Remove bfd stub function casts.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
56 size_t align) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset, size_t align);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 if (abfd->direction != read_direction)
248 {
249 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
250 if (o == NULL)
251 return FALSE;
252 elf_tdata (abfd)->o = o;
253 elf_program_header_size (abfd) = (bfd_size_type) -1;
254 }
255 return TRUE;
256 }
257
258
259 bfd_boolean
260 bfd_elf_make_object (bfd *abfd)
261 {
262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
263 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
264 bed->target_id);
265 }
266
267 bfd_boolean
268 bfd_elf_mkcorefile (bfd *abfd)
269 {
270 /* I think this can be done just like an object file. */
271 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
272 return FALSE;
273 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
274 return elf_tdata (abfd)->core != NULL;
275 }
276
277 static char *
278 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
279 {
280 Elf_Internal_Shdr **i_shdrp;
281 bfd_byte *shstrtab = NULL;
282 file_ptr offset;
283 bfd_size_type shstrtabsize;
284
285 i_shdrp = elf_elfsections (abfd);
286 if (i_shdrp == 0
287 || shindex >= elf_numsections (abfd)
288 || i_shdrp[shindex] == 0)
289 return NULL;
290
291 shstrtab = i_shdrp[shindex]->contents;
292 if (shstrtab == NULL)
293 {
294 /* No cached one, attempt to read, and cache what we read. */
295 offset = i_shdrp[shindex]->sh_offset;
296 shstrtabsize = i_shdrp[shindex]->sh_size;
297
298 /* Allocate and clear an extra byte at the end, to prevent crashes
299 in case the string table is not terminated. */
300 if (shstrtabsize + 1 <= 1
301 || bfd_seek (abfd, offset, SEEK_SET) != 0
302 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
303 shstrtab = NULL;
304 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
305 {
306 if (bfd_get_error () != bfd_error_system_call)
307 bfd_set_error (bfd_error_file_truncated);
308 bfd_release (abfd, shstrtab);
309 shstrtab = NULL;
310 /* Once we've failed to read it, make sure we don't keep
311 trying. Otherwise, we'll keep allocating space for
312 the string table over and over. */
313 i_shdrp[shindex]->sh_size = 0;
314 }
315 else
316 shstrtab[shstrtabsize] = '\0';
317 i_shdrp[shindex]->contents = shstrtab;
318 }
319 return (char *) shstrtab;
320 }
321
322 char *
323 bfd_elf_string_from_elf_section (bfd *abfd,
324 unsigned int shindex,
325 unsigned int strindex)
326 {
327 Elf_Internal_Shdr *hdr;
328
329 if (strindex == 0)
330 return "";
331
332 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
333 return NULL;
334
335 hdr = elf_elfsections (abfd)[shindex];
336
337 if (hdr->contents == NULL)
338 {
339 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
340 {
341 /* PR 17512: file: f057ec89. */
342 /* xgettext:c-format */
343 _bfd_error_handler (_("%B: attempt to load strings from"
344 " a non-string section (number %d)"),
345 abfd, shindex);
346 return NULL;
347 }
348
349 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
350 return NULL;
351 }
352
353 if (strindex >= hdr->sh_size)
354 {
355 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
356 _bfd_error_handler
357 /* xgettext:c-format */
358 (_("%B: invalid string offset %u >= %Lu for section `%s'"),
359 abfd, strindex, hdr->sh_size,
360 (shindex == shstrndx && strindex == hdr->sh_name
361 ? ".shstrtab"
362 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
363 return NULL;
364 }
365
366 return ((char *) hdr->contents) + strindex;
367 }
368
369 /* Read and convert symbols to internal format.
370 SYMCOUNT specifies the number of symbols to read, starting from
371 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
372 are non-NULL, they are used to store the internal symbols, external
373 symbols, and symbol section index extensions, respectively.
374 Returns a pointer to the internal symbol buffer (malloced if necessary)
375 or NULL if there were no symbols or some kind of problem. */
376
377 Elf_Internal_Sym *
378 bfd_elf_get_elf_syms (bfd *ibfd,
379 Elf_Internal_Shdr *symtab_hdr,
380 size_t symcount,
381 size_t symoffset,
382 Elf_Internal_Sym *intsym_buf,
383 void *extsym_buf,
384 Elf_External_Sym_Shndx *extshndx_buf)
385 {
386 Elf_Internal_Shdr *shndx_hdr;
387 void *alloc_ext;
388 const bfd_byte *esym;
389 Elf_External_Sym_Shndx *alloc_extshndx;
390 Elf_External_Sym_Shndx *shndx;
391 Elf_Internal_Sym *alloc_intsym;
392 Elf_Internal_Sym *isym;
393 Elf_Internal_Sym *isymend;
394 const struct elf_backend_data *bed;
395 size_t extsym_size;
396 bfd_size_type amt;
397 file_ptr pos;
398
399 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
400 abort ();
401
402 if (symcount == 0)
403 return intsym_buf;
404
405 /* Normal syms might have section extension entries. */
406 shndx_hdr = NULL;
407 if (elf_symtab_shndx_list (ibfd) != NULL)
408 {
409 elf_section_list * entry;
410 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
411
412 /* Find an index section that is linked to this symtab section. */
413 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
414 {
415 /* PR 20063. */
416 if (entry->hdr.sh_link >= elf_numsections (ibfd))
417 continue;
418
419 if (sections[entry->hdr.sh_link] == symtab_hdr)
420 {
421 shndx_hdr = & entry->hdr;
422 break;
423 };
424 }
425
426 if (shndx_hdr == NULL)
427 {
428 if (symtab_hdr == & elf_symtab_hdr (ibfd))
429 /* Not really accurate, but this was how the old code used to work. */
430 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
431 /* Otherwise we do nothing. The assumption is that
432 the index table will not be needed. */
433 }
434 }
435
436 /* Read the symbols. */
437 alloc_ext = NULL;
438 alloc_extshndx = NULL;
439 alloc_intsym = NULL;
440 bed = get_elf_backend_data (ibfd);
441 extsym_size = bed->s->sizeof_sym;
442 amt = (bfd_size_type) symcount * extsym_size;
443 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
444 if (extsym_buf == NULL)
445 {
446 alloc_ext = bfd_malloc2 (symcount, extsym_size);
447 extsym_buf = alloc_ext;
448 }
449 if (extsym_buf == NULL
450 || bfd_seek (ibfd, pos, SEEK_SET) != 0
451 || bfd_bread (extsym_buf, amt, ibfd) != amt)
452 {
453 intsym_buf = NULL;
454 goto out;
455 }
456
457 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
458 extshndx_buf = NULL;
459 else
460 {
461 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
462 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
463 if (extshndx_buf == NULL)
464 {
465 alloc_extshndx = (Elf_External_Sym_Shndx *)
466 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
467 extshndx_buf = alloc_extshndx;
468 }
469 if (extshndx_buf == NULL
470 || bfd_seek (ibfd, pos, SEEK_SET) != 0
471 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
472 {
473 intsym_buf = NULL;
474 goto out;
475 }
476 }
477
478 if (intsym_buf == NULL)
479 {
480 alloc_intsym = (Elf_Internal_Sym *)
481 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
482 intsym_buf = alloc_intsym;
483 if (intsym_buf == NULL)
484 goto out;
485 }
486
487 /* Convert the symbols to internal form. */
488 isymend = intsym_buf + symcount;
489 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
490 shndx = extshndx_buf;
491 isym < isymend;
492 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
493 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
494 {
495 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
496 /* xgettext:c-format */
497 _bfd_error_handler (_("%B symbol number %lu references"
498 " nonexistent SHT_SYMTAB_SHNDX section"),
499 ibfd, (unsigned long) symoffset);
500 if (alloc_intsym != NULL)
501 free (alloc_intsym);
502 intsym_buf = NULL;
503 goto out;
504 }
505
506 out:
507 if (alloc_ext != NULL)
508 free (alloc_ext);
509 if (alloc_extshndx != NULL)
510 free (alloc_extshndx);
511
512 return intsym_buf;
513 }
514
515 /* Look up a symbol name. */
516 const char *
517 bfd_elf_sym_name (bfd *abfd,
518 Elf_Internal_Shdr *symtab_hdr,
519 Elf_Internal_Sym *isym,
520 asection *sym_sec)
521 {
522 const char *name;
523 unsigned int iname = isym->st_name;
524 unsigned int shindex = symtab_hdr->sh_link;
525
526 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
527 /* Check for a bogus st_shndx to avoid crashing. */
528 && isym->st_shndx < elf_numsections (abfd))
529 {
530 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
531 shindex = elf_elfheader (abfd)->e_shstrndx;
532 }
533
534 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
535 if (name == NULL)
536 name = "(null)";
537 else if (sym_sec && *name == '\0')
538 name = bfd_section_name (abfd, sym_sec);
539
540 return name;
541 }
542
543 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
544 sections. The first element is the flags, the rest are section
545 pointers. */
546
547 typedef union elf_internal_group {
548 Elf_Internal_Shdr *shdr;
549 unsigned int flags;
550 } Elf_Internal_Group;
551
552 /* Return the name of the group signature symbol. Why isn't the
553 signature just a string? */
554
555 static const char *
556 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
557 {
558 Elf_Internal_Shdr *hdr;
559 unsigned char esym[sizeof (Elf64_External_Sym)];
560 Elf_External_Sym_Shndx eshndx;
561 Elf_Internal_Sym isym;
562
563 /* First we need to ensure the symbol table is available. Make sure
564 that it is a symbol table section. */
565 if (ghdr->sh_link >= elf_numsections (abfd))
566 return NULL;
567 hdr = elf_elfsections (abfd) [ghdr->sh_link];
568 if (hdr->sh_type != SHT_SYMTAB
569 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
570 return NULL;
571
572 /* Go read the symbol. */
573 hdr = &elf_tdata (abfd)->symtab_hdr;
574 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
575 &isym, esym, &eshndx) == NULL)
576 return NULL;
577
578 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
579 }
580
581 /* Set next_in_group list pointer, and group name for NEWSECT. */
582
583 static bfd_boolean
584 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
585 {
586 unsigned int num_group = elf_tdata (abfd)->num_group;
587
588 /* If num_group is zero, read in all SHT_GROUP sections. The count
589 is set to -1 if there are no SHT_GROUP sections. */
590 if (num_group == 0)
591 {
592 unsigned int i, shnum;
593
594 /* First count the number of groups. If we have a SHT_GROUP
595 section with just a flag word (ie. sh_size is 4), ignore it. */
596 shnum = elf_numsections (abfd);
597 num_group = 0;
598
599 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
600 ( (shdr)->sh_type == SHT_GROUP \
601 && (shdr)->sh_size >= minsize \
602 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
603 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
604
605 for (i = 0; i < shnum; i++)
606 {
607 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
608
609 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
610 num_group += 1;
611 }
612
613 if (num_group == 0)
614 {
615 num_group = (unsigned) -1;
616 elf_tdata (abfd)->num_group = num_group;
617 elf_tdata (abfd)->group_sect_ptr = NULL;
618 }
619 else
620 {
621 /* We keep a list of elf section headers for group sections,
622 so we can find them quickly. */
623 bfd_size_type amt;
624
625 elf_tdata (abfd)->num_group = num_group;
626 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
627 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
628 if (elf_tdata (abfd)->group_sect_ptr == NULL)
629 return FALSE;
630 memset (elf_tdata (abfd)->group_sect_ptr, 0, num_group * sizeof (Elf_Internal_Shdr *));
631 num_group = 0;
632
633 for (i = 0; i < shnum; i++)
634 {
635 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
636
637 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
638 {
639 unsigned char *src;
640 Elf_Internal_Group *dest;
641
642 /* Make sure the group section has a BFD section
643 attached to it. */
644 if (!bfd_section_from_shdr (abfd, i))
645 return FALSE;
646
647 /* Add to list of sections. */
648 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
649 num_group += 1;
650
651 /* Read the raw contents. */
652 BFD_ASSERT (sizeof (*dest) >= 4);
653 amt = shdr->sh_size * sizeof (*dest) / 4;
654 shdr->contents = (unsigned char *)
655 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
656 /* PR binutils/4110: Handle corrupt group headers. */
657 if (shdr->contents == NULL)
658 {
659 _bfd_error_handler
660 /* xgettext:c-format */
661 (_("%B: corrupt size field in group section"
662 " header: %#Lx"), abfd, shdr->sh_size);
663 bfd_set_error (bfd_error_bad_value);
664 -- num_group;
665 continue;
666 }
667
668 memset (shdr->contents, 0, amt);
669
670 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
671 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
672 != shdr->sh_size))
673 {
674 _bfd_error_handler
675 /* xgettext:c-format */
676 (_("%B: invalid size field in group section"
677 " header: %#Lx"), abfd, shdr->sh_size);
678 bfd_set_error (bfd_error_bad_value);
679 -- num_group;
680 /* PR 17510: If the group contents are even
681 partially corrupt, do not allow any of the
682 contents to be used. */
683 memset (shdr->contents, 0, amt);
684 continue;
685 }
686
687 /* Translate raw contents, a flag word followed by an
688 array of elf section indices all in target byte order,
689 to the flag word followed by an array of elf section
690 pointers. */
691 src = shdr->contents + shdr->sh_size;
692 dest = (Elf_Internal_Group *) (shdr->contents + amt);
693
694 while (1)
695 {
696 unsigned int idx;
697
698 src -= 4;
699 --dest;
700 idx = H_GET_32 (abfd, src);
701 if (src == shdr->contents)
702 {
703 dest->flags = idx;
704 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
705 shdr->bfd_section->flags
706 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
707 break;
708 }
709 if (idx >= shnum)
710 {
711 _bfd_error_handler
712 (_("%B: invalid SHT_GROUP entry"), abfd);
713 idx = 0;
714 }
715 dest->shdr = elf_elfsections (abfd)[idx];
716 }
717 }
718 }
719
720 /* PR 17510: Corrupt binaries might contain invalid groups. */
721 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
722 {
723 elf_tdata (abfd)->num_group = num_group;
724
725 /* If all groups are invalid then fail. */
726 if (num_group == 0)
727 {
728 elf_tdata (abfd)->group_sect_ptr = NULL;
729 elf_tdata (abfd)->num_group = num_group = -1;
730 _bfd_error_handler
731 (_("%B: no valid group sections found"), abfd);
732 bfd_set_error (bfd_error_bad_value);
733 }
734 }
735 }
736 }
737
738 if (num_group != (unsigned) -1)
739 {
740 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
741 unsigned int j;
742
743 for (j = 0; j < num_group; j++)
744 {
745 /* Begin search from previous found group. */
746 unsigned i = (j + search_offset) % num_group;
747
748 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
749 Elf_Internal_Group *idx;
750 bfd_size_type n_elt;
751
752 if (shdr == NULL)
753 continue;
754
755 idx = (Elf_Internal_Group *) shdr->contents;
756 if (idx == NULL || shdr->sh_size < 4)
757 {
758 /* See PR 21957 for a reproducer. */
759 /* xgettext:c-format */
760 _bfd_error_handler (_("%B: group section '%A' has no contents"),
761 abfd, shdr->bfd_section);
762 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
763 bfd_set_error (bfd_error_bad_value);
764 return FALSE;
765 }
766 n_elt = shdr->sh_size / 4;
767
768 /* Look through this group's sections to see if current
769 section is a member. */
770 while (--n_elt != 0)
771 if ((++idx)->shdr == hdr)
772 {
773 asection *s = NULL;
774
775 /* We are a member of this group. Go looking through
776 other members to see if any others are linked via
777 next_in_group. */
778 idx = (Elf_Internal_Group *) shdr->contents;
779 n_elt = shdr->sh_size / 4;
780 while (--n_elt != 0)
781 if ((s = (++idx)->shdr->bfd_section) != NULL
782 && elf_next_in_group (s) != NULL)
783 break;
784 if (n_elt != 0)
785 {
786 /* Snarf the group name from other member, and
787 insert current section in circular list. */
788 elf_group_name (newsect) = elf_group_name (s);
789 elf_next_in_group (newsect) = elf_next_in_group (s);
790 elf_next_in_group (s) = newsect;
791 }
792 else
793 {
794 const char *gname;
795
796 gname = group_signature (abfd, shdr);
797 if (gname == NULL)
798 return FALSE;
799 elf_group_name (newsect) = gname;
800
801 /* Start a circular list with one element. */
802 elf_next_in_group (newsect) = newsect;
803 }
804
805 /* If the group section has been created, point to the
806 new member. */
807 if (shdr->bfd_section != NULL)
808 elf_next_in_group (shdr->bfd_section) = newsect;
809
810 elf_tdata (abfd)->group_search_offset = i;
811 j = num_group - 1;
812 break;
813 }
814 }
815 }
816
817 if (elf_group_name (newsect) == NULL)
818 {
819 /* xgettext:c-format */
820 _bfd_error_handler (_("%B: no group info for section '%A'"),
821 abfd, newsect);
822 return FALSE;
823 }
824 return TRUE;
825 }
826
827 bfd_boolean
828 _bfd_elf_setup_sections (bfd *abfd)
829 {
830 unsigned int i;
831 unsigned int num_group = elf_tdata (abfd)->num_group;
832 bfd_boolean result = TRUE;
833 asection *s;
834
835 /* Process SHF_LINK_ORDER. */
836 for (s = abfd->sections; s != NULL; s = s->next)
837 {
838 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
839 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
840 {
841 unsigned int elfsec = this_hdr->sh_link;
842 /* FIXME: The old Intel compiler and old strip/objcopy may
843 not set the sh_link or sh_info fields. Hence we could
844 get the situation where elfsec is 0. */
845 if (elfsec == 0)
846 {
847 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
848 if (bed->link_order_error_handler)
849 bed->link_order_error_handler
850 /* xgettext:c-format */
851 (_("%B: warning: sh_link not set for section `%A'"),
852 abfd, s);
853 }
854 else
855 {
856 asection *linksec = NULL;
857
858 if (elfsec < elf_numsections (abfd))
859 {
860 this_hdr = elf_elfsections (abfd)[elfsec];
861 linksec = this_hdr->bfd_section;
862 }
863
864 /* PR 1991, 2008:
865 Some strip/objcopy may leave an incorrect value in
866 sh_link. We don't want to proceed. */
867 if (linksec == NULL)
868 {
869 _bfd_error_handler
870 /* xgettext:c-format */
871 (_("%B: sh_link [%d] in section `%A' is incorrect"),
872 s->owner, elfsec, s);
873 result = FALSE;
874 }
875
876 elf_linked_to_section (s) = linksec;
877 }
878 }
879 else if (this_hdr->sh_type == SHT_GROUP
880 && elf_next_in_group (s) == NULL)
881 {
882 _bfd_error_handler
883 /* xgettext:c-format */
884 (_("%B: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
885 abfd, elf_section_data (s)->this_idx);
886 result = FALSE;
887 }
888 }
889
890 /* Process section groups. */
891 if (num_group == (unsigned) -1)
892 return result;
893
894 for (i = 0; i < num_group; i++)
895 {
896 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
897 Elf_Internal_Group *idx;
898 unsigned int n_elt;
899
900 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
901 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
902 {
903 _bfd_error_handler
904 /* xgettext:c-format */
905 (_("%B: section group entry number %u is corrupt"),
906 abfd, i);
907 result = FALSE;
908 continue;
909 }
910
911 idx = (Elf_Internal_Group *) shdr->contents;
912 n_elt = shdr->sh_size / 4;
913
914 while (--n_elt != 0)
915 {
916 ++ idx;
917
918 if (idx->shdr == NULL)
919 continue;
920 else if (idx->shdr->bfd_section)
921 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
922 else if (idx->shdr->sh_type != SHT_RELA
923 && idx->shdr->sh_type != SHT_REL)
924 {
925 /* There are some unknown sections in the group. */
926 _bfd_error_handler
927 /* xgettext:c-format */
928 (_("%B: unknown type [%#x] section `%s' in group [%A]"),
929 abfd,
930 idx->shdr->sh_type,
931 bfd_elf_string_from_elf_section (abfd,
932 (elf_elfheader (abfd)
933 ->e_shstrndx),
934 idx->shdr->sh_name),
935 shdr->bfd_section);
936 result = FALSE;
937 }
938 }
939 }
940
941 return result;
942 }
943
944 bfd_boolean
945 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
946 {
947 return elf_next_in_group (sec) != NULL;
948 }
949
950 static char *
951 convert_debug_to_zdebug (bfd *abfd, const char *name)
952 {
953 unsigned int len = strlen (name);
954 char *new_name = bfd_alloc (abfd, len + 2);
955 if (new_name == NULL)
956 return NULL;
957 new_name[0] = '.';
958 new_name[1] = 'z';
959 memcpy (new_name + 2, name + 1, len);
960 return new_name;
961 }
962
963 static char *
964 convert_zdebug_to_debug (bfd *abfd, const char *name)
965 {
966 unsigned int len = strlen (name);
967 char *new_name = bfd_alloc (abfd, len);
968 if (new_name == NULL)
969 return NULL;
970 new_name[0] = '.';
971 memcpy (new_name + 1, name + 2, len - 1);
972 return new_name;
973 }
974
975 /* Make a BFD section from an ELF section. We store a pointer to the
976 BFD section in the bfd_section field of the header. */
977
978 bfd_boolean
979 _bfd_elf_make_section_from_shdr (bfd *abfd,
980 Elf_Internal_Shdr *hdr,
981 const char *name,
982 int shindex)
983 {
984 asection *newsect;
985 flagword flags;
986 const struct elf_backend_data *bed;
987
988 if (hdr->bfd_section != NULL)
989 return TRUE;
990
991 newsect = bfd_make_section_anyway (abfd, name);
992 if (newsect == NULL)
993 return FALSE;
994
995 hdr->bfd_section = newsect;
996 elf_section_data (newsect)->this_hdr = *hdr;
997 elf_section_data (newsect)->this_idx = shindex;
998
999 /* Always use the real type/flags. */
1000 elf_section_type (newsect) = hdr->sh_type;
1001 elf_section_flags (newsect) = hdr->sh_flags;
1002
1003 newsect->filepos = hdr->sh_offset;
1004
1005 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1006 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1007 || ! bfd_set_section_alignment (abfd, newsect,
1008 bfd_log2 (hdr->sh_addralign)))
1009 return FALSE;
1010
1011 flags = SEC_NO_FLAGS;
1012 if (hdr->sh_type != SHT_NOBITS)
1013 flags |= SEC_HAS_CONTENTS;
1014 if (hdr->sh_type == SHT_GROUP)
1015 flags |= SEC_GROUP;
1016 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1017 {
1018 flags |= SEC_ALLOC;
1019 if (hdr->sh_type != SHT_NOBITS)
1020 flags |= SEC_LOAD;
1021 }
1022 if ((hdr->sh_flags & SHF_WRITE) == 0)
1023 flags |= SEC_READONLY;
1024 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1025 flags |= SEC_CODE;
1026 else if ((flags & SEC_LOAD) != 0)
1027 flags |= SEC_DATA;
1028 if ((hdr->sh_flags & SHF_MERGE) != 0)
1029 {
1030 flags |= SEC_MERGE;
1031 newsect->entsize = hdr->sh_entsize;
1032 }
1033 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1034 flags |= SEC_STRINGS;
1035 if (hdr->sh_flags & SHF_GROUP)
1036 if (!setup_group (abfd, hdr, newsect))
1037 return FALSE;
1038 if ((hdr->sh_flags & SHF_TLS) != 0)
1039 flags |= SEC_THREAD_LOCAL;
1040 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1041 flags |= SEC_EXCLUDE;
1042
1043 if ((flags & SEC_ALLOC) == 0)
1044 {
1045 /* The debugging sections appear to be recognized only by name,
1046 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1047 if (name [0] == '.')
1048 {
1049 const char *p;
1050 int n;
1051 if (name[1] == 'd')
1052 p = ".debug", n = 6;
1053 else if (name[1] == 'g' && name[2] == 'n')
1054 p = ".gnu.linkonce.wi.", n = 17;
1055 else if (name[1] == 'g' && name[2] == 'd')
1056 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1057 else if (name[1] == 'l')
1058 p = ".line", n = 5;
1059 else if (name[1] == 's')
1060 p = ".stab", n = 5;
1061 else if (name[1] == 'z')
1062 p = ".zdebug", n = 7;
1063 else
1064 p = NULL, n = 0;
1065 if (p != NULL && strncmp (name, p, n) == 0)
1066 flags |= SEC_DEBUGGING;
1067 }
1068 }
1069
1070 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1071 only link a single copy of the section. This is used to support
1072 g++. g++ will emit each template expansion in its own section.
1073 The symbols will be defined as weak, so that multiple definitions
1074 are permitted. The GNU linker extension is to actually discard
1075 all but one of the sections. */
1076 if (CONST_STRNEQ (name, ".gnu.linkonce")
1077 && elf_next_in_group (newsect) == NULL)
1078 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1079
1080 bed = get_elf_backend_data (abfd);
1081 if (bed->elf_backend_section_flags)
1082 if (! bed->elf_backend_section_flags (&flags, hdr))
1083 return FALSE;
1084
1085 if (! bfd_set_section_flags (abfd, newsect, flags))
1086 return FALSE;
1087
1088 /* We do not parse the PT_NOTE segments as we are interested even in the
1089 separate debug info files which may have the segments offsets corrupted.
1090 PT_NOTEs from the core files are currently not parsed using BFD. */
1091 if (hdr->sh_type == SHT_NOTE)
1092 {
1093 bfd_byte *contents;
1094
1095 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1096 return FALSE;
1097
1098 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1099 hdr->sh_offset, hdr->sh_addralign);
1100 free (contents);
1101 }
1102
1103 if ((flags & SEC_ALLOC) != 0)
1104 {
1105 Elf_Internal_Phdr *phdr;
1106 unsigned int i, nload;
1107
1108 /* Some ELF linkers produce binaries with all the program header
1109 p_paddr fields zero. If we have such a binary with more than
1110 one PT_LOAD header, then leave the section lma equal to vma
1111 so that we don't create sections with overlapping lma. */
1112 phdr = elf_tdata (abfd)->phdr;
1113 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1114 if (phdr->p_paddr != 0)
1115 break;
1116 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1117 ++nload;
1118 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1119 return TRUE;
1120
1121 phdr = elf_tdata (abfd)->phdr;
1122 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1123 {
1124 if (((phdr->p_type == PT_LOAD
1125 && (hdr->sh_flags & SHF_TLS) == 0)
1126 || phdr->p_type == PT_TLS)
1127 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1128 {
1129 if ((flags & SEC_LOAD) == 0)
1130 newsect->lma = (phdr->p_paddr
1131 + hdr->sh_addr - phdr->p_vaddr);
1132 else
1133 /* We used to use the same adjustment for SEC_LOAD
1134 sections, but that doesn't work if the segment
1135 is packed with code from multiple VMAs.
1136 Instead we calculate the section LMA based on
1137 the segment LMA. It is assumed that the
1138 segment will contain sections with contiguous
1139 LMAs, even if the VMAs are not. */
1140 newsect->lma = (phdr->p_paddr
1141 + hdr->sh_offset - phdr->p_offset);
1142
1143 /* With contiguous segments, we can't tell from file
1144 offsets whether a section with zero size should
1145 be placed at the end of one segment or the
1146 beginning of the next. Decide based on vaddr. */
1147 if (hdr->sh_addr >= phdr->p_vaddr
1148 && (hdr->sh_addr + hdr->sh_size
1149 <= phdr->p_vaddr + phdr->p_memsz))
1150 break;
1151 }
1152 }
1153 }
1154
1155 /* Compress/decompress DWARF debug sections with names: .debug_* and
1156 .zdebug_*, after the section flags is set. */
1157 if ((flags & SEC_DEBUGGING)
1158 && ((name[1] == 'd' && name[6] == '_')
1159 || (name[1] == 'z' && name[7] == '_')))
1160 {
1161 enum { nothing, compress, decompress } action = nothing;
1162 int compression_header_size;
1163 bfd_size_type uncompressed_size;
1164 bfd_boolean compressed
1165 = bfd_is_section_compressed_with_header (abfd, newsect,
1166 &compression_header_size,
1167 &uncompressed_size);
1168
1169 if (compressed)
1170 {
1171 /* Compressed section. Check if we should decompress. */
1172 if ((abfd->flags & BFD_DECOMPRESS))
1173 action = decompress;
1174 }
1175
1176 /* Compress the uncompressed section or convert from/to .zdebug*
1177 section. Check if we should compress. */
1178 if (action == nothing)
1179 {
1180 if (newsect->size != 0
1181 && (abfd->flags & BFD_COMPRESS)
1182 && compression_header_size >= 0
1183 && uncompressed_size > 0
1184 && (!compressed
1185 || ((compression_header_size > 0)
1186 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1187 action = compress;
1188 else
1189 return TRUE;
1190 }
1191
1192 if (action == compress)
1193 {
1194 if (!bfd_init_section_compress_status (abfd, newsect))
1195 {
1196 _bfd_error_handler
1197 /* xgettext:c-format */
1198 (_("%B: unable to initialize compress status for section %s"),
1199 abfd, name);
1200 return FALSE;
1201 }
1202 }
1203 else
1204 {
1205 if (!bfd_init_section_decompress_status (abfd, newsect))
1206 {
1207 _bfd_error_handler
1208 /* xgettext:c-format */
1209 (_("%B: unable to initialize decompress status for section %s"),
1210 abfd, name);
1211 return FALSE;
1212 }
1213 }
1214
1215 if (abfd->is_linker_input)
1216 {
1217 if (name[1] == 'z'
1218 && (action == decompress
1219 || (action == compress
1220 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1221 {
1222 /* Convert section name from .zdebug_* to .debug_* so
1223 that linker will consider this section as a debug
1224 section. */
1225 char *new_name = convert_zdebug_to_debug (abfd, name);
1226 if (new_name == NULL)
1227 return FALSE;
1228 bfd_rename_section (abfd, newsect, new_name);
1229 }
1230 }
1231 else
1232 /* For objdump, don't rename the section. For objcopy, delay
1233 section rename to elf_fake_sections. */
1234 newsect->flags |= SEC_ELF_RENAME;
1235 }
1236
1237 return TRUE;
1238 }
1239
1240 const char *const bfd_elf_section_type_names[] =
1241 {
1242 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1243 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1244 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1245 };
1246
1247 /* ELF relocs are against symbols. If we are producing relocatable
1248 output, and the reloc is against an external symbol, and nothing
1249 has given us any additional addend, the resulting reloc will also
1250 be against the same symbol. In such a case, we don't want to
1251 change anything about the way the reloc is handled, since it will
1252 all be done at final link time. Rather than put special case code
1253 into bfd_perform_relocation, all the reloc types use this howto
1254 function. It just short circuits the reloc if producing
1255 relocatable output against an external symbol. */
1256
1257 bfd_reloc_status_type
1258 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1259 arelent *reloc_entry,
1260 asymbol *symbol,
1261 void *data ATTRIBUTE_UNUSED,
1262 asection *input_section,
1263 bfd *output_bfd,
1264 char **error_message ATTRIBUTE_UNUSED)
1265 {
1266 if (output_bfd != NULL
1267 && (symbol->flags & BSF_SECTION_SYM) == 0
1268 && (! reloc_entry->howto->partial_inplace
1269 || reloc_entry->addend == 0))
1270 {
1271 reloc_entry->address += input_section->output_offset;
1272 return bfd_reloc_ok;
1273 }
1274
1275 return bfd_reloc_continue;
1276 }
1277 \f
1278 /* Returns TRUE if section A matches section B.
1279 Names, addresses and links may be different, but everything else
1280 should be the same. */
1281
1282 static bfd_boolean
1283 section_match (const Elf_Internal_Shdr * a,
1284 const Elf_Internal_Shdr * b)
1285 {
1286 return
1287 a->sh_type == b->sh_type
1288 && (a->sh_flags & ~ SHF_INFO_LINK)
1289 == (b->sh_flags & ~ SHF_INFO_LINK)
1290 && a->sh_addralign == b->sh_addralign
1291 && a->sh_size == b->sh_size
1292 && a->sh_entsize == b->sh_entsize
1293 /* FIXME: Check sh_addr ? */
1294 ;
1295 }
1296
1297 /* Find a section in OBFD that has the same characteristics
1298 as IHEADER. Return the index of this section or SHN_UNDEF if
1299 none can be found. Check's section HINT first, as this is likely
1300 to be the correct section. */
1301
1302 static unsigned int
1303 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1304 const unsigned int hint)
1305 {
1306 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1307 unsigned int i;
1308
1309 BFD_ASSERT (iheader != NULL);
1310
1311 /* See PR 20922 for a reproducer of the NULL test. */
1312 if (hint < elf_numsections (obfd)
1313 && oheaders[hint] != NULL
1314 && section_match (oheaders[hint], iheader))
1315 return hint;
1316
1317 for (i = 1; i < elf_numsections (obfd); i++)
1318 {
1319 Elf_Internal_Shdr * oheader = oheaders[i];
1320
1321 if (oheader == NULL)
1322 continue;
1323 if (section_match (oheader, iheader))
1324 /* FIXME: Do we care if there is a potential for
1325 multiple matches ? */
1326 return i;
1327 }
1328
1329 return SHN_UNDEF;
1330 }
1331
1332 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1333 Processor specific section, based upon a matching input section.
1334 Returns TRUE upon success, FALSE otherwise. */
1335
1336 static bfd_boolean
1337 copy_special_section_fields (const bfd *ibfd,
1338 bfd *obfd,
1339 const Elf_Internal_Shdr *iheader,
1340 Elf_Internal_Shdr *oheader,
1341 const unsigned int secnum)
1342 {
1343 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1344 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1345 bfd_boolean changed = FALSE;
1346 unsigned int sh_link;
1347
1348 if (oheader->sh_type == SHT_NOBITS)
1349 {
1350 /* This is a feature for objcopy --only-keep-debug:
1351 When a section's type is changed to NOBITS, we preserve
1352 the sh_link and sh_info fields so that they can be
1353 matched up with the original.
1354
1355 Note: Strictly speaking these assignments are wrong.
1356 The sh_link and sh_info fields should point to the
1357 relevent sections in the output BFD, which may not be in
1358 the same location as they were in the input BFD. But
1359 the whole point of this action is to preserve the
1360 original values of the sh_link and sh_info fields, so
1361 that they can be matched up with the section headers in
1362 the original file. So strictly speaking we may be
1363 creating an invalid ELF file, but it is only for a file
1364 that just contains debug info and only for sections
1365 without any contents. */
1366 if (oheader->sh_link == 0)
1367 oheader->sh_link = iheader->sh_link;
1368 if (oheader->sh_info == 0)
1369 oheader->sh_info = iheader->sh_info;
1370 return TRUE;
1371 }
1372
1373 /* Allow the target a chance to decide how these fields should be set. */
1374 if (bed->elf_backend_copy_special_section_fields != NULL
1375 && bed->elf_backend_copy_special_section_fields
1376 (ibfd, obfd, iheader, oheader))
1377 return TRUE;
1378
1379 /* We have an iheader which might match oheader, and which has non-zero
1380 sh_info and/or sh_link fields. Attempt to follow those links and find
1381 the section in the output bfd which corresponds to the linked section
1382 in the input bfd. */
1383 if (iheader->sh_link != SHN_UNDEF)
1384 {
1385 /* See PR 20931 for a reproducer. */
1386 if (iheader->sh_link >= elf_numsections (ibfd))
1387 {
1388 _bfd_error_handler
1389 /* xgettext:c-format */
1390 (_("%B: Invalid sh_link field (%d) in section number %d"),
1391 ibfd, iheader->sh_link, secnum);
1392 return FALSE;
1393 }
1394
1395 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1396 if (sh_link != SHN_UNDEF)
1397 {
1398 oheader->sh_link = sh_link;
1399 changed = TRUE;
1400 }
1401 else
1402 /* FIXME: Should we install iheader->sh_link
1403 if we could not find a match ? */
1404 _bfd_error_handler
1405 /* xgettext:c-format */
1406 (_("%B: Failed to find link section for section %d"), obfd, secnum);
1407 }
1408
1409 if (iheader->sh_info)
1410 {
1411 /* The sh_info field can hold arbitrary information, but if the
1412 SHF_LINK_INFO flag is set then it should be interpreted as a
1413 section index. */
1414 if (iheader->sh_flags & SHF_INFO_LINK)
1415 {
1416 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1417 iheader->sh_info);
1418 if (sh_link != SHN_UNDEF)
1419 oheader->sh_flags |= SHF_INFO_LINK;
1420 }
1421 else
1422 /* No idea what it means - just copy it. */
1423 sh_link = iheader->sh_info;
1424
1425 if (sh_link != SHN_UNDEF)
1426 {
1427 oheader->sh_info = sh_link;
1428 changed = TRUE;
1429 }
1430 else
1431 _bfd_error_handler
1432 /* xgettext:c-format */
1433 (_("%B: Failed to find info section for section %d"), obfd, secnum);
1434 }
1435
1436 return changed;
1437 }
1438
1439 /* Copy the program header and other data from one object module to
1440 another. */
1441
1442 bfd_boolean
1443 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1444 {
1445 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1446 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1447 const struct elf_backend_data *bed;
1448 unsigned int i;
1449
1450 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1451 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1452 return TRUE;
1453
1454 if (!elf_flags_init (obfd))
1455 {
1456 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1457 elf_flags_init (obfd) = TRUE;
1458 }
1459
1460 elf_gp (obfd) = elf_gp (ibfd);
1461
1462 /* Also copy the EI_OSABI field. */
1463 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1464 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1465
1466 /* If set, copy the EI_ABIVERSION field. */
1467 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1468 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1469 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1470
1471 /* Copy object attributes. */
1472 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1473
1474 if (iheaders == NULL || oheaders == NULL)
1475 return TRUE;
1476
1477 bed = get_elf_backend_data (obfd);
1478
1479 /* Possibly copy other fields in the section header. */
1480 for (i = 1; i < elf_numsections (obfd); i++)
1481 {
1482 unsigned int j;
1483 Elf_Internal_Shdr * oheader = oheaders[i];
1484
1485 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1486 because of a special case need for generating separate debug info
1487 files. See below for more details. */
1488 if (oheader == NULL
1489 || (oheader->sh_type != SHT_NOBITS
1490 && oheader->sh_type < SHT_LOOS))
1491 continue;
1492
1493 /* Ignore empty sections, and sections whose
1494 fields have already been initialised. */
1495 if (oheader->sh_size == 0
1496 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1497 continue;
1498
1499 /* Scan for the matching section in the input bfd.
1500 First we try for a direct mapping between the input and output sections. */
1501 for (j = 1; j < elf_numsections (ibfd); j++)
1502 {
1503 const Elf_Internal_Shdr * iheader = iheaders[j];
1504
1505 if (iheader == NULL)
1506 continue;
1507
1508 if (oheader->bfd_section != NULL
1509 && iheader->bfd_section != NULL
1510 && iheader->bfd_section->output_section != NULL
1511 && iheader->bfd_section->output_section == oheader->bfd_section)
1512 {
1513 /* We have found a connection from the input section to the
1514 output section. Attempt to copy the header fields. If
1515 this fails then do not try any further sections - there
1516 should only be a one-to-one mapping between input and output. */
1517 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1518 j = elf_numsections (ibfd);
1519 break;
1520 }
1521 }
1522
1523 if (j < elf_numsections (ibfd))
1524 continue;
1525
1526 /* That failed. So try to deduce the corresponding input section.
1527 Unfortunately we cannot compare names as the output string table
1528 is empty, so instead we check size, address and type. */
1529 for (j = 1; j < elf_numsections (ibfd); j++)
1530 {
1531 const Elf_Internal_Shdr * iheader = iheaders[j];
1532
1533 if (iheader == NULL)
1534 continue;
1535
1536 /* Try matching fields in the input section's header.
