_NULL:
2229 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2230
2231 case PT_LOAD:
2232 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2233
2234 case PT_DYNAMIC:
2235 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2236
2237 case PT_INTERP:
2238 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2239
2240 case PT_NOTE:
2241 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2242 return false;
2243 if (! elfcore_read_notes (abfd, (file_ptr) hdr->p_offset, hdr->p_filesz))
2244 return false;
2245 return true;
2246
2247 case PT_SHLIB:
2248 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2249
2250 case PT_PHDR:
2251 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2252
2253 default:
2254 /* Check for any processor-specific program segment types.
2255 If no handler for them, default to making "segment" sections. */
2256 bed = get_elf_backend_data (abfd);
2257 if (bed->elf_backend_section_from_phdr)
2258 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2259 else
2260 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2261 }
2262 }
2263
2264 /* Initialize REL_HDR, the section-header for new section, containing
2265 relocations against ASECT. If USE_RELA_P is true, we use RELA
2266 relocations; otherwise, we use REL relocations. */
2267
2268 boolean
2269 _bfd_elf_init_reloc_shdr (abfd, rel_hdr, asect, use_rela_p)
2270 bfd *abfd;
2271 Elf_Internal_Shdr *rel_hdr;
2272 asection *asect;
2273 boolean use_rela_p;
2274 {
2275 char *name;
2276 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2277 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2278
2279 name = bfd_alloc (abfd, amt);
2280 if (name == NULL)
2281 return false;
2282 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2283 rel_hdr->sh_name =
2284 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2285 false);
2286 if (rel_hdr->sh_name == (unsigned int) -1)
2287 return false;
2288 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2289 rel_hdr->sh_entsize = (use_rela_p
2290 ? bed->s->sizeof_rela
2291 : bed->s->sizeof_rel);
2292 rel_hdr->sh_addralign = bed->s->file_align;
2293 rel_hdr->sh_flags = 0;
2294 rel_hdr->sh_addr = 0;
2295 rel_hdr->sh_size = 0;
2296 rel_hdr->sh_offset = 0;
2297
2298 return true;
2299 }
2300
2301 /* Set up an ELF internal section header for a section. */
2302
2303 static void
2304 elf_fake_sections (abfd, asect, failedptrarg)
2305 bfd *abfd;
2306 asection *asect;
2307 PTR failedptrarg;
2308 {
2309 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2310 boolean *failedptr = (boolean *) failedptrarg;
2311 Elf_Internal_Shdr *this_hdr;
2312
2313 if (*failedptr)
2314 {
2315 /* We already failed; just get out of the bfd_map_over_sections
2316 loop. */
2317 return;
2318 }
2319
2320 this_hdr = &elf_section_data (asect)->this_hdr;
2321
2322 this_hdr->sh_name = (unsigned long) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2323 asect->name, false);
2324 if (this_hdr->sh_name == (unsigned long) -1)
2325 {
2326 *failedptr = true;
2327 return;
2328 }
2329
2330 this_hdr->sh_flags = 0;
2331
2332 if ((asect->flags & SEC_ALLOC) != 0
2333 || asect->user_set_vma)
2334 this_hdr->sh_addr = asect->vma;
2335 else
2336 this_hdr->sh_addr = 0;
2337
2338 this_hdr->sh_offset = 0;
2339 this_hdr->sh_size = asect->_raw_size;
2340 this_hdr->sh_link = 0;
2341 this_hdr->sh_addralign = 1 << asect->alignment_power;
2342 /* The sh_entsize and sh_info fields may have been set already by
2343 copy_private_section_data. */
2344
2345 this_hdr->bfd_section = asect;
2346 this_hdr->contents = NULL;
2347
2348 /* FIXME: This should not be based on section names. */
2349 if (strcmp (asect->name, ".dynstr") == 0)
2350 this_hdr->sh_type = SHT_STRTAB;
2351 else if (strcmp (asect->name, ".hash") == 0)
2352 {
2353 this_hdr->sh_type = SHT_HASH;
2354 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2355 }
2356 else if (strcmp (asect->name, ".dynsym") == 0)
2357 {
2358 this_hdr->sh_type = SHT_DYNSYM;
2359 this_hdr->sh_entsize = bed->s->sizeof_sym;
2360 }
2361 else if (strcmp (asect->name, ".dynamic") == 0)
2362 {
2363 this_hdr->sh_type = SHT_DYNAMIC;
2364 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2365 }
2366 else if (strncmp (asect->name, ".rela", 5) == 0
2367 && get_elf_backend_data (abfd)->may_use_rela_p)
2368 {
2369 this_hdr->sh_type = SHT_RELA;
2370 this_hdr->sh_entsize = bed->s->sizeof_rela;
2371 }
2372 else if (strncmp (asect->name, ".rel", 4) == 0
2373 && get_elf_backend_data (abfd)->may_use_rel_p)
2374 {
2375 this_hdr->sh_type = SHT_REL;
2376 this_hdr->sh_entsize = bed->s->sizeof_rel;
2377 }
2378 else if (strcmp (asect->name, ".init_array") == 0)
2379 this_hdr->sh_type = SHT_INIT_ARRAY;
2380 else if (strcmp (asect->name, ".fini_array") == 0)
2381 this_hdr->sh_type = SHT_FINI_ARRAY;
2382 else if (strcmp (asect->name, ".preinit_array") == 0)
2383 this_hdr->sh_type = SHT_PREINIT_ARRAY;
2384 else if (strncmp (asect->name, ".note", 5) == 0)
2385 this_hdr->sh_type = SHT_NOTE;
2386 else if (strncmp (asect->name, ".stab", 5) == 0
2387 && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0)
2388 this_hdr->sh_type = SHT_STRTAB;
2389 else if (strcmp (asect->name, ".gnu.version") == 0)
2390 {
2391 this_hdr->sh_type = SHT_GNU_versym;
2392 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2393 }
2394 else if (strcmp (asect->name, ".gnu.version_d") == 0)
2395 {
2396 this_hdr->sh_type = SHT_GNU_verdef;
2397 this_hdr->sh_entsize = 0;
2398 /* objcopy or strip will copy over sh_info, but may not set
2399 cverdefs. The linker will set cverdefs, but sh_info will be
2400 zero. */
2401 if (this_hdr->sh_info == 0)
2402 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2403 else
2404 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2405 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2406 }
2407 else if (strcmp (asect->name, ".gnu.version_r") == 0)
2408 {
2409 this_hdr->sh_type = SHT_GNU_verneed;
2410 this_hdr->sh_entsize = 0;
2411 /* objcopy or strip will copy over sh_info, but may not set
2412 cverrefs. The linker will set cverrefs, but sh_info will be
2413 zero. */
2414 if (this_hdr->sh_info == 0)
2415 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2416 else
2417 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2418 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2419 }
2420 else if ((asect->flags & SEC_GROUP) != 0)
2421 {
2422 this_hdr->sh_type = SHT_GROUP;
2423 this_hdr->sh_entsize = 4;
2424 }
2425 else if ((asect->flags & SEC_ALLOC) != 0
2426 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2427 || (asect->flags & SEC_NEVER_LOAD) != 0))
2428 this_hdr->sh_type = SHT_NOBITS;
2429 else
2430 this_hdr->sh_type = SHT_PROGBITS;
2431
2432 if ((asect->flags & SEC_ALLOC) != 0)
2433 this_hdr->sh_flags |= SHF_ALLOC;
2434 if ((asect->flags & SEC_READONLY) == 0)
2435 this_hdr->sh_flags |= SHF_WRITE;
2436 if ((asect->flags & SEC_CODE) != 0)
2437 this_hdr->sh_flags |= SHF_EXECINSTR;
2438 if ((asect->flags & SEC_MERGE) != 0)
2439 {
2440 this_hdr->sh_flags |= SHF_MERGE;
2441 this_hdr->sh_entsize = asect->entsize;
2442 if ((asect->flags & SEC_STRINGS) != 0)
2443 this_hdr->sh_flags |= SHF_STRINGS;
2444 }
2445 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2446 this_hdr->sh_flags |= SHF_GROUP;
2447 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2448 {
2449 this_hdr->sh_flags |= SHF_TLS;
2450 if (asect->_raw_size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2451 {
2452 struct bfd_link_order *o;
2453
2454 this_hdr->sh_size = 0;
2455 for (o = asect->link_order_head; o != NULL; o = o->next)
2456 if (this_hdr->sh_size < o->offset + o->size)
2457 this_hdr->sh_size = o->offset + o->size;
2458 if (this_hdr->sh_size)
2459 this_hdr->sh_type = SHT_NOBITS;
2460 }
2461 }
2462
2463 /* Check for processor-specific section types. */
2464 if (bed->elf_backend_fake_sections
2465 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2466 *failedptr = true;
2467
2468 /* If the section has relocs, set up a section header for the
2469 SHT_REL[A] section. If two relocation sections are required for
2470 this section, it is up to the processor-specific back-end to
2471 create the other. */
2472 if ((asect->flags & SEC_RELOC) != 0
2473 && !_bfd_elf_init_reloc_shdr (abfd,
2474 &elf_section_data (asect)->rel_hdr,
2475 asect,
2476 elf_section_data (asect)->use_rela_p))
2477 *failedptr = true;
2478 }
2479
2480 /* Fill in the contents of a SHT_GROUP section. */
2481
2482 void
2483 bfd_elf_set_group_contents (abfd, sec, failedptrarg)
2484 bfd *abfd;
2485 asection *sec;
2486 PTR failedptrarg;
2487 {
2488 boolean *failedptr = (boolean *) failedptrarg;
2489 unsigned long symindx;
2490 asection *elt, *first;
2491 unsigned char *loc;
2492 struct bfd_link_order *l;
2493 boolean gas;
2494
2495 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2496 || *failedptr)
2497 return;
2498
2499 symindx = 0;
2500 if (elf_group_id (sec) != NULL)
2501 symindx = elf_group_id (sec)->udata.i;
2502
2503 if (symindx == 0)
2504 {
2505 /* If called from the assembler, swap_out_syms will have set up
2506 elf_section_syms; If called for "ld -r", use target_index. */
2507 if (elf_section_syms (abfd) != NULL)
2508 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2509 else
2510 symindx = sec->target_index;
2511 }
2512 elf_section_data (sec)->this_hdr.sh_info = symindx;
2513
2514 /* The contents won't be allocated for "ld -r" or objcopy. */
2515 gas = true;
2516 if (sec->contents == NULL)
2517 {
2518 gas = false;
2519 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2520
2521 /* Arrange for the section to be written out. */
2522 elf_section_data (sec)->this_hdr.contents = sec->contents;
2523 if (sec->contents == NULL)
2524 {
2525 *failedptr = true;
2526 return;
2527 }
2528 }
2529
2530 loc = sec->contents + sec->_raw_size;
2531
2532 /* Get the pointer to the first section in the group that gas
2533 squirreled away here. objcopy arranges for this to be set to the
2534 start of the input section group. */
2535 first = elt = elf_next_in_group (sec);
2536
2537 /* First element is a flag word. Rest of section is elf section
2538 indices for all the sections of the group. Write them backwards
2539 just to keep the group in the same order as given in .section
2540 directives, not that it matters. */
2541 while (elt != NULL)
2542 {
2543 asection *s;
2544 unsigned int idx;
2545
2546 loc -= 4;
2547 s = elt;
2548 if (!gas)
2549 s = s->output_section;
2550 idx = 0;
2551 if (s != NULL)
2552 idx = elf_section_data (s)->this_idx;
2553 H_PUT_32 (abfd, idx, loc);
2554 elt = elf_next_in_group (elt);
2555 if (elt == first)
2556 break;
2557 }
2558
2559 /* If this is a relocatable link, then the above did nothing because
2560 SEC is the output section. Look through the input sections
2561 instead. */
2562 for (l = sec->link_order_head; l != NULL; l = l->next)
2563 if (l->type == bfd_indirect_link_order
2564 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2565 do
2566 {
2567 loc -= 4;
2568 H_PUT_32 (abfd,
2569 elf_section_data (elt->output_section)->this_idx, loc);
2570 elt = elf_next_in_group (elt);
2571 /* During a relocatable link, the lists are circular. */
2572 }
2573 while (elt != elf_next_in_group (l->u.indirect.section));
2574
2575 /* With ld -r, merging SHT_GROUP sections results in wasted space
2576 due to allowing for the flag word on each input. We may well
2577 duplicate entries too. */
2578 while ((loc -= 4) > sec->contents)
2579 H_PUT_32 (abfd, 0, loc);
2580
2581 if (loc != sec->contents)
2582 abort ();
2583
2584 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2585 }
2586
2587 /* Assign all ELF section numbers. The dummy first section is handled here
2588 too. The link/info pointers for the standard section types are filled
2589 in here too, while we're at it. */
2590
2591 static boolean
2592 assign_section_numbers (abfd)
2593 bfd *abfd;
2594 {
2595 struct elf_obj_tdata *t = elf_tdata (abfd);
2596 asection *sec;
2597 unsigned int section_number, secn;
2598 Elf_Internal_Shdr **i_shdrp;
2599 bfd_size_type amt;
2600
2601 section_number = 1;
2602
2603 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2604
2605 for (sec = abfd->sections; sec; sec = sec->next)
2606 {
2607 struct bfd_elf_section_data *d = elf_section_data (sec);
2608
2609 if (section_number == SHN_LORESERVE)
2610 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2611 d->this_idx = section_number++;
2612 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2613 if ((sec->flags & SEC_RELOC) == 0)
2614 d->rel_idx = 0;
2615 else
2616 {
2617 if (section_number == SHN_LORESERVE)
2618 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2619 d->rel_idx = section_number++;
2620 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2621 }
2622
2623 if (d->rel_hdr2)
2624 {
2625 if (section_number == SHN_LORESERVE)
2626 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2627 d->rel_idx2 = section_number++;
2628 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2629 }
2630 else
2631 d->rel_idx2 = 0;
2632 }
2633
2634 if (section_number == SHN_LORESERVE)
2635 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2636 t->shstrtab_section = section_number++;
2637 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2638 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2639
2640 if (bfd_get_symcount (abfd) > 0)
2641 {
2642 if (section_number == SHN_LORESERVE)
2643 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2644 t->symtab_section = section_number++;
2645 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2646 if (section_number > SHN_LORESERVE - 2)
2647 {
2648 if (section_number == SHN_LORESERVE)
2649 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2650 t->symtab_shndx_section = section_number++;
2651 t->symtab_shndx_hdr.sh_name
2652 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2653 ".symtab_shndx", false);
2654 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2655 return false;
2656 }
2657 if (section_number == SHN_LORESERVE)
2658 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2659 t->strtab_section = section_number++;
2660 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2661 }
2662
2663 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2664 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2665
2666 elf_numsections (abfd) = section_number;
2667 elf_elfheader (abfd)->e_shnum = section_number;
2668 if (section_number > SHN_LORESERVE)
2669 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2670
2671 /* Set up the list of section header pointers, in agreement with the
2672 indices. */
2673 amt = section_number * sizeof (Elf_Internal_Shdr *);
2674 i_shdrp = (Elf_Internal_Shdr **) bfd_alloc (abfd, amt);
2675 if (i_shdrp == NULL)
2676 return false;
2677
2678 amt = sizeof (Elf_Internal_Shdr);
2679 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
2680 if (i_shdrp[0] == NULL)
2681 {
2682 bfd_release (abfd, i_shdrp);
2683 return false;
2684 }
2685 memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr));
2686
2687 elf_elfsections (abfd) = i_shdrp;
2688
2689 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2690 if (bfd_get_symcount (abfd) > 0)
2691 {
2692 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2693 if (elf_numsections (abfd) > SHN_LORESERVE)
2694 {
2695 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2696 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2697 }
2698 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2699 t->symtab_hdr.sh_link = t->strtab_section;
2700 }
2701 for (sec = abfd->sections; sec; sec = sec->next)
2702 {
2703 struct bfd_elf_section_data *d = elf_section_data (sec);
2704 asection *s;
2705 const char *name;
2706
2707 i_shdrp[d->this_idx] = &d->this_hdr;
2708 if (d->rel_idx != 0)
2709 i_shdrp[d->rel_idx] = &d->rel_hdr;
2710 if (d->rel_idx2 != 0)
2711 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2712
2713 /* Fill in the sh_link and sh_info fields while we're at it. */
2714
2715 /* sh_link of a reloc section is the section index of the symbol
2716 table. sh_info is the section index of the section to which
2717 the relocation entries apply. */
2718 if (d->rel_idx != 0)
2719 {
2720 d->rel_hdr.sh_link = t->symtab_section;
2721 d->rel_hdr.sh_info = d->this_idx;
2722 }
2723 if (d->rel_idx2 != 0)
2724 {
2725 d->rel_hdr2->sh_link = t->symtab_section;
2726 d->rel_hdr2->sh_info = d->this_idx;
2727 }
2728
2729 switch (d->this_hdr.sh_type)
2730 {
2731 case SHT_REL:
2732 case SHT_RELA:
2733 /* A reloc section which we are treating as a normal BFD
2734 section. sh_link is the section index of the symbol
2735 table. sh_info is the section index of the section to
2736 which the relocation entries apply. We assume that an
2737 allocated reloc section uses the dynamic symbol table.
