Fix seg-fault reading a corrupt ELF binary.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2017 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 /* xgettext:c-format */
342 _bfd_error_handler (_("%B: attempt to load strings from"
343 " a non-string section (number %d)"),
344 abfd, shindex);
345 return NULL;
346 }
347
348 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
349 return NULL;
350 }
351
352 if (strindex >= hdr->sh_size)
353 {
354 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
355 _bfd_error_handler
356 /* xgettext:c-format */
357 (_("%B: invalid string offset %u >= %lu for section `%s'"),
358 abfd, strindex, (unsigned long) hdr->sh_size,
359 (shindex == shstrndx && strindex == hdr->sh_name
360 ? ".shstrtab"
361 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
362 return NULL;
363 }
364
365 return ((char *) hdr->contents) + strindex;
366 }
367
368 /* Read and convert symbols to internal format.
369 SYMCOUNT specifies the number of symbols to read, starting from
370 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
371 are non-NULL, they are used to store the internal symbols, external
372 symbols, and symbol section index extensions, respectively.
373 Returns a pointer to the internal symbol buffer (malloced if necessary)
374 or NULL if there were no symbols or some kind of problem. */
375
376 Elf_Internal_Sym *
377 bfd_elf_get_elf_syms (bfd *ibfd,
378 Elf_Internal_Shdr *symtab_hdr,
379 size_t symcount,
380 size_t symoffset,
381 Elf_Internal_Sym *intsym_buf,
382 void *extsym_buf,
383 Elf_External_Sym_Shndx *extshndx_buf)
384 {
385 Elf_Internal_Shdr *shndx_hdr;
386 void *alloc_ext;
387 const bfd_byte *esym;
388 Elf_External_Sym_Shndx *alloc_extshndx;
389 Elf_External_Sym_Shndx *shndx;
390 Elf_Internal_Sym *alloc_intsym;
391 Elf_Internal_Sym *isym;
392 Elf_Internal_Sym *isymend;
393 const struct elf_backend_data *bed;
394 size_t extsym_size;
395 bfd_size_type amt;
396 file_ptr pos;
397
398 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
399 abort ();
400
401 if (symcount == 0)
402 return intsym_buf;
403
404 /* Normal syms might have section extension entries. */
405 shndx_hdr = NULL;
406 if (elf_symtab_shndx_list (ibfd) != NULL)
407 {
408 elf_section_list * entry;
409 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
410
411 /* Find an index section that is linked to this symtab section. */
412 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
413 {
414 /* PR 20063. */
415 if (entry->hdr.sh_link >= elf_numsections (ibfd))
416 continue;
417
418 if (sections[entry->hdr.sh_link] == symtab_hdr)
419 {
420 shndx_hdr = & entry->hdr;
421 break;
422 };
423 }
424
425 if (shndx_hdr == NULL)
426 {
427 if (symtab_hdr == & elf_symtab_hdr (ibfd))
428 /* Not really accurate, but this was how the old code used to work. */
429 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
430 /* Otherwise we do nothing. The assumption is that
431 the index table will not be needed. */
432 }
433 }
434
435 /* Read the symbols. */
436 alloc_ext = NULL;
437 alloc_extshndx = NULL;
438 alloc_intsym = NULL;
439 bed = get_elf_backend_data (ibfd);
440 extsym_size = bed->s->sizeof_sym;
441 amt = (bfd_size_type) symcount * extsym_size;
442 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
443 if (extsym_buf == NULL)
444 {
445 alloc_ext = bfd_malloc2 (symcount, extsym_size);
446 extsym_buf = alloc_ext;
447 }
448 if (extsym_buf == NULL
449 || bfd_seek (ibfd, pos, SEEK_SET) != 0
450 || bfd_bread (extsym_buf, amt, ibfd) != amt)
451 {
452 intsym_buf = NULL;
453 goto out;
454 }
455
456 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
457 extshndx_buf = NULL;
458 else
459 {
460 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
461 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
462 if (extshndx_buf == NULL)
463 {
464 alloc_extshndx = (Elf_External_Sym_Shndx *)
465 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
466 extshndx_buf = alloc_extshndx;
467 }
468 if (extshndx_buf == NULL
469 || bfd_seek (ibfd, pos, SEEK_SET) != 0
470 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
471 {
472 intsym_buf = NULL;
473 goto out;
474 }
475 }
476
477 if (intsym_buf == NULL)
478 {
479 alloc_intsym = (Elf_Internal_Sym *)
480 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
481 intsym_buf = alloc_intsym;
482 if (intsym_buf == NULL)
483 goto out;
484 }
485
486 /* Convert the symbols to internal form. */
487 isymend = intsym_buf + symcount;
488 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
489 shndx = extshndx_buf;
490 isym < isymend;
491 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
492 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
493 {
494 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
495 /* xgettext:c-format */
496 _bfd_error_handler (_("%B symbol number %lu references"
497 " nonexistent SHT_SYMTAB_SHNDX section"),
498 ibfd, (unsigned long) symoffset);
499 if (alloc_intsym != NULL)
500 free (alloc_intsym);
501 intsym_buf = NULL;
502 goto out;
503 }
504
505 out:
506 if (alloc_ext != NULL)
507 free (alloc_ext);
508 if (alloc_extshndx != NULL)
509 free (alloc_extshndx);
510
511 return intsym_buf;
512 }
513
514 /* Look up a symbol name. */
515 const char *
516 bfd_elf_sym_name (bfd *abfd,
517 Elf_Internal_Shdr *symtab_hdr,
518 Elf_Internal_Sym *isym,
519 asection *sym_sec)
520 {
521 const char *name;
522 unsigned int iname = isym->st_name;
523 unsigned int shindex = symtab_hdr->sh_link;
524
525 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
526 /* Check for a bogus st_shndx to avoid crashing. */
527 && isym->st_shndx < elf_numsections (abfd))
528 {
529 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
530 shindex = elf_elfheader (abfd)->e_shstrndx;
531 }
532
533 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
534 if (name == NULL)
535 name = "(null)";
536 else if (sym_sec && *name == '\0')
537 name = bfd_section_name (abfd, sym_sec);
538
539 return name;
540 }
541
542 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
543 sections. The first element is the flags, the rest are section
544 pointers. */
545
546 typedef union elf_internal_group {
547 Elf_Internal_Shdr *shdr;
548 unsigned int flags;
549 } Elf_Internal_Group;
550
551 /* Return the name of the group signature symbol. Why isn't the
552 signature just a string? */
553
554 static const char *
555 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
556 {
557 Elf_Internal_Shdr *hdr;
558 unsigned char esym[sizeof (Elf64_External_Sym)];
559 Elf_External_Sym_Shndx eshndx;
560 Elf_Internal_Sym isym;
561
562 /* First we need to ensure the symbol table is available. Make sure
563 that it is a symbol table section. */
564 if (ghdr->sh_link >= elf_numsections (abfd))
565 return NULL;
566 hdr = elf_elfsections (abfd) [ghdr->sh_link];
567 if (hdr->sh_type != SHT_SYMTAB
568 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
569 return NULL;
570
571 /* Go read the symbol. */
572 hdr = &elf_tdata (abfd)->symtab_hdr;
573 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
574 &isym, esym, &eshndx) == NULL)
575 return NULL;
576
577 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
578 }
579
580 /* Set next_in_group list pointer, and group name for NEWSECT. */
581
582 static bfd_boolean
583 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
584 {
585 unsigned int num_group = elf_tdata (abfd)->num_group;
586
587 /* If num_group is zero, read in all SHT_GROUP sections. The count
588 is set to -1 if there are no SHT_GROUP sections. */
589 if (num_group == 0)
590 {
591 unsigned int i, shnum;
592
593 /* First count the number of groups. If we have a SHT_GROUP
594 section with just a flag word (ie. sh_size is 4), ignore it. */
595 shnum = elf_numsections (abfd);
596 num_group = 0;
597
598 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
599 ( (shdr)->sh_type == SHT_GROUP \
600 && (shdr)->sh_size >= minsize \
601 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
602 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
603
604 for (i = 0; i < shnum; i++)
605 {
606 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
607
608 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
609 num_group += 1;
610 }
611
612 if (num_group == 0)
613 {
614 num_group = (unsigned) -1;
615 elf_tdata (abfd)->num_group = num_group;
616 elf_tdata (abfd)->group_sect_ptr = NULL;
617 }
618 else
619 {
620 /* We keep a list of elf section headers for group sections,
621 so we can find them quickly. */
622 bfd_size_type amt;
623
624 elf_tdata (abfd)->num_group = num_group;
625 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
626 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
627 if (elf_tdata (abfd)->group_sect_ptr == NULL)
628 return FALSE;
629 memset (elf_tdata (abfd)->group_sect_ptr, 0, num_group * sizeof (Elf_Internal_Shdr *));
630 num_group = 0;
631
632 for (i = 0; i < shnum; i++)
633 {
634 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
635
636 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
637 {
638 unsigned char *src;
639 Elf_Internal_Group *dest;
640
641 /* Make sure the group section has a BFD section
642 attached to it. */
643 if (!bfd_section_from_shdr (abfd, i))
644 return FALSE;
645
646 /* Add to list of sections. */
647 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
648 num_group += 1;
649
650 /* Read the raw contents. */
651 BFD_ASSERT (sizeof (*dest) >= 4);
652 amt = shdr->sh_size * sizeof (*dest) / 4;
653 shdr->contents = (unsigned char *)
654 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
655 /* PR binutils/4110: Handle corrupt group headers. */
656 if (shdr->contents == NULL)
657 {
658 _bfd_error_handler
659 /* xgettext:c-format */
660 (_("%B: corrupt size field in group section"
661 " header: 0x%lx"), abfd, shdr->sh_size);
662 bfd_set_error (bfd_error_bad_value);
663 -- num_group;
664 continue;
665 }
666
667 memset (shdr->contents, 0, amt);
668
669 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
670 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
671 != shdr->sh_size))
672 {
673 _bfd_error_handler
674 /* xgettext:c-format */
675 (_("%B: invalid size field in group section"
676 " header: 0x%lx"), abfd, shdr->sh_size);
677 bfd_set_error (bfd_error_bad_value);
678 -- num_group;
679 /* PR 17510: If the group contents are even
680 partially corrupt, do not allow any of the
681 contents to be used. */
682 memset (shdr->contents, 0, amt);
683 continue;
684 }
685
686 /* Translate raw contents, a flag word followed by an
687 array of elf section indices all in target byte order,
688 to the flag word followed by an array of elf section
689 pointers. */
690 src = shdr->contents + shdr->sh_size;
691 dest = (Elf_Internal_Group *) (shdr->contents + amt);
692
693 while (1)
694 {
695 unsigned int idx;
696
697 src -= 4;
698 --dest;
699 idx = H_GET_32 (abfd, src);
700 if (src == shdr->contents)
701 {
702 dest->flags = idx;
703 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
704 shdr->bfd_section->flags
705 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
706 break;
707 }
708 if (idx >= shnum)
709 {
710 _bfd_error_handler
711 (_("%B: invalid SHT_GROUP entry"), abfd);
712 idx = 0;
713 }
714 dest->shdr = elf_elfsections (abfd)[idx];
715 }
716 }
717 }
718
719 /* PR 17510: Corrupt binaries might contain invalid groups. */
720 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
721 {
722 elf_tdata (abfd)->num_group = num_group;
723
724 /* If all groups are invalid then fail. */
725 if (num_group == 0)
726 {
727 elf_tdata (abfd)->group_sect_ptr = NULL;
728 elf_tdata (abfd)->num_group = num_group = -1;
729 _bfd_error_handler
730 (_("%B: no valid group sections found"), abfd);
731 bfd_set_error (bfd_error_bad_value);
732 }
733 }
734 }
735 }
736
737 if (num_group != (unsigned) -1)
738 {
739 unsigned int i;
740
741 for (i = 0; i < num_group; i++)
742 {
743 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
744 Elf_Internal_Group *idx;
745 unsigned int n_elt;
746
747 if (shdr == NULL)
748 continue;
749
750 idx = (Elf_Internal_Group *) shdr->contents;
751 n_elt = shdr->sh_size / 4;
752
753 /* Look through this group's sections to see if current
754 section is a member. */
755 while (--n_elt != 0)
756 if ((++idx)->shdr == hdr)
757 {
758 asection *s = NULL;
759
760 /* We are a member of this group. Go looking through
761 other members to see if any others are linked via
762 next_in_group. */
763 idx = (Elf_Internal_Group *) shdr->contents;
764 n_elt = shdr->sh_size / 4;
765 while (--n_elt != 0)
766 if ((s = (++idx)->shdr->bfd_section) != NULL
767 && elf_next_in_group (s) != NULL)
768 break;
769 if (n_elt != 0)
770 {
771 /* Snarf the group name from other member, and
772 insert current section in circular list. */
773 elf_group_name (newsect) = elf_group_name (s);
774 elf_next_in_group (newsect) = elf_next_in_group (s);
775 elf_next_in_group (s) = newsect;
776 }
777 else
778 {
779 const char *gname;
780
781 gname = group_signature (abfd, shdr);
782 if (gname == NULL)
783 return FALSE;
784 elf_group_name (newsect) = gname;
785
786 /* Start a circular list with one element. */
787 elf_next_in_group (newsect) = newsect;
788 }
789
790 /* If the group section has been created, point to the
791 new member. */
792 if (shdr->bfd_section != NULL)
793 elf_next_in_group (shdr->bfd_section) = newsect;
794
795 i = num_group - 1;
796 break;
797 }
798 }
799 }
800
801 if (elf_group_name (newsect) == NULL)
802 {
803 /* xgettext:c-format */
804 _bfd_error_handler (_("%B: no group info for section %A"),
805 abfd, newsect);
806 return FALSE;
807 }
808 return TRUE;
809 }
810
811 bfd_boolean
812 _bfd_elf_setup_sections (bfd *abfd)
813 {
814 unsigned int i;
815 unsigned int num_group = elf_tdata (abfd)->num_group;
816 bfd_boolean result = TRUE;
817 asection *s;
818
819 /* Process SHF_LINK_ORDER. */
820 for (s = abfd->sections; s != NULL; s = s->next)
821 {
822 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
823 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
824 {
825 unsigned int elfsec = this_hdr->sh_link;
826 /* FIXME: The old Intel compiler and old strip/objcopy may
827 not set the sh_link or sh_info fields. Hence we could
828 get the situation where elfsec is 0. */
829 if (elfsec == 0)
830 {
831 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
832 if (bed->link_order_error_handler)
833 bed->link_order_error_handler
834 /* xgettext:c-format */
835 (_("%B: warning: sh_link not set for section `%A'"),
836 abfd, s);
837 }
838 else
839 {
840 asection *linksec = NULL;
841
842 if (elfsec < elf_numsections (abfd))
843 {
844 this_hdr = elf_elfsections (abfd)[elfsec];
845 linksec = this_hdr->bfd_section;
846 }
847
848 /* PR 1991, 2008:
849 Some strip/objcopy may leave an incorrect value in
850 sh_link. We don't want to proceed. */
851 if (linksec == NULL)
852 {
853 _bfd_error_handler
854 /* xgettext:c-format */
855 (_("%B: sh_link [%d] in section `%A' is incorrect"),
856 s->owner, elfsec, s);
857 result = FALSE;
858 }
859
860 elf_linked_to_section (s) = linksec;
861 }
862 }
863 else if (this_hdr->sh_type == SHT_GROUP
864 && elf_next_in_group (s) == NULL)
865 {
866 _bfd_error_handler
867 /* xgettext:c-format */
868 (_("%B: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
869 abfd, elf_section_data (s)->this_idx);
870 result = FALSE;
871 }
872 }
873
874 /* Process section groups. */
875 if (num_group == (unsigned) -1)
876 return result;
877
878 for (i = 0; i < num_group; i++)
879 {
880 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
881 Elf_Internal_Group *idx;
882 unsigned int n_elt;
883
884 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
885 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
886 {
887 _bfd_error_handler
888 /* xgettext:c-format */
889 (_("%B: section group entry number %u is corrupt"),
890 abfd, i);
891 result = FALSE;
892 continue;
893 }
894
895 idx = (Elf_Internal_Group *) shdr->contents;
896 n_elt = shdr->sh_size / 4;
897
898 while (--n_elt != 0)
899 if ((++idx)->shdr->bfd_section)
900 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
901 else if (idx->shdr->sh_type == SHT_RELA
902 || idx->shdr->sh_type == SHT_REL)
903 /* We won't include relocation sections in section groups in
904 output object files. We adjust the group section size here
905 so that relocatable link will work correctly when
906 relocation sections are in section group in input object
907 files. */
908 shdr->bfd_section->size -= 4;
909 else
910 {
911 /* There are some unknown sections in the group. */
912 _bfd_error_handler
913 /* xgettext:c-format */
914 (_("%B: unknown [%d] section `%s' in group [%A]"),
915 abfd,
916 (unsigned int) idx->shdr->sh_type,
917 bfd_elf_string_from_elf_section (abfd,
918 (elf_elfheader (abfd)
919 ->e_shstrndx),
920 idx->shdr->sh_name),
921 shdr->bfd_section);
922 result = FALSE;
923 }
924 }
925 return result;
926 }
927
928 bfd_boolean
929 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
930 {
931 return elf_next_in_group (sec) != NULL;
932 }
933
934 static char *
935 convert_debug_to_zdebug (bfd *abfd, const char *name)
936 {
937 unsigned int len = strlen (name);
938 char *new_name = bfd_alloc (abfd, len + 2);
939 if (new_name == NULL)
940 return NULL;
941 new_name[0] = '.';
942 new_name[1] = 'z';
943 memcpy (new_name + 2, name + 1, len);
944 return new_name;
945 }
946
947 static char *
948 convert_zdebug_to_debug (bfd *abfd, const char *name)
949 {
950 unsigned int len = strlen (name);
951 char *new_name = bfd_alloc (abfd, len);
952 if (new_name == NULL)
953 return NULL;
954 new_name[0] = '.';
955 memcpy (new_name + 1, name + 2, len - 1);
956 return new_name;
957 }
958
959 /* Make a BFD section from an ELF section. We store a pointer to the
960 BFD section in the bfd_section field of the header. */
961
962 bfd_boolean
963 _bfd_elf_make_section_from_shdr (bfd *abfd,
964 Elf_Internal_Shdr *hdr,
965 const char *name,
966 int shindex)
967 {
968 asection *newsect;
969 flagword flags;
970 const struct elf_backend_data *bed;
971
972 if (hdr->bfd_section != NULL)
973 return TRUE;
974
975 newsect = bfd_make_section_anyway (abfd, name);
976 if (newsect == NULL)
977 return FALSE;
978
979 hdr->bfd_section = newsect;
980 elf_section_data (newsect)->this_hdr = *hdr;
981 elf_section_data (newsect)->this_idx = shindex;
982
983 /* Always use the real type/flags. */
984 elf_section_type (newsect) = hdr->sh_type;
985 elf_section_flags (newsect) = hdr->sh_flags;
986
987 newsect->filepos = hdr->sh_offset;
988
989 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
990 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
991 || ! bfd_set_section_alignment (abfd, newsect,
992 bfd_log2 (hdr->sh_addralign)))
993 return FALSE;
994
995 flags = SEC_NO_FLAGS;
996 if (hdr->sh_type != SHT_NOBITS)
997 flags |= SEC_HAS_CONTENTS;
998 if (hdr->sh_type == SHT_GROUP)
999 flags |= SEC_GROUP;
1000 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1001 {
1002 flags |= SEC_ALLOC;
1003 if (hdr->sh_type != SHT_NOBITS)
1004 flags |= SEC_LOAD;
1005 }
1006 if ((hdr->sh_flags & SHF_WRITE) == 0)
1007 flags |= SEC_READONLY;
1008 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1009 flags |= SEC_CODE;
1010 else if ((flags & SEC_LOAD) != 0)
1011 flags |= SEC_DATA;
1012 if ((hdr->sh_flags & SHF_MERGE) != 0)
1013 {
1014 flags |= SEC_MERGE;
1015 newsect->entsize = hdr->sh_entsize;
1016 }
1017 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1018 flags |= SEC_STRINGS;
1019 if (hdr->sh_flags & SHF_GROUP)
1020 if (!setup_group (abfd, hdr, newsect))
1021 return FALSE;
1022 if ((hdr->sh_flags & SHF_TLS) != 0)
1023 flags |= SEC_THREAD_LOCAL;
1024 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1025 flags |= SEC_EXCLUDE;
1026
1027 if ((flags & SEC_ALLOC) == 0)
1028 {
1029 /* The debugging sections appear to be recognized only by name,
1030 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1031 if (name [0] == '.')
1032 {
1033 const char *p;
1034 int n;
1035 if (name[1] == 'd')
1036 p = ".debug", n = 6;
1037 else if (name[1] == 'g' && name[2] == 'n')
1038 p = ".gnu.linkonce.wi.", n = 17;
1039 else if (name[1] == 'g' && name[2] == 'd')
1040 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1041 else if (name[1] == 'l')
1042 p = ".line", n = 5;
1043 else if (name[1] == 's')
1044 p = ".stab", n = 5;
1045 else if (name[1] == 'z')
1046 p = ".zdebug", n = 7;
1047 else
1048 p = NULL, n = 0;
1049 if (p != NULL && strncmp (name, p, n) == 0)
1050 flags |= SEC_DEBUGGING;
1051 }
1052 }
1053
1054 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1055 only link a single copy of the section. This is used to support
1056 g++. g++ will emit each template expansion in its own section.
1057 The symbols will be defined as weak, so that multiple definitions
1058 are permitted. The GNU linker extension is to actually discard
1059 all but one of the sections. */
1060 if (CONST_STRNEQ (name, ".gnu.linkonce")
1061 && elf_next_in_group (newsect) == NULL)
1062 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1063
1064 bed = get_elf_backend_data (abfd);
1065 if (bed->elf_backend_section_flags)
1066 if (! bed->elf_backend_section_flags (&flags, hdr))
1067 return FALSE;
1068
1069 if (! bfd_set_section_flags (abfd, newsect, flags))
1070 return FALSE;
1071
1072 /* We do not parse the PT_NOTE segments as we are interested even in the
1073 separate debug info files which may have the segments offsets corrupted.
1074 PT_NOTEs from the core files are currently not parsed using BFD. */
1075 if (hdr->sh_type == SHT_NOTE)
1076 {
1077 bfd_byte *contents;
1078
1079 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1080 return FALSE;
1081
1082 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, hdr->sh_offset);
1083 free (contents);
1084 }
1085
1086 if ((flags & SEC_ALLOC) != 0)
1087 {
1088 Elf_Internal_Phdr *phdr;
1089 unsigned int i, nload;
1090
1091 /* Some ELF linkers produce binaries with all the program header
1092 p_paddr fields zero. If we have such a binary with more than
1093 one PT_LOAD header, then leave the section lma equal to vma
1094 so that we don't create sections with overlapping lma. */
1095 phdr = elf_tdata (abfd)->phdr;
1096 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1097 if (phdr->p_paddr != 0)
1098 break;
1099 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1100 ++nload;
1101 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1102 return TRUE;
1103
1104 phdr = elf_tdata (abfd)->phdr;
1105 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1106 {
1107 if (((phdr->p_type == PT_LOAD
1108 && (hdr->sh_flags & SHF_TLS) == 0)
1109 || phdr->p_type == PT_TLS)
1110 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1111 {
1112 if ((flags & SEC_LOAD) == 0)
1113 newsect->lma = (phdr->p_paddr
1114 + hdr->sh_addr - phdr->p_vaddr);
1115 else
1116 /* We used to use the same adjustment for SEC_LOAD
1117 sections, but that doesn't work if the segment
1118 is packed with code from multiple VMAs.
1119 Instead we calculate the section LMA based on
1120 the segment LMA. It is assumed that the
1121 segment will contain sections with contiguous
1122 LMAs, even if the VMAs are not. */
1123 newsect->lma = (phdr->p_paddr
1124 + hdr->sh_offset - phdr->p_offset);
1125
1126 /* With contiguous segments, we can't tell from file
1127 offsets whether a section with zero size should
1128 be placed at the end of one segment or the
1129 beginning of the next. Decide based on vaddr. */
1130 if (hdr->sh_addr >= phdr->p_vaddr
1131 && (hdr->sh_addr + hdr->sh_size
1132 <= phdr->p_vaddr + phdr->p_memsz))
1133 break;
1134 }
1135 }
1136 }
1137
1138 /* Compress/decompress DWARF debug sections with names: .debug_* and
1139 .zdebug_*, after the section flags is set. */
1140 if ((flags & SEC_DEBUGGING)
1141 && ((name[1] == 'd' && name[6] == '_')
1142 || (name[1] == 'z' && name[7] == '_')))
1143 {
1144 enum { nothing, compress, decompress } action = nothing;
1145 int compression_header_size;
1146 bfd_size_type uncompressed_size;
1147 bfd_boolean compressed
1148 = bfd_is_section_compressed_with_header (abfd, newsect,
1149 &compression_header_size,
1150 &uncompressed_size);
1151
1152 if (compressed)
1153 {
1154 /* Compressed section. Check if we should decompress. */
1155 if ((abfd->flags & BFD_DECOMPRESS))
1156 action = decompress;
1157 }
1158
1159 /* Compress the uncompressed section or convert from/to .zdebug*
1160 section. Check if we should compress. */
1161 if (action == nothing)
1162 {
1163 if (newsect->size != 0
1164 && (abfd->flags & BFD_COMPRESS)
1165 && compression_header_size >= 0
1166 && uncompressed_size > 0
1167 && (!compressed
1168 || ((compression_header_size > 0)
1169 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1170 action = compress;
1171 else
1172 return TRUE;
1173 }
1174
1175 if (action == compress)
1176 {
1177 if (!bfd_init_section_compress_status (abfd, newsect))
1178 {
1179 _bfd_error_handler
1180 /* xgettext:c-format */
1181 (_("%B: unable to initialize compress status for section %s"),
1182 abfd, name);
1183 return FALSE;
1184 }
1185 }
1186 else
1187 {
1188 if (!bfd_init_section_decompress_status (abfd, newsect))
1189 {
1190 _bfd_error_handler
1191 /* xgettext:c-format */
1192 (_("%B: unable to initialize decompress status for section %s"),
1193 abfd, name);
1194 return FALSE;
1195 }
1196 }
1197
1198 if (abfd->is_linker_input)
1199 {
1200 if (name[1] == 'z'
1201 && (action == decompress
1202 || (action == compress
1203 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1204 {
1205 /* Convert section name from .zdebug_* to .debug_* so
1206 that linker will consider this section as a debug
1207 section. */
1208 char *new_name = convert_zdebug_to_debug (abfd, name);
1209 if (new_name == NULL)
1210 return FALSE;
1211 bfd_rename_section (abfd, newsect, new_name);
1212 }
1213 }
1214 else
1215 /* For objdump, don't rename the section. For objcopy, delay
1216 section rename to elf_fake_sections. */
1217 newsect->flags |= SEC_ELF_RENAME;
1218 }
1219
1220 return TRUE;
1221 }
1222
1223 const char *const bfd_elf_section_type_names[] =
1224 {
1225 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1226 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1227 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1228 };
1229
1230 /* ELF relocs are against symbols. If we are producing relocatable
1231 output, and the reloc is against an external symbol, and nothing
1232 has given us any additional addend, the resulting reloc will also
1233 be against the same symbol. In such a case, we don't want to
1234 change anything about the way the reloc is handled, since it will
1235 all be done at final link time. Rather than put special case code
1236 into bfd_perform_relocation, all the reloc types use this howto
1237 function. It just short circuits the reloc if producing
1238 relocatable output against an external symbol. */
1239
1240 bfd_reloc_status_type
1241 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1242 arelent *reloc_entry,
1243 asymbol *symbol,
1244 void *data ATTRIBUTE_UNUSED,
1245 asection *input_section,
1246 bfd *output_bfd,
1247 char **error_message ATTRIBUTE_UNUSED)
1248 {
1249 if (output_bfd != NULL
1250 && (symbol->flags & BSF_SECTION_SYM) == 0
1251 && (! reloc_entry->howto->partial_inplace
1252 || reloc_entry->addend == 0))
1253 {
1254 reloc_entry->address += input_section->output_offset;
1255 return bfd_reloc_ok;
1256 }
1257
1258 return bfd_reloc_continue;
1259 }
1260 \f
1261 /* Returns TRUE if section A matches section B.
1262 Names, addresses and links may be different, but everything else
1263 should be the same. */
1264
1265 static bfd_boolean
1266 section_match (const Elf_Internal_Shdr * a,
1267 const Elf_Internal_Shdr * b)
1268 {
1269 return
1270 a->sh_type == b->sh_type
1271 && (a->sh_flags & ~ SHF_INFO_LINK)
1272 == (b->sh_flags & ~ SHF_INFO_LINK)
1273 && a->sh_addralign == b->sh_addralign
1274 && a->sh_size == b->sh_size
1275 && a->sh_entsize == b->sh_entsize
1276 /* FIXME: Check sh_addr ? */
1277 ;
1278 }
1279
1280 /* Find a section in OBFD that has the same characteristics
1281 as IHEADER. Return the index of this section or SHN_UNDEF if
1282 none can be found. Check's section HINT first, as this is likely
1283 to be the correct section. */
1284
1285 static unsigned int
1286 find_link (const bfd * obfd, const Elf_Internal_Shdr * iheader, const unsigned int hint)
1287 {
1288 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1289 unsigned int i;
1290
1291 BFD_ASSERT (iheader != NULL);
1292
1293 /* See PR 20922 for a reproducer of the NULL test. */
1294 if (oheaders[hint] != NULL
1295 && section_match (oheaders[hint], iheader))
1296 return hint;
1297
1298 for (i = 1; i < elf_numsections (obfd); i++)
1299 {
1300 Elf_Internal_Shdr * oheader = oheaders[i];
1301
1302 if (oheader == NULL)
1303 continue;
1304 if (section_match (oheader, iheader))
1305 /* FIXME: Do we care if there is a potential for
1306 multiple matches ? */
1307 return i;
1308 }
1309
1310 return SHN_UNDEF;
1311 }
1312
1313 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1314 Processor specific section, based upon a matching input section.
1315 Returns TRUE upon success, FALSE otherwise. */
1316
1317 static bfd_boolean
1318 copy_special_section_fields (const bfd *ibfd,
1319 bfd *obfd,
1320 const Elf_Internal_Shdr *iheader,
1321 Elf_Internal_Shdr *oheader,
1322 const unsigned int secnum)
1323 {
1324 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1325 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1326 bfd_boolean changed = FALSE;
1327 unsigned int sh_link;
1328
1329 if (oheader->sh_type == SHT_NOBITS)
1330 {
1331 /* This is a feature for objcopy --only-keep-debug:
1332 When a section's type is changed to NOBITS, we preserve
1333 the sh_link and sh_info fields so that they can be
1334 matched up with the original.
1335
1336 Note: Strictly speaking these assignments are wrong.
1337 The sh_link and sh_info fields should point to the
1338 relevent sections in the output BFD, which may not be in
1339 the same location as they were in the input BFD. But
1340 the whole point of this action is to preserve the
1341 original values of the sh_link and sh_info fields, so
1342 that they can be matched up with the section headers in
1343 the original file. So strictly speaking we may be
1344 creating an invalid ELF file, but it is only for a file
1345 that just contains debug info and only for sections
1346 without any contents. */
1347 if (oheader->sh_link == 0)
1348 oheader->sh_link = iheader->sh_link;
1349 if (oheader->sh_info == 0)
1350 oheader->sh_info = iheader->sh_info;
1351 return TRUE;
1352 }
1353
1354 /* Allow the target a chance to decide how these fields should be set. */
1355 if (bed->elf_backend_copy_special_section_fields != NULL
1356 && bed->elf_backend_copy_special_section_fields
1357 (ibfd, obfd, iheader, oheader))
1358 return TRUE;
1359
1360 /* We have an iheader which might match oheader, and which has non-zero
1361 sh_info and/or sh_link fields. Attempt to follow those links and find
1362 the section in the output bfd which corresponds to the linked section
1363 in the input bfd. */
1364 if (iheader->sh_link != SHN_UNDEF)
1365 {
1366 /* See PR 20931 for a reproducer. */
1367 if (iheader->sh_link >= elf_numsections (ibfd))
1368 {
1369 (* _bfd_error_handler)
1370 /* xgettext:c-format */
1371 (_("%B: Invalid sh_link field (%d) in section number %d"),
1372 ibfd, iheader->sh_link, secnum);
1373 return FALSE;
1374 }
1375
1376 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1377 if (sh_link != SHN_UNDEF)
1378 {
1379 oheader->sh_link = sh_link;
1380 changed = TRUE;
1381 }
1382 else
1383 /* FIXME: Should we install iheader->sh_link
1384 if we could not find a match ? */
1385 (* _bfd_error_handler)
1386 /* xgettext:c-format */
1387 (_("%B: Failed to find link section for section %d"), obfd, secnum);
1388 }
1389
1390 if (iheader->sh_info)
1391 {
1392 /* The sh_info field can hold arbitrary information, but if the
1393 SHF_LINK_INFO flag is set then it should be interpreted as a
1394 section index. */
1395 if (iheader->sh_flags & SHF_INFO_LINK)
1396 {
1397 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1398 iheader->sh_info);
1399 if (sh_link != SHN_UNDEF)
1400 oheader->sh_flags |= SHF_INFO_LINK;
1401 }
1402 else
1403 /* No idea what it means - just copy it. */
1404 sh_link = iheader->sh_info;
1405
1406 if (sh_link != SHN_UNDEF)
1407 {
1408 oheader->sh_info = sh_link;
1409 changed = TRUE;
1410 }
1411 else
1412 (* _bfd_error_handler)
1413 /* xgettext:c-format */
1414 (_("%B: Failed to find info section for section %d"), obfd, secnum);
1415 }
1416
1417 return changed;
1418 }
1419
1420 /* Copy the program header and other data from one object module to
1421 another. */
1422
1423 bfd_boolean
1424 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1425 {
1426 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1427 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1428 const struct elf_backend_data *bed;
1429 unsigned int i;
1430
1431 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1432 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1433 return TRUE;
1434
1435 if (!elf_flags_init (obfd))
1436 {
1437 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1438 elf_flags_init (obfd) = TRUE;
1439 }
1440
1441 elf_gp (obfd) = elf_gp (ibfd);
1442
1443 /* Also copy the EI_OSABI field. */
1444 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1445 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1446
1447 /* If set, copy the EI_ABIVERSION field. */
1448 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1449 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1450 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1451
1452 /* Copy object attributes. */
1453 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1454
1455 if (iheaders == NULL || oheaders == NULL)
1456 return TRUE;
1457
1458 bed = get_elf_backend_data (obfd);
1459
1460 /* Possibly copy other fields in the section header. */
1461 for (i = 1; i < elf_numsections (obfd); i++)
1462 {
1463 unsigned int j;
1464 Elf_Internal_Shdr * oheader = oheaders[i];
1465
1466 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1467 because of a special case need for generating separate debug info
1468 files. See below for more details. */
1469 if (oheader == NULL
1470 || (oheader->sh_type != SHT_NOBITS
1471 && oheader->sh_type < SHT_LOOS))
1472 continue;
1473
1474 /* Ignore empty sections, and sections whose
1475 fields have already been initialised. */
1476 if (oheader->sh_size == 0
1477 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1478 continue;
1479
1480 /* Scan for the matching section in the input bfd.
1481 First we try for a direct mapping between the input and output sections. */
1482 for (j = 1; j < elf_numsections (ibfd); j++)
1483 {
1484 const Elf_Internal_Shdr * iheader = iheaders[j];
1485
1486 if (iheader == NULL)
1487 continue;
1488
1489 if (oheader->bfd_section != NULL
1490 && iheader->bfd_section != NULL
1491 && iheader->bfd_section->output_section != NULL
1492 && iheader->bfd_section->output_section == oheader->bfd_section)
1493 {
1494 /* We have found a connection from the input section to the
1495 output section. Attempt to copy the header fields. If
1496 this fails then do not try any further sections - there
1497 should only be a one-to-one mapping between input and output. */
1498 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1499 j = elf_numsections (ibfd);
1500 break;
1501 }
1502 }
1503
1504 if (j < elf_numsections (ibfd))
1505 continue;
1506
1507 /* That failed. So try to deduce the corresponding input section.
1508 Unfortunately we cannot compare names as the output string table
1509 is empty, so instead we check size, address and type. */
1510 for (j = 1; j < elf_numsections (ibfd); j++)
1511 {
1512 const Elf_Internal_Shdr * iheader = iheaders[j];
1513
1514 if (iheader == NULL)
1515 continue;
1516
1517 /* Try matching fields in the input section's header.