1537 Since --only-keep-debug turns all non-debug sections into
1538 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1539 input type. */
1540 if ((oheader->sh_type == SHT_NOBITS
1541 || iheader->sh_type == oheader->sh_type)
1542 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1543 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1544 && iheader->sh_addralign == oheader->sh_addralign
1545 && iheader->sh_entsize == oheader->sh_entsize
1546 && iheader->sh_size == oheader->sh_size
1547 && iheader->sh_addr == oheader->sh_addr
1548 && (iheader->sh_info != oheader->sh_info
1549 || iheader->sh_link != oheader->sh_link))
1550 {
1551 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1552 break;
1553 }
1554 }
1555
1556 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1557 {
1558 /* Final attempt. Call the backend copy function
1559 with a NULL input section. */
1560 if (bed->elf_backend_copy_special_section_fields != NULL)
1561 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1562 }
1563 }
1564
1565 return TRUE;
1566 }
1567
1568 static const char *
1569 get_segment_type (unsigned int p_type)
1570 {
1571 const char *pt;
1572 switch (p_type)
1573 {
1574 case PT_NULL: pt = "NULL"; break;
1575 case PT_LOAD: pt = "LOAD"; break;
1576 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1577 case PT_INTERP: pt = "INTERP"; break;
1578 case PT_NOTE: pt = "NOTE"; break;
1579 case PT_SHLIB: pt = "SHLIB"; break;
1580 case PT_PHDR: pt = "PHDR"; break;
1581 case PT_TLS: pt = "TLS"; break;
1582 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1583 case PT_GNU_STACK: pt = "STACK"; break;
1584 case PT_GNU_RELRO: pt = "RELRO"; break;
1585 default: pt = NULL; break;
1586 }
1587 return pt;
1588 }
1589
1590 /* Print out the program headers. */
1591
1592 bfd_boolean
1593 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1594 {
1595 FILE *f = (FILE *) farg;
1596 Elf_Internal_Phdr *p;
1597 asection *s;
1598 bfd_byte *dynbuf = NULL;
1599
1600 p = elf_tdata (abfd)->phdr;
1601 if (p != NULL)
1602 {
1603 unsigned int i, c;
1604
1605 fprintf (f, _("\nProgram Header:\n"));
1606 c = elf_elfheader (abfd)->e_phnum;
1607 for (i = 0; i < c; i++, p++)
1608 {
1609 const char *pt = get_segment_type (p->p_type);
1610 char buf[20];
1611
1612 if (pt == NULL)
1613 {
1614 sprintf (buf, "0x%lx", p->p_type);
1615 pt = buf;
1616 }
1617 fprintf (f, "%8s off 0x", pt);
1618 bfd_fprintf_vma (abfd, f, p->p_offset);
1619 fprintf (f, " vaddr 0x");
1620 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1621 fprintf (f, " paddr 0x");
1622 bfd_fprintf_vma (abfd, f, p->p_paddr);
1623 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1624 fprintf (f, " filesz 0x");
1625 bfd_fprintf_vma (abfd, f, p->p_filesz);
1626 fprintf (f, " memsz 0x");
1627 bfd_fprintf_vma (abfd, f, p->p_memsz);
1628 fprintf (f, " flags %c%c%c",
1629 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1630 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1631 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1632 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1633 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1634 fprintf (f, "\n");
1635 }
1636 }
1637
1638 s = bfd_get_section_by_name (abfd, ".dynamic");
1639 if (s != NULL)
1640 {
1641 unsigned int elfsec;
1642 unsigned long shlink;
1643 bfd_byte *extdyn, *extdynend;
1644 size_t extdynsize;
1645 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1646
1647 fprintf (f, _("\nDynamic Section:\n"));
1648
1649 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1650 goto error_return;
1651
1652 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1653 if (elfsec == SHN_BAD)
1654 goto error_return;
1655 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1656
1657 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1658 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1659
1660 extdyn = dynbuf;
1661 /* PR 17512: file: 6f427532. */
1662 if (s->size < extdynsize)
1663 goto error_return;
1664 extdynend = extdyn + s->size;
1665 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1666 Fix range check. */
1667 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1668 {
1669 Elf_Internal_Dyn dyn;
1670 const char *name = "";
1671 char ab[20];
1672 bfd_boolean stringp;
1673 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1674
1675 (*swap_dyn_in) (abfd, extdyn, &dyn);
1676
1677 if (dyn.d_tag == DT_NULL)
1678 break;
1679
1680 stringp = FALSE;
1681 switch (dyn.d_tag)
1682 {
1683 default:
1684 if (bed->elf_backend_get_target_dtag)
1685 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1686
1687 if (!strcmp (name, ""))
1688 {
1689 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1690 name = ab;
1691 }
1692 break;
1693
1694 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1695 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1696 case DT_PLTGOT: name = "PLTGOT"; break;
1697 case DT_HASH: name = "HASH"; break;
1698 case DT_STRTAB: name = "STRTAB"; break;
1699 case DT_SYMTAB: name = "SYMTAB"; break;
1700 case DT_RELA: name = "RELA"; break;
1701 case DT_RELASZ: name = "RELASZ"; break;
1702 case DT_RELAENT: name = "RELAENT"; break;
1703 case DT_STRSZ: name = "STRSZ"; break;
1704 case DT_SYMENT: name = "SYMENT"; break;
1705 case DT_INIT: name = "INIT"; break;
1706 case DT_FINI: name = "FINI"; break;
1707 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1708 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1709 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1710 case DT_REL: name = "REL"; break;
1711 case DT_RELSZ: name = "RELSZ"; break;
1712 case DT_RELENT: name = "RELENT"; break;
1713 case DT_PLTREL: name = "PLTREL"; break;
1714 case DT_DEBUG: name = "DEBUG"; break;
1715 case DT_TEXTREL: name = "TEXTREL"; break;
1716 case DT_JMPREL: name = "JMPREL"; break;
1717 case DT_BIND_NOW: name = "BIND_NOW"; break;
1718 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1719 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1720 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1721 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1722 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1723 case DT_FLAGS: name = "FLAGS"; break;
1724 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1725 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1726 case DT_CHECKSUM: name = "CHECKSUM"; break;
1727 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1728 case DT_MOVEENT: name = "MOVEENT"; break;
1729 case DT_MOVESZ: name = "MOVESZ"; break;
1730 case DT_FEATURE: name = "FEATURE"; break;
1731 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1732 case DT_SYMINSZ: name = "SYMINSZ"; break;
1733 case DT_SYMINENT: name = "SYMINENT"; break;
1734 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1735 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1736 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1737 case DT_PLTPAD: name = "PLTPAD"; break;
1738 case DT_MOVETAB: name = "MOVETAB"; break;
1739 case DT_SYMINFO: name = "SYMINFO"; break;
1740 case DT_RELACOUNT: name = "RELACOUNT"; break;
1741 case DT_RELCOUNT: name = "RELCOUNT"; break;
1742 case DT_FLAGS_1: name = "FLAGS_1"; break;
1743 case DT_VERSYM: name = "VERSYM"; break;
1744 case DT_VERDEF: name = "VERDEF"; break;
1745 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1746 case DT_VERNEED: name = "VERNEED"; break;
1747 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1748 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1749 case DT_USED: name = "USED"; break;
1750 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1751 case DT_GNU_HASH: name = "GNU_HASH"; break;
1752 }
1753
1754 fprintf (f, " %-20s ", name);
1755 if (! stringp)
1756 {
1757 fprintf (f, "0x");
1758 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1759 }
1760 else
1761 {
1762 const char *string;
1763 unsigned int tagv = dyn.d_un.d_val;
1764
1765 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1766 if (string == NULL)
1767 goto error_return;
1768 fprintf (f, "%s", string);
1769 }
1770 fprintf (f, "\n");
1771 }
1772
1773 free (dynbuf);
1774 dynbuf = NULL;
1775 }
1776
1777 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1778 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1779 {
1780 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1781 return FALSE;
1782 }
1783
1784 if (elf_dynverdef (abfd) != 0)
1785 {
1786 Elf_Internal_Verdef *t;
1787
1788 fprintf (f, _("\nVersion definitions:\n"));
1789 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1790 {
1791 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1792 t->vd_flags, t->vd_hash,
1793 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1794 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1795 {
1796 Elf_Internal_Verdaux *a;
1797
1798 fprintf (f, "\t");
1799 for (a = t->vd_auxptr->vda_nextptr;
1800 a != NULL;
1801 a = a->vda_nextptr)
1802 fprintf (f, "%s ",
1803 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1804 fprintf (f, "\n");
1805 }
1806 }
1807 }
1808
1809 if (elf_dynverref (abfd) != 0)
1810 {
1811 Elf_Internal_Verneed *t;
1812
1813 fprintf (f, _("\nVersion References:\n"));
1814 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1815 {
1816 Elf_Internal_Vernaux *a;
1817
1818 fprintf (f, _(" required from %s:\n"),
1819 t->vn_filename ? t->vn_filename : "<corrupt>");
1820 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1821 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1822 a->vna_flags, a->vna_other,
1823 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1824 }
1825 }
1826
1827 return TRUE;
1828
1829 error_return:
1830 if (dynbuf != NULL)
1831 free (dynbuf);
1832 return FALSE;
1833 }
1834
1835 /* Get version string. */
1836
1837 const char *
1838 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1839 bfd_boolean *hidden)
1840 {
1841 const char *version_string = NULL;
1842 if (elf_dynversym (abfd) != 0
1843 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1844 {
1845 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1846
1847 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1848 vernum &= VERSYM_VERSION;
1849
1850 if (vernum == 0)
1851 version_string = "";
1852 else if (vernum == 1)
1853 version_string = "Base";
1854 else if (vernum <= elf_tdata (abfd)->cverdefs)
1855 version_string =
1856 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1857 else
1858 {
1859 Elf_Internal_Verneed *t;
1860
1861 version_string = "";
1862 for (t = elf_tdata (abfd)->verref;
1863 t != NULL;
1864 t = t->vn_nextref)
1865 {
1866 Elf_Internal_Vernaux *a;
1867
1868 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1869 {
1870 if (a->vna_other == vernum)
1871 {
1872 version_string = a->vna_nodename;
1873 break;
1874 }
1875 }
1876 }
1877 }
1878 }
1879 return version_string;
1880 }
1881
1882 /* Display ELF-specific fields of a symbol. */
1883
1884 void
1885 bfd_elf_print_symbol (bfd *abfd,
1886 void *filep,
1887 asymbol *symbol,
1888 bfd_print_symbol_type how)
1889 {
1890 FILE *file = (FILE *) filep;
1891 switch (how)
1892 {
1893 case bfd_print_symbol_name:
1894 fprintf (file, "%s", symbol->name);
1895 break;
1896 case bfd_print_symbol_more:
1897 fprintf (file, "elf ");
1898 bfd_fprintf_vma (abfd, file, symbol->value);
1899 fprintf (file, " %x", symbol->flags);
1900 break;
1901 case bfd_print_symbol_all:
1902 {
1903 const char *section_name;
1904 const char *name = NULL;
1905 const struct elf_backend_data *bed;
1906 unsigned char st_other;
1907 bfd_vma val;
1908 const char *version_string;
1909 bfd_boolean hidden;
1910
1911 section_name = symbol->section ? symbol->section->name : "(*none*)";
1912
1913 bed = get_elf_backend_data (abfd);
1914 if (bed->elf_backend_print_symbol_all)
1915 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1916
1917 if (name == NULL)
1918 {
1919 name = symbol->name;
1920 bfd_print_symbol_vandf (abfd, file, symbol);
1921 }
1922
1923 fprintf (file, " %s\t", section_name);
1924 /* Print the "other" value for a symbol. For common symbols,
1925 we've already printed the size; now print the alignment.
1926 For other symbols, we have no specified alignment, and
1927 we've printed the address; now print the size. */
1928 if (symbol->section && bfd_is_com_section (symbol->section))
1929 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1930 else
1931 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1932 bfd_fprintf_vma (abfd, file, val);
1933
1934 /* If we have version information, print it. */
1935 version_string = _bfd_elf_get_symbol_version_string (abfd,
1936 symbol,
1937 &hidden);
1938 if (version_string)
1939 {
1940 if (!hidden)
1941 fprintf (file, " %-11s", version_string);
1942 else
1943 {
1944 int i;
1945
1946 fprintf (file, " (%s)", version_string);
1947 for (i = 10 - strlen (version_string); i > 0; --i)
1948 putc (' ', file);
1949 }
1950 }
1951
1952 /* If the st_other field is not zero, print it. */
1953 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1954
1955 switch (st_other)
1956 {
1957 case 0: break;
1958 case STV_INTERNAL: fprintf (file, " .internal"); break;
1959 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1960 case STV_PROTECTED: fprintf (file, " .protected"); break;
1961 default:
1962 /* Some other non-defined flags are also present, so print
1963 everything hex. */
1964 fprintf (file, " 0x%02x", (unsigned int) st_other);
1965 }
1966
1967 fprintf (file, " %s", name);
1968 }
1969 break;
1970 }
1971 }
1972 \f
1973 /* ELF .o/exec file reading */
1974
1975 /* Create a new bfd section from an ELF section header. */
1976
1977 bfd_boolean
1978 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1979 {
1980 Elf_Internal_Shdr *hdr;
1981 Elf_Internal_Ehdr *ehdr;
1982 const struct elf_backend_data *bed;
1983 const char *name;
1984 bfd_boolean ret = TRUE;
1985 static bfd_boolean * sections_being_created = NULL;
1986 static bfd * sections_being_created_abfd = NULL;
1987 static unsigned int nesting = 0;
1988
1989 if (shindex >= elf_numsections (abfd))
1990 return FALSE;
1991
1992 if (++ nesting > 3)
1993 {
1994 /* PR17512: A corrupt ELF binary might contain a recursive group of
1995 sections, with each the string indicies pointing to the next in the
1996 loop. Detect this here, by refusing to load a section that we are
1997 already in the process of loading. We only trigger this test if
1998 we have nested at least three sections deep as normal ELF binaries
1999 can expect to recurse at least once.
2000
2001 FIXME: It would be better if this array was attached to the bfd,
2002 rather than being held in a static pointer. */
2003
2004 if (sections_being_created_abfd != abfd)
2005 sections_being_created = NULL;
2006 if (sections_being_created == NULL)
2007 {
2008 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
2009 sections_being_created = (bfd_boolean *)
2010 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
2011 sections_being_created_abfd = abfd;
2012 }
2013 if (sections_being_created [shindex])
2014 {
2015 _bfd_error_handler
2016 (_("%B: warning: loop in section dependencies detected"), abfd);
2017 return FALSE;
2018 }
2019 sections_being_created [shindex] = TRUE;
2020 }
2021
2022 hdr = elf_elfsections (abfd)[shindex];
2023 ehdr = elf_elfheader (abfd);
2024 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2025 hdr->sh_name);
2026 if (name == NULL)
2027 goto fail;
2028
2029 bed = get_elf_backend_data (abfd);
2030 switch (hdr->sh_type)
2031 {
2032 case SHT_NULL:
2033 /* Inactive section. Throw it away. */
2034 goto success;
2035
2036 case SHT_PROGBITS: /* Normal section with contents. */
2037 case SHT_NOBITS: /* .bss section. */
2038 case SHT_HASH: /* .hash section. */
2039 case SHT_NOTE: /* .note section. */
2040 case SHT_INIT_ARRAY: /* .init_array section. */
2041 case SHT_FINI_ARRAY: /* .fini_array section. */
2042 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2043 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2044 case SHT_GNU_HASH: /* .gnu.hash section. */
2045 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2046 goto success;
2047
2048 case SHT_DYNAMIC: /* Dynamic linking information. */
2049 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2050 goto fail;
2051
2052 if (hdr->sh_link > elf_numsections (abfd))
2053 {
2054 /* PR 10478: Accept Solaris binaries with a sh_link
2055 field set to SHN_BEFORE or SHN_AFTER. */
2056 switch (bfd_get_arch (abfd))
2057 {
2058 case bfd_arch_i386:
2059 case bfd_arch_sparc:
2060 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2061 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2062 break;
2063 /* Otherwise fall through. */
2064 default:
2065 goto fail;
2066 }
2067 }
2068 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2069 goto fail;
2070 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2071 {
2072 Elf_Internal_Shdr *dynsymhdr;
2073
2074 /* The shared libraries distributed with hpux11 have a bogus
2075 sh_link field for the ".dynamic" section. Find the
2076 string table for the ".dynsym" section instead. */
2077 if (elf_dynsymtab (abfd) != 0)
2078 {
2079 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2080 hdr->sh_link = dynsymhdr->sh_link;
2081 }
2082 else
2083 {
2084 unsigned int i, num_sec;
2085
2086 num_sec = elf_numsections (abfd);
2087 for (i = 1; i < num_sec; i++)
2088 {
2089 dynsymhdr = elf_elfsections (abfd)[i];
2090 if (dynsymhdr->sh_type == SHT_DYNSYM)
2091 {
2092 hdr->sh_link = dynsymhdr->sh_link;
2093 break;
2094 }
2095 }
2096 }
2097 }
2098 goto success;
2099
2100 case SHT_SYMTAB: /* A symbol table. */
2101 if (elf_onesymtab (abfd) == shindex)
2102 goto success;
2103
2104 if (hdr->sh_entsize != bed->s->sizeof_sym)
2105 goto fail;
2106
2107 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2108 {
2109 if (hdr->sh_size != 0)
2110 goto fail;
2111 /* Some assemblers erroneously set sh_info to one with a
2112 zero sh_size. ld sees this as a global symbol count
2113 of (unsigned) -1. Fix it here. */
2114 hdr->sh_info = 0;
2115 goto success;
2116 }
2117
2118 /* PR 18854: A binary might contain more than one symbol table.
2119 Unusual, but possible. Warn, but continue. */
2120 if (elf_onesymtab (abfd) != 0)
2121 {
2122 _bfd_error_handler
2123 /* xgettext:c-format */
2124 (_("%B: warning: multiple symbol tables detected"
2125 " - ignoring the table in section %u"),
2126 abfd, shindex);
2127 goto success;
2128 }
2129 elf_onesymtab (abfd) = shindex;
2130 elf_symtab_hdr (abfd) = *hdr;
2131 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2132 abfd->flags |= HAS_SYMS;
2133
2134 /* Sometimes a shared object will map in the symbol table. If
2135 SHF_ALLOC is set, and this is a shared object, then we also
2136 treat this section as a BFD section. We can not base the
2137 decision purely on SHF_ALLOC, because that flag is sometimes
2138 set in a relocatable object file, which would confuse the
2139 linker. */
2140 if ((hdr->sh_flags & SHF_ALLOC) != 0
2141 && (abfd->flags & DYNAMIC) != 0
2142 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2143 shindex))
2144 goto fail;
2145
2146 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2147 can't read symbols without that section loaded as well. It
2148 is most likely specified by the next section header. */
2149 {
2150 elf_section_list * entry;
2151 unsigned int i, num_sec;
2152
2153 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2154 if (entry->hdr.sh_link == shindex)
2155 goto success;
2156
2157 num_sec = elf_numsections (abfd);
2158 for (i = shindex + 1; i < num_sec; i++)
2159 {
2160 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2161
2162 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2163 && hdr2->sh_link == shindex)
2164 break;
2165 }
2166
2167 if (i == num_sec)
2168 for (i = 1; i < shindex; i++)
2169 {
2170 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2171
2172 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2173 && hdr2->sh_link == shindex)
2174 break;
2175 }
2176
2177 if (i != shindex)
2178 ret = bfd_section_from_shdr (abfd, i);
2179 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2180 goto success;
2181 }
2182
2183 case SHT_DYNSYM: /* A dynamic symbol table. */
2184 if (elf_dynsymtab (abfd) == shindex)
2185 goto success;
2186
2187 if (hdr->sh_entsize != bed->s->sizeof_sym)
2188 goto fail;
2189
2190 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2191 {
2192 if (hdr->sh_size != 0)
2193 goto fail;
2194
2195 /* Some linkers erroneously set sh_info to one with a
2196 zero sh_size. ld sees this as a global symbol count
2197 of (unsigned) -1. Fix it here. */
2198 hdr->sh_info = 0;
2199 goto success;
2200 }
2201
2202 /* PR 18854: A binary might contain more than one dynamic symbol table.
2203 Unusual, but possible. Warn, but continue. */
2204 if (elf_dynsymtab (abfd) != 0)
2205 {
2206 _bfd_error_handler
2207 /* xgettext:c-format */
2208 (_("%B: warning: multiple dynamic symbol tables detected"
2209 " - ignoring the table in section %u"),
2210 abfd, shindex);
2211 goto success;
2212 }
2213 elf_dynsymtab (abfd) = shindex;
2214 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2215 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2216 abfd->flags |= HAS_SYMS;
2217
2218 /* Besides being a symbol table, we also treat this as a regular
2219 section, so that objcopy can handle it. */
2220 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2221 goto success;
2222
2223 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2224 {
2225 elf_section_list * entry;
2226
2227 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2228 if (entry->ndx == shindex)
2229 goto success;
2230
2231 entry = bfd_alloc (abfd, sizeof * entry);
2232 if (entry == NULL)
2233 goto fail;
2234 entry->ndx = shindex;
2235 entry->hdr = * hdr;
2236 entry->next = elf_symtab_shndx_list (abfd);
2237 elf_symtab_shndx_list (abfd) = entry;
2238 elf_elfsections (abfd)[shindex] = & entry->hdr;
2239 goto success;
2240 }
2241
2242 case SHT_STRTAB: /* A string table. */
2243 if (hdr->bfd_section != NULL)
2244 goto success;
2245
2246 if (ehdr->e_shstrndx == shindex)
2247 {
2248 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2249 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2250 goto success;
2251 }
2252
2253 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2254 {
2255 symtab_strtab:
2256 elf_tdata (abfd)->strtab_hdr = *hdr;
2257 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2258 goto success;
2259 }
2260
2261 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2262 {
2263 dynsymtab_strtab:
2264 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2265 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2266 elf_elfsections (abfd)[shindex] = hdr;
2267 /* We also treat this as a regular section, so that objcopy
2268 can handle it. */
2269 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2270 shindex);
2271 goto success;
2272 }
2273
2274 /* If the string table isn't one of the above, then treat it as a
2275 regular section. We need to scan all the headers to be sure,
2276 just in case this strtab section appeared before the above. */
2277 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2278 {
2279 unsigned int i, num_sec;
2280
2281 num_sec = elf_numsections (abfd);
2282 for (i = 1; i < num_sec; i++)
2283 {
2284 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2285 if (hdr2->sh_link == shindex)
2286 {
2287 /* Prevent endless recursion on broken objects. */
2288 if (i == shindex)
2289 goto fail;
2290 if (! bfd_section_from_shdr (abfd, i))
2291 goto fail;
2292 if (elf_onesymtab (abfd) == i)
2293 goto symtab_strtab;
2294 if (elf_dynsymtab (abfd) == i)
2295 goto dynsymtab_strtab;
2296 }
2297 }
2298 }
2299 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2300 goto success;
2301
2302 case SHT_REL:
2303 case SHT_RELA:
2304 /* *These* do a lot of work -- but build no sections! */
2305 {
2306 asection *target_sect;
2307 Elf_Internal_Shdr *hdr2, **p_hdr;
2308 unsigned int num_sec = elf_numsections (abfd);
2309 struct bfd_elf_section_data *esdt;
2310
2311 if (hdr->sh_entsize
2312 != (bfd_size_type) (hdr->sh_type == SHT_REL
2313 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2314 goto fail;
2315
2316 /* Check for a bogus link to avoid crashing. */
2317 if (hdr->sh_link >= num_sec)
2318 {
2319 _bfd_error_handler
2320 /* xgettext:c-format */
2321 (_("%B: invalid link %u for reloc section %s (index %u)"),
2322 abfd, hdr->sh_link, name, shindex);
2323 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2324 shindex);
2325 goto success;
2326 }
2327
2328 /* For some incomprehensible reason Oracle distributes
2329 libraries for Solaris in which some of the objects have
2330 bogus sh_link fields. It would be nice if we could just
2331 reject them, but, unfortunately, some people need to use
2332 them. We scan through the section headers; if we find only
2333 one suitable symbol table, we clobber the sh_link to point
2334 to it. I hope this doesn't break anything.
2335
2336 Don't do it on executable nor shared library. */
2337 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2338 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2339 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2340 {
2341 unsigned int scan;
2342 int found;
2343
2344 found = 0;
2345 for (scan = 1; scan < num_sec; scan++)
2346 {
2347 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2348 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2349 {
2350 if (found != 0)
2351 {
2352 found = 0;
2353 break;
2354 }
2355 found = scan;
2356 }
2357 }
2358 if (found != 0)
2359 hdr->sh_link = found;
2360 }
2361
2362 /* Get the symbol table. */
2363 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2364 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2365 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2366 goto fail;
2367
2368 /* If this reloc section does not use the main symbol table we
2369 don't treat it as a reloc section. BFD can't adequately
2370 represent such a section, so at least for now, we don't
2371 try. We just present it as a normal section. We also
2372 can't use it as a reloc section if it points to the null
2373 section, an invalid section, another reloc section, or its
2374 sh_link points to the null section. */
2375 if (hdr->sh_link != elf_onesymtab (abfd)
2376 || hdr->sh_link == SHN_UNDEF
2377 || hdr->sh_info == SHN_UNDEF
2378 || hdr->sh_info >= num_sec
2379 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2380 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2381 {
2382 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2383 shindex);
2384 goto success;
2385 }
2386
2387 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2388 goto fail;
2389
2390 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2391 if (target_sect == NULL)
2392 goto fail;
2393
2394 esdt = elf_section_data (target_sect);
2395 if (hdr->sh_type == SHT_RELA)
2396 p_hdr = &esdt->rela.hdr;
2397 else
2398 p_hdr = &esdt->rel.hdr;
2399
2400 /* PR 17512: file: 0b4f81b7. */
2401 if (*p_hdr != NULL)
2402 goto fail;
2403 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2404 if (hdr2 == NULL)
2405 goto fail;
2406 *hdr2 = *hdr;
2407 *p_hdr = hdr2;
2408 elf_elfsections (abfd)[shindex] = hdr2;
2409 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2410 * bed->s->int_rels_per_ext_rel);
2411 target_sect->flags |= SEC_RELOC;
2412 target_sect->relocation = NULL;
2413 target_sect->rel_filepos = hdr->sh_offset;
2414 /* In the section to which the relocations apply, mark whether
2415 its relocations are of the REL or RELA variety. */
2416 if (hdr->sh_size != 0)
2417 {
2418 if (hdr->sh_type == SHT_RELA)
2419 target_sect->use_rela_p = 1;
2420 }
2421 abfd->flags |= HAS_RELOC;
2422 goto success;
2423 }
2424
2425 case SHT_GNU_verdef:
2426 elf_dynverdef (abfd) = shindex;
2427 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2428 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2429 goto success;
2430
2431 case SHT_GNU_versym:
2432 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2433 goto fail;
2434
2435 elf_dynversym (abfd) = shindex;
2436 elf_tdata (abfd)->dynversym_hdr = *hdr;
2437 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2438 goto success;
2439
2440 case SHT_GNU_verneed:
2441 elf_dynverref (abfd) = shindex;
2442 elf_tdata (abfd)->dynverref_hdr = *hdr;
2443 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2444 goto success;
2445
2446 case SHT_SHLIB:
2447 goto success;
2448
2449 case SHT_GROUP:
2450 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2451 goto fail;
2452
2453 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2454 goto fail;
2455
2456 goto success;
2457
2458 default:
2459 /* Possibly an attributes section. */
2460 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2461 || hdr->sh_type == bed->obj_attrs_section_type)
2462 {
2463 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2464 goto fail;
2465 _bfd_elf_parse_attributes (abfd, hdr);
2466 goto success;
2467 }
2468
2469 /* Check for any processor-specific section types. */
2470 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2471 goto success;
2472
2473 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2474 {
2475 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2476 /* FIXME: How to properly handle allocated section reserved
2477 for applications? */
2478 _bfd_error_handler
2479 /* xgettext:c-format */
2480 (_("%B: unknown type [%#x] section `%s'"),
2481 abfd, hdr->sh_type, name);
2482 else
2483 {
2484 /* Allow sections reserved for applications. */
2485 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2486 shindex);
2487 goto success;
2488 }
2489 }
2490 else if (hdr->sh_type >= SHT_LOPROC
2491 && hdr->sh_type <= SHT_HIPROC)
2492 /* FIXME: We should handle this section. */
2493 _bfd_error_handler
2494 /* xgettext:c-format */
2495 (_("%B: unknown type [%#x] section `%s'"),
2496 abfd, hdr->sh_type, name);
2497 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2498 {
2499 /* Unrecognised OS-specific sections. */
2500 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2501 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2502 required to correctly process the section and the file should
2503 be rejected with an error message. */
2504 _bfd_error_handler
2505 /* xgettext:c-format */
2506 (_("%B: unknown type [%#x] section `%s'"),
2507 abfd, hdr->sh_type, name);
2508 else
2509 {
2510 /* Otherwise it should be processed. */
2511 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2512 goto success;
2513 }
2514 }
2515 else
2516 /* FIXME: We should handle this section. */
2517 _bfd_error_handler
2518 /* xgettext:c-format */
2519 (_("%B: unknown type [%#x] section `%s'"),
2520 abfd, hdr->sh_type, name);
2521
2522 goto fail;
2523 }
2524
2525 fail:
2526 ret = FALSE;
2527 success:
2528 if (sections_being_created && sections_being_created_abfd == abfd)
2529 sections_being_created [shindex] = FALSE;
2530 if (-- nesting == 0)
2531 {
2532 sections_being_created = NULL;
2533 sections_being_created_abfd = abfd;
2534 }
2535 return ret;
2536 }
2537
2538 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2539
2540 Elf_Internal_Sym *
2541 bfd_sym_from_r_symndx (struct sym_cache *cache,
2542 bfd *abfd,
2543 unsigned long r_symndx)
2544 {
2545 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2546
2547 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2548 {
2549 Elf_Internal_Shdr *symtab_hdr;
2550 unsigned char esym[sizeof (Elf64_External_Sym)];
2551 Elf_External_Sym_Shndx eshndx;
2552
2553 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2554 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2555 &cache->sym[ent], esym, &eshndx) == NULL)
2556 return NULL;
2557
2558 if (cache->abfd != abfd)
2559 {
2560 memset (cache->indx, -1, sizeof (cache->indx));
2561 cache->abfd = abfd;
2562 }
2563 cache->indx[ent] = r_symndx;
2564 }
2565
2566 return &cache->sym[ent];
2567 }
2568
2569 /* Given an ELF section number, retrieve the corresponding BFD
2570 section. */
2571
2572 asection *
2573 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2574 {
2575 if (sec_index >= elf_numsections (abfd))
2576 return NULL;
2577 return elf_elfsections (abfd)[sec_index]->bfd_section;
2578 }
2579
2580 static const struct bfd_elf_special_section special_sections_b[] =
2581 {
2582 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2583 { NULL, 0, 0, 0, 0 }
2584 };
2585
2586 static const struct bfd_elf_special_section special_sections_c[] =
2587 {
2588 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2589 { NULL, 0, 0, 0, 0 }
2590 };
2591
2592 static const struct bfd_elf_special_section special_sections_d[] =
2593 {
2594 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2595 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2596 /* There are more DWARF sections than these, but they needn't be added here
2597 unless you have to cope with broken compilers that don't emit section
2598 attributes or you want to help the user writing assembler. */
2599 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2600 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2601 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2602 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2603 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2604 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2605 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2606 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2607 { NULL, 0, 0, 0, 0 }
2608 };
2609
2610 static const struct bfd_elf_special_section special_sections_f[] =
2611 {
2612 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2613 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2614 { NULL, 0 , 0, 0, 0 }
2615 };
2616
2617 static const struct bfd_elf_special_section special_sections_g[] =
2618 {
2619 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2620 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2621 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2622 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2623 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2624 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2625 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2626 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2627 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2628 { NULL, 0, 0, 0, 0 }
2629 };
2630
2631 static const struct bfd_elf_special_section special_sections_h[] =
2632 {
2633 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2634 { NULL, 0, 0, 0, 0 }
2635 };
2636
2637 static const struct bfd_elf_special_section special_sections_i[] =
2638 {
2639 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2640 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2641 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2642 { NULL, 0, 0, 0, 0 }
2643 };
2644
2645 static const struct bfd_elf_special_section special_sections_l[] =
2646 {
2647 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2648 { NULL, 0, 0, 0, 0 }
2649 };
2650
2651 static const struct bfd_elf_special_section special_sections_n[] =
2652 {
2653 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2654 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2655 { NULL, 0, 0, 0, 0 }
2656 };
2657
2658 static const struct bfd_elf_special_section special_sections_p[] =
2659 {
2660 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2661 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2662 { NULL, 0, 0, 0, 0 }
2663 };
2664
2665 static const struct bfd_elf_special_section special_sections_r[] =
2666 {
2667 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2668 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2669 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2670 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2671 { NULL, 0, 0, 0, 0 }
2672 };
2673
2674 static const struct bfd_elf_special_section special_sections_s[] =
2675 {
2676 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2677 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2678 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2679 /* See struct bfd_elf_special_section declaration for the semantics of
2680 this special case where .prefix_length != strlen (.prefix). */
2681 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2682 { NULL, 0, 0, 0, 0 }
2683 };
2684
2685 static const struct bfd_elf_special_section special_sections_t[] =
2686 {
2687 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2688 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2689 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2690 { NULL, 0, 0, 0, 0 }
2691 };
2692
2693 static const struct bfd_elf_special_section special_sections_z[] =
2694 {
2695 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2696 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2697 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2698 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2699 { NULL, 0, 0, 0, 0 }
2700 };
2701
2702 static const struct bfd_elf_special_section * const special_sections[] =
2703 {
2704 special_sections_b, /* 'b' */
2705 special_sections_c, /* 'c' */
2706 special_sections_d, /* 'd' */
2707 NULL, /* 'e' */
2708 special_sections_f, /* 'f' */
2709 special_sections_g, /* 'g' */
2710 special_sections_h, /* 'h' */
2711 special_sections_i, /* 'i' */
2712 NULL, /* 'j' */
2713 NULL, /* 'k' */
2714 special_sections_l, /* 'l' */
2715 NULL, /* 'm' */
2716 special_sections_n, /* 'n' */
2717 NULL, /* 'o' */
2718 special_sections_p, /* 'p' */
2719 NULL, /* 'q' */
2720 special_sections_r, /* 'r' */
2721 special_sections_s, /* 's' */
2722 special_sections_t, /* 't' */
2723 NULL, /* 'u' */
2724 NULL, /* 'v' */
2725 NULL, /* 'w' */
2726 NULL, /* 'x' */
2727 NULL, /* 'y' */
2728 special_sections_z /* 'z' */
2729 };
2730
2731 const struct bfd_elf_special_section *
2732 _bfd_elf_get_special_section (const char *name,
2733 const struct bfd_elf_special_section *spec,
2734 unsigned int rela)
2735 {
2736 int i;
2737 int len;
2738
2739 len = strlen (name);
2740
2741 for (i = 0; spec[i].prefix != NULL; i++)
2742 {
2743 int suffix_len;
2744 int prefix_len = spec[i].prefix_length;
2745
2746 if (len < prefix_len)
2747 continue;
2748 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2749 continue;
2750
2751 suffix_len = spec[i].suffix_length;
2752 if (suffix_len <= 0)
2753 {
2754 if (name[prefix_len] != 0)
2755 {
2756 if (suffix_len == 0)
2757 continue;
2758 if (name[prefix_len] != '.'
2759 && (suffix_len == -2
2760 || (rela && spec[i].type == SHT_REL)))
2761 continue;
2762 }
2763 }
2764 else
2765 {
2766 if (len < prefix_len + suffix_len)
2767 continue;
2768 if (memcmp (name + len - suffix_len,
2769 spec[i].prefix + prefix_len,
2770 suffix_len) != 0)
2771 continue;
2772 }
2773 return &spec[i];
2774 }
2775
2776 return NULL;
2777 }
2778
2779 const struct bfd_elf_special_section *
2780 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2781 {
2782 int i;
2783 const struct bfd_elf_special_section *spec;
2784 const struct elf_backend_data *bed;
2785
2786 /* See if this is one of the special sections. */
2787 if (sec->name == NULL)
2788 return NULL;
2789
2790 bed = get_elf_backend_data (abfd);
2791 spec = bed->special_sections;
2792 if (spec)
2793 {
2794 spec = _bfd_elf_get_special_section (sec->name,
2795 bed->special_sections,
2796 sec->use_rela_p);
2797 if (spec != NULL)
2798 return spec;
2799 }
2800
2801 if (sec->name[0] != '.')
2802 return NULL;
2803
2804 i = sec->name[1] - 'b';
2805 if (i < 0 || i > 'z' - 'b')
2806 return NULL;
2807
2808 spec = special_sections[i];
2809
2810 if (spec == NULL)
2811 return NULL;
2812
2813 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2814 }
2815
2816 bfd_boolean
2817 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2818 {
2819 struct bfd_elf_section_data *sdata;
2820 const struct elf_backend_data *bed;
2821 const struct bfd_elf_special_section *ssect;
2822
2823 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2824 if (sdata == NULL)
2825 {
2826 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2827 sizeof (*sdata));
2828 if (sdata == NULL)
2829 return FALSE;
2830 sec->used_by_bfd = sdata;
2831 }
2832
2833 /* Indicate whether or not this section should use RELA relocations. */
2834 bed = get_elf_backend_data (abfd);
2835 sec->use_rela_p = bed->default_use_rela_p;
2836
2837 /* When we read a file, we don't need to set ELF section type and
2838 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2839 anyway. We will set ELF section type and flags for all linker
2840 created sections. If user specifies BFD section flags, we will
2841 set ELF section type and flags based on BFD section flags in
2842 elf_fake_sections. Special handling for .init_array/.fini_array
2843 output sections since they may contain .ctors/.dtors input
2844 sections. We don't want _bfd_elf_init_private_section_data to
2845 copy ELF section type from .ctors/.dtors input sections. */
2846 if (abfd->direction != read_direction
2847 || (sec->flags & SEC_LINKER_CREATED) != 0)
2848 {
2849 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2850 if (ssect != NULL
2851 && (!sec->flags
2852 || (sec->flags & SEC_LINKER_CREATED) != 0
2853 || ssect->type == SHT_INIT_ARRAY
2854 || ssect->type == SHT_FINI_ARRAY))
2855 {
2856 elf_section_type (sec) = ssect->type;
2857 elf_section_flags (sec) = ssect->attr;
2858 }
2859 }
2860
2861 return _bfd_generic_new_section_hook (abfd, sec);
2862 }
2863
2864 /* Create a new bfd section from an ELF program header.
2865
2866 Since program segments have no names, we generate a synthetic name
2867 of the form segment<NUM>, where NUM is generally the index in the
2868 program header table. For segments that are split (see below) we
2869 generate the names segment<NUM>a and segment<NUM>b.
2870
2871 Note that some program segments may have a file size that is different than
2872 (less than) the memory size. All this means is that at execution the
2873 system must allocate the amount of memory specified by the memory size,
2874 but only initialize it with the first "file size" bytes read from the
2875 file. This would occur for example, with program segments consisting
2876 of combined data+bss.
2877
2878 To handle the above situation, this routine generates TWO bfd sections
2879 for the single program segment. The first has the length specified by
2880 the file size of the segment, and the second has the length specified
2881 by the difference between the two sizes. In effect, the segment is split
2882 into its initialized and uninitialized parts.