2738 FIXME: How can we be sure? */
2739 s = bfd_get_section_by_name (abfd, ".dynsym");
2740 if (s != NULL)
2741 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2742
2743 /* We look up the section the relocs apply to by name. */
2744 name = sec->name;
2745 if (d->this_hdr.sh_type == SHT_REL)
2746 name += 4;
2747 else
2748 name += 5;
2749 s = bfd_get_section_by_name (abfd, name);
2750 if (s != NULL)
2751 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2752 break;
2753
2754 case SHT_STRTAB:
2755 /* We assume that a section named .stab*str is a stabs
2756 string section. We look for a section with the same name
2757 but without the trailing ``str'', and set its sh_link
2758 field to point to this section. */
2759 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2760 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2761 {
2762 size_t len;
2763 char *alc;
2764
2765 len = strlen (sec->name);
2766 alc = (char *) bfd_malloc ((bfd_size_type) (len - 2));
2767 if (alc == NULL)
2768 return false;
2769 memcpy (alc, sec->name, len - 3);
2770 alc[len - 3] = '\0';
2771 s = bfd_get_section_by_name (abfd, alc);
2772 free (alc);
2773 if (s != NULL)
2774 {
2775 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2776
2777 /* This is a .stab section. */
2778 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2779 elf_section_data (s)->this_hdr.sh_entsize
2780 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2781 }
2782 }
2783 break;
2784
2785 case SHT_DYNAMIC:
2786 case SHT_DYNSYM:
2787 case SHT_GNU_verneed:
2788 case SHT_GNU_verdef:
2789 /* sh_link is the section header index of the string table
2790 used for the dynamic entries, or the symbol table, or the
2791 version strings. */
2792 s = bfd_get_section_by_name (abfd, ".dynstr");
2793 if (s != NULL)
2794 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2795 break;
2796
2797 case SHT_HASH:
2798 case SHT_GNU_versym:
2799 /* sh_link is the section header index of the symbol table
2800 this hash table or version table is for. */
2801 s = bfd_get_section_by_name (abfd, ".dynsym");
2802 if (s != NULL)
2803 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2804 break;
2805
2806 case SHT_GROUP:
2807 d->this_hdr.sh_link = t->symtab_section;
2808 }
2809 }
2810
2811 for (secn = 1; secn < section_number; ++secn)
2812 if (i_shdrp[secn] == NULL)
2813 i_shdrp[secn] = i_shdrp[0];
2814 else
2815 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2816 i_shdrp[secn]->sh_name);
2817 return true;
2818 }
2819
2820 /* Map symbol from it's internal number to the external number, moving
2821 all local symbols to be at the head of the list. */
2822
2823 static INLINE int
2824 sym_is_global (abfd, sym)
2825 bfd *abfd;
2826 asymbol *sym;
2827 {
2828 /* If the backend has a special mapping, use it. */
2829 if (get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2830 return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2831 (abfd, sym));
2832
2833 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2834 || bfd_is_und_section (bfd_get_section (sym))
2835 || bfd_is_com_section (bfd_get_section (sym)));
2836 }
2837
2838 static boolean
2839 elf_map_symbols (abfd)
2840 bfd *abfd;
2841 {
2842 unsigned int symcount = bfd_get_symcount (abfd);
2843 asymbol **syms = bfd_get_outsymbols (abfd);
2844 asymbol **sect_syms;
2845 unsigned int num_locals = 0;
2846 unsigned int num_globals = 0;
2847 unsigned int num_locals2 = 0;
2848 unsigned int num_globals2 = 0;
2849 int max_index = 0;
2850 unsigned int idx;
2851 asection *asect;
2852 asymbol **new_syms;
2853 bfd_size_type amt;
2854
2855 #ifdef DEBUG
2856 fprintf (stderr, "elf_map_symbols\n");
2857 fflush (stderr);
2858 #endif
2859
2860 for (asect = abfd->sections; asect; asect = asect->next)
2861 {
2862 if (max_index < asect->index)
2863 max_index = asect->index;
2864 }
2865
2866 max_index++;
2867 amt = max_index * sizeof (asymbol *);
2868 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
2869 if (sect_syms == NULL)
2870 return false;
2871 elf_section_syms (abfd) = sect_syms;
2872 elf_num_section_syms (abfd) = max_index;
2873
2874 /* Init sect_syms entries for any section symbols we have already
2875 decided to output. */
2876 for (idx = 0; idx < symcount; idx++)
2877 {
2878 asymbol *sym = syms[idx];
2879
2880 if ((sym->flags & BSF_SECTION_SYM) != 0
2881 && sym->value == 0)
2882 {
2883 asection *sec;
2884
2885 sec = sym->section;
2886
2887 if (sec->owner != NULL)
2888 {
2889 if (sec->owner != abfd)
2890 {
2891 if (sec->output_offset != 0)
2892 continue;
2893
2894 sec = sec->output_section;
2895
2896 /* Empty sections in the input files may have had a
2897 section symbol created for them. (See the comment
2898 near the end of _bfd_generic_link_output_symbols in
2899 linker.c). If the linker script discards such
2900 sections then we will reach this point. Since we know
2901 that we cannot avoid this case, we detect it and skip
2902 the abort and the assignment to the sect_syms array.
2903 To reproduce this particular case try running the
2904 linker testsuite test ld-scripts/weak.exp for an ELF
2905 port that uses the generic linker. */
2906 if (sec->owner == NULL)
2907 continue;
2908
2909 BFD_ASSERT (sec->owner == abfd);
2910 }
2911 sect_syms[sec->index] = syms[idx];
2912 }
2913 }
2914 }
2915
2916 /* Classify all of the symbols. */
2917 for (idx = 0; idx < symcount; idx++)
2918 {
2919 if (!sym_is_global (abfd, syms[idx]))
2920 num_locals++;
2921 else
2922 num_globals++;
2923 }
2924
2925 /* We will be adding a section symbol for each BFD section. Most normal
2926 sections will already have a section symbol in outsymbols, but
2927 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2928 at least in that case. */
2929 for (asect = abfd->sections; asect; asect = asect->next)
2930 {
2931 if (sect_syms[asect->index] == NULL)
2932 {
2933 if (!sym_is_global (abfd, asect->symbol))
2934 num_locals++;
2935 else
2936 num_globals++;
2937 }
2938 }
2939
2940 /* Now sort the symbols so the local symbols are first. */
2941 amt = (num_locals + num_globals) * sizeof (asymbol *);
2942 new_syms = (asymbol **) bfd_alloc (abfd, amt);
2943
2944 if (new_syms == NULL)
2945 return false;
2946
2947 for (idx = 0; idx < symcount; idx++)
2948 {
2949 asymbol *sym = syms[idx];
2950 unsigned int i;
2951
2952 if (!sym_is_global (abfd, sym))
2953 i = num_locals2++;
2954 else
2955 i = num_locals + num_globals2++;
2956 new_syms[i] = sym;
2957 sym->udata.i = i + 1;
2958 }
2959 for (asect = abfd->sections; asect; asect = asect->next)
2960 {
2961 if (sect_syms[asect->index] == NULL)
2962 {
2963 asymbol *sym = asect->symbol;
2964 unsigned int i;
2965
2966 sect_syms[asect->index] = sym;
2967 if (!sym_is_global (abfd, sym))
2968 i = num_locals2++;
2969 else
2970 i = num_locals + num_globals2++;
2971 new_syms[i] = sym;
2972 sym->udata.i = i + 1;
2973 }
2974 }
2975
2976 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
2977
2978 elf_num_locals (abfd) = num_locals;
2979 elf_num_globals (abfd) = num_globals;
2980 return true;
2981 }
2982
2983 /* Align to the maximum file alignment that could be required for any
2984 ELF data structure. */
2985
2986 static INLINE file_ptr align_file_position PARAMS ((file_ptr, int));
2987 static INLINE file_ptr
2988 align_file_position (off, align)
2989 file_ptr off;
2990 int align;
2991 {
2992 return (off + align - 1) & ~(align - 1);
2993 }
2994
2995 /* Assign a file position to a section, optionally aligning to the
2996 required section alignment. */
2997
2998 INLINE file_ptr
2999 _bfd_elf_assign_file_position_for_section (i_shdrp, offset, align)
3000 Elf_Internal_Shdr *i_shdrp;
3001 file_ptr offset;
3002 boolean align;
3003 {
3004 if (align)
3005 {
3006 unsigned int al;
3007
3008 al = i_shdrp->sh_addralign;
3009 if (al > 1)
3010 offset = BFD_ALIGN (offset, al);
3011 }
3012 i_shdrp->sh_offset = offset;
3013 if (i_shdrp->bfd_section != NULL)
3014 i_shdrp->bfd_section->filepos = offset;
3015 if (i_shdrp->sh_type != SHT_NOBITS)
3016 offset += i_shdrp->sh_size;
3017 return offset;
3018 }
3019
3020 /* Compute the file positions we are going to put the sections at, and
3021 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3022 is not NULL, this is being called by the ELF backend linker. */
3023
3024 boolean
3025 _bfd_elf_compute_section_file_positions (abfd, link_info)
3026 bfd *abfd;
3027 struct bfd_link_info *link_info;
3028 {
3029 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3030 boolean failed;
3031 struct bfd_strtab_hash *strtab;
3032 Elf_Internal_Shdr *shstrtab_hdr;
3033
3034 if (abfd->output_has_begun)
3035 return true;
3036
3037 /* Do any elf backend specific processing first. */
3038 if (bed->elf_backend_begin_write_processing)
3039 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3040
3041 if (! prep_headers (abfd))
3042 return false;
3043
3044 /* Post process the headers if necessary. */
3045 if (bed->elf_backend_post_process_headers)
3046 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3047
3048 failed = false;
3049 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3050 if (failed)
3051 return false;
3052
3053 if (!assign_section_numbers (abfd))
3054 return false;
3055
3056 /* The backend linker builds symbol table information itself. */
3057 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3058 {
3059 /* Non-zero if doing a relocatable link. */
3060 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3061
3062 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3063 return false;
3064 }
3065
3066 if (link_info == NULL)
3067 {
3068 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3069 if (failed)
3070 return false;
3071 }
3072
3073 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3074 /* sh_name was set in prep_headers. */
3075 shstrtab_hdr->sh_type = SHT_STRTAB;
3076 shstrtab_hdr->sh_flags = 0;
3077 shstrtab_hdr->sh_addr = 0;
3078 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3079 shstrtab_hdr->sh_entsize = 0;
3080 shstrtab_hdr->sh_link = 0;
3081 shstrtab_hdr->sh_info = 0;
3082 /* sh_offset is set in assign_file_positions_except_relocs. */
3083 shstrtab_hdr->sh_addralign = 1;
3084
3085 if (!assign_file_positions_except_relocs (abfd))
3086 return false;
3087
3088 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3089 {
3090 file_ptr off;
3091 Elf_Internal_Shdr *hdr;
3092
3093 off = elf_tdata (abfd)->next_file_pos;
3094
3095 hdr = &elf_tdata (abfd)->symtab_hdr;
3096 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3097
3098 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3099 if (hdr->sh_size != 0)
3100 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3101
3102 hdr = &elf_tdata (abfd)->strtab_hdr;
3103 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3104
3105 elf_tdata (abfd)->next_file_pos = off;
3106
3107 /* Now that we know where the .strtab section goes, write it
3108 out. */
3109 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3110 || ! _bfd_stringtab_emit (abfd, strtab))
3111 return false;
3112 _bfd_stringtab_free (strtab);
3113 }
3114
3115 abfd->output_has_begun = true;
3116
3117 return true;
3118 }
3119
3120 /* Create a mapping from a set of sections to a program segment. */
3121
3122 static INLINE struct elf_segment_map *
3123 make_mapping (abfd, sections, from, to, phdr)
3124 bfd *abfd;
3125 asection **sections;
3126 unsigned int from;
3127 unsigned int to;
3128 boolean phdr;
3129 {
3130 struct elf_segment_map *m;
3131 unsigned int i;
3132 asection **hdrpp;
3133 bfd_size_type amt;
3134
3135 amt = sizeof (struct elf_segment_map);
3136 amt += (to - from - 1) * sizeof (asection *);
3137 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3138 if (m == NULL)
3139 return NULL;
3140 m->next = NULL;
3141 m->p_type = PT_LOAD;
3142 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3143 m->sections[i - from] = *hdrpp;
3144 m->count = to - from;
3145
3146 if (from == 0 && phdr)
3147 {
3148 /* Include the headers in the first PT_LOAD segment. */
3149 m->includes_filehdr = 1;
3150 m->includes_phdrs = 1;
3151 }
3152
3153 return m;
3154 }
3155
3156 /* Set up a mapping from BFD sections to program segments. */
3157
3158 static boolean
3159 map_sections_to_segments (abfd)
3160 bfd *abfd;
3161 {
3162 asection **sections = NULL;
3163 asection *s;
3164 unsigned int i;
3165 unsigned int count;
3166 struct elf_segment_map *mfirst;
3167 struct elf_segment_map **pm;
3168 struct elf_segment_map *m;
3169 asection *last_hdr;
3170 unsigned int phdr_index;
3171 bfd_vma maxpagesize;
3172 asection **hdrpp;
3173 boolean phdr_in_segment = true;
3174 boolean writable;
3175 int tls_count = 0;
3176 asection *first_tls = NULL;
3177 asection *dynsec, *eh_frame_hdr;
3178 bfd_size_type amt;
3179
3180 if (elf_tdata (abfd)->segment_map != NULL)
3181 return true;
3182
3183 if (bfd_count_sections (abfd) == 0)
3184 return true;
3185
3186 /* Select the allocated sections, and sort them. */
3187
3188 amt = bfd_count_sections (abfd) * sizeof (asection *);
3189 sections = (asection **) bfd_malloc (amt);
3190 if (sections == NULL)
3191 goto error_return;
3192
3193 i = 0;
3194 for (s = abfd->sections; s != NULL; s = s->next)
3195 {
3196 if ((s->flags & SEC_ALLOC) != 0)
3197 {
3198 sections[i] = s;
3199 ++i;
3200 }
3201 }
3202 BFD_ASSERT (i <= bfd_count_sections (abfd));
3203 count = i;
3204
3205 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3206
3207 /* Build the mapping. */
3208
3209 mfirst = NULL;
3210 pm = &mfirst;
3211
3212 /* If we have a .interp section, then create a PT_PHDR segment for
3213 the program headers and a PT_INTERP segment for the .interp
3214 section. */
3215 s = bfd_get_section_by_name (abfd, ".interp");
3216 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3217 {
3218 amt = sizeof (struct elf_segment_map);
3219 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3220 if (m == NULL)
3221 goto error_return;
3222 m->next = NULL;
3223 m->p_type = PT_PHDR;
3224 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3225 m->p_flags = PF_R | PF_X;
3226 m->p_flags_valid = 1;
3227 m->includes_phdrs = 1;
3228
3229 *pm = m;
3230 pm = &m->next;
3231
3232 amt = sizeof (struct elf_segment_map);
3233 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3234 if (m == NULL)
3235 goto error_return;
3236 m->next = NULL;
3237 m->p_type = PT_INTERP;
3238 m->count = 1;
3239 m->sections[0] = s;
3240
3241 *pm = m;
3242 pm = &m->next;
3243 }
3244
3245 /* Look through the sections. We put sections in the same program
3246 segment when the start of the second section can be placed within
3247 a few bytes of the end of the first section. */
3248 last_hdr = NULL;
3249 phdr_index = 0;
3250 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3251 writable = false;
3252 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3253 if (dynsec != NULL
3254 && (dynsec->flags & SEC_LOAD) == 0)
3255 dynsec = NULL;
3256
3257 /* Deal with -Ttext or something similar such that the first section
3258 is not adjacent to the program headers. This is an
3259 approximation, since at this point we don't know exactly how many
3260 program headers we will need. */
3261 if (count > 0)
3262 {
3263 bfd_size_type phdr_size;
3264
3265 phdr_size = elf_tdata (abfd)->program_header_size;
3266 if (phdr_size == 0)
3267 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3268 if ((abfd->flags & D_PAGED) == 0
3269 || sections[0]->lma < phdr_size
3270 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3271 phdr_in_segment = false;
3272 }
3273
3274 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3275 {
3276 asection *hdr;
3277 boolean new_segment;
3278
3279 hdr = *hdrpp;
3280
3281 /* See if this section and the last one will fit in the same
3282 segment. */
3283
3284 if (last_hdr == NULL)
3285 {
3286 /* If we don't have a segment yet, then we don't need a new
3287 one (we build the last one after this loop). */
3288 new_segment = false;
3289 }
3290 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3291 {
3292 /* If this section has a different relation between the
3293 virtual address and the load address, then we need a new
3294 segment. */
3295 new_segment = true;
3296 }
3297 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3298 < BFD_ALIGN (hdr->lma, maxpagesize))
3299 {
3300 /* If putting this section in this segment would force us to
3301 skip a page in the segment, then we need a new segment. */
3302 new_segment = true;
3303 }
3304 else if ((last_hdr->flags & SEC_LOAD) == 0
3305 && (hdr->flags & SEC_LOAD) != 0)
3306 {
3307 /* We don't want to put a loadable section after a
3308 nonloadable section in the same segment. */
3309 new_segment = true;
3310 }
3311 else if ((abfd->flags & D_PAGED) == 0)
3312 {
3313 /* If the file is not demand paged, which means that we
3314 don't require the sections to be correctly aligned in the
3315 file, then there is no other reason for a new segment. */
3316 new_segment = false;
3317 }
3318 else if (! writable
3319 && (hdr->flags & SEC_READONLY) == 0
3320 && (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3321 == hdr->lma))
3322 {
3323 /* We don't want to put a writable section in a read only
3324 segment, unless they are on the same page in memory
3325 anyhow. We already know that the last section does not
3326 bring us past the current section on the page, so the
3327 only case in which the new section is not on the same
3328 page as the previous section is when the previous section
3329 ends precisely on a page boundary. */
3330 new_segment = true;
3331 }
3332 else
3333 {
3334 /* Otherwise, we can use the same segment. */
3335 new_segment = false;
3336 }
3337
3338 if (! new_segment)
3339 {
3340 if ((hdr->flags & SEC_READONLY) == 0)
3341 writable = true;
3342 last_hdr = hdr;
3343 continue;
3344 }
3345
3346 /* We need a new program segment. We must create a new program
3347 header holding all the sections from phdr_index until hdr. */
3348
3349 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3350 if (m == NULL)
3351 goto error_return;
3352
3353 *pm = m;
3354 pm = &m->next;
3355
3356 if ((hdr->flags & SEC_READONLY) == 0)
3357 writable = true;
3358 else
3359 writable = false;
3360
3361 last_hdr = hdr;
3362 phdr_index = i;
3363 phdr_in_segment = false;
3364 }
3365
3366 /* Create a final PT_LOAD program segment. */
3367 if (last_hdr != NULL)
3368 {
3369 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3370 if (m == NULL)
3371 goto error_return;
3372
3373 *pm = m;
3374 pm = &m->next;
3375 }
3376
3377 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3378 if (dynsec != NULL)
3379 {
3380 amt = sizeof (struct elf_segment_map);
3381 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3382 if (m == NULL)
3383 goto error_return;
3384 m->next = NULL;
3385 m->p_type = PT_DYNAMIC;
3386 m->count = 1;
3387 m->sections[0] = dynsec;
3388
3389 *pm = m;
3390 pm = &m->next;
3391 }
3392
3393 /* For each loadable .note section, add a PT_NOTE segment. We don't
3394 use bfd_get_section_by_name, because if we link together
3395 nonloadable .note sections and loadable .note sections, we will
3396 generate two .note sections in the output file. FIXME: Using
3397 names for section types is bogus anyhow. */
3398 for (s = abfd->sections; s != NULL; s = s->next)
3399 {
3400 if ((s->flags & SEC_LOAD) != 0
3401 && strncmp (s->name, ".note", 5) == 0)
3402 {
3403 amt = sizeof (struct elf_segment_map);
3404 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3405 if (m == NULL)
3406 goto error_return;
3407 m->next = NULL;
3408 m->p_type = PT_NOTE;
3409 m->count = 1;
3410 m->sections[0] = s;
3411
3412 *pm = m;
3413 pm = &m->next;
3414 }
3415 if (s->flags & SEC_THREAD_LOCAL)
3416 {
3417 if (! tls_count)
3418 first_tls = s;
3419 tls_count++;
3420 }
3421 }
3422
3423 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3424 if (tls_count > 0)
3425 {
3426 int i;
3427
3428 amt = sizeof (struct elf_segment_map);
3429 amt += (tls_count - 1) * sizeof (asection *);
3430 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3431 if (m == NULL)
3432 goto error_return;
3433 m->next = NULL;
3434 m->p_type = PT_TLS;
3435 m->count = tls_count;
3436 /* Mandated PF_R. */
3437 m->p_flags = PF_R;
3438 m->p_flags_valid = 1;
3439 for (i = 0; i < tls_count; ++i)
3440 {
3441 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3442 m->sections[i] = first_tls;
3443 first_tls = first_tls->next;
3444 }
3445
3446 *pm = m;
3447 pm = &m->next;
3448 }
3449
3450 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3451 segment. */
3452 eh_frame_hdr = NULL;
3453 if (elf_tdata (abfd)->eh_frame_hdr)
3454 eh_frame_hdr = bfd_get_section_by_name (abfd, ".eh_frame_hdr");
3455 if (eh_frame_hdr != NULL && (eh_frame_hdr->flags & SEC_LOAD))
3456 {
3457 amt = sizeof (struct elf_segment_map);
3458 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3459 if (m == NULL)
3460 goto error_return;
3461 m->next = NULL;
3462 m->p_type = PT_GNU_EH_FRAME;
3463 m->count = 1;
3464 m->sections[0] = eh_frame_hdr;
3465
3466 *pm = m;
3467 pm = &m->next;
3468 }
3469
3470 free (sections);
3471 sections = NULL;
3472
3473 elf_tdata (abfd)->segment_map = mfirst;
3474 return true;
3475
3476 error_return:
3477 if (sections != NULL)
3478 free (sections);
3479 return false;
3480 }
3481
3482 /* Sort sections by address. */
3483
3484 static int
3485 elf_sort_sections (arg1, arg2)
3486 const PTR arg1;
3487 const PTR arg2;
3488 {
3489 const asection *sec1 = *(const asection **) arg1;
3490 const asection *sec2 = *(const asection **) arg2;
3491
3492 /* Sort by LMA first, since this is the address used to
3493 place the section into a segment. */
3494 if (sec1->lma < sec2->lma)
3495 return -1;
3496 else if (sec1->lma > sec2->lma)
3497 return 1;
3498
3499 /* Then sort by VMA. Normally the LMA and the VMA will be
3500 the same, and this will do nothing. */
3501 if (sec1->vma < sec2->vma)
3502 return -1;
3503 else if (sec1->vma > sec2->vma)
3504 return 1;
3505
3506 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3507
3508 #define TOEND(x) (((x)->flags & SEC_LOAD) == 0)
3509
3510 if (TOEND (sec1))
3511 {
3512 if (TOEND (sec2))
3513 {
3514 /* If the indicies are the same, do not return 0
3515 here, but continue to try the next comparison. */
3516 if (sec1->target_index - sec2->target_index != 0)
3517 return sec1->target_index - sec2->target_index;
3518 }
3519 else
3520 return 1;
3521 }
3522 else if (TOEND (sec2))
3523 return -1;
3524
3525 #undef TOEND
3526
3527 /* Sort by size, to put zero sized sections
3528 before others at the same address. */
3529
3530 if (sec1->_raw_size < sec2->_raw_size)
3531 return -1;
3532 if (sec1->_raw_size > sec2->_raw_size)
3533 return 1;
3534
3535 return sec1->target_index - sec2->target_index;
3536 }
3537
3538 /* Assign file positions to the sections based on the mapping from
3539 sections to segments. This function also sets up some fields in
3540 the file header, and writes out the program headers. */
3541
3542 static boolean
3543 assign_file_positions_for_segments (abfd)
3544 bfd *abfd;
3545 {
3546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3547 unsigned int count;
3548 struct elf_segment_map *m;
3549 unsigned int alloc;
3550 Elf_Internal_Phdr *phdrs;
3551 file_ptr off, voff;
3552 bfd_vma filehdr_vaddr, filehdr_paddr;
3553 bfd_vma phdrs_vaddr, phdrs_paddr;
3554 Elf_Internal_Phdr *p;
3555 bfd_size_type amt;
3556
3557 if (elf_tdata (abfd)->segment_map == NULL)
3558 {
3559 if (! map_sections_to_segments (abfd))
3560 return false;
3561 }
3562 else
3563 {
3564 /* The placement algorithm assumes that non allocated sections are
3565 not in PT_LOAD segments. We ensure this here by removing such
3566 sections from the segment map. */
3567 for (m = elf_tdata (abfd)->segment_map;
3568 m != NULL;
3569 m = m->next)
3570 {
3571 unsigned int new_count;
3572 unsigned int i;
3573
3574 if (m->p_type != PT_LOAD)
3575 continue;
3576
3577 new_count = 0;
3578 for (i = 0; i < m->count; i ++)
3579 {
3580 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3581 {
3582 if (i != new_count)
3583 m->sections[new_count] = m->sections[i];
3584
3585 new_count ++;
3586 }
3587 }
3588
3589 if (new_count != m->count)
3590 m->count = new_count;
3591 }
3592 }
3593
3594 if (bed->elf_backend_modify_segment_map)
3595 {
3596 if (! (*bed->elf_backend_modify_segment_map) (abfd))
3597 return false;
3598 }
3599
3600 count = 0;
3601 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3602 ++count;
3603
3604 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3605 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3606 elf_elfheader (abfd)->e_phnum = count;
3607
3608 if (count == 0)
3609 return true;
3610
3611 /* If we already counted the number of program segments, make sure
3612 that we allocated enough space. This happens when SIZEOF_HEADERS
3613 is used in a linker script. */
3614 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3615 if (alloc != 0 && count > alloc)
3616 {
3617 ((*_bfd_error_handler)
3618 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3619 bfd_get_filename (abfd), alloc, count));
3620 bfd_set_error (bfd_error_bad_value);
3621 return false;
3622 }
3623
3624 if (alloc == 0)
3625 alloc = count;
3626
3627 amt = alloc * sizeof (Elf_Internal_Phdr);
3628 phdrs = (Elf_Internal_Phdr *) bfd_alloc (abfd, amt);
3629 if (phdrs == NULL)
3630 return false;
3631
3632 off = bed->s->sizeof_ehdr;
3633 off += alloc * bed->s->sizeof_phdr;
3634
3635 filehdr_vaddr = 0;
3636 filehdr_paddr = 0;
3637 phdrs_vaddr = 0;
3638 phdrs_paddr = 0;
3639
3640 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3641 m != NULL;
3642 m = m->next, p++)
3643 {
3644 unsigned int i;
3645 asection **secpp;
3646
3647 /* If elf_segment_map is not from map_sections_to_segments, the
3648 sections may not be correctly ordered. NOTE: sorting should
3649 not be done to the PT_NOTE section of a corefile, which may
3650 contain several pseudo-sections artificially created by bfd.