1518 Since --only-keep-debug turns all non-debug sections into
1519 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1520 input type. */
1521 if ((oheader->sh_type == SHT_NOBITS
1522 || iheader->sh_type == oheader->sh_type)
1523 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1524 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1525 && iheader->sh_addralign == oheader->sh_addralign
1526 && iheader->sh_entsize == oheader->sh_entsize
1527 && iheader->sh_size == oheader->sh_size
1528 && iheader->sh_addr == oheader->sh_addr
1529 && (iheader->sh_info != oheader->sh_info
1530 || iheader->sh_link != oheader->sh_link))
1531 {
1532 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1533 break;
1534 }
1535 }
1536
1537 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1538 {
1539 /* Final attempt. Call the backend copy function
1540 with a NULL input section. */
1541 if (bed->elf_backend_copy_special_section_fields != NULL)
1542 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1543 }
1544 }
1545
1546 return TRUE;
1547 }
1548
1549 static const char *
1550 get_segment_type (unsigned int p_type)
1551 {
1552 const char *pt;
1553 switch (p_type)
1554 {
1555 case PT_NULL: pt = "NULL"; break;
1556 case PT_LOAD: pt = "LOAD"; break;
1557 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1558 case PT_INTERP: pt = "INTERP"; break;
1559 case PT_NOTE: pt = "NOTE"; break;
1560 case PT_SHLIB: pt = "SHLIB"; break;
1561 case PT_PHDR: pt = "PHDR"; break;
1562 case PT_TLS: pt = "TLS"; break;
1563 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1564 case PT_GNU_STACK: pt = "STACK"; break;
1565 case PT_GNU_RELRO: pt = "RELRO"; break;
1566 default: pt = NULL; break;
1567 }
1568 return pt;
1569 }
1570
1571 /* Print out the program headers. */
1572
1573 bfd_boolean
1574 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1575 {
1576 FILE *f = (FILE *) farg;
1577 Elf_Internal_Phdr *p;
1578 asection *s;
1579 bfd_byte *dynbuf = NULL;
1580
1581 p = elf_tdata (abfd)->phdr;
1582 if (p != NULL)
1583 {
1584 unsigned int i, c;
1585
1586 fprintf (f, _("\nProgram Header:\n"));
1587 c = elf_elfheader (abfd)->e_phnum;
1588 for (i = 0; i < c; i++, p++)
1589 {
1590 const char *pt = get_segment_type (p->p_type);
1591 char buf[20];
1592
1593 if (pt == NULL)
1594 {
1595 sprintf (buf, "0x%lx", p->p_type);
1596 pt = buf;
1597 }
1598 fprintf (f, "%8s off 0x", pt);
1599 bfd_fprintf_vma (abfd, f, p->p_offset);
1600 fprintf (f, " vaddr 0x");
1601 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1602 fprintf (f, " paddr 0x");
1603 bfd_fprintf_vma (abfd, f, p->p_paddr);
1604 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1605 fprintf (f, " filesz 0x");
1606 bfd_fprintf_vma (abfd, f, p->p_filesz);
1607 fprintf (f, " memsz 0x");
1608 bfd_fprintf_vma (abfd, f, p->p_memsz);
1609 fprintf (f, " flags %c%c%c",
1610 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1611 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1612 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1613 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1614 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1615 fprintf (f, "\n");
1616 }
1617 }
1618
1619 s = bfd_get_section_by_name (abfd, ".dynamic");
1620 if (s != NULL)
1621 {
1622 unsigned int elfsec;
1623 unsigned long shlink;
1624 bfd_byte *extdyn, *extdynend;
1625 size_t extdynsize;
1626 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1627
1628 fprintf (f, _("\nDynamic Section:\n"));
1629
1630 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1631 goto error_return;
1632
1633 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1634 if (elfsec == SHN_BAD)
1635 goto error_return;
1636 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1637
1638 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1639 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1640
1641 extdyn = dynbuf;
1642 /* PR 17512: file: 6f427532. */
1643 if (s->size < extdynsize)
1644 goto error_return;
1645 extdynend = extdyn + s->size;
1646 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1647 Fix range check. */
1648 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1649 {
1650 Elf_Internal_Dyn dyn;
1651 const char *name = "";
1652 char ab[20];
1653 bfd_boolean stringp;
1654 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1655
1656 (*swap_dyn_in) (abfd, extdyn, &dyn);
1657
1658 if (dyn.d_tag == DT_NULL)
1659 break;
1660
1661 stringp = FALSE;
1662 switch (dyn.d_tag)
1663 {
1664 default:
1665 if (bed->elf_backend_get_target_dtag)
1666 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1667
1668 if (!strcmp (name, ""))
1669 {
1670 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1671 name = ab;
1672 }
1673 break;
1674
1675 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1676 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1677 case DT_PLTGOT: name = "PLTGOT"; break;
1678 case DT_HASH: name = "HASH"; break;
1679 case DT_STRTAB: name = "STRTAB"; break;
1680 case DT_SYMTAB: name = "SYMTAB"; break;
1681 case DT_RELA: name = "RELA"; break;
1682 case DT_RELASZ: name = "RELASZ"; break;
1683 case DT_RELAENT: name = "RELAENT"; break;
1684 case DT_STRSZ: name = "STRSZ"; break;
1685 case DT_SYMENT: name = "SYMENT"; break;
1686 case DT_INIT: name = "INIT"; break;
1687 case DT_FINI: name = "FINI"; break;
1688 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1689 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1690 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1691 case DT_REL: name = "REL"; break;
1692 case DT_RELSZ: name = "RELSZ"; break;
1693 case DT_RELENT: name = "RELENT"; break;
1694 case DT_PLTREL: name = "PLTREL"; break;
1695 case DT_DEBUG: name = "DEBUG"; break;
1696 case DT_TEXTREL: name = "TEXTREL"; break;
1697 case DT_JMPREL: name = "JMPREL"; break;
1698 case DT_BIND_NOW: name = "BIND_NOW"; break;
1699 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1700 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1701 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1702 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1703 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1704 case DT_FLAGS: name = "FLAGS"; break;
1705 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1706 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1707 case DT_CHECKSUM: name = "CHECKSUM"; break;
1708 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1709 case DT_MOVEENT: name = "MOVEENT"; break;
1710 case DT_MOVESZ: name = "MOVESZ"; break;
1711 case DT_FEATURE: name = "FEATURE"; break;
1712 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1713 case DT_SYMINSZ: name = "SYMINSZ"; break;
1714 case DT_SYMINENT: name = "SYMINENT"; break;
1715 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1716 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1717 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1718 case DT_PLTPAD: name = "PLTPAD"; break;
1719 case DT_MOVETAB: name = "MOVETAB"; break;
1720 case DT_SYMINFO: name = "SYMINFO"; break;
1721 case DT_RELACOUNT: name = "RELACOUNT"; break;
1722 case DT_RELCOUNT: name = "RELCOUNT"; break;
1723 case DT_FLAGS_1: name = "FLAGS_1"; break;
1724 case DT_VERSYM: name = "VERSYM"; break;
1725 case DT_VERDEF: name = "VERDEF"; break;
1726 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1727 case DT_VERNEED: name = "VERNEED"; break;
1728 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1729 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1730 case DT_USED: name = "USED"; break;
1731 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1732 case DT_GNU_HASH: name = "GNU_HASH"; break;
1733 }
1734
1735 fprintf (f, " %-20s ", name);
1736 if (! stringp)
1737 {
1738 fprintf (f, "0x");
1739 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1740 }
1741 else
1742 {
1743 const char *string;
1744 unsigned int tagv = dyn.d_un.d_val;
1745
1746 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1747 if (string == NULL)
1748 goto error_return;
1749 fprintf (f, "%s", string);
1750 }
1751 fprintf (f, "\n");
1752 }
1753
1754 free (dynbuf);
1755 dynbuf = NULL;
1756 }
1757
1758 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1759 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1760 {
1761 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1762 return FALSE;
1763 }
1764
1765 if (elf_dynverdef (abfd) != 0)
1766 {
1767 Elf_Internal_Verdef *t;
1768
1769 fprintf (f, _("\nVersion definitions:\n"));
1770 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1771 {
1772 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1773 t->vd_flags, t->vd_hash,
1774 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1775 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1776 {
1777 Elf_Internal_Verdaux *a;
1778
1779 fprintf (f, "\t");
1780 for (a = t->vd_auxptr->vda_nextptr;
1781 a != NULL;
1782 a = a->vda_nextptr)
1783 fprintf (f, "%s ",
1784 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1785 fprintf (f, "\n");
1786 }
1787 }
1788 }
1789
1790 if (elf_dynverref (abfd) != 0)
1791 {
1792 Elf_Internal_Verneed *t;
1793
1794 fprintf (f, _("\nVersion References:\n"));
1795 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1796 {
1797 Elf_Internal_Vernaux *a;
1798
1799 fprintf (f, _(" required from %s:\n"),
1800 t->vn_filename ? t->vn_filename : "<corrupt>");
1801 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1802 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1803 a->vna_flags, a->vna_other,
1804 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1805 }
1806 }
1807
1808 return TRUE;
1809
1810 error_return:
1811 if (dynbuf != NULL)
1812 free (dynbuf);
1813 return FALSE;
1814 }
1815
1816 /* Get version string. */
1817
1818 const char *
1819 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1820 bfd_boolean *hidden)
1821 {
1822 const char *version_string = NULL;
1823 if (elf_dynversym (abfd) != 0
1824 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1825 {
1826 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1827
1828 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1829 vernum &= VERSYM_VERSION;
1830
1831 if (vernum == 0)
1832 version_string = "";
1833 else if (vernum == 1)
1834 version_string = "Base";
1835 else if (vernum <= elf_tdata (abfd)->cverdefs)
1836 version_string =
1837 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1838 else
1839 {
1840 Elf_Internal_Verneed *t;
1841
1842 version_string = "";
1843 for (t = elf_tdata (abfd)->verref;
1844 t != NULL;
1845 t = t->vn_nextref)
1846 {
1847 Elf_Internal_Vernaux *a;
1848
1849 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1850 {
1851 if (a->vna_other == vernum)
1852 {
1853 version_string = a->vna_nodename;
1854 break;
1855 }
1856 }
1857 }
1858 }
1859 }
1860 return version_string;
1861 }
1862
1863 /* Display ELF-specific fields of a symbol. */
1864
1865 void
1866 bfd_elf_print_symbol (bfd *abfd,
1867 void *filep,
1868 asymbol *symbol,
1869 bfd_print_symbol_type how)
1870 {
1871 FILE *file = (FILE *) filep;
1872 switch (how)
1873 {
1874 case bfd_print_symbol_name:
1875 fprintf (file, "%s", symbol->name);
1876 break;
1877 case bfd_print_symbol_more:
1878 fprintf (file, "elf ");
1879 bfd_fprintf_vma (abfd, file, symbol->value);
1880 fprintf (file, " %lx", (unsigned long) symbol->flags);
1881 break;
1882 case bfd_print_symbol_all:
1883 {
1884 const char *section_name;
1885 const char *name = NULL;
1886 const struct elf_backend_data *bed;
1887 unsigned char st_other;
1888 bfd_vma val;
1889 const char *version_string;
1890 bfd_boolean hidden;
1891
1892 section_name = symbol->section ? symbol->section->name : "(*none*)";
1893
1894 bed = get_elf_backend_data (abfd);
1895 if (bed->elf_backend_print_symbol_all)
1896 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1897
1898 if (name == NULL)
1899 {
1900 name = symbol->name;
1901 bfd_print_symbol_vandf (abfd, file, symbol);
1902 }
1903
1904 fprintf (file, " %s\t", section_name);
1905 /* Print the "other" value for a symbol. For common symbols,
1906 we've already printed the size; now print the alignment.
1907 For other symbols, we have no specified alignment, and
1908 we've printed the address; now print the size. */
1909 if (symbol->section && bfd_is_com_section (symbol->section))
1910 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1911 else
1912 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1913 bfd_fprintf_vma (abfd, file, val);
1914
1915 /* If we have version information, print it. */
1916 version_string = _bfd_elf_get_symbol_version_string (abfd,
1917 symbol,
1918 &hidden);
1919 if (version_string)
1920 {
1921 if (!hidden)
1922 fprintf (file, " %-11s", version_string);
1923 else
1924 {
1925 int i;
1926
1927 fprintf (file, " (%s)", version_string);
1928 for (i = 10 - strlen (version_string); i > 0; --i)
1929 putc (' ', file);
1930 }
1931 }
1932
1933 /* If the st_other field is not zero, print it. */
1934 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1935
1936 switch (st_other)
1937 {
1938 case 0: break;
1939 case STV_INTERNAL: fprintf (file, " .internal"); break;
1940 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1941 case STV_PROTECTED: fprintf (file, " .protected"); break;
1942 default:
1943 /* Some other non-defined flags are also present, so print
1944 everything hex. */
1945 fprintf (file, " 0x%02x", (unsigned int) st_other);
1946 }
1947
1948 fprintf (file, " %s", name);
1949 }
1950 break;
1951 }
1952 }
1953 \f
1954 /* ELF .o/exec file reading */
1955
1956 /* Create a new bfd section from an ELF section header. */
1957
1958 bfd_boolean
1959 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1960 {
1961 Elf_Internal_Shdr *hdr;
1962 Elf_Internal_Ehdr *ehdr;
1963 const struct elf_backend_data *bed;
1964 const char *name;
1965 bfd_boolean ret = TRUE;
1966 static bfd_boolean * sections_being_created = NULL;
1967 static bfd * sections_being_created_abfd = NULL;
1968 static unsigned int nesting = 0;
1969
1970 if (shindex >= elf_numsections (abfd))
1971 return FALSE;
1972
1973 if (++ nesting > 3)
1974 {
1975 /* PR17512: A corrupt ELF binary might contain a recursive group of
1976 sections, with each the string indicies pointing to the next in the
1977 loop. Detect this here, by refusing to load a section that we are
1978 already in the process of loading. We only trigger this test if
1979 we have nested at least three sections deep as normal ELF binaries
1980 can expect to recurse at least once.
1981
1982 FIXME: It would be better if this array was attached to the bfd,
1983 rather than being held in a static pointer. */
1984
1985 if (sections_being_created_abfd != abfd)
1986 sections_being_created = NULL;
1987 if (sections_being_created == NULL)
1988 {
1989 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1990 sections_being_created = (bfd_boolean *)
1991 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1992 sections_being_created_abfd = abfd;
1993 }
1994 if (sections_being_created [shindex])
1995 {
1996 _bfd_error_handler
1997 (_("%B: warning: loop in section dependencies detected"), abfd);
1998 return FALSE;
1999 }
2000 sections_being_created [shindex] = TRUE;
2001 }
2002
2003 hdr = elf_elfsections (abfd)[shindex];
2004 ehdr = elf_elfheader (abfd);
2005 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2006 hdr->sh_name);
2007 if (name == NULL)
2008 goto fail;
2009
2010 bed = get_elf_backend_data (abfd);
2011 switch (hdr->sh_type)
2012 {
2013 case SHT_NULL:
2014 /* Inactive section. Throw it away. */
2015 goto success;
2016
2017 case SHT_PROGBITS: /* Normal section with contents. */
2018 case SHT_NOBITS: /* .bss section. */
2019 case SHT_HASH: /* .hash section. */
2020 case SHT_NOTE: /* .note section. */
2021 case SHT_INIT_ARRAY: /* .init_array section. */
2022 case SHT_FINI_ARRAY: /* .fini_array section. */
2023 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2024 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2025 case SHT_GNU_HASH: /* .gnu.hash section. */
2026 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2027 goto success;
2028
2029 case SHT_DYNAMIC: /* Dynamic linking information. */
2030 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2031 goto fail;
2032
2033 if (hdr->sh_link > elf_numsections (abfd))
2034 {
2035 /* PR 10478: Accept Solaris binaries with a sh_link
2036 field set to SHN_BEFORE or SHN_AFTER. */
2037 switch (bfd_get_arch (abfd))
2038 {
2039 case bfd_arch_i386:
2040 case bfd_arch_sparc:
2041 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2042 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2043 break;
2044 /* Otherwise fall through. */
2045 default:
2046 goto fail;
2047 }
2048 }
2049 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2050 goto fail;
2051 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2052 {
2053 Elf_Internal_Shdr *dynsymhdr;
2054
2055 /* The shared libraries distributed with hpux11 have a bogus
2056 sh_link field for the ".dynamic" section. Find the
2057 string table for the ".dynsym" section instead. */
2058 if (elf_dynsymtab (abfd) != 0)
2059 {
2060 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2061 hdr->sh_link = dynsymhdr->sh_link;
2062 }
2063 else
2064 {
2065 unsigned int i, num_sec;
2066
2067 num_sec = elf_numsections (abfd);
2068 for (i = 1; i < num_sec; i++)
2069 {
2070 dynsymhdr = elf_elfsections (abfd)[i];
2071 if (dynsymhdr->sh_type == SHT_DYNSYM)
2072 {
2073 hdr->sh_link = dynsymhdr->sh_link;
2074 break;
2075 }
2076 }
2077 }
2078 }
2079 goto success;
2080
2081 case SHT_SYMTAB: /* A symbol table. */
2082 if (elf_onesymtab (abfd) == shindex)
2083 goto success;
2084
2085 if (hdr->sh_entsize != bed->s->sizeof_sym)
2086 goto fail;
2087
2088 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2089 {
2090 if (hdr->sh_size != 0)
2091 goto fail;
2092 /* Some assemblers erroneously set sh_info to one with a
2093 zero sh_size. ld sees this as a global symbol count
2094 of (unsigned) -1. Fix it here. */
2095 hdr->sh_info = 0;
2096 goto success;
2097 }
2098
2099 /* PR 18854: A binary might contain more than one symbol table.
2100 Unusual, but possible. Warn, but continue. */
2101 if (elf_onesymtab (abfd) != 0)
2102 {
2103 _bfd_error_handler
2104 /* xgettext:c-format */
2105 (_("%B: warning: multiple symbol tables detected"
2106 " - ignoring the table in section %u"),
2107 abfd, shindex);
2108 goto success;
2109 }
2110 elf_onesymtab (abfd) = shindex;
2111 elf_symtab_hdr (abfd) = *hdr;
2112 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2113 abfd->flags |= HAS_SYMS;
2114
2115 /* Sometimes a shared object will map in the symbol table. If
2116 SHF_ALLOC is set, and this is a shared object, then we also
2117 treat this section as a BFD section. We can not base the
2118 decision purely on SHF_ALLOC, because that flag is sometimes
2119 set in a relocatable object file, which would confuse the
2120 linker. */
2121 if ((hdr->sh_flags & SHF_ALLOC) != 0
2122 && (abfd->flags & DYNAMIC) != 0
2123 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2124 shindex))
2125 goto fail;
2126
2127 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2128 can't read symbols without that section loaded as well. It
2129 is most likely specified by the next section header. */
2130 {
2131 elf_section_list * entry;
2132 unsigned int i, num_sec;
2133
2134 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2135 if (entry->hdr.sh_link == shindex)
2136 goto success;
2137
2138 num_sec = elf_numsections (abfd);
2139 for (i = shindex + 1; i < num_sec; i++)
2140 {
2141 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2142
2143 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2144 && hdr2->sh_link == shindex)
2145 break;
2146 }
2147
2148 if (i == num_sec)
2149 for (i = 1; i < shindex; i++)
2150 {
2151 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2152
2153 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2154 && hdr2->sh_link == shindex)
2155 break;
2156 }
2157
2158 if (i != shindex)
2159 ret = bfd_section_from_shdr (abfd, i);
2160 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2161 goto success;
2162 }
2163
2164 case SHT_DYNSYM: /* A dynamic symbol table. */
2165 if (elf_dynsymtab (abfd) == shindex)
2166 goto success;
2167
2168 if (hdr->sh_entsize != bed->s->sizeof_sym)
2169 goto fail;
2170
2171 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2172 {
2173 if (hdr->sh_size != 0)
2174 goto fail;
2175
2176 /* Some linkers erroneously set sh_info to one with a
2177 zero sh_size. ld sees this as a global symbol count
2178 of (unsigned) -1. Fix it here. */
2179 hdr->sh_info = 0;
2180 goto success;
2181 }
2182
2183 /* PR 18854: A binary might contain more than one dynamic symbol table.
2184 Unusual, but possible. Warn, but continue. */
2185 if (elf_dynsymtab (abfd) != 0)
2186 {
2187 _bfd_error_handler
2188 /* xgettext:c-format */
2189 (_("%B: warning: multiple dynamic symbol tables detected"
2190 " - ignoring the table in section %u"),
2191 abfd, shindex);
2192 goto success;
2193 }
2194 elf_dynsymtab (abfd) = shindex;
2195 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2196 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2197 abfd->flags |= HAS_SYMS;
2198
2199 /* Besides being a symbol table, we also treat this as a regular
2200 section, so that objcopy can handle it. */
2201 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2202 goto success;
2203
2204 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2205 {
2206 elf_section_list * entry;
2207
2208 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2209 if (entry->ndx == shindex)
2210 goto success;
2211
2212 entry = bfd_alloc (abfd, sizeof * entry);
2213 if (entry == NULL)
2214 goto fail;
2215 entry->ndx = shindex;
2216 entry->hdr = * hdr;
2217 entry->next = elf_symtab_shndx_list (abfd);
2218 elf_symtab_shndx_list (abfd) = entry;
2219 elf_elfsections (abfd)[shindex] = & entry->hdr;
2220 goto success;
2221 }
2222
2223 case SHT_STRTAB: /* A string table. */
2224 if (hdr->bfd_section != NULL)
2225 goto success;
2226
2227 if (ehdr->e_shstrndx == shindex)
2228 {
2229 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2230 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2231 goto success;
2232 }
2233
2234 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2235 {
2236 symtab_strtab:
2237 elf_tdata (abfd)->strtab_hdr = *hdr;
2238 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2239 goto success;
2240 }
2241
2242 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2243 {
2244 dynsymtab_strtab:
2245 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2246 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2247 elf_elfsections (abfd)[shindex] = hdr;
2248 /* We also treat this as a regular section, so that objcopy
2249 can handle it. */
2250 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2251 shindex);
2252 goto success;
2253 }
2254
2255 /* If the string table isn't one of the above, then treat it as a
2256 regular section. We need to scan all the headers to be sure,
2257 just in case this strtab section appeared before the above. */
2258 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2259 {
2260 unsigned int i, num_sec;
2261
2262 num_sec = elf_numsections (abfd);
2263 for (i = 1; i < num_sec; i++)
2264 {
2265 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2266 if (hdr2->sh_link == shindex)
2267 {
2268 /* Prevent endless recursion on broken objects. */
2269 if (i == shindex)
2270 goto fail;
2271 if (! bfd_section_from_shdr (abfd, i))
2272 goto fail;
2273 if (elf_onesymtab (abfd) == i)
2274 goto symtab_strtab;
2275 if (elf_dynsymtab (abfd) == i)
2276 goto dynsymtab_strtab;
2277 }
2278 }
2279 }
2280 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2281 goto success;
2282
2283 case SHT_REL:
2284 case SHT_RELA:
2285 /* *These* do a lot of work -- but build no sections! */
2286 {
2287 asection *target_sect;
2288 Elf_Internal_Shdr *hdr2, **p_hdr;
2289 unsigned int num_sec = elf_numsections (abfd);
2290 struct bfd_elf_section_data *esdt;
2291
2292 if (hdr->sh_entsize
2293 != (bfd_size_type) (hdr->sh_type == SHT_REL
2294 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2295 goto fail;
2296
2297 /* Check for a bogus link to avoid crashing. */
2298 if (hdr->sh_link >= num_sec)
2299 {
2300 _bfd_error_handler
2301 /* xgettext:c-format */
2302 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2303 abfd, hdr->sh_link, name, shindex);
2304 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2305 shindex);
2306 goto success;
2307 }
2308
2309 /* For some incomprehensible reason Oracle distributes
2310 libraries for Solaris in which some of the objects have
2311 bogus sh_link fields. It would be nice if we could just
2312 reject them, but, unfortunately, some people need to use
2313 them. We scan through the section headers; if we find only
2314 one suitable symbol table, we clobber the sh_link to point
2315 to it. I hope this doesn't break anything.
2316
2317 Don't do it on executable nor shared library. */
2318 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2319 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2320 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2321 {
2322 unsigned int scan;
2323 int found;
2324
2325 found = 0;
2326 for (scan = 1; scan < num_sec; scan++)
2327 {
2328 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2329 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2330 {
2331 if (found != 0)
2332 {
2333 found = 0;
2334 break;
2335 }
2336 found = scan;
2337 }
2338 }
2339 if (found != 0)
2340 hdr->sh_link = found;
2341 }
2342
2343 /* Get the symbol table. */
2344 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2345 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2346 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2347 goto fail;
2348
2349 /* If this reloc section does not use the main symbol table we
2350 don't treat it as a reloc section. BFD can't adequately
2351 represent such a section, so at least for now, we don't
2352 try. We just present it as a normal section. We also
2353 can't use it as a reloc section if it points to the null
2354 section, an invalid section, another reloc section, or its
2355 sh_link points to the null section. */
2356 if (hdr->sh_link != elf_onesymtab (abfd)
2357 || hdr->sh_link == SHN_UNDEF
2358 || hdr->sh_info == SHN_UNDEF
2359 || hdr->sh_info >= num_sec
2360 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2361 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2362 {
2363 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2364 shindex);
2365 goto success;
2366 }
2367
2368 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2369 goto fail;
2370
2371 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2372 if (target_sect == NULL)
2373 goto fail;
2374
2375 esdt = elf_section_data (target_sect);
2376 if (hdr->sh_type == SHT_RELA)
2377 p_hdr = &esdt->rela.hdr;
2378 else
2379 p_hdr = &esdt->rel.hdr;
2380
2381 /* PR 17512: file: 0b4f81b7. */
2382 if (*p_hdr != NULL)
2383 goto fail;
2384 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2385 if (hdr2 == NULL)
2386 goto fail;
2387 *hdr2 = *hdr;
2388 *p_hdr = hdr2;
2389 elf_elfsections (abfd)[shindex] = hdr2;
2390 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2391 * bed->s->int_rels_per_ext_rel);
2392 target_sect->flags |= SEC_RELOC;
2393 target_sect->relocation = NULL;
2394 target_sect->rel_filepos = hdr->sh_offset;
2395 /* In the section to which the relocations apply, mark whether
2396 its relocations are of the REL or RELA variety. */
2397 if (hdr->sh_size != 0)
2398 {
2399 if (hdr->sh_type == SHT_RELA)
2400 target_sect->use_rela_p = 1;
2401 }
2402 abfd->flags |= HAS_RELOC;
2403 goto success;
2404 }
2405
2406 case SHT_GNU_verdef:
2407 elf_dynverdef (abfd) = shindex;
2408 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2409 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2410 goto success;
2411
2412 case SHT_GNU_versym:
2413 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2414 goto fail;
2415
2416 elf_dynversym (abfd) = shindex;
2417 elf_tdata (abfd)->dynversym_hdr = *hdr;
2418 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2419 goto success;
2420
2421 case SHT_GNU_verneed:
2422 elf_dynverref (abfd) = shindex;
2423 elf_tdata (abfd)->dynverref_hdr = *hdr;
2424 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2425 goto success;
2426
2427 case SHT_SHLIB:
2428 goto success;
2429
2430 case SHT_GROUP:
2431 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2432 goto fail;
2433
2434 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2435 goto fail;
2436
2437 goto success;
2438
2439 default:
2440 /* Possibly an attributes section. */
2441 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2442 || hdr->sh_type == bed->obj_attrs_section_type)
2443 {
2444 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2445 goto fail;
2446 _bfd_elf_parse_attributes (abfd, hdr);
2447 goto success;
2448 }
2449
2450 /* Check for any processor-specific section types. */
2451 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2452 goto success;
2453
2454 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2455 {
2456 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2457 /* FIXME: How to properly handle allocated section reserved
2458 for applications? */
2459 _bfd_error_handler
2460 /* xgettext:c-format */
2461 (_("%B: don't know how to handle allocated, application "
2462 "specific section `%s' [0x%8x]"),
2463 abfd, name, hdr->sh_type);
2464 else
2465 {
2466 /* Allow sections reserved for applications. */
2467 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2468 shindex);
2469 goto success;
2470 }
2471 }
2472 else if (hdr->sh_type >= SHT_LOPROC
2473 && hdr->sh_type <= SHT_HIPROC)
2474 /* FIXME: We should handle this section. */
2475 _bfd_error_handler
2476 /* xgettext:c-format */
2477 (_("%B: don't know how to handle processor specific section "
2478 "`%s' [0x%8x]"),
2479 abfd, name, hdr->sh_type);
2480 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2481 {
2482 /* Unrecognised OS-specific sections. */
2483 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2484 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2485 required to correctly process the section and the file should
2486 be rejected with an error message. */
2487 _bfd_error_handler
2488 /* xgettext:c-format */
2489 (_("%B: don't know how to handle OS specific section "
2490 "`%s' [0x%8x]"),
2491 abfd, name, hdr->sh_type);
2492 else
2493 {
2494 /* Otherwise it should be processed. */
2495 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2496 goto success;
2497 }
2498 }
2499 else
2500 /* FIXME: We should handle this section. */
2501 _bfd_error_handler
2502 /* xgettext:c-format */
2503 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2504 abfd, name, hdr->sh_type);
2505
2506 goto fail;
2507 }
2508
2509 fail:
2510 ret = FALSE;
2511 success:
2512 if (sections_being_created && sections_being_created_abfd == abfd)
2513 sections_being_created [shindex] = FALSE;
2514 if (-- nesting == 0)
2515 {
2516 sections_being_created = NULL;
2517 sections_being_created_abfd = abfd;
2518 }
2519 return ret;
2520 }
2521
2522 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2523
2524 Elf_Internal_Sym *
2525 bfd_sym_from_r_symndx (struct sym_cache *cache,
2526 bfd *abfd,
2527 unsigned long r_symndx)
2528 {
2529 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2530
2531 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2532 {
2533 Elf_Internal_Shdr *symtab_hdr;
2534 unsigned char esym[sizeof (Elf64_External_Sym)];
2535 Elf_External_Sym_Shndx eshndx;
2536
2537 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2538 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2539 &cache->sym[ent], esym, &eshndx) == NULL)
2540 return NULL;
2541
2542 if (cache->abfd != abfd)
2543 {
2544 memset (cache->indx, -1, sizeof (cache->indx));
2545 cache->abfd = abfd;
2546 }
2547 cache->indx[ent] = r_symndx;
2548 }
2549
2550 return &cache->sym[ent];
2551 }
2552
2553 /* Given an ELF section number, retrieve the corresponding BFD
2554 section. */
2555
2556 asection *
2557 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2558 {
2559 if (sec_index >= elf_numsections (abfd))
2560 return NULL;
2561 return elf_elfsections (abfd)[sec_index]->bfd_section;
2562 }
2563
2564 static const struct bfd_elf_special_section special_sections_b[] =
2565 {
2566 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2567 { NULL, 0, 0, 0, 0 }
2568 };
2569
2570 static const struct bfd_elf_special_section special_sections_c[] =
2571 {
2572 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2573 { NULL, 0, 0, 0, 0 }
2574 };
2575
2576 static const struct bfd_elf_special_section special_sections_d[] =
2577 {
2578 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2579 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2580 /* There are more DWARF sections than these, but they needn't be added here
2581 unless you have to cope with broken compilers that don't emit section
2582 attributes or you want to help the user writing assembler. */
2583 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2584 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2585 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2586 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2587 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2588 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2589 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2590 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2591 { NULL, 0, 0, 0, 0 }
2592 };
2593
2594 static const struct bfd_elf_special_section special_sections_f[] =
2595 {
2596 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2597 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2598 { NULL, 0 , 0, 0, 0 }
2599 };
2600
2601 static const struct bfd_elf_special_section special_sections_g[] =
2602 {
2603 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2604 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2605 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2606 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2607 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2608 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2609 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2610 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2611 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2612 { NULL, 0, 0, 0, 0 }
2613 };
2614
2615 static const struct bfd_elf_special_section special_sections_h[] =
2616 {
2617 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2618 { NULL, 0, 0, 0, 0 }
2619 };
2620
2621 static const struct bfd_elf_special_section special_sections_i[] =
2622 {
2623 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2624 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2625 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2626 { NULL, 0, 0, 0, 0 }
2627 };
2628
2629 static const struct bfd_elf_special_section special_sections_l[] =
2630 {
2631 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2632 { NULL, 0, 0, 0, 0 }
2633 };
2634
2635 static const struct bfd_elf_special_section special_sections_n[] =
2636 {
2637 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2638 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2639 { NULL, 0, 0, 0, 0 }
2640 };
2641
2642 static const struct bfd_elf_special_section special_sections_p[] =
2643 {
2644 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2645 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2646 { NULL, 0, 0, 0, 0 }
2647 };
2648
2649 static const struct bfd_elf_special_section special_sections_r[] =
2650 {
2651 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2652 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2653 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2654 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2655 { NULL, 0, 0, 0, 0 }
2656 };
2657
2658 static const struct bfd_elf_special_section special_sections_s[] =
2659 {
2660 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2661 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2662 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2663 /* See struct bfd_elf_special_section declaration for the semantics of
2664 this special case where .prefix_length != strlen (.prefix). */
2665 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2666 { NULL, 0, 0, 0, 0 }
2667 };
2668
2669 static const struct bfd_elf_special_section special_sections_t[] =
2670 {
2671 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2672 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2673 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2674 { NULL, 0, 0, 0, 0 }
2675 };
2676
2677 static const struct bfd_elf_special_section special_sections_z[] =
2678 {
2679 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2680 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2681 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2682 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2683 { NULL, 0, 0, 0, 0 }
2684 };
2685
2686 static const struct bfd_elf_special_section * const special_sections[] =
2687 {
2688 special_sections_b, /* 'b' */
2689 special_sections_c, /* 'c' */
2690 special_sections_d, /* 'd' */
2691 NULL, /* 'e' */
2692 special_sections_f, /* 'f' */
2693 special_sections_g, /* 'g' */
2694 special_sections_h, /* 'h' */
2695 special_sections_i, /* 'i' */
2696 NULL, /* 'j' */
2697 NULL, /* 'k' */
2698 special_sections_l, /* 'l' */
2699 NULL, /* 'm' */
2700 special_sections_n, /* 'n' */
2701 NULL, /* 'o' */
2702 special_sections_p, /* 'p' */
2703 NULL, /* 'q' */
2704 special_sections_r, /* 'r' */
2705 special_sections_s, /* 's' */
2706 special_sections_t, /* 't' */
2707 NULL, /* 'u' */
2708 NULL, /* 'v' */
2709 NULL, /* 'w' */
2710 NULL, /* 'x' */
2711 NULL, /* 'y' */
2712 special_sections_z /* 'z' */
2713 };
2714
2715 const struct bfd_elf_special_section *
2716 _bfd_elf_get_special_section (const char *name,
2717 const struct bfd_elf_special_section *spec,
2718 unsigned int rela)
2719 {
2720 int i;
2721 int len;
2722
2723 len = strlen (name);
2724
2725 for (i = 0; spec[i].prefix != NULL; i++)
2726 {
2727 int suffix_len;
2728 int prefix_len = spec[i].prefix_length;
2729
2730 if (len < prefix_len)
2731 continue;
2732 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2733 continue;
2734
2735 suffix_len = spec[i].suffix_length;
2736 if (suffix_len <= 0)
2737 {
2738 if (name[prefix_len] != 0)
2739 {
2740 if (suffix_len == 0)
2741 continue;
2742 if (name[prefix_len] != '.'
2743 && (suffix_len == -2
2744 || (rela && spec[i].type == SHT_REL)))
2745 continue;
2746 }
2747 }
2748 else
2749 {
2750 if (len < prefix_len + suffix_len)
2751 continue;
2752 if (memcmp (name + len - suffix_len,
2753 spec[i].prefix + prefix_len,
2754 suffix_len) != 0)
2755 continue;
2756 }
2757 return &spec[i];
2758 }
2759
2760 return NULL;
2761 }
2762
2763 const struct bfd_elf_special_section *
2764 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2765 {
2766 int i;
2767 const struct bfd_elf_special_section *spec;
2768 const struct elf_backend_data *bed;
2769
2770 /* See if this is one of the special sections. */
2771 if (sec->name == NULL)
2772 return NULL;
2773
2774 bed = get_elf_backend_data (abfd);
2775 spec = bed->special_sections;
2776 if (spec)
2777 {
2778 spec = _bfd_elf_get_special_section (sec->name,
2779 bed->special_sections,
2780 sec->use_rela_p);
2781 if (spec != NULL)
2782 return spec;
2783 }
2784
2785 if (sec->name[0] != '.')
2786 return NULL;
2787
2788 i = sec->name[1] - 'b';
2789 if (i < 0 || i > 'z' - 'b')
2790 return NULL;
2791
2792 spec = special_sections[i];
2793
2794 if (spec == NULL)
2795 return NULL;
2796
2797 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2798 }
2799
2800 bfd_boolean
2801 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2802 {
2803 struct bfd_elf_section_data *sdata;
2804 const struct elf_backend_data *bed;
2805 const struct bfd_elf_special_section *ssect;
2806
2807 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2808 if (sdata == NULL)
2809 {
2810 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2811 sizeof (*sdata));
2812 if (sdata == NULL)
2813 return FALSE;
2814 sec->used_by_bfd = sdata;
2815 }
2816
2817 /* Indicate whether or not this section should use RELA relocations. */
2818 bed = get_elf_backend_data (abfd);
2819 sec->use_rela_p = bed->default_use_rela_p;
2820
2821 /* When we read a file, we don't need to set ELF section type and
2822 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2823 anyway. We will set ELF section type and flags for all linker
2824 created sections. If user specifies BFD section flags, we will
2825 set ELF section type and flags based on BFD section flags in
2826 elf_fake_sections. Special handling for .init_array/.fini_array
2827 output sections since they may contain .ctors/.dtors input
2828 sections. We don't want _bfd_elf_init_private_section_data to
2829 copy ELF section type from .ctors/.dtors input sections. */
2830 if (abfd->direction != read_direction
2831 || (sec->flags & SEC_LINKER_CREATED) != 0)
2832 {
2833 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2834 if (ssect != NULL
2835 && (!sec->flags
2836 || (sec->flags & SEC_LINKER_CREATED) != 0
2837 || ssect->type == SHT_INIT_ARRAY
2838 || ssect->type == SHT_FINI_ARRAY))
2839 {
2840 elf_section_type (sec) = ssect->type;
2841 elf_section_flags (sec) = ssect->attr;
2842 }
2843 }
2844
2845 return _bfd_generic_new_section_hook (abfd, sec);
2846 }
2847
2848 /* Create a new bfd section from an ELF program header.
2849
2850 Since program segments have no names, we generate a synthetic name
2851 of the form segment<NUM>, where NUM is generally the index in the
2852 program header table. For segments that are split (see below) we
2853 generate the names segment<NUM>a and segment<NUM>b.
2854
2855 Note that some program segments may have a file size that is different than
2856 (less than) the memory size. All this means is that at execution the
2857 system must allocate the amount of memory specified by the memory size,
2858 but only initialize it with the first "file size" bytes read from the
2859 file. This would occur for example, with program segments consisting
2860 of combined data+bss.
2861
2862 To handle the above situation, this routine generates TWO bfd sections
2863 for the single program segment. The first has the length specified by
2864 the file size of the segment, and the second has the length specified
2865 by the difference between the two sizes. In effect, the segment is split
2866 into its initialized and uninitialized parts.
