Check for asprintf and vasprintf during configure stage.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2015 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"),
342 abfd, shindex);
343 return NULL;
344 }
345
346 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
347 return NULL;
348 }
349
350 if (strindex >= hdr->sh_size)
351 {
352 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
353 (*_bfd_error_handler)
354 (_("%B: invalid string offset %u >= %lu for section `%s'"),
355 abfd, strindex, (unsigned long) hdr->sh_size,
356 (shindex == shstrndx && strindex == hdr->sh_name
357 ? ".shstrtab"
358 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
359 return NULL;
360 }
361
362 return ((char *) hdr->contents) + strindex;
363 }
364
365 /* Read and convert symbols to internal format.
366 SYMCOUNT specifies the number of symbols to read, starting from
367 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
368 are non-NULL, they are used to store the internal symbols, external
369 symbols, and symbol section index extensions, respectively.
370 Returns a pointer to the internal symbol buffer (malloced if necessary)
371 or NULL if there were no symbols or some kind of problem. */
372
373 Elf_Internal_Sym *
374 bfd_elf_get_elf_syms (bfd *ibfd,
375 Elf_Internal_Shdr *symtab_hdr,
376 size_t symcount,
377 size_t symoffset,
378 Elf_Internal_Sym *intsym_buf,
379 void *extsym_buf,
380 Elf_External_Sym_Shndx *extshndx_buf)
381 {
382 Elf_Internal_Shdr *shndx_hdr;
383 void *alloc_ext;
384 const bfd_byte *esym;
385 Elf_External_Sym_Shndx *alloc_extshndx;
386 Elf_External_Sym_Shndx *shndx;
387 Elf_Internal_Sym *alloc_intsym;
388 Elf_Internal_Sym *isym;
389 Elf_Internal_Sym *isymend;
390 const struct elf_backend_data *bed;
391 size_t extsym_size;
392 bfd_size_type amt;
393 file_ptr pos;
394
395 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
396 abort ();
397
398 if (symcount == 0)
399 return intsym_buf;
400
401 /* Normal syms might have section extension entries. */
402 shndx_hdr = NULL;
403 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
404 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
405
406 /* Read the symbols. */
407 alloc_ext = NULL;
408 alloc_extshndx = NULL;
409 alloc_intsym = NULL;
410 bed = get_elf_backend_data (ibfd);
411 extsym_size = bed->s->sizeof_sym;
412 amt = symcount * extsym_size;
413 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
414 if (extsym_buf == NULL)
415 {
416 alloc_ext = bfd_malloc2 (symcount, extsym_size);
417 extsym_buf = alloc_ext;
418 }
419 if (extsym_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extsym_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426
427 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
428 extshndx_buf = NULL;
429 else
430 {
431 amt = symcount * sizeof (Elf_External_Sym_Shndx);
432 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
433 if (extshndx_buf == NULL)
434 {
435 alloc_extshndx = (Elf_External_Sym_Shndx *)
436 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
437 extshndx_buf = alloc_extshndx;
438 }
439 if (extshndx_buf == NULL
440 || bfd_seek (ibfd, pos, SEEK_SET) != 0
441 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
442 {
443 intsym_buf = NULL;
444 goto out;
445 }
446 }
447
448 if (intsym_buf == NULL)
449 {
450 alloc_intsym = (Elf_Internal_Sym *)
451 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
452 intsym_buf = alloc_intsym;
453 if (intsym_buf == NULL)
454 goto out;
455 }
456
457 /* Convert the symbols to internal form. */
458 isymend = intsym_buf + symcount;
459 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
460 shndx = extshndx_buf;
461 isym < isymend;
462 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
463 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
464 {
465 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
466 (*_bfd_error_handler) (_("%B symbol number %lu references "
467 "nonexistent SHT_SYMTAB_SHNDX section"),
468 ibfd, (unsigned long) symoffset);
469 if (alloc_intsym != NULL)
470 free (alloc_intsym);
471 intsym_buf = NULL;
472 goto out;
473 }
474
475 out:
476 if (alloc_ext != NULL)
477 free (alloc_ext);
478 if (alloc_extshndx != NULL)
479 free (alloc_extshndx);
480
481 return intsym_buf;
482 }
483
484 /* Look up a symbol name. */
485 const char *
486 bfd_elf_sym_name (bfd *abfd,
487 Elf_Internal_Shdr *symtab_hdr,
488 Elf_Internal_Sym *isym,
489 asection *sym_sec)
490 {
491 const char *name;
492 unsigned int iname = isym->st_name;
493 unsigned int shindex = symtab_hdr->sh_link;
494
495 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
496 /* Check for a bogus st_shndx to avoid crashing. */
497 && isym->st_shndx < elf_numsections (abfd))
498 {
499 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
500 shindex = elf_elfheader (abfd)->e_shstrndx;
501 }
502
503 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
504 if (name == NULL)
505 name = "(null)";
506 else if (sym_sec && *name == '\0')
507 name = bfd_section_name (abfd, sym_sec);
508
509 return name;
510 }
511
512 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
513 sections. The first element is the flags, the rest are section
514 pointers. */
515
516 typedef union elf_internal_group {
517 Elf_Internal_Shdr *shdr;
518 unsigned int flags;
519 } Elf_Internal_Group;
520
521 /* Return the name of the group signature symbol. Why isn't the
522 signature just a string? */
523
524 static const char *
525 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
526 {
527 Elf_Internal_Shdr *hdr;
528 unsigned char esym[sizeof (Elf64_External_Sym)];
529 Elf_External_Sym_Shndx eshndx;
530 Elf_Internal_Sym isym;
531
532 /* First we need to ensure the symbol table is available. Make sure
533 that it is a symbol table section. */
534 if (ghdr->sh_link >= elf_numsections (abfd))
535 return NULL;
536 hdr = elf_elfsections (abfd) [ghdr->sh_link];
537 if (hdr->sh_type != SHT_SYMTAB
538 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
539 return NULL;
540
541 /* Go read the symbol. */
542 hdr = &elf_tdata (abfd)->symtab_hdr;
543 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
544 &isym, esym, &eshndx) == NULL)
545 return NULL;
546
547 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
548 }
549
550 /* Set next_in_group list pointer, and group name for NEWSECT. */
551
552 static bfd_boolean
553 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
554 {
555 unsigned int num_group = elf_tdata (abfd)->num_group;
556
557 /* If num_group is zero, read in all SHT_GROUP sections. The count
558 is set to -1 if there are no SHT_GROUP sections. */
559 if (num_group == 0)
560 {
561 unsigned int i, shnum;
562
563 /* First count the number of groups. If we have a SHT_GROUP
564 section with just a flag word (ie. sh_size is 4), ignore it. */
565 shnum = elf_numsections (abfd);
566 num_group = 0;
567
568 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
569 ( (shdr)->sh_type == SHT_GROUP \
570 && (shdr)->sh_size >= minsize \
571 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
572 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
573
574 for (i = 0; i < shnum; i++)
575 {
576 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
577
578 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
579 num_group += 1;
580 }
581
582 if (num_group == 0)
583 {
584 num_group = (unsigned) -1;
585 elf_tdata (abfd)->num_group = num_group;
586 }
587 else
588 {
589 /* We keep a list of elf section headers for group sections,
590 so we can find them quickly. */
591 bfd_size_type amt;
592
593 elf_tdata (abfd)->num_group = num_group;
594 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
595 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
596 if (elf_tdata (abfd)->group_sect_ptr == NULL)
597 return FALSE;
598
599 num_group = 0;
600 for (i = 0; i < shnum; i++)
601 {
602 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
603
604 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
605 {
606 unsigned char *src;
607 Elf_Internal_Group *dest;
608
609 /* Add to list of sections. */
610 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
611 num_group += 1;
612
613 /* Read the raw contents. */
614 BFD_ASSERT (sizeof (*dest) >= 4);
615 amt = shdr->sh_size * sizeof (*dest) / 4;
616 shdr->contents = (unsigned char *)
617 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
618 /* PR binutils/4110: Handle corrupt group headers. */
619 if (shdr->contents == NULL)
620 {
621 _bfd_error_handler
622 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
623 bfd_set_error (bfd_error_bad_value);
624 -- num_group;
625 continue;
626 }
627
628 memset (shdr->contents, 0, amt);
629
630 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
631 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
632 != shdr->sh_size))
633 {
634 _bfd_error_handler
635 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
636 bfd_set_error (bfd_error_bad_value);
637 -- num_group;
638 /* PR 17510: If the group contents are even partially
639 corrupt, do not allow any of the contents to be used. */
640 memset (shdr->contents, 0, amt);
641 continue;
642 }
643
644 /* Translate raw contents, a flag word followed by an
645 array of elf section indices all in target byte order,
646 to the flag word followed by an array of elf section
647 pointers. */
648 src = shdr->contents + shdr->sh_size;
649 dest = (Elf_Internal_Group *) (shdr->contents + amt);
650
651 while (1)
652 {
653 unsigned int idx;
654
655 src -= 4;
656 --dest;
657 idx = H_GET_32 (abfd, src);
658 if (src == shdr->contents)
659 {
660 dest->flags = idx;
661 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
662 shdr->bfd_section->flags
663 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
664 break;
665 }
666 if (idx >= shnum)
667 {
668 ((*_bfd_error_handler)
669 (_("%B: invalid SHT_GROUP entry"), abfd));
670 idx = 0;
671 }
672 dest->shdr = elf_elfsections (abfd)[idx];
673 }
674 }
675 }
676
677 /* PR 17510: Corrupt binaries might contain invalid groups. */
678 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
679 {
680 elf_tdata (abfd)->num_group = num_group;
681
682 /* If all groups are invalid then fail. */
683 if (num_group == 0)
684 {
685 elf_tdata (abfd)->group_sect_ptr = NULL;
686 elf_tdata (abfd)->num_group = num_group = -1;
687 (*_bfd_error_handler) (_("%B: no valid group sections found"), abfd);
688 bfd_set_error (bfd_error_bad_value);
689 }
690 }
691 }
692 }
693
694 if (num_group != (unsigned) -1)
695 {
696 unsigned int i;
697
698 for (i = 0; i < num_group; i++)
699 {
700 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
701 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
702 unsigned int n_elt = shdr->sh_size / 4;
703
704 /* Look through this group's sections to see if current
705 section is a member. */
706 while (--n_elt != 0)
707 if ((++idx)->shdr == hdr)
708 {
709 asection *s = NULL;
710
711 /* We are a member of this group. Go looking through
712 other members to see if any others are linked via
713 next_in_group. */
714 idx = (Elf_Internal_Group *) shdr->contents;
715 n_elt = shdr->sh_size / 4;
716 while (--n_elt != 0)
717 if ((s = (++idx)->shdr->bfd_section) != NULL
718 && elf_next_in_group (s) != NULL)
719 break;
720 if (n_elt != 0)
721 {
722 /* Snarf the group name from other member, and
723 insert current section in circular list. */
724 elf_group_name (newsect) = elf_group_name (s);
725 elf_next_in_group (newsect) = elf_next_in_group (s);
726 elf_next_in_group (s) = newsect;
727 }
728 else
729 {
730 const char *gname;
731
732 gname = group_signature (abfd, shdr);
733 if (gname == NULL)
734 return FALSE;
735 elf_group_name (newsect) = gname;
736
737 /* Start a circular list with one element. */
738 elf_next_in_group (newsect) = newsect;
739 }
740
741 /* If the group section has been created, point to the
742 new member. */
743 if (shdr->bfd_section != NULL)
744 elf_next_in_group (shdr->bfd_section) = newsect;
745
746 i = num_group - 1;
747 break;
748 }
749 }
750 }
751
752 if (elf_group_name (newsect) == NULL)
753 {
754 (*_bfd_error_handler) (_("%B: no group info for section %A"),
755 abfd, newsect);
756 return FALSE;
757 }
758 return TRUE;
759 }
760
761 bfd_boolean
762 _bfd_elf_setup_sections (bfd *abfd)
763 {
764 unsigned int i;
765 unsigned int num_group = elf_tdata (abfd)->num_group;
766 bfd_boolean result = TRUE;
767 asection *s;
768
769 /* Process SHF_LINK_ORDER. */
770 for (s = abfd->sections; s != NULL; s = s->next)
771 {
772 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
773 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
774 {
775 unsigned int elfsec = this_hdr->sh_link;
776 /* FIXME: The old Intel compiler and old strip/objcopy may
777 not set the sh_link or sh_info fields. Hence we could
778 get the situation where elfsec is 0. */
779 if (elfsec == 0)
780 {
781 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
782 if (bed->link_order_error_handler)
783 bed->link_order_error_handler
784 (_("%B: warning: sh_link not set for section `%A'"),
785 abfd, s);
786 }
787 else
788 {
789 asection *linksec = NULL;
790
791 if (elfsec < elf_numsections (abfd))
792 {
793 this_hdr = elf_elfsections (abfd)[elfsec];
794 linksec = this_hdr->bfd_section;
795 }
796
797 /* PR 1991, 2008:
798 Some strip/objcopy may leave an incorrect value in
799 sh_link. We don't want to proceed. */
800 if (linksec == NULL)
801 {
802 (*_bfd_error_handler)
803 (_("%B: sh_link [%d] in section `%A' is incorrect"),
804 s->owner, s, elfsec);
805 result = FALSE;
806 }
807
808 elf_linked_to_section (s) = linksec;
809 }
810 }
811 }
812
813 /* Process section groups. */
814 if (num_group == (unsigned) -1)
815 return result;
816
817 for (i = 0; i < num_group; i++)
818 {
819 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
820 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
821 unsigned int n_elt = shdr->sh_size / 4;
822
823 while (--n_elt != 0)
824 if ((++idx)->shdr->bfd_section)
825 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
826 else if (idx->shdr->sh_type == SHT_RELA
827 || idx->shdr->sh_type == SHT_REL)
828 /* We won't include relocation sections in section groups in
829 output object files. We adjust the group section size here
830 so that relocatable link will work correctly when
831 relocation sections are in section group in input object
832 files. */
833 shdr->bfd_section->size -= 4;
834 else
835 {
836 /* There are some unknown sections in the group. */
837 (*_bfd_error_handler)
838 (_("%B: unknown [%d] section `%s' in group [%s]"),
839 abfd,
840 (unsigned int) idx->shdr->sh_type,
841 bfd_elf_string_from_elf_section (abfd,
842 (elf_elfheader (abfd)
843 ->e_shstrndx),
844 idx->shdr->sh_name),
845 shdr->bfd_section->name);
846 result = FALSE;
847 }
848 }
849 return result;
850 }
851
852 bfd_boolean
853 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
854 {
855 return elf_next_in_group (sec) != NULL;
856 }
857
858 static char *
859 convert_debug_to_zdebug (bfd *abfd, const char *name)
860 {
861 unsigned int len = strlen (name);
862 char *new_name = bfd_alloc (abfd, len + 2);
863 if (new_name == NULL)
864 return NULL;
865 new_name[0] = '.';
866 new_name[1] = 'z';
867 memcpy (new_name + 2, name + 1, len);
868 return new_name;
869 }
870
871 static char *
872 convert_zdebug_to_debug (bfd *abfd, const char *name)
873 {
874 unsigned int len = strlen (name);
875 char *new_name = bfd_alloc (abfd, len);
876 if (new_name == NULL)
877 return NULL;
878 new_name[0] = '.';
879 memcpy (new_name + 1, name + 2, len - 1);
880 return new_name;
881 }
882
883 /* Make a BFD section from an ELF section. We store a pointer to the
884 BFD section in the bfd_section field of the header. */
885
886 bfd_boolean
887 _bfd_elf_make_section_from_shdr (bfd *abfd,
888 Elf_Internal_Shdr *hdr,
889 const char *name,
890 int shindex)
891 {
892 asection *newsect;
893 flagword flags;
894 const struct elf_backend_data *bed;
895
896 if (hdr->bfd_section != NULL)
897 return TRUE;
898
899 newsect = bfd_make_section_anyway (abfd, name);
900 if (newsect == NULL)
901 return FALSE;
902
903 hdr->bfd_section = newsect;
904 elf_section_data (newsect)->this_hdr = *hdr;
905 elf_section_data (newsect)->this_idx = shindex;
906
907 /* Always use the real type/flags. */
908 elf_section_type (newsect) = hdr->sh_type;
909 elf_section_flags (newsect) = hdr->sh_flags;
910
911 newsect->filepos = hdr->sh_offset;
912
913 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
914 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
915 || ! bfd_set_section_alignment (abfd, newsect,
916 bfd_log2 (hdr->sh_addralign)))
917 return FALSE;
918
919 flags = SEC_NO_FLAGS;
920 if (hdr->sh_type != SHT_NOBITS)
921 flags |= SEC_HAS_CONTENTS;
922 if (hdr->sh_type == SHT_GROUP)
923 flags |= SEC_GROUP | SEC_EXCLUDE;
924 if ((hdr->sh_flags & SHF_ALLOC) != 0)
925 {
926 flags |= SEC_ALLOC;
927 if (hdr->sh_type != SHT_NOBITS)
928 flags |= SEC_LOAD;
929 }
930 if ((hdr->sh_flags & SHF_WRITE) == 0)
931 flags |= SEC_READONLY;
932 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
933 flags |= SEC_CODE;
934 else if ((flags & SEC_LOAD) != 0)
935 flags |= SEC_DATA;
936 if ((hdr->sh_flags & SHF_MERGE) != 0)
937 {
938 flags |= SEC_MERGE;
939 newsect->entsize = hdr->sh_entsize;
940 if ((hdr->sh_flags & SHF_STRINGS) != 0)
941 flags |= SEC_STRINGS;
942 }
943 if (hdr->sh_flags & SHF_GROUP)
944 if (!setup_group (abfd, hdr, newsect))
945 return FALSE;
946 if ((hdr->sh_flags & SHF_TLS) != 0)
947 flags |= SEC_THREAD_LOCAL;
948 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
949 flags |= SEC_EXCLUDE;
950
951 if ((flags & SEC_ALLOC) == 0)
952 {
953 /* The debugging sections appear to be recognized only by name,
954 not any sort of flag. Their SEC_ALLOC bits are cleared. */
955 if (name [0] == '.')
956 {
957 const char *p;
958 int n;
959 if (name[1] == 'd')
960 p = ".debug", n = 6;
961 else if (name[1] == 'g' && name[2] == 'n')
962 p = ".gnu.linkonce.wi.", n = 17;
963 else if (name[1] == 'g' && name[2] == 'd')
964 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
965 else if (name[1] == 'l')
966 p = ".line", n = 5;
967 else if (name[1] == 's')
968 p = ".stab", n = 5;
969 else if (name[1] == 'z')
970 p = ".zdebug", n = 7;
971 else
972 p = NULL, n = 0;
973 if (p != NULL && strncmp (name, p, n) == 0)
974 flags |= SEC_DEBUGGING;
975 }
976 }
977
978 /* As a GNU extension, if the name begins with .gnu.linkonce, we
979 only link a single copy of the section. This is used to support
980 g++. g++ will emit each template expansion in its own section.
981 The symbols will be defined as weak, so that multiple definitions
982 are permitted. The GNU linker extension is to actually discard
983 all but one of the sections. */
984 if (CONST_STRNEQ (name, ".gnu.linkonce")
985 && elf_next_in_group (newsect) == NULL)
986 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
987
988 bed = get_elf_backend_data (abfd);
989 if (bed->elf_backend_section_flags)
990 if (! bed->elf_backend_section_flags (&flags, hdr))
991 return FALSE;
992
993 if (! bfd_set_section_flags (abfd, newsect, flags))
994 return FALSE;
995
996 /* We do not parse the PT_NOTE segments as we are interested even in the
997 separate debug info files which may have the segments offsets corrupted.
998 PT_NOTEs from the core files are currently not parsed using BFD. */
999 if (hdr->sh_type == SHT_NOTE)
1000 {
1001 bfd_byte *contents;
1002
1003 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1004 return FALSE;
1005
1006 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
1007 free (contents);
1008 }
1009
1010 if ((flags & SEC_ALLOC) != 0)
1011 {
1012 Elf_Internal_Phdr *phdr;
1013 unsigned int i, nload;
1014
1015 /* Some ELF linkers produce binaries with all the program header
1016 p_paddr fields zero. If we have such a binary with more than
1017 one PT_LOAD header, then leave the section lma equal to vma
1018 so that we don't create sections with overlapping lma. */
1019 phdr = elf_tdata (abfd)->phdr;
1020 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1021 if (phdr->p_paddr != 0)
1022 break;
1023 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1024 ++nload;
1025 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1026 return TRUE;
1027
1028 phdr = elf_tdata (abfd)->phdr;
1029 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1030 {
1031 if (((phdr->p_type == PT_LOAD
1032 && (hdr->sh_flags & SHF_TLS) == 0)
1033 || phdr->p_type == PT_TLS)
1034 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1035 {
1036 if ((flags & SEC_LOAD) == 0)
1037 newsect->lma = (phdr->p_paddr
1038 + hdr->sh_addr - phdr->p_vaddr);
1039 else
1040 /* We used to use the same adjustment for SEC_LOAD
1041 sections, but that doesn't work if the segment
1042 is packed with code from multiple VMAs.
1043 Instead we calculate the section LMA based on
1044 the segment LMA. It is assumed that the
1045 segment will contain sections with contiguous
1046 LMAs, even if the VMAs are not. */
1047 newsect->lma = (phdr->p_paddr
1048 + hdr->sh_offset - phdr->p_offset);
1049
1050 /* With contiguous segments, we can't tell from file
1051 offsets whether a section with zero size should
1052 be placed at the end of one segment or the
1053 beginning of the next. Decide based on vaddr. */
1054 if (hdr->sh_addr >= phdr->p_vaddr
1055 && (hdr->sh_addr + hdr->sh_size
1056 <= phdr->p_vaddr + phdr->p_memsz))
1057 break;
1058 }
1059 }
1060 }
1061
1062 /* Compress/decompress DWARF debug sections with names: .debug_* and
1063 .zdebug_*, after the section flags is set. */
1064 if ((flags & SEC_DEBUGGING)
1065 && ((name[1] == 'd' && name[6] == '_')
1066 || (name[1] == 'z' && name[7] == '_')))
1067 {
1068 enum { nothing, compress, decompress } action = nothing;
1069 int compression_header_size;
1070 bfd_size_type uncompressed_size;
1071 bfd_boolean compressed
1072 = bfd_is_section_compressed_with_header (abfd, newsect,
1073 &compression_header_size,
1074 &uncompressed_size);
1075
1076 if (compressed)
1077 {
1078 /* Compressed section. Check if we should decompress. */
1079 if ((abfd->flags & BFD_DECOMPRESS))
1080 action = decompress;
1081 }
1082
1083 /* Compress the uncompressed section or convert from/to .zdebug*
1084 section. Check if we should compress. */
1085 if (action == nothing)
1086 {
1087 if (newsect->size != 0
1088 && (abfd->flags & BFD_COMPRESS)
1089 && compression_header_size >= 0
1090 && uncompressed_size > 0
1091 && (!compressed
1092 || ((compression_header_size > 0)
1093 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1094 action = compress;
1095 else
1096 return TRUE;
1097 }
1098
1099 if (action == compress)
1100 {
1101 if (!bfd_init_section_compress_status (abfd, newsect))
1102 {
1103 (*_bfd_error_handler)
1104 (_("%B: unable to initialize compress status for section %s"),
1105 abfd, name);
1106 return FALSE;
1107 }
1108 }
1109 else
1110 {
1111 if (!bfd_init_section_decompress_status (abfd, newsect))
1112 {
1113 (*_bfd_error_handler)
1114 (_("%B: unable to initialize decompress status for section %s"),
1115 abfd, name);
1116 return FALSE;
1117 }
1118 }
1119
1120 if (abfd->is_linker_input)
1121 {
1122 if (name[1] == 'z'
1123 && (action == decompress
1124 || (action == compress
1125 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1126 {
1127 /* Convert section name from .zdebug_* to .debug_* so
1128 that linker will consider this section as a debug
1129 section. */
1130 char *new_name = convert_zdebug_to_debug (abfd, name);
1131 if (new_name == NULL)
1132 return FALSE;
1133 bfd_rename_section (abfd, newsect, new_name);
1134 }
1135 }
1136 else
1137 /* For objdump, don't rename the section. For objcopy, delay
1138 section rename to elf_fake_sections. */
1139 newsect->flags |= SEC_ELF_RENAME;
1140 }
1141
1142 return TRUE;
1143 }
1144
1145 const char *const bfd_elf_section_type_names[] = {
1146 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1147 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1148 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1149 };
1150
1151 /* ELF relocs are against symbols. If we are producing relocatable
1152 output, and the reloc is against an external symbol, and nothing
1153 has given us any additional addend, the resulting reloc will also
1154 be against the same symbol. In such a case, we don't want to
1155 change anything about the way the reloc is handled, since it will
1156 all be done at final link time. Rather than put special case code
1157 into bfd_perform_relocation, all the reloc types use this howto
1158 function. It just short circuits the reloc if producing
1159 relocatable output against an external symbol. */
1160
1161 bfd_reloc_status_type
1162 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1163 arelent *reloc_entry,
1164 asymbol *symbol,
1165 void *data ATTRIBUTE_UNUSED,
1166 asection *input_section,
1167 bfd *output_bfd,
1168 char **error_message ATTRIBUTE_UNUSED)
1169 {
1170 if (output_bfd != NULL
1171 && (symbol->flags & BSF_SECTION_SYM) == 0
1172 && (! reloc_entry->howto->partial_inplace
1173 || reloc_entry->addend == 0))
1174 {
1175 reloc_entry->address += input_section->output_offset;
1176 return bfd_reloc_ok;
1177 }
1178
1179 return bfd_reloc_continue;
1180 }
1181 \f
1182 /* Copy the program header and other data from one object module to
1183 another. */
1184
1185 bfd_boolean
1186 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1187 {
1188 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1189 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1190 return TRUE;
1191
1192 if (!elf_flags_init (obfd))
1193 {
1194 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1195 elf_flags_init (obfd) = TRUE;
1196 }
1197
1198 elf_gp (obfd) = elf_gp (ibfd);
1199
1200 /* Also copy the EI_OSABI field. */
1201 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1202 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1203
1204 /* Copy object attributes. */
1205 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1206 return TRUE;
1207 }
1208
1209 static const char *
1210 get_segment_type (unsigned int p_type)
1211 {
1212 const char *pt;
1213 switch (p_type)
1214 {
1215 case PT_NULL: pt = "NULL"; break;
1216 case PT_LOAD: pt = "LOAD"; break;
1217 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1218 case PT_INTERP: pt = "INTERP"; break;
1219 case PT_NOTE: pt = "NOTE"; break;
1220 case PT_SHLIB: pt = "SHLIB"; break;
1221 case PT_PHDR: pt = "PHDR"; break;
1222 case PT_TLS: pt = "TLS"; break;
1223 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1224 case PT_GNU_STACK: pt = "STACK"; break;
1225 case PT_GNU_RELRO: pt = "RELRO"; break;
1226 default: pt = NULL; break;
1227 }
1228 return pt;
1229 }
1230
1231 /* Print out the program headers. */
1232
1233 bfd_boolean
1234 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1235 {
1236 FILE *f = (FILE *) farg;
1237 Elf_Internal_Phdr *p;
1238 asection *s;
1239 bfd_byte *dynbuf = NULL;
1240
1241 p = elf_tdata (abfd)->phdr;
1242 if (p != NULL)
1243 {
1244 unsigned int i, c;
1245
1246 fprintf (f, _("\nProgram Header:\n"));
1247 c = elf_elfheader (abfd)->e_phnum;
1248 for (i = 0; i < c; i++, p++)
1249 {
1250 const char *pt = get_segment_type (p->p_type);
1251 char buf[20];
1252
1253 if (pt == NULL)
1254 {
1255 sprintf (buf, "0x%lx", p->p_type);
1256 pt = buf;
1257 }
1258 fprintf (f, "%8s off 0x", pt);
1259 bfd_fprintf_vma (abfd, f, p->p_offset);
1260 fprintf (f, " vaddr 0x");
1261 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1262 fprintf (f, " paddr 0x");
1263 bfd_fprintf_vma (abfd, f, p->p_paddr);
1264 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1265 fprintf (f, " filesz 0x");
1266 bfd_fprintf_vma (abfd, f, p->p_filesz);
1267 fprintf (f, " memsz 0x");
1268 bfd_fprintf_vma (abfd, f, p->p_memsz);
1269 fprintf (f, " flags %c%c%c",
1270 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1271 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1272 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1273 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1274 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1275 fprintf (f, "\n");
1276 }
1277 }
1278
1279 s = bfd_get_section_by_name (abfd, ".dynamic");
1280 if (s != NULL)
1281 {
1282 unsigned int elfsec;
1283 unsigned long shlink;
1284 bfd_byte *extdyn, *extdynend;
1285 size_t extdynsize;
1286 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1287
1288 fprintf (f, _("\nDynamic Section:\n"));
1289
1290 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1291 goto error_return;
1292
1293 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1294 if (elfsec == SHN_BAD)
1295 goto error_return;
1296 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1297
1298 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1299 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1300
1301 extdyn = dynbuf;
1302 /* PR 17512: file: 6f427532. */
1303 if (s->size < extdynsize)
1304 goto error_return;
1305 extdynend = extdyn + s->size;
1306 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1307 Fix range check. */
1308 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1309 {
1310 Elf_Internal_Dyn dyn;
1311 const char *name = "";
1312 char ab[20];
1313 bfd_boolean stringp;
1314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1315
1316 (*swap_dyn_in) (abfd, extdyn, &dyn);
1317
1318 if (dyn.d_tag == DT_NULL)
1319 break;
1320
1321 stringp = FALSE;
1322 switch (dyn.d_tag)
1323 {
1324 default:
1325 if (bed->elf_backend_get_target_dtag)
1326 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1327
1328 if (!strcmp (name, ""))
1329 {
1330 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1331 name = ab;
1332 }
1333 break;
1334
1335 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1336 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1337 case DT_PLTGOT: name = "PLTGOT"; break;
1338 case DT_HASH: name = "HASH"; break;
1339 case DT_STRTAB: name = "STRTAB"; break;
1340 case DT_SYMTAB: name = "SYMTAB"; break;
1341 case DT_RELA: name = "RELA"; break;
1342 case DT_RELASZ: name = "RELASZ"; break;
1343 case DT_RELAENT: name = "RELAENT"; break;
1344 case DT_STRSZ: name = "STRSZ"; break;
1345 case DT_SYMENT: name = "SYMENT"; break;
1346 case DT_INIT: name = "INIT"; break;
1347 case DT_FINI: name = "FINI"; break;
1348 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1349 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1350 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1351 case DT_REL: name = "REL"; break;
1352 case DT_RELSZ: name = "RELSZ"; break;
1353 case DT_RELENT: name = "RELENT"; break;
1354 case DT_PLTREL: name = "PLTREL"; break;
1355 case DT_DEBUG: name = "DEBUG"; break;
1356 case DT_TEXTREL: name = "TEXTREL"; break;
1357 case DT_JMPREL: name = "JMPREL"; break;
1358 case DT_BIND_NOW: name = "BIND_NOW"; break;
1359 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1360 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1361 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1362 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1363 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1364 case DT_FLAGS: name = "FLAGS"; break;
1365 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1366 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1367 case DT_CHECKSUM: name = "CHECKSUM"; break;
1368 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1369 case DT_MOVEENT: name = "MOVEENT"; break;
1370 case DT_MOVESZ: name = "MOVESZ"; break;
1371 case DT_FEATURE: name = "FEATURE"; break;
1372 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1373 case DT_SYMINSZ: name = "SYMINSZ"; break;
1374 case DT_SYMINENT: name = "SYMINENT"; break;
1375 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1376 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1377 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1378 case DT_PLTPAD: name = "PLTPAD"; break;
1379 case DT_MOVETAB: name = "MOVETAB"; break;
1380 case DT_SYMINFO: name = "SYMINFO"; break;
1381 case DT_RELACOUNT: name = "RELACOUNT"; break;
1382 case DT_RELCOUNT: name = "RELCOUNT"; break;
1383 case DT_FLAGS_1: name = "FLAGS_1"; break;
1384 case DT_VERSYM: name = "VERSYM"; break;
1385 case DT_VERDEF: name = "VERDEF"; break;
1386 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1387 case DT_VERNEED: name = "VERNEED"; break;
1388 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1389 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1390 case DT_USED: name = "USED"; break;
1391 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1392 case DT_GNU_HASH: name = "GNU_HASH"; break;
1393 }
1394
1395 fprintf (f, " %-20s ", name);
1396 if (! stringp)
1397 {
1398 fprintf (f, "0x");
1399 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1400 }
1401 else
1402 {
1403 const char *string;
1404 unsigned int tagv = dyn.d_un.d_val;
1405
1406 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1407 if (string == NULL)
1408 goto error_return;
1409 fprintf (f, "%s", string);
1410 }
1411 fprintf (f, "\n");
1412 }
1413
1414 free (dynbuf);
1415 dynbuf = NULL;
1416 }
1417
1418 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1419 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1420 {
1421 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1422 return FALSE;
1423 }
1424
1425 if (elf_dynverdef (abfd) != 0)
1426 {
1427 Elf_Internal_Verdef *t;
1428
1429 fprintf (f, _("\nVersion definitions:\n"));
1430 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1431 {
1432 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1433 t->vd_flags, t->vd_hash,
1434 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1435 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1436 {
1437 Elf_Internal_Verdaux *a;
1438
1439 fprintf (f, "\t");
1440 for (a = t->vd_auxptr->vda_nextptr;
1441 a != NULL;
1442 a = a->vda_nextptr)
1443 fprintf (f, "%s ",
1444 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1445 fprintf (f, "\n");
1446 }
1447 }
1448 }
1449
1450 if (elf_dynverref (abfd) != 0)
1451 {
1452 Elf_Internal_Verneed *t;
1453
1454 fprintf (f, _("\nVersion References:\n"));
1455 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1456 {
1457 Elf_Internal_Vernaux *a;
1458
1459 fprintf (f, _(" required from %s:\n"),
1460 t->vn_filename ? t->vn_filename : "<corrupt>");
1461 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1462 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1463 a->vna_flags, a->vna_other,
1464 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1465 }
1466 }
1467
1468 return TRUE;
1469
1470 error_return:
1471 if (dynbuf != NULL)
1472 free (dynbuf);
1473 return FALSE;
1474 }
1475
1476 /* Get version string. */
1477
1478 const char *
1479 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1480 bfd_boolean *hidden)
1481 {
1482 const char *version_string = NULL;
1483 if (elf_dynversym (abfd) != 0
1484 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1485 {
1486 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1487
1488 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1489 vernum &= VERSYM_VERSION;
1490
1491 if (vernum == 0)
1492 version_string = "";
1493 else if (vernum == 1)
1494 version_string = "Base";
1495 else if (vernum <= elf_tdata (abfd)->cverdefs)
1496 version_string =
1497 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1498 else
1499 {
1500 Elf_Internal_Verneed *t;
1501
1502 version_string = "";
1503 for (t = elf_tdata (abfd)->verref;
1504 t != NULL;
1505 t = t->vn_nextref)
1506 {
1507 Elf_Internal_Vernaux *a;
1508
1509 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1510 {
1511 if (a->vna_other == vernum)
1512 {
1513 version_string = a->vna_nodename;
1514 break;
1515 }
1516 }
1517 }
1518 }
1519 }
1520 return version_string;
1521 }
1522
1523 /* Display ELF-specific fields of a symbol. */
1524
1525 void
1526 bfd_elf_print_symbol (bfd *abfd,
1527 void *filep,
1528 asymbol *symbol,
1529 bfd_print_symbol_type how)
1530 {
1531 FILE *file = (FILE *) filep;
1532 switch (how)
1533 {
1534 case bfd_print_symbol_name:
1535 fprintf (file, "%s", symbol->name);
1536 break;
1537 case bfd_print_symbol_more:
1538 fprintf (file, "elf ");
1539 bfd_fprintf_vma (abfd, file, symbol->value);
1540 fprintf (file, " %lx", (unsigned long) symbol->flags);
1541 break;
1542 case bfd_print_symbol_all:
1543 {
1544 const char *section_name;
1545 const char *name = NULL;
1546 const struct elf_backend_data *bed;
1547 unsigned char st_other;
1548 bfd_vma val;
1549 const char *version_string;
1550 bfd_boolean hidden;
1551
1552 section_name = symbol->section ? symbol->section->name : "(*none*)";
1553
1554 bed = get_elf_backend_data (abfd);
1555 if (bed->elf_backend_print_symbol_all)
1556 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1557
1558 if (name == NULL)
1559 {
1560 name = symbol->name;
1561 bfd_print_symbol_vandf (abfd, file, symbol);
1562 }
1563
1564 fprintf (file, " %s\t", section_name);
1565 /* Print the "other" value for a symbol. For common symbols,
1566 we've already printed the size; now print the alignment.