3651 Sorting these pseudo-sections breaks things badly. */
3652 if (m->count > 1
3653 && !(elf_elfheader (abfd)->e_type == ET_CORE
3654 && m->p_type == PT_NOTE))
3655 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3656 elf_sort_sections);
3657
3658 p->p_type = m->p_type;
3659 p->p_flags = m->p_flags;
3660
3661 if (p->p_type == PT_LOAD
3662 && m->count > 0
3663 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3664 {
3665 if ((abfd->flags & D_PAGED) != 0)
3666 off += (m->sections[0]->vma - off) % bed->maxpagesize;
3667 else
3668 {
3669 bfd_size_type align;
3670
3671 align = 0;
3672 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3673 {
3674 bfd_size_type secalign;
3675
3676 secalign = bfd_get_section_alignment (abfd, *secpp);
3677 if (secalign > align)
3678 align = secalign;
3679 }
3680
3681 off += (m->sections[0]->vma - off) % (1 << align);
3682 }
3683 }
3684
3685 if (m->count == 0)
3686 p->p_vaddr = 0;
3687 else
3688 p->p_vaddr = m->sections[0]->vma;
3689
3690 if (m->p_paddr_valid)
3691 p->p_paddr = m->p_paddr;
3692 else if (m->count == 0)
3693 p->p_paddr = 0;
3694 else
3695 p->p_paddr = m->sections[0]->lma;
3696
3697 if (p->p_type == PT_LOAD
3698 && (abfd->flags & D_PAGED) != 0)
3699 p->p_align = bed->maxpagesize;
3700 else if (m->count == 0)
3701 p->p_align = bed->s->file_align;
3702 else
3703 p->p_align = 0;
3704
3705 p->p_offset = 0;
3706 p->p_filesz = 0;
3707 p->p_memsz = 0;
3708
3709 if (m->includes_filehdr)
3710 {
3711 if (! m->p_flags_valid)
3712 p->p_flags |= PF_R;
3713 p->p_offset = 0;
3714 p->p_filesz = bed->s->sizeof_ehdr;
3715 p->p_memsz = bed->s->sizeof_ehdr;
3716 if (m->count > 0)
3717 {
3718 BFD_ASSERT (p->p_type == PT_LOAD);
3719
3720 if (p->p_vaddr < (bfd_vma) off)
3721 {
3722 (*_bfd_error_handler)
3723 (_("%s: Not enough room for program headers, try linking with -N"),
3724 bfd_get_filename (abfd));
3725 bfd_set_error (bfd_error_bad_value);
3726 return false;
3727 }
3728
3729 p->p_vaddr -= off;
3730 if (! m->p_paddr_valid)
3731 p->p_paddr -= off;
3732 }
3733 if (p->p_type == PT_LOAD)
3734 {
3735 filehdr_vaddr = p->p_vaddr;
3736 filehdr_paddr = p->p_paddr;
3737 }
3738 }
3739
3740 if (m->includes_phdrs)
3741 {
3742 if (! m->p_flags_valid)
3743 p->p_flags |= PF_R;
3744
3745 if (m->includes_filehdr)
3746 {
3747 if (p->p_type == PT_LOAD)
3748 {
3749 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3750 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3751 }
3752 }
3753 else
3754 {
3755 p->p_offset = bed->s->sizeof_ehdr;
3756
3757 if (m->count > 0)
3758 {
3759 BFD_ASSERT (p->p_type == PT_LOAD);
3760 p->p_vaddr -= off - p->p_offset;
3761 if (! m->p_paddr_valid)
3762 p->p_paddr -= off - p->p_offset;
3763 }
3764
3765 if (p->p_type == PT_LOAD)
3766 {
3767 phdrs_vaddr = p->p_vaddr;
3768 phdrs_paddr = p->p_paddr;
3769 }
3770 else
3771 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3772 }
3773
3774 p->p_filesz += alloc * bed->s->sizeof_phdr;
3775 p->p_memsz += alloc * bed->s->sizeof_phdr;
3776 }
3777
3778 if (p->p_type == PT_LOAD
3779 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3780 {
3781 if (! m->includes_filehdr && ! m->includes_phdrs)
3782 p->p_offset = off;
3783 else
3784 {
3785 file_ptr adjust;
3786
3787 adjust = off - (p->p_offset + p->p_filesz);
3788 p->p_filesz += adjust;
3789 p->p_memsz += adjust;
3790 }
3791 }
3792
3793 voff = off;
3794
3795 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3796 {
3797 asection *sec;
3798 flagword flags;
3799 bfd_size_type align;
3800
3801 sec = *secpp;
3802 flags = sec->flags;
3803 align = 1 << bfd_get_section_alignment (abfd, sec);
3804
3805 /* The section may have artificial alignment forced by a
3806 link script. Notice this case by the gap between the
3807 cumulative phdr lma and the section's lma. */
3808 if (p->p_paddr + p->p_memsz < sec->lma)
3809 {
3810 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3811
3812 p->p_memsz += adjust;
3813 off += adjust;
3814 voff += adjust;
3815 if ((flags & SEC_LOAD) != 0)
3816 p->p_filesz += adjust;
3817 }
3818
3819 if (p->p_type == PT_LOAD)
3820 {
3821 bfd_signed_vma adjust;
3822
3823 if ((flags & SEC_LOAD) != 0)
3824 {
3825 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3826 if (adjust < 0)
3827 adjust = 0;
3828 }
3829 else if ((flags & SEC_ALLOC) != 0)
3830 {
3831 /* The section VMA must equal the file position
3832 modulo the page size. FIXME: I'm not sure if
3833 this adjustment is really necessary. We used to
3834 not have the SEC_LOAD case just above, and then
3835 this was necessary, but now I'm not sure. */
3836 if ((abfd->flags & D_PAGED) != 0)
3837 adjust = (sec->vma - voff) % bed->maxpagesize;
3838 else
3839 adjust = (sec->vma - voff) % align;
3840 }
3841 else
3842 adjust = 0;
3843
3844 if (adjust != 0)
3845 {
3846 if (i == 0)
3847 {
3848 (* _bfd_error_handler) (_("\
3849 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3850 bfd_section_name (abfd, sec),
3851 sec->lma,
3852 p->p_paddr);
3853 return false;
3854 }
3855 p->p_memsz += adjust;
3856 off += adjust;
3857 voff += adjust;
3858 if ((flags & SEC_LOAD) != 0)
3859 p->p_filesz += adjust;
3860 }
3861
3862 sec->filepos = off;
3863
3864 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3865 used in a linker script we may have a section with
3866 SEC_LOAD clear but which is supposed to have
3867 contents. */
3868 if ((flags & SEC_LOAD) != 0
3869 || (flags & SEC_HAS_CONTENTS) != 0)
3870 off += sec->_raw_size;
3871
3872 if ((flags & SEC_ALLOC) != 0)
3873 voff += sec->_raw_size;
3874 }
3875
3876 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3877 {
3878 /* The actual "note" segment has i == 0.
3879 This is the one that actually contains everything. */
3880 if (i == 0)
3881 {
3882 sec->filepos = off;
3883 p->p_filesz = sec->_raw_size;
3884 off += sec->_raw_size;
3885 voff = off;
3886 }
3887 else
3888 {
3889 /* Fake sections -- don't need to be written. */
3890 sec->filepos = 0;
3891 sec->_raw_size = 0;
3892 flags = sec->flags = 0;
3893 }
3894 p->p_memsz = 0;
3895 p->p_align = 1;
3896 }
3897 else
3898 {
3899 p->p_memsz += sec->_raw_size;
3900
3901 if ((flags & SEC_LOAD) != 0)
3902 p->p_filesz += sec->_raw_size;
3903
3904 if (p->p_type == PT_TLS
3905 && sec->_raw_size == 0
3906 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3907 {
3908 struct bfd_link_order *o;
3909 bfd_vma tbss_size = 0;
3910
3911 for (o = sec->link_order_head; o != NULL; o = o->next)
3912 if (tbss_size < o->offset + o->size)
3913 tbss_size = o->offset + o->size;
3914
3915 p->p_memsz += tbss_size;
3916 }
3917
3918 if (align > p->p_align
3919 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
3920 p->p_align = align;
3921 }
3922
3923 if (! m->p_flags_valid)
3924 {
3925 p->p_flags |= PF_R;
3926 if ((flags & SEC_CODE) != 0)
3927 p->p_flags |= PF_X;
3928 if ((flags & SEC_READONLY) == 0)
3929 p->p_flags |= PF_W;
3930 }
3931 }
3932 }
3933
3934 /* Now that we have set the section file positions, we can set up
3935 the file positions for the non PT_LOAD segments. */
3936 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3937 m != NULL;
3938 m = m->next, p++)
3939 {
3940 if (p->p_type != PT_LOAD && m->count > 0)
3941 {
3942 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
3943 p->p_offset = m->sections[0]->filepos;
3944 }
3945 if (m->count == 0)
3946 {
3947 if (m->includes_filehdr)
3948 {
3949 p->p_vaddr = filehdr_vaddr;
3950 if (! m->p_paddr_valid)
3951 p->p_paddr = filehdr_paddr;
3952 }
3953 else if (m->includes_phdrs)
3954 {
3955 p->p_vaddr = phdrs_vaddr;
3956 if (! m->p_paddr_valid)
3957 p->p_paddr = phdrs_paddr;
3958 }
3959 }
3960 }
3961
3962 /* If additional nonloadable filepos adjustments are required,
3963 do them now. */
3964 if (bed->set_nonloadable_filepos)
3965 (*bed->set_nonloadable_filepos) (abfd, phdrs);
3966
3967 /* Clear out any program headers we allocated but did not use. */
3968 for (; count < alloc; count++, p++)
3969 {
3970 memset (p, 0, sizeof *p);
3971 p->p_type = PT_NULL;
3972 }
3973
3974 elf_tdata (abfd)->phdr = phdrs;
3975
3976 elf_tdata (abfd)->next_file_pos = off;
3977
3978 /* Write out the program headers. */
3979 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
3980 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
3981 return false;
3982
3983 return true;
3984 }
3985
3986 /* Get the size of the program header.
3987
3988 If this is called by the linker before any of the section VMA's are set, it
3989 can't calculate the correct value for a strange memory layout. This only
3990 happens when SIZEOF_HEADERS is used in a linker script. In this case,
3991 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
3992 data segment (exclusive of .interp and .dynamic).
3993
3994 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
3995 will be two segments. */
3996
3997 static bfd_size_type
3998 get_program_header_size (abfd)
3999 bfd *abfd;
4000 {
4001 size_t segs;
4002 asection *s;
4003 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4004
4005 /* We can't return a different result each time we're called. */
4006 if (elf_tdata (abfd)->program_header_size != 0)
4007 return elf_tdata (abfd)->program_header_size;
4008
4009 if (elf_tdata (abfd)->segment_map != NULL)
4010 {
4011 struct elf_segment_map *m;
4012
4013 segs = 0;
4014 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4015 ++segs;
4016 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4017 return elf_tdata (abfd)->program_header_size;
4018 }
4019
4020 /* Assume we will need exactly two PT_LOAD segments: one for text
4021 and one for data. */
4022 segs = 2;
4023
4024 s = bfd_get_section_by_name (abfd, ".interp");
4025 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4026 {
4027 /* If we have a loadable interpreter section, we need a
4028 PT_INTERP segment. In this case, assume we also need a
4029 PT_PHDR segment, although that may not be true for all
4030 targets. */
4031 segs += 2;
4032 }
4033
4034 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4035 {
4036 /* We need a PT_DYNAMIC segment. */
4037 ++segs;
4038 }
4039
4040 if (elf_tdata (abfd)->eh_frame_hdr
4041 && bfd_get_section_by_name (abfd, ".eh_frame_hdr") != NULL)
4042 {
4043 /* We need a PT_GNU_EH_FRAME segment. */
4044 ++segs;
4045 }
4046
4047 for (s = abfd->sections; s != NULL; s = s->next)
4048 {
4049 if ((s->flags & SEC_LOAD) != 0
4050 && strncmp (s->name, ".note", 5) == 0)
4051 {
4052 /* We need a PT_NOTE segment. */
4053 ++segs;
4054 }
4055 }
4056
4057 for (s = abfd->sections; s != NULL; s = s->next)
4058 {
4059 if (s->flags & SEC_THREAD_LOCAL)
4060 {
4061 /* We need a PT_TLS segment. */
4062 ++segs;
4063 break;
4064 }
4065 }
4066
4067 /* Let the backend count up any program headers it might need. */
4068 if (bed->elf_backend_additional_program_headers)
4069 {
4070 int a;
4071
4072 a = (*bed->elf_backend_additional_program_headers) (abfd);
4073 if (a == -1)
4074 abort ();
4075 segs += a;
4076 }
4077
4078 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4079 return elf_tdata (abfd)->program_header_size;
4080 }
4081
4082 /* Work out the file positions of all the sections. This is called by
4083 _bfd_elf_compute_section_file_positions. All the section sizes and
4084 VMAs must be known before this is called.
4085
4086 We do not consider reloc sections at this point, unless they form
4087 part of the loadable image. Reloc sections are assigned file
4088 positions in assign_file_positions_for_relocs, which is called by
4089 write_object_contents and final_link.