2867
2868 */
2869
2870 bfd_boolean
2871 _bfd_elf_make_section_from_phdr (bfd *abfd,
2872 Elf_Internal_Phdr *hdr,
2873 int hdr_index,
2874 const char *type_name)
2875 {
2876 asection *newsect;
2877 char *name;
2878 char namebuf[64];
2879 size_t len;
2880 int split;
2881
2882 split = ((hdr->p_memsz > 0)
2883 && (hdr->p_filesz > 0)
2884 && (hdr->p_memsz > hdr->p_filesz));
2885
2886 if (hdr->p_filesz > 0)
2887 {
2888 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2889 len = strlen (namebuf) + 1;
2890 name = (char *) bfd_alloc (abfd, len);
2891 if (!name)
2892 return FALSE;
2893 memcpy (name, namebuf, len);
2894 newsect = bfd_make_section (abfd, name);
2895 if (newsect == NULL)
2896 return FALSE;
2897 newsect->vma = hdr->p_vaddr;
2898 newsect->lma = hdr->p_paddr;
2899 newsect->size = hdr->p_filesz;
2900 newsect->filepos = hdr->p_offset;
2901 newsect->flags |= SEC_HAS_CONTENTS;
2902 newsect->alignment_power = bfd_log2 (hdr->p_align);
2903 if (hdr->p_type == PT_LOAD)
2904 {
2905 newsect->flags |= SEC_ALLOC;
2906 newsect->flags |= SEC_LOAD;
2907 if (hdr->p_flags & PF_X)
2908 {
2909 /* FIXME: all we known is that it has execute PERMISSION,
2910 may be data. */
2911 newsect->flags |= SEC_CODE;
2912 }
2913 }
2914 if (!(hdr->p_flags & PF_W))
2915 {
2916 newsect->flags |= SEC_READONLY;
2917 }
2918 }
2919
2920 if (hdr->p_memsz > hdr->p_filesz)
2921 {
2922 bfd_vma align;
2923
2924 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2925 len = strlen (namebuf) + 1;
2926 name = (char *) bfd_alloc (abfd, len);
2927 if (!name)
2928 return FALSE;
2929 memcpy (name, namebuf, len);
2930 newsect = bfd_make_section (abfd, name);
2931 if (newsect == NULL)
2932 return FALSE;
2933 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2934 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2935 newsect->size = hdr->p_memsz - hdr->p_filesz;
2936 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2937 align = newsect->vma & -newsect->vma;
2938 if (align == 0 || align > hdr->p_align)
2939 align = hdr->p_align;
2940 newsect->alignment_power = bfd_log2 (align);
2941 if (hdr->p_type == PT_LOAD)
2942 {
2943 /* Hack for gdb. Segments that have not been modified do
2944 not have their contents written to a core file, on the
2945 assumption that a debugger can find the contents in the
2946 executable. We flag this case by setting the fake
2947 section size to zero. Note that "real" bss sections will
2948 always have their contents dumped to the core file. */
2949 if (bfd_get_format (abfd) == bfd_core)
2950 newsect->size = 0;
2951 newsect->flags |= SEC_ALLOC;
2952 if (hdr->p_flags & PF_X)
2953 newsect->flags |= SEC_CODE;
2954 }
2955 if (!(hdr->p_flags & PF_W))
2956 newsect->flags |= SEC_READONLY;
2957 }
2958
2959 return TRUE;
2960 }
2961
2962 bfd_boolean
2963 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2964 {
2965 const struct elf_backend_data *bed;
2966
2967 switch (hdr->p_type)
2968 {
2969 case PT_NULL:
2970 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2971
2972 case PT_LOAD:
2973 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2974
2975 case PT_DYNAMIC:
2976 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2977
2978 case PT_INTERP:
2979 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2980
2981 case PT_NOTE:
2982 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2983 return FALSE;
2984 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2985 return FALSE;
2986 return TRUE;
2987
2988 case PT_SHLIB:
2989 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2990
2991 case PT_PHDR:
2992 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2993
2994 case PT_GNU_EH_FRAME:
2995 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2996 "eh_frame_hdr");
2997
2998 case PT_GNU_STACK:
2999 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3000
3001 case PT_GNU_RELRO:
3002 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3003
3004 default:
3005 /* Check for any processor-specific program segment types. */
3006 bed = get_elf_backend_data (abfd);
3007 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3008 }
3009 }
3010
3011 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3012 REL or RELA. */
3013
3014 Elf_Internal_Shdr *
3015 _bfd_elf_single_rel_hdr (asection *sec)
3016 {
3017 if (elf_section_data (sec)->rel.hdr)
3018 {
3019 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3020 return elf_section_data (sec)->rel.hdr;
3021 }
3022 else
3023 return elf_section_data (sec)->rela.hdr;
3024 }
3025
3026 static bfd_boolean
3027 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3028 Elf_Internal_Shdr *rel_hdr,
3029 const char *sec_name,
3030 bfd_boolean use_rela_p)
3031 {
3032 char *name = (char *) bfd_alloc (abfd,
3033 sizeof ".rela" + strlen (sec_name));
3034 if (name == NULL)
3035 return FALSE;
3036
3037 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3038 rel_hdr->sh_name =
3039 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3040 FALSE);
3041 if (rel_hdr->sh_name == (unsigned int) -1)
3042 return FALSE;
3043
3044 return TRUE;
3045 }
3046
3047 /* Allocate and initialize a section-header for a new reloc section,
3048 containing relocations against ASECT. It is stored in RELDATA. If
3049 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3050 relocations. */
3051
3052 static bfd_boolean
3053 _bfd_elf_init_reloc_shdr (bfd *abfd,
3054 struct bfd_elf_section_reloc_data *reldata,
3055 const char *sec_name,
3056 bfd_boolean use_rela_p,
3057 bfd_boolean delay_st_name_p)
3058 {
3059 Elf_Internal_Shdr *rel_hdr;
3060 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3061
3062 BFD_ASSERT (reldata->hdr == NULL);
3063 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3064 reldata->hdr = rel_hdr;
3065
3066 if (delay_st_name_p)
3067 rel_hdr->sh_name = (unsigned int) -1;
3068 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3069 use_rela_p))
3070 return FALSE;
3071 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3072 rel_hdr->sh_entsize = (use_rela_p
3073 ? bed->s->sizeof_rela
3074 : bed->s->sizeof_rel);
3075 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3076 rel_hdr->sh_flags = 0;
3077 rel_hdr->sh_addr = 0;
3078 rel_hdr->sh_size = 0;
3079 rel_hdr->sh_offset = 0;
3080
3081 return TRUE;
3082 }
3083
3084 /* Return the default section type based on the passed in section flags. */
3085
3086 int
3087 bfd_elf_get_default_section_type (flagword flags)
3088 {
3089 if ((flags & SEC_ALLOC) != 0
3090 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3091 return SHT_NOBITS;
3092 return SHT_PROGBITS;
3093 }
3094
3095 struct fake_section_arg
3096 {
3097 struct bfd_link_info *link_info;
3098 bfd_boolean failed;
3099 };
3100
3101 /* Set up an ELF internal section header for a section. */
3102
3103 static void
3104 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3105 {
3106 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3107 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3108 struct bfd_elf_section_data *esd = elf_section_data (asect);
3109 Elf_Internal_Shdr *this_hdr;
3110 unsigned int sh_type;
3111 const char *name = asect->name;
3112 bfd_boolean delay_st_name_p = FALSE;
3113
3114 if (arg->failed)
3115 {
3116 /* We already failed; just get out of the bfd_map_over_sections
3117 loop. */
3118 return;
3119 }
3120
3121 this_hdr = &esd->this_hdr;
3122
3123 if (arg->link_info)
3124 {
3125 /* ld: compress DWARF debug sections with names: .debug_*. */
3126 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3127 && (asect->flags & SEC_DEBUGGING)
3128 && name[1] == 'd'
3129 && name[6] == '_')
3130 {
3131 /* Set SEC_ELF_COMPRESS to indicate this section should be
3132 compressed. */
3133 asect->flags |= SEC_ELF_COMPRESS;
3134
3135 /* If this section will be compressed, delay adding section
3136 name to section name section after it is compressed in
3137 _bfd_elf_assign_file_positions_for_non_load. */
3138 delay_st_name_p = TRUE;
3139 }
3140 }
3141 else if ((asect->flags & SEC_ELF_RENAME))
3142 {
3143 /* objcopy: rename output DWARF debug section. */
3144 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3145 {
3146 /* When we decompress or compress with SHF_COMPRESSED,
3147 convert section name from .zdebug_* to .debug_* if
3148 needed. */
3149 if (name[1] == 'z')
3150 {
3151 char *new_name = convert_zdebug_to_debug (abfd, name);
3152 if (new_name == NULL)
3153 {
3154 arg->failed = TRUE;
3155 return;
3156 }
3157 name = new_name;
3158 }
3159 }
3160 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3161 {
3162 /* PR binutils/18087: Compression does not always make a
3163 section smaller. So only rename the section when
3164 compression has actually taken place. If input section
3165 name is .zdebug_*, we should never compress it again. */
3166 char *new_name = convert_debug_to_zdebug (abfd, name);
3167 if (new_name == NULL)
3168 {
3169 arg->failed = TRUE;
3170 return;
3171 }
3172 BFD_ASSERT (name[1] != 'z');
3173 name = new_name;
3174 }
3175 }
3176
3177 if (delay_st_name_p)
3178 this_hdr->sh_name = (unsigned int) -1;
3179 else
3180 {
3181 this_hdr->sh_name
3182 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3183 name, FALSE);
3184 if (this_hdr->sh_name == (unsigned int) -1)
3185 {
3186 arg->failed = TRUE;
3187 return;
3188 }
3189 }
3190
3191 /* Don't clear sh_flags. Assembler may set additional bits. */
3192
3193 if ((asect->flags & SEC_ALLOC) != 0
3194 || asect->user_set_vma)
3195 this_hdr->sh_addr = asect->vma;
3196 else
3197 this_hdr->sh_addr = 0;
3198
3199 this_hdr->sh_offset = 0;
3200 this_hdr->sh_size = asect->size;
3201 this_hdr->sh_link = 0;
3202 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3203 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3204 {
3205 _bfd_error_handler
3206 /* xgettext:c-format */
3207 (_("%B: error: Alignment power %d of section `%A' is too big"),
3208 abfd, asect->alignment_power, asect);
3209 arg->failed = TRUE;
3210 return;
3211 }
3212 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3213 /* The sh_entsize and sh_info fields may have been set already by
3214 copy_private_section_data. */
3215
3216 this_hdr->bfd_section = asect;
3217 this_hdr->contents = NULL;
3218
3219 /* If the section type is unspecified, we set it based on
3220 asect->flags. */
3221 if ((asect->flags & SEC_GROUP) != 0)
3222 sh_type = SHT_GROUP;
3223 else
3224 sh_type = bfd_elf_get_default_section_type (asect->flags);
3225
3226 if (this_hdr->sh_type == SHT_NULL)
3227 this_hdr->sh_type = sh_type;
3228 else if (this_hdr->sh_type == SHT_NOBITS
3229 && sh_type == SHT_PROGBITS
3230 && (asect->flags & SEC_ALLOC) != 0)
3231 {
3232 /* Warn if we are changing a NOBITS section to PROGBITS, but
3233 allow the link to proceed. This can happen when users link
3234 non-bss input sections to bss output sections, or emit data
3235 to a bss output section via a linker script. */
3236 _bfd_error_handler
3237 (_("warning: section `%A' type changed to PROGBITS"), asect);
3238 this_hdr->sh_type = sh_type;
3239 }
3240
3241 switch (this_hdr->sh_type)
3242 {
3243 default:
3244 break;
3245
3246 case SHT_STRTAB:
3247 case SHT_NOTE:
3248 case SHT_NOBITS:
3249 case SHT_PROGBITS:
3250 break;
3251
3252 case SHT_INIT_ARRAY:
3253 case SHT_FINI_ARRAY:
3254 case SHT_PREINIT_ARRAY:
3255 this_hdr->sh_entsize = bed->s->arch_size / 8;
3256 break;
3257
3258 case SHT_HASH:
3259 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3260 break;
3261
3262 case SHT_DYNSYM:
3263 this_hdr->sh_entsize = bed->s->sizeof_sym;
3264 break;
3265
3266 case SHT_DYNAMIC:
3267 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3268 break;
3269
3270 case SHT_RELA:
3271 if (get_elf_backend_data (abfd)->may_use_rela_p)
3272 this_hdr->sh_entsize = bed->s->sizeof_rela;
3273 break;
3274
3275 case SHT_REL:
3276 if (get_elf_backend_data (abfd)->may_use_rel_p)
3277 this_hdr->sh_entsize = bed->s->sizeof_rel;
3278 break;
3279
3280 case SHT_GNU_versym:
3281 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3282 break;
3283
3284 case SHT_GNU_verdef:
3285 this_hdr->sh_entsize = 0;
3286 /* objcopy or strip will copy over sh_info, but may not set
3287 cverdefs. The linker will set cverdefs, but sh_info will be
3288 zero. */
3289 if (this_hdr->sh_info == 0)
3290 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3291 else
3292 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3293 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3294 break;
3295
3296 case SHT_GNU_verneed:
3297 this_hdr->sh_entsize = 0;
3298 /* objcopy or strip will copy over sh_info, but may not set
3299 cverrefs. The linker will set cverrefs, but sh_info will be
3300 zero. */
3301 if (this_hdr->sh_info == 0)
3302 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3303 else
3304 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3305 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3306 break;
3307
3308 case SHT_GROUP:
3309 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3310 break;
3311
3312 case SHT_GNU_HASH:
3313 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3314 break;
3315 }
3316
3317 if ((asect->flags & SEC_ALLOC) != 0)
3318 this_hdr->sh_flags |= SHF_ALLOC;
3319 if ((asect->flags & SEC_READONLY) == 0)
3320 this_hdr->sh_flags |= SHF_WRITE;
3321 if ((asect->flags & SEC_CODE) != 0)
3322 this_hdr->sh_flags |= SHF_EXECINSTR;
3323 if ((asect->flags & SEC_MERGE) != 0)
3324 {
3325 this_hdr->sh_flags |= SHF_MERGE;
3326 this_hdr->sh_entsize = asect->entsize;
3327 }
3328 if ((asect->flags & SEC_STRINGS) != 0)
3329 this_hdr->sh_flags |= SHF_STRINGS;
3330 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3331 this_hdr->sh_flags |= SHF_GROUP;
3332 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3333 {
3334 this_hdr->sh_flags |= SHF_TLS;
3335 if (asect->size == 0
3336 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3337 {
3338 struct bfd_link_order *o = asect->map_tail.link_order;
3339
3340 this_hdr->sh_size = 0;
3341 if (o != NULL)
3342 {
3343 this_hdr->sh_size = o->offset + o->size;
3344 if (this_hdr->sh_size != 0)
3345 this_hdr->sh_type = SHT_NOBITS;
3346 }
3347 }
3348 }
3349 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3350 this_hdr->sh_flags |= SHF_EXCLUDE;
3351
3352 /* If the section has relocs, set up a section header for the
3353 SHT_REL[A] section. If two relocation sections are required for
3354 this section, it is up to the processor-specific back-end to
3355 create the other. */
3356 if ((asect->flags & SEC_RELOC) != 0)
3357 {
3358 /* When doing a relocatable link, create both REL and RELA sections if
3359 needed. */
3360 if (arg->link_info
3361 /* Do the normal setup if we wouldn't create any sections here. */
3362 && esd->rel.count + esd->rela.count > 0
3363 && (bfd_link_relocatable (arg->link_info)
3364 || arg->link_info->emitrelocations))
3365 {
3366 if (esd->rel.count && esd->rel.hdr == NULL
3367 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE,
3368 delay_st_name_p))
3369 {
3370 arg->failed = TRUE;
3371 return;
3372 }
3373 if (esd->rela.count && esd->rela.hdr == NULL
3374 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE,
3375 delay_st_name_p))
3376 {
3377 arg->failed = TRUE;
3378 return;
3379 }
3380 }
3381 else if (!_bfd_elf_init_reloc_shdr (abfd,
3382 (asect->use_rela_p
3383 ? &esd->rela : &esd->rel),
3384 name,
3385 asect->use_rela_p,
3386 delay_st_name_p))
3387 arg->failed = TRUE;
3388 }
3389
3390 /* Check for processor-specific section types. */
3391 sh_type = this_hdr->sh_type;
3392 if (bed->elf_backend_fake_sections
3393 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3394 arg->failed = TRUE;
3395
3396 if (sh_type == SHT_NOBITS && asect->size != 0)
3397 {
3398 /* Don't change the header type from NOBITS if we are being
3399 called for objcopy --only-keep-debug. */
3400 this_hdr->sh_type = sh_type;
3401 }
3402 }
3403
3404 /* Fill in the contents of a SHT_GROUP section. Called from
3405 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3406 when ELF targets use the generic linker, ld. Called for ld -r
3407 from bfd_elf_final_link. */
3408
3409 void
3410 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3411 {
3412 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3413 asection *elt, *first;
3414 unsigned char *loc;
3415 bfd_boolean gas;
3416
3417 /* Ignore linker created group section. See elfNN_ia64_object_p in
3418 elfxx-ia64.c. */
3419 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3420 || *failedptr)
3421 return;
3422
3423 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3424 {
3425 unsigned long symindx = 0;
3426
3427 /* elf_group_id will have been set up by objcopy and the
3428 generic linker. */
3429 if (elf_group_id (sec) != NULL)
3430 symindx = elf_group_id (sec)->udata.i;
3431
3432 if (symindx == 0)
3433 {
3434 /* If called from the assembler, swap_out_syms will have set up
3435 elf_section_syms. */
3436 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3437 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3438 }
3439 elf_section_data (sec)->this_hdr.sh_info = symindx;
3440 }
3441 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3442 {
3443 /* The ELF backend linker sets sh_info to -2 when the group
3444 signature symbol is global, and thus the index can't be
3445 set until all local symbols are output. */
3446 asection *igroup;
3447 struct bfd_elf_section_data *sec_data;
3448 unsigned long symndx;
3449 unsigned long extsymoff;
3450 struct elf_link_hash_entry *h;
3451
3452 /* The point of this little dance to the first SHF_GROUP section
3453 then back to the SHT_GROUP section is that this gets us to
3454 the SHT_GROUP in the input object. */
3455 igroup = elf_sec_group (elf_next_in_group (sec));
3456 sec_data = elf_section_data (igroup);
3457 symndx = sec_data->this_hdr.sh_info;
3458 extsymoff = 0;
3459 if (!elf_bad_symtab (igroup->owner))
3460 {
3461 Elf_Internal_Shdr *symtab_hdr;
3462
3463 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3464 extsymoff = symtab_hdr->sh_info;
3465 }
3466 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3467 while (h->root.type == bfd_link_hash_indirect
3468 || h->root.type == bfd_link_hash_warning)
3469 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3470
3471 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3472 }
3473
3474 /* The contents won't be allocated for "ld -r" or objcopy. */
3475 gas = TRUE;
3476 if (sec->contents == NULL)
3477 {
3478 gas = FALSE;
3479 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3480
3481 /* Arrange for the section to be written out. */
3482 elf_section_data (sec)->this_hdr.contents = sec->contents;
3483 if (sec->contents == NULL)
3484 {
3485 *failedptr = TRUE;
3486 return;
3487 }
3488 }
3489
3490 loc = sec->contents + sec->size;
3491
3492 /* Get the pointer to the first section in the group that gas
3493 squirreled away here. objcopy arranges for this to be set to the
3494 start of the input section group. */
3495 first = elt = elf_next_in_group (sec);
3496
3497 /* First element is a flag word. Rest of section is elf section
3498 indices for all the sections of the group. Write them backwards
3499 just to keep the group in the same order as given in .section
3500 directives, not that it matters. */
3501 while (elt != NULL)
3502 {
3503 asection *s;
3504
3505 s = elt;
3506 if (!gas)
3507 s = s->output_section;
3508 if (s != NULL
3509 && !bfd_is_abs_section (s))
3510 {
3511 unsigned int idx = elf_section_data (s)->this_idx;
3512
3513 loc -= 4;
3514 H_PUT_32 (abfd, idx, loc);
3515 }
3516 elt = elf_next_in_group (elt);
3517 if (elt == first)
3518 break;
3519 }
3520
3521 loc -= 4;
3522 BFD_ASSERT (loc == sec->contents);
3523
3524 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3525 }
3526
3527 /* Given NAME, the name of a relocation section stripped of its
3528 .rel/.rela prefix, return the section in ABFD to which the
3529 relocations apply. */
3530
3531 asection *
3532 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3533 {
3534 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3535 section likely apply to .got.plt or .got section. */
3536 if (get_elf_backend_data (abfd)->want_got_plt
3537 && strcmp (name, ".plt") == 0)
3538 {
3539 asection *sec;
3540
3541 name = ".got.plt";
3542 sec = bfd_get_section_by_name (abfd, name);
3543 if (sec != NULL)
3544 return sec;
3545 name = ".got";
3546 }
3547
3548 return bfd_get_section_by_name (abfd, name);
3549 }
3550
3551 /* Return the section to which RELOC_SEC applies. */
3552
3553 static asection *
3554 elf_get_reloc_section (asection *reloc_sec)
3555 {
3556 const char *name;
3557 unsigned int type;
3558 bfd *abfd;
3559 const struct elf_backend_data *bed;
3560
3561 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3562 if (type != SHT_REL && type != SHT_RELA)
3563 return NULL;
3564
3565 /* We look up the section the relocs apply to by name. */
3566 name = reloc_sec->name;
3567 if (strncmp (name, ".rel", 4) != 0)
3568 return NULL;
3569 name += 4;
3570 if (type == SHT_RELA && *name++ != 'a')
3571 return NULL;
3572
3573 abfd = reloc_sec->owner;
3574 bed = get_elf_backend_data (abfd);
3575 return bed->get_reloc_section (abfd, name);
3576 }
3577
3578 /* Assign all ELF section numbers. The dummy first section is handled here
3579 too. The link/info pointers for the standard section types are filled
3580 in here too, while we're at it. */
3581
3582 static bfd_boolean
3583 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3584 {
3585 struct elf_obj_tdata *t = elf_tdata (abfd);
3586 asection *sec;
3587 unsigned int section_number;
3588 Elf_Internal_Shdr **i_shdrp;
3589 struct bfd_elf_section_data *d;
3590 bfd_boolean need_symtab;
3591
3592 section_number = 1;
3593
3594 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3595
3596 /* SHT_GROUP sections are in relocatable files only. */
3597 if (link_info == NULL || !link_info->resolve_section_groups)
3598 {
3599 size_t reloc_count = 0;
3600
3601 /* Put SHT_GROUP sections first. */
3602 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3603 {
3604 d = elf_section_data (sec);
3605
3606 if (d->this_hdr.sh_type == SHT_GROUP)
3607 {
3608 if (sec->flags & SEC_LINKER_CREATED)
3609 {
3610 /* Remove the linker created SHT_GROUP sections. */
3611 bfd_section_list_remove (abfd, sec);
3612 abfd->section_count--;
3613 }
3614 else
3615 d->this_idx = section_number++;
3616 }
3617
3618 /* Count relocations. */
3619 reloc_count += sec->reloc_count;
3620 }
3621
3622 /* Clear HAS_RELOC if there are no relocations. */
3623 if (reloc_count == 0)
3624 abfd->flags &= ~HAS_RELOC;
3625 }
3626
3627 for (sec = abfd->sections; sec; sec = sec->next)
3628 {
3629 d = elf_section_data (sec);
3630
3631 if (d->this_hdr.sh_type != SHT_GROUP)
3632 d->this_idx = section_number++;
3633 if (d->this_hdr.sh_name != (unsigned int) -1)
3634 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3635 if (d->rel.hdr)
3636 {
3637 d->rel.idx = section_number++;
3638 if (d->rel.hdr->sh_name != (unsigned int) -1)
3639 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3640 }
3641 else
3642 d->rel.idx = 0;
3643
3644 if (d->rela.hdr)
3645 {
3646 d->rela.idx = section_number++;
3647 if (d->rela.hdr->sh_name != (unsigned int) -1)
3648 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3649 }
3650 else
3651 d->rela.idx = 0;
3652 }
3653
3654 need_symtab = (bfd_get_symcount (abfd) > 0
3655 || (link_info == NULL
3656 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3657 == HAS_RELOC)));
3658 if (need_symtab)
3659 {
3660 elf_onesymtab (abfd) = section_number++;
3661 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3662 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3663 {
3664 elf_section_list * entry;
3665
3666 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3667
3668 entry = bfd_zalloc (abfd, sizeof * entry);
3669 entry->ndx = section_number++;
3670 elf_symtab_shndx_list (abfd) = entry;
3671 entry->hdr.sh_name
3672 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3673 ".symtab_shndx", FALSE);
3674 if (entry->hdr.sh_name == (unsigned int) -1)
3675 return FALSE;
3676 }
3677 elf_strtab_sec (abfd) = section_number++;
3678 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3679 }
3680
3681 elf_shstrtab_sec (abfd) = section_number++;
3682 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3683 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3684
3685 if (section_number >= SHN_LORESERVE)
3686 {
3687 /* xgettext:c-format */
3688 _bfd_error_handler (_("%B: too many sections: %u"),
3689 abfd, section_number);
3690 return FALSE;
3691 }
3692
3693 elf_numsections (abfd) = section_number;
3694 elf_elfheader (abfd)->e_shnum = section_number;
3695
3696 /* Set up the list of section header pointers, in agreement with the
3697 indices. */
3698 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3699 sizeof (Elf_Internal_Shdr *));
3700 if (i_shdrp == NULL)
3701 return FALSE;
3702
3703 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3704 sizeof (Elf_Internal_Shdr));
3705 if (i_shdrp[0] == NULL)
3706 {
3707 bfd_release (abfd, i_shdrp);
3708 return FALSE;
3709 }
3710
3711 elf_elfsections (abfd) = i_shdrp;
3712
3713 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3714 if (need_symtab)
3715 {
3716 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3717 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3718 {
3719 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3720 BFD_ASSERT (entry != NULL);
3721 i_shdrp[entry->ndx] = & entry->hdr;
3722 entry->hdr.sh_link = elf_onesymtab (abfd);
3723 }
3724 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3725 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3726 }
3727
3728 for (sec = abfd->sections; sec; sec = sec->next)
3729 {
3730 asection *s;
3731
3732 d = elf_section_data (sec);
3733
3734 i_shdrp[d->this_idx] = &d->this_hdr;
3735 if (d->rel.idx != 0)
3736 i_shdrp[d->rel.idx] = d->rel.hdr;
3737 if (d->rela.idx != 0)
3738 i_shdrp[d->rela.idx] = d->rela.hdr;
3739
3740 /* Fill in the sh_link and sh_info fields while we're at it. */
3741
3742 /* sh_link of a reloc section is the section index of the symbol
3743 table. sh_info is the section index of the section to which
3744 the relocation entries apply. */
3745 if (d->rel.idx != 0)
3746 {
3747 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3748 d->rel.hdr->sh_info = d->this_idx;
3749 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3750 }
3751 if (d->rela.idx != 0)
3752 {
3753 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3754 d->rela.hdr->sh_info = d->this_idx;
3755 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3756 }
3757
3758 /* We need to set up sh_link for SHF_LINK_ORDER. */
3759 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3760 {
3761 s = elf_linked_to_section (sec);
3762 if (s)
3763 {
3764 /* elf_linked_to_section points to the input section. */
3765 if (link_info != NULL)
3766 {
3767 /* Check discarded linkonce section. */
3768 if (discarded_section (s))
3769 {
3770 asection *kept;
3771 _bfd_error_handler
3772 /* xgettext:c-format */
3773 (_("%B: sh_link of section `%A' points to"
3774 " discarded section `%A' of `%B'"),
3775 abfd, d->this_hdr.bfd_section,
3776 s, s->owner);
3777 /* Point to the kept section if it has the same
3778 size as the discarded one. */
3779 kept = _bfd_elf_check_kept_section (s, link_info);
3780 if (kept == NULL)
3781 {
3782 bfd_set_error (bfd_error_bad_value);
3783 return FALSE;
3784 }
3785 s = kept;
3786 }
3787
3788 s = s->output_section;
3789 BFD_ASSERT (s != NULL);
3790 }
3791 else
3792 {
3793 /* Handle objcopy. */
3794 if (s->output_section == NULL)
3795 {
3796 _bfd_error_handler
3797 /* xgettext:c-format */
3798 (_("%B: sh_link of section `%A' points to"
3799 " removed section `%A' of `%B'"),
3800 abfd, d->this_hdr.bfd_section, s, s->owner);
3801 bfd_set_error (bfd_error_bad_value);
3802 return FALSE;
3803 }
3804 s = s->output_section;
3805 }
3806 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3807 }
3808 else
3809 {
3810 /* PR 290:
3811 The Intel C compiler generates SHT_IA_64_UNWIND with
3812 SHF_LINK_ORDER. But it doesn't set the sh_link or
3813 sh_info fields. Hence we could get the situation
3814 where s is NULL. */
3815 const struct elf_backend_data *bed
3816 = get_elf_backend_data (abfd);
3817 if (bed->link_order_error_handler)
3818 bed->link_order_error_handler
3819 /* xgettext:c-format */
3820 (_("%B: warning: sh_link not set for section `%A'"),
3821 abfd, sec);
3822 }
3823 }
3824
3825 switch (d->this_hdr.sh_type)
3826 {
3827 case SHT_REL:
3828 case SHT_RELA:
3829 /* A reloc section which we are treating as a normal BFD
3830 section. sh_link is the section index of the symbol
3831 table. sh_info is the section index of the section to
3832 which the relocation entries apply. We assume that an
3833 allocated reloc section uses the dynamic symbol table.
3834 FIXME: How can we be sure? */
3835 s = bfd_get_section_by_name (abfd, ".dynsym");
3836 if (s != NULL)
3837 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3838
3839 s = elf_get_reloc_section (sec);
3840 if (s != NULL)
3841 {
3842 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3843 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3844 }
3845 break;
3846
3847 case SHT_STRTAB:
3848 /* We assume that a section named .stab*str is a stabs
3849 string section. We look for a section with the same name
3850 but without the trailing ``str'', and set its sh_link
3851 field to point to this section. */
3852 if (CONST_STRNEQ (sec->name, ".stab")
3853 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3854 {
3855 size_t len;
3856 char *alc;
3857
3858 len = strlen (sec->name);
3859 alc = (char *) bfd_malloc (len - 2);
3860 if (alc == NULL)
3861 return FALSE;
3862 memcpy (alc, sec->name, len - 3);
3863 alc[len - 3] = '\0';
3864 s = bfd_get_section_by_name (abfd, alc);
3865 free (alc);
3866 if (s != NULL)
3867 {
3868 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3869
3870 /* This is a .stab section. */
3871 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3872 elf_section_data (s)->this_hdr.sh_entsize
3873 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3874 }
3875 }
3876 break;
3877
3878 case SHT_DYNAMIC:
3879 case SHT_DYNSYM:
3880 case SHT_GNU_verneed:
3881 case SHT_GNU_verdef:
3882 /* sh_link is the section header index of the string table
3883 used for the dynamic entries, or the symbol table, or the
3884 version strings. */
3885 s = bfd_get_section_by_name (abfd, ".dynstr");
3886 if (s != NULL)
3887 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3888 break;
3889
3890 case SHT_GNU_LIBLIST:
3891 /* sh_link is the section header index of the prelink library
3892 list used for the dynamic entries, or the symbol table, or
3893 the version strings. */
3894 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3895 ? ".dynstr" : ".gnu.libstr");
3896 if (s != NULL)
3897 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3898 break;
3899
3900 case SHT_HASH:
3901 case SHT_GNU_HASH:
3902 case SHT_GNU_versym:
3903 /* sh_link is the section header index of the symbol table
3904 this hash table or version table is for. */
3905 s = bfd_get_section_by_name (abfd, ".dynsym");
3906 if (s != NULL)
3907 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3908 break;
3909
3910 case SHT_GROUP:
3911 d->this_hdr.sh_link = elf_onesymtab (abfd);
3912 }
3913 }
3914
3915 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3916 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3917 debug section name from .debug_* to .zdebug_* if needed. */
3918
3919 return TRUE;
3920 }
3921
3922 static bfd_boolean
3923 sym_is_global (bfd *abfd, asymbol *sym)
3924 {
3925 /* If the backend has a special mapping, use it. */
3926 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3927 if (bed->elf_backend_sym_is_global)
3928 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3929
3930 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3931 || bfd_is_und_section (bfd_get_section (sym))
3932 || bfd_is_com_section (bfd_get_section (sym)));
3933 }
3934
3935 /* Filter global symbols of ABFD to include in the import library. All
3936 SYMCOUNT symbols of ABFD can be examined from their pointers in
3937 SYMS. Pointers of symbols to keep should be stored contiguously at
3938 the beginning of that array.
3939
3940 Returns the number of symbols to keep. */
3941
3942 unsigned int
3943 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3944 asymbol **syms, long symcount)
3945 {
3946 long src_count, dst_count = 0;
3947
3948 for (src_count = 0; src_count < symcount; src_count++)
3949 {
3950 asymbol *sym = syms[src_count];
3951 char *name = (char *) bfd_asymbol_name (sym);
3952 struct bfd_link_hash_entry *h;
3953
3954 if (!sym_is_global (abfd, sym))
3955 continue;
3956
3957 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
3958 if (h == NULL)
3959 continue;
3960 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
3961 continue;
3962 if (h->linker_def || h->ldscript_def)
3963 continue;
3964
3965 syms[dst_count++] = sym;
3966 }
3967
3968 syms[dst_count] = NULL;
3969
3970 return dst_count;
3971 }
3972
3973 /* Don't output section symbols for sections that are not going to be
3974 output, that are duplicates or there is no BFD section. */
3975
3976 static bfd_boolean
3977 ignore_section_sym (bfd *abfd, asymbol *sym)
3978 {
3979 elf_symbol_type *type_ptr;
3980
3981 if ((sym->flags & BSF_SECTION_SYM) == 0)
3982 return FALSE;
3983
3984 type_ptr = elf_symbol_from (abfd, sym);
3985 return ((type_ptr != NULL
3986 && type_ptr->internal_elf_sym.st_shndx != 0
3987 && bfd_is_abs_section (sym->section))
3988 || !(sym->section->owner == abfd
3989 || (sym->section->output_section->owner == abfd
3990 && sym->section->output_offset == 0)
3991 || bfd_is_abs_section (sym->section)));
3992 }
3993
3994 /* Map symbol from it's internal number to the external number, moving
3995 all local symbols to be at the head of the list. */
3996
3997 static bfd_boolean
3998 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3999 {
4000 unsigned int symcount = bfd_get_symcount (abfd);
4001 asymbol **syms = bfd_get_outsymbols (abfd);
4002 asymbol **sect_syms;
4003 unsigned int num_locals = 0;
4004 unsigned int num_globals = 0;
4005 unsigned int num_locals2 = 0;
4006 unsigned int num_globals2 = 0;
4007 unsigned int max_index = 0;
4008 unsigned int idx;
4009 asection *asect;
4010 asymbol **new_syms;
4011
4012 #ifdef DEBUG
4013 fprintf (stderr, "elf_map_symbols\n");
4014 fflush (stderr);
4015 #endif
4016
4017 for (asect = abfd->sections; asect; asect = asect->next)
4018 {
4019 if (max_index < asect->index)
4020 max_index = asect->index;
4021 }
4022
4023 max_index++;
4024 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4025 if (sect_syms == NULL)
4026 return FALSE;
4027 elf_section_syms (abfd) = sect_syms;
4028 elf_num_section_syms (abfd) = max_index;
4029
4030 /* Init sect_syms entries for any section symbols we have already
4031 decided to output. */
4032 for (idx = 0; idx < symcount; idx++)
4033 {
4034 asymbol *sym = syms[idx];
4035
4036 if ((sym->flags & BSF_SECTION_SYM) != 0
4037 && sym->value == 0
4038 && !ignore_section_sym (abfd, sym)
4039 && !bfd_is_abs_section (sym->section))
4040 {
4041 asection *sec = sym->section;
4042
4043 if (sec->owner != abfd)
4044 sec = sec->output_section;
4045
4046 sect_syms[sec->index] = syms[idx];
4047 }
4048 }
4049
4050 /* Classify all of the symbols. */
4051 for (idx = 0; idx < symcount; idx++)
4052 {
4053 if (sym_is_global (abfd, syms[idx]))
4054 num_globals++;
4055 else if (!ignore_section_sym (abfd, syms[idx]))
4056 num_locals++;
4057 }
4058
4059 /* We will be adding a section symbol for each normal BFD section. Most
4060 sections will already have a section symbol in outsymbols, but
4061 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4062 at least in that case. */
4063 for (asect = abfd->sections; asect; asect = asect->next)
4064 {
4065 if (sect_syms[asect->index] == NULL)
4066 {
4067 if (!sym_is_global (abfd, asect->symbol))
4068 num_locals++;
4069 else
4070 num_globals++;
4071 }
4072 }
4073
4074 /* Now sort the symbols so the local symbols are first. */
4075 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4076 sizeof (asymbol *));
4077
4078 if (new_syms == NULL)
4079 return FALSE;
4080
4081 for (idx = 0; idx < symcount; idx++)
4082 {
4083 asymbol *sym = syms[idx];
4084 unsigned int i;
4085
4086 if (sym_is_global (abfd, sym))
4087 i = num_locals + num_globals2++;
4088 else if (!ignore_section_sym (abfd, sym))
4089 i = num_locals2++;
4090 else
4091 continue;
4092 new_syms[i] = sym;
4093 sym->udata.i = i + 1;
4094 }
4095 for (asect = abfd->sections; asect; asect = asect->next)
4096 {
4097 if (sect_syms[asect->index] == NULL)
4098 {
4099 asymbol *sym = asect->symbol;
4100 unsigned int i;
4101
4102 sect_syms[asect->index] = sym;
4103 if (!sym_is_global (abfd, sym))
4104 i = num_locals2++;
4105 else
4106 i = num_locals + num_globals2++;
4107 new_syms[i] = sym;
4108 sym->udata.i = i + 1;
4109 }
4110 }
4111
4112 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4113
4114 *pnum_locals = num_locals;
4115 return TRUE;
4116 }
4117
4118 /* Align to the maximum file alignment that could be required for any
4119 ELF data structure. */
4120
4121 static inline file_ptr
4122 align_file_position (file_ptr off, int align)
4123 {
4124 return (off + align - 1) & ~(align - 1);
4125 }
4126
4127 /* Assign a file position to a section, optionally aligning to the
4128 required section alignment. */
4129
4130 file_ptr
4131 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4132 file_ptr offset,
4133 bfd_boolean align)
4134 {
4135 if (align && i_shdrp->sh_addralign > 1)
4136 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4137 i_shdrp->sh_offset = offset;
4138 if (i_shdrp->bfd_section != NULL)
4139 i_shdrp->bfd_section->filepos = offset;
4140 if (i_shdrp->sh_type != SHT_NOBITS)
4141 offset += i_shdrp->sh_size;
4142 return offset;
4143 }
4144
4145 /* Compute the file positions we are going to put the sections at, and
4146 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4147 is not NULL, this is being called by the ELF backend linker. */
4148
4149 bfd_boolean
4150 _bfd_elf_compute_section_file_positions (bfd *abfd,
4151 struct bfd_link_info *link_info)
4152 {
4153 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4154 struct fake_section_arg fsargs;
4155 bfd_boolean failed;
4156 struct elf_strtab_hash *strtab = NULL;
4157 Elf_Internal_Shdr *shstrtab_hdr;
4158 bfd_boolean need_symtab;
4159
4160 if (abfd->output_has_begun)
4161 return TRUE;
4162
4163 /* Do any elf backend specific processing first. */
4164 if (bed->elf_backend_begin_write_processing)
4165 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4166
4167 if (! prep_headers (abfd))
4168 return FALSE;
4169
4170 /* Post process the headers if necessary. */
4171 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4172
4173 fsargs.failed = FALSE;
4174 fsargs.link_info = link_info;
4175 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4176 if (fsargs.failed)
4177 return FALSE;
4178
4179 if (!assign_section_numbers (abfd, link_info))
4180 return FALSE;
4181
4182 /* The backend linker builds symbol table information itself. */
4183 need_symtab = (link_info == NULL
4184 && (bfd_get_symcount (abfd) > 0
4185 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4186 == HAS_RELOC)));
4187 if (need_symtab)
4188 {
4189 /* Non-zero if doing a relocatable link. */
4190 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4191
4192 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4193 return FALSE;
4194 }
4195
4196 failed = FALSE;
4197 if (link_info == NULL)
4198 {
4199 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4200 if (failed)
4201 return FALSE;
4202 }
4203
4204 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4205 /* sh_name was set in prep_headers. */
4206 shstrtab_hdr->sh_type = SHT_STRTAB;
4207 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4208 shstrtab_hdr->sh_addr = 0;
4209 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4210 shstrtab_hdr->sh_entsize = 0;
4211 shstrtab_hdr->sh_link = 0;
4212 shstrtab_hdr->sh_info = 0;
4213 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4214 shstrtab_hdr->sh_addralign = 1;
4215
4216 if (!assign_file_positions_except_relocs (abfd, link_info))
4217 return FALSE;
4218
4219 if (need_symtab)
4220 {
4221 file_ptr off;
4222 Elf_Internal_Shdr *hdr;
4223
4224 off = elf_next_file_pos (abfd);
4225
4226 hdr = & elf_symtab_hdr (abfd);
4227 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4228
4229 if (elf_symtab_shndx_list (abfd) != NULL)
4230 {
4231 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4232 if (hdr->sh_size != 0)
4233 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4234 /* FIXME: What about other symtab_shndx sections in the list ? */
4235 }
4236
4237 hdr = &elf_tdata (abfd)->strtab_hdr;
4238 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4239
4240 elf_next_file_pos (abfd) = off;
4241
4242 /* Now that we know where the .strtab section goes, write it
4243 out. */
4244 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4245 || ! _bfd_elf_strtab_emit (abfd, strtab))
4246 return FALSE;
4247 _bfd_elf_strtab_free (strtab);
4248 }
4249
4250 abfd->output_has_begun = TRUE;
4251
4252 return TRUE;
4253 }
4254
4255 /* Make an initial estimate of the size of the program header. If we
4256 get the number wrong here, we'll redo section placement. */
4257
4258 static bfd_size_type
4259 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4260 {
4261 size_t segs;
4262 asection *s;
4263 const struct elf_backend_data *bed;
4264
4265 /* Assume we will need exactly two PT_LOAD segments: one for text
4266 and one for data. */
4267 segs = 2;
4268
4269 s = bfd_get_section_by_name (abfd, ".interp");
4270 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4271 {
4272 /* If we have a loadable interpreter section, we need a
4273 PT_INTERP segment. In this case, assume we also need a
4274 PT_PHDR segment, although that may not be true for all
4275 targets. */
4276 segs += 2;
4277 }
4278
4279 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4280 {
4281 /* We need a PT_DYNAMIC segment. */
4282 ++segs;
4283 }
4284
4285 if (info != NULL && info->relro)
4286 {
4287 /* We need a PT_GNU_RELRO segment. */
4288 ++segs;
4289 }
4290
4291 if (elf_eh_frame_hdr (abfd))
4292 {
4293 /* We need a PT_GNU_EH_FRAME segment. */
4294 ++segs;
4295 }
4296
4297 if (elf_stack_flags (abfd))
4298 {
4299 /* We need a PT_GNU_STACK segment. */
4300 ++segs;
4301 }
4302
4303 for (s = abfd->sections; s != NULL; s = s->next)
4304 {
4305 if ((s->flags & SEC_LOAD) != 0
4306 && CONST_STRNEQ (s->name, ".note"))
4307 {
4308 /* We need a PT_NOTE segment. */
4309 ++segs;
4310 /* Try to create just one PT_NOTE segment
4311 for all adjacent loadable .note* sections.