1567 For other symbols, we have no specified alignment, and
1568 we've printed the address; now print the size. */
1569 if (symbol->section && bfd_is_com_section (symbol->section))
1570 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1571 else
1572 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1573 bfd_fprintf_vma (abfd, file, val);
1574
1575 /* If we have version information, print it. */
1576 version_string = _bfd_elf_get_symbol_version_string (abfd,
1577 symbol,
1578 &hidden);
1579 if (version_string)
1580 {
1581 if (!hidden)
1582 fprintf (file, " %-11s", version_string);
1583 else
1584 {
1585 int i;
1586
1587 fprintf (file, " (%s)", version_string);
1588 for (i = 10 - strlen (version_string); i > 0; --i)
1589 putc (' ', file);
1590 }
1591 }
1592
1593 /* If the st_other field is not zero, print it. */
1594 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1595
1596 switch (st_other)
1597 {
1598 case 0: break;
1599 case STV_INTERNAL: fprintf (file, " .internal"); break;
1600 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1601 case STV_PROTECTED: fprintf (file, " .protected"); break;
1602 default:
1603 /* Some other non-defined flags are also present, so print
1604 everything hex. */
1605 fprintf (file, " 0x%02x", (unsigned int) st_other);
1606 }
1607
1608 fprintf (file, " %s", name);
1609 }
1610 break;
1611 }
1612 }
1613 \f
1614 /* ELF .o/exec file reading */
1615
1616 /* Create a new bfd section from an ELF section header. */
1617
1618 bfd_boolean
1619 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1620 {
1621 Elf_Internal_Shdr *hdr;
1622 Elf_Internal_Ehdr *ehdr;
1623 const struct elf_backend_data *bed;
1624 const char *name;
1625 bfd_boolean ret = TRUE;
1626 static bfd_boolean * sections_being_created = NULL;
1627 static bfd * sections_being_created_abfd = NULL;
1628 static unsigned int nesting = 0;
1629
1630 if (shindex >= elf_numsections (abfd))
1631 return FALSE;
1632
1633 if (++ nesting > 3)
1634 {
1635 /* PR17512: A corrupt ELF binary might contain a recursive group of
1636 sections, with each the string indicies pointing to the next in the
1637 loop. Detect this here, by refusing to load a section that we are
1638 already in the process of loading. We only trigger this test if
1639 we have nested at least three sections deep as normal ELF binaries
1640 can expect to recurse at least once.
1641
1642 FIXME: It would be better if this array was attached to the bfd,
1643 rather than being held in a static pointer. */
1644
1645 if (sections_being_created_abfd != abfd)
1646 sections_being_created = NULL;
1647 if (sections_being_created == NULL)
1648 {
1649 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1650 sections_being_created = (bfd_boolean *)
1651 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1652 sections_being_created_abfd = abfd;
1653 }
1654 if (sections_being_created [shindex])
1655 {
1656 (*_bfd_error_handler)
1657 (_("%B: warning: loop in section dependencies detected"), abfd);
1658 return FALSE;
1659 }
1660 sections_being_created [shindex] = TRUE;
1661 }
1662
1663 hdr = elf_elfsections (abfd)[shindex];
1664 ehdr = elf_elfheader (abfd);
1665 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1666 hdr->sh_name);
1667 if (name == NULL)
1668 goto fail;
1669
1670 bed = get_elf_backend_data (abfd);
1671 switch (hdr->sh_type)
1672 {
1673 case SHT_NULL:
1674 /* Inactive section. Throw it away. */
1675 goto success;
1676
1677 case SHT_PROGBITS: /* Normal section with contents. */
1678 case SHT_NOBITS: /* .bss section. */
1679 case SHT_HASH: /* .hash section. */
1680 case SHT_NOTE: /* .note section. */
1681 case SHT_INIT_ARRAY: /* .init_array section. */
1682 case SHT_FINI_ARRAY: /* .fini_array section. */
1683 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1684 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1685 case SHT_GNU_HASH: /* .gnu.hash section. */
1686 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1687 goto success;
1688
1689 case SHT_DYNAMIC: /* Dynamic linking information. */
1690 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1691 goto fail;
1692
1693 if (hdr->sh_link > elf_numsections (abfd))
1694 {
1695 /* PR 10478: Accept Solaris binaries with a sh_link
1696 field set to SHN_BEFORE or SHN_AFTER. */
1697 switch (bfd_get_arch (abfd))
1698 {
1699 case bfd_arch_i386:
1700 case bfd_arch_sparc:
1701 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1702 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1703 break;
1704 /* Otherwise fall through. */
1705 default:
1706 goto fail;
1707 }
1708 }
1709 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1710 goto fail;
1711 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1712 {
1713 Elf_Internal_Shdr *dynsymhdr;
1714
1715 /* The shared libraries distributed with hpux11 have a bogus
1716 sh_link field for the ".dynamic" section. Find the
1717 string table for the ".dynsym" section instead. */
1718 if (elf_dynsymtab (abfd) != 0)
1719 {
1720 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1721 hdr->sh_link = dynsymhdr->sh_link;
1722 }
1723 else
1724 {
1725 unsigned int i, num_sec;
1726
1727 num_sec = elf_numsections (abfd);
1728 for (i = 1; i < num_sec; i++)
1729 {
1730 dynsymhdr = elf_elfsections (abfd)[i];
1731 if (dynsymhdr->sh_type == SHT_DYNSYM)
1732 {
1733 hdr->sh_link = dynsymhdr->sh_link;
1734 break;
1735 }
1736 }
1737 }
1738 }
1739 goto success;
1740
1741 case SHT_SYMTAB: /* A symbol table. */
1742 if (elf_onesymtab (abfd) == shindex)
1743 goto success;
1744
1745 if (hdr->sh_entsize != bed->s->sizeof_sym)
1746 goto fail;
1747
1748 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1749 {
1750 if (hdr->sh_size != 0)
1751 goto fail;
1752 /* Some assemblers erroneously set sh_info to one with a
1753 zero sh_size. ld sees this as a global symbol count
1754 of (unsigned) -1. Fix it here. */
1755 hdr->sh_info = 0;
1756 goto success;
1757 }
1758
1759 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1760 elf_onesymtab (abfd) = shindex;
1761 elf_tdata (abfd)->symtab_hdr = *hdr;
1762 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1763 abfd->flags |= HAS_SYMS;
1764
1765 /* Sometimes a shared object will map in the symbol table. If
1766 SHF_ALLOC is set, and this is a shared object, then we also
1767 treat this section as a BFD section. We can not base the
1768 decision purely on SHF_ALLOC, because that flag is sometimes
1769 set in a relocatable object file, which would confuse the
1770 linker. */
1771 if ((hdr->sh_flags & SHF_ALLOC) != 0
1772 && (abfd->flags & DYNAMIC) != 0
1773 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1774 shindex))
1775 goto fail;
1776
1777 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1778 can't read symbols without that section loaded as well. It
1779 is most likely specified by the next section header. */
1780 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1781 {
1782 unsigned int i, num_sec;
1783
1784 num_sec = elf_numsections (abfd);
1785 for (i = shindex + 1; i < num_sec; i++)
1786 {
1787 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1788 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1789 && hdr2->sh_link == shindex)
1790 break;
1791 }
1792 if (i == num_sec)
1793 for (i = 1; i < shindex; i++)
1794 {
1795 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1796 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1797 && hdr2->sh_link == shindex)
1798 break;
1799 }
1800 if (i != shindex)
1801 ret = bfd_section_from_shdr (abfd, i);
1802 }
1803 goto success;
1804
1805 case SHT_DYNSYM: /* A dynamic symbol table. */
1806 if (elf_dynsymtab (abfd) == shindex)
1807 goto success;
1808
1809 if (hdr->sh_entsize != bed->s->sizeof_sym)
1810 goto fail;
1811
1812 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1813 {
1814 if (hdr->sh_size != 0)
1815 goto fail;
1816
1817 /* Some linkers erroneously set sh_info to one with a
1818 zero sh_size. ld sees this as a global symbol count
1819 of (unsigned) -1. Fix it here. */
1820 hdr->sh_info = 0;
1821 goto success;
1822 }
1823
1824 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1825 elf_dynsymtab (abfd) = shindex;
1826 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1827 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1828 abfd->flags |= HAS_SYMS;
1829
1830 /* Besides being a symbol table, we also treat this as a regular
1831 section, so that objcopy can handle it. */
1832 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1833 goto success;
1834
1835 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
1836 if (elf_symtab_shndx (abfd) == shindex)
1837 goto success;
1838
1839 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1840 elf_symtab_shndx (abfd) = shindex;
1841 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1842 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1843 goto success;
1844
1845 case SHT_STRTAB: /* A string table. */
1846 if (hdr->bfd_section != NULL)
1847 goto success;
1848
1849 if (ehdr->e_shstrndx == shindex)
1850 {
1851 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1852 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1853 goto success;
1854 }
1855
1856 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1857 {
1858 symtab_strtab:
1859 elf_tdata (abfd)->strtab_hdr = *hdr;
1860 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1861 goto success;
1862 }
1863
1864 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1865 {
1866 dynsymtab_strtab:
1867 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1868 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1869 elf_elfsections (abfd)[shindex] = hdr;
1870 /* We also treat this as a regular section, so that objcopy
1871 can handle it. */
1872 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1873 shindex);
1874 goto success;
1875 }
1876
1877 /* If the string table isn't one of the above, then treat it as a
1878 regular section. We need to scan all the headers to be sure,
1879 just in case this strtab section appeared before the above. */
1880 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1881 {
1882 unsigned int i, num_sec;
1883
1884 num_sec = elf_numsections (abfd);
1885 for (i = 1; i < num_sec; i++)
1886 {
1887 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1888 if (hdr2->sh_link == shindex)
1889 {
1890 /* Prevent endless recursion on broken objects. */
1891 if (i == shindex)
1892 goto fail;
1893 if (! bfd_section_from_shdr (abfd, i))
1894 goto fail;
1895 if (elf_onesymtab (abfd) == i)
1896 goto symtab_strtab;
1897 if (elf_dynsymtab (abfd) == i)
1898 goto dynsymtab_strtab;
1899 }
1900 }
1901 }
1902 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1903 goto success;
1904
1905 case SHT_REL:
1906 case SHT_RELA:
1907 /* *These* do a lot of work -- but build no sections! */
1908 {
1909 asection *target_sect;
1910 Elf_Internal_Shdr *hdr2, **p_hdr;
1911 unsigned int num_sec = elf_numsections (abfd);
1912 struct bfd_elf_section_data *esdt;
1913 bfd_size_type amt;
1914
1915 if (hdr->sh_entsize
1916 != (bfd_size_type) (hdr->sh_type == SHT_REL
1917 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1918 goto fail;
1919
1920 /* Check for a bogus link to avoid crashing. */
1921 if (hdr->sh_link >= num_sec)
1922 {
1923 ((*_bfd_error_handler)
1924 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1925 abfd, hdr->sh_link, name, shindex));
1926 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1927 shindex);
1928 goto success;
1929 }
1930
1931 /* For some incomprehensible reason Oracle distributes
1932 libraries for Solaris in which some of the objects have
1933 bogus sh_link fields. It would be nice if we could just
1934 reject them, but, unfortunately, some people need to use
1935 them. We scan through the section headers; if we find only
1936 one suitable symbol table, we clobber the sh_link to point
1937 to it. I hope this doesn't break anything.
1938
1939 Don't do it on executable nor shared library. */
1940 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1941 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1942 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1943 {
1944 unsigned int scan;
1945 int found;
1946
1947 found = 0;
1948 for (scan = 1; scan < num_sec; scan++)
1949 {
1950 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1951 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1952 {
1953 if (found != 0)
1954 {
1955 found = 0;
1956 break;
1957 }
1958 found = scan;
1959 }
1960 }
1961 if (found != 0)
1962 hdr->sh_link = found;
1963 }
1964
1965 /* Get the symbol table. */
1966 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1967 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1968 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1969 goto fail;
1970
1971 /* If this reloc section does not use the main symbol table we
1972 don't treat it as a reloc section. BFD can't adequately
1973 represent such a section, so at least for now, we don't
1974 try. We just present it as a normal section. We also
1975 can't use it as a reloc section if it points to the null
1976 section, an invalid section, another reloc section, or its
1977 sh_link points to the null section. */
1978 if (hdr->sh_link != elf_onesymtab (abfd)
1979 || hdr->sh_link == SHN_UNDEF
1980 || hdr->sh_info == SHN_UNDEF
1981 || hdr->sh_info >= num_sec
1982 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1983 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1984 {
1985 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1986 shindex);
1987 goto success;
1988 }
1989
1990 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1991 goto fail;
1992
1993 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1994 if (target_sect == NULL)
1995 goto fail;
1996
1997 esdt = elf_section_data (target_sect);
1998 if (hdr->sh_type == SHT_RELA)
1999 p_hdr = &esdt->rela.hdr;
2000 else
2001 p_hdr = &esdt->rel.hdr;
2002
2003 /* PR 17512: file: 0b4f81b7. */
2004 if (*p_hdr != NULL)
2005 goto fail;
2006 amt = sizeof (*hdr2);
2007 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
2008 if (hdr2 == NULL)
2009 goto fail;
2010 *hdr2 = *hdr;
2011 *p_hdr = hdr2;
2012 elf_elfsections (abfd)[shindex] = hdr2;
2013 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2014 target_sect->flags |= SEC_RELOC;
2015 target_sect->relocation = NULL;
2016 target_sect->rel_filepos = hdr->sh_offset;
2017 /* In the section to which the relocations apply, mark whether
2018 its relocations are of the REL or RELA variety. */
2019 if (hdr->sh_size != 0)
2020 {
2021 if (hdr->sh_type == SHT_RELA)
2022 target_sect->use_rela_p = 1;
2023 }
2024 abfd->flags |= HAS_RELOC;
2025 goto success;
2026 }
2027
2028 case SHT_GNU_verdef:
2029 elf_dynverdef (abfd) = shindex;
2030 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2031 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2032 goto success;
2033
2034 case SHT_GNU_versym:
2035 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2036 goto fail;
2037
2038 elf_dynversym (abfd) = shindex;
2039 elf_tdata (abfd)->dynversym_hdr = *hdr;
2040 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2041 goto success;
2042
2043 case SHT_GNU_verneed:
2044 elf_dynverref (abfd) = shindex;
2045 elf_tdata (abfd)->dynverref_hdr = *hdr;
2046 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2047 goto success;
2048
2049 case SHT_SHLIB:
2050 goto success;
2051
2052 case SHT_GROUP:
2053 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2054 goto fail;
2055
2056 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2057 goto fail;
2058
2059 if (hdr->contents != NULL)
2060 {
2061 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2062 unsigned int n_elt = hdr->sh_size / sizeof (* idx);
2063 asection *s;
2064
2065 if (n_elt == 0)
2066 goto fail;
2067 if (idx->flags & GRP_COMDAT)
2068 hdr->bfd_section->flags
2069 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2070
2071 /* We try to keep the same section order as it comes in. */
2072 idx += n_elt;
2073
2074 while (--n_elt != 0)
2075 {
2076 --idx;
2077
2078 if (idx->shdr != NULL
2079 && (s = idx->shdr->bfd_section) != NULL
2080 && elf_next_in_group (s) != NULL)
2081 {
2082 elf_next_in_group (hdr->bfd_section) = s;
2083 break;
2084 }
2085 }
2086 }
2087 goto success;
2088
2089 default:
2090 /* Possibly an attributes section. */
2091 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2092 || hdr->sh_type == bed->obj_attrs_section_type)
2093 {
2094 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2095 goto fail;
2096 _bfd_elf_parse_attributes (abfd, hdr);
2097 goto success;
2098 }
2099
2100 /* Check for any processor-specific section types. */
2101 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2102 goto success;
2103
2104 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2105 {
2106 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2107 /* FIXME: How to properly handle allocated section reserved
2108 for applications? */
2109 (*_bfd_error_handler)
2110 (_("%B: don't know how to handle allocated, application "
2111 "specific section `%s' [0x%8x]"),
2112 abfd, name, hdr->sh_type);
2113 else
2114 {
2115 /* Allow sections reserved for applications. */
2116 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2117 shindex);
2118 goto success;
2119 }
2120 }
2121 else if (hdr->sh_type >= SHT_LOPROC
2122 && hdr->sh_type <= SHT_HIPROC)
2123 /* FIXME: We should handle this section. */
2124 (*_bfd_error_handler)
2125 (_("%B: don't know how to handle processor specific section "
2126 "`%s' [0x%8x]"),
2127 abfd, name, hdr->sh_type);
2128 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2129 {
2130 /* Unrecognised OS-specific sections. */
2131 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2132 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2133 required to correctly process the section and the file should
2134 be rejected with an error message. */
2135 (*_bfd_error_handler)
2136 (_("%B: don't know how to handle OS specific section "
2137 "`%s' [0x%8x]"),
2138 abfd, name, hdr->sh_type);
2139 else
2140 {
2141 /* Otherwise it should be processed. */
2142 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2143 goto success;
2144 }
2145 }
2146 else
2147 /* FIXME: We should handle this section. */
2148 (*_bfd_error_handler)
2149 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2150 abfd, name, hdr->sh_type);
2151
2152 goto fail;
2153 }
2154
2155 fail:
2156 ret = FALSE;
2157 success:
2158 if (sections_being_created && sections_being_created_abfd == abfd)
2159 sections_being_created [shindex] = FALSE;
2160 if (-- nesting == 0)
2161 {
2162 sections_being_created = NULL;
2163 sections_being_created_abfd = abfd;
2164 }
2165 return ret;
2166 }
2167
2168 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2169
2170 Elf_Internal_Sym *
2171 bfd_sym_from_r_symndx (struct sym_cache *cache,
2172 bfd *abfd,
2173 unsigned long r_symndx)
2174 {
2175 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2176
2177 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2178 {
2179 Elf_Internal_Shdr *symtab_hdr;
2180 unsigned char esym[sizeof (Elf64_External_Sym)];
2181 Elf_External_Sym_Shndx eshndx;
2182
2183 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2184 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2185 &cache->sym[ent], esym, &eshndx) == NULL)
2186 return NULL;
2187
2188 if (cache->abfd != abfd)
2189 {
2190 memset (cache->indx, -1, sizeof (cache->indx));
2191 cache->abfd = abfd;
2192 }
2193 cache->indx[ent] = r_symndx;
2194 }
2195
2196 return &cache->sym[ent];
2197 }
2198
2199 /* Given an ELF section number, retrieve the corresponding BFD
2200 section. */
2201
2202 asection *
2203 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2204 {
2205 if (sec_index >= elf_numsections (abfd))
2206 return NULL;
2207 return elf_elfsections (abfd)[sec_index]->bfd_section;
2208 }
2209
2210 static const struct bfd_elf_special_section special_sections_b[] =
2211 {
2212 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2213 { NULL, 0, 0, 0, 0 }
2214 };
2215
2216 static const struct bfd_elf_special_section special_sections_c[] =
2217 {
2218 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2219 { NULL, 0, 0, 0, 0 }
2220 };
2221
2222 static const struct bfd_elf_special_section special_sections_d[] =
2223 {
2224 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2225 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2226 /* There are more DWARF sections than these, but they needn't be added here
2227 unless you have to cope with broken compilers that don't emit section
2228 attributes or you want to help the user writing assembler. */
2229 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2230 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2231 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2232 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2233 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2234 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2235 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2236 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2237 { NULL, 0, 0, 0, 0 }
2238 };
2239
2240 static const struct bfd_elf_special_section special_sections_f[] =
2241 {
2242 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2243 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2244 { NULL, 0, 0, 0, 0 }
2245 };
2246
2247 static const struct bfd_elf_special_section special_sections_g[] =
2248 {
2249 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2250 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2251 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2252 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2253 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2254 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2255 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2256 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2257 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2258 { NULL, 0, 0, 0, 0 }
2259 };
2260
2261 static const struct bfd_elf_special_section special_sections_h[] =
2262 {
2263 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2264 { NULL, 0, 0, 0, 0 }
2265 };
2266
2267 static const struct bfd_elf_special_section special_sections_i[] =
2268 {
2269 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2270 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2271 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2272 { NULL, 0, 0, 0, 0 }
2273 };
2274
2275 static const struct bfd_elf_special_section special_sections_l[] =
2276 {
2277 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2278 { NULL, 0, 0, 0, 0 }
2279 };
2280
2281 static const struct bfd_elf_special_section special_sections_n[] =
2282 {
2283 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2284 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2285 { NULL, 0, 0, 0, 0 }
2286 };
2287
2288 static const struct bfd_elf_special_section special_sections_p[] =
2289 {
2290 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2291 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2292 { NULL, 0, 0, 0, 0 }
2293 };
2294
2295 static const struct bfd_elf_special_section special_sections_r[] =
2296 {
2297 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2298 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2299 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2300 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2301 { NULL, 0, 0, 0, 0 }
2302 };
2303
2304 static const struct bfd_elf_special_section special_sections_s[] =
2305 {
2306 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2307 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2308 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2309 /* See struct bfd_elf_special_section declaration for the semantics of
2310 this special case where .prefix_length != strlen (.prefix). */
2311 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2312 { NULL, 0, 0, 0, 0 }
2313 };
2314
2315 static const struct bfd_elf_special_section special_sections_t[] =
2316 {
2317 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2318 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2319 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2320 { NULL, 0, 0, 0, 0 }
2321 };
2322
2323 static const struct bfd_elf_special_section special_sections_z[] =
2324 {
2325 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2326 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2327 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2328 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2329 { NULL, 0, 0, 0, 0 }
2330 };
2331
2332 static const struct bfd_elf_special_section * const special_sections[] =
2333 {
2334 special_sections_b, /* 'b' */
2335 special_sections_c, /* 'c' */
2336 special_sections_d, /* 'd' */
2337 NULL, /* 'e' */
2338 special_sections_f, /* 'f' */
2339 special_sections_g, /* 'g' */
2340 special_sections_h, /* 'h' */
2341 special_sections_i, /* 'i' */
2342 NULL, /* 'j' */
2343 NULL, /* 'k' */
2344 special_sections_l, /* 'l' */
2345 NULL, /* 'm' */
2346 special_sections_n, /* 'n' */
2347 NULL, /* 'o' */
2348 special_sections_p, /* 'p' */
2349 NULL, /* 'q' */
2350 special_sections_r, /* 'r' */
2351 special_sections_s, /* 's' */
2352 special_sections_t, /* 't' */
2353 NULL, /* 'u' */
2354 NULL, /* 'v' */
2355 NULL, /* 'w' */
2356 NULL, /* 'x' */
2357 NULL, /* 'y' */
2358 special_sections_z /* 'z' */
2359 };
2360
2361 const struct bfd_elf_special_section *
2362 _bfd_elf_get_special_section (const char *name,
2363 const struct bfd_elf_special_section *spec,
2364 unsigned int rela)
2365 {
2366 int i;
2367 int len;
2368
2369 len = strlen (name);
2370
2371 for (i = 0; spec[i].prefix != NULL; i++)
2372 {
2373 int suffix_len;
2374 int prefix_len = spec[i].prefix_length;
2375
2376 if (len < prefix_len)
2377 continue;
2378 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2379 continue;
2380
2381 suffix_len = spec[i].suffix_length;
2382 if (suffix_len <= 0)
2383 {
2384 if (name[prefix_len] != 0)
2385 {
2386 if (suffix_len == 0)
2387 continue;
2388 if (name[prefix_len] != '.'
2389 && (suffix_len == -2
2390 || (rela && spec[i].type == SHT_REL)))
2391 continue;
2392 }
2393 }
2394 else
2395 {
2396 if (len < prefix_len + suffix_len)
2397 continue;
2398 if (memcmp (name + len - suffix_len,
2399 spec[i].prefix + prefix_len,
2400 suffix_len) != 0)
2401 continue;
2402 }
2403 return &spec[i];
2404 }
2405
2406 return NULL;
2407 }
2408
2409 const struct bfd_elf_special_section *
2410 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2411 {
2412 int i;
2413 const struct bfd_elf_special_section *spec;
2414 const struct elf_backend_data *bed;
2415
2416 /* See if this is one of the special sections. */
2417 if (sec->name == NULL)
2418 return NULL;
2419
2420 bed = get_elf_backend_data (abfd);
2421 spec = bed->special_sections;
2422 if (spec)
2423 {
2424 spec = _bfd_elf_get_special_section (sec->name,
2425 bed->special_sections,
2426 sec->use_rela_p);
2427 if (spec != NULL)
2428 return spec;
2429 }
2430
2431 if (sec->name[0] != '.')
2432 return NULL;
2433
2434 i = sec->name[1] - 'b';
2435 if (i < 0 || i > 'z' - 'b')
2436 return NULL;
2437
2438 spec = special_sections[i];
2439
2440 if (spec == NULL)
2441 return NULL;
2442
2443 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2444 }
2445
2446 bfd_boolean
2447 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2448 {
2449 struct bfd_elf_section_data *sdata;
2450 const struct elf_backend_data *bed;
2451 const struct bfd_elf_special_section *ssect;
2452
2453 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2454 if (sdata == NULL)
2455 {
2456 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2457 sizeof (*sdata));
2458 if (sdata == NULL)
2459 return FALSE;
2460 sec->used_by_bfd = sdata;
2461 }
2462
2463 /* Indicate whether or not this section should use RELA relocations. */
2464 bed = get_elf_backend_data (abfd);
2465 sec->use_rela_p = bed->default_use_rela_p;
2466
2467 /* When we read a file, we don't need to set ELF section type and
2468 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2469 anyway. We will set ELF section type and flags for all linker
2470 created sections. If user specifies BFD section flags, we will
2471 set ELF section type and flags based on BFD section flags in
2472 elf_fake_sections. Special handling for .init_array/.fini_array
2473 output sections since they may contain .ctors/.dtors input
2474 sections. We don't want _bfd_elf_init_private_section_data to
2475 copy ELF section type from .ctors/.dtors input sections. */
2476 if (abfd->direction != read_direction
2477 || (sec->flags & SEC_LINKER_CREATED) != 0)
2478 {
2479 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2480 if (ssect != NULL
2481 && (!sec->flags
2482 || (sec->flags & SEC_LINKER_CREATED) != 0
2483 || ssect->type == SHT_INIT_ARRAY
2484 || ssect->type == SHT_FINI_ARRAY))
2485 {
2486 elf_section_type (sec) = ssect->type;
2487 elf_section_flags (sec) = ssect->attr;
2488 }
2489 }
2490
2491 return _bfd_generic_new_section_hook (abfd, sec);
2492 }
2493
2494 /* Create a new bfd section from an ELF program header.
2495
2496 Since program segments have no names, we generate a synthetic name
2497 of the form segment<NUM>, where NUM is generally the index in the
2498 program header table. For segments that are split (see below) we
2499 generate the names segment<NUM>a and segment<NUM>b.
2500
2501 Note that some program segments may have a file size that is different than
2502 (less than) the memory size. All this means is that at execution the
2503 system must allocate the amount of memory specified by the memory size,
2504 but only initialize it with the first "file size" bytes read from the
2505 file. This would occur for example, with program segments consisting
2506 of combined data+bss.
2507
2508 To handle the above situation, this routine generates TWO bfd sections
2509 for the single program segment. The first has the length specified by
2510 the file size of the segment, and the second has the length specified
2511 by the difference between the two sizes. In effect, the segment is split
2512 into its initialized and uninitialized parts.