4090
4091 We also don't set the positions of the .symtab and .strtab here. */
4092
4093 static boolean
4094 assign_file_positions_except_relocs (abfd)
4095 bfd *abfd;
4096 {
4097 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4098 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4099 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4100 unsigned int num_sec = elf_numsections (abfd);
4101 file_ptr off;
4102 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4103
4104 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4105 && bfd_get_format (abfd) != bfd_core)
4106 {
4107 Elf_Internal_Shdr **hdrpp;
4108 unsigned int i;
4109
4110 /* Start after the ELF header. */
4111 off = i_ehdrp->e_ehsize;
4112
4113 /* We are not creating an executable, which means that we are
4114 not creating a program header, and that the actual order of
4115 the sections in the file is unimportant. */
4116 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4117 {
4118 Elf_Internal_Shdr *hdr;
4119
4120 hdr = *hdrpp;
4121 if (hdr->sh_type == SHT_REL
4122 || hdr->sh_type == SHT_RELA
4123 || i == tdata->symtab_section
4124 || i == tdata->symtab_shndx_section
4125 || i == tdata->strtab_section)
4126 {
4127 hdr->sh_offset = -1;
4128 }
4129 else
4130 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4131
4132 if (i == SHN_LORESERVE - 1)
4133 {
4134 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4135 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4136 }
4137 }
4138 }
4139 else
4140 {
4141 unsigned int i;
4142 Elf_Internal_Shdr **hdrpp;
4143
4144 /* Assign file positions for the loaded sections based on the
4145 assignment of sections to segments. */
4146 if (! assign_file_positions_for_segments (abfd))
4147 return false;
4148
4149 /* Assign file positions for the other sections. */
4150
4151 off = elf_tdata (abfd)->next_file_pos;
4152 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4153 {
4154 Elf_Internal_Shdr *hdr;
4155
4156 hdr = *hdrpp;
4157 if (hdr->bfd_section != NULL
4158 && hdr->bfd_section->filepos != 0)
4159 hdr->sh_offset = hdr->bfd_section->filepos;
4160 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4161 {
4162 ((*_bfd_error_handler)
4163 (_("%s: warning: allocated section `%s' not in segment"),
4164 bfd_get_filename (abfd),
4165 (hdr->bfd_section == NULL
4166 ? "*unknown*"
4167 : hdr->bfd_section->name)));
4168 if ((abfd->flags & D_PAGED) != 0)
4169 off += (hdr->sh_addr - off) % bed->maxpagesize;
4170 else
4171 off += (hdr->sh_addr - off) % hdr->sh_addralign;
4172 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4173 false);
4174 }
4175 else if (hdr->sh_type == SHT_REL
4176 || hdr->sh_type == SHT_RELA
4177 || hdr == i_shdrpp[tdata->symtab_section]
4178 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4179 || hdr == i_shdrpp[tdata->strtab_section])
4180 hdr->sh_offset = -1;
4181 else
4182 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4183
4184 if (i == SHN_LORESERVE - 1)
4185 {
4186 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4187 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4188 }
4189 }
4190 }
4191
4192 /* Place the section headers. */
4193 off = align_file_position (off, bed->s->file_align);
4194 i_ehdrp->e_shoff = off;
4195 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4196
4197 elf_tdata (abfd)->next_file_pos = off;
4198
4199 return true;
4200 }
4201
4202 static boolean
4203 prep_headers (abfd)
4204 bfd *abfd;
4205 {
4206 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4207 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4208 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4209 struct elf_strtab_hash *shstrtab;
4210 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4211
4212 i_ehdrp = elf_elfheader (abfd);
4213 i_shdrp = elf_elfsections (abfd);
4214
4215 shstrtab = _bfd_elf_strtab_init ();
4216 if (shstrtab == NULL)
4217 return false;
4218
4219 elf_shstrtab (abfd) = shstrtab;
4220
4221 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4222 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4223 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4224 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4225
4226 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4227 i_ehdrp->e_ident[EI_DATA] =
4228 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4229 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4230
4231 if ((abfd->flags & DYNAMIC) != 0)
4232 i_ehdrp->e_type = ET_DYN;
4233 else if ((abfd->flags & EXEC_P) != 0)
4234 i_ehdrp->e_type = ET_EXEC;
4235 else if (bfd_get_format (abfd) == bfd_core)
4236 i_ehdrp->e_type = ET_CORE;
4237 else
4238 i_ehdrp->e_type = ET_REL;
4239
4240 switch (bfd_get_arch (abfd))
4241 {
4242 case bfd_arch_unknown:
4243 i_ehdrp->e_machine = EM_NONE;
4244 break;
4245
4246 /* There used to be a long list of cases here, each one setting
4247 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4248 in the corresponding bfd definition. To avoid duplication,
4249 the switch was removed. Machines that need special handling
4250 can generally do it in elf_backend_final_write_processing(),
4251 unless they need the information earlier than the final write.
4252 Such need can generally be supplied by replacing the tests for
4253 e_machine with the conditions used to determine it. */
4254 default:
4255 if (get_elf_backend_data (abfd) != NULL)
4256 i_ehdrp->e_machine = get_elf_backend_data (abfd)->elf_machine_code;
4257 else
4258 i_ehdrp->e_machine = EM_NONE;
4259 }
4260
4261 i_ehdrp->e_version = bed->s->ev_current;
4262 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4263
4264 /* No program header, for now. */
4265 i_ehdrp->e_phoff = 0;
4266 i_ehdrp->e_phentsize = 0;
4267 i_ehdrp->e_phnum = 0;
4268
4269 /* Each bfd section is section header entry. */
4270 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4271 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4272
4273 /* If we're building an executable, we'll need a program header table. */
4274 if (abfd->flags & EXEC_P)
4275 {
4276 /* It all happens later. */
4277 #if 0
4278 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4279
4280 /* elf_build_phdrs() returns a (NULL-terminated) array of
4281 Elf_Internal_Phdrs. */
4282 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4283 i_ehdrp->e_phoff = outbase;
4284 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4285 #endif
4286 }
4287 else
4288 {
4289 i_ehdrp->e_phentsize = 0;
4290 i_phdrp = 0;
4291 i_ehdrp->e_phoff = 0;
4292 }
4293
4294 elf_tdata (abfd)->symtab_hdr.sh_name =
4295 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", false);
4296 elf_tdata (abfd)->strtab_hdr.sh_name =
4297 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", false);
4298 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4299 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", false);
4300 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4301 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4302 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4303 return false;
4304
4305 return true;
4306 }
4307
4308 /* Assign file positions for all the reloc sections which are not part
4309 of the loadable file image. */
4310
4311 void
4312 _bfd_elf_assign_file_positions_for_relocs (abfd)
4313 bfd *abfd;
4314 {
4315 file_ptr off;
4316 unsigned int i, num_sec;
4317 Elf_Internal_Shdr **shdrpp;
4318
4319 off = elf_tdata (abfd)->next_file_pos;
4320
4321 num_sec = elf_numsections (abfd);
4322 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4323 {
4324 Elf_Internal_Shdr *shdrp;
4325
4326 shdrp = *shdrpp;
4327 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4328 && shdrp->sh_offset == -1)
4329 off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
4330 }
4331
4332 elf_tdata (abfd)->next_file_pos = off;
4333 }
4334
4335 boolean
4336 _bfd_elf_write_object_contents (abfd)
4337 bfd *abfd;
4338 {
4339 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4340 Elf_Internal_Ehdr *i_ehdrp;
4341 Elf_Internal_Shdr **i_shdrp;
4342 boolean failed;
4343 unsigned int count, num_sec;
4344
4345 if (! abfd->output_has_begun
4346 && ! _bfd_elf_compute_section_file_positions
4347 (abfd, (struct bfd_link_info *) NULL))
4348 return false;
4349
4350 i_shdrp = elf_elfsections (abfd);
4351 i_ehdrp = elf_elfheader (abfd);
4352
4353 failed = false;
4354 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4355 if (failed)
4356 return false;
4357
4358 _bfd_elf_assign_file_positions_for_relocs (abfd);
4359
4360 /* After writing the headers, we need to write the sections too... */
4361 num_sec = elf_numsections (abfd);
4362 for (count = 1; count < num_sec; count++)
4363 {
4364 if (bed->elf_backend_section_processing)
4365 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4366 if (i_shdrp[count]->contents)
4367 {
4368 bfd_size_type amt = i_shdrp[count]->sh_size;
4369
4370 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4371 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4372 return false;
4373 }
4374 if (count == SHN_LORESERVE - 1)
4375 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4376 }
4377
4378 /* Write out the section header names. */
4379 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4380 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4381 return false;
4382
4383 if (bed->elf_backend_final_write_processing)
4384 (*bed->elf_backend_final_write_processing) (abfd,
4385 elf_tdata (abfd)->linker);
4386
4387 return bed->s->write_shdrs_and_ehdr (abfd);
4388 }
4389
4390 boolean
4391 _bfd_elf_write_corefile_contents (abfd)
4392 bfd *abfd;
4393 {
4394 /* Hopefully this can be done just like an object file. */
4395 return _bfd_elf_write_object_contents (abfd);
4396 }
4397
4398 /* Given a section, search the header to find them. */
4399
4400 int
4401 _bfd_elf_section_from_bfd_section (abfd, asect)
4402 bfd *abfd;
4403 struct sec *asect;
4404 {
4405 struct elf_backend_data *bed;
4406 int index;
4407
4408 if (elf_section_data (asect) != NULL
4409 && elf_section_data (asect)->this_idx != 0)
4410 return elf_section_data (asect)->this_idx;
4411
4412 if (bfd_is_abs_section (asect))
4413 index = SHN_ABS;
4414 else if (bfd_is_com_section (asect))
4415 index = SHN_COMMON;
4416 else if (bfd_is_und_section (asect))
4417 index = SHN_UNDEF;
4418 else
4419 {
4420 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4421 int maxindex = elf_numsections (abfd);
4422
4423 for (index = 1; index < maxindex; index++)
4424 {
4425 Elf_Internal_Shdr *hdr = i_shdrp[index];
4426
4427 if (hdr != NULL && hdr->bfd_section == asect)
4428 return index;
4429 }
4430 index = -1;
4431 }
4432
4433 bed = get_elf_backend_data (abfd);
4434 if (bed->elf_backend_section_from_bfd_section)
4435 {
4436 int retval = index;
4437
4438 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4439 return retval;
4440 }
4441
4442 if (index == -1)
4443 bfd_set_error (bfd_error_nonrepresentable_section);
4444
4445 return index;
4446 }
4447
4448 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4449 on error. */
4450
4451 int
4452 _bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr)
4453 bfd *abfd;
4454 asymbol **asym_ptr_ptr;
4455 {
4456 asymbol *asym_ptr = *asym_ptr_ptr;
4457 int idx;
4458 flagword flags = asym_ptr->flags;
4459
4460 /* When gas creates relocations against local labels, it creates its
4461 own symbol for the section, but does put the symbol into the
4462 symbol chain, so udata is 0. When the linker is generating
4463 relocatable output, this section symbol may be for one of the
4464 input sections rather than the output section. */
4465 if (asym_ptr->udata.i == 0
4466 && (flags & BSF_SECTION_SYM)
4467 && asym_ptr->section)
4468 {
4469 int indx;
4470
4471 if (asym_ptr->section->output_section != NULL)
4472 indx = asym_ptr->section->output_section->index;
4473 else
4474 indx = asym_ptr->section->index;
4475 if (indx < elf_num_section_syms (abfd)
4476 && elf_section_syms (abfd)[indx] != NULL)
4477 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4478 }
4479
4480 idx = asym_ptr->udata.i;
4481
4482 if (idx == 0)
4483 {
4484 /* This case can occur when using --strip-symbol on a symbol
4485 which is used in a relocation entry. */
4486 (*_bfd_error_handler)
4487 (_("%s: symbol `%s' required but not present"),
4488 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4489 bfd_set_error (bfd_error_no_symbols);
4490 return -1;
4491 }
4492
4493 #if DEBUG & 4
4494 {
4495 fprintf (stderr,
4496 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4497 (long) asym_ptr, asym_ptr->name, idx, flags,
4498 elf_symbol_flags (flags));
4499 fflush (stderr);
4500 }
4501 #endif
4502
4503 return idx;
4504 }
4505
4506 /* Copy private BFD data. This copies any program header information. */
4507
4508 static boolean
4509 copy_private_bfd_data (ibfd, obfd)
4510 bfd *ibfd;
4511 bfd *obfd;
4512 {
4513 Elf_Internal_Ehdr * iehdr;
4514 struct elf_segment_map * map;
4515 struct elf_segment_map * map_first;
4516 struct elf_segment_map ** pointer_to_map;
4517 Elf_Internal_Phdr * segment;
4518 asection * section;
4519 unsigned int i;
4520 unsigned int num_segments;
4521 boolean phdr_included = false;
4522 bfd_vma maxpagesize;
4523 struct elf_segment_map * phdr_adjust_seg = NULL;
4524 unsigned int phdr_adjust_num = 0;
4525 struct elf_backend_data * bed;
4526
4527 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4528 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4529 return true;
4530
4531 if (elf_tdata (ibfd)->phdr == NULL)
4532 return true;
4533
4534 bed = get_elf_backend_data (ibfd);
4535 iehdr = elf_elfheader (ibfd);
4536
4537 map_first = NULL;
4538 pointer_to_map = &map_first;
4539
4540 num_segments = elf_elfheader (ibfd)->e_phnum;
4541 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4542
4543 /* Returns the end address of the segment + 1. */
4544 #define SEGMENT_END(segment, start) \
4545 (start + (segment->p_memsz > segment->p_filesz \
4546 ? segment->p_memsz : segment->p_filesz))
4547
4548 /* Returns true if the given section is contained within
4549 the given segment. VMA addresses are compared. */
4550 #define IS_CONTAINED_BY_VMA(section, segment) \
4551 (section->vma >= segment->p_vaddr \
4552 && (section->vma + section->_raw_size \
4553 <= (SEGMENT_END (segment, segment->p_vaddr))))
4554
4555 /* Returns true if the given section is contained within
4556 the given segment. LMA addresses are compared. */
4557 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4558 (section->lma >= base \
4559 && (section->lma + section->_raw_size \
4560 <= SEGMENT_END (segment, base)))
4561
4562 /* Returns true if the given section is contained within the
4563 given segment. Filepos addresses are compared in an elf
4564 backend function. */
4565 #define IS_CONTAINED_BY_FILEPOS(sec, seg, bed) \
4566 (bed->is_contained_by_filepos \
4567 && (*bed->is_contained_by_filepos) (sec, seg))
4568
4569 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4570 #define IS_COREFILE_NOTE(p, s) \
4571 (p->p_type == PT_NOTE \
4572 && bfd_get_format (ibfd) == bfd_core \
4573 && s->vma == 0 && s->lma == 0 \
4574 && (bfd_vma) s->filepos >= p->p_offset \
4575 && ((bfd_vma) s->filepos + s->_raw_size \
4576 <= p->p_offset + p->p_filesz))
4577
4578 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4579 linker, which generates a PT_INTERP section with p_vaddr and
4580 p_memsz set to 0. */
4581 #define IS_SOLARIS_PT_INTERP(p, s) \
4582 (p->p_vaddr == 0 \
4583 && p->p_paddr == 0 \
4584 && p->p_memsz == 0 \
4585 && p->p_filesz > 0 \
4586 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4587 && s->_raw_size > 0 \
4588 && (bfd_vma) s->filepos >= p->p_offset \
4589 && ((bfd_vma) s->filepos + s->_raw_size \
4590 <= p->p_offset + p->p_filesz))
4591
4592 /* Decide if the given section should be included in the given segment.
4593 A section will be included if:
4594 1. It is within the address space of the segment -- we use the LMA
4595 if that is set for the segment and the VMA otherwise,
4596 2. It is an allocated segment,
4597 3. There is an output section associated with it,
4598 4. The section has not already been allocated to a previous segment. */
4599 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4600 ((((segment->p_paddr \
4601 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4602 : IS_CONTAINED_BY_VMA (section, segment)) \
4603 && (section->flags & SEC_ALLOC) != 0) \
4604 || IS_COREFILE_NOTE (segment, section) \
4605 || (IS_CONTAINED_BY_FILEPOS (section, segment, bed) \
4606 && (section->flags & SEC_ALLOC) == 0)) \
4607 && section->output_section != NULL \
4608 && ! section->segment_mark)
4609
4610 /* Returns true iff seg1 starts after the end of seg2. */
4611 #define SEGMENT_AFTER_SEGMENT(seg1, seg2) \
4612 (seg1->p_vaddr >= SEGMENT_END (seg2, seg2->p_vaddr))
4613
4614 /* Returns true iff seg1 and seg2 overlap. */
4615 #define SEGMENT_OVERLAPS(seg1, seg2) \
4616 (!(SEGMENT_AFTER_SEGMENT (seg1, seg2) \
4617 || SEGMENT_AFTER_SEGMENT (seg2, seg1)))
4618
4619 /* Initialise the segment mark field. */
4620 for (section = ibfd->sections; section != NULL; section = section->next)
4621 section->segment_mark = false;
4622
4623 /* Scan through the segments specified in the program header
4624 of the input BFD. For this first scan we look for overlaps
4625 in the loadable segments. These can be created by weird
4626 parameters to objcopy. Also, fix some solaris weirdness. */
4627 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4628 i < num_segments;
4629 i++, segment++)
4630 {
4631 unsigned int j;
4632 Elf_Internal_Phdr *segment2;
4633
4634 if (segment->p_type == PT_INTERP)
4635 for (section = ibfd->sections; section; section = section->next)
4636 if (IS_SOLARIS_PT_INTERP (segment, section))
4637 {
4638 /* Mininal change so that the normal section to segment
4639 assigment code will work. */
4640 segment->p_vaddr = section->vma;
4641 break;
4642 }
4643
4644 if (segment->p_type != PT_LOAD)
4645 continue;
4646
4647 /* Determine if this segment overlaps any previous segments. */
4648 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4649 {
4650 bfd_signed_vma extra_length;
4651
4652 if (segment2->p_type != PT_LOAD
4653 || ! SEGMENT_OVERLAPS (segment, segment2))
4654 continue;
4655
4656 /* Merge the two segments together. */
4657 if (segment2->p_vaddr < segment->p_vaddr)
4658 {
4659 /* Extend SEGMENT2 to include SEGMENT and then delete
4660 SEGMENT. */
4661 extra_length =
4662 SEGMENT_END (segment, segment->p_vaddr)
4663 - SEGMENT_END (segment2, segment2->p_vaddr);
4664
4665 if (extra_length > 0)
4666 {
4667 segment2->p_memsz += extra_length;
4668 segment2->p_filesz += extra_length;
4669 }
4670
4671 segment->p_type = PT_NULL;
4672
4673 /* Since we have deleted P we must restart the outer loop. */
4674 i = 0;
4675 segment = elf_tdata (ibfd)->phdr;
4676 break;
4677 }
4678 else
4679 {
4680 /* Extend SEGMENT to include SEGMENT2 and then delete
4681 SEGMENT2. */
4682 extra_length =
4683 SEGMENT_END (segment2, segment2->p_vaddr)
4684 - SEGMENT_END (segment, segment->p_vaddr);
4685
4686 if (extra_length > 0)
4687 {
4688 segment->p_memsz += extra_length;
4689 segment->p_filesz += extra_length;
4690 }
4691
4692 segment2->p_type = PT_NULL;
4693 }
4694 }
4695 }
4696
4697 /* The second scan attempts to assign sections to segments. */
4698 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4699 i < num_segments;
4700 i ++, segment ++)
4701 {
4702 unsigned int section_count;
4703 asection ** sections;
4704 asection * output_section;
4705 unsigned int isec;
4706 bfd_vma matching_lma;
4707 bfd_vma suggested_lma;
4708 unsigned int j;
4709 bfd_size_type amt;
4710
4711 if (segment->p_type == PT_NULL)
4712 continue;
4713
4714 /* Compute how many sections might be placed into this segment. */
4715 section_count = 0;
4716 for (section = ibfd->sections; section != NULL; section = section->next)
4717 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4718 ++section_count;
4719
4720 /* Allocate a segment map big enough to contain all of the
4721 sections we have selected. */
4722 amt = sizeof (struct elf_segment_map);
4723 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4724 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
4725 if (map == NULL)
4726 return false;
4727
4728 /* Initialise the fields of the segment map. Default to
4729 using the physical address of the segment in the input BFD. */
4730 map->next = NULL;
4731 map->p_type = segment->p_type;
4732 map->p_flags = segment->p_flags;
4733 map->p_flags_valid = 1;
4734 map->p_paddr = segment->p_paddr;
4735 map->p_paddr_valid = 1;
4736
4737 /* Determine if this segment contains the ELF file header
4738 and if it contains the program headers themselves. */
4739 map->includes_filehdr = (segment->p_offset == 0
4740 && segment->p_filesz >= iehdr->e_ehsize);
4741
4742 map->includes_phdrs = 0;
4743
4744 if (! phdr_included || segment->p_type != PT_LOAD)
4745 {
4746 map->includes_phdrs =
4747 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4748 && (segment->p_offset + segment->p_filesz
4749 >= ((bfd_vma) iehdr->e_phoff
4750 + iehdr->e_phnum * iehdr->e_phentsize)));
4751
4752 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4753 phdr_included = true;
4754 }
4755
4756 if (section_count == 0)
4757 {
4758 /* Special segments, such as the PT_PHDR segment, may contain
4759 no sections, but ordinary, loadable segments should contain
4760 something. They are allowed by the ELF spec however, so only
4761 a warning is produced. */
4762 if (segment->p_type == PT_LOAD)
4763 (*_bfd_error_handler)
4764 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4765 bfd_archive_filename (ibfd));
4766
4767 map->count = 0;
4768 *pointer_to_map = map;
4769 pointer_to_map = &map->next;
4770
4771 continue;
4772 }
4773
4774 /* Now scan the sections in the input BFD again and attempt
4775 to add their corresponding output sections to the segment map.