4312 gABI requires that within a PT_NOTE segment
4313 (and also inside of each SHT_NOTE section)
4314 each note is padded to a multiple of 4 size,
4315 so we check whether the sections are correctly
4316 aligned. */
4317 if (s->alignment_power == 2)
4318 while (s->next != NULL
4319 && s->next->alignment_power == 2
4320 && (s->next->flags & SEC_LOAD) != 0
4321 && CONST_STRNEQ (s->next->name, ".note"))
4322 s = s->next;
4323 }
4324 }
4325
4326 for (s = abfd->sections; s != NULL; s = s->next)
4327 {
4328 if (s->flags & SEC_THREAD_LOCAL)
4329 {
4330 /* We need a PT_TLS segment. */
4331 ++segs;
4332 break;
4333 }
4334 }
4335
4336 bed = get_elf_backend_data (abfd);
4337
4338 if ((abfd->flags & D_PAGED) != 0)
4339 {
4340 /* Add a PT_GNU_MBIND segment for each mbind section. */
4341 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4342 for (s = abfd->sections; s != NULL; s = s->next)
4343 if (elf_section_flags (s) & SHF_GNU_MBIND)
4344 {
4345 if (elf_section_data (s)->this_hdr.sh_info
4346 > PT_GNU_MBIND_NUM)
4347 {
4348 _bfd_error_handler
4349 /* xgettext:c-format */
4350 (_("%B: GNU_MBIN section `%A' has invalid sh_info field: %d"),
4351 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4352 continue;
4353 }
4354 /* Align mbind section to page size. */
4355 if (s->alignment_power < page_align_power)
4356 s->alignment_power = page_align_power;
4357 segs ++;
4358 }
4359 }
4360
4361 /* Let the backend count up any program headers it might need. */
4362 if (bed->elf_backend_additional_program_headers)
4363 {
4364 int a;
4365
4366 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4367 if (a == -1)
4368 abort ();
4369 segs += a;
4370 }
4371
4372 return segs * bed->s->sizeof_phdr;
4373 }
4374
4375 /* Find the segment that contains the output_section of section. */
4376
4377 Elf_Internal_Phdr *
4378 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4379 {
4380 struct elf_segment_map *m;
4381 Elf_Internal_Phdr *p;
4382
4383 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4384 m != NULL;
4385 m = m->next, p++)
4386 {
4387 int i;
4388
4389 for (i = m->count - 1; i >= 0; i--)
4390 if (m->sections[i] == section)
4391 return p;
4392 }
4393
4394 return NULL;
4395 }
4396
4397 /* Create a mapping from a set of sections to a program segment. */
4398
4399 static struct elf_segment_map *
4400 make_mapping (bfd *abfd,
4401 asection **sections,
4402 unsigned int from,
4403 unsigned int to,
4404 bfd_boolean phdr)
4405 {
4406 struct elf_segment_map *m;
4407 unsigned int i;
4408 asection **hdrpp;
4409 bfd_size_type amt;
4410
4411 amt = sizeof (struct elf_segment_map);
4412 amt += (to - from - 1) * sizeof (asection *);
4413 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4414 if (m == NULL)
4415 return NULL;
4416 m->next = NULL;
4417 m->p_type = PT_LOAD;
4418 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4419 m->sections[i - from] = *hdrpp;
4420 m->count = to - from;
4421
4422 if (from == 0 && phdr)
4423 {
4424 /* Include the headers in the first PT_LOAD segment. */
4425 m->includes_filehdr = 1;
4426 m->includes_phdrs = 1;
4427 }
4428
4429 return m;
4430 }
4431
4432 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4433 on failure. */
4434
4435 struct elf_segment_map *
4436 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4437 {
4438 struct elf_segment_map *m;
4439
4440 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4441 sizeof (struct elf_segment_map));
4442 if (m == NULL)
4443 return NULL;
4444 m->next = NULL;
4445 m->p_type = PT_DYNAMIC;
4446 m->count = 1;
4447 m->sections[0] = dynsec;
4448
4449 return m;
4450 }
4451
4452 /* Possibly add or remove segments from the segment map. */
4453
4454 static bfd_boolean
4455 elf_modify_segment_map (bfd *abfd,
4456 struct bfd_link_info *info,
4457 bfd_boolean remove_empty_load)
4458 {
4459 struct elf_segment_map **m;
4460 const struct elf_backend_data *bed;
4461
4462 /* The placement algorithm assumes that non allocated sections are
4463 not in PT_LOAD segments. We ensure this here by removing such
4464 sections from the segment map. We also remove excluded
4465 sections. Finally, any PT_LOAD segment without sections is
4466 removed. */
4467 m = &elf_seg_map (abfd);
4468 while (*m)
4469 {
4470 unsigned int i, new_count;
4471
4472 for (new_count = 0, i = 0; i < (*m)->count; i++)
4473 {
4474 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4475 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4476 || (*m)->p_type != PT_LOAD))
4477 {
4478 (*m)->sections[new_count] = (*m)->sections[i];
4479 new_count++;
4480 }
4481 }
4482 (*m)->count = new_count;
4483
4484 if (remove_empty_load
4485 && (*m)->p_type == PT_LOAD
4486 && (*m)->count == 0
4487 && !(*m)->includes_phdrs)
4488 *m = (*m)->next;
4489 else
4490 m = &(*m)->next;
4491 }
4492
4493 bed = get_elf_backend_data (abfd);
4494 if (bed->elf_backend_modify_segment_map != NULL)
4495 {
4496 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4497 return FALSE;
4498 }
4499
4500 return TRUE;
4501 }
4502
4503 /* Set up a mapping from BFD sections to program segments. */
4504
4505 bfd_boolean
4506 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4507 {
4508 unsigned int count;
4509 struct elf_segment_map *m;
4510 asection **sections = NULL;
4511 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4512 bfd_boolean no_user_phdrs;
4513
4514 no_user_phdrs = elf_seg_map (abfd) == NULL;
4515
4516 if (info != NULL)
4517 info->user_phdrs = !no_user_phdrs;
4518
4519 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4520 {
4521 asection *s;
4522 unsigned int i;
4523 struct elf_segment_map *mfirst;
4524 struct elf_segment_map **pm;
4525 asection *last_hdr;
4526 bfd_vma last_size;
4527 unsigned int phdr_index;
4528 bfd_vma maxpagesize;
4529 asection **hdrpp;
4530 bfd_boolean phdr_in_segment = TRUE;
4531 bfd_boolean writable;
4532 int tls_count = 0;
4533 asection *first_tls = NULL;
4534 asection *first_mbind = NULL;
4535 asection *dynsec, *eh_frame_hdr;
4536 bfd_size_type amt;
4537 bfd_vma addr_mask, wrap_to = 0;
4538 bfd_boolean linker_created_pt_phdr_segment = FALSE;
4539
4540 /* Select the allocated sections, and sort them. */
4541
4542 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4543 sizeof (asection *));
4544 if (sections == NULL)
4545 goto error_return;
4546
4547 /* Calculate top address, avoiding undefined behaviour of shift
4548 left operator when shift count is equal to size of type
4549 being shifted. */
4550 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4551 addr_mask = (addr_mask << 1) + 1;
4552
4553 i = 0;
4554 for (s = abfd->sections; s != NULL; s = s->next)
4555 {
4556 if ((s->flags & SEC_ALLOC) != 0)
4557 {
4558 sections[i] = s;
4559 ++i;
4560 /* A wrapping section potentially clashes with header. */
4561 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4562 wrap_to = (s->lma + s->size) & addr_mask;
4563 }
4564 }
4565 BFD_ASSERT (i <= bfd_count_sections (abfd));
4566 count = i;
4567
4568 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4569
4570 /* Build the mapping. */
4571
4572 mfirst = NULL;
4573 pm = &mfirst;
4574
4575 /* If we have a .interp section, then create a PT_PHDR segment for
4576 the program headers and a PT_INTERP segment for the .interp
4577 section. */
4578 s = bfd_get_section_by_name (abfd, ".interp");
4579 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4580 {
4581 amt = sizeof (struct elf_segment_map);
4582 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4583 if (m == NULL)
4584 goto error_return;
4585 m->next = NULL;
4586 m->p_type = PT_PHDR;
4587 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4588 m->p_flags = PF_R | PF_X;
4589 m->p_flags_valid = 1;
4590 m->includes_phdrs = 1;
4591 linker_created_pt_phdr_segment = TRUE;
4592 *pm = m;
4593 pm = &m->next;
4594
4595 amt = sizeof (struct elf_segment_map);
4596 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4597 if (m == NULL)
4598 goto error_return;
4599 m->next = NULL;
4600 m->p_type = PT_INTERP;
4601 m->count = 1;
4602 m->sections[0] = s;
4603
4604 *pm = m;
4605 pm = &m->next;
4606 }
4607
4608 /* Look through the sections. We put sections in the same program
4609 segment when the start of the second section can be placed within
4610 a few bytes of the end of the first section. */
4611 last_hdr = NULL;
4612 last_size = 0;
4613 phdr_index = 0;
4614 maxpagesize = bed->maxpagesize;
4615 /* PR 17512: file: c8455299.
4616 Avoid divide-by-zero errors later on.
4617 FIXME: Should we abort if the maxpagesize is zero ? */
4618 if (maxpagesize == 0)
4619 maxpagesize = 1;
4620 writable = FALSE;
4621 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4622 if (dynsec != NULL
4623 && (dynsec->flags & SEC_LOAD) == 0)
4624 dynsec = NULL;
4625
4626 /* Deal with -Ttext or something similar such that the first section
4627 is not adjacent to the program headers. This is an
4628 approximation, since at this point we don't know exactly how many
4629 program headers we will need. */
4630 if (count > 0)
4631 {
4632 bfd_size_type phdr_size = elf_program_header_size (abfd);
4633
4634 if (phdr_size == (bfd_size_type) -1)
4635 phdr_size = get_program_header_size (abfd, info);
4636 phdr_size += bed->s->sizeof_ehdr;
4637 if ((abfd->flags & D_PAGED) == 0
4638 || (sections[0]->lma & addr_mask) < phdr_size
4639 || ((sections[0]->lma & addr_mask) % maxpagesize
4640 < phdr_size % maxpagesize)
4641 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4642 {
4643 /* PR 20815: The ELF standard says that a PT_PHDR segment, if
4644 present, must be included as part of the memory image of the
4645 program. Ie it must be part of a PT_LOAD segment as well.
4646 If we have had to create our own PT_PHDR segment, but it is
4647 not going to be covered by the first PT_LOAD segment, then
4648 force the inclusion if we can... */
4649 if ((abfd->flags & D_PAGED) != 0
4650 && linker_created_pt_phdr_segment)
4651 phdr_in_segment = TRUE;
4652 else
4653 phdr_in_segment = FALSE;
4654 }
4655 }
4656
4657 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4658 {
4659 asection *hdr;
4660 bfd_boolean new_segment;
4661
4662 hdr = *hdrpp;
4663
4664 /* See if this section and the last one will fit in the same
4665 segment. */
4666
4667 if (last_hdr == NULL)
4668 {
4669 /* If we don't have a segment yet, then we don't need a new
4670 one (we build the last one after this loop). */
4671 new_segment = FALSE;
4672 }
4673 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4674 {
4675 /* If this section has a different relation between the
4676 virtual address and the load address, then we need a new
4677 segment. */
4678 new_segment = TRUE;
4679 }
4680 else if (hdr->lma < last_hdr->lma + last_size
4681 || last_hdr->lma + last_size < last_hdr->lma)
4682 {
4683 /* If this section has a load address that makes it overlap
4684 the previous section, then we need a new segment. */
4685 new_segment = TRUE;
4686 }
4687 /* In the next test we have to be careful when last_hdr->lma is close
4688 to the end of the address space. If the aligned address wraps
4689 around to the start of the address space, then there are no more
4690 pages left in memory and it is OK to assume that the current
4691 section can be included in the current segment. */
4692 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4693 > last_hdr->lma)
4694 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4695 <= hdr->lma))
4696 {
4697 /* If putting this section in this segment would force us to
4698 skip a page in the segment, then we need a new segment. */
4699 new_segment = TRUE;
4700 }
4701 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4702 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0
4703 && ((abfd->flags & D_PAGED) == 0
4704 || (((last_hdr->lma + last_size - 1) & -maxpagesize)
4705 != (hdr->lma & -maxpagesize))))
4706 {
4707 /* We don't want to put a loaded section after a
4708 nonloaded (ie. bss style) section in the same segment
4709 as that will force the non-loaded section to be loaded.
4710 Consider .tbss sections as loaded for this purpose.
4711 However, like the writable/non-writable case below,
4712 if they are on the same page then they must be put
4713 in the same segment. */
4714 new_segment = TRUE;
4715 }
4716 else if ((abfd->flags & D_PAGED) == 0)
4717 {
4718 /* If the file is not demand paged, which means that we
4719 don't require the sections to be correctly aligned in the
4720 file, then there is no other reason for a new segment. */
4721 new_segment = FALSE;
4722 }
4723 else if (! writable
4724 && (hdr->flags & SEC_READONLY) == 0
4725 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4726 != (hdr->lma & -maxpagesize)))
4727 {
4728 /* We don't want to put a writable section in a read only
4729 segment, unless they are on the same page in memory
4730 anyhow. We already know that the last section does not
4731 bring us past the current section on the page, so the
4732 only case in which the new section is not on the same
4733 page as the previous section is when the previous section
4734 ends precisely on a page boundary. */
4735 new_segment = TRUE;
4736 }
4737 else
4738 {
4739 /* Otherwise, we can use the same segment. */
4740 new_segment = FALSE;
4741 }
4742
4743 /* Allow interested parties a chance to override our decision. */
4744 if (last_hdr != NULL
4745 && info != NULL
4746 && info->callbacks->override_segment_assignment != NULL)
4747 new_segment
4748 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4749 last_hdr,
4750 new_segment);
4751
4752 if (! new_segment)
4753 {
4754 if ((hdr->flags & SEC_READONLY) == 0)
4755 writable = TRUE;
4756 last_hdr = hdr;
4757 /* .tbss sections effectively have zero size. */
4758 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4759 != SEC_THREAD_LOCAL)
4760 last_size = hdr->size;
4761 else
4762 last_size = 0;
4763 continue;
4764 }
4765
4766 /* We need a new program segment. We must create a new program
4767 header holding all the sections from phdr_index until hdr. */
4768
4769 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4770 if (m == NULL)
4771 goto error_return;
4772
4773 *pm = m;
4774 pm = &m->next;
4775
4776 if ((hdr->flags & SEC_READONLY) == 0)
4777 writable = TRUE;
4778 else
4779 writable = FALSE;
4780
4781 last_hdr = hdr;
4782 /* .tbss sections effectively have zero size. */
4783 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4784 last_size = hdr->size;
4785 else
4786 last_size = 0;
4787 phdr_index = i;
4788 phdr_in_segment = FALSE;
4789 }
4790
4791 /* Create a final PT_LOAD program segment, but not if it's just
4792 for .tbss. */
4793 if (last_hdr != NULL
4794 && (i - phdr_index != 1
4795 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4796 != SEC_THREAD_LOCAL)))
4797 {
4798 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4799 if (m == NULL)
4800 goto error_return;
4801
4802 *pm = m;
4803 pm = &m->next;
4804 }
4805
4806 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4807 if (dynsec != NULL)
4808 {
4809 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4810 if (m == NULL)
4811 goto error_return;
4812 *pm = m;
4813 pm = &m->next;
4814 }
4815
4816 /* For each batch of consecutive loadable .note sections,
4817 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4818 because if we link together nonloadable .note sections and
4819 loadable .note sections, we will generate two .note sections
4820 in the output file. FIXME: Using names for section types is
4821 bogus anyhow. */
4822 for (s = abfd->sections; s != NULL; s = s->next)
4823 {
4824 if ((s->flags & SEC_LOAD) != 0
4825 && CONST_STRNEQ (s->name, ".note"))
4826 {
4827 asection *s2;
4828
4829 count = 1;
4830 amt = sizeof (struct elf_segment_map);
4831 if (s->alignment_power == 2)
4832 for (s2 = s; s2->next != NULL; s2 = s2->next)
4833 {
4834 if (s2->next->alignment_power == 2
4835 && (s2->next->flags & SEC_LOAD) != 0
4836 && CONST_STRNEQ (s2->next->name, ".note")
4837 && align_power (s2->lma + s2->size, 2)
4838 == s2->next->lma)
4839 count++;
4840 else
4841 break;
4842 }
4843 amt += (count - 1) * sizeof (asection *);
4844 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4845 if (m == NULL)
4846 goto error_return;
4847 m->next = NULL;
4848 m->p_type = PT_NOTE;
4849 m->count = count;
4850 while (count > 1)
4851 {
4852 m->sections[m->count - count--] = s;
4853 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4854 s = s->next;
4855 }
4856 m->sections[m->count - 1] = s;
4857 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4858 *pm = m;
4859 pm = &m->next;
4860 }
4861 if (s->flags & SEC_THREAD_LOCAL)
4862 {
4863 if (! tls_count)
4864 first_tls = s;
4865 tls_count++;
4866 }
4867 if (first_mbind == NULL
4868 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
4869 first_mbind = s;
4870 }
4871
4872 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4873 if (tls_count > 0)
4874 {
4875 amt = sizeof (struct elf_segment_map);
4876 amt += (tls_count - 1) * sizeof (asection *);
4877 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4878 if (m == NULL)
4879 goto error_return;
4880 m->next = NULL;
4881 m->p_type = PT_TLS;
4882 m->count = tls_count;
4883 /* Mandated PF_R. */
4884 m->p_flags = PF_R;
4885 m->p_flags_valid = 1;
4886 s = first_tls;
4887 for (i = 0; i < (unsigned int) tls_count; ++i)
4888 {
4889 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4890 {
4891 _bfd_error_handler
4892 (_("%B: TLS sections are not adjacent:"), abfd);
4893 s = first_tls;
4894 i = 0;
4895 while (i < (unsigned int) tls_count)
4896 {
4897 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4898 {
4899 _bfd_error_handler (_(" TLS: %A"), s);
4900 i++;
4901 }
4902 else
4903 _bfd_error_handler (_(" non-TLS: %A"), s);
4904 s = s->next;
4905 }
4906 bfd_set_error (bfd_error_bad_value);
4907 goto error_return;
4908 }
4909 m->sections[i] = s;
4910 s = s->next;
4911 }
4912
4913 *pm = m;
4914 pm = &m->next;
4915 }
4916
4917 if (first_mbind && (abfd->flags & D_PAGED) != 0)
4918 for (s = first_mbind; s != NULL; s = s->next)
4919 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
4920 && (elf_section_data (s)->this_hdr.sh_info
4921 <= PT_GNU_MBIND_NUM))
4922 {
4923 /* Mandated PF_R. */
4924 unsigned long p_flags = PF_R;
4925 if ((s->flags & SEC_READONLY) == 0)
4926 p_flags |= PF_W;
4927 if ((s->flags & SEC_CODE) != 0)
4928 p_flags |= PF_X;
4929
4930 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
4931 m = bfd_zalloc (abfd, amt);
4932 if (m == NULL)
4933 goto error_return;
4934 m->next = NULL;
4935 m->p_type = (PT_GNU_MBIND_LO
4936 + elf_section_data (s)->this_hdr.sh_info);
4937 m->count = 1;
4938 m->p_flags_valid = 1;
4939 m->sections[0] = s;
4940 m->p_flags = p_flags;
4941
4942 *pm = m;
4943 pm = &m->next;
4944 }
4945
4946 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4947 segment. */
4948 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4949 if (eh_frame_hdr != NULL
4950 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4951 {
4952 amt = sizeof (struct elf_segment_map);
4953 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4954 if (m == NULL)
4955 goto error_return;
4956 m->next = NULL;
4957 m->p_type = PT_GNU_EH_FRAME;
4958 m->count = 1;
4959 m->sections[0] = eh_frame_hdr->output_section;
4960
4961 *pm = m;
4962 pm = &m->next;
4963 }
4964
4965 if (elf_stack_flags (abfd))
4966 {
4967 amt = sizeof (struct elf_segment_map);
4968 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4969 if (m == NULL)
4970 goto error_return;
4971 m->next = NULL;
4972 m->p_type = PT_GNU_STACK;
4973 m->p_flags = elf_stack_flags (abfd);
4974 m->p_align = bed->stack_align;
4975 m->p_flags_valid = 1;
4976 m->p_align_valid = m->p_align != 0;
4977 if (info->stacksize > 0)
4978 {
4979 m->p_size = info->stacksize;
4980 m->p_size_valid = 1;
4981 }
4982
4983 *pm = m;
4984 pm = &m->next;
4985 }
4986
4987 if (info != NULL && info->relro)
4988 {
4989 for (m = mfirst; m != NULL; m = m->next)
4990 {
4991 if (m->p_type == PT_LOAD
4992 && m->count != 0
4993 && m->sections[0]->vma >= info->relro_start
4994 && m->sections[0]->vma < info->relro_end)
4995 {
4996 i = m->count;
4997 while (--i != (unsigned) -1)
4998 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4999 == (SEC_LOAD | SEC_HAS_CONTENTS))
5000 break;
5001
5002 if (i != (unsigned) -1)
5003 break;
5004 }
5005 }
5006
5007 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5008 if (m != NULL)
5009 {
5010 amt = sizeof (struct elf_segment_map);
5011 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5012 if (m == NULL)
5013 goto error_return;
5014 m->next = NULL;
5015 m->p_type = PT_GNU_RELRO;
5016 *pm = m;
5017 pm = &m->next;
5018 }
5019 }
5020
5021 free (sections);
5022 elf_seg_map (abfd) = mfirst;
5023 }
5024
5025 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5026 return FALSE;
5027
5028 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5029 ++count;
5030 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5031
5032 return TRUE;
5033
5034 error_return:
5035 if (sections != NULL)
5036 free (sections);
5037 return FALSE;
5038 }
5039
5040 /* Sort sections by address. */
5041
5042 static int
5043 elf_sort_sections (const void *arg1, const void *arg2)
5044 {
5045 const asection *sec1 = *(const asection **) arg1;
5046 const asection *sec2 = *(const asection **) arg2;
5047 bfd_size_type size1, size2;
5048
5049 /* Sort by LMA first, since this is the address used to
5050 place the section into a segment. */
5051 if (sec1->lma < sec2->lma)
5052 return -1;
5053 else if (sec1->lma > sec2->lma)
5054 return 1;
5055
5056 /* Then sort by VMA. Normally the LMA and the VMA will be
5057 the same, and this will do nothing. */
5058 if (sec1->vma < sec2->vma)
5059 return -1;
5060 else if (sec1->vma > sec2->vma)
5061 return 1;
5062
5063 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5064
5065 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5066
5067 if (TOEND (sec1))
5068 {
5069 if (TOEND (sec2))
5070 {
5071 /* If the indicies are the same, do not return 0
5072 here, but continue to try the next comparison. */
5073 if (sec1->target_index - sec2->target_index != 0)
5074 return sec1->target_index - sec2->target_index;
5075 }
5076 else
5077 return 1;
5078 }
5079 else if (TOEND (sec2))
5080 return -1;
5081
5082 #undef TOEND
5083
5084 /* Sort by size, to put zero sized sections
5085 before others at the same address. */
5086
5087 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5088 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5089
5090 if (size1 < size2)
5091 return -1;
5092 if (size1 > size2)
5093 return 1;
5094
5095 return sec1->target_index - sec2->target_index;
5096 }
5097
5098 /* Ian Lance Taylor writes:
5099
5100 We shouldn't be using % with a negative signed number. That's just
5101 not good. We have to make sure either that the number is not
5102 negative, or that the number has an unsigned type. When the types
5103 are all the same size they wind up as unsigned. When file_ptr is a
5104 larger signed type, the arithmetic winds up as signed long long,
5105 which is wrong.
5106
5107 What we're trying to say here is something like ``increase OFF by
5108 the least amount that will cause it to be equal to the VMA modulo
5109 the page size.'' */
5110 /* In other words, something like:
5111
5112 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5113 off_offset = off % bed->maxpagesize;
5114 if (vma_offset < off_offset)
5115 adjustment = vma_offset + bed->maxpagesize - off_offset;
5116 else
5117 adjustment = vma_offset - off_offset;
5118
5119 which can can be collapsed into the expression below. */
5120
5121 static file_ptr
5122 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5123 {
5124 /* PR binutils/16199: Handle an alignment of zero. */
5125 if (maxpagesize == 0)
5126 maxpagesize = 1;
5127 return ((vma - off) % maxpagesize);
5128 }
5129
5130 static void
5131 print_segment_map (const struct elf_segment_map *m)
5132 {
5133 unsigned int j;
5134 const char *pt = get_segment_type (m->p_type);
5135 char buf[32];
5136
5137 if (pt == NULL)
5138 {
5139 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5140 sprintf (buf, "LOPROC+%7.7x",
5141 (unsigned int) (m->p_type - PT_LOPROC));
5142 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5143 sprintf (buf, "LOOS+%7.7x",
5144 (unsigned int) (m->p_type - PT_LOOS));
5145 else
5146 snprintf (buf, sizeof (buf), "%8.8x",
5147 (unsigned int) m->p_type);
5148 pt = buf;
5149 }
5150 fflush (stdout);
5151 fprintf (stderr, "%s:", pt);
5152 for (j = 0; j < m->count; j++)
5153 fprintf (stderr, " %s", m->sections [j]->name);
5154 putc ('\n',stderr);
5155 fflush (stderr);
5156 }
5157
5158 static bfd_boolean
5159 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5160 {
5161 void *buf;
5162 bfd_boolean ret;
5163
5164 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5165 return FALSE;
5166 buf = bfd_zmalloc (len);
5167 if (buf == NULL)
5168 return FALSE;
5169 ret = bfd_bwrite (buf, len, abfd) == len;
5170 free (buf);
5171 return ret;
5172 }
5173
5174 /* Assign file positions to the sections based on the mapping from
5175 sections to segments. This function also sets up some fields in
5176 the file header. */
5177
5178 static bfd_boolean
5179 assign_file_positions_for_load_sections (bfd *abfd,
5180 struct bfd_link_info *link_info)
5181 {
5182 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5183 struct elf_segment_map *m;
5184 Elf_Internal_Phdr *phdrs;
5185 Elf_Internal_Phdr *p;
5186 file_ptr off;
5187 bfd_size_type maxpagesize;
5188 unsigned int pt_load_count = 0;
5189 unsigned int alloc;
5190 unsigned int i, j;
5191 bfd_vma header_pad = 0;
5192
5193 if (link_info == NULL
5194 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5195 return FALSE;
5196
5197 alloc = 0;
5198 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5199 {
5200 ++alloc;
5201 if (m->header_size)
5202 header_pad = m->header_size;
5203 }
5204
5205 if (alloc)
5206 {
5207 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5208 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5209 }
5210 else
5211 {
5212 /* PR binutils/12467. */
5213 elf_elfheader (abfd)->e_phoff = 0;
5214 elf_elfheader (abfd)->e_phentsize = 0;
5215 }
5216
5217 elf_elfheader (abfd)->e_phnum = alloc;
5218
5219 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5220 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5221 else
5222 BFD_ASSERT (elf_program_header_size (abfd)
5223 >= alloc * bed->s->sizeof_phdr);
5224
5225 if (alloc == 0)
5226 {
5227 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5228 return TRUE;
5229 }
5230
5231 /* We're writing the size in elf_program_header_size (abfd),
5232 see assign_file_positions_except_relocs, so make sure we have
5233 that amount allocated, with trailing space cleared.
5234 The variable alloc contains the computed need, while
5235 elf_program_header_size (abfd) contains the size used for the
5236 layout.
5237 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5238 where the layout is forced to according to a larger size in the
5239 last iterations for the testcase ld-elf/header. */
5240 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5241 == 0);
5242 phdrs = (Elf_Internal_Phdr *)
5243 bfd_zalloc2 (abfd,
5244 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5245 sizeof (Elf_Internal_Phdr));
5246 elf_tdata (abfd)->phdr = phdrs;
5247 if (phdrs == NULL)
5248 return FALSE;
5249
5250 maxpagesize = 1;
5251 if ((abfd->flags & D_PAGED) != 0)
5252 maxpagesize = bed->maxpagesize;
5253
5254 off = bed->s->sizeof_ehdr;
5255 off += alloc * bed->s->sizeof_phdr;
5256 if (header_pad < (bfd_vma) off)
5257 header_pad = 0;
5258 else
5259 header_pad -= off;
5260 off += header_pad;
5261
5262 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5263 m != NULL;
5264 m = m->next, p++, j++)
5265 {
5266 asection **secpp;
5267 bfd_vma off_adjust;
5268 bfd_boolean no_contents;
5269
5270 /* If elf_segment_map is not from map_sections_to_segments, the
5271 sections may not be correctly ordered. NOTE: sorting should
5272 not be done to the PT_NOTE section of a corefile, which may
5273 contain several pseudo-sections artificially created by bfd.
5274 Sorting these pseudo-sections breaks things badly. */
5275 if (m->count > 1
5276 && !(elf_elfheader (abfd)->e_type == ET_CORE
5277 && m->p_type == PT_NOTE))
5278 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5279 elf_sort_sections);
5280
5281 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5282 number of sections with contents contributing to both p_filesz
5283 and p_memsz, followed by a number of sections with no contents
5284 that just contribute to p_memsz. In this loop, OFF tracks next
5285 available file offset for PT_LOAD and PT_NOTE segments. */
5286 p->p_type = m->p_type;
5287 p->p_flags = m->p_flags;
5288
5289 if (m->count == 0)
5290 p->p_vaddr = 0;
5291 else
5292 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5293
5294 if (m->p_paddr_valid)
5295 p->p_paddr = m->p_paddr;
5296 else if (m->count == 0)
5297 p->p_paddr = 0;
5298 else
5299 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5300
5301 if (p->p_type == PT_LOAD
5302 && (abfd->flags & D_PAGED) != 0)
5303 {
5304 /* p_align in demand paged PT_LOAD segments effectively stores
5305 the maximum page size. When copying an executable with
5306 objcopy, we set m->p_align from the input file. Use this
5307 value for maxpagesize rather than bed->maxpagesize, which
5308 may be different. Note that we use maxpagesize for PT_TLS
5309 segment alignment later in this function, so we are relying
5310 on at least one PT_LOAD segment appearing before a PT_TLS
5311 segment. */
5312 if (m->p_align_valid)
5313 maxpagesize = m->p_align;
5314
5315 p->p_align = maxpagesize;
5316 pt_load_count += 1;
5317 }
5318 else if (m->p_align_valid)
5319 p->p_align = m->p_align;
5320 else if (m->count == 0)
5321 p->p_align = 1 << bed->s->log_file_align;
5322 else
5323 p->p_align = 0;
5324
5325 no_contents = FALSE;
5326 off_adjust = 0;
5327 if (p->p_type == PT_LOAD
5328 && m->count > 0)
5329 {
5330 bfd_size_type align;
5331 unsigned int align_power = 0;
5332
5333 if (m->p_align_valid)
5334 align = p->p_align;
5335 else
5336 {
5337 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5338 {
5339 unsigned int secalign;
5340
5341 secalign = bfd_get_section_alignment (abfd, *secpp);
5342 if (secalign > align_power)
5343 align_power = secalign;
5344 }
5345 align = (bfd_size_type) 1 << align_power;
5346 if (align < maxpagesize)
5347 align = maxpagesize;
5348 }
5349
5350 for (i = 0; i < m->count; i++)
5351 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5352 /* If we aren't making room for this section, then
5353 it must be SHT_NOBITS regardless of what we've
5354 set via struct bfd_elf_special_section. */
5355 elf_section_type (m->sections[i]) = SHT_NOBITS;
5356
5357 /* Find out whether this segment contains any loadable
5358 sections. */
5359 no_contents = TRUE;
5360 for (i = 0; i < m->count; i++)
5361 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5362 {
5363 no_contents = FALSE;
5364 break;
5365 }
5366
5367 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5368
5369 /* Broken hardware and/or kernel require that files do not
5370 map the same page with different permissions on some hppa
5371 processors. */
5372 if (pt_load_count > 1
5373 && bed->no_page_alias
5374 && (off & (maxpagesize - 1)) != 0
5375 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5376 off_adjust += maxpagesize;
5377 off += off_adjust;
5378 if (no_contents)
5379 {
5380 /* We shouldn't need to align the segment on disk since
5381 the segment doesn't need file space, but the gABI
5382 arguably requires the alignment and glibc ld.so
5383 checks it. So to comply with the alignment
5384 requirement but not waste file space, we adjust
5385 p_offset for just this segment. (OFF_ADJUST is
5386 subtracted from OFF later.) This may put p_offset
5387 past the end of file, but that shouldn't matter. */
5388 }
5389 else
5390 off_adjust = 0;
5391 }
5392 /* Make sure the .dynamic section is the first section in the
5393 PT_DYNAMIC segment. */
5394 else if (p->p_type == PT_DYNAMIC
5395 && m->count > 1
5396 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5397 {
5398 _bfd_error_handler
5399 (_("%B: The first section in the PT_DYNAMIC segment"
5400 " is not the .dynamic section"),
5401 abfd);
5402 bfd_set_error (bfd_error_bad_value);
5403 return FALSE;
5404 }
5405 /* Set the note section type to SHT_NOTE. */
5406 else if (p->p_type == PT_NOTE)
5407 for (i = 0; i < m->count; i++)
5408 elf_section_type (m->sections[i]) = SHT_NOTE;
5409
5410 p->p_offset = 0;
5411 p->p_filesz = 0;
5412 p->p_memsz = 0;
5413
5414 if (m->includes_filehdr)
5415 {
5416 if (!m->p_flags_valid)
5417 p->p_flags |= PF_R;
5418 p->p_filesz = bed->s->sizeof_ehdr;
5419 p->p_memsz = bed->s->sizeof_ehdr;
5420 if (m->count > 0)
5421 {
5422 if (p->p_vaddr < (bfd_vma) off
5423 || (!m->p_paddr_valid
5424 && p->p_paddr < (bfd_vma) off))
5425 {
5426 _bfd_error_handler
5427 (_("%B: Not enough room for program headers,"
5428 " try linking with -N"),
5429 abfd);
5430 bfd_set_error (bfd_error_bad_value);
5431 return FALSE;
5432 }
5433
5434 p->p_vaddr -= off;
5435 if (!m->p_paddr_valid)
5436 p->p_paddr -= off;
5437 }
5438 }
5439
5440 if (m->includes_phdrs)
5441 {
5442 if (!m->p_flags_valid)
5443 p->p_flags |= PF_R;
5444
5445 if (!m->includes_filehdr)
5446 {
5447 p->p_offset = bed->s->sizeof_ehdr;
5448
5449 if (m->count > 0)
5450 {
5451 p->p_vaddr -= off - p->p_offset;
5452 if (!m->p_paddr_valid)
5453 p->p_paddr -= off - p->p_offset;
5454 }
5455 }
5456
5457 p->p_filesz += alloc * bed->s->sizeof_phdr;
5458 p->p_memsz += alloc * bed->s->sizeof_phdr;
5459 if (m->count)
5460 {
5461 p->p_filesz += header_pad;
5462 p->p_memsz += header_pad;
5463 }
5464 }
5465
5466 if (p->p_type == PT_LOAD
5467 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5468 {
5469 if (!m->includes_filehdr && !m->includes_phdrs)
5470 p->p_offset = off;
5471 else
5472 {
5473 file_ptr adjust;
5474
5475 adjust = off - (p->p_offset + p->p_filesz);
5476 if (!no_contents)
5477 p->p_filesz += adjust;
5478 p->p_memsz += adjust;
5479 }
5480 }
5481
5482 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5483 maps. Set filepos for sections in PT_LOAD segments, and in
5484 core files, for sections in PT_NOTE segments.
5485 assign_file_positions_for_non_load_sections will set filepos
5486 for other sections and update p_filesz for other segments. */
5487 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5488 {
5489 asection *sec;
5490 bfd_size_type align;
5491 Elf_Internal_Shdr *this_hdr;
5492
5493 sec = *secpp;
5494 this_hdr = &elf_section_data (sec)->this_hdr;
5495 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5496
5497 if ((p->p_type == PT_LOAD
5498 || p->p_type == PT_TLS)
5499 && (this_hdr->sh_type != SHT_NOBITS
5500 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5501 && ((this_hdr->sh_flags & SHF_TLS) == 0
5502 || p->p_type == PT_TLS))))
5503 {
5504 bfd_vma p_start = p->p_paddr;
5505 bfd_vma p_end = p_start + p->p_memsz;
5506 bfd_vma s_start = sec->lma;
5507 bfd_vma adjust = s_start - p_end;
5508
5509 if (adjust != 0
5510 && (s_start < p_end
5511 || p_end < p_start))
5512 {
5513 _bfd_error_handler
5514 /* xgettext:c-format */
5515 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
5516 (unsigned long) s_start, (unsigned long) p_end);
5517 adjust = 0;
5518 sec->lma = p_end;
5519 }
5520 p->p_memsz += adjust;
5521
5522 if (this_hdr->sh_type != SHT_NOBITS)
5523 {
5524 if (p->p_filesz + adjust < p->p_memsz)
5525 {
5526 /* We have a PROGBITS section following NOBITS ones.
5527 Allocate file space for the NOBITS section(s) and
5528 zero it. */
5529 adjust = p->p_memsz - p->p_filesz;
5530 if (!write_zeros (abfd, off, adjust))
5531 return FALSE;
5532 }
5533 off += adjust;
5534 p->p_filesz += adjust;
5535 }
5536 }
5537
5538 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5539 {
5540 /* The section at i == 0 is the one that actually contains
5541 everything. */
5542 if (i == 0)
5543 {
5544 this_hdr->sh_offset = sec->filepos = off;
5545 off += this_hdr->sh_size;
5546 p->p_filesz = this_hdr->sh_size;
5547 p->p_memsz = 0;
5548 p->p_align = 1;
5549 }
5550 else
5551 {
5552 /* The rest are fake sections that shouldn't be written. */
5553 sec->filepos = 0;
5554 sec->size = 0;
5555 sec->flags = 0;
5556 continue;
5557 }
5558 }
5559 else
5560 {
5561 if (p->p_type == PT_LOAD)
5562 {
5563 this_hdr->sh_offset = sec->filepos = off;
5564 if (this_hdr->sh_type != SHT_NOBITS)
5565 off += this_hdr->sh_size;
5566 }
5567 else if (this_hdr->sh_type == SHT_NOBITS
5568 && (this_hdr->sh_flags & SHF_TLS) != 0
5569 && this_hdr->sh_offset == 0)
5570 {
5571 /* This is a .tbss section that didn't get a PT_LOAD.
5572 (See _bfd_elf_map_sections_to_segments "Create a
5573 final PT_LOAD".) Set sh_offset to the value it
5574 would have if we had created a zero p_filesz and
5575 p_memsz PT_LOAD header for the section. This
5576 also makes the PT_TLS header have the same
5577 p_offset value. */
5578 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5579 off, align);
5580 this_hdr->sh_offset = sec->filepos = off + adjust;
5581 }
5582
5583 if (this_hdr->sh_type != SHT_NOBITS)
5584 {
5585 p->p_filesz += this_hdr->sh_size;
5586 /* A load section without SHF_ALLOC is something like
5587 a note section in a PT_NOTE segment. These take
5588 file space but are not loaded into memory. */
5589 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5590 p->p_memsz += this_hdr->sh_size;
5591 }
5592 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5593 {
5594 if (p->p_type == PT_TLS)
5595 p->p_memsz += this_hdr->sh_size;
5596
5597 /* .tbss is special. It doesn't contribute to p_memsz of
5598 normal segments. */
5599 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5600 p->p_memsz += this_hdr->sh_size;
5601 }
5602
5603 if (align > p->p_align
5604 && !m->p_align_valid
5605 && (p->p_type != PT_LOAD
5606 || (abfd->flags & D_PAGED) == 0))
5607 p->p_align = align;
5608 }
5609
5610 if (!m->p_flags_valid)
5611 {
5612 p->p_flags |= PF_R;
5613 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5614 p->p_flags |= PF_X;
5615 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5616 p->p_flags |= PF_W;
5617 }
5618 }
5619
5620 off -= off_adjust;
5621
5622 /* Check that all sections are in a PT_LOAD segment.
5623 Don't check funky gdb generated core files. */
5624 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5625 {
5626 bfd_boolean check_vma = TRUE;
5627
5628 for (i = 1; i < m->count; i++)
5629 if (m->sections[i]->vma == m->sections[i - 1]->vma
5630 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5631 ->this_hdr), p) != 0
5632 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5633 ->this_hdr), p) != 0)
5634 {
5635 /* Looks like we have overlays packed into the segment. */
5636 check_vma = FALSE;
5637 break;
5638 }
5639
5640 for (i = 0; i < m->count; i++)
5641 {
5642 Elf_Internal_Shdr *this_hdr;
5643 asection *sec;
5644
5645 sec = m->sections[i];
5646 this_hdr = &(elf_section_data(sec)->this_hdr);
5647 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5648 && !ELF_TBSS_SPECIAL (this_hdr, p))
5649 {
5650 _bfd_error_handler
5651 /* xgettext:c-format */
5652 (_("%B: section `%A' can't be allocated in segment %d"),
5653 abfd, sec, j);
5654 print_segment_map (m);
5655 }
5656 }
5657 }
5658 }
5659
5660 elf_next_file_pos (abfd) = off;
5661 return TRUE;
5662 }
5663
5664 /* Assign file positions for the other sections. */
5665
5666 static bfd_boolean
5667 assign_file_positions_for_non_load_sections (bfd *abfd,
5668 struct bfd_link_info *link_info)
5669 {
5670 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5671 Elf_Internal_Shdr **i_shdrpp;
5672 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5673 Elf_Internal_Phdr *phdrs;
5674 Elf_Internal_Phdr *p;
5675 struct elf_segment_map *m;
5676 struct elf_segment_map *hdrs_segment;
5677 bfd_vma filehdr_vaddr, filehdr_paddr;
5678 bfd_vma phdrs_vaddr, phdrs_paddr;
5679 file_ptr off;
5680 unsigned int count;
5681
5682 i_shdrpp = elf_elfsections (abfd);
5683 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5684 off = elf_next_file_pos (abfd);
5685 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5686 {
5687 Elf_Internal_Shdr *hdr;
5688
5689 hdr = *hdrpp;
5690 if (hdr->bfd_section != NULL
5691 && (hdr->bfd_section->filepos != 0
5692 || (hdr->sh_type == SHT_NOBITS
5693 && hdr->contents == NULL)))
5694 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5695 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5696 {
5697 if (hdr->sh_size != 0)
5698 _bfd_error_handler
5699 /* xgettext:c-format */
5700 (_("%B: warning: allocated section `%s' not in segment"),
5701 abfd,
5702 (hdr->bfd_section == NULL
5703 ? "*unknown*"
5704 : hdr->bfd_section->name));
5705 /* We don't need to page align empty sections. */
5706 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5707 off += vma_page_aligned_bias (hdr->sh_addr, off,
5708 bed->maxpagesize);
5709 else
5710 off += vma_page_aligned_bias (hdr->sh_addr, off,
5711 hdr->sh_addralign);
5712 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5713 FALSE);
5714 }
5715 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5716 && hdr->bfd_section == NULL)
5717 || (hdr->bfd_section != NULL
5718 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5719 /* Compress DWARF debug sections. */
5720 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5721 || (elf_symtab_shndx_list (abfd) != NULL
5722 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5723 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5724 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5725 hdr->sh_offset = -1;
5726 else
5727 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5728 }
5729
5730 /* Now that we have set the section file positions, we can set up
5731 the file positions for the non PT_LOAD segments. */
5732 count = 0;
5733 filehdr_vaddr = 0;
5734 filehdr_paddr = 0;
5735 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5736 phdrs_paddr = 0;
5737 hdrs_segment = NULL;
5738 phdrs = elf_tdata (abfd)->phdr;
5739 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5740 {
5741 ++count;
5742 if (p->p_type != PT_LOAD)
5743 continue;
5744
5745 if (m->includes_filehdr)
5746 {
5747 filehdr_vaddr = p->p_vaddr;
5748 filehdr_paddr = p->p_paddr;
5749 }
5750 if (m->includes_phdrs)
5751 {
5752 phdrs_vaddr = p->p_vaddr;
5753 phdrs_paddr = p->p_paddr;
5754 if (m->includes_filehdr)
5755 {
5756 hdrs_segment = m;
5757 phdrs_vaddr += bed->s->sizeof_ehdr;
5758 phdrs_paddr += bed->s->sizeof_ehdr;
5759 }
5760 }
5761 }
5762
5763 if (hdrs_segment != NULL && link_info != NULL)
5764 {
5765 /* There is a segment that contains both the file headers and the
5766 program headers, so provide a symbol __ehdr_start pointing there.