2513
2514 */
2515
2516 bfd_boolean
2517 _bfd_elf_make_section_from_phdr (bfd *abfd,
2518 Elf_Internal_Phdr *hdr,
2519 int hdr_index,
2520 const char *type_name)
2521 {
2522 asection *newsect;
2523 char *name;
2524 char namebuf[64];
2525 size_t len;
2526 int split;
2527
2528 split = ((hdr->p_memsz > 0)
2529 && (hdr->p_filesz > 0)
2530 && (hdr->p_memsz > hdr->p_filesz));
2531
2532 if (hdr->p_filesz > 0)
2533 {
2534 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2535 len = strlen (namebuf) + 1;
2536 name = (char *) bfd_alloc (abfd, len);
2537 if (!name)
2538 return FALSE;
2539 memcpy (name, namebuf, len);
2540 newsect = bfd_make_section (abfd, name);
2541 if (newsect == NULL)
2542 return FALSE;
2543 newsect->vma = hdr->p_vaddr;
2544 newsect->lma = hdr->p_paddr;
2545 newsect->size = hdr->p_filesz;
2546 newsect->filepos = hdr->p_offset;
2547 newsect->flags |= SEC_HAS_CONTENTS;
2548 newsect->alignment_power = bfd_log2 (hdr->p_align);
2549 if (hdr->p_type == PT_LOAD)
2550 {
2551 newsect->flags |= SEC_ALLOC;
2552 newsect->flags |= SEC_LOAD;
2553 if (hdr->p_flags & PF_X)
2554 {
2555 /* FIXME: all we known is that it has execute PERMISSION,
2556 may be data. */
2557 newsect->flags |= SEC_CODE;
2558 }
2559 }
2560 if (!(hdr->p_flags & PF_W))
2561 {
2562 newsect->flags |= SEC_READONLY;
2563 }
2564 }
2565
2566 if (hdr->p_memsz > hdr->p_filesz)
2567 {
2568 bfd_vma align;
2569
2570 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2571 len = strlen (namebuf) + 1;
2572 name = (char *) bfd_alloc (abfd, len);
2573 if (!name)
2574 return FALSE;
2575 memcpy (name, namebuf, len);
2576 newsect = bfd_make_section (abfd, name);
2577 if (newsect == NULL)
2578 return FALSE;
2579 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2580 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2581 newsect->size = hdr->p_memsz - hdr->p_filesz;
2582 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2583 align = newsect->vma & -newsect->vma;
2584 if (align == 0 || align > hdr->p_align)
2585 align = hdr->p_align;
2586 newsect->alignment_power = bfd_log2 (align);
2587 if (hdr->p_type == PT_LOAD)
2588 {
2589 /* Hack for gdb. Segments that have not been modified do
2590 not have their contents written to a core file, on the
2591 assumption that a debugger can find the contents in the
2592 executable. We flag this case by setting the fake
2593 section size to zero. Note that "real" bss sections will
2594 always have their contents dumped to the core file. */
2595 if (bfd_get_format (abfd) == bfd_core)
2596 newsect->size = 0;
2597 newsect->flags |= SEC_ALLOC;
2598 if (hdr->p_flags & PF_X)
2599 newsect->flags |= SEC_CODE;
2600 }
2601 if (!(hdr->p_flags & PF_W))
2602 newsect->flags |= SEC_READONLY;
2603 }
2604
2605 return TRUE;
2606 }
2607
2608 bfd_boolean
2609 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2610 {
2611 const struct elf_backend_data *bed;
2612
2613 switch (hdr->p_type)
2614 {
2615 case PT_NULL:
2616 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2617
2618 case PT_LOAD:
2619 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2620
2621 case PT_DYNAMIC:
2622 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2623
2624 case PT_INTERP:
2625 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2626
2627 case PT_NOTE:
2628 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2629 return FALSE;
2630 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2631 return FALSE;
2632 return TRUE;
2633
2634 case PT_SHLIB:
2635 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2636
2637 case PT_PHDR:
2638 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2639
2640 case PT_GNU_EH_FRAME:
2641 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2642 "eh_frame_hdr");
2643
2644 case PT_GNU_STACK:
2645 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2646
2647 case PT_GNU_RELRO:
2648 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2649
2650 default:
2651 /* Check for any processor-specific program segment types. */
2652 bed = get_elf_backend_data (abfd);
2653 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2654 }
2655 }
2656
2657 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2658 REL or RELA. */
2659
2660 Elf_Internal_Shdr *
2661 _bfd_elf_single_rel_hdr (asection *sec)
2662 {
2663 if (elf_section_data (sec)->rel.hdr)
2664 {
2665 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2666 return elf_section_data (sec)->rel.hdr;
2667 }
2668 else
2669 return elf_section_data (sec)->rela.hdr;
2670 }
2671
2672 static bfd_boolean
2673 _bfd_elf_set_reloc_sh_name (bfd *abfd,
2674 Elf_Internal_Shdr *rel_hdr,
2675 const char *sec_name,
2676 bfd_boolean use_rela_p)
2677 {
2678 char *name = (char *) bfd_alloc (abfd,
2679 sizeof ".rela" + strlen (sec_name));
2680 if (name == NULL)
2681 return FALSE;
2682
2683 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
2684 rel_hdr->sh_name =
2685 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2686 FALSE);
2687 if (rel_hdr->sh_name == (unsigned int) -1)
2688 return FALSE;
2689
2690 return TRUE;
2691 }
2692
2693 /* Allocate and initialize a section-header for a new reloc section,
2694 containing relocations against ASECT. It is stored in RELDATA. If
2695 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2696 relocations. */
2697
2698 static bfd_boolean
2699 _bfd_elf_init_reloc_shdr (bfd *abfd,
2700 struct bfd_elf_section_reloc_data *reldata,
2701 const char *sec_name,
2702 bfd_boolean use_rela_p,
2703 bfd_boolean delay_st_name_p)
2704 {
2705 Elf_Internal_Shdr *rel_hdr;
2706 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2707 bfd_size_type amt;
2708
2709 amt = sizeof (Elf_Internal_Shdr);
2710 BFD_ASSERT (reldata->hdr == NULL);
2711 rel_hdr = bfd_zalloc (abfd, amt);
2712 reldata->hdr = rel_hdr;
2713
2714 if (delay_st_name_p)
2715 rel_hdr->sh_name = (unsigned int) -1;
2716 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
2717 use_rela_p))
2718 return FALSE;
2719 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2720 rel_hdr->sh_entsize = (use_rela_p
2721 ? bed->s->sizeof_rela
2722 : bed->s->sizeof_rel);
2723 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2724 rel_hdr->sh_flags = 0;
2725 rel_hdr->sh_addr = 0;
2726 rel_hdr->sh_size = 0;
2727 rel_hdr->sh_offset = 0;
2728
2729 return TRUE;
2730 }
2731
2732 /* Return the default section type based on the passed in section flags. */
2733
2734 int
2735 bfd_elf_get_default_section_type (flagword flags)
2736 {
2737 if ((flags & SEC_ALLOC) != 0
2738 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2739 return SHT_NOBITS;
2740 return SHT_PROGBITS;
2741 }
2742
2743 struct fake_section_arg
2744 {
2745 struct bfd_link_info *link_info;
2746 bfd_boolean failed;
2747 };
2748
2749 /* Set up an ELF internal section header for a section. */
2750
2751 static void
2752 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2753 {
2754 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2755 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2756 struct bfd_elf_section_data *esd = elf_section_data (asect);
2757 Elf_Internal_Shdr *this_hdr;
2758 unsigned int sh_type;
2759 const char *name = asect->name;
2760 bfd_boolean delay_st_name_p = FALSE;
2761
2762 if (arg->failed)
2763 {
2764 /* We already failed; just get out of the bfd_map_over_sections
2765 loop. */
2766 return;
2767 }
2768
2769 this_hdr = &esd->this_hdr;
2770
2771 if (arg->link_info)
2772 {
2773 /* ld: compress DWARF debug sections with names: .debug_*. */
2774 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
2775 && (asect->flags & SEC_DEBUGGING)
2776 && name[1] == 'd'
2777 && name[6] == '_')
2778 {
2779 /* Set SEC_ELF_COMPRESS to indicate this section should be
2780 compressed. */
2781 asect->flags |= SEC_ELF_COMPRESS;
2782
2783 /* If this section will be compressed, delay adding setion
2784 name to section name section after it is compressed in
2785 _bfd_elf_assign_file_positions_for_non_load. */
2786 delay_st_name_p = TRUE;
2787 }
2788 }
2789 else if ((asect->flags & SEC_ELF_RENAME))
2790 {
2791 /* objcopy: rename output DWARF debug section. */
2792 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
2793 {
2794 /* When we decompress or compress with SHF_COMPRESSED,
2795 convert section name from .zdebug_* to .debug_* if
2796 needed. */
2797 if (name[1] == 'z')
2798 {
2799 char *new_name = convert_zdebug_to_debug (abfd, name);
2800 if (new_name == NULL)
2801 {
2802 arg->failed = TRUE;
2803 return;
2804 }
2805 name = new_name;
2806 }
2807 }
2808 else if (asect->compress_status == COMPRESS_SECTION_DONE)
2809 {
2810 /* PR binutils/18087: Compression does not always make a
2811 section smaller. So only rename the section when
2812 compression has actually taken place. If input section
2813 name is .zdebug_*, we should never compress it again. */
2814 char *new_name = convert_debug_to_zdebug (abfd, name);
2815 if (new_name == NULL)
2816 {
2817 arg->failed = TRUE;
2818 return;
2819 }
2820 BFD_ASSERT (name[1] != 'z');
2821 name = new_name;
2822 }
2823 }
2824
2825 if (delay_st_name_p)
2826 this_hdr->sh_name = (unsigned int) -1;
2827 else
2828 {
2829 this_hdr->sh_name
2830 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2831 name, FALSE);
2832 if (this_hdr->sh_name == (unsigned int) -1)
2833 {
2834 arg->failed = TRUE;
2835 return;
2836 }
2837 }
2838
2839 /* Don't clear sh_flags. Assembler may set additional bits. */
2840
2841 if ((asect->flags & SEC_ALLOC) != 0
2842 || asect->user_set_vma)
2843 this_hdr->sh_addr = asect->vma;
2844 else
2845 this_hdr->sh_addr = 0;
2846
2847 this_hdr->sh_offset = 0;
2848 this_hdr->sh_size = asect->size;
2849 this_hdr->sh_link = 0;
2850 /* PR 17512: file: 0eb809fe, 8b0535ee. */
2851 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
2852 {
2853 (*_bfd_error_handler)
2854 (_("%B: error: Alignment power %d of section `%A' is too big"),
2855 abfd, asect, asect->alignment_power);
2856 arg->failed = TRUE;
2857 return;
2858 }
2859 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2860 /* The sh_entsize and sh_info fields may have been set already by
2861 copy_private_section_data. */
2862
2863 this_hdr->bfd_section = asect;
2864 this_hdr->contents = NULL;
2865
2866 /* If the section type is unspecified, we set it based on
2867 asect->flags. */
2868 if ((asect->flags & SEC_GROUP) != 0)
2869 sh_type = SHT_GROUP;
2870 else
2871 sh_type = bfd_elf_get_default_section_type (asect->flags);
2872
2873 if (this_hdr->sh_type == SHT_NULL)
2874 this_hdr->sh_type = sh_type;
2875 else if (this_hdr->sh_type == SHT_NOBITS
2876 && sh_type == SHT_PROGBITS
2877 && (asect->flags & SEC_ALLOC) != 0)
2878 {
2879 /* Warn if we are changing a NOBITS section to PROGBITS, but
2880 allow the link to proceed. This can happen when users link
2881 non-bss input sections to bss output sections, or emit data
2882 to a bss output section via a linker script. */
2883 (*_bfd_error_handler)
2884 (_("warning: section `%A' type changed to PROGBITS"), asect);
2885 this_hdr->sh_type = sh_type;
2886 }
2887
2888 switch (this_hdr->sh_type)
2889 {
2890 default:
2891 break;
2892
2893 case SHT_STRTAB:
2894 case SHT_INIT_ARRAY:
2895 case SHT_FINI_ARRAY:
2896 case SHT_PREINIT_ARRAY:
2897 case SHT_NOTE:
2898 case SHT_NOBITS:
2899 case SHT_PROGBITS:
2900 break;
2901
2902 case SHT_HASH:
2903 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2904 break;
2905
2906 case SHT_DYNSYM:
2907 this_hdr->sh_entsize = bed->s->sizeof_sym;
2908 break;
2909
2910 case SHT_DYNAMIC:
2911 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2912 break;
2913
2914 case SHT_RELA:
2915 if (get_elf_backend_data (abfd)->may_use_rela_p)
2916 this_hdr->sh_entsize = bed->s->sizeof_rela;
2917 break;
2918
2919 case SHT_REL:
2920 if (get_elf_backend_data (abfd)->may_use_rel_p)
2921 this_hdr->sh_entsize = bed->s->sizeof_rel;
2922 break;
2923
2924 case SHT_GNU_versym:
2925 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2926 break;
2927
2928 case SHT_GNU_verdef:
2929 this_hdr->sh_entsize = 0;
2930 /* objcopy or strip will copy over sh_info, but may not set
2931 cverdefs. The linker will set cverdefs, but sh_info will be
2932 zero. */
2933 if (this_hdr->sh_info == 0)
2934 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2935 else
2936 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2937 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2938 break;
2939
2940 case SHT_GNU_verneed:
2941 this_hdr->sh_entsize = 0;
2942 /* objcopy or strip will copy over sh_info, but may not set
2943 cverrefs. The linker will set cverrefs, but sh_info will be
2944 zero. */
2945 if (this_hdr->sh_info == 0)
2946 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2947 else
2948 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2949 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2950 break;
2951
2952 case SHT_GROUP:
2953 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2954 break;
2955
2956 case SHT_GNU_HASH:
2957 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2958 break;
2959 }
2960
2961 if ((asect->flags & SEC_ALLOC) != 0)
2962 this_hdr->sh_flags |= SHF_ALLOC;
2963 if ((asect->flags & SEC_READONLY) == 0)
2964 this_hdr->sh_flags |= SHF_WRITE;
2965 if ((asect->flags & SEC_CODE) != 0)
2966 this_hdr->sh_flags |= SHF_EXECINSTR;
2967 if ((asect->flags & SEC_MERGE) != 0)
2968 {
2969 this_hdr->sh_flags |= SHF_MERGE;
2970 this_hdr->sh_entsize = asect->entsize;
2971 if ((asect->flags & SEC_STRINGS) != 0)
2972 this_hdr->sh_flags |= SHF_STRINGS;
2973 }
2974 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2975 this_hdr->sh_flags |= SHF_GROUP;
2976 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2977 {
2978 this_hdr->sh_flags |= SHF_TLS;
2979 if (asect->size == 0
2980 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2981 {
2982 struct bfd_link_order *o = asect->map_tail.link_order;
2983
2984 this_hdr->sh_size = 0;
2985 if (o != NULL)
2986 {
2987 this_hdr->sh_size = o->offset + o->size;
2988 if (this_hdr->sh_size != 0)
2989 this_hdr->sh_type = SHT_NOBITS;
2990 }
2991 }
2992 }
2993 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2994 this_hdr->sh_flags |= SHF_EXCLUDE;
2995
2996 /* If the section has relocs, set up a section header for the
2997 SHT_REL[A] section. If two relocation sections are required for
2998 this section, it is up to the processor-specific back-end to
2999 create the other. */
3000 if ((asect->flags & SEC_RELOC) != 0)
3001 {
3002 /* When doing a relocatable link, create both REL and RELA sections if
3003 needed. */
3004 if (arg->link_info
3005 /* Do the normal setup if we wouldn't create any sections here. */
3006 && esd->rel.count + esd->rela.count > 0
3007 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
3008 {
3009 if (esd->rel.count && esd->rel.hdr == NULL
3010 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE,
3011 delay_st_name_p))
3012 {
3013 arg->failed = TRUE;
3014 return;
3015 }
3016 if (esd->rela.count && esd->rela.hdr == NULL
3017 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE,
3018 delay_st_name_p))
3019 {
3020 arg->failed = TRUE;
3021 return;
3022 }
3023 }
3024 else if (!_bfd_elf_init_reloc_shdr (abfd,
3025 (asect->use_rela_p
3026 ? &esd->rela : &esd->rel),
3027 name,
3028 asect->use_rela_p,
3029 delay_st_name_p))
3030 arg->failed = TRUE;
3031 }
3032
3033 /* Check for processor-specific section types. */
3034 sh_type = this_hdr->sh_type;
3035 if (bed->elf_backend_fake_sections
3036 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3037 arg->failed = TRUE;
3038
3039 if (sh_type == SHT_NOBITS && asect->size != 0)
3040 {
3041 /* Don't change the header type from NOBITS if we are being
3042 called for objcopy --only-keep-debug. */
3043 this_hdr->sh_type = sh_type;
3044 }
3045 }
3046
3047 /* Fill in the contents of a SHT_GROUP section. Called from
3048 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3049 when ELF targets use the generic linker, ld. Called for ld -r
3050 from bfd_elf_final_link. */
3051
3052 void
3053 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3054 {
3055 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3056 asection *elt, *first;
3057 unsigned char *loc;
3058 bfd_boolean gas;
3059
3060 /* Ignore linker created group section. See elfNN_ia64_object_p in
3061 elfxx-ia64.c. */
3062 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3063 || *failedptr)
3064 return;
3065
3066 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3067 {
3068 unsigned long symindx = 0;
3069
3070 /* elf_group_id will have been set up by objcopy and the
3071 generic linker. */
3072 if (elf_group_id (sec) != NULL)
3073 symindx = elf_group_id (sec)->udata.i;
3074
3075 if (symindx == 0)
3076 {
3077 /* If called from the assembler, swap_out_syms will have set up
3078 elf_section_syms. */
3079 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3080 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3081 }
3082 elf_section_data (sec)->this_hdr.sh_info = symindx;
3083 }
3084 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3085 {
3086 /* The ELF backend linker sets sh_info to -2 when the group
3087 signature symbol is global, and thus the index can't be
3088 set until all local symbols are output. */
3089 asection *igroup = elf_sec_group (elf_next_in_group (sec));
3090 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
3091 unsigned long symndx = sec_data->this_hdr.sh_info;
3092 unsigned long extsymoff = 0;
3093 struct elf_link_hash_entry *h;
3094
3095 if (!elf_bad_symtab (igroup->owner))
3096 {
3097 Elf_Internal_Shdr *symtab_hdr;
3098
3099 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3100 extsymoff = symtab_hdr->sh_info;
3101 }
3102 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3103 while (h->root.type == bfd_link_hash_indirect
3104 || h->root.type == bfd_link_hash_warning)
3105 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3106
3107 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3108 }
3109
3110 /* The contents won't be allocated for "ld -r" or objcopy. */
3111 gas = TRUE;
3112 if (sec->contents == NULL)
3113 {
3114 gas = FALSE;
3115 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3116
3117 /* Arrange for the section to be written out. */
3118 elf_section_data (sec)->this_hdr.contents = sec->contents;
3119 if (sec->contents == NULL)
3120 {
3121 *failedptr = TRUE;
3122 return;
3123 }
3124 }
3125
3126 loc = sec->contents + sec->size;
3127
3128 /* Get the pointer to the first section in the group that gas
3129 squirreled away here. objcopy arranges for this to be set to the
3130 start of the input section group. */
3131 first = elt = elf_next_in_group (sec);
3132
3133 /* First element is a flag word. Rest of section is elf section
3134 indices for all the sections of the group. Write them backwards
3135 just to keep the group in the same order as given in .section
3136 directives, not that it matters. */
3137 while (elt != NULL)
3138 {
3139 asection *s;
3140
3141 s = elt;
3142 if (!gas)
3143 s = s->output_section;
3144 if (s != NULL
3145 && !bfd_is_abs_section (s))
3146 {
3147 unsigned int idx = elf_section_data (s)->this_idx;
3148
3149 loc -= 4;
3150 H_PUT_32 (abfd, idx, loc);
3151 }
3152 elt = elf_next_in_group (elt);
3153 if (elt == first)
3154 break;
3155 }
3156
3157 if ((loc -= 4) != sec->contents)
3158 abort ();
3159
3160 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3161 }
3162
3163 /* Return the section which RELOC_SEC applies to. */
3164
3165 asection *
3166 _bfd_elf_get_reloc_section (asection *reloc_sec)
3167 {
3168 const char *name;
3169 unsigned int type;
3170 bfd *abfd;
3171
3172 if (reloc_sec == NULL)
3173 return NULL;
3174
3175 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3176 if (type != SHT_REL && type != SHT_RELA)
3177 return NULL;
3178
3179 /* We look up the section the relocs apply to by name. */
3180 name = reloc_sec->name;
3181 if (type == SHT_REL)
3182 name += 4;
3183 else
3184 name += 5;
3185
3186 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3187 section apply to .got.plt section. */
3188 abfd = reloc_sec->owner;
3189 if (get_elf_backend_data (abfd)->want_got_plt
3190 && strcmp (name, ".plt") == 0)
3191 {
3192 /* .got.plt is a linker created input section. It may be mapped
3193 to some other output section. Try two likely sections. */
3194 name = ".got.plt";
3195 reloc_sec = bfd_get_section_by_name (abfd, name);
3196 if (reloc_sec != NULL)
3197 return reloc_sec;
3198 name = ".got";
3199 }
3200
3201 reloc_sec = bfd_get_section_by_name (abfd, name);
3202 return reloc_sec;
3203 }
3204
3205 /* Assign all ELF section numbers. The dummy first section is handled here
3206 too. The link/info pointers for the standard section types are filled
3207 in here too, while we're at it. */
3208
3209 static bfd_boolean
3210 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3211 {
3212 struct elf_obj_tdata *t = elf_tdata (abfd);
3213 asection *sec;
3214 unsigned int section_number;
3215 Elf_Internal_Shdr **i_shdrp;
3216 struct bfd_elf_section_data *d;
3217 bfd_boolean need_symtab;
3218
3219 section_number = 1;
3220
3221 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3222
3223 /* SHT_GROUP sections are in relocatable files only. */
3224 if (link_info == NULL || link_info->relocatable)
3225 {
3226 /* Put SHT_GROUP sections first. */
3227 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3228 {
3229 d = elf_section_data (sec);
3230
3231 if (d->this_hdr.sh_type == SHT_GROUP)
3232 {
3233 if (sec->flags & SEC_LINKER_CREATED)
3234 {
3235 /* Remove the linker created SHT_GROUP sections. */
3236 bfd_section_list_remove (abfd, sec);
3237 abfd->section_count--;
3238 }
3239 else
3240 d->this_idx = section_number++;
3241 }
3242 }
3243 }
3244
3245 for (sec = abfd->sections; sec; sec = sec->next)
3246 {
3247 d = elf_section_data (sec);
3248
3249 if (d->this_hdr.sh_type != SHT_GROUP)
3250 d->this_idx = section_number++;
3251 if (d->this_hdr.sh_name != (unsigned int) -1)
3252 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3253 if (d->rel.hdr)
3254 {
3255 d->rel.idx = section_number++;
3256 if (d->rel.hdr->sh_name != (unsigned int) -1)
3257 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3258 }
3259 else
3260 d->rel.idx = 0;
3261
3262 if (d->rela.hdr)
3263 {
3264 d->rela.idx = section_number++;
3265 if (d->rela.hdr->sh_name != (unsigned int) -1)
3266 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3267 }
3268 else
3269 d->rela.idx = 0;
3270 }
3271
3272 elf_shstrtab_sec (abfd) = section_number++;
3273 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3274 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3275
3276 need_symtab = (bfd_get_symcount (abfd) > 0
3277 || (link_info == NULL
3278 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3279 == HAS_RELOC)));
3280 if (need_symtab)
3281 {
3282 elf_onesymtab (abfd) = section_number++;
3283 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3284 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3285 {
3286 elf_symtab_shndx (abfd) = section_number++;
3287 t->symtab_shndx_hdr.sh_name
3288 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3289 ".symtab_shndx", FALSE);
3290 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3291 return FALSE;
3292 }
3293 elf_strtab_sec (abfd) = section_number++;
3294 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3295 }
3296
3297 if (section_number >= SHN_LORESERVE)
3298 {
3299 _bfd_error_handler (_("%B: too many sections: %u"),
3300 abfd, section_number);
3301 return FALSE;
3302 }
3303
3304 elf_numsections (abfd) = section_number;
3305 elf_elfheader (abfd)->e_shnum = section_number;
3306
3307 /* Set up the list of section header pointers, in agreement with the
3308 indices. */
3309 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3310 sizeof (Elf_Internal_Shdr *));
3311 if (i_shdrp == NULL)
3312 return FALSE;
3313
3314 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3315 sizeof (Elf_Internal_Shdr));
3316 if (i_shdrp[0] == NULL)
3317 {
3318 bfd_release (abfd, i_shdrp);
3319 return FALSE;
3320 }
3321
3322 elf_elfsections (abfd) = i_shdrp;
3323
3324 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3325 if (need_symtab)
3326 {
3327 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3328 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3329 {
3330 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3331 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3332 }
3333 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3334 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3335 }
3336
3337 for (sec = abfd->sections; sec; sec = sec->next)
3338 {
3339 asection *s;
3340
3341 d = elf_section_data (sec);
3342
3343 i_shdrp[d->this_idx] = &d->this_hdr;
3344 if (d->rel.idx != 0)
3345 i_shdrp[d->rel.idx] = d->rel.hdr;
3346 if (d->rela.idx != 0)
3347 i_shdrp[d->rela.idx] = d->rela.hdr;
3348
3349 /* Fill in the sh_link and sh_info fields while we're at it. */
3350
3351 /* sh_link of a reloc section is the section index of the symbol
3352 table. sh_info is the section index of the section to which
3353 the relocation entries apply. */
3354 if (d->rel.idx != 0)
3355 {
3356 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3357 d->rel.hdr->sh_info = d->this_idx;
3358 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3359 }
3360 if (d->rela.idx != 0)
3361 {
3362 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3363 d->rela.hdr->sh_info = d->this_idx;
3364 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3365 }
3366
3367 /* We need to set up sh_link for SHF_LINK_ORDER. */
3368 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3369 {
3370 s = elf_linked_to_section (sec);
3371 if (s)
3372 {
3373 /* elf_linked_to_section points to the input section. */
3374 if (link_info != NULL)
3375 {
3376 /* Check discarded linkonce section. */
3377 if (discarded_section (s))
3378 {
3379 asection *kept;
3380 (*_bfd_error_handler)
3381 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3382 abfd, d->this_hdr.bfd_section,
3383 s, s->owner);
3384 /* Point to the kept section if it has the same
3385 size as the discarded one. */
3386 kept = _bfd_elf_check_kept_section (s, link_info);
3387 if (kept == NULL)
3388 {
3389 bfd_set_error (bfd_error_bad_value);
3390 return FALSE;
3391 }
3392 s = kept;
3393 }
3394
3395 s = s->output_section;
3396 BFD_ASSERT (s != NULL);
3397 }
3398 else
3399 {
3400 /* Handle objcopy. */
3401 if (s->output_section == NULL)
3402 {
3403 (*_bfd_error_handler)
3404 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3405 abfd, d->this_hdr.bfd_section, s, s->owner);
3406 bfd_set_error (bfd_error_bad_value);
3407 return FALSE;
3408 }
3409 s = s->output_section;
3410 }
3411 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3412 }
3413 else
3414 {
3415 /* PR 290:
3416 The Intel C compiler generates SHT_IA_64_UNWIND with
3417 SHF_LINK_ORDER. But it doesn't set the sh_link or
3418 sh_info fields. Hence we could get the situation
3419 where s is NULL. */
3420 const struct elf_backend_data *bed
3421 = get_elf_backend_data (abfd);
3422 if (bed->link_order_error_handler)
3423 bed->link_order_error_handler
3424 (_("%B: warning: sh_link not set for section `%A'"),
3425 abfd, sec);
3426 }
3427 }
3428
3429 switch (d->this_hdr.sh_type)
3430 {
3431 case SHT_REL:
3432 case SHT_RELA:
3433 /* A reloc section which we are treating as a normal BFD
3434 section. sh_link is the section index of the symbol
3435 table. sh_info is the section index of the section to
3436 which the relocation entries apply. We assume that an
3437 allocated reloc section uses the dynamic symbol table.
3438 FIXME: How can we be sure? */
3439 s = bfd_get_section_by_name (abfd, ".dynsym");
3440 if (s != NULL)
3441 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3442
3443 s = get_elf_backend_data (abfd)->get_reloc_section (sec);
3444 if (s != NULL)
3445 {
3446 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3447 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3448 }
3449 break;
3450
3451 case SHT_STRTAB:
3452 /* We assume that a section named .stab*str is a stabs
3453 string section. We look for a section with the same name
3454 but without the trailing ``str'', and set its sh_link
3455 field to point to this section. */
3456 if (CONST_STRNEQ (sec->name, ".stab")
3457 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3458 {
3459 size_t len;
3460 char *alc;
3461
3462 len = strlen (sec->name);
3463 alc = (char *) bfd_malloc (len - 2);
3464 if (alc == NULL)
3465 return FALSE;
3466 memcpy (alc, sec->name, len - 3);
3467 alc[len - 3] = '\0';
3468 s = bfd_get_section_by_name (abfd, alc);
3469 free (alc);
3470 if (s != NULL)
3471 {
3472 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3473
3474 /* This is a .stab section. */
3475 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3476 elf_section_data (s)->this_hdr.sh_entsize
3477 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3478 }
3479 }
3480 break;
3481
3482 case SHT_DYNAMIC:
3483 case SHT_DYNSYM:
3484 case SHT_GNU_verneed:
3485 case SHT_GNU_verdef:
3486 /* sh_link is the section header index of the string table
3487 used for the dynamic entries, or the symbol table, or the
3488 version strings. */
3489 s = bfd_get_section_by_name (abfd, ".dynstr");
3490 if (s != NULL)
3491 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3492 break;
3493
3494 case SHT_GNU_LIBLIST:
3495 /* sh_link is the section header index of the prelink library
3496 list used for the dynamic entries, or the symbol table, or
3497 the version strings. */
3498 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3499 ? ".dynstr" : ".gnu.libstr");
3500 if (s != NULL)
3501 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3502 break;
3503
3504 case SHT_HASH:
3505 case SHT_GNU_HASH:
3506 case SHT_GNU_versym:
3507 /* sh_link is the section header index of the symbol table
3508 this hash table or version table is for. */
3509 s = bfd_get_section_by_name (abfd, ".dynsym");
3510 if (s != NULL)
3511 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3512 break;
3513
3514 case SHT_GROUP:
3515 d->this_hdr.sh_link = elf_onesymtab (abfd);
3516 }
3517 }
3518
3519 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3520 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3521 debug section name from .debug_* to .zdebug_* if needed. */
3522
3523 return TRUE;
3524 }
3525
3526 static bfd_boolean
3527 sym_is_global (bfd *abfd, asymbol *sym)
3528 {
3529 /* If the backend has a special mapping, use it. */
3530 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3531 if (bed->elf_backend_sym_is_global)
3532 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3533
3534 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3535 || bfd_is_und_section (bfd_get_section (sym))
3536 || bfd_is_com_section (bfd_get_section (sym)));
3537 }
3538
3539 /* Don't output section symbols for sections that are not going to be
3540 output, that are duplicates or there is no BFD section. */
3541
3542 static bfd_boolean
3543 ignore_section_sym (bfd *abfd, asymbol *sym)
3544 {
3545 elf_symbol_type *type_ptr;
3546
3547 if ((sym->flags & BSF_SECTION_SYM) == 0)
3548 return FALSE;
3549
3550 type_ptr = elf_symbol_from (abfd, sym);
3551 return ((type_ptr != NULL
3552 && type_ptr->internal_elf_sym.st_shndx != 0
3553 && bfd_is_abs_section (sym->section))
3554 || !(sym->section->owner == abfd
3555 || (sym->section->output_section->owner == abfd
3556 && sym->section->output_offset == 0)
3557 || bfd_is_abs_section (sym->section)));
3558 }
3559
3560 /* Map symbol from it's internal number to the external number, moving
3561 all local symbols to be at the head of the list. */
3562
3563 static bfd_boolean
3564 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3565 {
3566 unsigned int symcount = bfd_get_symcount (abfd);
3567 asymbol **syms = bfd_get_outsymbols (abfd);
3568 asymbol **sect_syms;
3569 unsigned int num_locals = 0;
3570 unsigned int num_globals = 0;
3571 unsigned int num_locals2 = 0;
3572 unsigned int num_globals2 = 0;
3573 int max_index = 0;
3574 unsigned int idx;
3575 asection *asect;
3576 asymbol **new_syms;
3577
3578 #ifdef DEBUG
3579 fprintf (stderr, "elf_map_symbols\n");
3580 fflush (stderr);
3581 #endif
3582
3583 for (asect = abfd->sections; asect; asect = asect->next)
3584 {
3585 if (max_index < asect->index)
3586 max_index = asect->index;
3587 }
3588
3589 max_index++;
3590 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3591 if (sect_syms == NULL)
3592 return FALSE;
3593 elf_section_syms (abfd) = sect_syms;
3594 elf_num_section_syms (abfd) = max_index;
3595
3596 /* Init sect_syms entries for any section symbols we have already
3597 decided to output. */
3598 for (idx = 0; idx < symcount; idx++)
3599 {
3600 asymbol *sym = syms[idx];
3601
3602 if ((sym->flags & BSF_SECTION_SYM) != 0
3603 && sym->value == 0
3604 && !ignore_section_sym (abfd, sym)
3605 && !bfd_is_abs_section (sym->section))
3606 {
3607 asection *sec = sym->section;
3608
3609 if (sec->owner != abfd)
3610 sec = sec->output_section;
3611
3612 sect_syms[sec->index] = syms[idx];
3613 }
3614 }
3615
3616 /* Classify all of the symbols. */
3617 for (idx = 0; idx < symcount; idx++)
3618 {
3619 if (sym_is_global (abfd, syms[idx]))
3620 num_globals++;
3621 else if (!ignore_section_sym (abfd, syms[idx]))
3622 num_locals++;
3623 }
3624
3625 /* We will be adding a section symbol for each normal BFD section. Most
3626 sections will already have a section symbol in outsymbols, but
3627 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3628 at least in that case. */
3629 for (asect = abfd->sections; asect; asect = asect->next)
3630 {
3631 if (sect_syms[asect->index] == NULL)
3632 {
3633 if (!sym_is_global (abfd, asect->symbol))
3634 num_locals++;
3635 else
3636 num_globals++;
3637 }
3638 }
3639
3640 /* Now sort the symbols so the local symbols are first. */
3641 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3642 sizeof (asymbol *));
3643
3644 if (new_syms == NULL)
3645 return FALSE;
3646
3647 for (idx = 0; idx < symcount; idx++)
3648 {
3649 asymbol *sym = syms[idx];
3650 unsigned int i;
3651
3652 if (sym_is_global (abfd, sym))
3653 i = num_locals + num_globals2++;
3654 else if (!ignore_section_sym (abfd, sym))
3655 i = num_locals2++;
3656 else
3657 continue;
3658 new_syms[i] = sym;
3659 sym->udata.i = i + 1;
3660 }
3661 for (asect = abfd->sections; asect; asect = asect->next)
3662 {
3663 if (sect_syms[asect->index] == NULL)
3664 {
3665 asymbol *sym = asect->symbol;
3666 unsigned int i;
3667
3668 sect_syms[asect->index] = sym;
3669 if (!sym_is_global (abfd, sym))
3670 i = num_locals2++;
3671 else
3672 i = num_locals + num_globals2++;
3673 new_syms[i] = sym;
3674 sym->udata.i = i + 1;
3675 }
3676 }
3677
3678 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3679
3680 *pnum_locals = num_locals;
3681 return TRUE;
3682 }
3683
3684 /* Align to the maximum file alignment that could be required for any
3685 ELF data structure. */
3686
3687 static inline file_ptr
3688 align_file_position (file_ptr off, int align)
3689 {
3690 return (off + align - 1) & ~(align - 1);
3691 }
3692
3693 /* Assign a file position to a section, optionally aligning to the
3694 required section alignment. */
3695
3696 file_ptr
3697 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3698 file_ptr offset,
3699 bfd_boolean align)
3700 {
3701 if (align && i_shdrp->sh_addralign > 1)
3702 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3703 i_shdrp->sh_offset = offset;
3704 if (i_shdrp->bfd_section != NULL)
3705 i_shdrp->bfd_section->filepos = offset;
3706 if (i_shdrp->sh_type != SHT_NOBITS)
3707 offset += i_shdrp->sh_size;
3708 return offset;
3709 }
3710
3711 /* Compute the file positions we are going to put the sections at, and
3712 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3713 is not NULL, this is being called by the ELF backend linker. */
3714
3715 bfd_boolean
3716 _bfd_elf_compute_section_file_positions (bfd *abfd,
3717 struct bfd_link_info *link_info)
3718 {
3719 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3720 struct fake_section_arg fsargs;
3721 bfd_boolean failed;
3722 struct elf_strtab_hash *strtab = NULL;
3723 Elf_Internal_Shdr *shstrtab_hdr;
3724 bfd_boolean need_symtab;
3725
3726 if (abfd->output_has_begun)
3727 return TRUE;
3728
3729 /* Do any elf backend specific processing first. */
3730 if (bed->elf_backend_begin_write_processing)
3731 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3732
3733 if (! prep_headers (abfd))
3734 return FALSE;
3735
3736 /* Post process the headers if necessary. */
3737 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3738
3739 fsargs.failed = FALSE;
3740 fsargs.link_info = link_info;
3741 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3742 if (fsargs.failed)
3743 return FALSE;
3744
3745 if (!assign_section_numbers (abfd, link_info))
3746 return FALSE;
3747
3748 /* The backend linker builds symbol table information itself. */
3749 need_symtab = (link_info == NULL
3750 && (bfd_get_symcount (abfd) > 0
3751 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3752 == HAS_RELOC)));
3753 if (need_symtab)
3754 {
3755 /* Non-zero if doing a relocatable link. */
3756 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3757
3758 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3759 return FALSE;
3760 }
3761
3762 failed = FALSE;
3763 if (link_info == NULL)
3764 {
3765 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3766 if (failed)
3767 return FALSE;
3768 }
3769
3770 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3771 /* sh_name was set in prep_headers. */
3772 shstrtab_hdr->sh_type = SHT_STRTAB;
3773 shstrtab_hdr->sh_flags = 0;
3774 shstrtab_hdr->sh_addr = 0;
3775 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
3776 shstrtab_hdr->sh_entsize = 0;
3777 shstrtab_hdr->sh_link = 0;
3778 shstrtab_hdr->sh_info = 0;
3779 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
3780 shstrtab_hdr->sh_addralign = 1;
3781
3782 if (!assign_file_positions_except_relocs (abfd, link_info))
3783 return FALSE;
3784
3785 if (need_symtab)
3786 {
3787 file_ptr off;
3788 Elf_Internal_Shdr *hdr;
3789
3790 off = elf_next_file_pos (abfd);
3791
3792 hdr = &elf_tdata (abfd)->symtab_hdr;
3793 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3794
3795 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3796 if (hdr->sh_size != 0)
3797 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3798
3799 hdr = &elf_tdata (abfd)->strtab_hdr;
3800 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3801
3802 elf_next_file_pos (abfd) = off;
3803
3804 /* Now that we know where the .strtab section goes, write it
3805 out. */
3806 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3807 || ! _bfd_elf_strtab_emit (abfd, strtab))
3808 return FALSE;
3809 _bfd_elf_strtab_free (strtab);
3810 }
3811
3812 abfd->output_has_begun = TRUE;
3813
3814 return TRUE;
3815 }
3816
3817 /* Make an initial estimate of the size of the program header. If we
3818 get the number wrong here, we'll redo section placement. */
3819
3820 static bfd_size_type
3821 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3822 {
3823 size_t segs;
3824 asection *s;
3825 const struct elf_backend_data *bed;
3826
3827 /* Assume we will need exactly two PT_LOAD segments: one for text
3828 and one for data. */
3829 segs = 2;
3830
3831 s = bfd_get_section_by_name (abfd, ".interp");
3832 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3833 {
3834 /* If we have a loadable interpreter section, we need a
3835 PT_INTERP segment. In this case, assume we also need a
3836 PT_PHDR segment, although that may not be true for all
3837 targets. */
3838 segs += 2;
3839 }
3840
3841 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3842 {
3843 /* We need a PT_DYNAMIC segment. */
3844 ++segs;
3845 }
3846
3847 if (info != NULL && info->relro)
3848 {
3849 /* We need a PT_GNU_RELRO segment. */
3850 ++segs;
3851 }
3852
3853 if (elf_eh_frame_hdr (abfd))
3854 {
3855 /* We need a PT_GNU_EH_FRAME segment. */
3856 ++segs;
3857 }
3858
3859 if (elf_stack_flags (abfd))
3860 {
3861 /* We need a PT_GNU_STACK segment. */
3862 ++segs;
3863 }
3864
3865 for (s = abfd->sections; s != NULL; s = s->next)
3866 {
3867 if ((s->flags & SEC_LOAD) != 0
3868 && CONST_STRNEQ (s->name, ".note"))
3869 {
3870 /* We need a PT_NOTE segment. */
3871 ++segs;
3872 /* Try to create just one PT_NOTE segment
3873 for all adjacent loadable .note* sections.
3874 gABI requires that within a PT_NOTE segment
3875 (and also inside of each SHT_NOTE section)
3876 each note is padded to a multiple of 4 size,
3877 so we check whether the sections are correctly
3878 aligned. */
3879 if (s->alignment_power == 2)
3880 while (s->next != NULL
3881 && s->next->alignment_power == 2
3882 && (s->next->flags & SEC_LOAD) != 0
3883 && CONST_STRNEQ (s->next->name, ".note"))
3884 s = s->next;
3885 }
3886 }
3887
3888 for (s = abfd->sections; s != NULL; s = s->next)
3889 {
3890 if (s->flags & SEC_THREAD_LOCAL)
3891 {
3892 /* We need a PT_TLS segment. */
3893 ++segs;
3894 break;
3895 }
3896 }
3897
3898 /* Let the backend count up any program headers it might need. */
3899 bed = get_elf_backend_data (abfd);
3900 if (bed->elf_backend_additional_program_headers)
3901 {
3902 int a;
3903
3904 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3905 if (a == -1)
3906 abort ();
3907 segs += a;
3908 }
3909
3910 return segs * bed->s->sizeof_phdr;
3911 }
3912
3913 /* Find the segment that contains the output_section of section. */
3914
3915 Elf_Internal_Phdr *
3916 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3917 {
3918 struct elf_segment_map *m;
3919 Elf_Internal_Phdr *p;
3920
3921 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3922 m != NULL;
3923 m = m->next, p++)
3924 {
3925 int i;
3926
3927 for (i = m->count - 1; i >= 0; i--)
3928 if (m->sections[i] == section)
3929 return p;
3930 }
3931
3932 return NULL;
3933 }
3934
3935 /* Create a mapping from a set of sections to a program segment. */
3936
3937 static struct elf_segment_map *
3938 make_mapping (bfd *abfd,
3939 asection **sections,
3940 unsigned int from,
3941 unsigned int to,
3942 bfd_boolean phdr)
3943 {
3944 struct elf_segment_map *m;
3945 unsigned int i;
3946 asection **hdrpp;
3947 bfd_size_type amt;
3948
3949 amt = sizeof (struct elf_segment_map);
3950 amt += (to - from - 1) * sizeof (asection *);
3951 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3952 if (m == NULL)
3953 return NULL;
3954 m->next = NULL;
3955 m->p_type = PT_LOAD;
3956 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3957 m->sections[i - from] = *hdrpp;
3958 m->count = to - from;
3959
3960 if (from == 0 && phdr)
3961 {
3962 /* Include the headers in the first PT_LOAD segment. */
3963 m->includes_filehdr = 1;
3964 m->includes_phdrs = 1;
3965 }
3966
3967 return m;
3968 }
3969
3970 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3971 on failure. */
3972
3973 struct elf_segment_map *
3974 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3975 {
3976 struct elf_segment_map *m;
3977
3978 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3979 sizeof (struct elf_segment_map));
3980 if (m == NULL)
3981 return NULL;
3982 m->next = NULL;
3983 m->p_type = PT_DYNAMIC;
3984 m->count = 1;
3985 m->sections[0] = dynsec;
3986
3987 return m;
3988 }
3989
3990 /* Possibly add or remove segments from the segment map. */
3991
3992 static bfd_boolean
3993 elf_modify_segment_map (bfd *abfd,
3994 struct bfd_link_info *info,
3995 bfd_boolean remove_empty_load)
3996 {
3997 struct elf_segment_map **m;
3998 const struct elf_backend_data *bed;
3999
4000 /* The placement algorithm assumes that non allocated sections are
4001 not in PT_LOAD segments. We ensure this here by removing such
4002 sections from the segment map. We also remove excluded
4003 sections. Finally, any PT_LOAD segment without sections is
4004 removed. */
4005 m = &elf_seg_map (abfd);
4006 while (*m)
4007 {
4008 unsigned int i, new_count;
4009
4010 for (new_count = 0, i = 0; i < (*m)->count; i++)
4011 {
4012 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4013 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4014 || (*m)->p_type != PT_LOAD))
4015 {
4016 (*m)->sections[new_count] = (*m)->sections[i];
4017 new_count++;
4018 }
4019 }
4020 (*m)->count = new_count;
4021
4022 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
4023 *m = (*m)->next;
4024 else
4025 m = &(*m)->next;
4026 }
4027
4028 bed = get_elf_backend_data (abfd);
4029 if (bed->elf_backend_modify_segment_map != NULL)
4030 {
4031 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4032 return FALSE;
4033 }
4034
4035 return TRUE;
4036 }
4037
4038 /* Set up a mapping from BFD sections to program segments. */
4039
4040 bfd_boolean
4041 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4042 {
4043 unsigned int count;
4044 struct elf_segment_map *m;
4045 asection **sections = NULL;
4046 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4047 bfd_boolean no_user_phdrs;
4048
4049 no_user_phdrs = elf_seg_map (abfd) == NULL;
4050
4051 if (info != NULL)
4052 info->user_phdrs = !no_user_phdrs;
4053
4054 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4055 {
4056 asection *s;
4057 unsigned int i;
4058 struct elf_segment_map *mfirst;
4059 struct elf_segment_map **pm;
4060 asection *last_hdr;
4061 bfd_vma last_size;
4062 unsigned int phdr_index;
4063 bfd_vma maxpagesize;
4064 asection **hdrpp;
4065 bfd_boolean phdr_in_segment = TRUE;
4066 bfd_boolean writable;
4067 int tls_count = 0;
4068 asection *first_tls = NULL;
4069 asection *dynsec, *eh_frame_hdr;
4070 bfd_size_type amt;
4071 bfd_vma addr_mask, wrap_to = 0;
4072
4073 /* Select the allocated sections, and sort them. */
4074
4075 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4076 sizeof (asection *));
4077 if (sections == NULL)
4078 goto error_return;
4079
4080 /* Calculate top address, avoiding undefined behaviour of shift
4081 left operator when shift count is equal to size of type
4082 being shifted. */
4083 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4084 addr_mask = (addr_mask << 1) + 1;
4085
4086 i = 0;
4087 for (s = abfd->sections; s != NULL; s = s->next)
4088 {
4089 if ((s->flags & SEC_ALLOC) != 0)
4090 {
4091 sections[i] = s;
4092 ++i;
4093 /* A wrapping section potentially clashes with header. */
4094 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4095 wrap_to = (s->lma + s->size) & addr_mask;
4096 }
4097 }
4098 BFD_ASSERT (i <= bfd_count_sections (abfd));
4099 count = i;
4100
4101 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4102
4103 /* Build the mapping. */
4104
4105 mfirst = NULL;
4106 pm = &mfirst;
4107
4108 /* If we have a .interp section, then create a PT_PHDR segment for
4109 the program headers and a PT_INTERP segment for the .interp
4110 section. */
4111 s = bfd_get_section_by_name (abfd, ".interp");
4112 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4113 {
4114 amt = sizeof (struct elf_segment_map);
4115 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4116 if (m == NULL)
4117 goto error_return;
4118 m->next = NULL;
4119 m->p_type = PT_PHDR;
4120 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4121 m->p_flags = PF_R | PF_X;
4122 m->p_flags_valid = 1;
4123 m->includes_phdrs = 1;
4124
4125 *pm = m;
4126 pm = &m->next;
4127
4128 amt = sizeof (struct elf_segment_map);
4129 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4130 if (m == NULL)
4131 goto error_return;
4132 m->next = NULL;
4133 m->p_type = PT_INTERP;
4134 m->count = 1;
4135 m->sections[0] = s;
4136
4137 *pm = m;
4138 pm = &m->next;
4139 }
4140
4141 /* Look through the sections. We put sections in the same program
4142 segment when the start of the second section can be placed within
4143 a few bytes of the end of the first section. */
4144 last_hdr = NULL;
4145 last_size = 0;
4146 phdr_index = 0;
4147 maxpagesize = bed->maxpagesize;
4148 /* PR 17512: file: c8455299.