2883
2884 */
2885
2886 bfd_boolean
2887 _bfd_elf_make_section_from_phdr (bfd *abfd,
2888 Elf_Internal_Phdr *hdr,
2889 int hdr_index,
2890 const char *type_name)
2891 {
2892 asection *newsect;
2893 char *name;
2894 char namebuf[64];
2895 size_t len;
2896 int split;
2897
2898 split = ((hdr->p_memsz > 0)
2899 && (hdr->p_filesz > 0)
2900 && (hdr->p_memsz > hdr->p_filesz));
2901
2902 if (hdr->p_filesz > 0)
2903 {
2904 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2905 len = strlen (namebuf) + 1;
2906 name = (char *) bfd_alloc (abfd, len);
2907 if (!name)
2908 return FALSE;
2909 memcpy (name, namebuf, len);
2910 newsect = bfd_make_section (abfd, name);
2911 if (newsect == NULL)
2912 return FALSE;
2913 newsect->vma = hdr->p_vaddr;
2914 newsect->lma = hdr->p_paddr;
2915 newsect->size = hdr->p_filesz;
2916 newsect->filepos = hdr->p_offset;
2917 newsect->flags |= SEC_HAS_CONTENTS;
2918 newsect->alignment_power = bfd_log2 (hdr->p_align);
2919 if (hdr->p_type == PT_LOAD)
2920 {
2921 newsect->flags |= SEC_ALLOC;
2922 newsect->flags |= SEC_LOAD;
2923 if (hdr->p_flags & PF_X)
2924 {
2925 /* FIXME: all we known is that it has execute PERMISSION,
2926 may be data. */
2927 newsect->flags |= SEC_CODE;
2928 }
2929 }
2930 if (!(hdr->p_flags & PF_W))
2931 {
2932 newsect->flags |= SEC_READONLY;
2933 }
2934 }
2935
2936 if (hdr->p_memsz > hdr->p_filesz)
2937 {
2938 bfd_vma align;
2939
2940 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2941 len = strlen (namebuf) + 1;
2942 name = (char *) bfd_alloc (abfd, len);
2943 if (!name)
2944 return FALSE;
2945 memcpy (name, namebuf, len);
2946 newsect = bfd_make_section (abfd, name);
2947 if (newsect == NULL)
2948 return FALSE;
2949 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2950 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2951 newsect->size = hdr->p_memsz - hdr->p_filesz;
2952 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2953 align = newsect->vma & -newsect->vma;
2954 if (align == 0 || align > hdr->p_align)
2955 align = hdr->p_align;
2956 newsect->alignment_power = bfd_log2 (align);
2957 if (hdr->p_type == PT_LOAD)
2958 {
2959 /* Hack for gdb. Segments that have not been modified do
2960 not have their contents written to a core file, on the
2961 assumption that a debugger can find the contents in the
2962 executable. We flag this case by setting the fake
2963 section size to zero. Note that "real" bss sections will
2964 always have their contents dumped to the core file. */
2965 if (bfd_get_format (abfd) == bfd_core)
2966 newsect->size = 0;
2967 newsect->flags |= SEC_ALLOC;
2968 if (hdr->p_flags & PF_X)
2969 newsect->flags |= SEC_CODE;
2970 }
2971 if (!(hdr->p_flags & PF_W))
2972 newsect->flags |= SEC_READONLY;
2973 }
2974
2975 return TRUE;
2976 }
2977
2978 bfd_boolean
2979 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2980 {
2981 const struct elf_backend_data *bed;
2982
2983 switch (hdr->p_type)
2984 {
2985 case PT_NULL:
2986 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2987
2988 case PT_LOAD:
2989 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2990
2991 case PT_DYNAMIC:
2992 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2993
2994 case PT_INTERP:
2995 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2996
2997 case PT_NOTE:
2998 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2999 return FALSE;
3000 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3001 hdr->p_align))
3002 return FALSE;
3003 return TRUE;
3004
3005 case PT_SHLIB:
3006 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3007
3008 case PT_PHDR:
3009 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3010
3011 case PT_GNU_EH_FRAME:
3012 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3013 "eh_frame_hdr");
3014
3015 case PT_GNU_STACK:
3016 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3017
3018 case PT_GNU_RELRO:
3019 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3020
3021 default:
3022 /* Check for any processor-specific program segment types. */
3023 bed = get_elf_backend_data (abfd);
3024 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3025 }
3026 }
3027
3028 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3029 REL or RELA. */
3030
3031 Elf_Internal_Shdr *
3032 _bfd_elf_single_rel_hdr (asection *sec)
3033 {
3034 if (elf_section_data (sec)->rel.hdr)
3035 {
3036 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3037 return elf_section_data (sec)->rel.hdr;
3038 }
3039 else
3040 return elf_section_data (sec)->rela.hdr;
3041 }
3042
3043 static bfd_boolean
3044 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3045 Elf_Internal_Shdr *rel_hdr,
3046 const char *sec_name,
3047 bfd_boolean use_rela_p)
3048 {
3049 char *name = (char *) bfd_alloc (abfd,
3050 sizeof ".rela" + strlen (sec_name));
3051 if (name == NULL)
3052 return FALSE;
3053
3054 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3055 rel_hdr->sh_name =
3056 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3057 FALSE);
3058 if (rel_hdr->sh_name == (unsigned int) -1)
3059 return FALSE;
3060
3061 return TRUE;
3062 }
3063
3064 /* Allocate and initialize a section-header for a new reloc section,
3065 containing relocations against ASECT. It is stored in RELDATA. If
3066 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3067 relocations. */
3068
3069 static bfd_boolean
3070 _bfd_elf_init_reloc_shdr (bfd *abfd,
3071 struct bfd_elf_section_reloc_data *reldata,
3072 const char *sec_name,
3073 bfd_boolean use_rela_p,
3074 bfd_boolean delay_st_name_p)
3075 {
3076 Elf_Internal_Shdr *rel_hdr;
3077 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3078
3079 BFD_ASSERT (reldata->hdr == NULL);
3080 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3081 reldata->hdr = rel_hdr;
3082
3083 if (delay_st_name_p)
3084 rel_hdr->sh_name = (unsigned int) -1;
3085 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3086 use_rela_p))
3087 return FALSE;
3088 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3089 rel_hdr->sh_entsize = (use_rela_p
3090 ? bed->s->sizeof_rela
3091 : bed->s->sizeof_rel);
3092 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3093 rel_hdr->sh_flags = 0;
3094 rel_hdr->sh_addr = 0;
3095 rel_hdr->sh_size = 0;
3096 rel_hdr->sh_offset = 0;
3097
3098 return TRUE;
3099 }
3100
3101 /* Return the default section type based on the passed in section flags. */
3102
3103 int
3104 bfd_elf_get_default_section_type (flagword flags)
3105 {
3106 if ((flags & SEC_ALLOC) != 0
3107 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3108 return SHT_NOBITS;
3109 return SHT_PROGBITS;
3110 }
3111
3112 struct fake_section_arg
3113 {
3114 struct bfd_link_info *link_info;
3115 bfd_boolean failed;
3116 };
3117
3118 /* Set up an ELF internal section header for a section. */
3119
3120 static void
3121 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3122 {
3123 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3124 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3125 struct bfd_elf_section_data *esd = elf_section_data (asect);
3126 Elf_Internal_Shdr *this_hdr;
3127 unsigned int sh_type;
3128 const char *name = asect->name;
3129 bfd_boolean delay_st_name_p = FALSE;
3130
3131 if (arg->failed)
3132 {
3133 /* We already failed; just get out of the bfd_map_over_sections
3134 loop. */
3135 return;
3136 }
3137
3138 this_hdr = &esd->this_hdr;
3139
3140 if (arg->link_info)
3141 {
3142 /* ld: compress DWARF debug sections with names: .debug_*. */
3143 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3144 && (asect->flags & SEC_DEBUGGING)
3145 && name[1] == 'd'
3146 && name[6] == '_')
3147 {
3148 /* Set SEC_ELF_COMPRESS to indicate this section should be
3149 compressed. */
3150 asect->flags |= SEC_ELF_COMPRESS;
3151
3152 /* If this section will be compressed, delay adding section
3153 name to section name section after it is compressed in
3154 _bfd_elf_assign_file_positions_for_non_load. */
3155 delay_st_name_p = TRUE;
3156 }
3157 }
3158 else if ((asect->flags & SEC_ELF_RENAME))
3159 {
3160 /* objcopy: rename output DWARF debug section. */
3161 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3162 {
3163 /* When we decompress or compress with SHF_COMPRESSED,
3164 convert section name from .zdebug_* to .debug_* if
3165 needed. */
3166 if (name[1] == 'z')
3167 {
3168 char *new_name = convert_zdebug_to_debug (abfd, name);
3169 if (new_name == NULL)
3170 {
3171 arg->failed = TRUE;
3172 return;
3173 }
3174 name = new_name;
3175 }
3176 }
3177 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3178 {
3179 /* PR binutils/18087: Compression does not always make a
3180 section smaller. So only rename the section when
3181 compression has actually taken place. If input section
3182 name is .zdebug_*, we should never compress it again. */
3183 char *new_name = convert_debug_to_zdebug (abfd, name);
3184 if (new_name == NULL)
3185 {
3186 arg->failed = TRUE;
3187 return;
3188 }
3189 BFD_ASSERT (name[1] != 'z');
3190 name = new_name;
3191 }
3192 }
3193
3194 if (delay_st_name_p)
3195 this_hdr->sh_name = (unsigned int) -1;
3196 else
3197 {
3198 this_hdr->sh_name
3199 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3200 name, FALSE);
3201 if (this_hdr->sh_name == (unsigned int) -1)
3202 {
3203 arg->failed = TRUE;
3204 return;
3205 }
3206 }
3207
3208 /* Don't clear sh_flags. Assembler may set additional bits. */
3209
3210 if ((asect->flags & SEC_ALLOC) != 0
3211 || asect->user_set_vma)
3212 this_hdr->sh_addr = asect->vma;
3213 else
3214 this_hdr->sh_addr = 0;
3215
3216 this_hdr->sh_offset = 0;
3217 this_hdr->sh_size = asect->size;
3218 this_hdr->sh_link = 0;
3219 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3220 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3221 {
3222 _bfd_error_handler
3223 /* xgettext:c-format */
3224 (_("%B: error: Alignment power %d of section `%A' is too big"),
3225 abfd, asect->alignment_power, asect);
3226 arg->failed = TRUE;
3227 return;
3228 }
3229 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3230 /* The sh_entsize and sh_info fields may have been set already by
3231 copy_private_section_data. */
3232
3233 this_hdr->bfd_section = asect;
3234 this_hdr->contents = NULL;
3235
3236 /* If the section type is unspecified, we set it based on
3237 asect->flags. */
3238 if ((asect->flags & SEC_GROUP) != 0)
3239 sh_type = SHT_GROUP;
3240 else
3241 sh_type = bfd_elf_get_default_section_type (asect->flags);
3242
3243 if (this_hdr->sh_type == SHT_NULL)
3244 this_hdr->sh_type = sh_type;
3245 else if (this_hdr->sh_type == SHT_NOBITS
3246 && sh_type == SHT_PROGBITS
3247 && (asect->flags & SEC_ALLOC) != 0)
3248 {
3249 /* Warn if we are changing a NOBITS section to PROGBITS, but
3250 allow the link to proceed. This can happen when users link
3251 non-bss input sections to bss output sections, or emit data
3252 to a bss output section via a linker script. */
3253 _bfd_error_handler
3254 (_("warning: section `%A' type changed to PROGBITS"), asect);
3255 this_hdr->sh_type = sh_type;
3256 }
3257
3258 switch (this_hdr->sh_type)
3259 {
3260 default:
3261 break;
3262
3263 case SHT_STRTAB:
3264 case SHT_NOTE:
3265 case SHT_NOBITS:
3266 case SHT_PROGBITS:
3267 break;
3268
3269 case SHT_INIT_ARRAY:
3270 case SHT_FINI_ARRAY:
3271 case SHT_PREINIT_ARRAY:
3272 this_hdr->sh_entsize = bed->s->arch_size / 8;
3273 break;
3274
3275 case SHT_HASH:
3276 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3277 break;
3278
3279 case SHT_DYNSYM:
3280 this_hdr->sh_entsize = bed->s->sizeof_sym;
3281 break;
3282
3283 case SHT_DYNAMIC:
3284 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3285 break;
3286
3287 case SHT_RELA:
3288 if (get_elf_backend_data (abfd)->may_use_rela_p)
3289 this_hdr->sh_entsize = bed->s->sizeof_rela;
3290 break;
3291
3292 case SHT_REL:
3293 if (get_elf_backend_data (abfd)->may_use_rel_p)
3294 this_hdr->sh_entsize = bed->s->sizeof_rel;
3295 break;
3296
3297 case SHT_GNU_versym:
3298 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3299 break;
3300
3301 case SHT_GNU_verdef:
3302 this_hdr->sh_entsize = 0;
3303 /* objcopy or strip will copy over sh_info, but may not set
3304 cverdefs. The linker will set cverdefs, but sh_info will be
3305 zero. */
3306 if (this_hdr->sh_info == 0)
3307 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3308 else
3309 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3310 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3311 break;
3312
3313 case SHT_GNU_verneed:
3314 this_hdr->sh_entsize = 0;
3315 /* objcopy or strip will copy over sh_info, but may not set
3316 cverrefs. The linker will set cverrefs, but sh_info will be
3317 zero. */
3318 if (this_hdr->sh_info == 0)
3319 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3320 else
3321 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3322 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3323 break;
3324
3325 case SHT_GROUP:
3326 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3327 break;
3328
3329 case SHT_GNU_HASH:
3330 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3331 break;
3332 }
3333
3334 if ((asect->flags & SEC_ALLOC) != 0)
3335 this_hdr->sh_flags |= SHF_ALLOC;
3336 if ((asect->flags & SEC_READONLY) == 0)
3337 this_hdr->sh_flags |= SHF_WRITE;
3338 if ((asect->flags & SEC_CODE) != 0)
3339 this_hdr->sh_flags |= SHF_EXECINSTR;
3340 if ((asect->flags & SEC_MERGE) != 0)
3341 {
3342 this_hdr->sh_flags |= SHF_MERGE;
3343 this_hdr->sh_entsize = asect->entsize;
3344 }
3345 if ((asect->flags & SEC_STRINGS) != 0)
3346 this_hdr->sh_flags |= SHF_STRINGS;
3347 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3348 this_hdr->sh_flags |= SHF_GROUP;
3349 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3350 {
3351 this_hdr->sh_flags |= SHF_TLS;
3352 if (asect->size == 0
3353 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3354 {
3355 struct bfd_link_order *o = asect->map_tail.link_order;
3356
3357 this_hdr->sh_size = 0;
3358 if (o != NULL)
3359 {
3360 this_hdr->sh_size = o->offset + o->size;
3361 if (this_hdr->sh_size != 0)
3362 this_hdr->sh_type = SHT_NOBITS;
3363 }
3364 }
3365 }
3366 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3367 this_hdr->sh_flags |= SHF_EXCLUDE;
3368
3369 /* If the section has relocs, set up a section header for the
3370 SHT_REL[A] section. If two relocation sections are required for
3371 this section, it is up to the processor-specific back-end to
3372 create the other. */
3373 if ((asect->flags & SEC_RELOC) != 0)
3374 {
3375 /* When doing a relocatable link, create both REL and RELA sections if
3376 needed. */
3377 if (arg->link_info
3378 /* Do the normal setup if we wouldn't create any sections here. */
3379 && esd->rel.count + esd->rela.count > 0
3380 && (bfd_link_relocatable (arg->link_info)
3381 || arg->link_info->emitrelocations))
3382 {
3383 if (esd->rel.count && esd->rel.hdr == NULL
3384 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3385 FALSE, delay_st_name_p))
3386 {
3387 arg->failed = TRUE;
3388 return;
3389 }
3390 if (esd->rela.count && esd->rela.hdr == NULL
3391 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3392 TRUE, delay_st_name_p))
3393 {
3394 arg->failed = TRUE;
3395 return;
3396 }
3397 }
3398 else if (!_bfd_elf_init_reloc_shdr (abfd,
3399 (asect->use_rela_p
3400 ? &esd->rela : &esd->rel),
3401 name,
3402 asect->use_rela_p,
3403 delay_st_name_p))
3404 {
3405 arg->failed = TRUE;
3406 return;
3407 }
3408 }
3409
3410 /* Check for processor-specific section types. */
3411 sh_type = this_hdr->sh_type;
3412 if (bed->elf_backend_fake_sections
3413 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3414 {
3415 arg->failed = TRUE;
3416 return;
3417 }
3418
3419 if (sh_type == SHT_NOBITS && asect->size != 0)
3420 {
3421 /* Don't change the header type from NOBITS if we are being
3422 called for objcopy --only-keep-debug. */
3423 this_hdr->sh_type = sh_type;
3424 }
3425 }
3426
3427 /* Fill in the contents of a SHT_GROUP section. Called from
3428 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3429 when ELF targets use the generic linker, ld. Called for ld -r
3430 from bfd_elf_final_link. */
3431
3432 void
3433 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3434 {
3435 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3436 asection *elt, *first;
3437 unsigned char *loc;
3438 bfd_boolean gas;
3439
3440 /* Ignore linker created group section. See elfNN_ia64_object_p in
3441 elfxx-ia64.c. */
3442 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3443 || *failedptr)
3444 return;
3445
3446 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3447 {
3448 unsigned long symindx = 0;
3449
3450 /* elf_group_id will have been set up by objcopy and the
3451 generic linker. */
3452 if (elf_group_id (sec) != NULL)
3453 symindx = elf_group_id (sec)->udata.i;
3454
3455 if (symindx == 0)
3456 {
3457 /* If called from the assembler, swap_out_syms will have set up
3458 elf_section_syms. */
3459 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3460 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3461 }
3462 elf_section_data (sec)->this_hdr.sh_info = symindx;
3463 }
3464 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3465 {
3466 /* The ELF backend linker sets sh_info to -2 when the group
3467 signature symbol is global, and thus the index can't be
3468 set until all local symbols are output. */
3469 asection *igroup;
3470 struct bfd_elf_section_data *sec_data;
3471 unsigned long symndx;
3472 unsigned long extsymoff;
3473 struct elf_link_hash_entry *h;
3474
3475 /* The point of this little dance to the first SHF_GROUP section
3476 then back to the SHT_GROUP section is that this gets us to
3477 the SHT_GROUP in the input object. */
3478 igroup = elf_sec_group (elf_next_in_group (sec));
3479 sec_data = elf_section_data (igroup);
3480 symndx = sec_data->this_hdr.sh_info;
3481 extsymoff = 0;
3482 if (!elf_bad_symtab (igroup->owner))
3483 {
3484 Elf_Internal_Shdr *symtab_hdr;
3485
3486 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3487 extsymoff = symtab_hdr->sh_info;
3488 }
3489 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3490 while (h->root.type == bfd_link_hash_indirect
3491 || h->root.type == bfd_link_hash_warning)
3492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3493
3494 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3495 }
3496
3497 /* The contents won't be allocated for "ld -r" or objcopy. */
3498 gas = TRUE;
3499 if (sec->contents == NULL)
3500 {
3501 gas = FALSE;
3502 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3503
3504 /* Arrange for the section to be written out. */
3505 elf_section_data (sec)->this_hdr.contents = sec->contents;
3506 if (sec->contents == NULL)
3507 {
3508 *failedptr = TRUE;
3509 return;
3510 }
3511 }
3512
3513 loc = sec->contents + sec->size;
3514
3515 /* Get the pointer to the first section in the group that gas
3516 squirreled away here. objcopy arranges for this to be set to the
3517 start of the input section group. */
3518 first = elt = elf_next_in_group (sec);
3519
3520 /* First element is a flag word. Rest of section is elf section
3521 indices for all the sections of the group. Write them backwards
3522 just to keep the group in the same order as given in .section
3523 directives, not that it matters. */
3524 while (elt != NULL)
3525 {
3526 asection *s;
3527
3528 s = elt;
3529 if (!gas)
3530 s = s->output_section;
3531 if (s != NULL
3532 && !bfd_is_abs_section (s))
3533 {
3534 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3535 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3536
3537 if (elf_sec->rel.hdr != NULL
3538 && (gas
3539 || (input_elf_sec->rel.hdr != NULL
3540 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3541 {
3542 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3543 loc -= 4;
3544 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3545 }
3546 if (elf_sec->rela.hdr != NULL
3547 && (gas
3548 || (input_elf_sec->rela.hdr != NULL
3549 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3550 {
3551 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3552 loc -= 4;
3553 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3554 }
3555 loc -= 4;
3556 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3557 }
3558 elt = elf_next_in_group (elt);
3559 if (elt == first)
3560 break;
3561 }
3562
3563 loc -= 4;
3564 BFD_ASSERT (loc == sec->contents);
3565
3566 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3567 }
3568
3569 /* Given NAME, the name of a relocation section stripped of its
3570 .rel/.rela prefix, return the section in ABFD to which the
3571 relocations apply. */
3572
3573 asection *
3574 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3575 {
3576 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3577 section likely apply to .got.plt or .got section. */
3578 if (get_elf_backend_data (abfd)->want_got_plt
3579 && strcmp (name, ".plt") == 0)
3580 {
3581 asection *sec;
3582
3583 name = ".got.plt";
3584 sec = bfd_get_section_by_name (abfd, name);
3585 if (sec != NULL)
3586 return sec;
3587 name = ".got";
3588 }
3589
3590 return bfd_get_section_by_name (abfd, name);
3591 }
3592
3593 /* Return the section to which RELOC_SEC applies. */
3594
3595 static asection *
3596 elf_get_reloc_section (asection *reloc_sec)
3597 {
3598 const char *name;
3599 unsigned int type;
3600 bfd *abfd;
3601 const struct elf_backend_data *bed;
3602
3603 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3604 if (type != SHT_REL && type != SHT_RELA)
3605 return NULL;
3606
3607 /* We look up the section the relocs apply to by name. */
3608 name = reloc_sec->name;
3609 if (strncmp (name, ".rel", 4) != 0)
3610 return NULL;
3611 name += 4;
3612 if (type == SHT_RELA && *name++ != 'a')
3613 return NULL;
3614
3615 abfd = reloc_sec->owner;
3616 bed = get_elf_backend_data (abfd);
3617 return bed->get_reloc_section (abfd, name);
3618 }
3619
3620 /* Assign all ELF section numbers. The dummy first section is handled here
3621 too. The link/info pointers for the standard section types are filled
3622 in here too, while we're at it. */
3623
3624 static bfd_boolean
3625 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3626 {
3627 struct elf_obj_tdata *t = elf_tdata (abfd);
3628 asection *sec;
3629 unsigned int section_number;
3630 Elf_Internal_Shdr **i_shdrp;
3631 struct bfd_elf_section_data *d;
3632 bfd_boolean need_symtab;
3633
3634 section_number = 1;
3635
3636 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3637
3638 /* SHT_GROUP sections are in relocatable files only. */
3639 if (link_info == NULL || !link_info->resolve_section_groups)
3640 {
3641 size_t reloc_count = 0;
3642
3643 /* Put SHT_GROUP sections first. */
3644 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3645 {
3646 d = elf_section_data (sec);
3647
3648 if (d->this_hdr.sh_type == SHT_GROUP)
3649 {
3650 if (sec->flags & SEC_LINKER_CREATED)
3651 {
3652 /* Remove the linker created SHT_GROUP sections. */
3653 bfd_section_list_remove (abfd, sec);
3654 abfd->section_count--;
3655 }
3656 else
3657 d->this_idx = section_number++;
3658 }
3659
3660 /* Count relocations. */
3661 reloc_count += sec->reloc_count;
3662 }
3663
3664 /* Clear HAS_RELOC if there are no relocations. */
3665 if (reloc_count == 0)
3666 abfd->flags &= ~HAS_RELOC;
3667 }
3668
3669 for (sec = abfd->sections; sec; sec = sec->next)
3670 {
3671 d = elf_section_data (sec);
3672
3673 if (d->this_hdr.sh_type != SHT_GROUP)
3674 d->this_idx = section_number++;
3675 if (d->this_hdr.sh_name != (unsigned int) -1)
3676 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3677 if (d->rel.hdr)
3678 {
3679 d->rel.idx = section_number++;
3680 if (d->rel.hdr->sh_name != (unsigned int) -1)
3681 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3682 }
3683 else
3684 d->rel.idx = 0;
3685
3686 if (d->rela.hdr)
3687 {
3688 d->rela.idx = section_number++;
3689 if (d->rela.hdr->sh_name != (unsigned int) -1)
3690 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3691 }
3692 else
3693 d->rela.idx = 0;
3694 }
3695
3696 need_symtab = (bfd_get_symcount (abfd) > 0
3697 || (link_info == NULL
3698 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3699 == HAS_RELOC)));
3700 if (need_symtab)
3701 {
3702 elf_onesymtab (abfd) = section_number++;
3703 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3704 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3705 {
3706 elf_section_list * entry;
3707
3708 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3709
3710 entry = bfd_zalloc (abfd, sizeof * entry);
3711 entry->ndx = section_number++;
3712 elf_symtab_shndx_list (abfd) = entry;
3713 entry->hdr.sh_name
3714 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3715 ".symtab_shndx", FALSE);
3716 if (entry->hdr.sh_name == (unsigned int) -1)
3717 return FALSE;
3718 }
3719 elf_strtab_sec (abfd) = section_number++;
3720 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3721 }
3722
3723 elf_shstrtab_sec (abfd) = section_number++;
3724 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3725 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3726
3727 if (section_number >= SHN_LORESERVE)
3728 {
3729 /* xgettext:c-format */
3730 _bfd_error_handler (_("%B: too many sections: %u"),
3731 abfd, section_number);
3732 return FALSE;
3733 }
3734
3735 elf_numsections (abfd) = section_number;
3736 elf_elfheader (abfd)->e_shnum = section_number;
3737
3738 /* Set up the list of section header pointers, in agreement with the
3739 indices. */
3740 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3741 sizeof (Elf_Internal_Shdr *));
3742 if (i_shdrp == NULL)
3743 return FALSE;
3744
3745 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3746 sizeof (Elf_Internal_Shdr));
3747 if (i_shdrp[0] == NULL)
3748 {
3749 bfd_release (abfd, i_shdrp);
3750 return FALSE;
3751 }
3752
3753 elf_elfsections (abfd) = i_shdrp;
3754
3755 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3756 if (need_symtab)
3757 {
3758 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3759 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3760 {
3761 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3762 BFD_ASSERT (entry != NULL);
3763 i_shdrp[entry->ndx] = & entry->hdr;
3764 entry->hdr.sh_link = elf_onesymtab (abfd);
3765 }
3766 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3767 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3768 }
3769
3770 for (sec = abfd->sections; sec; sec = sec->next)
3771 {
3772 asection *s;
3773
3774 d = elf_section_data (sec);
3775
3776 i_shdrp[d->this_idx] = &d->this_hdr;
3777 if (d->rel.idx != 0)
3778 i_shdrp[d->rel.idx] = d->rel.hdr;
3779 if (d->rela.idx != 0)
3780 i_shdrp[d->rela.idx] = d->rela.hdr;
3781
3782 /* Fill in the sh_link and sh_info fields while we're at it. */
3783
3784 /* sh_link of a reloc section is the section index of the symbol
3785 table. sh_info is the section index of the section to which
3786 the relocation entries apply. */
3787 if (d->rel.idx != 0)
3788 {
3789 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3790 d->rel.hdr->sh_info = d->this_idx;
3791 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3792 }
3793 if (d->rela.idx != 0)
3794 {
3795 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3796 d->rela.hdr->sh_info = d->this_idx;
3797 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3798 }
3799
3800 /* We need to set up sh_link for SHF_LINK_ORDER. */
3801 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3802 {
3803 s = elf_linked_to_section (sec);
3804 if (s)
3805 {
3806 /* elf_linked_to_section points to the input section. */
3807 if (link_info != NULL)
3808 {
3809 /* Check discarded linkonce section. */
3810 if (discarded_section (s))
3811 {
3812 asection *kept;
3813 _bfd_error_handler
3814 /* xgettext:c-format */
3815 (_("%B: sh_link of section `%A' points to"
3816 " discarded section `%A' of `%B'"),
3817 abfd, d->this_hdr.bfd_section,
3818 s, s->owner);
3819 /* Point to the kept section if it has the same
3820 size as the discarded one. */
3821 kept = _bfd_elf_check_kept_section (s, link_info);
3822 if (kept == NULL)
3823 {
3824 bfd_set_error (bfd_error_bad_value);
3825 return FALSE;
3826 }
3827 s = kept;
3828 }
3829
3830 s = s->output_section;
3831 BFD_ASSERT (s != NULL);
3832 }
3833 else
3834 {
3835 /* Handle objcopy. */
3836 if (s->output_section == NULL)
3837 {
3838 _bfd_error_handler
3839 /* xgettext:c-format */
3840 (_("%B: sh_link of section `%A' points to"
3841 " removed section `%A' of `%B'"),
3842 abfd, d->this_hdr.bfd_section, s, s->owner);
3843 bfd_set_error (bfd_error_bad_value);
3844 return FALSE;
3845 }
3846 s = s->output_section;
3847 }
3848 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3849 }
3850 else
3851 {
3852 /* PR 290:
3853 The Intel C compiler generates SHT_IA_64_UNWIND with
3854 SHF_LINK_ORDER. But it doesn't set the sh_link or
3855 sh_info fields. Hence we could get the situation
3856 where s is NULL. */
3857 const struct elf_backend_data *bed
3858 = get_elf_backend_data (abfd);
3859 if (bed->link_order_error_handler)
3860 bed->link_order_error_handler
3861 /* xgettext:c-format */
3862 (_("%B: warning: sh_link not set for section `%A'"),
3863 abfd, sec);
3864 }
3865 }
3866
3867 switch (d->this_hdr.sh_type)
3868 {
3869 case SHT_REL:
3870 case SHT_RELA:
3871 /* A reloc section which we are treating as a normal BFD
3872 section. sh_link is the section index of the symbol
3873 table. sh_info is the section index of the section to
3874 which the relocation entries apply. We assume that an
3875 allocated reloc section uses the dynamic symbol table.
3876 FIXME: How can we be sure? */
3877 s = bfd_get_section_by_name (abfd, ".dynsym");
3878 if (s != NULL)
3879 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3880
3881 s = elf_get_reloc_section (sec);
3882 if (s != NULL)
3883 {
3884 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3885 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3886 }
3887 break;
3888
3889 case SHT_STRTAB:
3890 /* We assume that a section named .stab*str is a stabs
3891 string section. We look for a section with the same name
3892 but without the trailing ``str'', and set its sh_link
3893 field to point to this section. */
3894 if (CONST_STRNEQ (sec->name, ".stab")
3895 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3896 {
3897 size_t len;
3898 char *alc;
3899
3900 len = strlen (sec->name);
3901 alc = (char *) bfd_malloc (len - 2);
3902 if (alc == NULL)
3903 return FALSE;
3904 memcpy (alc, sec->name, len - 3);
3905 alc[len - 3] = '\0';
3906 s = bfd_get_section_by_name (abfd, alc);
3907 free (alc);
3908 if (s != NULL)
3909 {
3910 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3911
3912 /* This is a .stab section. */
3913 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3914 elf_section_data (s)->this_hdr.sh_entsize
3915 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3916 }
3917 }
3918 break;
3919
3920 case SHT_DYNAMIC:
3921 case SHT_DYNSYM:
3922 case SHT_GNU_verneed:
3923 case SHT_GNU_verdef:
3924 /* sh_link is the section header index of the string table
3925 used for the dynamic entries, or the symbol table, or the
3926 version strings. */
3927 s = bfd_get_section_by_name (abfd, ".dynstr");
3928 if (s != NULL)
3929 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3930 break;
3931
3932 case SHT_GNU_LIBLIST:
3933 /* sh_link is the section header index of the prelink library
3934 list used for the dynamic entries, or the symbol table, or
3935 the version strings. */
3936 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3937 ? ".dynstr" : ".gnu.libstr");
3938 if (s != NULL)
3939 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3940 break;
3941
3942 case SHT_HASH:
3943 case SHT_GNU_HASH:
3944 case SHT_GNU_versym:
3945 /* sh_link is the section header index of the symbol table
3946 this hash table or version table is for. */
3947 s = bfd_get_section_by_name (abfd, ".dynsym");
3948 if (s != NULL)
3949 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3950 break;
3951
3952 case SHT_GROUP:
3953 d->this_hdr.sh_link = elf_onesymtab (abfd);
3954 }
3955 }
3956
3957 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3958 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3959 debug section name from .debug_* to .zdebug_* if needed. */
3960
3961 return TRUE;
3962 }
3963
3964 static bfd_boolean
3965 sym_is_global (bfd *abfd, asymbol *sym)
3966 {
3967 /* If the backend has a special mapping, use it. */
3968 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3969 if (bed->elf_backend_sym_is_global)
3970 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3971
3972 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3973 || bfd_is_und_section (bfd_get_section (sym))
3974 || bfd_is_com_section (bfd_get_section (sym)));
3975 }
3976
3977 /* Filter global symbols of ABFD to include in the import library. All
3978 SYMCOUNT symbols of ABFD can be examined from their pointers in
3979 SYMS. Pointers of symbols to keep should be stored contiguously at
3980 the beginning of that array.
3981
3982 Returns the number of symbols to keep. */
3983
3984 unsigned int
3985 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3986 asymbol **syms, long symcount)
3987 {
3988 long src_count, dst_count = 0;
3989
3990 for (src_count = 0; src_count < symcount; src_count++)
3991 {
3992 asymbol *sym = syms[src_count];
3993 char *name = (char *) bfd_asymbol_name (sym);
3994 struct bfd_link_hash_entry *h;
3995
3996 if (!sym_is_global (abfd, sym))
3997 continue;
3998
3999 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4000 if (h == NULL)
4001 continue;
4002 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4003 continue;
4004 if (h->linker_def || h->ldscript_def)
4005 continue;
4006
4007 syms[dst_count++] = sym;
4008 }
4009
4010 syms[dst_count] = NULL;
4011
4012 return dst_count;
4013 }
4014
4015 /* Don't output section symbols for sections that are not going to be
4016 output, that are duplicates or there is no BFD section. */
4017
4018 static bfd_boolean
4019 ignore_section_sym (bfd *abfd, asymbol *sym)
4020 {
4021 elf_symbol_type *type_ptr;
4022
4023 if ((sym->flags & BSF_SECTION_SYM) == 0)
4024 return FALSE;
4025
4026 type_ptr = elf_symbol_from (abfd, sym);
4027 return ((type_ptr != NULL
4028 && type_ptr->internal_elf_sym.st_shndx != 0
4029 && bfd_is_abs_section (sym->section))
4030 || !(sym->section->owner == abfd
4031 || (sym->section->output_section->owner == abfd
4032 && sym->section->output_offset == 0)
4033 || bfd_is_abs_section (sym->section)));
4034 }
4035
4036 /* Map symbol from it's internal number to the external number, moving
4037 all local symbols to be at the head of the list. */
4038
4039 static bfd_boolean
4040 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4041 {
4042 unsigned int symcount = bfd_get_symcount (abfd);
4043 asymbol **syms = bfd_get_outsymbols (abfd);
4044 asymbol **sect_syms;
4045 unsigned int num_locals = 0;
4046 unsigned int num_globals = 0;
4047 unsigned int num_locals2 = 0;
4048 unsigned int num_globals2 = 0;
4049 unsigned int max_index = 0;
4050 unsigned int idx;
4051 asection *asect;
4052 asymbol **new_syms;
4053
4054 #ifdef DEBUG
4055 fprintf (stderr, "elf_map_symbols\n");
4056 fflush (stderr);
4057 #endif
4058
4059 for (asect = abfd->sections; asect; asect = asect->next)
4060 {
4061 if (max_index < asect->index)
4062 max_index = asect->index;
4063 }
4064
4065 max_index++;
4066 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4067 if (sect_syms == NULL)
4068 return FALSE;
4069 elf_section_syms (abfd) = sect_syms;
4070 elf_num_section_syms (abfd) = max_index;
4071
4072 /* Init sect_syms entries for any section symbols we have already
4073 decided to output. */
4074 for (idx = 0; idx < symcount; idx++)
4075 {
4076 asymbol *sym = syms[idx];
4077
4078 if ((sym->flags & BSF_SECTION_SYM) != 0
4079 && sym->value == 0
4080 && !ignore_section_sym (abfd, sym)
4081 && !bfd_is_abs_section (sym->section))
4082 {
4083 asection *sec = sym->section;
4084
4085 if (sec->owner != abfd)
4086 sec = sec->output_section;
4087
4088 sect_syms[sec->index] = syms[idx];
4089 }
4090 }
4091
4092 /* Classify all of the symbols. */
4093 for (idx = 0; idx < symcount; idx++)
4094 {
4095 if (sym_is_global (abfd, syms[idx]))
4096 num_globals++;
4097 else if (!ignore_section_sym (abfd, syms[idx]))
4098 num_locals++;
4099 }
4100
4101 /* We will be adding a section symbol for each normal BFD section. Most
4102 sections will already have a section symbol in outsymbols, but
4103 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4104 at least in that case. */
4105 for (asect = abfd->sections; asect; asect = asect->next)
4106 {
4107 if (sect_syms[asect->index] == NULL)
4108 {
4109 if (!sym_is_global (abfd, asect->symbol))
4110 num_locals++;
4111 else
4112 num_globals++;
4113 }
4114 }
4115
4116 /* Now sort the symbols so the local symbols are first. */
4117 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4118 sizeof (asymbol *));
4119
4120 if (new_syms == NULL)
4121 return FALSE;
4122
4123 for (idx = 0; idx < symcount; idx++)
4124 {
4125 asymbol *sym = syms[idx];
4126 unsigned int i;
4127
4128 if (sym_is_global (abfd, sym))
4129 i = num_locals + num_globals2++;
4130 else if (!ignore_section_sym (abfd, sym))
4131 i = num_locals2++;
4132 else
4133 continue;
4134 new_syms[i] = sym;
4135 sym->udata.i = i + 1;
4136 }
4137 for (asect = abfd->sections; asect; asect = asect->next)
4138 {
4139 if (sect_syms[asect->index] == NULL)
4140 {
4141 asymbol *sym = asect->symbol;
4142 unsigned int i;
4143
4144 sect_syms[asect->index] = sym;
4145 if (!sym_is_global (abfd, sym))
4146 i = num_locals2++;
4147 else
4148 i = num_locals + num_globals2++;
4149 new_syms[i] = sym;
4150 sym->udata.i = i + 1;
4151 }
4152 }
4153
4154 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4155
4156 *pnum_locals = num_locals;
4157 return TRUE;
4158 }
4159
4160 /* Align to the maximum file alignment that could be required for any
4161 ELF data structure. */
4162
4163 static inline file_ptr
4164 align_file_position (file_ptr off, int align)
4165 {
4166 return (off + align - 1) & ~(align - 1);
4167 }
4168
4169 /* Assign a file position to a section, optionally aligning to the
4170 required section alignment. */
4171
4172 file_ptr
4173 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4174 file_ptr offset,
4175 bfd_boolean align)
4176 {
4177 if (align && i_shdrp->sh_addralign > 1)
4178 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4179 i_shdrp->sh_offset = offset;
4180 if (i_shdrp->bfd_section != NULL)
4181 i_shdrp->bfd_section->filepos = offset;
4182 if (i_shdrp->sh_type != SHT_NOBITS)
4183 offset += i_shdrp->sh_size;
4184 return offset;
4185 }
4186
4187 /* Compute the file positions we are going to put the sections at, and
4188 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4189 is not NULL, this is being called by the ELF backend linker. */
4190
4191 bfd_boolean
4192 _bfd_elf_compute_section_file_positions (bfd *abfd,
4193 struct bfd_link_info *link_info)
4194 {
4195 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4196 struct fake_section_arg fsargs;
4197 bfd_boolean failed;
4198 struct elf_strtab_hash *strtab = NULL;
4199 Elf_Internal_Shdr *shstrtab_hdr;
4200 bfd_boolean need_symtab;
4201
4202 if (abfd->output_has_begun)
4203 return TRUE;
4204
4205 /* Do any elf backend specific processing first. */
4206 if (bed->elf_backend_begin_write_processing)
4207 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4208
4209 if (! prep_headers (abfd))
4210 return FALSE;
4211
4212 /* Post process the headers if necessary. */
4213 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4214
4215 fsargs.failed = FALSE;
4216 fsargs.link_info = link_info;
4217 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4218 if (fsargs.failed)
4219 return FALSE;
4220
4221 if (!assign_section_numbers (abfd, link_info))
4222 return FALSE;
4223
4224 /* The backend linker builds symbol table information itself. */
4225 need_symtab = (link_info == NULL
4226 && (bfd_get_symcount (abfd) > 0
4227 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4228 == HAS_RELOC)));
4229 if (need_symtab)
4230 {
4231 /* Non-zero if doing a relocatable link. */
4232 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4233
4234 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4235 return FALSE;
4236 }
4237
4238 failed = FALSE;
4239 if (link_info == NULL)
4240 {
4241 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4242 if (failed)
4243 return FALSE;
4244 }
4245
4246 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4247 /* sh_name was set in prep_headers. */
4248 shstrtab_hdr->sh_type = SHT_STRTAB;
4249 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4250 shstrtab_hdr->sh_addr = 0;
4251 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4252 shstrtab_hdr->sh_entsize = 0;
4253 shstrtab_hdr->sh_link = 0;
4254 shstrtab_hdr->sh_info = 0;
4255 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4256 shstrtab_hdr->sh_addralign = 1;
4257
4258 if (!assign_file_positions_except_relocs (abfd, link_info))
4259 return FALSE;
4260
4261 if (need_symtab)
4262 {
4263 file_ptr off;
4264 Elf_Internal_Shdr *hdr;
4265
4266 off = elf_next_file_pos (abfd);
4267
4268 hdr = & elf_symtab_hdr (abfd);
4269 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4270
4271 if (elf_symtab_shndx_list (abfd) != NULL)
4272 {
4273 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4274 if (hdr->sh_size != 0)
4275 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4276 /* FIXME: What about other symtab_shndx sections in the list ? */
4277 }
4278
4279 hdr = &elf_tdata (abfd)->strtab_hdr;
4280 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4281
4282 elf_next_file_pos (abfd) = off;
4283
4284 /* Now that we know where the .strtab section goes, write it
4285 out. */
4286 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4287 || ! _bfd_elf_strtab_emit (abfd, strtab))
4288 return FALSE;
4289 _bfd_elf_strtab_free (strtab);
4290 }
4291
4292 abfd->output_has_begun = TRUE;
4293
4294 return TRUE;
4295 }
4296
4297 /* Make an initial estimate of the size of the program header. If we
4298 get the number wrong here, we'll redo section placement. */
4299
4300 static bfd_size_type
4301 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4302 {
4303 size_t segs;
4304 asection *s;
4305 const struct elf_backend_data *bed;
4306
4307 /* Assume we will need exactly two PT_LOAD segments: one for text
4308 and one for data. */
4309 segs = 2;
4310
4311 s = bfd_get_section_by_name (abfd, ".interp");
4312 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4313 {
4314 /* If we have a loadable interpreter section, we need a
4315 PT_INTERP segment. In this case, assume we also need a
4316 PT_PHDR segment, although that may not be true for all
4317 targets. */
4318 segs += 2;
4319 }
4320
4321 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4322 {
4323 /* We need a PT_DYNAMIC segment. */
4324 ++segs;
4325 }
4326
4327 if (info != NULL && info->relro)
4328 {
4329 /* We need a PT_GNU_RELRO segment. */
4330 ++segs;
4331 }
4332
4333 if (elf_eh_frame_hdr (abfd))
4334 {
4335 /* We need a PT_GNU_EH_FRAME segment. */
4336 ++segs;
4337 }
4338
4339 if (elf_stack_flags (abfd))
4340 {
4341 /* We need a PT_GNU_STACK segment. */
4342 ++segs;
4343 }
4344
4345 for (s = abfd->sections; s != NULL; s = s->next)
4346 {
4347 if ((s->flags & SEC_LOAD) != 0
4348 && CONST_STRNEQ (s->name, ".note"))
4349 {
4350 /* We need a PT_NOTE segment. */
4351 ++segs;
4352 /* Try to create just one PT_NOTE segment
4353 for all adjacent loadable .note* sections.