4776 The problem here is how to handle an output section which has
4777 been moved (ie had its LMA changed). There are four possibilities:
4778
4779 1. None of the sections have been moved.
4780 In this case we can continue to use the segment LMA from the
4781 input BFD.
4782
4783 2. All of the sections have been moved by the same amount.
4784 In this case we can change the segment's LMA to match the LMA
4785 of the first section.
4786
4787 3. Some of the sections have been moved, others have not.
4788 In this case those sections which have not been moved can be
4789 placed in the current segment which will have to have its size,
4790 and possibly its LMA changed, and a new segment or segments will
4791 have to be created to contain the other sections.
4792
4793 4. The sections have been moved, but not be the same amount.
4794 In this case we can change the segment's LMA to match the LMA
4795 of the first section and we will have to create a new segment
4796 or segments to contain the other sections.
4797
4798 In order to save time, we allocate an array to hold the section
4799 pointers that we are interested in. As these sections get assigned
4800 to a segment, they are removed from this array. */
4801
4802 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4803 to work around this long long bug. */
4804 amt = section_count * sizeof (asection *);
4805 sections = (asection **) bfd_malloc (amt);
4806 if (sections == NULL)
4807 return false;
4808
4809 /* Step One: Scan for segment vs section LMA conflicts.
4810 Also add the sections to the section array allocated above.
4811 Also add the sections to the current segment. In the common
4812 case, where the sections have not been moved, this means that
4813 we have completely filled the segment, and there is nothing
4814 more to do. */
4815 isec = 0;
4816 matching_lma = 0;
4817 suggested_lma = 0;
4818
4819 for (j = 0, section = ibfd->sections;
4820 section != NULL;
4821 section = section->next)
4822 {
4823 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4824 {
4825 output_section = section->output_section;
4826
4827 sections[j ++] = section;
4828
4829 /* The Solaris native linker always sets p_paddr to 0.
4830 We try to catch that case here, and set it to the
4831 correct value. Note - some backends require that
4832 p_paddr be left as zero. */
4833 if (segment->p_paddr == 0
4834 && segment->p_vaddr != 0
4835 && (! bed->want_p_paddr_set_to_zero)
4836 && isec == 0
4837 && output_section->lma != 0
4838 && (output_section->vma == (segment->p_vaddr
4839 + (map->includes_filehdr
4840 ? iehdr->e_ehsize
4841 : 0)
4842 + (map->includes_phdrs
4843 ? (iehdr->e_phnum
4844 * iehdr->e_phentsize)
4845 : 0))))
4846 map->p_paddr = segment->p_vaddr;
4847
4848 /* Match up the physical address of the segment with the
4849 LMA address of the output section. */
4850 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4851 || IS_CONTAINED_BY_FILEPOS (section, segment, bed)
4852 || IS_COREFILE_NOTE (segment, section)
4853 || (bed->want_p_paddr_set_to_zero &&
4854 IS_CONTAINED_BY_VMA (output_section, segment))
4855 )
4856 {
4857 if (matching_lma == 0)
4858 matching_lma = output_section->lma;
4859
4860 /* We assume that if the section fits within the segment
4861 then it does not overlap any other section within that
4862 segment. */
4863 map->sections[isec ++] = output_section;
4864 }
4865 else if (suggested_lma == 0)
4866 suggested_lma = output_section->lma;
4867 }
4868 }
4869
4870 BFD_ASSERT (j == section_count);
4871
4872 /* Step Two: Adjust the physical address of the current segment,
4873 if necessary. */
4874 if (isec == section_count)
4875 {
4876 /* All of the sections fitted within the segment as currently
4877 specified. This is the default case. Add the segment to
4878 the list of built segments and carry on to process the next
4879 program header in the input BFD. */
4880 map->count = section_count;
4881 *pointer_to_map = map;
4882 pointer_to_map = &map->next;
4883
4884 free (sections);
4885 continue;
4886 }
4887 else
4888 {
4889 if (matching_lma != 0)
4890 {
4891 /* At least one section fits inside the current segment.
4892 Keep it, but modify its physical address to match the
4893 LMA of the first section that fitted. */
4894 map->p_paddr = matching_lma;
4895 }
4896 else
4897 {
4898 /* None of the sections fitted inside the current segment.
4899 Change the current segment's physical address to match
4900 the LMA of the first section. */
4901 map->p_paddr = suggested_lma;
4902 }
4903
4904 /* Offset the segment physical address from the lma
4905 to allow for space taken up by elf headers. */
4906 if (map->includes_filehdr)
4907 map->p_paddr -= iehdr->e_ehsize;
4908
4909 if (map->includes_phdrs)
4910 {
4911 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4912
4913 /* iehdr->e_phnum is just an estimate of the number
4914 of program headers that we will need. Make a note
4915 here of the number we used and the segment we chose
4916 to hold these headers, so that we can adjust the
4917 offset when we know the correct value. */
4918 phdr_adjust_num = iehdr->e_phnum;
4919 phdr_adjust_seg = map;
4920 }
4921 }
4922
4923 /* Step Three: Loop over the sections again, this time assigning
4924 those that fit to the current segment and removing them from the
4925 sections array; but making sure not to leave large gaps. Once all
4926 possible sections have been assigned to the current segment it is
4927 added to the list of built segments and if sections still remain
4928 to be assigned, a new segment is constructed before repeating
4929 the loop. */
4930 isec = 0;
4931 do
4932 {
4933 map->count = 0;
4934 suggested_lma = 0;
4935
4936 /* Fill the current segment with sections that fit. */
4937 for (j = 0; j < section_count; j++)
4938 {
4939 section = sections[j];
4940
4941 if (section == NULL)
4942 continue;
4943
4944 output_section = section->output_section;
4945
4946 BFD_ASSERT (output_section != NULL);
4947
4948 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4949 || IS_COREFILE_NOTE (segment, section))
4950 {
4951 if (map->count == 0)
4952 {
4953 /* If the first section in a segment does not start at
4954 the beginning of the segment, then something is
4955 wrong. */
4956 if (output_section->lma !=
4957 (map->p_paddr
4958 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
4959 + (map->includes_phdrs
4960 ? iehdr->e_phnum * iehdr->e_phentsize
4961 : 0)))
4962 abort ();
4963 }
4964 else
4965 {
4966 asection * prev_sec;
4967
4968 prev_sec = map->sections[map->count - 1];
4969
4970 /* If the gap between the end of the previous section
4971 and the start of this section is more than
4972 maxpagesize then we need to start a new segment. */
4973 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
4974 maxpagesize)
4975 < BFD_ALIGN (output_section->lma, maxpagesize))
4976 || ((prev_sec->lma + prev_sec->_raw_size)
4977 > output_section->lma))
4978 {
4979 if (suggested_lma == 0)
4980 suggested_lma = output_section->lma;
4981
4982 continue;
4983 }
4984 }
4985
4986 map->sections[map->count++] = output_section;
4987 ++isec;
4988 sections[j] = NULL;
4989 section->segment_mark = true;
4990 }
4991 else if (suggested_lma == 0)
4992 suggested_lma = output_section->lma;
4993 }
4994
4995 BFD_ASSERT (map->count > 0);
4996
4997 /* Add the current segment to the list of built segments. */
4998 *pointer_to_map = map;
4999 pointer_to_map = &map->next;
5000
5001 if (isec < section_count)
5002 {
5003 /* We still have not allocated all of the sections to
5004 segments. Create a new segment here, initialise it
5005 and carry on looping. */
5006 amt = sizeof (struct elf_segment_map);
5007 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5008 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5009 if (map == NULL)
5010 return false;
5011
5012 /* Initialise the fields of the segment map. Set the physical
5013 physical address to the LMA of the first section that has
5014 not yet been assigned. */
5015 map->next = NULL;
5016 map->p_type = segment->p_type;
5017 map->p_flags = segment->p_flags;
5018 map->p_flags_valid = 1;
5019 map->p_paddr = suggested_lma;
5020 map->p_paddr_valid = 1;
5021 map->includes_filehdr = 0;
5022 map->includes_phdrs = 0;
5023 }
5024 }
5025 while (isec < section_count);
5026
5027 free (sections);
5028 }
5029
5030 /* The Solaris linker creates program headers in which all the
5031 p_paddr fields are zero. When we try to objcopy or strip such a
5032 file, we get confused. Check for this case, and if we find it
5033 reset the p_paddr_valid fields. */
5034 for (map = map_first; map != NULL; map = map->next)
5035 if (map->p_paddr != 0)
5036 break;
5037 if (map == NULL)
5038 {
5039 for (map = map_first; map != NULL; map = map->next)
5040 map->p_paddr_valid = 0;
5041 }
5042
5043 elf_tdata (obfd)->segment_map = map_first;
5044
5045 /* If we had to estimate the number of program headers that were
5046 going to be needed, then check our estimate now and adjust
5047 the offset if necessary. */
5048 if (phdr_adjust_seg != NULL)
5049 {
5050 unsigned int count;
5051
5052 for (count = 0, map = map_first; map != NULL; map = map->next)
5053 count++;
5054
5055 if (count > phdr_adjust_num)
5056 phdr_adjust_seg->p_paddr
5057 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5058 }
5059
5060 #if 0
5061 /* Final Step: Sort the segments into ascending order of physical
5062 address. */
5063 if (map_first != NULL)
5064 {
5065 struct elf_segment_map *prev;
5066
5067 prev = map_first;
5068 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5069 {
5070 /* Yes I know - its a bubble sort.... */
5071 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5072 {
5073 /* Swap map and map->next. */
5074 prev->next = map->next;
5075 map->next = map->next->next;
5076 prev->next->next = map;
5077
5078 /* Restart loop. */
5079 map = map_first;
5080 }
5081 }
5082 }
5083 #endif
5084
5085 #undef SEGMENT_END
5086 #undef IS_CONTAINED_BY_VMA
5087 #undef IS_CONTAINED_BY_LMA
5088 #undef IS_CONTAINED_BY_FILEPOS
5089 #undef IS_COREFILE_NOTE
5090 #undef IS_SOLARIS_PT_INTERP
5091 #undef INCLUDE_SECTION_IN_SEGMENT
5092 #undef SEGMENT_AFTER_SEGMENT
5093 #undef SEGMENT_OVERLAPS
5094 return true;
5095 }
5096
5097 /* Copy private section information. This copies over the entsize
5098 field, and sometimes the info field. */
5099
5100 boolean
5101 _bfd_elf_copy_private_section_data (ibfd, isec, obfd, osec)
5102 bfd *ibfd;
5103 asection *isec;
5104 bfd *obfd;
5105 asection *osec;
5106 {
5107 Elf_Internal_Shdr *ihdr, *ohdr;
5108 const struct elf_backend_data *bed = get_elf_backend_data (ibfd);
5109
5110 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5111 || obfd->xvec->flavour != bfd_target_elf_flavour)
5112 return true;
5113
5114 /* Copy over private BFD data if it has not already been copied.
5115 This must be done here, rather than in the copy_private_bfd_data
5116 entry point, because the latter is called after the section
5117 contents have been set, which means that the program headers have
5118 already been worked out. The backend function provides a way to
5119 override the test conditions and code path for the call to
5120 copy_private_bfd_data. */
5121 if (bed->copy_private_bfd_data_p)
5122 {
5123 if ((*bed->copy_private_bfd_data_p) (ibfd, isec, obfd, osec))
5124 if (! copy_private_bfd_data (ibfd, obfd))
5125 return false;
5126 }
5127 else if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5128 {
5129 asection *s;
5130
5131 /* Only set up the segments if there are no more SEC_ALLOC
5132 sections. FIXME: This won't do the right thing if objcopy is
5133 used to remove the last SEC_ALLOC section, since objcopy
5134 won't call this routine in that case. */
5135 for (s = isec->next; s != NULL; s = s->next)
5136 if ((s->flags & SEC_ALLOC) != 0)
5137 break;
5138 if (s == NULL)
5139 {
5140 if (! copy_private_bfd_data (ibfd, obfd))
5141 return false;
5142 }
5143 }
5144
5145 ihdr = &elf_section_data (isec)->this_hdr;
5146 ohdr = &elf_section_data (osec)->this_hdr;
5147
5148 ohdr->sh_entsize = ihdr->sh_entsize;
5149
5150 if (ihdr->sh_type == SHT_SYMTAB
5151 || ihdr->sh_type == SHT_DYNSYM
5152 || ihdr->sh_type == SHT_GNU_verneed
5153 || ihdr->sh_type == SHT_GNU_verdef)
5154 ohdr->sh_info = ihdr->sh_info;
5155
5156 /* Set things up for objcopy. The output SHT_GROUP section will
5157 have its elf_next_in_group pointing back to the input group
5158 members. */
5159 elf_next_in_group (osec) = elf_next_in_group (isec);
5160 elf_group_name (osec) = elf_group_name (isec);
5161
5162 elf_section_data (osec)->use_rela_p
5163 = elf_section_data (isec)->use_rela_p;
5164
5165 return true;
5166 }
5167
5168 /* Copy private symbol information. If this symbol is in a section
5169 which we did not map into a BFD section, try to map the section
5170 index correctly. We use special macro definitions for the mapped
5171 section indices; these definitions are interpreted by the
5172 swap_out_syms function. */
5173
5174 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5175 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5176 #define MAP_STRTAB (SHN_HIOS + 3)
5177 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5178 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5179
5180 boolean
5181 _bfd_elf_copy_private_symbol_data (ibfd, isymarg, obfd, osymarg)
5182 bfd *ibfd;
5183 asymbol *isymarg;
5184 bfd *obfd;
5185 asymbol *osymarg;
5186 {
5187 elf_symbol_type *isym, *osym;
5188
5189 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5190 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5191 return true;
5192
5193 isym = elf_symbol_from (ibfd, isymarg);
5194 osym = elf_symbol_from (obfd, osymarg);
5195
5196 if (isym != NULL
5197 && osym != NULL
5198 && bfd_is_abs_section (isym->symbol.section))
5199 {
5200 unsigned int shndx;
5201
5202 shndx = isym->internal_elf_sym.st_shndx;
5203 if (shndx == elf_onesymtab (ibfd))
5204 shndx = MAP_ONESYMTAB;
5205 else if (shndx == elf_dynsymtab (ibfd))
5206 shndx = MAP_DYNSYMTAB;
5207 else if (shndx == elf_tdata (ibfd)->strtab_section)
5208 shndx = MAP_STRTAB;
5209 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5210 shndx = MAP_SHSTRTAB;
5211 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5212 shndx = MAP_SYM_SHNDX;
5213 osym->internal_elf_sym.st_shndx = shndx;
5214 }
5215
5216 return true;
5217 }
5218
5219 /* Swap out the symbols. */
5220
5221 static boolean
5222 swap_out_syms (abfd, sttp, relocatable_p)
5223 bfd *abfd;
5224 struct bfd_strtab_hash **sttp;
5225 int relocatable_p;
5226 {
5227 struct elf_backend_data *bed;
5228 int symcount;
5229 asymbol **syms;
5230 struct bfd_strtab_hash *stt;
5231 Elf_Internal_Shdr *symtab_hdr;
5232 Elf_Internal_Shdr *symtab_shndx_hdr;
5233 Elf_Internal_Shdr *symstrtab_hdr;
5234 char *outbound_syms;
5235 char *outbound_shndx;
5236 int idx;
5237 bfd_size_type amt;
5238
5239 if (!elf_map_symbols (abfd))
5240 return false;
5241
5242 /* Dump out the symtabs. */
5243 stt = _bfd_elf_stringtab_init ();
5244 if (stt == NULL)
5245 return false;
5246
5247 bed = get_elf_backend_data (abfd);
5248 symcount = bfd_get_symcount (abfd);
5249 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5250 symtab_hdr->sh_type = SHT_SYMTAB;
5251 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5252 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5253 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5254 symtab_hdr->sh_addralign = bed->s->file_align;
5255
5256 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5257 symstrtab_hdr->sh_type = SHT_STRTAB;
5258
5259 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5260 outbound_syms = bfd_alloc (abfd, amt);
5261 if (outbound_syms == NULL)
5262 return false;
5263 symtab_hdr->contents = (PTR) outbound_syms;
5264
5265 outbound_shndx = NULL;
5266 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5267 if (symtab_shndx_hdr->sh_name != 0)
5268 {
5269 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5270 outbound_shndx = bfd_zalloc (abfd, amt);
5271 if (outbound_shndx == NULL)
5272 return false;
5273 symtab_shndx_hdr->contents = outbound_shndx;
5274 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5275 symtab_shndx_hdr->sh_size = amt;
5276 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5277 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5278 }
5279
5280 /* now generate the data (for "contents") */
5281 {
5282 /* Fill in zeroth symbol and swap it out. */
5283 Elf_Internal_Sym sym;
5284 sym.st_name = 0;
5285 sym.st_value = 0;
5286 sym.st_size = 0;
5287 sym.st_info = 0;
5288 sym.st_other = 0;
5289 sym.st_shndx = SHN_UNDEF;
5290 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5291 outbound_syms += bed->s->sizeof_sym;
5292 if (outbound_shndx != NULL)
5293 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5294 }
5295
5296 syms = bfd_get_outsymbols (abfd);
5297 for (idx = 0; idx < symcount; idx++)
5298 {
5299 Elf_Internal_Sym sym;
5300 bfd_vma value = syms[idx]->value;
5301 elf_symbol_type *type_ptr;
5302 flagword flags = syms[idx]->flags;
5303 int type;
5304
5305 if ((flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5306 {
5307 /* Local section symbols have no name. */
5308 sym.st_name = 0;
5309 }
5310 else
5311 {
5312 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5313 syms[idx]->name,
5314 true, false);
5315 if (sym.st_name == (unsigned long) -1)
5316 return false;
5317 }
5318
5319 type_ptr = elf_symbol_from (abfd, syms[idx]);
5320
5321 if ((flags & BSF_SECTION_SYM) == 0
5322 && bfd_is_com_section (syms[idx]->section))
5323 {
5324 /* ELF common symbols put the alignment into the `value' field,
5325 and the size into the `size' field. This is backwards from
5326 how BFD handles it, so reverse it here. */
5327 sym.st_size = value;
5328 if (type_ptr == NULL
5329 || type_ptr->internal_elf_sym.st_value == 0)
5330 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5331 else
5332 sym.st_value = type_ptr->internal_elf_sym.st_value;
5333 sym.st_shndx = _bfd_elf_section_from_bfd_section
5334 (abfd, syms[idx]->section);
5335 }
5336 else
5337 {
5338 asection *sec = syms[idx]->section;
5339 int shndx;
5340
5341 if (sec->output_section)
5342 {
5343 value += sec->output_offset;
5344 sec = sec->output_section;
5345 }
5346 /* Don't add in the section vma for relocatable output. */
5347 if (! relocatable_p)
5348 value += sec->vma;
5349 sym.st_value = value;
5350 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5351
5352 if (bfd_is_abs_section (sec)
5353 && type_ptr != NULL
5354 && type_ptr->internal_elf_sym.st_shndx != 0)
5355 {
5356 /* This symbol is in a real ELF section which we did
5357 not create as a BFD section. Undo the mapping done
5358 by copy_private_symbol_data. */
5359 shndx = type_ptr->internal_elf_sym.st_shndx;
5360 switch (shndx)
5361 {
5362 case MAP_ONESYMTAB:
5363 shndx = elf_onesymtab (abfd);
5364 break;
5365 case MAP_DYNSYMTAB:
5366 shndx = elf_dynsymtab (abfd);
5367 break;
5368 case MAP_STRTAB:
5369 shndx = elf_tdata (abfd)->strtab_section;
5370 break;
5371 case MAP_SHSTRTAB:
5372 shndx = elf_tdata (abfd)->shstrtab_section;
5373 break;
5374 case MAP_SYM_SHNDX:
5375 shndx = elf_tdata (abfd)->symtab_shndx_section;
5376 break;
5377 default:
5378 break;
5379 }
5380 }
5381 else
5382 {
5383 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5384
5385 if (shndx == -1)
5386 {
5387 asection *sec2;
5388
5389 /* Writing this would be a hell of a lot easier if
5390 we had some decent documentation on bfd, and
5391 knew what to expect of the library, and what to
5392 demand of applications. For example, it
5393 appears that `objcopy' might not set the
5394 section of a symbol to be a section that is
5395 actually in the output file. */
5396 sec2 = bfd_get_section_by_name (abfd, sec->name);
5397 BFD_ASSERT (sec2 != 0);
5398 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5399 BFD_ASSERT (shndx != -1);
5400 }
5401 }
5402
5403 sym.st_shndx = shndx;
5404 }
5405
5406 if ((flags & BSF_THREAD_LOCAL) != 0)
5407 type = STT_TLS;
5408 else if ((flags & BSF_FUNCTION) != 0)
5409 type = STT_FUNC;
5410 else if ((flags & BSF_OBJECT) != 0)
5411 type = STT_OBJECT;
5412 else
5413 type = STT_NOTYPE;
5414
5415 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5416 type = STT_TLS;
5417
5418 /* Processor-specific types */
5419 if (type_ptr != NULL
5420 && bed->elf_backend_get_symbol_type)
5421 type = ((*bed->elf_backend_get_symbol_type)
5422 (&type_ptr->internal_elf_sym, type));
5423
5424 if (flags & BSF_SECTION_SYM)
5425 {
5426 if (flags & BSF_GLOBAL)
5427 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5428 else
5429 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5430 }
5431 else if (bfd_is_com_section (syms[idx]->section))
5432 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5433 else if (bfd_is_und_section (syms[idx]->section))
5434 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5435 ? STB_WEAK
5436 : STB_GLOBAL),
5437 type);
5438 else if (flags & BSF_FILE)
5439 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5440 else
5441 {
5442 int bind = STB_LOCAL;
5443
5444 if (flags & BSF_LOCAL)
5445 bind = STB_LOCAL;
5446 else if (flags & BSF_WEAK)
5447 bind = STB_WEAK;
5448 else if (flags & BSF_GLOBAL)
5449 bind = STB_GLOBAL;
5450
5451 sym.st_info = ELF_ST_INFO (bind, type);
5452 }
5453
5454 if (type_ptr != NULL)
5455 sym.st_other = type_ptr->internal_elf_sym.st_other;
5456 else
5457 sym.st_other = 0;
5458
5459 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5460 outbound_syms += bed->s->sizeof_sym;
5461 if (outbound_shndx != NULL)
5462 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5463 }
5464
5465 *sttp = stt;
5466 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5467 symstrtab_hdr->sh_type = SHT_STRTAB;
5468
5469 symstrtab_hdr->sh_flags = 0;
5470 symstrtab_hdr->sh_addr = 0;
5471 symstrtab_hdr->sh_entsize = 0;
5472 symstrtab_hdr->sh_link = 0;
5473 symstrtab_hdr->sh_info = 0;
5474 symstrtab_hdr->sh_addralign = 1;
5475
5476 return true;
5477 }
5478
5479 /* Return the number of bytes required to hold the symtab vector.