4149 Avoid divide-by-zero errors later on.
4150 FIXME: Should we abort if the maxpagesize is zero ? */
4151 if (maxpagesize == 0)
4152 maxpagesize = 1;
4153 writable = FALSE;
4154 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4155 if (dynsec != NULL
4156 && (dynsec->flags & SEC_LOAD) == 0)
4157 dynsec = NULL;
4158
4159 /* Deal with -Ttext or something similar such that the first section
4160 is not adjacent to the program headers. This is an
4161 approximation, since at this point we don't know exactly how many
4162 program headers we will need. */
4163 if (count > 0)
4164 {
4165 bfd_size_type phdr_size = elf_program_header_size (abfd);
4166
4167 if (phdr_size == (bfd_size_type) -1)
4168 phdr_size = get_program_header_size (abfd, info);
4169 phdr_size += bed->s->sizeof_ehdr;
4170 if ((abfd->flags & D_PAGED) == 0
4171 || (sections[0]->lma & addr_mask) < phdr_size
4172 || ((sections[0]->lma & addr_mask) % maxpagesize
4173 < phdr_size % maxpagesize)
4174 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4175 phdr_in_segment = FALSE;
4176 }
4177
4178 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4179 {
4180 asection *hdr;
4181 bfd_boolean new_segment;
4182
4183 hdr = *hdrpp;
4184
4185 /* See if this section and the last one will fit in the same
4186 segment. */
4187
4188 if (last_hdr == NULL)
4189 {
4190 /* If we don't have a segment yet, then we don't need a new
4191 one (we build the last one after this loop). */
4192 new_segment = FALSE;
4193 }
4194 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4195 {
4196 /* If this section has a different relation between the
4197 virtual address and the load address, then we need a new
4198 segment. */
4199 new_segment = TRUE;
4200 }
4201 else if (hdr->lma < last_hdr->lma + last_size
4202 || last_hdr->lma + last_size < last_hdr->lma)
4203 {
4204 /* If this section has a load address that makes it overlap
4205 the previous section, then we need a new segment. */
4206 new_segment = TRUE;
4207 }
4208 /* In the next test we have to be careful when last_hdr->lma is close
4209 to the end of the address space. If the aligned address wraps
4210 around to the start of the address space, then there are no more
4211 pages left in memory and it is OK to assume that the current
4212 section can be included in the current segment. */
4213 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4214 > last_hdr->lma)
4215 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4216 <= hdr->lma))
4217 {
4218 /* If putting this section in this segment would force us to
4219 skip a page in the segment, then we need a new segment. */
4220 new_segment = TRUE;
4221 }
4222 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4223 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4224 {
4225 /* We don't want to put a loadable section after a
4226 nonloadable section in the same segment.
4227 Consider .tbss sections as loadable for this purpose. */
4228 new_segment = TRUE;
4229 }
4230 else if ((abfd->flags & D_PAGED) == 0)
4231 {
4232 /* If the file is not demand paged, which means that we
4233 don't require the sections to be correctly aligned in the
4234 file, then there is no other reason for a new segment. */
4235 new_segment = FALSE;
4236 }
4237 else if (! writable
4238 && (hdr->flags & SEC_READONLY) == 0
4239 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4240 != (hdr->lma & -maxpagesize)))
4241 {
4242 /* We don't want to put a writable section in a read only
4243 segment, unless they are on the same page in memory
4244 anyhow. We already know that the last section does not
4245 bring us past the current section on the page, so the
4246 only case in which the new section is not on the same
4247 page as the previous section is when the previous section
4248 ends precisely on a page boundary. */
4249 new_segment = TRUE;
4250 }
4251 else
4252 {
4253 /* Otherwise, we can use the same segment. */
4254 new_segment = FALSE;
4255 }
4256
4257 /* Allow interested parties a chance to override our decision. */
4258 if (last_hdr != NULL
4259 && info != NULL
4260 && info->callbacks->override_segment_assignment != NULL)
4261 new_segment
4262 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4263 last_hdr,
4264 new_segment);
4265
4266 if (! new_segment)
4267 {
4268 if ((hdr->flags & SEC_READONLY) == 0)
4269 writable = TRUE;
4270 last_hdr = hdr;
4271 /* .tbss sections effectively have zero size. */
4272 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4273 != SEC_THREAD_LOCAL)
4274 last_size = hdr->size;
4275 else
4276 last_size = 0;
4277 continue;
4278 }
4279
4280 /* We need a new program segment. We must create a new program
4281 header holding all the sections from phdr_index until hdr. */
4282
4283 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4284 if (m == NULL)
4285 goto error_return;
4286
4287 *pm = m;
4288 pm = &m->next;
4289
4290 if ((hdr->flags & SEC_READONLY) == 0)
4291 writable = TRUE;
4292 else
4293 writable = FALSE;
4294
4295 last_hdr = hdr;
4296 /* .tbss sections effectively have zero size. */
4297 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4298 last_size = hdr->size;
4299 else
4300 last_size = 0;
4301 phdr_index = i;
4302 phdr_in_segment = FALSE;
4303 }
4304
4305 /* Create a final PT_LOAD program segment, but not if it's just
4306 for .tbss. */
4307 if (last_hdr != NULL
4308 && (i - phdr_index != 1
4309 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4310 != SEC_THREAD_LOCAL)))
4311 {
4312 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4313 if (m == NULL)
4314 goto error_return;
4315
4316 *pm = m;
4317 pm = &m->next;
4318 }
4319
4320 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4321 if (dynsec != NULL)
4322 {
4323 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4324 if (m == NULL)
4325 goto error_return;
4326 *pm = m;
4327 pm = &m->next;
4328 }
4329
4330 /* For each batch of consecutive loadable .note sections,
4331 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4332 because if we link together nonloadable .note sections and
4333 loadable .note sections, we will generate two .note sections
4334 in the output file. FIXME: Using names for section types is
4335 bogus anyhow. */
4336 for (s = abfd->sections; s != NULL; s = s->next)
4337 {
4338 if ((s->flags & SEC_LOAD) != 0
4339 && CONST_STRNEQ (s->name, ".note"))
4340 {
4341 asection *s2;
4342
4343 count = 1;
4344 amt = sizeof (struct elf_segment_map);
4345 if (s->alignment_power == 2)
4346 for (s2 = s; s2->next != NULL; s2 = s2->next)
4347 {
4348 if (s2->next->alignment_power == 2
4349 && (s2->next->flags & SEC_LOAD) != 0
4350 && CONST_STRNEQ (s2->next->name, ".note")
4351 && align_power (s2->lma + s2->size, 2)
4352 == s2->next->lma)
4353 count++;
4354 else
4355 break;
4356 }
4357 amt += (count - 1) * sizeof (asection *);
4358 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4359 if (m == NULL)
4360 goto error_return;
4361 m->next = NULL;
4362 m->p_type = PT_NOTE;
4363 m->count = count;
4364 while (count > 1)
4365 {
4366 m->sections[m->count - count--] = s;
4367 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4368 s = s->next;
4369 }
4370 m->sections[m->count - 1] = s;
4371 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4372 *pm = m;
4373 pm = &m->next;
4374 }
4375 if (s->flags & SEC_THREAD_LOCAL)
4376 {
4377 if (! tls_count)
4378 first_tls = s;
4379 tls_count++;
4380 }
4381 }
4382
4383 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4384 if (tls_count > 0)
4385 {
4386 amt = sizeof (struct elf_segment_map);
4387 amt += (tls_count - 1) * sizeof (asection *);
4388 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4389 if (m == NULL)
4390 goto error_return;
4391 m->next = NULL;
4392 m->p_type = PT_TLS;
4393 m->count = tls_count;
4394 /* Mandated PF_R. */
4395 m->p_flags = PF_R;
4396 m->p_flags_valid = 1;
4397 s = first_tls;
4398 for (i = 0; i < (unsigned int) tls_count; ++i)
4399 {
4400 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4401 {
4402 _bfd_error_handler
4403 (_("%B: TLS sections are not adjacent:"), abfd);
4404 s = first_tls;
4405 i = 0;
4406 while (i < (unsigned int) tls_count)
4407 {
4408 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4409 {
4410 _bfd_error_handler (_(" TLS: %A"), s);
4411 i++;
4412 }
4413 else
4414 _bfd_error_handler (_(" non-TLS: %A"), s);
4415 s = s->next;
4416 }
4417 bfd_set_error (bfd_error_bad_value);
4418 goto error_return;
4419 }
4420 m->sections[i] = s;
4421 s = s->next;
4422 }
4423
4424 *pm = m;
4425 pm = &m->next;
4426 }
4427
4428 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4429 segment. */
4430 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4431 if (eh_frame_hdr != NULL
4432 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4433 {
4434 amt = sizeof (struct elf_segment_map);
4435 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4436 if (m == NULL)
4437 goto error_return;
4438 m->next = NULL;
4439 m->p_type = PT_GNU_EH_FRAME;
4440 m->count = 1;
4441 m->sections[0] = eh_frame_hdr->output_section;
4442
4443 *pm = m;
4444 pm = &m->next;
4445 }
4446
4447 if (elf_stack_flags (abfd))
4448 {
4449 amt = sizeof (struct elf_segment_map);
4450 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4451 if (m == NULL)
4452 goto error_return;
4453 m->next = NULL;
4454 m->p_type = PT_GNU_STACK;
4455 m->p_flags = elf_stack_flags (abfd);
4456 m->p_align = bed->stack_align;
4457 m->p_flags_valid = 1;
4458 m->p_align_valid = m->p_align != 0;
4459 if (info->stacksize > 0)
4460 {
4461 m->p_size = info->stacksize;
4462 m->p_size_valid = 1;
4463 }
4464
4465 *pm = m;
4466 pm = &m->next;
4467 }
4468
4469 if (info != NULL && info->relro)
4470 {
4471 for (m = mfirst; m != NULL; m = m->next)
4472 {
4473 if (m->p_type == PT_LOAD
4474 && m->count != 0
4475 && m->sections[0]->vma >= info->relro_start
4476 && m->sections[0]->vma < info->relro_end)
4477 {
4478 i = m->count;
4479 while (--i != (unsigned) -1)
4480 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4481 == (SEC_LOAD | SEC_HAS_CONTENTS))
4482 break;
4483
4484 if (i != (unsigned) -1)
4485 break;
4486 }
4487 }
4488
4489 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4490 if (m != NULL)
4491 {
4492 amt = sizeof (struct elf_segment_map);
4493 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4494 if (m == NULL)
4495 goto error_return;
4496 m->next = NULL;
4497 m->p_type = PT_GNU_RELRO;
4498 m->p_flags = PF_R;
4499 m->p_flags_valid = 1;
4500
4501 *pm = m;
4502 pm = &m->next;
4503 }
4504 }
4505
4506 free (sections);
4507 elf_seg_map (abfd) = mfirst;
4508 }
4509
4510 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4511 return FALSE;
4512
4513 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4514 ++count;
4515 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4516
4517 return TRUE;
4518
4519 error_return:
4520 if (sections != NULL)
4521 free (sections);
4522 return FALSE;
4523 }
4524
4525 /* Sort sections by address. */
4526
4527 static int
4528 elf_sort_sections (const void *arg1, const void *arg2)
4529 {
4530 const asection *sec1 = *(const asection **) arg1;
4531 const asection *sec2 = *(const asection **) arg2;
4532 bfd_size_type size1, size2;
4533
4534 /* Sort by LMA first, since this is the address used to
4535 place the section into a segment. */
4536 if (sec1->lma < sec2->lma)
4537 return -1;
4538 else if (sec1->lma > sec2->lma)
4539 return 1;
4540
4541 /* Then sort by VMA. Normally the LMA and the VMA will be
4542 the same, and this will do nothing. */
4543 if (sec1->vma < sec2->vma)
4544 return -1;
4545 else if (sec1->vma > sec2->vma)
4546 return 1;
4547
4548 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4549
4550 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4551
4552 if (TOEND (sec1))
4553 {
4554 if (TOEND (sec2))
4555 {
4556 /* If the indicies are the same, do not return 0
4557 here, but continue to try the next comparison. */
4558 if (sec1->target_index - sec2->target_index != 0)
4559 return sec1->target_index - sec2->target_index;
4560 }
4561 else
4562 return 1;
4563 }
4564 else if (TOEND (sec2))
4565 return -1;
4566
4567 #undef TOEND
4568
4569 /* Sort by size, to put zero sized sections
4570 before others at the same address. */
4571
4572 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4573 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4574
4575 if (size1 < size2)
4576 return -1;
4577 if (size1 > size2)
4578 return 1;
4579
4580 return sec1->target_index - sec2->target_index;
4581 }
4582
4583 /* Ian Lance Taylor writes:
4584
4585 We shouldn't be using % with a negative signed number. That's just
4586 not good. We have to make sure either that the number is not
4587 negative, or that the number has an unsigned type. When the types
4588 are all the same size they wind up as unsigned. When file_ptr is a
4589 larger signed type, the arithmetic winds up as signed long long,
4590 which is wrong.
4591
4592 What we're trying to say here is something like ``increase OFF by
4593 the least amount that will cause it to be equal to the VMA modulo
4594 the page size.'' */
4595 /* In other words, something like:
4596
4597 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4598 off_offset = off % bed->maxpagesize;
4599 if (vma_offset < off_offset)
4600 adjustment = vma_offset + bed->maxpagesize - off_offset;
4601 else
4602 adjustment = vma_offset - off_offset;
4603
4604 which can can be collapsed into the expression below. */
4605
4606 static file_ptr
4607 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4608 {
4609 /* PR binutils/16199: Handle an alignment of zero. */
4610 if (maxpagesize == 0)
4611 maxpagesize = 1;
4612 return ((vma - off) % maxpagesize);
4613 }
4614
4615 static void
4616 print_segment_map (const struct elf_segment_map *m)
4617 {
4618 unsigned int j;
4619 const char *pt = get_segment_type (m->p_type);
4620 char buf[32];
4621
4622 if (pt == NULL)
4623 {
4624 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4625 sprintf (buf, "LOPROC+%7.7x",
4626 (unsigned int) (m->p_type - PT_LOPROC));
4627 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4628 sprintf (buf, "LOOS+%7.7x",
4629 (unsigned int) (m->p_type - PT_LOOS));
4630 else
4631 snprintf (buf, sizeof (buf), "%8.8x",
4632 (unsigned int) m->p_type);
4633 pt = buf;
4634 }
4635 fflush (stdout);
4636 fprintf (stderr, "%s:", pt);
4637 for (j = 0; j < m->count; j++)
4638 fprintf (stderr, " %s", m->sections [j]->name);
4639 putc ('\n',stderr);
4640 fflush (stderr);
4641 }
4642
4643 static bfd_boolean
4644 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4645 {
4646 void *buf;
4647 bfd_boolean ret;
4648
4649 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4650 return FALSE;
4651 buf = bfd_zmalloc (len);
4652 if (buf == NULL)
4653 return FALSE;
4654 ret = bfd_bwrite (buf, len, abfd) == len;
4655 free (buf);
4656 return ret;
4657 }
4658
4659 /* Assign file positions to the sections based on the mapping from
4660 sections to segments. This function also sets up some fields in
4661 the file header. */
4662
4663 static bfd_boolean
4664 assign_file_positions_for_load_sections (bfd *abfd,
4665 struct bfd_link_info *link_info)
4666 {
4667 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4668 struct elf_segment_map *m;
4669 Elf_Internal_Phdr *phdrs;
4670 Elf_Internal_Phdr *p;
4671 file_ptr off;
4672 bfd_size_type maxpagesize;
4673 unsigned int alloc;
4674 unsigned int i, j;
4675 bfd_vma header_pad = 0;
4676
4677 if (link_info == NULL
4678 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4679 return FALSE;
4680
4681 alloc = 0;
4682 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4683 {
4684 ++alloc;
4685 if (m->header_size)
4686 header_pad = m->header_size;
4687 }
4688
4689 if (alloc)
4690 {
4691 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4692 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4693 }
4694 else
4695 {
4696 /* PR binutils/12467. */
4697 elf_elfheader (abfd)->e_phoff = 0;
4698 elf_elfheader (abfd)->e_phentsize = 0;
4699 }
4700
4701 elf_elfheader (abfd)->e_phnum = alloc;
4702
4703 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4704 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4705 else
4706 BFD_ASSERT (elf_program_header_size (abfd)
4707 >= alloc * bed->s->sizeof_phdr);
4708
4709 if (alloc == 0)
4710 {
4711 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4712 return TRUE;
4713 }
4714
4715 /* We're writing the size in elf_program_header_size (abfd),
4716 see assign_file_positions_except_relocs, so make sure we have
4717 that amount allocated, with trailing space cleared.
4718 The variable alloc contains the computed need, while
4719 elf_program_header_size (abfd) contains the size used for the
4720 layout.
4721 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4722 where the layout is forced to according to a larger size in the
4723 last iterations for the testcase ld-elf/header. */
4724 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4725 == 0);
4726 phdrs = (Elf_Internal_Phdr *)
4727 bfd_zalloc2 (abfd,
4728 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4729 sizeof (Elf_Internal_Phdr));
4730 elf_tdata (abfd)->phdr = phdrs;
4731 if (phdrs == NULL)
4732 return FALSE;
4733
4734 maxpagesize = 1;
4735 if ((abfd->flags & D_PAGED) != 0)
4736 maxpagesize = bed->maxpagesize;
4737
4738 off = bed->s->sizeof_ehdr;
4739 off += alloc * bed->s->sizeof_phdr;
4740 if (header_pad < (bfd_vma) off)
4741 header_pad = 0;
4742 else
4743 header_pad -= off;
4744 off += header_pad;
4745
4746 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4747 m != NULL;
4748 m = m->next, p++, j++)
4749 {
4750 asection **secpp;
4751 bfd_vma off_adjust;
4752 bfd_boolean no_contents;
4753
4754 /* If elf_segment_map is not from map_sections_to_segments, the
4755 sections may not be correctly ordered. NOTE: sorting should
4756 not be done to the PT_NOTE section of a corefile, which may
4757 contain several pseudo-sections artificially created by bfd.
4758 Sorting these pseudo-sections breaks things badly. */
4759 if (m->count > 1
4760 && !(elf_elfheader (abfd)->e_type == ET_CORE
4761 && m->p_type == PT_NOTE))
4762 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4763 elf_sort_sections);
4764
4765 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4766 number of sections with contents contributing to both p_filesz
4767 and p_memsz, followed by a number of sections with no contents
4768 that just contribute to p_memsz. In this loop, OFF tracks next
4769 available file offset for PT_LOAD and PT_NOTE segments. */
4770 p->p_type = m->p_type;
4771 p->p_flags = m->p_flags;
4772
4773 if (m->count == 0)
4774 p->p_vaddr = 0;
4775 else
4776 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4777
4778 if (m->p_paddr_valid)
4779 p->p_paddr = m->p_paddr;
4780 else if (m->count == 0)
4781 p->p_paddr = 0;
4782 else
4783 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4784
4785 if (p->p_type == PT_LOAD
4786 && (abfd->flags & D_PAGED) != 0)
4787 {
4788 /* p_align in demand paged PT_LOAD segments effectively stores
4789 the maximum page size. When copying an executable with
4790 objcopy, we set m->p_align from the input file. Use this
4791 value for maxpagesize rather than bed->maxpagesize, which
4792 may be different. Note that we use maxpagesize for PT_TLS
4793 segment alignment later in this function, so we are relying
4794 on at least one PT_LOAD segment appearing before a PT_TLS
4795 segment. */
4796 if (m->p_align_valid)
4797 maxpagesize = m->p_align;
4798
4799 p->p_align = maxpagesize;
4800 }
4801 else if (m->p_align_valid)
4802 p->p_align = m->p_align;
4803 else if (m->count == 0)
4804 p->p_align = 1 << bed->s->log_file_align;
4805 else
4806 p->p_align = 0;
4807
4808 no_contents = FALSE;
4809 off_adjust = 0;
4810 if (p->p_type == PT_LOAD
4811 && m->count > 0)
4812 {
4813 bfd_size_type align;
4814 unsigned int align_power = 0;
4815
4816 if (m->p_align_valid)
4817 align = p->p_align;
4818 else
4819 {
4820 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4821 {
4822 unsigned int secalign;
4823
4824 secalign = bfd_get_section_alignment (abfd, *secpp);
4825 if (secalign > align_power)
4826 align_power = secalign;
4827 }
4828 align = (bfd_size_type) 1 << align_power;
4829 if (align < maxpagesize)
4830 align = maxpagesize;
4831 }
4832
4833 for (i = 0; i < m->count; i++)
4834 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4835 /* If we aren't making room for this section, then
4836 it must be SHT_NOBITS regardless of what we've
4837 set via struct bfd_elf_special_section. */
4838 elf_section_type (m->sections[i]) = SHT_NOBITS;
4839
4840 /* Find out whether this segment contains any loadable
4841 sections. */
4842 no_contents = TRUE;
4843 for (i = 0; i < m->count; i++)
4844 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4845 {
4846 no_contents = FALSE;
4847 break;
4848 }
4849
4850 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4851 off += off_adjust;
4852 if (no_contents)
4853 {
4854 /* We shouldn't need to align the segment on disk since
4855 the segment doesn't need file space, but the gABI
4856 arguably requires the alignment and glibc ld.so
4857 checks it. So to comply with the alignment
4858 requirement but not waste file space, we adjust
4859 p_offset for just this segment. (OFF_ADJUST is
4860 subtracted from OFF later.) This may put p_offset
4861 past the end of file, but that shouldn't matter. */
4862 }
4863 else
4864 off_adjust = 0;
4865 }
4866 /* Make sure the .dynamic section is the first section in the
4867 PT_DYNAMIC segment. */
4868 else if (p->p_type == PT_DYNAMIC
4869 && m->count > 1
4870 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4871 {
4872 _bfd_error_handler
4873 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4874 abfd);
4875 bfd_set_error (bfd_error_bad_value);
4876 return FALSE;
4877 }
4878 /* Set the note section type to SHT_NOTE. */
4879 else if (p->p_type == PT_NOTE)
4880 for (i = 0; i < m->count; i++)
4881 elf_section_type (m->sections[i]) = SHT_NOTE;
4882
4883 p->p_offset = 0;
4884 p->p_filesz = 0;
4885 p->p_memsz = 0;
4886
4887 if (m->includes_filehdr)
4888 {
4889 if (!m->p_flags_valid)
4890 p->p_flags |= PF_R;
4891 p->p_filesz = bed->s->sizeof_ehdr;
4892 p->p_memsz = bed->s->sizeof_ehdr;
4893 if (m->count > 0)
4894 {
4895 if (p->p_vaddr < (bfd_vma) off)
4896 {
4897 (*_bfd_error_handler)
4898 (_("%B: Not enough room for program headers, try linking with -N"),
4899 abfd);
4900 bfd_set_error (bfd_error_bad_value);
4901 return FALSE;
4902 }
4903
4904 p->p_vaddr -= off;
4905 if (!m->p_paddr_valid)
4906 p->p_paddr -= off;
4907 }
4908 }
4909
4910 if (m->includes_phdrs)
4911 {
4912 if (!m->p_flags_valid)
4913 p->p_flags |= PF_R;
4914
4915 if (!m->includes_filehdr)
4916 {
4917 p->p_offset = bed->s->sizeof_ehdr;
4918
4919 if (m->count > 0)
4920 {
4921 p->p_vaddr -= off - p->p_offset;
4922 if (!m->p_paddr_valid)
4923 p->p_paddr -= off - p->p_offset;
4924 }
4925 }
4926
4927 p->p_filesz += alloc * bed->s->sizeof_phdr;
4928 p->p_memsz += alloc * bed->s->sizeof_phdr;
4929 if (m->count)
4930 {
4931 p->p_filesz += header_pad;
4932 p->p_memsz += header_pad;
4933 }
4934 }
4935
4936 if (p->p_type == PT_LOAD
4937 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4938 {
4939 if (!m->includes_filehdr && !m->includes_phdrs)
4940 p->p_offset = off;
4941 else
4942 {
4943 file_ptr adjust;
4944
4945 adjust = off - (p->p_offset + p->p_filesz);
4946 if (!no_contents)
4947 p->p_filesz += adjust;
4948 p->p_memsz += adjust;
4949 }
4950 }
4951
4952 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4953 maps. Set filepos for sections in PT_LOAD segments, and in
4954 core files, for sections in PT_NOTE segments.
4955 assign_file_positions_for_non_load_sections will set filepos
4956 for other sections and update p_filesz for other segments. */
4957 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4958 {
4959 asection *sec;
4960 bfd_size_type align;
4961 Elf_Internal_Shdr *this_hdr;
4962
4963 sec = *secpp;
4964 this_hdr = &elf_section_data (sec)->this_hdr;
4965 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4966
4967 if ((p->p_type == PT_LOAD
4968 || p->p_type == PT_TLS)
4969 && (this_hdr->sh_type != SHT_NOBITS
4970 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4971 && ((this_hdr->sh_flags & SHF_TLS) == 0
4972 || p->p_type == PT_TLS))))
4973 {
4974 bfd_vma p_start = p->p_paddr;
4975 bfd_vma p_end = p_start + p->p_memsz;
4976 bfd_vma s_start = sec->lma;
4977 bfd_vma adjust = s_start - p_end;
4978
4979 if (adjust != 0
4980 && (s_start < p_end
4981 || p_end < p_start))
4982 {
4983 (*_bfd_error_handler)
4984 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4985 (unsigned long) s_start, (unsigned long) p_end);
4986 adjust = 0;
4987 sec->lma = p_end;
4988 }
4989 p->p_memsz += adjust;
4990
4991 if (this_hdr->sh_type != SHT_NOBITS)
4992 {
4993 if (p->p_filesz + adjust < p->p_memsz)
4994 {
4995 /* We have a PROGBITS section following NOBITS ones.
4996 Allocate file space for the NOBITS section(s) and
4997 zero it. */
4998 adjust = p->p_memsz - p->p_filesz;
4999 if (!write_zeros (abfd, off, adjust))
5000 return FALSE;
5001 }
5002 off += adjust;
5003 p->p_filesz += adjust;
5004 }
5005 }
5006
5007 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5008 {
5009 /* The section at i == 0 is the one that actually contains
5010 everything. */
5011 if (i == 0)
5012 {
5013 this_hdr->sh_offset = sec->filepos = off;
5014 off += this_hdr->sh_size;
5015 p->p_filesz = this_hdr->sh_size;
5016 p->p_memsz = 0;
5017 p->p_align = 1;
5018 }
5019 else
5020 {
5021 /* The rest are fake sections that shouldn't be written. */
5022 sec->filepos = 0;
5023 sec->size = 0;
5024 sec->flags = 0;
5025 continue;
5026 }
5027 }
5028 else
5029 {
5030 if (p->p_type == PT_LOAD)
5031 {
5032 this_hdr->sh_offset = sec->filepos = off;
5033 if (this_hdr->sh_type != SHT_NOBITS)
5034 off += this_hdr->sh_size;
5035 }
5036 else if (this_hdr->sh_type == SHT_NOBITS
5037 && (this_hdr->sh_flags & SHF_TLS) != 0
5038 && this_hdr->sh_offset == 0)
5039 {
5040 /* This is a .tbss section that didn't get a PT_LOAD.
5041 (See _bfd_elf_map_sections_to_segments "Create a
5042 final PT_LOAD".) Set sh_offset to the value it
5043 would have if we had created a zero p_filesz and
5044 p_memsz PT_LOAD header for the section. This
5045 also makes the PT_TLS header have the same
5046 p_offset value. */
5047 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5048 off, align);
5049 this_hdr->sh_offset = sec->filepos = off + adjust;
5050 }
5051
5052 if (this_hdr->sh_type != SHT_NOBITS)
5053 {
5054 p->p_filesz += this_hdr->sh_size;
5055 /* A load section without SHF_ALLOC is something like
5056 a note section in a PT_NOTE segment. These take
5057 file space but are not loaded into memory. */
5058 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5059 p->p_memsz += this_hdr->sh_size;
5060 }
5061 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5062 {
5063 if (p->p_type == PT_TLS)
5064 p->p_memsz += this_hdr->sh_size;
5065
5066 /* .tbss is special. It doesn't contribute to p_memsz of
5067 normal segments. */
5068 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5069 p->p_memsz += this_hdr->sh_size;
5070 }
5071
5072 if (align > p->p_align
5073 && !m->p_align_valid
5074 && (p->p_type != PT_LOAD
5075 || (abfd->flags & D_PAGED) == 0))
5076 p->p_align = align;
5077 }
5078
5079 if (!m->p_flags_valid)
5080 {
5081 p->p_flags |= PF_R;
5082 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5083 p->p_flags |= PF_X;
5084 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5085 p->p_flags |= PF_W;
5086 }
5087 }
5088
5089 off -= off_adjust;
5090
5091 /* Check that all sections are in a PT_LOAD segment.
5092 Don't check funky gdb generated core files. */
5093 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5094 {
5095 bfd_boolean check_vma = TRUE;
5096
5097 for (i = 1; i < m->count; i++)
5098 if (m->sections[i]->vma == m->sections[i - 1]->vma
5099 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5100 ->this_hdr), p) != 0
5101 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5102 ->this_hdr), p) != 0)
5103 {
5104 /* Looks like we have overlays packed into the segment. */
5105 check_vma = FALSE;
5106 break;
5107 }
5108
5109 for (i = 0; i < m->count; i++)
5110 {
5111 Elf_Internal_Shdr *this_hdr;
5112 asection *sec;
5113
5114 sec = m->sections[i];
5115 this_hdr = &(elf_section_data(sec)->this_hdr);
5116 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5117 && !ELF_TBSS_SPECIAL (this_hdr, p))
5118 {
5119 (*_bfd_error_handler)
5120 (_("%B: section `%A' can't be allocated in segment %d"),
5121 abfd, sec, j);
5122 print_segment_map (m);
5123 }
5124 }
5125 }
5126 }
5127
5128 elf_next_file_pos (abfd) = off;
5129 return TRUE;
5130 }
5131
5132 /* Assign file positions for the other sections. */
5133
5134 static bfd_boolean
5135 assign_file_positions_for_non_load_sections (bfd *abfd,
5136 struct bfd_link_info *link_info)
5137 {
5138 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5139 Elf_Internal_Shdr **i_shdrpp;
5140 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5141 Elf_Internal_Phdr *phdrs;
5142 Elf_Internal_Phdr *p;
5143 struct elf_segment_map *m;
5144 struct elf_segment_map *hdrs_segment;
5145 bfd_vma filehdr_vaddr, filehdr_paddr;
5146 bfd_vma phdrs_vaddr, phdrs_paddr;
5147 file_ptr off;
5148 unsigned int count;
5149
5150 i_shdrpp = elf_elfsections (abfd);
5151 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5152 off = elf_next_file_pos (abfd);
5153 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5154 {
5155 Elf_Internal_Shdr *hdr;
5156
5157 hdr = *hdrpp;
5158 if (hdr->bfd_section != NULL
5159 && (hdr->bfd_section->filepos != 0
5160 || (hdr->sh_type == SHT_NOBITS
5161 && hdr->contents == NULL)))
5162 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5163 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5164 {
5165 if (hdr->sh_size != 0)
5166 (*_bfd_error_handler)
5167 (_("%B: warning: allocated section `%s' not in segment"),
5168 abfd,
5169 (hdr->bfd_section == NULL
5170 ? "*unknown*"
5171 : hdr->bfd_section->name));
5172 /* We don't need to page align empty sections. */
5173 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5174 off += vma_page_aligned_bias (hdr->sh_addr, off,
5175 bed->maxpagesize);
5176 else
5177 off += vma_page_aligned_bias (hdr->sh_addr, off,
5178 hdr->sh_addralign);
5179 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5180 FALSE);
5181 }
5182 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5183 && hdr->bfd_section == NULL)
5184 || (hdr->bfd_section != NULL
5185 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5186 /* Compress DWARF debug sections. */
5187 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5188 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
5189 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5190 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5191 hdr->sh_offset = -1;
5192 else
5193 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5194 }
5195
5196 /* Now that we have set the section file positions, we can set up
5197 the file positions for the non PT_LOAD segments. */
5198 count = 0;
5199 filehdr_vaddr = 0;
5200 filehdr_paddr = 0;
5201 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5202 phdrs_paddr = 0;
5203 hdrs_segment = NULL;
5204 phdrs = elf_tdata (abfd)->phdr;
5205 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5206 {
5207 ++count;
5208 if (p->p_type != PT_LOAD)
5209 continue;
5210
5211 if (m->includes_filehdr)
5212 {
5213 filehdr_vaddr = p->p_vaddr;
5214 filehdr_paddr = p->p_paddr;
5215 }
5216 if (m->includes_phdrs)
5217 {
5218 phdrs_vaddr = p->p_vaddr;
5219 phdrs_paddr = p->p_paddr;
5220 if (m->includes_filehdr)
5221 {
5222 hdrs_segment = m;
5223 phdrs_vaddr += bed->s->sizeof_ehdr;
5224 phdrs_paddr += bed->s->sizeof_ehdr;
5225 }
5226 }
5227 }
5228
5229 if (hdrs_segment != NULL && link_info != NULL)
5230 {
5231 /* There is a segment that contains both the file headers and the
5232 program headers, so provide a symbol __ehdr_start pointing there.
5233 A program can use this to examine itself robustly. */
5234
5235 struct elf_link_hash_entry *hash
5236 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5237 FALSE, FALSE, TRUE);
5238 /* If the symbol was referenced and not defined, define it. */
5239 if (hash != NULL
5240 && (hash->root.type == bfd_link_hash_new
5241 || hash->root.type == bfd_link_hash_undefined
5242 || hash->root.type == bfd_link_hash_undefweak
5243 || hash->root.type == bfd_link_hash_common))
5244 {
5245 asection *s = NULL;
5246 if (hdrs_segment->count != 0)
5247 /* The segment contains sections, so use the first one. */
5248 s = hdrs_segment->sections[0];
5249 else
5250 /* Use the first (i.e. lowest-addressed) section in any segment. */
5251 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5252 if (m->count != 0)
5253 {
5254 s = m->sections[0];
5255 break;
5256 }
5257
5258 if (s != NULL)
5259 {
5260 hash->root.u.def.value = filehdr_vaddr - s->vma;
5261 hash->root.u.def.section = s;
5262 }
5263 else
5264 {
5265 hash->root.u.def.value = filehdr_vaddr;
5266 hash->root.u.def.section = bfd_abs_section_ptr;
5267 }
5268
5269 hash->root.type = bfd_link_hash_defined;
5270 hash->def_regular = 1;
5271 hash->non_elf = 0;
5272 }
5273 }
5274
5275 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5276 {
5277 if (p->p_type == PT_GNU_RELRO)
5278 {
5279 const Elf_Internal_Phdr *lp;
5280 struct elf_segment_map *lm;
5281
5282 if (link_info != NULL)
5283 {
5284 /* During linking the range of the RELRO segment is passed
5285 in link_info. */
5286 for (lm = elf_seg_map (abfd), lp = phdrs;
5287 lm != NULL;
5288 lm = lm->next, lp++)
5289 {
5290 if (lp->p_type == PT_LOAD
5291 && lp->p_vaddr < link_info->relro_end
5292 && lm->count != 0
5293 && lm->sections[0]->vma >= link_info->relro_start)
5294 break;
5295 }
5296
5297 BFD_ASSERT (lm != NULL);
5298 }
5299 else
5300 {
5301 /* Otherwise we are copying an executable or shared
5302 library, but we need to use the same linker logic. */
5303 for (lp = phdrs; lp < phdrs + count; ++lp)
5304 {
5305 if (lp->p_type == PT_LOAD
5306 && lp->p_paddr == p->p_paddr)
5307 break;
5308 }
5309 }
5310
5311 if (lp < phdrs + count)
5312 {
5313 p->p_vaddr = lp->p_vaddr;
5314 p->p_paddr = lp->p_paddr;
5315 p->p_offset = lp->p_offset;
5316 if (link_info != NULL)
5317 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5318 else if (m->p_size_valid)
5319 p->p_filesz = m->p_size;
5320 else
5321 abort ();
5322 p->p_memsz = p->p_filesz;
5323 /* Preserve the alignment and flags if they are valid. The
5324 gold linker generates RW/4 for the PT_GNU_RELRO section.
5325 It is better for objcopy/strip to honor these attributes
5326 otherwise gdb will choke when using separate debug files.