4354 gABI requires that within a PT_NOTE segment
4355 (and also inside of each SHT_NOTE section)
4356 each note is padded to a multiple of 4 size,
4357 so we check whether the sections are correctly
4358 aligned. */
4359 if (s->alignment_power == 2)
4360 while (s->next != NULL
4361 && s->next->alignment_power == 2
4362 && (s->next->flags & SEC_LOAD) != 0
4363 && CONST_STRNEQ (s->next->name, ".note"))
4364 s = s->next;
4365 }
4366 }
4367
4368 for (s = abfd->sections; s != NULL; s = s->next)
4369 {
4370 if (s->flags & SEC_THREAD_LOCAL)
4371 {
4372 /* We need a PT_TLS segment. */
4373 ++segs;
4374 break;
4375 }
4376 }
4377
4378 bed = get_elf_backend_data (abfd);
4379
4380 if ((abfd->flags & D_PAGED) != 0)
4381 {
4382 /* Add a PT_GNU_MBIND segment for each mbind section. */
4383 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4384 for (s = abfd->sections; s != NULL; s = s->next)
4385 if (elf_section_flags (s) & SHF_GNU_MBIND)
4386 {
4387 if (elf_section_data (s)->this_hdr.sh_info
4388 > PT_GNU_MBIND_NUM)
4389 {
4390 _bfd_error_handler
4391 /* xgettext:c-format */
4392 (_("%B: GNU_MBIN section `%A' has invalid sh_info field: %d"),
4393 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4394 continue;
4395 }
4396 /* Align mbind section to page size. */
4397 if (s->alignment_power < page_align_power)
4398 s->alignment_power = page_align_power;
4399 segs ++;
4400 }
4401 }
4402
4403 /* Let the backend count up any program headers it might need. */
4404 if (bed->elf_backend_additional_program_headers)
4405 {
4406 int a;
4407
4408 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4409 if (a == -1)
4410 abort ();
4411 segs += a;
4412 }
4413
4414 return segs * bed->s->sizeof_phdr;
4415 }
4416
4417 /* Find the segment that contains the output_section of section. */
4418
4419 Elf_Internal_Phdr *
4420 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4421 {
4422 struct elf_segment_map *m;
4423 Elf_Internal_Phdr *p;
4424
4425 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4426 m != NULL;
4427 m = m->next, p++)
4428 {
4429 int i;
4430
4431 for (i = m->count - 1; i >= 0; i--)
4432 if (m->sections[i] == section)
4433 return p;
4434 }
4435
4436 return NULL;
4437 }
4438
4439 /* Create a mapping from a set of sections to a program segment. */
4440
4441 static struct elf_segment_map *
4442 make_mapping (bfd *abfd,
4443 asection **sections,
4444 unsigned int from,
4445 unsigned int to,
4446 bfd_boolean phdr)
4447 {
4448 struct elf_segment_map *m;
4449 unsigned int i;
4450 asection **hdrpp;
4451 bfd_size_type amt;
4452
4453 amt = sizeof (struct elf_segment_map);
4454 amt += (to - from - 1) * sizeof (asection *);
4455 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4456 if (m == NULL)
4457 return NULL;
4458 m->next = NULL;
4459 m->p_type = PT_LOAD;
4460 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4461 m->sections[i - from] = *hdrpp;
4462 m->count = to - from;
4463
4464 if (from == 0 && phdr)
4465 {
4466 /* Include the headers in the first PT_LOAD segment. */
4467 m->includes_filehdr = 1;
4468 m->includes_phdrs = 1;
4469 }
4470
4471 return m;
4472 }
4473
4474 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4475 on failure. */
4476
4477 struct elf_segment_map *
4478 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4479 {
4480 struct elf_segment_map *m;
4481
4482 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4483 sizeof (struct elf_segment_map));
4484 if (m == NULL)
4485 return NULL;
4486 m->next = NULL;
4487 m->p_type = PT_DYNAMIC;
4488 m->count = 1;
4489 m->sections[0] = dynsec;
4490
4491 return m;
4492 }
4493
4494 /* Possibly add or remove segments from the segment map. */
4495
4496 static bfd_boolean
4497 elf_modify_segment_map (bfd *abfd,
4498 struct bfd_link_info *info,
4499 bfd_boolean remove_empty_load)
4500 {
4501 struct elf_segment_map **m;
4502 const struct elf_backend_data *bed;
4503
4504 /* The placement algorithm assumes that non allocated sections are
4505 not in PT_LOAD segments. We ensure this here by removing such
4506 sections from the segment map. We also remove excluded
4507 sections. Finally, any PT_LOAD segment without sections is
4508 removed. */
4509 m = &elf_seg_map (abfd);
4510 while (*m)
4511 {
4512 unsigned int i, new_count;
4513
4514 for (new_count = 0, i = 0; i < (*m)->count; i++)
4515 {
4516 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4517 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4518 || (*m)->p_type != PT_LOAD))
4519 {
4520 (*m)->sections[new_count] = (*m)->sections[i];
4521 new_count++;
4522 }
4523 }
4524 (*m)->count = new_count;
4525
4526 if (remove_empty_load
4527 && (*m)->p_type == PT_LOAD
4528 && (*m)->count == 0
4529 && !(*m)->includes_phdrs)
4530 *m = (*m)->next;
4531 else
4532 m = &(*m)->next;
4533 }
4534
4535 bed = get_elf_backend_data (abfd);
4536 if (bed->elf_backend_modify_segment_map != NULL)
4537 {
4538 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4539 return FALSE;
4540 }
4541
4542 return TRUE;
4543 }
4544
4545 /* Set up a mapping from BFD sections to program segments. */
4546
4547 bfd_boolean
4548 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4549 {
4550 unsigned int count;
4551 struct elf_segment_map *m;
4552 asection **sections = NULL;
4553 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4554 bfd_boolean no_user_phdrs;
4555
4556 no_user_phdrs = elf_seg_map (abfd) == NULL;
4557
4558 if (info != NULL)
4559 info->user_phdrs = !no_user_phdrs;
4560
4561 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4562 {
4563 asection *s;
4564 unsigned int i;
4565 struct elf_segment_map *mfirst;
4566 struct elf_segment_map **pm;
4567 asection *last_hdr;
4568 bfd_vma last_size;
4569 unsigned int phdr_index;
4570 bfd_vma maxpagesize;
4571 asection **hdrpp;
4572 bfd_boolean phdr_in_segment = TRUE;
4573 bfd_boolean writable;
4574 bfd_boolean executable;
4575 int tls_count = 0;
4576 asection *first_tls = NULL;
4577 asection *first_mbind = NULL;
4578 asection *dynsec, *eh_frame_hdr;
4579 bfd_size_type amt;
4580 bfd_vma addr_mask, wrap_to = 0;
4581 bfd_boolean linker_created_pt_phdr_segment = FALSE;
4582
4583 /* Select the allocated sections, and sort them. */
4584
4585 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4586 sizeof (asection *));
4587 if (sections == NULL)
4588 goto error_return;
4589
4590 /* Calculate top address, avoiding undefined behaviour of shift
4591 left operator when shift count is equal to size of type
4592 being shifted. */
4593 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4594 addr_mask = (addr_mask << 1) + 1;
4595
4596 i = 0;
4597 for (s = abfd->sections; s != NULL; s = s->next)
4598 {
4599 if ((s->flags & SEC_ALLOC) != 0)
4600 {
4601 sections[i] = s;
4602 ++i;
4603 /* A wrapping section potentially clashes with header. */
4604 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4605 wrap_to = (s->lma + s->size) & addr_mask;
4606 }
4607 }
4608 BFD_ASSERT (i <= bfd_count_sections (abfd));
4609 count = i;
4610
4611 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4612
4613 /* Build the mapping. */
4614
4615 mfirst = NULL;
4616 pm = &mfirst;
4617
4618 /* If we have a .interp section, then create a PT_PHDR segment for
4619 the program headers and a PT_INTERP segment for the .interp
4620 section. */
4621 s = bfd_get_section_by_name (abfd, ".interp");
4622 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4623 {
4624 amt = sizeof (struct elf_segment_map);
4625 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4626 if (m == NULL)
4627 goto error_return;
4628 m->next = NULL;
4629 m->p_type = PT_PHDR;
4630 m->p_flags = PF_R;
4631 m->p_flags_valid = 1;
4632 m->includes_phdrs = 1;
4633 linker_created_pt_phdr_segment = TRUE;
4634 *pm = m;
4635 pm = &m->next;
4636
4637 amt = sizeof (struct elf_segment_map);
4638 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4639 if (m == NULL)
4640 goto error_return;
4641 m->next = NULL;
4642 m->p_type = PT_INTERP;
4643 m->count = 1;
4644 m->sections[0] = s;
4645
4646 *pm = m;
4647 pm = &m->next;
4648 }
4649
4650 /* Look through the sections. We put sections in the same program
4651 segment when the start of the second section can be placed within
4652 a few bytes of the end of the first section. */
4653 last_hdr = NULL;
4654 last_size = 0;
4655 phdr_index = 0;
4656 maxpagesize = bed->maxpagesize;
4657 /* PR 17512: file: c8455299.
4658 Avoid divide-by-zero errors later on.
4659 FIXME: Should we abort if the maxpagesize is zero ? */
4660 if (maxpagesize == 0)
4661 maxpagesize = 1;
4662 writable = FALSE;
4663 executable = FALSE;
4664 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4665 if (dynsec != NULL
4666 && (dynsec->flags & SEC_LOAD) == 0)
4667 dynsec = NULL;
4668
4669 /* Deal with -Ttext or something similar such that the first section
4670 is not adjacent to the program headers. This is an
4671 approximation, since at this point we don't know exactly how many
4672 program headers we will need. */
4673 if (count > 0)
4674 {
4675 bfd_size_type phdr_size = elf_program_header_size (abfd);
4676
4677 if (phdr_size == (bfd_size_type) -1)
4678 phdr_size = get_program_header_size (abfd, info);
4679 phdr_size += bed->s->sizeof_ehdr;
4680 if ((abfd->flags & D_PAGED) == 0
4681 || (sections[0]->lma & addr_mask) < phdr_size
4682 || ((sections[0]->lma & addr_mask) % maxpagesize
4683 < phdr_size % maxpagesize)
4684 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4685 {
4686 /* PR 20815: The ELF standard says that a PT_PHDR segment, if
4687 present, must be included as part of the memory image of the
4688 program. Ie it must be part of a PT_LOAD segment as well.
4689 If we have had to create our own PT_PHDR segment, but it is
4690 not going to be covered by the first PT_LOAD segment, then
4691 force the inclusion if we can... */
4692 if ((abfd->flags & D_PAGED) != 0
4693 && linker_created_pt_phdr_segment)
4694 phdr_in_segment = TRUE;
4695 else
4696 phdr_in_segment = FALSE;
4697 }
4698 }
4699
4700 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4701 {
4702 asection *hdr;
4703 bfd_boolean new_segment;
4704
4705 hdr = *hdrpp;
4706
4707 /* See if this section and the last one will fit in the same
4708 segment. */
4709
4710 if (last_hdr == NULL)
4711 {
4712 /* If we don't have a segment yet, then we don't need a new
4713 one (we build the last one after this loop). */
4714 new_segment = FALSE;
4715 }
4716 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4717 {
4718 /* If this section has a different relation between the
4719 virtual address and the load address, then we need a new
4720 segment. */
4721 new_segment = TRUE;
4722 }
4723 else if (hdr->lma < last_hdr->lma + last_size
4724 || last_hdr->lma + last_size < last_hdr->lma)
4725 {
4726 /* If this section has a load address that makes it overlap
4727 the previous section, then we need a new segment. */
4728 new_segment = TRUE;
4729 }
4730 else if ((abfd->flags & D_PAGED) != 0
4731 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4732 == (hdr->lma & -maxpagesize)))
4733 {
4734 /* If we are demand paged then we can't map two disk
4735 pages onto the same memory page. */
4736 new_segment = FALSE;
4737 }
4738 /* In the next test we have to be careful when last_hdr->lma is close
4739 to the end of the address space. If the aligned address wraps
4740 around to the start of the address space, then there are no more
4741 pages left in memory and it is OK to assume that the current
4742 section can be included in the current segment. */
4743 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4744 + maxpagesize > last_hdr->lma)
4745 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4746 + maxpagesize <= hdr->lma))
4747 {
4748 /* If putting this section in this segment would force us to
4749 skip a page in the segment, then we need a new segment. */
4750 new_segment = TRUE;
4751 }
4752 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4753 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4754 {
4755 /* We don't want to put a loaded section after a
4756 nonloaded (ie. bss style) section in the same segment
4757 as that will force the non-loaded section to be loaded.
4758 Consider .tbss sections as loaded for this purpose. */
4759 new_segment = TRUE;
4760 }
4761 else if ((abfd->flags & D_PAGED) == 0)
4762 {
4763 /* If the file is not demand paged, which means that we
4764 don't require the sections to be correctly aligned in the
4765 file, then there is no other reason for a new segment. */
4766 new_segment = FALSE;
4767 }
4768 else if (info != NULL
4769 && info->separate_code
4770 && executable != ((hdr->flags & SEC_CODE) != 0))
4771 {
4772 new_segment = TRUE;
4773 }
4774 else if (! writable
4775 && (hdr->flags & SEC_READONLY) == 0)
4776 {
4777 /* We don't want to put a writable section in a read only
4778 segment. */
4779 new_segment = TRUE;
4780 }
4781 else
4782 {
4783 /* Otherwise, we can use the same segment. */
4784 new_segment = FALSE;
4785 }
4786
4787 /* Allow interested parties a chance to override our decision. */
4788 if (last_hdr != NULL
4789 && info != NULL
4790 && info->callbacks->override_segment_assignment != NULL)
4791 new_segment
4792 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4793 last_hdr,
4794 new_segment);
4795
4796 if (! new_segment)
4797 {
4798 if ((hdr->flags & SEC_READONLY) == 0)
4799 writable = TRUE;
4800 if ((hdr->flags & SEC_CODE) != 0)
4801 executable = TRUE;
4802 last_hdr = hdr;
4803 /* .tbss sections effectively have zero size. */
4804 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4805 != SEC_THREAD_LOCAL)
4806 last_size = hdr->size;
4807 else
4808 last_size = 0;
4809 continue;
4810 }
4811
4812 /* We need a new program segment. We must create a new program
4813 header holding all the sections from phdr_index until hdr. */
4814
4815 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4816 if (m == NULL)
4817 goto error_return;
4818
4819 *pm = m;
4820 pm = &m->next;
4821
4822 if ((hdr->flags & SEC_READONLY) == 0)
4823 writable = TRUE;
4824 else
4825 writable = FALSE;
4826
4827 if ((hdr->flags & SEC_CODE) == 0)
4828 executable = FALSE;
4829 else
4830 executable = TRUE;
4831
4832 last_hdr = hdr;
4833 /* .tbss sections effectively have zero size. */
4834 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4835 last_size = hdr->size;
4836 else
4837 last_size = 0;
4838 phdr_index = i;
4839 phdr_in_segment = FALSE;
4840 }
4841
4842 /* Create a final PT_LOAD program segment, but not if it's just
4843 for .tbss. */
4844 if (last_hdr != NULL
4845 && (i - phdr_index != 1
4846 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4847 != SEC_THREAD_LOCAL)))
4848 {
4849 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4850 if (m == NULL)
4851 goto error_return;
4852
4853 *pm = m;
4854 pm = &m->next;
4855 }
4856
4857 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4858 if (dynsec != NULL)
4859 {
4860 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4861 if (m == NULL)
4862 goto error_return;
4863 *pm = m;
4864 pm = &m->next;
4865 }
4866
4867 /* For each batch of consecutive loadable .note sections,
4868 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4869 because if we link together nonloadable .note sections and
4870 loadable .note sections, we will generate two .note sections
4871 in the output file. FIXME: Using names for section types is
4872 bogus anyhow. */
4873 for (s = abfd->sections; s != NULL; s = s->next)
4874 {
4875 if ((s->flags & SEC_LOAD) != 0
4876 && CONST_STRNEQ (s->name, ".note"))
4877 {
4878 asection *s2;
4879
4880 count = 1;
4881 amt = sizeof (struct elf_segment_map);
4882 if (s->alignment_power == 2)
4883 for (s2 = s; s2->next != NULL; s2 = s2->next)
4884 {
4885 if (s2->next->alignment_power == 2
4886 && (s2->next->flags & SEC_LOAD) != 0
4887 && CONST_STRNEQ (s2->next->name, ".note")
4888 && align_power (s2->lma + s2->size, 2)
4889 == s2->next->lma)
4890 count++;
4891 else
4892 break;
4893 }
4894 amt += (count - 1) * sizeof (asection *);
4895 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4896 if (m == NULL)
4897 goto error_return;
4898 m->next = NULL;
4899 m->p_type = PT_NOTE;
4900 m->count = count;
4901 while (count > 1)
4902 {
4903 m->sections[m->count - count--] = s;
4904 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4905 s = s->next;
4906 }
4907 m->sections[m->count - 1] = s;
4908 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4909 *pm = m;
4910 pm = &m->next;
4911 }
4912 if (s->flags & SEC_THREAD_LOCAL)
4913 {
4914 if (! tls_count)
4915 first_tls = s;
4916 tls_count++;
4917 }
4918 if (first_mbind == NULL
4919 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
4920 first_mbind = s;
4921 }
4922
4923 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4924 if (tls_count > 0)
4925 {
4926 amt = sizeof (struct elf_segment_map);
4927 amt += (tls_count - 1) * sizeof (asection *);
4928 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4929 if (m == NULL)
4930 goto error_return;
4931 m->next = NULL;
4932 m->p_type = PT_TLS;
4933 m->count = tls_count;
4934 /* Mandated PF_R. */
4935 m->p_flags = PF_R;
4936 m->p_flags_valid = 1;
4937 s = first_tls;
4938 for (i = 0; i < (unsigned int) tls_count; ++i)
4939 {
4940 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4941 {
4942 _bfd_error_handler
4943 (_("%B: TLS sections are not adjacent:"), abfd);
4944 s = first_tls;
4945 i = 0;
4946 while (i < (unsigned int) tls_count)
4947 {
4948 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4949 {
4950 _bfd_error_handler (_(" TLS: %A"), s);
4951 i++;
4952 }
4953 else
4954 _bfd_error_handler (_(" non-TLS: %A"), s);
4955 s = s->next;
4956 }
4957 bfd_set_error (bfd_error_bad_value);
4958 goto error_return;
4959 }
4960 m->sections[i] = s;
4961 s = s->next;
4962 }
4963
4964 *pm = m;
4965 pm = &m->next;
4966 }
4967
4968 if (first_mbind && (abfd->flags & D_PAGED) != 0)
4969 for (s = first_mbind; s != NULL; s = s->next)
4970 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
4971 && (elf_section_data (s)->this_hdr.sh_info
4972 <= PT_GNU_MBIND_NUM))
4973 {
4974 /* Mandated PF_R. */
4975 unsigned long p_flags = PF_R;
4976 if ((s->flags & SEC_READONLY) == 0)
4977 p_flags |= PF_W;
4978 if ((s->flags & SEC_CODE) != 0)
4979 p_flags |= PF_X;
4980
4981 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
4982 m = bfd_zalloc (abfd, amt);
4983 if (m == NULL)
4984 goto error_return;
4985 m->next = NULL;
4986 m->p_type = (PT_GNU_MBIND_LO
4987 + elf_section_data (s)->this_hdr.sh_info);
4988 m->count = 1;
4989 m->p_flags_valid = 1;
4990 m->sections[0] = s;
4991 m->p_flags = p_flags;
4992
4993 *pm = m;
4994 pm = &m->next;
4995 }
4996
4997 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4998 segment. */
4999 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5000 if (eh_frame_hdr != NULL
5001 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5002 {
5003 amt = sizeof (struct elf_segment_map);
5004 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5005 if (m == NULL)
5006 goto error_return;
5007 m->next = NULL;
5008 m->p_type = PT_GNU_EH_FRAME;
5009 m->count = 1;
5010 m->sections[0] = eh_frame_hdr->output_section;
5011
5012 *pm = m;
5013 pm = &m->next;
5014 }
5015
5016 if (elf_stack_flags (abfd))
5017 {
5018 amt = sizeof (struct elf_segment_map);
5019 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5020 if (m == NULL)
5021 goto error_return;
5022 m->next = NULL;
5023 m->p_type = PT_GNU_STACK;
5024 m->p_flags = elf_stack_flags (abfd);
5025 m->p_align = bed->stack_align;
5026 m->p_flags_valid = 1;
5027 m->p_align_valid = m->p_align != 0;
5028 if (info->stacksize > 0)
5029 {
5030 m->p_size = info->stacksize;
5031 m->p_size_valid = 1;
5032 }
5033
5034 *pm = m;
5035 pm = &m->next;
5036 }
5037
5038 if (info != NULL && info->relro)
5039 {
5040 for (m = mfirst; m != NULL; m = m->next)
5041 {
5042 if (m->p_type == PT_LOAD
5043 && m->count != 0
5044 && m->sections[0]->vma >= info->relro_start
5045 && m->sections[0]->vma < info->relro_end)
5046 {
5047 i = m->count;
5048 while (--i != (unsigned) -1)
5049 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5050 == (SEC_LOAD | SEC_HAS_CONTENTS))
5051 break;
5052
5053 if (i != (unsigned) -1)
5054 break;
5055 }
5056 }
5057
5058 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5059 if (m != NULL)
5060 {
5061 amt = sizeof (struct elf_segment_map);
5062 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5063 if (m == NULL)
5064 goto error_return;
5065 m->next = NULL;
5066 m->p_type = PT_GNU_RELRO;
5067 *pm = m;
5068 pm = &m->next;
5069 }
5070 }
5071
5072 free (sections);
5073 elf_seg_map (abfd) = mfirst;
5074 }
5075
5076 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5077 return FALSE;
5078
5079 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5080 ++count;
5081 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5082
5083 return TRUE;
5084
5085 error_return:
5086 if (sections != NULL)
5087 free (sections);
5088 return FALSE;
5089 }
5090
5091 /* Sort sections by address. */
5092
5093 static int
5094 elf_sort_sections (const void *arg1, const void *arg2)
5095 {
5096 const asection *sec1 = *(const asection **) arg1;
5097 const asection *sec2 = *(const asection **) arg2;
5098 bfd_size_type size1, size2;
5099
5100 /* Sort by LMA first, since this is the address used to
5101 place the section into a segment. */
5102 if (sec1->lma < sec2->lma)
5103 return -1;
5104 else if (sec1->lma > sec2->lma)
5105 return 1;
5106
5107 /* Then sort by VMA. Normally the LMA and the VMA will be
5108 the same, and this will do nothing. */
5109 if (sec1->vma < sec2->vma)
5110 return -1;
5111 else if (sec1->vma > sec2->vma)
5112 return 1;
5113
5114 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5115
5116 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5117
5118 if (TOEND (sec1))
5119 {
5120 if (TOEND (sec2))
5121 {
5122 /* If the indicies are the same, do not return 0
5123 here, but continue to try the next comparison. */
5124 if (sec1->target_index - sec2->target_index != 0)
5125 return sec1->target_index - sec2->target_index;
5126 }
5127 else
5128 return 1;
5129 }
5130 else if (TOEND (sec2))
5131 return -1;
5132
5133 #undef TOEND
5134
5135 /* Sort by size, to put zero sized sections
5136 before others at the same address. */
5137
5138 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5139 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5140
5141 if (size1 < size2)
5142 return -1;
5143 if (size1 > size2)
5144 return 1;
5145
5146 return sec1->target_index - sec2->target_index;
5147 }
5148
5149 /* Ian Lance Taylor writes:
5150
5151 We shouldn't be using % with a negative signed number. That's just
5152 not good. We have to make sure either that the number is not
5153 negative, or that the number has an unsigned type. When the types
5154 are all the same size they wind up as unsigned. When file_ptr is a
5155 larger signed type, the arithmetic winds up as signed long long,
5156 which is wrong.
5157
5158 What we're trying to say here is something like ``increase OFF by
5159 the least amount that will cause it to be equal to the VMA modulo
5160 the page size.'' */
5161 /* In other words, something like:
5162
5163 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5164 off_offset = off % bed->maxpagesize;
5165 if (vma_offset < off_offset)
5166 adjustment = vma_offset + bed->maxpagesize - off_offset;
5167 else
5168 adjustment = vma_offset - off_offset;
5169
5170 which can be collapsed into the expression below. */
5171
5172 static file_ptr
5173 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5174 {
5175 /* PR binutils/16199: Handle an alignment of zero. */
5176 if (maxpagesize == 0)
5177 maxpagesize = 1;
5178 return ((vma - off) % maxpagesize);
5179 }
5180
5181 static void
5182 print_segment_map (const struct elf_segment_map *m)
5183 {
5184 unsigned int j;
5185 const char *pt = get_segment_type (m->p_type);
5186 char buf[32];
5187
5188 if (pt == NULL)
5189 {
5190 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5191 sprintf (buf, "LOPROC+%7.7x",
5192 (unsigned int) (m->p_type - PT_LOPROC));
5193 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5194 sprintf (buf, "LOOS+%7.7x",
5195 (unsigned int) (m->p_type - PT_LOOS));
5196 else
5197 snprintf (buf, sizeof (buf), "%8.8x",
5198 (unsigned int) m->p_type);
5199 pt = buf;
5200 }
5201 fflush (stdout);
5202 fprintf (stderr, "%s:", pt);
5203 for (j = 0; j < m->count; j++)
5204 fprintf (stderr, " %s", m->sections [j]->name);
5205 putc ('\n',stderr);
5206 fflush (stderr);
5207 }
5208
5209 static bfd_boolean
5210 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5211 {
5212 void *buf;
5213 bfd_boolean ret;
5214
5215 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5216 return FALSE;
5217 buf = bfd_zmalloc (len);
5218 if (buf == NULL)
5219 return FALSE;
5220 ret = bfd_bwrite (buf, len, abfd) == len;
5221 free (buf);
5222 return ret;
5223 }
5224
5225 /* Assign file positions to the sections based on the mapping from
5226 sections to segments. This function also sets up some fields in
5227 the file header. */
5228
5229 static bfd_boolean
5230 assign_file_positions_for_load_sections (bfd *abfd,
5231 struct bfd_link_info *link_info)
5232 {
5233 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5234 struct elf_segment_map *m;
5235 Elf_Internal_Phdr *phdrs;
5236 Elf_Internal_Phdr *p;
5237 file_ptr off;
5238 bfd_size_type maxpagesize;
5239 unsigned int pt_load_count = 0;
5240 unsigned int alloc;
5241 unsigned int i, j;
5242 bfd_vma header_pad = 0;
5243
5244 if (link_info == NULL
5245 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5246 return FALSE;
5247
5248 alloc = 0;
5249 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5250 {
5251 ++alloc;
5252 if (m->header_size)
5253 header_pad = m->header_size;
5254 }
5255
5256 if (alloc)
5257 {
5258 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5259 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5260 }
5261 else
5262 {
5263 /* PR binutils/12467. */
5264 elf_elfheader (abfd)->e_phoff = 0;
5265 elf_elfheader (abfd)->e_phentsize = 0;
5266 }
5267
5268 elf_elfheader (abfd)->e_phnum = alloc;
5269
5270 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5271 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5272 else
5273 BFD_ASSERT (elf_program_header_size (abfd)
5274 >= alloc * bed->s->sizeof_phdr);
5275
5276 if (alloc == 0)
5277 {
5278 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5279 return TRUE;
5280 }
5281
5282 /* We're writing the size in elf_program_header_size (abfd),
5283 see assign_file_positions_except_relocs, so make sure we have
5284 that amount allocated, with trailing space cleared.
5285 The variable alloc contains the computed need, while
5286 elf_program_header_size (abfd) contains the size used for the
5287 layout.
5288 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5289 where the layout is forced to according to a larger size in the
5290 last iterations for the testcase ld-elf/header. */
5291 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5292 == 0);
5293 phdrs = (Elf_Internal_Phdr *)
5294 bfd_zalloc2 (abfd,
5295 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5296 sizeof (Elf_Internal_Phdr));
5297 elf_tdata (abfd)->phdr = phdrs;
5298 if (phdrs == NULL)
5299 return FALSE;
5300
5301 maxpagesize = 1;
5302 if ((abfd->flags & D_PAGED) != 0)
5303 maxpagesize = bed->maxpagesize;
5304
5305 off = bed->s->sizeof_ehdr;
5306 off += alloc * bed->s->sizeof_phdr;
5307 if (header_pad < (bfd_vma) off)
5308 header_pad = 0;
5309 else
5310 header_pad -= off;
5311 off += header_pad;
5312
5313 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5314 m != NULL;
5315 m = m->next, p++, j++)
5316 {
5317 asection **secpp;
5318 bfd_vma off_adjust;
5319 bfd_boolean no_contents;
5320
5321 /* If elf_segment_map is not from map_sections_to_segments, the
5322 sections may not be correctly ordered. NOTE: sorting should
5323 not be done to the PT_NOTE section of a corefile, which may
5324 contain several pseudo-sections artificially created by bfd.
5325 Sorting these pseudo-sections breaks things badly. */
5326 if (m->count > 1
5327 && !(elf_elfheader (abfd)->e_type == ET_CORE
5328 && m->p_type == PT_NOTE))
5329 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5330 elf_sort_sections);
5331
5332 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5333 number of sections with contents contributing to both p_filesz
5334 and p_memsz, followed by a number of sections with no contents
5335 that just contribute to p_memsz. In this loop, OFF tracks next
5336 available file offset for PT_LOAD and PT_NOTE segments. */
5337 p->p_type = m->p_type;
5338 p->p_flags = m->p_flags;
5339
5340 if (m->count == 0)
5341 p->p_vaddr = 0;
5342 else
5343 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5344
5345 if (m->p_paddr_valid)
5346 p->p_paddr = m->p_paddr;
5347 else if (m->count == 0)
5348 p->p_paddr = 0;
5349 else
5350 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5351
5352 if (p->p_type == PT_LOAD
5353 && (abfd->flags & D_PAGED) != 0)
5354 {
5355 /* p_align in demand paged PT_LOAD segments effectively stores
5356 the maximum page size. When copying an executable with
5357 objcopy, we set m->p_align from the input file. Use this
5358 value for maxpagesize rather than bed->maxpagesize, which
5359 may be different. Note that we use maxpagesize for PT_TLS
5360 segment alignment later in this function, so we are relying
5361 on at least one PT_LOAD segment appearing before a PT_TLS
5362 segment. */
5363 if (m->p_align_valid)
5364 maxpagesize = m->p_align;
5365
5366 p->p_align = maxpagesize;
5367 pt_load_count += 1;
5368 }
5369 else if (m->p_align_valid)
5370 p->p_align = m->p_align;
5371 else if (m->count == 0)
5372 p->p_align = 1 << bed->s->log_file_align;
5373 else
5374 p->p_align = 0;
5375
5376 no_contents = FALSE;
5377 off_adjust = 0;
5378 if (p->p_type == PT_LOAD
5379 && m->count > 0)
5380 {
5381 bfd_size_type align;
5382 unsigned int align_power = 0;
5383
5384 if (m->p_align_valid)
5385 align = p->p_align;
5386 else
5387 {
5388 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5389 {
5390 unsigned int secalign;
5391
5392 secalign = bfd_get_section_alignment (abfd, *secpp);
5393 if (secalign > align_power)
5394 align_power = secalign;
5395 }
5396 align = (bfd_size_type) 1 << align_power;
5397 if (align < maxpagesize)
5398 align = maxpagesize;
5399 }
5400
5401 for (i = 0; i < m->count; i++)
5402 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5403 /* If we aren't making room for this section, then
5404 it must be SHT_NOBITS regardless of what we've
5405 set via struct bfd_elf_special_section. */
5406 elf_section_type (m->sections[i]) = SHT_NOBITS;
5407
5408 /* Find out whether this segment contains any loadable
5409 sections. */
5410 no_contents = TRUE;
5411 for (i = 0; i < m->count; i++)
5412 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5413 {
5414 no_contents = FALSE;
5415 break;
5416 }
5417
5418 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5419
5420 /* Broken hardware and/or kernel require that files do not
5421 map the same page with different permissions on some hppa
5422 processors. */
5423 if (pt_load_count > 1
5424 && bed->no_page_alias
5425 && (off & (maxpagesize - 1)) != 0
5426 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5427 off_adjust += maxpagesize;
5428 off += off_adjust;
5429 if (no_contents)
5430 {
5431 /* We shouldn't need to align the segment on disk since
5432 the segment doesn't need file space, but the gABI
5433 arguably requires the alignment and glibc ld.so
5434 checks it. So to comply with the alignment
5435 requirement but not waste file space, we adjust
5436 p_offset for just this segment. (OFF_ADJUST is
5437 subtracted from OFF later.) This may put p_offset
5438 past the end of file, but that shouldn't matter. */
5439 }
5440 else
5441 off_adjust = 0;
5442 }
5443 /* Make sure the .dynamic section is the first section in the
5444 PT_DYNAMIC segment. */
5445 else if (p->p_type == PT_DYNAMIC
5446 && m->count > 1
5447 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5448 {
5449 _bfd_error_handler
5450 (_("%B: The first section in the PT_DYNAMIC segment"
5451 " is not the .dynamic section"),
5452 abfd);
5453 bfd_set_error (bfd_error_bad_value);
5454 return FALSE;
5455 }
5456 /* Set the note section type to SHT_NOTE. */
5457 else if (p->p_type == PT_NOTE)
5458 for (i = 0; i < m->count; i++)
5459 elf_section_type (m->sections[i]) = SHT_NOTE;
5460
5461 p->p_offset = 0;
5462 p->p_filesz = 0;
5463 p->p_memsz = 0;
5464
5465 if (m->includes_filehdr)
5466 {
5467 if (!m->p_flags_valid)
5468 p->p_flags |= PF_R;
5469 p->p_filesz = bed->s->sizeof_ehdr;
5470 p->p_memsz = bed->s->sizeof_ehdr;
5471 if (m->count > 0)
5472 {
5473 if (p->p_vaddr < (bfd_vma) off
5474 || (!m->p_paddr_valid
5475 && p->p_paddr < (bfd_vma) off))
5476 {
5477 _bfd_error_handler
5478 (_("%B: Not enough room for program headers,"
5479 " try linking with -N"),
5480 abfd);
5481 bfd_set_error (bfd_error_bad_value);
5482 return FALSE;
5483 }
5484
5485 p->p_vaddr -= off;
5486 if (!m->p_paddr_valid)
5487 p->p_paddr -= off;
5488 }
5489 }
5490
5491 if (m->includes_phdrs)
5492 {
5493 if (!m->p_flags_valid)
5494 p->p_flags |= PF_R;
5495
5496 if (!m->includes_filehdr)
5497 {
5498 p->p_offset = bed->s->sizeof_ehdr;
5499
5500 if (m->count > 0)
5501 {
5502 p->p_vaddr -= off - p->p_offset;
5503 if (!m->p_paddr_valid)
5504 p->p_paddr -= off - p->p_offset;
5505 }
5506 }
5507
5508 p->p_filesz += alloc * bed->s->sizeof_phdr;
5509 p->p_memsz += alloc * bed->s->sizeof_phdr;
5510 if (m->count)
5511 {
5512 p->p_filesz += header_pad;
5513 p->p_memsz += header_pad;
5514 }
5515 }
5516
5517 if (p->p_type == PT_LOAD
5518 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5519 {
5520 if (!m->includes_filehdr && !m->includes_phdrs)
5521 p->p_offset = off;
5522 else
5523 {
5524 file_ptr adjust;
5525
5526 adjust = off - (p->p_offset + p->p_filesz);
5527 if (!no_contents)
5528 p->p_filesz += adjust;
5529 p->p_memsz += adjust;
5530 }
5531 }
5532
5533 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5534 maps. Set filepos for sections in PT_LOAD segments, and in
5535 core files, for sections in PT_NOTE segments.
5536 assign_file_positions_for_non_load_sections will set filepos
5537 for other sections and update p_filesz for other segments. */
5538 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5539 {
5540 asection *sec;
5541 bfd_size_type align;
5542 Elf_Internal_Shdr *this_hdr;
5543
5544 sec = *secpp;
5545 this_hdr = &elf_section_data (sec)->this_hdr;
5546 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5547
5548 if ((p->p_type == PT_LOAD
5549 || p->p_type == PT_TLS)
5550 && (this_hdr->sh_type != SHT_NOBITS
5551 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5552 && ((this_hdr->sh_flags & SHF_TLS) == 0
5553 || p->p_type == PT_TLS))))
5554 {
5555 bfd_vma p_start = p->p_paddr;
5556 bfd_vma p_end = p_start + p->p_memsz;
5557 bfd_vma s_start = sec->lma;
5558 bfd_vma adjust = s_start - p_end;
5559
5560 if (adjust != 0
5561 && (s_start < p_end
5562 || p_end < p_start))
5563 {
5564 _bfd_error_handler
5565 /* xgettext:c-format */
5566 (_("%B: section %A lma %#Lx adjusted to %#Lx"),
5567 abfd, sec, s_start, p_end);
5568 adjust = 0;
5569 sec->lma = p_end;
5570 }
5571 p->p_memsz += adjust;
5572
5573 if (this_hdr->sh_type != SHT_NOBITS)
5574 {
5575 if (p->p_filesz + adjust < p->p_memsz)
5576 {
5577 /* We have a PROGBITS section following NOBITS ones.
5578 Allocate file space for the NOBITS section(s) and
5579 zero it. */
5580 adjust = p->p_memsz - p->p_filesz;
5581 if (!write_zeros (abfd, off, adjust))
5582 return FALSE;
5583 }
5584 off += adjust;
5585 p->p_filesz += adjust;
5586 }
5587 }
5588
5589 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5590 {
5591 /* The section at i == 0 is the one that actually contains
5592 everything. */
5593 if (i == 0)
5594 {
5595 this_hdr->sh_offset = sec->filepos = off;
5596 off += this_hdr->sh_size;
5597 p->p_filesz = this_hdr->sh_size;
5598 p->p_memsz = 0;
5599 p->p_align = 1;
5600 }
5601 else
5602 {
5603 /* The rest are fake sections that shouldn't be written. */
5604 sec->filepos = 0;
5605 sec->size = 0;
5606 sec->flags = 0;
5607 continue;
5608 }
5609 }
5610 else
5611 {
5612 if (p->p_type == PT_LOAD)
5613 {
5614 this_hdr->sh_offset = sec->filepos = off;
5615 if (this_hdr->sh_type != SHT_NOBITS)
5616 off += this_hdr->sh_size;
5617 }
5618 else if (this_hdr->sh_type == SHT_NOBITS
5619 && (this_hdr->sh_flags & SHF_TLS) != 0
5620 && this_hdr->sh_offset == 0)
5621 {
5622 /* This is a .tbss section that didn't get a PT_LOAD.
5623 (See _bfd_elf_map_sections_to_segments "Create a
5624 final PT_LOAD".) Set sh_offset to the value it
5625 would have if we had created a zero p_filesz and
5626 p_memsz PT_LOAD header for the section. This
5627 also makes the PT_TLS header have the same
5628 p_offset value. */
5629 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5630 off, align);
5631 this_hdr->sh_offset = sec->filepos = off + adjust;
5632 }
5633
5634 if (this_hdr->sh_type != SHT_NOBITS)
5635 {
5636 p->p_filesz += this_hdr->sh_size;
5637 /* A load section without SHF_ALLOC is something like
5638 a note section in a PT_NOTE segment. These take
5639 file space but are not loaded into memory. */
5640 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5641 p->p_memsz += this_hdr->sh_size;
5642 }
5643 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5644 {
5645 if (p->p_type == PT_TLS)
5646 p->p_memsz += this_hdr->sh_size;
5647
5648 /* .tbss is special. It doesn't contribute to p_memsz of
5649 normal segments. */
5650 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5651 p->p_memsz += this_hdr->sh_size;
5652 }
5653
5654 if (align > p->p_align
5655 && !m->p_align_valid
5656 && (p->p_type != PT_LOAD
5657 || (abfd->flags & D_PAGED) == 0))
5658 p->p_align = align;
5659 }
5660
5661 if (!m->p_flags_valid)
5662 {
5663 p->p_flags |= PF_R;
5664 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5665 p->p_flags |= PF_X;
5666 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5667 p->p_flags |= PF_W;
5668 }
5669 }
5670
5671 off -= off_adjust;
5672
5673 /* Check that all sections are in a PT_LOAD segment.
5674 Don't check funky gdb generated core files. */
5675 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5676 {
5677 bfd_boolean check_vma = TRUE;
5678
5679 for (i = 1; i < m->count; i++)
5680 if (m->sections[i]->vma == m->sections[i - 1]->vma
5681 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5682 ->this_hdr), p) != 0
5683 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5684 ->this_hdr), p) != 0)
5685 {
5686 /* Looks like we have overlays packed into the segment. */
5687 check_vma = FALSE;
5688 break;
5689 }
5690
5691 for (i = 0; i < m->count; i++)
5692 {
5693 Elf_Internal_Shdr *this_hdr;
5694 asection *sec;
5695
5696 sec = m->sections[i];
5697 this_hdr = &(elf_section_data(sec)->this_hdr);
5698 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5699 && !ELF_TBSS_SPECIAL (this_hdr, p))
5700 {
5701 _bfd_error_handler
5702 /* xgettext:c-format */
5703 (_("%B: section `%A' can't be allocated in segment %d"),
5704 abfd, sec, j);
5705 print_segment_map (m);
5706 }
5707 }
5708 }
5709 }
5710
5711 elf_next_file_pos (abfd) = off;
5712 return TRUE;
5713 }
5714
5715 /* Assign file positions for the other sections. */
5716
5717 static bfd_boolean
5718 assign_file_positions_for_non_load_sections (bfd *abfd,
5719 struct bfd_link_info *link_info)
5720 {
5721 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5722 Elf_Internal_Shdr **i_shdrpp;
5723 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5724 Elf_Internal_Phdr *phdrs;
5725 Elf_Internal_Phdr *p;
5726 struct elf_segment_map *m;
5727 struct elf_segment_map *hdrs_segment;
5728 bfd_vma filehdr_vaddr, filehdr_paddr;
5729 bfd_vma phdrs_vaddr, phdrs_paddr;
5730 file_ptr off;
5731 unsigned int count;
5732
5733 i_shdrpp = elf_elfsections (abfd);
5734 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5735 off = elf_next_file_pos (abfd);
5736 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5737 {
5738 Elf_Internal_Shdr *hdr;
5739
5740 hdr = *hdrpp;
5741 if (hdr->bfd_section != NULL
5742 && (hdr->bfd_section->filepos != 0
5743 || (hdr->sh_type == SHT_NOBITS
5744 && hdr->contents == NULL)))
5745 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5746 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5747 {
5748 if (hdr->sh_size != 0)
5749 _bfd_error_handler
5750 /* xgettext:c-format */
5751 (_("%B: warning: allocated section `%s' not in segment"),
5752 abfd,
5753 (hdr->bfd_section == NULL
5754 ? "*unknown*"
5755 : hdr->bfd_section->name));
5756 /* We don't need to page align empty sections. */
5757 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5758 off += vma_page_aligned_bias (hdr->sh_addr, off,
5759 bed->maxpagesize);
5760 else
5761 off += vma_page_aligned_bias (hdr->sh_addr, off,
5762 hdr->sh_addralign);
5763 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5764 FALSE);
5765 }
5766 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5767 && hdr->bfd_section == NULL)
5768 || (hdr->bfd_section != NULL
5769 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5770 /* Compress DWARF debug sections. */
5771 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5772 || (elf_symtab_shndx_list (abfd) != NULL
5773 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5774 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5775 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5776 hdr->sh_offset = -1;
5777 else
5778 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5779 }
5780
5781 /* Now that we have set the section file positions, we can set up
5782 the file positions for the non PT_LOAD segments. */
5783 count = 0;
5784 filehdr_vaddr = 0;
5785 filehdr_paddr = 0;
5786 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5787 phdrs_paddr = 0;
5788 hdrs_segment = NULL;
5789 phdrs = elf_tdata (abfd)->phdr;
5790 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5791 {
5792 ++count;
5793 if (p->p_type != PT_LOAD)
5794 continue;
5795
5796 if (m->includes_filehdr)
5797 {
5798 filehdr_vaddr = p->p_vaddr;
5799 filehdr_paddr = p->p_paddr;
5800 }
5801 if (m->includes_phdrs)
5802 {
5803 phdrs_vaddr = p->p_vaddr;
5804 phdrs_paddr = p->p_paddr;
5805 if (m->includes_filehdr)
5806 {
5807 hdrs_segment = m;
5808 phdrs_vaddr += bed->s->sizeof_ehdr;
5809 phdrs_paddr += bed->s->sizeof_ehdr;
5810 }
5811 }
5812 }
5813
5814 if (hdrs_segment != NULL && link_info != NULL)
5815 {
5816 /* There is a segment that contains both the file headers and the
5817 program headers, so provide a symbol __ehdr_start pointing there.