5767 A program can use this to examine itself robustly. */
5768
5769 struct elf_link_hash_entry *hash
5770 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5771 FALSE, FALSE, TRUE);
5772 /* If the symbol was referenced and not defined, define it. */
5773 if (hash != NULL
5774 && (hash->root.type == bfd_link_hash_new
5775 || hash->root.type == bfd_link_hash_undefined
5776 || hash->root.type == bfd_link_hash_undefweak
5777 || hash->root.type == bfd_link_hash_common))
5778 {
5779 asection *s = NULL;
5780 if (hdrs_segment->count != 0)
5781 /* The segment contains sections, so use the first one. */
5782 s = hdrs_segment->sections[0];
5783 else
5784 /* Use the first (i.e. lowest-addressed) section in any segment. */
5785 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5786 if (m->count != 0)
5787 {
5788 s = m->sections[0];
5789 break;
5790 }
5791
5792 if (s != NULL)
5793 {
5794 hash->root.u.def.value = filehdr_vaddr - s->vma;
5795 hash->root.u.def.section = s;
5796 }
5797 else
5798 {
5799 hash->root.u.def.value = filehdr_vaddr;
5800 hash->root.u.def.section = bfd_abs_section_ptr;
5801 }
5802
5803 hash->root.type = bfd_link_hash_defined;
5804 hash->def_regular = 1;
5805 hash->non_elf = 0;
5806 }
5807 }
5808
5809 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5810 {
5811 if (p->p_type == PT_GNU_RELRO)
5812 {
5813 const Elf_Internal_Phdr *lp;
5814 struct elf_segment_map *lm;
5815
5816 if (link_info != NULL)
5817 {
5818 /* During linking the range of the RELRO segment is passed
5819 in link_info. */
5820 for (lm = elf_seg_map (abfd), lp = phdrs;
5821 lm != NULL;
5822 lm = lm->next, lp++)
5823 {
5824 if (lp->p_type == PT_LOAD
5825 && lp->p_vaddr < link_info->relro_end
5826 && lm->count != 0
5827 && lm->sections[0]->vma >= link_info->relro_start)
5828 break;
5829 }
5830
5831 BFD_ASSERT (lm != NULL);
5832 }
5833 else
5834 {
5835 /* Otherwise we are copying an executable or shared
5836 library, but we need to use the same linker logic. */
5837 for (lp = phdrs; lp < phdrs + count; ++lp)
5838 {
5839 if (lp->p_type == PT_LOAD
5840 && lp->p_paddr == p->p_paddr)
5841 break;
5842 }
5843 }
5844
5845 if (lp < phdrs + count)
5846 {
5847 p->p_vaddr = lp->p_vaddr;
5848 p->p_paddr = lp->p_paddr;
5849 p->p_offset = lp->p_offset;
5850 if (link_info != NULL)
5851 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5852 else if (m->p_size_valid)
5853 p->p_filesz = m->p_size;
5854 else
5855 abort ();
5856 p->p_memsz = p->p_filesz;
5857 /* Preserve the alignment and flags if they are valid. The
5858 gold linker generates RW/4 for the PT_GNU_RELRO section.
5859 It is better for objcopy/strip to honor these attributes
5860 otherwise gdb will choke when using separate debug files.
5861 */
5862 if (!m->p_align_valid)
5863 p->p_align = 1;
5864 if (!m->p_flags_valid)
5865 p->p_flags = PF_R;
5866 }
5867 else
5868 {
5869 memset (p, 0, sizeof *p);
5870 p->p_type = PT_NULL;
5871 }
5872 }
5873 else if (p->p_type == PT_GNU_STACK)
5874 {
5875 if (m->p_size_valid)
5876 p->p_memsz = m->p_size;
5877 }
5878 else if (m->count != 0)
5879 {
5880 unsigned int i;
5881
5882 if (p->p_type != PT_LOAD
5883 && (p->p_type != PT_NOTE
5884 || bfd_get_format (abfd) != bfd_core))
5885 {
5886 /* A user specified segment layout may include a PHDR
5887 segment that overlaps with a LOAD segment... */
5888 if (p->p_type == PT_PHDR)
5889 {
5890 m->count = 0;
5891 continue;
5892 }
5893
5894 if (m->includes_filehdr || m->includes_phdrs)
5895 {
5896 /* PR 17512: file: 2195325e. */
5897 _bfd_error_handler
5898 (_("%B: error: non-load segment %d includes file header and/or program header"),
5899 abfd, (int)(p - phdrs));
5900 return FALSE;
5901 }
5902
5903 p->p_filesz = 0;
5904 p->p_offset = m->sections[0]->filepos;
5905 for (i = m->count; i-- != 0;)
5906 {
5907 asection *sect = m->sections[i];
5908 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5909 if (hdr->sh_type != SHT_NOBITS)
5910 {
5911 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5912 + hdr->sh_size);
5913 break;
5914 }
5915 }
5916 }
5917 }
5918 else if (m->includes_filehdr)
5919 {
5920 p->p_vaddr = filehdr_vaddr;
5921 if (! m->p_paddr_valid)
5922 p->p_paddr = filehdr_paddr;
5923 }
5924 else if (m->includes_phdrs)
5925 {
5926 p->p_vaddr = phdrs_vaddr;
5927 if (! m->p_paddr_valid)
5928 p->p_paddr = phdrs_paddr;
5929 }
5930 }
5931
5932 elf_next_file_pos (abfd) = off;
5933
5934 return TRUE;
5935 }
5936
5937 static elf_section_list *
5938 find_section_in_list (unsigned int i, elf_section_list * list)
5939 {
5940 for (;list != NULL; list = list->next)
5941 if (list->ndx == i)
5942 break;
5943 return list;
5944 }
5945
5946 /* Work out the file positions of all the sections. This is called by
5947 _bfd_elf_compute_section_file_positions. All the section sizes and
5948 VMAs must be known before this is called.
5949
5950 Reloc sections come in two flavours: Those processed specially as
5951 "side-channel" data attached to a section to which they apply, and
5952 those that bfd doesn't process as relocations. The latter sort are
5953 stored in a normal bfd section by bfd_section_from_shdr. We don't
5954 consider the former sort here, unless they form part of the loadable
5955 image. Reloc sections not assigned here will be handled later by
5956 assign_file_positions_for_relocs.
5957
5958 We also don't set the positions of the .symtab and .strtab here. */
5959
5960 static bfd_boolean
5961 assign_file_positions_except_relocs (bfd *abfd,
5962 struct bfd_link_info *link_info)
5963 {
5964 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5965 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5966 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5967
5968 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5969 && bfd_get_format (abfd) != bfd_core)
5970 {
5971 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5972 unsigned int num_sec = elf_numsections (abfd);
5973 Elf_Internal_Shdr **hdrpp;
5974 unsigned int i;
5975 file_ptr off;
5976
5977 /* Start after the ELF header. */
5978 off = i_ehdrp->e_ehsize;
5979
5980 /* We are not creating an executable, which means that we are
5981 not creating a program header, and that the actual order of
5982 the sections in the file is unimportant. */
5983 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5984 {
5985 Elf_Internal_Shdr *hdr;
5986
5987 hdr = *hdrpp;
5988 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5989 && hdr->bfd_section == NULL)
5990 || (hdr->bfd_section != NULL
5991 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5992 /* Compress DWARF debug sections. */
5993 || i == elf_onesymtab (abfd)
5994 || (elf_symtab_shndx_list (abfd) != NULL
5995 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5996 || i == elf_strtab_sec (abfd)
5997 || i == elf_shstrtab_sec (abfd))
5998 {
5999 hdr->sh_offset = -1;
6000 }
6001 else
6002 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6003 }
6004
6005 elf_next_file_pos (abfd) = off;
6006 }
6007 else
6008 {
6009 unsigned int alloc;
6010
6011 /* Assign file positions for the loaded sections based on the
6012 assignment of sections to segments. */
6013 if (!assign_file_positions_for_load_sections (abfd, link_info))
6014 return FALSE;
6015
6016 /* And for non-load sections. */
6017 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6018 return FALSE;
6019
6020 if (bed->elf_backend_modify_program_headers != NULL)
6021 {
6022 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6023 return FALSE;
6024 }
6025
6026 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6027 if (link_info != NULL && bfd_link_pie (link_info))
6028 {
6029 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6030 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6031 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6032
6033 /* Find the lowest p_vaddr in PT_LOAD segments. */
6034 bfd_vma p_vaddr = (bfd_vma) -1;
6035 for (; segment < end_segment; segment++)
6036 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6037 p_vaddr = segment->p_vaddr;
6038
6039 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6040 segments is non-zero. */
6041 if (p_vaddr)
6042 i_ehdrp->e_type = ET_EXEC;
6043 }
6044
6045 /* Write out the program headers. */
6046 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
6047
6048 /* Sort the program headers into the ordering required by the ELF standard. */
6049 if (alloc == 0)
6050 return TRUE;
6051
6052 /* PR ld/20815 - Check that the program header segment, if present, will
6053 be loaded into memory. FIXME: The check below is not sufficient as
6054 really all PT_LOAD segments should be checked before issuing an error
6055 message. Plus the PHDR segment does not have to be the first segment
6056 in the program header table. But this version of the check should
6057 catch all real world use cases.
6058
6059 FIXME: We used to have code here to sort the PT_LOAD segments into
6060 ascending order, as per the ELF spec. But this breaks some programs,
6061 including the Linux kernel. But really either the spec should be
6062 changed or the programs updated. */
6063 if (alloc > 1
6064 && tdata->phdr[0].p_type == PT_PHDR
6065 && ! bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr, alloc)
6066 && tdata->phdr[1].p_type == PT_LOAD
6067 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6068 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz)
6069 < (tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6070 {
6071 /* The fix for this error is usually to edit the linker script being
6072 used and set up the program headers manually. Either that or
6073 leave room for the headers at the start of the SECTIONS. */
6074 _bfd_error_handler (_("\
6075 %B: error: PHDR segment not covered by LOAD segment"),
6076 abfd);
6077 return FALSE;
6078 }
6079
6080 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6081 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6082 return FALSE;
6083 }
6084
6085 return TRUE;
6086 }
6087
6088 static bfd_boolean
6089 prep_headers (bfd *abfd)
6090 {
6091 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6092 struct elf_strtab_hash *shstrtab;
6093 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6094
6095 i_ehdrp = elf_elfheader (abfd);
6096
6097 shstrtab = _bfd_elf_strtab_init ();
6098 if (shstrtab == NULL)
6099 return FALSE;
6100
6101 elf_shstrtab (abfd) = shstrtab;
6102
6103 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6104 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6105 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6106 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6107
6108 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6109 i_ehdrp->e_ident[EI_DATA] =
6110 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6111 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6112
6113 if ((abfd->flags & DYNAMIC) != 0)
6114 i_ehdrp->e_type = ET_DYN;
6115 else if ((abfd->flags & EXEC_P) != 0)
6116 i_ehdrp->e_type = ET_EXEC;
6117 else if (bfd_get_format (abfd) == bfd_core)
6118 i_ehdrp->e_type = ET_CORE;
6119 else
6120 i_ehdrp->e_type = ET_REL;
6121
6122 switch (bfd_get_arch (abfd))
6123 {
6124 case bfd_arch_unknown:
6125 i_ehdrp->e_machine = EM_NONE;
6126 break;
6127
6128 /* There used to be a long list of cases here, each one setting
6129 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6130 in the corresponding bfd definition. To avoid duplication,
6131 the switch was removed. Machines that need special handling
6132 can generally do it in elf_backend_final_write_processing(),
6133 unless they need the information earlier than the final write.
6134 Such need can generally be supplied by replacing the tests for
6135 e_machine with the conditions used to determine it. */
6136 default:
6137 i_ehdrp->e_machine = bed->elf_machine_code;
6138 }
6139
6140 i_ehdrp->e_version = bed->s->ev_current;
6141 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6142
6143 /* No program header, for now. */
6144 i_ehdrp->e_phoff = 0;
6145 i_ehdrp->e_phentsize = 0;
6146 i_ehdrp->e_phnum = 0;
6147
6148 /* Each bfd section is section header entry. */
6149 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6150 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6151
6152 /* If we're building an executable, we'll need a program header table. */
6153 if (abfd->flags & EXEC_P)
6154 /* It all happens later. */
6155 ;
6156 else
6157 {
6158 i_ehdrp->e_phentsize = 0;
6159 i_ehdrp->e_phoff = 0;
6160 }
6161
6162 elf_tdata (abfd)->symtab_hdr.sh_name =
6163 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6164 elf_tdata (abfd)->strtab_hdr.sh_name =
6165 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6166 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6167 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6168 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6169 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6170 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6171 return FALSE;
6172
6173 return TRUE;
6174 }
6175
6176 /* Assign file positions for all the reloc sections which are not part
6177 of the loadable file image, and the file position of section headers. */
6178
6179 static bfd_boolean
6180 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6181 {
6182 file_ptr off;
6183 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6184 Elf_Internal_Shdr *shdrp;
6185 Elf_Internal_Ehdr *i_ehdrp;
6186 const struct elf_backend_data *bed;
6187
6188 off = elf_next_file_pos (abfd);
6189
6190 shdrpp = elf_elfsections (abfd);
6191 end_shdrpp = shdrpp + elf_numsections (abfd);
6192 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6193 {
6194 shdrp = *shdrpp;
6195 if (shdrp->sh_offset == -1)
6196 {
6197 asection *sec = shdrp->bfd_section;
6198 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6199 || shdrp->sh_type == SHT_RELA);
6200 if (is_rel
6201 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6202 {
6203 if (!is_rel)
6204 {
6205 const char *name = sec->name;
6206 struct bfd_elf_section_data *d;
6207
6208 /* Compress DWARF debug sections. */
6209 if (!bfd_compress_section (abfd, sec,
6210 shdrp->contents))
6211 return FALSE;
6212
6213 if (sec->compress_status == COMPRESS_SECTION_DONE
6214 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6215 {
6216 /* If section is compressed with zlib-gnu, convert
6217 section name from .debug_* to .zdebug_*. */
6218 char *new_name
6219 = convert_debug_to_zdebug (abfd, name);
6220 if (new_name == NULL)
6221 return FALSE;
6222 name = new_name;
6223 }
6224 /* Add section name to section name section. */
6225 if (shdrp->sh_name != (unsigned int) -1)
6226 abort ();
6227 shdrp->sh_name
6228 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6229 name, FALSE);
6230 d = elf_section_data (sec);
6231
6232 /* Add reloc section name to section name section. */
6233 if (d->rel.hdr
6234 && !_bfd_elf_set_reloc_sh_name (abfd,
6235 d->rel.hdr,
6236 name, FALSE))
6237 return FALSE;
6238 if (d->rela.hdr
6239 && !_bfd_elf_set_reloc_sh_name (abfd,
6240 d->rela.hdr,
6241 name, TRUE))
6242 return FALSE;
6243
6244 /* Update section size and contents. */
6245 shdrp->sh_size = sec->size;
6246 shdrp->contents = sec->contents;
6247 shdrp->bfd_section->contents = NULL;
6248 }
6249 off = _bfd_elf_assign_file_position_for_section (shdrp,
6250 off,
6251 TRUE);
6252 }
6253 }
6254 }
6255
6256 /* Place section name section after DWARF debug sections have been
6257 compressed. */
6258 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6259 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6260 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6261 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6262
6263 /* Place the section headers. */
6264 i_ehdrp = elf_elfheader (abfd);
6265 bed = get_elf_backend_data (abfd);
6266 off = align_file_position (off, 1 << bed->s->log_file_align);
6267 i_ehdrp->e_shoff = off;
6268 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6269 elf_next_file_pos (abfd) = off;
6270
6271 return TRUE;
6272 }
6273
6274 bfd_boolean
6275 _bfd_elf_write_object_contents (bfd *abfd)
6276 {
6277 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6278 Elf_Internal_Shdr **i_shdrp;
6279 bfd_boolean failed;
6280 unsigned int count, num_sec;
6281 struct elf_obj_tdata *t;
6282
6283 if (! abfd->output_has_begun
6284 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6285 return FALSE;
6286
6287 i_shdrp = elf_elfsections (abfd);
6288
6289 failed = FALSE;
6290 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6291 if (failed)
6292 return FALSE;
6293
6294 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6295 return FALSE;
6296
6297 /* After writing the headers, we need to write the sections too... */
6298 num_sec = elf_numsections (abfd);
6299 for (count = 1; count < num_sec; count++)
6300 {
6301 i_shdrp[count]->sh_name
6302 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6303 i_shdrp[count]->sh_name);
6304 if (bed->elf_backend_section_processing)
6305 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
6306 if (i_shdrp[count]->contents)
6307 {
6308 bfd_size_type amt = i_shdrp[count]->sh_size;
6309
6310 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6311 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6312 return FALSE;
6313 }
6314 }
6315
6316 /* Write out the section header names. */
6317 t = elf_tdata (abfd);
6318 if (elf_shstrtab (abfd) != NULL
6319 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6320 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6321 return FALSE;
6322
6323 if (bed->elf_backend_final_write_processing)
6324 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6325
6326 if (!bed->s->write_shdrs_and_ehdr (abfd))
6327 return FALSE;
6328
6329 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6330 if (t->o->build_id.after_write_object_contents != NULL)
6331 return (*t->o->build_id.after_write_object_contents) (abfd);
6332
6333 return TRUE;
6334 }
6335
6336 bfd_boolean
6337 _bfd_elf_write_corefile_contents (bfd *abfd)
6338 {
6339 /* Hopefully this can be done just like an object file. */
6340 return _bfd_elf_write_object_contents (abfd);
6341 }
6342
6343 /* Given a section, search the header to find them. */
6344
6345 unsigned int
6346 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6347 {
6348 const struct elf_backend_data *bed;
6349 unsigned int sec_index;
6350
6351 if (elf_section_data (asect) != NULL
6352 && elf_section_data (asect)->this_idx != 0)
6353 return elf_section_data (asect)->this_idx;
6354
6355 if (bfd_is_abs_section (asect))
6356 sec_index = SHN_ABS;
6357 else if (bfd_is_com_section (asect))
6358 sec_index = SHN_COMMON;
6359 else if (bfd_is_und_section (asect))
6360 sec_index = SHN_UNDEF;
6361 else
6362 sec_index = SHN_BAD;
6363
6364 bed = get_elf_backend_data (abfd);
6365 if (bed->elf_backend_section_from_bfd_section)
6366 {
6367 int retval = sec_index;
6368
6369 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6370 return retval;
6371 }
6372
6373 if (sec_index == SHN_BAD)
6374 bfd_set_error (bfd_error_nonrepresentable_section);
6375
6376 return sec_index;
6377 }
6378
6379 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6380 on error. */
6381
6382 int
6383 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6384 {
6385 asymbol *asym_ptr = *asym_ptr_ptr;
6386 int idx;
6387 flagword flags = asym_ptr->flags;
6388
6389 /* When gas creates relocations against local labels, it creates its
6390 own symbol for the section, but does put the symbol into the
6391 symbol chain, so udata is 0. When the linker is generating
6392 relocatable output, this section symbol may be for one of the
6393 input sections rather than the output section. */
6394 if (asym_ptr->udata.i == 0
6395 && (flags & BSF_SECTION_SYM)
6396 && asym_ptr->section)
6397 {
6398 asection *sec;
6399 int indx;
6400
6401 sec = asym_ptr->section;
6402 if (sec->owner != abfd && sec->output_section != NULL)
6403 sec = sec->output_section;
6404 if (sec->owner == abfd
6405 && (indx = sec->index) < elf_num_section_syms (abfd)
6406 && elf_section_syms (abfd)[indx] != NULL)
6407 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6408 }
6409
6410 idx = asym_ptr->udata.i;
6411
6412 if (idx == 0)
6413 {
6414 /* This case can occur when using --strip-symbol on a symbol
6415 which is used in a relocation entry. */
6416 _bfd_error_handler
6417 /* xgettext:c-format */
6418 (_("%B: symbol `%s' required but not present"),
6419 abfd, bfd_asymbol_name (asym_ptr));
6420 bfd_set_error (bfd_error_no_symbols);
6421 return -1;
6422 }
6423
6424 #if DEBUG & 4
6425 {
6426 fprintf (stderr,
6427 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
6428 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
6429 fflush (stderr);
6430 }
6431 #endif
6432
6433 return idx;
6434 }
6435
6436 /* Rewrite program header information. */
6437
6438 static bfd_boolean
6439 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6440 {
6441 Elf_Internal_Ehdr *iehdr;
6442 struct elf_segment_map *map;
6443 struct elf_segment_map *map_first;
6444 struct elf_segment_map **pointer_to_map;
6445 Elf_Internal_Phdr *segment;
6446 asection *section;
6447 unsigned int i;
6448 unsigned int num_segments;
6449 bfd_boolean phdr_included = FALSE;
6450 bfd_boolean p_paddr_valid;
6451 bfd_vma maxpagesize;
6452 struct elf_segment_map *phdr_adjust_seg = NULL;
6453 unsigned int phdr_adjust_num = 0;
6454 const struct elf_backend_data *bed;
6455
6456 bed = get_elf_backend_data (ibfd);
6457 iehdr = elf_elfheader (ibfd);
6458
6459 map_first = NULL;
6460 pointer_to_map = &map_first;
6461
6462 num_segments = elf_elfheader (ibfd)->e_phnum;
6463 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6464
6465 /* Returns the end address of the segment + 1. */
6466 #define SEGMENT_END(segment, start) \
6467 (start + (segment->p_memsz > segment->p_filesz \
6468 ? segment->p_memsz : segment->p_filesz))
6469
6470 #define SECTION_SIZE(section, segment) \
6471 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6472 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6473 ? section->size : 0)
6474
6475 /* Returns TRUE if the given section is contained within
6476 the given segment. VMA addresses are compared. */
6477 #define IS_CONTAINED_BY_VMA(section, segment) \
6478 (section->vma >= segment->p_vaddr \
6479 && (section->vma + SECTION_SIZE (section, segment) \
6480 <= (SEGMENT_END (segment, segment->p_vaddr))))
6481
6482 /* Returns TRUE if the given section is contained within
6483 the given segment. LMA addresses are compared. */
6484 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6485 (section->lma >= base \
6486 && (section->lma + SECTION_SIZE (section, segment) \
6487 <= SEGMENT_END (segment, base)))
6488
6489 /* Handle PT_NOTE segment. */
6490 #define IS_NOTE(p, s) \
6491 (p->p_type == PT_NOTE \
6492 && elf_section_type (s) == SHT_NOTE \
6493 && (bfd_vma) s->filepos >= p->p_offset \
6494 && ((bfd_vma) s->filepos + s->size \
6495 <= p->p_offset + p->p_filesz))
6496
6497 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6498 etc. */
6499 #define IS_COREFILE_NOTE(p, s) \
6500 (IS_NOTE (p, s) \
6501 && bfd_get_format (ibfd) == bfd_core \
6502 && s->vma == 0 \
6503 && s->lma == 0)
6504
6505 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6506 linker, which generates a PT_INTERP section with p_vaddr and
6507 p_memsz set to 0. */
6508 #define IS_SOLARIS_PT_INTERP(p, s) \
6509 (p->p_vaddr == 0 \
6510 && p->p_paddr == 0 \
6511 && p->p_memsz == 0 \
6512 && p->p_filesz > 0 \
6513 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6514 && s->size > 0 \
6515 && (bfd_vma) s->filepos >= p->p_offset \
6516 && ((bfd_vma) s->filepos + s->size \
6517 <= p->p_offset + p->p_filesz))
6518
6519 /* Decide if the given section should be included in the given segment.
6520 A section will be included if:
6521 1. It is within the address space of the segment -- we use the LMA
6522 if that is set for the segment and the VMA otherwise,
6523 2. It is an allocated section or a NOTE section in a PT_NOTE
6524 segment.
6525 3. There is an output section associated with it,
6526 4. The section has not already been allocated to a previous segment.
6527 5. PT_GNU_STACK segments do not include any sections.
6528 6. PT_TLS segment includes only SHF_TLS sections.
6529 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6530 8. PT_DYNAMIC should not contain empty sections at the beginning
6531 (with the possible exception of .dynamic). */
6532 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6533 ((((segment->p_paddr \
6534 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6535 : IS_CONTAINED_BY_VMA (section, segment)) \
6536 && (section->flags & SEC_ALLOC) != 0) \
6537 || IS_NOTE (segment, section)) \
6538 && segment->p_type != PT_GNU_STACK \
6539 && (segment->p_type != PT_TLS \
6540 || (section->flags & SEC_THREAD_LOCAL)) \
6541 && (segment->p_type == PT_LOAD \
6542 || segment->p_type == PT_TLS \
6543 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6544 && (segment->p_type != PT_DYNAMIC \
6545 || SECTION_SIZE (section, segment) > 0 \
6546 || (segment->p_paddr \
6547 ? segment->p_paddr != section->lma \
6548 : segment->p_vaddr != section->vma) \
6549 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6550 == 0)) \
6551 && !section->segment_mark)
6552
6553 /* If the output section of a section in the input segment is NULL,
6554 it is removed from the corresponding output segment. */
6555 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6556 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6557 && section->output_section != NULL)
6558
6559 /* Returns TRUE iff seg1 starts after the end of seg2. */
6560 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6561 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6562
6563 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6564 their VMA address ranges and their LMA address ranges overlap.
6565 It is possible to have overlapping VMA ranges without overlapping LMA
6566 ranges. RedBoot images for example can have both .data and .bss mapped
6567 to the same VMA range, but with the .data section mapped to a different
6568 LMA. */
6569 #define SEGMENT_OVERLAPS(seg1, seg2) \
6570 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6571 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6572 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6573 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6574
6575 /* Initialise the segment mark field. */
6576 for (section = ibfd->sections; section != NULL; section = section->next)
6577 section->segment_mark = FALSE;
6578
6579 /* The Solaris linker creates program headers in which all the
6580 p_paddr fields are zero. When we try to objcopy or strip such a
6581 file, we get confused. Check for this case, and if we find it
6582 don't set the p_paddr_valid fields. */
6583 p_paddr_valid = FALSE;
6584 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6585 i < num_segments;
6586 i++, segment++)
6587 if (segment->p_paddr != 0)
6588 {
6589 p_paddr_valid = TRUE;
6590 break;
6591 }
6592
6593 /* Scan through the segments specified in the program header
6594 of the input BFD. For this first scan we look for overlaps
6595 in the loadable segments. These can be created by weird
6596 parameters to objcopy. Also, fix some solaris weirdness. */
6597 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6598 i < num_segments;
6599 i++, segment++)
6600 {
6601 unsigned int j;
6602 Elf_Internal_Phdr *segment2;
6603
6604 if (segment->p_type == PT_INTERP)
6605 for (section = ibfd->sections; section; section = section->next)
6606 if (IS_SOLARIS_PT_INTERP (segment, section))
6607 {
6608 /* Mininal change so that the normal section to segment
6609 assignment code will work. */
6610 segment->p_vaddr = section->vma;
6611 break;
6612 }
6613
6614 if (segment->p_type != PT_LOAD)
6615 {
6616 /* Remove PT_GNU_RELRO segment. */
6617 if (segment->p_type == PT_GNU_RELRO)
6618 segment->p_type = PT_NULL;
6619 continue;
6620 }
6621
6622 /* Determine if this segment overlaps any previous segments. */
6623 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6624 {
6625 bfd_signed_vma extra_length;
6626
6627 if (segment2->p_type != PT_LOAD
6628 || !SEGMENT_OVERLAPS (segment, segment2))
6629 continue;
6630
6631 /* Merge the two segments together. */
6632 if (segment2->p_vaddr < segment->p_vaddr)
6633 {
6634 /* Extend SEGMENT2 to include SEGMENT and then delete
6635 SEGMENT. */
6636 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6637 - SEGMENT_END (segment2, segment2->p_vaddr));
6638
6639 if (extra_length > 0)
6640 {
6641 segment2->p_memsz += extra_length;
6642 segment2->p_filesz += extra_length;
6643 }
6644
6645 segment->p_type = PT_NULL;
6646
6647 /* Since we have deleted P we must restart the outer loop. */
6648 i = 0;
6649 segment = elf_tdata (ibfd)->phdr;
6650 break;
6651 }
6652 else
6653 {
6654 /* Extend SEGMENT to include SEGMENT2 and then delete
6655 SEGMENT2. */
6656 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6657 - SEGMENT_END (segment, segment->p_vaddr));
6658
6659 if (extra_length > 0)
6660 {
6661 segment->p_memsz += extra_length;
6662 segment->p_filesz += extra_length;
6663 }
6664
6665 segment2->p_type = PT_NULL;
6666 }
6667 }
6668 }
6669
6670 /* The second scan attempts to assign sections to segments. */
6671 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6672 i < num_segments;
6673 i++, segment++)
6674 {
6675 unsigned int section_count;
6676 asection **sections;
6677 asection *output_section;
6678 unsigned int isec;
6679 bfd_vma matching_lma;
6680 bfd_vma suggested_lma;
6681 unsigned int j;
6682 bfd_size_type amt;
6683 asection *first_section;
6684 bfd_boolean first_matching_lma;
6685 bfd_boolean first_suggested_lma;
6686
6687 if (segment->p_type == PT_NULL)
6688 continue;
6689
6690 first_section = NULL;
6691 /* Compute how many sections might be placed into this segment. */
6692 for (section = ibfd->sections, section_count = 0;
6693 section != NULL;
6694 section = section->next)
6695 {
6696 /* Find the first section in the input segment, which may be
6697 removed from the corresponding output segment. */
6698 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6699 {
6700 if (first_section == NULL)
6701 first_section = section;
6702 if (section->output_section != NULL)
6703 ++section_count;
6704 }
6705 }
6706
6707 /* Allocate a segment map big enough to contain
6708 all of the sections we have selected. */
6709 amt = sizeof (struct elf_segment_map);
6710 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6711 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6712 if (map == NULL)
6713 return FALSE;
6714
6715 /* Initialise the fields of the segment map. Default to
6716 using the physical address of the segment in the input BFD. */
6717 map->next = NULL;
6718 map->p_type = segment->p_type;
6719 map->p_flags = segment->p_flags;
6720 map->p_flags_valid = 1;
6721
6722 /* If the first section in the input segment is removed, there is
6723 no need to preserve segment physical address in the corresponding
6724 output segment. */
6725 if (!first_section || first_section->output_section != NULL)
6726 {
6727 map->p_paddr = segment->p_paddr;
6728 map->p_paddr_valid = p_paddr_valid;
6729 }
6730
6731 /* Determine if this segment contains the ELF file header
6732 and if it contains the program headers themselves. */
6733 map->includes_filehdr = (segment->p_offset == 0
6734 && segment->p_filesz >= iehdr->e_ehsize);
6735 map->includes_phdrs = 0;
6736
6737 if (!phdr_included || segment->p_type != PT_LOAD)
6738 {
6739 map->includes_phdrs =
6740 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6741 && (segment->p_offset + segment->p_filesz
6742 >= ((bfd_vma) iehdr->e_phoff
6743 + iehdr->e_phnum * iehdr->e_phentsize)));
6744
6745 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6746 phdr_included = TRUE;
6747 }
6748
6749 if (section_count == 0)
6750 {
6751 /* Special segments, such as the PT_PHDR segment, may contain
6752 no sections, but ordinary, loadable segments should contain
6753 something. They are allowed by the ELF spec however, so only
6754 a warning is produced.
6755 There is however the valid use case of embedded systems which
6756 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6757 flash memory with zeros. No warning is shown for that case. */
6758 if (segment->p_type == PT_LOAD
6759 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6760 /* xgettext:c-format */
6761 _bfd_error_handler (_("\
6762 %B: warning: Empty loadable segment detected at vaddr=0x%.8x, is this intentional ?"),
6763 ibfd, segment->p_vaddr);
6764
6765 map->count = 0;
6766 *pointer_to_map = map;
6767 pointer_to_map = &map->next;
6768
6769 continue;
6770 }
6771
6772 /* Now scan the sections in the input BFD again and attempt
6773 to add their corresponding output sections to the segment map.
6774 The problem here is how to handle an output section which has
6775 been moved (ie had its LMA changed). There are four possibilities:
6776
6777 1. None of the sections have been moved.
6778 In this case we can continue to use the segment LMA from the
6779 input BFD.
6780
6781 2. All of the sections have been moved by the same amount.
6782 In this case we can change the segment's LMA to match the LMA
6783 of the first section.
6784
6785 3. Some of the sections have been moved, others have not.
6786 In this case those sections which have not been moved can be
6787 placed in the current segment which will have to have its size,
6788 and possibly its LMA changed, and a new segment or segments will
6789 have to be created to contain the other sections.
6790
6791 4. The sections have been moved, but not by the same amount.
6792 In this case we can change the segment's LMA to match the LMA
6793 of the first section and we will have to create a new segment
6794 or segments to contain the other sections.
6795
6796 In order to save time, we allocate an array to hold the section
6797 pointers that we are interested in. As these sections get assigned
6798 to a segment, they are removed from this array. */
6799
6800 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6801 if (sections == NULL)
6802 return FALSE;
6803
6804 /* Step One: Scan for segment vs section LMA conflicts.
6805 Also add the sections to the section array allocated above.
6806 Also add the sections to the current segment. In the common
6807 case, where the sections have not been moved, this means that
6808 we have completely filled the segment, and there is nothing
6809 more to do. */
6810 isec = 0;
6811 matching_lma = 0;
6812 suggested_lma = 0;
6813 first_matching_lma = TRUE;
6814 first_suggested_lma = TRUE;
6815
6816 for (section = first_section, j = 0;
6817 section != NULL;
6818 section = section->next)
6819 {
6820 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6821 {
6822 output_section = section->output_section;
6823
6824 sections[j++] = section;
6825
6826 /* The Solaris native linker always sets p_paddr to 0.
6827 We try to catch that case here, and set it to the
6828 correct value. Note - some backends require that
6829 p_paddr be left as zero. */
6830 if (!p_paddr_valid
6831 && segment->p_vaddr != 0
6832 && !bed->want_p_paddr_set_to_zero
6833 && isec == 0
6834 && output_section->lma != 0
6835 && output_section->vma == (segment->p_vaddr
6836 + (map->includes_filehdr
6837 ? iehdr->e_ehsize
6838 : 0)
6839 + (map->includes_phdrs
6840 ? (iehdr->e_phnum
6841 * iehdr->e_phentsize)
6842 : 0)))
6843 map->p_paddr = segment->p_vaddr;
6844
6845 /* Match up the physical address of the segment with the
6846 LMA address of the output section. */
6847 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6848 || IS_COREFILE_NOTE (segment, section)
6849 || (bed->want_p_paddr_set_to_zero
6850 && IS_CONTAINED_BY_VMA (output_section, segment)))
6851 {
6852 if (first_matching_lma || output_section->lma < matching_lma)
6853 {
6854 matching_lma = output_section->lma;
6855 first_matching_lma = FALSE;
6856 }
6857
6858 /* We assume that if the section fits within the segment
6859 then it does not overlap any other section within that
6860 segment. */
6861 map->sections[isec++] = output_section;
6862 }
6863 else if (first_suggested_lma)
6864 {
6865 suggested_lma = output_section->lma;
6866 first_suggested_lma = FALSE;
6867 }
6868
6869 if (j == section_count)
6870 break;
6871 }
6872 }
6873
6874 BFD_ASSERT (j == section_count);
6875
6876 /* Step Two: Adjust the physical address of the current segment,
6877 if necessary. */
6878 if (isec == section_count)
6879 {
6880 /* All of the sections fitted within the segment as currently
6881 specified. This is the default case. Add the segment to
6882 the list of built segments and carry on to process the next
6883 program header in the input BFD. */
6884 map->count = section_count;
6885 *pointer_to_map = map;
6886 pointer_to_map = &map->next;
6887
6888 if (p_paddr_valid
6889 && !bed->want_p_paddr_set_to_zero
6890 && matching_lma != map->p_paddr
6891 && !map->includes_filehdr
6892 && !map->includes_phdrs)
6893 /* There is some padding before the first section in the
6894 segment. So, we must account for that in the output
6895 segment's vma. */
6896 map->p_vaddr_offset = matching_lma - map->p_paddr;
6897
6898 free (sections);
6899 continue;
6900 }
6901 else
6902 {
6903 if (!first_matching_lma)
6904 {
6905 /* At least one section fits inside the current segment.
6906 Keep it, but modify its physical address to match the
6907 LMA of the first section that fitted. */
6908 map->p_paddr = matching_lma;
6909 }
6910 else
6911 {
6912 /* None of the sections fitted inside the current segment.