5327 */
5328 if (!m->p_align_valid)
5329 p->p_align = 1;
5330 if (!m->p_flags_valid)
5331 p->p_flags = (lp->p_flags & ~PF_W);
5332 }
5333 else
5334 {
5335 memset (p, 0, sizeof *p);
5336 p->p_type = PT_NULL;
5337 }
5338 }
5339 else if (p->p_type == PT_GNU_STACK)
5340 {
5341 if (m->p_size_valid)
5342 p->p_memsz = m->p_size;
5343 }
5344 else if (m->count != 0)
5345 {
5346 unsigned int i;
5347 if (p->p_type != PT_LOAD
5348 && (p->p_type != PT_NOTE
5349 || bfd_get_format (abfd) != bfd_core))
5350 {
5351 if (m->includes_filehdr || m->includes_phdrs)
5352 {
5353 /* PR 17512: file: 2195325e. */
5354 (*_bfd_error_handler)
5355 (_("%B: warning: non-load segment includes file header and/or program header"),
5356 abfd);
5357 return FALSE;
5358 }
5359
5360 p->p_filesz = 0;
5361 p->p_offset = m->sections[0]->filepos;
5362 for (i = m->count; i-- != 0;)
5363 {
5364 asection *sect = m->sections[i];
5365 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5366 if (hdr->sh_type != SHT_NOBITS)
5367 {
5368 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5369 + hdr->sh_size);
5370 break;
5371 }
5372 }
5373 }
5374 }
5375 else if (m->includes_filehdr)
5376 {
5377 p->p_vaddr = filehdr_vaddr;
5378 if (! m->p_paddr_valid)
5379 p->p_paddr = filehdr_paddr;
5380 }
5381 else if (m->includes_phdrs)
5382 {
5383 p->p_vaddr = phdrs_vaddr;
5384 if (! m->p_paddr_valid)
5385 p->p_paddr = phdrs_paddr;
5386 }
5387 }
5388
5389 elf_next_file_pos (abfd) = off;
5390
5391 return TRUE;
5392 }
5393
5394 /* Work out the file positions of all the sections. This is called by
5395 _bfd_elf_compute_section_file_positions. All the section sizes and
5396 VMAs must be known before this is called.
5397
5398 Reloc sections come in two flavours: Those processed specially as
5399 "side-channel" data attached to a section to which they apply, and
5400 those that bfd doesn't process as relocations. The latter sort are
5401 stored in a normal bfd section by bfd_section_from_shdr. We don't
5402 consider the former sort here, unless they form part of the loadable
5403 image. Reloc sections not assigned here will be handled later by
5404 assign_file_positions_for_relocs.
5405
5406 We also don't set the positions of the .symtab and .strtab here. */
5407
5408 static bfd_boolean
5409 assign_file_positions_except_relocs (bfd *abfd,
5410 struct bfd_link_info *link_info)
5411 {
5412 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5413 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5414 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5415
5416 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5417 && bfd_get_format (abfd) != bfd_core)
5418 {
5419 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5420 unsigned int num_sec = elf_numsections (abfd);
5421 Elf_Internal_Shdr **hdrpp;
5422 unsigned int i;
5423 file_ptr off;
5424
5425 /* Start after the ELF header. */
5426 off = i_ehdrp->e_ehsize;
5427
5428 /* We are not creating an executable, which means that we are
5429 not creating a program header, and that the actual order of
5430 the sections in the file is unimportant. */
5431 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5432 {
5433 Elf_Internal_Shdr *hdr;
5434
5435 hdr = *hdrpp;
5436 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5437 && hdr->bfd_section == NULL)
5438 || (hdr->bfd_section != NULL
5439 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5440 /* Compress DWARF debug sections. */
5441 || i == elf_onesymtab (abfd)
5442 || i == elf_symtab_shndx (abfd)
5443 || i == elf_strtab_sec (abfd)
5444 || i == elf_shstrtab_sec (abfd))
5445 {
5446 hdr->sh_offset = -1;
5447 }
5448 else
5449 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5450 }
5451
5452 elf_next_file_pos (abfd) = off;
5453 }
5454 else
5455 {
5456 unsigned int alloc;
5457
5458 /* Assign file positions for the loaded sections based on the
5459 assignment of sections to segments. */
5460 if (!assign_file_positions_for_load_sections (abfd, link_info))
5461 return FALSE;
5462
5463 /* And for non-load sections. */
5464 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5465 return FALSE;
5466
5467 if (bed->elf_backend_modify_program_headers != NULL)
5468 {
5469 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5470 return FALSE;
5471 }
5472
5473 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5474 if (link_info != NULL
5475 && link_info->executable
5476 && link_info->shared)
5477 {
5478 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5479 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5480 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5481
5482 /* Find the lowest p_vaddr in PT_LOAD segments. */
5483 bfd_vma p_vaddr = (bfd_vma) -1;
5484 for (; segment < end_segment; segment++)
5485 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5486 p_vaddr = segment->p_vaddr;
5487
5488 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5489 segments is non-zero. */
5490 if (p_vaddr)
5491 i_ehdrp->e_type = ET_EXEC;
5492 }
5493
5494 /* Write out the program headers. */
5495 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5496 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5497 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5498 return FALSE;
5499 }
5500
5501 return TRUE;
5502 }
5503
5504 static bfd_boolean
5505 prep_headers (bfd *abfd)
5506 {
5507 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5508 struct elf_strtab_hash *shstrtab;
5509 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5510
5511 i_ehdrp = elf_elfheader (abfd);
5512
5513 shstrtab = _bfd_elf_strtab_init ();
5514 if (shstrtab == NULL)
5515 return FALSE;
5516
5517 elf_shstrtab (abfd) = shstrtab;
5518
5519 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5520 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5521 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5522 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5523
5524 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5525 i_ehdrp->e_ident[EI_DATA] =
5526 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5527 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5528
5529 if ((abfd->flags & DYNAMIC) != 0)
5530 i_ehdrp->e_type = ET_DYN;
5531 else if ((abfd->flags & EXEC_P) != 0)
5532 i_ehdrp->e_type = ET_EXEC;
5533 else if (bfd_get_format (abfd) == bfd_core)
5534 i_ehdrp->e_type = ET_CORE;
5535 else
5536 i_ehdrp->e_type = ET_REL;
5537
5538 switch (bfd_get_arch (abfd))
5539 {
5540 case bfd_arch_unknown:
5541 i_ehdrp->e_machine = EM_NONE;
5542 break;
5543
5544 /* There used to be a long list of cases here, each one setting
5545 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5546 in the corresponding bfd definition. To avoid duplication,
5547 the switch was removed. Machines that need special handling
5548 can generally do it in elf_backend_final_write_processing(),
5549 unless they need the information earlier than the final write.
5550 Such need can generally be supplied by replacing the tests for
5551 e_machine with the conditions used to determine it. */
5552 default:
5553 i_ehdrp->e_machine = bed->elf_machine_code;
5554 }
5555
5556 i_ehdrp->e_version = bed->s->ev_current;
5557 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5558
5559 /* No program header, for now. */
5560 i_ehdrp->e_phoff = 0;
5561 i_ehdrp->e_phentsize = 0;
5562 i_ehdrp->e_phnum = 0;
5563
5564 /* Each bfd section is section header entry. */
5565 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5566 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5567
5568 /* If we're building an executable, we'll need a program header table. */
5569 if (abfd->flags & EXEC_P)
5570 /* It all happens later. */
5571 ;
5572 else
5573 {
5574 i_ehdrp->e_phentsize = 0;
5575 i_ehdrp->e_phoff = 0;
5576 }
5577
5578 elf_tdata (abfd)->symtab_hdr.sh_name =
5579 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5580 elf_tdata (abfd)->strtab_hdr.sh_name =
5581 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5582 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5583 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5584 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5585 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
5586 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5587 return FALSE;
5588
5589 return TRUE;
5590 }
5591
5592 /* Assign file positions for all the reloc sections which are not part
5593 of the loadable file image, and the file position of section headers. */
5594
5595 static bfd_boolean
5596 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
5597 {
5598 file_ptr off;
5599 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
5600 Elf_Internal_Shdr *shdrp;
5601 Elf_Internal_Ehdr *i_ehdrp;
5602 const struct elf_backend_data *bed;
5603
5604 off = elf_next_file_pos (abfd);
5605
5606 shdrpp = elf_elfsections (abfd);
5607 end_shdrpp = shdrpp + elf_numsections (abfd);
5608 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
5609 {
5610 shdrp = *shdrpp;
5611 if (shdrp->sh_offset == -1)
5612 {
5613 asection *sec = shdrp->bfd_section;
5614 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
5615 || shdrp->sh_type == SHT_RELA);
5616 if (is_rel
5617 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
5618 {
5619 if (!is_rel)
5620 {
5621 const char *name = sec->name;
5622 struct bfd_elf_section_data *d;
5623
5624 /* Compress DWARF debug sections. */
5625 if (!bfd_compress_section (abfd, sec,
5626 shdrp->contents))
5627 return FALSE;
5628
5629 if (sec->compress_status == COMPRESS_SECTION_DONE
5630 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
5631 {
5632 /* If section is compressed with zlib-gnu, convert
5633 section name from .debug_* to .zdebug_*. */
5634 char *new_name
5635 = convert_debug_to_zdebug (abfd, name);
5636 if (new_name == NULL)
5637 return FALSE;
5638 name = new_name;
5639 }
5640 /* Add setion name to section name section. */
5641 if (shdrp->sh_name != (unsigned int) -1)
5642 abort ();
5643 shdrp->sh_name
5644 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
5645 name, FALSE);
5646 d = elf_section_data (sec);
5647
5648 /* Add reloc setion name to section name section. */
5649 if (d->rel.hdr
5650 && !_bfd_elf_set_reloc_sh_name (abfd,
5651 d->rel.hdr,
5652 name, FALSE))
5653 return FALSE;
5654 if (d->rela.hdr
5655 && !_bfd_elf_set_reloc_sh_name (abfd,
5656 d->rela.hdr,
5657 name, TRUE))
5658 return FALSE;
5659
5660 /* Update section size and contents. */
5661 shdrp->sh_size = sec->size;
5662 shdrp->contents = sec->contents;
5663 shdrp->bfd_section->contents = NULL;
5664 }
5665 off = _bfd_elf_assign_file_position_for_section (shdrp,
5666 off,
5667 TRUE);
5668 }
5669 }
5670 }
5671
5672 /* Place section name section after DWARF debug sections have been
5673 compressed. */
5674 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
5675 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
5676 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
5677 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5678
5679 /* Place the section headers. */
5680 i_ehdrp = elf_elfheader (abfd);
5681 bed = get_elf_backend_data (abfd);
5682 off = align_file_position (off, 1 << bed->s->log_file_align);
5683 i_ehdrp->e_shoff = off;
5684 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5685 elf_next_file_pos (abfd) = off;
5686
5687 return TRUE;
5688 }
5689
5690 bfd_boolean
5691 _bfd_elf_write_object_contents (bfd *abfd)
5692 {
5693 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5694 Elf_Internal_Shdr **i_shdrp;
5695 bfd_boolean failed;
5696 unsigned int count, num_sec;
5697 struct elf_obj_tdata *t;
5698
5699 if (! abfd->output_has_begun
5700 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5701 return FALSE;
5702
5703 i_shdrp = elf_elfsections (abfd);
5704
5705 failed = FALSE;
5706 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5707 if (failed)
5708 return FALSE;
5709
5710 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
5711 return FALSE;
5712
5713 /* After writing the headers, we need to write the sections too... */
5714 num_sec = elf_numsections (abfd);
5715 for (count = 1; count < num_sec; count++)
5716 {
5717 i_shdrp[count]->sh_name
5718 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
5719 i_shdrp[count]->sh_name);
5720 if (bed->elf_backend_section_processing)
5721 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5722 if (i_shdrp[count]->contents)
5723 {
5724 bfd_size_type amt = i_shdrp[count]->sh_size;
5725
5726 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5727 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5728 return FALSE;
5729 }
5730 }
5731
5732 /* Write out the section header names. */
5733 t = elf_tdata (abfd);
5734 if (elf_shstrtab (abfd) != NULL
5735 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5736 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5737 return FALSE;
5738
5739 if (bed->elf_backend_final_write_processing)
5740 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5741
5742 if (!bed->s->write_shdrs_and_ehdr (abfd))
5743 return FALSE;
5744
5745 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5746 if (t->o->build_id.after_write_object_contents != NULL)
5747 return (*t->o->build_id.after_write_object_contents) (abfd);
5748
5749 return TRUE;
5750 }
5751
5752 bfd_boolean
5753 _bfd_elf_write_corefile_contents (bfd *abfd)
5754 {
5755 /* Hopefully this can be done just like an object file. */
5756 return _bfd_elf_write_object_contents (abfd);
5757 }
5758
5759 /* Given a section, search the header to find them. */
5760
5761 unsigned int
5762 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5763 {
5764 const struct elf_backend_data *bed;
5765 unsigned int sec_index;
5766
5767 if (elf_section_data (asect) != NULL
5768 && elf_section_data (asect)->this_idx != 0)
5769 return elf_section_data (asect)->this_idx;
5770
5771 if (bfd_is_abs_section (asect))
5772 sec_index = SHN_ABS;
5773 else if (bfd_is_com_section (asect))
5774 sec_index = SHN_COMMON;
5775 else if (bfd_is_und_section (asect))
5776 sec_index = SHN_UNDEF;
5777 else
5778 sec_index = SHN_BAD;
5779
5780 bed = get_elf_backend_data (abfd);
5781 if (bed->elf_backend_section_from_bfd_section)
5782 {
5783 int retval = sec_index;
5784
5785 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5786 return retval;
5787 }
5788
5789 if (sec_index == SHN_BAD)
5790 bfd_set_error (bfd_error_nonrepresentable_section);
5791
5792 return sec_index;
5793 }
5794
5795 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5796 on error. */
5797
5798 int
5799 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5800 {
5801 asymbol *asym_ptr = *asym_ptr_ptr;
5802 int idx;
5803 flagword flags = asym_ptr->flags;
5804
5805 /* When gas creates relocations against local labels, it creates its
5806 own symbol for the section, but does put the symbol into the
5807 symbol chain, so udata is 0. When the linker is generating
5808 relocatable output, this section symbol may be for one of the
5809 input sections rather than the output section. */
5810 if (asym_ptr->udata.i == 0
5811 && (flags & BSF_SECTION_SYM)
5812 && asym_ptr->section)
5813 {
5814 asection *sec;
5815 int indx;
5816
5817 sec = asym_ptr->section;
5818 if (sec->owner != abfd && sec->output_section != NULL)
5819 sec = sec->output_section;
5820 if (sec->owner == abfd
5821 && (indx = sec->index) < elf_num_section_syms (abfd)
5822 && elf_section_syms (abfd)[indx] != NULL)
5823 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5824 }
5825
5826 idx = asym_ptr->udata.i;
5827
5828 if (idx == 0)
5829 {
5830 /* This case can occur when using --strip-symbol on a symbol
5831 which is used in a relocation entry. */
5832 (*_bfd_error_handler)
5833 (_("%B: symbol `%s' required but not present"),
5834 abfd, bfd_asymbol_name (asym_ptr));
5835 bfd_set_error (bfd_error_no_symbols);
5836 return -1;
5837 }
5838
5839 #if DEBUG & 4
5840 {
5841 fprintf (stderr,
5842 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5843 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5844 fflush (stderr);
5845 }
5846 #endif
5847
5848 return idx;
5849 }
5850
5851 /* Rewrite program header information. */
5852
5853 static bfd_boolean
5854 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5855 {
5856 Elf_Internal_Ehdr *iehdr;
5857 struct elf_segment_map *map;
5858 struct elf_segment_map *map_first;
5859 struct elf_segment_map **pointer_to_map;
5860 Elf_Internal_Phdr *segment;
5861 asection *section;
5862 unsigned int i;
5863 unsigned int num_segments;
5864 bfd_boolean phdr_included = FALSE;
5865 bfd_boolean p_paddr_valid;
5866 bfd_vma maxpagesize;
5867 struct elf_segment_map *phdr_adjust_seg = NULL;
5868 unsigned int phdr_adjust_num = 0;
5869 const struct elf_backend_data *bed;
5870
5871 bed = get_elf_backend_data (ibfd);
5872 iehdr = elf_elfheader (ibfd);
5873
5874 map_first = NULL;
5875 pointer_to_map = &map_first;
5876
5877 num_segments = elf_elfheader (ibfd)->e_phnum;
5878 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5879
5880 /* Returns the end address of the segment + 1. */
5881 #define SEGMENT_END(segment, start) \
5882 (start + (segment->p_memsz > segment->p_filesz \
5883 ? segment->p_memsz : segment->p_filesz))
5884
5885 #define SECTION_SIZE(section, segment) \
5886 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5887 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5888 ? section->size : 0)
5889
5890 /* Returns TRUE if the given section is contained within
5891 the given segment. VMA addresses are compared. */
5892 #define IS_CONTAINED_BY_VMA(section, segment) \
5893 (section->vma >= segment->p_vaddr \
5894 && (section->vma + SECTION_SIZE (section, segment) \
5895 <= (SEGMENT_END (segment, segment->p_vaddr))))
5896
5897 /* Returns TRUE if the given section is contained within
5898 the given segment. LMA addresses are compared. */
5899 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5900 (section->lma >= base \
5901 && (section->lma + SECTION_SIZE (section, segment) \
5902 <= SEGMENT_END (segment, base)))
5903
5904 /* Handle PT_NOTE segment. */
5905 #define IS_NOTE(p, s) \
5906 (p->p_type == PT_NOTE \
5907 && elf_section_type (s) == SHT_NOTE \
5908 && (bfd_vma) s->filepos >= p->p_offset \
5909 && ((bfd_vma) s->filepos + s->size \
5910 <= p->p_offset + p->p_filesz))
5911
5912 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5913 etc. */
5914 #define IS_COREFILE_NOTE(p, s) \
5915 (IS_NOTE (p, s) \
5916 && bfd_get_format (ibfd) == bfd_core \
5917 && s->vma == 0 \
5918 && s->lma == 0)
5919
5920 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5921 linker, which generates a PT_INTERP section with p_vaddr and
5922 p_memsz set to 0. */
5923 #define IS_SOLARIS_PT_INTERP(p, s) \
5924 (p->p_vaddr == 0 \
5925 && p->p_paddr == 0 \
5926 && p->p_memsz == 0 \
5927 && p->p_filesz > 0 \
5928 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5929 && s->size > 0 \
5930 && (bfd_vma) s->filepos >= p->p_offset \
5931 && ((bfd_vma) s->filepos + s->size \
5932 <= p->p_offset + p->p_filesz))
5933
5934 /* Decide if the given section should be included in the given segment.
5935 A section will be included if:
5936 1. It is within the address space of the segment -- we use the LMA
5937 if that is set for the segment and the VMA otherwise,
5938 2. It is an allocated section or a NOTE section in a PT_NOTE
5939 segment.
5940 3. There is an output section associated with it,
5941 4. The section has not already been allocated to a previous segment.
5942 5. PT_GNU_STACK segments do not include any sections.
5943 6. PT_TLS segment includes only SHF_TLS sections.
5944 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5945 8. PT_DYNAMIC should not contain empty sections at the beginning
5946 (with the possible exception of .dynamic). */
5947 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5948 ((((segment->p_paddr \
5949 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5950 : IS_CONTAINED_BY_VMA (section, segment)) \
5951 && (section->flags & SEC_ALLOC) != 0) \
5952 || IS_NOTE (segment, section)) \
5953 && segment->p_type != PT_GNU_STACK \
5954 && (segment->p_type != PT_TLS \
5955 || (section->flags & SEC_THREAD_LOCAL)) \
5956 && (segment->p_type == PT_LOAD \
5957 || segment->p_type == PT_TLS \
5958 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5959 && (segment->p_type != PT_DYNAMIC \
5960 || SECTION_SIZE (section, segment) > 0 \
5961 || (segment->p_paddr \
5962 ? segment->p_paddr != section->lma \
5963 : segment->p_vaddr != section->vma) \
5964 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5965 == 0)) \
5966 && !section->segment_mark)
5967
5968 /* If the output section of a section in the input segment is NULL,
5969 it is removed from the corresponding output segment. */
5970 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5971 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5972 && section->output_section != NULL)
5973
5974 /* Returns TRUE iff seg1 starts after the end of seg2. */
5975 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5976 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5977
5978 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5979 their VMA address ranges and their LMA address ranges overlap.
5980 It is possible to have overlapping VMA ranges without overlapping LMA
5981 ranges. RedBoot images for example can have both .data and .bss mapped
5982 to the same VMA range, but with the .data section mapped to a different
5983 LMA. */
5984 #define SEGMENT_OVERLAPS(seg1, seg2) \
5985 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5986 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5987 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5988 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5989
5990 /* Initialise the segment mark field. */
5991 for (section = ibfd->sections; section != NULL; section = section->next)
5992 section->segment_mark = FALSE;
5993
5994 /* The Solaris linker creates program headers in which all the
5995 p_paddr fields are zero. When we try to objcopy or strip such a
5996 file, we get confused. Check for this case, and if we find it
5997 don't set the p_paddr_valid fields. */
5998 p_paddr_valid = FALSE;
5999 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6000 i < num_segments;
6001 i++, segment++)
6002 if (segment->p_paddr != 0)
6003 {
6004 p_paddr_valid = TRUE;
6005 break;
6006 }
6007
6008 /* Scan through the segments specified in the program header
6009 of the input BFD. For this first scan we look for overlaps
6010 in the loadable segments. These can be created by weird
6011 parameters to objcopy. Also, fix some solaris weirdness. */
6012 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6013 i < num_segments;
6014 i++, segment++)
6015 {
6016 unsigned int j;
6017 Elf_Internal_Phdr *segment2;
6018
6019 if (segment->p_type == PT_INTERP)
6020 for (section = ibfd->sections; section; section = section->next)
6021 if (IS_SOLARIS_PT_INTERP (segment, section))
6022 {
6023 /* Mininal change so that the normal section to segment
6024 assignment code will work. */
6025 segment->p_vaddr = section->vma;
6026 break;
6027 }
6028
6029 if (segment->p_type != PT_LOAD)
6030 {
6031 /* Remove PT_GNU_RELRO segment. */
6032 if (segment->p_type == PT_GNU_RELRO)
6033 segment->p_type = PT_NULL;
6034 continue;
6035 }
6036
6037 /* Determine if this segment overlaps any previous segments. */
6038 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6039 {
6040 bfd_signed_vma extra_length;
6041
6042 if (segment2->p_type != PT_LOAD
6043 || !SEGMENT_OVERLAPS (segment, segment2))
6044 continue;
6045
6046 /* Merge the two segments together. */
6047 if (segment2->p_vaddr < segment->p_vaddr)
6048 {
6049 /* Extend SEGMENT2 to include SEGMENT and then delete
6050 SEGMENT. */
6051 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6052 - SEGMENT_END (segment2, segment2->p_vaddr));
6053
6054 if (extra_length > 0)
6055 {
6056 segment2->p_memsz += extra_length;
6057 segment2->p_filesz += extra_length;
6058 }
6059
6060 segment->p_type = PT_NULL;
6061
6062 /* Since we have deleted P we must restart the outer loop. */
6063 i = 0;
6064 segment = elf_tdata (ibfd)->phdr;
6065 break;
6066 }
6067 else
6068 {
6069 /* Extend SEGMENT to include SEGMENT2 and then delete
6070 SEGMENT2. */
6071 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6072 - SEGMENT_END (segment, segment->p_vaddr));
6073
6074 if (extra_length > 0)
6075 {
6076 segment->p_memsz += extra_length;
6077 segment->p_filesz += extra_length;
6078 }
6079
6080 segment2->p_type = PT_NULL;
6081 }
6082 }
6083 }
6084
6085 /* The second scan attempts to assign sections to segments. */
6086 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6087 i < num_segments;
6088 i++, segment++)
6089 {
6090 unsigned int section_count;
6091 asection **sections;
6092 asection *output_section;
6093 unsigned int isec;
6094 bfd_vma matching_lma;
6095 bfd_vma suggested_lma;
6096 unsigned int j;
6097 bfd_size_type amt;
6098 asection *first_section;
6099 bfd_boolean first_matching_lma;
6100 bfd_boolean first_suggested_lma;
6101
6102 if (segment->p_type == PT_NULL)
6103 continue;
6104
6105 first_section = NULL;
6106 /* Compute how many sections might be placed into this segment. */
6107 for (section = ibfd->sections, section_count = 0;
6108 section != NULL;
6109 section = section->next)
6110 {
6111 /* Find the first section in the input segment, which may be
6112 removed from the corresponding output segment. */
6113 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6114 {
6115 if (first_section == NULL)
6116 first_section = section;
6117 if (section->output_section != NULL)
6118 ++section_count;
6119 }
6120 }
6121
6122 /* Allocate a segment map big enough to contain
6123 all of the sections we have selected. */
6124 amt = sizeof (struct elf_segment_map);
6125 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6126 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6127 if (map == NULL)
6128 return FALSE;
6129
6130 /* Initialise the fields of the segment map. Default to
6131 using the physical address of the segment in the input BFD. */
6132 map->next = NULL;
6133 map->p_type = segment->p_type;
6134 map->p_flags = segment->p_flags;
6135 map->p_flags_valid = 1;
6136
6137 /* If the first section in the input segment is removed, there is
6138 no need to preserve segment physical address in the corresponding
6139 output segment. */
6140 if (!first_section || first_section->output_section != NULL)
6141 {
6142 map->p_paddr = segment->p_paddr;
6143 map->p_paddr_valid = p_paddr_valid;
6144 }
6145
6146 /* Determine if this segment contains the ELF file header
6147 and if it contains the program headers themselves. */
6148 map->includes_filehdr = (segment->p_offset == 0
6149 && segment->p_filesz >= iehdr->e_ehsize);
6150 map->includes_phdrs = 0;
6151
6152 if (!phdr_included || segment->p_type != PT_LOAD)
6153 {
6154 map->includes_phdrs =
6155 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6156 && (segment->p_offset + segment->p_filesz
6157 >= ((bfd_vma) iehdr->e_phoff
6158 + iehdr->e_phnum * iehdr->e_phentsize)));
6159
6160 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6161 phdr_included = TRUE;
6162 }
6163
6164 if (section_count == 0)
6165 {
6166 /* Special segments, such as the PT_PHDR segment, may contain
6167 no sections, but ordinary, loadable segments should contain
6168 something. They are allowed by the ELF spec however, so only
6169 a warning is produced. */
6170 if (segment->p_type == PT_LOAD)
6171 (*_bfd_error_handler) (_("\
6172 %B: warning: Empty loadable segment detected, is this intentional ?"),
6173 ibfd);
6174
6175 map->count = 0;
6176 *pointer_to_map = map;
6177 pointer_to_map = &map->next;
6178
6179 continue;
6180 }
6181
6182 /* Now scan the sections in the input BFD again and attempt
6183 to add their corresponding output sections to the segment map.
6184 The problem here is how to handle an output section which has
6185 been moved (ie had its LMA changed). There are four possibilities:
6186
6187 1. None of the sections have been moved.
6188 In this case we can continue to use the segment LMA from the
6189 input BFD.
6190
6191 2. All of the sections have been moved by the same amount.
6192 In this case we can change the segment's LMA to match the LMA
6193 of the first section.
6194
6195 3. Some of the sections have been moved, others have not.
6196 In this case those sections which have not been moved can be
6197 placed in the current segment which will have to have its size,
6198 and possibly its LMA changed, and a new segment or segments will
6199 have to be created to contain the other sections.
6200
6201 4. The sections have been moved, but not by the same amount.
6202 In this case we can change the segment's LMA to match the LMA
6203 of the first section and we will have to create a new segment
6204 or segments to contain the other sections.
6205
6206 In order to save time, we allocate an array to hold the section
6207 pointers that we are interested in. As these sections get assigned
6208 to a segment, they are removed from this array. */
6209
6210 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6211 if (sections == NULL)
6212 return FALSE;
6213
6214 /* Step One: Scan for segment vs section LMA conflicts.
6215 Also add the sections to the section array allocated above.
6216 Also add the sections to the current segment. In the common
6217 case, where the sections have not been moved, this means that
6218 we have completely filled the segment, and there is nothing
6219 more to do. */
6220 isec = 0;
6221 matching_lma = 0;
6222 suggested_lma = 0;
6223 first_matching_lma = TRUE;
6224 first_suggested_lma = TRUE;
6225
6226 for (section = ibfd->sections;
6227 section != NULL;
6228 section = section->next)
6229 if (section == first_section)
6230 break;
6231
6232 for (j = 0; section != NULL; section = section->next)
6233 {
6234 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6235 {
6236 output_section = section->output_section;
6237
6238 sections[j++] = section;
6239
6240 /* The Solaris native linker always sets p_paddr to 0.
6241 We try to catch that case here, and set it to the
6242 correct value. Note - some backends require that
6243 p_paddr be left as zero. */
6244 if (!p_paddr_valid
6245 && segment->p_vaddr != 0
6246 && !bed->want_p_paddr_set_to_zero
6247 && isec == 0
6248 && output_section->lma != 0
6249 && output_section->vma == (segment->p_vaddr
6250 + (map->includes_filehdr
6251 ? iehdr->e_ehsize
6252 : 0)
6253 + (map->includes_phdrs
6254 ? (iehdr->e_phnum
6255 * iehdr->e_phentsize)
6256 : 0)))
6257 map->p_paddr = segment->p_vaddr;
6258
6259 /* Match up the physical address of the segment with the
6260 LMA address of the output section. */
6261 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6262 || IS_COREFILE_NOTE (segment, section)
6263 || (bed->want_p_paddr_set_to_zero
6264 && IS_CONTAINED_BY_VMA (output_section, segment)))
6265 {
6266 if (first_matching_lma || output_section->lma < matching_lma)
6267 {
6268 matching_lma = output_section->lma;
6269 first_matching_lma = FALSE;
6270 }
6271
6272 /* We assume that if the section fits within the segment
6273 then it does not overlap any other section within that
6274 segment. */
6275 map->sections[isec++] = output_section;
6276 }
6277 else if (first_suggested_lma)
6278 {
6279 suggested_lma = output_section->lma;
6280 first_suggested_lma = FALSE;
6281 }
6282
6283 if (j == section_count)
6284 break;
6285 }
6286 }
6287
6288 BFD_ASSERT (j == section_count);
6289
6290 /* Step Two: Adjust the physical address of the current segment,
6291 if necessary. */
6292 if (isec == section_count)
6293 {
6294 /* All of the sections fitted within the segment as currently
6295 specified. This is the default case. Add the segment to
6296 the list of built segments and carry on to process the next
6297 program header in the input BFD. */
6298 map->count = section_count;
6299 *pointer_to_map = map;
6300 pointer_to_map = &map->next;
6301
6302 if (p_paddr_valid
6303 && !bed->want_p_paddr_set_to_zero
6304 && matching_lma != map->p_paddr
6305 && !map->includes_filehdr
6306 && !map->includes_phdrs)
6307 /* There is some padding before the first section in the
6308 segment. So, we must account for that in the output
6309 segment's vma. */
6310 map->p_vaddr_offset = matching_lma - map->p_paddr;
6311
6312 free (sections);
6313 continue;
6314 }
6315 else
6316 {
6317 if (!first_matching_lma)
6318 {
6319 /* At least one section fits inside the current segment.
6320 Keep it, but modify its physical address to match the
6321 LMA of the first section that fitted. */
6322 map->p_paddr = matching_lma;
6323 }
6324 else
6325 {
6326 /* None of the sections fitted inside the current segment.
6327 Change the current segment's physical address to match
6328 the LMA of the first section. */
6329 map->p_paddr = suggested_lma;
6330 }
6331
6332 /* Offset the segment physical address from the lma
6333 to allow for space taken up by elf headers. */
6334 if (map->includes_filehdr)
6335 {
6336 if (map->p_paddr >= iehdr->e_ehsize)
6337 map->p_paddr -= iehdr->e_ehsize;
6338 else
6339 {
6340 map->includes_filehdr = FALSE;
6341 map->includes_phdrs = FALSE;
6342 }
6343 }
6344
6345 if (map->includes_phdrs)
6346 {
6347 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6348 {
6349 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6350
6351 /* iehdr->e_phnum is just an estimate of the number
6352 of program headers that we will need. Make a note
6353 here of the number we used and the segment we chose
6354 to hold these headers, so that we can adjust the
6355 offset when we know the correct value. */
6356 phdr_adjust_num = iehdr->e_phnum;
6357 phdr_adjust_seg = map;
6358 }
6359 else
6360 map->includes_phdrs = FALSE;
6361 }
6362 }
6363
6364 /* Step Three: Loop over the sections again, this time assigning
6365 those that fit to the current segment and removing them from the
6366 sections array; but making sure not to leave large gaps. Once all
6367 possible sections have been assigned to the current segment it is
6368 added to the list of built segments and if sections still remain
6369 to be assigned, a new segment is constructed before repeating
6370 the loop. */
6371 isec = 0;
6372 do
6373 {
6374 map->count = 0;
6375 suggested_lma = 0;
6376 first_suggested_lma = TRUE;
6377
6378 /* Fill the current segment with sections that fit. */
6379 for (j = 0; j < section_count; j++)
6380 {
6381 section = sections[j];
6382
6383 if (section == NULL)
6384 continue;
6385
6386 output_section = section->output_section;
6387
6388 BFD_ASSERT (output_section != NULL);
6389
6390 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6391 || IS_COREFILE_NOTE (segment, section))
6392 {
6393 if (map->count == 0)
6394 {
6395 /* If the first section in a segment does not start at
6396 the beginning of the segment, then something is
6397 wrong. */
6398 if (output_section->lma
6399 != (map->p_paddr
6400 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6401 + (map->includes_phdrs
6402 ? iehdr->e_phnum * iehdr->e_phentsize
6403 : 0)))
6404 abort ();
6405 }
6406 else
6407 {
6408 asection *prev_sec;
6409
6410 prev_sec = map->sections[map->count - 1];
6411
6412 /* If the gap between the end of the previous section
6413 and the start of this section is more than
6414 maxpagesize then we need to start a new segment. */
6415 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6416 maxpagesize)
6417 < BFD_ALIGN (output_section->lma, maxpagesize))
6418 || (prev_sec->lma + prev_sec->size
6419 > output_section->lma))
6420 {
6421 if (first_suggested_lma)
6422 {
6423 suggested_lma = output_section->lma;
6424 first_suggested_lma = FALSE;
6425 }
6426
6427 continue;
6428 }
6429 }
6430
6431 map->sections[map->count++] = output_section;
6432 ++isec;
6433 sections[j] = NULL;
6434 section->segment_mark = TRUE;
6435 }
6436 else if (first_suggested_lma)
6437 {
6438 suggested_lma = output_section->lma;
6439 first_suggested_lma = FALSE;
6440 }
6441 }
6442
6443 BFD_ASSERT (map->count > 0);
6444
6445 /* Add the current segment to the list of built segments. */
6446 *pointer_to_map = map;
6447 pointer_to_map = &map->next;
6448
6449 if (isec < section_count)
6450 {
6451 /* We still have not allocated all of the sections to
6452 segments. Create a new segment here, initialise it
6453 and carry on looping. */
6454 amt = sizeof (struct elf_segment_map);
6455 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6456 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6457 if (map == NULL)
6458 {
6459 free (sections);
6460 return FALSE;
6461 }
6462
6463 /* Initialise the fields of the segment map. Set the physical
6464 physical address to the LMA of the first section that has
6465 not yet been assigned. */
6466 map->next = NULL;
6467 map->p_type = segment->p_type;
6468 map->p_flags = segment->p_flags;
6469 map->p_flags_valid = 1;
6470 map->p_paddr = suggested_lma;
6471 map->p_paddr_valid = p_paddr_valid;
6472 map->includes_filehdr = 0;
6473 map->includes_phdrs = 0;
6474 }
6475 }
6476 while (isec < section_count);
6477
6478 free (sections);
6479 }
6480
6481 elf_seg_map (obfd) = map_first;
6482
6483 /* If we had to estimate the number of program headers that were
6484 going to be needed, then check our estimate now and adjust
6485 the offset if necessary. */
6486 if (phdr_adjust_seg != NULL)
6487 {
6488 unsigned int count;
6489
6490 for (count = 0, map = map_first; map != NULL; map = map->next)
6491 count++;
6492
6493 if (count > phdr_adjust_num)
6494 phdr_adjust_seg->p_paddr
6495 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6496 }
6497
6498 #undef SEGMENT_END
6499 #undef SECTION_SIZE
6500 #undef IS_CONTAINED_BY_VMA
6501 #undef IS_CONTAINED_BY_LMA
6502 #undef IS_NOTE
6503 #undef IS_COREFILE_NOTE
6504 #undef IS_SOLARIS_PT_INTERP
6505 #undef IS_SECTION_IN_INPUT_SEGMENT
6506 #undef INCLUDE_SECTION_IN_SEGMENT
6507 #undef SEGMENT_AFTER_SEGMENT
6508 #undef SEGMENT_OVERLAPS
6509 return TRUE;
6510 }
6511
6512 /* Copy ELF program header information. */
6513
6514 static bfd_boolean
6515 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6516 {
6517 Elf_Internal_Ehdr *iehdr;
6518 struct elf_segment_map *map;
6519 struct elf_segment_map *map_first;
6520 struct elf_segment_map **pointer_to_map;
6521 Elf_Internal_Phdr *segment;
6522 unsigned int i;
6523 unsigned int num_segments;
6524 bfd_boolean phdr_included = FALSE;
6525 bfd_boolean p_paddr_valid;
6526
6527 iehdr = elf_elfheader (ibfd);
6528
6529 map_first = NULL;
6530 pointer_to_map = &map_first;
6531
6532 /* If all the segment p_paddr fields are zero, don't set
6533 map->p_paddr_valid. */
6534 p_paddr_valid = FALSE;
6535 num_segments = elf_elfheader (ibfd)->e_phnum;
6536 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6537 i < num_segments;
6538 i++, segment++)
6539 if (segment->p_paddr != 0)
6540 {
6541 p_paddr_valid = TRUE;
6542 break;
6543 }
6544
6545 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6546 i < num_segments;
6547 i++, segment++)
6548 {
6549 asection *section;
6550 unsigned int section_count;
6551 bfd_size_type amt;
6552 Elf_Internal_Shdr *this_hdr;
6553 asection *first_section = NULL;
6554 asection *lowest_section;
6555
6556 /* Compute how many sections are in this segment. */
6557 for (section = ibfd->sections, section_count = 0;
6558 section != NULL;
6559 section = section->next)
6560 {
6561 this_hdr = &(elf_section_data(section)->this_hdr);
6562 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6563 {
6564 if (first_section == NULL)
6565 first_section = section;
6566 section_count++;
6567 }
6568 }
6569
6570 /* Allocate a segment map big enough to contain
6571 all of the sections we have selected. */
6572 amt = sizeof (struct elf_segment_map);
6573 if (section_count != 0)
6574 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6575 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6576 if (map == NULL)
6577 return FALSE;
6578
6579 /* Initialize the fields of the output segment map with the
6580 input segment. */
6581 map->next = NULL;
6582 map->p_type = segment->p_type;
6583 map->p_flags = segment->p_flags;
6584 map->p_flags_valid = 1;
6585 map->p_paddr = segment->p_paddr;
6586 map->p_paddr_valid = p_paddr_valid;
6587 map->p_align = segment->p_align;
6588 map->p_align_valid = 1;
6589 map->p_vaddr_offset = 0;
6590
6591 if (map->p_type == PT_GNU_RELRO
6592 || map->p_type == PT_GNU_STACK)
6593 {
6594 /* The PT_GNU_RELRO segment may contain the first a few
6595 bytes in the .got.plt section even if the whole .got.plt
6596 section isn't in the PT_GNU_RELRO segment. We won't
6597 change the size of the PT_GNU_RELRO segment.