5480
5481 Note that we base it on the count plus 1, since we will null terminate
5482 the vector allocated based on this size. However, the ELF symbol table
5483 always has a dummy entry as symbol #0, so it ends up even. */
5484
5485 long
5486 _bfd_elf_get_symtab_upper_bound (abfd)
5487 bfd *abfd;
5488 {
5489 long symcount;
5490 long symtab_size;
5491 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5492
5493 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5494 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5495 if (symcount > 0)
5496 symtab_size -= sizeof (asymbol *);
5497
5498 return symtab_size;
5499 }
5500
5501 long
5502 _bfd_elf_get_dynamic_symtab_upper_bound (abfd)
5503 bfd *abfd;
5504 {
5505 long symcount;
5506 long symtab_size;
5507 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5508
5509 if (elf_dynsymtab (abfd) == 0)
5510 {
5511 bfd_set_error (bfd_error_invalid_operation);
5512 return -1;
5513 }
5514
5515 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5516 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5517 if (symcount > 0)
5518 symtab_size -= sizeof (asymbol *);
5519
5520 return symtab_size;
5521 }
5522
5523 long
5524 _bfd_elf_get_reloc_upper_bound (abfd, asect)
5525 bfd *abfd ATTRIBUTE_UNUSED;
5526 sec_ptr asect;
5527 {
5528 return (asect->reloc_count + 1) * sizeof (arelent *);
5529 }
5530
5531 /* Canonicalize the relocs. */
5532
5533 long
5534 _bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols)
5535 bfd *abfd;
5536 sec_ptr section;
5537 arelent **relptr;
5538 asymbol **symbols;
5539 {
5540 arelent *tblptr;
5541 unsigned int i;
5542 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5543
5544 if (! bed->s->slurp_reloc_table (abfd, section, symbols, false))
5545 return -1;
5546
5547 tblptr = section->relocation;
5548 for (i = 0; i < section->reloc_count; i++)
5549 *relptr++ = tblptr++;
5550
5551 *relptr = NULL;
5552
5553 return section->reloc_count;
5554 }
5555
5556 long
5557 _bfd_elf_get_symtab (abfd, alocation)
5558 bfd *abfd;
5559 asymbol **alocation;
5560 {
5561 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5562 long symcount = bed->s->slurp_symbol_table (abfd, alocation, false);
5563
5564 if (symcount >= 0)
5565 bfd_get_symcount (abfd) = symcount;
5566 return symcount;
5567 }
5568
5569 long
5570 _bfd_elf_canonicalize_dynamic_symtab (abfd, alocation)
5571 bfd *abfd;
5572 asymbol **alocation;
5573 {
5574 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5575 return bed->s->slurp_symbol_table (abfd, alocation, true);
5576 }
5577
5578 /* Return the size required for the dynamic reloc entries. Any
5579 section that was actually installed in the BFD, and has type
5580 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5581 considered to be a dynamic reloc section. */
5582
5583 long
5584 _bfd_elf_get_dynamic_reloc_upper_bound (abfd)
5585 bfd *abfd;
5586 {
5587 long ret;
5588 asection *s;
5589
5590 if (elf_dynsymtab (abfd) == 0)
5591 {
5592 bfd_set_error (bfd_error_invalid_operation);
5593 return -1;
5594 }
5595
5596 ret = sizeof (arelent *);
5597 for (s = abfd->sections; s != NULL; s = s->next)
5598 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5599 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5600 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5601 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5602 * sizeof (arelent *));
5603
5604 return ret;
5605 }
5606
5607 /* Canonicalize the dynamic relocation entries. Note that we return
5608 the dynamic relocations as a single block, although they are
5609 actually associated with particular sections; the interface, which
5610 was designed for SunOS style shared libraries, expects that there
5611 is only one set of dynamic relocs. Any section that was actually
5612 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5613 the dynamic symbol table, is considered to be a dynamic reloc
5614 section. */
5615
5616 long
5617 _bfd_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
5618 bfd *abfd;
5619 arelent **storage;
5620 asymbol **syms;
5621 {
5622 boolean (*slurp_relocs) PARAMS ((bfd *, asection *, asymbol **, boolean));
5623 asection *s;
5624 long ret;
5625
5626 if (elf_dynsymtab (abfd) == 0)
5627 {
5628 bfd_set_error (bfd_error_invalid_operation);
5629 return -1;
5630 }
5631
5632 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5633 ret = 0;
5634 for (s = abfd->sections; s != NULL; s = s->next)
5635 {
5636 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5637 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5638 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5639 {
5640 arelent *p;
5641 long count, i;
5642
5643 if (! (*slurp_relocs) (abfd, s, syms, true))
5644 return -1;
5645 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5646 p = s->relocation;
5647 for (i = 0; i < count; i++)
5648 *storage++ = p++;
5649 ret += count;
5650 }
5651 }
5652
5653 *storage = NULL;
5654
5655 return ret;
5656 }
5657 \f
5658 /* Read in the version information. */
5659
5660 boolean
5661 _bfd_elf_slurp_version_tables (abfd)
5662 bfd *abfd;
5663 {
5664 bfd_byte *contents = NULL;
5665 bfd_size_type amt;
5666
5667 if (elf_dynverdef (abfd) != 0)
5668 {
5669 Elf_Internal_Shdr *hdr;
5670 Elf_External_Verdef *everdef;
5671 Elf_Internal_Verdef *iverdef;
5672 Elf_Internal_Verdef *iverdefarr;
5673 Elf_Internal_Verdef iverdefmem;
5674 unsigned int i;
5675 unsigned int maxidx;
5676
5677 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5678
5679 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
5680 if (contents == NULL)
5681 goto error_return;
5682 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5683 || bfd_bread ((PTR) contents, hdr->sh_size, abfd) != hdr->sh_size)
5684 goto error_return;
5685
5686 /* We know the number of entries in the section but not the maximum
5687 index. Therefore we have to run through all entries and find
5688 the maximum. */
5689 everdef = (Elf_External_Verdef *) contents;
5690 maxidx = 0;
5691 for (i = 0; i < hdr->sh_info; ++i)
5692 {
5693 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5694
5695 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5696 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5697
5698 everdef = ((Elf_External_Verdef *)
5699 ((bfd_byte *) everdef + iverdefmem.vd_next));
5700 }
5701
5702 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5703 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
5704 if (elf_tdata (abfd)->verdef == NULL)
5705 goto error_return;
5706
5707 elf_tdata (abfd)->cverdefs = maxidx;
5708
5709 everdef = (Elf_External_Verdef *) contents;
5710 iverdefarr = elf_tdata (abfd)->verdef;
5711 for (i = 0; i < hdr->sh_info; i++)
5712 {
5713 Elf_External_Verdaux *everdaux;
5714 Elf_Internal_Verdaux *iverdaux;
5715 unsigned int j;
5716
5717 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5718
5719 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5720 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5721
5722 iverdef->vd_bfd = abfd;
5723
5724 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5725 iverdef->vd_auxptr = (Elf_Internal_Verdaux *) bfd_alloc (abfd, amt);
5726 if (iverdef->vd_auxptr == NULL)
5727 goto error_return;
5728
5729 everdaux = ((Elf_External_Verdaux *)
5730 ((bfd_byte *) everdef + iverdef->vd_aux));
5731 iverdaux = iverdef->vd_auxptr;
5732 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5733 {
5734 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5735
5736 iverdaux->vda_nodename =
5737 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5738 iverdaux->vda_name);
5739 if (iverdaux->vda_nodename == NULL)
5740 goto error_return;
5741
5742 if (j + 1 < iverdef->vd_cnt)
5743 iverdaux->vda_nextptr = iverdaux + 1;
5744 else
5745 iverdaux->vda_nextptr = NULL;
5746
5747 everdaux = ((Elf_External_Verdaux *)
5748 ((bfd_byte *) everdaux + iverdaux->vda_next));
5749 }
5750
5751 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5752
5753 if (i + 1 < hdr->sh_info)
5754 iverdef->vd_nextdef = iverdef + 1;
5755 else
5756 iverdef->vd_nextdef = NULL;
5757
5758 everdef = ((Elf_External_Verdef *)
5759 ((bfd_byte *) everdef + iverdef->vd_next));
5760 }
5761
5762 free (contents);
5763 contents = NULL;
5764 }
5765
5766 if (elf_dynverref (abfd) != 0)
5767 {
5768 Elf_Internal_Shdr *hdr;
5769 Elf_External_Verneed *everneed;
5770 Elf_Internal_Verneed *iverneed;
5771 unsigned int i;
5772
5773 hdr = &elf_tdata (abfd)->dynverref_hdr;
5774
5775 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5776 elf_tdata (abfd)->verref =
5777 (Elf_Internal_Verneed *) bfd_zalloc (abfd, amt);
5778 if (elf_tdata (abfd)->verref == NULL)
5779 goto error_return;
5780
5781 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5782
5783 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
5784 if (contents == NULL)
5785 goto error_return;
5786 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5787 || bfd_bread ((PTR) contents, hdr->sh_size, abfd) != hdr->sh_size)
5788 goto error_return;
5789
5790 everneed = (Elf_External_Verneed *) contents;
5791 iverneed = elf_tdata (abfd)->verref;
5792 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5793 {
5794 Elf_External_Vernaux *evernaux;
5795 Elf_Internal_Vernaux *ivernaux;
5796 unsigned int j;
5797
5798 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5799
5800 iverneed->vn_bfd = abfd;
5801
5802 iverneed->vn_filename =
5803 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5804 iverneed->vn_file);
5805 if (iverneed->vn_filename == NULL)
5806 goto error_return;
5807
5808 amt = iverneed->vn_cnt;
5809 amt *= sizeof (Elf_Internal_Vernaux);
5810 iverneed->vn_auxptr = (Elf_Internal_Vernaux *) bfd_alloc (abfd, amt);
5811
5812 evernaux = ((Elf_External_Vernaux *)
5813 ((bfd_byte *) everneed + iverneed->vn_aux));
5814 ivernaux = iverneed->vn_auxptr;
5815 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5816 {
5817 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5818
5819 ivernaux->vna_nodename =
5820 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5821 ivernaux->vna_name);
5822 if (ivernaux->vna_nodename == NULL)
5823 goto error_return;
5824
5825 if (j + 1 < iverneed->vn_cnt)
5826 ivernaux->vna_nextptr = ivernaux + 1;
5827 else
5828 ivernaux->vna_nextptr = NULL;
5829
5830 evernaux = ((Elf_External_Vernaux *)
5831 ((bfd_byte *) evernaux + ivernaux->vna_next));
5832 }
5833
5834 if (i + 1 < hdr->sh_info)
5835 iverneed->vn_nextref = iverneed + 1;
5836 else
5837 iverneed->vn_nextref = NULL;
5838
5839 everneed = ((Elf_External_Verneed *)
5840 ((bfd_byte *) everneed + iverneed->vn_next));
5841 }
5842
5843 free (contents);
5844 contents = NULL;
5845 }
5846
5847 return true;
5848
5849 error_return:
5850 if (contents == NULL)
5851 free (contents);
5852 return false;
5853 }
5854 \f
5855 asymbol *
5856 _bfd_elf_make_empty_symbol (abfd)
5857 bfd *abfd;
5858 {
5859 elf_symbol_type *newsym;
5860 bfd_size_type amt = sizeof (elf_symbol_type);
5861
5862 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
5863 if (!newsym)
5864 return NULL;
5865 else
5866 {
5867 newsym->symbol.the_bfd = abfd;
5868 return &newsym->symbol;
5869 }
5870 }
5871
5872 void
5873 _bfd_elf_get_symbol_info (ignore_abfd, symbol, ret)
5874 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5875 asymbol *symbol;
5876 symbol_info *ret;
5877 {
5878 bfd_symbol_info (symbol, ret);
5879 }
5880
5881 /* Return whether a symbol name implies a local symbol. Most targets
5882 use this function for the is_local_label_name entry point, but some
5883 override it. */
5884
5885 boolean
5886 _bfd_elf_is_local_label_name (abfd, name)
5887 bfd *abfd ATTRIBUTE_UNUSED;
5888 const char *name;
5889 {
5890 /* Normal local symbols start with ``.L''. */
5891 if (name[0] == '.' && name[1] == 'L')
5892 return true;
5893
5894 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5895 DWARF debugging symbols starting with ``..''. */
5896 if (name[0] == '.' && name[1] == '.')