5818 A program can use this to examine itself robustly. */
5819
5820 struct elf_link_hash_entry *hash
5821 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5822 FALSE, FALSE, TRUE);
5823 /* If the symbol was referenced and not defined, define it. */
5824 if (hash != NULL
5825 && (hash->root.type == bfd_link_hash_new
5826 || hash->root.type == bfd_link_hash_undefined
5827 || hash->root.type == bfd_link_hash_undefweak
5828 || hash->root.type == bfd_link_hash_common))
5829 {
5830 asection *s = NULL;
5831 if (hdrs_segment->count != 0)
5832 /* The segment contains sections, so use the first one. */
5833 s = hdrs_segment->sections[0];
5834 else
5835 /* Use the first (i.e. lowest-addressed) section in any segment. */
5836 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5837 if (m->count != 0)
5838 {
5839 s = m->sections[0];
5840 break;
5841 }
5842
5843 if (s != NULL)
5844 {
5845 hash->root.u.def.value = filehdr_vaddr - s->vma;
5846 hash->root.u.def.section = s;
5847 }
5848 else
5849 {
5850 hash->root.u.def.value = filehdr_vaddr;
5851 hash->root.u.def.section = bfd_abs_section_ptr;
5852 }
5853
5854 hash->root.type = bfd_link_hash_defined;
5855 hash->def_regular = 1;
5856 hash->non_elf = 0;
5857 }
5858 }
5859
5860 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5861 {
5862 if (p->p_type == PT_GNU_RELRO)
5863 {
5864 bfd_vma start, end;
5865
5866 if (link_info != NULL)
5867 {
5868 /* During linking the range of the RELRO segment is passed
5869 in link_info. Note that there may be padding between
5870 relro_start and the first RELRO section. */
5871 start = link_info->relro_start;
5872 end = link_info->relro_end;
5873 }
5874 else if (m->count != 0)
5875 {
5876 if (!m->p_size_valid)
5877 abort ();
5878 start = m->sections[0]->vma;
5879 end = start + m->p_size;
5880 }
5881 else
5882 {
5883 start = 0;
5884 end = 0;
5885 }
5886
5887 if (start < end)
5888 {
5889 struct elf_segment_map *lm;
5890 const Elf_Internal_Phdr *lp;
5891 unsigned int i;
5892
5893 /* Find a LOAD segment containing a section in the RELRO
5894 segment. */
5895 for (lm = elf_seg_map (abfd), lp = phdrs;
5896 lm != NULL;
5897 lm = lm->next, lp++)
5898 {
5899 if (lp->p_type == PT_LOAD
5900 && lm->count != 0
5901 && lm->sections[lm->count - 1]->vma >= start
5902 && lm->sections[0]->vma < end)
5903 break;
5904 }
5905 BFD_ASSERT (lm != NULL);
5906
5907 /* Find the section starting the RELRO segment. */
5908 for (i = 0; i < lm->count; i++)
5909 {
5910 asection *s = lm->sections[i];
5911 if (s->vma >= start
5912 && s->vma < end
5913 && s->size != 0)
5914 break;
5915 }
5916 BFD_ASSERT (i < lm->count);
5917
5918 p->p_vaddr = lm->sections[i]->vma;
5919 p->p_paddr = lm->sections[i]->lma;
5920 p->p_offset = lm->sections[i]->filepos;
5921 p->p_memsz = end - p->p_vaddr;
5922 p->p_filesz = p->p_memsz;
5923
5924 /* The RELRO segment typically ends a few bytes into
5925 .got.plt but other layouts are possible. In cases
5926 where the end does not match any loaded section (for
5927 instance is in file padding), trim p_filesz back to
5928 correspond to the end of loaded section contents. */
5929 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
5930 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
5931
5932 /* Preserve the alignment and flags if they are valid. The
5933 gold linker generates RW/4 for the PT_GNU_RELRO section.
5934 It is better for objcopy/strip to honor these attributes
5935 otherwise gdb will choke when using separate debug files.
5936 */
5937 if (!m->p_align_valid)
5938 p->p_align = 1;
5939 if (!m->p_flags_valid)
5940 p->p_flags = PF_R;
5941 }
5942 else
5943 {
5944 memset (p, 0, sizeof *p);
5945 p->p_type = PT_NULL;
5946 }
5947 }
5948 else if (p->p_type == PT_GNU_STACK)
5949 {
5950 if (m->p_size_valid)
5951 p->p_memsz = m->p_size;
5952 }
5953 else if (m->count != 0)
5954 {
5955 unsigned int i;
5956
5957 if (p->p_type != PT_LOAD
5958 && (p->p_type != PT_NOTE
5959 || bfd_get_format (abfd) != bfd_core))
5960 {
5961 /* A user specified segment layout may include a PHDR
5962 segment that overlaps with a LOAD segment... */
5963 if (p->p_type == PT_PHDR)
5964 {
5965 m->count = 0;
5966 continue;
5967 }
5968
5969 if (m->includes_filehdr || m->includes_phdrs)
5970 {
5971 /* PR 17512: file: 2195325e. */
5972 _bfd_error_handler
5973 (_("%B: error: non-load segment %d includes file header "
5974 "and/or program header"),
5975 abfd, (int) (p - phdrs));
5976 return FALSE;
5977 }
5978
5979 p->p_filesz = 0;
5980 p->p_offset = m->sections[0]->filepos;
5981 for (i = m->count; i-- != 0;)
5982 {
5983 asection *sect = m->sections[i];
5984 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5985 if (hdr->sh_type != SHT_NOBITS)
5986 {
5987 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5988 + hdr->sh_size);
5989 break;
5990 }
5991 }
5992 }
5993 }
5994 else if (m->includes_filehdr)
5995 {
5996 p->p_vaddr = filehdr_vaddr;
5997 if (! m->p_paddr_valid)
5998 p->p_paddr = filehdr_paddr;
5999 }
6000 else if (m->includes_phdrs)
6001 {
6002 p->p_vaddr = phdrs_vaddr;
6003 if (! m->p_paddr_valid)
6004 p->p_paddr = phdrs_paddr;
6005 }
6006 }
6007
6008 elf_next_file_pos (abfd) = off;
6009
6010 return TRUE;
6011 }
6012
6013 static elf_section_list *
6014 find_section_in_list (unsigned int i, elf_section_list * list)
6015 {
6016 for (;list != NULL; list = list->next)
6017 if (list->ndx == i)
6018 break;
6019 return list;
6020 }
6021
6022 /* Work out the file positions of all the sections. This is called by
6023 _bfd_elf_compute_section_file_positions. All the section sizes and
6024 VMAs must be known before this is called.
6025
6026 Reloc sections come in two flavours: Those processed specially as
6027 "side-channel" data attached to a section to which they apply, and
6028 those that bfd doesn't process as relocations. The latter sort are
6029 stored in a normal bfd section by bfd_section_from_shdr. We don't
6030 consider the former sort here, unless they form part of the loadable
6031 image. Reloc sections not assigned here will be handled later by
6032 assign_file_positions_for_relocs.
6033
6034 We also don't set the positions of the .symtab and .strtab here. */
6035
6036 static bfd_boolean
6037 assign_file_positions_except_relocs (bfd *abfd,
6038 struct bfd_link_info *link_info)
6039 {
6040 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6041 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6042 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6043
6044 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6045 && bfd_get_format (abfd) != bfd_core)
6046 {
6047 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6048 unsigned int num_sec = elf_numsections (abfd);
6049 Elf_Internal_Shdr **hdrpp;
6050 unsigned int i;
6051 file_ptr off;
6052
6053 /* Start after the ELF header. */
6054 off = i_ehdrp->e_ehsize;
6055
6056 /* We are not creating an executable, which means that we are
6057 not creating a program header, and that the actual order of
6058 the sections in the file is unimportant. */
6059 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6060 {
6061 Elf_Internal_Shdr *hdr;
6062
6063 hdr = *hdrpp;
6064 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6065 && hdr->bfd_section == NULL)
6066 || (hdr->bfd_section != NULL
6067 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6068 /* Compress DWARF debug sections. */
6069 || i == elf_onesymtab (abfd)
6070 || (elf_symtab_shndx_list (abfd) != NULL
6071 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6072 || i == elf_strtab_sec (abfd)
6073 || i == elf_shstrtab_sec (abfd))
6074 {
6075 hdr->sh_offset = -1;
6076 }
6077 else
6078 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6079 }
6080
6081 elf_next_file_pos (abfd) = off;
6082 }
6083 else
6084 {
6085 unsigned int alloc;
6086
6087 /* Assign file positions for the loaded sections based on the
6088 assignment of sections to segments. */
6089 if (!assign_file_positions_for_load_sections (abfd, link_info))
6090 return FALSE;
6091
6092 /* And for non-load sections. */
6093 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6094 return FALSE;
6095
6096 if (bed->elf_backend_modify_program_headers != NULL)
6097 {
6098 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6099 return FALSE;
6100 }
6101
6102 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6103 if (link_info != NULL && bfd_link_pie (link_info))
6104 {
6105 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6106 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6107 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6108
6109 /* Find the lowest p_vaddr in PT_LOAD segments. */
6110 bfd_vma p_vaddr = (bfd_vma) -1;
6111 for (; segment < end_segment; segment++)
6112 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6113 p_vaddr = segment->p_vaddr;
6114
6115 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6116 segments is non-zero. */
6117 if (p_vaddr)
6118 i_ehdrp->e_type = ET_EXEC;
6119 }
6120
6121 /* Write out the program headers. */
6122 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
6123
6124 /* Sort the program headers into the ordering required by the ELF standard. */
6125 if (alloc == 0)
6126 return TRUE;
6127
6128 /* PR ld/20815 - Check that the program header segment, if present, will
6129 be loaded into memory. FIXME: The check below is not sufficient as
6130 really all PT_LOAD segments should be checked before issuing an error
6131 message. Plus the PHDR segment does not have to be the first segment
6132 in the program header table. But this version of the check should
6133 catch all real world use cases.
6134
6135 FIXME: We used to have code here to sort the PT_LOAD segments into
6136 ascending order, as per the ELF spec. But this breaks some programs,
6137 including the Linux kernel. But really either the spec should be
6138 changed or the programs updated. */
6139 if (alloc > 1
6140 && tdata->phdr[0].p_type == PT_PHDR
6141 && (bed->elf_backend_allow_non_load_phdr == NULL
6142 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6143 alloc))
6144 && tdata->phdr[1].p_type == PT_LOAD
6145 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6146 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz)
6147 < (tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6148 {
6149 /* The fix for this error is usually to edit the linker script being
6150 used and set up the program headers manually. Either that or
6151 leave room for the headers at the start of the SECTIONS. */
6152 _bfd_error_handler (_("\
6153 %B: error: PHDR segment not covered by LOAD segment"),
6154 abfd);
6155 return FALSE;
6156 }
6157
6158 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6159 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6160 return FALSE;
6161 }
6162
6163 return TRUE;
6164 }
6165
6166 static bfd_boolean
6167 prep_headers (bfd *abfd)
6168 {
6169 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6170 struct elf_strtab_hash *shstrtab;
6171 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6172
6173 i_ehdrp = elf_elfheader (abfd);
6174
6175 shstrtab = _bfd_elf_strtab_init ();
6176 if (shstrtab == NULL)
6177 return FALSE;
6178
6179 elf_shstrtab (abfd) = shstrtab;
6180
6181 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6182 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6183 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6184 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6185
6186 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6187 i_ehdrp->e_ident[EI_DATA] =
6188 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6189 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6190
6191 if ((abfd->flags & DYNAMIC) != 0)
6192 i_ehdrp->e_type = ET_DYN;
6193 else if ((abfd->flags & EXEC_P) != 0)
6194 i_ehdrp->e_type = ET_EXEC;
6195 else if (bfd_get_format (abfd) == bfd_core)
6196 i_ehdrp->e_type = ET_CORE;
6197 else
6198 i_ehdrp->e_type = ET_REL;
6199
6200 switch (bfd_get_arch (abfd))
6201 {
6202 case bfd_arch_unknown:
6203 i_ehdrp->e_machine = EM_NONE;
6204 break;
6205
6206 /* There used to be a long list of cases here, each one setting
6207 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6208 in the corresponding bfd definition. To avoid duplication,
6209 the switch was removed. Machines that need special handling
6210 can generally do it in elf_backend_final_write_processing(),
6211 unless they need the information earlier than the final write.
6212 Such need can generally be supplied by replacing the tests for
6213 e_machine with the conditions used to determine it. */
6214 default:
6215 i_ehdrp->e_machine = bed->elf_machine_code;
6216 }
6217
6218 i_ehdrp->e_version = bed->s->ev_current;
6219 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6220
6221 /* No program header, for now. */
6222 i_ehdrp->e_phoff = 0;
6223 i_ehdrp->e_phentsize = 0;
6224 i_ehdrp->e_phnum = 0;
6225
6226 /* Each bfd section is section header entry. */
6227 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6228 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6229
6230 /* If we're building an executable, we'll need a program header table. */
6231 if (abfd->flags & EXEC_P)
6232 /* It all happens later. */
6233 ;
6234 else
6235 {
6236 i_ehdrp->e_phentsize = 0;
6237 i_ehdrp->e_phoff = 0;
6238 }
6239
6240 elf_tdata (abfd)->symtab_hdr.sh_name =
6241 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6242 elf_tdata (abfd)->strtab_hdr.sh_name =
6243 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6244 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6245 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6246 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6247 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6248 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6249 return FALSE;
6250
6251 return TRUE;
6252 }
6253
6254 /* Assign file positions for all the reloc sections which are not part
6255 of the loadable file image, and the file position of section headers. */
6256
6257 static bfd_boolean
6258 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6259 {
6260 file_ptr off;
6261 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6262 Elf_Internal_Shdr *shdrp;
6263 Elf_Internal_Ehdr *i_ehdrp;
6264 const struct elf_backend_data *bed;
6265
6266 off = elf_next_file_pos (abfd);
6267
6268 shdrpp = elf_elfsections (abfd);
6269 end_shdrpp = shdrpp + elf_numsections (abfd);
6270 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6271 {
6272 shdrp = *shdrpp;
6273 if (shdrp->sh_offset == -1)
6274 {
6275 asection *sec = shdrp->bfd_section;
6276 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6277 || shdrp->sh_type == SHT_RELA);
6278 if (is_rel
6279 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6280 {
6281 if (!is_rel)
6282 {
6283 const char *name = sec->name;
6284 struct bfd_elf_section_data *d;
6285
6286 /* Compress DWARF debug sections. */
6287 if (!bfd_compress_section (abfd, sec,
6288 shdrp->contents))
6289 return FALSE;
6290
6291 if (sec->compress_status == COMPRESS_SECTION_DONE
6292 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6293 {
6294 /* If section is compressed with zlib-gnu, convert
6295 section name from .debug_* to .zdebug_*. */
6296 char *new_name
6297 = convert_debug_to_zdebug (abfd, name);
6298 if (new_name == NULL)
6299 return FALSE;
6300 name = new_name;
6301 }
6302 /* Add section name to section name section. */
6303 if (shdrp->sh_name != (unsigned int) -1)
6304 abort ();
6305 shdrp->sh_name
6306 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6307 name, FALSE);
6308 d = elf_section_data (sec);
6309
6310 /* Add reloc section name to section name section. */
6311 if (d->rel.hdr
6312 && !_bfd_elf_set_reloc_sh_name (abfd,
6313 d->rel.hdr,
6314 name, FALSE))
6315 return FALSE;
6316 if (d->rela.hdr
6317 && !_bfd_elf_set_reloc_sh_name (abfd,
6318 d->rela.hdr,
6319 name, TRUE))
6320 return FALSE;
6321
6322 /* Update section size and contents. */
6323 shdrp->sh_size = sec->size;
6324 shdrp->contents = sec->contents;
6325 shdrp->bfd_section->contents = NULL;
6326 }
6327 off = _bfd_elf_assign_file_position_for_section (shdrp,
6328 off,
6329 TRUE);
6330 }
6331 }
6332 }
6333
6334 /* Place section name section after DWARF debug sections have been
6335 compressed. */
6336 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6337 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6338 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6339 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6340
6341 /* Place the section headers. */
6342 i_ehdrp = elf_elfheader (abfd);
6343 bed = get_elf_backend_data (abfd);
6344 off = align_file_position (off, 1 << bed->s->log_file_align);
6345 i_ehdrp->e_shoff = off;
6346 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6347 elf_next_file_pos (abfd) = off;
6348
6349 return TRUE;
6350 }
6351
6352 bfd_boolean
6353 _bfd_elf_write_object_contents (bfd *abfd)
6354 {
6355 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6356 Elf_Internal_Shdr **i_shdrp;
6357 bfd_boolean failed;
6358 unsigned int count, num_sec;
6359 struct elf_obj_tdata *t;
6360
6361 if (! abfd->output_has_begun
6362 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6363 return FALSE;
6364
6365 i_shdrp = elf_elfsections (abfd);
6366
6367 failed = FALSE;
6368 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6369 if (failed)
6370 return FALSE;
6371
6372 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6373 return FALSE;
6374
6375 /* After writing the headers, we need to write the sections too... */
6376 num_sec = elf_numsections (abfd);
6377 for (count = 1; count < num_sec; count++)
6378 {
6379 i_shdrp[count]->sh_name
6380 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6381 i_shdrp[count]->sh_name);
6382 if (bed->elf_backend_section_processing)
6383 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6384 return FALSE;
6385 if (i_shdrp[count]->contents)
6386 {
6387 bfd_size_type amt = i_shdrp[count]->sh_size;
6388
6389 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6390 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6391 return FALSE;
6392 }
6393 }
6394
6395 /* Write out the section header names. */
6396 t = elf_tdata (abfd);
6397 if (elf_shstrtab (abfd) != NULL
6398 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6399 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6400 return FALSE;
6401
6402 if (bed->elf_backend_final_write_processing)
6403 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6404
6405 if (!bed->s->write_shdrs_and_ehdr (abfd))
6406 return FALSE;
6407
6408 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6409 if (t->o->build_id.after_write_object_contents != NULL)
6410 return (*t->o->build_id.after_write_object_contents) (abfd);
6411
6412 return TRUE;
6413 }
6414
6415 bfd_boolean
6416 _bfd_elf_write_corefile_contents (bfd *abfd)
6417 {
6418 /* Hopefully this can be done just like an object file. */
6419 return _bfd_elf_write_object_contents (abfd);
6420 }
6421
6422 /* Given a section, search the header to find them. */
6423
6424 unsigned int
6425 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6426 {
6427 const struct elf_backend_data *bed;
6428 unsigned int sec_index;
6429
6430 if (elf_section_data (asect) != NULL
6431 && elf_section_data (asect)->this_idx != 0)
6432 return elf_section_data (asect)->this_idx;
6433
6434 if (bfd_is_abs_section (asect))
6435 sec_index = SHN_ABS;
6436 else if (bfd_is_com_section (asect))
6437 sec_index = SHN_COMMON;
6438 else if (bfd_is_und_section (asect))
6439 sec_index = SHN_UNDEF;
6440 else
6441 sec_index = SHN_BAD;
6442
6443 bed = get_elf_backend_data (abfd);
6444 if (bed->elf_backend_section_from_bfd_section)
6445 {
6446 int retval = sec_index;
6447
6448 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6449 return retval;
6450 }
6451
6452 if (sec_index == SHN_BAD)
6453 bfd_set_error (bfd_error_nonrepresentable_section);
6454
6455 return sec_index;
6456 }
6457
6458 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6459 on error. */
6460
6461 int
6462 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6463 {
6464 asymbol *asym_ptr = *asym_ptr_ptr;
6465 int idx;
6466 flagword flags = asym_ptr->flags;
6467
6468 /* When gas creates relocations against local labels, it creates its
6469 own symbol for the section, but does put the symbol into the
6470 symbol chain, so udata is 0. When the linker is generating
6471 relocatable output, this section symbol may be for one of the
6472 input sections rather than the output section. */
6473 if (asym_ptr->udata.i == 0
6474 && (flags & BSF_SECTION_SYM)
6475 && asym_ptr->section)
6476 {
6477 asection *sec;
6478 int indx;
6479
6480 sec = asym_ptr->section;
6481 if (sec->owner != abfd && sec->output_section != NULL)
6482 sec = sec->output_section;
6483 if (sec->owner == abfd
6484 && (indx = sec->index) < elf_num_section_syms (abfd)
6485 && elf_section_syms (abfd)[indx] != NULL)
6486 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6487 }
6488
6489 idx = asym_ptr->udata.i;
6490
6491 if (idx == 0)
6492 {
6493 /* This case can occur when using --strip-symbol on a symbol
6494 which is used in a relocation entry. */
6495 _bfd_error_handler
6496 /* xgettext:c-format */
6497 (_("%B: symbol `%s' required but not present"),
6498 abfd, bfd_asymbol_name (asym_ptr));
6499 bfd_set_error (bfd_error_no_symbols);
6500 return -1;
6501 }
6502
6503 #if DEBUG & 4
6504 {
6505 fprintf (stderr,
6506 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6507 (long) asym_ptr, asym_ptr->name, idx, flags);
6508 fflush (stderr);
6509 }
6510 #endif
6511
6512 return idx;
6513 }
6514
6515 /* Rewrite program header information. */
6516
6517 static bfd_boolean
6518 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6519 {
6520 Elf_Internal_Ehdr *iehdr;
6521 struct elf_segment_map *map;
6522 struct elf_segment_map *map_first;
6523 struct elf_segment_map **pointer_to_map;
6524 Elf_Internal_Phdr *segment;
6525 asection *section;
6526 unsigned int i;
6527 unsigned int num_segments;
6528 bfd_boolean phdr_included = FALSE;
6529 bfd_boolean p_paddr_valid;
6530 bfd_vma maxpagesize;
6531 struct elf_segment_map *phdr_adjust_seg = NULL;
6532 unsigned int phdr_adjust_num = 0;
6533 const struct elf_backend_data *bed;
6534
6535 bed = get_elf_backend_data (ibfd);
6536 iehdr = elf_elfheader (ibfd);
6537
6538 map_first = NULL;
6539 pointer_to_map = &map_first;
6540
6541 num_segments = elf_elfheader (ibfd)->e_phnum;
6542 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6543
6544 /* Returns the end address of the segment + 1. */
6545 #define SEGMENT_END(segment, start) \
6546 (start + (segment->p_memsz > segment->p_filesz \
6547 ? segment->p_memsz : segment->p_filesz))
6548
6549 #define SECTION_SIZE(section, segment) \
6550 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6551 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6552 ? section->size : 0)
6553
6554 /* Returns TRUE if the given section is contained within
6555 the given segment. VMA addresses are compared. */
6556 #define IS_CONTAINED_BY_VMA(section, segment) \
6557 (section->vma >= segment->p_vaddr \
6558 && (section->vma + SECTION_SIZE (section, segment) \
6559 <= (SEGMENT_END (segment, segment->p_vaddr))))
6560
6561 /* Returns TRUE if the given section is contained within
6562 the given segment. LMA addresses are compared. */
6563 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6564 (section->lma >= base \
6565 && (section->lma + SECTION_SIZE (section, segment) \
6566 <= SEGMENT_END (segment, base)))
6567
6568 /* Handle PT_NOTE segment. */
6569 #define IS_NOTE(p, s) \
6570 (p->p_type == PT_NOTE \
6571 && elf_section_type (s) == SHT_NOTE \
6572 && (bfd_vma) s->filepos >= p->p_offset \
6573 && ((bfd_vma) s->filepos + s->size \
6574 <= p->p_offset + p->p_filesz))
6575
6576 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6577 etc. */
6578 #define IS_COREFILE_NOTE(p, s) \
6579 (IS_NOTE (p, s) \
6580 && bfd_get_format (ibfd) == bfd_core \
6581 && s->vma == 0 \
6582 && s->lma == 0)
6583
6584 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6585 linker, which generates a PT_INTERP section with p_vaddr and
6586 p_memsz set to 0. */
6587 #define IS_SOLARIS_PT_INTERP(p, s) \
6588 (p->p_vaddr == 0 \
6589 && p->p_paddr == 0 \
6590 && p->p_memsz == 0 \
6591 && p->p_filesz > 0 \
6592 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6593 && s->size > 0 \
6594 && (bfd_vma) s->filepos >= p->p_offset \
6595 && ((bfd_vma) s->filepos + s->size \
6596 <= p->p_offset + p->p_filesz))
6597
6598 /* Decide if the given section should be included in the given segment.
6599 A section will be included if:
6600 1. It is within the address space of the segment -- we use the LMA
6601 if that is set for the segment and the VMA otherwise,
6602 2. It is an allocated section or a NOTE section in a PT_NOTE
6603 segment.
6604 3. There is an output section associated with it,
6605 4. The section has not already been allocated to a previous segment.
6606 5. PT_GNU_STACK segments do not include any sections.
6607 6. PT_TLS segment includes only SHF_TLS sections.
6608 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6609 8. PT_DYNAMIC should not contain empty sections at the beginning
6610 (with the possible exception of .dynamic). */
6611 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6612 ((((segment->p_paddr \
6613 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6614 : IS_CONTAINED_BY_VMA (section, segment)) \
6615 && (section->flags & SEC_ALLOC) != 0) \
6616 || IS_NOTE (segment, section)) \
6617 && segment->p_type != PT_GNU_STACK \
6618 && (segment->p_type != PT_TLS \
6619 || (section->flags & SEC_THREAD_LOCAL)) \
6620 && (segment->p_type == PT_LOAD \
6621 || segment->p_type == PT_TLS \
6622 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6623 && (segment->p_type != PT_DYNAMIC \
6624 || SECTION_SIZE (section, segment) > 0 \
6625 || (segment->p_paddr \
6626 ? segment->p_paddr != section->lma \
6627 : segment->p_vaddr != section->vma) \
6628 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6629 == 0)) \
6630 && !section->segment_mark)
6631
6632 /* If the output section of a section in the input segment is NULL,
6633 it is removed from the corresponding output segment. */
6634 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6635 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6636 && section->output_section != NULL)
6637
6638 /* Returns TRUE iff seg1 starts after the end of seg2. */
6639 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6640 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6641
6642 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6643 their VMA address ranges and their LMA address ranges overlap.
6644 It is possible to have overlapping VMA ranges without overlapping LMA
6645 ranges. RedBoot images for example can have both .data and .bss mapped
6646 to the same VMA range, but with the .data section mapped to a different
6647 LMA. */
6648 #define SEGMENT_OVERLAPS(seg1, seg2) \
6649 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6650 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6651 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6652 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6653
6654 /* Initialise the segment mark field. */
6655 for (section = ibfd->sections; section != NULL; section = section->next)
6656 section->segment_mark = FALSE;
6657
6658 /* The Solaris linker creates program headers in which all the
6659 p_paddr fields are zero. When we try to objcopy or strip such a
6660 file, we get confused. Check for this case, and if we find it
6661 don't set the p_paddr_valid fields. */
6662 p_paddr_valid = FALSE;
6663 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6664 i < num_segments;
6665 i++, segment++)
6666 if (segment->p_paddr != 0)
6667 {
6668 p_paddr_valid = TRUE;
6669 break;
6670 }
6671
6672 /* Scan through the segments specified in the program header
6673 of the input BFD. For this first scan we look for overlaps
6674 in the loadable segments. These can be created by weird
6675 parameters to objcopy. Also, fix some solaris weirdness. */
6676 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6677 i < num_segments;
6678 i++, segment++)
6679 {
6680 unsigned int j;
6681 Elf_Internal_Phdr *segment2;
6682
6683 if (segment->p_type == PT_INTERP)
6684 for (section = ibfd->sections; section; section = section->next)
6685 if (IS_SOLARIS_PT_INTERP (segment, section))
6686 {
6687 /* Mininal change so that the normal section to segment
6688 assignment code will work. */
6689 segment->p_vaddr = section->vma;
6690 break;
6691 }
6692
6693 if (segment->p_type != PT_LOAD)
6694 {
6695 /* Remove PT_GNU_RELRO segment. */
6696 if (segment->p_type == PT_GNU_RELRO)
6697 segment->p_type = PT_NULL;
6698 continue;
6699 }
6700
6701 /* Determine if this segment overlaps any previous segments. */
6702 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6703 {
6704 bfd_signed_vma extra_length;
6705
6706 if (segment2->p_type != PT_LOAD
6707 || !SEGMENT_OVERLAPS (segment, segment2))
6708 continue;
6709
6710 /* Merge the two segments together. */
6711 if (segment2->p_vaddr < segment->p_vaddr)
6712 {
6713 /* Extend SEGMENT2 to include SEGMENT and then delete
6714 SEGMENT. */
6715 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6716 - SEGMENT_END (segment2, segment2->p_vaddr));
6717
6718 if (extra_length > 0)
6719 {
6720 segment2->p_memsz += extra_length;
6721 segment2->p_filesz += extra_length;
6722 }
6723
6724 segment->p_type = PT_NULL;
6725
6726 /* Since we have deleted P we must restart the outer loop. */
6727 i = 0;
6728 segment = elf_tdata (ibfd)->phdr;
6729 break;
6730 }
6731 else
6732 {
6733 /* Extend SEGMENT to include SEGMENT2 and then delete
6734 SEGMENT2. */
6735 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6736 - SEGMENT_END (segment, segment->p_vaddr));
6737
6738 if (extra_length > 0)
6739 {
6740 segment->p_memsz += extra_length;
6741 segment->p_filesz += extra_length;
6742 }
6743
6744 segment2->p_type = PT_NULL;
6745 }
6746 }
6747 }
6748
6749 /* The second scan attempts to assign sections to segments. */
6750 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6751 i < num_segments;
6752 i++, segment++)
6753 {
6754 unsigned int section_count;
6755 asection **sections;
6756 asection *output_section;
6757 unsigned int isec;
6758 bfd_vma matching_lma;
6759 bfd_vma suggested_lma;
6760 unsigned int j;
6761 bfd_size_type amt;
6762 asection *first_section;
6763 bfd_boolean first_matching_lma;
6764 bfd_boolean first_suggested_lma;
6765
6766 if (segment->p_type == PT_NULL)
6767 continue;
6768
6769 first_section = NULL;
6770 /* Compute how many sections might be placed into this segment. */
6771 for (section = ibfd->sections, section_count = 0;
6772 section != NULL;
6773 section = section->next)
6774 {
6775 /* Find the first section in the input segment, which may be
6776 removed from the corresponding output segment. */
6777 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6778 {
6779 if (first_section == NULL)
6780 first_section = section;
6781 if (section->output_section != NULL)
6782 ++section_count;
6783 }
6784 }
6785
6786 /* Allocate a segment map big enough to contain
6787 all of the sections we have selected. */
6788 amt = sizeof (struct elf_segment_map);
6789 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6790 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6791 if (map == NULL)
6792 return FALSE;
6793
6794 /* Initialise the fields of the segment map. Default to
6795 using the physical address of the segment in the input BFD. */
6796 map->next = NULL;
6797 map->p_type = segment->p_type;
6798 map->p_flags = segment->p_flags;
6799 map->p_flags_valid = 1;
6800
6801 /* If the first section in the input segment is removed, there is
6802 no need to preserve segment physical address in the corresponding
6803 output segment. */
6804 if (!first_section || first_section->output_section != NULL)
6805 {
6806 map->p_paddr = segment->p_paddr;
6807 map->p_paddr_valid = p_paddr_valid;
6808 }
6809
6810 /* Determine if this segment contains the ELF file header
6811 and if it contains the program headers themselves. */
6812 map->includes_filehdr = (segment->p_offset == 0
6813 && segment->p_filesz >= iehdr->e_ehsize);
6814 map->includes_phdrs = 0;
6815
6816 if (!phdr_included || segment->p_type != PT_LOAD)
6817 {
6818 map->includes_phdrs =
6819 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6820 && (segment->p_offset + segment->p_filesz
6821 >= ((bfd_vma) iehdr->e_phoff
6822 + iehdr->e_phnum * iehdr->e_phentsize)));
6823
6824 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6825 phdr_included = TRUE;
6826 }
6827
6828 if (section_count == 0)
6829 {
6830 /* Special segments, such as the PT_PHDR segment, may contain
6831 no sections, but ordinary, loadable segments should contain
6832 something. They are allowed by the ELF spec however, so only
6833 a warning is produced.
6834 There is however the valid use case of embedded systems which
6835 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6836 flash memory with zeros. No warning is shown for that case. */
6837 if (segment->p_type == PT_LOAD
6838 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6839 /* xgettext:c-format */
6840 _bfd_error_handler (_("%B: warning: Empty loadable segment detected"
6841 " at vaddr=%#Lx, is this intentional?"),
6842 ibfd, segment->p_vaddr);
6843
6844 map->count = 0;
6845 *pointer_to_map = map;
6846 pointer_to_map = &map->next;
6847
6848 continue;
6849 }
6850
6851 /* Now scan the sections in the input BFD again and attempt
6852 to add their corresponding output sections to the segment map.
6853 The problem here is how to handle an output section which has
6854 been moved (ie had its LMA changed). There are four possibilities:
6855
6856 1. None of the sections have been moved.
6857 In this case we can continue to use the segment LMA from the
6858 input BFD.
6859
6860 2. All of the sections have been moved by the same amount.
6861 In this case we can change the segment's LMA to match the LMA
6862 of the first section.
6863
6864 3. Some of the sections have been moved, others have not.
6865 In this case those sections which have not been moved can be
6866 placed in the current segment which will have to have its size,
6867 and possibly its LMA changed, and a new segment or segments will
6868 have to be created to contain the other sections.
6869
6870 4. The sections have been moved, but not by the same amount.
6871 In this case we can change the segment's LMA to match the LMA
6872 of the first section and we will have to create a new segment
6873 or segments to contain the other sections.
6874
6875 In order to save time, we allocate an array to hold the section
6876 pointers that we are interested in. As these sections get assigned
6877 to a segment, they are removed from this array. */
6878
6879 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6880 if (sections == NULL)
6881 return FALSE;
6882
6883 /* Step One: Scan for segment vs section LMA conflicts.
6884 Also add the sections to the section array allocated above.
6885 Also add the sections to the current segment. In the common
6886 case, where the sections have not been moved, this means that
6887 we have completely filled the segment, and there is nothing
6888 more to do. */
6889 isec = 0;
6890 matching_lma = 0;
6891 suggested_lma = 0;
6892 first_matching_lma = TRUE;
6893 first_suggested_lma = TRUE;
6894
6895 for (section = first_section, j = 0;
6896 section != NULL;
6897 section = section->next)
6898 {
6899 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6900 {
6901 output_section = section->output_section;
6902
6903 sections[j++] = section;
6904
6905 /* The Solaris native linker always sets p_paddr to 0.
6906 We try to catch that case here, and set it to the
6907 correct value. Note - some backends require that
6908 p_paddr be left as zero. */
6909 if (!p_paddr_valid
6910 && segment->p_vaddr != 0
6911 && !bed->want_p_paddr_set_to_zero
6912 && isec == 0
6913 && output_section->lma != 0
6914 && output_section->vma == (segment->p_vaddr
6915 + (map->includes_filehdr
6916 ? iehdr->e_ehsize
6917 : 0)
6918 + (map->includes_phdrs
6919 ? (iehdr->e_phnum
6920 * iehdr->e_phentsize)
6921 : 0)))
6922 map->p_paddr = segment->p_vaddr;
6923
6924 /* Match up the physical address of the segment with the
6925 LMA address of the output section. */
6926 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6927 || IS_COREFILE_NOTE (segment, section)
6928 || (bed->want_p_paddr_set_to_zero
6929 && IS_CONTAINED_BY_VMA (output_section, segment)))
6930 {
6931 if (first_matching_lma || output_section->lma < matching_lma)
6932 {
6933 matching_lma = output_section->lma;
6934 first_matching_lma = FALSE;
6935 }
6936
6937 /* We assume that if the section fits within the segment
6938 then it does not overlap any other section within that
6939 segment. */
6940 map->sections[isec++] = output_section;
6941 }
6942 else if (first_suggested_lma)
6943 {
6944 suggested_lma = output_section->lma;
6945 first_suggested_lma = FALSE;
6946 }
6947
6948 if (j == section_count)
6949 break;
6950 }
6951 }
6952
6953 BFD_ASSERT (j == section_count);
6954
6955 /* Step Two: Adjust the physical address of the current segment,
6956 if necessary. */
6957 if (isec == section_count)
6958 {
6959 /* All of the sections fitted within the segment as currently
6960 specified. This is the default case. Add the segment to
6961 the list of built segments and carry on to process the next
6962 program header in the input BFD. */
6963 map->count = section_count;
6964 *pointer_to_map = map;
6965 pointer_to_map = &map->next;
6966
6967 if (p_paddr_valid
6968 && !bed->want_p_paddr_set_to_zero
6969 && matching_lma != map->p_paddr
6970 && !map->includes_filehdr
6971 && !map->includes_phdrs)
6972 /* There is some padding before the first section in the
6973 segment. So, we must account for that in the output
6974 segment's vma. */
6975 map->p_vaddr_offset = matching_lma - map->p_paddr;
6976
6977 free (sections);
6978 continue;
6979 }
6980 else
6981 {
6982 if (!first_matching_lma)
6983 {
6984 /* At least one section fits inside the current segment.
6985 Keep it, but modify its physical address to match the
6986 LMA of the first section that fitted. */
6987 map->p_paddr = matching_lma;
6988 }
6989 else
6990 {
6991 /* None of the sections fitted inside the current segment.