6598 Similarly, PT_GNU_STACK size is significant on uclinux
6599 systems. */
6600 map->p_size = segment->p_memsz;
6601 map->p_size_valid = 1;
6602 }
6603
6604 /* Determine if this segment contains the ELF file header
6605 and if it contains the program headers themselves. */
6606 map->includes_filehdr = (segment->p_offset == 0
6607 && segment->p_filesz >= iehdr->e_ehsize);
6608
6609 map->includes_phdrs = 0;
6610 if (! phdr_included || segment->p_type != PT_LOAD)
6611 {
6612 map->includes_phdrs =
6613 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6614 && (segment->p_offset + segment->p_filesz
6615 >= ((bfd_vma) iehdr->e_phoff
6616 + iehdr->e_phnum * iehdr->e_phentsize)));
6617
6618 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6619 phdr_included = TRUE;
6620 }
6621
6622 lowest_section = NULL;
6623 if (section_count != 0)
6624 {
6625 unsigned int isec = 0;
6626
6627 for (section = first_section;
6628 section != NULL;
6629 section = section->next)
6630 {
6631 this_hdr = &(elf_section_data(section)->this_hdr);
6632 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6633 {
6634 map->sections[isec++] = section->output_section;
6635 if ((section->flags & SEC_ALLOC) != 0)
6636 {
6637 bfd_vma seg_off;
6638
6639 if (lowest_section == NULL
6640 || section->lma < lowest_section->lma)
6641 lowest_section = section;
6642
6643 /* Section lmas are set up from PT_LOAD header
6644 p_paddr in _bfd_elf_make_section_from_shdr.
6645 If this header has a p_paddr that disagrees
6646 with the section lma, flag the p_paddr as
6647 invalid. */
6648 if ((section->flags & SEC_LOAD) != 0)
6649 seg_off = this_hdr->sh_offset - segment->p_offset;
6650 else
6651 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6652 if (section->lma - segment->p_paddr != seg_off)
6653 map->p_paddr_valid = FALSE;
6654 }
6655 if (isec == section_count)
6656 break;
6657 }
6658 }
6659 }
6660
6661 if (map->includes_filehdr && lowest_section != NULL)
6662 /* We need to keep the space used by the headers fixed. */
6663 map->header_size = lowest_section->vma - segment->p_vaddr;
6664
6665 if (!map->includes_phdrs
6666 && !map->includes_filehdr
6667 && map->p_paddr_valid)
6668 /* There is some other padding before the first section. */
6669 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6670 - segment->p_paddr);
6671
6672 map->count = section_count;
6673 *pointer_to_map = map;
6674 pointer_to_map = &map->next;
6675 }
6676
6677 elf_seg_map (obfd) = map_first;
6678 return TRUE;
6679 }
6680
6681 /* Copy private BFD data. This copies or rewrites ELF program header
6682 information. */
6683
6684 static bfd_boolean
6685 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6686 {
6687 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6688 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6689 return TRUE;
6690
6691 if (elf_tdata (ibfd)->phdr == NULL)
6692 return TRUE;
6693
6694 if (ibfd->xvec == obfd->xvec)
6695 {
6696 /* Check to see if any sections in the input BFD
6697 covered by ELF program header have changed. */
6698 Elf_Internal_Phdr *segment;
6699 asection *section, *osec;
6700 unsigned int i, num_segments;
6701 Elf_Internal_Shdr *this_hdr;
6702 const struct elf_backend_data *bed;
6703
6704 bed = get_elf_backend_data (ibfd);
6705
6706 /* Regenerate the segment map if p_paddr is set to 0. */
6707 if (bed->want_p_paddr_set_to_zero)
6708 goto rewrite;
6709
6710 /* Initialize the segment mark field. */
6711 for (section = obfd->sections; section != NULL;
6712 section = section->next)
6713 section->segment_mark = FALSE;
6714
6715 num_segments = elf_elfheader (ibfd)->e_phnum;
6716 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6717 i < num_segments;
6718 i++, segment++)
6719 {
6720 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6721 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6722 which severly confuses things, so always regenerate the segment
6723 map in this case. */
6724 if (segment->p_paddr == 0
6725 && segment->p_memsz == 0
6726 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6727 goto rewrite;
6728
6729 for (section = ibfd->sections;
6730 section != NULL; section = section->next)
6731 {
6732 /* We mark the output section so that we know it comes
6733 from the input BFD. */
6734 osec = section->output_section;
6735 if (osec)
6736 osec->segment_mark = TRUE;
6737
6738 /* Check if this section is covered by the segment. */
6739 this_hdr = &(elf_section_data(section)->this_hdr);
6740 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6741 {
6742 /* FIXME: Check if its output section is changed or
6743 removed. What else do we need to check? */
6744 if (osec == NULL
6745 || section->flags != osec->flags
6746 || section->lma != osec->lma
6747 || section->vma != osec->vma
6748 || section->size != osec->size
6749 || section->rawsize != osec->rawsize
6750 || section->alignment_power != osec->alignment_power)
6751 goto rewrite;
6752 }
6753 }
6754 }
6755
6756 /* Check to see if any output section do not come from the
6757 input BFD. */
6758 for (section = obfd->sections; section != NULL;
6759 section = section->next)
6760 {
6761 if (section->segment_mark == FALSE)
6762 goto rewrite;
6763 else
6764 section->segment_mark = FALSE;
6765 }
6766
6767 return copy_elf_program_header (ibfd, obfd);
6768 }
6769
6770 rewrite:
6771 if (ibfd->xvec == obfd->xvec)
6772 {
6773 /* When rewriting program header, set the output maxpagesize to
6774 the maximum alignment of input PT_LOAD segments. */
6775 Elf_Internal_Phdr *segment;
6776 unsigned int i;
6777 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6778 bfd_vma maxpagesize = 0;
6779
6780 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6781 i < num_segments;
6782 i++, segment++)
6783 if (segment->p_type == PT_LOAD
6784 && maxpagesize < segment->p_align)
6785 {
6786 /* PR 17512: file: f17299af. */
6787 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
6788 (*_bfd_error_handler) (_("\
6789 %B: warning: segment alignment of 0x%llx is too large"),
6790 ibfd, (long long) segment->p_align);
6791 else
6792 maxpagesize = segment->p_align;
6793 }
6794
6795 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6796 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6797 }
6798
6799 return rewrite_elf_program_header (ibfd, obfd);
6800 }
6801
6802 /* Initialize private output section information from input section. */
6803
6804 bfd_boolean
6805 _bfd_elf_init_private_section_data (bfd *ibfd,
6806 asection *isec,
6807 bfd *obfd,
6808 asection *osec,
6809 struct bfd_link_info *link_info)
6810
6811 {
6812 Elf_Internal_Shdr *ihdr, *ohdr;
6813 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6814
6815 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6816 || obfd->xvec->flavour != bfd_target_elf_flavour)
6817 return TRUE;
6818
6819 BFD_ASSERT (elf_section_data (osec) != NULL);
6820
6821 /* For objcopy and relocatable link, don't copy the output ELF
6822 section type from input if the output BFD section flags have been
6823 set to something different. For a final link allow some flags
6824 that the linker clears to differ. */
6825 if (elf_section_type (osec) == SHT_NULL
6826 && (osec->flags == isec->flags
6827 || (final_link
6828 && ((osec->flags ^ isec->flags)
6829 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6830 elf_section_type (osec) = elf_section_type (isec);
6831
6832 /* FIXME: Is this correct for all OS/PROC specific flags? */
6833 elf_section_flags (osec) |= (elf_section_flags (isec)
6834 & (SHF_MASKOS | SHF_MASKPROC));
6835
6836 /* Set things up for objcopy and relocatable link. The output
6837 SHT_GROUP section will have its elf_next_in_group pointing back
6838 to the input group members. Ignore linker created group section.
6839 See elfNN_ia64_object_p in elfxx-ia64.c. */
6840 if (!final_link)
6841 {
6842 if (elf_sec_group (isec) == NULL
6843 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6844 {
6845 if (elf_section_flags (isec) & SHF_GROUP)
6846 elf_section_flags (osec) |= SHF_GROUP;
6847 elf_next_in_group (osec) = elf_next_in_group (isec);
6848 elf_section_data (osec)->group = elf_section_data (isec)->group;
6849 }
6850
6851 /* If not decompress, preserve SHF_COMPRESSED. */
6852 if ((ibfd->flags & BFD_DECOMPRESS) == 0)
6853 elf_section_flags (osec) |= (elf_section_flags (isec)
6854 & SHF_COMPRESSED);
6855 }
6856
6857 ihdr = &elf_section_data (isec)->this_hdr;
6858
6859 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6860 don't use the output section of the linked-to section since it
6861 may be NULL at this point. */
6862 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6863 {
6864 ohdr = &elf_section_data (osec)->this_hdr;
6865 ohdr->sh_flags |= SHF_LINK_ORDER;
6866 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6867 }
6868
6869 osec->use_rela_p = isec->use_rela_p;
6870
6871 return TRUE;
6872 }
6873
6874 /* Copy private section information. This copies over the entsize
6875 field, and sometimes the info field. */
6876
6877 bfd_boolean
6878 _bfd_elf_copy_private_section_data (bfd *ibfd,
6879 asection *isec,
6880 bfd *obfd,
6881 asection *osec)
6882 {
6883 Elf_Internal_Shdr *ihdr, *ohdr;
6884
6885 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6886 || obfd->xvec->flavour != bfd_target_elf_flavour)
6887 return TRUE;
6888
6889 ihdr = &elf_section_data (isec)->this_hdr;
6890 ohdr = &elf_section_data (osec)->this_hdr;
6891
6892 ohdr->sh_entsize = ihdr->sh_entsize;
6893
6894 if (ihdr->sh_type == SHT_SYMTAB
6895 || ihdr->sh_type == SHT_DYNSYM
6896 || ihdr->sh_type == SHT_GNU_verneed
6897 || ihdr->sh_type == SHT_GNU_verdef)
6898 ohdr->sh_info = ihdr->sh_info;
6899
6900 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6901 NULL);
6902 }
6903
6904 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6905 necessary if we are removing either the SHT_GROUP section or any of
6906 the group member sections. DISCARDED is the value that a section's
6907 output_section has if the section will be discarded, NULL when this
6908 function is called from objcopy, bfd_abs_section_ptr when called
6909 from the linker. */
6910
6911 bfd_boolean
6912 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6913 {
6914 asection *isec;
6915
6916 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6917 if (elf_section_type (isec) == SHT_GROUP)
6918 {
6919 asection *first = elf_next_in_group (isec);
6920 asection *s = first;
6921 bfd_size_type removed = 0;
6922
6923 while (s != NULL)
6924 {
6925 /* If this member section is being output but the
6926 SHT_GROUP section is not, then clear the group info
6927 set up by _bfd_elf_copy_private_section_data. */
6928 if (s->output_section != discarded
6929 && isec->output_section == discarded)
6930 {
6931 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6932 elf_group_name (s->output_section) = NULL;
6933 }
6934 /* Conversely, if the member section is not being output
6935 but the SHT_GROUP section is, then adjust its size. */
6936 else if (s->output_section == discarded
6937 && isec->output_section != discarded)
6938 removed += 4;
6939 s = elf_next_in_group (s);
6940 if (s == first)
6941 break;
6942 }
6943 if (removed != 0)
6944 {
6945 if (discarded != NULL)
6946 {
6947 /* If we've been called for ld -r, then we need to
6948 adjust the input section size. This function may
6949 be called multiple times, so save the original
6950 size. */
6951 if (isec->rawsize == 0)
6952 isec->rawsize = isec->size;
6953 isec->size = isec->rawsize - removed;
6954 }
6955 else
6956 {
6957 /* Adjust the output section size when called from
6958 objcopy. */
6959 isec->output_section->size -= removed;
6960 }
6961 }
6962 }
6963
6964 return TRUE;
6965 }
6966
6967 /* Copy private header information. */
6968
6969 bfd_boolean
6970 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6971 {
6972 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6973 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6974 return TRUE;
6975
6976 /* Copy over private BFD data if it has not already been copied.
6977 This must be done here, rather than in the copy_private_bfd_data
6978 entry point, because the latter is called after the section
6979 contents have been set, which means that the program headers have
6980 already been worked out. */
6981 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
6982 {
6983 if (! copy_private_bfd_data (ibfd, obfd))
6984 return FALSE;
6985 }
6986
6987 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6988 }
6989
6990 /* Copy private symbol information. If this symbol is in a section
6991 which we did not map into a BFD section, try to map the section
6992 index correctly. We use special macro definitions for the mapped
6993 section indices; these definitions are interpreted by the
6994 swap_out_syms function. */
6995
6996 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6997 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6998 #define MAP_STRTAB (SHN_HIOS + 3)
6999 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7000 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7001
7002 bfd_boolean
7003 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7004 asymbol *isymarg,
7005 bfd *obfd,
7006 asymbol *osymarg)
7007 {
7008 elf_symbol_type *isym, *osym;
7009
7010 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7011 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7012 return TRUE;
7013
7014 isym = elf_symbol_from (ibfd, isymarg);
7015 osym = elf_symbol_from (obfd, osymarg);
7016
7017 if (isym != NULL
7018 && isym->internal_elf_sym.st_shndx != 0
7019 && osym != NULL
7020 && bfd_is_abs_section (isym->symbol.section))
7021 {
7022 unsigned int shndx;
7023
7024 shndx = isym->internal_elf_sym.st_shndx;
7025 if (shndx == elf_onesymtab (ibfd))
7026 shndx = MAP_ONESYMTAB;
7027 else if (shndx == elf_dynsymtab (ibfd))
7028 shndx = MAP_DYNSYMTAB;
7029 else if (shndx == elf_strtab_sec (ibfd))
7030 shndx = MAP_STRTAB;
7031 else if (shndx == elf_shstrtab_sec (ibfd))
7032 shndx = MAP_SHSTRTAB;
7033 else if (shndx == elf_symtab_shndx (ibfd))
7034 shndx = MAP_SYM_SHNDX;
7035 osym->internal_elf_sym.st_shndx = shndx;
7036 }
7037
7038 return TRUE;
7039 }
7040
7041 /* Swap out the symbols. */
7042
7043 static bfd_boolean
7044 swap_out_syms (bfd *abfd,
7045 struct elf_strtab_hash **sttp,
7046 int relocatable_p)
7047 {
7048 const struct elf_backend_data *bed;
7049 int symcount;
7050 asymbol **syms;
7051 struct elf_strtab_hash *stt;
7052 Elf_Internal_Shdr *symtab_hdr;
7053 Elf_Internal_Shdr *symtab_shndx_hdr;
7054 Elf_Internal_Shdr *symstrtab_hdr;
7055 struct elf_sym_strtab *symstrtab;
7056 bfd_byte *outbound_syms;
7057 bfd_byte *outbound_shndx;
7058 unsigned long outbound_syms_index;
7059 unsigned long outbound_shndx_index;
7060 int idx;
7061 unsigned int num_locals;
7062 bfd_size_type amt;
7063 bfd_boolean name_local_sections;
7064
7065 if (!elf_map_symbols (abfd, &num_locals))
7066 return FALSE;
7067
7068 /* Dump out the symtabs. */
7069 stt = _bfd_elf_strtab_init ();
7070 if (stt == NULL)
7071 return FALSE;
7072
7073 bed = get_elf_backend_data (abfd);
7074 symcount = bfd_get_symcount (abfd);
7075 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7076 symtab_hdr->sh_type = SHT_SYMTAB;
7077 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7078 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7079 symtab_hdr->sh_info = num_locals + 1;
7080 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7081
7082 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7083 symstrtab_hdr->sh_type = SHT_STRTAB;
7084
7085 /* Allocate buffer to swap out the .strtab section. */
7086 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7087 * sizeof (*symstrtab));
7088 if (symstrtab == NULL)
7089 {
7090 _bfd_elf_strtab_free (stt);
7091 return FALSE;
7092 }
7093
7094 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7095 bed->s->sizeof_sym);
7096 if (outbound_syms == NULL)
7097 {
7098 error_return:
7099 _bfd_elf_strtab_free (stt);
7100 free (symstrtab);
7101 return FALSE;
7102 }
7103 symtab_hdr->contents = outbound_syms;
7104 outbound_syms_index = 0;
7105
7106 outbound_shndx = NULL;
7107 outbound_shndx_index = 0;
7108 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
7109 if (symtab_shndx_hdr->sh_name != 0)
7110 {
7111 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7112 outbound_shndx = (bfd_byte *)
7113 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7114 if (outbound_shndx == NULL)
7115 goto error_return;
7116
7117 symtab_shndx_hdr->contents = outbound_shndx;
7118 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7119 symtab_shndx_hdr->sh_size = amt;
7120 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7121 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7122 }
7123
7124 /* Now generate the data (for "contents"). */
7125 {
7126 /* Fill in zeroth symbol and swap it out. */
7127 Elf_Internal_Sym sym;
7128 sym.st_name = 0;
7129 sym.st_value = 0;
7130 sym.st_size = 0;
7131 sym.st_info = 0;
7132 sym.st_other = 0;
7133 sym.st_shndx = SHN_UNDEF;
7134 sym.st_target_internal = 0;
7135 symstrtab[0].sym = sym;
7136 symstrtab[0].dest_index = outbound_syms_index;
7137 symstrtab[0].destshndx_index = outbound_shndx_index;
7138 outbound_syms_index++;
7139 if (outbound_shndx != NULL)
7140 outbound_shndx_index++;
7141 }
7142
7143 name_local_sections
7144 = (bed->elf_backend_name_local_section_symbols
7145 && bed->elf_backend_name_local_section_symbols (abfd));
7146
7147 syms = bfd_get_outsymbols (abfd);
7148 for (idx = 0; idx < symcount;)
7149 {
7150 Elf_Internal_Sym sym;
7151 bfd_vma value = syms[idx]->value;
7152 elf_symbol_type *type_ptr;
7153 flagword flags = syms[idx]->flags;
7154 int type;
7155
7156 if (!name_local_sections
7157 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7158 {
7159 /* Local section symbols have no name. */
7160 sym.st_name = (unsigned long) -1;
7161 }
7162 else
7163 {
7164 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7165 to get the final offset for st_name. */
7166 sym.st_name
7167 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7168 FALSE);
7169 if (sym.st_name == (unsigned long) -1)
7170 goto error_return;
7171 }
7172
7173 type_ptr = elf_symbol_from (abfd, syms[idx]);
7174
7175 if ((flags & BSF_SECTION_SYM) == 0
7176 && bfd_is_com_section (syms[idx]->section))
7177 {
7178 /* ELF common symbols put the alignment into the `value' field,
7179 and the size into the `size' field. This is backwards from
7180 how BFD handles it, so reverse it here. */
7181 sym.st_size = value;
7182 if (type_ptr == NULL
7183 || type_ptr->internal_elf_sym.st_value == 0)
7184 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7185 else
7186 sym.st_value = type_ptr->internal_elf_sym.st_value;
7187 sym.st_shndx = _bfd_elf_section_from_bfd_section
7188 (abfd, syms[idx]->section);
7189 }
7190 else
7191 {
7192 asection *sec = syms[idx]->section;
7193 unsigned int shndx;
7194
7195 if (sec->output_section)
7196 {
7197 value += sec->output_offset;
7198 sec = sec->output_section;
7199 }
7200
7201 /* Don't add in the section vma for relocatable output. */
7202 if (! relocatable_p)
7203 value += sec->vma;
7204 sym.st_value = value;
7205 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7206
7207 if (bfd_is_abs_section (sec)
7208 && type_ptr != NULL
7209 && type_ptr->internal_elf_sym.st_shndx != 0)
7210 {
7211 /* This symbol is in a real ELF section which we did
7212 not create as a BFD section. Undo the mapping done
7213 by copy_private_symbol_data. */
7214 shndx = type_ptr->internal_elf_sym.st_shndx;
7215 switch (shndx)
7216 {
7217 case MAP_ONESYMTAB:
7218 shndx = elf_onesymtab (abfd);
7219 break;
7220 case MAP_DYNSYMTAB:
7221 shndx = elf_dynsymtab (abfd);
7222 break;
7223 case MAP_STRTAB:
7224 shndx = elf_strtab_sec (abfd);
7225 break;
7226 case MAP_SHSTRTAB:
7227 shndx = elf_shstrtab_sec (abfd);
7228 break;
7229 case MAP_SYM_SHNDX:
7230 shndx = elf_symtab_shndx (abfd);
7231 break;
7232 default:
7233 shndx = SHN_ABS;
7234 break;
7235 }
7236 }
7237 else
7238 {
7239 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7240
7241 if (shndx == SHN_BAD)
7242 {
7243 asection *sec2;
7244
7245 /* Writing this would be a hell of a lot easier if
7246 we had some decent documentation on bfd, and
7247 knew what to expect of the library, and what to
7248 demand of applications. For example, it
7249 appears that `objcopy' might not set the
7250 section of a symbol to be a section that is
7251 actually in the output file. */
7252 sec2 = bfd_get_section_by_name (abfd, sec->name);
7253 if (sec2 == NULL)
7254 {
7255 _bfd_error_handler (_("\
7256 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7257 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7258 sec->name);
7259 bfd_set_error (bfd_error_invalid_operation);
7260 goto error_return;
7261 }
7262
7263 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7264 BFD_ASSERT (shndx != SHN_BAD);
7265 }
7266 }
7267
7268 sym.st_shndx = shndx;
7269 }
7270
7271 if ((flags & BSF_THREAD_LOCAL) != 0)
7272 type = STT_TLS;
7273 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7274 type = STT_GNU_IFUNC;
7275 else if ((flags & BSF_FUNCTION) != 0)
7276 type = STT_FUNC;
7277 else if ((flags & BSF_OBJECT) != 0)
7278 type = STT_OBJECT;
7279 else if ((flags & BSF_RELC) != 0)
7280 type = STT_RELC;
7281 else if ((flags & BSF_SRELC) != 0)
7282 type = STT_SRELC;
7283 else
7284 type = STT_NOTYPE;
7285
7286 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7287 type = STT_TLS;
7288
7289 /* Processor-specific types. */
7290 if (type_ptr != NULL
7291 && bed->elf_backend_get_symbol_type)
7292 type = ((*bed->elf_backend_get_symbol_type)
7293 (&type_ptr->internal_elf_sym, type));
7294
7295 if (flags & BSF_SECTION_SYM)
7296 {
7297 if (flags & BSF_GLOBAL)
7298 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7299 else
7300 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7301 }
7302 else if (bfd_is_com_section (syms[idx]->section))
7303 {
7304 #ifdef USE_STT_COMMON
7305 if (type == STT_OBJECT)
7306 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
7307 else
7308 #endif
7309 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7310 }
7311 else if (bfd_is_und_section (syms[idx]->section))
7312 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7313 ? STB_WEAK
7314 : STB_GLOBAL),
7315 type);
7316 else if (flags & BSF_FILE)
7317 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7318 else
7319 {
7320 int bind = STB_LOCAL;
7321
7322 if (flags & BSF_LOCAL)
7323 bind = STB_LOCAL;
7324 else if (flags & BSF_GNU_UNIQUE)
7325 bind = STB_GNU_UNIQUE;
7326 else if (flags & BSF_WEAK)
7327 bind = STB_WEAK;
7328 else if (flags & BSF_GLOBAL)
7329 bind = STB_GLOBAL;
7330
7331 sym.st_info = ELF_ST_INFO (bind, type);
7332 }
7333
7334 if (type_ptr != NULL)
7335 {
7336 sym.st_other = type_ptr->internal_elf_sym.st_other;
7337 sym.st_target_internal
7338 = type_ptr->internal_elf_sym.st_target_internal;
7339 }
7340 else
7341 {
7342 sym.st_other = 0;
7343 sym.st_target_internal = 0;
7344 }
7345
7346 idx++;
7347 symstrtab[idx].sym = sym;
7348 symstrtab[idx].dest_index = outbound_syms_index;
7349 symstrtab[idx].destshndx_index = outbound_shndx_index;
7350
7351 outbound_syms_index++;
7352 if (outbound_shndx != NULL)
7353 outbound_shndx_index++;
7354 }
7355
7356 /* Finalize the .strtab section. */
7357 _bfd_elf_strtab_finalize (stt);
7358
7359 /* Swap out the .strtab section. */
7360 for (idx = 0; idx <= symcount; idx++)
7361 {
7362 struct elf_sym_strtab *elfsym = &symstrtab[idx];
7363 if (elfsym->sym.st_name == (unsigned long) -1)
7364 elfsym->sym.st_name = 0;
7365 else
7366 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
7367 elfsym->sym.st_name);
7368 bed->s->swap_symbol_out (abfd, &elfsym->sym,
7369 (outbound_syms
7370 + (elfsym->dest_index
7371 * bed->s->sizeof_sym)),
7372 (outbound_shndx
7373 + (elfsym->destshndx_index
7374 * sizeof (Elf_External_Sym_Shndx))));
7375 }
7376 free (symstrtab);
7377
7378 *sttp = stt;
7379 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
7380 symstrtab_hdr->sh_type = SHT_STRTAB;
7381
7382 symstrtab_hdr->sh_flags = 0;
7383 symstrtab_hdr->sh_addr = 0;
7384 symstrtab_hdr->sh_entsize = 0;
7385 symstrtab_hdr->sh_link = 0;
7386 symstrtab_hdr->sh_info = 0;
7387 symstrtab_hdr->sh_addralign = 1;
7388
7389 return TRUE;
7390 }
7391
7392 /* Return the number of bytes required to hold the symtab vector.
7393
7394 Note that we base it on the count plus 1, since we will null terminate
7395 the vector allocated based on this size. However, the ELF symbol table
7396 always has a dummy entry as symbol #0, so it ends up even. */
7397
7398 long
7399 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7400 {
7401 long symcount;
7402 long symtab_size;
7403 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7404
7405 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7406 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7407 if (symcount > 0)
7408 symtab_size -= sizeof (asymbol *);
7409
7410 return symtab_size;
7411 }
7412
7413 long
7414 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7415 {
7416 long symcount;
7417 long symtab_size;
7418 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7419
7420 if (elf_dynsymtab (abfd) == 0)
7421 {
7422 bfd_set_error (bfd_error_invalid_operation);
7423 return -1;
7424 }
7425
7426 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7427 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7428 if (symcount > 0)
7429 symtab_size -= sizeof (asymbol *);
7430
7431 return symtab_size;
7432 }
7433
7434 long
7435 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7436 sec_ptr asect)
7437 {
7438 return (asect->reloc_count + 1) * sizeof (arelent *);
7439 }
7440
7441 /* Canonicalize the relocs. */
7442
7443 long
7444 _bfd_elf_canonicalize_reloc (bfd *abfd,
7445 sec_ptr section,
7446 arelent **relptr,
7447 asymbol **symbols)
7448 {
7449 arelent *tblptr;
7450 unsigned int i;
7451 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7452
7453 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7454 return -1;
7455
7456 tblptr = section->relocation;
7457 for (i = 0; i < section->reloc_count; i++)
7458 *relptr++ = tblptr++;
7459
7460 *relptr = NULL;
7461
7462 return section->reloc_count;
7463 }
7464
7465 long
7466 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7467 {
7468 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7469 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7470
7471 if (symcount >= 0)
7472 bfd_get_symcount (abfd) = symcount;
7473 return symcount;
7474 }
7475
7476 long
7477 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7478 asymbol **allocation)
7479 {
7480 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7481 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7482
7483 if (symcount >= 0)
7484 bfd_get_dynamic_symcount (abfd) = symcount;
7485 return symcount;
7486 }
7487
7488 /* Return the size required for the dynamic reloc entries. Any loadable
7489 section that was actually installed in the BFD, and has type SHT_REL
7490 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7491 dynamic reloc section. */
7492
7493 long
7494 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7495 {
7496 long ret;
7497 asection *s;
7498
7499 if (elf_dynsymtab (abfd) == 0)
7500 {
7501 bfd_set_error (bfd_error_invalid_operation);
7502 return -1;
7503 }
7504
7505 ret = sizeof (arelent *);
7506 for (s = abfd->sections; s != NULL; s = s->next)
7507 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7508 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7509 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7510 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7511 * sizeof (arelent *));
7512
7513 return ret;
7514 }
7515
7516 /* Canonicalize the dynamic relocation entries. Note that we return the
7517 dynamic relocations as a single block, although they are actually
7518 associated with particular sections; the interface, which was
7519 designed for SunOS style shared libraries, expects that there is only
7520 one set of dynamic relocs. Any loadable section that was actually
7521 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7522 dynamic symbol table, is considered to be a dynamic reloc section. */
7523
7524 long
7525 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7526 arelent **storage,
7527 asymbol **syms)
7528 {
7529 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7530 asection *s;
7531 long ret;
7532
7533 if (elf_dynsymtab (abfd) == 0)
7534 {
7535 bfd_set_error (bfd_error_invalid_operation);
7536 return -1;
7537 }
7538
7539 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7540 ret = 0;
7541 for (s = abfd->sections; s != NULL; s = s->next)
7542 {
7543 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7544 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7545 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7546 {
7547 arelent *p;
7548 long count, i;
7549
7550 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7551 return -1;
7552 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7553 p = s->relocation;
7554 for (i = 0; i < count; i++)
7555 *storage++ = p++;
7556 ret += count;
7557 }
7558 }
7559
7560 *storage = NULL;
7561
7562 return ret;
7563 }
7564 \f
7565 /* Read in the version information. */
7566
7567 bfd_boolean
7568 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7569 {
7570 bfd_byte *contents = NULL;
7571 unsigned int freeidx = 0;
7572
7573 if (elf_dynverref (abfd) != 0)
7574 {
7575 Elf_Internal_Shdr *hdr;
7576 Elf_External_Verneed *everneed;
7577 Elf_Internal_Verneed *iverneed;
7578 unsigned int i;
7579 bfd_byte *contents_end;
7580
7581 hdr = &elf_tdata (abfd)->dynverref_hdr;
7582
7583 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
7584 {
7585 error_return_bad_verref:
7586 (*_bfd_error_handler)
7587 (_("%B: .gnu.version_r invalid entry"), abfd);
7588 bfd_set_error (bfd_error_bad_value);
7589 error_return_verref:
7590 elf_tdata (abfd)->verref = NULL;
7591 elf_tdata (abfd)->cverrefs = 0;
7592 goto error_return;
7593 }
7594
7595 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7596 if (contents == NULL)
7597 goto error_return_verref;
7598
7599 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7600 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7601 goto error_return_verref;
7602
7603 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7604 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7605
7606 if (elf_tdata (abfd)->verref == NULL)
7607 goto error_return_verref;
7608
7609 BFD_ASSERT (sizeof (Elf_External_Verneed)
7610 == sizeof (Elf_External_Vernaux));
7611 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7612 everneed = (Elf_External_Verneed *) contents;
7613 iverneed = elf_tdata (abfd)->verref;
7614 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7615 {
7616 Elf_External_Vernaux *evernaux;
7617 Elf_Internal_Vernaux *ivernaux;
7618 unsigned int j;
7619
7620 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7621
7622 iverneed->vn_bfd = abfd;
7623
7624 iverneed->vn_filename =
7625 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7626 iverneed->vn_file);
7627 if (iverneed->vn_filename == NULL)
7628 goto error_return_bad_verref;
7629
7630 if (iverneed->vn_cnt == 0)
7631 iverneed->vn_auxptr = NULL;
7632 else
7633 {
7634 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7635 bfd_alloc2 (abfd, iverneed->vn_cnt,
7636 sizeof (Elf_Internal_Vernaux));
7637 if (iverneed->vn_auxptr == NULL)
7638 goto error_return_verref;
7639 }
7640
7641 if (iverneed->vn_aux
7642 > (size_t) (contents_end - (bfd_byte *) everneed))
7643 goto error_return_bad_verref;
7644
7645 evernaux = ((Elf_External_Vernaux *)
7646 ((bfd_byte *) everneed + iverneed->vn_aux));
7647 ivernaux = iverneed->vn_auxptr;
7648 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7649 {
7650 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7651
7652 ivernaux->vna_nodename =
7653 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7654 ivernaux->vna_name);
7655 if (ivernaux->vna_nodename == NULL)
7656 goto error_return_bad_verref;
7657
7658 if (ivernaux->vna_other > freeidx)
7659 freeidx = ivernaux->vna_other;
7660
7661 ivernaux->vna_nextptr = NULL;
7662 if (ivernaux->vna_next == 0)
7663 {
7664 iverneed->vn_cnt = j + 1;
7665 break;
7666 }
7667 if (j + 1 < iverneed->vn_cnt)
7668 ivernaux->vna_nextptr = ivernaux + 1;
7669
7670 if (ivernaux->vna_next
7671 > (size_t) (contents_end - (bfd_byte *) evernaux))
7672 goto error_return_bad_verref;
7673
7674 evernaux = ((Elf_External_Vernaux *)
7675 ((bfd_byte *) evernaux + ivernaux->vna_next));
7676 }
7677
7678 iverneed->vn_nextref = NULL;
7679 if (iverneed->vn_next == 0)
7680 break;
7681 if (i + 1 < hdr->sh_info)
7682 iverneed->vn_nextref = iverneed + 1;
7683
7684 if (iverneed->vn_next
7685 > (size_t) (contents_end - (bfd_byte *) everneed))
7686 goto error_return_bad_verref;
7687
7688 everneed = ((Elf_External_Verneed *)
7689 ((bfd_byte *) everneed + iverneed->vn_next));
7690 }
7691 elf_tdata (abfd)->cverrefs = i;
7692
7693 free (contents);
7694 contents = NULL;
7695 }
7696
7697 if (elf_dynverdef (abfd) != 0)
7698 {
7699 Elf_Internal_Shdr *hdr;
7700 Elf_External_Verdef *everdef;
7701 Elf_Internal_Verdef *iverdef;
7702 Elf_Internal_Verdef *iverdefarr;
7703 Elf_Internal_Verdef iverdefmem;
7704 unsigned int i;
7705 unsigned int maxidx;
7706 bfd_byte *contents_end_def, *contents_end_aux;
7707
7708 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7709
7710 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
7711 {
7712 error_return_bad_verdef:
7713 (*_bfd_error_handler)
7714 (_("%B: .gnu.version_d invalid entry"), abfd);
7715 bfd_set_error (bfd_error_bad_value);
7716 error_return_verdef:
7717 elf_tdata (abfd)->verdef = NULL;
7718 elf_tdata (abfd)->cverdefs = 0;
7719 goto error_return;
7720 }
7721
7722 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7723 if (contents == NULL)
7724 goto error_return_verdef;
7725 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7726 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7727 goto error_return_verdef;
7728
7729 BFD_ASSERT (sizeof (Elf_External_Verdef)
7730 >= sizeof (Elf_External_Verdaux));
7731 contents_end_def = contents + hdr->sh_size
7732 - sizeof (Elf_External_Verdef);
7733 contents_end_aux = contents + hdr->sh_size
7734 - sizeof (Elf_External_Verdaux);
7735
7736 /* We know the number of entries in the section but not the maximum
7737 index. Therefore we have to run through all entries and find
7738 the maximum. */
7739 everdef = (Elf_External_Verdef *) contents;
7740 maxidx = 0;
7741 for (i = 0; i < hdr->sh_info; ++i)
7742 {
7743 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7744
7745 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
7746 goto error_return_bad_verdef;
7747 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7748 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7749
7750 if (iverdefmem.vd_next == 0)
7751 break;
7752
7753 if (iverdefmem.vd_next
7754 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7755 goto error_return_bad_verdef;
7756
7757 everdef = ((Elf_External_Verdef *)
7758 ((bfd_byte *) everdef + iverdefmem.vd_next));
7759 }
7760
7761 if (default_imported_symver)
7762 {
7763 if (freeidx > maxidx)
7764 maxidx = ++freeidx;
7765 else
7766 freeidx = ++maxidx;
7767 }
7768
7769 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7770 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7771 if (elf_tdata (abfd)->verdef == NULL)
7772 goto error_return_verdef;
7773
7774 elf_tdata (abfd)->cverdefs = maxidx;
7775
7776 everdef = (Elf_External_Verdef *) contents;
7777 iverdefarr = elf_tdata (abfd)->verdef;
7778 for (i = 0; i < hdr->sh_info; i++)
7779 {
7780 Elf_External_Verdaux *everdaux;
7781 Elf_Internal_Verdaux *iverdaux;
7782 unsigned int j;
7783
7784 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7785
7786 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7787 goto error_return_bad_verdef;
7788
7789 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7790 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7791
7792 iverdef->vd_bfd = abfd;
7793
7794 if (iverdef->vd_cnt == 0)
7795 iverdef->vd_auxptr = NULL;
7796 else
7797 {
7798 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7799 bfd_alloc2 (abfd, iverdef->vd_cnt,
7800 sizeof (Elf_Internal_Verdaux));
7801 if (iverdef->vd_auxptr == NULL)
7802 goto error_return_verdef;
7803 }
7804
7805 if (iverdef->vd_aux
7806 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7807 goto error_return_bad_verdef;
7808
7809 everdaux = ((Elf_External_Verdaux *)
7810 ((bfd_byte *) everdef + iverdef->vd_aux));
7811 iverdaux = iverdef->vd_auxptr;
7812 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7813 {
7814 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7815
7816 iverdaux->vda_nodename =
7817 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7818 iverdaux->vda_name);
7819 if (iverdaux->vda_nodename == NULL)
7820 goto error_return_bad_verdef;
7821
7822 iverdaux->vda_nextptr = NULL;
7823 if (iverdaux->vda_next == 0)
7824 {
7825 iverdef->vd_cnt = j + 1;
7826 break;
7827 }
7828 if (j + 1 < iverdef->vd_cnt)
7829 iverdaux->vda_nextptr = iverdaux + 1;
7830
7831 if (iverdaux->vda_next
7832 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7833 goto error_return_bad_verdef;
7834
7835 everdaux = ((Elf_External_Verdaux *)
7836 ((bfd_byte *) everdaux + iverdaux->vda_next));
7837 }
7838
7839 if (iverdef->vd_cnt)
7840 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7841
7842 iverdef->vd_nextdef = NULL;
7843 if (iverdef->vd_next == 0)
7844 break;
7845 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7846 iverdef->vd_nextdef = iverdef + 1;
7847
7848 everdef = ((Elf_External_Verdef *)
7849 ((bfd_byte *) everdef + iverdef->vd_next));
7850 }
7851
7852 free (contents);
7853 contents = NULL;
7854 }
7855 else if (default_imported_symver)
7856 {
7857 if (freeidx < 3)
7858 freeidx = 3;
7859 else
7860 freeidx++;
7861
7862 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7863 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7864 if (elf_tdata (abfd)->verdef == NULL)
7865 goto error_return;
7866
7867 elf_tdata (abfd)->cverdefs = freeidx;
7868 }
7869
7870 /* Create a default version based on the soname. */
7871 if (default_imported_symver)
7872 {
7873 Elf_Internal_Verdef *iverdef;
7874 Elf_Internal_Verdaux *iverdaux;
7875
7876 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7877
7878 iverdef->vd_version = VER_DEF_CURRENT;
7879 iverdef->vd_flags = 0;
7880 iverdef->vd_ndx = freeidx;
7881 iverdef->vd_cnt = 1;
7882
7883 iverdef->vd_bfd = abfd;
7884
7885 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7886 if (iverdef->vd_nodename == NULL)
7887 goto error_return_verdef;
7888 iverdef->vd_nextdef = NULL;
7889 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
7890 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
7891 if (iverdef->vd_auxptr == NULL)
7892 goto error_return_verdef;
7893
7894 iverdaux = iverdef->vd_auxptr;
7895 iverdaux->vda_nodename = iverdef->vd_nodename;
7896 }
7897
7898 return TRUE;
7899
7900 error_return:
7901 if (contents != NULL)
7902 free (contents);
7903 return FALSE;
7904 }
7905 \f
7906 asymbol *
7907 _bfd_elf_make_empty_symbol (bfd *abfd)
7908 {
7909 elf_symbol_type *newsym;
7910
7911 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
7912 if (!newsym)
7913 return NULL;
7914 newsym->symbol.the_bfd = abfd;
7915 return &newsym->symbol;
7916 }
7917
7918 void
7919 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7920 asymbol *symbol,
7921 symbol_info *ret)
7922 {
7923 bfd_symbol_info (symbol, ret);
7924 }
7925
7926 /* Return whether a symbol name implies a local symbol. Most targets
7927 use this function for the is_local_label_name entry point, but some
7928 override it. */
7929
7930 bfd_boolean
7931 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7932 const char *name)
7933 {
7934 /* Normal local symbols start with ``.L''. */
7935 if (name[0] == '.' && name[1] == 'L')
7936 return TRUE;
7937
7938 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7939 DWARF debugging symbols starting with ``..''. */
7940 if (name[0] == '.' && name[1] == '.')