5897 return true;
5898
5899 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5900 emitting DWARF debugging output. I suspect this is actually a
5901 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5902 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5903 underscore to be emitted on some ELF targets). For ease of use,
5904 we treat such symbols as local. */
5905 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5906 return true;
5907
5908 return false;
5909 }
5910
5911 alent *
5912 _bfd_elf_get_lineno (ignore_abfd, symbol)
5913 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5914 asymbol *symbol ATTRIBUTE_UNUSED;
5915 {
5916 abort ();
5917 return NULL;
5918 }
5919
5920 boolean
5921 _bfd_elf_set_arch_mach (abfd, arch, machine)
5922 bfd *abfd;
5923 enum bfd_architecture arch;
5924 unsigned long machine;
5925 {
5926 /* If this isn't the right architecture for this backend, and this
5927 isn't the generic backend, fail. */
5928 if (arch != get_elf_backend_data (abfd)->arch
5929 && arch != bfd_arch_unknown
5930 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
5931 return false;
5932
5933 return bfd_default_set_arch_mach (abfd, arch, machine);
5934 }
5935
5936 /* Find the function to a particular section and offset,
5937 for error reporting. */
5938
5939 static boolean
5940 elf_find_function (abfd, section, symbols, offset,
5941 filename_ptr, functionname_ptr)
5942 bfd *abfd ATTRIBUTE_UNUSED;
5943 asection *section;
5944 asymbol **symbols;
5945 bfd_vma offset;
5946 const char **filename_ptr;
5947 const char **functionname_ptr;
5948 {
5949 const char *filename;
5950 asymbol *func;
5951 bfd_vma low_func;
5952 asymbol **p;
5953
5954 filename = NULL;
5955 func = NULL;
5956 low_func = 0;
5957
5958 for (p = symbols; *p != NULL; p++)
5959 {
5960 elf_symbol_type *q;
5961
5962 q = (elf_symbol_type *) *p;
5963
5964 if (bfd_get_section (&q->symbol) != section)
5965 continue;
5966
5967 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5968 {
5969 default:
5970 break;
5971 case STT_FILE:
5972 filename = bfd_asymbol_name (&q->symbol);
5973 break;
5974 case STT_NOTYPE:
5975 case STT_FUNC:
5976 if (q->symbol.section == section
5977 && q->symbol.value >= low_func
5978 && q->symbol.value <= offset)
5979 {
5980 func = (asymbol *) q;
5981 low_func = q->symbol.value;
5982 }
5983 break;
5984 }
5985 }
5986
5987 if (func == NULL)
5988 return false;
5989
5990 if (filename_ptr)
5991 *filename_ptr = filename;
5992 if (functionname_ptr)
5993 *functionname_ptr = bfd_asymbol_name (func);
5994
5995 return true;
5996 }
5997
5998 /* Find the nearest line to a particular section and offset,
5999 for error reporting. */
6000
6001 boolean
6002 _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
6003 filename_ptr, functionname_ptr, line_ptr)
6004 bfd *abfd;
6005 asection *section;
6006 asymbol **symbols;
6007 bfd_vma offset;
6008 const char **filename_ptr;
6009 const char **functionname_ptr;
6010 unsigned int *line_ptr;
6011 {
6012 boolean found;
6013
6014 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6015 filename_ptr, functionname_ptr,
6016 line_ptr))
6017 {
6018 if (!*functionname_ptr)
6019 elf_find_function (abfd, section, symbols, offset,
6020 *filename_ptr ? NULL : filename_ptr,
6021 functionname_ptr);
6022
6023 return true;
6024 }
6025
6026 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6027 filename_ptr, functionname_ptr,
6028 line_ptr, 0,
6029 &elf_tdata (abfd)->dwarf2_find_line_info))
6030 {
6031 if (!*functionname_ptr)
6032 elf_find_function (abfd, section, symbols, offset,
6033 *filename_ptr ? NULL : filename_ptr,
6034 functionname_ptr);
6035
6036 return true;
6037 }
6038
6039 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6040 &found, filename_ptr,
6041 functionname_ptr, line_ptr,
6042 &elf_tdata (abfd)->line_info))
6043 return false;
6044 if (found)
6045 return true;
6046
6047 if (symbols == NULL)
6048 return false;
6049
6050 if (! elf_find_function (abfd, section, symbols, offset,
6051 filename_ptr, functionname_ptr))
6052 return false;
6053
6054 *line_ptr = 0;
6055 return true;
6056 }
6057
6058 int
6059 _bfd_elf_sizeof_headers (abfd, reloc)
6060 bfd *abfd;
6061 boolean reloc;
6062 {
6063 int ret;
6064
6065 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6066 if (! reloc)
6067 ret += get_program_header_size (abfd);
6068 return ret;
6069 }
6070
6071 boolean
6072 _bfd_elf_set_section_contents (abfd, section, location, offset, count)
6073 bfd *abfd;
6074 sec_ptr section;
6075 PTR location;
6076 file_ptr offset;
6077 bfd_size_type count;
6078 {
6079 Elf_Internal_Shdr *hdr;
6080 bfd_signed_vma pos;
6081
6082 if (! abfd->output_has_begun
6083 && ! (_bfd_elf_compute_section_file_positions
6084 (abfd, (struct bfd_link_info *) NULL)))
6085 return false;
6086
6087 hdr = &elf_section_data (section)->this_hdr;
6088 pos = hdr->sh_offset + offset;
6089 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6090 || bfd_bwrite (location, count, abfd) != count)
6091 return false;
6092
6093 return true;
6094 }
6095
6096 void
6097 _bfd_elf_no_info_to_howto (abfd, cache_ptr, dst)
6098 bfd *abfd ATTRIBUTE_UNUSED;
6099 arelent *cache_ptr ATTRIBUTE_UNUSED;
6100 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED;
6101 {
6102 abort ();
6103 }
6104
6105 #if 0
6106 void
6107 _bfd_elf_no_info_to_howto_rel (abfd, cache_ptr, dst)
6108 bfd *abfd;
6109 arelent *cache_ptr;
6110 Elf_Internal_Rel *dst;
6111 {
6112 abort ();
6113 }
6114 #endif
6115
6116 /* Try to convert a non-ELF reloc into an ELF one. */
6117
6118 boolean
6119 _bfd_elf_validate_reloc (abfd, areloc)
6120 bfd *abfd;
6121 arelent *areloc;
6122 {
6123 /* Check whether we really have an ELF howto. */
6124
6125 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6126 {
6127 bfd_reloc_code_real_type code;
6128 reloc_howto_type *howto;
6129
6130 /* Alien reloc: Try to determine its type to replace it with an
6131 equivalent ELF reloc. */
6132
6133 if (areloc->howto->pc_relative)
6134 {
6135 switch (areloc->howto->bitsize)
6136 {
6137 case 8:
6138 code = BFD_RELOC_8_PCREL;
6139 break;
6140 case 12:
6141 code = BFD_RELOC_12_PCREL;
6142 break;
6143 case 16:
6144 code = BFD_RELOC_16_PCREL;
6145 break;
6146 case 24:
6147 code = BFD_RELOC_24_PCREL;
6148 break;
6149 case 32:
6150 code = BFD_RELOC_32_PCREL;
6151 break;
6152 case 64:
6153 code = BFD_RELOC_64_PCREL;
6154 break;
6155 default:
6156 goto fail;
6157 }
6158
6159 howto = bfd_reloc_type_lookup (abfd, code);
6160
6161 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6162 {
6163 if (howto->pcrel_offset)
6164 areloc->addend += areloc->address;
6165 else
6166 areloc->addend -= areloc->address; /* addend is unsigned!! */
6167 }
6168 }
6169 else
6170 {
6171 switch (areloc->howto->bitsize)
6172 {
6173 case 8:
6174 code = BFD_RELOC_8;
6175 break;
6176 case 14:
6177 code = BFD_RELOC_14;
6178 break;
6179 case 16:
6180 code = BFD_RELOC_16;
6181 break;
6182 case 26:
6183 code = BFD_RELOC_26;
6184 break;
6185 case 32:
6186 code = BFD_RELOC_32;
6187 break;
6188 case 64:
6189 code = BFD_RELOC_64;
6190 break;
6191 default:
6192 goto fail;
6193 }
6194
6195 howto = bfd_reloc_type_lookup (abfd, code);
6196 }
6197
6198 if (howto)
6199 areloc->howto = howto;
6200 else
6201 goto fail;
6202 }
6203
6204 return true;
6205
6206 fail:
6207 (*_bfd_error_handler)
6208 (_("%s: unsupported relocation type %s"),
6209 bfd_archive_filename (abfd), areloc->howto->name);
6210 bfd_set_error (bfd_error_bad_value);
6211 return false;
6212 }
6213
6214 boolean
6215 _bfd_elf_close_and_cleanup (abfd)
6216 bfd *abfd;
6217 {
6218 if (bfd_get_format (abfd) == bfd_object)
6219 {
6220 if (elf_shstrtab (abfd) != NULL)
6221 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6222 }
6223
6224 return _bfd_generic_close_and_cleanup (abfd);
6225 }
6226
6227 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6228 in the relocation's offset. Thus we cannot allow any sort of sanity
6229 range-checking to interfere. There is nothing else to do in processing
6230 this reloc. */
6231
6232 bfd_reloc_status_type
6233 _bfd_elf_rel_vtable_reloc_fn (abfd, re, symbol, data, is, obfd, errmsg)
6234 bfd *abfd ATTRIBUTE_UNUSED;
6235 arelent *re ATTRIBUTE_UNUSED;
6236 struct symbol_cache_entry *symbol ATTRIBUTE_UNUSED;
6237 PTR data ATTRIBUTE_UNUSED;
6238 asection *is ATTRIBUTE_UNUSED;
6239 bfd *obfd ATTRIBUTE_UNUSED;
6240 char **errmsg ATTRIBUTE_UNUSED;
6241 {
6242 return bfd_reloc_ok;
6243 }
6244 \f
6245 /* Elf core file support. Much of this only works on native
6246 toolchains, since we rely on knowing the
6247 machine-dependent procfs structure in order to pick
6248 out details about the corefile. */
6249
6250 #ifdef HAVE_SYS_PROCFS_H
6251 # include <sys/procfs.h>
6252 #endif
6253
6254 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6255
6256 static int
6257 elfcore_make_pid (abfd)
6258 bfd *abfd;
6259 {
6260 return ((elf_tdata (abfd)->core_lwpid << 16)
6261 + (elf_tdata (abfd)->core_pid));
6262 }
6263
6264 /* If there isn't a section called NAME, make one, using
6265 data from SECT. Note, this function will generate a
6266 reference to NAME, so you shouldn't deallocate or
6267 overwrite it. */
6268
6269 static boolean
6270 elfcore_maybe_make_sect (abfd, name, sect)
6271 bfd *abfd;
6272 char *name;
6273 asection *sect;
6274 {
6275 asection *sect2;
6276
6277 if (bfd_get_section_by_name (abfd, name) != NULL)
6278 return true;
6279
6280 sect2 = bfd_make_section (abfd, name);
6281 if (sect2 == NULL)
6282 return false;
6283
6284 sect2->_raw_size = sect->_raw_size;
6285 sect2->filepos = sect->filepos;
6286 sect2->flags = sect->flags;
6287 sect2->alignment_power = sect->alignment_power;
6288 return true;
6289 }
6290
6291 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6292 actually creates up to two pseudosections:
6293 - For the single-threaded case, a section named NAME, unless
6294 such a section already exists.
6295 - For the multi-threaded case, a section named "NAME/PID", where
6296 PID is elfcore_make_pid (abfd).
6297 Both pseudosections have identical contents. */
6298 boolean
6299 _bfd_elfcore_make_pseudosection (abfd, name, size, filepos)
6300 bfd *abfd;
6301 char *name;
6302 size_t size;
6303 ufile_ptr filepos;
6304 {
6305 char buf[100];
6306 char *threaded_name;
6307 size_t len;
6308 asection *sect;
6309
6310 /* Build the section name. */
6311
6312 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6313 len = strlen (buf) + 1;
6314 threaded_name = bfd_alloc (abfd, (bfd_size_type) len);
6315 if (threaded_name == NULL)
6316 return false;
6317 memcpy (threaded_name, buf, len);
6318
6319 sect = bfd_make_section (abfd, threaded_name);
6320 if (sect == NULL)
6321 return false;
6322 sect->_raw_size = size;
6323 sect->filepos = filepos;
6324 sect->flags = SEC_HAS_CONTENTS;
6325 sect->alignment_power = 2;
6326
6327 return elfcore_maybe_make_sect (abfd, name, sect);
6328 }
6329
6330 /* prstatus_t exists on:
6331 solaris 2.5+
6332 linux 2.[01] + glibc
6333 unixware 4.2
6334 */
6335
6336 #if defined (HAVE_PRSTATUS_T)
6337 static boolean elfcore_grok_prstatus PARAMS ((bfd *, Elf_Internal_Note *));
6338
6339 static boolean
6340 elfcore_grok_prstatus (abfd, note)
6341 bfd *abfd;
6342 Elf_Internal_Note *note;
6343 {
6344 size_t raw_size;
6345 int offset;
6346
6347 if (note->descsz == sizeof (prstatus_t))
6348 {
6349 prstatus_t prstat;
6350
6351 raw_size = sizeof (prstat.pr_reg);
6352 offset = offsetof (prstatus_t, pr_reg);
6353 memcpy (&prstat, note->descdata, sizeof (prstat));
6354
6355 /* Do not overwrite the core signal if it
6356 has already been set by another thread. */
6357 if (elf_tdata (abfd)->core_signal == 0)
6358 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6359 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6360
6361 /* pr_who exists on:
6362 solaris 2.5+
6363 unixware 4.2
6364 pr_who doesn't exist on:
6365 linux 2.[01]
6366 */
6367 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6368 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6369 #endif
6370 }
6371 #if defined (HAVE_PRSTATUS32_T)
6372 else if (note->descsz == sizeof (prstatus32_t))
6373 {
6374 /* 64-bit host, 32-bit corefile */
6375 prstatus32_t prstat;
6376
6377 raw_size = sizeof (prstat.pr_reg);
6378 offset = offsetof (prstatus32_t, pr_reg);
6379 memcpy (&prstat, note->descdata, sizeof (prstat));
6380
6381 /* Do not overwrite the core signal if it
6382 has already been set by another thread. */
6383 if (elf_tdata (abfd)->core_signal == 0)
6384 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6385 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6386
6387 /* pr_who exists on:
6388 solaris 2.5+
6389 unixware 4.2
6390 pr_who doesn't exist on:
6391 linux 2.[01]
6392 */
6393 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6394 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6395 #endif
6396 }
6397 #endif /* HAVE_PRSTATUS32_T */
6398 else
6399 {
6400 /* Fail - we don't know how to handle any other
6401 note size (ie. data object type). */
6402 return true;
6403 }
6404
6405 /* Make a ".reg/999" section and a ".reg" section. */
6406 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6407 raw_size, note->descpos + offset);
6408 }
6409 #endif /* defined (HAVE_PRSTATUS_T) */
6410
6411 /* Create a pseudosection containing the exact contents of NOTE. */
6412 static boolean
6413 elfcore_make_note_pseudosection (abfd, name, note)
6414 bfd *abfd;
6415 char *name;
6416 Elf_Internal_Note *note;
6417 {
6418 return _bfd_elfcore_make_pseudosection (abfd, name,
6419 note->descsz, note->descpos);
6420 }
6421
6422 /* There isn't a consistent prfpregset_t across platforms,
6423 but it doesn't matter, because we don't have to pick this
6424 data structure apart. */
6425
6426 static boolean
6427 elfcore_grok_prfpreg (abfd, note)
6428 bfd *abfd;
6429 Elf_Internal_Note *note;
6430 {
6431 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6432 }
6433
6434 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6435 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6436 literally. */
6437
6438 static boolean
6439 elfcore_grok_prxfpreg (abfd, note)
6440 bfd *abfd;
6441 Elf_Internal_Note *note;
6442 {
6443 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6444 }
6445
6446 #if defined (HAVE_PRPSINFO_T)
6447 typedef prpsinfo_t elfcore_psinfo_t;
6448 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6449 typedef prpsinfo32_t elfcore_psinfo32_t;
6450 #endif
6451 #endif
6452
6453 #if defined (HAVE_PSINFO_T)
6454 typedef psinfo_t elfcore_psinfo_t;
6455 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6456 typedef psinfo32_t elfcore_psinfo32_t;
6457 #endif
6458 #endif
6459
6460 /* return a malloc'ed copy of a string at START which is at
6461 most MAX bytes long, possibly without a terminating '\0'.
6462 the copy will always have a terminating '\0'. */
6463
6464 char *
6465 _bfd_elfcore_strndup (abfd, start, max)
6466 bfd *abfd;
6467 char *start;
6468 size_t max;
6469 {
6470 char *dups;
6471 char *end = memchr (start, '\0', max);
6472 size_t len;
6473
6474 if (end == NULL)
6475 len = max;
6476 else
6477 len = end - start;
6478
6479 dups = bfd_alloc (abfd, (bfd_size_type) len + 1);
6480 if (dups == NULL)
6481 return NULL;
6482
6483 memcpy (dups, start, len);
6484 dups[len] = '\0';
6485
6486 return dups;
6487 }
6488
6489 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6490 static boolean elfcore_grok_psinfo PARAMS ((bfd *, Elf_Internal_Note *));
6491
6492 static boolean
6493 elfcore_grok_psinfo (abfd, note)
6494 bfd *abfd;
6495 Elf_Internal_Note *note;
6496 {
6497 if (note->descsz == sizeof (elfcore_psinfo_t))
6498 {
6499 elfcore_psinfo_t psinfo;
6500
6501 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6502
6503 elf_tdata (abfd)->core_program
6504 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6505 sizeof (psinfo.pr_fname));
6506
6507 elf_tdata (abfd)->core_command
6508 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6509 sizeof (psinfo.pr_psargs));
6510 }
6511 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6512 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6513 {
6514 /* 64-bit host, 32-bit corefile */
6515 elfcore_psinfo32_t psinfo;
6516
6517 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6518
6519 elf_tdata (abfd)->core_program
6520 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6521 sizeof (psinfo.pr_fname));
6522
6523 elf_tdata (abfd)->core_command
6524 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6525 sizeof (psinfo.pr_psargs));
6526 }
6527 #endif
6528
6529 else
6530 {
6531 /* Fail - we don't know how to handle any other
6532 note size (ie. data object type). */
6533 return true;
6534 }
6535
6536 /* Note that for some reason, a spurious space is tacked
6537 onto the end of the args in some (at least one anyway)
6538 implementations, so strip it off if it exists. */
6539
6540 {
6541 char *command = elf_tdata (abfd)->core_command;
6542 int n = strlen (command);
6543
6544 if (0 < n && command[n - 1] == ' ')
6545 command[n - 1] = '\0';
6546 }
6547
6548 return true;
6549 }
6550 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6551
6552 #if defined (HAVE_PSTATUS_T)
6553 static boolean elfcore_grok_pstatus PARAMS ((bfd *, Elf_Internal_Note *));
6554
6555 static boolean
6556 elfcore_grok_pstatus (abfd, note)
6557 bfd *abfd;
6558 Elf_Internal_Note *note;
6559 {
6560 if (note->descsz == sizeof (pstatus_t)
6561 #if defined (HAVE_PXSTATUS_T)
6562 || note->descsz == sizeof (pxstatus_t)
6563 #endif
6564 )
6565 {
6566 pstatus_t pstat;
6567
6568 memcpy (&pstat, note->descdata, sizeof (pstat));
6569
6570 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6571 }
6572 #if defined (HAVE_PSTATUS32_T)
6573 else if (note->descsz == sizeof (pstatus32_t))
6574 {
6575 /* 64-bit host, 32-bit corefile */
6576 pstatus32_t pstat;
6577
6578 memcpy (&pstat, note->descdata, sizeof (pstat));
6579
6580 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6581 }
6582 #endif
6583 /* Could grab some more details from the "representative"
6584 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6585 NT_LWPSTATUS note, presumably. */
6586
6587 return true;
6588 }
6589 #endif /* defined (HAVE_PSTATUS_T) */
6590
6591 #if defined (HAVE_LWPSTATUS_T)
6592 static boolean elfcore_grok_lwpstatus PARAMS ((bfd *, Elf_Internal_Note *));
6593
6594 static boolean
6595 elfcore_grok_lwpstatus (abfd, note)
6596 bfd *abfd;
6597 Elf_Internal_Note *note;
6598 {
6599 lwpstatus_t lwpstat;
6600 char buf[100];
6601 char *name;
6602 size_t len;
6603 asection *sect;
6604
6605 if (note->descsz != sizeof (lwpstat)
6606 #if defined (HAVE_LWPXSTATUS_T)
6607 && note->descsz != sizeof (lwpxstatus_t)
6608 #endif
6609 )
6610 return true;
6611
6612 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6613
6614 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6615 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6616
6617 /* Make a ".reg/999" section. */
6618
6619 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6620 len = strlen (buf) + 1;
6621 name = bfd_alloc (abfd, (bfd_size_type) len);
6622 if (name == NULL)
6623 return false;
6624 memcpy (name, buf, len);
6625
6626 sect = bfd_make_section (abfd, name);