6992 Change the current segment's physical address to match
6993 the LMA of the first section. */
6994 map->p_paddr = suggested_lma;
6995 }
6996
6997 /* Offset the segment physical address from the lma
6998 to allow for space taken up by elf headers. */
6999 if (map->includes_filehdr)
7000 {
7001 if (map->p_paddr >= iehdr->e_ehsize)
7002 map->p_paddr -= iehdr->e_ehsize;
7003 else
7004 {
7005 map->includes_filehdr = FALSE;
7006 map->includes_phdrs = FALSE;
7007 }
7008 }
7009
7010 if (map->includes_phdrs)
7011 {
7012 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
7013 {
7014 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7015
7016 /* iehdr->e_phnum is just an estimate of the number
7017 of program headers that we will need. Make a note
7018 here of the number we used and the segment we chose
7019 to hold these headers, so that we can adjust the
7020 offset when we know the correct value. */
7021 phdr_adjust_num = iehdr->e_phnum;
7022 phdr_adjust_seg = map;
7023 }
7024 else
7025 map->includes_phdrs = FALSE;
7026 }
7027 }
7028
7029 /* Step Three: Loop over the sections again, this time assigning
7030 those that fit to the current segment and removing them from the
7031 sections array; but making sure not to leave large gaps. Once all
7032 possible sections have been assigned to the current segment it is
7033 added to the list of built segments and if sections still remain
7034 to be assigned, a new segment is constructed before repeating
7035 the loop. */
7036 isec = 0;
7037 do
7038 {
7039 map->count = 0;
7040 suggested_lma = 0;
7041 first_suggested_lma = TRUE;
7042
7043 /* Fill the current segment with sections that fit. */
7044 for (j = 0; j < section_count; j++)
7045 {
7046 section = sections[j];
7047
7048 if (section == NULL)
7049 continue;
7050
7051 output_section = section->output_section;
7052
7053 BFD_ASSERT (output_section != NULL);
7054
7055 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7056 || IS_COREFILE_NOTE (segment, section))
7057 {
7058 if (map->count == 0)
7059 {
7060 /* If the first section in a segment does not start at
7061 the beginning of the segment, then something is
7062 wrong. */
7063 if (output_section->lma
7064 != (map->p_paddr
7065 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
7066 + (map->includes_phdrs
7067 ? iehdr->e_phnum * iehdr->e_phentsize
7068 : 0)))
7069 abort ();
7070 }
7071 else
7072 {
7073 asection *prev_sec;
7074
7075 prev_sec = map->sections[map->count - 1];
7076
7077 /* If the gap between the end of the previous section
7078 and the start of this section is more than
7079 maxpagesize then we need to start a new segment. */
7080 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7081 maxpagesize)
7082 < BFD_ALIGN (output_section->lma, maxpagesize))
7083 || (prev_sec->lma + prev_sec->size
7084 > output_section->lma))
7085 {
7086 if (first_suggested_lma)
7087 {
7088 suggested_lma = output_section->lma;
7089 first_suggested_lma = FALSE;
7090 }
7091
7092 continue;
7093 }
7094 }
7095
7096 map->sections[map->count++] = output_section;
7097 ++isec;
7098 sections[j] = NULL;
7099 section->segment_mark = TRUE;
7100 }
7101 else if (first_suggested_lma)
7102 {
7103 suggested_lma = output_section->lma;
7104 first_suggested_lma = FALSE;
7105 }
7106 }
7107
7108 BFD_ASSERT (map->count > 0);
7109
7110 /* Add the current segment to the list of built segments. */
7111 *pointer_to_map = map;
7112 pointer_to_map = &map->next;
7113
7114 if (isec < section_count)
7115 {
7116 /* We still have not allocated all of the sections to
7117 segments. Create a new segment here, initialise it
7118 and carry on looping. */
7119 amt = sizeof (struct elf_segment_map);
7120 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7121 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7122 if (map == NULL)
7123 {
7124 free (sections);
7125 return FALSE;
7126 }
7127
7128 /* Initialise the fields of the segment map. Set the physical
7129 physical address to the LMA of the first section that has
7130 not yet been assigned. */
7131 map->next = NULL;
7132 map->p_type = segment->p_type;
7133 map->p_flags = segment->p_flags;
7134 map->p_flags_valid = 1;
7135 map->p_paddr = suggested_lma;
7136 map->p_paddr_valid = p_paddr_valid;
7137 map->includes_filehdr = 0;
7138 map->includes_phdrs = 0;
7139 }
7140 }
7141 while (isec < section_count);
7142
7143 free (sections);
7144 }
7145
7146 elf_seg_map (obfd) = map_first;
7147
7148 /* If we had to estimate the number of program headers that were
7149 going to be needed, then check our estimate now and adjust
7150 the offset if necessary. */
7151 if (phdr_adjust_seg != NULL)
7152 {
7153 unsigned int count;
7154
7155 for (count = 0, map = map_first; map != NULL; map = map->next)
7156 count++;
7157
7158 if (count > phdr_adjust_num)
7159 phdr_adjust_seg->p_paddr
7160 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7161 }
7162
7163 #undef SEGMENT_END
7164 #undef SECTION_SIZE
7165 #undef IS_CONTAINED_BY_VMA
7166 #undef IS_CONTAINED_BY_LMA
7167 #undef IS_NOTE
7168 #undef IS_COREFILE_NOTE
7169 #undef IS_SOLARIS_PT_INTERP
7170 #undef IS_SECTION_IN_INPUT_SEGMENT
7171 #undef INCLUDE_SECTION_IN_SEGMENT
7172 #undef SEGMENT_AFTER_SEGMENT
7173 #undef SEGMENT_OVERLAPS
7174 return TRUE;
7175 }
7176
7177 /* Copy ELF program header information. */
7178
7179 static bfd_boolean
7180 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7181 {
7182 Elf_Internal_Ehdr *iehdr;
7183 struct elf_segment_map *map;
7184 struct elf_segment_map *map_first;
7185 struct elf_segment_map **pointer_to_map;
7186 Elf_Internal_Phdr *segment;
7187 unsigned int i;
7188 unsigned int num_segments;
7189 bfd_boolean phdr_included = FALSE;
7190 bfd_boolean p_paddr_valid;
7191
7192 iehdr = elf_elfheader (ibfd);
7193
7194 map_first = NULL;
7195 pointer_to_map = &map_first;
7196
7197 /* If all the segment p_paddr fields are zero, don't set
7198 map->p_paddr_valid. */
7199 p_paddr_valid = FALSE;
7200 num_segments = elf_elfheader (ibfd)->e_phnum;
7201 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7202 i < num_segments;
7203 i++, segment++)
7204 if (segment->p_paddr != 0)
7205 {
7206 p_paddr_valid = TRUE;
7207 break;
7208 }
7209
7210 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7211 i < num_segments;
7212 i++, segment++)
7213 {
7214 asection *section;
7215 unsigned int section_count;
7216 bfd_size_type amt;
7217 Elf_Internal_Shdr *this_hdr;
7218 asection *first_section = NULL;
7219 asection *lowest_section;
7220
7221 /* Compute how many sections are in this segment. */
7222 for (section = ibfd->sections, section_count = 0;
7223 section != NULL;
7224 section = section->next)
7225 {
7226 this_hdr = &(elf_section_data(section)->this_hdr);
7227 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7228 {
7229 if (first_section == NULL)
7230 first_section = section;
7231 section_count++;
7232 }
7233 }
7234
7235 /* Allocate a segment map big enough to contain
7236 all of the sections we have selected. */
7237 amt = sizeof (struct elf_segment_map);
7238 if (section_count != 0)
7239 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7240 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7241 if (map == NULL)
7242 return FALSE;
7243
7244 /* Initialize the fields of the output segment map with the
7245 input segment. */
7246 map->next = NULL;
7247 map->p_type = segment->p_type;
7248 map->p_flags = segment->p_flags;
7249 map->p_flags_valid = 1;
7250 map->p_paddr = segment->p_paddr;
7251 map->p_paddr_valid = p_paddr_valid;
7252 map->p_align = segment->p_align;
7253 map->p_align_valid = 1;
7254 map->p_vaddr_offset = 0;
7255
7256 if (map->p_type == PT_GNU_RELRO
7257 || map->p_type == PT_GNU_STACK)
7258 {
7259 /* The PT_GNU_RELRO segment may contain the first a few
7260 bytes in the .got.plt section even if the whole .got.plt
7261 section isn't in the PT_GNU_RELRO segment. We won't
7262 change the size of the PT_GNU_RELRO segment.
7263 Similarly, PT_GNU_STACK size is significant on uclinux
7264 systems. */
7265 map->p_size = segment->p_memsz;
7266 map->p_size_valid = 1;
7267 }
7268
7269 /* Determine if this segment contains the ELF file header
7270 and if it contains the program headers themselves. */
7271 map->includes_filehdr = (segment->p_offset == 0
7272 && segment->p_filesz >= iehdr->e_ehsize);
7273
7274 map->includes_phdrs = 0;
7275 if (! phdr_included || segment->p_type != PT_LOAD)
7276 {
7277 map->includes_phdrs =
7278 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7279 && (segment->p_offset + segment->p_filesz
7280 >= ((bfd_vma) iehdr->e_phoff
7281 + iehdr->e_phnum * iehdr->e_phentsize)));
7282
7283 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7284 phdr_included = TRUE;
7285 }
7286
7287 lowest_section = NULL;
7288 if (section_count != 0)
7289 {
7290 unsigned int isec = 0;
7291
7292 for (section = first_section;
7293 section != NULL;
7294 section = section->next)
7295 {
7296 this_hdr = &(elf_section_data(section)->this_hdr);
7297 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7298 {
7299 map->sections[isec++] = section->output_section;
7300 if ((section->flags & SEC_ALLOC) != 0)
7301 {
7302 bfd_vma seg_off;
7303
7304 if (lowest_section == NULL
7305 || section->lma < lowest_section->lma)
7306 lowest_section = section;
7307
7308 /* Section lmas are set up from PT_LOAD header
7309 p_paddr in _bfd_elf_make_section_from_shdr.
7310 If this header has a p_paddr that disagrees
7311 with the section lma, flag the p_paddr as
7312 invalid. */
7313 if ((section->flags & SEC_LOAD) != 0)
7314 seg_off = this_hdr->sh_offset - segment->p_offset;
7315 else
7316 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7317 if (section->lma - segment->p_paddr != seg_off)
7318 map->p_paddr_valid = FALSE;
7319 }
7320 if (isec == section_count)
7321 break;
7322 }
7323 }
7324 }
7325
7326 if (map->includes_filehdr && lowest_section != NULL)
7327 /* We need to keep the space used by the headers fixed. */
7328 map->header_size = lowest_section->vma - segment->p_vaddr;
7329
7330 if (!map->includes_phdrs
7331 && !map->includes_filehdr
7332 && map->p_paddr_valid)
7333 /* There is some other padding before the first section. */
7334 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7335 - segment->p_paddr);
7336
7337 map->count = section_count;
7338 *pointer_to_map = map;
7339 pointer_to_map = &map->next;
7340 }
7341
7342 elf_seg_map (obfd) = map_first;
7343 return TRUE;
7344 }
7345
7346 /* Copy private BFD data. This copies or rewrites ELF program header
7347 information. */
7348
7349 static bfd_boolean
7350 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7351 {
7352 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7353 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7354 return TRUE;
7355
7356 if (elf_tdata (ibfd)->phdr == NULL)
7357 return TRUE;
7358
7359 if (ibfd->xvec == obfd->xvec)
7360 {
7361 /* Check to see if any sections in the input BFD
7362 covered by ELF program header have changed. */
7363 Elf_Internal_Phdr *segment;
7364 asection *section, *osec;
7365 unsigned int i, num_segments;
7366 Elf_Internal_Shdr *this_hdr;
7367 const struct elf_backend_data *bed;
7368
7369 bed = get_elf_backend_data (ibfd);
7370
7371 /* Regenerate the segment map if p_paddr is set to 0. */
7372 if (bed->want_p_paddr_set_to_zero)
7373 goto rewrite;
7374
7375 /* Initialize the segment mark field. */
7376 for (section = obfd->sections; section != NULL;
7377 section = section->next)
7378 section->segment_mark = FALSE;
7379
7380 num_segments = elf_elfheader (ibfd)->e_phnum;
7381 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7382 i < num_segments;
7383 i++, segment++)
7384 {
7385 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7386 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7387 which severly confuses things, so always regenerate the segment
7388 map in this case. */
7389 if (segment->p_paddr == 0
7390 && segment->p_memsz == 0
7391 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7392 goto rewrite;
7393
7394 for (section = ibfd->sections;
7395 section != NULL; section = section->next)
7396 {
7397 /* We mark the output section so that we know it comes
7398 from the input BFD. */
7399 osec = section->output_section;
7400 if (osec)
7401 osec->segment_mark = TRUE;
7402
7403 /* Check if this section is covered by the segment. */
7404 this_hdr = &(elf_section_data(section)->this_hdr);
7405 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7406 {
7407 /* FIXME: Check if its output section is changed or
7408 removed. What else do we need to check? */
7409 if (osec == NULL
7410 || section->flags != osec->flags
7411 || section->lma != osec->lma
7412 || section->vma != osec->vma
7413 || section->size != osec->size
7414 || section->rawsize != osec->rawsize
7415 || section->alignment_power != osec->alignment_power)
7416 goto rewrite;
7417 }
7418 }
7419 }
7420
7421 /* Check to see if any output section do not come from the
7422 input BFD. */
7423 for (section = obfd->sections; section != NULL;
7424 section = section->next)
7425 {
7426 if (!section->segment_mark)
7427 goto rewrite;
7428 else
7429 section->segment_mark = FALSE;
7430 }
7431
7432 return copy_elf_program_header (ibfd, obfd);
7433 }
7434
7435 rewrite:
7436 if (ibfd->xvec == obfd->xvec)
7437 {
7438 /* When rewriting program header, set the output maxpagesize to
7439 the maximum alignment of input PT_LOAD segments. */
7440 Elf_Internal_Phdr *segment;
7441 unsigned int i;
7442 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7443 bfd_vma maxpagesize = 0;
7444
7445 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7446 i < num_segments;
7447 i++, segment++)
7448 if (segment->p_type == PT_LOAD
7449 && maxpagesize < segment->p_align)
7450 {
7451 /* PR 17512: file: f17299af. */
7452 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7453 /* xgettext:c-format */
7454 _bfd_error_handler (_("%B: warning: segment alignment of %#Lx"
7455 " is too large"),
7456 ibfd, segment->p_align);
7457 else
7458 maxpagesize = segment->p_align;
7459 }
7460
7461 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7462 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7463 }
7464
7465 return rewrite_elf_program_header (ibfd, obfd);
7466 }
7467
7468 /* Initialize private output section information from input section. */
7469
7470 bfd_boolean
7471 _bfd_elf_init_private_section_data (bfd *ibfd,
7472 asection *isec,
7473 bfd *obfd,
7474 asection *osec,
7475 struct bfd_link_info *link_info)
7476
7477 {
7478 Elf_Internal_Shdr *ihdr, *ohdr;
7479 bfd_boolean final_link = (link_info != NULL
7480 && !bfd_link_relocatable (link_info));
7481
7482 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7483 || obfd->xvec->flavour != bfd_target_elf_flavour)
7484 return TRUE;
7485
7486 BFD_ASSERT (elf_section_data (osec) != NULL);
7487
7488 /* For objcopy and relocatable link, don't copy the output ELF
7489 section type from input if the output BFD section flags have been
7490 set to something different. For a final link allow some flags
7491 that the linker clears to differ. */
7492 if (elf_section_type (osec) == SHT_NULL
7493 && (osec->flags == isec->flags
7494 || (final_link
7495 && ((osec->flags ^ isec->flags)
7496 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7497 elf_section_type (osec) = elf_section_type (isec);
7498
7499 /* FIXME: Is this correct for all OS/PROC specific flags? */
7500 elf_section_flags (osec) |= (elf_section_flags (isec)
7501 & (SHF_MASKOS | SHF_MASKPROC));
7502
7503 /* Copy sh_info from input for mbind section. */
7504 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7505 elf_section_data (osec)->this_hdr.sh_info
7506 = elf_section_data (isec)->this_hdr.sh_info;
7507
7508 /* Set things up for objcopy and relocatable link. The output
7509 SHT_GROUP section will have its elf_next_in_group pointing back
7510 to the input group members. Ignore linker created group section.
7511 See elfNN_ia64_object_p in elfxx-ia64.c. */
7512 if ((link_info == NULL
7513 || !link_info->resolve_section_groups)
7514 && (elf_sec_group (isec) == NULL
7515 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7516 {
7517 if (elf_section_flags (isec) & SHF_GROUP)
7518 elf_section_flags (osec) |= SHF_GROUP;
7519 elf_next_in_group (osec) = elf_next_in_group (isec);
7520 elf_section_data (osec)->group = elf_section_data (isec)->group;
7521 }
7522
7523 /* If not decompress, preserve SHF_COMPRESSED. */
7524 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7525 elf_section_flags (osec) |= (elf_section_flags (isec)
7526 & SHF_COMPRESSED);
7527
7528 ihdr = &elf_section_data (isec)->this_hdr;
7529
7530 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7531 don't use the output section of the linked-to section since it
7532 may be NULL at this point. */
7533 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7534 {
7535 ohdr = &elf_section_data (osec)->this_hdr;
7536 ohdr->sh_flags |= SHF_LINK_ORDER;
7537 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7538 }
7539
7540 osec->use_rela_p = isec->use_rela_p;
7541
7542 return TRUE;
7543 }
7544
7545 /* Copy private section information. This copies over the entsize
7546 field, and sometimes the info field. */
7547
7548 bfd_boolean
7549 _bfd_elf_copy_private_section_data (bfd *ibfd,
7550 asection *isec,
7551 bfd *obfd,
7552 asection *osec)
7553 {
7554 Elf_Internal_Shdr *ihdr, *ohdr;
7555
7556 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7557 || obfd->xvec->flavour != bfd_target_elf_flavour)
7558 return TRUE;
7559
7560 ihdr = &elf_section_data (isec)->this_hdr;
7561 ohdr = &elf_section_data (osec)->this_hdr;
7562
7563 ohdr->sh_entsize = ihdr->sh_entsize;
7564
7565 if (ihdr->sh_type == SHT_SYMTAB
7566 || ihdr->sh_type == SHT_DYNSYM
7567 || ihdr->sh_type == SHT_GNU_verneed
7568 || ihdr->sh_type == SHT_GNU_verdef)
7569 ohdr->sh_info = ihdr->sh_info;
7570
7571 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7572 NULL);
7573 }
7574
7575 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7576 necessary if we are removing either the SHT_GROUP section or any of
7577 the group member sections. DISCARDED is the value that a section's
7578 output_section has if the section will be discarded, NULL when this
7579 function is called from objcopy, bfd_abs_section_ptr when called
7580 from the linker. */
7581
7582 bfd_boolean
7583 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7584 {
7585 asection *isec;
7586
7587 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7588 if (elf_section_type (isec) == SHT_GROUP)
7589 {
7590 asection *first = elf_next_in_group (isec);
7591 asection *s = first;
7592 bfd_size_type removed = 0;
7593
7594 while (s != NULL)
7595 {
7596 /* If this member section is being output but the
7597 SHT_GROUP section is not, then clear the group info
7598 set up by _bfd_elf_copy_private_section_data. */
7599 if (s->output_section != discarded
7600 && isec->output_section == discarded)
7601 {
7602 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7603 elf_group_name (s->output_section) = NULL;
7604 }
7605 /* Conversely, if the member section is not being output
7606 but the SHT_GROUP section is, then adjust its size. */
7607 else if (s->output_section == discarded
7608 && isec->output_section != discarded)
7609 {
7610 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7611 removed += 4;
7612 if (elf_sec->rel.hdr != NULL
7613 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7614 removed += 4;
7615 if (elf_sec->rela.hdr != NULL
7616 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7617 removed += 4;
7618 }
7619 s = elf_next_in_group (s);
7620 if (s == first)
7621 break;
7622 }
7623 if (removed != 0)
7624 {
7625 if (discarded != NULL)
7626 {
7627 /* If we've been called for ld -r, then we need to
7628 adjust the input section size. */
7629 if (isec->rawsize == 0)
7630 isec->rawsize = isec->size;
7631 isec->size = isec->rawsize - removed;
7632 if (isec->size <= 4)
7633 {
7634 isec->size = 0;
7635 isec->flags |= SEC_EXCLUDE;
7636 }
7637 }
7638 else
7639 {
7640 /* Adjust the output section size when called from
7641 objcopy. */
7642 isec->output_section->size -= removed;
7643 if (isec->output_section->size <= 4)
7644 {
7645 isec->output_section->size = 0;
7646 isec->output_section->flags |= SEC_EXCLUDE;
7647 }
7648 }
7649 }
7650 }
7651
7652 return TRUE;
7653 }
7654
7655 /* Copy private header information. */
7656
7657 bfd_boolean
7658 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7659 {
7660 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7661 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7662 return TRUE;
7663
7664 /* Copy over private BFD data if it has not already been copied.
7665 This must be done here, rather than in the copy_private_bfd_data
7666 entry point, because the latter is called after the section
7667 contents have been set, which means that the program headers have
7668 already been worked out. */
7669 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7670 {
7671 if (! copy_private_bfd_data (ibfd, obfd))
7672 return FALSE;
7673 }
7674
7675 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7676 }
7677
7678 /* Copy private symbol information. If this symbol is in a section
7679 which we did not map into a BFD section, try to map the section
7680 index correctly. We use special macro definitions for the mapped
7681 section indices; these definitions are interpreted by the
7682 swap_out_syms function. */
7683
7684 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7685 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7686 #define MAP_STRTAB (SHN_HIOS + 3)
7687 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7688 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7689
7690 bfd_boolean
7691 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7692 asymbol *isymarg,
7693 bfd *obfd,
7694 asymbol *osymarg)
7695 {
7696 elf_symbol_type *isym, *osym;
7697
7698 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7699 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7700 return TRUE;
7701
7702 isym = elf_symbol_from (ibfd, isymarg);
7703 osym = elf_symbol_from (obfd, osymarg);
7704
7705 if (isym != NULL
7706 && isym->internal_elf_sym.st_shndx != 0
7707 && osym != NULL
7708 && bfd_is_abs_section (isym->symbol.section))
7709 {
7710 unsigned int shndx;
7711
7712 shndx = isym->internal_elf_sym.st_shndx;
7713 if (shndx == elf_onesymtab (ibfd))
7714 shndx = MAP_ONESYMTAB;
7715 else if (shndx == elf_dynsymtab (ibfd))
7716 shndx = MAP_DYNSYMTAB;
7717 else if (shndx == elf_strtab_sec (ibfd))
7718 shndx = MAP_STRTAB;
7719 else if (shndx == elf_shstrtab_sec (ibfd))
7720 shndx = MAP_SHSTRTAB;
7721 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7722 shndx = MAP_SYM_SHNDX;
7723 osym->internal_elf_sym.st_shndx = shndx;
7724 }
7725
7726 return TRUE;
7727 }
7728
7729 /* Swap out the symbols. */
7730
7731 static bfd_boolean
7732 swap_out_syms (bfd *abfd,
7733 struct elf_strtab_hash **sttp,
7734 int relocatable_p)
7735 {
7736 const struct elf_backend_data *bed;
7737 int symcount;
7738 asymbol **syms;
7739 struct elf_strtab_hash *stt;
7740 Elf_Internal_Shdr *symtab_hdr;
7741 Elf_Internal_Shdr *symtab_shndx_hdr;
7742 Elf_Internal_Shdr *symstrtab_hdr;
7743 struct elf_sym_strtab *symstrtab;
7744 bfd_byte *outbound_syms;
7745 bfd_byte *outbound_shndx;
7746 unsigned long outbound_syms_index;
7747 unsigned long outbound_shndx_index;
7748 int idx;
7749 unsigned int num_locals;
7750 bfd_size_type amt;
7751 bfd_boolean name_local_sections;
7752
7753 if (!elf_map_symbols (abfd, &num_locals))
7754 return FALSE;
7755
7756 /* Dump out the symtabs. */
7757 stt = _bfd_elf_strtab_init ();
7758 if (stt == NULL)
7759 return FALSE;
7760
7761 bed = get_elf_backend_data (abfd);
7762 symcount = bfd_get_symcount (abfd);
7763 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7764 symtab_hdr->sh_type = SHT_SYMTAB;
7765 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7766 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7767 symtab_hdr->sh_info = num_locals + 1;
7768 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7769
7770 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7771 symstrtab_hdr->sh_type = SHT_STRTAB;
7772
7773 /* Allocate buffer to swap out the .strtab section. */
7774 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7775 * sizeof (*symstrtab));
7776 if (symstrtab == NULL)
7777 {
7778 _bfd_elf_strtab_free (stt);
7779 return FALSE;
7780 }
7781
7782 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7783 bed->s->sizeof_sym);
7784 if (outbound_syms == NULL)
7785 {
7786 error_return:
7787 _bfd_elf_strtab_free (stt);
7788 free (symstrtab);
7789 return FALSE;
7790 }
7791 symtab_hdr->contents = outbound_syms;
7792 outbound_syms_index = 0;
7793
7794 outbound_shndx = NULL;
7795 outbound_shndx_index = 0;
7796
7797 if (elf_symtab_shndx_list (abfd))
7798 {
7799 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7800 if (symtab_shndx_hdr->sh_name != 0)
7801 {
7802 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7803 outbound_shndx = (bfd_byte *)
7804 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7805 if (outbound_shndx == NULL)
7806 goto error_return;
7807
7808 symtab_shndx_hdr->contents = outbound_shndx;
7809 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7810 symtab_shndx_hdr->sh_size = amt;
7811 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7812 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7813 }
7814 /* FIXME: What about any other headers in the list ? */
7815 }
7816
7817 /* Now generate the data (for "contents"). */
7818 {
7819 /* Fill in zeroth symbol and swap it out. */
7820 Elf_Internal_Sym sym;
7821 sym.st_name = 0;
7822 sym.st_value = 0;
7823 sym.st_size = 0;
7824 sym.st_info = 0;
7825 sym.st_other = 0;
7826 sym.st_shndx = SHN_UNDEF;
7827 sym.st_target_internal = 0;
7828 symstrtab[0].sym = sym;
7829 symstrtab[0].dest_index = outbound_syms_index;
7830 symstrtab[0].destshndx_index = outbound_shndx_index;
7831 outbound_syms_index++;
7832 if (outbound_shndx != NULL)
7833 outbound_shndx_index++;
7834 }
7835
7836 name_local_sections
7837 = (bed->elf_backend_name_local_section_symbols
7838 && bed->elf_backend_name_local_section_symbols (abfd));
7839
7840 syms = bfd_get_outsymbols (abfd);
7841 for (idx = 0; idx < symcount;)
7842 {
7843 Elf_Internal_Sym sym;
7844 bfd_vma value = syms[idx]->value;
7845 elf_symbol_type *type_ptr;
7846 flagword flags = syms[idx]->flags;
7847 int type;
7848
7849 if (!name_local_sections
7850 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7851 {
7852 /* Local section symbols have no name. */
7853 sym.st_name = (unsigned long) -1;
7854 }
7855 else
7856 {
7857 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7858 to get the final offset for st_name. */
7859 sym.st_name
7860 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7861 FALSE);
7862 if (sym.st_name == (unsigned long) -1)
7863 goto error_return;
7864 }
7865
7866 type_ptr = elf_symbol_from (abfd, syms[idx]);
7867
7868 if ((flags & BSF_SECTION_SYM) == 0
7869 && bfd_is_com_section (syms[idx]->section))
7870 {
7871 /* ELF common symbols put the alignment into the `value' field,
7872 and the size into the `size' field. This is backwards from
7873 how BFD handles it, so reverse it here. */
7874 sym.st_size = value;
7875 if (type_ptr == NULL
7876 || type_ptr->internal_elf_sym.st_value == 0)
7877 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7878 else
7879 sym.st_value = type_ptr->internal_elf_sym.st_value;
7880 sym.st_shndx = _bfd_elf_section_from_bfd_section
7881 (abfd, syms[idx]->section);
7882 }
7883 else
7884 {
7885 asection *sec = syms[idx]->section;
7886 unsigned int shndx;
7887
7888 if (sec->output_section)
7889 {
7890 value += sec->output_offset;
7891 sec = sec->output_section;
7892 }
7893
7894 /* Don't add in the section vma for relocatable output. */
7895 if (! relocatable_p)
7896 value += sec->vma;
7897 sym.st_value = value;
7898 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7899
7900 if (bfd_is_abs_section (sec)
7901 && type_ptr != NULL
7902 && type_ptr->internal_elf_sym.st_shndx != 0)
7903 {
7904 /* This symbol is in a real ELF section which we did
7905 not create as a BFD section. Undo the mapping done
7906 by copy_private_symbol_data. */
7907 shndx = type_ptr->internal_elf_sym.st_shndx;
7908 switch (shndx)
7909 {
7910 case MAP_ONESYMTAB:
7911 shndx = elf_onesymtab (abfd);
7912 break;
7913 case MAP_DYNSYMTAB:
7914 shndx = elf_dynsymtab (abfd);
7915 break;
7916 case MAP_STRTAB:
7917 shndx = elf_strtab_sec (abfd);
7918 break;
7919 case MAP_SHSTRTAB:
7920 shndx = elf_shstrtab_sec (abfd);
7921 break;
7922 case MAP_SYM_SHNDX:
7923 if (elf_symtab_shndx_list (abfd))
7924 shndx = elf_symtab_shndx_list (abfd)->ndx;
7925 break;
7926 default:
7927 shndx = SHN_ABS;
7928 break;
7929 }
7930 }
7931 else
7932 {
7933 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7934
7935 if (shndx == SHN_BAD)
7936 {
7937 asection *sec2;
7938
7939 /* Writing this would be a hell of a lot easier if
7940 we had some decent documentation on bfd, and
7941 knew what to expect of the library, and what to
7942 demand of applications. For example, it
7943 appears that `objcopy' might not set the
7944 section of a symbol to be a section that is
7945 actually in the output file. */
7946 sec2 = bfd_get_section_by_name (abfd, sec->name);
7947 if (sec2 != NULL)
7948 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7949 if (shndx == SHN_BAD)
7950 {
7951 /* xgettext:c-format */
7952 _bfd_error_handler (_("\
7953 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7954 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7955 sec->name);
7956 bfd_set_error (bfd_error_invalid_operation);
7957 goto error_return;
7958 }
7959 }
7960 }
7961
7962 sym.st_shndx = shndx;
7963 }
7964
7965 if ((flags & BSF_THREAD_LOCAL) != 0)
7966 type = STT_TLS;
7967 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7968 type = STT_GNU_IFUNC;
7969 else if ((flags & BSF_FUNCTION) != 0)
7970 type = STT_FUNC;
7971 else if ((flags & BSF_OBJECT) != 0)
7972 type = STT_OBJECT;
7973 else if ((flags & BSF_RELC) != 0)
7974 type = STT_RELC;
7975 else if ((flags & BSF_SRELC) != 0)
7976 type = STT_SRELC;
7977 else
7978 type = STT_NOTYPE;
7979
7980 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7981 type = STT_TLS;
7982
7983 /* Processor-specific types. */
7984 if (type_ptr != NULL
7985 && bed->elf_backend_get_symbol_type)
7986 type = ((*bed->elf_backend_get_symbol_type)
7987 (&type_ptr->internal_elf_sym, type));
7988
7989 if (flags & BSF_SECTION_SYM)
7990 {
7991 if (flags & BSF_GLOBAL)
7992 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7993 else
7994 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7995 }
7996 else if (bfd_is_com_section (syms[idx]->section))
7997 {
7998 if (type != STT_TLS)
7999 {
8000 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8001 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8002 ? STT_COMMON : STT_OBJECT);
8003 else
8004 type = ((flags & BSF_ELF_COMMON) != 0
8005 ? STT_COMMON : STT_OBJECT);
8006 }
8007 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8008 }
8009 else if (bfd_is_und_section (syms[idx]->section))
8010 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8011 ? STB_WEAK
8012 : STB_GLOBAL),
8013 type);
8014 else if (flags & BSF_FILE)
8015 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8016 else
8017 {
8018 int bind = STB_LOCAL;
8019
8020 if (flags & BSF_LOCAL)
8021 bind = STB_LOCAL;
8022 else if (flags & BSF_GNU_UNIQUE)
8023 bind = STB_GNU_UNIQUE;
8024 else if (flags & BSF_WEAK)
8025 bind = STB_WEAK;
8026 else if (flags & BSF_GLOBAL)
8027 bind = STB_GLOBAL;
8028
8029 sym.st_info = ELF_ST_INFO (bind, type);
8030 }
8031
8032 if (type_ptr != NULL)
8033 {
8034 sym.st_other = type_ptr->internal_elf_sym.st_other;
8035 sym.st_target_internal
8036 = type_ptr->internal_elf_sym.st_target_internal;
8037 }
8038 else
8039 {
8040 sym.st_other = 0;
8041 sym.st_target_internal = 0;
8042 }
8043
8044 idx++;
8045 symstrtab[idx].sym = sym;
8046 symstrtab[idx].dest_index = outbound_syms_index;
8047 symstrtab[idx].destshndx_index = outbound_shndx_index;
8048
8049 outbound_syms_index++;
8050 if (outbound_shndx != NULL)
8051 outbound_shndx_index++;
8052 }
8053
8054 /* Finalize the .strtab section. */
8055 _bfd_elf_strtab_finalize (stt);
8056
8057 /* Swap out the .strtab section. */
8058 for (idx = 0; idx <= symcount; idx++)
8059 {
8060 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8061 if (elfsym->sym.st_name == (unsigned long) -1)
8062 elfsym->sym.st_name = 0;
8063 else
8064 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8065 elfsym->sym.st_name);
8066 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8067 (outbound_syms
8068 + (elfsym->dest_index
8069 * bed->s->sizeof_sym)),
8070 (outbound_shndx
8071 + (elfsym->destshndx_index
8072 * sizeof (Elf_External_Sym_Shndx))));
8073 }
8074 free (symstrtab);
8075
8076 *sttp = stt;
8077 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8078 symstrtab_hdr->sh_type = SHT_STRTAB;
8079 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8080 symstrtab_hdr->sh_addr = 0;
8081 symstrtab_hdr->sh_entsize = 0;
8082 symstrtab_hdr->sh_link = 0;
8083 symstrtab_hdr->sh_info = 0;
8084 symstrtab_hdr->sh_addralign = 1;
8085
8086 return TRUE;
8087 }
8088
8089 /* Return the number of bytes required to hold the symtab vector.
8090
8091 Note that we base it on the count plus 1, since we will null terminate
8092 the vector allocated based on this size. However, the ELF symbol table
8093 always has a dummy entry as symbol #0, so it ends up even. */
8094
8095 long
8096 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8097 {
8098 long symcount;
8099 long symtab_size;
8100 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8101
8102 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8103 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8104 if (symcount > 0)
8105 symtab_size -= sizeof (asymbol *);
8106
8107 return symtab_size;
8108 }
8109
8110 long
8111 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8112 {
8113 long symcount;
8114 long symtab_size;
8115 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8116
8117 if (elf_dynsymtab (abfd) == 0)
8118 {
8119 bfd_set_error (bfd_error_invalid_operation);
8120 return -1;
8121 }
8122
8123 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8124 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8125 if (symcount > 0)
8126 symtab_size -= sizeof (asymbol *);
8127
8128 return symtab_size;
8129 }
8130
8131 long
8132 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8133 sec_ptr asect)
8134 {
8135 return (asect->reloc_count + 1) * sizeof (arelent *);
8136 }
8137
8138 /* Canonicalize the relocs. */
8139
8140 long
8141 _bfd_elf_canonicalize_reloc (bfd *abfd,
8142 sec_ptr section,
8143 arelent **relptr,
8144 asymbol **symbols)
8145 {
8146 arelent *tblptr;
8147 unsigned int i;
8148 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8149
8150 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8151 return -1;
8152
8153 tblptr = section->relocation;
8154 for (i = 0; i < section->reloc_count; i++)
8155 *relptr++ = tblptr++;
8156
8157 *relptr = NULL;
8158
8159 return section->reloc_count;
8160 }
8161
8162 long
8163 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8164 {
8165 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8166 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8167
8168 if (symcount >= 0)
8169 bfd_get_symcount (abfd) = symcount;
8170 return symcount;
8171 }
8172
8173 long
8174 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8175 asymbol **allocation)
8176 {
8177 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8178 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8179
8180 if (symcount >= 0)
8181 bfd_get_dynamic_symcount (abfd) = symcount;
8182 return symcount;
8183 }
8184
8185 /* Return the size required for the dynamic reloc entries. Any loadable
8186 section that was actually installed in the BFD, and has type SHT_REL
8187 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8188 dynamic reloc section. */
8189
8190 long
8191 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8192 {
8193 long ret;
8194 asection *s;
8195
8196 if (elf_dynsymtab (abfd) == 0)
8197 {
8198 bfd_set_error (bfd_error_invalid_operation);
8199 return -1;
8200 }
8201
8202 ret = sizeof (arelent *);
8203 for (s = abfd->sections; s != NULL; s = s->next)
8204 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8205 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8206 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8207 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8208 * sizeof (arelent *));
8209
8210 return ret;
8211 }
8212
8213 /* Canonicalize the dynamic relocation entries. Note that we return the
8214 dynamic relocations as a single block, although they are actually
8215 associated with particular sections; the interface, which was
8216 designed for SunOS style shared libraries, expects that there is only
8217 one set of dynamic relocs. Any loadable section that was actually
8218 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8219 dynamic symbol table, is considered to be a dynamic reloc section. */
8220
8221 long
8222 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8223 arelent **storage,
8224 asymbol **syms)
8225 {
8226 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8227 asection *s;
8228 long ret;
8229
8230 if (elf_dynsymtab (abfd) == 0)
8231 {
8232 bfd_set_error (bfd_error_invalid_operation);
8233 return -1;
8234 }
8235
8236 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8237 ret = 0;
8238 for (s = abfd->sections; s != NULL; s = s->next)
8239 {
8240 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8241 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8242 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8243 {
8244 arelent *p;
8245 long count, i;
8246
8247 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8248 return -1;
8249 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8250 p = s->relocation;
8251 for (i = 0; i < count; i++)
8252 *storage++ = p++;
8253 ret += count;
8254 }
8255 }
8256
8257 *storage = NULL;
8258
8259 return ret;
8260 }
8261 \f
8262 /* Read in the version information. */
8263
8264 bfd_boolean
8265 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8266 {
8267 bfd_byte *contents = NULL;
8268 unsigned int freeidx = 0;
8269
8270 if (elf_dynverref (abfd) != 0)
8271 {
8272 Elf_Internal_Shdr *hdr;
8273 Elf_External_Verneed *everneed;
8274 Elf_Internal_Verneed *iverneed;
8275 unsigned int i;
8276 bfd_byte *contents_end;
8277
8278 hdr = &elf_tdata (abfd)->dynverref_hdr;
8279
8280 if (hdr->sh_info == 0
8281 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8282 {
8283 error_return_bad_verref:
8284 _bfd_error_handler
8285 (_("%B: .gnu.version_r invalid entry"), abfd);
8286 bfd_set_error (bfd_error_bad_value);
8287 error_return_verref:
8288 elf_tdata (abfd)->verref = NULL;
8289 elf_tdata (abfd)->cverrefs = 0;
8290 goto error_return;
8291 }
8292
8293 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8294 if (contents == NULL)
8295 goto error_return_verref;
8296
8297 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8298 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8299 goto error_return_verref;
8300
8301 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8302 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8303
8304 if (elf_tdata (abfd)->verref == NULL)
8305 goto error_return_verref;
8306
8307 BFD_ASSERT (sizeof (Elf_External_Verneed)
8308 == sizeof (Elf_External_Vernaux));
8309 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8310 everneed = (Elf_External_Verneed *) contents;
8311 iverneed = elf_tdata (abfd)->verref;
8312 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8313 {
8314 Elf_External_Vernaux *evernaux;
8315 Elf_Internal_Vernaux *ivernaux;
8316 unsigned int j;
8317
8318 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8319
8320 iverneed->vn_bfd = abfd;
8321
8322 iverneed->vn_filename =
8323 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8324 iverneed->vn_file);
8325 if (iverneed->vn_filename == NULL)
8326 goto error_return_bad_verref;
8327
8328 if (iverneed->vn_cnt == 0)
8329 iverneed->vn_auxptr = NULL;
8330 else
8331 {
8332 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8333 bfd_alloc2 (abfd, iverneed->vn_cnt,
8334 sizeof (Elf_Internal_Vernaux));
8335 if (iverneed->vn_auxptr == NULL)
8336 goto error_return_verref;
8337 }
8338
8339 if (iverneed->vn_aux
8340 > (size_t) (contents_end - (bfd_byte *) everneed))
8341 goto error_return_bad_verref;
8342
8343 evernaux = ((Elf_External_Vernaux *)
8344 ((bfd_byte *) everneed + iverneed->vn_aux));
8345 ivernaux = iverneed->vn_auxptr;
8346 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8347 {
8348 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8349
8350 ivernaux->vna_nodename =
8351 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8352 ivernaux->vna_name);
8353 if (ivernaux->vna_nodename == NULL)
8354 goto error_return_bad_verref;
8355
8356 if (ivernaux->vna_other > freeidx)
8357 freeidx = ivernaux->vna_other;
8358
8359 ivernaux->vna_nextptr = NULL;
8360 if (ivernaux->vna_next == 0)
8361 {
8362 iverneed->vn_cnt = j + 1;
8363 break;
8364 }
8365 if (j + 1 < iverneed->vn_cnt)
8366 ivernaux->vna_nextptr = ivernaux + 1;
8367
8368 if (ivernaux->vna_next
8369 > (size_t) (contents_end - (bfd_byte *) evernaux))
8370 goto error_return_bad_verref;
8371
8372 evernaux = ((Elf_External_Vernaux *)
8373 ((bfd_byte *) evernaux + ivernaux->vna_next));
8374 }
8375
8376 iverneed->vn_nextref = NULL;
8377 if (iverneed->vn_next == 0)
8378 break;
8379 if (i + 1 < hdr->sh_info)
8380 iverneed->vn_nextref = iverneed + 1;
8381
8382 if (iverneed->vn_next
8383 > (size_t) (contents_end - (bfd_byte *) everneed))
8384 goto error_return_bad_verref;
8385
8386 everneed = ((Elf_External_Verneed *)
8387 ((bfd_byte *) everneed + iverneed->vn_next));
8388 }
8389 elf_tdata (abfd)->cverrefs = i;
8390
8391 free (contents);
8392 contents = NULL;
8393 }
8394
8395 if (elf_dynverdef (abfd) != 0)
8396 {
8397 Elf_Internal_Shdr *hdr;
8398 Elf_External_Verdef *everdef;
8399 Elf_Internal_Verdef *iverdef;
8400 Elf_Internal_Verdef *iverdefarr;
8401 Elf_Internal_Verdef iverdefmem;
8402 unsigned int i;
8403 unsigned int maxidx;
8404 bfd_byte *contents_end_def, *contents_end_aux;
8405
8406 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8407
8408 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8409 {
8410 error_return_bad_verdef:
8411 _bfd_error_handler
8412 (_("%B: .gnu.version_d invalid entry"), abfd);
8413 bfd_set_error (bfd_error_bad_value);
8414 error_return_verdef:
8415 elf_tdata (abfd)->verdef = NULL;
8416 elf_tdata (abfd)->cverdefs = 0;
8417 goto error_return;
8418 }
8419
8420 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8421 if (contents == NULL)
8422 goto error_return_verdef;
8423 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8424 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8425 goto error_return_verdef;
8426
8427 BFD_ASSERT (sizeof (Elf_External_Verdef)
8428 >= sizeof (Elf_External_Verdaux));
8429 contents_end_def = contents + hdr->sh_size
8430 - sizeof (Elf_External_Verdef);
8431 contents_end_aux = contents + hdr->sh_size
8432 - sizeof (Elf_External_Verdaux);
8433
8434 /* We know the number of entries in the section but not the maximum
8435 index. Therefore we have to run through all entries and find
8436 the maximum. */
8437 everdef = (Elf_External_Verdef *) contents;
8438 maxidx = 0;
8439 for (i = 0; i < hdr->sh_info; ++i)
8440 {
8441 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8442
8443 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8444 goto error_return_bad_verdef;
8445 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8446 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8447
8448 if (iverdefmem.vd_next == 0)
8449 break;
8450
8451 if (iverdefmem.vd_next
8452 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8453 goto error_return_bad_verdef;
8454
8455 everdef = ((Elf_External_Verdef *)
8456 ((bfd_byte *) everdef + iverdefmem.vd_next));
8457 }
8458
8459 if (default_imported_symver)
8460 {
8461 if (freeidx > maxidx)
8462 maxidx = ++freeidx;
8463 else
8464 freeidx = ++maxidx;
8465 }
8466
8467 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8468 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8469 if (elf_tdata (abfd)->verdef == NULL)
8470 goto error_return_verdef;
8471
8472 elf_tdata (abfd)->cverdefs = maxidx;
8473
8474 everdef = (Elf_External_Verdef *) contents;
8475 iverdefarr = elf_tdata (abfd)->verdef;
8476 for (i = 0; i < hdr->sh_info; i++)
8477 {
8478 Elf_External_Verdaux *everdaux;
8479 Elf_Internal_Verdaux *iverdaux;
8480 unsigned int j;
8481
8482 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8483
8484 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8485 goto error_return_bad_verdef;
8486
8487 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8488 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8489
8490 iverdef->vd_bfd = abfd;
8491
8492 if (iverdef->vd_cnt == 0)
8493 iverdef->vd_auxptr = NULL;
8494 else
8495 {
8496 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8497 bfd_alloc2 (abfd, iverdef->vd_cnt,
8498 sizeof (Elf_Internal_Verdaux));
8499 if (iverdef->vd_auxptr == NULL)
8500 goto error_return_verdef;
8501 }
8502
8503 if (iverdef->vd_aux
8504 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8505 goto error_return_bad_verdef;
8506
8507 everdaux = ((Elf_External_Verdaux *)
8508 ((bfd_byte *) everdef + iverdef->vd_aux));
8509 iverdaux = iverdef->vd_auxptr;
8510 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8511 {
8512 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8513
8514 iverdaux->vda_nodename =
8515 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8516 iverdaux->vda_name);
8517 if (iverdaux->vda_nodename == NULL)
8518 goto error_return_bad_verdef;
8519
8520 iverdaux->vda_nextptr = NULL;
8521 if (iverdaux->vda_next == 0)
8522 {
8523 iverdef->vd_cnt = j + 1;
8524 break;
8525 }
8526 if (j + 1 < iverdef->vd_cnt)
8527 iverdaux->vda_nextptr = iverdaux + 1;
8528
8529 if (iverdaux->vda_next
8530 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8531 goto error_return_bad_verdef;
8532
8533 everdaux = ((Elf_External_Verdaux *)
8534 ((bfd_byte *) everdaux + iverdaux->vda_next));
8535 }
8536
8537 iverdef->vd_nodename = NULL;
8538 if (iverdef->vd_cnt)
8539 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8540
8541 iverdef->vd_nextdef = NULL;
8542 if (iverdef->vd_next == 0)
8543 break;
8544 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8545 iverdef->vd_nextdef = iverdef + 1;
8546
8547 everdef = ((Elf_External_Verdef *)
8548 ((bfd_byte *) everdef + iverdef->vd_next));
8549 }
8550
8551 free (contents);
8552 contents = NULL;
8553 }
8554 else if (default_imported_symver)
8555 {
8556 if (freeidx < 3)
8557 freeidx = 3;
8558 else
8559 freeidx++;
8560
8561 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8562 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8563 if (elf_tdata (abfd)->verdef == NULL)
8564 goto error_return;
8565
8566 elf_tdata (abfd)->cverdefs = freeidx;
8567 }
8568
8569 /* Create a default version based on the soname. */
8570 if (default_imported_symver)
8571 {
8572 Elf_Internal_Verdef *iverdef;
8573 Elf_Internal_Verdaux *iverdaux;
8574
8575 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8576
8577 iverdef->vd_version = VER_DEF_CURRENT;
8578 iverdef->vd_flags = 0;
8579 iverdef->vd_ndx = freeidx;
8580 iverdef->vd_cnt = 1;
8581
8582 iverdef->vd_bfd = abfd;
8583
8584 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8585 if (iverdef->vd_nodename == NULL)
8586 goto error_return_verdef;
8587 iverdef->vd_nextdef = NULL;
8588 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8589 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8590 if (iverdef->vd_auxptr == NULL)
8591 goto error_return_verdef;
8592
8593 iverdaux = iverdef->vd_auxptr;
8594 iverdaux->vda_nodename = iverdef->vd_nodename;
8595 }
8596
8597 return TRUE;
8598
8599 error_return:
8600 if (contents != NULL)
8601 free (contents);
8602 return FALSE;
8603 }
8604 \f
8605 asymbol *
8606 _bfd_elf_make_empty_symbol (bfd *abfd)
8607 {
8608 elf_symbol_type *newsym;
8609
8610 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8611 if (!newsym)
8612 return NULL;
8613 newsym->symbol.the_bfd = abfd;
8614 return &newsym->symbol;
8615 }
8616
8617 void
8618 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8619 asymbol *symbol,
8620 symbol_info *ret)
8621 {
8622 bfd_symbol_info (symbol, ret);
8623 }
8624
8625 /* Return whether a symbol name implies a local symbol. Most targets
8626 use this function for the is_local_label_name entry point, but some
8627 override it. */
8628
8629 bfd_boolean
8630 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8631 const char *name)
8632 {
8633 /* Normal local symbols start with ``.L''. */
8634 if (name[0] == '.' && name[1] == 'L')
8635 return TRUE;
8636
8637 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8638 DWARF debugging symbols starting with ``..''. */
8639 if (name[0] == '.' && name[1] == '.')