7941 return TRUE;
7942
7943 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7944 emitting DWARF debugging output. I suspect this is actually a
7945 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7946 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7947 underscore to be emitted on some ELF targets). For ease of use,
7948 we treat such symbols as local. */
7949 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7950 return TRUE;
7951
7952 /* Treat assembler generated fake symbols, dollar local labels and
7953 forward-backward labels (aka local labels) as locals.
7954 These labels have the form:
7955
7956 L0^A.* (fake symbols)
7957
7958 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
7959
7960 Versions which start with .L will have already been matched above,
7961 so we only need to match the rest. */
7962 if (name[0] == 'L' && ISDIGIT (name[1]))
7963 {
7964 bfd_boolean ret = FALSE;
7965 const char * p;
7966 char c;
7967
7968 for (p = name + 2; (c = *p); p++)
7969 {
7970 if (c == 1 || c == 2)
7971 {
7972 if (c == 1 && p == name + 2)
7973 /* A fake symbol. */
7974 return TRUE;
7975
7976 /* FIXME: We are being paranoid here and treating symbols like
7977 L0^Bfoo as if there were non-local, on the grounds that the
7978 assembler will never generate them. But can any symbol
7979 containing an ASCII value in the range 1-31 ever be anything
7980 other than some kind of local ? */
7981 ret = TRUE;
7982 }
7983
7984 if (! ISDIGIT (c))
7985 {
7986 ret = FALSE;
7987 break;
7988 }
7989 }
7990 return ret;
7991 }
7992
7993 return FALSE;
7994 }
7995
7996 alent *
7997 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7998 asymbol *symbol ATTRIBUTE_UNUSED)
7999 {
8000 abort ();
8001 return NULL;
8002 }
8003
8004 bfd_boolean
8005 _bfd_elf_set_arch_mach (bfd *abfd,
8006 enum bfd_architecture arch,
8007 unsigned long machine)
8008 {
8009 /* If this isn't the right architecture for this backend, and this
8010 isn't the generic backend, fail. */
8011 if (arch != get_elf_backend_data (abfd)->arch
8012 && arch != bfd_arch_unknown
8013 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8014 return FALSE;
8015
8016 return bfd_default_set_arch_mach (abfd, arch, machine);
8017 }
8018
8019 /* Find the nearest line to a particular section and offset,
8020 for error reporting. */
8021
8022 bfd_boolean
8023 _bfd_elf_find_nearest_line (bfd *abfd,
8024 asymbol **symbols,
8025 asection *section,
8026 bfd_vma offset,
8027 const char **filename_ptr,
8028 const char **functionname_ptr,
8029 unsigned int *line_ptr,
8030 unsigned int *discriminator_ptr)
8031 {
8032 bfd_boolean found;
8033
8034 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8035 filename_ptr, functionname_ptr,
8036 line_ptr, discriminator_ptr,
8037 dwarf_debug_sections, 0,
8038 &elf_tdata (abfd)->dwarf2_find_line_info)
8039 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8040 filename_ptr, functionname_ptr,
8041 line_ptr))
8042 {
8043 if (!*functionname_ptr)
8044 _bfd_elf_find_function (abfd, symbols, section, offset,
8045 *filename_ptr ? NULL : filename_ptr,
8046 functionname_ptr);
8047 return TRUE;
8048 }
8049
8050 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8051 &found, filename_ptr,
8052 functionname_ptr, line_ptr,
8053 &elf_tdata (abfd)->line_info))
8054 return FALSE;
8055 if (found && (*functionname_ptr || *line_ptr))
8056 return TRUE;
8057
8058 if (symbols == NULL)
8059 return FALSE;
8060
8061 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8062 filename_ptr, functionname_ptr))
8063 return FALSE;
8064
8065 *line_ptr = 0;
8066 return TRUE;
8067 }
8068
8069 /* Find the line for a symbol. */
8070
8071 bfd_boolean
8072 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8073 const char **filename_ptr, unsigned int *line_ptr)
8074 {
8075 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8076 filename_ptr, NULL, line_ptr, NULL,
8077 dwarf_debug_sections, 0,
8078 &elf_tdata (abfd)->dwarf2_find_line_info);
8079 }
8080
8081 /* After a call to bfd_find_nearest_line, successive calls to
8082 bfd_find_inliner_info can be used to get source information about
8083 each level of function inlining that terminated at the address
8084 passed to bfd_find_nearest_line. Currently this is only supported
8085 for DWARF2 with appropriate DWARF3 extensions. */
8086
8087 bfd_boolean
8088 _bfd_elf_find_inliner_info (bfd *abfd,
8089 const char **filename_ptr,
8090 const char **functionname_ptr,
8091 unsigned int *line_ptr)
8092 {
8093 bfd_boolean found;
8094 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8095 functionname_ptr, line_ptr,
8096 & elf_tdata (abfd)->dwarf2_find_line_info);
8097 return found;
8098 }
8099
8100 int
8101 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8102 {
8103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8104 int ret = bed->s->sizeof_ehdr;
8105
8106 if (!info->relocatable)
8107 {
8108 bfd_size_type phdr_size = elf_program_header_size (abfd);
8109
8110 if (phdr_size == (bfd_size_type) -1)
8111 {
8112 struct elf_segment_map *m;
8113
8114 phdr_size = 0;
8115 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8116 phdr_size += bed->s->sizeof_phdr;
8117
8118 if (phdr_size == 0)
8119 phdr_size = get_program_header_size (abfd, info);
8120 }
8121
8122 elf_program_header_size (abfd) = phdr_size;
8123 ret += phdr_size;
8124 }
8125
8126 return ret;
8127 }
8128
8129 bfd_boolean
8130 _bfd_elf_set_section_contents (bfd *abfd,
8131 sec_ptr section,
8132 const void *location,
8133 file_ptr offset,
8134 bfd_size_type count)
8135 {
8136 Elf_Internal_Shdr *hdr;
8137 file_ptr pos;
8138
8139 if (! abfd->output_has_begun
8140 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8141 return FALSE;
8142
8143 if (!count)
8144 return TRUE;
8145
8146 hdr = &elf_section_data (section)->this_hdr;
8147 if (hdr->sh_offset == (file_ptr) -1)
8148 {
8149 /* We must compress this section. Write output to the buffer. */
8150 unsigned char *contents = hdr->contents;
8151 if ((offset + count) > hdr->sh_size
8152 || (section->flags & SEC_ELF_COMPRESS) == 0
8153 || contents == NULL)
8154 abort ();
8155 memcpy (contents + offset, location, count);
8156 return TRUE;
8157 }
8158 pos = hdr->sh_offset + offset;
8159 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8160 || bfd_bwrite (location, count, abfd) != count)
8161 return FALSE;
8162
8163 return TRUE;
8164 }
8165
8166 void
8167 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8168 arelent *cache_ptr ATTRIBUTE_UNUSED,
8169 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8170 {
8171 abort ();
8172 }
8173
8174 /* Try to convert a non-ELF reloc into an ELF one. */
8175
8176 bfd_boolean
8177 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8178 {
8179 /* Check whether we really have an ELF howto. */
8180
8181 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8182 {
8183 bfd_reloc_code_real_type code;
8184 reloc_howto_type *howto;
8185
8186 /* Alien reloc: Try to determine its type to replace it with an
8187 equivalent ELF reloc. */
8188
8189 if (areloc->howto->pc_relative)
8190 {
8191 switch (areloc->howto->bitsize)
8192 {
8193 case 8:
8194 code = BFD_RELOC_8_PCREL;
8195 break;
8196 case 12:
8197 code = BFD_RELOC_12_PCREL;
8198 break;
8199 case 16:
8200 code = BFD_RELOC_16_PCREL;
8201 break;
8202 case 24:
8203 code = BFD_RELOC_24_PCREL;
8204 break;
8205 case 32:
8206 code = BFD_RELOC_32_PCREL;
8207 break;
8208 case 64:
8209 code = BFD_RELOC_64_PCREL;
8210 break;
8211 default:
8212 goto fail;
8213 }
8214
8215 howto = bfd_reloc_type_lookup (abfd, code);
8216
8217 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8218 {
8219 if (howto->pcrel_offset)
8220 areloc->addend += areloc->address;
8221 else
8222 areloc->addend -= areloc->address; /* addend is unsigned!! */
8223 }
8224 }
8225 else
8226 {
8227 switch (areloc->howto->bitsize)
8228 {
8229 case 8:
8230 code = BFD_RELOC_8;
8231 break;
8232 case 14:
8233 code = BFD_RELOC_14;
8234 break;
8235 case 16:
8236 code = BFD_RELOC_16;
8237 break;
8238 case 26:
8239 code = BFD_RELOC_26;
8240 break;
8241 case 32:
8242 code = BFD_RELOC_32;
8243 break;
8244 case 64:
8245 code = BFD_RELOC_64;
8246 break;
8247 default:
8248 goto fail;
8249 }
8250
8251 howto = bfd_reloc_type_lookup (abfd, code);
8252 }
8253
8254 if (howto)
8255 areloc->howto = howto;
8256 else
8257 goto fail;
8258 }
8259
8260 return TRUE;
8261
8262 fail:
8263 (*_bfd_error_handler)
8264 (_("%B: unsupported relocation type %s"),
8265 abfd, areloc->howto->name);
8266 bfd_set_error (bfd_error_bad_value);
8267 return FALSE;
8268 }
8269
8270 bfd_boolean
8271 _bfd_elf_close_and_cleanup (bfd *abfd)
8272 {
8273 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8274 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8275 {
8276 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8277 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8278 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8279 }
8280
8281 return _bfd_generic_close_and_cleanup (abfd);
8282 }
8283
8284 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8285 in the relocation's offset. Thus we cannot allow any sort of sanity
8286 range-checking to interfere. There is nothing else to do in processing
8287 this reloc. */
8288
8289 bfd_reloc_status_type
8290 _bfd_elf_rel_vtable_reloc_fn
8291 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8292 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8293 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8294 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8295 {
8296 return bfd_reloc_ok;
8297 }
8298 \f
8299 /* Elf core file support. Much of this only works on native
8300 toolchains, since we rely on knowing the
8301 machine-dependent procfs structure in order to pick
8302 out details about the corefile. */
8303
8304 #ifdef HAVE_SYS_PROCFS_H
8305 /* Needed for new procfs interface on sparc-solaris. */
8306 # define _STRUCTURED_PROC 1
8307 # include <sys/procfs.h>
8308 #endif
8309
8310 /* Return a PID that identifies a "thread" for threaded cores, or the
8311 PID of the main process for non-threaded cores. */
8312
8313 static int
8314 elfcore_make_pid (bfd *abfd)
8315 {
8316 int pid;
8317
8318 pid = elf_tdata (abfd)->core->lwpid;
8319 if (pid == 0)
8320 pid = elf_tdata (abfd)->core->pid;
8321
8322 return pid;
8323 }
8324
8325 /* If there isn't a section called NAME, make one, using
8326 data from SECT. Note, this function will generate a
8327 reference to NAME, so you shouldn't deallocate or
8328 overwrite it. */
8329
8330 static bfd_boolean
8331 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8332 {
8333 asection *sect2;
8334
8335 if (bfd_get_section_by_name (abfd, name) != NULL)
8336 return TRUE;
8337
8338 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8339 if (sect2 == NULL)
8340 return FALSE;
8341
8342 sect2->size = sect->size;
8343 sect2->filepos = sect->filepos;
8344 sect2->alignment_power = sect->alignment_power;
8345 return TRUE;
8346 }
8347
8348 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8349 actually creates up to two pseudosections:
8350 - For the single-threaded case, a section named NAME, unless
8351 such a section already exists.
8352 - For the multi-threaded case, a section named "NAME/PID", where
8353 PID is elfcore_make_pid (abfd).
8354 Both pseudosections have identical contents. */
8355 bfd_boolean
8356 _bfd_elfcore_make_pseudosection (bfd *abfd,
8357 char *name,
8358 size_t size,
8359 ufile_ptr filepos)
8360 {
8361 char buf[100];
8362 char *threaded_name;
8363 size_t len;
8364 asection *sect;
8365
8366 /* Build the section name. */
8367
8368 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8369 len = strlen (buf) + 1;
8370 threaded_name = (char *) bfd_alloc (abfd, len);
8371 if (threaded_name == NULL)
8372 return FALSE;
8373 memcpy (threaded_name, buf, len);
8374
8375 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8376 SEC_HAS_CONTENTS);
8377 if (sect == NULL)
8378 return FALSE;
8379 sect->size = size;
8380 sect->filepos = filepos;
8381 sect->alignment_power = 2;
8382
8383 return elfcore_maybe_make_sect (abfd, name, sect);
8384 }
8385
8386 /* prstatus_t exists on:
8387 solaris 2.5+
8388 linux 2.[01] + glibc
8389 unixware 4.2
8390 */
8391
8392 #if defined (HAVE_PRSTATUS_T)
8393
8394 static bfd_boolean
8395 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8396 {
8397 size_t size;
8398 int offset;
8399
8400 if (note->descsz == sizeof (prstatus_t))
8401 {
8402 prstatus_t prstat;
8403
8404 size = sizeof (prstat.pr_reg);
8405 offset = offsetof (prstatus_t, pr_reg);
8406 memcpy (&prstat, note->descdata, sizeof (prstat));
8407
8408 /* Do not overwrite the core signal if it
8409 has already been set by another thread. */
8410 if (elf_tdata (abfd)->core->signal == 0)
8411 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8412 if (elf_tdata (abfd)->core->pid == 0)
8413 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8414
8415 /* pr_who exists on:
8416 solaris 2.5+
8417 unixware 4.2
8418 pr_who doesn't exist on:
8419 linux 2.[01]
8420 */
8421 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8422 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8423 #else
8424 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8425 #endif
8426 }
8427 #if defined (HAVE_PRSTATUS32_T)
8428 else if (note->descsz == sizeof (prstatus32_t))
8429 {
8430 /* 64-bit host, 32-bit corefile */
8431 prstatus32_t prstat;
8432
8433 size = sizeof (prstat.pr_reg);
8434 offset = offsetof (prstatus32_t, pr_reg);
8435 memcpy (&prstat, note->descdata, sizeof (prstat));
8436
8437 /* Do not overwrite the core signal if it
8438 has already been set by another thread. */
8439 if (elf_tdata (abfd)->core->signal == 0)
8440 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8441 if (elf_tdata (abfd)->core->pid == 0)
8442 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8443
8444 /* pr_who exists on:
8445 solaris 2.5+
8446 unixware 4.2
8447 pr_who doesn't exist on:
8448 linux 2.[01]
8449 */
8450 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8451 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8452 #else
8453 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8454 #endif
8455 }
8456 #endif /* HAVE_PRSTATUS32_T */
8457 else
8458 {
8459 /* Fail - we don't know how to handle any other
8460 note size (ie. data object type). */
8461 return TRUE;
8462 }
8463
8464 /* Make a ".reg/999" section and a ".reg" section. */
8465 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8466 size, note->descpos + offset);
8467 }
8468 #endif /* defined (HAVE_PRSTATUS_T) */
8469
8470 /* Create a pseudosection containing the exact contents of NOTE. */
8471 static bfd_boolean
8472 elfcore_make_note_pseudosection (bfd *abfd,
8473 char *name,
8474 Elf_Internal_Note *note)
8475 {
8476 return _bfd_elfcore_make_pseudosection (abfd, name,
8477 note->descsz, note->descpos);
8478 }
8479
8480 /* There isn't a consistent prfpregset_t across platforms,
8481 but it doesn't matter, because we don't have to pick this
8482 data structure apart. */
8483
8484 static bfd_boolean
8485 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8486 {
8487 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8488 }
8489
8490 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8491 type of NT_PRXFPREG. Just include the whole note's contents
8492 literally. */
8493
8494 static bfd_boolean
8495 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8496 {
8497 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8498 }
8499
8500 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8501 with a note type of NT_X86_XSTATE. Just include the whole note's
8502 contents literally. */
8503
8504 static bfd_boolean
8505 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8506 {
8507 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8508 }
8509
8510 static bfd_boolean
8511 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8512 {
8513 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8514 }
8515
8516 static bfd_boolean
8517 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8518 {
8519 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8520 }
8521
8522 static bfd_boolean
8523 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8524 {
8525 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8526 }
8527
8528 static bfd_boolean
8529 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8530 {
8531 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8532 }
8533
8534 static bfd_boolean
8535 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8536 {
8537 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8538 }
8539
8540 static bfd_boolean
8541 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8542 {
8543 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8544 }
8545
8546 static bfd_boolean
8547 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8548 {
8549 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8550 }
8551
8552 static bfd_boolean
8553 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8554 {
8555 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8556 }
8557
8558 static bfd_boolean
8559 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8560 {
8561 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8562 }
8563
8564 static bfd_boolean
8565 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8566 {
8567 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8568 }
8569
8570 static bfd_boolean
8571 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8572 {
8573 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8574 }
8575
8576 static bfd_boolean
8577 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
8578 {
8579 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
8580 }
8581
8582 static bfd_boolean
8583 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
8584 {
8585 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
8586 }
8587
8588 static bfd_boolean
8589 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8590 {
8591 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8592 }
8593
8594 static bfd_boolean
8595 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8596 {
8597 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8598 }
8599
8600 static bfd_boolean
8601 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8602 {
8603 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8604 }
8605
8606 static bfd_boolean
8607 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8608 {
8609 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8610 }
8611
8612 #if defined (HAVE_PRPSINFO_T)
8613 typedef prpsinfo_t elfcore_psinfo_t;
8614 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8615 typedef prpsinfo32_t elfcore_psinfo32_t;
8616 #endif
8617 #endif
8618
8619 #if defined (HAVE_PSINFO_T)
8620 typedef psinfo_t elfcore_psinfo_t;
8621 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8622 typedef psinfo32_t elfcore_psinfo32_t;
8623 #endif
8624 #endif
8625
8626 /* return a malloc'ed copy of a string at START which is at
8627 most MAX bytes long, possibly without a terminating '\0'.
8628 the copy will always have a terminating '\0'. */
8629
8630 char *
8631 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8632 {
8633 char *dups;
8634 char *end = (char *) memchr (start, '\0', max);
8635 size_t len;
8636
8637 if (end == NULL)
8638 len = max;
8639 else
8640 len = end - start;
8641
8642 dups = (char *) bfd_alloc (abfd, len + 1);
8643 if (dups == NULL)
8644 return NULL;
8645
8646 memcpy (dups, start, len);
8647 dups[len] = '\0';
8648
8649 return dups;
8650 }
8651
8652 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8653 static bfd_boolean
8654 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8655 {
8656 if (note->descsz == sizeof (elfcore_psinfo_t))
8657 {
8658 elfcore_psinfo_t psinfo;
8659
8660 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8661
8662 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8663 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8664 #endif
8665 elf_tdata (abfd)->core->program
8666 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8667 sizeof (psinfo.pr_fname));
8668
8669 elf_tdata (abfd)->core->command
8670 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8671 sizeof (psinfo.pr_psargs));
8672 }
8673 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8674 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8675 {
8676 /* 64-bit host, 32-bit corefile */
8677 elfcore_psinfo32_t psinfo;
8678
8679 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8680
8681 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8682 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8683 #endif
8684 elf_tdata (abfd)->core->program
8685 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8686 sizeof (psinfo.pr_fname));
8687
8688 elf_tdata (abfd)->core->command
8689 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8690 sizeof (psinfo.pr_psargs));
8691 }
8692 #endif
8693
8694 else
8695 {
8696 /* Fail - we don't know how to handle any other
8697 note size (ie. data object type). */
8698 return TRUE;
8699 }
8700
8701 /* Note that for some reason, a spurious space is tacked
8702 onto the end of the args in some (at least one anyway)
8703 implementations, so strip it off if it exists. */
8704
8705 {
8706 char *command = elf_tdata (abfd)->core->command;
8707 int n = strlen (command);
8708
8709 if (0 < n && command[n - 1] == ' ')
8710 command[n - 1] = '\0';
8711 }
8712
8713 return TRUE;
8714 }
8715 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8716
8717 #if defined (HAVE_PSTATUS_T)
8718 static bfd_boolean
8719 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8720 {
8721 if (note->descsz == sizeof (pstatus_t)
8722 #if defined (HAVE_PXSTATUS_T)
8723 || note->descsz == sizeof (pxstatus_t)
8724 #endif
8725 )
8726 {
8727 pstatus_t pstat;
8728
8729 memcpy (&pstat, note->descdata, sizeof (pstat));
8730
8731 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8732 }
8733 #if defined (HAVE_PSTATUS32_T)
8734 else if (note->descsz == sizeof (pstatus32_t))
8735 {
8736 /* 64-bit host, 32-bit corefile */
8737 pstatus32_t pstat;
8738
8739 memcpy (&pstat, note->descdata, sizeof (pstat));
8740
8741 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8742 }
8743 #endif
8744 /* Could grab some more details from the "representative"
8745 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8746 NT_LWPSTATUS note, presumably. */
8747
8748 return TRUE;
8749 }
8750 #endif /* defined (HAVE_PSTATUS_T) */
8751
8752 #if defined (HAVE_LWPSTATUS_T)
8753 static bfd_boolean
8754 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8755 {
8756 lwpstatus_t lwpstat;
8757 char buf[100];
8758 char *name;
8759 size_t len;
8760 asection *sect;
8761
8762 if (note->descsz != sizeof (lwpstat)
8763 #if defined (HAVE_LWPXSTATUS_T)
8764 && note->descsz != sizeof (lwpxstatus_t)
8765 #endif
8766 )
8767 return TRUE;
8768
8769 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8770
8771 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8772 /* Do not overwrite the core signal if it has already been set by
8773 another thread. */
8774 if (elf_tdata (abfd)->core->signal == 0)
8775 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8776
8777 /* Make a ".reg/999" section. */
8778
8779 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8780 len = strlen (buf) + 1;
8781 name = bfd_alloc (abfd, len);
8782 if (name == NULL)
8783 return FALSE;
8784 memcpy (name, buf, len);
8785
8786 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8787 if (sect == NULL)
8788 return FALSE;
8789
8790 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8791 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8792 sect->filepos = note->descpos
8793 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8794 #endif
8795
8796 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8797 sect->size = sizeof (lwpstat.pr_reg);
8798 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8799 #endif
8800
8801 sect->alignment_power = 2;
8802
8803 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8804 return FALSE;
8805
8806 /* Make a ".reg2/999" section */
8807
8808 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8809 len = strlen (buf) + 1;
8810 name = bfd_alloc (abfd, len);
8811 if (name == NULL)
8812 return FALSE;
8813 memcpy (name, buf, len);
8814
8815 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8816 if (sect == NULL)
8817 return FALSE;
8818
8819 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8820 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8821 sect->filepos = note->descpos
8822 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8823 #endif
8824
8825 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8826 sect->size = sizeof (lwpstat.pr_fpreg);
8827 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8828 #endif
8829
8830 sect->alignment_power = 2;
8831
8832 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8833 }
8834 #endif /* defined (HAVE_LWPSTATUS_T) */
8835
8836 static bfd_boolean
8837 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8838 {
8839 char buf[30];
8840 char *name;
8841 size_t len;
8842 asection *sect;
8843 int type;
8844 int is_active_thread;
8845 bfd_vma base_addr;
8846
8847 if (note->descsz < 728)
8848 return TRUE;
8849
8850 if (! CONST_STRNEQ (note->namedata, "win32"))
8851 return TRUE;
8852
8853 type = bfd_get_32 (abfd, note->descdata);
8854
8855 switch (type)
8856 {
8857 case 1 /* NOTE_INFO_PROCESS */:
8858 /* FIXME: need to add ->core->command. */
8859 /* process_info.pid */
8860 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8861 /* process_info.signal */
8862 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8863 break;
8864
8865 case 2 /* NOTE_INFO_THREAD */:
8866 /* Make a ".reg/999" section. */
8867 /* thread_info.tid */
8868 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8869
8870 len = strlen (buf) + 1;
8871 name = (char *) bfd_alloc (abfd, len);
8872 if (name == NULL)
8873 return FALSE;
8874
8875 memcpy (name, buf, len);
8876
8877 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8878 if (sect == NULL)
8879 return FALSE;
8880
8881 /* sizeof (thread_info.thread_context) */
8882 sect->size = 716;
8883 /* offsetof (thread_info.thread_context) */
8884 sect->filepos = note->descpos + 12;
8885 sect->alignment_power = 2;
8886
8887 /* thread_info.is_active_thread */
8888 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8889
8890 if (is_active_thread)
8891 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8892 return FALSE;
8893 break;
8894
8895 case 3 /* NOTE_INFO_MODULE */:
8896 /* Make a ".module/xxxxxxxx" section. */
8897 /* module_info.base_address */
8898 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8899 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8900
8901 len = strlen (buf) + 1;
8902 name = (char *) bfd_alloc (abfd, len);
8903 if (name == NULL)
8904 return FALSE;
8905
8906 memcpy (name, buf, len);
8907
8908 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8909
8910 if (sect == NULL)
8911 return FALSE;
8912
8913 sect->size = note->descsz;
8914 sect->filepos = note->descpos;
8915 sect->alignment_power = 2;
8916 break;
8917
8918 default:
8919 return TRUE;
8920 }
8921
8922 return TRUE;
8923 }
8924
8925 static bfd_boolean
8926 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8927 {
8928 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8929
8930 switch (note->type)
8931 {
8932 default:
8933 return TRUE;
8934
8935 case NT_PRSTATUS:
8936 if (bed->elf_backend_grok_prstatus)
8937 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8938 return TRUE;
8939 #if defined (HAVE_PRSTATUS_T)
8940 return elfcore_grok_prstatus (abfd, note);
8941 #else
8942 return TRUE;
8943 #endif
8944
8945 #if defined (HAVE_PSTATUS_T)
8946 case NT_PSTATUS:
8947 return elfcore_grok_pstatus (abfd, note);
8948 #endif
8949
8950 #if defined (HAVE_LWPSTATUS_T)
8951 case NT_LWPSTATUS:
8952 return elfcore_grok_lwpstatus (abfd, note);
8953 #endif
8954
8955 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8956 return elfcore_grok_prfpreg (abfd, note);
8957
8958 case NT_WIN32PSTATUS:
8959 return elfcore_grok_win32pstatus (abfd, note);
8960
8961 case NT_PRXFPREG: /* Linux SSE extension */
8962 if (note->namesz == 6
8963 && strcmp (note->namedata, "LINUX") == 0)
8964 return elfcore_grok_prxfpreg (abfd, note);
8965 else
8966 return TRUE;
8967
8968 case NT_X86_XSTATE: /* Linux XSAVE extension */
8969 if (note->namesz == 6
8970 && strcmp (note->namedata, "LINUX") == 0)
8971 return elfcore_grok_xstatereg (abfd, note);
8972 else if (note->namesz == 8
8973 && strcmp (note->namedata, "FreeBSD") == 0)
8974 return elfcore_grok_xstatereg (abfd, note);
8975 else
8976 return TRUE;
8977
8978 case NT_PPC_VMX:
8979 if (note->namesz == 6
8980 && strcmp (note->namedata, "LINUX") == 0)
8981 return elfcore_grok_ppc_vmx (abfd, note);
8982 else
8983 return TRUE;
8984
8985 case NT_PPC_VSX:
8986 if (note->namesz == 6
8987 && strcmp (note->namedata, "LINUX") == 0)
8988 return elfcore_grok_ppc_vsx (abfd, note);
8989 else
8990 return TRUE;
8991
8992 case NT_S390_HIGH_GPRS:
8993 if (note->namesz == 6
8994 && strcmp (note->namedata, "LINUX") == 0)
8995 return elfcore_grok_s390_high_gprs (abfd, note);
8996 else
8997 return TRUE;
8998
8999 case NT_S390_TIMER:
9000 if (note->namesz == 6
9001 && strcmp (note->namedata, "LINUX") == 0)
9002 return elfcore_grok_s390_timer (abfd, note);
9003 else
9004 return TRUE;
9005
9006 case NT_S390_TODCMP:
9007 if (note->namesz == 6
9008 && strcmp (note->namedata, "LINUX") == 0)
9009 return elfcore_grok_s390_todcmp (abfd, note);
9010 else
9011 return TRUE;
9012
9013 case NT_S390_TODPREG:
9014 if (note->namesz == 6
9015 && strcmp (note->namedata, "LINUX") == 0)
9016 return elfcore_grok_s390_todpreg (abfd, note);
9017 else
9018 return TRUE;
9019
9020 case NT_S390_CTRS:
9021 if (note->namesz == 6
9022 && strcmp (note->namedata, "LINUX") == 0)
9023 return elfcore_grok_s390_ctrs (abfd, note);
9024 else
9025 return TRUE;
9026
9027 case NT_S390_PREFIX:
9028 if (note->namesz == 6
9029 && strcmp (note->namedata, "LINUX") == 0)
9030 return elfcore_grok_s390_prefix (abfd, note);
9031 else
9032 return TRUE;
9033
9034 case NT_S390_LAST_BREAK:
9035 if (note->namesz == 6
9036 && strcmp (note->namedata, "LINUX") == 0)
9037 return elfcore_grok_s390_last_break (abfd, note);
9038 else
9039 return TRUE;
9040
9041 case NT_S390_SYSTEM_CALL:
9042 if (note->namesz == 6
9043 && strcmp (note->namedata, "LINUX") == 0)
9044 return elfcore_grok_s390_system_call (abfd, note);
9045 else
9046 return TRUE;
9047
9048 case NT_S390_TDB:
9049 if (note->namesz == 6
9050 && strcmp (note->namedata, "LINUX") == 0)
9051 return elfcore_grok_s390_tdb (abfd, note);
9052 else
9053 return TRUE;
9054
9055 case NT_S390_VXRS_LOW:
9056 if (note->namesz == 6
9057 && strcmp (note->namedata, "LINUX") == 0)
9058 return elfcore_grok_s390_vxrs_low (abfd, note);
9059 else
9060 return TRUE;
9061
9062 case NT_S390_VXRS_HIGH:
9063 if (note->namesz == 6
9064 && strcmp (note->namedata, "LINUX") == 0)
9065 return elfcore_grok_s390_vxrs_high (abfd, note);
9066 else
9067 return TRUE;
9068
9069 case NT_ARM_VFP:
9070 if (note->namesz == 6
9071 && strcmp (note->namedata, "LINUX") == 0)
9072 return elfcore_grok_arm_vfp (abfd, note);
9073 else
9074 return TRUE;
9075
9076 case NT_ARM_TLS:
9077 if (note->namesz == 6
9078 && strcmp (note->namedata, "LINUX") == 0)
9079 return elfcore_grok_aarch_tls (abfd, note);
9080 else
9081 return TRUE;
9082
9083 case NT_ARM_HW_BREAK:
9084 if (note->namesz == 6
9085 && strcmp (note->namedata, "LINUX") == 0)
9086 return elfcore_grok_aarch_hw_break (abfd, note);
9087 else
9088 return TRUE;
9089
9090 case NT_ARM_HW_WATCH:
9091 if (note->namesz == 6
9092 && strcmp (note->namedata, "LINUX") == 0)
9093 return elfcore_grok_aarch_hw_watch (abfd, note);
9094 else
9095 return TRUE;
9096
9097 case NT_PRPSINFO:
9098 case NT_PSINFO:
9099 if (bed->elf_backend_grok_psinfo)
9100 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9101 return TRUE;
9102 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9103 return elfcore_grok_psinfo (abfd, note);
9104 #else
9105 return TRUE;
9106 #endif
9107
9108 case NT_AUXV:
9109 {
9110 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9111 SEC_HAS_CONTENTS);
9112
9113 if (sect == NULL)
9114 return FALSE;
9115 sect->size = note->descsz;
9116 sect->filepos = note->descpos;
9117 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9118
9119 return TRUE;
9120 }
9121
9122 case NT_FILE:
9123 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9124 note);
9125
9126 case NT_SIGINFO:
9127 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9128 note);
9129 }
9130 }
9131
9132 static bfd_boolean
9133 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9134 {
9135 struct bfd_build_id* build_id;
9136
9137 if (note->descsz == 0)
9138 return FALSE;
9139
9140 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9141 if (build_id == NULL)
9142 return FALSE;
9143
9144 build_id->size = note->descsz;
9145 memcpy (build_id->data, note->descdata, note->descsz);
9146 abfd->build_id = build_id;
9147
9148 return TRUE;
9149 }
9150
9151 static bfd_boolean
9152 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9153 {
9154 switch (note->type)
9155 {
9156 default:
9157 return TRUE;
9158
9159 case NT_GNU_BUILD_ID:
9160 return elfobj_grok_gnu_build_id (abfd, note);
9161 }
9162 }
9163
9164 static bfd_boolean
9165 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9166 {
9167 struct sdt_note *cur =
9168 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9169 + note->descsz);
9170
9171 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9172 cur->size = (bfd_size_type) note->descsz;
9173 memcpy (cur->data, note->descdata, note->descsz);
9174
9175 elf_tdata (abfd)->sdt_note_head = cur;
9176
9177 return TRUE;
9178 }
9179
9180 static bfd_boolean
9181 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9182 {
9183 switch (note->type)
9184 {
9185 case NT_STAPSDT:
9186 return elfobj_grok_stapsdt_note_1 (abfd, note);
9187
9188 default:
9189 return TRUE;
9190 }
9191 }
9192
9193 static bfd_boolean
9194 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
9195 {
9196 char *cp;
9197
9198 cp = strchr (note->namedata, '@');
9199 if (cp != NULL)
9200 {
9201 *lwpidp = atoi(cp + 1);
9202 return TRUE;
9203 }
9204 return FALSE;
9205 }
9206
9207 static bfd_boolean
9208 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9209 {
9210 /* Signal number at offset 0x08. */
9211 elf_tdata (abfd)->core->signal
9212 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9213
9214 /* Process ID at offset 0x50. */
9215 elf_tdata (abfd)->core->pid
9216 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
9217
9218 /* Command name at 0x7c (max 32 bytes, including nul). */
9219 elf_tdata (abfd)->core->command
9220 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
9221
9222 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
9223 note);
9224 }
9225
9226 static bfd_boolean
9227 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
9228 {
9229 int lwp;
9230
9231 if (elfcore_netbsd_get_lwpid (note, &lwp))
9232 elf_tdata (abfd)->core->lwpid = lwp;
9233
9234 if (note->type == NT_NETBSDCORE_PROCINFO)
9235 {
9236 /* NetBSD-specific core "procinfo". Note that we expect to
9237 find this note before any of the others, which is fine,
9238 since the kernel writes this note out first when it
9239 creates a core file. */
9240
9241 return elfcore_grok_netbsd_procinfo (abfd, note);
9242 }
9243
9244 /* As of Jan 2002 there are no other machine-independent notes
9245 defined for NetBSD core files. If the note type is less