6627 if (sect == NULL)
6628 return false;
6629
6630 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6631 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6632 sect->filepos = note->descpos
6633 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6634 #endif
6635
6636 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6637 sect->_raw_size = sizeof (lwpstat.pr_reg);
6638 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6639 #endif
6640
6641 sect->flags = SEC_HAS_CONTENTS;
6642 sect->alignment_power = 2;
6643
6644 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6645 return false;
6646
6647 /* Make a ".reg2/999" section */
6648
6649 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6650 len = strlen (buf) + 1;
6651 name = bfd_alloc (abfd, (bfd_size_type) len);
6652 if (name == NULL)
6653 return false;
6654 memcpy (name, buf, len);
6655
6656 sect = bfd_make_section (abfd, name);
6657 if (sect == NULL)
6658 return false;
6659
6660 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6661 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6662 sect->filepos = note->descpos
6663 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6664 #endif
6665
6666 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6667 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6668 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6669 #endif
6670
6671 sect->flags = SEC_HAS_CONTENTS;
6672 sect->alignment_power = 2;
6673
6674 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6675 }
6676 #endif /* defined (HAVE_LWPSTATUS_T) */
6677
6678 #if defined (HAVE_WIN32_PSTATUS_T)
6679 static boolean
6680 elfcore_grok_win32pstatus (abfd, note)
6681 bfd *abfd;
6682 Elf_Internal_Note *note;
6683 {
6684 char buf[30];
6685 char *name;
6686 size_t len;
6687 asection *sect;
6688 win32_pstatus_t pstatus;
6689
6690 if (note->descsz < sizeof (pstatus))
6691 return true;
6692
6693 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6694
6695 switch (pstatus.data_type)
6696 {
6697 case NOTE_INFO_PROCESS:
6698 /* FIXME: need to add ->core_command. */
6699 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6700 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6701 break;
6702
6703 case NOTE_INFO_THREAD:
6704 /* Make a ".reg/999" section. */
6705 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6706
6707 len = strlen (buf) + 1;
6708 name = bfd_alloc (abfd, (bfd_size_type) len);
6709 if (name == NULL)
6710 return false;
6711
6712 memcpy (name, buf, len);
6713
6714 sect = bfd_make_section (abfd, name);
6715 if (sect == NULL)
6716 return false;
6717
6718 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6719 sect->filepos = (note->descpos
6720 + offsetof (struct win32_pstatus,
6721 data.thread_info.thread_context));
6722 sect->flags = SEC_HAS_CONTENTS;
6723 sect->alignment_power = 2;
6724
6725 if (pstatus.data.thread_info.is_active_thread)
6726 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6727 return false;
6728 break;
6729
6730 case NOTE_INFO_MODULE:
6731 /* Make a ".module/xxxxxxxx" section. */
6732 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6733
6734 len = strlen (buf) + 1;
6735 name = bfd_alloc (abfd, (bfd_size_type) len);
6736 if (name == NULL)
6737 return false;
6738
6739 memcpy (name, buf, len);
6740
6741 sect = bfd_make_section (abfd, name);
6742
6743 if (sect == NULL)
6744 return false;
6745
6746 sect->_raw_size = note->descsz;
6747 sect->filepos = note->descpos;
6748 sect->flags = SEC_HAS_CONTENTS;
6749 sect->alignment_power = 2;
6750 break;
6751
6752 default:
6753 return true;
6754 }
6755
6756 return true;
6757 }
6758 #endif /* HAVE_WIN32_PSTATUS_T */
6759
6760 static boolean
6761 elfcore_grok_note (abfd, note)
6762 bfd *abfd;
6763 Elf_Internal_Note *note;
6764 {
6765 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6766
6767 switch (note->type)
6768 {
6769 default:
6770 return true;
6771
6772 case NT_PRSTATUS:
6773 if (bed->elf_backend_grok_prstatus)
6774 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6775 return true;
6776 #if defined (HAVE_PRSTATUS_T)
6777 return elfcore_grok_prstatus (abfd, note);
6778 #else
6779 return true;
6780 #endif
6781
6782 #if defined (HAVE_PSTATUS_T)
6783 case NT_PSTATUS:
6784 return elfcore_grok_pstatus (abfd, note);
6785 #endif
6786
6787 #if defined (HAVE_LWPSTATUS_T)
6788 case NT_LWPSTATUS:
6789 return elfcore_grok_lwpstatus (abfd, note);
6790 #endif
6791
6792 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6793 return elfcore_grok_prfpreg (abfd, note);
6794
6795 #if defined (HAVE_WIN32_PSTATUS_T)
6796 case NT_WIN32PSTATUS:
6797 return elfcore_grok_win32pstatus (abfd, note);
6798 #endif
6799
6800 case NT_PRXFPREG: /* Linux SSE extension */
6801 if (note->namesz == 5
6802 && ! strcmp (note->namedata, "LINUX"))
6803 return elfcore_grok_prxfpreg (abfd, note);
6804 else
6805 return true;
6806
6807 case NT_PRPSINFO:
6808 case NT_PSINFO:
6809 if (bed->elf_backend_grok_psinfo)
6810 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6811 return true;
6812 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6813 return elfcore_grok_psinfo (abfd, note);
6814 #else
6815 return true;
6816 #endif
6817 }
6818 }
6819
6820 static boolean
6821 elfcore_netbsd_get_lwpid (note, lwpidp)
6822 Elf_Internal_Note *note;
6823 int *lwpidp;
6824 {
6825 char *cp;
6826
6827 cp = strchr (note->namedata, '@');
6828 if (cp != NULL)
6829 {
6830 *lwpidp = atoi(cp + 1);
6831 return true;
6832 }
6833 return false;
6834 }
6835
6836 static boolean
6837 elfcore_grok_netbsd_procinfo (abfd, note)
6838 bfd *abfd;
6839 Elf_Internal_Note *note;
6840 {
6841
6842 /* Signal number at offset 0x08. */
6843 elf_tdata (abfd)->core_signal
6844 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6845
6846 /* Process ID at offset 0x50. */
6847 elf_tdata (abfd)->core_pid
6848 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6849
6850 /* Command name at 0x7c (max 32 bytes, including nul). */
6851 elf_tdata (abfd)->core_command
6852 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6853
6854 return true;
6855 }
6856
6857 static boolean
6858 elfcore_grok_netbsd_note (abfd, note)
6859 bfd *abfd;
6860 Elf_Internal_Note *note;
6861 {
6862 int lwp;
6863
6864 if (elfcore_netbsd_get_lwpid (note, &lwp))
6865 elf_tdata (abfd)->core_lwpid = lwp;
6866
6867 if (note->type == NT_NETBSDCORE_PROCINFO)
6868 {
6869 /* NetBSD-specific core "procinfo". Note that we expect to
6870 find this note before any of the others, which is fine,
6871 since the kernel writes this note out first when it
6872 creates a core file. */
6873
6874 return elfcore_grok_netbsd_procinfo (abfd, note);
6875 }
6876
6877 /* As of Jan 2002 there are no other machine-independent notes
6878 defined for NetBSD core files. If the note type is less
6879 than the start of the machine-dependent note types, we don't
6880 understand it. */
6881
6882 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6883 return true;
6884
6885
6886 switch (bfd_get_arch (abfd))
6887 {
6888 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6889 PT_GETFPREGS == mach+2. */
6890
6891 case bfd_arch_alpha:
6892 case bfd_arch_sparc:
6893 switch (note->type)
6894 {
6895 case NT_NETBSDCORE_FIRSTMACH+0:
6896 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6897
6898 case NT_NETBSDCORE_FIRSTMACH+2:
6899 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6900
6901 default:
6902 return true;
6903 }
6904
6905 /* On all other arch's, PT_GETREGS == mach+1 and
6906 PT_GETFPREGS == mach+3. */
6907
6908 default:
6909 switch (note->type)
6910 {
6911 case NT_NETBSDCORE_FIRSTMACH+1:
6912 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6913
6914 case NT_NETBSDCORE_FIRSTMACH+3:
6915 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6916
6917 default:
6918 return true;
6919 }
6920 }
6921 /* NOTREACHED */
6922 }
6923
6924 /* Function: elfcore_write_note
6925
6926 Inputs:
6927 buffer to hold note
6928 name of note
6929 type of note
6930 data for note
6931 size of data for note
6932
6933 Return:
6934 End of buffer containing note. */
6935
6936 char *
6937 elfcore_write_note (abfd, buf, bufsiz, name, type, input, size)
6938 bfd *abfd;
6939 char *buf;
6940 int *bufsiz;
6941 const char *name;
6942 int type;
6943 const PTR input;
6944 int size;
6945 {
6946 Elf_External_Note *xnp;
6947 size_t namesz;
6948 size_t pad;
6949 size_t newspace;
6950 char *p, *dest;
6951
6952 namesz = 0;
6953 pad = 0;
6954 if (name != NULL)
6955 {
6956 struct elf_backend_data *bed;
6957
6958 namesz = strlen (name) + 1;
6959 bed = get_elf_backend_data (abfd);
6960 pad = -namesz & (bed->s->file_align - 1);
6961 }
6962
6963 newspace = sizeof (Elf_External_Note) - 1 + namesz + pad + size;
6964
6965 p = realloc (buf, *bufsiz + newspace);
6966 dest = p + *bufsiz;
6967 *bufsiz += newspace;
6968 xnp = (Elf_External_Note *) dest;
6969 H_PUT_32 (abfd, namesz, xnp->namesz);
6970 H_PUT_32 (abfd, size, xnp->descsz);
6971 H_PUT_32 (abfd, type, xnp->type);
6972 dest = xnp->name;
6973 if (name != NULL)
6974 {
6975 memcpy (dest, name, namesz);
6976 dest += namesz;
6977 while (pad != 0)
6978 {
6979 *dest++ = '\0';
6980 --pad;
6981 }
6982 }
6983 memcpy (dest, input, size);
6984 return p;
6985 }
6986
6987 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6988 char *
6989 elfcore_write_prpsinfo (abfd, buf, bufsiz, fname, psargs)
6990 bfd *abfd;
6991 char *buf;
6992 int *bufsiz;
6993 const char *fname;
6994 const char *psargs;
6995 {
6996 int note_type;
6997 char *note_name = "CORE";
6998
6999 #if defined (HAVE_PSINFO_T)
7000 psinfo_t data;
7001 note_type = NT_PSINFO;
7002 #else
7003 prpsinfo_t data;
7004 note_type = NT_PRPSINFO;
7005 #endif
7006
7007 memset (&data, 0, sizeof (data));
7008 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7009 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7010 return elfcore_write_note (abfd, buf, bufsiz,
7011 note_name, note_type, &data, sizeof (data));
7012 }
7013 #endif /* PSINFO_T or PRPSINFO_T */
7014
7015 #if defined (HAVE_PRSTATUS_T)
7016 char *
7017 elfcore_write_prstatus (abfd, buf, bufsiz, pid, cursig, gregs)
7018 bfd *abfd;
7019 char *buf;
7020 int *bufsiz;
7021 long pid;
7022 int cursig;
7023 const PTR gregs;
7024 {
7025 prstatus_t prstat;
7026 char *note_name = "CORE";
7027
7028 memset (&prstat, 0, sizeof (prstat));
7029 prstat.pr_pid = pid;
7030 prstat.pr_cursig = cursig;
7031 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7032 return elfcore_write_note (abfd, buf, bufsiz,
7033 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7034 }
7035 #endif /* HAVE_PRSTATUS_T */
7036
7037 #if defined (HAVE_LWPSTATUS_T)
7038 char *
7039 elfcore_write_lwpstatus (abfd, buf, bufsiz, pid, cursig, gregs)
7040 bfd *abfd;
7041 char *buf;
7042 int *bufsiz;
7043 long pid;
7044 int cursig;
7045 const PTR gregs;
7046 {
7047 lwpstatus_t lwpstat;
7048 char *note_name = "CORE";
7049
7050 memset (&lwpstat, 0, sizeof (lwpstat));
7051 lwpstat.pr_lwpid = pid >> 16;
7052 lwpstat.pr_cursig = cursig;
7053 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7054 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7055 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7056 #if !defined(gregs)
7057 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7058 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7059 #else
7060 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7061 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7062 #endif
7063 #endif
7064 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7065 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7066 }
7067 #endif /* HAVE_LWPSTATUS_T */
7068
7069 #if defined (HAVE_PSTATUS_T)
7070 char *
7071 elfcore_write_pstatus (abfd, buf, bufsiz, pid, cursig, gregs)
7072 bfd *abfd;
7073 char *buf;
7074 int *bufsiz;
7075 long pid;
7076 int cursig;
7077 const PTR gregs;
7078 {
7079 pstatus_t pstat;
7080 char *note_name = "CORE";
7081
7082 memset (&pstat, 0, sizeof (pstat));
7083 pstat.pr_pid = pid & 0xffff;
7084 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7085 NT_PSTATUS, &pstat, sizeof (pstat));
7086 return buf;
7087 }
7088 #endif /* HAVE_PSTATUS_T */
7089
7090 char *
7091 elfcore_write_prfpreg (abfd, buf, bufsiz, fpregs, size)
7092 bfd *abfd;
7093 char *buf;
7094 int *bufsiz;
7095 const PTR fpregs;
7096 int size;
7097 {
7098 char *note_name = "CORE";
7099 return elfcore_write_note (abfd, buf, bufsiz,
7100 note_name, NT_FPREGSET, fpregs, size);
7101 }
7102
7103 char *
7104 elfcore_write_prxfpreg (abfd, buf, bufsiz, xfpregs, size)
7105 bfd *abfd;
7106 char *buf;
7107 int *bufsiz;
7108 const PTR xfpregs;
7109 int size;
7110 {
7111 char *note_name = "LINUX";
7112 return elfcore_write_note (abfd, buf, bufsiz,
7113 note_name, NT_PRXFPREG, xfpregs, size);
7114 }
7115
7116 static boolean
7117 elfcore_read_notes (abfd, offset, size)
7118 bfd *abfd;
7119 file_ptr offset;
7120 bfd_size_type size;
7121 {
7122 char *buf;
7123 char *p;
7124
7125 if (size <= 0)
7126 return true;
7127
7128 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7129 return false;
7130
7131 buf = bfd_malloc (size);
7132 if (buf == NULL)
7133 return false;
7134
7135 if (bfd_bread (buf, size, abfd) != size)
7136 {
7137 error:
7138 free (buf);
7139 return false;
7140 }
7141
7142 p = buf;
7143 while (p < buf + size)
7144 {
7145 /* FIXME: bad alignment assumption. */
7146 Elf_External_Note *xnp = (Elf_External_Note *) p;
7147 Elf_Internal_Note in;
7148
7149 in.type = H_GET_32 (abfd, xnp->type);
7150
7151 in.namesz = H_GET_32 (abfd, xnp->namesz);
7152 in.namedata = xnp->name;
7153
7154 in.descsz = H_GET_32 (abfd, xnp->descsz);
7155 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7156 in.descpos = offset + (in.descdata - buf);
7157
7158 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7159 {
7160 if (! elfcore_grok_netbsd_note (abfd, &in))
7161 goto error;
7162 }
7163 else
7164 {
7165 if (! elfcore_grok_note (abfd, &in))
7166 goto error;
7167 }
7168
7169 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7170 }
7171
7172 free (buf);
7173 return true;
7174 }
7175 \f
7176 /* Providing external access to the ELF program header table. */
7177
7178 /* Return an upper bound on the number of bytes required to store a
7179 copy of ABFD's program header table entries. Return -1 if an error
7180 occurs; bfd_get_error will return an appropriate code. */
7181
7182 long
7183 bfd_get_elf_phdr_upper_bound (abfd)
7184 bfd *abfd;
7185 {
7186 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7187 {
7188 bfd_set_error (bfd_error_wrong_format);
7189 return -1;
7190 }
7191
7192 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7193 }
7194
7195 /* Copy ABFD's program header table entries to *PHDRS. The entries
7196 will be stored as an array of Elf_Internal_Phdr structures, as
7197 defined in include/elf/internal.h. To find out how large the
7198 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7199
7200 Return the number of program header table entries read, or -1 if an
7201 error occurs; bfd_get_error will return an appropriate code. */
7202
7203 int
7204 bfd_get_elf_phdrs (abfd, phdrs)
7205 bfd *abfd;
7206 void *phdrs;
7207 {
7208 int num_phdrs;
7209
7210 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7211 {
7212 bfd_set_error (bfd_error_wrong_format);
7213 return -1;
7214 }
7215
7216 num_phdrs = elf_elfheader (abfd)->e_phnum;
7217 memcpy (phdrs, elf_tdata (abfd)->phdr,
7218 num_phdrs * sizeof (Elf_Internal_Phdr));
7219
7220 return num_phdrs;
7221 }
7222
7223 void
7224 _bfd_elf_sprintf_vma (abfd, buf, value)
7225 bfd *abfd ATTRIBUTE_UNUSED;
7226 char *buf;
7227 bfd_vma value;
7228 {
7229 #ifdef BFD64
7230 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7231
7232 i_ehdrp = elf_elfheader (abfd);
7233 if (i_ehdrp == NULL)
7234 sprintf_vma (buf, value);
7235 else
7236 {
7237 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7238 {
7239 #if BFD_HOST_64BIT_LONG
7240 sprintf (buf, "%016lx", value);
7241 #else
7242 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7243 _bfd_int64_low (value));
7244 #endif
7245 }
7246 else
7247 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7248 }
7249 #else
7250 sprintf_vma (buf, value);
7251 #endif
7252 }
7253
7254 void
7255 _bfd_elf_fprintf_vma (abfd, stream, value)
7256 bfd *abfd ATTRIBUTE_UNUSED;
7257 PTR stream;
7258 bfd_vma value;
7259 {
7260 #ifdef BFD64
7261 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7262
7263 i_ehdrp = elf_elfheader (abfd);
7264 if (i_ehdrp == NULL)
7265 fprintf_vma ((FILE *) stream, value);
7266 else
7267 {
7268 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7269 {
7270 #if BFD_HOST_64BIT_LONG
7271 fprintf ((FILE *) stream, "%016lx", value);
7272 #else
7273 fprintf ((FILE *) stream, "%08lx%08lx",
7274 _bfd_int64_high (value), _bfd_int64_low (value));
7275 #endif
7276 }
7277 else
7278 fprintf ((FILE *) stream, "%08lx",
7279 (unsigned long) (value & 0xffffffff));
7280 }
7281 #else
7282 fprintf_vma ((FILE *) stream, value);
7283 #endif
7284 }
7285
7286 enum elf_reloc_type_class
7287 _bfd_elf_reloc_type_class (rela)
7288 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED;
7289 {
7290 return reloc_class_normal;
7291 }
7292
7293 /* For RELA architectures, return the relocation value for a
7294 relocation against a local symbol. */
7295
7296 bfd_vma
7297 _bfd_elf_rela_local_sym (abfd, sym, sec, rel)
7298 bfd *abfd;
7299 Elf_Internal_Sym *sym;
7300 asection *sec;
7301 Elf_Internal_Rela *rel;
7302 {
7303 bfd_vma relocation;
7304
7305 relocation = (sec->output_section->vma
7306 + sec->output_offset
7307 + sym->st_value);
7308 if ((sec->flags & SEC_MERGE)
7309 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7310 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
7311 {
7312 asection *msec;
7313
7314 msec = sec;
7315 rel->r_addend =
7316 _bfd_merged_section_offset (abfd, &msec,
7317 elf_section_data (sec)->sec_info,
7318 sym->st_value + rel->r_addend,
7319 (bfd_vma) 0)
7320 - relocation;
7321 rel->r_addend += msec->output_section->vma + msec->output_offset;
7322 }
7323 return relocation;
7324 }
7325
7326 bfd_vma
7327 _bfd_elf_rel_local_sym (abfd, sym, psec, addend)
7328 bfd *abfd;
7329 Elf_Internal_Sym *sym;
7330 asection **psec;
7331 bfd_vma addend;
7332 {
7333 asection *sec = *psec;
7334
7335 if (elf_section_data (sec)->sec_info_type != ELF_INFO_TYPE_MERGE)
7336 return sym->st_value + addend;
7337
7338 return _bfd_merged_section_offset (abfd, psec,
7339 elf_section_data (sec)->sec_info,
7340 sym->st_value + addend, (bfd_vma) 0);
7341 }
7342
7343 bfd_vma
7344 _bfd_elf_section_offset (abfd, info, sec, offset)
7345 bfd *abfd;
7346 struct bfd_link_info *info;
7347 asection *sec;
7348 bfd_vma offset;
7349 {
7350 struct bfd_elf_section_data *sec_data;
7351
7352 sec_data = elf_section_data (sec);
7353 switch (sec_data->sec_info_type)
7354 {
7355 case ELF_INFO_TYPE_STABS:
7356 return _bfd_stab_section_offset
7357 (abfd, &elf_hash_table (info)->merge_info, sec, &sec_data->sec_info,
7358 offset);
7359 case ELF_INFO_TYPE_EH_FRAME:
7360 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7361 default:
7362 return offset;
7363 }
7364 }
This page took 0.171631 seconds and 5 git commands to generate.