8640 return TRUE;
8641
8642 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8643 emitting DWARF debugging output. I suspect this is actually a
8644 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8645 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8646 underscore to be emitted on some ELF targets). For ease of use,
8647 we treat such symbols as local. */
8648 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8649 return TRUE;
8650
8651 /* Treat assembler generated fake symbols, dollar local labels and
8652 forward-backward labels (aka local labels) as locals.
8653 These labels have the form:
8654
8655 L0^A.* (fake symbols)
8656
8657 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8658
8659 Versions which start with .L will have already been matched above,
8660 so we only need to match the rest. */
8661 if (name[0] == 'L' && ISDIGIT (name[1]))
8662 {
8663 bfd_boolean ret = FALSE;
8664 const char * p;
8665 char c;
8666
8667 for (p = name + 2; (c = *p); p++)
8668 {
8669 if (c == 1 || c == 2)
8670 {
8671 if (c == 1 && p == name + 2)
8672 /* A fake symbol. */
8673 return TRUE;
8674
8675 /* FIXME: We are being paranoid here and treating symbols like
8676 L0^Bfoo as if there were non-local, on the grounds that the
8677 assembler will never generate them. But can any symbol
8678 containing an ASCII value in the range 1-31 ever be anything
8679 other than some kind of local ? */
8680 ret = TRUE;
8681 }
8682
8683 if (! ISDIGIT (c))
8684 {
8685 ret = FALSE;
8686 break;
8687 }
8688 }
8689 return ret;
8690 }
8691
8692 return FALSE;
8693 }
8694
8695 alent *
8696 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8697 asymbol *symbol ATTRIBUTE_UNUSED)
8698 {
8699 abort ();
8700 return NULL;
8701 }
8702
8703 bfd_boolean
8704 _bfd_elf_set_arch_mach (bfd *abfd,
8705 enum bfd_architecture arch,
8706 unsigned long machine)
8707 {
8708 /* If this isn't the right architecture for this backend, and this
8709 isn't the generic backend, fail. */
8710 if (arch != get_elf_backend_data (abfd)->arch
8711 && arch != bfd_arch_unknown
8712 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8713 return FALSE;
8714
8715 return bfd_default_set_arch_mach (abfd, arch, machine);
8716 }
8717
8718 /* Find the nearest line to a particular section and offset,
8719 for error reporting. */
8720
8721 bfd_boolean
8722 _bfd_elf_find_nearest_line (bfd *abfd,
8723 asymbol **symbols,
8724 asection *section,
8725 bfd_vma offset,
8726 const char **filename_ptr,
8727 const char **functionname_ptr,
8728 unsigned int *line_ptr,
8729 unsigned int *discriminator_ptr)
8730 {
8731 bfd_boolean found;
8732
8733 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8734 filename_ptr, functionname_ptr,
8735 line_ptr, discriminator_ptr,
8736 dwarf_debug_sections, 0,
8737 &elf_tdata (abfd)->dwarf2_find_line_info)
8738 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8739 filename_ptr, functionname_ptr,
8740 line_ptr))
8741 {
8742 if (!*functionname_ptr)
8743 _bfd_elf_find_function (abfd, symbols, section, offset,
8744 *filename_ptr ? NULL : filename_ptr,
8745 functionname_ptr);
8746 return TRUE;
8747 }
8748
8749 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8750 &found, filename_ptr,
8751 functionname_ptr, line_ptr,
8752 &elf_tdata (abfd)->line_info))
8753 return FALSE;
8754 if (found && (*functionname_ptr || *line_ptr))
8755 return TRUE;
8756
8757 if (symbols == NULL)
8758 return FALSE;
8759
8760 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8761 filename_ptr, functionname_ptr))
8762 return FALSE;
8763
8764 *line_ptr = 0;
8765 return TRUE;
8766 }
8767
8768 /* Find the line for a symbol. */
8769
8770 bfd_boolean
8771 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8772 const char **filename_ptr, unsigned int *line_ptr)
8773 {
8774 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8775 filename_ptr, NULL, line_ptr, NULL,
8776 dwarf_debug_sections, 0,
8777 &elf_tdata (abfd)->dwarf2_find_line_info);
8778 }
8779
8780 /* After a call to bfd_find_nearest_line, successive calls to
8781 bfd_find_inliner_info can be used to get source information about
8782 each level of function inlining that terminated at the address
8783 passed to bfd_find_nearest_line. Currently this is only supported
8784 for DWARF2 with appropriate DWARF3 extensions. */
8785
8786 bfd_boolean
8787 _bfd_elf_find_inliner_info (bfd *abfd,
8788 const char **filename_ptr,
8789 const char **functionname_ptr,
8790 unsigned int *line_ptr)
8791 {
8792 bfd_boolean found;
8793 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8794 functionname_ptr, line_ptr,
8795 & elf_tdata (abfd)->dwarf2_find_line_info);
8796 return found;
8797 }
8798
8799 int
8800 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8801 {
8802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8803 int ret = bed->s->sizeof_ehdr;
8804
8805 if (!bfd_link_relocatable (info))
8806 {
8807 bfd_size_type phdr_size = elf_program_header_size (abfd);
8808
8809 if (phdr_size == (bfd_size_type) -1)
8810 {
8811 struct elf_segment_map *m;
8812
8813 phdr_size = 0;
8814 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8815 phdr_size += bed->s->sizeof_phdr;
8816
8817 if (phdr_size == 0)
8818 phdr_size = get_program_header_size (abfd, info);
8819 }
8820
8821 elf_program_header_size (abfd) = phdr_size;
8822 ret += phdr_size;
8823 }
8824
8825 return ret;
8826 }
8827
8828 bfd_boolean
8829 _bfd_elf_set_section_contents (bfd *abfd,
8830 sec_ptr section,
8831 const void *location,
8832 file_ptr offset,
8833 bfd_size_type count)
8834 {
8835 Elf_Internal_Shdr *hdr;
8836 file_ptr pos;
8837
8838 if (! abfd->output_has_begun
8839 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8840 return FALSE;
8841
8842 if (!count)
8843 return TRUE;
8844
8845 hdr = &elf_section_data (section)->this_hdr;
8846 if (hdr->sh_offset == (file_ptr) -1)
8847 {
8848 /* We must compress this section. Write output to the buffer. */
8849 unsigned char *contents = hdr->contents;
8850 if ((offset + count) > hdr->sh_size
8851 || (section->flags & SEC_ELF_COMPRESS) == 0
8852 || contents == NULL)
8853 abort ();
8854 memcpy (contents + offset, location, count);
8855 return TRUE;
8856 }
8857 pos = hdr->sh_offset + offset;
8858 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8859 || bfd_bwrite (location, count, abfd) != count)
8860 return FALSE;
8861
8862 return TRUE;
8863 }
8864
8865 void
8866 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8867 arelent *cache_ptr ATTRIBUTE_UNUSED,
8868 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8869 {
8870 abort ();
8871 }
8872
8873 /* Try to convert a non-ELF reloc into an ELF one. */
8874
8875 bfd_boolean
8876 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8877 {
8878 /* Check whether we really have an ELF howto. */
8879
8880 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8881 {
8882 bfd_reloc_code_real_type code;
8883 reloc_howto_type *howto;
8884
8885 /* Alien reloc: Try to determine its type to replace it with an
8886 equivalent ELF reloc. */
8887
8888 if (areloc->howto->pc_relative)
8889 {
8890 switch (areloc->howto->bitsize)
8891 {
8892 case 8:
8893 code = BFD_RELOC_8_PCREL;
8894 break;
8895 case 12:
8896 code = BFD_RELOC_12_PCREL;
8897 break;
8898 case 16:
8899 code = BFD_RELOC_16_PCREL;
8900 break;
8901 case 24:
8902 code = BFD_RELOC_24_PCREL;
8903 break;
8904 case 32:
8905 code = BFD_RELOC_32_PCREL;
8906 break;
8907 case 64:
8908 code = BFD_RELOC_64_PCREL;
8909 break;
8910 default:
8911 goto fail;
8912 }
8913
8914 howto = bfd_reloc_type_lookup (abfd, code);
8915
8916 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8917 {
8918 if (howto->pcrel_offset)
8919 areloc->addend += areloc->address;
8920 else
8921 areloc->addend -= areloc->address; /* addend is unsigned!! */
8922 }
8923 }
8924 else
8925 {
8926 switch (areloc->howto->bitsize)
8927 {
8928 case 8:
8929 code = BFD_RELOC_8;
8930 break;
8931 case 14:
8932 code = BFD_RELOC_14;
8933 break;
8934 case 16:
8935 code = BFD_RELOC_16;
8936 break;
8937 case 26:
8938 code = BFD_RELOC_26;
8939 break;
8940 case 32:
8941 code = BFD_RELOC_32;
8942 break;
8943 case 64:
8944 code = BFD_RELOC_64;
8945 break;
8946 default:
8947 goto fail;
8948 }
8949
8950 howto = bfd_reloc_type_lookup (abfd, code);
8951 }
8952
8953 if (howto)
8954 areloc->howto = howto;
8955 else
8956 goto fail;
8957 }
8958
8959 return TRUE;
8960
8961 fail:
8962 _bfd_error_handler
8963 /* xgettext:c-format */
8964 (_("%B: unsupported relocation type %s"),
8965 abfd, areloc->howto->name);
8966 bfd_set_error (bfd_error_bad_value);
8967 return FALSE;
8968 }
8969
8970 bfd_boolean
8971 _bfd_elf_close_and_cleanup (bfd *abfd)
8972 {
8973 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8974 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8975 {
8976 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8977 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8978 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8979 }
8980
8981 return _bfd_generic_close_and_cleanup (abfd);
8982 }
8983
8984 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8985 in the relocation's offset. Thus we cannot allow any sort of sanity
8986 range-checking to interfere. There is nothing else to do in processing
8987 this reloc. */
8988
8989 bfd_reloc_status_type
8990 _bfd_elf_rel_vtable_reloc_fn
8991 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8992 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8993 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8994 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8995 {
8996 return bfd_reloc_ok;
8997 }
8998 \f
8999 /* Elf core file support. Much of this only works on native
9000 toolchains, since we rely on knowing the
9001 machine-dependent procfs structure in order to pick
9002 out details about the corefile. */
9003
9004 #ifdef HAVE_SYS_PROCFS_H
9005 /* Needed for new procfs interface on sparc-solaris. */
9006 # define _STRUCTURED_PROC 1
9007 # include <sys/procfs.h>
9008 #endif
9009
9010 /* Return a PID that identifies a "thread" for threaded cores, or the
9011 PID of the main process for non-threaded cores. */
9012
9013 static int
9014 elfcore_make_pid (bfd *abfd)
9015 {
9016 int pid;
9017
9018 pid = elf_tdata (abfd)->core->lwpid;
9019 if (pid == 0)
9020 pid = elf_tdata (abfd)->core->pid;
9021
9022 return pid;
9023 }
9024
9025 /* If there isn't a section called NAME, make one, using
9026 data from SECT. Note, this function will generate a
9027 reference to NAME, so you shouldn't deallocate or
9028 overwrite it. */
9029
9030 static bfd_boolean
9031 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9032 {
9033 asection *sect2;
9034
9035 if (bfd_get_section_by_name (abfd, name) != NULL)
9036 return TRUE;
9037
9038 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9039 if (sect2 == NULL)
9040 return FALSE;
9041
9042 sect2->size = sect->size;
9043 sect2->filepos = sect->filepos;
9044 sect2->alignment_power = sect->alignment_power;
9045 return TRUE;
9046 }
9047
9048 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9049 actually creates up to two pseudosections:
9050 - For the single-threaded case, a section named NAME, unless
9051 such a section already exists.
9052 - For the multi-threaded case, a section named "NAME/PID", where
9053 PID is elfcore_make_pid (abfd).
9054 Both pseudosections have identical contents. */
9055 bfd_boolean
9056 _bfd_elfcore_make_pseudosection (bfd *abfd,
9057 char *name,
9058 size_t size,
9059 ufile_ptr filepos)
9060 {
9061 char buf[100];
9062 char *threaded_name;
9063 size_t len;
9064 asection *sect;
9065
9066 /* Build the section name. */
9067
9068 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9069 len = strlen (buf) + 1;
9070 threaded_name = (char *) bfd_alloc (abfd, len);
9071 if (threaded_name == NULL)
9072 return FALSE;
9073 memcpy (threaded_name, buf, len);
9074
9075 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9076 SEC_HAS_CONTENTS);
9077 if (sect == NULL)
9078 return FALSE;
9079 sect->size = size;
9080 sect->filepos = filepos;
9081 sect->alignment_power = 2;
9082
9083 return elfcore_maybe_make_sect (abfd, name, sect);
9084 }
9085
9086 /* prstatus_t exists on:
9087 solaris 2.5+
9088 linux 2.[01] + glibc
9089 unixware 4.2
9090 */
9091
9092 #if defined (HAVE_PRSTATUS_T)
9093
9094 static bfd_boolean
9095 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9096 {
9097 size_t size;
9098 int offset;
9099
9100 if (note->descsz == sizeof (prstatus_t))
9101 {
9102 prstatus_t prstat;
9103
9104 size = sizeof (prstat.pr_reg);
9105 offset = offsetof (prstatus_t, pr_reg);
9106 memcpy (&prstat, note->descdata, sizeof (prstat));
9107
9108 /* Do not overwrite the core signal if it
9109 has already been set by another thread. */
9110 if (elf_tdata (abfd)->core->signal == 0)
9111 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9112 if (elf_tdata (abfd)->core->pid == 0)
9113 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9114
9115 /* pr_who exists on:
9116 solaris 2.5+
9117 unixware 4.2
9118 pr_who doesn't exist on:
9119 linux 2.[01]
9120 */
9121 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9122 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9123 #else
9124 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9125 #endif
9126 }
9127 #if defined (HAVE_PRSTATUS32_T)
9128 else if (note->descsz == sizeof (prstatus32_t))
9129 {
9130 /* 64-bit host, 32-bit corefile */
9131 prstatus32_t prstat;
9132
9133 size = sizeof (prstat.pr_reg);
9134 offset = offsetof (prstatus32_t, pr_reg);
9135 memcpy (&prstat, note->descdata, sizeof (prstat));
9136
9137 /* Do not overwrite the core signal if it
9138 has already been set by another thread. */
9139 if (elf_tdata (abfd)->core->signal == 0)
9140 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9141 if (elf_tdata (abfd)->core->pid == 0)
9142 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9143
9144 /* pr_who exists on:
9145 solaris 2.5+
9146 unixware 4.2
9147 pr_who doesn't exist on:
9148 linux 2.[01]
9149 */
9150 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9151 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9152 #else
9153 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9154 #endif
9155 }
9156 #endif /* HAVE_PRSTATUS32_T */
9157 else
9158 {
9159 /* Fail - we don't know how to handle any other
9160 note size (ie. data object type). */
9161 return TRUE;
9162 }
9163
9164 /* Make a ".reg/999" section and a ".reg" section. */
9165 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9166 size, note->descpos + offset);
9167 }
9168 #endif /* defined (HAVE_PRSTATUS_T) */
9169
9170 /* Create a pseudosection containing the exact contents of NOTE. */
9171 static bfd_boolean
9172 elfcore_make_note_pseudosection (bfd *abfd,
9173 char *name,
9174 Elf_Internal_Note *note)
9175 {
9176 return _bfd_elfcore_make_pseudosection (abfd, name,
9177 note->descsz, note->descpos);
9178 }
9179
9180 /* There isn't a consistent prfpregset_t across platforms,
9181 but it doesn't matter, because we don't have to pick this
9182 data structure apart. */
9183
9184 static bfd_boolean
9185 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9186 {
9187 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9188 }
9189
9190 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9191 type of NT_PRXFPREG. Just include the whole note's contents
9192 literally. */
9193
9194 static bfd_boolean
9195 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9196 {
9197 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9198 }
9199
9200 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9201 with a note type of NT_X86_XSTATE. Just include the whole note's
9202 contents literally. */
9203
9204 static bfd_boolean
9205 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9206 {
9207 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9208 }
9209
9210 static bfd_boolean
9211 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9212 {
9213 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9214 }
9215
9216 static bfd_boolean
9217 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9218 {
9219 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9220 }
9221
9222 static bfd_boolean
9223 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9224 {
9225 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9226 }
9227
9228 static bfd_boolean
9229 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9230 {
9231 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9232 }
9233
9234 static bfd_boolean
9235 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9236 {
9237 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9238 }
9239
9240 static bfd_boolean
9241 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9242 {
9243 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9244 }
9245
9246 static bfd_boolean
9247 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9248 {
9249 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9250 }
9251
9252 static bfd_boolean
9253 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9254 {
9255 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9256 }
9257
9258 static bfd_boolean
9259 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9260 {
9261 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9262 }
9263
9264 static bfd_boolean
9265 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9266 {
9267 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9268 }
9269
9270 static bfd_boolean
9271 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9272 {
9273 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9274 }
9275
9276 static bfd_boolean
9277 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9278 {
9279 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9280 }
9281
9282 static bfd_boolean
9283 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9284 {
9285 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9286 }
9287
9288 static bfd_boolean
9289 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9290 {
9291 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9292 }
9293
9294 static bfd_boolean
9295 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9296 {
9297 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9298 }
9299
9300 static bfd_boolean
9301 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9302 {
9303 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9304 }
9305
9306 static bfd_boolean
9307 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9308 {
9309 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9310 }
9311
9312 static bfd_boolean
9313 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9314 {
9315 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9316 }
9317
9318 static bfd_boolean
9319 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9320 {
9321 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9322 }
9323
9324 #if defined (HAVE_PRPSINFO_T)
9325 typedef prpsinfo_t elfcore_psinfo_t;
9326 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9327 typedef prpsinfo32_t elfcore_psinfo32_t;
9328 #endif
9329 #endif
9330
9331 #if defined (HAVE_PSINFO_T)
9332 typedef psinfo_t elfcore_psinfo_t;
9333 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9334 typedef psinfo32_t elfcore_psinfo32_t;
9335 #endif
9336 #endif
9337
9338 /* return a malloc'ed copy of a string at START which is at
9339 most MAX bytes long, possibly without a terminating '\0'.
9340 the copy will always have a terminating '\0'. */
9341
9342 char *
9343 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9344 {
9345 char *dups;
9346 char *end = (char *) memchr (start, '\0', max);
9347 size_t len;
9348
9349 if (end == NULL)
9350 len = max;
9351 else
9352 len = end - start;
9353
9354 dups = (char *) bfd_alloc (abfd, len + 1);
9355 if (dups == NULL)
9356 return NULL;
9357
9358 memcpy (dups, start, len);
9359 dups[len] = '\0';
9360
9361 return dups;
9362 }
9363
9364 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9365 static bfd_boolean
9366 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9367 {
9368 if (note->descsz == sizeof (elfcore_psinfo_t))
9369 {
9370 elfcore_psinfo_t psinfo;
9371
9372 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9373
9374 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9375 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9376 #endif
9377 elf_tdata (abfd)->core->program
9378 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9379 sizeof (psinfo.pr_fname));
9380
9381 elf_tdata (abfd)->core->command
9382 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9383 sizeof (psinfo.pr_psargs));
9384 }
9385 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9386 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9387 {
9388 /* 64-bit host, 32-bit corefile */
9389 elfcore_psinfo32_t psinfo;
9390
9391 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9392
9393 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9394 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9395 #endif
9396 elf_tdata (abfd)->core->program
9397 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9398 sizeof (psinfo.pr_fname));
9399
9400 elf_tdata (abfd)->core->command
9401 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9402 sizeof (psinfo.pr_psargs));
9403 }
9404 #endif
9405
9406 else
9407 {
9408 /* Fail - we don't know how to handle any other
9409 note size (ie. data object type). */
9410 return TRUE;
9411 }
9412
9413 /* Note that for some reason, a spurious space is tacked
9414 onto the end of the args in some (at least one anyway)
9415 implementations, so strip it off if it exists. */
9416
9417 {
9418 char *command = elf_tdata (abfd)->core->command;
9419 int n = strlen (command);
9420
9421 if (0 < n && command[n - 1] == ' ')
9422 command[n - 1] = '\0';
9423 }
9424
9425 return TRUE;
9426 }
9427 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9428
9429 #if defined (HAVE_PSTATUS_T)
9430 static bfd_boolean
9431 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9432 {
9433 if (note->descsz == sizeof (pstatus_t)
9434 #if defined (HAVE_PXSTATUS_T)
9435 || note->descsz == sizeof (pxstatus_t)
9436 #endif
9437 )
9438 {
9439 pstatus_t pstat;
9440
9441 memcpy (&pstat, note->descdata, sizeof (pstat));
9442
9443 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9444 }
9445 #if defined (HAVE_PSTATUS32_T)
9446 else if (note->descsz == sizeof (pstatus32_t))
9447 {
9448 /* 64-bit host, 32-bit corefile */
9449 pstatus32_t pstat;
9450
9451 memcpy (&pstat, note->descdata, sizeof (pstat));
9452
9453 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9454 }
9455 #endif
9456 /* Could grab some more details from the "representative"
9457 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9458 NT_LWPSTATUS note, presumably. */
9459
9460 return TRUE;
9461 }
9462 #endif /* defined (HAVE_PSTATUS_T) */
9463
9464 #if defined (HAVE_LWPSTATUS_T)
9465 static bfd_boolean
9466 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9467 {
9468 lwpstatus_t lwpstat;
9469 char buf[100];
9470 char *name;
9471 size_t len;
9472 asection *sect;
9473
9474 if (note->descsz != sizeof (lwpstat)
9475 #if defined (HAVE_LWPXSTATUS_T)
9476 && note->descsz != sizeof (lwpxstatus_t)
9477 #endif
9478 )
9479 return TRUE;
9480
9481 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9482
9483 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9484 /* Do not overwrite the core signal if it has already been set by
9485 another thread. */
9486 if (elf_tdata (abfd)->core->signal == 0)
9487 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9488
9489 /* Make a ".reg/999" section. */
9490
9491 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9492 len = strlen (buf) + 1;
9493 name = bfd_alloc (abfd, len);
9494 if (name == NULL)
9495 return FALSE;
9496 memcpy (name, buf, len);
9497
9498 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9499 if (sect == NULL)
9500 return FALSE;
9501
9502 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9503 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9504 sect->filepos = note->descpos
9505 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9506 #endif
9507
9508 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9509 sect->size = sizeof (lwpstat.pr_reg);
9510 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9511 #endif
9512
9513 sect->alignment_power = 2;
9514
9515 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9516 return FALSE;
9517
9518 /* Make a ".reg2/999" section */
9519
9520 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9521 len = strlen (buf) + 1;
9522 name = bfd_alloc (abfd, len);
9523 if (name == NULL)
9524 return FALSE;
9525 memcpy (name, buf, len);
9526
9527 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9528 if (sect == NULL)
9529 return FALSE;
9530
9531 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9532 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9533 sect->filepos = note->descpos
9534 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9535 #endif
9536
9537 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9538 sect->size = sizeof (lwpstat.pr_fpreg);
9539 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9540 #endif
9541
9542 sect->alignment_power = 2;
9543
9544 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9545 }
9546 #endif /* defined (HAVE_LWPSTATUS_T) */
9547
9548 static bfd_boolean
9549 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9550 {
9551 char buf[30];
9552 char *name;
9553 size_t len;
9554 asection *sect;
9555 int type;
9556 int is_active_thread;
9557 bfd_vma base_addr;
9558
9559 if (note->descsz < 728)
9560 return TRUE;
9561
9562 if (! CONST_STRNEQ (note->namedata, "win32"))
9563 return TRUE;
9564
9565 type = bfd_get_32 (abfd, note->descdata);
9566
9567 switch (type)
9568 {
9569 case 1 /* NOTE_INFO_PROCESS */:
9570 /* FIXME: need to add ->core->command. */
9571 /* process_info.pid */
9572 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9573 /* process_info.signal */
9574 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9575 break;
9576
9577 case 2 /* NOTE_INFO_THREAD */:
9578 /* Make a ".reg/999" section. */
9579 /* thread_info.tid */
9580 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9581
9582 len = strlen (buf) + 1;
9583 name = (char *) bfd_alloc (abfd, len);
9584 if (name == NULL)
9585 return FALSE;
9586
9587 memcpy (name, buf, len);
9588
9589 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9590 if (sect == NULL)
9591 return FALSE;
9592
9593 /* sizeof (thread_info.thread_context) */
9594 sect->size = 716;
9595 /* offsetof (thread_info.thread_context) */
9596 sect->filepos = note->descpos + 12;
9597 sect->alignment_power = 2;
9598
9599 /* thread_info.is_active_thread */
9600 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9601
9602 if (is_active_thread)
9603 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9604 return FALSE;
9605 break;
9606
9607 case 3 /* NOTE_INFO_MODULE */:
9608 /* Make a ".module/xxxxxxxx" section. */
9609 /* module_info.base_address */
9610 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9611 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9612
9613 len = strlen (buf) + 1;
9614 name = (char *) bfd_alloc (abfd, len);
9615 if (name == NULL)
9616 return FALSE;
9617
9618 memcpy (name, buf, len);
9619
9620 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9621
9622 if (sect == NULL)
9623 return FALSE;
9624
9625 sect->size = note->descsz;
9626 sect->filepos = note->descpos;
9627 sect->alignment_power = 2;
9628 break;
9629
9630 default:
9631 return TRUE;
9632 }
9633
9634 return TRUE;
9635 }
9636
9637 static bfd_boolean
9638 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9639 {
9640 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9641
9642 switch (note->type)
9643 {
9644 default:
9645 return TRUE;
9646
9647 case NT_PRSTATUS:
9648 if (bed->elf_backend_grok_prstatus)
9649 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9650 return TRUE;
9651 #if defined (HAVE_PRSTATUS_T)
9652 return elfcore_grok_prstatus (abfd, note);
9653 #else
9654 return TRUE;
9655 #endif
9656
9657 #if defined (HAVE_PSTATUS_T)
9658 case NT_PSTATUS:
9659 return elfcore_grok_pstatus (abfd, note);
9660 #endif
9661
9662 #if defined (HAVE_LWPSTATUS_T)
9663 case NT_LWPSTATUS:
9664 return elfcore_grok_lwpstatus (abfd, note);
9665 #endif
9666
9667 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9668 return elfcore_grok_prfpreg (abfd, note);
9669
9670 case NT_WIN32PSTATUS:
9671 return elfcore_grok_win32pstatus (abfd, note);
9672
9673 case NT_PRXFPREG: /* Linux SSE extension */
9674 if (note->namesz == 6
9675 && strcmp (note->namedata, "LINUX") == 0)
9676 return elfcore_grok_prxfpreg (abfd, note);
9677 else
9678 return TRUE;
9679
9680 case NT_X86_XSTATE: /* Linux XSAVE extension */
9681 if (note->namesz == 6
9682 && strcmp (note->namedata, "LINUX") == 0)
9683 return elfcore_grok_xstatereg (abfd, note);
9684 else
9685 return TRUE;
9686
9687 case NT_PPC_VMX:
9688 if (note->namesz == 6
9689 && strcmp (note->namedata, "LINUX") == 0)
9690 return elfcore_grok_ppc_vmx (abfd, note);
9691 else
9692 return TRUE;
9693
9694 case NT_PPC_VSX:
9695 if (note->namesz == 6
9696 && strcmp (note->namedata, "LINUX") == 0)
9697 return elfcore_grok_ppc_vsx (abfd, note);
9698 else
9699 return TRUE;
9700
9701 case NT_S390_HIGH_GPRS:
9702 if (note->namesz == 6
9703 && strcmp (note->namedata, "LINUX") == 0)
9704 return elfcore_grok_s390_high_gprs (abfd, note);
9705 else
9706 return TRUE;
9707
9708 case NT_S390_TIMER:
9709 if (note->namesz == 6
9710 && strcmp (note->namedata, "LINUX") == 0)
9711 return elfcore_grok_s390_timer (abfd, note);
9712 else
9713 return TRUE;
9714
9715 case NT_S390_TODCMP:
9716 if (note->namesz == 6
9717 && strcmp (note->namedata, "LINUX") == 0)
9718 return elfcore_grok_s390_todcmp (abfd, note);
9719 else
9720 return TRUE;
9721
9722 case NT_S390_TODPREG:
9723 if (note->namesz == 6
9724 && strcmp (note->namedata, "LINUX") == 0)
9725 return elfcore_grok_s390_todpreg (abfd, note);
9726 else
9727 return TRUE;
9728
9729 case NT_S390_CTRS:
9730 if (note->namesz == 6
9731 && strcmp (note->namedata, "LINUX") == 0)
9732 return elfcore_grok_s390_ctrs (abfd, note);
9733 else
9734 return TRUE;
9735
9736 case NT_S390_PREFIX:
9737 if (note->namesz == 6
9738 && strcmp (note->namedata, "LINUX") == 0)
9739 return elfcore_grok_s390_prefix (abfd, note);
9740 else
9741 return TRUE;
9742
9743 case NT_S390_LAST_BREAK:
9744 if (note->namesz == 6
9745 && strcmp (note->namedata, "LINUX") == 0)
9746 return elfcore_grok_s390_last_break (abfd, note);
9747 else
9748 return TRUE;
9749
9750 case NT_S390_SYSTEM_CALL:
9751 if (note->namesz == 6
9752 && strcmp (note->namedata, "LINUX") == 0)
9753 return elfcore_grok_s390_system_call (abfd, note);
9754 else
9755 return TRUE;
9756
9757 case NT_S390_TDB:
9758 if (note->namesz == 6
9759 && strcmp (note->namedata, "LINUX") == 0)
9760 return elfcore_grok_s390_tdb (abfd, note);
9761 else
9762 return TRUE;
9763
9764 case NT_S390_VXRS_LOW:
9765 if (note->namesz == 6
9766 && strcmp (note->namedata, "LINUX") == 0)
9767 return elfcore_grok_s390_vxrs_low (abfd, note);
9768 else
9769 return TRUE;
9770
9771 case NT_S390_VXRS_HIGH:
9772 if (note->namesz == 6
9773 && strcmp (note->namedata, "LINUX") == 0)
9774 return elfcore_grok_s390_vxrs_high (abfd, note);
9775 else
9776 return TRUE;
9777
9778 case NT_S390_GS_CB:
9779 if (note->namesz == 6
9780 && strcmp (note->namedata, "LINUX") == 0)
9781 return elfcore_grok_s390_gs_cb (abfd, note);
9782 else
9783 return TRUE;
9784
9785 case NT_S390_GS_BC:
9786 if (note->namesz == 6
9787 && strcmp (note->namedata, "LINUX") == 0)
9788 return elfcore_grok_s390_gs_bc (abfd, note);
9789 else
9790 return TRUE;
9791
9792 case NT_ARM_VFP:
9793 if (note->namesz == 6
9794 && strcmp (note->namedata, "LINUX") == 0)
9795 return elfcore_grok_arm_vfp (abfd, note);
9796 else
9797 return TRUE;
9798
9799 case NT_ARM_TLS:
9800 if (note->namesz == 6
9801 && strcmp (note->namedata, "LINUX") == 0)
9802 return elfcore_grok_aarch_tls (abfd, note);
9803 else
9804 return TRUE;
9805
9806 case NT_ARM_HW_BREAK:
9807 if (note->namesz == 6
9808 && strcmp (note->namedata, "LINUX") == 0)
9809 return elfcore_grok_aarch_hw_break (abfd, note);
9810 else
9811 return TRUE;
9812
9813 case NT_ARM_HW_WATCH:
9814 if (note->namesz == 6
9815 && strcmp (note->namedata, "LINUX") == 0)
9816 return elfcore_grok_aarch_hw_watch (abfd, note);
9817 else
9818 return TRUE;
9819
9820 case NT_PRPSINFO:
9821 case NT_PSINFO:
9822 if (bed->elf_backend_grok_psinfo)
9823 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9824 return TRUE;
9825 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9826 return elfcore_grok_psinfo (abfd, note);
9827 #else
9828 return TRUE;
9829 #endif
9830
9831 case NT_AUXV:
9832 {
9833 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9834 SEC_HAS_CONTENTS);
9835
9836 if (sect == NULL)
9837 return FALSE;
9838 sect->size = note->descsz;
9839 sect->filepos = note->descpos;
9840 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9841
9842 return TRUE;
9843 }
9844
9845 case NT_FILE:
9846 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9847 note);
9848
9849 case NT_SIGINFO:
9850 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9851 note);
9852
9853 }
9854 }
9855
9856 static bfd_boolean
9857 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9858 {
9859 struct bfd_build_id* build_id;
9860
9861 if (note->descsz == 0)
9862 return FALSE;
9863
9864 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9865 if (build_id == NULL)
9866 return FALSE;
9867
9868 build_id->size = note->descsz;
9869 memcpy (build_id->data, note->descdata, note->descsz);
9870 abfd->build_id = build_id;
9871
9872 return TRUE;
9873 }
9874
9875 static bfd_boolean
9876 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9877 {
9878 switch (note->type)
9879 {
9880 default:
9881 return TRUE;
9882
9883 case NT_GNU_PROPERTY_TYPE_0:
9884 return _bfd_elf_parse_gnu_properties (abfd, note);
9885
9886 case NT_GNU_BUILD_ID:
9887 return elfobj_grok_gnu_build_id (abfd, note);
9888 }
9889 }
9890
9891 static bfd_boolean
9892 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9893 {
9894 struct sdt_note *cur =
9895 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9896 + note->descsz);
9897
9898 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9899 cur->size = (bfd_size_type) note->descsz;
9900 memcpy (cur->data, note->descdata, note->descsz);
9901
9902 elf_tdata (abfd)->sdt_note_head = cur;
9903
9904 return TRUE;
9905 }
9906
9907 static bfd_boolean
9908 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9909 {
9910 switch (note->type)
9911 {
9912 case NT_STAPSDT:
9913 return elfobj_grok_stapsdt_note_1 (abfd, note);
9914
9915 default:
9916 return TRUE;
9917 }
9918 }
9919
9920 static bfd_boolean
9921 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9922 {
9923 size_t offset;
9924
9925 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9926 {
9927 case ELFCLASS32:
9928 if (note->descsz < 108)
9929 return FALSE;
9930 break;
9931
9932 case ELFCLASS64:
9933 if (note->descsz < 120)
9934 return FALSE;
9935 break;
9936
9937 default:
9938 return FALSE;
9939 }
9940
9941 /* Check for version 1 in pr_version. */
9942 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9943 return FALSE;
9944
9945 offset = 4;
9946
9947 /* Skip over pr_psinfosz. */
9948 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9949 offset += 4;
9950 else
9951 {
9952 offset += 4; /* Padding before pr_psinfosz. */
9953 offset += 8;
9954 }
9955
9956 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9957 elf_tdata (abfd)->core->program
9958 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9959 offset += 17;
9960
9961 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9962 elf_tdata (abfd)->core->command
9963 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9964 offset += 81;
9965
9966 /* Padding before pr_pid. */
9967 offset += 2;
9968
9969 /* The pr_pid field was added in version "1a". */
9970 if (note->descsz < offset + 4)
9971 return TRUE;
9972
9973 elf_tdata (abfd)->core->pid
9974 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9975
9976 return TRUE;
9977 }
9978
9979 static bfd_boolean
9980 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9981 {
9982 size_t offset;
9983 size_t size;
9984 size_t min_size;
9985
9986 /* Compute offset of pr_getregsz, skipping over pr_statussz.