9246 than the start of the machine-dependent note types, we don't
9247 understand it. */
9248
9249 if (note->type < NT_NETBSDCORE_FIRSTMACH)
9250 return TRUE;
9251
9252
9253 switch (bfd_get_arch (abfd))
9254 {
9255 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
9256 PT_GETFPREGS == mach+2. */
9257
9258 case bfd_arch_alpha:
9259 case bfd_arch_sparc:
9260 switch (note->type)
9261 {
9262 case NT_NETBSDCORE_FIRSTMACH+0:
9263 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9264
9265 case NT_NETBSDCORE_FIRSTMACH+2:
9266 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9267
9268 default:
9269 return TRUE;
9270 }
9271
9272 /* On all other arch's, PT_GETREGS == mach+1 and
9273 PT_GETFPREGS == mach+3. */
9274
9275 default:
9276 switch (note->type)
9277 {
9278 case NT_NETBSDCORE_FIRSTMACH+1:
9279 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9280
9281 case NT_NETBSDCORE_FIRSTMACH+3:
9282 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9283
9284 default:
9285 return TRUE;
9286 }
9287 }
9288 /* NOTREACHED */
9289 }
9290
9291 static bfd_boolean
9292 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9293 {
9294 /* Signal number at offset 0x08. */
9295 elf_tdata (abfd)->core->signal
9296 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9297
9298 /* Process ID at offset 0x20. */
9299 elf_tdata (abfd)->core->pid
9300 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
9301
9302 /* Command name at 0x48 (max 32 bytes, including nul). */
9303 elf_tdata (abfd)->core->command
9304 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
9305
9306 return TRUE;
9307 }
9308
9309 static bfd_boolean
9310 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
9311 {
9312 if (note->type == NT_OPENBSD_PROCINFO)
9313 return elfcore_grok_openbsd_procinfo (abfd, note);
9314
9315 if (note->type == NT_OPENBSD_REGS)
9316 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9317
9318 if (note->type == NT_OPENBSD_FPREGS)
9319 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9320
9321 if (note->type == NT_OPENBSD_XFPREGS)
9322 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9323
9324 if (note->type == NT_OPENBSD_AUXV)
9325 {
9326 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9327 SEC_HAS_CONTENTS);
9328
9329 if (sect == NULL)
9330 return FALSE;
9331 sect->size = note->descsz;
9332 sect->filepos = note->descpos;
9333 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9334
9335 return TRUE;
9336 }
9337
9338 if (note->type == NT_OPENBSD_WCOOKIE)
9339 {
9340 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
9341 SEC_HAS_CONTENTS);
9342
9343 if (sect == NULL)
9344 return FALSE;
9345 sect->size = note->descsz;
9346 sect->filepos = note->descpos;
9347 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9348
9349 return TRUE;
9350 }
9351
9352 return TRUE;
9353 }
9354
9355 static bfd_boolean
9356 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
9357 {
9358 void *ddata = note->descdata;
9359 char buf[100];
9360 char *name;
9361 asection *sect;
9362 short sig;
9363 unsigned flags;
9364
9365 /* nto_procfs_status 'pid' field is at offset 0. */
9366 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
9367
9368 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
9369 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
9370
9371 /* nto_procfs_status 'flags' field is at offset 8. */
9372 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
9373
9374 /* nto_procfs_status 'what' field is at offset 14. */
9375 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
9376 {
9377 elf_tdata (abfd)->core->signal = sig;
9378 elf_tdata (abfd)->core->lwpid = *tid;
9379 }
9380
9381 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9382 do not come from signals so we make sure we set the current
9383 thread just in case. */
9384 if (flags & 0x00000080)
9385 elf_tdata (abfd)->core->lwpid = *tid;
9386
9387 /* Make a ".qnx_core_status/%d" section. */
9388 sprintf (buf, ".qnx_core_status/%ld", *tid);
9389
9390 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9391 if (name == NULL)
9392 return FALSE;
9393 strcpy (name, buf);
9394
9395 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9396 if (sect == NULL)
9397 return FALSE;
9398
9399 sect->size = note->descsz;
9400 sect->filepos = note->descpos;
9401 sect->alignment_power = 2;
9402
9403 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9404 }
9405
9406 static bfd_boolean
9407 elfcore_grok_nto_regs (bfd *abfd,
9408 Elf_Internal_Note *note,
9409 long tid,
9410 char *base)
9411 {
9412 char buf[100];
9413 char *name;
9414 asection *sect;
9415
9416 /* Make a "(base)/%d" section. */
9417 sprintf (buf, "%s/%ld", base, tid);
9418
9419 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9420 if (name == NULL)
9421 return FALSE;
9422 strcpy (name, buf);
9423
9424 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9425 if (sect == NULL)
9426 return FALSE;
9427
9428 sect->size = note->descsz;
9429 sect->filepos = note->descpos;
9430 sect->alignment_power = 2;
9431
9432 /* This is the current thread. */
9433 if (elf_tdata (abfd)->core->lwpid == tid)
9434 return elfcore_maybe_make_sect (abfd, base, sect);
9435
9436 return TRUE;
9437 }
9438
9439 #define BFD_QNT_CORE_INFO 7
9440 #define BFD_QNT_CORE_STATUS 8
9441 #define BFD_QNT_CORE_GREG 9
9442 #define BFD_QNT_CORE_FPREG 10
9443
9444 static bfd_boolean
9445 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9446 {
9447 /* Every GREG section has a STATUS section before it. Store the
9448 tid from the previous call to pass down to the next gregs
9449 function. */
9450 static long tid = 1;
9451
9452 switch (note->type)
9453 {
9454 case BFD_QNT_CORE_INFO:
9455 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9456 case BFD_QNT_CORE_STATUS:
9457 return elfcore_grok_nto_status (abfd, note, &tid);
9458 case BFD_QNT_CORE_GREG:
9459 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9460 case BFD_QNT_CORE_FPREG:
9461 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9462 default:
9463 return TRUE;
9464 }
9465 }
9466
9467 static bfd_boolean
9468 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9469 {
9470 char *name;
9471 asection *sect;
9472 size_t len;
9473
9474 /* Use note name as section name. */
9475 len = note->namesz;
9476 name = (char *) bfd_alloc (abfd, len);
9477 if (name == NULL)
9478 return FALSE;
9479 memcpy (name, note->namedata, len);
9480 name[len - 1] = '\0';
9481
9482 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9483 if (sect == NULL)
9484 return FALSE;
9485
9486 sect->size = note->descsz;
9487 sect->filepos = note->descpos;
9488 sect->alignment_power = 1;
9489
9490 return TRUE;
9491 }
9492
9493 /* Function: elfcore_write_note
9494
9495 Inputs:
9496 buffer to hold note, and current size of buffer
9497 name of note
9498 type of note
9499 data for note
9500 size of data for note
9501
9502 Writes note to end of buffer. ELF64 notes are written exactly as
9503 for ELF32, despite the current (as of 2006) ELF gabi specifying
9504 that they ought to have 8-byte namesz and descsz field, and have
9505 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9506
9507 Return:
9508 Pointer to realloc'd buffer, *BUFSIZ updated. */
9509
9510 char *
9511 elfcore_write_note (bfd *abfd,
9512 char *buf,
9513 int *bufsiz,
9514 const char *name,
9515 int type,
9516 const void *input,
9517 int size)
9518 {
9519 Elf_External_Note *xnp;
9520 size_t namesz;
9521 size_t newspace;
9522 char *dest;
9523
9524 namesz = 0;
9525 if (name != NULL)
9526 namesz = strlen (name) + 1;
9527
9528 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9529
9530 buf = (char *) realloc (buf, *bufsiz + newspace);
9531 if (buf == NULL)
9532 return buf;
9533 dest = buf + *bufsiz;
9534 *bufsiz += newspace;
9535 xnp = (Elf_External_Note *) dest;
9536 H_PUT_32 (abfd, namesz, xnp->namesz);
9537 H_PUT_32 (abfd, size, xnp->descsz);
9538 H_PUT_32 (abfd, type, xnp->type);
9539 dest = xnp->name;
9540 if (name != NULL)
9541 {
9542 memcpy (dest, name, namesz);
9543 dest += namesz;
9544 while (namesz & 3)
9545 {
9546 *dest++ = '\0';
9547 ++namesz;
9548 }
9549 }
9550 memcpy (dest, input, size);
9551 dest += size;
9552 while (size & 3)
9553 {
9554 *dest++ = '\0';
9555 ++size;
9556 }
9557 return buf;
9558 }
9559
9560 char *
9561 elfcore_write_prpsinfo (bfd *abfd,
9562 char *buf,
9563 int *bufsiz,
9564 const char *fname,
9565 const char *psargs)
9566 {
9567 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9568
9569 if (bed->elf_backend_write_core_note != NULL)
9570 {
9571 char *ret;
9572 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9573 NT_PRPSINFO, fname, psargs);
9574 if (ret != NULL)
9575 return ret;
9576 }
9577
9578 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9579 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9580 if (bed->s->elfclass == ELFCLASS32)
9581 {
9582 #if defined (HAVE_PSINFO32_T)
9583 psinfo32_t data;
9584 int note_type = NT_PSINFO;
9585 #else
9586 prpsinfo32_t data;
9587 int note_type = NT_PRPSINFO;
9588 #endif
9589
9590 memset (&data, 0, sizeof (data));
9591 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9592 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9593 return elfcore_write_note (abfd, buf, bufsiz,
9594 "CORE", note_type, &data, sizeof (data));
9595 }
9596 else
9597 #endif
9598 {
9599 #if defined (HAVE_PSINFO_T)
9600 psinfo_t data;
9601 int note_type = NT_PSINFO;
9602 #else
9603 prpsinfo_t data;
9604 int note_type = NT_PRPSINFO;
9605 #endif
9606
9607 memset (&data, 0, sizeof (data));
9608 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9609 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9610 return elfcore_write_note (abfd, buf, bufsiz,
9611 "CORE", note_type, &data, sizeof (data));
9612 }
9613 #endif /* PSINFO_T or PRPSINFO_T */
9614
9615 free (buf);
9616 return NULL;
9617 }
9618
9619 char *
9620 elfcore_write_linux_prpsinfo32
9621 (bfd *abfd, char *buf, int *bufsiz,
9622 const struct elf_internal_linux_prpsinfo *prpsinfo)
9623 {
9624 struct elf_external_linux_prpsinfo32 data;
9625
9626 memset (&data, 0, sizeof (data));
9627 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9628
9629 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9630 &data, sizeof (data));
9631 }
9632
9633 char *
9634 elfcore_write_linux_prpsinfo64
9635 (bfd *abfd, char *buf, int *bufsiz,
9636 const struct elf_internal_linux_prpsinfo *prpsinfo)
9637 {
9638 struct elf_external_linux_prpsinfo64 data;
9639
9640 memset (&data, 0, sizeof (data));
9641 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9642
9643 return elfcore_write_note (abfd, buf, bufsiz,
9644 "CORE", NT_PRPSINFO, &data, sizeof (data));
9645 }
9646
9647 char *
9648 elfcore_write_prstatus (bfd *abfd,
9649 char *buf,
9650 int *bufsiz,
9651 long pid,
9652 int cursig,
9653 const void *gregs)
9654 {
9655 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9656
9657 if (bed->elf_backend_write_core_note != NULL)
9658 {
9659 char *ret;
9660 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9661 NT_PRSTATUS,
9662 pid, cursig, gregs);
9663 if (ret != NULL)
9664 return ret;
9665 }
9666
9667 #if defined (HAVE_PRSTATUS_T)
9668 #if defined (HAVE_PRSTATUS32_T)
9669 if (bed->s->elfclass == ELFCLASS32)
9670 {
9671 prstatus32_t prstat;
9672
9673 memset (&prstat, 0, sizeof (prstat));
9674 prstat.pr_pid = pid;
9675 prstat.pr_cursig = cursig;
9676 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9677 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9678 NT_PRSTATUS, &prstat, sizeof (prstat));
9679 }
9680 else
9681 #endif
9682 {
9683 prstatus_t prstat;
9684
9685 memset (&prstat, 0, sizeof (prstat));
9686 prstat.pr_pid = pid;
9687 prstat.pr_cursig = cursig;
9688 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9689 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9690 NT_PRSTATUS, &prstat, sizeof (prstat));
9691 }
9692 #endif /* HAVE_PRSTATUS_T */
9693
9694 free (buf);
9695 return NULL;
9696 }
9697
9698 #if defined (HAVE_LWPSTATUS_T)
9699 char *
9700 elfcore_write_lwpstatus (bfd *abfd,
9701 char *buf,
9702 int *bufsiz,
9703 long pid,
9704 int cursig,
9705 const void *gregs)
9706 {
9707 lwpstatus_t lwpstat;
9708 const char *note_name = "CORE";
9709
9710 memset (&lwpstat, 0, sizeof (lwpstat));
9711 lwpstat.pr_lwpid = pid >> 16;
9712 lwpstat.pr_cursig = cursig;
9713 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9714 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9715 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9716 #if !defined(gregs)
9717 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9718 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9719 #else
9720 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9721 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9722 #endif
9723 #endif
9724 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9725 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9726 }
9727 #endif /* HAVE_LWPSTATUS_T */
9728
9729 #if defined (HAVE_PSTATUS_T)
9730 char *
9731 elfcore_write_pstatus (bfd *abfd,
9732 char *buf,
9733 int *bufsiz,
9734 long pid,
9735 int cursig ATTRIBUTE_UNUSED,
9736 const void *gregs ATTRIBUTE_UNUSED)
9737 {
9738 const char *note_name = "CORE";
9739 #if defined (HAVE_PSTATUS32_T)
9740 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9741
9742 if (bed->s->elfclass == ELFCLASS32)
9743 {
9744 pstatus32_t pstat;
9745
9746 memset (&pstat, 0, sizeof (pstat));
9747 pstat.pr_pid = pid & 0xffff;
9748 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9749 NT_PSTATUS, &pstat, sizeof (pstat));
9750 return buf;
9751 }
9752 else
9753 #endif
9754 {
9755 pstatus_t pstat;
9756
9757 memset (&pstat, 0, sizeof (pstat));
9758 pstat.pr_pid = pid & 0xffff;
9759 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9760 NT_PSTATUS, &pstat, sizeof (pstat));
9761 return buf;
9762 }
9763 }
9764 #endif /* HAVE_PSTATUS_T */
9765
9766 char *
9767 elfcore_write_prfpreg (bfd *abfd,
9768 char *buf,
9769 int *bufsiz,
9770 const void *fpregs,
9771 int size)
9772 {
9773 const char *note_name = "CORE";
9774 return elfcore_write_note (abfd, buf, bufsiz,
9775 note_name, NT_FPREGSET, fpregs, size);
9776 }
9777
9778 char *
9779 elfcore_write_prxfpreg (bfd *abfd,
9780 char *buf,
9781 int *bufsiz,
9782 const void *xfpregs,
9783 int size)
9784 {
9785 char *note_name = "LINUX";
9786 return elfcore_write_note (abfd, buf, bufsiz,
9787 note_name, NT_PRXFPREG, xfpregs, size);
9788 }
9789
9790 char *
9791 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9792 const void *xfpregs, int size)
9793 {
9794 char *note_name;
9795 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
9796 note_name = "FreeBSD";
9797 else
9798 note_name = "LINUX";
9799 return elfcore_write_note (abfd, buf, bufsiz,
9800 note_name, NT_X86_XSTATE, xfpregs, size);
9801 }
9802
9803 char *
9804 elfcore_write_ppc_vmx (bfd *abfd,
9805 char *buf,
9806 int *bufsiz,
9807 const void *ppc_vmx,
9808 int size)
9809 {
9810 char *note_name = "LINUX";
9811 return elfcore_write_note (abfd, buf, bufsiz,
9812 note_name, NT_PPC_VMX, ppc_vmx, size);
9813 }
9814
9815 char *
9816 elfcore_write_ppc_vsx (bfd *abfd,
9817 char *buf,
9818 int *bufsiz,
9819 const void *ppc_vsx,
9820 int size)
9821 {
9822 char *note_name = "LINUX";
9823 return elfcore_write_note (abfd, buf, bufsiz,
9824 note_name, NT_PPC_VSX, ppc_vsx, size);
9825 }
9826
9827 static char *
9828 elfcore_write_s390_high_gprs (bfd *abfd,
9829 char *buf,
9830 int *bufsiz,
9831 const void *s390_high_gprs,
9832 int size)
9833 {
9834 char *note_name = "LINUX";
9835 return elfcore_write_note (abfd, buf, bufsiz,
9836 note_name, NT_S390_HIGH_GPRS,
9837 s390_high_gprs, size);
9838 }
9839
9840 char *
9841 elfcore_write_s390_timer (bfd *abfd,
9842 char *buf,
9843 int *bufsiz,
9844 const void *s390_timer,
9845 int size)
9846 {
9847 char *note_name = "LINUX";
9848 return elfcore_write_note (abfd, buf, bufsiz,
9849 note_name, NT_S390_TIMER, s390_timer, size);
9850 }
9851
9852 char *
9853 elfcore_write_s390_todcmp (bfd *abfd,
9854 char *buf,
9855 int *bufsiz,
9856 const void *s390_todcmp,
9857 int size)
9858 {
9859 char *note_name = "LINUX";
9860 return elfcore_write_note (abfd, buf, bufsiz,
9861 note_name, NT_S390_TODCMP, s390_todcmp, size);
9862 }
9863
9864 char *
9865 elfcore_write_s390_todpreg (bfd *abfd,
9866 char *buf,
9867 int *bufsiz,
9868 const void *s390_todpreg,
9869 int size)
9870 {
9871 char *note_name = "LINUX";
9872 return elfcore_write_note (abfd, buf, bufsiz,
9873 note_name, NT_S390_TODPREG, s390_todpreg, size);
9874 }
9875
9876 char *
9877 elfcore_write_s390_ctrs (bfd *abfd,
9878 char *buf,
9879 int *bufsiz,
9880 const void *s390_ctrs,
9881 int size)
9882 {
9883 char *note_name = "LINUX";
9884 return elfcore_write_note (abfd, buf, bufsiz,
9885 note_name, NT_S390_CTRS, s390_ctrs, size);
9886 }
9887
9888 char *
9889 elfcore_write_s390_prefix (bfd *abfd,
9890 char *buf,
9891 int *bufsiz,
9892 const void *s390_prefix,
9893 int size)
9894 {
9895 char *note_name = "LINUX";
9896 return elfcore_write_note (abfd, buf, bufsiz,
9897 note_name, NT_S390_PREFIX, s390_prefix, size);
9898 }
9899
9900 char *
9901 elfcore_write_s390_last_break (bfd *abfd,
9902 char *buf,
9903 int *bufsiz,
9904 const void *s390_last_break,
9905 int size)
9906 {
9907 char *note_name = "LINUX";
9908 return elfcore_write_note (abfd, buf, bufsiz,
9909 note_name, NT_S390_LAST_BREAK,
9910 s390_last_break, size);
9911 }
9912
9913 char *
9914 elfcore_write_s390_system_call (bfd *abfd,
9915 char *buf,
9916 int *bufsiz,
9917 const void *s390_system_call,
9918 int size)
9919 {
9920 char *note_name = "LINUX";
9921 return elfcore_write_note (abfd, buf, bufsiz,
9922 note_name, NT_S390_SYSTEM_CALL,
9923 s390_system_call, size);
9924 }
9925
9926 char *
9927 elfcore_write_s390_tdb (bfd *abfd,
9928 char *buf,
9929 int *bufsiz,
9930 const void *s390_tdb,
9931 int size)
9932 {
9933 char *note_name = "LINUX";
9934 return elfcore_write_note (abfd, buf, bufsiz,
9935 note_name, NT_S390_TDB, s390_tdb, size);
9936 }
9937
9938 char *
9939 elfcore_write_s390_vxrs_low (bfd *abfd,
9940 char *buf,
9941 int *bufsiz,
9942 const void *s390_vxrs_low,
9943 int size)
9944 {
9945 char *note_name = "LINUX";
9946 return elfcore_write_note (abfd, buf, bufsiz,
9947 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
9948 }
9949
9950 char *
9951 elfcore_write_s390_vxrs_high (bfd *abfd,
9952 char *buf,
9953 int *bufsiz,
9954 const void *s390_vxrs_high,
9955 int size)
9956 {
9957 char *note_name = "LINUX";
9958 return elfcore_write_note (abfd, buf, bufsiz,
9959 note_name, NT_S390_VXRS_HIGH,
9960 s390_vxrs_high, size);
9961 }
9962
9963 char *
9964 elfcore_write_arm_vfp (bfd *abfd,
9965 char *buf,
9966 int *bufsiz,
9967 const void *arm_vfp,
9968 int size)
9969 {
9970 char *note_name = "LINUX";
9971 return elfcore_write_note (abfd, buf, bufsiz,
9972 note_name, NT_ARM_VFP, arm_vfp, size);
9973 }
9974
9975 char *
9976 elfcore_write_aarch_tls (bfd *abfd,
9977 char *buf,
9978 int *bufsiz,
9979 const void *aarch_tls,
9980 int size)
9981 {
9982 char *note_name = "LINUX";
9983 return elfcore_write_note (abfd, buf, bufsiz,
9984 note_name, NT_ARM_TLS, aarch_tls, size);
9985 }
9986
9987 char *
9988 elfcore_write_aarch_hw_break (bfd *abfd,
9989 char *buf,
9990 int *bufsiz,
9991 const void *aarch_hw_break,
9992 int size)
9993 {
9994 char *note_name = "LINUX";
9995 return elfcore_write_note (abfd, buf, bufsiz,
9996 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9997 }
9998
9999 char *
10000 elfcore_write_aarch_hw_watch (bfd *abfd,
10001 char *buf,
10002 int *bufsiz,
10003 const void *aarch_hw_watch,
10004 int size)
10005 {
10006 char *note_name = "LINUX";
10007 return elfcore_write_note (abfd, buf, bufsiz,
10008 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10009 }
10010
10011 char *
10012 elfcore_write_register_note (bfd *abfd,
10013 char *buf,
10014 int *bufsiz,
10015 const char *section,
10016 const void *data,
10017 int size)
10018 {
10019 if (strcmp (section, ".reg2") == 0)
10020 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10021 if (strcmp (section, ".reg-xfp") == 0)
10022 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10023 if (strcmp (section, ".reg-xstate") == 0)
10024 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10025 if (strcmp (section, ".reg-ppc-vmx") == 0)
10026 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10027 if (strcmp (section, ".reg-ppc-vsx") == 0)
10028 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10029 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10030 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10031 if (strcmp (section, ".reg-s390-timer") == 0)
10032 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10033 if (strcmp (section, ".reg-s390-todcmp") == 0)
10034 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10035 if (strcmp (section, ".reg-s390-todpreg") == 0)
10036 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10037 if (strcmp (section, ".reg-s390-ctrs") == 0)
10038 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10039 if (strcmp (section, ".reg-s390-prefix") == 0)
10040 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10041 if (strcmp (section, ".reg-s390-last-break") == 0)
10042 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10043 if (strcmp (section, ".reg-s390-system-call") == 0)
10044 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10045 if (strcmp (section, ".reg-s390-tdb") == 0)
10046 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10047 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10048 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10049 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10050 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10051 if (strcmp (section, ".reg-arm-vfp") == 0)
10052 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10053 if (strcmp (section, ".reg-aarch-tls") == 0)
10054 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10055 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10056 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10057 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10058 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
10059 return NULL;
10060 }
10061
10062 static bfd_boolean
10063 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
10064 {
10065 char *p;
10066
10067 p = buf;
10068 while (p < buf + size)
10069 {
10070 /* FIXME: bad alignment assumption. */
10071 Elf_External_Note *xnp = (Elf_External_Note *) p;
10072 Elf_Internal_Note in;
10073
10074 if (offsetof (Elf_External_Note, name) > buf - p + size)
10075 return FALSE;
10076
10077 in.type = H_GET_32 (abfd, xnp->type);
10078
10079 in.namesz = H_GET_32 (abfd, xnp->namesz);
10080 in.namedata = xnp->name;
10081 if (in.namesz > buf - in.namedata + size)
10082 return FALSE;
10083
10084 in.descsz = H_GET_32 (abfd, xnp->descsz);
10085 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
10086 in.descpos = offset + (in.descdata - buf);
10087 if (in.descsz != 0
10088 && (in.descdata >= buf + size
10089 || in.descsz > buf - in.descdata + size))
10090 return FALSE;
10091
10092 switch (bfd_get_format (abfd))
10093 {
10094 default:
10095 return TRUE;
10096
10097 case bfd_core:
10098 {
10099 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
10100 struct
10101 {
10102 const char * string;
10103 size_t len;
10104 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
10105 }
10106 grokers[] =
10107 {
10108 GROKER_ELEMENT ("", elfcore_grok_note),
10109 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
10110 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
10111 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
10112 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
10113 };
10114 #undef GROKER_ELEMENT
10115 int i;
10116
10117 for (i = ARRAY_SIZE (grokers); i--;)
10118 {
10119 if (in.namesz >= grokers[i].len
10120 && strncmp (in.namedata, grokers[i].string,
10121 grokers[i].len) == 0)
10122 {
10123 if (! grokers[i].func (abfd, & in))
10124 return FALSE;
10125 break;
10126 }
10127 }
10128 break;
10129 }
10130
10131 case bfd_object:
10132 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10133 {
10134 if (! elfobj_grok_gnu_note (abfd, &in))
10135 return FALSE;
10136 }
10137 else if (in.namesz == sizeof "stapsdt"
10138 && strcmp (in.namedata, "stapsdt") == 0)
10139 {
10140 if (! elfobj_grok_stapsdt_note (abfd, &in))
10141 return FALSE;
10142 }
10143 break;
10144 }
10145
10146 p = in.descdata + BFD_ALIGN (in.descsz, 4);
10147 }
10148
10149 return TRUE;
10150 }
10151
10152 static bfd_boolean
10153 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
10154 {
10155 char *buf;
10156
10157 if (size <= 0)
10158 return TRUE;
10159
10160 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
10161 return FALSE;
10162
10163 buf = (char *) bfd_malloc (size + 1);
10164 if (buf == NULL)
10165 return FALSE;
10166
10167 /* PR 17512: file: ec08f814
10168 0-termintate the buffer so that string searches will not overflow. */
10169 buf[size] = 0;
10170
10171 if (bfd_bread (buf, size, abfd) != size
10172 || !elf_parse_notes (abfd, buf, size, offset))
10173 {
10174 free (buf);
10175 return FALSE;
10176 }
10177
10178 free (buf);
10179 return TRUE;
10180 }
10181 \f
10182 /* Providing external access to the ELF program header table. */
10183
10184 /* Return an upper bound on the number of bytes required to store a
10185 copy of ABFD's program header table entries. Return -1 if an error
10186 occurs; bfd_get_error will return an appropriate code. */
10187
10188 long
10189 bfd_get_elf_phdr_upper_bound (bfd *abfd)
10190 {
10191 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10192 {
10193 bfd_set_error (bfd_error_wrong_format);
10194 return -1;
10195 }
10196
10197 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
10198 }
10199
10200 /* Copy ABFD's program header table entries to *PHDRS. The entries
10201 will be stored as an array of Elf_Internal_Phdr structures, as
10202 defined in include/elf/internal.h. To find out how large the
10203 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
10204
10205 Return the number of program header table entries read, or -1 if an
10206 error occurs; bfd_get_error will return an appropriate code. */
10207
10208 int
10209 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
10210 {
10211 int num_phdrs;
10212
10213 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10214 {
10215 bfd_set_error (bfd_error_wrong_format);
10216 return -1;
10217 }
10218
10219 num_phdrs = elf_elfheader (abfd)->e_phnum;
10220 memcpy (phdrs, elf_tdata (abfd)->phdr,
10221 num_phdrs * sizeof (Elf_Internal_Phdr));
10222
10223 return num_phdrs;
10224 }
10225
10226 enum elf_reloc_type_class
10227 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
10228 const asection *rel_sec ATTRIBUTE_UNUSED,
10229 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
10230 {
10231 return reloc_class_normal;
10232 }
10233
10234 /* For RELA architectures, return the relocation value for a
10235 relocation against a local symbol. */
10236
10237 bfd_vma
10238 _bfd_elf_rela_local_sym (bfd *abfd,
10239 Elf_Internal_Sym *sym,
10240 asection **psec,
10241 Elf_Internal_Rela *rel)
10242 {
10243 asection *sec = *psec;
10244 bfd_vma relocation;
10245
10246 relocation = (sec->output_section->vma
10247 + sec->output_offset
10248 + sym->st_value);
10249 if ((sec->flags & SEC_MERGE)
10250 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
10251 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
10252 {
10253 rel->r_addend =
10254 _bfd_merged_section_offset (abfd, psec,
10255 elf_section_data (sec)->sec_info,
10256 sym->st_value + rel->r_addend);
10257 if (sec != *psec)
10258 {
10259 /* If we have changed the section, and our original section is
10260 marked with SEC_EXCLUDE, it means that the original
10261 SEC_MERGE section has been completely subsumed in some
10262 other SEC_MERGE section. In this case, we need to leave
10263 some info around for --emit-relocs. */
10264 if ((sec->flags & SEC_EXCLUDE) != 0)
10265 sec->kept_section = *psec;
10266 sec = *psec;
10267 }
10268 rel->r_addend -= relocation;
10269 rel->r_addend += sec->output_section->vma + sec->output_offset;
10270 }
10271 return relocation;
10272 }
10273
10274 bfd_vma
10275 _bfd_elf_rel_local_sym (bfd *abfd,
10276 Elf_Internal_Sym *sym,
10277 asection **psec,
10278 bfd_vma addend)
10279 {
10280 asection *sec = *psec;
10281
10282 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
10283 return sym->st_value + addend;
10284
10285 return _bfd_merged_section_offset (abfd, psec,
10286 elf_section_data (sec)->sec_info,
10287 sym->st_value + addend);
10288 }
10289
10290 bfd_vma
10291 _bfd_elf_section_offset (bfd *abfd,
10292 struct bfd_link_info *info,
10293 asection *sec,
10294 bfd_vma offset)
10295 {
10296 switch (sec->sec_info_type)
10297 {
10298 case SEC_INFO_TYPE_STABS:
10299 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
10300 offset);
10301 case SEC_INFO_TYPE_EH_FRAME:
10302 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
10303 default:
10304 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
10305 {
10306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10307 bfd_size_type address_size = bed->s->arch_size / 8;
10308 offset = sec->size - offset - address_size;
10309 }
10310 return offset;
10311 }
10312 }
10313 \f
10314 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
10315 reconstruct an ELF file by reading the segments out of remote memory
10316 based on the ELF file header at EHDR_VMA and the ELF program headers it
10317 points to. If not null, *LOADBASEP is filled in with the difference
10318 between the VMAs from which the segments were read, and the VMAs the
10319 file headers (and hence BFD's idea of each section's VMA) put them at.
10320
10321 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
10322 remote memory at target address VMA into the local buffer at MYADDR; it
10323 should return zero on success or an `errno' code on failure. TEMPL must
10324 be a BFD for an ELF target with the word size and byte order found in
10325 the remote memory. */
10326
10327 bfd *
10328 bfd_elf_bfd_from_remote_memory
10329 (bfd *templ,
10330 bfd_vma ehdr_vma,
10331 bfd_size_type size,
10332 bfd_vma *loadbasep,
10333 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
10334 {
10335 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
10336 (templ, ehdr_vma, size, loadbasep, target_read_memory);
10337 }
10338 \f
10339 long
10340 _bfd_elf_get_synthetic_symtab (bfd *abfd,
10341 long symcount ATTRIBUTE_UNUSED,
10342 asymbol **syms ATTRIBUTE_UNUSED,
10343 long dynsymcount,
10344 asymbol **dynsyms,
10345 asymbol **ret)
10346 {
10347 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10348 asection *relplt;
10349 asymbol *s;
10350 const char *relplt_name;
10351 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
10352 arelent *p;
10353 long count, i, n;
10354 size_t size;
10355 Elf_Internal_Shdr *hdr;
10356 char *names;
10357 asection *plt;
10358
10359 *ret = NULL;
10360
10361 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
10362 return 0;
10363
10364 if (dynsymcount <= 0)
10365 return 0;
10366
10367 if (!bed->plt_sym_val)
10368 return 0;
10369
10370 relplt_name = bed->relplt_name;
10371 if (relplt_name == NULL)
10372 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
10373 relplt = bfd_get_section_by_name (abfd, relplt_name);
10374 if (relplt == NULL)
10375 return 0;
10376
10377 hdr = &elf_section_data (relplt)->this_hdr;
10378 if (hdr->sh_link != elf_dynsymtab (abfd)
10379 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
10380 return 0;
10381
10382 plt = bfd_get_section_by_name (abfd, ".plt");
10383 if (plt == NULL)
10384 return 0;
10385
10386 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
10387 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
10388 return -1;
10389
10390 count = relplt->size / hdr->sh_entsize;
10391 size = count * sizeof (asymbol);
10392 p = relplt->relocation;
10393 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10394 {
10395 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
10396 if (p->addend != 0)
10397 {
10398 #ifdef BFD64
10399 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
10400 #else
10401 size += sizeof ("+0x") - 1 + 8;
10402 #endif
10403 }
10404 }
10405
10406 s = *ret = (asymbol *) bfd_malloc (size);
10407 if (s == NULL)
10408 return -1;
10409
10410 names = (char *) (s + count);
10411 p = relplt->relocation;
10412 n = 0;
10413 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10414 {
10415 size_t len;
10416 bfd_vma addr;
10417
10418 addr = bed->plt_sym_val (i, plt, p);
10419 if (addr == (bfd_vma) -1)
10420 continue;
10421
10422 *s = **p->sym_ptr_ptr;
10423 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
10424 we are defining a symbol, ensure one of them is set. */
10425 if ((s->flags & BSF_LOCAL) == 0)
10426 s->flags |= BSF_GLOBAL;
10427 s->flags |= BSF_SYNTHETIC;
10428 s->section = plt;
10429 s->value = addr - plt->vma;
10430 s->name = names;
10431 s->udata.p = NULL;
10432 len = strlen ((*p->sym_ptr_ptr)->name);
10433 memcpy (names, (*p->sym_ptr_ptr)->name, len);
10434 names += len;
10435 if (p->addend != 0)
10436 {
10437 char buf[30], *a;
10438
10439 memcpy (names, "+0x", sizeof ("+0x") - 1);
10440 names += sizeof ("+0x") - 1;
10441 bfd_sprintf_vma (abfd, buf, p->addend);
10442 for (a = buf; *a == '0'; ++a)
10443 ;
10444 len = strlen (a);
10445 memcpy (names, a, len);
10446 names += len;
10447 }
10448 memcpy (names, "@plt", sizeof ("@plt"));
10449 names += sizeof ("@plt");
10450 ++s, ++n;
10451 }
10452
10453 return n;
10454 }
10455
10456 /* It is only used by x86-64 so far. */
10457 asection _bfd_elf_large_com_section
10458 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10459 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10460
10461 void
10462 _bfd_elf_post_process_headers (bfd * abfd,
10463 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10464 {
10465 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10466
10467 i_ehdrp = elf_elfheader (abfd);
10468
10469 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10470
10471 /* To make things simpler for the loader on Linux systems we set the
10472 osabi field to ELFOSABI_GNU if the binary contains symbols of
10473 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10474 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10475 && elf_tdata (abfd)->has_gnu_symbols)
10476 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10477 }
10478
10479
10480 /* Return TRUE for ELF symbol types that represent functions.
10481 This is the default version of this function, which is sufficient for
10482 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10483
10484 bfd_boolean
10485 _bfd_elf_is_function_type (unsigned int type)
10486 {
10487 return (type == STT_FUNC
10488 || type == STT_GNU_IFUNC);
10489 }
10490
10491 /* If the ELF symbol SYM might be a function in SEC, return the
10492 function size and set *CODE_OFF to the function's entry point,
10493 otherwise return zero. */
10494
10495 bfd_size_type
10496 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10497 bfd_vma *code_off)
10498 {
10499 bfd_size_type size;
10500
10501 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10502 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10503 || sym->section != sec)
10504 return 0;
10505
10506 *code_off = sym->value;
10507 size = 0;
10508 if (!(sym->flags & BSF_SYNTHETIC))
10509 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10510 if (size == 0)
10511 size = 1;
10512 return size;
10513 }
This page took 0.293526 seconds and 5 git commands to generate.