6913 Change the current segment's physical address to match
6914 the LMA of the first section. */
6915 map->p_paddr = suggested_lma;
6916 }
6917
6918 /* Offset the segment physical address from the lma
6919 to allow for space taken up by elf headers. */
6920 if (map->includes_filehdr)
6921 {
6922 if (map->p_paddr >= iehdr->e_ehsize)
6923 map->p_paddr -= iehdr->e_ehsize;
6924 else
6925 {
6926 map->includes_filehdr = FALSE;
6927 map->includes_phdrs = FALSE;
6928 }
6929 }
6930
6931 if (map->includes_phdrs)
6932 {
6933 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6934 {
6935 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6936
6937 /* iehdr->e_phnum is just an estimate of the number
6938 of program headers that we will need. Make a note
6939 here of the number we used and the segment we chose
6940 to hold these headers, so that we can adjust the
6941 offset when we know the correct value. */
6942 phdr_adjust_num = iehdr->e_phnum;
6943 phdr_adjust_seg = map;
6944 }
6945 else
6946 map->includes_phdrs = FALSE;
6947 }
6948 }
6949
6950 /* Step Three: Loop over the sections again, this time assigning
6951 those that fit to the current segment and removing them from the
6952 sections array; but making sure not to leave large gaps. Once all
6953 possible sections have been assigned to the current segment it is
6954 added to the list of built segments and if sections still remain
6955 to be assigned, a new segment is constructed before repeating
6956 the loop. */
6957 isec = 0;
6958 do
6959 {
6960 map->count = 0;
6961 suggested_lma = 0;
6962 first_suggested_lma = TRUE;
6963
6964 /* Fill the current segment with sections that fit. */
6965 for (j = 0; j < section_count; j++)
6966 {
6967 section = sections[j];
6968
6969 if (section == NULL)
6970 continue;
6971
6972 output_section = section->output_section;
6973
6974 BFD_ASSERT (output_section != NULL);
6975
6976 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6977 || IS_COREFILE_NOTE (segment, section))
6978 {
6979 if (map->count == 0)
6980 {
6981 /* If the first section in a segment does not start at
6982 the beginning of the segment, then something is
6983 wrong. */
6984 if (output_section->lma
6985 != (map->p_paddr
6986 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6987 + (map->includes_phdrs
6988 ? iehdr->e_phnum * iehdr->e_phentsize
6989 : 0)))
6990 abort ();
6991 }
6992 else
6993 {
6994 asection *prev_sec;
6995
6996 prev_sec = map->sections[map->count - 1];
6997
6998 /* If the gap between the end of the previous section
6999 and the start of this section is more than
7000 maxpagesize then we need to start a new segment. */
7001 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7002 maxpagesize)
7003 < BFD_ALIGN (output_section->lma, maxpagesize))
7004 || (prev_sec->lma + prev_sec->size
7005 > output_section->lma))
7006 {
7007 if (first_suggested_lma)
7008 {
7009 suggested_lma = output_section->lma;
7010 first_suggested_lma = FALSE;
7011 }
7012
7013 continue;
7014 }
7015 }
7016
7017 map->sections[map->count++] = output_section;
7018 ++isec;
7019 sections[j] = NULL;
7020 section->segment_mark = TRUE;
7021 }
7022 else if (first_suggested_lma)
7023 {
7024 suggested_lma = output_section->lma;
7025 first_suggested_lma = FALSE;
7026 }
7027 }
7028
7029 BFD_ASSERT (map->count > 0);
7030
7031 /* Add the current segment to the list of built segments. */
7032 *pointer_to_map = map;
7033 pointer_to_map = &map->next;
7034
7035 if (isec < section_count)
7036 {
7037 /* We still have not allocated all of the sections to
7038 segments. Create a new segment here, initialise it
7039 and carry on looping. */
7040 amt = sizeof (struct elf_segment_map);
7041 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7042 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7043 if (map == NULL)
7044 {
7045 free (sections);
7046 return FALSE;
7047 }
7048
7049 /* Initialise the fields of the segment map. Set the physical
7050 physical address to the LMA of the first section that has
7051 not yet been assigned. */
7052 map->next = NULL;
7053 map->p_type = segment->p_type;
7054 map->p_flags = segment->p_flags;
7055 map->p_flags_valid = 1;
7056 map->p_paddr = suggested_lma;
7057 map->p_paddr_valid = p_paddr_valid;
7058 map->includes_filehdr = 0;
7059 map->includes_phdrs = 0;
7060 }
7061 }
7062 while (isec < section_count);
7063
7064 free (sections);
7065 }
7066
7067 elf_seg_map (obfd) = map_first;
7068
7069 /* If we had to estimate the number of program headers that were
7070 going to be needed, then check our estimate now and adjust
7071 the offset if necessary. */
7072 if (phdr_adjust_seg != NULL)
7073 {
7074 unsigned int count;
7075
7076 for (count = 0, map = map_first; map != NULL; map = map->next)
7077 count++;
7078
7079 if (count > phdr_adjust_num)
7080 phdr_adjust_seg->p_paddr
7081 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7082 }
7083
7084 #undef SEGMENT_END
7085 #undef SECTION_SIZE
7086 #undef IS_CONTAINED_BY_VMA
7087 #undef IS_CONTAINED_BY_LMA
7088 #undef IS_NOTE
7089 #undef IS_COREFILE_NOTE
7090 #undef IS_SOLARIS_PT_INTERP
7091 #undef IS_SECTION_IN_INPUT_SEGMENT
7092 #undef INCLUDE_SECTION_IN_SEGMENT
7093 #undef SEGMENT_AFTER_SEGMENT
7094 #undef SEGMENT_OVERLAPS
7095 return TRUE;
7096 }
7097
7098 /* Copy ELF program header information. */
7099
7100 static bfd_boolean
7101 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7102 {
7103 Elf_Internal_Ehdr *iehdr;
7104 struct elf_segment_map *map;
7105 struct elf_segment_map *map_first;
7106 struct elf_segment_map **pointer_to_map;
7107 Elf_Internal_Phdr *segment;
7108 unsigned int i;
7109 unsigned int num_segments;
7110 bfd_boolean phdr_included = FALSE;
7111 bfd_boolean p_paddr_valid;
7112
7113 iehdr = elf_elfheader (ibfd);
7114
7115 map_first = NULL;
7116 pointer_to_map = &map_first;
7117
7118 /* If all the segment p_paddr fields are zero, don't set
7119 map->p_paddr_valid. */
7120 p_paddr_valid = FALSE;
7121 num_segments = elf_elfheader (ibfd)->e_phnum;
7122 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7123 i < num_segments;
7124 i++, segment++)
7125 if (segment->p_paddr != 0)
7126 {
7127 p_paddr_valid = TRUE;
7128 break;
7129 }
7130
7131 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7132 i < num_segments;
7133 i++, segment++)
7134 {
7135 asection *section;
7136 unsigned int section_count;
7137 bfd_size_type amt;
7138 Elf_Internal_Shdr *this_hdr;
7139 asection *first_section = NULL;
7140 asection *lowest_section;
7141
7142 /* Compute how many sections are in this segment. */
7143 for (section = ibfd->sections, section_count = 0;
7144 section != NULL;
7145 section = section->next)
7146 {
7147 this_hdr = &(elf_section_data(section)->this_hdr);
7148 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7149 {
7150 if (first_section == NULL)
7151 first_section = section;
7152 section_count++;
7153 }
7154 }
7155
7156 /* Allocate a segment map big enough to contain
7157 all of the sections we have selected. */
7158 amt = sizeof (struct elf_segment_map);
7159 if (section_count != 0)
7160 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7161 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7162 if (map == NULL)
7163 return FALSE;
7164
7165 /* Initialize the fields of the output segment map with the
7166 input segment. */
7167 map->next = NULL;
7168 map->p_type = segment->p_type;
7169 map->p_flags = segment->p_flags;
7170 map->p_flags_valid = 1;
7171 map->p_paddr = segment->p_paddr;
7172 map->p_paddr_valid = p_paddr_valid;
7173 map->p_align = segment->p_align;
7174 map->p_align_valid = 1;
7175 map->p_vaddr_offset = 0;
7176
7177 if (map->p_type == PT_GNU_RELRO
7178 || map->p_type == PT_GNU_STACK)
7179 {
7180 /* The PT_GNU_RELRO segment may contain the first a few
7181 bytes in the .got.plt section even if the whole .got.plt
7182 section isn't in the PT_GNU_RELRO segment. We won't
7183 change the size of the PT_GNU_RELRO segment.
7184 Similarly, PT_GNU_STACK size is significant on uclinux
7185 systems. */
7186 map->p_size = segment->p_memsz;
7187 map->p_size_valid = 1;
7188 }
7189
7190 /* Determine if this segment contains the ELF file header
7191 and if it contains the program headers themselves. */
7192 map->includes_filehdr = (segment->p_offset == 0
7193 && segment->p_filesz >= iehdr->e_ehsize);
7194
7195 map->includes_phdrs = 0;
7196 if (! phdr_included || segment->p_type != PT_LOAD)
7197 {
7198 map->includes_phdrs =
7199 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7200 && (segment->p_offset + segment->p_filesz
7201 >= ((bfd_vma) iehdr->e_phoff
7202 + iehdr->e_phnum * iehdr->e_phentsize)));
7203
7204 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7205 phdr_included = TRUE;
7206 }
7207
7208 lowest_section = NULL;
7209 if (section_count != 0)
7210 {
7211 unsigned int isec = 0;
7212
7213 for (section = first_section;
7214 section != NULL;
7215 section = section->next)
7216 {
7217 this_hdr = &(elf_section_data(section)->this_hdr);
7218 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7219 {
7220 map->sections[isec++] = section->output_section;
7221 if ((section->flags & SEC_ALLOC) != 0)
7222 {
7223 bfd_vma seg_off;
7224
7225 if (lowest_section == NULL
7226 || section->lma < lowest_section->lma)
7227 lowest_section = section;
7228
7229 /* Section lmas are set up from PT_LOAD header
7230 p_paddr in _bfd_elf_make_section_from_shdr.
7231 If this header has a p_paddr that disagrees
7232 with the section lma, flag the p_paddr as
7233 invalid. */
7234 if ((section->flags & SEC_LOAD) != 0)
7235 seg_off = this_hdr->sh_offset - segment->p_offset;
7236 else
7237 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7238 if (section->lma - segment->p_paddr != seg_off)
7239 map->p_paddr_valid = FALSE;
7240 }
7241 if (isec == section_count)
7242 break;
7243 }
7244 }
7245 }
7246
7247 if (map->includes_filehdr && lowest_section != NULL)
7248 /* We need to keep the space used by the headers fixed. */
7249 map->header_size = lowest_section->vma - segment->p_vaddr;
7250
7251 if (!map->includes_phdrs
7252 && !map->includes_filehdr
7253 && map->p_paddr_valid)
7254 /* There is some other padding before the first section. */
7255 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7256 - segment->p_paddr);
7257
7258 map->count = section_count;
7259 *pointer_to_map = map;
7260 pointer_to_map = &map->next;
7261 }
7262
7263 elf_seg_map (obfd) = map_first;
7264 return TRUE;
7265 }
7266
7267 /* Copy private BFD data. This copies or rewrites ELF program header
7268 information. */
7269
7270 static bfd_boolean
7271 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7272 {
7273 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7274 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7275 return TRUE;
7276
7277 if (elf_tdata (ibfd)->phdr == NULL)
7278 return TRUE;
7279
7280 if (ibfd->xvec == obfd->xvec)
7281 {
7282 /* Check to see if any sections in the input BFD
7283 covered by ELF program header have changed. */
7284 Elf_Internal_Phdr *segment;
7285 asection *section, *osec;
7286 unsigned int i, num_segments;
7287 Elf_Internal_Shdr *this_hdr;
7288 const struct elf_backend_data *bed;
7289
7290 bed = get_elf_backend_data (ibfd);
7291
7292 /* Regenerate the segment map if p_paddr is set to 0. */
7293 if (bed->want_p_paddr_set_to_zero)
7294 goto rewrite;
7295
7296 /* Initialize the segment mark field. */
7297 for (section = obfd->sections; section != NULL;
7298 section = section->next)
7299 section->segment_mark = FALSE;
7300
7301 num_segments = elf_elfheader (ibfd)->e_phnum;
7302 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7303 i < num_segments;
7304 i++, segment++)
7305 {
7306 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7307 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7308 which severly confuses things, so always regenerate the segment
7309 map in this case. */
7310 if (segment->p_paddr == 0
7311 && segment->p_memsz == 0
7312 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7313 goto rewrite;
7314
7315 for (section = ibfd->sections;
7316 section != NULL; section = section->next)
7317 {
7318 /* We mark the output section so that we know it comes
7319 from the input BFD. */
7320 osec = section->output_section;
7321 if (osec)
7322 osec->segment_mark = TRUE;
7323
7324 /* Check if this section is covered by the segment. */
7325 this_hdr = &(elf_section_data(section)->this_hdr);
7326 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7327 {
7328 /* FIXME: Check if its output section is changed or
7329 removed. What else do we need to check? */
7330 if (osec == NULL
7331 || section->flags != osec->flags
7332 || section->lma != osec->lma
7333 || section->vma != osec->vma
7334 || section->size != osec->size
7335 || section->rawsize != osec->rawsize
7336 || section->alignment_power != osec->alignment_power)
7337 goto rewrite;
7338 }
7339 }
7340 }
7341
7342 /* Check to see if any output section do not come from the
7343 input BFD. */
7344 for (section = obfd->sections; section != NULL;
7345 section = section->next)
7346 {
7347 if (!section->segment_mark)
7348 goto rewrite;
7349 else
7350 section->segment_mark = FALSE;
7351 }
7352
7353 return copy_elf_program_header (ibfd, obfd);
7354 }
7355
7356 rewrite:
7357 if (ibfd->xvec == obfd->xvec)
7358 {
7359 /* When rewriting program header, set the output maxpagesize to
7360 the maximum alignment of input PT_LOAD segments. */
7361 Elf_Internal_Phdr *segment;
7362 unsigned int i;
7363 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7364 bfd_vma maxpagesize = 0;
7365
7366 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7367 i < num_segments;
7368 i++, segment++)
7369 if (segment->p_type == PT_LOAD
7370 && maxpagesize < segment->p_align)
7371 {
7372 /* PR 17512: file: f17299af. */
7373 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7374 /* xgettext:c-format */
7375 _bfd_error_handler (_("\
7376 %B: warning: segment alignment of 0x%llx is too large"),
7377 ibfd, (long long) segment->p_align);
7378 else
7379 maxpagesize = segment->p_align;
7380 }
7381
7382 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7383 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7384 }
7385
7386 return rewrite_elf_program_header (ibfd, obfd);
7387 }
7388
7389 /* Initialize private output section information from input section. */
7390
7391 bfd_boolean
7392 _bfd_elf_init_private_section_data (bfd *ibfd,
7393 asection *isec,
7394 bfd *obfd,
7395 asection *osec,
7396 struct bfd_link_info *link_info)
7397
7398 {
7399 Elf_Internal_Shdr *ihdr, *ohdr;
7400 bfd_boolean final_link = (link_info != NULL
7401 && !bfd_link_relocatable (link_info));
7402
7403 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7404 || obfd->xvec->flavour != bfd_target_elf_flavour)
7405 return TRUE;
7406
7407 BFD_ASSERT (elf_section_data (osec) != NULL);
7408
7409 /* For objcopy and relocatable link, don't copy the output ELF
7410 section type from input if the output BFD section flags have been
7411 set to something different. For a final link allow some flags
7412 that the linker clears to differ. */
7413 if (elf_section_type (osec) == SHT_NULL
7414 && (osec->flags == isec->flags
7415 || (final_link
7416 && ((osec->flags ^ isec->flags)
7417 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7418 elf_section_type (osec) = elf_section_type (isec);
7419
7420 /* FIXME: Is this correct for all OS/PROC specific flags? */
7421 elf_section_flags (osec) |= (elf_section_flags (isec)
7422 & (SHF_MASKOS | SHF_MASKPROC));
7423
7424 /* Copy sh_info from input for mbind section. */
7425 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7426 elf_section_data (osec)->this_hdr.sh_info
7427 = elf_section_data (isec)->this_hdr.sh_info;
7428
7429 /* Set things up for objcopy and relocatable link. The output
7430 SHT_GROUP section will have its elf_next_in_group pointing back
7431 to the input group members. Ignore linker created group section.
7432 See elfNN_ia64_object_p in elfxx-ia64.c. */
7433 if ((link_info == NULL
7434 || !link_info->resolve_section_groups)
7435 && (elf_sec_group (isec) == NULL
7436 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7437 {
7438 if (elf_section_flags (isec) & SHF_GROUP)
7439 elf_section_flags (osec) |= SHF_GROUP;
7440 elf_next_in_group (osec) = elf_next_in_group (isec);
7441 elf_section_data (osec)->group = elf_section_data (isec)->group;
7442 }
7443
7444 /* If not decompress, preserve SHF_COMPRESSED. */
7445 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7446 elf_section_flags (osec) |= (elf_section_flags (isec)
7447 & SHF_COMPRESSED);
7448
7449 ihdr = &elf_section_data (isec)->this_hdr;
7450
7451 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7452 don't use the output section of the linked-to section since it
7453 may be NULL at this point. */
7454 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7455 {
7456 ohdr = &elf_section_data (osec)->this_hdr;
7457 ohdr->sh_flags |= SHF_LINK_ORDER;
7458 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7459 }
7460
7461 osec->use_rela_p = isec->use_rela_p;
7462
7463 return TRUE;
7464 }
7465
7466 /* Copy private section information. This copies over the entsize
7467 field, and sometimes the info field. */
7468
7469 bfd_boolean
7470 _bfd_elf_copy_private_section_data (bfd *ibfd,
7471 asection *isec,
7472 bfd *obfd,
7473 asection *osec)
7474 {
7475 Elf_Internal_Shdr *ihdr, *ohdr;
7476
7477 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7478 || obfd->xvec->flavour != bfd_target_elf_flavour)
7479 return TRUE;
7480
7481 ihdr = &elf_section_data (isec)->this_hdr;
7482 ohdr = &elf_section_data (osec)->this_hdr;
7483
7484 ohdr->sh_entsize = ihdr->sh_entsize;
7485
7486 if (ihdr->sh_type == SHT_SYMTAB
7487 || ihdr->sh_type == SHT_DYNSYM
7488 || ihdr->sh_type == SHT_GNU_verneed
7489 || ihdr->sh_type == SHT_GNU_verdef)
7490 ohdr->sh_info = ihdr->sh_info;
7491
7492 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7493 NULL);
7494 }
7495
7496 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7497 necessary if we are removing either the SHT_GROUP section or any of
7498 the group member sections. DISCARDED is the value that a section's
7499 output_section has if the section will be discarded, NULL when this
7500 function is called from objcopy, bfd_abs_section_ptr when called
7501 from the linker. */
7502
7503 bfd_boolean
7504 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7505 {
7506 asection *isec;
7507
7508 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7509 if (elf_section_type (isec) == SHT_GROUP)
7510 {
7511 asection *first = elf_next_in_group (isec);
7512 asection *s = first;
7513 bfd_size_type removed = 0;
7514
7515 while (s != NULL)
7516 {
7517 /* If this member section is being output but the
7518 SHT_GROUP section is not, then clear the group info
7519 set up by _bfd_elf_copy_private_section_data. */
7520 if (s->output_section != discarded
7521 && isec->output_section == discarded)
7522 {
7523 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7524 elf_group_name (s->output_section) = NULL;
7525 }
7526 /* Conversely, if the member section is not being output
7527 but the SHT_GROUP section is, then adjust its size. */
7528 else if (s->output_section == discarded
7529 && isec->output_section != discarded)
7530 removed += 4;
7531 s = elf_next_in_group (s);
7532 if (s == first)
7533 break;
7534 }
7535 if (removed != 0)
7536 {
7537 if (discarded != NULL)
7538 {
7539 /* If we've been called for ld -r, then we need to
7540 adjust the input section size. This function may
7541 be called multiple times, so save the original
7542 size. */
7543 if (isec->rawsize == 0)
7544 isec->rawsize = isec->size;
7545 isec->size = isec->rawsize - removed;
7546 }
7547 else
7548 {
7549 /* Adjust the output section size when called from
7550 objcopy. */
7551 isec->output_section->size -= removed;
7552 }
7553 }
7554 }
7555
7556 return TRUE;
7557 }
7558
7559 /* Copy private header information. */
7560
7561 bfd_boolean
7562 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7563 {
7564 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7565 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7566 return TRUE;
7567
7568 /* Copy over private BFD data if it has not already been copied.
7569 This must be done here, rather than in the copy_private_bfd_data
7570 entry point, because the latter is called after the section
7571 contents have been set, which means that the program headers have
7572 already been worked out. */
7573 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7574 {
7575 if (! copy_private_bfd_data (ibfd, obfd))
7576 return FALSE;
7577 }
7578
7579 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7580 }
7581
7582 /* Copy private symbol information. If this symbol is in a section
7583 which we did not map into a BFD section, try to map the section
7584 index correctly. We use special macro definitions for the mapped
7585 section indices; these definitions are interpreted by the
7586 swap_out_syms function. */
7587
7588 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7589 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7590 #define MAP_STRTAB (SHN_HIOS + 3)
7591 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7592 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7593
7594 bfd_boolean
7595 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7596 asymbol *isymarg,
7597 bfd *obfd,
7598 asymbol *osymarg)
7599 {
7600 elf_symbol_type *isym, *osym;
7601
7602 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7603 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7604 return TRUE;
7605
7606 isym = elf_symbol_from (ibfd, isymarg);
7607 osym = elf_symbol_from (obfd, osymarg);
7608
7609 if (isym != NULL
7610 && isym->internal_elf_sym.st_shndx != 0
7611 && osym != NULL
7612 && bfd_is_abs_section (isym->symbol.section))
7613 {
7614 unsigned int shndx;
7615
7616 shndx = isym->internal_elf_sym.st_shndx;
7617 if (shndx == elf_onesymtab (ibfd))
7618 shndx = MAP_ONESYMTAB;
7619 else if (shndx == elf_dynsymtab (ibfd))
7620 shndx = MAP_DYNSYMTAB;
7621 else if (shndx == elf_strtab_sec (ibfd))
7622 shndx = MAP_STRTAB;
7623 else if (shndx == elf_shstrtab_sec (ibfd))
7624 shndx = MAP_SHSTRTAB;
7625 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7626 shndx = MAP_SYM_SHNDX;
7627 osym->internal_elf_sym.st_shndx = shndx;
7628 }
7629
7630 return TRUE;
7631 }
7632
7633 /* Swap out the symbols. */
7634
7635 static bfd_boolean
7636 swap_out_syms (bfd *abfd,
7637 struct elf_strtab_hash **sttp,
7638 int relocatable_p)
7639 {
7640 const struct elf_backend_data *bed;
7641 int symcount;
7642 asymbol **syms;
7643 struct elf_strtab_hash *stt;
7644 Elf_Internal_Shdr *symtab_hdr;
7645 Elf_Internal_Shdr *symtab_shndx_hdr;
7646 Elf_Internal_Shdr *symstrtab_hdr;
7647 struct elf_sym_strtab *symstrtab;
7648 bfd_byte *outbound_syms;
7649 bfd_byte *outbound_shndx;
7650 unsigned long outbound_syms_index;
7651 unsigned long outbound_shndx_index;
7652 int idx;
7653 unsigned int num_locals;
7654 bfd_size_type amt;
7655 bfd_boolean name_local_sections;
7656
7657 if (!elf_map_symbols (abfd, &num_locals))
7658 return FALSE;
7659
7660 /* Dump out the symtabs. */
7661 stt = _bfd_elf_strtab_init ();
7662 if (stt == NULL)
7663 return FALSE;
7664
7665 bed = get_elf_backend_data (abfd);
7666 symcount = bfd_get_symcount (abfd);
7667 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7668 symtab_hdr->sh_type = SHT_SYMTAB;
7669 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7670 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7671 symtab_hdr->sh_info = num_locals + 1;
7672 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7673
7674 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7675 symstrtab_hdr->sh_type = SHT_STRTAB;
7676
7677 /* Allocate buffer to swap out the .strtab section. */
7678 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7679 * sizeof (*symstrtab));
7680 if (symstrtab == NULL)
7681 {
7682 _bfd_elf_strtab_free (stt);
7683 return FALSE;
7684 }
7685
7686 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7687 bed->s->sizeof_sym);
7688 if (outbound_syms == NULL)
7689 {
7690 error_return:
7691 _bfd_elf_strtab_free (stt);
7692 free (symstrtab);
7693 return FALSE;
7694 }
7695 symtab_hdr->contents = outbound_syms;
7696 outbound_syms_index = 0;
7697
7698 outbound_shndx = NULL;
7699 outbound_shndx_index = 0;
7700
7701 if (elf_symtab_shndx_list (abfd))
7702 {
7703 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7704 if (symtab_shndx_hdr->sh_name != 0)
7705 {
7706 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7707 outbound_shndx = (bfd_byte *)
7708 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7709 if (outbound_shndx == NULL)
7710 goto error_return;
7711
7712 symtab_shndx_hdr->contents = outbound_shndx;
7713 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7714 symtab_shndx_hdr->sh_size = amt;
7715 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7716 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7717 }
7718 /* FIXME: What about any other headers in the list ? */
7719 }
7720
7721 /* Now generate the data (for "contents"). */
7722 {
7723 /* Fill in zeroth symbol and swap it out. */
7724 Elf_Internal_Sym sym;
7725 sym.st_name = 0;
7726 sym.st_value = 0;
7727 sym.st_size = 0;
7728 sym.st_info = 0;
7729 sym.st_other = 0;
7730 sym.st_shndx = SHN_UNDEF;
7731 sym.st_target_internal = 0;
7732 symstrtab[0].sym = sym;
7733 symstrtab[0].dest_index = outbound_syms_index;
7734 symstrtab[0].destshndx_index = outbound_shndx_index;
7735 outbound_syms_index++;
7736 if (outbound_shndx != NULL)
7737 outbound_shndx_index++;
7738 }
7739
7740 name_local_sections
7741 = (bed->elf_backend_name_local_section_symbols
7742 && bed->elf_backend_name_local_section_symbols (abfd));
7743
7744 syms = bfd_get_outsymbols (abfd);
7745 for (idx = 0; idx < symcount;)
7746 {
7747 Elf_Internal_Sym sym;
7748 bfd_vma value = syms[idx]->value;
7749 elf_symbol_type *type_ptr;
7750 flagword flags = syms[idx]->flags;
7751 int type;
7752
7753 if (!name_local_sections
7754 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7755 {
7756 /* Local section symbols have no name. */
7757 sym.st_name = (unsigned long) -1;
7758 }
7759 else
7760 {
7761 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7762 to get the final offset for st_name. */
7763 sym.st_name
7764 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7765 FALSE);
7766 if (sym.st_name == (unsigned long) -1)
7767 goto error_return;
7768 }
7769
7770 type_ptr = elf_symbol_from (abfd, syms[idx]);
7771
7772 if ((flags & BSF_SECTION_SYM) == 0
7773 && bfd_is_com_section (syms[idx]->section))
7774 {
7775 /* ELF common symbols put the alignment into the `value' field,
7776 and the size into the `size' field. This is backwards from
7777 how BFD handles it, so reverse it here. */
7778 sym.st_size = value;
7779 if (type_ptr == NULL
7780 || type_ptr->internal_elf_sym.st_value == 0)
7781 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7782 else
7783 sym.st_value = type_ptr->internal_elf_sym.st_value;
7784 sym.st_shndx = _bfd_elf_section_from_bfd_section
7785 (abfd, syms[idx]->section);
7786 }
7787 else
7788 {
7789 asection *sec = syms[idx]->section;
7790 unsigned int shndx;
7791
7792 if (sec->output_section)
7793 {
7794 value += sec->output_offset;
7795 sec = sec->output_section;
7796 }
7797
7798 /* Don't add in the section vma for relocatable output. */
7799 if (! relocatable_p)
7800 value += sec->vma;
7801 sym.st_value = value;
7802 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7803
7804 if (bfd_is_abs_section (sec)
7805 && type_ptr != NULL
7806 && type_ptr->internal_elf_sym.st_shndx != 0)
7807 {
7808 /* This symbol is in a real ELF section which we did
7809 not create as a BFD section. Undo the mapping done
7810 by copy_private_symbol_data. */
7811 shndx = type_ptr->internal_elf_sym.st_shndx;
7812 switch (shndx)
7813 {
7814 case MAP_ONESYMTAB:
7815 shndx = elf_onesymtab (abfd);
7816 break;
7817 case MAP_DYNSYMTAB:
7818 shndx = elf_dynsymtab (abfd);
7819 break;
7820 case MAP_STRTAB:
7821 shndx = elf_strtab_sec (abfd);
7822 break;
7823 case MAP_SHSTRTAB:
7824 shndx = elf_shstrtab_sec (abfd);
7825 break;
7826 case MAP_SYM_SHNDX:
7827 if (elf_symtab_shndx_list (abfd))
7828 shndx = elf_symtab_shndx_list (abfd)->ndx;
7829 break;
7830 default:
7831 shndx = SHN_ABS;
7832 break;
7833 }
7834 }
7835 else
7836 {
7837 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7838
7839 if (shndx == SHN_BAD)
7840 {
7841 asection *sec2;
7842
7843 /* Writing this would be a hell of a lot easier if
7844 we had some decent documentation on bfd, and
7845 knew what to expect of the library, and what to
7846 demand of applications. For example, it
7847 appears that `objcopy' might not set the
7848 section of a symbol to be a section that is
7849 actually in the output file. */
7850 sec2 = bfd_get_section_by_name (abfd, sec->name);
7851 if (sec2 != NULL)
7852 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7853 if (shndx == SHN_BAD)
7854 {
7855 /* xgettext:c-format */
7856 _bfd_error_handler (_("\
7857 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7858 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7859 sec->name);
7860 bfd_set_error (bfd_error_invalid_operation);
7861 goto error_return;
7862 }
7863 }
7864 }
7865
7866 sym.st_shndx = shndx;
7867 }
7868
7869 if ((flags & BSF_THREAD_LOCAL) != 0)
7870 type = STT_TLS;
7871 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7872 type = STT_GNU_IFUNC;
7873 else if ((flags & BSF_FUNCTION) != 0)
7874 type = STT_FUNC;
7875 else if ((flags & BSF_OBJECT) != 0)
7876 type = STT_OBJECT;
7877 else if ((flags & BSF_RELC) != 0)
7878 type = STT_RELC;
7879 else if ((flags & BSF_SRELC) != 0)
7880 type = STT_SRELC;
7881 else
7882 type = STT_NOTYPE;
7883
7884 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7885 type = STT_TLS;
7886
7887 /* Processor-specific types. */
7888 if (type_ptr != NULL
7889 && bed->elf_backend_get_symbol_type)
7890 type = ((*bed->elf_backend_get_symbol_type)
7891 (&type_ptr->internal_elf_sym, type));
7892
7893 if (flags & BSF_SECTION_SYM)
7894 {
7895 if (flags & BSF_GLOBAL)
7896 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7897 else
7898 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7899 }
7900 else if (bfd_is_com_section (syms[idx]->section))
7901 {
7902 if (type != STT_TLS)
7903 {
7904 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
7905 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
7906 ? STT_COMMON : STT_OBJECT);
7907 else
7908 type = ((flags & BSF_ELF_COMMON) != 0
7909 ? STT_COMMON : STT_OBJECT);
7910 }
7911 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7912 }
7913 else if (bfd_is_und_section (syms[idx]->section))
7914 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7915 ? STB_WEAK
7916 : STB_GLOBAL),
7917 type);
7918 else if (flags & BSF_FILE)
7919 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7920 else
7921 {
7922 int bind = STB_LOCAL;
7923
7924 if (flags & BSF_LOCAL)
7925 bind = STB_LOCAL;
7926 else if (flags & BSF_GNU_UNIQUE)
7927 bind = STB_GNU_UNIQUE;
7928 else if (flags & BSF_WEAK)
7929 bind = STB_WEAK;
7930 else if (flags & BSF_GLOBAL)
7931 bind = STB_GLOBAL;
7932
7933 sym.st_info = ELF_ST_INFO (bind, type);
7934 }
7935
7936 if (type_ptr != NULL)
7937 {
7938 sym.st_other = type_ptr->internal_elf_sym.st_other;
7939 sym.st_target_internal
7940 = type_ptr->internal_elf_sym.st_target_internal;
7941 }
7942 else
7943 {
7944 sym.st_other = 0;
7945 sym.st_target_internal = 0;
7946 }
7947
7948 idx++;
7949 symstrtab[idx].sym = sym;
7950 symstrtab[idx].dest_index = outbound_syms_index;
7951 symstrtab[idx].destshndx_index = outbound_shndx_index;
7952
7953 outbound_syms_index++;
7954 if (outbound_shndx != NULL)
7955 outbound_shndx_index++;
7956 }
7957
7958 /* Finalize the .strtab section. */
7959 _bfd_elf_strtab_finalize (stt);
7960
7961 /* Swap out the .strtab section. */
7962 for (idx = 0; idx <= symcount; idx++)
7963 {
7964 struct elf_sym_strtab *elfsym = &symstrtab[idx];
7965 if (elfsym->sym.st_name == (unsigned long) -1)
7966 elfsym->sym.st_name = 0;
7967 else
7968 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
7969 elfsym->sym.st_name);
7970 bed->s->swap_symbol_out (abfd, &elfsym->sym,
7971 (outbound_syms
7972 + (elfsym->dest_index
7973 * bed->s->sizeof_sym)),
7974 (outbound_shndx
7975 + (elfsym->destshndx_index
7976 * sizeof (Elf_External_Sym_Shndx))));
7977 }
7978 free (symstrtab);
7979
7980 *sttp = stt;
7981 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
7982 symstrtab_hdr->sh_type = SHT_STRTAB;
7983 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
7984 symstrtab_hdr->sh_addr = 0;
7985 symstrtab_hdr->sh_entsize = 0;
7986 symstrtab_hdr->sh_link = 0;
7987 symstrtab_hdr->sh_info = 0;
7988 symstrtab_hdr->sh_addralign = 1;
7989
7990 return TRUE;
7991 }
7992
7993 /* Return the number of bytes required to hold the symtab vector.
7994
7995 Note that we base it on the count plus 1, since we will null terminate
7996 the vector allocated based on this size. However, the ELF symbol table
7997 always has a dummy entry as symbol #0, so it ends up even. */
7998
7999 long
8000 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8001 {
8002 long symcount;
8003 long symtab_size;
8004 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8005
8006 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8007 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8008 if (symcount > 0)
8009 symtab_size -= sizeof (asymbol *);
8010
8011 return symtab_size;
8012 }
8013
8014 long
8015 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8016 {
8017 long symcount;
8018 long symtab_size;
8019 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8020
8021 if (elf_dynsymtab (abfd) == 0)
8022 {
8023 bfd_set_error (bfd_error_invalid_operation);
8024 return -1;
8025 }
8026
8027 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8028 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8029 if (symcount > 0)
8030 symtab_size -= sizeof (asymbol *);
8031
8032 return symtab_size;
8033 }
8034
8035 long
8036 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8037 sec_ptr asect)
8038 {
8039 return (asect->reloc_count + 1) * sizeof (arelent *);
8040 }
8041
8042 /* Canonicalize the relocs. */
8043
8044 long
8045 _bfd_elf_canonicalize_reloc (bfd *abfd,
8046 sec_ptr section,
8047 arelent **relptr,
8048 asymbol **symbols)
8049 {
8050 arelent *tblptr;
8051 unsigned int i;
8052 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8053
8054 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8055 return -1;
8056
8057 tblptr = section->relocation;
8058 for (i = 0; i < section->reloc_count; i++)
8059 *relptr++ = tblptr++;
8060
8061 *relptr = NULL;
8062
8063 return section->reloc_count;
8064 }
8065
8066 long
8067 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8068 {
8069 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8070 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8071
8072 if (symcount >= 0)
8073 bfd_get_symcount (abfd) = symcount;
8074 return symcount;
8075 }
8076
8077 long
8078 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8079 asymbol **allocation)
8080 {
8081 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8082 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8083
8084 if (symcount >= 0)
8085 bfd_get_dynamic_symcount (abfd) = symcount;
8086 return symcount;
8087 }
8088
8089 /* Return the size required for the dynamic reloc entries. Any loadable
8090 section that was actually installed in the BFD, and has type SHT_REL
8091 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8092 dynamic reloc section. */
8093
8094 long
8095 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8096 {
8097 long ret;
8098 asection *s;
8099
8100 if (elf_dynsymtab (abfd) == 0)
8101 {
8102 bfd_set_error (bfd_error_invalid_operation);
8103 return -1;
8104 }
8105
8106 ret = sizeof (arelent *);
8107 for (s = abfd->sections; s != NULL; s = s->next)
8108 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8109 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8110 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8111 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8112 * sizeof (arelent *));
8113
8114 return ret;
8115 }
8116
8117 /* Canonicalize the dynamic relocation entries. Note that we return the
8118 dynamic relocations as a single block, although they are actually
8119 associated with particular sections; the interface, which was
8120 designed for SunOS style shared libraries, expects that there is only
8121 one set of dynamic relocs. Any loadable section that was actually
8122 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8123 dynamic symbol table, is considered to be a dynamic reloc section. */
8124
8125 long
8126 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8127 arelent **storage,
8128 asymbol **syms)
8129 {
8130 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8131 asection *s;
8132 long ret;
8133
8134 if (elf_dynsymtab (abfd) == 0)
8135 {
8136 bfd_set_error (bfd_error_invalid_operation);
8137 return -1;
8138 }
8139
8140 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8141 ret = 0;
8142 for (s = abfd->sections; s != NULL; s = s->next)
8143 {
8144 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8145 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8146 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8147 {
8148 arelent *p;
8149 long count, i;
8150
8151 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8152 return -1;
8153 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8154 p = s->relocation;
8155 for (i = 0; i < count; i++)
8156 *storage++ = p++;
8157 ret += count;
8158 }
8159 }
8160
8161 *storage = NULL;
8162
8163 return ret;
8164 }
8165 \f
8166 /* Read in the version information. */
8167
8168 bfd_boolean
8169 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8170 {
8171 bfd_byte *contents = NULL;
8172 unsigned int freeidx = 0;
8173
8174 if (elf_dynverref (abfd) != 0)
8175 {
8176 Elf_Internal_Shdr *hdr;
8177 Elf_External_Verneed *everneed;
8178 Elf_Internal_Verneed *iverneed;
8179 unsigned int i;
8180 bfd_byte *contents_end;
8181
8182 hdr = &elf_tdata (abfd)->dynverref_hdr;
8183
8184 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
8185 {
8186 error_return_bad_verref:
8187 _bfd_error_handler
8188 (_("%B: .gnu.version_r invalid entry"), abfd);
8189 bfd_set_error (bfd_error_bad_value);
8190 error_return_verref:
8191 elf_tdata (abfd)->verref = NULL;
8192 elf_tdata (abfd)->cverrefs = 0;
8193 goto error_return;
8194 }
8195
8196 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8197 if (contents == NULL)
8198 goto error_return_verref;
8199
8200 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8201 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8202 goto error_return_verref;
8203
8204 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8205 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8206
8207 if (elf_tdata (abfd)->verref == NULL)
8208 goto error_return_verref;
8209
8210 BFD_ASSERT (sizeof (Elf_External_Verneed)
8211 == sizeof (Elf_External_Vernaux));
8212 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8213 everneed = (Elf_External_Verneed *) contents;
8214 iverneed = elf_tdata (abfd)->verref;
8215 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8216 {
8217 Elf_External_Vernaux *evernaux;
8218 Elf_Internal_Vernaux *ivernaux;
8219 unsigned int j;
8220
8221 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8222
8223 iverneed->vn_bfd = abfd;
8224
8225 iverneed->vn_filename =
8226 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8227 iverneed->vn_file);
8228 if (iverneed->vn_filename == NULL)
8229 goto error_return_bad_verref;
8230
8231 if (iverneed->vn_cnt == 0)
8232 iverneed->vn_auxptr = NULL;
8233 else
8234 {
8235 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8236 bfd_alloc2 (abfd, iverneed->vn_cnt,
8237 sizeof (Elf_Internal_Vernaux));
8238 if (iverneed->vn_auxptr == NULL)
8239 goto error_return_verref;
8240 }
8241
8242 if (iverneed->vn_aux
8243 > (size_t) (contents_end - (bfd_byte *) everneed))
8244 goto error_return_bad_verref;
8245
8246 evernaux = ((Elf_External_Vernaux *)
8247 ((bfd_byte *) everneed + iverneed->vn_aux));
8248 ivernaux = iverneed->vn_auxptr;
8249 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8250 {
8251 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8252
8253 ivernaux->vna_nodename =
8254 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8255 ivernaux->vna_name);
8256 if (ivernaux->vna_nodename == NULL)
8257 goto error_return_bad_verref;
8258
8259 if (ivernaux->vna_other > freeidx)
8260 freeidx = ivernaux->vna_other;
8261
8262 ivernaux->vna_nextptr = NULL;
8263 if (ivernaux->vna_next == 0)
8264 {
8265 iverneed->vn_cnt = j + 1;
8266 break;
8267 }
8268 if (j + 1 < iverneed->vn_cnt)
8269 ivernaux->vna_nextptr = ivernaux + 1;
8270
8271 if (ivernaux->vna_next
8272 > (size_t) (contents_end - (bfd_byte *) evernaux))
8273 goto error_return_bad_verref;
8274
8275 evernaux = ((Elf_External_Vernaux *)
8276 ((bfd_byte *) evernaux + ivernaux->vna_next));
8277 }
8278
8279 iverneed->vn_nextref = NULL;
8280 if (iverneed->vn_next == 0)
8281 break;
8282 if (i + 1 < hdr->sh_info)
8283 iverneed->vn_nextref = iverneed + 1;
8284
8285 if (iverneed->vn_next
8286 > (size_t) (contents_end - (bfd_byte *) everneed))
8287 goto error_return_bad_verref;
8288
8289 everneed = ((Elf_External_Verneed *)
8290 ((bfd_byte *) everneed + iverneed->vn_next));
8291 }
8292 elf_tdata (abfd)->cverrefs = i;
8293
8294 free (contents);
8295 contents = NULL;
8296 }
8297
8298 if (elf_dynverdef (abfd) != 0)
8299 {
8300 Elf_Internal_Shdr *hdr;
8301 Elf_External_Verdef *everdef;
8302 Elf_Internal_Verdef *iverdef;
8303 Elf_Internal_Verdef *iverdefarr;
8304 Elf_Internal_Verdef iverdefmem;
8305 unsigned int i;
8306 unsigned int maxidx;
8307 bfd_byte *contents_end_def, *contents_end_aux;
8308
8309 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8310
8311 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8312 {
8313 error_return_bad_verdef:
8314 _bfd_error_handler
8315 (_("%B: .gnu.version_d invalid entry"), abfd);
8316 bfd_set_error (bfd_error_bad_value);
8317 error_return_verdef:
8318 elf_tdata (abfd)->verdef = NULL;
8319 elf_tdata (abfd)->cverdefs = 0;
8320 goto error_return;
8321 }
8322
8323 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8324 if (contents == NULL)
8325 goto error_return_verdef;
8326 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8327 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8328 goto error_return_verdef;
8329
8330 BFD_ASSERT (sizeof (Elf_External_Verdef)
8331 >= sizeof (Elf_External_Verdaux));
8332 contents_end_def = contents + hdr->sh_size
8333 - sizeof (Elf_External_Verdef);
8334 contents_end_aux = contents + hdr->sh_size
8335 - sizeof (Elf_External_Verdaux);
8336
8337 /* We know the number of entries in the section but not the maximum
8338 index. Therefore we have to run through all entries and find
8339 the maximum. */
8340 everdef = (Elf_External_Verdef *) contents;
8341 maxidx = 0;
8342 for (i = 0; i < hdr->sh_info; ++i)
8343 {
8344 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8345
8346 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8347 goto error_return_bad_verdef;
8348 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8349 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8350
8351 if (iverdefmem.vd_next == 0)
8352 break;
8353
8354 if (iverdefmem.vd_next
8355 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8356 goto error_return_bad_verdef;
8357
8358 everdef = ((Elf_External_Verdef *)
8359 ((bfd_byte *) everdef + iverdefmem.vd_next));
8360 }
8361
8362 if (default_imported_symver)
8363 {
8364 if (freeidx > maxidx)
8365 maxidx = ++freeidx;
8366 else
8367 freeidx = ++maxidx;
8368 }
8369
8370 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8371 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8372 if (elf_tdata (abfd)->verdef == NULL)
8373 goto error_return_verdef;
8374
8375 elf_tdata (abfd)->cverdefs = maxidx;
8376
8377 everdef = (Elf_External_Verdef *) contents;
8378 iverdefarr = elf_tdata (abfd)->verdef;
8379 for (i = 0; i < hdr->sh_info; i++)
8380 {
8381 Elf_External_Verdaux *everdaux;
8382 Elf_Internal_Verdaux *iverdaux;
8383 unsigned int j;
8384
8385 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8386
8387 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8388 goto error_return_bad_verdef;
8389
8390 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8391 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8392
8393 iverdef->vd_bfd = abfd;
8394
8395 if (iverdef->vd_cnt == 0)
8396 iverdef->vd_auxptr = NULL;
8397 else
8398 {
8399 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8400 bfd_alloc2 (abfd, iverdef->vd_cnt,
8401 sizeof (Elf_Internal_Verdaux));
8402 if (iverdef->vd_auxptr == NULL)
8403 goto error_return_verdef;
8404 }
8405
8406 if (iverdef->vd_aux
8407 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8408 goto error_return_bad_verdef;
8409
8410 everdaux = ((Elf_External_Verdaux *)
8411 ((bfd_byte *) everdef + iverdef->vd_aux));
8412 iverdaux = iverdef->vd_auxptr;
8413 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8414 {
8415 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8416
8417 iverdaux->vda_nodename =
8418 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8419 iverdaux->vda_name);
8420 if (iverdaux->vda_nodename == NULL)
8421 goto error_return_bad_verdef;
8422
8423 iverdaux->vda_nextptr = NULL;
8424 if (iverdaux->vda_next == 0)
8425 {
8426 iverdef->vd_cnt = j + 1;
8427 break;
8428 }
8429 if (j + 1 < iverdef->vd_cnt)
8430 iverdaux->vda_nextptr = iverdaux + 1;
8431
8432 if (iverdaux->vda_next
8433 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8434 goto error_return_bad_verdef;
8435
8436 everdaux = ((Elf_External_Verdaux *)
8437 ((bfd_byte *) everdaux + iverdaux->vda_next));
8438 }
8439
8440 iverdef->vd_nodename = NULL;
8441 if (iverdef->vd_cnt)
8442 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8443
8444 iverdef->vd_nextdef = NULL;
8445 if (iverdef->vd_next == 0)
8446 break;
8447 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8448 iverdef->vd_nextdef = iverdef + 1;
8449
8450 everdef = ((Elf_External_Verdef *)
8451 ((bfd_byte *) everdef + iverdef->vd_next));
8452 }
8453
8454 free (contents);
8455 contents = NULL;
8456 }
8457 else if (default_imported_symver)
8458 {
8459 if (freeidx < 3)
8460 freeidx = 3;
8461 else
8462 freeidx++;
8463
8464 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8465 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8466 if (elf_tdata (abfd)->verdef == NULL)
8467 goto error_return;
8468
8469 elf_tdata (abfd)->cverdefs = freeidx;
8470 }
8471
8472 /* Create a default version based on the soname. */
8473 if (default_imported_symver)
8474 {
8475 Elf_Internal_Verdef *iverdef;
8476 Elf_Internal_Verdaux *iverdaux;
8477
8478 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8479
8480 iverdef->vd_version = VER_DEF_CURRENT;
8481 iverdef->vd_flags = 0;
8482 iverdef->vd_ndx = freeidx;
8483 iverdef->vd_cnt = 1;
8484
8485 iverdef->vd_bfd = abfd;
8486
8487 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8488 if (iverdef->vd_nodename == NULL)
8489 goto error_return_verdef;
8490 iverdef->vd_nextdef = NULL;
8491 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8492 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8493 if (iverdef->vd_auxptr == NULL)
8494 goto error_return_verdef;
8495
8496 iverdaux = iverdef->vd_auxptr;
8497 iverdaux->vda_nodename = iverdef->vd_nodename;
8498 }
8499
8500 return TRUE;
8501
8502 error_return:
8503 if (contents != NULL)
8504 free (contents);
8505 return FALSE;
8506 }
8507 \f
8508 asymbol *
8509 _bfd_elf_make_empty_symbol (bfd *abfd)
8510 {
8511 elf_symbol_type *newsym;
8512
8513 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8514 if (!newsym)
8515 return NULL;
8516 newsym->symbol.the_bfd = abfd;
8517 return &newsym->symbol;
8518 }
8519
8520 void
8521 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8522 asymbol *symbol,
8523 symbol_info *ret)
8524 {
8525 bfd_symbol_info (symbol, ret);
8526 }
8527
8528 /* Return whether a symbol name implies a local symbol. Most targets
8529 use this function for the is_local_label_name entry point, but some
8530 override it. */
8531
8532 bfd_boolean
8533 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8534 const char *name)
8535 {
8536 /* Normal local symbols start with ``.L''. */
8537 if (name[0] == '.' && name[1] == 'L')
8538 return TRUE;
8539
8540 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8541 DWARF debugging symbols starting with ``..''. */
8542 if (name[0] == '.' && name[1] == '.')