9987 Also compute minimum size of this note. */
9988 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9989 {
9990 case ELFCLASS32:
9991 offset = 4 + 4;
9992 min_size = offset + (4 * 2) + 4 + 4 + 4;
9993 break;
9994
9995 case ELFCLASS64:
9996 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
9997 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
9998 break;
9999
10000 default:
10001 return FALSE;
10002 }
10003
10004 if (note->descsz < min_size)
10005 return FALSE;
10006
10007 /* Check for version 1 in pr_version. */
10008 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10009 return FALSE;
10010
10011 /* Extract size of pr_reg from pr_gregsetsz. */
10012 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10013 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10014 {
10015 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10016 offset += 4 * 2;
10017 }
10018 else
10019 {
10020 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10021 offset += 8 * 2;
10022 }
10023
10024 /* Skip over pr_osreldate. */
10025 offset += 4;
10026
10027 /* Read signal from pr_cursig. */
10028 if (elf_tdata (abfd)->core->signal == 0)
10029 elf_tdata (abfd)->core->signal
10030 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10031 offset += 4;
10032
10033 /* Read TID from pr_pid. */
10034 elf_tdata (abfd)->core->lwpid
10035 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10036 offset += 4;
10037
10038 /* Padding before pr_reg. */
10039 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10040 offset += 4;
10041
10042 /* Make sure that there is enough data remaining in the note. */
10043 if ((note->descsz - offset) < size)
10044 return FALSE;
10045
10046 /* Make a ".reg/999" section and a ".reg" section. */
10047 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10048 size, note->descpos + offset);
10049 }
10050
10051 static bfd_boolean
10052 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10053 {
10054 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10055
10056 switch (note->type)
10057 {
10058 case NT_PRSTATUS:
10059 if (bed->elf_backend_grok_freebsd_prstatus)
10060 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10061 return TRUE;
10062 return elfcore_grok_freebsd_prstatus (abfd, note);
10063
10064 case NT_FPREGSET:
10065 return elfcore_grok_prfpreg (abfd, note);
10066
10067 case NT_PRPSINFO:
10068 return elfcore_grok_freebsd_psinfo (abfd, note);
10069
10070 case NT_FREEBSD_THRMISC:
10071 if (note->namesz == 8)
10072 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10073 else
10074 return TRUE;
10075
10076 case NT_FREEBSD_PROCSTAT_PROC:
10077 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10078 note);
10079
10080 case NT_FREEBSD_PROCSTAT_FILES:
10081 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10082 note);
10083
10084 case NT_FREEBSD_PROCSTAT_VMMAP:
10085 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10086 note);
10087
10088 case NT_FREEBSD_PROCSTAT_AUXV:
10089 {
10090 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10091 SEC_HAS_CONTENTS);
10092
10093 if (sect == NULL)
10094 return FALSE;
10095 sect->size = note->descsz - 4;
10096 sect->filepos = note->descpos + 4;
10097 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10098
10099 return TRUE;
10100 }
10101
10102 case NT_X86_XSTATE:
10103 if (note->namesz == 8)
10104 return elfcore_grok_xstatereg (abfd, note);
10105 else
10106 return TRUE;
10107
10108 case NT_FREEBSD_PTLWPINFO:
10109 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10110 note);
10111
10112 case NT_ARM_VFP:
10113 return elfcore_grok_arm_vfp (abfd, note);
10114
10115 default:
10116 return TRUE;
10117 }
10118 }
10119
10120 static bfd_boolean
10121 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10122 {
10123 char *cp;
10124
10125 cp = strchr (note->namedata, '@');
10126 if (cp != NULL)
10127 {
10128 *lwpidp = atoi(cp + 1);
10129 return TRUE;
10130 }
10131 return FALSE;
10132 }
10133
10134 static bfd_boolean
10135 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10136 {
10137 if (note->descsz <= 0x7c + 31)
10138 return FALSE;
10139
10140 /* Signal number at offset 0x08. */
10141 elf_tdata (abfd)->core->signal
10142 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10143
10144 /* Process ID at offset 0x50. */
10145 elf_tdata (abfd)->core->pid
10146 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10147
10148 /* Command name at 0x7c (max 32 bytes, including nul). */
10149 elf_tdata (abfd)->core->command
10150 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10151
10152 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10153 note);
10154 }
10155
10156 static bfd_boolean
10157 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10158 {
10159 int lwp;
10160
10161 if (elfcore_netbsd_get_lwpid (note, &lwp))
10162 elf_tdata (abfd)->core->lwpid = lwp;
10163
10164 if (note->type == NT_NETBSDCORE_PROCINFO)
10165 {
10166 /* NetBSD-specific core "procinfo". Note that we expect to
10167 find this note before any of the others, which is fine,
10168 since the kernel writes this note out first when it
10169 creates a core file. */
10170
10171 return elfcore_grok_netbsd_procinfo (abfd, note);
10172 }
10173
10174 /* As of Jan 2002 there are no other machine-independent notes
10175 defined for NetBSD core files. If the note type is less
10176 than the start of the machine-dependent note types, we don't
10177 understand it. */
10178
10179 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10180 return TRUE;
10181
10182
10183 switch (bfd_get_arch (abfd))
10184 {
10185 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10186 PT_GETFPREGS == mach+2. */
10187
10188 case bfd_arch_alpha:
10189 case bfd_arch_sparc:
10190 switch (note->type)
10191 {
10192 case NT_NETBSDCORE_FIRSTMACH+0:
10193 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10194
10195 case NT_NETBSDCORE_FIRSTMACH+2:
10196 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10197
10198 default:
10199 return TRUE;
10200 }
10201
10202 /* On all other arch's, PT_GETREGS == mach+1 and
10203 PT_GETFPREGS == mach+3. */
10204
10205 default:
10206 switch (note->type)
10207 {
10208 case NT_NETBSDCORE_FIRSTMACH+1:
10209 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10210
10211 case NT_NETBSDCORE_FIRSTMACH+3:
10212 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10213
10214 default:
10215 return TRUE;
10216 }
10217 }
10218 /* NOTREACHED */
10219 }
10220
10221 static bfd_boolean
10222 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10223 {
10224 if (note->descsz <= 0x48 + 31)
10225 return FALSE;
10226
10227 /* Signal number at offset 0x08. */
10228 elf_tdata (abfd)->core->signal
10229 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10230
10231 /* Process ID at offset 0x20. */
10232 elf_tdata (abfd)->core->pid
10233 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10234
10235 /* Command name at 0x48 (max 32 bytes, including nul). */
10236 elf_tdata (abfd)->core->command
10237 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10238
10239 return TRUE;
10240 }
10241
10242 static bfd_boolean
10243 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10244 {
10245 if (note->type == NT_OPENBSD_PROCINFO)
10246 return elfcore_grok_openbsd_procinfo (abfd, note);
10247
10248 if (note->type == NT_OPENBSD_REGS)
10249 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10250
10251 if (note->type == NT_OPENBSD_FPREGS)
10252 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10253
10254 if (note->type == NT_OPENBSD_XFPREGS)
10255 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10256
10257 if (note->type == NT_OPENBSD_AUXV)
10258 {
10259 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10260 SEC_HAS_CONTENTS);
10261
10262 if (sect == NULL)
10263 return FALSE;
10264 sect->size = note->descsz;
10265 sect->filepos = note->descpos;
10266 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10267
10268 return TRUE;
10269 }
10270
10271 if (note->type == NT_OPENBSD_WCOOKIE)
10272 {
10273 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10274 SEC_HAS_CONTENTS);
10275
10276 if (sect == NULL)
10277 return FALSE;
10278 sect->size = note->descsz;
10279 sect->filepos = note->descpos;
10280 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10281
10282 return TRUE;
10283 }
10284
10285 return TRUE;
10286 }
10287
10288 static bfd_boolean
10289 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10290 {
10291 void *ddata = note->descdata;
10292 char buf[100];
10293 char *name;
10294 asection *sect;
10295 short sig;
10296 unsigned flags;
10297
10298 if (note->descsz < 16)
10299 return FALSE;
10300
10301 /* nto_procfs_status 'pid' field is at offset 0. */
10302 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10303
10304 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10305 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10306
10307 /* nto_procfs_status 'flags' field is at offset 8. */
10308 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10309
10310 /* nto_procfs_status 'what' field is at offset 14. */
10311 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10312 {
10313 elf_tdata (abfd)->core->signal = sig;
10314 elf_tdata (abfd)->core->lwpid = *tid;
10315 }
10316
10317 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10318 do not come from signals so we make sure we set the current
10319 thread just in case. */
10320 if (flags & 0x00000080)
10321 elf_tdata (abfd)->core->lwpid = *tid;
10322
10323 /* Make a ".qnx_core_status/%d" section. */
10324 sprintf (buf, ".qnx_core_status/%ld", *tid);
10325
10326 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10327 if (name == NULL)
10328 return FALSE;
10329 strcpy (name, buf);
10330
10331 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10332 if (sect == NULL)
10333 return FALSE;
10334
10335 sect->size = note->descsz;
10336 sect->filepos = note->descpos;
10337 sect->alignment_power = 2;
10338
10339 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10340 }
10341
10342 static bfd_boolean
10343 elfcore_grok_nto_regs (bfd *abfd,
10344 Elf_Internal_Note *note,
10345 long tid,
10346 char *base)
10347 {
10348 char buf[100];
10349 char *name;
10350 asection *sect;
10351
10352 /* Make a "(base)/%d" section. */
10353 sprintf (buf, "%s/%ld", base, tid);
10354
10355 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10356 if (name == NULL)
10357 return FALSE;
10358 strcpy (name, buf);
10359
10360 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10361 if (sect == NULL)
10362 return FALSE;
10363
10364 sect->size = note->descsz;
10365 sect->filepos = note->descpos;
10366 sect->alignment_power = 2;
10367
10368 /* This is the current thread. */
10369 if (elf_tdata (abfd)->core->lwpid == tid)
10370 return elfcore_maybe_make_sect (abfd, base, sect);
10371
10372 return TRUE;
10373 }
10374
10375 #define BFD_QNT_CORE_INFO 7
10376 #define BFD_QNT_CORE_STATUS 8
10377 #define BFD_QNT_CORE_GREG 9
10378 #define BFD_QNT_CORE_FPREG 10
10379
10380 static bfd_boolean
10381 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10382 {
10383 /* Every GREG section has a STATUS section before it. Store the
10384 tid from the previous call to pass down to the next gregs
10385 function. */
10386 static long tid = 1;
10387
10388 switch (note->type)
10389 {
10390 case BFD_QNT_CORE_INFO:
10391 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10392 case BFD_QNT_CORE_STATUS:
10393 return elfcore_grok_nto_status (abfd, note, &tid);
10394 case BFD_QNT_CORE_GREG:
10395 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10396 case BFD_QNT_CORE_FPREG:
10397 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10398 default:
10399 return TRUE;
10400 }
10401 }
10402
10403 static bfd_boolean
10404 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10405 {
10406 char *name;
10407 asection *sect;
10408 size_t len;
10409
10410 /* Use note name as section name. */
10411 len = note->namesz;
10412 name = (char *) bfd_alloc (abfd, len);
10413 if (name == NULL)
10414 return FALSE;
10415 memcpy (name, note->namedata, len);
10416 name[len - 1] = '\0';
10417
10418 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10419 if (sect == NULL)
10420 return FALSE;
10421
10422 sect->size = note->descsz;
10423 sect->filepos = note->descpos;
10424 sect->alignment_power = 1;
10425
10426 return TRUE;
10427 }
10428
10429 /* Function: elfcore_write_note
10430
10431 Inputs:
10432 buffer to hold note, and current size of buffer
10433 name of note
10434 type of note
10435 data for note
10436 size of data for note
10437
10438 Writes note to end of buffer. ELF64 notes are written exactly as
10439 for ELF32, despite the current (as of 2006) ELF gabi specifying
10440 that they ought to have 8-byte namesz and descsz field, and have
10441 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10442
10443 Return:
10444 Pointer to realloc'd buffer, *BUFSIZ updated. */
10445
10446 char *
10447 elfcore_write_note (bfd *abfd,
10448 char *buf,
10449 int *bufsiz,
10450 const char *name,
10451 int type,
10452 const void *input,
10453 int size)
10454 {
10455 Elf_External_Note *xnp;
10456 size_t namesz;
10457 size_t newspace;
10458 char *dest;
10459
10460 namesz = 0;
10461 if (name != NULL)
10462 namesz = strlen (name) + 1;
10463
10464 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10465
10466 buf = (char *) realloc (buf, *bufsiz + newspace);
10467 if (buf == NULL)
10468 return buf;
10469 dest = buf + *bufsiz;
10470 *bufsiz += newspace;
10471 xnp = (Elf_External_Note *) dest;
10472 H_PUT_32 (abfd, namesz, xnp->namesz);
10473 H_PUT_32 (abfd, size, xnp->descsz);
10474 H_PUT_32 (abfd, type, xnp->type);
10475 dest = xnp->name;
10476 if (name != NULL)
10477 {
10478 memcpy (dest, name, namesz);
10479 dest += namesz;
10480 while (namesz & 3)
10481 {
10482 *dest++ = '\0';
10483 ++namesz;
10484 }
10485 }
10486 memcpy (dest, input, size);
10487 dest += size;
10488 while (size & 3)
10489 {
10490 *dest++ = '\0';
10491 ++size;
10492 }
10493 return buf;
10494 }
10495
10496 char *
10497 elfcore_write_prpsinfo (bfd *abfd,
10498 char *buf,
10499 int *bufsiz,
10500 const char *fname,
10501 const char *psargs)
10502 {
10503 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10504
10505 if (bed->elf_backend_write_core_note != NULL)
10506 {
10507 char *ret;
10508 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10509 NT_PRPSINFO, fname, psargs);
10510 if (ret != NULL)
10511 return ret;
10512 }
10513
10514 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10515 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10516 if (bed->s->elfclass == ELFCLASS32)
10517 {
10518 #if defined (HAVE_PSINFO32_T)
10519 psinfo32_t data;
10520 int note_type = NT_PSINFO;
10521 #else
10522 prpsinfo32_t data;
10523 int note_type = NT_PRPSINFO;
10524 #endif
10525
10526 memset (&data, 0, sizeof (data));
10527 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10528 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10529 return elfcore_write_note (abfd, buf, bufsiz,
10530 "CORE", note_type, &data, sizeof (data));
10531 }
10532 else
10533 #endif
10534 {
10535 #if defined (HAVE_PSINFO_T)
10536 psinfo_t data;
10537 int note_type = NT_PSINFO;
10538 #else
10539 prpsinfo_t data;
10540 int note_type = NT_PRPSINFO;
10541 #endif
10542
10543 memset (&data, 0, sizeof (data));
10544 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10545 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10546 return elfcore_write_note (abfd, buf, bufsiz,
10547 "CORE", note_type, &data, sizeof (data));
10548 }
10549 #endif /* PSINFO_T or PRPSINFO_T */
10550
10551 free (buf);
10552 return NULL;
10553 }
10554
10555 char *
10556 elfcore_write_linux_prpsinfo32
10557 (bfd *abfd, char *buf, int *bufsiz,
10558 const struct elf_internal_linux_prpsinfo *prpsinfo)
10559 {
10560 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10561 {
10562 struct elf_external_linux_prpsinfo32_ugid16 data;
10563
10564 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10565 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10566 &data, sizeof (data));
10567 }
10568 else
10569 {
10570 struct elf_external_linux_prpsinfo32_ugid32 data;
10571
10572 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10573 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10574 &data, sizeof (data));
10575 }
10576 }
10577
10578 char *
10579 elfcore_write_linux_prpsinfo64
10580 (bfd *abfd, char *buf, int *bufsiz,
10581 const struct elf_internal_linux_prpsinfo *prpsinfo)
10582 {
10583 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
10584 {
10585 struct elf_external_linux_prpsinfo64_ugid16 data;
10586
10587 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
10588 return elfcore_write_note (abfd, buf, bufsiz,
10589 "CORE", NT_PRPSINFO, &data, sizeof (data));
10590 }
10591 else
10592 {
10593 struct elf_external_linux_prpsinfo64_ugid32 data;
10594
10595 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
10596 return elfcore_write_note (abfd, buf, bufsiz,
10597 "CORE", NT_PRPSINFO, &data, sizeof (data));
10598 }
10599 }
10600
10601 char *
10602 elfcore_write_prstatus (bfd *abfd,
10603 char *buf,
10604 int *bufsiz,
10605 long pid,
10606 int cursig,
10607 const void *gregs)
10608 {
10609 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10610
10611 if (bed->elf_backend_write_core_note != NULL)
10612 {
10613 char *ret;
10614 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10615 NT_PRSTATUS,
10616 pid, cursig, gregs);
10617 if (ret != NULL)
10618 return ret;
10619 }
10620
10621 #if defined (HAVE_PRSTATUS_T)
10622 #if defined (HAVE_PRSTATUS32_T)
10623 if (bed->s->elfclass == ELFCLASS32)
10624 {
10625 prstatus32_t prstat;
10626
10627 memset (&prstat, 0, sizeof (prstat));
10628 prstat.pr_pid = pid;
10629 prstat.pr_cursig = cursig;
10630 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10631 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10632 NT_PRSTATUS, &prstat, sizeof (prstat));
10633 }
10634 else
10635 #endif
10636 {
10637 prstatus_t prstat;
10638
10639 memset (&prstat, 0, sizeof (prstat));
10640 prstat.pr_pid = pid;
10641 prstat.pr_cursig = cursig;
10642 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10643 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10644 NT_PRSTATUS, &prstat, sizeof (prstat));
10645 }
10646 #endif /* HAVE_PRSTATUS_T */
10647
10648 free (buf);
10649 return NULL;
10650 }
10651
10652 #if defined (HAVE_LWPSTATUS_T)
10653 char *
10654 elfcore_write_lwpstatus (bfd *abfd,
10655 char *buf,
10656 int *bufsiz,
10657 long pid,
10658 int cursig,
10659 const void *gregs)
10660 {
10661 lwpstatus_t lwpstat;
10662 const char *note_name = "CORE";
10663
10664 memset (&lwpstat, 0, sizeof (lwpstat));
10665 lwpstat.pr_lwpid = pid >> 16;
10666 lwpstat.pr_cursig = cursig;
10667 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10668 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10669 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10670 #if !defined(gregs)
10671 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10672 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10673 #else
10674 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10675 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10676 #endif
10677 #endif
10678 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10679 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10680 }
10681 #endif /* HAVE_LWPSTATUS_T */
10682
10683 #if defined (HAVE_PSTATUS_T)
10684 char *
10685 elfcore_write_pstatus (bfd *abfd,
10686 char *buf,
10687 int *bufsiz,
10688 long pid,
10689 int cursig ATTRIBUTE_UNUSED,
10690 const void *gregs ATTRIBUTE_UNUSED)
10691 {
10692 const char *note_name = "CORE";
10693 #if defined (HAVE_PSTATUS32_T)
10694 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10695
10696 if (bed->s->elfclass == ELFCLASS32)
10697 {
10698 pstatus32_t pstat;
10699
10700 memset (&pstat, 0, sizeof (pstat));
10701 pstat.pr_pid = pid & 0xffff;
10702 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10703 NT_PSTATUS, &pstat, sizeof (pstat));
10704 return buf;
10705 }
10706 else
10707 #endif
10708 {
10709 pstatus_t pstat;
10710
10711 memset (&pstat, 0, sizeof (pstat));
10712 pstat.pr_pid = pid & 0xffff;
10713 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10714 NT_PSTATUS, &pstat, sizeof (pstat));
10715 return buf;
10716 }
10717 }
10718 #endif /* HAVE_PSTATUS_T */
10719
10720 char *
10721 elfcore_write_prfpreg (bfd *abfd,
10722 char *buf,
10723 int *bufsiz,
10724 const void *fpregs,
10725 int size)
10726 {
10727 const char *note_name = "CORE";
10728 return elfcore_write_note (abfd, buf, bufsiz,
10729 note_name, NT_FPREGSET, fpregs, size);
10730 }
10731
10732 char *
10733 elfcore_write_prxfpreg (bfd *abfd,
10734 char *buf,
10735 int *bufsiz,
10736 const void *xfpregs,
10737 int size)
10738 {
10739 char *note_name = "LINUX";
10740 return elfcore_write_note (abfd, buf, bufsiz,
10741 note_name, NT_PRXFPREG, xfpregs, size);
10742 }
10743
10744 char *
10745 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10746 const void *xfpregs, int size)
10747 {
10748 char *note_name;
10749 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10750 note_name = "FreeBSD";
10751 else
10752 note_name = "LINUX";
10753 return elfcore_write_note (abfd, buf, bufsiz,
10754 note_name, NT_X86_XSTATE, xfpregs, size);
10755 }
10756
10757 char *
10758 elfcore_write_ppc_vmx (bfd *abfd,
10759 char *buf,
10760 int *bufsiz,
10761 const void *ppc_vmx,
10762 int size)
10763 {
10764 char *note_name = "LINUX";
10765 return elfcore_write_note (abfd, buf, bufsiz,
10766 note_name, NT_PPC_VMX, ppc_vmx, size);
10767 }
10768
10769 char *
10770 elfcore_write_ppc_vsx (bfd *abfd,
10771 char *buf,
10772 int *bufsiz,
10773 const void *ppc_vsx,
10774 int size)
10775 {
10776 char *note_name = "LINUX";
10777 return elfcore_write_note (abfd, buf, bufsiz,
10778 note_name, NT_PPC_VSX, ppc_vsx, size);
10779 }
10780
10781 static char *
10782 elfcore_write_s390_high_gprs (bfd *abfd,
10783 char *buf,
10784 int *bufsiz,
10785 const void *s390_high_gprs,
10786 int size)
10787 {
10788 char *note_name = "LINUX";
10789 return elfcore_write_note (abfd, buf, bufsiz,
10790 note_name, NT_S390_HIGH_GPRS,
10791 s390_high_gprs, size);
10792 }
10793
10794 char *
10795 elfcore_write_s390_timer (bfd *abfd,
10796 char *buf,
10797 int *bufsiz,
10798 const void *s390_timer,
10799 int size)
10800 {
10801 char *note_name = "LINUX";
10802 return elfcore_write_note (abfd, buf, bufsiz,
10803 note_name, NT_S390_TIMER, s390_timer, size);
10804 }
10805
10806 char *
10807 elfcore_write_s390_todcmp (bfd *abfd,
10808 char *buf,
10809 int *bufsiz,
10810 const void *s390_todcmp,
10811 int size)
10812 {
10813 char *note_name = "LINUX";
10814 return elfcore_write_note (abfd, buf, bufsiz,
10815 note_name, NT_S390_TODCMP, s390_todcmp, size);
10816 }
10817
10818 char *
10819 elfcore_write_s390_todpreg (bfd *abfd,
10820 char *buf,
10821 int *bufsiz,
10822 const void *s390_todpreg,
10823 int size)
10824 {
10825 char *note_name = "LINUX";
10826 return elfcore_write_note (abfd, buf, bufsiz,
10827 note_name, NT_S390_TODPREG, s390_todpreg, size);
10828 }
10829
10830 char *
10831 elfcore_write_s390_ctrs (bfd *abfd,
10832 char *buf,
10833 int *bufsiz,
10834 const void *s390_ctrs,
10835 int size)
10836 {
10837 char *note_name = "LINUX";
10838 return elfcore_write_note (abfd, buf, bufsiz,
10839 note_name, NT_S390_CTRS, s390_ctrs, size);
10840 }
10841
10842 char *
10843 elfcore_write_s390_prefix (bfd *abfd,
10844 char *buf,
10845 int *bufsiz,
10846 const void *s390_prefix,
10847 int size)
10848 {
10849 char *note_name = "LINUX";
10850 return elfcore_write_note (abfd, buf, bufsiz,
10851 note_name, NT_S390_PREFIX, s390_prefix, size);
10852 }
10853
10854 char *
10855 elfcore_write_s390_last_break (bfd *abfd,
10856 char *buf,
10857 int *bufsiz,
10858 const void *s390_last_break,
10859 int size)
10860 {
10861 char *note_name = "LINUX";
10862 return elfcore_write_note (abfd, buf, bufsiz,
10863 note_name, NT_S390_LAST_BREAK,
10864 s390_last_break, size);
10865 }
10866
10867 char *
10868 elfcore_write_s390_system_call (bfd *abfd,
10869 char *buf,
10870 int *bufsiz,
10871 const void *s390_system_call,
10872 int size)
10873 {
10874 char *note_name = "LINUX";
10875 return elfcore_write_note (abfd, buf, bufsiz,
10876 note_name, NT_S390_SYSTEM_CALL,
10877 s390_system_call, size);
10878 }
10879
10880 char *
10881 elfcore_write_s390_tdb (bfd *abfd,
10882 char *buf,
10883 int *bufsiz,
10884 const void *s390_tdb,
10885 int size)
10886 {
10887 char *note_name = "LINUX";
10888 return elfcore_write_note (abfd, buf, bufsiz,
10889 note_name, NT_S390_TDB, s390_tdb, size);
10890 }
10891
10892 char *
10893 elfcore_write_s390_vxrs_low (bfd *abfd,
10894 char *buf,
10895 int *bufsiz,
10896 const void *s390_vxrs_low,
10897 int size)
10898 {
10899 char *note_name = "LINUX";
10900 return elfcore_write_note (abfd, buf, bufsiz,
10901 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10902 }
10903
10904 char *
10905 elfcore_write_s390_vxrs_high (bfd *abfd,
10906 char *buf,
10907 int *bufsiz,
10908 const void *s390_vxrs_high,
10909 int size)
10910 {
10911 char *note_name = "LINUX";
10912 return elfcore_write_note (abfd, buf, bufsiz,
10913 note_name, NT_S390_VXRS_HIGH,
10914 s390_vxrs_high, size);
10915 }
10916
10917 char *
10918 elfcore_write_s390_gs_cb (bfd *abfd,
10919 char *buf,
10920 int *bufsiz,
10921 const void *s390_gs_cb,
10922 int size)
10923 {
10924 char *note_name = "LINUX";
10925 return elfcore_write_note (abfd, buf, bufsiz,
10926 note_name, NT_S390_GS_CB,
10927 s390_gs_cb, size);
10928 }
10929
10930 char *
10931 elfcore_write_s390_gs_bc (bfd *abfd,
10932 char *buf,
10933 int *bufsiz,
10934 const void *s390_gs_bc,
10935 int size)
10936 {
10937 char *note_name = "LINUX";
10938 return elfcore_write_note (abfd, buf, bufsiz,
10939 note_name, NT_S390_GS_BC,
10940 s390_gs_bc, size);
10941 }
10942
10943 char *
10944 elfcore_write_arm_vfp (bfd *abfd,
10945 char *buf,
10946 int *bufsiz,
10947 const void *arm_vfp,
10948 int size)
10949 {
10950 char *note_name = "LINUX";
10951 return elfcore_write_note (abfd, buf, bufsiz,
10952 note_name, NT_ARM_VFP, arm_vfp, size);
10953 }
10954
10955 char *
10956 elfcore_write_aarch_tls (bfd *abfd,
10957 char *buf,
10958 int *bufsiz,
10959 const void *aarch_tls,
10960 int size)
10961 {
10962 char *note_name = "LINUX";
10963 return elfcore_write_note (abfd, buf, bufsiz,
10964 note_name, NT_ARM_TLS, aarch_tls, size);
10965 }
10966
10967 char *
10968 elfcore_write_aarch_hw_break (bfd *abfd,
10969 char *buf,
10970 int *bufsiz,
10971 const void *aarch_hw_break,
10972 int size)
10973 {
10974 char *note_name = "LINUX";
10975 return elfcore_write_note (abfd, buf, bufsiz,
10976 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10977 }
10978
10979 char *
10980 elfcore_write_aarch_hw_watch (bfd *abfd,
10981 char *buf,
10982 int *bufsiz,
10983 const void *aarch_hw_watch,
10984 int size)
10985 {
10986 char *note_name = "LINUX";
10987 return elfcore_write_note (abfd, buf, bufsiz,
10988 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10989 }
10990
10991 char *
10992 elfcore_write_register_note (bfd *abfd,
10993 char *buf,
10994 int *bufsiz,
10995 const char *section,
10996 const void *data,
10997 int size)
10998 {
10999 if (strcmp (section, ".reg2") == 0)
11000 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11001 if (strcmp (section, ".reg-xfp") == 0)
11002 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11003 if (strcmp (section, ".reg-xstate") == 0)
11004 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11005 if (strcmp (section, ".reg-ppc-vmx") == 0)
11006 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11007 if (strcmp (section, ".reg-ppc-vsx") == 0)
11008 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11009 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11010 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11011 if (strcmp (section, ".reg-s390-timer") == 0)
11012 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11013 if (strcmp (section, ".reg-s390-todcmp") == 0)
11014 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11015 if (strcmp (section, ".reg-s390-todpreg") == 0)
11016 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11017 if (strcmp (section, ".reg-s390-ctrs") == 0)
11018 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11019 if (strcmp (section, ".reg-s390-prefix") == 0)
11020 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11021 if (strcmp (section, ".reg-s390-last-break") == 0)
11022 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11023 if (strcmp (section, ".reg-s390-system-call") == 0)
11024 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11025 if (strcmp (section, ".reg-s390-tdb") == 0)
11026 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11027 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11028 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11029 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11030 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11031 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11032 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11033 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11034 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11035 if (strcmp (section, ".reg-arm-vfp") == 0)
11036 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11037 if (strcmp (section, ".reg-aarch-tls") == 0)
11038 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11039 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11040 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11041 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11042 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11043 return NULL;
11044 }
11045
11046 static bfd_boolean
11047 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11048 size_t align)
11049 {
11050 char *p;
11051
11052 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11053 gABI specifies that PT_NOTE alignment should be aligned to 4
11054 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11055 align is less than 4, we use 4 byte alignment. */
11056 if (align < 4)
11057 align = 4;
11058 if (align != 4 && align != 8)
11059 return FALSE;
11060
11061 p = buf;
11062 while (p < buf + size)
11063 {
11064 Elf_External_Note *xnp = (Elf_External_Note *) p;
11065 Elf_Internal_Note in;
11066
11067 if (offsetof (Elf_External_Note, name) > buf - p + size)
11068 return FALSE;
11069
11070 in.type = H_GET_32 (abfd, xnp->type);
11071
11072 in.namesz = H_GET_32 (abfd, xnp->namesz);
11073 in.namedata = xnp->name;
11074 if (in.namesz > buf - in.namedata + size)
11075 return FALSE;
11076
11077 in.descsz = H_GET_32 (abfd, xnp->descsz);
11078 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11079 in.descpos = offset + (in.descdata - buf);
11080 if (in.descsz != 0
11081 && (in.descdata >= buf + size
11082 || in.descsz > buf - in.descdata + size))
11083 return FALSE;
11084
11085 switch (bfd_get_format (abfd))
11086 {
11087 default:
11088 return TRUE;
11089
11090 case bfd_core:
11091 {
11092 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11093 struct
11094 {
11095 const char * string;
11096 size_t len;
11097 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11098 }
11099 grokers[] =
11100 {
11101 GROKER_ELEMENT ("", elfcore_grok_note),
11102 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11103 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11104 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11105 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11106 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11107 };
11108 #undef GROKER_ELEMENT
11109 int i;
11110
11111 for (i = ARRAY_SIZE (grokers); i--;)
11112 {
11113 if (in.namesz >= grokers[i].len
11114 && strncmp (in.namedata, grokers[i].string,
11115 grokers[i].len) == 0)
11116 {
11117 if (! grokers[i].func (abfd, & in))
11118 return FALSE;
11119 break;
11120 }
11121 }
11122 break;
11123 }
11124
11125 case bfd_object:
11126 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11127 {
11128 if (! elfobj_grok_gnu_note (abfd, &in))
11129 return FALSE;
11130 }
11131 else if (in.namesz == sizeof "stapsdt"
11132 && strcmp (in.namedata, "stapsdt") == 0)
11133 {
11134 if (! elfobj_grok_stapsdt_note (abfd, &in))
11135 return FALSE;
11136 }
11137 break;
11138 }
11139
11140 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11141 }
11142
11143 return TRUE;
11144 }
11145
11146 static bfd_boolean
11147 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11148 size_t align)
11149 {
11150 char *buf;
11151
11152 if (size == 0 || (size + 1) == 0)
11153 return TRUE;
11154
11155 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11156 return FALSE;
11157
11158 buf = (char *) bfd_malloc (size + 1);
11159 if (buf == NULL)
11160 return FALSE;
11161
11162 /* PR 17512: file: ec08f814
11163 0-termintate the buffer so that string searches will not overflow. */
11164 buf[size] = 0;
11165
11166 if (bfd_bread (buf, size, abfd) != size
11167 || !elf_parse_notes (abfd, buf, size, offset, align))
11168 {
11169 free (buf);
11170 return FALSE;
11171 }
11172
11173 free (buf);
11174 return TRUE;
11175 }
11176 \f
11177 /* Providing external access to the ELF program header table. */
11178
11179 /* Return an upper bound on the number of bytes required to store a
11180 copy of ABFD's program header table entries. Return -1 if an error
11181 occurs; bfd_get_error will return an appropriate code. */
11182
11183 long
11184 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11185 {
11186 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11187 {
11188 bfd_set_error (bfd_error_wrong_format);
11189 return -1;
11190 }
11191
11192 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11193 }
11194
11195 /* Copy ABFD's program header table entries to *PHDRS. The entries
11196 will be stored as an array of Elf_Internal_Phdr structures, as
11197 defined in include/elf/internal.h. To find out how large the
11198 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11199
11200 Return the number of program header table entries read, or -1 if an
11201 error occurs; bfd_get_error will return an appropriate code. */
11202
11203 int
11204 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11205 {
11206 int num_phdrs;
11207
11208 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11209 {
11210 bfd_set_error (bfd_error_wrong_format);
11211 return -1;
11212 }
11213
11214 num_phdrs = elf_elfheader (abfd)->e_phnum;
11215 memcpy (phdrs, elf_tdata (abfd)->phdr,
11216 num_phdrs * sizeof (Elf_Internal_Phdr));
11217
11218 return num_phdrs;
11219 }
11220
11221 enum elf_reloc_type_class
11222 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11223 const asection *rel_sec ATTRIBUTE_UNUSED,
11224 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11225 {
11226 return reloc_class_normal;
11227 }
11228
11229 /* For RELA architectures, return the relocation value for a
11230 relocation against a local symbol. */
11231
11232 bfd_vma
11233 _bfd_elf_rela_local_sym (bfd *abfd,
11234 Elf_Internal_Sym *sym,
11235 asection **psec,
11236 Elf_Internal_Rela *rel)
11237 {
11238 asection *sec = *psec;
11239 bfd_vma relocation;
11240
11241 relocation = (sec->output_section->vma
11242 + sec->output_offset
11243 + sym->st_value);
11244 if ((sec->flags & SEC_MERGE)
11245 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11246 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11247 {
11248 rel->r_addend =
11249 _bfd_merged_section_offset (abfd, psec,
11250 elf_section_data (sec)->sec_info,
11251 sym->st_value + rel->r_addend);
11252 if (sec != *psec)
11253 {
11254 /* If we have changed the section, and our original section is
11255 marked with SEC_EXCLUDE, it means that the original
11256 SEC_MERGE section has been completely subsumed in some
11257 other SEC_MERGE section. In this case, we need to leave
11258 some info around for --emit-relocs. */
11259 if ((sec->flags & SEC_EXCLUDE) != 0)
11260 sec->kept_section = *psec;
11261 sec = *psec;
11262 }
11263 rel->r_addend -= relocation;
11264 rel->r_addend += sec->output_section->vma + sec->output_offset;
11265 }
11266 return relocation;
11267 }
11268
11269 bfd_vma
11270 _bfd_elf_rel_local_sym (bfd *abfd,
11271 Elf_Internal_Sym *sym,
11272 asection **psec,
11273 bfd_vma addend)
11274 {
11275 asection *sec = *psec;
11276
11277 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11278 return sym->st_value + addend;
11279
11280 return _bfd_merged_section_offset (abfd, psec,
11281 elf_section_data (sec)->sec_info,
11282 sym->st_value + addend);
11283 }
11284
11285 /* Adjust an address within a section. Given OFFSET within SEC, return
11286 the new offset within the section, based upon changes made to the
11287 section. Returns -1 if the offset is now invalid.
11288 The offset (in abnd out) is in target sized bytes, however big a
11289 byte may be. */
11290
11291 bfd_vma
11292 _bfd_elf_section_offset (bfd *abfd,
11293 struct bfd_link_info *info,
11294 asection *sec,
11295 bfd_vma offset)
11296 {
11297 switch (sec->sec_info_type)
11298 {
11299 case SEC_INFO_TYPE_STABS:
11300 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11301 offset);
11302 case SEC_INFO_TYPE_EH_FRAME:
11303 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11304
11305 default:
11306 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11307 {
11308 /* Reverse the offset. */
11309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11310 bfd_size_type address_size = bed->s->arch_size / 8;
11311
11312 /* address_size and sec->size are in octets. Convert
11313 to bytes before subtracting the original offset. */
11314 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11315 }
11316 return offset;
11317 }
11318 }
11319 \f
11320 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11321 reconstruct an ELF file by reading the segments out of remote memory
11322 based on the ELF file header at EHDR_VMA and the ELF program headers it
11323 points to. If not null, *LOADBASEP is filled in with the difference
11324 between the VMAs from which the segments were read, and the VMAs the
11325 file headers (and hence BFD's idea of each section's VMA) put them at.
11326
11327 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11328 remote memory at target address VMA into the local buffer at MYADDR; it
11329 should return zero on success or an `errno' code on failure. TEMPL must
11330 be a BFD for an ELF target with the word size and byte order found in
11331 the remote memory. */
11332
11333 bfd *
11334 bfd_elf_bfd_from_remote_memory
11335 (bfd *templ,
11336 bfd_vma ehdr_vma,
11337 bfd_size_type size,
11338 bfd_vma *loadbasep,
11339 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11340 {
11341 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11342 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11343 }
11344 \f
11345 long
11346 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11347 long symcount ATTRIBUTE_UNUSED,
11348 asymbol **syms ATTRIBUTE_UNUSED,
11349 long dynsymcount,
11350 asymbol **dynsyms,
11351 asymbol **ret)
11352 {
11353 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11354 asection *relplt;
11355 asymbol *s;
11356 const char *relplt_name;
11357 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11358 arelent *p;
11359 long count, i, n;
11360 size_t size;
11361 Elf_Internal_Shdr *hdr;
11362 char *names;
11363 asection *plt;
11364
11365 *ret = NULL;
11366
11367 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11368 return 0;
11369
11370 if (dynsymcount <= 0)
11371 return 0;
11372
11373 if (!bed->plt_sym_val)
11374 return 0;
11375
11376 relplt_name = bed->relplt_name;
11377 if (relplt_name == NULL)
11378 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11379 relplt = bfd_get_section_by_name (abfd, relplt_name);
11380 if (relplt == NULL)
11381 return 0;
11382
11383 hdr = &elf_section_data (relplt)->this_hdr;
11384 if (hdr->sh_link != elf_dynsymtab (abfd)
11385 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11386 return 0;
11387
11388 plt = bfd_get_section_by_name (abfd, ".plt");
11389 if (plt == NULL)
11390 return 0;
11391
11392 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11393 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11394 return -1;
11395
11396 count = relplt->size / hdr->sh_entsize;
11397 size = count * sizeof (asymbol);
11398 p = relplt->relocation;
11399 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11400 {
11401 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11402 if (p->addend != 0)
11403 {
11404 #ifdef BFD64
11405 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11406 #else
11407 size += sizeof ("+0x") - 1 + 8;
11408 #endif
11409 }
11410 }
11411
11412 s = *ret = (asymbol *) bfd_malloc (size);
11413 if (s == NULL)
11414 return -1;
11415
11416 names = (char *) (s + count);
11417 p = relplt->relocation;
11418 n = 0;
11419 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11420 {
11421 size_t len;
11422 bfd_vma addr;
11423
11424 addr = bed->plt_sym_val (i, plt, p);
11425 if (addr == (bfd_vma) -1)
11426 continue;
11427
11428 *s = **p->sym_ptr_ptr;
11429 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11430 we are defining a symbol, ensure one of them is set. */
11431 if ((s->flags & BSF_LOCAL) == 0)
11432 s->flags |= BSF_GLOBAL;
11433 s->flags |= BSF_SYNTHETIC;
11434 s->section = plt;
11435 s->value = addr - plt->vma;
11436 s->name = names;
11437 s->udata.p = NULL;
11438 len = strlen ((*p->sym_ptr_ptr)->name);
11439 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11440 names += len;
11441 if (p->addend != 0)
11442 {
11443 char buf[30], *a;
11444
11445 memcpy (names, "+0x", sizeof ("+0x") - 1);
11446 names += sizeof ("+0x") - 1;
11447 bfd_sprintf_vma (abfd, buf, p->addend);
11448 for (a = buf; *a == '0'; ++a)
11449 ;
11450 len = strlen (a);
11451 memcpy (names, a, len);
11452 names += len;
11453 }
11454 memcpy (names, "@plt", sizeof ("@plt"));
11455 names += sizeof ("@plt");
11456 ++s, ++n;
11457 }
11458
11459 return n;
11460 }
11461
11462 /* It is only used by x86-64 so far.
11463 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11464 but current usage would allow all of _bfd_std_section to be zero. */
11465 static const asymbol lcomm_sym
11466 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
11467 asection _bfd_elf_large_com_section
11468 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
11469 "LARGE_COMMON", 0, SEC_IS_COMMON);
11470
11471 void
11472 _bfd_elf_post_process_headers (bfd * abfd,
11473 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11474 {
11475 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11476
11477 i_ehdrp = elf_elfheader (abfd);
11478
11479 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11480
11481 /* To make things simpler for the loader on Linux systems we set the
11482 osabi field to ELFOSABI_GNU if the binary contains symbols of
11483 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11484 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11485 && elf_tdata (abfd)->has_gnu_symbols)
11486 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11487 }
11488
11489
11490 /* Return TRUE for ELF symbol types that represent functions.
11491 This is the default version of this function, which is sufficient for
11492 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11493
11494 bfd_boolean
11495 _bfd_elf_is_function_type (unsigned int type)
11496 {
11497 return (type == STT_FUNC
11498 || type == STT_GNU_IFUNC);
11499 }
11500
11501 /* If the ELF symbol SYM might be a function in SEC, return the
11502 function size and set *CODE_OFF to the function's entry point,
11503 otherwise return zero. */
11504
11505 bfd_size_type
11506 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11507 bfd_vma *code_off)
11508 {
11509 bfd_size_type size;
11510
11511 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11512 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11513 || sym->section != sec)
11514 return 0;
11515
11516 *code_off = sym->value;
11517 size = 0;
11518 if (!(sym->flags & BSF_SYNTHETIC))
11519 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11520 if (size == 0)
11521 size = 1;
11522 return size;
11523 }
This page took 0.248506 seconds and 5 git commands to generate.