8543 return TRUE;
8544
8545 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8546 emitting DWARF debugging output. I suspect this is actually a
8547 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8548 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8549 underscore to be emitted on some ELF targets). For ease of use,
8550 we treat such symbols as local. */
8551 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8552 return TRUE;
8553
8554 /* Treat assembler generated fake symbols, dollar local labels and
8555 forward-backward labels (aka local labels) as locals.
8556 These labels have the form:
8557
8558 L0^A.* (fake symbols)
8559
8560 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8561
8562 Versions which start with .L will have already been matched above,
8563 so we only need to match the rest. */
8564 if (name[0] == 'L' && ISDIGIT (name[1]))
8565 {
8566 bfd_boolean ret = FALSE;
8567 const char * p;
8568 char c;
8569
8570 for (p = name + 2; (c = *p); p++)
8571 {
8572 if (c == 1 || c == 2)
8573 {
8574 if (c == 1 && p == name + 2)
8575 /* A fake symbol. */
8576 return TRUE;
8577
8578 /* FIXME: We are being paranoid here and treating symbols like
8579 L0^Bfoo as if there were non-local, on the grounds that the
8580 assembler will never generate them. But can any symbol
8581 containing an ASCII value in the range 1-31 ever be anything
8582 other than some kind of local ? */
8583 ret = TRUE;
8584 }
8585
8586 if (! ISDIGIT (c))
8587 {
8588 ret = FALSE;
8589 break;
8590 }
8591 }
8592 return ret;
8593 }
8594
8595 return FALSE;
8596 }
8597
8598 alent *
8599 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8600 asymbol *symbol ATTRIBUTE_UNUSED)
8601 {
8602 abort ();
8603 return NULL;
8604 }
8605
8606 bfd_boolean
8607 _bfd_elf_set_arch_mach (bfd *abfd,
8608 enum bfd_architecture arch,
8609 unsigned long machine)
8610 {
8611 /* If this isn't the right architecture for this backend, and this
8612 isn't the generic backend, fail. */
8613 if (arch != get_elf_backend_data (abfd)->arch
8614 && arch != bfd_arch_unknown
8615 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8616 return FALSE;
8617
8618 return bfd_default_set_arch_mach (abfd, arch, machine);
8619 }
8620
8621 /* Find the nearest line to a particular section and offset,
8622 for error reporting. */
8623
8624 bfd_boolean
8625 _bfd_elf_find_nearest_line (bfd *abfd,
8626 asymbol **symbols,
8627 asection *section,
8628 bfd_vma offset,
8629 const char **filename_ptr,
8630 const char **functionname_ptr,
8631 unsigned int *line_ptr,
8632 unsigned int *discriminator_ptr)
8633 {
8634 bfd_boolean found;
8635
8636 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8637 filename_ptr, functionname_ptr,
8638 line_ptr, discriminator_ptr,
8639 dwarf_debug_sections, 0,
8640 &elf_tdata (abfd)->dwarf2_find_line_info)
8641 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8642 filename_ptr, functionname_ptr,
8643 line_ptr))
8644 {
8645 if (!*functionname_ptr)
8646 _bfd_elf_find_function (abfd, symbols, section, offset,
8647 *filename_ptr ? NULL : filename_ptr,
8648 functionname_ptr);
8649 return TRUE;
8650 }
8651
8652 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8653 &found, filename_ptr,
8654 functionname_ptr, line_ptr,
8655 &elf_tdata (abfd)->line_info))
8656 return FALSE;
8657 if (found && (*functionname_ptr || *line_ptr))
8658 return TRUE;
8659
8660 if (symbols == NULL)
8661 return FALSE;
8662
8663 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8664 filename_ptr, functionname_ptr))
8665 return FALSE;
8666
8667 *line_ptr = 0;
8668 return TRUE;
8669 }
8670
8671 /* Find the line for a symbol. */
8672
8673 bfd_boolean
8674 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8675 const char **filename_ptr, unsigned int *line_ptr)
8676 {
8677 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8678 filename_ptr, NULL, line_ptr, NULL,
8679 dwarf_debug_sections, 0,
8680 &elf_tdata (abfd)->dwarf2_find_line_info);
8681 }
8682
8683 /* After a call to bfd_find_nearest_line, successive calls to
8684 bfd_find_inliner_info can be used to get source information about
8685 each level of function inlining that terminated at the address
8686 passed to bfd_find_nearest_line. Currently this is only supported
8687 for DWARF2 with appropriate DWARF3 extensions. */
8688
8689 bfd_boolean
8690 _bfd_elf_find_inliner_info (bfd *abfd,
8691 const char **filename_ptr,
8692 const char **functionname_ptr,
8693 unsigned int *line_ptr)
8694 {
8695 bfd_boolean found;
8696 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8697 functionname_ptr, line_ptr,
8698 & elf_tdata (abfd)->dwarf2_find_line_info);
8699 return found;
8700 }
8701
8702 int
8703 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8704 {
8705 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8706 int ret = bed->s->sizeof_ehdr;
8707
8708 if (!bfd_link_relocatable (info))
8709 {
8710 bfd_size_type phdr_size = elf_program_header_size (abfd);
8711
8712 if (phdr_size == (bfd_size_type) -1)
8713 {
8714 struct elf_segment_map *m;
8715
8716 phdr_size = 0;
8717 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8718 phdr_size += bed->s->sizeof_phdr;
8719
8720 if (phdr_size == 0)
8721 phdr_size = get_program_header_size (abfd, info);
8722 }
8723
8724 elf_program_header_size (abfd) = phdr_size;
8725 ret += phdr_size;
8726 }
8727
8728 return ret;
8729 }
8730
8731 bfd_boolean
8732 _bfd_elf_set_section_contents (bfd *abfd,
8733 sec_ptr section,
8734 const void *location,
8735 file_ptr offset,
8736 bfd_size_type count)
8737 {
8738 Elf_Internal_Shdr *hdr;
8739 file_ptr pos;
8740
8741 if (! abfd->output_has_begun
8742 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8743 return FALSE;
8744
8745 if (!count)
8746 return TRUE;
8747
8748 hdr = &elf_section_data (section)->this_hdr;
8749 if (hdr->sh_offset == (file_ptr) -1)
8750 {
8751 /* We must compress this section. Write output to the buffer. */
8752 unsigned char *contents = hdr->contents;
8753 if ((offset + count) > hdr->sh_size
8754 || (section->flags & SEC_ELF_COMPRESS) == 0
8755 || contents == NULL)
8756 abort ();
8757 memcpy (contents + offset, location, count);
8758 return TRUE;
8759 }
8760 pos = hdr->sh_offset + offset;
8761 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8762 || bfd_bwrite (location, count, abfd) != count)
8763 return FALSE;
8764
8765 return TRUE;
8766 }
8767
8768 void
8769 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8770 arelent *cache_ptr ATTRIBUTE_UNUSED,
8771 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8772 {
8773 abort ();
8774 }
8775
8776 /* Try to convert a non-ELF reloc into an ELF one. */
8777
8778 bfd_boolean
8779 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8780 {
8781 /* Check whether we really have an ELF howto. */
8782
8783 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8784 {
8785 bfd_reloc_code_real_type code;
8786 reloc_howto_type *howto;
8787
8788 /* Alien reloc: Try to determine its type to replace it with an
8789 equivalent ELF reloc. */
8790
8791 if (areloc->howto->pc_relative)
8792 {
8793 switch (areloc->howto->bitsize)
8794 {
8795 case 8:
8796 code = BFD_RELOC_8_PCREL;
8797 break;
8798 case 12:
8799 code = BFD_RELOC_12_PCREL;
8800 break;
8801 case 16:
8802 code = BFD_RELOC_16_PCREL;
8803 break;
8804 case 24:
8805 code = BFD_RELOC_24_PCREL;
8806 break;
8807 case 32:
8808 code = BFD_RELOC_32_PCREL;
8809 break;
8810 case 64:
8811 code = BFD_RELOC_64_PCREL;
8812 break;
8813 default:
8814 goto fail;
8815 }
8816
8817 howto = bfd_reloc_type_lookup (abfd, code);
8818
8819 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8820 {
8821 if (howto->pcrel_offset)
8822 areloc->addend += areloc->address;
8823 else
8824 areloc->addend -= areloc->address; /* addend is unsigned!! */
8825 }
8826 }
8827 else
8828 {
8829 switch (areloc->howto->bitsize)
8830 {
8831 case 8:
8832 code = BFD_RELOC_8;
8833 break;
8834 case 14:
8835 code = BFD_RELOC_14;
8836 break;
8837 case 16:
8838 code = BFD_RELOC_16;
8839 break;
8840 case 26:
8841 code = BFD_RELOC_26;
8842 break;
8843 case 32:
8844 code = BFD_RELOC_32;
8845 break;
8846 case 64:
8847 code = BFD_RELOC_64;
8848 break;
8849 default:
8850 goto fail;
8851 }
8852
8853 howto = bfd_reloc_type_lookup (abfd, code);
8854 }
8855
8856 if (howto)
8857 areloc->howto = howto;
8858 else
8859 goto fail;
8860 }
8861
8862 return TRUE;
8863
8864 fail:
8865 _bfd_error_handler
8866 /* xgettext:c-format */
8867 (_("%B: unsupported relocation type %s"),
8868 abfd, areloc->howto->name);
8869 bfd_set_error (bfd_error_bad_value);
8870 return FALSE;
8871 }
8872
8873 bfd_boolean
8874 _bfd_elf_close_and_cleanup (bfd *abfd)
8875 {
8876 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8877 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8878 {
8879 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8880 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8881 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8882 }
8883
8884 return _bfd_generic_close_and_cleanup (abfd);
8885 }
8886
8887 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8888 in the relocation's offset. Thus we cannot allow any sort of sanity
8889 range-checking to interfere. There is nothing else to do in processing
8890 this reloc. */
8891
8892 bfd_reloc_status_type
8893 _bfd_elf_rel_vtable_reloc_fn
8894 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8895 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8896 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8897 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8898 {
8899 return bfd_reloc_ok;
8900 }
8901 \f
8902 /* Elf core file support. Much of this only works on native
8903 toolchains, since we rely on knowing the
8904 machine-dependent procfs structure in order to pick
8905 out details about the corefile. */
8906
8907 #ifdef HAVE_SYS_PROCFS_H
8908 /* Needed for new procfs interface on sparc-solaris. */
8909 # define _STRUCTURED_PROC 1
8910 # include <sys/procfs.h>
8911 #endif
8912
8913 /* Return a PID that identifies a "thread" for threaded cores, or the
8914 PID of the main process for non-threaded cores. */
8915
8916 static int
8917 elfcore_make_pid (bfd *abfd)
8918 {
8919 int pid;
8920
8921 pid = elf_tdata (abfd)->core->lwpid;
8922 if (pid == 0)
8923 pid = elf_tdata (abfd)->core->pid;
8924
8925 return pid;
8926 }
8927
8928 /* If there isn't a section called NAME, make one, using
8929 data from SECT. Note, this function will generate a
8930 reference to NAME, so you shouldn't deallocate or
8931 overwrite it. */
8932
8933 static bfd_boolean
8934 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8935 {
8936 asection *sect2;
8937
8938 if (bfd_get_section_by_name (abfd, name) != NULL)
8939 return TRUE;
8940
8941 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8942 if (sect2 == NULL)
8943 return FALSE;
8944
8945 sect2->size = sect->size;
8946 sect2->filepos = sect->filepos;
8947 sect2->alignment_power = sect->alignment_power;
8948 return TRUE;
8949 }
8950
8951 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8952 actually creates up to two pseudosections:
8953 - For the single-threaded case, a section named NAME, unless
8954 such a section already exists.
8955 - For the multi-threaded case, a section named "NAME/PID", where
8956 PID is elfcore_make_pid (abfd).
8957 Both pseudosections have identical contents. */
8958 bfd_boolean
8959 _bfd_elfcore_make_pseudosection (bfd *abfd,
8960 char *name,
8961 size_t size,
8962 ufile_ptr filepos)
8963 {
8964 char buf[100];
8965 char *threaded_name;
8966 size_t len;
8967 asection *sect;
8968
8969 /* Build the section name. */
8970
8971 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8972 len = strlen (buf) + 1;
8973 threaded_name = (char *) bfd_alloc (abfd, len);
8974 if (threaded_name == NULL)
8975 return FALSE;
8976 memcpy (threaded_name, buf, len);
8977
8978 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8979 SEC_HAS_CONTENTS);
8980 if (sect == NULL)
8981 return FALSE;
8982 sect->size = size;
8983 sect->filepos = filepos;
8984 sect->alignment_power = 2;
8985
8986 return elfcore_maybe_make_sect (abfd, name, sect);
8987 }
8988
8989 /* prstatus_t exists on:
8990 solaris 2.5+
8991 linux 2.[01] + glibc
8992 unixware 4.2
8993 */
8994
8995 #if defined (HAVE_PRSTATUS_T)
8996
8997 static bfd_boolean
8998 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8999 {
9000 size_t size;
9001 int offset;
9002
9003 if (note->descsz == sizeof (prstatus_t))
9004 {
9005 prstatus_t prstat;
9006
9007 size = sizeof (prstat.pr_reg);
9008 offset = offsetof (prstatus_t, pr_reg);
9009 memcpy (&prstat, note->descdata, sizeof (prstat));
9010
9011 /* Do not overwrite the core signal if it
9012 has already been set by another thread. */
9013 if (elf_tdata (abfd)->core->signal == 0)
9014 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9015 if (elf_tdata (abfd)->core->pid == 0)
9016 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9017
9018 /* pr_who exists on:
9019 solaris 2.5+
9020 unixware 4.2
9021 pr_who doesn't exist on:
9022 linux 2.[01]
9023 */
9024 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9025 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9026 #else
9027 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9028 #endif
9029 }
9030 #if defined (HAVE_PRSTATUS32_T)
9031 else if (note->descsz == sizeof (prstatus32_t))
9032 {
9033 /* 64-bit host, 32-bit corefile */
9034 prstatus32_t prstat;
9035
9036 size = sizeof (prstat.pr_reg);
9037 offset = offsetof (prstatus32_t, pr_reg);
9038 memcpy (&prstat, note->descdata, sizeof (prstat));
9039
9040 /* Do not overwrite the core signal if it
9041 has already been set by another thread. */
9042 if (elf_tdata (abfd)->core->signal == 0)
9043 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9044 if (elf_tdata (abfd)->core->pid == 0)
9045 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9046
9047 /* pr_who exists on:
9048 solaris 2.5+
9049 unixware 4.2
9050 pr_who doesn't exist on:
9051 linux 2.[01]
9052 */
9053 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9054 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9055 #else
9056 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9057 #endif
9058 }
9059 #endif /* HAVE_PRSTATUS32_T */
9060 else
9061 {
9062 /* Fail - we don't know how to handle any other
9063 note size (ie. data object type). */
9064 return TRUE;
9065 }
9066
9067 /* Make a ".reg/999" section and a ".reg" section. */
9068 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9069 size, note->descpos + offset);
9070 }
9071 #endif /* defined (HAVE_PRSTATUS_T) */
9072
9073 /* Create a pseudosection containing the exact contents of NOTE. */
9074 static bfd_boolean
9075 elfcore_make_note_pseudosection (bfd *abfd,
9076 char *name,
9077 Elf_Internal_Note *note)
9078 {
9079 return _bfd_elfcore_make_pseudosection (abfd, name,
9080 note->descsz, note->descpos);
9081 }
9082
9083 /* There isn't a consistent prfpregset_t across platforms,
9084 but it doesn't matter, because we don't have to pick this
9085 data structure apart. */
9086
9087 static bfd_boolean
9088 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9089 {
9090 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9091 }
9092
9093 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9094 type of NT_PRXFPREG. Just include the whole note's contents
9095 literally. */
9096
9097 static bfd_boolean
9098 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9099 {
9100 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9101 }
9102
9103 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9104 with a note type of NT_X86_XSTATE. Just include the whole note's
9105 contents literally. */
9106
9107 static bfd_boolean
9108 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9109 {
9110 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9111 }
9112
9113 static bfd_boolean
9114 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9115 {
9116 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9117 }
9118
9119 static bfd_boolean
9120 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9121 {
9122 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9123 }
9124
9125 static bfd_boolean
9126 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9127 {
9128 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9129 }
9130
9131 static bfd_boolean
9132 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9133 {
9134 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9135 }
9136
9137 static bfd_boolean
9138 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9139 {
9140 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9141 }
9142
9143 static bfd_boolean
9144 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9145 {
9146 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9147 }
9148
9149 static bfd_boolean
9150 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9151 {
9152 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9153 }
9154
9155 static bfd_boolean
9156 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9157 {
9158 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9159 }
9160
9161 static bfd_boolean
9162 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9163 {
9164 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9165 }
9166
9167 static bfd_boolean
9168 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9169 {
9170 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9171 }
9172
9173 static bfd_boolean
9174 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9175 {
9176 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9177 }
9178
9179 static bfd_boolean
9180 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9181 {
9182 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9183 }
9184
9185 static bfd_boolean
9186 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9187 {
9188 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9189 }
9190
9191 static bfd_boolean
9192 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9193 {
9194 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9195 }
9196
9197 static bfd_boolean
9198 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9199 {
9200 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9201 }
9202
9203 static bfd_boolean
9204 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9205 {
9206 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9207 }
9208
9209 static bfd_boolean
9210 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9211 {
9212 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9213 }
9214
9215 #if defined (HAVE_PRPSINFO_T)
9216 typedef prpsinfo_t elfcore_psinfo_t;
9217 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9218 typedef prpsinfo32_t elfcore_psinfo32_t;
9219 #endif
9220 #endif
9221
9222 #if defined (HAVE_PSINFO_T)
9223 typedef psinfo_t elfcore_psinfo_t;
9224 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9225 typedef psinfo32_t elfcore_psinfo32_t;
9226 #endif
9227 #endif
9228
9229 /* return a malloc'ed copy of a string at START which is at
9230 most MAX bytes long, possibly without a terminating '\0'.
9231 the copy will always have a terminating '\0'. */
9232
9233 char *
9234 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9235 {
9236 char *dups;
9237 char *end = (char *) memchr (start, '\0', max);
9238 size_t len;
9239
9240 if (end == NULL)
9241 len = max;
9242 else
9243 len = end - start;
9244
9245 dups = (char *) bfd_alloc (abfd, len + 1);
9246 if (dups == NULL)
9247 return NULL;
9248
9249 memcpy (dups, start, len);
9250 dups[len] = '\0';
9251
9252 return dups;
9253 }
9254
9255 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9256 static bfd_boolean
9257 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9258 {
9259 if (note->descsz == sizeof (elfcore_psinfo_t))
9260 {
9261 elfcore_psinfo_t psinfo;
9262
9263 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9264
9265 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9266 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9267 #endif
9268 elf_tdata (abfd)->core->program
9269 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9270 sizeof (psinfo.pr_fname));
9271
9272 elf_tdata (abfd)->core->command
9273 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9274 sizeof (psinfo.pr_psargs));
9275 }
9276 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9277 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9278 {
9279 /* 64-bit host, 32-bit corefile */
9280 elfcore_psinfo32_t psinfo;
9281
9282 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9283
9284 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9285 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9286 #endif
9287 elf_tdata (abfd)->core->program
9288 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9289 sizeof (psinfo.pr_fname));
9290
9291 elf_tdata (abfd)->core->command
9292 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9293 sizeof (psinfo.pr_psargs));
9294 }
9295 #endif
9296
9297 else
9298 {
9299 /* Fail - we don't know how to handle any other
9300 note size (ie. data object type). */
9301 return TRUE;
9302 }
9303
9304 /* Note that for some reason, a spurious space is tacked
9305 onto the end of the args in some (at least one anyway)
9306 implementations, so strip it off if it exists. */
9307
9308 {
9309 char *command = elf_tdata (abfd)->core->command;
9310 int n = strlen (command);
9311
9312 if (0 < n && command[n - 1] == ' ')
9313 command[n - 1] = '\0';
9314 }
9315
9316 return TRUE;
9317 }
9318 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9319
9320 #if defined (HAVE_PSTATUS_T)
9321 static bfd_boolean
9322 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9323 {
9324 if (note->descsz == sizeof (pstatus_t)
9325 #if defined (HAVE_PXSTATUS_T)
9326 || note->descsz == sizeof (pxstatus_t)
9327 #endif
9328 )
9329 {
9330 pstatus_t pstat;
9331
9332 memcpy (&pstat, note->descdata, sizeof (pstat));
9333
9334 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9335 }
9336 #if defined (HAVE_PSTATUS32_T)
9337 else if (note->descsz == sizeof (pstatus32_t))
9338 {
9339 /* 64-bit host, 32-bit corefile */
9340 pstatus32_t pstat;
9341
9342 memcpy (&pstat, note->descdata, sizeof (pstat));
9343
9344 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9345 }
9346 #endif
9347 /* Could grab some more details from the "representative"
9348 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9349 NT_LWPSTATUS note, presumably. */
9350
9351 return TRUE;
9352 }
9353 #endif /* defined (HAVE_PSTATUS_T) */
9354
9355 #if defined (HAVE_LWPSTATUS_T)
9356 static bfd_boolean
9357 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9358 {
9359 lwpstatus_t lwpstat;
9360 char buf[100];
9361 char *name;
9362 size_t len;
9363 asection *sect;
9364
9365 if (note->descsz != sizeof (lwpstat)
9366 #if defined (HAVE_LWPXSTATUS_T)
9367 && note->descsz != sizeof (lwpxstatus_t)
9368 #endif
9369 )
9370 return TRUE;
9371
9372 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9373
9374 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9375 /* Do not overwrite the core signal if it has already been set by
9376 another thread. */
9377 if (elf_tdata (abfd)->core->signal == 0)
9378 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9379
9380 /* Make a ".reg/999" section. */
9381
9382 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9383 len = strlen (buf) + 1;
9384 name = bfd_alloc (abfd, len);
9385 if (name == NULL)
9386 return FALSE;
9387 memcpy (name, buf, len);
9388
9389 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9390 if (sect == NULL)
9391 return FALSE;
9392
9393 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9394 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9395 sect->filepos = note->descpos
9396 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9397 #endif
9398
9399 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9400 sect->size = sizeof (lwpstat.pr_reg);
9401 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9402 #endif
9403
9404 sect->alignment_power = 2;
9405
9406 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9407 return FALSE;
9408
9409 /* Make a ".reg2/999" section */
9410
9411 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9412 len = strlen (buf) + 1;
9413 name = bfd_alloc (abfd, len);
9414 if (name == NULL)
9415 return FALSE;
9416 memcpy (name, buf, len);
9417
9418 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9419 if (sect == NULL)
9420 return FALSE;
9421
9422 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9423 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9424 sect->filepos = note->descpos
9425 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9426 #endif
9427
9428 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9429 sect->size = sizeof (lwpstat.pr_fpreg);
9430 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9431 #endif
9432
9433 sect->alignment_power = 2;
9434
9435 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9436 }
9437 #endif /* defined (HAVE_LWPSTATUS_T) */
9438
9439 static bfd_boolean
9440 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9441 {
9442 char buf[30];
9443 char *name;
9444 size_t len;
9445 asection *sect;
9446 int type;
9447 int is_active_thread;
9448 bfd_vma base_addr;
9449
9450 if (note->descsz < 728)
9451 return TRUE;
9452
9453 if (! CONST_STRNEQ (note->namedata, "win32"))
9454 return TRUE;
9455
9456 type = bfd_get_32 (abfd, note->descdata);
9457
9458 switch (type)
9459 {
9460 case 1 /* NOTE_INFO_PROCESS */:
9461 /* FIXME: need to add ->core->command. */
9462 /* process_info.pid */
9463 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9464 /* process_info.signal */
9465 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9466 break;
9467
9468 case 2 /* NOTE_INFO_THREAD */:
9469 /* Make a ".reg/999" section. */
9470 /* thread_info.tid */
9471 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9472
9473 len = strlen (buf) + 1;
9474 name = (char *) bfd_alloc (abfd, len);
9475 if (name == NULL)
9476 return FALSE;
9477
9478 memcpy (name, buf, len);
9479
9480 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9481 if (sect == NULL)
9482 return FALSE;
9483
9484 /* sizeof (thread_info.thread_context) */
9485 sect->size = 716;
9486 /* offsetof (thread_info.thread_context) */
9487 sect->filepos = note->descpos + 12;
9488 sect->alignment_power = 2;
9489
9490 /* thread_info.is_active_thread */
9491 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9492
9493 if (is_active_thread)
9494 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9495 return FALSE;
9496 break;
9497
9498 case 3 /* NOTE_INFO_MODULE */:
9499 /* Make a ".module/xxxxxxxx" section. */
9500 /* module_info.base_address */
9501 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9502 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9503
9504 len = strlen (buf) + 1;
9505 name = (char *) bfd_alloc (abfd, len);
9506 if (name == NULL)
9507 return FALSE;
9508
9509 memcpy (name, buf, len);
9510
9511 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9512
9513 if (sect == NULL)
9514 return FALSE;
9515
9516 sect->size = note->descsz;
9517 sect->filepos = note->descpos;
9518 sect->alignment_power = 2;
9519 break;
9520
9521 default:
9522 return TRUE;
9523 }
9524
9525 return TRUE;
9526 }
9527
9528 static bfd_boolean
9529 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9530 {
9531 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9532
9533 switch (note->type)
9534 {
9535 default:
9536 return TRUE;
9537
9538 case NT_PRSTATUS:
9539 if (bed->elf_backend_grok_prstatus)
9540 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9541 return TRUE;
9542 #if defined (HAVE_PRSTATUS_T)
9543 return elfcore_grok_prstatus (abfd, note);
9544 #else
9545 return TRUE;
9546 #endif
9547
9548 #if defined (HAVE_PSTATUS_T)
9549 case NT_PSTATUS:
9550 return elfcore_grok_pstatus (abfd, note);
9551 #endif
9552
9553 #if defined (HAVE_LWPSTATUS_T)
9554 case NT_LWPSTATUS:
9555 return elfcore_grok_lwpstatus (abfd, note);
9556 #endif
9557
9558 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9559 return elfcore_grok_prfpreg (abfd, note);
9560
9561 case NT_WIN32PSTATUS:
9562 return elfcore_grok_win32pstatus (abfd, note);
9563
9564 case NT_PRXFPREG: /* Linux SSE extension */
9565 if (note->namesz == 6
9566 && strcmp (note->namedata, "LINUX") == 0)
9567 return elfcore_grok_prxfpreg (abfd, note);
9568 else
9569 return TRUE;
9570
9571 case NT_X86_XSTATE: /* Linux XSAVE extension */
9572 if (note->namesz == 6
9573 && strcmp (note->namedata, "LINUX") == 0)
9574 return elfcore_grok_xstatereg (abfd, note);
9575 else
9576 return TRUE;
9577
9578 case NT_PPC_VMX:
9579 if (note->namesz == 6
9580 && strcmp (note->namedata, "LINUX") == 0)
9581 return elfcore_grok_ppc_vmx (abfd, note);
9582 else
9583 return TRUE;
9584
9585 case NT_PPC_VSX:
9586 if (note->namesz == 6
9587 && strcmp (note->namedata, "LINUX") == 0)
9588 return elfcore_grok_ppc_vsx (abfd, note);
9589 else
9590 return TRUE;
9591
9592 case NT_S390_HIGH_GPRS:
9593 if (note->namesz == 6
9594 && strcmp (note->namedata, "LINUX") == 0)
9595 return elfcore_grok_s390_high_gprs (abfd, note);
9596 else
9597 return TRUE;
9598
9599 case NT_S390_TIMER:
9600 if (note->namesz == 6
9601 && strcmp (note->namedata, "LINUX") == 0)
9602 return elfcore_grok_s390_timer (abfd, note);
9603 else
9604 return TRUE;
9605
9606 case NT_S390_TODCMP:
9607 if (note->namesz == 6
9608 && strcmp (note->namedata, "LINUX") == 0)
9609 return elfcore_grok_s390_todcmp (abfd, note);
9610 else
9611 return TRUE;
9612
9613 case NT_S390_TODPREG:
9614 if (note->namesz == 6
9615 && strcmp (note->namedata, "LINUX") == 0)
9616 return elfcore_grok_s390_todpreg (abfd, note);
9617 else
9618 return TRUE;
9619
9620 case NT_S390_CTRS:
9621 if (note->namesz == 6
9622 && strcmp (note->namedata, "LINUX") == 0)
9623 return elfcore_grok_s390_ctrs (abfd, note);
9624 else
9625 return TRUE;
9626
9627 case NT_S390_PREFIX:
9628 if (note->namesz == 6
9629 && strcmp (note->namedata, "LINUX") == 0)
9630 return elfcore_grok_s390_prefix (abfd, note);
9631 else
9632 return TRUE;
9633
9634 case NT_S390_LAST_BREAK:
9635 if (note->namesz == 6
9636 && strcmp (note->namedata, "LINUX") == 0)
9637 return elfcore_grok_s390_last_break (abfd, note);
9638 else
9639 return TRUE;
9640
9641 case NT_S390_SYSTEM_CALL:
9642 if (note->namesz == 6
9643 && strcmp (note->namedata, "LINUX") == 0)
9644 return elfcore_grok_s390_system_call (abfd, note);
9645 else
9646 return TRUE;
9647
9648 case NT_S390_TDB:
9649 if (note->namesz == 6
9650 && strcmp (note->namedata, "LINUX") == 0)
9651 return elfcore_grok_s390_tdb (abfd, note);
9652 else
9653 return TRUE;
9654
9655 case NT_S390_VXRS_LOW:
9656 if (note->namesz == 6
9657 && strcmp (note->namedata, "LINUX") == 0)
9658 return elfcore_grok_s390_vxrs_low (abfd, note);
9659 else
9660 return TRUE;
9661
9662 case NT_S390_VXRS_HIGH:
9663 if (note->namesz == 6
9664 && strcmp (note->namedata, "LINUX") == 0)
9665 return elfcore_grok_s390_vxrs_high (abfd, note);
9666 else
9667 return TRUE;
9668
9669 case NT_ARM_VFP:
9670 if (note->namesz == 6
9671 && strcmp (note->namedata, "LINUX") == 0)
9672 return elfcore_grok_arm_vfp (abfd, note);
9673 else
9674 return TRUE;
9675
9676 case NT_ARM_TLS:
9677 if (note->namesz == 6
9678 && strcmp (note->namedata, "LINUX") == 0)
9679 return elfcore_grok_aarch_tls (abfd, note);
9680 else
9681 return TRUE;
9682
9683 case NT_ARM_HW_BREAK:
9684 if (note->namesz == 6
9685 && strcmp (note->namedata, "LINUX") == 0)
9686 return elfcore_grok_aarch_hw_break (abfd, note);
9687 else
9688 return TRUE;
9689
9690 case NT_ARM_HW_WATCH:
9691 if (note->namesz == 6
9692 && strcmp (note->namedata, "LINUX") == 0)
9693 return elfcore_grok_aarch_hw_watch (abfd, note);
9694 else
9695 return TRUE;
9696
9697 case NT_PRPSINFO:
9698 case NT_PSINFO:
9699 if (bed->elf_backend_grok_psinfo)
9700 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9701 return TRUE;
9702 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9703 return elfcore_grok_psinfo (abfd, note);
9704 #else
9705 return TRUE;
9706 #endif
9707
9708 case NT_AUXV:
9709 {
9710 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9711 SEC_HAS_CONTENTS);
9712
9713 if (sect == NULL)
9714 return FALSE;
9715 sect->size = note->descsz;
9716 sect->filepos = note->descpos;
9717 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9718
9719 return TRUE;
9720 }
9721
9722 case NT_FILE:
9723 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9724 note);
9725
9726 case NT_SIGINFO:
9727 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9728 note);
9729
9730 }
9731 }
9732
9733 static bfd_boolean
9734 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9735 {
9736 struct bfd_build_id* build_id;
9737
9738 if (note->descsz == 0)
9739 return FALSE;
9740
9741 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9742 if (build_id == NULL)
9743 return FALSE;
9744
9745 build_id->size = note->descsz;
9746 memcpy (build_id->data, note->descdata, note->descsz);
9747 abfd->build_id = build_id;
9748
9749 return TRUE;
9750 }
9751
9752 static bfd_boolean
9753 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9754 {
9755 switch (note->type)
9756 {
9757 default:
9758 return TRUE;
9759
9760 case NT_GNU_PROPERTY_TYPE_0:
9761 return _bfd_elf_parse_gnu_properties (abfd, note);
9762
9763 case NT_GNU_BUILD_ID:
9764 return elfobj_grok_gnu_build_id (abfd, note);
9765 }
9766 }
9767
9768 static bfd_boolean
9769 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9770 {
9771 struct sdt_note *cur =
9772 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9773 + note->descsz);
9774
9775 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9776 cur->size = (bfd_size_type) note->descsz;
9777 memcpy (cur->data, note->descdata, note->descsz);
9778
9779 elf_tdata (abfd)->sdt_note_head = cur;
9780
9781 return TRUE;
9782 }
9783
9784 static bfd_boolean
9785 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9786 {
9787 switch (note->type)
9788 {
9789 case NT_STAPSDT:
9790 return elfobj_grok_stapsdt_note_1 (abfd, note);
9791
9792 default:
9793 return TRUE;
9794 }
9795 }
9796
9797 static bfd_boolean
9798 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9799 {
9800 size_t offset;
9801
9802 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9803 {
9804 case ELFCLASS32:
9805 if (note->descsz < 108)
9806 return FALSE;
9807 break;
9808
9809 case ELFCLASS64:
9810 if (note->descsz < 120)
9811 return FALSE;
9812 break;
9813
9814 default:
9815 return FALSE;
9816 }
9817
9818 /* Check for version 1 in pr_version. */
9819 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9820 return FALSE;
9821 offset = 4;
9822
9823 /* Skip over pr_psinfosz. */
9824 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9825 offset += 4;
9826 else
9827 {
9828 offset += 4; /* Padding before pr_psinfosz. */
9829 offset += 8;
9830 }
9831
9832 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9833 elf_tdata (abfd)->core->program
9834 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9835 offset += 17;
9836
9837 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9838 elf_tdata (abfd)->core->command
9839 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9840 offset += 81;
9841
9842 /* Padding before pr_pid. */
9843 offset += 2;
9844
9845 /* The pr_pid field was added in version "1a". */
9846 if (note->descsz < offset + 4)
9847 return TRUE;
9848
9849 elf_tdata (abfd)->core->pid
9850 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9851
9852 return TRUE;
9853 }
9854
9855 static bfd_boolean
9856 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9857 {
9858 size_t offset;
9859 size_t size;
9860
9861 /* Check for version 1 in pr_version. */
9862 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9863 return FALSE;
9864 offset = 4;
9865
9866 /* Skip over pr_statussz. */
9867 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9868 {
9869 case ELFCLASS32:
9870 offset += 4;
9871 break;
9872
9873 case ELFCLASS64:
9874 offset += 4; /* Padding before pr_statussz. */
9875 offset += 8;
9876 break;
9877
9878 default:
9879 return FALSE;
9880 }
9881
9882 /* Extract size of pr_reg from pr_gregsetsz. */
9883 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9884 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9885 else
9886 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
9887
9888 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
9889 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9890 offset += 4 * 2;
9891 else
9892 offset += 8 * 2;
9893
9894 /* Skip over pr_osreldate. */
9895 offset += 4;
9896
9897 /* Read signal from pr_cursig. */
9898 if (elf_tdata (abfd)->core->signal == 0)
9899 elf_tdata (abfd)->core->signal
9900 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9901 offset += 4;
9902
9903 /* Read TID from pr_pid. */
9904 elf_tdata (abfd)->core->lwpid
9905 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9906 offset += 4;
9907
9908 /* Padding before pr_reg. */
9909 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
9910 offset += 4;
9911
9912 /* Make a ".reg/999" section and a ".reg" section. */
9913 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9914 size, note->descpos + offset);
9915 }
9916
9917 static bfd_boolean
9918 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
9919 {
9920 switch (note->type)
9921 {
9922 case NT_PRSTATUS:
9923 return elfcore_grok_freebsd_prstatus (abfd, note);
9924
9925 case NT_FPREGSET:
9926 return elfcore_grok_prfpreg (abfd, note);
9927
9928 case NT_PRPSINFO:
9929 return elfcore_grok_freebsd_psinfo (abfd, note);
9930
9931 case NT_FREEBSD_THRMISC:
9932 if (note->namesz == 8)
9933 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
9934 else
9935 return TRUE;
9936
9937 case NT_FREEBSD_PROCSTAT_AUXV:
9938 {
9939 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9940 SEC_HAS_CONTENTS);
9941
9942 if (sect == NULL)
9943 return FALSE;
9944 sect->size = note->descsz - 4;
9945 sect->filepos = note->descpos + 4;
9946 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9947
9948 return TRUE;
9949 }
9950
9951 case NT_X86_XSTATE:
9952 if (note->namesz == 8)
9953 return elfcore_grok_xstatereg (abfd, note);
9954 else
9955 return TRUE;
9956
9957 default:
9958 return TRUE;
9959 }
9960 }
9961
9962 static bfd_boolean
9963 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
9964 {
9965 char *cp;
9966
9967 cp = strchr (note->namedata, '@');
9968 if (cp != NULL)
9969 {
9970 *lwpidp = atoi(cp + 1);
9971 return TRUE;
9972 }
9973 return FALSE;
9974 }
9975
9976 static bfd_boolean
9977 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9978 {
9979 /* Signal number at offset 0x08. */
9980 elf_tdata (abfd)->core->signal
9981 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9982
9983 /* Process ID at offset 0x50. */
9984 elf_tdata (abfd)->core->pid
9985 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
9986
9987 /* Command name at 0x7c (max 32 bytes, including nul). */
9988 elf_tdata (abfd)->core->command
9989 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
9990
9991 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
9992 note);
9993 }
9994
9995 static bfd_boolean
9996 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
9997 {
9998 int lwp;
9999
10000 if (elfcore_netbsd_get_lwpid (note, &lwp))
10001 elf_tdata (abfd)->core->lwpid = lwp;
10002
10003 if (note->type == NT_NETBSDCORE_PROCINFO)
10004 {
10005 /* NetBSD-specific core "procinfo". Note that we expect to
10006 find this note before any of the others, which is fine,
10007 since the kernel writes this note out first when it
10008 creates a core file. */
10009
10010 return elfcore_grok_netbsd_procinfo (abfd, note);
10011 }
10012
10013 /* As of Jan 2002 there are no other machine-independent notes
10014 defined for NetBSD core files. If the note type is less
10015 than the start of the machine-dependent note types, we don't
10016 understand it. */
10017
10018 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10019 return TRUE;
10020
10021
10022 switch (bfd_get_arch (abfd))
10023 {
10024 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10025 PT_GETFPREGS == mach+2. */
10026
10027 case bfd_arch_alpha:
10028 case bfd_arch_sparc:
10029 switch (note->type)
10030 {
10031 case NT_NETBSDCORE_FIRSTMACH+0:
10032 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10033
10034 case NT_NETBSDCORE_FIRSTMACH+2:
10035 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10036
10037 default:
10038 return TRUE;
10039 }
10040
10041 /* On all other arch's, PT_GETREGS == mach+1 and
10042 PT_GETFPREGS == mach+3. */
10043
10044 default:
10045 switch (note->type)
10046 {
10047 case NT_NETBSDCORE_FIRSTMACH+1:
10048 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10049
10050 case NT_NETBSDCORE_FIRSTMACH+3:
10051 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10052
10053 default:
10054 return TRUE;
10055 }
10056 }
10057 /* NOTREACHED */
10058 }
10059
10060 static bfd_boolean
10061 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10062 {
10063 /* Signal number at offset 0x08. */
10064 elf_tdata (abfd)->core->signal
10065 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10066
10067 /* Process ID at offset 0x20. */
10068 elf_tdata (abfd)->core->pid
10069 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10070
10071 /* Command name at 0x48 (max 32 bytes, including nul). */
10072 elf_tdata (abfd)->core->command
10073 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10074
10075 return TRUE;
10076 }
10077
10078 static bfd_boolean
10079 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10080 {
10081 if (note->type == NT_OPENBSD_PROCINFO)
10082 return elfcore_grok_openbsd_procinfo (abfd, note);
10083
10084 if (note->type == NT_OPENBSD_REGS)
10085 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10086
10087 if (note->type == NT_OPENBSD_FPREGS)
10088 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10089
10090 if (note->type == NT_OPENBSD_XFPREGS)
10091 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10092
10093 if (note->type == NT_OPENBSD_AUXV)
10094 {
10095 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10096 SEC_HAS_CONTENTS);
10097
10098 if (sect == NULL)
10099 return FALSE;
10100 sect->size = note->descsz;
10101 sect->filepos = note->descpos;
10102 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10103
10104 return TRUE;
10105 }
10106
10107 if (note->type == NT_OPENBSD_WCOOKIE)
10108 {
10109 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10110 SEC_HAS_CONTENTS);
10111
10112 if (sect == NULL)
10113 return FALSE;
10114 sect->size = note->descsz;
10115 sect->filepos = note->descpos;
10116 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10117
10118 return TRUE;
10119 }
10120
10121 return TRUE;
10122 }
10123
10124 static bfd_boolean
10125 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10126 {
10127 void *ddata = note->descdata;
10128 char buf[100];
10129 char *name;
10130 asection *sect;
10131 short sig;
10132 unsigned flags;
10133
10134 /* nto_procfs_status 'pid' field is at offset 0. */
10135 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10136
10137 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10138 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10139
10140 /* nto_procfs_status 'flags' field is at offset 8. */
10141 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10142
10143 /* nto_procfs_status 'what' field is at offset 14. */
10144 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10145 {
10146 elf_tdata (abfd)->core->signal = sig;
10147 elf_tdata (abfd)->core->lwpid = *tid;
10148 }
10149
10150 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10151 do not come from signals so we make sure we set the current
10152 thread just in case. */
10153 if (flags & 0x00000080)
10154 elf_tdata (abfd)->core->lwpid = *tid;
10155
10156 /* Make a ".qnx_core_status/%d" section. */
10157 sprintf (buf, ".qnx_core_status/%ld", *tid);
10158
10159 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10160 if (name == NULL)
10161 return FALSE;
10162 strcpy (name, buf);
10163
10164 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10165 if (sect == NULL)
10166 return FALSE;
10167
10168 sect->size = note->descsz;
10169 sect->filepos = note->descpos;
10170 sect->alignment_power = 2;
10171
10172 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10173 }
10174
10175 static bfd_boolean
10176 elfcore_grok_nto_regs (bfd *abfd,
10177 Elf_Internal_Note *note,
10178 long tid,
10179 char *base)
10180 {
10181 char buf[100];
10182 char *name;
10183 asection *sect;
10184
10185 /* Make a "(base)/%d" section. */
10186 sprintf (buf, "%s/%ld", base, tid);
10187
10188 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10189 if (name == NULL)
10190 return FALSE;
10191 strcpy (name, buf);
10192
10193 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10194 if (sect == NULL)
10195 return FALSE;
10196
10197 sect->size = note->descsz;
10198 sect->filepos = note->descpos;
10199 sect->alignment_power = 2;
10200
10201 /* This is the current thread. */
10202 if (elf_tdata (abfd)->core->lwpid == tid)
10203 return elfcore_maybe_make_sect (abfd, base, sect);
10204
10205 return TRUE;
10206 }
10207
10208 #define BFD_QNT_CORE_INFO 7
10209 #define BFD_QNT_CORE_STATUS 8
10210 #define BFD_QNT_CORE_GREG 9
10211 #define BFD_QNT_CORE_FPREG 10
10212
10213 static bfd_boolean
10214 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10215 {
10216 /* Every GREG section has a STATUS section before it. Store the
10217 tid from the previous call to pass down to the next gregs
10218 function. */
10219 static long tid = 1;
10220
10221 switch (note->type)
10222 {
10223 case BFD_QNT_CORE_INFO:
10224 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10225 case BFD_QNT_CORE_STATUS:
10226 return elfcore_grok_nto_status (abfd, note, &tid);
10227 case BFD_QNT_CORE_GREG:
10228 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10229 case BFD_QNT_CORE_FPREG:
10230 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10231 default:
10232 return TRUE;
10233 }
10234 }
10235
10236 static bfd_boolean
10237 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10238 {
10239 char *name;
10240 asection *sect;
10241 size_t len;
10242
10243 /* Use note name as section name. */
10244 len = note->namesz;
10245 name = (char *) bfd_alloc (abfd, len);
10246 if (name == NULL)
10247 return FALSE;
10248 memcpy (name, note->namedata, len);
10249 name[len - 1] = '\0';
10250
10251 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10252 if (sect == NULL)
10253 return FALSE;
10254
10255 sect->size = note->descsz;
10256 sect->filepos = note->descpos;
10257 sect->alignment_power = 1;
10258
10259 return TRUE;
10260 }
10261
10262 /* Function: elfcore_write_note
10263
10264 Inputs:
10265 buffer to hold note, and current size of buffer
10266 name of note
10267 type of note
10268 data for note
10269 size of data for note
10270
10271 Writes note to end of buffer. ELF64 notes are written exactly as
10272 for ELF32, despite the current (as of 2006) ELF gabi specifying
10273 that they ought to have 8-byte namesz and descsz field, and have
10274 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10275
10276 Return:
10277 Pointer to realloc'd buffer, *BUFSIZ updated. */
10278
10279 char *
10280 elfcore_write_note (bfd *abfd,
10281 char *buf,
10282 int *bufsiz,
10283 const char *name,
10284 int type,
10285 const void *input,
10286 int size)
10287 {
10288 Elf_External_Note *xnp;
10289 size_t namesz;
10290 size_t newspace;
10291 char *dest;
10292
10293 namesz = 0;
10294 if (name != NULL)
10295 namesz = strlen (name) + 1;
10296
10297 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10298
10299 buf = (char *) realloc (buf, *bufsiz + newspace);
10300 if (buf == NULL)
10301 return buf;
10302 dest = buf + *bufsiz;
10303 *bufsiz += newspace;
10304 xnp = (Elf_External_Note *) dest;
10305 H_PUT_32 (abfd, namesz, xnp->namesz);
10306 H_PUT_32 (abfd, size, xnp->descsz);
10307 H_PUT_32 (abfd, type, xnp->type);
10308 dest = xnp->name;
10309 if (name != NULL)
10310 {
10311 memcpy (dest, name, namesz);
10312 dest += namesz;
10313 while (namesz & 3)
10314 {
10315 *dest++ = '\0';
10316 ++namesz;
10317 }
10318 }
10319 memcpy (dest, input, size);
10320 dest += size;
10321 while (size & 3)
10322 {
10323 *dest++ = '\0';
10324 ++size;
10325 }
10326 return buf;
10327 }
10328
10329 char *
10330 elfcore_write_prpsinfo (bfd *abfd,
10331 char *buf,
10332 int *bufsiz,
10333 const char *fname,
10334 const char *psargs)
10335 {
10336 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10337
10338 if (bed->elf_backend_write_core_note != NULL)
10339 {
10340 char *ret;
10341 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10342 NT_PRPSINFO, fname, psargs);
10343 if (ret != NULL)
10344 return ret;
10345 }
10346
10347 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10348 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10349 if (bed->s->elfclass == ELFCLASS32)
10350 {
10351 #if defined (HAVE_PSINFO32_T)
10352 psinfo32_t data;
10353 int note_type = NT_PSINFO;
10354 #else
10355 prpsinfo32_t data;
10356 int note_type = NT_PRPSINFO;
10357 #endif
10358
10359 memset (&data, 0, sizeof (data));
10360 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10361 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10362 return elfcore_write_note (abfd, buf, bufsiz,
10363 "CORE", note_type, &data, sizeof (data));
10364 }
10365 else
10366 #endif
10367 {
10368 #if defined (HAVE_PSINFO_T)
10369 psinfo_t data;
10370 int note_type = NT_PSINFO;
10371 #else
10372 prpsinfo_t data;
10373 int note_type = NT_PRPSINFO;
10374 #endif
10375
10376 memset (&data, 0, sizeof (data));
10377 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10378 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10379 return elfcore_write_note (abfd, buf, bufsiz,
10380 "CORE", note_type, &data, sizeof (data));
10381 }
10382 #endif /* PSINFO_T or PRPSINFO_T */
10383
10384 free (buf);
10385 return NULL;
10386 }
10387
10388 char *
10389 elfcore_write_linux_prpsinfo32
10390 (bfd *abfd, char *buf, int *bufsiz,
10391 const struct elf_internal_linux_prpsinfo *prpsinfo)
10392 {
10393 struct elf_external_linux_prpsinfo32 data;
10394
10395 swap_linux_prpsinfo32_out (abfd, prpsinfo, &data);
10396 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10397 &data, sizeof (data));
10398 }
10399
10400 char *
10401 elfcore_write_linux_prpsinfo64
10402 (bfd *abfd, char *buf, int *bufsiz,
10403 const struct elf_internal_linux_prpsinfo *prpsinfo)
10404 {
10405 struct elf_external_linux_prpsinfo64 data;
10406
10407 swap_linux_prpsinfo64_out (abfd, prpsinfo, &data);
10408 return elfcore_write_note (abfd, buf, bufsiz,
10409 "CORE", NT_PRPSINFO, &data, sizeof (data));
10410 }
10411
10412 char *
10413 elfcore_write_prstatus (bfd *abfd,
10414 char *buf,
10415 int *bufsiz,
10416 long pid,
10417 int cursig,
10418 const void *gregs)
10419 {
10420 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10421
10422 if (bed->elf_backend_write_core_note != NULL)
10423 {
10424 char *ret;
10425 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10426 NT_PRSTATUS,
10427 pid, cursig, gregs);
10428 if (ret != NULL)
10429 return ret;
10430 }
10431
10432 #if defined (HAVE_PRSTATUS_T)
10433 #if defined (HAVE_PRSTATUS32_T)
10434 if (bed->s->elfclass == ELFCLASS32)
10435 {
10436 prstatus32_t prstat;
10437
10438 memset (&prstat, 0, sizeof (prstat));
10439 prstat.pr_pid = pid;
10440 prstat.pr_cursig = cursig;
10441 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10442 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10443 NT_PRSTATUS, &prstat, sizeof (prstat));
10444 }
10445 else
10446 #endif
10447 {
10448 prstatus_t prstat;
10449
10450 memset (&prstat, 0, sizeof (prstat));
10451 prstat.pr_pid = pid;
10452 prstat.pr_cursig = cursig;
10453 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10454 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10455 NT_PRSTATUS, &prstat, sizeof (prstat));
10456 }
10457 #endif /* HAVE_PRSTATUS_T */
10458
10459 free (buf);
10460 return NULL;
10461 }
10462
10463 #if defined (HAVE_LWPSTATUS_T)
10464 char *
10465 elfcore_write_lwpstatus (bfd *abfd,
10466 char *buf,
10467 int *bufsiz,
10468 long pid,
10469 int cursig,
10470 const void *gregs)
10471 {
10472 lwpstatus_t lwpstat;
10473 const char *note_name = "CORE";
10474
10475 memset (&lwpstat, 0, sizeof (lwpstat));
10476 lwpstat.pr_lwpid = pid >> 16;
10477 lwpstat.pr_cursig = cursig;
10478 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10479 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10480 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10481 #if !defined(gregs)
10482 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10483 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10484 #else
10485 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10486 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10487 #endif
10488 #endif
10489 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10490 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10491 }
10492 #endif /* HAVE_LWPSTATUS_T */
10493
10494 #if defined (HAVE_PSTATUS_T)
10495 char *
10496 elfcore_write_pstatus (bfd *abfd,
10497 char *buf,
10498 int *bufsiz,
10499 long pid,
10500 int cursig ATTRIBUTE_UNUSED,
10501 const void *gregs ATTRIBUTE_UNUSED)
10502 {
10503 const char *note_name = "CORE";
10504 #if defined (HAVE_PSTATUS32_T)
10505 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10506
10507 if (bed->s->elfclass == ELFCLASS32)
10508 {
10509 pstatus32_t pstat;
10510
10511 memset (&pstat, 0, sizeof (pstat));
10512 pstat.pr_pid = pid & 0xffff;
10513 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10514 NT_PSTATUS, &pstat, sizeof (pstat));
10515 return buf;
10516 }
10517 else
10518 #endif
10519 {
10520 pstatus_t pstat;
10521
10522 memset (&pstat, 0, sizeof (pstat));
10523 pstat.pr_pid = pid & 0xffff;
10524 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10525 NT_PSTATUS, &pstat, sizeof (pstat));
10526 return buf;
10527 }
10528 }
10529 #endif /* HAVE_PSTATUS_T */
10530
10531 char *
10532 elfcore_write_prfpreg (bfd *abfd,
10533 char *buf,
10534 int *bufsiz,
10535 const void *fpregs,
10536 int size)
10537 {
10538 const char *note_name = "CORE";
10539 return elfcore_write_note (abfd, buf, bufsiz,
10540 note_name, NT_FPREGSET, fpregs, size);
10541 }
10542
10543 char *
10544 elfcore_write_prxfpreg (bfd *abfd,
10545 char *buf,
10546 int *bufsiz,
10547 const void *xfpregs,
10548 int size)
10549 {
10550 char *note_name = "LINUX";
10551 return elfcore_write_note (abfd, buf, bufsiz,
10552 note_name, NT_PRXFPREG, xfpregs, size);
10553 }
10554
10555 char *
10556 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10557 const void *xfpregs, int size)
10558 {
10559 char *note_name;
10560 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10561 note_name = "FreeBSD";
10562 else
10563 note_name = "LINUX";
10564 return elfcore_write_note (abfd, buf, bufsiz,
10565 note_name, NT_X86_XSTATE, xfpregs, size);
10566 }
10567
10568 char *
10569 elfcore_write_ppc_vmx (bfd *abfd,
10570 char *buf,
10571 int *bufsiz,
10572 const void *ppc_vmx,
10573 int size)
10574 {
10575 char *note_name = "LINUX";
10576 return elfcore_write_note (abfd, buf, bufsiz,
10577 note_name, NT_PPC_VMX, ppc_vmx, size);
10578 }
10579
10580 char *
10581 elfcore_write_ppc_vsx (bfd *abfd,
10582 char *buf,
10583 int *bufsiz,
10584 const void *ppc_vsx,
10585 int size)
10586 {
10587 char *note_name = "LINUX";
10588 return elfcore_write_note (abfd, buf, bufsiz,
10589 note_name, NT_PPC_VSX, ppc_vsx, size);
10590 }
10591
10592 static char *
10593 elfcore_write_s390_high_gprs (bfd *abfd,
10594 char *buf,
10595 int *bufsiz,
10596 const void *s390_high_gprs,
10597 int size)
10598 {
10599 char *note_name = "LINUX";
10600 return elfcore_write_note (abfd, buf, bufsiz,
10601 note_name, NT_S390_HIGH_GPRS,
10602 s390_high_gprs, size);
10603 }
10604
10605 char *
10606 elfcore_write_s390_timer (bfd *abfd,
10607 char *buf,
10608 int *bufsiz,
10609 const void *s390_timer,
10610 int size)
10611 {
10612 char *note_name = "LINUX";
10613 return elfcore_write_note (abfd, buf, bufsiz,
10614 note_name, NT_S390_TIMER, s390_timer, size);
10615 }
10616
10617 char *
10618 elfcore_write_s390_todcmp (bfd *abfd,
10619 char *buf,
10620 int *bufsiz,
10621 const void *s390_todcmp,
10622 int size)
10623 {
10624 char *note_name = "LINUX";
10625 return elfcore_write_note (abfd, buf, bufsiz,
10626 note_name, NT_S390_TODCMP, s390_todcmp, size);
10627 }
10628
10629 char *
10630 elfcore_write_s390_todpreg (bfd *abfd,
10631 char *buf,
10632 int *bufsiz,
10633 const void *s390_todpreg,
10634 int size)
10635 {
10636 char *note_name = "LINUX";
10637 return elfcore_write_note (abfd, buf, bufsiz,
10638 note_name, NT_S390_TODPREG, s390_todpreg, size);
10639 }
10640
10641 char *
10642 elfcore_write_s390_ctrs (bfd *abfd,
10643 char *buf,
10644 int *bufsiz,
10645 const void *s390_ctrs,
10646 int size)
10647 {
10648 char *note_name = "LINUX";
10649 return elfcore_write_note (abfd, buf, bufsiz,
10650 note_name, NT_S390_CTRS, s390_ctrs, size);
10651 }
10652
10653 char *
10654 elfcore_write_s390_prefix (bfd *abfd,
10655 char *buf,
10656 int *bufsiz,
10657 const void *s390_prefix,
10658 int size)
10659 {
10660 char *note_name = "LINUX";
10661 return elfcore_write_note (abfd, buf, bufsiz,
10662 note_name, NT_S390_PREFIX, s390_prefix, size);
10663 }
10664
10665 char *
10666 elfcore_write_s390_last_break (bfd *abfd,
10667 char *buf,
10668 int *bufsiz,
10669 const void *s390_last_break,
10670 int size)
10671 {
10672 char *note_name = "LINUX";
10673 return elfcore_write_note (abfd, buf, bufsiz,
10674 note_name, NT_S390_LAST_BREAK,
10675 s390_last_break, size);
10676 }
10677
10678 char *
10679 elfcore_write_s390_system_call (bfd *abfd,
10680 char *buf,
10681 int *bufsiz,
10682 const void *s390_system_call,
10683 int size)
10684 {
10685 char *note_name = "LINUX";
10686 return elfcore_write_note (abfd, buf, bufsiz,
10687 note_name, NT_S390_SYSTEM_CALL,
10688 s390_system_call, size);
10689 }
10690
10691 char *
10692 elfcore_write_s390_tdb (bfd *abfd,
10693 char *buf,
10694 int *bufsiz,
10695 const void *s390_tdb,
10696 int size)
10697 {
10698 char *note_name = "LINUX";
10699 return elfcore_write_note (abfd, buf, bufsiz,
10700 note_name, NT_S390_TDB, s390_tdb, size);
10701 }
10702
10703 char *
10704 elfcore_write_s390_vxrs_low (bfd *abfd,
10705 char *buf,
10706 int *bufsiz,
10707 const void *s390_vxrs_low,
10708 int size)
10709 {
10710 char *note_name = "LINUX";
10711 return elfcore_write_note (abfd, buf, bufsiz,
10712 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10713 }
10714
10715 char *
10716 elfcore_write_s390_vxrs_high (bfd *abfd,
10717 char *buf,
10718 int *bufsiz,
10719 const void *s390_vxrs_high,
10720 int size)
10721 {
10722 char *note_name = "LINUX";
10723 return elfcore_write_note (abfd, buf, bufsiz,
10724 note_name, NT_S390_VXRS_HIGH,
10725 s390_vxrs_high, size);
10726 }
10727
10728 char *
10729 elfcore_write_arm_vfp (bfd *abfd,
10730 char *buf,
10731 int *bufsiz,
10732 const void *arm_vfp,
10733 int size)
10734 {
10735 char *note_name = "LINUX";
10736 return elfcore_write_note (abfd, buf, bufsiz,
10737 note_name, NT_ARM_VFP, arm_vfp, size);
10738 }
10739
10740 char *
10741 elfcore_write_aarch_tls (bfd *abfd,
10742 char *buf,
10743 int *bufsiz,
10744 const void *aarch_tls,
10745 int size)
10746 {
10747 char *note_name = "LINUX";
10748 return elfcore_write_note (abfd, buf, bufsiz,
10749 note_name, NT_ARM_TLS, aarch_tls, size);
10750 }
10751
10752 char *
10753 elfcore_write_aarch_hw_break (bfd *abfd,
10754 char *buf,
10755 int *bufsiz,
10756 const void *aarch_hw_break,
10757 int size)
10758 {
10759 char *note_name = "LINUX";
10760 return elfcore_write_note (abfd, buf, bufsiz,
10761 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10762 }
10763
10764 char *
10765 elfcore_write_aarch_hw_watch (bfd *abfd,
10766 char *buf,
10767 int *bufsiz,
10768 const void *aarch_hw_watch,
10769 int size)
10770 {
10771 char *note_name = "LINUX";
10772 return elfcore_write_note (abfd, buf, bufsiz,
10773 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10774 }
10775
10776 char *
10777 elfcore_write_register_note (bfd *abfd,
10778 char *buf,
10779 int *bufsiz,
10780 const char *section,
10781 const void *data,
10782 int size)
10783 {
10784 if (strcmp (section, ".reg2") == 0)
10785 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10786 if (strcmp (section, ".reg-xfp") == 0)
10787 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10788 if (strcmp (section, ".reg-xstate") == 0)
10789 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10790 if (strcmp (section, ".reg-ppc-vmx") == 0)
10791 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10792 if (strcmp (section, ".reg-ppc-vsx") == 0)
10793 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10794 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10795 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10796 if (strcmp (section, ".reg-s390-timer") == 0)
10797 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10798 if (strcmp (section, ".reg-s390-todcmp") == 0)
10799 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10800 if (strcmp (section, ".reg-s390-todpreg") == 0)
10801 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10802 if (strcmp (section, ".reg-s390-ctrs") == 0)
10803 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10804 if (strcmp (section, ".reg-s390-prefix") == 0)
10805 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10806 if (strcmp (section, ".reg-s390-last-break") == 0)
10807 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10808 if (strcmp (section, ".reg-s390-system-call") == 0)
10809 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10810 if (strcmp (section, ".reg-s390-tdb") == 0)
10811 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10812 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10813 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10814 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10815 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10816 if (strcmp (section, ".reg-arm-vfp") == 0)
10817 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10818 if (strcmp (section, ".reg-aarch-tls") == 0)
10819 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10820 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10821 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10822 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10823 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
10824 return NULL;
10825 }
10826
10827 static bfd_boolean
10828 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
10829 {
10830 char *p;
10831
10832 p = buf;
10833 while (p < buf + size)
10834 {
10835 /* FIXME: bad alignment assumption. */
10836 Elf_External_Note *xnp = (Elf_External_Note *) p;
10837 Elf_Internal_Note in;
10838
10839 if (offsetof (Elf_External_Note, name) > buf - p + size)
10840 return FALSE;
10841
10842 in.type = H_GET_32 (abfd, xnp->type);
10843
10844 in.namesz = H_GET_32 (abfd, xnp->namesz);
10845 in.namedata = xnp->name;
10846 if (in.namesz > buf - in.namedata + size)
10847 return FALSE;
10848
10849 in.descsz = H_GET_32 (abfd, xnp->descsz);
10850 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
10851 in.descpos = offset + (in.descdata - buf);
10852 if (in.descsz != 0
10853 && (in.descdata >= buf + size
10854 || in.descsz > buf - in.descdata + size))
10855 return FALSE;
10856
10857 switch (bfd_get_format (abfd))
10858 {
10859 default:
10860 return TRUE;
10861
10862 case bfd_core:
10863 {
10864 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
10865 struct
10866 {
10867 const char * string;
10868 size_t len;
10869 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
10870 }
10871 grokers[] =
10872 {
10873 GROKER_ELEMENT ("", elfcore_grok_note),
10874 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
10875 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
10876 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
10877 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
10878 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
10879 };
10880 #undef GROKER_ELEMENT
10881 int i;
10882
10883 for (i = ARRAY_SIZE (grokers); i--;)
10884 {
10885 if (in.namesz >= grokers[i].len
10886 && strncmp (in.namedata, grokers[i].string,
10887 grokers[i].len) == 0)
10888 {
10889 if (! grokers[i].func (abfd, & in))
10890 return FALSE;
10891 break;
10892 }
10893 }
10894 break;
10895 }
10896
10897 case bfd_object:
10898 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10899 {
10900 if (! elfobj_grok_gnu_note (abfd, &in))
10901 return FALSE;
10902 }
10903 else if (in.namesz == sizeof "stapsdt"
10904 && strcmp (in.namedata, "stapsdt") == 0)
10905 {
10906 if (! elfobj_grok_stapsdt_note (abfd, &in))
10907 return FALSE;
10908 }
10909 break;
10910 }
10911
10912 p = in.descdata + BFD_ALIGN (in.descsz, 4);
10913 }
10914
10915 return TRUE;
10916 }
10917
10918 static bfd_boolean
10919 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
10920 {
10921 char *buf;
10922
10923 if (size <= 0)
10924 return TRUE;
10925
10926 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
10927 return FALSE;
10928
10929 buf = (char *) bfd_malloc (size + 1);
10930 if (buf == NULL)
10931 return FALSE;
10932
10933 /* PR 17512: file: ec08f814
10934 0-termintate the buffer so that string searches will not overflow. */
10935 buf[size] = 0;
10936
10937 if (bfd_bread (buf, size, abfd) != size
10938 || !elf_parse_notes (abfd, buf, size, offset))
10939 {
10940 free (buf);
10941 return FALSE;
10942 }
10943
10944 free (buf);
10945 return TRUE;
10946 }
10947 \f
10948 /* Providing external access to the ELF program header table. */
10949
10950 /* Return an upper bound on the number of bytes required to store a
10951 copy of ABFD's program header table entries. Return -1 if an error
10952 occurs; bfd_get_error will return an appropriate code. */
10953
10954 long
10955 bfd_get_elf_phdr_upper_bound (bfd *abfd)
10956 {
10957 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10958 {
10959 bfd_set_error (bfd_error_wrong_format);
10960 return -1;
10961 }
10962
10963 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
10964 }
10965
10966 /* Copy ABFD's program header table entries to *PHDRS. The entries
10967 will be stored as an array of Elf_Internal_Phdr structures, as
10968 defined in include/elf/internal.h. To find out how large the
10969 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
10970
10971 Return the number of program header table entries read, or -1 if an
10972 error occurs; bfd_get_error will return an appropriate code. */
10973
10974 int
10975 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
10976 {
10977 int num_phdrs;
10978
10979 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10980 {
10981 bfd_set_error (bfd_error_wrong_format);
10982 return -1;
10983 }
10984
10985 num_phdrs = elf_elfheader (abfd)->e_phnum;
10986 memcpy (phdrs, elf_tdata (abfd)->phdr,
10987 num_phdrs * sizeof (Elf_Internal_Phdr));
10988
10989 return num_phdrs;
10990 }
10991
10992 enum elf_reloc_type_class
10993 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
10994 const asection *rel_sec ATTRIBUTE_UNUSED,
10995 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
10996 {
10997 return reloc_class_normal;
10998 }
10999
11000 /* For RELA architectures, return the relocation value for a
11001 relocation against a local symbol. */
11002
11003 bfd_vma
11004 _bfd_elf_rela_local_sym (bfd *abfd,
11005 Elf_Internal_Sym *sym,
11006 asection **psec,
11007 Elf_Internal_Rela *rel)
11008 {
11009 asection *sec = *psec;
11010 bfd_vma relocation;
11011
11012 relocation = (sec->output_section->vma
11013 + sec->output_offset
11014 + sym->st_value);
11015 if ((sec->flags & SEC_MERGE)
11016 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11017 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11018 {
11019 rel->r_addend =
11020 _bfd_merged_section_offset (abfd, psec,
11021 elf_section_data (sec)->sec_info,
11022 sym->st_value + rel->r_addend);
11023 if (sec != *psec)
11024 {
11025 /* If we have changed the section, and our original section is
11026 marked with SEC_EXCLUDE, it means that the original
11027 SEC_MERGE section has been completely subsumed in some
11028 other SEC_MERGE section. In this case, we need to leave
11029 some info around for --emit-relocs. */
11030 if ((sec->flags & SEC_EXCLUDE) != 0)
11031 sec->kept_section = *psec;
11032 sec = *psec;
11033 }
11034 rel->r_addend -= relocation;
11035 rel->r_addend += sec->output_section->vma + sec->output_offset;
11036 }
11037 return relocation;
11038 }
11039
11040 bfd_vma
11041 _bfd_elf_rel_local_sym (bfd *abfd,
11042 Elf_Internal_Sym *sym,
11043 asection **psec,
11044 bfd_vma addend)
11045 {
11046 asection *sec = *psec;
11047
11048 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11049 return sym->st_value + addend;
11050
11051 return _bfd_merged_section_offset (abfd, psec,
11052 elf_section_data (sec)->sec_info,
11053 sym->st_value + addend);
11054 }
11055
11056 /* Adjust an address within a section. Given OFFSET within SEC, return
11057 the new offset within the section, based upon changes made to the
11058 section. Returns -1 if the offset is now invalid.
11059 The offset (in abnd out) is in target sized bytes, however big a
11060 byte may be. */
11061
11062 bfd_vma
11063 _bfd_elf_section_offset (bfd *abfd,
11064 struct bfd_link_info *info,
11065 asection *sec,
11066 bfd_vma offset)
11067 {
11068 switch (sec->sec_info_type)
11069 {
11070 case SEC_INFO_TYPE_STABS:
11071 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11072 offset);
11073 case SEC_INFO_TYPE_EH_FRAME:
11074 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11075
11076 default:
11077 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11078 {
11079 /* Reverse the offset. */
11080 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11081 bfd_size_type address_size = bed->s->arch_size / 8;
11082
11083 /* address_size and sec->size are in octets. Convert
11084 to bytes before subtracting the original offset. */
11085 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11086 }
11087 return offset;
11088 }
11089 }
11090 \f
11091 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11092 reconstruct an ELF file by reading the segments out of remote memory
11093 based on the ELF file header at EHDR_VMA and the ELF program headers it
11094 points to. If not null, *LOADBASEP is filled in with the difference
11095 between the VMAs from which the segments were read, and the VMAs the
11096 file headers (and hence BFD's idea of each section's VMA) put them at.
11097
11098 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11099 remote memory at target address VMA into the local buffer at MYADDR; it
11100 should return zero on success or an `errno' code on failure. TEMPL must
11101 be a BFD for an ELF target with the word size and byte order found in
11102 the remote memory. */
11103
11104 bfd *
11105 bfd_elf_bfd_from_remote_memory
11106 (bfd *templ,
11107 bfd_vma ehdr_vma,
11108 bfd_size_type size,
11109 bfd_vma *loadbasep,
11110 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11111 {
11112 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11113 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11114 }
11115 \f
11116 long
11117 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11118 long symcount ATTRIBUTE_UNUSED,
11119 asymbol **syms ATTRIBUTE_UNUSED,
11120 long dynsymcount,
11121 asymbol **dynsyms,
11122 asymbol **ret)
11123 {
11124 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11125 asection *relplt;
11126 asymbol *s;
11127 const char *relplt_name;
11128 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11129 arelent *p;
11130 long count, i, n;
11131 size_t size;
11132 Elf_Internal_Shdr *hdr;
11133 char *names;
11134 asection *plt;
11135
11136 *ret = NULL;
11137
11138 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11139 return 0;
11140
11141 if (dynsymcount <= 0)
11142 return 0;
11143
11144 if (!bed->plt_sym_val)
11145 return 0;
11146
11147 relplt_name = bed->relplt_name;
11148 if (relplt_name == NULL)
11149 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11150 relplt = bfd_get_section_by_name (abfd, relplt_name);
11151 if (relplt == NULL)
11152 return 0;
11153
11154 hdr = &elf_section_data (relplt)->this_hdr;
11155 if (hdr->sh_link != elf_dynsymtab (abfd)
11156 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11157 return 0;
11158
11159 plt = bfd_get_section_by_name (abfd, ".plt");
11160 if (plt == NULL)
11161 return 0;
11162
11163 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11164 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11165 return -1;
11166
11167 count = relplt->size / hdr->sh_entsize;
11168 size = count * sizeof (asymbol);
11169 p = relplt->relocation;
11170 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11171 {
11172 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11173 if (p->addend != 0)
11174 {
11175 #ifdef BFD64
11176 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11177 #else
11178 size += sizeof ("+0x") - 1 + 8;
11179 #endif
11180 }
11181 }
11182
11183 s = *ret = (asymbol *) bfd_malloc (size);
11184 if (s == NULL)
11185 return -1;
11186
11187 names = (char *) (s + count);
11188 p = relplt->relocation;
11189 n = 0;
11190 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11191 {
11192 size_t len;
11193 bfd_vma addr;
11194
11195 addr = bed->plt_sym_val (i, plt, p);
11196 if (addr == (bfd_vma) -1)
11197 continue;
11198
11199 *s = **p->sym_ptr_ptr;
11200 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11201 we are defining a symbol, ensure one of them is set. */
11202 if ((s->flags & BSF_LOCAL) == 0)
11203 s->flags |= BSF_GLOBAL;
11204 s->flags |= BSF_SYNTHETIC;
11205 s->section = plt;
11206 s->value = addr - plt->vma;
11207 s->name = names;
11208 s->udata.p = NULL;
11209 len = strlen ((*p->sym_ptr_ptr)->name);
11210 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11211 names += len;
11212 if (p->addend != 0)
11213 {
11214 char buf[30], *a;
11215
11216 memcpy (names, "+0x", sizeof ("+0x") - 1);
11217 names += sizeof ("+0x") - 1;
11218 bfd_sprintf_vma (abfd, buf, p->addend);
11219 for (a = buf; *a == '0'; ++a)
11220 ;
11221 len = strlen (a);
11222 memcpy (names, a, len);
11223 names += len;
11224 }
11225 memcpy (names, "@plt", sizeof ("@plt"));
11226 names += sizeof ("@plt");
11227 ++s, ++n;
11228 }
11229
11230 return n;
11231 }
11232
11233 /* It is only used by x86-64 so far.
11234 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11235 but current usage would allow all of _bfd_std_section to be zero. */
11236 static const asymbol lcomm_sym
11237 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
11238 asection _bfd_elf_large_com_section
11239 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
11240 "LARGE_COMMON", 0, SEC_IS_COMMON);
11241
11242 void
11243 _bfd_elf_post_process_headers (bfd * abfd,
11244 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11245 {
11246 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11247
11248 i_ehdrp = elf_elfheader (abfd);
11249
11250 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11251
11252 /* To make things simpler for the loader on Linux systems we set the
11253 osabi field to ELFOSABI_GNU if the binary contains symbols of
11254 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11255 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11256 && elf_tdata (abfd)->has_gnu_symbols)
11257 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11258 }
11259
11260
11261 /* Return TRUE for ELF symbol types that represent functions.
11262 This is the default version of this function, which is sufficient for
11263 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11264
11265 bfd_boolean
11266 _bfd_elf_is_function_type (unsigned int type)
11267 {
11268 return (type == STT_FUNC
11269 || type == STT_GNU_IFUNC);
11270 }
11271
11272 /* If the ELF symbol SYM might be a function in SEC, return the
11273 function size and set *CODE_OFF to the function's entry point,
11274 otherwise return zero. */
11275
11276 bfd_size_type
11277 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11278 bfd_vma *code_off)
11279 {
11280 bfd_size_type size;
11281
11282 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11283 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11284 || sym->section != sec)
11285 return 0;
11286
11287 *code_off = sym->value;
11288 size = 0;
11289 if (!(sym->flags & BSF_SYNTHETIC))
11290 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11291 if (size == 0)
11292 size = 1;
11293 return size;
11294 }
This page took 0.26695 seconds and 5 git commands to generate.